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Titre : Prédiction de l’ambiance vibratoire d’un avion par apprentissage automatique
Mots clés : Aéronautique, vibrations des structures, essais en vol, méthode orientée données,apprentissage automatique
Résumé : L’ambiance vibratoire correspondaux sollicitations haute fréquence subies parles équipements embarqués durant un vol. Cessollicitations peuvent être de plusieurs types(aléatoires plus ou moins large bande, sinu-soïdales) et avoir plusieurs origines (interac-tion avec champs aérodynamiques, machinestournantes, etc.). Leur étude permet de spé-cifier les niveaux vibratoires que les équipe-ments doivent être capables de supporter pourgarantir un bon fonctionnement sur la duréede vie de l’avion. Les moyens de simulationusuels du comportement dynamique de l’avionne permettent pas d’être prédictif dans la plagede fréquence à considérer, qui s’étend jusqu’à2000 Hz. Des essais en vols sont réalisés, gé-nérant un important volume de données accé-lérométriques à haute fréquence d’échantillon-nage (5000 Hz), accompagnées desmesures dedifférents paramètres représentant l’état et l’at-titude avion à tout instant.L’objectif de cette thèse est la mise en placede modèles permettant de prédire l’ambiancevibratoire subie par un équipement en vol surun avion au moyen de méthodes d’apprentis-sage, et ce à partir d’un ensemble de para-mètres avion. Pour cela, la thèse est structuréeen trois parties : l’exploitation et la représenta-tion des données, la prédiction en tout point devol, et la prédiction en tout point d’une struc-ture avion.La première étape est de mettre en oeuvredes algorithmes permettant l’extraction et letraitement des données d’essais à très hautefréquence d’échantillonnage. Un accent est missur la représentation des données, avec la pro-position d’une méthode de séparation du large

bande et des raies cinématiques pouvant secombiner à des méthodes de réduction orien-tées métier.La deuxième étape est de développer desmodèles de régression pour prédire les niveauxvibratoires mesurés à partir des paramètresavion. Différents modèles sont proposés pourdifférentes problématiques de prédiction (raiescinématiques au sol, large bande enphases sta-tionnaires, extension au transitoire), et une at-tention particulière est portée à l’évaluation descapacités de généralisation de ces méthodes,offrant de bonnes performances. Une étude del’interprétabilité de certainsmodèles est propo-sée en se basant sur la méthode SHAP, prove-nant de la théorie des jeux coopératifs.La troisième étape consiste en la générali-sation des prédictions à tout point d’une struc-ture avion. Un modèle numérique réduit esttout d’abord utilisé avec l’objectif d’analyserles chemins de propagation des vibrations, etun algorithme itératif permettant d’identifierle chemin principal est proposé. Enfin, un al-gorithme de traitement du signal sur graphepermettant d’inférer une structure à partir demesures spatiales ponctuelles est évalué. Lesstructures apprises sont cohérentes avec lesconnaissancesmétier et offrent de bonnes per-formances en reconstruction de signaux.Les outils proposés par cette thèse ont desapplications aussi bien auprès des essais envol que pour l’aide à la conception. À terme,ils pourraient servir de base pour développerdesméthodes d’hybridation demodèles numé-riques et de données expérimentales, et ainsipermettre la prédiction dans un avion completencore en phase de conception.



Title: Prediction of aircraft vibration environment using machine learning
Keywords: Aeronautics, structural vibrations, flight testing, data-driven, machine learning
Abstract: During a flight, on-board equip-ment are subjected to a high frequency vibra-tion environment and must meet their nomi-nal performance. The excitations can be of sev-eral types (broadband random, sinusoidal) andhave several sources (interaction with aerody-namic fields, rotating machinery, etc.). Theirstudy allows to specify the vibration levels thatequipment must be able to withstand anddemonstrate that they will continue to oper-ate satisfactorily throughout their life. The cur-rent means to simulate an aircraft’s dynamicbehavior do not allow useful predictions in thefrequency range of interest, which extends upto 2000 Hz. In consequence, flight tests areconducted, generating a large volume of highsampling frequency data from accelerometers(5000 Hz), along with measurements of variousparameters representing the state and attitudeof the aircraft at any given time.The objective of this thesis is to establishmodels for predicting the vibrational environ-ment experienced by equipment in flight onan aircraft using machine learning methods,based on a set of aircraft parameters. Toachieve this, the thesis is structured into threeparts: data extraction and representation, pre-diction at any point in the flight, and predictionat any point within an aircraft structure.The first step is to implement algorithmsfor the extraction and processing of data gen-erated at a high sampling rate. Particular at-tention is paid to data representation, and amethod for separating the broadband compo-

nent from kinematic lines is proposed, whichcan be combined with field-specific reductionmethods.The second step involves the implemen-tation of regression models to predict mea-sured vibrational levels from aircraft parame-ters. Various models are proposed for differ-ent prediction challenges: kinematic lines dur-ing ground tests, broadband levels during sta-bilized flight phases, and extension to unsteadyflight phases, with a particular focus on eval-uating the generalization capabilities of thesemethods. Good performances are obtainedand analyzed using the SHAP method, which isbased on interpretability concepts from gametheory.The third step involves generalizing pre-dictions to any point within an aircraft struc-ture. Initially, a reduced numerical model isused to analyze vibration propagation paths,and an iterative algorithm for identifying themain path is proposed. Then, a Graph SignalProcessing algorithm for inferring a structurefrom point-wise spatial measurements is eval-uated. The learned structures align with field-specific knowledge and demonstrate good per-formance in signal reconstruction.The tools introduced in this thesis have ap-plications in both flight testing and aircraft de-sign. In the long term, they could serve as afoundation for developing hybridmethods thatleverage numerical models and experimentaldata, thereby enabling meaningful predictionsfor an entire aircraft from the design phase.
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Nomenclature
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= Equality
≜ Definition
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← Assignment

Vectors and matrices

a Scalar
a Vector
A Matrix
Aij , Ai:, A:j (i, j)-entry, i-th row, j-th column of matrixA
aT,AT Transpose of vector a, transpose of matrixA
A∗ Conjugate transpose, or hermitian transpose, of matrixA
tr( · ) Trace operator
diag (a) Diagonal matrix containing the vector a
∥a∥p ≜

(∑n
j=1 |aj |

p
)1/p

ℓp-norm of a ∈ Rn, ℓ1 is the absolute norm, ℓ2 the Euclidean norm
∥A∥F ≜

√∑
i,j A

2
ij =

√
tr(AA∗) Frobenius norm of matrixA

⟨ · , · ⟩ Inner product
⊙ Hadamard product, or element-wise product
1,0 Constant unitary or null vector
I Identity matrix

Signal processing

β Spectral resolution
u Temporal domain signal
s Frequency domain signal
s̃ Reduced frequency representation of s
s(f) Value of s at frequency f
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s[f1, f2] Values of s in the frequency interval [f1, f2]
b,k Broadband and kinematic lines spectra of s
κ
(h)
i RMS values of kinematic line at point i for harmonic h
γ
(h)
ij Kinematic Lines RMS Ratio (KLR) from j to i at harmonic h

Machine Learning

D = {(xi,yi)}1,...,m Dataset ofm labeled datapoints
x,y, ŷ Input, output, and predicted output
ϕ, ϕθ,θ Model, parameterized model, parameters
C(θ) Cost function
X ⊂ Rn Input space of dimension n
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Φ,Θ Model space, parameters space

Graph

G = {V, E ,W} Graph with nodes set V , edges set E , and weights setW
L,D,W Laplacian, degree, and weighted adjacency matrix of G

Numerical models

Z,H Equivalent impedance matrix, Transfer Function matrix
X,F Displacement matrix, Force matrix
TG,TD Global transfer matrix, Direct transfer matrix
H Hilbert space
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Introduction

Every aircraft passenger has already experienced in-flight or ground vibration. The prediction and
mitigation of aircraft vibration is one of the critical aspects of passengers’ comfort. In addition, aircraft
vibration can have a significant impact on the safety and durability of the aircraft and its equipment
[Vib12]. Therefore, accurate prediction of the vibration environment of an aircraft is essential for
ensuring safe and efficient operations.

Vibration environment is a term used to describe the 10-2000 Hz dynamic loads experienced by
the structure and on-board equipment during the use of the aircraft. They are generated by various
external excitations, such as aerodynamic field interactions, or internal forces from rotating machin-
ery, such as engines and pumps. Specifying the vibration environment of an aircraft must be done
at an early stage in the design for civil and military aircraft and consists of providing the functional
and fatigue levels that the equipment must withstand. While specifications must be given in the early
design phase of the aircraft, the actual vibration environment can only be determined during flight
testing, which occurs late in the development program.

The vibration environment is measured using uniaxial or triaxial accelerometers with a high sam-
pling rate, here set at 5000 Hz. Located at the root of equipment assembly, they are connected to
an FTI (Flight Test Instrumentation), which makes it possible to measure all the necessary informa-
tion on the state of the aircraft at any given time, referred to from now as general parameters. The
signals measured by the accelerometers are usually analyzed in terms of their frequency spectrum
using PSDs (Power Spectral Densities).

There is currently no reliable and comprehensive approach to evaluate the dynamic behavior of
a complete aircraft over the full range of frequencies considered, which extends up to 2000 Hz. As
a result, specifications are based on existing standards and the experience of previous aircraft. This
can lead to two negative outcomes: equipment overdimensioning, which has a negative impact on
the overall aircraft mass, or equipment being lately qualified to demonstrate the required levels.

More precise specifications would require overcoming current computational limitations and de-
veloping reliable and comprehensive numerical models of the entire aircraft. Various models of the
dynamic environment of an aircraft have been developed for different frequency ranges, but none
are suitable for our specific needs.

In the low-frequency domain, current techniques focus on a modal behavior to extract responses
localized in frequency. Deterministic techniques such as the Finite Element Method [ZTZ10] or the
Boundary Element Method [BB94] are used. In practice, these methods are limited to low frequen-
cies because they require a very fine discretization in space and time, and a high degree of interpo-
lation to remove numerical pollution and dispersion effects [DBB99]. In the high-frequency domain,
the interest is in describing a global behavior in terms of energy because the modal overlap is high.
Statistical Energy Analysis [LM62, LDD95, Smi62, LB04, CLK05] is well suited for this frequency domain
because it models the vibration energy transfers across partitions (subsystems) of a structure. The
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INTRODUCTION
energy flow between these partitions is described using a set of linear equations for the input, stor-
age, transmission, and dissipation of energy with a set of coefficients that needs to be determined.
The problem is that the response is averaged over frequency and space, and is hence not suitable
for local characterization. In the mid-frequency range, neither low- nor high-frequency methods are
suitable: low-frequency methods become too costly due to the required high mesh refinement to
reduce the numerical pollution effect, and high-frequency methods do not provide local responses.
Mid-frequency methods can be divided into hybrid approaches (combining low- and high-frequency
methods) and Trefftz approaches (approximating the solution as a linear combination of shape func-
tions that satisfy the equilibrium equations a priori), see an overview in [DOP12]. However, further
work is required to make them applicable in a fully industrial context.

Prediction tools could benefit from the considerable wealth of information obtained in flight test
data, which is typically used only in the latest design phase. The challenge of this thesis is to determine
how to integrate this information into a predictive tool. Some of the issues to be addressed include
data compression, feature extraction, and robust modeling. Machine learning offers a wide variety
of techniques to deal with these different issues.

Among machine learning models, Artificial Neural Networks (ANNs) have been proved successful
in predicting vibrations in a wide variety of applications such as aerodynamics, mining, or civil engi-
neering. In the temporal domain, Long Short-Term Memory (LSTM) has been shown to be very effec-
tive in predicting the response of complex mechanical systems to a broadband excitation [SCC+22,
NB18]. It was also able to predict excess vibration events for engine aircraft [EWHD16]. The LSTM has
also been used to predict the vibration environment of electric cars and was found to outperform
classical ARMAX (Auto Regressive Moving Average with eXternal inputs) models [DGD+20]. In the fre-
quency domain, ANNs have been shown to successfully predict structural stress [WOdS20]. They have
also been applied on turbulent flows to predict noise levels from limited pressure measurements in
jets [TGRB20] and at the trailing edge of an airfoil [AF21]. Other applications of ANNs include the pre-
diction of ground vibration due to blasting for mining applications [Sin04], where their performances
were found to be superior to that of conventional regression [BP20]. ANNs have also been found to
successfully determine ground vibration levels due to the passing of oncoming trains [PDCFN18].
The end goal is to efficiently leverage test data and machine learning models to be able to predict

the vibration environment of a complete aircraft, as early as its design phase. To achieve this goal,
the following steps are identified:

• The first step is to be able to extract and analyze the voluminous vibration environment data
generated at the Flight Test Center. Suitable data representation and reduction methods must
be implemented, along with practical tools for incorporating domain rules.

• The second step is to develop a methodology to predict vibration spectra at any point in the
flight domain (or feature space for ground tests) using the previously shaped data andmachine
learning models. This has applications in anomaly detection, where a model is compared to
measurements, as any discrepancy between the twowould raise a flag and require the attention
of an engineer. Another application is to optimize flight testing by identifying flight points that
maximize the information contribution.
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INTRODUCTION
• The third step is to extend the prediction to any point in the structure of the aircraft, even
non-instrumented ones where there is no accelerometer. This requires finding an appropriate
structural representation. An application of such amethod would be in FTI optimization, where
the accelerometer placement is chosen to maximize the information contribution.

One perspective is to extend the prediction to a new aircraft. The general idea is to find an equiv-
alent representation that can be tuned based on domain knowledge. It could be done without ex-
perimental data on the new aircraft to have rough estimates that can then be updated as the first
tests are conducted. This method could help in the design phase by raising early flags about possible
vibration environment problems and in the specification process.
To answer these challenges, the manuscript is organized around three parts, each of them sum-

marized at their end. Part I focuses on data extraction and representation. Chapter 1 first introduces
the vibration environment, and Chapter 2 details the algorithms implemented for dataset genera-
tion. As it uses several data representation techniques, they are introduced in Chapter 3 and then
applied in Chapter 4 on flight test data. Part II tackles the problem of prediction through the flight
domain. In Chapter 5, supervised learning tools are presented, with a focus on regression methods.
They are then applied in Chapter 6 to predict the values of kinematic lines, generated by isolated and
localized sources, and in Chapter 7 to predict the values of broadband levels. Part III is about ex-
tending the prediction through a complete aircraft structure. To this end, classical numerical models
are first introduced in Chapter 8, along with model reduction through Dynamic SuperElements and
Advanced Transfer Path Analysis. These tools are then applied in Chapter 9, where vibration prop-
agation paths are identified using a combination of previously introduced tools and a new sorting
algorithm. Finally, Chapter 10 presents graph theory and Graph Signal Processing before applying
a graph learning method that allows to learn the underlying structure of data from measurements
alone.

This thesis aims to explore innovative ways to answer this problem through a collaboration with
Dassault Aviation. As of the industrial collaboration, a focus is made on the methodology and all
figures are anonymized, although a maximum of information is kept.
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1 - Vibration environment
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This part focuses on implementing the necessary tools to enable a predictive data-driven frame-
work for vibration environment prediction. To begin, the vibration environment is introduced in this
chapter. Then, the methodology developed to generate a reduced-order dataset is presented in the
following chapters.

The vibration environment corresponds to the 10–2000 Hz dynamic loads undergone by the struc-
ture and on-board equipment during the use of the aircraft. Studying the vibration environment
allows to specify the vibrational levels that equipment must be able to withstand throughout their
life while continuing to operate satisfactorily. It is crucial to ensure the performance and mechanical
strength of equipment [Woo72], and must be done at an early stage of the design for both civilian
and military programs. The work presented in the following chapters focuses on civilian applications.

This chapter first presents the different sources of the vibration environment in Section 1.1. Equip-
ment specifications are then introduced in Section 1.2, and flight tests to adjust them are detailed.
A side note is given on additional ground tests. Then, the equipment substantiation procedure is
presented in Section 1.3, with its different tests and an example of a qualification protocol. Finally,
several spectral representations used to study the vibration environment of an aircraft are detailed
in Section 1.4

1.1 . Vibration sources
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CHAPTER 1. VIBRATION ENVIRONMENT
Vibration can originate from external forces, such as aerodynamic field interactions, or from the

aircraft itself, such as with any rotating machinery (engines, pumps, and turbines) or on-board sys-
tem. As reported in [HKM+01], examples of internal excitations include an imbalance of rotating en-
gine parts; misalignment in hardware assembly; additionalmagnetic, aerodynamic, or hydro-dynamic
forces; etc. As illustrated in Figure 1.1, different vibration sources give rise to distinct responses,
distinguishable in the frequency domain. Circled in red are what are called kinematic lines in this
manuscript, originating from rotating machinery and detailed hereinafter. An important part of this
manuscript is based on the idea of splittingmeasured spectra between a broadband component and
a collection of local excitations, the kinematic lines, see Section 4.1. Here, vibration sources of three
types are detailed: aerodynamic sources, engine vibrations, and shocks.

(a) Aerodynamic field

Engine
Mount Fuselage

(b) Engines and rotating machinery

(c) Kinematic lines identified in red
Figure 1.1: Measured vibrations are the result of various excitations. This illustration shows the influ-ence of aerodynamic field interaction and engines on a spectrum. Figures 1.1a and 1.1b are courtesyof Dassault Aviation.

1.1.1 . Aerodynamic sources
The interaction1 between the aircraft skin and the aerodynamic field generates vibrations during

flight. These vibrations are broadband as they span the entire considered frequency domain. Their
level depends on the aircraft’s state and attitude, its configuration, and the flight point. Maneuvers
also generate different levels than stabilized flight.

1Only the effect of the aerodynamic field on the aircraft skin is considered in this thesis.
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1.2. EQUIPMENT GENERAL SPECIFICATIONS
In addition to broadband levels, some particular aerodynamic effects can produce noticeable vi-

brations in some cases and for specific conditions:
• Buffeting is an aerodynamic excitation that can originate either from turbulence in the flow
stream or the dynamic of an aerodynamic shock around the structure. Generally, it occurs at
high angles of attack during maneuvers, for which the airflow is unsteady and turbulent. The
generated vibrations are typically rather broadband, between 10 and 50 Hz. They can induce
strong levels of vibrations if the excitation frequency is close to an eigenfrequency of the struc-
ture due to structural resonances.

• An aerodynamic whistle can happen when an airflow stream encounters a peculiar geometry,
creating a whistle phenomenon. While it appears only for specific aerodynamic conditions, it
can produce very high vibration levels. The frequency of the phenomenon depends on the
airflow speed and the local external geometry.
1.1.2 . Engines vibrations

Aircraft engines and all rotating machinery (pumps, turbines, other engines) are made of several
rotating parts. The imbalance of these parts creates vibrations at their own rotation frequency, as well
as at specific harmonics. These are narrow band levels with a variable frequency with respect to the
rotating speed of source equipment. As a result, they are named "kinematic lines" in this manuscript,
as they are spectral lines moving in frequency. They are identified in Figure 1.1, encircled in red.

More generally, all rotating machinery in the aircraft produces such levels. Depending on the
aircraft considered, the following equipment are examples of vibration sources generating kinematic
lines: the APU (Auxiliary Power Unit), the various EDP (Engine Driven Pumps), or the RAT (Ram Air
Turbine).

1.1.3 . Shocks
In addition to aerodynamic and rotating machinery, several shocks can occur. While they are

not studied in the manuscript, they are essential to specify the vibration environment of an aircraft.
Landing is an example of shock that can introduce high levels loads on the landing gears, transmitted
to the whole structure. Levels depend on various parameters such as the aircraft configuration, mass
and attitude, the landing velocity and position, the pneumatics pressure, and the runway surface
quality. The numerous combinations of these parameters add to the complexity of specification-
making. If a modal coupling occurs between the landing gear and the equipment, high levels can be
reported.

1.2 . Equipment General Specifications

The purpose of specifications is to verify the capacity of equipment to withstand the vibratory
environment and operate correctly during their life profile [DO110, MIL08, GAM87].

Specifying the vibration environment of equipment consists of providing the functional and fa-
tigue levels that equipment should withstand. The functional test represents the worst-case vibra-
tion (or envelope of worst-case conditions) of the environmental life cycle, whereas the fatigue test
subjects equipment to accelerated fatigue levels, representative of an entire life in terms of damage.
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CHAPTER 1. VIBRATION ENVIRONMENT
Qualification tests are then performed on equipment to demonstrate that they meet the require-

ments. The substantiation process is detailed in the next section. Non-compliant equipment would
have to be modified or redesigned. Determining the vibration environment levels is done in the early
design phase of the aircraft but can only be verified during flight tests.

1.2.1 . Preliminary and standard specifications
The purpose of preliminary specifications is to allow the manufacturer to be able to design and

produce an equipment that fulfills both regulatory2 and functional requirements. They must be well-
designed to comply with standards while fulfilling feasibility and cost criteria. On civil aircraft, equip-
ment are often COTS (Commercial off-the-shelf). They are qualified to standards and do not require
tailoring as the return on experience is satisfactory. On military aircraft, the vibration environment
can be specific and severe; therefore, tailoring is of great interest.

More generally, for a new aircraft, preliminary specifications are elaborated using the knowledge
of similar aircraft used for similar missions. Standard specifications should be used if no aircraft
is similar enough [MIL08]. Standard specifications exist to cover all the types of vibration sources
presented before in Section 1.1.

For in-flight vibrations, in-zone specifications are considered. These are obtained by extrapolating
the envelope of levels measured by several accelerometers. A safety factor is also taken into account.
In the case of a new aircraft with no existing area specifications, experience from previous aircraft
is used. Finally, equipment on suspending frame have specific specifications, as vibration isolators
attenuate high-frequency vibration inputs to equipment but add low-frequency resonances to the
dynamic system.

1.2.2 . Flight-adjusted specifications
Standard specifications are more severe than each individual equipment levels, as they are ex-

trapolated levels. They can be tailored thanks to flight-adjusted specifications [GAM87] [MIL08].
To do so, a dedicated FTI (Flight Test Instrumentation) is required, and uniaxial or triaxial ac-

celerometers are used to measure the levels of equipment. They are located on a rigid structure
as near as possible to the fixation points to avoid measuring acceleration due to local modes. More-
over, the measure should be done on a stationary signal for as long as possible. More details on this
part are below in Section 1.4. Along with vibration measurements, some other aircraft quantities are
measured, giving information about the state and attitude of the aircraft: altitude, control surface
position, engine revolutions per minute, etc. All of these parameters that help to describe the gen-
eral state of the aircraft are called general parameters in this manuscript. These parameters are
acquired through various sensors at different sample rates.

The whole flight domain should be covered during environmental data-gathering flights. On se-
lected flight points, levels and maneuvers3 are performed. If the whole flight domain cannot be cov-
ered, levels should be extrapolated to its limits. In the case of military aircraft, the choice of loads
(e.g., fuel tank position) can heavily change the vibration levels. As environmental data-gathering
flights cannot be performed in each possible configuration, the worst configurations are selected

2Regulatory requirements can be standards such as the DO-160 [DO110].3Examples of maneuvers include rolls, speed brake extension, snubber stop, and side-slip.
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1.2. EQUIPMENT GENERAL SPECIFICATIONS
from knowledge and experience.

From the gathered data, significant phenomena generating levels are identified and understood.
Then, adjusted specifications are produced. An example of flight tests conducted to assess the vi-
bration environment of an aircraft is presented in [CFB+02], where flight vibration data from a NASA
F-15B equipped with a Flight Test Fixture II is compared to flight-qualification random vibration test
standards.

1.2.3 . A note on additional ground vibration tests
In addition to the flight tests presented before, several additional vibration tests can be performed

on the ground. They are not used to produce specifications or to qualify equipment but are presented
as they provide helpful information. An illustration of 3 tests presented below is given in Figure 1.2

(a) Impact hammer test (b) GVT (Ground Vibration Test)
��
��
�����	��
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��

Throttle

(c) Engine vibration survey test
Figure 1.2: Illustration of different vibration tests performed on the ground.

• An impact hammer test or tap test, see Figure 1.2a, consists of using a hammer on the struc-
ture to measure its response. As the impact hammer is able to measure the impact force on
the structure under test, it allows the computation of a Frequency Response Function (FRF).

• AGVT (Ground Vibration Test)measures the frequencies and deformed shapes of the flexible
modes of the aircraft, as well as the corresponding modal damping. It is required for civilian
certification [CS207] and military specification [AIR79]. A GVT is a critical step that is generally
performed a fewmonths before the first flight tests and provides (i) experimental data onwhich
to adjust numerical models, (ii) validation of the overall assembly of the structure, and (iii) valu-
able data to prepare andmonitor flight tests. Multiple shakers are used to vibrate the structure.
For aircraft equipped with fly-by-wire4, structural responses to dynamic excitations of control
surfaces can also be measured.

• An engine vibration survey can be carried out when the aircraft is on the ground. It consists
of exploring the engines’ operating regimes while measuring the aircraft response at various
points. This can be performed with both engines synchronized or not. This is different from
order tracking, as complete spectra are considered.

4Numerical flight controls instead of manual ones.
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CHAPTER 1. VIBRATION ENVIRONMENT
1.3 . Substantiation

Before installing new equipment in the aircraft, they need to be substantiated using a range of
tests assuring that they can handle the specification levels. They can be split into functional and
endurance tests.

Functional testing is conducted to verify that equipment operate as required while exposed to
worst-case operational vibration. Equipment performance must remain nominal [MIL08]. In some
cases, a reduced envelope can be used, for example, if an equipment can only be used in a limited
flight domain.

Endurance levels represent an entire life cycle through an accelerated fatigue test. It is gener-
ally not required to have the equipment functional during the endurance phase of the test, but it is
required to have it powered up. Moreover, it needs to function properly before and after the en-
durance test during the functional test. To be able to reduce the effective test time, Basquin’s law is
used [GAM87], which approximates the central part of a Wöhler curve5 as a linear relationship:

Nσb = C, (1.1)
with N the number of cycles, σ the stress, b Basquin’s material parameter, and C the material con-
stant. By doing so, a vibratory fatigue equivalency can be determined between the vibratory fatigue
of an entire life cycle and the accelerated fatigue test. Given that points A and B are on the same
curve, NA cycles at σA are equivalent to NB cycles at σB , for NA > NB and σA < σB .Assuming that the equipment can be considered as a linear system, the test time can thus be
reduced using the following relationship:

s2 = s1

(
t1
t2

) 2
b

, (1.2)
where t1 > t2 are durations and s1 < s2 are Power Spectral Densities, the most common frequency
representation of randomsignals in vibration environment, see details in Section 1.4.1. To avoid vibra-
tion levels stronger than the functional level, time is generally reduced such that levels are equivalent
to the functional level.

When equipment life profile is not defined, assuming a partition of the life profile between 80%
of current cases and 20% of severe cases is standard practice. Current cases regroup mean speed,
high altitude level flight. Severe cases regroup high speed, low altitude, and maneuver flight.

To qualify an equipment, the boundary conditions should be representative of its aircraft integra-
tion. Tests are performed using a shaker, with a connection as rigid as possible to avoid any coupling
between the equipment and the shaker.

1.4 . Spectral representations

Aspresented in Section 1.2.2, the vibration environment ismeasuredusing accelerometers, which,
as their name suggests, measure acceleration in g through time.

5Also known as S-N curve.
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Figure 1.3: Illustration of a temporal signal of 0.05 s sampled at 5000 Hz.

While a temporal signal contains a substantial amount of information, it can be challenging to
interpret at such high sample rates, as illustrated in Figure 1.3. This can be rendered more accessible
through spectral representations, allowing to estimate the frequency content of the signal. As the
vibration environment is random by nature, specific tools need to be used, generally relying on a
stationary and/or ergodic assumption. In this section, several representations that are commonly
used to assess and specify the vibration environment are presented.

