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Résumé en Français 

Ces dernières années, le traitement de grandes quantités de données a suscité une attention 

considérable. Le traitement des flux de données hyperspectrales en fait partie pour de 

nombreuses applications, telles que la surveillance environnementale, la détection de cibles et 

d'anomalies, la cartographie géologique et l'étude de la végétation. Actuellement, la majorité 

du traitement des données hyperspectrales se fait hors ligne, après la fin de la mission 

d'acquisition des données. En effet, il est difficile de traiter et d'analyser en ligne les données 

présentant des dimensions spatiales et spectrales étendues. 

Le partitionnement de flux de données utilise des données ou des lots de données qui 

arrivent en continu et les attribue à des classes sans avoir observé l'intégralité des données. Nous 

précisons que "le partitionnement" est une opération de subdivision d'un ensemble de données 

en classes homogènes pour former une partition. La Figure 1 illustre un exemple de 

partitionnement d'objets caractérisés par deux attributs où chaque classe présente peut être 

représentée par son centroïde (légende ∗), également appelé exemplaire. 

 
Figure 1 : Partitionnement d'objets en trois classes. A chaque classe est associé son centroïde 

ou exemplaire (∗). 

Pour le partitionnement des données, plusieurs méthodes existent. Elles peuvent être 

divisées en trois catégories : supervisées, semi-supervisées et non supervisées. Les méthodes 

supervisées utilisent des échantillons d'apprentissage pour effectuer les partitionnements. 

Cependant, dans de nombreux contextes réels, l'obtention de données étiquetées peut être 

difficile, voire impossible pour certains domaines applicatifs. Les méthodes semi-supervisées 

ne nécessitent pas d'échantillons d'apprentissage mais exigent une connaissance a priori du 
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nombre de classes, tandis que les méthodes non supervisées ne nécessitent aucune connaissance 

a priori. En effet, pour certaines applications, le nombre de classes est souvent difficile à 

déterminer à l'avance et peut évoluer avec l'arrivée de nouvelles données, ce qui devient l'une 

des principales limitations des méthodes semi-supervisées. Par conséquent, les méthodes non 

supervisées sont mieux adaptées pour partitionner des flux de données. 

Dans l'état de l'art, la plupart des méthodes sont paramétriques, ce qui nécessite que les 

utilisateurs spécifient un ou plusieurs paramètres et/ou le nombre de classes avant le processus 

de partitionnement. Cependant, l'utilisation de paramètres peut introduire un certain degré 

d'incertitude dans les performances des méthodes. Les limitations des méthodes paramétriques 

sont : 

1) Le choix des valeurs de paramètres avant le processus de partitionnement qui peut avoir 

un impact plus ou moins important sur les performances de partitionnement. Différentes 

combinaisons des réglages de paramètres peuvent conduire à des résultats de 

partitionnement variables. 

2) Le réglage empirique des paramètres qui peut être complexe et chronophage 

s’amplifiant avec les méthodes qui comportent plusieurs paramètres. 

3) La difficulté de trouver des valeurs appropriées des paramètres lorsqu'il s'agit de 

partitionner des flux d’objets nouveaux. 

Pour remédier à ces inconvénients, nous avons développé une approche non supervisée et 

non paramétrique appelée STRFCM (STReam Fuzzy C-Means). Cette méthode est capable 

d'estimer de manière automatique le nombre de classes et de partitionner les flux de données 

sans nécessiter de connaissance a priori, ni l'introduction de paramètres. Elle se compose de 

deux étapes, partitionnement des blocs de données et fusion des classes des blocs pour la 

formation de la partition finale : 

1) Partitionnement des blocs de données : cette première étape emploie l'algorithme 

« Fuzzy C-Means-Optimized » (FCMO) [11], qui utilise la norme 𝐿1 comme critère de 

similarité et un indice de validité adaptatif de partition (noté WB-L1M) comme critère 

d'évaluation. Cet indice utilise le rapport entre la dispersion intra-classe et la dispersion 

inter-classes avec une pondération par la variance des classes. Cela permet d’obtenir des 

classes assez représentatives des blocs de données ainsi que leurs exemplaires.  
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FCM est une méthode semi-supervisée adaptée à l’origine pour partitionner des données 

statiques en un nombre prédéterminé de classes. FCMO optimise cette méthode en 

estimant le nombre de classes sans connaissance a priori, en intégrant une procédure 

incrémentale adaptative. Cet algorithme utilise la norme 𝐿2  [32], comme critère de 

similarité et la différence entre la dispersion globale inter-classes et intra-classe d’une 

partition comme critère d’évaluation (noté F). La maximisation de ce critère non 

supervisé donne la partition optimale. 

Pour une meilleure discrimination entre les objets sans amplification ni atténuation du 

critère de similarité et donc la formation de classes homogènes, la norme 𝐿1 [32] a été 

utilisée comme critère au lieu de la norme 𝐿2. De plus, pour renforcer la préservation 

de l’ensemble des informations caractéristiques d’un bloc, nous avons proposé un 

nouvel indice appelé WB-L1M comme critère d'évaluation de FCMO. La minimisation 

du critère WB-L1M permet de déterminer une partition formée des classes fortement 

homogènes ainsi que l’exemplaire de chacune d’elles. 

2) Fusion : cette étape emploie l'algorithme FCMO pondérée (WFCMO) pour partitionner 

l’ensembles des exemplaires obtenus dans la première étape en prenant en compte la 

taille des classes qu’ils représentent. Il utilise la norme 𝐿1 comme critère de similarité 

et l'indice F comme critère d'évaluation. Les résultats obtenus par l’algorithme WFCMO 

surpassent ceux de FCMO lors de la partition de l’ensembles des exemplaires. 

L’organigramme de la méthode proposée est présenté dans la Figure 2. 

 
Figure 2 : Organigramme de la méthode de partitionnement non supervisée proposée. 
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La méthode proposée a été évaluée et comparée à trois méthodes paramétriques non 

supervisées et une méthode semi-supervisée, ainsi qu'à une méthode supervisée utilisant 

l'apprentissage actif. Cette évaluation a été réalisée sur des images hyperspectrales synthétiques 

et une base de données réelles en utilisant des critères objectifs comme la pureté, l'indice Kappa 

et l'instabilité des résultats causée par les différents réglages des paramètres. Le temps pour le 

réglage empirique des paramètres est également intégré. Les résultats montrent que notre 

méthode est plus performante que les méthodes comparées. 

En conclusion, une nouvelle méthode non supervisée et non paramétrique appelée STRFCM 

a été développée pour le partitionnement de flux de données. Cette méthode est facile à 

appliquer par les utilisateurs, car elle élimine le recours à des connaissances a priori et évite la 

nécessité du réglage empirique des paramètres. Elle peut en effet, estimer de manière 

automatique le nombre de classes et a montré son efficacité pour le partitionnement de flux de 

données de grandes tailles spatiale et spectrale, en particulier les données hyperspectrales. 

 

Le manuscrit de cette thèse est organisé en cinq chapitres :  

Le premier chapitre sert d'introduction au contexte de la recherche visée et à la structure de 

la thèse.  

Le deuxième chapitre passe en revue les principales méthodes de partitionnement des 

données statiques et des flux de données de l'état de l'art. Différentes catégories de méthodes 

sont étudiées en examinant leurs avantages et leurs limites respectifs. De plus, ce chapitre 

introduit un éventail d'indices objectifs pour la validation d’une partition.   

Le troisième chapitre présente la méthode développée. Il introduit tout d’abord le principe 

de la méthode. Ensuite, nous décrivons et évaluons les améliorations apportées aux méthodes 

adaptées pour le partitionnement des données statiques qui sont utilisées dans la méthode 

proposée.   

Le quatrième chapitre présente l’évaluation de la méthode développée incluant les 

comparaisons avec cinq méthodes de partitionnement de flux de données de l’état de l’art (une 

méthode supervisée utilisant l'apprentissage actif, une méthode semi-supervisée et trois 

méthodes paramétriques non supervisées). Les différents tests sont effectués sur des images 

hyperspectrales et sur une base de données largement utilisées par la communauté scientifique 

comme référence pour l'apprentissage automatique. Deux applications sont traitées dans le cas 

de partitionnement des images hyperspectrales. Le premier concerne la détection de plantes 

invasives et le second la détection d’algues marines. 

Le cinquième chapitre conclut notre recherche et évoque les perspectives. 
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Notation 

𝑛  Number of attributes of each object 

𝑥𝑖  Object characterized by 𝑛 attributes 

{𝑎𝑖
(1)

, 𝑎𝑖
(2)

, . . . , 𝑎𝑖
(𝑛)

}  Attributes of object 𝑥𝑖 

𝑑(𝑥𝑖, 𝑥𝑙)  Distance between objects 𝑥𝑖 and 𝑥𝑙 

𝑝, 𝑞 Positive integers 

𝐿𝑝  𝐿𝑝 norm  

𝐿1  𝐿1 norm  

𝐿2  𝐿2 norm  

𝑁 Number of objects to be partitioned 

𝐾 Number of classes 

𝒳 Set of objects 𝒳 = {𝑥𝑖}𝑖=1
𝑁  

𝐶𝑗 𝑗th class 

𝒫 Partition containing 𝐾 classes 𝒫 = {𝐶𝑗}
𝑗=1

𝐾
 

𝑧𝑗 Centroid of class 𝐶𝑗 

𝐽(𝒫) Partitioning objective function 

𝑚 Weighting exponent 

𝑢𝑖𝑗  Membership grade of object 𝑥𝑖 to class 𝐶𝑗 

𝑈  Membership matrix 

𝑁𝑗  Number of objects in class 𝐶𝑗 

𝐷(𝐶𝑗)  Intra-class dispersion of class 𝐶𝑗 

𝐷  Global intra-class dispersion 

𝐷(𝐶𝑗)  Inter-class dispersion of class 𝐶𝑗 

𝐷  Global inter-class dispersion 

𝜂  Coefficient of ponderation 

𝑠(𝑥𝑖, 𝑥𝑘)  Similarity between objects 𝑥𝑖 and 𝑥𝑘 

𝑆  Similarity matrix 

pr Preference parameter 

𝑟(𝑥𝑖, 𝑥𝑘)  Responsibility 

𝑎(𝑥𝑖, 𝑥𝑘)  Availability 

𝜆  Damping rate 

𝜏  Current iteration 

𝜖  User-defined radius of a class 
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MinPts Minimum number of points within a class with a 

radius of 𝜖 

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, …  Series of sequential objects of data stream 

𝑡  Current time 

𝜉  Learning rate 

𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅  Sum of squares of objects in a micro-cluster 

𝐶𝐹1𝑥̅̅ ̅̅ ̅̅ ̅  Sum of objects in a micro-cluster 

𝐶𝐹2𝑡  Sum of squares of timestamps in a micro-cluster 

𝐶𝐹1𝑡  Sum of timestamps in a micro-cluster 

𝑛𝑏𝑖  Number of objects that are aggregated into just one 

object 𝑥𝑖 

𝜀𝑖  Average mutual distance between 𝑥𝑖  and 𝑛𝑏𝑖 

objects 

𝑒𝑖  𝑖th exemplar 

𝑑𝑖  Sum of the squares of distances between associated 

objects and 𝑒𝑖 

𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖  Last timestamp when an object is associated with 

𝑒𝑖 

ℎ  User-specified window length 

𝜔  Weight of a micro-cluster 

𝛾  Decay factor 

𝐶𝐹1̅̅ ̅̅ ̅  Weighted linear sum of objects 

𝐶𝐹2̅̅ ̅̅ ̅  Weighted squared sum of objects 

𝑡𝑜  Creation time of the outlier-micro-cluster 

𝑟0  Radius of non-core region 

𝑧𝑠  Centroid of dataset 𝒳 

𝑥, y Objects 𝑥 and y 

𝜎𝑖  Standard deviation of class 𝐶𝑖 

𝜎𝒳  Standard deviation of dataset 𝒳 

𝑁𝑑  Size of the data chunk 

𝐵𝑡  Data chunk arriving at time 𝑡 

𝑥𝑖(𝑡)  The object 𝑥𝑖 in the data chunk 𝐵𝑡    

𝐷𝑆𝑡  Data stream 𝐷𝑆𝑡 = ⋃ {𝐵𝑗} 𝑡
𝑗=1  

𝐾𝑡  Number of classes in data chunk 𝐵𝑡 

𝑧𝑖(𝑡)  𝑖th centroid of the 𝑖th class within data chunk 𝐵𝑡 

𝐵𝐶𝑡  Exemplar set obtained by partitioning data chunk 

𝐵𝑡 
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𝐵𝐶  Exemplar set 𝐵𝐶 = ⋃ {𝐵𝐶𝑗}  𝑡
𝑗=1  

𝑁𝑒  Number of exemplars 

𝐸𝑆  Set of exemplars 𝐸𝑆 = {𝑒𝑖}𝑖=1
𝑁𝑒  

𝑆𝐶𝑖  𝑖th subclass 

𝑁𝑠𝑐𝑖  Number of objects in subclass 𝑆𝐶𝑖 

𝐾𝐺𝑇  Number of the main ground truth classes 

𝑁𝑖
𝑗
  Number of objects in the 𝑖 th estimated class 

allocated to the 𝑗th main ground truth class 

𝑝𝑜  Actual observed agreement 

𝑝𝑒  Hypothetical probability of chance agreement 
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Chapter 1 

Introduction 

 

In recent years, the processing of large data has attracted widespread attention, and the 

processing of hyperspectral data streams has aroused interest for many applications, such as 

environmental monitoring, target and anomaly detection, geological mapping, and vegetation 

survey [1]-[4].  

Hyperspectral imaging sensors deployed on manned or unmanned aerial vehicles [5,6,7] 

have emerged as popular tools for observing territories and their evolution. These sensors 

enable the temporal monitoring of urban and rural green spaces, greenways, algal accumulation, 

invasive plants, crop diseases, roof mapping, and more [8, 9]. However, the processing capacity 

for handling the substantial volume of generated data has remained limited until now. Most of 

the data processing occurs offline, post-completion of the data acquisition mission. Presently, 

the challenge lies in processing and analyzing the data online, a crucial aspect for effectively 

interpret the content of data [5]. In this domain, there is still a deficiency in state-of-the-art 

techniques tailored to this type of processing, especially for hyperspectral images with 

expansive spatial and spectral dimensions [8]. The purpose of our research is to develop a data 

stream partitioning method to solve the issue of unsupervised and online learning of statistical 

patterns within hyperspectral data streams. The developed method can be easily applied to 

hyperspectral images acquired by hyperspectral sensors embedded in manned or unmanned 

aerial platforms. 

Data stream partitioning [10] uses data or data batches that arrive continuously and assigns 

them to classes without the benefit of having observed the entire dataset. We specify that 

"partitioning" is an operation of subdivision of a dataset into homogeneous classes to form a 

partition. 

Data stream partitioning methods can be divided into three categories: supervised, semi-

supervised and unsupervised. Supervised partitioning methods deal with training samples to 

make partitions. However, in some real-world scenarios, obtaining labeled data can be 

challenging or even impossible. Semi-supervised methods do not require training samples and 

only necessitate prior knowledge of the number of classes, while unsupervised methods do not 

need any prior information. In certain practical applications, the number of classes is difficult 

to determine in advance and can change with incoming data, which becomes one of the main 
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limitations of semi-supervised methods. Therefore, unsupervised partitioning methods are 

better suited to partition data streams without the need for prior information.  

Nowadays, most of the data stream partitioning methods are parametric requiring users to 

specify one or more parameters and/or the number of classes before the partitioning process. 

The introduction of parameters will have a more or less impact on the partitioning performance. 

The employed parameters often need to be tuned by users in advance in order to predetermine 

their values.  

In practice, there are situations where prior knowledge of the dataset cannot be known in 

advance. Therefore, it is difficult to conduct empirical parameter tuning to determine the 

appropriate values of parameters to obtain the optimal partition. Furthermore, the values of 

these parameters are not universally applicable to all types of datasets, and when the type of 

dataset changes, the parameters need to be retuned. Eliminating the reliance on parameters 

presents a substantial challenge in data stream partitioning. To address this challenge, an 

unsupervised and non-parametric approach, named STRFCM (STReam Fuzzy C-Means), was 

developed that can automatically estimate the number of classes and partition the data stream 

without the need for prior information or the introduction of any parameters.  

Our proposed method mainly consists of two fundamental steps. The data chunks in the 

stream are first partitioned by the Fuzzy C-Means-Optimized (FCMO) [11] method in order to 

identify classes and their exemplars in each data chunk. In this step, we optimized FCMO to 

align with the requirements of our approach. FCMO is an unsupervised static dataset 

partitioning method. It seeks to enhance the performance and efficiency of the traditional Fuzzy 

C-Means partitioning algorithm (FCM) [12]. The subsequent fusion step employs the proposed 

Weighted FCMO (WFCMO) method to partition the weighted exemplar set and obtain the final 

optimal partitioning results.  

In contrast to parametric partitioning methods, such as CluStream [13], which requires the 

predefined number of classes, and STRAP [14], which necessitates the predetermination of six 

user-defined parameters, our proposed method performs without the need for labeled data or 

any other prior information. Furthermore, it does not require parameter tuning, making it 

adaptable to a wide range of datasets.  

The proposed method was assessed on synthetic hyperspectral images and a real-world 

dataset. Its partitioning performance was evaluated by using two external metrics: purity and 

kappa index. Besides, the number of estimated classes and execution time were also considered. 

To demonstrate the effectiveness of our proposed method, we compared it to five parametric 

partitioning methods: three unsupervised methods (STRAP [14], CODAS [15] and DenStream 
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[16]), one semi-supervised method (CluStream [13]), and one supervised method using active 

learning (AAPStream [17]). The results show that our method performs better than the 

compared methods. 

