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ABSTRACT

Multi-Input-Multi-Output (MIMO) systems are key enabling technologies that lever-

age the propagation channel spatial diversity to increase both radio link reliability and

data rate. MIMO schemes have already been introduced in modern wireless standards

such as WiFi and 4G Long Term Evolution (LTE) with up to 8 antennas at the base

station. The envisioned antenna array sizes in 5G New Radio (NR) physical layer are

much larger to take advantage of the new massive MIMO paradigm. Dedicated signal

processing techniques that scales well with the array sizes have to be designed to ensure

optimal performance at constrained complexity. Those algorithms leverage the channel

spatial domain properties to perform efficient channel estimation, quantized feedback and

precoding.

In this work we have investigated the benefits of using a ray-based channel model to

enhance massive MIMO baseband processing. To this end, either deterministic ray-based

channel models or Saleh-Valenzuela stochastic models have been used.

The first set of contributions relates to MIMO channel statistical characterization

and analysis. We performed an in-dept capacity analysis of single-user MIMO systems

under perfect precoding conditions. We have derived a novel formula to quantify the radio

link reliability gain of MIMO channels, also called the channel hardening phenomenon.

We have also studied the spatial multiplexing capacity improvement. In a second time,

statistical properties of Saleh-Valenzuela channels have been characterized. Based on those

results, we have studied the cluster estimation and separation problem on both theoretical

and algorithmic standpoints.

A fundamental problem in MIMO communications is that the information required to

perform precoding at the transmit side is only available at the receive side. A workaround

consists in deducing the channel state information required for downlink precoding from

uplink measurements. We have leveraged the results derived beforehand to evaluate the

performance of such approach.

Channel estimation is challenging in massive MIMO systems as the number of pa-

rameters to estimate is large. Dedicated techniques take advantage of angular sparsity for

better efficiency. We optimized and characterized key steps of one of those algorithms.
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RESUMÉ EN FRANÇAIS

Les réseaux de communication actuels doivent répondre à une demande toujours plus

importante de débit et de qualité de service. Ce besoin correspond à l’émergence de

nouveaux cas d’usage, comme la diffusion de contenus en haute résolution, les applications

industrielles et médicales ainsi que l’Internet des Objets.

Le débit maximum théorique atteignable (appelé la capacité du canal C) entre une

station de base et un périphérique connecté au réseau est le produit de deux termes, la

largeur de bande de fréquence utilisée pour transmettre et l’efficacité spectrale

C = B · SE bits/s

où la largeur de bande B est la quantité de ressources spectrales utilisées pour la trans-

mission. La capacité du système à utiliser efficacement cette ressource est quantifiée par

l’efficacité spectrale SE. A l’heure actuelle, les ressources spectrales restantes s’amenuisent.

Pour augmenter la capacité des systèmes communicants, deux solutions se profilent : ex-

plorer des régions inutilisées du spectre radiofréquence ou améliorer l’efficacité spectrale

des communications.

Les systèmes de transmission mobiles utilisent le plus souvent les fréquences sous

6GHz, où les conditions de propagation sont plus adaptées à ce cas d’usage. Cepen-

dant cette portion du spectre est sur-exploitée et chère, contrairement aux bandes mil-

limétriques. Ces dernières sont de potentielles candidates pour le développement de futurs

systèmes de communication.

Les systèmes MIMO sont un composant technologique clé pour l’augmentation de

l’efficacité spectrale des réseaux de communication. Ils exploitent la dimension spatiale

de la propagation pour transmettre d’avantage de données sur les mêmes ressources

temps/fréquence. Contrairement aux systèmes Single-Input-Single-Output (SISO) qui

émettent et reçoivent les ondes de façon omnidirectionnelle, ces systèmes peuvent adapter

leur diagramme d’antenne au canal de propagation de façon à optimiser la transmission.

Ce traitement, appelé précodage, est crucial pour le fonctionnement optimal du système

de communication. Il est cependant basé sur une connaissance a priori du canal de com-
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munication, qui n’est pas triviale à obtenir.

Cette connaissance est naturellement acquise au récepteur. Cependant, l’opération de

précodage est tant qu’à elle faite à l’émetteur. Il faut donc ramener tout ou partie de cette

information du récepteur à l’émetteur via une voie de retour.

Cette approche est bien adaptée aux systèmes utilisant de petits réseaux d’antennes

(jusqu’à 8 antennes). Au delà, le nombre de paramètres à ramener à l’émetteur devient

trop important. Des méthodes alternatives de précodage se basent sur les propriétés de

réciprocité angulaire du canal de propagation pour réduire le poids de cette voie de retour.

L’étape d’estimation de canal est aussi complexe dans les systèmes MIMO massifs. En

effet le nombre de paramètres à estimer est proportionnel à Nr × Nt et devient partic-

ulièrement important dans les systèmes multi-antennes. Il est une fois encore intéressant

de considérer les propriétés du canal dans le domaine angulaire de façon à réduire le

nombre de paramètres à estimer.

De manière générale, les systèmes MIMO massifs nécessitent de développer de nou-

velles techniques de traitement du signal utilisant la dimension angulaire de la propaga-

tion. Cela passe par l’introduction de modèles physiques par rayons. Dans ce manuscrit

nous étudions ces modèles par rayons et leurs applications au précodage et à l’estimation

de canal.

Modélisation du canal MIMO

Ce premier chapitre permet d’introduire les notations, les concepts, la modulation

Orthogonal Frequency Division Multiplexing (OFDM) ainsi que le modèle de canal utilisé

tout au long du manuscrit. Il pose les bases sur lesquelles vont s’articuler l’ensemble

des contributions suivantes. A partir d’une modélisation géométrique par rayons de la

propagation, définie par des directions de départ, des directions d’arrivée, des retards et

des gains de rayons, nous construisons un modèle mathématique qui peut se décliner sous

différentes formes (matricielle, tensorielle ou vectorisée) suivant le cas d’utilisation.

Enfin nous introduisons le modèle stochastique Saleh-Valenzuela. D’après ce modèle,

les rayons du canal sont rassemblés en un faible nombre de clusters définis par des direc-

tions et retards proches.

xv



Resumé en Français

Capacité des systèmes MIMO

Dans ce second chapitre, nous étudions la capacité (débit maximal théorique) des

canaux de communications multi-antennes. Ce chapitre est l’occasion d’introduire les

concepts de capacité, d’évanouissement dans les canaux multi-trajet et de rigidification

du canal dans les systèmes MIMO. Dans ce contexte, nous proposons une nouvelle for-

mule pour quantifier la rigidification du canal dans les canaux par rayons, donnée par

l’équation (2.11). Les différents termes de cette formule sont interprétés et illustrés par

des exemples. Cette équation peut enfin se voir comme une généralisation de la formule

(2.7), valide uniquement pour les modèles Gaussiens, qui modélisent un canal multi-trajet

asymptotiquement riche.

Représentation efficace des clusters

Ce troisième chapitre est consacré à la caractérisation des canaux générés avec le

modèle Saleh-Valenzuela. Ceux-ci sont constitués de clusters de trajets, dont on va carac-

tériser au premier et second ordre les moments statistiques. En particulier, nous montrons

que la matrice de covariance du cluster peut se décomposer en matrices fréquentielles et

angulaires. La formule décrivant la matrice de covariance fréquentielle du cluster Saleh-

Valenzuela est alors redémontrée suivant une méthode plus simple que celle de l’état

de l’art. Nous analysons ensuite le nombre de coefficients nécessaires pour représenter

un canal Saleh-Valenzuela, projeté sur une base parcimonieuse. Nous avons comparé

l’efficacité de la représentation dans le domaine Fourier à la représentation optimale

utilisant les vecteurs propres de la matrice de covariance, aussi bien dans les domaines

fréquentiel que angulaire. Enfin, nous comparons le nombre de coefficients nécessaire pour

représenter un canal de propagation complet, en utilisant une modélisation classique de

type matrice de canal ou une représentation par rayons. Les abaques résultantes perme-

ttent de savoir à partir de quel nombre d’antennes la représentation par rayons devient

intéressante.

Estimation et séparation des clusters

Les trajets qui constituent les canaux de propagation sont rassemblés en un faible nom-

bre de clusters correspondant à des entités réfléchissant les ondes dans l’environnement. Le
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problème de séparation et d’identification des clusters qui constituent un canal de prop-

agation est fondamentalement mal posé sans l’introduction d’une définition du cluster.

Dans cette partie, nous mettons à profit notre connaissance du moment d’ordre 2 d’un

cluster Saleh-Valenzuela pour lui donner une définition mathématique claire faisant appel

à un modèle paramétrique. En se basant sur ce modèle, nous évaluons et interprétons la

borne de Cramér-Rao de façon à vérifier le bon conditionnement du problème ainsi que

les performances des estimateurs.

La séparation de clusters est un problème à part entière qui pourrait faire l’objet d’un

sujet de thèse. Pour des raisons de temps, nous nous sommes uniquement attardés sur la

dimension fréquentielle de la propagation.

Précodage utilisant l’information de la voie montante

en FDD

Comme précédemment évoqué, dans les systèmes multi-antennes, la détermination du

précodeur optimal nécessite la connaissance des conditions de propagation entre émetteur

et récepteur. Cette information est le plus souvent ramenée par le biais d’une voie de

retour. Quand le nombre d’antennes à l’émetteur augmente, conformément au nouveau

paradigme du MIMO massif, la quantité d’information à ramener à l’émetteur par cette

voie de retour augmente de façon considérable.

On s’intéresse à des systèmes de communications en duplex complet, composés d’une

voie montante (transmission de données du mobile à la station de base) et d’une voie

descendante (transmission de données de la station de base au mobile). On s’intéresse

au mode FDD (division fréquentielle) caractérisé par des voies montante et descendante

placées sur des bandes de fréquence adjacentes. De façon à réduire le poids de cette

voie de retour, des chercheurs ont proposé d’extrapoler le canal de propagation de la voie

montante (mesuré par la station de base) sur la voie descendante, en utilisant la réciprocité

angulaire. Ce processus fonctionne bien lorsque le mobile est en ligne de vue de la station

de base. Cependant les performances se dégradent fortement lorsque les phénomènes de

multi-trajets sont prédominants.

Dans cette partie, nous nous sommes intéressés à l’erreur d’extrapolation du canal de

la voie montante sur la voie descendante. Les rayons qui constituent les canaux multi-

trajets sont rassemblés en clusters. Cette proximité les rend difficilement séparables et

limite la portée fréquentielle de l’extrapolation. Dans ce chapitre, nous avons évalué cette
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portée pour des clusters Saleh-Valenzuela. Encore une fois, nous avons mis à contribution

notre connaissance du moment d’ordre 2 d’un cluster Saleh-Valenzuela. Cette étude est

complétée par une analyse de la perte de capacité à travers la métrique de la perte de

gain de formation de faisceau.

Estimation de canaux MIMO en ondes millimétriques

Les bandes millimétriques sont aujourd’hui peu exploitées. La physique de la prop-

agation des ondes y est moins favorable car le canal souffre de pertes en espace libre

élevées, accentuées sur les longues distances par l’absorption des ondes par l’atmosphère

(en particulier à 60 GHz). Les tailles d’antennes, proportionnelles à la longueur d’onde,

sont plus petites. Les phénomènes de multi-trajets sont moins importants et l’ouverture

angulaire des clusters est plus faible. Le canal est ainsi souvent considéré comme creux,

car il ne contient qu’un faible nombre de rayons spéculaires bien définis dans les domaines

des retards et angulaire.

La combinaison des ondes millimétriques, associées à la technologie MIMO massif est

particulièrement intéressante. La compacité des antennes permet de constituer des réseaux

comportant plus d’éléments rayonnants dans des volumes restreints. Le gain d’antenne

considérable gagné par l’utilisation de ces réseaux vient compenser les fortes pertes en

espace libre des ondes millimétriques.

L’estimation de canal est une étape importante et nécessaire pour la démodulation des

échantillons. Elle consiste à caractériser le canal de propagation entre émetteur et récep-

teur, pour le retrancher ensuite aux échantillons de données reçus avant de les décoder.

Le nombre de coefficients à estimer augmente avec Nr × Nt. L’estimation de canal

devient donc particulièrement complexe lorsque les dimensions des réseaux d’antennes

augmentent. Une solution consiste à prendre en compte la structure creuse du canal de

propagation de façon à réduire le nombre de paramètres à estimer. Dans ce contexte, des

chercheurs ont utilisé l’algorithme OMP de façon à extraire séquentiellement les rayons

spéculaires qui constituent le canal. Dans le cadre de cette thèse, nous avons apporté

des améliorations à cet algorithme générique de façon à l’adapter aux caractéristiques du

problème d’estimation de canal. Nous avons en particulier travaillé sur le critère d’arrêt

et la phase d’estimation de rayon de l’algorithme.
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INTRODUCTION

Context and motivations

Currently existing wireless network infrastructure has to keep up with the ever in-

creasing demand for data rate and quality of service, fueled by new use cases such as high

resolution video streaming, medical and industrial applications and Internet of Things

(IoT). The maximum achievable data rate (also called the capacity C) between a base

station and a user is the product of two terms, the available bandwidth and the spectral

efficiency

C = B · SE bits/s

where the bandwidth B is the amount of spectral resource used to transmit information

and the spectral efficiency SE relates to how efficient we are at exploiting this resource.

As the remaining amount of spectral resources shrink, increasing the capacity requires to

either explore unused portions of the radio spectrum or to increase the spectral efficiency

using advanced wireless techniques.

Mobile broadband communication systems where first deployed at frequencies below

6 GHz, characterized by highly favorable propagation conditions for this application.

However this section of the spectrum is overused and expensive. In contrast, a large

amount of available spectrum lies above 6 GHz, in particular in millimeter wave bands.

First steps towards millimeter wave mobile broadband have already been carried out. In

standardization, the numerology (frame structure) used in 4G has been extended in 5G to

adapt to the extended bandwidth and propagation characteristics of millimeter waves. At

the same time, telecommunication regulators started allocating spectrum in the 26 GHz

(EU) and 28 GHz (USA) bands. The 60 GHz unlicensed band is also considered for small

cells deployments. The demonstrator designed within the M5HESTIA project targets this

particular band.

MIMO systems are a key technological component to increase the spectral efficiency

of wireless networks. They exploit the spatial dimension of the propagation to transmit

more data over the same time/frequency resources, thus increasing the maximum achiev-
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able data rates beyond the theoretical capacity of SISO systems. MIMO systems can

shape their antenna pattern based on the propagation characteristics of the channel be-

tween transmitter and receiver to optimize the capacity (the precoding step) while SISO

systems lack this adaptability. Precoding, the technique’s most crucial step, has to be

designed using prior knowledge on the propagation channel. Acquiring this Channel State

Information (CSI) is a key scientific problem.

Operating the system in TDD is the simplest way to solve this problem. The same

frequency band is used at transmit and receive sides. The channel estimated from received

samples can be reused to design the precoding. However in FDD operations, the trans-

mit and receive bands are different. Only the user equipment receiver can estimate the

propagation channel. This CSI has to be sent back to the base station through a feedback

loop to design the precoder. However as the dimension of the antenna array scales up,

the amount of information to feed back to the transmitter gets overwhelming. Meanwhile

scaled up antenna arrays increase the transmission system angular resolution and enables

separation of the multipath components that constitute the propagation channel. Alterna-

tive precoding techniques leverage the channel angular properties (which does not depend

on the frequency band considered) to reduce the feedback requirements.

Channel estimation is also challenging in MIMO systems. As the antenna array sizes

increase, the number of parameters that should be estimated gets overwhelming. In order

to reduce the estimation process complexity, it is beneficial to leverage the sparsity of

the channel in the angular domain and only estimate the parameters of the few rays that

govern the propagation instead of the resulting mixture of these.

In general, when moving from small scale MIMO systems to the massive MIMO regime,

dedicated signal processing has to leverage the angular sparsity of the propagation channel

to reach optimal performance with constrained complexity. In this thesis we studied novel

precoding and channel estimation techniques that leverage the angular sparsity of the

massive MIMO propagation channel.

Outline of the Thesis

The thesis is made of two main parts; the first one relates to MIMO channel modeling

and characterization (Chapters 1, 2, 3, 4) while the second exploits those results to propose

solutions for precoding in FDD (Chapter 5) and for MIMO channel estimation (Chapter

6).
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Chapter 1 relates to channel modeling. In all the sections of this thesis we adopt a

model based approach to derive formulas and to conceive algorithms. We use a realistic

ray-based model inspired from ray-tracing techniques to provide the best level of gener-

ality. In particular we exploit extensively the Saleh-Valenzuela stochastic channel model

which is built upon the ray-based model. This model is widely used in the literature and

has been extensively characterized in measurement campaigns.

Within this context we have performed an in-depth capacity analysis of multi-antenna

systems, presented in Chapter 2. First we analyze the channel hardening phenomenon

and propose a new expression for ray-based models, presented at the international confer-

ence WiMob 2018 and detailed in Section 2.2. Secondly we shift our attention to spatial

multiplexing. We present a way to reshape the capacity of MIMO channels under perfect

precoding conditions that depends on a fixed number of parameters for any transmission

rank in Section 2.3.

In a later stage, we analyze the properties of channels generated using the Saleh-

Valenzuela model in Chapter 3. First we prove the expressions of the statistical covariance

functions for both a single Saleh-Valenzuela cluster and the whole channel in Section 3.1.

Those expressions are then reused in the next chapters. Knowing the second order statis-

tics, we perform a basis decomposition of the channel and compare the usually preferred

Fourier decomposition and the optimal eigendecomposition in Section 3.2. Finally we

compare the number of coefficients required to describe the channel using either a cluster-

based representation or a matrix-based representation in Section 3.3. This contribution is

summarized in a conference paper presented at GLOBECOM 2019.

We study the cluster estimation and separation problem in Chapter 4. To this end

we propose a novel approach that exploits the second order statistics of Saleh-Valenzuela

channels previously calculated in Chapter 3. The performance of this procedure is mea-

sured experimentally then compared with the theoretical lower bounds derived from the

model in Section 4.3.

Then we investigate the potential of using information from the Uplink channel to

precode on the Downlink channel. This is the expected approach for MIMO systems

operating in TDD as the transmission band is the same for Uplink and Downlink and the

estimated channel can be directly used for precoding. However, this is not sufficient when

Uplink and Downlink operate on different bands. We propose in Chapter 5 an analysis

of a precoding scheme using a channel extrapolation procedure from Uplink to Downlink

for FDD. The results have been published at the international conference PIMRC 2020.
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Then we shift our attention towards channel estimation for massive MIMO systems in

Chapter 6. Millimeter wave propagation channels are sparse. In order to exploit this spar-

sity, new algorithms using tools from compressed sensing are proposed in the literature.

The key step of those new channel estimation techniques is the specular ray detection

and estimation procedure. We propose in Section 6.4 a scalable specular ray detection

and estimation technique. It can be integrated seamlessly in novel channel estimation

algorithms, as evidenced in Section 6.5.

The first part of this work has been completed within the European Project One5G.

The goal of this project was to propose and investigate new techniques for the lower layers

(MAC and PHY) for 5G wireless transmission systems.

Publications

Conference articles

— Matthieu Roy et al., « MIMO Channel Hardening for Ray-based Models », in: 2018

14th International Conference on Wireless and Mobile Computing, Networking and

Communications (WiMob), Limassol: IEEE, Oct. 2018 (best paper award)

— Matthieu Roy, Stephane Paquelet, and Matthieu Crussiere, « Degrees of Freedom

of Ray-Based Models for mm-Wave Wideband MIMO-OFDM », in: GLOBECOM

2019 - 2019 IEEE Global Communications Conference, Waikiloa Village, 2019

— Matthieu Roy, Stephane Paquelet, and Matthieu Crussiere, « Cluster Extrapola-

tion for FDD Downlink MIMO Precoding », in: PIMRC 2020, London: IEEE, Aug.

2020

Others

— Matthieu Roy, Stephane Paquelet, and Luc Le Magoarou, Massive MIMO: Analytic

Capacity, Topology of the antenna arrays, One5G F2F Meeting, Malaga, Sept. 2018

— Matthieu Roy et al., Channel Hardening for Ray-Based Models, Journée des Doc-

torants, Vannes, June 2018

— Matthieu Roy and Stephane Paquelet, « Procédés et dispositifs de détection d’un

signal et d’estimation de canal, et programme d’ordinateur associé » (to be filed)
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Chapter 1

CHANNEL MODELING FOR MIMO

SYSTEMS

The propagation channel alters the signal traveling between the transmitter and the

receiver. Accessing its properties is necessary to determine how the transmitted data

should be processed to be decoded efficiently at the receiver. In this chapter, we first

introduce the mathematical notations which will be used throughout the manuscript to

represent any propagation channel, namely regarding MIMO architectures.

Stochastic channel models aim at reproducing the properties of a particular environ-

ment in a statistical sense. The modeled environment is defined by a set of random vari-

ables whose realizations span all the possible propagation channels of this environment.

This approach is of particular interest for theoretical analyses to predict analytically or

using simulations the behavior of a transmission system in a characterized environment. In

this manuscript we will cross paths with the two main kinds of MIMO channel statistical

models : the Gaussian model and the Geometry-based stochastic models.

We first introduce the Gaussian model, that is a direct matrix generalization of its

classical scalar SISO channel model counterpart. It works well when modeling channels

with asymptotically high scattering. The mathematical simplicity of this model make it

particularly attractive for theoretical papers.

The Geometry-based stochastic models are built upon a ray-based deterministic chan-

nel model. Electromagnetic waves are modeled by rays that start from the transmitter,

bounces on the environment to reach the receiver. This model is parametrized by com-

plex gains, delays and angles and provides a framework which is valid for any realization.

In order to describe accurately a particular kind of environment (indoor, outdoor, rural,

urban, ...), the ray parameters are given statistical laws that encompass all propagation

medium properties.

Finally, we introduce the generalized tensor and vector channel notations that are

useful when considering channels that span over more that two dimensions (for instance

7



Part I, Chapter 1 – Channel Modeling for MIMO Systems

several transmit, receive antennas and multiple subcarriers).

1.1 Mathematical representation

The main propagation mechanism is multipath fading. The received signal consists

of a superposition of the main signal with delayed echoes coming from reflexions and

diffractions on features of the environment. Figure 1.1 displays a propagation channel

between a base station and a user equipment consisting of a Line of Sight (LOS) path

and a reflection path from a building. In the general case, the channel is represented as a

filter with impulse response

h(t) =
P
∑

p=1

βpδ(t − τp)

where βp denotes the complex amplitude of the pth echo, that depend on the scatterer

Figure 1.1 – The multipath propagation channel.

material and the angle of incidence of the ray. τp denotes the delay of the pth echo that

depends on the time of flight between transmitter and receiver along this path. In the

frequency domain, the channel is characterized by the complex function

H(f) = T F (h) (f) =
P
∑

p=1

βp e−2πjfτp . (1.1)
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1.1. Mathematical representation

When using a transmission bandwidth small enough in comparison with the channel

coherence bandwidth (narrow-band channel), in the vicinity of a specific carrier frequency

f , we can consider that H(f) is constant, ie the channel is frequency flat. The received

symbols y are simply the emitted symbols x multiplied by the channel gain H(f) plus

some thermal noise n

y = H(f)x + n (1.2)

In Equation (1.1), the echoes can sometimes add up constructively (the received sig-

nal power is amplified) or destructively (the received signal power is diminished). This

phenomenon is called multipath fading or fast fading. The average distance between two

destructive sums is half a wavelength, that is several centimeters only in commonly used

sub 6 GHz bands, 11 mm at 26 GHz and only 5 mm at 60 GHz. Considering a narrowband

channel as modeled in Equation (1.2), the received power can vary significantly over short

intervals of time because of multipath fading.

Modern communication standards (5G NR, 4G LTE, WiFi) are based on the OFDM

modulation technique. The data are transmitted over a set of Nf subcarriers equally

spaced of ∆f and centered on the carrier frequency. This particular modulation technique

can deal with multipath channels efficiently. Indeed, each subcarrier is equivalent to a

narrow-band channel and is orthogonal to the other subcarriers. In this case the OFDM

symbol duration is Ts = 1/∆f . The channel applies multiplicatively on each subcarrier

k as in Equation (1.2). This enables low complexity channel estimation by only dividing

the received samples y by the known emitted signal x (called pilot signal) to estimate the

channel. The channel on subcarrier k placed at frequency fk is given by

yk = H(fk)xk + nk (1.3)

where yk denotes the received symbol on subcarrier k obtained by multiplying the trans-

mitted symbol xk by the channel gain at frequency fk, H(fk). Those samples are also

mixed with thermal noise nk typically modeled as a complex centered Gaussian distributed

variable.

Hence considering the propagation channel on a specific subcarrier at frequency fk of

an OFDM communication system, the radio link between the transmit antenna and the

receive antenna is simply modeled in the frequency domain by a complex gain H(fk). Now

increasing the number of antennas (Nt transmit antennas, Nr receive antennas) at both

the transmit and receive sides, the channel is then modeled as a complex-valued matrix,

9



Part I, Chapter 1 – Channel Modeling for MIMO Systems

called channel matrix, with coefficients

H(fk) =





H1,1(fk) H1,2(fk)

H2,1(fk) H2,2(fk)





where each coefficient Hi,j(fk) matches the frequency domain channel gain of the radio

link from the jth transmit antenna to the ith receive antenna (see Figure 1.2).

As we focus our analysis on the OFDM waveform, we will always (otherwise explicitly

mentioned) work in the frequency domain. We adopt the common convention that rep-

resent vectors as lower case bold symbols and matrices as upper case bold symbols. We

denote vector and matrix elements as lower case and upper case standard symbols.

The OFDM waveform is parametrized by the number of subcarriers

Nf , the subcarrier spacing ∆f and the total occupied bandwidth

B. This set of parameters is called the numerology. In LTE only

one numerology, optimized for centimeter waves, has been defined.

To cope with millimeter bands, additional numerologies have been

defined in the new standard 5G NR.

Standard Nf ∆f B Reference

LTE 1200 15kHz 20MHz [1]

5G NR Num #0 3000 15kHz 50MHz [2]

5G NR Num #1 3000 30kHz 100MHz [2]

5G NR Num #2 3000 60kHz 200MHz [2]

5G NR Num #3 3000 120kHz 400MHz [2]

Numerology

The received symbols yk on the receive antennas (column vector of size Nr) of an

OFDM subcarrier at frequency fk are then given by the equation

yk = H(fk)xk + nk (1.4)

where H is the channel matrix (size Nr × Nt). The complex valued vector xk contains the

transmitted symbols on each of the antennas (vector of size Nt). nk is the noise vector at

the receiver (size Nr).
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1.2. The Gaussian model

Figure 1.2 – The MIMO channel matrix.

1.2 The Gaussian model

The most commonly used multipath propagation model is the Gaussian channel model.

It models well the distribution of the channel gain in rich scattering environments (mul-

tiple echoes with similar power). It is also called Rayleigh fading channel because the

amplitude of a complex Gaussian distributed variable is Rayleigh distributed.

1.2.1 The SISO Gaussian model

As stated previously, a multipath channel from a transmitting antenna to a receiving

antenna can be written at a specific frequency f as

H(f) =
P
∑

p=1

|βp| ejφp

where, for the sake of simplicity, we merged the phase of βp and the phasor e−2πjfτp within

the independent [0, 2π]-uniformly distributed phases φp. Assuming that all the gains |βp|
have identical amplitude, the Central Limit Theorem states that the distribution of the

channel gain converges to a Gaussian distribution

H(f) =
P
∑

p=1

|βp| ejφp −−−→
P →∞

CN (0, σ2)

For SISO communications, the asymptotic distribution is easily reached in channel mea-

surements [3]. This model is particularly useful because it offers analytically tractable

expressions and it fits well to actual measurements in high scattering situations.