1.4.1 . Power Spectral Density
APSD (Power Spectral Density) is used to describe the distribution of power in a signal as a function

of frequency. It is particularly useful to analyze random signals measured by accelerometers. An
illustration is provided in Figure 1.4.
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Figure 1.4: Illustration of a Power Spectral Density on a log-log scale.
A PSD is only defined for second-order stationary and ergodic signals [Lal09c]. Second-order sta-

tionary means that variance and autocovariance do not change over time. The ergodicity assumption
implies thatmeasuring one realization of the signal for a long enough time is sufficient to compute the
statistical properties of the entire signal. These two assumptions come from the means of estimating
a PSD, as presented below.
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CHAPTER 1. VIBRATION ENVIRONMENT
To define a PSD, Fourier transforms are usually performed to describe the signal frequency com-

ponents. The power spectrum is the magnitude squared of the Fourier transform and provides a way
to measure the power contained in each frequency component.

Let us denote u a temporal signal. Using Parseval’s theorem, its PSD is defined as:
s ≜ lim

T→+∞

2

T
|FT(u)|2 , (1.3)

with FT(u) the Fourier Transform of the temporal signal u and T the total time of the signal u. For an
accelerometer signal in g, the resulting PSD is expressed in g2/Hz.

Another way to calculate a PSD is to use the Wiener-Khinchin theorem, which states that the PSD
can be found as the Fourier transform of the autocorrelation function:

s ≜ |FT(r(u))|2 , (1.4)
with r(u) the autocorrelation function of the non-windowed signal u, provided that u is ergodic.

To estimate the PSD, the signal u is typically sampled resulting in a discrete vector u. Multiple ways
to estimate a PSD exist, as exact calculations are often difficult or impossible due to limitations in data
or computational power. Common methods are:

• Periodogram, which considers directly the periodogram or power spectrum of a signal.
• Bartlett’s method [Bar48][Bar50], which averages the periodograms taken on multiple seg-
ments to reduce the variance of the estimation.

• Welch’smethod [Wel67], a windowed version of Bartlett’smethod, using overlapping segments.
• Multitaper method [Tho82], based on periodograms, uses multiple orthogonal tapers6 to per-
form independent estimates and reduce the variance of the final estimation.

These methods are non-parametric and thus do not assume that the process has any particular
structure. There are also parametric methods, making assumptions about the structure of the under-
lying stationary stochastic process, and semi-parametricmethods, using a non-parametric framework
with the additional assumption of model sparsity.

Here, a focus is made on Welch’s method. The following parameters are to be set to estimate a
PSD using Welch’s method: the FFT (Fast Fourier Transform) windows size, overlap, and type.

• FFT windows size determines the spectral resolution of the PSD, see below in Eq. (1.6). Large
windows provide better frequency resolution, but the PSD estimate becomes more sensitive to
small variations in the signal, resulting in a higher variance.

• The windows overlap is the ratio between the number of samples on a given FFT covered by
the following FFT, by the total number of samples of the FFT. Increasing the FFT windows over-
lap percentage allows for more averaging, which reduces the error variance of the final PSD
estimate while increasing the computational complexity.

6Also known as Slepian sequences.
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1.4. SPECTRAL REPRESENTATIONS
• Windowing allows to counter the leakage effect that can occur when applying an FFT on a non-
periodic signal due to the discontinuities at the edges. Several types of window functions exist,
such as Hanning, Hamming, Bingham, Blackman, FlatTop, and Kaiser-Bessel. Only the Hanning
window is used in this manuscript and is defined as:

hann(t) ≜ 0.5

(
1− cos

2πt

n

)
, 0 ≤ t ≤ n, (1.5)

with n+ 1 the window length.
The choice of parameters depends notably on the duration of the signal segment onwhich the PSD

is estimated. Aminimumnumber of degrees of freedommust be used to ensure a certain confidence
level. From themilitary normGAM-EG-13 [GAM87], more than 100 degrees of freedom are to be used
to attain a 90% confidence level.

The spectral resolution β of a PSD is the interval between two consecutive points on a PSD. It is
defined as:

β ≜
sample rate

FFT windows size . (1.6)
The number of degrees of freedom is defined as:

Nd.o.f. ≜ 2µ
βT −R

1−R
, (1.7)

where R is the overlap proportion. The statistical error is defined as:

ε ≜

√
1−R

µ(βT −R)
, (1.8)

where µ is a coefficient that depends on the FFT window type. According to the GAM-EG-13 [GAM87],
the statistical error should be below 0.14.

1.4.2 . Root Mean Square
The RMS (Root Mean Square) value of a signal is a statistical measure of its magnitude. It is inter-

esting because it takes into account the time history of the signal and its amplitude, which is directly
related to the energy content and, therefore, the destructive power of the signal. The broadband RMS
value is often studied, and Figure 1.5 shows the cumulative RMS value over the frequency on a given
spectrum.

On a temporal signal u discretized into u, it is defined as:

RMS(u) ≜

√
1

T

∫ T

0
u2(t)dt ≡

√
1

N
∥u∥2 , (1.9)

where T is the total time of the continuous form of u, N is the number of samples in the discrete
form of u, and ∥ · ∥2 is the ℓ2 norm. This norm can be defined more generally: let p ≥ 1, the ℓp-norm
of a vector y of dimension d is defined as:
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Figure 1.5: Cumulative RMS value (blue) of a PSD (green), using a log-log scale.

∥y∥p ≜

 d∑
j=1

|yj |p
1/p

. (1.10)

The ℓ1-norm is the sum of absolute values, and the ℓ2-norm is the Euclidean distance. When
p→∞, it corresponds to the maximum absolute value of the vector:

∥y∥∞ ≜ max
j
|yj | . (1.11)

The RMS can also be defined as the square root of the area under the PSD curve, which is equiva-
lent to computing the RMS of the associated temporal signal. The RMS value computed from the PSD
s in the band b = [f1, f2] is defined as:

RMS(s[f1, f2]) ≜

√∫ f2

f1

s(f)df. (1.12)
If the PSD s is in g2/Hz, then the RMS value is in g, as the original signal u.

1.4.3 . Spectrogram
A spectrogram is a time-frequency representation of a signal. It is calculated using successive

Fourier transforms7, and allows to visualize the variation over time of a non-stationary signal fre-
quency content.

The generic display is with time on the x-axis, frequency on the y-axis, and amplitude as a color
or on a z-axis for 3D plots. Figure 1.6 shows the spectrogram response during a take-off. The speed
of the engines first increases, which can be seen by several kinematic lines rising in frequency, then
broadband levels appear.

7Wavelet transforms can also be used.
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1.4. SPECTRAL REPRESENTATIONS

Figure 1.6: Illustration of a spectrogram during a take-off: kinematic lines can be seen moving up infrequency, then broadband levels appear when they reach the max regime. The colorbar uses a logscale.

While spectrograms are a powerful tool for analyzing the frequency content of vibration signals,
the trade-off between time resolution and frequency resolution must be carefully set to capture the
phenomena of interest. They can also be computationally intensive, especially for long signals.

1.4.4 . Equivalent Response Spectra
When dealing with transient dynamic stresses, PSD estimates have the drawback of averaging

the measured levels. This results in lower levels than actually experienced by the structure. To as-
sess the severity of transient vibrations or shocks, which are short-term force pulses, SRS (Shock
Response Spectrum) can be used [Lal09b]. This method was initially proposed to study the effects
of earthquakes on buildings [Bio32]. It is not used later in the manuscript but is presented to provide
a comprehensive overview of the vibration environment.

Frequency (Hz)

SR
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Figure 1.7: Illustration of a Shock Response Spectrum.
An SRS is an equivalent spectrum consisting of the maximum response of the mass of a damped

single degree of freedom system of frequency fn, for fn ∈ [10, 2000]. This is a strong simplification
that assumes decoupled linear systems but can be a valuable tool for studying shocks.
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CHAPTER 1. VIBRATION ENVIRONMENT
The temporal input is fed to a 1-degree-of-freedom system, and only the maximum response is

kept. By doing this for several frequencies in parallel, a spectrum can be produced. An SRS can also
be calculated from a PSD at the expense of some assumptions.

The ERS (Extreme Response Spectrum) is comparable to the SRS and also used to study vibra-
tions [Lal09d]. It is a primary spectrum, meaning it gives the highest response observed during the
vibration or shock.

In the same way as for the SRS, the FDS (Fatigue Damage Spectrum) [Lal09a][Lal09d] represent
the equivalent fatigue damage experienced by a linear one degree-of-freedom system for each fre-
quency, for a given damping ratio and for a given Basquin’s law parameter to represent the Wöhler
curve of the material constituting the structure. It is also not used later in the manuscript.

Frequency (Hz)

FD
S

Figure 1.8: Illustration of a Fatigue Damage Spectrum on a log-log scale.
As with the SRS, the FDS can be computed from a temporal signal or from a PSD, in which case

several assumptions need to be made on the original signal.

34



2 - Generating a vibration environment dataset
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Data from the Flight Test Center (FTC) forms the core of this thesis. While extremely valuable and
rich in information, its raw volume makes it challenging to feed into machine learning algorithms. As
such, specific steps are taken to make it practical in the context of vibration environment prediction.

This chapter begins with a presentation of the available data and the challenges associated with it.
Then, the algorithm implemented to generate a dataset that allows to analyze andmodel the vibration
environment from flight test data from a data-driven perspective is detailed. This algorithm relies on
several tools: the rule-based ones, such as flight phase identification or kinematic line frequency, are
detailed in Section 2.3. The data transformation tools require a comprehensive description and are
presented theoretically in Chapter 3 and then applied to experimental test data in Chapter 4.

2.1 . Available test data

The test data from the Flight Test Center is presented in this section with regard to its volume, its
structure, and its integrity. This assessment justifies the need for the preprocessing and transforma-
tion steps implemented.

2.1.1 . Volume
To study the vibration environment, a set of accelerometers is used as presented in Section 1.2.2.

As the measurements have to be analyzed up to 2000 Hz, the sample rate of accelerometers should
be at least twice this value according to Shannon theorem. In practice, the sample rate is linked to
the acquisition system, more specifically to its filters. In the industrial case of Dassault Aviation, the
sample rate of accelerometers is set to 5000 Hz. This high sample rate makes the data very large.
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CHAPTER 2. GENERATING A VIBRATION ENVIRONMENT DATASET
In addition, a lot of accelerometers are placed on the aircraft, at least one for each equipment that
needs to be specified. In total, a standard business jet aircraft can be instrumented with more than
50 tri-axial accelerometers, thus more than 150 channels.

In addition to the accelerometers, other parametersmust be acquired to understand the state and
attitude of the aircraft, called general parameters in this manuscript, as mentioned in the previous
chapter. Everything that needs to bemeasured is acquired, sometimes twice or thrice if redundancy is
required. This gives information at anymoment on where the aircraft is in the flight domain, what the
state of its engines is, what configuration it is in, andwhat set of equipment is activated. Although their
sampling rate is much lower than that of accelerometers (and varies from parameter to parameter),
thousands of general parameters are acquired.

All of this data is acquired for several flights that can last several hours. More than one aircraft
is tested. This leads up to a tremendous amount of data. For example, a test campaign of 30 flights
and several ground tests takes up 2.6 TB of vibration data and 13 TB of general parameters, without
compression.

2.1.2 . Structure and integrity
The data is stored in an in-house binary file format that is specific to the needs of the Flight Test

Center. Because the data is in the form of time series, the data structure itself is challenging.
As mentioned above, the general parameters are acquired at different sample rates. Conse-

quently, resampling may be required to align all the information on a consistent time grid.
Data integrity cannot be guaranteed at all times. Engineers validate specific time phases for analy-

sis, ensuring their integrity. However, due to the extensive volume of flight test data, not all datapoints
can be validated. One must consider the data cautiously, acknowledging the possibility of inconsis-
tencies or errors.

Anomalies can range, among others, from sensor detachment to slow drift. While some of these
anomalies can be easily detected, most are not trivial to identify.

2.2 . Detail of the 3-steps dataset generation protocol

A set of tools is implemented in order to perform the required specific data transformations. They
are written using the Python programming language. In this section, the logic of this 3-step algorithm
is detailed: data extraction, data cleaning, and dataset generation. At each step, the data is saved1
so that it can be used at each level of transformation. While this section presents the overall process
of generating a dataset, its constituent tools are detailed in the following sections or in the following
Chapters for reduction and representation transformations.

2.2.1 . Data extraction
For a given set of sequences S, the values of an accelerometer A and general parameters P are

extracted. They are interpolated to a sampling frequency fs: general parameters of various sample
1Parquet is the chosen storage file format. Column-based, it is designed for efficient data storage and pro-cessing.
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2.2. DETAIL OF THE 3-STEPS DATASET GENERATION PROTOCOL
rates are all interpolated to fs, while for accelerometers (sampled at 5000 Hz), spectral representa-
tions are generated each 1/fs second.For datasets presented later in the manuscript, fs is set to 1 or 10 Hz.

• Accelerometers time series u are first transformed into PSDs using Welch’s algorithm (see Sec-
tion 1.4.1) on a window of size w. Algorithm 1 details this step, where Ni is the number of
samples in ui, and fVib

s = 5000 Hz its sampling frequency. The result is a set of spectra s for all
sequences in S each 1/fs second.

• The chosen set of general parameters P are interpolated at fs. The result is a set of time series
for all sequences in S each 1/fs second.

Algorithm 1 Vibration data extraction
Require: Set of sequences S, Welch’s parameters
for i ∈ S doRead ui

for j ∈ [0, Ni − w] each fVib
s /fs do

sij ←Welch (ui[j, j + w])
end for

end for

During the process, assertions about data integrity are made to filter out obvious anomalies, en-
suring the data is not empty nor incomplete. Metadata are associated with each datapoint, providing
information about the aircraft, flight, flight part2, and sequence starting time.

2.2.2 . Data cleaning and transformation
The data cleaning and transformation process is separated from the extraction part: this allows

raw PSD analysis. For both general parameter and vibration data, null or erroneous signals are re-
moved. Several formatting steps are not described here, such as setting the float type of data or
transforming metadata into a multi-index. Anomaly detection is performed on vibration data, see
Section 2.3.1 for details.

Data transformation is then performed, allowing to apply (i) spectra separation and (ii) spectra
reduction. Spectra separation is an important step that is presented in detail in Section 4.1. To sum-
marize, it allows to separate a spectrum s into its broadband component b and its kinematic lines k.
Then, spectra reduction can be applied only on broadband spectra b if the interest is in aerodynamic
excitations, or on full PSDs s. This step is detailed in Section 4.2, and multiple reduction methods
are proposed. For the prediction task of Chapter 7, RMS levels per frequency band is the preferred
reduction method, see Section 4.2.2.

Algorithm 2 details this step for vibration data in the case where both spectra separation and
reduction are performed. These transformations are denoted with an operator T · , and the reducedversion of a broadband spectrum b is denoted b̃.

To summarize, this step allows to apply the following transformations:
2Each flight part identifies a consecutive sequence during a flight.
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CHAPTER 2. GENERATING A VIBRATION ENVIRONMENT DATASET
Algorithm 2 Spectra separation and reduction transformations applied on vibration data
Require: Transformation parameters
for i ∈ S doRead si

if si contains no anomaly then
bi,ki ← TSeparation(si)
b̃i ← TReduction(bi)

end if
end for

• Spectra separation, see Section 4.1, to separate broadband spectra (a smooth representation)
from kinematic lines (a sparse representation)

• Spectra reduction, see Section 4.2, for compression and feature extraction, thus modeling and
data exploration through clustering

• Kinematic lines energy computation, see Section 2.3.4, to create a dataset containing the energy
of kinematic lines generated by a specific rotating machinery, such as engines.
2.2.3 . Dataset generation

The final step is concatenating transformed data into a tabular format to generate a ready-to-
use dataset. In this subsection, the notation s denotes any spectra representation, regardless of any
previous transformations. From the previous time series and successive frequency representations,
two matrices are generated: a matrix X with the values of general parameters sampled as fs (fromthe set of parameters P on sequences S), and a matrixY with the successive spectra s through time,
each 1/fs second (accelerometer A on sequences S).

Due to the previous cleaning process, both matrices may not contain the same number of data
points or rows. To ensure that each datapoint in X has a counterpart in Y, only the intersection
of their indices is kept. Finally, preprocessing transformations specific to machine learning are per-
formed on each matrix. They are described in detail in Section 3.1. In this manuscript, where prepro-
cessing is performed, a standard scaler is applied to X, while a min-max scaler or a standard scaler
is applied toY after applying a log transformation.

The final dataset is thusmade of inputsX ∈ Rm×n and outputsY ∈ Rm×d. The columns of matrix
X contain the values of each general parameter j ∈ [1, . . . , n] through time3. A row xT

i ofX holds the
values of all n parameters at time i. The matrixY contains as rows the collection of spectra yT

i = sTia each time i ∈ [1, . . . ,m]. Visually, it can be represented as:

X =

− xT
1 −...

− xT
m −

 , Y =

− sT1 −...
− sTm −

 . (2.1)

3Time does not need to be consecutive.
38



2.3. IDENTIFICATION
Tobe consistentwith the rest of themanuscript, the dataset canbewritten asD = {(xi,yi)}i=1,...,m,and a standard regression problem (see Chapter 5) would be to predict yi ∈ Y ⊂ Rd from xi ∈ X ⊂

Rn.

2.3 . Identification

In this section, the identification tools used for the previous algorithms presented before are pre-
sented. They consist of anomaly detection, flight phase identification, configuration identification,
and most importantly, kinematic lines identification.

2.3.1 . Anomaly detection
Anomaly detection is a complex task beyond the scope of this thesis. However, outlier energy

levels are identified. This allows simple anomalies to be quickly removed from the dataset. The low-
energy case is symptomatic of a disconnected sensor, while the high-energy casemay be symptomatic
of a problem related to the acquisition system.

Figure 2.1: Illustration of automatic outlier detection: superposition of several PSDs on a log-log scale,with outliers identified in red.
Outlier identification is illustrated in Figure 2.1, where the anomalies are identified in red. An

energy threshold is applied to detect and remove the outliers based on their RMS value on a broad
frequency range, filtering out too-low values with λ1 and too-high values with λ2:

s kept if: λ1 < RMS(s [f1, f2]) < λ2, (2.2)
where [f1, f2] can either cover the whole frequency range or a specific band. Values of λ1 and λ2 areset through domain knowledge.

Sequences identified as faulty can be directly ignored during the extraction, or kept to be analyzed
and used to train detection algorithms.
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2.3.2 . Flight phase identification

Flight phase recognition, which is a challenging problem [LZV+22], allows for advanced analysis
and modeling. For example, it can be used to evaluate how certain maneuvers affect vibration levels
or to balance the proportion of flight phases before training a model. It can also be used to select a
specific subset of sequences S on which to generate a dataset so that only level flight phases are kept
as presented in Section 7.1.

Identifying Level Flight Phases4 and climbs/descents is implemented here. Other flight phases are
not relevant to our needs, although easy to identify, such as turns, or are too difficult to identify and
are beyond the scope of this work.

The detection is based on a set of logical rules that should be true on a rolling window of the
temporal signal x of general parameters. Multiple statistics are used, such as the mean µ(x), the
standard deviation σ(u), and the maximummax(x).

For the stabilized flight phases, the rules in Table 2.1 must all be true on a 20-second rolling
window. The rule on the side slip angle is more strict than for the roll attitude, as a change in the
former has more effect on the aerodynamics than the latter, and their amplitudes are not in the
same range.

Rule ImplementationConstant altitude σ (x [t, t+ 20 s]) < 500 ftConstant Mach number σ (x [t, t+ 20 s]) < 0.01Constant engine rotational speed σ (x [t, t+ 20 s]) < 0.05%rpmCentered roll angle σ (x [t, t+ 20 s]) < 1◦ & |max (x [t, t+ 20 s])| < 5◦Centered side slip angle σ (x [t, t+ 20 s]) < 0.1◦ & |max (x [t, t+ 20 s])| < 0.5◦

Table 2.1: Stabilized flight phases rules; needs to hold on a 20 seconds window.
The detection of climbing and descending flight phases is based on the set of rules presented

in Table 2.2, that should hold on a 10-second rolling window, where∆τx denotes a delta of τ secondson x.
Rule ImplementationFor climbing, threshold of positive altitude variation µ (∆5 sx [t, t+ 10 s]) > 50 ftFor descending, threshold of negative altitude variation µ (∆5 sx [t, t+ 10 s]) < 50 ft

Table 2.2: Climbing and descending flight rules; needs to hold on a 10-second window.
As a final note on flight phase detection, it should be noted that the various test equipment can

have a significant effect on the vibration environment, so state booleans should be monitored. An
extreme example is the use of aileron shakers, where a signal is injected into the ailerons to stress the
airframe during certain flight tests. These flight phases should either be removed or accompanied by
the appropriate general parameter, such as the intensity of the injected load.

4In this manuscript, level flight means straight-and-level flight, a specific type of stabilized flight in which theaircraft maintains a constant heading, altitude, and airspeed. It is often referred to as stabilized flight phases.
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2.3.3 . Aircraft configuration detection

Aircraft configuration refers to the position of its different control surfaces and high lift devices,
such as ailerons, flaps, slats, air brakes, and the deployment of landing gear. A change in aircraft con-
figuration changes the aerodynamic flow excitations and induces a different response of the struc-
ture. Configuration detection can be used to generate categorical features formachine learningmod-
els.

Configurations can be split into two groups: clean and approach configurations. In clean config-
uration, flaps, air brakes, and other surfaces are retracted. In approach configurations, multiple of
them are deployed to increase lift or reduce the aircraft’s speed.

The identification is based on domain rules, where its surface position is associated with a specific
configuration. The implementation is similar to the flight phase identification tool (with more rules)
and uses conditions on a rolling window.

2.3.4 . Kinematic lines frequency, computation of their energy
As presented in Section 1.1.2, kinematic lines are narrowband concentrations of energy by imbal-

ance of rotational machinery, which frequency is linked to the rotational speed.
Since the speed of engines and equipment is known frommeasurements of general parameters,

it is trivial to find the location in frequency of any kinematic line on a PSD. Consider amachineE driven
by a turbine N. The frequency f of the harmonic h is given by:

f(E,N, h) = h× 100%rpmE

60
×%rpmN, (2.3)

where 100%rpmE is the maximum rotational speed of E, and%rpmN the rotational speed of the tur-
bine driving the equipment. All rotational speeds are given in revolutions per minute (rpm). Engines
kinematic lines can be computed for E = N, meaning that the turbine N itself is considered. The
fundamental frequency is denoted with h = 1.

(a) Identification of harmonics frequency (b) RMS levels of harmonics
Figure 2.2: Illustration of the identification of two kinematic lines on a PSD (left), and their computedRMS levels κ depending on their frequency (right), both on a log-log scale.

It is thus possible to compute the energy of any given kinematic line. This is done on a PSD s by
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CHAPTER 2. GENERATING A VIBRATION ENVIRONMENT DATASET
calculating the RMS value, see Eq. (1.12), on a window centered on the kinematic line frequency. For
an equipment E, it is defined as:

κ(E,N, h) ≜ RMS

(
s

[
f(E,N, h)− ∆f

2
, f(E,N, h) +

∆f

2

])
, (2.4)

with∆f the window size centered around the kinematic line at frequency f .
A vector containing the values of κ(E,N, h) for all frequencies is written κ(E,N, h). Later in the

manuscript, when E andN are fixed, it is written κ(h)
i to specify the value measured at a point i in the

structure, or more precisely a given accelerometer channel. In Figure 2.2, the computation of these
vectors for multiple harmonics of the engines is illustrated. This is similar to an order analysis.

2.4 . Conclusion on the dataset generation framework

This chapter has presented a framework for generating a vibration environment dataset and al-
lowing a data-driven approach to its analysis and modeling. Its modular implementation allows it
to be used in various use cases other than classical analysis. By bypassing data cleaning, a dataset
with erroneous measurements can be generated to train anomaly detection algorithms. By choosing
one of the vibration data representations described in Chapter 4, its modeling can be approached in
different ways.

Several domain knowledge tools are incorporated, allowing anomaly detection, flight phase iden-
tification, aircraft configuration identification, and kinematic line frequency identification along with
energy computation. In the future, flight phase identification could be extended to specificmaneuvers
to focus model training. The extraction of kinematic lines frequency and energy is a crucial tool close
to order analysis. It can show even greater utility when used with the spectral separation hypothesis
presented in Chapter 4.
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Machine learning is a branch of artificial intelligence that focuses on developing algorithms and
models that can learn from data and make predictions or decisions without being explicitly pro-
grammed. It can be divided into several branches, such as unsupervised learning, which is covered in
this chapter, and supervised learning, which is covered in Chapter 5. Other branches are not covered
in this manuscript, namely semi-supervised learning1 and reinforcement learning. The former falls
between supervised and unsupervised learning by dealing with both labeled and unlabeled data. The
latter is a method in which an agent learns to interact with an environment so that its behavior max-
imizes a reward. Reinforcement learning has applications in physics, particularly in fluid mechanics
[GVR+21, VMLH22, RKJ+19].

The goal of unsupervised learning is to find patterns, relationships, and structures in unlabeled
data. This can be done to achieve data compression, denoising, and clustering. Since the data does
not need to be labeled, it is a powerful tool for large amounts of raw data. However, the quality of its
results can sometimes be challenging to interpret due to the lack of labels or ground truth.

In the context of the large amount of data generated at the Flight Test Center, machine learn-
ing can be useful for various tasks such as data exploration, pattern recognition, anomaly detection,
predictive maintenance, and test optimization. It can help improve efficiency, safety, and decision-
making. This chapter presents existing tools that can be used on unlabeled test data before applying
them in Chapter 4. After an introduction to data preprocessing, methods of data representation and
clustering are presented.

Here, and for the rest of this manuscript, a dataset is denoted D, and a parameterized model is
denoted ϕθ. The weights of a model are denoted as θ and can be named parameters. Any parameter
that is not learned is called a hyperparameter. Specifically, in the context of unsupervised learning,
the dataset consists ofm unlabeled data points D = {xi}i=1...m such that xi ∈ X ⊂ Rn.

3.1 . Data preprocessing

1Semi-supervised learning is sometimes called weak supervision.
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CHAPTER 3. UNSUPERVISED FEATURES EXTRACTION
Before introducing any unsupervised learningmethod, basic transformations need to be explained

in detail. They allow certain assumptions to be made2, and generally facilitate the optimization pro-
cess. As such, this section is relevant to both unsupervised and supervised learning, see Chapter 5.

Standardization can be applied to get zero mean and unit variance data:
xTransformed ← x− µ(x)

σ(x)
. (3.1)

When the distribution of the data is known to be uniform or when outliers are not a concern, a
min-max normalization can be applied. It provides robustness to very small standard deviations of
features and preserves zero entries in sparse data:

xTransformed ← x−min(x)

max(x)−min(x)
. (3.2)

For skewed data distributions, taking the logarithm of the data helps to normalize the distribution
and make it more symmetric:

xTransformed ← log10(x). (3.3)
To apply transformations that rely on statistics, such as standardization or min-max normaliza-

tion on a matrixX, it is important to be careful of the dimension on which to compute the statistics.
Considering m samples and n features, if X ∈ Rm×n, the statistics should be taken across samples,
thus for each column. The resulting mean vector µ(X) ∈ Rn is a row vector. An exception in this
manuscript is in Section 3.2.1 on Principal Component Analysis, where samples and features dimen-
sions are interchanged.

Finally, encodings are worth mentioning as they allow to transform categorical data into discrete
numerical representations using techniques such as one-hot encoding (one binary column is created
for each category) or ordinal encoding (one value is associated with each category).

3.2 . Data representation

The choice of representation is crucial to appropriately understand data, as presented in Sec-
tion 1.4. In addition to highlighting information, a suitable representation can be used for dimension-
ality reduction, allowing for compression and denoising.

