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NOTATIONS

Notations with font style

C ,M ,H General vector spaces
T,B,H Sets
x,θ,0,1 Vectors
τ, λ, α Scalars
f, g, p, d, κ, ι Functions
A,K Matrices and operators

Standard notations in convex optimization

Rm
+ Space of non-negative vectors

V ∗ Topological dual space of normed space V
A∗ (Pre-)Adjoint operator of operator A
AT Transpose of matrix A
h∗ Conjugate of convex function h
κ◦ Polar function of gauge function κ
∇f Gradient of f (in the sense of Fréchet)
dom h Domain of function h
∂h Subdifferential of convex function h
x⋆ An optimal vector solution

Non-standard notations

at ∈ H The atom function evaluated at some t
ai ∈ Rm The ith column of matrix A
x(i) ∈ R The ith coordinate of vector x

Table 1 – Notations.
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SUMMARY

Summary in French

Cette thèse concerne une large classe de problèmes d’optimisation convexe (éventuelle-
ment non lisse), pénalisés, qui peuvent être exprimés comme suit :

min
x∈M

f(Ax) + g(x),

où f : H → R ∪ +∞, g : M → R ∪ +∞ sont des fonctions convexes et A : M → H

est un opérateur linéaire. Ici, M est un espace de Banach (éventuellement non réflexif)
et H est un espace de Hilbert.

La fonction objectif comprend deux termes : une fonction lisse f appelée terme d’ajustement
des données, et une fonction non lisse g appelée terme de pénalisation qui impose une
structure aux solutions optimales. Ce problème revêt une importance dans divers do-
maines, notamment l’apprentissage automatique, la statistique et le traitement du sig-
nal/de l’image.

Dans l’ère du big data, les problèmes d’optimisation en dimensions finies impliquent
fréquemment des variables de haute dimension, ce qui pose des défis pour les procé-
dures de résolution numérique. Un défi majeur concerne la complexité. Les algorithmes
d’optimisation traditionnels tels que les méthodes basées sur le gradient, les méthodes
proximales, les méthodes de points intérieurs et la méthode de Newton présentent sou-
vent des complexités computationnelles par itération qui croissent (au moins) linéairement
avec la dimension du problème. Un autre défi notable concerne les contraintes de mémoire,
car stocker ou manipuler de grandes matrices peut devenir impraticable, en particulier
lorsqu’il s’agit de traiter des ensembles de données massifs.

Au cours de la dernière décennie, les méthodes de safe screening ont émergé comme
des techniques efficaces pour réduire la dimension des problèmes pénalisés par la norme
ℓ1, c’est-à-dire g = λ ∥·∥1 pour un paramètre de contrôle λ > 0. Un problème important
de cette classe est le célèbre problème LASSO (également connu sous le nom de problème
de débruitage de poursuite de base). Récemment, les techniques de safe screening ont été
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étendues à divers problèmes en dimensions finies présentant différents termes de régulari-
sation. Au cœur des méthodes de safe screening et de leurs extensions se trouve le concept
d’une safe region, qui est un ensemble englobant la solution optimale duale (unique). Une
safe region efficace devrait avoir une géométrie simple tout en contenir étroitement la
solution optimale duale. La conception d’une safe region efficace est devenue un point
central de la recherche active dans ce domaine.

Cette thèse apporte deux contributions majeures : Premièrement, elle introduit une
nouvelle famille de safe regions ainsi que des cadres généraux qui unifient les safe regions
existantes ; Deuxièmement, elle étend la méthodologie de safe screening à des paramètres
infinis définis dans l’espace des mesures, avec des applications pour réduire la complexité
d’une procédure numérique.

Nouvelles safe regions et cadres unificateurs. Nous introduisons trois nouvelles
safe regions : la boule FBI, le demi-espace Hölder et la boule géométrique.

Notre première safe region, appelée boule FBI, découle d’une inégalité novatrice ap-
pelée l’Inégalité de Fenchel Bregman (FBI). Cette inégalité implique la décomposition de
l’écart dual en deux quantités non négatives : la divergence de Fenchel (associée à g) et
la divergence de Bregman (associée à f). Cette décomposition nous permet d’obtenir une
estimation précise de l’emplacement de la solution optimale duale, en supposant la con-
dition modérée de continuité Lipschitz du gradient de f . En particulier, nous démontrons
que toutes les safe regions en boule proposées au cours de la dernière décennie, selon notre
connaissance, sont soit des cas particuliers, soit des ensembles contenant la boule FBI.

La deuxième safe region est le demi-espace Hölder, qui contient l’ensemble dual réalis-
able lorsque g est une fonction jauge. Lorsqu’il est combiné avec la boule FBI, cela donne
naissance à une nouvelle région bornée appelée le dôme FBI. Notamment, le demi-espace
Hölder sert également de cadre unificateur pour les demi-espaces existants.

Enfin, mais de manière significative, nous fournissons une formule générale en forme
fermée pour la plus petite boule en termes de rayon, centrée arbitrairement, englobant
un certain dôme donné. Bien que cette approche ait été utilisée par plusieurs chercheurs
dans des contextes de dimension finie dans la littérature, elle a souvent été appliquée
dans des configurations spécifiques sans spécifier explicitement la formule générale pour
la construction. Ce résultat comble cette lacune. Notez que notre construction est valable
dans n’importe quel espace de Hilbert.

En résumé, ces contributions n’introduisent pas seulement de nouvelles safe regions,
mais offrent également une perspective complète pour élucider les relations complexes
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entre les safe regions existantes. Nous pensons que cette compréhension servira de base à
d’éventuelles avancées dans l’étude des safe regions à l’avenir.

Safe screening sur l’espace des mesures. La deuxième contribution étend le
principe de safe screening aux problèmes régularisés par la norme de variation totale (TV),
c’est-à-dire que nous considérons g = λ ∥·∥TV pour un certain λ > 0. Ces problèmes sont
de dimension infinie et sont définis dans l’espace des mesures de Radon supportées par
un ensemble de paramètres compact T .

Tout d’abord, nous établissons une règle de safe screening analogue pour le problème
pénalisé par la norme TV en exploitant la condition d’optimalité dans la théorie de du-
alité Fenchel-Rockafellar. Cette règle de sélection permet d’identifier les éléments dans T
pour lesquels la solution optimale primale a une masse nulle. Plus précisément, elle fa-
cilite l’identification des éléments dans T qui n’appartiennent pas au support des mesures
optimales primales.

Cependant, cette règle de safe screening rencontre deux limitations pratiques : i) elle
dépend de la connaissance de la solution optimale duale ; ii) elle ne sélectionne qu’un seul
élément dans T , alors que l’ensemble de paramètres T comprend un nombre infini non
dénombrable de paramètres. Pour résoudre le premier problème, nous pouvons utiliser
une safe region. En ce qui concerne le deuxième problème, plutôt que de sélectionner un
seul élément dans T , nous pouvons suivre la technique dite de safe screening conjointe
qui sélectionne un sous-ensemble de T .

Par la suite, nous explorons l’application de la méthode de safe screening proposée
pour accélérer une technique de résolution des problèmes régularisés par la norme de
variation totale (TV). En particulier, nous nous concentrons sur une procédure récente de
résolution pour le problème régularisé par la norme TV connue sous le nom de Refinement
Grid Based (RGB).

Le concept fondamental de la méthode RGB consiste à discrétiser de manière itérative
l’ensemble de paramètres T en cellules (segments en 1D, carrés en 2D et cubes en 3D)
et à résoudre la version de dimension finie du problème régularisé par la norme TV sur
les sommets de la grille. Cela transforme efficacement le problème en problèmes LASSO.
À chaque itération de la méthode RGB, un problème LASSO est résolu sur une grille
nouvellement raffinée de sommets pour améliorer la précision de la méthode.

Cependant, la méthode RGB fait face à un défi important lié aux goulots d’étranglement
computationnels résultant de la partition de la grille. Bien que les auteurs aient démontré
théoriquement que la croissance de la taille de la grille (nombre de cellules) peut être
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contrôlée, en pratique, elle a tendance à augmenter de manière significative même lorsque
T appartient à des espaces de basse dimension.

Pour résoudre ce problème, nous intégrons l’approche de safe screening avec la méthode
RGB. À chaque itération, nous utilisons la safe screening pour identifier et exclure un
certain nombre de cellules de la grille RGB, réduisant ainsi efficacement la taille des
problèmes LASSO à résoudre.

Notamment, nous prouvons que l’intégration de la safe screening dans RGB réduit
non seulement la complexité de la méthode RGB, mais préserve également les propriétés
de convergence de la méthode originale. Nous appelons cette propriété souhaitable la
consistance entre la safe screening et la méthode RGB.

En résumé, notre deuxième contribution étend l’application de la méthodologie de safe
screening des problèmes de dimension finie impliquant une pénalisation par la norme ℓ1

à des problèmes de dimension infinie incorporant une pénalisation par la norme TV. De
plus, nous explorons l’efficacité de la safe screening pour atténuer la complexité compu-
tationnelle de la méthode de résolution RGB tout en garantissant la consistance. Cette
contribution souligne le potentiel de la safe screening pour accélérer la résolution de prob-
lèmes de dimension infinie.
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Summary in English

This thesis concerns a broad class of (possibly non-smooth) penalized convex opti-
mization problems, which can be expressed as:

min
x∈M

f(Ax) + g(x),

where f : H → R∪{+∞}, g : M → R∪{+∞} are convex functions and A : M → H is
a linear operator. Here M is a (possibly non-reflexive) Banach space and H is a Hilbert
space.

The objective function comprises two terms: a smooth function f called the data fitting
term, and a non-smooth function g called penalization term that imposes structure on
the optimal solutions. This problem holds significance in various fields, including machine
learning, statistics, and signal/image processing.

In the era of big data, optimization problems in finite-dimensions frequently involve
high-dimensional variables, posing challenges for numerical solving procedures. A pri-
mary challenge involving complexity issue. Traditional optimization algorithms, such as
gradient-based methods, proximal-based methods, interior-point methods, and Newton’s
method, often exhibit computational complexities per iteration that grow (at least) lin-
early with the dimension of the problem. Another notable challenge pertains to memory
constraints, as storing or manipulating large matrices can become impractical, especially
when dealing with massive datasets.

In the past decade, safe screening methods have emerged as efficient techniques for
reducing the dimension of ℓ1-norm penalized problems, i.e., g = λ ∥·∥1 for some control
parameter λ > 0. One important problem in this class is the well-known LASSO problem
(a.k.a. Basis Pursuit Denoising problem). Recently, the safe screening techniques have
been extended to various finite-dimensional problems featuring different regularization
terms. Central to the safe screening methods and their extensions is the concept of a safe
region, which is a set encompassing the (unique) dual optimal solution. An effective safe
region should have a simple geometry while tightly contain the dual optimal solution. The
design of an effective safe region has become a focal point of active research in this field.

This thesis makes two primary contributions: First, it introduces a novel family of
safe regions along with general frameworks that unifies existing safe regions; Second, it
extends the safe screening methodology to infinite-dimensional settings defined on the
space of measures with applications in reducing the complexity of a numerical procedure.

13



Summary

New safe regions and unifying frameworks. We introduce three novel safe re-
gions: FBI ball, Hölder half-space and geometric ball.

Our first safe region, named FBI ball, originates from a novel inequality termed the
Fenchel Bregman Inequality (FBI). This inequality involves the decomposition of the dual
gap into two non-negative quantities: the Fenchel divergence (associated with g) and the
Bregman divergence (associated with f). This decomposition enables us to obtain a tight
estimation for the location of the dual optimal solution, assuming the mild condition
regrading the gradient Lipschitz continuity of f . Specifically, we prove that all safe ball
regions proposed in the last decade, according to the best of our knowledge, are either
special cases or supersets of the FBI ball.

The second safe region is the Hölder half-space, which contains the dual feasible set
when g is a gauge function. When combined with the FBI ball, it gives rise to a new
bounded region referred to as the FBI dome. Notably, the Hölder half-space also serves
as a unifying framework for existing safe half-spaces.

Lastly, yet significantly, we provide a general closed-form formula for the smallest
ball in terms of radius, centered arbitrarily, that encompasses some given dome. While
this approach has been employed by several researchers in finite-dimensional settings in
the literature, it has often been applied in specific setups without explicitly specifying
the general formula for the construction. This result bridges this gap. Note that our
construction holds in any Hilbert space.

In summary, these contributions not only introduce new safe regions but also offer
a comprehensive perspective for elucidating the intricate relationships among existing
safe regions. We believe that this understanding will serve as a foundation for potential
advancements in the study of safe regions in the future.

Safe screening on space of measures. The second contribution extends the safe
screening principle to total variation (TV) norm regularized problems, i.e., we consider
g = λ ∥·∥TV for some λ > 0. These problems are of infinite-dimension and are defined on
the space of Radon measures supported on a compact parameter set T .

First, we establish an analogous safe screening rule for the TV-norm penalized prob-
lem by leveraging the optimality condition in Fenchel-Rockafellar duality theory. This
screening rule enables the identification of elements in T for which the primal optimal
solution has zero mass. To be more precise, it facilitates the identification of elements in
T that do not belong to the support of the primal optimal measures.

Nevertheless, this safe screening rule faces two practical limitations: i) it relies on
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knowledge of the dual optimal solution; ii) it screens only a single element in T , whereas
the parameter set T comprises an infinite uncountable number of parameters. To address
the first issue, we can employ a safe region. Regarding the second issue, rather than
screening a single element in T , we may follow the so-called joint safe screening technique
which screens a subset of T .

Subsequently, we explore the application of the proposed safe screening method to
expedite a solving technique for TV-norm penalized problems. In particular, we focus on
a recent solving procedure for TV-norm penalized problem known as the Refinement Grid
Based (RGB) method.

The fundamental concept of the RGB method involves iteratively discretizing the
parameter set T into cells (segments in 1D, squares in 2D, and cubes in 3D) and solving
the finite-dimensional version of the TV-norm penalized problem over the grid vertices.
This effectively transforms the problem into LASSO problems. In each iteration of the
RGB method, a LASSO problem is addressed over a newly refined grid of vertices to
improve the method’s precision.

Nevertheless, the RGB method faces a significant challenge related to computational
bottlenecks arising from grid partitioning. While the authors have theoretically demon-
strated that the growth in grid size (number of cells) can be controlled, in practice, it
tends to expand dramatically even when T belongs to low-dimensional spaces.

To address this issue, we integrate the safe screening approach with the RGB method.
In each iteration, we utilize safe screening to identify and exclude a number of cells from
the RGB grid, effectively reducing the size of the LASSO problems that need to be solved.

Notably, we prove that the integration of safe screening into RGB not only reduces
the complexity of the RGB method but also preserves the convergence properties of the
original method. We term this desirable property as consistency between the safe screening
and RGB method.

In summary, our second contribution extends the application of the safe screening
methodology from finite-dimensional problems involving ℓ1-norm penalization to infinite-
dimensional problems incorporating TV-norm penalization. Additionally, we explore the
effectiveness of safe screening in mitigating the computational complexity of the RGB
solving method while achieving a consistency guarantee. This contribution underscores the
potential of safe screening in accelerating the resolution of infinite-dimensional problems.
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Chapter 1

INTRODUCTION

Abstract. Regularization plays a pivotal role in convex optimization problems appear-
ing in various fields, including statistics, machine learning, signal and image process-
ing. These optimization problems often yield solutions with specific structures, such
as sparsity. Recently, innovative methods have emerged that leverage these structural
characteristics to develop dimensionality reduction techniques, such as screening rules.
At the core of these state-of-the-art methods lies the concept of safe region, which is
a set containing optimal solutions of the dual problem.

This thesis makes a twofold contribution. Firstly, we introduce a family of safe
regions with ball and dome geometries, referred to as FBI regions. These regions are
rooted in what we term the Fenchel Bregman Inequality (FBI), and our results re-
veal that all existing safe regions, up to our knowledge, can be seen as special cases
within this family. Secondly, we extend the safe screening principle to address reg-
ularization problems involving the total variation norm, defined within the space of
Radon measures. We also seamlessly integrate this screening approach into a novel al-
gorithm, the Refinement Grid Based method. Remarkably, our approach preserves the
iterative solutions, thereby maintaining convergence speed, while significantly reducing
computational complexity.
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Chapter 1 – Introduction

The goal of this chapter is to provide a quick overview of the context and the contri-
butions of the thesis. It is organized as follows. In Section 1.1, we introduce the concepts
pivotal to our study, namely “safe screening” and “safe region”. Following this, Section 1.2
provides a brief outline of the main contributions of the thesis. Lastly, in Section 1.3, we
elaborate on the manuscript’s structure.

1.1 Context

General convex optimization problem. In this thesis, our focus is on a broad class
of (possibly non-smooth) convex optimization problems, which can be expressed as:

min
x∈M

f(Ax) + g(x), (1.1-pfg )

where f : H → R ∪ {+∞}, g : M → R ∪ {+∞} are convex functions and A : M → H

is a linear operator. Here M is a (possibly non-reflexive) Banach space and H is a
Hilbert space. This model includes finite-dimensional problems if M and H are of finite-
dimension.

This type of problem is ubiquitous in machine learning, statistics or signal/image
processing, see e.g., [16]. By decomposing the objective function pfg into two parts, we often
assume that f is a well-behaved function 1 while g encodes all the technical complexities
such as non-smoothness. Therefore, we emphasize that problem (1.1-pfg ) is not a restrictive
model but rather a general model with refined structure.

The challenge of solving high-dimensional optimization problems. In the era
of big data, optimization problems frequently involve high-dimensional variables. This
presents challenges for numerical procedures [97].

One of the main challenges is the complexity of the numerical procedures address-
ing these problems. Traditional optimization algorithms, such as gradient-based methods,
proximal-based methods, interior-point methods and Newton’s method, often have com-
putational complexities per iteration growing (at least) linearly with the dimension of the
problem. Another challenge is about memory constraints since storing or manipulating
large matrices can be infeasible, particularly when dealing with massive datasets.

To address these challenges, a promising approach is to reduce the dimension of the
problem before or during the solving process. This reduction of the problem dimension

1. In this thesis, we will assume that f is gradient Lipschitz.
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1.1. Context

can significantly improve computational efficiency and alleviate memory constraints.

Dimension reduction for structured problems. A widely advocated way to reduce
the dimension of some optimization problem is to exploit some known structure of its
solutions. One notable example of procedure following this strategy is the so-called “safe
screening” method proposed in the seminal work [52]. The terminology and idea of this
dimensionality reduction technique will be concisely outlined below.

Safe region. A pivotal concept in the construction of dimensionality-reduction techniques
(such as safe screening mentioned above) is the notion of “safe region”. Letting 2

u⋆ ∈ arg max
u∈H

−f ∗(−u) − g∗(A∗u) (1.2-dfg )

be the pre-dual problem of (1.1-pfg ), we say that some subset S ⊂ H is a safe region if

u⋆ ∈ S. (1.3)

In other word, a safe region is a subset of the dual space provably containing a maximizer of
the pre-dual problem. The construction of “good” safe regions is one of the central theme
of this thesis. We demonstrate below the crucial role of these regions in the construction
of effective safe screening methods.

Dimension reduction by identification of the zeros. Consider the following ℓ1-norm
penalized problem:

min
x∈Rn

f(Ax) + λ ∥x∥1 , (1.4-pfλ∥·∥1
)

where f : Rm −→ R ∪ {+∞} is some proper, closed, convex function, A ∈ Rm×n and
λ > 0. We note that (1.4-pfλ∥·∥1

) is a particular instance of (1.1-pfg ) with g = λ ∥·∥1.
In the sequel, to simplify our exposition we will assume that the problem (1.4-pfλ∥·∥1

)
admits a unique optimal solution, denoted by x⋆.

It is important to note that using the ℓ1-norm as a penalization function induces a
sparsity structure in x⋆, meaning that most of the coordinates of x⋆ are zeros. For instance,
in the case of the LASSO problem (where f = ∥b − ·∥2

2 /2 for some b ∈ Rm), it is known
that x⋆ will have at least n−m zero entries [49, Theorem 6.1]. This observation highlights
the prevalence of sparsity in the optimal solution, particularly when m ≪ n.

2. Here f∗ and g∗ denote the convex conjugate of f and g, respectively, A∗ is the pre-adjoint operator
of A. We note that if A ∈ Rm×n, then A∗ = AT.
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Chapter 1 – Introduction

We now illustrate how the knowledge of the position of zero/non-zero entries in x⋆

can help reducing the problem dimension. Let

L ⊇ {i ∈ {1, . . . , n} : x⋆(i) ̸= 0} (1.5)

be some set provably containing the indices of the non-zero elements of x⋆. Then, prob-
lem (1.4-pfλ∥·∥1

) can be equivalently rewritten as

min
xL∈R|L|

f(ALxL) + λ ∥xL∥1 , (1.6)

where xL and AL denote the restriction of x and A to their coordinates and column
indices in L, respectively. We note that, depending on the cardinality of L, problem (1.6)
can be of much lower dimension than (1.4-pfλ∥·∥1

). In particular, if equality holds in (1.5)
and the minimizer x⋆ is very sparse, we typically have |L| ≪ n. In this case, address-
ing problem (1.6) rather than (1.4-pfλ∥·∥1

) leads to significant advantages, as enhanced
computational efficiency and reduced memory storage.

Safe screening. Screening (also sometimes called “feature elimination”) refers to a tech-
nique to construct some superset L verifying (1.5). These names stem from the observation
that estimating L is equivalent to recognizing the zero entries in the optimal solutions x⋆,
which in turn implies the elimination of non-contributing columns in the matrix A.

Screening methods have been extensively studied in the literature and can be classified
into two categories: safe and unsafe approaches. The exploration of unsafe screening
methods predates that of the safe approaches. Two of them are e.g., strong screening [86]
and sure screening [44] with a short overview presented in [72]. The significant drawback of
the unsafe approaches is their potential to mistakenly eliminate relevant features, resulting
in the removal of non-zero entries in the optimal solution x⋆. On the other hand, safe
screening, which is one of the main focuses of this thesis, provably removes entries that
are guaranteed to be zero in x⋆.

Considering problem (1.4-pfλ∥·∥1
), the basic idea of most safe screening methods of the

literature is as follows. Let

u⋆ ∈ arg max
u∈Rm

− f ∗(−u) (1.7-dfλ∥·∥1
)

s.t. |⟨ai,u⟩| ≤ λ,∀i = 1, ..., n
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1.1. Context

be the dual problem of (1.4-pfλ∥·∥1
), where ai is the ith column of matrix A. Assuming

that u⋆ is unique, standard optimality conditions lead to 3

|⟨ai,u⋆⟩| < λ =⇒ x⋆(i) = 0. (1.8)

In other words, detecting that some dual constraints are not saturated by the dual optimal
solution u⋆ lead to the conclusion that some elements of the primal solution are zeros.

Unfortunately, solving the dual problem is usually as complex as solving the target
primal problem. Nevertheless, as first suggested by El Ghaoui et al in [52], the left-hand
side of (1.8) can be relaxed if some “safe region” for u⋆ is known. More specifically,
assuming that one knows some set S verifying (1.3), we have

sup
u∈S

|⟨ai,u⟩| < λ =⇒ x⋆(i) = 0. (1.9)

It is clear from the above expression that depending on the choice of S: i) evaluating the
left-hand side of (1.9) may or not be tractable; ii) the left-hand side of (1.9) may or not
be a good proxy for (1.8). In the following, we will briefly describe the basic principles on
which practioners rely to choose a “good” safe region with respect to these criteria.

Constructing “good” safe regions. Roughly speaking, a good safe region should pos-
sess “simplicity” and “tightness”, that is to say, should ensure that the evaluation of the
supremum in (1.9) is straightforward and that supu∈S |⟨ai,u⟩| closely approximates the
value of |⟨ai,u⋆⟩|.

The “simplicity” criterion is usually addressed by enforcing S to have (by construction)
some desirable geometry. For example, letting S = B(c, r) be a ball with center c and
radius r, we have

sup
u∈S

|⟨ai,u⟩| = |⟨ai, c⟩| + r∥ai∥2, (1.10)

that is the complexity required to compute the supremum is dominated by the evaluation
of one inner product. On top of balls, several other “simple” geometric shapes have been
explored in the literature: dome (intersection of ball and half-space) [96], refined dome
(intersection of ball and two half-spaces) [97, Section 4.5] or ellipsoid [23]. Among these
options, the simplest (and the most popular) geometries are balls and domes, which have

3. This is known as the complementary slackness in the Karush–Kuhn–Tucker (KKT) optimality
conditions.
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Chapter 1 – Introduction

garnered substantial attention in the research literature and will be the main focus of this
thesis.

The design of “tight” safe regions with a given geometry is a challenging task that
has sparked the interest of many researchers in the recent years. We refer the reader to
Table 1.1 and Chapter 2 for a review of the existing safe ball/dome constructions of the
literature. Hereafter we make a small focus on one of the most influential result proposed
during the last decade, namely the “GAP” ball [45]. The GAP ball is proven to be safe
for any problem (1.1-pfg ) with f is α−1-gradient-Lipschitz and g is a norm. It is defined as

BGAP(x,u) ≜ B

u,
√

2 GAP(x,u)
α

, (1.11)

where (x,u) denotes some primal-dual couple and GAP(x,u) is the duality gap defined
as the difference between the primal value (1.4-pfλ∥·∥1

) and dual value (1.7-dfλ∥·∥1
). We note

(for the sake of comparison with one of the results derived in this thesis) that the GAP
ball is a consequence of the following inequality, valid for any primal-dual feasible couple
(x,u):

α

2 ∥u⋆ − u∥2
2 ≤ GAP(x,u). (1.12)

We also emphasize that, provided that strong duality and the continuity of dual gap, the
radius of the GAP ball can be made arbitrarily small by choosing proper instances of
primal-dual couples. Because of this nice feature, the GAP ball has played a dominant
role in this field of safe regions with several improvements proposed in [72, 25, 27] and
many applications [72, 28, 24, 26, 40, 65, 43, 54, 53].
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Year Safe region Relation Safeness inequality
2010 SAFE ball [52] ⊃ BFBI(0,u) B ≤ C, D = 0
2014 SLORES ball [93] ⊃ BFBI

(
x⋆λ0 ,

λ
λ0

u⋆λ0

)
B ≤ C, D = 0

2014 SASVI ball [66] = BFBI(0,u) A+B ≤ C, D = 0
2015 DPP ball [92] ⊃ BFBI

(
λ
λ0

x⋆λ0 ,
λ
λ0

u⋆λ0

)
A ≤ C, D = 0

2015 EDPP ball [92] = BFBI

(
τx⋆λ0 ,

λ
λ0

u⋆λ0

)
A+B ≤ C, D = 0

2015 GAP ball [45, 72] ⊃ BFBI(x,u) A ≤ C +D
2016 FNE ball [67] = BFBI(x,u) A+B ≤ C, D = 0
2021 DEDPP ball [99] = BFBI(2γx,u) A+B ≤ C +D

2022 SFER ball [75] = BFBI

(
x⋆λ0 ,

λ
λ0

u⋆λ0

)
A+B ≤ C, D = 0

2022 x-GAP ball [59] ⊃ BFBI(x,u) B ≤ C +D
2023 FBI ball (this work) = BFBI(x,u) A+B ≤ C +D

2012 ST half-space [96] = HHö(ei0)
2014 SASVI half-space [66] = HHö(x⋆λ0)
2015 GAP excluding ball [45] ⊃ HHö(x)
2023 Hölder half-space (this work) = HHö(x)

2012 ST dome [96] = DFBI(ei0 ,0,u)
2014 SASVI dome [66] = DFBI

(
x⋆λ0 ,0,

λ
λ0

u⋆λ0

)
2015 GAP dome, moon [45] ⊃ DFBI(x,0,u)
2022 DSASVI dome [99, 87] = DFBI(x,0,u)
2022 SFER dome [75] = DFBI

(
ei0 ,x⋆λ0 ,

λ
λ0

u⋆λ0

)
2023 FBI dome (this work) = DFBI(x′,x,u)

2011 ST2 ball [95] is a geo. ball
2011 ST3 ball [95] is a geo. ball
2023 geo. ball (this work)

Table 1.1 – The proposed safe regions unify existing safe regions. The third column com-
pares the existing safe regions with the proposed regions based the thos choice of x and
u. The fourth column presents the safeness inequality of existing safe ball regions using
(1.13-FBI) as a reference. We refer the readers to Section 2.2.3 for the notations and
overview of safe regions and to Chapter 3 for the proofs of comparisons.

1.2 Contributions

The contributions of this thesis can be split into two main groups including the in-
troduction of new safe regions (see Section A below) and an extension of safe screening
methods to space of measures (see Section B below). Section C contains the description
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Chapter 1 – Introduction

of some additional side results which have been derived during the thesis.

A. New safe regions. Our three main results are summarized below and correspond
to the material presented in Chapter 3.

A1. FBI ball. Our first result is called the “Fenchel Bregman Inequality” (FBI). This
inequality implies two main outcomes. First, its immediate consequence establishes the
safeness of a new ball region, named “FBI ball”. Second, it offers a comprehensive frame-
work that characterizes existing safe ball regions as special cases.

The result regarding the FBI is detailed in Lemma 3.1.2, which proves that if strong
duality holds between (1.1-pfg ) and (1.2-dfg ) and the loss function f is α−1-strongly smooth
(i.e., its gradient ∇f is α−1-Lipschitz continuous), then the following inequality holds true
for any pair of primal-dual feasible vector (x,u):

α

2 ∥u⋆ − u∥2
H︸ ︷︷ ︸

A

+ α

2 ∥u⋆ − rx∥2
H︸ ︷︷ ︸

B

≤
GAP(x,u)︷ ︸︸ ︷

Bregf∗−,−Ax(u, rx)︸ ︷︷ ︸
C

+ Feng(x,A∗u)︸ ︷︷ ︸
D

. (1.13-FBI)

where rx = −∇f(Ax) and f ∗−(·) = f ∗(−·). For the precise definitions of Fenchel diver-
gence Fen and Bregman divergence Breg please refer to equations (B.3) and (B.4), re-
spectively. This inequality provides an upper bound estimation on the (weighted squared)
distance between optimal dual solution u⋆ and u/rx as a function of the dual gap. We
also show that the latter can be expressed as a sum of non-negative quantities involving
Fenchel and Bregman divergences.

