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Long summary in French

Introduction
Le bruit est considéré comme l’une des principales sources de pollution en raison de la multiplicité de
ses sources, en particulier dans les zones urbaines, et de son impact sur la santé. Pour répondre à ce
problème, des réglementations ont été mises en place, comme la directive 2002/49/CE en Europe, qui
vise à établir un inventaire des nuisances sonores et à proposer des actions pour les réduire. Les cartes
de bruit stratégiques sont le principal outil des décideurs dans ce contexte réglementaire. Ces cartes sont
en général produites à l’aide de logiciels spécifiques qui intègrent des modèles d’émission de bruit et de
propagation acoustique, couplés à des données géographiques et des informations sur le trafic. Cependant,
ces cartes manquent de réalisme, en particulier du point de vue de la dynamique temporelle du bruit, de la
nature des sources sonores modélisées (uniquement le bruit routier, ferroviaire, et industriel), des valeurs
forfaitaires de trafic imposées, ou encore en raison des hypothèses et limitations des méthodes de calcul
considérées par exemple pour la modéliser la propagation acoustique. Certaines villes ont également
constitué des observatoires de bruit, afin d’avoir une évaluation plus réaliste des environnements sonores.
Néanmoins, notamment en raison du coût des points de mesure, ces observatoires ne permettent pas de
construire des cartes de bruit avec la finesse spatiale exigée.

Pour remédier à ces limitations, des alternatives ont été proposées, telles que l’utilisation de réseaux
de capteurs bas coût, plus abordables pour densifier les points d’observation. En particulier, l’implication
des citoyens en tant que collecteurs de données grâce à leur téléphone mobile (considéré comme un capteur
bas coût) offre des perspectives intéressantes pour obtenir des données avec une large distribution spatiale
et temporelle. Ce type d’approche, issu des sciences participatives, a été largement développé dans la
littérature ces dix dernières années, avec diverses applications pour téléphone portable et plateformes de
collecte de données, telles que Ear-Phone, NoiseSPY, NoiseTube, Sound Around You, ou très récemment,
Silencio. . .

Le projet récent NoiseCapture (NC), associé à l’application pour smartphone du même nom, s’inscrit
dans cette démarche, et étend le concept de sciences participatives à celui de science ouverte. Tous les
codes sources, les données et les productions scientifiques sont ainsi disponibles librement, en particulier
auprès de la communauté scientifique ou d’acteurs publiques. A la différence des autres approches con-
nues, l’objectif du projet est également d’assurer une collecte de données sur plusieurs années afin de
constituer une base de données de référence pour l’étude des environnements sonores sur le long terme.

L’application NoiseCapture fonctionne de la manière suivante : dans un premier temps, l’utilisateur
est invité à spécifier son profil (expert, novice ou aucun) puis à procéder à l’étalonnage de son téléphone
en utilisant l’une des méthodes proposées par l’application (via l’utilisation d’un appareil de référence
ou manuellement, ou grâce à l’utilisation d’une méthode statistique d’étalonnage). Une fois le proces-
sus d’étalonnage terminé, l’utilisateur peut commencer sa mesure sur la durée et le trajet de son choix.
Pendant le processus de mesure, l’utilisateur parcourt un trajet et, à chaque seconde, l’application re-
cueille des données concernant le niveau de bruit, la position de l’utilisateur (indiquée par un système
de coordonnées GPS) et sa précision, sa vitesse de déplacement, ainsi que la date et l’heure précise de la
mesure. Une fois le trajet terminé, l’utilisateur peut fournir des informations supplémentaires concernant
sa propre perception de l’environnement sonore en utilisant une échelle d’agrément, ainsi qu’un certain
nombre d’informations sous forme de tags ou balises (conditions de mesure, sources sonores présentes
pendant la mesure).

Depuis le lancement de l’application le 1er septembre 2017, au 5 juillet 2023, 102473 contributeurs
différents ont collecté 111 450 180 mesures (une mesure correspond à un niveau sonore équivalent sur 1
seconde) à travers 445976 trajets de mesure (un trajet correspond à un ensemble de points de mesure
collectés pendant le même enregistrement), soit l’équivalent d’environ 1290 jours de mesure en continu,
à l’echelle internationnale (plus de 200 pays). En termes de couverture et de densités spatiales ansi que
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de distribution temporelle, cette quantité de données reste bien entendu à relativiser, mais cela ouvre de
nombreuses perspectives en matière d’évaluation des environnements sonores. Si l’approche présente de
nombreux avantages au regard des méthodes plus classiques, il est important d’en mentionner les limites:
une mauvaise mise en œuvre du protocole de mesure, l’absence ou le mauvais étalonnage acoustique de
l’application, les incertitudes de mesure, la mauvaise utilisation de l’application, ou encore les limites
techniques des smartphones. . . Or dans une perspective de constructution d’une base de données à long
terme mais aussi d’utilisation à des fins publiques de l’application NoiseCapture il est important de fournir
des informations factuelles, scientifiques permettant de délimiter la qualité des données mesurées. C’est
l’objet de ce cette thèse qui s’interesse à la mise en oeuvre de méthodes pour pouvoir utliser les données
produites.

Chapitre 1
Le chapitre 1 propose une analyse détaillée de la base de données NoiseCapture afin d’en cerner les
potentiels et les limites. L’ensemble des descripteurs collectés par l’application sont étudiés, dans les
dimensions temporelles, spatiales et acoustiques. Cette analyse, détaillée dans le Chapitre 1 de ce
mémoire, appliquée sur les données collectées entre 2017 et 2020 (la plupart des travaux de la thèse
porte sur l’exploitation de cette base), montre en particulier les limites de la localisation GPS, puisque
32.5% par exemple des trajets de mesure ne sont pas localisés et que 30% des points de mesure sont
géolocalisés avec une précision insuffisante (i.e. précision supérieure à 15 m). On observe également que,
contrairement à l’hypothèse d’utilisation selon laquelle l’utilisateur marchera sur un chemin pendant la
collecte des mesures, un tiers des mesures géolocalisées sont réalisées en position stationnaire, ce qui limite
la couverture spatiale, mais à l’inverse, augmente la distribution temporelle des mesures. Concernant
l’étalonnage des smartphones, cela concerne à première vue une portion relativement importante des
smartphones (34.1%) mais les valeurs d’étalonnage observées paraissent parfois en dehors d’un intervalle
acceptable (i.e. 66.2% des smartphones étalonnés ont une valeur d’étalonnage supérieure à 10 dB). Enfin,
l’utilisation des tags est peu répandue, puisque 47.7% seulement des trajets de mesure disposent d’au
moins un tag. D’un point de vue de l’évaluation de la perception et de l’évaluation des environnements
sonores, la présence de tags en nombre plus important aurait eu un intérêt.

Globalement, cette analyse a clairement mis en évidence certaines incertitudes, irrégularités et inco-
hérences dans les mesures, qui doivent être prises en compte dans toute exploitation des données. Cela met
clairement en évidence l’importance d’un contrôle qualité des données et la nécessité d’associer à chaque
indicateur acoustique mesuré, une incertitude. Cette analyse a également montré l’intérêt d’intégrer des
améliorations dans l’application, pour une prochaine version, par exemple en collectant des informations
supplémentaires pour mieux prendre en compte le contexte de la mesure, telle que la position du smart-
phone pendant une mesure, le mode de déplacement (à pied, en vélo, en voiture), le type de microphone
utilisé (microphone interne ou externe). . . Le remplacement de la sélection manuelle des tags par une
procédure automatique de reconnaissance des sources et des conditions de mesure, serait également une
fonctionnalité intéressante.

Chapitre 2
De nos jours, les techniques d’apprentissage automatique sont de plus en plus utilisées pour analyser
les données acoustiques provenant de capteurs. Il est clair que cela constitue une méthode intéressante
dans le cadre de l’exploitation des données produites par NoiseCapture. De telles approches nécessitent
toutefois de disposer de données de référence (i.e. des données étiquetées) sur lesquelles la méthode va
pouvoir "apprendre". Dès l’origine du projet NoiseCapture, il avait été imaginé la réalisation d’évènements
spécifiquement organisés et encadrés pour la collecte de données, appelés NoiseCapture Party, à l’image
des "Carto Party" pour la collecte d’informations géospatiales pour alimenter des bases de données car-
tographiques collaboratives (en particulier la base OpenStreetMap bien connue). Ce type d’évènement
permet de collecter un grand nombre de données sur une faible étendue spatiale (un quartier urbain par
exemple), sur une période temporelle assez courte, allant par exemple de 1 heure à 1 journée. L’existence
de ces données étiquetées ouvrent donc des perspectives dans l’utilisation de méthodes supervisées et
semi-supervisées pour l’évaluation des environnements sonores. Cependant, dans le cas actuel, on se
heurte à une quantité insuffisante de données disponibles (i.e. les données issues des NoiseCapture Par-
ties représentent actuellement 1.2% des trajets de mesure et 0.6% des points de mesure de la base de
référence 2017-2020). Nous savons toutefois, par exemple grâce à des échanges entre l’équipe NoiseCap-
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ture et d’autres contributeurs dans le monde, ou via l’analyse de la littérature scientifique, que d’autres
évènements du même type ont été organisés et ont permis de produire des données qui peuvent être
considérés comme "de référence".

Ainsi, dans le Chapitre 2, nous proposons de mettre en œuvre une méthode permettant de détecter
dans la base de données NoiseCapture, les évènements qui seraient similaires à des NoiseCapture Parties,
afin d’augmenter les données de référence. L’approche proposée repose sur le regroupement spatial (spatial
clustering), à savoir la recherche d’un ensemble de points de mesure collectés avec une forte densité sur
une zone géographique donnée, et sur un intervalle de temps limité. A cet effet, nous avons utilisé
l’algorithme qui se base sur la recherche d’une forte densité spatiale de données, et donc particulièrement
bien adapté à notre objectif. La méthode DBSCAN (density-based spatial clustering) commence par la
sélection aléatoire d’un point de mesure dans la base de données, puis recherche dans un rayon de taille
Eps un minimum de points MinPts. Si cette condition est satisfaite, la procédure est reproduite pour tous
les points obtenus à l’étape précédente. Dans le cas contraire, un nouveau point de départ est sélectionné
et la procédure est reproduite. A la fin de l’approche, les données sont soit regroupées au sein de clusters,
soit non regroupées. Dans notre cas, l’originalité de l’application de la méthode proposée réside dans
l’utilisation de certaines variables de filtrage préalable : une variable temporelle, qui peut être fixée à
une période spécifique pour préserver la similarité temporelle, et une variable de précision, qui permet
d’éliminer les données mal localisées pour éviter un biais dans la recherche des points d’un même cluster.
Enfin, la zone d’étude peut être définie comme une région spatiale spécifique afin de préserver la similarité
spatiale.

A titre d’illustration de la méthode, les paramètres MinPts et Eps ont été fixés à 5000 points et
3 km, respectivement, ce qui a permis de détecter 2046 clusters de données dans 68 pays. Les États-Unis
regroupent le plus grand nombre de clusters (975), suivis par la France (297) et le Royaume-Uni (111), ce
qui est un résultat attendu puisque ces trois pays sont considérés comme faisant partie des trois principaux
contributeurs à la base de données NC. L’approche a permis de retrouver 19 des 27 NoiseCapture Parties
officielles, les NoiseCapture Party manqués étant caractérisées par un nombre insuffisant de données
collectées. L’approche a également permis de détecter des clusters liés à des évènements organisés à
l’occasion de travaux de recherche publiés. On citera par exemple, deux événements dans la région de
Kobe (Japon), avec des données collectées par le même utilisateur en juillet et en août 2020, ou encore
un événement à Zagreb (Croatie) qui visait à comparer les performances de plusieurs applications de
mesure du bruit. A l’inverse, d’autres données publiées dans la littérature n’ont pas été détectées, par
exemple celles associées à un événement organisé à Kobe (Japon) qui visait à comparer les niveaux
sonores pendant et après le confinement lié à la période COVID. Cet évènement ne comptabilisait que
3500 points, ce qui était inférieur au seuil fixé. Le choix des paramètres s’avère donc important pour
réduire ou augmenter le nombre de clusters détectés, et in fine pour augumenter la base de données de
référence. En augmentant le nombre de clusters détectés, on prend le risque d’intégrer des évènements
qui ne seraient pas réellement des évènements spécifiquement organisés, mais juste une juxtaposition de
mesures réalisées par des contributeurs dans la même étendue spatiale et dans la même période, sans lien
direct.

Chapitre 3
La donnée principale d’intérêt, parmi toutes celles collectées avec l’application NoiseCapture, est très
clairement celle du niveau sonore, à travers plusieurs indicateurs possibles tels que le spectre par bande
de fréquence, le niveau sonore équivalent, les indicateurs percentiles (LA10, LA50. . . ). Des travaux
préliminaires présentés en annexe de ce mémoire ont montré que trois variables peuvent être identifiées
comme contribuant de manière déterminante sur les indicateurs de niveau sonore : (1) l’information
spatiale, (2) l’information temporelle, (3) le gain d’étalonnage (i.e. la correction acoustique du niveau
sonore après étalonnage du smartphone). Concernant les deux premières variables, un traitement simple
à permis de filtrer/corriger les données. Le chapitre 3 s’est quant à lui intéressé à améliorer les valeurs
d’étalonnage des smartphones.

En effet, dans toute expérimentation acoustique nécessitant l’utilisation d’une chaîne de mesure,
l’étalonnage acoustique du système est un préalable, avec éventuellement la qualification d’un niveau
d’incertitude en fonction de la classe de mesure de l’appareil de mesure. En général, pour une chaîne de
mesure "de laboratoire" ou pour un sonomètre professionnel, l’incertitude est faible et la valeur mesurée,
même en l’absence d’étalonnage, n’est jamais très éloignée de la "vrai" valeur. Le smartphone, par défini-
tion, n’est pas un équipement de mesure acoustique classique, et, en fonction du modèle et de la marque,
peut être caractérisé par des performances techniques très variables. C’est d’autant plus curieux, que dans
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le cas d’Android, des conditions obligatoires sont imposées aux fabricants afin de respecter une qualité
de mesure en fréquence et en niveau sonore. En pratique, on observe donc de nombreuses différences en
termes de mesure de niveau sonore entre smartphones, même en utilisant la même application. Cette
observation impose donc d’étalonner les smartphones au travers de l’application de mesure afin d’assurer
la cohérence des mesures collectées. Comme indiqué plus haut, peu de smartphones sont étalonnés, et
les valeurs d’étalonnage obtenues sont parfois peu physiques, mettant en doute la mise en œuvre du
processus d’étalonnage au sein de l’application. Pour toutes ces raisons et plus globalement pour toute
mesure de données environnementales avec des capteurs à bas coût, la solution consiste à étalonner a
posteriori les données. Parmi les solutions possibles, les méthodes d’étalonnage à l’aveugle, basées sur
le croisement de capteurs dans une même zone, au même instant, semblent particulièrement utiles pour
les données collectées par des projets de science citoyenne tels que NoiseCapture, en particulier dans les
zones urbaines, où plusieurs smartphones peuvent se croiser.

Ainsi, le Chapitre 3 propose la mise en œuvre d’une méthode d’étalonnage à l’aveugle, basée sur
la notion de rendez-vous entre smartphones, dans la même zone et sur un même intervalle de temps.
Ces notions de "zones" et "intervalle de temps" sont des paramètres importants et sont discutés dans ce
chapitre. La méthode est basée sur la modélisation des relations entre les capteurs, qui peuvent être
écrites sous forme de matrices et peuvent ensuite être résolues comme un problème d’algèbre linéaire. Le
comportement de la méthode a ensuite été testé sur des ensembles de données de référence pour lesquels
nous avons déjà des informations sur les valeurs plausibles d’étalonnage utilisées. Les résultats montrent
un bon comportement de la méthode mais dépendent avant tout du nombre de liens entre smartphones
(i.e. le nombre de fois que les mesures prises par le couple smartphone/utilisateur se croisent spatialement)
et de l’homogénéité de ces liens (i.e. le fait que toutes les mesures aient des relations croisées). Afin
d’améliorer la méthode, une approche hybride a été proposée, concentrant la méthode d’étalonnage à
l’aveugle sur les smartphones avec le plus de liens (un "seuil" minimum de liens est fixé), puis en utilisant
une méthode plus simple (moyennage) pour étalonner les autres smartphones sur la base des smartphones
étalonnés à la première étape. La méthode hybride apporte de meilleurs résultats que l’approche initiale,
et ce, à mesure que la valeur "seuil" du nombre de liens minimum augmente, jusqu’à ce que finalement
le nombre de smartphones concernés deviennent insuffisant (dans ce cas, la méthode hybride décroche).
Enfin, à titre expérimental, la méthode hybride a été appliquée sur un jeu de données collectées dans la
ville de Rezé en France, sur la période 2017-2023, et a montré la pertinence de l’approche pour produire
des cartes de bruit "étalonnées".

Conclusion
L’approche collaborative de la collecte de données acoustiques, en particulier dans un objectif produc-
tion de cartes de bruit, est une alternative intéressante notamment en comparaison avec des méthodes
classiques (simulation numérique et observatoire de bruit). La quantité de données collectées avec Noise-
Capture est considérable, mais les résultats de l’analyse de la base de données (chapitre 2) montrent que
la qualité est extrêmement diverse, voire majoritairement discutable, ce qui nécessite de poser un regard
critique sur les analyses produites. L’idéal serait de pouvoir associer une incertitude à chaque mesure, ce
qui nécessiterait sans-doute de revoir l’application pour mieux comprendre le contexte de la mesure, en
collectant des informations supplémentaires, par exemple sur le type de mobilité pendant la mesure ou
la position du smartphone.

L’exploitation de ce type de base de données pourra passer en particulier par la mise en œuvre
de méthodes d’apprentissage, supervisées ou semi-supervisées, mais à condition de disposer de jeux de
données de référence. Ce type de données existe déjà, collectées dans le cadre de NoiseCapture Party,
mais s’avère en quantité insuffisante. C’est la raison pour laquelle nous avons cherché à compléter ces
données de référence avec d’autres données de la base, qui auraient été produites de manière similaire
à ce type d’évènement (chapitre 3). La méthode qui a été mise en œuvre (méthodologie de clustering,
DBSCAN) s’est montrée plutôt efficace, et a notamment permis de détecter des évènements réels, mais
la nature des clusters obtenus dépend beaucoup des paramètres de la méthode.

Enfin, nous avons également travaillé sur l’application d’une méthode d’étalonnage à l’aveugle des
données, qui permet de compenser une absence d’étalonnage des smartphones. La méthode semble
plutôt pertinente, mais peut sans-doute être améliorée, notamment en considérant les smartphones déjà
étalonnés (issus de la base de données de référence) comme des références. Il pourrait également être
intéressant de comparer les valeurs d’étalonnage obtenus pour des mêmes modèles/marques, afin de
générer éventuellement une base de données d’étalonnage. La méthode pourrait aussi être appliquée,
non pas sur le niveau sonore global, mais sur le niveau sonore en bande de fréquence et pour différents
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intervalles de niveaux sonores, pour prendre en compte les problèmes de "linéarité" en fréquence et en
niveau sonore (problème de seuil pour les niveaux sonores faibles et de saturation pour les niveaux sonores
élevés) de certains smartphones. On peut aussi imaginer que progressivement les nouveaux smartphones
nécessiteront de moins en moins une procédure d’étalonnage, en comptant sur une montée en gamme
technologique et logicielle.

Plus globalement, l’exploitation des tags et de l’environnement géographique (à travers le croisement
de données issues d’autres bases de données géographiques) permettrait également d’améliorer les méth-
odes développées dans la thèse. Cela faisait partie des options possibles en début de thèse, mais qui n’ont
pas été entreprises faute de temps. La détection d’anomalies dans la base de données sera également une
étape indispensable de manière à écarter des valeurs a priori aberrantes.

Ce travail de thèse a donc permis une avancée significative en matière d’exploitation de la base de
données NoiseCapture, en précisant le cadre d’utilisation de données à travers l’identification des limites
et autres incertitudes, mais également en proposant des solutions pour les corriger. Cela ouvre des
perspectives très intéressantes pour produire, par exemple, des cartes de bruit qui présenteraient, sous
une forme cartographique à imaginer, des incertitudes associées à des niveaux sonores ou bien des critères
de confiance.

Annexe 1
Des travaux préliminaires ont été réalisés à fin d’évaluer les corrélations entre les variables numériques
et catégoriques du jeu de données NoiseCapture. Tout d’abord, concernant les variables numériques, les
variables prises en compte étaient la vitesse, la précision du GPS, l’orientation du téléphone et l’étalonnage
du gain. En utilisant à la fois la régression, la sélection de caractéristiques ainsi que l’analyse exploratoire
des données (EDA), il a été démontré que seule l’étalonnage du gain influençait la variable de niveau
sonore. Deuxièmement, pour ce qui est des variables catégoriques, les variables sélectionnées étaient
le profil, l’heure, la localisation, la méthode d’étalonnage, les tags/sources et le modèle de l’appareil.
En utilisant une analyse par ANOVA ainsi que la visualisation des données, il a été constaté que seules
l’heure, la localisation et les balises avaient une influence sur le niveau sonore, tandis que l’effet du modèle
de l’appareil était négligeable. Par ailleurs, il a été découvert que le modèle de l’appareil et l’étalonnage
du gain étaient liés, de même que le profil et la méthode d’étalonnage. Cependant, en raison du faible
nombre de trajets comportant des tags, il a été préféré de ne pas les prendre en compte lors de la création
d’un modèle pour contrôler la qualité de la variable de niveau sonore.

En ce qui concerne les informations spatiales, nous avons rencontré deux problèmes majeurs : (1)
une grande précision du GPS et (2) une absence totale de géolocalisation. Ces deux problèmes se sont
manifestés de quatre manières différentes dans nos trajets : (1) au début, (2) au milieu, (3) à la fin et
(4) tout au long de le trajet. Pour résoudre ces problèmes, un processus rapide et efficace a été mis en
œuvre pour rectifier et affiner la base de données NC. Les trajets qui souffraient entièrement d’un manque
de géolocalisation ou qui présentaient une valeur de localisation de GPS supérieure à 15 mètres ont été
entièrement éliminés de l’ensemble des données NC. Cependant, pour les trajets où seules des mesures
spécifiques présentaient une précision GPS élevée ou un manque de géolocalisation, le reste de la trace a
été préservé tout en nettoyant ces points de données problématiques.

En ce qui concerne les informations temporelles, un processus rapide similaire a été mis en œuvre pour
corriger et affiner la base de données NC. Il s’agissait de convertir toutes les informations temporelles du
temps universel coordonné (UTC) au fuseau horaire local, afin d’assurer la cohérence et la précision de
l’ensemble des données.
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Introduction

Context of the study
Noise pollution is a pervasive environmental problem, particularly in densely populated urban areas,
and its detrimental effects on human health are increasingly recognized [1]. In response to the urgency
of addressing this issue, public authorities worldwide have implemented regulations and directives to
mitigate noise pollution. This growing regulatory context emphasizes the need to measure environmental
noise and to develop effective strategies to reduce the noise impacts.

The effects of noise pollution on human health are multifaceted and can be profound [2–8]. Prolonged
exposure to high noise levels has been linked to various health issues, including hearing loss, sleep dis-
turbances, stress, cardiovascular problems, and impaired cognitive performance. Noise can disrupt sleep
patterns, leading to fatigue, decreased concentration, and diminished productivity. Chronic exposure to
noise has also been associated with mental health disorders such as anxiety and depression.

Recognizing the severity of these health effects, local authorities and decision-makers are compelled
to take an active interest in the issue of noise pollution. They are driven by the imperative to safeguard
public well-being and ensure a high quality of life for citizens (e.g 2002 European directive [9]). The
regulatory framework governing noise pollution varies across different regions and countries, but its
common objective is to establish guidelines and standards for noise levels and encourage measures to
reduce excessive noise.

To effectively address noise pollution, it is essential to identify its sources. Noise can originate from
a wide range of activities and sources, both indoors and outdoors. Common sources of environmental
noise include transportation systems (road traffic, aircraft, trains), industrial activities, construction sites,
recreational events, and even everyday activities such as household appliances or loud music. Urbaniza-
tion and increased transportation have amplified the noise generated by these sources, exacerbating the
problem.

Given the complex nature of noise pollution and its diverse sources, it becomes crucial to measure and
monitor environmental noise levels. In Europe, for instance, the directive 2002/49/EC was established
to create an inventory of noise nuisance, propose actions to reduce noise levels, and inform citizens
about their exposure to noise [9]. By quantifying the noise present in a given area, local authorities and
decision-makers can accurately assess the extent of the problem and formulate appropriate strategies for
mitigation.

The availability of data on environmental noise levels enables authorities to identify noise hotspots,
prioritize intervention areas, and implement targeted measures to reduce noise pollution. It also allows
for informed decision-making regarding urban planning, transportation management, and the design of
noise control measures. Additionally, noise measurement plays a vital role in assessing the effectiveness
of noise mitigation strategies and evaluating the impact of policy interventions over time.

To aid decision-makers in combating noise pollution, strategic noise maps have become a crucial
tool. These maps are typically created using specialized software that integrates noise emission and
acoustic propagation models, along with geo-spatial data and traffic information such as ’CadnaA’ [10],
’MithraSIG’ [11], ’SoundPLAN’ [12] or more recently ’NoiseModelling’ [13]. Using software to generate
strategic noise maps offers several advantages. It enhances efficiency by automating the process, saving
time and resources. The software’s advanced algorithms provide more accurate results compared to
manual calculations. It can handle large and complex areas, thanks to its scalability. Additionally,
the flexibility of software allows customization to specific requirements and integration with other data
sources. Software-based noise mapping enables scenario analysis, aiding in decision-making for noise
reduction strategies and mitigation measures. Overall, it improves efficiency, accuracy, scalability, and
flexibility in noise management and planning processes. However, it can be complex requiring technical
expertise and a learning curve, and time consuming for acquiring and preparing the necessary data.
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Simplifications and assumptions made by the software, as well as the quality of input parameters may
also introduce some level of error or uncertainty; interpreting and validating the results require careful
consideration and cross-referencing with real-world measurements. Lastly, costs, both for software and
data acquisition, may be involved.

Another approach to evaluate the noise impact, is to use noise observatory such as ’Bruitparif’ [14]
and ’Acoucité’ [15], which are located in Paris and Lyon respectively. The observatory is set-up with
professional (class-1) microphones, in order to collect continuous noise data for a period of days or weeks,
then analyze the data using signal processing and statistical techniques for example to identify noise pat-
terns, hot-spots, and evaluate noise mitigation measures. Generating data from noise observatories offers
advantages such as accurate measurements, representative samples, real-time monitoring, and detailed
analysis of noise patterns, but it comes also with potential inconveniences including costs and setup,
limited spatial coverage (not enough data to generate a detailed noise map for example), data processing
complexity, maintenance requirements, and susceptibility to environmental factors.

In an effort to address the limitations of traditional tools, alternative approaches have been pro-
posed. One approach involves utilizing more affordable sensor networks (‘low-cost network’) to densify
observation points, allowing for a more realistic description of noise environments [16–19]. Among them,
the idea of using smartphones as acoustic sensors and citizens as contributors emerged at the end of the
2000s [20–22], with the increasing capabilities of smartphones to perform environmental acoustic measure-
ments [23]. It was followed by several works that have given rise to specific noise and soundscape crowd-
sourcing type applications and platforms (e.g. Ear-Phone, NoiseSPY, NoiseTube applications [24–26]),
and particularly the NoiseCapture (NC) approach [16–19], a part of the Noise-Planet project [27]. Lastly,
one can also cite projects that use citizen-contributed data from location-based social networks to create
maps of sound environments [28,29].

NoiseCapture: a crowdsourcing approach for the evaluation of
the sound environment
The NoiseCapture project, which builds upon the advancements in Information and Communication
Technologies (ICT), harnesses the power of smartphones as acoustic sensors and engages citizens as data
collectors, fostering a participatory and open science approach. By leveraging smartphones as measuring
instruments, citizens can collect noise data along specific paths and share it with the NoiseCapture com-
munity. This crowdsourced database contains standardized noise indicators (i.e. equivalent noise level
LAeq, percentile indicators (LA10, LA50, LA90), min and max values of the sound level. . . ), user per-
ceptions of noise sources and soundscape quality, along with additional information such as measurement
time, GPS coordinates, and user speed.

The NoiseCapture application stands out due to its unique combination of advantages derived from
classical approaches. It offers scalability, allowing for the efficient handling of large datasets and complex
areas. The application also provides flexibility, enabling customization to specific requirements and
integration with various data sources. Moreover, it ensures accuracy by leveraging reliable measurement
techniques and robust analysis methods. One notable strength of NoiseCapture is its ability to capture
a representative sample e.g. road traffic, constructions, music, people, animals. . . ) of ambient noise
levels, leading to more comprehensive and reliable results. Additionally, the application offers real-time
monitoring capabilities, allowing for timely updates and immediate access to noise data for informed
decision-making. An intriguing aspect of NoiseCapture is its ability to achieve these advantages without
suffering from the inconveniences typically associated with classical approaches. It minimizes challenges
related to costs and setup, offers broader coverage by leveraging modern technologies, simplifies data
processing through automated workflows, and reduces maintenance requirements. Overall, NoiseCapture
stands as a professional and developed solution that combines the best features of classical approaches
while mitigating their inherent inconveniences. It provides a robust and efficient platform for noise
monitoring and analysis, offering scalability, flexibility, accuracy, representative sampling, and real-time
monitoring capabilities.