11



Part I, Chapter 1 – Channel Modeling for MIMO Systems

1.2.2 The MIMO Gaussian model

The MIMO Gaussian model is a natural extension of the SISO Gaussian channel

model presented previously. It is widely used in theoretical studies as well as numerical

evaluations. In this model, each radio link Hi,j follows a complex Gaussian distribution.

Thus the vector vect(H) is Gaussian distributed as

vect(H) ∼ CN (0, R)

where R denotes the covariance matrix of the channel matrix coefficients. This model is

also called the correlated Rayleigh fading channel model in the literature. Several varia-

tions around this main model have been proposed such as :

— the Gaussian i.i.d. model : A simplified model where channel matrix coefficients

are independent identically distributed (R = σ2I).

— the Kronecker Model : Covariance matrices at transmitter and receiver sides

are assumed to be separable (H ∼ CN (0, Rtx ⊗ Rrx)).

This model offers a simple framework that can provide analytically tractable expres-

sions for algorithms and theoretical capacity analysis. However it has several limitations.

First the influences of propagation conditions and antenna array topologies are not evi-

denced. As well as the SISO Gaussian model, the MIMO generalization requires asymptot-

ically high scattering environments to be valid. While the convergence to the asymptotic

distribution happens quickly for SISO channels, the scattering must be richer as the num-

ber of antennas increase to verify the model. This is evidenced in the research paper [3]

based on channel measurements performed at the campus of Brigham Young University.

1.3 Ray-Based Channels

The received signal consists of a constructive or destructive sum of echoes of the

main signal that bounces on features of the surrounding propagation environment. This

is modeled as a sum of phasors in Equation (1.1). Here we extend this notation for MIMO

channels by adding an angular dimension to the propagation, according to directions of

departure and arrival of rays, onto and from the antenna set. In that perspective, it is use-

ful to introduce a proper 3D spatial basis and define on it the geometrical representation

of antenna arrays, and rays.
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1.3. Ray-Based Channels

Figure 1.3 – The Uniform Linear Array.

1.3.1 Antenna arrays

The antennas at transmit and receive sides are arranged in geometrically organized

structures called antenna arrays. Throughout this manuscript, Nt antennas are used in

the transmit array and Nr antennas are used at the receive side. The positions of antennas

within the transmit array are identified by the 3D vectors ~atx,j (~arx,i at the receive side,

respectively). Using those notations, we can model any arbitrary antenna array shape.

In particular in this thesis we will consider particular structures of antenna arrays,

namely ULA where antennas are uniformly spaced along a line (Figure 1.3), Uniform

Planar Array (UPA) where antennas are uniformly placed on a rectangle (Figure 1.4)

and more rarely Uniform Circular Array (UCA) where antennas are uniformly spaced on

a circle. We usually use a half-wavelength antenna spacing, unless explicitly mentioned

otherwise.

In a ULA, the antenna positions are defined by

~atx,j = (j − 1)~atx (1.5)

where ~atx is the array primitive vector (it defines the smallest structure that repeats

itself). The distance between two antennas is given by ‖~atx,j‖. Note that the antennas

coordinates defined by the vectors ~atx,j are always taken relatively to an origin point. In

Equation (1.5), the origin is antenna j = 1 (~atx,1 = ~0). We can actually set the array origin

arbitrarily, for instance in the middle of the array leading to ~atx,j = (j −1−(Nt −1)/2)~atx.

We checked that the results provided in this thesis are always independent with regards

to the origin point.
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Part I, Chapter 1 – Channel Modeling for MIMO Systems

Figure 1.4 – The Uniform Planar Array.

In a UPA, the antennas are arranged in a rectangular fashion, defined by the antenna

count on the main axis Ntx and on the side axis Nty (Nt = NtxNty). Each antenna can

be identified either by a single index j or by two indexes jx, jy denoting the antenna

coordinates in the rectangular grid where j = jx + Ntxjy. The antenna positions for the

UPA are then given by

~atx,j = (jx − 1)~atx + (jy − 1)~aty (1.6)

1.3.2 Propagation ray definition

The direction of departure (direction of arrival, respectively) of the pth ray of the

channel is represented by a unit norm 3D vector ~utx,p (~urx,p, respectively). Each ray p is

also characterized by a complex gain cp.

A direction in a 3D space is naturally defined by two parameters (azimuth and eleva-

tion). The ULA only permits the measurement of one parameter, the angle between the

direction ~u and the array main axis ~atx (azimuth if the array main axis is horizontal, eleva-

tion if the array main axis is vertical). Both parameters can be measured simultaneously

when using an UPA.

Those notations are summed up in Figure 1.5 that features a propagation environ-

ment with 3 rays. The signal traveling on each ray impinge on the antennas with a path

difference that generates a phase difference in baseband processing. The path difference

induced by a ray of direction ~u between antenna i and the origin point of the array (see

Section 1.3.1) is ~atx,j · ~u (showcased in the zoomed circle of Figure 1.5).
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Figure 1.5 – The multipath MIMO channel.

This effect generates phase differences between the signals transmitted and received

over the antenna arrays. The contribution of the pth ray to the element of the channel ma-

trix Hi,j (propagation channel between the emitting antenna j and the receiving antenna

i) is given as

Hi,j =
P
∑

p=1

βp e−2πjfτp e−2π
~arx,i·~urx,p

λ e2π
~atx,j ·~utx,p

λ

Note that this model assumes a planar wavefront of each ray at both transmitter and

receiver sides. This means that all scatterers are far enough, with respect to the array sizes,

from both transmit and receive antenna arrays. The plane wave assumption breaks when

the array sizes are no longer negligible with respect to the distance to the nearest scatterer.

The border between both regimes is given by the Rayleigh distance. More information on

the plane wave hypothesis and on the spherical wave model (generalized model without

the plane wave hypothesis) can be found in the papers [4, 5, 6].

We can use a more generic and compact way to describe the contribution of a ray using

structures called steering vectors. Those vectors store the phases differences between the

antennas for a given direction of departure or arrival. The transmit steering vector is given
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by

et(~u) =
1√
Nt



















e−2π
~atx,1·~u

λ

e−2π
~atx,2·~u

λ

...

e−2π
~atx,Nt

·~u

λ



















and the receive steering vector by

er(~u) =
1√
Nr



















e−2π
~arx,1·~u

λ

e−2π
~arx,2·~u

λ

...

e−2π
~arx,Nr

·~u

λ



















The narrowband multipath channel matrix at frequency f can then be written as

H(f) =
√

NrNt

P
∑

p=1

βp e−2πjfτp er(~urx,p)et
H(~utx,p) (1.7)

The steering vector of a ULA is given by

et(θtx) =
1√
Nt

















1

e−2π
‖~atx‖ cos(θtx)

λ

...

e−2π(Nt−1)
‖~atx‖ cos(θtx)

λ

















(1.8)

where θtx is the angle between the antenna array main axis and

the direction of departure ~u (Figure 1.3). Note that t = cos(θtx) is

then an appealing variable substitution. We can generalize this ex-

pression to UPAs. The steering vector et(~utx) is then the Kronecker

product of the two equivalent ULAs in the two dimensions of the

array

et(~utx) = etx(~utx) ⊗ ety(~utx).

Steering vectors for ULAs and UPAs
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1.4. The Saleh-Valenzuela channel model

1.3.3 Clustering

The paths that constitute the propagation are due to diffractions and reflections on

a limited set of objects (called scatterers) of the environment. As a consequence the

directions of departure and arrival of the rays are grouped around a small set of main

directions. Each group of rays corresponding to a particular scatterer is called a cluster of

rays or a multipath component. The clustering phenomenon has been observed in numerous

channel sounding experiments [7, 8, 9, 10, 11]. The most commonly used method for

clustered channel modeling is the Saleh-Valenzuela model.

1.4 The Saleh-Valenzuela channel model

The original model proposed by Saleh and Valenzuela in 1997 [12] aimed at char-

acterizing the indoor frequency selective wideband channel. As only SISO transmission

was considered at the time, directions of departure and arrival were omitted. This over-

looked feature was added later on in the papers [9, 7] in what is called the angular

Saleh-Valenzuela channel model.

1.4.1 The original Saleh-Valenzuela model

The original Saleh-Valenzuela model was designed to characterize SISO channels in

multipath environments. The impulse response of a generic P -paths multipath SISO chan-

nel is

h(τ) =
P
∑

p=1

βp ejφp δ(τ − τp)

The Saleh-Valenzuela model assumes that the paths are grouped into Q clusters. Each

cluster consists of P sub-paths. This can be written

h(τ) =
Q
∑

q=1

P
∑

p=1

βq,p ejφq,p δ(τ − τq,p − τq) (1.9)

The model states that

— the path gains βq,p are centered complex Gaussian distributed

— the path gain variances are given by E {|βq,p|2} = E {|β1,1|2} e−τq/Γ e−τq,p/γ where Γ

and γ are the cluster decay rate and intra-cluster path decay rate

— the cluster delays are given by a Poisson process with rate of arrival Λ
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Figure 1.6 – A realization of the Saleh-Valenzuela channel model using the original Saleh-
Valenzuela parameters.

— the intra-cluster delays are given by a Poisson process with rate of arrival λ

A realization of the Saleh-Valenzuela channel is presented on Figure 1.6. The role

played by each parameter Γ, γ, Λ, λ is displayed on the figure. Note that 1/Λ represents the

average delay between two cluster and 1/λ represents the average delay between two intra-

cluster rays. Saleh-Valenzuela channels have been extensively studied and characterized

in the literature. We present in Table 1.1 some parameters available in either published

articles or industrial reports that will serve as a baseline for further evaluations.

Name f0 (GHz) λ (ns−1) γ (ns) Reference
Original Saleh-Valenzuela 1.5 0.2 20 [12]

Crabtree building 7GHz 0.14 82 [7]
Clyde building 7GHz 0.2 29 [7]

IEEE 802.15.3c (Residential) 60GHz 1.22 6.25 [13]
IEEE 802.15.3c (Office) 60GHz 0.760 59 [13]

IEEE 802.15.3c (Library) 60GHz 4 7 [13]
Lund University 60GHz 4.7 1.1 [14]

Table 1.1 – Saleh-Valenzuela parameters for various environments.

The first line corresponds to the characterization results presented in the original paper

from Saleh and Valenzuela. The next two sets of parameters correspond to measurement

campaigns performed by Brigham Young University in two buildings of their campus

(the Crabtree and Clyde buildings) [7]. The following measurement sets cover millimeter

wave propagation scenarios in the 60GHz band. They consist of model calibration results

proposed in the 802.15.3c TG3c Channel Modeling Sub-committee Final Report document
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1.5. Tensor channel model

[13] and a measurement campaign performed at Lund University [14].

1.4.2 The angular Saleh-Valenzuela model

The initial Saleh-Valenzuela model has been extended later on by adding statistical

distributions to the Direction of Departure (DOD) and Direction of Arrival (DOA) of mul-

tipath components in the papers [7, 9, 10]. Indeed, measurements from channel sounding

showed that the rays constituting the multipath channel are clustered in both the angular

domain and the delay domain.

According to the angular Saleh-Valenzuela model, the propagation channel for a single

carrier MIMO setup with ULA arrays at both ends is given as

H(f) =
√

NrNt

Q
∑

q=1

P
∑

p=1

βp,q e−2πjf(τq+τp,q) er(θrx,q + ∆θrx,p,q) ⊗ et
∗(θtx,q + ∆θtx,p,q) (1.10)

where θrx,q and θtx,q denote the main DOA and DOD of cluster q, respectively. ∆θrx,p,q

and ∆θtx,p,q denote the intra-cluster rays offset directions relatively to the corresponding

main cluster DOA and DOD, respectively.

The cluster main angles of departure and arrival θtx,q and θrx,q are found to be uni-

formly distributed in [0, 2π] (no preferred direction) while intra-cluster offsets (∆θrx,p,q

and ∆θtx,p,q) follow Laplacian distributions

p(∆θ) =
1√
2σθ

e−
√

2
|∆θ|
σθ

characterized by the angular spread (standard deviation) σθ. The angular spread varies

from 5◦ to more than 20◦ depending on propagation conditions [15, 7] (centimeter waves

or millimeter waves, indoor or outdoor).

1.5 Tensor channel model

We saw in Section 1.1 that the received samples on subcarrier k of an OFDM symbol

is given by Equation (1.3) as

yk = H(fk)xk + nk.
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Using the same matrix structure formerly introduced in section 1.3, we can write this

equation as

y = h ⊙ x + n

where x and y are the column vectors (size Nf ) containing the transmitted and received

symbols on all subcarriers while n contains the noise samples. The channel h can be

rewritten by means of characteristic vectors ef as

h =
√

Nf

P
∑

p=1

βpef (τp) (1.11)

where ef is defined as [ef (τ)]k = 1√
Nf

e−2πjfkτ in a similar fashion as the steering vectors

presented in Section 1.3. We would need a 3-dimensional channel matrix to extend the

narrowband channel representation in Equation (1.7) to wideband OFDM. This can be

achieved by using the tensor-based notation

h =
√

NfNrNt

P
∑

p=1

βpef (τp) × er(~urx,p) × et
∗(~utx,p) (1.12)

where × denotes the tensor product. The wideband MIMO-OFDM propagation channel

can be rewritten using tensors and Einstein notations as

yi,k,m = hj
i,kxj,k,m + ni,k,m (1.13)

where yi,k,m denotes the received samples on antenna i, subcarrier k of the mth OFDM

symbol. Similarly, xj,k,m denotes the transmitted symbol on antenna j on the same time-

frequency resource.

The model presented in Equation (1.12) can be expanded when using UPA antenna

arrays. Indeed we saw that the steering vector of an UPA can be written as the product of

two ULA steering vectors et(~utx) = etx(~utx) × ety(~utx). From those notations the channel

tensor (1.12) can be rewritten as

h =
√

NfNrxNryNtxNty

P
∑

p=1

βpef (τp) × erx(~urx,p) × ery(~urx,p) × etx
∗(~utx,p) × ety

∗(~utx,p)

(1.14)

for UPA arrays on both sides. To simplify the notations we will usually only study the

ULA case. The results can always be easily extended to the UPA case. Analytical ten-
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sor manipulations are not trivial so we reshape the multidimensional tensor into a one

dimensional vector, operation which is achieved by replacing the tensor products × by

Kronecker products ⊗ as

h =
√

NfNrNt

P
∑

p=1

βpef (τp) ⊗ er(~urx,p) ⊗ et
∗(~utx,p). (1.15)

This simple yet comprehensive expression of the channel model is the starting point of

Chapters 3, 4, 5 and 6.

1.6 Other aspects

In the ray-based model depicted above we assumed that all antennas have isotropic

radiation pattern. This is not true in reality. The non-isotropic radiation pattern changes

the received signal according to the angle of arrival. Assuming that all antennas have iden-

tical patterns and that coupling is negligible, the ray-based model (1.7) can be rewritten

as

H =
√

NrNt

P
∑

p=1

Gtx(~utx,p)Grx(~urx,p)βp e−2πjfτp er(~urx,p)et
H(~utx,p) (1.16)

where Gtx(~utx,p) and Grx(~urx,p) denote the transmit and receive antenna radiation pat-

terns. Note that we can define β̃p = Gtx(~utx,p)Grx(~urx,p)βp which reduces Equation (1.16)

to the isotropic model in Equation (1.7). The algorithms developed with isotropic anten-

nas are also valid for arrays of identical non-isotropic antennas.

Another feature that we didn’t studied in this thesis is polarization. Indeed we focused

on the directional properties of MIMO propagation channels. Using the polarization would

increase the achievable channel capacity by a factor 2 [16].

More details on those features can be found in the paper [17].

1.7 The NYUSIM channel simulator

Outdoor millimeter wave channels are sparse [18, 19, 20], as they consists in only a

few specular paths. In order to generate accurate channel realizations, the NYU Research

team created the NYUSIM channel simulator software. It has been developed based on

extensive measurement campaigns at millimeter wave frequencies ranging from 28 GHz
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Part I, Chapter 1 – Channel Modeling for MIMO Systems

to 73 GHz in various outdoor environments in Urban Microcell (UMi), Urban Macrocell

(UMa) and Rural Macrocell (RMa) scenarios [21].

This simulator is reviewed in more details in Chapter 6 where is is used to evaluate

the performance of a channel estimation algorithm.

1.8 Conclusion

In this chapter we have introduced the channel model which is used throughout this

manuscript. It constitutes the starting point of this document. All the other sections are

constructed on the bases that we just set up.

We have seen that all dimensions (direction of departure, direction of arrival, delay)

can be studied using the same tools and methodology. Sometimes, we will only consider

one or two dimensions to simplify the notations and spare some place. The reader is

invited to keep in mind that in general, those results and algorithms can be expanded to

the other dimensions.
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Chapter 2

MIMO CAPACITY

Being able to put an upper bound on the achievable data rate of a transmission system

is of particular interest. It enables system dimensioning without assuming a particular

implementation and it provides a baseline to evaluate the performance of a device. This

upper bound on the data rate is called the capacity.

This chapter introduces the expressions of SISO and MIMO capacity, which depends

largely on a Signal to Noise Ratio (SNR) term. As previously mentioned in Chapter 1, the

SNR can change rapidly due to multipath channel propagation mechanics. This small-scale

fading effect is counterbalanced in MIMO systems by the channel hardening phenomenon.

The first contribution of this thesis is a derivation of a formula to characterize the channel

hardening phenomenon for ray-based channels, featured in Section 2.2 and presented at

WiMob 2018 [1]. The second contribution is the characterization of the MIMO spatial

multiplexing gain in Section 2.3.

2.1 Generalities

Channel capacity is the theoretical upper bound on the achievable error-free data

rate. It is a property of the channel that does not depend on the transmission system

implementation. The concept of channel capacity was first defined by Shannon in his

seminal paper [2].

Definition. The capacity of a noisy channel can be stated as

C = B log2

(

1 +
Pr

N

)

. (2.1)

where C is the capacity of the channel in bits/s, B is the channel bandwidth, Pr is the

received power and N is the noise power. The ratio Pr/N is called the SNR, and represent

the radio link quality.
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Part I, Chapter 2 – MIMO Capacity

Throughout this manuscript we will use the notation ρ = Pr/N . Applied to the multi-

path frequency selective channel H(f) introduced in Equation (1.1), the channel capacity

can be rewritten as

CSISO =
∫

B
log2

(

1 +
Pe|H(f)|2

N0B

)

df (bits/s) (2.2)

where

— Pe denotes the emitted power

— H(f) denotes the frequency selective channel gain

— B denotes the channel bandwidth

— N0 denotes the power spectral density of thermal noise (W/Hz).

Definition. The achievable channel capacity per Hertz is called the Spectral Efficiency.

The SE of a frequency selective channel at frequency f is the capacity formula integrand

in Equation (2.2), stated as

SESISO(f) = log2

(

1 +
Pe|H(f)|2

N0B

)

(bits/s/Hz) (2.3)

The capacity of the whole channel is obtained by integration of the spectral efficiency

over the transmission bandwidth. Frequency selective channels exhibit deep fading phe-

nomenons where the gain |H(f)| vanishes, leading locally to very poor capacity. In other

words, OFDM (Section 1.1) subcarriers whose channel gain fades will suffer from poor

SNR.

The reliability of the radio link depends on its SNR which fluctuates because of mul-

tipath fading phenomenons. Thus quantifying the variation range of the channel gain

|H(f)| is particularly meaningful to predict the radio link reliability.

Definition. A simple yet useful measure of the channel gain variations is the normalized

coefficient of variation defined by the channel gain variance normalized by its mean, as

CV 2
SISO =

Var {|H(f)|2}
E {|H(f)|2}2
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2.1. Generalities

In the high scattering regime, the channel gain can be modeled as

a complex Gaussian distribution (see Section 1).

H(f) =
P
∑

p=1

αp ejφp e−2πjf0τp −−−→
P →∞

CN (0, σ2)

Thus the channel frequency domain power is exponentially dis-

tributed

|H(f)|2 ∼ exp

(

1√
2σ

)

.

As the coefficient of variation of an exponentially distributed ran-

dom variable is always 1, we have

CV 2
SISO = 1

Stability of Gaussian channels

2.1.1 Capacity of MIMO channels

A MIMO communication system uses several antennas at both ends of the trans-

mission. The radio link from transmit antenna j to receive antenna i is modeled in the

frequency domain by the complex gain Hi,j(f). The channel is then modeled as a complex-

valued matrix, called the channel matrix, with coefficients (in a 2 × 2 setup)

H(f) =





H1,1(f) H1,2(f)

H2,1(f) H2,2(f)



 .

See Section 1.1 for more details on this notation. The received symbols y are then given

by

y = H(f)x + n

where x are the emitted symbols and n denote the thermal noise vector. The emitted

power is given by Pe = Tr(xxH). The noise vector is complex Gaussian distributed n ∼
CN (0, σ2

nI).

In 1999, Emre Telatar proposed an expression for the spectral efficiency (capacity of
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Part I, Chapter 2 – MIMO Capacity

a 1Hz channel) of such multi-antenna systems in [3]. This expression is

SEMIMO = log2

(

det

(

I +
1
σ2

n

HH(f)QH(f)

))

(2.4)

where Q = xxH is the transmit covariance matrix. This covariance matrix is controlled

by the transmitter and should be chosen in order to maximize the channel capacity. This

critical operation is called precoding. The spectral efficiency can be rewritten as

SEMIMO = log2

(

det

(

I +
Pe‖H‖2

F

σ2
n

H̄HQ̄H̄

))

(2.5)

where the normalized channel matrix and covariance are given by H̄ = H/‖H‖F and Q̄ =

Q/‖Q‖F The former term ρ =
Pe‖H‖2

F

σ2
n

is the generalization of the SNR for MIMO channels.

The latter term is interpreted as the spectral efficiency gain from spatial multiplexing.

As well as for SISO communications, the MIMO radio link reliability gain depends

on the stability of the SNR ρ. In Section 2.2, the stability of MIMO system is studied

through the analysis of the so-called channel hardening effect using a ray-based model. In

Section 2.3, we propose a modified formula for the capacity of MIMO channels in perfect

precoding conditions.

2.2 Channel Hardening

In classical SISO systems, the fast fading generated from the multipath propagation

channels results in strong capacity fluctuations. MIMO systems average the fading phe-

nomenon over the antennas so that the channel gain varies much more slowly. This effect is

called channel hardening. The results of this section have been presented at the conference

WiMob 2018 [1] where it received the best paper award.

Definition. The channel hardening phenomenon is usually quantified using the relative

variations of the channel gain ‖H‖2
F , also called coefficient of variation (CV ) [4, 5]

CV 2
MIMO =

Var {‖H‖2
F }

E {‖H‖2
F }2 =

E {‖H‖4
F } − E {‖H‖2

F }2

E {‖H‖2
F }2 (2.6)

In Equation (2.6) the statistical means are obtained upon the model which governs the

entries of ‖H‖2 given random positions of the transmitter and the receiver.
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2.2. Channel Hardening

2.2.1 Gaussian Models

The channel hardening measure CV 2
MIMO has been computed for the classical Gaussian

model (introduced in Section 1.2.2) in the papers [4], [5, p. 231] . As a reminder this model

assumes that channels are Gaussian distributed with covariance matrix R (vect(H) ∼
CN (0, R)).

Theorem. Using the classical Gaussian model (also called Rayleigh fading model) with

correlation matrix R, the variations of the MIMO channel gain (2.6) can be rewritten as

CV 2
MIMO =

E

{

|hHh|2
}

− Tr(R)2

Tr(R)2
=

Tr(R2)
Tr(R)2

, (2.7)

where the rightmost equality comes from the properties of Gaussian vectors [5, Lemma

B.14].

This result only depends on the covariance matrix R, from which the influences of

antenna array topology and propagation conditions are not explicitly identified. Moreover,

small-scale and large-scale phenomena are not easily separated either [6, 7, 8].

This expression of the channel hardening phenomenon is upper and lower bounded by

1
NrNt

≤ CV 2
Rayleigh =

Tr(R2)
Tr(R)2

≤ 1

where the rightmost inequality is attained for rank(R) = 1 and the leftmost one for

R = Id. With such model, the measure of channel hardening is completely defined by the

distribution of the correlation matrix eigenvalues.

The unit rank case can for example be obtained when the antenna spacing is reduced.

It is indeed well-known that antenna spacing below the half-wavelength reduces the cor-

relation matrix rank thus reducing the channel hardening effect. In contrast, the full rank

situation corresponds to the limit obtained for uncorrelated entries of matrix H, that

is when the number of rays becomes sufficiently large. Such situation is obtained with

sufficiently spaced antennas and sufficiently rich scattering channels. Channel hardening

depends both on antenna array topology and propagation characteristics. Studying chan-

nel hardening with a physical channel model is necessary to provide more insights by

separating the influences of antenna array topologies and propagation characteristics.
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2.2.2 Channel Hardening in ray-based models

We propose a new expression for channel hardening that doesn’t rely on Gaussian

models assumptions. The ray-based multipath channel model described in Section 1 relies

on several parameters (ray gains βp, ray directions ~urx,p and ~utx,p) upon which we intend

do derive the new expression. We apply statistical laws to those parameters in order to

scan all the possible channels of the environment. Our aim is to provide an analytical

analysis of CV while relying on the weakest possible set of assumptions on the channel

model. Hence, we will consider that

— For each ray, gain, DOD and DOA are independent.

— The phases arg(βp) ∼ U [0, 2π] are i.i.d.

— Both DOD ~utx,p and DOA ~urx,p are i.i.d. with distributions Dtx and Drx.

The first hypothesis is widely used and simply says that no formal relation exists between

the gain and the DoD/DoA of each ray. The second one reasonably indicates that each

propagated path experiences independent phase rotation without any predominant an-

gle. The last one assumes that all the rays come from independent directions, with the

same distribution (distributions Dtx at the emitter, Drx at the receiver). Note that such

distribution may be directly governed by the propagation environment. To simplify the

notations we also introduce the ray gain vector β =
[

β1, · · · , βP

]

. ‖β‖2 =
∑P

p=1 |βp|2 is

the aggregated power from all rays, corresponding to large-scale fading due to path-loss

and shadowing.

To derive the channel hardening measure in Equation (2.6) we need to compute the

channel power expectation and variance.

Expectation of the channel power. From the ray-based channel model expression

Equation (1.7), the channel power ‖H‖2
F = Tr(HHH) can be written as

‖H‖2
F = NtNr

∑

p,p′

β∗
pβp′γp,p′ , (2.8)

where the term γp,p′ is given by

γp,p′ = 〈er(~urx,p), er(~urx,p′)〉〈et(~utx,p), et(~utx,p′)〉∗

where 〈., .〉 denotes the inner product between two vectors. Using the hypothesis arg(βp) ∼
U [0, 2π] i.i.d. introduced in the channel model and γp,p = 1, the channel power expectation

30



2.2. Channel Hardening

can further be expressed as

E

{

‖H‖2
F

}

= NtNrE

{

‖β‖2
}

(2.9)

where β = [β1, . . . , βP ]. Thus the average channel gain increases linearly with Nr and Nt,

which is consistent with the expected beamforming gain Nt and the fact that the received

power depends on Nr linearly.

Coefficient of variation. The coefficient of variation CV 2
MIMO is derived using the

previous hypotheses and Equation (2.8).

Definition. We introduce the angular domain ray covariances











E2(Atx, Dtx) = E {|〈et(~utx,p), et
∗(~utx,p′)〉|2}

E2(Arx, Drx) = E {|〈er(~urx,p), er(~urx,p′)〉|2}
(2.10)

which depend on the topologies of the antenna arrays defined by the sets of vectors previ-

ously defined Atx, Arx and on the distributions of the DoDs and DoAs Dtx, Drx.