The first implication of FBI is the derivation of a new safe region, namely the “FBI
ball”. Indeed, by rearranging the terms of (1.13-FBI), one can easily verify that the fol-
lowing ball region is safe:

BFBI(x,u) ≜ B

u + rx

2 ,

√
GAP (x,u)

α
− ∥u − rx∥2

H

4

.
The formal statement of this result can be found in Theorem 3.1.3.

When compared to the GAP safe ball region defined in (1.11) (by choosing H = Rm

in (1.2) and considering g as a gauge function), the following remarks can be raised.
First, the squared radius of the FBI ball is (at most) half the size of that of the GAP ball.
Second, it can be seen from (1.13-FBI) and (1.12) that the FBI ball is a strict subset of the
GAP ball. Consequently, the FBI ball provides (in some sense) a more precise estimation
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1.2. Contributions

of the value of u⋆ than the GAP ball.
It is important to emphasize that the FBI goes beyond merely representing the safeness

condition of the newly-proposed safe region: it also enriches our comprehension of other
existing safe ball regions. In essence, the FBI serves as a general inequality, providing a
unifying framework which, to the best of our knowledge, encompasses the safeness inequal-
ities for all known safe ball regions. A sequence of results, from Corollaries 3.1.8 to 3.1.16,
substantiates this assertion and is summarized in the first part of Table 1.1. This table
presents a two-tiered comparison, with the third column indicating the choice of (x,u)
for which an existing safe ball region and the FBI ball can be compared. The last column
elucidates their relationship using safeness inequality, employing the (1.13-FBI) as a ref-
erenced inequality. Therefore, the third and fourth column thus serve as the “blueprint”
for distinguishing between the existing safe ball regions.

From a theoretical perspective, the generality of FBI ball provides an explanation
for the intricate relationships among the existing safe regions. This understanding sheds
light on the underlying structure and connections between different safe regions, offering
insights into their properties and potential improvements in the future.

A2. Hölder half-space and FBI dome. Our next result pertains to a safe region
characterized by a half-space geometry structure, referred to as “Hölder half-space”. In
the context of the LASSO problem, this result was previously published in our conference
paper [87]. In this thesis, we prove that the Hölder half-space is also safe for a more
general class of problems. When combined with the FBI ball, it yields a new bounded
region, dubbed “FBI dome”. Interestingly, the FBI dome encompasses existing safe dome
regions as particular cases.

Here, we assume that regularization function in (1.1-pfg ) corresponds to a scaled version
of some gauge function κ, 4 i.e., g = λκ for some tuning parameter λ > 0. In this case,
the pre-dual problem (1.2-dfg ) takes the form:

max
u∈Uλκ

−f ∗(−u)

where
Uλκ = {u ∈ H : κ◦(A∗u) ≤ λ}

and κ◦(z) ≜ sup{⟨z,x⟩ : κ(x) ≤ 1,x ∈ M } denotes the polar of κ. In particular, we ob-

4. For the definition of gauge function and its polar, please refer to Definitions B.1.11 and B.1.17.
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serve that the dual feasible set Uλκ satisfies the following relation:

Uλκ ⊂
⋂

x∈M

H(Ax, λκ(x)),

see the proof of Theorem 3.2.1. From this observation, we define the “Hölder half-space”
associated with a primal point x as:

HHö(x) ≜ H(Ax, λκ(x)). (1.14)

We note that the safeness of HHö(x) can be written as

⟨Ax,u⋆⟩ ≤ κ◦(A∗u)κ(x) ≤ λκ(x),

where the first inequality is a generalization of Hölder inequality. This motivates the name
“Hölder” given to the safe region (1.14).

Since a dome region is defined as the intersection of a ball and a half-space, one can
exploit the new half-space (1.14) to construct new safe dome regions. In particular, if the
safe ball region is an instance of FBI ball, we call the resulting region “FBI dome” :

DFBI(x′,x,u) ≜ HHö(x′) ∩BFBI(x,u).

In the thesis, we emphasize that this new dome generalizes previous results of the litera-
ture. In particular, by specifying a particular choice for x, we obtain the cutting half-space
employed in the ST dome [95] and SASVI domes [66, 99]. Furthermore, it can be proven
to be a subset of GAP dome [45]. These comparison results are stated in Corollaries 3.2.8
to 3.2.11 and summarized in Table 1.1.

A3. Geometric ball. In the literature, a common method for constructing a safe region
involves creating a ball (with the smallest possible radius) that contains a given safe dome
region. However, it is important to note that in the literature, such balls are typically
constructed under a specific condition: the center lies on the hyperplane of the half-space
used to define the dome, see ST2 and ST3 balls in [95].

In this thesis, we present a general closed-form formula for the minimum-volume ball
with an arbitrary center encompassing a given dome. More specifically, let D = B(c, r) ∩
H(g, s) be a dome and let B(v, rv) be the smallest ball centered at v ∈ H containing
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1.2. Contributions

D. 5We show in Proposition A.3.5 that

rv =


∥v − c∥H + r, if cos(g,v − c) ≥ −ψD,√

∥v − vP∥2
H +

(
∥vP − cP∥H + r

√
1 − ψ2

D

)2
, otherwise.

(1.15)

where vP denotes the projection of v onto the hyperplane P associated with half-space H
and ψD ≜

s− ⟨g, c⟩
r ∥g∥H

denotes the intersection index of dome region D, see (A.8). We name

this region “geometric ball” since its construction only relies on geometric arguments.
Regarding the generality of geometric ball, one can see that the safe ball region ST2 and

ST3 [95] are instances of geometric ball. This observation is also summarized in Table 1.1.
Furthermore, under a specific setup, one can show that our new FBI ball can be seen as
a particular instance of geometric ball, see Theorem 3.3.2.

B. Safe screening on a space of measures. The second main contribution of this
thesis is the extension of the safe screening principle to TV-norm regularized problems,
which are infinite-dimensional problems defined on the space of Radon measures (see
Section B.1). We demonstrate that within this context, safe screening can be effectively
applied to enhance the performance of a recent method, namely Refinement Grid Based
solver [48] (see Section B.2).

B1. Extending safe screening principle. Let T ⊂ Rd be a compact set and M =
M (T,R) be a space of real-valued Radon measures with support on T . Here M is a
non-reflexive Banach space endowed with the so-called total variation norm ∥·∥TV . Let
A : M → H be a linear operator, which is defined by Ax =

∫
t∈T at dx(t), 6 for some

atom function a : t ∈ T 7→ at ∈ H . Here the problem we consider is 7

min
x∈M

f(Ax) + λ ∥x∥TV , (1.16)

where f : M → R∪ {+∞} is convex. This problem is a specific instance of (1.1-pfg ) with
g = λ ∥·∥TV for some λ > 0.

Under certain conditions, the optimal solution of (1.16) exhibits a sparse structure,

5. Here, we use the notation rv to insist on the fact that this radius depends on v.
6. Here, the integral takes value in a Hilbert space H rather than R, therefore, it should be understood

in the sense of Bochner integral, see [22, Appendix E].
7. A more comprehensive description of our target problem (1.16) (with further assumptions on f and

A) can be found in Section 4.1.
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i.e., x⋆ = ∑n
i=1 wiδti

, where (wi, ti) ∈ R × T for i = 1, . . . , n, see [32]. Here δt denotes the
Dirac mass (spike) at location t ∈ T . Here for simplicity, we assume that x⋆ is unique.

To solve (1.16), various methods have been developed in the literature, as reviewed
in [64]. In these approaches, one often involves the task of tuning the weights of a huge
number of Dirac masses resulting high-dimensional problems. Efforts to reduce the pa-
rameter set T - the locations of Dirac masses of the optimal solution - can substantially
enhance computational efficiency and resolution speed. This idea draws parallels to the
idea of safe screening. However, current safe screening principles are only applicable for
finite-dimensional optimization problems.

One contribution of Chapter 4 is to demonstrate that an analogous safe screening rule
can be applied to our infinite-dimensional problem (1.16). More specifically, we have for
any t ∈ T :

|⟨at,u⋆⟩| < λ =⇒ t /∈ supp x⋆. (1.17)

where u⋆ is an optimal dual solution (will be assumed to be unique) and supp denotes
the support of measure. This result is formally stated in Theorem 4.2.1. Note that (1.17)
holds without any assumption on the structure of the solution x⋆. In particular, our safe
screening principle also applies when (1.16) admits some solution which are continuous
measures (i.e., the measure with density function).

Unsurprisingly, the screening rule (1.17) also presents practical challenges since: i) it
relies on the knowledge of u⋆; ii) it only screens one single parameter, while the parameter
set T contains an infinite uncountable number of parameters.

To address the first issue, as previously discussed, we can employ a safe region S, for
instance, the FBI safe ball region. Note that our FBI regions remain safe for general vector
spaces. For the second issue, instead of screening a single parameter t, we may screen a
subset Θ of T . This approach is known as the joint safe screening [58]. The resulting
screening rule becomes:

sup
(θ,u)∈Θ×S

|⟨aθ,u⟩| < λ =⇒ Θ ∩ supp x⋆ = ∅. (1.18)

We also refer to (1.18) as a joint safe screening rule in the space of measures with formal
statement given in Theorem 4.2.2.

B2. Accelerating “Refinement Grid Based” method with safe screening. A
recent solving procedure for (1.16) known as Refinement Grid Based (RGB) method was

28



1.2. Contributions

proposed in [48]. The basic idea of RGB method is to iteratively discretize the parameter
set T into cells (segments in 1D, squares in 2D and cubes in 3D) and solve the finite-
dimensional version of (1.16) over the grid vertices, effectively transforming it into LASSO
problems. In other words, in each iteration of RGB method, we need to solve a LASSO
problem over a newly refined grid vertices. A convergence analysis for this method is also
established.

However, the RGB method encounters a notable issue related to computational bot-
tlenecks due to the dyadic partition of the grid. Although the authors have theoretically
shown that the growth in grid size (number of cells) can be controlled, it tends to expand
dramatically in practice, even when T belongs to a low dimensional space.

As a first investigation of application of safe screening in the context of measures, we
study the application of safe screening in conjunction with RGB method. Specifically, at
each iteration, we employ safe screening (1.18) to identify and exclude some useless cells
from the grid, see Algorithm 1 in Section 4.3.2. Remarkably, we demonstrate that the
integration of safe screening into RGB yields two crucial properties: 1) It does not affect
the splitting cell process, 2) It does not alter the k-iteration solution x(k), for all k ≥ 0.
We refer to this as a consistency result, see Theorem 4.3.2. Consequently, we assert that
the inclusion of joint safe screening preserves the convergence results established in the
RGB method with potentially significant savings (and no major additional computational
cost).

C. Side results. In Appendix A, we study the properties of geometric regions such
as balls, half-spaces and domes regions in the general Hilbert spaces. In Appendix B,
we revisit some basic notions in convex optimization and discuss the Fenchel-Rockafellar
duality under various sufficient equivalent conditions.
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Chapter 1 – Introduction

1.3 Organization

In this section, we summarize the results obtained in each chapter of the thesis.

Chapter 2. This chapter introduces dimensionality reduction methods for convex op-
timization problems of the form (1.1-pfg ), encompassing safe screening, safe squeezing
techniques and beyond. Additionally, we outline the criteria that an “effective” safe re-
gion should fulfill and provide a concise literature overview of all existing safe regions to
the best of our knowledge.

Chapter 3. In this chapter, we introduce several novel safe regions and conduct a com-
prehensive comparison with existing safe regions, the summary of which can be found in
Table 1.1.

In Section 3.1, we define a safe region known as the FBI ball (see Theorem 3.1.3). Re-
markably, this ball encompasses all existing safe ball regions as special cases or supersets,
as detailed in Corollaries 3.1.8 to 3.1.16.

In Section 3.2, we introduce two safe regions: the Hölder half-space (Theorem 3.2.1)
and the FBI dome (Theorem 3.2.4). These results also generalize the existing safe regions
with half-space and dome geometry, as demonstrated in Corollaries 3.2.8, 3.2.9 and 3.2.11.

In Section 3.3, we present an explicit construction for the so-called geometric ball with
an arbitrary center and smallest radius containing a given dome region, which is outlined
in Proposition A.3.5. We show in Theorem 3.3.2 that under a suitable setup, FBI ball can
be considered as an geometric ball associated with a certain FBI dome.

Chapter 4. This chapter studies the application of safe screening principle to the total
variation norm regularization problem (1.16), examining its integration with the newly
introduced Refinement Grid Based solver.

In Section 4.1, we provide the preliminaries for (1.16) including the space of Radon
measures, dictionary operator, inverse problem on the space of measures and a brief
overview of solving methods.

In Section 4.2, we extend safe screening principle to total variation norm regular-
ization problem (1.16) including the ideal rule (1.17) and the practical rule (1.18), see
Theorem 4.2.1 and Theorem 4.2.2, respectively.

In Section 4.3, we propose a modification of Refinement Grid Based solver by integrat-
ing joint safe screening method (1.18) into it, see Algorithm 1. Additionally, we provide
consistency guarantee for this modified solver in Theorem 4.3.2.
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1.3. Organization

Appendix A. In this appendix, we provide closed-form expressions of geometric regions
including balls, half-spaces and domes in general Hilbert spaces.

Appendix B. In this appendix, we revisit the basic notions in convex optimization and
study the various sufficient conditions of the Fenchel-Rockafellar duality.
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Chapter 2

AN OVERVIEW OF SAFE SCREENING AND

SAFE REGIONS

Abstract. In this chapter, we provide a concise introduction to various dimension-
ality reduction methods tailored for convex optimization problems. These encompass
safe screening, safe squeezing, and their variants. Central to these approaches is the
concept of safe region. Consequently, we delve into the essential criteria that define
an effective safe region and proceed to present a thorough overview of all existing safe
regions in the literature to the best of our knowledge.
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Chapter 2 – An overview of safe screening and safe regions

2.1 Safe screening and extensions

In this section, we revisit the fundamental ideas behind some dimensionality reduction
techniques for convex optimization problems, such as safe screening, safe squeezing, and
their variations. Our primary goal is to explain why the concept of “safe region” emerges
in these methods and why it is essential in practical implementations. However, the formal
definition of “safe region” in general setups is postponed until the next section. At the
end of this section, we will also briefly discuss the complexity trade-off when integrating
these methods within numerical solving procedures.

2.1.1 Screening

Consider the following ℓ1-norm penalized problem:

min
x∈Rn

f(Ax) + λ ∥x∥1 , (2.1)

where f : Rm → R ∪ {+∞} is a closed proper convex function, A ∈ Rm×n and λ > 0.
This problem is a particular case of (1.1-pfg ) with g = λ ∥·∥1, H = Rm and M = Rn.
Here, we also impose the technical assumption that f is differentiable on dom(f) =
Rm. Furthermore, we suppose that (2.1) admits a unique minimizer, denoted x⋆. We
note however that the latter assumption is not essential but rather made to simplify our
exposition.

The parameter λ controls the penalization norm. In particular, if λ exceeds the thresh-
old λmax =

∥∥∥AT∇f(0Rm)
∥∥∥

∞
, the origin will be a (somewhat trivial) optimal solution

of (2.1), see [72, Proposition 4]. We therefore assume that λ < λmax in the sequel.
A well-known special case of (2.1) arises when the data fitting term f takes the form

of a least squares function, specifically f(·) = 1
2 ∥b − ·∥2

2 for some b ∈ Rm. This problem is
known as the Least Absolute Shrinkage and Selection Operator (LASSO) [85] in statistics
or Basis Pursuit Denoising [19] in signal processing.

It is known that the solution of (2.1) exhibits some “sparse” structure, that is most of
its coordinates are zeros. The intuition is because the optimal solutions are often located
at the extreme points (the vertices) of the (scaled) polytope defined by ℓ1-norm unit ball,
see Figure 2.1. 1 For a more rigorous statement regarding sparsity in the case of LASSO

1. Taking LASSO as an example, one can show that if x⋆ is an optimal solution to
min{f(Ax) : ∥x∥1 ≤ τ} for some τ > 0, then there exists some λ such that x⋆ is also optimal to (2.1),
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2.1. Safe screening and extensions

Figure 2.1 – A 2D visualization of sparse solution x⋆ of (2.1). The square is the ℓ1-norm
unit ball and the curves are level sets of x 7→ f(Ax).

problem, please refer to [49, Theorem 6.1], which shows that (under uniqueness assump-
tion) the LASSO solution has at least n − m zero entries. For a broader understanding
of the structure of the solution induced by general convex penalization functions, please
refer to [12, Theorem 1].

We now describe how to leverage the sparsity of x⋆ to define a problem equivalent
to (2.1) but with reduced dimension. Let L be some superset of the coordinates corre-
sponding to nonzero elements of x⋆, i.e.,

L ⊇ {i ∈ {1, . . . , n} : x⋆(i) ̸= 0}. (2.2)

Then, problem (2.1) is equivalent to

min
xL∈R|L|

f(ALxL) + λ ∥xL∥1 , (2.3)

where xL and AL denote the restriction of x and A to their coordinate indices and column
indices in L, respectively. We note that if one can identify many zero entries of x⋆, then
the problem (2.3) is of much smaller dimension than (2.1). In practice, solving (2.3)
instead of (2.1) may thus offer significant advantages in terms of complexity and memory
storage. Specifically, since the solution x⋆ contains at most m non-zero elements, the gain
in complexity (per iteration) or storage is at least n

m
if all the zeros are identified.

At this stage, the problem is to estimate L. To do so, one can leverage the problem’s
optimality conditions. In particular, x⋆ must verify Fermat’s rule [5, Proposition 2.61],

see [50, Proposition 3.2 (c)]. This explains the interpretation of Figure 2.1.
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Chapter 2 – An overview of safe screening and safe regions

i.e.,
0Rn ∈ AT∇f(Ax⋆) + ∂λ ∥x⋆∥1 . (2.4)

Here, notice that ∇f is well-defined due to our differentiability assumption on f . Moreover,
the subdifferential of the ℓ1-norm is given by (see [6, Example 3.41]):

∂λ ∥x∥1 = {z ∈ Rn : ∥z∥∞ ≤ λ, ⟨z,x⟩ = λ ∥x∥1}

= {z ∈ Rn : z(i) = λsign(x(i)) if x(i) ̸= 0, z(i) ∈ [−λ, λ] if x(i) = 0}.

Letting
u⋆ ≜ −∇f(Ax⋆), (2.5)

the optimality condition (2.4) can thus be equivalently expressed as:

⟨ai,u⋆⟩ =


λ, if x⋆(i) > 0,

s ∈ [−λ, λ], if x⋆(i) = 0,

−λ, if x⋆(i) < 0.

(2.6)

Taking the duality point of view, one can prove that u⋆ is actually the unique optimal
solution of the Fenchel-Rockafellar dual problem of (2.1), 2 i.e.,

u⋆ = arg max
u∈Uλ∥·∥1

−f ∗(−u), (2.7)

where
Uλ∥·∥1

= {u ∈ Rm : |⟨ai,u⟩| ≤ λ,∀i = 1, . . . , n} (2.8)

is a polytope referred to as dual feasible set. Here ai denotes the ith-column of A. In this
context, the optimality conditions (2.5) and (2.6) are known as the Karush–Kuhn–Tucker
conditions, with (2.6) being equivalent to the so-called complementary slackness condition.

Assuming that u⋆ is known, we can use (2.6) to identify some zero entries in x⋆ as
follows: if the absolute value of the inner product between the ith column of A and
the dual optimal solution u⋆ is strictly less than λ, then the corresponding entry in the
optimal solution x⋆ is guaranteed to be zero. This observation forms the main principle
underlying most “safe screening” methods of the literature and is summarized in the

2. Here, the uniqueness of u⋆ follows from the uniqueness of x⋆ and their relation (2.5).
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2.1. Safe screening and extensions

following implication:
|⟨ai,u⋆⟩| < λ =⇒ x⋆(i) = 0. (2.9)

In practice, solving the dual problem (2.7) to find u⋆ is unfortunately equally challenging
as solving the primal problem (2.1). Hence, (2.9) is of poor practical interest to identify
the zeros of x⋆. One approach to address this issue is to replace the inequality in (2.9)
with a more practical test. This is where the concept of a “safe region” comes into play.
A set S ⊂ Rm is called a safe region if it verifies:

u⋆ ∈ S. (2.10)

Assuming that a safe region S is known, (2.9) can then be relaxed as follows:

sup
u∈S

|⟨ai,u⟩| < λ =⇒ x⋆(i) = 0. (2.11)

Safe regions thus play a critical role in the design of practical safe-screening tests. In the
following, we present a simple example illustrating how a safe region can be constructed
for the LASSO problem. Further discussion on more advanced constructions of safe regions
will be presented in the next section.

Example 2.1.1 (Concrete example of safe screening method for LASSO). Consider
LASSO and its dual problem:

min
x∈Rn

1
2 ∥b − Ax∥2

2 + λ ∥x∥1 = max
u∈Uλ∥·∥1

1
2 ∥b∥2

2 − 1
2 ∥b − u∥2

2 (2.12)

where b ∈ Rm, λ > 0 and Uλ∥·∥1
is defined in (2.8). The dual problem is actually a

closest point projection problem of b onto Uλ∥·∥1
, therefore, ∥u⋆ − b∥2 ≤ ∥u − b∥2 for all

u ∈ Uλ∥·∥1
. Thus, the ball with center at b and radius ∥b − u∥2 is a safe region. In this

case, the screening rule (2.11) takes the form:

|⟨ai,u⟩| + ∥b − u∥2 ∥ai∥2 < λ =⇒ x⋆(i) = 0.

In particular, if u ≜ λ
∥ATb∥∞

b then u ∈ Uλ∥·∥1
and we recover the so-called called SAfe

Feature Elimination (SAFE) rule proposed in [52].
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Chapter 2 – An overview of safe screening and safe regions

2.1.2 Squeezing

In the previous section, we have seen how safe screening methods can reduce the
problem size by exploiting the sparsity structure of the optimal solution induced by ℓ1-
regularization. In this section, our goal is to illustrate that the rationale of safe screening
can be extended to ℓ∞-penalized problems and to clarify why the concept of safe region
still plays an essential role in this framework.

Consider the following ℓ∞-norm penalized optimization problem:

min
x∈Rn

f(Ax) + λ ∥x∥∞ . (2.13)

Similar to the framework of safe screening, we assume the differentiability of f on Rm.
Furthermore, we assume the uniqueness of the optimal solution x⋆ of (2.13). As mentioned
previously, this uniqueness assumption is considered for the sake of simplicity but can be
easily generalized to the non-uniqueness case. Additionally, we assume that λ < λmax ≜∥∥∥AT∇f(0Rm)

∥∥∥
1

so that x⋆ is nonzero [72, Proposition 4].

It is known that the minimizer of (2.13) exhibits some “anti-sparse” structure. More
specifically, in [42] the authors showed that if f(·) = 1

2 ∥b − ·∥2
2 for some b ∈ Rm, and the

Kruskal rank of A is m, then x⋆ has at least n − m + 1 “saturated” entries, i.e., indices
i ∈ {1, . . . , n} for which x⋆(i) = ± ∥x⋆∥∞. This characteristic may be seen as the opposite
of sparsity and thus explains why it is usually referred to as “anti-sparsity”.

The anti-sparse structure of x⋆ can be leveraged to develop a dimensionality reduc-
tion technique reminiscent to safe screening. Instead of screening the zero entries as in
the sparsity case, the basic idea is here to “squeeze” the saturated entries of x⋆. More
specifically, assuming the knowledge of some sets L+, L− and L such that:

L+ ⊂ {i : x⋆(i) = + ∥x⋆∥∞ , i = 1, . . . , n},

L− ⊂ {i : x⋆(i) = − ∥x⋆∥∞ , i = 1, . . . , n},

L = {1, . . . , n} \ (L− ∪ L+),

one can derive a problem equivalent to (2.13) by “squeezing” the columns of A with
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2.1. Safe screening and extensions

indices in L± into a single vector v = ∑
i∈L+ ai −∑

i∈L− ai, i.e.,

min
(xL,w)∈Rk×R+

f(ALxL + wv) + λw (2.14)

s.t. ∥xL∥∞ ≤ w

where k = |L| = n−|L− ∪ L+|. Notice that the total dimension of primal variable (xL, w)
is much smaller than that of x provided that a large number of saturated coordinates have
been identified. Therefore, solving (2.14) can be much more efficient than solving (2.13)
directly.

We now discuss how proper sets L− and L+ can be estimated by using the knowledge of
some safe region S. Similar to safe screening, Fermat’s rule implies the following optimality
criterion:

ATu⋆ ∈ ∂λ ∥x⋆∥∞ , (2.15)

where u⋆ = −∇f(Ax⋆) is the unique dual optimal solution. Since x⋆ is guaranteed to be
nonzero by assumption, one has

∂λ ∥x⋆∥∞ = {z ∈ Rn : ∥z∥1 ≤ λ, ⟨z,x⋆⟩ = λ ∥x⋆∥∞},

see [6, Example 3.52]. Therefore, for z ∈ ∂λ ∥x⋆∥∞, if z(i) ̸= 0, it is necessary that x⋆(i)
saturates with the same sign as z(i). Combining this observation with (2.15), one can
deduce the following implication:

|⟨ai,u⋆⟩| > 0 =⇒ i ∈ Lsign(⟨ai,u⋆⟩). (2.16)

Here again, solving the dual problem (2.14) to find u⋆ turns out to a complicated task.
Nevertheless, a more practical rule can be derived if some safe region S (i.e., u⋆ ∈ S) is
known:

inf
u∈S

⟨ai,u⟩ > 0 =⇒ i ∈ L+ (2.17)

sup
u∈S

⟨ai,u⟩ < 0 =⇒ i ∈ L−. (2.18)

These results highlight the essential role of safe region in practical safe squeezing rules.
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Problem L(z, b) g(x) Screening

LASSO 1
2(z − b)2 λ ∥x∥1 e.g., [45]

Non-neg. LASSO 1
2(z − b)2 λ ∥x∥1 + ι(x ≥ 0) e.g., [99]

Sparse Group LASSO 1
2(z − b)2 _ [71]

Fused LASSO 1
2(z − b)2 _ [91]

Anti-sparse coding 1
2(z − b)2 λ ∥x∥∞ [42]

Least squares & SLOPE norm 1
2(z − b)2 _ [41, 3]

Least squares & atomic norm 1
2(z − b)2 _ [84]

Least squares & squared ℓ1-norm 1
2(z − b)2 λ ∥x∥2

1 [81]
Elastic-Net 1

2(z − b)2 λ ∥x∥1 + λ′ ∥x∥2
2 [54, 98]

Soft SVM max(0, 1 − bz) λ ∥x∥2 e.g., [74]
Sparse soft SVM max(0, 1 − bz) λ ∥x∥1 e.g., [59]
Sparse logistic regression −bz + log(1 + ez) λ ∥x∥1 [75]
Sparse KL regression z log(z/b) − z + b λ ∥x∥1 e.g., [26]
Sparse Huber regression _ λ ∥x∥1 [18]
Sparse quantile regression _ λ ∥x∥1 [82]

Table 2.1 – Some convex optimization problems and their corresponding safe screening
methods. Where L function satisfies f(Ax) = ∑m

i L((Ax)(i),b(i)).

2.1.3 Beyond

In the preceding two sections, we demonstrated that safe regions play an essential role
in designing screening/squeezing tests for convex optimization problems with ℓ1-norm or
ℓ∞-norm penalization functions. In this section, we illustrate how safe regions are equally
vital in deriving dimensionality reduction techniques for convex optimization problems
with various penalization functions.

Several instances of (1.1-pfg ) (where f is not necessarily assumed to be differentiable)
that have associated dimensionality reduction methods are collected in Table 2.1. It is im-
portant to note that when the regularization function is “separable”, a more general form
of the safe screening rule, referred to as “active set identification” is thoroughly discussed
in [70, Section 2.1]. For example, ℓ1-norm regularized problem, Elastic-Net problem and
sparse group LASSO are instances of this framework.

We described some examples in greater details below.

Screening and Relaxing rule for Elastic-Net problem. Elastic-Net problem is an ℓ1-ℓ2-norm
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2.1. Safe screening and extensions

regularized least squares problem:

min
x∈Rn

+

1
2 ∥b − Ax∥2

2 + ⟨λ,x⟩ + ε

2 ∥x∥2
2 , (2.19)

where λ ∈ Rn
+ and ε > 0 are tuning parameters. Safe screening rules for Elastic-Net was

considered in several papers [45, 98, 54]. Note that the optimal solution of this problem x⋆

is unique since the problem (2.19) is strongly convex. For this problem, one can determine
the zero entries in x⋆ using the following safe screening rule [54, Equation (12)]:

sup
u∈S

⟨ai,u⟩ ≤ λ(i) =⇒ x⋆(i) = 0,

where S is some safe region and ai denotes the ith column of matrix A. In addition, the
authors of [54] also introduced the so-called safe relaxing rule, which is able to identify
non-zero entries of x⋆ [54, Equation (21)]:

inf
u∈S

⟨ai,u⟩ > λ(i) =⇒ x⋆(i) > 0.

Screening rules for least squares regression with squared ℓ1-norm penalization. This prob-
lem is considered in [81]:

min
x∈Rn

1
2 ∥b − Ax∥2

2 + λ ∥x∥2
1 , (2.20)

The corresponding safe screening rule w.r.t. to safe region S reads as follows:

sup
u∈S

|⟨ai,u⟩| −
∥∥∥ATu

∥∥∥
∞
< 0 =⇒ x⋆(i) = 0.

This implication follows directly from [81, Equation 3.15]. The authors then exploit this
fact and the framework of GAP safe ball [72] to derive a specific screening rule for (2.20)
as detailed in [81, Theorem 3.6].

Screening rules for sparse group LASSO problem. Sparse Group LASSO is a least squares
optimization problem with a penalization defined as a convex combination of ℓ1-norm and
“separable norm” [72, Section 5.2]:

min
x∈Rn

1
2 ∥b − Ax∥2

2 + τ ∥x∥1 + (1 − τ)
∑
G∈G

λG ∥xG∥2 , (2.21)

where G is a partition of the index set {1, . . . , n} and xG denotes the restriction of x to
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its elements with indices in group G ∈ G. Here τ > 0 and λG > 0 for G ∈ G are control
parameters.