The choice of dimensionality reduction technique depends on the nature of the data at hand,
the computational power at disposal, and the end goal. Several methods relevant to the rest of the
manuscript are presented here.

3.2.1 . Principal Component Analysis
PCA (Principal Component Analysis) [Pea01][Hot33] allows to reduce the dimensionality of a mul-

tivariate dataset by decomposing it into a set of orthogonal and centered components. The com-
ponents, which are linear combinations of the original features, can be ordered according to their
contribution to the total variance of the signal. The number of components to keep can be adjusted

2A significant amount of machine learning is based on a Gaussian assumption.
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3.2. DATA REPRESENTATION
depending on the desired trade-off between the compression ratio and the proportion of variance
explained.

To apply PCA to a dataset, an SVD (Singular Value Decomposition) can be performed3 on stan-
dardized data, see Eq. (3.1). It provides an optimal low-rank approximation [EY36], with hierarchically
ordered orthogonal components. This means that any r-rank approximation can be obtained by
keeping only the leading r singular values and vector, see Eq. (3.5).

Let X ∈ Cn×m be a centered matrix, where n is the number of features and m is the number of
samples, assuming n ≤ m. Note that PCA conventions are used in this section, but in the rest of the
manuscript, samples are ordered as rows instead of columns like here. Its unique SVD decomposition
is:

X = UΣV∗, (3.4)
with U ∈ Cn×n a unitary matrix4 containing the left singular vectors of X, Σ ∈ Rn×m

+ a diagonal
matrix containing the singular values of X, and V∗ ∈ Cm×m the conjugate transpose unitary matrix
containing the right singular vectors of X. The columns of U provide an orthonormal basis for the
column space ofX, and the columns ofV provide an orthonormal basis for the row space ofX.

To reduce the data dimensionality to r < n, a truncated SVD can be used:
X ≈ X̃ = ŨΣ̃Ṽ∗, (3.5)

where X̃ is the optimal rank-r approximation ofX, Ũ ∈ Cn×r,Σ ∈ Rr×r, and Ṽ∗ ∈ Cr×m.
In the ℓ2 sense, the truncated SVD approximation X̃ is the best approximation forX. The principal

components can be obtained from the right singular vectorsV (or Ṽ), which represent the directions
of maximum variance in the data. Indeed, the first principal component u1 is given as:

u1 = argmax
∥u1∥=1

u∗
1X

∗Xu1, (3.6)
which also satisfies:

u1 = argmax
u∗
1X

∗Xu1

u∗
1u1

, (3.7)
which is a Rayleigh quotient5. Considering a truncated SVD, the projected version of X called the
score matrix T can thus be written:

T̃ = XṼ. (3.8)
The covariance matrix is:

3SVD applied on standardized data is the standard way to perform PCA because of the efficiency of SVDalgorithms, but it is not the only one.4A square matrix U is unitary if U∗U = UU∗ = I, where I is the identity matrix. It is analogous to anorthogonal matrix for real numbers.5The maximum possible value of a Rayleigh quotient is the largest eigenvalue of the matrix.
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C =
1

n− 1
X∗X. (3.9)

The eigenvalues of the covariance matrix C can be calculated as the squared singular values:
λi = σ2

i /(n − 1), where σi is the i-th singular value. The explained variance ratio (EVR) for each
principal component can be computed as the ratio of the eigenvalue to the sum of all eigenvalues:

EVR =
λi∑n
j=i λj

. (3.10)

3.2.2 . Non-negative Matrix Factorization
NMF (Non-negative Matrix Factorization) [LS99] is a dimensionality reduction technique that de-

composes a non-negative matrix into two non-negative matrices. For instance, it is used in astro-
physics where data is often non-negative [BR07][RPZ+18].

LetX ∈ Rm×n
+ be a non-negative matrix, wherem is the number of samples, and n is the number

of features. Note that this is the convention used in the rest of the manuscript, with the exception of
the previous section regarding PCA. The NMF decomposition ofX is:

X ≈WH, (3.11)
with W ∈ Rm×k

+ containing the basis vectors or components, and H ∈ Rk×n
+ containing the coef-

ficients or weights that combine the basis vectors to reconstruct the original data. Whenever k <

min (n,m), it is not an exact decomposition6.
W andH are obtained by iteratively minimizing the reconstruction error, such that:

min
W,H

∥X−WH∥2F , s.t. W ≥ 0,H ≥ 0, (3.12)
where ∥ · ∥2F is a squared Frobenius norm, which can be seen as a generalization of the Euclidean
norm to matrices. The Frobenius norm ∥ · ∥F is defined as:

∥A∥F ≜
√∑

i,j

A2
ij =

√
tr(AA∗). (3.13)

Note that in Eq. (3.12), no regularization terms are included for simplicity, but they are generally
used to ensure the values ofW andH remain low. Moreover, a squared Frobenius norm is used, but
could be replaced by another beta-divergence such as the Kullback-Leibler divergence or the Itakura-
Saito divergence.

The optimization process can be done using various solvers, such as Coordinate Descend [CP09]
or Multiplicative Update [FI11].

6Although it should be mentioned for exhaustiveness that an exact decomposition can be attained in poly-nomial time for some cases.
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3.2. DATA REPRESENTATION
Considering the fractional residual variance7, NMF tends to overfit8 less that PCA [RPZ+18]. NMF

decomposition tends to produce local representations of the dataset, which can be useful to describe
specific phenomena localized in frequency on a spectrum.

3.2.3 . Autoencoders
Autoencoders are a type of ANN (Artificial Neural Network, see details in Section 5.2.5) that can be

used for dimensionality reduction [RHW86]. Briefly, an ANN is a model ϕθ parameterized by θ ∈ Θ,
mapping an input space X to an output space Y such that ϕθ : X × Θ → Y . In this section, a
parameterized model is simply written ϕ. Autoencoders are especially useful for nonlinear encoding
and aim to learn a compressed representation of the input data. They can be written as:

ϕ(x) = ϕDecoder ◦ ϕEncoder(x) = x̂, (3.14)
with x̂ ≈ x ∈ Rn a reconstructed value ofx. Themodel first encodes the data into a lower dimensional
space such that:

ϕEncoder : Rn ×ΘEncoder → Rk, (3.15)
where k < n (in which case the autoencoder is called undercomplete). Then, the model decodes the
reduced data and maps it back to the original space:

ϕDecoder : Rk ×ΘDecoder → Rn. (3.16)
To perform this transformation, a cost function evaluating the dissimilarity between the original

and reconstructed data is minimized, generally by using gradient descent, see Section 5.3.2. This is
done over a complete dataset D = {xi}i=1,...,m, and a metric such as the Mean Squared Error can be
used as in Eq. (3.17). More details on cost functions are given in Section 5.3.1. When the complete
mapping is learned, the encoder and decoder can be used separately to reduce and reconstruct data,
as would be done using PCA or NMF.

C(θEncoder,θDecoder) = 1

n

1

m

m∑
i=1

∥xi − x̂i∥22 . (3.17)
An illustration of an autoencoder is given in Figure 3.1. The middle layer of dimension k is called

the latent layer, or the bottleneck layer. The name Deep Autoencoder can be used when several
hidden layers9 are used.

While the autoencoder is a relatively simple architecture, several alternatives and variants have
been proposed, such as regularized autoencoders [AB14][BYAV13], using regularization to improve
sparsity, and variational autoencoders [KW22], introducing elements from variational Bayesianmeth-
ods.

7It is the fraction of variance of the variable to predict which cannot be explained by the features.8Overfitting, see Figure 5.7, is the tendency of an algorithm to fit the data too much, thus reducing its gen-eralization ability. In the case of dimensionality reduction, overfitting can be seen as learning the noise.9A hidden layer is any layer other than the input, output, and latent layer.
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x x! ≈ x

xReduced
𝜙Encoder 𝜙Decoder

Figure 3.1: Autoencoder architecture example, where a representation is learned to reduce 8-dimensional data to 3 dimensions. Figure partly generated using [LeN19].

3.3 . Clustering

Clustering is a technique used to group similar data points together, which aims to find patterns
or structures in data without any predefined labels. In Figure 3.2, an illustration is given where a 2D
projection of unlabeled data is separated into 4 clusters.

𝐶! 𝐶"

𝐶#

Figure 3.2: Illustration of clustering.

3.3.1 . k-means clustering
One popular clustering algorithm is the k-means clustering algorithm [Llo82]. A dataset D =

{xi}i,...,m is divided into k disjoint clusters C , each described by the mean µj of the samples in the
cluster.

The objective of the k-means algorithm is tominimize the sumof squared distances between each
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data point and its assigned centroid. This is known as the inertia criterion, or the within-cluster sum
of squares:

Inertia ≜
n∑

i=1

min
µj∈C

(∥∥xi − µj

∥∥2
2

)
. (3.18)

The algorithm works as follows:
Algorithm 3 k-means
Require: D, kInitialize cluster centroids µ1, . . . , µk randomly.
repeatAssign each data point to the nearest centroid.Recalculate the centroids by taking the mean of all data points assigned to each cen-troid.
until Convergence criterion
The optimal number of clusters kmust be determined, which can be a complex problem and has

only empirical solutions. One of them is the elbow method. It involves plotting the inertia against
the number of clusters and looking for the "elbow" point, which is the inflection point in the plot. The
idea is to choose the value of k at the elbow point as it represents a good balance betweenminimizing
inertia and avoiding overfitting.

The initialization of the centroids can strongly influence the performance of the algorithm: while
the basic approach is to assign random data points as centroids, other initialization techniques have
been proposed, such as k-means++ [AV07], with the idea of spreading the k initial cluster centers.

Finally, it should be mentioned that k-means clustering is usually applied to a dataset where the
dimension has been reduced using a previously introduced method such as PCA or an autoencoder.
This is done to improve the clustering performance: the algorithm has fewer features to consider,
with less noise.

3.3.2 . Other clustering methods
While k-means clustering may be themost straightforward clustering algorithm, other algorithms

exist, based on ideas from various fields.
A self-organizing map [Koh82], also known as Kohonen map, is a bio-inspired [Tur52, von73] un-

supervised learningmethod based onANNs (see Section 5.2.5). Using competitive training10 [RMU86],
it has the advantage of preserving the topological properties of the input space. A fuzzy implementa-
tion of k-means has been proposed: fuzzyC-means [GG89]. Each data point can be assigned tomore
than one cluster by introducing amembership function, which can take values between 0 and 1. Affin-
ity propagation [FD07] is based on message-passing, and chooses the number of clusters based on
the data provided. Its main drawback is its complexity, rendering it useful only for small andmedium-
sized datasets. Hierarchical clustering is based on successive merging or splitting clusters, and

10Different from the nowadays commonly used backpropagation with gradient descent, competitive trainingputs neurons in competition to try to match input data.
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uses tree (or dendrogram) representations. It can use an agglomerative strategy (bottom-up) or a divi-
sive strategy (top-down). DBSCAN (Density-Based Spatial Clustering of Applications with Noise)
[EKX96][SSE+17] is based on the idea that clusters are high-density regions separated by low-density
regions. This allows to find clusters of any shape, whereas k-means tends to favor convex shapes.
Instead of the conventional centroids of k-means, DBSCAN uses core samples, which are samples in
areas of high density. Spectral clustering techniques such as NCuts [SM00] use the eigenvalues and
eigenvectors of a similarity matrix to perform dimensionality reduction. Then, they apply a clustering
algorithm, for example k-means, on the reduced data. It is computationally efficient in the case of a
sparse affinity matrix. Gaussian mixture models assume information about the covariance struc-
ture of the data. They can be seen as a generalization of k-means clustering, where data points are
seen as being generated from a mixture of a finite number of Gaussian distributions with unknown
parameters. Several flavors exists, from Gaussian mixture to Variational Bayesian Gaussian mixture.
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4 - Reduced representations and insights in aircraft vibra-
tion environment
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The question of representation is at the heart of any data-driven methodology. This chapter de-
tails the application of the data representation methods presented in Chapter 2.

First, spectra separation is introduced in Section 4.1, with a presentation of the hypothesis, an eval-
uation of it through experimental data, and an algorithmic implementation. Second, data reduction
techniques are applied and compared by their interpretability and compression factor in Section 4.2.
Third and finally, an exploration of the transformed data is performed in Section 4.3. Also based on
tools introduced in Chapter 2, such as clustering, it allows to gain insights into the vibration envi-
ronment of an aircraft. Its results will be used later, especially in the modeling chapters for feature
selection.

4.1 . Spectra separation

Predicting a complete vibration spectrum up to 2000 Hz, with its variety of sources and phenom-
ena, is a task that requires complex models that can be difficult to interpret1.

Here, a method is presented to separate a spectrum into its broadband and kinematic lines com-
ponents. First, the hypothesis underlying this method is presented and verified. Then, the implemen-
tation is described in detail.

1Interpretability in machine learning is a broad term with multiple levels of definition. Here, interpretabilitycan be related to the degree of nonlinearity and the number of weights in a model. This is discussed in detailin Section 5.5.
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CHAPTER 4. REDUCED REPRESENTATIONS AND INSIGHTS IN AIRCRAFTVIBRATION ENVIRONMENT
4.1.1 . Background spectrum hypothesis

A spectrum can be seen as the result of a set of excitations and the structure’s response. A strong
assumption is made. During stationary flight phases such as level-flight2, the measured response of
the structure at any point can be decomposed into:

• A broadband spectrum b which is a smooth representation consisting of a broadband con-
stant shape called the background spectrumψmultiplied in the frequency domain by a broad-
band amplitude factor α. The background spectrum ψ depends primarily on the position in
the aircraft and the measurement axis. It is also affected by the aircraft configuration, which
affects the aerodynamic flow3. The broadband amplitude factor α also depends on position
and axis but is mainly affected by a subset of general parameters related to the flight point
(mainly the dynamic pressure4).

• A collection of kinematic lines k generated by the various rotating machines. For each ma-
chine E driven by a turbine N and harmonic h, a kinematic line measured anywhere in the
aircraft consists of an excitation δ and an attenuation factor η analogous to a transfer func-
tion between the source and the measurement point. The excitation δ depends only on the
rotation speed of N and is generated at E. The attenuation factor η allows to transport this
excitation from E to the measurement point, taking into account the reduction of the vibra-
tion levels induced by the propagation through the structure, and thus depends only on the
structure.

This assumption holds for the mid- and high-frequency ranges (as modal behavior is prevalent in
the low-frequency range) and for stationary measurements. As no noise model is used, it is assumed
to be contained either in b or in k. Under this hypothesis, a spectrum s can be written as:

s = b+ k

= αψ +
∑
E,N,h

η ⊙ δ (4.1)
where⊙denotes theHadamardproduct or element-wise product. Broadband levels generatedby the
rotatingmachinery are taken into account byα. Note the difference inmodeling betweenb and k. For
k, a collection of excitations is identified and transferred from the sources to themeasurement point.
For b, the complexity of the aerodynamic sources makes it such that no separation is performed,
and the result at any point is a broadband shape shifted in amplitude. This modeling is close to the
one presented in [Maz05] about background estimation of spectroscopy signals applied to chemistry,
although the level of background smoothness is not the same.

One way to verify this background hypothesis is to consider only the broadband spectra at vari-
ous dynamic pressures, thus various flight domain points. All other parameters being equal and the
aircraft being stationary, only a broadband shift should be observed. As presented in Figure 4.1, this
is indeed what is observed from 300 Hz, where broadband spectra at several dynamic pressures are
presented for a given accelerometer.

2Note that, as mentioned earlier, level-flight or stabilized flight phase here refers to straight-and-level flight.3E.g., flap extension induces low-frequency vibrations.4The dynamic pressure is defined as pdyn = 1/2ρv2 with ρ the air mass density and v the relative air speed.
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4.1. SPECTRA SEPARATION

Figure 4.1: Broadband levels amplitude variations depending on the dynamic pressure for a givenaccelerometer, during straight-and-level flight, with control surfaces at their zero-position. A log scaleon the y-axis is used.

Another representation of this is to compute the RMS values on the 300-2000 Hz frequency range
with the same setup: stationary aircraft, variations of the dynamic pressure only. Results are pre-
sented in Figure 4.2 for different accelerometers. The expected linear dependency is observed. More-
over, the effect of α is showcased: along the x-axis, dynamic pressure variations induce a variation of
the broadband levels; the slope of this factor depends on the accelerometer and thus on the position
and axis measured.

Figure 4.2: Broadband levels amplitude variations in the 300-2000 Hz frequency range depending onthe dynamic pressure for 3 accelerometers, during straight-and-level flight, in clean configuration. A1is an accelerometer close to the engines, while A2 and A3 are far from the engines.

4.1.2 . Broadband estimation algorithm
Following the hypothesis presented previously, a tailored method to separate b and k is imple-

mented to answer this non-trivial problem. Figure 4.3 provides an illustration of the separation.
First attempts were based on a rolling ball algorithm [Ste83], mostly used in biomedical image

processing, which estimates the background intensity of a grayscale image. In layman’s terms, an im-
age can be thought of as a surface on which a ball is placed. The background estimation is performed
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Figure 4.3: Example of a spectrum excitation separation. Original spectrum s (top), broadband spec-trum b (bottom left), kinematic lines k and noise ε (bottom right).

by considering the elevation of the ball when rolling along the surface. If the ball has a large diame-
ter, the resulting estimated background is very smooth, and surface "roughness" is mostly ignored,
whereas a small ball captures more local irregularities. This method requires careful selection of the
ball shape and size (referred to as the kernel), and can be computationally intensive.

Other background estimation methods exist, for example based on polynomial approximation
[Maz22]. Made for chemical spectra, this method assumes that background spectra are modeled
by fourth- or fifth-order polynomial functions. The level of smoothness obtained is too high for our
application, resulting in information loss.

The chosen implementation is based on a moving median with a variable window size. A median
is used instead of a mean to be robust to "outliers", which in this case are the kinematic lines. The
variable window size allows low-frequency information to be preserved while smoothing out mid and
high frequencies. As such, it can be seen as close to the rolling ball algorithm on a log-transformed
surface. This method works best with stabilized flight phases, as the kinematic lines are assumed to
be relatively thin.

The background estimation of a a spectrum s up to a factor α is given at any frequency by:
b

(
f1 + f2

2

)
= median (s [f1, f2]) , (4.2)

where the interval [f1, f2] corresponds to the window size. It is parameterized depending on the fre-
quency, in Table 4.1. The window size needs to be carefully selected, and an edge effect is introduced
by the rolling window but has no negative effect in this case.

Applying this algorithm thus gives b. Subtracting b from s gives k + ε, where ε is the noise. It is
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4.2. VIBRATION SPECTRA LOW-ORDER REPRESENTATION
modeled here as a Gaussian noise N (0, σ) of variance σ.

Parameter ValueWindow size from 1 Hz to 20 Hz β HzWindow size at 20 Hz 2× β HzWindow size at 2000 Hz 200× β HzWindow size evolution from 20 Hz to 2000 Hz Linear
Table 4.1: Smoothing parameters, with β being the spectral resolution, see Eq. (1.6).

4.2 . Vibration spectra low-order representation

This section details the application of reduced representations on data extracted from the flight
test database. First, the transition from temporal to frequency domain is presented using a PSD. Sec-
ond, multiple reductions are applied to the frequency domain representation and compared against
each other.

4.2.1 . From temporal to frequency domain
As presented in Section 1.4.1, a PSD allows one to describe the frequency distribution of a random

signal’s content. Welch’s method is applied using the implementation proposed by the Python library
SciPy [VGO+20]. A validation against in-house tools used at Dassault Aviation has been performed,
showing no differences.

The parameters of PSD calculation using Welch’s method are given in Table 4.2.
Parameter Default valueFFT windows size 4096 or 8192 pointsFFT windows overlap 90%FFT windows type Hanning

Table 4.2: PSD parameters and proposed default values for this manuscript.
FFT windows sizes are powers of 2 so as to perform the Discrete Fourier Transform using the

FFT algorithm in O(N logN) instead of O(N2), with N the length of the temporal signal. The default
window size on which PSDs are calculated is set to 20 or 30 seconds by default, but is sometimes
reduced in the manuscript depending on the application, as for the prediction of vibration spectra
during unsteady phases, see Section 7.2.

A 30-second signal sampled at 5000 Hz takes up 150,000 time samples. With the given parameter,
a PSD representation of the same signal would have a frequency resolution of β = 4096/5000 =

0.8192. This means that by considering only the 10-2000 Hz range, only 2430 frequency samples are
required to describe this signal, which equals to a compression rate of 1.62%.

The total power of the signal is invariant to the parameters used to compute a PSD: they affect the
distribution of power across different frequency bins in the PSD estimate. This means that any given
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"spike" can become "narrow and tall" or "broad and short", the RMS value of the total signal remains
constant.

4.2.2 . RMS per frequency band
After transforming temporal signals into a frequency representation, several reduction methods

can be applied. The first is to compute RMS levels per frequency band. This approach is physically
interpretable and adapted to industrial needs. With the exception of some data exploration steps,
most of the manuscript uses this representation.

A reduced spectrum is denoted s̃, and contains the energy of each band b covering the range
[f1, f2], such that:

s̃(b) = RMS(s[f1, f2]) ≈
√
β

∑
f∈[f1,f2]

s(f), (4.3)
with the RMS being defined in Eq. (1.12) and β the spectral resolution, see Eq. (1.6). The set of bands
is close to third-octave bands, which are defined by a center frequency for bands 1 to 32 as:

fcenter ≜ 100.1n, ∀ n ∈ [12, 43], (4.4)
and an upper and lower frequency boundary:

fupper ≜ fcenter × 100.05, flower ≜ fcenter
100.05

. (4.5)
Here, bands are adjusted so they fit the modal behavior of the aircraft, which is understood by

performing a GVT, see Section 1.2.3. In total, 17 bands are used, covering the 2-2000 Hz frequency
range.

Applying this reduction on broadband spectra b instead of PSDs s allows to reduce the variance,
as the phenomenon of kinematic lines "jumping" from one band to another is suppressed.
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(a) Broadband spectrum
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(b) RMS levels per band
Figure 4.4: Example of a broadband spectrum (left) reduced into RMS levels per band (right).
In Figure 4.4, the reduction of a broadband spectrum into RMS levels per frequency band is show-

cased. The choice of bands induces a bias, as variance increases with bands narrowing/refinement.
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4.2. VIBRATION SPECTRA LOW-ORDER REPRESENTATION
However, this effect is considered to be non-significant, as presented in Section 7.1.7 where perfor-
mances of different models are compared against the discretization level.

4.2.3 . Principal Component Analysis
Another reduction method is to apply PCA, which allows the description of a spectrum through

a linear combination of its first principal components, see Section 3.2.1. It is applied on broadband
spectra, as capturing the very localized energy of kinematic lines would infer with the decomposition5.
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Figure 4.5: Reconstruction error of PCA depending on the number of components used, log-log scale.
Before performing the transformation, data is log-transformed, see Eq. (3.3), and centered using

a standard scaler applied on each column/frequency, see Eq. (3.1). Also, only the relevant frequency
range up to 2000 Hz is considered to compute the components: as accelerometers are sampled at
5000 Hz, the resulting spectra have information up to 2500 Hz, but the 2000-2500 Hz samples must
be removed.

In Figure 4.5, the reconstruction error decreases with a power relationship with respect to the
number of components. Themetric used, where a 100%error relates to a 1-order-of-magnitude error,
is employed multiple times in the manuscript and introduced in Eq. (5.34). With 100 components,
99.9% of the variance is explained, with a 1.9% reconstruction error, while reducing the data to 4.1%
of its original size. The Scikit-learn [PVG+11] implementation is used.

In Figure 4.6a, the first 3 principal components are presented. Component 1 is almost flat and
can be associated with the broadband amplitude factor α defined in Section 4.1.1, while other com-
ponents are more localized in frequency. In Figure 4.6b, the spectrum reconstructed with the first
100 components is superposed to the original spectrum, showing an almost perfect reconstruction.
As a side note, it is possible to reconstruct spectra of accelerometers that are not used in the dataset
to compute the principal components.

An alternative to applying PCA on broadband spectra is to apply it on RMS spectra. The PCA is
thus performed on b̃ ∈ R17. While it could be interesting for extreme compressions, the increase

5A solution to avoid the separation between b and k would be to learn a dictionary that already containsline components at each frequency.
57



CHAPTER 4. REDUCED REPRESENTATIONS AND INSIGHTS IN AIRCRAFTVIBRATION ENVIRONMENT

Frequency (Hz)

PS
D

 (g
2 /

H
z)

1
2
3

(a) First 3 principal components
Frequency (Hz)

PS
D

 (g
2 /

H
z)

Original
Reconstructed

(b) Reconstructed broadband spectrum
Figure 4.6: PCA applied on a broadband dataset, using 100 components, log-log scale.

in reconstruction error is not worth the low compression rate benefit compared to only using RMS
reduction.

4.2.4 . Non-negative Matrix Factorization
NMF is an alternative decomposition to PCA, taking advantage of the non-negative nature of data,

see Section 3.2.2. While originally non-negative, data is log-transformed and scaled using a min-max
scaler, see Eq. (3.2), during dataset generation to ease the optimization process.
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Figure 4.7: Reconstruction error of NMF depending on the number of components used, log-log scale.
In Figure 4.7, NMF is applied on the same broadband dataset as previously in Figure 4.5. The

reconstruction error as a function of the number of components is similar to PCA. As for PCA, the
Scikit-learn [PVG+11] implementation is used. While it provides interesting components, this method
is computationally intensive, as Eq. (3.12) has to be minimized.

An interesting property ofNMF is that the non-negative components allow to describe phenomena
localized in frequency. Another difference with PCA is that components learned for a decomposition
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(b) NMF with 3 components
Figure 4.8: NMF components for 2 (left) and 3 (right) components, with the same y-scale.

using 2modes are not the same as the ones learned for a decomposition using 3modes, as presented
in Figure 4.8.

As the reconstruction error depending on the number of components evolves similarly to PCA,
100 components are used for the reconstruction presented in Figure 4.9.
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Figure 4.9: Reconstructed broadband spectrum using NMF with 100 components, log-log scale.
Finally, using NMF on RMS levels produces the same kind of results as PCA for greater complexity.

4.2.5 . Autoencoder
A compression algorithm based on an autoencoder has been cursorily evaluated. It is presented

here for exhaustiveness, as other representations are sufficient. The significant increase in computa-
tion time and interpretation complexity of autoencoders were deemed not worth the effort.

The model’s architecture is a feedforward neural network with 2 encoding layers and 2 decoding
layers. The number of neurons per layer is given below:

1600→ 400→ 100→ 400→ 1600
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Each layer is followed by a dropout layer6 set to 0.1, with the exception of the latent layer. For the

encoder layers, ReLU activations are used, while tanh activations are used for the decoder layers. A
linear activation is usedon the latent layer. The autoencoder is trained for 500 epochswith a batch size
of 64, using an Adam optimizer. Details on activation functions and optimizers are given in Chapter 5.
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Figure 4.10: Reconstructed broadband spectrum using an autoencoder with a latent space of dimen-sion 100, log-log scale.
An example of reconstruction is provided in Figure 4.10. It is worse than NMF and PCA while

capturing the general trend. The average error using a latent space of dimension 100 is around 23%,
while being 1.9% for PCA and 2.3% for NMF.

While autoencoders can be an interesting solution for nonlinear dimensionality reduction, they
are not helpful for this specific problem. The performance could probably be greatly improved by
adjusting the model architecture and its training process, but PCA already provides a significant re-
duction, and the RMS values per band give an evenmore compressed representation while still being
domain-interpretable. The only use would be to combine the autoencoder with clustering.

Because of the previous results of PCA and NMF, autoencoder compression is not applied to RMS
levels data.

