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The advent of Intelligent Transportation Systems (ITS) marks a paradigm shift in the approach to managing and optimizing transportation infrastructures. Rooted in the integration of state-of-the-art communication technologies, ITS encompass a variety of applications aimed at enhancing road safety, traffic efficiency, and driving comfort. However, the execution of these increasingly computation-intensive applications raises inherent challenges related to latency, data processing, and service continuity. The emergence of Edge Computing stands as a transformative advancement poised to redefine the efficacy of vehicular applications in Intelligent Transportation Systems (ITS). Contrasting with conventional cloud computing paradigms, which frequently encounter latency issues attributable to the remote nature of data processing, Edge Computing decentralizes computational tasks to be nearer to the point of data generation. This proximity drastically diminishes latency, optimizes data aggregation, and enhances overall resource utilization. Consequently, Edge Computing is uniquely positioned to address and potentially mitigate the limitations that have previously impeded the optimization of ITS functionalities. Nevertheless, the incorporation of Edge Computing into vehicular networks unveils a unique array of complexities, ranging from the strategic placement of edge servers and efficient data offloading techniques to the implementation of robust service migration protocols and safeguarding privacy and security measures.

This thesis investigates the problems of edge server placement and service migration in vehicular networks. Our contributions in this thesis are threefold. First, we introduce "ESIAS," an Edge-based Safety Intersection Assistance System, specifically designed to improve safety intersections. The system aims to proactively distribute precise warning messages to drivers, mitigating the risk of common intersection-related accidents. Second, we tackle the challenge of optimal Edge server placement in vehicular networks, employing integer linear programming to find the most effective solutions. The methodology considers latency, cost, and server capacity in real-world traffic conditions. The proposed framework aims not only to minimize the overall deployment cost but also to balance the computational workloads among Edge servers, all while maintaining latency within acceptable thresholds. Finally, we delve into the complex issue of service migration in MEC-enabled vehicular networks, addressing the quandary of maintaining quality of service (QoS) while minimizing migration costs. As vehicles move through different regions, maintaining service quality requires strategic service v migration, which poses challenges in terms of timing and location. To resolve this problem, we formulate it as a Markov Decision Process (MDP) and apply deep reinforcement learning techniques, specifically Deep Q-Networks (DQN), to discover optimal migration strategies tailored to each service's requirements. The resulting framework ensures seamless service continuity even within high-mobility constraints, achieving an optimal balance between latency and migration costs.
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Résumé

L'avènement des Systèmes de Transport Intelligents (STI) marque un changement de paradigme dans l'approche de la gestion et de l'optimisation des infrastructures de transport.

Ancrés dans l'intégration des technologies de communication de pointe, les STI englobent une variété d'applications visant à améliorer la sécurité routière, l'efficacité du trafic et le confort de conduite. Cependant, l'exécution de ces applications de plus en plus gourmandes en calcul pose des défis inhérents liés à la latence, au traitement des données, et à la continuité des services. L'émergence de l'Edge Computing se présente comme une avancée transformatrice prête à redéfinir l'efficacité des applications véhiculaires dans les Systèmes de Transport Intelligents (STI). En contraste avec les paradigmes conventionnels de Cloud Computing, qui rencontrent fréquemment des problèmes de latence attribuables à la nature distante du traitement des données, l'Edge Computing décentralise les tâches computationnelles pour être plus proche du point de génération des données. Cette proximité réduit drastiquement la latence, optimise l'agrégation des données, et améliore l'utilisation globale des ressources. Par conséquent, l'Edge Computing est idéalement positionné pour adresser et potentiellement atténuer les limitations qui ont précédemment entravé l'optimisation des fonctionnalités des STI. Néanmoins, l'incorporation de l'Edge Computing dans les réseaux véhiculaires révèle un éventail unique de complexités, allant du placement stratégique des serveurs de bord et des techniques efficaces de déchargement de données à la mise en oeuvre de protocoles robustes de migration de services et la sauvegarde des mesures de confidentialité et de sécurité.

Cette thèse examine les problèmes de placement des serveurs Edge et de migration des services dans l'architecture de l'Edge Computing pour véhicules. Nos contributions dans cette thèse sont triples. Premièrement, nous introduisons "ESIAS", un Système d'Assistance de Sécurité à l'Intersection basé sur l'Edge, spécialement conçu pour améliorer la sécurité des intersections. Le système vise à distribuer proactivement des messages d'avertissement précis aux conducteurs, atténuant ainsi le risque d'accidents courants liés aux intersections.

Deuxièmement, nous abordons le défi du placement optimal des serveurs en bordure dans les réseaux véhiculaires, en utilisant la programmation linéaire en nombres entiers pour trouver les solutions les plus efficaces. La méthodologie prend en compte la latence, le coût et la capacité des serveurs dans des conditions de trafic réelles. Le cadre proposé vise non seulement à minimiser le coût global de déploiement, mais aussi à équilibrer les charges de travail vii computationnelles entre les serveurs en bordure, tout en maintenant la latence dans des seuils acceptables. Enfin, nous nous plongeons dans la question complexe de la migration des services dans les réseaux véhiculaires, en abordant le dilemme du maintien de la qualité de service (QoS) tout en minimisant les coûts de migration. À mesure que les véhicules se déplacent à travers différentes régions, le maintien de la qualité du service nécessite une migration de service stratégique, qui pose des défis en termes de timing et de localisation. Pour résoudre ce problème, nous formulons le problème en tant que processus décisionnel de Markov (PDM) et appliquons des techniques d'apprentissage par renforcement profond, spécifiquement les Deep Q Networks (DQN), pour découvrir des stratégies de migration optimales adaptées aux exigences de chaque service. Le cadre résultant assure une continuité de service transparente, même dans des contraintes de haute mobilité, en réalisant un équilibre optimal entre la latence et les coûts de migration.

Mots clés : Systèmes de Transport Intelligents, Edge Computing, Placement de Serveurs Edge, Migration de Services.
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LaBRI (Laboratoire Bordelais de Recherche en Informatique) UMR 5800 -351 Cours de la Libération, 33405 Talence viii Résumé étendu en français L'économie mondiale moderne est intrinsèquement liée à la robustesse et à l'efficacité de ses réseaux de transport, qui sont chargés d'assurer le flux ininterrompu de passagers et de marchandises à travers diverses régions géographiques. L'objectif fondamental d'un système de transport est simple mais d'une importance critique : garantir un mouvement sûr et ponctuel.

Malheureusement, les réseaux de transport routier actuels ne parviennent souvent pas à atteindre ces objectifs et d'autres exigences essentielles, nécessitant ainsi des améliorations complètes. Les principaux défis du transport moderne sont :

-Accidents et sécurité : l'augmentation du trafic véhiculaire a entraîné une hausse alarmante des accidents de la route, aboutissant à environ 1,35 million de décès et entre 20 à 50 millions de blessures ou incapacités par an dans le monde. Les comportements de conduite négligents, tels que le non-respect des règles de circulation, l'excès de vitesse, l'épuisement et la conduite sous l'influence de substances, sont les principaux contributeurs à ces résultats défavorables.

-Congestion : fléau des lieux urbains, la congestion du trafic survient en raison d'un déséquilibre entre la croissance rapide du nombre de véhicules et le développement insuffisant des infrastructures. Les systèmes de signalisation de trafic inadéquats, les réseaux routiers mal conçus et les événements imprévus comme les accidents aggravent encore ce problème.

-Impact environnemental : le transport routier est une source significative de pollution de l'air et sonore, en particulier dans les villes à forte densité véhiculaire. La combustion inefficace au ralenti dans un trafic congestionné aggrave la qualité de l'environnement.

Une des solutions les plus convaincantes émergeant pour relever ces défis est les Systèmes de Transport Intelligents (STI). Ces systèmes exploitent intrinsèquement les réseaux véhiculaires pour soutenir une gamme variée d'applications dont les objectifs s'étendent de l'amélioration de la sécurité routière et du confort de conduite à l'optimisation des modèles de flux de trafic. En tirant parti de l'analytique de données, des protocoles de communication avancés et de l'intelligence computationnelle, les STI offrent un large éventail de services et d'applications visant à atténuer une série de problèmes de transport complexes qui affligent les centres urbains contemporains. ix Les services et les applications au sein des STI possèdent des attributs et des complexités uniques, les distinguant des applications computationnelles conventionnelles. Ils sont caractérisés par la génération et le traitement de grands volumes de données hétérogènes, et ils emploient des technologies de communication spécialisées avec des degrés divers de bande passante, de portée et d'exigences de latence. Ces caractéristiques uniques introduisent un ensemble de défis redoutables, étant donné que les STI doivent se conformer à une multitude de contraintes et de paramètres de qualité de service variables dictés par chaque application spécifique. Par conséquent, l'ingénierie et la conception de services qui s'intègrent sans heurt dans ce paysage complexe des STI représentent en eux-mêmes un défi significatif.

Ces applications véhiculaires deviennent de plus en plus gourmandes en calcul, nécessitant ainsi des solutions de traitement et de stockage de données sophistiquées. Traditionnellement, les infrastructures de calcul en cloud à distance ont été employées pour répondre à ces exigences computationnelles. Bien que le cloud computing offre des avantages tels que la rentabilité, la scalabilité et des cycles de déploiement rapides, il introduit également une limitation critique : la latence. Les retards inhérents dans la transmission des données entre les serveurs cloud distants et les véhicules peuvent souvent être imprévisibles et inacceptables pour des applications qui nécessitent une réactivité en temps réel.

Le calcul en périphérie (edge computing) a émergé comme une solution potentielle pour répondre à ces problèmes de latence. En positionnant les ressources de calcul plus près des utilisateurs finaux, à la périphérie du réseau, il répond à plusieurs exigences critiques : premièrement, il offre un support à faible latence crucial pour les applications hautement sensibles aux délais ; deuxièmement, il présente des capacités d'agrégation de données pour optimiser la consommation de bande passante ; et troisièmement, il offre un support pour des services qui sont conscients du contexte et dépendants de la localisation, améliorant ainsi la réactivité globale et l'efficacité du système.

Dans l'ensemble, la combinaison du Edge computing et des Systèmes de Transport

Intelligents promet beaucoup pour le déploiement massif d'applications véhiculaires.

Néanmoins, des défis importants demeurent dans la compréhension et la mise à l'échelle de ces systèmes. Un défi est le déploiement stratégique des éléments de réseau, crucial pour optimiser la performance et l'efficacité des applications véhiculaires. Cela vient à un coût de déploiement élevé, rendant essentiel d'installer un nombre optimal d'éléments de réseau tels que des serveurs Edge et des unités en bord de route à des endroits où la gestion des ressources est la plus efficace. Ces serveurs sont particulièrement importants dans les zones encombrées pour la x gestion des paquets de trafic, tandis que les unités en bord de route facilitent la communication à faible latence en minimisant le besoin de communications multi-sauts. Par conséquent, le défi réside dans le développement d'un modèle optimal qui minimise les coûts de déploiement tout en maximisant la Qualité de Service (QoS). Plusieurs questions émergent également sur la manière dont les serveurs de périphérie et leurs services associés devraient dynamiquement passer du point d'origine à la destination en réponse au mouvement du véhicule.

La portée de cette thèse comprend la conception et l'évaluation rigoureuse d'une architecture efficace pour le calcul en périphérie au sein des réseaux véhiculaires. Cela soulève les contributions suivantes.

Système d'Assistance à l'Intersection Basée sur le Edge Compuing pour les

Véhicules Connectés

Dans la première contribution, notre objectif principal est de répondre au problème omniprésent et pressant des intersections routières dangereuses en introduisant un système avancé d'assistance aux intersections, adapté pour les Systèmes de Transport Intelligents Coopératifs (C-ITS). Notre solution innovante, désignée sous le nom de ESIAS (Edge-based Safety Intersection Assistance System), tire parti de l'efficacité computationnelle de l'architecture de l'Edge compuing pour traiter rapidement les données sensorielles. Ces données sont transférées à partir d'un éventail d'équipements de détection sophistiqués, incluant, mais sans s'y limiter, des caméras et des systèmes Lidar stratégiquement positionnés à des points clés d'intersection.

Pour évaluer rigoureusement l'efficacité de performance de ESIAS, nous avons mené une série complète de scénarios de simulation. Ces scénarios sont conçus pour se rapprocher des conditions et défis du monde réel rencontrés aux intersections. Un critère pivot pour l'évaluation est la quantification de l'évitement des accidents, calculée à travers divers scénarios simulés pour déterminer la robustesse et la fiabilité du système. Nos résultats empiriques indiquent que ESIAS est remarquablement efficace, réduisant la probabilité d'accidents liés aux intersections de 80%. Cette réduction substantielle du potentiel d'accidents démontre non seulement la robustesse du système, mais souligne également son applicabilité pratique en tant que solution transformatrice pour améliorer la sécurité routière. xi

Placement Efficace des Serveurs Edge sous Contraintes de Latence et d'Équilibrage de Charge pour les Réseaux Véhiculaires

Dans la seconde contribution, nous avons abordé le problème du placement optimal des serveurs Edge, un aspect crucial de l'amélioration de l'infrastructure des Systèmes de Transport Intelligents (STI). Pour traiter cette question complexe, notre recherche utilise la Programmation Linéaire en Nombres Entiers (PLNE) comme formalisme mathématique. Cela nous permet de placer de manière optimale les serveurs de bord dans les réseaux véhiculaires, en considérant des facteurs pivots tels que la latence, le coût de déploiement et la capacité des serveurs. Notre méthodologie proposée va au-delà de la simple minimisation des coûts, car elle formule un problème d'optimisation multi-objectifs visant à atteindre une charge de travail équilibrée parmi les serveurs Edge tout en maintenant simultanément la latence dans un seuil acceptable. Pour étayer la robustesse et la généralisabilité de notre approche, nous avons mené une évaluation exhaustive en utilisant à la fois la preuve de concept mathématique et des tests simulés. Pour ces derniers, nous avons employé des données de trafic véhiculaire en opensource obtenues des voies routières de Bordeaux, en France, qui ont servi de base empirique pour évaluer l'applicabilité dans le monde réel. L'analyse comparative de notre solution par rapport aux méthodologies existantes révèle une amélioration notable, en particulier en termes d'équilibrage de la charge de travail. Par conséquent, notre recherche fournit un cadre empiriquement validé et mathématiquement rigoureux qui fait avancer l'état de l'art dans le placement des serveurs de bord pour les réseaux véhiculaires.

Approche Adaptative d'Apprentissage par Renforcement Profond pour la

Migration de Service dans les Réseaux Véhiculaires Activés par la MEC

Dans la dernière contribution, nous avons articulé un cadre exhaustif visant à résoudre le problème multifacette de la migration de service dans le contexte des réseaux véhiculaires activés par le MEC (Muli-Access Edge Computing). Commençant notre investigation, nous avons modélisé ce problème complexe comme un Processus Décisionnel de Markov (MDP), un formalisme qui aborde avec compétence les interactions complexes entre plusieurs variables, incluant, mais sans s'y limiter, les modèles de mobilité véhiculaire, les capacités computationnelles des serveurs Edge, et les profils variés des services qui sont offerts. L'ajout innovant de profils de service dans notre modèle analytique sert de progrès pivot ; cette inclusion permet le développement de stratégies de migration de service hautement spécialisées qui peuvent être personnalisées pour répondre aux demandes de performance et computationnelles spécifiques de chaque service individuel.

xii Pour opérationnaliser notre modèle théorique, nous avons utilisé des techniques avancées d'apprentissage par renforcement profond (DRL). Plus spécifiquement, nous avons utilisé une architecture de double Q Network avec un mécanisme de mémoire de rejeu pour accélérer et améliorer le processus d'apprentissage. Cette approche basée sur le DRL a été soumise à une validation empirique rigoureuse à travers une série de simulations complètes. Ces simulations corroborent les capacités exceptionnelles de notre algorithme piloté par le DRL, démontrant sa compétence à atteindre un équilibre optimal entre la latence et les coûts de migration. Cet équilibre est atteint d'une manière sensible au contexte des exigences uniques imposées par chaque profil de service, soulignant ainsi l'adaptabilité et l'efficacité de notre solution proposée. 
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Motivation

The modern global economy is intrinsically bound to the robustness and efficacy of its transportation networks, which are tasked with the unimpeded flow of passengers and goods across diverse geographic locales. A transportation system's fundamental objective is straightforward yet critically significant: to ensure secure and timely movement. Unfortunately, current road transportation networks often fall short of meeting these objectives and other essential requirements, thus necessitating comprehensive improvements. Core challenges in modern transportation are:

• Accidents and safety: increasing vehicular traffic has resulted in an alarming rise in road accidents, culminating in approximately 1.35 million deaths and between 20 to 50 million injuries or disabilities per year around the world [1]. Key contributors to these adverse outcomes are negligent driving behaviors, such as flouting traffic rules, speeding, exhaustion, and substance-impaired driving.

• Congestion: the bane of urban locales, traffic congestion occurs due to an imbalance between the rapid growth in vehicle ownership and lagging infrastructure development [2]. Inadequate traffic signal systems, poorly designed road networks, and unexpected events like accidents further exacerbate this issue.

• Environmental impact: road transportation is a significant source of both air and noise pollution, especially in cities with high vehicular densities [3]. Inefficient combustion during idling in congested traffic worsens environmental quality.

To address these challenges, a variety of measures have been implemented by governmental bodies, industry associations, and automobile manufacturers. These initiatives encompass awareness-raising and preventative traffic campaigns, stricter enforcement of traffic laws through sanctions, enhancements to in-vehicle safety features, and upgrades to road infrastructure and public transportation systems.

One of the most compelling solutions emerging in the field is Intelligent Transportation Systems (ITS). These systems intrinsically leverage vehicular networks to support a diverse array of applications with objectives spanning from the enhancement of road safety and driving comfort to the optimization of traffic flow patterns. In recent times, the advent of Advanced Driver Assistance Systems (ADAS) has provided vehicles with functionalities like Automatic Braking Systems (ABS) and Electronic Stability Programs (ESP) that assist in braking and maneuvering. To effectively execute these ADAS functionalities, vehicles need to be outfitted with a synchronized and interconnected array of sensors, facilitated through vehicular networks.

In the realm of smart ecosystems, Intelligent Transportation Systems (ITS) represent a confluence of multifarious technologies aimed at holistically optimizing urban mobility. They strive to enhance driver safety while simultaneously elevating the levels of comfort and entertainment for passengers. Leveraging data analytics, advanced communication protocols, and computational intelligence, ITS offer a broad spectrum of services and applications geared towards mitigating an array of complex transportation issues plaguing contemporary urban centers.

These applications are not stand-alone solutions; rather, they necessitate a synergistic interplay among various components that constitute both the urban and transportation infrastructures. Elements such as environmental sensors, mobile computing devices, and connected vehicles collaborate in real-time to provide a comprehensive situational awareness.

This dynamic assembly of components significantly aids in data acquisition, facilitating the evaluation and enactment of appropriate countermeasures by advanced control systems.

The services and applications within ITS possess unique attributes and complexities, setting them apart from conventional computational applications. They are characterized by the generation and processing of large volumes of heterogeneous data, and they employ specialized communication technologies with varying degrees of bandwidth, reach, and latency requirements. These unique characteristics introduce a set of formidable challenges, given that ITS must conform to a multitude of constraints and varying quality-of-service parameters dictated by each specific application. Consequently, the engineering and design of services that integrate seamlessly into this complex ITS landscape represent a significant challenge in itself.

These vehicular applications are increasingly becoming computation-intensive, thereby necessitating sophisticated data processing and storage solutions. Traditionally, remote cloud computing infrastructures have been employed to meet these computational demands. While cloud computing offers benefits such as cost-effectiveness, scalability, and quick deployment cycles, it also introduces a critical limitation-latency. The inherent time delays in data transmission between remote cloud servers and vehicles can often be unpredictable and unacceptable for applications that require real-time responsiveness.

Edge computing has emerged as a potential solution to address these latency issues. By positioning computational resources closer to end-users at the network's edge, it meets several critical requisites: firstly, it offers low-latency support crucial for applications that are highly sensitive to delays; secondly, its features capabilities for data aggregation to optimize bandwidth consumption; and thirdly, it provides support for services that are context-aware and location-dependent, enhancing the overall responsiveness and efficacy of the system.

Overall, the combination of Edge Computing and Intelligent Transportation Systems holds great promise for the massive deployment of vehicular applications. Nonetheless, significant challenges remain in the understanding and scaling of these systems. One challenge is the strategic deployment of network elements which is crucial for optimizing the performance and efficiency of vehicular applications. This comes at a high deployment cost, making it essential to install an optimal number of network elements like edge servers and Roadside units at locations where resource management is most effective. These servers are especially important in congested areas for managing traffic packets, while Roadside units facilitate low-latency communication by minimizing the need for multi-hop communications. Therefore, the challenge lies in developing an optimal model that minimizes deployment costs while maximizing Quality of Service (QoS). Several questions emerge also on how edge servers and their associated services should dynamically switch from the originating point to the destination in response to the vehicle's movement.

Scope and Research problem

Intelligent Transportation Systems (ITS) aim to enhance safety and offer a suite of entertainment services, requiring seamless communication and low-latency access to various applications. Achieving this requires tailored strategies for optimal resource utilization. Multiaccess Edge Computing (MEC) has emerged as a solution, providing robust computational power to vehicles by strategically placing edge servers within the network to meet stringent Quality of Service (QoS) requirements while minimizing latency.

The scope of this thesis includes the design and rigorously evaluate an efficacious architecture for edge computing within vehicular networks. This raises a series of research questions summarized as follows:

• What are the mechanisms by which edge computing can facilitate the development of enhanced safety protocols in vehicular applications?

The objective is to demonstrate the substantial potential of harnessing the benefits of edge computing to markedly enhance the design and delivery of more advanced vehicular safety applications.

• What strategies can be employed for the efficient deployment of edge servers within vehicular networks?

One of the primary challenges confronting this endeavor is the judicious placement of edge servers in the urban vehicular milieu. While augmenting the number of edge servers can potentially ameliorate latency issues, it concomitantly escalates deployment costs. Furthermore, suboptimal server placement may culminate in workload disparities among servers, engendering performance bottlenecks and inefficient resource utilization.

• How can service continuity be ascertained with optimal Quality of Service given the inherently distributed architecture of edge servers and the high-velocity mobility of vehicles?

The transient nature of vehicular mobility presents a distinct set of complications, chiefly a dynamically evolving communication topology. This leads to fluctuating and often unreliable communication links. Vehicles may frequently transition beyond the operational purview of a given edge server, thus exacerbating latency and engendering interruptions in service continuity. Hence, developing mechanisms to ensure consistent service in such a volatile environment remains a focal point of this investigation.