Ndiaye et al. [72] proposed two safe screening methods for this problem. The first one
corresponds to the screening on the “group level”, which identifies the groups G so that
all entries of x⋆ associated with that group equal to zero:

sup
u∈S

∥∥∥ATu
∥∥∥
ϵG
< τ + (1 − τ)λG =⇒ x⋆G = 0R|G| ,

where ϵG ≜
(1 − τ)λG

τ + (1 − τ)λG
and the definition of ∥·∥ϵG is given by [72, Section 5.3]. The

second screening rule regarding the “feature level” is:

|⟨ai,u⟩| < τ =⇒ x⋆(i) = 0,

for all i ∈ {1, . . . , n}.

Screening rule for SLOPE problem. Consider the Sorted L-One Penalized Estimation (SLOPE)
problem,

min
x∈Rn

1
2 ∥b − Ax∥2

2 + λ ∥x∥SLOPE , (2.22)

where the SLOPE norm ∥·∥SLOPE, associated with a non-increasing sequence of parameters
γ1 ≥ · · · ≥ γn ≥ 0 with γ1 > 0, is defined as:

∥x∥SLOPE =
n∑
i=1

γi |x|[i] ,

with |x|[i] representing the ith largest element among the entries of x, i.e., |x|[1] ≥ · · · ≥
|x|[n].

The SLOPE norm can be seen as a generalization of several regularizations previously
proposed in the literature. For example, if γi = 1 for i = 1, . . . , n, then ∥·∥SLOPE reduces
to the ℓ1-norm. If γ1 = 1 and all other γi’s’ are zero, then it corresponds to the ℓ∞-norm.
Finally, if γi − γi+1 = c > 0 for all i ∈ {1, . . . , n− 1}, then the SLOPE norm corresponds
to the so-called Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR)
regularizer, as considered in [3, 9, 39].
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The safe screening in this context reads as follows [40]: 3

∀q ∈ {1, ..., n} : sup
u∈S

|⟨ai,u⟩| +
q−1∑
k=1

∣∣∣AT
\iu
∣∣∣
[k]
< λ

q∑
k=1

γk

 =⇒ x⋆(i) = 0. (2.23)

where A\i denotes matrix A deprived of its ith column.

2.1.4 Implementation into numerical solvers

The dimensionality reduction techniques discussed in the previous section can be in-
tegrated into numerical solvers in three different ways: static, sequential, and dynamic.

Static Approach. The static safe screening approach predates other methods and was first
proposed in [52]. In this approach, we reduce the problem size before actually solving it.
The primary advantage of this approach is that it effectively decouples the task of reducing
the problem size from the task of solving the problem.

Sequential approach. In the sequential approach, the objective is to solve a sequence of
problems parameterized by λ > 0, λ ∈ {λ0, λ1, ..., λk},

min
x∈M

f(Ax) + λg(x) = max
u∈H

−f ∗(−u) − λg∗
(A∗u

λ

)
, (2.24)

This is a common task in machine learning known as hyperparameter tuning, in which we
need to select the most suitable λ for the problem model in order to optimize subsequent
tasks, see e.g., [70]. In this approach, to reduce the dimension of ith problem where i ≥ 1,
we exploit the knowledge from the (i − 1)th problem (precisely, the optimal solution
(x⋆λi−1

,u⋆λi−1
)). The earliest discussions on these sequential approaches includes [93, 66].

Dynamic approach. In the dynamic approach, the dimensionality reduction technique is
integrated within the iterations of numerical solvers. This dynamic methodology was
initially proposed in [10] and subsequently enhanced by [45, 72, 25], demonstrating its
applicability on various problems.

It is worth mentioning that the approach taken to implement dimensionality reduction
techniques significantly influences the construction of safe regions, as discussed in detail
in the next section.

3. Precisely, Equation (2.23) is actually a relaxation of [40, Equation (4.6)] using safe region.
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2.2 Safe region

In the previous section, we elucidated the pivotal role of safe regions in various di-
mensionality reduction techniques in the context of convex optimization. In this section,
we will formally define a safe region within a general framework over potentially infinite-
dimensional vector spaces as well as the fundamental properties that a safe region should
possess to lead to efficient and effective dimensionality reduction techniques. Lastly, we
will provide an overview of existing safe regions of the literature.

2.2.1 Definition of safe region

In this section, we consider the general problem (1.1-pfg ) where M and H can be
arbitrary Banach and Hilbert spaces (possibly of infinite-dimension). In the following, we
assume that strong duality holds between the primal problem (1.1-pfg ) and its pre-dual
problem (1.2-dfg ), i.e.,

min
x∈M

f(Ax) + g(x) = max
u∈H

−f ∗(−u) − g∗(A∗u). (2.25-SD)

We moreover suppose that the primal problem and the pre-dual problem in (2.25-SD)
have unique minimizer x⋆ and unique maximizer u⋆, respectively. We acknowledge that
assuming the uniqueness of x⋆ is for the purpose of simplifying our exposition. The as-
sumption regarding the uniqueness of u⋆ is a consequence of another assumption on f ,
which will be specified later in Chapter 3.

We now properly define the conception of “safe region”:

Definition 2.2.1 (Safe region). We say that a region S ⊂ H is safe if it contains the
unique dual optimal solution u⋆, 4 i.e.,

u⋆ ∈ S.

2.2.2 On the design of effective safe regions

On two desirable properties of safe regions. As discussed in the previous section,
the dimensionality reduction methods often rely on the evaluation of ⟨v,u⋆⟩ for some

4. When the dual optimal solution is not unique, a safe region S should contain at least one of them.
However, in this thesis, we confine our focus to the case where u⋆ is unique. This setup is still general
enough to cover a wide range of applications.
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known vector v ∈ H , see e.g., (2.9). Practical implementations relax this quantity to a
supremum or infimum of ⟨v,u⟩ for u ∈ S where S is a safe region, see for example (2.11).
It is worth noting that such quantities can be represented using the so-called support
function φS(·) associated with S. Here φS(·) : H → R ∪ {+∞} is given by:

φS(v) = sup
u∈S

⟨v,u⟩. (2.26)

Note that when the safe region S has a small radius (where the radius is defined as
rad(S) ≜ 1

2 supu,u′∈S ∥u − u′∥H ), the corresponding support function provides a good
approximation of ⟨v,u⋆⟩ since

|φS(v) − ⟨v,u⋆⟩| ≤ sup
u∈S

|⟨v,u − u⋆⟩| ≤ 2 rad(S) ∥v∥H , (2.27)

where the last upper bound follows from the Cauchy-Schwarz inequality and the definition
of the radius of S.

Building upon this observation, to obtain an estimation for ⟨v,u⋆⟩, the evaluation
φS(v) needs to meet two crucial criteria: 1) it should be easy to compute, and 2) it should
closely approximate the target value ⟨v,u⋆⟩. Consequently, a well-designed safe region is
expected to inherit these two essential properties including:

1. Simplicity. The safe region should have a simple geometry so that the evaluation
of (2.26) has low-computational cost.

2. Tightness. The safe region should be as small as possible in the sense of inclusion
(or at least in the sense of the radius size) since the support function with a smaller
safe region provides a more accurate estimation of ⟨v,u⋆⟩.

On the construction of simple safe regions. Among the popular choices of “simple”
regions, ball and dome have empirically proven to be promising candidates. Let us formally
define the notion of “ball”, “half-space” and “dome”:

B(c, r) = {u ∈ H : ∥u − c∥H ≤ r}, (2.28)

H(g, s) = {u ∈ H : ⟨g,u⟩ ≤ s}, (2.29)

D(c, r,g, s) = B(c, r) ∩H(g, s). (2.30)

Here, c,g ∈ H and r, s ∈ R. In this notational setup, c and r denote the center and
radius of the ball, g and s denote the normal vector and intercept of the half-space, while

45



Chapter 2 – An overview of safe screening and safe regions

the dome is defined as the intersection of a ball and a half-space.
We should note that the half-space (2.29) is unbounded, while the ball (2.28) and the

dome (2.30) are closed and bounded. It is important to highlight that the ball and the
dome are typically not compact in infinite-dimensional Hilbert space H , except when
the space has finite-dimension. Despite the non-compactness of balls and domes, their
support functions - considered as an optimization problem over a non-compact region -
admit the following simple closed-form expressions:

Ball region. If S = B(c, r) is a ball, then

φS(v) = ⟨v, c⟩ + r ∥v∥H . (2.31)

Dome region. If S = D(c, r,g, s) = B(c, r) ∩H(g, s) is a non-empty dome with r > 0 and
g ̸= 0H , then

φS(v) = ⟨v, c⟩ + r ∥v∥H cos([θD − θv]+), (2.32)

where
θv = arccos ⟨v,g⟩

∥v∥H ∥g∥H

, θD = arccos
[
s− ⟨g, c⟩
r ∥g∥H

]
[−1,1]

.

Here we used the notations [·]+ = max(·, 0) and [·][−1,1] = max(min(·, 1),−1). The support
function over a ball (2.31) can be derived easily while the support function over a dome
(2.32) is a reformulation of [97, Lemma 3]. These two results and, in particular, the
meaning of θD are also thoroughly discussed in the propositions A.1.1 and A.3.2.

As the above formulas demonstrate, computing the support function over ball or dome
regions is computationally tractable, involving mainly the evaluation of inner products
and norms. Note that in practice most of these quantities are often pre-computed by
solvers, which can further enhance computational efficiency.

On the construction of tight safe region. To construct a tight safe region, there are
three main approaches which align with the three modus operandi discussed in the previ-
ous section. It is important to note that a safe region S is constructed by leveraging some
primal-dual feasible pair (x,u) with respect to (2.25-SD). To emphasize this dependency,
we denote the safe region as S(x,u).

The first approach amounts to construct a safe region S(x0,u0) based on a chosen
fixed feasible and easily to obtain pair (x0,u0). However, safe regions constructed using
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this approach typically exhibit poor performance for the corresponding dimensionality
reduction technique in practical applications.

The second approach involves a sequence of parametric problems (2.24), where the
safe region S(x⋆λ0 ,u

⋆
λ0) is built using an optimal pair (x⋆λ0 ,u

⋆
λ0) with respect to a specific

parameter λ0. However, a significant drawback is the heavy reliance on the optimality of
(x⋆λ0 ,u

⋆
λ0) to ensure the safeness of S(x⋆λ0 ,u

⋆
λ0). Achieving exact knowledge of (x⋆λ0 ,u

⋆
λ0)

is practically impossible. In a numerical experiment [70, Figure 2.7, Section 2.4], Ndiaye
demonstrated that using incorrect optimal pairs (x⋆λ0 ,u

⋆
λ0) may wrongly discard non-zero

entries in the optimal solution.
The third approach entails constructing the safe region S(x,u) based on any feasible

pair (x,u). This safe region is commonly used in e.g., dynamic safe screening method [10],
where it is iteratively updated along the solver’s iterations to yield new safe regions
with reduced radii. This approach effectively addresses the limitations of the first two
approaches. As it does not impose specific constraints on (x,u) other than feasibility, the
safe region has the potential to progressively reduce its radius toward zero while remaining
practically safe.

2.2.3 A comprehensive overview of existing safe regions

The objective of this section is to present a comprehensive overview of all existing safe
regions in the literature (to the best of our knowledge). The primary emphasis here is
on elucidating their definitions. Additionally, we will briefly touch on their construction
methods, avoiding excessive technical details, and also discuss known results regarding
their interrelationships whenever it is appropriate.

Existing safe regions have been defined in various setups, all of which are particular
cases of our general setup (2.25-SD). From the perspective of (2.25-SD), the following
information needs to be specified for each particular setup: the spaces M and H , the
functions f and g, and the primal and dual vectors x and u used to define the safe region.

In the existing literature, safe regions have typically been defined in finite-dimensional
settings. Therefore, throughout this section, we confine our discussion to the finite-dimensional
case:

M = Rn and H = Rm.

However, it is important to note that all the construction methodologies discussed here
can be readily extended to general Banach space M and Hilbert space H .
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Before delving into details, it is noteworthy that all the safe regions discussed in the
following were originally proposed in the context of safe screening methods. While many
authors provided names for their safe screening methods, they did not explicitly name the
corresponding safe regions. To redirect the focus on the safe region itself, we will therefore
refer to the safe region by the name of the corresponding safe screening method.

Safe balls

SAFE and SASVI ball.

Here we consider LASSO problem for which strong duality reads as follows:

min
x∈Rn

1
2 ∥b − Ax∥2

2 + λ ∥x∥1 = max
u∈Uλ∥·∥1

1
2 ∥b∥2

2 − 1
2 ∥b − u∥2

2 , (2.33)

for some b ∈ Rm, A = [a1, . . . , an] ∈ Rm×n, λ > 0 and Uλ∥·∥1
is defined by

Uλ∥·∥1
= {u ∈ Rm : |⟨ai,u⟩| ≤ λ, ∀i = 1, ..., n}. (2.34)

Let x⋆λ and u⋆λ denote minimizer and maximizer corresponding to the primal and dual
problem defined in (2.33). Notice that u⋆λ is unique since the dual problem can be inter-
preted as the closest point projection problems (w.r.t. ℓ2-norm) from b onto the closed
convex set Uλ∥·∥1

. Therefore, u⋆λ verifies:

∥b − u⋆λ∥2 ≤ ∥b − u∥2 ,

for all u ∈ Uλ∥·∥1
. This inequality yields the following safe region:

u⋆λ ∈ BSAFE(u) ≜ B(b, ∥b − u∥2). (2.35-SAFE-b)

This result was first obtained in [52] in which the authors consider u = λ
∥ATb∥∞

b, i.e.,
a scaled version of b. Here the scaling is chosen so that u belongs to Uλ∥·∥1

. They refer
to their method as SAfe Feature Elimination (SAFE) technique. We therefore name this
region as SAFE ball.

Another approach for building a safe region for LASSO is to leverage the first-order
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optimality condition 5 relative to the dual problem in (2.33), which reads as

⟨b − u⋆λ,u − u⋆λ⟩ ≤ 0, (2.36)

for all u ∈ Uλ∥·∥1
. This observation directly leads to the safeness of the following ball:

u⋆λ ∈ BSASVI(u) ≜ B

(
b + u

2 ,
∥b − u∥2

2

)
. (2.37-SASVI-b)

This safeness is proved in sequential screening method [66, Equation (14)] where the
authors consider u = λ

λ0
u⋆λ0 ∈ Uλ∥·∥1

for some other parameter λ0 > 0. Since the screen-
ing method associated with this safe region is called SAfe Screening with Variational
Inequalities (SASVI), we refer to this ball as SASVI ball. It is not hard to verify that
BSASVI(u) ⊂ BSAFE(u) for any u ∈ Uλ∥·∥1

.

DPP and EDPP ball.

We now consider the same setup (2.33). Recall that u⋆λ is the closest projection of b
onto the dual polytope Uλ∥·∥1

, i.e.,

u⋆λ = arg min
u∈Uλ∥·∥1

∥b − u∥2 . (2.38)

Now, by substituting λ = λ0 for some other parameter λ0 > 0 into (2.38), we see that
λ
λ0

u⋆λ0 is also the closest point projection of λ
λ0

b onto Uλ∥·∥1
, since

λ

λ0
u⋆λ0 = arg min

λ
λ0

u∈ λ
λ0
Uλ0∥·∥1

∥∥∥∥∥ λλ0
b − λ

λ0
u
∥∥∥∥∥

2
= arg min

u′∈Uλ∥·∥1

∥∥∥∥∥ λλ0
b − u′

∥∥∥∥∥
2
. (2.39)

Here, we let u′ = λ
λ0

u and notice that λ
λ0
Uλ0∥·∥1

= Uλ∥·∥1
.

Combining (2.38) and (2.39) together with the so-called non-expansiveness property
of projection operator [5, Definition 4.1 and Proposition 4.16], one deduces:

∥∥∥∥∥u⋆λ − λ

λ0
u⋆λ0

∥∥∥∥∥
2

≤
∥∥∥∥∥b − λ

λ0
b
∥∥∥∥∥

2
.

5. It is known as the Variational inequality, see e.g., [2, Theorem 9.5.5].
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Exploiting this observation, Wang et al. [92] proposed the following safe ball region:

u⋆λ ∈ BDPP(u⋆λ0) ≜ B

(
λ

λ0
u⋆λ0 ,

∥∥∥∥∥b − λ

λ0
b
∥∥∥∥∥

2

)
. (2.40-DPP-b)

They name their corresponding safe screening using this ball as the Dual Polytope Pro-
jection approach. We therefore, call this region DPP ball.

The authors also propose three improvements [92, Theorem 10, 16 and 18] of DPP
ball. The smallest ball (in the sense of inclusion), which is referred to as the Enhanced
DPP (EDPP) ball, 6 is defined as a safe ball region associated with u⋆λ0 for some parameter
λ0 ≥ λ [92, Theorem 18]:

u⋆λ ∈ BEDPP(u⋆λ0) ≜ B

(
λ

λ0
u⋆λ0 + 1

2v⊥
2 ,

1
2
∥∥∥v⊥

2

∥∥∥
2

)
, (2.41-EDPP-b)

where

v⊥
2 ≜ v2 − ⟨v1,v2⟩

∥v1∥2
2

v1,

v1 ≜ b − u⋆λ0 = Ax⋆λ0 ,

v2 ≜ b − λ

λ0
u⋆λ0 .

The construction of EDPP ball is quite complex, but the authors (via the comparisons
with an intermediate safe ball region) assert that BEDPP(u⋆λ0) ⊂ BDPP(u⋆λ0). Note that the
EDPP ball can also be applied for other problems than LASSO, see [98] for an application
in solving Elastic-Net problem.

GAP and x-GAP ball.

Here, we consider the ℓ1-norm penalization problem with the associated strong duality:

min
x∈Rn

f(Ax) + λ ∥x∥1 = max
u∈Uλ∥·∥1

−f ∗(−Au), (2.42)

where f : Rm → R∪ {+∞} is a closed proper convex function, A ∈ Rm×n and λ > 0. We
further assume that f has gradient being α−1-Lipschitz continuous on the whole space

6. In fact, they use the term “Enhanced DPP” to name their the sequential safe screening rather than
the safe ball region.
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Rm. 7

Under this, setting, Ndiaye et al. [72, Theorem 6] proved that the following assertion
holds true, 8

u⋆λ ∈ BGAP(x,u) ≜ B

u,
√

2 GAP(x,u)
α

, (2.43-GAP-b)

for any feasible primal-dual couple (x,u). Here the dual gap GAP (x,u) is defined as the
difference between the primal and dual functions in (2.42). We refer to this region as GAP
ball. This region was first proposed in the context of LASSO [45] and later extended to
general convex function f in [72, 25] and general convex function g in [73].

GAP ball exhibits two crucial characteristics. Firstly, assuming that the mapping
(x,u) 7→ GAP (x,u) is continuous and vanishes at some optimal pairs (x⋆,u⋆), 9 the radius
of BGAP(x,u) can be arbitrarily small when (x,u) is sufficiently close to (x⋆,u⋆). However,
not all dynamic safe regions possess this property, e.g., the SAFE ball (2.35-SAFE-b).
Secondly, the construction of the GAP ball does not rely on any specific assumptions
about (x,u) except the feasibility of u. This is different from the cases of DPP and
EDPP ball where (x,u) is assumed to be optimal (w.r.t. to some parameter λ0). These two
fundamental properties make the GAP ball the most preferred result in both theoretical
analysis and practical applications. Moreover, these two key properties set the standard
that newly devised safe ball regions should meet.

Many later works sought to extend/apply/improve the GAP ball in various ways.
Firstly, Dantas et al. [25] proved the safeness of GAP ball under weaker assumptions.
Secondly, several studies showcased that the GAP ball can be applied for dimensionality
reduction in various convex optimization problems [72, 24, 26, 41, 65, 79], and even beyond
convex optimization problems [54, 53]. These demonstrated the GAP ball’s influence,
spanning a wide range of applications.

Recently, a safe region analogous to the GAP ball has been introduced in [59]. This safe
region is obtained as a particularization of the general framework known as the “region-
free safe screening method”, applied to the strong duality setup (2.42). Interestingly, this
safe ball has center located at −∇f(Ax) instead of u as in GAP ball. In other words, the
center of this ball exploits the primal information x not the dual information u as in case

7. This means ∥∇f(v1) − ∇f(v2)∥2 ≤ α−1 ∥v1 − v2∥2 for all v1,v2 ∈ Rm. Note that in the original
result [72, Theorem 6], the authors consider a slightly general setup where ℓ1-norm penalization function
is replaced by any general norm.

8. Actually, the result presented in [72, Theorem 6] holds for general norm penalization problem.
9. The vanishing of dual gap GAP(x⋆

λ,u⋆
λ) = 0 is equivalent to the strong duality assumed in (2.42).
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of (2.43-GAP-b). To emphasize this dependency, in this thesis, we refer to this safe ball
as x-GAP ball. Its definition is provided below,

u⋆λ ∈ BxGAP(x,u) ≜ B

−∇f(Ax),
√

2 GAP(x,u)
α

. (2.44-x-GAP-b)

FNE and DEDPP ball.

Let us consider again the LASSO problem with its strong duality (2.33). In [67], the
authors showed that if (x,u) satisfies the following condition

⟨u,Ax⟩ = λ ∥x∥1 , (2.45)

then u is the closest point projection of b′ ≜ Ax + u onto Uλ∥·∥1
. Recall that u⋆λ is also

the closest point projection of b onto Uλ∥·∥1
, then the Firmly Non-Expansiveness (FNE)

property of projection operator yields

∥u⋆λ − u∥2
2 ≤ ⟨u⋆ − u,b − b′⟩.

It can be equivalently rewritten as:
∥∥∥∥u⋆λ −

(
u + 1

2(b − b′)
)∥∥∥∥

2
≤ 1

2 ∥b − b′∥2 .

This inequality results in a safe ball region called FNE ball defined as:

u⋆λ ∈ BFNE(x,u) ≜ B
(

u + 1
2(b − Ax − u), 1

2 ∥b − Ax − u∥2

)
. (2.46-FNE-b)

Under certain conditions, the authors showed that FNE ball is a subset of GAP ball [67,
Lemma 1]. Note that constructing a pair (x,u) which satisfies the relation (2.45) while
obtaining a small-radius ball is not practically easy. A relaxation for FNE ball is therefore
proposed in [67, Theorem 2].

Another safe region introduced recently, is the so-called Dynamic EDPP (DEDPP)
ball [99]. This is an extension of EDDP ball (2.41-EDPP-b) which is safe for any primal-
dual feasible couples (x,u). The construction of this ball is quite intricate so will be
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skipped here. Its definition is provided below:

u⋆λ ∈ BDEDPP(x,u) ≜ B

1
2(b + u) − γAx,

√
1
4 ∥b − u∥2

2 − γ2 ∥Ax∥2
2

, (2.47-DEDPP-b)

where
γ ≜ max

(
0, 1

2
⟨Ax,b + u⟩ − 2λ ∥x∥1

∥Ax∥2
2

)
.

By the construction of DEDPP, the authors assert that its radius is guaranteed to be less
than or equal to radius of GAP ball if the same pair (x,u) is used.

SLORES and SFER ball.

We now consider the ℓ1-norm penalization of logistic regression, with the strong duality
defined as an instance of (2.42) with f defined as a logistic loss function:

f(v) = 1
m

m∑
i=1

−b(i)v(i) + log(1 + exp(v(i))), (2.48)

for any v ∈ Rm. In this case ∇f is m
4 -Lipschitz continuous. In [75], the authors showed

that the following ball is safe,

u⋆λ ∈ BSFER

(
u⋆λ0

)
≜ B

1
2

(
u⋆λ0 + λ

λ0
u⋆λ0

)
,

√√√√ ξ

α
− 1

4

∥∥∥∥∥u⋆λ0 − λ

λ0
u⋆λ0

∥∥∥∥∥
2

2

, (2.49-SFER-b)

where
ξ = Bregf∗−,−Ax⋆

λ0

(
λ

λ0
u⋆λ0 ,u

⋆
λ0

)
. (2.50)

Here Breg denotes the Bregman divergence. 10 The authors exploit this safe ball region
to derive the so-called Safe Feature Elimination Rule (SFER). Thus, we name this safe
region as SFER ball.

Note that the safeness of SFER ball can be written as follows:

α

2

∥∥∥∥∥u⋆λ − λ

λ0
u⋆λ0

∥∥∥∥∥
2

2
+ α

2
∥∥∥u⋆λ − u⋆λ0

∥∥∥2

2
≤ ξ, (2.51)

10. Bregman divergence is a non-negative quantity defined in (B.4).
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By relaxing the first term in LHS of (2.51), one directly obtains a weaker inequality,

α

2
∥∥∥u⋆λ − u⋆λ0

∥∥∥2

2
≤ ξ, (2.52)

This corresponds to the following safe ball region:

u⋆λ ∈ BSLORES(u⋆λ0) ≜ B

u⋆λ0 ,

√
2
α
ξ

. (2.53-SLORES-b)

The corresponding safe screening method associated with this safe region is called Sparse
LOgistic REgression Screening (SLORES) rule [93, Theorem 2]. Consequently, we name
this safe ball region as SLORES ball.

Safe half-spaces

In the following, we examine the LASSO problem and its strong duality as represented
by (2.33). Our objective is to review three approaches for creating a safe half-space, namely
ST, SASVI and Hölder half-spaces, as discussed in the literature. It is important to note
that the discussion regarding the GAP half-space [45] will be deferred to the next section
due to its distinct construction technique.

ST half-space. The first straightforward approach for constructing a safe half-space in-
volves the following observation:

⟨ai,u⟩ ≤ λ, ∀u ∈ Uλ∥·∥1
,∀i ∈ 1, . . . , n.

This signifies that the dual feasible set Uλ∥·∥1
is, in fact, a subset of the half-spaces H(ai, λ)

for any i = 1, . . . , n. By combining this insight with the knowledge that u⋆λ ∈ Uλ∥·∥1
, it

becomes evident that all these half-spaces are safe. Choosing an arbitrary index i0 ∈
{1, . . . , n}, we have a safe half-space denoted as HST(i0):

u⋆λ ∈ HST(i0) ≜ H(ai0 , λ). (2.54-ST-h)

In [95], the authors exploited this half-space to derive the so-called Sphere Tests (ST) in
the context of safe screening. We therefore refer to this region as ST half-space.

SASVI half-space. The second approach to build a safe half-space is to apply the first
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order optimality condition (2.36) for parameter λ0, we obtain

〈
b − u⋆λ0 ,u

′ − u⋆λ0

〉
≤ 0, (2.55)

for all u′ ∈ Uλ0∥·∥1
. Substituting u′ = λ0

λ
u⋆λ ∈ Uλ0∥·∥1

to (2.55), one derives

λ

λ0

〈
b − u⋆λ0 ,u

⋆
λ − λ

λ0
u⋆λ0

〉
≤ 0. (2.56)

This inequality defines a safe half-space region for u⋆λ:

u⋆λ ∈ HSASVI(u⋆λ0) ≜ H

(
b − u⋆λ0 ,

〈
b − u⋆λ0 ,

λ

λ0
u⋆λ0

〉)
. (2.57-SASVI-h)

We refer to this region as SASVI half-space since it was observed in the safe screening
approach called SASVI, see [66, Equation (13)].
Hölder half-space. In [87], we proved that: 11

⟨Ax,u⋆λ⟩ ≤
∥∥∥ATu⋆λ

∥∥∥
∞

∥x∥1 ≤ λ ∥x∥1 ,

for any x ∈ Rn. Here the first inequality follows the Hölder inequality and the second one
is a consequence of the feasibility of u⋆λ. We therefore call this region Hölder half-space.

u⋆λ ∈ HHö(x) ≜ H(Ax, λ ∥x∥1). (2.58-Hölder-h)

This half-space was also introduced simultaneously in [99]. In particular, the authors also
notice that Hölder half-space is a generalization of SASVI half-space.

Safe domes

To construct a safe dome region, it is sufficient to take the intersection of a safe ball
and a safe half-space. We list in the following four historical ways of choosing safe ball
and half-spaces in the context of LASSO problem with strong duality (2.33).
ST dome. This safe region was proposed in [96], by cutting the SAFE ball using ST
half-space (2.54-ST-h), in which the author proposed the choice for index i0 so that it

11. Note that the result remains valid if ∥·∥1 is replaced by a general gauge function.
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maximizes the absolute correlation of atom ai and b, i.e.,

i0 ∈ arg max
i=1,...,n

|⟨ai,b⟩| .

The ST half-space with this index i0 is then used to cut the SAFE ball (2.35-SAFE-b) to
obtain a safe dome region, say ST dome [96, Equation (7)]:

u⋆λ ∈ DST(i0,u) ≜ HST(i0) ∩BSAFE(u), (2.59-ST-d)

for any u ∈ Uλ∥·∥1
.

SFER dome. Given the acknowledgment of the dual optimal solution u⋆λ0 w.r.t. a param-
eter λ0, another approach for selecting i0 [75] is to choose it as an index that maximizes
the absolute correlation of atoms ai and u⋆λ0 ,

i0 ∈ arg max
i=1,...,n

∣∣∣〈ai,u⋆λ0

〉∣∣∣ = {i ∈ {1, . . . , n} :
∣∣∣〈ai,u⋆λ0

〉∣∣∣ = λ0}.

The authors then consider the safe dome region obtained by taking the intersection of
HST(i0) and the SFER ball BSFER(u⋆λ0):

u⋆λ ∈ DSFER(i0,u⋆λ0) ≜ HST(i0) ∩BSFER(u⋆λ0). (2.60-SFER-d)

We refer to this safe region as SFER dome.
SASVI dome. By taking the intersection of SASVI half-space HSASVI (2.57-SASVI-h) and
SASVI ball (2.37-SASVI-b), we can obtain a safe dome region [66, Equation (15)], namely
SASVI dome:

u⋆λ ∈ DSASVI(u⋆λ0) ≜ HSASVI(u⋆λ0) ∩BSASVI(u⋆λ0). (SASVI-d)

DSASVI dome. By taking the intersection of Hölder half-space HHö(x) (2.58-Hölder-h)
and SASVI ball (2.37-SASVI-b), we can obtain a safe dome region

u⋆λ ∈ DSASVI(x,u) ≜ HHö(x) ∩BSASVI(u), (2.61-DSASVI-d)

for all (x,u) ∈ Rn×Uλ∥·∥1
. This region is referred to as Dynamic SASVI (DSASVI) dome

in [99, Theorem 8] and Hölder dome [87, Theorem 1]. In this thesis, we call it DSASVI
ball.
GAP moon, half-space and dome. Considering the LASSO’s strong duality (2.33), Fercoq
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2.2. Safe region

et al. [45] introduced a sequence of safe regions with different shapes including excluding
ball, moon, half-space and dome, which serve intermediate steps in constructing the GAP
ball region (2.43-GAP-b).