This thesis is organized as follows. Chapter 2 provides an overview of the current state of 

the art in the fields of static dataset and data stream partitioning. Chapter 3 introduces the 

proposed unsupervised and non-parametric approach in detail. Chapter 4 presents the 

assessment of our proposed method and gives comparative analysis with five parametric 

partitioning methods mentioned above. Some conclusions and perspectives for further research 

are presented in Chapter 5. 
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Chapter 2 

State of the art 

 

This chapter reviews and discusses the state of the art related to partition static datasets and data 

streams. Partitioning methods are widely used in various fields, such as environmental 

monitoring, sensor networks, network intrusion detection, fraud detection, fault detection, and 

medical diagnosis [10], [18]-[25]. These methods can be divided into three categories: 

supervised, semi-supervised and unsupervised partitioning methods. Each category can also be 

subdivided into parametric and non-parametric methods.  

Supervised methods require labeled training data to learn and accomplish the partitioning 

task. Maximum likelihood classifier [26] and support vector machines (SVM) [27] are two 

commonly used approaches in supervised partitioning. Semi-supervised and unsupervised 

methods do not require training samples. However, semi-supervised methods need to specify 

the number of classes in advance, while unsupervised methods do not require the number of 

classes or any other prior knowledge. In the case of supervised methods, a significant limitation 

is their reliance on training samples, which, for certain applications, cannot be obtained. Semi-

supervised and unsupervised methods do not have this limitation. Considering this constraint, 

we will mainly present semi-supervised and unsupervised partitioning methods in the following 

sections. The advantages and drawbacks of these methods are explained in detail in this chapter. 

In addition, the partitioning validity indices are introduced. 

 

2.1 Similarity criteria  

Data partitioning involves the split of a dataset of objects into different classes following a 

similarity criterion [28]. In essence, this process aims to group objects of the same class as 

closely as possible while ensuring significant separation between objects from different classes. 

Figure 2.1 depicts a partitioning example of objects characterized by two attributes. Each class 

can be represented by its centroid (legend ∗), also called an exemplar. 
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Figure 2.1: Partitioning of objects in three classes. To each class is associated its centroid or 

exemplar (∗). 

Data partitioning methods critically rely on the choice of similarity criteria to form classes 

in fields such as data analysis [29], natural language processing [30], and image processing [31].  

Depending on the nature of the data and the specific problem being addressed, different 

types of similarity measures are used. Some common similarity criteria are introduced below. 

𝐿𝑝 norm is referred as Minkowski distance [32] which is most often used for comparing 

numerical data. Suppose we have two objects 𝑥𝑖  and 𝑥𝑗 , each characterized by 𝑛 attributes: 

{𝑎𝑖
(1)

, 𝑎𝑖
(2)

, . . . , 𝑎𝑖
(n)

} and {𝑎𝑗
(1)

, 𝑎𝑗
(2)

, . . . , 𝑎𝑗
(n)

}. The 𝐿𝑝 norm distance between the objects 𝑥𝑖 and 

𝑥𝑗 is computed as: 

𝑑(𝑥𝑖, 𝑥𝑗) = (∑|𝑎𝑖
(𝑙)

− 𝑎𝑗
(𝑙)|

𝑝
𝑛

𝑙=1

)

1 𝑝⁄

 (2.1) 

where 𝑝 is a positive integer.  

When 𝑝 = 2, the 𝐿2 norm is the standard Euclidean distance.  

𝑑(𝑥𝑖, 𝑥𝑗) = (∑|𝑎𝑖
(𝑙)

− 𝑎𝑗
(𝑙)|

2
𝑛

𝑙=1

)

1 2⁄

 (2.2) 

It’s often employed for data partitioning and classification tasks. 

When 𝑝 = 1, the 𝐿1 norm measures the sum of absolute differences between two objects. 
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𝑑(𝑥𝑖, 𝑥𝑗) = ∑|𝑎𝑖
(𝑙)

− 𝑎𝑗
(𝑙)|

𝑛

𝑙=1

 (2.3) 

It can also be used for data partitioning and classification tasks. 

Other similarity criteria such as Cosine similarity [33], Hamming distance [34], Levenshtein 

distance [35], and Jaccard similarity [36] can also be employed. 

Different partitioning methods employ different similarity criteria according to the 

characteristics of objects and the specific problems being addressed. A good partitioning 

method will produce classes with high intra-class similarity and low inter-class similarity. The 

following sections will introduce the static dataset and data stream partitioning methods. 

 

2.2 Static dataset partitioning methods 

Static dataset partitioning methods consider all objects are available from the beginning. They 

process the entire dataset at once, partitioning objects into classes based on similarity measures. 

As explained above, we only analyze semi-supervised and unsupervised static partitioning 

methods, which differ based on whether the number of classes needs to be determined in 

advance. Depending on whether they employ user-defined parameters, they can be further 

divided into parametric and non-parametric methods.  

 

2.2.1 Semi-supervised methods 

In this section, semi-supervised static dataset partitioning methods are presented and analyzed. 

Assume that 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} is a set of 𝑁 objects, where each object is characterized by 𝑛 

attributes. The partitioning result on 𝒳  is denoted as 𝒫 = {𝐶1, 𝐶2, … , 𝐶𝐾} which contains 𝐾 

classes. The centroid of class 𝐶𝑗 is defined as 𝑧𝑗.  

• K-Means 

K-Means [37] is a popular and traditional partitioning method, aiming to partition a dataset into 

predetermined number of classes. During partitioning, an objective function is used for 

assessing the partitioning quality, which is defined as:  

𝐽(𝒫) = ∑ ∑ 𝑢𝑖𝑗𝑑2(𝑥𝑖, 𝑧𝑗)

𝑁

𝑖=1

𝐾

𝑗=1

 (2.4) 
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where 𝑢𝑖𝑗 = 1 if 𝑥𝑖 ∈ 𝐶𝑗 and 0 otherwise. It calculates the sum of Euclidean distance between 

each object and its corresponding class centroid. For a given 𝐾, the optimal partition is achieved 

when 𝐽(𝒫) is minimized, which means the intra-class dispersion is the lowest at this time and 

the objects are close to their class centroids with the highest intra-class similarity. 

K-Means adopts a greedy optimization approach that begins with a random partition and 

iteratively moves objects from one class to another to minimize the objective function value 

until a local optimum is reached. However, it's important to note that the local optimum can be 

influenced by the initial setup of the greedy optimization process. 

The K-Means algorithm is an iterative scheme and mainly has four steps:  

Input:  

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} 

– Number of classes 𝐾 

1) Randomly select 𝐾 objects from the dataset 𝒳 as the initial centroids of 𝐾 classes. 

2) Calculate the distance between each object in the dataset and each class centroid. Assign 

each object to its nearest class. 

3) Update the class centroids to minimize the objective function 𝐽(𝒫) (Equation 2.4). 

4) Repeat steps 2 and 3 until the class centroids stabilize. 

Output: Discovered 𝐾 classes and exemplar of each class 

The K-Means method is very simple to use and can be easily implemented in solving many 

practical problems. It works well for compact and hyper-spherical classes. In addition, K-Means 

is effective in partitioning large-scale datasets due to its low time and space complexity. 

Nevertheless, it comes with limitations. The number of classes should be specified in advance, 

which is sometimes impractical in real-world scenarios. It is sensitive to the initial selection of 

class centroids and might converge to a local optimum rather than the global optimum.  

Based on the same iteration process, K-Median [38] and K-Modes [39] were proposed. K-

Median employs the median of attribute values as class exemplars. It is often chosen in cases 

where the data could potentially include outliers or when the focus is on prioritizing robustness 

over computational speed. K-Modes is designed for categorical data and adopts categorical 

similarity criterion. 
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• Fuzzy C-Means (FCM) 

While K-Means assigns each object to only one exact class, FCM [12] provides a more flexible 

approach that allows objects to belong to multiple classes. The primary concept is to use the 

membership grade to determine the degree to which each object belongs to a certain class. 

Hence, objects positioned at the periphery of a class with lower membership grades are more 

inclined to have a lesser affiliation with that class compared to objects situated closer to the 

class centroid.  

The partitioning objective function of FCM algorithm is defined as: 

𝐽(𝒫) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑖, 𝑧𝑗)

𝑁

𝑖=1

𝐾

𝑗=1

,  𝑢𝑖𝑗 ∈ [0,1] (2.5) 

subject to: 

∑ 𝑢𝑖𝑗

𝐾

j=1

= 1 (2.6) 

where 𝑢𝑖𝑗 denotes the membership grade of the object 𝑥𝑖 to the class 𝐶𝑗, 𝑧𝑗 is the centroid of 

class 𝐶𝑗, 𝑑(∙,∙) calculates the Euclidian distance, and 𝑚 is the weighting exponent that controls 

the fuzziness of the partition, 𝑚 ∈ [1, +∞). The objective function calculates the sum of 

weighted squared Euclidean distance between each object in dataset 𝒳 and each class centroid. 

The main goal of FCM is to minimize 𝐽(𝒫).  

FCM algorithm is an iterative scheme involving four steps [12]:  

Input:  

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} 

– Number of classes 𝐾 

– Parameter defined by users: m: weighting exponent 

1) Fix 𝐾,  𝑚 and randomly initialize the membership matrix 𝑈 = [𝑢𝑖𝑗] (𝑖 ∈ 1,2, . . . , 𝑁,  𝑗 ∈

1,2, . . . , 𝐾). The values of 𝑢𝑖𝑗 must satisfy the constraint of Equation 2.6. 

2) Compute class centroids using the following equation: 
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𝑧𝑗 =
∑ 𝑢𝑖𝑗

𝑚𝑁
𝑖=1 𝑥𝑖

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

,   𝑗 = 1,2, . . . , 𝐾 (2.7) 

3) Update the membership matrix 𝑈 = [𝑢𝑖𝑗], the equation is shown below: 

𝑢𝑖𝑗 =

(
1

𝑑(𝑥𝑖, 𝑧𝑗)
)

2
m−1

∑ (
1

𝑑(𝑥𝑖, 𝑧𝑘))

2
m−1𝐾

𝑘=1

,   𝑖 = 1,2, . . . , 𝑁 (2.8) 

4) Repeat steps 2 and 3 until the class centroids stabilize or the maximum number of 

iterations is reached. 

Output: Discovered 𝐾 classes and exemplar of each class 

The weighting exponent 𝑚 determines the level of partitioning fuzziness. A large value of 

𝑚 results in smaller membership grade values so that the partition is fuzzier. When 𝑚 = 1, the 

membership grade 𝑢𝑖𝑗 will converge to 0 or 1, which implies a crisp partitioning. At this point, 

the FCM method is equivalent to the K-Means method. For most data, 1.5 ≤ m ≤ 3 gives good 

results [12].  

FCM offers the advantage of soft partitioning by assigning objects to classes with 

membership grades. This property enables a single object to belong to multiple classes with 

varying degrees of membership. FCM algorithm also has the same drawback as K-Means 

algorithm, that is, it is easy to fall into the local optimum. 

 

2.2.2 Unsupervised methods 

Unsupervised static dataset partitioning methods do not require predetermining the number of 

classes which eliminates the need for prior information. Some typical unsupervised methods 

are presented below. 

• Modified LBG (MLBG) 

Modified version of LBG method (MLBG) [40] is an unsupervised method based on the K-

Means algorithm and LBG [41] algorithm. Its primary objective is to automatically determine 

the optimal number of classes and achieve the optimal partition. It evaluates the intermediate 

partitioning results and modifies the current result by exploiting previous results. The MLBG 

algorithm mainly consists of five steps: 
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Input:  

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} 

– Parameter defined by users: 𝜂: coefficient of ponderation 

1) Subdivide the dataset into two classes. 

2) Select the class with the largest dispersion which will be subdivided into two subclasses. 

The intra-class dispersion is measured as follows: 

𝐷(𝐶𝑗) =
1

𝑁𝑗
∑ 𝑢𝑖𝑗𝑑(𝑥𝑖, 𝑧𝑗)

𝑁

𝑖=1

 (2.9) 

where 𝑢𝑖𝑗 = 1 if 𝑥𝑖 ∈ 𝐶𝑗 and 0 otherwise, 𝑁𝑗 is the number of objects in class 𝐶𝑗. If the 

partition is deemed invalid in the end, choose the class with the next largest dispersion.  

3) Choose the initial two subclass centroids from the selected class. The first subclass 

centroid is defined as the centroid of the selected class, while the second centroid is 

defined as the object farthest from the first centroid in the selected class. If the partition 

is not valid in the end, select the next farthest object as the second centroid. 

4) Use K-Means to partition the objects from 𝑘 to 𝑘 + 1 classes. 

5) Evaluate the partition with 𝑘 + 1  classes. This final step validates or rejects the 

partitioning results to find the optimal final partition and the number of estimated classes. 

The principle is to examine the evolution of the global intra-class dispersion, defined as 

follows: 

𝐷(𝒫𝑘) =
1

𝑘
∑ 𝐷(𝐶𝑗)

𝑘

𝑗=1

 (2.10) 

The partition with 𝑘 + 1 classes is considered valid if: 

𝐷(𝒫𝑘) − 𝐷(𝒫𝑘+1) > 𝜂𝐷(𝒫𝑘+1) (2.11) 

where 𝜂 is a coefficient of ponderation related to the precision guaranteeing the stopping 

of the algorithm. If the validation criterion is satisfied, one goes back to step 2 with 𝑘 +

1 determined classes and attempts to create 𝑘 + 2 classes. Conversely, if the criterion is 
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not met, return to step 3 with 𝑘 classes and change the selected subclass centroid. If 

none of the choices of subclass centroids results in a valid partition, the selected class 

for subdivision in step 2 needs to be changed. If none of the classes provides a valid 

partition, the optimal partitioning result is achieved. 

Output: Discovered 𝐾 classes and exemplar of each class 

MLBG does not require specifying the number of classes in advance. However, it introduces 

a coefficient of ponderation 𝜂, the value of which may impact the quality of the partitioning 

results. 

• Affinity Propagation (AP) 

Affinity propagation (AP) [42] is an unsupervised partitioning method developed by Frey and 

Dueck. The fundamental concept of AP is to treat all objects as potential class exemplars and 

connect the objects to form a network (similarity matrix) which consists of similarities of pairs 

of objects. The message (responsibility and availability) exchanges through each edge in the 

network to find the most representative exemplar of each object. The responsibility 𝑟(𝑥𝑖, 𝑥𝑘) 

indicates how suitable object 𝑥𝑘 is to be the exemplar for 𝑥𝑖. The availability 𝑎(𝑥𝑖, 𝑥𝑘) indicates 

the suitability of 𝑥𝑖 to select 𝑥𝑘 as its exemplar. Responsibility and availability messages are 

updated iteratively.  

The responsibility is computed by the following equations: 

𝑟(𝑥𝑖, 𝑥𝑘) = 𝑠(𝑥𝑖, 𝑥𝑘) − 𝑚𝑎𝑥𝑗,𝑗≠𝑘[𝑎(𝑥𝑖, 𝑥𝑗) + 𝑠(𝑥𝑖, 𝑥𝑗)],    

𝑠(𝑥𝑖, 𝑥𝑘) = −𝑑2(𝑥𝑖, 𝑥𝑘),   for 𝑖 ≠ 𝑘 

𝑟(𝑥𝑘, 𝑥𝑘) = 𝑠(𝑥𝑘, 𝑥𝑘) − 𝑚𝑎𝑥𝑗,𝑗≠𝑘[𝑎(𝑥𝑘, 𝑥𝑗) + 𝑠(𝑥𝑘, 𝑥𝑗)],   𝑠(𝑥𝑘, 𝑥𝑘) = 𝑝𝑟   ∀𝑘 

(2.12) 

where  𝑠(𝑥𝑖, 𝑥𝑘)  indicates the similarity between objects 𝑥𝑖  and 𝑥𝑘 , 𝑠(𝑥𝑘, 𝑥𝑘)  represents the 

suitability of the object 𝑥𝑘 as an exemplar, and  𝑝𝑟 is the preference parameter which can be set 

as the median of the input similarities or other possible values. 

The availability is defined as follows: 

𝑎(𝑥𝑖, 𝑥𝑘) = 𝑚𝑖𝑛 {0, 𝑟(𝑥𝑘, 𝑥𝑘) + ∑ 𝑚𝑎𝑥{0, 𝑟(𝑥𝑗, 𝑥𝑘)}
𝑗,𝑗≠{𝑖,𝑘}

} ,   for 𝑖 ≠ 𝑘 (2.13) 
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𝑎(𝑥𝑘, 𝑥𝑘) = ∑ 𝑚𝑎𝑥{0, 𝑟(𝑥𝑗, 𝑥𝑘)}
𝑗,𝑗≠𝑘

 

During partitioning, the responsibilities and availabilities are updated using the following 

equations. 

𝑟(𝑥𝑖, 𝑥𝑘)𝜏 = 𝜆𝑟(𝑥𝑖, 𝑥𝑘)𝜏−1 + (1 − 𝜆)𝑟(𝑥𝑖, 𝑥𝑘)𝜏 (2.14) 

𝑎(𝑥𝑖, 𝑥𝑘)𝜏 = 𝜆𝑎(𝑥𝑖, 𝑥𝑘)𝜏−1 + (1 − 𝜆)𝑎(𝑥𝑖, 𝑥𝑘)𝜏 (2.15) 

where 𝜏 is the current iteration, and 𝜆 is defined as the damping rate which is used to avoid 

numerical oscillations that may arise under some circumstances. 

The AP algorithm follows an iterative scheme with the main steps shown below: 

Input:  

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} 

– Parameters defined by users: 

o 𝜆: damping rate (𝜆 ∈ ]0,1[ ) 

o 𝑝𝑟: preference parameter 

1) Initialize the responsibilities and availabilities using Equation 2.16, and calculate the 

similarity matrix 𝑆 of size 𝑁 × 𝑁, where 𝑁 is the number of objects. 

