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Microwave remote sensing offers a valuable alternative to optical remote sensing for monitoring vegetation because of its ability to operate in cloudy conditions and penetrate dense vegetation. Vegetation optical depth (VOD) is a microwave-based vegetation index used for monitoring the vegetation water content and the biomass. It is a promising ecological indicator that has been found very useful to study the impact of global climate and environmental changes on vegetation. Particularly, many applications have been developed in various fields of research, including ecology and the water and carbon cycle. Currently, VOD products are retrieved from passive microwave data at coarse spatial resolution (~25 km). They are generally available over short time periods corresponding to a single satellite life span. Up to now, few studies focused on VOD retrievals from active microwave data. The Advanced SCATterometer (ASCAT) and Sentinel-1(S1) satellites can provide long-term (from 2007 to now) and high-resolution (10 m) C-band backscatter data, respectively. In this context, the overall goal of this doctoral dissertation is to develop accurate and reliable long-term timeseries of VOD using active data records from ASCAT and S1.

In a first step, we developed the ASCAT INRAE Bordeaux (IB) algorithm, which is based on two backscattering models: the Water Cloud Model (WCM) for vegetation coupled with the Ulaby linear model for soil. The main features of the ASCAT IB algorithm are (i) the modelled ERA5-Land soil moisture (SM) dataset was used as an auxiliary SM dataset in the retrievals, (ii) pixel-based soil model parameters were mapped using Random Forest (RF), and (iii) the vegetation scattering parameter (ω) was calibrated for each day. The ASCAT IB algorithm was tested in Africa and produced good results, but did not work well on a global scale.

Therefore, in a second step of this PhD, the ASCAT IB algorithm was improved by taking advantage of a multi-temporal (MT) retrieval method relying on a cost function including constraints applied to the retrieved parameters and extended over the whole land surfaces. It was implemented to simultaneously retrieve long-term VOD and ω parameters from 2007 to now from the single-channel (vertical-vertical, VV) and mono-angular active microwave observations of ASCAT. Evaluation results showed that the global ASCAT IB VOD retrievals were found to have very good spatial and temporal skills in monitoring vegetation. Some interesting discrepancies were also observed when comparing ASCAT IB VOD with the passive VOD products at the same frequency.

In the last step of our work, the good performance of the improved ASCAT IB algorithm encouraged us to apply it to S1 observations to retrieve a high spatial resolution active VOD product. A 1 km VOD product was retrieved from S1, between 2015 and 2022, over France, a country that was selected in this first evaluation due to its variety in terms of soil conditions and vegetation types. S1-VOD showed a good spatial correlation with various aboveground biomass (AGB) and canopy height (CH) products, and its yearly changes agree well with changes in the Climate Change Initiative (CCI) AGB V4.0 product.

In conclusion, this PhD provided two new long-term VOD products: ASCAT IB VOD (global) and a high-resolution S1-VOD over France, both of which demonstrated a good ability to monitor vegetation both in space and time. In addition, our work also provided a retrieval framework that can be applied for retrieving VOD from active microwave observations at other frequencies.

Résumé

La télédétection par micro-ondes offre une alternative intéressante à la télédétection optique pour le suivi de la végétation en raison de sa capacité à fonctionner dans des conditions nuageuses et de végétation dense. L'épaisseur optique de la végétation (VOD) est un indice micro-ondes qui est bien relié à la teneur en eau et la biomasse de la végétation. Il s'agit d'un indicateur écologique prometteur pour étudier l'impact du climat mondial et des changements environnementaux sur la végétation, notamment pour des applications dans les domaines de l'écologie et du cycle de l'eau et du carbone. Les produits VOD sont généralement estimés à partir de données micro-ondes passives à une résolution spatiale grossière (~25 km) et ils sont disponibles, pour un satellite donné, sur une courte période d'observation. Jusqu'à présent, très peu d'études ont porté sur l'estimation du VOD à partir de données micro-ondes actives. Les satellites radar Advanced SCATterometer (ASCAT) et Sentinel-1(S1) peuvent fournir des observations micro-ondes actives en bande C sur le long terme (de 2007 à aujourd'hui) pour ASCAT, et à haute résolution (10 m) pour S1. Dans ce contexte, l'objectif de cette thèse de doctorat est de développer des séries temporelles VOD long terme, précises et fiables, provenant de ASCAT et de S1.

Dans un premier temps, nous avons développé l'algorithme ASCAT INRAE Bordeaux (IB), qui est basé sur deux modèles de rétrodiffusion : le modèle de nuage d'eau (WCM) pour la végétation, couplé au modèle linéaire d'Ulaby pour le sol. Les principales caractéristiques de l'algorithme ASCAT IB sont les suivantes : (i) les sorties du modèle ERA5-Land sont utilisées comme jeu de données auxiliaire de l'humidité du sol (SM) dans les calculs, (ii) les paramètres du modèle de sol sont cartographiés à l'aide de la méthode Random Forest (RF) sur chaque pixel, et (iii) le paramètre de diffusion de la végétation (ω) est calibré quotidiennement. L'algorithme ASCAT IB a été testé en Afrique et a donné de bons résultats, mais n'a pas fonctionné correctement à l'échelle mondiale.

Par conséquent, dans une deuxième étape, l'algorithme ASCAT IB a été amélioré en tirant parti d'une méthode de calcul multi temporelle (MT) reposant sur une fonction de coût et étendu à l'ensemble des surfaces continentales. Cette méthode a été mise en oeuvre pour extraire simultanément les données VOD et le paramètre ω de 2007 à aujourd'hui, à partir des observations micro-ondes actives monocanal (vertical-vertical, VV) et mono-angulaires d'ASCAT. Les résultats de l'évaluation ont montré que les estimations globales de VOD au moyen de l'algorithme ASCAT IB présentaient de très bonnes performances spatiales et temporelles en matière de suivi de la végétation. respectively. The definition of each variable is given in Table S1 andS2 AGB (first row), CCI AGB (second row) and GEDI AGB (third row) datasets. R1 is the spatial Pearson correlation coefficient calculated between C-VOD and AGB (Eq. ( 7)), while R2 is calculated between VOD-predicted AGB and AGB. The solid blue lines are the predictive fits obtained using Eq. ( 8) or ( 9 
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Background and motivation

Use of the microwave vegetation optical depth (VOD) for monitoring vegetation

Vegetation is a key element in the energy, water and carbon balances over the land surfaces and is strongly impacted by climate change and anthropogenic effects [START_REF] Buitenwerf | Three decades of multi-dimensional change in global leaf phenology[END_REF][START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF][START_REF] Guay | Vegetation productivity patterns at high northern latitudes: a multi-sensor satellite data assessment[END_REF][START_REF] Higgins | Shifts in vegetation activity of terrestrial ecosystems attributable to climate trends[END_REF].

Global vegetation monitoring can contribute to our understanding of various aspects of the earth's ecosystem, such as land-atmosphere interaction [START_REF] Lakshmi | The Effects of Satellite-Derived Vegetation Cover Variability on Simulated Land-Atmosphere Interactions in the NAMS[END_REF], biogeochemical cycle [START_REF] De Graaff | A Synthesis of Climate and Vegetation Cover Effects on Biogeochemical Cycling in Shrub-Dominated Drylands[END_REF][START_REF] Heinrichs | The Role of Forest Vegetation in the Biogeochemical Cycle of Heavy Metals[END_REF]) and primary productivity [START_REF] Cramer | Comparing global models of terrestrial net primary productivity (NPP): overview and key results[END_REF][START_REF] Piao | Changes in vegetation net primary productivity from 1982 to 1999 in China[END_REF]. Remote sensing is a powerful tool providing different interesting information about vegetation without requiring direct physical contact over a large region. The launch of earth observation satellites starting in the 1970s ushered in a new era for global observation and study of vegetation [START_REF] Zeng | Optical vegetation indices for monitoring terrestrial ecosystems globally[END_REF].

The widely used indicators to monitor vegetation are the vegetation indices (e.g., normalized difference vegetation index (NDVI) [START_REF] Goward | Normalized difference vegetation index measurements from the advanced very high resolution radiometer[END_REF][START_REF] Huang | A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing[END_REF], enhanced vegetation index (EVI) [START_REF] Jiang | Development of a two-band enhanced vegetation index without a blue band[END_REF], normalized difference water index (NDWI) [START_REF] Gao | NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space[END_REF]) derived from optical satellites data. These indices describe the vegetation biophysical, biochemical and physiological properties and represent the vegetation conditions through simple mathematical combinations or transformations of reflectance in two or more spectral channels from the optical multispectral images [START_REF] Zeng | Optical vegetation indices for monitoring terrestrial ecosystems globally[END_REF]. The optical satellite data were also used to retrieve a large variety of vegetation parameters from the inversion of radiative transfer models: leaf area index (LAI) [START_REF] Fang | An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications[END_REF], fractional vegetation cover [START_REF] Carlson | On the relation between NDVI, fractional vegetation cover, and leaf area index[END_REF][START_REF] Gao | Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review[END_REF], gross primary production (GPP) [START_REF] Anav | Spatiotemporal patterns of terrestrial gross primary production: A review[END_REF][START_REF] Xiao | Satellite-based modeling of gross primary production in an evergreen needleleaf forest[END_REF], solar-induced chlorophyll fluorescence (SIF) [START_REF] Mohammed | Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress[END_REF][START_REF] Sun | Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP[END_REF] or fraction of photosynthetically active radiation (fPAR) [START_REF] Zhu | Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011[END_REF], etc. However, the weather conditions (such as cloudy coverage) largely limit the application of optical remote sensing for vegetation monitoring since optical observations are useless in the presence of clouds. Moreover, the optical observations cannot sense the canopy features in dense vegetation layers and present quick saturation when they are used to monitor volumetric or gravimetric vegetation properties, such as vegetation biomass or trunk volume.

Microwave remote sensing provides an interesting alternative to monitor vegetation due to its unique capacity to work in cloudy conditions and to its penetration capacity through dense vegetation. In the microwave field, remotely sensed observations can be acquired by either passive (radiometer) or active (radar) sensors at different frequencies (from 0.3 to 300 GHz) with varying penetration ability [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF]. Radiometers measure the brightness temperatures (TB expressed in K) corresponding to the natural radiation emitted by the land surfaces. These sensors have a coarse spatial resolution (>25km) but a high temporal resolution (daily). Radar (active) sensors measure the ratio between the backscattered and the emitted microwave radiations. Spaceborne radar sensors are of two types: real aperture radar (scatterometers and altimeters) with a coarse spatial resolution from a few to tenths of kilometres and synthetic aperture radar (SAR) with a higher spatial resolution from a few meters to a few hundreds of meters. Several studies showed that active and passive microwave observations have different sensitivity to the vegetation and soil properties [START_REF] Link | Relationship Between Active and Passive Microwave Signals Over Vegetated Surfaces[END_REF][START_REF] Prigent | Diurnal and Seasonal Variations of Passive and Active Microwave Satellite Observations Over Tropical Forests[END_REF] and can yield potential complementary information when used together in synergy.

Microwave observations have shown potential for global vegetation monitoring.

In the passive microwave domain, various satellite microwave vegetation indices (VIs) have been developed, including the normalized microwave polarization difference index (MPDI) (Becker & Choudhury, 1988), the polarization index (Macelloni et al., 2003), the microwave vegetation indices (MVIs) (Shi et al., 2008), and the microwave emissivity difference vegetation index (EDVI) (Min & Lin, 2006a). These vegetation indices are used to characterize various aspects of the vegetation properties, such as vegetation water content, canopy structure and dynamics. Active microwave observations have also been employed for large-scale vegetation monitoring since the availability of the first global multi-year active microwave data from the wind scatterometer (WSC) on the European Remote-sensing Satellite-1 (ERS-1). [START_REF] Frison | Monitoring global vegetation dynamics with ERS-1 wind scatterometer data[END_REF] compared the C-band ERS-l backscattering coefficient with the Advanced Very High Resolution Radiometer (AVHRR) Global Vegetation Index (GVI) and showed that the ERS-1 data display a well-pronounced seasonality over most vegetated surfaces. The highest sensitivity to the vegetation dynamics is found in semiarid regions and boreal zones. Konings et al. (2017b) found that active microwave backscatter observations at Ku-band have the potential ability to monitor the diurnal and seasonal variations of the top-of-canopy water content in the humid African tropical forests. In addition, the dynamic of the vegetation cycles was also studied by using observations from the long-term C-band Advanced Scatterometer (ASCAT). For instance, using data collected over Austria, [START_REF] Pfeil | Does ASCAT observe the spring reactivation in temperate deciduous broadleaf forests? Remote Sensing of Environment[END_REF] found that the ASCAT data can monitor the spring reactivation in temperate deciduous broadleaf forests. The raw ASCAT observation (i.e. the backscattering coefficient) and the slope and curvature of a second-order polynomial between the backscattering coefficient and the incidence angle were used to explore the vegetation water dynamics over the Amazon forests [START_REF] Petchiappan | The influence of vegetation water dynamics on the ASCAT backscatter-incidence angle relationship in the Amazon[END_REF] and the North American Grasslands [START_REF] Steele-Dunne | Investigating vegetation water dynamics and drought using Metop ASCAT over the North American Grasslands[END_REF]. As the microwave observations show a good sensitivity to vegetation water dynamics and structure, both passive and active observations were early used to estimate the vegetation water content (VWC) [START_REF] Calvet | Sensitivity of Passive Microwave Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band[END_REF][START_REF] Ebtehaj | A physically constrained inversion for high-resolution passive microwave retrieval of soil moisture and vegetation water content in L-band[END_REF][START_REF] Konings | Macro to micro: microwave remote sensing of plant water content for physiology and ecology[END_REF][START_REF] Saatchi | Estimation of canopy water content in Konza Prairie grasslands using synthetic aperture radar measurements during FIFE[END_REF] and biomass [START_REF] Bousquet | Influence of surface water variations on VOD and biomass estimates from passive microwave sensors[END_REF][START_REF] Salazar-Neira | Above-Ground Biomass Estimation Based on Multi-Angular L-Band Measurements of Brightness Temperatures[END_REF]Santoro and Cartus, 2018).

Recently, the microwave vegetation optical depth (VOD), which parameterizes the vegetation extinction effects affecting the microwave radiations propagating through the vegetation canopy, has attracted more attention for vegetation monitoring [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF][START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF]. VOD is directly proportional to the VWC of the aboveground biomass (AGB), and has also been considered as a promising ecological indicator (Jackson and Schmugge, 1991;[START_REF] Mo | A model for microwave emission from vegetation-covered fields[END_REF][START_REF] Wigneron | Retrieval of geophysical parameters from multifrequency passive microwave measurements over a soybean canopy. Passive Microwave Remote Sensing of Land-Atmosphere Interactions Wigneron[END_REF][START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF]. VOD has the following advantages: 1) It is largely insensitive to atmospheric effects, clouds, and sun illumination, and has a sampling depth enabling it to sense different layers of the vegetation canopy compared to optical vegetation indices; 2) It is less affected by the soil contributions and has a clear physical meaning compared to other microwave vegetation indices combining various microwaves data.

VOD can be retrieved from both passive and active microwave observations. However, they are generally two unknowns in microwave retrievals over the land surfaces: soil moisture (SM) and VOD [START_REF] Wigneron | Retrieving near-surface soil moisture from microwave radiometric observations: current status and future plans[END_REF][START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF].

There are three main strategies for retrieving VOD from passive microwave observations.

(1) The first strategy involves retrieving both soil moisture and VOD, but the VOD retrieval is constrained using optical remote sensing vegetation indices as proxies of VOD. For instance, in the retrieval of the official Soil Moisture and Ocean Salinity (SMOS) level 2 and 3 products, LAI was used as a proxy of VOD in the algorithm [START_REF] Al-Yaari | Global-scale evaluation of a hydrological variable measured from space: SMOS satellite remote sensing soil moisture products[END_REF][START_REF] Kerr | The SMOS Soil Moisture Retrieval Algorithm[END_REF]. In the retrieval of the Soil Moisture Active Passive (SMAP) algorithm, the climatology of the NDVI data was utilized to estimate the VWC. Subsequently, this estimated VWC was employed as a proxy of VOD to retrieve SM in the SMAP single channel algorithm [START_REF] O'neill | Quantitative Retrieval of Soil Moisture Content and Surface Roughness From Multipolarized Radar Observations of Bare Soil Surfaces[END_REF]. This strategy prioritizes the accuracy of SM in the algorithm, while the quality of the VOD product is generally too low or biased for applications in vegetation monitoring [START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF].

(2) The second strategy is to develop a retrieval algorithm which focus on the quality of both VOD and SM. In those algorithms, no optical vegetation indices are used as a proxy of VOD, and both SM and VOD are retrieved simultaneously. Some constraints are applied to the VOD retrieval. Those constraints are generally relying on a multi-temporal method based on the assumption that VOD varies relatively slowly in time [START_REF] Wigneron | Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission)[END_REF]. For instance, in the SMOS-IC version 2 algorithm [START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF], the mean value of VOD retrieved in the previous ten days is used as a first guess of the VOD value for subsequent SM and VOD retrievals. In the land parameter retrieval model (LPRM) applied to passive microwave observations [START_REF] Owe | Multisensor historical climatology of satellite-derived global land surface moisture[END_REF][START_REF] Owe | A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[END_REF][START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF], VOD is initially computed utilizing an analytical solution based on the MPDI [START_REF] Meesters | Analytical Derivation of the Vegetation Optical Depth From the Microwave Polarization Difference Index[END_REF] and the observed surface emissivity. Then, VOD and SM are retrieved simultaneously using an iterative optimization technique. In order to decrease the noise in the VOD time series, a 30-day moving median filter was applied to smooth the daily VOD in the land parameter data record (LPDR) algorithm [START_REF] Du | A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations[END_REF]. The multi-temporal method was also used to improve the VOD retrieval from the SMAP observations (Konings et al., 2017a;[START_REF] Konings | Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized Lband radiometer observations[END_REF][START_REF] Li | A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison[END_REF].

(3) The third strategy is to focus on retrieving VOD while SM is estimated from ancillary data and is considered as an input in the algorithm. Wang et al. (2021a) used the ERA5-Land SM as the input for the X-band microwave emission of the biosphere (X-MEB) inversion model and successfully retrieved the X-band VOD (X-VOD) from Advanced Microwave Scanning Radiometer 2 (AMSR2) observations. Results showed that the newly developed X-VOD has obvious improvements. In order to explore the properties of VOD at different frequencies, [START_REF] Baur | Estimation of relative canopy absorption and scattering at L-, C-and X-bands[END_REF] used the SMAP single-channel algorithm (SCA) SM as input to retrieve L-, C-and X-bands VOD from SMAP and AMSR2 satellites, respectively.

VOD retrieved from passive microwave observations (passive VOD) has been used in many applications in the field of global climate and environmental changes.

For instance, L-VOD from SMOS and SMAP were used to calculate the carbon dynamics in tropical and Siberian regions [START_REF] Brandt | Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands[END_REF][START_REF] Fan | Satelliteobserved pantropical carbon dynamics[END_REF][START_REF] Qin | A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations[END_REF][START_REF] Wigneron | Tropical forests did not recover from the strong 2015-2016 El Nino event[END_REF] and to predict the crop yield estimates in the northcentral US [START_REF] Chaparro | L-band vegetation optical depth seasonal metrics for crop yield assessment[END_REF][START_REF] Patton | Initial Validation of SMOS Vegetation Optical Thickness in Iowa[END_REF]. C-VOD from Advanced Microwave Scanning Radiometer -Earth Observing System (AMSR-E) was used to reveal the recent reversal in the loss of global terrestrial biomass [START_REF] Liu | Recent reversal in loss of global terrestrial biomass[END_REF]. X-VOD from the AMSR-E satellite was used to explore the spatial and temporal variations of global plant water behaviour [START_REF] Konings | Global variations in ecosystem-scale isohydricity[END_REF]. The analysis between Ku-VOD from AMSR-E and Moderate Resolution Imaging Spectroradiometer (MODIS) LAI, EVI, NDVI showed that VOD presents new and complimentary information on land surface phenology [START_REF] Jones | Satellite microwave detection of boreal forest recovery from the extreme 2004 wildfires in Alaska and Canada[END_REF]. Ku-VOD from AMSR-E was also used to study the Amazon rainforest resilience [START_REF] Boulton | Pronounced loss of Amazon rainforest resilience since the early 2000s[END_REF].

However, some deficiencies exist in the above-mentioned passive VOD products: 1) the spatial resolution is coarse (≥ 25 km); 2) the data quality is affected by radio frequency interference (especially for L-band VOD); 3) the time span of the ongoing satellite is not long enough (the longest acquisition period of the different sensors is ~12 years for SMOS) and 4) VOD time series are affected by the discontinuity between observations from satellites and their successors (e.g., AMSR-E and AMSR2).

Active microwave VOD

In the active microwave domain, there are only a few studies investigating the use of VOD for vegetation studies. The few active VOD studies mainly use the C-band data from the ASCAT sensor that provides data from 2007 with a spatial resolution of 25-50 km and Sentinel-1 (S1) data that provides high spatial resolution data (~10 m) from 2014 with less radio frequency interference influence [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF] than for passive microwave sensors. [START_REF] Grippa | Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions[END_REF] developed a forward model considering the backscatter contributions of the bare surface, the seasonal and evergreen vegetation and the open water areas based on high spatial resolution SAR data and ground information over three different test sites. The model was then inverted to retrieve vegetation parameters (VOD and a vegetation scattering parameter) by using the ERS-1 data which is the predecessor of ASCAT. To quantify the effect of vegetation on the signal, [START_REF] Magagi | Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas[END_REF] used information on the green vegetation acquired from NOAA-AVHRR, visible and near-IR data combined with ERS-1 data in a water cloud model to extract VOD and a vegetation scattering parameter in a 50 km by 50 km square centred at Banizoumbou (Niger Republic). Quast et al. (2019) calibrated the parameter values of a generic, semi-empirical first-order radiative transfer model using the ASCAT measurements together with auxiliary LAI and SM datasets provided by the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land-surface model and then used the calibrated model to perform a retrieval of daily SM and/or 7-daily VOD estimates over 158 selected test-sites within France. El Hajj et al. (2019a) and [START_REF] Zhou | Retrieval of High-Resolution Vegetation Optical Depth from Sentinel-1 Data over a Grassland Region in the Heihe River Basin[END_REF] tried to retrieve the high-resolution VOD (≤ 1 km) from S1 using the water cloud model on a study site of 50 km × 50 km located in Catalonia, Spain and over a grassland of the Heihe River Basin in north-western China, respectively. However, aforementioned studies were only conducted at the site scale or over small regions. Active VOD retrievals conducted at a continental scale are still rare. The first active VOD research at a continental scale [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF] was conducted for assessing the vegetation correction in the Technische Universität Wien (TUW) method of the C-band ASCAT soil moisture retrieval [START_REF] Wagner | The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[END_REF].

The ASCAT TUW VOD is retrieved by a change detection method using the water cloud model [START_REF] Attema | Vegetation modeled as a water cloud[END_REF]. The TUW VOD value is mainly dependent on two parameters (slope and curvature) which are the coefficients of a second-order Taylor expansion function established to describe the angular ASCAT backscatter dependency [START_REF] Hahn | Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT[END_REF]. However, this product is not yet public and there are few studies on the assessment of ASCAT TUW VOD [START_REF] Teubner | Assessing the relationship between microwave vegetation optical depth and gross primary production[END_REF][START_REF] Vreugdenhil | Assessing Vegetation Dynamics Over Mainland Australia With Metop ASCAT[END_REF]. To our knowledge, there is no global long-term or continental scale high resolution active VOD product that is publicly available.

There are several challenges in retrieving VOD over a large scale from ASCAT and S1 data. They come from:

(1) Calibrating the parameters of the vegetation and bare soil models used to simulate the ASCAT or S1 C-band backscatter at a large scale. Various types of models, including physical, empirical, and semi-empirical ones, have been proposed in the literature. The empirical and semi-empirical models have fewer parameters that need to be calibrated and shows a better potential to be applied over a large scale. In previous studies, model parameters calibrated at a specific site scale were directly used for the entire region [START_REF] He | Semiempirical Calibration of the WCM for Estimating Maize Biomass in Northeast China[END_REF][START_REF] Hosseini | Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data[END_REF][START_REF] Mandal | An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data[END_REF][START_REF] Pulvirenti | A surface soil moisture mapping service at national (Italian) scale based on Sentinel-1 data[END_REF]. This kind of assumption is not well suited for studies in a large region, especially at a national or global scale. Unfortunately, there is no study exploring how to extend the site-scale results to large regions;

(2) Dealing with the ill-posed problem in retrieving both VOD and SM. In the passive domain, SM & VOD retrievals are based on multi-angular (for SMOS) and/or dual-polarization observations [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF]. However, in the active domain, it is difficult to simultaneously retrieve SM and VOD using mono-angle and mono-polarization observations (ASCAT backscatter measurements only have vertical-vertical (VV) polarization at the incidence angle of 40 degrees). The strategy of focusing on retrieving VOD by using SM as the input (applied in the passive domain) provides a valuable inspiration.

Through reviewing the studies of active microwave VOD, several aspects can be identified and are summarized below:

(1) Numerous algorithms have been developed to retrieve passive microwave VOD, resulting in a variety of passive VOD products used in various fields of global climate and environmental research. In contrast, research related to active microwave VOD is limited, and currently, there is no publicly available active microwave VOD product.

(2) The current ongoing passive VOD products have a coarse spatial resolution and have a short time span. The active microwave satellite ASCAT and S1 can provide long-term (from 2007) and high-resolution data (~10m), respectively.

(3) Most of the active microwave VOD studies focused on the site scale. The large-scale retrieval of active VOD is limited by the calibration of the model parameters at a large scale and the ill-posed problem in retrieving both VOD and SM from mono-polarization observations.

(4) Passive and active microwave have a different sensitivity to vegetation and soil properties. Due to the lack of active microwave VOD, there is no study exploring the difference/complementarity between the active and passive VOD products.

The motivation for this doctoral thesis relies on the fact that few studies focused on active microwave VOD retrieval and there is no public active microwave VOD product available. The retrieval of active microwave VOD at a large scale, specifically from C-band ASCAT and S1 observations, could provide long-term and high-resolution resources for monitoring the vegetation. In addition, active microwave VOD can be inter-compared with passive microwave VOD to explore their differences and then provide complementary information when used together. Therefore, developing publicly available active microwave VOD products from ASCAT and S1 could be very valuable to the research community working on vegetation monitoring.

Dissertation Objectives

In this context, the main objective of this doctoral dissertation is to develop new active VOD products from C-band active sensors: ASCAT (with long-term data) and S1 (with high-resolution data) by addressing the problems that limit the retrieval of active microwave VOD at a large scale. This study is thus expected to contribute to the development of active VOD product from ASCAT and Sentinel-1. In addition, the retrieval framework used in this study may also be a reference for retrieving VOD from active microwave data at other frequencies. In connection to the above context, the following objectives have been addressed in this doctoral dissertation: (ii) Improving the ASCAT IB VOD product at global scale and producing a longterm public dataset. In this global study, we will try to answer to some specific questions: Can we retrieve VOD and the vegetation scattering parameter () together by using a multi-temporal retrieval method relying on a cost function where we apply constraints to the retrieved parameters? How can we get the constraints from the ASCAT IB VOD prototype version and ASCAT observations? What are the differences between active and passive VOD at the same frequency and the reasons for those differences? (iii) Based on the results obtained from ASCAT, a similar methodology was used to develop a long-term high-resolution S1 VOD product at a national scale (we focused on France, a country with contrasted soil and vegetation conditions, in a first step). The scientific questions here are: Can the simple bare soil model used for ASCAT be efficient and accurate to model the highresolution S1 bare soil scattering signals? How can we use the vegetation information (VOD and ) obtained from the ASCAT IB retrievals to retrieve Sentinel 1 VOD?

To achieve these objectives, we first tested the feasibility of retrieving ASCAT IB VOD over the African continent which is less large than the globe but includes a large variation in the vegetation and soil moisture conditions. We then improved the methodology used in Africa and retrieved a long-term global ASCAT IB VOD. Finally, the ASCAT IB algorithm was applied to S1 to obtain a 1 km VOD product from 2015 to now over France. The flow chart illustrating the main objectives of this doctoral dissertation is shown in Fig. 1.1. These objectives were accomplished as separate studies resulting in journal articles. A brief description of each paper is presented in the outline of this dissertation in the next section. 

Dissertation outline

This doctoral dissertation is structured into six chapters, and their arrangement is as follows:

The present Chapter I lists the background and motivation, objectives, and research scope of this PhD work.

Chapter II gives the theoretical background regarding active microwave VOD retrieval. It covers aspects such as: the physical concept of basic variables (e.g., SM, soil properties and roughness, vegetation water content and scattering), the models (soil and vegetation) used to simulate the active microwave signature, and an overview of the key characteristics of two C-band active microwave satellites (ASCAT and S1) that were utilized in this PhD project. Specifically, a multi-temporal retrieval method relying on a cost function including constraints applied to the retrieved parameters is implemented to simultaneously retrieve the long-term VOD and vegetation scattering parameter () from 2007 to now.

ASCAT IB VOD was inter-compared with ASCAT TUW, AMSR2, and VOD Climate Archive (VODCA) VOD products (the last two products are estimated from passive microwave observations) to illustrate its main features and the differences between active and passive VOD. 

The physical concept of basic variables

Soil moisture

The soil moisture (SM), also called soil water content, refers to the subsurface water in the pore spaces of unsaturated soil and subsoil layers above the water [START_REF] Engman | Applications of microwave remote sensing of soil moisture for water resources and agriculture[END_REF]. Soil moisture plays a significant role in the hydrological, meteorological and climate models [START_REF] Gardner | An evaluation of the success of MORECS, a meteorological model, in estimating soil moisture deficits[END_REF][START_REF] Gillies | Thermal Remote Sensing of Surface Soil Water Content with Partial Vegetation Cover for Incorporation into Climate Models[END_REF][START_REF] Wanders | The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models[END_REF], as it controls the spatial re-distribution of the model outputs. Therefore, accurate observations of soil moisture can improve the performance of those models. Soil moisture is also a key indicator to assess the potential for risks of extreme events (e.g., flooding and drought) [START_REF] Lakshmi | Soil moisture as an indicator of weather extremes[END_REF][START_REF] Wang | Role of Soil Moisture Feedback in the Development of Extreme Summer Drought and Flood in the United States[END_REF]. Its spatial-temporal variations influence runoff, inflow, control evaporation and transpiration, thus regulating the extent of groundwater recharges.

Soil moisture can be obtained by 1) in-situ measurements (e.g., radiological methods, neutron attenuation, gamma absorption, etc.) [START_REF] Walker | In situ measurement of soil moisture: a comparison of techniques[END_REF], 2) remote sensing technologies (visible/near-infrared, thermal infrared, passive and active microwave) [START_REF] Karthikeyan | Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms[END_REF][START_REF] Mohanty | Soil Moisture Remote Sensing: State-of-the-Science[END_REF][START_REF] Wang | Satellite remote sensing applications for surface soil moisture monitoring: A review[END_REF], and

3) data-driven methods (land surface model and data assimilation) [START_REF] Draper | Assimilation of passive and active microwave soil moisture retrievals[END_REF][START_REF] Pitman | The evolution of, and revolution in, land surface schemes designed for climate models[END_REF][START_REF] Pleim | Development of a land surface model. Part II: Data assimilation[END_REF][START_REF] Singh | Mathematical Modeling of Watershed Hydrology[END_REF]. The in-situ measurements are relatively accurate and can be taken at several depths but can only represent the point scale and are time-consuming. However, in-situ measurements are important for the evaluation or calibration of remote sensing and model results. The most widely used in-situ database is the International Soil Moisture Network (ISMN) [START_REF] Dorigo | The International Soil Moisture Network: serving Earth system science for over a decade[END_REF][START_REF] Dorigo | The International Soil Moisture Network: a data hosting facility for global in situ soil moisture measurements[END_REF] which attempts to gather all available in-situ soil moisture measurements over different sites of the world.

