
HAL Id: tel-04446348
https://theses.hal.science/tel-04446348

Submitted on 8 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partitioning of large hyperspectral image data streams
Yuding Wang

To cite this version:
Yuding Wang. Partitioning of large hyperspectral image data streams. Signal and Image processing.
Université de Rennes, 2023. English. �NNT : 2023URENS071�. �tel-04446348�

https://theses.hal.science/tel-04446348
https://hal.archives-ouvertes.fr

Par

Yuding WANG

Par

Yuding WANG

Par

Yuding WANG

Par

THESE DE DOCTORAT DE

L'UNIVERSITE DE RENNES 1

ECOLE DOCTORALE N° 601

Mathématiques, Télécommunications, Informatique,

Signal, Systèmes, Electronique

Spécialité : Signal, Image, Vision

L'UNIVERSITE DE RENNES 1

ECOLE DOCTORALE N° 601

Mathématiques, Télécommunications, Informatique,

Signal, Systèmes, Electronique

Spécialité : Signal, Image, Vision

L'UNIVERSITE DE RENNES 1

ECOLE DOCTORALE N° 601

Mathématiques, Télécommunications, Informatique,

Signal, Systèmes, Electronique

Spécialité : Signal, Image, Vision

L'UNIVERSITE DE RENNES 1

Partitioning of large hyperspectral image data streams

Thèse présentée et soutenue à l’université de Rennes 1, le 15 décembre 2023

Unité de recherche : IETR (UMR CNRS 6164)

Partitioning of large hyperspectral image data streams

Thèse présentée et soutenue à l’université de Rennes 1, le 15 décembre 2023

Unité de recherche : IETR (UMR CNRS 6164)

Partitioning of large hyperspectral image data streams

Thèse présentée et soutenue à l’université de Rennes 1, le 15 décembre 2023

Unité de recherche : IETR (UMR CNRS 6164)

Partitioning of large hyperspectral image data streams

Thèse présentée et soutenue à l’université de Rennes 1, le 15 décembre 2023

Rapporteurs avant soutenance :

Jenny BENOIS-PINEAU Professeur / Université Bordeaux 1

Gabriela CIUPERCA MC, HDR / Université Claude Bernard Lyon 1

Composition du Jury :

Président : Franck MARZANI Professeur / Université de Bourgogne

Examinateurs : Jenny BENOIS-PINEAU Professeur / Université Bordeaux 1

 Gabriela CIUPERCA MC, HDR / Université Claude Bernard Lyon 1

Dir. de thèse : Kacem CHEHDI Professeur / Université de Rennes

Rapporteurs avant soutenance :

Jenny BENOIS-PINEAU Professeur / Université Bordeaux 1

1

Table of contents

Résumé en Français ..2

Acknowledgments ..6

Notation ..7

List of abbreviations ... 10

1 Introduction ... 12

2 State of the art .. 15

2.1 Similarity criteria .. 15

2.2 Static dataset partitioning methods... 17

2.2.1 Semi-supervised methods ... 17

2.2.2 Unsupervised methods .. 20

2.3 Data stream partitioning methods .. 28

2.3.1 Semi-supervised methods ... 28

2.3.2 Unsupervised methods .. 31

2.4 Partitioning validity indices ... 40

3 Developed unsupervised data stream partitioning method (STRFCM) 44

3.1 Principle .. 44

3.2 Static dataset partitioning methods employed in STRFCM ... 46

3.2.1 Choice of FCMO for optimal partition .. 46

3.2.2 WFCMO for final optimal partition... 49

3.2.3 Evaluation of FCMO .. 51

3.2.3.1 Experimental datasets ... 51

3.2.3.2 Performance evaluation ... 54

3.2.4 Evaluation of WFCMO ... 62

4 Evaluation of developed method (STRFCM) .. 64

4.1 Evaluation protocol ... 64

4.2 Evaluation on hyperspectral image of algae ... 65

4.3 Evaluation on hyperspectral image of invasive vegetation .. 72

4.4 Evaluation on Image Segmentation dataset .. 79

4.5 Discussion ... 80

5 Conclusion and perspectives .. 81

5.1 Conclusion .. 81

5.2 Perspectives .. 82

Bibliography ... 83

List of figures ... 91

List of tables ... 93

2

Résumé en Français

Ces dernières années, le traitement de grandes quantités de données a suscité une attention

considérable. Le traitement des flux de données hyperspectrales en fait partie pour de

nombreuses applications, telles que la surveillance environnementale, la détection de cibles et

d'anomalies, la cartographie géologique et l'étude de la végétation. Actuellement, la majorité

du traitement des données hyperspectrales se fait hors ligne, après la fin de la mission

d'acquisition des données. En effet, il est difficile de traiter et d'analyser en ligne les données

présentant des dimensions spatiales et spectrales étendues.

Le partitionnement de flux de données utilise des données ou des lots de données qui

arrivent en continu et les attribue à des classes sans avoir observé l'intégralité des données. Nous

précisons que "le partitionnement" est une opération de subdivision d'un ensemble de données

en classes homogènes pour former une partition. La Figure 1 illustre un exemple de

partitionnement d'objets caractérisés par deux attributs où chaque classe présente peut être

représentée par son centroïde (légende ∗), également appelé exemplaire.

Figure 1 : Partitionnement d'objets en trois classes. A chaque classe est associé son centroïde

ou exemplaire (∗).

Pour le partitionnement des données, plusieurs méthodes existent. Elles peuvent être

divisées en trois catégories : supervisées, semi-supervisées et non supervisées. Les méthodes

supervisées utilisent des échantillons d'apprentissage pour effectuer les partitionnements.

Cependant, dans de nombreux contextes réels, l'obtention de données étiquetées peut être

difficile, voire impossible pour certains domaines applicatifs. Les méthodes semi-supervisées

ne nécessitent pas d'échantillons d'apprentissage mais exigent une connaissance a priori du

3

nombre de classes, tandis que les méthodes non supervisées ne nécessitent aucune connaissance

a priori. En effet, pour certaines applications, le nombre de classes est souvent difficile à

déterminer à l'avance et peut évoluer avec l'arrivée de nouvelles données, ce qui devient l'une

des principales limitations des méthodes semi-supervisées. Par conséquent, les méthodes non

supervisées sont mieux adaptées pour partitionner des flux de données.

Dans l'état de l'art, la plupart des méthodes sont paramétriques, ce qui nécessite que les

utilisateurs spécifient un ou plusieurs paramètres et/ou le nombre de classes avant le processus

de partitionnement. Cependant, l'utilisation de paramètres peut introduire un certain degré

d'incertitude dans les performances des méthodes. Les limitations des méthodes paramétriques

sont :

1) Le choix des valeurs de paramètres avant le processus de partitionnement qui peut avoir

un impact plus ou moins important sur les performances de partitionnement. Différentes

combinaisons des réglages de paramètres peuvent conduire à des résultats de

partitionnement variables.

2) Le réglage empirique des paramètres qui peut être complexe et chronophage

s’amplifiant avec les méthodes qui comportent plusieurs paramètres.

3) La difficulté de trouver des valeurs appropriées des paramètres lorsqu'il s'agit de

partitionner des flux d’objets nouveaux.

Pour remédier à ces inconvénients, nous avons développé une approche non supervisée et

non paramétrique appelée STRFCM (STReam Fuzzy C-Means). Cette méthode est capable

d'estimer de manière automatique le nombre de classes et de partitionner les flux de données

sans nécessiter de connaissance a priori, ni l'introduction de paramètres. Elle se compose de

deux étapes, partitionnement des blocs de données et fusion des classes des blocs pour la

formation de la partition finale :

1) Partitionnement des blocs de données : cette première étape emploie l'algorithme

« Fuzzy C-Means-Optimized » (FCMO) [11], qui utilise la norme 𝐿1 comme critère de

similarité et un indice de validité adaptatif de partition (noté WB-L1M) comme critère

d'évaluation. Cet indice utilise le rapport entre la dispersion intra-classe et la dispersion

inter-classes avec une pondération par la variance des classes. Cela permet d’obtenir des

classes assez représentatives des blocs de données ainsi que leurs exemplaires.

4

FCM est une méthode semi-supervisée adaptée à l’origine pour partitionner des données

statiques en un nombre prédéterminé de classes. FCMO optimise cette méthode en

estimant le nombre de classes sans connaissance a priori, en intégrant une procédure

incrémentale adaptative. Cet algorithme utilise la norme 𝐿2 [32], comme critère de

similarité et la différence entre la dispersion globale inter-classes et intra-classe d’une

partition comme critère d’évaluation (noté F). La maximisation de ce critère non

supervisé donne la partition optimale.

Pour une meilleure discrimination entre les objets sans amplification ni atténuation du

critère de similarité et donc la formation de classes homogènes, la norme 𝐿1 [32] a été

utilisée comme critère au lieu de la norme 𝐿2. De plus, pour renforcer la préservation

de l’ensemble des informations caractéristiques d’un bloc, nous avons proposé un

nouvel indice appelé WB-L1M comme critère d'évaluation de FCMO. La minimisation

du critère WB-L1M permet de déterminer une partition formée des classes fortement

homogènes ainsi que l’exemplaire de chacune d’elles.

2) Fusion : cette étape emploie l'algorithme FCMO pondérée (WFCMO) pour partitionner

l’ensembles des exemplaires obtenus dans la première étape en prenant en compte la

taille des classes qu’ils représentent. Il utilise la norme 𝐿1 comme critère de similarité

et l'indice F comme critère d'évaluation. Les résultats obtenus par l’algorithme WFCMO

surpassent ceux de FCMO lors de la partition de l’ensembles des exemplaires.

L’organigramme de la méthode proposée est présenté dans la Figure 2.

Figure 2 : Organigramme de la méthode de partitionnement non supervisée proposée.

5

La méthode proposée a été évaluée et comparée à trois méthodes paramétriques non

supervisées et une méthode semi-supervisée, ainsi qu'à une méthode supervisée utilisant

l'apprentissage actif. Cette évaluation a été réalisée sur des images hyperspectrales synthétiques

et une base de données réelles en utilisant des critères objectifs comme la pureté, l'indice Kappa

et l'instabilité des résultats causée par les différents réglages des paramètres. Le temps pour le

réglage empirique des paramètres est également intégré. Les résultats montrent que notre

méthode est plus performante que les méthodes comparées.

En conclusion, une nouvelle méthode non supervisée et non paramétrique appelée STRFCM

a été développée pour le partitionnement de flux de données. Cette méthode est facile à

appliquer par les utilisateurs, car elle élimine le recours à des connaissances a priori et évite la

nécessité du réglage empirique des paramètres. Elle peut en effet, estimer de manière

automatique le nombre de classes et a montré son efficacité pour le partitionnement de flux de

données de grandes tailles spatiale et spectrale, en particulier les données hyperspectrales.

Le manuscrit de cette thèse est organisé en cinq chapitres :

Le premier chapitre sert d'introduction au contexte de la recherche visée et à la structure de

la thèse.

Le deuxième chapitre passe en revue les principales méthodes de partitionnement des

données statiques et des flux de données de l'état de l'art. Différentes catégories de méthodes

sont étudiées en examinant leurs avantages et leurs limites respectifs. De plus, ce chapitre

introduit un éventail d'indices objectifs pour la validation d’une partition.

Le troisième chapitre présente la méthode développée. Il introduit tout d’abord le principe

de la méthode. Ensuite, nous décrivons et évaluons les améliorations apportées aux méthodes

adaptées pour le partitionnement des données statiques qui sont utilisées dans la méthode

proposée.

Le quatrième chapitre présente l’évaluation de la méthode développée incluant les

comparaisons avec cinq méthodes de partitionnement de flux de données de l’état de l’art (une

méthode supervisée utilisant l'apprentissage actif, une méthode semi-supervisée et trois

méthodes paramétriques non supervisées). Les différents tests sont effectués sur des images

hyperspectrales et sur une base de données largement utilisées par la communauté scientifique

comme référence pour l'apprentissage automatique. Deux applications sont traitées dans le cas

de partitionnement des images hyperspectrales. Le premier concerne la détection de plantes

invasives et le second la détection d’algues marines.

Le cinquième chapitre conclut notre recherche et évoque les perspectives.

6

Acknowledgments

I would like to express my sincere gratitude to the individuals who have been instrumental in

the successful completion of my PhD journey. First and foremost, I extend my deepest

appreciation to my thesis director, Prof. Kacem Chehdi, for his unwavering support, guidance,

and mentorship throughout the entirety of my research. His invaluable insights and dedication

have been pivotal in shaping this work. During the challenging times posed by the COVID-19

pandemic, he played a pivotal role in helping me navigate the inconveniences and disruptions,

ensuring that my research progress remained on track. His support during these trying

circumstances is deeply appreciated.

I would also like to extend my appreciation to the Region Bretagne and the Department of

Côtes d’Armor (France) for their financial support.

High tribute shall be paid to Prof. Franck Marzani for serving as the committee chair and

for his valuable patience and feedback. Sincere thanks go to committee members, Prof. Jenny

Benois-Pineau and Assoc. Prof. Gabriela Ciuperca, for their thoughtful reviews and

constructive comments.

I am immensely grateful to Assoc. Prof. Benoit Vozel and Assoc. Prof. Claude Cariou, for

their continuous encouragement and valuable contributions to my research. Their expertise and

collaborative spirit have enriched my academic experience. Special thanks also go to Mr. Josias

Lefevre for his meticulous data preparation.

In addition to my academic mentors, I extend my heartfelt thanks to my parents for their

unwavering belief in my capabilities and their constant encouragement. Their love and support

have been my anchor throughout this journey.

I would also like to express my gratitude to my boyfriend Difei Li for his exceptional

understanding, boundless patience, and dedicated care in every aspect of my life. His support

provided me with the emotional strength to persevere through the challenges of academia.

Lastly, I would like to acknowledge the countless friends, colleagues, and fellow researchers

who have contributed to my academic and personal growth. Your camaraderie and shared

experiences have enriched my life in immeasurable ways.

To all those who have played a part, no matter how big or small, in this academic

achievement, I extend my deepest thanks.

7

Notation

𝑛 Number of attributes of each object

𝑥𝑖 Object characterized by 𝑛 attributes

{𝑎𝑖
(1)

, 𝑎𝑖
(2)

, . . . , 𝑎𝑖
(𝑛)

} Attributes of object 𝑥𝑖

𝑑(𝑥𝑖, 𝑥𝑙) Distance between objects 𝑥𝑖 and 𝑥𝑙

𝑝, 𝑞 Positive integers

𝐿𝑝 𝐿𝑝 norm

𝐿1 𝐿1 norm

𝐿2 𝐿2 norm

𝑁 Number of objects to be partitioned

𝐾 Number of classes

𝒳 Set of objects 𝒳 = {𝑥𝑖}𝑖=1
𝑁

𝐶𝑗 𝑗th class

𝒫 Partition containing 𝐾 classes 𝒫 = {𝐶𝑗}
𝑗=1

𝐾

𝑧𝑗 Centroid of class 𝐶𝑗

𝐽(𝒫) Partitioning objective function

𝑚 Weighting exponent

𝑢𝑖𝑗 Membership grade of object 𝑥𝑖 to class 𝐶𝑗

𝑈 Membership matrix

𝑁𝑗 Number of objects in class 𝐶𝑗

𝐷(𝐶𝑗) Intra-class dispersion of class 𝐶𝑗

𝐷 Global intra-class dispersion

𝐷(𝐶𝑗) Inter-class dispersion of class 𝐶𝑗

𝐷 Global inter-class dispersion

𝜂 Coefficient of ponderation

𝑠(𝑥𝑖, 𝑥𝑘) Similarity between objects 𝑥𝑖 and 𝑥𝑘

𝑆 Similarity matrix

pr Preference parameter

𝑟(𝑥𝑖, 𝑥𝑘) Responsibility

𝑎(𝑥𝑖, 𝑥𝑘) Availability

𝜆 Damping rate

𝜏 Current iteration

𝜖 User-defined radius of a class

8

MinPts Minimum number of points within a class with a

radius of 𝜖

𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, … Series of sequential objects of data stream

𝑡 Current time

𝜉 Learning rate

𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅ Sum of squares of objects in a micro-cluster

𝐶𝐹1𝑥̅̅ ̅̅ ̅̅ ̅ Sum of objects in a micro-cluster

𝐶𝐹2𝑡 Sum of squares of timestamps in a micro-cluster

𝐶𝐹1𝑡 Sum of timestamps in a micro-cluster

𝑛𝑏𝑖 Number of objects that are aggregated into just one

object 𝑥𝑖

𝜀𝑖 Average mutual distance between 𝑥𝑖 and 𝑛𝑏𝑖

objects

𝑒𝑖 𝑖th exemplar

𝑑𝑖 Sum of the squares of distances between associated

objects and 𝑒𝑖

𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖 Last timestamp when an object is associated with

𝑒𝑖

ℎ User-specified window length

𝜔 Weight of a micro-cluster

𝛾 Decay factor

𝐶𝐹1̅̅ ̅̅ ̅ Weighted linear sum of objects

𝐶𝐹2̅̅ ̅̅ ̅ Weighted squared sum of objects

𝑡𝑜 Creation time of the outlier-micro-cluster

𝑟0 Radius of non-core region

𝑧𝑠 Centroid of dataset 𝒳

𝑥, y Objects 𝑥 and y

𝜎𝑖 Standard deviation of class 𝐶𝑖

𝜎𝒳 Standard deviation of dataset 𝒳

𝑁𝑑 Size of the data chunk

𝐵𝑡 Data chunk arriving at time 𝑡

𝑥𝑖(𝑡) The object 𝑥𝑖 in the data chunk 𝐵𝑡

𝐷𝑆𝑡 Data stream 𝐷𝑆𝑡 = ⋃ {𝐵𝑗} 𝑡
𝑗=1

𝐾𝑡 Number of classes in data chunk 𝐵𝑡

𝑧𝑖(𝑡) 𝑖th centroid of the 𝑖th class within data chunk 𝐵𝑡

𝐵𝐶𝑡 Exemplar set obtained by partitioning data chunk

𝐵𝑡

9

𝐵𝐶 Exemplar set 𝐵𝐶 = ⋃ {𝐵𝐶𝑗} 𝑡
𝑗=1

𝑁𝑒 Number of exemplars

𝐸𝑆 Set of exemplars 𝐸𝑆 = {𝑒𝑖}𝑖=1
𝑁𝑒

𝑆𝐶𝑖 𝑖th subclass

𝑁𝑠𝑐𝑖 Number of objects in subclass 𝑆𝐶𝑖

𝐾𝐺𝑇 Number of the main ground truth classes

𝑁𝑖
𝑗
 Number of objects in the 𝑖 th estimated class

allocated to the 𝑗th main ground truth class

𝑝𝑜 Actual observed agreement

𝑝𝑒 Hypothetical probability of chance agreement

10

List of abbreviations

STRFCM STReam Fuzzy C-Means

FCM Fuzzy C-Means

FCMO Fuzzy C-Means-Optimized

WFCMO Weighted FCMO

SVM Support Vector Machines

MLBG Modified LBG

AP Affinity Propagation

DBSCAN Density-Based Spatial Clustering of Application

with Noise

GDBSCAN Generalized Density-Based Spatial Clustering of

Applications with Noise

OPTICS Ordering Points to Identify the Clustering Structure

CLIQUE Clustering in Quest

EHCF Exponential Histogram of Cluster Feature

WAP Weighted AP

DP-Tree Dependency Tree

EDDS Enhanced Density-Based Method for Clustering

Data Streams

CODAS Clustering Online Data-streams into Arbitrary

Shapes

MDSC Multi-Density Stream Clustering

DFPS-Clustering Dynamic Fitness Proportionate Sharing Clustering

CMC Core Micro-Clusters

AAP Active Affinity Propagation

GT Ground Truth

RMSSTD Root-Mean-Square Standard Deviation Validity

Index

RS R-Squared Validity Index

𝛤 Modified Hubert Γ Statistic Validity Index

CH Calinski-Harabasz Validity Index

PS Partition Separation Validity Index

DB Davies-Bouldin Validity Index

XB Xie-Beni Validity Index

WB-L1 WB Index with the 𝐿1 Norm

WB-L1M Modified WB-L1

11

FCMO-L1-F FCMO using the 𝐿1 norm and the F index

FCMO-L2-F FCMO using the 𝐿2 norm and the F index

FCMO-L1-D FCMO using the 𝐿1 norm and the Dunn’s index

FCMO-L1-SIL FCMO using the 𝐿1 norm and the Silhouette index

FCMO-L1-WB FCMO using the 𝐿1 norm and the WB-L1 index

FCMO-L1-WBM FCMO using the 𝐿1 norm and the WB-L1M index

NC Number of Estimated Classes

CPU CPU Execution Time

OT Number of Detected Outliers

12

Chapter 1

Introduction

In recent years, the processing of large data has attracted widespread attention, and the

processing of hyperspectral data streams has aroused interest for many applications, such as

environmental monitoring, target and anomaly detection, geological mapping, and vegetation

survey [1]-[4].