𝑟(𝑥𝑖, 𝑥𝑘) = 0, 𝑎(𝑥𝑖, 𝑥𝑘) = 0,   for all 𝑖, 𝑘 (2.16) 

2) Update the responsibility matrix using Equation 2.12 and 2.14. 

3) Update the availability matrix using Equation 2.13 and 2.15. 

4) Combine availabilities and responsibilities for each object 𝑥𝑖 to identify its exemplar 𝑥𝑘 

which maximizes [𝑎(𝑥𝑖, 𝑥𝑘)𝜏 + 𝑟(𝑥𝑖, 𝑥𝑘)𝜏]. 

5) Repeat steps 2-4 until one of the following conditions is met: a predetermined number 

of iterations is reached, changes in the messages fall below a threshold, or the local 

decisions remain constant for a certain number of consecutive iterations. 

Output: Discovered 𝐾 classes and exemplar of each class 
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Figure 2.2, sourced from [42], illustrates the exchange of availability and responsibility 

messages between every pair of objects until three classes are formed. Each class is represented 

by a real object chosen as an exemplar by all other objects within the class. 

The AP method eliminates the requirement for specifying the number of classes in advance. 

However, users are still required to provide input for two key parameters: the preference 

parameter (initial suitability of an object as an exemplar) and the damping rate, which aids in 

algorithm convergence.  

 
Figure 2.2: AP message passing process [42]. (a): availability and responsibility messages, (b): 

iterations of message passing. 

LSS-AP method [43], as an extension of AP, was proposed to address the issue of the 

preference parameter. This method streamlines the partitioning process by consolidating closely 

resembling objects into a singular representative. Subsequently, it employs an automated search 

to identify the optimal value of the preference parameter, aiming to maximize an evaluation 
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criterion based on the inter-class variance, as defined by Levine and Nazif [44]. Finally, the 

optimal number of classes can be identified. 

• Mean Shift 

Comaniciu et al. [45] introduced Mean Shift, an iterative density-based unsupervised 

partitioning method that eliminates the need for specifying the number of classes in advance. 

In the Mean Shift algorithm, the class centroids are determined by the density of objects within 

a user-defined range. These centroids are then continuously updated through a density gradient 

ascent procedure until the class centroids stabilize. Density-based methods are particularly 

adept at discovering arbitrarily shaped classes. It relies on the assumption that dense regions 

are classes, and classes are separated by low-density regions [46].  

• DBSCAN 

DBSCAN [46] (Density-Based Spatial Clustering of Application with Noise) is a popular 

density-based parametric unsupervised algorithm in the field of partitioning. It defines classes 

as the largest collection of density-connected objects, identifying regions with sufficient density 

as classes. This approach enables the identification of classes with arbitrary shapes (Figure 2.3 

(a)) in noisy spatial datasets. In DBSCAN, the objects are divided into three categories: core 

points, reachable points, and noise points. A core point must have at least MinPts points within 

its user-defined radius 𝜖. Points that are reachable from a core point within the radius 𝜖 are 

considered density-reachable for that core point. These points can be directly connected with a 

series of core points to extend classes. All such points are thus density-connected (Figure 2.3 

(b)). DBSCAN can automatically estimate the number of classes and identify classes with 

arbitrary shapes. However, its performance is sensitive to the configuration of two user-defined 

parameters: MinPts and radius 𝜖. 

GDBSCAN (Generalized Density-Based Spatial Clustering of Applications with Noise) [47] 

method is an extension of the DBSCAN method that can adaptively adjust the radius 𝜖 

according to the local density. OPTICS (Ordering Points to Identify the Clustering Structure) 

[48] was proposed to improve DBSCAN algorithm to reduce the sensitivity of the user-defined 

radius. It reveals the underlying density relationships among objects by generating an 

"ordering" of objects according to their reachability distance. However, it is necessary to 

predetermine the input parameter MinPts. 
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Figure 2.3: DBSCAN [46]. (a): arbitrary-shaped classes, (b): point 𝑝 and point 𝑞 are density-

connected. 

• WaveCluster 

Grid-based partitioning methods partition data in a grid structure. Typically, they create a 

regular grid that divides the data space into cells (Figure 2.4) and perform the required 

operations within the quantization space. As illustrated in Figure 2.4, each attribute's domain is 

divided into segments. A cell emerges from the conjunction of these segmented attributes. Each 

object is assigned to a cell. Subsequently, the grid cells are partitioned based on their density. 

 

Figure 2.4: Grid-based partitioning: imposing grids on data space [49]. 

The main advantage of the grid-based methods lies in their fast processing time, which 

depends on the number of cells in each dimension within the quantization space. Additionally, 

they are capable of identifying classes with arbitrary shapes. However, it's important to note 

that grid-based methods necessitate the predefinition of the grid size [10]. 
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WaveCluster [50] is a grid-based unsupervised partitioning method which employs a 

wavelet-based approach to partition the data space into cells of varying sizes. It establishes a 

two-dimensional grid over the dataset and represents the data points in each cell by the number 

of points [51]. Therefore, objects are represented in a grey-scale format, akin to an image. This 

leads to the redefinition of the problem of identifying classes as an image segmentation problem, 

where wavelets are used for smoothing and multi-scaling purposes.  

The WaveCluster algorithm mainly consists of four steps: 

Input:  

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} 

– Wavelet function 

– Parameter defined by users: grid size 

1) Quantize space to create a data grid and allocate each data point to a cell. 

2) Apply wavelet transformation to the cells. 

3) Use the average of all sub-images to find connected classes. 

4) Map the identified classes back to the points in the original space. 

Output: Discovered 𝐾 classes 

WaveCluster exhibits the capability to partition classes with arbitrary shapes, eliminating 

the requirement of predefining the number of classes. However, it is sensitive to the choice of 

wavelet functions and the grid size defined by users.  

• CLIQUE 

Agrawal et al. [52] proposed CLIQUE (Clustering in Quest), a grid and density based 

partitioning method designed to partition high-dimensional datasets. It can automatically find 

low-dimensional subspaces of high-dimensional data space and identify dense classes in these 

subspaces. However, the partitioning accuracy might suffer from the initial segmentation of the 

data space. 

• Fuzzy C-Means-Optimized (FCMO) 

FCMO [11] is an unsupervised, non-parametric extension of the FCM algorithm [12]. One of 

its notable features is the capability to automatically estimate the optimal number of classes, 

effectively eliminating the influence of random selection for initial class centroids encountered 
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in FCM. Due to its independence from the need for pre-determining the number of classes and 

parameter tuning, we incorporate it into our proposed method. A detailed introduction of FCMO 

will be presented in Subsection 3.2.1. 

 

2.3 Data stream partitioning methods 

Different from the static dataset partitioning using the entire obtained dataset, as described in 

the previous section, the data stream partitioning uses the data or data chunks that arrive 

continuously and assigns the arrived data to classes without the benefit of having observed the 

entire dataset.  

In the state-of-the-art, many methods have been proposed for data stream partitioning as 

presented in [53]-[56]. This section provides a literature review on the state-of-the-art semi-

supervised and unsupervised methods. Semi-supervised methods require the prior information 

about the number of classes in the data stream, while unsupervised methods do not need any 

prior information. According to their need for input parameters, they can be further divided into 

parametric methods and non-parametric methods. The state-of-the-art data stream partitioning 

methods are introduced in the following subsections. 

 

2.3.1 Semi-supervised methods 

Assume that a data stream consists of a series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, …, where 

𝑥𝑡 is the object arriving at time 𝑡. 

• Online K-Means 

Barbakh et al. [57] proposed Online K-Means method extending classic K-Means to the case of 

online data partitioning where the number of classes must be specified in advance. The 

partitioning objective function 𝐽(𝒫) for K-Means has been shown in Equation 2.4. The online 

K-Means algorithm mainly has two steps: 

Input:  

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, … 

– Number of classes 𝐾 

– Parameter defined by users: 𝜉: learning rate 

1) Randomly initialize the class centroids 𝑧1, 𝑧2, … , 𝑧𝐾. 

2) Sequentially input object 𝑥𝑡 and find its closest class centroid 𝑧𝑗. Then update 𝑧𝑗 as 
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𝑧𝑗
(𝑛𝑒𝑤) = 𝑧𝑗 + 𝜉(𝑥𝑡 − 𝑧𝑗) (2.17) 

where 𝜉 is a learning rate usually set to be a small positive value. 

Output: Discovered 𝐾 classes and exemplar of each class 

The Online K-Means algorithm has the same advantages and drawbacks with the K-Means 

algorithm.  

• STREAM 

STREAM [58] is one of the earliest data stream partitioning methods. Its primary concept is to 

divide the data stream into a series of data batches with fixed batch size, then employ K-Median 

to partition the data batches and identify classes in each batch. Before partitioning, it’s 

necessary to specify the number of classes. 

• CluStream 

Aggarwal et al. [13] proposed a method based on user-specified, online clustering queries, 

called CluStream. It divides the partitioning process into two phases. The online phase employs 

the concept of micro-clusters to periodically store detailed information (summaries) of the 

stream, and the offline phase uses K-Means to partition the stored summaries in a user-defined 

time horizon to identify macro-clusters.  

A micro-cluster for a set of n-dimensional objects 𝑥1, 𝑥2, … , 𝑥𝑁𝑖
 with timestamps 

𝑡1, 𝑡2, … , 𝑡𝑁𝑖
 is defined as the (2 ∙ 𝑛 + 3) tuple (𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅, 𝐶𝐹1𝑥 ,̅̅ ̅̅ ̅̅ ̅̅ 𝐶𝐹2𝑡, 𝐶𝐹1𝑡, 𝑁𝑖), wherein 𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅ 

and 𝐶𝐹1𝑥̅̅ ̅̅ ̅̅ ̅ each correspond to a vector of 𝑛 entries [13]. The definitions of these entries are as 

follows: 

– 𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅ contains the sum of squares of objects (i.e., ∑ 𝑥𝑗
2𝑁𝑖

𝑗=1 ). 

– 𝐶𝐹1𝑥̅̅ ̅̅ ̅̅ ̅ contains the sum of objects (i.e., ∑ 𝑥𝑗
𝑁𝑖
𝑗=1 ). 

– 𝐶𝐹2𝑡 contains the sum of squares of timestamps 𝑡1, 𝑡2, … , 𝑡𝑁𝑖
. 

– 𝐶𝐹1𝑡 contains the sum of timestamps 𝑡1, 𝑡2, … , 𝑡𝑁𝑖
. 

– 𝑁𝑖 is the number of objects in the ith micro-cluster. 

Figure 2.5 depicts the diagram of the CluStream algorithm to show how it works. CluStream 

first initializes the micro-clusters by employing K-Means on an initial batch that contains the 

first specific number of objects in the stream. During the online phase, when a new object 
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arrives, it is partitioned into its closest micro-cluster if the distance between the object and the 

centroid of that micro-cluster is less than the threshold. If the distance exceeds the threshold, a 

new micro-cluster will be created. Since the number of micro-clusters is fixed, it is necessary 

to reduce the old micro-clusters by one. This can be achieved by either deleting an old micro-

cluster or merging two of the old micro-clusters. During the offline phase, CluStream employs 

a modified K-Means algorithm to partition the identified micro-clusters within the user-

specified time horizon to obtain 𝐾 macro-clusters.  

While CluStream is capable of detecting data stream evolution, it introduces several 

parameters that require pre-tuning, which can impact partitioning performance. Additionally, it 

necessitates specifying the number of micro-clusters and macro-clusters in advance.  

 
Figure 2.5: Diagram of CluStream algorithm. 

• StreamKM++ 

StreamKM++ [59] extends the principles of K-Means++ [60] to the realm of data stream 

partitioning. K-Means++ leverages a randomized seeding technique to solve the issue of 

initializing centroids in K-Means partitioning. In the case of StreamKM++, the algorithm 

creates a small weighted set of objects chosen from the data stream, referred to as a coreset. To 

speed up the time for the non-uniform sampling during coreset construction, a novel data 

structure named the coreset tree is introduced. After deriving the coreset from the data stream, 

a weighted K-Means algorithm is applied to this coreset to identify the final classes. It's 

important to note that this method requires predefining the number of classes and the coreset 

size, both of which can significantly influence partitioning performance. 
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• SWClustering 

SWClustering [61] introduced a novel data structure known as the Exponential Histogram of 

Cluster Feature (EHCF), which is applied for sliding window partitioning. EHCF serves the 

purpose of analyzing the evolution of classes. The partitioning process using the K-Means 

algorithm is performed on the EHCFs within the sliding window, and the expired objects are 

subsequently removed. The number of expired objects is controlled by a user-defined error 

parameter. The memory consumption of SWClustering is constrained by a predefined maximal 

number of EHCFs. Additionally, users need to define the sliding window size.  

 

2.3.2 Unsupervised methods 

In contrast to semi-supervised methods, unsupervised methods do not necessitate prior 

knowledge of the number of classes. 

• STRAP 

STRAP [14] is an unsupervised partitioning method based on AP [42]. It employs the weighted 

AP algorithm (WAP) to partition the data stream and a reservoir to store outliers. Besides, it 

introduces two methods for detecting changes in the data stream and starting the repartition of 

the data stream. 

The WAP algorithm is an extension of AP. Its fundamental concept involves aggregating 

the similar objects and representing them with a single object, which serves as the exemplar for 

these similar objects. The main distinction between WAP and AP lies in the introduction of a 

novel method for calculating the similarity matrix, while the remaining components of WAP 

remain consistent with the AP algorithm. Assume that there are 𝑛𝑏𝑖  objects which are 

aggregated into just one object 𝑥𝑖, 𝜀𝑖 is the average mutual distance between 𝑥𝑖 and 𝑛𝑏𝑖 objects, 

and 𝑥𝑗  is another object in the data stream. The similarity between objects 𝑥𝑖 and 𝑥𝑗 can be 

defined as: 

𝑠′(𝑥𝑖, 𝑥𝑗) = {
𝑛𝑏𝑖𝑠(𝑥𝑖, 𝑥𝑗)                     if 𝑖 ≠ 𝑗 

𝑝𝑟 + (𝑛𝑏𝑖 − 1)𝜀𝑖             otherwise, with 𝜀𝑖 ≥ 0
 (2.18) 

where 𝑝𝑟 is the preference parameter.  

Figure 2.6 illustrates the flow chart of the STRAP algorithm. 
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Figure 2.6: Diagram of STRAP algorithm [14]. 

The STRAP algorithm primarily consists of four main steps: 

Input:  

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, … 

– Parameters defined by users: initial batch size, threshold distance, max cache 

(reservoir size), sliding window size, and preference parameter and damping rate of 

AP. 

1) Initialize model based on the AP algorithm. Employ the AP algorithm to partition the 

initial batch of the input data stream, with the batch size defined by users. This process 

generates the initial data stream model and identifies the first exemplars of the classes. 

The model consists of a set of 4-tuple (𝑒𝑖, 𝑛𝑏𝑖 , 𝑑𝑖 , 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖) which are stored in the 

memory. Here, 𝑒𝑖 represents the 𝑖th exemplar in the model, 𝑛𝑏𝑖 is the number of objects 

associated with exemplar 𝑒𝑖 , 𝑑𝑖  is the sum of the squares of distances between 

associated objects and 𝑒𝑖, and 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖 denotes the last timestamp when an object is 

associated with 𝑒𝑖. 

2) Update AP-based model. The input object 𝑥𝑡  is assigned to its closest class, and the 

model is updated if the distance between them is below the threshold distance; otherwise, 

it is stored in the reservoir. Additionally, a user-specified window length, denoted as ℎ, 

is introduced. Any exemplar that hasn’t been visited for a time period of ℎ  will be 

forgotten. The process of updating the model is as follows: 

𝑛𝑏𝑖 = 𝑛𝑏𝑖 × (
ℎ

ℎ + (𝑡 − 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖)
+

1

𝑛𝑏𝑖 + 1
) (2.19) 
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𝑑𝑖 = 𝑑𝑖 ×
ℎ

ℎ + (𝑡 − 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖)
+

𝑛𝑏𝑖

𝑛𝑏𝑖 + 1
𝑑2(𝑥𝑡, 𝑒𝑖) 

𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖 = 𝑡 

where 𝑡 is the current time. 

3) Detect changes in the data stream. When certain conditions are reached, the model will 

be rebuilt on the basis of the existing model and objects in the reservoir to find new 

classes. 

4) Rebuild the AP-based model. The WAP algorithm is employed to partition the objects 

in the current model and in the reservoir to generate new exemplars. Similarities 

between exemplars, between exemplars and objects, and between objects are defined as: 

𝑠(𝑒𝑖, 𝑒𝑖) = 𝑝𝑟 + 𝑑𝑖 

𝑠(𝑒𝑖, 𝑒𝑗) = −𝑛𝑏𝑖𝑑2(𝑒𝑖, 𝑒𝑗) 

𝑠(𝑒𝑖, 𝑥𝑗) = −𝑛𝑏𝑖𝑑2(𝑒𝑖, 𝑥𝑗) 

𝑠(𝑥𝑗, 𝑒𝑖) = −𝑑2(𝑥𝑗, 𝑒𝑖) 

𝑠(𝑥𝑗, 𝑥𝑗) = 𝑝𝑟 

(2.20) 

Output: Discovered 𝐾 classes and exemplar of each class 

STRAP possesses the capability to detect the evolution of the data stream and can 

effectively handle high-dimensional data, albeit with an increase in time complexity. To achieve 

optimal partitioning performance, it is necessary to tune and determine the appropriate values 

of the initial batch size, threshold distance, max cache (reservoir size), sliding window size, 

along with the preference parameter and damping rate of AP. 

