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Résumé

L’émergence de pathogènes végétaux s’accélère dans le monde entier, menaçant la sécurité
alimentaire. Il est urgent de concevoir des outils innovants de protection des plantes, en
associant des stratégies de surveillance à des stratégies de lutte précoce contre les maladies,
afin de garantir la sécurité alimentaire tout en assurant la viabilité environnementale des
pratiques agricoles. Dans ce contexte, les pathogènes aériens représentent un enjeu majeur,
car ils peuvent se propager sur de longues distances.

Dans cette thèse, je propose un cadre de modélisation pour concevoir des stratégies
basées sur les réseaux complexes pour la surveillance et le contrôle des pathogènes des
plantes se déplaçant dans les masses d’air. Je prends comme sujets d’étude le pathogène
fongique Puccinia graminis, agent causal de la rouille noire du blé, et Monilinia fructicola,
agent causal de la pourriture brune des pêches.

Tout d’abord, je présente la modélisation des interactions entre hôte et pathogène sous
forme de réseaux complexes et je retrace la manière dont les scientifiques ont utilisé les pro-
priétés des réseaux pour élaborer des stratégies de protection contre les maladies. Ensuite, je
reconstruis le réseau épidémique mondial de la rouille noire du blé, où les régions productri-
ces de blé sont reliées par des connexions potentielles de transport de pathogènes. J’estime
ces connexions à l’aide d’un modèle aérobiologique basé sur des simulations de trajectoires
Lagrangiennes. Je montre comment un algorithme basé sur les réseaux complexes peut
aider à identifier les meilleures sentinelles, c’est-à-dire les endroits où une épidémie peut
être détectée rapidement. Troisièmement, j’intègre le modèle aérobiologique dans un cadre
épidémiologique métapopulationnel afin de simuler la propagation spatiale d’une épidémie
de maladie des plantes. En particulier, je couple un modèle dépendant du climat décrivant
la susceptibilité de l’hôte et son épidémiologie à l’intérieur des vergers avec des simulations
de trajectoires Lagrangiennes déterminant les transports des pathogènes entre les vergers.
J’utilise la pourriture brune des pêches en France comme cas d’étude, pour lequel je pro-
duis des cartes de risque épidémiologique afin de faciliter le développement des stratégies
de protection. Enfin, j’évalue la perte globale d’efficacité de la surveillance due au manque
de communication et coordination entre les pays dans le cas des maladies transfrontalières.
J’utilise le réseau épidémique mondial de la rouille du blé comme cas d’étude. J’évalue les
efforts de surveillance (c’est-à-dire le nombre de sentinelles) déployés par chaque pays pour
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atteindre un objectif de surveillance donné dans un scénario de coopération (c’est-à-dire
sans tenir compte des frontières) puis dans un scénario où chaque pays est indépendant.

Compte tenu de la forte densité du réseau épidémique mondial de Puccinia, il est possi-
ble de trouver un ensemble restreint de sentinelles (1% du réseau) qui surveillent indirecte-
ment la moitié des régions productrices de blé (50% du réseau). Je démontre que la con-
nectivité basée sur les masses d’aire aide la reconstruction des observations de l’incidence
de la pourriture brune en France, et identifie les endroits les plus à risque dans la vallée
du Rhône. Les avantages d’une stratégie coopérative, qui interprète correctement l’échelle
de dispersion de la maladie, sont évidents pour les maladies transfrontalières, mais sont
répartis de manière hétérogène entre les pays : des mécanismes de compensation devraient
être mis en œuvre pour obtenir un soutien unanime en faveur d’un système de surveillance
coopératif international.
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Abstract

Rates of emergence of pathogens accelerates worldwide, threatening food security. Design-
ing innovative crop protection tools, coupling surveillance strategies with timing control of
diseases, is a main issue to ensure food security while restoring environmental viability of
farming practices. In this context, airborne pathogens represent a challenging case study, as
they may be spread over long distances.

In this thesis I propose a modelling framework to support network-based surveillance
and control strategies for airborne plant pathogens. I consider the fungal pathogen Puccinia
graminis, causal agent of stem rust of wheat, and Monilinia fructicola, causal agent of brown
rot of peaches, as case studies.

First, I introduce the representation of host-pathogens interactions in networks, and
I investigate how scientists have used network properties to elaborate disease protection
strategies. Secondly, I reconstruct the global epidemic network for stem rust of wheat,
where worldwide wheat-producing regions are connected via potential pathogen transport
events. I compute such connections using an aerobiological model based on Lagrangian
trajectory simulations. I show how a network-based algorithm may help identifying the
best sentinels, i.e. those locations, to be frequently monitored, where an outbreak may
be early detected. Thirdly, I integrate the aerobiological model within an epidemiological-
metapopulation framework to simulate the spatial spread of a plant disease outbreak. In
particular, I couple a climate-dependant model describing host susceptibility and in-orchard
epidemiology with Lagrangian trajectory simulations determining transport of pathogens
between orchards. I use brown rot of peach crops in France as a case study, for which I
produce maps of epidemiological risk to inform protection strategies. Finally, I assess the
global loss of surveillance efficiency due to lack of communication and cooperation among
countries in designing surveillance strategies for transboundary diseases. I use the global
epidemic network for stem rust of wheat as a case study. I assess the surveillance efforts
(i.e. the number of sentinels) deployed by each country to reach a given monitoring target
in a cooperative scenario (i.e. regardless of country border) or each country alone.

Given the high density of the worldwide Puccinia epidemic network, it is possible to find
a narrow set of sentinels (1% of the network) which indirectly monitor half of the wheat-
producing regions (50% of the network). I show that wind-driven connectivity helps recon-
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structing observations of brown rot incidence in France, and help identifying the most risky
locations in the Rhône Valley. Benefits of a cooperative strategy, which correctly interpret
the dispersal scale of a disease, are evident for transboundary diseases, but are heteroge-
neously distributed among countries: compensation mechanisms should be implemented
to gain unanimous support for an international cooperative surveillance system.
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Introduction

The story so far:
In the beginning the Universe was created.
This has made a lot of people very angry and been
widely regarded as a bad move.

– Douglas Adams, The Restaurant at the End of the Universe

Eating

Food, together with breathing, water, sex, sleep, homeostasis and excretion are physiological
fundamental human needs (McLeod, 2007). In the context of motivational theory, these
represent the primary needs that must be fulfilled initially to further satisfy a hierarchy of
more complex needs which contribute to the idea of personal development, i.e. safety, love
and belonging, esteem, and self-actuation.

Broadening the perspective from humans to the whole living world, heterotrophs, and
humans among them, take nutrition - mainly energy and carbon - by eating or consum-
ing food (Stuart, 2013). Nutrition is such a fundamental activity among living beings that
ecologists classify organisms based on their primary source of nourishment. One first classi-
fication divides organisms into primary producers (such as plants, which produce biomass
from inorganic compounds), primary consumers (which feed on primary producers), sec-
ondary consumers (which feed on primary producers and consumers). This classification,
which is called food chain (Elton, 1927), has been revisited several times to include decom-
posers and scavengers, such as fungi, which feed on complex organic substrate and return
carbon to the surrounding environment (Sheldrake, 2021), eventually proposing a circular
shape (a food web) rather than a linear one. Although imperfect, this linear representation
already allows us a crucial observation: our nutrition, fulfilling a primary physiological
fundamental human need, depends ultimately on primary producers.

This is why this thesis concerns plants and their health.
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Agriculture, parasites and society

Historians and archaeologists agree in stating that a fundamental step in the evolution of
human societies was the domestication of plants (Harari, 2014). Measures of genetic sim-
ilarity support the hypothesis that this domestication, also called Agricultural Revolution,
happened between 11,000 and 3,000 years ago in distinct parts of the Earth: the Fertile
Crescent in Middle East (9,000 BC), the Yangtze and Yellow River basins in Southeast Asia
(7,000 BC) and the New Guinea Highlands (7,000 – 5,000 BC), Central Mexico in Central
America (3,000 – 2,000 BC), Northern South America (3,000 – 2,000 BC), sub-Saharan Africa
(3,000 – 2,000 BC), eastern North America (2,000 – 1,000 BC; Diamond and Bellwood, 2003).
Prior to this event, it is widely acknowledged that humans lived in nomad groups engaged
in hunting and gathering (Diamond and Ordunio, 1999). Agriculture marked a shift to-
ward a sedentary way of life, at the point that anthropologists prefer talking about “human
and plants co-evolution” rather than domestication of plants (Schaal, 2019). The settling of
human groups involved major socioeconomic changes, the development of complex social
structures (such as cities) or new skills (such as writing), which have dramatic influence on
the way we live nowadays (Harari, 2014; Diamond, 2002).

The areas of the world in which agriculture appeared first are called “centers of origin”
(Vavilov and Dorofeev, 1992). Different plants (and animals) were domesticated in each
“center of origin”. In the Fertile Crescent, which is the cradle of Mediterranean and Eu-
ropean societies, these included progenitors of today’s most important crop species, with
wheat arguably holding the utmost role. Wheat cultivation and processing have been inte-
gral components of European, African and Asian food for several millennia, becoming in
the last centuries a central agriculture endeavor worldwide due to European colonization
(Palmer, 1996). Nowadays wheat fields cover 2.15× 108 hectares, representing the most
abundant agricultural type of land cover (FAO, 2021a), mainly located in Asia, America,
and Europe.

This success of wheat, which has resulted in large and continuous areas devoted to its
cultivation, has not gone unscathed. Natural ecosystems favour generalist parasites due
to the greater biodiversity and environmental heterogeneity. Contrariwise, the increase of
homogeneous host density in cultivated areas in new environments, far from the centers of
origin, facilitate the transmission of diseases and the emergence of virulent and specialized
plant parasites (Stukenbrock and McDonald, 2008). This homogenisation has progressively
become a more alarming threat in the last 200 years (Santini et al., 2013) in mono-culture-
based agriculture, with the selection of few genetic varieties (Corredor-Moreno and Saun-
ders, 2020) and globalization of trade (Santini et al., 2018). However, although at a slower
rate, the roots of this phenomenon can be traced back to the Agriculture Revolution. As
evidence of this, it is interesting to note that ancient civilizations clashed with certain plant
parasites that continue to challenge us even today. The fungal species Puccinia graminis,
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causal agent of stem rust of wheat, is an extremely virulent pathogen, capable of provoking
great production losses (Olivera et al., 2015), threatening food production worldwide (Ris-
taino et al., 2021). Plant paleoepidemiology is rarely assisted by direct evidence, but in this
very exceptional case P. graminis spores have been found in an Israeli granary active in 1,300
B.C. (Kislev, 1982).

With occasional exceptions, in ancient societies, explanations for complex natural phe-
nomena like famines and epidemics often had foundations in myth and religion rather than
rigorous scientific structuring (Russo, 2001). One illustrative case is given again by stem
rust of wheat. As many other natural phenomena, the emergence of diseases was associ-
ated with divine will, which would punish or award humans for their behaviour (van der
Eijk et al., 1995; Lucarelli, 2017). We know, for instance, that the Greek Pantheon included
Erythibius, also known as the “Apollo of the Rust” (Peterson et al., 2001). More information
is available about Romans’ habits: they used to celebrate spring parties, called Robigalia, in
which they sacrificed innocent red animals to mitigate the anger of the god Robigus, in the
hope this will prevent reddish lesions - revealing stem rust infections - to appear in wheat
fields (Zadoks et al., 1985).

Such attempts to explain the presence of stem rust and the consequent preventive actions
could trigger the reader’s amusement. If it is the case, note that the first efforts of the
scientific community to reconstruct the ethiology of this disease were far from being more
convincing. During the XVII century, in England, the most accepted explanations for stem
rust of wheat included i) high hedges around fields or hollows in the ground, which resulted
in stagnant air; ii) an atmospheric deposition; or iii) the straw of poorly rotted manure
(Hartlib, 1655). These theories were elaborated in opposition to a widespread belief - a
“foolish superstition” - among farmers, who believed that the lesions were “attracted” by
barberry hedges, which people used to plant to separate fields (Ellis, 1741).

Ancient and early modern societies were separated by the so called Copernican Revolu-
tion, in the XIV-XV century, a paradigm shift (Kuhn, 1962) in astronomy first, and later in
the whole science, which lead to the affirmation of the scientific method as the essential tool
to investigate reality. However, it was not before the beginning of the XIX century, thanks
also to development of microbiology (Pasteur, 1861), that agricultural scientists started ac-
cepting the causal relation between the presence of barberry, around which stem rust lesions
were occurring, and the rust disease (Barnes et al., 2020), exactly as farmers argued.

Retracing the whole etiology of stem rust was impossible given the poor conceptual
tools of the science of the time. P. graminis is an obligate two-host pathogen whose life
cycle includes five different stages. During winter, barberry leaves (Berberis vulgaris) can be
infected by basidiospores, produced by overwintering teliospores. Here, genetic reshuffling
can occur within infected barberry by means of pycniospores. When the temperatures start
to rise, infection can be transmitted from barberry to nearby susceptible wheat by means of
aeciospores. Later in the season, asexual urediniospres are produced from infected wheat.
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When temperatures start to decrease, urediniospores are replaced by teliospores for over-
wintering, and the life cycle starts again (Roelfs, 1992).

Once the fundamental role of barberry in determining the inter-annual persistence of
the disease has been widely accepted, removal campaigns have taken place all over Europe
and North America along the XIX and XX century (Zadoks, 1967). Barberry is known to
persist in remote locations, such as in the Alps mountains (Och and Nowak, 2021) or in the
Caucasus (Olivera et al., 2019), or where the warm winter temperatures would allow the
survival of uredioniospores anyway, such as in Central America (Aylor, 2003) and central
Africa (Olivera et al., 2015).

A noisy spring

This approximately 3,000-year leap in the history of wheat protection against stem rust
represents a specific story that tells us how societies have dealt with the complexity of some
pathosystems throughout the centuries and it will be taken up in the next section. However,
it is not necessarily representative of the story of parasites invasions in general.

Copernican Revolution is far from being the only historical fact that affected the disci-
pline of plant pathology between the XV and XVI century. In the same period, the European
exploration and colonization of America lead to the Colombian Exchange, i.e. the relative
diffusion of crops between the “Old” and the “New world” (Diamond and Ordunio, 1999),
which had been isolated in the precedent 10.000 years. Potatoes, corn and tomatoes were
imported to Eurasia-Africa, while wheat, soybean and rice were introduced into America,
just to give some examples; and each one with its parasites (Santini et al., 2018).

All these crops have found great diffusion in the new contexts where they were intro-
duced. Potato is arguably one of the crops which met the steepest diffusion in Europe,
because of its endurance to cold climatic conditions - which were even enforced by the
Little Ice Age (Abel, 2013). The innovations introduced during the Second Agricultural
Revolution accelerated its diffusion, which in some contexts abruptly replaced precedent
cultures, with alternate outcomes. It is the case, for example, of Ireland, where, around the
half of the XIX century, a large outbreak caused by Phytophtora infestans devastated the only
variety of potato that was cultivated (“lumper”) resulting in a devastating famine and in
a dramatic demographic decline, from which the island population has not yet recovered
(Carefoot et al., 1969).

Beside sporadic contractions in productivity, an improved agricultural yield and a more
reliable food supply accompanied the worldwide demographic boom in the XIX and XX
centuries. Another significant transformation in agriculture was represented by the Green
Revolution, a set of pioneering farming changes which commenced in the 1940s in Mexico
and rapidly spread all over the globe (Pingali, 2012). The cardinal elements of this trans-
formation included the intense input of chemical fertilisers and phytosanitary products, the
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introductions of new technologies, irrigation facilities as well as the selection of a narrow set
of high-yield varieties. This led to an explosion in the yield and an increase of its reliabil-
ity, reducing those fluctuations in productivity that were a real constraint on food security
(Webb and Eiselen, 2009). For instance, it has been estimated that rice production in South-
East Asia doubled within a couple of decades (Zeigler and Mohanty, 2010), helping feeding
its unprecedented growing population.

The Green Revolution represented a further step toward the industrialization of agri-
culture and completely reshaped rural landscapes. With the increase of productivity, fewer
farmers were needed to produce the same amount of food, bringing to a progressive de-
cline of the rural population which migrated to cities (Johnson and Lichter, 2019). Increased
cultivation surface with less manpower resulted in an expansion of mono-cultured surfaces
(Pingali, 2017). In the decades around the half of the last century it was believed that plant
parasites could be completely controlled by fungicides and insecticides. This approach
started soon to show some limitations (Pingali, 2012).

In the view of the promoters, higher yields deriving from technological innovations
would have helped the poorest fraction of population access to food. At the same time,
these would have saved natural habitats from agricultural conversion because of a more
intense use of existing agricultural surfaces (Pingali, 2012). The first objective was partially
achieved, while the second was missed, mainly because of the simultaneous population in-
crease and of the per-capita consumption (Pingali, 2012). Moreover, unexpected difficulties
emerged, such as emergence of pesticide resistance of pathogens and pests, favoured by the
above-mentioned characteristics of modern agriculture (Stukenbrock and McDonald, 2008),
such as the loss of genetic crop diversity within larger host surfaces. Furthermore, increased
commodity shipping increased the risk of parasite invasions in new territories. This meant
that, in spite of an increased input of pesticides, the disease-related production losses did
not decrease (Carson, 1962). This is the case of Monilinia fructicola, a fungal pathogen affect-
ing mainly stone fruits, and in particular causing brown rot of peaches (Bryde and Willets,
1977). This species, absent in Europe up to the year 2000, was inadvertently introduced into
France, supposedly from the United States (Lichou et al., 2002). M. laxa and M. fructigena
already caused similar symptoms in stone fruits, provoking high production losses (Bryde
and Willets, 1977). The spread of this further pathogen throughout the continent has not
been controlled, despite the application of high levels of fungicides, which in recent years
reached rates of 15 to 25 doses per parcel per year (Cretin et al., 2018). Today M. fructi-
cola is endemic in Hungary, Switzerland, Germany, Czech Republic, Slovenia, Italy, Austria,
Poland, Slovakia, Serbia and Spain (Oliveira Lino et al., 2016).

Certain unexpected harmful consequences of the Green Revolution arose because there
was little awareness about them at the time. Contrariwise to a common belief, the rise of the
environmentalist movement was not due to the acknowledgement of climate change or over-
exploitation of non-renewable resources, but to the deleterious effects of bio-accumulating
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phytosanitary pollutants, witnessed by the American biologist Rachel Carson in her book
“Silent spring” (Carson, 1962). Biodiversity loss, soil erosion, eutrophication of water bodies,
greenhouse gases emissions and, in general, loss of ecosystem functions are other negative
impacts of farming in the second half of the XX century (Power, 2010).

The Green Revolution has shaped agricultural practices in such a way that still nowadays
we refer to them as “conventional” farming (Sumberg and Giller, 2022). However, in recent
decades, major shifts are taking places, addressing sometimes complementary aspects of
farming practices and underlying almost contrasted visions of the role of agriculture. These
include, but are not limited to:

1. Engineering techniques to produce more resistant and productive genetically modified
organisms (GMOs; Zilberman et al., 2018);

2. Organic farming, a set of practices with the direct aim of reducing chemical inputs in
food and in the environment (Seufert et al., 2017);

3. Precision farming, which includes the use of digital sensors and machines to collect
data on the state for the crop and support precise and automated management (Finger
et al., 2019);

Some of these innovations, such as GMOs, have established in some parts of the world,
such as USA, Brazil, Argentina and India (Clive, 2015) while others, such as precision farm-
ing, have found limited application and are part of a political road-map to address to-
morrow’s agriculture, such as the “Farm to Fork” initiative of the European Commission
(Schebesta and Candel, 2020).

Considered in their most commonly held conception, these practices retain some ele-
ments of continuity with the precedent paradigms with respect to the issue of crop pro-
tection. For example, these innovations seek to transversely address crop protection at the
local scale, under the implicit assumption that farming practices have consequences only in
the managed plot and in the immediate surroundings.

Does it really work this way? The answer brings us back to P. graminis. For the first time
after decades, stem rust of wheat was observed in 2013 in Germany (Olivera Firpo et al.,
2017), in 2016 in Italy (Bhattacharya, 2017) and in 2020 in Ireland (Tsushima et al., 2022).
This happened several decades after the emergence of a virulent and resistant strain, Ug99,
in central Africa (Pretorius et al., 2000). Despite a gradual relaxation of its eradication, in
Europe barberry is supposed to be conserved only in remote locations; on the other hand,
large cultivated surfaces in Europe display poor genetic diversity (Corredor-Moreno and
Saunders, 2020) and resistance (Saunders et al., 2019).

Scientists suggest that aerial transport of Puccinia spores from endemic zones may ex-
plain re-emergence of stem rust in Europe after several decades (Corredor-Moreno and
Saunders, 2020) - remarkably, exactly as some English scientists speculated in the XVII cen-
tury (Hartlib, 1655). Airborne transport of spores over continental scales among a widely
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distributed host is known to produce seasonal routes (Brown and Hovmøller, 2002), such
as the North-American “Puccina pathway” (Aylor, 2003), a series of long-distance seasonal
leaps moving from Mexico to Canada following a thermal gradient. These transport events
between fields transform an heterogeneous agricultural landscape into a connected network
of cultivated sites where a given action in one site may have consequences in the very dis-
tant sites depending on its topology (Strona et al., 2020). It becomes evident that, in case
of long-distance dispersed parasites, management practices should be planned considering
epidemic interactions occurring at a larger scale that one’s farm.

Regardless of the way crop protection is put in practice (via pesticide application or use
of resistant varieties), it becomes evident that long-distance transports - airborne, or human-
mediated - over an interactive landscape should be embedded in current crop protection
strategies. This shift in the scale of agricultural management asks for a new framework to
develop innovative conceptual tools (Morris et al., 2022).

Crop protection within the One Health framework

Covid-19 pandemic has put two important considerations about human pandemics into
the public domain. The first concerns the concept of spillover, i.e. the transmission of
a pathogen between an infected reservoir population and a novel pristine one. Zoonotic
spillover are those passages from an animal population to humans, such as Covid-19, but
also Ebola or AIDS; most of human infectious diseases are zoonotic spillovers (Ellwanger
and Chies, 2021). The second concerns the spread pattern of emerging pandemics. Epi-
demics are spread by human contacts. Before globalization, in a less densely inhabited
world of limited mobility, plagues spread according to reaction-diffusion patterns, like wild-
fire (Noble, 1974); geographic distance ultimately determined the timing of arrival of the
disease. Contrariwise, it has been shown that the spread of contemporary pandemics, such
as Covid-19 or the 2009 swine flu, can be fully modelled at the large scale by considering
the frequency of air-traffic connection among countries (Brockmann and Helbing, 2013). Fu-
elled by globalized shipping of people and goods, parasites no longer spread solely based
on geographic proximity, but are capable of long-distance transports (Banks et al., 2015).

The debate around more frequent zoonotic spillovers lead scientists to elaborate the con-
cept of One Health. This framework acknowledged the interdependence between human
and animal health as part of the same system (Hinchliffe, 2017). The One Health framework
was first conceived as a bridge between human and veterinary medicine with the aim of
anticipating the emergence of new zoonoses. It promoted the idea of an international part-
nership for the establishment of global bio-surveillance networks to inform political action
(Morris et al., 2022).

Given the story that I have developed in the previous sections, readers will not be sur-
prised that it was just a matter of time before plant scientists advocated plant science to
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be included in the One Health framework. For instance, this year, the XII meeting of the
International Society of Plant Pathology had “One Health for all plants, crops and trees” as
motto.

The dependence of human health in plant health in terms of agriculture production and
ecosystem services has been summarized in the previous sections. Nevertheless, additional
reasons lead scientists to include plant health in the One Health framework. One, for exam-
ple, is the recent formalization of the concept of “phytonose”, i.e. the passage of pathogens
from plants to animals and humans (van der Riet, 1997; van Overbeek et al., 2014), which
provides a parallelism with the concept of zoonoses which was at the base of the concept of
One Health.

The second reason lies in the observation that increasing ecological imbalances, which
ultimately impact human well-being, are represented by biological invasions of alien species
and/or of plant parasites, whose rate and related costs are increasing worldwide (Diagne
et al., 2021). Current introductions of these species into new territories are mostly mediated
by humans (Banks et al., 2015), so more and more research is done under the umbrella of
“invasive” species, regardless of whether these are affecting plants or animals (Diagne et al.,
2021).

The focus of One Health on surveillance and the inclusion of both animals and plants has
induced scientists to look for innovative and versatile tools and methods for preventing the
emergence of diseases (Morris et al., 2022). An example of innovative tool for early detection
of infectious plant parasites is the use of canine olfactory detection to rapidly survey large
plantations without sample collection or laboratory processing (Gottwald et al., 2020), or
the use of Lagrangian trajectory simulations of air masses to predict where airborne spores
will be deposited (Meyer et al., 2017b) and inform stakeholders and policymakers to design
control actions (Allen-Sader et al., 2019). Another example from outside plant pathology is
the idea that the emergence of Covid-19 could have been anticipated via the analysis of the
occupation of parking lots in Wuhan from satellite images (Nsoesie et al., 2020).

Other innovative tools include text mining and network science. Their versatility consists
in the possibility of being used in very different contexts with a reduced cost of adaptation.
Text mining techniques, for example, are used to extract information from heterogeneous
sources and mapping them into semantic structures. Their application to crop protection
is devoted, for example, in building knowledge about pathogens reservoirs (Morris et al.,
2022). In France, the animal, food processing and plant epidemic surveillance platforms
(Amar and Dupuy, 2020) integrate text mining into the analysis of the impressive amount
of documents produced in different languages around the world to anticipate the spread of
diseases (the so called “Veille sanitaire internationale”). Networks are mathematical objects
made of fixed elements, called nodes, and relations among nodes, called links or edges
(Newman, 2003). These structures have been used to represent disease spread in humans
(Brockmann and Helbing, 2013), animals (Dubé et al., 2011) and plants (Moslonka-Lefebvre
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et al., 2011). In such a representation, nodes play as hosts, and epidemic contacts play as
edges. Network scientists have explored topological properties that have proved to identify
most vulnerable nodes or those nodes which play as disease spreaders (Jeger et al., 2007).
Network-based disease surveillance and control strategies have been applied in the case of
humans and animals, and a growing interest has risen around application to plants (Garrett
et al., 2018).

These methods are all objects of investigation in the ANR BEYOND project, which co-
finance my thesis. We are sure, they would have triggered the amusement scientists in the
XVII century; how amazed they would have been upon realizing that dogs truly detected
infections weeks to years prior to visual and molecular surveys (Gottwald et al., 2020)!

Objectives of the thesis and outline of the manuscript

In this thesis I aim to explore innovative crop protection strategies against long-distance
dispersed parasites. I focus on aerial dispersal as a main transport mechanisms, and I test
complex network capabilities to provide management indications in two case studies: stem
rust of wheat and brown rot of peaches.

Concerning stem rust of wheat, I am far from being the first to model quantitatively its
aerial transport. Recent works have used Lagrangian trajectory simulations of air masses,
provided by the NAME (Jones et al., 2007) or HYSPLIT (Draxler and Hess, 1998) models, to
reconstruct the aerial introductions of new rust strains in Ethiopia (Meyer et al., 2017a) and
Australia (Visser et al., 2019), upgrading past pioneering work about the introduction of
soybean rust in the USA (Isard et al., 2005). With respect to these studies, I concentrate my
work on reconstructing the worldwide “Puccinia pathways” and I use recurrent transport
events of spores to identify a set of sentinels, locations to be monitored systematically detect
the emergence of an outbreak, to surveil worldwide wheat producing areas, similarly to
what Sutrave et al. did at the country scale.

As already mentioned, brown rot of peaches is a fungal disease caused by a set of
pathogens of the Monilina genus. These can provoke damages on fruits, blossoms, twigs
stone fruit plants in general; however, they have the potential to provoke almost complete
losses on peaches and nectarines (Oliveira Lino et al., 2016). Among the main pathogens
causing this disease, M. fructicola is particularly interesting since, in just one decade, it
colonised most of the European continent starting from an outbreak in France (where it was
first detected in 2001).

Modelling the spread of brown rot of peaches presents more challenges, although I de-
cided to restrict the geographic domain of the investigation to France only. A first challenge
concern its aerobiology; despite airborne transport of Monilinia spores has been suggested
by literature, there are no specific studies on this topic. Moreover, in order to compare
the model with field observation of severity in the last twenty years, I have to built a
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climate-dependant dynamical framework reflecting coupled cycles of dispersal, infection,
and onward spread of the disease. For this reason I integrate wind-driven parasite trans-
port, represented by connectivity networks, with climate-driven local epidemiology of host,
in a unified modelling framework. I then use this framework to identify the most dangerous
locations (the ones where a parasites, if introduced, would provoke the highest damage at
the landscape level) and the most vulnerable (the ones which would be more often damaged
by an outbreak taking place anywhere else) with respect to brown rot spread.

Both stem rust of wheat and brown rot of peaches, even if at different scales, are diseases
whose rapid spatial spread concerns more countries. Uncoordinated protection measures at
the international scale may lead to an increase of the risk of invasions and its control-related
costs. Therefore, the last part of this manuscript is devoted into assessing the benefits of
a cooperative international surveillance strategy over a non-cooperative one, where each
country optimise its own surveillance. I use the worldwide epidemic network for stem
rust to perform this assessment. Moreover, I quantify the degree of heterogeneity of the
geographical distribution of benefits among countries due to cooperation.

This manuscript is then structured in four chapters:

1. I define the concepts of crop surveillance and control; I present how network science
has been used to represent human, animal and plant epidemiological dynamics; even-
tually, I investigate how researchers have used network properties to design disease
protection strategies.

2. I reconstruct the worldwide epidemic network of stem rust of wheat, based on a
framework integrating Lagrangian trajectory simulations of air masses with suitability
filters, and I propose a network-based algorithm to identify the best sentinels, i.e. those
locations to be monitored systematically to early detect the emergence of an outbreak.

3. I integrate the theoretical work on Lagrangian simulations to inform and calibrate
a climate-driven metapopulation model to describe the epidemiological dynamics of
brown rot of peaches in France. I test weather directional long-distance dispersal plays
a significant role in describing the incidence of brown rot in France in the last twenty
years; I produce map of epidemic risk to design crop protection strategies.

4. I use the worldwide epidemic network of stem rust of wheat to test what the overall
benefits of a cooperative surveillance strategy over a non-cooperative, country-based
one, would be. I demonstrate that a global benefit of a cooperative strategy is accom-
panied by an heterogeneous distribution of costs.

The second and the fourth chapters correspond to research articles already accepted and
published (Radici et al., 2022, 2023b), while the first and the third ones have been submitted
to peer-reviewed journals. Each chapter is accompanied by a section that will help the
reader contextualise it with respect to the manuscript road-map.
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Chapter 1

Network-thinking to optimize
surveillance and control of crop
parasites. A review

The Guide is accurate.
Reality, instead, is often inaccurate.

– Me misquoting The Hitchhiker’s Guide to Galaxy

Résumé

L’augmentation des surfaces cultivées, l’homogénéisation des cultures et le commerce mon-
dial des denrées alimentaires ont favorisé la propagation des ravageurs et des maladies des
plantes. Il est urgent d’optimiser la protection des cultures pour garantir la sécurité alimen-
taire. Deux des aspects de la protection des cultures sont la surveillance, qui se concentre sur
la détection précoce d’un parasite, et le contrôle, qui vise à le combattre et éventuellement
à l’éradiquer. La théorie des réseaux complexes a été largement utilisée pour modéliser la
propagation des maladies infectieuses humaines et animales dans des systèmes décrits par
des nœuds et des liens. Elle a été utilisée avec succès pour optimiser les campagnes de
surveillance et de vaccination. Dans le domaine de la protection des plantes, on trouve de
plus en plus d’ouvrages utilisant cette théorie pour décrire la propagation de parasites et
pour concevoir des stratégies de protection.

Nous passons ici en revue l’utilisation de la théorie des réseaux complexes en épidémi-
ologie végétale, depuis les approches visant à décrire uniquement la propagation des mal-
adies jusqu’à celles appliquées spécifiquement à l’optimisation de la protection des cul-

This chapter has been submitted as a review article (pre-print available at: Radici et al.2023).
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tures. Nous retraçons le processus logique qui a conduit les modèles épidémiologiques à
s’appuyer sur la théorie des réseaux complexes, et nous donnons des exemples de la façon
dont la propagation des parasites des cultures a été représentée par une description de
réseau. Nous définissons les objectifs de la surveillance et du contrôle, et nous montrons
comment ces concepts ont été déclinés dans la sphère épidémiologique des réseaux, puis
adaptés au contexte agricole. Enfin, nous discutons de l’écart que nous observons entre
l’application de la théorie des réseaux dans la surveillance et le contrôle, afin d’identifier les
failles et les solutions.

Nous constatons que : i) les scientifiques ont réussi à interpréter des modes de transmis-
sion parasitaire très différents sous la perspective de la théorie des réseaux ; ii) alors que
l’épidemiosurveillance basée sur les réseaux a progressivement clarifié ses objectifs et que
des outils solides ont été proposés, le contrôle basé sur les réseaux a été moins étudié et ap-
pliqué ; iii) la réflexion autour des réseaux doit porter sur la manière de définir correctement
les liens et les nœuds à différentes échelles géographiques afin d’élargir leur application à
la protection des cultures.

Mots-clés : protection des plantes, parasites, réseaux complexes, épidemiosurveillance,
contrôle des épidémies.

Abstract

Increasing cultivated lands, crop homogenization and global food trade have fostered the
spread of crop pests and diseases. Optimizing crop protection is urgently needed to ensure
food safety. Two aspects of crop protection are surveillance, which focuses on the early
detection of a parasite, and control, aiming to fight and possibly eradicate it.

Network theory has been widely used to model the spread of human and animal in-
fectious diseases in systems described through nodes and edges. It has been successfully
used to optimize monitoring and immunization campaigns. In crop protection, there is a
growing literature using this theory to describe parasites spread and to conceive protection
strategies.

Here we review the use of network theory in plant epidemiology, from the more de-
scriptive to the more applied approaches aimed to optimize crop protection. We retrace
the logical process that has led epidemiological models to rely on network theory, and we
provide examples of how the spread of crop parasites has been represented via a network
description. We define the objectives of surveillance and control, and we show how these
have been declined in the network-based epidemiological sphere and then adapted in the
agricultural context. We eventually discuss the discrepancy between the application of net-
work theory in surveillance and control to identify culprits and solutions.

We find that: i) scientists have successfully interpreted very different modes of parasitic
transmission under the lens of network theory; ii) while network-based surveillance has
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progressively clarified its objectives and sound tools have been proposed, network-based
control has been less studied and applied; iii) network-thinking must address how to prop-
erly define edges and nodes at different geographic scale to broad its application in crop
protection.

Keywords: crop protection, parasites, networks, epidemic surveillance, epidemic con-
trol.

1.1 Introduction

Pests and pathogens are responsible for a reduction between 17% and 30% of crop produc-
tion at the global scale (Savary et al., 2019). In the next decades, crop losses are expected to
increase due to the narrowing of diversity in crop species and the increase of food demand,
pesticide resistance, and of global trade which determine favorable conditions for spread
of pests and diseases as they increase the host abundance and contact probability between
hosts (Carvajal-Yepes et al., 2019; Ristaino et al., 2021; Khoury et al., 2014). Climate change
could also facilitate the spread of certain pathogens and pests (Corredor-Moreno and Saun-
ders, 2020) and most of the losses are expected in countries with expanding populations,
where food supply is already an issue (Tilman et al., 2011; Adam et al., 2021). Moreover,
agriculture is asked to mitigate its environmental and health impacts related to the use
of chemicals which have been the major tool to protect crop from pest and disease in the
last decades (Vitousek, 1994; Tudi et al., 2021). The challenge of reconciling sufficient food
production with social and environmental viability is acknowledged as part of the Sustain-
ability Development Goals of the UN 2030 Agenda (Foley et al., 2011; Tilman et al., 2002;
Lee et al., 2016).

Therefore, surveillance and control, which are complementary measures to protect crops
from parasites, hereinafter intended for both pests and pathogens, ought to be optimized
(Carvajal-Yepes et al., 2019; Morris et al., 2022; Ristaino et al., 2021). Surveillance, which is
mostly based on data collection and analysis, aims to detect the presence of parasites early
and to know the phytosanitary status of a crop. Control aims to reduce parasitic dispersal,
either by immunizing hosts, e.g. by cultivating resistant varieties, or by limiting parasite
dispersal by reducing contacts between individuals. An effective crop protection strategy
requires both surveillance and control to work together: in fact, the efficacy of control
measures critically depends on the timing of detection of the parasite, which is likely to
spread if favorable conditions are present.

Network theory, originally intended to study properties of systems described by a set of
nodes connected via edges (Newman, 2003), has been successfully applied to epidemiology.
In this context, the nodes of the network represent host individuals or distinct host pop-
ulations and the edges represent connections between nodes. In recent decades, network
theory has been extensively used to model the spread of infectious diseases in humans
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and animals and to inform protection policies (Keeling and Rohani, 2011; Brockmann and
Helbing, 2013; Kao et al., 2007; Dubé et al., 2011), the recent Covid-19 pandemic being a
paradigmatic case (Block et al., 2020; Saunders and Schwartz, 2021; Della Rossa et al., 2020).