These quantities are the second moments of the inner products of the transmit/receive

steering vectors associated to two distinct rays. They represent the correlation between

two rays as observed by the system. They can also be interpreted as the average inability

of the antenna arrays to discriminate between two rays given a specific topology and ray

distribution.

Theorem. From such definitions, CV 2 can be expressed as a sum of two terms,

CV 2
MIMO = E2(Atx, Dtx)E2(Arx, Drx)

E {‖β‖4 − ‖β‖4
4}

E {‖β‖2}2 +
Var {‖β‖2}
E {‖β‖2}2 . (2.11)

This formula has been derived from the ray-based model expression in Appendix A.

Note that this result only relies on the assumptions introduced at the beginning of the

section. The first term represents the contribution of small-scale fading due to ray recom-

binations. It involves both antenna array topologies and propagation characteristics. The

second term can be identified as the contribution of the spatial large-scale phenomena

since it simply consists in the coefficient of variation of the previously defined large-scale

fading parameter ‖β‖2 of the channel. This expression is illustrated by a simple exam-

ple on Figure 2.7, where the contributions of both small-scale and large-scale fading are

evidenced.
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Part I, Chapter 2 – MIMO Capacity

To allow local channel behavior interpretation, conditioning the statistical model by

‖β‖2 is required. It results in the cancellation of the large-scale variations contribution of

CV 2
MIMO which reduces to the first term identified as what is called hereafter small-scale

fading.

2.2.3 Simulations and interpretations

In this section, small-scale and large-scale components of the channel variations are

analyzed. The influence of propagation conditions and antenna array topology on the

small-scale contribution are evidenced.

Large Scale fading. The contribution of large-scale fading in CV 2 is basically the

coefficient of variation of the total aggregated power ‖β‖2 of the rays. To better emphasize

its behavior, let us consider a simple example with independent |βp|2 of mean µ and

variance σ2. The resulting large scale fading term is then

Var {‖β‖2}
E {‖β‖2}2 =

1
P

(

σ

µ

)2

.

It clearly appears that more rays lead to reduced large-scale variations. This stems from

the fact that any shadowing phenomenon is well averaged over P independent rays, hence

becoming almost deterministic in rich scattering environments. This result is consistent

with the literature on correlated Rayleigh fading channels where high rank correlation

matrices provide a stronger channel hardening effect than low rank ones [5] as previously

discussed in Section 2.2.1.

Small-scale fading. We condition the model on ‖β‖2, that is the power conveyed by

the channel, to remove the large scale fading effect.

Theorem. The coefficient of variation CV 2
MIMO conditioned upon the aggregated ray pow-

ers ‖β‖2 can be expressed as

CV 2
‖β‖2 = E2(Atx, Dtx)E2(Arx, Drx)α2(β)

where α2(β) = 1 − Eβ|‖β‖2 {‖β‖4
4}

‖β‖4
.

(2.12)

The small-scale fading contribution to CV 2 thus consists of a product of the quantities

defined in Equations (2.10) that depend only on the antenna array topologies (Atx, Arx)
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and ray distributions (Dtx, Drx) multiplied by a propagation conditions factor α2(β) that

depends only on the statistics of the ray powers β.

Array topologies. This paragraph focuses on the influence of Atx on the quantity

E2(Atx, Dtx) (the study is done only at the emitter, the obtained results being also valid

at the receiver). A uniform distribution of the rays over the unit sphere is considered

(Dtx = US2). Equation (2.10) yields

E2(Atx, Dtx) =
1

N2
t

E







∣

∣

∣

∣

∣

Nt
∑

i=1

e2jπ
~atx,i·(~utx,p−~u

tx,p′ )

λ

∣

∣

∣

∣

∣

2






.

A well-known situation is when the inner sum involves exponentials of independent uni-

formly distributed phases and hence corresponds to a random walk with Nt steps of unit

length. The above expectation then consists in the second moment of a Rayleigh distri-

bution and E2(Atx, Dtx) = 1
Nt

. A necessary condition to such a case is to have (at least)

a half wavelength antenna spacing ∆d to ensure that phases are spread over [0, 2π]. On

the other hand, phase independences are expected to occur for asymptotically large ∆d.

It is however shown hereafter that such assumption turns out to be valid for much more

reasonable value of ∆d.

Numerical evaluations of E2 are performed versus ∆d (Figure 2.1), and versus Nt

(Figure 2.2). Uniformly distributed rays over the 3D unit sphere (Dtx = Drx = US2) and

Uniform Linear, Circular and Planar Arrays (ULA, UCA and UPA) are considered. As

a reminder, the smaller E(Atx, Dtx) the better the channel hardening. In Figure 2.1, E2

reaches the asymptote 1/Nt for all array types with ∆d = λ
2

and remains almost constant

for larger ∆d. Figure 2.2 shows that E2 merely follows the 1/Nt law whatever the array

type. We thus conclude that the independent uniform phases situation discussed above is

a sufficient model for any array topology given that ∆d ≥ λ
2
. It is therefore assumed in

the sequel that,

E2(Atx, US2)≈1/Nt, E2(Arx, US2)≈1/Nr. (2.13)

Propagation conditions. It is now interesting to point out that the propagation

factor α(β) introduced in (2.12) is bounded by

0 ≤ α2(β) ≤ 1 − 1/P. (2.14)

Those bounds are deduced from the following inequality which holds for any vector of
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Figure 2.1 – Numerical evaluation of E(Atx, US2) for various array types and increasing
antenna spacing ∆d. The values are normalized so the asymptote is 1.
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Figure 2.2 – Numerical evaluation of E(Atx, US2) for various antenna arrays at the half
wavelength. The lower, the better.

size P

‖β‖4
2/P ≤ ‖β‖4

4 ≤ ‖β‖4
2. (2.15)

The right inequality comes from the convexity of the square function. Equality is achieved

when there is only one contributing ray, i.e. no multipath occurs. In that case CV 2
‖β‖2 = 0

and the MIMO channel power is deterministic. The left part of Equation (2.15) is given

by Hölder’s inequality. Equality is achieved when there are P rays of equal power. Then,

taking the expectation on each member of Equation (2.15) yields (2.14).

In contrast to the large-scale fading, more rays lead to more small-scale fluctuations.
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Figure 2.3 – On the leftmost side, uniform distribution of the rays on the unit sphere US2 .
On the rightmost side, constrained distribution of the rays with solid angle U∆θ.

It is indeed well known that a richer scattering environment increases small-scale fading.

Restrictions on ray distributions. In a mobility scenario, random translations and

rotations might affect the receiver, leading to the previously used uniform distribution of

the received rays over the unit sphere. However emitted rays at the base station may have

much more constrained distributions (especially in the elevation plane). Equation (2.11)

is also valid for those cases but the E(Atx, Dtx) term shall be re-evaluated.

We study the ULA case using a uniform DOD distribution with constrained elevation

in the interval [−∆θ/2, ∆θ/2] illustrated on Figure 2.3. This distribution is denoted U∆θ

and we have the equality Uπ = US2 .

The behavior of E(Atx, U∆θ) for increasing number of antennas is given in Figure 2.4.

We can observe a clear degradation when ∆θ decreases. This is coherent with literature

on channel hardening, constrained rays induce correlated channel matrices, mitigating

the channel hardening effect. This model leads to the pinhole channel for asymptotically

small ∆θ. It corresponds to situations when rich scattering leads to a low correlation

channel covariance matrix, where the channel is known to not harden [4]. Figure 2.5

shows the effect of antenna spacing on E(Atx, U∆θ). It can be observed on this figure

that the channel hardening loss due to restricted distribution of the rays by ∆θ can be

compensated by increasing antenna spacing above the half-wavelength. The influence of

∆θ on channel hardening is depicted by Figure 2.6. A clear reduction of channel hardening

can be observed when θ decreases.

Simulations. For illustration purposes, we evaluate the coefficient of variation through

both Monte-Carlo simulations and Equation (2.11). We use uniform linear arrays (ULA)

with inter-antenna spacing of λ
2

at both transmitter and receiver sides. A total of P = 6
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Figure 2.4 – Numerical evaluation of E(Atx, U∆θ) for increasing ∆θ with fixed half-
wavelength antenna spacing. The lower, the better.

Figure 2.5 – Numerical evaluation of E(Atx, U∆θ) for increasing ∆θ with fixed number of
antennas Nt = 16. The lower, the better.
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Figure 2.6 – Comparison between (2.11), simulated CV 2 and correlated Rayleigh channel
hardening measure (2.7), the dashed, squared and dotted lines respectively. A 16×2 ULA
setup is considered. Uniform distribution of DoDs and DoAs with constrained DoDs and
complex Gaussian gains. The large-scale factor is normalized.

paths were randomly generated with Complex Gaussian gains βp ∼ CN (0, 1), uniform

DOD ~utx,p ∼ US2 and DOA ~urx,p ∼ US2 .

Based on the general formula given in (2.11), on the interpretations and evaluations

of its terms and on the geometrical terms approximations in Equation (2.13) we derive

the expression of channel hardening for this illustrating example as

CV 2
approx =

1
NtNr

(1 − 1/P ) + 1/P.

Simulation and approximated formula are compared in Figure 2.7 in which small-scale

and large-scale contributions are easily evidenced.

Comparison with the Gaussian model. In this section we compare our channel hard-

ening expression conditioned by ‖β‖2 (local behavior) to the correlated Rayleigh fading

channel in both strong scattering and low scattering situations.

In the high scattering regime, the correlated Rayleigh channels approach is known to

perform well. Without any particular constraint on the DoD and DoA, the correlation

matrix is given by R = Id (the well-known Rayleigh i.i.d. channel model). Using this

result with Equation (2.7) yields

CV 2
iid =

1
NtNr

.
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Figure 2.7 – Comparison between Equation (2.11) and numerically evaluated CV 2. Uni-
form distribution of DoDs and DoAs over the unit sphere and complex Gaussian gains.

Using the realistic model in a rich scattering environment, the propagation term α(c) of

small-scale variations (2.12) reaches the upper bound of (2.14). This yields the limit

CV 2 P →∞−−−→ CV 2
iid (2.16)

which is coherent with the interpretation of the model. This behavior can be observed on

the lowest curve of Figure 2.6.

However in the low scattering regime (considering P rays), the Rayleigh modeling

approach is not valid any more. The sparse channel is not modeled properly and formula

(2.7) underestimates the channel hardening effect. Our approach introduces a propagation

factor α(c) that models the scattering effect and the sparsity of the channel. According

to results given by the ray-based model Figure 2.6, channel hardening is increased in low

scattering scenarios and reaches the correlated Rayleigh hardening for P → ∞, which is

consistent with the previous physical interpretation.

2.2.4 Conclusion

In this section, we have extended previous studies on channel hardening using a

propagation-based model. We have separated influences of antenna array topologies and

propagation characteristics on the channel hardening phenomenon. Large-scale and small-

scale contributions to channel variations have been evidenced. This contribution provides

a general framework to study channel hardening using accurate propagation models.

38



2.3. Multiplexing gain

To illustrate the overall behavior of channel hardening, this framework have been used

with generic model parameters and hypotheses. The scaling laws evidenced for simpler

channel models are conserved provided the antennas are spaced by at least half a wave-

length. The results are consistent with state of the art and provide further insights on the

influence of array topology and propagation on channel hardening. The proposed expres-

sion can easily be exploited with various propagation environments and array topologies

to provide a more precise understanding of the phenomenon compared to classical channel

descriptions based on Rayleigh fading models.

2.3 Multiplexing gain

The second aspect of the capacity is the multiplexing gain. In this section we propose

to rewrite the optimal capacity using only a few variables, namely the transmission rank,

the product of all used eigenvalues and the sum of their inverses. We show that this exact

expression can be approximated using only two variables with minor capacity prediction

error. In order to achieve the optimal capacity, the input covariance matrix Q introduced

in Equation (2.4) has to be determined according to the propagation channel H. First

we introduce the calculation of Q that enables the optimal capacity. Using this result we

introduce the new formula to describe the single user MIMO capacity in a later stage.

2.3.1 Optimal precoding

In the seminal paper [3] published by Emre Telatar in 1999, the expression of the

optimal precoding matrix was derived. In this section we remind this important result

of MIMO literature. At each time interval, the received signal y is given by the linear

transform

y = Hx + n.

In order to optimize the capacity (2.5), the input symbols x have to be shaped so that

the covariance matrix Q̄ = xxH

Tr(xxH)
maximizes the capacity

SEMIMO = log2

(

det
(

I + ρH̄HQ̄H̄
))

. (2.17)
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The covariance matrix Q̄ has to be chosen by the transmitter using the linear transfor-

mation

x = Ps

where s contains independent symbols and matrix P is called the precoding matrix. The

relation with the input covariance matrix is given by Q̄ = PPH. In order to maximize

the capacity, Telatar showed that Q̄opt should take the form

Q̄opt = VηVH

where V is an unitary matrix that diagonalizes H̄H̄H = V∆VH and η is the diag-

onal matrix containing the power allocated to each precoding vector. The power al-

location weights [η]i,i are calculated from the eigenvalues of the normalized channel

∆ = diag(λ1, . . . , λmin(Nt,Nr)) using the water-filling algorithm [3]. The spectral efficiency

when matrix V is used for precoding is given by

SEMIMO =
min(Nt,Nr)
∑

i=1

log2(1 + ρ[η]i,iλi) (2.18)

as the channel is diagonalized. The normalization of the matrices H and Q imposes

that
∑min(Nt,Nr)

i=1 λi = 1 and
∑min(Nt,Nr)

i=1 [η]i,i = 1. From [9], the result of the waterfilling

algorithm can be written analytically as











[η]i,i =
1+
∑L

j=1
1

ρλj

L
− 1

ρλi
if i ≤ L

[η]i,i = 0 otherwise
(2.19)

where L denote the transmission rank, that is the number of channel eigenvalues used

to transmit data. The optimal transmission rank is given as the largest integer L that

verifies the condition
1 +

∑L
j=1

1
ρλj

L
>

1

ρλL+1

2.3.2 Derivation of the new formula

In this PhD, we provide a new analytical formula for the capacity, obtained by injecting

the power allocation formula (2.19) within the capacity formula (2.18). This formula is

useful to quantify the behavior of the capacity in a particular environment only based on
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2.3. Multiplexing gain

Figure 2.8 – Spectral efficiency of a MIMO channel with maximum transmission rank
L = 4.

two channel-dependent variables.

Theorem. From Equations (2.19) and (2.18), the spectral efficiency can be rewritten as

SEMIMO = log2

(

(

ρ + RL

L

)L

DL

)

bps / Hz (2.20)

where RL =
∑L

j=1
1

λj
and DL =

∏L
j=1 λj. L denotes the optimal transmission rank.

Beyond the classical variables ρ, the SNR, and L the transmission rank, this new

expression only depend on two channel parameters which are the sum of the inverses and

the product of the L largest eigenvalues, namely











RL =
∑L

j=1
1

λj

DL =
∏L

j=1 λj.

This formula enables a precise evaluation of the spectral efficiency based on few param-

eters. Note that the optimal transmission rank L changes with the SNR. Equation (2.20)

is illustrated on Figure 2.8. The channel spectral efficiency follows the curve L = 1 at

low SNR. As the signal to noise ratio improves the achievable transmission rank increase

and the spectral efficiency switches to the higher order curve. For full-rank transmis-

41



Part I, Chapter 2 – MIMO Capacity

sion, variables RLmax and DLmax can be rewritten using Vieta’s formulas applied to the

characteristic polynomial of H̄H̄H as











RL =
∑Lmax

j=1
1

λj
= −a1

a0
= | a1

det(H̄H̄H)
|

DL =
∏Lmax

j=1 λj = a0 = det(H̄H̄H)

where the constants a1 and a0 are extracted from the expression of the characteristic

polynomial

χHHH (λ) = det(HHH − λI) =
L
∑

i=0

aiλ
i

2.3.3 Approximations of the spectral efficiency

In the high SNR regime, the spectral efficiency increase linearly with log(ρ) as evi-

denced on Figure 2.8. The transition from a transmission rank L to L+1 actually happens

at the beginning of this high SNR regime. The approximation of the spectral efficiency by

the high SNR asymptote is tight except at the vicinity of transmission rank transitions.

In the high SNR regime, the SE can be approximated by the formula

SEMIMO
ρ→∞−−−→ L log2 (ρ) − L log2 (L) + log2 (DL) (2.21)

The asymptotes of the SE for a transmission rank L = 2 are displayed on Figure 2.9.

In Equation (2.21) the SE increases linearly with the logarithm of DL and the SNR ρ.

For consistency we measure the SNR and both parameters RL and DL in dB.

On Figure 2.10 we show the gap between the true SE and the approximation using

only the asymptotic behavior (Equation (2.21)) for transmission rank L > 1. For L = 1

the Spectral Efficiency only depends on λ1 and approximations are not required. The

approximated curve is then piecewise affine for L ≥ 2 and only depend on the RL pa-

rameter, the transmission rank L and the SNR ρ. Such expression is useful to predict the

capacity using only a handful of parameters. This technique can also be used to provide

an approximate SNR value for the rank transition based on the asymptotes’ intersection,

that is

ρL =
1

λL+1

(L + 1)L+1

LL
.
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2.3. Multiplexing gain

Figure 2.9 – Asymptotes of the spectral efficiency and influence of the parameters RL and
DL for a transmission rank L = 2.

Figure 2.10 – Approximation of the SE where the maximum transmission rank is Lmax = 8.
The asymptotes’ intersection points, that denote transitions to the next transmission rank
L + 1, are displayed as vertical green dashed lines.
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2.4 Conclusion

In this first chapter we studied analytically the spectral efficiency gain of MIMO

channels. In the literature, the benefits of MIMO systems have been classified into two

main categories: small scale fading reduction (also called channel hardening or diversity

gain) and spatial multiplexing.

We proposed an original analysis of the channel hardening phenomenon using a ray-

based model that enables a more in-dept understanding of the contributions from antenna

array topologies and propagation conditions to the reduction of small-scale fading. This

analysis is complementary to previous studies involving the well-known Correlated Gaus-

sian model and the conclusions using both methods are identical in the high scattering

regime.

Then we proposed a novel expression for the spectral efficiency that depends on fewer

parameters than the classical formula. We evaluated the effect of the parameters on the

spectral efficiency and proposed a simplified approximate formula using a piecewise affine

function. This expression is useful to predict the capacity of the channel by measuring

only few parameters and can be useful to predict rank transitions.
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Chapter 3

EFFICIENT WIDEBAND MIMO CHANNEL

REPRESENTATION

In this chapter we analyze the statistical properties of the Saleh-Valenzuela channel

model. In particular we derive the first and second order statistics of both Saleh-Valenzuela

separated clusters and whole channel. Those statistics are fundamental in the organization

of the manuscript as they are utilized in the next two sections of this chapter as well as

in the two following chapters, by providing a simpler formulation of the Saleh-Valenzuela

cluster model.

In the second section we search for an efficient representation basis for Saleh-Valenzuela

clusters. We compare the optimal eigenvector basis with the well-known Fourier basis, in

both the delay and angular domains.

Then we calculate how much coefficients are required to model a particular channel

given its Saleh-Valenzuela parameters. We compare two modeling approaches, one suitable

for massive MIMO and one typically used for SISO and small-scale MIMO and we draw

the boundary between both regimes.

3.1 Second order statistics

The multi-carrier angular Saleh-Valenzuela model (Section 1.4.2) with ULA antenna

arrays at both ends can be rewritten using the formalism of Equation (1.15) as

h =
√

NfNrNt

Q
∑

q=1

P
∑

p=1

βp,qef (τq + τp,q) ⊗ er(θrx,q + ∆θrx,p,q) ⊗ et
∗(θtx,q + ∆θtx,p,q) (3.1)

The channel is made of several multipath components, each of them is characterized by

a delay of arrival τq and main directions of arrival and departure θrx,q and θtx,q (defined

by a simple scalar angle as we consider ULA arrays at both ends). Equation (3.1) can be
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Part I, Chapter 3 – Efficient Wideband MIMO Channel Representation

rewritten as a sum of clusters

h =
Q
∑

q=1

cq (3.2)

In this section we study the statistical properties of those Saleh-Valenzuela clusters con-

ditioned on τq, θrx,q and θtx,q. From the Saleh-Valenzuela model definition proposed in

Section 1.4.2, the expectation of a cluster is E{cq} = 0 (it consists in a sum of gains).

The phase independence property ensures that E{βpβ∗
p′} = 0, thus removing cross-

correlation terms between rays. The second order channel statistics are given by

E{cqcq
H} =E{Nf

P
∑

p=1

|βp,q|2ef (τq + τp,q)ef
H(τq + τp,q)}

⊗ E{Nrer(θrx,q + ∆θrx,p,q)er
H(θrx,q + ∆θrx,p,q)}

⊗ E{Ntet(θtx,q + ∆θtx,p,q)et
H(θtx,q + ∆θtx,p,q)}H

=Σf
q
(τq) ⊗ Σr

q
(θrx,q) ⊗ Σt

q

H(θtx,q)

(3.3)

where Σf
q
(τq) denote the frequency domain cluster covariance and Σr

q
(θrx,q) and Σt

q
(θtx,q)

the angular domain receive and transmit covariances. We evaluate those covariance ma-

trices in this section.

In particular, we evaluate the second order statistics of both Saleh-Valenzuela clusters

and the whole channel in the frequency domain. They have already been calculated in

the papers [1, 2], however the starting point of their demonstration is the delay-domain

channel representation, given by Equation (1.9). This approach faces technical difficulties

due to the dirac functions, that are overcome by using advanced point process theory.

The starting point of our demonstration is the frequency domain representation of the

channel, which avoid this technical problem and leads to a much simpler proof. This work

has been published at the international conference GLOBECOM 2019 [3].

3.1.1 Single cluster statistics

In this section we derive the expression of the covariance and Power Delay Profile

(PDP) of a single cluster of the Saleh-Valenzuela channel model. Without loss of generality,

we set τq = 0. The frequency domain complex gain of a cluster is given by

cq(f) =
P
∑

p=1

βp,q e−2πjfτp,q . (3.4)
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3.1. Second order statistics

Due to the exponentially decaying intra-cluster powers with increasing delay, only a finite

number of dominant rays are distinguishable. P is usually chosen high enough to embrace

the whole multi-path power while keeping computational complexity low for simulation

purposes. For analytical computation convenience, we will consider that P → ∞. To

simplify the expressions, we normalize the power of the first ray as E {|β1,1|2} = 1.

Theorem. The cluster covariance function is evaluated as

Rcq(∆f) = E

{

|β1,q|2
}

(

1 +
λγ

1 − 2πj∆fγ

)

. (3.5)

The details of the derivations are given in appendix B.1. From the frequency domain

expression of the Saleh-Valenzuela channel, we derive the second order statistics for a

fixed number of rays P using a recurrence on P . The cluster covariance is obtained by

taking the limit of this expression as P tends to infinity.

We find that the random process cq is Wide Sense Stationary (WSS), that is the co-

variance only depends on the frequency difference ∆f . It is noticeable that this expression

consists of two terms, the former being constant and the latter vanishing as the frequency

difference increases. This feature is also observed in [4]. We obtain the PDP by applying

the Fourier Transform on the autocorrelation,

Scq(τ) = E

{

|β1,q|2
} (

δ(τ) + λ e−τ/γ u(τ)
)

(3.6)

where u(τ) is the Heaviside step function. The average power of the cluster for any fre-

quency f is given by

Pcq = E

{

|cq(f)|2
}

= E

{

|β1,q|2
}

(1 + λγ)

where E {|β1,q|2} is the average power of the first ray of cluster q. It can be evaluated

using a recurrence as

E

{

|β1,q|2
}

= E

{

|β1,q−1|2
}

(

1
1 + 1

ΛΓ

)

= E

{

|β1,1|2
}

(

1
1 + 1

ΛΓ

)q−1

. (3.7)

where Γ and Λ are the cluster power decay constant and rate of arrival of clusters as

defined in the Saleh-Valenzuela model (Section 1.4). E {|β1,q−1|2} is the average power of

the very first ray, which is normalized to 1 (see above) to simplify the expressions.
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Figure 3.1 – Normalized modulus of the frequency domain correlation matrix for a single
cluster.

We are interested in the cluster second order statistics covariance matrix between

subcarriers Σf
q
(τq). This introduces a sampling of the continuous function cq(f) corre-

sponding to the locations of the OFDM subcarriers. The frequency domain covariance

matrix is obtained from Equation (3.5) as

[Σf
q
(τq)]k,k′ = Pq



1 +
λγ

1 − 2πj k′−k
Nf

Bγ



 e
2πj k′−k

Nf
Bτq

. (3.8)

where τq denotes the delay of cluster q and Pq = E {|β1,q|2} denotes the cluster power.

The modulus of this covariance matrix (normalized) is given in Figure 3.1. The covariance

between adjacent subcarriers (coefficients close to the diagonal of the matrix) is much more

stronger than between spaced out subcarriers (coefficients away from the diagonal). The

width of the diagonal high correlation region is linked to the coherence bandwidth of the

channel [5]. Such covariance matrix will be a central piece of Chapters 4 and 5.
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3.1.2 Multiple clusters channel analysis

In this section we derive the expression of the covariance and PDP of the full Saleh-

Valenzuela channel. The complex frequency gain of the channel is given by

H(f) =
Q
∑

q=1

P
∑

p=1

βp,q e−2πjf(τp,q+τq) . (3.9)

As previously done, we will consider that P → ∞ and Q → ∞ and we normalize the

power of the first ray E {|β1,1|2} = 1.

Theorem. The covariance function of the whole Saleh-Valenzuela channel is given as

RH(∆f) =

(

1 +
ΛΓ

1 − 2πj∆fΓ

)(

1 +
λγ

1 − 2πj∆fγ

)

. (3.10)

The covariance function calculation details are given in appendix B.2. The random

process H is also WSS. This expression is advantageously stated as the product of the

covariances of two single-exponentially decaying channels. Then we apply the Fourier

Transform to the covariance function to get the PDP

SH(τ) = δ(τ) + Λ e−τ/Γ u(τ) + λ e−τ/γ u(τ) + Λλ
Γγ

Γ − γ

(

e−τ/γ − e−τ/Γ
)

u(τ)

where u(τ) is the Heaviside step function. The average power of the Saleh-Valenzuela

channel at any frequency f is finally given by

PH = E

{

|H(f)|2
}

= (1 + λγ) (1 + ΛΓ) .

3.1.3 Angular domain cluster statistics

In this section we evaluate the Saleh-Valenzuela cluster covariance matrix in the an-

gular domain Σt
q
(θtx,q). For the sake of brevity we only treat the transmit side covariance

matrix. As both ends are identical, the results can immediately be applied to the receive

side. The expression of the covariance matrix is

Σt
q
(θtx,q) = E{Ntet(θtx,q + ∆θtx,p,q)et

H(θtx,q + ∆θtx,p,q)}
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where the expectation is taken over ∆θtx,p,q. From this expression and from the ULA

steering vector formula (1.8) we derive the angular domain cluster covariance matrix as

[Σt
q
(θtx,q)]l,l′ =

∫ ∞

−∞
p∆θ(∆θ) e−2πj(l′−l)

‖~atx‖2

λ
cos(θtx,q+∆θ) d∆θ

As a reminder, clusters are modeled as a group of rays with common direction of departure

and arrival. In the extended Saleh-Valenzuela model (Section 1.4.2), let us remind that

the angle offset is Laplace distributed as

p(θtx) =
1√
2σθ

e−
√

2
|θtx−θ̄tx|

σθ

where σθ denotes the angular spread.