• DenStream 

Cao et al. [16] introduced the DenStream method, a density-based parametric unsupervised 

method using the DBSCAN algorithm [46]. Similar to CluStream, DenStream comprises both 

online and offline phases.  

During its online phase, two types of micro-clusters are created, namely potential and outlier 

micro-clusters, to handle the noise and outliers in the data stream. Each micro-cluster is 

assigned a weight that exponentially decreases over time. If the weight of a micro-cluster 

exceeds a specified threshold, it is categorized as a potential-micro-cluster; otherwise, it is 

classified as an outlier-micro-cluster.  
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A potential-micro-cluster for a set of objects 𝑥1, 𝑥2, … , 𝑥𝑁𝑖
 with timestamps 𝑡1, 𝑡2, … , 𝑡𝑁𝑖

 is 

defined as (𝐶𝐹1̅̅ ̅̅ ̅, 𝐶𝐹2,̅̅ ̅̅ ̅̅ 𝜔). The definitions of these entries are shown as follows: 

– 𝜔 is the weight of a micro-cluster (i.e., ∑ 2−𝛾(𝑡−𝑡𝑗)𝑁𝑖
𝑗=1 , where 𝛾 is the decay factor, and 

𝑡 is the current time). When  𝜔 is greater than a user-defined threshold, the micro-cluster 

is defined as the potential-micro-cluster. 

– 𝐶𝐹1̅̅ ̅̅ ̅ is the weighted linear sum of objects (i.e., ∑ 2−𝛾(𝑡−𝑡𝑗)𝑥𝑗
𝑁𝑖
𝑗=1 ). 

– 𝐶𝐹2̅̅ ̅̅ ̅  is the weighted squared sum of objects (i.e., ∑ 2−𝛾(𝑡−𝑡𝑗)𝑥𝑗
2𝑁𝑖

𝑗=1 ). 

The centroid of the potential-micro-cluster is 𝑧 =
𝐶𝐹1̅̅ ̅̅ ̅̅  

𝜔
. 

An outlier-micro-cluster is defined as (𝐶𝐹1̅̅ ̅̅ ̅, 𝐶𝐹2,̅̅ ̅̅ ̅̅ 𝜔, 𝑡𝑜). The definitions of 𝐶𝐹1̅̅ ̅̅ ̅, 𝐶𝐹2̅̅ ̅̅ ̅̅ , 𝜔 

and centroid are the same as the potential-micro-cluster. 𝑡𝑜 = 𝑡1 denotes the creation time of 

the outlier-micro-cluster. The value of 𝜔 is less than the user-defined threshold. 

The arriving data will be assigned to its nearest micro-cluster if their distance is equal to or 

less than the threshold radius; otherwise, it forms a new outlier-micro-cluster. Outdated outlier-

micro-clusters will be removed.  

In the offline phase, the DBSCAN algorithm is applied to partition the potential-micro-

clusters. DenStream requires users to predefine four parameters, each of which can impact the 

final results. 

SDStream [62] is a density-based unsupervised method, which serves as a modified version 

of DenStream, specifically designed for sliding windows. Similar to SWClutering, SDStream 

employs the Exponential Histogram of Cluster Feature (EHCF). It has three user-defined 

parameters that need to be predetermined.  

rDenStream [63] adds an extra retrospect phase to the original two phases of DenStream. 

This retrospective phase provides an opportunity to put discarded objects back into the 

partitioning process, which can improve the partitioning performance.  

To accommodate high-dimensional data streams, extensions of DenStream have been 

developed, including HDDStream [64] and PreDeConStream [65]. These extensions are 

designed to handle the challenges posed by high-dimensional data streams. 

• MuDi-Stream 

Amini et al. [66] proposed a density-grid based unsupervised partitioning method, namely 

MuDi-Stream. Like DenStream, it comprises both online and offline phases. During the online 
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phase, a hybrid approach that combines grid-based and micro-class-clustering techniques is 

used to capture summaries of the objects. During the offline phase, a density-based partitioning 

algorithm, namely M-DBSCAN, is introduced. This algorithm partitions the summaries to form 

final classes with varying densities. MuDi-Stream effectively handles outliers and reduces 

merging time due to its grid-based methodology. However, it may not be well-suited for high-

dimensional data [66] and necessitates the pre-tuning of five parameters. 

• EDMStream 

EDMStream [67] is a density-based unsupervised partitioning algorithm, which leverages the 

concept of the Evolution of Density Mountain. The density mountain serves as an abstraction 

of the data distribution, with its changes reflecting the evolution of the data distribution. The 

evolution of classes is monitored by tracking variations in these density mountains. To enable 

real-time online partitioning, EDMStream utilizes a novel data structure known as Dependency 

Tree (DP-Tree) and employs filtering schemes to facilitate the real-time update of density 

mountains. For EDMStream, three parameters need to be determined before partitioning. 

• EDDS 

EDDS (Enhanced Density-Based Method for Clustering Data Streams) [68] is proposed to 

identify classes with arbitrary shapes and detect outliers. It modified the DBSCAN algorithm 

by summarizing each class with a set of surface-core points. EDDS employs the density-

reachable concept from DBSCAN as its merging strategy, along with a heuristic solution to 

prune core points to keep only the surface-core points for the class. Furthermore, the algorithm 

employs a fading function to eliminate aged core points and outliers. However, EDDS 

necessitates the predetermination of four parameters. 

• CODAS 

Hyde et al. [15] suggested CODAS (Clustering Online Data-streams into Arbitrary Shapes), a 

density-based unsupervised partitioning method capable of partitioning data streams into 

arbitrarily shaped classes. It utilizes a user-defined local density to create core micro-clusters 

and non-core micro-clusters, with each micro-cluster comprising a non-core region of radius 𝑟0 

and a core region of radius 0.5𝑟0 (Figure 2.7 (a)). Global clusters are formed when the core 

region of one micro-cluster intersects with the non-core region of another (Figure 2.7 (b)).  
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Figure 2.7: Illustration of micro-cluster regions showing (a): micro-cluster radius in red and 

micro-cluster core radius in green, (b): micro-clusters combined to the global clusters [15]. 

The CODAS algorithm mainly consists of two steps: 

Input:  

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, … 

– Parameters defined by users:  

o 𝑟0: threshold radius 

o Threshold density 

1) Assign the incoming object. If the space is empty or the distance between the input 

object and its closest micro-cluster is greater than 𝑟0, the object will form a new non-

core micro-cluster. Otherwise, the input object is assigned to its closest micro-cluster. If 

the distance is less than 𝑟0 but greater than 0.5𝑟0, the micro-cluster centroid is updated 

using the following equation: 

𝑧𝑖 =
(𝑁𝑖 − 1)𝑧𝑖 + 𝑥𝑡

𝑁𝑖
 (2.21) 

where 𝑧𝑖  represents the centroid of the 𝑖th micro-cluster and 𝑁𝑖 denotes the number of 

objects in the 𝑖th micro-cluster. 

2) Update global clusters. If the distance between two micro-cluster centroids is less than 

1.5𝑟0, these two micro-clusters are intersected. All intersecting micro-clusters, whose 

density is greater than the user-defined local density, are merged to form global clusters. 

Output: Discovered 𝐾 classes and exemplar of each class 
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CODAS is able to partition data streams into arbitrarily shaped classes. However, it has a 

drawback as it necessitates parameter tuning for both the local density and the threshold radius 

of micro-clusters. The selection of parameter values can significantly impact CODAS's 

partitioning performance. 

• MDSC 

Fahy et al. [69] suggested the Multi-Density Stream Clustering (MDSC) method designed to 

partition data streams with varying density classes. It addresses two main challenges: multi-

density class identification and dynamic stream change detection. MDSC utilizes micro-clusters 

and an outlier buffer to identify classes. Each micro-cluster represents a multi-dimensional 

sphere with a centroid and a radius. Micro-clusters have a maximum radius which is adaptive 

and local to each micro-cluster. If an incoming object falls within a micro-cluster’s area, it is 

assigned to that micro-cluster. The set of micro-clusters forms macro-clusters with arbitrary 

shapes. MDSC introduces an ant-inspired swarm intelligence approach to discover new micro-

clusters in the buffer and adopts the concept of density reachability, allowing the merging of 

two micro-clusters if they are density-reachable. MDSC does not require the specification of 

the number of classes in advance, but it needs to tune four input parameters.  

• DFPS-Clustering 

Yan et al. [70] introduced the Dynamic Fitness Proportionate Sharing Clustering (DFPS-

Clustering) algorithm, a density-based parametric unsupervised approach. This method extends 

the Gaussian Kernel function and introduces a novel recursive lower bound for the Gaussian 

Kernel function to capture the data stream evolution. Its fundamental principle is to treat the 

fitness of each object as a density value, reflecting its attractiveness to neighboring objects. It 

employs the fitness proportionate sharing strategy to search and determine the class centroids. 

However, four parameters need to be specified in advance by users to initiate the partitioning 

process. 

• D-Stream 

D-Stream [71] is a grid-based unsupervised partitioning method comprising two distinct phases. 

During the online phase, D-Stream maps input objects into grid cells. During the offline phase, 

it partitions these grid cells based on a computation of the cell density. Here, the density of a 

cell is determined by the number of objects it encompasses. A grid class is a group of connected 

grid cells with a higher density than the surrounding grid cells. D-Stream utilizes a density 

decaying technique to capture the data stream evolution and discard the outdated data, which 
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introduces a user-specified decay factor. Notably, D-Stream does not require the user to 

predefine the number of classes, but it necessitates the determination of four parameters.  

Amini et al. [72] extended D-Stream by adopting the concept of sliding window and 

introduced the grid-based partitioning method known as DENGRIS, which only focuses on the 

most recent data with user-specified window size.  

Jia et al. [73] proposed a grid-based unsupervised method called DD-stream, which shares 

a similar partitioning procedure with D-Stream. However, DD-Stream takes sporadic grids into 

account in its cluster analysis which improves the overall partitioning quality. It is important to 

note that DD-Stream is a parametric method, necessitating the predetermined values of 

parameters. 

• MR-Stream 

MR-Stream [74] is a grid-based unsupervised method that utilizes a tree-like data structure and 

defines that any grid cell can be further subdivided into more subcells. Each cell corresponds 

to a tree node. The maximum tree height is predefined by users. The weighted subcells are 

partitioned offline by specifying a user-defined height. A fading function is introduced to decay 

cell weights. MR-Stream offers a finer grid spacing and enables the discovery of classes at 

multiple resolutions. However, this method requires numerous parameters to be predefined, 

which is impossible without knowledge of the data stream.  

• CEDGM 

Tareq et al. [75] suggested a density grid-based unsupervised method called CEDGM to 

improve the partitioning quality. It defines the core micro-clusters (CMCs) as the primary 

entities to construct the cluster and combines the intersected CMCs into macro-clusters. The 

partitioning process is performed on the grids. The CMC radius needs to be specified in advance. 

Before partitioning, a tuning process is required to determine five parameters. 

• AAPStream 

In addition to the semi-supervised and unsupervised methods introduced above, we also analyze 

a supervised method whose performance will be compared with our proposed method in 

Chapter 4.  

AAPStream [17] is an active partitioning method based on AP. It employs the active affinity 

propagation method (AAP) for partitioning data stream with available labeled data (prior 

knowledge), making it a supervised partitioning approach to improve partitioning performance. 

AAPStream utilizes active learning to train a classification model from labeled data to identify 
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the most representative and informative data for supervision, which will be applied to the AP 

method. It mainly has three steps. 

Input:  

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, … 

– Parameters defined by users: initial batch size, decay factor, buffer size, and 

preference parameter and damping rate of AP. 

1) Identify the most informative and representative exemplars in the initial batch of objects 

by using AAP to create the stream model. 

2) Assign incoming objects. If the distance between the incoming object and its nearest 

class is less than a heuristic threshold, the object is assigned to this class; otherwise, it 

is placed in the buffer. 

3) Update the stream model. When the buffer is full, the stream model is updated using 

AAP, and the outdated objects are deleted. 

Output: Discovered 𝐾 classes and exemplar of each class 

AAPStream improves partitioning performance by leveraging labeled data. However, 

labeled data may not be available in some circumstances. In addition, it needs to tune five 

parameters (initial batch size, decay factor, buffer size, damping rate and preference parameter) 

in advance to achieve optimal performance. 

In conclusion, the state-of-the-art data stream partitioning methods typically employ many 

parameters or necessitate the predetermination of number of classes, such as the methods 

presented above. However, the utilization of parameters can introduce a level of uncertainty 

into the method's partitioning performance. The limitations of parametric methods include:  

1) The choice of input parameter values can have a more or less impact on partitioning 

performance. Different parameter settings can lead to varying partitioning results. 

2) Empirical parameter tuning process is necessary to find appropriate parameter values in 

order to achieve high partitioning performance. In the case of partitioning methods with 

multiple parameters, the tuning process can become more complex and time-consuming. 

3) Finding appropriate parameter values is particularly challenging for parametric methods, 
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when it comes to partitioning unknown and novel sets of objects, due to the lack of 

information about datasets. 

Therefore, we aim to develop an unsupervised method capable of overcoming the 

limitations imposed by parameters on the performance of partitioning methods, thereby 

achieving broad applicability.  

2.4 Partitioning validity indices 

The typical procedure of partitioning analysis comprises four basic steps: feature selection or 

extraction, partitioning algorithm design, partitioning validation, and results interpretation [76, 

77]. Following the application of the partitioning algorithm, it becomes imperative to assess the 

validity of the partitioning results.  

Partitioning validation consists of two primary categories: external and internal partitioning 

validation [78, 79]. The main difference between these two types of validations lies in their 

reliance on external information. External validation relies on external information which has 

been known in advance (ground truth -GT-, expert knowledge, etc.), whereas internal validation 

is solely dependent on the data.   

Since external validation criteria rely on prior information, they are mainly utilized for 

selecting an optimal partitioning algorithm for a specific dataset. Additionally, these criteria 

can be employed to validate algorithm performance on synthetic data or data accompanied by 

reliable GT annotations. The classification rate is one of the most significant and credible 

criteria. However, in many circumstances, obtaining prior information can be challenging. 

Internal validation criteria can be used to choose the optimal partitioning algorithm as well 

as the optimal number of classes without using prior information. These criteria are more 

relevant for unsupervised partitioning methods. In the state-of-the-art, many partitioning 

validity indices are proposed as internal validation criteria to evaluate the partitioning validity. 

Table 2.1 lists some common partitioning validity indices. 
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Table 2.1: Common partitioning validity indices. 

Partitioning 

validity index 
Formulation 

Optimal 

value 
Ref. 

Root-mean-square 

standard deviation 𝑅𝑀𝑆𝑆𝑇𝐷 = (
𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝑛𝛴𝑖=1
𝐾 (𝑁𝑖 − 1)

)

1
2

 Min [80] 

R-squared 𝑅𝑆 =
𝛴𝑥∈𝒳𝑑2(𝑥, 𝑧𝑠) − 𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝛴𝑥∈𝒳𝑑2(𝑥, 𝑧𝑠)
 Max [81] 

Modified Hubert 

𝜞 statistic 
𝛤 =

2

𝑁(𝑁 − 1)
𝛴𝑥∈𝒳𝛴𝑦∈𝒳𝑑(𝑥, 𝑦)𝑑𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

(𝑧𝑖 , 𝑧𝑗) Max [82] 

WB 𝑊𝐵 =
𝐾𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝛴𝑖=1
𝐾 𝑁𝑖𝑑2(𝑧𝑖 , 𝑧𝑠)

 Min [83] 

Calinski-Harabasz 𝐶𝐻 =
𝛴𝑖=1

𝐾 𝑁𝑖 𝑑2(𝑧𝑖 , 𝑧𝑠) (𝐾 − 1)⁄

𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑2(𝑥, 𝑧𝑖) (𝑁 − 𝐾)⁄
 Max [84] 

𝑰 𝐼 = (
1

𝐾

𝛴𝑥∈𝒳𝑑(𝑥, 𝑧𝑠)

𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑(𝑥, 𝑧𝑖)
𝑚𝑎𝑥𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗))

𝑞

 Max [85] 

F 𝐹 = (𝐷 − 𝐷) 2⁄  Max [11] 

PBM 𝑃𝐵𝑀 = (
1

𝐾

𝛴𝑥∈𝒳𝑑(𝑥, 𝑧𝑠)

𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑(𝑥, 𝑧𝑖)
𝑚𝑎𝑥𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗))

2

 Max 
[86], 

[87] 

Dunn’s index 𝐷𝑈𝑁𝑁 = 𝑚𝑖𝑛𝑖 {𝑚𝑖𝑛𝑗 (
𝑚𝑖𝑛𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)

𝑚𝑎𝑥𝑘 (𝑚𝑎𝑥𝑥,𝑦∈𝐶𝑘
𝑑(𝑥, 𝑦))

)} Max [88] 

Silhouette 

𝑆𝐼𝐿 =
1

𝑁
𝛴𝑖=1

𝐾 (
1

𝑁𝑖
𝛴𝑥∈𝐶𝑖

𝑏(𝑥) − 𝑎(𝑥)

𝑚𝑎𝑥(𝑏(𝑥), 𝑎(𝑥))
) 

𝑎(𝑥) =
1

𝑁𝑖 − 1
𝛴𝑦∈𝐶𝑖,𝑦≠𝑥𝑑(𝑥, 𝑦) 

𝑏(𝑥) = 𝑚𝑖𝑛𝑗,𝑖≠𝑗 (
1

𝑁𝑗
𝛴𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)) 

Max [89] 

Partition 

Separation 
𝑃𝑆 = 𝛴𝑖=1

𝐾 {
𝑁𝑖

𝑚𝑎𝑥
𝑗

𝑁𝑗
− 𝑒𝑥𝑝 (−

𝑚𝑖𝑛
𝑖≠𝑗

𝑑2(𝑧𝑖 , 𝑧𝑗)

1
𝐾 𝛴𝑙=1

𝐾 ‖𝑧𝑙 −
1
𝐾 𝛴𝑘=1

𝐾 𝑧𝑘‖
2)} Max 

[90], 

[91] 

Davies-Bouldin 𝐷𝐵 =
1

𝐾
𝛴𝑖=1

𝐾 𝑚𝑎𝑥
𝑗,𝑗≠𝑖

(

1
𝑁𝑖

𝛴𝑥∈𝐶𝑖
𝑑(𝑥, 𝑧𝑖) +

1
𝑁𝑗

𝛴𝑦∈𝐶𝑗
𝑑(𝑦, 𝑧𝑗)

𝑑(𝑧𝑖 , 𝑧𝑗)
) Min [92] 
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Xie-Beni 𝑋𝐵 =
𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝑁 ⋅ 𝑚𝑖𝑛𝑖≠𝑗𝑑2(𝑧𝑖 , 𝑧𝑗)
 Min [93] 

SD 

𝑆𝐷 = 𝑆𝑐𝑎𝑡(𝐾) + 𝐷𝑖𝑠(𝐾) 

𝑆𝑐𝑎𝑡(𝐾) =
1

𝐾
𝛴𝑖=1

𝐾 𝜎𝑖 𝜎𝒳
⁄  

𝐷𝑖𝑠(𝐾) =
𝑚𝑎𝑥𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗)

𝑚𝑖𝑛𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗)
𝛴𝑖=1

𝐾 (𝛴𝑗=1
𝐾 𝑑(𝑧𝑖,𝑧𝑗))

−1

 

Min [94] 

𝒳 represents the dataset with 𝑁 objects, 𝑧𝑠 is the centroid of 𝒳, 𝑛 represents the number of attributes, 𝐾 represents the number of classes, 𝐶𝑖 

represents the 𝑖th class, 𝑁𝑖  represents the number of objects in 𝐶𝑖, 𝑧𝑖  represents the centroid of 𝐶𝑖, 𝑑(𝑥, 𝑦) represents the Euclidean distance 

between objects 𝑥 and 𝑦, 𝑞 is a positive integer, 𝐷 and 𝐷 represents the global inter-class and intra-class dispersion, respectively, 𝜎𝑖 represents 

the standard deviation of class 𝐶𝑖, and 𝜎𝒳 represents the standard deviation of dataset 𝒳. 