Contributions

This thesis delves into the critical challenges associated with the implementation of Edge

Computing within vehicular networks, with a specific emphasis on two principal quandaries:

the strategic placement of edge servers and the intricate issue of service migration. The main contributions are summarized as follows:

1. Edge-based Safety Intersection Assistance Architecture for Connected Vehicles:

The primary objective of this contribution is to engineer an Edge-based Safety Intersection Assistance System named "ESIAS". This system is specifically designed to enhance the safety measures associated with human-driven vehicle navigation through intersections. The ESIAS aims to disseminate accurate warning messages to drivers, thereby aiding in the prevention of potential accidents that are prevalent at road intersections.

In this contribution, an edge server is placed in the intersection under examination. Moving towards a more scalable and optimal solution, the problematic of strategic placement of edge servers in a broader area is targeted in the second contribution.

Efficient Edge Server Placement under Latency and Load Balancing Constraints

for Vehicular Networks: We propose a comprehensive model that can precisely identify the most effective locations for deploying edge servers. The model simultaneously minimizes the deployment cost, satisfies latency constraints, and ensures an equitable distribution of workload among the servers.

Given the incessant and swift movement of vehicles, merely optimizing the placement of edge servers falls short of assuring superior quality and uninterrupted continuity of service. It becomes imperative for a service to be seamlessly migrated from one edge server to another to maintain a requisite level of proximity to the vehicle. This particular challenge is meticulously explored in the third contribution.

Adaptive Deep Reinforcement Learning Approach for Service Migration in MEC-

enabled Vehicular Networks: In this contribution, we formulate the service migration problem as a Markov decision process (MDP). Our contribution is original and far-reaching, offering optimal migration strategies for diverse service profiles and it strikes a delicate equilibrium between sustaining QoS and minimizing migration costs.

Dissertation Structure

This introductory chapter has set the stage by contextualizing the research, outlining its motivations, articulating the research problem, and delineating its contributions. The remainder of this dissertation is structured in the following manner:

Chapter 2 furnishes a comprehensive review of the current state-of-the-art in Intelligent Transportation Systems (ITS) and the Edge Computing paradigm, providing the theoretical foundations upon which this work is built.

Chapter 3 elucidates the initial contribution concerning the Edge-based Intersection Assistance System. The chapter commences by introducing the system's architectural framework and the pertinent use-case scenario, subsequently venturing into the specifics of its implementation and corresponding simulation outcomes.

Chapter 4 encapsulates the second major contribution focused on the strategic placement of edge servers. The chapter initiates with the formulation of the system as an Integer Linear Programming (ILP) problem, followed by the exposition of a rigorous methodology aimed at solving this complex issue within real-world settings.

Chapter 5 unveils the third significant contribution pertaining to service migration strategies. Initially, the system is modeled as a Markov Decision Process (MDP). This serves as the foundation for the introduction of a deep reinforcement learning algorithm designed to ascertain the optimal service migration strategy.

Chapter 6 concludes the dissertation, providing an analytical recapitulation of the study and its contributions. This final chapter also opens the door to future research avenues and proposes refinements to the contributions presented herein.

Chapter 2 

Cooperative Intelligent Transport Systems (C-ITS)

Motivation

The modern global economy is deeply entwined with the efficacy of its transportation systems, which are designed to facilitate the smooth flow of passengers and goods across varied geographical locations. While the primary expectation from any mode of transportation is to ensure safe and timely arrivals, the current state of road transportation often falls short of meeting these basic needs. One of the most pressing concerns is the escalation in road accidents, with approximately 1.35 million fatalities and 20-50 million injuries or disabilities reported annually [1]. Traffic congestion, particularly in urban areas, adds another layer of complexity.

Not only does it lead to delays and inefficiencies, but it also exacerbates environmental issues such as air and noise pollution.

In light of these drawbacks, there is a pressing need for comprehensive improvements at both the system and individual levels. Investigative efforts must be directed toward developing strategies and technologies that address these multidimensional challenges in road transportation.

Definition of C-ITS

Intelligent Transportation Systems (ITS) encompass a broad scope of advanced technologies, including communication systems, sensors, and computing resources, seamlessly integrated into transportation infrastructures. The overarching aim is to provide real-time information that enhances safety, efficiency, and comfort for travelers while minimizing environmental impacts [4]. The progression of ITS relies on insights gleaned from research endeavors across diverse fields such as electronics, control systems, communications, sensing, robotics, signal processing, and information systems. The multidisciplinary nature of ITS magnifies its complexity, necessitating knowledge exchange and collaboration across varied research domains [5]. ITS seeks to harness these suitable technologies to cultivate "smarter" road networks, elevating their overall intelligence and functionality.

The exchange of information among road users constitutes the foundation of what is known as Cooperative Intelligent Transport Systems (C-ITS). C-ITS, in particular, hinges on the utilization of wireless communication and data sharing, fostering interaction either between vehicles or between vehicles and various other entities present on the road. Vehicular communications serve a diverse spectrum of applications, delineated into three primary categories: applications designed to enhance road safety, applications geared towards optimizing traffic management, and lastly, applications tailored to offer entertainment and augment user comfort.

C-ITS Applications

C-ITS applications are designed with the primary objective of augmenting road safety by elevating the level of situational awareness among drivers concerning imminent road hazards.

Through real-time alert mechanisms, drivers are better equipped to evade potential collisions and unforeseen dangers emanating from various road participants. In addition to safety enhancements, C-ITS applications play a pivotal role in environmental conservation and congestion alleviation by optimizing fuel usage and reducing travel durations.

C-ITS applications are broadly categorized into three primary domains: Traffic Safety, Traffic Efficiency, and Infotainment [START_REF] Meneguette | Intelligent transport system in smart cities[END_REF].

i. Traffic Safety Applications

Traffic safety applications form a critical category aimed at reducing vehicular accidents and enhancing road safety. These applications employ advanced functionalities such as cooperative forward collision warnings, pre-crash alerts, and notifications of hazardous road conditions. The objective is to arm drivers with comprehensive situational awareness to facilitate timely decision-making. In specific terms:

• Cooperative Forward Collision Warnings: This feature capitalizes on real-time data pertaining to vehicle positioning, speed, and directional heading. The shared information enables the system to calculate potential collision scenarios and issue immediate alerts to involved parties [7].

• Pre-Crash Alerts and Hazardous Location Notifications: These services focus on disseminating critical information about impending dangers, such as roadblocks, construction zones, or any anomalous traffic conditions that require immediate attention [START_REF] Popescu-Zeletin | Vehicular-2-X Communication: State-of-the-Art and Research in Mobile Vehicular Ad hoc Networks[END_REF].

Given the life-critical nature of these applications, they are characterized by stringent requirements for low latency and high reliability to ensure effective and timely alerts.

ii. Traffic Efficiency Applications

This category is tailored to optimize traffic flow and overall road management. It leverages a wealth of data, including real-time information on road conditions and travel plans from various traffic participants, to achieve its goals. Notable features in this category include:

• Adaptive Route Guidance and Navigation Systems: These services leverage realtime and historical traffic data to recommend the most efficient routes, thus reducing travel time and congestion.

• Dynamic In-Vehicle Speed Limit Notifications: This specific feature informs drivers of current and advisable speed limits, allowing for adaptive speed management based on real-time traffic conditions.

The net effect of these applications is not just a smoother flow of traffic but also a reduction in environmental impact and economic costs. They usually rely on sophisticated data dissemination techniques and roadside infrastructure to achieve these outcomes.

iii. Infotainment Applications

The infotainment category aims to enhance the overall driving experience by offering a range of value-added services. These include:

• Multimedia Downloads and Peer-to-Peer Exchanges: These features allow drivers and passengers to download or exchange multimedia content, such as audio and video files, either with other vehicles or with infrastructure nodes.

• Point of Interest (POI) Notifications: This service provides real-time updates about nearby amenities like energy refueling stations, maintenance facilities, and available parking spaces.

Infotainment applications usually incorporate various network elements, including vehicles, highway sensors, traffic lights, and even pedestrian mobile devices, to gather and disseminate information. Services under this umbrella extend to interactive gaming, content sharing, and localized notification services. These applications aim to not only entertain but also alleviate the driving burden, making journeys more enjoyable and stress-free.

Vehicle-to-Everything (V2X) communication

The efficacy of C-ITS services is intrinsically tied to the performance of underlying communication technologies. These technologies must satisfy the rigorous requirements of C-ITS in terms of reliability, latency, and Quality of Service (QoS). The intricate features and requirements of modern vehicular networks necessitate the examination of robust communication architectures that facilitate dependable information exchange among various types of network nodes. Specifically, information flow must be optimized not only between vehicles but also among a broader set of entities including Roadside Units (RSUs), pedestrians, and other infrastructure elements. This leads us to the concept of Vehicle-to-Everything (V2X) communication [START_REF] Wang | A survey of vehicle to everything (V2X) testing[END_REF], which comprises several modes as delineated in Figure 1:

• Vehicle-to-Vehicle (V2V) Communication: this mode enables direct information exchange between vehicles, thus forming an ad-hoc network that operates autonomously without the necessity for a fixed infrastructure.

• Vehicle-to-Pedestrian (V2P) Communication: this modality allows for the sharing of information between vehicles and pedestrians, enhancing situational awareness and potentially improving pedestrian safety.

• Vehicle-to-Infrastructure (V2I) Communication: in this mode, vehicles can communicate with fixed infrastructure components. Within the V2I umbrella, there are several sub-categories:

• Vehicle-to-Roadside (V2R): Here, the vehicles interact specifically with roadside units (RSU) or infrastructure. 

ii. Collective Perception Service (CPS)

Similar to CAS, CPS aims to increase road user awareness by disseminating Collective Perception Messages (CPMs) [START_REF][END_REF]. Unlike CAMs, which announce the presence and status of connected entities, CPMs are used to broadcast lists of objects perceived by sensors on connected entities. This feature is particularly useful in mixed traffic scenarios involving both connected and non-connected road users.

iii. Decentralized Environmental Notification Service (DENS)

DENS alerts users to road hazards or abnormal traffic conditions, such as accidents or wrong-way driving, through Decentralized Environmental Notification Messages (DENMs) [START_REF]Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specifications of Decentralized Environmental Notification Basic Service[END_REF]. Unlike CAMs and CPMs, DENMs are generated only upon the request of an application that detects a specific event and can be propagated over multiple hops if necessary.

iv. Traffic Light Maneuver Service (TLM)

TLM enhances safety at intersections by providing real-time information about the operational state of traffic lights. It delivers this information through Signal Phase and Timing (SPAT) messages generated by roadside infrastructure [START_REF]Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Facilities layer protocols and communication requirements for infrastructure services[END_REF]. This service informs road users about the current signal state, time remaining before the next state change, and permitted maneuvers, among other details.

v. Road Line Topology Service (RLT)

RLT is responsible for generating, transmitting, and receiving digital topological maps.

These maps include lane topologies for various types of road users, such as vehicles, cyclists, and pedestrians. The service disseminates this information through Map Messages (MAPs), generated by roadside infrastructure and localized to the area [START_REF]Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Facilities layer protocols and communication requirements for infrastructure services[END_REF].

In summary, these C-ITS services collectively contribute to the establishment of a more responsive, efficient, and safer transportation ecosystem by leveraging advanced communication technologies and sensor capabilities. 

Overview of V2X Use Cases and Performance Requirements

i. Cooperative Awareness

This category involves the dissemination of warnings and heightened situational awareness, such as emergency vehicle alerts and emergency electronic brake lights. Based on periodic message broadcasts at rates between 1-10 Hz, the payload per message varies from 60 to 1,500 bytes [START_REF]Intelligent transport systems (ITS); vehicular communications; basic set of applications; definitions[END_REF]. Given the dynamic nature of cooperative awareness, the expected data rate ranges between 5 to 40 kb/s with a reliability threshold of 90-95% [START_REF]Study on LTE support for V2X services (release 14)[END_REF].

ii. Cooperative Sensing

Involves the exchange of raw sensor data and object information to augment vehicles' perception of their environment. For crash mitigation scenarios, for instance, a large volume of raw data (25 Mb/s) needs to be transmitted with a reliability exceeding 99% and latency within 3 ms [START_REF]Study on enhancement of 3GPP support for 5G V2X services (release 15)[END_REF].

iii. Cooperative Maneuvering

Comprises use cases aimed at trajectory coordination between vehicles, such as lane changes, platooning, and cooperative intersection control. Varying requirements exist for latency and reliability; for instance, cooperative collision avoidance mandates high reliability (>99%) and swift data exchange within 10 ms [16][18].

iv. Vulnerable Road User (VRU) Notifications

Involves alerts regarding pedestrians, cyclists, etc. The latency and reliability requirements are similar to cooperative awareness, but the payload size is smaller, leading to a reduced data rate of 5-10 kb/s.

v. Traffic Efficiency

Relates to real-time updates for routes and dynamic digital maps, which do not necessitate stringent latency or reliability criteria. Vehicles upload data to a traffic management server periodically, with a payload size around 1,500 bytes [START_REF]Study on LTE support for V2X services (release 14)[END_REF].

vi. Teleoperated Driving

Entails vehicle operation by a remote driver, demanding a high uplink data rate of up to 25

Mb/s. The downlink data rate for control commands is comparatively lower. An end-to-end latency less than 20 ms and a reliability greater than 99% are essential for seamless operation [START_REF]Study on enhancement of 3GPP support for 5G V2X services (release 15)[END_REF]. The performance requirements outlined in Table 1 adhere to the rigorous standards stipulated in the 3GPP document on 5G V2X requirements. It's imperative to note that these requirements can be more flexible depending on the specific use case scenario. For example, the cooperative maneuvering category has more relaxed requirements for ordinary lane changes compared to emergency situations. Additionally, lower latency usually correlates with higher reliability needs.

C-ITS Reference Architecture

To actualize the full potential of Cooperative Intelligent Transportation Systems (C-ITS) in enhancing mobility and road safety, it is imperative for vehicular nodes to engage in seamless cooperation and exchange of highly reliable and accurate information. This entails a meticulous delineation of roles and responsibilities for each participating entity. Recognizing this necessity, • Application Layer: This layer encompasses an array of C-ITS applications aimed at improving road safety, traffic efficiency, and other functional domains.

Supplementing these horizontal layers, the architecture also defines two vertical layers:

• Management Layer: Responsible for cross-layer operations, this layer functions as the orchestrator of the overall communication system, optimizing the interactions between the various layers.

• Security Layer: This layer is vested with the responsibility of ensuring key security metrics such as authenticity, integrity, and confidentiality in both system-level and data-level communications.

In summary, the C-ITS reference architecture serves as a comprehensive blueprint, specifying the inter-layer interactions and the constituent services necessary for the effective deployment and operation of intelligent vehicular networks. 

Access Layer Technologies for Vehicular Communications

The increasing quality of service (QoS) demands for emerging vehicular applications have propelled new standardization endeavors aimed at developing next-generation Vehicle-to-Everything (V2X) communication technologies. These efforts are focused on leveraging both wireless and cellular communication paradigms to meet the requirements of modern vehicular applications.

IEEE 802.11p wireless technology

The IEEE 802.11p was released in 2010 by the IEEE, IEEE 802.11p [START_REF] Arena | A review on IEEE 802.11 p for intelligent transportation systems[END_REF] 

Cellular V2X (C-V2X)

To stay congruent with the burgeoning landscape of vehicular communications and technologies are becoming increasingly appealing. Specifically, 5G aims to deliver ultra-low latency, support massive machine-type communications, and offer enhanced mobile broadband capabilities with high throughput. Compared to 4G, 5G promises a ten-fold increase in data rates (exceeding 1 Gbps per user), a substantial reduction in latency (1 ms compared to 10 ms in LTE), improved energy efficiency, and additional advantages [START_REF] Gohil | 5G technology of mobile communication: A survey[END_REF].

Edge Computing (EC)

Cloud Computing

Cloud computing has catalyzed a revolutionary transformation in the domain of application services, extending the capabilities of computing, networking, and data storage to a global user base. Prominent cloud service providers such as Google, Microsoft, Amazon maintain extensive data center networks that are geographically dispersed. These data centers function as repositories of comprehensively managed server clusters, storage units, and networking switches, all meticulously engineered to guarantee consistent performance [START_REF] Al-Fares | A scalable, commodity data center network architecture[END_REF]. The cloud architecture incorporates hardware into a virtualized and programmable resource pool, facilitating dynamic provisioning and real-time reconfiguration. Such adaptability is advantageous for applications with fluctuating resource requirements, allowing them to operate under an "on-demand" resource allocation model, thereby optimizing costs [START_REF] Carolan | Introduction to cloud computing architecture[END_REF]. Cloud services are often segmented into three primary categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [START_REF] Villegas | Cloud federation in a layered service model[END_REF].

In recent years, a new generation of applications has emerged, notably in the realms of the Internet of Things (IoT), connected vehicular systems, and smart urban infrastructures. These applications predominantly rely on expansive networks of sensor devices, which perpetually collect environmental data and transmit it to cloud-based platforms for subsequent analysis.

Current research indicates that the Internet will host over 29 billion connected devices by the year 2030 [START_REF] Sujay | Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2023[END_REF], generating an enormous volume of digital data, colloquially referred to as "big data". The sheer size of this data is subject to exponential growth, posing significant challenges when processed in distant data centers. These challenges are twofold: bandwidth limitations that hinder efficient data transmission and latency issues that compromise the performance of time-sensitive and location-specific applications. Such applications include, but are not limited to, autonomous vehicular systems, augmented reality applications, industrial automation, and real-time gaming platforms.

To alleviate the network latency incurred in processing big data, research and industry communities have advocated bringing computational resources closer to both data generators and consumers. Several architectural paradigms have been proposed to tackle this challenge [START_REF] Bonomi | Fog computing and its role in the internet of things[END_REF][29][30] [START_REF] Preden | The benefits of self-awareness and attention in fog and mist computing[END_REF]. Among these, "Fog Computing" aims to bolster existing network infrastructure like switches and routers with computational capabilities, allowing for real-time data processing and aggregation while the data is in transit to the centralized cloud [START_REF] Bonomi | Fog computing and its role in the internet of things[END_REF]. A parallel initiative is "Edge Computing," which leverages a myriad of computational devices available in proximity to the data sources, such as smartphones and desktops, to meet ultra-low latency requirements essential for IoT applications [START_REF] Lopez | Edge-centric computing: Vision and challenges[END_REF]. Numerous frameworks have emerged that incentivize device owners to offer their unused computational resources for financial gains [33][34].

Thus, Multi-access Edge Computing (MEC) consolidates these advancements, positioning itself as a cornerstone in the evolving landscape of intelligent network architectures. It seeks to synergize cloud capabilities with edge resources, thereby harmonizing the benefits of both centralized and distributed computing paradigms.

Edge Computing Definition

Edge Computing (EC) serves to decentralize computational resources, situating them at the periphery of the network infrastructure. Within this context, the "Edge" is conceived as a flexible point located along the route connecting service requests or data origins to their corresponding processing hosts [35][36]. The overarching objective of EC is to minimize both physical and logical distances between the endpoints of the service path. In scenarios necessitating ultra-low latency and real-time interactions, such as 5G applications, the merits of extending cloud capabilities to the edge are unequivocal.

In parallel, Virtual Network Functions (VNFs) are strategically positioned within the service infrastructure enabled by EC, in close proximity to end-users. It is at this juncture that EC and Network Function Virtualization (NFV) intersect to facilitate the practicality and performance of 5G services. To elaborate, EC emphasizes the deployment of physical infrastructure or computational resources near the end-users. In contrast, NFV concentrates on the implementation of services through the orchestrated allocation of VNFs atop EC hardware.

Despite the apparent straightforwardness of the EC definition, existing literature reveals a landscape cluttered with varying interpretations and, in certain instances, conflicting data.

According to sources [START_REF] Yousefpour | All one needs to know about fog computing and related edge computing paradigms: A complete survey[END_REF][36] [START_REF] Dolui | Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing[END_REF], EC can be perceived either as an overarching paradigm encompassing Fog Computing (FC), Multi-access Edge Computing (MEC), and cloudlet computing, or as a distinct technology that coexists alongside these frameworks. The OpenFog Consortium posits that FC operates as a system-level architecture that spans across networks and interfaces with devices located at the "edge," whereas EC is specifically designed to deploy servers, applications, or micro-clouds at user premises [38][39]. Furthermore, the OpenFog Consortium argues that, unlike FC which boasts extensive peer-to-peer connectivity between nodes, EC primarily functions within isolated computational silos.

To clarify and ease the comprehension of these concepts, this research assumes the classification proposed in [START_REF] Satyanarayanan | The emergence of edge computing[END_REF] and [START_REF] Dolui | Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing[END_REF]. Consequently, EC is assumed to be defined by the following characteristics:

• Node Infrastructure: EC utilizes a microdatacenter-like framework, colloquially referred to as "Datacenter in a Box" or "hyper-convergent micro-datacenter." These architectures provide an amalgamation of storage, computational, and networking capacities situated at the periphery of the network infrastructure.

• Proximity: Typically, EC nodes are strategically deployed on user premises, often within a single network hop from traffic aggregation points, such as Radio Access Network (RAN) nodes or Wi-Fi access points. However, this is not a stringent constraint; the technology supports further placements across multiple network hops, contingent on specific use-case requirements.

• Access Technology: An edge node is generally interfaced with traffic aggregation points via backhaul mobile networks or Internet Service Providers (ISP) access networks. This connectivity is achieved using a variety of physical interconnection technologies or network architectures.

• Architectural Framework: EC employs a hierarchical communication and computation model. This means that a task can initially be offloaded to an edge node for preliminary processing and subsequently forwarded to a more centralized datacenter for advanced operations. Despite the hierarchical nature of task offloading, the network infrastructure within EC can be characterized as flat. This flatness is derived from the singular tier of edge nodes interposed between traffic aggregation points and the centralized cloud ecosystem. For illustrative purposes, Figure 3 presents a simplified reference architecture for EC, in which each Edge Node (EN) is assumed to coalesce storage, networking, and computational resources. 

Edge Computing Paradigms

The subsequent sections offer an in-depth exploration of prevalent technologies and implementations closely associated with Edge Computing (EC).

Mobile/Multi-access Edge Computing (MEC)

Initially conceptualized by the European Telecommunications Standards Institute (ETSI) in 2014, MEC was envisioned as a computational framework within the Radio Access Network (RAN). Unlike Fog Computing (FC), in MEC the term "edge" is specifically localized to the RAN site. FC, in contrast, allows for a more flexible edge definition that could include user premises and even extends to leased resources from end-user devices [START_REF] Etsi Gsnfv | Mobile Edge Computing (MEC); Framework and reference architecture[END_REF][41] [START_REF] Fajardo | Introducing mobile edge computing capabilities through distributed 5G cloud enabled small cells[END_REF]. In September 2016, recognizing the broader applicability of the technology beyond mobile networks, ETSI renamed it to Multi-access Edge Computing.