4.2.6 . Comparison of reduction methods
In this section, frequency spectra are reduced using RMS levels per frequency band, PCA, NMF,

and an autoencoder.
RMS levels per frequency band provides the best compression rate, reducing information to

0.70% of its original size. It is domain-interpretable but does not allow reconstruction of the original
signal since the information is lost. PCA and NMF offer a compression rate of 4.1% and a recon-
struction performance of respectively 1.9% and 2.1%. The components can be difficult to interpret
because they are just a mathematical decomposition with no added domain constraints. While PCA is
fast, NMF can take much longer to converge. The implemented autoencoder also offers a compres-
sion rate of 4.1% but with an average error of 23%. While its performance can most likely be greatly
improved, this was not considered necessary.

6Dropout consists of not using a certain proportion of neurons in order to improve robustness.
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As a result, the RMS values per frequency band are used for modeling, especially in Chapters 6

and 7. PCA is used before applying clustering, see Section 3.3.

4.3 . Data exploration

Valuable information can be extracted by examining the data. With the methods implemented
for transforming it into a dataset now introduced, a compilation of insights is showcased.

4.3.1 . Correlations
Correlation matrices between general parameters and spectra can be analyzed to extract effects

and help to tend towards a better understanding of the vibration environment.
A linear relationship can be captured through Pearson’s correlation coefficient ρ. Between two

random variables x and y, it is defined as:
ρ(x,y) ≜

cov(x,y)

σ(x)σ(y)
, (4.6)

with cov( · , · ) the covariance and σ( · ) the standard deviation.
To cover a broader range of relationships, Spearman’s correlation coefficient rs can be used.

It describes monotonic relationships and corresponds to Pearson’s correlation coefficient applied to
ranked variables, i.e., variables ordered by their value:

rs(x,y) ≜ ρ(rgx, rgy), (4.7)
where rg · is a ranked variable.It must be noted that correlations are only a partial indication of feature influence, as they only
consider pairwise relationships and do not account for the influence of other variables7 A high corre-
lation is different from the importance of a variable to predict another variable and may be produce
by non-generalizable phenomena. Moreover, some flight points can be under-represented in the
dataset, and several variables are almost categorical, which are difficult to explain using correlations,
such as flaps position which take discrete values: 0◦, 10◦, etc. For the continuous variables, flight test
constraints make feature distributions highly multi-modal as the flight domain is not covered in a
continuous manner, see later in Figure 7.15 for an example.

Correlations between RMS levels are presented in Figure 4.11a. The closer in frequency the
bands, the higher their correlation coefficient. Two main groups can be identified, with a separation
around 300 Hz. This is coherent with what was presented in Section 4.1.1, with a difference between
the low-frequency range and the mid- and high-frequency range. Moreover, it shows the effect of
high-lift devices, acting on the complete low-frequency range at once.

Correlations between general parameters and RMS levels are presented in Figure 4.11b. Gen-
eral parameters names are anonymized and refer to the following: attitude PA1 , engines PE1...3 , flightpointPFP1...3 , configurationPC1...6 . Low frequencies are influencedmainly by parameters related to the

7Partial correlation tries to answer this problem, but it is limited to linear relationships and low orders ofcontrol variables.
61



CHAPTER 4. REDUCED REPRESENTATIONS AND INSIGHTS IN AIRCRAFTVIBRATION ENVIRONMENT
B1 B2 B3 B4 B5 B6 B7 B8 B9 B1

0
B1

1
B1

2
B1

3
B1

4
B1

5
B1

6
B1

7

B1
B2
B3
B4
B5
B6
B7
B8
B9

B10
B11
B12
B13
B14
B15
B16
B17

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

's
 c

or
re

la
tio

ns

(a) RMS levels across bands
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(b) General parameters and RMS levels
Figure 4.11: Correlation matrices, using Spearman’s correlation coefficient.

aircraft configuration, such as PC3...6 . Mid and high frequencies are mostly influenced by parameters
related to aircraft attitude PA1 , engines PE1...2 , and flight point PFP1 .The two previous analyses should be conducted on a dataset containing only one accelerometer
at a time: a dataset containing multiple accelerometers with opposite responses to certain effects
leads to low correlation values.

4.3.2 . Clustering
Clustering, see Section 3.3, is a method that can help discovering hidden structures in the data. It

is usually applied on reduced data, for example on PCA components.

(a) PCA projection (b) Reconstructed spectra
Figure 4.12: Clustering result on measured spectra for one accelerometer. Projection on the first twoprincipal components (left), reconstruction of broadband spectra on a log-log scale (right).

Clustering can be used to group the measured spectra on a given accelerometer. In Fig-
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4.3. DATA EXPLORATION
ure 4.12, 3 clusters are identified and visualized on the 2 first PCA-components projection, and on
the reconstructed spectra. This clustering is done by applying a k-means algorithm on the first 2 PCA
components. Using all components does not change the results, as the 2 first components explain
most of the variance.

The result of this clustering performed on spectra inY can be interpreted by looking at the general
parameters space X , as presented in Figure 4.13. This representation is a parallel coordinates plot,
where all the dimensions are presented next to each other, and each data point consists of a line
linking the different dimensions. The colors used here are the same as in Figure 4.12. The 3 clusters
can be interpreted as follows:

• In blue, high dynamic pressures and clean configuration8.
• In red, low dynamic pressures and clean configuration.
• in orange, low dynamic pressures and approach configuration9.

Figure 4.13: Parallel coordinates plot of general parameters, colored by cluster.
It must be noted that results highly depend on the accelerometer considered. For example, ac-

celerometers closer to the engines aremuch less affected by the configuration. As a result, the choice
of the number of clusters becomes challenging, as the goal is to categorize a continuous variation. In
such case, an elbow plot has no elbow.

Clustering can also be applied to group themeasured spectra across accelerometers, and infer
which sensors are similar. This can be useful to optimize the FTI by identifying similar sensors that
could be redundant.

In Figure 4.14a, each point is a spectrum reduced to PCA components. Multiple points can be-
long to the same accelerometer. The color corresponds to the standard aircraft zone division. It
can be seen that accelerometers on the front of the aircraft have a low coefficient for the first PCA
component, while this coefficient is high for accelerometers on the rear of the aircraft. This first PCA
component is related to the total RMS value, which is indeed higher near the engines, at the rear of
the aircraft. Next to the accelerometers on the rear side are the accelerometers on the engines.

8Clean configuration: high lift devices, air brakes, and landing gear are retracted.9Approach configuration: high lift devices, air brakes, and/or landing gear are deployed.
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(a) PCA projection (b) t-SNE projection
Figure 4.14: Projection on twodimensions, using the two first PCA components (left) and t-SNE appliedon the PCA components (right).

On Figure 4.14b, the same data points are visualized using a t-SNE (t-distributed Stochastic Neigh-
bor Embedding) projection [vdMH08]. This stochastic method is used to visualize high-dimensional
data and is based on random walks on neighborhood graphs. Here, the first 100 PCA components
are projected on a 2D space. As with Figure 4.14a, front and rear accelerometers are mostly clus-
tered, and accelerometers on engines are close to the rear ones. Moreover, the many small groups
correspond to spectra of the same accelerometer. This representation gives more information and
is maybe more readable.

4.4 . Conclusion on data representation and exploration

This chapter has introduced the strong hypothesis of spectrum separation, which states that a
spectrum in the frequency domain can be represented as a broadband component with an ampli-
tude shift and a collection of kinematic lines. Experimental results confirm this hypothesis, and an
algorithm is implemented to perform the separation. It is compared to the rolling ball algorithm
[Ste83] and a baseline estimation method [Maz22], and shows to be better suited for our use-case,
although the rolling ball algorithm could be tried again.

Several reduced representations of spectra are compared and can be applied either to the raw
spectra or to their broadband counterparts generated by the separation algorithm. RMS levels per
frequency band are presented as the best representation to model broadband levels, being robust
and domain-interpretable while offering the best compression rate. Finally, data exploration is per-
formed using the tools presented so far: dataset generation from Chapter 2, data representation
from Chapters 3 and 4, and clustering from Chapter 3. A correlation study is presented, especially
between general parameters and frequency bands. This helped the modeling process in identifying
the core features to use as model input. Then, clustering is applied and shows results consistent with
domain knowledge and can be another tool to identify features. Finally, a parallel coordinates plot
and a t-SNE projection are presented as an additional way to explore and visualize the data.
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Summary of Part I

This part presents the transformations applied to experimental data from the Flight Test Center.
This framework, which allows the generation of different types of vibration environment datasets, is
the core of the data-driven methodology described in Part II and Part III.

First, an introduction to the vibration environment is given in Chapter 1. It describes what the
vibration environment is, how it is generated, andwhy it needs to be studied in an industrial aerospace
context. Several standard signal representations are provided, including some that are used in the
methodology implemented in this manuscript.

Then, in Chapter 2, an overview of the general dataset generation process is presented. It in-
cludes identification techniques based on domain knowledge, which are described in detail. It also
allows to apply several dataset representation techniques, which are presented in Chapter 3 to-
gether with clustering methods for feature extraction. In Chapter 4, the methods introduced in the
previous chapter are applied to produce reduced representation of vibration environment data
and to generate insights through data exploration. The chosen representation techniques used in the
rest of the manuscript are justified here.
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Part II

Prediction of new flight points
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5 - Supervised learning: regression for predictive vibration
environment
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To predict the vibration environment of an aircraft, the first step is to make predictions at any
point of the flight domain (or feature space) for any instrumented point. This is the objective of Part II.
To this end, the tools of supervised learning and more specifically regression are introduced in this
chapter. Then, Chapters 6 and 7 present an implementation of these tools for vibration environment
prediction.

While Chapter 3 introduced unsupervised learning, this chapter proposes an introduction to su-
pervised learning. As an illustrative example, let us consider the case of handwritten numbers recog-
nition1. The classic approach is to take a set of inputs (images of handwritten numbers) and explicitly
program an algorithm to produce a set of outputs (the identified numbers in the set of inputs). This
task is complex, notably due to the diversity of handwritings. Supervised learning proposes to use the
inputs and outputs to learn the algorithm linking them, provided that a certain algorithm structure is
implemented as a backbone.

1This task belongs to the subfield of Computer Vision.
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In the context of data generated at the FTC, supervised learning can be used to implement pre-

dictive models, for example, to predict vibration levels from the state of the aircraft. The difference
between regression and classification is introduced in Section 5.1 along with notations. Several mod-
els are presented in Section 5.2, and the optimization process to learn the weights of parameterized
models is detailed in Section 5.3, with implementation details in Section 5.4. The problem of model
interpretability is tackled in Section 5.5, where the SHAP method is detailed.

5.1 . Notations, regression and classification tasks

Here and for the rest of the manuscript, a dataset is denoted as D and a model as ϕ ∈ Φ. In
the case of a model parameterized by θ ∈ Θ, it is denoted ϕθ. In the context of supervised learning,the dataset is comprised of m labeled datapoints D = {(xi,yi)}1,...,m such that xi ∈ X ⊂ Rn and
yi ∈ Y ⊂ Rd. Amodel prediction is denoted ŷ. The link between inputs andoutputs for parameterized
models is performed such that:

ϕθ : X ×Θ → Y. (5.1)
Depending on the nature of the output space, the learning task can be a classification or a regres-

sion task, see Figure 5.1 for an illustration.
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(a) Classification
𝑥

𝑦 𝑦#

(b) Regression
Figure 5.1: Illustration of the classification and regression tasks.

Classification is used when the target variable is categorical and thus can take on a limited num-
ber of distinct values. The goal of classification is to assign input data to one of the predefined
classes or categories. For example, classifying vibrational levels as within the specified range or not,
Y = {0, 1}, based on general flight parameters.

Regression is used when the target variable y is continuous, and thus can take on any numerical
value within a defined range. The goal of regression is to predict the value of the target variable
based on the input features. For example, predicting the values of vibrational levels, Y ⊂ R+, basedon general flight parameters.
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5.2 . Models

Defining the class of models Φ is an empirical task performed through domain knowledge, expe-
rience, and trial and error. In this section, several models implemented in the following chapters are
presented. Some of them, like Artificial Neural Networks, can also be used for unsupervised learning
tasks, as presented previously in Section 3.2.3 about autoencoders.

Models parameters are denoted with the letter θ and contain weights (slopes) and biases (inter-
cepts). Thus, the input vector x starts with a 1 to account for the bias, such that x = [1, x1, . . . , xn]

T.
While θ is defined as a vector in Θ, it can take the form of a matrix, denoted asΘ. A bijection is then
assumed to exist between θ andΘ by reorganizing its elements.

5.2.1 . Linear regression
One of the simplest models to implement is linear regression2, which assumes a linear relation-

ship between the input features and the target variable.
In multivariate linear regression, there are multiple input features, and the relationship between

features and the target variable is represented by a hyperplane in a higher-dimensional space. In the
multivariate and multi-output case, it is defined by:

ϕθ(x) = ŷ = Θx, (5.2)
with x = [1, x1, . . . , xn]

T the input vector containing n features, y = [y1, . . . , yd]
T the output vector of

dimension d, andΘ the matrix of coefficients, containing the bias as an additional column.
Linear regression has the advantages of simplicity, interpretability, and efficiency. However, it

assumes a linear relationship between the input feature(s) and the target variable(s), which may not
always hold in real-world scenarios. In such cases, more complex regression techniquesmay be used.
Overall, it is a powerful tool for modeling and predicting continuous variables, and it serves as a
foundation for more advanced regression techniques.

5.2.2 . Polynomial regression
Polynomial regression can be seen as an extension of linear regression where polynomial terms

are introduced to capture nonlinear relationships. This allows for modeling more complex patterns
in the data.

In the univariate case where x is used to predict y, a p-order polynomial regression is defined as:
ϕθ(x) = ŷ =

p∑
i=0

θix
i, (5.3)

with θ0 . . . θp the coefficients. Similarly to the linear regression, it can be written in the multivariate
multi-output case similarly to Eq. (5.2):

ϕθ(x) = ŷ = Θxpoly, (5.4)
where xpoly is the vector concatenating the different polynomial orders of x up to order p, such that:

2Although powerful and with maybe one of the most comprehensive literature.
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xpoly =


1
x
x2

...
xp

 . (5.5)

This is a linear basis expansion [HTF09]. By introducing polynomial terms, polynomial regression
can capture more complex relationships between the input features and the target variable.

5.2.3 . XGBoost
Decision trees use binary rules to compute the target value. A tree consists of a hierarchy of

nodes, each of which can be split into sub-nodes. Decision-tree splitting is usually based on Mean
Squared Error. A random forest [Bre01] prediction can be obtained by combining the decisions of
an ensemble of decision trees applied to a random selection of features in a random subset of the
training data. They are both illustrated in Figure 5.2.

Figure 5.2: Decision tree (left) and random forest (right) illustration.
XGBoost (eXtreme Gradient Boosting) [CG16] is a library implementing tree-based gradient boost-

ing techniques with parallel computing. It is used in many applications such as ground vibration
prediction [NBBC19] and vehicle driving risk prediction [SWL+19]. The idea is to perform gradient
boosting, where an ensemble of weak predictors are combined in an additive way such that:

ŷ(t) = ŷ(t−1) + ft(x), (5.6)
where ft is a classification and regression tree (CART). It can be defined as:

ft(x) = wq(x), w ∈ RT , q : X → {1, 2, . . . , T}, (5.7)
where w is the vector on leaves and q(x) is a function that attributes each datapoint x to a specific
leaf on the current tree t. The complexity of a tree can be defined as:

ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j , (5.8)

where γ > 0 and λ > 0 are hyperparameters. Finally, the cost function is:
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C(θ) =
N∑
i=1

(y − ŷ)2 +
T∑
t=1

ω(ft), (5.9)
which aims to minimize the MSE as a cost function3, while a regularization term on trees complexity
ω(ft) is included.XGBoost is known for its high predictive accuracy for interpolation and its ability to handle complex
relationships. However, one of its major drawbacks is that predictions are based only on a sum of
values attached to tree leaves: no transformation is applied. As a result, it cannot perform out-of-
sample extrapolation where it can only predict a constant.

5.2.4 . Gaussian process
A Gaussian process consists of learning the process that generates all the functions f that are the

origin of the observed data, instead of learning the parameters of a function f(x) = ŷ that could
have generated the observed data. It is an non-parametric model. To limit the space of functions,
regularity constraints are applied: if x1 and x2 are close, then it is assumed that y1 and y2 are alsoclose. A distribution on x is defined on an arbitrary set of points x1, . . . ,xm, and each point y1, . . . ,ymis a random variable. The joint probability p(y1, . . . ,ym) is a multivariate normal distribution.

To constrain the space of functions and quantify regularity, an (m ×m) covariance matrix is de-
fined, quantifying the similarity of points based on their distance. The calculation of this covariance
matrix is done using a kernel function or covariance function, which takes two points in space as in-
put and returns their similarity based on a notion of distance. Given a kernel k(x,x′), the covariance
matrix is constructed as follows:

Σ(x,x′) =

k (x1,x
′
1) · · · k (x1,x

′
m)... . . . ...

k (xm,x′
1) · · · k (xm,x′

m)

 . (5.10)

This matrix must be positive definite. In addition to the covariance matrix, a mean function µ(x)

is needed to fully characterize the multivariate normal distribution. Finally, as in [RW06], a function f

that could have generated the data is described by:
f(x) ∼ ϕ

(
µ(x), k(x,x′)

)
. (5.11)

There are various types of Gaussian process kernels, each with its own characteristics and appli-
cations. They can be combined using sum and product operators. Below is a short presentation of
commonly used kernels.

The RBF (Radial Basis Function) kernel is based on the ℓ2-norm, or Euclidean distance. The RBF
kernel is smooth and infinitely differentiable, making it suitable for modeling smooth functions.

kRBF
(
x,x′) ≜ exp

(
−
∥x− x′∥22

2ℓ2

)
, (5.12)

3More details on cost functions in Section 5.3.
73



CHAPTER 5. SUPERVISED LEARNING: REGRESSION FOR PREDICTIVE VIBRATIONENVIRONMENT
where l is the length scale parameter that controls the smoothness of the function.

The Matérn kernel is a family of kernels that includes the RBF kernel as a special case. It intro-
duces a parameter that controls the smoothness of the function being modeled. The Matérn kernel
is more flexible than the RBF kernel and can handle functions with different levels of smoothness.

kMatérn
(
x,x′) ≜ 1

Γ(ν)2ν−1

(√
2ν

l

∥∥x− x′∥∥
2

)ν

Kν

(√
2ν

l

∥∥x− x′∥∥
2

)
, (5.13)

whereKν is amodified Bessel function, Γ( · ) is the gamma function, and ν is a parameter that controls
the smoothness of the function. As ν →∞, the Matérn kernel converges to the RBF kernel.

The linear kernel measures the similarity between two points as a linear function of their coor-
dinates. It assumes a linear relationship between the input and output variables:

kLinear
(
x,x′) ≜ 〈x,x′〉 . (5.14)

The polynomial kernel measures the similarity between two points as a polynomial function of
their coordinates. It captures nonlinear relationships between the input and output variables:

kPolynomial
(
x,x′) ≜ (〈x,x′〉+ c

)d
, (5.15)

where c is a constant and d is the degree of the polynomial.
The periodic kernel, or Exp-Sine-Squared kernel, is used to model functions with periodic behav-

ior. It measures the similarity between two points based on their periodic distance:
kPeriodic

(
x,x′) ≜ exp

(
−
2 sin2 (π ∥x− x′∥2 /p)

l2

)
, (5.16)

where l is the length scale of the kernel and p is the periodicity of the kernel.
The constant kernel assigns a constant value to the similarity between any two points:

kConstant
(
x,x′) ≜ C ∀x,x′. (5.17)

The white noise kernel assigns a constant variance to the similarity between identical points:

kWhite
(
x,x′) ≜ {w if x = x′,

0 otherwise
(5.18)

where w is a noise level to set.
5.2.5 . Artificial Neural Network

An ANN (Artificial Neural Network) is a model comprised of different layers: an input layer, one
or several hidden layers, and an output layer. Each layer has a collection of neurons, which are basic
computational units taking in an input, transforming it, and producing an output, see Figure 5.3. The
value of a neuron is defined as:

a ≜ g(⟨θ,x⟩), (5.19)
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Figure 5.3: Illustration of a neuron.

with x the input value, θ the weights, and g the activation function.
The activation function serves the purpose of introducing a nonlinearity, allowing the modeling

of complex relationships. Several activation functions exist, such as sigmoid, tanh, or ReLU (Rectified
Linear Unit), and are illustrated in Figure 5.4.

(a) sigmoid (b) tanh (c) ReLU
Figure 5.4: Activations functions

Each layer can be seen as a multi-dimensional space, with its dimension being the number of
neurons in that specific layer. The value of all neurons in a layer l can be defined as:

a(l) ≜ g(l)(Θ(l)a(l−1)) = f (l)(a(l−1)), (5.20)
with a(l) the vector of neurons values at layer l (called activation or hidden state), Θ(l) the matrix of
weights and biases, and g(l) the activation function. Denoting f (l) the transformation from layer l− 1

to layer l, the general equation of an L-layer ANN can be written as:
ϕθ(x) = (f (L) ◦ . . . ◦ f (3) ◦ f (2))(x) = ŷ, (5.21)

where ϕθ is parameterized by θ = (Θ(2), . . . ,Θ(L)).
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This specific configuration where each neuron in a layer is connected to all neurons in the next

layer is called a Feedforward Neural Network, see Figure 5.5.
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Figure 5.5: Illustration of a Feedforward Neural Network with 2 hidden layers.
Each new layer is built on the previous one and adds a level of complexity. As the number of neu-

rons in a given layer defines its dimension, the number of layers in an ANN is relative to its complexity
level. The deeper the model, the more complex the relationships that can be modeled.

Let us give an illustration of how layers relate to complexity level. Consider the regression prob-
lem of predicting house prices, where inputs are measurements such as surface, number of rooms,
location, etc. The first layer can build concepts based on those inputs, such as the overall size of the
house, by using surface and number of rooms. The second layer builds concepts built on top of the
first layer. For example, the value of one neuron could be linked to how upscale the neighborhood is:
this is a better feature (independent variable) than the initial raw measurement, with a higher com-
plexity level. Note, however, that the actual meaning of values is most of the time hard to interpret.
A brief overview of interpretability methods is given in Section 5.5, with a detail on the SHAP method
in Section 5.5.4.

5.2.6 . Recurrent Neural Network
Multiple architectures of ANNs exist to encode specific relationships in the data. One of them is

the RNN (Recurrent Neural Network), which encodes temporal relationships, see Figure 5.6. This
architecture allows to capture dependencies and patterns in sequences, making it useful for tasks
such as language modeling, speech recognition, translation, and time series forecasting. Regarding
forecasting, RNNs can surpass classical methods such as autoregressive models in the case of high
dimensional data (d > 10), even when they are adapted to the multivariate case, see Vector Autore-
gressive model [ziv06, Lüt13].

For each time step (t) a cell produces an activation, passed to the cell at the next time step, and
an output. The activation is defined as:

a(t) ≜ ga

(
Θa

[
a(t−1),x(t)

])
, (5.22)
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Figure 5.6: Illustrations of a Recurrent Neural Network, considering the time from t− τ to t each∆t.

whereΘa

[
a(t−1),x(t)

]
≜ Θ

(t)
aaa(t−1) +Θ

(t)
axx(t) withΘaa andΘax being parameters contained inΘa.The output is defined as:
ŷ(t) ≜ gy

(
Θ(t)

yaa
(t)
)
. (5.23)

An issue with a basic RNN architecture is its limitations in capturing long-term dependencies, no-
tably because of the vanishing and exploding gradient problem [Hoc91, BSF94, PMB13]. To address
this, more advanced architectures have been developed.

LSTM (Long Short-Term Memory) [HS97] introduces memory cells and gating mechanisms to
better capture and preserve long-term dependencies in sequential data. Gates control the flow of
information into and out of the memory cells, allowing the LSTM to remember or forget information
over time selectively. A gate is defined as:

Γ · ≜ σ (Θ · [a(t−1),x(t)
])

, (5.24)
where σ is the sigmoid activation function.

The forget gate Γf determines which information from the previous state should be kept, the
input gate Γi determines which values from the current state should be updated, and the output
gate Γo determines which information should be used for the hidden state a(t).

Thememory cell acts as a long-termmemory storage unit, enabling the LSTM to capture and prop-
agate information acrossmultiple time steps. It is defined as the combination of previous information
passed into the forget gate, and current information passed into the input gate, such that:

c(t) ≜ Γf ⊙ c(t−1) + Γi ⊙ c̃(t), (5.25)
where ⊙ denotes the Hadamard product, or element-wise product, and c̃(t) are the candidate values
for the current state and are defined as:

c̃(t) ≜ tanh
(
Θc

[
a(t−1),x(t)

])
. (5.26)

The output of the cell is the hidden state, computed from the cell state:
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a(t) ≜ Γo ⊙ tanh
(
c(t)
)
. (5.27)

Many variants of LSTMs have been developed, such as LSTMs augmented by peephole connections
[GS00], or Depth Gated RNN [GG15]. GRU (Gated Recurrent Unit) [CvG+14] is another type of RNN
architecture that also addresses the vanishing and exploding gradient problem and captures long-
term dependencies. It simplifies the LSTM architecture and has shown comparable performance to
LSTMs while using fewer parameters. GRU combines the input and forget gates into a single update
gate Γu. Additionally, it introduces a reset gate Γr that controls the flow of information from previous
time steps. Finally, the cell state and hidden state are combined:

a(t) ≜ (1− Γu)⊙ a(t−1) + Γu ⊙ ã(t), (5.28)
where ã(t) are the candidate values for the current hidden state, and are defined as:

ã(t) ≜ tanh
(
Θa

[
Γr ⊙ a(t−1),x(t)

])
. (5.29)

Apart from LSTM and GRU, there are other variants of RNNs that have been developed to address
specific challenges or improve performance in different scenarios. Bidirectional RNNs process the
input sequence in both forward andbackward directions, allowing the network to capture information
from past and future contexts simultaneously. This is particularly useful in tasks where the current
prediction depends on context around the information being processed, such as speech recognition
and sentiment analysis.

Attention Mechanisms enhance the capability of RNNs to focus on relevant parts of the input
sequence by assigning different weights to different time steps or input elements. They have been
widely used in tasks such as machine translation, image captioning, and text summarization.

Transformer Networks [VSP+17] is a type of architecture that relies solely on self-attention mech-
anisms, eliminating the need for recurrent connections. They have been highly successful in natural
language processing tasks, such as machine translation and language understanding, due to their
ability to capture long-range dependencies and parallelize computations effectively4.

5.2.7 . Ensembles and Deep ensembles
Ensemble models combine the predictions of multiple individual estimators to make a final pre-

diction. The idea behind ensemble modeling is that by combining the strengths of different models,
the overall performance and accuracy can be improved compared to using a single model. There are
several types of ensemble models, including:

• Bagging, short for bootstrap aggregating, involves training multiple models on different sub-
sets of the training data, typically using the same algorithm. Each model is trained indepen-
dently, and their predictions are combined through averaging or voting to make the final pre-
diction. Random Forest is a popular example of a bagging ensemble model.

4For demonstration purposes, this paragraph has been generated by a transformer.
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• Boosting is a technique wheremultiple weakmodels are trained sequentially, with each subse-
quentmodel focusing on the samples that the previousmodelsmisclassified. The predictions of
all the models are combined using weighted voting or averaging. Gradient Boosting Machines
(GBM) and AdaBoost are common boosting ensemble models.

• Stacking involves trainingmultiplemodels on the same dataset and then using anothermodel,
called ameta-model or blender, to combine their predictions. Themeta-model is trained on the
predictions of the individual models, learning to make the final prediction based on their out-
puts. Stacking can bemore complex and computationally intensive but often leads to improved
performance.