3.2 Sparse Channel Representation

From the previous second order statistics derivation, it is now possible to represent each

cluster as a vector of random variables cq which have similar weights but are correlated

according to the covariance matrices previously obtained. In this section we investigate in

which extend we can establish a representation of the same cluster with fewer stochastic

parameters such as

cq ≈
L
∑

l=1

zlel (3.11)

where zl are random coefficients and el are deterministic vectors. The basis vectors el have

to be optimized to yield the smallest possible number L of components while mitigating

the representation error, quantified by the Mean Square Error (MSE). In other words,

our goal is to find the smallest set of vectors {e1, . . . , eL} that can represent the channel

while keeping the MSE E

{

‖cq −∑L
l=1 zlel‖2

}

below a certain predefined threshold η as

{e1, . . . , eL} = argmin
{u1,...,uL}

L

wrt. E

{

‖cq −
L
∑

l=1

zlul‖2

}

< η.

In this section, we compare the optimal eigencomponent decomposition (optimality

means that it yields the lowest MSE for a given number of representation vectors L) with
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the commonly used Fourier decomposition in both frequency and angular domains.

3.2.1 Optimal sparse representation

The optimal (that is it yields the smallest MSE for a fixed number of coefficients)

solution of the problem above is to set vectors el as the eigenvectors basis [6] (normalized

‖el‖2 = 1) of the cluster covariance matrix Σq. Note that this matrix is Toeplitz sym-

metric positive semi-definite, thus the eigencomponents are well defined, eigenvalues are

all positive and eigenvectors are orthogonal. This decomposition contains NfNtNr terms,

however most of them have negligible impact on the representation quality and can be

removed. The error induced when removing those terms from the sum (3.11) is given by

E







‖cq −
∑

l∈N
zlel‖2







=
∑

l 6∈N
Var {zl} . (3.12)

The MSE induced by not including some coefficients in the sum (3.11) is equal to the sum

of their variances. The coefficients variances are obtained from the eigenvalues λl of the

eigenvectors as

Var {zl} = E

{

|zl|2
}

= E

{

|cqeH
l |2

}

= E

{

elc
H
q cqeH

l

}

= elΣqeH
l = λl

We showed in the previous section that the covariance matrix Σq can be decomposed

into Σf
q
(τq) ⊗ Σr

q
(θrx,q) ⊗ Σt

q

H(θtx,q). Using Kronecker product (⊗) properties, the eigen-

vectors of Σq can hence be written as

el = ef
lf

⊗ er
lr

⊗ et
lt

∗

where ef
lf

, er
lr

and et
lt

are eigenvectors of Σf
q
(τq), Σr

q
(θrx,q) and Σt

q

H(θtx,q). Likewise the

eigenvalues λl can be written as

λl = λlf ⊗ λlr ⊗ λlt

where λlf , λlr and λlt are the corresponding eigenvalues of Σf
q
(τq), Σr

q
(θrx,q) and Σt

q

H(θtx,q).

Thus frequency domain and angular domain decomposition bases can be studied and

compared separately. Those are the most efficient decomposition bases. However the vec-

tors el depend on the parameters that govern the cluster, namely the angle of departure,
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angle of arrival and delay, and on the statistical Saleh-Valenzuela parameters λ (intra-

cluster ray rate of arrival), γ (intra-cluster ray power decrease time constant) and σθ

(intra-cluster angular spread).

In the next section we test the efficiency of the widely used sub-optimal Fourier pro-

jection basis against the optimal basis. This decomposition is motivated by the Toeplitz

structure of covariance matrices Σf
q
(τq), Σr

q
(θrx,q) and Σt

q

H(θtx,q). Indeed in the asymp-

totic case when the size of a Toeplitz matrix rises to infinity, its eigenvectors approach

Fourier basis vectors [7].

The coefficients zl that represent the channel in the Fourier domain are usually called

taps in what is called a tap delay line model. Taps are then denoted by the lower case

variable h. In the following we characterize the variances of the channel taps h in both

the delay and angular domains.

3.2.2 Frequency domain representation

For any channel H[k] represented in the frequency domain, the Fourier decomposition

coefficients are usually called time domain taps, denoted by lower case symbols hn defined

as

hn =
1

√

Nf

Nf −1
∑

k=0

H[k] e2πjnk/Nf , n ∈ J0, Nf − 1K. (3.13)

The frequency domain channel can be rewritten as

H[k] =
1

√

Nf

Nf −1
∑

n=0

hn e−2πjnk/Nf .

Using the linear combination notation introduced above, the frequency domain channel

h can be rewritten

h =
Nf −1
∑

n=0

hnen (3.14)

where the coefficients of the Fourier basis vectors are given by

[en]k =
1

√

Nf

e−2πjnk/Nf (3.15)

We can recognize the frequency domain characteristic vectors defined in Equation (1.11).

Those basis vectors are orthonormal thus the MSE introduced by discarding non-significant
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time domain coefficients is given by

E

{

‖h −
∑

n∈N
hnen‖2

}

=
∑

n6∈N
Var {hn} . (3.16)

Theorem. The time domain taps are zero mean complex random variables characterized

by their variance

Var(hn) =
∫ ∞

−∞
SH(τ)D2

Nf

(

π
n − τB

Nf

)

d τ (3.17)

where SH denotes the PDP of H and DN(x) denotes the normalized Dirichlet kernel

DN(x) =
sin (Nx)
N sin (x)

. (3.18)

The proof for this formula is given in Annex B.3. Using Equations (3.16) and (3.17),

we can evaluate the MSE induced by the truncation without relying on Monte-Carlo

simulations. We evaluated the representation efficiency for both the optimal eigenvector

basis and the Fourier decomposition on a single cluster model (h = cq) using Equation

(3.6) as the cluster PDP. Results are shown on Figure 3.2 in millimeter wave scenarios

and Figure 3.3 for centimeter wave scenarios. We measured analytically the relative MSE

induced by truncating the decomposition, only keeping the N more significant coefficients

(N in abscissa). Note that for the same number of parameters, the truncation error is

always lower with the eigendecomposition than with the Fourier basis. Broadly speaking,

we can observe that as the bandwidth increase, more coefficients are required to represent

the clusters. The gap between the optimal eigenbasis and the Fourier basis is small enough

for typical configurations to confirm the use of the Fourier basis.

3.2.3 Angular domain Representation

We perform the same analysis in the angular domain by comparing the optimal eigen-

decomposition and a Fourier (steering vector) decomposition basis. As the main direction

of cluster θq is already known, we use a shifted Fourier basis designed to minimize the

number of significant coefficients. The first vector of the decomposition is shifted to ensure

that it matches the main cluster direction e0(θq) = et(θq). This approach is also used in
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Figure 3.2 – Relative MSE when truncating the representation. In this evaluation we used
the Numerology 3 defined in the 5G NR standard (120kHz subcarrier spacing, 400MHz
bandwidth).

Figure 3.3 – Relative MSE when truncating the representation. In this evaluation we used
the standard LTE numerology (15kHz subcarrier spacing, 20MHz bandwidth).
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Chapter 5 and in the research paper [8]. The shifted Fourier basis vectors are

[el(θq)]m =
1√
Nt

e
−2πj(m− Nt−1

2 )
(

l
Nt

+
‖~atx‖

λ
cos(θq)

)

.

In this shifted Fourier basis the angular domain cluster can be rewritten as

cq =
P
∑

p=1

βp,qet(θq + θp,q) =
Nt−1
∑

l=0

hlel(θq)

The basis vectors el(θq) remains orthonormal to each others. Thus we have the same MSE

expression as in the frequency domain when discarding non-significant angular-domain

taps, as

E







‖cq −
∑

l∈N
hlel(θq)‖2







=
∑

l 6∈N
Var {hl} . (3.19)

The angular taps variances are given by

Var {hl} = E







P
∑

p=1

|βp,q|2






E{|〈et(θq + ∆θp,q), el(θq)〉|2}. (3.20)

where the first term is a channel normalization constant and we are mainly interested in

the latter term.

Theorem. The second factor of Equation (3.20) is given by

E{|〈et(θq + ∆θp,q), el(θq)〉|2} =
∫ 2π

0
f∆θ(∆θ)DNt (xl(∆θ)) DNt (xl(∆θ)) d∆θ (3.21)

where xl(∆θ) = l
Nt

− ‖~atx‖(cos(θq)−cos(θq+∆θ))
λ

and DN(x) denotes the Dirichlet kernel (de-

fined in Equation (3.18)) and f∆θ(∆θ) is the angular distribution of the intra-cluster rays

(typically a Laplace distribution).

From Equation (3.20), and the above theorem, we can now compare the efficiency of

the angular Fourier decomposition with the optimal eigendecomposition. In this section

we adapted the Fourier basis so that the first Fourier vector corresponds to the cluster

main direction. As a comparison, the Fourier basis only depends on the cluster main

direction θq and the number of antennas while the optimal eigenvector basis also depends

on the angular spread σ∆θ. We tested various configurations on Figure 3.4. On sub-figure

3.4.a, several cluster main angles are tested while other parameters are fixed. As the
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angular resolution is higher at array broadside (θq = 90◦) than endfire, more coefficients

are required to model the cluster. Several angular spreads are tested on sub-figure 3.4.b

while keeping the cluster main direction at broadside. More coefficients are required to

model clusters with larger angular spreads. Finally we also tested on sub-figure 3.4.c the

less commonly used Gaussian distribution against the classical Laplacian distribution.
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3.2. Sparse Channel Representation

Figure 3.4 – Relative MSE when truncating the representation. In this evaluation we used
N = 8 antennas. In Figure (a), the angular spread is fixed σ∆θ = 10◦. In Figures (b) and
(c), the cluster main direction is fixed to broadside (θq = 90◦).
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3.3 Degrees of Freedom of MIMO Channels

Those coefficients are the degrees of freedom that describe the MIMO channel. We

consider two modeling approaches. First we analyze each frequency-dependent MIMO

channel matrix coefficient Hi,j[k], k ∈ [0, Nf − 1]. Each one of those coefficients Hi,j[k]

represents the equivalent SISO channel from an emitting antenna to a receiving antenna

on subcarrier k. The first modeling approach consists in representing the MIMO channel

as a collection of SISO channels (Figure 3.5). This is the usual working approach in small

size MIMO systems. We count how much time domain taps are required to model each

one of the Nr × Nt antenna to antenna radio links Hi,j[k], over the frequency band B and

according to the modeling error constraint ε. The truncation error is given by the sum

of the taps variances as in Equation (3.16). The variances are calculated using Equation

(3.17) where the PDP of the whole Saleh-Valenzuela channel is given by Equation (3.17).

As all radio links experience the same propagation conditions, we multiply this number

of taps by the amount of radio links Nr × Nt. We called this method the antenna based

modeling.

On one other hand, the channel consists in a sum of clusters h =
∑Q

q=1 cq. Each cluster

can be modeled as a linear combination of basis vectors (see Section 3.2.1). To simplify the

evaluations we approximate in the angular domain all clusters by their main directions

of departure and arrival. This is equivalent to truncating the angular domain Fourier

decomposition of Section 3.2.3 to its first, more significant coefficient. This hypothesis

simplifies further evaluations by eliminating the influences of angular spread σ∆θ and

cluster direction θq at both transmit and receive sides. However it limits the scope to

small angular spreads and slightly underestimates the number of coefficients required to

model each cluster.

We model each cluster in the frequency domain cq using the same methodology used

when modeling radio links. Each cluster is represented by a set of Fourier domain taps

hq,n as

cq =
Nf −1
∑

n=0

hq,nen

where en are Fourier vectors as defined in Equation (3.14). This representation is evidenced

on Figure 3.6

We determine the minimal amount of coefficients required to model the full channel

using a cluster decomposition. Note that this approach usually requires much more co-
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3.3. Degrees of Freedom of MIMO Channels

Figure 3.5 – Antenna based modeling : each radio link between a transmitting antenna
and a receiving antenna is modeled as a tapped delay line.

Figure 3.6 – Propagation based modeling : each cluster constituting the channel is modeled
as a tapped delay line.
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efficients than the first modeling technique. However the number of coefficients doesn’t

scale with the array sizes. We called this method the propagation based modeling.

We evaluated the two approaches in both centimeter (Figure 3.7) and millimeter wave

(Figure 3.8) scenarios (see Section 1.1). In the first case we used the standard LTE nu-

merology (B = 20MHz, Nf = 1200, 15kHz subcarrier spacing) for sub 6GHz bands. In

the second case we used the new 5G NR numerology µ = 3 (B = 400MHz, Nf = 3300,

120kHz subcarrier spacing). The antenna based approach is as expected more efficient

for small number of antennas whereas the propagation based approach is more efficient

for large-scale MIMO. The transition from the former to the later approaches happens

surprisingly fast at Nr × Nt > 10 at most. This configuration is easily attained if we

consider multiple receive antennas.

We neglected the cluster angular spread. Wider arrays could be considered by splitting

the clusters into multiple subclusters depending on Nr×Nt. The flat curves of Fig. 6 would

be slightly increasing and the previous observations and conclusions wouldn’t change.

This is useful to have some intuition to understand when dedicated signal processing

leveraging the angular sparsity is required to mitigate the complexity overhead when

scaling up the array sizes. We draw in red the boundary between both regimes relative

error between 5% and 40%.

3.4 A simplified cluster model

On a signal processing standpoint, working with Saleh-Valenzuela clusters is challeng-

ing. To prepare the follow-up of the manuscript, a simplified Saleh-Valenzuela cluster

model is introduced in this section. It will be used later on for theoretical analyses and

to derive practical algorithms. According to this simplified model, each cluster cq is a

realization of a complex centered Gaussian distribution as

cq ∼ CN (0, Σq(τq, Pq, γq, λq, θtx,q, θrx,q, σ∆θ,tx, σ∆θ,rx)) (3.22)

with covariance matrix Σq, given by Equation (3.3). In this model the cluster angles of

departure θtx,q, arrival θrx,q, delay τq; the statistical parameters λ, γ and σ∆θ are fixed.

In particular they rule the shape of the covariance matrix Σq. This covariance matrix is

divided into a frequency covariance matrix Σf
q

and transmit and receive angular covariance
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3.4. A simplified cluster model

Figure 3.7 – Number of taps required to achieve the relative MSE ε for both the term
by term MIMO channel and the cluster-based representation. Evaluations performed in
centimeter wave scenarios with a classical LTE 20MHz numerology.
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Figure 3.8 – Number of taps required to achieve the relative MSE ε for both the term
by term MIMO channel and the cluster-based representation. Evaluations performed in
millimeter wave scenarios with the 5G NR numerology.
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3.5. Conclusion

matrices Σt
q

and Σr
q

as

Σq = Σf
q
(τq, Pq, λq, γq) ⊗ Σr

q
(θrx,q, σ∆θ,rx) ⊗ Σt

q

H(θtx,q, σ∆θ,tx) (3.23)

It is then no longer necessary to use a ray-based approach to describe a Saleh-

Valenzuela cluster. This expression is more convenient as random vectors are simpler to

handle and generate. In the following chapters, theoretical analyses and algorithms will

be derived based on this simplified model. However simulations will still be performed

using the ray generation technique to verify the adequacy with the simplified model.

3.5 Conclusion

In this chapter we have studied the statistical properties of Saleh-Valenzuela channels.

First we have derived the second order statistics of both clusters and the whole channel.

Those statistics will be reused in the following chapters.

Based on those second order statistics, we have performed a decomposition of Saleh-

Valenzuela clusters into a basis expansion model. We have studied two classical bases,

the optimal eigenbasis and the widely used Fourier basis. We have shown that the gap

between both bases is not significant in most cases, thus motivating the use of the simpler

Fourier basis.

We quantified how much coefficients are required to model a MIMO channel accord-

ing to two modeling approaches. This comparison is based on the second order channel

statistics that were previously derived. The matrix coefficient (resp. multipath) based

approach is suitable for small-scale (resp. large-scale) MIMO. We performed extensive

numerical evaluations using calibrated Saleh-Valenzuela models available in the literature

and found out that the transition between those two representations arises at surprisingly

small number of antennas.

We finally proposed a simplified cluster model based on a Gaussian distribution pa-

rameterized by the cluster power, the cluster delay of arrival, the shape parameters λ and

γ, and the angular parameters. This model is simpler to generate and study as it does not

requires to throw rays characterized by gains and directions of departure and arrival. As

it is based on well-known Gaussian distributions, it can be easily handled in analytical

theoretical studies.
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Chapter 4

CLUSTER ESTIMATION AND SEPARATION

As introduced in Chapter 1, the propagation channel consists of multiple paths re-

sulting from reflections on the environment. Channel measurement campaigns found that

those paths are grouped into clusters that have a particular, exponentially decreasing

power delay profile, which is accurately modeled by the well-known Saleh-Valenzuela

model [1].

In this chapter, we address the recovery of the individual clusters that constitute the

channel based on received symbols. The cluster separation problem statement is presented

in Section 4.1. State of the art techniques are presented in Section 4.2. We present our

novel approach for cluster separation in Section 4.3. In its current form, this technique

is limited to delay domain cluster separation. Moreover further work is required to lift

the remaining conditioning. Leads to a more generalized algorithm, that also take into

account the spatial dimensions are given in Section 4.4.5.

4.1 Problem statement

Cluster separation is an old problem encountered in radio communications and channel

characterization. As a reminder from previous sections, the multipath channel is made of

a sum of clusters cq as

h =
Q
∑

q=1

cq = Ac (4.1)

where A = [I, I, · · · , I] and c = [c1, c2, · · · , cQ] are concatenations of identity matrices

and cluster vectors. The cluster separation problem can then be seen as the resolution of

the linear problem

y = Xh + n = XAc + n (4.2)

with unknown c. Note that the number of cluster Q, and consequently the size of c is also

generally not known. This inverse problem is ill-posed as there are 2QNf real unknowns
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Part I, Chapter 4 – Cluster estimation and separation

(the complex vector c) and only 2Nf real equations. The problem has to be regularized

using additional assumptions on the cluster structure. Indeed Equation (4.2) does not take

into account the characteristics of clusters. It has to be reformulated by incorporating a

proper cluster definition, that describes the features of the structure that we want to

extract.

We first present an overview of existing cluster separation techniques, that all share

the same pattern. First a (linear or non-linear) transformation is applied to the samples

to concentrate channel information into a few variables, from which clusters can easily be

separated in a second stage, either by visual inspection or by using a heuristic function,

that actually represents the cluster definition.

Then we present a novel algorithm for pilot-aided cluster estimation and identification.

The procedure is based on an Expectation-Maximization (EM) algorithm that consists of

two main steps (expectation and maximization steps) that are iteratively repeated until

all clusters have been extracted from the received symbols. This novel algorithm is based

on the cluster definition proposed at the end of Section 3.4.

In the following, we propose to solve the problem from frequency domain measure-

ments. This is due to two main reasons:

— The impact of the cluster shape is more significant in the frequency domain than

in the angular domain.

— The hardware developed at b<>com can operate on a very large bandwidth, up

to 2 GHz. It provides a massive resolution in the frequency domain.

As a consequence we simplify the study by only considering the frequency domain param-

eters. The modifications required to extend the algorithm to the angular (transmit and

receive) dimensions are described at the end of this chapter.

4.2 State of the art in cluster separation

Existing clustering algorithms always follow the same pattern. A sparse representation

of the channel is first calculated using either linear (Fourier Transform) or non-linear (high

resolution schemes) techniques. This step concentrate the information on a reduced set

of parameters, from which clusters can be easily evidenced. The high resolution schemes

typically used in the literature are Multiple Signal Classification (MUSIC) [2], Estimation

of Signal Parameter Via Rotational Invariance Technique (ESPRIT) [3], Space Alternating

Generalized Expectation-maximization (SAGE) [4] and CLEAN [5]. Those algorithms
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4.3. Separating Saleh-Valenzuela clusters

decompose the channel into a sum of specular rays. The clusters are then estimated by

grouping those rays either visually (cluster definition based on operator knowledge) or

based on a heuristic function. In the latter case the heuristic defines what is a cluster.

The literature on cluster separation is broad and abundant and we provide in Table 4.1 a

short overview of the state of the art.

Reference Sparse representation Cluster separation
[6] CLEAN visual inspection
[7] Fourier Transform visual inspection
[8] SAGE KMeans
[9] SAGE KPowerMeans
[10] SAGE KMeans
[5] CLEAN Heuristic function
[11] Fourier Transform Heuristic function

Table 4.1 – Non-exhaustive state of the art in cluster separation.

The KMeans algorithm is a standard application-independent point clustering algo-

rithm from the unsupervised machine learning field. It aims at partitioning points defined

by coordinates into groups based on their distance. The main hyper-parameter of this

heuristic is K, the number of groups. The KPowerMeans uses power-weighted distances

based on estimated ray powers. This algorithm does not take into account the character-

istic exponentially decreasing power delay profile of clusters.

To overcome those limitations, a clustering algorithm should take into account the

characteristics of clusters. Papers [5] and [11] achieve this goal by introducing more com-

plex heuristics inspired by the visual appearance of clusters.

In this thesis we propose a novel approach that leverages the cluster model presented in

the previous chapter. We show that the first step, which consists in a sparse decomposition

of the channel, is not necessary to separate clusters but still useful for illustration purposes

and complexity reduction.

4.3 Separating Saleh-Valenzuela clusters

In this section we remind the clustered channel model already presented in the previous

chapters. The channel is made of multipath components cq. As previously mentioned in

the introduction, we focus on the frequency domain where the received symbols are given
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as

y = ∆x

Q
∑

q=1

cq + n (4.3)

where the diagonal coefficients of ∆x denote the known pilot symbols sent on each sub-

carrier at the transmitter. This is a particular case of sensing matrix X (Equation (4.2))

whose structure is constrained by the model at hand, previously stated in Section 1.5. We

also make the assumption that the coefficients of ∆x have constant unitary amplitude,

which means that ∆x∆H
x = I. Using this property, the division of the received samples

by the pilots to recover the propagation channel can be achieved cheaply. Pilot schemes

employed in modern communication systems feature this property [12].

As already mentioned in the introduction, recovering the clusters cq from the received

symbols y is an ill-posed inverse problem. We need to add prior information on the

vectors cq to regularize it. We use the cluster model introduced in Section 3.4 and recalled

in Section 4.3.1 to regularize the inverse problem. This model is based on the Saleh-

Valenzuela cluster second-order moment characterization performed in Chapter 3. It is a

function of a set of parameters θq, from which we will only consider the frequency domain

parameters P , τq, γq and λq.

The cluster separation problem actually consists of two main sub-problems. The sep-

aration itself requires the knowledge of the cluster prior information, that depends on θq.

Estimating this prior θq is easily achieved when clusters have already been separated.

However, solving both sub-problems simultaneously is more tricky.

In Section 4.3.2, we evaluate the Cramér-Rao Lower Bound (CRLB) on the covariance

of the parameters estimates that rule this model. This analysis is useful to check the

well-posedness of the estimation problem. Then we solve two preliminary sub-problems,

namely the estimation of the parameters of a single cluster embedded in noise and the

separation of clusters with known parameters, in Sections 4.3.3 and 4.3.4 respectively.

This brings together all the pieces that are required to address the main problem, that is

the separation of clusters with unknown characteristics, solved in Section 4.4.

4.3.1 Cluster model

We use the cluster model already introduced in Section 4.3.1. It is represented by a

vector cq that follows a complex centered Gaussian vector as

cq = CN (0, Σq(θq)) . (4.4)
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The covariance matrix Σq of cluster q is parametrized by the cluster angles of departure

θtx,q, arrival θrx,q, delay τq; the statistical parameters λ, γ and σ∆θ. As we focus on the

frequency dimension of the channel, the cluster covariance matrix is simply the cluster

frequency domain covariance

Σq = Σf
q
(τq, Pq, γq, λq). (4.5)

We assumed that each cluster would be characterized by its own Saleh-Valenzuela cluster

parameters γq, λq as this enables more flexibility in the cluster shapes. As a reminder,

this matrix has already been evaluated in Equation (3.8) as

[Σf
q
(τq, Pq, γq, λq)]k,k′ = Pq



1 +
λqγq

1 − 2πj k′−k
Nf

Bγq



 e
2πj k′−k

Nf
Bτq

.

This model constitutes the prior information to be inserted in our estimation algo-

rithm.

4.3.2 Bounds on parameters estimates

As cluster parameters θq are not known beforehand, at some point they have to be

estimated. In this section we derive a lower bound on the variance of the estimates. Based

on the analysis of this bound, we make sure that the estimation problem is well-posed

and well-conditioned. The lower bound is also a useful benchmark to evaluate how well a

given practical estimator operates and how much room there is for improvement.

Among the various existing bounds, we choose to evaluate the CRLB which is, by

comparison, easy to determine and well-suited for this particular estimation problem. As

a reminder the received samples are given by Equation (4.3) as

y = ∆x

Q
∑

q=1

cq + n

We model clusters as Gaussian vectors with covariance matrix Σf
q
(τq, Pq, γq, λq). Moreover,

the thermal noise vector n is also modeled as a zero-mean i.i.d. Gaussian vector n ∼
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CN (0, σ2
nI). Thus y is a sum of Gaussian vectors, therefore it is Gaussian distributed as

y ∼ CN


0, ∆x





Q
∑

q=1

Σf
q(τq, Pq, γq, λq)



∆x
H + σ2

nI



 .

The CRLB is obtained by inversion of the Fisher Information matrix. When consid-

ering complex zero-mean Gaussian distributed samples, the Fisher Information matrix

between parameter θi and parameter θj is given in [13, Equation (15.52) p. 525] as

Iθi,θj
= Tr

{

Σ−1 ∂Σ

∂θi

Σ−1 ∂Σ

∂θj

}

(4.6)

where Σ = ∆x

(

∑Q
q=1 Σf

q(τq, Pq, γq, λq)
)

∆x
H + σ2

nI.

We first verify that the cluster parameter estimation problem is well-conditioned. To

this end we evaluate the CRLB for the parameters of a single cluster embedded in noise,

namely Pq, τq, γq, λq.

Theorem. The structure of the Fisher Information matrix for the set of parameters

[τq, Pq, γq, λq] is given as

I(τq, Pq, γq, λq) =

















Iτq 0 Iτq ,γq Iτq ,λq

0 IPq IPq ,γq IPq ,λq

Iγq ,τq Iγq ,Pq Iγq Iγq ,λq

Iλq ,τq Iλq ,Pq Iλq ,γq Iλq

















(4.7)

Some matrix coefficients can be easily evaluated. For instance IPq =
∑Nf

k=1
ν2

k

(P νk+σ2
n)2 where

νk are the eigenvalues of Σf
q. The mixed terms between Pq and τq can also be analytically

computed as IPq ,τq = Iτq ,Pq = 0.

This is proven in Annex C.1. Note that when extending this analysis to the angular

domain, the Fisher Information matrix coefficients between DOA, DOD, delay τq and

power Pq are also null, as evidenced in Chapter 6 and in the paper [14]. The Cramér-Rao

matrix is obtained by inverting the Fisher Information matrix as

CCR(τq, Pq, γq, λq) = [I(τq, Pq, γq, λq)]−1 (4.8)

Theorem. (Reminder) In this multivariate estimation problem, the covariance matrix
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Figure 4.1 – Numerical evaluation of the normalized Cramér-Rao bound on parameters
estimates. On subfigure (a) we consider that parameter λ is known beforehand. On subfig-
ure (b) λ is unknown and has to be estimated. The Cramér-Rao bound for the modified
covariance is given of Figure (c). Original Saleh-Valenzuela parameters, 20MHz LTE
numerology.