Hyperspectral imaging sensors deployed on manned or unmanned aerial vehicles [5,6,7]

have emerged as popular tools for observing territories and their evolution. These sensors

enable the temporal monitoring of urban and rural green spaces, greenways, algal accumulation,

invasive plants, crop diseases, roof mapping, and more [8, 9]. However, the processing capacity

for handling the substantial volume of generated data has remained limited until now. Most of

the data processing occurs offline, post-completion of the data acquisition mission. Presently,

the challenge lies in processing and analyzing the data online, a crucial aspect for effectively

interpret the content of data [5]. In this domain, there is still a deficiency in state-of-the-art

techniques tailored to this type of processing, especially for hyperspectral images with

expansive spatial and spectral dimensions [8]. The purpose of our research is to develop a data

stream partitioning method to solve the issue of unsupervised and online learning of statistical

patterns within hyperspectral data streams. The developed method can be easily applied to

hyperspectral images acquired by hyperspectral sensors embedded in manned or unmanned

aerial platforms.

Data stream partitioning [10] uses data or data batches that arrive continuously and assigns

them to classes without the benefit of having observed the entire dataset. We specify that

"partitioning" is an operation of subdivision of a dataset into homogeneous classes to form a

partition.

Data stream partitioning methods can be divided into three categories: supervised, semi-

supervised and unsupervised. Supervised partitioning methods deal with training samples to

make partitions. However, in some real-world scenarios, obtaining labeled data can be

challenging or even impossible. Semi-supervised methods do not require training samples and

only necessitate prior knowledge of the number of classes, while unsupervised methods do not

need any prior information. In certain practical applications, the number of classes is difficult

to determine in advance and can change with incoming data, which becomes one of the main

13

limitations of semi-supervised methods. Therefore, unsupervised partitioning methods are

better suited to partition data streams without the need for prior information.

Nowadays, most of the data stream partitioning methods are parametric requiring users to

specify one or more parameters and/or the number of classes before the partitioning process.

The introduction of parameters will have a more or less impact on the partitioning performance.

The employed parameters often need to be tuned by users in advance in order to predetermine

their values.

In practice, there are situations where prior knowledge of the dataset cannot be known in

advance. Therefore, it is difficult to conduct empirical parameter tuning to determine the

appropriate values of parameters to obtain the optimal partition. Furthermore, the values of

these parameters are not universally applicable to all types of datasets, and when the type of

dataset changes, the parameters need to be retuned. Eliminating the reliance on parameters

presents a substantial challenge in data stream partitioning. To address this challenge, an

unsupervised and non-parametric approach, named STRFCM (STReam Fuzzy C-Means), was

developed that can automatically estimate the number of classes and partition the data stream

without the need for prior information or the introduction of any parameters.

Our proposed method mainly consists of two fundamental steps. The data chunks in the

stream are first partitioned by the Fuzzy C-Means-Optimized (FCMO) [11] method in order to

identify classes and their exemplars in each data chunk. In this step, we optimized FCMO to

align with the requirements of our approach. FCMO is an unsupervised static dataset

partitioning method. It seeks to enhance the performance and efficiency of the traditional Fuzzy

C-Means partitioning algorithm (FCM) [12]. The subsequent fusion step employs the proposed

Weighted FCMO (WFCMO) method to partition the weighted exemplar set and obtain the final

optimal partitioning results.

In contrast to parametric partitioning methods, such as CluStream [13], which requires the

predefined number of classes, and STRAP [14], which necessitates the predetermination of six

user-defined parameters, our proposed method performs without the need for labeled data or

any other prior information. Furthermore, it does not require parameter tuning, making it

adaptable to a wide range of datasets.

The proposed method was assessed on synthetic hyperspectral images and a real-world

dataset. Its partitioning performance was evaluated by using two external metrics: purity and

kappa index. Besides, the number of estimated classes and execution time were also considered.

To demonstrate the effectiveness of our proposed method, we compared it to five parametric

partitioning methods: three unsupervised methods (STRAP [14], CODAS [15] and DenStream

14

[16]), one semi-supervised method (CluStream [13]), and one supervised method using active

learning (AAPStream [17]). The results show that our method performs better than the

compared methods.

This thesis is organized as follows. Chapter 2 provides an overview of the current state of

the art in the fields of static dataset and data stream partitioning. Chapter 3 introduces the

proposed unsupervised and non-parametric approach in detail. Chapter 4 presents the

assessment of our proposed method and gives comparative analysis with five parametric

partitioning methods mentioned above. Some conclusions and perspectives for further research

are presented in Chapter 5.

15

Chapter 2

State of the art

This chapter reviews and discusses the state of the art related to partition static datasets and data

streams. Partitioning methods are widely used in various fields, such as environmental

monitoring, sensor networks, network intrusion detection, fraud detection, fault detection, and

medical diagnosis [10], [18]-[25]. These methods can be divided into three categories:

supervised, semi-supervised and unsupervised partitioning methods. Each category can also be

subdivided into parametric and non-parametric methods.

Supervised methods require labeled training data to learn and accomplish the partitioning

task. Maximum likelihood classifier [26] and support vector machines (SVM) [27] are two

commonly used approaches in supervised partitioning. Semi-supervised and unsupervised

methods do not require training samples. However, semi-supervised methods need to specify

the number of classes in advance, while unsupervised methods do not require the number of

classes or any other prior knowledge. In the case of supervised methods, a significant limitation

is their reliance on training samples, which, for certain applications, cannot be obtained. Semi-

supervised and unsupervised methods do not have this limitation. Considering this constraint,

we will mainly present semi-supervised and unsupervised partitioning methods in the following

sections. The advantages and drawbacks of these methods are explained in detail in this chapter.

In addition, the partitioning validity indices are introduced.

2.1 Similarity criteria

Data partitioning involves the split of a dataset of objects into different classes following a

similarity criterion [28]. In essence, this process aims to group objects of the same class as

closely as possible while ensuring significant separation between objects from different classes.

Figure 2.1 depicts a partitioning example of objects characterized by two attributes. Each class

can be represented by its centroid (legend ∗), also called an exemplar.

16

Figure 2.1: Partitioning of objects in three classes. To each class is associated its centroid or

exemplar (∗).

Data partitioning methods critically rely on the choice of similarity criteria to form classes

in fields such as data analysis [29], natural language processing [30], and image processing [31].

Depending on the nature of the data and the specific problem being addressed, different

types of similarity measures are used. Some common similarity criteria are introduced below.

𝐿𝑝 norm is referred as Minkowski distance [32] which is most often used for comparing

numerical data. Suppose we have two objects 𝑥𝑖 and 𝑥𝑗 , each characterized by 𝑛 attributes:

{𝑎𝑖
(1)

, 𝑎𝑖
(2)

, . . . , 𝑎𝑖
(n)

} and {𝑎𝑗
(1)

, 𝑎𝑗
(2)

, . . . , 𝑎𝑗
(n)

}. The 𝐿𝑝 norm distance between the objects 𝑥𝑖 and

𝑥𝑗 is computed as:

𝑑(𝑥𝑖, 𝑥𝑗) = (∑|𝑎𝑖
(𝑙)

− 𝑎𝑗
(𝑙)|

𝑝
𝑛

𝑙=1

)

1 𝑝⁄

 (2.1)

where 𝑝 is a positive integer.

When 𝑝 = 2, the 𝐿2 norm is the standard Euclidean distance.

𝑑(𝑥𝑖, 𝑥𝑗) = (∑|𝑎𝑖
(𝑙)

− 𝑎𝑗
(𝑙)|

2
𝑛

𝑙=1

)

1 2⁄

 (2.2)

It’s often employed for data partitioning and classification tasks.

When 𝑝 = 1, the 𝐿1 norm measures the sum of absolute differences between two objects.

17

𝑑(𝑥𝑖, 𝑥𝑗) = ∑|𝑎𝑖
(𝑙)

− 𝑎𝑗
(𝑙)|

𝑛

𝑙=1

 (2.3)

It can also be used for data partitioning and classification tasks.

Other similarity criteria such as Cosine similarity [33], Hamming distance [34], Levenshtein

distance [35], and Jaccard similarity [36] can also be employed.

Different partitioning methods employ different similarity criteria according to the

characteristics of objects and the specific problems being addressed. A good partitioning

method will produce classes with high intra-class similarity and low inter-class similarity. The

following sections will introduce the static dataset and data stream partitioning methods.

2.2 Static dataset partitioning methods

Static dataset partitioning methods consider all objects are available from the beginning. They

process the entire dataset at once, partitioning objects into classes based on similarity measures.

As explained above, we only analyze semi-supervised and unsupervised static partitioning

methods, which differ based on whether the number of classes needs to be determined in

advance. Depending on whether they employ user-defined parameters, they can be further

divided into parametric and non-parametric methods.

2.2.1 Semi-supervised methods

In this section, semi-supervised static dataset partitioning methods are presented and analyzed.

Assume that 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁} is a set of 𝑁 objects, where each object is characterized by 𝑛

attributes. The partitioning result on 𝒳 is denoted as 𝒫 = {𝐶1, 𝐶2, … , 𝐶𝐾} which contains 𝐾

classes. The centroid of class 𝐶𝑗 is defined as 𝑧𝑗.

• K-Means

K-Means [37] is a popular and traditional partitioning method, aiming to partition a dataset into

predetermined number of classes. During partitioning, an objective function is used for

assessing the partitioning quality, which is defined as:

𝐽(𝒫) = ∑ ∑ 𝑢𝑖𝑗𝑑2(𝑥𝑖, 𝑧𝑗)

𝑁

𝑖=1

𝐾

𝑗=1

 (2.4)

18

where 𝑢𝑖𝑗 = 1 if 𝑥𝑖 ∈ 𝐶𝑗 and 0 otherwise. It calculates the sum of Euclidean distance between

each object and its corresponding class centroid. For a given 𝐾, the optimal partition is achieved

when 𝐽(𝒫) is minimized, which means the intra-class dispersion is the lowest at this time and

the objects are close to their class centroids with the highest intra-class similarity.

K-Means adopts a greedy optimization approach that begins with a random partition and

iteratively moves objects from one class to another to minimize the objective function value

until a local optimum is reached. However, it's important to note that the local optimum can be

influenced by the initial setup of the greedy optimization process.

The K-Means algorithm is an iterative scheme and mainly has four steps:

Input:

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁}

– Number of classes 𝐾

1) Randomly select 𝐾 objects from the dataset 𝒳 as the initial centroids of 𝐾 classes.

2) Calculate the distance between each object in the dataset and each class centroid. Assign

each object to its nearest class.

3) Update the class centroids to minimize the objective function 𝐽(𝒫) (Equation 2.4).

4) Repeat steps 2 and 3 until the class centroids stabilize.

Output: Discovered 𝐾 classes and exemplar of each class

The K-Means method is very simple to use and can be easily implemented in solving many

practical problems. It works well for compact and hyper-spherical classes. In addition, K-Means

is effective in partitioning large-scale datasets due to its low time and space complexity.

Nevertheless, it comes with limitations. The number of classes should be specified in advance,

which is sometimes impractical in real-world scenarios. It is sensitive to the initial selection of

class centroids and might converge to a local optimum rather than the global optimum.

Based on the same iteration process, K-Median [38] and K-Modes [39] were proposed. K-

Median employs the median of attribute values as class exemplars. It is often chosen in cases

where the data could potentially include outliers or when the focus is on prioritizing robustness

over computational speed. K-Modes is designed for categorical data and adopts categorical

similarity criterion.

19

• Fuzzy C-Means (FCM)

While K-Means assigns each object to only one exact class, FCM [12] provides a more flexible

approach that allows objects to belong to multiple classes. The primary concept is to use the

membership grade to determine the degree to which each object belongs to a certain class.

Hence, objects positioned at the periphery of a class with lower membership grades are more

inclined to have a lesser affiliation with that class compared to objects situated closer to the

class centroid.

The partitioning objective function of FCM algorithm is defined as:

𝐽(𝒫) = ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑2(𝑥𝑖, 𝑧𝑗)

𝑁

𝑖=1

𝐾

𝑗=1

, 𝑢𝑖𝑗 ∈ [0,1] (2.5)

subject to:

∑ 𝑢𝑖𝑗

𝐾

j=1

= 1 (2.6)

where 𝑢𝑖𝑗 denotes the membership grade of the object 𝑥𝑖 to the class 𝐶𝑗, 𝑧𝑗 is the centroid of

class 𝐶𝑗, 𝑑(∙,∙) calculates the Euclidian distance, and 𝑚 is the weighting exponent that controls

the fuzziness of the partition, 𝑚 ∈ [1, +∞). The objective function calculates the sum of

weighted squared Euclidean distance between each object in dataset 𝒳 and each class centroid.

The main goal of FCM is to minimize 𝐽(𝒫).

FCM algorithm is an iterative scheme involving four steps [12]:

Input:

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁}

– Number of classes 𝐾

– Parameter defined by users: m: weighting exponent

1) Fix 𝐾, 𝑚 and randomly initialize the membership matrix 𝑈 = [𝑢𝑖𝑗] (𝑖 ∈ 1,2, . . . , 𝑁, 𝑗 ∈

1,2, . . . , 𝐾). The values of 𝑢𝑖𝑗 must satisfy the constraint of Equation 2.6.

2) Compute class centroids using the following equation:

20

𝑧𝑗 =
∑ 𝑢𝑖𝑗

𝑚𝑁
𝑖=1 𝑥𝑖

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

, 𝑗 = 1,2, . . . , 𝐾 (2.7)

3) Update the membership matrix 𝑈 = [𝑢𝑖𝑗], the equation is shown below:

𝑢𝑖𝑗 =

(
1

𝑑(𝑥𝑖, 𝑧𝑗)
)

2
m−1

∑ (
1

𝑑(𝑥𝑖, 𝑧𝑘))

2
m−1𝐾

𝑘=1

, 𝑖 = 1,2, . . . , 𝑁 (2.8)

4) Repeat steps 2 and 3 until the class centroids stabilize or the maximum number of

iterations is reached.

Output: Discovered 𝐾 classes and exemplar of each class

The weighting exponent 𝑚 determines the level of partitioning fuzziness. A large value of

𝑚 results in smaller membership grade values so that the partition is fuzzier. When 𝑚 = 1, the

membership grade 𝑢𝑖𝑗 will converge to 0 or 1, which implies a crisp partitioning. At this point,

the FCM method is equivalent to the K-Means method. For most data, 1.5 ≤ m ≤ 3 gives good

results [12].

FCM offers the advantage of soft partitioning by assigning objects to classes with

membership grades. This property enables a single object to belong to multiple classes with

varying degrees of membership. FCM algorithm also has the same drawback as K-Means

algorithm, that is, it is easy to fall into the local optimum.

2.2.2 Unsupervised methods

Unsupervised static dataset partitioning methods do not require predetermining the number of

classes which eliminates the need for prior information. Some typical unsupervised methods

are presented below.

• Modified LBG (MLBG)

Modified version of LBG method (MLBG) [40] is an unsupervised method based on the K-

Means algorithm and LBG [41] algorithm. Its primary objective is to automatically determine

the optimal number of classes and achieve the optimal partition. It evaluates the intermediate

partitioning results and modifies the current result by exploiting previous results. The MLBG

algorithm mainly consists of five steps:

21

Input:

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁}

– Parameter defined by users: 𝜂: coefficient of ponderation

1) Subdivide the dataset into two classes.

2) Select the class with the largest dispersion which will be subdivided into two subclasses.

The intra-class dispersion is measured as follows:

𝐷(𝐶𝑗) =
1

𝑁𝑗
∑ 𝑢𝑖𝑗𝑑(𝑥𝑖, 𝑧𝑗)

𝑁

𝑖=1

 (2.9)

where 𝑢𝑖𝑗 = 1 if 𝑥𝑖 ∈ 𝐶𝑗 and 0 otherwise, 𝑁𝑗 is the number of objects in class 𝐶𝑗. If the

partition is deemed invalid in the end, choose the class with the next largest dispersion.

3) Choose the initial two subclass centroids from the selected class. The first subclass

centroid is defined as the centroid of the selected class, while the second centroid is

defined as the object farthest from the first centroid in the selected class. If the partition

is not valid in the end, select the next farthest object as the second centroid.

4) Use K-Means to partition the objects from 𝑘 to 𝑘 + 1 classes.

5) Evaluate the partition with 𝑘 + 1 classes. This final step validates or rejects the

partitioning results to find the optimal final partition and the number of estimated classes.

The principle is to examine the evolution of the global intra-class dispersion, defined as

follows:

𝐷(𝒫𝑘) =
1

𝑘
∑ 𝐷(𝐶𝑗)

𝑘

𝑗=1

 (2.10)

The partition with 𝑘 + 1 classes is considered valid if:

𝐷(𝒫𝑘) − 𝐷(𝒫𝑘+1) > 𝜂𝐷(𝒫𝑘+1) (2.11)

where 𝜂 is a coefficient of ponderation related to the precision guaranteeing the stopping

of the algorithm. If the validation criterion is satisfied, one goes back to step 2 with 𝑘 +

1 determined classes and attempts to create 𝑘 + 2 classes. Conversely, if the criterion is

22

not met, return to step 3 with 𝑘 classes and change the selected subclass centroid. If

none of the choices of subclass centroids results in a valid partition, the selected class

for subdivision in step 2 needs to be changed. If none of the classes provides a valid

partition, the optimal partitioning result is achieved.

Output: Discovered 𝐾 classes and exemplar of each class

MLBG does not require specifying the number of classes in advance. However, it introduces

a coefficient of ponderation 𝜂, the value of which may impact the quality of the partitioning

results.

• Affinity Propagation (AP)

Affinity propagation (AP) [42] is an unsupervised partitioning method developed by Frey and

Dueck. The fundamental concept of AP is to treat all objects as potential class exemplars and

connect the objects to form a network (similarity matrix) which consists of similarities of pairs

of objects. The message (responsibility and availability) exchanges through each edge in the

network to find the most representative exemplar of each object. The responsibility 𝑟(𝑥𝑖, 𝑥𝑘)

indicates how suitable object 𝑥𝑘 is to be the exemplar for 𝑥𝑖. The availability 𝑎(𝑥𝑖, 𝑥𝑘) indicates

the suitability of 𝑥𝑖 to select 𝑥𝑘 as its exemplar. Responsibility and availability messages are

updated iteratively.

The responsibility is computed by the following equations:

𝑟(𝑥𝑖, 𝑥𝑘) = 𝑠(𝑥𝑖, 𝑥𝑘) − 𝑚𝑎𝑥𝑗,𝑗≠𝑘[𝑎(𝑥𝑖, 𝑥𝑗) + 𝑠(𝑥𝑖, 𝑥𝑗)],

𝑠(𝑥𝑖, 𝑥𝑘) = −𝑑2(𝑥𝑖, 𝑥𝑘), for 𝑖 ≠ 𝑘

𝑟(𝑥𝑘, 𝑥𝑘) = 𝑠(𝑥𝑘, 𝑥𝑘) − 𝑚𝑎𝑥𝑗,𝑗≠𝑘[𝑎(𝑥𝑘, 𝑥𝑗) + 𝑠(𝑥𝑘, 𝑥𝑗)], 𝑠(𝑥𝑘, 𝑥𝑘) = 𝑝𝑟 ∀𝑘

(2.12)

where 𝑠(𝑥𝑖, 𝑥𝑘) indicates the similarity between objects 𝑥𝑖 and 𝑥𝑘 , 𝑠(𝑥𝑘, 𝑥𝑘) represents the

suitability of the object 𝑥𝑘 as an exemplar, and 𝑝𝑟 is the preference parameter which can be set

as the median of the input similarities or other possible values.

The availability is defined as follows:

𝑎(𝑥𝑖, 𝑥𝑘) = 𝑚𝑖𝑛 {0, 𝑟(𝑥𝑘, 𝑥𝑘) + ∑ 𝑚𝑎𝑥{0, 𝑟(𝑥𝑗, 𝑥𝑘)}
𝑗,𝑗≠{𝑖,𝑘}

} , for 𝑖 ≠ 𝑘 (2.13)

23

𝑎(𝑥𝑘, 𝑥𝑘) = ∑ 𝑚𝑎𝑥{0, 𝑟(𝑥𝑗, 𝑥𝑘)}
𝑗,𝑗≠𝑘

During partitioning, the responsibilities and availabilities are updated using the following

equations.