While these techniques are more computationally expensive than non-ensemble models, they
offer improved accuracy, robustness, and generalization. They can also be used with ANNs5, for ex-
ample, using deep ensembles. A deep ensemble [LPB17] is an ensemble of neural networks allowing
to quantify model uncertainties. It was recently shown that this method produces better results than
other uncertainty quantification methods [FHL20]. As with classical ensembles, they require much
more computational power than their single counterpart. Finally, more recent approaches exist, such
as model soups [WIG+22], proposing to average the weights of multiple models fine-tuned with dif-
ferent hyperparameter configurations to improve accuracy and robustness.

5.3 . Optimizing weights and hyperparameters

After introducing several classes ofmodels, this sectiondescribes the optimizationprocess through
which the model parameters are learned.

5.3.1 . Cost function
The first step to learn the weights of amodel is to define an objective. This is done through the use

of a cost function C(θ), also known as an objective function, which quantifies the average difference
between predictions ŷ of a model and the actual values to predict y. A cost function averages the
error over all training points, while a loss function computes the error for a single data point.

Different types of cost functions are used depending on the problem at hand. For regression
problems, the two most common cost functions are based on the ℓ1 and ℓ2-norms: the MAE (Mean
Absolute Error) and the MSE (Mean Squared Error). For multi-output problems where there is m

datapoints of dimension d, they can be written as:
MAE ≜

1

d

1

m

m∑
i=1

∥yi − ŷi∥1 , (5.30)

MSE ≜
1

d

1

m

m∑
i=1

∥yi − ŷi∥
2
2 . (5.31)

While MAE treats all errors equally, MSE penalizes larger errors more heavily as they are squared.
Note that this multi-output case is not conventional, and a choice of giving the same weight to all

5Whether they are feedforward, recurrent, or other types of neural networks.
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output dimensions is made in this definition. Other metrics can be used to evaluate the results, but
are not used as a cost function because of their properties. For example, this is the case of the MAPE
(Mean Absolute Percentage Error):

MAPE ≜
1

d

1

m

d∑
j=1

m∑
i=1

∣∣∣∣yij − ŷij
yij

∣∣∣∣ . (5.32)
While this metric is easy to interpret as it gives a percentage error, it has multiple problems. First,

it is not symmetric, meaning that interchanging y and ŷ gives a different error and favors under-
prediction as a result. Second, it can give infinite or extremely high values for small absolute dif-
ferences if the actual value is close to zero, which can lead to misleading results. Finally, it favors
under-prediction.

As a solution to the limitations of MAPE, other metrics have been introduced, such as the log of
the accuracy ratio, which does not favor under predictions and which expected value is the geometric
mean [Tof15]. Extended to the multi-output case, it is defined here as the MLAR (Mean Log Accuracy
Ratio):

MLAR ≜
1

d

1

m

d∑
j=1

m∑
i=1

log

(
ŷij
yij

)
. (5.33)

In this manuscript, twometrics are introduced for model evaluation. The first one is namedMALE
(Mean Absolute Log Error), and is defined as:

MALE ≜
1

d

1

m

d∑
j=1

m∑
i=1

∣∣∣∣log10 ŷijyij

∣∣∣∣× 100. (5.34)
It can be considered as a mix of the MAE (as it can be rewritten using an ℓ1-norm) and the MLAR.

With this metric, a 1-order-of-magnitude error amounts to a 100% error. The second metric intro-
duced is an alternative to the previous one but made to evaluate the maximum error across all sam-
ples and dimensions:

maxALE ≜ max
i,j

∣∣∣∣log10 ŷijyij

∣∣∣∣× 100. (5.35)
To improve the generalization of a model, a technique is to keep the magnitude of the weights

small by regularization methods, for instance, by adding a penalty based on the weight magnitude
to the cost function. This is done through the use of ℓ1-penalty (LASSO, or Least Absolute Shrinkage
and Selection Operator), ℓ2-penalty (ridge/Tikhonov), or both (elastic net). An example of elastic net
is given below:

C(θ) =
1

d

1

m

m∑
i=1

∥yi − ŷi∥
2
2 + λ1 ∥θ∥1 + λ2 ∥θ∥22 , (5.36)

where λ1 and λ2 are regularization parameters.
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5.3.2 . Optimization process

To minimize the cost function, an optimization process is performed. The goal is to find the best
weights θ⋆ such that:

θ⋆ ∈ argmin
θ∈Θ

C(θ). (5.37)
The most commonly used optimization algorithm is gradient descent, a first-order optimization

algorithm6.
Gradient descent iteratively adjusts themodel’s parameters by following thedirection of the steep-

est descent of the cost function. Depending on how many data points are used to compute the gra-
dients, it can be called stochastic gradient descent (one sample), mini-batch gradient descent (a mini-
batch sample), or batch gradient descent (all samples). The batch size is the number of samples used
in one iteration of gradient descent. An epoch is one ormultiple steps of gradient descent, after which
all samples have been seen by the algorithm. The update rule is:

θ ← θ − α∇θC, (5.38)
with ∇θC the partial derivative of C with respect to θ, and α the learning rate. The learning rate
determines the step size at which the parameters are updated during the optimization process. If too
small, convergence may be too slow, if too large, convergence may never happen. The learning rate
can be adapted during the optimization process.
Multiple improvements in gradient descent have been proposed.Momentum-based gradient de-

scent introduces a momentum term that accumulates the gradients of previous iterations and adds
it to the current update. This helps to accelerate convergence, especially in the presence of sparse
gradients or noisy data. Adagrad [DHS11] adapts the learning rate for each parameter based on the
historical gradients. It performs larger updates for infrequent parameters and smaller updates for
frequent parameters. Adagrad is effective in handling sparse data but may suffer from a diminishing
learning rate over time. RMSprop is an extension of Adagrad that addresses the diminishing learning
rate problem. It introduces a decay factor to control the accumulation of historical gradients, allowing
the learning rate to adapt more effectively. Adam (Adaptive Moment Estimation) [KB17] combines
the ideas of momentum and RMSprop. It maintains both the first-order moment (the mean) and the
second-order moment (the uncentered variance) of the gradients. Adam is widely used and performs
well in practice due to its adaptive learning rate and momentum. Nadam [Doz16] is an extension of
Adam that incorporates the Nesterov accelerated gradient (NAG) method. NAG looks ahead in the
direction of the momentum update before computing the gradient, which helps to improve conver-
gence.
Learning a model parameters is subject to the trade-off between bias and variance. As illustrated

in Figure 5.7, high bias leads to underfitting while high variance leads to overfitting. Here, bias refers
6Second-order optimization algorithms such as Newton’s method are less used as they require to computethe Hessian matrix, which can be computationally expensive, especially for large datasets.
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to the error introduced by the model’s assumptions or simplifications. A high-bias model tends to
oversimplify the relationships between the features and the target variable. Variance refers to the
error introduced by the model’s sensitivity to the fluctuations in the training data. A model with high
variance tends to capture the noise and random fluctuations in the training data. In both under and
overfitting cases, the model will tend to generalize poorly.

𝑥

𝑦
𝑦#

(a) Underfitting
𝑥

𝑦
𝑦#

(b) Balanced trade-off
𝑥

𝑦
𝑦#

(c) Overfitting
Figure 5.7: Illustration of the bias-variance trade-off.

To find the right balance between bias and variance, multiple techniques can be used, such as
regularization (see at the end of Section 5.3.1), which helps lowering the variance.

5.3.3 . Evaluating performances
The end goal of a trained model is to apply it to new data samples, unused for training, which is

dependent on its generalization ability. To evaluate this, a proportion of the dataset is kept away and
not used in training. In general, a dataset is split into:

• A training set, used to train the model and adjust its parameters through gradient descent.
• A validation set, used to evaluate models and adjust their hyperparameters. This is the model
selection process.

• A test set, used for the final evaluation. This set is necessary as the model is biased towards the
validation set.

The proportion of data in the training-validation-test sets is an empirical choice, varying depending
on the problem and the available data. As a general rule of thumb, a split into 80%-10%-10% is a good
starting point.

The initial choice of the validation set can bias the hyperparameters optimization. To avoid this,
cross validation can be used, for example, k-fold cross validation illustrated in Figure 5.8. First, the
whole dataset is divided into a training-validation set and a test set. Then, the training set is split into
k folds. For each split, the model is trained on k − 1 folds and validated on the last fold. When a
model is chosen, it can finally be evaluated on the test set. It has the benefit of providing a less biased
estimate of model performances at the cost of an increased computational time.
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Figure 5.8: Illustration of the cross-validation process using 5-folds.

In classical machine learning the different sets are assumed to be i.i.d., independent and identi-
cally distributed. However, in reality, this assumption is often false, and the challenge is to generalize
to distribution shifts, see Out-of-Distribution generalization [LSH+23]. For example, in the prediction
problem presented in Chapter 7, a way to evaluate models is to perform extrapolation along the dy-
namic pressure variable, thus perform a prediction under a distribution shift. In this context, such
extrapolation is justified solely by its alignment with domain-specific knowledge; otherwise, it would
be considered imprudent

5.4 . Practical implementation

Now that the theoretical aspects have been covered, the question arises as to how this knowl-
edge can be translated into practical application. Machine learning is greatly iterative by nature, as it
involves refining and improving models based on feedback and discoveries. Figure 5.9 illustrates this
iterative process.

The overall process begins with selecting, extracting, and cleaning a subset of data from a poten-
tially large database. For a regression problem, the choice of features and output variables is crucial
in defining the problem to be solved. Then, the data must be transformed to find a suitable repre-
sentation. This step often involves feature engineering and preprocessing techniques.

Once the data is prepared, a model architecture is selected, and its weights are learned through
training. However, each step in this process can lead to discoveries and insights that may challenge
or invalidate previous choices. This iterative nature of machine learning requires constant evaluation,
experimentation, and adaptation to improve the model’s performance and address any limitations
or shortcomings.

Lately, AutoML (Automated Machine Learning) has emerged as a powerful tool in the field of ma-
chine learning [HZC21]. By automating the iterative process of feature engineering, model selection,
and hyperparameter tuning, AutoML can reduce the burden of manual trial and error, saving time
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Figure 5.9: Illustration of the process to obtain a trained model from a flight test database.

and resources.
While this iterative process should be able to identify the best-performing model on the given

dataset, there is no guarantee that the features used in a black box model for prediction are actually
predictive. The dataset could be biased, and certain features could be used to make good predictions
that would not generalize. In addition to a careful selection of the dataset and how it is partitioned,
interpreting model predictions is an essential step in being able to trust its ability to generalize.

5.5 . Interpretability: understanding a model’s predictions

The emergence of the field of explainable AI stems from the need to understand the predictions
made by machine learning models. In an aeronautical context, interpretability is critical and could be
subject to standards regulation in the near future.

Multiple definitions of interpretability have been given. In [Mil19], it is defined as « the degree
to which a human can understand the cause of a decision. », while in [KKK16] it is defined as « the
degree to which a human can consistently predict the model’s result. ». In both cases, the definition
is broad but offers a baseline for what is expected from an interpretation method.

According to [RB18], the quality of explanation methods and individual explanations can be as-
sessed through several properties. Explanationmethods have properties such as expressive power,
translucency (how much the method relies on analyzing the model’s parameters), portability, and
algorithmic complexity. Individual explanations have properties such as accuracy, fidelity, consis-
tency (between models trained on the same task), stability (between similar samples), comprehensi-
bility, certainty, degree of importance, novelty, and representativeness.

In [Mil19], several human-centered criteria to define a "good" explanation are presented. An
explanation should be contrastive [Lip90] by answering the question, "Why this prediction instead
of another?". It should focus on the primary cause (selectiveness), be domain-oriented, and focus
on the abnormal. Indeed, people tend to focus on abnormal causes to explain events [KT81]. Thus,
a prediction should highlight any feature with abnormal values, even when there are other features
with the sameamount of influence butwith standard values. Finally, an explanation should be truthful
(having a high fidelity), consistent with prior beliefs of the explainee (otherwise, it tends to be ignored
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through confirmation bias [Nic98]), and probable.

In this section, multiplemodel-agnostic methods [RSG16a] detailed in [Mol22] are presented, allow-
ing consistent interpretation of different models on the same dataset without being tied to a specific
architecture. A focus is made on SHAP, used in Chapter 7 to explain model predictions.

5.5.1 . An overview of local model-agnostic interpretation methods
Model-agnostic interpretationmethods can be separated into global methods, aiming to describe

how features affect the prediction on average, and local methods, aiming to explain individual pre-
dictions. Here, local methods are presented, but parallels are made with global methods.

An ICE (Individual Conditional Expectation) plot [GKBP15] shows the effect of a feature on the
prediction for each sample. One line is drawn per sample, and one plot is given for each feature. While
this method is local, taking its average gives the PDP (Partial Dependence Plot), a global method
[Fri01].

Counterfactual explanations are in the form of "if event A had not occurred, then event B would
not have occurred". They allow to describe the smallest change to the feature values that changes the
prediction to a predefined output. Several implementations exist, such as [WMR18] and [DMBB20].
They are contrastive and selective, thus human-friendly, and allow for third-party auditing, as no ac-
cess to the model is required, only to its predictions. However, they are prone to providing multiple
contradictory explanations.

From the authors of LIME, see below, the anchors method [RSG18] proposes an explanation
based on scoped rules called anchors, representing local, "sufficient" conditions for predictions. While
limited to classificationmodels, it provides easy-to-interpret explanations andworks evenwhenmodel
predictions are nonlinear or complex. However, it has many hyperparameters to set and requires to
perform many inferences as other perturbation-based explainers.

Finally, there are Shapley values and SHAP, based on Shapley values. Since this is the selected
method to interpret our models, a detailed description is given in the following sections. First, LIME
is introduced as it is closely related.

5.5.2 . LIME
Local surrogate models propose to explain individual predictions by using another interpretable

model. LIME (Local InterpretableModel-agnostic Explanations) [RSG16b] is a concrete implemen-
tation of this idea. An interpretable model (such as a linear regression or a decision tree) is used to
learn a local approximation of the original black box model to be explained.

Let us define an input x ∈ Rn, x′ ∈ {0, 1}n
′ a binary vector, and ϕ : Rn → R the model to be

explained. The explanation provided by LIME is written as:
ζ(x) ≜ argmin

g∈G
C(ϕ, g, πx) + Ω(g), (5.39)

where g ∈ {0, 1}n
′ is the explanation model, Ω(g) is a measure of complexity7, πx(z) is a proximity

measure8 between z and x, and C(ϕ, g, πx) + Ω(g) is a cost function measuring of how faithful g is
7This measure of complexity acts as a regularization term, as introduced in Eq. (5.36).8The proximity measure is defined as a Gaussian kernel here.
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in approximating ϕ in the neighboorhood πx(z). Moreover, G is the set of linear models g(z′) = θgz

′,
and the cost function is defined as:

C(ϕ, g, πx) ≜
∑
z,z′

πx(z)(ϕ(z)− g(z′))2. (5.40)
This method has the advantage of providing contrastive explanations (thus human-friendly), and

the fidelity of the surrogate model informs on the reliability of its explanations. However, it is chal-
lenging to choose how "local" the surrogate model should be, and explanations can lack robustness,
where similar inputs give rise to different explanations [AJ18]. Finally, this method is prone to adver-
sarial attacks, allowing to hide biases in the explanation while still using them for prediction [SHJ+20].

5.5.3 . Shapley Values
Shapley values [Sha51] allow to explain a prediction by representing the average marginal contri-

bution of each feature across all possible feature combinations. This concept comes from cooperative
game theory, where Shapley values quantify how much each player (feature) contributes to a game
(prediction), when different players collaborate in different combinations.

To showcase the computation of Shapley values, the feature contribution in a linear model is first
defined. Let us denote ζij the feature contribution of feature j for example i. This is how much the
j-th feature contributed to the prediction ŷi = ϕθ(xi) compared to the average prediction for the
entire dataset:

ζij(ŷi) ≜ θjxij − E [θjX:j ] , (5.41)
where E [θjX:j ] is the estimation of the mean effect for feature j. The sum of contributions for an
example i is the difference between the prediction at xi and the average predicted value across allmexamples:

n∑
j=1

ζij(ŷi) =

n∑
j=1

(θjxij − E [θjX:j ])

=
n∑

j=1

θjxij −
n∑

j=1

E [θjX:j ]

= ϕθ(xi)− E [ϕθ(X)] , ∀ i ∈ [1, . . . ,m]

(5.42)

The Shapley values allow to transpose this to anymodel. LetF be the set of all features, andS ⊂ F

all feature subsets. The Shapley value ζj assigns an importance value to each feature j that represents
the effect on the model prediction of including that feature. To compute this effect, two models are
trained, one with a subset S that does not include j, and one for subset S ∪ {j}. The difference
between the two is computed for all possible subsets that do not contain j as ϕS∪{j}(xS∪{j})−ϕS(xS).The Shapley values are defined as the weighted average of all these possible differences:

ζj ≜
∑

S⊆F\{j}

wm · (ϕS∪{j}(xS∪{j})− ϕS(xS)
)
, (5.43)

86



5.5. INTERPRETABILITY: UNDERSTANDING A MODEL’S PREDICTIONS
where the weight wm corresponds to the fact that there are |F | features to be analyzed, and for each
choice of j, there are ( |S|

|F |−1

) different subsets of size |S|:
wm ≜

|S|! (|F | − |S| − 1)!

|F |!
=

1

|F |
1( |S|

|F |−1

) , (5.44)
where |S| and |F | are the cardinality of sets S and F .

The Shapley values are an additive feature method. Let hx be a mapping funtion such that
x′ = hx(x

′) where x is the input and x′ a binary vector (or simplified input). An additive feature
attribution method has an explanation model that is a linear function of binary variables:

g(z′) = ζ0 −
n∑
i

ζiz
′
j , (5.45)

where z′ ∈ {0, 1}n with n the number of simplified input features and ϕj ∈ R.
Summing the effects of all feature attributions approximates the outputϕ(x)of the originalmodel.

An additive feature method verifies the following properties:
• Local accuracy: g(x′) = ϕ(x) when x = hx(x)

• Missingness: x′j = 0 =⇒ ζj = 0

• Consistency: Let ϕx(z
′) = ϕ(hx(z

′)) and z′−j ⇐⇒ z′j = 0. For any two models ϕ and ϕ′, if
ϕ′
x(z

′)− ϕ′
x(z

′
−j) ≥ ϕx(z

′)− ϕx(z
′
−j) then ζj(ϕ

′, x) ≥ ζj(ϕ, x).
In addition to the properties of additive feature attribution, Shapley values satisfiesmultiple prop-

erties such as additivity, symmetry, efficiency (feature contributions add up to the difference of pre-
diction for x and the average), and dummy (a feature that does not contribute to the predicted value
has a Shapley value of 0). They are detailed in [Sha51].

In practice, Shapley values are estimated instead of calculated exactly, as all possible coalitions
(sets) of feature values would have to be evaluated with and without the j-th feature. Each time, the
model would have to be retrained. An approximation with Monte-Carlo sampling has been proposed
[ŠK14].

Shapley values guarantee that the prediction is fairly distributed among the features and offer
contrastive explanations. Both of these advantages are not offered by LIME. However, they require a
lot of computing time, do not provide sparse explanations, and are unable to predict the effect of a
change in features on the model prediction. They also require access to the function and the dataset.

5.5.4 . SHAP
SHAP (SHapley Additive exPlanations) [LL17] is a method based on Shapley values, representing

them as an additive feature attribution method, similar to LIME. Its Python implementation is used in
this manuscript.

KernelSHAP is the first proposed implementation of the SHAPmethod. It is a kernel-based estima-
tion approach for Shapley values inspired by local surrogate models. It offers a solution to Eq. (5.39),
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consistent with the properties of local accuracy, missingness, and consistency of an additive feature
method. The kernel is defined as follows:

π′
x(z

′) ≜
(|F | − 1)(|z′||F |

|S|
)
(|F | − |z′|)

, (5.46)
and should be used with Ω(g) = 0 and C(ϕ, g, π′

x) =
∑

z′ π
′
x(z

′)
(
ϕ(h−1

x (z′))− g(z′)
)2.

As with other interpretable methods, it quantifies the contribution or importance of each feature
but does not assess the quality of the prediction itself.

SHAP offers all the advantages of Shapley values, such as its theoretical foundation, its contrastive
explanations, and the fair distribution of prediction among the feature value. In addition to Shapley
properties (Efficiency, Symmetry, Dummy, and Additivity), SHAP adds local accuracy, missingness, and
consistency. While KernelSHAP is computationally expensive, a fast implementation is proposed for
tree-based models, TreeSHAP [LEL19].

However, as with LIME, SHAP can be used to hide biases [SHJ+20]. Finally, KernelSHAP ignores fea-
ture dependence contrary to TreeSHAP, but TreeSHAP can produce unintuitive feature attributions.
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6 - Kinematic lines prediction
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As presented in Chapter 1 regarding the vibration environment, an aircraft is excited by several
sources, such as the aerodynamic broadband excitations and the kinematic lines. Studying all of them
at once can be a complex task, inducing problems of interpretation regarding the model used and its
results. This chapter focuses on kinematic lines, especially those generated by engines. They are the
more energetic, so equipment need to be defined relative to them. In addition, they allow the study
of propagation through the structure, which helps extend predictions to non-instrumented points in
the aircraft structure.

Firstly, the RMS values of an engine’s kinematic lines are studied and reconstructed using a non-
parametric model. The data are from ground tests, which allows the aerodynamic interactions to be
ignored. This model is helpful for modeling the noise and injecting it into numerical models.

Secondly, a way is proposed to transfer this prediction from ground tests to airborne tests. It is a
first step in the approximation of broadband levels and is based on kinematic lines RMS ratios, which
can be seen as transfer functions or frequency response functions in our output space. Bymeasuring
them on the ground, they could be adjusted to flight phases and used to predict a non-instrumented
point, reducing FTI (Flight Test Instrumentation) costs.

6.1 . Kinematic lines prediction during ground tests

The objective of this section is to train amodel to reconstruct the local RMS value of kinematic lines
depending on the source excitation. Local means it is inherently linked to a specific accelerometer,
but themethodology can be applied to any instrumented point in the structure. After presenting how
the dataset is generated, the prediction methodology is detailed. Then, results are analyzed for one
accelerometer and extended to multiple ones.

6.1.1 . Generating a kinematic lines dataset from vibration survey tests
The generated dataset contains the kinematic lines frequency and RMS levels for the fundamental

harmonic of the low-pressure turbine (also denoted N1) of the left and right engines. It corresponds
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CHAPTER 6. KINEMATIC LINES PREDICTION
to multiple survey tests performed for one aircraft. It is generated using the steps presented in Chap-
ter 2, by first computing short PSDs of 1 second, with FFT windows of 2048 points1. Short PSDs are
not conventional, but they allow to tackle variations in rotational speed at the cost of an increased
variance in the spectra. Moreover, this limits the width of kinematic lines: if their frequency changes
during the PSD computation, they spread out because of the averaging effect.

Kinematic lines frequencies are identified, and their RMS value is computed, as defined in Eq. (2.4).
In this Chapter, they are simply denoted κ, as the vector holds the RMS values for all frequencies of
a given harmonic. Associated with the RMS values are the rotational speed of engines (in %rpm) as
general parameters. An illustrative diagram of the extraction process is given in Figure 6.1.

Flight test database

Vibration surveys
Raw PSD

Frequency (Hz)

PS
D

 (g
2 /

H
z)

Kinematic lines

Engines %rpm

Dataset
Figure 6.1: Illustration of the dataset generation process: RMS levels of kinematic lines are computedalong their frequency and associated with engines rotational speed.

To consider only a single source, sequences where the left engine is up and running and the
right engine is idling are used. They are illustrated in Figure 6.2, where the evolution of the low-
pressure turbines through time is presented. The final dataset contains m = 3162 data points, each
corresponding to the RMS value of a kinematic line and the associated engine regimeover one second.

1This means that one PSD is averaging 8 FFT windows, as the overlap is set to 90%.
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Figure 6.2: Evolution of the left and right N1 through time.

Broadband levels are not removed so that the model can predict the actual levels measured on
the ground. However, subtracting broadband spectra is a task rendered simple by the algorithm
proposed in Section 4.1, and can be used if the goal is to use this model as a building block of a more
general prediction model.

6.1.2 . Modeling RMS values of kinematic lines using a Gaussian process
In this regression problem, the goal is to predict the RMS value2 of any kinematic line, which is a

scalar value y. It corresponds to an element in κ, of length m. To do so, the rotational speed of the
left engine is given, also a scalar value, denoted x. It is equal to the frequency of the kinematic line
up to a factor, see Eq. (2.3).

The model used is a Gaussian process, introduced in Section 5.2.4. As it is non-parametric, it is
denotedϕ. Onemodel is used for each harmonic h and accelerometer i (more precisely an accelerom-
eter channel, corresponding to an instrumented position in the aircraft and an axis). The modeling
task, whether or not spectra separation is applied, can be written from Eq. (2.4) and Eq. (4.1) as:

ŷ = ϕ(x) = κ
(h)
i (x) = RMS

(
(η

(h)
ik ⊙ δ

(h)
k + bi) [f −∆f/2, f +∆f/2]

)
, (6.1)

whereη(h)ik is the attenuation factor of harmonic hbetween the engine k and themeasurement point i,
δ
(h)
k is the excitation of harmonic h generated at the engine k, [f −∆f/2, f +∆f/2] is the frequency
interval centered around the frequency corresponding to the rotational speed x, and bi = αiψi isthe energy due to the broadband, considered negligible here as the window is centered around the
kinematic line. In this case, the equipment E and the turbine N that drives it are both the left engine.
If spectra separation is applied, see Section 4.1.1 for details on the hypothesis, then bi = 0 in Eq. (6.1).

The Gaussian process is based on the following composite kernel:
k
(
x,x′) = kRBF

(
x,x′)× kConstant

(
x,x′)+ kWhite

(
x,x′) . (6.2)

The constant kernel is used here as no multiplicative constant is included in the RBF kernel defi-
nition, see Eq. (5.12), and the white noise kernel allows to take into account variability between tests.

2It is log transformed during the preprocessing step.
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The evaluation methodology consists of splitting the dataset into a training set and a test set con-

taining multiple engine vibration survey tests. One engine vibration survey test is used for the train-
ing3 (324 points), and 3 engine vibration survey tests are used for the test set (2838 points). Samples
are assumed to be i.i.d. (independent and identically distributed) with respect to the environmental
conditions such as temperature and wind: this dataset split is performed to assess the model robust-
ness to these conditions.

Such as model is however not supposed to be able to extrapolate in the frequency domain, as
this depends on the structure through engine excitations δ(h)k and attenuation factor η(h)ik .

As a side note, another approach has been tested: decomposing spectra into NMF components,
and predicting the coefficients values to be able to reconstruct a complete spectrum4. This approach
was abandoned as the NMF reconstruction error adds up to the modeling error, and because here
only the kinematic lines RMS levels need to be predicted, not complete PSDs.

6.1.3 . Results: RMS prediction and amplitude reconstruction
Results are detailed here and exhibit good generalization to unseen engine vibration survey tests.

First, they are detailed for a specific accelerometer; then, they are presented for various accelerome-
ters across the aircraft structure.

The predictions against true values are presented in Figure 6.3. The training dataset is captured
well, and the residuals are well distributed. The noise in the data can be seen with the distribution
of residuals around the unitary slope line. The test dataset exhibits some trend that could maybe be
captured by adding another RBF kernel, but is otherwise well distributed.