We now briefly review the idea of constructing these safe regions. Notice that the
strong duality (2.33) implies that, for any (x,u) ∈ Rn × Uλ∥·∥1

,

1
2 ∥b − Ax∥2

2 + λ ∥x∥1 ≥ 1
2 ∥b∥2

2 − 1
2 ∥b − u∥2

2 .

Re-aranging terms in this inequality, we obtain

1
2 ∥b − u∥2

2 ≥ 1
2 ∥b∥2

2 − 1
2 ∥b − Ax∥2

2 − λ ∥x∥1 .

Let us define the GAP excluding ball EGAP as follows,

EGAP(x) =
{

u ∈ Rm : ∥b − u∥2 ≥
√

[∥b∥2
2 − ∥b − Ax∥2

2 − 2λ ∥x∥1]+
}
. (2.62-GAP-e)

Then, it is clear that u⋆λ ∈ Uλ∥·∥1
⊂ EGAP(x), i.e., EGAP(x) is safe. Now, we define the GAP

moon region 12 as the intersection of GAP excluding ball and SASVI ball,

MGAP(x,u) ≜ BSASVI(u) ∩ EGAP(x). (2.63-GAP-m)

Now, the GAP half-space HGAP(x,u) is defined (indirectly) as a half-space such that the
GAP dome DGAP(x,u) is the convex hull of MGAP(x,u), where

DGAP(x,u) ≜ BSASVI(u) ∩HGAP(x,u). (2.64-GAP-d)

Then, the authors defined the GAP ball BGAP(x,u) as a ball with center at u and the
smallest radius containing DGAP(x,u). The GAP ball then has a closed form expression as
given by (2.43-GAP-b).

Although HGAP(x,u) has a descriptive definition, it also possesses a closed-form ex-
pression [87, Equation (20-21)]:

HGAP(x,u) = H
(
b − c,GAP (x,u) + ⟨b − c, c⟩ − r2

)
, (2.65-GAP-h)

where c = b−u
2 and r = ∥b−u∥2

2 denote the center and radius of the SASVI ball BSASVI(u),

12. Here, the term “moon” was used in [99].
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Chapter 2 – An overview of safe screening and safe regions

respectively.

Other safe regions

In [95], the authors introduced ST2 and ST3 ball as the balls with specific centers and
smallest radii containing ST dome (2.59-ST-d).

Note that in addition to the ball and dome shapes, there are other safe regions with
different shapes, such as the refined dome (intersection of a ball and two half-spaces) [97,
Section 4.5] and ellipsoid [23]. However, due to the complexity of constructing and im-
plementing these regions in practical dimensionality reduction methods, and their limited
utilization by researchers, they are beyond the scope of this thesis.
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Chapter 3

UNIFYING EXISTING SAFE REGIONS WITH

FBI REGIONS

Abstract. This chapter exploits the Bregman and Fenchel divergences to derive a
novel inequality called Fenchel Bregman Inequality (FBI) for estimating the location
of the dual optimal solution in convex optimization problems with a general convex
penalization function. The FBI defines a corresponding safe region, termed the FBI
ball. In particular, if the penalization is a gauge function, we introduce yet another
new safe region, termed the Hölder half-space. By combining these two safe regions,
we further derive the FBI dome. We also present the closed-form construction of a ball
(with arbitrary center and smallest radius) containing a given dome, called geometric
ball. Furthermore, we demonstrate that existing safe regions, previously introduced in
the context of static, sequential, and dynamic safe screening methods, are either special
cases or supersets of our FBI regions, underscoring the generality of our framework.
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Chapter 3 – Unifying existing safe regions with FBI regions

3.1 FBI ball

In this section, we present a novel safe ball region termed the “FBI ball”. At the core of
constructing this secure region lies what we term the “Fenchel Bregman Inequality”. We
then explore the capability of this region to achieve a zero radius and offer a comprehensive
comparison for showing that the FBI ball is in fact a generalization of existing safe ball
regions proposed over the last 10+ years.

3.1.1 Definition

This section is dedicated to proving an inequality, namely Fenchel Bregman Inequality
(FBI), which provides an estimate for the position of the dual optimal solution by the dual
gap in which the dual gap is proven to be the sum of Fenchel and Bregman divergences.
Leveraging this inequality, we introduce a novel safe ball region termed the FBI ball.

Let us start by providing the description of our working setup. Here, we consider the
following general strong duality:

min
x∈M

f(Ax) + g(x)︸ ︷︷ ︸
p(x)

= max
u∈H

−f ∗(−u) − g∗(A∗u)︸ ︷︷ ︸
d(u)

, (3.1)

where f : H → R ∪ {+∞} and g : M → R ∪ {+∞} are convex functions, and A :
M → H is a linear operator. Here, recall that M is a (possibly non-reflexive) Banach
space and H is a Hilbert space. Recall that f ∗, g∗ denote the conjugate of f, g, and A∗

denotes the pre-adjoint operator of A. Please prefer to Appendix B.2 for a more detailed
discussion on the duality (3.1) in infinite-dimensional settings.

To ensure the well-defined nature of (3.1), we assume that the following hypotheses
(H1) and (H2) hold true. Furthermore, we also incorporate hypothesis (H3) as a central
technical assumption in deriving subsequent results.

Hypothesis 3.1.1. We impose the following hypotheses for (3.1):

(H1) There exist x⋆ ∈ M minimizing the LHS and u⋆ ∈ H minimizing the RHS of (3.1).

(H2) The strong duality holds, i.e., p(x⋆) = d(u⋆) for any optimal pair (x⋆,u⋆).

(H3) f has α−1-Lipschitz continuous gradient for some α > 0 on the whole space H . 1

1. That is ∥∇f(v1) − ∇f(v2)∥H ≤ α−1 ∥v1 − v2∥, for all v1,v2 ∈ H , where the gradient ∇f is
defined in the sense of Fréchet derivative [5, Definition 2.56].
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3.1. FBI ball

Here, we remark that (H1) and (H2) hold under mild assumptions on f , g, and A,
see Theorem B.2.1, and are usually met in our problems of interest. A function f that
satisfies (H3) is said to be α−1-strongly smooth and this property is equivalent to the
fact that f ∗ is α-strongly convex on its domain dom f ∗ (but not necessary on the whole
space H ), see Theorem B.1.7. Therefore, −d(·) is strongly convex, which then implies the
existence and uniqueness of u⋆ [6, Theorem 5.25]. We refer the readers to Proposition B.2.5
and Proposition B.2.6 for the practical sufficient conditions for hypotheses (H1), (H2) and
(H3).

Now we are ready for deriving FBI, which provides an estimation for u⋆ based on the
primal information x ∈ M and dual information u ∈ H .

To estimate u⋆, one may use any dual vector u sufficiently close to its. However, one
cannot use directly primal variable x to estimate u⋆. To get an idea of how to obtain a
quantity that depends on x and close to u⋆, one can notice the optimality condition that
u⋆ = −∇f(Ax⋆). This inspires the idea of using −∇f(Ax) as a good candidate close to
u⋆ if x is closed to x⋆. To facilitate frequent use of this important quantity, we give it a
shorthand notation:

rx ≜ −∇f(Ax). (3.2)

The following result shows that the total (weighted squared) distance from u⋆ to
u and to rx is upper-bounded by the dual gap. Recall that the definition of dual gap
GAP (x,u) = p(x) − d(u) ≥ 0 for any primal-dual feasible pair (x,u), with p and d

defined in (3.1). Furthermore, in this result, we show that the dual gap can be decomposed
into two non-negative quantities involving Fenchel and Bregman divergences, which leads
to the term “Fenchel Bregman Inequality”. For the definitions of Fenchel and Bregman
divergences, please refer to (B.3) and (B.4).

Lemma 3.1.2 (Fenchel Bregman Inequality (FBI)). Let (x,u) ∈ M × H . Under the
hypotheses (H1), (H2) and (H3), u⋆ satisfies the following inequality:

α

2 ∥u⋆ − u∥2
H + α

2 ∥u⋆ − rx∥2
H ≤ GAP(x,u) = Bregf∗−,−Ax(u, rx) + Feng(x,A∗u), (3.3)

where f ∗− = f ∗(−·) and rx is defined in (3.2).

Proof. Here, we split the proof into two steps corresponding to the equality and inequality
in (3.3).

Step 1. Proving equality in (3.3). Notice that one can decompose the dual gap as
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Chapter 3 – Unifying existing safe regions with FBI regions

a function of the Fenchel divergences of f and g as follows:

GAP(x,u) = p(x) − d(u)

= f(Ax) + f ∗(−u) + g(x) + g(A∗u)

= f(Ax) + f ∗(−u) + ⟨Ax,u⟩ + g(x) + g∗(A∗u) − ⟨x,A∗u⟩

= Fenf (Ax,−u) + Feng(x,A∗u). (3.4)

To prove the equality in (3.3), it is sufficient to show that

Fenf (Ax,−u) = Bregf∗−,−Ax(u, rx). (3.5)

We now prove (3.5) by showing that the two quantities are actually equal via the inter-
mediate value Fenf∗−(u,−Ax). First, notice that it is not hard to show that (f ∗−)∗ =
f ∗∗− = f− = f(−·). 2 This yields

Fenf∗−(u,−Ax) = f ∗−(u) + (f ∗−)∗(−Ax) − ⟨u,−Ax⟩

= f ∗(−u) + f(Ax) − ⟨−u,Ax⟩

= Fenf (Ax,−u). (3.6)

Second, by the definition of rx (3.2), we have

{rx} = {−∇f(Ax)} = {∇f−(−Ax)} = ∂(f ∗−)∗(−Ax).

This observation verifies the condition for establishing the relation of Bregf∗− and Fenf∗− (B.5),
hence,

Bregf∗−,−Ax(u, rx) = Fenf∗−(u,−Ax). (3.7)

Combining (3.6) and (3.7), we derive (3.5) and, thus, the equality in (3.3).

Step 2. Proving inequality in (3.3). We now focus on proving the inequality in (3.3).
By (H3), one notices that f ∗− is also α-strongly convex. This strong convexity implies
that Bregf∗−,−Ax(u, rx) ≥ α

2 ∥u − rx∥2
H . As we have previously demonstrated, the dual

2. The main ingredient to prove this claim is to use the biconjugate theorem (see Theorem B.1.3),
which asserts that f∗∗ = f when f is closed proper convex.
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3.1. FBI ball

gap is the sum of non-negative quantities Bregf∗−,−Ax(u, rx) and Feng(x,A∗u), therefore,

GAP(x,u) ≥ α

2 ∥u − rx∥2
H . (3.8)

By (H1), there exists at least a primal-dual optimal pair (x⋆,u⋆) for (3.1). Substituting
(x,u) = (x⋆,u) and (x,u) = (x,u⋆) into (3.8) and adding them together, we derive

α

2 ∥u − u⋆∥2
H + α

2 ∥u⋆ − rx∥2
H = α

2 ∥u − rx⋆∥2
H + α

2 ∥u⋆ − rx∥2
H

≤ GAP(x⋆,u) + GAP(x,u⋆)

= p(x⋆) − d(u) + p(x) − d(u⋆)

= p(x) − d(u)

= GAP(x,u).

Here we exploited the facts that rx⋆ = u⋆ in the first equality and p(x⋆) = d(u⋆) due
to (H2) in the third equality.

Hence, the theorem is proven.

By rearranging (3.3), one can show that u⋆ belongs to a ball region, namely FBI ball.
This result is formalized by the following theorem.

Theorem 3.1.3 (FBI ball). Let (x,u) ∈ M × H . Under the hypotheses (H1), (H2) and
(H3), we have

u⋆ ∈ BFBI(x,u) ≜ B

u + rx

2 ,

√
GAP(x,u)

α
− ∥u − rx∥2

H

4

 (3.9-FBI-b)

with rx defined in (3.2). We call this safe region the FBI ball. In particular, if x and u
are all feasible, i.e., GAP (x,u) < +∞, then the radius of BFBI(x,u) is finite.

Proof. The proof mainly relies on Lemma 3.1.2 and the Apollonius’s identity in Hilbert
space, 3 see e.g., [5, Item (iv) of Lemma 2.12], which states that for any pair of vectors v,w
from a Hilbert space H , ∥v + w∥2

H + ∥v − w∥2
H = 2

(
∥v∥2

H + ∥w∥2
H

)
. Particularizing

the latter identity to v = u⋆ − u and w = u⋆ − rx, one obtains

∥∥∥∥u⋆ − u + rx

2

∥∥∥∥2

H
+ ∥u − rx∥2

H

4 = ∥u⋆ − u∥2
H

2 + ∥u⋆ − rx∥2
H

2 .

3. a.k.a. law of parallelogram.
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Chapter 3 – Unifying existing safe regions with FBI regions

Substituting this in to (3.3), one sees that u⋆ satisfies

∥∥∥∥u⋆ − u + rx

2

∥∥∥∥
H

≤

√
GAP(x,u)

α
− ∥u − rx∥2

H

4 .

We therefore conclude that u⋆ ∈ BFBI(x,u).
Finally, feasibility of x and u implies that GAP(x,u) < +∞ and therefore finiteness

of the radius. This completes the proof.

3.1.2 Zero-radius property

Our next result demonstrates that FBI balls associated with the primal-dual optimal
pair (x,u) will contain u⋆ as a unique point. This fact confirms the "tightness" property
of FBI balls, which is a desirable characteristic of effective safe regions.

Proposition 3.1.4 (Zero-radius of FBI ball). Under the hypotheses (H1), (H2) and (H3),
the FBI ball evaluated at any optimal pair (x⋆,u⋆) uniquely contains u⋆, i.e.,

{u⋆} = BFBI(x⋆,u⋆).

Proof. Optimality of the pair (x⋆,u⋆) together with strong duality (H2) imply that
GAP(x⋆,u⋆) = 0 and rx⋆ = u⋆. As a consequence, the center and radius of FBI ball
BFBI(x⋆,u⋆) reduces to u⋆ and zero, respectively. Hence BFBI(x⋆,u⋆) = B(u⋆, 0) = {u⋆}.

3.1.3 Particularizations

This section presents two instances of FBI ball in which FBI ball has simplified safeness
inequality. These particularizations serve as an intermediate step essential to comparison
results between FBI ball and existing safe ball regions in the next section.

An FBI ball for parametric problem

We now focus on the following strong duality with primal and pre-dual problem pa-
rameterized by λ > 0:

min
x∈M

f(Ax) + λg(x)︸ ︷︷ ︸
pλ(x)

= max
u∈H

−f ∗(−u) − λg∗
(A∗u

λ

)
︸ ︷︷ ︸

dλ(u)

. (3.10)
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3.1. FBI ball

Here, M , H , f , g and A are defined as in the (non-parametric) strong duality (3.1).
Note that (3.1) and (3.10) and are equivalent; each can be derived from the other. 4

To explicitly mention the dependency on λ, we add λ-subscript to relevant quantities.
For example, we denote by (xλ,uλ) some feasible pair, and (x⋆λ,u⋆λ) some optimal pair.

Let (xλ0 ,uλ0) be a feasible pair for a given parameter λ0 > 0. We will now use (xλ0 ,uλ0)
to construct a safe FBI ball containing u⋆λ. Of particular interest in this consideration is the
property that, under suitable conditions, the Fenchel divergence in the safeness inequality
of the FBI ball will be zero.

Corollary 3.1.5. For τ, λ, λ0 > 0, the FBI ball BFBI

(
τxλ0 ,

λ

λ0
uλ0

)
contains u⋆λ with the

safeness inequality reads as follows:

α

2
∥∥∥u⋆λ − rτxλ0

∥∥∥2

H
+α2

∥∥∥∥∥u⋆λ − λ

λ0
uλ0

∥∥∥∥∥
2

H

≤ Bregf∗−,−τAxλ0

(
λ

λ0
uλ0 , rτxλ0

)
+ λ

λ0
Fenλ0g(τxλ0 ,A∗uλ0).

In particular, if one of the following condition holds true

1. (xλ0 ,uλ0) = (x⋆λ0 ,u
⋆
λ0) and τ = 1,

2. (xλ0 ,uλ0) = (x⋆λ0 ,u
⋆
λ0) and g is a gauge function,

where (x⋆λ0 ,u
⋆
λ0) denotes an optimal pair associated with λ0, then the Fenchel divergence

vanishes, i.e.,
Fenλ0g

(
τx⋆λ0 ,A

∗u⋆λ0

)
= 0.

Proof. One can notice that the first result corollary 3.1.5 is a consequence of Lemma 3.1.2
with a change of penalization g := λg. The only thing one needs to verify is that the two
terms involving the Fenchel divergence are equal. Indeed, we have

Fenλg(x,A∗u) = λ
(
g(x) + g

(A∗u
λ

)
−
〈

x,
A∗u
λ

〉)
.

Moreover, the particularization of the latter equation to the pair (x,u) =
(
τxλ0 ,

λ

λ0
uλ0

)
,

verifies

Fenλg
(
τxλ0 ,

λ

λ0
A∗uλ0

)
= λ

λ0
Fenλ0g(τxλ0 ,A∗uλ0).

4. Specifically, (3.1) can be obtained from (3.10) by setting λ = 1, and conversely, (3.10) can be
obtained from (3.1) by replacing g by λg.
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Chapter 3 – Unifying existing safe regions with FBI regions

This proves the desired safeness inequality.
We now focus on the cases of vanishing Fenchel divergence. Let (xλ0 ,uλ0) = (x⋆λ0 ,u

⋆
λ0)

and consider two cases.
Case 1. Assume that τ = 1. We then observe that

0 ≤ Fenλ0g

(
x⋆λ0 ,A

∗u⋆λ0

)
≤ GAPλ0(x⋆λ0 ,u

⋆
λ0) = 0,

where the first inequality is a consequence of non-negativity of Fenchel divergence, the
second inequality holds due to the dual gap decomposition (3.3) and the equality holds
since (x⋆λ0 ,u

⋆
λ0) is assumed to be optimal. This shows that Fenλ0g

(
τx⋆λ0 ,A

∗u⋆λ0

)
= 0 since

τ = 1.
Case 2. Assume that g = κ for some gauge function κ (see Definition B.1.11). In this

case, (λ0κ)∗ is an indicator function, thus, (λ0κ)∗(A∗u⋆λ0) = 0 since optimal solution u⋆λ0

is dual feasible. By definition of Fenchel divergence, we have

Fenλ0g

(
τx⋆λ0 ,A

∗u⋆λ0

)
= λ0κ(τx⋆λ0) + (λ0κ)∗(A∗u⋆λ0) −

〈
τx⋆λ0 ,A

∗u⋆λ0

〉
= τ

(
λ0κ(x⋆λ0) −

〈
Ax⋆λ0 ,u

⋆
λ0

〉)
= τ Fenλ0g

(
x⋆λ0 ,A

∗u⋆λ0

)
= 0.

Here, in the second equality, we exploited the observation that κ(τx⋆λ0) = τκ(x⋆λ0) since
gauge function κ is positively homogeneous, see Definition B.1.11.

This completes the proof.

An FBI ball for LASSO-like problem

In the following, we will investigate the FBI ball in the context of “LASSO-like”
problem, which is a least squares problem with (convex) gauge penalization κ. 5 The gauge
function is a broader category encompassing both norms and seminorms. In a comparison
with LASSO in which the sparsity induced by the ℓ1-norm, in the LASSO-like problem,
the gauge function κ can be arbitrary general, for example, it can be ℓ∞-norm which then
implies the anti-sparse structure of the optimal solutions [43].

5. See Definition B.1.11 for definition of gauge function.
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In this case, we assume the following strong duality holds:

min
x∈M

1
2 ∥b − Ax∥2

H + λκ(x) = max
u∈Uλκ

1
2 ∥b∥2

H − 1
2 ∥b − u∥2

H , (3.11)

where b ∈ H is some known vector, κ is a gauge function, λ > 0 and

Uλκ = {u ∈ H : κ◦(A∗u) ≤ λ}. (3.12)

Here, recall that κ◦ denotes the polar of gauge function. Particularizing (3.11) to the case
that M = Rn, H = Rm, κ = ∥·∥1, one recovers LASSO’s strong duality (2.12).

In this setup, one can verify that the Bregman and Fenchel divergence have explicit
form:

Bregf∗−,−Ax(u, rx) = 1
2 ∥u − rx∥2

H ,

where rx = b − Ax and

Feng(x,A∗u) =

λκ(x) − ⟨Ax,u⟩, if u ∈ Uλκ,

+∞, otherwise.

From Lemma 3.1.2, we know that the dual gap can be expressed as the sum of Bregman
and Fenchel divergences. Therefore,

GAP(x,u) =


1
2 ∥u − rx∥2

H + λκ(x) − ⟨Ax,u⟩, if u ∈ Uλκ,

+∞, otherwise.
(3.13)

In this case, if one assumes that u ∈ Uλκ, then FBI (3.3) reads as follows:

1
2 ∥u⋆ − u∥2

H + 1
2 ∥u⋆ − rx∥2

H ≤ 1
2 ∥u − rx∥2

H + λκ(x) − ⟨Ax,u⟩ (3.14)

Hence, the FBI ball in this setup can be rewritten as follows:

Corollary 3.1.6 (FBI ball for LASSO-like problem). Consider strong duality for LASSO-
like problem (3.11), if u ∈ Uλκ, then

BFBI(x,u) = B

u + rx

2 ,

√
∥u − rx∥2

H

4 + λκ(x) − ⟨Ax,u⟩

. (3.15)
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3.1.4 Comparisons

The objective of this section is to demonstrate that existing safe ball regions, up to the
best of our knowledge, are either supersets or special cases of the FBI ball. This finding
provides a theoretical insight into the fundamental structure of existing safe regions, which
may be insightful for future developments. Readers can grasp the key findings without
delving into intricate technical proofs within this section.

The existing safe regions are split into five groups based on their similarity in setup:

— SASVI and SAFE

— DPP and EDPP

— GAP and x-GAP

— FNE and DEDPP

— SFER and SLORES

In order to compare a safe region S0 with BFBI(x,u), we rely on the FBI (3.3) as a
reference inequality. For the ease of doing comparison, we label the non-negative quantities
in (3.3) by A,B,C and D:

α

2 ∥u⋆ − u∥2
H︸ ︷︷ ︸

A

+ α

2 ∥u⋆ − rx∥2
H︸ ︷︷ ︸

B

≤ Bregf∗−,−Ax(u, rx)︸ ︷︷ ︸
C

+ Feng(x,A∗u)︸ ︷︷ ︸
D

(3.16-ABCD)

If one can demonstrate that the safeness inequality of S0 takes the form A ≤ C + D

or B ≤ C+D then S0 contains the FBI ball. Furthermore, if the safeness inequality of S0

can be expressed as A+B ≤ C with D = 0 then S0 corresponds to a particular instance
of FBI ball.

Before diving into the details, we reiterate that our setting is now confined to finite-
dimension, i.e., M = Rn and H = Rm.

SAFE and SASVI ball
We recall the strong duality of LASSO setup:

min
x∈Rn

1
2 ∥b − Ax∥2

2︸ ︷︷ ︸
f(Ax)

+λ ∥x∥1︸ ︷︷ ︸
g(x)

= max
u∈Uλ∥·∥1

1
2 ∥b∥2

2 − 1
2 ∥b − u∥2

2 , (3.17)

where Uλ∥·∥1
= {u ∈ Rm : |⟨ai,u⟩| ≤ λ, ∀i = 1, . . . , n}. Let x⋆λ be a primal optimal so-

lution of the primal problem (left-hand side of (3.17)) and u⋆λ denote the unique dual
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3.1. FBI ball

optimal solution to the dual problem (right-hand side of (3.17)). In this case, note that
the optimality conditions read as follows:

u⋆λ = b − Ax⋆λ, (3.18)

⟨Ax⋆λ,u⋆λ⟩ = λ ∥x⋆λ∥1 , (3.19)∥∥∥ATu⋆λ
∥∥∥

∞
≤ λ. (3.20)

In this setting, the FBI (3.3) associated with (x,u) ∈ Rn × Uλ∥·∥1
can be rewritten as

follows (notice that α = 1):

1
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

+ 1
2 ∥u⋆λ − rx∥2

2︸ ︷︷ ︸
B

≤ 1
2 ∥u − rx∥2

2︸ ︷︷ ︸
C

+λ ∥x∥1 − ⟨Ax,u⟩︸ ︷︷ ︸
D

, (3.21-ABCD2)

where rx = b − Ax.

Corollary 3.1.7 (SASVI ball is a special case of FBI ball). Consider LASSO’s strong
duality (3.17), we have

BFBI(0,u) = BSASVI(u) def.= B

(
b + u

2 ,
∥b − u∥2

2

)
, (3.22)

for any u ∈ Uλ∥·∥1
.

Proof of Corollary 3.1.7. The safeness inequality of SASVI ball is expressed as follows,
∥∥∥∥∥u⋆λ − b + u

2

∥∥∥∥∥
2

≤ ∥b − u∥2
2 . (3.23)

By taking the square of both sides and rearranging terms, (3.23) can be rewritten as:

1
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

+ 1
2 ∥u⋆λ − b∥2

2︸ ︷︷ ︸
B

≤ 1
2 ∥b − u∥2

2︸ ︷︷ ︸
C

. (3.24-SASVI-b-ineq)

For u ∈ Uλ∥·∥1
, we note that (3.24-SASVI-b-ineq) is a particular case of (3.21-ABCD2)

w.r.t. x = 0. Thus, BFBI(0,u) = BSASVI(u).

Corollary 3.1.8 (SAFE ball is a superset of static FBI ball). Considering the LASSO’s
strong duality (3.17) and u ∈ Uλ∥·∥1

, we have

BFBI(0,u) ⊂ BSAFE(u) def.= B(b, ∥b − u∥2). (3.25)
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Chapter 3 – Unifying existing safe regions with FBI regions

Proof of Corollary 3.1.8. The particularization of the definition of a ball with center b
and radius ∥b − u∥2 writes

1
2 ∥u⋆λ − b∥2

2︸ ︷︷ ︸
B

≤ 1
2 ∥b − u∥2

2︸ ︷︷ ︸
C

, (3.26-SAFE-b-ineq)

which corresponds to the safeness inequality of the SAFE ball. For u ∈ Uλ∥·∥1
, it is clear

that (3.26-SAFE-b-ineq) is a relaxation of (3.21-ABCD2) by setting x = 0 and ignoring
A ≥ 0. Therefore, BFBI(0,u) ⊂ BSAFE(u).

DPP and EDPP ball

Let λ0 > 0 be some parameter and denote by (x⋆λ0 ,u
⋆
λ0) some optimal pair correspond-

ing to primal and pre-dual problem in (3.17) with parameter λ0 instead of λ.

Corollary 3.1.9 (EDPP ball is a special case of FBI ball). Consider the LASSO’s strong
duality (3.17), we have

BFBI

(
τx⋆λ0 ,

λ

λ0
u⋆λ0

)
= BEDPP(u⋆λ0) def.= B

(
λ

λ0
u⋆λ0 + 1

2v⊥
2 ,

1
2
∥∥∥v⊥

2

∥∥∥
2

)
, (3.27)

where

v⊥
2 = v2 − τv1,

v1 = b − u⋆λ0 = Ax⋆λ0 ,

v2 = b − λ

λ0
u⋆λ0 ,

τ = ⟨v1,v2⟩
∥v1∥2

H

.

Proof of Corollary 3.1.9. Consider (x,u) = (τx⋆λ0 ,
λ
λ0

u⋆λ0) where τ = ⟨v1,v2⟩
∥v1∥2

H
. Note that, in

this case, we have u ∈ Uλ∥·∥1
, τ ≥ 0 [92, Equation (33)] and rx − u = v⊥

2 . Therefore,

BEDPP(u⋆λ0) = B

(
λ

λ0
u⋆λ0 + 1

2v⊥
2 ,

1
2
∥∥∥v⊥

2

∥∥∥
2

)
= B

(
u + rx

2 ,
∥u − rx∥2

2

)
.
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3.1. FBI ball

The safeness inequality of BEDPP(u⋆λ0) therefore writes:

1
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

+ 1
2 ∥u⋆λ − rx∥2

2︸ ︷︷ ︸
B

≤ 1
2 ∥u − rx∥2

2︸ ︷︷ ︸
C

, (3.28-EDPP-b-ineq)

which is an instance of (3.21-ABCD2) with D = 0. Indeed, the optimality (3.19) w.r.t.
λ0 yields:

D = λ ∥x∥1 − ⟨Ax,u⟩ = τλ

λ0

(
λ0

∥∥∥x⋆λ0

∥∥∥
1

−
〈
Ax⋆λ0 ,u

⋆
λ0

〉)
= 0. (3.29)

Corollary 3.1.10 (DPP ball is a superset of FBI ball). Consider LASSO’s strong dual-
ity (3.17), we have

BFBI

(
λ

λ0
x⋆λ0 ,

λ

λ0
u⋆λ0

)
⊂ BDPP(u⋆λ0) def.= B

(
λ

λ0
u⋆λ0 ,

∥∥∥∥∥b − λ

λ0
b
∥∥∥∥∥

2

)
.

Proof of Corollary 3.1.10. The proof follows the same line as the one of Corollary 3.1.9
but for a different primal dual pair (x,u). More precisely, let (x,u) = ( λ

λ0
x⋆λ0 ,

λ
λ0

u⋆λ0). The
safeness inequality of BFBI

(
λ
λ0

x⋆λ0 ,
λ
λ0

u⋆λ0

)
reads as follows with the observation that D = 0

(with the same reason as in (3.29)),

1
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

+ 1
2 ∥u⋆λ − rx∥2

2︸ ︷︷ ︸
B

≤ 1
2 ∥u − rx∥2

2︸ ︷︷ ︸
C

. (3.30)

On the other hand, observing that rx − u = b − λ
λ0

b the safeness inequality of BDPP(u⋆λ0)
is

1
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

≤ 1
2 ∥u − rx∥2

2︸ ︷︷ ︸
C

. (3.31-DPP-b-ineq)

Note that, we can derive (3.31-DPP-b-ineq) by relaxing B ≥ 0 from (3.30), thus, FBI ball
is a subset of DPP ball.