Satellite images can provide land surface information from local to regional and global scales through the electromagnetic radiations acquired from space, reflected or emitted from the Earth's surface [START_REF] Campbell | Introduction to remote sensing[END_REF]. For different satellite data, different algorithms have been developed to retrieve soil moisture. More details about the development of algorithms can be seen in the review of soil moisture [START_REF] Karthikeyan | Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms[END_REF][START_REF] Mohanty | Soil Moisture Remote Sensing: State-of-the-Science[END_REF][START_REF] Wang | Satellite remote sensing applications for surface soil moisture monitoring: A review[END_REF]. One of the primary concerns regarding satellite-based soil moisture datasets is the lack of a suitable balance between spatial and temporal resolution, which is constrained by the limitations of satellite technology [START_REF] Dubovik | Grand Challenges in Satellite Remote Sensing[END_REF]. The data-driven methods can model the soil moisture in different spatial and temporal resolutions from local to global scales and from hours to days, respectively. However, several dynamic and static variables (e.g., soil texture and type, land cover, digital terrain model, climate forcing, etc.) are required as inputs to the complex models.

Soil properties and roughness

Soil properties and soil roughness are two key variables that influence the holding capacity and spatial-temporal distribution of soil moisture [START_REF] Baroni | The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field[END_REF][START_REF] Rawls | Estimating Soil Water Retention from Soil Physical Properties and Characteristics[END_REF]. Soil properties include physical properties (e.g., structure, texture, porosity, bulk density, temperature, etc.), biological properties (e.g., organic matter, total carbon, total nitrogen, etc.), and chemical properties (e.g., electrical conductivity, pH, cation exchange capacity, etc). Soil texture refers to the size of the particles that make up the soil and depends on the proportion of sand, silt and clay-sized particles and organic matter in the soil [START_REF] Shirazi | A Unifying Quantitative Analysis of Soil Texture[END_REF]. Soil structure describes the way the sand, silt and clay particles are clumped together [START_REF] Bronick | Soil structure and management: a review[END_REF] and is important for plant growth, regulating the movement of air and water, influencing root development and affecting nutrient availability [START_REF] Passioura | Soil structure and plant growth[END_REF]. Soil porosity refers to the pores within the soil and influences the movement of air and water [START_REF] Hao | Soil density and porosity[END_REF][START_REF] Sasal | Soil porosity characteristics and water movement under zero tillage in silty soils in Argentinian Pampas[END_REF]. Currently, two sources of soil properties, largely used in our study, are available at the global scale, the Harmonized World Soil Database (HWSD) [START_REF] Nachtergaele | Harmonized World Soil Database (version 1.1). Rome: Food and Agric Organization of the UN (FAO)[END_REF] and SoilGrids [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF][START_REF] Poggio | SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty[END_REF], respectively.

Soil roughness refers to the quality of a soil surface in terms of its lack of smoothness or unevenness [START_REF] Govers | Soil roughness and overland flow[END_REF][START_REF] Smith | Roughness in the Earth Sciences[END_REF]. It is a characterization of the deviations or irregularities present on the surface of the soil and is quantified by measuring the deviations in the direction of the normal vector of a real surface from its ideal flat form. Two geometric parameters are often used to measure the changes in surface roughness, one of which is the root-mean-square (RMS) height which is used to describe the vertical roughness [START_REF] Smith | Roughness in the Earth Sciences[END_REF][START_REF] Zhixiong | Characterisation of soil profile roughness[END_REF]. Another is the correlation length which is used to measure the roughness in the horizontal direction (Martinez-Agirre et al., 2016;[START_REF] Smith | Roughness in the Earth Sciences[END_REF]. Generally, a smooth surface tends to have higher reflectivity compared to a rough surface. When a signal hits a smooth soil surface (as a water surface for instance), it is reflected more uniformly, resulting in a higher overall reflectance mostly in the specular direction, while there is a low reflected signal in the backscattered direction. In contrast, a rough soil surface scatters the incident signal in different directions due to its irregularities, causing a decrease in the overall reflectance, but an increase in the backscattered direction compared with a smooth surface. For this reason, surface roughness parameters are necessary and are key inputs for most models describing soil scattering [START_REF] Brogioni | Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils[END_REF]Ulaby et al., 1978). Hence, the estimation of soil roughness parameters on a large scale is very important for soil scattering modelling. However, the mapping of roughness parameters at a large scale is challenging due to the limited availability of direct measurements, which are currently restricted to a few field experiment sites. Currently, only a few roughness maps have been published in the passive microwave domain [START_REF] Parrens | Global Maps of Roughness Parameters from L-Band Smos Observations[END_REF][START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF] and, to our knowledge, no map has been yet published in the active domain.

Vegetation water content and scattering

Microwave signals are scattered and attenuated when they propagate in the vegetation canopy because of the different water content and orientation of stems and leaves.

These scattering and attenuation effects are usually parameterized by the vegetation optical depth (VOD) which is highly related to the vegetation water content (VWC, kg/m 2 ) and the vegetation structure [START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF]. The relationship between VOD and VWC is commonly expressed through a linear equation, VOD = b ⋅ VWC, where b represents a proportionality factor primarily influenced by the vegetation structure (Jackson and Schmugge, 1991). VWC quantifies the water content per unit area of the ground surface (kg /m 2 ) and is determined by two key factors: vegetation quantity, parameterized by vegetation dry biomass (Bs, kg/m 2 ), and vegetation water status, parameterized by the volumetric vegetation moisture content (Mg, kg/kg or %) [START_REF] Vermunt | Response of Subdaily L-Band Backscatter to Internal and Surface Canopy Water Dynamics[END_REF]. The relationship among VWC, Bs and Mg can be expressed as Mg = VWC / (VWC+Bs). Therefore, VOD can potentially provide information on both AGB and vegetation water status or stress, provided the effects of these two terms can be decoupled.

The vegetation scattering parameter (ω) describes the scattering effects within the vegetation canopy. It is related to the single scattering albedo, defined as the ratio of scattering to extinction coefficient. [START_REF] Kurum | Quantifying scattering albedo in microwave emission of vegetated terrain[END_REF] showed that multiple scattering effects can be well accounted for by zero-order radiative transfer models that neglect multiple scattering effects, provided that the single scattering albedo is considered as an effective parameter. In other words, the vegetation scattering parameter can be used to parameterize complex vegetation scattering effects involving multiple scattering mechanisms and interactions between canopy and ground when it is considered as an effective parameter. The vegetation scattering parameter is usually estimated in the inversion algorithms by experimental or numerical calibrations based on ground-based and/or spaceborne observations. It can be calibrated for different vegetation types and at different site scales [START_REF] Bindlish | Parameterization of vegetation backscatter in radar-based, soil moisture estimation[END_REF]. Attempts have been made to estimate the vegetation scattering parameter directly in the inversion process by assuming it remains invariant over a window of time or space (Konings et al., 2017a;[START_REF] Konings | Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized Lband radiometer observations[END_REF]. There are few studies that attempted to retrieve the vegetation scattering parameter at site scale in the active domain [START_REF] Grippa | Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions[END_REF][START_REF] Liu | Estimation of Vegetation Parameters of Water Cloud Model for Global Soil Moisture Retrieval Using Time-Series L-Band Aquarius Observations[END_REF][START_REF] Magagi | Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas[END_REF], and it has generally been calibrated from optical vegetation indices and then used to retrieve soil moisture [START_REF] Bousbih | Potential of Sentinel-1 Radar Data for the Assessment of Soil and Cereal Cover Parameters[END_REF][START_REF] Wang | Assessment of Different Vegetation Parameters for Parameterizing the Coupled Water Cloud Model and Advanced Integral Equation Model for Soil Moisture Retrieval Using Time Series Sentinel-1A Data[END_REF]. Currently, only a few studies have been conducted to retrieve a global map of the vegetation scattering parameter in the passive microwave domain (Konings et al., 2017a;[START_REF] Konings | Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized Lband radiometer observations[END_REF], and to our knowledge, no map has been yet published from active observations.

Modelling the active microwave signature

The active microwave instruments, in contrast to passive sensors, transmit their own energy source and measure the response that is reflected from the earth's surface in the backward direction. The ratio in energy between the emitted and backwardreflected microwave radiations is the backscatter coefficient (σ°) [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF][START_REF] Li | 10 -Radar and Inverse Scattering[END_REF].

σ °= 1 A ⋅ lim R→∞ 4πR 2 |E s | 2 |E i | 2 (2.1)
Where R is the distance between radar and target, E s is the scattered field strength at the radar, E i is the incident field strength at the target, and A is the area of the target on the ground. For the microwave observations at frequencies below ~14 GHz which are less sensitive to atmospheric effects [START_REF] Konings | Macro to micro: microwave remote sensing of plant water content for physiology and ecology[END_REF], the active microwave signals of the soil-vegetation medium can be illustrated in Fig. 2.1. The backscatter coefficient components are mainly: 1) direct backscattering from vegetation; 2) direct backscattering from soil including two-way attenuation by canopy; 3) the backscattering from the soil-vegetation interaction (including the double and multiple bounces). The backscatter coefficient from the soil-vegetation land surface is a function of the energy absorbed and scattered by the wet elements present in the soil and vegetation layers [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF][START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part II-Vegetation-Covered Soil[END_REF]. The absorption and reflection of energy by the soil and vegetation elements depend on several factors, including the specific frequency and polarization of the emitted energy, as well as the characteristics of the soil and vegetation themselves. There are several soil and vegetation models developed to simulate the backscatter coefficient observed from the active sensors. In the following sections, we first focus on the microwave modelling of the soil and the vegetation media, then summarize the surface radiative transfer processes within a soil-vegetation media.

Models of soil backscattering

The basic concept for modelling the soil backscattering is based on the water in the soil which is the main factor determining the loss of energy emitted from the sensor [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF]. Except for soil moisture, as presented before, other factors like soil roughness can also affect the soil backscattering signals. Since the 1970s, different soil models have been developed to simulate satellite observations to invert soil moisture [START_REF] Karthikeyan | Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms[END_REF]. They can be grouped into three classes: physical, semi-empirical and empirical models. In the following, we will introduce some widely used models for each class of models.

(1) Physical models. Physical soil scattering models based on the electromagnetic scattering theory can be widely applied to different sensors with very good adaptability. The important physical models developed at the early stage, the small perturbation model [START_REF] Rice | Reflection of electromagnetic waves from slightly rough surfaces[END_REF] and Kirchhoff scattering model [START_REF] Chen | A numerical study of the regions of validity of the Kirchhoff and small-perturbation rough surface scattering models[END_REF][START_REF] Ulaby | Microwave remote sensing : active and passive / Volume II, Radar remote sensing and surface scattering and emission theory[END_REF], are applicable over limited segments of the roughness scale of interest. Based on the above models, [START_REF] Fung | Microwave scattering and emission models and their applications[END_REF] developed the Integral Equation Model (IEM). However, its applicability is limited to the backscatter direction.

Over the next few decades, many researchers have refined the soil scattering models, such as the incorporation of a revised Green function [START_REF] Fung | Microwave scattering and emission models and their applications[END_REF], the consideration of multiple scattering [START_REF] Chen | Note on the multiple scattering in an IEM model[END_REF], and the inclusion of a conversion function for the Fresnel reflection coefficient (Tzong-Dar and Kun- [START_REF] Tzong-Dar | A reappraisal of the validity of the IEM model for backscattering from rough surfaces[END_REF], among other improvements. The most representative improvement is that from [START_REF] Chen | Emission of rough surfaces calculated by the integral equation method with comparison to threedimensional moment method simulations[END_REF], who removed some assumptions in IEM to develop the Advanced IEM (AIEM) which can simulate the bare soil backscatter coefficient for a wider range of soil roughness conditions, incidence angle and radar frequency. Finally, improved IEM or AIEM can simulate the soil backscatter coefficient as a function of the soil dielectric constant (ε), soil roughness parameters: RMS height (s), correlation length (L) and autocorrelation function (ACF), and sensor configuration (e.g., radar frequency (f), polarization (qp), incidence angle (θ)),

σ soil °(qp)=IEM(ε, f, qp, θ, s, L, ACF) (2.2)
Where ACF is used to characterize the relationship between the soil roughness parameters s and L [START_REF] Dierking | Quantitative roughness characterization of geological surfaces and implications for radar signature analysis[END_REF][START_REF] Oh | Effect of Surface Profile Length on the Backscattering Coefficients of Bare Surfaces[END_REF]. Four main kinds of autocorrelation functions (ACF) are considered generally: exponential correlation, Gaussian correlation, x-exponential correlation, and x-power correlation.

The soil dielectric constant (ε) can be obtained from time-domain reflectometer [START_REF] Heimovaara | Frequency domain analysis of time domain reflectometry waveforms: 1. Measurement of the complex dielectric permittivity of soils[END_REF] or capacitance probe measurements [START_REF] Wu | The relationship between electrical capacitance-based dielectric constant and soil water content[END_REF] or dielectric mixing models [START_REF] Dobson | Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models[END_REF]. Some widely used dielectric models along with their respective characteristics are presented in Table 2.1. (2) Semi-empirical models. These models use the conceptual background of physical models overlaid with simulations or experimental studies that aid in simplification of the models. The advantage of semi-empirical models is that they can be applicable to any location where the site conditions are within the prescribed limits of the models. Some of the most important semi-empirical models that are widely applied in modelling bare soil scattering are the methods proposed by [START_REF] Oh | An empirical model and an inversion technique for radar scattering from bare soil surfaces[END_REF] and [START_REF] Dubois | Measuring soil moisture with imaging radars[END_REF].

The original Oh model [START_REF] Oh | An empirical model and an inversion technique for radar scattering from bare soil surfaces[END_REF] was developed by analyzing the field experiment datasets obtained by the University of Michigan and expressed as the ratios (p and q) of different polarization backscattering data. After that, using more experimental datasets, the model was further improved to integrate the effects of incidence angle [START_REF] Oh | An Inversion Algorithm for Retrieving Soil-Moisture and Surface-Roughness from Polarimetric Radar Observation[END_REF]; to include the full range of surface roughness expected under natural conditions [START_REF] Oh | Semi-empirical model of the ensemble-averaged differential Mueller matrix for microwave backscattering from bare soil surfaces[END_REF]; and ultimately to use soil moisture (SM) as an independent variable to avoid the conversion of dielectric constant to SM in different soil types (Oh, 2004). The latest model is given by: σ VH °=0.11SM 0.7 cos 2.2 θ [1-e -0.32(ks) Similarly, the Dubois model [START_REF] Dubois | Measuring soil moisture with imaging radars[END_REF] was developed on the basis of a dataset that combines the measurements made by the LCX POLARSCAT [START_REF] Tassoudji | Design consideration and implementation of the LCX polarimetric scatterometer (POLARSCAT)[END_REF] and RASAM systems [START_REF] Wegmüller | Signature research for crop classification by active and passive microwaves[END_REF]. The model can simulate the copolarized backscatter coefficients for microwave frequencies in L-, C-and X-bands using as inputs, the soil dielectric constant (ε), wavelength (λ), incidence angle (θ), wavenumber (k) and RMS height (s). It is valid for the soil surface conditions: 0.3 < s < 3 and 30 °≤ θ ≤ 65 °.

σ HH °=10 -2.75 ⋅ cos 1.5 θ sin 5 θ ⋅10 0.028ε⋅tanθ (ks⋅sinθ) 1.4 λ 0.7 (2.7)

σ VV °=10 -2.35 ⋅ cos 3 θ sin 3 θ ⋅10 0.046ε⋅tanθ (ks⋅sinθ) 1.1 λ 0.7 (2.8)
where λ is wavelength.

(3) Empirical models. Considering the operational limitations of physical and semi-empirical models (except for SM, other soil parameters, difficult to estimate in large scale studies, are needed), several studies have tried to simulate the soil backscatter coefficient through its explicit relationships with soil moisture [START_REF] Baghdadi | Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France)[END_REF][START_REF] Fung | Microwave scattering and emission models and their applications[END_REF][START_REF] Hegarat-Mascle | Soil moisture estimation from ERS/SAR data: toward an operational methodology[END_REF][START_REF] Tomer | Retrieval and Multi-scale Validation of Soil Moisture from Multitemporal SAR Data in a Semi-Arid Tropical Region[END_REF][START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF][START_REF] Weimann | Soil moisture estimation with ERS-1 SAR data in the East-German loess soil area[END_REF]. The most well-known and simple empirical model is proposed by [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF] who found the backscatter coefficient can be related linearly with soil moisture under bare soil conditions. A lot of studies also confirmed the validity of the Ulably linear model [START_REF] Amazirh | Retrieving surface soil moisture at high spatio-temporal resolution from a synergy between Sentinel-1 radar and Landsat thermal data: A study case over bare soil[END_REF][START_REF] Weimann | Soil moisture estimation with ERS-1 SAR data in the East-German loess soil area[END_REF][START_REF] Zribi | New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion[END_REF].

σ pq °=C pq +D pq ⋅SM (2.9)

Where C pq is the radar backscatter for very dry bare soil conditions at pq polarization, D pq represents the radar backscatter sensitivity to soil moisture changes at pq polarization.

From the description of the above-mentioned models, SM is the key parameter (through the dielectric mixing models or as a direct input) to simulate the soil backscattering coefficient in all three kinds of models. Compared with empirical models, semi-empirical and physical models need more inputs (e.g., soil roughness parameters). Due to the challenges associated with measuring roughness conditions over large regions and the limitation of assuming the homogeneity of roughness conditions in large regions, the application of semi-empirical and physical models is often constrained to site-scale or small regions with the same soil conditions. The evaluation of the performance of semi-empirical and physical models showed that IEM performs well over smooth surfaces, and the Oh model simulates backscatter coefficients accurately over rough soils of study sites in France and Tunisia [START_REF] Baghdadi | Evaluation of Radar Backscattering Models IEM, Oh, and Dubois for SAR Data in X-Band Over Bare Soils[END_REF][START_REF] Zribi | Backscattering behavior and simulation comparison over bare soils using SIR-C/X-SAR and ERASME 1994 data over Orgeval[END_REF]. During the evaluation carried out by Panciera et al.

(2014) over Australia, it was found that the IEM, the Oh, and the Dubois models have comparable accuracies under HH polarization whereas the Oh model was found to be superior in the case of VV polarization. Although the Ulably linear model only needs soil moisture as input, the slope (D pq ) and intercept (C pq ) terms vary from site to site and need to be calibrated for different soil conditions [START_REF] Verhoest | On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar[END_REF]. Therefore, the soil roughness parameters (s, L, C pq and D pq ) calibration and estimation are the key step to extend these models to a national or global scale.

Models of vegetation backscattering

The soil surface is usually covered by vegetation under natural conditions. The vegetation layers can absorb or scatter the microwave signal reflected from the soil, but they will also scatter the energy emitted by the sensor. In very dense vegetation areas, the microwave signal mainly comes from vegetation as the signal from the soil will be strongly attenuated (Konings et al., 2017b;[START_REF] Parrens | Estimation of the L-Band Effective Scattering Albedo of Tropical Forests Using SMOS Observations[END_REF][START_REF] Prigent | Diurnal and Seasonal Variations of Passive and Active Microwave Satellite Observations Over Tropical Forests[END_REF]. Therefore, it is necessary to consider the vegetation scattering effects when retrieving SM or VOD from microwave observations. The vegetation backscattering models can be also grouped into three classes: physical, semi-empirical and empirical models.

(1) Physical models. Two main physical models, the Michigan Microwave Canopy Scattering (MIMICS) model [START_REF] Ulaby | Michigan microwave canopy scattering model[END_REF] and Tor Vergata (TVG) model [START_REF] Bracaglia | A fully polarimetric multiple scattering model for crops[END_REF] distribution is generally assumed to be random. The complete mathematical descriptions of these models can be found in [START_REF] Ulaby | Michigan microwave canopy scattering model[END_REF], [START_REF] Bracaglia | A fully polarimetric multiple scattering model for crops[END_REF] and [START_REF] Ferrazzoli | Passive microwave remote sensing of forests: A model investigation[END_REF]. The two TVG and MIMICS models were also improved [START_REF] Dente | Combined use of active and passive microwave satellite data to constrain a discrete scattering model[END_REF][START_REF] Karam | A Microwave-Scattering Model for Layered Vegetation[END_REF] or extended for different vegetation types [START_REF] Vecchia | Modeling Forest Emissivity at L-Band and a Comparison With Multitemporal Measurements[END_REF][START_REF] Ferrazzoli | Multifrequency emission of wheat: Modeling and applications[END_REF][START_REF] Toure | Adaptation of the MIMICS backscattering model to the agricultural context-wheat and canola at L and C bands[END_REF]. However, the inclusion of numerous input vegetation parameters in those two models makes their implementation difficult and limits their application in large regions, even if the description of vegetation scattering effects is more detailed.

(2) Semi-empirical models. The water cloud model (WCM) is the most widely used semi-empirical model to account for the effects of vegetation scattering (Ulaby et al., 1978). In WCM, the canopy is simplified as a uniform cloud of water like particles.

The development of WCM is done under the following assumptions: 1) volume scattering is the predominant scattering effect within the vegetation, 2) the vegetation layer is assumed to include identical water particles, uniformly distributed throughout the medium, 3) only single scattering effects are accounted for, 4) the most important variables are cloud depth and density, both of which are a function of water content.

According to WCM, the co-polarized backscatter coefficient observed at an incidence angle 𝜃 can be simulated as the sum of the backscatter contributions from vegetation, the interaction of radar radiation between vegetation and the soil layers, and soil contribution. The vegetation backscatter coefficient can be expressed as:

σ vege °=σ obs °-γ 2 σ soil °-σ soil+vege °=ω⋅cosθ⋅(1-γ 2 ) (2.10) γ 2 =exp(-2⋅τ/cosθ) (2.11)
Where ω is the vegetation scattering parameter, γ 2 is the two-way vegetation attenuation, τ is the vegetation optical depth (VOD) and σ soil ° is the bare soil backscatter coefficient which can be simulated by different soil scattering models introduced in Section 2.2.1.

In the development and refinement of the WCM, [START_REF] Prévot | Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer[END_REF] introduced the V1 and V2 parameters to parameterize ω and τ, expressed as ω=A⋅V 1 and τ=B⋅V 2 .

As there is no general theoretical basis to define the best set of canopy descriptors (V 1 and V 2 ), different vegetation indices have been used to calibrate A and B (El Hajj et al., 2016;[START_REF] Said | Vegetation effects on soil moisture estimation from ERS-2 SAR images[END_REF][START_REF] Wang | Assessment of Different Vegetation Parameters for Parameterizing the Coupled Water Cloud Model and Advanced Integral Equation Model for Soil Moisture Retrieval Using Time Series Sentinel-1A Data[END_REF]. Many studies showed that WCM can work well at different frequencies (e.g., L/C/X-band) [START_REF] Baghdadi | Coupling SAR C-Band and Optical Data for Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands[END_REF]El Hajj et al., 2016;[START_REF] Lievens | On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters[END_REF][START_REF] Yadav | Evaluation of Oh Model for Estimating Surface Parameter of Soil Using L-Band and C-Band SAR Data[END_REF]. For more information the readers can refer to the review of WCM [START_REF] Graham | Extracting biophysical parameters from remotely sensed radar data: a review of the water cloud model[END_REF].

(3) Empirical models. An alternative simple model used to describe the vegetation scattering effects is called the ratio method [START_REF] Joseph | Effects of corn on C-and L-band radar backscatter: A correction method for soil moisture retrieval[END_REF][START_REF] Joseph | Soil Moisture Retrieval During a Corn Growth Cycle Using L-Band (1.6 GHz) Radar Observations[END_REF]. The ratio method was established to retrieve soil moisture in corn by using the L-band radar observations data acquired throughout its growth cycle. It considers that the ratio of bare soil backscatter coefficient and the observed backscatter coefficient is a function of the vegetation cover (represented by VWC) and sensor configuration. In this method, surface scattering, vegetation scattering, and higher order scattering components are all considered together. For a single sensor, the ratio method can be expressed as:

σ soil °σobs °= =a⋅VWC 2 +exp (-b⋅VWC) (2.12)
Where VWC is the vegetation water content, 𝑎 and 𝑏 are the calibration parameters.

Although different models were developed to simulate the vegetation scattering effects, there is no clear consensus regarding the inputs of each vegetation scattering model: diverse vegetation indices were used in different study areas and models. Also, the vegetation scattering models were generally proposed to correct the vegetation effects in the retrieval of soil moisture [START_REF] Liu | Estimation of Vegetation Parameters of Water Cloud Model for Global Soil Moisture Retrieval Using Time-Series L-Band Aquarius Observations[END_REF], and more attention was paid to soil moisture retrieval, while few studies considered the retrieval of the VOD and vegetation scattering parameters [START_REF] Grippa | Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions[END_REF][START_REF] Magagi | Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas[END_REF].

Modelling of the soil-vegetation backscattering: a short summary

In the previous sections, several soil and vegetation backscattering models were introduced, but most of those models were generally developed for the site scale research. When extending those models to a large region, the physical models are often discarded as their inputs are difficult to assess.

To date, the most widely used model to simulate the active microwave satellite measurements in large regions is WCM coupled with the Ulably linear soil model due to its simplicity and its performant simulation accuracy at large scales [START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF][START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF]. [START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF] France [START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF] and Europe [START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF]. In addition, WCM which incorporates two allometric equations based on spaceborne LiDAR data, was employed to estimate global above-ground biomass using ASCAT observations [START_REF] Santoro | Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure[END_REF] and to estimate forest stem volume with L-band SAR data in Sweden [START_REF] Santoro | Integration of allometric equations in the water cloud model towards an improved retrieval of forest stem volume with L-band SAR data in Sweden[END_REF]. All the above-mentioned studies have shown that the combination of the vegetation WCM model with the Ulably linear soil model stands out as the most robust and efficient approach to retrieve the active VOD at a country or global scale.

C-band active microwave satellites: an overview

Satellites equipped with an active sensor can provide observations at different frequency bands, e.g., L (1-2 GHz), C (4-8 GHz), X (8-12 GHz), K (18-26.5 GHz)band. Fig. 2.2 shows the propagation of the different electromagnetic waves in the grass, crop and trees [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF]. It can be clearly seen that the lower microwave frequencies have a deeper penetration than the higher microwave frequencies. For the trees, the L-band microwave signature results from an interaction between the electromagnetic radiations and both the canopy-soil interface and direct backscatter from the soil, while the C-band and X-band signatures exhibit stronger interactions with the upper vegetation canopy. Therefore, active microwaves at different frequencies have been used in applications in various aspects related to vegetation characteristics: vegetation classification [START_REF] Bazzi | Mapping Paddy Rice Using Sentinel-1 SAR Time Series in Camargue, France[END_REF][START_REF] Gašparović | Comparative Assessment of Machine Learning Methods for Urban Vegetation Mapping Using Multitemporal Sentinel-1 Imagery[END_REF][START_REF] Li | A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region[END_REF], phenology detection [START_REF] Frison | Potential of Sentinel-1 Data for Monitoring Temperate Mixed Forest Phenology[END_REF][START_REF] Pfeil | Does ASCAT observe the spring reactivation in temperate deciduous broadleaf forests? Remote Sensing of Environment[END_REF][START_REF] Wigneron | Retrieval of geophysical parameters from multifrequency passive microwave measurements over a soybean canopy. Passive Microwave Remote Sensing of Land-Atmosphere Interactions Wigneron[END_REF], above-ground biomass [START_REF] Chang | Application of L-band SAR for mapping tundra shrub biomass, leaf area index, and rainfall interception[END_REF][START_REF] Kumar | PolSAR-Decomposition-Based Extended Water Cloud Modeling for Forest Aboveground Biomass Estimation[END_REF][START_REF] Santoro | Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure[END_REF], vegetation water content [START_REF] Kim | Estimating Vegetation Water Content and Soil Surface Roughness Using Physical Models of L-Band Radar Scattering for Soil Moisture Retrieval[END_REF][START_REF] Oveisgharan | Soil Moisture and Vegetation Water Content Retrieval Using QuikSCAT Data[END_REF], leaf area index estimation [START_REF] Hosseini | Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data[END_REF][START_REF] Mandal | An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data[END_REF][START_REF] Yadav | Leaf area index estimation of wheat crop using modified water cloud model from the time-series SAR and optical satellite data[END_REF], etc.

Among the numerous active microwave sensors, C-band ASCAT and Sentinel- Sentinel-1 data (El Hajj et al., 2019a;[START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF]. For those reasons, ASCAT and Sentinel-1 were selected for investigating VOD retrievals in the present PhD study and they are presented in more detail in the following.

ASCAT mission overview

The flies in a near-polar sun-synchronous orbit at an altitude of about 817 km with a repeat cycle of 29 days. In this orbit, the METOP circles the earth within about 100 min, which means that the satellite completes 14 orbits per day. The equator crossing times are at 9:30 for the descending pass and 21:30 for the ascending pass [START_REF] Wagner | The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[END_REF]).

The ASCAT system geometry is based on the use of fan-beam antennas. The system covers two 550 km swaths that are separated from the satellite ground track by about 360 km for the minimum orbit height. The ASCAT incidence angle ranges from 25° to 65° (Fig. 2.3). For each swath, three antennas illuminate the sea surface, measuring the backscattered signal. This provides better resolution and over twice the coverage of its predecessors (the Active Microwave Instruments on ERS-1 and ERS-2). There method [START_REF] Wagner | The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[END_REF]. The normalized backscatter data were employed in developing a soil moisture product [START_REF] Wagner | The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[END_REF], a rainfall product [START_REF] Brocca | SM2RAIN-ASCAT (2007-2018): global daily satellite rainfall data from ASCAT soil moisture observations[END_REF], and a VOD product [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF], as well as studying vegetation water dynamics [START_REF] Petchiappan | The influence of vegetation water dynamics on the ASCAT backscatter-incidence angle relationship in the Amazon[END_REF] and temperate deciduous broadleaf forests phenology [START_REF] Pfeil | Does ASCAT observe the spring reactivation in temperate deciduous broadleaf forests? Remote Sensing of Environment[END_REF]. In order to assess the effectiveness of the vegetation correction in the retrieval of the soil moisture product based on the TUW method [START_REF] Wagner | The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[END_REF],

ASCAT TUW VOD was developed using a water-cloud model recently [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF]. VOD is given by:

VOD= cosθ 2 ln Δσ s ∘ ∆σ °(2.13)
Where Δσ s ∘ represents the maximum range in backscatter values over bare soils due to a change in soil moisture, assumed to be constant through time. Δσ s ∘ , estimated from ASCAT normalized backscatter observations over non-vegetated areas and modelled using the latest version of IEM [START_REF] Fung | An Improved Iem Model for Bistatic Scattering From Rough Surfaces[END_REF], is set to 0.21 m 2 ⋅m 2 at the global scale except for desert. ∆σ ° is the difference between the wet and dry references which are calculated from the historically wettest and driest normalized backscatter measurements. The temporal variations of the TUW VOD are determined by the coefficients of a second-order polynomial function used to normalize the L1 data [START_REF] Hahn | Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT[END_REF]. In the present PhD work, ASCAT L2 data with 25 km spatial resolution are adopted to retrieve the new ASCAT VOD and TUW VOD was used for intercomparison.

Sentinel-1 mission overview

The Sentinel-1 mission is the European Radar Observatory for the Copernicus joint initiative of the European Commission (EC) and the European Space Agency (ESA) [START_REF] Torres | GMES Sentinel-1 mission[END_REF]. The Sentinel-1 mission comprises a constellation of two polarorbiting satellites, operating day and night performing C-band (~ 5.405 GHz) synthetic aperture radar (SAR) imaging with dual polarization (VV+VH or HH+HV), enabling them to acquire imagery regardless of the weather [START_REF] Attema | Sentinel-1 Mission Overview[END_REF]. The two satellites (Fig. 2.5) follow the same sun-synchronous orbit with an inclination of 98.2°

and are situated at an altitude of 693 km. The Sentinel-1A satellite was launched on April 3, 2014, and the Sentinel-1B satellite was launched on April 25, 2016. Due to an anomaly in December 2021, Sentinel-1B was unable to provide radar data. The launch of Sentinel-1C is scheduled for 2023. There are four imaging modes with different swaths and resolutions to suit their purpose including interferometric wide swath mode, strip map mode, extra wide swath mode, and wave mode [START_REF] Attema | Sentinel-1 Mission Overview[END_REF]. The interferometric wide swath mode, with a 250 km swath and a 5 m x 20 m resolution, is mainly used for the land surface study. The Sentinel-1 constellation acquires images globally every 6 to 12 days, while, in some regions, it has a higher revisit time due to acquisition overlap (Fig. 2.6). Importantly, for the first time, Sentinel-1 provides temporally dense and high spatial resolution satellite SAR imagery freely for the entire globe. to be homogeneous in a grid of 5 km × 5 km. In addition, VOD was computed only for non-irrigated crops (winter crops). VOD is expressed by:

VOD= cosθ 2 ln Δσ obs,t 2 -t 1 ∘ Δσ soil,t 2 -t 1 ∘ (2.14)
Where Δσ obs,t 2 -t 1

∘

is the difference between the Sentinel-1 observation on time t2 and t1,

Δσ soil,t 2 -t 1 ∘
is the difference between the bare soil scattering computed on time t2 and t1.