(a) Training set, R2 = 0.97 (b) Test set, R2 = 0.89

Figure 6.3: Predictions against true values for training set and test set, with a unitary slope line. Thecoefficient of determination R2 denotes the square of Pearson’s correlation.
Figure 6.4 shows the actual predictions against the true values, for the test set. In Figure 6.4a, the

RMS mean prediction and a 95% confidence interval are plotted against the measured RMS values.
The trend is well captured, and the confidence interval contains all measurements with the exception
of outliers at the maximum rotational speed. In Figure 6.4b, a snapshot of amplitude reconstruction

3The training set is used to find the hyperparameters using k-fold cross validation.4In practice, one Gaussian process is used per component in this alternative approach.
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for a given rotation speed is provided, and superposed to the original PSD. The amplitude recon-
struction is performed by assuming a squared kinematic line with a width of β Hz. The frequency of
the reconstructed value is perfectly aligned with the frequency of the actual kinematic line, and the
confidence interval includes the peak, as required.

(a) RMS prediction
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Spectrum
Mean reconstruction
95% confidence interval

(b) Amplitude reconstruction
Figure 6.4: Prediction of RMS values in the test set using a log scale on the y-axis (left), and amplitudereconstruction on a spectrum using a log-log scale (right).

This method is evaluated on 24 accelerometer channels corresponding to 8 tri-axial accelerom-
eters. They are located on the left engine mounts, a critical spot where the vibrations flow from the
engine to the structure. This is done to see how well the method generalizes to different accelerom-
eters, since they exhibit different responses depending on their position in the aircraft structure.
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Figure 6.5: Average prediction error for various accelerometer channels on the left engine mount.The dotted line is the mean across accelerometers.
Results are reported in Figure 6.5, where the average prediction error on the test set is reported for

accelerometer channels on the left engine mount. The metric used is the MALE, see Eq. (5.34), which
gives a percentage of order of magnitude error. Across accelerometer channels, the mean error is
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11%with a standard deviation of less than 4%. This is a good prediction performance, considering the
noise present in the data and the fact that only the mean prediction is considered, not the confidence
interval.

All the results previously shown are given for the fundamental kinematic line of the left engine.
They were also assessed for other harmonics, and showed comparable results for visible harmonics.

To further develop this model, it could be interesting to see how well it generalizes between air-
craft of the same type. This would help to quantify the variability in production quality. Doing this on
test aircraft is projected to give significant differences.

6.2 . Transposition from ground test to flight test

In the previous section, the prediction of the value of a kinematic line at any instrumented point in
the structure while the aircraft is on the ground is presented. An illustration is provided in Figure 6.6,
showcasing the notations used in this section. Here, two concepts are detailed: how to use a Kine-
matic Lines RMS Ratio (abbreviated here as KLR) to displace an RMS value between instrumented
points in the structure, and how to use a transposition function to adjust a KLR so that it models
a flying aircraft. By measuring, on the ground, the RMS values of kinematic lines at any points i and
j in the structure, and by having access to the RMS values at point j during flight, the objective is to
reconstruct the values at point i by applying the KLR adjusted by the transposition function between
i and j.

(a) Ground test (b) Flight test
Figure 6.6: Illustration of the transposition from ground to flight between points i and j.

6.2.1 . Methodology: KLR and transposition function
The dataset used for this section is similar to the one used previously in Section 6.1, and its extrac-

tion process is the same as in Figure 6.1. Different accelerometers are considered: they are spread
across the aircraft, see Figure 6.8 where the 7 triaxial accelerometers are presented, including VMOT,
which is in the left engine.

In contrast to the previous section, both engines are synchronized. This is done to provide a
ground vibration surveys dataset more consistent with the flight test dataset. The final dataset is
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Figure 6.7: Evolution of the left and right N1 through time, for ground (left) and flight test data (right).
comprised of m = 47360 data points, including 1584 data points of ground engine vibration survey
tests and 45 776 points of flight tests.
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Figure 6.8: Position of the accelerometer channels considered in this study (NB: a left-handed coor-dinate system is used).
First, let us define the KLR γij between two points i and j: it is the ratio between the RMS value κiat point i and the RMS value κj at point j, see Eq. (2.4). κ and γ are vectors where each component

corresponds to a frequency. When this ratio is calculated on harmonic h using ground test data, it is
denoted with a superscript (G, h):

γ
(G,h)
ij ≜

κ
(G,h)
i

κ
(G,h)
j

. (6.3)
The KLR allows to compute the value of a point in the structure by knowing the value of another

point in the structure. The system is assumed to be linear and time-invariant.
Note that the KLR γ should not be confused with the attenuation factor η. While η allows to

displace a PSD engine excitation to another point in the structure, γ allows to transposes any RMS
excitation between points in the structure. The difference can be explicited by using the same mod-
eling as in Eq. (6.1), which is based on the broadband hypothesis detailed in Eq. (4.1). Let us consider
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i and j two points in the structure, and k is the source generating the kinematic line considered. The
relationship between γ at a given frequency f and η can be written as:

γ
(h)
ij (f) =

RMS
(
(η

(h)
ik ⊙ δ

(h)
k + bi) [f −∆f/2, f +∆f/2]

)
RMS

(
(η

(h)
jk ⊙ δ

(h)
k + bj) [f −∆f/2, f +∆f/2]

) , (6.4)

where δk is the excitation at the source k, ηik is the attenuation factor between the source k and the
measured point i, and bi is the broadband energy, considered negligible as the RMS window is cen-
tered around the kinematic line. TheRMS, see Eq. (1.12), is applied on the interval [f −∆f/2, f +∆f/2]

centered around f .
For this dataset, k denotes the engines, and as the ratios are computed between the left engine

(measured by VMOT) and the other 6 accelerometers, j ≈ k.
In practice, to avoid modeling measurement error, a smoothed-out version of the KLR γij is used.While it introduces an irreducible error to themodel performances, it allows to generalize better. This

is done by performing a moving average, and the result is denoted as γ̃ij .While this formalism holds for a given harmonic h, the results section shows that the concatena-
tion of KLRs for different harmonics superpose well. In Section 8.1, this representation is presented
for different accelerometers, showing that it can provide information about structural attenuation.

Second, let us define a transposition function defined through amodelϕθ , allowing to transposea KLR γ(G)
ij to flight conditions. The RMS values at a point i can be written as:

κ̂
(A)
i = ˆ̃γ

(A)
ij κ

(A)
j , (6.5)

where the superscript (A) denotes airborne data, ·̃ denotes a smoothed-out KLR and ·̂ denotes a
prediction resulting from the transposition function.

By domain knowledge, the transposition function ϕθ is assumed to be dependent on the flight
point, the distance to the source (here the engines), and the frequency. As a first attempt to answer
the problem at hand, a simplified model is proposed. It is based on the longitudinal distance dik of ito the source k, the dynamic pressure pdyn, and the frequency f :

ˆ̃γ
(A)
ij = ϕθ

(
γ̃
(G)
ij

)
=
(
1 + θ × pdyn × dik × σ

)
⊙ γ̃(G)

ij , (6.6)
where σ is the sigmoid function depending on the frequency. It acts as a smooth boolean step func-
tion and allows to applyϕθ only if f > 300 Hz. In Section 6.2.2, amore physically-grounded alternative
is proposed.

6.2.2 . Results and discussion on transposition performance
The smoothing of the KLRs γ̃ij introduces an error in the reconstruction. This error can be mod-

eled as an additive Gaussian noise, and is originating from the measurements and acquisition proce-
dure, in addition to natural variability. In Figure 6.9, the KLRs γ of several harmonics are superposed
with their smoothed-out version γ̃. An interesting result is how well the smooth KLRs of different
harmonics superpose, giving information about structural attenuation.
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6.2. TRANSPOSITION FROM GROUND TEST TO FLIGHT TEST

Figure 6.9: KLRs and smoothed-out KLRs from j = VMOT to i = V4Z, for several harmonics, log-logscale.

The smoothed-out KLR γ̃ is then used to reconstruct RMS values, and superposed with the actual
measurements in Figure 6.10. The result is a 10.7% reconstruction error across the 6 accelerometers
in the structure, which is coherent with the expected noise present in the data.

Figure 6.10: Reconstruction of κ(G)V4Z using the smoothed-out KLRs from j = VMOT to i = V4Z, forseveral harmonics, log-log scale.
After estimating the irreducible noise error, the transposition from ground to airborne can be per-

formed. In Figure 6.11, the value of κ(A)
i is predicted at V4Z using the transposition function applied

on the ground KLR, and superposed to the measurements. While noisy, the prediction captures well
themeasurement trend. For low frequencies, the transposition function has no effect, and prediction
is close to measurements. For higher frequencies, the transposition allows to correct the predicted
κ̂(A)i from the gray points (using γ̃ (G)ij ) to the orange points (using ˆ̃γ

(A)
ij ), closer to the blue points (mea-

surements).
Across all 6 accelerometers, the transposition error averages at 30.4% using ˆ̃γ

(A). If no transposi-
tion function is used and the ground KLR γ̃(G) is used, the error increases to 49.9%.

To improve the methodology, focusing on the transposition function is the priority, through three
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CHAPTER 6. KINEMATIC LINES PREDICTION

Figure 6.11: Prediction ofκ(A)
i at V4Z using the transposition function on the smoothed-out KLRs from

j = VMOT to i = V4Z, for several harmonics, log-log scale.

aspects. First, a model similar to the one presented in Chapter 7 could be used to represent the
aerodynamic effect, instead of the single dependence to the dynamic pressure. Second, to replace
the distance to the source, a representation of the structure should be used. This is the subject of
Part III. Third, the reverberation effect of the ground needs to be taken into account. The adjusted
could then be written:

κ̂
(A)
i = γ̃

(G)
ij ⊙ ϕReverberation ⊙ κ(A)

j + ϕAero, (6.7)
with ϕ · the effects to model.

Other adjustments are to:
• Use a point on the left enginemount instead of the left engine itself for j (to bypass the complex
effect of engine mount and directly consider the input at the structure)

• Consider the interaction between left and right engines, and be able to handle multiple sources
• Consider the energy across all 3 axes of accelerometers instead of only the Z-axis.
Moreover, the broadband levels have not been removed from the dataset: themodel can be used

to predict the actual levels measured on the ground. However, it is possible to apply the separation
algorithm detailed in Section 4.1.2 before computing the kinematic lines energy. Then, this could be
combinedwith a broadband level to reconstruct complete spectra, in flight for example. The following
sections detail models that could be used to this end.
A perspective of thismethod is to compute the KLR from j to iwhile i is not instrumented. A transfer

function can be estimated between two points that are not instrumented using an impact hammer
test, as presented in Section 1.2.3. If a KLR can be estimated this way, then it would be possible
to predict the RMS values at any non-instrumented point i during flight by using: (i) the value of
instrumented point j during the flight, (ii) the KLR estimated on the ground, and (iii) the transposition
function.

98



6.3. CONCLUSION ON THE PREDICTION OF KINEMATIC LINES
Finally, thismethod could bebasedonnumericalmodels at the design stage and iteratively include

experimental data when the first tests are performed. The value of instrumented point j during the
flight can be first provided by the engine manufacturer. The attenuation factor between the engines
and the considered point can be estimated using a numericalmodel, as for the transposition function.

6.3 . Conclusion on the prediction of kinematic lines

This chapter offers solutions for predicting kinematic lines generated by engine(s), allowing to
model excitations generated by a localized source. A Gaussian process is used to predict the values
during ground tests. The error of the mean prediction is at 11% on average across accelerometers,
and the noise is in the 95% confidence interval, showing robustness to environmental test conditions.
A study on aircraft of the same model can be performed to assess production variability. This model
can be used to inject values into numerical models.

The second idea of this chapter is to propose a methodology to transpose the RMS values of kine-
matic lines from ground to flight tests. To this end, KLRs (Kinematic Lines RMS Ratios) are introduced,
and can be seen as transfer functions or as normalized levels depending on the end use. They are
used again in Section 8.1, and provide information on the structure. In addition to KLRs, a transposi-
tion function is introduced. While it is primarily a methodological section, an actual implementation
is provided as an example and offers better results than without transposition function. By using a
finer model, this method could enable the prediction of non-instrumented points during flight tests.
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7 - Broadband levels prediction
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In the previous chapter, the problem of predicting excitations generated by a single source has
been addressed. Here, the vibration environment prediction problem is taken from the other side: all
sources are considered including aerodynamic ones, and the objective is to predict broadband levels
from general parameters (altitude, speed, high-lift device positions, engines rotational speed, etc.) at
any flight point including stabilized flight phases, climbs and descents, and maneuvers.

Stabilized flight phases are the focus of the first section, based on work published in [FNM+23a].
Then, the methodology is extended to all flight phases in the second section, based on work pre-
sented in [FNM+23b]. Multiple models are compared, and model complexity is justified by improved
performances. The questions of generalization ability and interpretability are also tackled.

The formalism of this chapter is the following. The objective is to predict an output ŷ ∈ Y ⊂ Rd

from an input x ∈ X ⊂ Rn, using a model ϕθ ∈ Φ parameterized by θ ∈ Θ. The dimension of the
output space remains at d = 17 throughout this chapter, while the dimension of the input space
depends on the number of general parameters considered.

7.1 . Prediction during stabilized flight phases

Prediction of stabilized flight phases is the first problem tackled in this chapter. The work pre-
sented in this section has been published [FNM+23a] and is adapted here to fit the manuscript.

7.1.1 . Dataset
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CHAPTER 7. BROADBAND LEVELS PREDICTION
In what follows, data from the flight-test campaign of a civil jet aircraft is considered. Twenty-three

flight tests are used, which amounts to 65 hours of flight. Each flight test produces a large number
of time series, each of which is associated with a sensor. Among the considered sensors, vibration
environment accelerometers are sampled at 5000 Hz, and the dataset to be handled is therefore very
large.

The aircraft does not spend equal time at all flight points, making the measurement sparse along
the flight domain. Moreover, measurements are contaminatedwith noise and possibly faulty sensors.
The first step of data processing therefore consists of identifying usable sequences and discarding
unreliable data, based on the work presented in Section 2.3.1.

A focus is made on the measurements along the vertical axis of 5 triaxial accelerometers, repre-
sented in Figure 7.1. This set is chosen to be representative of the whole aircraft as these sensors are
known to be influenced by different vibration sources: V4Z and V5Z are heavily influenced by the en-
gines, while V1Z and V2Z are influenced mainly by aerodynamic field interaction, V3Z being a middle
ground influenced by both.

Z
X

Y

V4Z
V5Z

V3Z V1Z 
V2Z

Figure 7.1: Position of the 5 accelerometer channels considered in this study (NB: a left-handed coor-dinate system is used).
The preprocessing pipeline is presented in Figure 7.2, and allows to produce a sufficiently diverse

yet compact dataset to train a regression model.
The approach is focused on stabilized flight phases, where the aircraft conditions can be consid-

ered steady, which eases flight phase identification and avoids non-stationary phases. A total of 342
sequences, accounting for 7.5 flight hours, are identified based on a set of logical rules presented in
Section 2.3.2.

This allows to perform PSD estimation, followed by signal separation. For each sequence, sliding
PSDs of 20 seconds are computed with a step of 1 second, using FFT windows of 8192 points with a
90% overlap. Only the broadband energy is considered and the kinematic lines are removed using
the algorithm presented in Section 4.1.2. A broadband spectrum is thus defined as:

b = αψ, (7.1)
with α the broadband amplitude factor and ψ the background spectrum.

Smoothed-out spectra are then compressed by expressing them as RMS levels per frequency
band, which is consistent with how vibration specifications are generally given. They are denoted as
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Figure 7.2: Diagram of the preprocessing pipeline, generating a dataset from the flight test database.

b̃, as they are a reduced representation ofb. A total of d = 17 frequency bands are used, as presented
previously in Section 4.2.2. A sensitivity study of models error to the width of RMS bands is given in
Section 7.1.7.

Finally, as spectra can take values spreading over several orders of magnitudes, they are log-
transformed, see Eq. (3.3). A min-max scaler is then applied, which constrains the data to lie in the
[0, 1] range using the min and max values across all i = 1 . . .m samples, see Eq. (3.2).

The compression is such that 20 s of temporal data sampled at 5000 Hz are compressed into a
frequency representation of d = 17 scalars, amounting to 0.02% of the original size.
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CHAPTER 7. BROADBAND LEVELS PREDICTION
7.1.2 . Features selection process

From the generated dataset, the goal is to train a predictive model to estimate spectra y from an
input x, containing a set of n general parameters or features. A constraint is that the model should
be agnostic to equipment position in the aircraft, meaning that the same n features must be used to
make prediction whether or not the same set of sources is influential. This allows to quickly train a
new model without having to change the architecture.

Among all the monitored parameters, roughly 50 are pre-selected via domain knowledge since
most parameters are unrelated to the vibration environment. From this set of 50 parameters, only
n = 13 of them are kept by removing low variance, redundant, and non-influential parameters. They
express the state of the aircraft relative to several categories: attitude PA1 , engines PE1...3 , flight point
PFP1...3 , configuration PC1...6 .The selection is done by studying the correlations between features and frequency bands, and by
performing clustering. Such a study is presented in Section 4.3. Several features show weak corre-
lations with the outputs, but are yet retained through domain knowledge. This is because they are
deemed to have a certain predictive power not encapsulated by the correlation value. Before using
the selected set of features, each feature vector x is standardized using the empirical mean µ and
standard deviation σ across allm data points, see Eq. (3.1), which allows to ease the training process
by forcing all variables to be in the same range of values.

7.1.3 . Model implementation
Themulti-output multivariate regression problem at hand can be written as follows:

ϕθ(x) = b̃ = ŷ. (7.2)
Two baseline models ϕθ are implemented: linear regression, see Section 5.2.1, and XGBoost, see

Section 5.2.3. They are compared against an ANN ensemble, see Sections 5.2.5 and 5.2.7. Higher
order regression was also tested, but showed to give significantly worse results not detailed here.

Each ANN of the ensemble has the same architecture. To ease the hyperparameters optimiza-
tion process, each hidden layer is set to the same structure. Model stability is fostered by using batch
normalization, i.e., centering and rescaling of layers’ weights. Each layer performs the following trans-
formations:

Dense→ BatchNormalization→ Activation.
In order to select the optimal configuration, tests were carried out for architectures of 2 to 6 layers.

The final architecture is made of 3 hidden layers, each of them having 30 neurons and using a ReLU
(Rectified Linear Unit) as an activation function.

A set of 8 models is used for the ensemble, with identical hyperparameters but different initial
conditions. They are trained on the same dataset for 5000 epochs, each with a batch size of 32, using
an Adam optimizer.

The prediction of the ANN ensemble is considered to be a Gaussian distribution parameterized
by a mean µ and standard deviation σ over all predictions ŷ of the 8 networks:

ϕ(x) ∼ N (µ(ŷ), σ(ŷ)). (7.3)
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7.1. PREDICTION DURING STABILIZED FLIGHT PHASES
Standard deviationmeasures the degree of confidence in predictions, as large values indicate that

models give different predictions that should be considered carefully.
To find the hyperparameters, Bayesian optimization is first performedwith the Python implemen-

tation from Optuna [ASY+19] to identify a region of interest in the hyperparameters space, where a
grid search is then conducted. To use the available data efficiently and limit information leakage, k-
fold cross-validation is used, with k = 5 folds. To have a non-biased estimate of model performance,
a final test is performed on a separate test set, yet unseen and never used for the optimization.

7.1.4 . Evaluation methodology
For each data point i of dimension d, model predictive performances are assessed using theMALE

metric defined in Eq. (5.34), where a 100% error amounts to a 1-order-of-magnitude error. Note that
the data is already log-transformed, so the log transformation is not applied in themetric. Only results
for the unseen test data are presented, which are data points that are not used for model training.
Two protocols that correspond to different ways of splitting the dataset are used. For each protocol,
all models are trained and evaluated on the same data.

The first protocol corresponds to a standard random splitting of the dataset (constituted ofm =

9430 data points), where 90% of the data is used for training (mtrain = 8487 data points) and 10%
for test (mtest = 943 data points). The goal is to assess whether the model is expressive enough to
represent the data.

The second protocol aims to evaluate the physical consistency of the model, through its ability
to model the dynamic pressure. The dynamic pressure, here labeled PFP1 , is directly linked with the
broadband aerodynamic loads on the aircraft; the RMS levels are expected to increase linearly with
it, all other things being equal. In order to check this, the training dataset in the second protocol
contains only samples with a dynamic pressure value lower than a given threshold, and the model
is tested on the remaining data points, corresponding to a higher dynamic pressure. A threshold
of pdyn = 100 hPa is chosen, which yields respective values for the training and the test dataset of
mtrain = 7232 and mtest = 2198. Figure 7.3 shows the train-test split for the dynamic pressure and
another flight point-related parameter.

This second protocol may initially seem unusual, as no i.i.d. hypothesis holds for the training
and test sets. It is however based on domain knowledge, as a linear dependence on this variable is
expected. Thus, such a dataset split allows to specifically evaluate the ability of themodel to learn this
relationship, as the training set outputs corresponding to a low dynamic pressure – are influenced by
many other variables, and the test set outputs mainly depend on the dynamic pressure.

7.1.5 . Results of the classical evaluation protocol
The predictive performances of each model for the classical evaluation protocols are detailed

here. First, an example of prediction for a specific data point is presented, then the error distribution
over frequency bands for a specific accelerometer, and then the global results for all accelerometers.

7.1.5.1 . Prediction example for one flight point
First, one flight point randomly taken from the test set is considered to compare the performance

of eachmodel. Figure 7.4 shows a typical output, i.e., one spectrum prediction for an input data point,
associatedwith the sensor V3Zwhich is in themiddle of the aircraft, thus representative of equipment
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Figure 7.3: Scatter plot with marginal distribution of flight point parameters PFP1 and PFP2 using theextrapolation protocol.

subjected to various sources. In the case of the ensemblemodel, a confidence interval corresponding
to 3 standard deviations is also provided. All predictions fit almost perfectly the measurements, with
some little variability. In this specific example, the linear regressionunderestimates the first frequency
band, which is highly influenced by aircraft configuration and thus hard to predict through a linear
regression.
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Figure 7.4: Predicted spectrum of a given data point for the accelerometer V3Z, classical evaluation,using a log-log scale.

7.1.5.2 . Error distribution over frequency bands for an accelerometer
To better characterize models errors, the mean error over each frequency band j is considered

over allm data points i.
Figure 7.5 shows the boxplot of this error for each frequency band on the accelerometer V3Z

across all three models. It is first noticeable that all models have good performances, the end of
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7.1. PREDICTION DURING STABILIZED FLIGHT PHASES
distributions1 being consistently under 20%, and even less most of the time. However, many outliers
can be seen, which correspond to under-represented flight points. Even though the outliers are far
from the distribution, these errors are acceptable for the XGBoost and ANN ensemblemodels. Finally,
The bandsB1 andB5 are consistently harder to predict, which is notable for the linear regression andANN ensemble.

(a) Linear regression (b) XGBoost (c) ANN ensemble
Figure 7.5: Boxplot of the error per band for the accelerometer V3Z, classical evaluation.

7.1.5.3 . Global error
Finally, the overall predictive performance of each model is summarized in Table 7.1. For each

accelerometer, the average of the MALE is computed across every test data point and frequency
band, and the last column provides the average across all 5 accelerometers.

AccelerometerV1Z V2Z V3Z V4Z V5Z MeanLinear regression (%) 3.9 5.1 2.8 2.6 3.1 3.5XGBoost (%) 0.3 0.4 0.3 0.3 0.4 0.3ANN ensemble (%) 1.3 1.4 1.1 0.9 1.3 1.2
Table 7.1: Mean error for each accelerometer depending on the model, classical evaluation.Bold denotes the best results for a given accelerometer; the lower the better.

XGBoost offers the best performances with this test protocol, followed by the ANN ensemble
and then the linear regression. The error is relatively similar across all the accelerometers, even
though V2Z at the front of the aircraft seems slightly more challenging to predict. Since engines are
located at the aircraft’s rear, this sensor is mainly influenced by the aerodynamic field and the flight
configuration.

1Ends of distributions are defined using the first quartile (Q1), the third quartile (Q3), and the interquartilerange (IQR). The lower end of the distribution is defined as the largest value that is less than or equal to Q1 -1.5 × IQR, and the higher end of the distribution is defined as the smallest value that is greater than or equalto Q3 + 1.5 × IQR. Any value outside of this range is considered to be an outlier.
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Figure 7.6: Mean error for each accelerometer depending on the neural network, classical evaluation.

The performance of each ANNof the ensemble is given in Figure 7.6. The variability between ANNs
depends on the sensor, but is relatively low in this case. As expected, the ensemble error is lower than
the average error of all the ANNs by approximately 30% on average. Here, the ensemble error is even
lower than any single ANN at all times. By studying the confidence interval of predictions, it is found
that 93.2% of predictions are within a±3σ interval, and 96.9% of predictions are below µ+3σ, which
is deemed to be conservative. A large variability between individual predictors indicates that the flight
point is difficult to predict for these models and that the predicted values should be taken carefully.
Uncertainty quantification can be obtained with a single gradient boosting model [MPU21], but was
not used here.

The good performances of all models show that the set of inputs is sufficient to predict the out-
puts. In fact, as the measurement error can be roughly estimated to be around 5 to 10%, taking into
account the whole data acquisition system, it is likely that overfitting is present. Learning a dataset
without generalization ability can be useful to generate spectra instead of querying a database. This
can be used for anomaly detection, where the validity of a new measurement can be determined by
comparing it with its predicted value in themodel. In any case, overfitting is not possible in the second
evaluation protocol, as the training set and the test sets are disjoint in parameter space.

7.1.6 . Results for the extrapolation evaluation protocol
The classical evaluation protocol described above relies on the hypothesis that variables are inde-

pendent and identically distributed (i.i.d.), and gives a measure of how well a model can interpolate.
Here however, there is knowledge about the physical process that generated the data, namely, there
is a linear dependence between the energy spectra and the dynamic pressure. The goal of the new
evaluation protocol is to determine whether the model is able to extrapolate, which is generally not
possible for neural networks, but should be possible in some specific cases [XZL+21]. To this end, all
data where the dynamic pressure is below 100 hPa is used for training, and all the remaining data is
used for testing. The value of 100 hPa corresponds to the mid-range value of the dynamic pressure.

7.1.6.1 . Prediction example for one flight point
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7.1. PREDICTION DURING STABILIZED FLIGHT PHASES
Again, one flight point randomly taken from the test set is considered and used to compare the

performance of eachmodel, see Figure 7.7. One spectrumprediction for an input data point is shown,
associated with the sensor V3Z. The data point corresponds to a dynamic pressure of 210 hPa, more
than twice the maximal value of the training set.

For linear regression, under-prediction is observed in the lower frequency band, but substantial
over-prediction is present at almost all frequencies except in the highest range. In particular, the peak
of the spectrum over the frequency range is overestimated by a factor of three.

In contrast, above the first frequency band, XGBoost consistently under-predicts the spectrum by
a nearly constant factor of 2. Best results are observed for the ensemble model, which slightly over-
predicts the energy for frequencies lower than the peak frequency, and slightly under-predicts it for
higher frequencies. The true spectrum lies within the confidence interval of ±3σ.
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Figure 7.7: Predicted spectrum of a given data point for the accelerometer V3Z, extrapolation evalu-ation, using a log-log scale.

7.1.6.2 . Error distribution over frequency bands for an accelerometer
The boxplot of the error averaged over each frequency band is presented. Figure 7.8 shows this

for all three models applied on the accelerometer V3Z.
The ensemble model shows the best performances and has its outliers closer to its distributions

than with the other models. The distribution spread itself is much higher than for the classical eval-
uation protocol, as it is a much harder problem. Note that the frequency band B1 is constantly ahigh error band. This is explainable by its higher variability and link to many variables affecting the
aerodynamic field.

7.1.6.3 . Dynamic pressure projection
To better understand the behavior of the models, Figure 7.9 compares how predicted and real

RMS levels in a specific frequency band vary with the dynamic pressure for both training and test
sets. The frequency band B8 is selected, which provides a stringent test of the models, as it is highly
influenced by aircraft configuration for dynamic pressure values under 100 hPa and mainly by the
dynamic pressure when it is over 100 hPa.