MEC's primary objective is to mitigate network congestion and elevate application performance by localizing data processing. It facilitates various use-cases such as Augmented and Virtual Reality, which necessitate ultra-low latency, and IoT applications that demand optimized network resource utilization [START_REF] Etsi Gsnfv | Mobile Edge Computing (MEC); Framework and reference architecture[END_REF].

Cloudlet Computing

Cloudlets can be viewed as miniaturized datacenters positioned at the network edge, often described as a "Datacenter in a Box". Unlike MEC, which confines the edge to the RAN node, cloudlets offer a more fluid concept of the edge-located in the proximity to end-users [START_REF] Dolui | Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing[END_REF].

They are designed to be small, cost-efficient, and maintenance-free, yet powerful and secure, focusing predominantly on soft state and micro-services.

Fog Computing (FC)

Fog Computing, as per [START_REF] Vaquero | Finding your way in the fog: Towards a comprehensive definition of fog computing[END_REF], serves as a decentralized computational model involving cooperative processing by end devices, Edge Nodes (EN), and cloud resources. Unique to FC is its flexibility to allocate computational tasks not just to ENs or cloud servers but also to resources leased from end devices. FC is a system-level architecture that disseminates resources across a continuum from the remote cloud to end devices, supporting diverse industrial and application domains [START_REF]OpenFog reference architecture for fog computing[END_REF][43] [START_REF] Marín-Tordera | Do we all really know what a fog node is? Current trends towards an open definition[END_REF].

In summary, Multi-access Edge Computing (MEC), Cloudlet Computing, and Fog Computing (FC) differ in specific features but are fundamentally aligned in their commitment to decentralizing and distributing computing resources. This shared architecture aims to enhance system performance by relocating computational tasks closer to data sources or endusers. Despite individual nuances in how each approach defines the "edge" or prioritizes certain elements, all three contribute to a broader, unified vision of a more accessible and efficient edge computing landscape.

Edge Computing Motivations

The shift towards edge computing from conventional centralized computing frameworks is motivated by a variety of compelling factors. These range from operational exigencies to efficiency improvements and enhanced data governance and privacy protocols. Subsequent sections will delve into these driving forces behind edge computing in a comprehensive manner.

Decentralized Cloud Architectures and Low-Latency Computing:

The centralized model of cloud computing often falls short when addressing the requirements of geographically dispersed applications. To enhance the quality of service, it is increasingly important to situate computing resources closer to the data source. This notion is universally applicable across a range of web-based applications [START_REF] Zhu | Improving web sites performance using edge servers in fog computing architecture[END_REF].

Edge nodes positioned near users offer a potent platform for service providers to refine the quality and responsiveness of their applications. These nodes are pivotal when handling voluminous data streams generated by edge devices, especially for real-time analytics.

Traditional cloud structures exhibit substantial latency in such scenarios. For example, applications requiring real-time visual guidance through wearable cameras necessitate a response time within the 25ms to 50ms window [START_REF] Agarwal | Vision: The case for cellular small cells for cloudlets[END_REF]. The current cloud infrastructure significantly fails to meet these latency-sensitive demands, as evidenced by a round-trip time of approximately 175ms between locations like Canberra and Berkeley [START_REF] Satyanarayanan | The case for vm-based cloudlets in mobile computing[END_REF].

Moreover, video streaming, which constitutes the largest share of mobile traffic, encounters substantial challenges in meeting user expectations if the data has to traverse long distances to a central cloud. Similarly, multimedia applications such as cloud-based on-demand gaming experience latency challenges detrimental to user engagement [START_REF] Choy | The brewing storm in cloud gaming: A measurement study on cloud to end-user latency[END_REF]. To ameliorate these issues, edge nodes can be employed to supplement cloud-based computations, thereby significantly reducing network latency.

Resource Constraints

The conventional centralized computing paradigm, which relies on data centers for control, data collection, and data processing, often encounters limitations in diverse applications and settings. These limitations can manifest as computational bottlenecks on devices with restricted hardware or software capabilities, making on-device data analytics challenging [START_REF] Houmansadr | A cloud-based intrusion detection and response system for mobile phones[END_REF]. Further, communication barriers can make it costly or impractical to rely on cloud-based systems for decision-making. Edge computing emerges as a versatile solution to address these issues. It enhances the accuracy of data measurements, reduces alert latency, and minimizes the overall cost of data transmission. By situating computational resources closer to the origin of data, edge computing facilitates timely and context-sensitive decision-making without the need for resource-intensive, high-bandwidth communications to a centralized system.

Addressing the Surge in Data Volume and Network Traffic Congestion:

The proliferation of end devices is staggering, with projections suggesting that a significant fraction of the global population will possess a smartphone by the close of the decade.

Concomitantly, data generation rates are also expected to skyrocket, potentially reaching an astounding 43 trillion gigabytes [START_REF] Agarwal | Vision: The case for cellular small cells for cloudlets[END_REF]. This surge in data inevitably necessitates the expansion of data centers to handle increased monitoring and analytical workloads. However, such expansion raises critical questions about sustainable energy consumption.

Several strategies aim to alleviate the energy burden by offloading analytics to end devices [START_REF] Sun | Design and implementation of an android host-based intrusion prevention system[END_REF][52] [START_REF] Dini | MADAM: a multilevel anomaly detector for android malware[END_REF]. Yet, these solutions are inherently constrained by the limited resources available on edge devices. Furthermore, collective analytics; aggregating data from multiple edge devices for unified analysis; remains impractical when conducted solely on edge hardware.

Besides the energy considerations, the upsurge in data generation poses challenges for network bandwidth, potentially clogging the path to central servers or cloud systems. This congestion risks degrading the responsiveness of end devices, thereby impairing user experiences and system efficacy. To counteract these challenges, there is an emerging inclination towards utilizing edge nodes situated just one network hop away. These nodes can complement the computational capabilities of both the edge devices and central data centers, thereby facilitating better traffic distribution and more efficient data processing.

Smart Computation Techniques

Conventional approaches often necessitate the transmission of user-generated data to cloud servers for substantive analytics, incurring noticeable latency and energy costs. However, a hierarchical distribution of computational tasks across the network holds promise for improved efficiency [START_REF] Hari | SARANA: language, compiler and run-time system support for spatially aware and resource-aware mobile computing[END_REF]. For instance, in a well-designed application pipeline, the data generated at the edge device could first undergo initial filtering. Subsequently, intermediary analytics could be carried out at edge nodes during data transmission, reserving only complex computational tasks for the cloud server.

In an alternative scenario, data centers could strategically delegate resource-limited computational tasks to edge nodes to free up central resources. Additionally, edge nodes could also leverage computational power from volunteer devices to augment their capabilities [START_REF] Shiraz | A lightweight active service migration framework for computational offloading in mobile cloud computing[END_REF].

By positioning computational activities closer to the data source, edge nodes not only minimize latency but also enable the remote enhancement of front-end device capabilities through intelligent task distribution strategies.

Heterogeneous Operational Environments:

Traditional self-contained applications typically depend on highly integrated, vertical infrastructure stacks that include hardware, devices, and software resources. The adoption of edge computing methods allows for the flexible satisfaction of application-specific constraints across various operational environments. For example, real-time Smart City applications, such as traffic management [START_REF] Islam | An efficient algorithm for detecting traffic congestion and a framework for smart traffic control system[END_REF], necessitate multi-scale predictive analytics spanning street intersections, sub-city regions, and the city as a whole [START_REF] Kitchin | The real-time city? Big data and smart urbanism[END_REF].

Moreover, the seamless integration of diverse federated entities, like mobile devices and vehicles, calls for localized computational decision-making. These external participants must not only interface effectively with distributed edge analytic services, but also coordinate for autonomous Vehicle-to-Vehicle (V2V) interactions [START_REF] Waldrop | No drivers required[END_REF]. Such collaborative activities are facilitated through specialized edge computing platforms, tailored to meet the nuanced requirements of Smart City infrastructures [START_REF] Gerla | Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds[END_REF].

Workload Optimization

One of the most salient advantages of edge computing is the ability to optimize workloads through intelligent allocation of computational resources and data sources. Previous sections elucidated how relocating computation closer to data sources enables new functionalities and advantages, including intrinsic efficiencies. Within the edge computing framework, broader implications for resource management also exist. Workloads at the edge can be optimized based on various factors including cost [START_REF] Yang | AmazingStore: available, low-cost online storage service using cloudlets[END_REF], network characteristics [START_REF] Zhang | Dynamic offloading algorithm in intermittently connected mobile cloudlet systems[END_REF], computational performance [START_REF] Shires | Cloudlet seeding: Spatial deployment for high performance tactical clouds[END_REF], and energy consumption [START_REF] Gai | Dynamic energy-aware cloudletbased mobile cloud computing model for green computing[END_REF]. In summary, MECs offer a compelling array of features, from ultra-low latency and diverse resource distribution to robust support for mobility and effective interplay with centralized cloud architectures. These features make them particularly suitable for applications requiring immediate response times and context-aware processing.

Edge Computing Characteristics

Potential Use cases

Edge computing plays an indispensable role in addressing latency-sensitive and computationally-intensive applications by enabling localized data processing. This mitigates the latency often associated with remote cloud systems. The following are select examples to demonstrate the multifaceted utility of edge computing, with particular focus on its application in connected vehicles.

Connected Vehicles

The connected vehicle landscape, increasingly integrated with self-driving systems or Advanced Driver-Assistance Systems (ADAS), necessitates seamless connectivity with other vehicles and Road-Side Units (RSUs). The development of specialized communication protocols, such as ITS-G5, and the impending integration with 5G technologies, promises ultralow-latency communication between vehicles and RSUs. These connections permit the realtime exchange of vital information culled from an array of sources including traffic lights, street cameras, and sensors embedded in devices carried by pedestrians and cyclists.

One salient aspect is the data-intensive nature of connected vehicles. A single autonomous vehicle can generate up to 4TB of raw data per hour, as corroborated by an Intel study [START_REF]Intel Unveils Its Automated Driving Compute Challenger To Nvidia[END_REF].

This voluminous data is impractical to upload entirely to a cloud for processing. Herein lies the value proposition of edge computing. Edge servers, often situated near RSUs, selectively broadcast important information to nearby vehicles. Moreover, these servers can rapidly execute complex tasks such as object detection or face recognition, thereby expediting data processing and enhancing road safety.

Mobile AR/VR

Mobile Augmented Reality (AR) and Virtual Reality (VR) also significantly benefit from edge computing. Traditional standalone devices often suffer from limited computational power, leading to sub-optimal user experiences. Edge computing alleviates these limitations by offloading computational tasks to local servers, thereby offering real-time responses crucial for immersive AR/VR experiences.

Smart City

In the realm of smart cities, edge computing supports real-time analytics for improved urban operations. For instance, sensors mounted on streetlights can monitor environmental variables like air quality and light intensity, enabling prompt responses to issues like air pollution or maintenance needs. Edge servers equipped with GPUs can perform real-time image and video analysis, fulfilling critical roles in intelligent traffic systems and public safety applications.

Smart Factory

Industrial landscapes are increasingly shifting toward automated and connected systems.

Edge computing can assist in real-time data filtering and control tasks. For instance, smart factories equipped with intelligent edge gateways can perform real-time data analytics to monitor and adjust automated workflows. By localizing these functions closer to the production line, edge servers can significantly reduce latency, ensuring more responsive and efficient operations.

Overall, edge computing stands as a transformative technology with a wide array of applications, particularly in enhancing the safety and efficiency of connected vehicles.

Edge Servers Placement

Deploying Edge servers is a multifaceted operation with its cost determined by locationdependent and computation-dependent expenses [START_REF] Mao | A survey on mobile edge computing: The communication perspective[END_REF]. Location-dependent costs include power installation, network connections, land acquisition, and essential utilities like water and electricity. Computation-dependent costs encompass the necessary computing, storage, and networking capacities, along with software licenses, management fees, and staff salaries.

Edge servers deployment also presents numerous challenges and trade-offs. These include constraints related to existing network capacities and operator-designated points such as Pointsof-Presence (PoPs) and Central Offices. The aim is to optimize these parameters to achieve low costs, high transmission efficiency, and efficient power usage while maintaining quality service (QoS) and experience (QoE). Mismanagement in capacity and demand can significantly inflate both capital expenses (CAPEX) and operational expenses (OPEX).

The requirement for low-latency further complicates edge servers placement. While proximity to Radio Access Network (RAN) nodes is often proposed as a solution, physical space constraints often make this impractical. Moreover, a continuous placement strategy that considers every possible coordinate is generally infeasible due to problem complexity and increased costs. Instead, a discrete strategy, considering predetermined potential sites, becomes essential.

Optimizing edge server's placement is thus critical for cost-efficiency and satisfying user requirements. Despite the importance of edge server's placement, most studies focus on resource allocation and capacity planning, often neglecting the equally vital aspect of optimized site selection. Therefore, a balanced approach to edge servers placement that optimizes both capacity and location is imperative for the economic feasibility of future Edge Computing ecosystems.

Yannuzzi et al. examine fog node (FN) placement in the context of smart cities, using

Barcelona as a case study [START_REF] Yannuzzi | A new era for cities with fog computing[END_REF]. Their objective is to satisfy diverse applications like event-based video and traffic management. The study proposes cost-saving measures like leveraging available street cabinets for FN placement. In contrast, another paper uses k-means clustering to facilitate Quality of Service (QoS)-aware placement [68][69]. However, this approach has limitations such as rigid uncapacitated formulations and simplistic assumptions, hindering its application in real-world contexts.

In the realm of Internet of Things (IoT), which significantly influences 5G network development [START_REF] Byers | Architectural imperatives for fog computing: Use cases, requirements, and architectural techniques for fog-enabled iot networks[END_REF], one study [START_REF] Gravalos | Efficient gateways placement for internet of things with QoS constraints[END_REF] focuses on gateway placement to minimize both Capital Expenditure (CAPEX) and Operational Expenditure (OPEX). The problem is formulated as Integer Linear Programming (ILP), and the study proposes optimization based on Voronoi vertices and facility locations.

A framework for edge server placement is presented in [START_REF] Yin | Edge provisioning with flexible server placement[END_REF], employing a novel method to identify unanticipated suitable locations by analyzing user behavior and clustering. This study uses ILP for capacity provisioning and accounts for user demand variability. However, it lacks a detailed consideration of 5G-specific demands and complexities, calling for further enhancements in user clustering and capacity provisioning strategies. Similarly, the paper in [START_REF] Bouet | Mobile edge computing resources optimization: A geoclustering approach[END_REF] focuses on the geo-clustering of Multi-access Edge Computing (MEC) servers but has limitations in its clustering approach and fails to adequately account for requirements like latency and reliability.

Some studies apply a geographical approach to edge server placement [START_REF] Mohan | Anveshak: Placing edge servers in the wild[END_REF], considering CAPEX/OPEX, user mobility, and service demands. Despite these comprehensive considerations, the work makes assumptions that may not be realistic, such as user willingness to manage edge infrastructure and the evolution of edge service costs.

Another notable paper addresses the placement problem for mobile edge computing within future smart cities [START_REF] Wang | Edge server placement in mobile edge computing[END_REF], employing a multi-objective optimization model. However, its applicability to ultra-dense networking and delay-sensitive use cases is limited.

It is also noteworthy that none of the extant literature sufficiently addresses network-aware Edge Node Placement Problems (ENPP), an area becoming increasingly critical due to the projected surge in data processing and bandwidth usage in latency sensitive networks.

Given this landscape, there is a clear need for more comprehensive research that is capable of addressing the intricacies and challenges inherent in edge server placement, especially in the context ultra-low latency applications.

In this thesis, we address the Edge server placement problem in vehicular networks in chapter 4. We propose a methodology that considers latency, cost, and server capacity in realworld traffic conditions. The proposed framework aims not only to minimize the overall deployment cost but also to balance the computational workloads among Edge servers, all while maintaining latency within acceptable thresholds.

Given the incessant and swift movement of vehicles, merely optimizing the placement of edge servers falls short of assuring superior quality and uninterrupted continuity of service. It becomes imperative for a service to be seamlessly migrated from one edge server to another to maintain a requisite level of proximity to the vehicle. This particular challenge is presented in the next section.

Service Migration in MEC: Vehicular Network Use Case

Multi-access Edge Computing (MEC) serves as a nascent computational paradigm, offering robust computational resources to vehicles in immediate geographical proximity to MEC servers, all while maintaining minimal latency. However, the architecture faces specific challenges due to the constrained resource capacities of MEC servers and the dynamic mobility patterns of vehicles. Specifically, to ensure seamless service continuity for vehicular applications, there is a necessity to dynamically locate and migrate these services across disparate MEC servers [75][76].

Given the proliferation of edge computing, characterized by its expansive geographical distribution, vehicular services are increasingly vulnerable to the pronounced mobility patterns.

As vehicles navigate various city sectors, the continuity of services within an edge framework may be compromised. This can lead to services being relayed over multiple hops, thus deteriorating the Quality of Service (QoS) for vehicular applications. In the intelligent transportation systems, it becomes imperative to integrate an adept mobility management strategy to ensure a consistently high QoS.

Service migration has emerged as a pivotal strategy to maintain proximity between services and vehicles, ensuring adherence to the fundamental QoS benchmarks for vehicular application.

This entails relocating services, which are executed on a virtual machine or container, to a subsequent server with an emphasis on being mobility-conscious. A rudimentary approach to preserving service closeness to vehicles involves initiating migration post every transition to the nearest edge server. Nonetheless, this approach exhibits suboptimal efficacy in highly fluid vehicular contexts.

The authors in [START_REF] Haung | A qoe-aware strategy for supporting service continuity in an mcc environment[END_REF] address the challenge of service disruption in Mobile Cloud Computing environments, particularly caused by high user mobility and server load surges. A QoE-aware service continuity strategy is proposed to mitigate service disruption. The strategy employs a buffer-occupancy threshold policy to differentiate between new and migrated service requests.

This allows the cloud server to adjust buffer thresholds dynamically based on traffic load and user mobility, enhancing resource utilization while maintaining acceptable levels of user QoE.

In a different but related context, [START_REF] Ouyang | Follow me at the edge: Mobility-aware dynamic service placement for mobile edge computing[END_REF] and [START_REF] Chen | Mobility-aware service function chaining in 5G wireless networks with mobile edge computing[END_REF] introduce the Follow-Me Chain algorithm to tackle the complex problem of service placement and migration, particularly focusing on cross-MEC handovers to optimize user satisfaction in high-mobility scenarios. This challenge is classified as NP-hard and is formulated as an Integer Linear Programming (ILP) problem that is subsequently resolved using the Follow-Me Chain algorithm.

Continuing along these lines, [START_REF] Roy | User mobility and quality-of-experience aware placement of virtual network functions in 5g[END_REF] delves into the challenges of Virtual Network Function (VNF) relocation in cloud infrastructures, taking into account mobility and resource heterogeneity. The study employs a Mixed-Integer Linear Programming (MILP) formulation and an ant colony optimization meta-heuristic for problem-solving. Moreover, [START_REF] Addad | Towards a fast service migration in 5G[END_REF] and [START_REF] Addad | Towards modeling cross-domain network slices for 5G[END_REF] evaluate three container-based approaches for VNF migration, considering two mobility patterns: known and unknown. In the latter case, the authors propose an innovative solution of storing container file systems in shared pools.

Additionally, [START_REF] Addad | Network slice mobility in next generation mobile systems: Challenges and potential solutions[END_REF] presents a comprehensive review of various service migration techniques, such as full slice migration and partial slice migration, involving slice breathing, splitting, and merging.

In conclusion, while significant advancements have been made in the realm of service migration in MEC, it is evident that the field is far from reaching a mature state. The dynamic nature of vehicular networks, characterized by high mobility and varying resource demands, adds an additional layer of complexity to service migration challenges. Current solutions, although promising, primarily focus on specific facets of the problem, leaving room for comprehensive, integrated approaches that can adapt to the evolving demands and complexities of vehicular networks. Therefore, the study of service migration, particularly in vehicular network environments, remains an open research avenue requiring further investigation and innovative solutions.

In chapter 5, we delve into the service migration problem in vehicular networks by presenting a novel contribution that addresses the quandary of maintaining quality of service (QoS) while minimizing migration costs. As vehicles move through different regions, maintaining service quality requires strategic service migration, which poses challenges in terms of timing and location. To resolve this, we propose a sophisticated solution to discover optimal migration strategies tailored to each service's requirements. The resulting framework ensures seamless service continuity even within high-mobility constraints, achieving an optimal balance between latency and migration costs. 

.2 Research objectives

To overcome this problem, we propose an intersection assistance system that could warn the drivers of other approaching vehicles' presence even without perceiving them. Our main objective is to increase drivers' awareness to avoid a potential accident at the unsignalized intersection.

The primary objective of this contribution is to engineer an Edge-based Safety Intersection Assistance System named "ESIAS". This system is specifically designed to enhance the safety measures associated with human-driven vehicle navigation through intersections. The ESIAS aims to disseminate accurate warning messages to drivers, thereby aiding in the prevention of potential accidents that are prevalent at road intersections.

A crucial part of this work is the adoption of an edge-computing architecture, which serves as the computational backbone for real-time data processing. This architecture enables efficient management and processing of high-volume data, which is continuously offloaded from an array of sensors such as cameras and lidars installed at intersections.

To further improve the system's robustness, the research aims to integrate multi-modal sensing capabilities by leveraging a combination of cameras, lidars, and potentially other sensors. This integrated approach aims to provide a comprehensive 3D spatial awareness, even under adverse environmental conditions like low light, glare, and shadows.

Additionally, empirical evaluation constitutes an integral part of this research. The effectiveness of the proposed ESIAS will be rigorously tested through multiple simulation scenarios. The key metric for this assessment will be the system's ability to reduce the number of potential accidents at intersections.

Related works on intersection assistance system (IAS)

The field of Intersection Assistance Systems (IAS) has witnessed a significant surge in research interest over the past few years, largely driven by the increasing emphasis on road safety and traffic efficiency. The aim of this section is to review existing literature related to Intersection Assistance Systems (IAS) with a focus on two key dimensions: safety-related IAS and efficiency-related IAS. This will help to contextualize the present study within the broader research landscape, thereby identifying the gaps and areas for improvement that the proposed edge-based safety intersection assistance architecture seeks to address.

Safety-related IAS

Safety remains a paramount concern in the development and deployment of IAS. In the work presented by Pruekprasert et al. [START_REF] Lin | Decision making through occluded intersections for autonomous driving[END_REF], the authors developed a decision-making framework for autonomous vehicles at unsignalized intersections in the presence of malicious vehicles.