 

Root-mean-square standard deviation (RMSSTD) is a statistical measure to calculate the 

dispersion within classes. It computes the square root of the sum of object variance of all 

attributes. It considers only the compactness within the class. A lower RMSSTD indicates better 

partitioning quality. It implies that objects within each class are closer to their class centroid, 

resulting in more compact and well-defined classes. R-squared (RS) represents the ratio of the 

sum of squares between classes to the total sum of squares of the entire dataset. It measures the 

degree of dissimilarity between classes. A higher value of RS signifies a better partitioning 

result. The modified Hubert 𝛤  statistic ( 𝛤 ) assesses the dissimilarity between classes by 

considering the difference of pairs of objects in two classes. The optimum is achieved when the 

value of Γ is at its highest. These three indices are monotonous, since they only take either intra-

class dispersion or inter-class dispersion into account. 

The WB index assesses the partitioning quality by considering the ratio of within-class sum-

of-squares to between-class sum-of-squares. A smaller WB value indicates better data 

partitioning quality.  

The Calinski-Harabasz index (CH) calculates the ratio of the average sum of squares 

between classes to the average sum of squares within classes. It takes into account both intra-

class similarity and inter-class dispersion. When the index value is maximum, the number of 

classes is the optimum.  

The 𝐼  index measures the maximum distance between class centroids and the sum of 

distances between objects and their class centroids. If 𝑞 = 2, the 𝐼 index reduces to the PBM 

index. Larger values of 𝐼 suggest better partitioning results. 

The F index considers both the global dispersion between classes and the global dispersion 

within classes. The optimal number of classes is determined when the F index reaches the 

maximum.  
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The Dunn’s index focuses on the compactness and separation of classes. It calculates the 

minimum pairwise distances between objects in different classes and the maximum pairwise 

distances between objects in the same classes. A higher value of Dunn's index suggests better 

partitioning quality, indicating that the classes are compact (small within-class dispersion) and 

well-separated (large between-class dispersion). 

The Silhouette index evaluates the partitioning validity based on the difference between 

between-class and within-class dispersions. The optimal number of classes is determined when 

the value of the index is the maximum.  

The Partition Separation index (PS) for hard partitioning version is introduced in the table 

above and specifically measures the separation between class centroids. The optimal number of 

classes is determined by maximizing the PS value. 

The Davies-Bouldin index (DB) calculates the similarities between each class and all other 

classes, with the highest value for each class representing that class similarity. Then, the average 

of all class similarities is computed. A smaller index value indicates a better partitioning result.  

The Xie-Beni index (XB) calculates the mean square distance between each object and its 

class centroid and the minimum square distance between class centroids. The optimal number 

of classes is determined by minimizing the XB value.  

The SD index calculates the variances of class objects to evaluate the compactness within 

classes and also calculates the distances between class centroids to evaluate differences between 

classes. The optimal number of classes is reached when the minimum value of SD is found.  

Partitioning validity indices are not only used to evaluate the quality of partitioning results 

but can also be used to determine the optimal number of classes. The selection of an appropriate 

index relies on the specific features of the data and the partitioning task.  
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Chapter 3 

Developed unsupervised data stream partitioning method 

(STRFCM) 

 

To eliminate the impact of parameters and the need for prior information, an unsupervised and 

non-parametric method named STRFCM was ultimately proposed, which can automatically 

partition the data stream and identify the optimal number of classes. This chapter provides an 

in-depth description of our proposed method.  

 

3.1 Principle 

Our STRFCM method employs FCMO to partition data chunks and Weighted FCMO 

(WFCMO) to partition the exemplar set obtained during the chunk partitioning process. It 

consists of two main steps:  

Input:  

– Data stream 

1) Data chunk partitioning: STRFCM employs the FCMO algorithm, which utilizes the 

𝐿1 norm as its similarity criterion and the WB-L1M partitioning validity index as its 

evaluation criterion, to partition incoming data chunks and obtain classes as well as the 

exemplar set. 

2) Fusion: STRFCM utilizes the WFCMO algorithm, which uses the 𝐿1  norm as its 

similarity criterion and the F index as its evaluation criterion, to partition the exemplar 

set and obtain the final optimal partition. 

Output: Optimal partition 𝒫 with discovered 𝐾 classes and exemplar of each class 

The details of the FCMO and WFCMO methods will be introduced in the next section. 

The flow chart of our proposed method is presented in Figure 3.1. 
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Figure 3.1: Flow chart of the proposed unsupervised partitioning method. 

The data stream and data chunks can be expressed respectively as follows: 

𝐷𝑆𝑡 = ⋃{𝐵𝑗} 

𝑡

𝑗=1

 (3.1) 

𝐵𝑡 =  ⋃{𝑥𝑖(𝑡)} 

𝑁𝑑

𝑖=1

 (3.2) 

where 𝑡 denotes the current time of the arriving data chunk and 𝑁𝑑 is the size of the chunk. 

Each data chunk is partitioned using the FCMO algorithm and the centroid of each estimated 

class is retained as its exemplar. The exemplar set obtained by partitioning data chunk 𝐵𝑡 is 

defined as follows: 

𝐵𝐶𝑡 = {𝑧𝑖(𝑡)},   𝑖 = 1,2, … , 𝐾𝑡 (3.3) 

where 𝑧𝑖(𝑡) represents the 𝑖th centroid of the 𝑖th class in data chunk 𝐵𝑡 and 𝐾𝑡 is the number of 

classes in data chunk 𝐵𝑡.  

Eventually, a dataset 𝐵𝐶 containing all class centroids (exemplars) can be obtained, which 

is defined as: 

𝐵𝐶 = ⋃{𝐵𝐶𝑗}  

𝑡

𝑗=1

 (3.4) 

Partitioning of dataset 𝐵𝐶 by using the WFCMO algorithm gets a final optimal partition 

𝒫 = {𝐶1, 𝐶2, … , 𝐶𝐾}, where  𝐾 is the final number of estimated classes. 
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3.2 Static dataset partitioning methods employed in STRFCM 

In this section, we introduce the FCMO and WFCMO methods employed in our proposed 

STRFCM method and evaluate their performances. 

 

3.2.1 Choice of FCMO for optimal partition   

FCMO [11] is an optimization of the FCM algorithm [12], specifically designed for partitioning 

static datasets. It is an unsupervised and non-parametric method that eliminates the need for 

parameter tuning or specifying the number of classes in advance. It can automatically estimate 

the optimal number of classes with stable results. Therefore, our proposed method employs and 

optimizes FCMO for partitioning data chunks. FCMO utilizes an adaptive incremental 

procedure to initialize class centroids, and an unsupervised evaluation criterion (partitioning 

validity index) is adopted to estimate the optimal number of classes. In comparison to the FCM, 

support vector machines (SVM) [27], and ISODATA [95] algorithms, FCMO demonstrates 

superior partitioning performance [11]. FCMO mainly consists of five steps: 

Input:  

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} 

1) Subdivide the dataset into two classes. 

2) Select the class with the largest dispersion which will be subdivided into two subclasses. 

The intra-class dispersion is measured by using Equation 2.9. If the partition is not valid 

in the end, choose the class with the next largest dispersion. 

3) Choose the initial two subclass centroids from the selected class. The first subclass 

centroid is defined as the centroid of the selected class. The second centroid is chosen 

randomly from the selected class. 

4) Use FCM algorithm to partition the dataset from 𝑘 to 𝑘 + 1 classes and fine-tune class 

centroids. 

5) Evaluate the partition with 𝑘 + 1  classes. This final step validates or rejects the 

partitioning results to find the optimal final partition and number of estimated classes. 

Unlike the validation criterion utilized by MLBG (Equation 2.11), FCMO does not use 

the coefficient of ponderation 𝜂. This validation criterion is as follows: 



 

47 
 

𝐹(𝒫𝑘+1) > 𝐹(𝒫𝑘) (3.5) 

where 𝐹 is a partitioning validity index defined as follows: 

𝐹(𝒫𝑘) =
𝐷̅(𝒫𝑘) − 𝐷(𝒫𝑘)

2
 (3.6) 

where 𝐷̅(𝒫𝑘) and 𝐷(𝒫𝑘) represents the global inter-class and intra-class dispersion, 

respectively. 𝐷(𝒫𝑘) calculates the average weighted intra-class dispersion.  

𝐷(𝒫𝑘) =
1

𝑘
∑

𝑁𝑗

𝑁
𝐷(𝐶𝑗)

𝑘

𝑗=1

 (3.7) 

where 𝑁𝑗 is the number of objects in class 𝐶𝑗, and 𝑁 is the number of objects in dataset 

𝒳 . 𝐷̅(𝒫𝑘) calculates the average weighted dispersion between each class and other 

classes. 

𝐷̅(𝒫𝑘) =
1

𝑘
∑

𝑁𝑗

𝑁
𝐷̅(𝐶𝑗)

𝑘

𝑗=1

 (3.8) 

If the validation criterion is satisfied, one goes back to step 2 with 𝑘 + 1 determined 

classes and attempts to create 𝑘 + 2 classes. Conversely, if the criterion is not satisfied, 

return to step 2 with 𝑘 classes and change the selected class by choosing the next largest 

dispersion class and so on. If none of the classes provides a valid partition, the algorithm 

stops and finds the optimal partition. 

Output: Discovered 𝐾 classes and exemplar of each class 

The original similarity criterion utilized in FCMO is the 𝐿2 norm, which corresponds to the 

Euclidean distance. Instead of using 𝐿2 norm, our proposed method employs FCMO with the 

𝐿1 norm as the similarity criterion. This choice is motivated by the fact that, the 𝐿1 norm can 

measure the exact difference between the attributes of two objects, providing their true 

similarity without amplification or attenuation. 

FCMO employs the partitioning validity index as the evaluation criterion. It calculates the 

value of the validity index in each iteration and compares it with the value from the previous 

iteration to find the optimal partition. The index used in original FCMO is the F index [11], 



 

48 
 

which takes into account both the dispersion between classes and within classes. Larger values 

of F indicate better partitioning performance, and the optimal partition is achieved with the 

maximum value of F.  

In addition to the 𝐹 index, many partitioning validity indices have been proposed in the state 

of the art. Table 2.1 presents some common validity indices. The choice of the evaluation 

criterion significantly affects partitioning performance of FCMO. Consequently, we compared 

FCMO using four different validity indices, the 𝐹 index, the Dunn’s index [88], the Silhouette 

index [89] and the WB index [83], to find the optimal evaluation criterion. All of these criteria 

consider both intra-class and inter-class dispersion when evaluating a partition. The WB index 

was selected as the evaluation criterion for FCMO, as it outperformed the other three indices. 

The comparison results are displayed in Subsection 3.2.3. Since our proposed method employs 

the 𝐿1 norm as its similarity criterion, the selected WB index also employs the 𝐿1 norm to 

calculate both intra-class and inter-class similarity. The equation of the WB-L1 index is 

presented as follows: 

WB-L1 = 𝐾𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑(𝑥,  𝑧𝑖) 𝛴𝑖=1
𝐾 𝑁𝑖𝑑(𝑧𝑖, 𝑧𝑠)⁄  (3.9) 

where 𝑥 is an object in class 𝐶𝑖, 𝑁𝑖 is the number of objects in class 𝐶𝑖,  𝑧𝑖 is the centroid of 

class 𝐶𝑖, 𝑧𝑠 is the center of the whole dataset, 𝑑(𝑥,  𝑧𝑖) calculates the 𝐿1 norm distance between 

object 𝑥 and centroid  𝑧𝑖. 

In the chunk partitioning process, it is expected that FCMO finds finer classes (more 

homogeneous classes with smaller variances) in order to preserve more detailed information so 

that during the fusion process more accurate results can be obtained. On this basis, we modified 

the WB-L1 index and introduced a novel index called WB-L1M index, defined as follows: 

WB-L1M = 𝛴𝑖=1
𝐾 𝜎𝑖

2𝛴𝑥∈𝐶𝑖
𝑑(𝑥,  𝑧𝑖) 𝛴𝑖=1

𝐾 𝑁𝑖𝑑(𝑧𝑖, 𝑧𝑠)⁄  (3.10) 

where 𝜎𝑖
2 is the variance of class 𝐶𝑖. The optimal number of classes and exemplars can be found 

by minimizing the value of WB-L1M index. 

WB-L1M differs from WB-L1 by introducing variance into its numerator, which leads to an 

increased number of iterations, ultimately allowing for the refinement of classes. During the 

iteration process using WB-L1M, singleton classes are not retained as exemplars. These singleton 

classes are reassigned to the nearest classes in the next iteration. 

The algorithm of FCMO using the 𝐿1 norm and the WB-L1M index, referred to as FCMO-

L1-WBM, is illustrated in Algorithm 3.1. 
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Algorithm 3.1 FCMO-L1-WBM 

Input:  

– Incoming data chunk 𝐵𝑗 

 

Procedure:  

1. Subdivide the data chunk 𝐵𝑗 into two classes 

2. Select the class with the largest dispersion (Equation 2.9 with 𝐿1  norm) for 

subdivision into two subclasses 

3. Select the initial two subclass centroids from the chosen class, with the first 

centroid being the class's centroid and the second centroid selected randomly from 

the same class 

4. Partition the data chunk 𝐵𝑗 into 𝑘 + 1 classes using FCM with 𝐿1 norm 

5. Evaluate the partition with 𝑘 + 1 classes 

If WB-L1M (𝒫𝑘+1) < WB-L1M (𝒫𝑘) 

Validate the partition of 𝑘 + 1 classes 

Repeat steps 2-4 to try to create 𝑘 + 2 classes 

Else return to step 2 with 𝑘 classes and change the selected class by choosing the 

next largest dispersion class 

End if 

If none of the selected classes provides a valid partition 

Stop 

End if 

 

Output: Discovered 𝐾𝑗 classes in data chunk 𝐵𝑗 and exemplar of each class 

 

3.2.2 WFCMO for final optimal partition   

The WFCMO method, an extension of FCMO, is designed to partition the exemplars of the 

classes obtained from multiple data chunks to obtain the final optimal partition while 

considering the size of the classes. It follows the same partitioning steps as FCMO, with 

modifications made to the FCMO algorithm in step 4. 

Assume there is a set of 𝑁𝑒  exemplars 𝐸𝑆 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑖, ⋯ , 𝑒𝑁𝑒
}, which represents 𝑁𝑒 

subclasses, and 𝑒𝑖 is the exemplar of the 𝑖th subclass 𝑆𝐶𝑖 which contains 𝑁𝑠𝑐𝑖 objects. 𝐸𝑆 can 

be partitioned into 𝐾  classes (𝐶1, 𝐶2, … , 𝐶𝐾) . When partitioning the exemplar set 𝐸𝑆  using 

original FCMO, the membership grade 𝑢𝑖𝑗  of the exemplar 𝑒𝑖 to class 𝐶𝑗 is calculated using 

Equation 2.8. 

However, if we consider the number of objects 𝑁𝑠𝑐𝑖 in the subclass 𝑆𝐶𝑖 represented by the 

exemplar 𝑒𝑖, the membership level of 𝑒𝑖 to class 𝐶𝑗 is defined as: 
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𝑢𝑖𝑗
′ = 𝑢𝑖𝑗 × 𝑁𝑠𝑐𝑖 (3.11) 

WFCMO uses weighted membership grade to partition the exemplar set. During this fusion 

process, it utilizes the F index as its evaluation criterion rather than the WB-L1M or WB-L1 index. 

