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Chapter 1 Introduction

Structured data sources such as CSV, TSV, or spreadsheet files, are one of the main assets being used to train AI algorithms. On the Web, one can find a large number of Web tables and the number is continually growing. For example, in 2018, [START_REF] Cafarella | Ten years of webtables[END_REF] extracted 14.1B HTML tables from Google's general-purpose web crawl. This data is the treasure of digital services, as long as data is cleaned, unbiased, and combined with explicit and machine-processable semantics in order to foster exploitation.

The tabular data format is relatively easy to access for humans and machines because there is a structure behind it. For example, in relational databases, attributes from the same concept are organized in the same column, allowing users to extract the desired attributes by querying the column index. However, it is not like textual data which is arguably self-explicit: all the necessary information to understand the content is in the sentence or its surrounding paragraphs, with a structure built from known rules. Structured data like tables have latent meanings that humans can only understand through implicit mechanism (inference) in light of their own knowledge, as there is often no explicit context. Hence, interpreting tabular data is a difficult task, and it has attracted a lot of attention in recent years, with, in particular, the crystallization of research efforts around challenges such as the SemTab series [START_REF] Cutrona | Results of SemTab[END_REF][START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF][START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF].

This thesis manuscript mostly focuses on tables with meaningful content (some tables are only designed for layout usage but do not contain meaningful information), researching how to understand and exploit information from tables. The main goal is to investigate strategies for table extraction, interpretation with Knowledge Graph (KG), and possible downstream tasks following the interpretation of tables.

Chapter 1. Introduction

Motivation

One of the levers for creating innovative services is the correlation and analysis of heterogeneous data from internal or external sources. With the advent of Open Data, a large number of data sources are made available to communities (including data scientists and data analysts).

In particular, structured data sources (CSV, JSON, XML, ...) are the ubiquitous raw material for many data science processes. Moreover, the large number of available datasets makes it difficult for the user to identify the most relevant datasets for particular use cases. Thus, we have recently seen the emergence of specialised search engines for datasets, Google Dataset Search [START_REF] Benjelloun | Google Dataset Search by the Numbers[END_REF][START_REF] Noy | Google Dataset Search: Building a search engine for datasets in an open Web ecosystem[END_REF] being a prominent example.

Large parts of the knowledge of companies are encoded in tabular data. This work has been done in the context of the Orange1 , one of the leading companies in the domain of telecommunication. Being able to interpret such data is the key to increase business efficiency and to propose innovative services, and Orange is no exception. With more than 140,000 employees worldwide and a heterogeneous client portfolio, Orange produces a phenomenal amount of tabular data every day. These tables are viscerally embedded in internal services and products (e.g., network logs, multimedia catalogs). Hence, they are a source to discover new knowledge. Although this encourages the development of efficient tools to process them, several issues are negatively impacting their use. First, the volume curse makes it difficult to identify the right dataset for a given use case. Then, the knowledge gap between data producers/consumers is exacerbated by our language footprint (seven main languages), the heterogeneous tools producing various table formats, and the experience/jobs of employees leading to similar concepts being expressed by different terms across tables.

Semantic models (in particular, ontologies) allow the implicit meaning of data to be represented explicitly by specifying the concepts and relationships present in the data. The provision of semantic labels on datasets facilitates the understanding and reuse of data by providing documentation on the data that can be easily used by a non-expert. Moreover, semantic annotation opens the way to search modes that go beyond simple keywords and allow the expression of queries of a high conceptual level concerning the content of the datasets but also their structure while overcoming the problems of syntactic heterogeneity encountered in tabular datasets.

However, the practice of annotating data using semantic models remains very marginal because it is a tedious and time-consuming task requiring expertise in the business domain and in Semantic Web tools. Semantic annotation is a process consisting of matching attributes, headers or values on the one hand, with classes or instances from ontologies on the other hand. The annotation work also makes it possible to determine the relationships between
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attributes.

From a human perspective, tables are intuitively easy to understand (just by looking at them), but for a machine, they are difficult to interpret because of their graphical nature: all the little visual details (such as delimiters and orientation) matter a lot. At the same time, the tables themselves usually just contain the data (e.g. statistics), while the surrounding text (headers, captions and description) gives this data meaning. Hence, tabular data is challenging to interpret by machines because of the limited context available to resolve semantic ambiguities, the layout of tables that can be difficult to handle, and the incompleteness of KGs in general. The main idea to make tabular data intelligently processable by machines is to find correspondences between the elements composing the table with entities, concepts, or relations described in KG which can be of general purposes such as DBpedia [START_REF] Bizer | DBpedia-A crystallization point for the Web of Data[END_REF] and Wikidata [START_REF] Vrandečić | Wikidata: a free collaborative knowledge base[END_REF], or enterprise-specific. This problem is known as Semantic Table Interpretation (STI) or Semantic Table Annotation. Classical Natural Language Processing (NLP) tasks for unstructured text handle poorly such tables since they do not leverage the table structure and the underlying semantics [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF]. For example, in the table depicted in Figure 1.1, the mention "Rohr" is ambiguous as it can refer to a surname (Q16882196), a manufacturer (Q2391081), or a municipality in Germany (Q583512). However, this ambiguity can be resolved when taking into account the table structure and, in particular, the fact that the "Manufacturer" column only contains companies. KGs can be used to drive the semantic interpretation of tabular data while being themselves the artifacts that can be further enriched from the result of the interpretation process. In this latter case, tabular data becomes a means to either populate a nascent KG or improve the quality of an established one.

Adding a semantic layer on top of tabular data, in order to make the latent meaning explicit and exploitable through a structured and shared format, is an invaluable step towards effi-Chapter 1. Introduction cient and intelligent use of data. It opens up opportunities for new semantic-based services: leverage semantic annotation to better index datasets in search engines [START_REF] Sekhar Bhagavatula | Methods for exploring and mining tables on wikipedia[END_REF][START_REF] Michael J Cafarella | Webtables: exploring the power of tables on the web[END_REF], improve question/answering systems [START_REF] Pasupat | Compositional semantic parsing on semistructured tables[END_REF][START_REF] Sun | Table cell search for question answering[END_REF][START_REF] Yin | TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data[END_REF], enrich knowledge bases [START_REF] Ritze | Matching html tables to dbpedia[END_REF][START_REF] Yakout | Infogather: entity augmentation and attribute discovery by holistic matching with web tables[END_REF][START_REF] Zhang | Novel entity discovery from web tables[END_REF] or enhance dataset recommendation [START_REF] Zhang | Recommending related tables[END_REF].

Research Questions

As seen before, tabular data provide information following a large variety of representation forms. To enable the interpretation and the usage of the rich knowledge contained in these tables at the end, we propose the following research questions starting from the definition of tables to the downstream tasks of semantic table interpretation:

• Wild tables are diverse in their structure and heterogeneous in their contents. What are the different table types that one can encounter on the Web? Can these table types be automatically recognized? How can we extract and represent some basic table features such as the presence of a header or the table orientation to ease the interpretation of tables?

• Given a target knowledge graph and tabular data sources, what possible correspondences can we establish between the elements from tables and knowledge graphs? -Can the overlapped information from tables and knowledge graphs support the matching between the two sides? -Elements within a table are related to each other and these relationships are sometimes captured in other resources such as language models or encyclopedic knowledge graphs. Are graph embeddings and language models capable of revealing the relatedness between the neighboring cells? Can these latent relationships between the table elements also reveal the shared topics from these tables to improve the disambiguation?

• Finally, what downstream tasks (e.g. cell filling, schema augmentation) could be realized following a semantic table interpretation process, and how can semantic table interpretation can be leveraged in these downstream tasks?

Summary of Contributions

The work during this thesis has led to contributions related to the extraction, the interpretation, and the augmentation of tabular data as follows:

• First, based on existing categorization, we propose a new categorization that reflects 1.4 Thesis Outline the heterogeneity of table types that one can encounter, revealing different challenges that need to be addressed. Our work further refreshes the definition of tables from the perspective of table interpretation. Facing the numerous tables in the wild, we developed two systems for collecting, managing, and visualizing tables from Web and local files.

• We proposed a pre-processing system for extracting some basic features (e.g., the orientation and the position of the header) of a given relational table.

• We review five major sub-tasks that STI deals with even if the literature has mostly focused on three sub-tasks so far. We review and group the many approaches that have been proposed into three macro families and we discuss their performance and limitations on various datasets and benchmarks proposed by the community.

• We have proposed three Semantic Table Interpretation (STI) systems based on different techniques, which include a continually updating heuristic system namely DAGOBAH SL, and two embeddings systems that aim to leverage KG embeddings for capturing the common theme of the table with the help of unsupervised clustering algorithm and a hybridizing between embeddings and heuristic scores.

• The semantic annotations generated by the STI approaches are as many mapping with the knowledge graph which are beneficial to table augmentation. To study table augmentation, we developed an approach for filling missing cells and adding additional columns to the table.

Thesis Outline

The remainder of this thesis is organized into five chapters:

• Wild tables are diverse in their structure and heterogeneous in their contents. In Chapter 2, we first define what a table is and what are the types of tables. We also introduce in this chapter our efforts in collecting tables from the Web and our contributions to automatically extracting basic features from relational tables, such as the orientation of the table, the position of the subject column, and the position of the headers.

• In Chapter 3, we aim to cover the up-to-date STI tasks and methods. The table interpretation tasks are divided into five types. We also provide a generic pipeline for the table interpretation, and we survey the existing datasets and benchmarks. Finally, this chapter reviews and groups the approaches into three families and discusses their performance and limitations.

Chapter 1. Introduction

• Chapter 4 introduces DAGOBAH SL, a heuristic table annotation system that aims to map table components (e.g., table cell) with KG elements (e.g., entity). We report the evaluation of this system in SemTab challenge series. Also, the industrialisation of DAGOBAH SL with DAGOBAH API and DAGOBAH UI is introduced.

• Facing numerous limitations with heuristic systems, in Chapter 5, we propose two systems that use KG embeddings, namely DAGOBAH Embeddings and Radar Station, to drill down further into the hidden table topics to improve disambiguation performance.

• Finally, we devote Chapter 6 to the applications after STI. In this chapter, we introduce two tasks: data imputation for filling missing values in the empty cell of the table, and schema augmentation for adding additional columns to the table.

Chapter 2

Collect and Prepare Tables at Scale

Tables often constitute a major source of information since large parts of both companies internal repositories and web pages are represented in tabular formats. Over the last years, with the growing number of tabular data that are being used in the Web and local documents, collecting and extracting these tables gained increasing attention from researchers. Unlike unstructured data (e.g., the plan text), tabular data uses the table structure to manage the information. Hence, understanding the layout and construction rules of a table is crucial. However, as there is an important heterogeneity of tables considering their layout, provenance, and usage, the collection and extraction of tables become a complex task.

In this chapter, we first propose a new fine-grained classification based on existing classifications with a deeper analysis of relational tables in Section 2.1. Later, Section 2.2 provides a list of metadata elements attached to the table carrying semantic information useful for interpretation. In Section 2.3, we introduce two systems, Harvesting Tables in the Wild (HTW) and CorpusWalker, for collecting and managing tables from Web and local files. Finally, we introduce the pre-processing module from DAGOBAH system in Section 2. [START_REF] Abdelmageed | BiodivTab: A Tabular Benchmark based on Biodiversity Research Data[END_REF], where three features are extracted by the pre-processing module targeting relational tables: i) the orientation of a given table, ii) the existence of headers, and iii) the position of the subject column.

Defining Tables

A table is a two-dimensional arrangement of data with n lines and m columns. This enables a compact visualization for reading. A cell is the basic element of a table where T i j (0 ≤ i ≤ n -1, 0 ≤ j ≤ m -1) indicates the cell from row i and column j of table T . Tables are highly heterogeneous in terms of structure, content, and purpose. Therefore, in need to interpret a table, it is important to identify its type so that potential specificities can be taken into account in the STI process.

Chapter 2. Collect and Prepare Tables at Scale

We introduce a multi-level classification of tables based on several aspects where our contribution includes the categorisation of the existing works into three sub-dimensions (Structure, inner-relationship, and orientation) and a deeper fin-gained classification of relational tables. This classification of tables is intended to make it easier to define the scope of STI approaches proposed in the literature and to help identify the challenges related to STI tasks. The first classification effort splits tables into two high-level categories: genuine and non-genuine [START_REF] Penn | Flexible web document analysis for delivery to narrow-bandwidth devices[END_REF][START_REF] Wang | Detecting tables in HTML documents[END_REF].

Genuine tables are firstly defined as two-dimensional structures with simple cells (i.e. short and without any complex structures) and a high level of relativity (syntactically and semantically) within rows and columns in [START_REF] Penn | Flexible web document analysis for delivery to narrow-bandwidth devices[END_REF]. Non-genuine tables are structures used to group contents for easy viewing [START_REF] Wang | Detecting tables in HTML documents[END_REF]. One limitation of this dichotomy is that it does not consider tables with long and complex cell contents which are still semantically coherent. For example, we can observe cells containing a list of comma-separated entities (row "Celebration") or mixing text and entities (row "Significance") in the infobox depicted in Figure 2. 4(b). According to the definition provided in [START_REF] Penn | Flexible web document analysis for delivery to narrow-bandwidth devices[END_REF] and used in [START_REF] Ritze | Web-scale web table to knowledge base matching[END_REF], this table will not be considered a genuine table while, arguably, this table carries semantic information worth being processed.

In more recent works, [START_REF] Crestan | Web-scale table census and classification[END_REF][START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF] proposed two similar classes associated with a set of sub-classes: relational knowledge tables including vertical and horizontal listings, attribute/value table, matrix, etc. and layout tables including tables used for navigation and formatting purposes. This classification focuses mostly on relational knowledge and is therefore not comprehensive enough to cover all possibilities. For example, some tables do not have inter-relation between table elements and are not for layout purposes either. This is the case of the table depicted in Figure 2. 4(d) where there is no information about the common relationship between each cell.

To cope with these shortcomings, we propose a new classification of table types, shown in Figure 2.1, that rely on the existing work presented in [START_REF] Eberius | Building the dresden web table corpus: A classification approach[END_REF][START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF][START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF][START_REF] Penn | Flexible web document analysis for delivery to narrow-bandwidth devices[END_REF][START_REF] Ritze | Web-scale web table to knowledge base matching[END_REF][START_REF] Wang | TUTA: Tree-based Transformers for Generally Structured Table Pre-training[END_REF][START_REF] Zhang | Web table extraction, retrieval, and augmentation: A survey[END_REF] and consider overlapping dimensions. This classification also contributes to better identification of relational tables in embracing their diversity.

We first consider that tables can be separated into two broad categories:

• Layout tables are used to format web pages. Elements of these structures are not semantically consistent and are not linked by semantic relationships. They are used to visually organize the content of a page to maximise user comfort and site usability. A layout table used on Amazon to provide the order interface is given in Figure 2.2.

• Genuine tables represent in rows or columns human-understandable knowledge. In the literature, genuine tables are said to be short and without complex structure [START_REF] Penn | Flexible web document analysis for delivery to narrow-bandwidth devices[END_REF]. We relax this concept by considering that tables with a high level of relativity (syntactically and semantically) within rows and columns are genuine tables, without considering the table complexity. For example, in Figure 2.2, the semantic of the two genuine tables is 2.1 Defining Tables Figure 2.1: Classification of table types with a finer-grained analysis of genuine tables along three dimensions: structure, inner-relationship, and orientation. Genuine tables contain relational knowledge that should be machine-interpretable, and thus, they constitute valid inputs for the STI process. On the contrary, layout tables are convenient for improved visual presentation but the semantic association between their cells is relatively sparse. Hence, they are not eligible for knowledge extraction and interpretation.

Previous works have also proposed to classify tables starting from different entry points and further segment genuine tables along different dimensions [START_REF] Eberius | Building the dresden web table corpus: A classification approach[END_REF][START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF][START_REF] Ritze | Web-scale web table to knowledge base matching[END_REF][START_REF] Zhang | Web table extraction, retrieval, and augmentation: A survey[END_REF]. However, the state of the art considers that these table types are mutually-exclusive which does not cover the heterogeneity and complexity of genuine tables. Consequently, we propose to categorize genuine tables using three non-mutually exclusive dimensions: structure, inner relationship, and orientation. Table types are then formed by a composition of these dimensions. For example, the table depicted in Figure 2.3(c) about railway lines is a concise table (structure dimension), a horizontal table (orientation dimension), and a composed-subject relational table (inner-relationship dimension). In the following sections, we further define each of these three dimensions. [START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF] focuses on the layout structure of a table, which is mainly reflected in the table elements' composition. Accordingly, the subclass "Structure Dimension" of our classification is divided into the following four types of tables illustrated in Figure 2.3:

Structure Dimension

• Nested tables contain one or more tables in one or more of their cells. Figure 2. 3(a) depicts a nested table as the main table contains a table about risk levels of hazardous materials in one of its cells.

• Split tables contain sub-tables with cells that are independent of those in the other sub-tables. [START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF] defines split tables as a sequential repetition of rows or columns. We enforce this definition by defining split tables as tables that can be split into sub-tables.

To illustrate, in the table in Figure 2.3(b), the infobox of the city of Chicago is composed of several sub-tables. Each sub-table describes one concept of the subject of the original table, e.g. location, area, and population of the main Chicago entity.

• Concise tables contain merged cells to avoid repetitions of cells referring to the same content in rows and/or columns. In the table presented in Figure 2.3(c), the first cell of the column "lines" merges six individual cells with the same value "BART main lines".

• Multivalued tables contain multiple values in a single cell. For example, in Figure 2. 3(d), the cells of the column "lines used" contain a list of route lines. Figure 2.3: Examples of different structures of tables: (a) a nested table a , (b) a split table b , (c) a concise table (column "lines") c , (d) a multivalued table (column "lines used") d . a https://en.wikipedia.org/wiki/Table_(information) b https://en.wikipedia.org/wiki/Chicago c https://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit#Rollingstock d https://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit#Infrastructure

Defining Tables

Inner-relationship Dimension

The inner-relationship dimension considers the topology of the semantic connection between the cells. [START_REF] Crestan | Web-scale table census and classification[END_REF] first gave a detailed classification of relational knowledge tables into listings, attribute or value tables, matrices, enumerations, and forms. [START_REF] Eberius | Building the dresden web table corpus: A classification approach[END_REF] has extracted Web tables that are classified into listings, matrices and other tables to capture enumerations, calendars, etc. [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF][START_REF] Ritze | Web-scale web table to knowledge base matching[END_REF] have extended this categorization with a fourth kind named "entity tables" while listings are considered as relational tables.

Accordingly, we propose the following types:

• Relational tables are structures in which each row (resp. column) provides information about a specific entity, and the corresponding columns (resp. rows) represent attributes that describe the entity. Hence, relational tables are oriented, either horizontally or vertically, depending on the arrangement of the entities and their attributes in the table.

If the rows of a relational table contain the entities and the columns the attributes, then the table is horizontal. Otherwise, it is vertical. Relational tables may have a • Entity tables, also known as attribute-value tables, are used to describe a unique entity.

An entity table enumerates the attributes of the entity. Infoboxes from Wikipedia are examples of entity tables. For example, the distinct attributes and their values for the entity "Bastille Day" are shown in the table in Figure 2.4(b). It should be noted that entity tables could also be seen as two-column vertical or two-row horizontal relational tables.

• Matrix tables present a two-dimensional arrangement of data that should be read simultaneously horizontally and vertically. A matrix associates pairs (row, column) with cell values through one unique property for the whole table. Generally, cells contain numeric or boolean values. Figure 2.4(c) shows a vowel confusion matrix that quantifies the understanding of vowels between people. It associates pairs (vowel produced, vowel perceived) with the number of persons having this perception of the produced vowel. For example, one person perceived an "a" when an "i" was produced. Bold numbers correspond to • Other genuine tables contain semantic information but do not fit within the aforementioned types. Tables in this class include enumerations and calendars. To illustrate, Figure 2.4(d) is an enumeration table where each column is an independent enumeration of pronouns according to a pronoun type.

The literature considers relational tables as a leaf in the proposed table type taxonomies [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF][START_REF] Ritze | Web-scale web table to knowledge base matching[END_REF][START_REF] Wang | TUTA: Tree-based Transformers for Generally Structured Table Pre-training[END_REF]. However, relational tables exhibit an important diversity, especially in the representations of entities. We propose to further classify them depending on the characteristics of their subjects. The subject of a row of a horizontal relational table (resp. column of a vertical relational table) is an entity that is described by the collections of cells in this row (resp. column). For example, in the table depicted in Figure 2.4(a), the entity "Tokyo Skytree" (Q57965) is the subject of the first row as it is described by the other entities of this row: "2011" (Q1994), "Japan" (Q17), and "Tokyo" (Q1490).

We introduce four subtypes of relational tables (Figure 2.5):

• Single-cell-subject tables associate each row of a horizontal table (resp. column for a vertical table) to a single subject. Labels of subjects are given in a single column (resp.

Chapter 2. Collect and Prepare Tables at Scale row). To illustrate, in Figure 2.5(a), the column "department" contains the subjects. The other columns describe the subjects.

• Composed-subject tables require the combination of multiple cells to form the subject of each row (resp. column). For instance, in a table that describes persons with first and last names in different columns, it is necessary to merge these two columns to get the complete identifiers of entities. Similarly, in the table shown in Figure 2.5(b), one can identify subjects (particular train classes) by merging columns "Lines", "Manufacturer" and "Class".

• Multi-subject tables contain cells that refer to different subjects while being in the same row. In Figure 2.5(c), a row is composed of two subjects: "Artist/s" is the subject of the column "Nationality" while "Album" is the subject of columns "Release year", "Artist/s", "Worldwide sales", and "Ref(s)".

• Hidden-subject tables do not explicitly mention the subject of each row (resp. column).

For example, in Figure 2.5(d), each row describes the result of a football match, but the mention of the match itself is not made explicit in the table.

Orientation Dimension

The orientation dimension considers the direction of the relationships inside a table [START_REF] Eberius | Building the dresden web table corpus: A classification approach[END_REF][START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF]. Indeed, knowing the direction of relationships within a table simplifies its interpretation, e.g. to read the attributes describing a subject.

• In Horizontal tables, subjects are described horizontally, which means that each row describes a different subject. For example, in Figure 2.4(a), the subject "Dragon Tower" and its attribute "Harbin" are in the same row.

• In Vertical tables, subjects are described vertically, which means that each column describes a different subject. An example of a vertical table is depicted in Figure 2.4(b), where the attributes of the entity "Bastille Day" are in the same column.

• Matrix tables are defined as for the inner-relationship dimension. They cannot be interpreted row by row or column by column but rather cell by cell while simultaneously considering both horizontal and vertical headers. For example, the matrix in Figure 2.4(c) should be interpreted cell by cell while taking into account both horizontal and vertical headers to read the number of persons that have a specific perception of a produced vowel.

Table Metadata

Table Types Statistics

We introduced in Figure 2.1 a multi-dimensional and fine-grained classification of table types.

In this section, we aim to survey how frequent these types of tables can be encounter in the wild. DWTC [START_REF] Eberius | Building the dresden web table corpus: A classification approach[END_REF] has randomly selected 26,645 tables from the WDC Web Table Corpus [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF] and has concluded that the resulting corpus was made of 96% layout tables and 4% genuine tables. Regarding the structure dimension, [START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF] has extracted 342,795 Web tables (from various Websites starting from Wikipedia, e-commerce, news and university Web sites) and has identified that 75.5% of the tables are for layout while the remaining tables are relational knowledge tables. [START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF] has also provided the distribution of nested tables, split tables, concise tables, and multivalued tables among the relational knowledge tables, which are respectively 3.7%, 2.6%, 12.9%, and 74.9%. Regarding the inner-relationship dimension, [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF] Regarding the orientation, the distribution of horizontal tables and vertical tables is 54.9% and 45.1% for entity tables, and 94% and 6% for relational tables in the WDC Web Table Corpus.

In [START_REF] Larissa R Lautert | Web table taxonomy and formalization[END_REF], the authors show that 70% of the relational knowledge tables are horizontal.

Our proposed classification goes further into the details. However, identifying some table type such as hidden-subject tables remains an open scientific challenge. To date, we have not identified an approach to automatically classify tables with a level of granularity close to the classification proposed in this paper.

Table Metadata

Tables do not always appear alone in real-life scenarios. Alongside the data contained in a table, metadata and the context in which a table appears are also valuable information for STI. For example, if a table has been published on a Web page describing the Bundesliga, it is probably more relevant to football than any other sport. Hence when extracting the table, it would be useful to collect both the table itself and its metadata.

Several STI works stress that one of the challenges to be addressed is the loss of context when annotating a table [START_REF] Zhang | Web table extraction, retrieval, and augmentation: A survey[END_REF]. Indeed, tables do not constitute the unique source of information that can be used by STI processes since the context in which they appear may provide complementary or novel information. Such non-table information constitutes the metadata of tables and is defined as additional data that can be extracted from information sources to provide additional context for the interpretation. For example, metadata can describe the characteristics and content of the original data, and thus can be used to organize, retrieve, a https://en.wikipedia.org/wiki/Eiffel_Tower b https://en.wikipedia.org/w/index.php?title=Special:Contributions/Andre_Engels preserve, and manage extracted knowledge units. Depending on its structure, purpose, and provenance, metadata is split into descriptive, structural, and administrative metadata [START_REF] Riley | Understanding metadata[END_REF].

Such a definition was originally used in digital collection [START_REF] Zhang | Creating digital collections: a practical guide[END_REF] and is applicable to table metadata as well. Each type of metadata in a table context can provide a deeper understanding of the table .   Descriptive metadata is used to describe the target data by providing, e.g. its source, explanatory notes, or other contextual information. For example, the descriptive metadata of the table "Lattice towers taller than the Eiffel Tower" depicted in Figure 2.6(a) can include its provenance (i.e. the Uniform Resource Locator (URL) of the page) and its surrounding text. Indeed, texts surrounding tables are potential sources of contextual information, and thus valuable metadata, since they often explain a nomenclature or verbalize salient information.

The different relationships between texts and tables, including titles and captions or even simple co-occurrences between a table and the surrounding texts, are useful indicators to guide and improve the annotation and knowledge extraction processes. However, this tabletext complementarity is little used in the STI domain so far. Descriptive metadata provides additional information that enhances the process of approaches such as [START_REF] Biswas | Wikipedia Infobox Type Prediction Using Embeddings[END_REF][START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF].

Structural metadata describes the structural schema of composite objects or relationships between objects. For example, the <td>, <tr>, and <th> tags in the Web table in Figure 2.6(b)

Collecting Tables

allow to detect table cells, row ordering and the presence of headers. Such structural patterns could benefit STI approaches such as [START_REF] Tao | Automatic hidden-web table interpretation, conceptualization, and semantic annotation[END_REF][START_REF] Wang | Understanding tables on the web[END_REF].

Administrative metadata often captures information such as the process of creation or data acquisition for a table. For example, in Figure 2.6(c), the page history details how, when, by whom, and for which purpose data has been produced or altered, allowing to assess the quality and validity of the table. Additionally, the creation or modification date of a table can indicate the freshness of its information, and thus allows to assess the risk of extracting outdated information.

It should be noted that table metadata can appear in different forms since tables have different formats and structures. For example, in some approaches, table headers are available as metadata [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF]. Furthermore, if a table element consists of a hyperlink (e.g. hyperlinks in infoboxes of Wikipedia), this mapping relationship also constitutes metadata.

Collecting Tables

There is an immense number of high-quality tables that can be found on the Web, to name a few, [START_REF] Michael J Cafarella | Webtables: exploring the power of tables on the web[END_REF] extracted 154 million high-quality relational tables from the Web and [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF] extracted 1.6 million relational tables from Wikipedia. With the help of additional operations, such as sorting, filtering, and joins, the rich information from wild tables can be turned into knowledge to support decision-making. However, regarding the different creator's purposes, formats, and structure complexities, it becomes increasingly difficult for a machine to access this data in a meaningful way. In this section, we present our efforts in collecting tables from the Web and the local files. We first introduce related work for collecting tables in Section 2.3.1. Then, we present the student project that we have guided for Web table extraction in Section 2.3.2.

Finally, we provide an overview of the project CorpusWalker from Orange in Section 2.3.3.

Related Work

The process of extracting tables from webpages includes filtering irrelevant tables, proper formatting and consistent storage of tables to create a corpus. This includes the classification of tables into one or more semantic (such as subject header, and table header) and/or syntactic (such as row and columns) features. [START_REF] Balakrishnan | Applying webtables in practice[END_REF] used a collection of simple rules and machine learning classifiers to extract tables with an overall accuracy of 96%. [START_REF] Michael J Cafarella | Webtables: exploring the power of tables on the web[END_REF] extracted approximately 14.1 billion raw HTML tables from the English documents in Google's main index, where 154 million tables are identified as high-quality relational tables. The authors also proposed a new object derived from the database corpus: the attribute correlation statistics database (AcsDB) that records corpus-wide statistics on co-occurrences of schema elements. [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF] leverages Chapter 2. Collect and Prepare Tables at Scale DWTC framework [START_REF] Eberius | Top-k Entity Augmentation Using Consistent Set Covering[END_REF] to further extract 1.78 web pages from Common Crawl1 , where 233 million genuine tables are further been identified.

Harvesting Tables in the Wild (HTW)

One of the projects that we worked on with students from EURECOM aims to collect HyperText Markup Language (HTML) tables from the wild as the upper stream application for our semantic annotation system (this system aims to build a semantic layer on top of the input tables to make them interpretable. It will be detailed in Chapter 4 and Chapter 5). We managed to build a Web scraping and table processing pipeline from the ground up. This system provides services for crawling, storing, and posting Web tables. In this section, we present the system created in the framework of the project HTW and report our results.

System

Figure 2.7 provides an overview of this system. The table collection pipeline contains four major components. They are i) a Scrapy2 Spider module for downloading web pages and extracting tables, which also normalizes table format, ii) a Kafka message queue for buffering the extracted tables, iii) an ArangoDB3 database for managing the storage, iv) an ingestion service for linking the collected tables with downstream annotation systems and the storage database. In this section, we introduce our efforts in the first three modules, and the table annotation service is described in Chapter 4.

We use Scrapy 4 for crawling Web tables due to its high performance in treating the data stream.