These malicious vehicles are defined as those not obeying the law by not adhering to the rightof-way rules. The authors proposed a game-theoretic decision-making process using Nash equilibria in a perfect information game, which determined the decision order of the vehicles based on their priorities instead of the concept of "aggressiveness" used in previous studies. In this paper, the authors considered different levels of maliciousness, including vehicles that break the law or demonstrate irrational behaviors, in order to simulate a real-world traffic environment. Despite the impressive performance of the method in simulations (collision rate between 0% and 1.1%), this work was limited to scenarios involving a maximum of four vehicles at an intersection, thus not simulating more realistic traffic scenarios with higher vehicle densities. The study focused on high-level decision making, and the vehicle configurations were simplified for ease of calculation, potentially limiting the applicability in more complex real-world scenarios.

In their comprehensive study, Lin et al. [START_REF] Lin | Decision making through occluded intersections for autonomous driving[END_REF] address the complexities of navigating unsignalized intersections, especially those with occlusions, through an autonomous driving lens. Their work sets out to judiciously predict vehicle behavior in both observable and occluded areas. The authors employ a Partially Observable Markov Decision Process (POMDP) framework customized specifically for autonomous driving situations. This framework introduces the concept of 'virtual vehicles,' which act as proxies for potential hidden obstacles.

One of the unique aspects of this work is its applicability to both static and dynamic occlusions, making it versatile across different intersection scenarios. To further optimize their approach, the authors develop a specialized POMDP solver that reduces average computational complexity. Experimental evaluations demonstrate that their approach not only enables humanlike driving behavior but also excels in collision avoidance. While the approach is laudable for its thoroughness and customization, it adopts a conservative, worst-case strategy. This occasionally results in unnecessary computational overhead and could lead to unwarranted slowdowns or stops for vehicles nearing the intersection. Our approach sends warnings to a vehicle just in the case where other vehicles are present in the intersection.

In another work [START_REF] Aoude | Threat assessment design for driver assistance system at intersections[END_REF], the authors present an innovative approach for enhancing decisionmaking in human-driven vehicles traversing road intersections in the presence of other drivers.

The cornerstone of this study is a novel Threat Assessment Module (TAM), which amalgamates an Intention Predictor (IP) employing Support Vector Machines and a Threat Assessor (TA)

leveraging Rapidly-Exploring Random Trees (RRT). This integrated module issues a warning to the driver by calculating both the threat level and the optimal 'escape maneuver' through the intersection. The TAM is designed for real-time implementation and has been empirically validated in the RAVEN testbed using both autonomous and human-driven vehicles. Despite its ingenuity, the system does grapple with limitations. Specifically, it relies on the individual perception of each vehicle, omitting obstacles and vehicles that are not immediately visible.

Additionally, the computation of the optimal escape maneuver presents a latency issue, which may not be feasible for onboard calculations in the vehicle.

Efficiency-related IAS

The aim is to improve traffic efficiency aspects such as reducing congestion and pollution.

the work in [START_REF] Günther | Optimizing vehicle approach strategies for connected signalized intersections[END_REF] advances the field of efficiency-related Intelligent Intersection Assistance Systems (IAS) by introducing a methodology that focuses on automating and optimizing the longitudinal approach strategy for connected vehicles at signalized intersections. The vehicles, by receiving Signal Phase and Timing (SPaT) messages from the traffic light infrastructure, are able to optimize their approach, consequently reducing the number of stops. This serves dual purposes: it augments driver comfort and enhances traffic efficiency by increasing throughput at these critical junctures. The paper's innovative approach includes the introduction of a convex solution space, which permits lightweight computational optimization while affording the flexibility to adapt to real-time traffic conditions.

The authors in [START_REF] Kitazato | Proxy cooperative awareness message: an infrastructure-assisted v2v messaging[END_REF] introduce the Proxy Cooperative Awareness Message (CAM) system, explicitly designed to circumvent challenges associated with mixed vehicular environments and obstacle interference in Vehicle-to-Vehicle (V2V) communications. The paper posits that not all vehicles in an Intelligent Transportation System (ITS) are CAM-aware due to low market penetration and infrastructural limitations. In such scenarios, the Roadside Unit (RSU)

generates Proxy CAMs on behalf of these non-CAM-aware vehicles. The generated messages are processed at an edge computing node, thereby augmenting the system's efficiency and effectiveness. These messages are then broadcasted to CAM-aware vehicles to enhance cooperative awareness. Experimental evaluations involving a stereo camera placed at an intersection affirmed the system's capability to send 20 CAMs per second with a maximum system delay of just 0.22 seconds. Although the research makes a significant contribution in terms of enhancing the coverage and reliability of V2V messaging, it is circumscribed by its focus solely on CAM delivery; it does not extend to accident prevention or overall traffic efficiency.

In light of the reviewed literature and identified gaps in the realm of intersection safety, our proposed approach, termed Edge-based Safety Intersection Assistance System (ESIAS), aims to offer a comprehensive solution to the prevailing safety challenges at road intersections.

Central to our methodology is the utilization of edge computing as the computational fulcrum, designed to perform real-time, efficient data processing. This architecture serves to offload and process the voluminous data generated by an amalgam of sensors, including but not limited to, cameras and lidars strategically installed at intersections. Through the synergistic integration of these technological elements, ESIAS is engineered to facilitate precise decision-making algorithms. These algorithms, in turn, generate timely and accurate safety-related warning messages for drivers approaching intersections. This comprehensive approach not only aims to mitigate potential vehicular accidents but also aspires to lay the groundwork for a more robust, scalable, and efficient Intersection Assistance System (IAS).

System architecture

Architectural Overview

As illustrated in Figure 5, the ESIAS architecture is predicated on a three-tiered design comprising the End-devices Layer, the Edge Layer, and the Cloud Layer. 

End-devices Layer

This foundational layer embodies a plethora of communication devices including vehicles, bicycles, motorcycles, and pedestrian devices. Furthermore, it encompasses road infrastructure components like cameras and traffic lights. These devices form the base upon which situational awareness is built. They interact directly with the subsequent Edge Layer for real-time data offloading and processing.

Edge Layer

Supplementing the End-devices Layer is the Edge Layer, an intermediary construct consisting of edge servers interfaced with Roadside Units (RSUs). In alignment with the scope of this study, this layer is tasked with the real-time processing of video streams offloaded from cameras and lidars. These streams are analyzed to detect approaching vehicles at the intersection. The Edge Layer is pivotal for localized computation, thereby ensuring reduced latency and enhanced Quality of Service (QoS). Moreover, the communication link between the RSUs and edge servers employs IP-based technologies for data transmission.

Cloud Layer

The uppermost tier is the Cloud Layer, which undertakes city-level monitoring, centralized remote control, and orchestration of services. While the edge layer performs localized tasks to reduce latency, the cloud layer is optimized for tasks that demand extensive computational resources. The division of computational labor across the cloud-edge continuum is executed based on a rigorous evaluation of trade-offs to optimize accuracy, latency, and throughput metrics as per the requirements of specific applications.

Communication Protocols

In terms of communication, vehicles use IEEE 802.11p based technology for ITS-G5, which is in accordance with European standards for vehicular wireless communication. The communication channel operates in the 5.9 GHz frequency band, further ensuring robustness and low latency. The communication between roadside units and edge servers uses broadband IP links.

Use Case Scenario Contextual Overview

As depicted in Figure 6, the scenario under discussion involves an urban setting where multiple connected vehicles are approaching an unsignalized intersection. Key elements at this intersection include a camera/lidar sensor with a panoramic 360-degree field of view, a Roadside Unit (RSU), and an edge server constituting the Edge Layer. These components collaborate in real-time to ensure safe vehicular traversal through the intersection.

Figure 6. Use case scenario

Below are the distinct operational phases that elucidate this cooperative mechanism:

Phase 1: Data Acquisition and Aggregation

The camera/lidar sensor unit, positioned strategically at the intersection, perpetually offloads live video feeds to the Edge server. Simultaneously, other data sources, such as onboard vehicle cameras, lidars, and additional road-installed sensors, forward their data to the edge server. The combination of these multiple data streams facilitates the construction of a highly enriched and collective perception of the intersection's state. This augmented awareness forms the foundational data layer upon which subsequent decision-making processes are executed.

Phase 2: Real-Time Object Detection

The edge server undertakes the critical role of processing these aggregated data streams in real-time. It employs specialized object detection algorithms to identify and track vehicles within the intersection's proximity. This phase is crucial for the early recognition of any approaching vehicles, which may pose safety concerns.

Phase 3: Safety Alert Generation

Upon the detection of an approaching vehicle that could potentially lead to a dangerous situation-such as two vehicles attempting to traverse the intersection without adequate visibility-the edge server triggers a safety alert protocol. Specifically, it notifies the connected RSU to instantiate and disseminate safety warning messages to the relevant vehicles.

Phase 4: Responsive Safety Measures

Vehicles that receive these safety warnings undergo immediate adaptive behavioral changes. Drivers are provided with actionable insights that allow them to either decelerate or to exercise heightened caution while crossing the intersection. These responsive actions are fundamental to precluding collisions and fostering a safer driving environment.

In summary, this use-case scenario exemplifies the intricate collaboration between different layers of the ESIAS architecture and the deployment of sophisticated computational techniques for object detection and safety alert dissemination. The overall operation underscores the system's efficacy in substantially ameliorating the safety concerns commonly associated with unsignalized intersections.

Implementation and simulation

Implementation Framework

The architecture of the Edge-based Safety Intersection Assistance System (ESIAS) was implemented within the Artery framework [START_REF] Riebl | Artery: Large scale simulation environment for its applications[END_REF], an advanced simulation environment tailored for Cooperative Intelligent Transportation Systems (C-ITS). The Artery framework synergistically combines OMNeT++ [START_REF] Varga | OMNeT++. In Modeling and tools for network simulation[END_REF] for simulating the communication network and SUMO [START_REF] Lopez | Microscopic traffic simulation using sumo[END_REF] for emulating traffic and vehicular mobility.

In our study, we consider using faster-YOLO algorithm [START_REF] Yin | Faster-YOLO: An accurate and faster object detection method[END_REF] for object detection tasks at the edge layer. Faster-YOLO is recognized for its computational efficiency and high accuracy, making it well-suited for real-time vehicular applications. Specifically, the algorithm exhibits a mean Average Precision (mAP) of 77.9% and a low latency of 10ms [START_REF] Yin | Faster-YOLO: An accurate and faster object detection method[END_REF], thereby striking a balance between speed and accuracy. In the current study, the object detection process was executed offline and not directly integrated into the Artery simulation.

However, we proposed an alternative mechanism that integrates object detection as an online service within the Artery framework. In this work, we have designed a set of ITS-G5 services, adhering to the ITS-G5 reference architecture [START_REF]Study on enhancement of 3GPP support for 5G V2X services (release 15)[END_REF], to facilitate the core functionalities of our Edge-based Safety Intersection Assistance System (ESIAS). Modifications have been primarily made at the application layer, with some extensions in the facilities layer to ensure effective communication with the lower layers. Our system is chiefly comprised of three customized ITS-G5 services.

i. Simulating Vehicle Detection

Due to the absence of an integrated vehicle detection algorithm in the Artery simulation, the first service functions as a surrogate for real-time detection. As a vehicle approaches the designated intersection, this service disseminates a notification message to the Roadside Unit (RSU), signifying the vehicle's presence at one of the intersection's legs.

ii. RSU-Based Services

The second service is localized at the RSU and serves multiple functions:

Notification Reception: It starts by receiving the notification messages dispatched by the approaching vehicles.

Latency Simulation: To mimic the processing time required by the faster-YOLO detection algorithm, we introduce a simulated latency. Utilizing the latency value of 10ms specified in [START_REF]Intelligent Transport Systems (ITS); Users and applications requirements; Part 1: Facility layer structure, functional requirements and specifications[END_REF], this function simulates the time lag involved in vehicle detection.

Warning Message Dissemination: Upon successful 'detection,' the RSU service proceeds to issue warning messages to vehicles that may be approaching the intersection from alternative routes.

iii. Vehicle Reaction Service

The third service is responsible for guiding the vehicles' actions upon receiving the warning messages. This service aims to elevate situational awareness among drivers, compelling them to adhere to right-of-way protocols and thereby mitigating the likelihood of intersection-related accidents.

By deploying these specialized ITS-G5 services, we have conducted a comprehensive proof of concept for ESIAS, while meticulously simulating the conditions under which the real-world system would operate. This approach enables us to validate the system's efficacy in absence of real-time object detection, while also providing insights into potential latency and performance metrics.

Map Configuration

Our experiments were conducted using a Manhattan grid layout, as depicted in Figure 7.

The dimensions of the map span approximately 600m x 600m. Each intersection leg is constituted of four lanes, each stretching for a distance of 120m. The focal point of our simulation is a single, specifically designated intersection, demarcated with dashed lines in 

Simulation Scenarios

To rigorously assess the effectiveness of our proposed system, two distinct simulation scenarios were executed.

Baseline Scenario: Initially, simulations were conducted in the absence of our intersection assistance system. We recorded the frequency of accidents at the target intersection (highlighted in Figure 7). To simulate accident-prone conditions, SUMO's default accident-free setting was altered by introducing erratic driver behavior through the "jmIgnoreFoeProb" parameter. This variable allows vehicles to randomly neglect right-of-way rules with a specific probability. This mimics real-world scenarios where accidents are precipitated by non-compliant or distracted drivers, thus serving as an emulation of malicious vehicles and non-perception issues.

Assisted Scenario:

The second set of simulations involved implementing our ESIAS through the specialized ITS-G5 services. Using identical parameters and vehicle mobility models as the baseline scenario, the frequency of accidents was once again recorded to quantitatively evaluate the safety improvements rendered by our system.

Table 2 enumerates the key parameters employed in both scenarios, thereby establishing a structured framework for a comprehensive comparative analysis between the baseline and assisted scenarios. 

Warmup-period 10s

Through these carefully designed simulation environments, we aim to ascertain the potential impact and effectiveness of ESIAS in enhancing vehicular safety at complex, unsignalized intersections.

Simulation results

The simulation results serve as an empirical validation of the proposed Edge-based Safety Intersection Assistance System (ESIAS). These results are quantified in terms of the reduction in the number of accidents that occurred in the assisted scenario as compared to the baseline scenario.

Traffic Density-Specific Analysis

Low-Density Traffic

In the simulation involving low-density traffic with 69 vehicles, results depicted in Figure 8 indicate a significant reduction in accidents across various durations (30 minutes, 1 hour, and 3 hours). Specifically, During the 30-minute interval, ESIAS completely eliminated accidents, a result that not only underscores the effectiveness of the system but also suggests that, in lowdensity settings, ESIAS has the potential to maintain near-optimal road safety conditions.

The performance of ESIAS appeared to be fairly stable over time. For a 1-hour simulation, ESIAS succeeded in preventing 11 accidents, thereby reiterating its temporal consistency in managing road safety. A slight uptick was observed in the 3-hour simulation with 4 recorded accidents, yet this number is notably less compared to the 30 incidents without ESIAS intervention. This stability over time is an essential metric, as it indicates that the system's performance is not significantly affected by the length of the operation, a crucial factor for realworld deployment. As shown in Figure 9, In a 30-minute simulation, ESIAS was successful in reducing the number of accidents from 30 to 8, a substantial decrease that emphasizes the system's potential utility in mitigating risk factors in congested traffic conditions. This result demonstrates that even in extreme scenarios, ESIAS holds promise in maintaining road safety to a considerable extent.

In a high-density setting without the assistance of ESIAS, an interesting phenomenon was observed during the 1-hour simulation. Despite the greater number of vehicles, only 18 accidents occurred, which is notably less than expected. This counterintuitive result can be attributed to congestion and traffic jams where many vehicles were unable to move. With ESIAS enabled, the 1-hour simulation recorded 16 accidents. A reduction from the unassisted scenario but not significantly because in this simulation traffic jams didn't occur, and vehicles continued moving throughout the simulation. 

Cloud vs. Edge Computing Architecture

To rigorously evaluate the impact of different computing architectures on the system's performance, we conducted simulations contrasting cloud and edge-based architectures. In this section, we focus specifically on low-density traffic conditions for a more direct comparison to our initial experiment, which also employed a low-density model.

For the cloud-based architecture, we adjusted certain parameters to emulate the latency generally associated with cloud computing. Drawing on extant literature, specifically studies in The latency increment attributed to cloud architecture substantively influences these results. The inflated delay affects the timeliness of the warning messages issued to approaching vehicles. Because these messages are not received in a sufficiently timely manner, it predisposes the system to higher accident rates, even under identical traffic conditions.

These findings affirm the utility of edge computing in the context of Cooperative Intelligent

Transport Systems (C-ITS) applications. The reduced latency provided by edge computing architecture not only improves the system's efficacy but also substantiates its role as a pivotal element for real-time applications. Accordingly, the evidence strongly supports the continued adoption of edge computing over cloud-based solutions in the development and deployment of efficient C-ITS applications. 

Synthesis of Simulation Outcomes

The simulation studies, covering both low and high-density traffic scenarios, as well as contrasting cloud and edge computing architectures, offer pivotal insights into the performance of our intersection assistance system (ESIAS). In both traffic densities, the ESIAS system substantially reduced the number of accidents, demonstrating approximately 80% reduction in high-risk situations. Interestingly, the performance of the system under high-density traffic was nuanced by the effect of traffic congestion, albeit the system continued to outperform scenarios without assistance.

Additionally, when comparing edge computing with cloud computing, the lower latency of edge computing proved to be crucial in real-time applications, leading to fewer accidents. This is especially true given that the latency introduced in a cloud-based setup significantly impacted the timeliness and therefore, the effectiveness of our system.

These simulation results collectively affirm the robustness and utility of the edge-based ESIAS in enhancing road safety, thereby advocating for its broader implementation in future C-ITS applications.

Conclusion

This study introduced the Edge-based Safety Intersection Assistance System (ESIAS), a novel approach to enhancing vehicular safety at traffic intersections. The system leverages the computational advantages of edge architecture and integrates it seamlessly with the ITS-G5 communications architecture. The aim is to disseminate warning messages proactively and efficiently to vehicles, thus alerting them of other vehicles approaching the intersection.

Our comprehensive simulation study was executed within the Artery framework and substantiates the effectiveness of ESIAS in real-world scenarios. The results were unequivocal:

an approximate 80% reduction in accidents was achieved, demonstrating not only the system's robustness but also its applicability as a practical solution to a pervasive public safety concern.

These findings solidify the importance of edge computing in delivering timely and effective vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, thereby acting as a key enabler for next-generation Cooperative Intelligent Transportation Systems (C-ITS).

While the results are promising, the scope for future research is focused but crucial. We intend to pinpoint the optimal latency parameters that would further reduce the accident rate.

Moreover, empirical trials employing real-world equipment like cameras or Lidar systems are planned to validate the vehicle detection process. Through these avenues, we hope to fine-tune and elevate the effectiveness of ESIAS, reinforcing its viability as a cornerstone for future C-ITS architectures.

Following the comprehensive examination of the Edge-based Safety Intersection

Assistance System (ESIAS) and its proven impact on vehicular safety, the subsequent chapter will pivot to another critical facet of edge computing in vehicular networks: the optimal placement of edge servers. Given that the efficacy of any edge computing system is inherently linked to the strategic deployment of its computational resources, it becomes imperative to delve into methodologies that can efficiently allocate edge servers in a vehicular environment.

We aim to address this problem by employing mathematical models and simulations, scrutinizing the balance between latency, cost, and resource utilization. This forthcoming chapter serves as a natural extension of the present work and is instrumental in completing our holistic understanding of the complexities involved in implementing edge computing solutions for Cooperative Intelligent Transportation Systems (C-ITS).

Chapter 4

4 Efficient Edge Server Placement under Latency and Load Balancing Constraints for Vehicular Networks

Introduction

Vehicular networks represent an indispensable cornerstone in the burgeoning landscape of Intelligent Transportation Systems (ITS). These networks bolster an array of vehicular applications, ranging from enhanced safety protocols to improved driving comfort and optimized traffic flow. The demand for such applications is not only increasing but also becoming progressively computation-intensive, requiring intricate data processing and substantial storage capabilities [START_REF] Liu | Vehicular edge computing and networking: A survey[END_REF].

Traditionally, vehicular networks have relied on remote cloud computing infrastructures to cater to their computational demands. While cloud computing offers a plethora of advantages, such as on-demand resource allocation, cost-effectiveness, and rapid development cycles [START_REF] Apostu | Study on advantages and disadvantages of Cloud Computing-the advantages of Telemetry Applications in the Cloud[END_REF],

it presents a significant drawback in the form of latency. The time delays incurred during data transmission between vehicles and remote cloud servers are often unpredictable and unacceptable for applications that demand real-time responsiveness [START_REF] Javadzadeh | Fog computing applications in smart cities: A systematic survey[END_REF] To ameliorate these latency issues, edge computing emerges as a pivotal solution. By situating computing and storage resources at the network periphery, proximal to end-users, edge computing achieves reduced latency and enables more agile real-time operations [START_REF] Cao | An overview on edge computing research[END_REF].

However, the challenge lies in the optimal placement of these edge servers within urban vehicular networks. Although an increase in the number of edge servers tends to reduce latency, it concomitantly elevates the deployment costs. Moreover, inefficient server placement can lead to significant variations in workloads among servers, resulting in performance bottlenecks and suboptimal resource utilization [START_REF] Li | Load balancing edge server placement method with QoS requirements in wireless metropolitan area networks[END_REF]. technologies.

Problem statement and research objectives

The challenge is to formulate a comprehensive model that can precisely identify the most effective locations for deploying edge servers. The model must simultaneously minimize the deployment cost, satisfy latency constraints, and ensure an equitable distribution of workload among the servers. Thus, the task is to solve an optimization problem with competing objectives.

It is against this backdrop that the present chapter focuses on addressing the critical issue of efficient edge server placement in vehicular networks. Specifically, In particular, the key contributions of this chapter are summarized as follows:

• We formulate the edge server placement problem as an Integer Linear Programming (ILP) model with the aim of locating optimal sites for edge servers. This model is designed to minimize deployment costs while adhering to specific latency thresholds and balancing workloads among servers.

• We propose a robust methodology grounded in real-world vehicular traffic data from Bordeaux. This methodology serves as a realistic simulation environment for evaluating edge server placement strategies and can be extrapolated to different traffic sources and scenarios.

• We empirically evaluate the proposed solution via extensive simulations, thereby establishing its superiority over existing edge server placement strategies.