𝑟(𝑥𝑖, 𝑥𝑘)𝜏 = 𝜆𝑟(𝑥𝑖, 𝑥𝑘)𝜏−1 + (1 − 𝜆)𝑟(𝑥𝑖, 𝑥𝑘)𝜏 (2.14)

𝑎(𝑥𝑖, 𝑥𝑘)𝜏 = 𝜆𝑎(𝑥𝑖, 𝑥𝑘)𝜏−1 + (1 − 𝜆)𝑎(𝑥𝑖, 𝑥𝑘)𝜏 (2.15)

where 𝜏 is the current iteration, and 𝜆 is defined as the damping rate which is used to avoid

numerical oscillations that may arise under some circumstances.

The AP algorithm follows an iterative scheme with the main steps shown below:

Input:

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁}

– Parameters defined by users:

o 𝜆: damping rate (𝜆 ∈]0,1[)

o 𝑝𝑟: preference parameter

1) Initialize the responsibilities and availabilities using Equation 2.16, and calculate the

similarity matrix 𝑆 of size 𝑁 × 𝑁, where 𝑁 is the number of objects.

𝑟(𝑥𝑖, 𝑥𝑘) = 0, 𝑎(𝑥𝑖, 𝑥𝑘) = 0, for all 𝑖, 𝑘 (2.16)

2) Update the responsibility matrix using Equation 2.12 and 2.14.

3) Update the availability matrix using Equation 2.13 and 2.15.

4) Combine availabilities and responsibilities for each object 𝑥𝑖 to identify its exemplar 𝑥𝑘

which maximizes [𝑎(𝑥𝑖, 𝑥𝑘)𝜏 + 𝑟(𝑥𝑖, 𝑥𝑘)𝜏].

5) Repeat steps 2-4 until one of the following conditions is met: a predetermined number

of iterations is reached, changes in the messages fall below a threshold, or the local

decisions remain constant for a certain number of consecutive iterations.

Output: Discovered 𝐾 classes and exemplar of each class

24

Figure 2.2, sourced from [42], illustrates the exchange of availability and responsibility

messages between every pair of objects until three classes are formed. Each class is represented

by a real object chosen as an exemplar by all other objects within the class.

The AP method eliminates the requirement for specifying the number of classes in advance.

However, users are still required to provide input for two key parameters: the preference

parameter (initial suitability of an object as an exemplar) and the damping rate, which aids in

algorithm convergence.

Figure 2.2: AP message passing process [42]. (a): availability and responsibility messages, (b):

iterations of message passing.

LSS-AP method [43], as an extension of AP, was proposed to address the issue of the

preference parameter. This method streamlines the partitioning process by consolidating closely

resembling objects into a singular representative. Subsequently, it employs an automated search

to identify the optimal value of the preference parameter, aiming to maximize an evaluation

25

criterion based on the inter-class variance, as defined by Levine and Nazif [44]. Finally, the

optimal number of classes can be identified.

• Mean Shift

Comaniciu et al. [45] introduced Mean Shift, an iterative density-based unsupervised

partitioning method that eliminates the need for specifying the number of classes in advance.

In the Mean Shift algorithm, the class centroids are determined by the density of objects within

a user-defined range. These centroids are then continuously updated through a density gradient

ascent procedure until the class centroids stabilize. Density-based methods are particularly

adept at discovering arbitrarily shaped classes. It relies on the assumption that dense regions

are classes, and classes are separated by low-density regions [46].

• DBSCAN

DBSCAN [46] (Density-Based Spatial Clustering of Application with Noise) is a popular

density-based parametric unsupervised algorithm in the field of partitioning. It defines classes

as the largest collection of density-connected objects, identifying regions with sufficient density

as classes. This approach enables the identification of classes with arbitrary shapes (Figure 2.3

(a)) in noisy spatial datasets. In DBSCAN, the objects are divided into three categories: core

points, reachable points, and noise points. A core point must have at least MinPts points within

its user-defined radius 𝜖. Points that are reachable from a core point within the radius 𝜖 are

considered density-reachable for that core point. These points can be directly connected with a

series of core points to extend classes. All such points are thus density-connected (Figure 2.3

(b)). DBSCAN can automatically estimate the number of classes and identify classes with

arbitrary shapes. However, its performance is sensitive to the configuration of two user-defined

parameters: MinPts and radius 𝜖.

GDBSCAN (Generalized Density-Based Spatial Clustering of Applications with Noise) [47]

method is an extension of the DBSCAN method that can adaptively adjust the radius 𝜖

according to the local density. OPTICS (Ordering Points to Identify the Clustering Structure)

[48] was proposed to improve DBSCAN algorithm to reduce the sensitivity of the user-defined

radius. It reveals the underlying density relationships among objects by generating an

"ordering" of objects according to their reachability distance. However, it is necessary to

predetermine the input parameter MinPts.

26

Figure 2.3: DBSCAN [46]. (a): arbitrary-shaped classes, (b): point 𝑝 and point 𝑞 are density-

connected.

• WaveCluster

Grid-based partitioning methods partition data in a grid structure. Typically, they create a

regular grid that divides the data space into cells (Figure 2.4) and perform the required

operations within the quantization space. As illustrated in Figure 2.4, each attribute's domain is

divided into segments. A cell emerges from the conjunction of these segmented attributes. Each

object is assigned to a cell. Subsequently, the grid cells are partitioned based on their density.

Figure 2.4: Grid-based partitioning: imposing grids on data space [49].

The main advantage of the grid-based methods lies in their fast processing time, which

depends on the number of cells in each dimension within the quantization space. Additionally,

they are capable of identifying classes with arbitrary shapes. However, it's important to note

that grid-based methods necessitate the predefinition of the grid size [10].

27

WaveCluster [50] is a grid-based unsupervised partitioning method which employs a

wavelet-based approach to partition the data space into cells of varying sizes. It establishes a

two-dimensional grid over the dataset and represents the data points in each cell by the number

of points [51]. Therefore, objects are represented in a grey-scale format, akin to an image. This

leads to the redefinition of the problem of identifying classes as an image segmentation problem,

where wavelets are used for smoothing and multi-scaling purposes.

The WaveCluster algorithm mainly consists of four steps:

Input:

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁}

– Wavelet function

– Parameter defined by users: grid size

1) Quantize space to create a data grid and allocate each data point to a cell.

2) Apply wavelet transformation to the cells.

3) Use the average of all sub-images to find connected classes.

4) Map the identified classes back to the points in the original space.

Output: Discovered 𝐾 classes

WaveCluster exhibits the capability to partition classes with arbitrary shapes, eliminating

the requirement of predefining the number of classes. However, it is sensitive to the choice of

wavelet functions and the grid size defined by users.

• CLIQUE

Agrawal et al. [52] proposed CLIQUE (Clustering in Quest), a grid and density based

partitioning method designed to partition high-dimensional datasets. It can automatically find

low-dimensional subspaces of high-dimensional data space and identify dense classes in these

subspaces. However, the partitioning accuracy might suffer from the initial segmentation of the

data space.

• Fuzzy C-Means-Optimized (FCMO)

FCMO [11] is an unsupervised, non-parametric extension of the FCM algorithm [12]. One of

its notable features is the capability to automatically estimate the optimal number of classes,

effectively eliminating the influence of random selection for initial class centroids encountered

28

in FCM. Due to its independence from the need for pre-determining the number of classes and

parameter tuning, we incorporate it into our proposed method. A detailed introduction of FCMO

will be presented in Subsection 3.2.1.

2.3 Data stream partitioning methods

Different from the static dataset partitioning using the entire obtained dataset, as described in

the previous section, the data stream partitioning uses the data or data chunks that arrive

continuously and assigns the arrived data to classes without the benefit of having observed the

entire dataset.

In the state-of-the-art, many methods have been proposed for data stream partitioning as

presented in [53]-[56]. This section provides a literature review on the state-of-the-art semi-

supervised and unsupervised methods. Semi-supervised methods require the prior information

about the number of classes in the data stream, while unsupervised methods do not need any

prior information. According to their need for input parameters, they can be further divided into

parametric methods and non-parametric methods. The state-of-the-art data stream partitioning

methods are introduced in the following subsections.

2.3.1 Semi-supervised methods

Assume that a data stream consists of a series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, …, where

𝑥𝑡 is the object arriving at time 𝑡.

• Online K-Means

Barbakh et al. [57] proposed Online K-Means method extending classic K-Means to the case of

online data partitioning where the number of classes must be specified in advance. The

partitioning objective function 𝐽(𝒫) for K-Means has been shown in Equation 2.4. The online

K-Means algorithm mainly has two steps:

Input:

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, …

– Number of classes 𝐾

– Parameter defined by users: 𝜉: learning rate

1) Randomly initialize the class centroids 𝑧1, 𝑧2, … , 𝑧𝐾.

2) Sequentially input object 𝑥𝑡 and find its closest class centroid 𝑧𝑗. Then update 𝑧𝑗 as

29

𝑧𝑗
(𝑛𝑒𝑤) = 𝑧𝑗 + 𝜉(𝑥𝑡 − 𝑧𝑗) (2.17)

where 𝜉 is a learning rate usually set to be a small positive value.

Output: Discovered 𝐾 classes and exemplar of each class

The Online K-Means algorithm has the same advantages and drawbacks with the K-Means

algorithm.

• STREAM

STREAM [58] is one of the earliest data stream partitioning methods. Its primary concept is to

divide the data stream into a series of data batches with fixed batch size, then employ K-Median

to partition the data batches and identify classes in each batch. Before partitioning, it’s

necessary to specify the number of classes.

• CluStream

Aggarwal et al. [13] proposed a method based on user-specified, online clustering queries,

called CluStream. It divides the partitioning process into two phases. The online phase employs

the concept of micro-clusters to periodically store detailed information (summaries) of the

stream, and the offline phase uses K-Means to partition the stored summaries in a user-defined

time horizon to identify macro-clusters.

A micro-cluster for a set of n-dimensional objects 𝑥1, 𝑥2, … , 𝑥𝑁𝑖
 with timestamps

𝑡1, 𝑡2, … , 𝑡𝑁𝑖
 is defined as the (2 ∙ 𝑛 + 3) tuple (𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅, 𝐶𝐹1𝑥 ,̅̅ ̅̅ ̅̅ ̅̅ 𝐶𝐹2𝑡, 𝐶𝐹1𝑡, 𝑁𝑖), wherein 𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅

and 𝐶𝐹1𝑥̅̅ ̅̅ ̅̅ ̅ each correspond to a vector of 𝑛 entries [13]. The definitions of these entries are as

follows:

– 𝐶𝐹2𝑥̅̅ ̅̅ ̅̅ ̅ contains the sum of squares of objects (i.e., ∑ 𝑥𝑗
2𝑁𝑖

𝑗=1).

– 𝐶𝐹1𝑥̅̅ ̅̅ ̅̅ ̅ contains the sum of objects (i.e., ∑ 𝑥𝑗
𝑁𝑖
𝑗=1).

– 𝐶𝐹2𝑡 contains the sum of squares of timestamps 𝑡1, 𝑡2, … , 𝑡𝑁𝑖
.

– 𝐶𝐹1𝑡 contains the sum of timestamps 𝑡1, 𝑡2, … , 𝑡𝑁𝑖
.

– 𝑁𝑖 is the number of objects in the ith micro-cluster.

Figure 2.5 depicts the diagram of the CluStream algorithm to show how it works. CluStream

first initializes the micro-clusters by employing K-Means on an initial batch that contains the

first specific number of objects in the stream. During the online phase, when a new object

30

arrives, it is partitioned into its closest micro-cluster if the distance between the object and the

centroid of that micro-cluster is less than the threshold. If the distance exceeds the threshold, a

new micro-cluster will be created. Since the number of micro-clusters is fixed, it is necessary

to reduce the old micro-clusters by one. This can be achieved by either deleting an old micro-

cluster or merging two of the old micro-clusters. During the offline phase, CluStream employs

a modified K-Means algorithm to partition the identified micro-clusters within the user-

specified time horizon to obtain 𝐾 macro-clusters.

While CluStream is capable of detecting data stream evolution, it introduces several

parameters that require pre-tuning, which can impact partitioning performance. Additionally, it

necessitates specifying the number of micro-clusters and macro-clusters in advance.

Figure 2.5: Diagram of CluStream algorithm.

• StreamKM++

StreamKM++ [59] extends the principles of K-Means++ [60] to the realm of data stream

partitioning. K-Means++ leverages a randomized seeding technique to solve the issue of

initializing centroids in K-Means partitioning. In the case of StreamKM++, the algorithm

creates a small weighted set of objects chosen from the data stream, referred to as a coreset. To

speed up the time for the non-uniform sampling during coreset construction, a novel data

structure named the coreset tree is introduced. After deriving the coreset from the data stream,

a weighted K-Means algorithm is applied to this coreset to identify the final classes. It's

important to note that this method requires predefining the number of classes and the coreset

size, both of which can significantly influence partitioning performance.

31

• SWClustering

SWClustering [61] introduced a novel data structure known as the Exponential Histogram of

Cluster Feature (EHCF), which is applied for sliding window partitioning. EHCF serves the

purpose of analyzing the evolution of classes. The partitioning process using the K-Means

algorithm is performed on the EHCFs within the sliding window, and the expired objects are

subsequently removed. The number of expired objects is controlled by a user-defined error

parameter. The memory consumption of SWClustering is constrained by a predefined maximal

number of EHCFs. Additionally, users need to define the sliding window size.

2.3.2 Unsupervised methods

In contrast to semi-supervised methods, unsupervised methods do not necessitate prior

knowledge of the number of classes.

• STRAP

STRAP [14] is an unsupervised partitioning method based on AP [42]. It employs the weighted

AP algorithm (WAP) to partition the data stream and a reservoir to store outliers. Besides, it

introduces two methods for detecting changes in the data stream and starting the repartition of

the data stream.

The WAP algorithm is an extension of AP. Its fundamental concept involves aggregating

the similar objects and representing them with a single object, which serves as the exemplar for

these similar objects. The main distinction between WAP and AP lies in the introduction of a

novel method for calculating the similarity matrix, while the remaining components of WAP

remain consistent with the AP algorithm. Assume that there are 𝑛𝑏𝑖 objects which are

aggregated into just one object 𝑥𝑖, 𝜀𝑖 is the average mutual distance between 𝑥𝑖 and 𝑛𝑏𝑖 objects,

and 𝑥𝑗 is another object in the data stream. The similarity between objects 𝑥𝑖 and 𝑥𝑗 can be

defined as:

𝑠′(𝑥𝑖, 𝑥𝑗) = {
𝑛𝑏𝑖𝑠(𝑥𝑖, 𝑥𝑗) if 𝑖 ≠ 𝑗

𝑝𝑟 + (𝑛𝑏𝑖 − 1)𝜀𝑖 otherwise, with 𝜀𝑖 ≥ 0
 (2.18)

where 𝑝𝑟 is the preference parameter.

Figure 2.6 illustrates the flow chart of the STRAP algorithm.

32

Figure 2.6: Diagram of STRAP algorithm [14].

The STRAP algorithm primarily consists of four main steps:

Input:

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, …

– Parameters defined by users: initial batch size, threshold distance, max cache

(reservoir size), sliding window size, and preference parameter and damping rate of

AP.

1) Initialize model based on the AP algorithm. Employ the AP algorithm to partition the

initial batch of the input data stream, with the batch size defined by users. This process

generates the initial data stream model and identifies the first exemplars of the classes.

The model consists of a set of 4-tuple (𝑒𝑖, 𝑛𝑏𝑖 , 𝑑𝑖 , 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖) which are stored in the

memory. Here, 𝑒𝑖 represents the 𝑖th exemplar in the model, 𝑛𝑏𝑖 is the number of objects

associated with exemplar 𝑒𝑖 , 𝑑𝑖 is the sum of the squares of distances between

associated objects and 𝑒𝑖, and 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖 denotes the last timestamp when an object is

associated with 𝑒𝑖.

2) Update AP-based model. The input object 𝑥𝑡 is assigned to its closest class, and the

model is updated if the distance between them is below the threshold distance; otherwise,

it is stored in the reservoir. Additionally, a user-specified window length, denoted as ℎ,

is introduced. Any exemplar that hasn’t been visited for a time period of ℎ will be

forgotten. The process of updating the model is as follows:

𝑛𝑏𝑖 = 𝑛𝑏𝑖 × (
ℎ

ℎ + (𝑡 − 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖)
+

1

𝑛𝑏𝑖 + 1
) (2.19)

33

𝑑𝑖 = 𝑑𝑖 ×
ℎ

ℎ + (𝑡 − 𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖)
+

𝑛𝑏𝑖

𝑛𝑏𝑖 + 1
𝑑2(𝑥𝑡, 𝑒𝑖)

𝑙𝑎𝑠𝑡𝐸𝑑𝑖𝑡𝑖 = 𝑡

where 𝑡 is the current time.

3) Detect changes in the data stream. When certain conditions are reached, the model will

be rebuilt on the basis of the existing model and objects in the reservoir to find new

classes.

4) Rebuild the AP-based model. The WAP algorithm is employed to partition the objects

in the current model and in the reservoir to generate new exemplars. Similarities

between exemplars, between exemplars and objects, and between objects are defined as:

𝑠(𝑒𝑖, 𝑒𝑖) = 𝑝𝑟 + 𝑑𝑖

𝑠(𝑒𝑖, 𝑒𝑗) = −𝑛𝑏𝑖𝑑2(𝑒𝑖, 𝑒𝑗)

𝑠(𝑒𝑖, 𝑥𝑗) = −𝑛𝑏𝑖𝑑2(𝑒𝑖, 𝑥𝑗)

𝑠(𝑥𝑗, 𝑒𝑖) = −𝑑2(𝑥𝑗, 𝑒𝑖)

𝑠(𝑥𝑗, 𝑥𝑗) = 𝑝𝑟

(2.20)

Output: Discovered 𝐾 classes and exemplar of each class

STRAP possesses the capability to detect the evolution of the data stream and can

effectively handle high-dimensional data, albeit with an increase in time complexity. To achieve

optimal partitioning performance, it is necessary to tune and determine the appropriate values

of the initial batch size, threshold distance, max cache (reservoir size), sliding window size,

along with the preference parameter and damping rate of AP.

• DenStream

Cao et al. [16] introduced the DenStream method, a density-based parametric unsupervised

method using the DBSCAN algorithm [46]. Similar to CluStream, DenStream comprises both

online and offline phases.

During its online phase, two types of micro-clusters are created, namely potential and outlier

micro-clusters, to handle the noise and outliers in the data stream. Each micro-cluster is

assigned a weight that exponentially decreases over time. If the weight of a micro-cluster

exceeds a specified threshold, it is categorized as a potential-micro-cluster; otherwise, it is

classified as an outlier-micro-cluster.

34

A potential-micro-cluster for a set of objects 𝑥1, 𝑥2, … , 𝑥𝑁𝑖
 with timestamps 𝑡1, 𝑡2, … , 𝑡𝑁𝑖

 is

defined as (𝐶𝐹1̅̅ ̅̅ ̅, 𝐶𝐹2,̅̅ ̅̅ ̅̅ 𝜔). The definitions of these entries are shown as follows:

– 𝜔 is the weight of a micro-cluster (i.e., ∑ 2−𝛾(𝑡−𝑡𝑗)𝑁𝑖
𝑗=1 , where 𝛾 is the decay factor, and

𝑡 is the current time). When 𝜔 is greater than a user-defined threshold, the micro-cluster

is defined as the potential-micro-cluster.

– 𝐶𝐹1̅̅ ̅̅ ̅ is the weighted linear sum of objects (i.e., ∑ 2−𝛾(𝑡−𝑡𝑗)𝑥𝑗
𝑁𝑖
𝑗=1).

– 𝐶𝐹2̅̅ ̅̅ ̅ is the weighted squared sum of objects (i.e., ∑ 2−𝛾(𝑡−𝑡𝑗)𝑥𝑗
2𝑁𝑖

𝑗=1).

The centroid of the potential-micro-cluster is 𝑧 =
𝐶𝐹1̅̅ ̅̅ ̅̅

𝜔
.

An outlier-micro-cluster is defined as (𝐶𝐹1̅̅ ̅̅ ̅, 𝐶𝐹2,̅̅ ̅̅ ̅̅ 𝜔, 𝑡𝑜). The definitions of 𝐶𝐹1̅̅ ̅̅ ̅, 𝐶𝐹2̅̅ ̅̅ ̅̅ , 𝜔

and centroid are the same as the potential-micro-cluster. 𝑡𝑜 = 𝑡1 denotes the creation time of

the outlier-micro-cluster. The value of 𝜔 is less than the user-defined threshold.

The arriving data will be assigned to its nearest micro-cluster if their distance is equal to or

less than the threshold radius; otherwise, it forms a new outlier-micro-cluster. Outdated outlier-

micro-clusters will be removed.