Starting from an input Web page, it extracts all hyperlinks (inside HTML <a> tags) from this page and generates new requests for these links. We define a list of whitelisted domains. web pages on these domains will always be crawled. Furthermore, the crawler will follow all links on these web pages. Once the crawler arrives on a Web page that is not in the whitelist, it still crawls that particular Web page but does not follow any links on it. Websites in the whitelist are manually selected from Alexa Top 500 ranking 5 , Moz Top 500 6 and CommonCrawl Top 1,000 domains ranked by harmonic centrality 7 where the non-English domains are filtered.

We provide the full domain names of the whitelist in Table 2.1. We parse the table with the tool introduced by [START_REF] Muñoz | Using linked data to mine RDF from wikipedia's tables[END_REF] according to the HTML labels. Layout tables, complex structured tables (such as concise tables or nested tables), and small tables (tables with less than two rows) are Message queues are extensively used for asynchronous communication. A message queue serves as a buffer, meaning that the crawler is never slowed down by a slow ingestion rate (e.g. due to a high load on the database). Moreover, as the ingestion service (consumer) is not interacting directly with the crawler (producer), it does not become a bottleneck and allows the ingestion service to process items out of the message queue at any speed. This gives the ingestion service more headroom to perform time-consuming tasks, such as augmenting the tables with data obtained from external API. Kafka8 is chosen as the queue engine since it follows a log-committed approach for a message bus and hence can also be used as a temporary store of messages for a desirable unit of time.

Collecting Tables

Finally, we select ArangoDB database as our storage backend, since it supports more data models (e.g., document, graph, table, full-text) compared to other NoSQL databases such as MongoDB or Neo4j. The stored data format is based on the JavaScript Object Notation (JSON) format merging from data used in approaches [START_REF] Eberius | Top-k Entity Augmentation Using Consistent Set Covering[END_REF][START_REF] Fetahu | Tablenet: An approach for determining fine-grained relations for wikipedia tables[END_REF]. This new format covers the following information from the provenance of the table:

• Page title 

Result

We performed a table collection process with our pipeline during three days. With a very limited amount of time, we collected 3,469 tables from 2,002 Websites on 135 unique domains.

With these results, we also explore the graph visualization capabilities.

In Figure 2.8, the purple circles represent page vertices (a Web page that has been accessed), while the black circles represent table vertices (a table that has been extracted). The virtual start node is "HTW Start" (where the crawl started), but the start node can be adjusted through the User Interface (UI) to start traversing the graph. Alongside the edges, the edge type is displayed, in this example either "hyperlink" (one Web page links to another Web page) or "page-contains" (a table is embedded on a Web page). The search depth and the maximum number of nodes displayed in the graph can be dynamically adjusted in the UI to facilitate the exploration, though loading large graphs all at once makes the visualization unclear and has performance issues.

CorpusWalker

At Orange, following the same proposal of the project HTW, we have built a data collection tool named CorpusWalker. As illustrated in Figure 2.9, CorpusWalker integrates a series of It is also compatible with our table annotation tools (detailed in Chapter 4) to provide a data repository for the annotation results. In this section, we explain the system design of CorpusWalker and report the result. MediaWiki document with Wikitextparser 11 , where tables and textual documents are identified and labeled. We further add the content analysis information in the documents which describes the number of rows, columns, and cells for tables, also the word occurrence count in both texts and tables. Finally, we aggregate these documents with semantic annotation where mentions from the document are linked with a given KG, e.g., Wikidata. For tables, we leverage DAGOBAH-API (detailed in Chapter 4) to extract basic features of the table with table pre-processing end-point introduced in Section 2.4, and we annotate the table elements (e.g., cells, columns) with Wikidata by DAGOBAH-SL system (detailed in Chapter 4). For textual documents, we leverage KEFT [START_REF] Shimorina | Knowledge Extraction From Texts Based on Wikidata[END_REF] system for entity linking with Wikidata (KEFT system is not presented since it is not in the scope of the thesis.).

Collecting Tables

After having generated annotations and computed the statistic analysis about the dataset, All the modules could be supervised by the monitoring module, which provides dashboards for data visualization and execution supervision, also configuration management pages for administration (as the example shown in Figure 2.11). The visualization is powered by Kibana 13 , Grafana 14 and StatsD 15 for dashboards. In Figure 2.12, we illustrate interface of document management in CorpusWalker. It provides statistics and information about the documents extracted from the Wikipedia corpus. These information include the number of tables, number of texts, time of the generation, and the collection criteria (in column "Category"). This page also allows users to search the document according to both String text and Wikidata Entities. French (26.16%), Romanian (4.51%), and Polish (0.05%). This rich data source allows us to test our system in greater depth and provides a rich source of data for our knowledge base.

Collecting Tables

Result

CorpusWalker is a useful system for data collection, extraction, and management. In the future, we aim to improve the coverage of CorpusWalker by considering more data sources with heterogeneous data formats. Also, optimizing our current table identification and extraction algorithm is another direction that we aim to enhance in future work.

Pre-Processing Tables

Tables vary in their form and structure as described in Section 2.1. Starting from 0, it is hard to apply a common rule to all tables. For example, one could say one row describes an entity in a horizontal relation table, but the same argument can not be used in vertical tables since a row in a vertical relational table describes an attribute, but not an entity. In order to correctly process the information contained in the tables, it is first necessary to infer several characteristics of the shape of the table. In a context of real exploitation in which there is sometimes little or no knowledge about the tables, the information produced by this chain is decisive for the quality of the annotations. Hence, it is necessary to know some features of the In this section, we focus on relational tables, and we introduce our first prototype of preprocessing module aiming to extract the orientation, the headers, the key column position, [97] assumes that the cells in the columns are similar for horizontal tables, and vice versa for vertical tables. A token type is assigned to each cell token, and each cell is transformed into a vector composed of token types from the given cell. Average row/column similarity is calculated by summing up the distance between the last row/column and each preceding row/cols for determining the table orientation. [START_REF] Crestan | Web-scale table census and classification[END_REF] adopts supervised machine learning on top of 21 features extracted from the tables, including the maximum number of rows for each column and the presence of certain HTML tags. The approach labels each table into one of the ten table types, including vertical relation tables, so-called "vertical listing" and "horizontal listing". Gradient Boosted Decision Tree (GBDT) and Support Vector Machine (SVM) are chosen as the classification model and the evaluation shows GBDT achieves a better result. DWTC [START_REF] Eberius | Building the dresden web table corpus: A classification approach[END_REF] further refines the feature number to 10 and applies SVM to this approach.

DeepTable [START_REF] Habibi | DeepTable: a permutation invariant neural network for table orientation classification[END_REF] decomposed the system into two representation models for column-wised and row-wised features, where column-wised (resp. row-wised) features are generated based on an item set from cells in the same column (resp. row Random Forest (RF). [START_REF] Wang | Understanding tables on the web[END_REF] proposes to consider applying a threshold over a score generated by hybridizing the Probase's type and the syntax features (e.g., color, HTML tags, etc.).

Key Column Detection

The key column of a table contains the identifiers of the subjects described by the other columns. Hence, the key column is also known as the subject column while others columns could be seen as the attributes of the given subject. DWTC [START_REF] Eberius | Building the dresden web table corpus: A classification approach[END_REF] framework supposes that the key column of a given relational table is the column with the highest unique value number among all literal columns (number and date are not included). MantisTable [START_REF] Cremaschi | A fully automated approach to a complete semantic table interpretation[END_REF] further considers aggregating features of i) the fraction of empty cells, ii) the fraction of cells with unique content, iii) the distance from the first literal column, and iv) the average number of words in each cell to compute a relevant score for detecting the position of the key column.

TableMiner+ [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF] introduces a similar approach where the authors also add the Web search score to evaluate the Web frequency of words used in the column header and a given cell from the column.

System Description

The pre-processing toolbox of DAGOBAH, partly based on the DWTC-Extractor, generates four different types of information. The precision of the toolbox was evaluated on the round 1 of SemTab 2019 (Table 2. 

Result

The precision of the toolbox was evaluated on the round 1 of SemTab 2019 [START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF], and compared to a modified version of the DWTC (which does not use HTML tags and thus supports more formats). The result shows that we have optimized the result from the baseline system DWTC in Orientation Detection and Key Column Detection. This pre-processing toolbox was especially useful during the first round to automatically identify the information contained in the header as well as the column to be annotated in each table. In addition, when the goal is to enrich a knowledge graph with the information contained in tables, key column detection is a critical Chapter 2. Collect and Prepare Tables at Scale element in determining the subject of the generated RDF triples. The availability of targets during the second round made the use of this pre-processing chain obsolete. However, this does not affect the usefulness of such tools in real-world applications.

Discussion

In this chapter, we first introduce a classification of tables. We propose that table could be seen as a combination of classes from three dimensions (structure, inter-relationship, and orientation). We have also proposed a deeper classification of a relational table using the subjects of the table as the criteria. It highlights some current limitations of understanding relational tables. For example, to the best of our knowledge, the hidden subject is not discussed in the literature. Later, we introduce the metadata that we could collect to better describe a given table .   We then emphasize our efforts in collecting Web tables with the student project HTW and CorpusWalker. We have built a collection, extraction and management pipeline that continuously enriches our data lake and provides fruitful information. In these two systems, we built Web scraping and table processing pipelines from the ground up, using basic components such as Scrapy, Kafka message queue, and ArangoDB document store. This pipeline can ingest data not only from the World Wide Web directly but also through the Common Crawl index and local files. We implemented advanced table parsing and specified a JSON data format for storing the tables, taking into account work that has previously been done in the field. While implementing our pipeline, we tried to keep the system modular and extensible, so that it could readily be reused by others, by adhering to modern software development practices.

Last but not least, we introduce our pre-processing module for extracting three basic features (table orientation, header position, and key column position) of a given relational table.

However many works are still not been handled yet. In the future, we first aim to propose a system that can automatically classify tables according to our definition illustrated in Section 2.1 (e.g., entity tables, relational tables, etc.). Also, we would like to drive a deeper evaluation of the tables collected with CorpusWalker, digging more into the topic distribution of wild tables.

Also, proposing a suitable and complex table benchmark based on the extracted tables is in our planning. Finally, we aim to evaluate our pre-processing system with other datasets and study if it exists other useful features that we could extract from our pre-processing pipeline.

Chapter 3

Semantic Table Interpretation Tasks and Methods

The tabular data format is compact, readable and simple to process, but it does not self-explain the meaning of the information. However, it potentially contains rich semantic information that still needs to be interpreted. Hence, interpreting tabular data becomes a crucial task and it has attracted a lot of attention in recent years, with, in particular, the crystallization of research efforts around challenges such as the SemTab series [START_REF] Cutrona | Results of SemTab[END_REF][START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF][START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF]. The main idea to make tabular data intelligently processable by machines is to find correspondences between the elements composing the table with entities, concepts, or relations described in KG which can be of general purposes such as DBpedia [START_REF] Bizer | DBpedia-A crystallization point for the Web of Data[END_REF] and Wikidata [START_REF] Vrandečić | Wikidata: a free collaborative knowledge base[END_REF], or enterprise specific.

This problem is known as STI or Semantic Table Annotation. KGs can be used to drive the semantic interpretation of tabular data while being themselves the artefacts that can be further enriched from the result of the interpretation process. In this latter case, tabular data becomes a means to either populate a nascent KG or improve the quality of an established one. Adding a semantic layer on top of tabular data, in order to make the latent meaning explicit and exploitable through a structured and shared format, is an invaluable step towards efficient and intelligent use of data.

Tabular data is challenging to interpret by machines because of the limited context available to resolve semantic ambiguities, the layout of tables that can be difficult to handle, and the incompleteness of KGs in general. Classical Natural Language Processing (NLP) tasks for unstructured text handle poorly such tables since they do not leverage the table structure and the underlying semantics [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF]. For example, in the table depicted in Figure 2.5(b), the mention "Rohr" is ambiguous as it can refer to a surname (Q16882196), a manufacturer (Q2391081), or a municipality in Germany (Q583512). However, this ambiguity can be resolved when taking into account the table structure and, in particular, the fact that the "Manufacturer" column only contains companies.

This section aims to provide a general introduction to the STI domain, where we first introduce the notion of KG in Section 3.1. In Section 3.2, we define five sub-tasks that are relevant to STI, namely: cell-entity annotation, column-type annotation, columns-property annotation [START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF][START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF], topic annotation, and row-to-instance annotation [START_REF] Ritze | Matching html tables to dbpedia[END_REF]. Section 3.3 proposes a macrocommon pipeline that fulfills the tasks of STI from pre-processing of the input table to the final annotation results. In Section 3.4, we make an inventory of the gold-standard datasets commonly used to evaluate STI approaches and we analyse their strengths and weaknesses.

In Section 3.5, we review the many approaches that have been proposed grouping them into three families (not mutually exclusive) respectively based on heuristics, feature engineering, and deep learning. We then describe the current performances of STI systems on selected datasets. Finally, we discuss the current approaches in Section 3.6.

Knowledge Graph

Knowledge graphs are often associated with linked data technologies and projects since they focus on interrelations between concepts and entities [START_REF] Ehrlinger | Towards a Definition of Knowledge Graphs[END_REF]. In essence, KGs are semantic networks that formally describe things or entities of the real world and their relationships [START_REF] Hogan | Knowledge graphs[END_REF].

Each entity is identified by a globally unique URI [START_REF] Berners-Lee | Linked Data -Design Issues[END_REF]. Atomic elements of KGs are triples 〈subject, predicate,object〉. For example, as the KG illustrated in Figure 3.1, the country of the city Belfort can be represented by the triple 〈Belfort, country,France〉 where the predicate country qualifies the relationship holding between the entity Belfort and the value France.

KGs can be categorized into domain-specific (or vertical) KGs, encyclopedic KGs or commonsense KGs depending on their content. A domain-specific KG focuses on describing a partic-

Knowledge Graph

ular field of interest. Such a KG is expected to present advantages in terms of accuracy and in-depth domain knowledge coverage. It can effectively support knowledge reasoning and knowledge retrieval for specific domain applications [START_REF] Liu Xiaoxue | Review and trend analysis of knowledge graphs for crop pest and diseases[END_REF]. To illustrate, in the "Crop, Pest, and

Diseases" field, domain-specific KGs play a substantial role in agriculture [START_REF] Philip K Thornton | Site selection to test an integrated approach to agricultural research for development: combining expert knowledge and participatory Geographic Information System methods[END_REF], greenhouse environment [START_REF] Mohd Yusof | M-DCocoa: M-agriculture expert system for diagnosing cocoa plant diseases[END_REF], and economic benefit analysis [START_REF] Wd Van Eeden | Micro-Doppler radar classification of humans and animals in an operational environment[END_REF]. The Bio2RDF project which focuses on Life Sciences [START_REF] Belleau | Bio2RDF: towards a mashup to build bioinformatics knowledge systems[END_REF] is an example of a domain-specific KG that is largely used.

An encyclopedic KG is generally large, spanning multiple domains, and is often openly and collaboratively edited. This openness is reflected by the Linked Open Data cloud [START_REF] Bizer | Linked data: The story so far[END_REF] which includes the following largest encyclopedic KGs:

• DBpedia [START_REF] Bizer | DBpedia-A crystallization point for the Web of Data[END_REF] • Wikidata [START_REF] Vrandečić | Wikidata: a free collaborative knowledge base[END_REF] is a project hosted by the Wikimedia Foundation which aims to fuel the infoboxes displayed on each Wikipedia page. Similarly to Wikipedia, it is collaboratively edited by thousands of volunteers. As of early 2021, Wikidata had facts about 90 million entities with labels expressed in more than 350 languages. Wikidata provides a separate page for each entity, has a unique digital identification mechanism, and a lineage system that allows to trace facts to their sources.

• Freebase [START_REF] Bollacker | Freebase: a collaboratively created graph database for structuring human knowledge[END_REF] It should be noted that each KG may present its own (dis)advantages to support the STI process.

For example, Wikidata provides rich content and numerous aliases for each entity to cover a wide set of real-world synonyms. However, annotating a cell with such an encyclopedic KG based on a string-similarity mapping may lead to a significant number of candidates due to the presence of numerous homonyms. This would, in turn, make disambiguation more challenging. For example, over a hundred entities have labels or aliases that contain the word "France". The Wikidata data model is also complex as it provides qualifiers that may need to be specifically taken into account during the STI process. On the other hand, DBpedia provides a reduced number of types curated in the DBpedia Ontology, which makes the typing of table elements easier but potentially reduces the specificity of the annotations. Regarding vertical KGs, the lack of knowledge from other domains may decrease the robustness of the KG applications. Additionally, string matching may not be able to handle the specificities of sophisticated domain-specific relations, schema, or entities, increasing the interpretation complexity. For example, in the biology domain, genes and proteins often share the same labels. To guide the choice of the supporting KG, it is noteworthy that selecting KGs with the highest overlap with the dataset's content will maximize the system's performance. Besides, combining several KGs will maximize the coverage and granularity.

Semantic Table Interpretation Tasks

An annotation task can be defined by the table elements required to be annotated and by the type of candidates (individuals, concepts, or properties of the KG). As the example from • Cell-Entity Annotation (CEA) is also known as Entity Linking. It aims to annotate a cell with a KG entity. For example, in Figure 3.2, a CEA task needs to match the cell mention "Suisse" with the entity Q165141 if Wikidata is the target KG.

• Column-Type Annotation (CTA) aims to map a column with a KG entity type. The difficulty of the CTA task lies in selecting an adequate type granularity in a potentially a https://fr.wikipedia.org/wiki/Championnat_d%27Europe_de_football_2008#1er_tour_-_phase_de_groupes complex type hierarchy structure. An entity may have multiple types and types represented in complex hierarchical trees or even cyclic graphs (e.g. Wikidata type topology).

Semantic

The type selected for a given column must be representative of the individuals it contains and carry a maximum of information. If the selected type is too broad (e.g. the second column of the table in Figure 3.2 is annotated as a "geographic entity" (Q27096213)

in Wikidata rather than "city of Switzerland" (Q1545591)), the annotation will carry little information. Conversely, a type that is too specific may not be representative for all values in a column, leading to an accuracy degradation in downstream tasks. In • Columns-Property Annotation (CPA) aims to annotate a column pair of a relational table with a property. For example, the relationship between the last column and the numeric column circled in orange in Figure 3.2 should correspond to the predicate "number of points/goals/set scored" (P1351) in Wikidata.

• Topic annotation aims to annotate the entire table with a concept or an entity from the target KG. Figure 3.2 illustrates that the entire table is about the entity "UEFA Euro 2008" (Q241864) in Wikidata.

• Row-to-Instance annotates an entire row of a relational table with a KG entity. In this task, each row is treated as an entity, which is considered the subject of the row. Row-toinstance differs from the CEA task as it may be able to discover more entities leveraging the context of the row, especially in the case where the subject of the row is hidden (e.g.
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on hidden-subject tables). For example, in Figure 2.5, the fourth row is represented by ("Switzerland -Turkey, 11 Jun 2008" (Q12012827)) which can not be extracted by the CEA task.

Generic Pipeline

The study of STI approaches in the literature allows identifying a recurrent pipeline of modules used by the vast majority of systems. This section introduces a macroscopic view of a fourstage STI pipeline: pre-processing, candidate generation, table elements processing, and iterative disambiguation. It should be noted that the order of these modules may vary from one approach to another. In addition, some approaches iterate between the annotation tasks and disambiguation stages to improve the accuracy of annotations [START_REF] Ritze | Matching html tables to dbpedia[END_REF][START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF].

Pre-Processing

The quality of the STI output is greatly influenced by the quality of the input data. A preanalysis of the data is, therefore, necessary and is often the first step of an efficient STI system.

For example, knowing the orientation of a relational table can help to identify a column and its header information to disambiguate the cells.

The goal of the pre-processing module is to quickly and concisely summarize and analyse an input table to ease the annotation process by converting it into an interoperable format. The pre-processing analysis can be decomposed into the following two tasks.

First, format normalization allows to transform the original data into a format acceptable to an STI system. Indeed, table sources are diverse, so does their representation in terms of formats (e.g. Comma-Separated Values (CSV), JSON, HTML), charsets being used (e.g. UTF-8, Unicode), languages (e.g. English, French), or content expressions (e.g. missing value). This task also aims to clean up invalid or erroneous data for better compatibility among different data sources, e.g. with syntactic corrections by fuzzy matching in [START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF][START_REF] Nguyen | Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata[END_REF].

Second, informational analysis consists of extracting the potential information contained in the table as much as possible before the annotation. The information carried by a table includes the table types (e.g. relational, matrix) [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF][START_REF] Zhang | Web table extraction, retrieval, and augmentation: A survey[END_REF], its orientation [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF][START_REF] Habibi | DeepTable: a permutation invariant neural network for table orientation classification[END_REF], primitive types for its columns (resp. rows), its header positions, if any, and its key column position which carries the row's subject [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF]. Such information helps the system to understand the scenario and to perform different operations in different situations. For example, the CTA task is only suitable for relational tables, and it is related to the table orientation: for horizontal tables (resp. vertical tables), it will assign a type to columns (resp. rows).

Generic Pipeline

Candidate Generation

The annotation is usually selected within a candidate list that depends on the table elements and the corresponding task. For example, the first step of the CEA task is to generate a list of candidate entities while the first step of the CTA task is to generate a list of candidate types.

Thus, STI systems automatically generate, manually add, or filter this candidate list in advance (e.g. an annotation system based on supervised learning should be trained with pre-set labels, those labels being the candidates of the annotation process).

String similarity-based lookup is a standard method to generate candidate entity sets in CEA and row-to-instance tasks. Specifically, the syntactic similarity is calculated between cell mentions and entity labels to select the most relevant entities as candidates. The choice of the matching algorithm depends on the application scenarios. For example, [START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF] uses

Levenshtein-based distances whereas some public knowledge bases expose a public index allowing users to extract and generate candidates, e.g. DBpedia spotlight [START_REF] Mendes | DBpedia spotlight: shedding light on the web of documents[END_REF].

In other tasks like CTA (resp. CPA), candidates are the set of types (resp. predicates) available in the target KG. The generation of type candidates is sometimes equivalent to the retrieval of the CEA candidates' types [START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF][START_REF] Morikawa | Semantic Table Interpretation using LOD4ALL[END_REF]. However, in some learning-based methods [START_REF] Krishnamurthy Ramnandan | Assigning semantic labels to data sources[END_REF][START_REF] Zhang | Sato: Contextual Semantic Type Detection in Tables[END_REF], type candidates are manually selected for training.

Some mentions can correspond to a large number of entities, e.g. several thousands of entities whose labels contain the mention "France" can be retrieved from Wikidata. The number of candidates may affect the efficiency of the annotation system as calculating and evaluating all possible candidates may require a large amount of time. Hence, some STI systems prune the number of candidates [START_REF] Nguyen | MTab: Matching Tabular Data to Knowledge Graph using Probability Models[END_REF][START_REF] Thawani | Entity Linking to Knowledge Graphs to Infer Column Types and Properties[END_REF]. This filtering process can be applied to reduce the size of the final candidate set by tuning an acceptable entity-mention similarity threshold. However, one should be aware that an inadequate threshold risks to filter the correct entity out. Another way is to sort the importance of candidates by studying the attributes of the target ontology.

For example, [START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF][START_REF] Morikawa | Semantic Table Interpretation using LOD4ALL[END_REF] leverage the BM25 [START_REF] Robertson | The probabilistic relevance framework: BM25 and beyond[END_REF] weights from an Elasticsearch index, that can help to select the candidates with the highest usage rate.

Table Elements Processing

Processing different table elements is the core of an STI system. Each table element follows a particular rule according to the table type. Given an input table that is relational and horizontal, each row describes an entity and its attributes, while column elements share the same entity type. Given T i j , the target cell to be annotated from a horizontal table T , we identify six table elements that can be leveraged to produce annotations.

T i j indicates the target cell itself. Some studies use the string similarity as one of the compo-
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nents of candidate confidence [START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF][START_REF] Morikawa | Semantic Table Interpretation using LOD4ALL[END_REF]. For example, in Figure 3.2, for searching CEA candidates for the cell "Suisse" in the first row, we should consider the entities containing the mention "Suisse" in their label. The correct annotation is Q165141 which has the English label "Swiss national football team" and the French label "équipe de Suisse de football".

T i * indicates the row context of the target. Some studies leverage the matching degree between the attribute values of the target entity and the information provided in the table

for the CEA task. Most of the annotation tasks consider a single-cell subject relational table scenario. Based on this assumption, it is reasonable to make this comparison for calculating the confidence of the candidate. For example, in Figure 3.2, knowing the date ("11 juin") and city ("Bâle") can help to annotate the third row with the right football game (Q12012827) based on its neighbouring nodes in the KG.

T * j indicates the column context of the target. For a horizontal relational table, the information carried by cells in the same column of the table is somewhat similar (e.g. cells referring to the same concept or the same unit). For example, in Figure 3.2, the cells in the second column are cities. Having this information could help to choose the right candidate between the city of "Bâle" (Q78) and the family name "Bâle"(Q107983752).

T * * indicates intra-columns relationships from the target table. Intra-column relationships provide a global representation of a table. For example, in Figure 2.5(c), knowing the relation between the column "Album" and the column "Artist/s" could help to filter out people who did not publish any music album.

T 0 * indicates the header of the target table. The table header often directly explains the contents of the column. Making full use of the information from the table header can help to find the column type or properties more efficiently. For example, in Figure 2.6(a), the headers "Year", "Country", and "Town" directly denote the concepts of the columns.

T out indicates contextual elements encompassing the 

Datasets and Benchmarks

all cells from the table as the context for the disambiguation and is usually performed using deep learning models such as [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF][START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF].

Iterative Disambiguation

When an STI system jointly undertakes multiple tasks among the five tasks defined in Section 3.2, one task can provide additional useful information for solving the other tasks. For example, when knowing the type annotation of a column (CTA), candidate entities for its inner cells (CEA) that do not belong to the CTA type are less likely to be correct candidates [START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF].

We call this process iterative disambiguation. This iterative technique is frequently used in heuristic-based approaches (Section 3.5.1) in which a pipeline including specific ordered tasks and being executed once or in a loop is explicitly defined in two ways: (1) predefinition of a pipeline, e.g. [START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF] performing sequentially CEA, CPA, CTA, CEA disambiguation with CPA or (2) repeat a set of tasks multiple times and stop when it converges to a stable result [START_REF] Ritze | Matching html tables to dbpedia[END_REF][START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF].

Datasets and Benchmarks
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Datasets and Benchmarks

Several datasets have been proposed to evaluate STI approaches. Some datasets attempt to establish gold standards in which table components (cells, rows, columns, or cell pairs) are associated with KG components (entity, class, or property), while others collect high-quality tables to support STI training. In this section, we detail the most popular datasets (Table 3.1) that are used by STI approaches.

Limaye [START_REF] Limaye | Annotating and searching web tables using entities, types and relationships[END_REF] is one of the earliest gold standards used in the community. Limaye aims to annotate Web tables using the YAGO KG. The dataset is divided into four subsets according to the data source, the labelling method, and application scenarios. Three subsets are manually labelled while the fourth one is automatically labelled. The automatically labelled subset contains annotation errors [START_REF] Mulwad | Semantic message passing for generating linked data from tables[END_REF] which were corrected by [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF]'s work in 2015. Later on, [START_REF] Efthymiou | Matching web tables with knowledge base entities: from entity lookups to entity embeddings[END_REF] updated the disambiguation links to the DBpedia KG.

T2D [START_REF] Ritze | Matching HTML Tables to DBpedia[END_REF] is taken from the Web Data Commons project. 1 DBpedia is used as the target KG and extensive metadata such as the context of the table and whether the table has a header or not is provided. The addition of a small number of non-overlapping tables that do not have a mapping relationship with DBpedia makes this gold standard closer to real-world datasets. A second version of the gold standard adding negative examples has been published and named

T2Dv2 [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF]. T2D and its supplementary version T2Dv2 [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF] have been largely used to evaluate approaches in [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF][START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF][START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF], and together with Limaye, they became the de facto gold standard datasets to use for evaluating STI approaches. However, [START_REF] Ermilov | TAIPAN: automatic property mapping for tabular data[END_REF] pointed out that T2D has partial annotation errors and lacks fine-grained annotations since a large number of tables only point to the root class owl:Thing. [START_REF] Ermilov | TAIPAN: automatic property mapping for tabular data[END_REF] has proposed a revised version of the dataset named T2D*.

WDC [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF] leverages the DWTC framework [START_REF] Eberius | Top-k Entity Augmentation Using Consistent Set Covering[END_REF] to crawl tables from the Web and to distinguish between different types of Web tables according to the inner-relation dimension and the orientation dimension that have been defined in Section 2.1. The crawler has extracted a total of 10.24 billion tables from which 0.9% are relational tables, 1.4% entity tables, and 0.03% are matrix tables, amounting to 233 million tables available in the corpus. The rest are labelled as layout tables or other tables. WDC also provides a subset containing 90 million relational tables and a subset containing 50 million English relational tables.

TabEL [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF] (also named WikiTables) has collected 1.6 million Wikipedia tables which contain the class attribute "wikitable" from the November 2019 XML English Wikipedia dump. During the extraction, the system collects the hyperlinks in table cells and metadata of the table, such as the table caption and the page title. Thus, the mappings between YAGO entities and table cells are easily derived. The types of tables in this dataset are unknown. QuTE [START_REF] Vinh | QuTE: Answering Quantity Queries from Web Tables[END_REF] further enhanced the dataset by merging TabEL with 2.6 million tables from the TableL [START_REF] Ibrahim | Bridging quantities in tables and text[END_REF] dataset that were extracted from 1.5M Common Crawl web pages using the DWTC framework [START_REF] Eberius | Top-k Entity Augmentation Using Consistent Set Covering[END_REF].

The TableL dataset covers mostly five major topics: finance, environment, health, politics, Chapter 3. Semantic Table Interpretation Tasks and Methods and sports. These datasets have generally been used to train machine learning based STI approaches [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF].

Zhang et al. [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF] proposed datasets2 for evaluating entity linking in Web tables, as well as table header classification and relation annotation. The datasets contain 16,000+ annotated relational tables that can be used for many studies related to Web tables. In particular, it proposes the IMDB (movie) and Musicbrainz (music) datasets with cell entities and column headers annotated using Freebase topics.