Related work

In the realm of vehicular networks, the focus has largely been on the strategic deployment of Roadside Units (RSUs) to facilitate communication among vehicles and between vehicles and the infrastructure [START_REF] Balouchzahi | Optimal road side units placement model based on binary integer programming for efficient traffic information advertisement and discovery in vehicular environment[END_REF][100] [START_REF] Nikookaran | Combining capital and operating expenditure costs in vehicular roadside unit placement[END_REF]. These studies often employ various algorithms and heuristics to minimize communication delays and optimize RSU locations. However, these works primarily address the problem from a communications-centric standpoint and do not consider the computational aspects that are intrinsic to edge computing. Studies concerning edge computing in general settings have predominantly revolved around resource allocation and task scheduling [102][103]. These works explore how to dynamically allocate computational resources to meet the requirements of various applications efficiently. While these studies are instrumental for understanding the operational dynamics of edge computing, they do not specifically tailor their solutions to challenges of edge server's placement on presented by vehicular networks.

Even though there are a few solutions explicitly targeting Edge servers' placements in vehicular networks. The work presented in [START_REF] Premsankar | Efficient placement of edge computing devices for vehicular applications in smart cities[END_REF] formulates an optimization problem and accompanying methodology for infrastructure providers to efficiently deploy edge computing devices within the context of a smart city. Employing a mixed-integer linear programming (MILP) approach, the authors aim to minimize deployment costs while satisfying two major constraints: network coverage and computational demand. The work takes into account the complex urban environment, featuring obstacles such as buildings, that can affect continuous wireless connectivity between vehicles and Roadside Units (RSUs). The authors validated their model using extensive simulations based on data from the city of Dublin, demonstrating its efficacy in providing application-specific Quality of Service (QoS) in realistic conditions.

While the work successfully addresses several key considerations in edge computing device deployment, it has the following limitations:

• The placement of edge servers is intricately linked with the deployment of Roadside Units (RSUs), thereby inheriting the challenges associated with optimizing RSU positions to guarantee sufficient network coverage, particularly in complex urban settings.

• Although the study emphasizes meeting computational demand, it does not explicitly account for the latency requirements specific to vehicular applications, which can be crucial for safety and functionality in real-world applications.

In the work by Wang et al. [START_REF] Wang | Edge server placement in mobile edge computing[END_REF], the focus is on optimizing edge server placement in the broader landscape of mobile edge computing for smart cities. The paper frames the challenge as a multi-objective constrained optimization problem, with the primary aims being to balance the workload across edge servers and minimize access delays for mobile users. The methodology employed is mixed-integer programming to ascertain optimal placements.

Although their research does not specifically delve into vehicular networks, it remains highly pertinent to the issues discussed in our contribution and serves as a point of comparison for our proposed methodology. However, the authors assume that edge servers are homogeneous, whereas our approach recognizes the inherent heterogeneity in real-world system deployments, particularly within vehicular environments where diverse computational capabilities are often needed.

In the work by Zichuan et al. [START_REF] Xu | Efficient algorithms for capacitated cloudlet placements[END_REF], the authors concentrate on the issue of cloudlet placement within a large-scale Wireless Metropolitan Area Network (WMAN) comprising multiple wireless Access Points (APs). They formulate the problem as an Integer Linear Programming (ILP) optimization task, aimed at minimizing the average access delay between mobile users and the strategically-placed cloudlets. An exact solution is provided for smallscale instances, while a heuristic approach is proposed for scenarios where the problem size escalates. The authors' approach is rigorously evaluated through experimental simulations, demonstrating promising results. Our research departs from this study in a few significant ways.

While Zichuan et al. focus primarily on minimizing average access delay, they do not delve into the issue of cost-effectiveness. Our model considers both latency and cost-effectiveness in the specific context of vehicular networks, allowing for a more comprehensive and balanced approach. Additionally, their work is centered on WMAN environments and does not address the unique challenges posed by vehicular networks, such as high mobility and fluctuating data demands.

In the study by Laha et al. [START_REF] Laha | Edge nodes placement in 5G enabled urban vehicular networks: A centrality-based approach[END_REF], the researchers focus on Edge server placement in 5Genabled urban vehicular networks. They address the challenge of economically deploying a limited number of Edge servers under budget constraints in urban settings. To do this, they consider both the structural properties of the road network, assessed through complex-networkbased centrality metrics, and the distribution of vehicular traffic. These factors are integrated to rank potential sites for Edge server deployment. The placement problem is formulated as a 0-1 Knapsack problem with the objective of maximizing total "profit," defined through the aforementioned metrics. However, the study is limited to improving coverage ratios-i.e., the

Architecture and system model 4.2.1 Vehicular Edge computing reference architecture

Before proceeding further, we introduce the reference architecture illustrated in Figure 11.

In this ecosystem, vehicles operate within an urban area, each equipped with onboard units running Artificial Intelligence (AI)-based applications that are data-intensive and latencysensitive. To manage these computational needs, the vehicles rely on Edge servers for advanced learning and data processing capabilities. These servers are equipped to handle tasks offloaded from the vehicles and provide added computational power.

Communication is a crucial aspect of this architecture. Vehicles connect wirelessly to Roadside Units (RSUs) through high-reliability, low-latency communication protocols such as ITS-G5/IEEE802.11p. These RSUs, in turn, are connected to the Edge servers through highbandwidth, low-latency IP broadband channels, often facilitated by optical fiber. 

System model

Our system consists of two core sets: J = {S1, S2, …, Sm} representing potential locations for edge servers, and I ={R1, R2, …, Rn} denoting the roadside units (RSUs). The Edge server placement problem can be considered as an undirected graph G =(V, E), where V= I U J and E represents the set of links between roadside units and Edge servers at a location in J. The components of the system are depicted in Figure 12. Note that the connections between vehicles and roadside units are omitted because they are very dynamic as a result of the vehicles' mobility and are not our focus.

Figure 12. An example of vehicular Edge computing with Edge server placement

In this ecosystem, vehicles interact with RSUs by transmitting data requests or messages, which are subsequently offloaded for processing to the edge servers. We quantify the demand of each RSU as an aggregate metric, encapsulating the processing, storage, and memory resources needed at the edge server to adequately manage the incoming requests from the RSU.

We operate under the assumption that vehicles communicate their requests at a uniform frequency.

In our model, we stipulate that K Edge servers will be placed across K distinct geographical locations (as illustrated in Figure 2, where K = 3). We proceed under the assumption that each Edge server possesses uniform and constrained computing resources, encompassing storage, processing, and memory capabilities. These resources are earmarked for efficiently managing the vehicular requests that are offloaded via the Roadside Units (RSUs). Every RSU is exclusively tethered to a single Edge server for the purpose of request offloading. Consequently, each Edge server assumes the responsibility of fielding multiple requests originating from a variety of RSUs. Importantly, the server must achieve this without breaching its stipulated computational capacity. We posit that the latency incurred in the communication between a vehicle and its corresponding Edge server is directly proportional to the geographical distance separating the two entities.

Given the notations as delineated in Table 3, our objective function aims to optimize the economic viability of edge server deployment by minimizing the associated costs. This is accomplished while adhering to predefined latency thresholds and ensuring effective workload distribution to prevent server overutilization. We propose deploying K edge servers among the m potential sites. The following assumption are considered in our formulation:

• Each RSU is singularly connected to one edge server.

• Edge servers are responsible for processing vehicle requests offloaded by the RSUs.

• The demand at each RSU is conceptualized as the sum of individual vehicle requests communicated to that particular RSU.

• Edge servers operate under finite computational and storage capacities, which for the purpose of this model, are considered to be equivalent. To rigorously capture these system characteristics, we formulate an Integer Linear Programming (ILP) model. We begin by defining the decision variables of the model:

𝑥 𝑗 = { 1 , 𝑖𝑓 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑑𝑒𝑝𝑙𝑜𝑦𝑒𝑑 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗 0 , 𝑒𝑙𝑠𝑒 (1) 
𝑦 𝑖𝑗 = { 1 , 𝑖𝑓 𝑅𝑆𝑈 𝑖 𝑖𝑠 𝑙𝑖𝑛𝑘𝑒𝑑 𝑡𝑜 𝑠𝑒𝑟𝑣𝑒𝑟 𝑗 0 , 𝑒𝑙𝑠𝑒 (2) 
𝑍 = ∑ 𝑐 𝑗 𝑥 𝑗 𝑗𝜖𝐽 : total cost (3) 
The objective function is defined as:

𝑀𝑖𝑛 𝑍 , 𝑖. 𝑒. 𝑀𝑖𝑛 ∑ 𝑐 𝑗 𝑥 𝑗 𝑗𝜖𝐽

s.t

∑ 𝑦 𝑖𝑗 𝑥 𝑗 = 1 , ∀ 𝑖 𝜖 𝐼 𝑗𝜖𝐽 (5) 
∑ 𝐿 𝑖𝑗 𝑦 𝑖𝑗 𝑥 𝑗 ≤ 𝐿 𝑚𝑎𝑥 , 𝑗𝜖𝐽 ∀ 𝑖 𝜖 𝐼 (6) 
∑ 𝑃𝑟 𝑖 𝑖𝜖𝐼 𝑦 𝑖𝑗 ≤ 𝑃𝑠 𝑗 𝑥 𝑗 , ∀ 𝑗 𝜖 𝐽 (7) 
∑ 𝑀𝑟 𝑖 𝑖𝜖𝐼 𝑦 𝑖𝑗 ≤ 𝑀𝑠 𝑗 𝑥 𝑗 ∀ 𝑗 𝜖 𝐽 (8) 
∑ 𝑆𝑟 𝑖 𝑖𝜖𝐼 𝑦 𝑖𝑗 ≤ 𝑆𝑠 𝑗 𝑥 𝑗 ∀ 𝑗 𝜖 𝐽 (9) 
𝑥 𝑗 𝜖 {0,1} ∀ 𝑗 𝜖 𝐽 (10)

𝑦 𝑖𝑗 𝜖 {0,1} ∀ 𝑗 𝜖 𝐽 , ∀ 𝑖 𝜖 𝐼 (11) 
In the formulation of our model, each term bears specific significance, elucidated as follows:

Decision Variables:

𝑥 𝑗 is a binary decision variable that indicates whether or not a candidate location j is selected for Edge server deployment.

𝑦 𝑖𝑗 is another binary variable that signifies the specific Edge server to which each Roadside Unit (RSU) is connected. For instance, when 𝑦 34 = 1, this implies that RSU "3" is tethered to the Edge server located at position "4".

Objective Function:

Equation (3) lays out the total cost function, which is contingent upon the number of deployed Edge servers as well as the individual costs associated with their deployment.

Equation ( 4) aims to minimize this aggregate cost 𝑍 by optimizing the number of Edge servers that need to be deployed. Here, 𝑐 𝑗 represents the deployment cost for an Edge server at a given location j within set J.

Constraints:

Equation ( 5) mandates that every RSU must establish a connection with precisely one deployed Edge server, thereby precluding the possibility of any RSU remaining either unconnected or connected to multiple servers.

Equation ( 6) imposes a latency constraint 𝐿 𝑚𝑎𝑥 , which is defined as a function of geographical distance. This ensures that each RSU lies within the coverage radius of the deployed Edge servers. So, this constraint guarantees that each RSU is connected to an Edge server without exceeding the maximum tolerated latency 𝐿 𝑚𝑎𝑥 .

Equations (7-9) address the computational capabilities of the Edge servers, ensuring that the aggregate demand imposed by the connected RSUs does not surpass the Edge server's storage, memory, and processing limits.

Finally, Equations (10-11) encapsulate the integrality constraints for the decision variables, reinforcing their binary nature.

This comprehensive formulation encapsulates both the objective and the constraints of the optimization problem, furnishing a robust framework for Edge server placement in vehicular networks.

Methodology and simulation setup

This section serves as a comprehensive guide to the systematic procedures and protocols employed in this research, delineating the steps taken from initial data curation to final evaluation. Initially, we elaborate on the preliminary data processing techniques that are imperative for generating the requisite input variables for our computational model. Following this, we delve into the methodological framework employed for rigorously evaluating the model's performance. Finally, the configuration specifics of the simulation environment are discussed, laying out the foundational parameters that contribute to the model's operational effectiveness.

Preliminaries: Data Preparation and Input Generation

In this subsection, we delve into the intricacies of preliminary data processing techniques employed for generating the essential input parameters for our mathematical model. To establish a realistic yet controlled experimental environment, we focus on the city of Bordeaux, France, encompassing an urban area of 15.10 km². Geographical information is sourced from OpenStreetMap [108], and is illustrated in Figure 13 for clarity.

Firstly, we address the placement of Roadside Units (RSUs) across this urban terrain.

Owing to the unavailability of actual RSU deployment data, a uniform strategy is adopted to distribute 27 RSUs across the target area. These units are strategically situated at road intersections, approximately 800 meters apart, to ascertain optimal network coverage.

Subsequently, we identify potential locations for Edge server deployment. A rudimentary yet effective approach is employed: for every cluster of three or four RSUs, a candidate location for an Edge server is allocated. This methodology ensures that each RSU is within proximity of a potential Edge server, thereby not breaching the pre-defined maximum acceptable latency 𝐿 𝑚𝑎𝑥 , which in this context is determined by the distance between the RSU and the Edge server.

Figure 13. Placement of roadside units and candidate Edge server Locations in Bordeaux: A Use-Case Scenario

To formalize these preliminary steps, we constitute a set m comprising 19 candidate locations for Edge servers. These locations serve as input for an optimization model designed to finalize the most judicious choices for Edge server placement, considering various constraints and objectives, such as latency and workload balancing.

In an effort to simulate scenarios that closely mirror real-world conditions, it becomes imperative to generate vehicular traffic traces that faithfully emulate the authentic traffic patterns observed on the streets of Bordeaux. To this end, we utilize the OpenDataBordeaux dataset [109], which furnishes granular data on vehicular counts and speed at specific geographical coordinates. Leveraging this dataset, we categorize the roads into three distinct classes: high-traffic, moderate-traffic, and low-traffic roads.

Subsequently, to generate a synthetic yet realistic road traffic trace, we employ the RandomTrips tool from the Simulation of Urban Mobility (SUMO) framework [START_REF] Lopez | Microscopic traffic simulation using sumo[END_REF]. The road classifications serve as weighted input parameters to this tool, thereby introducing a nuanced layer to the generated traffic patterns (utilizing the Customized Weights option of RandomTrips).

Upon establishing a realistic traffic trace, our focus shifts to quantifying the computational demands placed on each Roadside Unit (RSU). Given that RSUs function as the initial point of data offload, their demand is characterized by the aggregate volume of messages or tasks they receive from vehicles. For the purpose of our simulation, we make the simplifying assumption that each vehicle communicates with the RSU at a uniform rate. The cumulative demand for each RSU, therefore, is deduced based on the vehicular density within the geographical coverage area of the corresponding RSU.

To further refine this, a simulation is conducted to empirically gauge the volume of messages each RSU is expected to process. The outcome, as depicted in Figure 14, categorizes RSUs into three demand brackets: high-demand, moderate-demand, and low-demand regions.

These classifications are corroborated by the tabulated results presented in Table 2, where Ri denotes the roadside unit located at the i th geographic coordinate. 

Figure 15. Illustration of the Employed Methodology for Evaluating Our Proposed Solution

The second phase of our solution leverages the outcomes derived from the optimization process to fuel simulations conducted using OMNeT++ [START_REF] Varga | OMNeT++. In Modeling and tools for network simulation[END_REF] integrated with the Artery framework [START_REF] Riebl | Artery: Large scale simulation environment for its applications[END_REF]. In addition to the optimization outputs, our simulations necessitate the utilization of the traffic trace generated by SUMO [START_REF] Lopez | Microscopic traffic simulation using sumo[END_REF]. Further enrichment is achieved through the integration of a comprehensive radio model, encompassing a propagation model, obstacle loss model, path loss model, and background noise model, as detailed in Table 5. These simulations were executed on a machine boasting an Intel i7-9700 CPU @ 3.00GHz x8 processor, coupled with 16 GB of RAM. The simulations were conducted with the aim of emulating real-world scenarios and assessing the performance of our Edge server placement strategy under varying conditions.

Table 5 provides a comprehensive overview of the essential parameters that play a pivotal role in both deriving the optimal solution and conducting simulations for our evaluation. These parameters encompass various aspects that collectively shape the efficiency and effectiveness of our proposed solution. Specifically, the processing, memory, and storage demands of each RSU constitute integral factors for determining the computational resources required by each roadside unit. The values of RSU demands are measured in units, representing the number of messages received per second. Building upon the prior classification of RSUs, it's important to note that those categorized under the high-demand bracket are attributed with a demand value of 30 units. Meanwhile, RSUs falling within the moderate demand category are assigned a demand value of 20 units, and those classified as having low demand are designated with a demand value of 10 units.

Concurrently, the server capacity, also quantified in units, serves as a metric indicating the magnitude of processing capabilities, memory resources, and storage capacity essential for efficiently handling the steady stream of incoming messages per second. In the context of our simulations, we have assumed a uniform server capacity of 150 units across all deployed servers. However, it's noteworthy that the model's design readily accommodates varying server capacities, allowing for a more nuanced and adaptable representation that can mirror real-world configurations more accurately.

The Latency threshold 𝐿 𝑚𝑎𝑥 is a pivotal parameter set at 1500 meters. This parameter defines the maximum acceptable latency, measured in distance, between a roadside unit and an Edge server, ensuring effective communication within the vehicular network. It's worth highlighting that our methodology and solution have a versatile applicability.

They can be seamlessly integrated with any geographical map or traffic data source. Leveraging diverse inputs, the model adeptly yields an optimal solution for the judicious positioning of edge servers, attuning to the specific requirements and characteristics of the given scenario.

This adaptability underscores the broad utility of our approach across varied contexts and settings.

Figure 16. Vehicles' density over the simulation time.

Performance evaluation

In this section, we meticulously evaluate the performance of our proposed approach namely "OptPlacement", comparing it against a spectrum of other placement strategies in terms of both latency and workload balance. To offer comprehensive baseline comparisons, we have selected a range of strategies, including Random, Top-K, and K-means, which are commonly employed in such problem domains. Additionally, we included the approach presented by Wang et al. [105] for a more direct comparison, given its high relevance to our research objectives. The ensuing elucidation of these strategies highlights their distinct features:

• Random Strategies: We explored two variants of the Random strategy. The first variant, termed Random-Random, deploys K Edge servers randomly across the candidate locations, with RSUs connected to the servers in a random manner. The second variant, named Random-Nearest, places RSUs in the proximity of the nearest Edge server.

• Top-K Strategy: Leveraging the traffic demands (as depicted in Figure 14), this strategy identifies the K RSUs with the most substantial demands. Subsequently, for each of these K RSUs, we select the nearest K locations to deploy Edge servers. The RSUs are then connected to the nearest Edge servers to optimize proximity-based communication.

• K-means Strategy: A widely employed algorithm for automatic data clustering, Kmeans, plays a pivotal role here. It automatically clusters roadside units into K groups and positions K Edge servers at the centers of these clusters. The approach inherently aims to create geographically cohesive server-to-RSU groupings.

• Wang et al. Approach [105]:

We implemented the solution proposed by Wang et al., which focuses on mobile Edge server placement in smart cities. Their approach employs mixed integer programming to optimize the placement, with a goal to balance workload and minimize server access delay. This established approach serves as a relevant benchmark for our own OptPlacement strategy.

For our comprehensive evaluation, we assessed each strategy's performance using two pivotal metrics: latency and workload balance. Latency signifies the time required to transmit a message from a vehicle to the Edge server, while workload balance gauges the percentage of dropped tasks. In our simulation, we assumed that each Edge server maintains a queue capable of holding N tasks, and each server can concurrently process M tasks. When the queue reaches its capacity, any incoming task is dropped. Workload balance hinges on the distribution of RSUs connected to each server and their corresponding demands, effectively capturing the equilibrium in task distribution across the system.

This multi-faceted assessment provides a detailed understanding of how our proposed OptPlacement strategy compares with established and relevant placement strategies, encompassing various dimensions of system performance.

Edge Server's placement results

OptPlacement

Following the specific conditions of our scenario, the optimal solution generated by the AIMMS solver suggests the placement of four Edge servers (K=4) at positions 1, 6, 12, and 19

within the urban landscape (as illustrated in Figure 13). This outcome translates into a total deployment cost of 4 units, representing an optimal balance between cost and coverage.

In Table 6, the results provide a breakdown of the Edge server placements and their corresponding connections to the roadside units (RSUs), along with the associated workload distribution. Each Edge server is assigned a specific location (position 1, 6, 12, or [START_REF]Intelligent Transport Systems (ITS); Users and applications requirements; Part 1: Facility layer structure, functional requirements and specifications[END_REF], and the RSUs it serves are listed alongside their distances from the server. The workload indicates the total demand aggregated from the connected RSUs and quantified in units.

For example, considering Server 1 located at position 1, it is connected to RSUs R1, R2, R3, R5, R7, and R9. The cumulative workload on Server 1 is 110 units, reflecting the processing, memory, and storage demands of the connected RSUs. Similarly, Servers 2, 3, and 4 have their respective connections and workloads detailed in the table. This comprehensive breakdown helps us understand how Edge servers are distributed, how RSUs are linked, and how the workload is balanced across the servers.

Table 6. Optimal placement results

Edge server Roadside ID (distance to the edge server) Workload (units)

Server 1 (at location 1) 

R1 (591m), R2 (1088m), R3 (458m), R5 (736m), R7 (1210m) 
R21 (1462m), R22 (1090m), R23 (1152m), R24 (563m), R25 (367m), R26 (550m), R27 (1275m) 100 
The optimal solution presented in Table 4 is achieved through an optimization process that takes approximately 42.11 seconds to compute and utilizes around 129.1 Mb of memory. These resource usage metrics reflect the efficiency and scalability of the approach in handling the complexity of the placement optimization. The obtained results demonstrate that the proposed solution successfully adheres to both the latency and Edge server capacity constraints.

Importantly, every roadside unit, ranging from R1 to R27, is strategically connected to one of the deployed Edge servers while satisfying the crucial maximum latency requirement of 1500 meters, as stipulated by the input parameters. This implies that the communication distance between RSUs and their associated Edge servers remains within an acceptable threshold, ensuring efficient and timely data exchange.

Furthermore, the capacity constraint of the Edge servers is well-maintained. For instance, considering Server 1 in Table 4, the cumulative workload of connected RSUs is 110 units, which is significantly below the server's capacity of 150 units. This observation illustrates that the proposed solution not only optimizes the placement of Edge servers but also ensures that their processing, memory, and storage capacities are utilized effectively and without overloading.

In summary, the optimization process yields an efficient placement configuration that meets both latency and capacity constraints, showcasing the practical viability of the proposed strategy in real-world scenarios.