Network theory has proven to be a valid tool in crop protection to model disease spread
and to design surveillance and control strategies (Moslonka-Lefebvre et al., 2011; Cunniffe
et al., 2015; Parnell et al., 2017; Garrett et al., 2018). Unlike animals and humans, plants do
not move, so that the transmission of a parasite depends on its displacement. This can be
active, such as flying from an orchard to another, or passive, driven by living agents (called
vectors) or abiotic elements such as air masses, water currents, or even via transport of
goods. In the case of crop parasites, nodes of the network usually identify locations where
the host is present, which generally correspond to cultivated areas (Fig. 1.1).

An example of network-thinking in crop protection is the identification of those loca-
tions that contribute the most to spreading parasites (Zhang et al., 2016). This identification,
hereinafter called prioritization, is needed because crop protection is expensive, so it is im-
portant to rank and select a reduced set of locations (nodes) to be inspected for surveillance
and/or to be treated for control (as in Fig. 1.1d). Recently, more advanced research has been
conducted to investigate useful node properties which allow this prioritization (Martinetti
and Soubeyrand, 2019; Sutrave et al., 2012; Hernandez Nopsa et al., 2015) in the case of re-
emerging parasites, such as Puccinia graminis (Meyer et al., 2017) or Xylella fastidiosa (Strona
et al., 2017) in Europe. The implications of networks for crop protection are rising (Jeger
et al., 2007; Moslonka-Lefebvre et al., 2011; Shaw and Pautasso, 2014; Parnell et al., 2017;
Garrett et al., 2018), but little research has focused on rigorously clarifying their properties
for surveillance and control (Holme, 2017). Also, the level of application of network-thinking
is not the same in surveillance and control: this review aims to present the state of the art in
terms of network-thinking in crop protection, investigate the main obstacles to applications
and delineate research perspectives.
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Figure 1.1 – A network of scattered fields over which crop protection is conducted. a) Fields
of interest are part of a complex landscape; b) in this example, we imagine that the reddish
fields play as nodes, and that parasites can move from a field to an adjacent one (via an
edge); c) the network is formalized into a graph made of a set of nodes connected via edges,
discarding all the trivial elements (only the river is represented in the background to help
readability); d) control of node 22 (via cultivation of resistant cultivars and/or phytosanitary
treatment) prevents parasitic flow in and throw this node: its edges are therefore removed.
The presence of parasites in the network is acknowledged via surveillance of nodes 6, 18
and 28 (this latter, for example, allows to indirectly monitor connected nodes 26 and 27).
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1.2 Networks: definitions and properties

Networks are sets of nodes connected via edges (Börner et al., 2007). In epidemiology, nodes
represent hosts (individuals or populations), while edges represent infectious contacts. A
classic way to represent a network is a square matrix W, called adjacency matrix, whose
generic element wi,j represents the edge connecting node i to node j. Edges can be either
binary (wi,j = 1 ∨ 0) or associated to weights, generally positive (wi,j ∈ R+); either undi-
rected, if a relation from a node i to a node j implies the same from j to i (it follows that the
adjacency matrix is symmetric: wi,j = wj,i) or directed; lastly, they can be dynamic (edges
arrangement and weight vary with time) or static. Nodes can be characterized in terms
of their features, which are quantified via metrics (often called centralities). The simplest
metric that one can build is the degree, usually indicated by k, i.e. the number of edges
connected to a node. In the case of weighted networks, the notion of degree is usually
complemented by that of strength, i.e. the sum of the weights of the edges connected to
a node. In the case of directed networks, it can be further distinguished between in- and
out-degree/strength, considering only in- or out-going edges. The probability distribution
of k in a given network is called degree distribution, and its average is indicated as k. The
degree distribution can be used to classify network properties as a whole. For instance,
homogeneous networks are built in such a way that all nodes have the same probability of
having an edge with another node. On the other hand, the Barabási-Albert algorithm allows
to build scale-free networks (Barabási and Albert, 1999), in which the degree distribution
follows a power law.

Several node metrics can be defined (Mastin et al., 2020), such as the betweenness of
a node w, i.e., the number of shortest path connecting whatever couple of nodes of the
networks i and j and passing through w, where the shortest path is the shortest sequence
of consecutive links connecting two nodes, or, in case of weighted networks, the sequence
of consecutive links associated with the lowest strength sum (Barabási, 2016). Interested
readers can find an exhaustive summary of node metrics in Lü et al. (2016).

1.3 Modelling epidemics

Mathematical epidemiological modelling has its origin in the S-I compartmental model (Ker-
mack and McKendrick, 1927). In one of its simplest formulation, it assumes that a popu-
lation is divided into susceptible (S) and infected (I) individuals and describes its temporal
variation via a system of differential equations:Ṡ = −βSI + µI

İ = βSI − µI
(1.1)
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where β represents the disease transmission rate, that drives S to become I, and µ repre-
sents the recovery rate, that drives I to return to S. This model can be extended to include
other processes (e.g. immunity, natural mortality and fertility) and it allows to define the
basic reproductive number R0, which indicates "the expected number of secondary cases
which one case would produce in a completely susceptible population" (Dietz, 1993). In the
model described by Eq. 1.1, R0 is:

R0 =
β

µ
(1.2)

If R0 of a disease is greater than 1, the introduction of an infected individual into a fully
susceptible population will cause the spread of the disease, otherwise it will progressively
die out. This model assumes homogeneous mixing, which means that individuals have
equal probabilities of transmitting the disease to everybody else. This is not the case, for
example, when the spatial location of individuals defines their contact structure, which can
be formally represented by a network (Pastor-Satorras et al., 2015). In that case, classic
results of epidemic theory may not apply (Pellis et al., 2015).

Moreover, networks can embed SI dynamics. In a time-discrete framework, a node can
be either susceptible or infected; at each time step δ, each infected node i can infect its
k neighbors at a probability proportional to βδ, and recover with a probability µδ. For
instance, in SI dynamics on homogeneous networks it can be shown (Boccaletti et al., 2006)
that Eq. 1.2 is modified into:

R0 =
kβ

µ
(1.3)

So R0 depends explicitly on the network via the average degree k, which now is spelled
out and separated from β. For non-homogeneous networks, R0 can be recomputed (Boc-
caletti et al., 2006) instead as:

R0 =
k2β

kµ
(1.4)

Where k2 is the 2nd moment of the degree distribution of the network. It has been shown
that, for epidemic processes in scale-free networks, k2 tends to infinite (Pastor-Satorras and
Vespignani, 2001): the disease will spread due to the network topology provided a positive
transmission rate (Shaw and Pautasso, 2014; Jeger et al., 2007). Eq.s 1.3 and 1.4 suggest that
network-related control strategies can help decreasing R0 below 1 by acting on the network
structure.
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1.4 Crop-parasite interactions in a network framework

In crop epidemiology, plants are connected via parasitic dispersal (Shaw and Pautasso,
2014). Parasites can move over extremely long distances through different means (air, water,
soil, insects; Aylor, 2017, Jordano, 2017) or can be assisted by human activities (Santini et al.,
2018; Hulme, 2009; Harwood et al., 2009; Garrett et al., 2018). The definition of the network
depends on the scale and mechanism of the contacts (Gilligan, 2008; Shaw and Pautasso,
2014; Garrett et al., 2018). Below is a list of examples on how networks have been used to
represent and study crop-parasite interactions.

1.4.1 Vector-transmitted parasites

Strona et al. (2017) studied the spread of the pathogenic bacteria X. fastidiosa in an olive-
orchard-dominated landscape, via its main european vector, the meadow spittlebug Phi-
laenus spumarius (Martelli et al., 2016). They considered olive orchards as nodes, which are
connected by an edge if they are within 1 km "between the two closest sides", since obser-
vations suggested that this is the order of magnitude of adult spittlebug daily flights. They
obtained a binary network, since edges are not associated to a weight, and undirected, since
connections among two orchards are always reciprocal. Instead, de la Fuente et al. (2018)
built a more complex network by modelling the spread of the alien nematode Bursaphe-
lenchus xylophilus, causal agent of pine wilt disease, via the longhorn beetle Monochamus
galloprovincialis. They considered coniferous forests as nodes connected via weighted, di-
rected and time-varying edges. Each edge represents the yearly probability of transmission
of the disease from node i to node j, whose weight decreases with the distance between i
and j and increases with the assumed number of nematodes in i in the previous year.

1.4.2 Wind-dispersed

Sutrave et al. (2012) studied a network of soybean fields in the US, susceptible to the airborne
pathogen Phakopsora pachyrhizi, obtaining a similar network to that of de la Fuente et al.
(2018). In this model, each node represents an administrative county, while each edge’s
intensity is determined by the daily average wind intensity and direction, increases with
the density of soybean in the connected nodes, and decreases with the distance. In this case,
the network is weighted, directed (because of the prevailing wind direction) and dynamic.
Enlarging the scale to the continental one, Meyer et al. (2017) used Lagrangian simulation of
air masses to model the airborne dispersal of the fungal pathogen P. graminis, causal agent
of stem rust of wheat, among African and Asian countries. Countries play as nodes, while
the daily mean proportions of airborne spores successfully transmitted from a country to
another define the weighted and directed edges.
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1.4.3 Human-mediated

A recent study by Andersen et al. (2019) models the spread dynamics of a hypothetical
pathogen affecting sweet potato on a network accounting for local seed trade in Uganda. In
such networks, nodes are provided by economic actors or their grouping (sellers, villages),
whose interaction, in this case "at least one transaction during the growing season", repre-
sent directed edges. Hernandez Nopsa et al. (2015) used the railway networks in the US
(and Australia) to model the potential spread of arthropods between grain elevators used
to store wheat. In their framework, sets of elevators located in the same state play as nodes,
while directed and weighted edges are proportional to the volume of wheat moved from a
state to another via railway, which traditionally account for more than 70% of the shipped
wheat in the US.

1.4.4 Multi-mechanism

Eventually, networks may also summarize multiple mechanisms involved in parasitic spread
(Garrett et al., 2018). For instance, nodes may either be farms, where crops are produced,
or warehouses, where crops are stored after harvesting (Fig. 1.2). Edges, representing pos-
sible pathways of parasitic spread, can be subdivided into retail sub-network, representing
purchase, and landscape sub-network, representing physical movement by wind (or insects
or animals). Retail sub-network may be undirected, working both ways between producers
and retailers via returnable shipping crates, while landscape sub-network may have a fixed
direction, because of prevalent wind.
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Figure 1.2 – A multi-mechanism epidemic network. Nodes are either farms, where crop
is produced, or warehouses, where harvested crop is stoked. Edges, representing possible
parasite spread pathways, can be subdivided into two sub-networks: retail, representing
purchase, and landscape, representing physical movement by wind insects, or animals. Re-
tail sub-network is undirected, since it may work both way between producers and retailers
(for example, via returnable shipping crates), while landscape sub-network has a fixed di-
rection, (for example, because of prevalent wind). Network is represented a) as a graph,
b) as an adjacency matrix, in which the retail sub-network is symmetric (in blue) while the
landscape one is asymmetric (in green).
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1.5 Surveillance

Surveillance can be defined as the "collection and analysis of information for detection and
successful control of emerging pathogens" (Parnell et al., 2017). Since this collection is
expensive, one needs to prioritize a reduced set of locations for monitoring to find clues of
crop disease emergence.

1.5.1 Prioritize nodes to be monitored

In a network-based surveillance, prioritization of nodes to be monitored (also referred as
sentinels) depends on the topology of the network structure. Surveillance may be divided
into different objectives (Herrera et al., 2016; Holme, 2018). For surveillance of emerging
diseases, Parnell et al. (2017) distinguished between i) detection: understanding whether a
pathogen has arrived in an area, with the minimum possible delay; ii) estimation: estimating
the proportion of diseased individuals (incidence) at a given time; iii) targeting: maximiz-
ing the detection of new cases. These objectives are not pursued without trade-offs. For
example, in the case of an already detected parasite, increased "targeting" would imply
monitoring those nodes which are connected to the infected one, to the detriment of "esti-
mation". In contrast, good "estimation" can be obtained via homogeneous monitoring, e.g.
via random sampling of the entire network, but would result in a worse "targeting".

Different prioritization algorithms allow for the pursuit of different objectives. Herrera
et al. (2016) compared performances of different algorithms to determine a sentinel set in
epidemic dynamics on social networks. The criteria for prioritization are: "most connected"
(nodes characterized by the highest degree); "random"; "random acquaintance" of random
individuals, i.e. a random node connected to a randomly extracted node. As expected,
sentinels identified via the "random" strategy yielded indications representative of the pop-
ulations as a whole, with early warning close to zero (there was no time lag between the
surveillance subset and the entire population to reach 1% prevalence) and peak ratios close
to one (i.e., peak in incidence was almost identical in the surveillance subset and the en-
tire population). Degree-based strategies, such as "most connected", consistently provided
the earliest warnings. Herrera et al. explored different network topologies and observed
that surveillance performances tend to be highly differentiated the less homogeneous the
network is.

1.5.2 Techniques for crop surveillance

Several studies have shown that traditional site prioritization techniques for crop surveil-
lance, based on historical recordings of past epidemics or more complex approaches (Parnell
et al., 2017), may be integrated (Sutrave et al., 2012; Sanatkar et al., 2015) or even outper-
formed (Martinetti and Soubeyrand, 2019) by network metrics.
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Sutrave et al. (2012) explicitly explored network metrics for optimizing surveillance in
a continental dynamic network among soybean producing counties. The authors explored
several sentinel prioritization strategies. They observed that surveillance prediction errors
were minimized by combining strength and "infection-frequency" (a metric considering past
presence of the disease). In Chapter 2 it is illustrated how we simulated worldwide transport
of airborne spores of another cereal pathogen, P. graminis, among squared wheat-cultivated
cells (≈ 2,000 km2) connected by air-mass trajectories computed via a Lagrangian model, ob-
taining a dynamic directed and weighted connectivity network. We showed that a surveil-
lance strategy based either on betweenness or Set cover algorithm (a modified version of
in-degree) minimizes the detection delay of simulated outbreaks. Furthermore, we showed
that, given the high density of the epidemic network, surveillance strategies based on sep-
arate subset of nodes (representing countries) lead to a sub-optimal allocation of sentinels
with respect to considering the complete set of nodes.

Network-based prioritization has been also applied in the case human-mediated crop
parasites. Andersen et al. (2019), who studied the spread dynamics of a hypothetical
pathogen affecting sweet potato, suggested that degree and betweenness may behave as well
as other more complex metrics in node prioritization. Their importance was already noted
in previous research on arthropods detection in grain networks (Hernandez Nopsa et al.,
2015). Similarly, Buddenhagen et al. (2017) considered a local multi-mechanism potato trade
network in Ecuador, and stated that high in-and out-degree nodes were to be surveilled first.

Recent research has been conducted to build more complex network metrics and assess
their suitability for surveillance compared to traditional ones. For instance, Martinetti and
Soubeyrand (2019) followed an approach similar to that of Herrera et al. (2016) to compare
several surveillance options in the case of X. fastidiosa in southern France. In this case, Mar-
tinetti and Soubeyrand divided the region into 1 km2 cells, which represent nodes of the
network, while edges’ weights are built on notion of risk: each weight wi,j is the product of
a previously computed risk indicator ri, rj in the connected nodes i, j. They tested priori-
tisation techniques based on network metrics (such as k-shell, Kitsak et al., 2010; VoteRank
Zhang et al., 2016; generalized random walk accessibility, or GRWA, Herrera et al., 2016)
and others metrics, such as risk-based and random, to maximize the "detection" (sensu Her-
rera et al., 2016). Strategies based on VoteRank, GRWA and risk-based furnished the earliest
detections.

1.6 Control

Control can be defined as the set of measures aimed to minimize the disease size or the
occurrence of losses within a diseased population (Keeling and Rohani, 2011). Network
based epidemic control consists in the preventive removal of a set of nodes (or of their
edges) from the epidemic network, in the hope that this will minimize the spread (Shaw
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and Pautasso, 2014).

1.6.1 Prioritize nodes to be removed

Traditional disease control methods at the population scale, including vaccines (Keeling and
Rohani, 2011), may rely on network knowledge. Vaccination levels for reducing transmis-
sion usually depend on a threshold determining herd immunity (Fine, 1993), and are in
turn calculated via R0. This approach allows a first estimation of the immunization level
needed to stem the epidemics in homogeneous networks. As effect of the vaccination of a
proportion g of the nodes, R0 can be tuned below 1, thus extinguishing the spread of the
disease (Eq. 1.5):

R0 =
kβ(1− g)

µ
(1.5)

Network-based vaccination strategies have been studied to stem epidemics on both hu-
man and animal populations (Rushmore et al., 2014). It has been shown that neglecting
highly heterogeneous networks structures may lead to ineffective or inefficient immuniza-
tion strategies (Jeger et al., 2007). Identification of the nodes to be immunized via simple
metrics, such as node strength, proved to help reducing the vaccine coverage threshold, as
in the case of wild chimpanzees (Rushmore et al., 2014). Alternatively to vaccination, isola-
tion (Keeling and Rohani, 2011) may as well target specific nodes (i.e. isolation of an infected
node by removing all its edges) or random (i.e. removal of a fraction of edges independently
on the nodes health status, such as social distancing in the case of Covid-19). The first case
corresponds to increasing g, equivalently to an immunization or vaccination. In the second
case, the strategy affects k, whose reduction can bring the value of R0 below 1 (Block et al.,
2020).

Several authors highlighted that control strategies should concentrate on immunizing
highly connected nodes (Jeger et al., 2007; Shaw and Pautasso, 2014; Pastor-Satorras and
Vespignani, 2002; Lloyd-Smith et al., 2005). In the case of human diseases, targeted im-
munization proved to achieve good results with rubella and mumps, whose heteroge-
neous transmission structure possesses scale-free properties (Pastor-Satorras and Vespig-
nani, 2001), rather than with pertussis, whose transmission structure is more homogeneous
(Trottier and Philippe, 2005). A comprehensive literature exists to support targeted action
against sexually transmitted diseases, based on the scale-free properties of sexual partner-
ship networks (Jeger et al., 2007).

Prioritization methods for targeted removal have been examined according to various
network metrics, from the simplest (degree, betweenness or closeness, i.e. the reciprocal of
the average distance from that node to all the other nodes; Sabidussi, 1966, Freeman, 1978)
to more complex (random-walker based methods, Zhang et al., 2016). Methods based on
k-shell decomposition have proved to produce optimal results compared to classic metrics
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in identifying influential spreaders (De Arruda et al., 2014; Kitsak et al., 2010), and some
generalizations to dynamic networks have been explored (Galimberti et al., 2018; Ciaperoni
et al., 2020). In the specific case of spatial networks, where weights have the meaning of
spatial distance, generalized accessibility metrics (Travençolo and Costa, 2008) have proved
to be particularly suitable for targeted removal (De Arruda et al., 2014).

Despite the growing research on network-based disease protection strategies, there is a
lack of clarification on how to distinguish metrics for determining suitable nodes for surveil-
lance from those suitable for control (Holme, 2017), which can occasionally overlap. Many
of the before-mentioned metrics to prioritize nodes to immunize for control are common
to those to be detected for surveillance. However, in principle, nothing guarantees that an
optimal set of sentinels coincides with an optimal set of candidate nodes to be immunized,
and vice versa, since surveillance and control are linked to different properties. Figure 1.3
shows an example of a SI model running on a network, in which in-degree is used to opti-
mize sentinels identification and betweenness is used to identify the best node to immunize.

1.6.2 Application to crop protections

Optimal crop parasites control methods, e.g. allocation of phytosanitary treatments, biolog-
ical control, resistant varieties or even eradication of suspected hosts, only occasionally is
explicitly investigated via network properties, as instead it is the case of targeted vaccina-
tion or isolation in humans and animals (Jeger et al., 2007). In one of these example, Strona
et al. (2017) found that removing nodes with the highest PageRank (Page, 1998) allows to
reduce the size of the largest connected component (the largest set of nodes for which at
least one path to any other node in the set exists) faster that using the degree or a random
sampling, thus reducing the maximum spread of X. fastidiosa.

By contrast, rules of thumb (sensu Chadès et al., 2011) loosely related to network-thinking
have found greater application. For instance, it has been suggested that prevention planning
may discourage growth of certain crop in marginal areas, which afford little profit but may
provide chance for disease flow (Margosian et al., 2009). In this case, one could visualize
main production areas as nodes, connected by edges representing marginal areas which al-
low the spread of the disease. Under this perspective, this disease control strategy translates
into an edge-removal problem. Shaw and Pautasso (2014) reported successful experiences
following this recommendation in reducing yellow rust of wheat, provoked by P. striiformis,
in the northwest of China (Lu et al., 2011). It has been commonly observed that group of
crops can remain uninfected if surrounded by immune individuals, as in the case of the soil-
borne pathogen Rhizoctonia solani (Bailey et al., 2000). In this case, cultivated areas can play
as nodes, immune areas as immunized nodes, while potential disease pathways as edges
connecting them. In general, breaking the mono-cultural continuum into disconnected com-
ponents reduces the opportunity of short-distance pathogen spread (Elton, 1958). Given the
definition of betweenness, we argue that this metric may support the identification of those
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Figure 1.3 – A network representing potential epidemic pathways and strategies based on
node metrics to face parasites spread. In panels a) and b) the same SI epidemic process
starting from node A (i.e., the inoculated node) is shown. At each time step, each susceptible
node becomes infected if it has at least one infected neighbor pointing to it, without recovery.
In panel a) node E is a sentinel: it easily detects the disease (i.e., it becomes infected)
because of its high in-degree (i.e., the number of edges pointing to it). In panel b) node
G is immunized through targeted removal of its edges: this way, any outbreak that starts
from the left sub-network (nodes A, B, C, D, E, F) cannot reach the right sub-network (I,
H, J), because of its high betweenness. Note that removal of node E result in poor control
performances, since its removal is irrelevant with respect to disease spread. Similarly, G is
an inefficient sentinel, since it has a low degree and it is reached late in an epidemic process.
Panel c) shows the values of in-degree and betweenness computed for each node.
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nodes whose removal would more efficiently break the crop network (Fig. 1.3b).
These rules of thumb could gain more consistency if accompanied by network-based pri-

oritization methods, such as a combination of different network metrics. Xing et al. (2020)
evaluated the epidemic network given by a hypothetical pathogen affecting major crops
across the world and suggested that an index weighting several network metrics (strength,
nearest neighbors’ degree, betweenness, eigenvector centrality) may give a comprehensive
view of the nodes’ contribution to connectivity. Additionally, Andersen et al. (2019) sug-
gested that, as well as for surveillance, node characterized by high (out-)degree may be
identified as influential spreaders and so prioritized to be immunized.

1.7 Conclusion

Although network-thinking is finding wider application in crop protection, its level of dif-
fusion is unbalanced among surveillance and control. Network metrics, such as degree,
strength, betweenness, VoteRank, and GRWA are more diffused to support surveillance,
while control design in agriculture seems to require a multidisciplinary approach.

This imbalance may be due to several factors. A typical problem about the application
of theoretical network tools in real cases is the adequate definition of nodes and edges.
For example, network algorithms are very often conceived for unweighted, undirected and
static networks, while real epidemic networks are frequently asymmetric, weighted and/or
temporal. Generalizations may miss or distort the original meaning. To meet this need, a
growing amount of research has been conducted to broaden the application of these metrics
to real matrices (Fagiolo, 2007; Wang et al., 2008; Holme, 2005; Galimberti et al., 2018),
declining them depending on the physical meaning of the edges, but generally with a loss
of straightforwardness.

The challenge of spatial scale is an inveterate obstacle that network-thinking must ad-
dress in order to expand its applications in agriculture, as pointed out by Shaw and Pautasso
(2014). Edges may be defined to describe extremely long-distance transport events along
continents, in the order of 107 m (8, 000 km being distance from South Africa to Australia,
perhaps the farthest documented periodical incursion of P. graminis; Visser et al., 2019), as
well as cellular interaction between the hosts and its pathogens, on the order of 10−5 m (26.4
µm being the spore diameter of P. graminis; Eversmeyer and Kramer, 2000), passing through
the scale of a host (100 m being size of a wheat stem) or a population (103 m being the order
of the size of an average US farm; Ritchie and Roser, 2021). Moreover, the geographic scale
of a node has crucial consequences for the meaning of applying network-based protection
practices: to surveil/control a node means to completely monitor/immunize all the hosts
within. Eventually, the choice of a node size is a compromise between the resolution of
pathogen dispersal mechanisms (setting the biophysical constraints of the network) and the
protection measures applicability (setting the management constraints of the network), in
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addition to ensure computational viability.
Broadening the scope of investigation, social acceptance may be another reason for the

gap in application of network metrics among surveillance and control strategies. This gap
may generally reflect a greater social impact of preventive crop control policies in a broad
sense, not necessarily related to networks (Eriksson et al., 2019). Whereas optimal surveil-
lance simply requires to geographically arrange the monitoring activities across a network,
control thought node treatment implies an invasive intervention, such as the application of
phytosanitary products or even the eradication of healthy hosts. Social acceptability of poli-
cies aimed at controlling alien pathogen invasions, as X. fastidiosa (Strona et al., 2017), relies
on direct and indirect risk experiences and problem awareness of stakeholders, which may
lead to a social underestimation of the probability of an invasion versus the concrete loss of
a cultivated unit. Understanding the factors driving social acceptability of crop protection
practices may be the key to the implementation of effective control methods (Marzano et al.,
2017), in particular network-based strategies, with a positive feedback on the theoretical
research, and vice versa.

Bibliography

Adam, D. et al. (2021). How far will global population rise? researchers can’t agree. Nature,
597(7877):462–465.

Andersen, K., Buddenhagen, C., Rachkara, P., Gibson, R., Kalule, S., Phillips, D., and Gar-
rett, K. (2019). Modeling epidemics in seed systems and landscapes to guide management
strategies: the case of sweet potato in northern uganda. Phytopathology, 109(9):1519–1532.

Aylor, D. (2017). Aerial Dispersal of Pollen and Spores. The American Phytopathological
Society.

Bailey, D. J., Otten, W., and Gilligan, C. A. (2000). Saprotrophic invasion by the soil-borne
fungal plant pathogen rhizoctonia solani and percolation thresholds. The New Phytologist,
146(3):535–544.

Barabási, A.-L. (2016). Network science. Cambridge university press.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science,
286(5439):509–512.

Block, P., Hoffman, M., Raabe, I. J., Dowd, J. B., Rahal, C., Kashyap, R., and Mills, M. C.
(2020). Social network-based distancing strategies to flatten the covid-19 curve in a post-
lockdown world. Nature Human Behaviour, 4(6):588–596.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006). Complex net-
works: Structure and dynamics. Physics reports, 424(4-5):175–308.

27



Börner, K., Sanyal, S., and Vespignani, A. (2007). Network science. Annual review of informa-
tion science and technology, 41(1):537–607.

Brockmann, D. and Helbing, D. (2013). The hidden geometry of complex, network-driven
contagion phenomena. Science, 342(6164):1337–1342.

Buddenhagen, C., Hernandez Nopsa, J.-F., Andersen, K. F., Andrade-Piedra, J., Forbes,
G.-A., Kromann, P., Thomas-Sharma, S., Useche, P., and Garrett, K. (2017). Epidemic
network analysis for mitigation of invasive pathogens in seed systems: Potato in ecuador.
Phytopathology, 107(10):1209–1218.

Carvajal-Yepes, M., Cardwell, K., Nelson, A., Garrett, K. A., Giovani, B., Saunders, D.,
Kamoun, S., Legg, J., Verdier, V., Lessel, J., et al. (2019). A global surveillance system for
crop diseases. Science, 364(6447):1237–1239.

Chadès, I., Martin, T. G., Nicol, S., Burgman, M. A., Possingham, H. P., and Buckley, Y. M.
(2011). General rules for managing and surveying networks of pests, diseases, and en-
dangered species. Proceedings of the National Academy of Sciences, 108(20):8323–8328.

Ciaperoni, M., Galimberti, E., Bonchi, F., Cattuto, C., Gullo, F., and Barrat, A. (2020). Rel-
evance of temporal cores for epidemic spread in temporal networks. Scientific reports,
10(1):1–15.

Corredor-Moreno, P. and Saunders, D. G. (2020). Expecting the unexpected: factors influenc-
ing the emergence of fungal and oomycete plant pathogens. New Phytologist, 225(1):118–
125.

Cunniffe, N. J., Stutt, R. O., DeSimone, R. E., Gottwald, T. R., and Gilligan, C. A. (2015).
Optimising and communicating options for the control of invasive plant disease when
there is epidemiological uncertainty. PLoS computational biology, 11(4):e1004211.

De Arruda, G. F., Barbieri, A. L., Rodríguez, P. M., Rodrigues, F. A., Moreno, Y., and Costa,
L. D. F. (2014). Role of centrality for the identification of influential spreaders in complex
networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 90(3):1–17.

de la Fuente, B., Saura, S., and Beck, P. S. (2018). Predicting the spread of an invasive tree
pest: The pine wood nematode in Southern Europe. Journal of Applied Ecology, 55(5):2374–
2385.

Della Rossa, F., Salzano, D., Di Meglio, A., De Lellis, F., Coraggio, M., Calabrese, C., Guarino,
A., Cardona-Rivera, R., De Lellis, P., Liuzza, D., et al. (2020). A network model of italy
shows that intermittent regional strategies can alleviate the covid-19 epidemic. Nature
communications, 11(1):1–9.

28



Dietz, K. (1993). The estimation of the basic reproduction number for infectious diseases.
Statistical methods in medical research, 2(1):23–41.

Dubé, C., Ribble, C., Kelton, D., McNab, B., et al. (2011). Introduction to network analysis
and its implications for animal disease modelling. Revue Scientifique et Technique-OIE,
30(2):425.

Elton, C. S. (1958). The ecology of invasions by animals and plants. John Wiley: New York, NY,
USA.

Eriksson, L., Boberg, J., Cech, T. L., Corcobado, T., Desprez-Loustau, M.-L., Hietala, A. M.,
Jung, M. H., Jung, T., Lehtijarvi, H. T. D., Oskay, F., et al. (2019). Invasive forest pathogens
in europe: Cross-country variation in public awareness but consistency in policy accept-
ability. Ambio, 48(1):1–12.

Eversmeyer, M. and Kramer, C. (2000). Epidemiology of wheat leaf and stem rust in the
central great plains of the usa. Annual review of Phytopathology, 38(1):491–513.

Fagiolo, G. (2007). Clustering in complex directed networks. Physical Review E, 76(2):026107.

Fine, P. E. (1993). Herd immunity: history, theory, practice. Epidemiologic reviews, 15(2):265–
302.

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M.,
Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., et al. (2011). Solutions for a cultivated
planet. Nature, 478(7369):337–342.

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social networks,
1(3):215–239.

Galimberti, E., Barrat, A., Bonchi, F., Cattuto, C., and Gullo, F. (2018). Mining (maximal)
span-cores from temporal networks. In Proceedings of the 27th ACM international Conference
on Information and Knowledge Management, pages 107–116.

Garrett, K., Alcalá-Briseño, R., Andersen, K., Buddenhagen, C., Choudhury, R., Fulton, J.,
Hernandez Nopsa, J., Poudel, R., and Xing, Y. (2018). Network analysis: A systems
framework to address grand challenges in plant pathology. Annual review of phytopathol-
ogy, 56:559–580.

Gilligan, C. A. (2008). Sustainable agriculture and plant diseases: an epidemiological per-
spective. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492):741–
759.

Harwood, T. D., Xu, X., Pautasso, M., Jeger, M. J., and Shaw, M. W. (2009). Epidemiological
risk assessment using linked network and grid based modelling: Phytophthora ramorum
and phytophthora kernoviae in the uk. Ecological Modelling, 220(23):3353–3361.

29



Hernandez Nopsa, J. F., Daglish, G. J., Hagstrum, D. W., Leslie, J. F., Phillips, T. W., Scoglio,
C., Thomas-Sharma, S., Walter, G. H., and Garrett, K. A. (2015). Ecological networks
in stored grain: Key postharvest nodes for emerging pests, pathogens, and mycotoxins.
BioScience, 65(10):985–1002.

Herrera, J. L., Srinivasan, R., Brownstein, J. S., Galvani, A. P., and Meyers, L. A. (2016). Dis-
ease surveillance on complex social networks. PLoS computational biology, 12(7):e1004928.

Holme, P. (2005). Network reachability of real-world contact sequences. Physical Review E,
71(4):046119.

Holme, P. (2017). Three faces of node importance in network epidemiology: Exact results
for small graphs. Physical Review E, 96(6):062305.

Holme, P. (2018). Objective measures for sentinel surveillance in network epidemiology.
Physical Review E, 98(2):022313.

Hulme, P. E. (2009). Trade, transport and trouble: managing invasive species pathways in
an era of globalization. Journal of applied ecology, 46(1):10–18.

Jeger, M. J., Pautasso, M., Holdenrieder, O., and Shaw, M. W. (2007). Modelling dis-
ease spread and control in networks: implications for plant sciences. New Phytologist,
174(2):279–297.

Jordano, P. (2017). What is long-distance dispersal? and a taxonomy of dispersal events.
Journal of Ecology, 105(1):75–84.

Kao, R. R., Green, D. M., Johnson, J., and Kiss, I. Z. (2007). Disease dynamics over very
different time-scales: foot-and-mouth disease and scrapie on the network of livestock
movements in the uk. Journal of the Royal Society Interface, 4(16):907–916.

Keeling, M. J. and Rohani, P. (2011). Modeling infectious diseases in humans and animals. Prince-
ton university press.

Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical the-
ory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a
mathematical and physical character, 115(772):700–721.

Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis,
A., Rieseberg, L. H., and Struik, P. C. (2014). Increasing homogeneity in global food
supplies and the implications for food security. Proceedings of the national Academy of
Sciences, 111(11):4001–4006.

Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., and Makse,
H. A. (2010). Identification of influential spreaders in complex networks. Nature physics,
6(11):888–893.

30



Lee, B. X., Kjaerulf, F., Turner, S., Cohen, L., Donnelly, P. D., Muggah, R., Davis, R., Realini,
A., Kieselbach, B., MacGregor, L. S., et al. (2016). Transforming our world: implementing
the 2030 agenda through sustainable development goal indicators. Journal of public health
policy, 37(1):13–31.

Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., and Getz, W. M. (2005). Superspreading and
the effect of individual variation on disease emergence. Nature, 438(7066):355–359.

Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., and Zhou, T. (2016). Vital nodes
identification in complex networks. Physics reports, 650:1–63.

Lu, N., Wang, J., Chen, X., Zhan, G., Chen, C., Huang, L., and Kang, Z. (2011). Spatial
genetic diversity and interregional spread of puccinia striiformis f. sp. tritici in northwest
china. European journal of plant pathology, 131(4):685–693.

Margosian, M. L., Garrett, K. A., Hutchinson, J. S., and With, K. A. (2009). Connectivity of
the american agricultural landscape: assessing the national risk of crop pest and disease
spread. BioScience, 59(2):141–151.

Martelli, G., Boscia, D., Porcelli, F., and Saponari, M. (2016). The olive quick decline syn-
drome in south-east italy: a threatening phytosanitary emergency. European Journal of
Plant Pathology, 144(2):235–243.

Martinetti, D. and Soubeyrand, S. (2019). Identifying lookouts for epidemio-surveillance:
application to the emergence of xylella fastidiosa in france. Phytopathology, 109(2):265–
276.

Marzano, M., Allen, W., Haight, R., Holmes, T., Keskitalo, E. C. H., Langer, E., Shadbolt,
M., Urquhart, J., and Dandy, N. (2017). The role of the social sciences and economics in
understanding and informing tree biosecurity policy and planning: a global summary
and synthesis. Biological invasions, 19(11):3317–3332.

Mastin, A. J., Gottwald, T. R., van den Bosch, F., Cunniffe, N. J., and Parnell, S. (2020).
Optimising risk-based surveillance for early detection of invasive plant pathogens. PLoS
biology, 18(10):e3000863.

Meyer, M., Cox, J. A., Hitchings, M. D., Burgin, L., Hort, M. C., Hodson, D. P., and Gilli-
gan, C. A. (2017). Quantifying airborne dispersal routes of pathogens over continents to
safeguard global wheat supply. Nature Plants, 3(10):780–786.

Morris, C. E., Geniaux, G., Nédellec, C., Sauvion, N., and Soubeyrand, S. (2022). One health
concepts and challenges for surveillance, forecasting and mitigation of plant disease be-
yond the traditional scope of crop production. Plant pathology.

31



Moslonka-Lefebvre, M., Finley, A., Dorigatti, I., Dehnen-Schmutz, K., Harwood, T., Jeger,
M. J., Xu, X., Holdenrieder, O., and Pautasso, M. (2011). Networks in plant epidemiology:
from genes to landscapes, countries, and continents. Phytopathology, 101(4):392–403.

Newman, M. E. J. (2003). The structure and function of complex networks. SIAM review,
45(2):167–256.

Page, L. (1998). The pagerank citation ranking: Bringing order to the web. technical report.
Stanford Digital Library Technologies Project, 1998.

Parnell, S., van den Bosch, F., Gottwald, T., and Gilligan, C. A. (2017). Surveillance to
inform control of emerging plant diseases: an epidemiological perspective. Annual review
of phytopathology, 55:591–610.

Pastor-Satorras, R., Castellano, C., Van Mieghem, P., and Vespignani, A. (2015). Epidemic
processes in complex networks. Reviews of modern physics, 87(3):925.

Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic spreading in scale-free networks.
Physical review letters, 86(14):3200.