The SemTab competition (Semantic Web Challenge on Tabular Data to Knowledge Graph

Matching 3 ) colocated with the International Semantic Web Conference from 2019 to 2022 provides the biggest datasets. This competition has attracted nearly 50 participant teams over the three years. The SemTab 2019 datasets [START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF] use DBpedia as the target KG, while SemTab 2020 [START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF] uses Wikidata and SemTab 2021 [START_REF] Cutrona | Results of SemTab[END_REF] uses both DBpedia and Wikidata in addition to Schema.org for the last round. The competition consists of four rounds in 2019 and 2020 and three rounds in 2021 and 2022. The data sources vary depending on the rounds. SemTab 2019 Round 1 is a small number of high-quality tables extracted from T2Dv2. Tables from SemTab 2019 Round 2 are extracted from Wikipedia. Except GitTables [START_REF] Hulsebos | GitTables: A Large-Scale Corpus of Relational Tables[END_REF] and BiodivTab [START_REF] Abdelmageed | BiodivTab: A Tabular Benchmark based on Biodiversity Research Data[END_REF],

the rounds from SemTab contain a large number of artificially generated tables annotated for a target KG using SPARQL queries with the introduction of some noise such as misspellings.

The synthetic tables datasets can be used to test the scalability of a system given their size and the large number of lookup candidates that can be returned. Nevertheless, these datasets are not extremely challenging for the semantic interpretation approaches as they contain synthetically generated noise. This explains the very high accuracy of the top-performing approaches (F1 score up to 0, 99 for some tasks [START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF]). There is also room for improvement in incorporating all real-world challenges in future editions of the challenge, for example, tables with cells containing multiple entities. To increase the difficulty, SemTab 2020 introduces during round 4 the so-called Tough Tables dataset [START_REF] Cutrona | Tough tables: Carefully evaluating entity linking for tabular data[END_REF]. Tough Tables is composed of tabular data simulating various difficulties: a large number of rows to evaluate the systems performance, non-Web tables and artificially added misspellings and ambiguities.

In SemTab 2021 and 2022, the organizers bring new challenges with, in particular, the Bio-divTab [START_REF] Abdelmageed | BiodivTab: A Tabular Benchmark based on Biodiversity Research Data[END_REF] dataset which contains 50 manually annotated tables from real-world biological datasets. BiodivTab also contains artificially generated noises, abbreviations and complex data formats. A subset of the GitTables dataset [START_REF] Hulsebos | GitTables: A Large-Scale Corpus of Relational Tables[END_REF] has also been used in the last round of SemTab 2021. This dataset is a collection of CSV tables from GitHub which are annotated with DBpedia and Schema.org. Wang et al. [START_REF] Wang | Understanding tables on the web[END_REF] Probase Custom Wikipedia Tables Deng et al. [START_REF] Deng | Scalable column concept determination for web tables using large knowledge bases[END_REF] FreeBase, YAGO Custom Wikipedia Tables Sekhavat et al. [START_REF] Yoones | Knowledge base augmentation using tabular data[END_REF] DBpedia Custom Web Tables TabEL [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF] YAGO Limaye ADOG [START_REF] Oliveira | Adog-annotating data with ontologies and graphs[END_REF] DBpedia SemTab 2019 Tabularisi [START_REF] Thawani | Entity Linking to Knowledge Graphs to Infer Column Types and Properties[END_REF] DBpedia T2D, VizNet DBpedia T2D TableMiner+ [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF] Freebase Limaye, IMDB, MusicBrainz LOD4ALL [START_REF] Morikawa | Semantic Table Interpretation using LOD4ALL[END_REF] DBpedia SemTab 2019 CSV2KG [START_REF] Steenwinckel | Csv2kg: Transforming tabular data into semantic knowledge[END_REF] DBpedia SemTab 2019 MTab [START_REF] Nguyen | MTab: Matching Tabular Data to Knowledge Graph using Probability Models[END_REF][START_REF] Nguyen | Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata[END_REF][START_REF] Nguyen | SemTab 2021: Tabular Data Annotation with MTab Tool[END_REF] DBpedia, Wikidata SemTab 2019-2021 LinkingPark [START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF] Wikidata SemTab 2020 DAGOBAH-SL [START_REF] Huynh | From Heuristics to Language Models: A Journey Through the Universe of Semantic Table Interpretation with DAGOBAH[END_REF][START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF][START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF] DBpedia,Wikidata SemTab 2020-2022 MantisTable [START_REF] Cremaschi | Man-tisTable SE: an Efficient Approach for the Semantic Table Interpretation[END_REF][START_REF] Cremaschi | MantisTable: an Automatic Approach for the Semantic Table Interpretation[END_REF][START_REF] Cremaschi | s-elBat: a Semantic Interpretation Approach for Messy taBle-s[END_REF] DBpedia, Wikidata SemTab 2019-2021 Kepler-aSI [START_REF] Baazouzi | KEPLER-asi at SemTab[END_REF][START_REF] Baazouzi | Yet Another Milestone for Kepler-aSI at SemTab 2022[END_REF] DBpedia, Wikidata SemTab 2021-2022 JenTab [START_REF] Abdelmageed | JenTab: Matching Tabular Data to Knowledge Graphs[END_REF][START_REF] Abdelmageed | JenTab: A Toolkit for Semantic Table Annotations[END_REF][START_REF] Abdelmageed | JenTab Meets SemTab 2021's New Challenges[END_REF] DBpedia, Wikidata SemTab 2020-2022 KGCODE-Tab [START_REF] Li | KGCODE-Tab Results for SemTab[END_REF] DBpedia Wikidata Limaye, T2D, Wikipedia Biswas et al. [START_REF] Biswas | Wikipedia Infobox Type Prediction Using Embeddings[END_REF] DBpedia Custom Wikipedia inforbox DAGOBAH-Em [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF] DBpedia, Wikidata SemTab 2019
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Sherlock [START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF] DBpedia T2D, VizNet Sato [START_REF] Zhang | Sato: Contextual Semantic Type Detection in Tables[END_REF] DBpedia VizNet ColNet [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF] DBpedia Limaye, T2Dv2 Guo et al. [START_REF] Guo | Web table column type detection using deep learning and probability graph model[END_REF] DBpedia T2Dv2 Zhang et al. [START_REF] Zhang | Novel entity discovery from web tables[END_REF] DBpedia T2Dv2 TURL [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] DBpedia WikiGS, WikiTable, T2D TCN [START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF] -Custom Web Tables, WikiTable [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] DUDUO [START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF] -WikiTable, VizNet Singh et al. [START_REF] Singh | Relation Extraction from Tables using Artificially Generated Metadata[END_REF] DBpedia T2Dv2 Zhou et al [START_REF] Zhou | Tabular Data Concept Type Detection Using Star-Transformers[END_REF] DBpedia Custom Wikipedia Tables

Semantic Table Interpretation Approaches

In this chapter, we review the notable approaches from the literature. Among the five tasks introduced in the previous section, the literature mostly focuses on CTA, CEA, and CPA. We propose to classify STI systems according to three representative paradigms of their intrinsic methodology: (1) heuristic methods (Section 3.5. Then, we discuss these methods from different perspectives: the pros/cons of heuristic-based methods versus Machine Learning based methods, the importance of table elements and the KG structure for improving the accuracy, and the trade-off between efficiency and accuracy (Section 3.6). Finally, we describe the current performances of STI systems on selected datasets in Section 3.5.4.

Heuristic-Based Approaches

The heuristic class gathers diverse approaches which are often considered as baseline STI approaches. The core of each system is algorithmically straightforward and does not require much effort in feature engineering or learning. Indeed, the STI tasks are carried out using heuristic techniques such as string similarity measures [START_REF] Morikawa | Semantic Table Interpretation using LOD4ALL[END_REF][START_REF] Oliveira | Adog-annotating data with ontologies and graphs[END_REF][START_REF] Wang | Understanding tables on the web[END_REF], majority voting [START_REF] Zwicklbauer | Towards Disambiguating Web Tables[END_REF],

TF-IDF [START_REF] Oliveira | Adog-annotating data with ontologies and graphs[END_REF][START_REF] Thawani | Entity Linking to Knowledge Graphs to Infer Column Types and Properties[END_REF] or probabilistic frameworks [START_REF] Nguyen | MTab: Matching Tabular Data to Knowledge Graph using Probability Models[END_REF]. The context of the table, including the header, the title, and the neighbouring cells [START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF][START_REF] Wang | Understanding tables on the web[END_REF] is also taken into account but not thoroughly. We further identify two subclasses of heuristic approaches: lookup based approaches (Section 3.5.1) and iterative approaches (Section 3.5.1).
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Lookup Based Approaches

Approaches from this paradigm work with an initial candidate entity set determined by a lookup service. After generating candidates through lookup, these methods score the candidates using different metrics on table elements (e.g. cells, type of columns, etc.).

Venetis et al. [START_REF] Venetis | Recovering semantics of tables on the web[END_REF] introduce a model for extracting the column type and the relationships between the key column and other columns. To increase knowledge coverage and avoid issues related to KG incompleteness, the authors present an isA database to carry out the CTA and a re- Wang et al. [START_REF] Wang | Understanding tables on the web[END_REF] focus on the table headers to better identify the concept associated with a given column. The approach uses a header detection module that leverages Probase [START_REF] Wu | Inferring a universal probabilistic taxonomy from the web[END_REF] querying and rule-based filtering. In the absence of headers, a custom concept is employed with Probase queries by measuring the type occurrence of the column cells. The table interpretation is executed by studying the cells-header compatibility and entity-values compatibility.

lation
Through experiments on a search engine, the approach demonstrates that headers can help understand the columns of a table .   Deng et al. [START_REF] Deng | Scalable column concept determination for web tables using large knowledge bases[END_REF] focus on the production of top-k candidates for CTA. The authors first build a Directed Acyclic Graph mapping the entity labels from YAGO and Freebase within a type hierarchy tree. Then, they leverage a distributed system to make the process scalable and efficient without losing precision and accuracy for annotations. Specifically, a two-stage

MapReduce system is built. (1) Multiple signatures for each cell mention and entity label are generated to support the cell-label fuzzy matching. For example, "Shar" is one of the signatures for the cell mention "Shark Night 3D". All candidate types according to the Directed Acyclic Graph are then aggregated with subordinative entities of each column. (2) The occurrence of each type is counted in order to select the top candidate type. To accelerate the computation, candidate types are aggregated into disjoint groups.

Sekhavat et al. [START_REF] Yoones | Knowledge base augmentation using tabular data[END_REF] leverage NELL [START_REF] Pratim Talukdar | Acquiring temporal constraints between relations[END_REF], a Web text corpus, and natural language patterns (PATTY [START_REF] Nakashole | PATTY: A taxonomy of relational patterns with semantic types[END_REF]) to extract relations (CPA). The target KG is YAGO, in which only 23 relations are considered as possible annotation for a pair of columns. These are also relations extracted TabEL [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF] aims to provide an extensible framework. After a pre-processing, the approach first generates candidates for each cell using YAGO and ranks them according to their string similarity with the cell and their popularity. Every candidate participates in the calculation of the annotation. In the joint inference module, an undirected probabilistic graphical model is extracted to capture entity-context (elements from the same table) co-occurrence. These co-occurrence factors are updated with the connectivity between candidates, resulting in the final CEA annotations.

Semantic

ADOG [START_REF] Oliveira | Adog-annotating data with ontologies and graphs[END_REF] considers scores combined with string similarities, frequencies of properties, and the normalized Elasticsearch score for each match from DBpedia for the CEA task. The system weights these scores with the IDF score of types. To be able to compute the Levenshtein distance and TF-IDF, ADOG uses ArangoDB5 to load DBpedia and index its components. The frequency of classes and properties is then used to obtain the CTA and CPA results.

Tabularisi [START_REF] Thawani | Entity Linking to Knowledge Graphs to Infer Column Types and Properties[END_REF] adapts TF-IDF statistics to rank the CEA candidates in a given column. A candidate entity is represented by a binary feature vector in which each feature is an indicator

(1 if present, else 0) of a property used to describe the entity (e.g. i nst anceO f ). Different features have different expressiveness. They are thus weighted using TF-IDF. Specifically, the "Term Frequency" of a feature is the number of cells whose first candidate entity has that feature, and the "Document Frequency" is the total number of occurrences of that feature in all candidate entities in all cells. The score of a candidate entity is a weighted combination of its TF-IDF score, Levenshtein similarity and word similarity. The weights are either set or learned using a two-layer neural network. The CTA is performed by a top-down brute-force search in the KG class hierarchy tree. The system also sends the most frequent relation among columns with SPARQL queries of cell mention pairs.

C 2 [START_REF] Khurana | Semantic annotation for tabular data[END_REF] aims to handle the CTA task with the help of nine datasets. C 2 classifies columns into string entity columns, number columns, and mix-type columns (e.g. emails, dates). The system relies on decision trees, which leverage the pattern of the cell mentions or numerical interval for splitting the branches, to annotate numeric columns and mix-type columns. For Chapter 3. Semantic Table Interpretation Tasks and Methods entity columns, voting from the concepts extracted from DBpedia or Wikidata for each entity cell is used. C 2 also considers the type co-occurrence within a table to adjust the annotation.

Magic [START_REF] Steenwinckel | MAGIC: Mining an Augmented Graph using INK, starting from a CSV[END_REF] for each cell in the key column, then use its neighbourhood to find the candidates for the neighbouring cells in the same row (they do not perform the lookup on the whole table due to limitations of public API usage). Misspellings might however be a challenge for Magic and it cannot detect synonyms of attributes. However, INK embeddings improve computational efficiency and provide a way to implement column wised similarity.

Alobaid et al. [START_REF] Alobaid | Balancing coverage and specificity for semantic labelling of subject columns[END_REF] handles CTA with a strong focus on the trade-off between type coverage and type specificity after generating type candidates via entities-wised queries on cell mentions.

The type coverage is built on a weighted type hierarchy index inside a column, and the type specificity is associated with a distance to the root. The authors test different balance settings between these two factors using the T2D and SemTab datasets.

Iterative Approaches

Iterative approaches are usually built on top of a lookup system, with an additional multitask disambiguation step for re-ranking candidate entities. The iterative disambiguation techniques, as described in Section 3.3, play a significant role in the improvement of the model performance.

Zwicklbauer et al. [START_REF] Zwicklbauer | Towards Disambiguating Web Tables[END_REF] pioneered iterative majority vote strategies. The idea is based on the majority voting of annotation candidates of the cells for the CTA task. The system generates these cell candidates using a search-based disambiguation method [START_REF] Zwicklbauer | Do We Need Entity-Centric Knowledge Bases for Entity Disambiguation[END_REF]. Since majority voting plays an essential role in the system, this approach is sensitive to the number of table rows. The extreme case is that the annotation precision can be less than 0.1 with single row tables.

T2K [START_REF] Ritze | Matching html tables to dbpedia[END_REF] annotates Web tables by mapping their columns to DBpedia properties, and their rows to DBpedia entities, associating the whole table with a DBpedia class. A key column's position for each table is firstly detected by a preprocessing step. T2K transforms row-toinstance and table topic tasks into CEA and CTA on the key column. The initial entity mapping is derived from a lexicographical comparison between the labels used in the table and those
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of the entities described in DBpedia with Jaccard, Levenshtein, and deviation similarities. An aggregation of these similarities is then used to choose the initial CTA annotation. The system adopts an iterative process between a CEA matching module and a CPA matching until the output is stable. The system achieves promising results on CEA and topic annotation.

TableMiner [START_REF] Zhang | Towards efficient and effective semantic table interpretation[END_REF] and the following work TableMiner+ [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF], first use a lexical expression to extract a primitive type for each column. Similarly to T2K, TableMiner sees row-to-instance and table topic as CEA and CTA on the subject column. The system identifies a subject column for each table considering evidence collected from the original webpages. During the annotation phase, the authors iteratively label records corresponding to the subject column and their attribute columns using information from the HTML context of the tables to create a richer representation of cells and columns. TableMiner+ uses partial matching during the CTA annotation. The authors claim that partial matching is efficient and that eight rows are enough for supporting the annotation. A loop is used between CEA annotation and CTA annotation until the results remain stable. This system leverages the Freebase KG and was evaluated on the IMDB and MusicBrainz specific datasets, as well as on Limaye.

LOD4ALL [START_REF] Morikawa | Semantic Table Interpretation using LOD4ALL[END_REF] is initialized by building an RDF store database and a score DB database containing candidate types with scores reflecting the level of specificity generated by Okapi BM25 [START_REF] Robertson | The probabilistic relevance framework: BM25 and beyond[END_REF]. The system uses a similar approach as [START_REF] Zwicklbauer | Towards Disambiguating Web Tables[END_REF] for the candidate generation module, which uses a combination of Elasticsearch's score and the SimString's score to select the top 100 candidates. The CTA leverages Okapi BM25 type scores and the type coverage on the table.

The CEA and CPA are calculated after CTA type filtering. The system is targeting DBpedia as ontology and has participated in the SemTab 2019 challenge. A similar pipeline is used by CSV2KG [START_REF] Steenwinckel | Csv2kg: Transforming tabular data into semantic knowledge[END_REF]. However, CSV2KG considers applying a threshold on the normalized entropy of the two highest type counts from the annotated candidates parent types list to decide the level of granularity of the CTA.

MTab [START_REF] Nguyen | MTab: Matching Tabular Data to Knowledge Graph using Probability Models[END_REF] employs four different lookup services. This approach analyses signals from server's lookup ranking, header context analyses, SpaCy type prediction 6 , Duckling type prediction 7and value similarities. Each signal is transformed into a normalized probability score. The system aggregates selected probabilities with learnable weights according to the associated task.

In addition, the authors also used EmbNum [START_REF] Nguyen | Embnum: Semantic labeling for numerical values with deep metric learning[END_REF] to help to produce annotations on numerical columns. Column types and column pair relations are computed based on entity scores. Entities, types and relations are iteratively calculated two times to disambiguate CEA, CTA, and CPA annotations with inter-tasks relatedness. In a more recent work, MTab4Wikidata [START_REF] Nguyen | Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata[END_REF][START_REF] Nguyen | SemTab 2021: Tabular Data Annotation with MTab Tool[END_REF] adapts fuzzy matching and "two cells search" to enhance the support of misspelling and ambiguities in table content. The system won the first prize in both SemTab 2019 and SemTab Chapter 3. Semantic Table Interpretation Tasks and Methods 2020 challenges.

LinkingPark [START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF] leverages the Wikidata MediaWiki API to generate cell candidate entity lists.

It also adapts a fine-grained Elasticsearch index to rank those candidates. This system firstly adopts a cascaded pipeline to generate candidate entities. Then the system disambiguates each cell through an iterative coarse-to-fine algorithm by considering the CPA annotation results. The system finally generates the CTA annotations from the disambiguated cell annotations. The authors also claim that Wikidata's type ontology is noisy which makes it difficult to assign types during CTA annotation. MantisTable [START_REF] Cremaschi | MantisTable: an Automatic Approach for the Semantic Table Interpretation[END_REF][START_REF] Cremaschi | A fully automated approach to a complete semantic table interpretation[END_REF] pipeline starts with classifying each column into three types: Named Entity column, Literal column, and Subject column. The candidate generation of this approach is based on SPARQL queries which extract all candidates containing the cell mentions. Then, the system handles the CEA using row-wise compatibility analysis and CPA using majority voting. For the CTA task, the authors list all candidate types in addition to their number of occurrences in the table (row coverage). After filtering with a threshold, the rest of the type candidates are transformed into a graph according to the ontology hierarchy. Type scores are then updated with the distance to the root. In the end, the highest score represents the most accurate and specific annotation. The recent version of MantisTable SE [START_REF] Cremaschi | Man-tisTable SE: an Efficient Approach for the Semantic Table Interpretation[END_REF] optimizes the system by updating the scoring function, accessing the LamAPI8 API (instead of using a SPARQL endpoint) and adding a final disambiguation step. MantisTable also supports rowto-instance by applying CEA on a subject column detected in preprocessing. The enhanced version of MantisTable, named s-elBat [START_REF] Cremaschi | s-elBat: a Semantic Interpretation Approach for Messy taBle-s[END_REF], proposes a revision step after generating the CEA, CTA, and CPA annotations. This system recheck the confidence of each annotation, only some mentions are considered for an additional annotation attempt to optimise computational efficiency. A similar pipeline has been adopted by Kepler-aSI [START_REF] Baazouzi | KEPLER-asi at SemTab[END_REF][START_REF] Baazouzi | Yet Another Milestone for Kepler-aSI at SemTab 2022[END_REF] where they leverage Wikidata

DAGOBAH-SL
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or DBpedia end-point.

JenTab [START_REF] Abdelmageed | JenTab: Matching Tabular Data to Knowledge Graphs[END_REF][START_REF] Abdelmageed | JenTab: A Toolkit for Semantic Table Annotations[END_REF][START_REF] Abdelmageed | JenTab Meets SemTab 2021's New Challenges[END_REF] starts from analysing the row context and column context of a table. This system wraps each computational unit into independent modules so that they can be recalled easily and repeatedly. Those modules include row information processing, disambiguation using CTA output, etc. The system leverages different module combinations for supporting CEA, CTA and CPA tasks. The evaluation shows that JenTab has an excellent performance on synthetic datasets. The authors also investigate the implications of considering multi-hop links in type hierarchy relations. The result shows that considering two hops has a small probability of improvement, while multi hops lead to a significant decrease of the accuracy. [START_REF] Li | KGCODE-Tab Results for SemTab[END_REF] first distincts table columns into subject columns and attribute columns.

KGCODE-Tab

Later, for each cell value, the system uses Bing9 to search the cell mentions and obtains the result page in HTML pages for checking and correcting the spelling of each word. The cell candidates are extracted from MediaWiki Action API 10 and DBpedia Lookup 11 . Later, the authors design different functions for computing the Cell-Entity Annotation (CEA), Column-Type Annotation (CTA), and Columns-Property Annotation (CPA) for subject columns and attribute columns. The system won the first prize in accuracy in the SemTab 2022 challenge.

Feature Engineering Based Approaches

This family of methods extracts statistical and lexical features (such as distribution of numerical values, occurrence of cell mentions, textual similarity, etc.) from the table rows and columns and uses them with machine learning models. Typical algorithms used for STI include SVM [START_REF] Mulwad | Using linked data to interpret tables[END_REF], Random Forest [START_REF] Pham Minh | Semantic Labeling: A Domain-Independent Approach[END_REF] and K-Nearest Neighbor [START_REF] Neumaier | Multilevel semantic labelling of numerical values[END_REF] for example. A labelled dataset is required for the training. The amount and the quality of training data, and consequently the quality of input features, have a significant impact on the model performance, as discussed in [START_REF] Pham Minh | Semantic Labeling: A Domain-Independent Approach[END_REF]. In addition, we observe that ML methods target the CTA task more than other tasks, as columns can provide more statistical features than other annotation targets.

Limaye et al. [START_REF] Limaye | Annotating and searching web tables using entities, types and relationships[END_REF] introduce one of the first works on STI. The approach computes the TF-IDF cosine similarity between a cell mention and an entity label and the compatibility between the cell type and the column type to execute the CEA task. CTA task depends on TF-IDF cosine similarity between column header and each entity's type label. The CPA annotation depends on the compatibility between the relation and column pairs. All these features are weighted through a machine learning framework.

Mulwad et al. [START_REF] Mulwad | Using linked data to interpret tables[END_REF] leverage majority voting on the type of cells candidates for the CTA annota-Chapter 3. Semantic Table Interpretation Tasks and Methods tion. The PageRank algorithm weights each cell's type from the ontology during the CTA. For CEA annotation, the system collects entity features from entity PageRank, string similarities, entity index score and entity page length to generate a vector representation of each entity.

An SVM classifier is then built upon these features to make predictions. This system supports both DBpedia and Wikitology.

SemanticTyper [START_REF] Krishnamurthy Ramnandan | Assigning semantic labels to data sources[END_REF] processes each column of the table independently for CTA. DSL [START_REF] Pham Minh | Semantic Labeling: A Domain-Independent Approach[END_REF] build their approach for CTA on datasets from four different domains: city, weather, museum, and soccer. Labels are partially manually added to these datasets. DSL leverages features including string similarity and number distribution between chosen labelled datasets and the rest of the data during the prediction. The difference with SemanticTyper is that the distribution is also available for string columns in this approach. The system learns the weights between these features through two supervised learning algorithms: logistic regression and random forest. The evaluation shows that logistic regression achieves better results. The authors claim that the incorrect predictions come from the top decomposition point of the decision tree.

Neumaier et al. [START_REF] Neumaier | Multilevel semantic labelling of numerical values[END_REF] focus on CTA labelling for numerical columns. Their work is not limited to predicting a unique label but rather expands the scope of labelling to its surrounding information. For example, instead of labelling "height", this system will label it as "the height of an athlete playing basketball in the NBA". To do so, the authors constructed a background KG based on DBpedia. This background knowledge base is extracted as a hierarchical structure divided into multiple multi-level groups to provide context. Each node in the hierarchy represents a type or a predicate and provides statistical information (maximum, minimum, or distribution) of the relative number set as features. The authors use these features and KNN to make predictions. The authors also explore the system's performance at different hierarchy levels in the background KG built on DBpedia and Open Data. They pointed out that DBpedia has still limitations in terms of coverage and freshness compared with other open
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datasets. For example, the Austrian Open Data Portal has tables generated by weather stations every 15 minutes. However, DBpedia typically has numeric values only for "current" or "latest".

Another limitation of this work is that the size of numerical columns and the popularity of numerical KG properties may influence the accuracy. Hence, NUMER [START_REF] Kacprzak | Making sense of numerical datasemantic labelling of web tables[END_REF] proposes to link subject cells with KG entities first, and then only extract the linked properties for enabling the column-wise number distribution study.

Deep Learning Based Approaches

Deep Learning has achieved many successes in various domains thanks to the availability of huge amounts of data and powerful computing resources. It has attracted more and more attention from the STI community over the past few years. We identify two main directions for the application of deep learning in the STI domain: KG modelling (Section 3.5.3) and table modelling (Section 3.5.3).

KG Representation Learning

This direction focuses on the entity level in which models learn embedding representations for entities of a table cell instead of the cell itself. Specifically, KG embedding techniques (e.g.

TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF], TransH [START_REF] Wang | Knowledge graph embedding by translating on hyperplanes[END_REF]) are used to encode the entities and their relationships into a vector space. STI models rely on the intuition that the entities in the same column should exhibit semantic similarities. Hence, they should be close to each other in the embedding space w.r.t. cosine similarity distance [START_REF] Efthymiou | Matching web tables with knowledge base entities: from entity lookups to entity embeddings[END_REF] or Euclidean distance [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF].

Vasilis et al. [START_REF] Efthymiou | Matching web tables with knowledge base entities: from entity lookups to entity embeddings[END_REF] provide different methods. One of the proposed systems assumes that the correct CEA candidates in a column should be semantically close. From this assumption, a weighted correlation subgraph in which each node represents a CEA candidate is built. The edges are weighted by the cosine similarity between two related nodes. The best candidates are the ones whose accumulated weights over all incoming and outcoming edges are the highest. In addition, a hybrid system that combines the correlation subgraph method and an ontology matching system is also introduced and achieves a significant improvement in the end.

Biswas et al. [START_REF] Biswas | Wikipedia Infobox Type Prediction Using Embeddings[END_REF] focus on topic annotation for Wikipedia infoboxes by leveraging metadata from the Wikipedia page. The annotation ignores the infobox content since the infobox information is often incomplete, incorrect and missing. Wikipedia page section headers and abstract are extracted as the source of information and are featured by Word2Vec embeddings for each word. Note that named entities present in the abstract are also transformed into RDF2Vec [START_REF] Ristoski | Rdf2vec: Rdf graph embeddings for data mining[END_REF] [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF] hypothesizes that all entities in the same column of the table should be close to each other in the embedding vector space. Consequently, the correct candidates are assumed to belong to a few clusters. The K-means clustering is performed using TransE's pre-trained embedding to cluster the candidate entities. The good clusters with high coverage are retained by a weighted voting strategy. Both CEA and CTA are selected from the chosen clusters. Experimental results prove that this approach has successfully improved the accuracy of the CTA task. However, the system is also misled by incorrect candidates in the selected clusters during the CEA task.

DAGOBAH-Embedding

Table Representation Learning

This direction deals directly with the textual content of the table as well as intra-table and inter-table interactions. The contextualized representation of basic elements of the table (i.e. cell, column) is learned by using deep neural networks [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF][START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF] or language models like BERT [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF][START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF][START_REF] Zhou | Tabular Data Concept Type Detection Using Star-Transformers[END_REF].

Sherlock [START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF] learns to perform the CTA task using 1,588 features extracted from a single column of a given relational table. The features are divided into four categories: character-wise statistics (e.g. frequency of the character "c"), column statistics (e.g. mean, std of numerical values), word embedding, and paragraph embedding. Except for column statistics features, other features are compressed into a fixed-size embedding using a subnetwork. A two-fully connected layer network is trained on both the embedding features and column statistics features to predict a column type annotation among 75 types inherited from the T2Dv2 dataset.

The evaluation shows good results on various column types, including Dates and Industry.

However, it is less sensitive to the purely numerical values or values appearing in multiple classes. Facing the potential missing information in single-column annotation, Sato [START_REF] Zhang | Sato: Contextual Semantic Type Detection in Tables[END_REF] extends Sherlock by considering the whole table context. The table topic embeddings with LDA features modelled by an additional subnetwork and the column-pairs-wise dependency modelled by a CRF layer are also studied.

ColNet [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF] predicts the column type (CTA) using only intra-column contextual information.

Specifically, all the cell mentions of a column are split and concatenated into a single word sequence. This word sequence is converted into an embedding vector using word embeddings models like word2vec. Guo et al. [START_REF] Guo | Web table column type detection using deep learning and probability graph model[END_REF] where the authors also introduce the use of BiGRU-Attention rather than CNN and support multi-column annotation using linear-CRF (linear-chain conditional random field) on the entire network table and an undirected graph model that directly models the conditional probability.