The results show that importance of VOD in crop monitoring and that VH polarization data has less potential to retrieve VOD compared with VV polarization data (El Hajj et al., 2019a). In the present PhD work, the Sentinel-1 VV images acquired in

France with interferometric wide swath mode from 2015 to 2022 were used to test the retrieval of high-resolution VOD. The assumption that VOD is stable within 18 days was also employed in the newly developed algorithm to retrieve the active Sentinel-1 VOD. This chapter corresponds to an article published in Remote Sensing of Environment:
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Introduction

Vegetation optical depth (VOD), a measure of extinction effects of the microwave (passive or active) radiations by the vegetation canopy, is related to the vegetation water content (VWC) [START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF]. VOD has been used in many applications in the fields of global climate and environmental changes. For example, several studies have investigated carbon dynamics in the pantropics [START_REF] Brandt | Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands[END_REF][START_REF] Fan | Satelliteobserved pantropical carbon dynamics[END_REF][START_REF] Qin | A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations[END_REF][START_REF] Wigneron | Tropical forests did not recover from the strong 2015-2016 El Nino event[END_REF] and at the global scale [START_REF] Liu | Recent reversal in loss of global terrestrial biomass[END_REF][START_REF] Liu | Global vegetation biomass change (1988-2008) and attribution to environmental and human drivers[END_REF], vegetation phenology [START_REF] Jones | Satellite passive microwave remote sensing for monitoring global land surface phenology[END_REF], the global isohydricity variations and drought detection [START_REF] Konings | Global variations in ecosystem-scale isohydricity[END_REF][START_REF] Rao | Satellitebased vegetation optical depth as an indicator of drought-driven tree mortality[END_REF], and burned area trends and fire risks [START_REF] Fan | Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region[END_REF][START_REF] Forkel | Emergent relationships on burned area in global satellite observations and fire-enabled vegetation models[END_REF]. VOD has also been used to estimate the gross primary production (GPP) [START_REF] Teubner | Assessing the relationship between microwave vegetation optical depth and gross primary production[END_REF], the crop yields [START_REF] Chaparro | L-band vegetation optical depth seasonal metrics for crop yield assessment[END_REF][START_REF] Patton | Initial Validation of SMOS Vegetation Optical Thickness in Iowa[END_REF] and asymmetry patterns in inter-annual productivity [START_REF] Al-Yaari | Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States[END_REF].

Several VOD datasets used in the above-mentioned studies are mainly derived from passive microwave sensors operating at different frequencies [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF]. Those datasets include the high-frequencies (C-/X-/Ku-band) VOD [START_REF] Du | A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations[END_REF][START_REF] Karthikeyan | Simultaneous retrieval of global scale Vegetation Optical Depth, surface roughness, and soil moisture using X-band AMSR-E observations[END_REF][START_REF] Karthikeyan | Effect of Structural Uncertainty in Passive Microwave Soil Moisture Retrieval Algorithm[END_REF][START_REF] Owe | Multisensor historical climatology of satellite-derived global land surface moisture[END_REF] from AMSR-E (the Advanced Microwave Scanning Radiometer, July 2002-2008) [START_REF] Koike | Development of an Advanced Microwave Scanning Radiometer (Amsr-E) Algorithm for Soil Moisture and Vegetation Water Content[END_REF] and its successor, AMSR2 (the Advanced Microwave Scanning Radiometer 2, 2012-present) [START_REF] Imaoka | Vegetation effects on the microwave emission of soils[END_REF] and the low frequency VOD at L-band (L-VOD) [START_REF] Feldman | Characterization of higher-order scattering from vegetation with SMAP measurements[END_REF][START_REF] Fernandez-Moran | SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product[END_REF][START_REF] Konings | Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized Lband radiometer observations[END_REF][START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF][START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF] from the Soil Moisture and Ocean Salinity (SMOS) [START_REF] Kerr | The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle[END_REF] and Soil Moisture Active Passive (SMAP) [START_REF] Entekhabi | The Soil Moisture Active Passive (SMAP) Mission[END_REF] satellites. In addition, a long-term VOD product merging the different high frequency datasets was also released [START_REF] Liu | Global longterm passive microwave satellite-based retrievals of vegetation optical depth[END_REF][START_REF] Moesinger | The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[END_REF]. Although different passive VOD products have been widely used in different applications, they still have some deficiencies. For instance, the time period of each product is rather short in terms of years (the longest acquisition period of the different sensors is ~ 11 years for SMOS), and the spatial resolution of the VOD data is coarse (~25 km). Moreover, the data quality from passive sensors (especially at low frequency (L-band)) are more likely to be affected by radio frequency interference (RFI) [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF].

Active microwave data can provide long-term records (Advanced SCATterometer (ASCAT) provided data from 2007 with a spatial resolution of 25-50 km) and high spatial resolution data (~10 m for Sentinel-1 from 2014) with less RFI influence than for passive microwave sensors, resulting in high quality products. Active microwave sensors can also observe different information from the vegetation and soil compared with passive sensors [START_REF] Dente | Combined use of active and passive microwave satellite data to constrain a discrete scattering model[END_REF][START_REF] Teubner | Assessing the relationship between microwave vegetation optical depth and gross primary production[END_REF]. In previous studies, the active backscatter observations have been mainly utilized in the retrievals of ocean winds [START_REF] Hersbach | An improved C-band scatterometer ocean geophysical model function: CMOD5[END_REF][START_REF] Stoffelen | Scatterometer Data Interpretation: Measurement Space and Inversion[END_REF] and soil moisture (SM) [START_REF] Bai | First Assessment of Sentinel-1A Data for Surface Soil Moisture Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau[END_REF]Konings et al., 2017b;Wagner et al., 1999c) but very few studies focus on VOD retrievals. To our knowledge, there are only preliminary results obtained from Sentinel-1 in southern France (El Hajj et al., 2019a) and one global active VOD dataset (hereafter, ASCAT V16 VOD) developed by [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF] from ASCAT observations. Two parameters were used in the retrieval of ASCAT V16 VOD. The first one is the maximum range of the backscatter values over bare soils that are related to SM changes. The setting of this parameter was based on the Koppen-Geiger climate classification map (Kottek et al., 2006) and the parameter was set to a constant value over most regions except for the desert climate zone. The second parameter is the difference between the wet and dry references that are obtained from the historically wettest and driest backscatter measurements. This product is not yet public, and it has not been evaluated in detail in the literature [START_REF] Vreugdenhil | Assessing Vegetation Dynamics Over Mainland Australia With Metop ASCAT[END_REF][START_REF] Vreugdenhil | Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe[END_REF].

To retrieve VOD from the ASCAT observations, two challenges need to be solved: (1) selecting suitable models which account for the vegetation (mainly through the VOD parameter) and bare soil (mainly through SM and roughness) effects in the simulation of the ASCAT C-band backscatter. Several bare soil and vegetation backscatter models have been proposed in the literature. Most popular bare soil backscatter models include the Ulaby linear model [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF], the Oh model [START_REF] Oh | An empirical model and an inversion technique for radar scattering from bare soil surfaces[END_REF], the Dubois model [START_REF] Dubois | Measuring soil moisture with imaging radars[END_REF], the integral equation model (IEM) [START_REF] Fung | Microwave scattering and emission models and their applications[END_REF] and the advanced IEM (AIEM) [START_REF] Chen | Emission of rough surfaces calculated by the integral equation method with comparison to threedimensional moment method simulations[END_REF].

Concerning the vegetation backscatter models, the most widely used models are the water cloud model (WCM) [START_REF] Attema | Vegetation modeled as a water cloud[END_REF], the Michigan microwave canopy scattering (MIMICS) model (Ulaby, 1994) and the Tor Vergata model [START_REF] Bracaglia | A fully polarimetric multiple scattering model for crops[END_REF]. ( 2) The second issue is to deal with the ill-posed problem in retrieving both VOD and SM [START_REF] Wigneron | Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission)[END_REF]. ASCAT allows multi-angular observations, but the use of this information requires careful implementation [START_REF] Pfeil | Does ASCAT observe the spring reactivation in temperate deciduous broadleaf forests? Remote Sensing of Environment[END_REF]. To integrate multi-angular information, ASCAT backscatter measurements (VV polarization) are normalized to the incidence angle (θ) of 40 degrees [START_REF] Hahn | Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT[END_REF][START_REF] Naeimi | An Improved Soil Moisture Retrieval Algorithm for ERS and METOP Scatterometer Observations[END_REF]. Therefore, retrieving simultaneously SM and VOD using mono-angle and monopolarization observations may be difficult.

Here we aim at retrieving VOD (0.25 degree x 0.25 degree) from ASCAT backscatter data (hereafter, INRAE Bordeaux (IB) VOD) over Africa from 2015 to 2019.

The WCM (for vegetation scattering components) and the Ulaby linear model (for soil scattering) were chosen to simulate ASCAT backscatter as they have good computational efficiency due to analytical solutions and performant simulation accuracy at large scales [START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF][START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF]. To overcome the ill-posed problem of retrieving both VOD and SM from mono-angular ASCAT observations, we focused on retrieving only the VOD parameter and we used an existing SM product as input parameter [START_REF] Baur | Estimation of relative canopy absorption and scattering at L-, C-and X-bands[END_REF][START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF][START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF]. This study is organized as follows: Section 2 introduces the datasets. Section 3 presents the models including WCM, Ulaby linear model and the method used for model calibration. In Section 4, we present the results of the calibrated model and the evaluation of IB VOD. Discussion and conclusion are provided in Section 5 and 6.

Data

Several datasets were used in this study. The main features and purpose of each dataset are shown in Table 3.1. More details are given as follows. 

ASCAT backscatter data

The Advanced SCATterometer (ASCAT) [START_REF] Figa-Saldaña | The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers[END_REF] is an active microwave sensor that measures VV backscatter with incidence angles from 25 to 65 degrees at C-band (5.255 GHz) [START_REF] Wagner | The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[END_REF]. ASCAT is carried by the more suitable to monitor biomass [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF], only observations from the descending orbits were used. 'Low quality' data were masked through the quality flags (snow cover, frozen soil, topography and wetland probability) [START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF], and then we used the inverse distance weighting algorithm to average the backscatter data to the WGS 84 latitude/longitude format with a spatial resolution of 0.25 degree [START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF].

ERA5-Land Soil Moisture data

The ERA5-Land Soil Moisture (SM) dataset from the topsoil layer (layer 1, 0-7 cm) was used in this study. ERA5-Land SM is a reanalysis dataset modelled by the European Centre for Medium-Range Weather Forecasts (ECMWF) surface model [START_REF] Berrisford | Atmospheric conservation properties in ERA-Interim[END_REF] with an enhanced resolution compared to ERA5 SM. The data are hourly and have a spatial resolution of 0.1 degree x 0.1 degree (around 10 km x 10 km). An evaluation of ERA5-Land SM by using the International Soil Moisture Network (ISMN, [START_REF] Dorigo | The International Soil Moisture Network: serving Earth system science for over a decade[END_REF] in situ measurements at the global scale suggested that it has an overall good performance (R = 0.72~0.76, ubRMSE = 0.05 m 3 /m 3 ) [START_REF] Beck | Evaluation of 18 satellite-and model-based soil moisture products using in situ measurements from 826 sensors[END_REF][START_REF] Chen | An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003-2018[END_REF]. ERA5-Land SM modelled at the local time of 09:00 am, which is close to the time of the ASCAT observation, were inputs to the water cloud model (WCM) used to retrieve IB VOD. The data were resampled to the 0.25 degree resolution by area-weighted averaging.

Soil and terrain data

The soil and terrain data have an important impact on the soil moisture and the signal acquired from the microwave observations (Guio [START_REF] Blanco | Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest[END_REF][START_REF] Ma | A Global Sensitivity Analysis of Soil Parameters Associated With Backscattering Using the Advanced Integral Equation Model[END_REF].

Therefore, we considered using those two kinds of data in the calibration of the soil model parameters.

The soil data include the soil property and the soil temperature (ST) data. The applied soil property data were obtained from the SoilGrid250m dataset [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF]. This dataset was generated by the machine learning method at 250 m spatial resolution and seven standard depths. In this study, we used the average value of the first (0 cm, corresponding to the surface) and second depth (5 cm) of each soil property. More details about the dataset and the method used to compute average data from different depths were described in [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF]. Fifteen SoilGird250m parameters were used in the present study and are described in Appendix Table 1.

The ST data were obtained from ERA5-Land, for the same soil layer and at the same time as ERA5-Land SM.

The terrain parameters were obtained from a digital elevation model (DEM). The DEM data used here is the Global Multi-resolution Terrain Elevation Data (GMTED) 2010 at a spatial resolution of 1 km [START_REF] Danielson | Global multi-resolution terrain elevation data 2010[END_REF]. The SAGA (System for Automated Geoscientific Analyses) GIS software [START_REF] Conrad | System for Automated Geoscientific Analyses (SAGA) v. 2.1.4[END_REF] was used to calculate six terrain parameters: Slope, Terrain Surface Convexity (TSC), Terrain Surface Texture (TST), Terrain Ruggedness Index (TRI), Plan Curvature (PlanCur)

and Profile Curvature (ProfCur). All terrain parameters used in this study are given in Appendix Table 2.

Vegetation variables used for validation

As there is no large-scale in situ dataset that can be used for the validation of VOD [START_REF] Li | Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models[END_REF][START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF], AGB (Saatchi and CCI AGB), Lidar tree height (TH) (Simard and Potapov tree height) and vegetation indices (MODIS NDVI, EVI and LAI)

were used as the benchmark to assess the performance of IB VOD [START_REF] Fernandez-Moran | SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product[END_REF][START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF]. The rationale for using these different vegetation parameters is given in the following. VOD is related to the vegetation water content which is determined by the quantity of vegetation (parameterized by biomass) and the vegetation water status (parameterized by the vegetation moisture content). VOD can thus provide information on AGB and on the vegetation water status and stress of the vegetation canopy [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF][START_REF] Togliatti | Satellite L-band vegetation optical depth is directly proportional to crop water in the US Corn Belt[END_REF]. As presented above, VOD is directly related to AGB and many studies have shown that the yearly average of C-band VOD can be used to estimate AGB [START_REF] Chaparro | Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices[END_REF][START_REF] Tian | Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel[END_REF].

Therefore, spatial correlation between the yearly average of IB VOD and AGB was computed to assess the performance of VOD. Similarly, the total amount of vegetation matter (AGB) is dependent on the vegetation height [START_REF] Asner | High-resolution mapping of forest carbon stocks in the Colombian Amazon[END_REF]. For instance, one of the key objectives of the recent Global Ecosystem Dynamics Investigation (GEDI) lidar instrument is to monitor the aboveground carbon balance from accurate estimates of the vegetation height [START_REF] Duncanson | Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California[END_REF]. Thus, the comparison of VOD with tree height data was also conducted to verify the expected dependence of VOD on AGB. Several studies have also shown that the temporal dynamics of VOD is a good indicator of the vegetation phenology [START_REF] Jones | Satellite passive microwave remote sensing for monitoring global land surface phenology[END_REF][START_REF] Jones | Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability[END_REF][START_REF] Lawrence | Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA[END_REF] as monitored from optical vegetation indices (NDVI, EVI and LAI). Therefore, these different vegetation indices (VIs) were also used in this study to assess the performance of VOD in temporal terms. More generally, note that similarly to what is done here, many studies evaluating the VOD products have been based on AGB, TH, NDVI, EVI and LAI [START_REF] Grant | Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices[END_REF][START_REF] Li | Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models[END_REF][START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF][START_REF] Rodríguez-Fernández | The high sensitivity of SMOS L-Band vegetation optical depth to biomass[END_REF][START_REF] Tian | Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel[END_REF][START_REF] Tian | Coupling of ecosystemscale plant water storage and leaf phenology observed by satellite[END_REF]. More details about these data sets are presented in Appendix A.1-A.3. All those data sets were resampled to the spatial resolution of the ASCAT product (0.25 degree) by arithmetic average.

C-band VOD products used for inter-comparison

To evaluate the quality of the IB VOD product, we compared it with other VOD products retrieved at the same frequency (C-band). In this comparison, we used three datasets:

two public passive VOD datasets and one active VOD dataset [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF].

The two passive VOD datasets are AMSR2 VOD [START_REF] Owe | Multisensor historical climatology of satellite-derived global land surface moisture[END_REF] and Vegetation Optical Depth Climate Archive (VODCA) VOD [START_REF] Moesinger | The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[END_REF]. The retrieval algorithm of the two products is the Land Parameter Retrieval Model (LPRM) but a different version (version 5 (V5)) was used for AMSR2, while Version 6 (V6) was used for VODCA [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF] VOD [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF]. As there is no available website to download the dataset, the ASCAT V16 VOD dataset was produced by the authors of this study based on the published algorithm [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF]. The TCP data were re-scaled to the 0.25 degree grid by arithmetic averaging, and the land cover type with the maximum cover fraction in each 0.25 degree grid was considered as the land cover type of the pixel [START_REF] Fernandez-Moran | SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product[END_REF].

Ancillary vegetation dataset

Methodology

Water cloud model

The water cloud model (WCM) developed by [START_REF] Attema | Vegetation modeled as a water cloud[END_REF] is a semiempirical model used to simulate the radar backscatter signal from vegetation and bare soil land surfaces. In WCM, the total backscatter reflected by the vegetated-soil surface ( σ obs °, in linear units) is decomposed into three components: the direct backscatter of vegetation ( σ vege °, in linear units), the double-bounce backscatter between the vegetation canopy and the bare soil surface (σ vege+soil °, in linear units) and the direct backscatter from the soil surface attenuated by the vegetation canopy (σ soil °, in linear units). The attenuation effects of vegetation are parameterized by the vegetation transmissivity (γ 2 ) which can be computed from the incidence angle (θ, 40

degrees in this study) and VOD as given below:

σ obs °= σ vege °+ γ 2 ⋅σ soil °+ σ vege+soil °(3.1) With σ vege °=A⋅V 1 ⋅cosθ⋅γ 2 (3.2) γ 2 =exp(-2⋅VOD/cosθ) (3.3)
Where A is the vegetation canopy backscattering at the full cover [START_REF] Bindlish | Parameterization of vegetation backscatter in radar-based, soil moisture estimation[END_REF]) (the V1 index can generally be set to one [START_REF] Attema | Vegetation modeled as a water cloud[END_REF])).

To model the backscatter of the soil surface (σ soil °), we used a linear relationship (Eq. (3.4)) relating the soil backscatter (σ soil(dB) °, in dB) to soil moisture (SM). This simple model was proposed by [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF] and has been used in many studies [START_REF] Hosseini | Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data[END_REF][START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF][START_REF] Quesney | Estimation of Watershed Soil Moisture Index from ERS/SAR Data[END_REF]. In this study, our objective was to retrieve VOD from ASCAT over the whole African continent. Therefore, the parameters A, C and D have to be calibrated over each pixel of Africa. We performed first the calibration of the soil parameters (C and D) by selecting spatial/temporal conditions for which the vegetation effects could be neglected and then we calibrated the vegetation parameter (A).

Note that, when vegetation is very dense, the vegetation transmissivity can be assumed to be zero (γ 2 =0) and Eq. (3.2) can be simplified and written as:

σ obs °=10 σ soil(dB) °/10 =σ vege °=A⋅cosθ (3.6)
And the value of A for very dense vegetation (VDV) conditions (referred to as A0) can be computed very simply as:

A 0 =σ obs °/cosθ (3.7)

Soil model parameters (C and D) calibration

To calibrate the soil parameters (C and D), we first computed the values of the C and D parameters from the "bare soil" pixels where these parameters could be directly calibrated, and then we used the random forest approach to calibrate C and D for the pixels where this direct calibration could not be done. The soil calibration was performed in the year 2017. The different steps are summarized in Fig. 3.1. Step 1: "bare soil" pixels selection

The purpose of step 1 is to select "bare soil" pixels. Only two cases where the observed backscatter can be assumed to originate totally from the soil [START_REF] Wigneron | Retrieval of geophysical parameters from multifrequency passive microwave measurements over a soybean canopy. Passive Microwave Remote Sensing of Land-Atmosphere Interactions Wigneron[END_REF] are considered, namely, either bare land without any vegetation cover throughout the year (case 1), or land covered by a certain degree of sparse dynamic vegetation (case 2).

The case 1 was defined here by considering two conditions: there is no MODIS LAI observation (i.e., LAI = Nan) throughout the year and the IGBP land cover type is "bare soil". When the pixels correspond to case 2, it means there is a period during which the vegetation is relatively sparse (e.g., before the vegetation development or after senescence). Following [START_REF] Parrens | Global-scale surface roughness effects at L-band as estimated from SMOS observations[END_REF], the condition of sparse vegetation was defined as LAI lower than 0.5 m 2 m -2 .

Then the "bare soil" pixels were divided into two categories: pixels where σ soil(dB) ° is sensitive to soil moisture (SM) (category 1) and pixels where σ soil(dB) ° is in very dry conditions all the time, so that σ soil(dB) ° ~ constant (category 2).

More specifically, to distinguish pixels/dates corresponding to categories 1 and 2 we used the following criteria: First, we extracted the time series of σ soil(dB) ° and soil moisture (SM) from, respectively, the ASCAT and ERA5 Land SM datasets for pixels/dates corresponding to the case 1 and 2. For category 1, the standard deviation of σ soil(dB) ° and SM

(corresponding to the dates where LAI < 0.5 m 2 m -2 or LAI=Nan) should be larger than 0.5 dB and 0.04 m 3 /m 3 , respectively, and the number of the σ soil(dB) ° data corresponding to these two cases should be larger than 30% of the whole number of backscatter observations. For category 2, the standard deviation of σ soil(dB) ° and SM should be lower than 0.5 dB and 0.04 m 3 /m 3 , respectively, and the number of SM data lower than 0.05 m 3 /m 3 should be larger than 95% of the total number of backscatter observations. This filtering step was mainly done to:

-identify the areas (category 1) with clear temporal changes in both σ soil(dB) ° and SM, so that we could compute a linear relationship between σ soil(dB) ° and SM (Eq. (3.4)), and -distinguish very dry areas (category 2), where SM is almost constant and over which the value of σ soil(dB) ° in very dry conditions could be obtained.

Step 2: soil parameters computation for "bare soil" pixels

In step 2, over the pixels corresponding to category 1, the slope (D) and intercept (C) of Eq. (3.4) were retrieved. Over the pixels corresponding to category 2, we retrieved only the intercept (C).

For pixels corresponding to category 1, a linear regression between the time For pixels corresponding to category 2, the C parameter was simply computed as the average value of the backscatter time series.

Step 3: soil parameters calibration for all pixels

Based on the results of step 2 (where we computed the values of the C and D parameters from the pixels where these parameters could be determined), we used the corresponding soil property data (Appendix Table 1) and terrain data (Appendix Table 2) as predictors to train two random forest (RF) regression models for the C and D parameters, separately. RF regression is a machine learning method that has the advantage to be a nonlinear and nonparametric method, and the contribution of each predictor to the target that is computed by the RF model is very useful for tuning the model. We implemented the RF analysis using the python sklearn package [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] for each soil model parameter. The GridSearchCV function was used to find the optimal setting of the two RF parameters (n_estimators and max_features). Besides, there are 27 predictors for each soil model parameter and collinearity exists among them. In order to achieve a good model performance with fewer predictors, the Recursive Feature Elimination (RFE) method [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF] was used to select the predictors. After this training step, the trained random forest models allowed us to compute a map of the soil model parameters (C and D) over the whole of Africa by inputting the soil property and terrain maps of Africa.

Vegetation model parameter (A) calibration

The dynamic vegetation parameter A of the WCM model was calibrated using the measured backscatter (σ soil(dB) °) over the very dense vegetated (VDV) region which was defined as the region where the percentage of tree cover in vegetation continuous fields (VCF) is larger than 75% [START_REF] Santoro | Forest growing stock volume of the northern hemisphere: Spatially explicit estimates for 2010 derived from Envisat ASAR[END_REF]. Considering that the vegetation transmissivity is close to zero over VDV regions (Konings et al., 2017b;[START_REF] Parrens | Estimation of the L-Band Effective Scattering Albedo of Tropical Forests Using SMOS Observations[END_REF], we assumed that the soil backscatter (σ soil °) is totally attenuated, meaning that the backscatter of vegetation (σ vege °) can be set equal to the measured backscatter (σ obs °, in linear units) as given in Eq. (3.6). Eq. (3.7), converted from Eq. (3.6), was used to compute A 0 (t) by spatial averaging all A 0 (i, j, t) values over all VDV pixels at t day.

In an initial step, we set A(i, j, t) equal to A 0 (t) over all pixels (assuming all pixels have the same A 0 (t) value at date t). However, this assumption fails when σ obs °>A 0 (t)⋅cosθ, because in that case 10 0.1(C+D⋅SM) -A⋅cosθ is always negative and therefore VOD cannot be computed from Eq. (3.5). To overcome the issue, we divided the study area into two regions:

-Region 1 included all pixels where more than 50% of the σ obs ° data are lower than A 0 (t)⋅cosθ: it generally corresponds to pixels with sparse or low vegetation where relatively low A(i, j, t) values were retrieved. In region 1, we set A(i, j, t)

equal to A 0 (t).

-Region 2 included all pixels where more than 50% of the σ obs ° data are higher or equal than A 0 (t)⋅cosθ: it generally corresponds to pixels with dense vegetation where high A(i, j, t) values were retrieved. In region 2, we set A(i, j, t) equal to A 0 95% (t) which is the 95th percentile of A 0 (i, j) over all VDV pixels at day t.

So, eventually, the value of A(i, j,) for each pixel on each day (t) in Africa was set simply as follows:

A(i,j,t)= { A 0 (t) , region1 A 0 95% (t), region2 (3.8)
The flowchart for mapping the vegetation parameter is presented in Fig. 3.2. 

Result

This section is divided into two parts: the first concerns the results of the soil and vegetation parameters calibration, the second concerns the evaluation and intercomparison of IB VOD with other products. 

Calibration results of the vegetation parameter

To map the vegetation parameter A of the WCM model over Africa, we first computed the A 0 (i, j) values using Eq. (3.8) over the very dense vegetation (VDV) area for each day (t) and then calculated the mean value over all VDV pixels (A 0 (t)) and the 95 th percentile (A 0 95% (t)). 

Evaluation of IB VOD

The performance of IB VOD was evaluated in both space and time. The spatial correlation between IB VOD and AGB ( 

Spatial patterns of IB VOD

Evaluating IB VOD against aboveground biomass and tree height

When considering the spatial relationship between the four yearly average VOD and AGB (Fig. 3.10), it was found to be almost linear for the active VOD datasets (IB and V16) and quite non-linear (exponential form) for the passive ones. In terms of linear fit, highest spatial correlation values were obtained with IB VOD (R = 0.92), followed by V16 VOD (R = 0.83-0.86), AMSR2 LPRM V5 VOD (R = 0.76) and VODCA LPRM V6 VOD (R = 0.69). The spatial relationship between the two AGB and the four VOD datasets was computed for each land cover type (Table 3.2). The highest spatial correlation (R-value) with AGB was obtained with IB VOD in most of the vegetation types, except for evergreen broadleaf forest (EBF) and cropland (CRO). For EBF, CRO and barren or sparsely vegetated (BSV), the highest R-values were obtained with ASCAT V16 and AMSR2/VODCA VOD, respectively. In order to assess the capacity of VOD to predict AGB, two functions (linear and exponential regression) were selected to compute the best-fitted relationships for each VOD dataset. The R correlation coefficient calculated between predicted and reference AGB is used to evaluate the quality of the prediction. In terms of predicted AGB, the highest R values (R = 0.92) were obtained by IB VOD, followed by AMSR2 LPRM V5 VOD (R ~ 0.88-0.90) while lower R values were obtained for VODCA LPRM V6 and ASCAT V16 VOD (R ~ 0.83-0.86). 

Evaluating IB VOD against MODIS VIs

With respect to the spatial relationship between the VOD and MODIS VIs, Fig. Interestingly, for some pixels in the north of Africa, the temporal correlation between each VI and passive VOD is opposite to that obtained with the active VOD. A more detailed analysis of these results as a function of land cover classes is given in Supplementary.

To get an easier overview of the performance of each VOD dataset in terms of temporal correlation, a map showing which VOD products showed the highest temporal correlation with MODIS VIs over Africa is given in Fig. the best score (32.25 %), followed by IB (29.94 %). The lowest scores were obtained by ASCAT V16 VOD (5.32 % for NDVI, 6.88 % for EVI). In addition, we plotted the pixels with high correlation differences (HCD) in Fig. 3.15 to evaluate if there is a strong difference between the products obtaining the best scores. HCD means that the highest correlation value with one product is larger by 0.1 than that obtained with all the other products. Overall, IB obtained the best score in terms of temporal correlation in many pixels and this score was strongly (by a value of 0.1) improved in comparison with the other products. this study were retrieved from AMSR2 and then calibrated via cumulative distribution function matching using AMSR-E as the scaling reference [START_REF] Moesinger | The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[END_REF].

ASCAT V16 VOD is more stable (almost flat) than the three other VOD products (green line in Fig. 3.16 (a), (c) and (e)). This could be explained by the fact that V16 VOD is derived using two coefficients (slope and curvature) of the second-order Taylor expansion [START_REF] Teubner | A carbon sink-driven approach to estimate gross primary production from microwave satellite observations[END_REF], and those two coefficients are averaged by using a kernel smoother with a half-width window of 21 days [START_REF] Vreugdenhil | Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe[END_REF]. The value of V16 VOD decreases with the increase of NDVI (Fig. 3.16 (e)), which can explain why a negative temporal correlation between V16 VOD with NDVI and EVI was found over some areas of evergreen broadleaf forests (Fig. 

Discussion

The evaluation and inter-comparison results presented in this study show that IB VOD obtained good scores in both temporal and spatial terms. This promising result indicates that IB VOD is a valid and alternative candidate for application in biomass and carbon estimation. We should also notice that there are some uncertainties in IB VOD. Those uncertainties mainly come from the soil and vegetation model calibration and SM input.

As for the soil parameter calibration, we calculated the value of C and D for each pixel corresponding to bare land without any vegetation cover throughout the year et al., 2008 ) . Our results are in good agreement with these previous results. Fig 3.6 (a) shows very low C values on smooth dunes (in Sahara) and the strongest values on areas with topography (including in the Sahara), which is in very good coherence with the reality of the terrain and the nature of the scattering in these areas. However, we should note that the performance of the RF model used to estimate the soil parameters is better for C than for D (Fig. 3.5). One of the reasons could be that the number of pixels used to train the D value model is far less than that used to train the C value model (1262 pixels for C vs 8786 pixels for D). Moreover, pixels with a low R-value (<0.4) (accounting for around 8 % of the data in category 1, Fig. 3.17) will also affect

the training of the model. In the future, to improve the C and D model performance, the calibration will be carried at a larger scale and the threshold of the R-value will be increased to select "better" pixels. backscatter when the vegetation water content is lower than 1.5 kg/m 2 . In addition, the A parameter is related to the vegetation single scattering albedo (ω) which is a key parameter in the passive microwave VOD retrievals. In the LPDR and LPRM algorithms, ω was set to a constant value globally [START_REF] Du | A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations[END_REF][START_REF] Owe | A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index[END_REF].