Linear regression is not able to fit accurately the training set, which is likely to originate from a lack
of expressivity of the model. In the test set, a positive trend is predicted although its slope is over-
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(a) Linear regression (b) XGBoost (c) ANN ensemble
Figure 7.8: Boxplot of the error per band for the accelerometer V3Z, extrapolation evaluation.

(a) Linear regression (b) XGBoost (c) ANN ensemble
Figure 7.9: RMS levels on the B8 frequency band depending on the dynamic pressure for the ac-celerometer V3Z, using a log-log scale. The black dotted line separates the training set (left) and thetest set (right). The shaded region corresponds to a value of ±3σ for the ensemble.

estimated in this case. Since this is a one-dimensional projection from a much higher-dimensional
space, a strictly linear dependence is not observed as other variables come into play in the linear
representation.

XGBoost almost perfectly reproduces the training set but is unable to extrapolate to the test set,
as it predicts an almost constant RMS with the dynamic pressure. This is consistent with the fact that
it is based on decision trees.

In contrast, the ensemble model fits well the training set while extrapolating correctly the increas-
ing trend of the test set. One can see that the uncertainty associated with the model also increases
with the dynamic pressure, which is consistent with the increasing distance between the test data
points and the training set.

7.1.6.4 . Global error
Finally, this evaluation is concluded by giving the overall predictive performance of each model in

Table 7.2. For each accelerometer, the average of the ALE error is computed across every test data
point and frequency band, while the last column gives the average across all 5 accelerometers.

The worst results are obtained with XGBoost, with a global mean error of 21.9%. As stated before,
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AccelerometerV1Z V2Z V3Z V4Z V5Z MeanLinear regression (%) 15.1 16.2 10.2 16.9 15.9 14.9XGBoost (%) 21.5 22.3 22.8 22.9 20.0 21.9ANN ensemble (%) 9.1 12.8 8.6 10.2 13.3 10.8

Table 7.2: Mean error for each accelerometer depending on the model, extrapolation evalu-ation. Bold denotes the best results for a given accelerometer; the lower the better.
it is based on an ensemble of trees that do not apply any transformation to the data. As a result, its
extrapolation abilities are limited to a constant function, which explains its poor performance. The
error obtained with linear regression is smaller (about 15%), but still inferior to the ensemble model,
which provides an error of only 10.8%. The difference can be attributed to the limited expressivity
of the linear regression. In addition to the lower error, the ensemble model provides a confidence
interval that captures 98.3% of the predictions into a ±3σ interval, while 98.7% of the predictions are
below µ+ 3σ.

The error of each neural network composing the ANN ensemble is given in Figure 7.10. The en-
semble error is significantly lower than the average error of ANNs: for V2Z, the mean of ANNs error
is two times higher than the ensemble error.
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Figure 7.10: Mean error for each accelerometer depending on the neural network, extrapolation eval-uation.
These results show that the ANN-based ensemble model is best suited to extrapolate the energy

along the dynamic pressure variable. This is consistent with results indicating that ANNs using a ReLU
activation function are able to extrapolate linearly [XZL+21]. Extrapolation properties for the model
may be desirable in order to enforce good prediction outside the range of the training set, which is
typically non-convex.

7.1.7 . Model sensitivity to frequency bands definition
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Reducing PSDs into RMS levels per frequency band provides results closer to the actual engineer-

ing needs, increases robustness to noise, decreases training time, and allows for more straightfor-
ward interpretability of the results. However, the choice of frequency bands can induce a bias in the
model: under the assumption of uncorrelated noise, the noise is expected to increase as the band-
width decreases, since it includes fewer points.

Here, a sensitivity analysis of models to the width of RMS bands is conducted. The 3 models are
compared using the classical evaluation protocol, for 4 different discretization levels: 8, 16, 32 bands,
and 3897 points –corresponding tomaximal resolution and no reduction–, represented in Figure 7.11.
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Figure 7.11: Illustration on the same spectrumof the different representations compared in this study,using a log-log scale.
Results show that the error tends to grow with the number of outputs, see Table 7.3, which is not

surprising since the complexity of the problem increases. However, the differences can be deemed
non-significant when comparing different RMS band level discretization of 8, 16, and 32 bands.

Discretization level (# points)8 16 32 3897Linear regression (%) 2.5 2.6 2.7 5.7XGBoost (%) 0.2 0.3 0.3 1.0ANN ensemble (%) 0.8 0.9 1.1 2.8
Table 7.3: Error on the classical evaluation protocol depending on spectra discretization level.

7.1.8 . SHAP values
While comparing two linear regression models can be a simple task, comparing widely differ-

ent models – including black box ones such as ANNs – is much harder and necessitates a dedicated
method. Interpretability, introduced in Section 5.5, is especially important to understand what a
model bases its predictions on. This allows to trust a model within a given scope. For this problem,
the method used should be model-agnostic and allow to efficiently quantify the importance of each
feature for any given prediction. To this end, the SHAP method previously introduced in Section 5.5.4
is used.

112



7.1. PREDICTION DURING STABILIZED FLIGHT PHASES

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
SHAP value (impact on model output)

P_C6

P_C5

P_C4

P_C3

P_C2

P_C1

P_FP3

P_FP2

P_FP1

P_E3

P_E2

P_E1

P_A1

Low

High

Fe
at

ur
e 

va
lu

e

(a) Linear regression
0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8

SHAP value (impact on model output)

P_C6

P_C5

P_C4

P_C3

P_C2

P_C1

P_FP3

P_FP2

P_FP1

P_E3

P_E2

P_E1

P_A1

Low

High

Fe
at

ur
e 

va
lu

e

(b) XGBoost
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(c) ANN 1
Figure 7.12: SHAP values on the training set of the classic protocol, for different models. Accelerom-eter V3Z, frequency band B8.

In our case, the KernelSHAP implementation is used, which has the advantage of being model-
agnostic. For consistency, the frequency band B8 and the sensor V3Z are studied. Figure 7.12 showsthe SHAP values of the entire training set of the classic evaluation protocol, for each model. For the
ensemble, the SHAP values of only one ANN are considered. This is acceptable as SHAP values of
different ANNs have been studied and proved to be similar.

SHAP values are computed relatively to a background data point, quantifying how much of an
impact on the output a feature has. For this figure, the background data point consists of the median
of the training set. It corresponds to an often encountered flight point with a clean configuration,
when all high-lift devices and air brakes are retracted tominimize drag. It can be seen that the dynamic
pressure PFP1 has a similar importance for all models. Engine-related parameters PE1 and PE2 are also
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important for each model, but at different levels. Surprisingly, configuration-related variables – with
the exception of PC1 – have low importance for the XGBoost model.

It is interesting to compare the results of Figure 7.12 with the input-output correlation matrix
given in Figure 4.11b. First, it should be noted that SHAP values are relative to the background data
point. Considering only the B8 column of the correlation matrix for comparison purposes, several
differences can be observed. Multiple low-correlated variables can have significant SHAP values, such
as PC1 and other configuration-related variables. Conversely, strongly correlated variables can have
small SHAP values, for instance, if they are linearly related with a small proportionality coefficient.
For the linear regression model, the features with the highest SHAP values are PE1 , PFP3 , PFP1 and PA1 ,which are also the most weighted features. This shows consistency.

1.0 0.5 0.0 0.5 1.0
SHAP value (impact on model output)

P_C6

P_C5

P_C4

P_C3

P_C2

P_C1

P_FP3

P_FP2

P_FP1

P_E3

P_E2

P_E1

P_A1

Low

High
Fe

at
ur

e 
va

lu
e

(a) Training set
1.0 0.5 0.0 0.5 1.0

SHAP value (impact on model output)

P_C6

P_C5

P_C4

P_C3

P_C2

P_C1

P_FP3

P_FP2

P_FP1

P_E3

P_E2

P_E1

P_A1

Low

High

Fe
at

ur
e 

va
lu

e

(b) Test set
Figure 7.13: SHAP values on the training and test sets of the extrapolation protocol, for one ANN ofthe ensemble. Accelerometer V3Z, frequency band B8.

Finally, Figure 7.13 shows the SHAP values of both the training and test set, but for the extrapola-
tion protocol. Only one ANN is presented, and the frequency band and accelerometer are the same
as in Figure 7.12. Again, the background data is the median data point of the training set, for both the
training and test set evaluation, and is thus different from the classical evaluation protocol. It corre-
sponds to a common flight point with a clean configuration. The differences in feature importance
between the training and test set are significant. While the dynamic pressure PFP1 is almost the only
important variable for the model in the test set, the SHAP values of the training set are much more
consistent with what is computed with the classical protocol, which is an expected result. For brevity,
the values for the linear regression and XGBoost models are not given for the extrapolation protocol.
In the test set, linear regression predictions are highly impacted by PFP1 , PFP3 and PE1 , while XGBoosthas extremely low SHAP values for all variables.

7.1.9 . Discussion on stabilized flight phases prediction
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The general methodology proposed here allows to predict the vibration environment generated

by a variety of unknown sources at different locations of an aircraft, from general flight parameters.
Time series acquired at a high sample rate during flight tests are fed through a preprocessing pipeline
which generates a reduced representation of broadband energy spectra. This representation is based
on discrete frequency bands, allowing for easymanipulation and interpretation of the data. As shown
in Section 7.1.7, it introduces robustness in the representation.

This methodology is however limited to stabilized flight phases only, and is not sufficient to pro-
duce specifications. As presented in Section 1.3, equipment need to be specified for current cases, well
represented by stabilized flight phases, but also severe cases, which include maneuvers, not modeled
here. As a consequence, an extension of this methodology is presented in the next section.

7.2 . Extension to unsteady flight conditions

This section proposes a solution to extend the prediction of broadband levels to all flight phases,
including unsteady conditions. The objective is the same as in the previous section, but tackled differ-
ently in order to take into account the temporal dependence of the new dataset. This work has been
presented in [FNM+23b].

7.2.1 . Extended dataset and features selection
The dataset is generated from the same flight tests, but all flight phases are now considered. This

means that the representation of inputs and outputs needs to integrate a temporal dimension. PSDs
are computed on a 1-second window using FFT of 2048 points2, and the dataset is sampled at 10 Hz
to have a finer time resolution. Each 0.1 second, a set of general parameters at time t is aligned to a
spectrum calculated from t− 1 s to t.

As the dataset sample rate is set at fs = 10 Hz and all flight phases are taken into account3, its
size is much larger than the previous one. It containsm = 787199 points, almost 22 hours of data.

Compared to the stabilized flight phases dataset, the correlations between features and RMS lev-
els of different frequency bands are lower here. Indeed, the much more complex relationships oc-
curring during unsteady phases are harder to capture using simple pairwise correlations.

Separation between broadband components and kinematic lines is not performed to work with
less process data, but a comparison with and without this step could be interesting. The RMS reduc-
tion is applied using the same 17 bands as before, see Section 4.2.2.

7.2.2 . Modeling temporal relationships
To account for non-stationary phenomena, the set of features needs to be larger than the one pre-

viously used to model stabilized flight phases. In total, n = 32 features are kept, including all aircraft
angles and angle variations, and the position of various control surfaces. Minimal feature engineering
is performed, and could be a path to explore in order to enhance prediction performances.

The input consists of n features sampled with a step∆t over an interval [t− τ, t]. Two parameters
are to be set: the value of τ , and the step ∆t. This greatly increases the number of features, as the

2This is the same as for the dataset of kinematic lines of ground tests.3The exception being flight phases where emergency equipment are used, and non-subsonic regimes.
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input vector can be written as:

xwith history ≜


x(t−τ)

...
x(t−∆t)

x(t)

 , (7.4)

where the superscript denotes the time at which the feature vector x is given. Values of τ = 1 s and
∆t = 0.1 s are selected through hyperparameters optimization, which is consistent with the dataset
sampled at 0.1 s with PSDs computed on 1-second windows. Hyperparameters optimization shows
that these values provide the best results.

The temporal dependence can also be taken into account in the architecture of the model. While
using an ANN ensemble is an option, themodel would not make any difference between two features
at the same time, and the same feature at two different times. A solution is to use an RNN ensemble,
as RNNs are able to encode temporal relationships, see Section 5.2.6. The selected architecture of
each RNN constituting the ensemble is presented in Figure 7.14. They use one layer of LSTM cells
with 30 units, followed by a dense layer of 17 units. LSTM units are used as they improve on the RNN
architecture while being relatively easy to train.
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Figure 7.14: Model architecture, comprised of one layer of LSTM cells followed by a dense layer.
Multiple models are compared: linear regression, XGBoost with and without history, ANN en-

semble with and without history, and RNN ensemble with and without history. Linear regression with
history4 is not presented here as it does not converge, as well as second-order polynomial regression.

7.2.3 . Comprehensive evaluation methodology
Time dependence requires amore comprehensive evaluationmethodology. The one used here is

based on the previous section, but intends to evaluate different aspects of generalization. A random
4Meaning that xwith history is used as an input instead of only x(t).
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split is even less relevant in this context, compared to Section 7.1, where time-dependencies are even
greater. Thus, no random split is used as it was shown to be non-indicative of generalization ability.

The cross-validation is made out of 3 folds, each evaluating the ability to reconstruct different
parts of the flight domain:

• Fold 1: reconstruction of a mid-MACH and mid-altitude flight domain region, learning on all
other regions.

• Fold 2: reconstruction of a low-MACH and low-altitude flight domain region which exhibits ap-
proach configurations, learning on all other regions.

• Fold 3: reconstruction of high dynamic pressures, learning from low dynamic pressures. As
previously, the split is performed at 100 hPa.

In addition to the cross-validation, a flight is kept aside to serve as a final test set.

(a) Train-test split

(b) Fold 1 (c) Fold 2 (d) Fold 3
Figure 7.15: Dataset split: a train-test split is applied (top), then 3 validation folds are taken from thetrain set (bottom).

The splits are illustrated in Figure 7.15. The train-test proportion is around 95-5%, with the excep-
tion of fold 2 at 70-30%. One thing to mention here is that the difficulty of predicting the folds is much
harder than the one on the test set. This is especially the case for the dynamic pressure extrapolation.

7.2.4 . Results

117



CHAPTER 7. BROADBAND LEVELS PREDICTION
Results are summarized for each model and validation/test set in Tables 7.4 and 7.5, using the

MALE, see Eq. (5.34), and the maxALE, see Eq. (5.35). As previously, only the test error is considered,
which is based on data unseen during training. Accelerometer V3Z is considered, see Figure 7.1, which
is the focus of the previous section.

Fold 1 Fold 2 Fold 3 Test setLinear regression (%) 6.2 14.9 9.3 5.5XGBoost (%) 4.2 15.8 6.3 4.1XGBoost w/history (%) 4.0 16.2 5.6 4.0ANN ensemble (%) 4.1 10.4 4.7 4.3ANN ensemble w/history (%) 4.8 11.9 6.6 5.0RNN ensemble w/history (%) 3.8 8.6 4.7 4.0

Table 7.4: Mean error, see Eq. (5.34), for accelerometer V3Z depending on themodel and thevalidation/test set. Bold denotes the best results for a given set; the lower the better.

Fold 1 Fold 2 Fold 3 Test setLinear regression (%) 120.9 210.2 88.7 73.8XGBoost (%) 123.9 205.0 93.5 70.3XGBoost w/history (%) 66.2 219.6 89.1 65.8ANN ensemble (%) 128.4 181.8 90.3 77.3ANN ensemble w/history (%) 77.0 197.4 83.8 81.9RNN ensemble w/history (%) 63.9 199.3 90.7 61.5

Table 7.5: Max error, see Eq. (5.35), for accelerometer V3Z depending on the model and thevalidation/test set. Bold denotes the best results for a given set; the lower the better.
Providing history to the ANN ensemble decreases its performance, while the RNN ensemble is

generally better than the ANN ensemble with or without history. The RNN ensemble has the best
average performances across all sets. Regarding the max errors, it is the best model on the test set,
and the best or close to be the best for the validation folds. The high values of max errors can be
seen in Figure 7.16, showing the boxplot of the RNN ensemble model for each set. Many outliers are
present, meaning that some phenomena are not well captured. However, it also means that most of
the dataset can be well predicted, as seen by the relatively low errors of the end of distributions. A
quick analysis of outliers has shown that they are not explainable by the features: an in-depth study
should be performed. Finally, it should be noted that the metric used is a relative error, but low-
energy errors are less important. A complementary metric could be used to weight errors relative to
the RMS value.

Fold 2, evaluating extrapolation along the dynamic pressure variable, is the hardest to predict
and has the highest errors. A projection on frequency band B8 is given in Figure 7.17 for the RNN
ensemble, considering the mean and max prediction. Many points are present in the dataset, and
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(a) Fold 1 (b) Fold 2 (c) Fold 3 (d) Test set
Figure 7.16: Boxplot of the error per band for the accelerometer V3Z using the RNN ensemble, foreach validation/test set. An interesting result is that maximum errors are not on the same frequencyband across folds.

this figure actually shows only a sample of 1% of them. It is interesting to see that the model mean
prediction tends to be lower than reality, while the max prediction is a better fit.

(a) Mean prediction (b) Max prediction
Figure 7.17: Projection of the RMS levels on frequency band B8 depending on the dynamic pressure,using a log-log scale. Superposed to measurements are the mean (left) and max (right) predictions ofthe RNN ensemble for accelerometer V3Z on fold 2.

Finally, a time-frequency representation of the test set is given in Figure 7.18. This is close to
a spectrogram, see Section 1.4.3, but it is instead a succession of consecutive PSDs through time.
Predictions (although smoothed-out by the ensemble averaging) are very close to the measurement,
with an average error of 4% and a coefficient of determination across all frequency bands of R2 =

0.97. Some phenomena aremissed by themodels, and correspond to the outliers in Figure 7.16. After
further analysis, they are not explainable by the set of features used.

7.3 . Conclusion on the prediction of broadband levels

In this chapter, the problem of predicting broadband spectra for all flight points is tackled using
supervised learning models introduced in Chapter 5. Themethodology’s core lies in data transforma-
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tions presented in Part I, allowing for a robust and interpretable representation. A focus is made on
model generalization, where dataset splits based on domain knowledge are performed.

First, only stabilizedflight phases are considered, as they allow to estimate statistically significant
PSDs with assumptions of second-order stationarity and ergodicity being respected. Spectra separa-
tion is performed, along with RMS levels per band reduction. The prediction is then made based on a
reduced set of general parameters describing the aircraft’s attitude and state, using an ANN ensem-
ble. Performances are good, with an average error of 10.8% for the proposed model in the case of
extrapolation, along with a confidence interval provided by the use of an ensemble. In comparison, a
linear regression gives a 14.9% error, and XGBoost an error of 21.9% on the same dataset. Regarding
model interpretation, the SHAPmethod is used to better understand the predictions of the stabilized
flight phases model.

Second, the prediction is extended to unsteady flight phases. A larger set of general param-
eters is used, and temporal relationships are modeled using an RNN ensemble. While spectra are
reduced into RMS levels per band, no separation is performed. Kinematic lines energy can thus jump
between bands: the effect is assumed to be non-significant, but this should be confirmed. This task
is much harder, but good results are still attained with an average extrapolation error of 8.6%. The
test flight presented shows that most phenomena encountered during it are captured by the model.
This extension to unsteady flight phases should be performed on multiple accelerometers, as for the
prediction during stabilized flight phases. Other approaches to encode temporal relationships could
be assessed. For example, each maneuver can be reduced to a pattern (set beforehand or learned),
and the prediction can be a superposition of effects, summing a broadband level resulting from the
flight point and low-frequency levels resulting from amaneuver. This kind of approach can be related
to dictionary learning. While the learned dictionary is expected to be more interpretable, the right
constraints must be set.

To add robustness to the generalmethodology and better identifymodel limitations, outliers need
to be understood on a more general level. By implementing more flight phase identification algo-
rithms (see Section 2.3.2), model performances on specific maneuvers could be analyzed. Finally,
feature engineering could be performed on a more advanced level to incorporate even more domain
knowledge.

This last chapter of Part II presented the last building block to predict the vibration environment at
any point of the flight domain, or more generally the feature space. The ability to predict a spectrum
without having to characterize vibration sources and excitation propagation allows for many applica-
tions such as anomaly detection – by generating synthetic spectra on the fly and comparing them to
measurement –, and vibration flight envelope opening – by using extrapolation abilities. Prediction of
a complete spectrum can be attained by combining kinematic lines and broadband levels prediction,
allowing for a reduced representation of broadband levels on top of which kinematic lines can be
precisely superposed.
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(a) True

(b) Prediction

(c) Error
Figure 7.18: Time-frequency representation of the test set: time is on the x-axis, frequency bands onthe y-axis, and RMS levels on a log scale (or error on a linear scale) on the color-axis. Measurement(top), prediction (center) of the RNN ensemble for V3Z, and error (bottom) using the MALE withoutaveraging.
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Summary of Part II

Based on the tools presented in Part I as it uses the transformation techniques introduced and
insights generated, this Part aims to provide a methodology to predict any point in the flight domain,
or more generally for the prediction of any new point in the feature space. It precedes the work
presented in Part III, which aims to extend the prediction to the complete structure of an aircraft.

First, a literature review of supervised learning is presented in Chapter 5 detailing different
models with the learning and evaluation process. After addressing practical implementation chal-
lenges, the question of model interpretability is addressed. Then, based on the hypothesis of broad-
band separation presented in Section 4.1.1, the problemsof predicting kinematic lines andbroadband
spectra are addressed separately in the subsequent chapters.

Kinematic lines prediction is presented in Chapter 6 with a focus on the left engine kinematic
lines, a strong and isolated source. First, a Gaussian process is used to reconstruct RMS values cen-
tered on the frequency of kinematic lines during ground tests, with robustness to environmental test
conditions. Then, a methodology for transposition from ground to flight conditions is proposed, with
the perspective of predicting levels of non-instrumented points in the structure during flight tests.

Broadband prediction is presented in Chapter 7, starting with the prediction of stabilized flight
phases. Multiple models are compared, and an ensemble of Artificial Neural Networks is selected
as the best model. A focus is made on correctly evaluating models’ generalization ability, which is
assessed through the use of domain-oriented dataset splits. The problem of interpretability is tackled
using the SHAPmethod. This work has been published in [FNM+23a]. An extension to unsteady flight
phases is then proposed and is based on an ensemble of Recurrent Neural Networks, allowing the
modeling of temporal relationships. This work has been presented in [FNM+23b].

123





Part III

Prediction through the aircraft structure
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8 - Numerical models for structural dynamics
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The models implemented in Part II can be seen as being "local", meaning that they are intrinsi-
cally linked to a specific point in the structure, i.e., an accelerometer. A general methodology able
to predict the vibration environment in a complete aircraft structure requires to model the aircraft
structure, allowing to be predictive under structural modifications or even new designs. This is the
main objective of Part III, aiming ultimately to find an efficient representation of the aircraft structure
that could be used during the design phase. This part begins with a literature review of numerical
models. It is followed by their application for the study of vibration propagation paths in Chapter 9,
and the assessment of an algorithm from the field of Graph Signal Processing in order to learn a graph
structure from measurements in Chapter 10.
This chapter begins with opening remarks on vibration propagation in Section 8.1: while they can

be modeled in the first order using the distance to the source, the need for a finer representation is
manifest. In Section 8.2, numerical models adapted to different frequency ranges are introduced. In
Section 8.3, Dynamic SuperElements are presented as away to reduce finite elementsmodels. Finally,
Advanced Transfer Path Analysis is introduced in Section 8.4, allowing to analyze reduced models to
extract propagation paths.

8.1 . A word on vibration propagation

Vibrations in an aircraft structure are propagated through solid and aerial means. In this section,
KLRs (Kinematic Lines RMS Ratios) introduced in Sections 2.3.4 and 6.2.1 are used to analyze the
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propagation and attenuation in the structure of engine kinematic lines.

(a) Front of the aircraft (b) Middle of the aircraft (c) Rear of the aircraft
Figure 8.1: Superposition of KLRs for several harmonics between the left engine mount j and anaccelerometer i in the front (left), middle (center), or the rear of the aircraft (right). The horizontaldotted line denotes the unit ratio; the scale is log-log.

The same representation as in Figure 6.9 is presented in Figure 8.1, for multiple accelerometers
placed at the front, middle and rear of the aircraft, see Figure 6.8. The smoothed-out KLRs γ̃ij showa good superposition between harmonics for each accelerometer i. The higher the distance between
the source and the accelerometer, the more attenuated the KLR. The attenuation also increases with
the frequency, as seen with lower KLRs.

Figure 8.2: Smoothed-out KLRs of a specific harmonic between the left engine mount j and differentaccelerometers i denoted by the color, on a log-log scale.
Another representation of this effect is given for a broader set of accelerometers in Figure 8.2.

Only the smoothed-out KLRs γ̃ij for a specific harmonic are presented, and the color denotes the
position in the aircraft along the longitudinal axis. The same results can be seen, with a greater atten-
uation with distance to the source and an increased frequency.

The trend of the distance effect is presented in Figure 8.2, showing the mean µ and standard
deviation σ of KLRs γij across the longitudinal axis. While this first-order effect is already helpful
for rough modeling, as in Section 6.2, finer representations containing structural paths add precious
information. This is the subject of the following sections.
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Figure 8.3: Mean µ and standard deviation σ of KLRs γij across the aircraft longitudinal axis.

8.2 . Numerical methods

Numerical models allow the simulation of aircraft response to excitations based on a represen-
tation of the aircraft structure and materials, along with a characterization of the excitations. They
are a tool that can be used during the aircraft design phase when no experimental data is avail-
able. Methods are usually divided according to their frequency range. Low-frequency methods are
first presented with Finite Element Method (FEM) and Boundary Element Method (BEM). Then, high-
frequency methods are considered through the example of Statistical Energy Analysis (SEA). Finally,
the mid-frequency range is presented. Here, hypotheses used for the low- or high-frequency range
cannot hold, and new methods have to be used. They can be a hybrid between previously shown
methods such as FEM and SEA, or can be relying on other assumptions.

Frequency (Hz)
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e
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Figure 8.4: Spectrum divided intro low-, mid- and high-frequency ranges, adapted from [OS98].
The frequency range is defined based on the modal density: in the low-frequency domain, modes

can be easily separated while in the high-frequency domain their high density brings the need for a
statistical approach. This is illustrated in Figure 8.4.
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8.2.1 . Low-frequency: Finite and Boundary Elements

In the low-frequency domain, the structure exhibits a modal behavior. The modal overlap is
low, and so is the sensitivity to uncertainties. Deterministic techniques1 such as FEM (Finite Element
Method) [ZTZ10] or BEM (Boundary Element Method) [BB94] are used. In practice, thesemethods are
limited to low frequencies, as they require a very fine discretization and a high degree of interpolation
to remove numerical pollution and dispersion effects, when the numerical solution deteriorates with
increasing non-dimensional wave number [DBB99].

8.2.1.1 . Finite Element Method
The general idea of finite element is to establish, based onweak formulations, a discrete algorithm

to seek an approximate solution for a PDE (Partial Differential Equation) problem within a compact
domain, considering boundary and/or interior conditions [Man18]. The discretization step allows to
represent a domainΩwish ameshmade of elements. These elements cover thewhole domainwithout
overlapping.

Ω

Γ=∂Ω

Figure 8.5: Patatoid representation of the domain Ω and its boundary Γ = ∂Ω.
Let Ω be a domain in Rn (in practice, n = 1, 2 or 3) with a boundary Γ = ∂Ω, see Figure 8.5, on

which the objective is to solve a PDE with boundary conditions. In weak form, this problem can be
written as:

Find u ∈ H s.t. a(u, v) = f(v), ∀v ∈ H, (8.1)
whereH is a Hilbert space, and assuming the uniqueness of u. ah( · , · ) is a bilinear operator and f( · )
a linear operator.