The PhD thesis topic
Since its launch, the NoiseCapture project has accumulated a substantial amount of data, providing
the opportunity for extensive spatial and temporal analysis. With over 445,000 tracks and 111 million
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measurement points contributed by more than 102,000 contributors across 200 countries, the database
represents a valuable resource for studying sound environments. Nevertheless, NoiseCapture dataset
suffers from issues related to its quality. These issues can take form of uncertainties (e.g. the quality of
smartphone calibration, point geolocalization in case of high GPS accuracy. . . ); anomalies (e.g. negative
speed, negative noise levels, incorrect time of measurement. . . ) and missing values (e.g. geolocalization,
gain calibration, soundscape source, perception of soundscape. . . ). The utilization of such a vast dataset
requires a comprehensive understanding of its inherent limitations and potential uncertainties. So, what
are these issues and limitations? Is the NoiseCapture dataset comprised of a reference dataset that can
be utilized to enhance the application, improve data quality, and collect contextual information in the
future? What are the key parameters or features in the NoiseCapture dataset that require correction and
control in order to generate high-quality data for relevant noise maps? How can these corrections and
controls be implemented? Thus, the aim of our thesis was to provide answers to these questions, in order
to obtain a ’Qualified’ database, to open up the field of data exploitation (figure 1).

NoiseCapture dataset

'Cleaned'

'Labeled'

'Qualified'

Statistical analysis
(quality, completeness)

Reference dataset identification
(clustering)

Gain calibration correction 

Anomaly detection & 
relocalization of missing points

Figure 1: Organization of thesis work.

Manuscript presentation
The first chapter details an overall statistical analysis that was performed on NoiseCapture dataset
by examining the data gathered over a period of three years. It offers a comprehensive assessment of
the data’s quality, consistency, and completeness. Furthermore, we delve into the inherent limitations
associated with each data point. These limitations can be attributed to factors such as the nature
of the data, the measurement protocol, the technical performance of the smartphone, the absence of
calibration, and the presence of anomalies in the collected data. The aim of this statistical analysis is to
enable everyone to fully utilize the database while maintaining complete control over it. This endeavor
yielded a scientific article that has been published in 2021 in the International Journal of Environmental
Research and Public Health Journal [30]. The chapter reproduces the article as published.

Although this work achieved a preliminary cleaned dataset, it also made the need to control and
enhance NoiseCapture dataset quality a must. Many of machine learning approaches require reference
(i.e. labeled) data to be applied, which makes searching for such a data in NoiseCapture dataset a
priority. In the context of NoiseCapture, this reference data can be generated during specific organized
events (NoiseCapture Party), where participants undergo specialized training to gather measurements.
However, the available data from these events are insufficient in quantity to create a comprehensive
reference database, thus requiring supplementation. Considering that other communities worldwide also

12



utilize NoiseCapture, there is a desire to incorporate the data they have collected into the learning
database. To achieve this, it is crucial to identify and extract this data from the huge amount of available
information (figure 1). Thus, the second chapter proposes utilizing a classical clustering method called
DBSCAN, which is well adapted to exhibit higher measurement density in both space and time, as in
a NoiseCapture Party. We initially tested this method on the existing NoiseCapture Party data and
subsequently applied it on a global scale. By adjusting the DBSCAN parameters, multiple clusters have
been detected, each displaying distinct typologies. This work has been published in 2022 in the Sensors
Journal [31]. The chapter reproduces the article as published.

After succeeding in acquiring more reference data, we could finally tackle the issue of anomalies
in NoiseCapture dataset (i.e. the final step of the progress figure 1). The Third chapter proposes
an adaptation of a blind calibration method to the data obtained from the NoiseCapture smartphone
application. The method involves modeling the relationships between sensors, which can be expressed
in matrix form and solved as a linear algebra problem. To assess the effectiveness of the method, we
conduct tests and comparisons using NoiseCapture datasets that already include information about the
calibration values of certain smartphones. As an experimental application, we utilize the method on a
dataset from a French city, resulting in the creation of a calibrated noise map based on the collected
raw data. This work resulted in an article submitted to the Sensors Journal, and, here again, which is
reproduced in the corresponding chapter as it submitted.

The last chapter culminates in a comprehensive global conclusion that summarize the findings from
all previous chapters and provides insights into the future prospects of the research.

Although each chapter appears as the insertion of a published or submitted article, the present thesis
manuscript follows the logic presented in figure 1.
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Chapter 1

A smartphone based crowd-sourced
database for environmental noise
assessment
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Abstract: Noise is a major source of pollution with a strong impact on health. Noise assessment is
therefore a very important issue to reduce its impact on humans. To overcome the limitations of the
classical method of noise assessment (such as simulation tools or noise observatories), alternative
approaches have been developed, among which is collaborative noise measurement via a smartphone.
Following this approach, the NoiseCapture application was proposed, in an open science framework,
providing free access to a considerable amount of information and offering interesting perspectives
of spatial and temporal noise analysis for the scientific community. After more than 3 years of
operation, the amount of collected data is considerable. Its exploitation for a sound environment
analysis, however, requires one to consider the intrinsic limits of each collected information, defined,
for example, by the very nature of the data, the measurement protocol, the technical performance of
the smartphone, the absence of calibration, the presence of anomalies in the collected data, etc. The
purpose of this article is thus to provide enough information, in terms of quality, consistency, and
completeness of the data, so that everyone can exploit the database, in full control.

Keywords: environmental noise; crowd-sourcing; smartphone application; data analysis

1. Introduction

Noise is a very significant source of pollution, particularly in urban areas, with
significant effects on health. The fight against noise is a fundamental societal and health
issue, to which the public authorities are trying to respond by putting regulations in place.
In Europe, for example, the directive 2002/49/EC aims to establish an inventory of noise
nuisance, to propose actions to reduce nuisance and to communicate to citizens about their
exposure to noise [1]. In this regulatory context, the main tool for decision-makers is the
production of strategic noise maps.

These maps are generally produced using specific software, integrating noise emission
and acoustic propagation models, coupled with geospatial data and traffic information.
Although these maps are limited by the calculation assumptions and the quality of the
input data, they make it possible to assess the broad outlines of a noise distribution in a
city and to evaluate the effect of action plans to reduce noise. However, they generally lack
realism, particularly from the point of view of the temporal dynamics of noise. Conversely,
noise observatories, consisting of a large number of acoustic sensors, offer a more realistic
description of noise environments. However, the limitation of the number of sensors, for
technical and cost reasons, does not allow carrying out noise mapping with a sufficient
spatial step.
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Faced with these observations, alternatives have been proposed. In particular, the
use of more affordable sensor networks has been investigated, allowing to densify the
observation points [2]. Another way consists in the involvement of citizens as data col-
lectors, in a crowd-sourcing approach. For example, the Smart Citizen System project
proposes a low-cost sensor specifically dedicated to collect noise data by citizen action [3].
Considering a soundscape approach, data produced by people on location-based social
networks can also be analyzed to produce maps of the sound environment, like with the
Chatty maps experiment [4] or more recently by Gasco et al. [5]. The Sound Around You
project is another example, by proposing a web interface to collect soundscape recording
and opinions [6]. Nowadays, among all the citizen science-oriented approaches, the one
based on the use of smartphones is undoubtedly the most developed in the literature. In
particular, Santini et al. have demonstrated the capabilities of a smartphone to perform
environmental acoustic measurements [7]. It was followed by several works that have
given rise to specific noise and soundscape crowd-sourcing type applications and platforms
(see Ear-Phone, NoiseSPY, and NoiseTube applications, respectively, in [8–10]). What is
interesting in these first works is that, despite the technical limitations of the time (i.e.,
smartphones with limited technical capabilities and resources), almost all the topics related
to this issue had already been discussed: smartphone calibration, data quality, noise maps
reconstruction, contextualized data collection (perceptual data), the need for a complemen-
tary web interface, the need to know the context of the measurement, the implementation of
specific events to organize data collection, contributors privacy, motivation of contributors,
etc. Subsequently, other contributions have appeared on this subject; the reader may refer
to recent literature reviews [11–15] for more details.

The evolution of Information and Communication Technologies (ICTs) and the expe-
rience obtained from the past researches allowed the implementation of very advanced
solutions, in the last few years, among them the Sense2Health platform (which led to the
Ambiciti plateform) [16], integrating a data assimilation model to produce more realistic
noise maps; the Hush City platform [13], for collecting data in quiet areas; the City Sound-
scape platform [17], with the objective to evaluate action plans for road noise reduction;
and the GRCSensing platform [14] with an interesting feature for distributing tasks to users
in order to capture noise in specific urban areas and times.

Proposed more recently, the NoiseCapture project is completely in line with the last
platforms [18], but extends the concept of participatory science to that of open science.
Thus, all source codes, whether for the smartphone application, the spatial data infras-
tructure, or the web interface, are released as open source. In the same way, the data are
available in open data in many ways, and, as far as possible, the scientific productions,
in open access. Attention was also paid to the long-term sustainability of the system, the
NoiseCapture project being part of an operational framework and not in the form of a
short-term experimentation. The objective is to ensure a collection of data over several
years, in order to constitute a reference database for the study of sound environments
over the long term. The respect for privacy and use of personal data is also a founding
element of the NoiseCapture project; in order to respect the national regulation, in partic-
ular in Europe, no sound or video recordings are made, nor is any personal information
collected; the use of the application does not require the creation of an account. Finally, the
developers of the application have paid great attention to the quality of the acoustic data
collected, by integrating proven signal processing algorithms, and by proposing several
methods for smartphone calibration. After more than 3 years of existence, the amount
of data collected worldwide thanks to the application is thus considerable (more than
100,000 downloads, 74,000 contributors, 260,000 tracks that represents around 60 million of
one second measurement points), showing the interest of the citizens for this participatory
approach and offering very promising operational and research perspectives.

Nevertheless, the exploitation of the database, whether in an operational or research
context, requires a good knowledge of the inherent limitations of the methodology, such as
the lack of control of the measurement protocol, poor acoustic calibration of the application,
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measurements tainted by uncertainties, the misuse of the application, the metrological
limitations of smartphones, the context of the measurement, etc. In order to ensure that any
user of the database has a perfect knowledge and control of the information contained in
the database, a full description and an analysis of the database is performed in this article,
in order to highlight the various uncertainties, irregularities, or inconsistencies that need
to be considered before any exploitation of the data. This analysis also highlights future
evolution that it would be interesting to consider in order to improve the application and
to increase the quality of the collected data but also to collect additional information in
order to better take into account the context of the measure in its exploitation. This article
does not therefore constitute an acoustic study of sound environments, but provides a
framework for understanding the NoiseCapture database for its future exploitation. The
study of the noise environments using this database will be the subject of further works.

The NoiseCapture platform is first presented in Section 2. The collected data are then
described and analyzed in the Section 3, providing sufficient information to a future user, for
an exploitation of the database in total control of the nature of the data and their possible
limitations. In Section 4, a discussion is provided for improving the application and the
methodology to increase the data quality and analysis. Last, Section 5 concludes this work.

2. NoiseCapture Application and Database Description
2.1. NoiseCapture History

The development of the NoiseCapture application was initiated by the french Na-
tional Center for Scientific Research (CNRS) and the Université Gustave Eiffel (formerly
Ifsttar) within the framework of the European ENERGIC-OD project [19], which aimed at
producing and redistributing geospatial information in open data to user communities.
The development continued thereafter, as a part of the Noise-Planet project [20], with the
objective to combine geomatic and acoustic sciences for the evaluation of outdoor sound
environments. In line with the general goal of the Noise-Planet project, it was decided
to develop the NoiseCapture application in the framework of an Open Science approach,
with the dissemination of source codes in Open Source, data in Open Data, and as far as
possible, scientific dissemination through publications in Open Access journals.

The initial objective of the NoiseCapture application was to propose a smartphone
application to a community of specialists (technical staff within a local authority for ex-
ample), in order to assess the outdoor sound environments in their territory, by using a
collaborative mapping tool. The target audience was therefore initially people with techni-
cal and, possibly, acoustic knowledge, allowing them to understand a rather professional
smartphone application.

The NoiseCapture application was designed in order to carry out acoustic measure-
ments over a shorter period of time, if possible while walking, in order to collect data on
a large spatial area. The user was expected to keep the smartphone in hand throughout
the measurement, especially to control the measurement. Thus, the measurements are
user-initiated and not background. Each user can then decide to upload data to a remote
server that collects all the data in a database, performs further analysis, and represents the
results collected by a set of users in the form of a noise map.

The choice of the development environment was oriented towards the most widespread
platform, namely, Android, whose market share has been above 80% for many years
(around 15% for iOS (a mobile operating system created and developed by Apple Inc.)) [21].
The porting of the application to iOS has not been achieved, although a gain in terms of
metrological quality may be possible due to a lower variability in devices [22]. In order
to promote the diffusion of the application worldwide, the application has been translated
thanks to volunteers, in several languages (English (en), Chinese (China, zh_CN), French (fr),
Greek (el), Polish (pl), Portuguese (Brazil, pt_BR), Spanish (es)). In the rest of this article, the
terms and features of the application refer to the 1.2.15 version (release 51) of NoiseCapture
with the default language (i.e., “en” for English). The last public NoiseCapture release is
available on Google Play (“Google Play” brand is property of Google LLC) [23].
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2.2. NoiseCapture Description
2.2.1. NoiseCapture Android App

From a functional point of view, the NoiseCapture application uses the principles
of a “pocket” sound level meter. The main screen (Figure 1, “Measurement”) presents
the results of an acoustic measurement through several classical acoustic indicators: an
instantaneous sound level (calculated on a sliding window), as well as the minimum (Min),
maximum (Max), and average (Mean) instantaneous sound levels over the duration of
a measurement. The instantaneous spectrum by third octave band between 100 Hz and
16 kHz is also proposed on a specific tab, as well as a spectrogram. The duration of the
measurement is also indicated: the user can start, pause/resume, and stop the measurement
at their convenience, and the measurement duration can also be automatically be fixed
in the application settings (the user starts the measurement, but it stops by itself after a
certain duration).

Figure 1. NoiseCapture Android application main screens. From top/down and left/right: Mea-
surement, Description, Results, Map.
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In accordance with the initial objective of the application, i.e., the production of a
noise map, each measurement is geolocalized with the last known GPS location. The
measurement screen also indicates the position of each measurement, every second (i.e.,
the “Measurement Point”), and more globally the trace of a measurement (i.e., the “Mea-
surement Track”) according to the user displacement. The accuracy of the location is
also indicated both numerically and graphically on the map. At this point, note that the
acoustic indicators that are calculated and displayed on this screen, as well as those that are
presented on the “Results” screen, do not result in any audio recording; these indicators
are calculated on the fly.

After a measurement has been performed, the user accesses a second screen (Figure 1,
“Description”), which allows the user to give additional information to the measurement.
Filling this form is entirely optional. Some information, such as “Description” and “Pic-
tures”, are only stored on the smartphone, while other data may be collected and transmit-
ted to the NoiseCapture remote data server. The choice of whether or not to transmit the
measurements and information can be configured by the user. On this screen, 3 types of
information can be provided: (1) information on the perceived quality of the sound environ-
ment (“Pleasantness”); (2) information on the measurement conditions using 4 tags (“Test”,
“Indoor”, “Rain”, and “Wind”); (3) information on the nature of the sound sources perceived
during the measurement, using 14 tags (“Footsteps”, “Voice”, “Natural”, “Mechanical”,
“Human”, “Works”, “Air t.”). (i.e., “Air Traffic”), “Entertainment”, “Children”, “Music”,
“Road”, “Rail”, “Marine”, “Alarms”, “Industrial”, “Water”, “Animals”, “Vegetation”).

Once this optional information has been validated, the user has access to a summary
of the measurement in the “Results” screen (Figure 1). Acoustic indicators are specific
to the evaluation of outdoor sound environments, based on 1 s average sound level [24],
such as noise levels in percentiles (LA10, LA50 and LA90), maximum (Max) and minimum
(Min) values as well as the average sound level in dB(A) and the average spectrum over
the measurement time. In addition, a graphical representation, noted RNE, shows the
distribution of the 1-second noise levels.

A “Map” can also be displayed on a specific screen (Figure 1) in order to locate the
measurement points and to represent the average values shared by the user community
and aggregated by the NoiseCapture remote server. Other functionalities are also offered
by the application, such as smartphone calibration and data archiving, but are not detailed
in the present paper. More details are given in the following reference [18].

2.2.2. NoiseCapture Web Interface

While the NoiseCapture application can be used to meet the need of a user (i.e., to
assess a noise level in his own environment), the overall interest of the approach lies in
the sharing of data within a community, which requires the data to be centralized on a
remote server. To this end, a Spatial Data Infrastructure (SDI), called OnoMap, has been
specifically implemented to propose 3 functionalities: to (1) collect, (2) display, and (3)
share all the data produced by the contributors [20,25,26].

The second functionality is the most visible part of this SDI, as it allows to display
the collected data to any visitor of the website, in an aggregated and understandable
form. Figure 2 illustrates an example of a graphical representation, centered on the city of
Lyon in France. Depending on the zoom scale of the map, the main window presents the
collected data either in a numerical form, in terms of number of points per geographical
area (represented by hexagons of different sizes depending on the zoom level), or in the
form of a ‘classical’ noise map. In the latter representation, only certain acoustic indicators
are presented, by aggregating all the values collected over a fixed spatial extent (i.e., average
of an acoustic indicator in a hexagon). The left-hand side of the web page gives access to
additional contents, such as the history of the last 30 series of measurements (almost in
real-time), general statistics on all the data collected (most contributing countries, number
of measurements, most used tags, etc.). By clicking on a hexagon on the noise map (at
the highest zoom levels), it is also possible to access to more detailed information, such
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as the number of points and the total duration of measurements in the corresponding
hexagon, the average equivalent sound level (LA,eq and LA50), the tags used (in the form
of a tag cloud), as well as the hourly distribution of sound levels on different days of the
week. All the information presented in this web page results from a direct exploitation of
the NoiseCapture database, and illustrates some relatively simple analysis. Downloading
the collected data (the third functionality of the SDI) offers many more perspectives of
analysis and representation of the data. The upper screenshot of Figure 2, which displays
the position of the measurement points, underlines again the interest of the method and the
very rich perspectives of analysis of the sound environments, with regard to the quantity of
data that can be collected on a given spatial extent. The purpose of this article is precisely
to propose a first analysis of these raw data, in Section 3, so that they can be exploited, in a
second step, to perform a relevant sound environment analysis.

Figure 2. Screenshots of the NoiseCapture map website. Example of collected data representation,
on the Lyon French city (from https://noise-planet.org/map_noisecapture/index.html#18/45.7538
7/4.84052/ (accessed on 15 July 2021)), at a higher (up) and lower (down) zoom levels.
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2.3. NoiseCapture Raw Database

The analysis that is carried out thereafter covers the data collected since the official
publication of the application on 29 August 2017 until 28 August 2020 (3 years). These
collected data cover several releases of the application (from 28 to 51, see Table 1), some of
which make changes to the nature of the data collected and the features. Previous release
(before release 28) and intermediate pre-releases correspond to beta versions, published
on Google Play to a specific panel of testers. The database available for download may
include data from beta and pre-release versions; it may be useful to filter these data both
on a period (from the launch of the application) and on the version (since release 28), for a
relevant analysis.

Table 1. NoiseCapture application releases. Each new version, defined by a version release (for example ‘51’) and a version
number (for example ‘1.2.15’) proposes changes (bug corrections, user interface enhancement, etc.). The reader can refer to
the detailed list of fixes in each (pre-)release from the GitHub source code management platform [27]. The changes made on
the data export, from the smartphone to the data server (adding new data, patches, etc.), are detailed in the history of the
source code file MeasurementExport.java [28]. The date of publication of the application on Google Play is also provided
for information (corresponding official public release are indicated in bold with symbol *).

Release (Number) Source Code Publication STATUS Application Publication Comments

51 * (1.2.15) 3 July 2020 Release 7 July 2020 Fix automated measurement upload
49 (1.2.13) 17 February 2020 Pre-release Add calibration method using road traffic

Add ‘calibration_method’
45 * (1.2.9) 27 March 2019 Release 26 March 2019 Calibration in LA,eq instead of Leq
43 * (1.2.7) 16 November 2018 Release 16 November 2018 Minor changes
35 * (1.1.3) Release 20 April 2018 Minor changes
34 * (1.1.2) Release 29 January 2018 Minor changes
33 * (1.1.0) 23 November 2017 Pre-release 24 November 2017 Ability to use a calibrated sMarchtphone

to automatically calibrate other sMarchtphone(s)
32 * (1.0.4) Release 6 November 2017 Minor changes
31 * (1.0.3) Release 6 October 2017 Minor changes
30 (1.0.2) 18 September 2017 Pre-release Add NoiseCapture Party functionalities
29 * (1.0.1) Release 31 August 2017 Minor changes
28 * (1.0.0) 23 August 2017 Release 29 August 2017 Official first release

Add ‘user_profile’

2.4. NoiseCapture Installs and Uninstalls

As mentioned above, the initial audience targeted during the development of the
application was primarily technical staff, with sufficient expertise to be able to use the
application in satisfactory conditions (compliance with a measurement protocol, acoustic
calibration of the smartphone, critical analysis of the measurements, etc.). The production
of data was therefore initially part of a supervised activity with a professional purpose. In
practice, the publication of the application on Google Play, combined with an institutional
communication, was relayed by the national and then European media, generating the
interest of a wider public than initially foreseen. Very quickly, the application was then
downloaded in other countries, notably the United States, by a large audience. This con-
firms once again the interest of citizens and communities in the issue of noise environments
and reaffirms the major societal challenge of research on this subject.

Figure 3a illustrates the number of installs of the application for the two countries
(US and FR) that contribute the most to the data collection today; these data are obtained
from the application dashboard on Google Play. This figure clearly shows the impact of the
launch of the application in France, with a high number of installs in the first few weeks,
followed by a decrease to an average level of about 60 installs per week; conversely, there
is a gradual increase in the number of installs in the US, to an average level of 800 installs
per week. From a global point of view, Figure 3b shows a certain stability around the
1000 weekly installs worldwide, over most of the period concerned. Unsurprisingly, the
uninstalls rate follows the rate of installations, but the number of uninstalls tends to exceed
the number of installations since the end of 2019, which leads to a decrease in the number
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of active devices (i.e., devices having installed the application and being turned on over a
30-day period), which has gone from about 17,000 at the end of 2019 to 13,000 at the end
of 2020.

(a)

(b)

Figure 3. Weekly evolution of user installs and uninstalls of the NoiseCapture application (data
from Google Play dashboard): (a) global data and (b) data for France and United states of America.
‘Installs’: number of users who have installed the application at least on one device; ‘Uninstalls’:
users who have uninstalled the application from all their devices; ‘Active devices’: number of active
devices that contains application, and which was turned on at least once in the previous 30 days;
‘Contributors’: Users who have upload data to the NoiseCapture remote server; ‘Events’: Events
that may have a particular impact on the users behavior. (a) Application installs for France (FR) and
United-States of America (US); (b) Application installs/uninstalls/contributors.

Even if it is difficult to make a direct link between the number of installations and the
number of different contributors, we can see that on average, about 50% of new installations
give rise to at least one contribution on the NoiseCapture server over the period from
2017 to mid 2019 (Figure 4). The ‘break’ that is visible on this figure in mid-2019, due to a
very sharp drop in the number of contributors (Figure 3b), is at this stage undetermined.
Conversely, Figure 3b shows the interaction between certain events quite well, in particular
the impact of the publication of a new release on the number of new installs (also visible
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on the number of active devices). For example, the decrease in number of installs and
contributors observed from the beginning of 2020 coincides with the beginning of the
COVID-19 pandemic, particularly visible in the US community (Figure 3a); this is not
visible with the French data, but we can quite imagine that there is a link between these
two events. A detailed analysis of COVID-19 lockdown and user behavior in each country
would undoubtedly lead to some hypotheses. This shows again the interest of such
alternative way for collecting data for the study of the noise environment.

Figure 4. Weekly ratio between the number of contributors to the NoiseCapture database and
NoiseCapture installs.

3. Analysis of the Collected Data
3.1. Collected Data

As mentioned above, the statistical analysis on NoiseCapture data presented in this
section involves data collected from 29 August 2017 to 28 August 2020 (3 years of data).
During this period, the NoiseCapture application has proven to be successful to perform
and gather acoustics measurements. NoiseCapture has been downloaded more than
160,000 times on Google Play [23], with 76,229 contributors to the database all over the
world. Approximately 91.7% of the users present in the database (69,898 of the 76,229 con-
tributors in the present database) have contributed within this period. Table 2 shows that
260,422 tracks (59,685,328 points) have been collected, with an average of 229.2 points (i.e.,
seconds) per track (a median value of 28 points per track).

Table 2. Distribution of collected data per release, from 29 August 2017 to 28 August 2020. The
number of collected data during NoiseCapture Parties (see Section 3.6) is also indicated, as well as
in terms of percentage of the total number of data. Releases in bold with symbol * correspond to
public releases on Google Play. Note that the total number of contributors in this table (74,082) does
not correspond to the total of unique contributors, as a contributor may have use several release of
the application.

Release Contributors Tracks Points
Total Party Total Party Total Party

28 * 26 – 354 – 46,268 –
29 * 2705 – 8991 – 1,588,156 –
30 35 7 (20.0%) 416 133 (32.0%) 140,627 11,523 (8.2%)

31 * 1432 2 (0.1%) 4426 6 (0.1%) 957,920 770 (0.1%)
32 * 1553 3 (0.1%) 4746 9 (0.2%) 847,093 1556 (0.2%)
33 * 5442 4 (0.1%) 19,225 52 (0.3%) 3,530,349 8819 (0.2%)
34 * 9053 13 (0.1%) 28,607 67 (0.2%) 6,121,154 18,793 (0.3%)
35 * 15,734 67 (0.4%) 68,911 921 (1.3%) 12,465,115 117,797 (0.9%)
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Table 2. Cont.

Release Contributors Tracks Points
Total Party Total Party Total Party

36 4 – 6 – 1861 –
37 11 – 55 – 20,732 –
38 3 – 7 – 1774 –
39 2 – 2 – 108 –
40 1 – 1 – 2 –
41 1 – 1 – 97 –
42 1 – 1 – 10 –

43 * 11,169 82 (0.7%) 37,960 643 (1.7%) 9,309,934 89,794 (1.0%)
44 6 – 33 – 4276 –

45 * 23,331 183 (0.8%) 67,765 1306 (1.9%) 18,629,005 142,168 (0.8%)
46 3 – 7 – 5030 –
47 4 1 (25.0%) 6 1 (16.6%) 21,101 134 (0.6%)
48 3 – 12 – 8597 –
49 25 – 233 – 235,882 –
50 4 – 4 0 0.0%) 146 –

51 * 3534 2 (0.1%) 18,653 4 (0.02%) 5,750,091 221 (0.003%)

Total 74,082 364 (0.5%) 260,422 3142 (1.2%) 59,685,328 391,575 (0.6%)

All the collected data during the corresponding period of analysis have been inte-
grated into a spatial relational PostGIS database [29] (i.e., a spatial database extender for
PostgreSQL object-relational database [30], adding a support for geographic objects). The
database is fully available for download [31] and can be used according to the OdBL
license [32]. It is important to specify that all the data integrated in this database fully
respects the privacy of users as no personal data is collected.

The data collected from smartphones are organized into several tables (Figure 5):

• For each measurement ‘Point’ (i.e., a measurement performed every second dur-
ing a ‘Track’), the global ‘noise_level’ value measured at the measurement date
‘time’ is given in the ‘noisecapture_point’ table. In addition, the ‘speed’ at
the measurement point, the geolocalization (‘the_geom’), the date of the localiza-
tion (‘time_location’), the ‘accuracy’ of the geolocalization as well as the smart-
phone ‘orientation’, all obtained by the smartphone GPS, are given. In this table,
the measurement point is defined by a primary key ‘pk_point’ (generated by the
database) allowing to make the relation with two other tables ‘noisecapture_freq’
and ‘noise_capture_track’ (via the primary key ‘pk_track’);

• The ‘noisecapture_freq’ table contains for the measurement point defined by
the primary key ‘pk_point’, the ‘noise_level’ spectrum by third octave band
‘frequency’ between 100 Hz and 16 kHz;

• The ‘noisecapture_track’ table contains all the information associated with a
measurement corresponding to a set of measurement points. Each measure is de-
fined by a primary key ‘pk_track’ (generated by the database) and a unique iden-
tifier ‘track_uuid’ (generated by the application). Each measurement contains
the following information: the user primary key ‘pk_user’, the release number
of the application ‘version_number’, the characteristics of the smartphone (the refer-
ence ‘device_product’, the model ‘device_model’ and the manufacturer ‘device_
manufacturer’), the date of the start of the measurement ‘record_utc’, the dura-
tion ‘time_length’ of the measurement, the average sound level over the duration
of the measurement ‘noise_level’ and the perception of the sound environment
‘pleasantness’. Information on the acoustic calibration of the smartphone is also
associated with the measurement: the choice of the calibration method ‘calibration
method’ and the corresponding calibration value ‘gain calibration’. Finally, if
the measurement was performed during a NoiseCapture Party (see Section 3.6), the
corresponding code is indicated in the value ‘pk_party’.
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• The ‘noisecapture_user’ table gives for each primary key ‘pk_user’, the user iden-
tifier ‘user_uuid’ (this unique identifier is randomly created each time the application
is installed on a smartphone), the user creation date ‘date_creation’ (created by
the remote server when uploading the data, not at the application installation), as
well as the user ‘profile’ defined by the choice of a value in a list, as ‘EXPERT’,
‘NOVICE’, and ‘NONE’. The value ‘pseudo’ in the table has been created for future
functionalities and is currently not used.

• The ‘noisecapture_track_tag’ table contains for each measure defined by the pri-
mary key ‘pk_track’, the list of tags selected by the user to describe the sound
environment. The identifiers of the corresponding tags are defined in the value
‘pk_tag’. The correspondence between the identifier of the ‘pk_tag’ tag and the
name of the tag (‘tag_name’) is defined in the ‘noisecapture_tag’ table.