Zhang et al. [START_REF] Zhang | Novel entity discovery from web tables[END_REF] address the The model employs a Transformer-based encoder [START_REF] Vaswani | Attention is all you need[END_REF] to capture the information from table elements. To this goal, the input table is first serialized into a sequence of caption tokens, title tokens, header tokens, and row-by-row cells. A cell consists of its content (mention) and a candidate entity representing it in a KG. The sequence of tokens is then converted into embeddings using word embeddings for textual tokens and KG embeddings for entity tokens.

To reduce the redundancy in the fully-connected attention learning and better draw the intercolumn and intra-column, inter-row and intra-row, column-row interaction, the conventional attention layer is masked by a so-called visibility matrix which allows only a portion of Zhou et al. [START_REF] Zhou | Tabular Data Concept Type Detection Using Star-Transformers[END_REF] focus on the column type detection (CTA) task. This work leverages the Star-Transformer model [START_REF] Guo | Star-transformer[END_REF] to learn a vector representation for each column taking the inter-column interactions into account. The input embedding of a column is initialized as a concatenation of semantic features which are word embeddings averaged over cell contents and statistical features which are adopted from Sato's [START_REF] Zhang | Sato: Contextual Semantic Type Detection in Tables[END_REF] Sherlock model. In the context of limited training tabular data and weak order-dependence of table columns, the Star-Transformer is preferable to the Transformer as it reduces the computational complexity by replacing the fully-connected attention with a sparser one.

Evaluation

Traditionally, STI systems are evaluated using the information retrieval metrics: accuracy, recall, and F1 scores [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF][START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF][START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF][START_REF] Pham Minh | Semantic Labeling: A Domain-Independent Approach[END_REF][START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF]. Among the various tasks, CTA is a special one since a given type and its parents can be all correct when determining the category of an entity or of a group of entities. For example, Paris can be equally typed as a capital or more generally as a city, which are not in conflict with each other. Considering only one of these types, such as capital, as the only correct answer would make it difficult to assess systems that can only predict the parent class. The SemTab 2019 challenge has defined the AH (Equation (3.1))

and AP (Equation (3.2)) scores for this purpose, where PerfectA indicates that the predictions made by an STI system exactly match the type declared in the ground truth and OkayA refers to annotations corresponding to one of the parent types. This evaluation method is also adopted by [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF]. The SemTab Challenge evaluates systems using the AIcrowd evaluator 12 and STILTool [START_REF] Cremaschi | STILTool: a semantic table interpretation evaluation tool[END_REF]. for the CEA, CTA and CPA tasks on the datasets commonly used by the community. We observe a considerable diversity in the evaluation process across studies. This diversity is reflected in: i) the original version of the Limaye dataset had some errors that were corrected by the TabEL team. However, these corrections are not used by STI systems; ii) the TabEL and C 2 teams only report on accuracy scores, thus lacking an evaluation of the recall to compare with other systems; iii) ColNet has further enhanced the T2D dataset while other approaches do not consider these enhancements; iv) [START_REF] Khurana | Semantic annotation for tabular data[END_REF] provides aggregated results, and it is hard to get the performance details per dataset, and v) the performance of a system with the same dataset in different articles can largely vary. For example, the difference in accuracy between ColNet's T2D dataset between [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF] and [START_REF] Khurana | Semantic annotation for tabular data[END_REF] is about 60%, probably because [START_REF] Khurana | Semantic annotation for tabular data[END_REF] has not used all of ColNet's settings. This diversity makes it difficult to compare the performance of different STI systems and stresses the importance of challenges such as SemTab in the STI community.

AH = #PerfectA + 0.5 × #OkayA -#WrongA #TargetColumns (3.1) AP = #PerfectA #AnnotatedColumns (3.
AF 1 = 2 × AP × AR AP + AR (3.5) 56 
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We adopted the following strategy to produce Table 3.3: i) we only consider datasets that have been used for evaluation more than three times. In addition, the datasets used solely for training purposes (e.g. TabEL [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF] and Viznet [START_REF] Hu | Viznet: Towards a large-scale visualization learning and benchmarking repository[END_REF]) have not been considered; ii) if the performance of a system on the same dataset has been reported multiple times, we only consider the accuracy from the original paper; iii) we prioritize comparing F1 scores except for CTAs in SemTab 2019, which take into account the AP score. If F1 scores are not provided, we use precision for the comparison; iv) for the SemTab challenge, we used the final results presented in the papers published by the participants rather than the results achieved during the time frame of the competition.

Based on our classification of STI approaches along three paradigms, we observe that heuristic systems appear in the top three systems for all datasets and all tasks. In particular, none of the feature engineering systems or deep learning systems reached the top three in the entity matching tasks (CEA and Row-to-instance). We believe that one of the main reason is that unlike CTA or CPA, which can extract features from columns or column pairs (all column cells can provide features such as entity embeddings, string length, or distribution), features that can be used to annotate individual cells or single rows are relatively rare. As a result, it limits the performance of such systems. Furthermore, the performance of a learning-based classifier is related to the number of candidates used. Annotating an entity means that a classifier should be trained to serve millions of candidates, which makes the task more difficult. From this point of view, rare feature engineering systems or deep learning systems position themselves for the tasks of CEA and row-to-instance. Ideal STI systems are therefore likely to be hybrid systems combining the best of heuristic-based and deep learning based methods.

We further group the selected datasets according to their provenance. These datasets are either synthetic tables automatically generated (e.g. SemTab datasets) or tables collected
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from the Web (e.g. Limaye and T2D). We observe that heuristic-based systems that follow an iterative approach such as MTab, DAGOBAH, LinkingPark and JenTab, achieve very strong performances on large synthetic datasets such as SemTab. These systems generally use the entire target KG in order to get a very good coverage. Leveraging inter-tasks process for iterative disambiguation further optimizes the performance of the system. As these datasets are synthetically generated from a KG, string matching based approaches have also more advantages since this matching step is generally very reliable and will not face challenges with KG incompleteness issues. Systems that rely on statistical learning such as ColNet or Guo et al. [START_REF] Guo | Web table column type detection using deep learning and probability graph model[END_REF], on the other hand, perform well on smaller real-world datasets, like Limaye and T2D. It may be because smaller datasets provide a limited set of candidate entities/types/relationships.

Short candidate lists make training more accessible, more efficient and more accurate. In addition, heuristic approaches are highly based on the closed world assumption, where KG incompleteness is always a big issue. Deep learning and feature engineering are more robust on this point since they are not highly dependent on the completeness of the KG. That may be one of the reasons explaining that learning-based methods such as ColNet or Guo et al. [START_REF] Guo | Web table column type detection using deep learning and probability graph model[END_REF] have been able to become one of the top three systems for real-world datasets like Limaye and T2D.

Discussion

We have grouped the many STI approaches proposed so far into three families or paradigms.

In this section, we further analyse these methods alongside different dimensions: the pros and cons of matching methods versus learning methods, the trend towards deep learning methods, the importance of table elements, the trade-off between efficiency and accuracy, and the influence of the target KG structure for improving the accuracy (but at the risk of adding noise).

Matching vs Learning

We observe that STI approaches rely on matching (a KG entity with a cell mention) and learning. Matching is key in heuristic-based approaches while feature engineering and deep learning based methods rely on representation learning of the input table. These can also be combined: the matching strategy is employed by learning-based models as a post-processing step where the annotations learned from neural networks are refined using mention-matching entities (DAGOBAH-Embedding [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF] and ColNet [START_REF] Chen | ColNet: Embedding the Semantics of Web Tables for Column Type Prediction[END_REF] are two examples).

From our observation, matching highly relies on the compatibility between the target 

Rise of Deep Learning

After 2017, deep learning techniques emerged in the STI field and have attracted research focus.

Compared to feature engineering approaches, complex neuronal networks allow the system to process tabular features more efficiently as the feature engineering step is sometimes difficult and time-consuming to maintain. For example, Sherlock [START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF] is based on 1,588 column-wised features. To mitigate this issue, an end-to-end learning framework is preferable and is more and more employed, for example, KG modelling with KG embedding techniques (e.g. Vasilis et al. [START_REF] Efthymiou | Matching web tables with knowledge base entities: from entity lookups to entity embeddings[END_REF]) and table modelling with BERT-like models (e.g. TCN [START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF]). However, we observe that table modelling approaches using language models always target class annotation (CTA)

or relation annotation (CPA) tasks. The entity annotation task (CEA) still lacks dedicated work and has a lot of room for improvement. At the time of conducting this survey, TURL may be the only one that handles the CEA task. Moreover, many systems [START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF][START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF][START_REF] Zhou | Tabular Data Concept Type Detection Using Star-Transformers[END_REF] try to simplify the table representation to a collection of unordered lists for columns or rows, ignoring their index and other structural information. TURL [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] proposes a visibility matrix, as an attention matrix, to describe the connections between table elements (e.g. cells in the same columns, cells in the same rows, etc.). We argue that this design is only applicable to relational tables whereas the model is trained on a dataset containing all table types. This limitation still requires more effort to cover more complex scenarios.

Coverage of Table Elements

Annotation models use different table elements that are analysed in depth in Section 3.3.

We observe that more and more table elements are considered in recent approaches. This phenomenon is characteristic of learning-based models. [START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF][START_REF] Pham Minh | Semantic Labeling: A Domain-Independent Approach[END_REF][START_REF] Neumaier | Multilevel semantic labelling of numerical values[END_REF][START_REF] Krishnamurthy Ramnandan | Assigning semantic labels to data sources[END_REF] primarily concentrate on extracting features from a single column. With the rise of the deep learning and attention
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mechanism, [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF][START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF][START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF][START_REF] Zhang | Sato: Contextual Semantic Type Detection in Tables[END_REF] start to pay more attention to other complex table elements.

A typical example is TURL [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF], in which the authors consider all of the six table elements discussed in Section 3.3. However, we can not compare the superiority of an approach only by the number of elements it uses. The search for the right number of elements taken into account to increase the accuracy without being subject to noise remains an open challenge.

Effectiveness vs Efficiency

Annotation systems usually deal with a trade-off between effectiveness and efficiency. TableM-iner+ [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF] introduces partial matching in which the CTA calculation relies on only eight table rows in order to improve the performance. This strategy indeed makes the systems faster but degrades the accuracy. For example, considering the annotation of a column containing ["Joe

Biden", "Donald Trump", "Barack Obama", "Abe Shinzo"], applying partial matching on the first three column cells will output "American presidents" as the type of this column, while the correct answer is more likely to be "politicians" since "Abe Shinzo" is not an American president but a Japanese prime minister. Systems whose annotation pipeline includes a candidate generation step will heavily depend on the entity lookup service used. However, public lookup endpoints impose several limitations on their usage and it may take more time to obtain a candidate set with a desirable coverage of the target table. Furthermore, some systems (e.g. [START_REF] Nguyen | MTab: Matching Tabular Data to Knowledge Graph using Probability Models[END_REF]) are not suitable for real-time applications due to the heavy computational requirements of their intrinsic algorithm. In addition, in scenarios where there is not enough data for training, learning-based models take advantage of transfer learning. While it helps to save time and resources, the system accuracy may be degraded if the fine-tuning is not carefully performed.

Public KGs vs Custom KGs

Many approaches to annotate tables rely on encyclopedic KGs such as Wikidata and DBpedia.

Those KGs provide rich and high-quality information helping the annotation become more effective. However, more information also leads to more ambiguity, and KGs are usually incomplete. Knowledge base shifting is also a challenge for approaches based on public KGs.

We observe that some approaches [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF][START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF][START_REF] Pham Minh | Semantic Labeling: A Domain-Independent Approach[END_REF][START_REF] Krishnamurthy Ramnandan | Assigning semantic labels to data sources[END_REF][START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF][START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF] only treat the target KG as a dictionary of concepts but not a knowledge network, which means the relationships and hierarchy of concepts have not been used. The extreme case is that some attention-based models [START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF] directly abandon KGs and use only concept names. Knowing how to properly inject a KG structure into a statistical model is an open challenge. Some works build their custom KG to increase the coverage. For example, [START_REF] Venetis | Recovering semantics of tables on the web[END_REF] built an isA database using Web documents which contains three times more types than Freebase.

Chapter 4

Heuristic-Based Semantic Table

Interpretation

The problem of semantic interpretation of tabular data is a growing topic in the scientific community spanning multiple research communities. This is also a primary concern in industry since there is a growing desire to extract dormant knowledge from the internal repositories to feed enterprise knowledge graphs. For interpreting the content of a table, the critical ingredient is to capture some form of context. The context can be immediate neighboring cells and the table structure (rows, columns, headers) or some external sources such as encyclopedic or common sense knowledge. The heuristics-based approach tends to rely solely on the context that one can find in the table. The heuristic class gathers diverse approaches, often considered baseline STI approaches. The core of each system is algorithmically straightforward and does not require much effort in feature engineering or learning, as introduced in Section 3.5.1.

In this chapter, we introduce our efforts in developing a heuristic-based STI system, named DAGOBAH SL. It is a mature system for performing STI that has participated in the yearly SemTab challenge series since 2020. DAGOBAH SL produces fine-grained annotations for cells (CEA), columns (CTA), and relationships between columns (CPA) given different reference knowledge graphs. The system is available via an API for developers as well as via a userfriendly Web interface that offers functionalities for visualizing annotations, and enriching tabular data from the knowledge graph (e.g. adding columns and filling in missing values).

We first present our lookup mechanism for generating the candidate cell entities in Section 4.1.

In Section 4.2, we describe the first prototype of our heuristic annotation system, named DAGOBAH SL, and evaluate it with the participation of SemTab 2020. We further introduce 

DAGOBAH Lookup

It is not reasonable to run the entire annotation algorithm for all entities from the target knowledge graph. Supposing a system that annotates a cell with an entity from Wikidata, if this system calculates the compatibility score with the table context for all the millions of entities in Wikidata, the execution time will be very high. Hence, the annotation process should be launched within a limited range of candidates. Selecting the candidates for annotation is referred to as the "Candidate Selection" steps in Section 3.3.

In this section, we aim to introduce the cell entity lookup methods that have been adopted by DAGOBAH systems. The DAGOBAH entity lookup service, named DAGOBAH Lookup, provides a fuzzy search engine given a KG alias list for each entity. DAGOBAH Lookup aims to generate a limited number of candidate entities taking a cell as input. We first introduce the lookup method in Section 4.1.1, the deployment of the lookup system in Section 4.1.2, and then report the performance in Section 4.1.3.

Lookup Mechanism

Given a target cell1 e m contained in a table, we aim at retrieving a set of relevant candidates E c from a KG, i.e. entities whose labels or aliases are similar to the text of the cell. We assume that for each target cell e m , there is not more than one matching entity, w.r.t, we did not consider the case of multi-value tables. We employ two strategies to evaluate the similarity between a cell and the candidate entities: an exact match using a regex similarity, and a threshold-based match using the Levenstein ratio. We take the maximum value between all comparisons made across entity labels and aliases.

Regex similarity Candidate labels or aliases should include all the words of e m in any order. This is particularly useful to match the full name of a person since the first and last names could appear in any order, e.g. "Elon Musk" versus "Musk Elon". A full edit ratio on these two multiple tokens strings would yield a relatively low score of 0.44.

Levenshtein ratio

This ratio is computed between the candidate labels and aliases, and the text of the cell. We empirically fix the threshold to 0.65 to ensure that a cell has at least one candidate and we then retain the top 50 candidates for each cell.

DAGOBAH Lookup

Lookup Platform

We aim to handle the cases where the table corpora are significantly large with thousands of tables and cells to annotate, such as tables used in the context of the SemTab series. The pre-processing (introduced in Section 2.4) step helps to identify table columns eligible for entity lookup based on their primitive types 2 . Given a cell e m in such a column, the entity lookup step retrieves a set of relevant candidate entities E c (e m ) from a target KG. The lookup service of DAGOBAH currently supports two KGs for which indexes have been built: Wikidata and DBpedia.

Wikidata entities. The lookup service collects items and properties with their labels and aliases in all languages. To increase lookup coverage, aliases of each entity are enriched with the values of 11 additional properties such as P2561 (name), P1705 (native label), or P742 (pseudonym).

DBpedia entities. The lookup service collects English resources with their labels in all languages. To increase lookup coverage, labels are enriched with the values of 25 alias properties such as abbreviation, birthName, or originalTitle. In addition, labels and aliases of all redirected entities are also included.

The public Wikidata/DBpedia API is not an ideal lookup service due to restrictions on the number of concurrent connections, result set sizes, and query time. To avoid these limitations, we built our own lookup service using the Wikidata Toolkit3 , DBpedia dump 4 , and a Sparkbased big data platform. Specifically, from the initial raw Wikidata dump, we use the Wikidata Toolkit to filter out the unnecessary triples or entities such as Form, Lexeme, MediaInfo, Sense and Statement, so that we only retain entities that are items identified by QID and property identified by PID, associated with their labels and aliases in all languages. For DBpedia, we download the dump and index all triples from the documents. We then store the filtered dump in a Hadoop Distributed File System (HDFS) and perform the entity lookup via the Spark framework. We continuously update the dump for concluding the new entities and facts. Table 4.1 presents the Wikidata dump used in this service during the experiment for the evaluation with the participation of SemTab 2020.

Evaluation

In order to evaluate the performance of the system, we participated to the SemTab 2020 challenge. 

DAGOBAH-SL Scoring System

In this section, we introduce the DAGOBAH SL (Semantic Lookup) system for STI. DAGOBAH SL provides an end-to-end process that annotates relational tables with constituents of a KG such as Wikidata. Similar to DAGOBAH Lookup, we assume that for each target cell e m , there is
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Sc(e m , e c ) is the product of a context factor Sc cont ext (N t abl e (e m ), N g r aph (e c )) and a literal factor Sc si m (e m , e c ). Sc si m (e m , e c ) provides the highest Levenshtein ratio between the cell and the label set of the candidate. This label set is composed of the labels and aliases of the entity (e.g. "France", "La France" for Q142). x ∈ N + allows defining the importance of the textual similarity acting as an amplification factor. We empirically observed that 5 was an appropriate amplification factor for x for this challenge.

The context score is calculated by Equation (4.2):

Sc cont ext (N t abl e (e m ), N g r aph (e c )) =    N s if N s ≥ 0.1 0.0001 otherwise (4.2)
N t abl e (e m ) is the set of neighboring cells in the same row as e m . N g r aph (e c ) is the set of neighboring elements of e c in the KG 6 . Neighboring literals are directly added to N g r aph (e c ) whereas, for neighboring entities, their labels and aliases are added. N s is a set which contains the best neighborhood matching score ns i for each neighboring cell n i ∈ N t abl e (e m ) and all neighboring literals or nodes in N g r aph (e c ). For each neighboring cell n i , the neighborhood matching score ns i ∈ N s is generated as follow:

• If n i is a string, then ns i is the highest Levenshtein similarity value.

• If n i is a number, then ns i is given by Equation (4.3):

ns i = max n g ∈N g r aph (e c ) 1 - |n i -n g | |n i |+|n g | (4.3)
• If n i is a date-time value, and if a matching exists between the cell and a neighboring element, then we set ns i to 1, otherwise ns i = 0.

• If the previous steps gives a ns i value lower than 0.85, then the system resets ns i to 0.0001.

For example, the confidence score Sc(e m , e c ) of the candidate e c "Q1574185" with the cell e m "University College Cork" is equal to 1 since "Q1574185" has this exact label and all neighboring cells share information with neighboring elements of "Q1574185".

Columns-Property Annotation (CPA)

The CPA task involves finding a semantic relation between a pair of ordered columns {head, tail}.

In other words, we try to figure out the most suitable relation among the ones connecting a
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candidate entity in E head for the head column to a candidate entity in E t ai l for the tail column.

We employ a simple majority voting strategy which relies on the occurrence and accumulated confidence score of the relation r that we define as:

• Occurrence(r ) = #(e head , e t ai l ),

• AccumulatedConfidenceScore(r ) = Sc(e head ) * Sc(e t ai l )

such that e head ∈ E head , e t ai l ∈ E t ai l , and 〈e head , r, e t ai l 〉 ∈ K G.

In contrast to the relation's head which is always an entity, its tail can be an entity, a textual Cork" (resp. Q245247-"King's College London") is located (P131) in Q36647-"Cork" (resp.

Q202059-"London Borough of Lambert"). Cork is also the headquarter (P159) of University College Cork. Therefore, the occurrence count of P131 is 2, and 1 for P159. We conclude that P131 is the CPA for the column pair {Col0, Col2}.

Cell-Entity Annotation (CEA)

The CEA task aims to annotate the table cells with entities from the KG. Taking the CPA into account. In DAGOBAH-SL 2020, for each candidate entity in a given row, we update its score computed in the pre-scoring step (Section 4. CPA relation can (resp. cannot) connect this candidate to the counterpart in the remaining column. The output entity is the one with the highest score.

For example, for the cell "Cork" in Fig. 4.1, two of the candidate entities are Q36647 ("Cork city in Munster, Ireland") and Q162475 ("Cork County, Ireland"). They both have the same score output from the pre-scoring step (Section 4.2.1). Given we have determined the relation between "Col 0" and "Col 2" to be P131 and that the candidate Q36647 is linked to the cell "University College Cork" via this relation, we increase the score of Q36647 by 1. Q36647 then becomes the candidate with the highest score, and is chosen as the CEA output for the "Cork" cell.

In the edition 2021, we also consider the result from CTA (Section 4.2.4). Indeed, the prescoring of a candidate entity e c only considers its local information, i.e., the row it belongs to.

Column type output by CTA and column pair relations output by CPA allow to consider table ' ). Note that the occurrence of CTA/CPA is divided by 2 to prioritize the pre-scoring P Sc(e c , e m ).

Column-Type Annotation (CTA)

After getting the output of CEA, a majority voting strategy is adapted to identify the most precise type for target columns. This process is illustrated in Fig. 4.2 for the first column ("Col 0") of the example table depicted in Fig. 4.1.

The CTA annotation begins with a type enrichment step. Let T j be the set of candidate types for the cell j from a target column. T j is represented by a hierarchical tree with 3 levels of types. We consider the types related by the P31 predicate ("instance of ") to the predicted CEA entity as level 0. Their parent types linked through the P279 predicate ("subclass of ") are assigned to level 1 and their ancestors to level 2. The system gives priority to the direct types. The rank of a candidate type is another useful factor for the CTA decision. According to The second step consists in a preliminary selection of types. We compute the frequency, accumulated level, and accumulated rank for all candidate types of a target column, i.e. all types appearing in at least one T j of the column. We then select the types with the highest occurrence, the lowest accumulated level, and the highest accumulated rank at the same time.

DAGOBAH-SL Scoring System

In case of ties, we give priority to the occurrence, then to the accumulated level, and finally to the accumulated rank. In the example of Fig. 4.2, Q2385804 and Q38723 are chosen at this step.

The final step consists in computing the distance between the chosen candidate types and the entity Thing (Q35120) in order to select the most specific type. We first consider the mutual inheritance relationship between the remaining candidate types. When such a relationship exists, we select the most specific type. If no inheritance relationship can be found, we compute the shortest distance to Thing. If there is still a tie among some candidate types, the system randomly selects one of them as CTA output.

Multi-Hop Relations and Soft Context Scoring

in performance, compared to the leader MTab. Challenge organizers should either consider distributing the reference KG to use alongside the tables to annotate, or consider tables with evolving annotations along the time, anticipating that new items or even properties may be added in the KG.

Regarding the SemTab 2020 challenge itself, two levers can be used to increase its usefulness to the scientific community. One of the issues to consider when addressing the problem of annotating tabular datasets is the dynamic nature of the data. In SemTab Challenge, tabular data sources are frozen and made available at the beginning of each round, thus addressing the issue of the evolution of tabular data over time. However, the knowledge graphs used for annotation (DBpedia for SemTab 2019 and Wikidata for SemTab 2020) also evolve, affecting the result produced by the annotation algorithms. In order to allow an unbiased evaluation of the approaches, it seems important that a dump of the knowledge graph to be used be provided by the organizers at the beginning of the challenge to ensure the same evaluation between systems.

The other main limitation of Rounds 1, 2, and 3 of SemTab 2020 resides in the nature of the data to annotate. Indeed, tables are synthetically generated from the Wikidata knowledge graph. Consequently, the proposed tables are relatively clean and lookup operations can easily match cells in the tables to entities in Wikidata even if noising techniques are introduced. In real-world applications, tabular data can contain complex values (e.g., cells containing lists of entities using various separators, alternative entity names), artifacts (e.g., data encoding problems, formatting errors, input errors, missing values), and more complex layouts (e.g., merged rows/columns, multi-line headers, horizontal/vertical/matrix tables) making table manipulation and annotation much more complicated. In order to produce more robust, generic, and intelligent annotation systems, it seems important that evaluation corpora take these challenges into account in the future. An example can be found in the Tough Tables corpus from Round 4 which contains tables manually scraped from the Web. We observe a remarkable degradation in performance of CTA and CEA tasks given the complexity and ambiguity of this corpus.

Multi-Hop Relations and Soft Context Scoring

In this section, we present the scoring improvements based on DAGOBAH SL system introduced in Section 4. The latter returns the highest Levenshtein-based matching ratio between the cell and the label and aliases of the candidate. Aliases are penalized with a ratio weighted by 0.9 since we consider labels to be more important. The amplification factor γ ∈ N + determines the importance of the textual similarity. We empirically observed that 2 was an appropriate amplification factor for the SemTab challenge.

The improvements mainly concern the context factor defined as follows: 

Sc cont ext (N g r aph (e c ), N t abl e (e m )) = i w i × sn i i w i

Exploiting the Knowledge Graph Context with Multi-Hop Relations

The neighborhood matching score sn i in Equation ( 4 and G e i , the paths pointing to v in the two sub-graphs are concatenated. In our running example, we find the following predicate path: Belfort -→ e i ), and is defined as follows:

τ(e i ) = τ(e c p 1 -→ v p 2 -→ e i ) = 1 1 + l og (g (v)) (4.7)
where g (v) is the generality of the intermediate node v, i.e., the number of its incoming and outcoming edges in the KG. Note that direct neighbors (or 1-hop paths) always get the highest truth value 1.0.

Soft Scoring

In Equation (4.6), neighborhood matching scores sn i are weighted to compute the ultimate score of an entity. Indeed, each neighboring cell n i ∈ N t abl e (e m ) contributes differently to the annotation of the target cell e m with a weight w i defined in Equation (4.8): 

w i = (4.8a) se i d (col i ) + 1 (4.8b) × (4.8c) cnt (col i ) × (4.8d ) τ(e i ) . ( 4 

Evaluation

To evaluate one-hop and two-hop graph contexts as well as the soft context scoring described in this section, we consider these four experimental settings:

Setting 1 The context score of an entity is computed using only its one-hop neighboring graph. Weights w i do not follow Equation (4.8) but are set to 1.0 for entities and 0.15 for literals.

Setting 2

The context score of an entity is computed using its two-hop neighboring graph.

Weights w i do not follow Equation (4.8) but are set to 1.0 for 1-hop neighbors, 0.25 for 2-hop neighbors, and 0.15 for literals.

Setting 3

The context score of an entity is computed using its two-hop neighboring graph.

Weights w i follow Equation (4.8). This setting allows to assess if richer contexts and stricter scoring lead to better annotation.

Setting 4 This setting restricts Setting 3 to 1-hop and unidirectional 2-hop predicate paths in graph contexts. This allows to evaluate the impact of bidirectional paths which are often less informative or noisy but may be helpful in some cases.

We provide an experimental evaluation of the four aforementioned settings in DAGOBAH achieves a high performance on synthetic datasets (Round 2) whereas highquality manually-curated datasets with complex table patterns are more difficult to annotate (Rounds 1 and 3). In HardTable, no gain is brought by using a richer graph context or a more flexible scoring. This can be explained since tables are almost fully represented in the target KG and columns can be disambiguated from their contents. On the contrary, BioTable provides remarkable ambiguities with content overlaps between columns that hinder their disambiguation (e.g., column "Gene" can be mistaken with column "Protein"). Hence, annotation seems to benefit from richer graph contexts. In BioDivTable, Setting 4 obtains the lowest scores whereas Setting 1 is comparable to Setting 3. We suppose that unidirectional 2-hop predicate paths may be noisy or not correctly considered, leading to the lowest score of Setting 4.

In general, Settings 2, 3, and 4 are more precise for CEA than Setting 1. Hence, 2-hop graph contexts bring useful information. The better performance of Settings 3 and 4 compared with Setting 2 shows the effectiveness of soft context scoring. We notice that Setting 3 achieves similar performances to Setting 4 which can be interpreted as follows. First, unidirectional paths (i.e., 
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Note that for BioDivTab and GitTables datasets, we adapted the DAGOBAH algorithms presented in this paper. Indeed, for BioDivTab, primitive types output by the pre-processing step were used to discriminate object and literal columns. A column contains literal values if its primitive type is numerical, date-time, unit, or miscellaneous. Otherwise, it is considered as an object column containing entity mentions that are passed to the lookup module. For GitTables, primitives types are manually mapped to Schema.org and DBpedia Ontology classes.

However, it is obvious that considering multi-hop relationships in the calculation of confidence weights will greatly increase the computational cost, which is the problem we are currently facing. In the future, we expect to use a blocking strategy to optimise the performance. One possible solution is that when computing a neighbor with distance 2, we do not calculate its soft scoring at first but its string distance instead. Only when its string similarity is higher than a certain threshold, we consider this neighbor in our soft-scoring calculation. At the same time, the scoring computation of each neighboring node is independent. Hence the use of parallelized distributed computing systems is one of the future directions to increase the speed of our operation.

Industrialisation

In this section, we briefly introduce our efforts on the industrialisation of the DAGOBAH project in Orange. Two tools built with the Orange teams are presented, which include a RESTful API of table annotation named DAGOBAH API (Section 4.4.1) and a Web based user interface named DAGOBAH UI (Section 4.4.2).

DAGOBAH-API

In this Section, we introduce DAGOBAH API. This RESTful API is deployed on the Orange Developer portal 9 . It provides pre-processing and annotation services for tables, as well as lookup services to disambiguate mentions and retrieve corresponding Wikidata or DBpedia entities. We also report the performance of current API service with stress tests in Section 4.4.1.

This API is accessible to all company's R&D teams and business units upon request. We plan on extending the API access to external users in the future.

In DAGOBAH API, we provide 3 services:

• Entity Lookup API: a lookup service aims to find relevant entity candidates of an input label from a reference Knowledge Graph.