GAP and x-GAP ball
We recall the strong duality w.r.t. to primal problem defined as a ℓ1-norm penalization

problem:
min
x∈Rn

f(Ax) + λ ∥x∥1 = max
u∈Uλ∥·∥1

−f ∗(−u), (3.32)
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Chapter 3 – Unifying existing safe regions with FBI regions

For (x,u) ∈ Rn ×Uλ∥·∥1
and f had α−1-Lipschitz continuous gradient, FBI in this setting

can be rewritten as follows:

α
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

+ α
2 ∥u⋆λ − rx∥2

2︸ ︷︷ ︸
B

≤ Bregf∗−,−Ax(u, rx)︸ ︷︷ ︸
C

+λ ∥x∥1 − ⟨Ax,u⟩︸ ︷︷ ︸
D

. (3.33-ABCD3)

where rx = −∇f(Ax).

Corollary 3.1.11 (GAP ball is a superset of FBI ball). Under the strong duality (3.32),
then FBI ball is a subset of GAP ball, i.e.,

BFBI(x,u) ⊂ BGAP(x,u) def.= B

u,
√

2
α

GAP(x,u)
,

for all (x,u) ∈ Rn × Uλ∥·∥1
.

Proof. The safeness of GAP ball can be identified with the following safeness inequality:

α
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

≤ GAP(x,u)︸ ︷︷ ︸
C+D

. (3.34-GAP-b-ineq)

This is clearly a relaxation of (3.33-ABCD3) by discarding B ≥ 0. Hence FBI ball in this
case is a subset of GAP ball.

Corollary 3.1.12 (x-GAP ball is a superset of FBI ball). Consider the strong dual-
ity (3.32), FBI ball is a subset of x-GAP ball, i.e.,

BFBI(x,u) ⊂ BxGAP(x,u) def.= B

rx,

√
2
α

GAP(x,u)
,

for all (x,u) ∈ Rn × Uλ∥·∥1
.

Proof. The safeness inequality of x-GAP ball is:

α
2 ∥u⋆λ − rx∥2

2︸ ︷︷ ︸
B

≤ GAP(x,u)︸ ︷︷ ︸
C+D

. (3.35-x-GAP-b-ineq)

This is a relaxation of (3.33-ABCD3) by discarding A ≥ 0.

FNE and DEDPP ball
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3.1. FBI ball

Corollary 3.1.13 (Dynamic FNE ball is a special case of FBI ball). Consider the
LASSO’s strong duality in (3.17) and let (x,u) be a primal-dual feasible pair satisfying

⟨Ax,u⟩ = λ ∥x∥1 . (3.36)

Then, FBI and FNE ball are identical, i.e.,

BFBI(x,u) = BFNE(x,u) def.= B
(

u + 1
2(b − Ax − u), 1

2 ∥b − Ax − u∥2

)
. (3.37)

Proof of Corollary 3.1.13. Observing that rx = b − Ax, then FNE ball can be rewritten
as follows,

B

(
1
2(u + rx), ∥rx − u∥2

2

)
.

Therefore, its safeness inequality reads as follows,

1
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

+ 1
2 ∥u⋆λ − rx∥2

2︸ ︷︷ ︸
B

≤ 1
2 ∥u − rx∥2

2︸ ︷︷ ︸
C

. (3.38-FNE-b-ineq)

This inequality is indeed an instance of (3.21-ABCD2) since D = λ ∥x∥1 − ⟨Ax,u⟩ = 0
according to (3.36).

Corollary 3.1.14 (DEDPP ball is a special case of FBI ball). Consider the LASSO’s
strong duality in (3.17). For any u ∈ Uλ∥·∥1

and any x ∈ Rn such that Ax ̸= 0Rm, DEDPP
ball equals to FBI ball up to a scaling of x. Specifically,

BFBI(2γx,u) = BDEDPP(x,u) def.= B

1
2(b + u) − γAx,

√
1
4 ∥b − u∥2

2 − γ2 ∥Ax∥2
2

. (3.39)

Here γ is defined as

γ = max
(

0, 1
2

⟨Ax,b + u⟩ − 2λ ∥x∥1

∥Ax∥2
2

)
. (3.40)

Proof. Notice that r2γx = b − 2γAx and γ ≥ 0, thus

BDEDPP(x,u) = B

u + r2γx

2 ,

√
1
4 ∥b − u∥2

2 − 1
4 ∥b − r2γx∥2

2

. (3.41)
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Chapter 3 – Unifying existing safe regions with FBI regions

The safeness inequality of DEDPP ball is equivalent to

1
2 ∥u⋆λ − u∥2

2︸ ︷︷ ︸
A

+ 1
2 ∥u⋆λ − r2γx∥2

2︸ ︷︷ ︸
B

≤ 1
4 ∥b − u∥2

2 − 1
4 ∥b − r2γx∥2

2 + 1
4 ∥u − r2γx∥2

2︸ ︷︷ ︸
C+D

(3.42-DEDPP-b-ineq)
In a comparison with safeness inequality of BFBI(2γx,u), the two ball are equal iff

1
4 ∥b − u∥2

2 − 1
4 ∥b − r2γx∥2

2 + 1
4 ∥u − r2γx∥2

2 = 1
2 ∥u − r2γx∥2

2 + λ ∥2γx∥1 − 2γ⟨Ax,u⟩.
(3.43)

To this end, we show that definition of γ (3.40) implies (3.43). Indeed, notice that γ
satisfies

2λ ∥x∥1 = ⟨Ax,b + u − 2γAx⟩ = ⟨Ax,u + r2γx⟩, (3.44)

From this observation, we have

λ ∥2γx∥1 − 2γ⟨Ax,u⟩ + 1
4 ∥u − r2γx∥2

= γ⟨Ax, r2γx + u⟩ − 2γ⟨Ax,u⟩ + 1
4 ∥u − r2γx∥2

2

= γ⟨Ax, r2γx − u⟩ + 1
4 ∥u − r2γx∥2

2

= 1
2⟨b − r2γx, r2γx − u⟩ + 1

4 ∥u − r2γx∥2
2

= 1
4 ∥b − u∥2

2 − 1
4 ∥b − r2γx∥2

2 .

Hence, (3.43) has been proved, which completes the proof.

SFER and SLORES ball

Corollary 3.1.15 (SFER ball is a special case of FBI ball). Consider the strong dual-

ity (3.32), if one chooses (x,u) =
(

x⋆λ0 ,
λ

λ0
u⋆λ0

)
then FBI and SFER ball are the same,

BFBI

(
x⋆λ0 ,

λ

λ0
u⋆λ0

)
= BSFER(u⋆λ0).

Proof of Corollary 3.1.15. Recall that the safeness inequality of SFER ball is:

α
2

∥∥∥u⋆λ − λ
λ0

u⋆λ0

∥∥∥2

2︸ ︷︷ ︸
A

+ α
2

∥∥∥u⋆λ − u⋆λ0

∥∥∥2

2︸ ︷︷ ︸
B

≤ Bregf∗−,−Ax⋆
λ0

(
λ
λ0

u⋆λ0 ,u
⋆
λ0

)
︸ ︷︷ ︸

C

. (3.45-SFER-b-ineq)
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3.2. Hölder half-space and FBI dome

This is an instance of (3.33-ABCD3), with D = 0 with similar reason as (3.29).

Corollary 3.1.16 (SLORES ball is a superset of FBI ball). Consider the strong dual-

ity (3.32), if one chooses (x,u) =
(

x⋆λ0 ,
λ

λ0
u⋆λ0

)
the obtained FBI ball is a subset of the

so-called SLORES ball
BFBI

(
x⋆λ0 ,

λ

λ0
u⋆λ0

)
⊂ BSLORES(u⋆λ0).

Proof of Corollary 3.1.16. Recall from (2.52), the safeness inequality of SLORES ball is
given by:

α
2

∥∥∥u⋆λ − u⋆λ0

∥∥∥2

2︸ ︷︷ ︸
B

≤ Bregf∗−,−Ax⋆
λ0

(
λ
λ0

u⋆λ0 ,u
⋆
λ0

)
︸ ︷︷ ︸

C

. (3.46-SLORES-b-ineq)

This is a relaxation of (3.45-SFER-b-ineq) with A ≥ 0. Thus FBI ball is a subset of
SLORES ball.

3.2 Hölder half-space and FBI dome

In this section, we introduce a safe “Hölder half-space” tailored for gauge penalization
problem. This half-space is proven to contain the dual feasible set and generalize the
existing safe half-spaces regions proposed in the literature. By taking intersection with
the proposed FBI ball in the previous section, we derive a dome region referred to as “FBI
dome” which also unifies existing safe dome regions in the literature.

3.2.1 Definition

Let κ : M → R ∪ {+∞} be a gauge function (see Definition B.1.11) and its polar κ◦

(see Definition B.1.17). Let f : H → R ∪ {+∞} be a convex function, A : M → H

be a linear operator and λ > 0 be penalization parameter. Let us consider the following
Fenchel-Rockafellar weak duality:

inf
x∈M

f(Ax) + λκ(x) ≥ max
u∈Uλκ

−f ∗(−u), (3.47)

where Uλκ = {u ∈ H : κ◦(A∗u) ≤ λ}.
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Theorem 3.2.1 (Hölder half-space). In Fenchel-Rockafellar weak duality (3.47), we as-
sume that the RHS of (3.47) admits at least a maximizer denoted by u⋆λ. Then

u⋆λ ∈ HHö(x′) ≜ H(Ax′, λκ(x′)). (3.48)

for any x′ ∈ M . We call HHö a Hölder half-space.

Proof of Theorem 3.2.1. Note that u⋆λ ∈ Uλκ. Therefore, to prove (3.48), it is sufficient to
show that

Uλκ ⊂ H(Ax′, λκ(x′)), (3.49)

for all x′ ∈ M . For any u ∈ Uλκ, we have

⟨Ax′,u⟩ ≤ κ◦(A∗u)κ(x′) ≤ λκ(x′), (3.50)

where the first upper bound follows from the polar inequality (see Proposition B.1.18),
and the second upper bound holds since u ∈ Uλκ.

Remark 3.2.2. Note that the safeness of Hölder half-space (3.50) has been established in
two parallel works [99, 87]. In [87], we consider κ = ∥·∥1 and the first inequality in (3.50)
therefore resembles the Hölder inequality, hence, the name “Hölder” half-space.

Remark 3.2.3 (Canonical characterization of dual feasible set). In the context of LASSO,
i.e., M = Rn, H = Rm, f = 1

2 ∥b − ·∥2
2 for some b ∈ Rm, κ = ∥·∥1 and A ∈ Rm×n

we show that in inclusion (3.49) is actually a consequence of the following identity [87,
Lemma 1]:

Uλ∥·∥1
=

⋂
x∈Rn

H(Ax, λ ∥x∥1). (3.51)

We refer to (3.51) as the canonical characterization of dual feasible set Uλ∥·∥1
using the

primal information x ∈ Rn.

By using the Hölder half-space to intersect any safe ball, we can derive a safe dome
region. Particularizing to FBI ball, we refer to the resulting safe dome region as the FBI
dome.

Theorem 3.2.4 (FBI dome). Assume that the strong duality (3.47) and the hypotheses
(H1), (H2) and (H3) hold true. For (x′,x,u) ∈ M × M × H , we have

u⋆λ ∈ DFBI(x′,x,u) ≜ HHö(x′) ∩BFBI(x,u). (3.52)
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3.2. Hölder half-space and FBI dome

We call this safe region FBI dome.

3.2.2 Zero-radius property

In this section we demonstrate the tightness of FBI dome by showing that there exist
choices of (x′,x,u) such that DFBI(x′,x,u) contains only u⋆λ as a unique point. The trivial
case is to choose (x,u) as an optimal pair, i.e., DFBI(x′,x⋆λ,u⋆λ) = {u⋆λ} for any x′ ∈ M .
This is clear since we have from Proposition 3.1.4 that {u⋆λ} = BFBI(x⋆λ,u⋆λ) ⊂ HHö(x′).

In the following we provide a non-trivial and probably surprising result, which claims
the singleton of DFBI(x⋆λ,0M ,u⋆λ) in the strong duality of LASSO-like problem (3.11).

Theorem 3.2.5 (Zero-radius property FBI dome). Consider the LASSO-like’s strong
duality (3.11), we have

{u⋆λ} = DFBI(x⋆λ,0M ,u⋆λ).

Proof. We have

HHö(x⋆λ) = H(Ax⋆λ, λκ(x⋆λ)) = H(b − u⋆λ, ⟨b − u⋆λ,u⋆λ⟩)

and
BFBI(0M ,u⋆λ) = B

(
u⋆λ + b

2 ,
∥u⋆λ − b∥H

2

)

Therefore, it is clear that the boundary ofHHö(x⋆λ) is the tangent hyper-plane ofBFBI(0M ,u⋆λ)
at u⋆λ. Since moreover BFBI(0M ,u⋆λ) is not as subset of HHö(x⋆λ) (hint: consider the point
b) these two observations imply that u⋆λ is the unique point in the intersection of the two
regions. Therefore, FBI dome contains u⋆λ as the unique point.

3.2.3 Comparisons

Safe half-spaces

Corollary 3.2.6 (ST half-space is a special case of Hölder half-space). Consider LASSO’s
strong duality (3.17), ST half-space is a special case of Hölder half-space.

HHö(ei0) = HST(i0) def.= H(ai0 , λ) (3.53)

for any unit basic vector ei0 ∈ Rn and i0 ∈ {1, . . . , n}.
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Proof of Corollary 3.2.6. Notice that Aei0 = ai0 and ∥ei0∥1 = 1, thus,

HHö(ei0) def.= H(Aei0 , λ ∥ei0∥1) = H(ai0 , λ) def.= HST(i0).

Corollary 3.2.7 (SASVI half-space is a special case of Hölder half-space). Consider
LASSO’s strong duality (3.17), SASVI half-space is a special case of Hölder half-space

HHö(x⋆λ0) = HSASVI(u⋆λ0) def.= H

(
b − u⋆λ0 ,

〈
b − u⋆λ0 ,

λ

λ0
u⋆λ0

〉)
. (3.54)

Proof of Corollary 3.2.7. By the optimality (3.18) and (3.19), we have u⋆λ0 = b − Ax⋆λ0

and λ0

∥∥∥x⋆λ0

∥∥∥
1

=
〈
Ax⋆λ0 ,u

⋆
λ0

〉
. This implies

HHö(x⋆λ0) def.= H
(
Ax⋆λ0 , λ

∥∥∥x⋆λ0

∥∥∥
1

)
= H

(
b − u⋆λ0 ,

〈
b − u⋆λ0 ,

λ

λ0
u⋆λ0

〉)
def.= HSASVI(u⋆λ0).

Safe domes

In the following we compare FBI dome and

— ST dome

— SASVI dome

— DSASVI dome

— GAP moon and dome

A summary of the comparison results is presented in Table 1.1 page 23.

Corollary 3.2.8 (ST dome is a superset of FBI dome). Consider LASSO’s strong dual-
ity (3.17), for u ∈ Uλ∥·∥1

, we have

DFBI(ei0 ,0,u) ⊂ DST(i0,u) def.= H(ai0 , λ) ∩B(b, ∥b − u∥2).

Proof. We have

DFBI(ei0 ,0,u) def.= HHö(ei0) ∩BFBI(0,u) ⊂ H(ai0 , λ) ∩B(b, ∥b − u∥2),
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3.2. Hölder half-space and FBI dome

where the inclusion follows from (3.53) and (3.25).

Corollary 3.2.9 (SASVI dome is special case of FBI dome). Consider LASSO’s strong
duality (3.17), we have

DFBI

(
x⋆λ0 ,0,

λ

λ0
u⋆λ0

)
= DSASVI(u⋆λ0) def.= HSASVI(u⋆λ0) ∩BSASVI(u⋆λ0).

Proof of Corollary 3.2.9. We have

DFBI

(
x⋆λ0 ,0,

λ

λ0
u⋆λ0

)
def.= HHö(x⋆λ0) ∩BFBI

(
0,

λ

λ0
u⋆λ0

)
= HSASVI(u⋆λ0) ∩BSASVI(u⋆λ0),

where the last equality follows from (3.54) and (3.22). Thus, in this case, FBI and SASVI
dome are the same.

The Dynamic SASVI (DSASVI) dome was introduced simultaneously in [87, 99], and
defined as the intersection of the Hölder half-space and the SASVI ball. It turns out that
this is also a particularization of the FBI dome.

Corollary 3.2.10 (DSASVI dome is a special case of FBI dome). Consider LASSO’s
strong duality (3.17), DSASVI dome is a special case of FBI dome.

DFBI(x,0,u) = DDSASVI(x,u) def.= HHö(x) ∩BSASVI(u),

for u ∈ Uλ∥·∥1
.

Proof of Corollary 3.2.10.

DFBI(x,0,u) def.= HHö(x) ∩BFBI(0,u) = HHö(x) ∩BSASVI(u).

Here the last equality follows from the comparison of FBI and SASVI ball (3.22).

Corollary 3.2.11 (GAP regions are supersets of FBI dome). Consider LASSO’s strong
duality (3.17), for (x,u) ∈ Rn × Uλ∥·∥1

, then FBI dome DFBI(x,0,u) is the smallest one
compared to GAP safe regions:

DFBI(x,0,u) ⊂ MGAP(x,u) ⊂ DGAP(x,u) ⊂ BGAP(x,u).
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Proof. Here, it is sufficient to show that DFBI(x,0,u) ⊂ MGAP(x,u). We now re-produce
the proof in [99]. Notice that DFBI(x,0,u) = BFBI(u)∩HHö(x) and MGAP(x,u) = BFBI(u)∩
EGAP(x). Let p ∈ HHö(x), we aim to show that p ∈ EGAP(x). By definition of HHö(x) and
EGAP(x), this implication holds because of the following observation:

d(p) ≤ p(x) ⇐⇒ −1
2 ∥p − rx∥2

2 ≤ λ ∥x∥1 − ⟨Ax,p⟩.

The proof is completed.

3.3 Geometric ball

Given a dome region and an arbitrary point v, this section discusses how to to construct
a ball centered at v and has smallest radius so that it contains the given dome. We refer
too this ball as a “geometric ball”.

3.3.1 Definition

From a practical standpoint, implementing dimensionality reduction methods using
a ball is considerably simpler than utilizing a dome. Motivated by this, several studies
have proposed deriving the “smallest” ball (with a pre-specified center) that contains a
given dome region. For example, the ST2 and ST3 balls have been derived from the ST
dome [95, 96], the GAP ball from the GAP dome [45], and the Dynamic EDPP (DEDPP)
ball from the Dynamic SASVI (DSASVI) dome [99]. As the safe region should be as small
as possible, its radius should be minimized. We define such ball regions as geometric balls.

Definition 3.3.1 (Geometric ball). Let v ∈ H be a point and D ⊂ H be a non-empty
dome region. Define B(v, R) as a ball corresponding to v and D which has center located
at v and has smallest radius, denoted by R, so that it contains the dome D, i.e.,

R ≜ sup
u∈D

∥v − u∥H .

We call B(v, R) a geometric ball.
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Note that R can be evaluated explicitly:

R =


∥v − c∥H + r, if ψv ≥ −ψD,√

∥v − vP∥2
H +

(
∥vP − cP∥H +

√
1 − ψ2

D

)2
, otherwise,

(3.55)

where vP denotes the projection of v onto the hyperplane P associated with half-space
H(g, s), ψv ≜ ⟨g,v−c⟩

∥g∥H ∥v−c∥H
denotes the cosine between the two vectors and ψD ≜

s− ⟨g, c⟩
r ∥g∥H

denotes the intersection index of dome region D, see (A.8). The proof for this result is
presented in Proposition A.3.5.

By this definition and the generality of the FBI dome established in the previous
section, existing safe ball regions (ST2, ST3, GAP, DEDPP) can be considered as instances
of the geometric ball. Surprisingly, we demonstrate in the next section that, under certain
conditions, the FBI ball can also be viewed as a geometric ball.

3.3.2 Comparisons

Theorem 3.3.2 (Relation of FBI ball and FBI dome). Consider the strong duality in
the LASSO-like setup (3.11) and (x,u) ∈ M × Uλκ, then FBI ball BFBI(x,u) is the ball
centered at u + rx

2 with smallest radius containing FBI dome DFBI(x,0,u), i.e.,

DFBI(x,0,u) ⊂ BFBI(x,u)

and
radBFBI(x,u) = max

p∈DFBI(x,0,u)

∥∥∥∥u + rx

2 − p
∥∥∥∥

H
.

In other words, the FBI ball BFBI(x,u) is the geometric ball associated with center u + rx

2
and FBI dome DFBI(x,0,u).

Proof of Theorem 3.3.2. We prove this result by using Proposition A.3.3, which asserts
that that the ball B(rθ, rθ) forms a geometric ball encompassing the dome D = B(c, r) ∩
H(g, s) if the six parameters c, r,g, s, rθ and rθ satisfy (A.9) and (A.10) for some θ ≤ 0.
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To apply this result, we choose the parameter of dome region as follows:

c = b + u
2

r = ∥b − u∥H

2
g = Ax = b − rx

s = λκ(x)

and the parameters of the smallest ball:

cθ = u + rx

2
rθ = radBFBI(x,u)

θ = − ∥b − rx∥H

∥b − u∥H

The remaining is to show that (A.9) and (A.10) hold true w.r.t. to above choice of pa-
rameters. We first notice that (A.9) holds true since

cθ = u + rx

2 = c + θr
g

∥g∥
. (3.56)

To prove (A.10), we recall that ψD = s−⟨g,c⟩
r∥g∥H

denotes the dome index of dome D. Now, we
have

r2((ψD − θ)2 + (1 − ψ2
D))

=r2(θ2 − 2θψD + 1)

=1
4 ∥b − u∥2

(
∥b − rx∥2

∥b − u∥2 + 2∥b − rx∥
∥b − u∥

λκ(x) − 1
2⟨Ax,b + u⟩

∥Ax∥ 1
2 ∥b + u∥

+ 1
)

=1
4 ∥b − rx∥2 + λκ(x) − 1

2⟨Ax,b + u⟩ + 1
4 ∥b − u∥2

=λκ(x) − ⟨Ax,u⟩ + 1
4 ∥u − rx∥2
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By applying (3.14), we have

= GAP(x,u) − 1
4 ∥u − rx∥2

=(radBFBI(x,u))2

=r2
θ .

Hence, we complete the proof.
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Chapter 4

EXTENDING SAFE SCREENING PRINCIPLE

TO THE SPACE OF MEASURES

Abstract. In this chapter, we extend the safe screening principle to the total varia-
tion norm penalization problem defined on the space of Radon measures, presenting
an efficient method to eliminate the support region of optimal measures. We first pro-
pose a single-parameter elimination using the safe screening rule. Building upon this,
we present a batch parameter screening method referred to as Joint Safe Screening
(JSS). Moreover, we investigate the application of this safe screening rule to reduce
the complexity of a recently introduced solver known as the Refined Grid Based (RGB)
method. Additionally, we establish a consistency result, ensuring that integrating JSS
into RGB does not alter the iterative solutions, thus maintaining the convergence
analysis previously established for RGB.
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In Chapter 2, we discussed how the safe screening rule (2.9) and its relaxed ver-
sion (2.11) using safe region can effectively reduce the dimension of ℓ1-norm penalization
problems (2.1). The purpose of this chapter is to extend these safe screening rules to
address the following infinite-dimensional counterpart of ℓ1-norm penalization problem:

min
x∈M

f(Ax) + λ ∥x∥TV , (4.1)

which is known as a “total-variation norm” penalized problem. Here H denotes some
Hilbert space while M denotes the space of Radon measures, f : H → R ∪ {+∞} is a
convex function, A : M → C is a linear operator called “dictionary operator”, λ > 0,
and ∥·∥TV denotes the total variation norm of Radon measures.

In Section 4.1, we provide a recap of essential concepts to rigorously define (4.1).
In Section 4.2, we introduce a safe screening rule for (4.1). In Section 4.3, we delve into
the application of this safe screening rule, accompanied by a theoretical guarantee, to
reduce the complexity of a recently proposed solver for (4.1) known as the Refinement
Grid Based method [48, Algorithm 2].

4.1 Preliminaries

In this part, we recall the concepts essential to properly define problem (4.1), including
the space of Radon measures M and the dictionary operator A. We then conclude this
section with a brief review of several available solving methods for (4.1).

4.1.1 Radon measures

Space of Radon measures. One can encounter two (equivalent) definitions of the space
of “Radon measures”, see [2, Section 4.2] for a detailed discussion. The first approach
defines Radon measures as set functions over Borel sets that satisfy specific regularity
conditions, see e.g., [2, Definition 4.2.1] or [46, Definition 2.3]. In this thesis, we rather
follow the second approach which defines Radon measures as continuous linear functionals
over the space of continuous functions [2, Section 4.2.2]. This approach is consistent with
the duality framework that we will exploit in the next section.

Let T ⊂ Rd be a compact set. We call T the parameter set. Let C = C (T,R) be
the space of continuous functions from T to R. C is a Banach space endowed with the
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max-norm defined as follows:

∥z∥∞ ≜ max{|z(t)| : t ∈ T},

for any z ∈ C . Here, the maximum is well-defined since T is compact and z is continuous.
We denote the strong topology in C induced by the max-norm by τC . It is important to
notice that (C , τC ) is non-reflexive. 1

The space of Radon measures, denoted by M = M (T,R), is defined as the topological
dual space of C , i.e., M ≜ (C , τC )∗. We now use the canonical pairing to denote the action
of x ∈ M on z ∈ C , i.e.,

⟨x, z⟩M ,C ≜
∫

t∈T
z(t)x(dt).

To simplify notations, if the spaces of x and z are clearly identified from the context, we
will drop the subscript in the pairing and ignore the order, i.e., we write ⟨x, z⟩ = ⟨z,x⟩ =
⟨x, z⟩M ,C . 2 Note that the space of Radon measures is also a Banach space endowed with
the natural dual norm called total variation norm (TV-norm):

∥x∥TV ≜ sup
{
⟨x, z⟩M ,C : ∥z∥∞ ≤ 1

}
(4.2)

for any x ∈ M . We denote by τM the topology on M induced by the TV-norm. Here
(M , τM ) = (C , τC )∗. Recall that (C , τC ) is non-reflexive, i.e., the topological dual of
(M , τM ) is distinct from C and is not thoroughly understood. This observation is crucial
in guiding our approach to utilizing duality results in the subsequent sections.

An important example of a Radon measure is the Dirac mass, denoted by δt for some
t ∈ T . The Dirac mass δt acts on a continuous function z ∈ C as follows:

⟨δt, z⟩ ≜ z(t),

that is, ⟨δt, z⟩ returns the evaluation of z at t. The Dirac mass has a unit TV-norm,
i.e., ∥δt∥TV = 1. In general, for a discrete measure defined as a combination of weighted
Dirac masses, say x = ∑n

i=1 wiδti
where (wi, ti) ∈ R × T , the TV-norm of x is the sum

of its component masses: ∥x∥TV = ∑n
i=1 |wi|. This remark highlights that TV-norm is

essentially an infinite-dimensional counterpart of ℓ1-norm.

1. That is C ⊊ (C , τC )∗∗.
2. The notations of canonical dual pairing and the inner product in Hilbert space can be distinguished

using their arguments.
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The total variation measure of x ∈ M , denoted by |x|, is a measure defined for any
Borel set Θ ⊂ T as [56, Section 29]:

|x| (Θ) ≜ sup
{∫

t∈Θ
z(t)x(dt) : z is x-measurable and ess sup

t′∈T
|z(t′)| ≤ 1

}
.

In particular, the total variation measure evaluated on the whole parameter set T equals
to the TV-norm, i.e.,

|x| (T ) = ∥x∥TV .

The support of a measure x ∈ M is the smallest closed set in T , denoted by supp(x),
such that |x| (T \ supp(x)) = 0 [2, page 124]. In other words,

supp(x) = {t ∈ T : |x| (Θ) > 0 for any open set Θ containing t}. (4.3)

4.1.2 Dictionary operator

Recall that, in this section, we denote H a Hilbert space and C the space of contin-
uous functions defined on a compact set T . Our objective is to introduce the so-called
“dictionary operator” A appearing in (4.1). Here, we follow the intuitive construction pro-
posed by Flinth [46, Definition 2.1 and 2.13], where the dictionary operator A is defined
using the concepts of “atom” and “test operator”.

In this thesis, we consider atom as a function defined on T which satisfies two regularity
conditions detailed in the following definition.

Definition 4.1.1 (Atom). An atom a is a map a : t ∈ T 7→ at ∈ H satisfying the
following two conditions:

(A1) Lipschitz continuity. For all t, t′ ∈ T , ∥at − at′∥H ≤ L ∥t − t′∥2 for some L > 0.

(A2) Boundedness. For all t ∈ T , ∥at∥H ≤ M for some M > 0.

Here, a brief note is warranted regarding the utilization of the two hypotheses con-
cerning the atom. In Definition 4.1.1, the assumption of Lipschitz continuity (A1) plays
a pivotal role in deriving the practical safe screening rule discussed in the subsequent
section, see Theorem 4.2.2) The boundedness assumption (A2) ensures the continuity of
the “test operator” K, as defined immediately below.
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Example 4.1.2. Let T be a compact subset in Rd and H = L2(Rd) be the space of squared
integrable functions on Rn, then the Gaussian mapping t 7→ at(·) = exp

(
−γ ∥· − t∥2

2

)
for

some γ > 0 satisfies the definition of atom.

We now define the test operator K : H → C , which is a linear operator such that:

(Ku)(t) ≜ ⟨u, at⟩,

for all t ∈ T . Note that (A2) implies that K is bounded since

∥Ku∥C = max
t∈T

|⟨u, at⟩| ≤ max
t∈T

∥at∥H ∥u∥H ≤ M ∥u∥H .

for all u ∈ H . Here, the last inequality follows from (A2).
We define the dictionary operator A : M → H as the adjoint operator of K, i.e.,

A ≜ K∗.

Explicitly, A can also be defined as the unique linear operator satisfying:

⟨u,Ax⟩H ,H = ⟨x,Ku⟩M ,C

(
=
∫

t∈T
⟨u, at⟩x(dt)

)
, (4.4)

for all (x,u) ∈ M × H .
With a slight abuse of terminology, we denote A∗ ≜ K and say that A and A∗ are

each other’s adjoint. From now on, we will use the notation A,A∗ instead of K∗,K,
respectively.