Other placement strategies

Table 7 summarizes the outcomes of alternative placement strategies in comparison to our proposed OptPlacement approach. Each approach is evaluated based on the deployment of K = 4 Edge servers, ensuring equitable comparison. This allows these approaches to be aligned with the exact solution compared to our approach. Therefore, we consider that they have the exact deployment cost (K=4). In Wang et al. approach, two servers are deployed according to the optimal solution of the proposed model. In this approach, the maximum latency threshold is not considered, and therefore, two servers are deployed to reduce the cost. The results of the Random approach are not presented in this table since they are random. However, we run multiple simulations with different random placement of Edge servers to evaluate their performances. 

Performance results

In this section, we delve into the performance results of the various placement strategies based on the key evaluation metrics of latency and workload balance. In addition to latency analysis, we conducted an in-depth assessment of workload balancing among the Edge servers, aiming to ascertain the potential for server overload. This examination provides insights into the operational robustness of each placement method under varying workloads.

For a comprehensive analysis, we established a standardized task queue size for each server, accommodating up to 150 tasks (N=150), with a server's capacity for concurrent task processing set at 6 tasks (M=6). In cases where a server's task queue reached full capacity, incoming tasks were dropped. The results of this analysis are depicted in Figure 20, which showcases the percentage of dropped tasks for each approach.

Notably, OptPlacement emerges as the standout performer in terms of workload balancing, as evidenced by the lowest percentage of dropped tasks at 2.90%. This figure substantiates OptPlacement's superiority, demonstrating a 48% reduction in dropped tasks when compared to Random-Random, and an even more substantial 69% reduction compared to Random-Nearest. Furthermore, the K-means and Top-K strategies, which displayed favorable latency performance, exhibit suboptimal workload balance, with 13.06% and 5.67% of tasks being dropped, respectively.

An illuminating contrast arises when comparing our approach with Wang et al.'s strategy.

The latter shows a significant increase of 394% in dropped tasks compared to OptPlacement.

This resounding performance gap underscores the efficacy of our model in achieving superior workload balancing, while concurrently adhering to the latency constraint. These results firmly establish OptPlacement as a well-rounded solution that excels in both latency management and workload distribution, making it a robust choice for real-world vehicular network environments. 

Conclusion

In this chapter, we embarked on a comprehensive exploration of Intelligent Transportation Systems (ITS) and their integration with Mobile Edge Computing (MEC) in the context of vehicular networks. Our research was initiated with a comprehensive review of extant literature, establishing the intellectual groundwork for our investigations into the optimized placement of Edge servers.

We formulated the problem as an Integer Linear Programming (ILP) model, a formalism that lends itself well to precise and computationally tractable solutions. Utilizing real-world traffic data from Bordeaux as the empirical basis, our approach manifests a high degree of generalizability, rendering it applicable to different geographic contexts and traffic datasets.

We employed the AIMMS analytical platform to solve the ILP model, yielding an optimal solution that successfully satisfies both latency and workload balancing constraints. Subsequent empirical evaluations corroborate the efficacy of our proposed ILP-based placement strategy. The findings indicate a marked improvement over extant methodologies, specifically by effecting a 56% average reduction in the rate of dropped tasks. Furthermore, the solution adheres to the prescribed latency limitations, making it highly suitable for real-time vehicular applications.

From a broader perspective, our methodology offers an optimal trade-off among key performance metrics, namely, deployment cost, workload distribution, and latency minimization. This robust solution provides strong empirical evidence supporting its applicability in large-scale, real-world vehicular networks.

In sum, this chapter provides a robust, mathematically rigorous, and empirically validated framework that addresses the multi-faceted challenges associated with Edge server placement in vehicular networks, thereby laying the groundwork for subsequent research in this critical area.

Following the in-depth investigation into the optimized placement of edge servers, the ensuing chapter shifts its focus to the pivotal subject of service migration in MEC-enabled vehicular networks. Given that vehicular networks are inherently dynamic, featuring high can be sustained through service migration. However, the pivotal questions of when and where to execute these migrations arise. Yet, repeated service migrations can exact a toll in the form of elevated migration costs, including augmented backhaul load [START_REF] Peng | Deep reinforcement learningbased dynamic service migration in vehicular networks[END_REF]. Therefore, it is crucial to explore solutions to the service migration that strike a delicate equilibrium between sustaining QoS and minimizing migration costs.

In this contribution, we formulate the service migration problem as a Markov decision process (MDP). Our contributions are original and far-reaching, offering optimal migration strategies for diverse service profiles. Tailored to a service's performance requisites, its computational demands, and its size, we unveil an optimal equilibrium between migration costs and latency. To efficaciously solve this conundrum, we harness the power of deep reinforcement learning (DRL) techniques, specifically deploying deep Q networks (DQN). The proposed DRL-driven migration framework ensures seamless service continuity within the confines of high mobility constraints, presenting optimal latency for each service profile, and mitigating migration costs. This innovative framework orchestrates proactive service migration while taking into account vehicle mobility, computational requisites, and service profiles.

In summation, the central tenets of this chapter's contributions can be distilled as follows:

• We approach the service migration challenge by framing it as a Markov decision process (MDP), meticulously delineating states, actions, and reward functions. This unique approach enables us to determine the optimal temporal and spatial junctures for service migration amid vehicular motion. Significantly diverging from prior service migration approaches, our model takes service profiles into consideration, employing customized migration strategies for each service profile.

• We harness the potency of DRL methodologies to proffer an effective MDP model solution. Concretely, we present a deep Q learning (DQL)-based solution, integrating a double Q network and replay buffer to amplify learning outcomes.

• We subject the proposed DRL-driven scheme to rigorous evaluation, comparing it with alternative service migration methodologies.

Related work

In recent years, researchers have proposed many strategies for service migration. Work in [START_REF] Bao | Follow me fog: Toward seamless handover timing schemes in a fog computing environment[END_REF] focuses on the challenge of seamless service migration in fog computing architectures.

The study identifies the need for interruption-resistant computation offloading services for mobile Internet of Things (IoT) devices. The authors propose a framework called Follow Me Fog (FMF) to address this challenge by introducing a new seamless handover timing scheme among different computation access points. The FMF framework employs a job pre-migration mechanism based on signal strength monitoring, allowing computation tasks to be pre-migrated before handover, thus reducing latency.

The work acknowledges the issue of service interruption during handovers and emphasizes the importance of maintaining a smooth experience for time-sensitive applications. By introducing FMF, the research offers a practical solution to this problem, ensuring that offloading services to mobile IoT devices remain uninterrupted even when transitioning between different computation access points. Nonetheless, the authors introduce an "always migration" scheme where the service is consistently migrated to the closest MEC server, albeit without considering the associated migration costs.

The study outlined in [START_REF] Ksentini | A Markov decision process-based service migration procedure for follow me cloud[END_REF] propose a solution that revolves around the concept of Follow-Me Cloud (FMC), which enables the mobility of services across federated data centers. The central challenge tackled is making migration decisions for services hosted in different data centers while considering the tradeoff between cost and user-perceived quality. The proposed approach formulates this problem as a Markov Decision Process (MDP), where the distance between a user and an edge server becomes the primary state. Each state is associated with an action-either to migrate the service or not. This decision-making process is designed to find an equilibrium that optimizes user experience while minimizing migration expenses.

The key innovation lies in numerically formulating decision policies that determine when a service should migrate based on the distance of the User Equipment (UE) from the source data center. By implementing these policies, the Follow-Me Cloud controller can make informed migration decisions. The study evaluates the proposed MDP-based model against alternative policies, such as migrating services whenever a UE enters a new service area or migrating only when the UE is a certain distance away from the current data center. However, this method focuses solely on the distance between users and services for optimal migration decisions.

Peng et al. [START_REF] Peng | Deep reinforcement learningbased dynamic service migration in vehicular networks[END_REF] delve into the realm of vehicular networks, focusing on dynamic migration decisions within a Mobile Edge Computing (MEC)-enabled environment. This work stands out by holistically addressing the interplay between Quality of Service (QoS) and migration costs, considering the challenges posed by the high mobility of vehicles. The authors recognize the necessity of frequent service migrations among MEC servers to uphold QoS standards, while also acknowledging the significant cost of such migrations. Their innovative approach seeks to strike a balance between QoS and migration cost through a novel dynamic service migration scheme that takes vehicle velocities into account.

The central idea revolves around modeling QoS and migration costs as functions of vehicle velocities. By linking these factors economically, the paper proposes a unique approach to jointly considering QoS and migration cost implications. The system incorporates revenues generated by vehicles based on their QoS, while expenses encompass migration costs and the costs associated with utilizing computational, communication, and memory resources for service provisioning. The paper introduces a deep reinforcement learning algorithm, specifically deep Q-learning, to maximize the system utility by dynamically orchestrating service migrations. Nonetheless, the migration strategy outlined in this study primarily focuses on the binary decision of whether to migrate a service or not. This approach lacks the consideration of the specific destination for the migration, resulting in an automatic migration to the nearest edge server in the network. This simplicity, while efficient in some contexts, overlooks the potential benefits of more nuanced migration decisions based on factors beyond proximity. Such factors might include server capacity, workload distribution, and potential network congestion, all of which can significantly impact the overall performance and efficiency of the migration process. Consequently, by neglecting to incorporate these additional considerations, the migration strategy may inadvertently miss out on opportunities for optimizing service delivery and mitigating potential bottlenecks in the network.

Abouaomar et al. [START_REF] Abouaomar | A deep reinforcement learning approach for service migration in mec-enabled vehicular networks[END_REF] delve into the intricacies of service migration within the context of a MEC-enabled vehicular network, with a primary objective of minimizing the amalgamation of total service latency and migration cost. Their investigation culminates in the formulation of the migration problem as a multi-agent Markov decision process, subsequently addressed through the application of deep Q learning (DQL) techniques. A critical aspect of their approach is the incorporation of vehicular mobility, an essential consideration due to the dynamic nature of the network. The researchers acknowledge the frequent need to relocate requested services across various MEC servers, a necessity rooted in meeting stringent quality of service demands, particularly for services like infotainment.

While their study stands as a notable contribution to the field, some contextual factors remain unaddressed. Notably, although the positions and velocities of vehicles are integrated into their model, the researchers omit a pivotal parameter: the load of edge servers. This omission potentially limits the model's applicability in scenarios where the server load significantly influences service migration decisions. In dynamic vehicular environments, the load on edge servers can fluctuate significantly, affecting both service quality and migration efficiency. By excluding this factor, the model's ability to optimize service migrations may be constrained, as it fails to account for potential server congestion or underutilization. Despite this limitation, the proposed multi-agent Markov decision process and DQL-based approach present a valuable step toward mitigating latency and migration costs in MEC-enabled vehicular networks. Their simulation results showcase the efficacy of the DQL scheme in achieving performance close to optimality, underscoring the potential of their approach for enhancing service delivery in such networks.

In conclusion, the landscape of related work reveals a dynamic exploration of service migration strategies in MEC-enabled vehicular networks. Each study contributes unique insights, with varied considerations and methodologies to tackle the intricacies of optimizing service migrations. In our pursuit to address the challenges presented by service mobility and its impact on vehicular network quality, we present a novel framework that introduces several distinctive contributions.

First, our approach delves into the uncharted territory of considering the available capacity of each edge server as a paramount factor in devising optimal migration strategies. Unlike previous works that primarily focus on factors like distance or latency, we recognize that the capacity of edge servers plays a pivotal role in orchestrating efficient migrations. This dynamic dimension enables our model to not only enhance latency but also maintain a balanced distribution of computational resources among servers.

Moreover, our framework introduces a breakthrough by offering personalized migration strategies for each service profile. This departure from the conventional one-size-fits-all approach recognizes that different service types have varying resource requirements, performance thresholds, and usage patterns. By tailoring migration strategies to the specific attributes of each service profile, we transcend the limitations of previous models that overlooked such granularity. This pioneering advancement underscores our commitment to not only mitigating latency and migration costs but also fine-tuning our strategies to cater to the unique demands of each service.

In the realm of service migration research, our contribution is further magnified by the introduction of a factor previously unexplored in the context of migration strategies: the nuanced differences in service profiles. As we review the existing landscape, it becomes evident that no prior work has delved into this facet, thereby differentiating our framework from the existing body of knowledge. This innovative dimension illuminates the importance of recognizing the diverse attributes that distinguish various service profiles and the necessity to tailor migration strategies accordingly.

In essence, our chapter builds upon the foundations laid by previous studies, harnessing their insights while forging new paths to tackle the challenges inherent in MEC-enabled vehicular networks. By integrating capacity considerations, introducing personalized strategies, and pioneering the inclusion of service profile attributes, we extend the boundaries of service migration research, paving the way for more efficient, adaptable, and resource-conscious solutions.

System model

We consider a vehicular MEC-enabled architecture covered with a set of Roadside units (RSU), each connected to an Edge server n ∈ N:={ 1,2, … , N}. This architectural configuration is visually depicted in the illustrative Figure 1.

At the heart of this intricate system, we find K mobile users, often referred to as vehicles interchangeably. These mobile users are the dynamic entities within our vehicular network, constantly on the move and seeking access to various services provided by the Edge servers.

Each of these mobile users has specific service requirements, reflecting their diverse needs and demands. These services are identified and categorized by what we term a "service profile."

This profile is a comprehensive descriptor, encompassing crucial attributes such as the service class, the requisite computing and memory capacity, and the size of the service image.

In essence, our system model encapsulates the dynamic interplay between RSUs equipped with Edge servers, mobile users or vehicles with distinct service demands, and the intricate service profiles that define the essence of each service. As we delve deeper into this system model, we aim to devise optimal strategies for service migrations, factoring in the mobility of vehicles, the varying service profiles, and the capacity constraints of the Edge servers. Our endeavor is to harmonize these diverse elements into a cohesive framework that maximizes quality of service, minimizes migration costs, and ensures the seamless delivery of services in the ever-evolving landscape of vehicular MEC-enabled networks.

Figure 21. Illustration of the system architecture

In order to effectively categorize the myriad of services within our vehicular MEC-enabled architecture, we have adopted a service classification system, which has been drawn from a comprehensive study presented in [START_REF] Maaloul | Classification of C-ITS services in vehicular environments[END_REF]. This classification system allows us to neatly classify the services into three distinct classes, each characterized by unique attributes and priority levels. These classes are pivotal in determining how services are handled within the network, based on their specific requirements and criticality.

• Class 0 (utilized in Service Profile SP0): This class encompasses the highest-priority services within our system. Services falling under Class 0 are of paramount importance, as they necessitate the most stringent requirements, particularly in terms of ultra-low latency. These services are often associated with critical applications where even the slightest delay can have significant repercussions.

• Class 1 (utilized in Service Profile SP1): Services categorized under Class 1 represent the second-highest priority level within our system. While they do demand prompt and efficient handling, their requirements are slightly less stringent compared to Class 0.

These services are typically associated with applications that require timely delivery but can tolerate a slightly higher latency threshold. • Class 2 (utilized in Service Profile SP2): This class is designated for services with the lowest priority. Services in Class 2 are characterized by their more relaxed requirements regarding latency. They may not have specific demands for ultra-low latency and are often associated with applications where timely delivery is not a critical factor. This service classification framework, anchored in Service Profiles SP0, SP1, and SP2, provides a structured approach to addressing the diverse needs and priority levels of services within our vehicular MEC-enabled network. By classifying services into these distinct categories, we can tailor our service migration strategies to ensure that each service profile receives the appropriate level of attention, in line with its specific requirements and priority.

Within our system model, Table 8 serves as a valuable reference point where we succinctly summarize crucial notations for the sake of clarity and convenience. the subsequent sections, where we detail its implementation and integration into our solution framework.

The MDP formulation

In the realm of reinforcement learning, the environment is meticulously formulated as a Markov Decision Process (MDP), which is vividly represented as (S, A, P, R, γ).

State Space (S) and Action Space (A):

In our context, the state space, denoted as S, encompasses all possible situations or conditions that our system can find itself in. These situations encapsulate critical information like the current state of vehicles, the status of MEC servers, and various other relevant factors. On the other hand, the action space, represented as A, consists of all the feasible actions that our system can take. These actions dictate whether and where service migrations occur. At each time slot, our service provider orchestrates the process of gathering relevant states from both vehicles and MEC servers. These states are meticulously collected and transmitted to the Double Deep Q Learning (DDQL) algorithm. In return, the DDQL algorithm furnishes valuable guidance in the form of optimal actions, aiding in decisions regarding service migration at that precise moment and directing them toward specific edge servers. The selected action is then executed, and the system seamlessly transitions to the next state, perpetuating this dynamic decision-making process.

In essence, these key elements of the MDP, S, A, P, R, and γ, collectively form the scaffolding upon which our intelligent service migration strategy is constructed, enabling the system to adapt and optimize its actions in a complex and evolving vehicular network environment.

State space

We define the state space S = {𝑠𝑡 | t = 1, 2, …, 𝑡𝑀𝑎𝑥} where a state at time slot t 𝑠𝑡 is a 4tuple given by:

𝑠𝑡 = {𝑑𝑡[K], 𝐻𝑡, 𝐶𝑡[K], S𝑃𝑡} (6) 
Where:

𝑑𝑡 [K]: This component signifies the distance between the vehicle and the K edge servers at the specific time slot t. Here, K stands for the total number of edge servers available in the system. By including this parameter in the state, our model inherently considers the spatial relationship between vehicles and edge servers at any given moment.

𝐻𝑡: At each time slot t, 𝐻𝑡 designates the Edge server that is hosting the vehicle's service.

This element captures the dynamic aspect of service hosting and highlights the current server responsible for serving the vehicle's needs.

𝐶𝑡[K]:

Reflecting the available capacity on each of the K edge servers (comprising CPU, memory, and storage), 𝐶𝑡[K] serves as a critical piece of information. This parameter acknowledges the computational and resource capacity status of each server at the given time slot, illuminating the system's resource utilization.

𝑆𝑃𝑡: This multifaceted parameter encompasses various facets of the service profile:

• Service Class: It classifies services into three distinct categories, namely class 0, class 1, or class 2. These classifications help differentiate services based on their priority and stringent requirements, such as latency.

• Required Capacity: This facet characterizes the computing and memory capacity demanded by the specific service at that instant. It enables the model to account for the resource prerequisites of the service.

• Service Image Size: The size of the service image, a vital characteristic, is also embedded within this parameter. It provides insights into the data volume associated with the service.

By encompassing all these elements within our state space definition, our model is equipped to function as a multi-criteria migration strategy. It comprehensively considers factors such as vehicle-server distance, vehicle velocity (implicitly through distance changes over time), edge server loads, service capacity requirements, and most notably, the service's class. This holistic approach allows our model to dynamically adapt its migration strategy, ensuring that service migrations are not merely based on a single criterion but are orchestrated to balance a multitude of factors, ultimately optimizing the vehicular network's performance.

Action space

Our action space represents the set of decisions available to our model, specifically focusing on whether to migrate a service to a particular Edge server at a given time slot t. Thus, at each time slot t, we define an action as:

at = {𝐴1, 𝐴2, …,𝐴𝑛}
where Ai denotes the action of migrating the service to Edge server ei at time slot t.

Each 𝐴i is binary, i.e. 𝐴i ϵ {0,1} and ∑𝐴𝑖=1.

This action space entails:

Decision to Migrate: Each element Ai in the action space is a binary decision. It signifies whether the service should be migrated to a specific Edge server ei at that particular time slot t.

A value of 1 indicates that migration should occur, while 0 signifies no migration. This binary representation offers a clear and actionable choice for the model.

Mapping to Edge Servers:

The set of actions Ai is directly linked to the Edge servers in the system. Each action Ai corresponds to a specific Edge server ei. Therefore, the action space encapsulates decisions regarding where the service should be migrated.

Migration Timing:

The action space's temporal aspect is embedded in the time slot t. It ensures that the migration decisions are time-sensitive, considering the evolving dynamics of the vehicular network.

Control Over Migration: By defining the action space in this manner, our model gains control over the migration process. It can make informed decisions regarding the optimal edge server destination for service migration at each time slot.

No migration will occur during time slot t if Hj is the hosting edge server and Aj=1.

This action space representation empowers our model to make decisions about both the timing and destination of service migrations. It allows for dynamic and context-aware migration decisions, ensuring that services are migrated when and where it makes the most sense based on the evolving conditions of the vehicular network.

Reward function

In reinforcement learning, the reward function plays a pivotal role as it guides the agent's actions. Our goal is to achieve optimal latency for each service profile while minimizing migration costs. To achieve this, we define the reward function as a combination of latency and migration cost at time slot t, given by:

𝑅 𝑎 𝑡 𝑠 𝑡 = -((1 -ѡ)𝐷(𝑡) + ѡ𝐶𝑜𝑠𝑡(𝑡)) (7) 
Where D(t) is the sum of communication delay, backhaul delay, and computing delay, i.e., D(t) = 𝐷 𝑐𝑜𝑚 + 𝐷 𝑏𝑎𝑐𝑘 + 𝐷 𝑣 𝑐𝑜𝑚𝑝 (𝑡). And Cost(t) is the migration cost 𝐶 𝑣 of service v at time slot t. ѡ is the weight factor, and ѡ 𝜖 [0,1]. In each episode, the training continues for several time slots (or steps). Each MEC agent observes the current state of its environment and selects an action at from its action space at each step. The MEC agent utilizes the 𝜖-greedy policy to select an action. This policy selects an action randomly with probability 𝜖. The MEC agent receives its reward and moves to the next state. The obtained experience is stored in the replay buffer which is used to create a training dataset. The latter is used to perform the training process in order to minimize the loss function given by:

The proposed DDQN

𝐿𝑜𝑠𝑠(𝜃) = (1/𝑗) ∑ [𝑦 𝑗 -𝑄(𝑠 𝑗 , 𝑎 𝑗 , 𝜃)] 2 (8) 
Where 𝑄(𝑠 𝑗 , 𝑎 𝑗 , 𝜃) is the Q-value of action 𝑎 𝑗 given in the state 𝑠 𝑗 which is calculated using the main Q-network with parameter 𝜃. And 𝑦 𝑗 is the target Q-value which is calculated using the target Q-network with parameter 𝜃 -.

To update the parameter 𝜃 of the main Q-network, the agent performs a gradient descent step.

Finally, the parameter 𝜃is updated after each K steps by copying the parameter 𝜃 of the main Q-network.

Figure 22. Simulation scenario

The DDQN and vehicular network parameters are presented in Table 9. 

Simulation results and analysis

In this section, we present the outcomes of our simulation experiments and provide a comprehensive analysis of the results, shedding light on the performance of our proposed Double Deep Q Network (DDQN)-based service migration strategy. This is a significant indicator of the success of our DDQN algorithm. The improvement signifies that the MEC agent, guided by the DDQN algorithm, is learning and adapting to the dynamic conditions of the vehicular network environment. As the training episodes accumulate, the agent becomes increasingly proficient in making informed service migration decisions.