• The ‘noisecapture_party’ table contains information about the realization of the
NoiseCapture Party events [33] (see Section 3.6 for details). In principle, such event
is supervised by an expert, over a limited duration and spatial extent, allowing to
generate a series of measurements. It can for example be an action carried out by a
Community in order to carry out a series of measures concentrated in a particular
district. A NoiseCapture Party has much the same objectives as an OpenStreetMap
(OSM) Mapping Party to feed the OSM global database [34]. This table gives for each
NoiseCapture Party, a specific primary key ‘pk_party’ (generated by the database)
returning the code of the NoiseCapture Party (‘tag’), the title ‘title’ and a de-
scription ‘description’, the spatial extent defined by a geometry ‘the_geom’, the
start and end dates of the event ‘start_time’ and ‘end_time’. The boolean values
‘filter_time’ and ‘filter_area’ are used to define whether the collected data
are integrated into the NoiseCapture Party set, whether or not the measurements
have been made with the right NoiseCapture Party code, but outside of the temporal
and and spatial limits. The value ‘layer_name’ is only used to give a name to the
corresponding map layer in the web page displaying the data on the corresponding
website [26]. It is important to specify that the NoiseCapture Party is technically
created by the people in charge of the development of NoiseCapture. If an invalid
value is used for the NoiseCapture Party code field in the ‘Description’ screen of
the application (Figure 1), the code is removed, but the corresponding data are still
included in the database.

3.2. User Information
3.2.1. User Profile

The use of the application according to the respect of technical procedures in acoustics
is an important issue for the quality of the produced data. In order to have information
on the user experience, at the installation step of the application, the user is asked to
define his expertise using a 3 levels scale: ‘EXPERT’, ‘NOVICE’, or ‘NONE’. Analyzing
the 76,229 different contributors in the database, over the period from 29 August 2017
to 28 August 2020 (using the field ‘date_creation’, which corresponds to the date of
creation of the user in the NoiseCapture database on the remote server), 10.19% defined
themselves as ‘EXPERT’, 24.78% as ‘NOVICE’, and 64.17% as ‘NONE’. A very large majority
of contributors therefore have no experience in the field, which can necessarily lead to a bias
in the quality of the data collected. This is an expected behavior for a citizen science project.

Note that for 653 contributors (0.86% of the total number of contributors), the profile
field is empty, meaning that the information is not available during this period. This is due
to an update of the application from a version prior to version 28 (the field ‘user_profile’
has been integrated from version 28), as the user is not asked to modify this field during an
update. In detail, the analysis of these cases shows that most of the concerned contributors
(641) were declared in the database in the first 2 months after the launch of the application,
while the other 12 contributors were declared during the rest of the period.
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Figure 5. Entity relation diagrams (ERD) of the NoiseCapture PostGIS database. The type of each
field in the tables is mentioned: ‘123’ for ‘float’ values, ‘ABC’ for ‘text’ chains, ‘timestamptz’ for
time stamp date, ‘�X’ for ‘boolean’ value. The ‘key’ yellow symbol is used to display primary keys of
the table, whose corresponding names are displayed in bold.

3.2.2. User Devices

For this type of measurement application, the metrological quality of the device,
whether for acoustic measurement or for other data (GPS and other sensors), is an essential
aspect. On this point, the identification of the smartphone can provide useful information
for a later analysis of the collected data, in postprocessing. Among the possible treat-
ments, an a posteriori calibration of the acoustic data, for example, based on a smartphone
knowledge base, offers interesting prospects for improving the quality of the acoustic
indicators produced by the application [35,36]. Some works have also shown that the
knowledge of the manufacturer can provide a useful information on the accuracy of the
measurement [37]. This justifies the need to collect hardware-related information, namely,
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the ‘device_product’, the ‘device_model’, and the ‘device_manufacturer’, defined by
Android documentation as the name of the overall product, the end-user-visible name for
the end product and the manufacturer of the product/hardware respectively [38].

As an example, considering the Samsung Galaxy A10, which is one of the best selling
Android phone, the device field will give the data of Table 3. This table shows that the
commercial name of the corresponding smartphone can be declined in several device
models that most of time refer to distinct version (’A10E’ for ‘SM-A102’, ‘A10’ for ‘A105’,
‘A10S’, for ‘A107’) or to the international region where they were deployed.

Table 3. Collected device information for the Samsung Galaxy A10 Android phone, as well as, the
count of corresponding phones in the NoiseCapture database.

‘device_model’‘device_model’‘device_model’ ‘device_product’‘device_product’‘device_product’ ‘device_manufacturer’‘device_manufacturer’‘device_manufacturer’ Count

SM-A102N a10ekx samsung 1
SM-A102U a10esq samsung 880
SM-A102U1 a10eue samsung 1
SM-A102W a10ecs samsung 4
SM-A105F a10dd samsung 53

SM-A105FN a10eea samsung 176
SM-A105G a10dx samsung 31
SM-A105M a10ub samsung 97
SM-A107F a10sxx samsung 508
SM-A107M a10sub samsung 23

Over the period in question, the database references 646 distinct manufacturer names.
However, the same manufacturer can appear under a different spelling; this is the case, for
example, for Samsung, appearing with the following names: ‘samsung’, ‘Samsung’, and
‘SAMSUNG’. By grouping the manufacturers without taking into account the sensitivity
to upper and lower case, one can identified finally 520 manufacturers (Table 4) with
5300 different smartphone models. Nevertheless, three manufacturers alone (Samsung,
LGE and HUAWEI) account for about 35.2% of the models, and cumulate nearly two thirds
of the tracks (65.1% or 66.3% in number of points). The top 15 manufacturers account for
90.3% of the tracks (91.1% of the points).

Table 4. Top 15 of smartphone manufacturers (‘device_manufacturer’, case insensitive) in the NoiseCapture database.
The number of corresponding distinct device models (‘device_model’), the number of tracks, as well as the cumulative
number of tracks are also given. Note that this table do not regroup data from the same manufacturer but with a different
writing (upper/lower case, as for ‘Samsung’ and ‘samsung’).

Rank Device_MANUFACTURERDevice_MANUFACTURERDevice_MANUFACTURER Nb of Models Nb of Tracks % Cumul. Nb of Tracks %

1 samsung 1032 101,420 38.9% 101,420 38.9%
2 LGE 383 36,288 13.9% 137,708 52.9%
3 HUAWEI 454 31,937 12.2% 169,645 65.1%
4 motorola 126 17,822 6.8% 187,467 71.9%
5 ZTE 171 12,840 4.9% 200,307 76.9%
6 Xiaomi 106 6334 2.4% 206,641 79.3%
7 TCL 191 5180 2.0% 211,821 81.3%
8 Sony 167 5116 2.0% 216,937 83.3%
9 OPPO 91 3742 1.4% 220,679 84.7%

10 WIKO 73 3223 1.2% 223,902 86.0%
11 asus 115 2870 1.1% 226,772 87.1%
12 HTC 130 2406 0.9% 229,178 88.0%
13 HMD Global 41 2208 0.8% 231,386 88.8%
14 LENOVO 108 1881 0.7% 235,065 89.6%
15 OnePlus 32 1798 0.7% 235,065 90.3%



Int. J. Environ. Res. Public Health 2021, 18, 7777 14 of 41

The distribution of measurements is more important in number of models (Table 5), as
the top 15 models only have 15.9% of tracks (16.7% of points), each model accounts to only
between 1.8% and 0.8% of the whole measurements. To reach half of the tracks, we have to
consider 130 different models, and 1077 models to exceed 90%. In addition, Figure 6 shows
that most of devices appears only few times in the database; for example, 3407 different
devices are used 10 times or less; conversely, only 775 device models appear more than
50 times in the database. In detail, there are 1228 smartphones that are used only once and
677 twice.

Table 5. Top 5 of smartphone model (‘device_model’) in the NoiseCapture database.

Rank Device_MODELDevice_MODELDevice_MODEL ‘Device_MANUFACTURER’‘Device_MANUFACTURER’‘Device_MANUFACTURER’ Nb of Tracks % Cumulative Nb of Tracks %

1 ANE-LX3 samsung 4729 1.8% 4729 1.8%
2 SM-G930F samsung 3722 1.4% 8451 3.2%
3 LM-X210(G) LGE 3479 1.3% 11,930 4.6%
4 SM-A520F samsung 3205 1.2% 15,135 5.8%
5 Z982 ZTE 2890 1.1% 18,025 6.9%
6 SM-G935F samsung 2854 1.1% 20,879 8.0%
7 Moto E (4) motorola 2748 1.0% 23,627 9.1%
8 SM-N950U samsung 2384 0.9% 26,011 9.9%
9 moto e5 play motorola 2361 0.9% 28,372 10.9%

10 SM-G950F samsung 2301 0.9% 30,673 11.8%
11 SM-J327T1 samsung 2297 0.9% 32,970 12.6%
12 LGMP260 LGE 2213 0.8% 35,183 13.5%
13 SM-S327VL samsung 2200 0.8% 37,383 14.3%
14 VTR-L09 samsung 2095 0.8% 39,478 15.1%
15 SM-J727T1 HUAWEI 2048 0.8% 41,526 15.9%
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Figure 6. Distribution of the number of occurrences of a smartphone model in the database. As an
example, 775 device models appear more than 50 times in the database.

By focusing on the two most contributing countries (US and FR, Table 6), we find a
consistency between the manufacturers market share and the brands most represented
in the database. This table also shows that Apple with the iPhone model (Apple and
iPhone are trademarks of Apple Inc.) is a very important manufacturer in the US and in
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France; it suggests that the current NoiseCapture database excludes a very large number
of users, that in the case of iOS users, represents a specific segment of the population,
considered with higher income and education levels, in-app engagement [39]. The ini-
tial choice to select Android as the only development platform, as it represents a global
market share of 80%, can thus be questioned. It would seem wise to consider an addi-
tional iOS version of the application in the future, considering the user audience, but also
metrological considerations.

Table 6. Top 6 smartphone manufacturers (‘device_manufacturer’, case-insensitive) for USA and France between August
2017 and August 2020. Top 6 manufacturers data are from Statcounter Global Stats website (licensed under a Creative
Commons Attribution-Share Alike 3.0 Unported License) [40].

Country Device_MANUFACTURERDevice_MANUFACTURERDevice_MANUFACTURER Number of Tracks % Top 6 Manufacturer in Country

United States

samsung 32,341 36.6% IPhone
LGE 23,668 26.8% Samsung

motorola 9257 10.5% LGE
ZTE 8154 9.2% Motorola
TCL 2117 2.4% Google

Alcatel 1289 1.4% ZTE

France

samsung 12,899 46.2% Samsung
HUAWEI 4864 17.4% IPhone

WIKO 1731 6.2% HUAWEI
Xiaomi 1294 4.6% Sony
Sony 1254 4.5% Xiaomi

motorola 1093 3.9% WIKO

3.2.3. User Contribution

Table 7 illustrates the use of the application in terms of number of contributions.
Slightly more than half of the contributors have contributed to the database only by 1 track,
and nearly 95% by less than 10 tracks. It is likely that most of the contributors concerned
by only few contributions were just interested by testing the application, before either
uninstalling it or putting it aside. This table also shows that there is a small proportion of
contributors who have collected a very large number of tracks, up to several thousand for
some. It seems obvious that these contributors have integrated themselves into an active
approach to collect measurements and that this type of user is the most interesting part
of the community, a priori motivated by the collaborative approach. The animation of this
specific community must be a priority in the future. This last point will be discussed in
Section 4.

Table 7. Distribution of the number of contributors in function of the number of track measurements.
The number of corresponding points is also given.

Number of Tracks Number of Contributors % Number of Points %

1 36,405 52.0% 8,709,872 14.6%
2–10 30,043 43.0% 24,106,578 40.1%

11–50 3063 4.4% 14,779,033 24.7%
51–100 236 0.3% 3,915,310 6.5%

101–1000 143 0.2% 8,016,517 13.4%
>1000 8 0.1% 158,018 0.7%

Total 69,898 59,685,328

Considering the contributors with only one contribution, Figure 7 shows that 6155 of
them (16.9%) have used the “test” tag, meaning that they were just testing the application.
In addition, Table 8 shows that 14,034 (38.5%) of these “one-shot” use of the application
have duration less than 20 s. These two observations may partially support our hypothesis
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that these one-shot contributors just want to test the application, and probably do not plan
to use the application again.
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Figure 7. Distribution of the tags used for tracks collected by user who have 1 only contribution to
the database.

Table 8. Distribution of the time length (in second) in function of the number of track measurements
for tracks collected by user who had 1 contribution to the database.

Time Length Number of Tracks %

1–20 14,034 38.5%
21–60 9452 26.0%

61–300 9242 25.4%
301–600 1537 4.2%
601–900 534 1.5%

901–1200 315 0.8%
1201–1800 368 1.0%
1801–2400 213 0.6%
2401–3000 111 0.3%
3001–3600 103 0.3%

>3600 496 1.4%

Total 36,405

Table 9 shows that for users that realize more than one contribution, the second
contribution comes in the next 4.4 days, on average. However, for the major part of the
contributors (158,631, 83.3%), the second contribution is realized in the same day, and in
the same week for 9.9% (18,971).

Table 9. Duration between two successive measurements for users who have more than one contribution.

Duration between 2 Successive Measurements (Day) Number of Tracks %

0 158,631 83.3%
1 7140 3.7%

2–7 11,831 6.2%
8–14 3911 2.0%

14–21 1923 1.0%
21–30 1450 0.8%
31–60 2256 1.2%
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Table 9. Cont.

Duration between 2 Successive Measurements (Day) Number of Tracks %

61–90 1063 0.6%
91–180 1269 0.7%

181–365 768 0.4%
>365 282 0.1%

Total 188,794 100%

3.3. Measurement Geolocalization
3.3.1. Geolocalization

In this paragraph, we present statistics and information related to the geolocalization
of the NoiseCapture data. The variable ‘the_geom’, which gives the coordinates of the
measurement point in the WGS 84 (EPSG:4326) map projection, has been used to perform
this study.

As the country of the measurement is not in the data set, the following 2-step process
has been carried out in order to define the country of origin of each measurement. First,
a table called ‘noisecapture_track_frame’ was created using the PostGIS/PostgreSQL
function ‘ST_EXTENT()’ [41] that returns a box that bound each track. Second, a table
called ‘gadm’, mapping the administrative areas of all countries [42], has been used to
create a table called ‘noisecapture_country_track’ by associating each track to the first
country that contains the track bounding box.

Table 10 shows that the United States contributes more than third of NoiseCapture
database, while France contributes approximately 10% of track data (8.3% point data). A
strong French contribution was obviously expected, the application having been devel-
oped by French research institutes, and also because of a strong relay by national media.
Conversely, it is difficult to explain the large amount of data produced by the US, except to
consider that this country has a high population (3rd in the world in 2020, [43]), compared
to France (22nd in the world). In addition, because some countries do not have access
to Google Play or use alternative app stores, and since the NoiseCapture application is
only available on Google Play store, it is not surprising that they are not found as a data
producer. This is the case of China (Google Play not available in China) and Russia (an
alternative app store is mainly used), for example, while they represent an important part
of the world’s population (1st and 9th in the world, respectively).

Table 10. Distribution of the collected data per country and ranking (first ranks are displayed in bold). Population per
country (percentage of world population) data are from in [43].

Country Population (Rank) Contributors (Rank) Tracks (Rank) Points (Rank) Points/Track

China 17.9% (1) 58 (54) 354 (43) 158,797 (26) 448.6
India 17.5% (2) 894 (4) 2241 (16) 243,778 (22) 108.9

United States 4.2% (3) 29,108 (1) 88,341 (1) 22,676,833 (1) 256.7
Indonesia 3.4% (4) 91 (45) 199 (55) 20,244 (65) 101.7
Pakistan 2.8% (5) 124 (32) 321 (45) 27,035 (57) 84.2

Brazil 2.7% (6) 448 (14) 1503 (20) 244,482 (21) 162.6
Nigeria 2.7% (7) 33 (67) 66 (78) 9319 (75) 141.2

Bangladesh 2.1% (8) 160 (26) 572 (28) 332,316 (19) 581
Russia 1.86% (9) 174 (24) 850 (24) 94,277 (33) 110.2

Germany 1.1% (19) 790 (7) 3093 (7) 1,216,164 (5) 393.2
France 0.9% (20) 5516 (2) 27,911 (2) 4,972,054 (2) 178.1

United Kingdom 0.8% (21) 1164 (3) 4693 (4) 2,067,182 (3) 440.5

Canada 0.5% (37) 792 (6) 2512 (15) 1,551,808 (4) 617.7

Peru 0.4% (42) 77 (48) 11,231 (3) 138,716 (27) 12.3
Netherlands 0.2% (67) 435 (15) 3409 (5) 413,897 (16) 121.4
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Although the ranking of Peru and the Netherlands in terms of population is low, these
two countries are in the top 5 in terms of number of tracks (Table 10). For these countries,
the number of tracks compared to the number of contributors is very high (especially for
Peru), which highlights an intensive measurement activity, which is perhaps part of a
voluntary and organized action (like a NoiseCapture Party for example). A spatio-temporal
analysis of the data produced in these two countries, as well as a detailed analysis of the
behavior of the corresponding contributors, could eventually provide some answers. More
globally, the implementation of cluster detection techniques could be an interesting way to
identify organized events.

While conducting the study, it was observed that 32.5% of the tracks contain points
without geolocalization (i.e., the field the_geom is empty), which represents a total of
10,783,609 points (18% of the total number of points), distributed over 141 countries. For
75% of these tracks (63,538 tracks), all the corresponding points are concerned by a lack
of geolocalization (i.e., the whole track can not be geolocalized). The main reason is that
the geolocalization has not enabled on the smartphone. By further analyzing, it was also
observed that a large part of these tracks correspond to indoor measurements (20,045 (7.7%)
of the corresponding tracks are defined with the ‘indoor’ tag). Tracks with a partial lack
of geolocalized points may be due to a local loss of GPS localization, for example, when
passing through a tunnel. A spatial analysis crossed with other geographical data can
possibly bring elements of answer in this case.

Even when the measurement points are localized (i.e., the GPS actually transmits a
position), this measurement can have a poor accuracy. Putting aside the technical quality of
the hardware used in the smartphone for GPS location, this poor accuracy may be obtained
when the measurement is made in an environment that is not clear enough (in or near a
building, overcast sky) making it difficult to connect to a sufficient number of GPS satellites.

3.3.2. Accuracy

The ‘accuracy’ data collected by the NoiseCapture application allow one to associate
a location accuracy (in meters) to each measurement. This value is obtained using the
getAccuracy() function in Android [44], meaning that there is a 68% probability that the
true location is inside the circle (with a radius equal to the value of the ‘accuracy’) centered
at the corresponding location. The analysis of this parameter shows that the median value
of ‘accuracy’ is around 8 m. It should also be mentioned that it is possible to find some
measurement points with non-realistic accuracy values (such as 1.1× 105 m) that may due
to a wrong technical implementation of the GPS algorithm in the smartphone. For points
with geolocalization, Table 11 shows that most of accuracy are under 25 m (42,313,601 points,
86.5%), which can be considered as a relevant accuracy for noise studies [45], and 35,184,828
(71.9%), 18,069,523 (36.9%), and 420,150 (0.8%) under 15 m, 5 m, and 1 m, respectively.
Finally, one can observe from Figure 8 that the accuracy tends to increase (i.e., the accuracy
value decrease) when the measurement duration increases. This is due to the fact that
a sufficient duration may be required for the GPS receiver within the smartphone to
detect GPS satellites, and then to obtain the best accuracy of location. It suggests that a
NoiseCapture user should wait few seconds after starting the application (for example,
ref. [14] mentions a duration of 4 seconds), before performing a measurement, in order to
obtain the best geolocalization.

Last, it must be mentioned that the function getAccuracy() returns the value 0.0
when the smartphone is not able to obtain a value for the accuracy. This should not be
consider as an accuracy value of 0 m.
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Figure 8. Evolution of the median value of the accuracy of geolocalization (for all measurement
points with geolocalization) in function of time, since the first second of measurement.

Table 11. Distribution of accuracy for the point with geolocalization.

‘accuracy’ Number of Points %

0 0 0
[0, 1] 420,150 0.9
[1, 2] 1,400,466 2.8
[2, 3] 3,574,004 7.3
[3, 4] 7,406,060 15.1
[4, 5] 5,268,843 10.8
[5, 10] 11,142,305 22.8
[10, 15] 5,973,000 12.2
[15, 25] 7,128,773 14.6
[25, 35] 1,725,169 3.5
[35, 50] 1,192,908 2.4
[50, 100] 1,426,475 2.9

>100 2,243,566 4.6

Total 48,901,719

3.3.3. Speed

The NoiseCapture data set contains information about the ‘speed’ value, which rep-
resents the speed (in meter per second) measured by the smartphone GPS at the time of the
measurement point. Table 12 shows that 38.5% of tracks (65.4% of the measurement points)
have a speed equal to 0. According to the Android documentation for the getSpeed() func-
tion [46], a null value is returned when the location does not have a speed; it does not mean
that the speed is equal to zero, but that it is not possible to evaluate its value, even when the
measurement is geolocalized. Note also that it could be interesting to also collect the esti-
mated speed accuracy using the Android function getSpeedAccuracyMetersPerSecond()
in a future release of the application.



Int. J. Environ. Res. Public Health 2021, 18, 7777 20 of 41

Table 12. Distribution of ‘speed’ for points with geolocalization.

‘speed’‘speed’‘speed’ Number of Points %

0 31,986,102 65.4%
[0, 1.4] 837,662 18.2%
[1.4, 4.2] 2,058,585 4.2%

>4.2 5,919,370 12.2%

Total 48,901,719

When the speed value is different greater than 0, it means that the measurement
point is moving, but it may be difficult to determine in a simple way the transportation
mode that is used (walking/running, bicycle, light vehicle, public transportation, etc.),
with the only knowledge of the speed value, as the speed ranges corresponding to each
transportation mode may overlap [47]. Assuming people walking at a speed ranging
from 0.5 km/h to 5 km/h (0.14 to 1.4 m/s, respectively), one can consider that around
14.4% of the measurements are realized during walking. One can also find speed values
that correspond very clearly to measurements carried out in fast mode of transportation,
including air transportation of the order of 280 m/s.

Additional analysis of the ‘speed’ information also shows several anomalies, such as
negative values (26,304 measurement points, 0.04%), with the ‘−2’ (26,257 meas.) or ‘−1’
(14 meas.) values; such values may probably have a signification, but this information is
missing in the Android documentation. Other negative values (33 meas) are in the range
[−1, 0] and may be due to numerical accuracy.

3.4. Temporal Characteristics of Measurements
3.4.1. Measurement Timestamp

As already mentioned, the analysis developed here concerns an extraction of the database,
as the official launch of the application over a period of 3 years, from 29 August 2017 to 28
August 2020 (considering all versions of the application since number 28). At the time of a
measurement, the beginning of a ‘track’ is defined by the field record_UTC (given by the
smartphone) and each ‘point’ of a ‘track’ is defined by the field time_location (given by
the GPS).

The analysis of the entire database (i.e., between the date of the track record_UTC
and the date of the first point time_location in the corresponding track), shows some
measurements that are visibly incorrectly time-stamped; this corresponds to points without
geolocalization (defined with the time_location=’1970-01-01’ by default). One can also
observe measurements (21,897 tracks, 849,128 points) with a time shift of several hours
(Table 13), but it represents less than 2% of the total number of tracks. Last, it is also possible
that some users use date and location metadata scrambling tools on their smartphone to
avoid tracking. The number of tracks/points concerned being however very low, one can
imagine that the database analyzed here is little or not at all concerned by this type of error.

Table 13. Time shift (in hour) between record_utc and time_location, for the tracks are are
100% geolocalized.

Time Shift (h) Number of Tracks %

<−24 797 0.4
−24 151 0.07
−23 35 0.02%
−22 4 0.002%
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Table 13. Cont.

Time Shift (h) Number of Tracks %

−20 3 0.002%
−19 8 0.004%
−18 8 0.004%
−15 1 0.0005%
−14 1 0.0005%
−13 3 0.002%
−12 25 0.012%
−11 17 0.008%
−10 8 0.004%
−9 6 0.003%
−8 3 0.002%
−7 10 0.005%
−6 7 0.004%
−5 6 0.003%
−4 10 0.005%
−3 67 0.034%
−2 47 0.023%
−1 258 0.13%
0 194,690 98.54%
1 479 0.242
2 54 0.027%
3 28 0.013%
4 15 0.008
5 10 0.005%
6 6 0.003%
7 6 0.003%
8 10 0.005%
9 3 0.002%
10 10 0.005%
11 4 0.002%
12 1 0.0005%
13 3 0.002%
14 2 0.001%
15 8 0.004%
16 11 0.006%
18 8 0.004%
19 4 0.002%
20 5 0.002%
21 2 0.001%
22 3 0.002%
23 18 0.009%
24 11 0.006%

>24 702 0.355%

Total 197,568

Figure 9 illustrates the distribution of the tracks in function of the hour of a day. For the
entire database (Figure 9a), one can observe a moderate variation from one hour to another,
which can be explained by the fact that measurements are collected in all the time zones
simultaneously (assuming that measurements are done all over the word simultaneously).
When focusing on the data collected in France only, Figure 9b shows, as expected, a small
number of measurements during night and early morning and more measurements during
day and afternoon.
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Figure 9. Distribution of tracks per hour of the day, for the entire database and for the data collected
in France only. (a) Distribution of tracks per hour of the day, for the whole database. (b) Distribution
of tracks per hour of the day for data collected in France only.

In addition, Figure 10 illustrates a small variation from one day/month to another,
except for ‘October’ with more tracks for the year 2018, due to an unusual and large
amount of data (8470 tracks) collected on 8–9 October 2018, by few users only, localized in
Peru (6326 tracks, 78,789 points). This can be due to a specific event.
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Figure 10. Distribution of track measurements in function of the day and the month, over the 3 years
of the collected data. (a) Distribution of tracks per day of the week. (b) Distribution of tracks
per month.

3.4.2. Measurement Duration

The ‘time_length’ data (in second) are defined from the start of the measurement
during a track, until the user ends the measurement. Figure 11 shows that most measure-
ments are done with a track duration around 1–20 s (44.6%) and 1–3 min (17.3%). Only
6.6% of tracks have duration greater than 10 min. The 10 s duration corresponds to a large
part of the measurement (51,098 tracks 19.6%); this is due to the fact that user can used
a predefined duration, which is fixed to 10 s by default. One can note that measurement
duration between 1 and 3 min has also as strong presence. Table 14 shows that only small
percentage of user collecting tracks with long period move along the track (≤6.45%, when
considering a minimum speed value of 0.5 m/s).
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Figure 11. Distribution of tracks in function of the duration of the measurement (‘time_length’).
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Table 14. Total number of collected data and distribution per time length and part of the measurement
tracks and points that have been collected in motion (only data with geolocalization are considered,
with a speed greater than 0.5 m/s).

‘time_length’‘time_length’‘time_length’
Tracks Points

Total Moving Total Moving

[1, 3] min 21,963 4477 (20.4%) 679,675 437,640 (64.4%)
[3, 5] min 7190 1575 (21.9%) 516,389 343,035 (66.4%)
[5, 10] min 7204 2029 (28.16%) 1,080,596 769,976 (71.2%)
[10, 20] min 5231 1678 (32.1%) 1,661,753 1,189,641 (71.6%)
[20, 30] min 2083 752 (36.1%) 1,237,893 925,499 (74.7%%)
[30, 60] min 2362 741 (31.4) 2,094,625 1,446,091 (69.0%)

[1, 5] h 2026 466 (22.9%) 3,694,683 1,912,894 (51.7%)
>5 h 142 19 (13.4%) 752,485 189,075 (25.1%)

An issue can be observed regarding the total number of measuring points (59,685,328),
which is greater than the sum of all the measurement track duration (∑ time_length = 59,684,657),
with a difference of 671 s (i.e., points). Analyzing this issue, one can observe that 82 mea-
surement tracks (made by different users, with different devices, using different application
release) have a number of points (i.e., seconds) that are not equal to time_length. In ad-
dition, one can mentioned that few points have been removed from their corresponding
tracks. For now, the exact reason of such anomalies is still not defined, but may be due to
an unusual behavior of the application or to numerical inaccuracies.

3.5. Smartphone Acoustic Calibration

The relevance of the collected acoustic measurements is largely based on the mea-
surement protocol applied by the contributor as well as on the metrological quality of the
smartphone. At this stage, concerning the first point, it is expected that the contributor
follows the recommendations available in the application. No other information is included
in the collected data in order to analyze if this measurement protocol is well followed
(excepted for the calibration); this point will be discussed in Section 4. The second point
has given rise to numerous studies in the literature, as it is a critical element.

It is indeed hoped that the user calibrates his/her smartphone before collecting
measurements. Numerous studies, among them recent ones [48–50], have shown the
need to make a correction on the values measured by smartphones, in order to get closer to
those that would have been measured with a reference device, such as a sound level meter.
However, from a statistical point of view, this condition is not as critical, since it can be
expected that due to a large number of measurements collected by different smartphones,
the results may statistically converge to the expected values. This hypothesis seems to be
confirmed by Murphy and King, showing, that in the absence of calibration, the sound
levels measured on average by a wide variety of smartphones are very close to the expected
value, but at the expense of a large standard deviation. Acoustic calibration can however
reduce the standard deviation.

In the NoiseCapture application, the calibration procedure consists in evaluating a
correction (or a calibration gain, i.e., the ‘calibration_gain’ value) that will be applied
on the input temporal signal before the postprocessing of all noise indicators, assuming a
linear relationship both in frequency and in amplitude, which is of course questionable for
some smartphones. Within NoiseCapture, several calibration methods are proposed and
defined by the field ‘calibration_method’ in the database:

• The most relevant solution (’Calibrator’ method) consists in using an acoustic calibra-
tor, according to the classical rules for acoustic measurement. This solution requires
an external microphone, connected to the smartphone, with a diameter compatible
with the use of an acoustic calibrator. Note that using an external microphone can also
improve the measurement accuracy in comparison with the internal microphone [51];
thus, this solution must be promoted to contributors. The ‘calibration_gain’ is
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then determined for a reference frequency and for a reference level (for example
94 dB@1 kHz) and applied, during measurements, to the entire temporal signal be-
fore processing;

• Another method (’Reference’ method) is used to correct the sound level measured
(overall or for a given frequency) by the smartphone using another measuring device
(i.e., using a visual comparison), considered as a reference. The value of the gain
‘calibration_gain’ is obtained from an ambient noise measurement.