• Table Preprocessing API: a preprocessing system for tabular data. It involves reading

Industrialisation

tables from files and extracting metadata from tables (orientation, header, key column detection, and column primitive typing recognition).

• Table Annotation API: a semantic annotation system/algorithm for tabular data. Its goal is to automatically understand the table by matching its elements with concepts, and relations of Knowledge Graphs, such as Wikidata, DBpedia or enterprise KG. The CEA and CTA tasks are activated for the entity column identified by Preprocessing module.

In the back-end of the API server, we decompose the features of the API into different services, including Spacy-based Named-entity recognition (NER), annotation, lookup, and preprocessing, etc. Each service is made of docker images deployed in a 64-bit Linux machine with 8 CPUs and 64Gb of RAM.

Stress test of DAGOBAH API

We drive a stress test for the current API service. We first evaluate the loading capacity of the API server. One table describing housing prices 10 with 20 million rows and an extended table 11 from Tough Table [START_REF] Cutrona | Tough tables: Carefully evaluating entity linking for tabular data[END_REF] are selected for this test. We launch a grid search by increasing 1,000 rows per run by querying large tables to the API with different row numbers until it returns an error. For the housing price table, we find that the limitation for Lookup is 34,000 rows and the annotation limitation is 22,000 rows. For the Tough table dataset, the lookup limitation is 30,000 rows and the annotation limitation is 23,000 rows. The returned errors are always out-of-memory issues.

For simulating multiple users, we also launched the same query from different docker endpoints with one selected table ("Y85GTOSS.csv" from Tough Table ) with 4,000 rows. We observed a high probability of receiving a timeout stop once four users using the API at the same time 12 .

In DAGOBAH API, we provide a hyper-parameter named K. This hyper-parameter affects the number of candidate entities generated by the lookup services. For a better understanding of the influence of K on the final precision and running time, we launched a grid search on Limaye dataset with a value of K from 50 to 400. We report the running time and the precision in Figure 4.5. We observe that, in general, increasing K brings a negative effect on both precision of the annotation and the total running time. However, when K reaches 200, we surprisingly see the precision and running time are un-normally and largely optimised. After multiple double-checks. We suspect that this may be due to the Lookup system that we are using switching from a method to another when K is around 200, or from a bug in the system.

10 https://www.kaggle.com/datasets/hm-land-registry/uk-housing-prices-paid?resource=download 11 Table 3C3INQLM.csv 

DAGOBAH-UI

In this Section, we introduce DAGOBAH UI, a user-friendly Web interface that enables to visualize, validate, or manipulate results of STI methods such as the DAGOBAH API. Through an interactive demonstration on real world datasets, we illustrate how such a UI can ease the adoption and mass usage of STI techniques by end-users. DAGOBAH UI is a Web user interface that makes use of the RESTful API exposing the DAGOBAH SL system [START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF] and the Wikidata KG [START_REF] Vrandečić | Wikidata: a free collaborative knowledge base[END_REF]. The DAGOBAH-SL system annotates tabular data with elements of KGs such as Wikidata or DBpedia. This system was empirically evaluated during the three editions of the SemTab challenge [START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF] and has shown competitive performance with a 1st prize in the Accuracy track of the 2021 edition. Tabular data can be uploaded from the local file system or from the most commonly used benchmarks such as the SemTab datasets [START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF] and T2Dv2 [START_REF] Lehmberg | A large public corpus of web tables containing time and context metadata[END_REF].

Several tools can be related to DAGOBAH UI. For example, MantisTable is a Web application allowing to import and manage tables as well as trigger a specific semantic interpretation method [START_REF] Cremaschi | MantisTable: an Automatic Approach for the Semantic Table Interpretation[END_REF]. MTab is a Web interface that allows to upload a table and display the resulting semantic annotations provided by the MTab tool [START_REF] Nguyen | SemTab 2021: Tabular Data Annotation with MTab Tool[END_REF]. However, DAGOBAH-UI provides additional features such as the ability to enrich a given table with information coming from the KG. OpenRefine13 is a powerful tool for transforming and extending tabular data with external data. Its reconciliation functionalities are close to the CEA task in the STI process.

However, while an end-user has to manually instruct OpenRefine how to annotate specific columns via ad-hoc rules, the semantic interpretation process is fully automatic in DAGOBAH UI.

The preprocessing toolbox of DAGOBAH UI allows table cleaning (encoding problems, cell misalignment, etc.) as well as extracting information about the topology of the table (orientation, header, etc.) which are crucial for the annotation process. The results of this process on Table 77694908_0_6083291340991074532.json (from T2D dataset [START_REF] Ritze | Matching HTML Tables to DBpedia[END_REF]) are presented in The user can then launch the semantic annotation process. The results of this process on Table 77694908_0_6083291340991074532.csv (from SemTab 2019 dataset [START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF]) are presented in Figure 4.7.a. This consists of carrying out three tasks. CEA aims at associating a cell of the table with an entity of the KG. In DAGOBAH UI, the CEA annotation results are presented together with the original mentions. For example, "Star Wars" has been annotated with the Wikidata entity Q177738 (Star Wars: Episode IV -A New Hope). CTA aims to map each column with an entity type. In the user interface, these annotations are presented in the upper part of the table (in the headers). In the example, the system has annotated the "Title" column with the entity Q11424 (film). CPA seeks to associate pairs of table columns with a property of the KG. The relationships found are symbolised by links at the top of the table. When the user clicks on a link, the associated Wikidata property is displayed. In the example, the relationship P577 (publication date) has been identified between the columns "Title" and "Year". DAGOBAH-UI also allows users to enable downstream tasks following an STI annotation, such as filling missing cells and adding an additional column to the table, which is also known as data imputation and schema augmentation tasks. We will further introduce our effort in Chapter 6.

Industrialisation

Our future work about DAGOBAH-UI includes the development of new features around KG enrichment from tables. As discussed in this section, tables can benefit from KGs through cell completion and table expansion with new columns. Conversely, tables are also a great source of dormant knowledge that can be leveraged to enrich open KGs. To this aim, DAGOBAH UI will enable to export of the annotations as RDF triples to complement KGs.

Discussion

Discussion

In this chapter, we introduce the system DAGOBAH SL. DAGOBAH SL is a heuristic table annotation system that aims to handle CEA, CTA, and CPA tasks using Wikidata, DBpedia, and Schemas.org as the background knowledge graph. We further explain recent score function optimisations of DAGOBAH SL with new mechanism including the Multi-hop Relation scoring and Soft Context scoring. DAGOBAH SL has been evaluated through SemTab challenge series,

and it has achieved state-of-the-art performance. The performance of the optimisations is reported with the SemTab 2022 dataset comparing to DAGOBAH SL base system. We also present the applied API for DAGOBAH SL with its performance, and a user interface named DAGOBAH UI.

We argue that DAGOBAH SL focuses only on the overlapped information between the table context and the given KG. Still, DAGOBAH SL somehow ignores the common themes of the target table during the disambiguation. Specifically, if multiple book titles appear in the same table, they are more likely to have something in common, such as coming from the same series or having the same author. However, DAGOBAH SL can not reveal such a topic from the table. This issue is related to the very nature of the data. Hence, the high performance of DAGOBAH SL for tables that are artificially and synthetically generated may not reflect what is actually found in the wild. More specially, tables often serve a specific purpose for the creator, and the attributes are selected accordingly. For example, one might want to use a table for presenting all books within the topic of Star Wars, but not all entities from the type of literary work (Q7725634). At the same time, the creator of this table might also want to focus on the publication dates without other attributes of books (e.g., the authors) in the table to emphasize that the Star Wars series are continuously updating 14 . A heuristic approach that leverages the information overlapping between the table and KG may not take advantage of the limited context of tables. Also, tables can be grouped into the collection with a common theme, but at the moment, DAGOBAH SL annotates tables very independently as if they were no notion of a collection. This context may typically not be made explicit in corpora but could be detected using topic modeling algorithms adapted to tables. This limitation of DAGOBAH SL points out the direction of optimising STI disambiguation.

Chapter 5

Embeddings-Based Semantic Table

Interpretation

For interpreting the content of a table, the key ingredient is to capture some form of context.

The context can be immediate neighboring cells and the table structure as what has been discussed in Chapter 4, but also the relatedness from the components of the tables. The heuristics-based approaches from the previous chapter tend to rely solely on the context found in the table. In contrast, the embeddings-based approaches will leverage external sources, such as language models, including graph embeddings techniques, on tables or encyclopedic KGs that will provide additional information about components of the table (e.g. cells, title, columns). Also, leveraging the graph embeddings could be beneficial for digging more hidden themes of the target table or the semantic similarities between elements from the chosen table.

In this chapter, we present our experiments about using graph embeddings techniques for optimizing given STI tasks. We first introduce the concept of graph embeddings in Section 5.1.

We then illustrate how to use clustering methods for STI in Section 5.2. Next, a CEA disambiguation plug-in tool named Radar Station is presented in Section 5.3. We finally disuss the results in Section 5.4.

Graph Embeddings

KG embeddings methods embed the elements (e.g., entities and relations) from a given KG into a given definite vector space and trained for achieving specific tasks (e.g. link prediction). They are algorithms often used as a pre-processing step of a graph with the goal of turning a graph into a computationally digestible format. KG embeddings facilitated various downstream tasks such as link prediction [START_REF] Wang | A survey on knowledge graph embeddings for link prediction[END_REF], recommendation [START_REF] Lisena | Combining music specific embeddings for computing artist similarity[END_REF], and clustering [START_REF] Tandon | Community detection in networks using graph embeddings[END_REF] as they transformed the symbolic knowledge presentation into mathematical vector representations.

Given the complex structure and large scale of some particular KGs (e.g. Wikidata, DBpedia),
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effectively representing its structure and the underlying semantics is a crucial task [START_REF] Wang | Knowledge graph embedding: A survey of approaches and applications[END_REF]. This research direction is also known as knowledge representation learning [START_REF] Ji | A survey on knowledge graphs: Representation, acquisition, and applications[END_REF]. Seen the attention that has been attracted by the KG embeddings, various methods have been proposed, in following we list following representative models:

• TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] is a popular model that considers both entities and relations from the same vector space. The training intends to adjust the three vectors from a given triple (h, r, t )

to the synchronized state until h+r ≈ t . TransE provides an efficient method at scale and has been implemented in various downstream tasks. However, it also faces challenges from symmetry/one-to-many/many-to-one/many-to-many relations that TransE can not handle.

• RotatE [START_REF] Sun | Rotate: Knowledge graph embedding by relational rotation in complex space[END_REF] considers the relation as a rotational degree between heads and tails in the complex plane. It introduces a loss function based on h •r ≈ t for simulating the relation translation where • denotes the elementwise Hadamard production. The knowledge representation is shown in a complex space that allows the model to capture more underlining semantics such as symmetry relations.

• RESCAL [START_REF] Nickel | A three-way model for collective learning on multi-relational data[END_REF][START_REF] Nickel | Factorizing yago: scalable machine learning for linked data[END_REF] is based on a bilinear scoring function h T M r t . RESCAL aims to leverage a so-called three-way rank-r factorization on top of KG relation slice tensor. The shortcoming of RESCAL is that it requires many model parameters; hence, it is hard to apply on large KGs and quickly overfits as the rank grows.

• DistMult [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF] is based on a bilinear scoring function h T d i ag (r )t , where it is similar with RESCAL that M r from RESCAL is restricted to diagonal matrices. However, because h T d i ag (r )t = t T d i ag (r )h, this model considers all relations as symmetric relations.

• ComplEx [START_REF] Trouillon | Complex embeddings for simple link prediction[END_REF] also can be seen as a constrained variant of RESCAL [START_REF] Jenatton | A latent factor model for highly multi-relational data[END_REF] and extension of Dismult that leverages fewer relation dimensions inside a complex space. The ComplEx score is defined as Re(h T d i ag (r )t ) and this function is not asymmetric anymore.

Table 5.1 illustrates the inference abilities of our chosen models [START_REF] Sun | Rotate: Knowledge graph embedding by relational rotation in complex space[END_REF]. In this table, the header "symmetry" indicates that the model could present the rule that if "(Bob, married, Mary)", then "(Mary, married, Bob)". "Antisymmetry" relation presents the rule that if "(Bob, is_the_father, Sam)", then the prediction "(Sam, is_the_father, Bob)" is false. "Inverse" depicts inverse relations, e.g. hypernym and hyponym. Some relations decomposed into multiple relations, and it is known as "composition", e.g. my mother's husband is my father.

These representative models could be classified into translational distance models and semantic matching models following the survey of [START_REF] Wang | Knowledge graph embedding: A survey of approaches and applications[END_REF]. Where translational distance models study the geometric distance between entities inside the vector space such as TransE or RotatE.

Using Clustering for Semantic Table Interpretation

Table 5.1: The pattern modeling and inference abilities of presented models Model Score Function Symmetry Anti-symmetry Inversion Composition

TransE h + r ≈ t ✓ RotatE h • r ≈ t ✓ ✓ ✓ ✓ RESCAL h T M r t ✓ Dismult h T d i ag (r )t ✓ ComplEx Re(h T d i ag (r )t ) ✓ ✓ ✓
Semantic matching models measure the similarity between entities and relations during the training with help of a neuron network, RESCAL, DisyMult, ComplEx are Semantic matching methods.

Using Clustering for Semantic Table Interpretation

This section presents DAGOBAH Embedding, a system that uses KG embeddings for disambiguating the annotations. It takes advantage of embeddings (sets of graph entities vectors)

pre-trained and open-sourced. For our first experiment presented in this section, we chose to use the OpenKE [START_REF] Han | Openke: An open toolkit for knowledge embedding[END_REF] pre-trained TransE embeddings from the University of Tsingua since it is one of the richest and easiest to use at the time. The intuition behind this approach is that entities in the same column should be closed in the embedding space as they share semantic characteristics, and thus could form coherent clusters. We build our system based on the lookup introduced in Section 4.1.

System Description

The intuition of this approach is that the correct entities from the same table column should be close to each other in the embedding space. Hence, they should be in the same cluster after we use the clustering algorithm. Once we could successfully select the right clusters, we could largely reduce the noise during the interpretation and optimize the running time performance.

From this intuition, the first step consists in determining a group of candidates for each column of the input table by performing look-up operations (as described in Section 4.1)

to extract the candidate entities and associated embeddings. The output of this phase is a set of vectors in the vector space representing the candidates potentially associated with the elements of our column (the columns are processed one after the other). The idea is then to launch a clustering algorithm in order to extract the probable candidates by making the hypothesis that the entities of the same column are semantically close. 

S c (i ) = i t em con f (i ) * i t em si m (i ) x (5.1)
where i t em con f (i ) is the co-occurrence score given by Equation 5.2 and x ∈ N + allows to give more importance to the textual similarity.

i t em con f = F E + 0.5 * F H (5.2)
where F E and F H are defined in Equation 5. [START_REF] Abdelmageed | JenTab Meets SemTab 2021's New Challenges[END_REF].

F E = e + 1 N C , F H = h + 1 N C (5.3)
where e = number of entities in other columns matching with Wikidata properties values of the candidate; h = number of headers in other columns matching with Wikidata properties labels of the candidate; N C = number of table columns. The normalized confidence score for a given cluster n is then computed using:

S k (n) = i ∈n S c (i ) l en(n) (5.4)
where l en(n) is the number of elements within cluster n.

From all candidates in the selected clusters, a counting for every existing type is computed, each type inheriting the confidence score of its corresponding candidate (step 5 in Figure 5.1).

All types with a score higher than a threshold (M ax(scor e) * 0.75) is selected. Thus, the output type is the one having the highest specificity within the DBpedia hierarchy (using subclasses count and distance to owl : T hi ng ). Finally, the candidates of each cell resulting from the lookup operations are examined according to the selected type (step 6 in Figure 5.1). The following score is computed for each lookup entity i belonging to cluster n:

S e (i ) = R t * (0.2 * S k (n) + 0.5 * S c (i )) (5.5) 
where R t = 1.5 if the entity belongs to the type T produced in CTA, 1.2 if it belongs to a parent of T and else 1. From a given row candidate, the output entity is the one with the highest score.

This system is described in Figure 5.1.

Determining the Number of Clusters and Choosing Clustering Algorithm

Choosing a suitable clustering algorithm and a suitable cluster number is always a crucial task.

In our experiment, three algorithms are selected for further sample tests, which include :

• K-means [START_REF] Lloyd | Least squares quantization in PCM[END_REF] is a vector quantization method from signal processing commonly used for cluster analysis in data mining. K-means classification partitions n observations into k groups in which each observation belongs to the group with the smallest average distance, serving as the prototype for the group.

• BIRCH [START_REF] Zhang | BIRCH: an efficient data clustering method for very large databases[END_REF] algorithm uses a tree structure to facilitate rapid clustering, a numerical structure similar to the balanced B+ tree, generally referred to as the Clustering Feature

Tree. Each node of the tree is composed of several Clustering Features. The BIRCH algorithm is more suitable for situations where the amount of data is large and the Chapter 5. Embeddings-Based Semantic Table Interpretation number of K categories is also large. This algorithm has the advantage of being very efficient. Moreover, only one iteration of the data is needed to calculate the whole hierarchy.

• Spectral Clustering [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF] is a widely used clustering algorithm. Compared to the traditional K-Means algorithm, spectral clustering adapts more easily to different data distributions, and the clustering accuracy is also excellent. It is a more efficient algorithm than K-means because less computation is required and its implementation is quite simple. Spectral clustering is an algorithm derived from graph theory. The main idea is to treat all data as points in space, which can be connected by edges. The weights of the edges depending on the distance between the points. Counterintuitively, the closer the points are, the higher the weight, and vice versa. The algorithm then looks for cuts in the graph in order to generate sub-graphs in which the weights between nodes are as high as possible and the weights between sub-graphs are as low as possible. The output clusters of the algorithm are the clusters thus generated. we launched a grid-search procedure on 15 sampled tables. The idea of this process is to run the three clustering algorithms with a number of clusters fixed at a value between 0 and five times p on the sampled table from T2D dataset, where p is an index equal to the number of look-ups divided by twice the number of rows of the table to be annotated. We aim to discover a suitable function to determine the K value.

The visualisation of results of the grid-search on two sampled tables of the corpus are given where it equals the number of the total candidates divided by the number of the row from the target column. In the graph, we have represented the p-index (the number of lookup candidates divided by the number of lines of the target table) with a blue vertical bar. Following this sampled research, we empirically found that the K-Means algorithm obtained better results since it is more stable, and its peak point is highly correlated with the p-index than the two other algorithms in our chosen sampled tables. On the whole corpus of evaluation, we noticed that this index gave, in the majority of the cases, the most adapted number of clusters.

Using Clustering for Semantic

Evaluation

We first compare the result of the clustering algorithm with a baseline which only depends on majority voting after a lookup research without any further operations on the SemTab 2019 challenge Round 1, we show the result of this evaluation in Table 5.2. To show the contribution of the embedding approach, an evaluation was carried out on the corpus. CEA performances are slightly poorer because of basic lookup strategies used (compared to the fully-optimised lookups used in the baseline) and the absence of expected candidates in the selected clusters. But the embedding approach proves to be highly proficient to determine the type of a column which is the core of more reliable annotations. In addition, the results are particularly interesting in cases where string mentions in the original table are incomplete. In table 54719588_0_8417197176086756912 for instance, one column references movie directors only by their family names (in that case, our baseline performance was poor).

Doing K-means clustering on a subset of this table (four rows) performs pretty well even with very few data, as illustrated in Figure 5.4 (2 clusters shown among 12). Indeed, the green cluster gives the expected candidates, even if disambiguation still has to be done for some cells (using S e ).

We also compare this method with DAGOBAH-SL and MTab, two state-of-the-art heuristic STI methods, during the first round of the SemTab 2020 as illustrated in Table 5.3. We notice that DAGOBAH SL and MTab perform much better than DAGOBAH Embedding. The drop in the scores is arguably derived from the fact that DAGOBAH Embedding retains only a limited
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Table 5.3: Results of the Embeddings system in Rounds 1 of the SemTab 2020 challenge. "F1" stands for F1-score, "P" stands for Precision, and "C" stands for Coverage. The coverage is the ratio between the number of annotations proposed by the system and the number of targets to annotate. We also report on the score of MTab as this is the challenge winner. 
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Cell-entity annotation [START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF] (CEA) is one of the fundamental tasks for STI. This task is often performed by retrieving and scoring possible entity candidates (from a target KG) to disambiguate a cell value. Next, the result is used as input for performing Column-Type Annotation (CTA) and Columns-Property Annotation (CPA) [START_REF] Abdelmageed | JenTab: Matching Tabular Data to Knowledge Graphs[END_REF][START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF][START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF][START_REF] Nguyen | Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata[END_REF]. However, associating a mention contained in a cell with an entity in a KG is a complex task requiring the resolution of several issues including handling properly the syntactic heterogeneity of mentions (e.g. the Wikidata entity "France" (Q142) may be referenced in a table by mentions like "The Republic of France"

or "FRA"), the polysemy of terms (e.g. "Apple" can refer to a fruit or a company), and the diversity and complexity of table formats and layouts (e.g. matrices, relational table with hidden subjects, etc.).

Numerous approaches have been proposed for handling these issues. Among these methods, heuristic-based iterative approaches [START_REF] Abdelmageed | JenTab: Matching Tabular Data to Knowledge Graphs[END_REF][START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF][START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF][START_REF] Nguyen | Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata[END_REF] aim to leverage the column types and the inter-column relationships aggregated by voting strategies for disambiguating cell annotations.

They have demonstrated to be the methods reaching the best performance in the SemTab challenge series [START_REF] Cutrona | Results of SemTab[END_REF][START_REF] Jiménez-Ruiz | SemTab 2019: Resources to Benchmark Tabular Data to Knowledge Graph Matching Systems[END_REF][START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF]. However, one drawback of these strategies is related to error propagation. Often, such systems propagate the entity annotation error in the target column.

Furthermore, they also often ignore other column-wised semantic similarities: for example, books appearing in the same column may share the same topic.

To address these limitations, we propose a new hybrid disambiguation system called Radar Station 1 that takes advantage of both an iterative disambiguation pipeline and semantic disambiguation using graph embedding similarities. Radar Station takes as input CEA annotations and associated confidence scores that quantify the level of certainty associated with each Chapter 5. Embeddings-Based Semantic Table Interpretation result. Our approach uses an ambiguity detection module that detects cases where the cell annotation is potentially wrong due to error propagation. In the following steps, the use of graph embeddings allows Radar Station to potentially fix the wrong annotations by taking into account semantic proximities (e.g. geometric proximity of entities representing books) that are not directly encoded and captured in the sole content of table columns. We evaluate Radar Station using several graph embedding models belonging to different families on Web tables as well as on synthetic datasets, and we provide a thorough analysis of the performance among the graph embeddings models and the datasets.

Motivation

STI covers five main tasks as introduced in Section 3.2. In these tasks, Radar Station aims to improve the CEA disambiguation. Thus, this section reviews the current state-of-the-art methods for the CEA task on relational tables. We classify them into three groups: heuristicbased approaches, iterative disambiguation, and graph embeddings approaches, and we discuss their strengths and limitations [START_REF] Liu | From Tabular Data to Knowledge Graphs: A Survey of Semantic Table Interpretation Tasks and Methods[END_REF].

Heuristic-Based Approaches

Starting from a basic lookup service that generates target candidates for a given cell mention, heuristic-based approaches leverage diverse methods interpreting the table context to filter unreliable candidates and to produce a final annotation. Based on heuristic candidate generation and string similarities measures, [START_REF] Limaye | Annotating and searching web tables using entities, types and relationships[END_REF] is one of the first works on STI. It constructs a graph-based algorithm that exploits learnable features from column context, row context, and relation context to construct a confidence function for each candidate for annotating a cell.

TabEL [START_REF] Sekhar Bhagavatula | Tabel: Entity linking in web tables[END_REF] introduces a hybrid system that leverages probabilities to build a graphical model for representing the interactions between cells, columns, and headers. ADOG [START_REF] Oliveira | Adog-annotating data with ontologies and graphs[END_REF] generates features from string similarities, frequencies of properties, and the normalized Elasticsearch score. Then, these features are calibrated with the candidate's TF-IDF score according to entities' types in the same column. Our approach takes as input a list of CEA candidate annotations together with their scores (generated by such an existing CEA annotation tool), and detects the presence of potential ambiguities in order to select the right candidate from this closed set.

Candidate Disambiguation

Adding a disambiguation process on top of a heuristic-based approach can significantly improve the performance of an annotation system. Iterative processing is one of the most commonly-used methods for improving pre-annotated results. The iteration loop aims to
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collect the results of several annotation tasks, mutually improving the compatibility between annotations (e.g. taking into account the type of a column produced by the CTA to choose the right CEA candidates), and increasing the scores of candidates that would not have been chosen in the first place. For example, [START_REF] Zwicklbauer | Towards Disambiguating Web Tables[END_REF] uses a loop that exploits the CTA annotation of a given column to select candidate cells that feature that type and then redefines a new CTA annotation for the column by exploiting the entities selected. Regarding the CEA disambiguation, we identified two classes of iterative systems. First, T2K [START_REF] Ritze | Matching html tables to dbpedia[END_REF] and TableMiner+ [START_REF] Zhang | Effective and efficient semantic table interpretation using tableminer+[END_REF] introduce a loop in the pipeline that ends when the result becomes stable. The other iterative systems [START_REF] Abdelmageed | JenTab: Matching Tabular Data to Knowledge Graphs[END_REF][START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF][START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF][START_REF] Nguyen | Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata[END_REF] provide a predefined pipeline with sequential modules (e.g. the pipeline of LinkingPark [START_REF] Chen | Linkingpark: An integrated approach for semantic table interpretation[END_REF] is composed of a CEA pre-scoring, then a CPA step, and finally the use of the CPA annotations to generate the final CEA annotations).

Radar Station uses the output scores of an existing STI system. It currently supports the DAGOBAH-SL [START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF][START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF], MTab [START_REF] Nguyen | Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata[END_REF] and BBW [START_REF] Shigapov | bbw: Matching CSV to Wikidata via Meta-lookup[END_REF] systems which have all competed during the SemTab Challenge series [START_REF] Cutrona | Results of SemTab[END_REF][START_REF] Jiménez-Ruiz | Results of SemTab 2020[END_REF] and are selected as baseline systems during the evaluation of Radar Station. These systems use string similarity in the scoring system and leverage the 

Usage of Graph Embeddings

Methods applying graph embeddings for STI focus on entity-level in which the models learn embedding representations for entities of a table cell instead of the cell itself. Specifically, KG embedding techniques are used to encode the entities and their relationships into a vector space. STI approaches using deep learning models are based on the intuition that the entities in the same column should exhibit semantic similarities. Hence, they should be close to each other in the embedding space w.r.t. a cosine similarity distance [START_REF] Efthymiou | Matching web tables with knowledge base entities: from entity lookups to entity embeddings[END_REF] or a Euclidean distance [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF].

Chapter 5. Embeddings-Based Semantic Table Interpretation Vasilis et al. [START_REF] Efthymiou | Matching web tables with knowledge base entities: from entity lookups to entity embeddings[END_REF] provide different methods. One of them assumes that the correct CEA candidates in a column should be semantically close. From this assumption, a weighted correlation subgraph in which a node represents a CEA candidate is constructed. The edges are weighted by the cosine similarity between two related nodes. The best candidates are the ones whose accumulated weights over all incoming and outcoming edges are the highest.

In addition, a hybrid system combining a correlation subgraph method and an ontology matching system, is also introduced, which considerably improves the final result. Yasamin et al. [START_REF] Eslahi | Annotating web tables through knowledge bases: A context-based approach[END_REF] further enhance this approach by taking the header of the table into account for ontology matching and giving more weights to unique cell candidates when calculating embeddings Page-Rank. Our previous work, DAGOBAH-Embeddings [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF] (Illustrated in Section 5.2), follows the same assumption that all entities in the same column of the table should be close to each other in the embeddings space. Consequently, the correct candidates are assumed to belong to a few clusters. They apply a K-means clustering using TransE pre-trained KG embeddings to cluster the entity candidates. The good clusters with high coverage are selected by a weighted voting strategy. Experimental results prove that they have successfully improved the accuracy of the CTA task. However, the system is also misled by incorrect candidates during the CEA task when the correct candidates are not in selected clusters. TURL [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] leverages the BERT model for STI and table augmentation with the help of a visibility matrix for capturing table structure. Although TURL introduces entity embeddings as one of the inputs to its model to assign information to entities, the entity embeddings do not embed properties about the entities in the graph, such as the fact that neighbouring nodes are missing in them.

The contributions of our approach are as follows. First, we use embeddings only during the disambiguation step to benefit from both the iterative disambiguation and the embeddings disambiguation. Second, we provide a new scoring mechanism that takes into account the scores generated by CEA approaches and the distance between the entities in the embedding space.

System Description

Radar Station is not a standalone annotation system. It is built on top of a given annotation system and resolves ambiguities detected in the annotated results. We choose to use DAGOBAH-SL [START_REF] Sarthou-Camy | DAGOBAH UI: A New Hope For Semantic Table Interpretation[END_REF] as the base annotation system to illustrate the process of Radar Station.

We motivate the need for Radar Station observing that pure string-based matching and iterative scoring methods are limited in situations where: i) the target KG is incomplete; ii) the matching mechanism failed; iii) the CTA or CPA disambiguation can not provide enough information in very ambiguous cases (e.g. candidates belonging to the same type or no property identified). These situations also cover cases with limited row numbers that can annotate a unique column type (resp. unique columns relationship) by majority voting. For example,
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voting for a common type given only the two cell mentions "Apple" and "Blackberry" may lead to randomly select the company or the fruit. We do not aim at improving the performance of the system by relying on clever string-matching methods. Instead, we expect to find more semantic similarities using the full column as context with the help of the scores generated from the row context. In this example, one could identify that the correct entity is "Q7833036" since the topic of this table is the science fiction series "The New Jedi Order" from Star Wars. This relationship is missing in the table cells, but it still could be beneficial for the disambiguation steps. Radar Station aims to leverage graph embeddings to dig similarities alongside the entity types and common relationships inside the tables. The architecture of Radar Station is illustrated in Figure 5.6 and the modules are described in the following sections. Table 5.4 summarizes the notation used in the Radar Station approach.