However, studies in the passive microwave domain have recently suggested that the vegetation single scattering albedo may vary seasonally in different vegetation types [START_REF] Baur | Estimation of relative canopy absorption and scattering at L-, C-and X-bands[END_REF]. [START_REF] Bindlish | Parameterization of vegetation backscatter in radar-based, soil moisture estimation[END_REF] also found that better performances in SM retrievals were obtained with the WCM model when different A values were set for different types of land cover. Therefore, IGBP-based or pixel-based calibration of A could be considered in future works. Moreover, the daily A value was calibrated over VDV in Africa and then extended to the whole of Africa. When we will extend our method to a global scale, the calibration of the A value should thus be re-evaluated. In addition, [START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF] found that the correlation between the observed backscatter and WCM simulated backscatter is small or negative in karstic areas. This information should also be considered in future analyses. Our retrieval algorithm used the ERA5-Land SM as a known SM input of the retrieval algorithm. Therefore, the IB VOD retrievals made in this study may be sensitive to the quality of the ERA5-Land SM dataset. A simple sensitivity analysis was made to assess the effect of the uncertainty in SM on the retrieved VOD values. Fig.
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.18 shows that decreasing (increasing) SM by a value of 0.05 m 3 /m 3 (that corresponds to an estimate of the ubRMSE of ERA5-Land [START_REF] Chen | An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003-2018[END_REF]) will lead to a decrease (increase) in VOD of 0.02 over grassland, 0.01 over savanna, and 0.02 over the evergreen broadleaf forest. The relative change of VOD in grassland is 16.21 % which is larger than that in savanna (5.24 %) and evergreen broadleaf forest (2.57 %). This is because the observed backscatter is dominated by soil scattering for low vegetation, so that the uncertainty in SM has a larger influence on the retrieval of VOD in grassland. Anyway, the relative change of VOD, due to the uncertainty in input SM, may appear as relatively modest if we consider the uncertainties existing in global AGB maps, which may differ by about 50% in some regions. Moreover, when they will become available, any other more appropriate soil moisture data set could be used in the retrieval based on the framework proposed in this study.

IB VOD was directly computed from the observed values of the ASCAT backscatter (σ obs °) and the ERA5-Land SM, so that large daily fluctuations of SM and σ obs ° made IB VOD noisier than the three other VOD products (Fig. 3.16 (e), (f) and (g)). Although IB VOD is noisy, it still shows obvious seasonal dynamics. There are also some possible ways to improve the time series of the daily IB VOD values in the future. For instance, in the LPDR algorithm [START_REF] Du | A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations[END_REF], a 30-day moving median filter was applied to the daily X-band VOD [START_REF] Du | A global satellite environmental data record derived from AMSR-E and AMSR2 microwave Earth observations[END_REF], which makes the time series of LPDR X-band VOD very smooth. This filtering step could be used in the future as it helps to improve the temporal continuity of VOD and reduce short-term noises (for illustration, in Fig. 3.19, a moving window was applied to all VOD time series shown in Fig. 3.16). Another possible way is to use the ASCAT multi-angle data: the normalized ASCAT backscatter at the incidence angle θ = 40 degrees can be converted to the backscatter at any angle by using a second-order Taylor expansion that describes the angular backscatter dependency [START_REF] Hahn | Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT[END_REF]. More information originating from different angles could be added to the retrieval algorithm to improve the IB VOD performance. However, this will make the calibration more complex. All these different results show the importance of improving the time-series of daily IB VOD in future works.

In this study, IB VOD is spatially linearly related to AGB and TH. The relationships with VIs exhibit a saturation for high IB VOD values (Fig. 3.10-3.12). In contrast, passive VOD shows a linear relationship with VIs but shows saturation for high AGB and TH values. This is can be explained by the fact the active microwave data are generally more sensitive to vegetation structure compared with passive data [START_REF] Ferrazzoli | Comarison between the microwave emissivity and backscatter coefficient of crops[END_REF][START_REF] Fung | A Comparison between Active and Passive Sensing of Soil Moisture from Vegetated Terrains[END_REF][START_REF] Wigneron | A parametric study on passive and active microwave observations over a soybean crop[END_REF]. Active microwave radiations are affected by a two-way attenuation through the canopy layer, while, in the passive domain, there is one-way attenuation [START_REF] Fernandez-Moran | SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product[END_REF]. C-band radar backscatter return from the middle of vegetation (between canopy top and ground) [START_REF] Pulliainen | Backscattering properties of boreal forests at the C-and X-bands[END_REF], therefore VOD retrieved from ASCAT could more sensitive to branch and trunk diameter which are well correlated to biomass (Mankou et al., 2021), explaining the good correlation between ASCAT VOD and AGB.

Conversely, as VIs were calculated from optical sensors, they are more sensitive to saturation. The high sensitivity of ASCAT VOD to AGB is a new and interesting finding of this study which should be investigated further. 

Conclusion and outlook

An alternative ASCAT-IB VOD product was retrieved in this study during 2015-2019 over Africa by using the water cloud model coupled with the Ulaby linear model. The idea of using the soil moisture as input was adopted in the retrievals of VOD. Two between the ascending and descending orbits. Therefore, IB VOD retrieved from different orbits can be explored in the future to analyse daily changes in the vegetation water content. Moreover, when soil moisture datasets at a finer spatial resolution downscaled from several sensors will be available [START_REF] Fan | Mapping High-Resolution Soil Moisture over Heterogeneous Cropland Using Multi-Resource Remote Sensing and Ground Observations[END_REF] and swarms of SAR cubesats will be available in a decade, the method used in the present study could be extended to retrieve a high-resolution active VOD product (e.g. from Sentinel-1). More importantly, IB VOD is independent of passive microwave observations, and as such, it could be used in inter-comparison of VOD products based on the triple collocation (TC) or TC-related methods [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF][START_REF] Ma | An assessment of L-band surface soil moisture products from SMOS and SMAP in the tropical areas[END_REF] 

Introduction

Microwave vegetation optical depth (VOD) has proven to be a useful indicator for the study of terrestrial ecosystems based on its sensitivity to vegetation biomass as well as water content of vegetation [START_REF] Chaparro | Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices[END_REF][START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF]Rodríguez-Fernández et al., 2018a;[START_REF] Vittucci | Vegetation optical depth at L-band and above ground biomass in the tropical range: Evaluating their relationships at continental and regional scales[END_REF][START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF]. To date, longterm VOD retrieved from K-, X-, C-and L-band passive microwave brightness temperatures [START_REF] Kerr | The SMOS Soil Moisture Retrieval Algorithm[END_REF]Konings et al., 2017a;[START_REF] Liu | Global longterm passive microwave satellite-based retrievals of vegetation optical depth[END_REF][START_REF] Moesinger | The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[END_REF]Wang et al., 2021a;[START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF], have been used to monitor the global vegetation biomass changes [START_REF] Liu | Global vegetation biomass change (1988-2008) and attribution to environmental and human drivers[END_REF], the carbon dynamics in tropical and Siberian regions [START_REF] Fan | Siberian carbon sink reduced by forest disturbances[END_REF][START_REF] Fan | Satelliteobserved pantropical carbon dynamics[END_REF][START_REF] Wigneron | Tropical forests did not recover from the strong 2015-2016 El Nino event[END_REF], resilience of the Amazon rainforest [START_REF] Boulton | Pronounced loss of Amazon rainforest resilience since the early 2000s[END_REF], vegetation dynamics in drylands over West African Sahel [START_REF] Tian | Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel[END_REF] and vegetation phenology over the mid-and high-latitudinal Northern Hemisphere [START_REF] Li | Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems[END_REF]. However, some deficiencies, including the discontinuity in time series between observations from satellites and their successor (the Advanced Microwave Scanning Radiometer for EOS, AMSR-E, and the Advanced Microwave Scanning Radiometer 2, AMSR2), as well as data quality affected by radio frequency interference) [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF][START_REF] Wang | A consistent record of vegetation optical depth retrieved from the AMSR-E and AMSR2 X-band observations[END_REF], affect the quality of the above-mentioned passive long-term VOD datasets.

Most importantly, a long-term freely available global active VOD product is still lacking and very few studies have focused on this topic. The development of a new active global product could be very interesting as it could provide useful data to monitor the vegetation characteristics, in a way complementary to passive VODs [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF].

The active microwave observations show a different sensitivity to vegetation and soil compared with the passive ones [START_REF] Link | Relationship Between Active and Passive Microwave Signals Over Vegetated Surfaces[END_REF][START_REF] Prigent | Diurnal and Seasonal Variations of Passive and Active Microwave Satellite Observations Over Tropical Forests[END_REF]. Using a discrete radiative transfer model to simulate the relationship between active and passive signals in three vegetation types (wheat, corn, and forest), [START_REF] Link | Relationship Between Active and Passive Microwave Signals Over Vegetated Surfaces[END_REF] found the coupling between active and passive signals decreases with increasing vegetation water content because of the decreasing sensitivities of the radar (active)

and radiometer (passive) observations to soil moisture. The sensitivity of the radar systems to SM over vegetation areas decreases more quickly than that of the radiometers due to the two-way vegetation attenuation (forward and backward) [START_REF] Piles | Sensitivity of Aquarius Active and Passive Measurements Temporal Covariability to Land Surface Characteristics[END_REF] and active systems are more sensitive to the effects of the vegetation structure [START_REF] Ferrazzoli | Comarison between the microwave emissivity and backscatter coefficient of crops[END_REF][START_REF] Fung | A Comparison between Active and Passive Sensing of Soil Moisture from Vegetated Terrains[END_REF][START_REF] Wigneron | A parametric study on passive and active microwave observations over a soybean crop[END_REF]. Prigent Radar observations have been used in many studies for vegetation monitoring (phenology, structure, or productivity) [START_REF] Canisius | Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data[END_REF][START_REF] Chang | Application of L-band SAR for mapping tundra shrub biomass, leaf area index, and rainfall interception[END_REF][START_REF] Hosseini | Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data[END_REF][START_REF] Meroni | Comparing land surface phenology of major European crops as derived from SAR and multispectral data of Sentinel-1 and -2[END_REF][START_REF] Neumann | Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data[END_REF]Wagner et al., 1999a), while studies on active VOD retrievals are scarce and only conducted at the site scale or over small regions (El Hajj et al., 2019a;[START_REF] Grippa | Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions[END_REF][START_REF] Magagi | Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas[END_REF]Quast et al., 2019;[START_REF] Zhou | Retrieval of High-Resolution Vegetation Optical Depth from Sentinel-1 Data over a Grassland Region in the Heihe River Basin[END_REF]. The first active VOD research at a continental scale [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF] was conducted for assessing the vegetation correction in the Technische Universität Wien (TUW) method of the C-band ASCAT soil moisture retrieval [START_REF] Wagner | The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications[END_REF]. The TUW VOD is retrieved by the change detection method using the Water Cloud Model (WCM) [START_REF] Attema | Vegetation modeled as a water cloud[END_REF]. The TUW VOD value is mainly dependent on two parameters (slope and curvature) which are the coefficients of a second-order Taylor expansion function established to describe the angular ASCAT backscatter dependency [START_REF] Hahn | Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT[END_REF]. The preliminary TUW VOD data set did not consider inter-annual variability as the climatology of slope and curvature are computed in the algorithm [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF][START_REF] Vreugdenhil | Assessing Vegetation Dynamics Over Mainland Australia With Metop ASCAT[END_REF]. With a novel calculation of slope and curvature, the updated TUW VOD can capture vegetation dynamics in Australia (Vreugdenhil et al., 2017). However, it is not yet public and there are few studies on the global assessment of TUW VOD [START_REF] Teubner | Assessing the relationship between microwave vegetation optical depth and gross primary production[END_REF][START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF].

Recently, INRAE-BORDEAUX (IB) developed a new active VOD product from

ASCAT in Africa (hereafter ASCAT IB V1 VOD) [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF]. The algorithm is based on the WCM integrated with the Ulaby bare soil scattering model [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF] as these simple models can be used efficiently to simulate the ASCAT backscattering signals [START_REF] Lievens | Sentinel-1 snow depth retrieval at sub-kilometer resolution over the European Alps[END_REF][START_REF] Santoro | Global estimation of above-ground biomass from spaceborne C-band scatterometer observations aided by LiDAR metrics of vegetation structure[END_REF][START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF]. To retrieve VOD from the VV polarization and mono-angular (incidence angle at 40 °) normalized ASCAT observations, the ERA5-Land soil moisture (SM) dataset was used as an input to the algorithm. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and leaf area index (LAI). However, the algorithm used in ASCAT IB V1 VOD has been applied globally with imperfect results (Liu et al., 2021a), mainly because the hypothesis that the vegetation scattering parameter (ω) consists globally of two constant values (distinguishing very densely vegetated regions from the other vegetated regions) did not hold.

In the present study, to improve the quality of the global ASCAT IB VOD product, we evaluated the possibility of retrieving VOD and ω simultaneously from the ASCAT normalized backscatter at 40° by adding constraints in the retrieval process. The first constraint was applying a multi-temporal (MT) method which is generally based on the assumption that VOD varies relatively slowly in time as was first developed by [START_REF] Wigneron | Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission)[END_REF] for the SM and VOD retrieval algorithm of the Soil Moisture and Ocean Salinity (SMOS) mission [START_REF] Kerr | The SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle[END_REF]. This assumption is now widely used in the development of passive VOD retrievals. For instance, in the multi-temporal dual channel retrieval algorithm (MT-DCA), VOD was assumed to be nearly constant between every two consecutive overpasses [START_REF] Konings | Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized Lband radiometer observations[END_REF]. Based on MT-DCA, (Konings et al., 2017a;2016) successfully retrieved VOD and SM from L-band Aquarius (with a seven-day revisit time) and SMAP (with a three-day revisit time). This assumption was also adopted in the different operational VOD and SM retrieval algorithms of the SMOS observations [START_REF] Al-Yaari | Global-scale evaluation of a hydrological variable measured from space: SMOS satellite remote sensing soil moisture products[END_REF][START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF].

Similarly in the active domain, El Hajj et al. (2019a) assumed that VOD remains stable during four consecutive overpasses (18 days) of Sentinel-1 and hence obtained the very first retrievals of VOD from Sentinel-1 images in southern France.

Incorporating a priori information into the algorithm is another interesting way to constrain the retrieved parameters. A key feature of the widely used L-band microwave emission of the biosphere (L-MEB) inversion method is integrating a priori information into the retrieval [START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF][START_REF] Wigneron | Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms[END_REF]. In the SMOS-IC Version 2 algorithm [START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF], by using the mean value of VOD retrieved in the previous ten days as a first guess value of VOD for subsequent SM and VOD retrievals, results showed a considerable improvement compared with the preceding In this context, the main objective of this study is to retrieve simultaneously a global ASCAT product including VOD and the vegetation scattering parameter (ω).

The retrieval algorithm used the model-based soil moisture (SM) data from the ERA5-Land product as it offers long-term data at a time close to the ASCAT satellite observations owing to its hourly availability. The use of SM data from satellite missions (e.g. SMOS, SMAP and AMSR2) is more difficult: observation time is not concurrent to the ASCAT observations; the time period is not long enough; and accuracy may be limited for some satellite products in some areas [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF][START_REF] Xing | A first assessment of satellite and reanalysis estimates of surface and root-zone soil moisture over the permafrost region of Qinghai-Tibet Plateau[END_REF].

To overcome the challenge of retrieving two parameters from a single-angle and polarization ASCAT observation, the concept of "slow VOD time variations" introduced previously and the a priori information obtained from ASCAT IB V1 VOD retrievals over Africa were incorporated into the algorithm. Similar to previous VOD assessment studies [START_REF] Chaparro | Sensitivity of L-band vegetation optical depth to carbon stocks in tropical forests: a comparison to higher frequencies and optical indices[END_REF][START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF][START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF] 

Data description

ASCAT backscatter

The ASCAT sensors are equipped with fan-beam (mid, fore, and aft) antennas which conduct VV backscatter observations with incidence angles varying from 25 to 65 degrees at a carrier frequency of 5.255 GHz (C-band) covering two 550 km wide swaths separated by a gap of about 360 km with a 30-50 km spatial resolution and twice a day temporal resolution [START_REF] Figa-Saldaña | The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers[END_REF]. In the present study, we used the backscatter measurements normalized at the standard reference angle (40°)

and the historically wettest measurements (referred to as wet reference), which were extracted from the ASCAT Soil Moisture near-real time (NRT) product at 12.5 km Swath Grid. This product provides 15 scene acquisitions per day and covers the globe approximately every two days. The stack of the ASCAT backscatter data used in this study consisted of all data acquired by MetOp-A descending orbits (9:30 am) from 2007 to 2020. We used data measured at morning because vegetation water stress is typically lower in the morning making "morning" VOD better suited for monitoring biomass [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF][START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF]. The data with good quality (probability flags for frozen soil and snow equal to zero, topographic complexity flags and wetland probability flags lower than 30% and 10%, respectively) were resampled to a 0.25 ° grid (~ 25 km × 25 km) by the inverse distance weighting algorithm [START_REF] Lievens | Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates[END_REF].

The ASCAT data is freely available at https://archive.eumetsat.int/.

ERA5-land data

In this study, we used the 0-7 cm SM and soil temperature (ST) datasets of ERA5-Land (Muñoz-Sabater et al., 2021). This dataset is on a 0.1-degree grid with hourly time steps. The new surface model (Carbon Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land) used in ERA5-Land is able to better simulate the SM dynamics than the older scheme [START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF]. The evaluation of ERA5-Land SM also shows good performance on the global scale [START_REF] Beck | Evaluation of 18 satellite-and model-based soil moisture products using in situ measurements from 826 sensors[END_REF][START_REF] Chen | An improved global remote-sensing-based surface soil moisture (RSSSM) dataset covering 2003-2018[END_REF][START_REF] Lal | Assessment of ERA5-Land Volumetric Soil Water Layer Product Using In Situ and SMAP Soil Moisture Observations[END_REF][START_REF] Muñoz-Sabater | ERA5-Land: a state-of-the-art global reanalysis dataset for land applications[END_REF]. More importantly, as the ERA5-Land does not assimilate land surface observations (whereas ERA5 assimilates the ASCAT SM), ERA5-Land SM and the ASCAT backscatter measurements can be treated as quasi-independent variables [START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF]. In the present study, ERA5-Land SM is used as an input to the WCM model to retrieve ASCAT IB VOD, and ERA5-Land ST is used for simulating the Ulaby bare soil model parameters. ERA5-Land SM and ST were aggregated to the 0.25 ° grid using area-weighted averaging, and then temporally matched with the ASCAT descending (~9:30 local time) observations.

Vegetation variables for evaluating VOD

Three kinds of vegetation variables widely used in VOD evaluation [START_REF] Grant | Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices[END_REF][START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF][START_REF] Rodríguez-Fernández | The high sensitivity of SMOS L-Band vegetation optical depth to biomass[END_REF][START_REF] Tian | Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel[END_REF] were used to evaluate the retrieved ASCAT IB VOD: AGB, canopy height, and optical vegetation indices. The rationale for using those parameters is that 1) there is no consensus on in-situ VOD reference values, so proxies of VOD as vegetation height and vegetation biomass are often used to evaluate the performance of the VOD retrieval algorithms [START_REF] Li | A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison[END_REF][START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF]; 2) VOD can provide information on AGB at the interannual scale and on the vegetation water status at the seasonal scale [START_REF] Lyons | Soil moisture variation drives canopy water content dynamics across the western U[END_REF][START_REF] Wang | Seasonal variations in vegetation water content retrieved from microwave remote sensing over Amazon intact forests[END_REF]. Since total vegetation biomass (AGB) is generally well related to vegetation height [START_REF] Asner | High-resolution mapping of forest carbon stocks in the Colombian Amazon[END_REF], utilizing canopy height may confirm the anticipated relationship between VOD and AGB. We also refer the reader to the inter-comparison study of nine commonly used VOD for more details [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF].

AGB datasets

Three AGB products, the Saatchi AGB in 2015 [START_REF] Carreiras | Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions[END_REF][START_REF] Saatchi | Benchmark map of forest carbon stocks in tropical regions across three continents[END_REF], the Climate Change Initiative (CCI) AGB dataset version 1 in 2017 (Santoro and Cartus, 2019) and the Global Ecosystem Dynamics Investigation (GEDI) L4B AGB in 2020 [START_REF] Dubayah | GEDI L4B Gridded Aboveground Biomass Density[END_REF], were used to evaluate the ability of ASCAT IB VOD to monitor AGB. Those three datasets are all at 1-km spatial resolution and were resampled to the 0.25 ° grid by spatial averaging.

Canopy height datasets

Two canopy height products [START_REF] Lang | Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles[END_REF][START_REF] Potapov | Mapping global forest canopy height through integration of GEDI and Landsat data[END_REF] used in this study were derived from the GEDI LIDAR measurement. The product developed by [START_REF] Potapov | Mapping global forest canopy height through integration of GEDI and Landsat data[END_REF] is produced by extrapolating the GEDI footprint-level forest canopy height to a 30 m spatial resolution map using a regression tree algorithm and Landsat analysis-ready data for the year 2019. [START_REF] Lang | Global canopy height regression and uncertainty estimation from GEDI LIDAR waveforms with deep ensembles[END_REF] used the GEDI Level 1B waveforms and Bayesian deep learning algorithm to develop a global 0.5 ° resolution canopy height map, which has a lower root mean square error (RMSE = 2.7m) than the product (RMSE = 6.6m) from [START_REF] Potapov | Mapping global forest canopy height through integration of GEDI and Landsat data[END_REF].

Optical vegetation indices datasets

Three vegetation indices (VIs) products, the 10-day NDVI and LAI data from

Copernicus Global Land Service (CGLS) (https://land.copernicus.eu/global/) and 8day Normalized Difference Water Index (NDWI) calculated from the MODIS MOD09A1 product [START_REF] Gu | Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data[END_REF], were used to assess the temporal variations in ASCAT IB VOD. LAI and NDVI are good proxies of phenology and vegetation greenness. NDWI represents the vegetation water dynamics which is expected to be important in terms of temporal changes. Therefore, those three VIs can be used to test the ability of ASCAT IB VOD to monitor the seasonal and interannual variations of vegetation phenology and vegetation water status. After quality control, the dataset was resampled to a spatial resolution of a 0.25° grid [START_REF] Fuster | Quality Assessment of PROBA-V LAI, fAPAR and fCOVER Collection 300 m Products of Copernicus Global Land Service[END_REF].

Other C-band VOD products

To better illustrate the performance of the ASCAT IB VOD product, we inter-compared it with three other C-band VOD products, namely ASCAT TUW, AMSR2 and VODCA VOD.

ASCAT TUW VOD was provided by [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF]. TUW VOD is calculated from the loss in sensitivity to soil moisture (i.e., attenuation of the bare soil backscatter). The sensitivity is calculated as the difference between the wet and dry reference, and more details on the product are given in [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF][START_REF] Vreugdenhil | Assessing Vegetation Dynamics Over Mainland Australia With Metop ASCAT[END_REF]. AMSR2 and VODCA VOD can be freely downloaded at the Goddard Earth Sciences Data and Information Services Center (GES DISC) website and the Zenodo repository [START_REF] Moesinger | The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[END_REF]. These two products are retrieved from the passive sensor AMSR2 (providing data from July 2012) but with different algorithms. The AMSR2 VOD retrieval algorithm is based on the Land Parameter Retrieval Model (LPRM) version 5 [START_REF] Owe | Multisensor historical climatology of satellite-derived global land surface moisture[END_REF], while VODCA VOD is retrieved via the LPRM version 6 and then a cumulative distribution function (CDF) matching technique is used to scale VOD to the AMSR-E VOD [START_REF] Moesinger | The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[END_REF]. The key differences between those three products and ASCAT IB VOD are presented in the discussion section.

Ancillary datasets

This study also utilized several ancillary datasets, including ISRIC SoilGrids250m data [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF], Digital Elevation Model (DEM)-related data [START_REF] Danielson | Global multi-resolution terrain elevation data 2010[END_REF], and MODIS land cover map (Sulla-Menashe et al., 2019). The SoilGrids250m dataset provides global standard numeric soil properties at seven standard depths with a 250 m spatial resolution. DEM-related data were calculated from the 1 km Global Multi-resolution Terrain Elevation Data 2010 by using the System for Automated Geoscientific Analyses (SAGA) GIS software [START_REF] Conrad | System for Automated Geoscientific Analyses (SAGA) v. 2.1.4[END_REF]. The SoilGrids250m (15 types, in Appendix Table 1), and DEM-related (9 types, in Appendix Table 2) data were used in the estimation of the soil parameters of the Ulaby linear model (see Section 3.1). As several previous studies showed that VOD varies as a function of the land cover [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF][START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF], the land cover map extracted from the MODIS MCD12Q1 product based on the International Geosphere-Biosphere Programme (IGBP) scheme was used to analyze the different VOD products. 

Methodology

The ASCAT IB retrieval approach is illustrated in the flowchart of VOD and SM are retrieved simultaneously, which may lead to an ill-posed problem [START_REF] Wigneron | Two-Dimensional Microwave Interferometer Retrieval Capabilities over Land Surfaces (SMOS Mission)[END_REF], we focused on retrieving the two vegetation parameters, VOD and vegetation scattering parameter (ω), which can be assumed to be relatively constant over a short time-window, while model-based dynamic SM data is used as an input in the retrieval algorithm. One prototype study undertaken to retrieve VOD from AMSR2 in Africa supports the validity of this idea (Wang et al., 2021a). The estimation of the Ulaby linear model parameters is described in Section 4.3.2. The retrieval of the VOD and ω from the integrated retrieval model is presented in Section 4.3.3. The methods implemented to quantify the performance of ASCAT IB VOD and to qualify the ω parameter are described in Section 4.3.4.

Vegetation backscatter model

The radar backscatter from vegetation was described by the Water Cloud Model (WCM) [START_REF] Attema | Vegetation modeled as a water cloud[END_REF]. The sensor-received backscattering coefficient (σ obs ∘ , in m 2 /m 2 ) at the incidence angle θ (40 ° in this study) can be denoted as a combination of two components: the direct vegetation backscatter signal (σ veg ∘ , in m 2 /m 2 ) and the backscatter from the soil surface (σ soil ∘ , in m 2 /m 2 ) attenuated by the vegetation canopy (γ 2 , called the two-way vegetation attenuation factor). This leads to the following equations:

σ obs ∘ =σ veg ∘ +γ 2 σ soil ∘ (4.1) σ veg ∘ =ω⋅cos θ⋅(1-γ 2 ) (4.2) γ 2 =exp(-2⋅τ/ cos θ) (4.3)
where ω is the vegetation scattering parameter related to the single scattering albedo, and τ is the vegetation optical depth (VOD).

A simple linear approach (Eq. (4.4)) [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF] 

σ obs ∘ =ω•cos θ•(1-exp(-2•τ/cosθ))+exp(-2•τ/cosθ)•10 0.1•(C+D•SM) (4.5)

Calibration of the model parameters

The soil-vegetation radar model in Eq. (4.5) contains three parameters (ω, C and D) that needed to be calibrated on each pixel in space and time. As there are no "true" VOD samples, the three parameters cannot be calibrated at the same time. In this study, we calibrated the bare soil parameters (C and D) and then retrieved ω and VOD simultaneously.

The soil parameter calibration consisted of three steps (1) selecting so-called "bare soil" pixels globally where vegetation effects can be neglected during a specific period (which varies over each pixel) (2) computing the C and D parameters over the "bare soil" pixels during that specific period (3) training machine learning models by using the retrieved C and D values over "bare soil" pixels obtained in the step (2) and then estimating the two parameters (C and D) globally. These three steps are detailed below:

Step1: Globally selecting the "bare soil" pixels based on LAI and land cover data. Two kinds of "bare soil" pixels can be identified: i) vegetation-free pixels during the entire year (desert area), and ii) pixels with sparse vegetation (LAI<0.5) seasonally.

Some "bare soil" pixels have very low moisture condition (< 0.05 m 3 /m 3 ) and almost stable σ obs ∘ . In those pixels, only C can be calculated. Therefore, we divided the "bare soil" pixels into two categories, namely category 1: where soil moisture and σ obs ∘ show a significant correlation; category 2: where soil moisture is very low and there are very low time variations in σ obs ∘ .

Step2: calculating the parameters C and D over the "bare soil" pixels. For the pixels in category 1, the C and D values were obtained with linear fitting on Eq. (4.4).

For the pixels in category 2, only the C value can be computed, and it was estimated from the averaged σ obs ∘ . At the same time, the corresponding soil properties (Appendix Table 1) and DEM-related (Appendix Table 2) data were extracted.

Step3: estimating C and D globally. The pixels in step 2 were used to train two random forest (RF) regression models, in which the parameters C and D computed over the "bare soil" pixels were treated as the target and the soil properties (Appendix Table 1) and DEM-related (Appendix Table 2) data were selected as the predictors.

More details about the implementation of the RF model are presented in Appendix A.4.

Then, the selected global predictors were used as input to the trained RF models to estimate C and D globally.

Two years (2015-2016) of ASCAT σ obs ∘ and ERA5-Land SM were used to select the "bare soil" pixels. For more details about each step, readers can refer to the same calibration work done in Africa [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF].

Retrieval of VOD and ω

The simultaneous retrieval process of two variables, VOD and ω, was performed by using a cost function (CF) (Eq. (4.6)). CF integrates the squared weighted differences between the backscatter simulations (σ sim ∘ ) and the observations (σ obs ∘ ), taking into account the constraint information on the retrieved model parameters [START_REF] Wigneron | L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields[END_REF]. This strategy was also implemented in the development of SMOS IC V2 and SMAP IB [START_REF] Li | A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison[END_REF][START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF].

CF= ∑(σ obs ∘ -σ sim ∘ ) 2 StdDev(σ ∘ ) 2 + ∑ (P i ini -P i * ) 2 StdDev(P i ) 2 2 i=1 (4.6)
where the sum of the differences between observed ( σ obs ∘ ) and simulated (σ sim ∘ )

backscattering coefficient is computed from VV polarization observations over a w-day window. In this window, the value of retrieved P i * (VOD * and ω * , respectively for i = 1, 2) are time-invariant. StdDev(σ ∘ ) is the standard deviation associated with σ obs ∘ . P i ini (VOD ini and ω ini , respectively for i = 1, 2) is the initial value of VOD or ω in the retrieval process and corresponds to a constraint information (or "priori information") estimate;

StdDev(Pi) is the standard deviation associated with this estimate.

Two sources of constraint information were used in the retrieval algorithm: (1) the ASCAT IB V1 VOD developed in Africa [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF] was used to estimate the a priori information on VOD, and (2) the wet reference of the ASCAT observations was used to estimate the a priori information on ω. Specifically, due to the diversity of the vegetation conditions in Africa, the VOD ini and StdDev(VOD) parameters used in Eq. ( 6) were simply estimated for the forest and non-forest regions in Africa. In this study, VOD ini was set to 0.87 and 0.16 for forest and no-forest pixels, respectively. In order to ensure a good quality of P i * (VOD and ω) and to consider that P i * did not change much over the period of w-days, the w value cannot be too small or too large [START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF]). An 18-day window was used in this study. This window size allows for robust results with more than three consecutive observations and it corresponds to the time-period used for Sentinel-1 VOD (El Hajj et al., 2019a). We also checked that this window size led to the best results when evaluating the performance of ASCAT IB VOD against AGB (Appendix Table 4).

Evaluation metrics for ASCAT IB retrievals assessments

Evaluating the ASCAT IB retrievals, we mainly focused on the VOD parameter as there are few studies evaluating the ω parameter at a large scale [START_REF] Du | Passive Microwave Remote Sensing of Soil Moisture Based on Dynamic Vegetation Scattering Properties for AMSR-E[END_REF][START_REF] Fernandez-Moran | Calibrating the Effective Scattering Albedo in the Smos Algorithm: Some First Results[END_REF]Konings et al., 2017a;[START_REF] Vittucci | Effective Scattering Albedo of Forests Retrieved by SMOS and a Three-Parameter Algorithm[END_REF]. As in (Li et al., 2021), the global ASCAT IB VOD retrievals were evaluated in time and space. For the temporal performance, the Pearson correlation coefficient (R) between optical vegetation indices (i.e., LAI, NDVI and NDWI) and ASCAT IB VOD was calculated. To evaluate ASCAT IB VOD in terms of spatial performance, we estimated the spatial correlation between ASCAT IB VOD and different AGB products (Eq. (4.7)). Meanwhile, the spatial correlation between VOD-predicted-AGB and AGB was also computed: the aim is to evaluate the performance of ASCAT IB VOD and other VOD in estimating AGB. To compute the VOD-predicted AGB as a function of ASCAT IB VOD, two functions (Eq. (4.8)-(4.9)) were chosen to fit the relationship between VOD and AGB [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF]Wang et al., 2021a). The root mean square deviation (RMSE) between VOD-predicted-AGB and AGB was also calculated (Eq. (4.10)). The same calculation was also done for ASCAT IB VOD and different canopy height products.