In the offline phase, the DBSCAN algorithm is applied to partition the potential-micro-

clusters. DenStream requires users to predefine four parameters, each of which can impact the

final results.

SDStream [62] is a density-based unsupervised method, which serves as a modified version

of DenStream, specifically designed for sliding windows. Similar to SWClutering, SDStream

employs the Exponential Histogram of Cluster Feature (EHCF). It has three user-defined

parameters that need to be predetermined.

rDenStream [63] adds an extra retrospect phase to the original two phases of DenStream.

This retrospective phase provides an opportunity to put discarded objects back into the

partitioning process, which can improve the partitioning performance.

To accommodate high-dimensional data streams, extensions of DenStream have been

developed, including HDDStream [64] and PreDeConStream [65]. These extensions are

designed to handle the challenges posed by high-dimensional data streams.

• MuDi-Stream

Amini et al. [66] proposed a density-grid based unsupervised partitioning method, namely

MuDi-Stream. Like DenStream, it comprises both online and offline phases. During the online

35

phase, a hybrid approach that combines grid-based and micro-class-clustering techniques is

used to capture summaries of the objects. During the offline phase, a density-based partitioning

algorithm, namely M-DBSCAN, is introduced. This algorithm partitions the summaries to form

final classes with varying densities. MuDi-Stream effectively handles outliers and reduces

merging time due to its grid-based methodology. However, it may not be well-suited for high-

dimensional data [66] and necessitates the pre-tuning of five parameters.

• EDMStream

EDMStream [67] is a density-based unsupervised partitioning algorithm, which leverages the

concept of the Evolution of Density Mountain. The density mountain serves as an abstraction

of the data distribution, with its changes reflecting the evolution of the data distribution. The

evolution of classes is monitored by tracking variations in these density mountains. To enable

real-time online partitioning, EDMStream utilizes a novel data structure known as Dependency

Tree (DP-Tree) and employs filtering schemes to facilitate the real-time update of density

mountains. For EDMStream, three parameters need to be determined before partitioning.

• EDDS

EDDS (Enhanced Density-Based Method for Clustering Data Streams) [68] is proposed to

identify classes with arbitrary shapes and detect outliers. It modified the DBSCAN algorithm

by summarizing each class with a set of surface-core points. EDDS employs the density-

reachable concept from DBSCAN as its merging strategy, along with a heuristic solution to

prune core points to keep only the surface-core points for the class. Furthermore, the algorithm

employs a fading function to eliminate aged core points and outliers. However, EDDS

necessitates the predetermination of four parameters.

• CODAS

Hyde et al. [15] suggested CODAS (Clustering Online Data-streams into Arbitrary Shapes), a

density-based unsupervised partitioning method capable of partitioning data streams into

arbitrarily shaped classes. It utilizes a user-defined local density to create core micro-clusters

and non-core micro-clusters, with each micro-cluster comprising a non-core region of radius 𝑟0

and a core region of radius 0.5𝑟0 (Figure 2.7 (a)). Global clusters are formed when the core

region of one micro-cluster intersects with the non-core region of another (Figure 2.7 (b)).

36

Figure 2.7: Illustration of micro-cluster regions showing (a): micro-cluster radius in red and

micro-cluster core radius in green, (b): micro-clusters combined to the global clusters [15].

The CODAS algorithm mainly consists of two steps:

Input:

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, …

– Parameters defined by users:

o 𝑟0: threshold radius

o Threshold density

1) Assign the incoming object. If the space is empty or the distance between the input

object and its closest micro-cluster is greater than 𝑟0, the object will form a new non-

core micro-cluster. Otherwise, the input object is assigned to its closest micro-cluster. If

the distance is less than 𝑟0 but greater than 0.5𝑟0, the micro-cluster centroid is updated

using the following equation:

𝑧𝑖 =
(𝑁𝑖 − 1)𝑧𝑖 + 𝑥𝑡

𝑁𝑖
 (2.21)

where 𝑧𝑖 represents the centroid of the 𝑖th micro-cluster and 𝑁𝑖 denotes the number of

objects in the 𝑖th micro-cluster.

2) Update global clusters. If the distance between two micro-cluster centroids is less than

1.5𝑟0, these two micro-clusters are intersected. All intersecting micro-clusters, whose

density is greater than the user-defined local density, are merged to form global clusters.

Output: Discovered 𝐾 classes and exemplar of each class

37

CODAS is able to partition data streams into arbitrarily shaped classes. However, it has a

drawback as it necessitates parameter tuning for both the local density and the threshold radius

of micro-clusters. The selection of parameter values can significantly impact CODAS's

partitioning performance.

• MDSC

Fahy et al. [69] suggested the Multi-Density Stream Clustering (MDSC) method designed to

partition data streams with varying density classes. It addresses two main challenges: multi-

density class identification and dynamic stream change detection. MDSC utilizes micro-clusters

and an outlier buffer to identify classes. Each micro-cluster represents a multi-dimensional

sphere with a centroid and a radius. Micro-clusters have a maximum radius which is adaptive

and local to each micro-cluster. If an incoming object falls within a micro-cluster’s area, it is

assigned to that micro-cluster. The set of micro-clusters forms macro-clusters with arbitrary

shapes. MDSC introduces an ant-inspired swarm intelligence approach to discover new micro-

clusters in the buffer and adopts the concept of density reachability, allowing the merging of

two micro-clusters if they are density-reachable. MDSC does not require the specification of

the number of classes in advance, but it needs to tune four input parameters.

• DFPS-Clustering

Yan et al. [70] introduced the Dynamic Fitness Proportionate Sharing Clustering (DFPS-

Clustering) algorithm, a density-based parametric unsupervised approach. This method extends

the Gaussian Kernel function and introduces a novel recursive lower bound for the Gaussian

Kernel function to capture the data stream evolution. Its fundamental principle is to treat the

fitness of each object as a density value, reflecting its attractiveness to neighboring objects. It

employs the fitness proportionate sharing strategy to search and determine the class centroids.

However, four parameters need to be specified in advance by users to initiate the partitioning

process.

• D-Stream

D-Stream [71] is a grid-based unsupervised partitioning method comprising two distinct phases.

During the online phase, D-Stream maps input objects into grid cells. During the offline phase,

it partitions these grid cells based on a computation of the cell density. Here, the density of a

cell is determined by the number of objects it encompasses. A grid class is a group of connected

grid cells with a higher density than the surrounding grid cells. D-Stream utilizes a density

decaying technique to capture the data stream evolution and discard the outdated data, which

38

introduces a user-specified decay factor. Notably, D-Stream does not require the user to

predefine the number of classes, but it necessitates the determination of four parameters.

Amini et al. [72] extended D-Stream by adopting the concept of sliding window and

introduced the grid-based partitioning method known as DENGRIS, which only focuses on the

most recent data with user-specified window size.

Jia et al. [73] proposed a grid-based unsupervised method called DD-stream, which shares

a similar partitioning procedure with D-Stream. However, DD-Stream takes sporadic grids into

account in its cluster analysis which improves the overall partitioning quality. It is important to

note that DD-Stream is a parametric method, necessitating the predetermined values of

parameters.

• MR-Stream

MR-Stream [74] is a grid-based unsupervised method that utilizes a tree-like data structure and

defines that any grid cell can be further subdivided into more subcells. Each cell corresponds

to a tree node. The maximum tree height is predefined by users. The weighted subcells are

partitioned offline by specifying a user-defined height. A fading function is introduced to decay

cell weights. MR-Stream offers a finer grid spacing and enables the discovery of classes at

multiple resolutions. However, this method requires numerous parameters to be predefined,

which is impossible without knowledge of the data stream.

• CEDGM

Tareq et al. [75] suggested a density grid-based unsupervised method called CEDGM to

improve the partitioning quality. It defines the core micro-clusters (CMCs) as the primary

entities to construct the cluster and combines the intersected CMCs into macro-clusters. The

partitioning process is performed on the grids. The CMC radius needs to be specified in advance.

Before partitioning, a tuning process is required to determine five parameters.

• AAPStream

In addition to the semi-supervised and unsupervised methods introduced above, we also analyze

a supervised method whose performance will be compared with our proposed method in

Chapter 4.

AAPStream [17] is an active partitioning method based on AP. It employs the active affinity

propagation method (AAP) for partitioning data stream with available labeled data (prior

knowledge), making it a supervised partitioning approach to improve partitioning performance.

AAPStream utilizes active learning to train a classification model from labeled data to identify

39

the most representative and informative data for supervision, which will be applied to the AP

method. It mainly has three steps.

Input:

– A series of sequential objects 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑡, …

– Parameters defined by users: initial batch size, decay factor, buffer size, and

preference parameter and damping rate of AP.

1) Identify the most informative and representative exemplars in the initial batch of objects

by using AAP to create the stream model.

2) Assign incoming objects. If the distance between the incoming object and its nearest

class is less than a heuristic threshold, the object is assigned to this class; otherwise, it

is placed in the buffer.

3) Update the stream model. When the buffer is full, the stream model is updated using

AAP, and the outdated objects are deleted.

Output: Discovered 𝐾 classes and exemplar of each class

AAPStream improves partitioning performance by leveraging labeled data. However,

labeled data may not be available in some circumstances. In addition, it needs to tune five

parameters (initial batch size, decay factor, buffer size, damping rate and preference parameter)

in advance to achieve optimal performance.

In conclusion, the state-of-the-art data stream partitioning methods typically employ many

parameters or necessitate the predetermination of number of classes, such as the methods

presented above. However, the utilization of parameters can introduce a level of uncertainty

into the method's partitioning performance. The limitations of parametric methods include:

1) The choice of input parameter values can have a more or less impact on partitioning

performance. Different parameter settings can lead to varying partitioning results.

2) Empirical parameter tuning process is necessary to find appropriate parameter values in

order to achieve high partitioning performance. In the case of partitioning methods with

multiple parameters, the tuning process can become more complex and time-consuming.

3) Finding appropriate parameter values is particularly challenging for parametric methods,

40

when it comes to partitioning unknown and novel sets of objects, due to the lack of

information about datasets.

Therefore, we aim to develop an unsupervised method capable of overcoming the

limitations imposed by parameters on the performance of partitioning methods, thereby

achieving broad applicability.

2.4 Partitioning validity indices

The typical procedure of partitioning analysis comprises four basic steps: feature selection or

extraction, partitioning algorithm design, partitioning validation, and results interpretation [76,

77]. Following the application of the partitioning algorithm, it becomes imperative to assess the

validity of the partitioning results.

Partitioning validation consists of two primary categories: external and internal partitioning

validation [78, 79]. The main difference between these two types of validations lies in their

reliance on external information. External validation relies on external information which has

been known in advance (ground truth -GT-, expert knowledge, etc.), whereas internal validation

is solely dependent on the data.

Since external validation criteria rely on prior information, they are mainly utilized for

selecting an optimal partitioning algorithm for a specific dataset. Additionally, these criteria

can be employed to validate algorithm performance on synthetic data or data accompanied by

reliable GT annotations. The classification rate is one of the most significant and credible

criteria. However, in many circumstances, obtaining prior information can be challenging.

Internal validation criteria can be used to choose the optimal partitioning algorithm as well

as the optimal number of classes without using prior information. These criteria are more

relevant for unsupervised partitioning methods. In the state-of-the-art, many partitioning

validity indices are proposed as internal validation criteria to evaluate the partitioning validity.

Table 2.1 lists some common partitioning validity indices.

41

Table 2.1: Common partitioning validity indices.

Partitioning

validity index
Formulation

Optimal

value
Ref.

Root-mean-square

standard deviation 𝑅𝑀𝑆𝑆𝑇𝐷 = (
𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝑛𝛴𝑖=1
𝐾 (𝑁𝑖 − 1)

)

1
2

 Min [80]

R-squared 𝑅𝑆 =
𝛴𝑥∈𝒳𝑑2(𝑥, 𝑧𝑠) − 𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝛴𝑥∈𝒳𝑑2(𝑥, 𝑧𝑠)
 Max [81]

Modified Hubert

𝜞 statistic
𝛤 =

2

𝑁(𝑁 − 1)
𝛴𝑥∈𝒳𝛴𝑦∈𝒳𝑑(𝑥, 𝑦)𝑑𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

(𝑧𝑖 , 𝑧𝑗) Max [82]

WB 𝑊𝐵 =
𝐾𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝛴𝑖=1
𝐾 𝑁𝑖𝑑2(𝑧𝑖 , 𝑧𝑠)

 Min [83]

Calinski-Harabasz 𝐶𝐻 =
𝛴𝑖=1

𝐾 𝑁𝑖 𝑑2(𝑧𝑖 , 𝑧𝑠) (𝐾 − 1)⁄

𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑2(𝑥, 𝑧𝑖) (𝑁 − 𝐾)⁄
 Max [84]

𝑰 𝐼 = (
1

𝐾

𝛴𝑥∈𝒳𝑑(𝑥, 𝑧𝑠)

𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑(𝑥, 𝑧𝑖)
𝑚𝑎𝑥𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗))

𝑞

 Max [85]

F 𝐹 = (𝐷 − 𝐷) 2⁄ Max [11]

PBM 𝑃𝐵𝑀 = (
1

𝐾

𝛴𝑥∈𝒳𝑑(𝑥, 𝑧𝑠)

𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑(𝑥, 𝑧𝑖)
𝑚𝑎𝑥𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗))

2

 Max
[86],

[87]

Dunn’s index 𝐷𝑈𝑁𝑁 = 𝑚𝑖𝑛𝑖 {𝑚𝑖𝑛𝑗 (
𝑚𝑖𝑛𝑥∈𝐶𝑖,𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦)

𝑚𝑎𝑥𝑘 (𝑚𝑎𝑥𝑥,𝑦∈𝐶𝑘
𝑑(𝑥, 𝑦))

)} Max [88]

Silhouette

𝑆𝐼𝐿 =
1

𝑁
𝛴𝑖=1

𝐾 (
1

𝑁𝑖
𝛴𝑥∈𝐶𝑖

𝑏(𝑥) − 𝑎(𝑥)

𝑚𝑎𝑥(𝑏(𝑥), 𝑎(𝑥))
)

𝑎(𝑥) =
1

𝑁𝑖 − 1
𝛴𝑦∈𝐶𝑖,𝑦≠𝑥𝑑(𝑥, 𝑦)

𝑏(𝑥) = 𝑚𝑖𝑛𝑗,𝑖≠𝑗 (
1

𝑁𝑗
𝛴𝑦∈𝐶𝑗

𝑑(𝑥, 𝑦))

Max [89]

Partition

Separation
𝑃𝑆 = 𝛴𝑖=1

𝐾 {
𝑁𝑖

𝑚𝑎𝑥
𝑗

𝑁𝑗
− 𝑒𝑥𝑝 (−

𝑚𝑖𝑛
𝑖≠𝑗

𝑑2(𝑧𝑖 , 𝑧𝑗)

1
𝐾 𝛴𝑙=1

𝐾 ‖𝑧𝑙 −
1
𝐾 𝛴𝑘=1

𝐾 𝑧𝑘‖
2)} Max

[90],

[91]

Davies-Bouldin 𝐷𝐵 =
1

𝐾
𝛴𝑖=1

𝐾 𝑚𝑎𝑥
𝑗,𝑗≠𝑖

(

1
𝑁𝑖

𝛴𝑥∈𝐶𝑖
𝑑(𝑥, 𝑧𝑖) +

1
𝑁𝑗

𝛴𝑦∈𝐶𝑗
𝑑(𝑦, 𝑧𝑗)

𝑑(𝑧𝑖 , 𝑧𝑗)
) Min [92]

42

Xie-Beni 𝑋𝐵 =
𝛴𝑖=1

𝐾 𝛴𝑥∈𝐶𝑖
𝑑2(𝑥, 𝑧𝑖)

𝑁 ⋅ 𝑚𝑖𝑛𝑖≠𝑗𝑑2(𝑧𝑖 , 𝑧𝑗)
 Min [93]

SD

𝑆𝐷 = 𝑆𝑐𝑎𝑡(𝐾) + 𝐷𝑖𝑠(𝐾)

𝑆𝑐𝑎𝑡(𝐾) =
1

𝐾
𝛴𝑖=1

𝐾 𝜎𝑖 𝜎𝒳
⁄

𝐷𝑖𝑠(𝐾) =
𝑚𝑎𝑥𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗)

𝑚𝑖𝑛𝑖≠𝑗𝑑(𝑧𝑖 , 𝑧𝑗)
𝛴𝑖=1

𝐾 (𝛴𝑗=1
𝐾 𝑑(𝑧𝑖,𝑧𝑗))

−1

Min [94]

𝒳 represents the dataset with 𝑁 objects, 𝑧𝑠 is the centroid of 𝒳, 𝑛 represents the number of attributes, 𝐾 represents the number of classes, 𝐶𝑖

represents the 𝑖th class, 𝑁𝑖 represents the number of objects in 𝐶𝑖, 𝑧𝑖 represents the centroid of 𝐶𝑖, 𝑑(𝑥, 𝑦) represents the Euclidean distance

between objects 𝑥 and 𝑦, 𝑞 is a positive integer, 𝐷 and 𝐷 represents the global inter-class and intra-class dispersion, respectively, 𝜎𝑖 represents

the standard deviation of class 𝐶𝑖, and 𝜎𝒳 represents the standard deviation of dataset 𝒳.

Root-mean-square standard deviation (RMSSTD) is a statistical measure to calculate the

dispersion within classes. It computes the square root of the sum of object variance of all

attributes. It considers only the compactness within the class. A lower RMSSTD indicates better

partitioning quality. It implies that objects within each class are closer to their class centroid,

resulting in more compact and well-defined classes. R-squared (RS) represents the ratio of the

sum of squares between classes to the total sum of squares of the entire dataset. It measures the

degree of dissimilarity between classes. A higher value of RS signifies a better partitioning

result. The modified Hubert 𝛤 statistic (𝛤) assesses the dissimilarity between classes by

considering the difference of pairs of objects in two classes. The optimum is achieved when the

value of Γ is at its highest. These three indices are monotonous, since they only take either intra-

class dispersion or inter-class dispersion into account.

The WB index assesses the partitioning quality by considering the ratio of within-class sum-

of-squares to between-class sum-of-squares. A smaller WB value indicates better data

partitioning quality.

The Calinski-Harabasz index (CH) calculates the ratio of the average sum of squares

between classes to the average sum of squares within classes. It takes into account both intra-

class similarity and inter-class dispersion. When the index value is maximum, the number of

classes is the optimum.

The 𝐼 index measures the maximum distance between class centroids and the sum of

distances between objects and their class centroids. If 𝑞 = 2, the 𝐼 index reduces to the PBM

index. Larger values of 𝐼 suggest better partitioning results.

The F index considers both the global dispersion between classes and the global dispersion

within classes. The optimal number of classes is determined when the F index reaches the

maximum.

43

The Dunn’s index focuses on the compactness and separation of classes. It calculates the

minimum pairwise distances between objects in different classes and the maximum pairwise

distances between objects in the same classes. A higher value of Dunn's index suggests better

partitioning quality, indicating that the classes are compact (small within-class dispersion) and

well-separated (large between-class dispersion).

The Silhouette index evaluates the partitioning validity based on the difference between

between-class and within-class dispersions. The optimal number of classes is determined when

the value of the index is the maximum.

The Partition Separation index (PS) for hard partitioning version is introduced in the table

above and specifically measures the separation between class centroids. The optimal number of

classes is determined by maximizing the PS value.

The Davies-Bouldin index (DB) calculates the similarities between each class and all other

classes, with the highest value for each class representing that class similarity. Then, the average

of all class similarities is computed. A smaller index value indicates a better partitioning result.

The Xie-Beni index (XB) calculates the mean square distance between each object and its

class centroid and the minimum square distance between class centroids. The optimal number

of classes is determined by minimizing the XB value.

The SD index calculates the variances of class objects to evaluate the compactness within

classes and also calculates the distances between class centroids to evaluate differences between

classes. The optimal number of classes is reached when the minimum value of SD is found.

Partitioning validity indices are not only used to evaluate the quality of partitioning results

but can also be used to determine the optimal number of classes. The selection of an appropriate

index relies on the specific features of the data and the partitioning task.

44

Chapter 3

Developed unsupervised data stream partitioning method

(STRFCM)

To eliminate the impact of parameters and the need for prior information, an unsupervised and

non-parametric method named STRFCM was ultimately proposed, which can automatically

partition the data stream and identify the optimal number of classes. This chapter provides an

in-depth description of our proposed method.

3.1 Principle

Our STRFCM method employs FCMO to partition data chunks and Weighted FCMO

(WFCMO) to partition the exemplar set obtained during the chunk partitioning process. It

consists of two main steps:

Input:

– Data stream

1) Data chunk partitioning: STRFCM employs the FCMO algorithm, which utilizes the

𝐿1 norm as its similarity criterion and the WB-L1M partitioning validity index as its

evaluation criterion, to partition incoming data chunks and obtain classes as well as the

exemplar set.