Input Data Structure

Before running Radar Station, the information required by the system includes the index of the cell in the table (row number and column number), and information about all candidates 

Context Entities Selection

The row context has already been interpreted by DAGOBAH-SL and is used to compute the confidence score of each candidate. The first step of Radar Station is to build a column-wised context to support the disambiguation process. We collect entities with the highest confidence score from all cells of a given column C as the context entities set. In case of ambiguity, that is, multiple candidates (n candidates) sharing the same highest score, we collect all of them, and the score is divided by n. Other candidates are not taken into account to maximize the trust for "sure" annotation from DAGOBAH-SL (e.g., only one candidate with the highest score) and to avoid noise inside this column. For example, for the row 15 in Figure 5.5, both "Q7833036"

and "Q21161161" are collected into the context set with a score "0.008" (0.016/2), and for row 16, only "Q5265233" is collected with a score "0.016". The collected context entities set for the column C are noted as E c .

Radar Station

Ambiguity Detection

Radar Station detects ambiguous cells that are worthy to be disambiguated given a tolerance t . Intuitively, t enables to relax the constraints one wants to have in looking up candidates potentially matching a cell mention. Once a candidate's score is larger than t * M ax(scor es),

it is selected as one of the "top candidates". For example, if we set t = 1, "Q7833036" and "Q21161161" for row 15 of Figure 5.5 will be among the top candidates. If we relax the tolerance t to 0.7, "Q1536329" will also be considered as a top candidate. We denote "Ambiguities" as Am for the case that the size of the top candidates is greater than or equal to two. Radar

Station is activated in this case and it will annotate the cell with one of the candidates from the ambiguities. When there is no ambiguity inside a cell, we directly output the single top candidate as the annotation. if there is an ambiguity in A m c i then 5:
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E c ← filter entities from the same cell in E c 6:

for each ambiguous entity am i in A m c i do 7:

find the K nearest candidates of the ambiguous entity E k in the KD-tree by ignoring candidates from the same cell. the annotation is the ambiguous entity with the highest g (am i )

16:

end if 17: end for

In our approach, we leverage KG embeddings to uncover the entities' co-relationship from a table to improve the disambiguation step. The principle of the Radar Station approach is inspired by radar station signal emissions. The receiving signal power of a signal station Chapter 5. Embeddings-Based Semantic Table Interpretation depends on both the initial power strength from the sending station and the distance between the sender and the receiver. That is, the receiving signal will be stronger when the initial power from the sender is stronger, and this receiving signal strength will decrease as the distance increases. In our approach, we treat each context entity from the same column as a signal sender, and receivers are the ambiguities to be resolved. One ambiguous candidate captures signals from multiple neighbouring context entities (i.e. senders) and the sum of the receiving signals is the confidence score of the candidate. The disambiguation pseudo-code is presented in Algorithm 1.

We consider only the K nearest context entities to computer the final score of an annotation in order to avoid noise and to optimize the performance. The system first constructs a K-Dimensional tree (KD tree) of all context entities for each column, and then calls this KD tree to drop the K nearest context entities during the prediction (lines 1-2). We set that the maximum K value is 20 (line 2). We set the initial sender power strength with the confidence score generated by DAGOBAH-SL. One ambiguous candidate am i detects K received signals from the surrounding senders e j ∈ E c (or context candidates) to generate the confidence score f (am i ) with the Function 5.6 (line [START_REF] Abdelmageed | JenTab Meets SemTab 2021's New Challenges[END_REF][START_REF] Abdelmageed | BiodivTab: A Tabular Benchmark based on Biodiversity Research Data[END_REF][START_REF] Ahmadov | Towards a hybrid imputation approach using web tables[END_REF][START_REF] Alobaid | Balancing coverage and specificity for semantic labelling of subject columns[END_REF][START_REF] Azzi | AMALGAM: making tabular dataset explicit with knowledge graph[END_REF][START_REF] Baazouzi | KEPLER-asi at SemTab[END_REF][START_REF] Baazouzi | Yet Another Milestone for Kepler-aSI at SemTab 2022[END_REF][START_REF] Balakrishnan | Applying webtables in practice[END_REF][START_REF] Banko | The tradeoffs between open and traditional relation extraction[END_REF][START_REF] Belleau | Bio2RDF: towards a mashup to build bioinformatics knowledge systems[END_REF], where Sc(e j ) denotes DAGOBAH-SL scores of the sender e j and d i st ance(am i , e j ) denotes the Euclidean distance between the sender e j and the receiver am i .

In detail, for a target am i , we collect its top-K nearest neighbors from E c , where each context entity c j belongs to E c . We have each context entity's scores Sc(c j ) and the distance with the target candidate d i st ance(am i , c j ). We then apply the Function 5.6. Like this, we could generate a confidence score for each of those two target candidates. We divide each of their context entities' confidence score by the distance between those two candidates and then calculate the sum to compare.

f (am i ) = 1 K j <K ( Sc(e j ) d i st ance(am i , e j ) ) (5.6) 
The final result g (am i ) for an ambiguous entity is the combination of Radar Station score f (am i ) and the initial DAGOBAH-SL confidence score Sc(am i ) introduced in Function 5.7

(line 13).

g

(am i ) = α f (am i ) + Sc(am i ) (5.7)
Our initial experiments showed that the average distance in the embedding space between the target ambiguity and its top K nodes is approximately 1. According to the Function 5.6, we know that f (am i ) and S c (am i ) are roughly in the same order of magnitude. Since we expect to disambiguate candidates with a tolerance between 0.7 and 1, we need the value of the discrepancy caused by f (am i ) to be roughly within S c (am i ) * 0.3. We originally set α to 0.3
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and we tested the following α values (0,3, 0.2, 0.1, 0.05, and 0.01). We empirically observed that 0.05 gives the best results.

Implementation

In our experiments, we consider Wikidata as the target KG. We first rely on the DAGOBAH-SL system to lookup for candidates for each entity cell. We only consider the top 100 candidates according to the string similarity on entity label and aliases. We evaluate the result on four different gold standard datasets: T2D [START_REF] Ritze | Matching html tables to dbpedia[END_REF], Limaye [START_REF] Limaye | Annotating and searching web tables using entities, types and relationships[END_REF], Tough Tables version 2 [START_REF] Cutrona | Tough tables: Carefully evaluating entity linking for tabular data[END_REF] and ShortTables.

Knowledge Graph Embeddings

Pre-trained KG embeddings can provide additional information for [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] and RotatE [START_REF] Sun | Rotate: Knowledge graph embedding by relational rotation in complex space[END_REF]) and two semantic matching models (DistMult [START_REF] Yang | Embedding entities and relations for learning and inference in knowledge bases[END_REF] and ComplEx [START_REF] Trouillon | Complex embeddings for simple link prediction[END_REF]) following the classification of [START_REF] Wang | Knowledge graph embedding: A survey of approaches and applications[END_REF].

Translational distance models study the geometric distance between entities inside the vector space. TransE [START_REF] Bordes | Translating embeddings for modeling multi-relational data[END_REF] considers both entities and relations from the same vector space. for generating DistMult embeddings and iterations between complex_diagonal and dot operators for ComplEx embeddings.

Datasets

We evaluate Radar Station on three popular gold standards: T2D3 , Limaye 4 , and Tough Tables version 2 5 . The original T2D and Limaye datasets contain some annotation errors that we have corrected. As T2D and Limaye are gold standards based on DBpedia and Radar Station is a Wikidata-based annotation system, we translate the DBPedia entities given in the gold standards into Wikidata entities through the "Wikidata item" hyperlink from Wikipedia pages of DBpedia entities. We manually corrected this translation when it was failing. Since the number of entities in Wikidata is larger than the number of entities in DBpedia [START_REF] Ringler | One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & co[END_REF], the annotation based on Wikidata is also harder with more candidates to disambiguate. We publish the new resulting ground truth on Zenodo (see the supplementary material). ShortTables is a new dataset we built from T2D, in such a manner that each table only contains two rows.

The aim of creating such a dataset is to simulate extreme cases where voting strategies lack electors (i.e. row entities) for a correct CTA (resp. CPA) annotation. The provenance of T2D and Limaye is Web tables. We also consider a synthetic dataset named Tough Tables version 2 (2T_2) to evaluate on more data types. We provide the statistics of these gold standard datasets in Table 5.5.

Evaluation

We evaluate Radar Station with these four datasets varying the embeddings and the tolerance threshold. A random selection of the highest scoring candidates is considered as our baseline and noted as the original system name. We show the overall result for t equals to 1, 0.95, and 0.9 based on DAGOBAH-SL scores on four datasets with different embeddings in Table 5.6

and the fine-tuned result based on DAGOBAH-SL, MTab and BBW with Limaye and T2D in Table 5.7. where P o is the proportion of two reviewers who are equal in this decision; P e is the expected value of making the same decision when two reviewers make independent choices. When kappa equals to 1, it means that the two datasets are the same.
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Analysis

Overall result

We first observe from Table 5.6 that all the chosen embeddings contribute to a significant improvement for PA in the ambiguous cases with the chosen tolerance values and GP. We also notice that Radar Station brings more improvements to GP for the Limaye (Max. 0.02), T2D (Max. 0.03), and ShortTables (Max. 0.03) than for 2T_v2 (Max. 0.002). This drop for 2T_v2 is due to the distribution of the scores of the top candidates: i) as we can see, after relaxing the tolerance from 1 to 0.9, AQ for 2T_v2 has dramatically increased in comparison to the other datasets. Hence, there is no clear boundary between top candidates and bad candidates for the 2T_v2 dataset. That leads to a relatively lousy context embedding for the disambiguation. This scoring distribution is impacted by row number with DAGOBAH-SL mechanism, that is, the more rows we have, the more balanced the scoring would be; ii) the other reason is that 2T_v2 is a synthetic dataset generated with types from a KG. Thus, other column-wised semantic similarities are not obvious in this dataset. Hence, we recommend that future synthetic datasets should consider the inclusion of common themes from these tables to simulate other real-world use cases.

We introduce ShortTables for simulating the extreme cases where the very limited number of rows does not allow existing systems to generate correct CTA and CPA annotations. Bad CTA or CPA may propagate the error to the cell annotations. Thus, we expected to have a more significant GP improvement for ShortTables compared to T2D. However, from our evaluation, the contribution of Radar Station is close in these two datasets (Max 0.03). We analyze that a small number of rows can decrease the quality of type annotation and more likely propagate error with type disambiguation: therefore, it provides more chances for semantic disambiguation. At the same time, the limited number of rows also limits the content of the context entity set that has been used for semantic disambiguation. We argue that these two effects cancel each other in this experiment. We have implemented Radar Station on two other systems and evaluated its performance with two Web table datasets. The result shown in Table 5.7 indicates that Radar Station benefits to all input annotation systems.

Analysis on embeddings

Regarding the two families of embeddings (TransE and RotatE are translational distance models, DistMult and ComplEx are semantic matching models), the GP for embeddings from the same family achieves similar results inside our trained embeddings. From the result of Cohen's kappa shown in Figure 5.7, we observe that the output is similar for embeddings from the same family. For example, the kappa value for TransE and RotatE is much higher than TransE with other outputs (same for DistMult and ComplEx). This similarity could also be seen in the precision shown in Table 5.6. We also observe that translational distance models are generally better than semantic matching models in our trained embeddings. That may be 

Tolerance

Relaxing the tolerance has for effect to include more candidate entities and thus has the potential to increase the probability that the correct candidate is in the candidate set. However, such an operation also puts more noise into the candidate list. In Figure 5.8 and 5.9, we illustrate how the tolerance t influences the performance of the system on Limaye and T2D. It shows that relaxing the tolerance with TransE and RotatE improves the quality of the annotation (performance peak at t=0.95 in Figure 5.8). In our observation, largely relaxing the tolerance may decrease the accuracy since more noise is included during the disambiguation. This is therefore a delicate tradeoff to generalize across datasets.

Discussion

Discussion

In the chapter, we present the work of the clustering method that performs optimisation on CTA task but it also decrease the performance of CEA task. We also propose Radar Station, a novel approach for addressing the difficult and ambiguous cases leveraging on KG embeddings for uncovering the column wise-similarity. These approaches are evaluated on the SemTab challenge as well as two other popular gold standards. The evaluation shows that we have made a improvement in accuracy and performance based on three others top-tier systems, including DAGOBAH-SL.

However, we also found that they are still some limitations and areas for improvements:

• First, we only use information from the same column as disambiguation support data for Radar Station. But at the same time, the information brought by other columns of the table, headers, titles, and table metadata is not well interpreted for supporting the annotation.

• For the words, sentences, and characters in the table, we treat them as a simple input for mapping with table elements and KG by way of string matching. But the semantic meaning they have in themselves is somewhat ignored despite the KG.

• Our work is still limited to relational tables. Other table types remain uninterpretable.

To address these limitation, in future work, we expect to use language models to better integrate all the information in a table (including its structure and its textual content). We expect first to test existing variants of BERT for tables to explore their feasibility and propose better solutions. Making use of the automatically produced semantic annotations in applications is also an objective of this thesis. We will also focus on the correlation between or inside tables/KGs.

Chapter 6

Applications of Semantic Table

Interpretation

The interpretation of tables from the previous sections aims to uncover the meanings of the data with respect to a semantic artifact, such as an ontology or a knowledge graph. One could leverage the extracted knowledge following STI tasks for the benefit of different use cases.

Examples of these use cases include search engines [START_REF] Sekhar Bhagavatula | Methods for exploring and mining tables on wikipedia[END_REF][START_REF] Michael J Cafarella | Webtables: exploring the power of tables on the web[END_REF], question/answering systems [START_REF] Pasupat | Compositional semantic parsing on semistructured tables[END_REF][START_REF] Sun | Table cell search for question answering[END_REF][START_REF] Yin | TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data[END_REF], knowledge base enrichment [START_REF] Ritze | Matching html tables to dbpedia[END_REF][START_REF] Yakout | Infogather: entity augmentation and attribute discovery by holistic matching with web tables[END_REF][START_REF] Zhang | Novel entity discovery from web tables[END_REF] or dataset recommendation [START_REF] Zhang | Recommending related tables[END_REF].

In this chapter, we focus on Data imputation, also known as data completion and missing cell filling, refers to correcting or filling an empty cell of a given table. Figure 6.1.a illustrates an example of data completion where we fill the missing cell from the first row and second column with a specific year number (2021). Schema augmentation, known as column extension, extends a table with additional columns. [START_REF] Zhang | Web table extraction, retrieval, and augmentation: A survey[END_REF] argues that this task roughly corresponds to the join operation in databases. Aiming at this target, in DAGOBAH UI [START_REF] Sarthou-Camy | DAGOBAH UI: A New Hope For Semantic Table Interpretation[END_REF], we introduce two semi-automatic system prototypes for table augmentation. DAGOBAH UI provides a list of candidates with entities (resp.

relations) aiming at enriching an empty cell (resp. adding a column). Users can select their target elements to add from this candidate list. In this chapter, we first introduce the related work of table augmentation in Section 6.1. In Section 6.2, we illustrate the application of data imputation and in Section 6.3, we introduce our efforts around schema augmentation. We finally conclude and discuss in Section 6.4.

Related Work

DATA imputation fills an empty table cell. [START_REF] Ahmadov | Towards a hybrid imputation approach using web tables[END_REF] proposed a hybrid model between a heuristic lookup-based system and a machine learning system to predict a missing cell of a relational 6.2 Data Imputation table. The system's training dataset is collected from Web tables. [START_REF] Zhang | Auto-completion for data cells in relational tables[END_REF] considers both KG and used table corpora as the sourced data and proposes a heuristic system for combining the evidence from a different source when predicting an empty cell. They also accept multi-value output and enable the system to have a "None" output for the cases where the cell should be empty. TURL [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] leverages language models. It follows the same encoding steps as presented in Section 3.5.3. Where the authors argue that data imputation is similar to the NER task.

Hence the system directly uses "[MASK]" to generate the missing cell value. focuses on the number values. [START_REF] Zhang | Entitables: Smart assistance for entity-focused tables[END_REF] proposes a Bayes-based system that outputs a ranked list for column labels based on a given table corpus. Like what has been applied in data imputation, TURL [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] uses "[MASK]" token over the headers to predict the label of the potential headers.

Schema augmentation

In DAGOBAH UI, we enrich the table with new columns and cell values relying on the processed table annotations generated with DAGOBAH SL. KG annotations tell the system about the entities, types, and relations of the input table . The system can understand the context of the target table with these annotations and enrich the table according to the background knowledge from the KG. DAGOBAH UI differs from the existing works by: 1) instead of automatically providing values to an empty cell, we adopted a semi-automatic approach enabling the user to validate suggestions according to his own needs; 2) we leverage KG as our background knowledge source.

Data Imputation

In this section, we introduce data imputation module of DAGOBAH UI. Where the system is described in Section 6.2.1, then we report and analyse the result in Section 6.2.2.

System

In DAGOBAH UI, we apply the data imputation task following the annotation steps of DAGOBAH SL. When a cell is empty, the user could choose whether or not to fill this empty cell. For data imputation, we observe that the majority of approaches propose a unique value for these Qual i t y = 1 K j <K ( # cor r ec t ent i t i es i n l i st j l eng t h(l i st j ) ) (6.2) Equation 6.1 reveals the percentage of the generated lists having the correct entities. Equation 6.1 indicates the quality of the generated lists.

We report the result based on the precision indicator and the quality indicator in Figure 6.3, where "A_columns" depicts the attribute columns and "S_columns" depicts the subject columns. We also show the distribution of the generated list length in Figure 6.4.

For the overall result, we have successfully generated a candidate list for 64% of the empty cells, where 22 subject columns and 14 attribute columns failed due to the misleading preprocessing negative results and annotation errors. We notice that in our sample set, once the system generates a candidate list for attribute columns, it always contains at least one correct candidate. However, we did not find the correct entities in the candidate list of four subject columns. That gives 60% of the precision in all tables at the end, also 72% precision in This overall result shows that our system performs better in attribute columns rather than in subject columns. Similar cases could be found in other evaluations such as the quality of the list for attribute columns is much higher than subject columns (Figure 6.3.b), and the candidate list's length for attribute columns is much shorter than subject columns (Figure 6.4).

We argue that it is because we currently do not use the literal cells for the disambiguation and the filtering of the candidate list. Literal values in a table are often used for describing the subject. Lacking this information weakens the performance of the system on subject columns, however, it does not affect a lot on attribute columns since it only needs the subject and the relation to filter candidates.

Schema Augmentation

Schema Augmentation

In this section, we introduce the schema augmentation module of DAGOBAH UI. The system is described in Section 6.3.1, then we report and analyse the results in Section 6.3.2.

System

In DAGOBAH UI, we add additional columns based on a fixed target entity column. The user could select this target column from the interface. After the interpretation of the target table, every cell from this column is associated with an entity from the target KG. Each annotated cell entity has multiple relations in this background KG. For each cell entity relation, we count the number (or occurrence) of this relation in the target column and rank these relations according to their frequency in the column to generate a list of candidate relationships. We show this list to the user in the interface and the user can select one of the relations that he/she wants to add to the table. Once selected, the system extends the table. For each row, we know the subject (which is the cell annotation from subject column) and the predicate (which is the relation selected by the user), hence, the task is to find the missing object of the triple (which is composed by < sub j ect , pr ed i c at e, ob j ec t >).

One example is shown in Figure 6.5. We suppose that a user wants to add the platforms for each game presented in the annotated table from Figure 6.5.a. The user will have a list of all the potential elements as shown in Figure 6.5.b to add according to the first column. Once he chooses the term "platform" from the list to achieve his goal, DAGOGAH UI automatically adds the column as the second column from as illustrated in Figure 6.5.c.

Result and Analysis

Since DAGOBAH UI is a semi-automatic system, its performance depends on the quality of table annotations. We argue that the schema augmentation performance of DAGOBAH UI relies on the quality of the target KG. Hence one could switch their target KG to improve the coverage of the relations and cell values. To the best of our knowledge, we are the first system that allows human intervention during the selection of added columns, yet we still lack suitable criteria for evaluating the performance of the system.

To give a minimal indication of the system's capabilities, we manually count the possible relation number with the 100 tables used in the evaluation of data imputation module. Where we only focus on the subject columns since the additional columns in a table are always used for describing the subjects. The annotation is based on DAGOBAH SL with the Wikidata dumps extracted in 2022. We report the number of the relations in the candidate set that we provide to the user in Hence, in future work, we aim to study how to rank the candidate relations to optimise the user experience.

Using the example of Figure 6.5, the following aspect could be used for ranking the candidate columns.

• Row coverage: The entity coverage could be an important indicator for ranking the columns. Choosing "platform" (P400) as the added column covers about 94% of the Figure 6.6: The list length distribution of data imputation in 100 selected T2D tables in all columns, attribute columns, and subject columns rows from the original table, while choosing "CERO rating"(P853) only covers 8% of the rows. In such cases, the relation that covers more rows should be prioritised.

• Relation Popularity: A relation with many associated entities in a KG is more likely to be used in a given case. For example, in Wikidata, we have more triples about the country of origin (P495) than CERO rating (P853). The user is therefore more likely to choose the country of origin.

• Relatedness of the context: In some cases, we can find additional information from the metadata, such as the surrounding text or page title. If the table is located in a paragraph that discusses the evolution of video games in recent decades, it might be helpful to prioritise "publication date" (P577) as the recommendation of the additional column since it is associated with the topic of the paragraph.

• Co-occurrence with other columns: If some columns appear in one different table, then it is more likely to have a similar column combination for the target table. The column wised co-occurrence has been used for STI [START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF] and schema augmentation [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF]. While TURL [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] trains the model based on the existing table dataset and adds the column according to this dataset. We aim to provide a list for the user to choose from, hence, we did not adopt this at first. However, the columns wised co-occurrence could be an aspect to rank the relations that we aim to optimise in the future.

Chapter 7 Conclusion and Future Work

Tabular data is a valuable data source that is available on the Web and in companies. Understanding and making use of the information from tabular data is an open-research question that has been increasingly attracting attention from the scientific community over the last decades. Such process includes the operations like collection, extraction, interpretation, and augmentation of tables. However, tabular data is challenging to process by machines because of the limited context available to resolve semantic ambiguities and the layout of tables that can be difficult to handle.

In this thesis, we provide contributions from collecting tables in the wild to downstream tasks.

This dissertation covers various topics, with a special focus on the interpretation of tables with the help of the intersection between tables and KGs. We interpret and enrich tables using the overlapped information between these two data sources.

In the following, we summarise the main contributions of this thesis on extracting, interpreting, and augmenting tables in Section 7.1. We also highlight the limitations of this work in Section 7.2 and suggest some perspective about future works on this research topic.

Contributions

This thesis focuses on making use of tabular data with the help of the interpretation with a given KG. To reach this target, we set a list of research questions in Section 1.2 for this thesis.

These research questions are recalled briefly below:

1. What are the different table types and features that one can encounter on the Web and how can we extract them?

2. What possible correspondences can we establish between the elements from tables and knowledge graphs? (b) Can these latent relationships between the table elements also reveal the common topics from these tables to improve the disambiguation with the help graph embeddings?

3. Finally, what downstream tasks could be realized following a semantic table interpretation process?

To answer these research questions, a set of concepts and tools are proposed. In the following, we recall the contributions of the thesis from three aspects: the extraction of tables (Section 7.1.1), the interpretation of tables (Section 7.1.2), and the augmentation of tables (Section 7.1.3).

Table Extraction from the Wild

Tabular data has different layout structures and different purposes of creation. Facing this heterogeneity, a classification of tables is necessary. Based on existing categorisation, we further refresh the classification of tables from the perspective of table interpretation in which we propose to classify a given table using three dimensions, including structure, interrelationship and orientation dimension. This work has been published in a survey paper [START_REF] Liu | From Tabular Data to Knowledge Graphs: A Survey of Semantic Table Interpretation Tasks and Methods[END_REF].

We also contribute with two systems (HTW and CorpusWalker) for collecting tables from the Web and local documents. These systems provide features for ingesting, managing, storing and visualising the collected tables and provide the data sources for table interpretation.

Table extraction is concerned with the problem of identifying and classifying tables, which encompasses a range of more specific tasks, such as relational table classification, header detection, and orientation classification [START_REF] Zhang | Web table extraction, retrieval, and augmentation: A survey[END_REF]. Focusing on relational tables, we propose a table pre-processing tool named DAGOBAH-Pre-processing [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF]. DAGOBAH pre-processing generates metadata about a table via four main tasks: orientation detection, header detection, key column detection and column primitive typing.

Semantic Table Interpretation

The main idea for making tabular data intelligently processable by machines is to find correspondences between the elements composing the table and entities, concepts, or relations described in KG, known as STI. One of our contributions is to provide a complete, comprehensive and up-to-date state-of-the-art of the different tasks and methods that have been proposed so far to perform STI [START_REF] Liu | From Tabular Data to Knowledge Graphs: A Survey of Semantic Table Interpretation Tasks and Methods[END_REF]. We define five major sub-tasks that STI deals with even

Contributions

if the literature has mostly focused on three sub-tasks so far. We review and group the many approaches that have been proposed into three macro families and we discuss their performance and limitations with respect to the various datasets and benchmarks proposed by the community. To the best of our knowledge, such a survey is still missing in the community and we aim to highlight the potential problems that one can encounter and that yield new challenges.

We propose a continually optimised, heuristic-based, STI annotation system, named DAGOBAH SL [START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF][START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF]. DAGOBAH SL automatically interprets relational tables with the support of Wikidata and DBpedia by associating each cell with an entity (CEA), each column with a class (CTA),

and each pair of columns with a property (CPA). DAGOBAH SL is one of the state-of-the-art systems and it won the first prize on the accuracy track in both SemTab 2021 and SemTab 2022 challenges. The system is available via an API for developers as well as via a user-friendly web interface [START_REF] Sarthou-Camy | DAGOBAH UI: A New Hope For Semantic Table Interpretation[END_REF].

However, heuristic-based approaches like DAGOBAH SL suffer from some shortcomings.

One of them is that heuristic-based systems often lack the knowledge of the common theme for a given table . To handle this issue, we propose two graph embeddings based methods, named DAGOBAH Embeddings [START_REF] Chabot | DAGOBAH: an end-toend context-free tabular data semantic annotation system[END_REF] and Radar Station [START_REF] Liu | Radar Station: Using KG Embeddings for Semantic Table Interpretation and Entity Disambiguation[END_REF]. We rely on the intuition that the entities in the same column should exhibit semantic similarities and we aim to use graph embeddings to reveal these similarities. DAGOBAH Embeddings uses a clustering algorithm to the candidate entities for filtering candidates by choosing the right clusters. Experimental results prove that this approach has successfully improved the accuracy of the CTA task.

However, the system is also misled by incorrect candidates in the selected clusters during the CEA task. Radar Station is a hybrid plugin system that aims to add a semantic disambiguation step after a previously identified CEA. RadarStation has been evaluated on top of different heuristics-based systems (DAGOBAH SL, BBW, MTab) and have consistently demonstrated an accuracy improvement of around 3%. Furthermore, the system shows empirical evidences that among the various graph embeddings families, the ones relying on fine-tuned translation distance have superior performance compared to other models. 

Table Augmentation

Future Work

While our efforts have made significant progress in the field of STI, existing approaches have several limitations: (i) they mainly focus on single-cell subjects within relational or entity tables, and make strong assumptions about the coherence and the simplicity of their layout;

(ii) they are highly confident in both the completeness and the correctness of the target KG;

(iii) they only partially leverage the information of the table, in both substance and form. iv) they discuss rarely the use case of the annotation generated by STI systems. Based on these observations, we formulate some possible guidelines to sketch the directions for our future research.

Beyond Simple Table Type

From the literature, we observe that most of the works focus on single-cell subject tables, the simplest type of relational tables. A few approaches focus on entity tables such as the infoboxes from Wikipedia pages [START_REF] Biswas | Wikipedia Infobox Type Prediction Using Embeddings[END_REF][START_REF] Wu | Automatically refining the wikipedia infobox ontology[END_REF] but the other types of tables defined in the classification we proposed in Section 2.1 are still hardly handled. Moreover, current approaches do not dig deeper into relational table complexities such as hidden subjects or composed subjects, to name a few.

As a result, existing systems are far from being generalisable to any table type. To fill the gap and stimulate the search for new solutions, we believe it is important to broaden the spectrum of corpus complexities. To that end, we aim to create new datasets and more robust annotation systems with multiple table structures and complex contents to tackle the whole diversity of real-world data. Regarding the future datasets, we argue that content-level complexity should not be restricted to noise added to mentions, whether synthetically or manually, as these artefacts happened to be not so difficult to handle in the light of the SemTab experience, as well as not so close to real data tables. Introducing numerical mentions with heterogeneous units or lists within cells (multivalued tables), for instance, could be more challenging and therefore beneficial for the community. Last but not least, a ground truth shall be associated with these datasets to allow a fair comparison between the future approaches. This latter requirement suggests prioritising quality over quantity for evaluation datasets to bootstrap new challenges quickly.

KG Incompleteness and Incorrectness

Our existing approaches assume that the target KG is complete and error-free. As a consequence, an annotation can always be generated even if the correct result is not in the KG, whether it concerns an instance, a type or a relation. This situation can be harmful, especially as it may spread the error from one annotation to the whole column or even the whole table.

Chapter 7. Conclusion and Future Work

Table Context

We observe that many approaches leverage only partially the elements of the table (see Table 3.2), even if more recent ones tend to extend their view. As we discussed in Section 3.6, we believe that leveraging as many elements as possible should increase the accuracy by adding more contextual information. In that sense, language models generated from transformers could be better used. Indeed, one could consider a table as a way of structuring the language: in the simplest case, one table row can be seen as a sentence describing a subject with some attributes. The same applies to the corresponding sub-graph in the target KG. Thus, sentence representation could be used to compute similarities. Nonetheless, the specificity of tabular data as well as KGs should be taken into account, which implies adapting attention mechanisms to this very structure. The visibility matrix used in [START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] is an attempt to do so in relational tables, but it should be extended to other types of tabular data.

We also notice that most approaches treat tables independently. However, some tables are related to each other since they can be generated with the same template, be part of a coherent corpus of tables or be related to keys such as SQL database tables. Inter-table relations as studied by [START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF] can constitute an interesting complementary approach with appropriate target tables. We believe that STI systems could significantly take advantage of combining table elements with inter-table connections (which can be considered as another context layer added to capture richer prior information about the data to be processed) in our future work.