R= ∑ (VOD

i -VOD ̅̅̅̅̅̅̅ )(Y i -Y ̅ ) n i=1 √ ∑ (VOD i -VOD ̅̅̅̅̅̅̅ ) 2 n i=1 √ ∑ (Y i -Y ̅ ) 2 n i=1 (7) (4.7) Y= a 1+ exp(-b*(VOD-c)) +d (4.8) Y=a* exp(b*VOD) +d (4.9) RMSE= √ ∑ (y i -Y i ) 2 n i=1 n (4.10)
where Y is AGB or canopy height, a, b, and c are best-fit parameters, y is the predicted AGB or predicted canopy height, n is the valid number of pixels.

The spatial and temporal performance of three other C-VOD products were also evaluated for inter-comparing with ASCAT IB VOD. In order to keep consistency for each product, the following criteria were used: 1) for each product, we used VOD data from the same year (or close in time) as the vegetation-related proxies; 2) since the VODCA data set is only available until 2018 and AMSR2 provides data from July 2012, the temporal evaluation was made from 2013 to 2018, and 3) over each pixel and each year, the number of VOD data should be larger than 60 per year to avoid statistical under-representation. The retrievals of the VOD and ω parameters were also analysed considering different classes of vegetation types defined by the MODIS IGBP classification scheme.

Results

Calibration results of the C and D parameters

The "bare soil" pixels used for the computation of the C and D parameters of the Ulaby The results of the 10-fold cross-validation of two RF models trained by the selected indices (Fig. 4.4) are better than those obtained in Africa [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF].

For the C model, R 2 increased from 0.85 to 0.87, and RMSE decreased from 1.31 dB to 0.97 dB. The R 2 metric of the D model improved from 0.61 to 0.79, but the RMSE showed a slight increase (from 2.37 dB/m 3 ⋅m -3 to 2.43 dB/m 3 ⋅m -3 ). The overestimation of the lower values and underestimation of the higher values obtained in Africa still occurred for the two models calibrated here at the global scale. This is likely due to the limitation of the RF regression model that cannot be extrapolated; namely when the range of the test fold is not included in the training fold, values beyond the range of the training data set will be overestimated or underestimated. -18.05 dB to -11.82 dB, and from 5.12 dB/ m 3 ⋅m -3 to 13.97 dB/ m 3 ⋅m -3 , respectively.

These values are in the usual range for C-band SAR observations [START_REF] Baghdadi | Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: application to hydrological and erosion modelling[END_REF][START_REF] Baghdadi | Coupling SAR C-Band and Optical Data for Soil Moisture and Leaf Area Index Retrieval Over Irrigated Grasslands[END_REF][START_REF] Verhoest | On the Soil Roughness Parameterization Problem in Soil Moisture Retrieval of Bare Surfaces from Synthetic Aperture Radar[END_REF]. The distribution of the D values is more discrete than that of the C values. The pixels with a value ranging from -15 dB to -10 dB account for 76.20 % of the pixels in the C map, while 66.62 % of them are concentrated in the range of -15 dB to -12.5 dB. Comparatively, 75.26 % of the pixels have a D value in the 5-10 dB/ m 3 ⋅m -3 range and are evenly distributed in 5-7.5 dB/ m 3 ⋅m -3 (accounting for 38.79 %) and 7.5-10 dB/ m 3 ⋅m -3 (accounting for 36.46 %). In addition, the distribution of the pixels with a C value lower than -15 dB in the C map matches well with the distribution of pixels with a D value larger than 10 dB/ m 3 ⋅m -3 in the D map, especially in South and North America, Eastern Europe, and Central Asia. France [START_REF] Shamambo | Interpretation of ASCAT Radar Scatterometer Observations Over Land: A Case Study Over Southwestern France[END_REF]. Interestingly, high ω values were obtained in the Cropland/Natural vegetation mosaics (CVM) where roughly half of the pixels (53.48%) have a value greater than 0.24. The standard deviation of the ω value in low vegetation is larger than that in the forest and woody savannas areas. 

Vegetation scattering parameter (ω) retrieval

ASCAT IB VOD evaluation

Global spatial patterns

The spatial distribution of the four VODs (Fig. 4.7) shows that the passive VOD products (AMSR2 VOD and VODCA VOD) have a larger coverage as the active VOD products (ASCAT IB VOD and ASCAT TUW VOD) failed to obtain values in some areas (algorithm failure). In the ASCAT IB VOD retrieval algorithm, we did not perform VOD retrievals in bare soil areas when the bare soil fraction is greater than 99 % and in pixels where we failed to simulate the bare soil backscatter (i.e., when the simulated bare soil backscatter value is larger than the observed backscatter value). The retrieval of TUW VOD was not performed when the difference between the wet and dry reference exceeds the maximum range in the backscatter signal over bare soils [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF].

The maximum values of all the four VODs were retrieved in the tropics with VOD 7)), while R2 is calculated between VOD-predicted AGB and AGB. The solid blue lines are the predictive fits obtained using Eq. ( 8) or (9).

Spatial correlation with aboveground biomass and canopy height

Fig. 4.9 shows the density scatter plots of the four VODs with the three aboveground biomass (AGB) products. The density of points in the scatter plots of GEDI AGB is lower than that of the two other AGB products because the range of GEDI biomass did not include areas with latitudes above 53.99°N. The distribution density plot of VOD versus AGB differs between the ASCAT and AMSR2 VOD products. The shape of the density distribution of ASCAT VOD shows a gradual slope rise, while that of AMSR2

VOD presents first a slow slope increase and then a steep increase for AGB greater than ~100 Mg ha -1 . Therefore, two different parameterization functions (Eq. (4.8) for ASCAT VOD; Eq. (4.9) for AMSR2 VOD) were used to fit the relationship between VOD and AGB.

The results show that ASCAT IB VOD exhibits the best performance to predict all three AGB products, with a correlation of 0.83-0.87 and RMSE values (34.62-36.86 Mg ha -1 ) computed between reference and predicted AGB. AMSR2 VOD achieved the second-best performance in predicting the Saatchi and GEDI AGB. Similarly, ASCAT TUW VOD achieved the second-best performance in predicting CCI AGB. ASCAT TUW with Saatchi and GEDI AGB and VODCA with CCI AGB presented the lowest correlation values (0.63-0.66). Note that there is some scatter in these relationships and at low height levels, it cannot be concluded that the C-band VOD product will be a good proxy of the vegetation biomass. In particular, further studies based on specific data sets will be necessary to better evaluate the potential capabilities of ASCAT IB VOD in low vegetation canopies as croplands and grasslands. 7)), while R2 is calculated between VOD-predicted CH and CH. The solid blue lines are the fits obtained using Eq. ( 8) or ( 9).

Considering the density scatter plot (Fig. VOD. This is mainly because we forced the predictive fitted line to start from (0, 0). The quality of the relationship between VOD and CH is slightly weaker for the Lang product (Fig. 4.10) probably due to the coarse resolution of the latter product.

Temporal correlation with vegetation indices

The regions where the four VODs products presented the highest absolute temporal 

Discussion

Uncertainty in the VOD retrieval

There are three main uncertainties associated with ASCAT IB VOD. The first one is the simplified scattering process considered in the retrieval algorithms, and the other two are the soil parameters estimated from the random forest models and the ERA5-Land SM input. The water cloud model that is used to simulate the backscattering coefficient in the present study neglected the multiple scattering effects as it is hard to quantify this part in the model. Some studies showed that the multiple scattering effects can be generally ignored for low levels of the vegetation cover at the C-and L-bands [START_REF] El Hajj | Comparative analysis of the accuracy of surface soil moisture estimation from the C-and L-bands[END_REF][START_REF] Hosseini | Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data[END_REF][START_REF] Zribi | Analysis of L-Band SAR Data for Soil Moisture Estimations over Agricultural Areas in the Tropics[END_REF]. One study [START_REF] Li | Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models[END_REF] confirmed also this conclusion by comparing the VOD and SM parameters retrieved from L-band SMOS TB based on Tau-Omega and a higher order radiative transfer model, named the Two-Stream emission model [START_REF] Schwank | Tau-Omega"and Two-Stream Emission Models Used for Passive L-Band Retrievals: Application to Close-Range Measurements over a Forest[END_REF], which holds a stronger physical background with consideration of multiple scattering and reflection.

However, the VOD values retrieved from the two models vary over dense vegetation areas and boreal regions. A study that explored the contribution of double-bounce to the total signal of the P-, L-and C-bands in forest regions showed that the doublebounce component at C-band is lower than that at the L-and P-bands and accounts for a small contribution (1%) to the total signal in forests [START_REF] Freeman | Three-component scattering model to describe polarimetric SAR data[END_REF]. Quast et al. (2019) used a generalization of the WCM that incorporates an estimate of first-order (i.e., double-bounce) interaction-effects to simulate the ASCAT backscattering signals. The results also showed the interaction-contributions are very small. In the passive domain, (it is likely it is the same in the active domain), several studies showed that multiple scattering effects can be well accounted for by zero-order radiative transfer models that neglect multiple scattering effects, provided that the model parameters (VOD and scattering parameter) are considered as effective parameters [START_REF] Kurum | Quantifying scattering albedo in microwave emission of vegetated terrain[END_REF][START_REF] Li | Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models[END_REF]. Here, we roughly simulated the effect of neglecting multiple scattering, by accounting for the impact of a 0 to 5 % change in the total signal (the value of 0 to 5 % was estimated from [START_REF] Freeman | Three-component scattering model to describe polarimetric SAR data[END_REF] and Quast et al. (2019)), on VOD retrievals for the three vegetation types (Fig. 4.16).

Assuming multiple scattering accounts for 5 % of the total signal (worst-case scenario), the results showed that the relative variation of VOD in the evergreen broadleaf forest reached 19 % when ignoring multiple scattering. The relative change of VOD in grasslands also showed a higher value (17 %) than in savannah (12 %) even though their VOD value changed little (~ 0.02). These results show that neglecting multiple scattering effects in ASCAT VOD retrievals has a non-negligible effect, potentially leading to a change in VOD values by around 10-20 % in the worst case and that better consideration of multiple scattering effects should be considered in future improvements to our retrieval approach. However, the relative change in VOD caused by neglecting multiple scattering is relatively small compared to the large uncertainties associated with global AGB datasets: AGB values can vary by up to 50 % in some forest regions for different AGB data sets [START_REF] Araza | A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps[END_REF][START_REF] Urbazaev | Estimation of forest aboveground biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico[END_REF].

Considering that there is no simple equation to quantitatively describe the multiple scattering effects in WCM, the traditional WCM equations were used in this study.

Although there are some discrete models [START_REF] Bracaglia | A fully polarimetric multiple scattering model for crops[END_REF][START_REF] Ulaby | Michigan microwave canopy scattering model[END_REF] that considered the multiple scattering effects, it is difficult to apply these models over large regions as they need too many input parameters for a rigorous retrieval [START_REF] Bai | Parameter Optimization of a Discrete Scattering Model by Integration of Global Sensitivity Analysis Using SMAP Active and Passive Observations[END_REF][START_REF] Bai | Simulation of Sentinel-1A observations and constraint of water cloud model at the regional scale using a discrete scattering model[END_REF]. Another possible uncertainty associated with ASCAT IB VOD is related to the fact we ignored the subsurface scattering in the simplified Ulaby soil model. Wagner et al. (2022) showed that the backscattering coefficient negatively correlates with SM when subsurface scattering is the main contribution of the soil backscatter and positively correlates with SM when the surface scattering effects dominate. When both types of scattering are present, the backscattering coefficient will exhibit a negative correlation with SM in dry conditions and a positive correlation as SM gradually increases, showing a U-shape (Liu et al., 2016;[START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF]. Based on the correlation with AGB, the ASCAT IB VOD retrieved using the soil parameters predicted by different models trained with different positive correlation thresholds were evaluated, with the threshold R > 0.25 achieving the best results (Table 4.2). When a higher threshold value is selected, pixels with mixed scattering that may be U-shaped with a lower R-value are excluded from the model training, resulting in more errors in the soil parameters prediction and finally causing errors in the ASCAT IB VOD retrieval.

Although some studies have showed that the subsurface scattering effects usually happen in dry desert areas [START_REF] Mccoll | Uncertainty Analysis of Soil Moisture and Vegetation Indices Using Aquarius Scatterometer Observations[END_REF], the correlation values between the ASCAT backscatter measurements and ERA5-land SM revealed that pixels with negative correlation values are also located in some sparsely vegetated areas (Fig. 1 in [START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF]). Because of the negative correlation, the σ WetRef ∘ parameter fails to represent the time period when SM values are high (Appendix Fig. 1). Therefore, neglecting subsurface scattering in soil scattering modeling and in estimating initial values of the vegetation parameter from σ WetRef ∘ will introduce uncertainty to the ASCAT IB VOD retrievals, especially when the subsurface effects are dominant. 

Inter-comparison of the active and passive VOD

The assessment and comparison results indicate that there are some discrepancies between ASCAT IB VOD and AMSR2 VODs. Regarding spatial relationships, ASCAT IB VOD showed the highest correlation with AGB and canopy height (Fig. 4.9-10). It was also found that ASCAT IB VOD had the best temporal correlation with LAI and NDWI for most of the pixels at the global scale, while AMSR2 VODs showed best correlation with NDVI (Fig. 4.11 (b)). The statistics of the temporal correlation between VODs and VIs in each land cover type show similar results (Table 4.3), especially for short vegetation. Physical radiative transfer mechanisms may help to understand why LAI and NDWI have a better spatial and temporal correlation with active ASCAT IB VOD than passive AMSR2 VODs. As active microwave sensors emit energy, the observed backscattering coefficient is a measurement of the microwave radiation scattered in a single backward direction, while the passive microwaves sensors detect the naturally emitted microwave energy which corresponds to the integration of the bistatic coefficient considering the incident radiations over the whole hemisphere [START_REF] Ferrazzoli | Comarison between the microwave emissivity and backscatter coefficient of crops[END_REF][START_REF] Wigneron | A parametric study on passive and active microwave observations over a soybean crop[END_REF]. Therefore, compared to passive observations, active observations are more sensitive to volume scattering within the canopy. This is because passive microwave remote sensing integrates over all of the possible directions of incident radiation, while active microwave remote sensing only samples a single direction, resulting in less averaging of coherent effects.

Consequently, active microwave remote sensing is more sensitive to vegetation canopy structure and specifically temporal changes in leaf water and orientation than passive microwave remote sensing. Even though ASCAT IB VOD performed well in space and time when compared with the three other C-band VOD products, we should be aware that the algorithms and input datasets of those four products differ and also make the VOD values and ranges different (Fig. 4.8). We summarized these main differences in Table 4.4. 

Vegetation scattering modelling

Water cloud model [START_REF] Attema | Vegetation modeled as a water cloud[END_REF] Water cloud model [START_REF] Attema | Vegetation modeled as a water cloud[END_REF] τ-ωp model [START_REF] Mo | A model for microwave emission from vegetation-covered fields[END_REF] ωp= 0.05 τ-ωp model [START_REF] Mo | A model for microwave emission from vegetation-covered fields[END_REF] ωp= 0.075

Soil scattering modelling

Ulaby linear model [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF] △𝜎 𝑠 ∘ : maximum range in backscatter values over bare soils H-Q-N modelling (Wang and Choudhury, 1981) HR= 0.09 H-Q-N modelling (Wang and Choudhury, 1981) HR= 1.2*(1-2*SM)

Hypothesis

VOD is the same over a short time window (18 days) △𝜎 𝑠 ∘ is the same everywhere in the world, except in desert areas.

VOD is the same at H and V polarizations VOD is the same at H and V polarizations Ancillary data SoilGrids250m [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF] and DEM-related data [START_REF] Danielson | Global multi-resolution terrain elevation data 2010[END_REF] 

Limitations

The multi-temporal method may result in VOD not being sensitive to drydown periods (Li et al., 2021) and has larger uncertainties over grasslands and croplands where vegetation growth can be very fast [START_REF] O'neill | Quantitative Retrieval of Soil Moisture Content and Surface Roughness From Multipolarized Radar Observations of Bare Soil Surfaces[END_REF].

The use of a kernel smoother with a half-width window of 21 days [START_REF] Vreugdenhil | Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe[END_REF] when calculating σ WetRef are not optimized for regional conditions [START_REF] Pfeil | Improving the Seasonal Representation of ASCAT Soil Moisture and Vegetation Dynamics in a Temperate Climate[END_REF].

The global constant value of ωp and HR may cause uncertainties in VOD retrieval [START_REF] Baur | Estimation of relative canopy absorption and scattering at L-, C-and X-bands[END_REF]. For the two active VOD products, the retrieval algorithms are both based on the water cloud model, but the inputs are different. TUW VOD was retrieved by using the ASCAT dry and wet references which are the mean value of the 10% highest and lowest normalized backscatter data at 25° and 40° [START_REF] Pfeil | Improving the Seasonal Representation of ASCAT Soil Moisture and Vegetation Dynamics in a Temperate Climate[END_REF], while the ASCAT normalized backscatter data at 40° was used to retrieve ASCAT IB VOD. The hypotheses made in the two active VOD retrieval algorithms are also very different. In the ASCAT IB VOD retrieval algorithm, the vegetation scattering (ω) and VOD parameters were assumed to be constant within a period of 18 days and retrieved together using a model-based SM as input to the algorithm. In contrast, the TUW VOD retrieval algorithm assumes that the maximum range of backscatter values (-6.68 dB) over bare soil is the same around the world, excluding desert areas. The auxiliary data used by both algorithms mainly concern the modelling of soil scattering. The ASCAT IB VOD retrieval algorithm employed many ancillary data sets (e.g., SoilGrids250m

and DEM-related datasets) for calibrating the parameters of the soil model and used a modelled reanalysis SM product from ERA5-land as input to the soil model. Conversely, the TUW VOD retrieval algorithm utilized only the Koppen-Geiger climate classification data to model the bare soil scattering. The different ancillary data used in the two algorithms will affect the VOD retrievals. The most obvious difference is that the two active VODs are retrieved using ancillary information for soil moisture, while VOD and SM are simultaneously retrieved in the passive domain [START_REF] Owe | Multisensor historical climatology of satellite-derived global land surface moisture[END_REF]Wigneron et al., 2017). The two passive VOD are retrieved from AMSR2 brightness temperature measurements at 55° [START_REF] Imaoka | Vegetation effects on the microwave emission of soils[END_REF] 

Conclusion and Outlook

The [START_REF] Forzieri | Emerging signals of declining forest resilience under climate change[END_REF]. Considering that global ASCAT IB VOD showed a good sensitivity to NDWI, some applications (like wildfire prediction or postfire recovery) related to vegetation water content can be explored in the future [START_REF] Bousquet | Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing[END_REF][START_REF] Fan | Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region[END_REF]. Furthermore, a specific version of our algorithm could be developed for Sentinel-1 (S1): less uncertainty in the retrievals could be obtained by combining the S1 observations at the two VV and VH polarisations, instead of using only one (VV) for ASCAT. In addition, improved bare soil models and the use of machine learning methods that can be extrapolated (e.g.

ensemble RF, Cubist) [START_REF] Lin | An Ensemble Random Forest Algorithm for Insurance Big Data Analysis[END_REF][START_REF] Pouladi | Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging[END_REF] could lead to a decrease in the uncertainty associated with the simulation of the bare soil backscattering.

Introduction

Monitoring the vegetation dynamics is important for understanding all aspects of Earth's ecosystems. Microwave remote sensing observations (active and passive) provide a unique approach for such a monitoring, as they are unaffected by clouds and can penetrate different depths of vegetation canopy depending on varying frequencies [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF]. The vegetation optical index (VOD) retrieved from microwave observations is a promising ecological indicator that is related to vegetation water content and aboveground biomass (AGB) (Jackson and Schmugge, 1991;[START_REF] Mo | A model for microwave emission from vegetation-covered fields[END_REF][START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF]. VOD products have been widely used to detect vegetation phenology, estimate agricultural yield [START_REF] Chaparro | L-band vegetation optical depth seasonal metrics for crop yield assessment[END_REF] and GPP [START_REF] Wild | VODCA2GPPa new, global, long-term (1988-2020) gross primary production dataset from microwave remote sensing[END_REF], monitor vegetation water status [START_REF] Li | Estimating Global Ecosystem Isohydry/Anisohydry Using Active and Passive Microwave Satellite Data[END_REF], etc. However, currently available products are at coarse spatial resolution, and studies are focused on large regional scales such as the tropics [START_REF] Fan | Satelliteobserved pantropical carbon dynamics[END_REF][START_REF] Wigneron | Tropical forests did not recover from the strong 2015-2016 El Nino event[END_REF], boreal [START_REF] Fan | Siberian carbon sink reduced by forest disturbances[END_REF][START_REF] Li | Widespread spring phenology effects on drought recovery of Northern Hemisphere ecosystems[END_REF], Amazon region [START_REF] Boulton | Pronounced loss of Amazon rainforest resilience since the early 2000s[END_REF][START_REF] Qin | A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations[END_REF], or the globe [START_REF] Liu | Recent reversal in loss of global terrestrial biomass[END_REF]. The lack of a high-resolution VOD product makes performance of VOD products at fine scales still unknown.

Active microwave observations offer great opportunities to compute highresolution VOD, as Synthetic Aperture Radar (SAR) can provide data with spatial resolution ranging from a few meters to a few hundreds of meters [START_REF] Frappart | Global Monitoring of the Vegetation Dynamics from the Vegetation Optical Depth (VOD): A Review[END_REF]. Particularly, the launch of the Sentinel-1 (S1) satellite series [START_REF] Attema | Sentinel-1 Mission Overview[END_REF][START_REF] Torres | GMES Sentinel-1 mission[END_REF] has enabled globally accessible and freely available backscatter observations at a spatial resolution of 5 × 20 meters in Interferometric Wide (IW) mode, with a revisit cycle of 6 to 12 days. S1 data was used in the global 100m AGB mapping of the Climate Change Initiative Biomass project [START_REF] Santoro | ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010[END_REF]. In addition, the cross-polarization ratio (CR) obtained from S1 VH and VV backscatter observations showed high correlations with passive VOD over crops and grasslands in Europe [START_REF] Vreugdenhil | Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe[END_REF]. Therefore, S1 observations have a great potential for large-area high-resolution active VOD retrieval.

Research on active VOD retrieval started early, but the studies primarily concentrated on the site or plot scale [START_REF] Grippa | Retrieval of bare soil and vegetation parameters from wind scatterometer measurements over three different climatic regions[END_REF][START_REF] Magagi | Retrieval of soil moisture and vegetation characteristics by use of ERS-1 wind scatterometer over arid and semi-arid areas[END_REF]Quast et al., 2019). The proposed algorithms are challenging to apply on a large scale due to the difficulty of obtaining model parameters or inputs. Recently, researchers from Vienna University of Technology (TUW) developed the first global active VOD from ASCAT [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF]. However, the algorithm employed in the retrieval of ASCAT TUW VOD cannot be utilized for VOD retrieval with S1 data.

The main reason is that the ASCAT TUW VOD was not retrieved from the ASCAT observations but from the ASCAT wet and dry references that are computed using the historically driest and wettest observed measurements [START_REF] Hahn | Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT[END_REF][START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF]. The ASCAT wet and dry reference data are provided by Level 2 processed products. However, there is no S1 wet and dry reference data available, and their calculations are very complicated [START_REF] Hahn | Dynamic Characterization of the Incidence Angle Dependence of Backscatter Using Metop ASCAT[END_REF]). El Hajj et al. (2019a) realized the first retrieval of 10 m VOD in a 50 km*50 km area from the S1 VV and VH backscattering coefficients, but their method is limited to non-irrigated crops (winter crops). The proposed method requires estimating the backscattering coefficient of bare soil areas neighbouring the observed pixels, and so the VOD retrieval is difficult to apply over large regions.

In order to retrieve VOD from active observations in a large region, Liu et al.

(2021b) developed the ASCAT IB algorithm over Africa. The ASCAT IB algorithm consists of a semi-empirical model named WCM for vegetation scattering [START_REF] Attema | Vegetation modeled as a water cloud[END_REF]) and an empirical model named Ulaby linear mode for bare soil scattering [START_REF] Ulaby | Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part I-Bare Soil[END_REF]. In the algorithm, the parameters (slope and intercept) of the Ulaby linear model were calculated in the bare soil pixels using ERA5-Land SM and the observed ASCAT backscatter coefficients. Then, two random forest models [START_REF] Breiman | Random forests[END_REF][START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] were trained with the slope or intercept as targets, the terrain parameters obtained from a digital elevation model (DEM) [START_REF] Danielson | Global multi-resolution terrain elevation data 2010[END_REF] and the soil property parameters from SoilGrid [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF] However, when the ASCAT IB algorithm calibrated over Africa (Version 1, V1) is used to retrieve global ASCAT IB VOD, it is found that the results are not good (Liu et al., 2021a). The main reason is the setting of the vegetation scattering parameters. At the same time, it is also found that the time-series of VOD in V1 are relatively noisy (Liu et al., 2021b).

Therefore, [START_REF] Liu | A new global C-band vegetation optical depth product from ASCAT: Description, evaluation, and inter-comparison[END_REF] As both ASCAT and S1 are C-band satellites, their observations exhibit a high consistency in Europe [START_REF] Vreugdenhil | Sentinel-1 Cross Ratio and Vegetation Optical Depth: A Comparison over Europe[END_REF]. Therefore, it appears that it could be very interesting to apply the improved ASCAT IB algorithm (V2) to S1 for the purpose of retrieving a high-resolution VOD retrieval. The goal of the present study is to test the application of the improved ASCAT IB algorithm (V2) to the S1 observations and achieve the retrieval of 1km S1-VOD at a national scale. We selected France as the 

ERA5-land soil moisture

As input to the algorithm, we selected a modelled SM data set as it provides long time series and hourly time-scale data that can match well the satellite observations (Liu et al., 2021b). ERA5-Land SM currently provides the highest spatial resolution (0.1°) data available on an hourly basis. The evaluation of ERA5-Land SM has shown that it has good accuracy [START_REF] Beck | Evaluation of 18 satellite-and model-based soil moisture products using in situ measurements from 826 sensors[END_REF][START_REF] Lal | Assessment of ERA5-Land Volumetric Soil Water Layer Product Using In Situ and SMAP Soil Moisture Observations[END_REF]. In this study, the first layer of ERA5-Land SM, collected at a time close to the S1A observation (near UTC 07:00), was extracted and resampled to 1 km resolution by nearest neighbour method.

Soil and topography data

Soil properties and topography influence the distribution and retention of soil water, which, in turn, impact backscattering coefficients. Consequently, both soil properties and topography-related parameters were employed in the estimation of parameters in the bare soil scattering model.

Soil property parameters are obtained from the SoilGrids data set [START_REF] Hengl | SoilGrids250m: Global gridded soil information based on machine learning[END_REF][START_REF] Poggio | SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty[END_REF], which was generated using machine learning techniques to map the spatial distribution of soil properties at a global spatial resolution of 250 m.

There are two versions of SoilGrids, with Version 2 (V2) [START_REF] Poggio | SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty[END_REF] building upon Version 1 (V1) [START_REF] Poggio | SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty[END_REF] by incorporating up-to-date machine learning models and a broader set of environmental covariates. Soil property parameters from SoilGrids V1 were used in the retrieval of ASCAT IB VOD (V1) [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF]. In this study, we compared the use of SoilGrids V1 and V2 data to estimate the bare soil scattering model parameters. The data from the 0-5 cm layer was resampled from a 250 m spatial resolution to 1 km. SoilGrids V1 (Appendix Table 1) and V2 (Appendix Table 3) are available on https://www.isric.org/explore/soilgrids.

Topography -related parameters were calculated using a digital elevation model (DEM) at a spatial resolution of 250m from GMTED 2010 [START_REF] Danielson | Global multi-resolution terrain elevation data 2010[END_REF].

The mean and standard deviation of DEM elevation in the 1 km grid were first computed, and then the System for Automated Geoscientific Analyses Geographic

Information System (SAGA GIS) software [START_REF] Conrad | System for Automated Geoscientific Analyses (SAGA) v. 2.1.4[END_REF] was used to compute other terrain parameters including Slope, Terrain Surface Convexity (TSC), Terrain Surface Texture (TST), Terrain Ruggedness Index (TRI), Plan Curvature (PlanCur)

and Profile Curvature (ProfCur) (Appendix Table 2).

Vegetation variables for evaluating S1-VOD

In this study, optical vegetation indexes (VIs), AGB, and canopy height data were used for the evaluation of S1-VOD. These data have been used in previous VOD evaluations [START_REF] Gao | Reappraisal of SMAP inversion algorithms for soil moisture and vegetation optical depth[END_REF][START_REF] Grant | Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices[END_REF][START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF]Wang et al., 2021a) to assess the potential of VOD to predict AGB and to monitor the vegetation dynamics such as phenology, growth, and water stress. For a further detailed analysis regarding the use of these data for validation, readers can refer to the work evaluating nine recently developed passive VOD products [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF] and ASCAT IB VOD [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF].

Five VIs (LAI, NDVI, EVI, NDWI, and tree cover) derived from the MODIS product were used in the present study. LAI is from MCD15A3H [START_REF] Myneni | MCD15A3H MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid V006[END_REF], EVI and NDVI are from MOD13A1 [START_REF] Didan | MOD13A1 MODIS/Terra Vegetation Indices 16-Day L3 Global 500m SIN Grid V006[END_REF], NDWI is calculated from the MOD09A1 reflectance product [START_REF] Gu | Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data[END_REF], and tree cover data comes from MOD44B [START_REF] Dimiceli | MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006[END_REF]. The spatial resolution of LAI, NDVI, EVI, and NDWI data is 500m, while the time resolution varies. LAI has a 4-day resolution, NDWI has an 8-day resolution, and EVI and NDVI have a 16-day resolution. Tree cover data is available yearly with a spatial resolution of 250 m. The quality control flags of the different products were used to remove contaminated data. All data were processed and resampled to 1 km on the Google Earth Engine (GEE) platform.

To investigate the relationship between S1-VOD and AGB, we used four kinds of AGB products. Three of them have a global coverage, including Saatchi AGB in 2015 [START_REF] Carreiras | Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions[END_REF][START_REF] Saatchi | Benchmark map of forest carbon stocks in tropical regions across three continents[END_REF], CCI Version 4.0 (V4.0) from 2017 to 2020 [START_REF] Santoro | ESA Biomass Climate Change Initiative (Biomass_cci): Global datasets of forest above-ground biomass for the years 2010[END_REF] and GEDI product in 2020 [START_REF] Dubayah | GEDI L4B Gridded Aboveground Biomass Density[END_REF].

The other one, Schwartz AGB [START_REF] Schwartz | FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach[END_REF] 

Coarse-resolution VOD products for inter-comparing with S1-VOD

To evaluate S1-VOD in terms of spatiotemporal performance, coarse-resolution VOD products from C-band were chosen for comparisons with S1-VOD scaled up to 25km.

The coarse-resolution C-band VOD products include ASCAT IB, ASCAT TUW [START_REF] Vreugdenhil | Analyzing the Vegetation Parameterization in the TU-Wien ASCAT Soil Moisture Retrieval[END_REF], AMSR2 [START_REF] Owe | Multisensor historical climatology of satellite-derived global land surface moisture[END_REF], and VODCA VOD [START_REF] Moesinger | The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA)[END_REF]. ASCAT IB and TUW VOD are active VOD products, and AMSR2 and VODCA VOD are passive VOD products. In addition, we also included the SMOS IC V2 L-band VOD (L-VOD) product [START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF] which has the highest correlation with AGB among all coarse-resolution VOD products [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF].

Ancillary dataset

Land cover data were used as auxiliary data in this study. The land cover data were In this study, we used the latest version of IEM [START_REF] Fung | An Improved Iem Model for Bistatic Scattering From Rough Surfaces[END_REF]. 𝑓 is set as 5.405GHz, pq is VV polarization, incidence angle θ is that of the S1 observation, L was set as 9 cm over whole study region [START_REF] Zribi | New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion[END_REF], ACF is used to characterize the relationship between Sig and L considering an exponential correlation, ε is calculated by the Topp model [START_REF] Topp | Electromagnetic determination of soil water content: Measurements in coaxial transmission lines[END_REF]:ε=3.03+9.3⋅SM+146.0⋅SM 2 -76.7⋅SM 3 and Sig needs to be calibrated (details in Section 5.3.1.2).

Calibration of the model parameters

In the improved ASCAT IB algorithm (V2), there are three steps to calibrate C and D at a global scale before implementing the simultaneous retrieval of both VOD and ω.