The reason is that the WB-L1M index tends to obtain finer classes, and the WB-L1 index, despite 

outperforming the other three compared indices (F index [11], Dunn’s index [88] and Silhouette 

index [89]), is not suitable for partitioning small population datasets like the exemplar set. The 

algorithm of WFCMO is presented in Algorithm 3.2. 

Algorithm 3.2 WFCMO 

Input:  

– Exemplar set 𝐵𝐶 

 

Procedure:  

1. Subdivide the exemplar set 𝐵𝐶 into two classes 

2. Select the class with the largest dispersion (Equation 2.9 with 𝐿1  norm) for 

subdivision into two subclasses 

3. Select the initial two subclass centroids from the chosen class, with the first 

centroid being the class's centroid and the second centroid selected randomly from 

the same class 

4. Partition the exemplar set 𝐵𝐶  into 𝑘 + 1  classes using FCM with 𝐿1  norm, and 

update the membership matrix 𝑈 = [𝑢𝑖𝑗
′ ] using Equation 2.8 and 3.11  

5. Evaluate the partition with 𝑘 + 1 classes 

If 𝐹(𝒫𝑘+1) > 𝐹(𝒫𝑘) 

Validate the partition of 𝑘 + 1 classes 

Repeat steps 2-4 to try to create 𝑘 + 2 classes 

Else return to step 2 with 𝑘 classes and change the selected class by choosing the 

next largest dispersion class 

End if 

If none of the selected classes provides a valid partition 

Stop 

End if 

 

Output: Optimal partition 𝒫 with discovered 𝐾 classes and exemplar of each class 
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The algorithm of STRFCM is presented as follows (Algorithm 3.3): 

Algorithm 3.3 STRFCM 

Input:  

– Data stream 𝐷𝑆𝑡 = ⋃ {𝐵𝑗} 𝑡
𝑗=1  

 

Procedure:  

1. Load incoming data chunk 𝐵𝑗 

2. Partition data chunk 𝐵𝑗  using FCMO-L1-WBM to obtain exemplar set 𝐵𝐶𝑗 

(Algorithm 3.1) 

3. Add exemplar set 𝐵𝐶𝑗 to global exemplar set 𝐵𝐶 

4. If data stream continues, repeat steps 1-3  

Else proceed to step 5 

End if 

5. Partition exemplar set 𝐵𝐶 using WFCMO (Algorithm 3.2) 

 

Output: Optimal partition 𝒫 with discovered 𝐾 classes and exemplar of each class 

 

3.2.3 Evaluation of FCMO   

In this subsection, we conduct a comparative assessment of the FCMO method using different 

similarity criteria and evaluation criteria, in order to illustrate that the FCMO using the 𝐿1 norm 

and the WB-L1 index (referred as FCMO-L1-WB) outperforms other options. In addition, we 

compare FCMO with the unsupervised and parametric partitioning method AP. Furthermore, 

FCMO-L1-WBM is tested to demonstrate its capability to identify finer classes. 

The FCMO using the 𝐿1 norm and the F index is referred to as FCMO-L1-F, and the FCMO 

using the 𝐿2 norm and the F index is denoted as FCMO-L2-F. Correspondingly, we have the 

FCMO-L1-D method for FCMO using the 𝐿1 norm and the Dunn’s index and FCMO-L1-SIL 

employing the 𝐿1 norm and the Silhouette index. We point out that when FCMO employs the 

𝐿1 norm, the same norm is also utilized in these partitioning validity indices (evaluation criteria). 

 

3.2.3.1 Experimental datasets 

Two synthetic hyperspectral image datasets are utilized to evaluate partitioning performance. 

Detailed information about these two datasets are presented in Table 3.1 and 3.2.  

Dataset 1 is a synthetic hyperspectral image of algae, displayed in Table 3.1 (a). It exhibits 

a spatial resolution of 60x60 pixels, characterized by 100 spectral bands. It consists of nine GT 
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subclasses which can be aggregated into three main GT classes: water, substrate and vegetation. 

These knowledges are only used to assess the partitioning results. 

The main water class encompasses three subclasses: deep water (C1
1), shallower water (C1

2), 

and turbid water (C1
3). The main substrate class consists of two subclasses: pebble (C2

1) and 

sand (C2
2). The main vegetation class is subdivided into four subclasses: two subclasses of 

green algae, ulva (C3
1) and enteromorpha (C3

2), one subclass of fucus (C3
3), and the final 

subclass (C3
4), which is a mixed class encompassing elements of both substrate and vegetation. 

Table 3.1 (b) and (c) represent GT images, with (b) consisting of three main GT classes and (c) 

containing nine GT subclasses. 

 

Table 3.1: Dataset 1 – hyperspectral image of algae, GT images and GT class details. 

   

(a) Original image 60x60x100 

(visualized in RGB mode) 

(b) GT1 image 

(3 main GT classes) 

(c) GT2 image 

(9 GT subclasses) 

Labels of 3 main GT classes Labels of 9 GT subclasses 

C1 Water (1324 pixels) 

 

C1
1 Deep water (989 pixels) 

 

C1
2 Shallow water (158 pixels) 

 

C1
3 Turbid water (177 pixels) 

C2 Substrate (1067 pixels) 

 

C2
1 Pebble (281 pixels) 

 

C2
2 Sand (786 pixels) 

C3 Vegetation (1209 pixels) 

 

C3
1 Ulva (green algae) (255 pixels) 

 

C3
2 Enteromorpha (green algae) (416 pixels) 

 

C3
3 Fucus (brown algae) (493 pixels) 

 

C3
4 Substrate and other types of vegetation (45 pixels) 

 

Dataset 2 is a hyperspectral image of invasive vegetation with a spatial resolution of 64x64 

pixels, characterized by 54 spectral bands (Table 3.2 (a)). It consists of five main GT classes 

which can be further subdivided into eight GT subclasses.  
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The main pinus halepensis class consists of two subclasses: dense pinus halepensis (C2
1) 

and sparse pinus halepensis (C2
2). The main peach trees class comprises three subclasses: 

healthy peach trees (C3
1), early wilting peach trees (C3

2), and wilting peach trees (C3
3). GT 

images for this dataset are presented in Table 3.2 (b) and (c), containing five main GT classes 

and eight GT subclasses, respectively. 

 

Table 3.2: Dataset 2 – hyperspectral image of invasive vegetation, GT images and GT class 

details. 

   

(a) Original image 64x64x54 

(visualized in RGB mode) 

(b) GT1 image 

(5 main GT classes) 

(c) GT2 image 

(8 GT subclasses) 

Labels of 5 main GT classes Labels of 8 GT subclasses 

C1 River (452 pixels) 
 

C1 River (452 pixels) 

C2 Pinus halepensis (1068 pixels) 

 

C2
1 Pinus halepensis (dense) (986 pixels) 

 

C2
2 Pinus halepensis (sparse) (82 pixels) 

C3 Peach trees (1189 pixels) 

 

C3
1 Peach trees (healthy) (175 pixels) 

 

C3
2 Peach trees (early wilting) (513 pixels) 

 

C3
3 Peach trees (wilting) (501 pixels) 

C4 Arundo donax (500 pixels) 
 

C4  Arundo donax (500 pixels) 

C5 Buildings (887 pixels) 
 

C5  Buildings (887 pixels) 

 

The mean spectral signatures of the classes in these two hyperspectral images are depicted 

in Figure 3.2 and 3.3. Each class's mean spectral signature is represented by a line of a distinct 

color, corresponding to the colors used in the GT images displayed in Table 3.1 and 3.2. 
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(a) (b) 

Figure 3.2: Mean spectral signatures of the GT classes in Dataset 1. (a): 3 main GT classes, (b): 

9 GT subclasses. 

  

(a) (b) 

Figure 3.3: Mean spectral signatures of the GT classes in Dataset 2. (a): 5 main GT classes, (b): 

8 GT subclasses. 

3.2.3.2 Performance evaluation 

To evaluate the partitioning performance, we used the external validity index: purity. An ideal 

partition yields a purity value of 100%, while a poor partition results in a value close to 0%. 

The average purity of all estimated classes is defined as follows: 

𝑝𝑢𝑟𝑖𝑡𝑦 =
1

𝐾
∑ max

𝑗=1,⋯,𝐾𝐺𝑇

(
𝑁𝑖

𝑗

𝑁𝑖
)

𝐾

𝑖=1
 (3.12) 
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where 𝐾𝐺𝑇 is the number of the main GT classes, 𝑁𝑖 is the number of objects in the 𝑖th estimated 

class, 𝑁𝑖
𝑗
 is the number of objects allocated to the 𝑗th main GT class and 𝐾 is the number of 

estimated classes.  

Table 3.3 presents the purity value, number of estimated classes (NC), and CPU execution 

time obtained by FCMO using criteria (similarity criteria and evaluation criteria) L1-F, L2-F, 

L1-D, L1-SIL and L1-WB when partitioning Dataset 1. In addition, we compared these methods 

with AP. The preference parameter and the damping rate are input parameters of AP. In the 

assessment, the damping rate ranges from 0.6 to 0.9, and preference parameter is set to either 

the median or the minimum value of the similarity matrix. The partitioning performance of AP 

on Dataset 1 is illustrated in Table 3.4. 

 

Table 3.3: Partitioning performances of FCMO using different similarity criteria and evaluation 

criteria on Dataset 1.  

Methods Purity (%) NC  CPU (s) 

FCMO-L1-F 100 6 35.38 

FCMO-L2-F 98.94 6 32.57 

FCMO-L1-D 100 7 44.85 

FCMO-L1-SIL 100 6 127.38 

FCMO-L1-WB 100 8 127.30 

 

Table 3.4: Partitioning performance of the AP method on Dataset 1. 

Input parameters set by user: 
Purity (%) NC  CPU (s) 

Preference parameter Damping rate 

Median 

0.6 Non-convergence 

0.7 Non-convergence 

0.8 100 13 58.43 

0.9 100 13 64.12 

Minimum 

0.6 Non-convergence 

0.7 Non-convergence 

0.8 Non-convergence 

0.9 100 9 46.56 
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In comparison to FCMO utilizing the 𝐿2 norm, FCMO using the 𝐿1 norm achieves a higher 

purity of 100%. FCMO-L1-F gives a purity of 100% (Table 3.3), while FCMO-L2-F provides 

98.94%. Among the methods using the 𝐿1 norm, we can find that the FCMO-L1-WB method 

identified more classes than others, which is closest to the GT of 9 subclasses. FCMO-L1-WB 

compared to FCMO using criteria L1-F, L1-D and L1-SIL, discovers more detailed information. 

Compared with the partitioning results of the AP method displayed in Table 3.4, with 

appropriate parameter values of AP, the purity values of FCMO using the 𝐿1 norm and AP are 

the same (100% purity) and the numbers of estimated classes are within reasonable range. 

However, we observed that when the value of parameter damping rate is wrongly chosen, the 

AP method does not converge, which means the choice of input parameter values significantly 

impacts the performance of AP.  

Figure 3.4 presents the partitioning results on Dataset 1 using the FCMO method with three 

criteria L1-F, L2-F and L1-WB and the AP method, offering an intuitive assessment of the 

partitioning performance.  In Figure 3.4 (c), all main GT classes were successfully identified. 

However, FCMO-L1-F failed to identify the GT pebble subclass (blue), the shallow water 

subclass (green) and the subclass containing data of mixed types (purple). Additionally, some 

points belonging to the ulva subclass (orange) were assigned to the enteromorpha subclass (red). 

Nevertheless, both ulva and enteromorpha subclasses belong to the same main GT class of 

vegetation. Therefore, it does not significantly impact the partitioning performance of FCMO-

L1-F.  

In Figure 3.4 (d), similar to FCMO-L1-F, FCMO-L2-F also missed the identification of the 

three subclasses. However, there is a notable difference: some points belonging to the ulva 

subclass (orange) are incorrectly assigned to the turbid water subclass (dark blue). These two 

subclasses belong to different main GT classes, which has a more significant impact on the 

partitioning performance of FCMO-L2-F. 

We observed from Figure 3.4 (e) that all GT subclasses were successfully detected by using 

FCMO-L1-WB except the subclass with data of mixed types (purple), while FCMO-L1-F only 

identified 6 GT subclasses. Additionally, some points belonging to the sand subclass (grey) 

were assigned to the pebble subclass (blue). However, these two subclasses belong to the same 

main class of substrate, which does not significantly impact the partitioning performance of 

FCMO-L1-WB. The partitioning result of AP with preference parameter set to minimum and 

damping rate of 0.9, displayed in Figure 3.4 (f), is similar with the result of FCMO-L1-WB. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.4: Partitioning results on Dataset 1. (a): GT1 image (3 main GT classes), (b): GT2 

image (9 GT subclasses), (c), (d) and (e): FCMO using criteria L1-F, L2-F and L1-WB, 

respectively, (f): AP – preference parameter set to minimum and damping rate of 0.9. 

Table 3.5 presents the purity value, number of estimated classes, and CPU execution time 

obtained when partitioning Dataset 2 using FCMO with five criteria L1-F, L2-F, L1-D, L1-SIL, 

and L1-WB. The partitioning performance of AP on Dataset 2 is illustrated in Table 3.6. 

As shown in Table 3.5, the purity of FCMO-L1-F (93.51%) is higher than that of FCMO-

L2-F (85.39%). Additionally, the number of estimated classes by FCMO-L1-F is much closer to 

the number of GT subclasses (8 GT subclasses), indicating that FCMO-L1-F discovers more 

details than FCMO-L2-F during partitioning. In addition, both FCMO-L1-F and FCMO-L1-WB 

achieved the best performance with a purity of 93.51%. The reason their purity values are the 

same is that these two methods performed the same number of iterations. However, the 
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performances of FCMO-L1-D and FCMO-L1-SIL are poor on partitioning Dataset 2 and cannot 

be considered competitive. 

Table 3.5: Partitioning performances of FCMO using different similarity criteria and evaluation 

criteria on Dataset 2. 

Methods Purity (%) NC  CPU (s) 

FCMO-L1-F 93.51 6 30.97 

FCMO-L2-F 85.39 4 37.54 

FCMO-L1-D 68.53 2 25.08 

FCMO-L1-SIL 69.48 3 30.75 

FCMO-L1-WB 93.51 6 42.56 

Table 3.6: Partitioning performance of the AP method on Dataset 2. 

Input parameters set by user: 
Purity (%) NC CPU (s) 

Preference parameter Damping rate 

Median 

0.6 Non-convergence 

0.7 Non-convergence 

0.8 Non-convergence 

0.9 95.36 20 50.46 

Minimum 

0.6 Non-convergence 

0.7 Non-convergence 

0.8 Non-convergence 

0.9 93.8 12 66 

Based on the partitioning performance displayed in Table 3.6, it becomes evident that the 

choice of input parameters significantly impacts the performance of the AP method. For 

instance, when the preference parameter is set to the median, and the damping rate is 0.8, the 

AP method does not converge. When the preference parameter is set to the median, and the 

damping rate is 0.9, the AP method achieves a purity of 95.36%, which is higher than the highest 

purity in Table 3.5 (93.51%). However, under this parameter setting, AP identifies 20 estimated 

classes, a number much larger than the GT (8 GT subclasses). This indicates that the dataset is 

over-partitioned. Conversely, with appropriate parameter values, the AP method achieves a 

purity of 93.8%, similar to the highest purity in Table 3.5 (93.51%).  

Figure 3.5 presents the partitioning results on Dataset 2 using the FCMO method with 

criteria L1-F, L2-F and L1-WB and the AP method. We can find that FCMO-L1-F successfully 
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detected all main GT classes (Figure 3.5 (c)), while FCMO-L2-F failed to identify the arundo 

donax class (blue) (Figure 3.5 (d)), resulting in lower partitioning performance. In addition, we 

found that the partitioning results of FCMO-L1-WB and FCMO-L1-F on the Dataset 2 are same. 

According to Figure 3.5 (c), (e), and (f), the FCMO-L1-F, FCMO-L1-WB and AP methods 

incorrectly assigned some points belonging to the GT healthy peach trees subclass (grey) to the 

arundo donax subclass (blue). However, these two subclasses do not belong to the same main 

GT class, which leads to a decrease in partitioning performance. In addition, there were some 

points belonging to the GT healthy peach trees subclass (grey) were mistakenly assigned to the 

dense pinus halepensis subclass (red) by AP. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.5: Partitioning results on Dataset 2. (a): GT1 image (5 main GT classes), (b): GT2 

image (8 GT subclasses), (c), (d) and (e): FCMO using criteria L1-F, L2-F and L1-WB, 

respectively, (f): AP – preference parameter set to minimum and damping rate of 0.9. 
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According to Table 3.3 and 3.5, both the FCMO-L1-F and FCMO-L1-WB methods achieve 

the highest purity in partitioning both Dataset 1 and Dataset 2. To further compare these two 

methods, we conducted an additional test. 

Since FCMO is used to partition data chunks by our method, in this evaluation, we utilized 

FCMO-L1-F and FCMO-L1-WB to partition only data chunks of varying sizes in Dataset 2 

instead of the entire dataset. Their partitioning performances are demonstrated in Table 3.7. 

 

Table 3.7: Partitioning performances of FCMO-L1-F and FCMO-L1-WB on different sizes of 

data chunks in Dataset 2. 