Cest of any unbiased estimator verifies [13, Equation (3.24) p. 44]

Cest − CCR(τq, Pq, γq, λq) ≥ 0 (4.9)

where ≥ 0 means that the matrix is positive semidefinite. This implies that the variance

of any practical estimator θ̂i of parameter θi, given by Var{θ̂i} = [Cest]i,i for each θi ∈
{τq, Pq, γq, λq}, verifies

Var{θ̂i} ≥ [CCR(τq, Pq, γq, λq)]i,i (4.10)

We evaluate the Cramér-Rao bound for a single cluster in a 20MHz LTE setup

(Nf = 1200, 15kHz subcarrier spacing) over a Saleh-Valenzuela channel (original set

of parameters) on Figure 4.1. We normalized the matrices by the diagonal elements to

obtain a correlation matrix instead of a covariance matrix. This operation highlights the

correlations between the coefficients. In a general manner, the closer the off-diagonal coef-

ficients are to 0, the better. It means that the estimation problem is well-conditioned and

the parameters can be estimated jointly. We notice that when λq is known (Subfigure (a)),

the problem is well conditioned. However when λq is unknown and should be estimated

along with other parameters, strong off-diagonal correlation coefficients appear. The prob-

lem gets ill-conditioned. Indeed, when λγ ≫ 1 (condition which is usually achieved), the

covariance matrix can be approximated by

[Σf
q
(τq, Pq, γq, λq)]k,k′ ≈ Pq

λqγq

1 − 2πj k′−k
Nf

Bγq

e
2πj k′−k

Nf
Bτq

.
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Parameters Pq and λq actually play the same role in this equation and can’t be jointly

estimated. To improve the estimation problem conditioning, we choose to discard pa-

rameter λ and aggregate the total cluster power into P̄q = λqγqPq. This simplifies the

estimation problem by removing one parameter while improving the conditioning of the

system (Figure 4.1 (c)). However it can lead to biased estimates in certain circumstances

when λγ ≈ 1. The novel covariance formula, used in the following developments, is given

by

[Σf
q
(τq, Pq, γq, λq)]k,k′ ≈ Σf

q
(τq, P̄q, γq)]k,k′ =

P̄q

1 − 2πj k′−k
Nf

Bγq

e
2πj k′−k

Nf
Bτq

. (4.11)

4.3.3 Single cluster parameters estimation

Estimating cluster parameters τq, P̄q, γq of a single cluster can be easily performed

using standard solvers. In this section we take advantage of this simple estimation problem

to introduce the representation method that we use for the Cramér-Rao bound. We also

verify that the hypotheses made beforehand (Gaussian vector hypothesis in Section 4.3.1

and modified covariance matrix in Equation (4.11)) does not degrade the performance

(bias and covariance) of the estimators.

The distribution of a single cluster cq using the modified covariance matrix is given

by

cq ∼ CN
(

0, Σf
q(τq, P̄q, γq)

)

. (4.12)

We assume that this cluster is not known perfectly. Thus it is polluted by some zero-mean

Gaussian distributed noise n parametrized by its covariance matrix σ2
nI. The distribution

of the measured cluster c̃q = cq + n is then given as

c̃q ∼ CN (0, Σf
q(τq, P̄q, γq) + σ2

nI) (4.13)

The maximum likelihood estimate of the cluster parameters θq = {τq, P̄q, γq} is given

by

θ̂q = argmax
θq

p(c̃q|θq) (4.14)

where the probability density function of c̃q is given as

p(c̃q|θq) =
1

(2π)N |Σf
q(θq) + σ2

nI| e−yH(Σf
q(θq)+σ2

nI)
−1

y (4.15)
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The estimators for the set of parameters θq are then obtained using gradient descent

techniques or grid search. For illustration purposes, we estimated the cluster parame-

ters θq using a maximum likelihood approach. We assumed that the cluster was embed-

ded into thermal noise with known covariance matrix σ2
nI. We also used the modified

covariance function (4.11), where parameter λq is no longer required. The estimation

has been performed by maximizing Equation (4.15) using the general purpose BFGS

(Broyden, Fletcher, Goldfarb and Shanno) algorithm [15] implementation proposed in

the scipy.optimize Python package. The optimization process is rather slow but could be

widely improved by designing a dedicated maximization algorithm for this problem. The

performance has been evaluated using Monte-Carlo simulations and are compared with

the CRLB calculated using Equation (4.6) in Figure 4.3.

According to the properties of the Cramér-Rao Lower Bound, the covariance of any

estimator verifies

Cest − CCR(τq, Pq, γq, λq) ≥ 0 (4.16)

where ≥ 0 means definite positive (all eigenvalues are positive) and Cest denotes the

empirical estimator covariance matrix, given as

Cest = E

{

(θ̂q − E

{

θ̂q

}

)(θ̂q − E

{

θ̂q

}

)T
}

. (4.17)

The multivariate relation (4.16) is not trivial to understand. To provide a more

straightforward interpretation of the bound, we have chosen a representation method that

fits well to the scatterplots of Figure 4.3. This method is further explained in Appendix

C.2. The covariance matrix of two random variables is a 2 × 2 matrix, where diagonal

terms are the variances of each variable and the off-diagonal term is the covariance be-

tween them, as

R =





σ2
1 σ1,2

σ2,1 σ2
2



 . (4.18)

Because this matrix is symmetric positive-definite, it is diagonalizable with eigenvalues

λ1 ≥ λ2 > 0 in an orthonormal basis, which actually represents a rotation by an angle θ.

The curve represented by the quadratic norm equation xT R−1x = 1 is an ellipse in the

x1, x2 plane with semi-major axis λ1, semi-minor axis λ2 and rotation angle θ as depicted

on Figure 4.2.

We study the pairwise relations between the parameters of θq. The covariance matrix
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Part I, Chapter 4 – Cluster estimation and separation

Figure 4.2 – Ellipse representation of the covariance matrix of a distribution.

of parameters θi and θj is given by :

Ri,j =





[C]i,i [C]i,j
[C]j,i [C]j,j



 (4.19)

where C can be either the optimal CRLB or the estimated covariance matrix, CCR or Cest.

Ri,j is called a principal submatrix of C. We draw on Figure 4.3 the corresponding ellipses

that represent the optimal lower bound CRLB covariance (in red) and the measured

covariance (in black) for each pair of parameters.

Theorem. The ellipse that represents the CRLB is always inside any unbiased practical

estimator covariance ellipse. Hence the red CRLB ellipse represents a geometric lower

bound on the achievable covariance of any unbiased practical estimator.

This theorem is proven in Annex C.2.

This property is showcased on Figure 4.3. We estimated the parameters of a sin-

gle Saleh-Valenzuela (original set of parameters, see Table 1.1) cluster parametrized by

delay τq = 100ns, γq = 20ns and P̄ = (1 + λqγq) = 5. We displayed the practical

estimator covariance (in black) and the Cramér-Rao Lower Bound (in red) using the

ellipse representation. The ellipses have been translated by the true parameter values
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4.3. Separating Saleh-Valenzuela clusters

Figure 4.3 – Cluster parameters θq = [τq, P̄q, γq] estimation performance calculated using
Monte-Carlo simulations and compared to the theoretical CRLB.

[τq = 100ns, P̄q = 5, γq = 20ns] for the red CRLB ellipse and the mean estimated param-

eter values E

{

θ̂q

}

for the black ellipse. This enables a geometrical analysis of both bias

and variance of the estimator.

Despite modeling the channel (which is a sum of rays) as a Gaussian vector and having

simplified its covariance matrix to remove one parameter, the CRLB is still very close to

the actual Maximum Likelihood estimator. The estimates are a bit biased, in particular

the delay estimate as both ellipses are not concentric. Broadly speaking, empirical re-

sults follow the theoretical bounds; the Gaussian vector and modified covariance matrix

hypotheses can be accepted in further calculations.
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4.3.4 Separation of clusters with known characteristics

In this section we assume that the sets of parameters θq = {P̄q, τq, γq} that defines

the clusters are known. We denote by θ the vector that contains all cluster parameters

θ = [θ1, · · · , θQ]. From Equation (4.3), the received symbols are given as

y = ∆xAc + n = A′z (4.20)

where z =





c

n



 is obtained by concatenation of c and n and A′ is defined as

A′ =
[

∆x ∆x · · · ∆x I
]

. (4.21)

We wish to determine the distribution of z (the clusters) given the received symbols

y, p(z|y). This is an ill-posed inverse problem, as there are 2(Q + 1)Nf unknowns and

only 2Nf equations. We leverage the cluster model presented beforehand to regularize the

separation problem. In this subproblem, model parameters τq, P̄q, γq are perfectly known

for each cluster q. We have access to the distribution of the received symbols p(y) and the

distribution of the clusters p(z). The latter is complex zero-mean Gaussian distributed

with covariance

Σz(θ) =

















Σ1(τ1, P̄1, γ1) · · · 0 0
... · · · 0 0

0 · · · ΣQ(τQ, P̄Q, γQ) 0

0 · · · 0 σ2
nI

















where θ denotes the set of all parameters.

Theorem. The conditional distribution of z given y and the set of parameters θ is com-

plex Gaussian distributed with mean and covariance matrix











µẑ|y,θ = Σz(θ)A′H
(

A′Σz(θ)A′H
)−1

y

Σẑ|y,θ = Σz(θ)A′H
(

A′Σw(θ)A′H
)−1

A′Σz(θ)
(4.22)

This result is proven in Annex C.3. From this theorem, we can deduce that the mean
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4.3. Separating Saleh-Valenzuela clusters

µẑ|y,θ provides the maximum likelihood estimator for the clusters cq as

µẑ|y,θ = ẑ =

















ĉ1

...

ĉQ

n̂

















, (4.23)

and that the covariance matrix Σẑ|y,θ of the distribution provides the variance of the

estimator. This matrix can be rewritten in a cluster covariance block-diagonal fashion as

Σẑ|y,θ =

















[Σẑ|y,θ]1,1 [Σẑ|y,θ]1,2 · · · [Σẑ|y,θ]1,Q+1

...
...

...
...

[Σẑ|y,θ]Q,1 [Σẑ|y,θ]Q,2 · · · [Σẑ|y,θ]Q,Q+1

[Σẑ|y,θ]Q+1,1 [Σẑ|y,θ]Q+1,2 · · · [Σẑ|y,θ]Q+1,Q+1

















(4.24)

where each element [Σẑ|y,θ]q,q′ is a complex Nf ×Nf matrix. The matrices on the diagonal

of Σẑ|y,θ, denoted as [Σẑ|y,θ]q,q are the error covariance matrices of cluster q. They measure

the uncertainty on the estimated clusters on each subcarrier. Cross-diagonal elements

[Σẑ|y,θ]q,q′ with q 6= q′ denote the cross-covariance error between cluster q and cluster q′.

We have evaluated this cluster separation method using Saleh-Valenzuela channel

realizations. To be able to separate clusters without the angular dimension, we need

to set the channel bandwidth high enough (B = 200MHz) so that clusters are separable.

In practice clusters that overlap in the delay domain could be separated by adding the

angular dimension to the model. Such generalization is discussed in Section 4.4.5 at the

end of this Chapter. On Figures 4.5 and 4.6 the SNR is set to 30dB (high SNR regime).

As the tail of the first cluster overlaps with the head of the second one, the second cluster

is slightly noisier than the first one. As a result, the overlapping part of each cluster in the

frequency domain features a higher error as depicted on Figure 4.6. On Figures 4.7 and

4.8, a single cluster is featured in a low SNR (10dB) scenario. The error from the cluster

separation process is due to the strong thermal noise polluting the received samples.

The two examples represent respectively situations where the separation process works

great and a situation where it performs poorly. The process can yield poor results either

because clusters are impinging on each other (Clusters 1 and 2 in Figure 4.7) or because

of thermal noise (Cluster 3 in Figure 4.7). Note that the error bounds on the estimate

given by the covariance matrix Σẑ|y,θ of (4.22) provides a valuable hint on the reliability
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Part I, Chapter 4 – Cluster estimation and separation

Figure 4.4 – Delay-domain channel realization with 2 main clusters, linear and logarithmic
scale representation. B = 200MHz.

Figure 4.5 – Frequency domain cluster separation results with known cluster parameters.
The uncertainty on the estimated channel is measured by the standard deviation (4.22)
and denoted by error bars. SNR = 30dB.
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4.3. Separating Saleh-Valenzuela clusters

Figure 4.6 – Delay domain cluster separation results with known cluster parameters.
The estimator variance (4.22) translated to the delay domain is denoted by error bars.
SNR = 30dB.

Figure 4.7 – Frequency domain cluster separation results with known cluster parameters.
The uncertainty on the estimated channel is measured by the standard deviation (4.22)
and denoted by error bars. SNR = 10dB.
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Figure 4.8 – Delay domain cluster separation results with known cluster parameters. The
estimator standard deviation (4.22) translated to the delay domain is denoted by error
bars. SNR = 10dB.

of the resulting estimated clusters. This covariance matrix can be translated to the delay

domain using a Fourier change of base as

ΣF
ẑ|y,θ = FHΣẑ|y,θF (4.25)

where F is a Fourier transformation matrix. Using this change of basis we display the

delay-domain estimated clusters on Figures 4.6 and 4.8 alongside with the variance on

the estimates. On Figure 4.8 the variance is particularly high where the two first clusters

overlap each others.

4.4 Separation of clusters with unknown characteris-

tics

The full cluster separation problem is actually made of two main sub-problems. The

separation itself requires the knowledge of cluster parameters, which themselves can

be perfectly estimated only if the clusters have been separated beforehand. This joint

estimation-separation problem can be solved efficiently by using an Expectation-Maximization

algorithm [16].
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4.4. Separation of clusters with unknown characteristics

Figure 4.9 – Flowchart of the cluster separation and estimation procedure.

4.4.1 Derivation of the Expectation-Maximization algorithm

In this section we walk through all the steps required to correctly setup the Expectation-

Maximization algorithm. Assuming that we would like to estimate all cluster parameters

θ jointly based on the received samples y, we would have to maximize the log-likelihood

L(y|θ) = ln (p(y|θ)) . (4.26)

Optimizing this log-likelihood is very complex as it requires a costly 3Q parameters

joint optimization. Moreover Q is not known beforehand. It can be rewritten using rules

on conditional probabilities as

L(y|θ) = ln (p(y, z|θ)) − ln (p(z|y, θ)) (4.27)

where z has been defined in Section 4.3.4 as the concatenation of the cluster gains c and

the noise vector n. Note that y is entirely defined by z from y = A′z, thus the former

term ln (p(y, z|θ)) can be rewritten as ln (p(z|θ)).
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Note that L(y|θ) does not depend on z. Then the expectation taken over z of the

log-likelihood assuming that the received samples y and an approximation of the cluster

parameters θc are known verifies L(y|θ) = E {L(y|θ)|y, θc} where θc is an arbitrary set

of cluster parameters. By applying this expectation to (4.27) we obtain

L(y|θ) = E {ln (p(z|θ)) |y, θc} − E {ln (p(z|y, θ)) |y, θc} (4.28)

Those two terms are commonly denoted in EM literature as











Q(θ|θc) = E {ln (p(z|θ)) |y, θc}
H(θ|θc) = E {ln (p(z|y, θ)) |y, θc} .

(4.29)

Theorem. (Reminder) For any set of parameters θc, function H verifies

H(θ|θc) ≤ H(θc|θc). (4.30)

This comes from

H(θ|θc) − H(θc|θc) = E

{

ln

(

p(z|y, θ)
p(z|y, θc)

)

|y, θc

}

≤ ln

(

E

{

p(z|y, θ)
p(z|y, θc)

|y, θc

})

= 0

(4.31)

where the first equality comes from the linearity of the expectation and the rightmost

inequality from Jensen’s inequality on the concave function ln.

From this result, we obtain the fundamental theorem that enables the estimation of

cluster parameters.

Theorem. The sequence L(y|θi) converges to a local maxima of function L(y|θ) when

i → ∞ where the sequence θi is defined as

θi = argmax
θ

Q(θ|θi−1) (4.32)

Indeed Q(θi|θi−1) ≥ Q(θi−1|θi−1) (by definition of θi) and H(θi|θi−1) ≤ H(θi−1|θi−1)

(from Equation (4.30)). Thus the log-likelihood improves at each iteration L(y|θi) ≥
L(y|θi−1).

At the core of the algorithm resides the function Q(θ|θi) which has to be first evaluated

for the set of parameters θi obtained from prior knowledge (initial guess or previous
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iteration). The function can be detailed as

Q(θ|θc) = − ln((2π)Nf ) − ln(|Σz(θ)|) − E

{

zHΣz
−1(θ)z|y, θc

}

= − ln((2π)Nf ) − ln(|Σz(θ)|) − Tr(Σz
−1(θ)Σẑ|y,θc

) − µH
ẑ|y,θc

Σz
−1(θ)µẑ|y,θc

(4.33)

where µẑ|y,θc
and Σẑ|y,θc

are the mean and covariance matrix of the Gaussian vector z

given the parameters θc and the received symbols y. Those first and second statistics have

already been evaluated and are given by Equation (4.22). Equation (4.33) can be split

into a sum of clusters-related components as

Q(θ|θc) = − ln((2π)Nf )

−
Q
∑

q=1

Qq(θq|θc)

− ln((σ2
n)Nf ) − 1

σ2
n

Tr([Σẑ|y,θc
]Q+1,Q+1) − 1

σ2
n

[µẑ|y,θc
]HQ+1[µẑ|y,θc

]Q+1

(4.34)

where the quantities Qq(θq|θc) are given by

Qq(θq|θc) = ln(|Σf
q(θq)|) + Tr(Σf

q

−1
(θq)[Σẑ|y,θc

]q,q) + [µẑ|y,θc
]Hq Σf

q

−1
(θq)[µẑ|y,θc

]q

This last equation is of particular interest because it enables a sequential estimation

of cluster parameters.

The final algorithm, illustrated on Figure 4.9, can be decomposed into three main

steps :

— Initial guess : this step provides a coarse estimation of the parameters θ̂0 of a

particular cluster. This estimate is used to initialize the EM algorithm.

— Expectation : we evaluate the function Q(θ|θ̂i−1), based on prior knowledge on the

cluster parameters θ̂i−1 obtained either by an initial guess or the previous iteration.

This step consists in the calculation of µẑ|y,θ̂i−1
and Σẑ|y,θ̂i−1

.

— Maximization : we find the optimal parameters θq for each cluster sequentially

that maximize the function Q(θ|θ̂i−1). We obtain the refined cluster parameters

θ̂i.

From the received samples, the parameters of the most powerful cluster are extracted

in the initial guess step. Using this coarse knowledge, the cluster is extracted from the

signal and separated from thermal noise and other clusters in the expectation step. The
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Part I, Chapter 4 – Cluster estimation and separation

first guess on the parameters is then refined in the maximization step. Those two steps

are repeated iteratively until the estimated parameters stop improving, forming an EM

algorithm. We repeat this process on the residual of the expectation step, that contains

noise and other clusters.

4.4.2 Maximization Step

In the maximization step, the functions

Qq(θq|θc) = ln(|Σf
q(θq)|) + Tr(Σf

q

−1
(θq)[Σẑ|y,θc

]q,q) + [µẑ|y,θc
]Hq Σf

q

−1
(θq)[µẑ|y,θc

]q

are optimized sequentially. However this require the inversion of matrix Σf
q

−1(θq) which

is ill-conditioned as most eigenvalues are non-significant (see Chapter 3). This requires

some kind of regularization to be performed. We propose two kinds of regularizations :

— Replace matrix Σf
q(θq) by the regularized matrix Σf

q(θq) + µI where µ is the

regularization factor. This regularization works for delay τq and γq parameters

estimations but yield heavily biased power estimates P̂q.

— Remove the null space of Σf
q(θq) by projecting the matrix into its image space

PΣf
q(θq)PH where P is the set of all eigenvectors of Σf

q(θq) associated to eigenval-

ues above threshold µ (the regularization factor). This regularization works great

for power estimation P̂q.

4.4.3 Stopping criterion

This algorithm requires a stopping criterion, otherwise at some point it will start

extracting clusters from thermal noise. The stopping criterion can be either:

— A predefined number of iterations L. This requires to know the number of clusters

Q lying within the channel to set L = Q.

— A criterion based on the norm of the residual. This is the solution proposed here.

We will see in Chapter 6 that this approach is sub-optimal compared to other

advanced detection techniques, for the specific case of specular rays.

In this section we study the second stopping criterion technique. If the residual r only

contains noise, then its squared norm follows a χ2 distribution.

Theorem. Assuming that r ∼ CN (0, σ2
nI), the squared norm ‖r‖2 follows the χ2 distri-

86



4.4. Separation of clusters with unknown characteristics

bution

‖r‖2 ∼ χ2(2Nf , σ2
n/2)

parametrized by 2Nf degrees of freedom and σ2
n/2 scale parameter. The factor 2 comes

from the complex values that contains both a real and an imaginary part, each weighted

by a variance σ2
n/2.

We wish to define a threshold such as ‖r‖2 ≶ η to test the presence of a cluster within

the residual. If the norm falls below a certain threshold it is considered as containing only

noise. Otherwise it contains a cluster. The threshold of the detector is calibrated based on

a false alarm probability, which represent the eventuality of ‖r‖2 exceeding the threshold

η even if it contains only noise. The false alarm probability for the threshold η is given by

PF A = 1 − Fχ2(2Nf ,σ2
n/2)(η) (4.35)

where Fχ2(2Nf ,σ2
n/2) denotes the cumulative probability function of the chi-square distri-

bution χ2(2Nf , σ2
n/2). The threshold, calibrated using the desired false alarm probability

PF A, is given by

η = F −1
χ2(2Nf ,σ2

n/2)(1 − PF A) (4.36)

where F −1
χ2(2Nf ,σ2

n/2) denotes the reciprocal of the cumulative probability function. It is also

called the percentile function. This threshold is used to stop the iterative algorithm before

it starts extracting clusters from thermal noise.

4.4.4 Illustrating example

An illustrating example of the cluster separation algorithm is presented in this section.

It is applied to the two-clusters Saleh-Valenzuela channel realization presented on Figure

4.10.

In order to make the algorithm work, a former knowledge of the γ parameter is assumed

in this section. This is a current limitation of the algorithm, required to prevent the algo-

rithm first iteration from considering the whole channel as a single cluster parametrized

by a very large γ constant. This constraint could be relaxed by introducing a proper

regularization to the problem.

As the channel contains two clusters, only two iterations are required by the algorithm

to fully extract all the multipath components. During the first pass, the algorithm tries to

extract the most powerful cluster, as demonstrated on Figure 4.11. As the two clusters that
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Figure 4.10 – The two-clusters Saleh-Valenzuela channel realization used to highlight the
cluster separation technique.

constitute the channel are a bit overlapping each other, the estimated cluster contains all

of the most powerful cluster as well as part of the second cluster. Its remains are embedded

in the rejected thermal noise within the residue.

A second pass of the algorithm on the residual fully extracts the second cluster, while

correcting the first estimated cluster, as depicted on Figure 4.12. There is only some small

remaining aliases that comes from the EM algorithm not converging quickly enough. The

frequency domain responses of both clusters are presented on Figure 4.13.

4.4.5 Generalization to the angular domain

We have presented a novel approach for the estimation and separation of clusters

constituting a propagation channel. As it is, the process is limited to the frequency domain.

It can be extended to the angular domain by modifying the channel covariance matrix and

adding the corresponding parameters. There are however some challenges to overcome for

a practical implementation

— The frequency domain covariance matrix Σf
q

admit an analytical expression that

facilitates the optimization process in the initial guess and maximization steps.
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Figure 4.11 – First pass of the clustering algorithm. The most powerful cluster is extracted
from the channel samples. It is mixed with a small part of the second cluster. The residual
contains thermal noise plus the remaining non-extracted clusters.

89



Part I, Chapter 4 – Cluster estimation and separation

Figure 4.12 – Second pass of the clustering algorithm on the residual. This time both
clusters are extracted.
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Figure 4.13 – Second pass of the clustering algorithm on the residual. This time both
clusters are extracted and displayed in the frequency domain.
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In contrast, the angular domain covariance matrices Σt
q

and Σr
q

does not admit

an analytical expression. A simplified model should be designed and used in the

optimization process.

— This extension involves optimizations over a larger number of variables. This would

require to improve the optimization process, which has been overlooked in this

chapter.

4.5 Conclusion

In this chapter we propose a novel cluster separation technique, designed for the fre-

quency domain. This algorithm could benefit from a pre-processing sparse channel projec-

tion step (typically a Fourier Transform) that would reduce the complexity, though such

step is not necessary. In all previous state of the art techniques, this preprocessing step is

always required. We propose a proof of concept that could we improved significantly by

— using solvers optimized for the specific optimization problems encountered

— adjusting the regularizations required when dealing with low rank matrix inverses

— adding the angular domain dimension required to separate clusters when not con-

sidering Ultra Wide Band (UWB) channels

— designing a more efficient detector that can find clusters below the noise floor

— including prior information on cluster parameters to avoid falling into local maxima

of the likelihood function (cluster with null power or cluster with large γq that

encompass the whole channel for instance)

We deal with some of those optimizations in Chapter 6 for the specific case of specular

ray detection and estimation.

The results featured in this chapter contribute to the understanding of the cluster sep-

aration problem. The Cramér-Rao bound calculations indicate the circumstances when

parameter estimation is feasible and provides the ultimate performance of any unbiased

estimator. Also, contrary to most state of the art cluster separation techniques, our ap-

proach provides uncertainty bounds on the resulting estimated clusters.
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Chapter 5

USING UPLINK CHANNEL INFORMATION

FOR DOWNLINK PRECODING IN FDD

Acquiring the Channel State Information (CSI) at the transmitter to calculate the

precoder that maximizes the capacity (see Chapter 2) is a major challenge in MIMO

systems. The CSI, measured at the receiver side, has to be fed back to the transmitter. This

is particularly challenging in Frequency Division Duplex (FDD) as uplink and downlink

channels are different, since they stand on adjacent frequency bands.

In Section 5.1 we describe the massive MIMO CSI acquisition problem. The solutions

to provide the CSI at the transmitter vary heavily depending on the chosen duplex scheme

(TDD or FDD). In this chapter we focus on the more challenging FDD case. To this end,

we analyzed the performance of a downlink CSI estimation method based on a linear

extrapolation scheme of the measured uplink channel. Our analysis leverages the results

obtained in Chapters 3 (second order statistics of the channel) and 4 (cluster separation)

to quantify the achievable extrapolation range. The error induced by the process has been

measured both in terms of MSE and Reduction of Beamforming Gain (RBG), the latter

having a direct influence on the system capacity.

5.1 Context

As a reminder, we showed in Chapter 2 that the Spectral Efficiency of a MIMO system

is given by the equation

SEMIMO = log2

(

det

(

I +
1
σ2

n

HH(f)QH(f)

))

(5.1)

where the precoding matrix Q is actually designed at the transmitter, based on the CSI,

to maximize the SE. The actual process used to derive the precoder based on the channel

H(f) is given in Section 2.3.1.
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In mobile broadband communications, the radio access network consists in a central

base station that serves a set of User Equipments (UE) (cell phones, cars, computers, ...)

located in its close vicinity (the area served by a base station is called the cell). The base

station can rely on large antenna arrays while the UE only have a handful of antennas.

The data traffic is also most of the time asymmetrical : the UE send short requests to the

network which replies with the corresponding heavier online content. Thus the downlink

channel is busier than its uplink counterpart and is most of the time optimized for high

data rates while uplink is optimized for UE power consumption.

5.1.1 FDD and TDD

There are two main modes of operation in wireless communications : TDD and FDD.