It is worth noting that the image of a measure via dictionary A can be understood as
a Bochner integral [22] taking value in Hilbert space H , i.e., Ax =

∫
t∈T atx(dt) ∈ H

for any measure x ∈ M . Particularly, the image of a discrete measure x = ∑n
i=1 wiδti

is
the linear combination of the corresponding atoms:

A
(

n∑
i=1

wiδti

)
=

n∑
i=1

wiati
, (4.5)

where (wi, ti) ∈ R × T and i = 1, . . . , n. When n = 1, the image of a unit Dirac mass is
the associated atom, i.e.,

Aδt = at. (4.6)

for all t ∈ T .
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Example 4.1.3. Consider the Gaussian atom defined in Example 4.1.2. For x ∈ M ,
then Ax ∈ L2(Rd) is a squared integrable function defined as:

(Ax)(θ) =
∫

t∈T
exp

(
−γ ∥θ − t∥2

2

)
x(dt),

for all θ ∈ Rd.

Notice from above discussion, A∗ is continuous from (H , τH ) to (C , τC ) since it is
a bounded linear operator. Additionally, A∗ is also compact as observed in [29, Proof of
Theorem 6]. Therefore, A and A∗ admit several continuity and compactness properties,
which are summarized in the following theorem. We also provide a proof for the sake of
completeness.

Theorem 4.1.4. We have the following properties of A and A∗:

1. A is compact, continuous and weakly* continuous.

2. A∗ is compact, continuous and weakly continuous.

Proof. Recall that, A is the adjoint of A∗.We have some basic properties of adjoint oper-
ators:

— If A∗ is weakly continuous, then A is weakly* continuous [69, Theorem 8.10.5].

— If A∗ is weakly continuous if and only if it is continuous [69, Corollary 8.11.4].

— If A∗ is continuous, then A is also continuous [69, Theorem 8.11.5]

— If A∗ is compact, then A is also compact [31, Theorem 2].

Recall that A∗ is continuous. Therefore, in the remaining, we only focus on show-
ing that A∗ : H → C is compact, i.e., for any bounded set G ⊂ H , its image
A∗G ≜ {A∗u | u ∈ G} ⊂ C is totally bounded. By Arzelà-Ascoli theorem [31, Theo-
rem 7 page 266], this can be done by showing that A∗G is a family of pointwise bounded
and equicontinuous functions.

Step 1. We first show that A∗G is pointwise bounded. To this end, we need to prove
that, for any fixed t ∈ T we have supφ∈A∗G |φ(t)| < +∞. For any φ ∈ A∗G, there exists
some u ∈ G so that φ = A∗u. From the boundedness of G, there exists a finite positive
number MG such that ∥u∥H ≤ MG for all u ∈ G. Therefore, we have

|φ(t)| = |(A∗u)(t)| = |⟨u, at⟩| ≤ ∥u∥H ∥at∥H ≤ MGM < +∞,
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where the second inequality follows from the fact that the atoms at is bounded by M due
to (A2). Hence, the family of functions in A∗G is pointwise bounded.

Step 2. We next prove that the family of functions A∗G ⊂ C is equicontinuous at
any fixed t ∈ T , i.e., for every ε > 0, there exists ∆ > 0 such that if for any t′ ∈ T

verifying ∥t − t′∥ < ∆, then we have |φ(t) − φ(t′)| < ε for all φ ∈ A∗G. Since φ ∈ A∗G,
there exists u ∈ G such that φ = A∗u. Notice that a is L-Lipschitz continuous by (A1)
and G is bounded by some MG > 0, thus

|φ(t) − φ(t′)| = |A∗u(t) − A∗u(t′)|

= |⟨u, at − at′⟩|

≤ ∥u∥H ∥at − at′∥H

≤ ∥u∥H L ∥t − t′∥

< LMG∆.

One then completes the proof by choosing ∆ = ε

LMG

.

Remark 4.1.5 (Another construction scheme of A and A∗). In brief, the so-called “dic-
tionary operator” A is defined as the adjoint of some test operator, denoted as A∗. Another
perspective, as seen in some contributions (e.g., [13]), abstractly assumes the existence of
the dictionary operator A as a weakly* continuous linear operator and then defines A∗ as
the pre-adjoint of A. Note that the existence of such a pre-adjoint is guaranteed due to
the weak* continuity of A [94, Theorem 6].

4.1.3 TV-norm penalization problem

Let Ψ be a closed subset of compact set T ⊂ Rd. 3 In this section, we denote by
M (Ψ,R) the space of signed Radon measures with support on Ψ. Here, notice that
M (Ψ,R) ⊂ M (T,R), thus the TV-norm ∥·∥TV defined on M (T,R) is still well-defined
on M (Ψ,R). This section is concerned with the following TV-norm penalized problem:

min
x∈M (Ψ,R)

f(Ax) + λ ∥x∥TV , (4.7-pΨ)

3. Therefore, Ψ is also compact.
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where f : H → R ∪ {+∞} is a closed proper convex, lower bounded and α−1-strongly
smooth 4 function for some α > 0, A is a dictionary operator and λ > 0.

An intriguing aspect of solving (4.7-pΨ) is its capacity to yield sparse solutions. Under
specific conditions, as outlined in, for instance, [32, Theorem 2] or [12, Section 4.2.3], there
exists an n-sparse optimal solution x⋆ for (4.7-pΨ) i.e.,

x⋆ =
n∑
i=1

wiδti

for some (wi, ti) ∈ R × T , i = 1, . . . , n.
Note that if one can identify the support of x⋆, say Θ = {ti : i = 1, . . . , n}, then

the weight vector w = (w1, . . . , wn) can be recovered by solving the following finite-
dimensional problem:

min
w∈Rn

f(AΘw) + λ ∥w∥1 ,

where AΘ ≜ [at1 , . . . , atn ]. Therefore, in order to solve (4.7-pΨ) a vast number of solving
methods aim at finding Θ, i.e., the support of x⋆.

Below, we present the Fenchel-Rockafellar pre-dual problem associated with (4.7-pΨ),
along with its optimality conditions. These conditions are essential in the derivation of
the safe screening rules detailed in Section 4.2.

Here, the Fenchel-Rockafellar pre-dual problem of (4.7-pΨ) is given by

max
u∈H

− f ∗(−u) (4.8-dΨ)

s.t. u ∈ UΨ,

where
UΨ = {u ∈ H : |⟨at,u⟩| ≤ λ,∀t ∈ Ψ}. (4.9)

From hereafter, a pair (x,u) ∈ M (T,R) × H is said to be feasible w.r.t. Ψ ⊂ T if

supp(x) ⊂ Ψ (4.10a)

|⟨u, at⟩| ≤ λ,∀t ∈ Ψ. (4.10b)

It is essential to note that the Lipschitz continuity of ∇f implies that the minimum
and maximum values in (4.7-pΨ) and (4.8-dΨ), respectively, can be achieved and the strong

4. See Appendix B.1 for precised definition.
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duality holds between the problems, see Proposition B.2.5. Let x⋆ be a minimizer of the
primal problem (4.7-pΨ) and u⋆ be a maximizer for the pre-dual problem (4.8-dΨ). Since
∇f is assumed to be α−1-Lipschitz continuous, f ∗ is strongly convex. Therefore, the pre-
dual problem (4.8-dΨ) is strongly concave, thus, implies the existence and uniqueness of
u⋆ [100, Proposition 3.5.8]. By Proposition B.2.5, the optimal pair (x,u) should verify
the following optimality conditions.

Theorem 4.1.6. The pair (x⋆,u⋆) ∈ M (T,R) × H is an optimal pair w.r.t. (4.7-pΨ)
and (4.8-dΨ) if and only if it verifies the following optimality conditions:

supp(x⋆) ⊂ Ψ (4.11a)

u⋆ = −∇f(Ax⋆) (4.11b)

⟨Ax⋆,u⋆⟩ = λ ∥x⋆∥TV (4.11c)

max
t∈Ψ

|⟨at,u⋆⟩| = λ, (4.11d)

4.1.4 Solving algorithms

In recent years, there has been active researches focused on developing new efficient
solving methods to address (4.7-pΨ). We invite the reader to refer to [11, 29, 64] for some
discussions on such algorithmic approaches. In the following, we briefly review some of
them.

Grid based methods. One of the simplest approaches for solving (4.7-pΨ) is to discretize
the parameter set using a regular grid. In this discretization approach, (4.7-pΨ) can be
rewritten as an ℓ1-norm penalization problem (2.1). Advanced algorithms like FISTA [7],
Chambolle-Pock [16], and smoothing-parameterization [78] can efficiently solve this finite-
dimensional approximation problem.

However, a notable drawback of this approach is the necessity of choosing a fine grid
with an extremely small step size to accurately capture the positions of optimal Dirac
masses. In sparse spike deconvolution problems using Beurling LASSO, theoretical anal-
ysis has shown that regular grid based methods can only recover Dirac masses around
the true optimal ones [32], and the number of spikes recovered is approximately twice the
number of spikes in the initial measure [33, 34].

Recently, a variant of the grid based approach has been proposed in [48] called Re-
finement Grid Based method. Unlike using a fixed regular grid, this approach uses a grid
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partition that is iteratively refined. The approach can significantly enhance the estimation
of the locations of optimal Dirac masses compared to using fixed grid. However, in prac-
tice, this refinement can lead to an excessively large grid size, resulting in subproblems
with extremely high dimensions after each iteration.

Gradient methods. Note that the problem (4.7-pΨ) is an optimization problem defined
on the space of Radon measures, which is non-Hilbertian. This characteristic restricts the
application of many standard gradient-based methods.

The Frank-Wolfe algorithm [60], also known as the conditional gradient method, is an
approach that doesn’t rely on the Hilbertian structure of the space. This method when
particularized to TV-norm penalized problems involves adding one Dirac mass in each iter-
ation and then optimizing their masses and locations. The first version of this method was
proposed in [13]. Various variants have been developed since then; for example, the masses
and locations of Dirac masses can be updated alternatively [11] or simultaneously [30].
The theoretical guarantees ensure that the convergent rate of the Frank-Wolfe method
is sublinear [60, Theorem 1]. In [29, Theorem 6], the author demonstrates that, under
certain conditions, the (Sliding) Frank-Wolfe method converges after a finite number of
steps.

A more recent approach for solving (4.7-pΨ) is to perform simple gradient descent
within an over-parameterized setup. Specifically, a substantial number of Dirac masses
are initialized, and then a straightforward gradient descent is applied to optimize both
their masses and locations. Intriguingly, under specific conditions, this approach converges
to the globally optimal solutions despite the non-convexity of the discretized problem [21,
20].

Alternative Methods. We mention in the following some other methods that can be
used to directly tackle (4.7-pΨ) or its variants.

In the history of solving (4.7-pΨ), a significant advancement was made by using semi-
definite programming. This was particularly effective when the atom was defined as a
convolution with ideal low-pass filter [15]. In such cases, the dual problem associated
with (4.7-pΨ) can be interpreted as a semi-definite programming problem with can be
solved efficiently. Notably, this approach is among the first methods that eliminate the
dependency on grid discretization, a traditional method of solving (4.7-pΨ).

Flinth et al. [47] note that the dual problem of (4.7-pΨ), with its infinite constraints,
can be viewed as a semi-infinite programming, thus, can be solved using the exchange
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methods. They also investigate the method that combines the exchange method with
gradient descent to enhance efficiency. Furthermore, their study provides a detailed con-
vergence analysis for the proposed methods [47, Theorem 3].

Orthogonal Matching Pursuit (OMP) is an approach that addresss the sparse struc-
ture appeared in the optimal solutions of (4.7-pΨ) rather than directly solving it. The
theoretical results, exemplified in [37, 38], demonstrate the efficacy of OMP in precisely
identifying atom parameters within a finite number steps.

Note that there is also a research direction that approximates the dictionary using low
dimensional spaces and apply, e.g., OMP, to tackle the transformed problem in the low
dimensional space, see [35, 62, 17, 36].

Another recent approach proposed in [90, 8] addresses sparse representation of mea-
sures where the optimal Dirac masses must be suitably separated. The authors exploited
the projected gradient descent method to enforce this separation constraint. Additionally,
the projection can also be heuristically implemented by merging Dirac masses that are
sufficiently close to each other.

4.2 Safe screening rules on the space of measures

This section introduces two safe screening rules for the TV-norm penalized prob-
lem (4.7-pΨ) including a basic and a relaxed rule. Let (x⋆,u⋆) be an optimal pair w.r.t.
(4.7-pΨ) and (4.8-dΨ) where Ψ = T .

The basic safe screening rule reads as follows:

Theorem 4.2.1 (Safe screening rule for signed Radon measures). For t ∈ T , we have

|⟨at,u⋆⟩| < λ =⇒ t /∈ supp(x⋆). (4.12-SS-SRM)

Proof. Rewrite the two optimality conditions (4.11c) and (4.11d) for Ψ = T , we obtain
∫

t∈T
⟨at,u⋆⟩x⋆(dt) = λ |x⋆| (T ). (4.13a)

max
t∈T

|⟨at,u⋆⟩| = λ, (4.13b)

We prove the theorem by contradiction. Assuming that there exists some t0 ∈ supp(x⋆)
satisfying |⟨at0 ,u⋆⟩| < λ. Since t 7−→ |⟨at,u⋆⟩| is continuous, there exists ε > 0 and an
open neighborhood Θ of t0 such that |⟨at,u⋆⟩| < λ−ε for all t ∈ Θ. Furthermore, the fact
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that t0 ∈ supp(x⋆) yields |x⋆| (Θ) > 0 due to the definition of support of measure (4.3).
Combining these two observations together with (4.13b), we can see that

∫
t∈T

⟨at,u⋆⟩x⋆(dt) ≤
∫

t∈T
|⟨at,u⋆⟩| |x⋆| (dt)

=
∫

t∈Θ
|⟨at,u⋆⟩| |x⋆| (dt) +

∫
t∈T\Θ

|⟨at,u⋆⟩| |x⋆| (dt)

< (λ− ε) |x⋆| (Θ) + λ |x⋆| (T \ Θ)

= λ |x⋆| (T ) − ε |x⋆| (Θ)

< λ |x⋆| (T ).

The obtained strict inequality is in contradiction with (4.13a), we therefore finish the
proof.

The basic safe screening (4.12-SS-SRM) has two practical limitations. First, it lacks
precise knowledge of u⋆. This issue can nevertheless be addressed using the concept of safe
region, see Definition 2.2.1. Second, screening a single parameter t at a time is inefficient
given the infinitely uncountable number of elements in T . To overcome this issue, we
employ the so-called joint safe screening rule proposed in [58], which eliminates a region
of parameters rather than a single one.

Theorem 4.2.2 (Joint safe screening rule for signed Radon measures). Let Θ ⊂ T and
S be a safe region, i.e., u⋆ ∈ S, we have

sup
t∈Θ,u∈S

|⟨at,u⟩| < λ =⇒ Θ ∩ supp(x⋆) = ∅. (4.14-JSS-SRM)

In particular, if Θ and S are ball regions, i.e., Θ = B(t0, r0) for some (t0, r0) ∈ T × R+

and S = B(c, r) for some (c, r) ∈ H × R+, then

|⟨at0 , c⟩| + r0L ∥c∥H + rM < λ =⇒ Θ ∩ supp(x⋆) = ∅, (4.15)

where the constants L and M associated with the atom function a : T → H are defined
in Definition 4.1.1, respectively.

Proof. Notice that (4.14-JSS-SRM) is a direct consequence of (4.12-SS-SRM). We now
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prove (4.15). Notice from (A2) that a is bounded by M , then

|⟨at,u⟩| ≤ |⟨at, c⟩| + |⟨at,u − c⟩| ≤ |⟨at, c⟩| + rM. (4.16)

Also notice that the L-Lipschitz continuity of a implies:

|⟨at, c⟩| ≤ |⟨at0 , c⟩| + |⟨at − at0 , c⟩| ≤ |⟨at0 , c⟩| + Lr0 ∥c∥H . (4.17)

Combining (4.16), (4.17) and (4.14-JSS-SRM), we deduce (4.15).

4.3 Improving RGB method with joint safe screening

In this section, we study the application of the joint safe screening method proposed
in Theorem 4.2.2 in reducing the complexity of a recent method called Refinement Grid
Based method (RGB) [48, Algorithm 2] for solving problem (4.7-pΨ).

In the following, we begin by revisiting the fundamentals of the RGB method in Sec-
tion 4.3.1. Next, we introduce an enhancement of RGB method, called RGBJSS, by in-
corporating (4.14-JSS-SRM) into the RGB method, see Algorithm 1. We then establish
the consistency between RGB and RGBJSS in Theorem 4.3.2. This consistency ensures
that implementing the JSS into RGB does not alter the iterative solutions obtained using
RGB. In essence, RGBJSS method does not affect the convergence of RGB while reducing
the dimension of sub-problems solved during the iterations of the RGB method.

4.3.1 A reminder of Refinement Grid Based (RGB) method

We first describe the basics of the RGB method [48, Algorithm 2]. The main idea of
the RGB method is to solve discretized versions of (4.7-pΨ) over a sequence of increasingly
finer grids that approximate T . More specifically, the finite grid in iteration k (k ≥ 1) is
constructed by refining the grid used in iteration k − 1.

More formally, let W (k) be a partition of T at iteration k ≥ 0. We refer to each element
of W (k) as a cell, which can be a segment in 1D, a square in 2D and a cube in 3D. We
call W (k) the set of working cells. In RGB method, we update W (k) by selecting a set of
candidate cells denoted by C(k) and split them into smaller pieces:

W (k+1) =
(
W (k) \ C(k)

)
∪
(
∪ splitC(k)

)
. (4.18)
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Here, the “split” operator denotes the process of splitting the cells in C(k) into smaller
ones. It is noteworthy that not every cell in C(k) needs to undergo this splitting; only a
fraction of them do to prevent unnecessary complexity. 5 It is crucial to emphasize that
the splitting operator must adhere to the following “conservation” rule:

∪ splitC(k) = ∪C(k). (4.19)

This compels the cells, both before and after the splitting process, still collectively cover
the same region.

In the following, we will explain how to identify the candidate cells of C(k).

Given a set of working cells W (k), instead of solving (4.7-pΨ) over the whole parameter
set T at iteration k, one solves a modified version of the problem restricted to the vertices
of cells in W (k) denoted by vertW (k):

vertW (k) ≜
⋃

Θ∈W (k)

vertices of Θ. (4.20)

Let
(
x(k),u(k)

)
be an optimal pair w.r.t. (4.7-pΨ)-(4.8-dΨ) where Ψ = vertW (k). They

satisfy the optimality conditions (4.11b), (4.11c) and (4.11d) w.r.t. vertW (k), i.e.,

u(k) = −∇f(Ax(k)) (4.21a)〈
Ax(k),u(k)

〉
= λ

∥∥∥x(k)
∥∥∥
TV

(4.21b)∣∣∣〈at,u(k)
〉∣∣∣ ≤ λ, ∀t ∈ vertW (k) (4.21c)

If, in (4.21c), we have “∀t ∈ T” instead of “∀t ∈ vertW (k)”, then
(
x(k),u(k)

)
is a

primal-dual solution for (4.7-pΨ)-(4.8-dΨ) with Ψ = T and we can stop the algorithm.
Otherwise, there must exist some parameter t ∈ T \vertW (k) that violates the optimality
condition (4.11d), i.e.,

∣∣∣〈at,u(k)
〉∣∣∣ > λ. This suggests that we should identify the cells

Θ for which the optimality condition is violated and subdivide them to obtain a finer
approximation for T . This guides the choice of C(k):

C(k) ≜ {Θ ∈ W (k) : sup
t∈Θ

∣∣∣〈at,u(k)
〉∣∣∣ > λ}.

5. In practice, instead of splitting all cells in C(k), we only take into account the cells with largest
radius to reduce the grid size in the next iteration.
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Details of RGB method is described in Algorithm 1 (excluding the screening steps 7).

In [48, Theorem 7], under certain conditions, the authors provide a detailed analysis
for the convergence rate of RGB method. Furthermore, the growth of vertW (k) can be
theoretically controlled.

However, it is important to note that the cardinality of vertW (k) is a crucial complex-
ity bottleneck of the RGB method in practical implementation even when T is of very
low dimension (dimension 1 or 2). In the next section, we propose a new variant of the
RGB method that combines with joint safe screening to achieve a potentially significant
reduction in the number of vertices in W (k).

4.3.2 The proposed solving method

This section shows how to integrate the joint safe screening method into the RGB
method to accelerate the resolution process for solving the TV-norm penalized prob-
lem (4.7-pΨ) for Ψ = T . We refer to the resulting method as the Refinement Grid Based
method with Joint Safe Screening (RGBJSS), see Algorithm 1.

Note that in the RGBJSS method, we introduce the boolean variable ScrOpt, which
is set to true if joint safe screening is performed and false otherwise.

The difference between the RGBJSS method and the RGB method lies in how W (k) is
updated (see step 7 and 9 of Algorithm 1). In the RGB method, we update W (k) (step 9)
by only splitting the cells in C(k) as shown in (4.18). However, in the RGBJSS method,
in addition to splitting the candidate cells in C(k), we also eliminate some cells that pass
the joint safe screening test (4.14-JSS-SRM), denoted by D(k). We call the elements in
D(k) the deleted cells. To construct D(k) using JSS, one uses the parameters including safe
region S(k) (4.23), a dual (feasible) point p(k) (4.24), and a scaling factor λ(k) (4.25).

Remark 4.3.1. In RGBJSS Algorithm 1, one needs to find C(k), D(k) and λ(k). These
tasks essentially involve the evaluation of supt∈Θ |⟨at,u⟩|. However, in practice, obtaining
the exact value of this supremum is challenging. As a substitute, we can use relaxations
for it. For each Θ, we can determine the balls Θ1 and Θ2 such that Θ1 ⊂ Θ ⊂ Θ2. In this
way, the supremum involving Θ can be replaced by the supremum over the suitable ball Θ1
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Algorithm 1 Refinement Grid Based with Joint Safe Screening (RGBJSS)
1: Setup:

— working cells W (0) a cover of T , i.e., ∪W (0) = T

— candidate cells C(0)

— deleted cells D(0)

— screening option ScrOpt (boolean)
2: for k = 0, ...,+∞ do
3: Determine an optimal pair

(
x(k),u(k)

)
of (4.7-pΨ)-(4.8-dΨ) with Ψ = vertW (k)

4: If supt∈T

∣∣∣〈at,u(k)
〉∣∣∣ ≤ λ then

(
x(k),u(k)

)
is optimal. We stop the algorithm

5: Find candidate cells C(k) = {Θ ∈ W (k) : supt∈Θ

∣∣∣〈at,u(k)
〉∣∣∣ > λ} which contain

parameters violating the stopping condition
6: if ScrOpt is true then
7: Update W (k+1) =

(
W (k) \

(
C(k) ∪D(k)

))
∪
(
∪ splitC(k)

)
where

D(k) = {Θ ∈ W (k) : sup
(t,u)∈Θ×S(k)

|⟨at,u⟩| < λ} (4.22)

S(k) = S(x(k),p(k)) (4.23)

p(k) = λ

λ(k) u(k) (4.24)

λ(k) = max
Θ∈C(k)

sup
t∈Θ

∣∣∣〈at,u(k)
〉∣∣∣ (4.25)

8: else
9: Update W (k+1) =

(
W (k) \ C(k)

)
∪
(
∪ splitC(k)

)
10: end if
11: end for
12: return

(
x(k),u(k)

)

or Θ2. Specifically, the practical implementation is

C(k) = {Θ ∈ W (k) : sup
t∈Θ1

∣∣∣〈at,u(k)
〉∣∣∣ > λ},

D(k) = {Θ ∈ W (k) : sup
(t,u)∈Θ2×S(k)

|⟨at,u⟩| < λ},

λ(k) = max
Θ∈C(k)

sup
t∈Θ2

∣∣∣〈at,u(k)
〉∣∣∣ .

In this case, our analysis of RGBJSS discussed in the next section still applies.
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4.3.3 Consistence guarantee

Let us denote the quantities obtained during the iterations of Algorithm 1 as follows:

(
x(k)

0 ,u(k)
0 , C

(k)
0 ,W

(k)
0

)
k≥0

, if ScrOpt is false,(
x(k)

1 ,u(k)
1 , C

(k)
1 ,W

(k)
1

)
k≥0

, otherwise.

As emphasized in the previous section, the abundance of vertices in W (k) can pose
a challenge, impacting the practical performance of the RGB method. The integration
of joint safe screening in RGBJSS overcomes this by eliminating irrelevant cells at each
iteration so that vertW (k)

1 ⊂ vertW (k)
0 (the proper proof is provided in the theorem

below). However, this integration raises two essential questions.
The first question is: Does RGBJSS, in comparison with RGB, increase the number of

candidate cells being selected? For instance, if C(k)
0 ⊂ C

(k)
1 , it means that RGBJSS would

introduce a larger number of vertices for the next iteration. This scenario is not desirable.
Fortunately, the answer to this question is “no”. In the following, we demonstrate that

the candidate cells identified by RGB and RGBJSS are the same, i.e., C(k)
0 = C

(k)
1 ; in

other words, joint safe screening does not affect the candidate cell selection process of
RGB method.

The second question is: Does RGBJSS alter the iterative solutions in comparison to
RGB? If the iterative pairs of solutions change, joint safe screening may affect the con-
vergence analysis of RGB. The phenomenon of altering iterative solutions is common
when integrating (joint) safe screening into many solving methods. However, we prove
in the following that the RGB and RGBJSS method yield identical iterative solutions,
i.e.,

(
x(k)

0 ,u(k)
0

)
=
(
x(k)

1 ,u(k)
1

)
for all k ≥ 0. Therefore, JSS preserves the validity of the

convergence analysis already established for the RGB method [48, Theorem 7].
We now consolidate these statements into the following theorem and refer to them as

the consistency guarantee of applying joint safe screening into RGB method.

Theorem 4.3.2 (Consistency). Consider RGB and RGBJSS method. For all k ≥ 0, we
have (

x(k)
1 ,u(k)

1 , C
(k)
1

)
=
(
x(k)

0 ,u(k)
0 , C

(k)
0

)
(4.26)

and
vertW (k)

1 ⊂ vertW (k)
0 . (4.27)

In the remaining of this section, we focus on the (quite technical) proof of Theo-
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rem 4.3.2. In the subsequent analysis, we use the following notations for the data in the
screening step of Algorithm 1:

(
D

(k)
0 , S

(k)
0 ,p(k)

0 , λ
(k)
0

)
k≥0

, if ScrOpt is false,(
D

(k)
1 , S

(k)
1 ,p(k)

1 , λ
(k)
1

)
k≥0

, otherwise.

Here, it is worth noting that the data with subscript 1 is formally defined when JSS is
applied (with ScrOpt is true). However, the data with subscript 0 is loosely defined since
we do not need it if JSS is not applied. However, its definition aligns analogously with
the one employed when JSS is applied.

We now prove the following technical lemma.

Lemma 4.3.3. We have:

1. The set of working cells W (i)
0 is a cover of T , i.e., ∪W (i)

0 = T for all i ≥ 0.

2. The primal-dual pair
(
x(i)

0 ,p(i)
0

)
is feasible w.r.t. vertW (k)

0 for all k ≥ i ≥ 0.

3. The primal-dual pair
(
x(i)

1 ,p(i)
1

)
is feasible w.r.t. vertW (i)

1 for all i ≥ 0.

4. The candidate cells will not be screened, i.e., C(i)
1 ∩D

(i)
1 = ∅, for all i ≥ 0.

Proof of Lemma 4.3.3. We now prove the four items.
Item 1. Here, we consider Algorithm 1 without screening. Notice that

∪W (i)
0 =

(
∪W (i−1)

0 \ ∪C(i−1)
0

)
∪
(
∪ splitC(i)

0

)
= ∪W (i−1)

0 . (4.28)

where the last equality follows from the property of splitting operator (4.19). Apply-
ing (4.28) recursively and notice that ∪W (0)

0 = T by the setup, we conclude that ∪W (i)
0 =

T for all i ≥ 0.
Item 2. We still consider Algorithm 1 without screening. We first notice that

supp(x(i)
0 ) ⊂ vertW (i)

0 ⊂ vertW (k)
0 ,

where the first inclusion follows from the feasibility of x(i)
0 w.r.t. vertW (i)

0 and the second
inclusion follows from the fact that W (i)

0 is finer than W
(k)
0 for i ≤ k. We now prove that

p(i)
0 is feasible w.r.t. vertW (k)

0 . First,

max
t∈vertW (k)

0

∣∣∣〈at,p(i)
0

〉∣∣∣ ≤ max
t∈T

∣∣∣〈at,p(i)
0

〉∣∣∣ = max
Θ∈W (i)

0

sup
t∈Θ

∣∣∣〈at,p(i)
0

〉∣∣∣ , (4.29)
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where the inequality follows from vertW (k)
0 ⊂ T and the equality holds since T = ∪W (i)

0

(see Item 1). We further observe that

max
Θ∈W (i)

0

sup
t∈Θ

∣∣∣〈at,p(i)
0

〉∣∣∣ = max
Θ∈C(i)

0

sup
t∈Θ

∣∣∣∣∣
〈

at,
λ

λ
(i)
0

u(i)
0

〉∣∣∣∣∣ = λ, (4.30)

here the first equality is a consequence of the definition of C(i)
0 and (4.24); the second

equality holds true by applying (4.25). By combining (4.29) and (4.30), we conclude that
p(i)

0 is feasible w.r.t. vertW (k)
0 .

Item 3. Now, we consider the algorithm with screening mode. We first notice that
x(i)

1 is feasible w.r.t. W (i)
1 due to its optimality. On the other hand,

max
t∈vertW (i)

1

∣∣∣〈at,p(i)
1

〉∣∣∣ ≤ max
Θ∈W (i)

1

sup
t∈Θ

∣∣∣〈at,p(i)
1

〉∣∣∣ = λ, (4.31)

where the first inequality follows from the fact that vertW (i)
1 ⊂ ∪W (i)

1 , and the second
equality holds by applying similar arguments as in deriving (4.30). Therefore, p(i)

1 is
feasible w.r.t. vertW (k)

1 .
Item 4. Now, we consider the algorithm with screening mode and aim to show that

C
(i)
1 ∩D

(i)
1 = ∅. By definition of C(i)

1 and D
(i)
1 , we have

max
t∈Θ

∣∣∣〈at,u(i)
1

〉∣∣∣ ≥ λ ⇐⇒ Θ ∈ C
(i)
1

and
max

(t,u)∈Θ×S(i)
1

|⟨at,u⟩| < λ ⇐⇒ Θ ∈ D
(i)
1 .