Pastor-Satorras, R. and Vespignani, A. (2002). Immunization of complex networks. Physical
review E, 65(3):036104.

Pellis, L., Ball, F., Bansal, S., Eames, K., House, T., Isham, V., and Trapman, P. (2015). Eight
challenges for network epidemic models. Epidemics, 10:58–62.

Radici, A., Bevacqua, D., Miele, L., and Martinetti, D. (2023). Network-thinking to optimize
surveillance and control of crop parasites. a review. arXiv preprint arXiv:2310.07442.

Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., Fedoroff, N. V.,
Finegold, C., Garrett, K. A., Gilligan, C. A., Jones, C. M., et al. (2021). The persistent threat
of emerging plant disease pandemics to global food security. Proceedings of the National
Academy of Sciences, 118(23).

Ritchie, H. and Roser, M. (2021). Farm size. Our World in Data.

Rushmore, J., Caillaud, D., Hall, R. J., Stumpf, R. M., Meyers, L. A., and Altizer, S. (2014).
Network-based vaccination improves prospects for disease control in wild chimpanzees.
Journal of the Royal Society Interface, 11(97):20140349.

Sabidussi, G. (1966). The centrality index of a graph. Psychometrika, 31(4):581–603.

Sanatkar, M., Scoglio, C., Natarajan, B., Isard, S., and Garrett, K. (2015). History, epidemic
evolution, and model burn-in for a network of annual invasion: Soybean rust. Phytopathol-
ogy, 105(7):947–955.

32



Santini, A., Liebhold, A., Migliorini, D., and Woodward, S. (2018). Tracing the role of human
civilization in the globalization of plant pathogens. The ISME journal, 12(3):647–652.

Saunders, H. A. and Schwartz, J.-M. (2021). Covid-19 vaccination strategies depend on the
underlying network of social interactions. Scientific reports, 11(1):1–10.

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N., and Nelson, A. (2019).
The global burden of pathogens and pests on major food crops. Nature ecology & evolution,
3(3):430–439.

Shaw, M. and Pautasso, M. (2014). Networks and plant disease management: Concepts and
applications. Annual Review of Phytopathology, 52:477–493.

Strona, G., Carstens, C. J., and Beck, P. S. (2017). Network analysis reveals why xylella
fastidiosa will persist in europe. Scientific Reports, 7(1):1–8.

Sutrave, S., Scoglio, C., Isard, S. A., Hutchinson, J. S., and Garrett, K. A. (2012). Identifying
highly connected counties compensates for resource limitations when evaluating national
spread of an invasive pathogen. PLoS One, 7(6):e37793.

Tilman, D., Balzer, C., Hill, J., and Befort, B. L. (2011). Global food demand and the
sustainable intensification of agriculture. Proceedings of the national academy of sciences,
108(50):20260–20264.

Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., and Polasky, S. (2002). Agricultural
sustainability and intensive production practices. Nature, 418(6898):671–677.

Travençolo, B. A. N. and Costa, L. d. F. (2008). Accessibility in complex networks. Physics
Letters A, 373(1):89–95.

Trottier, H. and Philippe, P. (2005). Scaling properties of childhood infectious diseases
epidemics before and after mass vaccination in canada. Journal of theoretical biology,
235(3):326–337.

Tudi, M., Daniel Ruan, H., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., and Phung,
D. T. (2021). Agriculture development, pesticide application and its impact on the envi-
ronment. International journal of environmental research and public health, 18(3):1112.

Visser, B., Meyer, M., Park, R. F., Gilligan, C. A., Burgin, L. E., Hort, M. C., Hodson, D. P., and
Pretorius, Z. A. (2019). Microsatellite analysis and urediniospore dispersal simulations
support the movement of puccinia graminis f. Sp. Tritici from southern Africa to Australia.
Phytopathology, 109(1):133–144.

Vitousek, P. M. (1994). Beyond global warming: ecology and global change. Ecology,
75(7):1861–1876.

33



Wang, H., Hernandez, J. M., and Van Mieghem, P. (2008). Betweenness centrality in a
weighted network. Physical Review E, 77(4):046105.

Xing, Y., Hernandez Nopsa, J. F., Andersen, K. F., Andrade-Piedra, J. L., Beed, F. D., Blomme,
G., Carvajal-Yepes, M., Coyne, D. L., Cuellar, W. J., Forbes, G. A., et al. (2020). Global
cropland connectivity: A risk factor for invasion and saturation by emerging pathogens
and pests. BioScience, 70(9):744–758.

Zhang, J. X., Chen, D. B., Dong, Q., and Zhao, Z. D. (2016). Identifying a set of influential
spreaders in complex networks. Scientific Reports, 6(February):1–10.

34



Chapter 1 in a nutshell

Key points:

1. Networks are mathematical objects composed of nodes connected by edges. They have been
used in epidemiology to model the spread of parasites and pests, under the assumption that
nodes represent hosts and edges represent potential epidemic contacts.

2. Network scientists have analysed network properties to identify those nodes which may
play a relevant role in epidemic management. For example, those nodes which, if removed,
reduce the overall epidemic size in the network (epidemic control); or those which are usu-
ally infected very soon, thus helping detecting the emergence of new diseases (epidemic
surveillance).

3. A growing number of plant-parasite interactions have been successfully represented by net-
works and this accomplishment has translated into the design of network-based plant epi-
demic surveillance strategies.

4. By contrast, compared to the extensive applications of network-based epidemic control in
human and animal epidemiology, fewer examples have been proposed in crop and plant
protection literature.

Perspectives:

1. Adequately define what nodes and edges represent in the case of plant parasites is a mod-
elling compromise between many factors (for example, geographic resolution and computa-
tional capability). Network science is currently grappling with these complexities to broaden
the applicability of these methods.

2. Insufficient social acceptability might be one of the factors contributing to the limited adop-
tion of network-based control strategies, and this issue warrants further investigation.

35



Chapter 2

Early-detection surveillance for
stem rust of wheat: insights from a
global epidemic network based on
airborne connectivity and host
phenology

Man’s mind cannot grasp the causes of events in their
completeness, but the desire to find those causes is
implanted in man’s soul. And without considering
the multiplicity and complexity of the conditions any
one of which taken separately may seem to be the
cause, he snatches at the first approximation to a cause
that seems to him intelligible and says: ’This is the cause!’

– Leo Tolstoy, War and Peace

Résumé

La rouille noire du blé, causée par le pathogène aérien Puccinia graminis, est une maladie
ré-émergente des cultures qui représente une préoccupation majeure pour la sécurité ali-
mentaire mondiale. Le transport potentiel sur de longues distances par le vent au-dessus

This chapter has been published as a research article (Radici et al., 2022).
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d’un hôte réparti dans le monde entier représente un défi pour une surveillance et un con-
trôle efficaces de cette maladie. Pour surveiller cette maladie, nous avons créé un réseau
épidémique mondial en combinant i) des simulations Lagrangiennes de trajectoires de
masses d’air calculées avec le modèle HYSPLIT de la NOAA ; ii) l’utilisation du sol à partir
du modèle Map Spatial Production Allocation Model et iii) les conditions météorologiques
et environnementales qui affectent les processus biophysiques impliqués dans la biologie
des spores de P. graminis. Nos résultats permettent de reconstruire la bien connue “Puc-
cinia pathway” nord-américaine et suggèrent l’existence d’autres voies sous-continentales à
l’échelle mondiale. Nous utilisons la théorie des réseaux pour concevoir des stratégies de
surveillance visant à la détection précoce des épidémies tout en minimisant le nombre de
nœuds à surveiller (également appelés "sentinelles"). Nous avons constaté que l’algorithme
“Set cover”, en raison de la connectivité élevée du réseau (densité = 0,4 %), est plus per-
formant qu’un certain nombre d’autres métriques de réseau et nous permet d’identifier un
ensemble optimal de sentinelles (1 % des nœuds du réseau) pour surveiller 50 % du réseau.
Nos résultats montrent également qu’il est possible de concevoir des plans de surveillance
efficaces pour la rouille de la tige du blé, mais qu’ils doivent tenir compte de l’échelle
géographique réelle du processus épidémiologique sous-jacent et qu’ils nécessitent une ap-
proche internationale et transfrontalière.

Mots-clés: Dispersion à longue distance, rouille noire du blé, Puccinia graminis, réseaux
colplexes, épidemiosurveillance, détection précoce

2.1 Abstract

Stem rust of wheat, caused by the airborne pathogen Puccinia graminis, is a re-emerging
crop disease representing a major concern to global food security. Potential long-distance
transport by wind over a worldwide distributed host represents a challenge to effective
surveillance and control of this disease. To monitor this disease, we have created a global
epidemic network for stem rust of wheat combining i) Lagrangian simulations of air-mass
trajectories computed with the HYSPLIT model; ii) land use from the Map Spatial Produc-
tion Allocation Model and iii) meteorological and environmental conditions that are known
to affect bio-physical processes involved in the biology of P. graminis spores. Our findings
are in agreement with the well known north-American “Puccinia pathway” and suggest the
existence of other sub-continental pathways at the global scale. We use network theory to
conceive surveillance strategies aimed at early detection of outbreaks while minimizing the
number of nodes to be surveilled (also referred to as sentinels). We found that the set cover
algorithm, due the high average connectivity of the network (density = 0.4%), performs bet-
ter than a number of other network metrics and permits us to identify an optimal sentinel
set (1% of the network nodes) to surveil 50% of the network. Our results also show that
effective surveillance plans for stem rust of wheat can be designed, but that they need to
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account for the actual geographical scale of the underlying epidemiological process and call
for an international and trans-boundary approach.

Keywords: Long-distance dispersal, stem rust of wheat, Puccinia graminis, network,
surveillance, early detection

2.2 Introduction

Epidemics caused by airborne pathogens represent an inveterate challenge to agricultural
management (Mahaffee and Stoll, 2016). Moreover, the transition to monocultures char-
acterized by low genetic diversity has made the global farming system less resilient to
pathogens (Corredor-Moreno and Saunders, 2020). Airborne pathogens, capable of long-
distance transport, create a network of connections among globally diffused crops. For
example, Puccinia graminis, causing stem rust of wheat, is seasonally dispersed from north-
ern Mexico up to Canada, along the “Puccinia pathway” (Aylor, 2003). On the other hand, a
singe-leap event, the hurricane Ivan, transported Phakopsora pachyrhizi spores from Colom-
bia to Alabama, introducing soybean rust in North America (Schneider et al., 2005; Isard
et al., 2005). The risk of losses in food production requires to take action against the dif-
fusion of alarming pathogens, such as P. graminis (Park et al., 2011; Saunders et al., 2019;
Corredor-Moreno and Saunders, 2020) and species of the same genus (Hovmøller et al.,
2008). Its aerobiology has been largely studied in the last century (Zadoks, 1967; Bur-
rage, 1970; Maddison and Manners, 1972; Aylor, 1986) and experimental procedures have
been recently developed for studying three-dimensional transport and detection of spores
(Damialis et al., 2017; Schmale III and Ross, 2015). However, the use of mathematical mod-
els to simulate spore transport by wind at the continental scale is very recent (Meyer et al.,
2017b,a; Visser et al., 2019; Allen-Sader et al., 2019; Prank et al., 2019; Wang et al., 2021). In
fact, the use of such models would allow researchers, policy makers and farmers to design
surveillance strategies (Cunniffe et al., 2015; Parnell et al., 2017; Ristaino et al., 2021) capable
of detecting outbreaks and take effective countermeasures within an acceptable time-limit
(e.g., phytosanitary intervention; Allen-Sader et al., 2019).

Meyer et al. (2017b) assessed the risk of long distance dispersal of P. graminis in East
Africa and the Middle East via a Lagrangian particle dispersion model. The same mod-
elling framework was then used to investigate the possible origin of virulent strains found
in Ethiopia (Meyer et al., 2017a). Allen-Sader et al. (2019) developed a decision support
system integrating spore dispersal to help optimize fungicide allocation. Prank et al. (2019)
investigated the impacts of climate change on worldwide spores transport patterns. Su-
trave et al. (2012) designed a network-based surveillance-system for P. pachyrhizi, at the
subcontinental scale, by including wind direction and intensity. Despite these advances, to
our knowledge, models of spore dispersal have never been coupled to network analysis to
design optimal surveillance strategies for P. graminis at the global scale.
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In this current study we constructed a time-variant connectivity network for P. grami-
nis spores at the worldwide scale explicitly considering wind patterns, host phenology and
meteorological conditions affecting spores aerobiology. We used biophysical models and
graph theory to identify the most susceptible worldwide regions and to reconstruct the epi-
demic movement through different subcontinents. We validated our findings using avail-
able knowledge regarding the North-American “Puccinia pathway” (Aylor, 2003). Lastly,
we identified those nodes of the network (i.e., regions of the world) that, when monitored,
enable early detection of an outbreak. We are confident that our approach is sufficiently
generic to be applied to other airborne plant pathogens, provided that basic knowledge on
the pathogen aerobiology, host physiology and distribution are available.

2.3 Materials and methods

2.3.1 Case study

Puccinia graminis f. sp. tritici is a heteroecious airborne fungal pathogen responsible for
stem rust of wheat. Wheat, the main host of P. graminis, constitutes a staple food for a great
proportion of human population. It covers 2.15× 108 hectares worldwide (1.4% of earth
surface), representing the most abundant agricultural type of land cover (FAO, 2021).

In recent decades, yield losses caused by stem rust have been limited by planting re-
sistant cultivars and fungicides application. Nonetheless, the emergence of new strains
overcoming plant resistance may provoke severe yield losses, accounting for up to 50-90%
of the wheat production at the regional scale (Huerta-Espino et al., 2014; Prank et al., 2019).
An extraordinary outbreak in Ethiopia in 2013-2104 caused a complete yield loss in some
cultivars (Olivera et al., 2015), while concerns were raised in Europe after the detection of
new virulent strains capable of infecting previously resistant cultivars (Bhattacharya, 2017).

2.3.2 Geographic domain and air mass trajectories

We extracted the worldwide wheat distribution from the MapSPAM database (International
Food Policy Research Institute, 2019) and computed the percentage of wheat cover on a
regular grid with a resolution of 0.5°. We accounted only for cells containing at least 2%
of wheat land cover. The resulting database contains 7,814 cells (see Section SI A.1.1). We
calculated backward air-mass Lagrangian three-dimensional trajectories of 120 hours, con-
sidered as a reasonable maximal lifetime of Puccinia spores by previous authors (Meyer
et al., 2017a), with the HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory)
model (Draxler and Hess, 1998) from January 1st, 2013 to December 31st, 2018, using atmo-
spheric GDAS data at a spatial resolution of 0.5°. We ran simulations from the centroids
of each cell at 00:00, 06:00, 12:00 and 18:00 UTC +0, at an above-ground altitude set to the
minimum between the base of the cloud and the mixed layer depth. Along each simulated
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trajectory, we recorded atmospheric variables at an hourly frequency. Overall, out of more
than 6.8× 107 potential trajectories, we computed only those 1.6× 106 satisfying the criteria
of host availability and environmental suitability specified in Sections 2.3.3 and 2.3.3 (see
also Section SI A.1.2).

2.3.3 The connectivity network

We built a time-variant connectivity network for stem rust explicitly considering host (i.e.
wheat) phenological phases, environmental conditions affecting spore aerobiology (Aylor,
1999) and infection. In this network, nodes represent cells composing the worldwide wheat
producing regions, while edges are computed from air-mass trajectories in order to model
the dispersal of airborne spores. The nodes (or cells) of the networks remain fixed, while
edges are re-computed for each of the 8,764 (4 times a day for 6 years) simulations.

More specifically, edges result from the application of a set of biophysical filters to iden-
tify those air-mass movements that correspond to transport events (figure 2.1). We assume
that, for a given time t, an edge exists between an arrival cell j and any cell i if the following
conditions are satisfied:

1. In cell i, which at time t− x (x ∈ {1, . . . , 120} h) is crossed by the air-mass trajectory
arriving at j at time t:

• The host is “available”, i.e. it is present and in a favourable phenological state for
infection and sporulation, see paragraph Host availability.

• Environmental conditions are compatible for spore release, see paragraph Spore
release.

• The altitude of the trajectory is lower than the planetary boundary layer.

2. Environmental conditions along the trajectory between i and j allow spore survival,
see paragraph Aerial spore transport and survival.

3. The host in cell j is “susceptible”, which means:

• The host is “available”.

• Environmental conditions are favourable for spore deposition and host infection,
see paragraph Spore deposition and host infection.

Host availability

Depending on local climate, wheat is cultivated and harvested at different times across the
world. We used a growing degree-day model (Mcmaster and Smika, 1988; Mcmaster and
Wilhelm, 1997) to compute the period of host availability for each year in each cell of the
domain as a function of the year temperature conditions. We used a model conceived for
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the US (Mcmaster and Smika, 1988) and we adjusted it for the Southern Hemisphere (i.e.,
initializing it at July 1st). For tropical countries, we consulted case by case the calendar of
the prevailing season provided in the FAO country briefs (FAO, 2021) (see Section SI A.1.3).

Spore release

Spore release in the air column is promoted under unstable atmospheric conditions (Levetin,
2015; Oneto et al., 2020). Following Meyer et al. (2017b), we assumed that release occurs
between 9:00 and 15:00, provided precipitations are lower than 2.54 mm/h (Allen-Sader
et al., 2019). Furthermore, the rate of spore release is affected by temperature (Prank et al.,
2019). Eventually, a probability P1(T) of release is defined as a function of temperature (see
Section SI A.1.5).

Aerial spore transport and survival

Only a fraction of the spores released at canopy level actually enters in the atmospheric
layers leading to long-distance transportation. The rest may be dispersed in the air column
within few kilometers under turbulent atmospheric conditions (Levetin, 2015; Aylor, 2017).
Hence, we considered as suitable release sites those that are crossed by an air-mass trajectory
within the mixed layer depth (therefore, able to drag spores distributed in the air column).
Furthermore, during the aerial phase, spores must endure critical environmental conditions
(Levetin, 2015). The limiting factors affecting the survival of P. graminis spores are the
exposure to UV radiation (Meyer et al., 2017b) and the washout by rain. We then defined
survival probabilities to UV radiation P2(UV) and to washout P3(R) (see Section SI A.1.5).

Spore deposition and host infection

Since precipitation is the main responsible for spore deposition and infection (Levetin, 2015;
Morris et al., 2013; Nagarajan and Singh, 1990; Roelfs, 1992; Rowell et al., 1966; Li et al.,
2009), we assumed that an edge can point an arrival cell j at time t only if precipitation
occurs. In fact, even if spore deposition might occur also in dry conditions (Emerson et al.,
2020; Slinn, 1977), wet deposition provides a better environment for the development of
infection and it is usually treated as the most important element. Following deposition,
infection requires specific environmental conditions (Allen-Sader et al., 2019; Meyer et al.,
2017b; Baiocco et al., 2021): in the three following days, spores should enter the phase of ger-
mination, requiring dark conditions and mild temperatures, and appressorium formation,
requiring sunlight and warm temperature (Roelfs, 1992). We then used these conditions to
identify times and sites where infection can occur after deposition (see Section SI A.1.4).
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Figure 2.1 – Simplified overview of the transport process between a source (i.e., release) and
a sink (i.e., arrival) cell. Pathogen is assumed to be available in the release cell when the host
is “available”. “Susceptibility” in the arrival cell is determined by the concurrence of host
“availability” and environmental conditions favourable to infections. Conditions for spore
release, transport and deposition are summarized in the three boxes along the trajectory.
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Time-variant connectivity networks

In order to represent the connectivity between wheat producing regions, we took advantage
of the mathematical formalism of networks (Choufany et al., 2021a), by describing the global
epidemic network of stem rust via 6-hourly connectivity networks At whose elements At

ij
indicate the probability Pijt of a successful transport event occurring at time t from node i to
node j. The probability Pijt is computed as the product of the mutually independent proba-
bilities P1

i (T) of sporulation at release site, P2
ij(UV) of survival to harmful UV radiation and

P3
ij(R) of washout, provided the concurrence of host availability at site i and precipitation at

site j. Finally, we aggregate the 8,764 networks to obtain a weighted, directed air-mass con-
nectivity network C (see Section SI A.1.5) and used a cluster detection algorithm (Clauset
et al., 2004) to identify groups of nodes with similar connectivity patterns.

2.3.4 Model validation: recovering the “Puccinia pathway” in North Amer-
ica

Since the direct observation of long-distance spores transport is beyond current technologi-
cal capacities, we tested the validity of our model checking if we could use it to identify the
well known North-American “Puccinia pathway”.

We considered the yearly northward movement of the stem rust infection front in North
America by tracking the average onset date (±1 standard deviation) during the 1922–1992
period along the 97th meridian west (Aylor, 2003). Then, we computed the weekly cumu-
lative in-strength values of the nodes located along the same meridian in the US from the
weekly connectivity networks Cw. The in-strength is a network metric considering the sum
of the weights of the edges pointing a node i. In this case, the in-strength of a node i cor-
responds to the sum of the average weekly frequencies of connection from the other nodes
toward i. We used the cumulative version of this metric, by assuming that local emergence
of a disease is observable after sufficiently abundant inoculum has been deposited in that
node. We graphically compared observed onset dates and average weekly cumulative in-
strength in figure 2.3 (see Section SI A.1.6). Here, we built the frequency distribution of the
cumulative in-strength values intersected by 1922–1992 onset date observations and com-
puted the values corresponding to the interquartile range. Lastly, cumulative in-strength
values falling in the interquartile range are shaded on the heat map.

2.3.5 Network surveillance

Exploring “Puccinia pathways” worldwide

In order to reconstruct the trajectories of propagation of stem rust outbreaks at world scale,
we analyzed how the center of mass of the monthly connectivity networks (Cm) in-strength
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moves across different subcontinents. Hence, for a given set of nodes representing a subcon-
tinent (and the corresponding geographical coordinates), we defined the center of mass of
the monthly connectivity networks in-strength as the geographical point whose coordinates
are given by the average latitude and longitude weighted by the nodes monthly in-strengths.

Definition of efficient surveillance strategies

We considered the problem of establishing a reduced set of sentinels, i.e., nodes where
the presence of the pathogen is monitored systematically, that should guarantee the largest
coverage of the domain and provide an early-warning system for the appearance of new
pathogen strains (Parnell et al., 2017). First of all, we defined the coverage of a node i as the
set of nodes that points towards i, under the assumption that monitoring the presence of
the pathogen in i implies observing all those nodes that are pointing to it. In this case, node
i is referred as the sentinel of its coverage. We considered hence the network C̃ generated
by considering those edges of the yearly connectivity networks Cy recurring at least three
times over a 4-year interval 2013-2016 (i.e., ≥ 75% of the times), in order to account only
for the most frequent connections. The problem of finding the smaller set of sentinels that
guarantees the complete coverage is formally equivalent to the set cover problem in graph
theory, that happens to have NP-complete computational complexity (Garey and Johnson,
1979; Sutrave et al., 2012). Nonetheless, we used an iterative greedy algorithm, providing
a sub-optimal minimum sentinel set. To validate the efficiency of the sentinel set, we as-
sessed its performance in terms of ratio of surveilled domain using the network obtained
by the intersection of the yearly connectivity networks of 2017 and 2018. We compared
such performances with the ones given by sets of nodes chosen via other network metrics,
namely in-strength, betweenness (Freeman, 1978), PageRank (Page, 1998) and random walk
generalized accessibility (De Arruda et al., 2014), calculated on the aggregated 2013-2016
networks, and a set of 20 random samplings of nodes (see definitions and procedures in
Section SI A.1.7).

Measuring early-detection performance of the sentinel set

Finally, we assessed the performance of different sentinel sets in terms of early detection
by means of a compartmental Susceptible-Infected (SI) model based on the intersections of
the weekly networks Cw in the years 2017 and 2018. Within this framework, a node can be
either susceptible (S) or infected (I), its state depending on the state of the neighbours in the
previous time steps. Namely, in this simplified approach, we assume that, in a given time
step t, a node pass from the state S to I if it has at least one neighbour in state I at time
t− 1, with no recovery. We run 7,814 model simulations, each time letting the outbreak start
from a different node (inoculum). Then, we defined the Disease detection ratio (DDR) of a
given sentinel set as the fraction of the total number of simulations for which the sentinel
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set intercepted the epidemics at least once before the end of the 4th iteration (i.e., before
one month after the first node has been inoculated). This new metric allows to compare
the performance of different sentinel sets even when they fail to achieve detection within
the first month, something that may happen when the first inoculated node is located in a
rather isolated part of the network (see Section SI A.1.7).

2.4 Results

2.4.1 Worldwide susceptibility and connectivity patterns

The duration of host susceptibility periods, i.e. the concurrence of the host availability and
environmental conditions favourable to infection, varies considerably across the world (fig-
ure 2.2a; figure A.6). The majority of cells is susceptible for a period between a week and a
month. The nodes where susceptibility occurs for more than a month per year are located
in northeastern America, southern Brazil and Paraguay, central Europe and central China.
The only nodes with susceptibility lasting for more than three months per year are located
in Ethiopia (see Section SI A.2.1).

Regions located in the Northern Hemisphere are generally well connected, in such a way
that Europe, Asia and North Africa create a unique connected component (figure 2.2b). In
spite of the obstacle represented by the Atlantic Ocean, extremely long distance connections
may occur from North America to the Mediterranean basin. Conversely, clusters in the
Southern Hemisphere are isolated between them, although internally connected. A first
representation of the role played by each node within the epidemic network is given by the
sum of the probabilities associated to trajectories going into (in-strength: figure 2.2c) and out
from (out-strength: figure 2.2d) that node. In biological terms, in-strength (out-strength) is a
proxy of the extent to which a region acts as a sink (source) of spore. In-strength appears to
be higher in specific regions located in Europe and in the northeastern US, southern Brazil,
the Himalaya and central China. Some regions exhibit great variability within relatively
short distances, namely Ethiopia, Middle East and Central Asia. Other regions show a
smoother and regular gradient, like the US. In this sense, a continuum of intermediate
in-strength values extends from Europe to Western Siberia. Out-strength separates more
sharply those regions characterised by high and low values and, in particular, Europe is
characterized by large regions associated with high out-strength values.

2.4.2 Reconstructing Puccinia pathways in North America and elsewhere

Our global epidemic network permitted to recover the well known North-American Puc-
cinia pathway. In figure 2.3 we compare the average onset date of outbreak along the 97th

meridian west observed between 1922 and 1992 in North America (Aylor, 2003), with the cu-
mulative in-strength of network nodes along the same meridian. Most of the observed onset
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Figure 2.2 – (a) Duration of the host susceptibility period, (b) continental connections among
clusters, (c) in-strength and (d) out-strength across the world.
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dates occur within a certain interval of values of cumulative in-strength (the interquartile
range [0.6, 0.9]), suggesting that the cumulative in-strength network metric can proxy the
spatio-temporal progression of the “Puccinia pathway” in North America. In other words,
in this continent one would expect to observe the first sings of an epidemics when the
cumulative in-strength has values between 0.6-0.9.

Figure 2.3 – Horizontal error bars, denoted with capital letters, represent the observed aver-
age onset dates (±1 standard deviation) of stem rust epidemics along the 97th meridian west
in the 1922-1992 period (source (Aylor, 2003)). The heat map in the background represents
the weekly cumulative in-strength of nodes along the same meridian. In the right panel by
the side of the legend, we computed the interquartile range of the cumulative in-strength
values intersected by the observed average onset dates and their error bars. The shaded
area on the heat map highlights the intervals where the cumulative in-strength value falls
within the interquartile range [0.6, 0.9]. The top-right panel represents the cells crossed by
the 97th meridian and the actual wheat distribution in North America.

Globally, we found that the airborne transport estimated via the center of mass of the
monthly in-strength always moves poleward from tropical and temperate regions (figure 2.4
and figure A.10), except for the Ethiopian pathway, that follows a southward movement even
if it is located in the Northern Hemisphere, likely due to its cropping calendar.
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Figure 2.4 – Panel (a) shows the poleward speed of the center of mass of the in-strength
of different sub-continents. Panel (b)-(e) depict the monthly pathways for North America,
China, South America and Western Europe-Maghreb, respectively.
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2.4.3 Optimal sentinel set

The sentinel set obtained on the 2013-2016 network using the cover set algorithm allows for
a complete coverage of the worldwide wheat producing regions by monitoring 1,007 nodes,
i.e., less than 13% of the total (figure A.12). Moreover, a reasonable coverage of 50% of the
domain can be obtained monitoring 64 nodes (figure 2.5a), i.e. less than 1% of the total.
The first selected nodes are those assuring the greatest coverage, and they do not distribute
uniformly across continents (figure A.12 - see Section SI A.2.4).

The sentinel set selected to optimally cover the 2013-2016 epidemic network, via the
cover set algorithm, provides satisfactory results also when applied to surveil the epidemic
network obtained for the 2017-2018 period (figure 2.5b). In fact, it provides a coverage of
50% of the domain by monitoring 114 nodes (1.5% of the total). For comparison, the same
coverage of 50% would require 234 (3%) random sentinels (on average: interquartile range
[227; 242]), 475 (6.1%) sentinels if ordered for increasing values of betweenness, or 611 (7.8%)
of PageRank.

2.4.4 Early detection capabilities of the sentinel set

In terms of DDR, the set cover algorithm outperformed all the other methods for sentinel
sets containing between 20 and 650 nodes (figure 2.5c). In-strength provides better results
for very small sentinel sets, while random sentinel sets are more suitable when larger sen-
tinel sets have to be designed. The DDR associated to 275 sentinels is 19.2%, which means
that 275 sentinels are able to detect an epidemic process started from any of 19.2% of the
world producing regions within a month. A similar DDR of 19.1% is obtained with 350
nodes chosen according to their betweenness, or more than 500 nodes according to their
PageRank. Between 350 and 500 random sentinels are needed to achieve a DDR around
18− 22%.

We estimated the DDR associated to different values of detection delay (2 weeks, 3
month, 6 month, 1 year), showing that the Set Cover strategy improves its performances
against the random sentinels sets (figure A.14).
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Figure 2.5 – Panel (a) shows the locations of the 64 nodes belonging to the sentinel set
associated to a coverage of 50% of the domain. Panel (b) shows the relative extent of the
worldwide coverage corresponding to increasing sentinel set sizes for different strategies
(network metrics). Panel (c) shows the DDR associated to a detection delay of one month
assessed with a spatially explicit Susceptible-Infected model corresponding to increasing
sentinel set sizes for different strategies. In both panels, the grey area corresponds to the
interquartile range of the random strategy.
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2.5 Discussion

In this study we proposed an original modelling framework based on air mass movements,
network analysis, meteorology, ecology and plant physiology to describe the global epi-
demic network of stem rust of wheat. Eventually, we used the model to identify previously
unknown pathways of disease spread at the globe scale and to define a set of sentinels that
should be primarily surveyed to achieve early detection of future outbreaks.

2.5.1 The most susceptible regions

Our results indicate that the duration of the susceptibility period greatly varies among re-
gions (figure 2.2a; figure A.6). Eastern US, southern Brazil, central Europe and China, which
are important areas of wheat production, experience the longest susceptibility periods. On
the other hand, other important wheat-producing areas from the Middle East up to the
Indian subcontinent have shorter periods of susceptibility. The reason could be the tempo-
ral mismatch between the occurrence of environmental conditions for infection and of host
availability. This is particularly true for India and in Brazil, where, despite a long-lasting oc-
currence of environmental conditions for infection, the susceptibility period is constrained
by relatively short host availability periods (figure A.6). Ethiopia, which is characterized by
exceptional climatic diversity for tropical latitudes (Peel et al., 2007), exhibits a very hetero-
geneous behaviour, with nodes that are never susceptible in close proximity to others that
are highly susceptible (91-130 days per year). Since both host availability and favourable
environmental conditions for spore deposition and host infection are climate dependent
processes, it is likely that global crop epidemic dynamics will be affected by predicted cli-
mate changes (Masson-Delmotte et al., 2021). Prank et al. (2019) predicted a worldwide
increase in sporulation period under a RCP8.5 climate change scenario in 2100 - poten-
tially compensated by a general decrease of probability of germination. On the other hand,
laboratory experiments conducted on other fungal species suggested that future climate
conditions would rather inhibit sporulation, but increase mycelium growth rate (Damialis
et al., 2015).

2.5.2 On the construction of a global epidemic network

To construct an epidemic network we had to explicitly account for biophysical conditions
influencing spore aerobiology. This filtering enabled to discard uninformative air-mass con-
nections and to reduce the complexity of the network, making it simultaneously more sig-
nificant and manageable.

In principle, by tracking the movement of an air mass for an indefinite long time, one
would obtain a completely connected network, i.e. a network with edge density equal to
100%. On the other hand, our epidemic network has an edge density equal to 3.7%, whereas
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the network of only the most recurring connections (i.e., those connections found at least
3 times out of 4 in the yearly networks 2013-2016) has a density of 0.4%. For comparison,
previous studies using a similar technique but filtering only over a 48-hours time (Cho-
ufany et al., 2021b) obtained a density of 28% over the Mediterranean basin for the period
2011-2017. In essence, our filtering allows to make epidemic networks more manageable
and informative, presenting itself as alternative to other network-based methods for the
extraction of the truly relevant connections (Serrano et al., 2009).

2.5.3 From network science to global crop protection

Our results on the frequency of connections (figure 2.2) indicate that regions in the Northern
Hemisphere are more densely connected than in the Southern one. This can be explained by
the fact that 90% of wheat fields are located in the Northern Hemisphere while the clusters
below the Tropic of Cancer, i.e., South America, South Africa, Ethiopia and Australia are
thousands of kilometers away from each other. Furthermore, our prediction of possible
long-distance connections from North America to Europe, and from Europe towards Central
Asia and Russia, are in accordance with previous theoretical and empirical findings (Prank
et al., 2019; Wang et al., 2021; Mayol et al., 2017; Visser et al., 2019). On the other hand,
due to the time lag in the respective susceptibility seasons, no connection between the
Northern and Southern Hemispheres is predicted by our epidemic network. For such a
connection to exist, it is necessary the presence of a “green bridge” (Meyer et al., 2017b) in
a tropical or sub-tropical region located between the two hemispheres. This could be the
case of Ethiopia, where, according to the FAO country brief (FAO, 2021), there exist two
wheat growing seasons: Belg, from February to July and Meher, from May to December.
Furthermore, according to our estimates on the host susceptibility duration (figure 2.2a),
Ethiopia features some of the nodes with the longest susceptibility period (more than 90
days/year), whereas previous studies already identified this country (and more broadly
East Africa and Yemen) as an important stepping stone (Mayol et al., 2017) for the long
distance transport of rust spores along the Rift Valley (Meyer et al., 2017b).

The in- and out-strength maps of the epidemic network (figure 2.2c) provide an overview
of the epidemic role played by each region, sink rather than source of spores or both. Our
results indicate that out-strength tends to be stronger towards the equator compared to in-
strength, in line with previous findings (Aylor, 2003) about the “green” and “golden” wave:
regions closer to tropics are the first where infection is possible and therefore they are more
likely to act as sources of spores rather than sinks. Among the recent seasonal epidemic
events moving poleward, the 2013 regional outbreak of stem rust in Germany seems to have
moved to Denmark and Sweden later in the season (Saunders et al., 2019).

If one wanted to use our approach to derive effective measures for global crop protection
it is worthy to note that in our exercise we privileged generality over local accuracy. Our
assumptions to determine host availability and susceptibility are necessarily oversimplifica-
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tions of a complex reality, as required by models. For instance, we neglected the presence of
alternative hosts, such as spring wheat, whose cropping calendars would increase the host
susceptibility period and the frequency of long distance connections. Also, we neglected
the existence of the secondary hosts of P. graminis, the barberry (Berberis vulgaris), which
is necessary for sexual reproduction, facilitating the emergence of new strains. It has been
successfully eradicated in Western Europe and North America in the last century (Saun-
ders et al., 2019). Yet, it is present in other regions which turn to be sources of new strains
(Olivera et al., 2015, 2019) and it has been recently reintroduced in Europe (Barnes et al.,
2020).

Our model permitted to design an optimal surveillance strategy capable of covering 50%
of wheat cultivated lands while monitoring only 64 sentinel nodes, i.e., less than 1% of the
wheat cultivated cells. Although this proportion may seem optimistic for real applications,
it is worth recalling the work of Sutrave et al. (2012) on P. pachyrhizi indicating that a reliable
epidemiological status of soybean rust in the US could be achieved by reducing the sentinel
set size from 500 to 12 network optimized nodes.

Of course, the success of the deployment of a sentinel system will also depend on the
diagnostic ability of individual sentinels and on the communication between them. In this
sense, efforts have recently been devoted to establish international protocols to improve
the probability of detection and the timely communication of new outbreaks to a global
network of scientists, public authorities and stakeholders (see the Global Cereal Rust Mon-
itoring System (Park et al., 2011; Morris et al., 2022)). Our findings stress the importance of
increasing efforts towards a trans-boundary perspective to efficiently contain the emergence
of new virulent air-borne crop pathogens (Ristaino et al., 2021).

Supplementary Information

• A.1 Supplementary materials

• A.2 Supplementary results

• A.3 The published article
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Chapter 2 in a nutshell

Key points:

• Puccinia graminis is a fungal pathogen causing stem rust of wheat, threatening wheat pro-
duction after decades of apparent calm.

• Using land use data, environmental data affecting host susceptibility and Lagrangian simu-
lations of air-mass trajectories, we reconstruct the worldwide Puccinia epidemic network, in
which wheat producing regions are connected by airborne spore transport.