In TDD (described in Figure 5.1), the same frequency band is used for both uplink and

downlink. The transmit and receive channels are the same. Thus the channel measured at

the receiver can be reused on the transmit side to perform the precoding operation. This

property is called channel reciprocity [1]. The remaining adjustments and calibrations

required stem from the mismatch between hardware impairments of the transmitter and

receiver radio frequency chains.

In FDD (described in Figure 5.2), uplink and downlink channels use different frequency

bands. Thus the uplink channel hU (measured on the receive side of the base station) can’t

be directly used to design the downlink precoder. In this case, researchers came up with

two main sets of solutions.

The simplest solution is to feed back the CSI, determined at the receive side of the

UE, to the base station, through dedicated control messages on the uplink channel. Today,

this solution is implemented in the 4G LTE and 5G NR industry standards. The feedback

consists of an integer called the Rank Indicator (RI) that defines the achievable transmis-

sion rank of the downlink channel and the Prefered Matrix Indicator (PMI), which is the

set of indexes that identify a particular predefined precoding matrix.

However the feedback overhead increase with the number of transmit antennas, which

render its use impractical in massive MIMO systems. Channel reciprocity is an inherent

feature of TDD systems. To solve this fundamental problem, researchers recently investi-

gated the potential approaches that would enable partial channel reciprocity to mitigate

the feedback required to design the precoder. In particular, the angles of departure (DOD)

and arrival (DOA) of the clusters that constitute the propagation channel depend on geo-

metrical features of the environment that are frequency-independent. This property, called
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angular reciprocity, has been tested and verified in channel measurement campaigns by

both academia [2, 3] and industry [4]. The frequency-independent directional parameters

can be estimated on the uplink and reused to precode on the downlink transmit side

in a process called channel extrapolation. Eventually, it paves the way to smart precod-

ing strategies in FDD mode that may not rely on a feedback channel. This is what is

investigated in the following.

5.1.2 State of the Art on Channel Extrapolation

This strategy exploits some key frequency independent features of the propagation

channel. First estimated on the uplink channel, those reciprocal characteristics can be

used as a prior information to reduce the overhead. For instance the main directions of

departure exhibit this reciprocity property. Those have been exploited in [5, 6, 7, 8] to

obtain an approximate CSI used either to refine the feedback scheme or to perform simple

angular precoding.

Recently, papers [9, 10] proposed to fully extrapolate the downlink channel from the

uplink measurements. The principle consists in retrieving all the reciprocal parameters

of a ray-based model (complex path gains, delays, directions of departure) using high

resolution estimation techniques. The results were promising in the Line of Sight (LOS)

scenario that features a strong specular ray well-defined in the space-frequency domain.

However it performed badly in Non Line Of Sight (NLOS) as the algorithm struggles to

separate intra-cluster rays out of the richer multipath environment.

Indeed the multipath components that make up the propagation channel feature

closely spaced rays in the space-frequency domain. Due to the finite resolution of prac-

tical antenna arrays, those intra-cluster rays remain unresolvable. This issue could be

mitigated by first separating the clusters constituting the channel (for instance using high

resolution techniques [9, 10] or using the separation process proposed in Chapter 4) then

using frequency domain extrapolation of the frequency-dependent cluster gains.

5.2 Limits of Channel Extrapolation

As the authors of [4] pointed out, only the angular characteristics of the channel

are reciprocal. The full reciprocity from uplink to downlink does not hold. An interest-

ing question is then: depending on the propagation characteristics, how far, in terms of
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Figure 5.1 – Working principle of a MIMO system operating in TDD. The same frequency
band is used for both uplink and downlink, which are separated in the time domain with
dedicated time slots. The uplink channel can be reused for downlink precoding.
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Figure 5.2 – Working principle of a MIMO system operating in FDD. uplink and downlink
are on adjacent frequency bands. The base station can’t rely directly on uplink measure-
ments to design the precoder.
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frequency spacing between uplink and downlink, can we extrapolate the non-reciprocal

properties of the channel? In this section, we answer this question by studying how far

a noisy Saleh-Valenzuela cluster can be extrapolated outside its measurement range. To

this end, the clusters that constitute the propagation channel are modeled as complex

Gaussian vectors cq characterized by their covariance matrix as previously described in

Chapters 3 and 4. The extrapolation range is quantified by how far the downlink channel

hd can be estimated from its uplink counterpart hu, as

ĥd = f(hu) (5.2)

The corresponding extrapolation error is quantified on each subcarrier by the standard

MSE (Mean Square Error) criterion ε = E

{

|[hd]k − [ĥd]k|2
}

and by the RBG, which

corresponds to the SNR loss assuming Maximum Ratio Transmission (MRT) precoding.

The RBG is thus directly linked to the channel capacity loss.

5.2.1 Angular domain projection

To simplify the equations we study a standard clustered multipath Multi-Input-Single-

Output (MISO) channel. Without loss of generality, the transmit side antenna array is set

as an ULA. As in many aspects of our work, the extension to other arrays is achievable

through the Kronecker expression model. Using again the vectorized Kronecker notations

of Equation (1.15), the channel can be written as a sum of clusters

h =
Q
∑

q=1

cq,

where the clusters cq are given by

cq =
√

NfNt

P
∑

p=1

βp,qef (τp,q + τq) ⊗ et
∗(~utx,p,q).

It is assumed that the clusters that constitute the propagation have already been

separated beforehand, using either a state of the art clustering algorithm, as proposed in

Section 5.1.2, or the process described in Chapter 4. In either case, we now have access

to cluster parameters, such as the main angle of departure θtx,q and the cluster delay

τq. We also assume that the cluster shape parameters λ and γ are known perfectly. As

intra-cluster rays are not resolvable, we use a Basis Expansion Model carefully chosen to
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provide a sparse representation of the channel over the angular dimension.

We then characterize the first and second order moments of the basis coefficients on

which the uplink to downlink extrapolation process relies on. We assume that the cluster

delay τq is known. Without loss of generality we can set τq = 0 to simplify the formulas.

The main direction of cluster θq is already known so we can use a shifted Fourier basis

(already studied in Chapter 3) designed to minimize the number of significant coefficients.

More details on this approach can be found in paper [7]. The shifted Fourier basis vectors

are

el(θq)[m] =
1√
Nt

e
−2πj(m− Nt−1

2 )
(

l
Nt

+
‖~atx‖

λ
cos(θq)

)

.

In this basis the cluster tensor can be rewritten as

cq =
√

NfNt

Nt−1
∑

l=0

P
∑

p=1

αp,l,qef (τp,q) ⊗ el
∗(θq)

where the coefficients αp,l,q are given by

αp,l,q = βp,q〈et(θq + ∆θp,q), el(θq)〉.

Cluster q is decomposed into Nt sub-clusters defined by fixed orthogonal steering

vectors. The gain of each sub-cluster at subcarrier k, denoted cq,l[k], can be recovered as

cq,l =
√

NfNt

P
∑

p=1

αp,l,qef (τp,q).

Note that E {cq,l} = 0 since the ray gains βp,q are centered. The cross-covariance matrix

between two sub-clusters l and l′ is given by

Σq,l,l′ = E

{

cq,lc
H
q,l′

}

=
[

Σt
q(θq)

]

l,l′
Σf

q(τq) (5.3)

where Σq,f is the covariance matrix of the equivalent SISO cluster (evaluated in Chapter

3 as Equation (3.8)) and Σq,tx is defined as

[Σq,tx]l,l′ = E∆θ {Nt〈et(θq + ∆θ), el〉〈et(θq + ∆θ), el′〉∗} .

For a Saleh-Valenzuela cluster with parameters λ and γ the frequency covariance
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matrix have already been evaluated in Chapter 3 as

[Σf ]k,k′ = Pq

(

1 +
λγ

1 − 2πj∆Bγ(k′ − k)

)

.

As a reminder, the proof can be found in Annex B.1. Similarly, the coefficients of Σq,tx

are given by

[Σq,tx]l,l′ =
∫ 2π

0
f∆θ(∆θ)

DNt (xl(∆θ)) DNt (xl′(∆θ)) d∆θ
(5.4)

where xl(∆θ) = l
Nt

− ‖~atx‖(cos(θq)−cos(θq+∆θ))
λ

and DN(x) denotes the Dirichlet kernel and

f∆θ(∆θ) is the angular distribution of the intra-cluster rays (typically a Laplace distribu-

tion). The diagonal coefficients (l = l′) have already been derived in Equation (3.20).

5.2.2 Cluster Extrapolation

The off-diagonal elements of matrix Σq,tx are Dirichlet kernel side lobe products that

are quickly negligible as Nt increase. Its diagonal elements have already been evaluated in

Equation (3.20). We use the approximation that sub-clusters are uncorrelated and can be

studied separately. Each sub-cluster is then fully characterized by its frequency covariance

matrix Σf weighted by a fraction of the cluster power Pq and by [Σq,tx]l,l. Examples of

cluster power partitioning (diagonal elements of Σq,tx) over the sub-clusters are given

in Fig 5.3. Because of the angular shift introduced in Section 5.2.1, the first bin always

represents the main direction of the cluster. As expected, more subclusters are required

to model wider angular-spreads (σ∆θ) and broadside clusters (θ = 90◦).

As previously mentioned, subclusters can be studied separately. For ease of notation

we denote any sub-cluster and its covariance matrix as











c = cq,l

Σ = Σq,l,l.

The subcarriers can be separated into two sets: uplink U and downlink D subcarriers. We
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Figure 5.3 – Diagonal coefficients of the matrix Σq,tx for an ULA with Nt = 30, analytical
expression (5.4) and numerical evaluation. On the left (a) the cluster angular spread is
10◦ and the cluster angle varies from 90◦ (broadside) to 180◦ (endfire). On the right (b)
the angular spread of a broadside cluster varies from 0◦ (specular ray) to 20◦.

separate the sub-cluster frequency gain vector into uplink and downlink vectors as











cu = c[k], k ∈ U
cd = c[k], k ∈ D.

Our goal is to find the distribution of the downlink gains cd given uplink gains measure-

ments cu.

5.2.3 Sub-cluster gain modeling

We model a sub-cluster gain as a centered Wide Sense Stationary Gaussian random

process with autocorrelation Σ. Thermal noise and interference deteriorate the received

uplink signal. Hence the measured sub-clusters are mixed with noise

c̃u = cu + n

with n ∼ CN (0, σ2
nI). The covariance matrix of those noisy subclusters is denoted by

Σ̃u = E

{

c̃uc̃H
u

}

= Σu + σ2
nI
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where Σu is the noiseless uplink covariance matrix (a submatrix of Σ) and σ2
n denotes the

noise power. We also introduce the partial covariance vectors between the uplink channel

and the downlink subcarrier k denoted by

σu∪k = σH
k∪u = E {cu[cd]∗k} .

We define the downlink subcarrier variance σ2
k = E {[cd]k[cd]∗k}. The sub-cluster gain is

WSS so this variance does actually not depend on k.

The autocorrelation of the uplink channel concatenated with gain k of the downlink

is given by

Σ̃u∪k =





Σ̃u σu∪k

σk∪u σ2
k



 .

Such model is used here after to find the posterior distribution of the downlink cluster

coefficients [cd]k.

5.2.4 Cluster gain extrapolation

The posterior distribution of [cd]k from the noisy sub-clusters measured on the uplink

c̃u is given after classical manipulations by

f[cd]k|c̃u
([cd]k|c̃u) =

f[cd]k,c̃u
([cd]k, c̃u)

fc̃u
(c̃u)

=
|Σ̃u|

π|Σ̃u∪k| e
− 1

ε2
k

([cd]k−σH
u∪k

Σ̃−1
u c̃u)2

.

(5.5)

[cd]k follows a complex Gaussian law, the mean of which is the Maximum a Posteriori

(MAP) estimator
ˆ[cd]k = σH

u∪k

(

Σu + σ2
nI
)−1

cu

which is a linear estimator yielding the downlink channel coefficients at each subcarrier k

from the knowledge of the uplink channel and the cluster statistics. The variance (MSE)

of such estimator is given by

ε2[k] = σ2
k − σH

u∪k

(

Σu + σ2
nI
)−1

σu∪k. (5.6)
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The MSE is divided into two parts, σ2
k is the error without prior information and

σH
u∪k

(

Σu + σ2
nI
)−1

σu∪k

is the accuracy gain from uplink measurements.

5.2.5 Mean Square Error

In this section we provide analytical extrapolation MSE formulas for a single subclus-

ter, verified by numerical evaluations. Those error formulas are subsequently extended to

a full Saleh-Valenzuela channel. The single cluster formula is used to derive the channel

MSE in a latter stage.

The Saleh-Valenzuela sub-cluster is parametrized by the ray arrival rate λ, the ray

decay constant γ, the uplink bandwidth Bul, the sub-cluster power Pq and the noise

power σ2
n. In this section we consider the normalized MSE derived from Equation (5.6)

as
E

{

| ˆ[cd]k − [cd]k|2
}

E {|[cd]k|2} = 1 − σH
u∪k (Σu + σ2

nI)−1
σu∪k

σ2
k

. (5.7)

This expression only depends on λ, γ, Bul and ρ = Pq

σ2
n
. We introduce the dimensionless

parameters λ̄ = λ/Bul, γ̄ = γBul. Those notations are sufficient to fully describe the

cluster.

We drew the mean square error obtained for two Saleh-Valenzuela environments with

Bul = 9MHz and 200 pilots (matches a 10MHz LTE frame structure). The extrapolation

process works well in moderately scattered environments, such as the original Saleh-

Valenzuela model [11] (Fig. 5.4). However the extrapolation range is much shorter in rich

scattering channels such as the one described in [12] (Fig. 5.5) by the Crabtree Building

parameters. As expected this process works better for reduced intra-cluster scattering.

The extrapolation potential of the channel also highly depends on the SNR. The process

yields overall promising results at asymptotically high SNR but the performance decrease

rapidly in presence of thermal noise.

Using the dimensionless parameters λ̄, γ̄ we can draw the 2D map of the achiev-

able extrapolation range for any Saleh-Valenzuela cluster on Figure 5.6 at ρ = 30dB

for a 10% sub-cluster MSE. The extrapolation potential is given in logarithmic scale in

percentages of the uplink bandwidth. We also computed the positions of characterized

Saleh-Valenzuela channels of the literature [11, 12, 13] within this plane for Bul = 1MHz
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Figure 5.4 – Normalized MSE of the channel gain with BUL = 9MHz and NUL = 200 up-
link subcarriers, analytical (5.7) and numerical evaluation with original Saleh-Valenzuela
parameters. The extrapolation scheme is very sensitive to noise.

(red points) and Bul = 10MHz (blue points). Channels with the same characteristics

but different uplink bandwidths follow straight lines with −1 slope (in log scale). A ×10

bandwidth increase means λ̄ is a decade decreased and γ̄ a decade increased. This abacus

is then very useful to compare channels and interpret the effect of a bandwidth increase.

The extrapolation error is most of the time quantified by the Mean Square Error

(MSE) criterion [9, 10]. We evaluate the extrapolation error at frequency k outside of the

uplink training band. On subcarrier k, a cluster is given by the vector

cq,k =
√

NfNt

P
∑

p=1

βp,qef (τp,q + τq)[k] ⊗ et
∗(~utx,p,q). (5.8)

Thus the channel on frequency k is given by

hk =
P
∑

p=1

cq,k. (5.9)

The linear extrapolation approach provides a simple expression for the MSE at sub-
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Figure 5.5 – Normalized MSE of the channel gain with BUL = 9MHz and NUL = 200
uplink subcarriers, analytical (5.7) and numerical evaluation (linear scale). The extrapo-
lation scheme is very sensitive to noise. Parameters are those of [12].

carrier k
E

{

‖hk − ĥk‖2
}

E {‖hk‖2} =
∑Q

q=1

∑Nt−1
l=0 ε2

q,l[k]
(1 + ΛΓ)(1 + λγ)

where ε2
q,l[k] is the variance of the estimated gain of subcluster l in cluster q at subcarrier

k obtained from (5.6). The channel extrapolation error is the sum of the extrapolation

errors from all its constituting clusters.

5.3 Reduction of Beamforming Gain

We have shown in the previous sections that the downlink channel extrapolated from

uplink measurements follows a Complex Gaussian distribution whose mean and covariance

have been characterized. In this section we will use this statistical structure to derive an

approximate closed form formula of the expected Reduction of Beamforming gain at

subcarrier k. To that end we introduce simplified notations. h denotes the Nt × 1 MISO

channel at subcarrier k (h = hk). Similarly ĥ denotes the estimated MISO channel at

subcarrier k (ĥ = ĥk).
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Figure 5.6 – Maximum achievable bandwidth extension for a single cluster (in % of the
uplink bandwidth) as a function of the dimensionless cluster parameters λ̄ and γ̄, ρ =
30dB. Characterized channels have been placed onto the curve in dashed green lines (blue
points: BUL = 10MHz, red points: BUL = 1MHz).
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5.3.1 Analytical derivation of the RBG

The mean square error is not the best figure of merit of an extrapolation technique.

Indeed the estimated downlink channel is then used to design a precoder p that shapes

the transmitted signal in order to optimize the capacity. In this section we use a Maximum

Ratio Transmission (MRT) precoder as it yields the optimal capacity in the single user

case. In multi-user cases, it has been shown that the favorable propagation property of

massive MIMO offers a natural interference reduction mechanism. The optimal precoder

is denoted

p =
h

‖h‖ .

The transmitter doesn’t have access to the true channel h. It uses the estimated channel

ĥ to compute the precoder

p̂ =
ĥ

‖ĥ‖
.

Capacity is the best figure of merit but is also hard to compute. Therefore most papers

use intermediate metrics such as the Reduction of Beamforming Gain (RBG) [9] given by

RBG =
|pHh|2
|p̂Hh|2 .

This metric is directly linked to the single-user capacity. It can be rewritten in logarithmic

scale

RBGdB = 10 log
(

|pHh|2
)

− 10 log
(

|p̂Hh|2
)

.

The optimal and sub-optimal beamforming gains |pHh|2 and |p̂Hh|2 have similar

quadratic forms structures. We introduce the Gram matrix of all sub-clusters basis func-

tions G so as [G]l+Ntq,l′+Ntq′ = 〈el(θq), el′(θq′)〉, the vector of all sub-clusters gains at

subcarrier k c so as cl+Ntq = cq,l[k] and the vector of all estimated sub-clusters gains at

subcarrier k ĉ so as ĉl+Ntq = ĉq,l[k]. E is the diagonal covariance matrix of the channel

gains c. Taking the point of view of the transmitter, the true gains c are unknown. Only

the distribution of c ∼ CN (ĉ, E) is known.

The inner products for optimal and sub-optimal precoding are

pHh =
√

Nt
cHGc√
cHGc

=
√

Nt

√
cHGc, p̂Hh =

√

Nt
ĉHGc√
ĉHGĉ

.
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Their modulus squared yield the quadratic forms

|p̂Hh|2 = Nt
cHGĉĉHGc

ĉHGĉ
= Ntc

HAc,

|pHh|2 = Ntc
HGc.

According to [14], the first and second order moments are







































E

{

|p̂Hh|2
}

/Nt = Tr (AE) + ĉHAĉ

Var
{

|p̂Hh|2
}

/N2
t = Tr ((AE)2) + 2ĉHAEAĉ

E

{

|pHh|2
}

/Nt = Tr (GE) + ĉHGĉ

Var
{

|pHh|2
}

/N2
t = Tr ((GE)2) + 2ĉHGEGĉ.

Note that |p̂Hh|2 follows the distribution

|p̂Hh|2/Nt ∼ σ̃2χ2
2

(

µ̃2

σ̃2

)

where σ̃2 = 1
2

Tr (AE), µ̃2 = ĉHAĉ and χ2
k(λ) represents the noncentral Chi-Squared

distribution with non-centrality parameter λ and k degrees of freedom [15].

Using the following second order approximation

E {f(X)} ≈ f(E {X}) +
1
2

f ′′(E {X})Var {X}

and the previous formulas we can approximate very closely the Reduction of Beamforming

Gain

E {RBGdB} ≈ 10 log
(

E

{

|pHh|2
})

− 10 log
(

E

{

|p̂Hh|2
})

−
5Var

{

|pHh|2
}

ln(10)E {|pHh|2}2 +
5Var

{

|p̂Hh|2
}

ln(10)E {|p̂Hh|2}2 .
(5.10)

5.3.2 Numerical experiments

We illustrate those formulas with a simple 3-clusters model with equal parameters (λ,

γ, Pq), Nt = 30 and null angular spread. The clusters main angles are uniformly distributed

θq ∼ [0, 2π]. As equation (5.10) gives the expected downlink RBG for a specific uplink

realisation, both numerically evaluated and expected RGB were averaged over multiple
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Figure 5.7 – Average Reduction of Beamforming Gain for 10dB, 30 dB and infinite SNR.
Original Saleh-Valenzuela parameters.

realisations to obtain comparable results (Fig. 5.7). The approximation remains valid until

the RGB reaches a 1.5 dB loss.

Comparing Figures 5.4 and 5.7, for a 10dB average SNR, the normalized cluster MSE

reaches 60%. However, the RBG (SNR loss due to the extrapolation error) is only limited

to 1.5dB, which is an acceptable loss. This illustrates how the RBG is overall a better

measure of performance.

5.4 Conclusion

In this chapter we have investigated the limits of an extrapolation process on a wide-

band MIMO system to infer the downlink channel from uplink measurements. As the

clusters constituting the propagation are made of a large amount of densely distributed

rays that are hardly separable, a specular representation of clusters in the angular-delay

domain is not available. Clusters have been projected on a adequately chosen sparse BEM

in the angular domain then extrapolated in the frequency domain. Using the posterior

distribution of the downlink channel, we have obtained a closed form expression for the
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MSE applied to Saleh-Valenzuela models. The extrapolation accuracy highly depends on

both propagation channel characteristics and SNR. Cluster estimation errors for any pa-

rameters have then been summarized in a generic abacus, providing a convenient way to

evaluate the extrapolation potential. We have also derived an approximate formula for

the expected Reduction of Beamforming Gain.

We used the conventional MRT precoder, consistent with previous work in [9]. From

the extrapolated channel distribution structure provided in this chapter, new precoding

strategies that leverages this channel error structure might however outperform MRT.

On the other hand, in the last section, we proposed estimates for the downlink channel

gain. Those indicators could be extended to inter-user interference, providing inputs for

massive MIMO resource allocation strategies.
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Chapter 6

IMPROVEMENTS ON CHANNEL

ESTIMATION FOR SPARSE MIMO

CHANNELS

Channel estimation and denoising is challenging in massive MIMO systems as the

number of coefficients to estimate increase with the array sizes. This scaling rule render

channel estimation harder to perform. Novel channel estimation techniques dedicated to

millimeter wave massive MIMO systems take advantage of the particular sparse structure

of millimeter wave MIMO channels, thus reducing the number of unknowns in the problem.

The contributions of this chapter consist of two improvements related to massive

MIMO OMP-based channel estimation: the stopping criterion and the ray estimation

steps. In order to derive those contributions, the single specular ray detection and esti-

mation sub-problem is fully characterized in Sections 6.3 and 6.4. The resulting advanced

detection and estimation steps are then integrated into the OMP algorithm in Section 6.5

and compared on NYUSIM channel realizations (Section 6.1.1) against the state of the

art approach (Section 6.2.1). In order to simplify the notations, we limit our analysis to

the single carrier Nt × 1 MISO channel. Generalization to wideband MIMO channels is

discussed in Section 6.4.4.

This work is based on previous studies on OMP-based channel estimation performed

by Luc Le Magoarou and Stéphane Paquelet at b<>com [1, 2].

6.1 Generalities

As the amount of remaining spectral resources shrinks, mobile broadband communica-

tion systems are moving towards higher frequencies, with a particular focus on millimeter

waves. Those bands are currently barely exploited as their propagation characteristics are

less attractive than those of lower frequency bands.
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Indeed, the channel suffer from severe path-loss due to the lower wavelength. As a

reminder the path-loss is given (in dB) by PL = 10 log(4πd
λ

)2 where d denotes the distance

between transmitter and receiver and λ the wavelength. Moreover, electromagnetic waves

may suffer from high atmospheric attenuation in millimeter waves (in particular around

60GHz) which forbids any long range use cases. For those reasons, millimeter waves are

mostly considered as a viable solution for short-distance communications.

The combination of antenna arrays and millimeter waves is a particularly appealing

bundle. As the wavelength λ is smaller, each individual antenna is more compact. This

enables large antenna arrays to fit in smaller form factors while providing the massive

array gain necessary to compensate for the severe path loss as well as the atmospheric

attenuation.

As the frequency increase, multipath scattering is less significant. The propagation

channel is thus usually dominated by the LOS path. The remaining scattering usually

consists of a few specular rays. In this case, it is commonly stated that the channel is

sparse in the angular domain [3, 4, 5]. This means that the channel can be modeled by

a limited number of distinct specular paths, each characterized by a gain βp, DOD ~utx,p,

DOA ~urx,p and delay τp, as in Equation (1.15), as

h(f) =
√

NrNt

P
∑

p=1

βp e−2πjfτp er(~urx,p) ⊗ et
∗(~utx,p). (6.1)

where the dimension of h is Nr × Nt.

6.1.1 The NYUSIM Channel Model

We used the publicly available channel model NYUSIM to generate realistic channel

realizations. This model has been calibrated by the NYU Wireless research team at New

York University [6, 7]. For illustration purposes, we display on Figures 6.1 and 6.2 the

angles of departure and the corresponding Fourier domain angular channel response of

a single carrier narrowband MISO system with 128 transmit antennas. In this chapter,

NYUSIM channels are generated using the UMi (Urban Microcell, a typical use case of

millimeter waves) parameters in NLOS conditions. As depicted on Figures 6.1 and 6.2,

the channel only consists of a few specular rays and is thus sparse in the angular domain.
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Figure 6.1 – Angular power spectrum of a NYUSIM channel realization. The channel only
consists in a few specular paths.

Figure 6.2 – Angular Fourier domain representation of the channel described on Figure
6.1 sampled by a 128 ULA antenna array.
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6.2 Channel Estimation

In this section, we state the channel estimation problem. In massive MIMO systems,

such mandatory step is challenging as the number of unknowns to estimate gets over-

whelming. To cut down this burden, recent approaches use an OMP-based ray estimation

that leverages the millimeter wave channel sparsity. This property of millimeter wave

channels has been showcased in Section 6.1.1 on the NYUSIM channel simulator.

6.2.1 Problem Statement

The multipath propagation channel alters the signal traveling from the transmitter to

the receiver. On the receive side, the symbols have to be cleared of the channel influence

to be decoded efficiently. This operation is performed in two steps. First, the channel

response is estimated based on known pilot signals sent by the transmitter. This step

is called channel estimation. Then the channel influence is removed of the other data

symbols based on this estimated response. In an OFDM system, the received symbols y

are given by

y = Xh + n

where X are the known pilots (the sensing matrix), n denotes the thermal noise samples

that pollute the received symbols and h is the propagation channel, previously described

in Equation (1.15).

Channel estimation consists in estimating the propagation channel, characterized by

the vector h, from the received samples y and the known pilot signals X. The unknown h

consists in 2NtNrNf real random variables, that have to be estimated to fully characterize

the channel. Channel estimation is difficult in massive MIMO systems, because the number

of parameters to estimate increase with Nr × Nt. In order to cut down the number of

parameters to estimate, researchers recently proposed to estimate the physical parameters

βp, τp, ~utx,p and ~urx,p of the rays that constitute the channel (depicted in Equation (6.1)),

thus leveraging the angular domain sparsity.