To demonstrate that there is no Θ belonging to the intersection of C(i)
1 and D(i)

1 , it suffices
to show that u(i)

1 belongs to the safe regions S(i)
1 = S

(
x(i)

1 ,p(i)
1

)
. Indeed, notice that

S
(i)
1 = S

(
x(i)

1 ,p(i)
1

)
is a safe region with

(
x(i)

1 ,p(i)
1

)
feasible w.r.t. vertW (i)

1 (see Item 3), it
therefore contains the maximizer u(i)

1 of the dual problem associated with vertW (i)
1 .

We now prove the consistence result presented in Theorem 4.3.2 based on the results
obtained from Lemma 4.3.3.

Proof of Theorem 4.3.2. The result holds for k = 0. We assume by induction that the
result holds for 0, . . . , k − 1 where k > 0.
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Step 1. To prove that x(k)
0 = x(k)

1 , it is equivalent to show that they are equal on
vertW (k)

1 and zero elsewhere. It is therefore sufficient to verify that

supp
(
x(k)

0

)
⊂ vertW (k)

1 . (4.32)

By exploiting the empty intersection of the set of candidate and deleted cells in Item 4
of Lemma 4.3.3, and the fact that ∪C(i)

1 = ∪ splitC(i)
1 , one derives

∪W (i)
1 =

(
∪W (i−1)

1 \
(
∪C(i−1)

1 ∪D
(i−1)
1

))
∪ splitC(i)

1 = ∪W (i−1)
1 \ ∪D(i−1)

1 , (4.33)

Applying (4.33) recursively for i = k, k − 1, ..., 1, we obtain

∪W (k)
1 = ∪W (k−1)

1 \ ∪D(k−1)
1 = · · · = T \ ∪

(
D

(k−1)
1 ∪ · · · ∪D

(0)
1

)
. (4.34)

From the view of (4.34), one can prove (4.32) by showing that

(
∪D(i)

1

)
∩ supp

(
x(k)

0

)
= ∅, ∀i ≤ k − 1. (4.35)

By joint safe screening rule (4.14-JSS-SRM), (4.35) holds if one can show that u(k)
0 ∈ S

(i)
1

for all i ≤ k − 1. This inclusion holds by observing that:

u(k)
0 ∈ S

(
x(i)

0 ,p(i)
0

)
= S

(
x(i)

1 ,p(i)
1

)
= S

(i)
1 . (4.36)

Here, the inclusion holds since S
(
x(i)

0 ,p(i)
0

)
is a safe region 6 containing the dual optimal

solution u(k)
0 w.r.t. vertW (k)

0 for any i ≤ k − 1, the first equality is true according to the
induction’s assumption, and the last equality follows from (4.23).

Step 2. From the optimality (4.21a), x(k)
0 = x(k)

1 implies u(k)
0 = u(k)

1 .
Step 3. Proving C(k)

0 = C
(k)
1 is equivalent to showing that

{Θ ∈ W
(k)
0 : sup

t∈Θ

∣∣∣〈at,u(k)
0

〉∣∣∣ > λ} = {Θ ∈ W
(k)
1 : sup

t∈Θ

∣∣∣〈at,u(k)
1

〉∣∣∣ > λ}.

Since u(k)
0 = u(k)

1 , above equality holds if supt∈Θ

∣∣∣〈at,u(k)
0

〉∣∣∣ ≤ λ for all Θ ∈ D
(i)
1 and

i ≤ k − 1. This is true since u(k)
0 ∈ S

(i)
1 as shown in (4.36).

6. Here the safe region is well-defined since
(

x(i)
0 ,p(i)

0

)
is feasible w.r.t. W

(k)
0 due to Item 2

of Lemma 4.3.3.
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4.3. Improving RGB method with joint safe screening

Step 4. Finally, notice that

vertW (k)
1 =

(
W

(k−1)
1 \

(
C

(k−1)
1 ∪D

(k−1)
1

))
∪ splitC(k−1)

1

⊂
(
W

(k−1)
0 \ C(k−1)

0

)
∪ splitC(k−1)

0

= vertW (k)
0 .

where the inclusion holds since W (k−1)
1 = W

(k−1)
0 due to induction and C(k)

0 = C
(k)
1 due to

Step 3. The proof is completed.
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CONCLUSION

Contributions

This thesis, titled “Some Contributions on Safe Regions and Safe Screening in Convex
Optimization”, embodies two principal contributions to the domain of convex optimiza-
tion. The major contributions include the introduction of a novel family of safe regions,
termed FBI regions, and an extension of the safe screening methodology from finite-
dimensional to infinite-dimensional problems.

The first significant contribution presents a new family of safe regions encompassing
FBI ball, Hölder half-space, FBI dome and geometric ball. We construct these safe re-
gions in a general framework in which the FBI ball is proven to be safe for general convex
penalization functions, while the other regions are safe if the gauge penalization is consid-
ered. This framework therefore includes norm penalized optimization problems as specific
cases. Furthermore, our framework also provides a unifying perspective, demonstrating
that existing safe regions can be viewed as special cases or supersets of the proposed FBI
regions. This contribution not only introduces novel safe regions crucial for addressing
high-dimensional optimization problems, but also enhances the theoretical understanding
of the intricate relationships of existing safe regions introduced over the last decade.

The second major contribution extends the scope of Joint Safe Screening (JSS) rules,
expanding from being applicable to ℓ1-norm penalized problems (a finite-dimensional con-
text) to now encompass total variation norm (TV-norm) penalized problems defined in
the space of Radon measures (an infinite-dimensional context). Building upon this result,
the thesis integrates JSS into the Refinement Grid Based (RGB) method, a recently intro-
duced algorithm tailored for TV-norm problems. By doing so, computational bottlenecks
associated with solving high-dimensional subproblems of RGB are significantly reduced.
Furthermore, we provide a consistency guarantee, affirming that implementing JSS does
not alter the iterative solutions compared to using only RGB. This contribution not only
underscores but also lays the foundation for the potential of leveraging safe screening to
accelerate the resolution of other infinite-dimensional problems in the future.
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Perspectives

Note that there are several perspectives for extending the two main contributions
of this thesis. In the subsequent discussion, we will highlight two significant potential
directions, focusing on key points and omitting technical intricacies.

Extending the application scope of the proposed FBI regions: Recall that our
safe regions are tailored for the following broad class of convex optimization problems:

min
x∈M

f(Ax) + g(x), (4.37)

where f, g are convex functions, A is a linear operator, and M is a Banach space. This
comprehensive setup allows us to encompass most existing safe regions, as they are con-
structed to address specific instances of (4.37).

While our contributions pertain to a broad family of optimization problems, it lever-
ages specific assumptions related to f and g. Specifically, we demonstrate that the FBI
ball is safe when the conjugate f ∗ of f exhibits strong convexity on its domain, and the
Hölder half-space is safe when g is a gauge function. These insights raise a fundamental
question:

Can we weaken or even relax the conditions imposed on f and g?

Recent research have exhibited promising approaches to address this question. In [25],
Dantas et al. have extended the GAP safe ball framework —similar to the one considered
in this thesis— to cases where f ∗ exhibits only local strong convexity. Additionally, Herzet
et al. [59] have gone a step further by removing such conditions on f ∗, resulting in an
innovative approach called region-free safe screening, provided g is an ℓ1-norm. We also
emphasize alternative methodologies, akin to safe screening, that have been developed for
penalization functions being non-convex (such as the ℓ0-norm), see e.g., [1, 53, 55].

Exploring the relaxation of these conditions on f and g may significantly broaden the
application scope of the safe regions. Delving into this topic presents a promising avenue
for future research.
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Applying joint safe screening rule for other infinite-dimensional problems and
other solvers. The second contribution of this thesis involves the extension of Joint Safe
Screening (JSS) rule to handling the TV-norm problem:

min
x∈M (T,R)

f(Ax) + λ ∥x∥TV , (4.38)

where f is convex, A is linear, λ > 0, and M (T,R) is the space of real-valued Radon
measures defined on some compact set T ⊂ Rd. We also demonstrate how JSS can reduce
the dimension of subproblems in the RGB method, a recent solver of (4.38).

Based on this contribution, a further question arises:

Can we integrate JSS into solvers beyond RGB and extend its applicability to problems
beyond the TV-norm problem (4.38)?

A simple approach for solving (4.38) is to approximate the measure x by a sufficiently
large number of Dirac masses resulting the following approximation problem:

min
(wi,ti)∈R×T

f

(
n∑
i=1

wiati

)
+ λ

n∑
i=1

|wi| , (4.39)

where x ≈ ∑n
i=1 wiδti

, (wi, ti) ∈ R × T and ati
= Aδti

for i = 1, . . . , n. Notably, prob-
lem (4.39) also arises in the context of training one-hidden layer neural networks and is
referred to as the mean field limit [83]. Despite the non-convexity, solving (4.39) using gra-
dient descent methods can achieve the global optimum, provided a diverse initialization
with a sufficiently large number of Dirac masses [21, 20].

However, employing a large number of Dirac masses for approximation can incur sub-
stantial computational expenses. JSS emerges as a promising approach to tackle this
complexity issue, making it a compelling research direction.

Another promising research path is using JSS for different versions of (4.38), e.g., [76], [63].
Let us consider the problem proposed in [63]:

min
x∈M

1
2 ∥b − Ax∥2

H + λ ∥x∥TV2 + λ ∥div(x)∥TV , (4.40)

where b belongs to a Hilbert space H , A is a linear operator, M denotes the topological
dual space of C (T,R2), the set of R2-valued continuous functions defined on T , with the
dual norm ∥·∥TV2 , and div denotes the divergence operator.
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In [63], Laville et al. demonstrate the existence of a sparse optimal measure for (4.40),
with “curves” structure instead of “spikes” as in TV-norm problem (4.38). Leveraging this
sparsity to design a JSS for addressing (4.40) presents an challenging avenue for future
research.
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Appendix A

GEOMETRY IN HILBERT SPACES

Main results. In this appendix, we explore some geometric expression of shapes
(balls, half-spaces and domes) with proofs in a general Hilbert space, see Table A.1 for
the summary.

Result Location
Support function over a ball Proposition A.1.1
Projection onto hyperplane and half-space Proposition A.2.2
Support function over a dome Proposition A.3.2
Smallest ball containing a dome - part 1 Proposition A.3.3
Radius of dome Proposition A.3.4
Smallest ball containing a dome - part 2 Proposition A.3.5

Table A.1 – Some geometric results in Appendix A

We emphasize that these results are likely established, at least in Euclidean spaces,
and implicitly used in various articles when examining safe regions, see for instance [95, 45,
99]. However, we were unable to identify a specific reference presenting them for abitrary
Hilbert spaces. We therefore present these results here to maintain self-containment and
comprehensiveness of this thesis.

Main geometric regions. In this appendix, we consider a Hilbert space H with
inner product ⟨·, ·⟩ and induced norm ∥·∥. We define the ball with center c ∈ H and
radius r ∈ [0,+∞] as

B(c, r) ≜ {v ∈ H : ∥v − c∥ ≤ r}.

Here, we have B(c, 0) = {c} and B(c,+∞) = H . The half-space with normal vector
g ∈ H and intercept s ∈ R is defined by

H(g, s) ≜ {v ∈ H : ⟨g,v⟩ ≤ s}.

Notice that H(0H , s) equals to H if s ≥ 0 and equals to emptyset otherwise. A dome is
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defined as the intersection of a ball and a half-space

D(c, r,g, s) ≜ B(c, r) ∩H(g, s).

Other geometric notations. We now recap some basic geometric quantities used in
this chapter.

— For R ⊂ H , we denote by BdR the boundary of R. The boundary of a half-space
is a hyperplane, and the boundary of a ball is a sphere.

— For v ∈ H , we denote by v⊥ ≜ {p ∈ H : ⟨v,p⟩ = 0} the orthogonal space of v.

— The support function over a region R is φR(v) ≜ supu∈R⟨v,u⟩.

— The cosine of two vectors u and v in H is defined as cos(u,v) ≜ ⟨u,v⟩
∥u∥∥v∥ .

— The radius of a set R is denoted by rad(R) ≜ supu,v∈R
1
2 ∥u − v∥.

— The distance from v to R is defined by dist(v, R) ≜ infv′∈R ∥v − v′∥.

— Note that if R is a nonempty closed convex set in Hilbert space H , then there exists
a unique minimizer for the closest point projection from any point v ∈ H onto R,
see e.g., [5, Proposition 3.14]. We denote it by Proj(v, R) ≜ arg minv′∈R ∥v − v′∥.

A.1 Ball

The following proposition presents the closed-form expression for support function
over a ball region.

Proposition A.1.1 (Support function over a ball). For v, c ∈ H and r ∈ R, we have

φB(c,r)(v) = ⟨v, c⟩ + r ∥v∥ .

Proof. For u ∈ B(c, r), we have ⟨v,u⟩ ≤ ⟨v, c⟩ + ⟨v,u − c⟩ ≤ ⟨v, c⟩ + r ∥v∥. Thus,
φB(c,r)(v) ≤ ⟨v, c⟩ + r ∥v∥. We now show that the equality holds. It is clear that we
obtain the equality if v = 0H . For v ̸= 0H , the equality holds if we choose u = c + r v

∥v∥ .
The proof is completed.
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A.2 Half-space

Let P be the hyperplane associated with the half-space H = H(g, s) with g ̸= 0H .
For any vector v, we define the algebraic distance from v to P as

algdist(v, P ) ≜ ⟨g,v⟩ − s

∥g∥
.

Note that the algebraic distance is non-positive as soon as v ∈ H and is positive otherwise.
We define the algebraic projection from v to the hyperplane P as

vP ≜ v − algdist(v, P ) g
∥g∥

.

In this section, we aim to establish the connection between these concepts, which is
presented in Proposition A.2.2. To obtain this result, we first introduce Proposition A.2.1,
which can be considered as a generalization of Pythagorean theorem. This proposition pro-
vides a means of representing the distance between two points in terms of their algebraic
distance corresponding to a half-space.

Proposition A.2.1. Let P be the hyperplane associated with the half-space H = H(g, s)
with g ̸= 0H . For any v,u ∈ H , we have

∥v − u∥2 =

(∥v − vP∥ − ∥u − uP∥)2 + ∥vP − uP∥2 if v,u ∈ H or v,u /∈ H,

(∥v − vP∥ + ∥u − uP∥)2 + ∥vP − uP∥2 otherwise.
(A.1)

In particular, for u ̸= v, we have

∥vP − uP∥ = ∥v − u∥
√

1 − cos(g,v − u)2 (A.2)

Proof. To prove (A.1), we first notice that

∥v − u∥2 = ∥(v − vP ) + (vP − uP ) + (uP − u)∥2

= ∥(v − vP ) + (uP − u)∥2 + ∥vP − uP∥2

+ 2⟨v − vP ,vP − uP ⟩ + 2⟨uP − u,vP − uP ⟩

=(− algdist(v, P ) + algdist(u, P ))2 + ∥vP − uP∥2 .

(A.3)

The second equality in the equation above follows from the fact that ⟨v−vP ,vP −uP ⟩ = 0
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since v − vP can be proved to be orthogonal to P (i.e., aligned with g) and vP ,uP are
points in P . Similarly, we have ⟨uP −u,vP −uP ⟩ = 0. For any vector p, it is important to
note that algdist(p, P ) is equal to − ∥p − pP∥ if p ∈ H and equals to ∥p − pP∥ otherwise.
Therefore, we obtain (A.1).

To prove (A.2), one can exploit the definition of algebraic distance and cosine:

|algdist(v, P ) − algdist(u, P )| = |⟨g,v − u⟩|
∥g∥

= ∥v − u∥ |cos(g,v − u)| .

Substituting this into (A.3), we obtain (A.2).

The next proposition characterizes the closest point projection operator and its dis-
tance w.r.t. hyperplane and half-space using algebraic distance and projection.

Proposition A.2.2 (Projection onto hyperplane and half-space). Let H = H(g, s) and
P = BdH. For any v, one has

dist(v, P ) = |algdist(v, P )| , (A.4)

dist(v, H) = max(0, algdist(v, P )), (A.5)

Proj(v, P ) = vP , (A.6)

Proj(v, H) =

v if v ∈ H,

vP otherwise.
(A.7)

Proof. Consider p ∈ P such that p ̸= vP . We have p = pP . By Proposition A.2.1, no
matter v belonging to H or not, we have

∥v − p∥2 = (∥v − vP∥ ± ∥p − pP∥)2 + ∥vP − pP∥2

= ∥v − vP∥2 + ∥vP − p∥2

> ∥v − vP∥2

= |algdist(v, P )|2 .

Therefore, vP is the unique projection of v on to P . This proves (A.4) and (A.6),
To prove (A.5) and (A.7), we consider two cases. If v ∈ H, then it is clear that

dist(v, H) = 0 and, thus, Proj(v, H) = v. Otherwise, we assume that v /∈ H. Considering
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any p ∈ H, we have

∥v − p∥2 = (∥v − vP∥ + ∥p − pP∥)2 + ∥vP − pP∥2 ≥ ∥v − vP∥2 .

Therefore, ∥v − p∥ ≥ ∥v − vP∥ = algdist(v, H) for all p ∈ H. This means vP is the
projection of v onto H. The proof is completed.

A.3 Dome

For a dome D = B(c, r) ∩ H(g, s) with r ∈ (0,∞) and g ̸= 0H , we define its
intersection index of a as follows:

ψD ≜
s− ⟨g, c⟩
r ∥g∥

, (A.8)

In the following, we sometimes drop in subscript and simply write ψ if D is clear from
the context. The following proposition summarizes some basic properties of ψ.

B(c, r)

H(g, s)

c

g

|ψD|r r

Figure A.1 – A 2D visualization of intersection index (A.8) in case of ψD < 0.

Proposition A.3.1 (Properties of dome’s intersection index). Let P be the hyperplane
associated with H. Then

1. ψ = − algdist(c, P )
r

.

2. H = {p ∈ H : ⟨g,p − c⟩ ≤ ψr ∥g∥}

3. B ∩H ̸= ∅ iff ψ ≥ −1

4. c ∈ H iff ψ ≥ 0

5. B ⊂ H iff ψ ≥ 1
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Proof. Note that Item 1, Item 2 and Item 4 are obvious by definition of D. We now
prove Item 3 and Item 5.

Item 3. If c ∈ H, then {c} ⊂ B ∩ H ̸= ∅ and ψ ≥ 0 > −1. We now consider
c /∈ H, i.e., algdist(c, P ) ≥ 0. In this case, B ∩H is nonempty iff there exists some point
p ∈ B ∩H. This implies r ≥ ∥c − p∥ ≥ Proj(c, P ) = algdist(c, P ), i.e., −ψ ≤ 1.

Item 5. This is clear since

B ⊂ H ⇐⇒ s ≥ sup
v∈B

⟨v,g⟩ = ⟨g, c⟩ + r ∥g∥ ⇐⇒ ψ ≥ 1.

The proof is completed.

Below, we recall a simple formula for support function over a dome region using
trigonometry. This formula aligns with [97, Lemma 3]. Note that there are several method-
ologies employed to derive different formulas for this result, such as using Lagrange duality
[52, Appendix A], geometric methods [57, Appendix B], as well as directly solving it [96,
Section 3], [66, Theorem 3], and [75, Theorem 2]. The 2D visualization of Proposition A.3.2
can be found in Figure A.2.

Proposition A.3.2 (Support function over a dome). Let D = B(c, r) ∩ H(g, s) be a
non-empty dome. Its support function evaluated at vector v is

φD(v) = ⟨v, c⟩ + r ∥v∥ cos([θD − θv]+)

where

θv = arccos ⟨v,g⟩
∥v∥ ∥g∥

, θD = arccos
[s− ⟨g, c⟩

r ∥g∥

]
[−1,1]

.
here [t]+ = max(t, 0) and [t][−1,1] = max(min(t, 1),−1) is the restriction of t on [−1, 1].

Here, one should notice that θD is the arccosine of the intersection index ψD restricted
on [−1, 1]. First ψD ≥ −1 is clear due to the third item of Proposition A.3.1. Second,
when ψD > 1, the result holds true obviously since D = B due to the fifth item of
Proposition A.3.1.

The following result provides a closed-form expression for the smallest ball (parame-
terized by some θ ≤ 0) containing a given dome. Here, the ball is constrained so that the
line joining its center and the center of the dome is perpendicular to the hyperplane of
the dome.
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v

c

(a) θD ≥ π/2, θD ≤ θv

v

c

(b) θD ≥ π/2, θD > θv

v

c

(c) θD < π/2, θD ≤ θv

v

c

(d) θD < π/2, θD > θv

Figure A.2 – 2D visualization of Proposition A.3.2. Here the gray region represents the
dome and the dotted region represents a (part of) cone region of v such that θD ≤ θv.
The orange dot denotes the arg maxu∈D⟨v,u⟩.
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B(c, r)

H(g, s)

cθ rθ

Figure A.3 – 2D visualization of the smallest ball B(cθ, rθ) (dashed orange circle) in
Proposition A.3.3.

Proposition A.3.3 (Smallest ball containing a dome - part 1). Consider the dome D =
B(c, r) ∩ H(g, s) with g ̸= 0H and r > 0 with an intersection index of D satisfying
ψ ∈ [−1, 1]. We consider the parameterized ball B(cθ, rθ) for some θ ≤ 0, where

cθ = c + θr
g

∥g∥
, (A.9)

rθ = r
√

(θ − ψ)2 + 1 − ψ2. (A.10)

Then
D ⊂ B(cθ, rθ). (A.11)

Furthermore, B(cθ, rθ) is the smallest ball centered at cθ containing D, i.e., 1

rθ = max
p∈D

∥cθ − p∥ . (A.12)

Proof of Proposition A.3.3. For v ∈ D, we have ∥v − c∥ ≤ r and ⟨g,v − c⟩ ≤ ψr ∥g∥
with equality if v ∈ BdB(c, r) and v ∈ BdH(g, s), respectively. Also notice that if θ ≤ 0,

1. In other words, B(cθ, rθ) is a geometric ball associated with cθ and D, see Definition 3.3.1.
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we have

∥v − cθ∥2 =
∥∥∥∥∥v − c − θr

∥g∥
g
∥∥∥∥∥

2

= ∥v − c∥2 − 2 θr

∥g∥
⟨v − c,g⟩ + θ2r2

≤ r2 − 2θψr2 + θ2r2

= r2((θ − ψ)2 + 1 − ψ2)

= r2
θ .

Here the inequality follows from the assumption that θ ≤ 0. From this estimation, one
can see that v ∈ Bθ and therefore (A.11) holds true.

From this estimation, one can notice that (A.12) holds true if v ∈ BdH(g, s) ∩
BdB(c, r). The remaining is dedicated to show that BdH(g, s)∩BdB(c, r) is non empty.
We choose v = cBdH + r

√
1 − ψ2v0 for some unit vector v0 ∈ g⊥ and cBdH the projection

of c onto BdH given by the expression cBdH = c + rψ g
∥g∥ . By this choice of v, it not

difficult to verify that v ∈ BdH(g, s) ∩ BdB(c, r). This completes the proof.

In the following, we show how to evaluate the radius of dome in a closed-form expres-
sion using the intersection index.

Proposition A.3.4 (Radius of dome). Let D be a non-empty dome with intersection
index ψ (ψ ≥ −1). Its radius is given by the following formula:

rad(D) =

r
√

1 − ψ2 if ψ ≤ 0,

r otherwise.
(A.13)

In particular, if ψ ≤ 0, then rad(D) = rad(BdB ∩ BdH).

Proof. Let D = B∩H where B = B(c, r) and H = H(g, s). Consider unit vector v ∈ g⊥,
i.e., ⟨v,g⟩ = 0 and ∥v∥ = 1. We prove (A.13) by considering two cases of ψ.

Case 1: ψ > 0. consider v1 = c + rv and v2 = c − rv. Then it is not hard to see
that v1,v2 ∈ D. Indeed, we have v1,v2 ∈ B since ∥v1 − c∥ = ∥v2 − c∥ = r. We also
have ⟨g,v1 − c⟩ = 0 ≤ ψr ∥g∥ since v ∈ g⊥ and ψ > 0. This means v1 ∈ H due to
characterization of H in Proposition A.3.1, and similar for v2. We can also observe that
2r = ∥v1 − v2∥ ≤ 2 radD ≤ 2 radB = 2r, thus, rad(D) = r.
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Case 2: ψ ≤ 0. Here ψ ∈ [−1, 0]. Let κ ≜ r
√

1 − ψ2 and v1 ≜ cP + κv and v2 ≜

cP − κv where cP is the projection of c onto P = BdH. Here κ is well-defined since
ψ ∈ [−1, 0]. We now show that v1,v2 ∈ D. Indeed, it is easy to see that v1,v2 ∈ P ⊂ H

since ⟨g,v1 − c⟩ = ⟨g,v1 − c⟩ = s. To see that v1,v2 ∈ B, we notice that ∥c − v1∥2 =
∥c − cP∥2 + ∥κv∥2 = r2ψ2 + r2(1 − ψ2) = r2, i.e., v1 ∈ B. Similarly, v2 ∈ B. Therefore,
2κ = ∥v1 − v2∥ ≤ 2 rad(D). Now the remaining is to show that rad(D) ≤ κ. This can be
done using Proposition A.3.3. Let Bψ be the ball parameterized by ψ and rψ be its radius
defined in Proposition A.3.3 containing D. We have rad(D) ≤ radBψ = rψ = r

√
1 − ψ2.

due to (A.9). Thus rad(D) = κ = r
√

1 − ψ2.
Notice that in Case 2. we have v1,v2 ∈ BdB ∩ BdH. The proof is completed.

We finally conclude this chapter with a general expression of the ball with the smallest
radius containing a dome with an arbitrary choice of center. Although the proof of this
result relies on Proposition A.3.3, it is, in fact, a generalization of Proposition A.3.3 by
relaxing the constraint that the line connecting the center (of the smallest ball) and the
center of the dome is perpendicular to the hyperplane of the dome. A 2D visualization of
Proposition A.3.5 is depicted in Figure A.4.

Proposition A.3.5 (Smallest ball containing a dome - part 2). Let D = B∩H be a non-
empty dome with intersection index ψ, where B = B(c, r) and H = H(g, s). For v ̸= c
in H , define Bv = B(v, R) as the ball centered at v with smallest radius containing the
dome D. Then

R =

∥v − c∥ + r if cos(g,v − c) ≥ −ψ√
∥v − vP∥2 + (∥vP − cP∥ + r

√
1 − ψ2)2 otherwise

(A.14)

Proof of Proposition A.3.5. Since D ̸= ∅, we have ψ ≥ −1. If ψ ≥ 1, then D = B and
cos(g,v − c) ≥ −1 ≥ −ψ and rv ≜ maxp∈D ∥v − p∥ = maxp∈B ∥v − p∥ = ∥v − c∥ + r.
In this case, the result is obviously true. Thus, w.l.o.g. we assume that ψ ∈ [−1, 1). We
now consider two cases.

Case 1. Assume that cos(v − c,g) ≥ −ψ. Define

v ≜ c + R

∥c − v∥
(c − v). (A.15)

We now show that
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v

c

(a) ψD ≤ 0, ψv ≥ −ψD

v
c

(b) ψD ≤ 0, ψv < −ψD

v c

(c) ψD > 0, ψv ≥ −ψD

v

c

(d) ψD > 0, ψv < −ψD

Figure A.4 – 2D visualization of geometric ball (dashed circle) in Proposition A.3.5. Here
the gray region represents the dome and the dotted region represents a (part of) cone
region of v such that ψv ≥ −ψD. The orange dot denotes the arg maxu∈D ∥v − u∥.
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1. ∥v − v∥ = ∥v − c∥ +R

2. ∥v − p∥ ≤ ∥v − v∥ for all p ∈ D

3. v ∈ D

The first item is clear. For second item, we have

∥v − p∥ ≤ ∥v − c∥ + ∥c − p∥

≤ ∥v − c∥ +R

= ∥v − v∥ .

for any p ∈ D. The last item follows from the observations: 1) v ∈ B(c, R) since ∥c − v∥ =
R and 2) v ∈ H(g, L) since

⟨g,v⟩ − L = ⟨g, c⟩ + R

∥c − v∥
⟨g, c − v⟩ − L

= R ∥g∥
(

cos(c − v,g) + ⟨g, c⟩ − L

R ∥g∥

)
= R ∥g∥ (− cos(v − c,g) − ψ) ≤ 0.

Step 2. We assume that cos(v − c,g) ≤ −ψ. Define

v ≜ cP +
√

1 − ψ2

∥cP − vP∥
(cP − vP )

and
κ ≜

√
∥v − vP∥2 + (∥vP − cP∥ + r

√
1 − ψ2)2.

It is sufficient to show that

1. ∥v − v∥ = κ

2. ∥v − p∥ ≤ ∥v − v∥ for all p ∈ D

3. v ∈ D
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The first is simple, since

∥v − v∥2 = ∥v − vP∥2 + ∥vP − v∥2

= ∥v − vP∥2 + ∥cP − vP∥2
(
r
√

1 − ψ2

∥cP − vP∥
+ 1

)2

= κ2.

For the third, we show that v ∈ P ∩ BdB. Indeed, it is easy to show that v ∈ P since
cP ,vP ∈ P . We also have ∥v − c∥2 = ∥c − cP∥2 + ∥cP − v∥2 = R2ψ2 + R(1 − ψ2) = R2,
i.e., v ∈ BdB. To prove 2., consider Bθ ≜ B(cθ, rθ) where cθ, rθ is defined by for some
θ ≤ 0 to be chosen latter such that

∥v − cθ∥ +Rθ = κ (A.16)

In this case, we have, for all p ∈ D,

∥p − v∥ ≤ ∥v − cθ∥ +Rθ = κ = ∥v − v∥ .

since D ⊂ Bθ, (A.16) and item 1. For simplicity, define a ≜ algdist(v, P ), b ≜ ∥vP − cP∥
and c ≜ r

√
1 − ψ2. First, we have κ =

√
a2 + (b+ c)2.

Now, it is time to choose θ,
θ ≜ ψ + t

R
(A.17)

where t ≜ ac
b+c . We also observe that t = algdist(cθ, P ) since

algdist(cθ, P )

= ⟨g, cθ⟩ − L

∥g∥

= ⟨g, cθ⟩ − ⟨g, cP ⟩
∥g∥

= R(θ − ψ)

= t.