• A system of suitability filters applied over Lagrangian simulations allows to identify those
trajectories which most likely represented effective transport events, thus reducing the com-
putation complexity and the redundancy of the network. These filters are inspired by exper-
imental knowledge of spore biology, including factors like resistance to UV radiations and
rain scavenging.

• We elaborate a new network indicator, called “Set cover”, based on an already existing
algorithm. A few nodes, with the highest “Set cover” compose a “sentinel set” able to early
detect the emergence of a new disease.

Perspectives:

• Validation of the Puccinia network may be based on genetic similarity between strains and
a measure of proximity of those nodes representing locations where these strains have been
found.

• We assume the risk of emergence of new strains to be homogeneously distributed over the
nodes. In fact, it depends on the genetic reshuffling occurring on its alternate host Berberis
vulgaris; incorporating this heterogeneity would enhance the meaningfulness of the network.

• The surveillance assumes perfect cooperation among countries. What is the performance
loss due to each country optimising its individual surveillance efforts?

• An upgrade of this model should embed how heterogeneous environmental conditions affect
the temporal dynamic of infection and sporulation which ultimately drive the epidemic
development.

• Increased knowledge about spore survival and dispersal capability during the airborne
phase (e.g. resistance to high or low temperature) would improve the reliability of the
model.
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Chapter 3

A metapopulation framework
integrating landscape
heterogeneity to model an airborne
plant pathogen: the case of brown
rot of peach in France

Marco Polo describes a bridge, stone by stone.
’But which is the stone that supports the bridge?’ Kublai
Khan asks.
’The bridge is not supported by one stone or another’
Marco answers, ’but by the line of the arch that they
form’.
Kublai Khan remains silent, reflecting. Then he adds:
’Why do you speak to me of the stones? It is only the
arch that matters to me.’
Polo answers: ’Without stones there is no arch.’

– Italo Calvino, The invisibles cities

This chapter has been submitted as a research article (pre-print available at: Radici et al.2023).
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Résumé

La dynamique des maladies des plantes est déterminée par l’interaction simultanée de la
susceptibilité de l’hôte, de la présence de l’agent pathogène et des conditions environnemen-
tales. Alors que la susceptibilité de l’hôte et les conditions environnementales locales peu-
vent être facilement caractérisées, la transmission d’un agent pathogène aérien dépend des
conditions biotiques et abiotiques du milieu environnant. Nous proposons ici un cadre
original de métapopulation intégrant l’hétérogénéité du paysage, en termes de climat et de
densité d’hôtes, où les populations locales d’hôtes végétaux sont connectées par des masses
d’air qui permettent la dispersion des agents pathogènes. Nous prenons explicitement en
compte les facteurs climatiques affectant la libération et la survie des agents pathogènes
tout en modélisant la dispersion aérienne à l’aide de simulations lagrangiennes, ainsi que
la phénologie et l’infection des hôtes. Nous calibrons les paramètres du modèle en fonction
de la littérature et en utilisant le calcul bayésien par rapport aux observations de l’incidence
de la pourriture brune dans les vergers de pêchers en France de 2001 à 2020 sur une zone
de 50 000 km2. Nous avons utilisé le modèle pour produire des cartes de risque de la zone
d’étude, en distinguant la dangerosité des sites (risque de causer une infection secondaire
dans d’autres sites) et leur vulnérabilité (risque d’être infecté). Nous avons constaté que les
sites les plus dangereux et les plus vulnérables sont situés le long de la vallée du Rhône, en
raison de la concomitance d’une forte densité de vergers de pêches, d’un climat approprié
et de connexions aériennes persistantes. Notre travail représente une première étape dans
l’intégration de la théorie des métapopulations, de l’épidémiologie et des mouvements de
masse d’air pour informer les stratégies de protection des plantes, et pourrait être adapté
pour optimiser la protection dans le cadre des projections climatiques futures.

Mots-clés: agents pathogènes aériens, pourriture brune de la pêche, protection des
plantes, Monilinia, metapopulation

Abstract

Plant disease dynamics are driven by the concurrent interplay of host susceptibility, pathogen
presence, and environmental conditions. While host susceptibility and local environmental
conditions can readily be characterised, the transmission of an airborne pathogen depends
on the biotic and abiotic conditions of the surrounding environment. Here, we propose an
original metapopulation framework integrating landscape heterogeneity, in terms of climate
and host density, where local populations of plant hosts are connected via air-masses which
allow pathogen dispersal. We explicitly account for climatic drivers affecting pathogen re-
lease and survival while modelling aerial dispersal using Lagrangian simulations, as well as
host phenology and infection. We calibrate the model parameters according to the literature
and using Approximate Bayesian Computation against observations of brown rot incidence
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in French peach orchards from 2001-2020 across an area of 50,000 km2. We used the model
to produce maps of risk, distinguishing site dangerousness (risk of causing secondary infec-
tion in other sites) and vulnerability (risk of becoming infected) across the our study area.
We find that most dangerous and vulnerable sites are located along the Rhône Valley, due
to the concurrence of high density of peach cultivation, a suitable climate and persistent
airborne connections. Our work represents a first step to integrate metapopulation theory,
epidemiology and air-mass movements to inform plant protection strategies, and could be
adapted to optimize crop protection under future climate projections.

Keywords: airborne pathogens, brown rot of peaches, crop protection, Monilinia, metapop-
ulation

3.1 Introduction

Plant pathogens are a critical issue endangering global food security (Ristaino et al., 2021).
Our limited comprehension of long distance dispersed pathogens, i.e. transported by wind
or other vectors over regional to continental scales (Aylor, 2003; Brown and Hovmøller,
2002), has direct consequences on the implementation of plant protection strategies (Cun-
niffe et al., 2015; Hyatt-Twynam et al., 2017; Parnell et al., 2017). Given the difficulty to
eradicate such pathogens, management strategies should focus on preventing emergence
via surveillance (Mastin et al., 2020). The appearance of Monilinia fructicola in Europe rep-
resents an example of an airborne pathogen whose introduction has evaded conventional
crop defense measures (EPPO, 2023).

Monilinia spp. are fungal species threatening stone fruit production (Bryde and Willets,
1977; Hrustić et al., 2012). M. fructicola is an alien species to Europe, initially observed in
France in 2001 (Lichou et al., 2002). Despite being classified as quarantine pathogen, in the
following years this new strain was progressively observed in central and southern Europe
(Oliveira Lino et al., 2016). Such uncontained invasion may be explained considering the
efficacy of its dispersal mechanism. The capability of spores to resist UV radiation (Vilanova
et al., 2021) and the compatibility of its aerodynamic diameter (Yamamoto et al., 2014) with
airborne transport (Wang et al., 2021) combine to suggest that Monilinia spores may spread
via air-masses (Bryde and Willets, 1977).

Although epidemiological models already exist to study the local dynamics of brown rot
(Bevacqua et al., 2018, 2023), its airborne spread remains unexplored. A possible framework
to describe brown rot spread at landscape scale consists in coupling in-site epidemiological
dynamics and between-sites pathogen dispersal to create a network of spatially distributed
hosts connected via a moving pathogen - a metapopulation. This approach has been widely
explored in epidemiology (Keeling and Gilligan, 2000; Thrall and Burdon, 2003) with the
general assumption of an isotropic spread (Cunniffe et al., 2016; Rimbaud et al., 2018; Mastin
et al., 2020; Fabre et al., 2021). However, in the case of airborne plant diseases, scientific re-
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search has recently been extended to include realistic patterns of dispersal thanks to the
development of Lagrangian models (Draxler and Hess, 1998; Jones et al., 2007). Studies
based on such models have explored the airborne dispersal of plant diseases (Sutrave et al.,
2012; Meyer et al., 2017), with management implications (Allen-Sader et al., 2019). Nev-
ertheless, these applications have focused largely on transport between known source and
sink locations, with no consideration of the coupling of repeated cycles of dispersal, in-
fection and onward spread that characterises epidemics, which could be embedded in a
metapopulation framework. Such a framework would help to conceptually disentangle the
local factors (climate) from the connectivity (transport of spores) to understand their relative
importance to the emergence of the disease.

In this study, we present a model which integrates current knowledge about climate-
dependent fruit phenology (Vanalli et al., 2021) and epidemiology (Bevacqua et al., 2018,
2023) where pathogen dispersal among units is described by Lagrangian simulations of
air-mass movements to reproduce the disease dynamics over multiple growing seasons at
regional scale. We use brown rot of peach in continental France as a case study. We cal-
ibrate the model against observations of disease incidence in the last two decades and we
verify the importance of including directional airborne transport by comparing the perfor-
mances against a null model, in which connectivity is modelled with an isotropic dispersal
kernel. We use the metapopulation model to produce maps of epidemiological risk, to find
where the most endangered locations for infection are located, and where, if a Monilinia-like
pathogen were introduced, regional disease size would be maximised. These maps repre-
sent one possible application of how this model, based on simulated air-mass movements,
can feed into management decisions for plant protection at the national scale.

3.2 Materials and methods

3.2.1 Model overview

The geographic domain corresponds to the Safran grid (Bertuzzi and Clastre, 2022), made
of square cells 0.11◦ × 0.11◦ (∼ 8 × 8 km2, hereinafter referred to as “unit”) overlaid on
metropolitain France. We considered those 755 units covered by an important peach orchard
area (> 0.01 ha/km2; hereafter “cultivated area”) and not isolated (Fig. 3.1a; see Subsection
B.1.1).

For every unit, for every year in 1996-2020 we computed the ripening period, from pit
hardening t0 to harvest t f (Fig. 3.1b), via a phenological temperature dependant model (see
Vanalli et al., 2021 for details), which corresponds to the period of susceptibility. Note that
t f differs among different peach cultivars (i.e. early, mid-early, mid-late, late).

For each unit i, we run a type SEI climate driven epidemiological model (see Bevacqua
et al., 2023 for details) from t0,i to t f ,i where I(t0) = 0 and S(t0) + E(t0) = 15 f ruits/m2
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Figure 3.1 – Model overview. a) Geographic domain, composed of 755 ∼ 8× 8 km2 units
in France, assigned with a single cultivar for the whole duration of a simulation; in each
unit, b) a climate-dependent phenological model is used to estimate the occurrence of the
beginning of ripening t0 (“pit hardening”) and “end of ripening” t f (harvest); c) a climate-
dependent compartmental model describes the disease dynamics; d) at t0 of a new season,
previous year unharvested mummies determines local inoculum; e) unexposed units can be
inoculated at a daily frequency by airborne spores released by infected units.

(Fig. 3.1c). Every year, for each unit, we stochastically assess the value of E(t0) as a func-
tion of disease incidence in the precedent year. If Ei(t0) > 0, the unit is considered as
“exposed” and the epidemic dynamics is independent from the epidemic state of the other
units. Contrariwise, if Ei(t0) = 0, the epidemic cannot spread unless the inoculum comes
from connected infected units. In this case, we calculate the probability that it assumes a
positive value Ei(t) > 0 with daily frequency (Fig. 3.1d). Such probability depends on the
incidence of units that act as a source of airborne inoculum (Fig. 3.1c).

Every year, for each unit, we use the simulated epidemic trajectory to compute the local
latent infection, represented by fruits that, following infection, mummify (M). We use such
a value to assess the probability that, in that unit, a fraction of fruit will be exposed to brown
rot at the beginning of the following ripening season (Fig. 3.1d).
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3.2.2 Model Equations

Climate dependent phenology and in-unit epidemiological dynamics We derived initial
t0 and final t f fruit ripening time according to Vanalli et al. (2021) (Fig. 3.1b).

We adapted the SEI model for brown rot of peaches developed by Bevacqua et al. (2023)
(Eq. 3.1) to deterministically describe the in-unit disease dynamics, with the additional class
M (Fig. 3.1c). 

dS(t)/dt = −βS(t)I(t) + η(T(t))E(t)− µS(t)

dE(t)/dt = βS(t)I(t)− (η(T(t)) + σ(Π(t)))E(t)− µE(t)

dI(t)/dt = σ(Π(t))E(t)− (µ + α)I(t)

(3.1)

Where β is the transmission rate, η(T(t)) is the temperature-dependent spore mortality
rate, σ(Π(t)) is the rain-dependent infection rate, µ and α are the natural and infection-
related abscission rates. The value of M is computed at t f :

M(t f ) = I(t f ) +
∫ t f

t0

(µ + α)Idt (3.2)

where we include remaining infected fruits at harvest I(t f ) among the mummies. We
used the climate reanalysis provided by Siclima (Delannoy et al., 2022; Caubel et al., 2015).

Cultivar distribution across the domain We inferred the geographical distribution of the
cultivars by computing the yield Yi,z by unit i in 1991-2005 in absence of disease, for every
cultivar z:

Yi,z =
2005

∑
y=1991

e−µt f ,y,i,z w(t f ,y,i,z) (3.3)

where t f ,y,i,z is the harvest date of variety z in unit i in year y, and w(t f ,y,i,z) is the relative
fruit weight (Eq. B.2). We assumed that the probability Pi,z of presence of cultivar z in i is
proportional to Yi,z (Fig. B.1):

Pi,z =
Yi,z

∑z Yi,z
(3.4)

Finally, we created 100 randomized geographical distributions of cultivars, where a unit
is associated only to one cultivar, extracted with probability Pi,z, for the whole duration of
a simulation.

Interannual persistence of inoculum At t0 some units may have some inoculum which
originated by overwintering mummies or other sources (Oliveira Lino et al., 2016; Fig. 3.1e).
We assumed the presence of inoculum as a fraction of the fruit load being already “ex-
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posed”: E(t0) = 0.27 f ruits/m2. We determined the probability of having a primary in-
oculum Po in year y in unit i as the complementary of the product of the independent
probabilities of not having any inoculum:

Po = 1− (1− P̃o)[1− (1− e−θO Miy−1(t f ))] (3.5)

Where P̃o, fixed to 0.2 to avoid non-identification issues (see Subection B.1.7), represents
the probability inoculum due to sources other than peach infections, while 1− e−θO Mi,y−1(t f )

expresses the probability of overwintering. The density of mummies at t f of the precedent
year Mi,y−1(t f ) is weighted by parameter θO, to be estimated.

External transmission of the inoculum If, instead, the unit is unexposed at t0, an epidemic
may be triggered by stochastic introduction of inoculum (Fig. 3.1e) from infected units. We
modelled such inoculation as a Bernoulli variable, with probability Pe, depending on the
rate of external infection Ri,t+1:

Pe = 1− e−Ri,t+1∆t (3.6)

We extracted new daily inoculated units via Eq. 3.6 (∆t = 1d). Rate Ri,t+1 is defined as:

Ri,t+1 =

βθESi(t)∑j 6=i wd,ji Ij(t)Acj/A , if Ei(t) = 0∧Πi(t) > 0

0 , otherwise
(3.7)

where β is the transmission term weighted by θE, to be estimated, Si(t) and Ij(t) are
susceptible and infected fruit loads in units i and j, term Aci/A is needed to compare
units of different cultivated areas, wd,ji is the airborne transport probability, Πi(t) is the
precipitation in the arrival unit i, allowing wet deposition.

An inoculation is imagined as a fraction 0.27 f ruits/m2 of susceptible load that become
exposed, as in the case of overwintering. The term Ei(t) = 0 prevents re-introduction of
inoculum.

Airborne epidemic network To estimate airborne transport probability wd,ji we set up
air-mass simulations with the HYSPLIT model (Draxler and Hess, 1998). We ran forward
Lagrangian trajectory simulations from each unit centroid, 1 m above terrain height, 4 times
a day, uniformly extracted from daylight hours (since sunlight facilitates atmospheric tur-
bulence and spore escape; Levetin, 2015) in 2008-2019. We set the travel duration to 6 hours,
a compromise between the viability of thin-walled spores (of the order of magnitude of one
hour; Oneto et al., 2020) and of thick-walled spores (few days; Visser et al., 2019).

Along a trajectory v, we computed the probability of spore survival to temperature and
sunlight-induced mortality. We intersected v with the domain grid, obtaining a weighted
and directed connectivity matrix Wt in which an element wt,ij represents the probability
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Pt that v started at time t in unit i crosses unit j along its trajectory. We eventually post-
processed matrices Wt into Wd by averaging over each day of the year d and including an
additional connectivity for neighbouring units (see Subsection B.1.6).

Observations of the disease We collected observations of the disease incidence (as “weak”
or “strong”) in different locations from i) scientific articles, ii) plant health bulletins, iii)
master thesis reports and iv) expert judgement of experimental fields (Radici, 2023).

To compare model outputs with the categorical observations, we mimicked the process
by which experts, after examining losses, state whether the incidence has been “weak” or
“strong”. Losses L are expressed as:

L = 1−
St f

S∗t f

(3.8)

Where St f and S∗t f
are the actual and disease-free fruit loads at harvest time. We assumed

there exists a threshold θL, to be estimated, which distinguishes high and low losses:

incidence =

strong , if L > θL

weak , otherwise
(3.9)

3.2.3 Training and stratified cross validation of the model’s parameters

To estimate the parameter set θ = (θE, θO, θL) we followed an Approximate Bayesian Com-
putation procedure (ABC; Csilléry et al., 2010; Minter and Retkute, 2019). This allows to
estimate the posterior distribution of the parameters by running the model several times and
selecting those sets whose performances satisfy a proximity threshold ε to the observations
(see Subsection B.1.7). We chose Cohen’s κ index (Fielding and Bell, 1997) as a measure of
proximity (ranging from -1, lowest, to 1); we fixed a value (0.475) and set ε as 1− κ = 0.525.

To further restrict the parameter sets, we used a Stratified K-Fold Cross Validation algo-
rithm (Arlot and Celisse, 2010). We assessed κ both on training (κφ) and on testing (κψ) sets,
and took the first 100 more frequent accepted sets as our final ensemble θ∗ (see Subsection
B.1.8).

3.2.4 Testing the null model

We tested the hypothesis of directional airborne epidemic spread against a null model where
we replaced wind-driven matrices Wd with an isotropic kernel (matrix U). Each element uij

depends exclusively on the distance between i and j. We run the two models and we com-
pared their performances through a Monte Carlo analysis (Gotelli et al., 2004; see Subsection
B.1.9).
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3.2.5 Estimating risk of brown rot of peaches

We used the model to find the most dangerous units, intended as the ones which, if infected,
would maximize the disease size and the most vulnerable units, intended as the ones which
become easily infected because of an outbreak elsewhere in the domain. First, we set a
unit to be completely infected; then, we associated a random year in 1991-2010, a random-
ized geographical rearrangement of cultivars, a random parameter set from the posterior
distribution, and we ran a 10-years simulation, computing losses in the last simulated year
according to Eq. 3.8.

In this experiment we set the parameter P̃o (sources other than peach infections) to 0
until that unit has been infected (Eq. 3.5). From 75,500 simulated epidemics (755 units ×
100 stochastic repetitions for each unit) we computed two indices: i) the “vulnerability”,
i.e. the average local losses by secondary infection, started anywhere in the region; ii) the
“dangerousness”, i.e. the overall average losses (weighted by cultivated area) caused by an
infection in that unit (see Subsection B.1.10).

3.3 Results

3.3.1 Wind connectivity matrices

Air-mass connectivity, summarized by the annual matrix W (the weighted average of all the
daily matrices Wd; see Subsection B.1.6), varies heterogeneously through the study area and
can be represented as a spatial network (Fig. 3.2a, rearranged on regions defined in panel
b). Beside self loops, an important spread pathway occurs in the Rhône Valley (regions
D-E-F; Fig. 3.2b) followed by a Mediterranean coastal pathway (regions B-C-F-G-H). On the
opposite, the northeastern part of the domain (A, Guyenne) has very few connections with
the rest of the domain.

3.3.2 Parameters estimation

Depending on the cross validation splitting, the size of the accepted parameter sets varies
from 7 to 67 (average = 29) over 200,000. Cohen’s (κφ) assessed on the training set has an
average value of 0.5 (min = 0.496; max = 0.502), while on the testing set (κψ) has an average
value of 0.2 (0.046, 0.409).

The losses threshold over which an epidemic is considered as “strong”, represented by
parameter θL, has average value is 30.3% (interquartile range: 27.1% to 32.9%; Fig. B.3b
and c). It is more complicated to directly visualise the range of accepted values of θE (the
weighting parameter driving external inoculum; average value = 1.8× 10−6; 6.1× 10−7 to
2.4× 10−6; Fig. B.3a and b) and θO (the weighting parameter driving overwintering; average
value = 1.0× 10−2; 7.1× 10−3 to 1.4× 10−2, Fig. B.3a and c). We therefore computed the
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Figure 3.2 – Average connectivity matrix W a) as a directed network, rearranged grouping
units into b) eight regions equal in size (where possible). The colour scale represents con-
nectivity on a logarithmic scale (High: probability of a daily deposition of spore from any
unit in a region to any of a second region in the order of 10−4; Mid-high, 10−5; Mid-low,
10−5; Low, 10−7) consistently with Fig. B.2a.

Figure 3.3 – Observations of incidence of brown rot in peach orchards and estimated model
accuracy. The observed incidence is represented by the color. Locations are mapped as
yellow shades. The bar length represents the correct classification rate of the model, i.e.
the % of true positives and true negatives. Gray shades represent cultivated areas per
municipality.
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“average annual number of external infections”, which is function of θE (average value =
1.062× 102 out of 7.55× 102; 4.8× 101 to 1.48× 102; Fig. B.4b) and the “average number of
units infected at t0” which is function of θO (average value = 1.597× 102 out of 7.55× 102;
1.49× 102 to 1.68× 102; Fig. B.4b).

The average value of κ computed on the whole observations is 0.41 and the correct
classification rate (the ratio of true positive and true negative, Fielding and Bell, 1997) is
71.8%. This latter varies throughout each cultivar (Fig. 3.3; Fig. B.5a). It is generally higher
for “weak” incidences (79.7%) and lower for “strong” incidences (61.1%). Also, it decreases
passing from early (78.4%) to late cultivars (62.7%; Fig. 3.3, B.5c).

The Monte Carlo analysis revealed that the wind-driven model performs significantly
better that the null one (p-value < 5× 10−6).

3.3.3 Dangerousness and vulnerability to brown rot

The most dangerous units (average dangerousness, i.e. the average regional losses caused
by an infection in that unit) values are found in the Camargue (region F in in Fig. 3.4a,
25.7%, with a maximum of 38.9%), followed by other regions along the Rhône Valley (24%):
the Middle-Rhône (D, 23.8%) and Low-Rhône (E, 21.9%). Provence (G, 9.5%), Languedoc (C,
8.7%) and Côte d’Azur (H, 5.9%) display intermediate values, while Roussillon (B, 4.8%,)
and Guyenne (A, 2.6%) have to the lowest average values.

The most vulnerable units (average vulnerability, i.e. the average local losses by sec-
ondary infection, of 19%) are again found in in the Middle-Rhône (Fig. 3.4b), with peaks
of 23.9%. From the most to the least vulnerable units, we found in Low-Rhône (average =
16.9%) and Camargue (average = 14.1%) and than eastwards in Provence (average = 11.6%)
and Côte d’Azur (H, 11.1%). Guyenne follows with values of vulnerability around 5.2%.
Languedoc and Roussillon have again the lowest average values of 3.7% and 2%.

In view of this result we decided to illustrate typical disease dynamics. We therefore
recomputed 200 simulations for a specific units. We chose three geographically close units
(in Middle-Rhône) but different in term of dangerousness. For each one, we mapped the
progress of the advance front of a “rapid spread” simulation, i.e. the earliest year of high
losses (> 30%) in the simulation generating the 67th (i.e., 2/3) quantile of cumulative losses
over the 10 years time span (Fig. 3.4c).

In 11.5% of the simulations where the disease starts in a high-dangerousness the out-
break dies out before the 10th year. These percentage increases to 60.5% for a mid-dangerousness
and 85.5% in a low-dangerousness unit. A high-dangerousness unit can provoke high losses
in 352 units out of 755, with a main north-south spread direction, the double of a mid-
dangerousness (180 out of 755), while a low-dangerousness unit would provoke high losses
in only one other unit.
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Figure 3.4 – Geographical distribution of epidemiological risk. a) Dangerousness (%), i.e.
the average regional losses 10 year after inoculation; b) vulnerability (%), i.e. the average
local losses 10 year after inoculation of a random unit; c) earliest year of high losses (>
30%) in a rapid-spread simulation (i.e., the simulation corresponding to the 67th quantile of
cumulative losses) with a single inoculated unit in Middle Rhône (first inoculated unit has
a low, middle and high dangerousness in scenario 1, 2 and 3 respectively).
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3.4 Discussion

We presented a metapopulation model explicitly including wind-driven dispersal for study-
ing the spatio-temporal dynamics of airborne plant pathogens and we used it to produce
maps of disease risk. Our framework allows to match observations of disease incidence
while considering the complementary role of local overwintering and the wind-driven trans-
port of inoculum between orchards (Fig. 3.3): the best fit is obtained when extinctions due
to missed overwintering are compensated by re-introductions due to air-masses movements
(Fig.s B.3 and B.4).

The role of directional wind-driven transport is corroborated by the Monte Carlo anal-
ysis with the null model, fed with an isotropic kernel. Such kernel is typically assumed in
scientific literature in absence of knowledge on pathogen transports (Cunniffe et al., 2016;
Rimbaud et al., 2018; Mastin et al., 2020; Fabre et al., 2021). Lagrangian trajectory simu-
lations of air masses have been already used to investigate aerial connectivity in Chapter
2; our experiment suggests that, for those pathosystems where airborne transportation is
ascertained, it be efficiently integrated in a dynamical framework, helping describing the
epidemic spread more accurately than a isotropic kernel.

Defining an acceptance threshold is usually a critical point in the ABC (Minter and
Retkute, 2019), but a rooted scientific literature helps interpreting the meaning of κ. Nega-
tive values characterise models which are worse then random, values over 0.21 are consid-
ered as “fair”, while over 0.41 are “good”, “moderate” (McHugh, 2012; Fielding and Bell,
1997). We set κ > 0.475 over each cross-validation repetition. The same sets of parameters,
if assessed against the testing set, have values of κ close to “fair” (Tab. B.2).

The model predicts “weak” incidences better (average correct classification rate = 80%)
than “strong” ones (61%). This is consistent, since a “strong” incidence needs both favourable
environmental conditions and inoculum presence, while “weak” incidences simply require
one condition to be absent, since the infection sill not develop. Geographical distribution of
model performances can be discussed under this consideration (Fig.s 3.3, B.5b); “weak” in-
fection levels in Roquecourbe-Minervois, Livron-sur-Rhône, Livron-sur-Rhône and Lingue-
doc are better identified than “strong” levels in Saint Gilles and Valence. Disease dynamics
in early cultivars are generally better described that in late cultivars (Fig.s 3.3, B.5c), which
have by definition longer ripening duration in which they may be infected.

The risk of brown rot in France The model identifies both the most dangerous disease
spreaders and most vulnerable pathogen receivers along the Rhône Valley (regions D-E-F).

From an management point of view, vulnerability - which can be compared to the sec-
ondary infection risk by Meentemeyer et al. (2011) - calls for direct protection (e.g., via
fungicide application) of an epidemic unit. Dangerousness, instead, measures the impact of
an outbreak at a broader scale; it underlies a vision in which local management has reper-
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cussion all over an interconnected landscape. Independently of its vulnerability, preventing
disease in a dangerous unit may be globally advantageous over a larger share of the domain.

Despite being two aspects of the main phenomenon, vulnerability and dangerousness
are statistically distributed differently through the domain. The coefficient of variation for
the former (0.56) is lower compared to that for the latter (0.84). This means that units
are more easily characterised as having high or low dangerousness, rather than for their
vulnerability, as in this case they are clustered around to the average value. This suggest
that good disease spreaders are more easily distinguishable from bad ones than good or
bad pathogen receivers.

Proposed epidemic risk indices depend indirectly from a number of factors: length of
ripening, host surface, favourable environmental conditions and air-mass connections. Host
density per unit increases proportionally the capacity of infecting connected units, and
consequently dangerousness (Eq. 3.7). Rain occurrence can be a measure of suitability of
the environmental conditions triggering infections, either due to local inoculum or wind-
mediated (due to wet deposition). In our model, rain triggers the rate σ at which exposed
fruit load become infected (Fig. 3.1c, Eq. 3.1), proportional also to peach weight. In fact,
also plant phytosanitary bulletins warn local producers to pay attention to rain when fruits
are close to ripening, as this can facilitate cuticle cracking and subsequent infection (Oliveira
Lino et al., 2016).

Climatic factors affecting epidemic risk may be more easily visualized in Guyenne and
Roussillon due to their low connectivity to the domain (Fig.s 3.2a, B.2a). In fact, despite
scoring low on both indices, their relative isolation from the rest of the domain helps disen-
tangle the importance of local environmental variables from those influenced by connectiv-
ity. Guyenne is characterised by little cultivated area (about 5 ha per unit, Fig. B.1e). On the
other hand, in this region we observe the largest frequency of rainy days during ripening
(24.5 days on average; Fig. B.1e), which is the main factor driving infection in the SEIM
model, which may explain why, despite its isolation, its vulnerability is higher compared
to other regions such as Languedoc. Roussillon, instead, hosts the largest cultivated areas
(33.5 ha per unit) and is slightly more dangerous than Guyenne.

Regions along Rhône Valley, which are then both dangerous and vulnerable, are in-
terested by the typical North-South wind circulation (the Mistral), whose units host large
cultivated areas (from 15 to 29.2 ha per unit) and intermediate values of rainy days (12 to 21
days per season). Among mid-risk, but well-connected regions, late varieties are common
in Languedoc and Côte d’Azur, and less in Provence (Fig. B.1e). By contrast, they all share
little of cultivated areas (5.1 to 7.9 ha per unit) and infrequent rainy events (11.8 to 14 days
per season).

Intuitively, the latest varieties should be also the most vulnerable, provides more time
for infection. In contrast, these varieties, which typically grow in warmer climates, are
relatively common in lid- and low-risk regions (Fig. B.1d). This suggests that frequency of
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rainy days (which seems to trigger vulnerability) or host surface and connectivity (which
are likely to increase dangerousness) may be more relevant epidemiological factors.

The first European detection of M. fructicola occurred in 2001 in the Gard department
(Lichou et al., 2002; Fig. B.2b, between regions F and E), which hosts dangerous units (Fig.
3.4a). While epidemics starting from these units persist for several years, their spread is
unlikely to cross national borders (Fig. 3.4c). This slow progression may be attributed to
the hypothesis underlying the fitting of the model: assuming that the disease is already
widespread everywhere may have led to an underestimation of its aggressiveness.

Moreover, it may be imagined that wind is not the only dispersal medium. Brown rot
of peaches is also known to cause high post-harvest losses (Oliveira Lino et al., 2016) and it
can be hypothesized that the handling of returnable crates used to ship and store harvested
fruits contributes to the spread of the disease (Bryde and Willets, 1977). If one wanted to
integrate this transportation mode to our modeling framework, this would be represented
by an additional connectivity layer reflecting storage and trading (Hernandez Nopsa et al.,
2015). Furthermore, this additional spread would not necessarily occur simultaneously
with the ripening season but later, thereby extending the period during which susceptible
fruits can come into contact with the pathogen. Beside additional dispersal medium, the
discrepancy between observed and modeled spread leaves open the debate about possible
multiple introductions of M. fructicola in Europe.

Towards metapopulation-based plant protection strategies Fungal plant disease dynam-
ics have been traditionally interpreted only under the light of local environmental conditions
(Juroszek et al., 2020), neglecting transport of spores. The presence itself of Monilinia viable
spores correlates with local environmental variables (Holb, 2008), but this information has
not been used so far to retrace epidemiological dynamics going beyond local descriptors.

Airborne transport has gained increasing scientific evidence to be among the fastest
way of pathogen transport (Schmale III and Ross, 2015), provided that given biological
protections (melanin, leading to spores resisting UV light) and aerodynamic features are as-
certained (Levetin, 2015). The growing availability of computationally efficient Lagrangian
models to reconstruct air-mass trajectories, such as HYSPLIT (Draxler and Hess, 1998), al-
lows more research on airborne plant pathogen spread.

Our study represents a first step to use air-mass movements to both study airborne
disease spread among fruit trees and inform plant protection strategies at the national range.
This research supports a shift in the current paradigm regarding the optimal spatial scale
of disease management from the field to the landscape (Thompson et al., 2016). Moreover,
it could be adapted to perform optimization of epidemic surveillance and disease control
under future climate projections.
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Chapter 3 in a nutshell

Key points:

• Monilinia fructicola, a fungal pathogen causing brown rot of peaches - arguably the main
cause of production losses - has appeared in France in 2001 and in a decade has colonized
orchards in half of the European continent almost undisturbed.

• Via the presented metapopulation model, which includes weather series affecting in-orchard
epidemiological dynamics and an explicit description of the mobility of the pathogen be-
tween orchards, we demonstrate that directional wind movement is essential to represent
the spatio-temporal dynamics of brown rot of peaches.

• In France, most “vulnerable” locations are located along the Rhône Valley, especially in the
north. Vulnerability is associated to frequent rains during ripening.

• Locations where an introduction of a Monilinia-like pathogen would cause the greatest losses
at the regional level correspond to the most densely cultivated area in the whole Rhône
Valley.

Perspectives:

• Our level of knowledge on Monilinia’s survival and dispersal capability during the airborne
phase is limited and anecdotal, way poorer compared to what is currently known about
Puccinia. Experiments are needed to address this gap.

• The calibrated spatial spread rates appear too low to explain alone such a large-scale inva-
sion in a decade. It seems plausible that other means helped in the displacement, such as
returnable shipping crates that are used to stock harvested fruits - given the high losses that
usually occur in the post-harvest phase.

• Brown rot of peaches is already everywhere and is treated with chemicals at a high economic
and environmental costs; the presented model can be used to design the spatial optimisation
of fungicide applications.
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Chapter 4

Global benefits and domestic costs
of a cooperative surveillance
strategy to control transboundary
crop pathogens

The end of this story can only be related in metaphors
since it takes place in the kingdom of heaven, where
there is no time. Perhaps it would be correct to say
that Aurelian spoke with God and that He was so little
interested in religious differences that He took him for
John of Pannonia. This, however, would imply a confu-
sion in the divine mind. It is more correct to say that in
Paradise, Aurelian learned that, for the unfathomable
divinity, he and John of Pannonia (the orthodox believer
and the heretic, the abhorrer and the abhorred, the
accuser and the accused) formed one single person.

– Jorge Luis Borges, The Theologians

Résumé

Les maladies transfrontalières sont extrêmement complexes à contrôler et peuvent causer
des dommages socio-économiques à l’échelle mondiale. Dans le contexte de la protection
des plantes, les stratégies de surveillance sont généralement conçues en fonction des fron-

This chapter has been published as a research article (Radici et al., 2023).
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tières nationales, sans tenir compte de l’échelle spatiale de la propagation de la maladie.
Dans cette étude, nous nous intéressons à la pertinence de cette échelle pour la surveil-
lance des agents pathogènes dispersés sur de longues distances. Nous utilisons un réseau
épidémique décrivant le transport potentiel mondial de Puccinia graminis, l’agent causal
de la rouille noire du blé, modélisé dans un travail antérieur. Sur la base des propriétés
du réseau, nous concevons deux stratégies de priorisation des zones à surveiller pour la
présence de la maladie, soit en coopération, soit chaque pays seul, et nous comparons leurs
performances en termes de minimisation de l’effort déployé pour atteindre des objectifs de
surveillance donnés, au niveau mondial et national. Nous constatons qu’une stratégie de
coopération est plus efficace à l’échelle mondiale. Cependant, son adoption implique une
distribution géographique hétérogène des coûts et des bénéfices liés à l’effort de surveil-
lance. Les pays de taille moyenne d’Europe centrale et d’Asie en tireraient le plus grand
bénéfice ; en revanche, les pays situés sur des voies de propagation importantes devraient
déployer davantage d’efforts de surveillance qu’ils ne le feraient en l’absence de coopéra-
tion. Parmi les principaux producteurs de blé, la Chine est le seul pays pour lequel une
stratégie de coopération pourrait avoir un coût, tandis que l’Inde, la Russie, les États-Unis,
la France et l’Ukraine en tireraient le plus grand avantage. La reconnaissance de la manière
dont les coûts et les bénéfices d’une gouvernance mondiale seraient partagés entre les pays
est nécessaire pour obtenir un soutien unanime en faveur d’un système de surveillance
coopératif international.

Mots-clés: protection des cultures, dispersion à longue distance, réseaux complexes,
Puccinia graminis, surveillance transfrontalière

4.1 Abstract

Transboundary diseases are extremely complex to control and can cause global socioeco-
nomic damage. In the context of crop protection, surveillance strategies are usually de-
signed according to country boundaries, regardless of the spatial scale of the spread of the
disease. In this study, we investigate the suitability of this scale for surveilling long-distance
dispersed pathogens. We use an epidemic network describing worldwide potential trans-
port of Puccinia graminis, the causal agent of stem rust of wheat, modelled in Chapter 2.
Based on network properties, we conceive two strategies for prioritizing areas to be mon-
itored for the presence of the disease, either cooperative or each country alone, and we
compare their performances in terms of minimizing the effort deployed in achieving given
surveillance targets at global and domestic level. We find that a cooperative strategy is more
efficient at the global scale. However, its adoption implies a heterogeneous geographic dis-
tribution of surveillance effort-related costs and benefits. Medium-sized countries in central
Europe and Asia would benefit the most; on the other hand, countries placed in important
spreading pathways should deploy more surveillance effort than they would place without
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cooperation. Among the major wheat producers, China is the only country that may have
a cost from a cooperative strategy, while India, Russia, United States, France and Ukraine
would have the most benefits. The acknowledgement of how costs and benefits of a global
governance would be shared among countries is needed to gain unanimous support for an
international cooperative surveillance system.