• A third method (’CalibratedSmartPhone’ method) is used to calibrate one or more
smartphones simultaneously, using an already calibrated smartphone as a reference.
The procedure is fully automatic, controlled by the reference smartphone, and is based
either on the measurement of the ambient noise or a pink noise generated by the
reference smartphone.

• Finally, a more recent method (’Traffic’ method) is based on the measurement of
several pass-by of light road vehicles, which, by comparison with a statistical model
of noise emission, makes it possible to estimate the correction to be made to make the
measurement coincide with the expected statistical value [52].

The user can also directly change the value of the calibration gain in the application
settings at any time. The default value of ‘calibration_gain’ is set to 0 dB as long as
no calibration method has been applied, or as long as the user has not directly changed
this setting. A change of this parameter will be considered as a ‘ManualSetting’ for the
‘calibration_method’ field.

The choice of the method is defined by the field ‘calibration_method’, but only since
version N°49 (17 February 2020). If, since the launch of the application, several calibration
methods were already available, the information on the choice of the applied method
was not known and only the value of ‘calibration_gain’ was actually uploaded to the
remote server. For database consistency reasons, all data collected using versions prior
to version 49 of the application, the choice ‘None’ is affected to ‘calibration_method’,
although a calibration method may have been used. However, since version 49, the choice
‘None’ is only affected when no calibration is performed.

Table 15 shows the distribution of the collected tracks according to the calibration
method. As indicated above, the field that defines the choice of the calibration method, is
only available since release 49. By analyzing the data collected before release 49, one can ob-
serve that 62,731 of the 241,532 collected tracks, i.e., ~26%, have a calibration value different
from 0, meaning that the corresponding users have probably applied either a calibration
method or a manual change of the calibration gain in the settings of the application.

Table 15. Distribution of tracks in function of the calibration method, before and after release 49 (’n.a.’ for ‘not available’).

‘calibration_method’‘calibration_method’‘calibration_method’ Since Release Nb of Tracks before R49 (%) Nb of Tracks Since R49 (%)

CalibratedSmartPhone 33 n.a. 277 (1.4%)
Calibrator 28 n.a. 139 (0.7%)

ManualSetting 28 n.a. 838 (4.4%)
None 28 241,532 17,395 (92.1%)

Reference 28 n.a. 167 (0.9%)
Traffic 49 n.a. 74 (0.5%)

Total 241,532 18,890

From release 49, we can see that 7.9% of the tracks have been made by smartphones
that have been calibrated (92.1% are defined by ‘None’ for the ‘calibration_method’),
but for about half of them, the manual method has been applied. For these tracks, it is
therefore difficult to determine how the value of the calibration gain has been evaluated.
Among the other calibration methods, the one using the automatic procedure between
smartphones is the most used, followed by methods using a reference and an acoustic
calibrator. The traffic calibration method is the most recent and has generated little data
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so far. In the future, it will be important to highlight this last method, which is the only
one that is able to calibrate a smartphone without the need for an external device, while
offering sufficient accuracy.

The application of a calibration method is not enough to justify the quality of the
measurements. The obtained value of the calibration gain (field ‘gain_calibration’) is
also a very important information. Figure 12 illustrates the distribution of tracks according
to this value and brings some comments. The presence of abnormally high (in absolute
value), even extreme and aberrant values shows either a bad use of the calibration methods
or a technical problem. The number of tracks collected with a calibration gain of zero
(default value) globally reflects a lack of calibration, as it is unlikely that a smartphone
is calibrated by default. Finally, we can see that 86.8% of the collected tracks have a
calibration value between −10 and +10 dB, which seems rather realistic, but does not bring
any certainty on the quality of the measurement.
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Figure 12. Number of tracks in function of ‘gain_calibration’ value.

Table 16 completes this first analysis by showing the distribution of calibration gain
values according to the method (data collected since release 49). As expected, it can
be observed that when a calibration method considered as ‘robust’ is applied (’Calibrat-
edSmartPhone’, ‘Calibrator’ and ‘Traffic’), the gain is different from 0 dB, except for the
‘Reference’ method. There is also slightly less disparity in the gain values when a calibration
method is applied. One can also observe that for the ‘Calibrator’ method, 90.7% of the
calibration gain values are greater than 10 dB, which shows a different behavior than other
methods. This may be a misunderstanding of the method, with some users attempting to
calibrate their smartphone without a reference device.

The analysis of these calibration data, for example, in relation to the type of device and
user profile, is in itself a separate study. The creation of a ‘validated’ database of calibration
values for each smartphone model, for example, is an interesting prospect. However, this
perspective study is beyond the scope of the present article, which, at this stage, only aims
to present the data collected and their limits of use.
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Table 16. Cross table of the number of collected tracks in function of the calibration method and the calibration gain (data
from release 49).

Calibration Method/Gain <−10 dB [−10, −5] dB [−5, 0] dB 0 dB [0, 5] dB [5, 10] dB >10 dB Total

CalibratedSmartPhone - 61 (22.0%) 136 (49.1%) - 75 (27.1%) 3 (1.1%) 2 (0.7%) 277
Calibrator 1 (0.7%) 2 (1.4%) 3 (2.2%) - 7 (5.0%) - 126 (90.7%) 139

ManualSetting 56 (6.7%) 13 (1.6%) 150 (17.9%) 126 (15.%) 156 (18.6%) 54 (6.4%) 283 (33.8%) 838
None 559 (2.4%) 911 (5.3%) 865 (5.1%) 13,857 (79.9%) 485 (2.9%) 227 (1.5%) 491 (2.9%) 17,395

Reference 9 (5.4%) 21 (12.6%) 38 (22.7%) 23 (13.8%) 57 (34.1%) 7 (4.2%) 12 (7.2%) 167
Traffic 20 (27.0%) 14 (18.9%) 28 (37.8%) - 6 (8.1%) 5 (6.8%) 1 (1.4%) 74

Total 645 1022 1220 14,006 786 296 915 18,890

3.6. NoiseCapture Parties

As mentioned above, a NoiseCapture Party is a special event organized by a given
organization, aiming to carry out measurements, generally over a limited time and a spatial
area, for educational, scientific dissemination, or research purposes. The advantage of these
events lies in the fact that the measurements are generally well ‘controlled’, and most of the
smartphones have been previously calibrated. It can thus be considered that the collected
measurements have a better quality compared to the other measurements in the database.

The list of all NoiseCapture Parties are given in Table 17, with the number of consid-
ered smartphones and the total of collected tracks and points. As expected, the ratio of
calibrated smartphones is greater for NoiseCapture Parties. The total number of collected
tracks and points represents 1.2% and 0.6% of all data in the database.

Table 17. List of NoiseCapture Parties. More information are located in the ‘noisecapture_party’ table of the database.
The number of contributors, as well as the total of collected tracks and points are given. The organization in charge of the
NoiseCapture Party is also mentioned (Noise-Planet is the organization in charge of the development of NoiseCapture
application). While the CICAM NoiseCapture Party has been planned, it was canceled due to the pandemic situation (i.e.,
there are no corresponding tracks).

‘pk_party’‘pk_party’‘pk_party’ ‘tag’‘tag’‘tag’ Organization ‘filter_area’‘filter_area’‘filter_area’ ‘filter_time’‘filter_time’‘filter_time’ Contributors Tracks Points

1 SNDIGITALWEEK Noise-Planet TRUE FALSE 7 133 11,523
2 ANQES Noise-Planet TRUE TRUE 4 29 4479
3 FDS2017 Noise-Planet TRUE TRUE 2 6 1239
5 IMS2018 Noise-Planet TRUE FALSE 13 67 18,793
6 UDC Universidade da Coruña TRUE TRUE 8 56 6879
9 TEST44 Noise-Planet TRUE TRUE 1 3 91
10 UNISA University of Salerno, Italy TRUE TRUE 13 149 15,912
11 PNRGM Noise-Planet TRUE TRUE 2 13 6089
12 AMSOUNDS Waag Technology & Society TRUE TRUE 2 18 693
13 PNRGM Parc Naturel du Morbihan TRUE TRUE 14 100 21,470
14 FDSSTRAS Noise-Planet TRUE TRUE 5 31 2967
15 AGGLOBASTIA Noise-Planet FALSE TRUE 19 507 59,838
17 FDSNTS Noise-Planet TRUE TRUE 7 66 5916
18 H2020 Noise-Planet TRUE TRUE 11 89 22,060
19 UDC Universidade da Coruña, Spain FALSE TRUE 20 138 5866
20 MSA Noise-Planet TRUE TRUE 9 9 1885
21 GEO2019 Noise-Planet TRUE TRUE 43 420 63,521
22 IMS2019 Noise-Planet TRUE TRUE 23 192 17,309
23 FPSLYO Noise-Planet TRUE TRUE 11 34 10,285
24 SSSOROLL2019 Generalitat de Catalunya FALSE TRUE 68 372 36,272
26 UNISA University of Salerno, Italy TRUE TRUE 20 332 23,220
27 FDSSTRAS Noise-Planet TRUE TRUE 3 7 1771
28 H2020 Noise-Planet TRUE TRUE 9 39 32,948
29 UDC Universidade da Coruña, Spain FALSE TRUE 9 73 2099
30 MSA Noise-Planet TRUE TRUE 10 10 3665
31 CICAM EPN, Quito, Ecuador FALSE TRUE - - -
32 UDC_COVID Universidade da Coruña, Spain TRUE TRUE 33 249 14,785

It must be specified that other similar events could have been organized, without hav-
ing given rise to the creation of a specific tag, and without having informed the developers
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of the application. For example, this is the case for several recently published research
works [53–57].

3.7. Soundscape Description

NoiseCapture allows users to complete the acoustic measurement with infor-
mation about his/her own perception of the sound environment, using ‘tags’ (field
‘noisecapture_track_tag’) for describing the noise environment and the noise source
along the track. In addition, they can give an information of ‘pleasantness’ (field
‘pleasantness’) by selecting a value (0 for ‘unpleasant’, 25, 50, 75, 100 for ‘pleasant’);
this field may be empty if no value is selecting (default value).

The analysis of the tags can be particularly interesting to distinguish the measurement
conditions; indeed in certain conditions, such as rainy or windy weather, the acoustic
measurement may be distorted, and it is therefore interesting to have such information
before analyzing the acoustic indicators. The information about the indoor/outdoor
measurement is also interesting for people who would like to use the data to characterize
indoor or outdoor sound environment, specifically. Last, the knowledge of the sound
sources that are perceived and the evaluation of the pleasantness are also interesting data
for researchers that study the notion of soundscape.

Both ‘Pleasantness’ and ‘Tags’ are supplementary info. Their use add beneficial
information about the sound environment. Ideally, this information should be system-
atically provided by the contributors. However, Table 18 shows that only 17.5% of the
tracks have both information, while 48.7% do not have any and 33.8% have either one of
them (mainly the pleasantness with 30.2%). An independence test showed that there is a
dependency between using both ‘Pleasantness’ and ‘Tags’: a participant using tag will
use pleasantness more often.

Table 18. Cross table between pleasantness and tags.

Tag/Pleasantness Used Not Used

Used 45,549 (17.5%) 78,814 (30.2%)
Not used 9457 (3.6%) 126,602 (48.7%)

3.7.1. Pleasantness

Figure 13a shows that most of tracks (205,416 (78.9%), equivalent to 46,623,131 points
(78.1%)) are not associated with a value of pleasantness, meaning that the default empty
value is not modified. Excepted for the level ‘50’, all other values are used quite uniformly.
The over-representation of the level value ‘50’ can be explained by three possible reasons:

1. for the most part, users cannot judge the quality of the sound environment in a
clear-cut way;

2. by default, the selection cursor is positioned on the value ‘50’ that can influence
the user;

3. the user may be tempted to select the cursor, without however wanting to make a
decision. Once the cursor is activated, it is no longer possible to go back and a value
will be automatically validated.

The two last hypothesis can introduce a bias, suggesting that a more suitable selection
mode should be proposed in a future release of the application.

The behavior of a contributor can also be analyzed in terms of his propensity to use
all the possible values of the pleasantness scale (Figure 13b). This analysis shows that for
52,979 users, only 1 level is used; however, in detail, for 43,764 of them (i.e., 82.6% of 52,979),
the ‘NULL’ value is used; 12,489 used 2 levels, etc. Few users therefore use the pleasantness
scale, and even fewer use these different levels of the scale. In a future evolution of the
application, it could be interesting to ‘motivate’ users to provide information, for example
by ‘forcing’ them to give an answer, including a ‘don’t say’ answer.
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Figure 13. User evaluation of pleasantness on a track: (a) Distribution of pleasantness values on
tracks. (b) Distribution of number of pleasantness levels used by contributors.

3.7.2. Tags

In addition to the perception of their sound environment, users also have the pos-
sibility to specify the measurement conditions (4 tags) and the nature of the perceived
sound sources (14 tags in four categories: human activity, transportation, natural, and
mechanical activity). Table 19 gives a description of the tag fields in the database (‘pk_tag’
and ‘tag_name’) as well as the corresponding English description within the NoiseCapture
application (see Figure 1). The list of ‘pk_tag’ is not continuous, some missing numbers
correspond to tags that are no longer used since the first official release of the application.

Figure 14a shows the number of tags that are simultaneously used to describe a track.
In about half of the collected tracks (124,363, 47.7%), the contributors do not use any tag to
describe the measure. This is better than for the pleasantness evaluation.

Nearly 30% of the tracks contain 1 or 2 tags: when considering 1 tag only, 17,094 tracks
(40.9%) are defined by an environment tag (‘test’ or ‘Indoor’); when considering 2 tags,
2061 tracks are defined by 2 environment tags, 9260 tracks by 2 source tags and 24,315 tracks
by a combination of two types of tag. One can also note that a number of tracks simultane-
ously contains a large number of tags, even the 18 possible tags, which is not realistic. We
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can assume that the corresponding tracks are test measurements, but they do not necessary
mention the ‘test’ tag. Figure 14b shows that this ‘test’ tag is used in 30,077 of the collected
tracks, which is important. An analysis of the database, for the purpose of studying sound
environments, will necessarily exclude the collected data with this tag.

Table 19. Tags description: ‘pk_tag’ and ‘tag_name’ are the primary key and the name of the tags.
The ‘Description’ correspond to the name of the tag in the corresponding NoiseCapture screen.

Category Measurement Conditions

‘pk_tag’ 1 6 13 23
‘tag_name’ test indoor rain wind
Description Test Indoor Rain Wind

Human Activity Sources

‘pk_tag’ 18 30 20 28
‘tag_name’ chatting children footsteps music
Description Voice Children Footsteps Music

Category Transportation Sources

‘pk_tag’ 27 32 26 35
‘tag_name’ road rail air_traffic marine_traffic
Description Road Rail Air T. Marine

Natural Sources

‘pk_tag’ 34 33 29
‘tag_name’ water animals vegetation
Description Water Animals Vegetation

Mechanical Activity Sources

‘pk_tag’ 24 36 31
‘tag_name’ works alarms industrial
Description Works Alarms Industrial

41,751

35,636

17,609

10,818

6094

3083
1871 1294 886 711 559 473 478 629 441 342 482 1,206

0

10,000

20,000

30,000

40,000

50,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of tags

N
um

be
r 

of
 tr

ac
ks

(a)

Figure 14. Cont.



Int. J. Environ. Res. Public Health 2021, 18, 7777 31 of 41

58,967

30,077

16,941

10,384

59,374

31,042
29,555

18,031
16,608

15,433

12,630 12,421 11,476 11,064
8847 8536 7882

6186

0

20,000

40,000

60,000

ind
oo

r
te

st
wind ra

in
ch

at
tin

g

ro
ad

foo
tst

ep
s

m
us

ic

ch
ild

re
n

an
im

als

wor
ks

ind
us

tri
al

wat
er

air
_t

ra
ffic

ve
ge

ta
tio

n

ra
il

ala
rm

s

m
ar

ine
_t

ra
ffic

Tags

N
um

be
r 

of
 tr

ac
ks

(b)

Figure 14. Use of soundscape tags by contributors. (a) Number of tags simultaneously used in a track. (b) Tags name.

The other interesting aspect is that the ‘Indoor’ tag is present in 58,967 of the tracks
collected, which represents an interesting quantity for the study of sound environments in
closed spaces (building, transportation), even though the initial objective of the application
was to study outdoor environments. Note also, that the tags ‘Indoor’ and ‘Test’ are not
independent, meaning that both tags can be used together.

Among the sound sources mentioned by the contributors, ‘voice’, ‘footsteps’, and
‘road’ are present, which is consistent with a contributor who collects measurements closed
to road infrastructures, while walking and talking. Again, it is obvious that the analysis of
these tags and their occurrence can provide interesting information on the perception of
sound environments. However, this is beyond the scope of this article.

3.8. Noise Indicators

The purpose of the NoiseCapture application is based on the measurement of acous-
tic indicators for the analysis of sound environments. The data that are present in the
NoiseCapture database concern the equivalent sound level LA,eq on a track, as well as
the spectrum and sound level at each point of the track, measured every second. The
postprocessing of these data can, in a second step, give access to percentile indicators (such
as LA10 or LA50) or to sound level distributions, for example. In the following, the analysis
is restricted to the data as such, and not to the sound environments.

First of all, it should be remembered that in terms of acoustic measurement, smart-
phone manufacturers under the Android OS must respect a number of recommendations
defined in the Android Compatibility Definition [38]. In particular, they should offer (1) an
audio capture with approximately flat amplitude and frequency characteristics of ±3 dB
from 100 Hz to 4000 Hz, (2) an input sensitivity such that a 90 dB Sound Power Level (SPL)
at 1000 Hz gives an RMS value of 2500 for 16-bit samples, and (3) a linear change of the
amplitude over a range of at least 30 dB from −18 dB to +12 dB relatively to 90 dB SPL at
the microphone. Some smartphones may offer superior features, but it is expected that all
smartphones meet the minimum requirements.

Figure 15 shows the range of LA,eq values measured along the tracks and at each point
of a track. While not visible in this figure, one can observe data with very low sound levels
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(a few decibels, even negative ones), which seems physically both unrealistic in a real
environment, but also a priori outside the measurement capabilities of a smartphone. On
the other hand, the highest levels are of the order of 125 dB, which is not unrealistic but,
nevertheless, unlikely in a normal environment.

(a)

(b)

Figure 15. Distribution of noise levels (a) on the 260,422 tracks and (b) on the 59,685,328 points.

In details, Figure 15a shows that the noise levels measured on tracks can be repre-
sented as a mixture of 2 normal distributions (noted N (mean, standard deviation)), a first
group X1 defined as ∼ N (107.4, 3.1) and a second group X2 defined as ∼ N (62.0, 15.5).
These normal distribution are also respectively defined by a ‘gain_calibration’ of mean
73 and 0 dB (median 80 and 0 dB). Figure 15b shows similar results for the noise levels
at the measurement points, as a mixture of 2 normal distributions, ∼ N (106.3, 3.2) and
∼ N (50.9, 17.2) with similar statistical values for the ‘gain_calibration’. For highest
sound levels, it is quite evident that the calibration was not performed correctly.

This simple study shows that the range of variation of the measured sound levels is
abnormally wide, the absence of calibration or a bad calibration being a probable cause.



Int. J. Environ. Res. Public Health 2021, 18, 7777 33 of 41

4. Discussion and Future Developments
4.1. Synthesis

The analysis of the data collected during the first 3 years of operation since the launch
of the application clearly shows that the information may be made of anomalies and
uncertainties. Quantifying and reducing some of these biases is possible, either by a better
knowledge and control of the user’s behavior and of the context of measurement or by
improving the smartphone application.

Table 20 already proposes at this stage some simple modifications to implement
within the application, mainly by checking some settings (verification of the smartphone
date/time, activation of the geolocalization, user profile update, change of the ‘Pleasantness’
selection mode). Most critical aspects concern the lack of a good geolocalization and bias
in the noise level measurements mainly due to a wrong or a lack of smartphone calibration.
These two subjects are specifically discussed in Sections 4.2 and 4.3. In addition, a better
knowledge of the context of the measurement could also judiciously complete the collected
data, or even replace certain user actions, such as the use of tags. Some suggestions will be
proposed in Section 4.4. Last, increasing trust in the data also means increasing trust in the
users. The animation of the community of contributors is another essential challenge. This
is discussed in Section 4.5.

4.2. Increasing Localization Accuracy

In the current release of the application, localization is performed in an elementary
way, and it was realized afterwards that it may not be sufficient depending of the objective
of the use of data. With a view to improve the performance of the application (and
therefore the quality of the data produced), the quality of GPS localization is a point on
which the user must be made aware. In the application, this can for example take the
form of recommendations to improve the quality of GPS location, such as activating the
‘High accuracy’ mode in the Android settings, re-calibrating the GPS via the use of a third
party application, or activating additional localization functions via WiFi, Bluetooth and
mobile networks.

4.3. Building a Smartphone Calibration Database

Some authors have rightly proposed to provide contributors with a database to cali-
brate smartphones, in order to limit bias during an acoustic measurement. Building such a
database can be tedious because of the large number of smartphone models present on the
market simultaneously, as well as their very rapid evolution. However, the NoiseCapture
experimentation has opened new perspectives. Indeed, the analysis carried out in the
present article shows that a large part of the contributions come from a limited number of
manufacturers and models (three manufacturers account for about 35.2% of the models
and nearly two thirds of the tracks; 15 models only have 15.9% of tracks). This informa-
tion would limit the number of calibrations to be performed in the laboratory to build a
calibration database. The other perspective would be to use the calibration data proposed
by the contributors for their smartphone. The quality of this calibration can however be
discussed, except for contributors performing their calibration during a NoiseCapture
Party type event.



Int. J. Environ. Res. Public Health 2021, 18, 7777 34 of 41

Table 20. Possible enhancements of the NoiseCapture application and database.

Data Uncertainties/Bias Possible Sources Possible Solutions

User profile Profile information is empty Cannot evaluate the expertise of the contributor In the app: update the field during an app update if the field is empty.

Geolocalization

No geolocalization of a track The geolocalization is turned off In the app: add a message for turning on the geolocalization

Indoor measurements In the app: wait for future methodologies (Indoor positioning System) and high sensitivity
GPS for indoor localization

No geolocalization of a point in a track Local loss of geolocalization Use GIS methodologies to re-locate the point within the track

Inhomogeneous worldwide coverage No access to Google Play Use alternative app stores

Accuracy

Value equal to ‘0.0’ No geolocalization In the app: add a message for turning on the geolocalization

Extreme (not realistic) values Unknown No known solutions

Large (but realistic) values In the app: ask contributors to wait for a better localization before starting the measurement

Speed

Value equal to ‘0.0’ No geolocalization In the app: add a message for turning on the geolocalization

Negative values
Unknown No known solutions

No evaluation of the accuracy of the speed value In the app: use the Android function getSpeedAccuracyMetersPerSecond() to store this
missing information.

Timestamp
Wrong date The geolocalization is turned off In the app: add a message for turning on the geolocalization

Wrong phone setting In the app: check that the date is correct and add a message if not

Calibration

The calibration method is not known The information about the selected calibration method is
collected since the version 49 only

No solution

Extreme (not realistic) values No calibration method used
In the app: send a notification to calibrate the smartphone
In the app: check the calibration value and send a notication if the value seems incorrect
In the app/remote server: create a smartphone model calibration database

Pleasantness Possible bias at level 50% The default value is fixed at a pleasantness of 50% In the app: change the selection mode for the pleasantness without default value

Noise levels Extreme (not realistic) values Calibration is not correct Improve the calibration of the smartphone
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4.4. Collecting Information about the Context Awareness

From the very beginning of the application creation, the kind of the information sent
back to the remote server was deliberately restricted to what was strictly necessary, so
that it would not be considered as invasive. The study of the data collected over 3 years
nevertheless shows that their use in a better controlled scientific approach would require
additional information.

In particular, information on the context of the measurement, such as wind detection,
activity recognition, transportation mode detection, how the smartphone is used during
measurements, and place recognition [47,58–62] could be useful. The use of information
provided by other smartphone sensors (accelerometer, orientation, brightness sensor, and
proximity sensor) could also provide information on the process of the measurement [14,17].
Note also that, as mentioned in [47], specific functions are already available in Android
API to identify some user activities [63], which could be a first attempt to obtain new
information. To a lesser extent, it may also be interesting to collect the speed accuracy
(adding a new data ‘speed_accuracy’), since this value is also available in Android API.

Providing that smartphones have sufficient resources, the integration of sound source
identification algorithms can also give interesting additional information, and can advanta-
geously replace the use of tags [64]. Otherwise, it should also be possible to include such
identification as a postprocessing on the remote server, for example, by using the collected
1 s spectra. All these development perspectives must nevertheless be integrated in the total
respect of the privacy of the contributors [65], in particular, in the respect of laws in specific
Regions/Countries, such as the General Data Protection Regulation (GDPR) in Europe [66].

4.5. Increasing and Animating the Community of Contributors

The participatory approach is of course the main originality of the application, al-
lowing one to considerably multiply the number of measurement points, with a large
variability in time and space. Like any participatory approach, the main challenge is to
maintain the initial interest of the contributor to support a research project or make their
individual contribution a major social issue (i.e., noise pollution) [67], beyond a time of dis-
covery and a few measurements. The analysis of installs/uninstalls detailed in Section 2.4
shows indeed a tendency to a negative imbalance between installs and uninstalls of the
application, which suggests that it is important to propose a solution to better retain users.
Moreover, the analysis of the contributors behavior in Section 3.2.3, shows that there are
finally few active contributors (half of the contributors made only one measurement, mostly
to test the application), and that almost half of the contributions do not exceed 20 s (38.5%,
Table 8). It is therefore require to develop strategies that allow for the development of a
community of very active contributors.

This must be achieved by enhancing the application in order to motivate users to
regularly produce measures, for example by adding reminder notifications to contributors
or by developing a more playful aspect (creation of pseudonyms, setting up a challenge or a
serious game based application such as noise battle or noise quest [68], creating badges. . . ).
If the target is more oriented towards a community of professionals (i.e., the initial target),
the animation of the community can be more distributed, by calling upon ‘ambassadors’
(teachers, student researchers, technical agents of communities, government services. . . )
who will see a particular interest in organizing, for example, NoiseCapture Parties. As
also mentioned by others authors [48,67,69,70], the advantage of organizing ‘controlled’
events lies in the possibility of training users to carry out measurements using a validated
protocol, particularly from the point of view of the calibration of smartphones, which
would increase ‘confidence’ in the measurements. Once trained, users could in turn train
other users, increasing the ‘trusted’ community.

Implementing a serious game type application, or increasing interactions with con-
tributors, should also encourage the contributor to take measurements in specific spaces
and at specific times. As considered by the authors of [14], this would make it possible to
compensate for a lack of measurements in certain places or at certain times.
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The analyzing of the geolocalization of the measurement points also showed a inho-
mogeneity in the diffusion of the application throughout the world, mainly due to the
initial choice of the development platform (Android) and the associated application stores
(on Google Play only). If one can observed the very wide use of the application throughout
the world offers (currently, the application has been used in 204 different countries), this
analysis shows the need to disseminate the application even more widely in order to
acquire data in some countries with large populations. This could offer a wealth of data
that is particularly interesting from the point of view of evaluating sound environments in
countries with very different cultures and environments.

5. Conclusions

The use of a crowd-sourcing type approach offers interesting perspectives in the
analysis of sound environments, in particular because of the spatial extent and the temporal
dynamics that the data collected can provide. The involvement of citizens in a collaborative
approach also brings another dimension to scientific research on the subject. The initial
and legitimate fears about the relevance of using such data in an environmental approach
(evaluation of public policies to reduce noise nuisance, effects of noise on health, perception
of noise environments) are being allayed. Studies have indeed shown the relevance of this
type of approach [67,69], while underlining some important points, for example, users
proactivity, critical mass of contributors, increasing of measurement accuracy or the need
of organizing collective sessions of noise sensing, etc.

The development of the NoiseCapture application is fully in line with this alternative
approach. Compared to similar approaches, however, the NoiseCapture approach offers a
completely open source platform, ensuring total transparency on the methods of collecting
and processing data, and giving the possibility to everyone to freely use the data. The sus-
tainability of the approach was also considered, by making effort to ensure the functioning
of the project over time. These specificities are certainly the reasons for the success of the
approach, whether it be with many communities.

Since the launch of the application on 29 August 2017, the amount of data collected is
considerable. After 3 years of operation, thanks to the participation of 74,082 contributors,
the database has accumulated 260,422 tracks and 59,685,328 one-second measurement
points, spread over 204 different countries (Figure 16). To our knowledge, there is no other
similar experimentation.

Figure 16. ‘Heatmap’ representation of the NoiseCapture data collected around the world.

Although the amount of data collected is considerable, any exploitation of the database
for applications related to the study of sound environment requires a perfect understanding
of the data, in order to limit bias in the analysis. The objective of this article was therefore to
review all the data collected (nature, content, limits, etc.) and to identify specific behavior
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linked to the use of the application (Section 3). This analysis now provides a precise
framework for the further exploitation of the data. In view of the very large amount of
data collected, it is however clear that depending on the nature of the expected analysis,
a large part of the data cannot be used, either because it does not present any interest for
the corresponding analysis, or due to a lack of completeness and accuracy. As discussed
in Section 4, in our opinion, enhancing/controlling the quality of the data and of the
measurement conditions constitute two major developments for improving the database.
The other major perspective consists in the animation of the contributors community to
increase confidence in the data.

Thus, as soon as attention is paid to the inherent limits of the collected data, the
exploitation of this database offers very interesting perspectives on the characterization of
sound environments. Any relevant analysis could be useful for communities to assess the
noise environment of their territory, and usefully complement regulatory requirements,
such as the 2002/49/CE Directive, in Europe, relating to the assessment and management
of environmental noise. As an example, a very simple analysis of the sound levels collected
in France shows, without any particular treatment, an overall decrease in sound levels
during the periods of lockdown related to COVID (Figure 17).

Figure 17. Distribution of mean ‘noise_level’ in France by week accompanied with 2 verticals
lines that represent the start and end of the first lockdown.