In this study, two years S1 (2016-2017) and ERA5-land SM, SoilGrid, and terrainrelated data were used to calibrate the soil parameters over whole study region. The year 2016-2017 was chosen as it is close to the time of the representative time of SoilGrid. The implementation of each step is illustrated as follows:

(1) Selection of the "bare soil" pixels: MODIS IGBP land cover data and LAI data were used to select the "bare soil" pixels defined as the pixels with no vegetation (desert area) during the whole year or with sparse vegetation (LAI<0.5) seasonally.

( Furthermore, the recursive feature elimination (RFE) method was employed to identify the models keeping a favorable performance while using a lower number of predictors.

The same pixels used in step (2) were also used to optimize the Sig parameter of IEM by using the least squares method. Then, a comparison was conducted to assess the ability of both the Ulaby linear model and IEM in simulating the bare soil backscattering. In addition, the performance of trained RF models with the two versions (V1 and V2) of SoilGrid as predictors was also tested. The best bare soil model and trained RF model found in our evaluation were used to retrieve S1-VOD over the study region.

Retrieval of VOD and ω

The improved ASCAT IB algorithm (V2) uses a multi-temporal method to combine retrievals from the overpasses in 18 days, assuming VOD and ω are constant over those overpasses. VOD and ω were retrieved through the application of a least-square iterative algorithm to minimize the cost function J(X): 

min X=VOD ret ,ω ret J(X)= ∑(σ obs °-σ sim °(X)) 2 StdDev(σ °) + (VOD ini -VOD ret ) 2 StdDev(VOD) + (ω ini -ω ret ) 2 StdDev(ω) ( 

Evaluation of VOD and ω

The evaluation of S1-VOD involves assessing both its spatial and temporal performance. Specifically, the spatial correlation between S1 VOD and different AGB, 

Variable importance and map of the predicted soil parameters

The importance of the selected variables for both CRF and DRF can be seen in Fig. 5.5.

Overall, 14 out of 20 variables were chosen to train CRF, including 10 soil properties and 4 terrain data and 13 out of 20 variables were chosen to train DRF, including 9 soil properties and 4 terrain data. The variable that contributes the most to CRF and DRF is terrain variable (dem_cv) and soil property variable (phh20). DRF used the same 13 variables as DRF, except for the bulk density (Bdod) variable, and the terrain variables 

Calibration of the initial parameters of the cost function

To determine the optimal initial values of the VOD and vegetation scattering parameter (ω), the S1-VOD retrievals based on the three methods mentioned in section 5.3.1.3

were compared with Saatchi AGB. The correlations between the three VOD from the three methods and Saachi AGB are presented in Fig. 5.7. It is evident that the VOD retrieved using the initial values from the third method outperformed the results obtained from the other two methods. In the third method, tree cover (TC) was used to estimate the initial value of VOD and ω (note that TC has the highest correlation with ASCAT IB VOD and ω over France among all of the optical vegetation index and microwave index (Fig. 5.8)). Therefore, method (3) was selected in our work and the 1 km tree cover data was used to compute the 1 km VOD ini and ω ini . For the StdDev(VOD)) and StdDev(ω)) parameters, we directly used the standard deviation value of yearly averaged ASCAT IB VOD and ω, namely, 0.05 and 0.03, respectively. The above-mentioned can be reflected in the boxplots of ω parameter by land cover type shown in Fig. 5.9 (b). The boxplots also show that the median value of the ω parameter is similar for each land cover type, while the range of the ω parameter in broadleaf forests and cropland is narrower than in other vegetation types. In addition, the ω parameter of needleleaf forests is lower than that of broadleaf forests, which indicates ω is related to the structure of the canopies. VOD is similar to that of AGB in most pixels, that is, high VOD increases with the increase of AGB or CH. At the same time, S1-VOD can also capture the distribution of AGB and CH well in some sporadic forests in the northern region. In general, S1-VOD can well display the diversity of vegetation types in France.

Sentinel-1 ω retrieval

Sentinel

Spatial correlation with aboveground biomass and canopy height

The density scatter plots of S1-VOD at 1 km resolution with four AGB products and three canopy height products are shown in Fig. 5.11. The highest correlation was found between S1-VOD and CCI AGB (R = 0.78). The correlation between S1-VOD and the other three AGBs was close (R= 0.73-0.74). To investigate the potential of S1-VOD to predict the AGB, the R and RMSE value between predicted AGB and reference AGB were also calculated. In terms of predicted AGB, the highest R values (R = 0.82) were obtained for CCI AGB, and the lowest RMSE value was obtained for Saatchi AGB. For canopy data, the correlations between S1-VOD and the three products were very close (0.80-0.81). When S1-VOD is used to predict the Schwartz canopy height, the RMSE between the predicted canopy height and the reference canopy height is the smallest, whereas it is highest for the Lang's product. As the tree cover data was used as the initial value in retrieving S1-VOD, the relationship between tree cover and different AGB and canopy height products were also examined (Fig 5.12). Results indicated that S1-VOD has a higher correlation with AGB and canopy height products and performs better in predicting AGB and canopy height products than tree cover data. sults can be explained by the fact the active microwave observations are more sensitive to temporal changes in leaf water and structure (diameter of stems and branches, leaf orientation, etc.). 

Discussion

The results of this study showed that the ASCAT IB algorithm could efficiently retrieve the 1 km VOD from S1 data. S1-VOD has a good spatial correlation with different AGB and canopy height products. Nevertheless, there are still some shortcomings associated with S1-VOD.

S1-VOD has more uncertainties that came from the errors in both soil moisture and vegetation and bare soil scattering models as for ASCAT IB VOD. For the soil moisture error, the analysis showed that a 0.05 m 3 /m 3 change in soil water would cause a 16 % relative change in the VOD value of grassland in the retrieval of ASCAT IB VOD [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF]. The relative change of VOD values in savanna (5 %) and evergreen broadleaf forest (3 %) is smaller. Compared with ASCAT IB VOD, S1-VOD is also impacted by errors associated with the assumption of the spatial homogeneity of soil moisture within a 10 km grid. In addition, the assumption of soil moisture spatial homogeneity will also affect the estimation of soil parameters (El Hajj et al., 2019a), making them less explainable by soil properties and terrain-related parameters. The 10-fold cross-validation of the trained random forest models for soil parameters (C and D) prediction in this study showed a lower R-square and higher RMSE values than that of random forest models trained for retrieving ASCAT IB VOD [START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF].

Therefore, the effect of the uncertainty associated with the soil parameters on the S1-VOD retrievals is more serious than that for ASCAT IB VOD. Although a study demonstrated that the SM values of non-irrigated plots (bare or with vegetation cover)

were relatively homogeneous within a 15 km × 15 km area around the Montpellier region of France (El Hajj et al., 2019a), there is still a need for high-resolution SM to retrieve S1-VOD. Recently, Bauer-Marschallinger et al. ( 2019) developed a 1 km soil product in Europe from S1 observations based on the change detection approach used in the ASCAT soil moisture retrieval. Therefore, it will be interesting using this new product to test the S1-VOD retrieval in future studies.

The other uncertainties in the S1-VOD retrievals come from the vegetation scattering and bare soil scattering models. The WCM model used in our study neglects the multiple scattering effects. Quast et al. (2019) used a first-order WCM that considered multiple scattering to simulate the ASCAT backscattering coefficient. The results showed that at the 25 km scale, the proportion of multiple scattering was very small. However, the sensitivity analysis showed that neglecting multiple scattering effects accounting for 5 % of the total ASCAT backscattering signal would lead to a change in ASCAT IB VOD values by around 10-20 % (Liu et. al., 2023). Compared with coarse-resolution observations of ASCAT, 1 km the S1 observations may include more multiple scattering effects. Therefore, multiple scattering effects in the vegetation canopy could have a significant impact on the estimation of S1-VOD. In addition, neglecting subsurface scattering [START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF] will lead to increased errors in bare soil scattering simulation, affecting consequently the retrieval of S1-VOD.

However, there is currently no bare soil model that considers subsurface scattering. In this study, we compared the performance of the Ulbay linear model and IEM in simulating the S1 observations in 'bare soil' pixels. The Ulbay linear model outperformed IEM. The main reason could be that the soil parameters of the Ulbay linear model were directly calibrated using SM and Sentinel-1 backscattering coefficients. In IEM, several parameters, including the coefficients of the dielectric constant model, were pre-calibrated.

It should be noted that S1-VOD is not completely independent from optical data because tree cover was utilized in calculating the initial values of VOD and ω.

Therefore, S1-VOD may contain tree cover information. However, the correlation between S1-VOD and various AGB and canopy height products is stronger than the correlation between tree cover and the same AGB and canopy height products.

Similarly, inter-annual variations (IAV) in tree cover and S1-VOD were not identical and correlation between the IAC of TC and S1-VOD was low. It should also be noted that the initial values of VOD and ω were calculated using the 5-year average tree cover data. Although optical data are also used as initial values in the passive VOD retrievals [START_REF] Al-Yaari | Global-scale evaluation of a hydrological variable measured from space: SMOS satellite remote sensing soil moisture products[END_REF][START_REF] Kerr | The SMOS Soil Moisture Retrieval Algorithm[END_REF], it would be better to develop in future a more independent product using less auxiliary data [START_REF] Li | A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison[END_REF][START_REF] Wigneron | SMOS-IC data record of soil moisture and L-VOD: Historical development, applications and perspectives[END_REF].

Conclusion and Outlook

This There is a lot of work to be done to decrease the uncertainties associated with S1-VOD. The first task is to try to use high resolution soil moisture data in the S1-VOD retrievals. Another task is to develop an S1-VOD product that is independent of optical vegetation index products. In addition, in this study, only the S1 data from descending orbit are used. In the first retrieval study of VOD from S1 over crop fields, El Hajj et al.

(2019a) found that VOD from different orbits can be used to identify water loss in vegetation. Therefore, in the future, S1 data from two orbits will be considered in the S1-VOD retrieval. This will not only increase the robustness of the algorithm as more data is used but may also contribute to develop a product that can be used for a broader range of vegetation applications. At the same time, the S1-VOD retrievals could be expanded to the entire Europe considering the frequent data available. (iv) Tree cover data is a good index for linking S1-VOD retrieval to ASCAT IB VOD retrieval over France. When applying the ASCAT IB algorithm to Sentinel-1 to retrieve 1 km VOD, the a priori information needs to be set. Tree cover data proved highly suitable for defining the 1 km initial value of VOD and  from the ASCAT IB products. Based on the initial value obtained from the ASCAT IB products and tree cover data, eight-years (2015-2022) S1-VOD was generated over France. The results showed that S1-VOD has a good spatial correlation with AGB and canopy height products, and it also tracks well yearly changes in the Climate Change Initiative (CCI) AGB V4.0 product.

Limitations

The evaluation and inter-comparison results show that ASCAT IB VOD and S1-VOD obtained good scores in both temporal and spatial terms. However, there are still limitations associated with ASCAT IB VOD and S1-VOD related to the input data, scattering models and the used evaluation data.

(i) The first limitation is for S1-VOD. In this study, the ERA5-Land soil moisture was used as an input to retrieve VOD. This strategy was also successfully implemented in the passive microwave VOD retrieval (Wang et al., 2021a). The modelled soil moisture products usually have a coarse spatial resolution which can match well the passive microwave observations and active real aperture radar observations. However, when retrieving VOD from the active synthetic aperture radar observations with a higher spatial resolution from a few meters to a few hundred meters, the modelled soil moisture is assumed to be homogeneous over a ~10 km resolution area and this will introduce uncertainties in the VOD retrievals. In addition, tree cover was used to estimate the initial values of VOD and ω from the ASCAT IB products, which makes S1-VOD not completely independent of optical data.

(ii) The second limitation is for both ASCAT IB VOD and S1-VOD. The WCM and the Ulaby linear models were used to simulate the observations of ASCAT and S1. In the WCM model, the multiple scattering effects are neglected and it is difficult to quantify the impact of this process. One study showed that the multiple scattering effects would affect the VOD values in dense vegetation areas [START_REF] Li | Compared performances of SMOS-IC soil moisture and vegetation optical depth retrievals based on Tau-Omega and Two-Stream microwave emission models[END_REF] and boreal regions and it should not have significant effects for low levels of vegetation cover at the C-and L-bands [START_REF] El Hajj | Comparative analysis of the accuracy of surface soil moisture estimation from the C-and L-bands[END_REF][START_REF] Hosseini | Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C-and L-band radar data[END_REF]. However, when VOD is treated as an effective parameter, the multiple scattering effects can be well accounted for by the zeroorder radiative transfer models that neglect multiple scattering effects [START_REF] Kurum | Quantifying scattering albedo in microwave emission of vegetated terrain[END_REF]. In addition, the Ulaby linear model does not consider the subsurface scattering effects resulting in a negative or non-linear correlation between backscattering coefficient and soil moisture (Liu et al., 2016;[START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF]. The subsurface scattering usually happen in deserts and some sparsely vegetated areas [START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF]. Therefore, ignoring the multiple scattering effects in WCM and the subsurface scattering in the Ulaby linear model could create some limitations in the application of ASCAT IB VOD and S1-VOD.

(iii) The third limitation is also for both ASCAT IB VOD and S1-VOD. Due to the absence of a large-scale in situ dataset for validating VOD, the evaluation of ASCAT IB VOD and S1-VOD was performed using vegetation-related proxies like AGB, canopy height, and optical vegetation indexes [START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF].

However, those proxies cannot be regarded as "truth" as they can only represent vegetation features that are related to VOD. In addition, the VOD products retrieved from passive observations at the same frequency as ASCAT were used for inter-comparison. The assumptions and ancillary data used in those passive VOD retrieval algorithms are different from those used in the ASCAT IB algorithm. The above-mentioned points may make the evaluation and inter-comparison of ASCAT IB VOD and S1-VOD more challenging.

Perspectives

Research into the various aspects of retrieval algorithm development, fusion, product evaluation and potential applications of ASCAT and S1-VOD is not yet complete. There are several possible methods for evaluating, improving and developing the results analyzed in the present PhD thesis. We believe that future work could attempt to improve our results mainly in certain directions:

(1) Although S1-VOD showed good performances in both space and time, it present uncertainties related to the use of coarse resolution SM data and it is not independent of the optical remote sensing data. Recently, several 1 km soil products have been released. Especially, [START_REF] Bauer-Marschallinger | Toward Global Soil Moisture Monitoring With Sentinel-1: Harnessing Assets and Overcoming Obstacles[END_REF] developed a 1 km soil product in Europe from S1 observations based on the change detection approach used in the ASCAT soil moisture retrieval. In addition, the MPDI from passive observations was used to calibrate the initial value of VOD in the X-MEB model for X-band VOD retrieval (Wang et al., 2021a). Therefore, high-resolution SM data could be tested to reduce the uncertainties associated with S1-VOD. In addition, microwave vegetation indices calculated from the S1 observations could be used to define the initial vegetation parameters, aiming to enhance the independence of the S1-VOD retrieval from optical data.

(2) Trying to use first-order radiative transfer models including the multiple scattering effects and considering the subsurface scattering when simulating the bare soil signals could be attempted. There are some studies using the firstorder WCM to improve the soil moisture retrievals [START_REF] Quast | Soil moisture retrieval from Sentinel-1 using a first-order radiative transfer model-A case-study over the Po-Valley[END_REF][START_REF] Singh | Incorporation of first-order backscattered power in Water Cloud Model for improving the Leaf Area Index and Soil Moisture retrieval using dual-polarized Sentinel-1 SAR data[END_REF]. For various research regions, different solutions were proposed to parameterize the multiple scattering effects. In a first attempt, first-order WCM could be used to retrieve VOD on a regional scale. For the subsurface scattering, [START_REF] Wagner | Widespread occurrence of anomalous C-band backscatter signals in arid environments caused by subsurface scattering[END_REF] proposed an exponential model to describe it and mapped subsurface scattering impacting C-band backscatter measurements acquired by the ASCAT on a global scale. In the future, based on the subsurface scattering map, specific bare soil models could be used to retrieve ASCAT IB VOD.

(3) As noted previously, because of the lack of reference data, the evaluation and intercomparison of the VOD products are more challenging tasks than for soil moisture, where both in situ and modelled data can be used in the evaluation step. The development of the active VOD products could be a useful step for the triple collocation (TC) technique. In fact, in the TC method, there is a need for an independent product to evaluate other products. ASCAT soil moisture has been used in numerous studies for evaluating satellite-based SM retrievals based on the TC method [START_REF] Gruber | Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment[END_REF][START_REF] Ma | An assessment of L-band surface soil moisture products from SMOS and SMAP in the tropical areas[END_REF]. Similarly, for VOD, ASCAT IB VOD could be used in the future in the inter-comparison of passive VOD products based on the TC or TC-related methods [START_REF] Dong | A double instrumental variable method for geophysical product error estimation[END_REF].
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  (i) Developing the first open-access active VOD (called INRAE-BORDEAUX VOD, hereafter IB VOD) from coarse resolution (25 km) ASCAT observations over Africa with the following purpose: a. Giving a prototype version of ASCAT IB VOD. b. Choosing the suitable models for simulating the bare soil and vegetation backscatter signals and SM auxiliary data that solve the ill-posed problem of retrieving both SM and VOD simultaneously.

  c. Developing methods to calibrate the parameters of the bare soil and vegetation models.

Fig. 1 . 1 .

 11 Fig. 1.1. Flow chart illustrating the main objectives of this doctoral dissertation.

  Chapter III (corresponding to a paper published in RSE) presents the development of the prototype version of ASCAT IB VOD and the performances of ASCAT IB VOD are evaluated. Africa is selected as the study region. The water cloud vegetation model coupled with the Ulaby linear soil model were used to simulate the ASCAT backscatter coefficient. The ERA5-Land SM dataset was used as an auxiliary SM dataset in the retrievals. The pixel-based soil model parameters were mapped using a Random Forest method, and the vegetation model parameter was calibrated daily. The IB VOD product was retrieved over Africa during 2015-2019, and its performances were evaluated in space and time by comparing with AGB, lidar tree height (TH), NDVI, EVI and LAI. Chapter IV (corresponding to a paper published in RSE) presents the retrieval of ASCAT IB VOD which is further conducted at the global scale. This chapter presents the improvement of the ASCAT IB algorithm and the inter-comparison of ASCAT IB VOD with three other passive VOD products at the same frequency at the global scale.

  Chapter V (corresponding to a draft article to be submitted at RSE) presents the development of a 1 km S1 VOD product over France from 2015 to 2022. The good ability of the ASCAT IB algorithm shown in Chapter III and IV motivated us to develop a high-resolution VOD from Sentinel-1 which has the same frequency band (C-band) as ASCAT. Therefore, the ASCAT IB algorithm was applied to the Sentinel-1 data to retrieve VOD through several tests. The ASCAT IB VOD retrieval algorithm was improved and adapted to the Sentinel-1 observations. Specifically, (i) the performance of the Ulaby and Integral Equation Model (IEM) soil models in simulating the bare soil signals were evaluated (ii) new soil property datasets were tested to improve the prediction of the soil model parameters (iii) different methods of estimation of the initial values of VOD and  were inter-compared. Finally, the performance of Sentinel-1 VOD was evaluated at 1 km and 25 km scales through comparison with aboveground biomass (AGB), canopy height (CH) and vegetation indices (VIs, e.g. NDVI, EVI, LAI and NDWI) datasets. Chapter VI summarizes the results obtained from all chapters, discusses the limitations of this research, and outlines future works. Chapter II 2: Active microwave remote sensing of SM and VOD Active microwave remote sensing has been used now for decades to monitor the land surfaces. Here we focus more specifically on two variables of interest over the vegetation areas: surface soil moisture (SM) and vegetation optical depth (VOD) which are the key parameters determining the radar backscattering over vegetation-covered surface areas.
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 21 Fig. 2.1. Single-scattering contributions in a soil-vegetation medium: direct backscattering from soil including two-way attenuation by canopy (1-black), direct backscattering from vegetation (2-blue), vegetation/ground scattering (3-orange), ground/vegetation scattering (4-grey), ground/vegetation/ground scattering (5-red) [adapted from Frappart et al. (2020)].

  , are usually used to describe vegetation scattering. MIMICS was proposed for characterizing the radar response of forest canopies. TVG model was originally developed for crop types such as sunflower and corn. The TVG model treats the vegetation as an ensemble of discrete lossy scatterers, while the MIMICS model considers a continuous vegetation canopy. In these two models, the vegetation layer consists of the crown and trunk layers. The crown layer is modelled in terms of distributions of dielectric cylinders (representing needles and/or branches) and discs (representing leaves), and the trunks are treated as dielectric cylinders of uniform diameter. The geometric parameters needed to simulate the scattering and absorption of the cylindrical shapes include the radius, length (or height), and gravimetric moisture (fraction) of the cylinders, and the number of cylinders per unit of underlying area. The geometric parameters required for the discs include the disc radius, disc thickness, plant moisture content (fraction), and disc angular distribution. The disc angular

  used the soil moisture simulated from the Global Land Evaporation Amsterdam Model (GLEAM), C-band VOD from CCI-LPRM and ASCAT backscatter to calibrate the parameters of WCM and the Ulably linear soil model. The calibrated model presented a global average bias of -0.040 dB (observations minus simulations) and an averaged temporal correlation of 0.633 between simulations and observations at a global scale. The WCM and the Ulably linear soil model were also used as a new observation operator in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface model to convert soil moisture and leaf area index into ASCAT backscatter observations over south-western
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 22 Fig. 2.2. Penetration of the electromagnetic waves in the soil and the vegetation (grass, crop, trees) as a function of the frequency band (X in blue, C in red, and L in black) [adapted from Frappart et al. (2020)].

1

  have attracted more attention for retrieving active VOD for the following reasons: (1) Global time-series ASCAT data have been freely available since 2007, offering a favourable opportunity for long-term active VOD retrieval on a global scale; (2) Sentinel-1 provides global freely high-resolution data since October 2014, providing an advantageous opportunity for high-resolution active VOD retrieval on a large scale; (3) C-band microwave data are less affected by radio frequency interference compared to L-band data (Monti-Guarnieri et al., 2017) and interact more with soil and vegetation than X-band; (4) Good performance of the WCM and Ulably linear soil model to simulate the C-band microwave observations (Lievens et al., 2017; Shamambo et al., 2019); (5) Preliminary studies of VOD retrieval have been conducted from ASCAT and

  Advanced Scatterometer (ASCAT) (Figa-Saldaña et al., 2014) is a real aperture radar, operating at 5.255GHz (C-band) and using vertically (VV) polarised antennas to provide day-and night-time measurements. It is one of the new-generation European instruments carried on the Meteorological Operational satellite (MetOp) platform developed by the European Space Agency (ESA) and operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). METOP

  are three MetOp satellites equipped with ASCAT which were launched on 19 October 2006 (MetOp-A), 17 September 2012 (MetOp-B) and 7 November 2018 (MetOp-C), respectively. The daily global coverage with one METOP satellite is about 82 % and the gaps in coverage are largest near the equator (Fig. 2.4 (a)). With three satellites working together, full daily coverage is achieved (Fig. 2.4 (c)). The main purpose of ASCAT is used to determine information about the wind for use primarily in weather forecasting and climate research. Another important application is the retrieval of the global active soil moisture product based on the Technische Universität Wien (TUW)
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 23 Fig. 2.3. ASCAT on orbit and its geometry. Source:https://resources.eumetrain.org/data/5/530/ hsafew2019_s2a.pdf Two kinds of backscatter data are available at a spatial resolution of 25 km or 50 km: level one (L1) original data and level two (L2) processed data. The L2 data is the normalized data converted by L1 backscatter observations taken over the entire incidence angle range to the reference incidence angle of 40°.
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 24 Fig. 2.4. Daily global coverage achieved by the ASCAT instrument over land with only METOP-A in orbit, with METOP-A and METOP-B in orbit, and with METOP-A, METOP-B and METOP-C orbit. Source: https://resources.eumetrain.org/data/5/530/hsafew2019_s2a.pdf
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 25 Fig. 2.5. Sentinel-1 spacecraft. Source:https://sentinel.esa.int/web/sentinel/missions/sentinel-1.

Fig. 2 . 6 .

 26 Fig. 2.6. Sentinel-1 constellation observation, revisit and coverage scenario. Source: https://sentinel.esa.int/web/sentinel/missions/sentinel-1/observation-scenario. The first retrieval of VOD from Sentinel-1 VV and VH image acquired with interferometric wide swath mode was conducted by El Hajj et al. (2019a) who used the

  microwave observation has been widely used in various fields of vegetation monitoring. To date, VOD is mainly retrieved from passive microwave data and there are no open-access active VOD products. This chapter fills this gap by introducing a new algorithm called the ASCAT IB algorithm developed for retrieving active C-band VOD (C-VOD) from mono-polarization observations of ASCAT. For a first evaluation analysis, Africa was chosen as this continent presents a large variety of vegetation and climate conditions. We presented the calibration of the soil and vegetation model parameters of the ASCAT IB algorithm and the results of VOD retrieval. The ASCAT IB algorithm is expected to promote the development of global ASCAT VOD for an improved long-term monitoring of vegetation in Africa.

  The observation time of the SM data derived from other EO sensors (such as SMOS, SMAP or AMSR2 SM) is different from that of ASCAT and the time period of those products is too short (for instance, SMOS was launched end of 2009). Therefore, our retrieval algorithm used model-based SM data from the ERA5-Land product as a known SM input of the retrieval algorithm. For a first evaluation analysis, this study is conducted over Africa as this continent has a large variety of vegetation and climate conditions. Following[START_REF] Li | Global-scale assessment and inter-comparison of recently developed/reprocessed microwave satellite vegetation optical depth products[END_REF], several vegetation parameters and indices (Aboveground Biomass (AGB), Lidar tree height (TH), the Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and Enhanced Vegetation Index (EVI) and leaf area index (LAI)) were used to evaluate the performance of IB VOD in space and time. In addition, to understand the performance of IB VOD, we made a comparison between IB VOD and three other VOD products at C-band.

  Meteorological Operational Satellite Program of Europe (Metop) series of satellites. This series includes three satellites which were launched on 19 October 2006 (MetOp-A), 17 September 2012 (MetOp-B) and 7 November 2018 (MetOp-C), respectively. Each satellite flew in a sun-synchronous orbit and overpassed the surface twice a day near the Local Sidereal Time (LST) 09:30 (descending) and 21:30 (ascending).The European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) provides users with two kinds of backscatter data at a spatial resolution of 25 km or 50 km: level one (L1) original data and level two (L2) processed data. The L2 data are normalized by using a second-order polynomial function describing the relationship between incidence angle and backscatter(Wagner et al., 1999b), and are included in the soil moisture datasets. The data are stored in a discrete global grid (Swath Grid format); the grid spacing of the 50 km data is 25 km, and 12.5 km for the 25 km data. Five years (2015-2019) L2 MetOp-A backscatter (25 km x 25 km) data normalized at an incidence of 40 degrees were used in the present study. As there is usually a lower vegetation water stress in the morning making descending VOD data

  Two ancillary vegetation datasets were used in this study. The MODIS-based land cover map over Africa was used to assist in soil model parameter calibration and to interpret the VOD inter-comparison results as a function of land cover types. This land cover map is produced by combining the 500 m MCD12Q1 (Collection 6) over 2017 in the International Geosphere-Biosphere Programme (IGBP) scheme (Sulla-Menashe and Friedl, 2019). In addition, the tree cover percentage (TCP) data from MOD44B Vegetation Continuous Fields (VCF) product[START_REF] Dimiceli | MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006[END_REF] over 2017 were used to assist in calibrating the soil and vegetation model parameters.

  σ soil(dB) °=10 log 10 σ soil °=C+D⋅SM (3.4)Where C is the radar backscatter in very dry conditions (SM ~ 0 m 3 /m 3 ), and D parameterizes the sensitivity of the radar data to soil moisture.Following[START_REF] Baghdadi | Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands[END_REF] and[START_REF] Zribi | Analysis of L-Band SAR Data for Soil Moisture Estimations over Agricultural Areas in the Tropics[END_REF], we neglected the σ vege+soil ° term and VOD can be computed as:
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 31 Fig. 3.1. Flowchart for computing the C and D map over Africa.

  series of σ soil(dB) ° and SM was established and we only retained the values of C and D when the following conditions, ensuring a robust and physically-based linear relationship, were met: (i) the correlation value (R) of the linear relationship between time series of σ soil(dB) ° and SM is positive, (ii) the relationship is significant (p-value < 0.01)
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 32 Fig. 3.2. Flowchart for computing the A map over Africa.

  results of C and D for "bare soil" pixels Based on the method defined in section 3.2.1, we extracted 1610 and 7524 pixels belonging, respectively, to category 1 (σ soil(dB) ° is sensitive to the soil moisture) and category 2 (σ soil(dB) ° is in very dry conditions all the time). The computation of C and D was carried out for both categories 1 and 2. For the pixels belonging to category 1, the C and D values were derived based on Eq. (3.4). As σ soil(dB) ° increases with the increase in soil moisture, only the pixels that obtained a significant positive correlation (p-value<0.01) between σ soil(dB) ° and SM were kept. As a result, 78.39 % of the pixels (1262 pixels) were retained. For category 2, all pixels (7524 pixels) can be used to compute the C value. Together with the pixels retained for category 1 (1262 pixels), 8786 pixels were used to calibrate the C parameter.

Fig. 3

 3 Fig. 3.3. (a) Spatial distribution of pixels used to calibrate the C (red and blue) and D (blue) soil parameters; and histograms of the retrieved (b) C and (c) D values.The spatial distribution of the pixels used for the calibration of the C and D parameters is shown inFig. 3.3 (a). We can see that the pixels used to calibrate the D
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 34 Fig. 3.4. Importance of the selected variables in the RF model for predicting the (a) C value and (b) D value. Based on the RFE algorithm, 16 out of the 27 variables were selected to train the model used to map the C value, including 4 terrain parameters (importance weight
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 35 Fig. 3.5. Scatterplots between the retrieved and RF predicted values based on the 10 folders cross-validation for the (a) C value and (b) D value.
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 36 Fig. 3.6. Map of the (a) C and (b) D soil model parameters and (d) the corresponding boxplot in (c) different land cover types. The RF predicted maps for C and D in Africa are presented in Fig. 3.6 (a) and (b). To better understand the spatial distribution of the C and D values in those two maps, we grouped the C and D values in each IGBP vegetation type (Fig. 3.6 (c)).Fig.3.6 (d) shows that the median of the C values is similar (~ -14.8 dB) for each IGBP vegetation type. Very large variability in the C values can be noted for barren or sparsely vegetated (BSV). When analyzing the Ocdens and TRI data for BSV, we found that the pixels with the higher TRI values correspond to higher C values, and the

  Fig. 3.7 (a) shows the spatial distribution of the VDV areas. The VDV areas are mainly located in the Congo basin where the dominant land cover type is the evergreen broadleaf forests (Fig.3.6 (c)). In this study, the vegetation calibration was made over five years(2015)(2016)(2017)(2018)(2019). A 0 (t) presents lower values in winter and spring while larger values were found in summer when the vegetation growth reaches its peak (Fig.3.7 (b)). A 0 95% (t) has the same trend as A 0 (t) but with larger values. To calibrate the A value in WCM, we used A 0 (t) in most regions of Africa, and A 0 95% (t) was mainly adopted in the VDV areas (Fig.3.7 (c)).

Fig. 3

 3 Fig. 3.7. (a) Map of the very dense vegetation (VDV) region selected in this study, and (b) daily values of A 0 and A 0 95% for five years (2015-2019). The solid line represents the average value of five years, and the shading describes one standard deviation. (c) Map of Region 1 and Region 2 used in the calibration of the vegetation parameter.