Keywords: crop protection, long distance dispersal, networks, Puccinia graminis, trans-
boundary surveillance

4.2 Introduction

The issue of surveillance of transboundary diseases, hereinafter intended as infectious dis-
eases whose rapid spatial spread is likely to concern more than a country, has recently
came in the spotlight due to the Covid-19 pandemic (Dhama et al., 2020; Chinazzi et al.,
2020; Soubeyrand et al., 2020; Mohamed et al., 2020). New outbreaks of such diseases
(Brockmann and Helbing, 2013; Saunders et al., 2019), as well as biological invasions of
alien species (Diagne et al., 2021), are hardly predictable events. They can be shaped by
different dissemination pathways (human transportation, commodity shipping, animal vec-
tors or atmospheric agents) and cause socioeconomic and health issues. Furthermore, lack,
mismatch or delay in the communication of first detection among countries, together with
uncoordinated control measures, may lead to inefficient management (Carvajal-Yepes et al.,
2019; Thompson et al., 2020). Notably, the threat posed by airborne crop pathogens rep-
resents a paradigmatic case of transboundary spread (Isard et al., 2005; Xing et al., 2020;
Corredor-Moreno and Saunders, 2020). The risk of large losses in food production due to
unexpected outbreaks has prompted researchers and institutions to explore international
surveillance systems to timely tackle the diffusion of the most alarming crop pathogens
(Park et al., 2011; Carvajal-Yepes et al., 2019). The spatio-temporal persistence of large-scale
seasonal movements, such as the well known Puccinia pathway from Mexico to Canada
(Brown and Hovmøller, 2002; Aylor, 2003), has recently emerged as a major source of inspi-
ration for devising such innovative surveillance systems (Sutrave et al., 2012; Meyer et al.,
2017; Allen-Sader et al., 2019). In spite of such efforts, standard surveillance of transbound-
ary crop diseases has frequently been performed according to country boundaries, without
a cooperative perspective, regardless of the actual scale of spread of the disease, lacking in-
ternational, and timely, communication of first detections (Park et al., 2011; Carvajal-Yepes
et al., 2019; Ristaino et al., 2021). Yet, benefits from a possible general reduction of surveil-
lance effort of a global, cooperative and communicative strategy (Thompson et al., 2016)
over a non cooperative one, i.e. each country alone, have never been quantified in the case
of long-distance dispersed pathogens.

In this study we investigate to what extent, and under which conditions, country bound-
aries represent a suitable scale for surveillance of long-distance dispersed crop pathogens,
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and whether international cooperation would make crop protection more effective. We use
stem rust of wheat, caused by Puccinia graminis, an airborne fungal pathogen whose spores
can be transported over long distances by wind (Levetin, 2015), as a case study. In the
majority of wheat producing countries the presence of this pathogen has been controlled
by the use of resistant cultivars and the eradication of its secondary host, Berberis vulgaris,
which enables overwintering in temperate regions. This pathogen reappeared in western
Europe after several decades of absence (Barnes et al., 2020; Corredor-Moreno and Saun-
ders, 2020; Saunders et al., 2019) and is considered a threat to global food security due to
the rapid spread of virulent races through a worldwide distributed host (Singh et al., 2015;
Ristaino et al., 2021). In Chapter 2, we retraced its global epidemic network across world-
wide wheat-producing countries. In the present study, we use this epidemic network to con-
ceive two surveillance strategies, a “non-cooperative” one, representing a within-boundary
scenario with no collaboration and communication between countries, and a “cooperative”
one, where countries collaborate surveilling each other and timely communicate the detec-
tion of the disease. We compare their performances in terms of surveillance effort needed
to achieve given targets both at the global and domestic scale.

4.3 Materials and methods

4.3.1 The worldwide Puccinia epidemic network

In order to evaluate the performances of different surveillance strategies, we used the epi-
demic networks obtained in Chapter 2. Here we present a summary of the methodology
proposed there. We simulated worldwide transport of P. graminis spores among wheat pro-
ducing countries, obtaining a time-varying directed and weighted connectivity network W.
In W, the 7,814 nodes represent 0.5°× 0.5° cells (≈ 2,000 km2) in wheat-producing countries,
while edges represent likely air-mass connections among cells, computed at a time resolu-
tion of 6 hours for the time span 2013-2016. More specifically, each weighted edge wijt of
W is computed in such a way to account for the likelihood of air-mass trajectories (com-
puted via NOAA’s HYSPLIT model; Draxler and Hess, 1998) which potentially disseminate
spores from a release node i to an arrival node j at time t. In both i and j, host availability
and favourable environmental conditions (for sporulation and/or infection) are determined
via a climate-dependent suitability model and validated via a comparison with cropping
calendar from the FAO country briefs (FAO, 2021a). Seventy-two-hour (72 h) trajectories
(Meyer et al., 2017) are filtered according to different criteria (rain washout, cumulative UV
radiation, flight duration and altitude) to exclude those air-mass movements that are less
likely to lead to an effective spore transport event.

We then projected this time-varying epidemic networks in a static, directed and binary
design network WD, generated by considering only recurring connections, i.e. occurring i)
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at least once a year and ii) at least three times over the 4-year interval 2013-2016 (i.e., ≥ 75%
of the years). Network WD identifies only highly likely direct spore dissemination events
on a seasonal timescale.

4.3.2 Surveillance strategy design

We further considered the problem of establishing a reduced set of sentinels, nodes where
the presence of the pathogen is systematically monitored (i.e., the surveillance effort), that
should guarantee the largest aggregated coverage of the domain (i.e., the surveillance target)
and provide an early-warning system for the detection of the pathogens. First of all, we
defined the coverage of a sentinel as the set of nodes that points directly towards it, under
the assumption that, by monitoring the presence of the pathogen in a sentinel, we can
indirectly observe the possible presence in all those nodes that are pointing to it in one step.
We leveraged on an iterative heuristic algorithm to determine sub-optimal solutions to the
problem of finding the smallest set of sentinels sσ that guarantees the maximum aggregated
coverage (associated to a surveillance target σ).

The iterative heuristic algorithm (or “Set cover”) to determine sub-optimal solutions to
the problem of finding the smallest set of sentinels consists in: i) finding the node associated
to the largest coverage, ii) add this node to the sentinel set sσ , initially empty, iii) label its
coverage as surveilled and remove all the edges pointing to it, iv) repeat steps i-iii until the
proportion of nodes in the aggregated coverage reaches the desired target σ. The optimal
set of sentinels sσ is ranked by growing aggregated coverage. The size of sσ defines the
surveillance effort xσ.

We designed two surveillance strategies, a “cooperative” and a “non-cooperative” one.
In the “cooperative” strategy, the Set cover algorithm was run on all nodes of the network.
By contrast, in the “non-cooperative” strategy, we i) labelled each node with the country
where it is placed and ii) ran the Set cover algorithm separately for each country by con-
sidering only the corresponding sub-block of the network. We thus obtained the optimal
sentinel sets s−T

σ,c for each country c, where −T stands for “without Transboundary edges”,
ranked by growing aggregated domestic coverage. To compare the performances of the “co-
operative” and “non-cooperative” strategies, we computed the number of sentinels needed
to achieve different global targets (Fig. 4.1) .

4.3.3 Measuring benefits and costs of cooperation at domestic scale.

To investigate how the burden of surveillance is shared among countries, for each country c,
we calculated the number of sentinels xc,σ,s needed to achieve a domestic surveillance target
of σ under a given strategy s (s = “cooperative” or “non-cooperative”). Then, we defined
the cost-benefit index αc,σ as the ratio between the number of domestic sentinels needed to
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achieve σ in the “cooperative” and in the “non-cooperative” strategy, for a given country c:

αc,σ =
xc,σ,s=cooperative

xc,σ,s=non−cooperative
(4.1)

We evaluated it for σ = 1%, 2%, ... 100% and then we computed the average (αc) by
country. We ascribe to a country c the label of “CoopBeneficial” if ᾱc < 1, “CoopAdverse” if
ᾱc > 1 and “CoopNeutral” if ᾱc = 1. After having computed αc by country, we aggregated
it by continent weighting each country’s contribution by its wheat production (FAO, 2021b)
to investigate geographical heterogeneity of benefits and costs of cooperative surveillance.

4.3.4 Robustness of the sentinel sets

To assess the temporal robustness of the results to slight changes in the epidemic network,
we set up a validation procedure of the performances of the sentinel sets. We recomputed
the connectivity network W on years 2017-2018 and projected it into a validation (directed,
binary, static) network WV, obtained by considering only those connections occurring at
least once a year both in 2017 and 2018.

We then recomputed the aggregated coverage and αc,σ of the sentinels sets sσ and s−T
σ,c

using network WV.

4.4 Results

Our global epidemic network, together with the applications of the Set cover algorithm,
allowed us to identify those sentinels that would best perform to detect disease presence
within a certain portion of the network. Note that sentinels might not be included in the
network portion that one wants to surveil. For example, if the objective is to monitor the
portion of the network corresponding to all wheat-producing regions in Germany, regard-
less of where the sentinels are placed (the “cooperative” strategy), the optimal sentinel set
would comprise only three domestic sentinels (see Fig. 4.1a). On the other hand, it would
be necessary to place six sentinels if surveillance could be provided only by domestic sen-
tinels (the “non-cooperative” strategy, see Fig. 4.1b), not contributing to transboundary
surveillance. Our results indicates that, for a σ of 100%, Germany would benefit from a
cooperative strategy as the number of domestic sentinels needed to monitor its territory
would pass from 6 to 3, thus meaning a cost-benefit index of = 3/6 = 0.5. Indeed, the inter-
pretation of the cost-benefit index is rather straightforward: if αc,σ < 1, country c requires
less sentinels within its borders in the “cooperative” scenario than in the “non-cooperative”
one for achieving the same surveillance target σ. If αc,σ > 1, the opposite is true, while if
αc,σ = 1, country c needs the same number of sentinels in both the strategies for achieving
surveillance target σ.
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Figure 4.1 – A graphic example to compare “cooperative” and “non-cooperative” strategies
when the surveillance target is set to σ = 100 %. Square cells represent nodes of the net-
work, corresponding to wheat producing regions. (a) In the “cooperative” strategy, three
domestic sentinels (orange nodes: x, o, +, surveilling light green cells) in addition to others
placed abroad (which surveil dark green nodes), are needed to cover all nodes in Germany.
Each node is associated to one or more symbols, each for the sentinel(s) monitoring it.
(Note that the sentinel x has a domestic cover set which is also surveilled by international
sentinels. Yet, in a cooperative framework its role is essential to efficiently surveil nodes
out of Germany). (b) In the “non-cooperative” strategy, six domestic sentinels (|, –, /, \,
>, <) are needed to surveil German nodes (light green cells). They do not contribute to
transboundary surveillance.
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Figure 4.2 – Each line in panel (a) represents the surveillance effort (x-axis, in log2 scale)
needed by a country to achieve increasing domestic surveillance targets σ (y-axis) in the
“non-cooperative” strategy. We highlighted, via colouring, one repesentative country for
each continent. The intersection of each line with a given surveillance target (e.g. horizontal
line at σ = 50%) gives the minimum size of the sentinel set for that country. The global
effort can be obtained by summing all intersections (209 for σ = 50%). Panel (b) shows
the number of sentinels needed in the “cooperative” strategy to achieve increasing global
surveillance targets σ. In this case, the target σ = 50% is achieved with just 64 sentinels,
while 209 sentinels ensure a global coverage of 78%.

4.4.1 Global surveillance effort reduction due to cooperation

In a context of non-cooperation between countries, a coverage of half of the worldwide
wheat producing regions (i.e. σ = 50%) would be achieved by placing 209 sentinels (Fig.
4.2a), corresponding to 2.7% of the nodes of the global epidemic network. Due to the
discrete nature of each coverage, this would correspond to a worldwide target of about
σ = 58% (Fig. 4.2a). Note that with the same amount of sentinels, within a “cooperative”
strategy, one would achieve a worldwide coverage of σ = 78%. On the other hand, the
coverage target of σ = 50% would require only 64 sentinels (Fig. 4.2b). An aggregated
coverage of 58% would be obtained with 87 sentinels. If the coverage target were a complete
coverage of the worldwide wheat producing regions (i.e. σ = 100%), in a “cooperative”
framework it would need 1,007 sentinels (Fig. 4.2b) and 1,148 otherwise.
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4.4.2 Heterogeneity in the distribution of surveillance effort reduction
due to cooperation

Overall, out of 87 countries, 55 (63%) are classified as CoopBeneficial, 23 (27%) as Coop-
Neutral, and 9 (10%) as CoopAdverse. In terms of wheat production, around 71% is located
in CoopBeneficial countries, 6% in CoopNeutral countries while 23% in CoopAdverse ones
(Fig. 4.3). A large variety exists in the cost-benefit indexby differentiating countries with
large (at least 45 nodes), medium (between 44 and 13 nodes) and small producing regions
(12 or less nodes; Fig. 4.3 and C.2). For 47 countries, mainly medium (e.g., Czechia or
Uruguay) or large (e.g., India or Russia), the cost-benefit index is always ≤ 1, thus implying
an advantage in adopting a “cooperative” strategy independently of σ. Only 4 countries
(Morocco, Greece, Finland and Nepal) are always discouraged from adopting a “coopera-
tive” strategy. Great part of the small countries (such as Yemen or New Zealand) display
αi,σ = 1 for any value of σ, for which the two strategies are equivalent. For a few number
of large (e.g. US, China or Iran) or medium countries (e.g. Moldova or Tunisia), the cost-
benefit index is lower or larger than one depending on the value of σ. Their qualification as
beneficial or adverse to cooperation depends on the surveillance target.

At the world scale, each continent (except Australia) has at least one CoopBeneficial,
one CoopNeutral and one CoopAdverse country (Fig. 4.4a). In North America, countries
are typically CoopBeneficial, while South America is more balanced. Continental Europe
is mainly CoopBeneficial, with some countries (Belgium, Luxembourg, Austria, Slovenia,
Croatia, Bosnia and Herzegovina, Albania, North Macedonia) having αc = 0. Finland has
the highest αFinland of 1.3, followed by Greece (αGreece = 1.2). Asia has a composition sim-
ilar to Europe, with few CoopAdverse countries (China, Mongolia, Nepal), some isolated
CoopNeutral (e.g. Japan) and a majority of CoopBeneficial ones, mainly in inner parts of
the continent. Africa is almost entirely CoopNeutral, with the exception of the Maghreb
and Tanzania that are CoopBeneficial. Due to geographic isolation, island states such as
Australia and New Zealand are CoopNeutral.

4.4.3 Robustness of the surveillance strategies

Overall, there is good agreement between the values of αc obtained via the design and the
validation network for all countries c (correlation coefficient of 0.89; p-value � 0.001). A
visual comparison is also provided in Fig.s C.1, 3-5.
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Figure 4.3 – Bar chart of the average cost-benefit index for all wheat-producing countries
considered in the study. Each country is represented by a rectangle where the base is
proportional to αc and the height to wheat production in 2010 - 2020 according to FAO
(2021b).
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Figure 4.4 – Global map of the average cost-benefit index by country. Average values by
continents, weighted by country wheat production 2010 - 2020 (FAO, 2021b) are also dis-
played. Europe and Asia, and in particular their innermost countries, display the lowest
values of αc. Insular countries (Australia, New Zealand, Japan) or those with limited wheat
producing surface (mostly African countries) tend to be CoopNeutral.

4.5 Discussion

4.5.1 From domestic to global cooperative crop protection

As previous research have stressed, the scale of disease management should correspond to
that of the spread of the disease of interest, regardless of country boundaries (Thompson
et al., 2016). We have collected evidence that, in the case of long-distance dispersed diseases,
a “cooperative” approach allows significant reduction in the surveillance effort needed to
achieve a global coverage (-69% and -12% for a global coverage of σ = 50% and 100%,
respectively). This outcome agrees with previous studies, which underlined that neglecting
long-distance connectivity leads to an underestimation of the disease spread capacity (Jeger
et al., 2007).

Despite increasing evidence of a global advantage in cooperative international surveil-
lance, crop surveillance design is still mostly dictated by country boundaries, rather than the
actual scale of the pathogen spread (Thompson et al., 2016; Carvajal-Yepes et al., 2019). The
mismatch between optimal and actual scale of action affects also other kinds of transbound-
ary natural threats, such as biological invasions by alien species. In this regard, Diagne et
al. (Diagne et al., 2021) recently outlined that invasion-related economic damages are pro-
jected to increase in the next decades; one reason behind the inertia in the implementation
of international and coordinated protection strategies may lie in the underestimation of the
costs by the general public, stakeholders and decision-makers. This may be particularly
true in the case of airborne diseases, where the direct observation of their dispersal is ac-
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tually unfeasible (Jordano, 2017; Barnes et al., 2020), and may discourage consideration by
decision-makers.

4.5.2 Network-thinking in crop surveillance

The use of networks to support crop protection strategies have been largely advocated in
recent studies (Jeger et al., 2007; Sutrave et al., 2012; Shaw and Pautasso, 2014; Parnell et al.,
2017; Garrett et al., 2018). One advantage of networks is that they are “asemantic”, i.e.
they can represent whatever relationship, contact or flow mediated by different means (air-
masses as well as human transportation (e.g. Brockmann and Helbing, 2013) or animal trade
(e.g. Bernini et al., 2019) in a topological space which can correspond to the physical one. In
the most simplistic way, crop protection strategies rely on the identification of the nodes of
the network that most contribute to spread the disease, or those that, if successfully treated,
would reduce the disease size. Other methods rely on the identification of certain recurrent
network patterns, where the disease spread is the fastest (Chadès et al., 2011). Concerning
surveillance, relevant nodes correspond to those that may allow early disease detection if
systematically monitored (Sutrave et al., 2012; Holme, 2017; Neufeld et al., 2018).

Despite the risk of incurring local minima, we used the Set cover algorithm to prioritize
nodes to be monitored, i.e., sentinels. Set cover iteratively selects the node associated with
the highest coverage, solving the otherwise unsolvable Set cover problem in finite time. This
algorithm only ensures that a node is surveilled by at least one sentinel. A less error-prone
procedure may request that nodes are surveilled by at least n > 1 sentinels. This would
increase the reliability of the sentinel set by reducing the risk of imperfect surveillance
(Chadès et al., 2011), but consequently increasing the surveillance effort. Furthermore, in
our exercise we assume that the risk of emergence of new strains (made possible by the
alternate host B. vulgaris, which allows sexual recombination of P. graminis), the costs of
surveillance, distribution of resistant varieties and crop management practices are the same
in all the nodes. Relaxing these assumptions would ask for a different modelling framework,
referable to a multi-constrained and multi-objective problem (such as a multi-dimensional
knapsack problem Kulik and Shachnai, 2010), with increasing complexity of the solution
with respect to that of the Set Cover algorithm.

This algorithm assumes that sentinel locations are chosen regardless of country borders,
while it may not be the case. For these reasons, we named the solution of the above-
mentioned algorithm as the “cooperative” strategy and we built a second strategy, where
surveillance is designed mimicking a more realistic scenario. This strategy, named “non-
cooperative”, differs from the previous as the algorithm is carried out each country inde-
pendently of the others, which means that the Set cover algorithm is solved at the country
level. In turn, coverage can be thought as a step-by-step updated version of the in-degree,
i.e. the number of the edges pointing to a node, penalising those nodes whose coverage
overlaps with that of nodes already labelled as sentinels. Other studies already noted that
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in-degree (or simply degree for undirected networks) is, as a general rule of thumb, a good
proxy of both a good sentinel and a potential disease spreader (Herrera et al., 2016; Holme,
2018).

Moreover, in our work we proposed an hybrid network and geographical approach, in
which metadata are associated to network components: each node is associated to the label
of the corresponding country, and each edge is consequently labelled as “transboundary” or
not. To our knowledge, this is one of the first attempts to compare non-topological surveil-
lance strategies, i.e. “cooperative” and “non-cooperative”, and to quantify the heterogeneity
in the allocation of the burden of “cooperative” surveillance.

Our results thus indicate that the cooperative strategy becomes more valuable when the
surveillance target is intermediate. This is mainly due to the fact that this strategy reduces
overlapping among coverages. Overlapping is negligible also for the “non-cooperative”
strategy for moderate target of surveillance, and becomes important for both strategies
approaching σ = 100%.

4.5.3 Sharing benefits and costs of cooperation

From a global perspective, a “cooperative” strategy is necessarily more efficient compared
to a “non-cooperative” one, since it corresponds to an optimization subjected to fewer con-
straints. However, it is interesting to quantify how such strategy performs against a “non-
cooperative” strategy at country level, since benefits and burden may not be equally shared;
similarly, wheat production is valuable differently according to each country’s food system.

We found that medium-sized countries located in an inner continental position, such as
in central Europe or central Asia, are associated to the lowest αc values, since they benefit of
transboundary potential transport events among a landscape dominated by wheat produc-
ing areas. Insular countries, such as Australia, New Zealand or Japan, having no recurrent
edges with other countries, are CoopNeutral. Due to the low presence of wheat, many
African and South American countries are CoopNeutral. By contrast, it is more difficult
to determine general characteristics for CoopAdverse countries, even keeping in mind that
connections are mostly north-eastward in the Northern Hemisphere and south-westward
in the Southern Hemisphere. Finland and Nepal are small-medium sized wheat produc-
ing countries, located at the point of arrival of western-eastern European (Zadoks, 1967)
and Indian (Brown and Hovmøller, 2002) “Puccinia pathways”, respectively. Given the rela-
tively small size of their wheat producing regions, they are forced to assume more sentinels
in the benefits of upwind countries, whose food systems are probably much more wheat-
based, than they would need if left alone. By contrast, Canada, the final destination of the
north-American pathway, is a large wheat producing country, hence it would need several
sentinels no matter the strategy. We may suppose that Italy and Greece, due to their location
in the middle of the Mediterranean basin, may play as stepping stones for epidemics spread-
ing northward from Africa towards central Europe (Mehta et al., 2007); furthermore, both
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have relatively low wheat productions, hence they would need less sentinels if not cooper-
ating. Brazilian and Argentinian large wheat producing surfaces are located just poleward
compared to those of their smaller neighbours (Paraguay and Uruguay, respectively). In the
same way, due to the general eastward circulation in the Northern Hemisphere, Chinese
wheat-producing regions might act as sink for trajectories from their western neighbours
(that are, indeed, CoopBeneficial).

By averaging the cost-benefit index by continent it is possible to highlight those conti-
nents which would benefit the most of a cooperative surveillance. Europe and Asia display
the lowest cost-benefit index values (0.6-0.8), while for other continents it is generally around
1. To sum up, the connectivity network of this airborne disease creates a heterogeneous dis-
tribution of costs and benefits, but Asia and Europe would certainty take advantage of an
international and cooperative surveillance system (Fig.s 4.4 and C.5).

The heterogeneous geographical distribution of benefits and costs of cooperation in
surveillance has already been highlighted by other studies (Bacon et al., 2012) and suggests
that a compensating mechanism should be set up to make it acceptable. This compensa-
tion mechanism should take into account different costs of surveillance among countries
(Augustin et al., 2012). This idea can be borrowed from the socioeconomic concept of “bur-
den sharing” (Suhrke, 1998; Sandler and Forbes, 1980), which is finding application in the
management of environmental goods. Differentiate greenhouse gas emissions reduction in
the framework of the Conference of the Parties to achieve climate targets (Ringius et al.,
2002), as well as in the multi-stakeholders management of marine resources (Bennett et al.,
2021), may be two notably example. Furthermore, other fields of crop protection may ben-
efit of a network-based transboundary perspective. For example, the deployment of resis-
tant varieties to both contain pathogens spread and delay resistance overcoming (Rimbaud
et al., 2018) is another spatial optimization problem; whether it should be approached at
the national or international scale is an interesting issue that can benefit from the approach
proposed here.

While our study tries to push towards a change in the perspective of governance of crop
disease surveillance, we believe that proper identification of spatial distribution of costs and
benefits can help facilitate international agreement for a global crop epidemic surveillance
and gain support of all stakeholders.

Supplementary Information

• C.1 Supplementary materials

• C.2 The published article
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Chapter 4 in a nutshell

Key points:

• The high rate of spread of infectious diseases or invasive species questions the conventional
paradigm whereby each country alone can efficiently handle such threats.

• In the case of stem rust of wheat, we use the global epidemic network modelled in Chapter
2 to show that a cooperative surveillance strategy would help reducing the global moni-
toring effort, notably at intermediate target of surveillance (e.g. when 50% of the global
wheat surfaces are monitored), compared to a scenario where each country optimises its
own surveillance.

• Such benefits are distributed heterogeneously across the globe. Depending on the surveil-
lance target, some countries would be asked to increase their domestic surveillance effort in
the global interest: compensation mechanisms should be put in place to reach an equitable
share of benefits and costs.

Perspectives:

• Further research may consider modifying the “Set cover” algorithm to ensure a node is
surveilled by more than one sentinel. This would probably shrink the coverage of each
sentinel, and would reasonably lead to reduced transboundary interactions.

• As in Chapter 2, presence of the secondary host, which provide genetic reshuffling and
favours the emergence of new strains, is neglected.
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Conclusion and perspectives

The answer, my friend, is blowin’ in the wind
The answer is blowin’ in the wind

– Bob Dylan, Blowin’ in the wind

Reducing epidemiological complexity at its essential

The first article I read at the beginning of my theses was proposed me by Davide. It was
the paper by Brockmann and Helbing (2013), The hidden geometry of complex, network-driven
contagion phenomena, which I already mentioned in the Introduction. This paper stated that
spatio-temporal spread of contemporary pandemics is guided by the emergent transport
mechanism, which is air-traffic, with epidemiological parameters playing a secondary or
even negligible role. Moving up one level of abstraction, this paper stated that, at least
in spatial epidemiology, very complex phenomenona may become simple if reduced at its
essential.

This reduction to essential is one Holy Grail for modelers aiming to capture the “big
picture” of phenomena. The other approach is at the precise antipode: including every
detail. I was fascinated by this visionary article: from one side, February 2021 was still
“Covid time”, and so this topic was very present to our lives; from the other, it seemed the
starting point of a broad applicability of its tools - complex networks, to which Chapter 1 is
entirely dedicated - in whatever framework in epidemiology.

With anecdotal exceptions, contrary to humans, plants do not fly (Keeling and Gilligan,
2000), though they sometimes unintentionally take the plane for being traded (Banks et al.,
2015). Nevertheless, their parasites can move: they can be transported by various means,
including their own motion, animals, water bodies, rain-splash, and wind (Damschen et al.,
2008; Nagarajan and Singh, 1990). This latter means of transportation is particularly in-
teresting from various perspectives. It is certainly one means of transportation which al-
lows long-distance transport of pathogens (Aylor, 2003). Although many harmful plant
pathogens are wind-dispersed, traditionally the lack of methods to study such a complex
mode of transportation has been accompanied by the belief that its study would not yield
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practical results due to the stochastic nature of air masses (Kling and Ackerly, 2021).
On the contrary, new methods based on Langrangian trajectory simulations have emerged,

initially designed to study the possible impact of air pollutants (Draxler and Hess, 1998).
Models such as HYSPLIT or NAME (Jones et al., 2007) have provided scientists with tools
that integrate a wide range of environmental data at increasing spatial resolutions. For in-
stance, the main environmental database used by HYSPLIT, called Global Data Assimilation
System (GDAS), increased its resolution from 1° to 0.25° from 2006 to 2019. These models
have progressively garnered the scientific interest for the application in studying airborne
pathogens, in particular stem rust of wheat, caused by P. graminis (Meyer et al., 2017b,a;
Visser et al., 2019; Allen-Sader et al., 2019; Prank et al., 2019).

I was originally supposed to work on brown rot of peaches. However, the lack of a
modelling framework for approaching the airborne dispersal of Monilinia spores, primarily
due to the anecdotal knowledge of its aerobiology, lead me to concentrate initially on P.
graminis. I had the precise objective of building a replicable modelling framework, flexible
enough to be adapted to whatever wind-transported pathogen by tuning some parameters,
keeping Brockmann and Helbing’s philosophy: think at the big picture (so, moving to a
global scale) by taking the essential.

I soon found myself in a situation where I had to make a compromise. In fact, La-
grangian trajectories alone may provide superfluous information. Characterizing them, es-
pecially in terms of spatio-temporal coordinates of release or simulation duration, helps
assign them the role of representing the dispersal of a specific pathogen. Moreover, the
intersection of such trajectories with the host grids just produced a over-connected network
- in jargon: a hairball graph (Dianati, 2016) - in which every node was connected to almost
any other.

The idea of using suitability filters emerged from the dual necessity of characterizing air-
mass trajectories and simplifying networks. These filters reduce the amount of unwarranted
information by mapping when and where wheat is present and susceptible, or launch-
ing backward trajectory simulations only from those place and time when precipitation is
falling, to capture only wet deposition events (the one where there is the highest probabil-
ity of infection; Emerson et al., 2020). Other “filters” include the fact that airborne spores
should resist UV radiation and rain washout (Isard et al., 2005); trajectories should be within
the planetary boundary layer to have the possibility to effectively drag released spores; and
so on. Great part of the Methods section of Chapter 2 is dedicated to their description.

The suitability filters represent a smart solution to deal with the above-mentioned issues.
Other studies simulating spore dispersal leveraged on the so called “dispersion model” of
NAME (or HYSPLIT), in which turbulent motion of a large number of Lagrangian particles
is taken into account, producing then the so called “plume”, and are also provided with a
“dry deposition module” simulating effect of gravity on spores (Meyer et al., 2017b). The
“trajectory model”, which I used, simply integrates one curvilinear trajectory in the atmo-
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sphere, along which environmental variables are computed. While the first is enormously
demanding in computational terms, allowing a limited set of release sites, the second is
more handy, and with the help of the suitability filters I’ve been able to run more and more
meaningful simulations covering the world surface at greater density and frequency with
respect to studies which used the “dispersion model” (Meyer et al., 2017b).

I was starting to getting far from the article by Brockmann and Helbing. On the one
hand, these suitability filters helped in reducing the great amount of information HYSPLIT
provided to the essential; on the other hand, these filters were selecting the emerging mech-
anisms at the cost of adding multiple layers of biophysical knowledge.

Modelling plant epidemics deals with multiple layers of com-

plexities

I stored the information about intensity and frequency of airborne epidemic connections in a
network object. This allowed to take advantage of the knowledge summarised in Chapter 1,
which inspired me to conceive a surveillance prioritization algorithm with which I identified
a set of “sentinels”, i.e. easily infected nodes to monitor frequently*. It is, indeed, a greedy
algorithm, which means that its solution is locally optimal at each step: but all the attempts
of Davide of finding a more effective algorithm failed. In fact, this algorithm addresses
the problem of redundancy in spatial networks, which tends to have rich-club structures
(Colizza et al., 2006) - highly connected nodes tends to be clustered, and are consequently
less useful under the perspective of surveillance, where one would like to differentiate the
sources of information by checking distant subsets of the network. The idea behind this
algorithm is close to that of the VoteRank (Zhang et al., 2016), an iterative algorithm which
defines, at each step, the best “spreader” among the nodes, decreasing the weight of the
spreader’s connections in the following iterations.

The sentinel set identified via the “Set cover” performs well also with respect to slight
changes of the connectivity network (I defined the set starting from the network summaris-
ing airborne connections in the period 2013-2016, while I tested it with the network sum-
marising airborne connections in 2017-2018). However, I acknowledged that an “on field”
validation of the sentinel set would present serious challenges, which deal with the nec-
essarily broad definition of “node” and its monitoring, since this includes all wheat fields
within a square of around 2,000 km2. Even before coming to the sentinel set, the validation
of the original network itself would be complicate. I believe that a possible validation proce-
dure could be based on comparing the genetic similarity between strains and between those
nodes of the networks in which the strains have been found. However, this method would

*Fun fact: I had the idea of the “Set cover” algorithm, found on Wikipedia - https://en.wikipedia.org/
wiki/Set_cover_problem#Greedy_algorithm - which I later interpreted as a step-wise updated version of the
in-degree network centrality, during my holidays in Côte d’Azur, some days before the 2021 Footbal Euro Final.
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require to have a widespread measures of Puccinia genotypes, while the emergence of new
strains is (luckily) relegated to those locations where the secondary host, the barberry, is
present (Barnes et al., 2020; Olivera et al., 2015).

A reviewer proposed a further crash test to determine whether the proposed sentinel
set was also capable of detecting the emergence of the disease earlier than sentinel sets
defined according to other ranking criteria. This test implied a shift of the perspective of
the network, from static to dynamic, through the creation of an elementary metapopulation
model, which I built under trivial assumptions. Eventually, it resulted that the “Set cover”
generally performed better in providing the earliest detection than other standard metrics.

The rudimentary metapopulation model developed for P. graminis called for a more so-
phisticated approach, which, beside simulating pathogen jump from one node to another,
embedded environmental heterogeneity in favour of more adherence to reality. Daniele
was already finalising a climate-based local phenological temperature-driven model for de-
termining the period of susceptibility of peaches (Vanalli et al., 2021) and on a climate-
dependent epidemiological model for describing brown rot dynamics in a orchard. This
idea was far from that of Brockmann and Helbing (2013): integrating all these dynamics,
would have really meant “getting off the plane” and include many epidemiological, envi-
ronmental and biological layers in the model.

The model presented in Chapter 3 is far from a “reduction to its essential”. I eventu-
ally included more dynamics compared to what I expected, such as the stochastic pres-
ence of primary inoculum due to overwintering rotten fruits and expert judgement about
the incidence of the disease-related losses. Moreover, the Monte Carlo approach implies
unhandy and time-consuming simulations. On the other hand, I kept almost unchanged
all the conceptual framework about Lagrangian trajectory simulations and suitability fil-
ters, conceived for stem rust of wheat. Eventually, these modifications were necessary to
calibrate the parameters, given the extremely heterogeneous available database of observa-
tions. These efforts produced a more ambitious and complete model, able to describe the
climate-driven multi-seasonal spread of brown rot of peach balancing in-orchard disease
transmission with inter-units spread. With respect to the global epidemic Puccinia network,
the proposed metapopulation network is calibrated and cross-validated with direct obser-
vations.

The epidemic risk indices proposed in Chapter 3 present complementary roles related to
crop protection. A vulnerable node calls for direct protection, while a dangerous node have
an explicit role in determining outbreak at the landscape scale. Despite this distinction, it
should be acknowledged that these two indices are spatially correlated (one can’t expect
vulnerable cells being far from the dangerous ones!)

Chapter 3 ends presenting the potential use of the metapopulation model in spatial epi-
demic management design. The spatial optimization of control methods (such as applica-
tion of fungicides) and testing the effectiveness through a Monte Carlo approach represents
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the most immediate perspective of the presented work. Even if I did not have the opportu-
nity of exploring it properly during my Ph.D., in the next section I am illustrating a possible
draft of procedure.

Network-based optimisation of fungicide application (some

more equations)

The starting point is the observation that brown rot of peaches is already everywhere in
France and M. fructicola is no more in the EU quarantine list (Oliveira Lino et al., 2016).
Well established within the Green Revolution paradigm, farmers use to apply between 15
and 25 fungicides treatments on average to conventional orchards every year (Cretin et al.,
2018). One typical fungicide which is applied during ripening is Azoxystrobin Martini and
Mari (2014), a respirator inhibitor which reduces the infection (in the presented modelling
framework, it reduces the rate σ of the transition from “exposed” to “infected”).

From a mathematical point of view (Hobbelen et al., 2011; Elderfield et al., 2018), the
parameter α, which tunes the infection rate, might depend on the concentration of fungicide
F according to Eq. 2:

α = αmax(1− eθF) (2)

Where αmax is the maximum rate (usually assumed as unitary) and θ determines the
curvature of the dose-response curve. Fungicide concentration dynamics, instead, follows
an exponential decay depending on a decay rate ν - except when a new dose is applied,
when its value is usually reset to its maximum:

dF(t)/dt = −νF(t) (3)

The system of equations 3.1 introduced in Chapter 3, can be re-defined as Eq. 4, where
the transition from exposed to infected is then tuned by parameter α, whose value goes
from 0 to 1 and decreases with increasing fungicide concentration.

dS(t)/dt = −βS(t)I(t) + η(T(t))E(t)− µS(t)

dE(t)/dt = βS(t)I(t)− (η(T(t)) + (1 − α)σ(Π(t))E(t)− µE(t)

dI(t)/dt = (1 − α)σ(Π(t))E(t)− (µ + α)I(t)

(4)

By using a parameterization assumed in previous studies for simulating the effects of
Azoxystrobin in another fungal disease, powdery mildew (Erysiphe necator) on grapevines
(Hobbelen et al., 2011; Elderfield et al., 2018), I am able to assess the effects of the application
of fungicides in any unit of the domain.
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One thing this modelling framework allows to do is to chose a set of nodes where fungi-
cides are applied and then assess the overall effect on peach production - in other words, to
prioritize units of the network to be treated first. This prioritization is proposed to explore
possible compromises between increasing farmer’s income (here simplified in “reducing
disease-related production losses”) and reducing environmental impact of chemicals.