Beyond the exploitation of the database, one can also mention that the use of the
NoiseCapture application with a dedicated use of the collected data (i.e., without using the
NoiseCapture database, but using only the data export capabilities of the application) can
be an interesting tool for scientific purposes [53–57].
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des réseaux

OSM OpenStreetMap
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Abstract: Noise has become a very notable source of pollution with major impacts on health, es-
pecially in urban areas. To reduce these impacts, proper evaluation of noise is very important, for
example by using noise mapping tools. The Noise-Planet project seeks to develop such tools in an
open science platform, with a key open-source smartphone tool “NoiseCapture” that allows users to
measure and share the noise environment as an alternative to classical methods, such as simulation
tools and noise observatories, which have limitations. As an alternative solution, smartphones can be
used to create a low-cost network of sensors to collect the necessary data to generate a noise map.
Nevertheless, this data may suffer from problems, such as a lack of calibration or a bad location,
which lowers its quality. Therefore, quality control is very crucial to enhance the data analysis and
the relevance of the noise maps. Most quality control methods require a reference database to train
the models. In the context of NC, this reference data can be produced during specifically organized
events (NC party), during which contributors are specifically trained to collect measurements. Never-
theless, these data are not sufficient in number to create a big enough reference database, and it is still
necessary to complete them. Other communities around the world use NC, and one may want to
integrate the data they collected into the learning database. In order to achieve this, one must detect
these data within the mass of available data. As these events are generally characterized by a higher
density of measurements in space and time, in this paper we propose to apply a classical clustering
method, called DBSCAN, to identify them in the NC database. We first tested this method on the
existing NC party, then applied it on a global scale. Depending on the DBSCAN parameters, many
clusters are thus detected, with different typologies.

Keywords: environmental noise; noise mapping; smartphone application; spatial clustering; DBSCAN

1. Introduction
1.1. Noise Mapping Using Data Collected with Smartphones

Noise has become a very notable source of pollution with major impacts on health,
especially in urban areas [1]. The public authorities are trying to solve this essential
societal and health issue by setting up new regulations. In Europe, for example, the
directive 2002/49/EC seeks to evaluate noise annoyance, to propose actions to reduce this
annoyance, and to communicate with citizens about their noise exposure. In this regulatory
context, the key tool for decision makers is the use of strategic noise maps.

Instead of using noise prediction software, with its inherent limits, an alternative
method may be to use more affordable sensor networks, allowing us to densify the observa-
tion points [2] and, in particular, to consider the participation of citizens as data collectors
in a crowd-sourcing approach using smartphones as sensors (i.e., a measuring instruments).
This idea of using smartphones as acoustic sensors and citizens as contributors emerged
at the end of the 2000s with the increasing capabilities of smartphones to perform envi-
ronmental acoustic measurements [3]. It was followed by several works that have given
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rise to specific noise and soundscape crowd-sourcing-type applications and platforms (e.g.,
Ear-Phone, NoiseSPY, NoiseTube applications [4–6]) and, particularly, the NoiseCapture
(NC) approach [7,8], a part of the Noise-Planet project [9].

The NC approach consists of measuring noise and additional information along a
path and then sharing data with the community (Figure 1). The noise data acquired by
volunteers (i.e., the “user” or the “contributor”) from all over the world are then stored
in a community database. This database contains the measurement path (a “track” in the
NC vocabulary, which is made of “measuring points”), standardized noise indicators, a
description of the user perception of noise sources (using “Tags”) and of the soundscape
quality (using a pleasantness scale), and other useful information, such as the date and
time of the measurements, the GPS localization and accuracy, and the speed of the user
during measurement. . .

Track
• Calibration method
• Calibration gain
• Date/Time of measurement
• Pleasantness
• Predominant sources (tags)
• Measurement conditions (tags)
• …

Points
• Noise level
• Geo-localization (GPS)
• Localization accuracy (GPS)
• Speed (GPS)
• Date/Time of measurement
• …

Starting point

End point

Figure 1. Representation of a NoiseCapture (NC) measurement. After manually activating the
measurement from a starting point, the user can move along a path of their choice or stay at the
same location. An acoustic measurement takes place every second, which allows us to calculate
noise indicators, such as 1 s equivalent sound level and spectrum. Other information, such as the
date and time of the measurements, the GPS location of the measurement point, its accuracy, and
its speed are recorded at the same time. At the end of a track, the user stops the measurement
and is invited to provide additional information about the presence of specific sound sources (tags)
during the measurement, the measurement conditions, his own perception of the quality of the sound
environment (i.e., the pleasantness), and other additional information. If the user has given his
consent, the anonymous data are transferred to a remote server, controlled and then integrated into
an open database, which is available for free. In addition, the raw data from the entire community are
aggregated into a hexagonal based noise map and displayed on a public web page [10], as shown in
this figure. Graphical contents of this figure are part of the Noise-Planet project website [11], licensed
under CC BY-NC-SA 4.0.

This data can be relevant for later evaluation of the ambient noise through specific
processing, for example, to generate noise maps that could be useful for communities to
implement action plans in order to reduce the noise exposure of citizens or to protect quiet
environments. In this way, the use of NC maps would be consistent with the European
directive 2002/49/EC except that they simultaneously integrate the multiplicity of noise



Sensors 2022, 22, 8832 3 of 27

sources encountered in the environment. In comparison with conventional noise maps, for
example, focusing on traffic noise only, those produced with NC data could be closer to reality.

Since the launch of the application on 29 August 2017, a large amount of data has
been made available, offering the possibility to analyze the data over a large spatial area
and a long period of time. This database is distributed under the Open Data License [9]
and updated every day at 3:30 am (local time in Paris, France). At this date, the database
represents the equivalent of more than 1103 days of 1 s measurements (more than 382,000
tracks and 93 million measurement points) spread over more than 200 countries and
collected by over 92,000 different contributors.

1.2. Data Quality Control and the Need for a Reference Database

This amount of data, however, needs to be put into perspective, firstly with regard to
the surface of the planet (150 million km2 for the terrestrial surface) and the time elapsed
from the launch of the application (1737 days by 31 May 2022); finally, the density of points
in space and over time remains globally very low (less than 0.4 measurement points per
1000 km2 by day) except in urban areas where the density of measurement may be more
important. In addition, the quality of the collected data may sometimes be questioned. A
recent analysis [8] showed that data may suffer from several problems due to the technical
performance of the smartphone, respect for a relevant measurement protocol, the lack of
smartphone calibration, the misuse of the application, and insufficient GPS accuracy. . .

The evaluation of the quality of the collected data is therefore essential to characterize the
relevance of the noise maps and the analysis of the sound environment that will be produced.
For example, it is important to identify wrong or incomplete data, as well as anomalies in the
NC database. . . which is more generally called data Quality Control (QC). For this purpose,
among all the possible approaches, those based on machine learning techniques have been
widely used in many fields of interest [12], in particular, when considering crowd-sourced
data [13–16]. Three main methodologies can thus be used in machine learning: the supervised,
the semi-supervised, and the unsupervised ones, depending on whether they use a large
amount of labelled data, a small amount, or none, respectively.

In the NC context, the supervised and semi-supervised machine learning methods
are well-suited because of the existence of labelled data characterized by a maximum level
of confidence. Indeed, in the NC approach, such data are provided during NC parties,
i.e., an event that is organized by acousticians or other experts in a limited space and in
a relatively short time to simultaneously collect a large number of contributions. In this
case, the contributors are coached, the measurement protocols are correctly applied, and
the smartphones are most of time calibrated; thus, the data collected during such an event
are generally of better quality and may be considered as reference data. However, the
performance of (semi-)supervised methods requires a sufficient amount of data, which is
undoubtedly not the case on the basis of data produced only by the NC parties.

If most of the time NC parties are organized by close collaborators of the NC project,
the recent scientific literature shows that similar events are also organized for research
purposes by people who are not directly related to the NC project. More globally, such
events can also be organized by communities, citizens associations, or schools during
awareness-raising events on noise issues. The data collected during these events can also
be considered as labelled data and should therefore be identified in the NC database.

1.3. Objective of the Paper

The objective of the present paper is therefore to propose a method to identify in the
NC database events similar to the NC party, i.e., a set of data collected by multiple users,
produced over limited spatial extent and temporal period, and most of the time with a
higher spatial and temporal density of measurement points. More explicitly, regrouping
data with similar spatial and temporal characteristics is known as spatial clustering and
temporal clustering [17]. Note that in the following, the paper focuses only on spatial
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clustering, with the temporal parameters being considered as a filter for the data (this will
be presented later in the document).

Many clustering methods have been proposed in the literature. Among them, the
DBSCAN approach seems well-suited to our problem and is considered in the present
paper. Thus, the originality of the proposed work lies mainly in the use and validation of
this method for the needs of our problem and not in the development of a specific clustering
method.

Some generalities on spatial clustering methods are presented in Section 2. Then,
in Section 3, the DBSCAN method is detailed and tested on known NC parties in order
to evaluate its performance and to identify the most appropriate processing parameters.
Finally, the DBSCAN method is applied in Section 4, firstly to a few countries in order
to identify the typology of the obtained clusters and secondly to the entire NC database.
Lastly, Section 5 concludes this study, showing the interest of clustering methods to identify
data that could be integrated into a reference database.

2. Spatial Clustering Related Work

Clustering is a useful method in data science [18,19], allowing us to identify similar
groups of data in a data set (i.e., objects in each group are comparatively more similar
to objects in other groups), which are called cluster. It should be noted that the term
“close” is sometimes used instead of “similar”. For example, let us consider two houses
(“A” and “B”) and one studio (“C”), where houses “A” and studio “C” are in the same
neighborhood and “B” in a different city; if the clusters were formed to regroup housing
with similar characteristics for sale, then houses “A” and “B” can be clustered together,
but if we are talking about spatial clustering, then house “A” and studio “C“ could be
regrouped together because they are close to each other. Therefore, it is important to pay
attention to the characteristics that are considered when looking for similarity or closeness.

It must be noted that classification is another technique that has certain similarities
with clustering and which could have been envisaged for the present study. Classification
refers to the act of categorizing or predicting the class of any given data. Classification
is supervised and demands a training data set with class labels, while clustering is non-
supervised, aiming to find underlying unknown groups or clusters). In the present study,
the lack of criteria, such as spatial/temporal limit, number of users, and number of tracks/-
points to define classes, made the clustering approach more relevant than classification.

Clustering has a large number of applications stretching out across various domains,
such as recommendation engines [20], market segmentation [21], social network analy-
sis [22], search result grouping [23], and anomaly detection [24]. Clustering analysis can
also be applied to the environmental measurement data (e.g., temperature [25,26] and
humidity [25,27]). Clustering is also widely used in geospatial analysis [28].

In the environmental acoustic field, clustering has already been applied to analyze the
results of the ”Think About Sound“ smartphone application, using the experience sampling
methods (ESM) [29]. Clustering was also used to group similar urban soundscapes using
the fuzzy ants rule and K-means method [30,31] or to monitor road traffic noise by using
temporal clustering methods [32,33]. Nevertheless, the last clustering methods were applied
on the basis of the information contained in the collected data, and, to our knowledge, no
methodology has been applied to spatially clustering the data as we plan to do with the NC
data. The data collected by NC can be analysed by path (i.e., track) or by point. The applicable
spatial clustering methodologies can therefore cover Points Spatial Clustering or Line/Trajectory
Spatial Clustering. In the following, we will focus on Points Spatial Clustering.

Points Spatial Clustering methods that may be applicable to the present study can follow
several approaches that are inspired by generic clustering methods [34,35]:

• Partition Clustering allows grouping data in K non-overlapping sub-groups (i.e., K
clusters), one datum being in only one subgroup. One can consider several method-
ologies, for example, the K-means, K-medians, or K-medoids methods, depending on
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the choice of the cluster center, at the average point, the median point, or the point in
the data set closest to the median point, respectively.

• Hierarchical Clustering, using the Agglomerative or the Divisive Hierarchical Clustering
methods, tries to build a hierarchy of clusters using a bottom-up approach (each datum
starts in its own cluster, then the two closest clusters according to a chosen distance
are merged until all clusters are merged, creating a tree that one has to cut according
to the relevant number of clusters) or a top-down approach (at the opposite of the
bottom-up approach, all data are initially in the same cluster and, then, the cluster is
split according to the hierarchy level), respectively.

• Fuzzy Clustering is another form of data clustering in which each datum can be in-
cluded into several clusters. As a possible approach, the Fuzzy C-means method,
which is the most widely used, is quite similar to the K-means clustering method.

• Density-Based Clustering methods propose to group data by considering the density of
data. Then, each cluster is built by considering regions with a high density of data.

• Lastly, the Model-Based Clustering method groups data by considering that they are
generated by probability distributions and that each cluster represents one given
distribution.

In the framework of the NC data, it is clear that the fuzzy clustering method cannot be
used in the present study since each measurement point can be associated with only one
event. Considering the model-based clustering methods, since the data are not associated, a
priori, with any distribution model, the method seems inapplicable. The partition clustering
method, which imposes fixing the number of clusters to identify in advance, is obviously
also inapplicable since it is impossible to know the number of NC events that will be
found. Lastly, the use of a hierarchical clustering method is very empirical since it requires
the retention of a number of clusters that should be coherent with the data, but with, a
priori, the possibility of omitting clusters, in particular if the amount of data is very large.
Moreover, the processing time can become considerable because of a quadratic increase of
the complexity in o(n2 log n) (n being the number of data), compared, for example, with an
analysis using the K-means method that is characterized by a linear increase in o(n). Finally,
the density-based clustering approach seems an interesting way, since one can consider
that an NC event generates an increase in the density of measuring points locally, over a
short period of time. Among the possible approaches, the density-based spatial clustering
of applications with noise approach (DBSCAN) method is the most commonly used [36]. It
must be noted that the term “noise” that is employed in the name of the method does not
refer to the environmental “noise”, but to “noise” in the data, meaning that some points
may not be part of a given cluster.

Considering automatic learning, such as clustering, most techniques will either fall
into (1) supervised, (2) semi-supervised, or (3) unsupervised learning. Supervised learning
provides the model with both the input and the output of the data (also called labelled
data), while unsupervised learning provides only the input of the data. On the other
hand, semi-supervised learning provides the model with a small amount of data that
contains both the input and the output and a large amount of data that contains only
the input. In the NC context, supervised learning can be hard to use due to the lack of
labeled data (i.e., NC party data). So either unsupervised learning or semi-supervised
could be performed, but due to the lack of similarities in NC party events, it is feared that
a direct semi-supervised approach will not work. Therefore, an indirect semi-supervised
approach has been considered in the present work. This approach consists firstly of using
the labelled data (i.e., NC party data) to perform supervised learning in order to find the
optimal parameters of the DBSCAN method, and secondly, of performing an unsupervised
learning task, using DBSCAN with these parameters to detect events that are similar to
NC parties.
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3. Spatial Clustering of the NoiseCapture Data with the DBSCAN Method
3.1. Implementation of the DBSCAN Method

The principle of the method is trivial and based on very pragmatic considerations (i.e.,
a cluster represents a set of points very close to each other), without any theoretical basis.
In the present study, the approach is reproduced as it was proposed by its authors [36]. It
consists of searching a minimal set of points (MinPts) around a given point (in a circle of
radius Eps) to start forming a cluster. This cluster evolves progressively by searching for
new points to integrate from each of its points that are already members of the cluster. The
method is thus defined by these two parameters Eps and MinPts only (Figure 2).

Points to be clustered
Starting/Core points
Clustered points
Noise/Unclustered points

(d)

(e) (f)

(g)

(b)

(c)

(a) (b)

Figure 2. Graphical representation of the DBSCAN approach, with MinPts=4 as an example: (a) a
starting point is first selected in a set of points to be clustered; if the number of points in a circle
with a radius of Eps centered on the starting point is greater or equal to MinPts, all of the points are
included in the same cluster: in this example, there are 6 points in the circle, thus the condition is
validated; (b) a first cluster is created with the staring point and the 6 new members; (c) each new
member of the cluster becomes a starting point; the condition presented in (b) is applied again: in
this example, only one starting point respects the conditions, then (d) 4 points are included in the
cluster; (e) the condition is applied again on the new members; in this example, the condition of a
minimum of points in the circle is not verified: the process stops and a cluster is then complete; (f) a
new starting point is selected outside the existing clusters and the process is repeated until all points
have been proceeded; (g) in this example, 11 points have been grouped together in one cluster and 4
points are not clustered.
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The method first randomly selects a point in the database. Then, it selects all the points
within a circle of radius Eps. If the number of those points is greater than or equal to MinPts,
then they are integrated into this cluster. At the next step, each integrated point becomes
the center of a circle of radius Eps of a new iteration. When the number of points within
one of these circles is less than MinPts, then the procedure stops for the corresponding
center. When the search becomes unsuccessful for all the current points in the cluster,
the cluster stops growing. The procedure then starts again by randomly selecting a new
point in the database outside of any cluster already formed as the new center of a possible
cluster. When all the points in the database have been processed, the procedure stops and
eventually leads to the creation of a finite number of clusters, or none. As mentioned before,
all the points that are not part of a cluster are considered “noise”.

In agreement with the NC database model that is used in the present study (cf.
Section 3.2), the DBSCAN method has been implemented using the ST_ClusterDBSCAN()
function available in PostGIS, a spatial database extender for the PostgreSQL object–
relational database [37]. This function is a 2D implementation of the DBSCAN algorithm
(the spatial clustering of the NC database is carried out on the 2D coordinates without the
elevation). This function takes three inputs, geom as a geometry data type, Eps as a float
data type, and MinPts as an integer data type, and returns one identifier per found cluster,
as an output. The results are saved in a table called NoiseCapture_cluster, which contains
the measurement point identification pk_point of coordinates the_geom and cluster iden-
tification c_id. Another variable, pk_party, is also added to verify if the corresponding
point is already part of a known NC party event and, if so, the corresponding NC party
identification. Finally, the data and the clusters are plotted in GIS software. Note that all
the tools used in this study are open source.

3.2. NoiseCapture Database

The NC measurement locations are stored in WGS 84 (World Geodetic System 1984)
format [38], which is a horizontal component of a 3D system used, for example, by the GPS
satellite navigation system. In other words, the type of the coordinates is geographic. This
encoding uses ”degree“ as a measure distance, while the ST_ClusterDBSCAN() function
only takes coordinates as geometry data type. Therefore, a transformation to the metric
projection EPSG:3857 (Pseudo-Mercator) [39] is required before applying the algorithm.
This projection can only be used for data between 85.06° S and 85.06° N, which is in
agreement with the NC database (NC data are bounded between 74.49° S and 78.73° N).
The transformation was performed using the PostGIS function ST_Transform [40].

The DBSCAN algorithm was used on a 3-year extraction of the NC database, from 29
August 2017 to 28 August 2020, starting from the official release version ”28“ of the NC
smartphone application [41]. Any measurement point in the NC database without geo-
localization (may be a full track or only a part of a track) was removed before processing by
the DBSCAN method. Using this NC database extraction, all the data can be organized
into a relational database, which can be manipulated using GIS tools.

In order to find the optimal parameters for DBSCAN, we use official NC party events
as reference data. The objective of the first part of the study is to find the parameters
of the method that allow us to find a maximum number of NC parties in the form of
clusters, or at least, the best detection rate. During the corresponding 3-year period, 27 NC
parties were planned [8] (Table 1), but one of them (i.e., NC party number 31 with code
name CICAM) was not performed. The training data set has 26 NC parties, spread over
3 years. These NC events took place in France (18 NC parties, one including an event
also shared with Germany), in Spain (5 NC parties), in Italy (2 NC parties), and in The
Netherlands (1 NC party). During these events, 3142 tracks were collected, for a total of
391,575 measurement points. Around 377,206 (96.33%) points were geo-located, and 320,891
(81.95%) had accuracy less than or equal to 15 m; 3012 (95.86%) tracks were completely
geo-located (i.e., all the points of a track are geo-located), and 2641 (84.05%) tracks had
accuracy less or equal to 15 m for all corresponding points.
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Table 1. NC parties description.

NoiceCapture Party All Data Geo-Localized Data Not Geo-Localized Data

ID NC party Code Contributors Date/Duration Points Tracks Points Tracks Points Tracks

1 SNDIGITALWEEK 7 20 September 2017 11,523 133 11,192 118 331 15
2 ANQES 4 16–27 October 2017 4479 29 4458 28 21 1
3 FDS2017 2 15 October 2017 1239 6 1209 5 30 1
5 IMS2018 13 28 March 2018 18,793 0 18,758 67 35 0
6 UDC 8 17 April–27 June 2018 6879 56 4509 44 2370 12
9 TEST44 1 2 May 2018 91 3 91 3 0 0
10 UNISA 13 17, 24 May 2018 and 6 June 2018 15,912 149 15,479 141 433 8
11 PNRGM 2 9 June 2018 6089 13 5957 12 132 2
12 AMSOUNDS 2 20, 21 June 2018 693 18 660 17 33 1
13 PNRGM 14 18, 20 July 2018 21,470 100 19,812 92 1658 8
14 FDSSTRAS 5 12, 13 October 2018 2967 31 2909 25 58 6
15 AGGLOBASTIA 19 4 October–26 November 2018 59,838 507 58,771 506 1067 1
17 FDSNTS 7 12–14 October 2018 5916 66 5840 61 76 5
18 H2020 11 6–9 December 2018 22,060 89 19,869 88 2191 1
19 UDC 20 25 February–5 April 2019 5866 138 4946 108 920 30
20 MSA 9 10 January 2019 1885 9 1883 9 2 0
21 GEO2019 43 12–14 March 2019 63,521 420 62,199 409 1322 11
22 IMS2019 23 28, 29 March 2019 17,309 192 14,161 189 148 3
23 FPSLYO 11 6, 17, 18 May 2019 10,285 34 9548 31 737 3
24 SSSOROLL2019 68 16 April–19 May 2019 36,272 372 35,253 361 979 11
26 UNISA 20 24 May 2019 23,220 332 22,937 328 283 4
27 FDSSTRAS 3 12, 13 October 2019 1771 7 1730 6 41 1
28 H2020 9 4–8 December 2019 32,948 39 31,659 35 1289 4
29 UDC 9 3, 5, 6 March 2020 2099 73 2036 71 63 2
30 MSA 10 23 January 2020 3665 10 3659 9 9 1
31 CICAM – – – – – – – –
32 UDC_COVID 33 5–20 May 2020 14,785 249 14,691 249 94 0
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NC party events may be defined by the organisers with two parameters: the
filter_area and filter_time, which stand for the spatial and temporal limits that were
decided for each NC party. Four NC parties (15.38%) did not have a spatial limit, while only
two (7.69%) did not have a temporal limit. Statistics showed that ten (38.64%) of NC parties
had points outside their limit area and that three (11.54%) NC parties had measurements
outside the time limit; in this last case, measurements were all dated in the past (in 1994,
1999, and 2000), expressing a problem with time synchronization of some smartphones.
In terms of measuring points, it means that 87.28% points (85.13% tracks) were collected
within the area limit and 91.06% points (93.03% tracks) within the time limit. When both
the area and time filters were used, 86.28% of the points (84.3% of the tracks) of NC parties
were collected within the time and space constraints. The duration is specific to each NC
party and is between 2 and 10 days, with an average of around 5 days (less than a week).

The number of events (26) and their amount of tracks/points represent only 1.2%
of the NC database and 0.6% of the points. It may not be enough to assess the optimal
parameters for DBSCAN.

3.3. Filtering Variables

In addition to the two parameters Eps and MinPts, one can also consider supplemen-
tary parameters in the DBSCAN methodology in order to reduce the amount of data to
consider by pre-filtering the NC database. The corresponding filtering variables may have
an impact on the computational duration of the process or can contribute to increasing the
quality of the clustering results:

Time window The temporal dimension is not considered in the classical DBSCAN method,
which implies that in the context of NC all data are considered simultaneously, just
spatially, without any consideration of date. It can then be difficult to identify NC
events of relatively short duration if the corresponding measurement points are
”drowned“ in the mass of data that can be collected progressively (i.e., out of a
particular event), to the same spatial extent but over a long time. As mentioned above,
the past NC parties have durations of a few days. Thus, it seems interesting to test
the DBSCAN methodology, filtering the NC database to focus only on data collected
over a ”day“, a ”week“ or a ”month“.

GPS accuracy The accuracy of the DBSCAN method is necessarily based on the accuracy
of the location of the measurement points; if the points are poorly located, then their
membership in a cluster may be questioned. In the NC application, the localization
of the measurement is based on the GPS system of the smartphone. In some cases,
the measurement points may not be located at all; in this case, as mentioned before,
the corresponding measurement points were removed from the database. For the
remaining points, the associated location uncertainty can reach several tens of meters.
The variable related to the accuracy of localization can also be an important element
in the quality of the clusters obtained by the DBSCAN method. The method will
therefore also be tested by filtering the data on the GPS accuracy values.

Zone of study The search for clusters depends on the number of points in the database
and thus, in particular, on the size of the study area. The larger the study area is, the
longer the processing time will be. Reducing the study area to territories in which
NC events are potentially expected will reduce the computational time.

3.4. Validation of DBSCAN
3.4.1. Methodology

As mentioned before, the objective of the preliminary study is to find the parameters
of the DBSCAN method that allow for the best detection rate of NC parties in the form
of clusters. Thus, a series of experiments were performed on the NC data by varying
the values of the two DBSCAN parameters Eps and MinPts and for different filtering
conditions:
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• Eps was started from 50 m as the initial distance and then gradually increased (by 50 m
between 50 m and 500 m, then by 100 m from 500 m to 2000 m and finally by 500 m
from 2000 m forward) until a maximum of NC party events were detected as clusters.

• MinPts was started from 20 points as the initial value and then gradually increased
(firstly 50, then 100, and finally by 100 until the maximum number of points for
each respective NC party event) until a maximum of NC party events were detected
as clusters.

• Time window: due to the typology of current NC parties, the clusters analysis was
performed by filtering the NC database by day, by week, and by month, on a total
duration that includes all the NC points (i.e., if an NC party took place over a period
between 2 months, the 2 months concerned were fully considered).

• GPS accuracy: the DBSCAN process was performed with two settings for the GPS
accuracy: “Off”, meaning that the GPS accuracy is not considered; “On”, meaning
that measurements with a GPS accuracy strictly greater than 15 m are removed from
the data.

• Zone of study: in order to reduce the computational time, the zone of study was
reduced to the spatial areas that contained the current NC parties. However, the area
must be large enough to avoid edge effects, especially if the points of a cluster are too
close to the spatial boundaries.

The quality of the clustering analysis, i.e., the success in the detection of NC parties,
was evaluated, on the one hand, qualitatively on the basis of maps by comparison between
the obtained clusters and the points of the NC parties, and on the other hand, quantitatively
on the basis of the detection rates of tracks and points. Since the cluster analysis was
performed on the points and not on the tracks, the detection rate of the tracks must be
evaluated on the basis of the percentage of the corresponding points belonging to the
cluster. In the present case, an entire track was considered to be part of a cluster if at least
one point of the corresponding track was part of the cluster. However, if only one point is
concerned, and this point is integrated into a cluster by mistake (for example, due to a high
GPS accuracy value), this may introduce a bias.

3.4.2. Results

All the results have been summarised in a table, with the processing parameters and
the detection rates of the NC parties, both in tracks and in points. More than 600 trials were
performed. Results of the 600 trials are summarized in Table 2. Some of the results for these
600 trials are presented in Table 2.

For example, line #1 refers to the analysis carried out on the NC party N°1 (Figure 3),
inside the spatial area ”Pays de la Loire” (PdL, i.e., an administrative zone) in France
(FR), made of 10,700 points within 113 tracks, using the DBSCAN parameters Eps = 50
and MinPts = 20, after filtering the database in order to retain the data collected during
1 month only (i.e., the month in which the NC party measurements were taken). Using these
parameters, 7 clusters are found (Figure 4a): 93.5% of the NC party points (10,008/10,700
points) are clustered in one main cluster, which corresponds to 91.2% of the associated
tracks (103/113); the remaining 692 points (6.5%, which corresponds to 10 tracks, 8.8%)
are clustered in 6 “secondary” clusters. In addition, the main clusters contain 12,212 extra
points (76 extra tracks), i.e., points/tracks that are not part of the NC party. When applying
the same DBSCAN parameters but changing the time window to 1 week (line #8 of Table 2),
the results show that the main cluster contains the same number of tracks and points, while
the number of extra data decreases slightly (12,212 extra points and 76 extra tracks). Such
results may be expected when the event duration is less than a week, which is the case in
this example. Lastly, when the time window is fixed to 1 day (line #10 of Table 2, which is
the official day of the event), all the NC party points are clustered into only one cluster.
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Table 2. Each line corresponds to a simulation with specific DBSCAN parameters (Eps and MinPts) and filtering variables (time window, accuracy, and zone),
in order to determine if the clustering analysis is able to detect an NC party. The number and percentage of the detected NC points/tracks in the main cluster
and possible secondary clusters are given, as well as the missing NC points/tracks (non-clustered NC data), and the extra points/tracks in the main cluster (i.e.,
points/tracks that are not linked to the corresponding NC party). Only 22 out of more than 600 results are displayed in this table. Notations: “Time window”: “M”
month; “W” week; “D” day; Country: “FR” France; “SP” Spain; “IT” Italy; “NL” The Netherlands.