2) Fusion: STRFCM utilizes the WFCMO algorithm, which uses the 𝐿1 norm as its

similarity criterion and the F index as its evaluation criterion, to partition the exemplar

set and obtain the final optimal partition.

Output: Optimal partition 𝒫 with discovered 𝐾 classes and exemplar of each class

The details of the FCMO and WFCMO methods will be introduced in the next section.

The flow chart of our proposed method is presented in Figure 3.1.

45

Figure 3.1: Flow chart of the proposed unsupervised partitioning method.

The data stream and data chunks can be expressed respectively as follows:

𝐷𝑆𝑡 = ⋃{𝐵𝑗}

𝑡

𝑗=1

 (3.1)

𝐵𝑡 = ⋃{𝑥𝑖(𝑡)}

𝑁𝑑

𝑖=1

 (3.2)

where 𝑡 denotes the current time of the arriving data chunk and 𝑁𝑑 is the size of the chunk.

Each data chunk is partitioned using the FCMO algorithm and the centroid of each estimated

class is retained as its exemplar. The exemplar set obtained by partitioning data chunk 𝐵𝑡 is

defined as follows:

𝐵𝐶𝑡 = {𝑧𝑖(𝑡)}, 𝑖 = 1,2, … , 𝐾𝑡 (3.3)

where 𝑧𝑖(𝑡) represents the 𝑖th centroid of the 𝑖th class in data chunk 𝐵𝑡 and 𝐾𝑡 is the number of

classes in data chunk 𝐵𝑡.

Eventually, a dataset 𝐵𝐶 containing all class centroids (exemplars) can be obtained, which

is defined as:

𝐵𝐶 = ⋃{𝐵𝐶𝑗}

𝑡

𝑗=1

 (3.4)

Partitioning of dataset 𝐵𝐶 by using the WFCMO algorithm gets a final optimal partition

𝒫 = {𝐶1, 𝐶2, … , 𝐶𝐾}, where 𝐾 is the final number of estimated classes.

46

3.2 Static dataset partitioning methods employed in STRFCM

In this section, we introduce the FCMO and WFCMO methods employed in our proposed

STRFCM method and evaluate their performances.

3.2.1 Choice of FCMO for optimal partition

FCMO [11] is an optimization of the FCM algorithm [12], specifically designed for partitioning

static datasets. It is an unsupervised and non-parametric method that eliminates the need for

parameter tuning or specifying the number of classes in advance. It can automatically estimate

the optimal number of classes with stable results. Therefore, our proposed method employs and

optimizes FCMO for partitioning data chunks. FCMO utilizes an adaptive incremental

procedure to initialize class centroids, and an unsupervised evaluation criterion (partitioning

validity index) is adopted to estimate the optimal number of classes. In comparison to the FCM,

support vector machines (SVM) [27], and ISODATA [95] algorithms, FCMO demonstrates

superior partitioning performance [11]. FCMO mainly consists of five steps:

Input:

– Dataset 𝒳 = {𝑥1, 𝑥2, … , 𝑥𝑁}

1) Subdivide the dataset into two classes.

2) Select the class with the largest dispersion which will be subdivided into two subclasses.

The intra-class dispersion is measured by using Equation 2.9. If the partition is not valid

in the end, choose the class with the next largest dispersion.

3) Choose the initial two subclass centroids from the selected class. The first subclass

centroid is defined as the centroid of the selected class. The second centroid is chosen

randomly from the selected class.

4) Use FCM algorithm to partition the dataset from 𝑘 to 𝑘 + 1 classes and fine-tune class

centroids.

5) Evaluate the partition with 𝑘 + 1 classes. This final step validates or rejects the

partitioning results to find the optimal final partition and number of estimated classes.

Unlike the validation criterion utilized by MLBG (Equation 2.11), FCMO does not use

the coefficient of ponderation 𝜂. This validation criterion is as follows:

47

𝐹(𝒫𝑘+1) > 𝐹(𝒫𝑘) (3.5)

where 𝐹 is a partitioning validity index defined as follows:

𝐹(𝒫𝑘) =
𝐷̅(𝒫𝑘) − 𝐷(𝒫𝑘)

2
 (3.6)

where 𝐷̅(𝒫𝑘) and 𝐷(𝒫𝑘) represents the global inter-class and intra-class dispersion,

respectively. 𝐷(𝒫𝑘) calculates the average weighted intra-class dispersion.

𝐷(𝒫𝑘) =
1

𝑘
∑

𝑁𝑗

𝑁
𝐷(𝐶𝑗)

𝑘

𝑗=1

 (3.7)

where 𝑁𝑗 is the number of objects in class 𝐶𝑗, and 𝑁 is the number of objects in dataset

𝒳 . 𝐷̅(𝒫𝑘) calculates the average weighted dispersion between each class and other

classes.

𝐷̅(𝒫𝑘) =
1

𝑘
∑

𝑁𝑗

𝑁
𝐷̅(𝐶𝑗)

𝑘

𝑗=1

 (3.8)

If the validation criterion is satisfied, one goes back to step 2 with 𝑘 + 1 determined

classes and attempts to create 𝑘 + 2 classes. Conversely, if the criterion is not satisfied,

return to step 2 with 𝑘 classes and change the selected class by choosing the next largest

dispersion class and so on. If none of the classes provides a valid partition, the algorithm

stops and finds the optimal partition.

Output: Discovered 𝐾 classes and exemplar of each class

The original similarity criterion utilized in FCMO is the 𝐿2 norm, which corresponds to the

Euclidean distance. Instead of using 𝐿2 norm, our proposed method employs FCMO with the

𝐿1 norm as the similarity criterion. This choice is motivated by the fact that, the 𝐿1 norm can

measure the exact difference between the attributes of two objects, providing their true

similarity without amplification or attenuation.

FCMO employs the partitioning validity index as the evaluation criterion. It calculates the

value of the validity index in each iteration and compares it with the value from the previous

iteration to find the optimal partition. The index used in original FCMO is the F index [11],

48

which takes into account both the dispersion between classes and within classes. Larger values

of F indicate better partitioning performance, and the optimal partition is achieved with the

maximum value of F.

In addition to the 𝐹 index, many partitioning validity indices have been proposed in the state

of the art. Table 2.1 presents some common validity indices. The choice of the evaluation

criterion significantly affects partitioning performance of FCMO. Consequently, we compared

FCMO using four different validity indices, the 𝐹 index, the Dunn’s index [88], the Silhouette

index [89] and the WB index [83], to find the optimal evaluation criterion. All of these criteria

consider both intra-class and inter-class dispersion when evaluating a partition. The WB index

was selected as the evaluation criterion for FCMO, as it outperformed the other three indices.

The comparison results are displayed in Subsection 3.2.3. Since our proposed method employs

the 𝐿1 norm as its similarity criterion, the selected WB index also employs the 𝐿1 norm to

calculate both intra-class and inter-class similarity. The equation of the WB-L1 index is

presented as follows:

WB-L1 = 𝐾𝛴𝑖=1
𝐾 𝛴𝑥∈𝐶𝑖

𝑑(𝑥, 𝑧𝑖) 𝛴𝑖=1
𝐾 𝑁𝑖𝑑(𝑧𝑖, 𝑧𝑠)⁄ (3.9)

where 𝑥 is an object in class 𝐶𝑖, 𝑁𝑖 is the number of objects in class 𝐶𝑖, 𝑧𝑖 is the centroid of

class 𝐶𝑖, 𝑧𝑠 is the center of the whole dataset, 𝑑(𝑥, 𝑧𝑖) calculates the 𝐿1 norm distance between

object 𝑥 and centroid 𝑧𝑖.

In the chunk partitioning process, it is expected that FCMO finds finer classes (more

homogeneous classes with smaller variances) in order to preserve more detailed information so

that during the fusion process more accurate results can be obtained. On this basis, we modified

the WB-L1 index and introduced a novel index called WB-L1M index, defined as follows:

WB-L1M = 𝛴𝑖=1
𝐾 𝜎𝑖

2𝛴𝑥∈𝐶𝑖
𝑑(𝑥, 𝑧𝑖) 𝛴𝑖=1

𝐾 𝑁𝑖𝑑(𝑧𝑖, 𝑧𝑠)⁄ (3.10)

where 𝜎𝑖
2 is the variance of class 𝐶𝑖. The optimal number of classes and exemplars can be found

by minimizing the value of WB-L1M index.

WB-L1M differs from WB-L1 by introducing variance into its numerator, which leads to an

increased number of iterations, ultimately allowing for the refinement of classes. During the

iteration process using WB-L1M, singleton classes are not retained as exemplars. These singleton

classes are reassigned to the nearest classes in the next iteration.

The algorithm of FCMO using the 𝐿1 norm and the WB-L1M index, referred to as FCMO-

L1-WBM, is illustrated in Algorithm 3.1.

49

Algorithm 3.1 FCMO-L1-WBM

Input:

– Incoming data chunk 𝐵𝑗

Procedure:

1. Subdivide the data chunk 𝐵𝑗 into two classes

2. Select the class with the largest dispersion (Equation 2.9 with 𝐿1 norm) for

subdivision into two subclasses

3. Select the initial two subclass centroids from the chosen class, with the first

centroid being the class's centroid and the second centroid selected randomly from

the same class

4. Partition the data chunk 𝐵𝑗 into 𝑘 + 1 classes using FCM with 𝐿1 norm

5. Evaluate the partition with 𝑘 + 1 classes

If WB-L1M (𝒫𝑘+1) < WB-L1M (𝒫𝑘)

Validate the partition of 𝑘 + 1 classes

Repeat steps 2-4 to try to create 𝑘 + 2 classes

Else return to step 2 with 𝑘 classes and change the selected class by choosing the

next largest dispersion class

End if

If none of the selected classes provides a valid partition

Stop

End if

Output: Discovered 𝐾𝑗 classes in data chunk 𝐵𝑗 and exemplar of each class

3.2.2 WFCMO for final optimal partition

The WFCMO method, an extension of FCMO, is designed to partition the exemplars of the

classes obtained from multiple data chunks to obtain the final optimal partition while

considering the size of the classes. It follows the same partitioning steps as FCMO, with

modifications made to the FCMO algorithm in step 4.

Assume there is a set of 𝑁𝑒 exemplars 𝐸𝑆 = {𝑒1, 𝑒2, ⋯ , 𝑒𝑖, ⋯ , 𝑒𝑁𝑒
}, which represents 𝑁𝑒

subclasses, and 𝑒𝑖 is the exemplar of the 𝑖th subclass 𝑆𝐶𝑖 which contains 𝑁𝑠𝑐𝑖 objects. 𝐸𝑆 can

be partitioned into 𝐾 classes (𝐶1, 𝐶2, … , 𝐶𝐾) . When partitioning the exemplar set 𝐸𝑆 using

original FCMO, the membership grade 𝑢𝑖𝑗 of the exemplar 𝑒𝑖 to class 𝐶𝑗 is calculated using

Equation 2.8.

However, if we consider the number of objects 𝑁𝑠𝑐𝑖 in the subclass 𝑆𝐶𝑖 represented by the

exemplar 𝑒𝑖, the membership level of 𝑒𝑖 to class 𝐶𝑗 is defined as:

50

𝑢𝑖𝑗
′ = 𝑢𝑖𝑗 × 𝑁𝑠𝑐𝑖 (3.11)

WFCMO uses weighted membership grade to partition the exemplar set. During this fusion

process, it utilizes the F index as its evaluation criterion rather than the WB-L1M or WB-L1 index.

The reason is that the WB-L1M index tends to obtain finer classes, and the WB-L1 index, despite

outperforming the other three compared indices (F index [11], Dunn’s index [88] and Silhouette

index [89]), is not suitable for partitioning small population datasets like the exemplar set. The

algorithm of WFCMO is presented in Algorithm 3.2.

Algorithm 3.2 WFCMO

Input:

– Exemplar set 𝐵𝐶

Procedure:

1. Subdivide the exemplar set 𝐵𝐶 into two classes

2. Select the class with the largest dispersion (Equation 2.9 with 𝐿1 norm) for

subdivision into two subclasses

3. Select the initial two subclass centroids from the chosen class, with the first

centroid being the class's centroid and the second centroid selected randomly from

the same class

4. Partition the exemplar set 𝐵𝐶 into 𝑘 + 1 classes using FCM with 𝐿1 norm, and

update the membership matrix 𝑈 = [𝑢𝑖𝑗
′] using Equation 2.8 and 3.11

5. Evaluate the partition with 𝑘 + 1 classes

If 𝐹(𝒫𝑘+1) > 𝐹(𝒫𝑘)

Validate the partition of 𝑘 + 1 classes

Repeat steps 2-4 to try to create 𝑘 + 2 classes

Else return to step 2 with 𝑘 classes and change the selected class by choosing the

next largest dispersion class

End if

If none of the selected classes provides a valid partition

Stop

End if

Output: Optimal partition 𝒫 with discovered 𝐾 classes and exemplar of each class

51

The algorithm of STRFCM is presented as follows (Algorithm 3.3):

Algorithm 3.3 STRFCM

Input:

– Data stream 𝐷𝑆𝑡 = ⋃ {𝐵𝑗} 𝑡
𝑗=1

Procedure:

1. Load incoming data chunk 𝐵𝑗

2. Partition data chunk 𝐵𝑗 using FCMO-L1-WBM to obtain exemplar set 𝐵𝐶𝑗

(Algorithm 3.1)

3. Add exemplar set 𝐵𝐶𝑗 to global exemplar set 𝐵𝐶

4. If data stream continues, repeat steps 1-3

Else proceed to step 5

End if

5. Partition exemplar set 𝐵𝐶 using WFCMO (Algorithm 3.2)

Output: Optimal partition 𝒫 with discovered 𝐾 classes and exemplar of each class

3.2.3 Evaluation of FCMO

In this subsection, we conduct a comparative assessment of the FCMO method using different

similarity criteria and evaluation criteria, in order to illustrate that the FCMO using the 𝐿1 norm

and the WB-L1 index (referred as FCMO-L1-WB) outperforms other options. In addition, we

compare FCMO with the unsupervised and parametric partitioning method AP. Furthermore,

FCMO-L1-WBM is tested to demonstrate its capability to identify finer classes.

The FCMO using the 𝐿1 norm and the F index is referred to as FCMO-L1-F, and the FCMO

using the 𝐿2 norm and the F index is denoted as FCMO-L2-F. Correspondingly, we have the

FCMO-L1-D method for FCMO using the 𝐿1 norm and the Dunn’s index and FCMO-L1-SIL

employing the 𝐿1 norm and the Silhouette index. We point out that when FCMO employs the

𝐿1 norm, the same norm is also utilized in these partitioning validity indices (evaluation criteria).

3.2.3.1 Experimental datasets

Two synthetic hyperspectral image datasets are utilized to evaluate partitioning performance.

Detailed information about these two datasets are presented in Table 3.1 and 3.2.

Dataset 1 is a synthetic hyperspectral image of algae, displayed in Table 3.1 (a). It exhibits

a spatial resolution of 60x60 pixels, characterized by 100 spectral bands. It consists of nine GT

52

subclasses which can be aggregated into three main GT classes: water, substrate and vegetation.

These knowledges are only used to assess the partitioning results.

The main water class encompasses three subclasses: deep water (C1
1), shallower water (C1

2),

and turbid water (C1
3). The main substrate class consists of two subclasses: pebble (C2

1) and

sand (C2
2). The main vegetation class is subdivided into four subclasses: two subclasses of

green algae, ulva (C3
1) and enteromorpha (C3

2), one subclass of fucus (C3
3), and the final

subclass (C3
4), which is a mixed class encompassing elements of both substrate and vegetation.

Table 3.1 (b) and (c) represent GT images, with (b) consisting of three main GT classes and (c)

containing nine GT subclasses.

Table 3.1: Dataset 1 – hyperspectral image of algae, GT images and GT class details.

(a) Original image 60x60x100

(visualized in RGB mode)

(b) GT1 image

(3 main GT classes)

(c) GT2 image

(9 GT subclasses)

Labels of 3 main GT classes Labels of 9 GT subclasses

C1 Water (1324 pixels)

C1
1 Deep water (989 pixels)

C1
2 Shallow water (158 pixels)

C1
3 Turbid water (177 pixels)

C2 Substrate (1067 pixels)

C2
1 Pebble (281 pixels)

C2
2 Sand (786 pixels)

C3 Vegetation (1209 pixels)

C3
1 Ulva (green algae) (255 pixels)

C3
2 Enteromorpha (green algae) (416 pixels)

C3
3 Fucus (brown algae) (493 pixels)

C3
4 Substrate and other types of vegetation (45 pixels)

Dataset 2 is a hyperspectral image of invasive vegetation with a spatial resolution of 64x64

pixels, characterized by 54 spectral bands (Table 3.2 (a)). It consists of five main GT classes

which can be further subdivided into eight GT subclasses.

53

The main pinus halepensis class consists of two subclasses: dense pinus halepensis (C2
1)

and sparse pinus halepensis (C2
2). The main peach trees class comprises three subclasses:

healthy peach trees (C3
1), early wilting peach trees (C3

2), and wilting peach trees (C3
3). GT

images for this dataset are presented in Table 3.2 (b) and (c), containing five main GT classes

and eight GT subclasses, respectively.

Table 3.2: Dataset 2 – hyperspectral image of invasive vegetation, GT images and GT class

details.

(a) Original image 64x64x54

(visualized in RGB mode)

(b) GT1 image

(5 main GT classes)

(c) GT2 image

(8 GT subclasses)

Labels of 5 main GT classes Labels of 8 GT subclasses

C1 River (452 pixels)

C1 River (452 pixels)

C2 Pinus halepensis (1068 pixels)

C2
1 Pinus halepensis (dense) (986 pixels)

C2
2 Pinus halepensis (sparse) (82 pixels)

C3 Peach trees (1189 pixels)

C3
1 Peach trees (healthy) (175 pixels)

C3
2 Peach trees (early wilting) (513 pixels)

C3
3 Peach trees (wilting) (501 pixels)

C4 Arundo donax (500 pixels)

C4 Arundo donax (500 pixels)

C5 Buildings (887 pixels)

C5 Buildings (887 pixels)

The mean spectral signatures of the classes in these two hyperspectral images are depicted

in Figure 3.2 and 3.3. Each class's mean spectral signature is represented by a line of a distinct

color, corresponding to the colors used in the GT images displayed in Table 3.1 and 3.2.

54

(a) (b)

Figure 3.2: Mean spectral signatures of the GT classes in Dataset 1. (a): 3 main GT classes, (b):

9 GT subclasses.

(a) (b)

Figure 3.3: Mean spectral signatures of the GT classes in Dataset 2. (a): 5 main GT classes, (b):

8 GT subclasses.

3.2.3.2 Performance evaluation

To evaluate the partitioning performance, we used the external validity index: purity. An ideal

partition yields a purity value of 100%, while a poor partition results in a value close to 0%.

The average purity of all estimated classes is defined as follows:

𝑝𝑢𝑟𝑖𝑡𝑦 =
1

𝐾
∑ max

𝑗=1,⋯,𝐾𝐺𝑇

(
𝑁𝑖

𝑗

𝑁𝑖
)

𝐾

𝑖=1
 (3.12)

55

where 𝐾𝐺𝑇 is the number of the main GT classes, 𝑁𝑖 is the number of objects in the 𝑖th estimated

class, 𝑁𝑖
𝑗
 is the number of objects allocated to the 𝑗th main GT class and 𝐾 is the number of

estimated classes.

Table 3.3 presents the purity value, number of estimated classes (NC), and CPU execution

time obtained by FCMO using criteria (similarity criteria and evaluation criteria) L1-F, L2-F,

L1-D, L1-SIL and L1-WB when partitioning Dataset 1. In addition, we compared these methods

with AP. The preference parameter and the damping rate are input parameters of AP. In the

assessment, the damping rate ranges from 0.6 to 0.9, and preference parameter is set to either

the median or the minimum value of the similarity matrix. The partitioning performance of AP

on Dataset 1 is illustrated in Table 3.4.

Table 3.3: Partitioning performances of FCMO using different similarity criteria and evaluation

criteria on Dataset 1.

Methods Purity (%) NC CPU (s)

FCMO-L1-F 100 6 35.38

FCMO-L2-F 98.94 6 32.57

FCMO-L1-D 100 7 44.85

FCMO-L1-SIL 100 6 127.38

FCMO-L1-WB 100 8 127.30

Table 3.4: Partitioning performance of the AP method on Dataset 1.