Average Reward Per Episode

A noteworthy observation is that the QQDN algorithm reaches a state of convergence at approximately 190 episodes. In practical terms, this means that the corresponding MEC agent has learned to navigate the decision space effectively, culminating in a convergence to a favorable learning outcome. This convergence is indicative of the agent's ability to explore and exploit the environment optimally, suggesting that it can make more informed and efficient service migration decisions.

Overall, the results depicted in Figure 23 underscore the efficacy of our proposed DDQN algorithm in training MEC agents to make intelligent service migration decisions. The observed convergence indicates that the agent can explore a range of actions and eventually settle on strategies that yield higher rewards, promising better service latency, lower migration costs, and improved service continuity. 

Figure 23. Average reward of MEC agent

Comparison with Alternative Migration Strategies

To thoroughly assess the performance of our proposed service migration strategy, we conducted a comparative analysis against a composite of alternative approaches. These approaches encompass a spectrum of migration strategies, each offering a unique perspective on service migration in MEC-enabled vehicular networks. The following are the strategies included in this comparison:

• Random Migration (RM): In this approach, service migration occurs randomly at each time slot, devoid of any predefined criteria.

• Never Migrate (NM): This strategy entails hosting the service on one of the edge servers throughout the simulation, with no migration taking place.

• Always Migration (AM): This schema, proposed in [START_REF] Bao | Follow me fog: Toward seamless handover timing schemes in a fog computing environment[END_REF], dictates that the service should migrate to the nearest edge server. However, we augment this approach by considering the load of the edge server. If the nearest server operates at 100% capacity, migration does not occur. Our simulations encompassed a range of service profiles, each denoting a class of service, specifically SP0, SP1, and SP2. SP0 designates high-priority services with stringent latency requirements, while SP1 and SP2 correspond to services with progressively lower sensitivity to latency.

Migration Cost Analysis

Figure 24 showcases the results of our migration cost analysis for a service size of 5 (units), with the NM method excluded from this comparison, as it incurs no migration cost.

The results prominently demonstrate the superiority of our Double Deep Q Network (DDQN) method in terms of migration cost across various service profiles. In Service Profile 0 (SP0), where stringent latency requirements prevail, our model exhibits more frequent service migrations to strategically position the service closer to the vehicle, thus optimizing latency.

While the approach by Peng et al. offers slightly lower costs in SP0, it's in SP1 and SP2 that our model truly shines. In these profiles, characterized by lower latency sensitivity, our model significantly outperforms other methods by minimizing migration costs. This strategic cost reduction is achieved without compromising the Quality of Service (QoS) for these services.

demonstrating the adaptability and effectiveness of our proposed migration strategy.

The results underscore the versatility and effectiveness of our DDQN-based migration strategy. It adeptly navigates the delicate balance between migration costs and Quality of Service (QoS) across a range of service profiles. This approach ensures optimal costeffectiveness while accommodating the unique demands of each service category. By doing so, it offers a dynamic solution that doesn't compromise on QoS standards while optimizing the allocation of resources and minimizing migration expenses. 

Latency analysis

The latency results, as depicted in Figure 25, provide valuable insights into the performance of our model across different service profiles. Notably, the results indicate that the latency increases in SP1 and SP2 when compared to SP0. This outcome is a direct consequence of the varying tolerance levels for latency among these service profiles. SP0, with its stringent low latency requirement, understandably exhibits the lowest latency. However, it's important to note that this lower latency is achieved at the expense of increased migration costs, as seen in Figure 24.

Our model's adaptability shines through these results. It showcases the ability to tailor its behavior to the specific requirements of each service profile. By accepting slightly higher latency in SP1 and SP2, our model effectively minimizes migration costs. This flexibility enables it to strike an optimal balance between migration cost and latency for each service category. In comparison to RM, NM, and Peng et al., our DDQN model consistently outperforms them when dealing with SP0. While Always Migrate (AM) offers the lowest latency due to its proximity-based migration approach, it incurs significantly higher migration costs, highlighting the trade-off between these two crucial factors in service migration decisions.

Figure 25. Latency results

In summary, our approach demonstrates its effectiveness in the adaptive and efficient balance between migration cost and latency within MEC-enabled vehicular networks. The This adaptability is key to optimizing service migration in a dynamic vehicular environment. By striking the right balance between migration cost and latency, our approach not only ensures cost-effective service migration but also maintains acceptable levels of quality of service. It outperforms alternative strategies, offering superior latency performance in scenarios where low latency is crucial (SP0), while still providing substantial cost savings compared to proximity-based migration methods like AM.

In essence, our approach proves to be a valuable asset for MEC-enabled vehicular networks, where optimizing service migration is essential. It can effectively adapt to the unique demands of different service profiles, providing an efficient and cost-effective solution to the challenge of migration in dynamic vehicular environments.

Conclusion

In this chapter, we presented a comprehensive solution to the challenge of vehicular service migration within Mobile Edge Computing (MEC)-enabled networks. We began by formulating this complex problem as a Markov Decision Process (MDP), considering the intricate interplay between factors like vehicle mobility, server capacity, and service profiles. The inclusion of service profiles in our model was a crucial step, as it allowed us to craft migration strategies tailored to the unique requirements of each service.

Our proposed solution leveraged deep reinforcement learning (DRL), specifically employing a double Q network and a replay buffer to enhance the learning process. Through extensive simulations, we have substantiated the efficacy of our DQL-based algorithm. It demonstrated its ability to achieve the optimal tradeoff between latency and migration cost, depending on the specific demands of the service profile.

Chapitre 6 6 Conclusion and Perspectives

In this chapter, we conclude the dissertation by summarizing our major contributions and presenting some future work and perspectives.

Realizing the full potential of Intelligent Transportation Systems (ITS) coupled with Edge

Computing requires addressing new challenges. This thesis is primarily concerned with the meticulous design of an optimal Edge server placement methodology, one that strikes a judicious balance between latency constraints and deployment costs. Additionally, we introduce a robust service migration strategy aimed at ensuring seamless service continuity in dynamic vehicular environments. A brief summary of our contributions is presented below.

Summary of Key Contributions

In the first contribution, our principal objective is to address the ubiquitous and pressing issue of hazardous road intersections by introducing an advanced Intersection Assistance System (IAS) tailored for Cooperative Intelligent Transportation Systems (C-ITS). Our innovative solution, designated as ESIAS (Edge-based Safety Intersection Assistance System), leverages the computational efficiency of edge computing architecture to expeditiously process sensorial data. This data is offloaded from an array of sophisticated sensing equipment, including but not limited to, cameras and Lidar systems strategically positioned at key intersection points.

To rigorously assess the performance efficacy of ESIAS, we have conducted a comprehensive series of simulation scenarios. These scenarios are designed to approximate real-world conditions and challenges encountered at intersections. A pivotal metric for evaluation is the quantification of accident avoidance, calculated across various simulated scenarios to ascertain the system's robustness and reliability. Our empirical findings indicate that ESIAS is remarkably effective, reducing the likelihood of intersection-related accidents by an impressive 80%. This substantial reduction in potential accidents not only demonstrates the system's robustness but also underscores its practical applicability as a transformative solution for enhancing road safety.

Then, we tackled the Edge server optimal placement problem, a critical facet of enhancing the Intelligent Transportation Systems (ITS) infrastructure. To address this intricate issue, our research employs Integer Linear Programming (ILP) as a mathematical formalism. This allows us to optimally place Edge servers in vehicular networks, considering pivotal factors such as latency, deployment cost, and server capacity. Our proposed methodology transcends mere cost-minimization, as it formulates a multi-objective optimization problem that aims to achieve a balanced workload among Edge servers while concurrently maintaining latency within acceptable threshold. To substantiate the robustness and generalizability of our approach, we conducted an exhaustive evaluation using both mathematical proof of concept and simulated testing. For the latter, we employed open-source vehicular traffic data obtained from the roadways of Bordeaux, France, which served as an empirical basis for assessing real-world applicability. The comparative analysis of our solution vis-à-vis existing methodologies reveals a marked enhancement, particularly in terms of workload balancing. Consequently, our research delivers an empirically validated, mathematically rigorous framework that advances the stateof-the-art in Edge server placement for vehicular networks.

In the last chapter, we have articulated an exhaustive framework aimed at resolving the multi-faceted issue of service migration in the context of Mobile Edge Computing (MEC)enabled vehicular networks. Commencing our investigation, we modeled this intricate problem as a Markov Decision Process (MDP), a formalism that capably addresses the complex interactions among several variables, including but not limited to, vehicular mobility patterns, computational capacities of edge servers, and the varied profiles of services that are offered.

The innovative addition of service profiles into our analytical model serves as a pivotal advancement; this inclusion enables the development of highly specialized service migration strategies that can be customized to meet the specific performance and computational demands of each individual service.

To operationalize our theoretical model, we employed advanced deep reinforcement learning (DRL) techniques. More specifically, we utilized a double Q-network architecture alongside a replay buffer mechanism to expedite and improve the learning process. This DRLbased approach was subjected to rigorous empirical validation through a series of comprehensive simulations. These simulations corroborate the exceptional capabilities of our DRL-driven algorithm, showcasing its proficiency in striking an optimal balance between latency and migration costs. This balance is achieved in a manner that is contextually sensitive to the unique requirements imposed by each service profile, thus underscoring the adaptability and effectiveness of our proposed solution.

Open Issues and Future Work

In light of the contributions made through this research, several intriguing questions and potential avenues for further exploration have surfaced. The designed frameworks and methodologies provide a robust foundation upon which subsequent efforts can build. Below, we outline some key open issues and future directions that could significantly extend the current understanding and capabilities of Edge Computing in Intelligent Transportation Systems (ITS).

Expanding Data Fusion Capabilities

The integration and fusion of diverse data sources remains a pivotal area for enhancing the efficacy and reliability of ITS. A natural extension of the present work could involve the incorporation of environmental data, such as pollution and weather metrics, into the edge-based architectures developed herein. This could provide a more comprehensive situational awareness and enable more informed decision-making for vehicular networks.

Expanding Mobility Types

The current study is primarily focused on vehicular networks. Expanding our architecture to accommodate other forms of mobility such as bicycles, scooters, and railways could provide a more comprehensive Intelligent Transportation System (ITS). This extension may require revisiting the edge server placement and service migration strategies to cater to the diverse mobility patterns and communication requirements.

Advanced Service Migration Model Enhancement

The 
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  standardization bodies like ETSI (European Telecommunications Standards Institute) and ISO (International Organization for Standardization) have meticulously outlined a C-ITS reference architecture [19]. As depicted in Figure 2, this architecture is structured around four horizontal layers and two vertical layers. • Access Layer: This layer maps to the Physical (PHY) and Medium Access Control (MAC) layers of the OSI (Open Systems Interconnection) model. It accommodates various wireless communication technologies pivotal for C-ITS, including but not limited to ITS-G5, Cellular-V2X, 4G, and 5G. Networking and Transport Layer: This layer amalgamates the Network and Transport layers of the OSI model and is tasked with ensuring reliable message transmission across the network. It employs both IP and non-IP communication protocols. Notably, it incorporates the well-established User Datagram Protocol (UDP) and Transmission Control Protocol (TCP), in addition to specialized protocols designed for geographically-scoped message dissemination, such as the Basic Transport Protocol (BTP) and Geo-Networking protocol. • Facilities Layer: Analogous to the Session and Presentation layers of the OSI model, this layer offers the essential communication and information support services to C-ITS applications. It includes a suite of services like Cooperative Awareness Service (CAS), Collective Perception Service (CPS), Decentralized Environmental Notification Service (DENS), and Local Dynamic Map (LDM).

Figure 2 .

 2 Figure 2. ETSI C-ITS reference architecture

  evolving use-cases, the 3rd Generation Partnership Project (3GPP) introduced a V2X standard based on Long-Term Evolution (LTE) technology in 2017, specified in Release 14 (Rel-14)[START_REF]Digital cellular telecommunications system (Phase 2+) (GSM); Universal Mobile Telecommunications System (UMTS); LTE; 5[END_REF]. Commonly referred to as "Cellular V2X" or LTE-V2X, this technology not only supports direct communications (V2V, V2I) but also offers wide-area communications over cellular networks (V2N). C-V2X is engineered to accommodate two distinct communication modalities on a unified technological platform: (1) a short-range direct mode operating over the 5.9 GHz spectrum, which doesn't require network coverage or subscription, and (2) a long-range mode utilizing licensed spectrum resources managed by mobile network operators.Cellular technologies have undergone substantial advancements over the past two decades, with the objective of achieving high throughput, low latency, and enhanced reliability.Recognizing these advancements, both automotive research institutions and industry stakeholders are showing heightened interest in leveraging these robust communication technologies to meet the stringent requirements of vehicular services, including multi-hop communication, security, low latency, and high reliability. In this context, 4G (LTE) and 5G
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  Intersections in road networks are complex zones with elevated risks, primarily due to the convergence of multiple traffic types, such as vehicles, pedestrians, and soft mobility. A key issue is conflicting traffic movements caused by unsynchronized signals or failure to yield, leading to potential collisions. Further complicating this are visibility issues, which are affected by various factors like obstacles, weather, and poor lighting. These conditions not only heighten vehicular accident risks but also make pedestrian interactions perilous. Additionally, inadequacies in signage and poorly maintained traffic signals contribute to misunderstandings and non-compliance, exacerbating risks. Human behavior, including misjudgment and distraction, intensifies these challenges, emphasizing the need for a holistic approach that combines enforcement, education, and technology. Current traffic management systems are often inadequate due to a lack of real-time data and adaptive control, leading to inefficiencies and increased risks. Hence, there's an urgent need for comprehensive, technology-driven solutions to address the multifaceted challenges at intersections. The Intersection Assistance System (IAS) is a technologically advanced solution aimed at enhancing both safety and efficiency at road intersections. Using an array of sensors, communication networks, and smart algorithms, it assists drivers and streamlines traffic flow.The system is bifurcated into safety-related and efficiency-related functionalities.For safety, IAS incorporates features like collision warning systems that use sensors to alert drivers of approaching vehicles or pedestrians. It also includes blind-spot detection to warn drivers of obscured hazards and pedestrian detection systems that alert drivers to individuals within the intersection zone. Additionally, the system can warn against red light violations and detect emergency vehicles, offering them priority passage to mitigate risks.On the efficiency front, IAS employs real-time data and intelligent algorithms to enhance traffic flow and reduce congestion. This includes dynamic adjustment of traffic signal timings based on traffic volume and patterns, thus reducing vehicle wait times. Priority management features adjust signals for specific vehicles like public transport or emergency services, ensuring smooth traffic flow. Furthermore, the system uses Cooperative Vehicle Infrastructure Systems to facilitate communication between vehicles and traffic infrastructure, and also monitors queues at intersections to suggest alternate routes or departure times to drivers.Overall, IAS serves a dual purpose of improving safety through collision avoidance and accident prevention, and augmenting efficiency by optimizing traffic flow and minimizing congestion. By leveraging advanced technology and intelligent algorithms, it makes significant contributions to safer and more efficient road networks.3.1.1 Problem statement and research objectives3.1.1.1 Problem statementWhile signalized intersections offer explicit cues to guide driver behavior, unsignalized intersections present a far more nuanced challenge, bereft as they are of such definitive indicators. This absence of standardized signals places an onus on the drivers to make complex perceptual judgments, thus escalating the likelihood of decision-making errors and consequently, traffic accidents. Complicating this issue further are various environmental obstructions-both static and dynamic-that can impede a driver's line of sight or distort situational awareness. For instance, large vehicles traversing an intersection may temporarily obscure a driver's view or built structures adjacent to the roadway could permanently obstruct visibility. Moreover, the presence of malicious or non-compliant drivers who disregard traffic laws adds an additional layer of unpredictability to this already complex scenario. To illuminate these issues, consider Figure4, which delineates two real-world scenarios wherein a dearth of perception could precipitate an accident. In the first scenario, both vehicles 1 and 3 are encumbered by limited visibility due to the presence of a large truck (vehicle 2). In the second, vehicles 4 and 5 are both at risk of entering the intersection blindly, their views obfuscated by a neighboring building.

Figure 4 .

 4 Figure 4. Intersection problem example 3.1.1.2 Research objectives

Figure 5 .

 5 Figure 5. General architecture of ESIAS

Figure 7 .

 7 Figure 7. This intersection is outfitted with a Roadside Unit (RSU) and an associated edge node to ensure the functions of our Edge-based Safety Intersection Assistance System (ESIAS).

Figure 7 .

 7 Figure 7. Simulation map: Manhattan grid

Figure 8 .

 8 Figure 8. Low-density simulation results

Figure 9 .

 9 Figure 9. High-density simulation results

  and[START_REF] Chen | An empirical study of latency in an emerging class of edge computing applications for wearable cognitive assistance[END_REF], we introduced an additional 200ms delay to the RSU-Based service, effectively simulating the higher latency typically observed when relying on a cloud-based infrastructure.Results are visualized in Figure10and reveal a palpable difference in the number of accidents between cloud and edge computing architectures. In a 30-minute simulation, cloudbased architecture resulted in three more accidents than its edge-based counterpart. Similarly, in a 3-hour simulation, the cloud-based system recorded seven more accidents. During a 1-hour simulation, two additional accidents occurred in the cloud-based model.

Figure 10 .

 10 Figure 10. Edge vs Cloud computing simulation results

Multiple

  RSUs can connect to a single Edge server, forming an efficient hierarchical communication structure. Additionally, Edge servers are interconnected with a broader cloud infrastructure via the Internet. This forms a Cloud-Edge continuum, allowing for a scalable computational environment that can efficiently manage diverse tasks. Furthermore, the Edge servers are linked to the road operator's platform, which provides essential Vehicle-to-Everything (V2X) services and implements security mechanisms such as Authentication, Authorization, and Accounting (AAA), as well as Public Key Infrastructure (PKI).

Figure 11 .

 11 Figure 11. Vehicular Edge computing reference architecture

Figure 14 .

 14 Figure 14. Roadside unit demands on Bordeaux's roads.

Figure 6

 6 Figure 6 offers a dynamic depiction of the fluctuating vehicle density across simulation time, aligned with the traffic trace derived from the OpenDataBordeaux dataset. The graph vividly illustrates the temporal evolution of vehicle density, reaching its zenith at 729 vehicles as the maximum density at the simulation's culmination.
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 17 Figure 17. Edge server's placement locations for different approaches: OptPlacement, Top-K, K-Means and Wang et al

Figure 19 .

 19 Figure 19. Latency simulation results: OptPlacement, Top-K, K-Means and Wang et al

Figure 20 .

 20 Figure 20. Dropped tasks results.

  mobility and fluctuating communication topologies, the issue of seamless service migration emerges as a critical challenge. It stands as a logical extension to the problem of edge server placement, given that both dimensions, placement and migration, interact to determine the overall efficiency and reliability of MEC in vehicular environments. The forthcoming chapter aims to provide a comprehensive analytical framework for addressing this complex issue, employing Markov Decision Processes and deep reinforcement learning techniques to develop optimal migration strategies. By doing so, the chapter complements the work undertaken in the present chapter, further enriching our holistic understanding of the MEC landscape in Intelligent Transportation Systems (ITS).

DQN is a sample

  and efficient Deep Reinforcement learning (DRL) algorithm. DQN approximates the Q-values Q(s, a, 𝜃) of each state-action pair (s, a) using a Deep Neural Network (DNN), where 𝜃 represents the parameters of the Q-network. The training process of the DNN uses the experience replay memory mechanism by periodically storing MEC agent experience in a replay buffer. This experience consists primarily of the current state, the next state, the selected action, and the resulting reward. The experience replay memory mechanism provides uncorrelated data as inputs, thereby eliminating undesirable temporal correlations. The DDQN is used to make the training process faster and more reliable by using two DNNs [128]. The first DNN is called the main Q-network which is used to calculate the Q-values. And the second DNN is called the target Q-network which is used to provide the target Q-values Q(s, a, 𝜃 -) to train the parameter 𝜃 of the main Q-network. The training phase of our proposed DDQN is presented in Algorithm 1.

Figure 23

 23 Figure 23 serves as a visual representation of the average reward per episode in our simulations. This metric is pivotal in evaluating the effectiveness of our proposed DDQN

•

  Peng et al. approach [125]: This approach addresses the challenge of dynamic service migration in Mobile Edge Computing (MEC)-enabled vehicular networks. By employing deep reinforcement learning for dynamic service migration decisions, it aims to balance Quality of Service (QoS) and migration costs in the face of high vehicle mobility. However, their strategy focuses primarily on binary migration decisions without considering specific migration destinations, resulting in automatic migration to the nearest edge server. This simplicity overlooks potential optimizations based on factors like server capacity and network congestion, potentially missing opportunities to enhance service delivery efficiency.

Figure 24 .