NoiceCapture Party DBSCAN Parameters and Filtering Variables Main Cluster Secondary Clusters Non Clustered Data Nb Of Extra Data in the Main Cluster

# ID Points Tracks Eps MinPts Time Window Acc. Zone (Country) Points Tracks Points Tracks Points Tracks Clusters Points Tracks

1 1 10,700 113 50 20 1 M (September 2017) Off PdL (FR) 93.5% 91.2% 6.5% 8.8% 0% 0% 7 12,212 76
2 1 10,700 113 50 100 1 M (September 2017) Off PdL (FR) 93.5% 91.2% 5.9% 8% 0.6% 0.8% 2 12,212 76
3 1 10,700 113 50 700 1 M (September 2017) Off PdL (FR) 93.5% 91.2% 0% 0% 6.5% 8.8% 1 12,212 76
4 1 10,700 113 100 20 1 M (September 2017) Off PdL (FR) 97.2% 96.5% 2.8% 3.5% 0% 0% 2 17,147 119
5 1 10,700 113 500 20 1 M (September 2017) Off PdL (FR) 99.8% 100% 0.2% 0% 0% 0% 2 17,148 119
6 1 10,700 113 4000 20 1 M (September 2017) Off PdL (FR) 100% 100% 0% 0% 0% 0% 1 17,244 122
7 1 9380 89 50 20 1 M (September 2017) On PdL (FR) 100% 100% 0% 0% 0% 0% 7 11,828 70
8 1 10,700 113 50 20 1 W (18–24 September 2017) Off PdL (FR) 93.5% 91.2% 6.5% 8.8% 0% 0% 7 11,315 74
9 1 9380 89 50 20 1 W (18–24 September 2017) On PdL (FR) 100% 100% 0% 0% 0% 0% 1 10,956 68
10 1 10,700 113 3000 20 1 D (20 September 2017) Off PdL (FR) 100% 100% 0% 0% 0% 0% 1 16,231 117
11 3 1209 5 3000 20 1 D (15 October 2017) Off PdL (FR) 100% 100% 0% 0% 0% 0% 1 19 1
12 5 18,758 67 3000 20 1 D (28 March 2018) Off Quimper (FR) 97.3% 100% 2.7% 0% 0% 0% 2 15,044 114
13 6 4509 44 3000 20 3 M (April–June 2018) Off Coruña (SP) 99.4% 95.5% 0.6% 4.5% 0% 0% 4 718 35
14 9 91 3 3000 20 1 M (May 2017) Off PdL (FR) 100% 100% 0% 0% 0% 0% 1 0 0
15 10 15,479 141 3000 20 2 M (May–June 2018) Off Fisciano (IT) 100% 100% 0% 0% 0% 0% 1 9691 77
16 11 5957 12 3000 20 1 D (9 June2018) Off Elven (FR) 100% 100% 0% 0% 0% 0% 1 0 0
17 12 660 17 3000 20 1 W (18–24 June 2018) Off Amsterdam (NL) 100% 100% 0% 0% 0% 0% 1 495 12
18 13 19,812 92 3000 20 1 W (16–22 July 2018) Off Morbihan (FR) 99.8% 100% 0% 0% 0.2% 0% 1 1021 21
19 13 16,374 84 3000 20 1 W (16–22 July 2018) On Morbihan (FR) 100% 100% 0% 0% 0% 0% 1 961 21
20 14 2909 25 3000 20 1 W (8–14 October 2018) Off Strasbourg (FR) 100% 100% 0% 0% 0% 0% 1 1028 21
21 15 58,771 506 3000 20 2 M (October–November 2018) Off Corse (FR) 100% 100% 0% 0% 0% 0% 1 9654 124
22 17 5840 61 3000 20 1 W (8–14 October 2018) Off PdL (FR) 100% 100% 0% 0% 0% 0% 1 1669 35
23 24 35,253 361 5000 20 2 M (April–May 2019) Off Catalonia (SP) 50.7% 79.9% 48.8% 19.5% 0.5% 0.6% 9 25,578 246
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Figure 3. Measurement location for the NC party event Id N°1 (cf. Table 1). To simplify the
representation, the points are grouped into 5 main zones. For each zone, the number of measurement
points is indicated in the circle. In total, 11,192 geo-localized points have been collected during
the official day of the event on 20 September 2017 (green circles), with additional points before
(red circle, on 19 September 2017) and after (blue circle, on 23 September 2017) the official day.
The collection points cover 2 administrative regions, “Pays de Loire” (20 + 10,680 = 10,700 points),
which corresponds to the official spatial zone of the NC party, and “Britain” (59 + 357 + 64 + 12 = 492
points); represented area of approximately 44.0 km × 102.0 km.

(a)

(b)

Figure 4. Cont.
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(c)

Figure 4. DBSCAN clustering approach, applied to the NC party Id N°1. Due to the scale of the
map and because the measurement points are close together, most of the points are stacked, which
makes it harder to see all of them individually. Represented area of approximately 6.3 km × 11.5 km:
(a) representation of line #1 of Table 2 (Eps = 50 and MinPts = 20): red points represent the main
cluster; the other colors represent the secondary clusters; all NC points are grouped in 7 clusters but
mainly in one main cluster (red) and one secondary cluster (yellow); (b) representation of line #2 of
Table 2 (Eps = 50 and MinPts = 100): red points represent the main cluster; yellow points represent
the secondary cluster; black points represent the non-clustered data; all NC points are included in
2 clusters, the main and a secondary one; (c) representation of line #10 of Table 2 (Eps = 3000 and
MinPts = 20); all data are located in only one cluster: red points represent all the points of the NC
party Id N°1 that are part of the cluster; blue ones represent the extra data that are part of the same
cluster, but not from the NC party.

When the GPS accuracy filter is considered (i.e., “Acc. = On”), as in line #7 in Table 2,
the number of tracks and points in the NC party decreases, since some of them are removed
from the analysis; in this specific case, one can observe that 100% of the NC points/tracks
are found in only one cluster, which confirms that the GPS accuracy may have an impact
on the quality of the clustering. This is also illustrated in Figure 5 showing the effect of
the accuracy filter for the clustering of the NC party Id N°13. In this example, several
measurement points with bad accuracy are removed when the accuracy filter is enabled; all
the remaining points are found in the same cluster.

(a)

Figure 5. Cont.
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(b)

Figure 5. Representation of the clustering results for the NC party Id N°13 in the “Morbihan”
department in France (lines 18 and 19 of Table 2). It compares the two options “Off” and “On” for the
“Accuracy” filter. Only one cluster is found: red points correspond to the points of the cluster (NC
party + Extra points); black points correspond to the points of the NC party that are not clustered (5
“isolated” black points: 4 on the left and 1 on the right of Figure 5a); represented area of approximately
3.4 km × 5.6 km; (a) “Accuracy” = “Off”; (b) “Accuracy” = “On”.

Considering NC party N°1, the number of extra points is very important, the obtained
cluster being about twice that of the original NC party. Looking more precisely at the
time stamp and the measurement area of these extra points, one can observe that they are
very consistent with the specific data of the NC party (Figure 4c). The experience of the
NC party organizers shows that in some cases, the participants in the event may forget to
mention the NC party code when collecting the measurements. The corresponding data are
therefore not counted in the NC party but are nevertheless well associated with the event.
In the present case, this hypothesis seems more than likely. An analysis of the extra points
shows that 100% of the points would be well associated with the NC party. In absolute
terms, this shows that the clustering method worked rather well in this case since it would
have allowed the integration of unexpected but relevant data.

Lines # 1, 4, 5, and 6 of Table 2 for NC party N°1 show that increasing the Eps parameter
increases the ratio of NC point/track detection (more quickly for NC tracks). This is of
course an expected and obvious result, since by increasing the search radius of the points,
without increasing the MinPts, it is easier to find new members for the cluster. This may
suggest that the two parameters Eps and MinPts cannot be chosen independently.

This interrelation of the two parameters, Eps and MinPts, can be analyzed through a
contingency-table-based analysis. The combinations of DBSCAN parameters that succeed
the most in clustering 100% of the NC party tracks/points are MinPts = 20 points with
Eps = 3000 m (21 NC parties are found out of the 26, i.e., 80.8%) and 2000 m (16 NC parties
are found out of the 26, i.e., 61.5%). Nevertheless, these combinations worked for the NC
parties in France, Italy, and The Netherlands only. Regarding the “Zone” and “Accuracy”
filters, the analysis of variance (ANOVA) does not allow us to conclude on their effect on
the clustering due to lack of ANOVA assumptions (i.e., homogeneity and normality). In
addition, a Principal Component Analysis (PCA) was also performed, but here again, it
was ineffective to describe the relationship between variables. Lastly, considering a linear
regression analysis, it is observed that not only the Eps and MinPts parameters, but also
the “Time window” filter, contribute explaining information regarding “Clustered data”
and “Extra data”. Nevertheless, the information that is explained is rather weak; it can
help when choosing optimal DBSCAN parameters and filtering variables, but they cannot
be expected to be the only factors to consider. Overall, due to the small sample size (i.e.,
only 26 NC parties with a few points/tracks), the result is quite hard to interpret, and the
statistical analysis cannot be performed under the best conditions.
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Therefore, it is clear that the choice of DBSCAN parameters and filtering variables will
need the experience of an “expert” to achieve the optimal clustering analysis. There are
probably no optimal values, and the choice will mostly depend on the nature of the clusters
to obtain. To be very selective, one should decrease the value of Eps and increase that of
MinPts. On the other hand, if we simultaneously choose a value of Eps that is too high and
a value of MinPts that is too low, the number of clusters may be considerable, with the risk
that they are not at all representative of a specific event. Nevertheless, it is well shown that
this DBSCAN approach may be useful to find clusters of interest for NC data analysis.

4. Application of DBSCAN on the NoiseCapture Database
4.1. Preliminary Results of DBSCAN in Some Countries

At this stage, one can already apply the DBSCAN method to the NC database. One of
the objectives of this first application is to determine if the method is able to detect clusters
and then to identify the typology of the clusters that are obtained by this approach and
their possible interest.

As mentioned above, the values for Eps and MinPts parameters will condition the
relevance of the detected clusters. The role of the expert is therefore important in the choice
of these parameters. In the present case, the parameters are fixed to Eps = 3000 m and
MinPts = 200 points, in order to limit the number of detected clusters and focus on larger
ones. Indeed, the use of the previously identified set of parameters (Eps = 3000 m and
MinPts = 20 points) on a large spatial area leads to a number of clusters that is too large to
allow a relevant analysis.

In this preliminary study, the DBSCAN method is applied to whole countries (i.e., the
“spatial zone” is equal to a country), with all the geo-located data (i.e., “Accuracy” fixed
to “Off”) and considering the data collected each month (i.e., the “Time window”). In this
application, four countries were selected in regard to past observations [8]:

• The first application was carried out in Peru since an unusual and large amount of
collected data was observed on 8–9 October 2018 in a past study [8]. Applying the
DBSCAN method leads to eight clusters (Figure 6 and Table 3). Among them, one
of the most important clusters effectively took place in October 2018 in the City of
Cajamarca (Figure 7, green points, 10,740 tracks, 108,785 points). Another cluster was
also identified in November 2018 (Figure 7, pink points, 248 tracks and 2334 points)
at the same place. The tracks for the green cluster were collected by 23 contributors
in 18 days, with a high concentration of measurements on a few days. Moreover, the
highest number of points were collected between 09:00 and 09:59 (18.6% of points) and
between 13:00 and 13:59 (17.2% of points). For the pink cluster, data were collected in
2 days by 3 users, who have also participated in collecting tracks for the green cluster.
Moreover, most points were collected between 07:00 and 07:59 (90.8%). Considering
the distribution of measurements over time and the total number of measurements, it
is likely that these two clusters are the result of specifically coordinated events.

• The next application was realized in the United Kingdom, one of the top contributors
to the NC database with 4693 tracks (4th in tracks contribution) and 2,067,182 points
(3rd in points contribution). Applying the DBSCAN method leads to 440 clusters.
The cluster with the highest number of points (126,533 points with 33 tracks) took
place in October 2019, close to the city of Stevenston in Scotland (Figure 8). This
cluster was collected by one user only during 12 days, with a few tracks per days;
the highest number of the data collection was performed between 22:00 and 01:59
(25.8% points) and between 06:00 and 06:59 (8.5% points), which could suggest that
an objective of the measurements was to evaluate the noise distribution during late
night and early morning. The metadata show that the smartphone was calibrated for
all the measurements, but the calibration value (40 dB) seems excessive in relation
to what can normally be expected. The cluster with the highest number of tracks
(248 tracks for 38,104 points) took place on November 2018 in the city of Strood in
England. This cluster was gathered by two users, and all of the tracks were calibrated



Sensors 2022, 22, 8832 16 of 27

to the same value (0 dB). This cluster was collected in 21 days, with 10 to 20 tracks per
day, mostly between 16:00 to 17:59 (12.1% points).

• Italy was also considered, since it is also one of the major contributors to the NC
database with 2654 tracks (ranked 11th) and 364,613 points (ranked 18th) and because
few NC parties have been organized. Applying the DBSCAN method gives 151 clus-
ters, among them, the two known NC party events, which took place in Fisciano in
May 2018 and May 2019 [42,43] (Figure 9).

• Lastly, the DBSCAN method was also applied to France, where most of the NC parties
were carried out and potentially, some non-official events. A total of 1852 clusters
were found, among them 211 during the month of September 2017, which corresponds
to the first month of the application’s existence. The cluster with the most tracks
and points (1358 tracks/32,0850 points by 429 contributors) is observed in Paris in
September 2017. This cluster was collected during the entire month with a majority of
points collected on 11, 12, and 13 of the month, with most points collected between
12:00 and 12:59, 10:00 and 10:59, and 19:00 and 19:59. Using corresponding DBSCAN
parameters in the case of France, the method returns too many clusters to make a
detailed and individual analysis. It is also unlikely that all these clusters are associated
with events. This suggests that the number of clusters should perhaps be limited to be
sure of their interest.

Figure 6. Representation of the 8 clusters found in Peru (the black points represent the non-clustered
data), using the DBSCAN approach with Eps = 3000 m and MinPts = 200 points; represented area of
approximately 750 km × 1200 km.

Table 3. DBSCAN approach for the data collected in Peru: 8 clusters are found (see also Figure 6).

Cluster Nb Tracks Points Contributors Month (Year) Nearest City Comments

1 10,740 108,785 23 October (2018) Cajamarca
2 248 2334 3 November (2018) Cajamarca 3 users were part of Cluster 1
3 23 3425 2 March (2019) Lima
4 1124 1 1 March (2019) Lima
5 16 2171 1 May (2019) Lima Same users as for Cluster 3
6 1 295 1 May (2019) Lima Same users as for Cluster 4
7 20 6957 2 November (2019) Lima Same users as for Clusters 3 and 4
8 4 206 1 November (2019) Lima Same users as for Cluster 3
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Figure 7. Representation of the clusters found in Cajamarca: red cluster: 10,740 tracks/108,785 points
in October 2018; orange cluster: 248 tracks/2334 points in November 2018); represented area of
approximately 10 km × 20 km.

(a)

(b)

Figure 8. Representation of the clusters found in Stevenston (Scotland, October 2019) and Strood
(England, November 2018): (a) Stevenston cluster (in pink); represented area of approximately
195 m × 300 m; (b) Strood cluster (in yellow); represented area of approximately 0.86 km × 1.70 km.
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(a) Cluster at Fisciano (Italy) in May 2018

(b) Cluster at Fisciano (Italy) in May 2019

Figure 9. Representation of the 2 clusters found in Italy, at Fisciano. Both clusters correspond to NC
party events: (a) NC party Id N°10 in May 2018; (b) NC party Id N°26 in May 2019; represented area
of approximately 4.5 km × 8.9 km.

4.2. Cluster Typology

The last application shows the ability of the DBSCAN method to identify clusters
of interest, for which the observed behaviors suggest that they are specifically organized
events. Among the large number of clusters detected, not all can give rise to the same
attention. The analysis of the clusters obtained in this first step allows us to identify the
following cluster typology:

• Type A (38.0%): Clusters composed of a large number of tracks/points and with
data collected by multiple users during a period of a month or less. This is the most
expected cluster type, since it typically corresponds to an NC party type event.

• Type B (40.7%): Clusters with data that are collected by one or a few users express the
involvement of one or a few people in the collection of a large number of measure-
ments. It is a priori an individual behavior, which can illustrate the involvement of
some people in the “crowd-sourced” spirit of the NC project. This type of cluster can
be interesting, especially if the user is considered an expert.

• Type C (4.4%): Clusters composed of a lot of tracks but with a small number of points
in total.

• Type D (13.5%): Clusters that are composed of only one track and contain a few points
(between 200 and 500 points).

• Type E (3.4%): Clusters with a regular daily collection for more than several days.
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Other behaviors were also observed, which would suggest that it is possible to combine
several clusters into the same cluster:

• Clusters of data collected during the same time period (day or hour) but in different
locations.

• Clusters that are close together and may be related to the same event.
• Clusters of data collected by the same users in the same location but at different times.

Based on the previous parameters for DBSCAN, it is clear that the number of detected
clusters can be very important once applied to the whole NC database. Moreover, based on
this typology of clusters, and depending on the final goal of the clustering, not all clusters
have the same importance. Coming back to the initial objective of the present study, i.e., the
constitution of a reference database, type A and B clusters are certainly the most relevant
due to a much higher density of measurement points, expressing a willingness to collect
data over a given spatial extent. On this basis, the higher the value of the parameter MinPts
will be, the larger the number of measurement points that will be important and the more
the number of concerned clusters that will decrease (as shown by Table 4). As also expected,
regrouping data by month decreases the number of clusters, since a cluster associated with
the same event over two weeks will be separated into two distinct clusters if the search is
performed by week instead of by month.

4.3. Applying the DBSCAN Method to the Full NC Database

As a second application of the DBSCAN approach, the full NC database is considered
(197,568 tracks, 48,901,719 points, 50,868 contributors, 195 countries), using the parameters
Eps = 3000 m and MinPts = 5000 points, filtering the data weekly. On a laptop (Intel(R)
Core(TM) i5-10210U CPU 64-bit Processor), the method takes about 16 h to process without
any special optimization.

Overall, 2046 clusters were found in 68 countries. The United States showed the
most clusters (975 clusters), followed by France (297 clusters) and the United Kingdom
(111 clusters), which is an expected result since these three countries are considered among
the top three contributors to the NC database [8]. Among these 2046 clusters, 1567 clusters
(76.59%) were collected by one contributor each (found in 40 countries, by 1155 different
contributors). In addition, 252 clusters (12.32%) were collected by two contributors each, in
31 countries. This leaves 227 clusters (24,280 tracks and 4,548,638 points) with at least three
users contributing to the data collection for each cluster (Figure 10): 95 clusters in France,
36 clusters in United States, and 9 clusters in Switzerland. Moreover, 19 of these clusters
were NC party events.

The analysis of the literature shows that scientific studies have also been carried out
on the basis of the collection of measurements using the NC application by teams without
any link with the NC project team. At this stage of the study, it seems interesting to check
if corresponding clusters have been found by the DBSCAN approach for these specific
experiments.
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Table 4. Number of clusters found by the DBSCAN approach in function of the MinPts parameters by filtering the data by month or by week. The number of clusters
with one track or one or two contributors is also given, as well as the clusters with a regular daily collection (i.e., between 2 and 5 tracks per day). The number in
parenthesis is the number of NC party events in the country. “Failed NC party” means that all the points of the event were not clustered, while “Partly failed NC”
means that at least 70% of the event was clustered. When “Failed NC party” and “Partly failed NC” are both equal to zero, the NC parties are fully clustered.

Country Eps MinPts Period
Number of Clusters

Total 1 Track 1 Contributor 2 Contributors Regular Daily Collection Failed NC party Partly Failed NC party

France 3000 20 Month 5204 2416 4370 471 635 0 (18) 0 (18)
3000 200 Month 1852 429 1278 260 143 1 (18) 0 (18)
3000 5000 Month 224 19 98 28 29 3 (18) 0 (18)
3000 10,000 Month 125 8 42 13 27 7 (18) 0 (18)
3000 5000 Week 297 32 164 41 0 4 (18) 1 (18)
3000 10,000 Week 125 12 61 14 0 8 (18) 1 (18)

Italy 3000 20 Month 564 270 525 27 5 0 (2) 0 (2)
3000 200 Month 155 34 129 14 4 0 (2) 0 (2)
3000 5000 Month 16 3 11 1 0 0 (2) 0 (2)
3000 10,000 Month 9 1 6 0 0 0 (2) 0 (2)
3000 5000 Week 15 2 10 1 0 0 (2) 0 (2)
3000 10,000 Week 7 0 4 1 0 0 (2) 0 (2)

United 3000 20 Month 1094 509 1024 51 22 – –
Kingdom 3000 200 Month 440 122 389 32 24 – –

3000 5000 Month 77 19 62 4 5 – –
3000 10,000 Month 48 7 37 4 1 – –
3000 5000 Week 111 23 99 9 0 – –
3000 10,000 Week 57 10 49 6 0 – –

Peru 3000 20 Month 83 40 72 9 2 – –
3000 200 Month 17 3 11 4 0 – –
3000 5000 Month 2 0 0 1 0 – –
3000 10,000 Month 1 0 0 0 0 – –
3000 5000 Week 2 0 0 1 0 – –
3000 10,000 Week 1 0 0 0 0 – –
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A first study, published in 2020, was carried out in Japan [44] in order to evaluate
the effect of COVID-19 pandemic lockdowns in the eastern edge of the city of Kobe. An
NC measurement campaign was set up over a period of one hour (10:00–11:00 am), with
an average time of 30 s, at six locations in an urban area (as well as at a fixed position in
front of a building), on two different days in May 2020, during and after the lockdown
period. Using the clustering approach, the measurements related to the study were found
as non-clustered data (Figure 11a). This is probably due to the number of measurement
points (3850 points) that was a priori lower than the number of measurement points for
detecting clusters (MinPts = 5000 points). Nevertheless, two clusters were detected in the
same area in July 2020 (Figure 11b) and in August 2020 (Figure 11c). These measurements
campaigns were carried out by the same two users that carried out the study in May
2020 [44], which may indicate additional measurements to the initial experimentation.

Figure 10. Representation of the 227 clusters with at least 3 contributors found around the globe
using the DBSCAN approach (1 point is a cluster; cluster points may overlay; the color of each cluster
is arbitrary).

An NC measurement campaign was also carried out in India [45] in three urban
zones corresponding to specific noise ambiances of Lucknow City: “Polytechnic chauraha”,
“Hazrat ganj chauraha”, and “Haniman chauraha”. The measurements were collected
at three time periods of the day (morning, afternoon, and evening), for 10 min each.
However the number of measurement points was a priori not sufficient for the clustering
methodology to detect this event as a cluster.

Another experiment, involving the comparison of several smartphone noise measure-
ment applications was conducted in 2018 [46]. Measurements were performed over three
periods of one day (7:00–9:00, 15:00–17:00 and 19:00–21:00), twice, in an area of the city
of Zagreb, Croatia. The reference [46], which is a student report, does not give enough
indication about the sampling of the measurements and the exact date of the measurements.
Nevertheless, applying our methodology, a cluster was identified, which corresponds to a
part of this experimentation (Figure 12). This cluster is located in the proximity of Zagreb
train station, and the measurements were collected during 12–18 March 2018.
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(a) (b)

(c)

Figure 11. Representation of the clusters found in Kobe (Japan), in 2020; represented area of approxi-
mately 1.3 km × 1.05 km: (a) representation of the measurements carried out during the event [44]
in May 2020 (190 tracks, 3850 points); (b) [representation of the measurements carried out by the
same users of the event [44]. July 2020 (28 tracks, 7778 points); (c) representation of the measurements
carried out by the same users of the event [44] in August 2020 (12 tracks, 15,928 points). All the data
are extracted from the NoiseCapture database [41].

The last event that can be found in the scientific literature took place in Cairo, Egypt
in August 2018, inside the “Kasr Al Ainy Hospitals” building. These experiments were
conducted in order to study the effect of noise pollution on patients undergoing surgery [47].
The experiment appears to have been correctly discovered by the clustering approach,
consisting of five tracks with a total of 9418 points and collected by a single user (Figure 13).
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Figure 12. Representation of the cluster found as part of the event (3 tracks/6417 points) in Zagreb
(Croatia), in March 2018 [46] ; represented area of approximately 1 km × 2 km. All the data are
extracted from the NoiseCapture database [41].

Figure 13. Representation of the cluster found as part of the event (5 tracks, 9418 points) in Cairo
(Egypt) in August 2018 [47]. Note that 6309 points are affected by low GPS accuracy due to the
measurement inside a building, which makes them poorly positioned on the Nile River; represented
area of approximately 950 m × 820 m. All the data are extracted from the NoiseCapture database [41].

5. Conclusions

Since 2017, the NC project has collected a large amount of information around the
world, which suggests that data may now be useful to evaluate the quality of sound
environments. However, the preliminary analysis of the data showed that it is important
to quantify the quality of the data in order to control its use [8]. Most of the quality
control methods that have been identified in the framework of the NC project for future
developments are based on machine learning methods; among them, (semi-)supervised
ones seem well-suited. This, however, implies the existence of labelled data to train the
models.

Such labelled data can, for example, be obtained during the organization of specific
events, called NC parties, for which a supervision of the contributors allows us to ensure
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that the measurement protocol has been followed and that the smartphones have been
calibrated. The data collected during NC parties can thus be considered as reference data
and can be used to learn models. However, these reference data are insufficient in number
to ensure the quality of learning; additional data are then required in the reference database.
The spread of the NC application around the world has also allowed other participants to
organize NC party-like events, which would complete the reference database as soon as this
data can be identified in the database. In general, the realization of these events generates
an increase in the spatial and temporal density of the measurement points, which suggests
that clustering-type methods would be well-suited to detect them. Among them, the
DBSCAN method was retained in the present paper and tested in several configurations.

The method was first applied in order to verify that the known NC parties could be
detected. By judiciously choosing the two main DBSCAN parameters, the search radius
of the measurement points (Eps) and the minimum number of points (MinPts), it is thus
possible to find 100% of the known NC parties in the form of clusters. In a second step,
the method was applied to a selection of countries in order to analyze the typology of
the detected clusters. Several events similar to the NC party were indeed detected, but,
depending on the value of the processing parameters, a greater number of additional
clusters can also be detected without being able to associate them in an obvious way with a
particular event. Finally, the method was applied to the whole NC database, with a set of
parameters aimed at detecting the most important clusters. More than 2000 clusters were
detected in the world, some of which could be associated with events organized in the
framework of research published in the literature.

It is clear that the method is very dependent on the parameters Eps and MinPts,
and their choice therefore requires the help of an expert, depending on the typology and
number of clusters that are expected. It seems, however, possible in the future to modify
the DBSCAN method to automatically find the appropriate values for the parameters Eps
and MinPts [48,49].

It is also clear that the classical DBSCAN method may return clusters with a lower
level of relevance, and other clustering methods would deserve to be compared in terms
of performance [50]. One can, for example, cite the ordering points to identify the clus-
tering structure (OPTICS) [51], which sets out to solve one of DBSCAN weaknesses (i.e.,
detecting meaningful clusters in data of varying density), by performing the clustering
after ordering the points in a linear order (e.g., date/time of measurements or spatial
directions, for example). The OPTICS method can give better results than DBSCAN, but it
increases the computational time due to the initial ordering of data. Instead of focusing on
points to build clusters, it could also be interesting to consider trajectories (since a set of
measurement points comes from the same track), using line/trajectory spatial clustering
methods. Among them, the TRACLUS method [52] would seem to be well adapted in this
case since it allows us to group trajectories with common sub-trajectories in the form of
clusters. This is usually the case in practice when an NC party is organized locally, since all
contributors start collecting data from the same location (from the same street, for example).

Considering the initial objective (i.e., to build a reference database), post-processing
may be carried out after the clustering, for example by merging some detected clusters.
Indeed, some measurements can belong to the same event but may be grouped into different
clusters because they are performed in different places or different periods. This can be
solved by investigating the contributors of each cluster to see whether they are the same, or
by detecting if the area of the clusters is overlapping (this is the case, for example, when
the measurements are collected in a same space but at a different period). In addition, the
reference database may be increased by selecting the most important/relevant clusters
and then associating the data that are produced independently by the participants to these
events. Finally, this would allow the construction of a larger reference database that could
be suitable for the use of supervised machine learning methods to develop quality control
protocols for the NC data.
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Abstract: Environmental noise control is a major health and social issue, particularly in urban areas.
Numerous environmental policies require local authorities to draw up noise maps of their territory
with the aim of establishing an inventory of the noise environment and then proposing action plans
to improve its quality. In general, these maps are produced with the help of numerical simulations,
which may not be sufficiently representative, for example, with regard to the temporal dynamics of
noise levels. Acoustic sensor measurements are also insufficient in terms of spatial coverage. More
recently, an alternative approach has been proposed, consisting of using citizens as data producers by
using smartphones as tools of geo-localized acoustic measurement. However, a lack of calibration of
smartphones can generate a significant bias in the results obtained. Against the classical metrological
principle that would aim to calibrate any sensor beforehand for physical measurement, some have
proposed mass calibration procedures, called "blind calibration". The method is based on the crossing
of sensors in the same area, at the same time, which are therefore supposed to observe the same
phenomenon (i.e., measuring the same value). The multiple crossings of a large number of sensors at
the scale of a territory, and the analysis of the relations between sensors allow to calibrate the set of
sensors. In this article, we propose to adapt a blind calibration method to data from the NoiseCapture
smartphone application. The method is based on the modeling of the relationships between sensors,
which can be written in matrix form and can then be solved as a linear algebra problem. The behavior
of the method is then tested and compared on NoiseCapture datasets, for which information on the
calibration values of some smartphones is already available.

Keywords: Environmental noise, noise mapping, smartphone application, calibration

1. Introduction

Managing environmental noise, particularly in urban areas, is a major health and
social issue. Numerous environmental policies encourage local authorities to produce noise
maps of their territory with the aim of establishing an inventory of the noise environment
and then proposing action plans to improve its quality. This is the case, for example,
with the European directive 2002/49/EC relating to the assessment and management of
environmental noise.

The production of noise maps remains the most widely used tool when considering
environmental policies. In general, these maps are produced using simulations, based on
calculation models requiring traffic data for the calculation of acoustic emission and spatial
data for the modeling of acoustic propagation. Because access to these data is sometimes
complicated, and their quality is sometimes questionable, the result of the simulations
only partially reflects the existing state of the sound environment. Conversely, the use of
acoustic sensors arranged within noise observatories gives a more detailed and realistic
image of the noise environment of an area, but the insufficient number of sensors available
does not allow for covering the whole territory and producing a detailed noise map [1].