Input parameters set by user:
Purity (%) NC CPU (s)

Preference parameter Damping rate

Median

0.6 Non-convergence

0.7 Non-convergence

0.8 100 13 58.43

0.9 100 13 64.12

Minimum

0.6 Non-convergence

0.7 Non-convergence

0.8 Non-convergence

0.9 100 9 46.56

56

In comparison to FCMO utilizing the 𝐿2 norm, FCMO using the 𝐿1 norm achieves a higher

purity of 100%. FCMO-L1-F gives a purity of 100% (Table 3.3), while FCMO-L2-F provides

98.94%. Among the methods using the 𝐿1 norm, we can find that the FCMO-L1-WB method

identified more classes than others, which is closest to the GT of 9 subclasses. FCMO-L1-WB

compared to FCMO using criteria L1-F, L1-D and L1-SIL, discovers more detailed information.

Compared with the partitioning results of the AP method displayed in Table 3.4, with

appropriate parameter values of AP, the purity values of FCMO using the 𝐿1 norm and AP are

the same (100% purity) and the numbers of estimated classes are within reasonable range.

However, we observed that when the value of parameter damping rate is wrongly chosen, the

AP method does not converge, which means the choice of input parameter values significantly

impacts the performance of AP.

Figure 3.4 presents the partitioning results on Dataset 1 using the FCMO method with three

criteria L1-F, L2-F and L1-WB and the AP method, offering an intuitive assessment of the

partitioning performance. In Figure 3.4 (c), all main GT classes were successfully identified.

However, FCMO-L1-F failed to identify the GT pebble subclass (blue), the shallow water

subclass (green) and the subclass containing data of mixed types (purple). Additionally, some

points belonging to the ulva subclass (orange) were assigned to the enteromorpha subclass (red).

Nevertheless, both ulva and enteromorpha subclasses belong to the same main GT class of

vegetation. Therefore, it does not significantly impact the partitioning performance of FCMO-

L1-F.

In Figure 3.4 (d), similar to FCMO-L1-F, FCMO-L2-F also missed the identification of the

three subclasses. However, there is a notable difference: some points belonging to the ulva

subclass (orange) are incorrectly assigned to the turbid water subclass (dark blue). These two

subclasses belong to different main GT classes, which has a more significant impact on the

partitioning performance of FCMO-L2-F.

We observed from Figure 3.4 (e) that all GT subclasses were successfully detected by using

FCMO-L1-WB except the subclass with data of mixed types (purple), while FCMO-L1-F only

identified 6 GT subclasses. Additionally, some points belonging to the sand subclass (grey)

were assigned to the pebble subclass (blue). However, these two subclasses belong to the same

main class of substrate, which does not significantly impact the partitioning performance of

FCMO-L1-WB. The partitioning result of AP with preference parameter set to minimum and

damping rate of 0.9, displayed in Figure 3.4 (f), is similar with the result of FCMO-L1-WB.

57

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Partitioning results on Dataset 1. (a): GT1 image (3 main GT classes), (b): GT2

image (9 GT subclasses), (c), (d) and (e): FCMO using criteria L1-F, L2-F and L1-WB,

respectively, (f): AP – preference parameter set to minimum and damping rate of 0.9.

Table 3.5 presents the purity value, number of estimated classes, and CPU execution time

obtained when partitioning Dataset 2 using FCMO with five criteria L1-F, L2-F, L1-D, L1-SIL,

and L1-WB. The partitioning performance of AP on Dataset 2 is illustrated in Table 3.6.

As shown in Table 3.5, the purity of FCMO-L1-F (93.51%) is higher than that of FCMO-

L2-F (85.39%). Additionally, the number of estimated classes by FCMO-L1-F is much closer to

the number of GT subclasses (8 GT subclasses), indicating that FCMO-L1-F discovers more

details than FCMO-L2-F during partitioning. In addition, both FCMO-L1-F and FCMO-L1-WB

achieved the best performance with a purity of 93.51%. The reason their purity values are the

same is that these two methods performed the same number of iterations. However, the

58

performances of FCMO-L1-D and FCMO-L1-SIL are poor on partitioning Dataset 2 and cannot

be considered competitive.

Table 3.5: Partitioning performances of FCMO using different similarity criteria and evaluation

criteria on Dataset 2.

Methods Purity (%) NC CPU (s)

FCMO-L1-F 93.51 6 30.97

FCMO-L2-F 85.39 4 37.54

FCMO-L1-D 68.53 2 25.08

FCMO-L1-SIL 69.48 3 30.75

FCMO-L1-WB 93.51 6 42.56

Table 3.6: Partitioning performance of the AP method on Dataset 2.

Input parameters set by user:
Purity (%) NC CPU (s)

Preference parameter Damping rate

Median

0.6 Non-convergence

0.7 Non-convergence

0.8 Non-convergence

0.9 95.36 20 50.46

Minimum

0.6 Non-convergence

0.7 Non-convergence

0.8 Non-convergence

0.9 93.8 12 66

Based on the partitioning performance displayed in Table 3.6, it becomes evident that the

choice of input parameters significantly impacts the performance of the AP method. For

instance, when the preference parameter is set to the median, and the damping rate is 0.8, the

AP method does not converge. When the preference parameter is set to the median, and the

damping rate is 0.9, the AP method achieves a purity of 95.36%, which is higher than the highest

purity in Table 3.5 (93.51%). However, under this parameter setting, AP identifies 20 estimated

classes, a number much larger than the GT (8 GT subclasses). This indicates that the dataset is

over-partitioned. Conversely, with appropriate parameter values, the AP method achieves a

purity of 93.8%, similar to the highest purity in Table 3.5 (93.51%).

Figure 3.5 presents the partitioning results on Dataset 2 using the FCMO method with

criteria L1-F, L2-F and L1-WB and the AP method. We can find that FCMO-L1-F successfully

59

detected all main GT classes (Figure 3.5 (c)), while FCMO-L2-F failed to identify the arundo

donax class (blue) (Figure 3.5 (d)), resulting in lower partitioning performance. In addition, we

found that the partitioning results of FCMO-L1-WB and FCMO-L1-F on the Dataset 2 are same.

According to Figure 3.5 (c), (e), and (f), the FCMO-L1-F, FCMO-L1-WB and AP methods

incorrectly assigned some points belonging to the GT healthy peach trees subclass (grey) to the

arundo donax subclass (blue). However, these two subclasses do not belong to the same main

GT class, which leads to a decrease in partitioning performance. In addition, there were some

points belonging to the GT healthy peach trees subclass (grey) were mistakenly assigned to the

dense pinus halepensis subclass (red) by AP.

(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Partitioning results on Dataset 2. (a): GT1 image (5 main GT classes), (b): GT2

image (8 GT subclasses), (c), (d) and (e): FCMO using criteria L1-F, L2-F and L1-WB,

respectively, (f): AP – preference parameter set to minimum and damping rate of 0.9.

60

According to Table 3.3 and 3.5, both the FCMO-L1-F and FCMO-L1-WB methods achieve

the highest purity in partitioning both Dataset 1 and Dataset 2. To further compare these two

methods, we conducted an additional test.

Since FCMO is used to partition data chunks by our method, in this evaluation, we utilized

FCMO-L1-F and FCMO-L1-WB to partition only data chunks of varying sizes in Dataset 2

instead of the entire dataset. Their partitioning performances are demonstrated in Table 3.7.

Table 3.7: Partitioning performances of FCMO-L1-F and FCMO-L1-WB on different sizes of

data chunks in Dataset 2.

Methods Chunk size Purity (%) NC CPU (s)

FCMO-L1-F

128 94.23 4 0.54

256 94.24 4 0.95

512 91.95 4 2.31

1024 92.52 4 4.14

2048 91.29 4 7.48

FCMO-L1-WB

128 Non-convergence

256 99.41 8 0.91

512 96.12 5 2.96

1024 92.52 4 4.07

2048 91.29 4 9.56

It is obvious that the overall performance of FCMO-L1-WB is better than that of FCMO-L1-

F. We observed that with a chunk size of 128 pixels, the FCMO-L1-WB method did not

converge, indicating that FCMO-L1-WB may not be suitable for partitioning datasets with small

populations. Nevertheless, in the context of partitioning large streaming data, this limitation

becomes negligible.

In summary, compared with FCMO using other similarity criteria and evaluation criteria,

FCMO-L1-WB demonstrates superior performance on both datasets. Although AP also exhibits

strong partitioning performance, it has to predetermine the input parameters which greatly

affect its performance. In contrast, FCMO-L1-WB does not introduce parameters, ensuring a

more stable partitioning performance. Based on the above analysis, FCMO-L1-WB achieves the

best partitioning performance on both datasets.

61

In order to obtain finer classes during the data chunk partitioning process to retain more

detailed information for the subsequent fusion process, we modified the WB-L1 index and

proposed the WB-L1M index as the evaluation criterion of FCMO. We conducted a comparison

between FCMO-L1-WBM and FCMO-L1-WB using data chunks containing 256 and 512 pixels

from Dataset 2 to demonstrate FCMO-L1-WBM’s capability to refine classes and extract more

detailed information.

Figure 3.6 and 3.7 demonstrate the number of estimated classes and the size of each class

(number of objects in the class) obtained by employing FCMO-L1-WB and FCMO-L1-WBM to

partition data chunks of 256 and 512 pixels from Dataset 2.

Figure 3.6: The sizes of estimated classes on data chunk of 256 pixels. (a): FCMO-L1-WB, (b):

FCMO-L1-WBM.

Figure 3.7: The sizes of estimated classes on data chunk of 512 pixels. (a): FCMO-L1-WB, (b):

FCMO-L1-WBM.

62

Figure 3.6 and 3.7 clearly show that, when compared to the results of FCMO-L1-WB (8 and

5 estimated classes with the chunk sizes of 256 and 512 pixels, respectively), FCMO-L1-WBM

identified more classes with smaller sizes (20 and 35 estimated classes with the chunk sizes of

256 and 512 pixels, respectively), which aligns with our goal of obtaining finer classes.

3.2.4 Evaluation of WFCMO

To assess the performance of WFCMO on exemplar sets, we generated a dataset comprising

335 objects. This dataset encompasses seven GT subclasses of varying sizes, which can be

partitioned into two main GT classes. Each object in this dataset is characterized by two

attributes. The details of the generated dataset are illustrated in Table 3.8.

Table 3.8: Details of the two main GT classes and seven GT subclasses in the generated dataset.

Labels of 2 main GT classes Labels of 7 GT subclasses

C1 (185 objects)

 SC1 (5 objects)

 SC2 (150 objects)

 SC3 (30 objects)

C2 (150 objects)

 SC4 (20 objects)

 SC5 (20 objects)

 SC6 (100 objects)

 SC7 (10 objects)

Figure 3.8 demonstrates the partitioning results of WFCMO and FCMO on the generated

dataset. The red filled points depict the exemplars of the seven GT subclasses, while the red

hollow point represents the GT centroids of the two main classes. The black asterisk indicates

the estimated centroids of the two main classes obtained by WFCMO when partitioning the

exemplar set (red filled points). The red asterisk represents the estimated centroids of the two

main classes obtained by FCMO-L1-F during the partitioning of the exemplar set.

It is expected that the partitioning result on the exemplar set must be close to the GT

centroids of C1 and C2. According to Figure 3.8, it is evident that the distance between the black

asterisk and the red hollow point is small. This observation highlights that, during the fusion

process, the WFCMO method takes into account the weight of each exemplar, demonstrating

good partitioning performance. In contrast, FCMO-L1-F tends to identify biased estimated class

63

centroids without considering the sizes of classes. Based on these findings, it is better to use

WFCMO in the fusion process instead of FCMO-L1-F for partitioning exemplar sets.

Figure 3.8: Partitioning results of WFCMO and FCMO on the generated dataset.

64

Chapter 4

Evaluation of developed method (STRFCM)

In this chapter, we assessed our proposed STRFCM method and compared it with two

parametric data stream unsupervised partitioning methods, STRAP [14] and CODAS [15],

using Dataset 1 and Dataset 2 presented in Subsection 3.2.3.1. In addition, we utilized a real-

world dataset “Image Segmentation” [96] to conduct a comparison of our method with four

parametric partitioning methods across the categories of supervised (AAPStream [17]), semi-

supervised (CluStream [13]) and unsupervised (DenStream [16] and STRAP [14]). These

compared methods have already been discussed in Section 2.3.

The “Image Segmentation” dataset, referred to as Dataset 3, is sourced from the UCI

Machine Learning Repository [96]. It contains 2310 instances characterized by 19 features,

such as the mean values of the R, G, and B components and the mean saturation value. These

instances can be assigned to seven classes (brick face, sky, foliage, cement, window, path, and

grass). The instances were randomly selected from a database containing seven outdoor images.

The images were hand-segmented to create a partitioning for every pixel. Each instance is a

3x3 region.

4.1 Evaluation protocol

In this section, we present the evaluation protocol for the partitioning performances of our

proposed method, STRFCM, and two parametric unsupervised methods, STRAP and CODAS,

using two hyperspectral datasets. The selection of STRAP and CODAS for comparison is

grounded in their ability to obviate the need for predetermining the number of classes and their

open-source nature.

The assessment of partitioning performance relies on external validity indices, purity and

the kappa index [97]. Furthermore, during the evaluation, we also consider the number of

estimated classes (NC), number of detected outliers (OT), and CPU execution time.

The kappa index measures the agreement degree between two or more observers who

partition objects into different classes. In our assessment, one observer gives the GT data labels,

and the other provides the estimated data labels. It is calculated as follows:

65

𝑘𝑎𝑝𝑝𝑎 = (𝑝𝑜 − 𝑝𝑒) (1 − 𝑝𝑒)⁄ (4.1)

where:

 𝑝𝑜 is the actual observed agreement among observers. It computes the sum of the number of

correctly partitioned samples for each main GT class divided by the total number of samples,

which is the overall classification accuracy.

𝑝𝑒 represents the hypothetical probability of chance agreement. It calculates the sum of the

number of samples partitioned by one observer for each main GT class times the number of

samples partitioned by another observer, which is then divided by the square of the total number

of samples.

An ideal partition is characterized by a kappa value of 100%, while a poor partition typically

exhibits a kappa value close to 0%.

In order to reduce the execution time, our method partitions multiple data chunks in parallel

utilizing four CPU cores. The partitioning process was executed on an Intel(R) Core (TM) i5-

1135G7 processor, clocked at 2.4 GHz, with 16 GB of RAM.

During the assessment of our proposed method, the data in hyperspectral image is entered

sequentially into data chunks of the same size, and these data chunks are partitioned in a time

series manner. We gradually increase the data chunk size up to the size of Dataset 1 and 2

(excluded). The data chunk size is determined based on the number of pixels in each row of the

image as the basic unit.

The input parameters of STRAP include the initial batch size, threshold distance, max cache,

sliding window size, along with the preference parameter and damping rate of AP. CODAS

uses the parameters threshold density and threshold radius. It is necessary to specify their input

parameters before partitioning. During the assessment, we conducted extensive tests to

determine optimal parameter values, which consumed a significant amount of time.

4.2 Evaluation on hyperspectral image of algae

In this section, we assess our proposed STRFCM method and compare it with two parametric

unsupervised methods, STRAP and CODAS, by partitioning Dataset 1. The number of

estimated classes, number of detected outliers, purity, kappa index, and execution time are

considered to evaluate the partitioning performance.

Table 4.1 presents the partitioning performances of our method (STRFCM), STRAP, and

CODAS on Dataset 1. Note that this table only contains a portion of representative partitioning

66

results of STRAP and CODAS. The comprehensive parameter tuning process entails a

substantial number of tests, making it impractical to display the entirety of the results within

this table.

Table 4.1: Partitioning performances of our method (STRFCM), STRAP, and CODAS on

Dataset 1.

Performance of our proposed STRFCM method

Chunk size NC OT Purity (%) Kappa (%) CPU (s)

240 8

None

100 100 50.56

360 8 100 100 51.27

720 8 100 100 183.64

1200 8 100 100 1079.97

1800 9 100 100 2132.63

Performance of STRAP method

Input parameters set by user:

NC OT Purity (%) Kappa (%) CPU (s)

Preference parameter=median,

sliding window size=3600 (full image)

Threshold

distance

Initial

batch

Damping

rate

Max

cache

6000

240

0.8 10

8 0 100 100 0.28

360 8 0 100 100 0.29

720 9 0 100 100 0.29

1200 9 0 100 100 0.30

1800 10 0 100 100 0.31

7000

240

0.8 10

7 2 99.09 99.50 0.25

360 7 2 99.09 99.50 0.22

720 8 2 99.21 99.50 0.24

1200 8 2 99.21 99.50 0.27

1800 10 0 100 100 0.32

8000

240

0.8 10

7 0 99.09 99.50 0.25

360 7 0 99.09 99.50 0.21

720 8 0 99.21 99.50 0.35

1200 8 0 99.21 99.50 0.28

1800 10 0 100 100 0.31

67

6000 1200 0.8

10 8 0 100 100 0.28

30 8 20 100 100 0.30

50 8 31 99.93 99.96 0.30

70 9 0 100 100 0.31

100 9 0 100 100 0.30

Performance of CODAS method

Input parameters set by user:
NC OT Purity (%) Kappa (%) CPU (s)

Threshold density Threshold radius

3

200 40 73 100 100 1.13

300 16 13 100 100 0.86

400 12 1 100 100 0.59

500 10 1 100 100 0.59

600 9 1 100 100 0.41

700 7 0 100 100 0.43

4

200 38 187 100 100 1.25

300 16 32 100 100 0.82

400 12 4 100 100 0.57

500 11 1 100 100 0.52

600 10 1 100 100 0.41

700 7 0 100 100 0.41

5

200 29 282 100 100 1.06

300 18 44 100 100 0.76

400 11 12 100 100 0.53

500 10 5 100 100 0.53

600 9 5 100 100 0.45

700 8 0 100 100 0.40

According to Table 4.1, our proposed method (STRFCM) achieved a purity of 100% on

Dataset 1, and the chunk size has no effect on values of purity and kappa index. However, we

found that as the chunk size increases, the execution time becomes longer. This happens

because, during the chunk partitioning step, finer classes are obtained, leading to an increase in

the number of iterations in FCMO. As the iteration count rises, so does the execution time. On

68

the other hand, larger data chunks require more time for each iteration, leading to a significant

increase in execution time as the number of iterations grows.

Two examples of the partitioning results of chunk sizes of 240 pixels and 1800 pixels are

presented in Figure 4.1. We can find that all main GT classes and 8 GT subclasses were detected,

except for the subclass with data of mixed types (purple). This is because the mean spectral

signature of the ulva subclass (orange) is close to that of the subclass with data of mixed types

(purple) (Figure 3.2 (b)). Consequently, it becomes challenging for algorithms to distinguish

between these two subclasses. Furthermore, we observed that several points belonging to the

GT ulva subclass (orange) were assigned to the enteromorpha subclass (red) (Figure 4.1 (c) and

(d)). However, these two subclasses are part of the main GT class of vegetation, which has

almost no impact on the partitioning performance.

(a) (b)

(c) (d)

Figure 4.1: Partitioning results on Dataset 1 using our proposed method STRFCM. (a): GT1

image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): data chunk size 240 pixels,

(d): data chunk size 1800 pixels.

Figure 4.2 demonstrates the mean spectral signatures ± standard deviation of the final

estimated classes of Dataset 1 with the chunk size of 240 pixels. The black lines depicted in

Figure 4.2 represent the mean spectral signatures of the corresponding GT subclasses. We can

69

observe that the mean spectral signatures of the estimated classes are similar to those of the GT

subclasses, which means the partitioning performance of STRFCM is high.

C1 C2 C3

C4 C5 C6

C7 C8

Figure 4.2: Mean spectral signatures ± standard deviation of 8 estimated classes of Dataset 1 –

data chunk size 240 pixels.

The partitioning performance of STRAP displayed in Table 4.1 demonstrates that the choice

of parameter settings has an impact on its partitioning performance. In the majority of the

partitioning results presented in this table, both purity and kappa index exhibit values of 100%.

However, under certain parameter settings, the purity is lower than 100%, such as the

partitioning result (purity of 99.09%) with the parameter setting: threshold distance of 7000,

initial batch of 360, damping rate of 0.8, and max cache of 10. Additionally, STRAP

occasionally detects outliers in certain cases.

70

Figure 4.3 demonstrates the partitioning results with the parameter setting: threshold

distance of 6000, initial batch of 720, damping rate of 0.8, and max cache of 10 (referred as

parameter setting A), and another parameter setting: threshold distance of 7000, initial batch of

240, damping rate of 0.8, and max cache of 10 (referred as parameter setting B). These settings

yield purity values of 100% and 99.09% (the highest and lowest purity of STRAP), respectively.

(a) (b)

(c) (d)

Figure 4.3: Partitioning results on Dataset 1 using STRAP with parameter settings A and B. (a):

GT1 image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): parameter setting A,

(d): parameter setting B.