 24 Figure 24. Migration cost results

  .results clearly illustrate the adaptability of our DDQN-based migration strategy, which can cater to the diverse requirements of different service profiles. It dynamically adjusts its migration decisions, allowing for increased latency in less latency-sensitive profiles (SP1 and SP2) while significantly reducing migration costs.

  adaptive deep reinforcement learning model demonstrated in this work showcases promising results within a simplistic scenario. Advancing this model entails two significant extensions. Firstly, extending the service migration solution to encompass a more realistic twodimensional (2D) scenario is crucial for mirroring real-world vehicular network dynamics. This spatial expansion is expected to unveil additional challenges and variables, necessitating a meticulous re-evaluation and potential refinement of the existing algorithms. Secondly, the transformation of the service migration model into a multi-agent Markov Decision Process (MDP) framework stands as a pivotal advancement. This transition aims to foster a more robust and scalable solution by facilitating a collaborative decision-making mechanism among edge servers, thus potentially enriching model training and augmenting the overall performance and reliability of the MEC-enabled vehicular network. These enhancements are envisaged to significantly contribute to the maturation and efficacy of service migration strategies within the vehicular network domain, duly addressing the intricate and dynamic nature of vehicular communications and services.Ethical and Privacy Considerations:As the frontier of edge computing and Intelligent Transportation Systems (ITS) continues to expand, the ethical and privacy dimensions intertwined with data collection, processing, and sharing are propelled into the spotlight. The confluence of vehicular networks and edge computing harbors immense potential to enhance traffic management and safety. Yet, it concurrently poses notable risks concerning personal privacy and data security. The data relayed and processed within these networks can be highly sensitive, encompassing individuals' locational and behavioral patterns. As we forge ahead, it's imperative that future research endeavors are directed towards architecting robust privacy-preserving mechanisms. These mechanisms should aim to adeptly obfuscate sensitive information while retaining the essential data integrity requisite for operational efficacy. Moreover, the formulation of comprehensive ethical guidelines is paramount. These guidelines ought to govern the operation of edge-enabled vehicular networks, ensuring a principled approach to data handling and sharing. They should also strive to foster transparency, consent, and accountability, thereby aligning technological advancements with societal values and legal frameworks. Through a diligent focus on these ethical and privacy considerations, we can aspire to realize the transformative benefits of edge computing within vehicular networks, while upholding the fundamental rights and trust of the individuals it serves.
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2 State of the art 2.1 Introduction

  

	within Mobile Edge Computing are also examined. This chapter serves as a detailed exploration
	of these technologies, emphasizing their significance in the advancement of vehicular systems.
	Amidst the escalating complexities of human mobility in urban landscapes, the incidence
	of vehicular accidents and road-related risks has surged considerably. As such, the exigency for
	adept mobility management is increasingly apparent, making the acceleration of Intelligent
	Transportation Systems (ITS) an imperative focus for fostering more efficient and safer human
	mobility. Moreover, Cooperative Intelligent Transportation Systems (C-ITS) are emerging as a
	pivotal solution for not only enhancing road safety but also promoting environmentally
	sustainable or "green" mobility.
	At the heart of C-ITS lies the requirement for robust, ubiquitous communication
	infrastructures. These networks facilitate interactions among a diverse set of road participants-
	including drivers, passengers, and infrastructure operators-either directly or via underlying
	backbone communication systems. Within this cooperative framework, ITS components
	collaborate to address the multi-faceted challenges posed by traffic congestion and road safety.
	Therefore, the deployment of low-latency communication technologies is essential for meeting
	stringent standards in Quality of Service (QoS) and elevating the overall Quality of Experience
	(QoE) for end-users.
	This chapter provides a comprehensive overview of two pivotal technologies that are
	shaping the future of intelligent transportation systems: Cooperative Intelligent Transport
	Systems (C-ITS) and Edge Computing (EC). The first section delves into C-ITS, covering its
	motivations, definitions, and key applications. It explores Vehicle-to-Everything (V2X)
	communication and presents standard services, messages, and the performance requirements
	associated with various use cases. This section also outlines the reference architecture and
	access layer technologies that enable vehicular communications within C-ITS. The subsequent
	section focuses on Edge Computing, beginning with its antecedent, Cloud Computing, and then
	offering a definition and various paradigms of Edge Computing. Motivations and key
	characteristics of EC are discussed, followed by potential use cases, specifically in the realm of
	vehicular networks. Topics such as the optimal placement of edge nodes and service migration

2.2.5 C-ITS Standard Services and Messages

  

	attribute information could encompass vehicle dimensions, type, and its role in road traffic. The
	frequency of CAM generation can be adapted based on variables like vehicle speed.
	Figure 1. V2X Communications
	Connected and automated vehicles are being increasingly equipped with intelligent
	communication systems that allow them to operate autonomously. These systems facilitate
	vehicles' capability to perceive their surroundings and communicate not only among themselves
	but also with infrastructural components, such as base stations and edge or cloud computing
	entities. These capabilities enable vehicles to make intelligent decisions based on real-time
	situational data.
	This autonomous operation is made possible by a synergy between communication
	• Vehicle-to-Network (V2N): In this variant, vehicles communicate with network technologies and an array of sensors integrated into the vehicles. These together form the
	entities such as Multi-access Edge Computing (MEC) platforms or V2X foundation for the development of various Connected Intelligent Transportation Systems (C-
	application servers, typically facilitated by 5G technology. ITS) services. A broad spectrum of these services focusing on road safety and efficiency has
	• Vehicle-to-Centre (V2C): This mode enables vehicles to communicate with a been delineated in existing literature and is also standardized by organizations such as ETSI
	centralized network entity, usually located over the Internet. and ISO. Below are some of the key C-ITS services:
	It's worth noting that a Vehicular Ad-hoc Network (VANET) is a form of decentralized i. Cooperative Awareness Service (CAS)
	network that can be constructed using V2V, V2R, and/or V2P communication links. CAS is designed to enhance road safety by enabling connected vehicles and other road
	Conversely, vehicular networks may adopt centralized, decentralized, or hybrid architectures, users to exchange Cooperative Awareness Messages (CAMs) [10]. These messages contain
	incorporating any combination of the aforementioned V2X communication modes. both status and attribute information about the originating Intelligent Transport System Stations
	(ITS-S). For example, status information may include time, position, and motion state, while

Table 1

 1 

	delineates the principal categories of Vehicle-to-Everything (V2X) use cases,
	focusing on their crucial performance metrics: reliability, communication latency, and expected

Table 1 .

 1 Performance requirements of some C-ITS services

Use Case type V2X Mode E2E latency Reliability Data Rate per veh (kbps) Comm. range

  

	Cooperative Awareness	V2V V2I	100 ms to 1 s	90-95%	5-96	200 m to 500 m
	Cooperative sensing	V2V V2I	3 ms -1 s	> 95%	5-25000	< 200m
	Cooperative Maneuver	V2V V2I	< 3 ms	> 99%	10-5000	200 m to 500 m
	Vulnerable Road User	V2P	100 ms to 1 s	95 %	5-10	< 200 m
	Traffic efficiency	V2N V2I	> 1s	< 90%	10-2000	> 500 m
	Tele-operating driving	V2N	5-20 ms	> 99%	25000	> 500 m

  is an adaptation of the IEEE 802.11 standard to address dynamic vehicular environments. This standard, in turn, enhances the traditional IEEE 802.11a to facilitate efficient direct communication in V2V and V2R scenarios characterized by high mobility. The channel access method underlying IEEE 802.11p is the Carrier Sense Multiple Access protocol with Collision Avoidance (CSMA/CA).

IEEE 802.11p is architected to cater to applications pertaining to vehicular safety and traffic efficiency through several key features: (i) it operates on a decentralized architecture, thereby obviating the need for a central control entity, (ii) it ensures minimal message latency via direct peer-to-peer communication among proximate vehicles, and (iii) it significantly curtails signaling overhead in comparison to its IEEE 802.11a counterpart. In Europe, this standard takes the name of ITS-G5; the equivalent technology in the USA is called Dedicated Short-Range Communication (DSRC).

  MECs are not stand-alone entities but rather augment centralized cloud infrastructure. With resources located closer to end-users, MECs offer localized, context-aware processing and lower latency. Centralized clouds, on the other hand, offer substantial computational and storage capabilities at a lower cost, mainly due to their location in areas with cheaper electricity and cooling options. Many applications may need to leverage resources from both MECs and centralized clouds for optimal performance. Due to their location at the network's edge, MECs have access to real-time wireless network and channel status. This enables applications hosted on

	Context-Aware Capabilities:
	Geographically Distributed and Resource-Diverse Infrastructure: MECs' Edge Data
	Centers (EDCs) are strategically placed at various geographic points within the wireless access
	network, such as cellular base stations and access points. Unlike their centralized counterparts,
	these EDCs exhibit a high degree of variability in scale, processing power, storage capacity,
	and network connectivity bandwidth.

Key characteristics of Multi-Access Edge Computing (MECs) are

[START_REF] Liu | Mobile edge cloud system: Architectures, challenges, and approaches[END_REF]

:

Ultra-Low Latency: Positioned in close geographical proximity to end-users, MECs significantly reduce end-to-end application response times. With the advent of 5G technologies, latencies can be reduced to mere milliseconds. This low latency is further facilitated by minimal network jitter due to fewer hops (i.e., transitions from one network segment to another) between Edge Data Centers (EDCs) and end-users.

Mobility Support:

The client base for MECs is vast and varied, ranging from individuals with smartphones to IoT devices, sensors, and autonomous vehicles. These entities are inherently mobile and often shift their network connection points. Consequently, mobility support is a crucial feature for MECs, enabling them to adapt to dynamic changes in user location.

Synergy with Centralized Clouds:

MECs to utilize user context and location data more effectively. For instance, a traffic management application could provide highly precise and relevant traffic updates to users located near a specific hotspot.

Table 2 .

 2 Simulations general parameters

	Type	Parameter	Value
		Vehicles transmission power	200 mW
	Radio	RSU transmission power 47,9 mW
		Number of antennas in a vehicle	1
			Protocol		GeoNetworking
	Network and Transport	Decentralized Congestion Control (DCC) Profile	DP1
		Transport Type	SHB
	Access Technology	Access Technology	IEEE 802.11p
		Number	of	Low density	69
		vehicles		High density	200
	Vehicle traffic	Vehicle max speed	57 km/h
		Vehicle length	5 m
		Sumo mobility model	Krauss
		"jmIgnoreFoeProb"	0.5
	Middleware	Update Interval	1s

  Poorly placed edge servers can result in increased latency and uneven workload distribution, affecting real-time vehicular applications such as collision avoidance and emergency vehicle management. These applications are time-sensitive and require low-latency data processing for optimal functioning.

	Delays can compromise safety and lead to inefficient traffic management, increasing travel
	times, fuel consumption, and emissions. Economically, imbalanced server workloads inflate
	operational costs due to overutilized servers requiring extra cooling and maintenance, while
	underutilized servers represent sunk costs. As vehicular networks expand, the complexity of
	server placement will also grow, making a well-designed optimization strategy essential for
	scalability. Furthermore, inconsistent server workloads can degrade Quality of Service (QoS),
	affecting user experience and the adoption rate of Intelligent Transportation System (ITS)

Edge computing in vehicular networks presents a complex optimization challenge involving factors like latency, workload balancing, and deployment costs.

Table 3 .

 3 Notations

	Symbol	Description
	I	Set of Roadside units (RSU)
	J	Set of the potential location of Edge servers
	n	Number of roadside units
	m	Number of potential locations for Edge servers
	K	The number of deployed Edge servers
	𝑐 𝑗	Cost of deployment of Edge server at location j
	𝐿 𝑚𝑎𝑥	Maximum latency (proportional to the distance)
	𝐿 𝑖𝑗	The latency between RSUi and Edge server location j
	𝑃𝑟 𝑖	Processing demands of RSU i
	𝑀𝑟 𝑖	Memory demands of RSU i
	𝑆𝑟 𝑖	Storage demands of RSU i

Table 5 .

 5 Optimization and Simulation parameters

	Aimms parameters	
	Edge server deployment cost at location i	1 unit	
		High Demand	30 unit
	RSU demands (processing/Memory/Storage)	Moderate Demand	20 unit
		Low Demand	10 unit
	Edge server capacity (Processing/Memory/Storage)	150 unit	
	Latency threshold 𝐿 𝑚𝑎𝑥 (in distance)	1500 m	
	OMNeT/Artery parameters	
	RSU transmission power	47,9 mW	
	RSU antenna high	5m	
	Vehicle transmission power	200 mW	
	Frequency band	5.9 GHz	
	Propagation model	ConstantSpeedPropagation (speed of light)
	Pathloss model	GEMv2 [111]
	Obstacle loss model	DielectricObstacleLoss
	Background noise Model	IsotropicScalarBackgroundNoise (-110 dBm)
	Message size (payload)	1000 Bytes	

Table 7 .

 7 Placement results of the other approachesFigure17summarizes and indicates the chosen locations for deployment of Edge servers for each placement strategy. The Random-Random and Random-Nearest approaches are also not presented here as their results are random.

	Approach	Edge server	Roadside units	Workload
		Server 1 (at location 7) R2, R7, R8, R9, R12, R13	110
		Server 2 (at location 8) R1, R3, R4, R5, R6, R10, R11, R16	160
	Top-K			
		Server 3 (at location 10) R14, R15, R17, R18, R19, R20	80
		Server 4 (at location 17) R21, R22, R23, R24, R25, R26, R27	100
		Server 1 (at location 6)	R1, R2, R3, R4, R7, R8, R9, R10, R12, R13	150
	K-means	Server 2 (at location 8) R5, R6, R11, R16	80
		Server 3 (at location 13) R14, R15, R17, R18, R19, R20, R21	90
		Server 4 (at location 17) R22, R23, R24, R25, R26, R27	90
	Wang et al.	Server 1 (collocated with RSU 3)	R3, R6, R10, R11, R12, R13, R14, R15, R16, R17, R20, R21, R22, R25	250
	approach	Server 2 (collocated with RSU 15)	R1, R2, R4, R5, R7, R8, R9, R18, R19, R23, R24, R26, R27	200

Table 8 .

 8 Notations

	Parameter	Description
	𝑑𝑡	Distance between vehicle and serving edge node at time t
	𝐻𝑡	Edge server hosting the vehicle's service at time t
	𝐶𝑡[K]	Available capacity (CPU, memory, disk) for K edge servers
	𝑆𝑃𝑡	Service Profile (service class, required capacity, service image size)
	R a t s t	Reward function
	D com	Communication delay
	R v	Data rate between v and its serving RSU
	λ n	Size of the offloaded task of vehicle v
	D back	Backhaul delay
	R b	Backhaul bandwidth
	µ, γ	Positive coefficients
	dis(e S , e D ) Distance between edge servers S and D
	D v mig	Migration delay
	z	

v Service total size (VMs, data, …)

Table 9 .

 9 Simulation parameters

	Parameter	Value
	Number of Edge servers	5
	RSU Transmission power	47,9 mW
	Vehicles transmission power	200 mW
	Access Technology	IEEE 802.11p
	Learning rate	5e -4
	Discount factor	0,99
	Replay memory size	1000000
	Mini-batch size	64
	Target update interval	100
	Optimizer	Adam
	RNN hidden layers	Two hidden layers of 256 neurons each.
	Activation function	ReLU
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ratio of the number of vehicles covered by the deployed Edge servers to the total number of vehicles in the network-without accounting for latency and workload balancing concerns.

In light of the preceding existing works in the literature, our research presents several distinctive advantages that collectively contribute to advancing the state-of-the-art in edge server placement within vehicular networks. Below is a synthesized outline of these advantages:

Comprehensive Optimization Framework: Unlike the work in [START_REF] Premsankar | Efficient placement of edge computing devices for vehicular applications in smart cities[END_REF] which focuses primarily on network coverage, our approach uses an integer linear programming (ILP) formulation that addresses multiple objectives concurrently-latency requirements, workload balancing, and cost considerations. This multi-objective approach yields a more balanced and practically applicable solution.

Inclusion of Real-world Traffic Data: Our methodology is informed by real-world traffic data obtained from the city of Bordeaux, thus enhancing the model's generalizability and applicability to real-world urban scenarios. This contrasts with other works that may rely solely on synthetic or theoretical models.

Robust Evaluation Metrics:

We assess the effectiveness of our proposed solution through a rigorous set of simulation metrics and direct comparisons with existing strategies. This comprehensive evaluation enables us to demonstrate its superior performance and wider applicability, filling the gaps left by previous research.

Enhanced Practicality:

The work in [START_REF] Wang | Edge server placement in mobile edge computing[END_REF] hints at nuanced solutions but lacks a holistic model for vehicular networks. Our research fills this gap by providing a nuanced and practically applicable model specifically tailored for edge server placement in vehicular environments.

Expanded Objective Set: Unlike the work in [START_REF][END_REF], which focuses solely on maximizing coverage ratios, our research delves into other crucial aspects such as latency and workload balancing. This allows for a more holistic optimization, crucial for the demands of modern vehicular applications.

In summary, our research integrates a broad array of factors that are either overlooked or treated in isolation by existing works. By doing so, we present a more comprehensive, nuanced, and practically applicable solution for edge server placement in vehicular networks. This multidimensional approach makes our contribution a significant advancement in the field, effectively addressing the complex challenges inherent in deploying edge servers in modern urban vehicular settings. as the geographical coordinates of both the RSUs and Edge server candidates, the latency threshold (expressed in terms of distance), the capacity of Edge servers, and the demands placed on RSUs in terms of processing, memory, and storage, we extract an optimal solution. This solution encompasses the count and placement of Edge servers, along with the associated deployment cost. Each RSU is subsequently linked to an Edge server, respecting the imposed latency constraint, while the cumulative demands from RSUs affiliated with a single server must remain within the server's stipulated capacity. The optimization process is executed on a computer equipped with an Intel i7-10610U CPU @ 1.80GHz and 2.30GHz processor, complemented by 16 GB of RAM.

Latency Analysis:

As previously highlighted, the primary focus lies on latency, which directly impacts the communication efficiency of the system. Figure 18 and Figure 19 present latency curves obtained from simulations within the Artery framework, portraying the average latency of messages received by the Edge servers for each approach.

In our OptPlacement approach, the achieved latency ranges from 1.51 ms in low-density scenarios to 1.61 ms in high-density scenarios. Remarkably, other approaches yield latency values that fall within a comparable interval. A more granular examination of the results reveals the superior performance of OptPlacement over Random-Random and Wang et al. [START_REF] Popescu-Zeletin | Vehicular-2-X Communication: State-of-the-Art and Research in Mobile Vehicular Ad hoc Networks[END_REF] strategies. Additionally, the latency curves of Random-Nearest and OptPlacement coincide, indicating similar performance between the two.

Contrastingly, our solution does exhibit a marginal latency increase of 0.01 ms (maximum)

when compared to the Top-K and K-means approaches. This deviation can be attributed to the fact that the latter approaches solely prioritize the nearest server criterion for RSU connections, without holistically accounting for server capacity and workload balance. This slight latency increment in OptPlacement remains acceptable as it guarantees adherence to the server's capacity constraint, while always ensuring compliance with the designated latency threshold. 

Introduction

The integration of connected vehicles and autonomous driving technology stands on the brink of revolutionizing transportation systems, ushering in a multitude of benefits for our society [112][113]. Intelligent Transportation Systems (ITS) are poised to elevate transportation safety through adept vehicle coordination and resource management [START_REF] Lin | Intelligent transportation system (ITS): Concept, challenge and opportunity[END_REF]. Beyond safety, ITS promises a realm of entertainment services, spanning from video streaming and gaming to invehicle augmented reality experiences [115][116]. Realizing these capabilities hinges on vehicles seamlessly communicating and accessing services with minimal latency. Thus, the ITS landscape must be tailored to meet these exigencies. Consequently, innovative strategies, acutely attuned to mobility and resource constraints, are requisite to mitigate latency for applications and optimize the utilization of network and computing resources [START_REF] Aljeri | Fog-enabled vehicular networks: A new challenge for mobility management[END_REF].

To fulfill these exacting quality of service (QoS) demands, the Multi-access Edge Computing (MEC) paradigm has emerged, deploying servers at the network's edge. By deploying edge servers efficiently, robust computational capabilities are extended to vehicles while maintaining low latency [118][119]. This empowers resource-intensive applications like object detection, video stream analytics, and path navigation to be executed seamlessly with edge servers within vehicular networks [START_REF] Zhang | Mobile edge intelligence and computing for the internet of vehicles[END_REF]. Yet, while MEC-enabled vehicular networks offer numerous benefits, they also present fresh challenges in task offloading and computation.

A salient challenge resides in the swift mobility of vehicles, engendering a dynamically shifting communication topology within vehicular networks, leading to unreliable communication links [START_REF] Lopes | Network mobility for vehicular networks[END_REF]. Vehicles often move beyond the coverage area of an edge server, resulting in heightened latency and disruptions in service continuity between vehicles and the hosting edge server.

Research objectives

To address these challenges, we investigate the service migration problem in MEC-enabled vehicular networks. As vehicles traverse diverse geographical locales, the advantages of MEC

R q v

The bandwidth of session q for migration of service of vehicle v 

Network model

Communication delay: Since wireless communications significantly impact the quality of edge-assisted vehicular services, we consider the communication delay that is given by:

Where 𝜆𝑛 is the size of the task request of vehicle v, and Rv is the data rate between vehicle v and its serving RSU.

Backhaul Delay:

The backhaul delay is caused by transmission, propagation, processing, and queuing when the vehicle is served by a non-local edge server. The transmission delay is denoted as λn (t)/Rb, Where λn is the size of the service request of vehicle v in time slot t, and Rb is the bandwidth of the outgoing link of the local edge server e, µ is a positive coefficient, and dis(e_S,e_D): distance between e_S (source or local server) and e_D (destination or nonlocal server). The backhaul delay on the edge server is given by:

Where 𝜆 𝑛 is the service total size (VMs, data, …), and 𝑅b is the bandwidth of link for migration of service of vehicle v.

Computation model

Multiple services share computing resources at each edge server to assist their serving vehicles in performing the requested tasks. Ue represents the computing capacity of the edge server e, as measured in CPU cycles per second.

Computing delay: Let uv(t) denote the number of CPU cycles required by the requested task of vehicle v in slot t. The computing delay on the edge server is given by:

𝑦 𝑣 𝑒 Boolean denotes if the service of vehicle v is hosted by Edge server e, 𝑢 𝑣 denotes the number of CPU cycles needed for the requested task of vehicle v, and 𝑈 𝑒 CPU cycle capacity of Edge server e.

Migration cost model

The migration of a service across edge servers incurs added operating expenses. We consider that the migration cost depends on the size of each service's image. Let 𝐶 𝑣 be the migration cost of moving service v from the edge server 𝑒 𝑆 to 𝑒 𝐷 .

Where γ is a positive coefficient and z_v is the service total size (VMs, data, …).

Problem formulation

In this section, we embark on the rigorous formulation of the service migration problem, casting it into the framework of a Markov Decision Process (MDP). We then delve into the presentation of the Double Deep Q Network (DDQN) method, a sophisticated and potent solution meticulously crafted to address the intricacies of this problem.

The choice of an MDP as our modeling framework is motivated by its aptitude for representing sequential decision-making problems under uncertainty, which aptly characterizes the dynamic nature of service migration in MEC-enabled vehicular networks. MDPs inherently enable us to consider various factors, such as mobility, resource availability, and service profiles, in crafting an optimal migration strategy.

Furthermore, we introduce the Double Deep Q Network (DDQN) method as our chosen tool to navigate the complex decision landscape posed by service migration. DDQN is a reinforcement learning technique that excels in approximating optimal action-value functions, making it particularly suited to solving our problem. This method will be elaborated upon in

The second phase is the inference phase of the DQL. Once the trained DDQN is obtained, the agent uses its optimal parameters to find the optimal migration strategy. The MEC agent observes the current state at each step and chooses the action that maximizes the Q-value based on the trained DDQN. Thus, we find the solution to the migration problem, and we can determine when and where to migrate a service to achieve an optimal balance between latency and cost.

Simulation and evaluation

Simulation Environment

In our research, we employ a simulated environment to assess the performance of our proposed service migration strategy. This environment consists of several essential components and tools to ensure accurate and realistic simulations.

At the core of our simulation setup is OMNeT++ The simulated highway spans a length of 30 kilometers, providing ample space for vehicular movement and service requests. To mimic real-world conditions, vehicles within the simulation move at random but fixed speeds. These speeds are randomly selected from a range of 60 to 110 kilometers per hour (km/h), reflecting the variability in real traffic speeds.