  Saatchi AGB, CCI AGB), TH (Simard TH, Patapov TH) and the temporal correlation between IB VOD and VIs (NDVI, EVI and LAI) were computed as performance metrics. In addition, three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) retrieved at the same frequency band (C-band) were also included in the inter-comparison. As VODCA LPRM V6 VOD data was only updated until the year 2018, the temporal performance of IB VOD was evaluated from 2015 to 2018.
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 38 Fig. 3.8. Temporal average of VOD for (a) ASCAT IB, (b) ASCAT V16, (c) AMSR2 LPRM V5 and (e) VODCA LPRM V6 from years 2015-2018, and (f) CCI AGB and (g) Potapov tree height. Side plots show the zonal average for (d) the four VOD and (h) CCI AGB and Potapov TH data sets.
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 3 Fig. 3.8 shows the average value of IB VOD and three other VODs (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) computed from 2015 to 2018. All maps present similar general spatial patterns: the highest VOD values are distributed in the equatorial rain forests and the lowest values in the Sahara Desert. The VOD values generally decrease as the distance from the equator increases. In terms of VOD range, IB VOD has a larger range of values (~ 0 -1.5) than the three other VOD. The changing patterns with the latitude of IB VOD are more consistent with those of V16 VOD which is computed from the same sensor (ASCAT) (Fig. 3.8 (d)). There are also some
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 39 Fig. 3.9. Boxplots of the four VOD datasets (ASCAT IB, ASCAT V16, AMSR2 LPRM V5, and VODCA LPRM V6) (top) and two AGB datasets (CCI and Saatchi) (bottom) for different IGBP land cover classes.Boxplots of the four VOD for each land cover class are presented in Fig.3.9 (a). Wide quantile ranges are found for IB VOD over the region covered by evergreen broadleaf forest (EBF), woody savanna (WSA) and cropland/natural vegetation mosaic (CVM). The same can also be noted for ASCAT V16 and AMSR2 LPRM V5 VOD for the EBF and CVW classes, respectively, but to a lower extent. VODCA LPRM V6 VOD has a very narrow range in each vegetated IGBP class and particularly in EBF. The highest yearly VOD values were obtained for EBF, followed by WSA, MFO and DBF (Fig.3.9 (b)). Except for EBF, WSA and CVM, the lowest average value was obtained with IB VOD over each land cover class. The change in IB VOD for the different vegetation classes is quite consistent with that of AGB (R=0.94-0.95), while the consistency is less clear for the three other VOD datasets. For example, the AGB value
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 3 Fig. 3.10. Density scatter plots showing the spatial relationship between the four yearly average VOD datasets (from left to right: ASCAT IB, ASCAT V16, AMSR2 LPRM V5, VODCA LPRM V6) and two AGB datasets (from top to bottom: Saatchi, CCI). R1 represents the spatial correlation between VOD and reference AGB, while R2 represents the spatial correlation between predicted AGB and reference AGB. Computations were made over 2015 -2017. The solid line is the fitted line.

Fig. 3 .

 3 Fig. 3.11. Density scatter plots showing the spatial relationship between the four yearly average VOD datasets (from left to right: ASCAT IB, ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) and two tree height datasets (from top to bottom: Simard, Patapov). R1 represents the spatial correlation between VOD and tree height (TH), while R2 represents the relationship between predicted TH and reference TH. The solid line is the fitted line.

Fig. 3 .

 3 Fig. 3.11 shows the density scatter plot between two tree height (TH) datasets (Simard and Patapov) and the four VOD datasets. The active VOD datasets have a more pronounced linear spatial relationship with the two TH datasets than the passive VOD, similarly with the result obtained for AGB. IB VOD presents the best spatial linear

  3.12 shows saturation for high VIs values is more obvious for the active VOD datasets (ASCAT IB and V16), while the relationship is almost linear for the passive VOD (AMSR2 LPRM V5 and VODCA LPRM V6). Saturation starts when the values of NDVI (EVI, LAI) exceeds ~ 0.7(0.4, 2). The correlation coefficients obtained with the active VOD dataset are lower than 0.75. Higher spatial correlations (R ~ 0.91-0.93) were obtained with passive VOD, but saturation can also be noted for AMSR2 LPRM V5 for higher NDVI and EVI values and VODCA LPRM V6 for higher LAI values.
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 3 Fig. 3.12. Density scatter plots of the spatial relationship between four yearly average VOD datasets (from left to right: IB, ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) and two MODIS VI datasets (from top to bottom: NDVI, EVI and LAI).
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 3 Fig. 3.13. Temporal correlations between four VOD datasets (from left to right: ASCAT IB, ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) and three MODIS VIs datasets (from top to bottom: NDVI, EVI and LAI) for each pixel from 2015 to 2018. Grey pixels correspond to pixels where correlation is not significant (p > 0.05). Blank pixels denote "no valid data". In order to evaluate the ability of IB VOD to monitor the vegetation dynamics, the temporal correlations between 16-day average VOD and MODIS VIs (NDVI, EVI and LAI) were computed for each pixel from 2015 to 2018 (Fig.3.13). IB VOD presents a positive temporal correlation with each VI in most regions of the African continent (values exceeding 0.85 in Nigeria for instance). Negative correlation values (R∼-0.7) can be noted in some arid and semi-arid regions, such as the south of Ethiopia and western Namibia. Compared with the results of the three other VOD datasets, we found that the spatial distribution of pixels with a positive correlation obtained with IB VOD is similar to that obtained with AMSR2 LPRM V5 and VODCA LPRM V6 VOD. Although ASCAT V16 VOD shows generally different spatial patterns (Fig 3.13 (b), (f) and (g)), similar negative correlation values were found in South Africa and the Sahara Desert.

  3.14. For IB, the pixels with the highest temporal correlations with NDVI are mainly distributed in the centrewest (3°S-15°S). ASCAT V16 obtained the highest correlation values in a few regions in Centre Africa. The highest correlation values for AMSR2 LPRM V5 VOD were located in the south of Africa and the north of the Congo basin. For VODCA LPRM V6 VOD, the distribution of the highest correlation values is scattered all over Africa, mainly out of the central regions of Africa. Similar results were also found for EVI and LAI. As noted above, more pixels obtained the highest correlation values with EVI and LAI for IB VOD, especially in eastern Africa (Tanzania) and south of the Sahel region.

Fig. 3 .

 3 Fig. 3.14. Maps showing which VOD datasets obtained the highest absolute temporal correlation (R) values with MODIS VIs and (d) its percentage of coverage. Grey pixels correspond to pixels where the correlation is not significant (p > 0.05). Blank pixels denote "no valid data".

Fig. 3 .

 3 Fig. 3.14 (c) gives the percentage of pixels where the highest correlation was obtained for each VOD product. IB VOD shows the best performance with EVI (LAI), over 36.65 % (30.19 %) of the pixels, followed by VODCA LPRM V6 VOD (23.87 % for EVI, 26.06 % for LAI). Conversely, regarding NDVI, VODCA LPRM V6 VOD obtained

Fig. 3 .

 3 Fig. 3.15. Maps of the VOD datasets showing the HCD pixels (where the highest correlation value with one product is larger by 0.1 than that obtained with all the other products) for (a) NDVI, (b) EVI, (c) LAI and (d) its percentage of coverage. Beige pixels indicate the difference between the highest and second-highest correlation (R) values is less than 0.1. Grey pixels correspond to pixels where the correlation is not significant (p > 0.05). Blank pixels denote "no valid data".The seasonal dynamics of IB and three other VOD are also analysed based on the daily time series of VOD along with NDVI at three selected sites (Fig.3.16). ASCAT IB VOD is noisier at a daily time-scale than the three other VOD products (this aspect will be explored in discussion), while a clear seasonal change can be well observed for all VOD products. AMSR2 LPRM V5 and VODCA LPRM V6 VOD present similar seasonal variations but with different values. This is because VODCA LPRM V6 VOD is a fusion of VOD retrieval results from multiple sensors. The VODCA data used in

  3.16 (b) and (f)). At the same time, a large time lag (~180 days) between the four VOD products and NDVI (Fig.3.16 (a)) was found in grassland.[START_REF] Tian | Coupling of ecosystemscale plant water storage and leaf phenology observed by satellite[END_REF] and[START_REF] Lawrence | Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA[END_REF] also found time lags, varying by a large range of days, between L-VOD and NDVI over different vegetation types.

Fig. 3 .

 3 Fig. 3.16. Time series of the four VOD products (daily), NDVI, ASCAT backscatter and ERA5-Land Soil moisture from January 2015 to December 2018 over three types of vegetation (Grassland, Savanna and Evergreen Broadleaf Forest).

(

  case 1) and land covered by a certain degree of sparse dynamic vegetation (case 2), which is different from previous studies where the soil coefficients (C and D) of the Ulaby linear model were calibrated from experimental data measured over different sites. Then the calibration of C and D was extended at continent-scale using a RF machine learning method. Compared with the C and D values computed in Shamambo et al. (2019), the values of C and D obtained in our study are lower and their range is larger. Although Shamambo et al. (2019) also used ASCAT data, their different research region (south-west of France) and calibration methods caused different results. For the D value, numerous experimental studies at C-band have shown avariable sensitivity of the radar signal to soil moisture, varying approximately between 5 dB / m 3 ⸱m -3 and 30 dB / m 3 ⸱m -3( Baghdadi et al., 2008 ; Baghdadi et al., 2016 ; Verhoest 

Fig. 3 .

 3 Fig. 3.17. Histogram of the temporal correlation (R) between the time series of ASCAT backscatter and ERA5 Land soil moisture for pixels belonging to category 1. As for the vegetation parameter (A) calibration, its value was set to a spatially constant value in only two regions of Africa for each day. de Rosnay et al. (2020) found that changes in the value of A have little effect on the simulation of the VV polarized
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 3 Fig. 3.18. Sensitivity of VOD to a change in SM of ± 0.050 m 3 ⸱m -3 over three types of vegetation (Grassland, Savanna and Evergreen Broadleaf Forest).
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 3 Fig. 3.19. Time series of the four VOD products (daily) (smoothed with a moving window filter of 21 days), NDVI, ASCAT backscatter and ERA5-Land Soil moisture from January 2015 to December 2018 over three types of vegetation (Grassland, Savanna and Evergreen Broadleaf Forest).

Random

  Forest models were trained to map the soil parameters (C and D) of the Ulaby linear model, and the trained model showed good performance (R 2 =0.85 for C and R 2 =0.61 for D). For the vegetation parameter (A) of WCM, a temporally dynamic value calibrated from observations over the very dense vegetated area was used. IB VOD and the three other VOD products were evaluated against several vegetation datasets (AGB, tree height and MODIS VIs). Comparison with other VOD products suggested IB VOD has advantages in terms of both spatial and temporal performances. Especially, IB VOD presents a very good linear relationship with AGB and tree height data (R ~ 0.89-0.92) showing the considerable potential of IB VOD to study global AGB and tree height changes. Moreover, the temporal correlation between IB VOD and NDVI or EVI showed obvious improvements (> 0.1) in savanna and woody savanna compared to the three other VOD products considered in the present study. The encouraging results found in Africa suggest that we can extend the proposed method to produce a long term (from 2007-present) and global IB VOD product. In addition, Steele-Dunne et al. (2012) and Frolking et al. (2011) found that variations in canopy water content could account for the backscatter variations

  et al. (2022) found the diurnal and seasonal cycles of backscatter and emissivity collected from Global Precipitation Mission (GPM) at a 1° × 1° resolution tend to be in phase opposition in the tropical forest region, while backscatter and emissivity vary more in phase during the dry season in the less densely forested regions of southeast Amazon. The dissimilar information obtained from active and passive microwave signals motivates us to explore the retrieval of VOD from active microwave observations.Active microwave data provide complementary observations to passive observations because 1) they are sensitive to specific vegetation characteristics, 2) are less affected by radio interference than passive observations[START_REF] Liu | ASCAT IB: A radar-based vegetation optical depth retrieved from the ASCAT scatterometer satellite[END_REF] and 3) can also provide long-term records, such as observations from three series of Advanced SCATterometer (ASCAT) Meteorological Operational (MetOp -A/B/C) satellites which start in 2007 and can be extended to the 2020s[START_REF] Srivastava | Available Data Sets and Satellites for Terrestrial Soil Moisture Estimation[END_REF].

  versions. In the SMAP official SM baseline algorithm[START_REF] O'neill | Quantitative Retrieval of Soil Moisture Content and Surface Roughness From Multipolarized Radar Observations of Bare Soil Surfaces[END_REF], the MODIS NDVI was converted to vegetation water content and then multiplied by a factor to represent VOD. Based on the optimization of the a priori information,[START_REF] Li | A new SMAP soil moisture and vegetation optical depth product (SMAP-IB): Algorithm, assessment and inter-comparison[END_REF] developed a new SMAP SM and VOD product (called SMAP-IB) using the L-MEB algorithm. In addition,Wang et al. (2021a) calibrated a relationship between VOD and the Microwave Polarization Difference Index (MPDI) and then used the VOD based on MPDI as the initial value to retrieve X-band VOD from the AMSR2.

  , thirteen years of global ASCAT IB VOD (2007-2020) were retrieved and evaluated using different AGB, tree height and optical vegetation index products. The key characteristics of the global ASCAT IB VOD product are illustrated by performing comparisons with ASCAT TUW VOD and two other passive C-band VOD products from the AMSR2 satellite, namely AMSR2 VOD and VODCA VOD.
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 41 Fig. 4.1. Flowchart presenting the development and assessment of global ASCAT IB VOD.

  Fig. 4.1. The retrieval model is based on a vegetation backscatter model (Water Cloud Model) integrated with the Ulaby bare soil model (Section 3.1). Instead of the common procedure in which

  was used to model the bare soil backscatter (σ soil ∘ , in dB) as a function of soil moisture (SM, in m 3 /m 3 where C is the radar backscatter of the very dry bare soil, D represents the radar backscatter sensitivity to soil moisture changes, and SM comes from the ERA5-land SM product. The Eqs. (4.2)-(4.4) were finally inserted into Eq. (4.1) to express σ obs ∘ as a function of vegetation optical depth (τ):

  StdDev(VOD) was set to 0.40 for forest pixels and 0.15 for no-forest pixels. According to the definition of ω, the ω ini and StdDev(ω) parameters were calculated from the ASCAT wet reference ( σ WetRef ∘ ) data which is computed from the maximum backscattering coefficient for each pixel during the peak growth season (Fig. 1 in Steele-Dunne et al. (2019) and Fig. 2 in Vreugdenhil et al. (2016)) or during times with high values of ERA5-Land SM (Appendix Fig. 1). σ WetRef ∘ is provided over each pixel and is almost constant on a daily basis. The yearly mean value of σ WetRef ∘ in each pixel was used to estimate ω ini . Like the calculation of StdDev(VOD), StdDev(ω) was estimated from the yearly mean value of σ WetRef ∘ over the forested and non-forested areas. It was set to 0.01 for the forested areas and 0.03 for the non-forested areas.

  Fig. 4.2. Spatial distribution of the "bare soil" pixels (represented by points) and MODIS IGBP land cover map. The "bare soil" pixels are shown in a 2° × 2° grid if the total number of C or D pixels is larger than six.
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 43 Fig. 4.3. Predictive variable importance of the C (a) and D (b) model values. SPI and TI mean soil property indices (in orange) and terrain-related feature variables (in dark blue), respectively. The definition of each variable is given in AppendixTable 1 and 2.
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 44 Fig. 4.4. Performance of the C (a) and D (b) soil model based on the 10-fold cross-validation. The spatial patterns of the global predicted C and D parameters are illustrated in Fig. 4.5. The 5 th -95 th percentiles of the C and D values among all pixels varied from

  Considering each IGBP landcover (Fig. 4.5 (c)), we can see that the C and D parameters have a wide range of values in the low vegetation areas. A wide range of C values can also be found in mixed forest (MFO). The median C values were similar across all vegetation types, while the median D values varied across the different land cover types. More details about the statistical description of C and D are given in Appendix Table 5-7.

Fig. 4 . 5 .

 45 Fig. 4.5. Global maps of the C (a) and D (b) soil model parameters estimated from the RF models and (c) their boxplots for different IGBP land types.

A

  global map of the thirteen-year time-average retrieved ω (based on w=18 days) is shown in Fig. 4.6 (a). The highest values (ω > 0.32) were obtained in Western Australia, northern Mexico, northwest Canada, eastern Lena River in Russia, southern Somalia, western Arabian Peninsula, southwest Iran, and northern Pakistan. Those regions are in areas with complex terrain of hills and gullies. High values of ω were also retrieved in most pixels of the tropical regions. A clear gradient of increasing average ω value from north to south can be seen across the Sahel. The maximum values of ω reach up to 0.97, and the pixels with values in the range of 0.08-0.32 account for 97.36 % of all pixels.

Fig. 4 . 6 .

 46 Fig. 4.6. Global distribution of (a) temporal average and (b) standard deviation of the retrieved ω parameter from 2008 to 2020, and (c) the mean value per vegetation type ordered by decreasing values and the corresponding standard deviation. A boxplot of ω for each land cover type sorted by decreasing median values are shown in Fig 6 (c). Evergreen broadleaf forests (EBF) have the highest ω values, which is consistent with previous results from a calibration of the ω values over southern
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 47 Fig. 4.7. Global distribution of time-averaged VOD maps over the period from years 2013-2018, (a) ASCAT IB, (b) ASCAT TUW, (c) AMSR2, (d) VODCA and (e) corresponding zonal average.

~ 1 .

 1 2 for AMSR2 and ASCAT TUW VOD, ~ 1.0 for ASCAT IB VOD, and ~ 0.75 for VODCA VOD. The two passive VOD products (AMSR2 and VODCA) have a similar spatial distribution, with higher values in the boreal forests similar to those in the tropical region because they are retrieved from the same sensor (AMSR2) but with a different version of the algorithm. The zonal averaged VOD per latitude (Fig. 4.7 (e)) shows two peaks at the latitudes of ~ 0°N and ~ 60°N for all three VODs, except for ASCAT TUW VOD. At the latitude of ~ 0°N corresponding to regions of dense tropical forests, both ASCAT VODs decrease rapidly from north to south, while both AMSR2 VODs show a plateau at ~ 0°N and decrease from a latitude of about 13°S.
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 48 Fig. 4.8. Density scatter plots and residuals of the spatial relationship between ASCAT VOD IB and the three other VOD products. VOD is time-averaged over 2013-2018, with residuals calculated as ASCAT IB VOD minus the three other VODs.In order to quantitatively describe the differences among the four VODs, we computed the spatial correlation and residuals of the relationship between ASCAT
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 49 Fig. 4.9. Density scatter plots of the four global C-VOD (yearly averaged value) vs Saatchi AGB (first row), CCI AGB (second row) and GEDI AGB (third row) datasets. R1 is the spatial Pearson correlation coefficient calculated between C-VOD and AGB (Eq. (7)), while R2 is calculated between VOD-predicted AGB and AGB. The solid blue lines are the predictive fits obtained using Eq. (8) or (9).

Fig. 4 .

 4 Fig. 4.10. Density scatter plots of the four global C-VOD (yearly value) vs the Potapov et al. canopy height (first row), and Lang et al. canopy height (second row) datasets. R1 is the spatial Pearson correlation coefficient calculated between C-VOD and canopy height (CH) (Eq. (7)), while R2 is calculated between VOD-predicted CH and CH. The solid blue lines are the fits obtained using Eq. (8) or (9).

  4.10) between VOD and the two GEDI canopy height (CH) (Lang and Potapov) products, ASCAT IB VOD obtained the best correlation (R = 0.84-0.85). The saturation of VOD to CH is more serious for AMSR2 and VODCA VOD than for ASCAT IB and TUW VOD. AMSR2 and VODCA VOD saturate at a value of CH exceeding 15 m, while ASCAT IB and TUW VOD saturate at a higher value (> 20 m). Regarding the potential to predict canopy height, ASCAT IB VOD presents again the best results with the two canopy height (CH) products at different spatial resolutions (Potapov: from 30 m resampled to 0.25 degrees, Lang: 0.5 degrees). The lowest RMSE values were obtained in the ASCAT IB VOD predictions of CH: RMSE = 4.07 m for Potapov's CH and RMSE = 4.38 m for Lang's CH. The R2 value (computed using a predictive fit) is lower than the R1 value for the ASCAT IB

  correlation with VIs are shown in Fig. 4.11. The two ASCAT VODs had more pixels with a higher correlation with LAI and NDWI, with ASCAT IB VOD showing the highest percentage. Passive VODs have a higher correlation with NDVI over more pixels, with AMSR2 VOD having the highest percentage. Similar features can be seen in Fig. 4.11 (a)-(c) for the three vegetation indices, with ASCAT IB VOD obtaining the highest correlation values over more pixels in the subtropics regions, same for TUW VOD in the eastern United States, and same for the two AMSR2 VODs in Europe and Australia. The main differences were found in Alaska and central and eastern Russia where ASCAT IB VOD vs. LAI (Fig. 4.11 (a)) and TUW VOD vs. NDWI (Fig. 4.11 (c)) showed the highest correlation values, while the two AMSR2 VODs showed highest correlation values with NDVI (Fig. 4.11 (b)). In central Russia, the two AMSR2 VODs (Fig. 4.11 (b)-(c)) achieved the highest correlation values with NDWI and NDVI, while the two ASCAT VODs showed the highest correlation values with LAI (Fig. 4.11 (a)). The pixel-wise temporal correlations between the four VODs and the three vegetation indices are shown in Fig. 4.12. Overall, AMSR2 VODs obtained significant correlations with VIs in more pixels than ASCAT VODs. Specifically, more significant correlations were obtained (i) between AMSR2 VODs and NDVI, and (ii) between ASCAT VODs and LAI. Both the ASCAT VOD and AMSR2 VOD have the lowest number of values significantly associated with NDWI. The spatial distribution of the correlation values between the two AMSR2 VODs and the three different Vis is very

Fig. 4 .

 4 Fig. 4.11. Maps of the highest absolute temporal correlation (R) values between four VOD datasets and three VIs based on six-year datasets (2013-2018) and corresponding percentage of coverage (bottom left). "Not significant", represented by shaded areas, means the P-value of the correlation is larger than 0.05. White areas mean "no valid data". similar, but the results for the active VODs are significantly different. The correlation values between the two active VODs and the VIs are in opposite directions in some specific regions. In the Amazon and Congo forest regions, the ASCAT IB VOD shows

Fig. 4 .

 4 Fig. 4.12. Temporal correlations between the four VOD datasets (from top to bottom: ASCAT IB, ASCAT TUW, AMSR2 and VODCA) and the three VI datasets (from left to right: LAI, NDVI and NDWI) for each pixel from 2013 to 2018. Pixels with non-significant (p > 0.05) R values are shown in grey, and corresponding percentages are given at the bottom-left of each subplot. White areas mean "no valid data". To illustrate the seasonal dynamics of the active and passive VODs, the time series of VOD and NDVI (LAI) are plotted over five pixels with relatively homogeneous land cover conditions but different vegetation types (Fig. 4.13). The fractional coverage of the land cover class and location information of each pixel is presented in Appendix Table 8. In the cropland site over northern France, ASCAT IB VOD showed a negative correlation with NDVI and LAI, while the three other VOD products showed the same seasonal dynamics as NDVI and LAI (the ASCAT IB VOD changes were similar to the three other VODs and VIs only from May to July). Fig. 4.13 (a) illustrates the negative temporal correlations obtained by ASCAT IB VOD with all three VIs in Eastern Europe (Fig. 4.12). The soil moisture and backscattering coefficient data for both periods (Feb.-May and Aug.-Nov.) were checked (Fig. 4.14). The backscattering coefficient changes are in phase with the time changes in soil moisture. However, the backscattering
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 4 Fig. 4.13. Time series of the five VOD products (including the old ASCAT IB V1 version in (d)), NDVI, and LAI over five types of vegetation cover in the period from January 2013 to December 2018 (AMSR2 and VODCA VOD were smoothed by an 18-day moving window).

Fig. 4 .

 4 Fig. 4.14. Time series of the ASCAT backscatter and ERA5-Land Soil moisture from January 2013 to December 2018 over five types of vegetation. Interestingly, over the evergreen broadleaf forest site in southern Vietnam, ASCAT IB VOD presents large seasonal variations similar to those of LAI, while the three other VODs and NDVI showed slight time variations. In the high latitude grasslands site (Fig. 4.13 (c)), the temporal availability of ASCAT IB VOD is shorter than that of the passive VODs, but ASCAT IB VOD still monitored well the vegetation growth. The AMSR2 VODs have a longer temporal availability than the active VODs in the high latitude regions, which is clearly shown in the Hovmöller diagrams (Fig. 4.15).In the savanna site in Africa (Fig.4.13 (d)), the peak of ASCAT IB VOD is well
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 4 Fig. 4.15. Hovmöller diagrams of the 10-day mean values per latitude for the four VOD products (ASCAT IB, ASCAT TUW, AMSR2 and VODCA) over 2007-2020.

Fig. 4 .

 4 Fig. 4.16. Sensitivity of VOD to the neglect of the multiple scattering effects over three types of vegetation (Grassland, Savanna and Evergreen Broadleaf Forest).

  Random forest models were used in this study to simulate the global C and D soil model parameters. The underestimation of the high values and overestimation of the low values of the soil parameters (C and D) can be noted in the 10-fold crossvalidation (Fig. 4.4 (a)-(b)). This is caused by the limitations of the tree-based (e.g., random forest) models to perform extrapolations[START_REF] Hengl | Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables[END_REF]. The predictions for test data outside the range of training data are often underestimated or overestimated. During the 10-fold cross-validation, the data are divided into ten groups with 9 groups used for training and 1 group for testing, and each group is tested once for the model. The range of data in the training and testing folds may be similar if the data has a normal distribution, where the mean is equal to the median value. In the histogram of the C and D values extracted in "bare soil" pixels (Fig.4.17), there is a larger difference between the averaged and median value of the D values than for the C values. As a result, the underestimation and overestimation of the D model are more severe than that of the C model (Fig. 4.4 (a)-(b)). The effect of the uncertainty associated with the parameters C and D on the VOD retrievals was evaluated on three vegetation types based on RMSE in Fig. 4.4. The results (Fig. 4.18) show that the most significant impact is on grasslands, followed by savannas and evergreen broadleaf forests. Following the method of Liu et al. (2021b), the uncertainty associated with ERA5-Land's SM on the VOD retrievals was analyzed by examining changes in SM values in relation to relative changes in VOD values over three vegetation types. The change in SM value, derived from an estimate of ERA5-Land's ubRMSE of, is 0.05 m 3 /m 3 . The results (Fig. 4.19) show that the relative change in VOD values is ± 17 % on grassland, ± 8 % on savannah and ± 3 % on evergreen broadleaf forest when SM values vary by ± 0.05 m 3 /m 3 . As expected, the impact of errors on SM is weaker as VOD values increase. These results are similar to the sensitivity analysis of the uncertainty associated with ERA5-Land SM on ASCAT IB V1 VOD retrievals (Liu et al., 2021b).

Fig. 4 .

 4 Fig. 4.17. Histograms of the retrieved (a) C and (b) D values from 'bare soil'.

Fig. 4 .

 4 Fig. 4.18. Sensitivity of VOD to a change in C (D) of ± 0.97 (± 2.43) over three types of vegetation (Grassland, Savanna and Evergreen Broadleaf Forest).

Fig. 4 .

 4 Fig. 4.19. Sensitivity of VOD to a change in SM of ± 0.05 m 3 /m 3 over three types of vegetation (Grassland, Savanna and Evergreen Broadleaf Forest).

  temperature; ωp = Effective scattering albedo; HR = roughness parameter

  objective of this work was to retrieve the first global ASCAT IB VOD product and the vegetation scattering parameter (ω) from the single-channel (VV) active microwave observations of ASCAT. The spatial distribution of the retrieved ω map matches well vegetation distribution, which is in line with the previous findings of the literature. When compared to the other C-VOD products, ASCAT IB VOD had a competitive advantage. In spatial terms, ASCAT IB VOD presented the highest correlation values with AGB and tree height, with R values of ~0.83 and ~ 0.84, respectively. In comparison with the previous ASCAT IB V1 VOD developed only over Africa, the global ASCAT IB VOD has shown strong improvement in terms of temporal evolution which are much less noisy pixel-based time-series than those of the previous version. Some interesting discrepancies were also observed between ASCAT and AMSR2 VODs. The non-linear density distribution presented by ASCAT VOD and AGBs is different from that presented by AMSR2 VOD. ASCAT VODs have a linear spatial relationship with LAI and a non-linear one with NDWI and NDVI, while AMSR2 VODs presented opposite results (Appendix Fig. 2). Similar results were obtained in terms of temporal variations: ASCAT VODs show greater synchronization with LAI and NDWI, while AMSR2 VODs are more closely aligned with NDVI. So, the different characteristics of the two ASCAT VODs (more closely related to changes in LAI) and the two AMSR2 VODs (more closely related to changes in NDVI and NDWI) showed appealing complementarity for conducting joint vegetation studies. The strong ability of ASCAT observations to predict AGB as found in this work and Santoro et al. (2022) encourages us to apply this long-term VOD to investigate the time changes in aboveground biomass at continental scales since 2007. Recently, Tao et al. (2022) developed the first global C-band scatterometer dataset which dates back to 1992. Applying the new ASCAT IB algorithm to this dataset would allow obtaining a 30-year data set of the VOD parameter which is very promising for studies of vegetation resilience

  as predictors. The trained models were used to predict the parameters of the Ulaby linear model for each pixel no matter with or without vegetation cover. The vegetation scattering parameter of WCM was calibrated within areas of very dense vegetation, where the tree cover exceeded 75 %. Subsequently, this parameter was set as a constant value in both dense and non-dense areas. After obtaining the vegetation scattering parameter and model soil parameters over the African continent, the ERA5-Land SM data[START_REF] Muñoz-Sabater | ERA5-Land: a state-of-the-art global reanalysis dataset for land applications[END_REF] were utilized as input for the algorithm, resulting in the successful retrieval of ASCAT IB VOD. The evaluation of ASCAT IB VOD showed that it has a good spatial relationship with AGB and can capture vegetation dynamics very well.[START_REF] Zhou | Retrieval of High-Resolution Vegetation Optical Depth from Sentinel-1 Data over a Grassland Region in the Heihe River Basin[END_REF] calibrated the new vegetation scatter parameter for the ASCAT IB algorithm and then to applied it to the S1 data to retrieve 1 km VOD over a grassland Region in the Heihe River Basin, China. Results showed that the dynamics of VOD estimates agreed well with optical vegetation indices.

  further improved the ASCAT IB algorithm by introducing a multi-temporal (MT) method into the algorithm. The MT method is based on the assumption that VOD and the vegetation model parameters are almost constant within 18 days, which is the same strategy as that used by El Hajj et al. (2019a) to retrieve S1 VOD in cropland and used in other passive VOD retrievals (Al Bitar et al., 2017; Konings et al., 2016; Wigneron et al., 2021). At the same time, the cost function is used to retrieve the VOD and the vegetation scattering parameter. So, in the cost function, it is necessary to set the initial values of VOD and of the vegetation scattering parameter. These values are computed from the ASCAT IB VOD developed in Africa and the ASCAT wet reference data over forest and non-forest areas. Then, the improved ASCAT IB algorithm based on the MT approach (Version 2, V2) was used to retrieve the global long-term (2008-2020) ASCAT IB VOD. Results showed that global ASCAT IB VOD (V2) has a good performance in estimating AGB and the vegetation water content.

  first study area because the country presents a large range of soil conditions and vegetation types. During the implementation of the algorithm, we tested (1) different methods to obtain the initial information in the cost function from the global ASCAT IB products (VOD and vegetation scattering parameter); (2) the performance of the Integrated Equation Model (IEM)[START_REF] Fung | An Improved Iem Model for Bistatic Scattering From Rough Surfaces[END_REF] and Ulaby linear model to simulate the bare soil scattering; (3) whether the new SoilGrid data[START_REF] Poggio | SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty[END_REF] can improve the performance of the RF models used to estimate the soil parameters of the bare soil scattering model. The AGB, canopy height and vegetation indexes were used to evaluate the performance of S1-VOD. The S1-VOD was also resampled to a 25km scale for inter-comparison with coarse-resolution passive VOD products at L and Cis the European Radar Observatory for the Copernicus joint initiative of the European Commission and the European Space Agency[START_REF] Torres | GMES Sentinel-1 mission[END_REF]. Currently, there are two satellites in orbit, Sentinel-1A (launched in April 2014) and Sentinel-1B (launched in April 2016), providing different imaging modes with the dual polarization C-band (~ 5.405 GHz) synthetic aperture radar (SAR) data. In this study, images acquired from the Ground Range Detected interferometric wide swath mode designed for the land surface study were adopted. Similar to the ASCAT IB VOD retrieval, we only used the backscatter coefficient of S1A VV polarization from the descending orbit for S1 VOD retrieval. Eight years (2015-2022) S1A data were downloaded from the Google Earth Engine (GEE) platform[START_REF] Gorelick | Google Earth Engine: Planetary-scale geospatial analysis for everyone[END_REF] which provide the pre-processed S1 products. The pre-processing includes thermal noise removal, radiometric calibration, and terrain correction. In addition, the local incidence angle was calculated to reduce the effect of radiometric distortions. Finally, 10 m S1A data was averaged to 1 km and projected with a WGS84 projection. The scene number and the averaged revisit cycle can be seen in Fig.5.1.
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 51 Fig. 5.1. Average number of Sentinel-1 observations and the revisit cycle over France from 2015 to 2022.