According to Figure 4.3 (c), like the partitioning results of STRFCM (Figure 4.1), all GT

subclasses were successfully detected except for the subclass with data of mixed types (purple).

Several points belonging to the ulva subclass (orange) were assigned to the enteromorpha

subclass (red). Both of these subclasses belong to the vegetation class. The performance of the

method was not significantly affected by this result. However, in Figure 4.3 (d), there were

points belonging to the ulva subclass (orange) that were incorrectly assigned to the turbid water

subclass (dark blue). These two subclasses do not belong to the same main class, which resulted

in a degradation of performance. The black points in Figure 4.3 (d) represent outliers detected

by STRAP.

71

In table 4.1, it is evident that the choice of parameters significantly impacts the partitioning

performance of CODAS. The number of estimated classes varies from 7 to 40, and the number

of detected outliers varies from 0 to 282. While CODAS consistently achieves a purity of 100%,

it tends to over-partition the dataset and detect numerous outliers under certain parameter

settings, which is not desirable. For instance, with the parameter setting of a threshold density

of 5 and a threshold radius of 200 (referred as parameter setting B), despite achieving 100%

purity, CODAS identified 29 classes, which is more than the 9 GT subclasses, and detected 282

outliers. CODAS gets the best performance under the parameter setting of a threshold density

of 3 and a threshold radius of 600 (referred as parameter setting A). Figure 4.4 demonstrates

the partitioning results of CODAS with parameter settings A and B.

(a) (b)

(c) (d)

Figure 4.4: Partitioning results on Dataset 1 using CODAS with parameter settings A and B.

(a): GT1 image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): parameter setting

A, (d): parameter setting B.

In Figure 4.4 (c), we observed that all main GT classes were successfully detected. However,

the ulva subclass (orange) and the enteromorpha subclass (red) were not detected. In Figure 4.4

(d), we can find that CODAS detected an unusually high number of outliers (282), which is not

desirable. These results highlight that the partitioning performance of CODAS is significantly

influenced by the choice of parameter values.

72

In summary, our proposed STRFCM method achieved a purity of 100% on Dataset 1, and

the chunk size had no discernible effect on purity and kappa index values. If the parameter

values of STRAP and CODAS are well chosen, their highest purity and kappa values can also

reach 100%. However, when the parameter values are inappropriate, the partitioning

performances of STRAP and CODAS will be significantly affected, which is a great limitation.

Furthermore, we observed that the execution time of our proposed method is longer than that

of STRAP and CODAS. However, if we consider the time required to tune the parameters to

achieve the optimal partition, our method takes less time. In addition, determining the optimal

values of parameters often needs the knowledge of datasets in advance, and the parameter

values may differ for different datasets, which greatly limits the applicability of methods. In

conclusion, our proposed method outperforms the parametric partitioning methods STRAP and

CODAS in partitioning Dataset 1.

4.3 Evaluation on hyperspectral image of invasive vegetation

In this section, we conduct a comparative analysis between our proposed STRFCM method and

two parametric unsupervised methods, STRAP and CODAS, using Dataset 2 as the

experimental dataset. Table 4.2 presents the partitioning performances of our method

(STRFCM), STRAP, and CODAS on Dataset 2. It only demonstrates a portion of representative

partitioning results of STRAP and CODAS.

Table 4.2: Partitioning performances of our method (STRFCM), STRAP, and CODAS on

Dataset 2.

Performance of our proposed STRFCM method

Chunk size NC OT Purity (%) Kappa (%) CPU (s)

256 11

None

96.60 94.41 68.31

512 10 95.94 93.96 116.68

1024 10 96.19 94.65 230.04

2048 10 96.12 94.43 505.71

Performance of STRAP method

Input parameters set by user:

NC OT
Purity

(%)

Kappa

(%)

CPU

(s)
Preference parameter=median,

sliding window size=4096 (full image)

73

Threshold

distance

Initial

batch

Damping

rate

Max

cache

1000

256

0.8 10

5 5 90.34 75.05 3.32

512 6 1 83.91 75.05 2.32

1024 7 0 91.57 89.00 2.80

2048 9 7 93.94 93.84 4.92

3000

256

0.8

10 6 7 88.64 75.24 0.90

256 100 10 15 94.59 90.59 0.27

256 300 9 50 93.82 88.79 0.30

256 700 10 400 94.15 83.74 0.26

512

10

7 0 86.70 75.61 0.50

1024 10 3 94.04 89.06 1.89

2048 13 7 95.04 94.09 2.57

6000

256 0.6

10

Non-convergence

256 0.7 Non-convergence

256

0.8

6 5 91.99 75.14 0.21

512 8 0 88.64 75.92 0.27

1024 10 0 94.02 89.00 1.15

2048 13 0 95.04 94.10 2.36

7000

256

0.8 10

6 0 92.01 75.16 0.22

512 8 0 88.64 75.92 0.25

1024 10 0 94.02 89.00 1.24

2048 13 0 95.04 94.10 1.84

Performance of CODAS method

Input parameters set by user:
NC OT Purity (%) Kappa (%) CPU (s)

Threshold density Threshold radius

4

500 24 87 98.56 83.37 0.97

520 22 78 98.33 82.52 1.01

540 24 52 98.64 83.88 0.98

550 21 52 97.21 50.38 0.94

6

500 27 234 98.28 86.90 0.99

520 23 204 98.52 83.68 1.10

540 22 159 99.25 96.74 0.93

550 21 161 99.22 96.74 0.98

74

8

500 24 408 99.24 97.57 1.00

520 15 341 96.73 83.17 1.07

540 17 297 96.78 96.83 1.01

550 25 296 96.39 96.83 0.92

The partitioning results of STRFCM on Dataset 2 (Table 4.2) show that changing the chunk

size has only a minor impact on the partitioning performance. The purity difference is less than

1%, and the kappa difference is also less than 1%. The highest purity and kappa values achieved

are 96.60% and 94.65%, respectively. In addition, as the chunk size gradually increases, the

execution time gradually becomes longer. The partitioning results with chunk sizes of 256

pixels and 512 pixels, which have the highest and lowest purity, are presented in Figure 4.5.

(a) (b)

(c) (d)

Figure 4.5: Partitioning results on Dataset 2 using our proposed method STRFCM. (a): GT1

image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): data chunk size 256 pixels,

(d): data chunk size 512 pixels.

In Figure 4.5, we can find that STRFCM detected all main GT classes. However, not all GT

subclasses were identified, such as the healthy peach trees subclass (grey) and the sparse pinus

halepensis subclass (dark blue). This is because the mean spectral signature of the healthy peach

trees subclass (grey) is close to that of the arundo donax subclass (blue), and the mean spectral

signature of the sparse pinus halepensis subclass (dark blue) is close to that of the early wilting

75

peach trees subclass (brown), as shown in Figure 3.3 (b). The algorithm mispartitioned the

points in these classes.

Figure 4.6 displays the mean spectral signatures ± standard deviation of the final estimated

classes of Dataset 2 with the chunk size of 256 pixels. We can observe that the GT healthy

peach trees subclass (grey) and the sparse pinus halepensis subclass (dark blue) were not

detected. In addition, STRFCM found more classes (11 estimated classes) than the 8 GT

subclasses which means it found more detailed information than what is presented in the GT.

The estimated classes C1, C10 and C11 belong to the same main GT river class. Similarly, the

estimated classes C2 and C7 are part of the main GT pinus halepensis class, the estimated classes

C3, C4 and C9 belong to the same main GT peach trees class, the estimated class C5 belongs to

the main GT arundo donax class, and the estimated classes C6 and C8 are part of the main GT

buildings class.

According to Table 4.2, we can find that the input parameters have a huge impact on the

partitioning performance of STRAP, leading to purity values ranging from 83.91% to 95.04%.

Moreover, there are cases where STRAP fails to converge, such as the partitioning result with

the parameter setting: threshold distance of 6000, initial batch of 256, damping rate of 0.7, and

max cache of 10. The best partitioning performance is obtained with the parameter setting:

threshold distance of 6000, initial batch of 2048, damping rate of 0.8, and max cache of 10, and

another parameter setting: threshold distance of 7000, initial batch of 2048, damping rate of 0.8,

and max cache of 10 (referred as parameter setting A). The worst partitioning performance is

found with the parameter setting: threshold distance of 3000, initial batch of 256, damping rate

of 0.8, and max cache of 700 (referred as parameter setting B). In this case, although the

obtained purity is high (94.15%), STRAP incorrectly identifies an excessive number of objects

as outliers, which is not ideal.

Figure 4.7 illustrates the partitioning results of STRAP with parameter settings A and B. In

Figure 4.7 (c), we observed that all main GT classes were successfully identified. Similar to the

results of STRFCM, it failed to detect the GT healthy peach trees subclass (grey) and the sparse

pinus halepensis subclass (dark blue). Some points belonging to the GT healthy peach trees

subclass (grey) were incorrectly assigned to the arundo donax subclass (blue). This

misassignment negatively impacts the partitioning performance of STRAP. Figure 4.7 (d)

demonstrates the poorest partitioning result with numerous points (400 pixels) being identified

as outliers (black points). Furthermore, many of the points that belong to the GT arundo donax

subclass (blue) were mistakenly assigned to the dense pinus halepensis subclass (red) by

76

STRAP, which is not desirable. These partitioning results demonstrate that the choice of

parameter values has significant influence on the partitioning performance of STRAP.

C1 C2 C3

C4 C5 C6

C7 C8 C9

C10 C11

Figure 4.6: Mean spectral signatures ± standard deviation of 11 estimated classes of Dataset 2

– data chunk size 256 pixels.

77

(a) (b)

(c) (d)

Figure 4.7: Partitioning results on Dataset 2 using STRAP with parameter settings A and B. (a):

GT1 image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): parameter setting A,

(d): parameter setting B.

Table 4.2 also displays the partitioning performance of CODAS under various parameter

settings. It becomes evident that the input parameters have a significant impact on the

performance of CODAS. Across different parameter settings, CODAS detected varying

numbers of classes and outliers. Despite achieving high purity (>96%), CODAS identified a

greater number of classes than the 8 GT subclasses and labeled too many points as outliers.

Therefore, the partitioning performance of CODAS on Dataset 2 falls short in comparison to

that of STRFCM and STRAP. The highest purity (99.25%) is achieved with the parameter

setting: threshold density of 6 and threshold radius of 540 (referred as parameter setting A).

The lowest purity (96.39%) presented in this table is obtained with the parameter setting:

threshold density of 8 and threshold radius of 550 (referred as parameter setting B). Figure 4.8

shows the partitioning results of CODAS with parameter settings A and B.

78

(a) (b)

(c) (d)

Figure 4.8: Partitioning results on Dataset 2 using CODAS with parameter settings A and B.

(a): GT1 image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): parameter setting A,

(d): parameter setting B.

In Figure 4.8 (c), all main GT classes were identified. Numerous points (159 pixels) were

identified as outliers (black points). Similar to results of STRFCM and STRAP, some points

belonging to the GT healthy peach trees subclass (grey) were incorrectly assigned to the arundo

donax subclass (blue), thus impacting the partitioning performance of CODAS. In Figure 4.8

(d), we can find that more points (296 pixels) were detected as outliers. Additionally, we

observed that CODAS partitioned most of the points in the main GT peach trees class (brown)

into its subclass, wilting peach trees (earthy yellow). However, according to the GT (Table 3.2),

only about half of the points (501 pixels) in peach trees class (1189 pixels) belong to the

subclass wilting peach trees.

Comparing with STRAP, the highest purity (96.60%) of our proposed STRFCM method is

higher than that of STRAP (95.04%). In addition, the number of classes estimated by STRFCM

is closer to the GT (8 GT subclasses), while the number of estimated classes of STRAP and

CODAS under the best parameter settings are strongly biased (more than 8 GT subclasses).

This is the reason why CODAS achieves a purity as high as 99.25%. Furthermore, we can

observe that the choice of parameters can have a significant impact on the final partitioning

results of STRAP and CODAS. Even though STRFCM has a longer execution time compared

79

to STRAP and CODAS, it remains globally more time-efficient, if we consider the time to set

the parameters.

In conclusion, the proposed STRFCM method outperforms the STRAP and CODAS

methods on hyperspectral image datasets, if we consider the purity, kappa index, number of

estimated classes, instability of the results due to the numerous parameters involved, and the

time required for parameter setting. The parameter tuning process for STRAP and CODAS is

challenging and doesn’t guarantee optimization of the solution. Moreover, the process of

finding the optimal parameter settings for STRAP and CODAS often relies on prior knowledge

of the data stream, which may not be available in some real scenarios.

4.4 Evaluation on Image Segmentation dataset

Our proposed method was also compared with AAPStream [17], DenStream [16], STRAP [14],

and CluStream [13] on Dataset 3, which contains 2310 instances. To ensure a fair comparison,

we computed the partitioning purity of our method for the same stream lengths as those used in

the compared methods (lengths of 500, 1000, 1500, 2000 and 2310), and the parameter settings

of these four parametric methods followed their original papers. The performances of these

parametric methods are consistent with the results reported in [17]. The results of our method

were obtained using a constant data chunk size of 50.

The comparison results are presented in Figure 4.9. Our method consistently achieved the

highest purity values across various stream lengths. Its average purity is 92.11%.

Figure 4.9: Purity criterion of five partitioning methods (STRFCM, AAPStream, DenStream,

STRAP, and CluStream).

80

In conclusion, our proposed STRFCM method outperforms the other four parametric

methods, achieving the highest purity across various stream lengths. It has a significant

advantage as it does not require the parameter tuning process.

4.5 Discussion

Our proposed STRFCM method is an unsupervised and non-parametric method which can

automatically partition data streams and estimate the number of classes without the need for

prior information or the parameter tuning process. Based on the partitioning results, it is evident

that the results of STRFCM remain relatively stable when applied to the partitioning of

synthetic hyperspectral images. Variations in data chunk size have a negligible impact on its

partitioning performance. Moreover, STRFCM outperforms the parametric partitioning

methods STRAP and CODAS on hyperspectral images. In addition, when applied to partition

the real-world dataset “Image Segmentation”, our method performs better than AAPStream,

DenStream, STRAP and CluStream, achieving higher purity. The evaluation of STRFCM on

the synthetic hyperspectral images and the real-world dataset demonstrates its ability to provide

high-quality partitioning results.

81

Chapter 5

Conclusion and perspectives

5.1 Conclusion

Data stream partitioning is an important technique in data stream processing, enabling the real-

time analysis of data streams. Unfortunately, many proposed methods require specifying the

number of classes before partitioning and/or introducing user-defined parameters, the values of

which may differ for different datasets. The limitation of these parametric methods is that they

necessitate empirical parameter tuning process to determine appropriate parameter values to

achieve optimal partition. This relies on the user's knowledge of the dataset and can be

challenging to implement in real-world applications.

Therefore, an unsupervised and non-parametric data stream partitioning method was

proposed to address this limitation. This method does not require predetermining the number

of classes or parameter tuning. It only needs streaming data as input to automatically partition

the data stream and estimate the optimal number of classes.

Our proposed STRFCM method mainly has two steps: data chunk partitioning step and

fusion step. In the data chunk partitioning step, the data stream is divided into equally sized

data chunks. STRFCM partitions these data chunks, and identifies the exemplar (centroid) of

each class. In the fusion step, STRFCM partitions the exemplar set obtained during the chunk

partitioning step to get the final optimal partition.

In order to partition data chunks, we first selected an unsupervised and non-parametric static

dataset partitioning method, FCMO, which can automatically partition the dataset without

introducing any input parameters. We verified that FCMO using L1 norm as its similarity

criterion outperforms FCMO using L2 norm. We continued to optimize the FCMO method by

selecting an appropriate partitioning validity index employed as the FCMO evaluation criterion.

In order to obtain finer classes and retain more detailed information during the chunk

partitioning step, a new validity index WB-L1M based on the WB index was proposed. For the

fusion step, we proposed WFCMO to partition the exemplar set, considering the sizes of the

classes represented by exemplars.

STRFCM was evaluated on two synthetic hyperspectral images and a real-world dataset

using two external metrics. It was compared with two parametric unsupervised partitioning

82

methods, STRAP and CODAS, on the hyperspectral images. Additionally, it was evaluated

against two parametric unsupervised methods, DenStream and STRAP, and one semi-

supervised method, CluStream, as well as one supervised method, AAPStream, on the real-

world dataset “Image Segmentation”. The experimental results demonstrate that STRFCM

outperforms these parametric methods and achieves high partitioning performance.

In conclusion, a novel unsupervised and non-parametric method called STRFCM was

developed for partitioning data streams. This method is easy to apply by users, benefiting from

the fact that it eliminates the need for prior information and obviates the requirement for

empirical parameter tuning. It demonstrates efficiency in partitioning large, high spatial, and

spectral dimensional data streams, especially hyperspectral data streams.

5.2 Perspectives

The work presented here opens to both algorithmic and applicative perspectives for further

work on our proposed method. The first direction for further research involves completely

eliminating the influence of the data chunk size. Our method exhibits good adaptability when

partitioning the hyperspectral image data, and the impact of data chunk size on partitioning

performance exhibits only marginal variations. However, this variation only renders the results

relatively stable. Therefore, efforts should be focused on finding a solution that completely

eliminates the influence of data chunk size on partitioning performance, ensuring consistently

stable results for all types of data.

According to the assessment results, our proposed STRFCM method is well-suited for

partitioning synthetic hyperspectral image data streams. An interesting future direction is to

assess our method on real and large hyperspectral images with valid ground truth.

Another direction for further research considers reducing the execution time. We observed

that as the chunk size increases, the algorithm’s execution time becomes longer, especially

when partitioning very large data chunks. It is important to emphasize that, throughout our

research, our primary focus has consistently been on ensuring the high-quality results of our

method, rather than the time it consumes. To address the issue of execution times, one potential

optimization strategy involves harnessing the power of higher-performance processors

equipped with advanced parallel processing techniques. For instance, our current setup employs

a 4-core processor. However, in the future, we can utilize an 8 or 16-core processor to process

more partitioning tasks in parallel. This approach will enhance the efficiency of our method

without compromising result quality.

83

Bibliography

[1] Stuart, M.B., McGonigle, A.J., Willmott, J.R.: Hyperspectral imaging in environmental

monitoring: A review of recent developments and technological advances in compact

field deployable systems. Sensors, 19(14), 3071 (2019).

[2] Yang, B., Yang, M., Plaza, A., Gao, L., Zhang, B.: Dual-mode FPGA implementation of

target and anomaly detection algorithms for real-time hyperspectral imaging. IEEE

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6),

2950-2961 (2015).

[3] Bindhu, V., Ranganathan, G.: Hyperspectral image processing in internet of things

model using clustering algorithm. Journal of ISMAC, 3(02), 163-175 (2021).

[4] Wan, L., Li, H., Li, C., Wang, A., Yang, Y., Wang, P.: Hyperspectral sensing of plant

diseases: Principle and methods. Agronomy, 12(6), 1451 (2022).

[5] Horstrand, P., Guerra, R., Rodríguez, A., Díaz, M., López, S., López, J.F.: A UAV

platform based on a hyperspectral sensor for image capturing and on-board processing.

IEEE Access, 7, 66919-66938 (2019).

[6] Zhong, Y., Wang, X., Xu, Y., Jia, T., Cui, S., Wei, L., Ma, A., Zhang, L.: MINI-UAV

borne hyperspectral remote sensing: A review. In 2017 IEEE International Geoscience

and Remote Sensing Symposium (IGARSS), 5908-5911 (2017).

[7] Xiang, T., Xia, G., Zhang, L.: Mini-unmanned aerial vehicle-based remote sensing:

Techniques, applications, and prospect. IEEE Geoscience and Remote Sensing

Magazine, 7(3), 29-63 (2019).

[8] Saha, D., Manickavasagan, A.: Machine learning techniques for analysis of

hyperspectral images to determine quality of food products: A review. Current Research

in Food Science, 4, 28-44 (2021).

[9] Fabelo, H., Ortega, S., Kabwama, S., Callico, G.M., Bulters, D., Szolna, A., Pineiro,

J.F., Sarmiento, R.: HELICoiD project: A new use of hyperspectral imaging for brain

cancer detection in real-time during neurosurgical operations. In Hyperspectral Imaging

Sensors: Innovative Applications and Sensor Standards 2016, 9860, 986002 (2016).

[10] Zubaroğlu, A., Atalay, V.: Data stream clustering: A review. Artificial Intelligence

Review, 54(2), 1201-1236 (2021).

[11] Chehdi, K., Taher, A., Cariou, C.: Stable and unsupervised fuzzy C-means method and

its validation in the context of multicomponent images. Journal of Electronic Imaging,

24(6), 061117 (2015).