6.2.2 Orthogonal Matching Pursuit

Several techniques can be employed to extract the ray parameters. In this chapter,

we do not study the high resolution path extraction algorithms (MUSIC [8], ESPRIT [9]

or SAGE [10]) which are also designed to extract the ray parameters but requires high
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computation times. We rather consider the general purpose OMP algorithm [11], that

extracts rays from the received samples sequentially. This tool, related to the field of

compressed sensing, has recently been employed for massive MIMO channel estimation in

multiple papers [1, 2, 12, 13, 14, 15].

OMP is a general purpose algorithm to solve inverse problems involving sparse repre-

sentations. Assuming that the received signal consists of a linear combination of elements

(the atoms) from a known dictionary, OMP greedily extracts the best atom, which is the

most correlated with the residual, and updates the coefficients of all extracted atoms ac-

cordingly. However, this versatile algorithm has to be adapted to the particular problem

at hand. Considering massive MIMO channel estimation, two main features have to be

taken into account:

— Feature 1. The dictionary, which is the set of all possible steering vectors, spans

over a continuum of vectors that represent all possible DODs (or DOAs or delays

depending on the dimension).

— Feature 2. The received signal is polluted by i.i.d. complex Gaussian distributed

thermal noise.

The OMP algorithms designed for massive MIMO channel estimation always follow

the same pattern, described in paper [16] and summarized on Figure 6.3.

Specular ray estimation: First, the most powerful ray (characterized by its angle

of arrival and angle of departure) is extracted from the received signal using a maximum

likelihood estimation. This estimator is usually implemented using a grid search (exhaus-

tive search over a quantized angular interval) which amounts to testing a quantized set

of directions and picking the most likely. The likelihood is evaluated on each node of the

estimation grid as described on Figure 6.4. We define

OS = Ngrid/Nt (6.2)

the oversampling factor (here in the DOD domain) as the ratio of the number of evaluation

points over the number of transmit antennas. This important dimensioning factor (as

well as its undersampling factor US = 1/OS counterpart) will be reused later on when

comparing different configurations. The node which yields the highest likelihood provides

a confidence interval centered on this very node of width ∆t = 2/(NtOS) (described in

Figure 6.5) where the DOD actually lies in. This uncertainty on the exact direction put
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Figure 6.3 – Flowchart of a typical OMP algorithm for massive MIMO algorithm.

a bound on the variance of this simple estimator as

Var
{

t̂
}

=
∆2

t

12
=

1
3N2

t OS2
(6.3)

which is the formula that characterize the variance of a uniform distribution of width

∆t = 2/(NtOS).

To ensure that the grid search estimation variance matches the CRLB (derived in

Section 6.4.1), a conservative dimensioning based on a high oversampling factor OS ≫ 1

would be required. This is a direct consequence of the continuous nature of the unknown

θtx (Feature 1 ). To highlight this estimation performance saturation, both optimal stan-

dard deviation (square root of the CRLB) and grid search error floor are drawn on Figure

6.6 for OS ∈ {2, 4, 6, 8, 10}, for a 32 antennas narrowband MISO system. An analysis of

the relation between oversampling and channel estimation error is provided in paper [2].

This step is a significant bottleneck for the OMP algorithm.

The Oversampling (OS) requirements can be mitigated by using a two-stage approach

(coarse then fine estimation). Indeed, acquiring the approximate direction of the ray can
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Figure 6.4 – Grid search for the most likely direction of departure with oversampling
OS = 2.

Figure 6.5 – Zoomed in version of Figure 6.4 that features the uncertainty interval on the
estimated direction of departure.
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Figure 6.6 – Comparison between the Cramér-Rao bound on the angle of departure es-
timate and the minimum achievable variance using grid search with oversampling factor
OS ∈ {2, 4, 6, 8, 10}.

be done at a lower cost, using only a OS = 2 oversampling factor [17, 16, 18]. We will

analyze in Section 6.4 how this factor 2 arises, how we can reduce the oversampling

requirement and what are the consequences on the performance.

This coarse estimate serves as a suitable starting point to attain a finer estimate in a

second stage using a dedicated algorithm. This refinement stage usually consists in either

a denser local grid search [17] or mathematical optimization (Gradient descent, Newton

method, ...) [18].

Gains update: Once the best direction has been extracted from the residual, the

complex coefficients β̂p of all estimated rays are estimated using a Moore-Penrose inverse

as

β̂ = (Et
+)∗Xt

+y

where β̂ denotes the vector of the gains associated with all currently estimated direc-

tions, Et is the matrix that contains the stacked estimated steering vectors. Et
+ =

(Et
HEt)−1Et

H denotes the Moore-Penrose inverse of Et and Xt
+y are the received sym-

bols where the influence of the pilots have been removed.

The coefficients of all rays extracted since the beginning are updated at each iteration.
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6.3. The atomic ray detection problem

That is the difference between the Matching Pursuit algorithm that does not update the

gains and the Orthogonal Matching Pursuit variants.

Residual update: The currently estimated channel is subtracted from the received

symbols. The resulting residual is used as an input for the next iteration specular ray

search.

Stopping criterion: OMP is an iterative algorithm that has to be stopped according

to some criterion. This particular point is usually overlooked in the literature and is most

of the time heuristically chosen. If the extraction procedure stops too early, the channel

hasn’t been fully extracted leading to a biased estimate. If it stops too late, it interprets

noise as specular rays leading to a noisy estimate. Various stopping criteria have been

proposed. In [18] the number of propagation paths is supposed to be known beforehand.

However the optimal number of specular rays to be estimated is actually the result of

a complicated trade-off that depends on the propagation environment and the Signal to

Noise Ratio [2]. In most papers, the stopping criterion is based on an empirically set

threshold on the norm of the residual [14, 17]. Other possible stopping criteria, mainly

heuristics, are proposed in the paper [15].

However, the criteria based on the norm of the residual does not take into account

Feature 2, that is the structure of the channel, which is concentrated on a few distinct

directions, is radically different from the structure of the noise, which is spread out over

all directions. Feature 2 is taken into account in our analysis in this chapter.

6.3 The atomic ray detection problem

In this section we solve the single specular path detection problem. The classical

detection strategies of the literature are presented in Section 6.3.1. Then we introduce a

novel interval-based detector that can reduce the oversampling requirements in Section

6.3.2. The detection approaches are then characterized and compared in Section 6.3.3.

The detection outcome will be used as the stopping criterion of the OMP algorithm.

In order to keep the document tractable, we consider only the single carrier MISO

problem with a ULA array. It only involves the angle of departure θtx. As the steering

vector is a function of the intermediate variable t = cos(θtx), all future derivations involves

t instead of θtx. Generalization is discussed in Section 6.4.4.
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6.3.1 Overview of classical detection approaches

The received samples y can contain either thermal noise plus the transmitted signal

or only thermal noise. The two possible outcomes can be stated as a binary (Hsig against

Hnoise) hypothesis testing on the received samples y as











Hsig : y = Xth(t) + n

Hnoise : y = n

Optimal approach: Assuming that the direction of departure is known, the proba-

bility density functions of the distribution of y under both hypotheses are given by











Hsig : y ∼ CN (Xth(t), σ2
nI)

Hnoise : y ∼ CN (0, σ2
nI)

Theorem. The most powerful detection test for this problem is given by the matched filter

|yHXtet
∗(t)|2 ≶ γ (6.4)

where γ is a predefined threshold calibrated according to a false alarm target α, given as

α =
∫

ℜ{yHXtet
∗(t)}<γ

pHnoise
(y)dy.

This theorem is proven in appendix D.1. This is the optimal detector. However it

requires the knowledge of t, which is not yet available.

Naive approach: To detect whether a ray lies in the received samples y without prior

knowledge on t, the most simple method is to test the likelihood of the null hypothesis

y ∼ CN (0, σ2
nI) using a statistical significance test. We reject the Hnoise hypothesis if the

test statistic falls behind a predefined threshold calibrated according to a false alarm rate

α, given by

α = P (‖y‖2 > η) =
∫ ∞

η
pχ2(2Nt,σ2

n/2)(x)dx = Fχ2(2Nt,σ2
n/2)(η)

where η is the corresponding test threshold, pχ2 and Fχ2 denote respectively the p.d.f. and

the c.d.f. of a χ2 distribution. The test threshold is set to achieve the chosen false error
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rate α as η = F −1
χ2(2Nt,σ2

n/2)(α).

This test is largely sub-optimal as the structure of the signal under the Hsig hypothesis

is not taken into account.

Generalized likelihood ratio test: As t is unknown, we don’t have a perfect

knowledge of the distribution of y under the signal plus noise hypothesis, that could

allow the design of the optimal precoder. To overcome this problem, we used a generalized

likelihood ratio test approach [19]. This technique consists in first estimating the DOD

assuming Hsig using a maximum likelihood approach as

t̂ = argmax
t∈[−1,1]

pHsig
(y, t)

This amounts as finding t that maximizes

t̂ = argmax
t∈[−1,1]

|yHXtet
∗(t)|2.

In the performance comparisons displayed in Section 6.3.3, the optimization step is per-

formed using a grid search and is consistent with the state of the art OMP ray estimation

step as described in Section 6.2.1. The main dimensioning factor is the oversampling factor

of the grid OS.

This estimate is then injected into the test statistic (6.4) as

|yHXtet
∗(t)|2 ≶ γ

which is the same function evaluated for the prior estimation, instead of Equation (6.4).

6.3.2 Interval-based detection

To reduce the number of nodes in the search grid without leaving gaps, we propose an

alternative approach. We subdivide the search interval [−1, 1] into Kt equal subsections

of size ∆t = 2/Kt. By testing if a ray lies in one of the Kt intervals instead of testing the

whole search space [−1, 1], noise is filtered and curtailed thus increasing the test power.

Each interval j has the shape [tj, tj+1] with mean value t̄j = (tj+1 − tj)/2 and width

∆t = (tj+1 + tj)/2. For each interval [tj, tj+1], we state the ratio likelihood as

r(y, tj < t < tj+1) =
pHsig

(y|tj < t < tj+1)

pHnoise
(y)

=

∫ tj+1

tj
pHsig

(y|t)dt

pHnoise
(y)

.
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The index of the interval which is the most likely to contain the direction of departure is

given by

jopt = argmax
j∈[0,Kt−1]

r(y, tj < t < tj+1) (6.5)

In annex D.2 we derive the following approximate first order sufficient statistic for this

decision problem as a quadratic form

f(z, j) = zH∆H(t̄j)R0(∆t)∆(t̄j)z (6.6)

where z = Xt
Hy, the interval mean t̄j and size ∆t are separated into two matrices ∆(t̄j)

and R0(∆t)










∆(t̄i) = diag(et(t̄i))

[R0]k,l = sinc(2π∆t(l − k)‖~atx‖
λ

).
(6.7)

In particular R0 only depends on the constant interval size ∆t chosen when dimensioning

the system. Moreover this kernel matrix is real-valued symetric (diagonalizable in R) and

Toeplitz. R0 can also be decomposed off-line into eigencomponents R0 =
∑Nt

k=1 λkrkrk
T .

The sufficient statistic can be rewritten as a weighted sum of correlators

f(z, j) =
Nt
∑

k=1

λk|yHXt(rk ⊙ et
∗(t̄j))|2 (6.8)

We expect that most of the eigenvalues will have negligible power and the sum (6.8)

can be truncated and reduced to a small number of correlators #λ << Nt, enabling low-

complexity implementation. In practice the number of required correlators is of the order

of

#λ = 1/OS + 1 (6.9)

when OS ≤ 1. Compared to the Generalized likelihood ratio test (GLRT) detection

technique, this approach basically comes back to trading off OS × Nt different correlators

(with large OS) for OS ×Nt (with much smaller OS) correlators, each repeated #λ times

with different windows, then summed. Overall, the number of correlators required is the

same for both approaches. However, such architecture can be beneficial when it comes to

pipelined hardware implementation. The effect of the four strongest windowed correlators

depending on the actual direction of departure t is depicted on Figure 6.7, obtained on a

Nt = 16 antenna array where the search space [−1, 1] is divided into Kt = 4 intervals. At
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Figure 6.7 – Angular response of each individual weighted correlators of Equation (6.8)
for the third interval detector out of four for any direction of departure t ∈ [−1, 1]. System
with Nt = 16 antennas (OS = 0.25 or US = 4).

this point, it is more convenient to work with the undersampling factor US as

US = 1/OS = Nt/Kt

to avoid non-integer oversampling factors OS. It will be used in Section 6.3.3 when con-

sidering OS < 1. The setup presented on Figure 6.7 is characterized by Nt = 16 antennas

and a search space divided into Kt = 4 subintervals, that corresponds to an undersampling

factor of US = 4. Each windowed correlator is monitoring a subsection of the third inter-

val. The sum of the responses is sketching the shape of a rectangle, providing a uniform

response over the corresponding search interval.

The most likely interval jopt is returned by solving (6.5). The value of this maximum

can also be used as a test statistic to assess whether the estimated direction corresponds

to an actual signal or noise. The false alarm rate is then given by the probability that

f(n, jopt) exceed a threshold η when n is noise only

FA(η) = P (f(n, jopt) > η), n ∼ CN (0, σ2
nI)
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In this section, the function FA(η) is computed numerically using Monte-Carlo simula-

tions. Then we invert this function to obtain the threshold η as a function of the chosen

false alarm rate α

η = FA−1(α)

6.3.3 Analysis and comparison

In the previous sections, several detection techniques (naive detector, Generalized like-

lihood ratio test and the proposed interval-based detector) are presented. In this section,

those detectors are evaluated and compared on a similar setup (ULA array with Nt = 32

antennas).

First, the raw detection performance is measured on Figure 6.8. The false alarm rate

is set at α = 1%. The percentage of detected signals is evaluated relatively to the SNR.

As expected, at a given SNR, the naive approach which does not account for the signal

model is always the worst. In contrast, the GLRT with OS = 2 represents an upper

bound (this is not proven, yet conjectured) on the detection performance. Note that this

high oversampling factor is required to achieve acceptable performance. Reducing the

oversampling requirements creates gaps in the search space and non-uniform detection

performance. This is the reason why all state of the art coarse estimation techniques

(presented in Section 6.2.1) rely on at least OS = 2.

The proposed interval-based approach is evaluated for different sampling factors, from

OS = 2 to US = 8. Both OS = 2 and OS = 1 approaches the performance of the

GLRT OS = 2 detector (the conjectured upper bound). As the oversampling factor is

reduced, the detection performance decreases accordingly. As interval sizes get larger,

thermal noise is less filtered. The detector ends up comparing more noise with the same

amount of signal.

The characteristics of each detector are showcased using Receiver Operating Charac-

teristic (ROC) curves for SNR=0dB (Figure 6.9) and SNR=-5dB (Figure 6.10) on the

same Nt = 32 setup. A detection decision is actually the result of a compromise between

false alarm rate (α) and test power (the percentage of detected signals). A ROC curve

depicts the detector test power as a function of the false alarm. The best detection perfor-

mance is achieved by the detector whose ROC curve lies above the others (best percentage

of detected signals for a given false alarm rate). From Figures 6.9 and 6.10, the naive ap-

proach is the worst and the GLRT with OS = 2 put an upper bound, followed closely by

the interval-based approaches with OS = 2 and OS = 1. Those conclusions are in line
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with the interpretations of Figure 6.8.

Figure 6.8 – Detection performance, 1% false alarm, 32 antennas.
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Figure 6.9 – ROC curves of the receivers encountered in the previous sections at a 0dB
SNR.

Figure 6.10 – ROC curves of the receivers encountered in the previous sections at a −5dB
SNR.
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6.4 The atomic ray estimation problem

In this section we solve the single specular path estimation problem. The specular ray

channel model is described and analyzed in Section 6.4.1. As previously suggested in the

literature [17, 16, 18], we propose a two-stage estimation technique. From the intermediate

results of the detection decision presented in Section 6.3, a first coarse estimate is derived.

It is used to initialize a numerical optimization technique that results in the fine estimate.

6.4.1 Analytical bounds

The singular specular ray channel is a particular simplified case of the multipath

channel presented in Equation (1.7). It can be stated as

h(θtx) =
√

Ntβet
∗(θtx) (6.10)

where β is the ray gain and θtx is the ray DOD. In this section, the following steering

vector notation is adopted

et(θtx) =
1√
Nt

[

e−2πj(−(Nt−1)/2)
‖~atx‖ cos(θtx)

λ · · · e−2πj((Nt−1)/2)
‖~atx‖ cos(θtx)

λ

]

.

It assumes that the centroid of the array is taken as origin point of the antenna positions

in the array as featured in Section 1.3.1. This is done to simplify the CRLB evaluation, as

in paper [1]. The focus is placed upon the angle of departure θtx as the goal is to optimize

the ray estimation step. The ray gain β is considered as an interfering parameter. As the

steering vector is a function of the intermediate variable t = cos(θtx), all future derivations

involves t instead of θtx. This substitution leads to a non-uniform grid in the angle domain

which has already been studied in paper [14].

The received symbols are given by

y = Xth(t) + n

where Xt are the known transmitted pilot symbols, also called the sensing matrix. Then

the received samples follow the complex Gaussian distribution

y ∼ CN
(

Xth(t), σ2
nI
)

(6.11)
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characterized by its mean Xth(t) and the noise covariance identity matrix.

From the paper [1], the Fisher information for parameters β and t takes the form

I =











I|β|0 0

0 Iarg(β) 0

0 0 It











.

The CRLB is a lower bound on the variance of any practical estimator of an unknown

parameter. Such bound is interesting as it enables theoretical studies (such as Figure 6.6)

and offers a baseline for assessing the efficiency of any practical estimator. To this end,

the derivation of the CRLB on parameter t, given as the inverse of It is required. In our

case, we assume that Xt is unitary. In this case, the Fisher information It is given as

It =
2Nt|β|2

σ2
n

(

∂et(t)
∂t

)H
∂et(t)

∂t

where the derivative of et(t) is given by

∂et(t)
∂t

= Dtet(t)

where Dt is a diagonal matrix that contains the exponents of the steering vector as

Dt = diag([−2πj (−(Nt − 1)/2)
‖~atx‖

λ
, · · · , −2πj ((Nt − 1)/2)

‖~atx‖
λ

]).

A generalization of this bound for any antenna configuration is given in the paper [1].

6.4.2 Coarse estimation methods

The coarse estimate is obtained directly from the detection phase intermediate results

6.3. The index jopt provides a convenient coarse estimator, namely the center of the jth

interval t̂0 = t̄jopt . As previously stated in Equation (6.3), the variance of this simple

estimator is given by

Var
{

t̂0
}

=
∆2

t

12

where ∆t denotes the width of the search interval. This expression comes from the variance

of a random variable uniformly distributed over an interval of length ∆t. This estimator

is comparable to the state of the art coarse grid search already presented in Section 6.2.2.
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6.4. The atomic ray estimation problem

We can however derive a more accurate coarse estimator from the intermediary re-

sults of the detection phase. Indeed, using the interval-based detector, the responses of

the individual windowed correlators (Figure 6.7) depend on t. We can leverage the inter-

mediary results corresponding to the jopt interval (where the ray was detected) to derive

a novel estimation method. This technique works well and can achieve the CRLB when

the channel consists only of one ray. However its performance decreases when considering

multiple rays. To be integrated in OMP, a refinement step is required.

6.4.3 Fine estimation methods

The coarse estimate t̂0 obtained previously can be used as an initialization point for a

numerical optimization procedure, to obtain a finer estimate. We focused our attention on

the Newton-Raphson technique. However the raw likelihood function (displayed on Figure

6.4) features a dirac-like behavior at the vicinity of its maximum, which isn’t a practical

pattern for numerical optimization. That does not matter much if the initialization point

is close enough to the actual direction of departure t. However when using OS < 2 and

the first coarse estimation technique, t̂0 might fall too far from the peak leading to poor

optimization conditioning and slow convergence time. To mitigate this potential issue, we

introduce a modified likelihood function which is convolved with a kernel function ptx

L(y, t̄) =
∫ ∞

−∞
ptx(t − t̄)p(y, t)dt. (6.12)

We need to find a kernel function that smooths the likelihood and enables fast convergence

towards the maximum to solve efficiently the optimization problem

t̄opt = argmax
t̄∈[−1,1]

L(y, t̄). (6.13)

The Newton-Raphson procedure is optimal for quadratic curves. However as the num-

ber of antennas increase the raw likelihood function p(y, t) behaves like a dirac at the

DOD t. We choose an inverted parabola ptx(t) centered at 0 as the convolution kernel so

that the modified likelihood behaves like a quadratic function that reaches its maximum

at 0.

ptx(t) = (t − ∆t/2)(t + ∆t/2)1[−∆t/2,∆t/2](t)
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Theorem. Equation (6.13) can be approximated by the simpler optimization problem

t̄opt = argmax
t̄∈[−1,1]

f(y, t̄). (6.14)

The novel function to optimize f is given as

f(z, t) = zH∆H(t)R0(∆t)∆(t)z. (6.15)

where z = Xt
Hy and the expression of ∆(t̄) was already given in Equation (6.7) and the

real-valued matrix R0 is given as

[R0]k,l(∆t) =
2

(π(l − k)‖~atx‖
λ

)3

(

∆t(π(l − k)
‖~atx‖

λ
) cos

(

∆t

2
(π(l − k)

‖~atx‖
λ

)

)

− 2 sin

(

∆t

2
(π(l − k)

‖~atx‖
λ

)

))

.

This result is proven in Annex D.2.

R0 only depends on the width ∆t of the quadratic convolution kernel ptx(t). It is a real

valued symmetric Toeplitz matrix. The first and second derivatives of Equation (6.15) are

given by










∂f(z,t)
∂t

= zH∆H(t)(Dtx ⊙ R0)∆(t)z

∂2f(z,t)
∂t2 = zH∆H(t)(Dtx ⊙ Dtx ⊙ R0)∆(t)z

The matrices Dtx ⊙ R0 and Dtx ⊙ Dtx ⊙ R0 are diagonalizable. We denote λ′
k and λ′′

k

their respective eigenvalues and r′
k and r′′

k the corresponding eigenvectors. The derivatives

of Equation (6.15) are given as

f (1)(z, t) =
∂f(z, t)

∂t
=

Nt
∑

k=1

λ′
k|yHXt(r

′
k ⊙ et

∗(t))|2,

f (2)(z, t) =
∂2f(z, t)

∂t2
=

Nt
∑

k=1

λ′′
k|yHXt(r

′′
k ⊙ et

∗(t))|2.

The coarse estimate t̂0 is refined by a Newton-Raphson optimization step to obtain
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6.4. The atomic ray estimation problem

Figure 6.11 – Angle of departure estimation on a 8 antenna array ULA MISO channel.
Comparison between the empirical estimator standard deviation and the Cramér-Rao
Lower Bound.

the fine estimate t̂1

t̂1 = t̂0 − f (1)(z, t̂0)
f (2)(z, t̂0)

This refinement step can be iteratively repeated until the desired precision is obtained. It

can eventually be replaced by a gradient descent or by a Levenberg-Marquardt optimiza-

tion if function f is not concave.

We illustrate this two-stage estimation algorithm by a numerical evaluation of its

performance on a MISO channel with Nt = 8 transmit antennas on Figure 6.11. The esti-

mated angle standard deviation (square root of the variance) is compared to the optimal

CRLB. As expected, the coarse estimate obtained from the detector (first coarse estima-

tion technique, center of the most likely interval) is inaccurate compared to the theoretical

CRLB. From this initialization point, only two iterations of the fine estimation technique

are required to achieve the CRLB.

6.4.4 Generalization

In the previous section we presented a fast angle of departure estimation technique.

Those techniques can be generalized up to the wideband MIMO case with joint angle of
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arrival r = cos(θrx), angle of departure t = cos(θtx) and delay τ estimation. As previously

showed, all dimensions can be treated using the same approach.

In the detection phase, we proposed a novel detector based on a subdivision of intervals.

When adding other dimensions, the search space gets subdivided into rectangles of a 2D

grid then cubic cells of a 3D mesh.

We proposed two techniques for coarse estimation. The foremost can be extended

directly as the coarse estimates corresponds to the centroid of the most probable rectangle

(or cubic depending on the dimension) cell. The extension of the second approach is a

bit more complex to implement as it requires a multi-parameter function fit and has not

been studied in this thesis for lack of time.

Finally the fine estimation method is based on numerical optimization tools, from

which straightforward multivariate extensions already exists.

6.5 Integration into the OMP algorithm

We integrated this work within the classical OMP algorithm. In particular, from the

flowchart presented in Figure 6.3, we modified the Specular Ray estimation step and the

Stopping criterion. The latter step is replaced by the outcome of the detector presented

in Section 6.3.2.

Most of current State of the art implementations of the OMP algorithm uses either

heuristics or residual norm-based criteria [16, 17, 18]. Most of the performance gain of

our approach comes from this new criterion.

We evaluated the performance of the modified algorithm on a communication system

with 32 transmit antennas (ULA array). The channels where generated using the NYUSIM

[6, 7] channel model (parameters UMi, Urban Microcell). The first performance indicator

is the percentage of cases where at least one ray is extracted for both the residual norm-

based and the advanced (ray-based) detectors. This channel detection performance is

depicted on Figure 6.12. The novel approach offers a substantial 2dB detection gain at

low SNR (at −5dB) that narrows as the SNR increases.

Then on Figure 6.13 we evaluate the MSE for both the original and the modified

algorithms. We tested multiple oversampling factors OS ∈ {1, 2, 4, 6} for the classical

OMP algorithm. Then we evaluated the MSE of the modified algorithm assuming OS = 1.

In the low SNR regime, the novel estimation method outperforms the classical one at low

SNR. This gain is mainly due to the modified stopping criterion that enables the algorithm
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6.5. Integration into the OMP algorithm

Figure 6.12 – Proportion of channels where at least one ray was detected, novel detector
against state of the art residue based detector, Nt = 32.

to safely extract rays more deeply embedded in noise than the state of the art version.

Finally, note that at high SNR, the modified OMP algorithm achieve a performance

similar to its OS = 6 original version counterpart while keeping a reasonable OS = 1

complexity. This is due to the fine estimation step proposed in Section 6.4.3.
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Figure 6.13 – Performance (MSE) of both state of the art OMP and the modified OMP,
Nt = 32.

6.6 Conclusion

In this chapter we modified the classical OMP algorithm used for massive MIMO

channel estimation to optimize two of its key steps : the ray estimation and the stop-

ping criterion. We extracted and studied separately the detection and estimation of a

single specular ray. We characterized the detector using ROC curves (fixed SNR) and

the detection power at fixed false alarm rate. The estimation performance, evaluated us-

ing Monte-Carlo simulations, was compared to the theoretical CRLB. Finally this whole

setup was integrated within the OMP algorithm, whose performance was characterized

and compared with its original counterpart in the last section. The detection step pro-

vides a natural and efficient stopping criterion which was lacking to the algorithm. Our

modifications can also mitigate the complexity of traditional methods relying on dense

grid search by enabling sparser grids without creating gaps in the search space.
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CONCLUSION AND PERSPECTIVES

The techniques used in SISO and small-scale MIMO communications do not scale well

when increasing the number of antennas. As the envisioned sizes of antenna arrays used

for wireless access networks increase, dedicated signal processing algorithms that relies on

the angular properties of the channel have to be employed. To this end, we dedicated the

first part of this manuscript to propagation channel modeling and characterization while

the second part exploits those results for precoding and channel estimation.

Channel modeling and characterization

In this first part, we set up the ray-based (and cluster-based) channel model that

is used in all the other chapters of this manuscript. In particular, we used extensively

the well-known Saleh-Valenzuela stochastic channel model. We introduced the different

dimensions of the propagation which are studied in the manuscript (direction of departure,

direction of arrival, delay). Finally, we established the Kronecker product notations for

the vectorized channel matrix which are used throughout the manuscript.