  in 2020, is specifically developed in France. The raw spatial resolution of Saatchi and GEDI is 1 km, and that of CCI V4.0 and Schwartz AGB is 100 m and 30 m, respectively. CCI V4.0 and Schwartz AGB were aggregated to the 1 km grid by arithmetic averaging.Canopy height, used to estimate AGB, is also considered to assess S1-VOD.Three high-resolution (<= 30 m) canopy height products based on GEDI observations were used. The products developed byLang et al. (2022a) and[START_REF] Schwartz | FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach[END_REF] are both at 10m spatial resolution for 2020. However, the data used to fuse with GEDI to estimate canopy height is different.Lang et al. (2022a) only used data from Sentinel-2 (S2), while[START_REF] Schwartz | FORMS: Forest Multiple Source height, wood volume, and biomass maps in France at 10 to 30 m resolution based on Sentinel-1, Sentinel-2, and GEDI data with a deep learning approach[END_REF] used data from S1 and S2. The product developed by[START_REF] Potapov | Mapping global forest canopy height through integration of GEDI and Landsat data[END_REF] is estimated by fusing Landsat analysis-ready data with GEDI data for the year 2019 and has a 30 m spatial resolution. Those three products were also resampled to 1 km.

  obtained from the IGBP classification layer of the MODIS MCD12Q1 product(Sulla- Menashe et al., 2019). The temporal resolution of the data is yearly and the spatial resolution is 500 m. The land cover data in 2017 were used in the calibration of the model parameters and to analyze the retrieval results. The 1 km land cover map was generated by identifying the land cover type with the highest proportion within each 1 km grid cell.The improved ASCAT IB algorithm (V2)[START_REF] Liu | A new global C-band vegetation optical depth product from ASCAT: Description, evaluation, and inter-comparison[END_REF] was developed for the simultaneous retrieval of VOD and of the vegetation scattering parameter (ω) from inversion of WCM coupled with the Ulaby linear model. WCM assumes that the canopy is composed of uniform water cloud-like particles and simulates the total observed backscatter of above canopy (σ obs °) as a sum of the direct vegetation backscatter signal (ω⋅cosθ⋅(1-γ 2 )) and the backscatter from the soil surface attenuated by the vegetation canopy (γ 2 ⋅σ soil °): σ obs °=ω⋅cosθ⋅(1-γ 2 )+γ 2 ⋅σ soil °(5.1) where γ 2 is the two-way vegetation attenuation factor which can be described as a function of VOD and incidence angle (θ) via γ 2 =exp(-2⋅VOD/cosθ). ω represents the vegetation scattering parameter which is related to the single scattering albedo. σ soil ° represents the bare soil scattering which is simulated from the Ulaby linear model expressed by σ soil °=C+D⋅SM. SM is extracted from the ERA5-Land SM dataset. The coefficient parameters of the Ulaby linear model, C and D, need to be calibrated (details in Section 5.3.1.2). To test the performance of different bare soil scattering models, the Integral Equation Model (IEM) was also used to simulated σ soil °. IEM is a physical model based on the electromagnetic radiation transfer theory. The complete mathematical formulations of IEM are too lengthy to be included here. The inputs of IEM are: (1) sensor configuration including the radar frequency (f), polarization (qp) and incidence angle (θ); (2) soil roughness parameters including root mean square (RMS) height (Sig), correlation length (L) and autocorrelation function (ACF); and (3) soil dielectric constant (ε). Therefore, IEM can be conceptually depicted as follows: σ soil °=IEM(f, pq, θ, Sig, L, ACF, ε) (5.2)

  ) Calculation of C and D over "bare soil" pixels: The C and D parameters were obtained by linearly fitting the time series of the S1 backscatter coefficient and ERA5-land SM extracted from the "bare soil" pixels with no vegetation or during the low vegetation (LAI<0.5) period. To ensure a robust and physically-based linear relationship, only the C and D values over "bare soil" pixels satisfying the following conditions were kept: i) the correlation value (R) between the time series S1 backscatter coefficient and ERA5-land SM is significantly positive, ii) the root mean square error (RMSE) between the observed and simulated backscatter coefficient is lower than 1.5 dB.(3) Calibration of C and D over whole study region: The C and D maps were generated using two trained random forest models whose target are C or D calculated over "bare soil" and predictors are the SoilGrid and terrain-related data. For the training of each RF model, the optimal setting of the model was estimated by the GridSearchCV function from Python sklearn package.

  and simulated S1 backscatter coefficient; VOD ini (ω ini ) and VOD ret (ω ret ) denote the initial and retrieved VOD (ω), respectively.StdDev(σ °), StdDev(VOD) and StdDev(ω), are the standard deviation of σ °, VOD and ω, respectively. StdDev(σ °) can be estimated from the S1 observations.In this study, three methods were used to estimate the initial (first guess) parameters VOD ini (StdDev(VOD)) and ω ini (StdDev(ω)) from yearly averaged (2015-2022) global ASCAT IB VOD and ω products extracted over France. In method (1), the mean (standard deviation) value of the yearly averaged ASCAT IB VOD and ω over forest and no-forest were used to set the value of VOD ini (StdDev(VOD)) and ω ini (StdDev(ω)). In method (2), the yearly averaged ASCAT IB VOD and ω were directly used to set the value of VOD ini and ω ini , which means the initial values are obtained from the 25km*25km ASCAT grid when retrieving 1 km S1 VOD and ω. StdDev(VOD)) and StdDev(ω)) were calculated from the standard deviation value of yearly averaged ASCAT IB VOD and ω. In method (3), the linear relationship between ASCAT IB products (VOD and ω) and vegetation indexes from MODIS and S1 (LAI, NDVI, EVI, NDWI, Tree cover and cross ratio from S1 VV and VH data) were evaluated at the 25 km spatial resolution. The index that has the highest R-value was chosen to set the value of the 1 km VOD ini and ω ini based on the relationship established at the coarse resolution of ASCAT. The S1-VOD retrieved based on those three methods were compared with Saatchi AGB to identify the most suitable method.

  canopy height products was calculated to show the potential of S1-VOD to estimate the AGB and canopy height. The pixel-wise temporal correlation between S1 VOD and MODIS vegetation indices (LAI, EVI, NDVI, and NDWI) were computed and compared to evaluate the ability of S1-VOD to monitor the vegetation dynamics. S1-VOD was also evaluated at the 25 km resolution for inter-comparison with existing coarse resolution C-band VOD. The ω parameter was analysed for each vegetation type by the statistics of its distribution as in previous studies, due to the absence of established guidelines for validating it. 4078 'bare soil' pixels (Fig. 5.2) were selected to calculate the C and D parameters of the Ulaby linear model or the Sig parameter of the IEM. All these pixels correspond to non-permanent bare soil conditions, and they are mainly found in the cropland areas of southwestern France, with a few points also distributed in the center and west. The reason for the absence of 'bare soil' in cropland in northern France is that the pixels were masked as they have a negative correlation and higher (>1.5 dB) RMSE values between the observed S1 backscatter coefficient and the Ulaby linear model simulated backscatter coefficient.

Fig. 5 . 2 .

 52 Fig. 5.2. Spatial distribution of the "bare soil" pixels (represented by points) and MODIS IGBP land cover map over France. The "bare soil" pixels are shown in a 20 km × 20 km grid if its total number is larger than six. 5.4.1.2 Performance of the Ulaby linear model and IEM The histograms of retrieved C, D, and Sig values are shown in Fig. 5.3 (a)-(c). The distributions of the retrieved C and D values correspond to a representation by a lognormal distribution, while the distribution of the Sig values can be fitted with a Gaussian distribution. The range of the C, D, and Sig values are from -29.58 dB to -9.20 dB, from 4.08 dB/ m 3 ⋅ m -3 to 46.27 dB/ m 3 ⋅ m -3 , and 0.47 cm to 1.10 cm, respectively. Fig. 5.3 (d) and (e) show the histograms of the R and RMSE values between S1 observations and the backscattering coefficients simulated from the Ulaby

Fig. 5 . 3 .

 53 Fig. 5.3. The histograms of the calculated C (a), D (b), Sig (c) values, and RMSE (d) and R (e) between the observed and simulated time variations of the backscattering coefficient over "bare soil" pixels 2016-2017 from the Ulaby linear model and IEM.

Fig. 5 . 5 .

 55 Fig. 5.5. Predictive variable importance of the C (a) and D (b) parameters. SPI and TI mean soil property indices (in red) and terrain-related feature variables (in green), respectively.

  are also the same. The soil property variables (group SPI) can explain over 50 % of the variance of the target parameter in the two models, and terrain-related features (group TI) contribute more in the CRF than in the DRF. The predicted maps of the C and D values over the whole study region are shown in Fig. 5.6. The spatial pattern of the C values is opposite to that of the D values, with areas having higher C values corresponding to areas with lower D values. The pixels with lower C values are mainly located in the south of France, where the dominant vegetation types are forests and shrubs. The higher D values are observed in both the southwestern forests and the northern cropland regions.
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 57 Fig. 5.7. Density scatter plots of the S1-VOD retrieved from different methods of estimation of the initial VOD value (Method 1, 2 and 3) vs Saatchi AGB.

Fig. 5 . 8 .

 58 Fig. 5.8. Scatter plots of tree cover, S1 CR, NDVI, NDWI, LAI and EVI averaged to 25 km grid vs ASCAT IB VOD and ω.

Fig. 5

 5 Fig. 5.9 (a) shows the map of the yearly averaged ω parameter from 2015 to 2022 over France. The ω parameter is characterized by a median of 0.17 and the interquantile range is 0.06. There are 97.53 % of the retrieved ω values that are in the range of 0.08-0.32. Only 1.74 % of the pixels have values greater than 0.32, and these are mainly located in forested areas in the southern and eastern regions of France, where complex mountain terrain exists. It is worth noting that regions with high ω values can be found in low vegetation areas, particularly in central, northern, and western France.

Fig. 5 . 9 .

 59 Fig. 5.9. Temporal average of the retrieved ω parameter from 2015 to 2022, and corresponding boxplots segmented by the IGBP landcover classification.

  Fig. 5.10. Temporal average of (a) S1-VOD from years 2015-2022, and (b)-(e) AGB products (b) and (f)-(h) Canopy height products.

Fig. 5 .

 5 Fig. 5.11. Density scatter plots of S1-VOD (yearly averaged value) vs different AGB datasets (first row, Saatchi, CCI, GEDI and Schwartz) and different canopy height datasets (second row, Potapov, Lang and Schwartz).

Fig. 5 .

 5 Fig. 5.12. Density scatter plots of Tree Cover (yearly averaged value) vs different AGB datasets (first row, Saatchi, CCI, GEDI and Schwartz) and different canopy height datasets (second row, Potapov, Lang and Schwartz).

  at 25 km resolutionTo assess the performance of S1-VOD vs the other passive and active VOD data sets, we upscaled S1-VOD and tree cover data to a 25 km resolution, hereafter named S1-VOD25km and TC25km. Subsequently, we compared these upscaled datasets, along with five other coarse-resolution VOD datasets, against several AGB and canopy height products. Results showed that S1-VOD25km has the highest correlation with all AGB products and the best ability to predict all AGB products (lowest RMSE). Among the five coarse resolution VOD products, L-VOD has the best correlation with other three AGB products except for CCI AGB (Fig.5.13-16).

Fig. 5 .

 5 Fig. 5.13. Scatter plots of S1-VOD averaged to 25 km grid, other coarse 25 km VODs and tree cover (TC) averaged to 25 km vs Saatchi AGB dataset at a spatial resolution of 25 km.

Fig. 5 .

 5 Fig. 5.14. Scatter plots of S1-VOD averaged to 25 km grid, other coarse 25 km VODs and tree cover (TC) averaged to 25 km vs CCI AGB dataset at a spatial resolution of 25 km.

Fig. 5 .

 5 Fig. 5.15. Scatter plots of S1-VOD averaged to 25 km grid, other coarse 25 km VODs and tree cover (TC) averaged to 25 km vs GEDI AGB dataset at a spatial resolution of 25 km.For the C-VOD products, ASCAT IB VOD performs better than the other three VOD products in terms of spatial correlation and ability to predict CCI AGB product (Fig.5.14) and Schwartz AGB (Fig.5.16), ASCAT TUW VOD performs better for Saatchi AGB (Fig.5.13), and LPRM VOD performs better for GEDI AGB (Fig.5.15). In addition, TC25km was found to outperform all coarse-resolution VOD products. Similar results were found when comparing S1-VOD25km and coarse resolution VOD products with different canopy height products (Fig.5.17-19). S1-VOD25km got the highest correlation and the lowest RMSE values with the canopy height products. Differently than for the

Fig. 5 .

 5 Fig. 5.16. Scatter plots of S1-VOD averaged to 25 km grid, other coarse 25 km VODs and tree cover (TC) averaged to 25 km vs Schwartz AGB dataset at a spatial resolution of 25 km.

Fig. 5 .

 5 Fig. 5.17. Scatter plots of the S1-VOD averaged to 25 km grid, other coarse VOD and tree cover averaged to 25 km vs Potapov's canopy height dataset at a spatial resolution of 25 km.

Fig. 5 .

 5 Fig. 5.18. Scatter plots of the S1-VOD averaged to 25 km grid, other coarse VOD and tree cover averaged to 25 km vs Lang's canopy height dataset at a spatial resolution of 25 km.

Fig. 5 .

 5 Fig. 5.19. Scatter plots of the S1-VOD averaged to 25 km grid, other coarse VOD and tree cover averaged to 25 km vs Schwartz's canopy height dataset at a spatial resolution of 25 km. 5.4.4.4 Temporal correlation with vegetation indices The pixel-wise temporal correlation (R) between the S1-VOD and MODIS vegetation indexes (LAI, EVI, NDVI and NDWI) are shown in Fig. 5.20 (a)-(d). Similar spatial distributions of the temporal R-values were found for NDVI and NDWI. The pixels with high R-values are in the center and western part of France. The R-values for the LAI and EVI are lower (with more light color) for those pixels. Fig. 5.20 (g) gives the statistical results of the R-values for each interval. Most of pixels have R-values from 0.2 to 0.4 for each vegetation index. There are more pixels with negative R-values for LAI and EVI compared to NDVI and NDWI. The map of the vegetation index that

Fig. 5 .

 5 Fig. 5.21. Yearly change of yearly mean of S1-VOD, CCI AGB and MODIS VIs from 2015 to 2022 over France.

  study presented retrievals of 1 km VOD over France from 2015 to 2022 based on S1 backscatter observations, by applying the ASCAT IB algorithm. During the use of the algorithm, the efficiency of the Ulaby linear model to simulate the bare soil signals of S1 was confirmed by comparing its performance with that of IEM. The initial values of VOD and ω in the algorithm were obtained from the ASCAT IB VOD and ω product using tree cover as a bridge between S1 and ASCAT. The spatial evaluation of S1-VOD showed that S1-VOD has a good correlation with different AGB (R ~ 0.73-0.78) and canopy height (R ~ 0.80-0.81) products at the 1 km scale. When comparing S1-VOD upscaled to 25 km with coarse-resolution VOD products, S1-VOD has the highest correlation with AGB (R ~ 0.77-0.90) and canopy height products (R ~ 0.82-0.94). The temporal evaluation showed that S1-VOD has a better correlation with LAI and NDWI vs NDVI and EVI in most pixels over 2015-2022, and the yearly changes of S1-VOD follow the changes of CCI AGB V4.0 product over 2017-2020.

  Based on the results of the three Chapters from III to V of this Ph.D. thesis research, joint conclusions can be made:(i) The WCM and the Ulaby linear models, at the basis of the ASCAT IB algorithm, were found to be performant to simulate the active microwave observations of ASCAT and S1 and the machine learning method (e.g.: random forest) was found to be a good way to extend the parameters of the soil model to large regions covered by vegetation. The parameters of the Ulaby linear soil model in vegetated areas were simulated by trained random forest models based on the calculated parameters in 'bare soil' and the soil property and terrain-related dataset. The good performance of the trained model enabled ASCAT and S1 signals to be simulated accurately, which could be beneficial for VOD research. (ii) Using a multi-temporal (MT) approach and a priori information to constrain retrievals is a good way to improve VOD retrieval. Compared with the first released version of ASCAT IB VOD (V1) directly computed from the forward model, the new version (V2) of ASCAT IB VOD is retrieved by combining both the MT approach and a priori information from ASCAT observations and ASCAT IB V1 VOD. The results showed that the V2 VOD present important improvement in spatial and temporal performances compared with V1 VOD. Specifically, the noise in the time series of V2 VOD decreases, and there is an increase in the spatial correlation with aboveground biomass. In addition, the MT method allows simultaneous retrievals of VOD and of the vegetation scattering parameter (). (iii) Different information was contained in active and passive VOD. The intercomparison between global ASCAT VOD and the passive VOD from AMSR2, which operates at the same frequency as ASCAT, showed that ASCAT VOD exhibits a linear spatial relationship with LAI and a non-linear relationship with NDWI and NDVI, while AMSR2 VODs yield contrasting results. Similarly, in terms of temporal changes per pixel, active ASCAT VOD show greater synchronization with LAI and NDWI, while passive AMSR2 VODs are more closely aligned with NDVI. Physical radiative transfer mechanisms help to understand those results as active microwave observations are more sensitive to volume scattering within the canopy than passive microwave observations.

  

  

  

Table 2 .1. Summary

 2 of dielectric mixing models [adapted from[START_REF] Karthikeyan | Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms[END_REF]].

	No.	Model	Inputs (units)	Reference
	1	Wang and Schmugge model	SM (m 3 /m 3 ), Clay (%), Sand (%) Porosity (-)	Wang and Schmugge (1980)
	2	Topp model	SM (m 3 /m 3 )	Topp et al. (1980)
			SM (m 3 /m 3 ), Clay (%), Sand (%)	
			Soil temperature (℃)	
	3	Dobson model	Microwave frequency (Hz) Dry soil bulk density (g/cm 3 )	Dobson et al. (1985)
			Solid particle density (g/cm 3 )	
			Soil water salinity (ppt)	
	4	Hallikanen model	SM (m 3 /m 3 ), Clay (%), Sand (%)	Hallikainen et al. (1985)
	5	Roth model	SM (m 3 /m 3 ), Porosity (-) Dielectric of solid, aqueous and gaseous phases	Roth et al. (1990)
	6	Mironov model	SM (m 3 /m 3 ), Clay (%) Soil temperature (℃) Soil organic matter	Mironov et al. (2009, 2019)

Table 3 .

 3 1. Overview of all datasets used in this study.

	Dara Name	Spatial sampling	Temporal period	Time period Purpose	Reference
	ASCAT backscatter data	12.5km	Daily	2015-2019	model input and calibration	https://archive.eumetsat.int/
	ERA5-Land soil moisture data	0.1°	Hourly	2015-2019	model input and calibration	https://cds.climate.copernicus.eu/
	ERA5-Land soil temperature data	0.1°	Hourly	2017	model calibration	https://cds.climate.copernicus.eu/
	Soil property data	250m	Yearly	/	model calibration	Hengl et al., 2017
	Terrain data	1km	Yearly	/	model calibration	Danielson and Gesch, 2011
	MODIS land cover	500m	Yearly	2017	model calibration	Sulla-Menashe and Friedl, 2019
	MODIS LAI	500m	8-day	2015-2018	model calibration and validation	Myneni et al., 2015
	MODIS VCF	1km	Yearly	2017	model calibration	DiMiceli et al., 2015
	Saatchi AGB data	1km	Yearly	2015	validation	Carreiras et al., 2017; Saatchi et al., 2011
	CCI AGB data	100m	Yearly	2017	validation	Santoro and Cartus, 2019
	Simard tree height data	1km	Yearly	2005	validation	Simard et al., 2011
	Potapov tree height data	30m	Yearly	2019	validation	Potapov et al., 2020
	MODIS NDVI and EVI	1km	16-day	2015-2018	validation	Didan, 2015
	AMSR2 LPRM V5 VOD	0.25°	Daily	2015-2019	inter-comparison	https://disc.gsfc.nasa.gov/
	VODCA LPRM V6 VOD	0.25°	Daily	2015-2018	inter-comparison	https://doi.org/10.5281/zenodo.2575599
	ASCAT V16 VOD	0.25°	Daily	2015-2019	inter-comparison	Vreugdenhil et al., 2016

  . VODCA LPRM V6 VOD was rescaled via cumulative distribution function matching using AMSR-E VOD as the reference. AMSR2 LPRM V5VOD is available at the Goddard Earth Sciences Data and Information Services Center

	(GES	DISC)	website.	VODCA	LPRM	V6	is	available	at
	https://doi.org/10.5281/zenodo.2575599. The active VOD dataset is the ASCAT V16

Table 3 .

 3 2. Spatial correlation of the four VOD datasets with the two CCI and Saatchi AGB datasets for different IGBP land cover classes.

	AGB Product VOD Product	EBF DBF MFO CSH OSH WSA SAV GRO CRO CVM BSV R_total
	ASCAT IB	0.54 0.83 0.88 0.62 0.30 0.78 0.78 0.58 0.58 0.79 0.21	0.92
	ASCAT V16	0.58 -0.22 -0.26 -0.26 -0.16 0.67 0.31 0.17 0.17 0.30 0.11	0.83
	Saatchi 2015						
	AMSR2 LPRM V5 0.54 0.53 0.74 0.23 0.09 0.31 0.61 0.51 0.62 0.57 0.19	0.76
	VODCA LPRM V6 0.36 0.40 0.62 -0.20	-	0.18 0.57 0.44 0.59 0.56 0.18	0.69
	ASCAT IB	0.70 0.31	-	0.66 0.27 0.71 0.60 0.53 0.36 0.72 0.28	0.92
	ASCAT V16	0.74	-	0.47	-	-0.08 0.64 0.43 0.30 0.20 0.45 0.09	0.86
	CCI 2017						
	AMSR2 LPRM V5 0.55 0.30	-	-		

0.12 0.32 0.38 0.45 0.39 0.57 0.40 0.76 VODCA LPRM V6 0.38 0.21 --0.32 0.05 0.18 0.33 0.40 0.36 0.55 0.37 0.69 Note: [-] indicates that correlation is not significant (p-value>0.05). The number of pixels used in the computation are 2734 (EBF), 200 (DBF), 180 (MF), 118 (CS), 1746 (OS), 1237 (WS), 5628 (S), 8636 (G), 1269 (C), 238 (CNVM), 1623 (BSV).

  Table 1 and 2.

Table 4 .

 4 1. Statistical metrics between Saatchi AGB and retrieved yearly ASCAT IB VOD using models based on different thresholds on R between backscattering coefficient and soil moisture for 'bare soil'.

RMSE (

Mg ha -1 ) R1 R2 w = 10 days w = 18 days w = 10 days w = 18 days w = 10 days w = 18 days

  

	R>0*	37.18	36.88	0.82	0.83	0.84	0.84
	R≥0.25	37.11	36.86	0.82	0.83	0.84	0.84
	R≥0.35	37.18	36.92	0.83	0.83	0.84	0.84
	R≥0.45	37.31	37.06	0.82	0.83	0.84	0.84
	R≥0.55	37.60	37.34	0.82	0.82	0.83	0.83
	R≥0.65	38.33	38.13	0.81	0.81	0.82	0.82
	Note: * means R ≥ 0.14 as the minimum of R is 0.14, R1 represents the spatial correlation between VOD and Saatchi
	AGB, while R2 represents the spatial correlation between predicted AGB and Saatchi AGB.	

Table 4 .2.

 4 Temporal correlation between the four VOD products with respect to LAI, NDVI, and NDWI for different IGBP vegetation types.

	VIs

VOD Product ENF EBF DNF DBF MFO CSH OSH WSA SAV GRA CRO CVM BSV

  

	ASCAT IB	0.52 0.43 0.48 0.51 0.52 0.52 0.48 0.52 0.61 0.62 0.55 0.60 0.42
	ASCAT TUW 0.46 0.37 0.49 0.41 0.44 0.39 0.49 0.46 0.48 0.51 0.50 0.48 0.36
	LAI	
	AMSR2	0.45 0.32 0.50 0.49 0.52 0.71 0.52 0.44 0.51 0.60 0.59 0.51 0.40
	VODCA	0.43 0.31 0.47 0.42 0.53 0.70 0.51 0.42 0.50 0.59 0.58 0.51 0.40
	ASCAT IB	0.35 0.33 0.39 0.38 0.37 0.46 0.46 0.39 0.57 0.59 0.56 0.53 0.48
	ASCAT TUW 0.42 0.30 0.47 0.37 0.40 0.43 0.46 0.42 0.43 0.53 0.58 0.47 0.39
	NDVI	
	AMSR2	0.54 0.34 0.59 0.66 0.62 0.82 0.69 0.56 0.62 0.69 0.67 0.55 0.50
	VODCA	0.48 0.29 0.53 0.50 0.58 0.81 0.66 0.52 0.59 0.66 0.67 0.54 0.51
	ASCAT IB	0.30 0.29 0.40 0.35 0.35 0.50 0.44 0.42 0.60 0.60 0.58 0.58 0.43
	ASCAT TUW 0.31 0.31 0.52 0.36 0.39 0.55 0.43 0.44 0.55 0.56 0.58 0.50 0.38
	NDWI	
	AMSR2	0.37 0.27 0.49 0.36 0.39 0.41 0.42 0.43 0.44 0.49 0.56 0.44 0.37
	VODCA	0.30 0.27 0.53 0.39 0.47 0.56 0.43 0.42 0.54 0.57 0.58 0.49 0.39

Bold data in the table represent the highest value in each vegetation type.

Table 4 . 3 .

 43 Summary of the key differences in the retrieval algorithms of the active ASCAT VODs (ASCAT IB, TUW) and the passive VODs (AMSR2 and VODCA).

	Algorithm	ASCAT IB		ASCAT	TUW	LPRM	version	5	LPRM	version	6
				(Vreugdenhil et al.,	(AMSR2 VOD) (Owe et	(VODCA	VOD)
				2016)			al., 2008)			(Moesinger et al., 2020 ;
										van der Schalie et al.,
										2017)
	Observations ASCAT σ obs ∘ polarization	at VV	∘ ASCAT σ WetRef σ DryRef ∘ at	and VV	AMSR2 TB at dual (V, H) polarization	AMSR2 at dual (V, H) polarization
				polarization						

  but with different versions of the LPRM algorithm. VODCA VOD was retrieved based on LPRM version 6 (van der Schalie et al., 2017) which update the setting of the effective scattering albedo and of the soil roughness parameter, compared with LPRM version 5 used in the AMSR2 VOD retrievals. Those discrepancies among the four VOD products may make the interpretation of the inter-comparison more challenging.

Dans la dernière étape de notre travail, les bonnes performances de l'algorithme ASCAT IB global nous ont encouragés à l'adapter aux observations de S1 pour calculer un produit VOD à haute résolution spatiale. Un produit S1-VOD à 1 km de résolution spatiale a été estimé, entre 2015 et 2022, sur la France, un pays qui a été choisi pour cette première évaluation en raison de sa variété en termes de conditions de sol et de types de végétation. S1-VOD a montré une bonne corrélation spatiale avec divers produits de biomasse aérienne (AGB) et de hauteur de canopée (CH), et ses variations annuelles sont en bon accord avec celles du produit AGB V4.0 du Climate Change Initiative (CCI).En conclusion, deux nouveaux produits VOD à long terme ont été développé au cours de cette thèse : ASCAT IB VOD (global) et S1-VOD à haute résolution sur la France. Ils ont tous deux démontré une bonne capacité à suivre la végétation à la fois dans l'espace et dans le temps. En outre, notre travail a également fourni un cadre de calcul qui peut être appliqué à l'estimation du VOD à partir d'observations micro-ondes actives à d'autres fréquences.
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 Table 2.1. Summary of dielectric mixing models [adapted from [START_REF] Karthikeyan | Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms[END_REF] This chapter corresponds to draft paper to be submitted at Remote Sensing of Environment.

(4) Using more data to retrieve VOD. In the present study, only descending data of ASCAT and S1 were used to retrieve VOD. Some studies showed that variations in canopy water content could account for the backscatter variations between the ascending and descending orbits [START_REF] Frolking | Tropical forest backscatter anomaly evident in SeaWinds scatterometer morning overpass data during 2005 drought in Amazonia[END_REF][START_REF] Steele-Dunne | Using Diurnal Variation in Backscatter to Detect Vegetation Water Stress[END_REF]. Therefore, ASCAT IB and S1-VOD retrieved from different orbits can be explored in the future to analyse changes in the vegetation water content at different scales (coarse and fine resolution). In addition, Sentinel-1 provides both the VH and VV polarizations, while only VV data is used in the present study. Using more polarization data will offer additional solutions for retrieving VOD, but the information redundancy should also be taken into consideration (Wang et al., 2021a).

(5) Long term dataset analysis and application. Two long-term active products were developed in this Ph.D work. The ASCAT IB VOD provides more than 15 years of data records, and a 30-year active VOD product could be obtained after applying the ASCAT IB algorithm to a recently merged backscatter data from Cband ERS/ASCAT and Ku-band QSCAT [START_REF] Tao | A global long-term, high-resolution satellite radar backscatter data record (1992-2022+): merging C-band ERS/ASCAT and Ku-band QSCAT[END_REF]. S1-VOD retrieval can also be extended to the whole Europe and even larger continental areas from 2015 to now. The good performance of ASCAT IB VOD and S1-VOD to predict AGB makes these products potentially very interesting to study the AGB changes on a regional and global scale [START_REF] Liu | Recent reversal in loss of global terrestrial biomass[END_REF][START_REF] Liu | Global vegetation biomass change (1988-2008) and attribution to environmental and human drivers[END_REF]. These long-term data sets can also be used to study vegetation resilience [START_REF] Forzieri | Emerging signals of declining forest resilience under climate change[END_REF] and degradation [START_REF] Fawcett | Declining Amazon biomass due to deforestation and subsequent degradation losses exceeding gains[END_REF][START_REF] Qin | A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations[END_REF]. Considering that global ASCAT IB VOD and S1-VOD showed a good sensitivity to NDWI, some applications (like wildfire prediction or post-fire recovery) [START_REF] Bousquet | Monitoring post-fire recovery of various vegetation biomes using multi-wavelength satellite remote sensing[END_REF][START_REF] Fan | Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region[END_REF] related to vegetation water content can also be explored in the future.

Appendix Appendix A.1 Aboveground biomass

Two static AGB benchmark maps were applied to assess the performance of IB VOD for monitoring the aboveground vegetation biomass. The first AGB map (referred to as Saatchi AGB) was extracted from the 1 km resolution AGB dataset developed by [START_REF] Saatchi | Benchmark map of forest carbon stocks in tropical regions across three continents[END_REF]. We used the updated Saatchi AGB that is representative of AGB circa 2015 [START_REF] Carreiras | Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions[END_REF][START_REF] Saatchi | Benchmark map of forest carbon stocks in tropical regions across three continents[END_REF].

The second AGB map (Fig. 8 with the corresponding flag set to "good quality" were used. We then adopted an arithmetic averaging method to resample these two vegetation indices to the same projection with a spatial resolution of 0.25 degree.

Appendix A.4 Random forest model

In this study, the random forest (RF) regression model was used to simulate the global soil parameters (C and D) of the Ulaby bare soil model. RF is a tree-based machine learning method and has been widely adopted in many geographic-related studies [START_REF] Liao | Continuous woody vegetation biomass estimation based on temporal modeling of Landsat data[END_REF][START_REF] Wang | A framework for determining the total salt content of soil profiles using time-series Sentinel-2 images and a random forest-temporal convolution network[END_REF]. The 'RandomForestRegressor' was used as the estimator and its two parameters (n_estimators and max_features) were optimized by the 'GridSearchCV' function. The 'random_state' has been defined to guarantee the reproducibility of the model. The predictor variables of the model were selected using a recursive feature elimination (RFE) method [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF]. We first fitted the model with all the predictors and then removed the least important predictor from the model. This process was iterated until only one predictor variable was left. The selected predictors are those that lead to the highest R 2 and lowest RMSE. Finally, the 10-fold cross-validation (CV) [START_REF] Stone | Cross-Validatory Choice and Assessment of Statistical Predictions[END_REF] was used as an independent validation to assess the accuracy of the selected model. The mean value of the R 2 and RMSE of 10-fold CV and the importance of each predictor were reported.