Hence

∥v − cθ∥ +Rθ =
√

(a− t)2 + b2 +
√
t2 + c2 =

√
a2 + (b+ c)2 = κ. (A.18)
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Where the first equality follows from (A.1) and (A.10), the second one follows from defi-
nition of t. It remains to show that θ ≤ 0 under our assumption. Let

ξ ≜ cos(v − c,g) (A.19)

Then
θ ≤ 0 ⇐⇒ t ≤ −Rψ (A.20)

Indeed, since algdist(cθ, P ) = algdist(v,P )r
√

1−ψ2

∥vP −cP ∥+r
√

1−ψ2
, ∥vP − cP∥ = R

√
1 − ξ2, algdist(v, P ) =

R(ξ − ψ), hence t ≤ −Rψ is equivalent to

(ξ − ψ)
√

1 − ψ2
√

1 − ξ2 +
√

1 − ψ2 ≤ −ψ ⇐⇒ ξ√
1 − ξ2 ≤ −ψ√

1 − ψ2 ⇐⇒ ξ ≤ −ψ. (A.21)

This is true due to our assumption. The proof is completed.
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Appendix B

FENCHEL-ROCKAFELLAR DUALITY

This appendix chapter aims to recap the fundamental results in convex optimization
necessary for establishing the main contributions presented in Chapters 3 and 4. In Ap-
pendix B.1, we recall the essential concepts and their properties in convex optimization.
In Appendix B.2, we first revisit the hypotheses in the standard Fenchel-Rockafellar du-
ality framework to establish the strong duality result. Subsequently, we introduce two
propositions with easily verifiable conditions for establishing Fenchel-Rockafellar strong
duality in specific setups.

B.1 Some concepts in convex optimization

In this section, we review some basic concepts in convex optimization.

— Topological dual spaces, weak and weak* topologies 1

— Convex set, convex function and their topological properties

— Conjugate function

— Gradient and subgradient

— Strong smoothness (gradient Lipschitz) and strong convexity

— Fenchel and Bregman divergence

— Gauge function

In this section, we set inf ∅ = +∞ and sup ∅ = −∞.

Topological dual spaces, weak and weak* topologies
Let V be a Banach space with norm ∥·∥V . We denote by τV the norm induced topology

of V induced by the norm ∥·∥V . Let V ∗ be its topological dual space of (V , τV ), i.e.,

1. In finite-dimensional settings, the weak (or weak*) topology is equivalent to the standard topology.
Consequently, readers with a specific interest in finite-dimensional problems may skip this discussion.
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V ∗ = (V , τV )∗. Then V ∗ is also a Banach space endowed with the dual norm denoted by
∥·∥V ∗ . We denote the topology in V ∗ generated by the dual norm by τV ∗ . The topologies
τV and τV ∗ are called strong topologies in V and V ∗, respectively.

We now use the canonical pairing to denote the evaluation of x ∈ V ∗ on z ∈ V , i.e.,

⟨x, z⟩V ,V ∗ ≜ x(z).

Note that if V is a Hilbert space, then V = V ∗, τV = τV ∗ and the canonical pairing
becomes the inner product. In the following, we will drop the subscript of canonical
pairing if the spaces of x and z can be easily identified in the context.

However, note that the strong topologies are not necessarily symmetric. Specifically,
the dual of V ∗ with respect to τV ∗ is not always V , i.e., V ̸= (V ∗, τV ∗)∗. If this symmetry
holds, the space V is said to be reflexive. The typical reflexive space is Hilbert space. It
is important to note that Euclidean spaces Rm are examples of Hilbert spaces.

The non-symmetry of τV and τV ∗ may be unsuitable for investigating certain concepts
in convex optimization. 2 The standard approach to obtain symmetry is to work with the
weak and weak* topology. We now discuss the these two topologies below.

Let ωV be the coarsest topology for which each element in V ∗ (called linear functional
on V ) is ωV -continuous. So ωV is called the weak topology of V . Similarly, let ωV ∗ be
the coarsest topology for which each element in V (which can be considered as a linear
functional on V ∗) is ωV ∗-continuous. Then ωV ∗ is called weak* topology in V ∗.

The weak and weak* topology are symmetric, i.e., V ∗ = (V , ωV )∗ and V = (V ∗, ωV ∗)∗.
As we will see in the following, the symmetric role of weak and weak* topologies will
naturally appear for establishing nice symmetric results for sets, functions and operators
in convex analysis.

Note that if V is a Hilbert space then weak and weak* topology are identical, i.e.,
ωV = ωV ∗ . In particular, if V = Rm then all the topologies coincide, and are denoted
τRm . In other words, when working with finite-dimensional setups, there is no need to
distinguish the strong, weak and weak* topologies.

In the following, when we say “A set in V is closed”, “a function is continuous on V ”
of a “a linear operator from V1 to V2 is continuous” we implicitly assume that the strong
topologies is being used. If the weak or weak* topology is considered, we will explicitly
mention it. For example, when considering weak topologies, we say “A set in V is weakly

2. In Chapter 4, we work with the space of Radon measures, which is non-reflexive.
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closed” or “a function is weakly continuous on V ” or “a linear operator from V1 to V2 is
weak-to-weak continuous”.
Convex set, convex function and their topological properties

Let V be a Banach space. A set K in V is convex iff for all v,u ∈ K and τ ∈ [0, 1],
we have τv + (1 − τ)u ∈ K.

In general a weakly closed set is always closed. However, the converse is not true.
Interestingly, the converse holds for convex sets.

Theorem B.1.1 ([14, Theorem 3.7]). A convex subset of V is closed iff it is weakly
closed.

For a function f : V → R ∪ {±∞} , we define its domain as the set of positions that
f admits finite value,

dom(f) ≜ {v ∈ V : −∞ < f(v) < +∞}.

A function f is said to be closed proper convex if it satisfies the following properties:

1. Convexity. f(τv + (1 − τ)u) ≤ τf(v) + (1 − τ)f(u) for all v,u ∈ V and τ ∈ [0, 1]

2. Properness. f(v) > −∞ for all v ∈ V and there exists v0 ∈ V so that f(v0) < +∞

3. Closedness. 3 The epigraph of f , denoted by epif = {(v, τ) ∈ V × R : f(v) ≤ τ}, is
closed 4

Note that the convexity and properness of f can be defined using the epif . Indeed, it
is not hard to see that f is convex iff epif is convex. In particular, the properness of f
implies that its domain is non-empty.

Assuming that epif is convex, then it is closed iff weakly closed due to Theorem B.1.1.
This fact is reformulated in terms of function f as follows.

Theorem B.1.2. ([4, Proposition 20]) The function f : V → R ∪ {±∞} is closed proper
convex if and only if it is weakly closed proper convex.

Conjugate function. The (convex) conjugate of f : V → R ∪ {±∞} is a function
f ∗ : V ∗ → R ∪ {±∞} defined by

f ∗(u) ≜ sup
v∈V

⟨u,v⟩ − f(v), ∀u ∈ V ∗.

3. f is closed iff it is lower-semi continuous [68, Proposition 2.159].
4. More precisely, the epigraph epif is assumed to be closed in the product topology of the strong

topology of V and the usual topology of R, i.e., τV × τR.
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The biconjugate of f , say f ∗∗ : V → R ∪ {±∞} , is a function defined on V (not V ∗∗)
such that:

f ∗∗(v) ≜ sup
u∈V ∗

⟨v,u⟩ − f ∗(u), ∀v ∈ V .

The functions that are closed proper convex play an essential role in convex analysis with
desirable properties.

Theorem B.1.3 (Biconjugate theorem [4, Theorem 2.22 p. 79]). If f is closed proper
convex, then f ∗∗ = f .

Remark B.1.4. Similar to function defined on V , one can define conjugate and bicon-
jugate for function h defined on V ∗, say h : V ∗ → R ∪ {±∞} , as follows,

h∗(v) ≜ sup
u∈V ∗

⟨v,u⟩ − h(u), ∀v ∈ V

h∗∗(u) ≜ sup
v∈V

⟨u,v⟩ − h∗(v), ∀u ∈ V ∗.

Here, it is crucial to notice that h∗ is defined on V not V ∗∗. In this case, the biconjugate
theorem should be stated: If h : V ∗ → R ∪ {±∞} is weakly* closed proper convex, then h∗

is (weakly) closed proper convex and h = h∗∗. More generally, the convex conjugacy oper-
ator defines a one-to-one map from the space of (weakly) closed proper convex functions
to the space of weakly* closed proper convex functions, [2, Theorem 9.3.5].

Gradient and subgradient. A function f : V → R ∪ {±∞} is said to be differ-
entiable at v (belonging to the interior of dom(f)) if there exists a continuous linear
functional gv ∈ V ∗ such that 5

lim
∥p∥V →0+

|f(v + p) − f(v) − ⟨gv,p⟩|
∥p∥V

= 0. (B.1)

In this case, we denote ∇f(v) = gv and call it the gradient of f at v [68, Definition 5.39].
In various applications, f is not differentiable. In such cases, we need a general concept

of gradient called “subgradient” and the collection of subgradients is called “subdifferen-
tial”. Specifically, the subdifferential of a convex function f at v is defined as

∂f(v) ≜ {g ∈ V ∗ : f(u) ≥ f(v) + ⟨g,u − v⟩,∀u ∈ V }.

5. Here, gv defined by (B.1) is also referred to as the Fréchet derivative. It’s important to distinguish
it from the Gâteaux derivative. It’s worth noting that all Fréchet derivatives are Gâteaux derivatives, but
for the applications in this thesis, using the Fréchet derivative is sufficient.
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Each vector g ∈ ∂f(v) is called a subgradient. We define the domain of ∂f the region
where the subdifferential is non-empty:

dom(∂f) ≜ {v ∈ V : ∂f(v) ̸= ∅}.

In particular, if f is differentiable, then its gradient is the unique subgradient, i.e.,
∂f(v) = {∇f(v)} [4, Proposition 2.40]. It is important to notice that subgradients
provide an elegant way to characterize the minimizers of a convex function, that is
v⋆ ∈ arg minv∈V f(v) iff 0 ∈ ∂f(v⋆), this is known as the Fermat’s rule [4, Section
2.2.1].

Theorem B.1.5. ([4, Proposition 2.33]) If f is (weakly) closed proper convex, then the
following relations are equivalent:

— r ∈ ∂f ∗(v)

— v ∈ ∂f(r)

— f(r) + f ∗(v) = ⟨v, r⟩

Loosely speaking, ∂f and ∂f ∗ are said to be “inverses” of each other.
Strong smoothness and strong convexity. A function f is said to be α-strongly

convex (on its domain) for some α > 0 if, for all v ∈ V , v0 ∈ dom(∂f) and g0 ∈ ∂f(v0),

f(v) ≥ f(v0) + ⟨g0,v − v0⟩ + α

2 ∥v − v0∥2
V . (B.2)

Here, we note that f(v0) is finite since v0 ∈ dom(∂f) ⊂ dom(f) but f(v) can equal to
+∞ if v /∈ dom(f).

A function f is called β-strongly smooth (on the entire space) for some β > 0 if
dom(f) = V , f is Fréchet differentiable on V and verifies the following inequality, for all
v,v0 ∈ V ,

f(v) ≤ f(v0) + ⟨∇f(v0),v − v0⟩ + β

2 ∥v − v0∥2
V .

Note that β-strong smoothness is also known as β-smoothness, see e.g., [61].
For a comprehensive equivalent definitions of strong convexity and smoothness, please

refer to, e.g., [68, Section 6.1], [6, Chapter 5] or [100, Section 3.5].
It is important to notice the following equivalent definition of strong smoothness using

gradient.
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Theorem B.1.6 ([68, Corollary 6.9]). Let f : V → R ∪ {±∞} be a closed proper convex
function. It is β-strongly smooth iff it is differentiable with gradient ∇f being β-Lipschitz
continuous on the entire space V .

It is well known that there is a nice duality between the strong convexity and smooth-
ness [6, Theorem 5.26], which is stated as follows.

Theorem B.1.7 (Duality between strong convexity and strong smoothness). f is β-
strongly smooth w.r.t. ∥·∥V on V iff f ∗ is β−1-strongly convex w.r.t. ∥·∥V ∗ on dom(f ∗).

Remark B.1.8. Note that the proof of Theorem B.1.7 can be found in [100, Proposition
3.5.3], in which the author consider the duality of a more general concept called uniform
convexity and uniform smoothness in the general vector spaces. However, in the context
of finite-dimensional setups e.g., in many machine learning problems, the result is well-
known and has a simpler proof, as shown in [61, Theorem 6].

Remark B.1.9. In finite-dimensional spaces, the strong smoothness and convexity can be
characterized easily using the eigenvalues of Hessian matrix of twice differentiable convex
functions [6, Theorem 5.12]. Let V = Rm, let ∇2f be the Hessian of f . If all the eigen-
values of ∇2f are all lower bounded by some α > 0, then f is α-strongly convex on its
domain. Similarly, if all eigenvalues ∇2f are upper bounded by some β ≥ 0 on Rm, then
f is β-strongly smooth on the whole space Rm [68, Corollary 6.4].

Fenchel and Bregman divergence. Let f be a closed proper convex function. The
Fenchel divergence Fenf : V × V ∗ → R+ ∪ {+∞} associated with f is defined as follows,
for all u ∈ V ,v ∈ V ∗,

Fenf (u,v) ≜ f(u) + f ∗(v) − ⟨u,v⟩. (B.3)

Fenchel divergence is always non-negative 6 by definition of conjugate and equals to zero
iff v ∈ ∂f(u), see (by Theorem B.1.5). Note that Fenf (u,v) < +∞ iff (u,v) ∈ dom(f) ×
dom(f ∗).

For a convex function f , u0 ∈ dom(∂f) and g0 ∈ ∂f(u0), one defines the Bregman
divergence at u0 as a function Bregf,g0(·,u0) : V → R+ ∪ {+∞} such that

Bregf,g0(u,u0) ≜ f(u) − f(u0) − ⟨gu0 ,u − u0⟩, (B.4)

6. This is known as the Fenchel-Young inequality.
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for u ∈ H . By the convexity of f and definition of subgradient, it is clear that the
Bregman divergence is non-negative and equal to zero if u = u0. If f is differentiable, i.e.,
∂f = {∇f}, we simply write Bregf instead of Bregf,∇f .

Note that if f is α-strongly convex, then

Bregf,g0(u,u0) ≥ α

2 ∥u − u0∥2
H ,

by the definition of strong convexity (B.2).
We demonstrate in the following an important relationship between Fenchel and Breg-

man divergences.

Proposition B.1.10 (Relationship between Fenchel and Bregman divergence). Let f is
closed proper convex function. For u,v ∈ H , we have

Fenf (u,v) = Bregf,v(u, r), ∀r ∈ ∂f ∗(v). (B.5)

Proof. Since f is closed proper convex, one can apply Theorem B.1.5 to derive

r ∈ ∂f ∗(v) ⇐⇒ f(r) + f ∗(v) = ⟨r,v⟩.

Therefore,

Fenf (u,v) = f(u) + f ∗(v) − ⟨u,v⟩

= f(u) + (⟨r,v⟩ − f(r)) − ⟨u,v⟩

= f(u) − f(r) − ⟨v,u − r⟩

= Bregf,v(u, r).

Gauge function. Gauge is a generalized concept of norm. Its definition is provided
below.

Definition B.1.11 (Gauge function [51]). A function κ : V → R ∪ {+∞} is said to be
gauge function if it satisfies the following properties

1. non-negative, κ(z) ≥ 0, for all z ∈ V ,

2. vanishing at origin, i.e., κ(0V ) = 0,
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3. positively homogeneous, i.e., κ(tz) = tκ(z), for all t ≥ 0 and z ∈ V ,

4. subadditive, i.e., κ(z + x) ≤ κ(z) + κ(x), for all z,x ∈ V .

From this definition, it is clear that:

Proposition B.1.12. If κ is a gauge function, then it is proper and convex.

Example B.1.13 (Norms are gauge functions). Let ∥·∥V be a norm in V , then it is a
gauge function. Recall that ∥·∥V is a norm if it satisfies the following properties for all
z ∈ V : 1) subadditive, 2) absolutely homogenous i.e., ∥tz∥V = |t| ∥z∥V for all t ∈ R, and
3) ∥z∥V = 0 iff z = 0V . Note that the properties 1) and 2) imply that ∥z∥V ≥ 0 and
∥0V ∥V = 0.

Example B.1.14 (Seminorms are gauge functions). Let |·|V be a seminorm in V , then
it is a gauge function. Recall that |·|V is a seminorm if it satisfies the following properties
for all z ∈ V : 1) subadditive, 2) absolutely homogenous. Note that the properties 1) and
2) imply that |z|V ≥ 0 and |0V |V = 0. Note that if |·|V additionally satisfies the point-
separating property, i.e., |z|V = 0 ⇒ z = 0V then |·|V is a norm.

Note that every norm is a seminorm, but the converse is not true. To illustrate, con-
sider z ∈ V = R2 and define |z|V = |z(1)|. In this case, |·|V is a seminorm, but not a
norm.

Example B.1.15 (Indicator function over a cone is a gauge functions). Let C be a pointed
convex cone, i.e., it is a convex set and satisfies the property that: tc ∈ C for all t ≥ 0
and c ∈ C. In this definition, we note that 0V ∈ C. Then the indicator function over C
is a gauge function.

Example B.1.16 (Combination of gauge functions is a gauge function). It is clear that
combination of gauge functions is again a gauge function. For example, let us consider
V = Rn. Then the norm with non-negative constraint ∥·∥2 + ιRn

+
(·) is a gauge function

since it is the sum of two gauge functions with convex cone Rn
+.

We now recall the definition of the polar of gauge function.

Definition B.1.17 (Polar of gauge function). The polar of gauge function κ : V →
R ∪ {+∞}, say κ◦ : V ∗ → R ∪ {+∞}, is defined as

κ◦(z′) ≜ sup{⟨z′, z⟩ : κ(z) ≤ 1, z ∈ V },

for any z′ ∈ V ∗.
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From the definition of polar function, we obtain the following result.

Proposition B.1.18 (Polar inequality). For z ∈ V and z′ ∈ V ∗, we have

⟨z′, z⟩ ≤ κ◦(z′)κ(z).

B.2 Fenchel-Rockafellar duality

In this section, we first revisit the standard hypotheses employed in establishing the
so-called“ Fenchel-Rockafellar strong duality”. Subsequently, we introduce two specific
results with easy-to-verify conditions to establish this strong duality.

Let H be a Hilbert space and C be a possibly non-reflexive Banach space. Recall that
τC and ωC represent the strong and weak topologies on C , while τC ∗ and ωC ∗ denote the
strong and weak* topologies on C ∗. Regarding H , we denote by τH and ωH the strong
and the weak topology on H , respectively. Note that the weak and weak* topology on
H coincide.

Let f : H → R∪{+∞} and k : C → R∪{+∞} be convex functions and K : H → C

be a linear operator. From the definition of conjugate function, it is clear that

h(u) + h∗(−K∗x)︸ ︷︷ ︸
≥⟨−Ku,x⟩

+ k(Ku) + k∗(x)︸ ︷︷ ︸
≥⟨Ku,x⟩

≥ 0,

for any u ∈ H and x ∈ C ∗. In other words, we obtain the so-called Fenchel-Rockafellar
duality:

inf
u∈H

h(u) + k(Ku) ≥ sup
x∈C ∗

−h∗(−K∗x) − k∗(x). (B.6)

Here, (B.6) is known as the weak duality. It is called strong duality if the LHS and RHS
are equal.

The following theorem, which is known as the Fenchel-Rockafellar strong duality, pro-
vides the sufficient conditions so that the strong duality holds.

Theorem B.2.1 (Fenchel-Rockafellar strong duality [77, Theorem 3.51]). If h, k and K
verify the following hypotheses:

(D1) h : (H , τH ) → R ∪ {+∞} is closed proper convex

(D2) k : (C , τC ) → R ∪ {+∞} is closed proper convex

(D3) K : (H , τH ) → (C , τC ) is linear and continuous
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(D4) there exists u0 ∈ H such that h is finite at u0 and k is τC -continuous at Ku0,

then the following strong duality holds,

inf
u∈H

h(u) + k(Ku) = max
x∈C ∗

−h∗(−K∗x) − k∗(x). (B.7)

Here the RHS of (B.7) admits at least a maximizer denoted by x⋆. Furthermore, if there
exists a minimizer, say u⋆, for the LHS of (B.7), then (x⋆,u⋆) satisfies the following
optimality conditions:

−K∗x⋆ ∈ ∂h(u⋆), (B.8a)

x⋆ ∈ ∂k(Ku⋆). (B.8b)

Conversely, any (x⋆,u⋆) satisfying (B.8a)-(B.8b) is an optimal pair w.r.t. (B.7).

It is essential to note that the standard strong duality presented in Theorem B.2.1
is non-symmetric. Firstly, a solution for the LHS of (B.7) is guaranteed, but such assur-
ance does not hold for the RHS. Secondly, while the hypotheses (D1), (D2), (D3), and
the optimality conditions (B.8a) and (B.8b) associated with h, k, and K can be readily
translated to h∗, k∗, and K∗, hypothesis (D4) cannot be similarly transferred.

In Remark B.2.2 and Remark B.2.3, we elaborate on how the optimality conditions
and hypotheses (D1), (D2), (D3) can be equivalently formulated in terms of h∗, k∗, and
K∗. Subsequently, in Remark B.2.4, we present equivalently sufficient conditions that the
LHS in (B.7) achieves its minimum value.

We then conclude this section by specializing the Fenchel-Rockafellar strong duality
to specific problems where the hypotheses (D1), (D2), (D3), (D4) can be substituted with
conditions that are easier to verify and the LHS of (B.7) admits the minimum value.

Remark B.2.2 (Equivalence of optimality conditions (B.8a)-(B.8b)). By (D1), (D2)
and Theorem B.1.5, one can notice that the optimality condition (B.8a) and (B.8a) can
be equivalently rewritten in terms of h∗ and k∗ as follows:

u⋆ ∈ ∂h∗(−K∗x⋆), (B.9a)

Ku⋆ ∈ ∂k∗(x⋆). (B.9b)

Remark B.2.3 (Equivalence of hypotheses (D1), (D2), (D3)). Notice that the conditions
imposed on h, k, and K as in (D1),(D2) and(D3) can be equivalently transformed into
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conditions of the conjugate functions h∗, k∗, and the adjoint operator K∗. However, to
achieve this, the topological properties w.r.t. strong topologies in (D1),(D2), and(D3) need
to be replaced by the corresponding topological properties in the weak (and weak*) topolo-
gies. Specifically, by Theorem B.1.2, the hypotheses (D1) and (D2) are equivalent to the
following (D5) and (D6), respectively.

(D5) h∗ : H → R ∪ {+∞} is closed proper convex

(D6) k∗ : C ∗ → R ∪ {+∞} is weakly* closed proper convex

and by [69, Theorem 8.10.5], (D3) is equivalent to (D7):

(D7) K∗ : C ∗ → H is linear and weak*-to-weak continuous

Remark B.2.4. Assume that, in addition to the hypotheses (D1), (D2), (D3) (D4), if
one of the following (equivalent) hypotheses holds true:

(D8) h : H → R ∪ {+∞} is strongly convex,

(D9) h∗ : H → R ∪ {+∞} is strongly smooth,

(D10) h∗ : H → R ∪ {+∞} is gradient Lipschitz on H ,

then the LHS of (B.7) is strongly convex, thus, admits unique optimal solution denoted
by u⋆.

In the following, let C be a (possibly non-reflexive) Banach space and M be its
topological dual space. Let H be a Hilbert space. The following result provides easy-to-
verify conditions that establishes the strong duality for norm penalized problems over the
space M .

Proposition B.2.5. Let us consider

— f : H → R ∪ {+∞} is convex, lower bounded and gradient Lipschitz on the whole
space H ,

— ∥·∥M is a norm in M ,

— A : M → H is linear and weak*-to-weak continuous,

— λ > 0.

Then the following Fenchel-Rockafellar strong duality holds

min
x∈M

f(Ax) + λ ∥x∥M = max
u∈Uλ∥·∥M

−f ∗(−u) (B.10)
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where and Uλ∥·∥M
= {u ∈ H : ∥A∗u∥C ≤ λ}. Furthermore, the RHS of (B.10) admits a

unique optimal solution. The optimal pair verifies the following optimality conditions:

u⋆ = −∇f(Ax⋆) (B.11)

A∗u⋆ ∈ (∂λ ∥·∥M )(x⋆) (B.12)

where
(∂λ ∥·∥M )(x) =

(
z ∈ C : ∥z∥C ≤ λ and ⟨x, z⟩M ,C = λ ∥x∥M

)
,

for any x ∈ M .

Proof. By swapping min and max, one can notice that (B.10) can be rewritten as follows:

min
u∈H

f ∗(−u) + ιK(A∗u) = max
x∈M

−f(Ax) − λ ∥x∥M , (B.13)

where K = {z ∈ C : ∥z∥C ≤ λ}. By choosing h(·) = f ∗(−·), g(·) = ιK(·) and K = A∗,
then one can verify that h∗(·) = f(−·), g∗(·) = λ ∥·∥M and K∗ = A. In this case, (B.13)
can be rewritten in the form of (B.7) of Theorem B.2.1 but with “inf” is now replaced
by “min”. Therefore, to obtain the proof for (B.13), one can combine Theorem B.2.1 and
Remark B.2.4. The remaining of this proof is dedicated to show that the choice of h, k
and K satisfies (D1), (D2), (D3), (D4) (in Theorem B.2.1) and (D10) (in Remark B.2.4).

Proof of (D1). Note that f is closed and proper since it is differentiable. Thus, h∗(·) =
f(−·) is closed proper convex. Thus, we deduce that h is also closed proper convex.

Proof of (D2). It is known that dual norm is weakly* closed [2, Proposition 2.4.12
(ii)(c)]. Therefore, g∗ = λ ∥·∥M is weakly* closed proper convex and, thus, g is closed
proper convex.

Proof of (D3). Since K∗ = A is weak*-to-weak* continuous, K is therefore weak-to-
weak continuous [69, Theorem 8.10.5]. Hence, K is continuous [69, Corollary 8.11.4].

Proof of (D4). To prove (D4), we choose u0 = 0H . We first observe that h(0H ) =
f ∗(0H ) = supv∈H f(v) < +∞ since f is lower bounded. Second, we observe that k = ιK

is continuous on its interior domain, which is the interior K, and that Ku0 = 0C belongs
the interior of of the unit ball K. Thus, (D4) holds true.

Proof of (D10). Finally, h∗(·) = f(−·) is gradient Lipschitz.
Finally, we remark that the optimality condition (B.11) follows from (B.8a) and the

fact that f is differentiable and the optimality condition (B.12) holds by applying the
equivalence of (B.12) and (B.9b).
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This completes the proof.

In finite-dimensional setting, we have the a strong duality result under weaker condi-
tions of functions.

Proposition B.2.6. Let f : Rm → R ∪ {+∞} be a convex and gradient Lipschitz on
Rm, g : Rn → R ∪ {+∞} is closed proper convex and A ∈ Rm×n. Then the following
Fenchel-Rockafellar strong duality holds

min
x∈Rn

f(Ax) + g(x) = max
u∈Rm

−f ∗(−u) − g∗(ATu) (B.14)

In particular, the maximizer u⋆ of the RHS of (B.14) is unique.

Proof. Let f̃(·) = f(A·), we notice that f̃ is closed and proper since f is differentiable.
Therefore, by applying [80, Theorem 3.1], we can prove (B.14) if

relint dom(f̃) ∩ relint dom(g) ̸= ∅. (B.15)

where “relint” denotes the relative interior of a set. First, we observe that dom(f̃) = Rm

since f is differentiable on Rm, thus, relint dom(f̃) = Rm. Second, dom(g) is a non-empty
convex set since g is proper convex function. Notice that the relative interior of non-
empty convex set is non-empty [6, Theorem 3.17]. Thus, relint dom(g) ̸= ∅. Hence, the
intersection in (B.15) is non-empty. The uniqueness of u⋆ follows directly from the strong
convexity of f ∗ (which is equivalent to the gradient Lipschitz of f on Rm).
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Titre : Quelques contributions dans la conception de “régions sûres” et “tests d’élagages sûrs”
en optimisation convexe

Mot clés : Optimisation Convexe, Safe Regions, Safe Screening

Résumé : L’optimisation convexe est fré-
quente en apprentissage automatique, statis-
tiques, signal et image. La résolution de pro-
blèmes d’optimisation en grande dimension
reste difficile en raison de contraintes calcu-
latoires et de stockage. La dernière décennie,
les méthodes de “safe screening” sont deve-
nues un outil puissant pour réduire la dimen-
sion de ces problèmes en se basant sur la
connaissance d’une “safe region” contenant la
solution optimale duale.

La première contribution de cette thèse est
un cadre mathématique pour créer de nou-
velles “safe region” tout en démontrant leur
supériorité par rapport à l’état de l’art. Notre
cadre offre également une manière élégante

d’unifier les “safe regions” existantes. Cette
contribution établit en particulier une base
théorique pour les futures avancées dans
l’étude des “safe region”.

La seconde contribution est une extension
de la méthodologie de “safe screening” à des
problèmes en dimension infinie. Nous mon-
trons notamment que l’intégration de cette
méthode dans un algorithme de l’état de l’art
permet de réduire significativement sa com-
plexité numérique tout en préservant sa pro-
priété de convergence. Cette contribution met
en évidence le potentiel du “safe screening”
pour résoudre efficacement les défis calcula-
toires dans des contextes de dimension infi-
nie.
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Abstract: Convex optimization is common in
machine learning, statistics, signal, and im-
age processing. Solving high-dimensional op-
timization problems remains challenging due
to computational and storage constraints. In
the last decade, the “safe screening” meth-
ods have become a powerful tool to reduce
the dimension of these problems based on the
knowledge of a “safe region” containing the
dual optimal solution.

The first contribution of this thesis is a
mathematical framework for creating new safe
regions while demonstrating their superiority
over the state-of-the-art. Our framework also

provides an elegant way to unify existing safe
regions. This contribution establishes a theo-
retical foundation for future advances in the
study of safe regions.

The second contribution is an extension of
the safe screening methodology to problems
in infinite-dimensions. We show, in particular,
that integrating this method into a state-of-the-
art algorithm can significantly reduce its nu-
merical complexity while preserving its con-
vergence property. This contribution highlights
the potential of safe screening to effectively
address computational challenges in infinite-
dimensional contexts.
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