Methods Chunk size Purity (%) NC  CPU (s) 

FCMO-L1-F 

128 94.23 4 0.54 

256 94.24 4 0.95 

512 91.95 4 2.31 

1024 92.52 4 4.14 

2048 91.29 4 7.48 

FCMO-L1-WB 

128 Non-convergence 

256 99.41 8 0.91 

512 96.12 5 2.96 

1024 92.52 4 4.07 

2048 91.29 4 9.56 

 

It is obvious that the overall performance of FCMO-L1-WB is better than that of FCMO-L1-

F. We observed that with a chunk size of 128 pixels, the FCMO-L1-WB method did not 

converge, indicating that FCMO-L1-WB may not be suitable for partitioning datasets with small 

populations. Nevertheless, in the context of partitioning large streaming data, this limitation 

becomes negligible.  

In summary, compared with FCMO using other similarity criteria and evaluation criteria, 

FCMO-L1-WB demonstrates superior performance on both datasets. Although AP also exhibits 

strong partitioning performance, it has to predetermine the input parameters which greatly 

affect its performance. In contrast, FCMO-L1-WB does not introduce parameters, ensuring a 

more stable partitioning performance. Based on the above analysis, FCMO-L1-WB achieves the 

best partitioning performance on both datasets. 
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In order to obtain finer classes during the data chunk partitioning process to retain more 

detailed information for the subsequent fusion process, we modified the WB-L1 index and 

proposed the WB-L1M index as the evaluation criterion of FCMO. We conducted a comparison 

between FCMO-L1-WBM and FCMO-L1-WB using data chunks containing 256 and 512 pixels 

from Dataset 2 to demonstrate FCMO-L1-WBM’s capability to refine classes and extract more 

detailed information. 

Figure 3.6 and 3.7 demonstrate the number of estimated classes and the size of each class 

(number of objects in the class) obtained by employing FCMO-L1-WB and FCMO-L1-WBM to 

partition data chunks of 256 and 512 pixels from Dataset 2.  

 
Figure 3.6: The sizes of estimated classes on data chunk of 256 pixels. (a): FCMO-L1-WB, (b):  

FCMO-L1-WBM. 

 
Figure 3.7: The sizes of estimated classes on data chunk of 512 pixels. (a): FCMO-L1-WB, (b): 

FCMO-L1-WBM. 
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Figure 3.6 and 3.7 clearly show that, when compared to the results of FCMO-L1-WB (8 and 

5 estimated classes with the chunk sizes of 256 and 512 pixels, respectively), FCMO-L1-WBM 

identified more classes with smaller sizes (20 and 35 estimated classes with the chunk sizes of 

256 and 512 pixels, respectively), which aligns with our goal of obtaining finer classes.  

 

3.2.4 Evaluation of WFCMO   

To assess the performance of WFCMO on exemplar sets, we generated a dataset comprising 

335 objects. This dataset encompasses seven GT subclasses of varying sizes, which can be 

partitioned into two main GT classes. Each object in this dataset is characterized by two 

attributes. The details of the generated dataset are illustrated in Table 3.8. 

Table 3.8: Details of the two main GT classes and seven GT subclasses in the generated dataset. 

Labels of 2 main GT classes  Labels of 7 GT subclasses  

C1 (185 objects) 

 SC1 (5 objects) 

 SC2 (150 objects) 

 SC3 (30 objects) 

C2 (150 objects) 

 SC4 (20 objects) 

 SC5 (20 objects) 

 SC6 (100 objects) 

 SC7 (10 objects) 

 

Figure 3.8 demonstrates the partitioning results of WFCMO and FCMO on the generated 

dataset. The red filled points depict the exemplars of the seven GT subclasses, while the red 

hollow point represents the GT centroids of the two main classes. The black asterisk indicates 

the estimated centroids of the two main classes obtained by WFCMO when partitioning the 

exemplar set (red filled points). The red asterisk represents the estimated centroids of the two 

main classes obtained by FCMO-L1-F during the partitioning of the exemplar set.  

It is expected that the partitioning result on the exemplar set must be close to the GT 

centroids of C1 and C2. According to Figure 3.8, it is evident that the distance between the black 

asterisk and the red hollow point is small. This observation highlights that, during the fusion 

process, the WFCMO method takes into account the weight of each exemplar, demonstrating 

good partitioning performance. In contrast, FCMO-L1-F tends to identify biased estimated class 
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centroids without considering the sizes of classes. Based on these findings, it is better to use 

WFCMO in the fusion process instead of FCMO-L1-F for partitioning exemplar sets. 

 
Figure 3.8: Partitioning results of WFCMO and FCMO on the generated dataset. 
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Chapter 4 

Evaluation of developed method (STRFCM) 

 

In this chapter, we assessed our proposed STRFCM method and compared it with two 

parametric data stream unsupervised partitioning methods, STRAP [14] and CODAS [15], 

using Dataset 1 and Dataset 2 presented in Subsection 3.2.3.1. In addition, we utilized a real-

world dataset “Image Segmentation” [96] to conduct a comparison of our method with four 

parametric partitioning methods across the categories of supervised (AAPStream [17]), semi-

supervised (CluStream [13]) and unsupervised (DenStream [16] and STRAP [14]). These 

compared methods have already been discussed in Section 2.3. 

The “Image Segmentation” dataset, referred to as Dataset 3, is sourced from the UCI 

Machine Learning Repository [96]. It contains 2310 instances characterized by 19 features, 

such as the mean values of the R, G, and B components and the mean saturation value. These 

instances can be assigned to seven classes (brick face, sky, foliage, cement, window, path, and 

grass). The instances were randomly selected from a database containing seven outdoor images. 

The images were hand-segmented to create a partitioning for every pixel.  Each instance is a 

3x3 region. 

 

4.1 Evaluation protocol 

In this section, we present the evaluation protocol for the partitioning performances of our 

proposed method, STRFCM, and two parametric unsupervised methods, STRAP and CODAS, 

using two hyperspectral datasets. The selection of STRAP and CODAS for comparison is 

grounded in their ability to obviate the need for predetermining the number of classes and their 

open-source nature.  

The assessment of partitioning performance relies on external validity indices, purity and 

the kappa index [97]. Furthermore, during the evaluation, we also consider the number of 

estimated classes (NC), number of detected outliers (OT), and CPU execution time.  

The kappa index measures the agreement degree between two or more observers who 

partition objects into different classes. In our assessment, one observer gives the GT data labels, 

and the other provides the estimated data labels. It is calculated as follows: 



 

65 
 

𝑘𝑎𝑝𝑝𝑎 = (𝑝𝑜 − 𝑝𝑒) (1 − 𝑝𝑒)⁄  (4.1) 

where: 

 𝑝𝑜 is the actual observed agreement among observers. It computes the sum of the number of 

correctly partitioned samples for each main GT class divided by the total number of samples, 

which is the overall classification accuracy.  

𝑝𝑒 represents the hypothetical probability of chance agreement. It calculates the sum of the 

number of samples partitioned by one observer for each main GT class times the number of 

samples partitioned by another observer, which is then divided by the square of the total number 

of samples. 

An ideal partition is characterized by a kappa value of 100%, while a poor partition typically 

exhibits a kappa value close to 0%. 

In order to reduce the execution time, our method partitions multiple data chunks in parallel 

utilizing four CPU cores. The partitioning process was executed on an Intel(R) Core (TM) i5-

1135G7 processor, clocked at 2.4 GHz, with 16 GB of RAM. 

During the assessment of our proposed method, the data in hyperspectral image is entered 

sequentially into data chunks of the same size, and these data chunks are partitioned in a time 

series manner. We gradually increase the data chunk size up to the size of Dataset 1 and 2 

(excluded). The data chunk size is determined based on the number of pixels in each row of the 

image as the basic unit. 

The input parameters of STRAP include the initial batch size, threshold distance, max cache, 

sliding window size, along with the preference parameter and damping rate of AP. CODAS 

uses the parameters threshold density and threshold radius. It is necessary to specify their input 

parameters before partitioning. During the assessment, we conducted extensive tests to 

determine optimal parameter values, which consumed a significant amount of time. 

 

4.2 Evaluation on hyperspectral image of algae 

In this section, we assess our proposed STRFCM method and compare it with two parametric 

unsupervised methods, STRAP and CODAS, by partitioning Dataset 1. The number of 

estimated classes, number of detected outliers, purity, kappa index, and execution time are 

considered to evaluate the partitioning performance. 

Table 4.1 presents the partitioning performances of our method (STRFCM), STRAP, and 

CODAS on Dataset 1. Note that this table only contains a portion of representative partitioning 
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results of STRAP and CODAS. The comprehensive parameter tuning process entails a 

substantial number of tests, making it impractical to display the entirety of the results within 

this table. 

Table 4.1: Partitioning performances of our method (STRFCM), STRAP, and CODAS on 

Dataset 1. 

Performance of our proposed STRFCM method 

Chunk size NC OT Purity (%) Kappa (%) CPU (s) 

240 8 

None 

100 100 50.56 

360 8 100 100 51.27 

720 8 100 100 183.64 

1200 8 100 100 1079.97 

1800 9 100 100 2132.63 

 

Performance of STRAP method 

Input parameters set by user: 

NC OT Purity (%) Kappa (%) CPU (s) 

Preference parameter=median, 

sliding window size=3600 (full image) 

Threshold 

distance 

Initial 

batch 

Damping 

rate 

Max 

cache 

6000 

240 

0.8 10 

8 0 100 100 0.28 

360 8 0 100 100 0.29 

720 9 0 100 100 0.29 

1200 9 0 100 100 0.30 

1800 10 0 100 100 0.31 

7000 

240 

0.8 10 

7 2 99.09 99.50 0.25 

360 7 2 99.09 99.50 0.22 

720 8 2 99.21 99.50 0.24 

1200 8 2 99.21 99.50 0.27 

1800 10 0 100 100 0.32 

8000 

240 

0.8 10 

7 0 99.09 99.50 0.25 

360 7 0 99.09 99.50 0.21 

720 8 0 99.21 99.50 0.35 

1200 8 0 99.21 99.50 0.28 

1800 10 0 100 100 0.31 
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6000 1200 0.8 

10 8 0 100 100 0.28 

30 8 20 100 100 0.30 

50 8 31 99.93 99.96 0.30 

70 9 0 100 100 0.31 

100 9 0 100 100 0.30 

 

Performance of CODAS method 

Input parameters set by user: 
NC OT Purity (%) Kappa (%) CPU (s) 

Threshold density Threshold radius 

3 

200 40 73 100 100 1.13 

300 16 13 100 100 0.86 

400 12 1 100 100 0.59 

500 10 1 100 100 0.59 

600 9 1 100 100 0.41 

700 7 0 100 100 0.43 

4 

200 38 187 100 100 1.25 

300 16 32 100 100 0.82 

400 12 4 100 100 0.57 

500 11 1 100 100 0.52 

600 10 1 100 100 0.41 

700 7 0 100 100 0.41 

5 

200 29 282 100 100 1.06 

300 18 44 100 100 0.76 

400 11 12 100 100 0.53 

500 10 5 100 100 0.53 

600 9 5 100 100 0.45 

700 8 0 100 100 0.40 

 

According to Table 4.1, our proposed method (STRFCM) achieved a purity of 100% on 

Dataset 1, and the chunk size has no effect on values of purity and kappa index. However, we 

found that as the chunk size increases, the execution time becomes longer. This happens 

because, during the chunk partitioning step, finer classes are obtained, leading to an increase in 

the number of iterations in FCMO. As the iteration count rises, so does the execution time. On 
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the other hand, larger data chunks require more time for each iteration, leading to a significant 

increase in execution time as the number of iterations grows. 

Two examples of the partitioning results of chunk sizes of 240 pixels and 1800 pixels are 

presented in Figure 4.1. We can find that all main GT classes and 8 GT subclasses were detected, 

except for the subclass with data of mixed types (purple). This is because the mean spectral 

signature of the ulva subclass (orange) is close to that of the subclass with data of mixed types 

(purple) (Figure 3.2 (b)). Consequently, it becomes challenging for algorithms to distinguish 

between these two subclasses. Furthermore, we observed that several points belonging to the 

GT ulva subclass (orange) were assigned to the enteromorpha subclass (red) (Figure 4.1 (c) and 

(d)). However, these two subclasses are part of the main GT class of vegetation, which has 

almost no impact on the partitioning performance.  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.1: Partitioning results on Dataset 1 using our proposed method STRFCM. (a): GT1 

image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): data chunk size 240 pixels, 

(d): data chunk size 1800 pixels.  

Figure 4.2 demonstrates the mean spectral signatures ± standard deviation of the final 

estimated classes of Dataset 1 with the chunk size of 240 pixels. The black lines depicted in 

Figure 4.2 represent the mean spectral signatures of the corresponding GT subclasses. We can 
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observe that the mean spectral signatures of the estimated classes are similar to those of the GT 

subclasses, which means the partitioning performance of STRFCM is high. 

   

C1 C2 C3 

   

C4 C5 C6 

  

C7 C8 

Figure 4.2: Mean spectral signatures ± standard deviation of 8 estimated classes of Dataset 1 – 

data chunk size 240 pixels. 

 

The partitioning performance of STRAP displayed in Table 4.1 demonstrates that the choice 

of parameter settings has an impact on its partitioning performance. In the majority of the 

partitioning results presented in this table, both purity and kappa index exhibit values of 100%. 

However, under certain parameter settings, the purity is lower than 100%, such as the 

partitioning result (purity of 99.09%) with the parameter setting: threshold distance of 7000, 

initial batch of 360, damping rate of 0.8, and max cache of 10. Additionally, STRAP 

occasionally detects outliers in certain cases.  
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Figure 4.3 demonstrates the partitioning results with the parameter setting: threshold 

distance of 6000, initial batch of 720, damping rate of 0.8, and max cache of 10 (referred as 

parameter setting A), and another parameter setting: threshold distance of 7000, initial batch of 

240, damping rate of 0.8, and max cache of 10 (referred as parameter setting B). These settings 

yield purity values of 100% and 99.09% (the highest and lowest purity of STRAP), respectively.  

 

  

(a) (b) 

  

(c) (d) 

Figure 4.3: Partitioning results on Dataset 1 using STRAP with parameter settings A and B. (a): 

GT1 image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): parameter setting A, 

(d): parameter setting B.  

 

According to Figure 4.3 (c), like the partitioning results of STRFCM (Figure 4.1), all GT 

subclasses were successfully detected except for the subclass with data of mixed types (purple). 

Several points belonging to the ulva subclass (orange) were assigned to the enteromorpha 

subclass (red). Both of these subclasses belong to the vegetation class. The performance of the 

method was not significantly affected by this result. However, in Figure 4.3 (d), there were 

points belonging to the ulva subclass (orange) that were incorrectly assigned to the turbid water 

subclass (dark blue). These two subclasses do not belong to the same main class, which resulted 

in a degradation of performance. The black points in Figure 4.3 (d) represent outliers detected 

by STRAP. 
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In table 4.1, it is evident that the choice of parameters significantly impacts the partitioning 

performance of CODAS. The number of estimated classes varies from 7 to 40, and the number 

of detected outliers varies from 0 to 282. While CODAS consistently achieves a purity of 100%, 

it tends to over-partition the dataset and detect numerous outliers under certain parameter 

settings, which is not desirable. For instance, with the parameter setting of a threshold density 

of 5 and a threshold radius of 200 (referred as parameter setting B), despite achieving 100% 

purity, CODAS identified 29 classes, which is more than the 9 GT subclasses, and detected 282 

outliers. CODAS gets the best performance under the parameter setting of a threshold density 

of 3 and a threshold radius of 600 (referred as parameter setting A). Figure 4.4 demonstrates 

the partitioning results of CODAS with parameter settings A and B. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.4: Partitioning results on Dataset 1 using CODAS with parameter settings A and B. 

(a): GT1 image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): parameter setting 

A, (d): parameter setting B.  

 

In Figure 4.4 (c), we observed that all main GT classes were successfully detected. However, 

the ulva subclass (orange) and the enteromorpha subclass (red) were not detected. In Figure 4.4 

(d), we can find that CODAS detected an unusually high number of outliers (282), which is not 

desirable. These results highlight that the partitioning performance of CODAS is significantly 

influenced by the choice of parameter values. 



 

72 
 

In summary, our proposed STRFCM method achieved a purity of 100% on Dataset 1, and 

the chunk size had no discernible effect on purity and kappa index values. If the parameter 

values of STRAP and CODAS are well chosen, their highest purity and kappa values can also 

reach 100%. However, when the parameter values are inappropriate, the partitioning 

performances of STRAP and CODAS will be significantly affected, which is a great limitation. 

Furthermore, we observed that the execution time of our proposed method is longer than that 

of STRAP and CODAS. However, if we consider the time required to tune the parameters to 

achieve the optimal partition, our method takes less time. In addition, determining the optimal 

values of parameters often needs the knowledge of datasets in advance, and the parameter 

values may differ for different datasets, which greatly limits the applicability of methods. In 

conclusion, our proposed method outperforms the parametric partitioning methods STRAP and 

CODAS in partitioning Dataset 1. 

 

4.3 Evaluation on hyperspectral image of invasive vegetation 

In this section, we conduct a comparative analysis between our proposed STRFCM method and 

two parametric unsupervised methods, STRAP and CODAS, using Dataset 2 as the 

experimental dataset. Table 4.2 presents the partitioning performances of our method 

(STRFCM), STRAP, and CODAS on Dataset 2. It only demonstrates a portion of representative 

partitioning results of STRAP and CODAS. 

Table 4.2: Partitioning performances of our method (STRFCM), STRAP, and CODAS on 

Dataset 2. 