Then we introduced the concept of channel capacity, that is an upper bound of the

achievable error-free data rate over a particular channel. In particular we studied the

variations of the SNR of a MIMO channel in a multipath environment by characterizing

analytically the channel hardening phenomenon. The originality of this contribution lies

on the underlying physically motivated ray-based channel. It enables to separate the

contributions from the antenna array shapes and the propagation channel properties.

Then we characterized by their first and second order statistics the properties of Saleh-

Valenzuela clusters. Those results were not new, however our proofs were much simpler

than the ones proposed in the state of the art. Then we search for an efficient way to

represent those clusters. As previously mentioned, when the array sizes increase from

small-scale MIMO up to the massive MIMO regime, dedicated signal processing have

to be employed. In order to draw a boundary between both regimes, we evaluated how

much coefficients are required to model the channel using a small-scale approach and a

massive MIMO approach that leverages the angular sparsity. The channel switches from
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the former to the latter regime at around NrNt > 10, which is quite small. Note that our

analysis did not account for the angular spread of clusters, thus providing a lower bound

on this shift. Such an analysis, including larger angular spreads, would be interesting to

assess the boundary between both regimes for larger antenna arrays.

Finally we studied a cluster estimation and separation process. It differed from the

state of the art on two main points. First it did not relied on heuristics to define the

clusters. It leveraged the Saleh-Valenzuela cluster model introduced in the previous chap-

ter. This enabled a theoretical analysis based on the Cramér-Rao bound of the cluster

parameters. Most state of the art techniques rely on two stage algorithms (information

concentration followed by cluster extraction). Our process did not necessarily relied on a

first projection step, but such a preprocessing step could still be employed to mitigate the

calculation complexity. The cluster estimation problem consisted into two subproblems

(cluster parameter estimation and cluster separation with known parameters) that were

linked to each other. The proposed technique employed an EM algorithm to estimate

jointly cluster parameters and clusters themselves from received samples.

As it is, this technique is limited to the frequency domain and extension to the an-

gular domains (transmit and receive) is discussed at the end of Chapter 4. Some other

interesting perspectives would include defining dedicated and efficient estimators for the

cluster parameters, finding the proper regularization for the EM maximization step and

defining a tailored detection criterion. It would also be useful to separate the LOS ray

from other clusters, as its characteristics (no delay or angular spread, very first ray in the

delay domain) are clearly specific.

Model exploitation for massive MIMO digital process-

ing

In order to design the precoder that maximizes the capacity, the channel state informa-

tion (CSI) has to be recovered at the transmitter. In FDD, the CSI is usually estimated at

the receiver and fed back to the transmitter on the uplink channel. Recently, researchers

investigated extrapolating the CSI from the uplink band to the downlink transmission

band. To this end, we investigated the efficiency of a frequency domain cluster extrapola-

tion process based on its known second order statistics (derived in the previous part). We

evaluated the extrapolation process efficiency with both the MSE and the RBG (directly

linked to the capacity) criteria. This is useful to assess the estimated channel reliability
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and make the decision to precode with this extrapolated CSI or fall back to a classical

feedback strategy.

An interesting perspective would consist in testing this technique using the output

of the cluster separation algorithm presented above. This could not be achieved in this

thesis as the cluster separation process is limited to the frequency domain and does not

include the angular domains.

Last, but not least, we studied some key aspects of the OMP-based millimeter wave

massive MIMO channel estimation algorithm. In particular we provided a novel stopping

criterion that works well at low SNR as well as a simplified specular ray estimator. Those

enhancements were integrated within the OMP channel estimation algorithm framework

developed at b<>com and compared with the former approach.

Testing this algorithm on real measured channels is the following step, to verify the

channel properties and the simulated algorithm behavior. This paves the way to an effi-

cient hardware implementation for real time processing within a millimeter wave MIMO

demonstrator.
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Appendix A

CHANNEL HARDENING MEASURE FOR

RAY-BASED MODELS

In this appendix we prove Formula (2.11). For the sake of simplicity, an intermediary

matrix A is introduced. It is defined by

[A]p,p′ =







2|γp,p′| cos(φp,p′) if p 6= p′

1 if p = p′

with φp,p′ = arg(β∗
pβp′γp,p′) the whole channel phase dependence and γp,p′ defined by Equa-

tion 2.2.2. ‖H‖2
F can be written using a quadratic form with vector β = [|β1|, · · · , |βP |]T

and matrix A, which can be decomposed into two terms I (identity) and J

‖H‖2
F

NtNr

= βT Aβ = βT β + βT Jβ

where J = A − I. E {J} = 0 so:

E {‖H‖4
F }

(NtNr)2
= E

{

‖β‖4
}

+ E

{

(βT Jβ)2
}

.

The ray independence properties yields the following weighted sum of coupled ray powers

E

{

(βT Jβ)2
}

=
∑

p6=p′

E

{

|βp|2|βp′|2
}

E

{

[J]2p,p′

}

.

Considering i.i.d. rays, all the weights E
{

[J]2p,p′

}

are identical. Using the weights nota-

tions introduced in (2.10) and the definition of the 4-norm yields the second order moment

E {‖H‖4
F }. We divide this result by the expectation (2.9) to derive the channel hardening

measure (2.11).
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Appendix B

SALEH-VALENZUELA

AUTOCORRELATION DERIVATION

B.1 Cluster channel gain

In (3.4) the phases of the complex gains βp,q are all independent resulting in E

{

βp1,qβ
∗
p2,q

}

=

δp1,p2E {|βp1,qβp2,q|}. The autocorrelation is then given by

Rcq(f, f ′) =
∞
∑

p=1

E

{

|βp,q|2 e−2πj(f−f ′)τp,q

}

.

The random process is Wide Sense Stationary (WSS). We set ∆f = f ′ −f . Then using

conditional expectation on τp,q and the exponential decay E

{

|βp,q|2
∣

∣

∣τp,q

}

= E {|β1,q|2} e−τp,q/γ

we get

Rcq(∆f) =E

{

|β1,q|2
}

∞
∑

p=1

Eτp,q

{

e(2πj∆f−1/γ)τp,q

}

. (B.1)

Then using a recurrence over p we can prove that

Eτp,q

{

e(2πj∆f−1/γ)τp,q

}

= λp−1 1
( 1

γ
+ λ − 2πj∆f)p−1

.

Equation (B.1) is a geometric series whose ratio r = 1
1

λγ
+1−2πj∆f/λ

always verify |r| < 1

so that the series converges to

Rcc(∆f) = E

{

|β1,q|2
}

(

1 +
λγ

1 − 2πjγ∆f

)

.

148



B.2 Saleh-Valenzuela channel gain

Still using the independence of the phases of the complex gains in (3.9), we get a

simplified expression. We find that this channel is also WSS. We obtain the expression

RH(∆f) =
∞
∑

q=1

∞
∑

p=1

E

{

|βp,q|2 e2πj∆f(τp,q+τq)
}

. (B.2)

Using a conditional expectation on the τp,q and the τq and using the double exponential

decay formula of the Saleh-Valenzuela channel E
{

|βp,q|2
∣

∣

∣τp,q

}

= e−τq/Γ e−τp,q/γ , we get an

expression similar to (B.1)

RH(∆f) =
∞
∑

q=1

∞
∑

p=1

E

{

e−(1/Γ−2πj∆f)τq e−(1/γ−2πj∆f)τp,q

}

.

Because the random variables τq and τp,q are independent, we can split the expectation.

Using the result of (B.1) on both parts, the equation can be rewritten as the product of

two geometric series yielding the result (3.10).

B.3 Variances of time domain coefficients

The variance of the time domain coefficient hn is

E {hnh∗
n} =

1
N2

f

Nf −1
∑

k1=0

Nf −1
∑

k2=0

E {H[k1]H[k2]∗} e−2πj(k2−k1)n/Nf .

Where we can recognize the autocorrelation E {H[k1]H[k2]∗} = RH,H [k2 − k1]. We use

the autocorrelation expression from (B.2) with ∆f = (k2 − k1)∆B

E {H[k1]H[k2]∗} =
∞
∑

q=1

∞
∑

p=1

E

{

|βp,q|2

e2πj(k2−k1)∆B(τp,q+τq)

}

.
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We insert this expression into the variance formula and get

E {hnh∗
n} =

1
N2

f

∞
∑

q=1

∞
∑

p=1

E

{

|βp,q|2

Nf −1
∑

k1=0

Nf −1
∑

k2=0

e2πj(k2−k1)∆B(τp,q+τq−n/(Nf ∆B))

}

where the sums equals D2
Nf

(π∆B(τp,q + τq − n/B)) resulting in

E {hnh∗
n} =

∞
∑

q=1

∞
∑

p=1

E

{

|βp,q|2

D2
Nf

(π∆B(τp,q + τq − n/B))
}

.

We introduce the continuous function defined for x ∈ R

f(x) =
∞
∑

q=1

∞
∑

p=1

E

{

|βp,q|2D2
Nf

(π∆B(τp,q + τq − x/B))
}

.

After a first Inverse Fourier Transform and substituting y = Bτp,q + Bτq − x

∞
∑

q=1

∞
∑

p=1

E

{

|βp,q|2 e2πjν(τp,q+τq)
}

∫ ∞

−∞
D2

Nf
(πy/Nf ) e−2πjνy/B d y.

The first line matches the autocorrelation function of the channel R(ν). The second

part is the Fourier Transform of the squared Dirichlet kernel. We retrieve the function f

using a FT:

f(x) =
∫ ∞

−∞
SH(τ)D2

Nf
(π(τB − x)/Nf ) d τ.

Applying this formula for x = n, we get the expression.
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Appendix C

CLUSTER SEPARATION

C.1 Cluster Fisher Information matrix

The structure of the Fisher Information matrix for a single cluster parametrized by

θq = [τq, Pq, γq, λq] is given as

I(τq, Pq, γq, λq) =

















Iτq Iτq ,Pq Iτq ,γq Iτq ,λq

IPq ,τq IPq IPq ,γq IPq ,λq

Iγq ,τq Iγq ,Pq Iγq Iγq ,λq

Iλq ,τq Iλq ,Pq Iλq ,γq Iλq

















where each coefficient is evaluated using the formula

Iθi,θj
= Tr

{

Σ−1 ∂Σ

∂θi

Σ−1 ∂Σ

∂θj

}

where Σ = ∆xΣf
q(τq, Pq, γq, λq)∆x

H + σ2
nI.

Assuming that ∆x∆x
H = I, the coefficients are evaluated as

Iθi,θj
= Tr

{

(

Σf
q(θq) + σ2

nI
)−1 ∂Σf

q(θq)
∂θi

(

Σf
q(θq) + σ2

nI
)−1 ∂Σf

q(θq)
∂θj

}

.

We evaluate the terms IPq and Iτq ,Pq .

Evaluation of IPq :

The derivative of matrix Σf
q(θq) according to Pq is given by

∂Σf
q(θq)

∂Pq

= Σf
q(τq, 1, γq, λq).

We set UηUH the eigendecomposition of Σf
q(τq, 1, γq, λq) (cluster with unit power).

The Fisher Information IPq is given as
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Iθi,θj
= Tr

{

(

Pqη + σ2
nI
)−1

η
(

Pqη + σ2
nI
)−1

η

}

=
Nf −1
∑

i=0

[η]2i
(Pq[η]i + σ2

n)2

Evaluation of Iτq ,Pq : The cluster covariance matrix can be rewritten as

Σf
q(τq, Pq, γq, λq) = ∆(τq)Σf

q(0, Pq, γq, λq)∆H(τq)

where [∆(τq)]k = e−2πjk∆f τq . The derivative of Σf
q(θq) according to τq is given as

∂Σf
q(θq)
∂τq

= Dτ ∆(τq)Σf
q(0, Pq, γq, λq)∆H(τq) − ∆(τq)Σf

q(0, Pq, γq, λq)∆H(τq)Dτ

= Dτ Σf
q(θq) − Σf

q(θq)Dτ

where [D(τ)]k = −2πjk∆f . The Fisher Information coefficient is given as

Iτq ,Pq = Tr
{

(

Σf
q(θq) + σ2

nI
)−1

Dτ Σf
q(θq)

(

Σf
q(θq) + σ2

nI
)−1

Σf
q(τq, 1, γq, λq)

}

− Tr
{

(

Σf
q(θq) + σ2

nI
)−1

Σf
q(θq)Dτ

(

Σf
q(θq) + σ2

nI
)−1

Σf
q(τq, 1, γq, λq)

}

Using the eigendecomposition, we have :

Iτq ,Pq = Tr
{

(

Pqη + σ2
nI
)−1

UHDτ Uη
(

Pqη + σ2
nI
)−1

η

}

− Tr
{

(

Pqη + σ2
nI
)−1

ηUHDτ U
(

Pqη + σ2
nI
)−1

η

}

= Tr
{

UHDτ Uη
(

Pqη + σ2
nI
)−1

η
(

Pqη + σ2
nI
)−1

}

− Tr
{

UHDτ U
(

Pqη + σ2
nI
)−1

η
(

Pqη + σ2
nI
)−1

η

}

As diagonal matrices commute, Iτq ,Pq = 0. From the same calculation we get IPq ,τq = 0.

C.2 Cramér-Rao matrix properties

In this annex we present a way to interpret geometrically the Cramér-Rao bound. The

vector parameter is denoted by θ. Using a practical estimator we obtain the estimate θ̂.
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The estimation error is characterized by its covariance matrix as

Cest = E

{

(θ̂ − E

{

θ̂
}

)(θ̂ − E

{

θ̂
}

)T
}

we assume that the estimator is unbiaised (E
{

θ̂
}

= θ). Then the Cramér-Rao Bound

CCR verifies for any estimator

Cest − CCR ≥ 0 (C.1)

Thus the eigenvalues of Cest −CCR are all positive. We interpret geometrically the re-

lations between pairs of parameters (θi, θj). The 2×2 covariance matrix between estimated

parameters (θ̂i, θ̂j) is given by the following principal submatrix of Cest as

Rest,i,j =





[Cest]i,i [Cest]i,j
[Cest]j,i [Cest]j,j





The Cramér-Rao corresponding covariance submatrix RCR,i,j is obtained from CCR as

RCR,i,j =





[CCR]i,i [CCR]i,j
[CCR]j,i [CCR]j,j





Using [7, (11), p. 73] and Equation (C.1), the eigenvalues of any principal submatrix

Rest,i,j − RCR,i,j are always positive. Thus all those matrices are definite positive. This

means that Rest,i,j ≥ RCR,i,j where ≥ denotes the partial semidefinite ordering on sym-

metric matrices (see [8]). From [8, (9), p. 8.10] we get Rest,i,j
−1 ≤ RCR,i,j

−1. For any 2D

point x in the parameter space,

xT Rest,i,j
−1x ≤ xT RCR,i,j

−1x (C.2)

with equality when x = 0 or Rest,i,j = RCR,i,j.

The parametric curve defined by xT Rest,i,j
−1x = 1 represents an ellipse in the x space

as depicted in Figure C.1. We use this representation to interpret the Cramér-Rao Bound

geometrically. On Figure 4.3 we represent the ellipses corresponding to both Rest,i,j (in

black) and RCR,i,j (in red).

The red ellipse ECR in 4.3 that corresponds to the Cramér-Rao bound is given by the

set of points x in the parameter space that verifies

xT RCR,i,j
−1x = 1.
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Figure C.1 – Ellipse representation of the covariance matrix of a distribution.

The black estimator ellipse Eest is given by the set of points x in the parameter space that

verifies

xT Rest,i,j
−1x = 1.

On the red ellipse ECR, the expression xT Rest,i,j
−1x is always inferior to 1 because of

Equation (C.2). Thus the ellipse ECR is inside Eest.

C.3 Gaussian posterior distribution

Let x be a centered complex distributed Gaussian vector characterized by its covari-

ance matrix Σx. The probability density function of x is given by

p(x) =
1

(2π)Nx|Σx| e−xHΣx
−1x .

Let y = Ax. The vector y is then also a centered complex distributed Gaussian vector

characterized by the covariance matrix Σy = AΣxAH . Its probability density function is

given by

p(y) =
1

(2π)Ny |Σy| e−yHΣy
−1y .
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We evaluate the probability density distribution of the vector x given the Gaussian

vector y, denoted by p(x|y). From Bayes’law we have

p(x|y) =
p(x, y)
p(y)

(C.3)

Note that the vector





y

x



 is given as





y

x



 =





A

I



x

This vector is zero-mean Gaussian distributed and characterized by the block-diagonal

covariance matrix

Σ =





AΣxAH = Σy AΣx

ΣxAH Σx





The covariance matrix Σ can be inverted blockwise as follows:

Σ−1 =





Σy
−1 + Σy

−1AΣxS−1ΣxAHΣy
−1 −Σy

−1AΣxS−1

−S−1ΣxAHΣy
−1 S−1





where S = Σx − ΣxAHΣy
−1AΣx denote the Schur complement of Σ. We can rewrite

the distribution of





y

x



 using the block diagonal decomposition of the inversed covariance

matrix as

p(y, x) =
1

(2π)Nx+Ny |S||Σy|
e−xHS−1x+yHΣy

−1AΣxS−1x+xHS−1ΣxAHΣy
−1y−yH(Σy

−1+Σy
−1AΣxS−1ΣxAHΣy

−1)y

(C.4)

In order to evaluate the posterior probability density of Equation (C.3), we divide the

joint distribution given by Equation (C.4) by p(y) which is recalled as

p(y) =
1

(2π)Ny |Σy| e−yHΣy
−1y .
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The posterior distribution of x given y is obtained as

p(x|y) =
1

(2π)Nx|S| e−(x−ΣxAHΣy
−1y)HS−1(x−ΣxAHΣy

−1y)

This is a Gaussian distribution parametrized by its mean vector and covariance matrix











µx|y = ΣxAH(AΣxAH)−1y

Σx|y = S = Σx − ΣxAH(AΣxAH)−1AΣx

156



Appendix D

RAY DETECTION AND ESTIMATION

D.1 Likelihood ratio

The detection problem consists in evaluating, based on the received samples y which

hypothesis Hsig (the received samples contains the signal of interest) or Hnoise (the received

samples only contains noise) is the most probable. In each case, the model for y is given

as










Hsig : y = Xth(t) + n

Hnoise : y = n

In order to simplify the evaluation, we assume that the gain β is complex centered Gaus-

sian distributed as β ∼ CN (0, P ). Otherwise dealing with the unknown phase arg(β) is

difficult.

Thus the probability density function of y under hypothesis Hsig is

p(y|t) =
1

(2π)Nt|XtΣ(t)Xt
H + σ2

nI| e−yH(XtΣ(t)Xt
H+σ2

nI)−1y

= K e−zH(Σ(t)+σ2
nI)−1z

where Σ(t) = NtPet(t)et
H(t) is the channel covariance matrix and z = Xt

Hy. The

probability density function of y under hypothesis Hnoise is

pHnoise
(y|t) =

1
(2πσ2

n)Nt
e

− ‖y‖2

σ2
n .

According to the Neyman-Pearson lemma, the most powerful test is given by the

likelihood ratio r, given as

r(z|t) =
pHsig

(y|t)
pHnoise

(y)
=

(σ2
n)Nt

|XtΣ(t)Xt
H + σ2

nI| e
−zH(Σ(t)+σ2

nI)−1z+
‖z‖2

σ2
n ≶ γ
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where γ is a predefined threshold. If r(z|t) > γ then Hsig is the most probable hypothesis.

Otherwise if r(z|t) < γ, Hnoise is the most probable hypothesis. This detection criterion

can be rewritten using the log-likelihood ratio as

ln (r(z|t)) = −zH(Σ(t) + σ2
nI)−1z +

‖z‖2

σ2
n

.

= −zH(PNtet(t)et
H(t) + σ2

nI)−1z +
‖z‖2

σ2
n

.

Using the fact that (PNtet(t)et
H(t) + σ2

nI)−1 = − P Nt

(P Nt+σ2
n)σ2

n
et(t)et

H(t) + 1
σ2

n
I, we obtain

the matched filter detector expression

|yHXtet
∗(t)|2 ≶ γ′

where γ′ is a modified predefined threshold.

D.2 Convolution of the likelihood with a kernel func-

tion

We consider the same detection problem as in Annex D.1 that consists in evaluating

which hypothesis Hsig or Hnoise is valid based on the received samples y. In each case, the

model for y is given as










Hsig : y = Xth(t) + n

Hnoise : y = n

In order to simplify the evaluation, we assume that the gain β is complex centered Gaus-

sian distributed as β ∼ CN (0, P ). Otherwise dealing with the unknown phase arg(β) is

difficult.

As well as in Annex D.1, the probability density function of y under hypothesis Hsig

is

p(y|t) =
1

(2π)Nt|XtΣ(t)Xt
H + σ2

nI| e−yH(XtΣ(t)Xt
H+σ2

nI)−1y

= K e−zH(Σ(t)+σ2
nI)−1z

where Σ(t) = NtPet(t)et
H(t) is the channel covariance matrix and z = Xt

Hy. The
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probability density function of y under hypothesis Hnoise is

pHnoise
(y|t) =

1
(2πσ2

n)Nt
e

− ‖y‖2

σ2
n .

The difference with Annex D.1 resides in the now unknown direction of departure t

that lies in the interval [−1, 1]. In order to mitigate this effect, we will perform several

tests on a subdivision of [−1, 1].

We wish assess whether the ray lies or not in the sub-interval tj < t < ti+j centered

on t̄j, of width ∆t. The likelihood ratio is then given as

r(y, tj < t < tj+1) =
pHsig

(y|tj < t < tj+1)

pHnoise
(y)

=

∫ tj+1

tj
pHsig

(y|t)dt

pHnoise
(y)

=
∫ tj+1

tj

r(z|t)dt.

The likelihood ratio could be rewritten as

r(y, tj < t < tj+1) =
(σ2

n)Nt

|XtΣ(t)Xt
H + σ2

nI|
∫ tj+1

tj

e
−zH(Σ(t)+σ2

nI)−1z+
‖z‖2

σ2
n dt ≶ γ

Using the fact that (PNtet(t)et
H(t) + σ2

nI)−1 = − P Nt

(P Nt+σ2
n)σ2

n
et(t)et

H(t) + 1
σ2

n
I, we obtain

the expression

r(y, tj < t < tj+1) = K
∫ tj+1

tj

e
P

(P Nt+σ2
n)σ2

n
zHet(t)et

H(t)z
dt ≶ γ

As this reasoning will be useful later on, we state the following general integration

problem

f(y) =
∫ ∞

−∞
p(t − t̄) e

P

(P Nt+σ2
n)σ2

n
zHet(t)et

H(t)z
dt

The Taylor decomposition of the exponential function is given by

e−x =
∞
∑

k=0

(−1)k xk

k!
.

We only use the first order approximation. The modified likelihood takes the form

f(y) ≈ K0 + K ′
Nt
∑

k,l=1

[zH ]k[z]l

∫ ∞

−∞
p(t − t̄) e2πj(l−k)

‖~atx‖t

λ dt.

where we can recognize the Fourier Transform of the kernel function p :
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Table D.1 – Relation between the kernel functions and the Qaudratic form matrix R(ptx)
Kernel function Kernel formula R(ptx)

Rectangle p∆t
(t) =

1[−∆t/2,∆t/2](t)

∆t
[R(p)]k,l = Nt sinc(2π∆t(l − k) ‖~atx‖

λ
)

Piecewise p∆t
(t) = −(t − ∆t/2)(t + ∆t/2) [R(p)]k,l = Nt

2

(π(l−k)
‖~atx‖

λ )3

Parabolic t ∈ [−∆t/2, ∆t/2]

(

∆t(π(l − k) ‖~atx‖
λ

) cos
(

∆t

2 (π(l − k) ‖~atx‖
λ

)
)

−2 sin
(

∆t

2 (π(l − k) ‖~atx‖
λ

)
)

)

f(y) ≈ K0 + K ′
Nt
∑

k,l=1

[zH ]k[z]lφp

(

(l − k)
‖~atx‖

λ

)

e2πj(l−k)
‖~atx‖

λ
t̄

The text statistic can be rewritten in a more compact way using a quadratic form as

zH∆(t̄)R(p)∆∗(t̄)z ≶ γ′

where γ′ is another threshold value.

In Chapter 6, we consider two types of kernels, described in Table D.1. The rectangle

one is used for the detection problem introduced before. The same calculations using the

piecewise parabolic kernel are useful in Section 6.4.3. The function that is optimized is

then fopt(t) = zH∆(t)R(p)∆∗(t)z where R(p) is defined using the piecewise parabolic

kernel.

For implementation efficiency, the matrix R can be decomposed into eigencomponents

as

R =
Nt
∑

k=1

λkrkrk
H

The test statistic function can then be rewritten as

Nt
∑

k=1

λk|yHXt(rk ⊙ et
∗(t0))|2 ≶ γ′ (D.1)

using an eigenvector decomposition of matrix R. Most of the eigenvalues are non-significant

and the sum (D.1) can be truncated. It actually consists in a weighted sum of correlators,

windowed by the real vectors rk.
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Titre : Utilisation de modèles par rayons pour les systèmes multi-antennes massifs : Analyse 
statistique et traitements numériques 

Mots clés : MIMO, Modèles par rayons, Saleh-Valenzuela, Séparation de clusters 

Résumé : Le passage des systèmes MIMO à 
faible nombre d’antennes vers les systèmes 
multi-antennes massifs entraîne un changement 
de paradigme dans les traitements numériques 
mis en œuvre. En effet la complexité des 
algorithmes de traitement du signal utilisés 
classiquement augmente avec les nombres 
d’antennes. D’autre part les larges réseaux 
d’antennes bénéficient d’une résolution 
angulaire plus précise. Il devient alors 
intéressant de mettre à profit la dimension 
angulaire de la propagation dans les traitements 
pour en maîtriser les performances et la 
complexité algorithmique. Dans cette thèse, 
nous avons dans un premier temps étudié et 
caractérisé les canaux de propagation multi- 

-trajets, avec une attention particulière sur le 
modèle Saleh-Valenzuela. Cette étude 
préliminaire nous a permis de définir un modèle 
simplifié de cluster. A partir de ce modèle, nous 
avons étudié d’un point de vue théorique le 
problème de séparation de clusters et avons 
proposé un nouvel algorithme. Nous avons 
aussi utilisé ce modèle pour étudier les limites 
de l’extrapolation de clusters pour la 
détermination du précodage en FDD. Nous 
avons enfin proposé des améliorations à un 
algorithme d’estimation de canal MIMO massif, 
basé sur la technique OMP qui utilise la 
structure creuse des canaux de propagation en 
ondes millimétriques. 
 

 

Title :  A ray-based approach for massive MIMO systems: Statistical analysis and digital processing 

Keywords :  MIMO, Ray-based model, Saleh-Valenzuela, Cluster separation 

Abstract : Moving from small-scale MIMO to 
large scale massive MIMO systems leads to a 
paradigm shift in digital processing techniques. 
Indeed, the complexity of classical signal 
processing algorithms scales with the antenna 
array sizes, so does the system angular 
resolution. It is then interesting to take 
advantage of the angular dimension properties 
of the propagation in the processing to 
constraint the algorithmic complexity while 
controlling the performance. In this thesis, we 
first studied and characterized multi-path 
propagation 

channels, with due consideration to the Saleh-
Valenzuela model. This preliminary study 
provided us with a simplified cluster model. 
From this model, we studied theoretically the 
cluster separation problem and proposed a 
novel algorithm for this purpose. We also 
applied this model to assess the limits of 
cluster extrapolation for FDD precoding. We 
finally proposed enhancements to OMP-based 
Massive MIMO channel estimation that 
leverages the sparsity of millimeter wave 
channels. 
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