These objectives are conflicting since they requires either to maintain high fungicide
application or to reduce it, respectively, at least at the short/medium run. In the long run,
due to a number of factors, including the development of fungicide resistance (Lucas et al.,
2015), it is plausible that these two objectives are less conflicting (Olitaa et al., 2023).

A possible option to prioritise units to be treated involves ranking units according to
an index or a metric - exactly as proposed in Chapter 1 - and simulate the expected fruit
production with Monte Carlo repetitions with growing treated areas. This idea lead me to
run an exploratory study in which I compare two different strategies, “rain-based”, where
the units where rain is most frequent during ripening are treated first, and “in-degree-
based”, where the units with highest in-degree are treated first (Fig. 5). As anticipated
in Chapter 3, rain is related to vulnerability, because it case cuticle cracking. In-degree,
instead, is a network metric presented in Chapter 1 which measures the number of edges
entering a node. In this case, the in-degree of a unit i is number of units which are expected
to disseminate their spores to that unit i according to the wind-driven matrix W presented
in Chapter 3.

If there were no “network effect” - that is, if an action on a node only affects that node,
without interactions with the others - I would expect the production increasing linearly
with the treated surface (the solid line in Fig. 5). What I observe instead is that, at least
for the “rain-based” strategy, the curve describing the expected production in function of
treated surfaces has a concavity downwards. This non-linear behaviour has interesting
consequences: it implies that, in a scenario where all orchards are already treated, a slight
reduction of fungicides would keep the overall production almost unchanged; or that, at
the opposite, in a fungicide-free scenario (but where losses are constantly between 35% and
65%), a reasoned spatial allocation of fungicide application would significanlty increase the
production. Instead, compared to the “rain-based” strategy, the“in-degree-based” do not
seem to represent an interesting ranking criteria. Indeed, the trajectory of the expected
production is almost convex.

Further research is needed, but this first preliminary experiment suggests a couple of
observations. The first is that disease control strategies display a “network effect”, and it
is possible to test them on a network basis. The second is that, for brown rot of peaches,
the most promising strategies seems based on local climate characteristics (frequency of
rainy days) rather than on a network-mediated wind index (the in-degree of the airborne
connectivity network). At least in this pathosystem, the dependence of disease control
actions with weather conditions is crucial (Bevacqua et al., 2023).

104



Figure 5 – Normalized peach production (in terms of total weight) with different amount of
treated surfaces (in terms of hectares) according to two strategies. The shaded area represent
the interquartile interval of the Monte Carlo simulations, while the solid line represent the
average.
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Let us zoom out, it is a matter of scale

In the case of the dissemination of a airborne pathogen whose capability to endure harsh at-
mospheric conditions among a worldwide distributed host, the above-mentioned “network
effect” between units may translate into a transboundary effect between countries. Chapter
4 is entirely devoted to that, focused again on “P. graminis” and stem rust of wheat. I used
the methodological framework developed in Chapter 2 to design a country-based surveil-
lance strategy, based on the solution of the “Set cover algorithm” for each country separately.
For doing that, I removed all edges connecting nodes placed in different countries, so that
to each country corresponds (at most) an isolated sub-network component (John and Al-
lan, 1995). This procedure allowed me to state that the performance of a “non-cooperative”
strategy, i.e. each country alone, are globally worse than the one developed in Chapter 2,
labelled as “cooperative”, in terms of effort (i.e., the number of deployed sentinels) needed
to reach the same surveillance target.

Is this a “happily ever after” statement? Not exactly, since also a “cooperative” strategy
has some drawbacks. Beside the overlooked costs of coordinating several country under
a unified framework, the global reduction of surveillance effort is not equally distributed.
I estimated that, in this scenario, a few countries should increase their surveillance efforts
for the global benefit. This heterogeneous distributions of efforts should be acknowledged
to facilitate international agreement for a global crop protection and gain support of all
stakeholders.

The studies conducted in this thesis have the aim of exploring the advantages of broad-
ening the spatial scale in current paradigm of crop protection in agriculture. I have in-
vestigated this possibility for long-distance dispersed parasites, in particular on airborne
pathogens, for both surveillance and control. In doing this, I have been inspired by a vision-
ary study from which I gradually moved away in favour of a more accurate description of
the aerobiological, phenological, epidemiological and agronomic dynamics that made me
more aware of the complexity of the problems involved in contemporary agriculture, of
which I initially had limited knowledge.

The Green Revolution has profoundly reshaped farming practices over the last 80 years.
While it has brought significant benefits, it has also given rise to unexpected issues, some
of which I partially discussed in the introduction.

One problematic aspect concerns the way crop protection is approached, which some-
times conflicts with the long-term sustainability of agriculture and human activities in gen-
eral. The indiscriminate use of chemicals and phytosanitary products has fostered the hope
of finding a panacea for an age-old problem that has plagued humanity since prehistoric
times: the constant battle against pathogens and pests. In the case of airborne pathogens,
this approach was also driven by the unpredictable emergence of their symptoms.

The emergence of pathogen resistance to pesticides and growing environmental concerns
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related to the vast resources conventional agriculture consumes have prompted scientists
and institutions to reconsider the paradigm established by the Green Revolution. This shift
has led to technological and methodological innovations that are being applied in various
ways across the world.

Through this thesis, I aimed to contribute to one of the most urgent methodological
changes in crop protection, which involves zooming out from individual plots and recog-
nizing in the network of interactions between farms, fields, and orchards a fundamental
ecological function. Identifying these connections, which summarize potential epidemic
connections, is essential for collectively designing innovative, viable and effective surveil-
lance and control strategies.
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Appendix A

Supplementary Information -
Chapter 2

A.1 Supplementary materials

A.1.1 Geographical domain

The geographical domain used in this work consists of 7, 814 cells covered with a surface of
at least 2% of wheat (average 10%, standard deviation 8%), according to the 2010 MapSPAM
database release (International Food Policy Research Institute, 2019). Physical area (cod. A)
was used to perform this calculation.

Due to the grid extraction procedure (resolution of the grid: 0.5◦ × 0.5◦), cells size varies
across latitudes, increasing in surface from the poles to the Equator. Here the cell size varies
from a minimum of 1, 495 km2 (Finland) to a maximum of 3, 075 km2 (Kenya).

The final land surface considered in this work is 1.77× 107 km2, approximately 12.1% of
the total Earth’s land surface.

A.1.2 Lagrangian trajectory simulation settings

HYSPLIT configuration setup is reported in table A.1.
Simulation outputs. The following meteorological and physical outputs have been

stored for each trajectory at hourly frequency: day, hour, age, latitude, longitude, alti-
tude, air temperature (TAMB), rainfall (RAIN), mixed layer depth (MIXD), relative humid-
ity (RELH), terrain height (TERR), downward solar radiation flux (DSWF; Hysplit calcu-
lates meteorological variables at given positions from GDAS, https://www.ncei.noaa.gov/

products/weather-climate-models/global-data-assimilation)
Clouds altitude estimation. Lagrangian simulation were run every 6 h starting at mid-
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Figure A.1 – Percentage of wheat as land cover worldwide, elaborated from the SPAM
database.

Parameter Value Meaning
tratio 0.75 advection stability ratio
delt 0 (autoset) integration time step
mgmin 10 minimum meteorological subgrid size
khmax 9999 maximum duration (h) for a particle or trajectory
kmixd 0 (default) Source of mixed layer calculation
kmsl 1 (AGL) Starting heights default
kagl 1 (AGL) trajectory output heights are written as above ground level
k10m 1 use surface 10m winds / 2m temperature
nstr 0 trajectory restart time interval in hours
mhrs 9, 999 trajectory restart duration limit (hours)
nver 0 trajectory vertical split number
tout 60 trajectory output interval in minutes
dxf 1 horizontal X-grid adjustment factor for ensemble
dyf 1 horizontal Y-grid adjustment factor for ensemble
dzf 0.009999 vertical (0.01 ∼ 250m) factor for ensemble

Table A.1 – HYSPLIT configuration setup.
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night from the centroids of the cells at an above-ground altitude set to the minimum between
the base of the cloud and the mixed layer depth, above the mostly mixed layers of the tro-
posphere. Clouds altitude is not provided as output of HYSPLIT simulations. However,
HYSPLIT user manual explains how to estimate the base of the cloud (RHB) and the top of
the clouds (RHT) from relative humidity reconstruction, typically used to calculate depo-
sition. The base of the clouds is estimated to be at the height where the relative humidity
profile exceeds 80%, while top of the clouds is the height were the relative humidity profile
falls below 60%.

A specific simulation was run from each cell centroid for each release date to collect
RH values from 0 up to 5, 000 m above ground levels each 100 m. The value of 5, 000 m
was chosen since it represents the maximum distance above ground level that could be
calculated in the highest point in the domain. In other words, since HYSPLIT domain
altitude limit is set to 10, 000 m above sea level, and the highest point in the domain is 4, 899
m above sea level (77° 45’ E, 31° 45’ N, Himalayan mountains in the north of India), 5, 000 is
the maximum value that enable meteorological variables computation in each point of the
domain.

Temperature estimation at ground level. Air temperature values are estimated along
the trajectories, at the trajectory’s altitude. However, air temperature at ground level is
necessary since sporulation is limited between 5 and 40 ◦C. Temperature at ground level
has been estimated assuming a typical gradient of 6.5 ◦C/km along the vertical trajectory,
so that:

T(zground) = −0.0065× T(ztrajectory)× (ztrajectory − zground) (A.1)

Where T is temperature at different elevations, ztrajectory is the trajectory elevation and
zground is the ground elevation.

A.1.3 Farming Calendar

Temporal host availability detection Host availability is defined as the period of the year
in which wheat has reached the phenological phase suitable for infection, in presence of
suitable environmental conditions and of a pathogen. We used the growing degree-days
formula (GDD) suggested by McMaster & Smika (Mcmaster and Smika, 1988) to repro-
duce the main wheat season calendar. We have chosen the formulation proposed to these
authors because it allows us to identify certain physiological phases of wheat from weather
variable from the first day of the year rather than from the sowing date. This guarantees the
possibility of calculating the growth of wheat even in the absence of specific information
relative to the sowing calendar, in particular the sowing date, which can be spatially het-
erogeneous and susceptible to mutation due to climate change. Here, the following phases
were considered:
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1. Dormancy end (DE), or phase 3.0 of the Feekes (Large, 1954) growth scale, is the last
phase before leaves and pseudo stem erection. Here it is considered as the beginning
of host availability.

2. Maturity (M), or phase 11.0 of the Feekes growth scale, is the last phase before harvest.
It defines the last period of host availability (2 month are added at the end to account
for harvest procedures, as explained below).

Using the dormancy end as the date of onset of host availability may lead to an overesti-
mation of susceptibility because at this phase the plant has not yet fully developed the stem,
which can be infected by P. graminis. However, if other stages had been chosen to set the be-
ginning of host availability, they would have led to an underestimation of the susceptibility
period. We chose the dormancy end because it represents a choice in favour of safety.

Phenological phase Lower limit (Tb) Upper limit (TB) GDD threshold (Th)
Dormancy end (DE) 2 25 38
Maturity (M) 0 25 1622

Table A.2 – Parameters of the growing degree-days formula.

The Growing degree-days formula is written as follows (Mcmaster and Wilhelm, 1997):

GDD(D) =
D

∑
d=1

min(TB, max(
TM(d) + Tm(d)

2
− Tb, 0)) (A.2)

Where, beside coefficients defined in table A.2, TM(d) and Tm(d) are the minimum and
the maximum daily temperature. Phenological states are identified when the GDD exceed
the corresponding threshold:

DE = arg min
D

1GDD(D)>ThDE
(GDD(D)) (A.3)

M = arg min
D

1GDD(D)>ThM
(GDD(D)) (A.4)

Where 1[arg]( f (.)) is the indicator function, which is equal 1 if the condition in [arg] is
verified, 0 elsewhere.

Air temperature data at ground level were obtained from the Global Data Assimila-
tion System – GDAS (https://www.ncei.noaa.gov/products/weather-climate-models/

global-data-assimilation, whose temporal resolution is of 6 hours (00 – 06 – 12 – 18
UTC).

In countries of the southern hemisphere the computation of the cumulative degree days
starts on the 1st of July, to solve the seasonal time lag between hemispheres.

Growing season in tropical regions. Growing season are assigned to tropical regions
according to FAO (http://www.fao.org/giews/countrybrief/) or USDA (https://ipad.
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fas.usda.gov/rssiws/al/crop_calendar/us.aspx) calendars, summarized in table A.3.
For instance, the longest farming season (meher) in Ethiopia goes from July-August to
December-January (Meyer et al., 2017). As a consequence, despite being located in the
Northern Hemisphere, the same regime of southern countries was adopted, and we ne-
glected the shortest season (belg, June-July).

Tropical country Main growing season Assigned calendar season
Ethiopia May to January South (1st of July)
Eritrea June to November South (1st of July)
Sudan November to March North (1st of January)
Kenya July to November South (1st of July)
Rwanda September to Jan North (1st of January)
Nigeria* From December North (1st of January)
India October to May North (1st of January)
Peru December to September North (1st of January)
Yemen June to September South (1st of July)
Saudi Arabia November to May North (1st of January)
Myanmar September to May North (1st of January)

Table A.3 – Growing season calendar in tropical regions.

Length of the harvest season. Length of the harvest season in the first 10 wheat produc-
ing countries worldwide according to FAO calendars (table A.4) (FAO, 2026). This length
was used to determine the period of host availability after maturation, here chosen as 2
month.

Country Length of harvest season
China 1.5 months
India 2.5 months
Russia 1 month
USA 2 months
France 2.5 months
Canada 2 months
Pakistan 2.5 months
Ukraine 2 months
Germany 2 months
Australia 2 months

Table A.4 – Length of the harvest season in the top 10 wheat producing countries.

A.1.4 Environmental conditions for infection

In the three days following deposition, spores should enter two consecutive phases (Roelfs,
1992) in order to complete infection: i) germination, which requires high relative humidity,
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dark or dull conditions (solar radiation < 26.7 W/m2) and temperatures between 15°C and
24°C; ii) appressorium formation, which requires high relative humidity, sunlight (solar
radiation > 133.3 W/m2) and temperatures between 15°C and 35°C.

As specified in Chapter 2, rain is considered a necessary condition for deposition and
infection. Solar radiation limits for the detection of infection are expressed in lux in the
article by Allen Sader et al. (Allen-Sader et al., 2019). More specifically, germination solar
radiation upper threshold was set to 3200 lux, while appressorium formation solar radiation
lower threshold was set to 16.000 lux. Here a conversion factor of 120 W/(m2 × lux) was
adopted, since solar irradiance of 1 Sun (1, 000 W/m2) equals approximately 120, 000 lux
(Michael et al., 2020).

All environmental variables used to detect environmental conditions for infection come
from the GDAS data base, whose temporal resolution is of 6 hours (00 – 06 – 12 – 18).

A.1.5 Connectivity

The results of every backward Lagrangian simulation from site i is a set of 120 points (j =
1, 2, . . . , 120), corresponding to each hour of a 5-days trajectory, each one characterized by
latitude, longitude, altitude, local time, UV solar radiation, rain. From here, cumulative
UV solar radiation and rain are computed. These variables contributed to the definition of
connection probability Pij of successful dissemination between a location i where the host is
available and a location j where host is susceptible, as defined in the Chapter 2 (Fig. 2.1).

Provided that all the other conditions are satisfied (cell i being crossed by a trajectory at
a altitude lower than the mixed layer depth, between 9:00 and 15:00 and with precipitation
< 2.54mm/h), Pij is the product of the mutually independent probability of release P1(T),
survival to UV radiation P2(UV) and rain scavenging P3(R). Probability P1(T) of spore
release is defined as follows

P1(T) =


0 if T < Tl or T > Tu

T−Tl
Topt−Tl

if Tl ≤ T < Topt

Tu−T
Tu−Topt

if Topt ≤ T < Tu

(A.5)

Tl = 5 °C being the lower limit, Tu = 40 °C the upper and with maximal sporulation at
Topt = 30 °C (Prank et al., 2019).

The probability P2(UV) of spore survival to UV radiation in the air column is defined
as:

P2(UV) = e−λUV [ fUV SR(1+z fz)] (A.6)

Where λUV = 1.1 represents the spore sensibility to UV radiation (Meyer et al., 2017;
Maddison and Manners, 1972), fUV is the fraction of UV radiation in the cumulative solar
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radiation SR (MJ) reaching the atmosphere (Foyo-Moreno et al., 1999), and fz is a correction
term due to the altitude z (Calbó et al., 2005).

Similarly, rain scavenging is accounted as (Isard et al., 2005):

P3(R) = e−R/KR (A.7)

Where R is the cumulative rainfall along the trajectory and KR = 25.4 mm (Isard et al.,
2005) represents the constant describing the loss of spores to cumulative rainfall along the
trajectory. For sake of numerical tractability, we arbitrarily discarded trajectories associated
with Pij < 0.01 to limit the number of retained connections between cells. For what concerns
the remaining edges, probabilities Pij are rounded up into 5 classes (0.01 – 0.21; 0.21 – 0.41;
0.41 – 0.61; 0.81 – 1). This operation allowed consecutive release points i belonging to
the same probability class to be linearly interpolated not to omit suitable release locations
between two calculated points j. For simplicity and for continuity reasons, it was assumed
that the segment linking two consecutive suitable release locations i is, in turn, made of
suitable locations.

An unweighted version Ĉ was generated by imposing the condition C > 0. For specific
applications, the matrices At were also averaged on a weekly basis, obtaining 52 Cw weekly
networks, on a monthly basis, obtaining 12 Cm monthly networks, and on a yearly basis,
obtaining 6 Cy networks representing each simulated year. Finally, in order to retain only the
most recurrent connections in years 2013-2016, we also aggregated the adjacency matrices Cy

considering only those connections happening at least 3 times out of 4. Finally, for testing,
we also aggregated the adjacency matrices Cy using the minimum function in the years
2017 and 2018. In these two last cases, the principle was to consider only those connections
happening with frequency >= 75%.

Cluster detection algorithm. The cluster detection algorithm used to find highly con-
nected clusters based on the average connectivity network C (Clauset et al., 2004). A cluster
detection algorithm is a procedure enabling to identify groups of nodes with similar connec-
tivity patterns. Nodes belonging to the same cluster share more connections among them
rather than with nodes of other clusters. Clusters with less than 25 nodes were discarded to
display only the most prevalent ones.

A.1.6 Network validation

Puccinia pathway. In order to reconstruct the Puccinia pathway in North America, we
modelled the recorded onset date of Puccinia along the 97th meridian in 1922 – 1992 with
an index based on cumulative in-strength. Given the connectivity matrix Cw of week w, the
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cumulative in-strength Ii(W) of the cell i is given by:

Ii(W) =
W

∑
w=1

∑
j 6=i

Cw
ji (A.8)

In Fig. 2.3 in Chapter 2 we compare the cumulative in-strength Ii(W) with the observed
onset date.

A.1.7 Surveillance strategy

Greedy algorithm to solve the set cover problem. A greedy algorithm is an iterative pro-
cedure enabling to find a locally optimal solution at each step. The greedy algorithm for
determining the minimum sentinel set consist in: 1) finding the node i with the highest
in-degree, i.e., the number of cells sending spores towards i, 2) add this node to the sentinel
set, 3) label the coverage of i as covered and remove all its ingoing edges. Repeat the proce-
dure until the proportion of nodes in the surveilled set reaches the desired threshold or all
nodes are labelled as either sentinels or covered. The sentinels compose the optimal set.

Are there other nodes indices which can behave better than the set cover in identifying an
efficient sentinel set able to surveil the widest possible domain? In Chapter 2 we addressed
these questions by modifying the criteria underlying the definition of the sentinel set. Beside
the set cover algorithm, we chose 5 networks metrics, namely:

1. In-strength, i.e., the sum of the weights of the edges incoming a node.

2. Betweenness, which quantifies the number shortest paths between two other nodes of
the network passing for a specific node (Freeman, 1978).

3. PageRank, influence ranking method based on the random walk concept, mostly used
to provide quality ranking for each web page (Page et al., 1999).

4. Random walk generalized accessibility, a centrality measure based on the concept of
random walk on networks (De Arruda et al., 2014).

5. Random samplings of node, repeated 20 times.

SI model. The delay in detection was estimated by assuming an abstract SI model
integrating a binary version of the weekly connectivity network Cw and no recovering is
allowed. The networks Cw are obtained as the intersection of the weekly networks of vali-
dation years 2017-2018. For instance, network Cw=1 is the binary network made of all nodes
and edges that exist in both Cw=1

year=2017 and Cw=1
year=2018. For each node, the state of the cell xi

at time w + 1 is defined as:

xi,w+1 =

1, if ∑N
j Cw

ji xj,w > 0

0, otherwise
(A.9)
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Where xi,w = 0 means that, at time t, node i is susceptible (S), while xi,w = 1 means
infected and infectious (I). The diagonal of matrix C is set to 1 so that an infected node
cannot recover. In each simulation, xi,w=0 is set to 0 except for a specific “inoculated” node,
which is set to 1 at the beginning of its susceptibility season (w = 0). The detection delay
is computed as the number of steps needed for a node belonging to the sentinel node to
become infected, and correspond to the “time to detection” index by Holme (Holme, 2018).
The SI models runs for one year (from w = 0 to w = 52).

The following sizes of the sentinels’ sets were chosen to estimate detection delay: 10, 20,
35, 50, 65, 80, 100, 150, 200, 275, 350, 500, 650, 800, 1, 000.

The computation of the average detection delay takes into account only those nodes of
the domain for which the detection delay is feasible. To do that, completely unconnected
nodes have been excluded from the computation of the average detection delay. This means
that only 7, 251 cells (out of 7, 814) able to infect the smallest sentinel set (size = 10) are
considered for delay calculation. This is due to the fact that the 10-sentinel set has no
sentinel in unconnected components (such as Australia), whose observation delay would
provide infinite values.

To overcome calculation problems due to infinite delays, we also elaborated a new per-
formance index, called Disease detection ratio. It is defined as the fraction of the total number
of simulations for which the sentinel set intercepted the epidemics at least once before the
end of the 52nd iteration (i.e., before one year after the first node has been inoculated).

We compared the values of such index with the ones that we would have observed
choosing a set of nodes by means of other network metrics, namely in- and out-degree,
in- and out-strength, betweenness, PageRank, random walk generalized accessibility ob-
taining that the Set Cover algorithm provides the best performances but it is outperformed
by the betweenness strategy for larger sentinel set sizes the networks metrics defined be-
fore (in-strength, betweenness, PageRank, Random walk generalized accessibility, random
sampling).
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A.2 Supplementary results

A.2.1 Host availability and susceptibility calendar definition

Estimated date of dormancy end (begin of host availability). Mean over 6 years (figure A.2)

Figure A.2 – Estimated dormancy end occurrence.

Estimated date of wheat completely harvested (end of host availability). Mean over 6
years (figure A.3).

Figure A.3 – Estimated harvest end occurrence (seasons expressed according to the Northern
Hemisphere).

Estimated frequency of environmental conditions for infection, in days per year. Mean
over 6 years (figure A.4).
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Figure A.4 – Estimated timespan of environmental conditions for infection.

Estimated length of growth season, in month per year (host availability). Mean over 6
years (figure A.5).

Figure A.5 – Estimated length of the growing season (or host availability) as difference
between the end of harvest and dormancy end.

Representation of host availability timespan (green), environmental suitability for infec-
tion (yellow) and host susceptibility timespan (red) for 25 locations across the world for
each one of the 6 years take into consideration (figure A.6).

A.2.2 Network clusters

16 clusters detected with the cluster detection algorithm are reported in figure A.8. Topo-
logical representation of the network is reported in figure A.9.
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Figure A.6 – Rings of wheat availability, environmental conditions for infection, wheat sus-
ceptibility of 16 representative cities across the world.
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Figure A.7 – Where are representative cities of figure A.6 located?

Figure A.8 – 16 clusters detected with the detection algorithm.
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Figure A.9 – Topologic representation of wind connections worldwide after applying the
cluster detection algorithm.

A.2.3 Pathways

Additional pathways to those of Chapter 2 are reported in figure A.10.
Interestingly, we found that the average poleward speed tends to be lower in regions be-

tween 25° and 35° absolute latitude (South America, Australia, Indian subcontinent, China
at 6.0 km/d, 3.5 km/d, 3.2 km/d and 3.1 km/d respectively), and higher in regions closer to
the poles (absolute latitude higher than 35°, Western Europe and Maghreb, North America,
Eastern Europe and Russia at 9.1 km/d, 8.4 km/d, 5.4 km/d, 3.9 km/d respectively).

A.2.4 Network surveillance

A complete coverage of the worldwide wheat producing regions by means of the recurring
connections can be achieved by monitoring 1,007 sentinels, i.e., less than 13% of the total
number of nodes of the network A.12a. A coverage of 20% of the entire domain can be
obtained with 15 sentinels (figure A.11). .

Fig. A.12b shows the continental coverage for increasing sentinel set sizes, relative to
the size of the continent. It may be interpreted as the relative efficiency of detection in
different continents, which in turns can be interpreted as different wheat distribution pat-
terns. Europe and North America, whose wheat fields are densely distributed, are more
easily observed rather than Africa or Australia. Around 6− 9% of nodes are necessary to
observe entire Europe or North America, while around 27− 35% are needed for Australia
or Africa. Europe, North and South America are the first continent being observed as the
number of sentinels increase, while Asia, Australia or Africa are only covered by the last
chosen sentinels (figure A.12b).
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Figure A.10 – Other continental pathways: First row, from the left: (a) Australia, (b) east
Europe, (c) Ethiopia. Second row: (d) Indian subcontinent, (e) Russia and Kazakhstan.
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Figure A.11 – Sentinel set observing 20% of the domain.

Figure A.12 – Panel (a) shows the relative extent of the coverage in each continent corre-
sponding to different sentinel set sizes (considered as % of worldwide nodes). Panel (b)
shows the relative extent of the coverage in each continent corresponding to different sen-
tinel set sizes (considered as % of nodes in that continent)

.
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The average detection delay of the sentinel set obtained via the set cover greedy algo-
rithm, computed for the 7, 251 nodes (out of 7, 814) for which the delay is always finite,
decreases significantly as the number of sentinels increases, going from 46.9 iterations for
10 sentinels to just 28.9 for the 1.000 sentinels that survey the entire domain. Interestingly,
for sentinel set larger than 50 nodes (0.6% of the total nodes), the average detection delay
overlaps with the third quartile (figure A.13).

Figure A.13 – Detection delay assessed with a spatially explicit SI model corresponding to
different sentinel set sizes. Grey area correspond to the 1st and 3rd quartile.

Furthermore, we repeated the computations the DDR with different values of detection
delay in figure A.14 (complementary to Fig. 1.5c in Chapter 2). Interestingly, for the 2-
weeks DDR (figure A.14a), the set cover shows the best performances for relatively small
sentinel sets (< 8%), while it is outperformed by betweenness. 3-months, 6-months and
1-years delays DDRs (figure A.14b, c, d) are qualitatively similar, Set cover being always
the best choice (except for extremely small sentinel sets, in which in-strength is preferred),
followed by random sentinel sets. PageRank improves its DDR performances for sentinels
sets larger than 10% while increasing the value of detection delay, performing better than
random selection (figure A.13c, d).
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Figure A.14 – DDR assessed with a spatially explicit Susceptible-Infected model correspond-
ing to increasing sentinel set sizes for different strategies, associated to different values of
detection delay: (a) two weeks (b) three months (c) six months (d) one year. Grey area
correspond to the 1st and 3rd quartile.
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Abstract
Stem rust of wheat, caused by the airborne pathogen Puccinia graminis, is a re-emerging crop
disease representing a major concern to global food security. Potential long-distance transport by
wind over a worldwide distributed host represents a challenge to effective surveillance and control
of this disease. To monitor this disease, we have created a global epidemic network for stem rust of
wheat combining (a) Lagrangian simulations of air-mass trajectories computed with the NOAA’s
HYSPLIT model; (b) land use from the Map Spatial Production Allocation Model and (c)
meteorological and environmental conditions that are known to affect bio-physical processes
involved in the biology of P. graminis spores. Our findings are in agreement with the well known
north-American ‘Puccinia pathway’ and suggest the existence of other sub-continental pathways at
the global scale. We used network theory to conceive surveillance strategies aimed at early
detection of outbreaks while minimizing the number of nodes to be surveilled (also referred to as
sentinels). We found that the set cover algorithm, due the high average connectivity of the network
(density= 0.4%), performs better than a number of other network metrics and permits us to
identify an optimal sentinel set (1% of the network nodes) to surveil 50% of the network. Our
results also show that effective surveillance plans for stem rust of wheat can be designed, but that
they need to account for the actual geographical scale of the underlying epidemiological process
and call for an international and trans-boundary approach.

1. Introduction

Epidemics caused by airborne pathogens repres-
ent an inveterate challenge to agricultural man-
agement [1]. Moreover, the transition to mono-
cultures characterized by low genetic diversity has
made the global farming system less resilient to
pathogens [2]. Airborne pathogens, capable of long-
distance transport, create a network of connections
among globally diffused crops. For example, Puccinia
graminis, causing stem rust of wheat, is seasonally
dispersed from northernMexico up to Canada, along
the ‘Puccinia pathway’ [3]. On the other hand, a
singe-leap event, the hurricane Ivan, transported

Phakopsora pachyrhizi spores from Colombia to
Alabama, introducing soybean rust in North America
[4, 5]. The risk of losses in food production requires
to take action against the diffusion of alarming patho-
gens, such as P. graminis [2, 6, 7] and species of the
same genus [8]. Its aerobiology has been largely stud-
ied in the last century [9–12] and experimental pro-
cedures have been recently developed for studying
three-dimensional transport and detection of spores
[13, 14]. However, the use of mathematical models
to simulate spore transport by wind at the contin-
ental scale is very recent [15–20]. In fact, the use of
such models would allow researchers, policy makers
and farmers to design surveillance strategies [21–23]

© 2022 The Author(s). Published by IOP Publishing Ltd
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capable of detecting outbreaks and take timely coun-
termeasures (e.g. phytosanitary intervention [18]).

Meyer et al [15] assessed the risk of long dis-
tance dispersal of P. graminis in East Africa and
the Middle East via a Lagrangian particle disper-
sionmodel. The samemodelling framework was then
used to investigate the possible origin of virulent
strains found in Ethiopia [16]. Allen-Sadder et al
[18] developed a decision support system integrat-
ing spore dispersal to help optimize fungicide alloc-
ation. Prank et al [19] investigated the impacts of
climate change on worldwide spores transport pat-
terns. Sutrave et al [24] designed a network-based
surveillance-system for P. pachyrhizi, at the subcon-
tinental scale, by includingwind direction and intens-
ity. Despite these advances, to our knowledge, models
of spore dispersal have never been coupled to network
analysis to design optimal surveillance strategies for
P. graminis at the global scale.

In this current study we constructed a time-
variant connectivity network for P. graminis spores at
the worldwide scale explicitly considering wind pat-
terns, host phenology and meteorological conditions
affecting spores aerobiology. We used biophysical
models and graph theory to identify themost suscept-
ible worldwide regions and to reconstruct the epi-
demic movement through different subcontinents.
We validated our findings using available knowledge
regarding the North-American ‘Puccinia pathway’
[3]. Lastly, we identified those nodes of the network
(i.e. regions of the world) that, when monitored,
enable early detection of an outbreak. We are con-
fident that our approach is sufficiently generic to be
applied to other airborne plant pathogens, provided
that basic knowledge on the pathogen aerobiology,
host physiology and distribution are available.

2. Materials andmethods

2.1. Case study
Puccinia graminis f. sp. tritici is a heteroecious air-
borne fungal pathogen responsible for stem rust of
wheat. Wheat, the main host of P. graminis, consti-
tutes a staple food for a great proportion of human
population. It covers 2.15× 108 hectares worldwide
(1.4%of earth surface), representing themost abund-
ant agricultural type of land cover [25].

In recent decades, yield losses caused by stem rust
have been limited by planting resistant cultivars and
fungicides application.Nonetheless, the emergence of
new strains overcoming plant resistance may provoke
severe yield losses, accounting for up to 50%–90% of
the wheat production at the regional scale [19, 26].
An extraordinary outbreak in Ethiopia in 2013–2104
caused a complete yield loss in some cultivars [27],
while concerns were raised in Europe after the detec-
tion of new virulent strains capable of infecting pre-
viously resistant cultivars [28].

2.2. Geographic domain and air mass trajectories
We extracted the worldwide wheat distribution from
the MapSPAM database [29] and computed the per-
centage of wheat cover on a regular grid with a
resolution of 0.5◦. We accounted only for cells con-
taining at least 2% of wheat land cover. The result-
ing database contains 7814 cells (see section SI 1.1).
We calculated backward air-mass Lagrangian three-
dimensional trajectories of 120 hours [16] with the
HYSPLIT (HYbrid Single-Particle Lagrangian Integ-
rated Trajectory)model [30] from 1st January 2013 to
31stDecember 2018, using atmosphericGDASdata at
a spatial resolution of 0.5◦. We ran simulations from
the centroids of each cell at 00:00, 06:00, 12:00 and
18:00 UTC +0, at an above-ground altitude set to
the minimum between the base of the cloud and the
mixed layer depth. Along each simulated trajectory,
we recorded atmospheric variables at an hourly fre-
quency. Overall, out of more than 6.8× 107 potential
trajectories, we computed only those 1.6× 106 sat-
isfying the criteria of host availability and environ-
mental suitability specified in sections 2.3.1 and 2.3.4
(see also section SI 1.2).

2.3. The connectivity network
Webuilt a time-variant connectivity network for stem
rust explicitly considering host (i.e. wheat) phen-
ological phases, environmental conditions affecting
spore aerobiology [31] and infection. In this net-
work, nodes represent cells composing the worldwide
wheat producing regions, while edges are computed
from air-mass trajectories in order to model the dis-
persal of airborne spores. The nodes (or cells) of the
networks remain fixed, while edges are re-computed
for each of the 8764 (4 times a day for 6 years)
simulations.

More specifically, edges result from the applica-
tion of a set of biophysical filters to identify those air-
mass movements that correspond to transport events
(figure 1). We assume that, for a given time t, an edge
exists between an arrival cell j and any cell i if the fol-
lowing conditions are satisfied:

(a) In cell i, which at time t− x (x ∈ {1, . . . ,120} h)
is crossed by the air-mass trajectory arriving at j
at time t:
• The host is ‘available’, i.e. it is present and in a
favourable phenological state for infection and
sporulation, see section 2.3.1.

• Environmental conditions are compatible for
spore release, see section 2.3.2.

• The altitude of the trajectory is lower than the
planetary boundary layer.

(b) Environmental conditions along the traject-
ory between i and j allow spore survival, see
section 2.3.3.

(c) The host in cell j is ‘susceptible’, which means:
• The host is ‘available’.
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Figure 1. Simplified overview of the transport process between a source (i.e. release) and a sink (i.e. arrival) cell. Pathogen is
assumed to be available in the release cell when the host is ‘available’. ‘Susceptibility’ in the arrival cell is determined by the
concurrence of host ‘availability’ and environmental conditions favorable to infection. Conditions for spore release, transport
and deposition are summarized in the three boxes along the trajectory.

• Environmental conditions are favourable
for spore deposition and host infection, see
section 2.3.4.

2.3.1. Host availability
Depending on local climate, wheat is cultivated and
harvested at different times across the world. We used
a growing degree-day model [32, 33] to compute the
period of host availability for each year in each cell
of the domain as a function of the year temperat-
ure conditions. We used a model conceived for the
US [32] and we adjusted it for the Southern Hemi-
sphere (i.e. initializing it at July 1st). For tropical
countries, we consulted case by case the calendar of
the prevailing season provided in the FAO country
briefs [25] (see section SI 1.3 (available online at
stacks.iop.org/ERL/17/064045/mmedia)).

2.3.2. Spore release
Spore release in the air column is promoted under
unstable atmospheric conditions [34, 35]. Follow-
ing Meyer et al [15], we assumed that release occurs
between 9:00 and 15:00, provided precipitations are
lower than 2.54 mmh−1 [18]. Furthermore, the rate
of spore release is affected by temperature [19]. Even-
tually, a probability P1(T) of release is defined as a
function of temperature (see section SI 1.5).

2.3.3. Aerial spore transport and survival
Spores are released at canopy level, but only a frac-
tion actually enters in the atmospheric layers leading

to long-distance transportation. The rest may be dis-
persed in the air column within few kilometers under
turbulent atmospheric conditions [34, 36]. Hence,
we considered as suitable release sites those that are
crossed by an air-mass trajectory within the mixed
layer depth (therefore, able to drag spores distrib-
uted in the air column). Furthermore, during the aer-
ial phase, spores must endure critical environmental
conditions [34]. The limiting factors affecting the sur-
vival of P. graminis spores are the exposure to UV
radiation [15] and the washout by rain. We then
defined survival probabilities toUV radiationP2(UV)
and to washout P3(R) (see section SI 1.5).