Performance of our proposed STRFCM method 

Chunk size NC OT Purity (%) Kappa (%) CPU (s) 

256 11 

None 

96.60 94.41 68.31 

512 10 95.94 93.96 116.68 

1024 10 96.19 94.65 230.04 

2048 10 96.12 94.43 505.71 

 

Performance of STRAP method 

Input parameters set by user: 

NC OT 
Purity 

(%) 

Kappa 

(%) 

CPU 

(s) 
Preference parameter=median, 

sliding window size=4096 (full image) 
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Threshold 

distance 

Initial 

batch 

Damping 

rate 

Max 

cache 

1000 

256 

0.8 10 

5 5 90.34 75.05 3.32 

512 6 1 83.91 75.05 2.32 

1024 7 0 91.57 89.00 2.80 

2048 9 7 93.94 93.84 4.92 

3000 

256 

0.8 

10 6 7 88.64 75.24 0.90 

256 100 10 15 94.59 90.59 0.27 

256 300 9 50 93.82 88.79 0.30 

256 700 10 400 94.15 83.74 0.26 

512 

10 

7 0 86.70 75.61 0.50 

1024 10 3 94.04 89.06 1.89 

2048 13 7 95.04 94.09 2.57 

6000 

256 0.6 

10 

Non-convergence  

256 0.7 Non-convergence  

256 

0.8 

6 5 91.99 75.14 0.21 

512 8 0 88.64 75.92 0.27 

1024 10 0 94.02 89.00 1.15 

2048 13 0 95.04 94.10 2.36 

7000 

256 

0.8 10 

6 0 92.01 75.16 0.22 

512 8 0 88.64 75.92 0.25 

1024 10 0 94.02 89.00 1.24 

2048 13 0 95.04 94.10 1.84 

 

Performance of CODAS method 

Input parameters set by user: 
NC OT Purity (%) Kappa (%) CPU (s) 

Threshold density Threshold radius 

4 

500 24 87 98.56 83.37 0.97 

520 22 78 98.33 82.52 1.01 

540 24 52 98.64 83.88 0.98 

550 21 52 97.21 50.38 0.94 

6 

500 27 234 98.28 86.90 0.99 

520 23 204 98.52 83.68 1.10 

540 22 159 99.25 96.74 0.93 

550 21 161 99.22 96.74 0.98 
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8 

500 24 408 99.24 97.57 1.00 

520 15 341 96.73 83.17 1.07 

540 17 297 96.78 96.83 1.01 

550 25 296 96.39 96.83 0.92 

 

The partitioning results of STRFCM on Dataset 2 (Table 4.2) show that changing the chunk 

size has only a minor impact on the partitioning performance. The purity difference is less than 

1%, and the kappa difference is also less than 1%. The highest purity and kappa values achieved 

are 96.60% and 94.65%, respectively. In addition, as the chunk size gradually increases, the 

execution time gradually becomes longer. The partitioning results with chunk sizes of 256 

pixels and 512 pixels, which have the highest and lowest purity, are presented in Figure 4.5. 

  

(a) (b) 

  

(c) (d) 

Figure 4.5: Partitioning results on Dataset 2 using our proposed method STRFCM. (a): GT1 

image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): data chunk size 256 pixels, 

(d): data chunk size 512 pixels.  

In Figure 4.5, we can find that STRFCM detected all main GT classes. However, not all GT 

subclasses were identified, such as the healthy peach trees subclass (grey) and the sparse pinus 

halepensis subclass (dark blue). This is because the mean spectral signature of the healthy peach 

trees subclass (grey) is close to that of the arundo donax subclass (blue), and the mean spectral 

signature of the sparse pinus halepensis subclass (dark blue) is close to that of the early wilting 
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peach trees subclass (brown), as shown in Figure 3.3 (b). The algorithm mispartitioned the 

points in these classes. 

Figure 4.6 displays the mean spectral signatures ± standard deviation of the final estimated 

classes of Dataset 2 with the chunk size of 256 pixels. We can observe that the GT healthy 

peach trees subclass (grey) and the sparse pinus halepensis subclass (dark blue) were not 

detected. In addition, STRFCM found more classes (11 estimated classes) than the 8 GT 

subclasses which means it found more detailed information than what is presented in the GT. 

The estimated classes C1, C10 and C11 belong to the same main GT river class. Similarly, the 

estimated classes C2 and C7 are part of the main GT pinus halepensis class, the estimated classes 

C3, C4 and C9 belong to the same main GT peach trees class, the estimated class C5 belongs to 

the main GT arundo donax class, and the estimated classes C6 and C8 are part of the main GT 

buildings class. 

According to Table 4.2, we can find that the input parameters have a huge impact on the 

partitioning performance of STRAP, leading to purity values ranging from 83.91% to 95.04%. 

Moreover, there are cases where STRAP fails to converge, such as the partitioning result with 

the parameter setting: threshold distance of 6000, initial batch of 256, damping rate of 0.7, and 

max cache of 10. The best partitioning performance is obtained with the parameter setting: 

threshold distance of 6000, initial batch of 2048, damping rate of 0.8, and max cache of 10, and 

another parameter setting: threshold distance of 7000, initial batch of 2048, damping rate of 0.8, 

and max cache of 10 (referred as parameter setting A). The worst partitioning performance is 

found with the parameter setting: threshold distance of 3000, initial batch of 256, damping rate 

of 0.8, and max cache of 700 (referred as parameter setting B). In this case, although the 

obtained purity is high (94.15%), STRAP incorrectly identifies an excessive number of objects 

as outliers, which is not ideal.  

Figure 4.7 illustrates the partitioning results of STRAP with parameter settings A and B. In 

Figure 4.7 (c), we observed that all main GT classes were successfully identified. Similar to the 

results of STRFCM, it failed to detect the GT healthy peach trees subclass (grey) and the sparse 

pinus halepensis subclass (dark blue). Some points belonging to the GT healthy peach trees 

subclass (grey) were incorrectly assigned to the arundo donax subclass (blue). This 

misassignment negatively impacts the partitioning performance of STRAP. Figure 4.7 (d) 

demonstrates the poorest partitioning result with numerous points (400 pixels) being identified 

as outliers (black points). Furthermore, many of the points that belong to the GT arundo donax 

subclass (blue) were mistakenly assigned to the dense pinus halepensis subclass (red) by 
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STRAP, which is not desirable. These partitioning results demonstrate that the choice of 

parameter values has significant influence on the partitioning performance of STRAP. 

   

C1 C2 C3 

   

C4 C5 C6 

   

C7 C8 C9 

  

C10 C11 

Figure 4.6: Mean spectral signatures ± standard deviation of 11 estimated classes of Dataset 2 

– data chunk size 256 pixels. 
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(a) (b) 

  

(c) (d) 

Figure 4.7: Partitioning results on Dataset 2 using STRAP with parameter settings A and B. (a): 

GT1 image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): parameter setting A, 

(d): parameter setting B.  

Table 4.2 also displays the partitioning performance of CODAS under various parameter 

settings. It becomes evident that the input parameters have a significant impact on the 

performance of CODAS. Across different parameter settings, CODAS detected varying 

numbers of classes and outliers. Despite achieving high purity (>96%), CODAS identified a 

greater number of classes than the 8 GT subclasses and labeled too many points as outliers. 

Therefore, the partitioning performance of CODAS on Dataset 2 falls short in comparison to 

that of STRFCM and STRAP. The highest purity (99.25%) is achieved with the parameter 

setting: threshold density of 6 and threshold radius of 540 (referred as parameter setting A). 

The lowest purity (96.39%) presented in this table is obtained with the parameter setting: 

threshold density of 8 and threshold radius of 550 (referred as parameter setting B). Figure 4.8 

shows the partitioning results of CODAS with parameter settings A and B. 
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(a) (b) 

  

(c) (d) 

Figure 4.8: Partitioning results on Dataset 2 using CODAS with parameter settings A and B. 

(a): GT1 image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): parameter setting A, 

(d): parameter setting B.  

 

In Figure 4.8 (c), all main GT classes were identified. Numerous points (159 pixels) were 

identified as outliers (black points). Similar to results of STRFCM and STRAP, some points 

belonging to the GT healthy peach trees subclass (grey) were incorrectly assigned to the arundo 

donax subclass (blue), thus impacting the partitioning performance of CODAS. In Figure 4.8 

(d), we can find that more points (296 pixels) were detected as outliers. Additionally, we 

observed that CODAS partitioned most of the points in the main GT peach trees class (brown) 

into its subclass, wilting peach trees (earthy yellow). However, according to the GT (Table 3.2), 

only about half of the points (501 pixels) in peach trees class (1189 pixels) belong to the 

subclass wilting peach trees.  

Comparing with STRAP, the highest purity (96.60%) of our proposed STRFCM method is 

higher than that of STRAP (95.04%). In addition, the number of classes estimated by STRFCM 

is closer to the GT (8 GT subclasses), while the number of estimated classes of STRAP and 

CODAS under the best parameter settings are strongly biased (more than 8 GT subclasses). 

This is the reason why CODAS achieves a purity as high as 99.25%. Furthermore, we can 

observe that the choice of parameters can have a significant impact on the final partitioning 

results of STRAP and CODAS. Even though STRFCM has a longer execution time compared 
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to STRAP and CODAS, it remains globally more time-efficient, if we consider the time to set 

the parameters.   

In conclusion, the proposed STRFCM method outperforms the STRAP and CODAS 

methods on hyperspectral image datasets, if we consider the purity, kappa index, number of 

estimated classes, instability of the results due to the numerous parameters involved, and the 

time required for parameter setting. The parameter tuning process for STRAP and CODAS is 

challenging and doesn’t guarantee optimization of the solution. Moreover, the process of 

finding the optimal parameter settings for STRAP and CODAS often relies on prior knowledge 

of the data stream, which may not be available in some real scenarios. 

 

4.4 Evaluation on Image Segmentation dataset 

Our proposed method was also compared with AAPStream [17], DenStream [16], STRAP [14], 

and CluStream [13] on Dataset 3, which contains 2310 instances. To ensure a fair comparison, 

we computed the partitioning purity of our method for the same stream lengths as those used in 

the compared methods (lengths of 500, 1000, 1500, 2000 and 2310), and the parameter settings 

of these four parametric methods followed their original papers. The performances of these 

parametric methods are consistent with the results reported in [17]. The results of our method 

were obtained using a constant data chunk size of 50. 

The comparison results are presented in Figure 4.9. Our method consistently achieved the 

highest purity values across various stream lengths. Its average purity is 92.11%.  

 
Figure 4.9: Purity criterion of five partitioning methods (STRFCM, AAPStream, DenStream, 

STRAP, and CluStream). 
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In conclusion, our proposed STRFCM method outperforms the other four parametric 

methods, achieving the highest purity across various stream lengths. It has a significant 

advantage as it does not require the parameter tuning process. 

 

4.5 Discussion  

Our proposed STRFCM method is an unsupervised and non-parametric method which can 

automatically partition data streams and estimate the number of classes without the need for 

prior information or the parameter tuning process. Based on the partitioning results, it is evident 

that the results of STRFCM remain relatively stable when applied to the partitioning of 

synthetic hyperspectral images. Variations in data chunk size have a negligible impact on its 

partitioning performance. Moreover, STRFCM outperforms the parametric partitioning 

methods STRAP and CODAS on hyperspectral images. In addition, when applied to partition 

the real-world dataset “Image Segmentation”, our method performs better than AAPStream, 

DenStream, STRAP and CluStream, achieving higher purity. The evaluation of STRFCM on 

the synthetic hyperspectral images and the real-world dataset demonstrates its ability to provide 

high-quality partitioning results. 
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Chapter 5 

Conclusion and perspectives 

 

5.1 Conclusion 

Data stream partitioning is an important technique in data stream processing, enabling the real-

time analysis of data streams. Unfortunately, many proposed methods require specifying the 

number of classes before partitioning and/or introducing user-defined parameters, the values of 

which may differ for different datasets. The limitation of these parametric methods is that they 

necessitate empirical parameter tuning process to determine appropriate parameter values to 

achieve optimal partition. This relies on the user's knowledge of the dataset and can be 

challenging to implement in real-world applications. 

Therefore, an unsupervised and non-parametric data stream partitioning method was 

proposed to address this limitation. This method does not require predetermining the number 

of classes or parameter tuning. It only needs streaming data as input to automatically partition 

the data stream and estimate the optimal number of classes. 

Our proposed STRFCM method mainly has two steps: data chunk partitioning step and 

fusion step. In the data chunk partitioning step, the data stream is divided into equally sized 

data chunks. STRFCM partitions these data chunks, and identifies the exemplar (centroid) of 

each class. In the fusion step, STRFCM partitions the exemplar set obtained during the chunk 

partitioning step to get the final optimal partition. 

In order to partition data chunks, we first selected an unsupervised and non-parametric static 

dataset partitioning method, FCMO, which can automatically partition the dataset without 

introducing any input parameters. We verified that FCMO using L1 norm as its similarity 

criterion outperforms FCMO using L2 norm. We continued to optimize the FCMO method by 

selecting an appropriate partitioning validity index employed as the FCMO evaluation criterion. 

In order to obtain finer classes and retain more detailed information during the chunk 

partitioning step, a new validity index WB-L1M based on the WB index was proposed. For the 

fusion step, we proposed WFCMO to partition the exemplar set, considering the sizes of the 

classes represented by exemplars. 

STRFCM was evaluated on two synthetic hyperspectral images and a real-world dataset 

using two external metrics. It was compared with two parametric unsupervised partitioning 
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methods, STRAP and CODAS, on the hyperspectral images. Additionally, it was evaluated 

against two parametric unsupervised methods, DenStream and STRAP, and one semi-

supervised method, CluStream, as well as one supervised method, AAPStream, on the real-

world dataset “Image Segmentation”. The experimental results demonstrate that STRFCM 

outperforms these parametric methods and achieves high partitioning performance. 

In conclusion, a novel unsupervised and non-parametric method called STRFCM was 

developed for partitioning data streams. This method is easy to apply by users, benefiting from 

the fact that it eliminates the need for prior information and obviates the requirement for 

empirical parameter tuning. It demonstrates efficiency in partitioning large, high spatial, and 

spectral dimensional data streams, especially hyperspectral data streams. 

 

5.2 Perspectives 

The work presented here opens to both algorithmic and applicative perspectives for further 

work on our proposed method. The first direction for further research involves completely 

eliminating the influence of the data chunk size. Our method exhibits good adaptability when 

partitioning the hyperspectral image data, and the impact of data chunk size on partitioning 

performance exhibits only marginal variations. However, this variation only renders the results 

relatively stable. Therefore, efforts should be focused on finding a solution that completely 

eliminates the influence of data chunk size on partitioning performance, ensuring consistently 

stable results for all types of data.  

According to the assessment results, our proposed STRFCM method is well-suited for 

partitioning synthetic hyperspectral image data streams. An interesting future direction is to 

assess our method on real and large hyperspectral images with valid ground truth.  

Another direction for further research considers reducing the execution time. We observed 

that as the chunk size increases, the algorithm’s execution time becomes longer, especially 

when partitioning very large data chunks. It is important to emphasize that, throughout our 

research, our primary focus has consistently been on ensuring the high-quality results of our 

method, rather than the time it consumes. To address the issue of execution times, one potential 

optimization strategy involves harnessing the power of higher-performance processors 

equipped with advanced parallel processing techniques. For instance, our current setup employs 

a 4-core processor. However, in the future, we can utilize an 8 or 16-core processor to process 

more partitioning tasks in parallel. This approach will enhance the efficiency of our method 

without compromising result quality.  
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Résumé : Avec le développement de 
systèmes de prise de décision automatisés 
et optimisés, le partitionnement de grands 
flux de données, qui ne dépend pas 
d'échantillons d'apprentissage, attire de plus 
en plus l'attention. Dans l'état de l'art, la 
majorité des méthodes de partitionnement 
de flux de données sont paramétriques, ce 
qui nécessite la spécification d'un ou 
plusieurs paramètres définis par l'utilisateur 
et/ou du nombre de classes avant le 
processus de partitionnement. Dans les 
applications pratiques, obtenir des 
connaissances a priori sur l'ensemble de 
données et déterminer les valeurs de 
paramètres optimales à l'avance est un défi. 
Par conséquent, notre recherche se 
concentre sur le développement d'une 
méthode non supervisée et non 
paramétrique facile à utiliser par les  
 

utilisateurs, bénéficiant du fait qu'elle 
élimine le besoin de connaissances a priori 
et supprime la nécessité de régler les 
paramètres de manière empirique. La 
méthode développée peut estimer de 
manière automatique le nombre de classes 
et partitionner le flux de données. Elle est 
efficace pour partitionner un flux de 
données de grandes tailles spatiale et 
spectrale, en particulier les flux de 
données hyperspectraux. La méthode 
proposée a été évaluée sur des bases de 
données réelles et synthétiques. Selon 
plusieurs critères d'évaluation objectifs, 
elle surpasse les cinq méthodes de 
partitionnement de flux de données 
comparées (trois méthodes paramétriques 
non supervisées, une méthode semi-
supervisée et une méthode supervisée 
utilisant l'apprentissage actif). 
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Abstract: With the development of 
automated and optimized decision-making 
systems, large data stream partitioning, 
which does not rely on training samples, has 
attracted more and more attention. In the 
stat-of-the-art, a majority of data stream 
partitioning methods are parametric which 
require the specification of one or more user-
defined parameters and/or the number of 
classes before the partitioning process. In 
practical applications, obtaining prior 
information about the dataset and 
determining optimal parameter values in 
advance can be challenging. Therefore, our 
research focuses on the development of an 
unsupervised and non-parametric method 
which is easy to apply by users, benefiting 
 

from the fact that it eliminates the need for 
prior information and obviates the 
requirement for empirical parameter 
tuning. The developed method can 
automatically estimate the number of 
classes and partition the data stream. It is 
efficient to partition large and high spatial 
and spectral dimensional data streams, 
especially hyperspectral data streams. 
Our proposed method was assessed on 
real-world and synthetic databases. 
According to several objective evaluation 
criteria, it outperforms the five compared 
data stream partitioning methods (three 
parametric unsupervised methods, one 
semi-supervised method and one 
supervised method using active learning). 
 

 