The densification of sensors through the deployment of low-cost sensor networks is an
interesting alternative, but the network thus produced may prove difficult to maintain in
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the long term. Although several experiments have already taken place, to our knowledge,
there is no functional network of this type that can produce noise maps.

Another alternative is for citizens to become data producers themselves, using smart-
phones as measuring instruments, as part of a participative or crowdsourcing approach.
On this subject, since the pioneering work in the early 2010s [2–4], many studies have
been conducted [5,6], notably on the quality of acoustic measurements produced with
a smartphone, as well as on the implementation of a participatory approach to collect
data on a large scale and over the long term. Among these approaches, the one based on
the NoiseCapture application is the most advanced today [7]. Since the application was
released in 2017 (for Android smartphones only), a considerable amount of data has been
collected, worldwide [8]. Analysis of the data revealed a wide range in the quality of the
noise indicators collected, due to the measurement protocol and, in particular, the lack
of acoustic calibration of the smartphones in most cases. A lack of calibration, or even a
bad calibration, can indeed generate a significant bias in the measurement results. The
realization of a calibration in the state of the art, from a reference device (for example,
an acoustic calibrator), would normally constitute a pre-requisite for the realization of
measurements, but the access to such reference devices by any citizen makes this procedure
difficult to apply in practice. The proportion of calibrated smartphones in the totality of
collected data is then very low, making its use for the production of noise maps more
difficult.

In contrast to the classical metrological principle of calibrating any sensor for physical
measurement, others have proposed so-called "blind" mass calibration procedures. The
method is based on the crossing of sensors in the same area, at the same time, which are
therefore supposed to observe the same phenomenon (i.e., to measure the same value). The
repetition of these crossings of a large number of sensors at the scale of a territory, and the
analysis of the relations between sensors allow, in theory, to calibrate all the sensors. This
type of blind calibration seems particularly interesting for data such as those collected by
NoiseCapture, especially in urban areas, where several sensors can cross each other in the
same area at equivalent time periods.

In this paper, we propose to implement a blind calibration method for uncalibrated
mobile noise measurements. It is applied on NoiseCapture data, but could be generalized
for any equivalent dataset. The method, described in Section 2, is based on modeling the
relationships between sensors, which can be written in matrix form, and which can then
be solved as a linear algebra problem. The behavior of the method, as well as a modified
model, is then tested on NoiseCapture datasets for which information on the calibration
values of some smartphones is available (Section 3). Finally, as an experiment, the method
is applied to the dataset of the City of Rezé in France, allowing the production a "calibrated"
noise map based on the collected raw data (Section 3.5). Section 4 concludes on the next
challenges to deploy this method on a large variety of territories.

2. Methodology
2.1. The problem of the acoustic calibration of smartphones on a large scale

The principle of involving citizens in a participative science approach in the acoustical
context is to collect massively geo-localized objective and subjective acoustic data. These
data can then be used to produce noise maps for the benefit of local authorities, for example,
in the context of establishing action plans to reduce noise pollution. This project can also be
part of an educational [9,10] or citizen approach to raising awareness and co-construction
of public policies [11,12]. Whatever the purpose of the collected data, the calibration of
smartphones is an issue that is often discussed.

Several works have shown that different acoustic measurement applications installed
on the same smartphone or the same application installed on different smartphones can
generate differences in the measured acoustic indicators [13–15] that can reach up to
nearly 30 dB compared to a reference device [16]. This can be explained in particular by
the different coding of the applications as well as by hardware differences between the



Version November 9, 2023 submitted to Sensors 3 of 23

smartphones. In this context, particular attention was paid to the development of the
NoiseCapture application, to ensure compliance with the acoustic acquisition protocol
on Android smartphones. One can expect that the dispersion of measured noise values
within the NoiseCapture application are lower. However, the calibration of the applica-
tion/smartphone pairs is still required to obtain acoustic results with a minimum of bias
[14,16,17].

In this paper, acoustic calibration is seen as the correction of a measured sound pressure
signal so that this measurement coincides with a reference signal (i.e., an acoustic calibrator
most of the time). This correction allows for a systematic error between the device to be
calibrated and the reference device. In the simplest case, if X is the temporal sound pressure
signal measured by the smartphone, then, the true value Y of the observable is related to
the measured measurement X, via a calibration coefficient k such that:

Y = k × X. (1)

Within a smartphone application for noise measurement, the calibration consists of
estimating this coefficient k, which normally takes into account all the elements of the
analog-digital conversion chain, such as the correction linked to the sensitivity of the
microphone and the effects of the digital discretization of the signal. Considering sound
level in decibels (dB) instead of acoustic pressure, the estimated sound level LY can be
calculated using the measured sound level LX by the smartphone with the following
relation:

LY = LX + 20 log k = LX + ∆. (2)

Without the correction, the smartphone will produce a systematic offset (in dB) of a
value equal to ∆.

In most experiments, the calibration procedure consists of evaluating the difference ∆
in measurement between a smartphone and a reference device (e.g., a class 1 sound level
meter) and then proceeding to a correction in overall sound level, possibly A-weighted, by
using an acoustic correction factor [18]. Most of the time, this correction is assumed to be a
constant compared to the reference device; however, linearity problems can occur at low
and high levels and in frequencies, which could justify a more adapted calibration [16,17],
such as proposed by [19] for example. Instead of using reference devices, some alternative
calibration methods have also been proposed, based, for example, on the measurement of a
quiet sound level [14] or on the in situ measurement of road traffic noise [20]. In addition, if
the calibration corrections are collected for different smartphone models and integrated in
a reference database, the calibration of a smartphone can also be performed indirectly by
searching for the corresponding calibration value in this database [14]. Nevertheless, some
works have also shown possible differences between two identical models of smartphones,
depending on different versions of the operating system or due to hardware changes on two
generations of the same model [16]. Note also that the use of an external microphone instead
of the smartphone’s internal microphone can improve the accuracy of the measurement
but it still requires microphone calibration [21–24].

Considering NoiseCapture, in the 2017–2020 period, around 24% of the measurement
points (26% of tracks, 34% of the smartphones) have been collected after calibration. How-
ever, even though it represents a very large mass of data, the observed calibration values
may call into question the quality of the calibration: 61.12% of the calibrated smartphones,
for example, have calibration values higher than ±15 dB, which does not seem realistic,
even considering the low metrological quality of some smartphones. Finally, only specific
events organized by specialists, for example with the objective of raising awareness among
citizens or for research purposes, can ensure a high quality of data by considering a state-
of-the-art calibration and a training of the users [18,25,26]. This is particularly the case for
NoiseCapture Party events, which aim at collecting data during a specific event, supervised
by qualified persons, generally over a short period of time and a limited spatial extent.
However, such data represent only 0.6% of the data collected over the 2017–2020 period [8].
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Relevant exploitation of mobile data at a large scale is therefore hampered by the
heterogeneity of the collected data, mainly due to the lack or misapplication of a calibration
protocol. To solve this problem, a relevant solution consists in simultaneously calibrating a
posteriori all the collected data, including those that would have given rise to a calibration,
in order to ensure total coherence between the data. In the literature, this mass calibration
of data measured with mobile sensors, instead of considering the individual calibration
of sensors, has led to the development of specific methodologies referred to as blind
calibration, self-calibration, or re-calibration. In [27], the authors propose, for example,
to take advantage of the multiple rendez-vous between an uncalibrated smartphone and
several calibrated smartphones to estimate its bias; a consensus is then found to calibrate
all the smartphones simultaneously by solving a discrete average consensus problem. Here
again, the fact of having only a few reference data points limits the use of the method.
On the contrary, in [28,29], the Moments Based Calibration approach does not require
reference data but considers that all mobile sensors move in the same way in the whole
study domain, with the same probability. The ergodicity property then simplifies the
mathematical analysis of the problem; in practice, as in our case, it is however not verified
since at the scale of a large territory, it is admitted that two smartphones will never meet.
In [30], the calibration method does not rely on any such assumption and formulates
the mutual calibration problem as a linear algebra problem whose solution relies on the
resolution of a Laplacian matrix.

2.2. NoiseCapture application and database

The principle of mobile noise measurements is to collect geo-referenced acoustic data
in a spatial area (figure 1). A given user starts a measurement, moves along a path, then
stops the measurement. At each time step of 1 second, several acoustic indicators are
calculated on the fly, recorded on the smartphone, and sent anonymously to a remote server.
The transmitted data are verified and archived, and then processed in a simplified way in
order to represent them in a cartographic representation. This representation takes the form
of a noise map, where some acoustic indicators are aggregated on a hexagonal elementary
spatial extent, the network of hexagons covering the entire globe.
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• 1s measurement point
₋ Noise level
₋ Geo-localization (GPS)
₋ Localization accuracy (GPS)
₋ Speed (GPS)
₋ Date/Time of measurement
₋ …

Starting point

End point

Figure 1. NoiseCapture approach. Using the NoiseCapture application, a user moves along a path;
each second, several noise indicators (sound level, spectrum) and other information (date/time,
localization, speed, etc) are calculated. When the user stops the measurements, the data are stored
within the smartphone, and, if authorized by the user, uploaded to the NoiseCapture remote server.
Raw data collected by the entire NoiseCapture community is pre-processed and displayed in the
form of noise maps.

2.3. Blind calibration model
2.3.1. Natural Graph Model

Among the solutions proposed in the literature for blind calibration, as a first attempt,
the Natural Graph Model (NGM)-based blind calibration scheme proposed in [30] seems
adapted to the mobile noise measurements, such as collected using the NoiseCapture
application. This method consists of exploiting the multiple appointments of sensors
at positions close in time and space (i.e., in the same hexagon at a nearby time period)
in order to establish mutual calibrations between sensors (figure 2)). In other words, if
two smartphones simultaneously measure the same acoustic phenomenon, they should
produce the same indicators (in the next development, we will say that there is a link
between the two smartphones). Due to differences in calibration for both smartphones, this
rendez-vous leads to the establishment of a correction factor between the two smartphones,
i.e., a relative calibration, which can be generalized to the scale of a network of smartphones
to establish relative calibrations between devices. For a very dense sensor network, the
multiple appointments create redundancy of information, which can also be exploited to
improve the quality of the calibration.
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Figure 2. Principle of the blind calibration methodology applied to mobile noise measurements.
During the procedure, several sensors noted that S1, S2, S3, and S4, crossed the same spatial area at
the same time (t1, t2, t3, t4, t5). In theory, these sensors should measure exactly the same acoustic
event and therefore produce the same noise indicators. The path of a user is symbolized by a colored
arrow; at each time step, the user is localized at a given position, symbolized by the colored circle
with the time increment inside.

In the following, the original NGM methodology [30] is detailed and applied to the
mobile noise measurement, using the same notations. However, we do not repeat all of the
original developments so as not to make this article too long. Readers are invited to consult
the original article.

Let us consider, for example, four sensors (S1, S2, S3, S4) traveling a path passing
indifferently several hexagons covering a spatial extent at different times t. All the users
numbered i present at the same time t in the same area define a zone Z of sensors that
measure the value x of the same observable y of the event. Using the relation (2), we have
[30]:

y = xi + ∆i = xi + di + ni. (3)

Table 1. Co-location sensor measurements based on the scenario of figure 2.

Smartphone\Zone Z1 Z2 Z3 Z4 Z5

S1 x2
1 x3

1 x4
1

S2 x2
2 x3

2 x4
2

S3 x1
3 x3

3 x5
3

S4 x1
4 x2

4 x5
4
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Figure 3. Network graph based on the scenario of figure 2 and Table 1.

In the relation, it is assumed that the offset ∆ that is estimated for a sensor is the sum
of the exact drift d related to the calibration, assumed to be systematic and stationary over
time, and an error n associated with a non-predictable external effect and non-systematic,
assumed to be white noise.

Thus, we can define the zone Zα containing Nα co-located sensors (Table 1), performing
the measurement xα of the same observable yα (i.e., the true value) such that [30]:

{yα = xα
i + di + nα

i }Si∈Zα . (4)

For each sensor Si ∈ Zα, the corresponding drift di can thus be expressed by the other
smartphone drifts dj (Sj ∈ Zα, Sj ̸= Si) using the following relation [30]:

di =
1

Nα − 1 ∑
(Sj∈Zα ,Sj ̸=Si)

(
dj + ∆xα

ji + ∆nα
ji

)
, (5)

with ∆xα
ji = xα

j − xα
i and ∆nα

ji = nα
j − nα

i .
Since the sensor i moves along other zones and the drift di is stationary over time,

one can derive a set of linear equations. Considering the whole set of sensors, the linear
equations can be written following a matrix form [30]:

Ld⃗ = ∆x⃗ + ∆n⃗, (6)

where L is the calibration matrix, d⃗ is the drift vector, ∆x⃗ is the differential vector, and ∆n⃗ is
the differential white noise vector. Due to the properties of L, the calibration matrix is the
Laplacian matrix. Lastly, the authors consider two more hypotheses: (1) the differential
white noise vector ∆n⃗ is negligible when considering a large number of sensors, meaning
that Ld⃗ ≈ ∆x⃗; (2) the mean value of all smartphone drifts is nearly zero, which leads to
the equivalent constraint M1d⃗ = 0 where the elements of M1 are all equal to 1. Finally,
the authors show that the drift vector can be obtained by resolving the following matrix
inversion [30]:

d⃗ = (L + M1)
−1∆x⃗. (7)

Once the drift vector is obtained, the estimated true value in a zone can be calculated
using relation (4).

2.3.2. Simple Mean Model

Instead of using the NGM methodology, one can consider a very simplified approach,
the Simple Mean Model [31], also considered in the reference works for predicting the
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gain calibration value for each smartphone. First, we take the average of the measurement
values in each column of Table 1 to estimate the true input value of a zone. The SMM
assumes a large number of sensors and estimates the true input value yα using:

ŷα =
1

Nα ∑
(Si∈Zα)

(xα
i ) =

1
Nα ∑

(Si∈Zα)

(yα − di − nα
i ). (8)

Next, the drift value of a sensor can be estimated by calculating:

di = ŷα − xα
i . (9)

The linear equation (5) for the NGM model, plus the constraint ∑i
(
di + nα

i
)
≈ 0 is

then equivalent to the SMM. In other words, the NGM is a generalized extension of the
SMM.

2.3.3. Validation of the NGM implementation

The NGM implementation was validated by direct comparison with the results pub-
lished in the reference article [30] for a test dataset. This dataset is based on S = 100
simulated measurements located in G = 100 zones. Each measurement is simulated as
the sum of the true value of the measurement y (a random number between 0 and 100
according to a uniform distribution), of a drift d (a random number according to a Gaussian
distribution of variance ∆dri f t) and of a noise n (a random number according to a Gaussian
distribution of variance ∆noise). The membership of a measurement in a zone is obtained
randomly. Note that, at this step, this dataset has no relation to sound levels and is only
used for evaluating the NGM behavior.

On the basis of this dataset, a network graph can be generated. The system (6) is then
solved in order to determine the estimated value of the drift according to the relation (7) as
well as the estimated value of the measurement in the corresponding zone according to the
relation (4). The Mean Square Error (MSE) between the true value y and the estimated value
ŷ can then be computed in order to evaluate the model efficiency. In the reference article, the
authors choose to represent the results through the link density metric ld ≡ 2L/[S(S − 1)],
which represents, on average, the number of times a given smartphone encounters other
smartphones, with L designating the number of links. In addition to the application of the
present NGM, the results obtained by the simple mean model defined at Section 2.3.2 are
also represented. The results are presented in the two following figures 4 and 5, and are
very similar to figures 3 and 4 of the reference article [30]. This simple comparison validates
our implementation of the NGM.
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Figure 4. Comparison between the NGM and the MSM: error between the true value and the
estimated value, for a link density ld = 1.0 and ld = 10.0, with N = 100 smartphones in G zones.

Figure 4 illustrates the error between the estimated value and the true value of the
measurement for two values of the link density (ld = 1.0 and ld = 10.0). As expected, when
the number of links between sensors increases (when ld increases), the estimation error
decreases. Moreover, this figure shows very clearly that the NGM gives a better estimation
than the SMM.
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Figure 5. Comparison between the NGM and the MSM: mean square error in function of the link
density ld, with N = 100 sensors in G zones.

Figure 5 generalizes this conclusion by summarizing the results for several values
of the link density ld. The NGM converges quickly to the true values, even for low link
densities, while the SMM requires a larger number of links to reach an equivalent level of
performance.

From a practical point of view, the optimization of the results of the model requires
both an increase in the number of sensors and in the link density. Understandably, the more
links there are between different sensors and the higher the number of sensors, the better
the results.

3. Application of the NGM to a mobile acoustic dataset
3.1. Discussion of NGM application assumptions

The development of the NGM is based on several assumptions that need to be dis-
cussed regarding its applicability to mobile acoustic data dataset. Overall, the reliability
of all these assumptions, although questionable, is also supported by the results that will
presented later.

3.1.1. NGM mathematical assumptions

Regarding the mathematical assumptions of the model, one can considered the follow-
ing discussion:

• The drift d of a given sensor is stationary over time. In principle, the variation of drift over
time of a professional microphone is small, especially with respect to its impact on
measured noise indicators. A smartphone microphone, on the other hand, is exposed
to numerous constraints that may partially modify its acoustic characteristics over
time. To our knowledge, there is no published study on the acoustic monitoring
of smartphones over time, at least for environmental acoustics applications, but
our experience within the NoiseCapture project has not revealed any anomalies on
this subject. Moreover, considering the rapid change in the smartphone fleet, the
assumption of stationarity over a short or medium time period seems quite acceptable.
In the event of a full deterioration of the smartphone microphone, following an
accident, for example, the smartphone will become unusable for its primary function,
and it is likely that it will no longer be used to collect data.

• The average value of drifts d on all sensors is null. The average value of all known
calibration values in the NoiseCapture database, if we exclude calibration values at
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zero (default value in the absence of calibration), is of the order of −0.43 dB, i.e., close
to zero. This hypothesis, therefore, seems globally acceptable. It is important to note
first of all that this assumption is introduced by the authors to ensure the uniqueness
condition of the solution of the equation (6) [30]. The assumption can therefore be
discussed but is, in any case, required in the approach.

• The noise vector n⃗ is small in front of x⃗ for a large number of sensors. It is difficult to quantify
the error introduced by external conditions or insufficient control of the measurement
protocol (noise generated by the operator, bad holding of the smartphone, effect of the
wind on the microphone, etc). However, on can consider that this noise is negligible
in comparison with the measurement, and that it can be assimilated to a white noise.

3.1.2. Sensor definition in the context of a mobile acoustic measurement

It is also important to consider the definition of a sensor in the context of a mobile
acoustic measurement. Indeed, in the present application we consider a sensor as a (smart-
phone model, NoiseCapture user) pair (noted later as a (smartphone,user) pair), even if
several users can use the same smartphone model. This allows to consider a specific cali-
bration for each pair: it enables to take into account the fact that two users can, for example,
use the same smartphone model with a different measurement protocol, or that the same
smartphone model can give rise to several technically different generations, then differ-
ent calibration corrections. In the NoiseCapture approach, a given user is defined by an
Universally Unique Identifier (UUID), that is associated to the corresponding smartphone.

3.1.3. Assumption of simultaneous measurements between two sensors

The major assumption of the NGM model, which requires matching data that were
measured at the same time and at the same place, is very crucial and raises the question of
the choice of "homogeneous" time periods for the collected data in the context of mobile
acoustic dataset. In reference [32], authors consider, for example, that a measurement of
10 minutes duration can be sufficient to characterize the sound environment equivalent to a
period of one hour and that "homogeneous" periods of the same day can be discriminated
by measurements of 10 to 20 minutes. For the moment, the temporal distribution of the
collected data with NoiseCapture is not controllable, and only the accumulation of a large
number of data with time will be able to ensure, in the future, a sufficient number of data
for all temporal and homogeneous reference periods of a day. At this stage, within the
framework of the present work, we will consider larger time period of 1 hour or more, with
the hypothesis of homogeneous sound environments.

3.2. Comparison with reference datasets: NoiseCapture Parties

In the NoiseCapture approach, specific events can be specifically organized in order to
collect acoustic data over a defined spatial extent and over a given period. These events,
called NoiseCapture Parties, are supervised by experts and give rise to both the acoustic
calibration of smartphones and the respect of a measurement protocol. Therefore, on these
reference datasets, some calibration data is available for a large number of smartphones
(i.e., the initial calibration value).

In this section, and as a preliminary step, we propose to apply the NGM to several
reference datasets (Table 2). Each dataset is defined by an identifier pk_party that identifies
the corresponding data in the reference database [8]. The total number of 1 second measure-
ment points, the number of tracks (consisting of all 1 second measurement points during
the same track), the measurement time period, as well as the total number of (calibrated)
smartphones, are also indicated. In addition, in the framework of the application of the
NGM model to these datasets, the number of links and the value of the link density ld are
also given.
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Table 2. Application of the NGM on NoiseCapture Parties datasets (reference data).

pk_party Country Tracks Points Time period Nb of Sensors Nb of cal. Sensors Zones Links ld
10 Italy 149 15,912 11h00-12h00 12 11 479 357 5.4
13 France 100 21,470 10h00-11h00 11 11 817 508 9.2
22 France 192 17,309 12h00-19h00 23 23 403 1902 7.5
26 Italy 332 23,220 10h00-12h00 20 20 619 2526 13.3

Each event allows for the collection of data on a spatial extent defined by a set of
contiguous hexagonal areas, as illustrated for example in Figure 1. The rayon of the
hexagons is set to 15 m by default in the NoiseCapture approach, but the influence of this
size on the behavior of the model will be discussed later in Section 3.4.

By construction, it is expected that the NGM performance will increase as the number
of links between sensors increases and, therefore, as link density increases too. In view of
the ld values in the table 2 and by looking at figure 6, this hypothesis does not appear so
clearly, even if the trend is globally respected.

Beyond a high ld value, it is important that all smartphones are linked together.
For example, in the case of NoiseCapture Parties N°13 and 26, one can observe that
there are several groups of smartphones, with many links within each of these groups
but not between smartphones from different groups (see, for example, the figure 7b for
the NoiseCapture Party N°26). Conversely, the NoiseCapture Party event N°22 yields
satisfactory results because most of the sensors are linked together (see figure 7a for the
NoiseCapture Party N°22).
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Figure 6. Error value between the estimated drift value and the initial calibration value for each
calibrated smartphone used in the NoiseCapture Parties N°10, 13, 22 and 26.
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Figure 7. Smartphone network graph for the NoiseCapture Party (a) N°22 with 23 linked smartphones
within the same subset of data and (b) N°26 with 20 linked smartphones within 6 distinct subsets of
data.

3.3. Hybrid NGM-SMM

As discussed in the last paragraph, the improvement of the NGM method relies on the
increase in the number of links between smartphones and, thus, the increase in link density.
Obviously, if there are too many smartphones with few links with other smartphones, then
the link density will decrease and the model efficiency will also decrease. An alternative to
the original approach consists in applying the NGM to the pairs (smartphone and user)
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with the most links, then using the corresponding calibrated pairs to determine the drift
of the other pairs by using SMM. This methodology, which can be qualified as a hybrid
NGM-SMM method, makes it possible to "focus" the NGM efficiency on the most relevant
pairs by optimizing the link density and to determine the calibration values for the other
pairs more easily with the SMM.

This methodology has been first tested on the dataset of the NoiseCapture Party N°22.
Several values of the minimal number of links per pair (smartphone,user) to be considered
as a cut-off between NGM and SMM in the hybrid method were tested: from more than 1
link (this corresponds to the full NGM, with 23 (smartphone,user) pairs) to more than 140
links (12 remaining pairs), in order to evaluate the hybrid model efficiency. As expected,
when the minimum number of links increases, the number of remaining (smartphone,user)
pairs naturally decreases.
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Figure 8. Application of hybrid NGM-SMM methodology on the NoiseCapture Party N°22 dataset.
Error (in dB) between the estimated drift and the initial calibration of smartphones in function of the
number of links between (smartphone,user) pairs from 1 (this corresponds to the full NGM, i.e., the
reference using the initial 23 smartphones) to 140 (12 remaining smartphones).

Figure 8 illustrates the results of this hybrid method, through the mean error between
the estimated drift values and the initial smartphone calibration values. In these results, all
smartphones are concerned, whether they are calibrated by the NGM method or by the
SMM method. Compared to the NGM reference, we observe a better behavior of the hybrid
approach (the variance decreases), and this is more so as the minimum number of links
increases. This result clearly shows the contribution of the hybrid NGM-SMM method
compared to the NGM method alone.

3.4. Effect of the size of the spatial area on the hybrid method

As mentioned below, the size of the spatial area may have an effect on the method’s
efficiency. In this paragraph, we compare the effect of the size of the hexagon on the result
of the hybrid model using the NoiseCapture Party N°22 dataset. Results are detailed in
table 3, in terms of mean error (in dB) between the estimated drift and the initial calibration
value and in terms of uncertainty (i.e., the interval between the 75 and 25 quantiles after
correcting with the bias value). It should be noted that the larger the area, the fewer the
links between smartphones; this explains why some of the rows in the Table 3 do not give
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any results. Whatever for the mean error or for the uncertainties, the results in Table 3
shows that, for the corresponding dataset, the best compromise is obtained for a hexagonal
size of 15 m. This results confirms the initial hypothesis of the NoiseCapture approach,
suggesting that the sound environment may be considered as homogeneous in an area of
15 m size.

Table 3. Effect of the size of the hexagon on the hybrid method as a function of the minimum number
of links per smartphone. When the minimum number of links is equal to 1, it corresponds to the
reference NGM.

Hexagon size
Minimum number of links 10 m 15 m 30 m 50 m

1 (NGM) Mean error -2.33 0.36 -0.97 -1.28
Uncertainty ±7 ±8 ±7 ±6.5

15 Mean error -2.33 -0.04 -0.97 -1.21
Uncertainty ±7 ±7.5 ±7 ±6.5

40 Mean error -2.77 -2.13 -3.12 -3.69
Uncertainty ±6.5 ±5.5 ±7.5 ±7

55 Mean error -3.86 -2.77 -3.71 -2.54
Uncertainty ±6 ±5 ±5 ±5

80 Mean error -3.37 -2.34 -3.72
Uncertainty ±5 ±4 ±4.5

120 Mean error -3.54 -1.88
Uncertainty ±4 ±3.2

140 Mean error -3.48 -1.92
Uncertainty ±4 ±2.5

190 Mean error -4.76
Uncertainty ±3.5

3.5. Comparison with large realistic dataset: City of Rezé (France)
3.5.1. Description of the dataset

The previous analysis is now extended to the City of Rezé, part of the Nantes metropoli-
tan area, in France (figure 9), for which a very large amount of data has been collected,
both in the context of NoiseCapture Party events (NoiseCapture Party N°2, N°9, and N°52)
and by "independent" contributors. In this area, additional data have also been collected
similarly to a NoiseCapture event, in the framework of the Sonorezé research project
[12], but are not a part of NoiseCapture Parties. The involved area represents a surface
of 13,780,000 m2, gathering a total of 450,335 of 1 second measurement points and 2,336
tracks on 10,365 hexagons (figure 10), collected by 331 (smartphone,user) pairs with 163
different smartphone models. Reference data (NoiseCapture Parties) represents 1,877 of
1 second measurement points (0.4% of the whole dataset) and 16 tracks (0.7%), collected
by 4 (smartphone,user) pairs (1.2%) and 3 different smartphone models (1.8%). Of the 331
pairs, only 134 smartphones were calibrated by users, which corresponds to 278,561 (61.9%)
of 1 second calibrated measurement points and 1,529 (65.5%) calibrated tracks. The map
shown in Figure 10 is obtained by averaging the sound levels at all the measurement points
in each hexagon over the entire data collection period [33].
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(a) Localisation of the City of Rezé (France) (b) Boundaries of the City of Rezé

Figure 9. Localisation of the City of Rezé in France.

Figure 10. NoiseCapture data collected on a small part of the City of Rezé in France: measurement
points and noise map (in dBA) built with raw data.

This dataset was collected over 6 years (2017–2023) at different times of the day and
on different weekdays and weekends. In the present work, we have chosen to limit the
application of the hybrid method to 08:00-20:00 (as a unique time period), for which a large
number of data sets are available, considering that the long-term sound environment would
be homogeneous during these periods. It corresponds to 315,598 of 1 second measurement
points (i.e. 70.1% of the initial dataset) and 1,712 tracks (73.3%). Moreover, to avoid the
high variation when it comes to short measurements, a more ’homogeneous’ approach was
considered. This approach was to remove (smartphone/user) measures that stay less than
30 s (65.3% of the initial dataset in terms of measurement points), 20 s (71.6% of the initial
dataset) or 10 s (91.8% of the initial dataset), in each hexagon. These sub-datasets will be
referred in the next paragraph to as ’filtered data’.
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Figure 11. Application of the hybrid NGM-SMM methodology on the City of Rezé. Mean error (in
dB) between the estimated drift and the initial calibration of smartphones in function of the number
of links between couples (smartphone,user) from 1 (i.e., the NGM reference) to 500, for each filter
duration. The hybrid method is applied to both the ’full’ dataset and the sub-dataset (’filtered’) that
correspond to a presence time of at least 30 s, 20 s and 10 s in a hexagon area.

Table 4. Errors between the gain calibration value of smartphone and the obtained drift value, in
function of the number of links, in terms of mean error, median error and interquartile range (IQR),
for the full dataset and the filtered data.