2.3.4. Spore deposition and host infection
Since precipitation is the main responsible for spore
deposition and infection [34, 37–41], we assumed
that an edge can point an arrival cell j at time t only
if precipitation occurs. In fact, even if spore depos-
ition might occur also in dry conditions [42, 43],
wet deposition provides a better environment for the
development of infection and it is usually treated as
the most important element. Following deposition,
infection requires specific environmental conditions
[15, 18, 44]: in the three following days, spores should
enter the phase of germination, requiring dark con-
ditions and mild temperatures, and appressorium
formation, requiring sunlight and warm temperature
[39]. We then used these conditions to identify times
and sites where infection can occur after deposition
(see section SI 1.4).
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2.3.5. Time-variant connectivity networks
In order to represent the connectivity between wheat
producing regions, we took advantage of the math-
ematical formalism of networks [45], by describing
the global epidemic network of stem rust via 6-hourly
connectivity networks At whose elements At

ij indic-
ate the probability Pijt of a successful transport event
occurring at time t from node i to node j. The prob-
ability Pijt is computed as the product of the mutu-
ally independent probabilities P1i (T) of sporulation at
release site, P2ij(UV) of survival to harmful UV radi-

ation and P3ij(R) of washout, provided the concur-
rence of host availability at site i and precipitation
at site j. Finally, we aggregate the 8764 networks to
obtain a weighted, directed air-mass connectivity net-
work C (see section SI 1.5) and used a cluster detec-
tion algorithm [46] to identify groups of nodes with
similar connectivity patterns.

2.4. Model validation: recovering the ‘Puccinia
pathway’ in North America
Since the direct observation of long-distance spores
transport is beyond current technological capacit-
ies, we tested the validity of our model checking if
we could use it to identify the well known North-
American ‘Puccinia pathway’.

We considered the yearly northward movement
of the stem rust infection front in North America by
tracking the average onset date (±1 standard devi-
ation) during the 1922–1992 period along the 97th
meridian west [3]. Then, we computed the weekly
cumulative in-strength values of the nodes located
along the same meridian in the US from the weekly
connectivity networks Cw. The in-strength is a net-
work metric considering the sum of the weights of
the edges pointing a node i. In this case, the in-
strength of a node i corresponds to the sum of the
average weekly frequencies of connection from the
other nodes toward i. We used the cumulative ver-
sion of this metric, by assuming that local emergence
of a disease is observable after sufficiently abund-
ant inoculum has been deposited in that node. We
graphically compared observed onset dates and aver-
age weekly cumulative in-strength in figure 3 (see
section SI 1.6). Here, we built the frequency distri-
bution of the cumulative in-strength values intersec-
ted by 1922–1992 onset date observations and com-
puted the values corresponding to the interquartile
range. Lastly, cumulative in-strength values falling in
the interquartile range are shaded on the heat map.

2.5. Network surveillance
2.5.1. Exploring ‘Puccinia pathways’ worldwide
In order to reconstruct the trajectories of propaga-
tion of stem rust outbreaks at world scale, we analyzed
how the center of mass of the monthly connectiv-
ity networks (Cm) in-strength moves across differ-
ent subcontinents. Hence, for a given set of nodes
representing a subcontinent (and the corresponding

geographical coordinates), we defined the center
of mass of the monthly connectivity networks in-
strength as the geographical point whose coordin-
ates are given by the average latitude and longitude
weighted by the nodes monthly in-strengths.

2.5.2. Definition of efficient surveillance strategies
We considered the problem of establishing a reduced
set of sentinels, i.e. nodes where the presence of the
pathogen is monitored systematically, that should
guarantee the largest coverage of the domain and
provide an early-warning system for the appearance
of new pathogen strains [22]. First of all, we defined
the coverage of a node i as the set of nodes that points
towards i, under the assumption that monitoring the
presence of the pathogen in i implies observing all
those nodes that are pointing to it. In this case, node
i is referred as the sentinel of its coverage. We con-
sidered hence the network C̃ generated by consider-
ing those edges of the yearly connectivity networks
Cy recurring at least three times over a 4 year inter-
val 2013–2016 (i.e. ⩾75% of the times), in order to
account only for the most frequent connections. The
problem of finding the smaller set of sentinels that
guarantees the complete coverage is formally equival-
ent to the set cover problem in graph theory, that hap-
pens to have NP-complete computational complex-
ity [24, 47]. Nonetheless, we used an iterative greedy
algorithm, providing a sub-optimal minimum sen-
tinel set. To validate the efficiency of the sentinel set,
we assessed its performance in terms of ratio of sur-
veilled domain using the network obtained by the
intersection of the yearly connectivity networks of
2017 and 2018.We compared such performanceswith
the ones given by sets of nodes chosen via other net-
work metrics, namely in-strength, betweenness [48],
PageRank [49] and random walk generalized access-
ibility [50], calculated on the aggregated 2013–2016
networks, and a set of 20 random samplings of nodes
(see definitions and procedures in section SI 1.7).

2.5.3. Measuring early-detection performance of the
sentinel set
Finally, we assessed the performance of different
sentinel sets in terms of early detection by means
of a compartmental Susceptible-Infected (SI) model
based on the intersections of the weekly networks Cw

in the years 2017 and 2018. Within this framework,
a node can be either susceptible (S) or infected (I),
its state depending on the state of the neighbors in
the previous time steps. Namely, in this simplified
approach, we assume that, in a given time step t, a
node pass from the state S to I if it has at least one
neighbor in state I at time t− 1, with no recovery.
We run 7814 model simulations, each time letting
the outbreak start from a different node (inoculum).
Then, we defined theDisease detection ratio (DDR) of
a given sentinel set as the fraction of the total number
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of simulations for which the sentinel set intercep-
ted the epidemics at least once before the end of the
fourth iteration (i.e. before one month after the first
node has been inoculated). This new metric allows
to compare the performance of different sentinel sets
even when they fail to achieve detection within the
first month, something that may happen when the
first inoculated node is located in a rather isolated
part of the network (see section SI 1.7).

3. Results

3.1. Worldwide susceptibility and connectivity
patterns
The duration of host susceptibility periods, i.e. the
concurrence of the host availability and environ-
mental conditions favorable to infection, varies con-
siderably across the world (figures 2(a) and SI6). The
majority of cells is susceptible for a period between
a week and a month. The nodes where susceptibility
occurs for more than a month per year are located in
northeastern America, southern Brazil and Paraguay,
central Europe and central China. The only nodes
with susceptibility lasting formore than threemonths
per year are located in Ethiopia (see section SI 2.1).

Regions located in the Northern Hemisphere are
generally well connected, in such a way that Europe,
Asia and North Africa create a unique connected
component (figure 2(b)). In spite of the obstacle
represented by the Atlantic Ocean, extremely long
distance connections may occur from North Amer-
ica to the Mediterranean basin. Conversely, clusters
in the Southern Hemisphere are isolated between
them, although internally connected. A first repres-
entation of the role played by each node within the
epidemic network is given by the sum of the probabil-
ities associated to trajectories going into (in-strength:
figure 2(c)) and out from (out-strength: figure 2(d))
that node. In biological terms, in-strength (out-
strength) is a proxy of the extent to which a region
acts as a sink (source) of spore. In-strength appears
to be higher in specific regions located in Europe and
in the northeastern US, southern Brazil, the Him-
alaya and central China. Some regions exhibit great
variability within relatively short distances, namely
Ethiopia,Middle East andCentral Asia. Other regions
show a smoother and regular gradient, like the US. In
this sense, a continuum of intermediate in-strength
values extends from Europe to Western Siberia. Out-
strength separates more sharply those regions char-
acterized by high and low values and, in particular,
Europe is characterized by large regions associated
with high out-strength values.

3.2. Reconstructing Puccinia pathways in North
America and elsewhere
Our global epidemic network permitted to recover
the well known North-American Puccinia pathway.
In figure 3 we compare the average onset date of

outbreak along the 97th meridian west observed
between 1922 and 1992 in North America [3],
with the cumulative in-strength of network nodes
along the same meridian. Most of the observed
onset dates occur within a certain interval of val-
ues of cumulative in-strength (the interquartile range
[0.6,0.9]), suggesting that the cumulative in-strength
network metric can proxy the spatio-temporal pro-
gression of the ‘Puccinia pathway’ in North Amer-
ica. In other words, in this continent one would
expect to observe the first signs of an epidemics
when the cumulative in-strength has values between
0.6 and 0.9.

Globally, we found that the airborne transport
estimated via the center of mass of the monthly in-
strength always moves poleward from tropical and
temperate regions (figures 4 and SI10), except for the
Ethiopian pathway, that follows a southward move-
ment even if it is located in theNorthernHemisphere,
likely due to its cropping calendar.

3.3. Optimal sentinel set
The sentinel set obtained on the 2013–2016 network
using the set cover algorithm allows for a complete
coverage of the worldwide wheat producing regions
by monitoring 1007 nodes, i.e. less than 13% of the
total (figure SI12). Moreover, a reasonable cover-
age of 50% of the domain can be obtained mon-
itoring 64 nodes (figure 5(a)), i.e. less than 1% of
the total. The first selected nodes are those assur-
ing the greatest coverage, and they do not distrib-
ute uniformly across continents (figure SI12—see
section SI 2.4).

The sentinel set selected to optimally cover the
2013–2016 epidemic network, via the set cover
algorithm, provides satisfactory results also when
applied to surveil the epidemic network obtained
for the 2017–2018 period (figure 5(b)). In fact, it
provides a coverage of 50% of the domain by mon-
itoring 114 nodes (1.5% of the total). For com-
parison, the same coverage of 50% would require
234 (3%) random sentinels (on average: interquart-
ile range [227; 242]), 475 (6.1%) sentinels if ordered
for increasing values of betweenness, or 611 (7.8%) of
PageRank.

3.4. Early detection capabilities of the sentinel set
In terms of DDR, the set cover algorithm out-
performed all the other methods for sentinel sets
containing between 20 and 650 nodes (figure 5(c)).
In-strength provides better results for very small sen-
tinel sets, while random sentinel sets are more suit-
able when larger sentinel sets have to be designed.
The DDR associated to 275 sentinels is 19.2%, which
means that 275 sentinels are able to detect an epi-
demic process started from any of 19.2% of the world
producing regions within a month. A similar DDR of
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Figure 2. (a) Duration of the host susceptibility period, (b) continental connections among clusters, (c) in-strength and (d)
out-strength across the world.

19.1% is obtained with 350 nodes chosen according
to their betweenness, or more than 500 nodes accord-
ing to their PageRank. Between 350 and 500 ran-
dom sentinels are needed to achieve a DDR around
18%–22%.

We estimated the DDR associated to larger
values of detection delay (3 month, 6 month, 1 year),
showing that the set cover strategy improves its
performances against the random sentinels sets
(figure SI14).
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Figure 3. Horizontal error bars, denoted with capital letters, represent the observed average onset dates (±1 standard deviation)
of stem rust epidemics along the 97th meridian west in the 1922–1992 period (source [3]). The heat map in the background
represents the weekly cumulative in-strength of nodes along the same meridian. In the right panel by the side of the legend, we
computed the interquartile range of the cumulative in-strength values intersected by the observed average onset dates and their
error bars. The shaded area on the heat map highlights the intervals where the cumulative in-strength value falls within the
interquartile range [0.6,0.9]. The top-right panel represents the cells crossed by the 97th meridian and the actual wheat
distribution in North America.

Figure 4. Panel (a) shows the poleward speed of the center of mass of the in-strength of different sub-continents. Panels (b)–(e)
depict the monthly pathways for North America, China, South America and Western Europe-Maghreb, respectively.
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Figure 5. Panel (a) shows the locations of the 64 nodes belonging to the sentinel set associated to a coverage of 50% of the
domain. Panel (b) shows the relative extent of the worldwide coverage corresponding to increasing sentinel set sizes for different
strategies (network metrics). Panel (c) shows the DDR associated to a detection delay of one month assessed with a spatially
explicit Susceptible-Infected model corresponding to increasing sentinel set sizes for different strategies. In both panels, they grey
area corresponds to the interquartile range of the random strategy.

4. Discussion

In this study we proposed an original modelling
framework based on air mass movements, network
analysis, meteorology, ecology and plant physiology
to describe the global epidemic network of stem rust
of wheat. Eventually, we used the model to identify
previously unknown pathways of disease spread at the
globe scale and to define a set of sentinels that should
be primarily surveyed to achieve early detection of
future outbreaks.

4.1. The most susceptible regions
Our results indicate that the duration of the sus-
ceptibility period greatly varies among regions
(figures 2(a) and SI6). Eastern US, southern Brazil,
central Europe and China, which are important areas
of wheat production, experience the longest suscept-
ibility periods. On the other hand, other import-
ant wheat-producing areas from the Middle East
up to the Indian subcontinent have shorter periods
of susceptibility. The reason could be the temporal
mismatch between the occurrence of environmental

conditions for infection and of host availability. This
is particularly true for India and in Brazil, where,
despite a long-lasting occurrence of environmental
conditions for infection, the susceptibility period is
constrained by relatively short host availability peri-
ods (figure SI6). Ethiopia, which is characterized by
exceptional climatic diversity for tropical latitudes
[51], exhibits a very heterogeneous behavior, with
nodes that are never susceptible in close proximity
to others that are highly susceptible (91–130 days
per year). Since both host availability and favorable
environmental conditions for spore deposition and
host infection are climate dependent processes, it
is likely that global crop epidemic dynamics will be
affected by predicted climate changes [52]. Prank
et al [19] predicted a worldwide increase in sporu-
lation period under a RCP8.5 climate change scen-
ario in 2100—potentially compensated by a general
decrease of probability of germination. On the other
hand, laboratory experiments conducted on other
fungal species suggested that future climate condi-
tions would rather inhibit sporulation, but increase
mycelium growth rate [53].
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4.2. On the construction of a global epidemic
network
To construct an epidemic network we had to expli-
citly account for biophysical conditions influencing
spore aerobiology. This filtering enabled to discard
uninformative air-mass connections and to reduce
the complexity of the network, making it simultan-
eously more significant and manageable.

In principle, by tracking the movement of an air
mass for an indefinite long time, one would obtain
a completely connected network, i.e. a network with
edge density equal to 100%. On the other hand,
our epidemic network has an edge density equal to
3.7%, whereas the network of only the most recur-
ring connections (i.e. those connections found at
least 3 times out of 4 in the yearly networks 2013–
2016) has a density of 0.4%. For comparison, pre-
vious studies using a similar technique but filtering
only over a 48 hours time [54] obtained a density
of 28% over the Mediterranean basin for the period
2011–2017. In essence, our filtering allows to make
epidemic networks more manageable and informat-
ive, presenting itself as alternative to other network-
based methods for the extraction of the truly relevant
connections [55].

4.3. Fromnetwork science to global crop protection
Our results on the frequency of connections (figure 2)
indicate that regions in the Northern Hemisphere
are more densely connected than in the Southern
one. This can be explained by the fact that 90%
of wheat fields are located in the Northern Hemi-
sphere while the clusters below the Tropic of Can-
cer, i.e. South America, South Africa, Ethiopia and
Australia are thousands of kilometers away from each
other. Furthermore, our prediction of possible long-
distance connections fromNorth America to Europe,
and fromEurope towards Central Asia and Russia, are
in accordance with previous theoretical and empir-
ical findings [17, 19, 20, 56]. On the other hand, due
to the time lag in the respective susceptibility seasons,
no connection between the Northern and Southern
Hemispheres is predicted by our epidemic network.
For such a connection to exists, it is necessary the
presence of a ‘green bridge’ [15] in a tropical or sub-
tropical region located between the two hemispheres.
This could be the case of Ethiopia, where, accord-
ing to the FAO country brief [25], there exist two
wheat growing seasons: Belg, from February to July
and Meher, from May to December. Furthermore,
according to our estimates on the host susceptibil-
ity duration (figure 2(a)), Ethiopia features some of
the nodes with the longest susceptibility period (more
than 90 days/year), whereas previous studies already
identified this country (and more broadly East Africa
and Yemen) as an important stepping stone [56] for
the long distance transport of rust spores along the
Rift Valley [15].

The in- and out-strength maps of the epidemic
network (figure 2(c)) provide an overview of the epi-
demic role played by each region, sink rather than
source of spores or both. Our results indicate that
out-strength tends to be stronger towards the equator
compared to in-strength, in line with previous find-
ings [3] about the ‘green’ and ‘golden’ wave: regions
closer to tropics are the first where infection is pos-
sible and therefore they are more likely to act as
sources of spores rather than sinks. Among the recent
seasonal epidemic events moving poleward, the 2013
regional outbreak of stem rust in Germany seems
to have moved to Denmark and Sweden later in the
season [7].

If one wanted to use our approach do derive
effective measures for global crop protection it is
worthy to note that in our exercise we privileged
generality over local accuracy. Our assumptions to
determine host availability and susceptibility are
necessarily oversimplifications of a complex real-
ity, as required by models. For instance, we neg-
lected the presence of alternative hosts, such as spring
wheat, whose cropping calendars would increase the
host susceptibility period and the frequency of long
distance connections. Also, we neglected the exist-
ence of the secondary hosts of P. graminis, the
barberry (Berberis vulgaris), which is necessary for
sexual reproduction, facilitating the emergence of
new strains. It has been successfully eradicated in
Western Europe and North America in the last cen-
tury [7]. Yet, it is present in other regions which turns
to be sources of new strains [27, 57] and it has been
recently reintroduced in Europe [58].

Our model permitted to design an optimal sur-
veillance strategy capable of covering 50% of wheat
cultivated lands while monitoring only 64 sentinel
nodes, i.e. less than 1% of the wheat cultivated
cells. Although this proportion may seem optim-
istic for real applications, it is worth recalling the
work of Sutrave et al [24] on P. pachyrhizi indicat-
ing that a reliable epidemiological status of soybean
rust in the US could be achieved by reducing the
sentinel set size from 500 to 12 network optimized
nodes.

Of course, the success of the deployment of a
sentinel system will also depend on the diagnostic
ability of individual sentinels and on the com-
munication between them. In this sense, efforts
have recently been devoted to establish interna-
tional protocols to improve the probability of detec-
tion and the timely communication of new out-
breaks to a global network of scientists, public
authorities and stakeholders (see the Global Cer-
eal Rust Monitoring System [6, 59]). Our findings
stress the importance of increasing efforts towards
a trans-boundary perspective to efficiently con-
tain the emergence of new virulent air-borne crop
pathogens [23].
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Appendix B

Supplementary Information -
Chapter 3

B.1 Supplementary Methods

B.1.1 Domain extraction

We built the domain upon units extracted from the so-called Safran grid (Bertuzzi and Clas-
tre, 2022), which is composed of regular square cells with spatial resolution of 0.11◦ × 0.11◦

(∼ 8× 8 km2). For each unit, we computed stone fruit orchard area and peach orchard area
(this latter is referred simply as “cultivated area” in Chapter 3: here, for sake of clarity, we
specify that we mean the peach cultivated area). We extracted stone fruit cultivated areas
from data collected by the 2010 national French agricultural survey (RGA) conducted by
the French Minsitry of Agriculture (Ministère de l’Agriculture et de la Souveraineté alimentaire;
Ministère de l’Agriculture (2010)). From this database, we summed “stone fruits” (col-
umn G_1013_LI_DIM2 == “fruits à noyau”) area data (column “Superficie correspondante
(hectares)”) of all farms (column “G_1013_LIB_DIM1” == “Ensemble des exploitations (hors
pacages collectifs)” by municipality (expessed by the INSEE code).

This operation allowed us to obtain the area Asm covered with stone fruit orchards by
municipality m.

We computed the stone fruits density by municipality and geographically intersected the
corresponding shapefile with Safran grid. This operation allowed to associate each unit of
the Safran grid with a stone fruit density. Open source software QGIS 3 (QGIS Development
Team, 2022) was used for this operation.

We obtained the spatial data about peach orchards form Eurostat at NUTS2 (Eurostat,
2021), which correspond to groups of French regions (as defined before the 2016 reform: FR1
Île de France, FR2 Bassin Parisien, FR3 Nord-Pas-de-Calais, FR4 Est, FR5 Ouest, FR6 Sud-Ouest,
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FR7 Centre-Est, FR8 Mediterranée and FR9 the Département d’Outre Mer). We considered data
about “Peach and apricot trees - Area by density classes and group of cultivars (area in ha)”.

We grouped together all areas from following categories: “Dessert peach and nec-
tarine trees [PCD]”; “Peaches for fresh consumption [PCD_PEA]”; “Yellow flesh peaches
[PCD_PEAY]”; “Very early yellow flesh peaches [PCD_PEAY_VE]”; “Early yellow flesh
peaches [PCD_PEAY_E]”; “Medium-early yellow flesh peaches [PCD_PEAY_M]”; “Late yel-
low flesh peaches [PCD_PEAY_L]”; “White flesh peaches [PCD_PEAW]”; “Very early white
flesh peaches [PCD_PEAW_VE]”; “Early white flesh peaches [PCD_PEAW_E]”; “Medium-
early white flesh peaches [PCD_PEAW_M]”; “Late white flesh peaches [PCD_PEAW_L]”;
“Doughnut peaches [PCD_PEAD]”; “Medium-early yellow flesh nectarines [PCD_NECY_M]”;
“Late yellow flesh nectarines [PCD_NECY_L]”; “White flesh nectarines [PCD_NECW]”;
“Very early white flesh nectarines [PCD_NECW_VE]”; “Early white flesh nectarines [PCD_NECW_E]”;
“Medium-early white flesh nectarines [PCD_NECW_M]”; “Late white flesh nectarines [PCD_NECW_L]”;
“Peach and nectarine trees for industrial processing (including group of Pavie) [PCI]”.

This operation allowed us to obtain the area Acn covered with peach orchards within
NUTS2 region n. We estimated area Acm covered with peach orchards by municipality m
located in NUTS2 region n via Eq. B.1. This equation assumes that peach cultivated area in
municipality m is proportional both i) to the stone fruit cultivated area in that municipality
Asm and ii) to the peach cultivated area in the region where that municipality is located Acn

and that iii) the sum of the peach cultivated area by municipality m is equal to the peach
cultivated area in that region n.

Acm = Acn
Asm

∑m∈n Asm
(B.1)

Each unit of the grid is thus associated with i) its area, ii) the stone fruits cultivated are
and iii) the peach cultivated area. Since keeping all the elements of the grid in the domain
would imply considerably slower computations describing the dynamic of a great amount
of poorly informative units, we decided to keep only those units respecting a threshold of
density (i.e., at least 0.01 ha/km2) and continuity (i.e., only units which form groups of at
least 4 contiguous elements; Fig. B.1e). By excluding cells with a low density and with
no neighbours we discarded a great amount of cells where peach cultivation is known to
be absent, for climatic reasons (for example in central and northern France) but Eq. B.1
may still assign a residual Ac due to a misclassification error. For instance, we found few,
isolated cells in Alsace-Lorraine (north-east of France) where we computed a relevant peach
cultivated area. The same cells correspond to a well-known production basin of mirabelle
plums, a stone fruit typical of the region and well adapted to its climate. We found more
reasonable to conclude that these cells were hosting important mirabelle plum orchards,
rather than peach ones; therefore, we proceeded to remove them.
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B.1.2 Pit hardening date

We computed peach growth increase according to equation (Bevacqua et al., 2023):

w(t) =
wBwM

wB + (wM − wB)e−h(t−tB)
(B.2)

Where w(t) is the weight at time t, wB = 0.49 g is the fresh fruit weight at bloom time,
wM = 214 g is the fresh maximum fruit weight, h = 0.056 (d−1) is, at first approximation,
the conversion rate of resources into fruit mass, tB is the bloom time.

We used this equation to compute wH = 164g, that is weight at harvest time t f , from
2014 and 2015 data (t f ,2014 = 196, tB,2014 = 59, t f ,2015 = 198, tB,2014 = 74, (Vanalli et al.,
2021); times are here expressed in terms of day of the year).

As suggested in Bevacqua et al. (2023), once the weight at harvest is known, the con-
version rate h should be iteratively recomputed to be applied in other ripening seasons.
Therefore, we recomputed h′ from the known ripening date tR for the computation of the
pit hardening date (t0):

h′ = −log(wB/(wM − wB) ∗ (wM/wH − 1))/(tR − tB) (B.3)

And t0 as follows:

t0 = tB − log(wB/(wM − wB) ∗ (wM/wC − 1))/h′ (B.4)

Where wC = 61 g is the fresh fruit weight threshold for cuticle cracking.

B.1.3 Initialization of the SEIM model

In inoculated units, we initialised fruit load as S0 = 14.73 f ruits/m2, E0 = 0.27 f ruits/m2,
I = 0 f ruits/m2 (to account for the observation according to which, in infected orchards,
1.8% of the fruits are considered as exposed; Bevacqua et al. (2023)) while unexposed units
are initialized as S0 = 15 f ruits/m2, E = I = 0 f ruits/m2. We chose an initial total fruit
load of 15 f ruits/m2 since this is the average of 2014 and 2015 data in Avignon (Bevacqua
et al., 2023).

B.1.4 Weather variables

We used Safran weather reanalysis data (via the Siclima portal: Delannoy et al. (2022);
Caubel et al. (2015)), which are arranged according to the Safran grid (Bertuzzi and Clastre,
2022) the same used for the metacommunity model.

Daily precipitations (“preliq_q, meaning daily liquid precipitations 06-06 UTC”), daily
mean temperature (“preliq_q, 01-00 UTC”) and max temperature (“tinf_h_q”) from the 1st

of January 1980 to the the 31st of December 2021 have been stored.
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The Safran grid has been recently rearranged: with respect to the original grid, com-
prising 8602 units, Safran data managers added 379 new units, located on the coasts. This
rearrangement created some mismatches with the previous one, since stone fruits have been
mapped with the most recent version, while available weather reanalysis are consistent with
the previous one. To solve this mismatch, we attributed to the newly introduced units, all
located next to coastal environments, the weather series of the neighbouring unit that shares
the longest geographical border. The IDs (consistent with the old Safran grid) of the stored
variables are indicated in “ID_safran_grid.csv” in supplementary material.

B.1.5 Determination of the probability of spore deposition Pv

A trajectory v as emitted from our HYSPLIT simulations is made up of points in the atmo-
sphere xv,t, yv,t, zv,t, with t = 0, 1, . . . , 6, which we linearly interpolate to obtain a continuous
trajectory xv(t), yv(t), zv(t). Along a trajectory we assessed spore viability to temperature
T (Bevacqua et al., 2023) and other losses, such as solar radiation, deposition and dilution,
combined with an exponential kernel, as in eq. B.5:

Pv0(xv(t), yv(t), zv(t), T) = e−αt
∫ t

0
e

−r
24T(xv(τ),yv(τ),zv(τ)) dτ (B.5)

With r = 1.4e + 4 K is the reciprocal of the Boltzmann’s constant, T(xv(τ), yv(τ), zv(τ))

is the temperature in a point (xv(t), yv(t), zv(t)) along the trajectory v, and α being chosen
so that Pv0(t = 6h, T = 0) = 0.01. The exponent is divided by 24 because t is measured in
hours. We made this choice because we wanted to mimic a progressive loss of spores due to
dilution and dry deposition, assuming that viable spores become negligible after 6 hours.

To obtain the probabilities of deposition Pv, we corrected Pv0 to remove those parts of
the trajectories whose altitude is higher than the planetary boundary layer.

Eventually, we performed a last correction to account for the fact that spore deposition is
directly proportional to the time spent by the air mass over the crops. Let us consider lh the
Euclidean distance between two consequent points (xh, yh) and (xh+1, yh+1) of a trajectory,
where h indicates the time in hours. This proportionality means that, the longer the segment
lh, the lower the probability of spore deposition in a point of that segment. Therefore, we
computed Pv,t as:

Pv,t = Pv0,t(1−
lh −min∀h∈0,1...6 lh

max∀h∈0,1...6 lh
) (B.6)

In this, way, in the shortest segment (min∀h∈0,1...6 lh) the value of Pv,t is equal to that
of Pv0,t, since this latter is multiplied by 1, while the longest (max∀h∈0,1...6 lh) is multiplied
for the ratio between the shortest and the longest segment (min∀h∈0,1...6 lh/ max∀h∈0,1...6 lh),
which is less than (or equal) to 1.
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B.1.6 Connectivity matrix

Once we have obtained matrices Wt, which consider all trajectories v that started at time
t, we first performed a temporal aggregation on a daily basis d (where t is intended as a
discrete measure of time, while d refers to a specific day of the year) and secondly corrected
to account for neighbouring units:

1. The temporal aggregation consists of averaging all the connectivity matrices Wt ob-
tained on the same day of the year. For instance W ′d on the 15th of May (i.e., W15−05)
contains the element wise average of all the 11× 4 = 44 corresponding Wt computed on
the 15th of May 2008, 2009,... 2018, computed from Lagrangian simulations launched
four times a day;

2. The correction for neighbouring units accounts for geographic proximity. We consider
that two bordering units may reciprocally infect even when we have not found any
connection among them. We first considered all couples of 8-neighbouring units i
and j, then computed the average connectivity w̃ among all W ′d,ij. We then corrected
matrices W ′ as follow:

Wd,ij = max(W ′d,ij, w̃) (B.7)

Wd is the matrix used in the metacommunity model. We calculated also the annual ma-
trix W, which is the average of all Wt during all ripening season in 2008-2019, where a filter
has been added to consider only rainy events in the arrival unit, which can lead to wet depo-
sition (which means that each element of W is determined by Wij = (1/T)∑T

t (rt,j > 0)Wt,ij)

B.1.7 Determination of the prior probability function

We set a tentative prior distribution of θ, which we iteratively refined via simulations (see
Godding et al., 2022).

We estimated the shape of the prior distribution of parameter θO, which weights the
probability of overwintering (i.e., the probability of having an inoculum at the beginning of
the next season because of the presence of mummies from the previous ripening reason),
by considering the observation dataset. Such a probability may be approximated by the
ratio between i) the occurrences of a “strong” disease incidence in year y + 1 in early or
mid-early cultivar after a “strong” incidence in year y in the same location over ii) the
occurrences of a high incidence in year y. This ratio is equal to 1/3 (2 occurrences in the
observation dataset over 6). So, we started with the hypothesis that the expected value E[.]
of the random variable corresponding to presence of local inoculum at the beginning of the
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season (E[Ey(t0) = 0.27 f ruits/m2], hereafter Po) is defined as follows:

Po = E[1− (1− P̃o)(e
−θO Mt f ,y−1)] = 1/3 (B.8)

Where P̃o represents the presence of spores due to external causes, while 1− e
−θO Mi,t f ,y−1

expresses the probability of overwintering, with the density of mummies at harvest time of
the precedent year Mt f ,y−1 weighted by parameter θO. We estimated P̃o = 0.2 directly from
the observation dataset as the frequency of “weak” disease severities followed by a “strong”
disease severity in early and mid-early cultivars of the following year in the same place (2
occurrences in the observation dataset over 10), under the simplification assumption that,
due to shorter time, inoculum from overwintered mummies could have been the main cause
of infection in early and mid-early cultivars.

Considering Mt f ,y−1 = M0 = 10 f ruits/m2 as a strong infection, we obtained:

E[θO] =
1

M0
log(

1− P̃o

1− Po
) = 0.018 (B.9)

We than considered θO as extracted from an exponential variable with average 1/E[θO],
which is ≈ 54.8. The exponential variable allows us to obtain i) positive values, ii) scattered
around E[θO], iii) allowing us to explore also few very large values, with a parameter only
(1/E[θO]). While launching preliminary ABC algorithms with a reduced number of sim-
ulations, we progressively brought the value of 1/E[θO] up to 81, since this increased the
number of accepted parameter sets.

We have several simulations spanning several order of magnitudes to find the interval
in which θE describes both i) almost no new introductions and ii) almost the maximum of
introduction each year. Eventually, the prior distribution of θE was set as an exponential of
a uniform distribution between −8log(10) and −5log(10).

Parameter θL is to be considered as the losses threshold over which a disease incidence
is considered as “strong”. From consistency with how the observation dataset was built, we
assumed that this parameter should be placed between 0.2 and 0.4. We therefore considered
a lognormal distribution, with parameters µL = −1.26 and σL = 0.21, for which 0.2 and 0.4
represent the 5th and the 95th percentiles, respectively. We selected a lognormal distribution
for similar reasons that brought us to choose an exponential variable for overwintering,
but with enough indications to guess two parameters instead of one. While launching
preliminary ABC algorithms with a reduced number of simulations, we updated the values
of µL and σL respectively to 1.2 and 0.15.

B.1.8 Training and stratified cross validation

In our training, we ran 200,000 simulations, spanning over 1996-2021, under the assumption
that initial inoculum is randomly present in each unit with probability P̃o.
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We split the observations Ω = 5 times into a training set φ (containing 1− 1/Ω = 80%
of the observations, over which ABC was applied) and a testing set ψ, representative of the
observation structure.

We formed Ω = 5 testing sets so that each one satisfies all the following criteria: i) it
includes 1/Ω = 20% of observation dataset; ii) it includes all the locations of the observation
dataset (Fig. 3 of Chapter 3) and cultivars; iii) where possible (given the reduced degrees
of freedom due to criteria i and ii), locations and cultivars are represented proportionally to
the complete dataset .

We relaxed a fourth criteria, i.e. iv) disease incidences represented proportionally to the
complete dataset, since it was not compatible with i)-iii); we considered only testing sets in
which proportions the ratio of “weak” and “strong” are not too distant from the proportions
in the complete dataset: they should not exceed 60% and 45% of the testing set, respectively.

Criteria i to iv allow us to “stratify” the cross validation, i.e. they assure that each test-
ing set is a good representation of the whole dataset. However, this “stratification” has the
drawback that some observations repeat systematically in the different testing sets. If this
repetition becomes important, to the limit where all testing sets contain the same observa-
tion, this can represent a problem, since it means that the model validation is performed
against only one the same testing set, which reduces the model’s confidence. Therefore, we
computed the grade of similarity among the testing sets (i.e., the ratio of observations which
are identical for two sets), which is between 18.5% and 37.5%. We considered it acceptable
since it never represent the largest part (its grade of similarity being always strictly lower
than 50%).

In order to choose the 100 more frequent accepted sets, we weighted frequencies by the
corresponding κψ,ω in split ω.

B.1.9 Null model: isotropic kernel

We computed matrix U by computing each element uij connecting i and j (which are found
d units away), as the average of all wmn, where m and n are all the couples of nodes which
are d units away. A representation of the kernel is given in Fig. B.7a.

The Monte Carlo analysis is performed this way:

1. the posterior distribution θU = (θU
E , θU

O , θU
L ) is cumputed via ABC with 200.simula-

tions;

2. Named κw and κu the vectors of κ computed with the prior distribution of the param-
eters, we computed Do = κw − κu;

3. To check if Do is larger than it would be by chance, we created 20, 000 vectors κ̂w and
κ̂u by reshuffling elements of κw and κu, and computed D̂i as κ̂w,i − κ̂u,i;

4. We compared the distribution of D̂i with respect to Do.
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B.1.10 Definition of “vulnerability” and “dangerousness”

Given any unit j (j = 1, 2, . . . N = 755) characterised by its cultivated area Acj, a time horizon
defined by y = 10 years, a stochastic iteration λ of the model (λ = 1, 2, . . . , Λ = 100), local
losses Lij,y (defined by Eq. 5 in Chapter 3) due to an inoculated unit i (i = 1, 2, . . . N = 755),
vulnerability vj and dangerousness di are defined by Eq.s B.10 and B.11:

vj =
1

Λ(N − 1) ∑
λ,i 6=j

Lij,y,λ (B.10)

di =
1

Λ ∑j 6=i Acj
∑

λ,j 6=i
Lij,y,λ Acj (B.11)

Note that, since vulnerability computes the local losses, it is normalized by the number of
cells reduced by one (N − 1), while in dangerousness one wants to weight losses according
to the cultivated surface of the other cells (∑j 6=i Acj).

In these equations we imposed j 6= i so that to exclude the contribution of the first
inoculated units. Otherwise, these two indices would be artificially biased toward units
with large Ac.

B.2 Supplementary Results

B.2.1 Domain extraction

Peach surface by NUTS2 region is summarized in Tab. B.1. The final values of peach
orchards surface per unit is reported in Fig. B.1e.

B.2.2 Spatial distribution of cultivars

The probability for each cultivar (early, mid-early, mid-late, late) of being chosen in the
metacommunity model is represented in Fig. B.1a-d. The sum of the probabilities for each

NUTS2 Peach surface (ha)
FR1 (Île-de-France) 0
FR2 (Champagne-Ardenne, Picardy, Upper Normandy, Centre, Lower Normandy, Burgundy) 24.8
FR3 (Nord-Pas-de-Calais) 0
FR4 (Lorraine, Alsace, Franche-Comté) 12.5
FR5 (Pays de la Loire, Brittany, Poitou-Charentes) 27.6
FR6 (Aquitaine, Midi-Pyrénées, Limousin) 629.2
FR7 (Rhône-Alpes, Auvergne) 2,007.8
FR8 (Languedoc-Roussillon, Provence-Alpes-Côte d’Azur, Corsica) 7,879.0

Table B.1 – Amount of peach surface by French NUTS2 region in 2017.
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cultivar is 100%.

B.2.3 Average connectivity matrix

The value of w̃ is 0.053. A detailed version of the average air-masses driven connectivity
matrix W (depicted as network in Chapter 3, Fig. 2b) is represented in Fig. B.2.

B.2.4 ABC, stratified cross validation

The results of the ABC applied over the Ω = 5 stratified splitting of the observation dataset
is reported in Tab. B.2. The overall 100 parameters sets are represented as marginalized
posterior function in Fig. B.3. To facilitate interpretability of the accepted parameters θE

and θW , the “average annual occurrences of local primary inocula” and the “average annual
introductions of external inocula” are represented in Fig. B.4.