Applications of Semantic Table Interpretation

In the existing work, we leverage generated semantic annotations in data imputation and schema augmentation in the DAGOBAH UI system. CorpusWalker also provides the possibility for researching a document with a given id from the KG. However, we aim to study more possible use cases of the semantic table annotations.

We will also focus on the correlation between or inside tables/KGs. We will explore whether we can use this relatedness to support a downstream task such as indexing and recommendation through our existing work. For example, a recommendation process or the generation of summaries. In the context of data exchange, a recommendation engine provides advice to users on which datasets are likely to be of interest to them and to serve their use cases. As a first approach, content-based recommendations (distance measure between a vector representing the user and vectors representing the datasets) and exploiting an enriched description of the labelled datasets can be considered. Vector representation of items taking into account heterogeneous information coming from a graph (textual descriptions, structural knowledge, etc.) requires the use of appropriate techniques. The so-called "graph folding" techniques seem particularly suitable to achieve this objective of constructing latent vectors from triples. 
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 11 Figure 1.1: An example of a Web table about lines of the railway system in California.
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 222 Figure 2.2: Illustration of genuine tables and layout tables on the Amazon Website. a a https://www.amazon.com/Furinno-14035EX-Study-Table-Espresso/dp/B00NIYX9LC
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 2 Figure 2.4: Examples of different inner-relationships of tables: (a) a horizontal relationaltable a , (b) an entity table b , (c) a matrix table c , (d) an enumeration table d which belongs to "other genuine tables".

a

  Figure 2.4(a) depicts a horizontal relational table where each row describes a tower with its attributes (e.g. height, year, country, and town).
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 25 Figure 2.5: Examples of different relational tables: (a) a single-cell-subject relationaltable a , (b) a composed-subject relational table b , (c) a multi-subject relational table c , (d) a hidden-subject relational table d .
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  https://en.wikipedia.org/wiki/France#Major%20cities b https://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit c https://en.wikipedia.org/wiki/List_of_best-selling_albums_of_the_21st_century d https://fr.wikipedia.org/wiki/Coupe_du_monde_de_football_1998 correct identifications.

Chapter 2 .

 2 Figure 2.6: Metadata of the Web table "Lattice towers taller than the Eiffel Tower" a : (a) descriptive metadata: its surrounding text, (b) structural metadata: <td>, <tr> and <th> tags indicate table cells, row ordering, and the presence of headers, (c) administrative metadata: the page history of the table b.
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 27 Figure 2.7: Architecture of the project HTW
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 28 Figure 2.8: Visualisation of provenance topology of the document
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 292 Figure 2.9: Architecture of CorpusWalker
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 2 Figure 2.10 shows the data source that has been collected with CorpusWalker.
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 210 Figure 2.10: Word cloud of the data sources of CorpusWalker
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 211 Figure 2.11: An example of the administration page of CorpusWalker

  2) and compared to a modified version of the DWTC (which does not use HTML tags and thus supports more formats).
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 213 Figure 2.13: Illustration of the pre-processing pipeline
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 31 Figure 3.1: Illustration of an STI task with a given KG (Wikidata).

Figure 3 . 1 ,

 31 Figure 3.1, one could map the cell Belfort with the entity Q171545 from the knowledge base with the help of the table context (the narrative location of the movie Our Happy Lives). Based on our study of literature, we propose to decompose STI into five main tasks: cell-entity annotation, column-type annotation, columns-property annotation [63], topic annotation, and row-to-instance [103] (illustrated in Figure 3.2).
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 32 Figure 3.2, the label "city of Switzerland" (Q14770218) would no longer be compatible with the second column if other groups and cities that hold UEFA Euro 2008 games such as Vienna (Q1741) are included in the table.

  [START_REF] Huynh | DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular Data[END_REF] calculates a score for each cell entity. This score combines the Levenstein similarity and the context similarity between the entity's neighbouring nodes and the row context of the target cell. The authors collect triples containing cell candidates between the two columns and calculate the sum of the weights from the corresponding cell candidates for each relation. The output of CPA is the relationship with the highest sum. The system then leverages the CPA results to perform CEA disambiguation. As for CTA, in addition to the majority vote based on CEA, DAGOBAH-SL also leverages the distance to the root concept and the ranking of each Wikidata entity's class to select the most accurate type. In more recent works, DAGOBAH-SL[START_REF] Huynh | From Heuristics to Language Models: A Journey Through the Universe of Semantic Table Interpretation with DAGOBAH[END_REF][START_REF] Huynh | DAGOBAH: Table and Graph Contexts for Efficient Semantic Annotation of Tabular Data[END_REF] enhances the system with CTA disambiguation and look-up generation. The entity context made with multiple-hop neighbouring entities is also taken into account in calculating the scores. The system won the first prize in accuracy in the SemTab 2021 and SemTab 2022 challenges.

  The system first distinguishes between columns of numbers and columns of strings by voting on the types of cells in each column given a predefined threshold. Strings columns are trained upon cosine similarities on TF-IDF, considering a column as a document. To annotate numerical columns, the authors use a variety of distribution representation methods. In both cases, they adapt the training data that consist of a set of semantic labels associated with samples of data values. The prediction aims to find the most similar candidate by comparing the distance between the query column and each sample set in the training data corresponding to a distinct semantic label. The chosen distance metric depends on the column type. The training dataset was extracted from vertical domain datasets such as museums and cities, and the authors associate columns from these datasets with DBpedia classes. The main limitation of this work resides in not taking into account relationships between columns.
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 283 SemTab 2020 and 2021 further enhance the CTA evaluation metrics by introducing the correctness score cscor e (Equation (3.3)) for correctly positioning the annotated type in the hierarchy tree where d (α) indicates the distance between the annotation α and the ground truth.(α) , if α is an ancestor of the GT, 0.7 d (α) , if α is a descendant of the GT, Given the c scor e, approximated Precision (AP), Recall (AR), and F1-score (AF1) for the CTA evaluation are then defined as follows:

5 . 4 .

 54 our optimizations of DAGOBAH SL with the Multi-hop Relations scoring and Soft Context Scoring mechanism in Section 4.3. Then, we introduce the industrialisation of DAGOBAH-SL in Section 4.4 and conclude in Section 4.Chapter Heuristic-Based Semantic TableInterpretation

  2.1) by adding a constant score 1 (resp. 0) if the Chapter 4. Heuristic-Based Semantic Table Interpretation

2 (

 2 s global information. Hence, the final score Sc(e c , e m ) of a candidate entity e c is computed as follows: Sc(e c , e m ) = (P Sc(e c , e m ) + α × scor e C T A + β × scor e C P A ) 1 + α + β (4.4) If e c belongs to the type output by CTA for its column, then scor e C T A is equal to the score of this type, otherwise it is set to 0. In scor e C P A , we average the scores of the relations output by CPA for column pairs involving the column of e c . For each relation, if e c belongs to its domain or its range (depending on the relation orientation), then we consider the score of this relation, else it is set to 0. To strengthen (resp. weaken) a frequent (resp. unusual) CTA/CPA in the update of Sc(e c , e m ), a coefficient α (resp. β) is employed and defined as occur r ence(C T A) resp. occur r ence(C P A) 2

Figure 4 . 2 :

 42 Figure 4.2: CTA annotation structure

2 .

 2 This enhancement provides a better representation and disambiguation of entities in exploiting their contexts more efficiently in the KG and an improved and flexible entity scoring that leverages both local information and global table information. The improvement introduces a new global scoring function which includes two new components: Multi-Hop Relation for exploiting the deeper context of knowledge graph entities (Section 4.3.1) and a Soft Scoring Mechanism for taking the cell position in the table into

Chapter 4 .

 4 Heuristic-Based Semantic Table Interpretation

account (Section 4 . 3 . 2 )

 432 . Finally, we report the result with the evaluation of the SemTab 2021 challenge (Section 4.3.3). In the second edition of DAGOBAH SL, the new optimised confidence score function (Equation (4.5)) is set as following: P Sc(e c , e m ) = Sc cont ext (N g r aph (e c ), N t abl e (e m )) × e γ(Sc si m (e c ,e m )-1) (4.5) This new pre-score function is the product of a context factor and a literal factor Sc si m (e c , e m ).

(4. 6 ) 2 :

 62 where N t abl e (e m ) is the set of neighboring cells in the same row as e m and N g r aph (e c ) is the set of neighboring nodes of e c in the KG8 . For each neighboring cell n i ∈ N t abl e (e m ), sn i is its neighborhood matching score w.r.t. N g r aph (e c ).The new function setting solves two issues related to the context score calculation with respect to DAGOBAH SL introduced in Section 4.Expensive evaluation.Each sn i was evaluated by iterating over all context nodes in N g r aph (e c ) to find the best matching node. Hence, a performance bottleneck arose when scoring a generic entity with millions of edges in the KG. For example, let's consider the cell "Belfort" in Figure4.1 and the Wikidata candidate entity Q171545. To check whether the neighboring cell "Bourgogne Franche Comté" is in the context of Q171545, we performed a comparison with each of the ∼ 1,000 nodes in N g r aph (Q171545), including Q142 (France), Q3371185 (Paul Faivre), etc. (Figure4.3a).One-hop graph contexts. N g r aph (e c ) consisted of nodes only one hop away from e c . Consequently, a neighboring cell n i ∈ N t abl e (e m ) matching with a node two hops away from e c was not considered in the context of e c . For example, given the one-hop context of Q171545 (Belfort) in Figure4.3a, we wrongly considered that Bourgogne Franche Comté had no relation with Belfort whereas it is the region of Territoire de Belfort (French department) whose capital is Belfort.4.3 Multi-Hop Relations and Soft Context ScoringIt improves both the efficiency and the expressiveness of the context score by avoiding the exhaustive scoring and exploiting more expressive contexts for an entity via two-hop predicate paths.

Figure 4 . 3 :

 43 Figure 4.3: Graph context of entity Q171545 (Belfort) in Wikidata. (a) One-hop graph context of Q171545. (b) Graph context is expanded by sub-graph intersection.

  Bourgogne Franche Comté. Since we only consider one-hop subgraphs, paths can have a maximum length of two hops. This approach allows to enrich the information about an entity by including not only direct neighbors but also indirect neighbors two hops away. Such Chapter 4. Heuristic-Based Semantic Table Interpretationenhanced graph contexts increase the chance for a neighboring cell n i ∈ N t abl e (e m ) to match, and thus make the context score more precise. We argue that, in the context of STI with Wikidata, paths longer than 2 hops are often noisy and meaningless, and thus can have a negative impact on the context score.

Figure 4 . 4 : 1 -→ v p 2

 4412 Figure 4.4: Neighboring nodes of Belfort (Q171545) contribute differently to its information content.

( 4 .

 4 8d) The Multi-hops Relations depicted in Equation 4.7.

2 ←

 2 -) bring enough information and allow to obtain equal results compared with considering both unidirectional and bidirectional paths. Second, the influence of noisy bidirectional paths (e.g., Belfort country -----→ France diplomaticRelation ← -------------United States of America) is limited by the soft context scoring which prevents a degradation in the annotation quality. This allows useful bidirectional paths to contribute positively in the entity score. It can be observed that CTA and CPA performances are not as high as expected in most datasets despite CEA good performances. The development of better strategies for type and relation selection will be the subject of future works.
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Figure 4 . 5 :

 45 Figure 4.5: The evaluation of DAGOBAH API on Limaye with different K numbers: a) precision; b) running time

Figure 4 . 6 :

 46 Figure 4.6: DAGOBAH UI depicting the preprocessing on the T2D tables with the associated confidence scores.

Figure 4

 4 Figure 4.6.

Figure 4 .

 4 [START_REF] Azzi | AMALGAM: making tabular dataset explicit with knowledge graph[END_REF].b shows the annotation results for another Web table about Movies generated partly from Wikidata. This example illustrates the power of the semantic elevation produced Chapter 4. Heuristic-Based Semantic TableInterpretation

  by the annotation process. The system found that "Star Wars" in the SemTab table and "m/star_wars" in the Movie Table actually denote the same entity: Q177738 (Star Wars: Episode IV -A New Hope). This data reconciliation capability is particularly interesting for use cases involving heterogeneous datasets.

Figure 4 . 7 :

 47 Figure 4.7: DAGOBAH UI depicting the semantic annotations on the SemTab and Movie tables with the associated confidence scores.

Figure 5 . 1 :

 51 Figure 5.1: Illustration of DAGOBAH-Embeddings.

Figure 5 . 2 :

 52 Figure 5.2: Results of the clustering evaluation for table 34041816_1_4749054164534706977. Red: K-means; Blue: BIRCH; Green: Spectral Clustering; Dotted line: scale = p.

Figure 5 . 3 :

 53 Figure 5.3: Results of the clustering evaluation for table 54719588_0_8417197176086756912. Red: K-means; Blue: BIRCH; Green: Spectral Clustering; Dotted line: scale = p

Figure 5 . 4 :

 54 Figure 5.4: Result of K-means clustering applied to Wikidata embedding

Figure 5 . 5 :

 55 Figure 5.5: Illustration of Radar Station with DAGOBAH-SL results. The plot is generated with RotatE embeddings after dimension reduction by T-SNE.

Figure 5 .

 5 Figure 5.5 provides an example where DAGOBAH-SL is not able to handle properly an ambiguous case: two potential candidates with the same score for the cell "Traitor". The ambiguitycomes from an unsuccessful matching between the column "2002" with literal information "30 July 2002" of candidate "Q7833036" for entity scoring and CPA disambiguation. CTA disambiguation does not work in this case since these two candidates are books with the type "literary work" ("Q7725634"). "Q21161161" is a science fiction novel and "Q7833036"is an anti-wars romance novel.
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Figure 5 . 6 :

 56 Figure 5.6: Overview of the Radar Station pipeline.

Figure 5 . 7 :

 57 Figure 5.7: Illustration of the Kappa test between different outputs on all datasets, t = 0.95.

Figure 5 . 8 :

 58 Figure 5.8: The GP evaluation on Limaye with t from 0.7 to 1 based on DAGOBAH-SL.

Figure 5 . 9 :

 59 Figure 5.9: The GP evaluation on T2D with t from 0.7 to 1 based on DAGOBAH-SL.

Figure 6 .

 6 Figure 6.1.b depicts schema augmentation of a table about movies by extending a column of movie directors.

Figure 6 . 1 :

 61 Figure 6.1: Illustration of data imputation tasks: a) data imputation; b) schema augmentation.

Figure 6 . 2 :

 62 Figure 6.2:Example of data imputation with DAGOBAH UI with table52572391_0_8684896999787304275.csv from T2D dataset.

Figure 6 . 3 :Figure 6 . 4 :

 6364 Figure 6.3: The evaluation of data imputation in 100 selected T2D tables in all columns, attribute columns, and subject columns: a) precision indicator; b) quality indicator

Figure 6 . 5 :

 65 Figure 6.5: Schema augmentation of a table of games with DAGOBAH UI: a) the initial table with the annotation generated with DAGOBAH SL; b) the menu for users to choose one candidate relation based the first column; c) the extended table with a new column about "platform".

Figure 6 .

 6 Figure 6.6 with a box figure. The relation in our example is in an interval between 8 and 108 with an average of 37.8. Most of the relation numbers for subject columns are between 20 and 40. Evidently, it is not easy for a user to choose a relation within a large list like this.
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 7 Conclusion and Future Work(a) Can the overlapped information from these two data sources support the matching elements between the two sides?

Figure A. 1 :

 1 Figure A.1: Results of the clustering evaluation for table 1-2

Figure A. 2 : 8 Figure A. 4 :

 284 Figure A.2: Results of the clustering evaluation for table 3-8

  

  

  

  

table a

 a 

, (b) an entity table b , (c) a matrix table c , (d) an enumeration table d which belongs to "other genuine tables".

table a

 a 

, (b) a composed-subject relational table b , (c) a multi-subject relational table c , (d) a hidden-subject relational table d .

  applied the DWTC framework on the 233 million Web tables of the WDC Web Table Corpus to detect the type of each table w.r.t the inner-relationship dimension. Results show that relational tables, entity tables, and matrices respectively constitute 39%, 60%, and 1% of the corpus.

Table title Chapter 2. Collect and Prepare Tables at Scale

 title 

	android.com	apache.org
	bbc.co.uk	blogspot.com
	creativecommons.org	doi.org
	en.wikipedia.org	europe.eu
	gamepedia.com	github.com
	github.io	iana.org
	imdb.com	medium.com
	merriam-Webster.com	microsoft.com
	mozilla.org	nasa.gov
	nih.gov	noaa.gov
	schema.org	statista.com
	w.org	wikibooks.org
	wikimedia.org	wikiquote.org
	wordpress.com	wordpress.org

Table 2 .

 2 

1: Selected domain names in the whitelist for the crawler. • Paragraph before/after the table • Most frequent terms • Language of the page

Chapter 2. Collect and Prepare Tables at Scale Figure

  

	Until November 2022, CorpusWalker has collected 9.64 million documents from 19 corpora,
	where 3.84 million tables have been identified by the system. The total file size after processing
	is 34.34G. CorpusWalker is capable of handling multiple languages, including English (69.29%),

2.12: Interface of the document management in CorpusWalker

table ,

 , 

	such as the orientation, the table type, and the header position, of a given table before
	any operation in this table.

2.4 Pre-Processing Tables and

  each column's primitive type of input table. In Section 2.4.1, we review the current state of the art of similar tasks from the literature. We then describe our system in Section 2.4.2. Finally we analyze our first prototype based on an evaluation of the SemTab dataset and describe our

	future work in Section 2.4.3
	2.4.1 Related Work
	Orientation Detection
	The orientation detection task aims to assign a given genuine table an orientation, following
	the table types defined by Section 2.1.3. In most table interpretation approaches, the systems
	assume that the input table's orientation is always known and horizontal [1, 26, 90, 110, 122].

Chapter 2. Collect and Prepare Tables at Scale the

  rest of the rows for evaluating the difference in font size or data types to predict the presence of the header. It also proposes a machine learning pipeline that extracts row-wised features like a number of characters and sends these features into a classifier, such as SVM and

	). Each cell is transformed into
	embeddings with the help of Long Short-Term Memory (LSTM) and Multi-Layer Preceptron
	(MLP) layers. Finally, the representations are concatenated and fed to a softmax classifier for
	table orientation classification. Although one representation is enough to predict the input
	table's orientation, adding another representation from another direction allows the model to
	identify matrices more effectively.
	Header Detection
	A table header row for a horizontal relational table is the top row or rows that acts as a title
	for the type of information one can find in each column. It is common to manually bold the
	top row to signal this information visually. Knowing the presence and the position of table
	headers separate the schema of the class described by table columns and the data rows. [45]
	proposes heuristic approaches for calculating a relevance score between the first row and

Table Orientation Detection. The initial algorithm proposed in the DWTC-Extractor is based 2.4 Pre-Processing Tables

  

		Table 2.2: Precision of pre-processing tasks	
		Task/Tool	DWTC	DAGOBAH	
		Orientation Detection	0.9	0.957	
		Header Extraction	Not evaluated	1.0	
		Key Column Detection	0.857	0.986	
	on the length of the strings and the assumption that the cells in the same column have a similar
	size. However, the robustness of the DWTC algorithm can be improved. Indeed, for example,
	two strings representing very different elements may have the same length (for example "Paris"
	and "10cm 2 "). DAGOBAH introduces a new algorithm based on a primitive cell typing system
	with eleven types (string, floating numbers, date, etc.). Based on these types t i , a homogeneity
	score is computed on each row and each column x (Equation 2.1). The mean of all rows and
	all columns is then compared, and depending on the ratio, the table is said "HORIZONTAL" or
	"VERTICAL".	Hom(x) = [	1 l en(x) t i ∈x	(1 -(1 -2 *	count (t i ) l en(x)	) 2 )] 2	(2.1)
	Header Extraction. The algorithm used in DAGOBAH is based on the primitive types defined
	above. The header extractor assumes that the header of a column contains mainly strings and,
	in most cases, does not share the type of column cells. The use of these two heuristics allows
	for identifying if a table contains or not a header with good accuracy (see Table 2.2). It should
	be noted that the DWTC framework also offers a header detection tool, but it contains several
	bugs that make its evaluation impossible.				
	Key Column Detection. In our implementation, the first step aims to identify a first low-level
	type for each cell among five given types (Object (mentions that are potentially lookup-able
	in a knowledge base), Number, Date, Unit (e.g. "12 km"), and Unknown (containing all the
	unclassified columns)) with regular expressions. Then we annotated each column with a type
	based on majority voting. The key column is an Object column containing a large number of
	unique values and is located on the left side of the table.		

Chapter 3. Semantic Table Interpretation Tasks and Methods of

  was developed by MetaWeb since 2007 until Google acquires it in 2010. a table comes down to identifying the entities mentioned in the table cells and the relationships between them. Therefore, mapping table content to KG entities can help identify latent relationships, and thus understand the table semantics. The key to map tables and target KGs is to examine the overlap of information between them. The wider the overlap is, the less difficult it is to find the mappings.

	Its content comes also from collaborative editing and structural data automatically
	imported from Wikipedia and other Websites. At the beginning of 2014, Freebase had 68
	million entities and nearly one billion facts. Freebase ceased operations in May 2015,
	and most of its data was transferred to Wikidata.
	• YAGO (Yet Another Great Ontology) [120] is a comprehensive knowledge base con-
	structed by researchers from the Max Planck Institute (MPI). While the first versions
	of YAGO were made out of information extracted from the Wikipedia infoboxes and
	attached to a schema made of the WordNet synsets, the latest version of YAGO now
	contains entities extracted from Wikidata anchored to the Schema.org schema. In 2020,
	YAGO released its fourth version containing 67 million entities and 340 million facts.
	KGs constitute essential assets to support the STI process. Indeed, understanding the content

Table Interpretation Tasks Figure

  

3.2: Illustration of five STI tasks for a table describing the UEFA Euro 2008 group A results a .

  Table type refers to the classification introduced in Section 2.1 where R=relational table, SR=single-cell relational table, V=vertical, H=horizontal.

	Gold standard	Table Type	#Tables	Avg. #Rows Avg. #Col #Entities	#Class	#Relations	Origin	KG	Year
	Limaye a	Manual Wiki_link	SR-H SR-H	437 6,085	37 20	2 2	10,930 131,807	747 -	90 -	Web Web	Wikipedia, YAGO Wikipedia
	T2D b	T2D c T2Dv2 d	SR-V SR-V	762 779	157 84	5 5	25,119 26,106	7,983 755	--	Web Web	DBpedia DBpedia
	WDC e	All	233,000,000	12	4	-	-	-	Web	-
	TabEL f	R	1,652,771	11	5	3,000,000	-	-	Wikipedia	YAGO
	QuTE g	R	1,766,721	13	5	-	-	-	Wikipedia	-
		R1	SR-H	64	142	5	8,418	120	116	Web	DBpedia
	SemTab 2019 h	R2 R3	SR-H SR-H	11,924 2,161	25 71	5 5	463,796 406,827	14,780 14,780	6,762 7,575	Web Synthetic	DBpedia DBpedia
		R4	SR-H	713	63	4	107,352	1,732	2,747	Synthetic	DBpedia
		R1	SR-H	34,295	7	5	985,110	34,294	135,774	Synthetic	Wikidata
		R2	SR-H	12,173	7	5	283,447	26,727	43,753	Synthetic	Wikidata
	SemTab 2020	R3	SR-H	62,614	6	4	768,325	97,586	166,633	Synthetic	Wikidata
		R4	SR-H	22,207	21	4	1,662,164	32,462	56,476	Synthetic	Wikidata
		ToughTables	SR-H	180	1,080	5	663,830	539	-	Synthetic	Wikidata
		R1-DBP	SR-H	180	1,081	4	663,656	540	-	Synthetic	DBpedia
		R1-WD	SR-H	180	1,081	4	667,244	540	-	Synthetic	Wikidata
		R2-Bio	SR-H	110	2,449	6	1,381,325	657	547	Synthetic	Wikidata
	SemTab 2021	R2-Hard	SR-H	1,750	17	3	47,440	2,191	3,836	Synthetic	Wikidata
		R3-Hard	SR-H	7,207	9	2	58,949	7,207	10,695	Synthetic	Wikidata
		R3-Git	SR-H	1,101	59	17	-	123 / 60	-	Github	DBpedia, Schema.org
		R3-BiodivTab	SR-H	50	260	24	31,468	614	-	Open data	Wikidata
		R1	SR-H	3,691	6	3	26,198	4,551	5,745	Synthetic	Wikidata
		R2-Hard	SR-H	4,648	6	3	22,006	4,534	3,954	Synthetic	Wikidata
	SemTab 2022 i	R2-2T (DBp) R2-2T (WD)	SR-H SR-H	144 144	1,008 1,180	4 4	486,203 586,118	429 443	--	Synthetic Synthetic	DBpedia Wikidata
		R3-Biodiv	SR-H	45	24	276	31,942	526	-	Open data	Wikidata
		R3-Git	SR-H	6,892	14	62	-	6,229/1,001	-/4,412	Web	DBpedia/Schema.org

a https://zenodo.org/record/3087000#.YbY5Lp7MJPY b The # class for the T2D dataset is the sum of the number of "table classes" and "column properties" in the original dataset. c http://Webdatacommons.org/Webtables/goldstandard.html d http://Webdatacommons.org/Webtables/goldstandardV2.html e http://www.Webdatacommons.org/Webtables/ f http://Websail-fe.cs.northwestern.edu/TabEL/ g https://www.mpi-inf.mpg.de/research/quantity-search/quantity-table-extraction h The SemTab series are indexed at https://www.cs.ox.ac.uk/isg/challenges/sem-tab/ i https://github.com/sem-tab-challenge/2022/tree/main/datasets

Table 3 .

 3 2: STI systems are classified into three families. We only consider the annotation tasks declared by the authors and when they have related evaluations. TA T i * T * j T 0 * T * * T out

	Approches Lookup Class based CEA CTA CPA R2I Heuristic Annotation Tasks Algorithm Venetis et al. [127]	Table Elements	KG Custom	Data Source Custom Web Tables	Published Year

  database to carry out the CPA. The isA database is built by using concept extraction techniques on 100 million English documents that contain the pattern "C [such as|i ncl ud i ng ]e[and |, |.].". They generate the relation database with the help of the TextRunner open extraction sys-

tem

[START_REF] Banko | The tradeoffs between open and traditional relation extraction[END_REF]

. The authors demonstrated that a hybrid model leveraging a Bayes rule and majority voting has the best performance. The Bayes rule measures the global relevance between cell values and column type labels in tables. The authors conclude that using a target knowledge base (YAGO) leads to higher precision. However, leveraging the isA database can significantly improve the coverage and allow to obtain more meaningful labels for complex or non-explicit table cells.

Table Interpretation Approaches

 Interpretation by PATTY from Wikipedia pages. Each relation r is represented by a set of textual patterns p 1 , ..., p k provided by PATTY. Note that a pattern p i can be associated with more than one relation. Semantic mentions in a pair of columns are linked to KG entities (YAGO) with exact matching. Two columns are connected via a relation r if each pair of entities (e 1 , e 2 ) in the same row belongs to this relation. To determine whether (e 1 , r , e 2 ) is a valid triple, textual contexts related to both e 1 , e 2 are extracted from NELL and are mapped to a list of patterns p 1 , ..., p k in PATTY. The problem then comes down to computing the posterior probability of r given evidences p 1 , ..., p k : P r (r |p 1 , ..., p k ). A Bayesian framework is used to compute this posterior.

  adopts the approach of generating comparison matrices (called INK embeddings) to speed up the computational efficiency. INK embeddings are representations of the attributes and values of an entity or the table context of a cell mention. The complete comparison matrix is generated by fusing multiple candidates. The system outputs CEA annotations by measuring the compatibility between the INK embeddings of the KG and the table. The INK embeddings of entities from the same column are collected to carry out CPA and CTA. For the annotation, the system focuses on the key column: they do the lookup (via public endpoints)

Semantic Table Interpretation Tasks and Methods RDF2vec

  vectors. Two classifiers (Random Forest and CNN) are trained on top of the document embeddings on 150,000 tables with 30 preset types. The evaluation shows that CNN outperforms the Random Forest classifier.

vectors with DBpedia pre-trained embeddings. The global representation vector (called document embeddings) of an infobox is the concatenation of Word2vec and Chapter 3.

5 Semantic Table Interpretation Approaches candidate

  This embedding is later input into a CNN model. It is worth noting that ColNet predicts the type of each column independently, and thus ignores the inter-column classes given the cells of the column. For each candidate class c, N different sets of h entities belonging to c in KG are retrieved and the associated word embeddings are stacked into a matrix M . This forms N training samples {M , c} for class c. To alleviate the computational complexity, the candidate classes that appear rarely are not modelled and h rows of the column are randomly selected to predict a type annotation. The type prediction of ColNet is then refined by the matching entities of inner cells through majority voting. Similar work includes

contextual information. To generate a training dataset, ColNet makes use of a KG to collect 3.

  table-to-KG matching including CEA and CPA tasks. Additionally,

in the pipeline, with the help of a table-to-KG matching step, their tool performs a novel entity discovery task. A classification model is based on syntactic similarity (e.g. edit distance, Jaccard distance) and semantic similarity (deep semantic matching method DRMM

[START_REF] Guo | A deep relevance matching model for ad-hoc retrieval[END_REF]

) between a table mention and corresponding candidate entities to determine whether the mention is linkable. If yes, at most one entity is predicted for this mention. Another classifier is then built on the cell annotations (CEA), exploiting column-wised features such as naive features (e.g. length of header), label similarity between header and properties of cell entities, value similarity between literal values (e.g. numerical, time) in the table and literal values of cell entities for the column property matching (CPA).

TURL

[START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF] 

pioneers the application of pre-trained language models such as BERT in the STI domain. It provides a universal contextualized representation for each table element (i.e. caption, header, content cells) which can be fine-tuned and applied in various downstream tasks such as CEA, CTA, CPA, or table augmentation. The table augmentation task mainly involves enriching the semantics of the table by extending it with new columns (attributes).