Minimum number of link per sensor 1 5 10 20 50 100 200 500

Full dataset
IQR 19.4 18.6 18 16.2 11.4 6.8 21.1 26.6
Mean -6 -6 -6 -5.4 -2.7 -3.4 -11.8 -12
Median -6.5 -6.5 -6.5 -6 -2.5 -3.4 -12.2 -11.8
Number of (smartphone,user) pairs 201 169 155 145 94 72 37 30

Filtered dataset - 10 s
IQR 18.9 17.9 17.1 15.7 11.1 19.6 22.6
Mean -4.2 -5.1 -2.1 -4 -2.9 -3.6 -9.9
Median -3.7 2.8 -1.3 -4.9 -1.8 -4.7 -12.6
Number of (smartphone,user) pairs 163 131 108 85 57 26 19

Filtered dataset - 20 s
IQR 17 16.9 20.4
Mean -3.8 -3.6 -4.8
Median -2.9 -2.8 -5.5
Number of (smartphone,user) pairs 101 45 18

Filtered dataset - 30 s
IQR 16.3 18.9 19
Mean -3.1 -0.7 -3.6
Median -3.9 -1.5 -0.8
Number of (smartphone,user) pairs 63 20 12
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3.5.2. Time slot variability for a rendez-vous

Similarly to Figure 8, Figure 11 illustrates the mean error and uncertainty of the
hybrid method, applied to data collected for the city of Rezé, as a function of the minimum
number of links between (smartphone,user) pairs. The approach is also applied on the
sub-dataset with a minimum presence time of 30 s, 20 s and 10 s in a hexagon. Here again,
the hybrid approach seems to give better results as the number of minimum links increases
(the mean error decreases, as does the uncertainties). For the full dataset, the limit of
improvement is reached a priori when the number of remaining (smartphone,user) pairs
becomes insufficient. In the present case, this limit seems to appear for a number of links
between 50 (94 remaining pairs) and 200 (37 remaining pairs), and is visible for a number
of links equal to 100. In this case, the average error is −3.4 dB between the smartphone
calibration values and the drift values obtained using the hybrid method. The uncertainty
is also much lower in this situation.

When considering a minimum time of presence in an hexagon area, we observe that
the mean error decreases in comparison with the full data (results for a minimum number
of links of 5 and 10), while the uncertainty is quite similar and constant. For larger number
of links, there are no more enough remaining (smartphone,user) pairs and the hybrid
method can not give result. When comparing the results for the full dataset with the results
for a time of presence of 10 s, we observe that the optimum minimum number of links is
reached earlier for the filtered data. It is difficult to conclude, since there is not enough
data for 20 and 30 s, but one could expect that increasing the temporal filter duration will
increase the quality of the results of the hybrid method.

3.5.3. Qualitative Results

In addition, we now consider the application of the hybrid method on the City of Rezé,
with a minimum number of links of 100, which corresponds to the best configuration for the
full dataset. As an illustration, Figure 12 shows the comparison between calibrated noise
maps, either by considering the individual smartphone calibration values (as measured on
the smartphone), or by considering the calibration values obtained using the hybrid blind
calibration method, for a small part of the City of Rezé:

• The noise map (in dBA) produced with the initial calibration values (Initial noise map,
figure 12a). It considers only data for smartphones with an initial calibration (134
pairs).

• The noise map (in dBA) obtained by applying the blind calibration, using the hybrid
method with a minimum threshold of 100 links per smartphone, but only for the
smartphones that were initially calibrated, (Blind calibrated noise map, figure 12b). In
this case, 52.7% of smartphones were calibrated (54 using the NGM method and 53
using the SMM method), enabling 71.9% of measurement points to be corrected.

• The difference map (in dBA) between the Initial and the Blind calibrated noise maps
(figure 12c); this difference map is calculated on the basis of the differences in the
sound level in each hexagon. This map is completed in figure 13 by a representation
of the distribution of sound level differences, as a percentage of the total number of
corresponding hexagons in the whole City of Rezé (8,464 hexagons contain data on all
10,365 hexagons).
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(b) Noise map after blind calibration (calibrated smartphones
only)
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(c) (Initial-Blind calibration) noise map (c-a)

Figure 12. Noise maps of a part of the City of Rezé: (a) data with initial calibration (134 calibrated
(smartphone,user) pairs); (b) data after applying the blind calibration on the initially calibrated
smartphones only; (c) difference noise map (a-b), see also details of the differences at figure 13.
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A qualitative comparison of the map produced using the calibration values initially
entered by users, and the map produced after blind calibration provides some first insights
into the method. The initial map (Figure 12a) cannot completely serve as a reference,
because there may be errors in the calibration values entered by users. On the other hand,
the blind calibration method also allows a calibration value to be estimated for smartphones
that have not been calibrated, an asset that is not evaluated here.

The findings are as follows. The blind calibration method tends to result in a noise
map with higher noise values in this case study. This is probably due to a bias linked to
the assumption that the calibration values are centred on zero, which is not necessarily the
case for a small number of smartphones. In fact, of the 134 smartphones, 10 correspond to
almost half of the measurements, and in this particular case the average gain calibration
given for these smartphones is negative and slightly overestimated by the method. This is
visually accentuated in the neighbourhoods where few measurements contribute to the
estimated value for each hexagon. This is the case for instance on the North-West, where
the density of measurements is small (see Figure 6 of Reference [12]).

That said, Figure 13 shows that the dispersion of the differences between the two
maps is fairly small, with a large part of the points concentrated between −8 dB and +2 dB,
which confirms the validity of the method (this distribution would be probably centered
for an input dataset whose calibration values are centered on zero). It will be interesting, in
a further study, to test the behaviour of the method as a function of the input data sets, in
order to adapt it to the study areas; this point is discussed in the following section.
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Figure 13. Distribution of the differences (in dB) of the noise level measured in each hexagonal zone,
between the initial calibrated noise map and the noise map after blind calibration with the hybrid
model, for the whole City of Rezé (for smartphones that were initially calibrated only). Differences
are calculated for each hexagonal area (15 m) that composed the City of Rezé. Y-axis are given in
terms of a percentage (%) of hexagonal area characterized by a given difference in dB.

4. Conclusion

Mobile noise measurements offer an alternative way of producing noise maps and
collecting data on the noise environment through a participatory approach in which every
citizen can become a data producer. Over and above the interest in contributing to the
evaluation and development of public policies, this project raises real research questions,
particularly in relation to the quality of the data produced and its use in an operational or
regulatory context. Recent work on NoiseCapture data has shown a certain heterogeneity
in the data collected, for example, in the absence of acoustic calibration of smartphones, a
lack of expertise in the field of environmental acoustics by the contributors, or difficulties
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in implementing a measurement protocol that could be shared by all contributors. Data
cleaning and quality control are therefore essential stages in the relevant use of the infor-
mation collected. The work presented in this article is part of this approach and was aimed
more specifically at implementing a generic calibration method for all data simultaneously.
It is now accepted that it will never be possible to calibrate each smartphone individually
and that a mass calibration should therefore be considered instead.

Among the solutions envisaged, those based on blind calibration approaches, already
tested on other studies such as for air quality measurements, are an interesting perspective.
In the present article, we have exploited a method that takes advantage of the multiple
rendez-vous of several smartphones "at the same place" and "at the same time", measuring
the same acoustic observable. Written as a network graph model, the resolution of the
associated matrix system can then be used to determine a mean drift for each smartphone,
which is similar to a calibration correction in acoustics. The method relies on certain
constraints, which are discussed in the paper, such as the temporal distribution of the data
at our disposal to verify the "at the same time" condition, or more accurately at similar
periods in the day, as well as the size of the spatial area to verify the "at the same place"
condition. In addition, the number of rendez-vous a smartphone can have with others is an
important factor for the quality of results. In particular, we proposed a hybrid approach
to address this critical point, enabling us firstly to improve the quality of the calibration
on a limited number of smartphones by using the Network Graph Model, then, secondly,
using these calibrated smartphones to calibrate the other ones using a simpler approach.
With regard to the first limitation, the progressive accumulation of new data over time
should make it possible to obtain a more relevant temporal distribution of data. We have
also observed that considering only smartphones with a minimum time of presence in each
spatial area could be a way to enhance the behavior of the hybrid method. Regarding the
second limitation related to the size of the spatial area, the results show that a 15 m radius
spatial area was sufficient to verify a relatively homogeneous noise environment in the
context of the hybrid method.

The obtained results seem particularly interesting and demonstrate the feasibility of
such a blind calibration approach for mobile noise data. The method can also be improved
by taking advantage of the simultaneous presence of reference sensors in a given area, such
as noise observatories or calibrated smartphones, as suggested in [34].

The behavior of the method could also be studied on the basis of a perfectly controlled
virtual mobile noise measurement dataset, as it was done in Section 2.3.3. For example,
it would be possible to study in more detail the effects of time of presence in hexagons,
temporal and spatial variability, minimum number of links, or presence of reference sensors.
It could be useful to identify with more confidence the best conditions for applying the
hybrid blind calibration method, and to adapt its parameter values to the characteristics
of the dataset. A virtual mobile noise measurement dataset will also enable testing other
spatial and temporal grids, replacing for instance hexagons by streets with similar traffic
behavior, or refining the "at the same time" condition relying on temporal periods with
similar sound levels. It will be of interest finally to test the sensibility of the method to
datasets with different levels of heterogeneity in the participatory contributions, as this first
analyse suggests that some main contributors might have an influence on the method if
they collect a large proportion of the data and have calibration values not centered on zero.

More generally, to improve the method, it might also be useful to improve the quality of
the data collected. This could be envisaged at source, by improving the mobile application
to ensure better control of the measurement procedure. It can also be achieved a posteriori, by
searching for and then removing any data collected that could be assimilated to anomalies.
This can be considered for example by considering methods such as the Local Outlier Factor
(LOF) [35] or the Isolation Forest [36] methods.
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Conclusion and perspectives

Conclusion and short-term perspectives
The use of a crowdsourcing approach in analyzing sound environments provides intriguing prospects due
to the extensive spatial coverage and temporal dynamics offered by the collected data. The involvement
of citizens in collaborative research brings an additional dimension to scientific investigations in this
field. Initial concerns about the relevance of using such data for environmental purposes and evaluating
noise reduction policies, health effects of noise, and perception of noise environments have been alleviated.
Studies have demonstrated the efficacy of this approach, while highlighting important factors such as user
engagement, critical mass of contributors, enhanced measurement accuracy, and the need for collective
noise sensing sessions.

The development of the NoiseCapture application aligns perfectly with this alternative approach.
Notably, the NoiseCapture approach distinguishes itself by providing a completely open-source platform,
ensuring complete transparency in data collection and processing methods, and granting everyone the
freedom to utilize the data. Moreover, efforts have been made to ensure the long-term sustainability of
the project. These unique attributes contribute significantly to the success of the approach across various
communities. Since its launch on August 29, 2017, the volume of collected data has been substantial.

While the amount of collected data is significant, exploiting the database for sound environment-
related applications necessitates a thorough understanding of the data to mitigate analysis biases. The
objective of the first chapter was to comprehensively review all the collected data, including its nature,
content, and limitations, while identifying specific user behavior associated with the application. This
analysis provided a precise framework for further data exploitation. Given the extensive data volume, it
is evident that depending on the intended analysis, a considerable portion of the data may not be utilized
due to its lack of relevance, completeness, or accuracy. Nevertheless, Several potential solutions to address
this bias can be implemented within the NoiseCapture application, such as by using user notification to
prompt them to activate their GPS and wait for improved geolocalization before starting measurements,
by enhancing the user profile during application updates, by making certain supplementary information
such as ’Pleasantness’ and ’Tags,’ mandatory, or by automatically identifying the sound sources instead
of using tags.

Enhancing and controlling the data quality and measurement conditions are major prospects for im-
proving the database. One way to do it is the use of machine learning methods, particularly supervised
or semi-supervised approaches. Having say that, the utilization of such methods requires labeled data for
training models. One approach to obtaining labeled data is through the organization of specific events
called NC Parties. These events involve supervising contributors to ensure adherence to measurement
protocols and smartphone calibration, making the collected data valuable reference data for model train-
ing. Nevertheless, the existing reference data from NC Parties alone are insufficient in number to ensure
optimal learning quality, necessitating additional data in the reference database. As the NC application
has expanded globally, other participants have organized NC Party-like events, which, once identified
within the database, can enhance the reference database. Generally, these events generate higher spatial
and temporal measurement point densities, making clustering methods well-suited for their detection.

In the second chapter, DBSCAN was applied to detect known NC Parties, successfully identifying
them by carefully selecting the DBSCAN parameters, namely the measurement point search radius and
the minimum number of points. In the next step, the method was applied to select countries to analyze
the typology of the detected clusters. While several events similar to NC Parties were identified, varying
the processing parameters also led to the detection of additional clusters without clear associations with
specific events. Finally, the method was applied to the entire NC database using parameters aimed at
detecting the most significant clusters, resulting in over 2000 clusters worldwide, some of which could be
linked to research-published events.
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It is evident that the method’s effectiveness relies heavily on the DBSCAN Eps and MinPtsparameters,
requiring expert assistance based on expected cluster typologies and numbers. Regardless, the primary
objective of building a reference database, post-processing techniques can be employed after clustering,
such as merging detected clusters. Some measurements belonging to the same event may be grouped into
separate clusters due to different locations or time periods. This issue can be resolved by examining the
contributors of each cluster to determine if they are the same or by detecting overlapping areas between
clusters. Furthermore, the reference database can be expanded by selecting the most important or relevant
clusters and associating independently produced data from participants with these events. Ultimately,
this approach would facilitate the creation of a larger reference database suitable for employing supervised
machine learning methods to develop quality control protocols for NoiseCapture data. It may be possible
in the future to enhance to performance for this approach by using a sliding temporal window instead of
a fixed one. Another suggestion is to use the Density-Adaptive DBSCAN or the DA-DBSCAN methods
instead [32]. As the algorithm progresses and forms a cluster, it calculates the density within the cluster.
If the density is below a certain threshold, it adjusts the Eps value to a smaller distance and re-evaluates
the points inside the cluster using this updated Eps value. The purpose of this adjustment is to capture
clusters of varying densities accurately. By adaptively adjusting the Eps value based on the density
within the cluster, DA-DBSCAN can handle datasets with clusters of different densities effectively. It
allows for the discovery of clusters with varying local densities and provides more flexibility in identifying
clusters in datasets with non-uniform density distributions. Additionally, other clustering methods, such
as OPTICS [33] or trajectory-based methods like TRACLUS [34], could be explored and compared for
performance enhancement.

The third chapter focuses on implementing a generic calibration method for smartphone data. Because
an individual calibration for each smartphone is not feasible, we propose a mass calibration approach
instead. Blind calibration methods have been explored and an approach based on smartphones rendez-
vous at the same place and time, measuring the same observable was proposed. By formulating this
as a network graph model, the matrix system can be solved to determine the average drift for each
smartphone. However, the method has limitations, including temporal distribution, spatial area size, and
limited availability of smartphones with multiple appointments. A hybrid approach was suggested to
address these limitations and improve the calibration. The obtained results demonstrate the feasibility of
blind calibration for mobile noise data, and further improvements can be made by incorporating reference
sensors and removing anomalies in the data. Moreover, determining the best homogeneous period can
also improve the results. Nevertheless, the usefulness of calibration may be questioned when dealing
with significant amounts of data, as calibration can have minimal impact on noise maps in areas with
extensive data. Integrating calibrated and uncalibrated smartphone data leads to noise maps further from
reality. So, another idea could be correcting only uncalibrated smartphone, while trusting the calibration
introduced by the users.

Other perspectives

Acoustic anomalies detection
Anomaly detection is a crucial aspect of utilizing the NoiseCapture database. By identifying anomalies,
unwanted data can be filtered out, thereby enhancing the overall data quality. In the framework of
our approach, acoustic anomalies are not considered as anomalous noise events or acoustic events such
as sirens/horns or any specific sound sources, for example, that are needed to discriminate a given
sound source (i.e. road traffic) from other sources [35, 36]. In our case, an anomaly is seen rather as a
measurement that seems inconsistent within a set of measurements, and which could, for example, be
associated with poor implementation of the measurement protocol or a very abnormal acoustic event in
the vicinity of the user. Nevertheless, it is a crucial aspect that needs to be addressed. Among the various
machine learning techniques available, DBSCAN, LOF [37], Isolation Tree [38] and Tukey’s fence [39], are
considered highly promising methods. However, the base approaches (DBSCAN, LOF, Isolation Tree)
require careful calibration of their parameters to achieve improved results. Despite using hyperparameters,
data visualization techniques, and expert knowledge, there is still a possibility of generating false positive
outcomes, as shown in figure 3.1.
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Figure 3.1: Graphical representation of the anomaly detection results utilizing the DBSCAN algorithm
with parameters Eps=20 and MinPts=90%, on a NoiseCapture track (Track Id N°399421). Measurement
points in red are detected as anomalies.

In other words, the approaches might incorrectly identify certain measurements as anomalies when
they are actually not. To overcome this challenge, the employment of Ensemble Learning to compare and
combine multiple approaches is important. These approaches can be thoroughly examined, compared and
integrated to form an Ensemble Learning model. The model assesses the decisions made by each approach
on the dataset and combines them to arrive at a final determination, as shown in table 3.1 and figure 3.2.
However, the lack of information regarding the source of noise leads to additional challenges and limits
the accuracy of the Ensemble Learning model’s analysis. One way to around this is to introduce the
temporal information (such as time of measurement, period in case of periodic distribution) as a factor
while detecting the anomaly. Moreover, the evolution of acoustic indicators can be looked as audio signal,
which makes the use of method such as constrained capsule network [40] also possible.

Table 3.1: Number of measurement points and corresponding percentage of anomalous points per the
number of votes: 20,278 (5.86%) measurement points are found as anomalies across 1223 tracks. ’1’ stands
for measurement points that were as detected as anomaly by one method and ’4’ stands for measurement
points that were detected as anomaly by all the 4 methods.

Points
Vote Nb %
1 13,761 67.86
2 5,741 28.31
3 634 3.13
4 142 0.7
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Figure 3.2: Graphical representation of 4 tracks with points (in red) that were detected as anomalies by
the 4 methods.

Automatic sound sources identification
Implementing a model capable of accurately detecting the source of noise is a interesting feature to
enhance the overall quality of the NoiseCapture dataset, instead of requesting users to tag the tracks.
Identifying the source of the noise serves two primary purposes: firstly, it provides supplementary and
valuable information to the users of the dataset, and secondly, it offers additional insights that can greatly
benefit future models, particularly those related to anomaly detection.

There are several established methodologies documented in the literature that aims at identifying
the origin of noise. One such method involves the utilization of frequency spectra [41, 42]. Applying
this approach to the NoiseCapture dataset enables an in-depth analysis of frequencies, thereby facili-
tating the identification of noise sources present in each track. Another effective approach involves the
implementation of Artificial Intelligence (AI) techniques for audio source identification. For instance,
’Yamnet’ [43, 44] represents a sound-trained Convolutional Neural Network (CNN) capable of reporting
the top-5 highest-scoring classes (predictions), averaged over all the frames of the input audio recording.
Integrating this method into the NoiseCapture application enables seamless automated detection of noise
sources, without necessitating manual user input.

Another viable method involves constructing a comprehensive geo-database that encompasses the
spatial distribution of noise sources. This entails gathering information about the precise locations where
noise is generated and recording it in a structured manner [45]. By incorporating this geo-spatial data
into the NoiseCapture dataset, it becomes feasible to determine not only the spatio-temporal information
of the noise but also the spatio-temporal information of its source. This integration enables the generation
of more relevant and informative noise maps that provide a comprehensive understanding of the noise
and its origins.

Taking this a step further, acquiring detailed information about the source of the noise can also help
in the development of a predictive model for estimating noise levels in areas with missing or limited
information. By leveraging the knowledge of noise sources and their characteristics, it becomes possible
to extrapolate and predict the noise levels in locations where data might be incomplete. This predictive

111



capability can greatly enhance the usability and effectiveness of the model, providing valuable insights
for noise control and mitigation strategies in areas where information gaps exist.

Re-localization of measurement points
An alternative way to increase the quality of the NoiseCapture dataset involves mitigating data loss
during the cleansing procedure, for example,by focusing on the data that is filtered out due to insufficient
geolocalization or significant GPS inaccuracies. By performing a refinement of the dataset, eliminating
entries lacking geolocalization information and exceeding a 15 m threshold, we observe a reduction of
approximately 42% in measurement points and 45% in tracks data, removing to nearly half of the dataset
being affected. Approximately 54% of these tracks are devoid of any geolocation information, rendering
them unalterable. Conversely, the remaining 46% of tracks, though partially affected, present an op-
portunity for correction, thereby allowing us to preserve a greater portion of the data. 95.5% of these
tracks were collected in stationary state, which makes predicting or correcting the geolocalization fairly
easy. As for the remaining 4.5%, ’Dead reckoning’ (DR) [46] is a navigation technique used to estimate
the current position of a moving object or vehicle based on its previously known position, along with
the direction and speed of its movement. This approach is particularly useful when there is no access to
external positioning systems, such as GPS, or when GPS signals are unreliable or unavailable, such as in
certain indoor environments or remote locations. Given that NoiseCapture measurements are acquired
during walking activities, the application of Pedestrian Dead Reckoning (PDR) [47, 48] appears to be a
more suitable approach. Approximately 40% of the tracks within the dataset exhibit gaps in geolocation
data, either at the beginning or the end. As a consequence, predicting the starting or ending points
accurately using the Pedestrian Dead Reckoning (PDR) approach becomes challenging and susceptible
to bias. Consequently, our attention will be directed towards tracks with missing geolocation data in the
middle section, where we can potentially address and refine the data with greater precision.

A preliminary application was conducted to assess tracks with either missing geolocalization or signif-
icant GPS accuracy values, utilizing the Pedestrian Dead Reckoning (PDR) method while calculating the
bearing (direction) between each point. In Figure 3.3, two examples are presented: one illustrating the
case of missing geolocalization (figures 3.3a and 3.3b), and the other demonstrating large GPS accuracy
(figures 3.3c and 3.3d). Although both corrections show a linear alignment with the last point, this
alignment does not consistently hold in real-world data, resulting in potential quality issues. Moreover,
this approach encounters challenges when dealing with stationary data, making it difficult to accurately
predict the correct localization.

To address these last limitations, alternative approaches can be employed. Time series analysis [49]
can be beneficial if the data exhibits temporal patterns [50]. Spatial interpolation [51] can also offer
a solution when dealing with correlated missing data points, which is often the case since these points
belong to the same track and were collected by the same user during a specific period. Additionally, the
application of deep learning models, such as Recurrent Neural Networks (RNNs) [52] or Convolutional
Neural Networks (CNNs) [53], could be explored due to the ample amount of available data, potentially
improving prediction accuracy and addressing the challenges posed by the existing method.
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(a) Track ID N°266965 at University Gustave Eiffel,
Nantes Campus (Original)

(b) Track ID N°266965 at University Gustave Eiffel,
Nantes Campus (Corrected)

(c) Track ID N°53288 at Ile de Nantes (Original) (d) Track ID N°53288 at Ile de Nantes (Corrected)

Figure 3.3: Examples of tracks that suffered form lack of geolocalization for some points (Track Id 266965)
or high value for GPS accuracy (Track Id 453288). Application of Pedestrian Dead Reckoning (PDR)
method to correct the wrong geolocalization of measurement points.
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Appendix I

Statistical analysis of the correlation
between NoiseCapture data

The following appendix presents additional details and materials related to past works realized during
our internship at Gustave Eiffel University, in 2020, prior to the thesis, but on the same subject. The
internship objective comprised two main components. Firstly, an in-depth exploration of the state-
of-the-art definitions pertaining to noise annoyance, as well as an examination of the effects of noise
annoyance and environmental noise mapping. Additionally, the study investigated how experts have
utilized smartphones as sensors for collecting noise measurements. The second part of the internship
objective centered around technical applications. This involved implementing a data cleaning process
guided by expert knowledge, analyzing variable correlations to extract valuable insights, selecting an
anomaly detection method, and utilizing the cleaned data for model training while employing separate
data for testing purposes. This appendix will focus on the ’analyzing variable correlations to extract
valuable insights’ part.

To ascertain the impact of numerical variables on the noise level, a linear regression model [54,55] was
fitted. The regression analysis revealed that among the variables considered, only the gain calibration
variable exhibited a significant effect. The adjusted R-squared value of this model stood at 71.3%,
indicating that the included variables accounted for approximately 71.3% of the variability in the noise
level. Complementary techniques such as Feature Selection (i.e. LASSO [56]) and data visualization were
employed, yielding consistent outcomes. The details of the regression results are provided in Table I.1.

Table I.1: Outputs of a fitted Regression model applied to noise levels collected with NoiseCapture.

Variables Estimate P-value
(Intercept) 2.96 <2e-16
Speed 1.21 0.32
Accuracy 3.4 0.18
Gain calibration -3.05 <2e-16
Orientation 0.01 0.85

Regarding the categorical variables, a multi-way Analysis of Variance (ANOVA) [55,57] was conducted
to assess their impact on the noise level. The ANOVA analysis identified that only the time and the geo-
spatial localization of measurement variables exhibited a significant effect. Furthermore, the interaction
between these two variables also demonstrated a significant effect. Conversely, the ANOVA analysis
indicated that the device model had an effect, albeit statistically insignificant (i.e. a mere 0.05 dB in
terms of acoustics). The adjusted R-squared value for this model was determined to be 69.9%, indicating
that the included variables accounted for approximately 69.9% of the variability observed in the noise
level. Complementary techniques, such as data visualization, were employed, resulting in consistent
outcomes. For further details regarding the ANOVA results, please refer to Table I.2.

114



Table I.2: Outputs of Multi-way ANOVA applied to noise levels collected with NoiseCapture.

Variables Estimate P-value
(Intercept) 1.22 <0.08
Profile 0.95 0.25
Time 5.21 <2e-16
Space 3.88 <2e-16
calibration method -1.21 <0.29
device model 0.05 0.04
Time:Space 4.62 <2e-16

Another ANOVA was conducted to investigate whether tags (i.e. sources of noise) have an impact
on the noise level. For this analysis, only tracks with a single tag were considered, excluding the tags
’Indoor’ and ’Test’. This subset accounted for 4,748,068 data points (7.96% of the total measurements)
and 24,657 tracks (9.47% of the total tracks). The ANOVA analysis yielded results consistent with
the previous ANOVA, indicating that time, localization, and their interaction significantly influenced the
noise level. Additionally, the analysis revealed that tags (source) and the interaction between the tags and
time also exhibited a significant effect. The adjusted R-squared value for this model was determined to be
only 51.4%, indicating that the included variables accounted for approximately 51.4% of the variability
observed in the noise level. For more detailed information regarding the ANOVA results, please refer to
Table I.3.

Table I.3: Outputs of Multi-way ANOVA applied to noise levels collected with NoiseCapture.

Variables Estimate P-value
(Intercept) 1.22 <0.08
Tag 7.33 <2e-16
Time 4.85 <2e-16
Space 2.18 <2e-16
Tag:temp 21.97 2e-16
Tag:Space 2.55 0.07
Time:Space 3.96 <2e-16

During the analysis of the NoiseCapture dataset, several other noteworthy observations emerged.
Firstly, it was observed that the device model has a discernible impact on the gain calibration value.
Secondly, it was revealed that the variables of profile and calibration method are interdependent.

Based on our analysis, we can ascertain that the following variables play crucial roles in controlling
the quality of the noise level: (1) temporal information, (2) spatial information, (3) gain calibration, and
(4) tag (i.e. sound source). However, due to the insufficient availability of data with tag information, the
decision was made to solely utilize the first three variables for further analysis.
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Titre :  Une base de données citoyenne pour l’évaluation du bruit dans l’environnement : du 
contrôle qualité des données à la production de cartes de bruit pertinentes 
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Résumé :  Ce travail de thèse s’inscrit dans le 
cadre de la maitrise des environnements 
sonores dans l’environnement. Face à cet enjeu 
majeur, il est usuel de recourir à des cartes de 
bruit, réalisées la plupart du temps par la 
modélisation numérique, mais au détriment d’un 
manque de réalisme. Une alternative récente, 
basée sur l’utilisation d’une application pour 
smartphone (NoiseCapture), plus réaliste, 
propose d’utiliser une approche participative 
citoyenne pour collecter des données, mais 
pose la question de la qualité des données ainsi 
produite et de leur utilisation à des fins 
opérationnelles. 

A cet effet, le présent travail de thèse propose 
l’application de méthodes issues des Sciences 
des Données pour répondre à cette question. 

Le travail a d’abord porté sur une analyse 
détaillée de la base de données NoiseCapture 
pour en déterminer les limites et incertitudes. 
Dans un second temps, et dans la perspective 
d’utilisation des techniques (semi-)supervisées 
issues des méthodes d’apprentissage, une 
méthode de clustering spatial (DB-SCAN) a été 
mise en œuvre afin d’identifier des données de 
référence dans la base de données 
NoiseCapture. Enfin, afin de pallier aux limites 
de l'étalonnage individuel des smartphones, 
une méthode d'étalonnage de masse, à 
l’aveugle, a été proposée puis appliquée sur 
la base de données NoiseCapture. Dans 
l'ensemble, la thèse a permis d’améliorer la 
qualité de la base de données NoiseCapture, 
ce qui offre des perspectives intéressantes 
pour l’utilisation de ces données à des fins 
opérationnelles. 

Title :  A Smartphone-Based Crowd-Sourced Database for Environmental Noise Assessment: from 
data quality assessment to the production of relevant noise maps 

Keywords : environmental noise,  crowd-sourced data, smartphone application, data analysis, 
machine learning 

Abstract: This thesis is concerned with the 
control of environmental noise. Faced with this 
major challenge, it is common practice to use 
noise maps, usually produced by numerical 
modeling, but at the expense of a lack of 
realism.  A recent alternative, based on the use 
of a smartphone application (NoiseCapture), is 
more realistic and proposes to use a 
participatory citizen approach to collect data, but 
raises the question of the quality of the data thus 
produced and its use for operational purposes. 

To this end, the present thesis proposes the 
application of methods from Data Science to 
answer this question. 

The work began with a detailed analysis of the 
NoiseCapture database to determine its 
limitations and uncertainties. Secondly, and with 
a perspective on the use of (semi-)supervised 
techniques derived from learning methods, a 
spatial clustering method (DB-SCAN) was 
implemented to identify reference data in the 
NoiseCapture database. Finally, to overcome 
the problem of individual smartphone 
miscalibration, a blind mass calibration method 
was proposed and applied to the NoiseCapture 
database. Overall, the thesis has improved the 
quality of the NoiseCapture database, offering 
interesting prospects for the use of this data for 
operational purposes.  
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