[12] Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering algorithm.

84

Computers and Geosciences, 10(2-3), 191-203 (1984).

[13] Aggarwal, C.C., Philip, S.Y., Han, J., Wang, J.: A framework for clustering evolving

data streams. In Proceedings 2003 VLDB Conference, 81-92 (2003).

[14] Zhang, X., Furtlehner, C., Germain-Renaud, C., Sebag, M.: Data stream clustering with

affinity propagation. IEEE Transactions on Knowledge and Data Engineering, 26(7),

1644-1656 (2013).

[15] Hyde, R., Angelov, P.: A new online clustering approach for data in arbitrary shaped

clusters. In 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), 228-

233 (2015).

[16] Cao, F., Estert, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data

stream with noise. In Proceedings of the 2006 SIAM International Conference on Data

Mining, 328-339 (2006).

[17] Abdulah, S., Atwa, W., Abdelmoniem, A.M.: Active clustering data streams with

affinity propagation. ICT Express, 8(2), 276-282 (2022).

[18] Ray, P.: A survey on Internet of Things architectures. Journal of King Saud University

- Computer and Information Sciences, 30(3), 291-319 (2018).

[19] Jana, D., Patil, J., Herkal, S., Nagarajaiah, S., Duenas-Osorio, L.: CNN and

Convolutional Autoencoder (CAE) based real-time sensor fault detection, localization,

and correction. Mechanical Systems and Signal Processing, 169, 108723 (2022).

[20] Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., Yang, A.: Comparative research on

network intrusion detection methods based on machine learning. Computers & Security,

121, 102861 (2022).

[21] Shahraki, A., Taherkordi, A., Haugen, Ø., Eliassen, F.: Clustering objectives in wireless

sensor networks: A survey and research direction analysis. Computer Networks, 180,

107376 (2020).

[22] Nithya, N., Duraiswamy, K., Gomathy, P.: A survey on clustering techniques in medical

diagnosis. International Journal of Computer Science Trends and Technology (IJCST),

1(2), 17-23 (2013).

[23] Jones, A.K., Sielken, R.S.: Computer system intrusion detection: A survey. Computer

Science Technical Report, 1-25 (2000).

[24] Bolton, R.J., Hand, D.J.: Statistical fraud detection: A review. Statistical Science, 17(3),

235-255 (2002).

[25] Feather, F., Siewiorek, D., Maxion, R.: Fault detection in an ethernet network using

anomaly signature matching. ACM SIGCOMM Computer Communication Review,

85

23(4), 279-288 (1993).

[26] Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society: Series B

(Methodological), 39(1), 1-22 (1977).

[27] Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning, 20, 273-297

(1995).

[28] Han, J., Pei, J., Tong, H.: Data mining: Concepts and techniques. Elsevier (2022).

[29] Kim, T., Chen, I.R., Lin, Y., Wang, A.Y.Y., Yang, J.Y.H., Yang, P.: Impact of similarity

metrics on single-cell RNA-seq data clustering. Briefings in Bioinformatics, 20(6),

2316-2326 (2019).

[30] Lee, L.J.: Similarity-based approaches to natural language processing. Harvard

University (1997).

[31] Cvejic, N., Loza, A., Bull, D., Canagarajah, N.: A similarity metric for assessment of

image fusion algorithms. International Journal of Signal Processing, 2(3), 178-182

(2005).

[32] Singh, A., Yadav, A., Rana, A.: K-means with three different distance metrics.

International Journal of Computer Applications, 67(10), 13-17 (2013).

[33] Popat, S.K., Deshmukh, P.B., Metre, V.A.: Hierarchical document clustering based on

cosine similarity measure. In 2017 1st International Conference on Intelligent Systems

and Information Management (ICISIM), 153-159 (2017).

[34] Zhang, P., Wang, X., Song, P.X.K.: Clustering categorical data based on distance

vectors. Journal of the American Statistical Association, 101(473), 355-367 (2006).

[35] Bisandu, D.B., Prasad, R., Liman, M.M.: Data clustering using efficient similarity

measures. Journal of Statistics and Management Systems, 22(5), 901-922 (2019).

[36] Pawar, S., Gururaj, H.M., Chiplunar, N.N.: Text summarization using document and

sentence clustering. Procedia Computer Science, 215, 361-369 (2022).

[37] Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters,

31(8), 651-666 (2010).

[38] Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall (1988).

[39] He, Z., Deng, S., Xu, X.: Improving k-modes algorithm considering frequencies of

attribute values in mode. Computational Intelligence and Security: International

Conference, 157-162 (2005).

86

[40] Rosenberger, C., Chehdi, K.: Unsupervised clustering method with optimal estimation

of the number of clusters: Application to image segmentation. In Proceedings of 15th

International Conference on Pattern Recognition, 1, 656-659 (2000).

[41] Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. IEEE

Transactions on Communications, 28(1), 84-95 (1980).

[42] Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science,

315(5814), 972-976 (2007).

[43] Chehdi, K., Soltani, M., Cariou, C.: Pixel classification of large-size hyperspectral

images by affinity propagation. Journal of Applied Remote Sensing, 8(1), 083567 (2014).

[44] Levine, M.D., Nazif, A.M.: Dynamic measurement of computer generated image

segmentations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7(2),

155-164 (1985).

[45] Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603-619

(2002).

[46] Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering

clusters in large spatial databases with noise. In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, 96(34), 226-231 (1996).

[47] Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial

databases: The algorithm gdbscan and its applications. Data Mining and Knowledge

Discovery, 2, 169-194 (1998).

[48] Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: OPTICS: Ordering points to

identify the clustering structure. ACM Sigmod Record, 28(2), 49-60 (1999).

[49] Zhang, X.: Contributions to large scale data clustering and streaming with affinity

propagation. Application to autonomic grids. PhD thesis. PARIS: University PARIS-SUD

(2010).

[50] Sheikholeslami, G., Chatterjee, S., Zhang, A.: Wavecluster: A multi-resolution

clustering approach for very large spatial databases. VLDB, 98, 428-439 (1998).

[51] Murtagh, F., Contreras, P.: Methods of hierarchical clustering. CSIR, 1, 1-21 (2011).

[52] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering

of high dimensional data for data mining applications. In Proceedings of the 1998 ACM

SIGMOD International Conference on Management of Data, 94-105 (1998).

[53] Mansalis, S., Ntoutsi, E., Pelekis, N., Theodoridis, Y.: An evaluation of data stream

clustering algorithms. Statistical Analysis and Data Mining: The ASA Data Science

87

Journal, 11(4), 167-187 (2018).

[54] Carnein, M., Trautmann, H.: Optimizing data stream representation: An extensive

survey on stream clustering algorithms. Business & Information Systems Engineering,

61, 277-297 (2019).

[55] Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., Carvalho, A.C.D., Gama, J.: Data

stream clustering: A survey. ACM Computing Surveys (CSUR), 46(1), 1-31 (2013).

[56] Ghesmoune, M., Lebbah, M., Azzag, H.: State-of-the-art on clustering data streams.

Big Data Analytics, 1, 1-27 (2016).

[57] Barbakh, W., Fyfe, C.: Online clustering algorithms. International Journal of Neural

Systems, 18(3), 185-194 (2008).

[58] Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering data streams.

Proceedings 41st Annual Symposium on Foundations of Computer Science, 359-366

(2000).

[59] Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.:

Streamkm++ a clustering algorithm for data streams. Journal of Experimental

Algorithmics (JEA), 17, 2-4 (2012).

[60] Arthur, D., Vassilvitskii, S.: K-means++ the advantages of careful seeding. In

Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

1027-1035 (2007).

[61] Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams over

sliding windows. Knowledge and Information Systems, 15, 181-214 (2008).

[62] Ren, J., Ma, R.: Density-based data streams clustering over sliding windows. In 2009

Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 5, 248-252

(2009).

[63] Liu, L.X., Huang, H., Guo, Y.F., Chen, F.C.: rDenStream, a clustering algorithm over

an evolving data stream. In 2009 International Conference on Information Engineering

and Computer Science, 1-4 (2009).

[64] Lin, J., Lin, H.: A density-based clustering over evolving heterogeneous data stream.

In 2009 ISECS International Colloquium on Computing, Communication, Control, and

Management, 4, 275-277 (2009).

[65] Hassani, M., Spaus, P., Gaber, M.M., Seidl, T.: Density-based projected clustering of

data streams. In Scalable Uncertainty Management: 6th International Conference, 311-

324 (2012).

[66] Amini, A., Saboohi, H., Herawan, T., Wah, T.Y.: MuDi-Stream: A multi density

88

clustering algorithm for evolving data stream. Journal of Network and Computer

Applications, 59, 370-385 (2016).

[67] Gong, S., Zhang, Y., Yu, G.: Clustering stream data by exploring the evolution of

density mountain. In Proceedings of the VLDB Endowment, 11(4), 393-405 (2017).

[68] Al Abd Alazeez, A., Jassim, S., Du, H.: EDDS: An enhanced density-based method for

clustering data streams. In 2017 46th International Conference on Parallel Processing

Workshops (ICPPW), 103-112 (2017).

[69] Fahy, C., Yang, S.: Finding and tracking multi-density clusters in online dynamic data

streams. IEEE Transactions on Big Data, 8(1), 178-192 (2019).

[70] Yan, X., Razeghi-Jahromi, M., Homaifar, A., Erol, B.A., Girma, A., Tunstel, E.: A novel

streaming data clustering algorithm based on fitness proportionate sharing. IEEE Access,

7, 184985-185000 (2019).

[71] Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In Proceedings of

the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 133-142 (2007).

[72] Amini, A., Wah, T.Y., Teh, Y.W.: DENGRIS-Stream: A density-grid based clustering

algorithm for evolving data streams over sliding window. In Proceedings of the

International Conference on Data Mining and Computer Engineering, 206-210 (2012).

[73] Jia, C., Tan, C., Yong, A.: A grid and density-based clustering algorithm for processing

data stream. In 2008 Second International Conference on Genetic and Evolutionary

Computing, 517-521 (2008).

[74] Wan, L., Ng, W.K., Dang, X.H., Yu, P.S., Zhang, K.: Density-based clustering of data

streams at multiple resolutions. ACM Transactions on Knowledge Discovery from Data

(TKDD), 3(3), 1-28 (2009).

[75] Tareq, M., Sundararajan, E.A., Mohd, M., Sani, N.S.: Online clustering of evolving

data streams using a density grid-based method. IEEE Access, 8, 166472-166490 (2020).

[76] Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Transactions on Neural

Networks, 16(3), 645-678 (2005).

[77] Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Cluster analysis. John Wiley & Sons

(2011).

[78] Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering

validation measures. In 2010 IEEE International Conference on Data Mining, 911-916

(2010).

[79] Da Silva, L.E.B., Melton, N.M., Wunsch, D.C.: Incremental cluster validity indices for

89

online learning of hard partitions: Extensions and comparative study. IEEE Access, 8,

22025-22047 (2020).

[80] Sharma, S.: Applied multivariate techniques. John Wiley & Sons (1995).

[81] Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.

Journal of Intelligent Information Systems, 17, 107-145 (2001).

[82] Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification, 2, 193-218

(1985).

[83] Zhao, Q., Xu, M., Fränti, P.: Sum-of-squares based cluster validity index and

significance analysis. In International Conference on Adaptive and Natural Computing

Algorithms, 313-322 (2009).

[84] Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Communications in

Statistics-theory and Methods, 3(1), 1-27 (1974).

[85] Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms

and validity indices. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(12), 1650-1654 (2002).

[86] Pakhira, M.K., Bandyopadhyay, S., Maulik, U.: Validity index for crisp and fuzzy

clusters. Pattern Recognition, 37(3), 487-501 (2004).

[87] Bandyopadhyay, S., Maulik, U.: Nonparametric genetic clustering: Comparison of

validity indices. IEEE Transactions on Systems, Man, and Cybernetics, Part C

(Applications and Reviews), 31(1), 120-125 (2001).

[88] Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. Journal of

Cybernetics, 4(1), 95-104 (1974).

[89] Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis. Journal of Computational and Applied Mathematics, 20, 53-65 (1987).

[90] Yang, M.S., Wu, K.L.: A new validity index for fuzzy clustering. In 10th IEEE

International Conference on Fuzzy Systems, 1, 89-92 (2001).

[91] Lughofer, E.: Extensions of vector quantization for incremental clustering. Pattern

Recognition, 41(3), 995-1011 (2008).

[92] Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2, 224-227 (1979).

[93] Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 13(08), 841-847 (1991).

90

[94] Halkidi, M., Vazirgiannis, M., Batistakis, Y.: Quality scheme assessment in the

clustering process. In Principles of Data Mining and Knowledge Discovery: 4th

European Conference, 265-276 (2000).

[95] Ball, G.H., Hall, D.J.: ISODATA, a novel method of data analysis and classification.

Technical report. Stanford University (1965).

[96] UC Irvine Machine Learning Repository, https://archive.ics.uci.edu, last accessed

2023/12/21.

[97] Cohen, J.: A coefficient of agreement for nominal scales. Educational and

Psychological Measurement, 20(1), 37-46 (1960).

91

List of figures

Figure 2.1: Partitioning of objects in three classes. To each class is associated its centroid or

exemplar (∗). ... 16

Figure 2.2: AP message passing process [42]. (a): availability and responsibility messages, (b):

iterations of message passing. .. 24

Figure 2.3: DBSCAN [46]. (a): arbitrary-shaped classes, (b): point 𝑝 and point 𝑞 are density-

connected. ... 26

Figure 2.4: Grid-based partitioning: imposing grids on data space [49]. 26

Figure 2.5: Diagram of CluStream algorithm. ... 30

Figure 2.6: Diagram of STRAP algorithm [14]. .. 32

Figure 2.7: Illustration of micro-cluster regions showing (a): micro-cluster radius in red and

micro-cluster core radius in green, (b): micro-clusters combined to the global

clusters [15]... 36

Figure 3.1: Flow chart of the proposed unsupervised partitioning method. 45

Figure 3.2: Mean spectral signatures of the GT classes in Dataset 1. (a): 3 main GT classes, (b):

9 GT subclasses. .. 54

Figure 3.3: Mean spectral signatures of the GT classes in Dataset 2. (a): 5 main GT classes, (b):

8 GT subclasses. .. 54

Figure 3.4: Partitioning results on Dataset 1. (a): GT1 image (3 main GT classes), (b): GT2

image (9 GT subclasses), (c), (d) and (e): FCMO using criteria L1-F, L2-F and L1-

WB, respectively, (f): AP – preference parameter set to minimum and damping rate

of 0.9. .. 57

Figure 3.5: Partitioning results on Dataset 2. (a): GT1 image (5 main GT classes), (b): GT2

image (8 GT subclasses), (c), (d) and (e): FCMO using criteria L1-F, L2-F and L1-

WB, respectively, (f): AP – preference parameter set to minimum and damping rate

of 0.9. .. 59

Figure 3.6: The sizes of estimated classes on data chunk of 256 pixels. (a): FCMO-L1-WB, (b):

FCMO-L1-WBM. ... 61

Figure 3.7: The sizes of estimated classes on data chunk of 512 pixels. (a): FCMO-L1-WB, (b):

FCMO-L1-WBM. ... 61

Figure 3.8: Partitioning results of WFCMO and FCMO on the generated dataset. 63

Figure 4.1: Partitioning results on Dataset 1 using our proposed method STRFCM. (a): GT1

image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): data chunk size

240 pixels, (d): data chunk size 1800 pixels. .. 68

Figure 4.2: Mean spectral signatures ± standard deviation of 8 estimated classes of Dataset 1 –

data chunk size 240 pixels. .. 69

Figure 4.3: Partitioning results on Dataset 1 using STRAP with parameter settings A and B. (a):

GT1 image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c): parameter

setting A, (d): parameter setting B. .. 70

Figure 4.4: Partitioning results on Dataset 1 using CODAS with parameter settings A and B.

(a): GT1 image (3 main GT classes), (b): GT2 image (9 GT subclasses), (c):

parameter setting A, (d): parameter setting B. .. 71

92

Figure 4.5: Partitioning results on Dataset 2 using our proposed method STRFCM. (a): GT1

image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): data chunk size

256 pixels, (d): data chunk size 512 pixels. .. 74

Figure 4.6: Mean spectral signatures ± standard deviation of 11 estimated classes of Dataset 2

– data chunk size 256 pixels. ... 76

Figure 4.7: Partitioning results on Dataset 2 using STRAP with parameter settings A and B. (a):

GT1 image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c): parameter

setting A, (d): parameter setting B. .. 77

Figure 4.8: Partitioning results on Dataset 2 using CODAS with parameter settings A and B.

(a): GT1 image (5 main GT classes), (b): GT2 image (8 GT subclasses), (c):

parameter setting A, (d): parameter setting B. .. 78

Figure 4.9: Purity criterion of five partitioning methods (STRFCM, AAPStream, DenStream,

STRAP, and CluStream).. 79

93

List of tables

Table 2.1: Common partitioning validity indices... 41

Table 3.1: Dataset 1 – hyperspectral image of algae, GT images and GT class details. 52

Table 3.2: Dataset 2 – hyperspectral image of invasive vegetation, GT images and GT class

details. ... 53

Table 3.3: Partitioning performances of FCMO using different similarity criteria and evaluation

criteria on Dataset 1. .. 55

Table 3.4: Partitioning performance of the AP method on Dataset 1. 55

Table 3.5: Partitioning performances of FCMO using different similarity criteria and evaluation

criteria on Dataset 2. .. 58

Table 3.6: Partitioning performance of the AP method on Dataset 2. 58

Table 3.7: Partitioning performances of FCMO-L1-F and FCMO-L1-WB on different sizes of

data chunks in Dataset 2. ... 60

Table 3.8: Details of the two main GT classes and seven GT subclasses in the generated dataset.

 .. 62

Table 4.1: Partitioning performances of our method (STRFCM), STRAP, and CODAS on

Dataset 1. .. 66

Table 4.2: Partitioning performances of our method (STRFCM), STRAP, and CODAS on

Dataset 2. .. 72

Titre : Partitionnement de grands flux de données d'images hyperspectrales.

Mots clés : flux de données, partitionnement non supervisé, estimation, images
hyperspectrales, optimisation.

Résumé : Avec le développement de
systèmes de prise de décision automatisés
et optimisés, le partitionnement de grands
flux de données, qui ne dépend pas
d'échantillons d'apprentissage, attire de plus
en plus l'attention. Dans l'état de l'art, la
majorité des méthodes de partitionnement
de flux de données sont paramétriques, ce
qui nécessite la spécification d'un ou
plusieurs paramètres définis par l'utilisateur
et/ou du nombre de classes avant le
processus de partitionnement. Dans les
applications pratiques, obtenir des
connaissances a priori sur l'ensemble de
données et déterminer les valeurs de
paramètres optimales à l'avance est un défi.
Par conséquent, notre recherche se
concentre sur le développement d'une
méthode non supervisée et non
paramétrique facile à utiliser par les

utilisateurs, bénéficiant du fait qu'elle
élimine le besoin de connaissances a priori
et supprime la nécessité de régler les
paramètres de manière empirique. La
méthode développée peut estimer de
manière automatique le nombre de classes
et partitionner le flux de données. Elle est
efficace pour partitionner un flux de
données de grandes tailles spatiale et
spectrale, en particulier les flux de
données hyperspectraux. La méthode
proposée a été évaluée sur des bases de
données réelles et synthétiques. Selon
plusieurs critères d'évaluation objectifs,
elle surpasse les cinq méthodes de
partitionnement de flux de données
comparées (trois méthodes paramétriques
non supervisées, une méthode semi-
supervisée et une méthode supervisée
utilisant l'apprentissage actif).

Title: Partitioning of large hyperspectral image data streams.

Keywords: data stream, unsupervised partitioning, estimation, hyperspectral images,
optimization.

Abstract: With the development of
automated and optimized decision-making
systems, large data stream partitioning,
which does not rely on training samples, has
attracted more and more attention. In the
stat-of-the-art, a majority of data stream
partitioning methods are parametric which
require the specification of one or more user-
defined parameters and/or the number of
classes before the partitioning process. In
practical applications, obtaining prior
information about the dataset and
determining optimal parameter values in
advance can be challenging. Therefore, our
research focuses on the development of an
unsupervised and non-parametric method
which is easy to apply by users, benefiting

from the fact that it eliminates the need for
prior information and obviates the
requirement for empirical parameter
tuning. The developed method can
automatically estimate the number of
classes and partition the data stream. It is
efficient to partition large and high spatial
and spectral dimensional data streams,
especially hyperspectral data streams.
Our proposed method was assessed on
real-world and synthetic databases.
According to several objective evaluation
criteria, it outperforms the five compared
data stream partitioning methods (three
parametric unsupervised methods, one
semi-supervised method and one
supervised method using active learning).