Semantic Table Interpretation Tasks and Methods Singh et al

  table elements to participate in the modelling of a specific element. For example, cells in the same row or the same column can interact with each other. Apart from the BERT's Masked Language Model objective, TURL introduces an additional Masked Entity Recovery objective to reinforce the learning of factual knowledge embedded in the table and represented by KG entities. The model is trained on 570K relational Wikipedia tables. . [112] introduces a method based on BERT for relation extraction from tables (CPA). Only two-column tables are studied in this work. The table is tokenized and transformed into linearized rows and linearized column headers that are passed through a pre-trained BERT encoder to obtain two vector representations for table content and table header. A fully-connected layer takes as input these two vector representations and predicts scores over all candidate relations in the two-column table. The model is trained on synthetic tables generated automatically from a KG. However, synthetic tables lack metadata such as column headers and captions. According to the authors, such metadata is important for the relation extraction task. Hence, they propose a novel method which generates synthetic tables associated with metadata (context of table contents, meaningful column headers).TCN[START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF] not only exploits intra-table contextual information but also inter-table contextual information for the two tasks CTA and CPA. According to the authors, the global context of a table can be complemented by discovering its implicit connections with other semantically related tables. Such inter-table connections can come from overlapping cell contents, con-Similarly to other Transformer-based models, the key idea of DODUO is to incorporate table contexts (intra-column and inter-column contexts) into the prediction of a single column type or a single column pair relation using a table-wise attention mechanism.The model serializes the input table column by column into a sequence of tokens in which each token represents either a column header or a column cell. A special [CLS] token is appended at the beginning of each column to distinguish two different columns. This token is also considered as the embedding representation of the column itself. During the inference phase, two different output layers perform two different tasks: one takes a single column representation (i.e. the hidden vector of the [CLS] token) as input and produces a semantic

	Chapter 3.

sistent schemas or similar table topics between two tables. The embedding representations of a specific table cell and the table topic are jointly learned leveraging intra-table contexts (i.e. other cells in the same column or the same row, the table topic) as well as inter-table contexts (i.e. the cells sharing the same value, the columns with a similar header and the topic from other related tables). All of these contexts are fused into the embedding through the attention mechanism. As in DODUO model

[START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF]

, the CTA and CPA tasks are trained in a supervised manner on two specific objective functions dedicated to column type prediction and column pair relation prediction, respectively. In addition, in the case where a large annotated training dataset is not available, TCN switches to transfer learning in which the ultimate cell embedding is fined-tuned with a BERT-like unsupervised pre-training. The evaluation shows that the inter-table contextual information contributes positively to the model's performance. However, the utilisation of inter-table context remains challenging since it requires prior knowledge about tables' schemas which are generally diverse.

DODUO

[START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF] 

learns to jointly annotate the column type and column pair relation through multi-task learning. type for this column accordingly, one takes a pair of column representations and predicts a

3.5 Semantic Table Interpretation Approaches

relation between them.

Table 3 .

 3 3: Top-3 systems for each dataset and their corresponding F1 score unless otherwise stated in the footnote.

	Dataset			CEA / Row-to-instance			CTA a / Topic annotation			CPA	
	Limaye b		TabEL c 0.894	TabEAno (Mtab ) [87] 0.88	T2K ++ 0.87	T2K ++ 0.88	Guo et al 0.852	MantisTable Mulwad et al. 0.84 0.89	T2K ++ 0.80	TableMiner+ 0.76
	T2D		TabEAno 0.91	Zhang et al. 0.90	Kruit et al. 0.89	ColNet d 0.976	Alobaid et al. [6] MantisTable 0.96 0.95	T2K ++ 0.91	Singh et al. 0.71	MantisTable 0.51
		R2	MTab 0.911	CSV2KG 0.883	Tabularisi 0.826	MTab 1.414	CSV2KG 1.376	Tabularisi 1.099	CSV2KG 0.881	IDLab 0.877	Tabularisi 0.790
	SemTab 2019	R3	MTab 0.970	CSV2KG 0.962	ADOG 0.912	MTab 1.956	CSV2KG 1.864	Tabularisi 1.702	MTab 0.844	CSV2KG 0.841	Tabularisi 0.827

Semantic Table Interpretation Tasks and MethodsTable 3 .

 3 [START_REF] Abdelmageed | JenTab Meets SemTab 2021's New Challenges[END_REF] gives the performance of the top three systems with the highest F1, AP, or AF1 scores

Semantic Table Interpretation Tasks and Methods robust

  to noise than the learning methods. On the other hand, learning methods need large training datasets which are not always easy to collect or generate. Some learning approaches limit the number of target candidates to alleviate the lack of training data.[START_REF] Deng | TURL: Table Understanding through Representation Learning[END_REF][START_REF] Hulsebos | Sherlock: A deep learning approach to semantic data type detection[END_REF][START_REF] Pham Minh | Semantic Labeling: A Domain-Independent Approach[END_REF][START_REF] Krishnamurthy Ramnandan | Assigning semantic labels to data sources[END_REF][START_REF] Suhara | Annotating Columns with Pre-trained Language Models[END_REF][START_REF] Wang | Tcn: Table convolutional network for web table interpretation[END_REF] 

	predict the CTA within a predefined set of around one hundred types. ColNet [25] deals with the
	data shortfall using data augmentation. The model is trained on data generated automatically
	from a KG. However, it takes hours to do a single annotation. Another challenge for learning
	approaches is the size of target tables. To perform the CTA, [56, 78, 98] rely on the statistical
	features computed from the table (e.g. distribution of number, length of string for each cell,
	etc.). These features are not statistically stable if the number of samples (i.e. table cells) is
	low. Finally, we also discovered that learning approaches do not consider thoroughly the
	hierarchy of types possibly used in a KG impacting the type specificity returned by the CTA
	task [78, 98, 115].

table and the target KG. Consequently, it may be challenged by incompleteness in the table, knowledge shifting of KG and incompatibility between the table and the KG. Matching methods are less Chapter 3.

Table 4 .

 4 2 provides the statistics of this dataset.

	Chapter 4. Heuristic-Based Semantic Table Interpretation		
	Wikidata version # triples # entities # predicates	
	July 2020	490M	86M	7,800	
	Circa 2017	100M	50M	8,200	
	Table 4.1: Overview of the Wikidata KG used in the challenge. A 2017 version was used in
	Round 1. The July 2020 version was used in Round 2, 3 and 4.		
		Round 1 Round 2 Round 3 Round 4
	# Tables	34K	12K	63K	22K
	# Cells to annotate	985K	283K	768K	1.66M
	# Unique cells to annotate	264K	138K	379K	531K
	Average cell length	20	21	20	21

Table 4 .

 4 2: Overview of the SemTab 2020 table corpus in each round. Several cells may contain the same text. Such cells are only counted once in the line "# Unique cells to annotate". The length of cells counts the number of characters.

		Round 1 Round 2 Round 3 Round 4
	Current time	44	64	268	102
	Ideal time	44	36	96	-

We provide in Table

4

.3 the complete lookup time for the Round 1, 2, and 3 (line "Current Time"). To construct our lookup service, we considered a pure Python Levenshtein module which has very poor performance (generally, 50 to 100 times slower than the more efficient Cython Levenshtein library

5 

). As a result, this lookup service is not optimized, taking about 268h (≈ 11 days) for the lookups of Round 3. In a future system, the Cython Levenshtein library can be used to significantly reduce the execution time. We roughly estimate the potential lookup time of such a future system (line "Ideal Time") by inducing the time of Cython Levenshtein usage from the pure Python Levenshtein's time.

Table 4 .

 4 3: Spark Lookup Time (in hours) for Round 1, 2, and 3 using 150 machines and for Round 4 using 5 clusters, each of 100 machines. "Current time" is measured using the pure Python Levenshtein module. "Ideal time" is the expected lookup time in a future system using the Cython Levenshtein library.

  To check if e i ∈ E c (n i ) is in N g r aph (e c ), we actually check if e i is connected to e c by a predicate path in the KG. We chose to compute such predicate paths since they are useful in the soft context scoring. To efficiently find predicate paths between e c and e i , we extract the one-hop subgraphs G e c and G e i around e c and e i . If an intermediate node v is present in both G e c

.6) indicates whether a neighboring cell n i of e m matches with a neighboring node of e c . Loosely speaking, computing sn i comes down to searching a candidate entity for n i in N g r aph (e c ) and to assessing its similarity. In our running example, Q18578267 is a candidate for cell "Bourgogne Franche Comté" in the twohop context N g r aph (Q171545) (Figure

4

.3b). From this observation, we propose the following way to efficiently compute sn i . The entity lookup step (Section 4.1) outputs candidate entities E c (e m ) for a target cell e m but also candidate entities E c (n i ) for its neighboring cells n i . Hence, we check if a candidate entity e i ∈ E c (n i ) is in N g r aph (e c ). In that case, sn i is simply calculated by comparing the labels of the neighboring cell n i and the matching node e i , which avoids additional comparisons with other nodes in N g r aph (e c ).

3 Multi-Hop Relations and Soft Context Scoring date

  , measurement with/without unit, number) since there is a lack of literal disambiguation methods (e.g., date-time normalization, unit detection/normalization/conversion).That is why, we set se i to 1.0 if the neighboring cell n i contains an entity, and to 0.15 if A neighboring cell on the left side of the table has more chance to be a meaningful context for the target cell. Hence, d (col i ) is the distance between column col i and the first object column of the table. Cells n i from a neighboring column highly connected to the target column should have a greater weight in the context. Hence, we take into account the connectivity cnt (col i ) of the neighboring column w.r.t. the target column, defined as the highest occurrence of a relation potentially found between the two columns.

	n i contains a literal.
	(4.8b) (4.8c)

.8) (4.8a) Cells containing entities should be more important than cells containing literals (e.g., 4.

Table 4

 4 

	.5. It

SemTab challenge in gray cells for comparison. To validate the modifications proposed in

Sections 4.1 and 4.2.1, we include the scores of the DAGOBAH 2020 system on tables annotated Chapter 4.

Heuristic-Based Semantic Table Interpretation with

  Wikidata in Round 1. Submission Settings {1,2,3,4}* are similar to Settings {1,2,3,4} but slightly differ in scores and weights initialization. This does not change CEA scores but impacts CTA performances. Indeed, CTA is highly sensitive to entity scores and taxonomy weights to select the most fine-grained type among the many possible (direct and ancestor) types of entities.That is why CTA scores are different between Evaluation and Submitted. Indeed, our strategy for most fine-grained type selection is very sensitive to entity score and taxonomy weight. A small change in score may not have large impact on CEA (confirmed by the similarity in CEA evaluation and submitted scores), but can result a different fine-grained type knowing that an entity has many possible types (directs, ancestors).

We report CEA, CTA, CPA (if applicable) results for Round 1 WDTable, DBPTale datasets and Round 2 synthetic HardTable, BioTable datasets and Round 3 BioDivTable datasets. In our opinion, WDTa and HardTable are, respectively, the most difficult and easiest datasets of Rounds 1 and 2.

table ' s

 ' global information carried out by the CTA and CPA annotations to generate more precise CEA annotations. For cell annotations, they evaluate whether a candidate entity e c ∈ E c (e m ) retrieved from the KG is a good representation of the corresponding table cell e m by incorporating the table context of e m and KG context of e c in the score of e c . Although these approaches show great performance for datasets like BioTable and HardTable from SemTab,

	they still have limitations as described in Section 5.3.1. First, the use of a unique column type
	or columns pairs relationship potentially propagates type (resp. relation) annotation error
	through cell annotations. Second, leveraging only entities' type (resp. relations) result does not
	allow to take into account more attributes and properties in the disambiguation process. For
	example, a column type may not bring necessary information such as a person's nationality,
	building localization, or object ownership for disambiguating entities. Facing these challenges,
	Radar Station first activates an ambiguity detection module that detects cases where the cell
	annotation is potentially wrong. Meanwhile, it considers entities' embeddings to leverage
	more similarity measures inside a given column.

Disambiguation Algorithm 1

  Radar Station disambiguation algorithm Require: Cell index C and ambiguities for each cell A m c i , c i ∈ C where the collected context entities (or senders) of the target column is E c . Candidate scores from the annotation system {Sc(e i )}, e i ∈ E c . Candidate embeddings {Em(e i )}, e i ∈ E c .

	Ensure: Entity annotation selected by Radar Station.
	1: build a KD-tree with all candidates' embeddings {Em(e i )}
	2: K ← mi n(|E f |, 20)
	3: for each cell c i from C do
	4:

  Rad ar Scor e am i ← Rad ar Scor e am i +

	8:	Rad ar Scor e am i ← 0
	9:	for each neighboring entity e j ∈ E k do
	10:		Sc(e j ) d i st ance(am i ,e j )
	11: 12:	end for Rad ar Scor e am i ←	Rad ar Scor e am i K
	13:	g (am i ) ← αRad ar Scor e am i + Sc(e j )
	14:	end for	
	15:		

  table understanding beyond the table context. Entities inside the same table column should be somehow corelated, which means they may share the same entity type, similar topics, or even attributes.

In order to have the most suitable embeddings given the latest version of Wikidata, we use the PyTorch-BigGraph framework

[START_REF] Lerer | Pytorch-biggraph: A large scale graph embedding system[END_REF] 

for training embeddings. The triples used for the training are collected from a Wikidata dump published in May 2021 2 . Before the training, the triples with literal values and Wikimedia disambiguation page entities (e.g. "Q1151870") are filtered out. The selection of the final embeddings is made given our empirical evaluation of Radar Station after fine-tuning the hyper-parameters. We consider two representative translational distance models (TransE

Embeddings-Based Semantic Table InterpretationTable 5 .

 5 In Pytorch-BigGraph, we use the translation operator for generating the TransE model. Unlike TransE's translation, RotatE[START_REF] Sun | Rotate: Knowledge graph embedding by relational rotation in complex space[END_REF] regards the relation as a rotational degree between heads and tails. It introduces a loss function based on h • r ≈ t for simulating the relation translation. We use the GraphVite's[START_REF] Zhu | Graphvite: A high-performance cpu-gpu hybrid system for node embedding[END_REF] pre-trained RotatE embeddings in our 5: Gold standard datasets for evaluating STI approaches. The ambiguities are based on DAGOBAH-SL scores

	Chapter 5. Gold standard #Tables Avg. #Rows Avg. #Col #Entities Ambiguities (t=1) Ambiguities (t=0.9)
	Limaye	437	37	2	5,143	181 (3.52%)	685 (13.31%)
	T2D	762	157	5	18,589	2,322 (12.49%)	8,852 (47.62%)
	2T_v2	180	1,080	5	661,297	30,686(4.64%)	86,739(13.11%)
	ShortTables	2,237	2	5	4,474	1,422 (31.78%)	1,822 (40.72%)
	experiments.					
	Semantic matching models measure the similarity between entities and relations during
	the training. DistMult [140] is based on a bilinear scoring function h T M r t , where M r is the
	relation matrix built on top of the entity. ComplEx [124] can be seen as a constrained variant
	of RESCAL [61] that leverages fewer relation dimensions inside a complex space. The ComplEx
	score is defined as Re(h T d i ag (r )t ). In Pytorch-Biggraph training, we use the diagonal operator

The training intends to adjust the three vectors from a given triple (h, r, t ) to the synchronized state until h + r ≈ t .

Table 5 .

 5 6: Radar Station evaluation based on DAGOBAH-SL scores. AP: Ambiguity quality, PA: Precision inside ambiguities, GP, Global precision

	t	Methods	AQ	Limaye PA	GP	AQ	T2D PA	GP	AQ	2T_v2 PA	GP	AQ	ShortTables PA	GP
		DAGOBAH-SL		0.168 0.853		0.053 0.785		0.023 0.870			0.194 0.654
		RS + TransE		0.630 0.870		0.294 0.813		0.041 0.871			0.355 0.673
	1	RS + RotatE	0.647	0.636 0.870	0.308	0.289 0.812	0.067	0.044 0.871	0.672	0.363 0.673
		RS + DistMult		0.391 0.861		0.163 0.798		0.034 0.870			0.229 0.658
		RS + ComplEx		0.57 0.869		0.171 0.798		0.036 0.870			0.235 0.659
		DAGOBAH-SL		0.296 0.853		0.180 0.785		0.208 0.870			0.302 0.654
		RS + TransE		0.528 0.872		0.312 0.815		0.230 0.872			0.414 0.673
	0.95	RS + RotatE	0.614	0.542 0.873	0.332	0.312 0.815	0.327	0.235 0.872	0.671	0.418 0.674
		RS + DistMult		0.377 0.860		0.230 0.797		0.213 0.870			0.328 0.659
		RS + ComplEx		0.435 0.864		0.233 0.798		0.219 0.870			0.334 0.660
		DAGOBAH-SL		0.432 0.853		0.241 0.785		0.300 0.870			0.414 0.654
		RS + TransE		0.570 0.872		0.323 0.815		0.313 0.872			0.532 0.684
	0.9	RS + RotatE	0.653	0.578 0.873	0.336	0.322 0.814	0.500	0.318 0.872	0.714	0.536 0.684
		RS + DistMult		0.475 0.860		0.274 0.797		0.303 0.870			0.466 0.668
		RS + ComplEx		0.494 0.862		0.275 0.798		0.306 0.870			0.471 0.669

5.3.4 Evaluation Settings

We aim to evaluate the performance of Radar Station on the ambiguity lists and how it can influence the global annotations. Thus, we use three indicators including Ambiguity Quality (AQ), Precision inside Ambiguities (PA), and Global Precision (GP). AQ (Equation

5

.8) shows the quality of generated ambiguity list after the Ambiguity Detection step, that is, how many ambiguous cells contain a ground truth in its top candidates. It indicates the extreme precision that we could achieve in all ambiguous annotations, which is PA in Equation

5

.9. GP (Equation

5

.10) is the overall precision in all labelled cells considering annotations generated with or without Radar Station. consistency of two reviewers' ratings of the category items, commonly used in the comparison between new discrete data and the gold standard to detect whether the new data has a certain 105 Chapter 5.
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 5 7: Gold standard datasets for evaluating STI approaches with RotatE embeddings. AP: Ambiguity quality, PA: Precision inside ambiguities, GP, Global precision

	Dataset	System	t	AQ	Original output PA GP	PA	Radar Station	GP
		DAGOBAH-SL	0.9	0.653	0.432	0.853	0.578 (+0.146)	0.873 (+0.020)
	Limaye	MTab	0.83	0.820	0.705	0.857	0.787 (+0.082)	0.875 (+0.018)
		BBW	0.65	0.587	0.359	0.563	0.507 (+0.148)	0.597 (+0.034)
		DAGOBAH-SL	0.95	0.332	0.180	0.785	0.312 (+0.132)	0.815 (+0.030)
	T2D	MTab	0.71	0.385	0.295	0.837	0.346 (+0.051)	0.857 (+0.020)
		BBW	0.65	0.263	0.192	0.364	0.253 (+0.061)	0.382 (+0.018)
	effect on accuracy. Cohen's Kappa coefficient is formulated as follows:
				kappa =	P o -P e 1 -P e		(5.11)

  One of the examples is that structured tabular data is widely used in the field of Machine Learning where the approaches leverage features from different columns to train a predictive model. Those Machine Learning models are mostly data-driven where the performance of the trained model always depends on whether the training datasets are clean or not. Augmenting a given table with new columns or updated cell values provides additional features to improve the quality of the input data.

Table Augmentation tasks. The life cycle of tabular data and the coverage of background knowledge represented in open or enterprise KGs can vary. This situation generates differences between tables published by organisations and open or enterprise

KGs that are continuously curated: information is missing, dimensions are eluded since they are deemed useless by the data producer, etc. However, in many use cases (e.g., dataset search, profiling and recommendation), the completeness and richness of the data have positive effects and are desirable qualities. Once annotated, tables can be enriched with additional elements from the supporting KG. The purpose of table augmentation is to extend an existing table with additional data. It includes filling the table with new rows and columns or finding missing cell values. These tasks are also known as data imputation and schema augmentation.

Applications of Semantic Table Interpretation 139

  Table augmentation aims to extend a given table using other sources as background knowledge. ]. We prioritised data imputation and schema augmentation tasks because they were more important for our use cases in the industry.

	The background knowledge could come from other tables, a knowledge graph, or textual
	information from the training data of a given language model. Based on our observation from

the literature, three different subtasks of table augmentation have been introduced so far, namely row population

[START_REF] Das Sarma | Finding related tables[END_REF][START_REF] Zhang | Entitables: Smart assistance for entity-focused tables[END_REF]

, data imputation

[START_REF] Yakout | Infogather: entity augmentation and attribute discovery by holistic matching with web tables[END_REF][START_REF] Zhang | Auto-completion for data cells in relational tables[END_REF]

, and schema augmentation

[START_REF] Sekhar Bhagavatula | Methods for exploring and mining tables on wikipedia[END_REF] Chapter 6. 

  corresponds to extending a given table with new columns. One possible way to achieve the goal leverages the given table corpus as the background. The Mannheim Search Joins Engine[START_REF] Lehmberg | The mannheim search join engine[END_REF] operates by searching for tabular data describing entities in the local table, then picks relevant columns from the top-k candidate tables to merge.[15] targets column-matched tables with the local table and performs correlation mining to numeric columns of given Wikipedia tables. InfoGather[START_REF] Yakout | Infogather: entity augmentation and attribute discovery by holistic matching with web tables[END_REF] is a table augmentation framework based on PageRank for matching the local table against web tables. The context surrounding the tables is leveraged in a machine learning framework, where the similarity between two tables is captured via a set of features. The optimized version InfoGather+[START_REF] Zhang | Infogather+ semantic matching and annotation of numeric and time-varying attributes in web tables[END_REF] 

  Table augmentation refers to the task of extending an existing table with additional data. In DAGOBAH UI[START_REF] Sarthou-Camy | DAGOBAH UI: A New Hope For Semantic Table Interpretation[END_REF], we provide semi-automatic table augmentation features including data imputation and schema augmentation, where we aim to find missing cell values and populate a table with new columns. For each task, DAGOBAH UI provides a list of candidate values (resp. types) for each missing-value cell (resp. potential columns) and lets the user choose their appropriate data. The system is driven by the annotation generated by DAGOBAH SL and enriches the table based on the information of the mapped KG.
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 1 

	-2

https://www.orange.com/en

https://commoncrawl.org/

https://scrapy.org/

https://cloud.arangodb.com/

https://scrapy.org/

https://www.alexa.com/topsites

https://moz.com/top500

https://commoncrawl.org/2020/10/host-and-domain-level-Web-graphs-julaugsep-2020/

https://kafka.apache.org/

https://www.mediawiki.org/wiki/API:REST_API

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

https://wikitextparser.readthedocs.io/en/latest/

https://www.elastic.co/elasticsearch/

https://www.elastic.co/fr/kibana/

https://grafana.com/

https://www.datadoghq.com/

http://www.Webdatacommons.org/Webtables/

https://github.com/ziqizhang/data/tree/master/Webtable%20entity%20linking

http://www.cs.ox.ac.uk/isg/challenges/sem-tab/

In Table3.2, we use the following notions: "R2I" indicates the task "Row-to-instance"; 'TA" indicates the task "Topic annotation"; "T i * " indicates that, when labeling a cell, information from the same row is used; "T * j " indicates that the approach leverages information from the target column (CEA, CTA) or columns (CPA); "T 0 * " means that the approach has a special treatment on the headers of the table; "T * * " indicates that the approach considers information from all tables elements, including inter-columns influence and training the model with the whole table; "T out " indicates that the approach not only uses the target table itself for annotation but also considers metadata, including other tables associated with the target table and the text near the original target table.

https://www.arangodb.com/

https://spacy.io/

https://github.com/facebook/duckling

https://bitbucket.org/disco-unimib/lamapi

https://www.bing.com/search

https://www.wikidata.org/w/api.php

https://lookup.dbpedia.org/

https://github.com/sem-tab-challenge/aicrowd-evaluator

In the context of the SemTab challenge series, the target cells are provided. In general, DAGOBAH has a module that enables inferring a primitive type for any arbitrary cell so that lookups are only triggered on cells that have entities as values.

Since target cells are given in the SemTab challenge, this feature is not used in our experiments.

https://github.com/Wikidata/Wikidata-Toolkit

https://pypi.org/project/python-Levenshtein/

Neighboring elements are object (resp. subject) of triples whose subject (resp. object) is e c .

https://www.wikidata.org/wiki/Help:Ranking

Neighboring nodes are connected to e c via predicate paths in the KG, regardless of the predicate direction.

https://developer.orange.com/apis/table-annotation

We have tested 4 times where 2 times ended with success and we receive the errors for the rest

https://openrefine.org/

This example is actually modeled in the file 'file405599 0 cols1 rows23.csv' from the Limaye dataset

We made this system open-sourced in GitHub: https://github.com/Orange-OpenSource/radar-station

https://archive.org/details/wikibase-wikidatawiki-20210521

http://Webdatacommons.org/Webtables/goldstandardV2.html

http://Websail-fe.cs.northwestern.edu/TabEL/

https://zenodo.org/record/6211551
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 4.4: Results of the DAGOBAH system in Rounds 1, 2, 3, and 4 of the SemTab 2020 challenge. "F1" stands for F1-score, "P" stands for Precision, and "C" stands for Coverage. The coverage is the ratio between the number of annotations proposed by the system and the number of targets to annotate. We also report on the score of MTab as this is the challenge winner.

Evaluation

We used DAGOBAH SL during the SemTab 2020 challenge. In this venue, DAGOBAH SL leverages mutual influences between annotations allowing our team to obtain very competitive results on all tasks of the SemTab 2020 challenge.

Table 4.4 provides the annotation scores (F1-score, precision, and coverage) of our system for the three tasks in Rounds 1, 2, 3, and 4 of the challenge. It should be noted that during the Round 1, we built the lookup service based on an old version of Wikidata (from 2017) that contains fewer entities (50 millions vs. 86 millions in 2020 version), which has resulted in incomplete lookups, and thereby hindered the annotation results as discussed in Section 4.5.

Note that the datasets used in Rounds 1, 2, and 3 are automatically generated in a synthetic way by adding some artificial noise (Synthetic Tables). Interestingly, in Round 4, beside a synthetic dataset, a novel corpus (Tough Tables [START_REF] Cutrona | Tough tables: Carefully evaluating entity linking for tabular data[END_REF]) is introduced and consists of a set of high quality manually-curated tables with complex patterns of cells (e.g., ambiguous names, typos). The results clearly show that a simple, yet optimised, model can achieve very good performance on the SemTab 2020 synthetic corpus. This is partly explained by the fact that a row in any tables from this corpus is fully represented in the Wikidata Knowledge Graph (KG). As a consequence, a good lookup service with high coverage and a well-tuned matching strategy are enough to produce very competitive results.

We observe that one difficulty concerns the dynamic and evolving nature of KGs such as Wikidata. During Round 1, we used an outdated KG version. Hence, the lookup service was not able to retrieve relevant candidates for ≈ 5% of the target cells, leading to a significant drop for this cell and the user could select one of them or keep all of these candidates.

Multi-Hop Relations and Soft Context Scoring

Result and Analysis

We have manually extracted 100 tables from the T2D corpus as the dataset for evaluation.

For each table, we mask one cell as the target empty cell for data imputation, where half of the empty cells are located in subject columns (introduced in Section 2.1.2) and the rest are located in attribute columns that describe the attributes of subjects. We let DAGOBAH UI generate a candidate entity list for each empty cell and manually evaluate the generated list according to the following metrics.

Let K equals the number of empty cells, we introduce the precision indicator and the quality indicator for the evaluation with the following functions:

Discussions

In this chapter, we introduce the functionalities of triples to enrich KGs. At the same time, we aim to optimise the system by using the literal values from the table. Currently, we only make use of the entity columns from the annotation results, however, the numbers, units, and long sentences from the table also help to precise the enrichment. Furthermore, our future work also includes the evaluation of DAGOBAH UI usability with real users. To this aim, the availability of DAGOBAH UI within the company will allow us to collect interesting feedbacks to progress on the adoption of STI tools.

Future Work

Suppose for instance a table where a column contains the last names of writers (which can be very common), and another column related to books' titles (for the sake of the example, we assume the majority of these books have been adapted for the cinema). If the target KG covers extensively movies but only a few literature works (or is less accurate on books than movies), the annotation process might lead to type the second column as "film", which could lead to wrongly disambiguate the mentions in the first column (if some related actors have similar last names for example). As a result, this table will be interpreted as an actors-movies item instead of the correct writers-books target.

Some existing mechanisms, such as giving a confidence score for each candidate, can help filtering the incorrect annotations further. The T2Dv2 benchmark, for instance, added negative examples that can be leveraged to that end. However, rare studies focus on this challenge which is far from being trivial as it implies to have the capability to identify the KG coverage w.r.t. the tables to be processed, as well as to detect the possible errors. To improve both the completeness and the correctness, we believe that leveraging multiple KGs is the first step to make. Indeed, it could enhance the coverage and provide a basis for confidence scoring through popularity computation. However, evaluation procedures should be discussed and updated as judging from different sources might be challenging. Finally, we highlight that our future approaches will also consider to tackle domains where only nascent KGs exist, with the objective of using STI to augment these KGs in a virtuous iterative loop.

In Table 3.3, many annotation systems (e.g., MTab,DAGOBAH SL) achieve very high performances on some synthetic datasets (e.g., SemTab 2020, SemTab 2021 R2-Hard). This can be explained since synthetic tables are automatically and accurately generated using a reference KG (see Section 3.4). Therefore, their content is almost fully represented in the KG and provides rich discriminative information for the disambiguation. In contrast, manually curated tables (R3-BiodivTable), complex tables (ToughTable), or tables coming from diverse and specific domains (R3-GitTables) are still particularly challenging for annotation systems. In real situations, KGs are often incomplete. As a consequence, an existing entity may not be fully described in a KG (e.g., lack of literal attributes for a given entity), or an unpopular/heterogeneous domain may provide little information (e.g., R3-GitTables is made of tables from GitHub). Hence, the graph context provided by the KG can sometimes be insufficient for disambiguating tables in R3-BiodivTable, ToughTable, and R3-GitTables, which are much more ambiguous than synthetic tables. We aim to optimise the current systems that could enrich and better handle both explicit and implicit contextual information by exploiting knowledge graph reasoning or table representation learning (e.g., Transformer) to improve the performance on these kinds of table datasets.
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