Repetition (ω) 1 2 3 4 5
Cohen’s κφ (training set) 0.496 0.497 0.502 0.492 0.502
Cohen’s κψ (testing set) 0.046 0.086 0.289 0.409 0.161
Accepted parameter set size 67 34 19 7 18

Table B.2 – Parameter’s performances in training and testing.

B.2.5 Model accuracy

The average correct classification rate (Fielding and Bell, 1997), i.e. the frequency of cor-
respondences (true positives and true negatives) between the observation dataset and the
model’s output, grouped by observation, is represented in Fig. B.5.

B.2.6 The null model

Depending on the cross validation splitting ω, the size of the accepted parameter sets varies
from 10 to 38 (average = 18). Values of κφ have an average of 0.5 (min = 0.495; max = 0.510),
while κψ has an average value of 0.11 (min = 0.07, max = 0.16). The size of the accepted
parameter set is 68.

Accuracy of the parameterization of the null model per location, year and variety is
reported in Fig. B.6, while accepted parameters are reported in Tab. B.3. Matrix U used in
the null model is represented in in Fig. B.7a.

Results of Monte Carlo analysis are reported in Fig. B.7b. The statistical distribution
of the difference D̂i = κ̂w,i − κ̂u,i, where κ̂u,i and κ̂u,i (i = 1, . . . , 20, 000) contain randomly
reshuffled elements of κw and κu, is always lower than the observed difference Do = κw− κu.
There is no reshuffled distances D̂i (average value = −3.01× 10−6; interquartile range =
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Figure B.1 – a - d) Probability of being chosen for each cultivar e) peach orchard surface by
unit in ha; f) average number of rainy days during each ripening season. Regions of Fig. 2b
of Chapter 3 are reported.
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Figure B.2 – a) Average yearly connectivity matrix W, represented grouping units according
to regions in panel b), where, in addition to regions, also French administrative departments
are mapped with different colours. The colour scale of panel a) is built to represent the log10
of each element Wij. In panel b), department 30 (Gard, in violet in the center) is the one
where M. fructicola has been detected first in 2001 (EPPO, 2023).

Figure B.3 – Panels a) to c) show the marginal distribution of the posterior function for all
possible a couple of the three parameters `. Lighter the colour, higher the probability. Note
that θL’s axis is linear, while the others’ are logarithmic. In a) the posterior distribution is
normalized over θE and θO; this panel is larger since it represents the parameters of the main
modules of the metacommunity model (i.e., external inoculum, Fig. 3.1e, and interannual
persistence of inoculum, Fig. 3.1d). In b) the posterior distribution is marginalized over θE
and θL, while in c) the posterior distribution is marginalized over θO and θL.
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Figure B.4 – Statistical distribution of “average number of introductions of external inocula
in a year” and “average number of interannual persistence of inocula in a year” in a) all the
simulations and b) the simulations of the ensemble of the accepted parameter sets. Density
values < 0.1% have been omitted.

−2.11× 10−4 to 2.04× 10−4) which is larger than the observed distance between the mean
performance of the full model Do 9.50× 10−3.

Repetition (ω) 1 2 3 4 5
Cohen’s κφ (training set) 0.497 0.510 0.496 0.498 0.495
Cohen’s κψ (testing set) 0.076 0.068 0.155 0.113 0.152
Accepted parameter set size 38 12 15 10 13

Table B.3 – Parameter’s performances in training and testing of the null model.
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Figure B.5 – Average correct classification rate (Fielding and Bell, 1997), expressed as %, a)
by observation b) by location and c) by cultivar. Note that panel a) represents the same rates
as in Fig. 3 in Chapter 3.
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Figure B.6 – Summary of the performances of the null model throughout the domain. The
length of the bars represented the average correct classification rate of the null model with
the accepted parameter set. The legend is equivalent of that of Fig. 3 of Chapter 3.
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Figure B.7 – Null model: a) representation of each element of the matrix Uij as a func-
tion of the distance (in km) between units i and j; b) representation of the Monte Carlo
analysis. The statistical distribution of the difference D̂i = κ̂w,i − κ̂u,i, where κ̂u,i and κ̂u,i
(i = 1, . . . , 20, 000) contain randomly reshuffled elements of κw and κu, is compared with the
observed difference Do = κw − κu. No element D̂i is greater than Do.
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Appendix C

Supplementary Information -
Chapter 4

C.1 Supplementary methods

This section provides additional details about the relation among country wheat regions
size and value of the cost-benefit index (par. “Local impacts of cooperation vs country
size”) and about robustness of the performances of the sentinels sets (par. “Robustness of
the surveillance strategies”) and of the cost-benefit index (par. “Robustness of the costs and
benefit distribution among countries”)

C.1.1 Local impacts of cooperation vs country size

In order to explore possible relations among surveillance effort distribution (i.e., CoopBen-
eficial, CoopNeutral and CoopAdverse) and country size, after having calculated αc,σ, we
characterised each country by its wheat-producing surface: large (at least 45 cells), medium
(between 44 and 13) and small (12 or less). Fig. C.2 reports a selection of the curves de-
scribing the relationship among country sentinel set size and aggregated coverage for some
representative examples. The function αc,σ = f (σ) is shown as well.

C.1.2 Robustness of the surveillance strategies

We assessed the performances of same sentinels vector s−T
c and s against the validation

network CV. In both cases, the maximum achievable target σ is lower than 100% (Fig.s
C.3c,d) due to the reduction of the edges of the networks. However, it is still possible to
estimate the sentinel set size needed to achieve a target of σi = 50% by country in the “Non-
cooperative” strategy, which is 459 (5.9% of the nodes; Fig. C.3c). This computation excludes
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Figure C.1 – Scatter plot representing the change in αc by country from design CD to val-
idating networks CV . The linear correlation coefficient among αc is 0.89, and the resulting
p-value via the Pearson test is < 2.2e− 16. 77 out of 87 countries (i.e., 89% of the countries)
keep qualitatively the same performances (i.e., αc is either <, =, or > 1 in both design CD
and validation network CV).

Finland and Tunisia, for which the maximum aggregated coverage in CV are σFinland = 25%
and σTunisia = 47%. Again, due to the discrete nature of the coverage, 459 sentinels are
associated to a global coverage of 54%. In the “Cooperative” strategy, 459 sentinels would
enable to increase the observed domain up to 75%, while the x54 and x50 are 138 (1.8% of
the nodes) and 114 (1.5%) respectively, i.e. around a quarter of the sentinels needed in the
“Non-cooperative” strategy (Fig. C.3d).

C.1.3 Robustness of the costs and benefit distribution among countries

In a similar way compared to the previous paragraph, we assessed the robustness of the
outcomes of the distribution of costs and benefits of a cooperative surveillance against the
network CV. A visual comparison is given by observing Fig.s C.4 and C.5.

In terms of wheat production (FAO, 2021), passing from the design to the validating net-
work implies that the fraction of CoopAdverse wheat producing countries slightly increases
from 23% to 26%, CoopNeutral countries increase from 6% to 7% while the majority of the
countries remain CoopBeneficial (from 71% to 66%, Fig. C.4a). We observe that 77 out of 87
countries (i.e., 89% of the countries) keep the same label as CoopBeneficial, CoopAdverse
and CoopNeutral. The linear correlation coefficient in the scatterplot which compares αi
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computed with CD and CV is 0.89 (Fig. C.1), and the resulting p-value via the Pearson test
is < 2.2e− 16.
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Figure C.2 – Patterns of surveillance effort vs sentinel set size area investigated for different
country size (rows) and values of α (columns) for the two surveillance strategies. 63% of
the countries is CoopBeneficial, and among them in 54% the “Cooperative” curve is always
below the “Non-cooperative” (α ≤ 1 ∀σ). For 27% of the countries, the two lines correspond,
indicating no difference in terms of surveillance effort between the two strategies (central
column). Eventually 10% are CoopAdverse (for 5% of the countries α ≥ 1 ∀σ). Few countries
(15%) vary their α depending on σ (Such as Iran, in the first row and first column). For each
combination of country size and pattern of α, curves representing sentinel set size (first y
axis) and α (second y axis) versus σ (x axis) for a typical country are displayed, as well as
the number of countries with a similar qualitative pattern.
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Figure C.3 – Curves describing the relationship between increasing sentinel set size and
relative aggregate coverage under the “Non-cooperative” or “Cooperative” strategies (by
columns) and using the design or validation networks (by rows). The first row is identical
to Fig. 2 in Chapter 4, except for panel b), where we highlight the fact that 87 sentinels
are needed to achieve a target of 58%, corresponding to the effective aggregated coverage
obtained with 209 sentinels in the “Non-cooperative” scenario. In the second row, the
performances of the same sentinels set are assessed using the validation network CV. In
c) the “Non-cooperative” strategy is reported; the number of sentinels needed to achieve a
target of at least σ = 50% by country increases to 459 (Finland and Tunisia excluded). In d),
the “Cooperative” strategy, where worldwide coverage of σ = 50% needs 114 sentinels, and
459 sentinels would allow a global coverage of σ = 75%. A target of 54% (corresponding
to the aggregated coverage obtained with 459 sentinels in the “non-cooperative” scenario)
needs 138 sentinels.
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Figure C.4 – Barplot of αc all over the world. Each country is represented by a rectangle
where the base is proportional to α and the height to wheat production in 2010 - 2020 (FAO,
2021). In a) αc is calculated against the design network, in b) against the validation network.
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Figure C.5 – Map of αc all over the world. On the top a) surveillance performances are
assessed against the the design network, while on the bottom b) surveillance performances
are assessed against the the validation network. Average values by continents, weighted by
country wheat production 2010 - 2020 (FAO, 2021) are displayed.
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C.2 The published article
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Surveillance of plant pathogens is usually designed according to country boundaries.

Benefits of a global surveillance system to tackle long-distance dispersed crop patho-

gens are unquantified. Here, a ‘non-cooperative’ and a ‘cooperative’ strategy are

compared in terms of minimizing the surveillance effort to achieve given domestic

and global targets. Although a ‘cooperative’ strategy is always more suitable, impacts

of its adoption are not equally distributed among countries. Medium-sized countries

in central Europe and Asia would benefit the most from reducing the domestic effort,

whereas others would need to deploy more sentinels than they would place in their

own interests.

Summary

• Transboundary diseases are extremely complex to control and can cause global

socio-economic damage. In the context of crop protection, surveillance strategies

are usually designed according to country boundaries, regardless of the spatial

scale of the spread of the disease.

• In this study, we investigate the suitability of this scale for surveilling long-distance

dispersed pathogens. We use an epidemic network describing worldwide potential

transport of Puccinia graminis, the causal agent of stem rust of wheat, modelled in

a previous work. Based on network properties, we conceive two strategies for pri-

oritizing areas to be monitored for the presence of the disease, either cooperative

or each country alone, and we compare their performances in terms of minimizing

the effort deployed in achieving given surveillance targets at global and domestic

level.

• We find that a cooperative strategy is more efficient at the global scale. However,

its adoption implies a heterogeneous geographic distribution of surveillance

effort-related costs and benefits. Medium-sized countries in central Europe and

Asia would benefit the most; on the other hand, countries placed in important

spreading pathways should deploy more surveillance effort than they would place

without cooperation. Among the major wheat producers, China is the only country

that may have a cost from a cooperative strategy, whereas India, Russia, the

United States, France and Ukraine would have the most benefits.
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• The acknowledgement of how costs and benefits of a global governance would be

shared among countries is needed to gain unanimous support for an international

cooperative surveillance system.
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crop protection, long distance dispersal, network, Puccinia graminis, transboundary surveillance

1 | INTRODUCTION

The issue of surveillance of transboundary diseases, hereinafter

intended as infectious diseases whose rapid spatial spread is likely to

concern more than a country, has recently come in the spotlight due

to the Covid-19 pandemic (Chinazzi et al., 2020; Dhama et al., 2020;

Mohamed et al., 2020; Soubeyrand et al., 2020). New outbreaks of

such diseases (Brockmann & Helbing, 2013; Saunders et al., 2019), as

well as biological invasions of alien species (Diagne et al., 2021), are

hardly predictable events. They can be shaped by different dissemina-

tion pathways (human transportation, commodity shipping, animal

vectors or atmospheric agents) and cause socio-economic and health

issues. Furthermore, lack, mismatch or delay in the communication of

first detection among countries, together with uncoordinated control

measures, may lead to inefficient management (Carvajal-Yepes

et al., 2019; Thompson et al., 2016). Notably, the threat posed by air-

borne crop pathogens represents a paradigmatic case of transbound-

ary spread (Corredor-Moreno & Saunders, 2020; Isard et al., 2005;

Xing et al., 2020). The risk of large losses in food production due to

unexpected outbreaks has prompted researchers and institutions to

explore international surveillance systems to timely tackle the diffu-

sion of the most alarming crop pathogens (Carvajal-Yepes et al., 2019;

Park et al., 2011). The spatio-temporal persistence of large-scale sea-

sonal movements, such as the well-known Puccinia pathway from

Mexico to Canada (Aylor, 2003; Brown & Hovmøll, 2002), has

recently emerged as a major source of inspiration for devising such

innovative surveillance systems (Allen-Sader et al., 2019; Meyer

et al., 2017; Radici et al., 2022; Sutrave et al., 2012). In spite of such

efforts, standard surveillance of transboundary crop diseases has fre-

quently been performed according to country boundaries, without a

cooperative perspective, regardless of the actual scale of spread of

the disease, lacking international, and timely, communication of first

detections (Carvajal-Yepes et al., 2019; Park et al., 2011; Ristaino

et al., 2021). Yet, benefits from a possible general reduction of surveil-

lance effort of a global, cooperative and communicative strategy

(Thompson et al., 2016) over a non-cooperative one, that is, each

country alone, have never been quantified in the case of long-distance

dispersed pathogens.

In this study, we investigate to what extent, and under which con-

ditions, country boundaries represent a suitable scale for surveillance

of long-distance dispersed crop pathogens and whether international

cooperation would make crop protection more effective. We use stem

rust of wheat, caused by Puccinia graminis, an airborne fungal pathogen

whose spores can be transported over long distances by wind

(Levetin, 2015), as a case study. In the majority of wheat-producing

countries, the presence of this pathogen has been controlled by the

use of resistant cultivars and the eradication of its secondary host, Ber-

beris vulgaris, which enables overwintering in temperate regions. This

pathogen reappeared in western Europe after several decades of

absence (Barnes et al., 2020; Corredor-Moreno & Saunders, 2020;

Saunders et al., 2019) and is considered a threat to global food security

due to the rapid spread of virulent races through a worldwide distrib-

uted host. In a recent article, we retraced its global epidemic network

across worldwide wheat-producing countries (Radici et al., 2022). In

the present study, we use this epidemic network to conceive two sur-

veillance strategies, a ‘non-cooperative’ one, representing a within-

boundary scenario with no collaboration and communication between

countries, and a ‘cooperative’ one, where countries collaborate surveil-

ling each other and timely communicate the detection of the disease.

We compare their performances in terms of surveillance effort needed

to achieve given targets both at the global and domestic scales.

2 | MATERIALS AND METHODS

2.1 | The worldwide Puccinia epidemic network

In order to evaluate the performances of different surveillance strate-

gies, we used the epidemic networks obtained in a previous study.

Here, we present a summary of the methodology proposed there. In

Radici et al. (2022), we simulated worldwide transport of P. graminis

spores among wheat-producing countries, obtaining a time-varying

directed and weighted connectivity network W. In W, the 7814 nodes

represent 0.5� �0.5� cells (≈2000km2) in wheat-producing countries,

whereas edges represent likely air-mass connections among cells,

computed at a time resolution of 6 h for the time span 2013–2016.

More specifically, each weighted edge wijt of W is computed in such a

way to account for the likelihood of air-mass trajectories (computed

via NOAA's HYSPLIT model; Draxler & Hess, 1998), which potentially

disseminate spores from a release node i to an arrival node j at time t.

In both i and j, host availability and favourable environmental condi-

tions (for sporulation and/or infection) are determined via a climate-

dependent suitability model and validated via a comparison with crop-

ping calendar from the FAO country briefs (FAO, 2021a). Seventy-

two-hour trajectories (Meyer et al., 2017) are filtered according to dif-

ferent criteria (rain washout, cumulative UV radiation, flight duration

and altitude) to exclude those air-mass movements that are less likely

to lead to an effective spore transport event.

2 RADICI ET AL.
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We then projected this time-varying epidemic networks in a

static, directed and binary design networkWD, generated by consider-

ing only recurring connections, that is, occurring (i) at least once a year

and (ii) at least three times over the 4-year interval 2013–2016 (i.e.

≥75% of the years). Network WD identifies only highly likely direct

spore dissemination events on a seasonal timescale.

2.2 | Surveillance strategy design

We further considered the problem of establishing a reduced set

of sentinels, nodes where the presence of the pathogen is system-

atically monitored (i.e. the surveillance effort), that should guaran-

tee the largest aggregated coverage of the domain (i.e. the

surveillance target) and provide an early-warning system for the

detection of the pathogens (Radici et al., 2022). First of all, we

defined the coverage of a sentinel as the set of nodes that points

directly towards it, under the assumption that, by monitoring the

presence of the pathogen in a sentinel, we can indirectly observe

the possible presence in all those nodes that are pointing to it in

one step. We leveraged on an iterative heuristic algorithm to deter-

mine sub-optimal solutions to the problem of finding the smallest

set of sentinels sσ that guarantees the maximum aggregated cover-

age (associated with a surveillance target σ).

The iterative heuristic algorithm (or ‘Set cover’) to determine sub-

optimal solutions to the problem of finding the smallest set of senti-

nels consists in (i) finding the node associated with the largest cover-

age; (ii) adding this node to the sentinel set sσ , initially empty;

(iii) labelling its coverage as surveilled and remove all the edges point-

ing to it; and (iv) repeating steps i–iii until the proportion of nodes in

the aggregated coverage reaches the desired target σ. The optimal set

of sentinels sσ is ranked by growing aggregated coverage. The size of

sσ defines the surveillance effort xσ .

We designed two surveillance strategies, a ‘cooperative’ and a

‘non-cooperative’ one. In the ‘cooperative’ strategy, the Set cover

algorithm was run on all nodes of the network. By contrast, in the

‘non-cooperative’ strategy, we (i) labelled each node with the country

where it is placed and (ii) ran the Set cover algorithm separately for

each country by considering only the corresponding sub-block of the

network. We thus obtained the optimal sentinel sets s�T
σ,c for each

country c, where �T stands for ‘without Transboundary edges’, ranked
by growing aggregated domestic coverage. To compare the perfor-

mances of the ‘cooperative’ and ‘non-cooperative’ strategies, we

computed the number of sentinels needed to achieve different global

targets (Figure 1).

2.3 | Measuring benefits and costs of cooperation
at domestic scale

To investigate how the burden of cooperative surveillance is shared

among countries, for each country c, we calculated the number of

sentinels xc,σ,s needed to achieve a domestic surveillance target of σ

under a given strategy s (s = ‘cooperative’ or ‘non-cooperative’).
Then, we defined the cost–benefit index αc,σ as the ratio between the

number of domestic sentinels needed to achieve σ in the ‘coopera-
tive’ and in the ‘non-cooperative’ strategy, for a given country c:

αc,σ ¼ xc,σ,s ¼ cooperative

xc,σ,s ¼ non�cooperative

We evaluated it for σ = 1%, 2%, … 100% and then we computed

the average (αc) by country. We ascribe to a country c the label of

‘CoopBeneficial’ if αc <1, ‘CoopAdverse’ if αc >1 and ‘CoopNeutral’
if αc ¼1. After having computed αc by country, we aggregated it by

continent weighting each country's contribution by its wheat produc-

tion (FAO, 2021b) to investigate geographical heterogeneity of bene-

fits and costs of cooperative surveillance.

2.4 | Robustness of the sentinel sets

To assess the temporal robustness of the results to slight changes in

the epidemic network, we set up a validation procedure of the perfor-

mances of the sentinel sets. We recomputed the connectivity network

W on years 2017–2018 and projected it into a validation (directed,

binary, static) network WV , obtained by considering only those con-

nections occurring at least once a year both in 2017 and 2018.

We then recomputed the aggregated coverage and αc,σ of the

sentinels sets sσ and s�T
σ,c using network WV .

3 | RESULTS

Our global epidemic network, together with the applications of the

Set cover algorithm, allowed us to identify those sentinels that would

best perform to detect disease presence within a certain portion of

the network. Note that sentinels might not be included in the network

portion that one wants to surveil. For example, if the objective is to

monitor the portion of the network corresponding to all wheat-

producing regions in Germany, regardless of where the sentinels are

placed (the ‘cooperative’ strategy), the optimal sentinel set would

comprise only three domestic sentinels (see Figure 1a). On the other

hand, it would be necessary to place six sentinels if surveillance could

be provided only by domestic sentinels (the ‘non-cooperative’ strat-
egy; see Figure 1b), not contributing to transboundary surveillance.

Our results indicates that, for a σ of 100%, Germany would benefit

from a cooperative strategy as the number of domestic sentinels

needed to monitor its territory would pass from 6 to 3, thus meaning

a cost–benefit index of ¼3=6¼0:5. Indeed, the interpretation of the

cost–benefit index is rather straightforward: if αc,σ <1, country c

requires less sentinels within its borders in the ‘cooperative’ scenario
than in the ‘non-cooperative’ one for achieving the same surveillance

target σ. If αc,σ >1, the opposite is true, whereas if αc,σ ¼1, country c

needs the same number of sentinels in both the strategies for achiev-

ing surveillance target σ.

RADICI ET AL. 3
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3.1 | Global surveillance effort reduction due to
cooperation

In a context of non-cooperation between countries, a coverage of half

of the worldwide wheat-producing regions (i.e. σ¼50%) would be

achieved by placing 209 sentinels (Figure 2a), corresponding to 2.7%

of the nodes of the global epidemic network. Due to the discrete

nature of each coverage, this would correspond to a worldwide target

of about σ¼58% (Figure 2a). Note that with the same amount of sen-

tinels, within a ‘cooperative’ strategy, one would achieve a worldwide

coverage of σ¼78%. On the other hand, the coverage target of σ¼
50% would require only 64 sentinels (Figure 2b). An aggregated cov-

erage of 58% would be obtained with 87 sentinels. If the coverage

target were a complete coverage of the worldwide wheat-producing

regions (i.e. σ¼100%), in a ‘cooperative’ framework, it would need

1007 sentinels (Figure 2b) and 1148 otherwise.

3.2 | Heterogeneity in the distribution of
surveillance effort reduction due to cooperation

Overall, out of 87 countries, 55 (63%) are classified as CoopBeneficial,

23 (27%) as CoopNeutral and nine (10%) as CoopAdverse. In terms of

wheat production, around 71% is located in CoopBeneficial countries,

6% in CoopNeutral countries and 23% in CoopAdverse ones

(Figure 3). A large variety exists in the cost–benefit index by differen-

tiating countries with large (at least 45 nodes), medium (between

44 and 13 nodes) and small producing regions (12 or less nodes;

Figures 3 and S1; see Methods S1). For 47 countries, mainly medium

(e.g. Czechia or Uruguay) or large (e.g. India or Russia), the cost–bene-

fit index is always ≤1, thus implying an advantage in adopting a

‘cooperative’ strategy independently of σ. Only four countries

(Morocco, Greece, Finland and Nepal) are always discouraged from

adopting a ‘cooperative’ strategy. Great part of the small countries

(such as Yemen or New Zealand) display αi,σ ¼1 for any value of σ, for

which the two strategies are equivalent. For a few number of large

(e.g. the United States, China or Iran) or medium countries

(e.g. Moldova or Tunisia), the cost–benefit index is lower or larger

than one depending on the value of σ. Their qualification as beneficial

or adverse to cooperation depends on the surveillance target.

At the world scale, each continent (except Australia) has at least

one CoopBeneficial, one CoopNeutral and one CoopAdverse country

(Figure 4a). In North America, countries are typically CoopBeneficial,

whereas South America is more balanced. Continental Europe is

mainly CoopBeneficial, with some countries (Belgium, Luxembourg,

Austria, Slovenia, Croatia, Bosnia and Herzegovina, Albania, North

F IGURE 1 A graphic example to compare surveillance strategies of transboundary crop pathogens when the surveillance target is set to
σ =100 % of the nodes, that is, all nodes of the network points to at least a sentinel. Square cells represent nodes, corresponding to wheat-
producing regions, which can be infected by the airborne pathogen Puccinia graminis. (a) In the ‘cooperative’ strategy (i.e. surveillance is optimized
as if there were no country borders), three domestic sentinels (orange nodes: x, o, +, surveilling light green cells), in addition to others placed
abroad (which surveil dark green nodes), are needed to cover all nodes in Germany. Each node is associated with one or more symbols, each for
the sentinel(s) monitoring it. (Note that the sentinel x has a domestic cover set which is also surveilled by international sentinels. Yet, in a
cooperative framework its role is essential to efficiently surveil nodes out of Germany). (b) In the ‘non-cooperative’ strategy (i.e. each country
optimizes its own surveillance and does not communicate the others the detection of the disease), six domestic sentinels (j, �, /, \, >, <) are
needed to surveil German nodes (light green cells). They do not contribute to transboundary surveillance.

4 RADICI ET AL.
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Macedonia) having αc = 0. Finland has the highest αFinland of 1.3, fol-

lowed by Greece (αGreece = 1.2). Asia has a composition similar to

Europe, with few CoopAdverse countries (China, Mongolia, Nepal),

some isolated CoopNeutral (e.g. Japan) and a majority of CoopBenefi-

cial ones, mainly in inner parts of the continent. Africa is almost

entirely CoopNeutral, with the exception of the Maghreb and

Tanzania that are CoopBeneficial. Due to geographic isolation, island

states such as Australia and New Zealand are CoopNeutral.

3.3 | Robustness of the surveillance strategies

Overall, there is good agreement between the values of αc obtained

via the design and the validation network for all countries c (correla-

tion coefficient of 0.89; p-value�0.001; see Methods S1). A visual

comparison is also provided in Figures S2–S5.

4 | DISCUSSION

4.1 | From domestic to global cooperative crop
protection

As previous research has stressed, the scale of disease manage-

ment should correspond to that of the spread of the disease of

interest, regardless of country boundaries (Thompson et al., 2016).

We have collected evidence that, in the case of long-distance

dispersed diseases, a ‘cooperative’ approach allows significant

reduction in the surveillance effort needed to achieve a global cov-

erage (�69% and �12% for a global coverage of σ¼50% and

100%, respectively). This outcome agrees with previous

studies, which underlined that neglecting long-distance connectivity

leads to an underestimation of the disease spread capacity (Jeger

et al., 2007).

Despite increasing evidence of a global advantage in coopera-

tive international surveillance, crop surveillance design is still mostly

dictated by country boundaries, rather than the actual scale of the

pathogen spread (Carvajal-Yepes et al., 2019; Thompson

et al., 2016). The mismatch between optimal and actual scale of

action affects also other kinds of transboundary natural threats,

such as biological invasions by alien species. In this regard, Diagne

et al. (2021) recently outlined that invasion-related economic dam-

ages are projected to increase in the next decades; one reason

behind the inertia in the implementation of international and coor-

dinated protection strategies may lie in the underestimation of the

costs by the general public, stakeholders and decision-makers. This

may be particularly true in the case of airborne diseases, where the

direct observation of their dispersal is actually unfeasible (Barnes

et al., 2020; Jordano, 2017), and may discourage consideration by

decision-makers.

F IGURE 2 Increasing the surveillance target σ (i.e. the proportion of surveilled nodes) requires a surveillance effort xσ, which varies by
country and strategy (i.e. the size of the sentinel set). Each line in panel (a) represents the surveillance effort xσ (x axis, in log2 scale) needed by
each country to achieve increasing domestic surveillance targets σ (y axis) in the ‘non-cooperative’ strategy, where each country optimizes its
own surveillance strategy for monitoring airborne crop pathogens. We highlighted, via colouring, one representative country for each continent.
The intersection of each line with a given surveillance target (e.g. horizontal line at σ¼50%) gives the minimum size of the sentinel set for that
country (arrows) to reach that given surveillance target. The global effort can be obtained by summing all intersections (209 for σ¼50%). Panel
(b) shows the global surveillance effort xσ needed in the ‘cooperative’ strategy (where we run optimization as if there were no borders) to achieve
increasing global surveillance targets σ. In this case, the target σ¼50% is achieved with just 64 sentinels, whereas 209 sentinels ensure a global
coverage of 78%.

RADICI ET AL. 5
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4.2 | Network thinking in crop surveillance

The use of networks to support crop protection strategies has been

largely advocated in recent studies (Garrett et al., 2018; Jeger

et al., 2007; Parnell et al., 2017; Shaw & Pautasso, 2014; Sutrave

et al., 2012). One advantage of networks is that they are ‘asemantic’,
that is, they can represent whatever relationship, contact or flow

mediated by different means (air masses as well as human transporta-

tion (e.g. Brockmann & Helbing, 2013) or animal trade (e.g. Bernini

et al., 2019) in a topological space, which can correspond to the physi-

cal one. In the most simplistic way, crop protection strategies rely on

the identification of the nodes of the network that most contribute to

spread the disease, or those that, if successfully treated, would reduce

the disease size. Other methods rely on the identification of certain

recurrent network patterns, where the disease spread is the fastest

(Chadès et al., 2011). Concerning surveillance, relevant nodes corre-

spond to those that may allow early disease detection if systematically

monitored (Holme, 2017; Neufeld et al., 2018; Sutrave et al., 2012).

Despite the risk of incurring local minima, we used the Set cover

algorithm to prioritize nodes to be monitored, that is, sentinels. Set

cover iteratively selects the node associated with the highest cover-

age, solving the otherwise unsolvable Set cover problem in finite time.

F IGURE 3 Bar chart of the average cost–
benefit index αc (x axis) for all wheat-producing
countries considered in the study. The cost–
benefit index investigates how the burden of
cooperative surveillance is shared among
countries. Each country is represented by a
rectangle where the base is proportional to αc and
the height is proportional to wheat production in
2010–2020 (y axis) according to (FAO, 2021b).

Countries with αc <1, such as the United States,
Russia or India, benefit from cooperative
surveillance and are labelled as CoopBeneficial,
that is, in a ‘cooperative’ scenario would need, on
average, less sentinels than in a ‘non-cooperative’
to surveil their wheat production regions against
airborne crop pathogen Puccinia graminis. On the
opposite, αc >1 identifies CoopAdverse countries,
such as China. CoopNeutral countries, such as
Australia, are indifferent towards cooperation
(αc ¼1).

6 RADICI ET AL.
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This algorithm only ensures that a node is surveilled by at least one

sentinel. A less error-prone procedure may request that nodes are sur-

veilled by at least n>1 sentinels. This would increase the reliability of

the sentinel set by reducing the risk of imperfect surveillance (Chadès

et al., 2011), but consequently increasing the surveillance effort. Fur-

thermore, in our exercise, we assume that the risk of emergence of

new strains (made possible by the alternate host B. vulgaris, which

allows sexual recombination of P. graminis), the costs of surveillance,

distribution of resistant varieties and crop management practices are

the same in all the nodes. Relaxing these assumptions would ask for a

different modelling framework, referable to a multi-constrained and

multi-objective problem (such as a multi-dimensional knapsack prob-

lem; Kulik & Shachnai, 2010), with increasing complexity of the solu-

tion with respect to that of the Set cover algorithm.

This algorithm assumes that sentinel locations are chosen regard-

less of country borders, although it may not be the case. For these

reasons, we named the solution of the above-mentioned algorithm as

the ‘cooperative’ strategy, and we built a second strategy, where sur-

veillance is designed mimicking a more realistic scenario. This strategy,

named ‘non-cooperative’, differs from the previous as the algorithm is

carried out each country independently of the others, which means

that the Set cover algorithm is solved at the country level. In turn,

coverage can be thought as a step-by-step updated version of the in-

degree, that is, the number of the edges pointing to a node, penalizing

those nodes whose coverage overlaps with that of nodes already

labelled as sentinels. Other studies already noted that in-degree

(or simply degree for undirected networks) is, as a general rule of

thumb, a good proxy of both a good sentinel and a potential disease

spreader (Herrera et al., 2016; Holme, 2018).

Moreover, in our work, we proposed a hybrid network and geo-

graphical approach, in which metadata are associated with network

components: Each node is associated with the label of the

corresponding country, and each edge is consequently labelled as

‘transboundary’ or not. To our knowledge, this is one of the first

attempts to compare non-topological surveillance strategies, that is,

‘cooperative’ and ‘non-cooperative’, and to quantify the heterogene-

ity in the allocation of the burden of ‘cooperative’ surveillance.
Our results thus indicate that the cooperative strategy becomes

more valuable when the surveillance target is intermediate. This is

mainly due to the fact that this strategy reduces overlapping among

coverages. Overlapping is negligible also for the ‘non-cooperative’
strategy for moderate target of surveillance and becomes relevant for

both strategies approaching σ¼100%.

4.3 | Sharing benefits and costs of cooperation

From a global perspective, a ‘cooperative’ strategy is necessarily more

efficient compared with a ‘non-cooperative’ one, because it corre-

sponds to an optimization subjected to fewer constraints. However, it

is interesting to quantify how such strategy performs against a ‘non-
cooperative’ strategy at country level, because benefits and burden

may not be equally shared; similarly, wheat production is valuable dif-

ferently according to each country's food system.

We found that medium-sized countries located in an inner continen-

tal position, such as in central Europe or central Asia, are associated with

the lowest αc values, because they benefit of transboundary potential

transport events among a landscape dominated by wheat-producing

areas. Insular countries, such as Australia, New Zealand or Japan, hav-

ing no recurrent edges with other countries, are CoopNeutral. Due to

the low presence of wheat, many African and South American coun-

tries are CoopNeutral. By contrast, it is more difficult to determine

general characteristics for CoopAdverse countries, even keeping in

mind that connections are mostly north-eastward in the Northern

F IGURE 4 Global map of the average cost–benefit index αc by country. Average values by continents (identified by blue lines) weighted by
country wheat production 2010–2020 are also displayed. Europe and Asia, and in particular their innermost countries, display the lowest values
of αc (they are CoopBeneficial, i.e. they benefit from cooperative surveillance). Insular countries (Australia, New Zealand, Japan) or those with
limited wheat-producing surface (mostly African countries) tend to be CoopNeutral. Few countries, often located along or at the end of
dissemination pathways (Finland, Argentina, China), are CoopAdverse (i.e. in a cooperative scenario, they would need to deploy more sentinels
than they would place in their own interests).
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Hemisphere and south-westward in the Southern Hemisphere (Radici

et al., 2022). Finland and Nepal are small-medium-sized wheat-

producing countries, located at the point of arrival of western-eastern

European (Zadoks, 1967) and Indian (Brown & Hovmøller, 2002)

‘Puccinia pathways’, respectively. Given the relatively small size of

their wheat-producing regions, they are forced to assume more senti-

nels in the benefits of upwind countries, whose food systems are prob-

ably much more wheat based, than they would need if left alone. By

contrast, Canada, the final destination of the North American pathway,

is a large wheat-producing country; hence, it would need several senti-

nels no matter the strategy. We may suppose that Italy and Greece,

due to their location in the middle of the Mediterranean basin, may play

as stepping stones for epidemics spreading northward from Africa

towards central Europe (Mehta et al., 2007); furthermore, both have

relatively low wheat productions; hence, they would need less sentinels

if not cooperating. Brazilian and Argentinian large wheat-producing

surfaces are located just poleward compared with those of their smaller

neighbours (Paraguay and Uruguay, respectively). In the same way, due

to the general eastward circulation in the Northern Hemisphere,

Chinese wheat-producing regions might act as sink for trajectories from

their western neighbours (that are, indeed, CoopBeneficial).

By averaging the cost–benefit index by continent, it is possible to

highlight those continents which would benefit the most of a cooper-

ative surveillance. Europe and Asia display the lowest cost–benefit

index values (0.6–0.8), whereas for other continents, it is generally

around 1. To sum up, the connectivity network of this airborne dis-

ease creates a heterogeneous distribution of costs and benefits, but

Asia and Europe would certainty take advantage of an international

and cooperative surveillance system (Figures 4 and S4).

The heterogeneous geographical distribution of benefits and

costs of cooperation in surveillance has already been highlighted by

other studies (Bacon et al., 2012) and suggests that a compensating

mechanism should be set up to make it acceptable. This compensation

mechanism should take into account different costs of surveillance

among countries (Augustin et al., 2012). This idea can be borrowed

from the socio-economic concept of ‘burden sharing’ (Sandler &

Forbes, 1980; Suhrke, 1998), which is finding application in the man-

agement of environmental goods. Differentiate greenhouse gas emis-

sions reduction in the framework of the Conference of the Parties to

achieve climate targets (Ringius et al., 2002), as well as in the multi-

stakeholder management of marine resources (Bennett et al., 2021),

may be two notably example. Furthermore, other fields of crop pro-

tection may benefit of a network-based transboundary perspective.

For example, the deployment of resistant varieties to both contain

pathogens spread and delay resistance overcoming (Rimbaud

et al., 2018) is another spatial optimization problem; whether it should

be approached at the national or international scale is an interesting

issue that can benefit from the approach proposed here.

Although our study tries to push towards a change in the per-

spective of governance of crop disease surveillance, we believe that

proper identification of spatial distribution of costs and benefits can

help facilitate international agreement for a global crop epidemic sur-

veillance and gain support of all stakeholders.
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