This problem is discretized at several levels: the domain Ω is discretized into elements, the un-
known field is interpolated using a finite number of simple functions defined on each element, and
H is replaced byHh of finite dimension Nh. The approximation uh of u in this basis is:

uh =

Nh∑
i

qiei, (8.2)
with (e1, . . . , eNh

) a basis ofHh. Thus, the problem becomes (if a is linear):
1Although stochastic formulations exist.
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Find q1, . . . , qNh
s.t.

Nh∑
i

qiah(ei, vh) = fh(vh), ∀vh ∈ Hh, (8.3)
which can be rewritten, using bilinearity of ah( · , · ) and linearity of f( · ), and decomposing vh, as thefollowing system:  ah(e1, e1) . . . ah(eNh

, e1)... . . . ...
ah(e1, eNh

) · · · ah(eNh
, eNh

)


 q1...
qNh

 =

 fh(e1)...
fh(eNh

)

 . (8.4)

In matrix form, it can be written as:
Kq = f , (8.5)

withK the stiffness matrix. By choosing ei with small support,K can be sparse. Moreover, the num-
bering of ei is done so that the bandwidth ofK is as thin as possible.

If the continuous bilinear form a is coercive, i.e., ∃ α > 0 s.t. a(u, u) ≥ α ∥u∥2 ∀ u ∈ H, then
from Lions–Lax–Milgram theorem there is a unique solution. Multiple inversion methods exist, such
as Gauss or matrix decomposition (LU, Cholesky, etc.).

In the case of structural dynamics, the problem becomes:
Mq̈(t) +Cq̇(t) +Kq(t) = f(t), (8.6)

where q̇ and q̈ are respectively the first and second order time derivatives of q. It is Eq. (8.5) with the
addition of inertial forces −Mq̈ and viscous forces −Cq̇. For the determination of a free response
(excitation f = 0) or a periodic response (f is periodic), modal decomposition can be used. The time
dependence allows to model a non-stationary problem to determine a transient response. In this
case, a temporal scheme, explicit or implicit, can be used to find the discretization q of the field u and
its temporal derivatives q̈ and q̇ at each time t, satisfying the equation of dynamics.

When the frequency content of the excitation is broadband, errors on each wavelength accumu-
late quickly. In this case, it can be interesting to solve into the frequency domain. The problem is thus
rewritten using angular frequency ω:

(−ω2M+ iωC+K)q = f , (8.7)
and can be solved assuming a proportional damping2: C is a linear combination ofM andK, which
holds if only structural damping is at hand. By computing the first modes representing the first fre-
quencies of the system, the approximated solution can be projected into the associated subspaces
to solve a smaller problem.

Multiple FEM improvements were proposed: adaptive FEM [SJA04, SH97], stabilized FEM [BIPS95,
BB07, DHTY12, FDDC89, HH92], Domain Decomposition Methods [ACMP08, FR91, FFML97, Hug95],
ComponentMode Synthesis [Mac71, SAJEH11], Multiscale FEM [AV12, KT11], and enrichmentmethods
[MB96].

2Also known as Basile hypothesis.
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8.2.1.2 . Boundary Element Method

The FEM is based on Ritz method [Rit09], where the unknown function is a sum of basis functions,
defined in the whole domain Ω. The BEM (Boundary Element Method) [BB94, Bon99] is based on Tr-
efftz method [Tre26], and translates the domain problem into a boundary value problem by applying
Green’s theorem3 to the weak formulation, while using linearly independent interpolation functions
that satisfy a priori the PDE inside the domain. See [KK95] for more details on Trefftz method.

This method can only be used for differential equations that are linear and homogenous. The
problem is still written as Kq = f but the integrals are only defined on Γ = ∂Ω, the boundary of
the domain. BEM is preferred over FEM when the propagation domain becomes infinite, as only its
boundary surface has to be discretized.

8.2.1.3 . Additional low-frequency methods
FEM and BEM are both robust methods used in industrial applications. However, they are not

adapted to large deformations, in which case the mesh is problematic. For this meshless methods
[DA16, IOCDP03, ZLSL01] can be used, which rely on a set of scattered nodes or points to represent
the domain instead of a mesh. This method was first introduced in smoothed particle hydrodynam-
ics [GM77], then applied in solid mechanics [LPC+93]. While they allow to model large deformations,
meshlessmethods can be computationally expensive and require careful treatment of boundary con-
ditions.

Finally, many variations have been developed. X-FEM (eXtended-FEM) [MDB99] allows for the
modeling of discontinuities such as cracks or interfaceswithout the need for explicitmesh refinement.
Finite Element Exterior Calculus [AFW06] combines FEMwith concepts from differential geometry and
exterior calculus.

8.2.2 . High-frequency: Statistical Energy Analysis
In the high-frequency domain, the interest is in describing a global behavior in terms of energy.

The modal overlap is high, and so is the sensitivity to uncertainties.
SEA (Statistical Energy Analysis) [LM62, LDD95, Smi62, LB04, CLK05] models the vibration energy

transfers across partitions – subsystems – of a structure. An illustration is given in Figure 8.6. The
balance between substructures Ωi in terms of power is written:

P
Input
i = P

Dissipation
i +

∑
j

P
Coupling
ij , (8.8)

where P
Input
i is the input power of Ωi, PDissipation

i is the dissipated power of Ωi, and P
Coupling
ij the ex-

changed power between Ωi and Ωj , supposed to be proportional to their modal energy difference:
P
Coupling
ij = ω ηij ni

(
Ei

ni
− Ej

nj

)
, (8.9)

where ni and nj are the modal densities of Ωi and Ωj , ηij is the coupling loss factor, and Ei and Ejthe energies of Ωi and Ωj .
3Green’s theorem is the 2D special case of Stokes’ theorem, and relates a line integral around a simple closedcurve C to a double integral over the place regionD bounded by C.
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SEA relies on strong assumptions, see [Mac03]. Mode groupings are constructed such that statis-

tically, the level of each mode group is similar. Therefore, the method relies on the assumption of a
high modal density within the studied frequency range. Another strong assumption of SEA pertains
to the transmission energy, assumed to be only between adjacent subsystems, using an assumption
of weak coupling.

Figure 8.6: Illustration of SEA from [LBCM10]: a complex structure is divided into sub-systems ex-changing vibrational energy.
The energy flow between subsystems is described using a set of linear equations for the input,

storage, transmission (proportionally with the difference of modal energies), and dissipation of en-
ergy.

SEA provides an average vibrational energy level per sub-structure and is too global for mid-
frequency problems. Thismethod does not yield a predictive solution as it requires a priori knowledge
of measured coupling factors. Finally, substructuring is a challenging problem [TG06], and there is no
trivial way to discretize a domain Ω into subdomains Ωi.

8.2.3 . Mid-frequency: hybrid and Trefftz methods
Atmedium frequencies, while amodal behavior is still observable, themodes are superposed and

cannot be separated: the Finite Element Method is ill-suited due to the required mesh refinement,
and the calculation of the modal basis is also unfeasible. Statistical Energy Analysis, on the other
hand, is too global and does not allow a satisfactory description of the solution.

Themid-frequencymethods can be divided into hybrid approaches, combining low and high fre-
quency methods, and Trefftz approaches in which solutions of the homogenous differential equa-
tion (more generally, adjoint differential equation) are used as weighting functions to solve the prob-
lem on the boundary [KK95]. It must be mentionned that additional methods exists, notably based
on an energy operator [Soi98] or on the theory of structural fuzzy [Soi93].

8.2.3.1 . Hybrid approaches
The Hybrid Finite Element/Statistical Energy Analysis (FE/SEA) [SL05] approach partitions the

system into low-frequency and high-frequency regions. The low-frequency regions are analyzed using
FEM, while the high-frequency regions are analyzed using SEA. The results from both analyses are
then combined to provide a full system response. Multiple developments of this method have been
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proposed [DOP12, LC09, RLDV14], with attempts to leverage experimental data [CML+19] or tomodel
uncertainties [CL13].

The wave-based method [DvSV02] provides a detailed representation of the energy flow in a
system, considering thewave nature of the energy propagation. It can be coupledwith FEM [vDV05] or
with BEM [ABH+14]. An extension of BEM to planewaves has been introduced in theWave Boundary
Element Method [PTB03, PTB04].

8.2.3.2 . Variational Theory of Complex Rays
The Variational Theory of Complex Rays (TVRC) [Lad96] is a Trefftz method specifically made for

the mid-frequency range. It is particularly adapted to problems where the structure can be divided
into homogeneous sub-structures.

The idea is to divide a domain into subdomains, then get a weak form from the boundary and
coupling functions using a test function solution of the reference equation. Shape functions are then
injected into the weak formulation, their amplitude being the unknown. Multiple shape functions
can be used: ray-VTCR [Lad96] uses plane waves, sector-VTCR [LRRB03] uses angular sectors, and
Fourier-VTCR [KLR12, RLK13] uses a Fourier series. An illustration is given in Figure 8.7.

(a) Rays (b) Sectors (c) Fourier
Figure 8.7: Different types of shape functions used in VTCR with their amplitude a, from [Cat16].
As per [Cet19], this approach has been applied to several problems: plates [LARB01], general

shells [Cat16, RLK13, RLR04], transient dynamics [Che05, CLR07], 2D unbounded domains [Kov11,
KRL13], 3D acoustics [Kov11, KLRB12], othotropic plates [KRL14], orthotropic shells [CBRL15], py-
rotechnic shocks [Béz12], broad frequency band [BLRK14].

8.3 . Dynamic Superelements

Analyzing vibration propagation paths can be a complex task when a model contains millions of
degrees of freedom. As such, using a reduced representation that is still able to produce exact results
can be useful. To this end, the concept of DSE (Dynamic SuperElement) is introduced. It allows to
reduce a numerical model by condensing its information on a selected subset of degrees of freedom,
which offers multiple advantages [NXN14].

Information can be exchanged between industrial actors without having to provide a full model.
For example, discussions between aircraft, mount, and engine manufacturers involve exchanges of
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DSEs to perform proper dimensioning. As the reduced model can be considered as a black box (only
the model response on a chosen subset of degrees of freedom can be computed), only a minimal
amount of information is shared.

Another advantage of DSEs is that they allow to compute multiple load cases quickly. After the
initial model reduction, requiring computation on the full system (no precision is lost), computation
is fast as only a handful of degrees of freedom needs to be solved compared to the full model that
could contain millions of degrees of freedom.

This section introduces the DSEs used in this manuscript, see Chapter 9 for the application.
8.3.1 . Formalism

The behavior of a dynamical system reduced on n degrees of freedom can be summarized by
linking a force f with a resulting displacement x using an equivalent impedance Z, the DSE, such that:

Zx = f , (8.10)
with Z ∈ Cn×n the impedance matrix in N/m, x the response of the system, and f the imposed
efforts. All equations are given for a specific frequency. As presented in [GB02], the term impedance
was first introduced in [Web19] to describe the ratio between the cause of motion, a force, and its
effect, a displacement: this is the definition used here4. Equivalently, Eq. (8.10) can be inverted and
written as:

x = Hf , (8.11)
withH ∈ Cn×n the admittancematrix inm/N.

In the following, the admittance at a given frequency is supposed to be equivalent to the value
of a frequency response function at a given frequency, as the system is assumed to be linear and
time-invariant. Moreover, the terms transfer function and frequency response function (FRF) are used
interchangeably

Two types of transfer functions can be defined, whether a signal5 is measured in response to an
applied force or to an applied signal.

For a signal-force transfer function, a signal is measured at i relative to an imposed effort at j:
FRFForce

ij = Hij . (8.12)
For a signal-signal transfer function, a signal is measured at i relative to a signal at j. It can be

computed using the signal-force transfer function:
FRF

Displacement
ij =

FRFForce
ij

FRFForce
jj

=
Hij

Hjj
=

xi
xj

. (8.13)
There are multiple ways to compute a DSE. One of them is to compute or measure transfer func-

tions between all relevant degrees of freedom, then invert the resulting system. Thus for each fre-
quency, Eq. (8.10) is solved for Z for all unitary load cases from f = [1, 0, ..., 0]T, to f = [0, 0, ..., 1]T.
This lead to ZX = F where F = I, which gives:

4Conventionally, the mechanical impedance is the ratio between a force and a velocity.5A signal can be a response of the system in displacement, velocity, or acceleration.
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X = Z−1 ≡ H. (8.14)
This means that the displacement matrix, equivalent to the admittance matrix as the forces are

unitary, can be obtained by inverting the impedance matrix. As it is ill-conditioned, the inversion
needs to take numerical stability into account.

8.3.2 . Numerical stability
Let us consider the system Ax = b. When a matrix A is ill-conditioned, the computation of its

inverse is prone to large numerical errors, as a small change in the input (the coefficients of thematrix)
can lead to a large change in the output (the solution to a system of equations). This can be quantified
using the condition number, which estimates how much the output value will change due to small
changes in the input value. The condition number of a matrixA is defined as:

cond(A) ≜ ∥A∥
∥∥A−1

∥∥ , (8.15)
which, using an ℓ2-norm, can be rewritten as:

cond(A) =
σmax(A)

σmin(A)
, (8.16)

with σmax and σmin the maximum and minimum singular values ofA.
This number is always superior to 1, and is small for well-conditioned matrices. As A gets closer

to a singular matrix, σmin → 0 which makes the condition number increase.
Preconditioning a matrix is a strategy used to transform a given problem into a form that is more

suitable for numerical solving methods. Its main goal is to reduce the condition number of the prob-
lem, which in turn improves the convergence speed of iterative solvers and the numerical stability of
the solution. The idea is thus to use a preconditioner P to replace the original problem by:

P−1Ax = P−1b, (8.17)
such that cond(P−1A) < cond(A). This is a left preconditioned system, which could also be written
as a right preconditioned system where the following has to be solved:

AP−1y = b and x = P−1y. (8.18)
Both Eq. (8.17) and (8.18) give the same result as long as P is non-singular. Finally, a two-sided

preconditioned system can be used:
QAP−1(Px) = Qb, (8.19)

whereQ and P are real preconditioners such thatQT = P−1.
The choice of P−1 is a trade-off between preconditioning computing time and solving the re-

sulting system. Choosing P = I is cheap, but does not precondition the system, while choosing
P = A gives an optimal condition number of 1, but preconditioning is as difficult as solving the origi-
nal system. One of the simplest forms of preconditioning is by using a diagonal preconditioner, where
P = diag (A). This method is particularly efficient for diagonally dominant matrices.
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8.3.3 . Admittance space and impedance space

Suppose a 2-degree-of-freedom system. The relationship between admittanceH and impedance
Z can be written as:

[
H11 H12

H21 H22

]−1

=

[
Z11 Z12

Z21 Z22

]
, (8.20)

and if a third degree of freedom is introduced in the same system, it can be rewritten as:
H11 H12 H13

H21 H22 H23

H31 H32 H33

−1

=

Z ′
11 Z ′

12 Z ′
13

Z ′
21 Z ′

22 Z ′
23

Z ′
31 Z ′

32 Z ′
33

 , (8.21)

where admittances remain unchanged on the degrees of freedom in common, but not the admit-
tance.

More generally, let us consider a system of n degrees of freedom and a system of m degrees of
freedom, such that one is a subset of the other. The set of degrees of freedom common to both
systems is written S. The equivalence in the admittance space can be written as:

Hij = H ′
ij , ∀ i, j ∈ S, H ∈ Cn×n, H′ ∈ Cm×m, (8.22)

while the non-equivalence in the impedance space can be written as:

Zij ̸= Z ′
ij , ∀ i, j ∈ S, Z ∈ Cn×n, Z′ ∈ Cm×m. (8.23)

Physically, this is coherent with the fact that a transfer function is invariant to the number of
degrees of freedom considered, while the impedance is actually an equivalent impedance on the
set of degrees of freedom, allowing to find the same admittance values as with the original model.
When reducing the number of degrees of freedom, information is not lost but condensed into the
remaining points.

8.3.4 . Assembling DSEs

Degrees of freedom in a DSE are usually split into internal degrees of freedom and frontier
degrees of freedom. The former are used to compute a value at points of interest, while the latter
are used to assemble multiple DSEs.

For example, let us consider the case of assembling the DSE of an aircraftZA ∈ Cn×n with the DSEs
of the left and right engines, respectively ZL ∈ C2×2 and ZR ∈ C2×2. For the sake of simplicity, engine
mounts are ignored. Assembling them is done through frontier degrees of freedom, by ordering
them such that they are aligned. Then, a simple summation is performed. The result, ZAssembled, can
be written as:
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ZAssembled =

ZR
11 ZR

12 0 · · · · · · 0

ZR
21 ZR

22 + ZA
11 ZA

12 · · · ZA
1n

...
0 ZA

21 ZA
22 · · · ZA

2n

...
... ... ... . . . ... 0

... ZA
n1 ZA

n2 · · · ZA
nn + ZL

11 ZL
12

0 · · · · · · 0 ZL
21 ZL

22





.

The resulting assembled matrix can then be used to solve ZAssembledx = f , with x and f of size
n+2+2. Vibrations generated from engines can then be modeled by injecting efforts at ZR

11 and ZL
22,and the response at internal degrees of freedom such as ZA

22 can be studied.The condensation of a numerical model into a DSE is thus a way to quickly exploit it on a selected
set of degrees of freedom. As the characterization of the structure is a central interest, understanding
how vibration transfers between two points is critical. In the next section, a method that can be
applied to DSEs to understand transfer paths is introduced.

8.4 . Advanced Transfer Path Analysis

Transfer Path Analysis (TPA) is a family of methodologies used to analyze the transfer of noise
and vibration from sources to receivers. While first being used to ensure stealth of military ships and
submarines, it quickly began to be applied in the aeronautic industry to ensure safety, and thenmore
broadly in the automotive industry to ensure acoustic comfort [vdR16]. TPA can be split into three
main types:

• Classical TPA involves performing operational tests on the assembled product to obtain inter-
face forces between an active and a passive side. The operational forces are determined for the
complete system, and modifications to any subsystem require retesting of the entire system.
While thismethod provides high accuracy, it can be time-consuming and complex, as it requires
dismounting the active side from the passive side.

• Component-based TPA aims to characterize the source excitation by using a set of equivalent
forces or velocities that are an inherent property of the active component itself. This is in oppo-
sition to classical TPA, where the interface forces obtained are not a characteristic of the source
alone but of the assembled dynamics.

• Transmissibility-based TPA avoids to explicitly model the vibration transmission , and instead
focuses solely on sensor responses. While the insights gained from it are limited to ranking
sources and their dominant paths, this class of method is faster and simpler than the two pre-
vious ones.
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Multiplemethods belong to the transmissibility-based TPA:ATPA (Advanced Transfer PathAnal-

ysis) [MSC05], OTPA (Operational Transfer Path Analysis) [NY06], and Operational mount identifica-
tion with eXogenous Inputs (OPAX) [JMG+08, JGG+11]. ATPA is the focus of the manuscript, and is
treated as a way to better exploit the content of a DSE. Below is a short summary that does not in-
tend to be a comprehensive literature review of this method.

ATPA originated from GTDT (Global Transmissibility Direct Transmissibility), first introduced in
[Mag81], and later developed in [GM04, Gua09, GGJA13] through analytical, numerical and experi-
mental results. In [GM04], links to causality are highlighted, see [KDTB01, Eic09]. In [MG05], links to
graphs are made, where the direct transfer matrix of a system is shown to be similar to a connec-
tivity matrix. In [APA+19], a comparison between numerical and experimental results is performed,
while [MARG21] shows that the solution of a linear system can be decomposed into a finite sum of
propagation paths.

To describe vibration propagation paths, ATPA proposes to deal with global and direct transfers,
which are detailed below after introducing the methodology.

8.4.1 . Methodology
After selecting the degrees of freedom to study, the ATPA methodology consists of two steps:
1. Measuring the global transfers between all points, experimentally or numerically.
2. Computing the direct transfers from the global transfers.
The selection of the set of degrees of freedom is non-trivial, and it is an active research problem

for many applications, including SEA [DPR15, MPR18, TG06].
8.4.2 . Global and direct transfers

A formal definition of global and direct transfers is given below, as they are at the core of the ATPA
methodology. Then, a link between them is highlighted to introduce the notion of paths.

8.4.2.1 . Global transfer
A global transfer TG

ij is defined as the ratio between the signal at i and the signal at j, with an
external force applied on j. It is thus a signal-signal transfer function between those two points, as
defined in Eq. (8.13).

TG
ij ≜

xi
xj
≡ FRF

Displacement
ij , fj = 1, fk = 0, ∀ k ̸= j. (8.24)

8.4.2.2 . Direct transfer for ij
A direct transfer TD

ij for i ̸= j is defined as the ratio between the signal at i and the signal at j,
with an external force applied on j, with all degrees of freedom other than i and j being blocked:

TD
ij ≜

xi
xj

∣∣∣∣
xk=0 ∀ k ̸=i,j

, fj = 1, fk = 0, ∀ k ̸= j, (8.25)
which is equivalent to solving the following system:
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[
Zii Zij

Zji Zjj

] [
xi
xj

]
=

[
fi = 0
fj = 1

]
, (8.26)

which gives:
xi =

−Zij

ZiiZjj − ZjiZij
, xj =

Zii

ZiiZjj − ZjiZij
, (8.27)

and thus:
TD
ij = −

Zij

Zii
. (8.28)

8.4.2.3 . Direct transfer for ii
A direct transfer TD

ii at a point i is defined as the ratio between the signal at iwith an external forceapplied at i and all other degrees of freedom that i at blocked, and the signal at i with an external
effort applied at i:

TD
ii ≜

xi|xk=0 ∀ k ̸=i

xi
, fi = 1, fk = 0, ∀ k ̸= i. (8.29)

Finding xi|xk=0 ∀ k ̸=i involves solving the one degree of freedom systemZiixi = fi = 1which gives
xi =

1
Zii

. Numerator xi is directly equal to xi = Hii ≡ FRFForce
ii .

Thus:
TD
ii =

1

ZiiHii
. (8.30)

8.4.3 . Link between direct and global transfers
The global transfer between two points i and j, thus its signal-signal transfer function, can be

described as a sum of global and direct transfers such that:
TG
ij =

∑
k ̸=i

TD
ikT

G
kj , ∀i ̸= j. (8.31)

This is illustrated in Figure 8.8, and can be seen as a decomposition into a sum of paths. In Chap-
ter 9 where this method is applied, the highest contributing paths are identified.

ATPA is thus a simple method to analyze a system under various signals such as acceleration,
velocity, displacement, and energy. It does not require dismounting of active and passive parts, nor
force measurement. Finally, it is not affected by path cross-coupling issues, allowing to quantify the
various sources and paths including those that cancel each other out.

However, it is based onmultiple assumptions. The system is supposed to be linear, and causal clo-
sure is assumed, meaning that all direct influences between variables should be included in the path
diagram. If degrees of freedom are missed, it may lead to incomplete or inaccurate representations
of the transfer paths.
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Figure 8.8: Illustration of the decomposition of a global transfer into a sum of paths, see Eq. (8.31).

This chapter has introduced various numerical models, followed by a model reduction method,
the DSE. To analyze it, ATPA is introduced. The elements presented here are applied in the following
chapter.
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When modeling the vibration environment of an aircraft, understanding vibration propagation
paths is critical to identify where to adjust the structure in order to reduce vibration levels. Equip-
ment that undergoes lower vibration levels can be less sturdy and thus have a reduced weight, which
is critical in the aeronautical industry. In addition to the benefits for equipment dimensioning, iden-
tifying vibration propagation paths can be beneficial for other challenges in aircraft design, such as
the acoustic comfort of passengers.

To this end, this chapter puts into practice the methods presented in Chapter 8, more specifi-
cally the DSEs (Dynamic SuperElements) of Section 8.3 and ATPA (Advanced Transfer Path Analysis) of
Section 8.4. In order to assess them extensively, they are applied on a finite element model, with the
objective to seewhat objects are generated by themethods, and howwell they can help identify vibra-
tion propagation paths. The end goal would be to make the methodology applicable to experimental
data, including at higher frequencies. To evaluate this methodology, the generated DSE is first pre-
sented, and it is used to compute direct transfer matrices using the ATPA methodology. Then, direct
transfer matrices are visualized using 3D graphs. Finally, an iterative propagation path identification
algorithm is proposed, and its results are presented.

9.1 . From numerical impedances to direct transfers

As presented in Section 8.3, a DSE can be used to quickly compute results after performing a
model reduction. The DSE is based on a fine FEM model made specifically for vibration and acoustic
analysis. This section presents the DSE generated and the computation of direct transfers using ATPA.

9.1.1 . Dynamic Superelement generation
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CHAPTER 9. VIBRATION PROPAGATION PATH IDENTIFICATION
The DSE generated consists of an impedance matrix Z at each frequency from 10 to 300 Hz. De-

grees of freedom are disposed on:
• Various vibration environment accelerometers across the complete aircraft structure.
• The left, right, top, and bottom of each frame at the rear of the aircraft, near the engines.
• At the center of beams linking these rear frames along the lateral axis.
• On left and right engine mounts.
All degrees of freedomare on the 3 axes of translation, X, Y, Z, with the exception of enginemounts,

also measuring the 3 axes of rotation. An illustration of the selected degrees of freedom is given
in Figure 9.1. In Figure 9.1a, the approximate position of degrees of freedom across the aircraft is
presented, and a detail showing a section on the YZ plane through a rear frame is given in Figure 9.1b.

(a) Approximate position across the aircraft

Left
Engine

X
Y

Z

A-A

(b) Section A-A on a rear frame
Figure 9.1: Left: Approximate position of the accelerometer superposed to a generic Falcon aircraftfor illustration purposes. Node colors denote the longitudinal position. Right: section on the YZ planeshowing the position of fuselage degrees of freedom (red circles), an accelerometer degree of free-dom (orange triangle), and 3 supplementary degrees of freedom for its link to the structure (bluesquares). Neither the left engine nor the left mount DSEs are assembled; only the aircraft DSE isused. NB: a left-handed coordinate system is used.

9.1.2 . Reduction: recalculating an equivalent impedance
For this study, a focus is made on the Z axis to ease the visualization process. Moreover, a single

excitation originating from the left engine is considered; thus, degrees of freedom on the right engine
mounts are removed. In further studies, it could be interesting to analyze vibration paths from the left
engine to the structure, through the mounts. Here, as only the aircraft DSE is used, only one degree
of freedom is kept on the left engine mounts, as presented in Figure 9.1b. For each frequency, an
impedance matrix Z ∈ Cn×n is used, with n = 104 the number of freedom.

Reducing the size of the impedance matrix Z is done through inverting and selecting a subset
in the FRF space, before inverting again. This allows to recompute the equivalent impedance, and
preconditioning must be performed to ensure numerical stability. This methodology stems from Sec-
tion 8.3.3. Algorithm 4 showcases this process, whereAn denotes a matrix of size (n× n).
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Algorithm 4 Recalculating an equivalent impedance matrix from size (m×m) to (n× n)

Require: Zm ∈ Cm×m

for each frequency doPrecondition Zm

Hm = Z−1
mSelect subsetHn ⊂ HmPreconditionHn

Zn = H−1
n

end for

To ensure the reduction is performed correctly, a comparison is performed betweenHn obtainedby inverting Zn, and Hn obtained by inverting Zm then selecting a subset of degrees of freedom
n < m. No error larger than numerical precision is reported. The resulting impedance matrix and its
associated admittance matrix are presented in Figure 9.2.

(a) Impedance matrix Z (b) Admittance matrixH
Figure 9.2: Modulus of the impedance and admittance matrices for a given frequency. The colorbaruses a logarithmic scale.

9.1.3 . Calculation of direct transfer matrices
Using the impedance and admittance matrices previously defined, the ATPA methodology can be

applied, see Section 8.4.
First, global transfers are obtained from the admittance matrix H. This is done through nor-

malizing columns by their diagonal values Hjj , see Eqs. (8.24) and (8.13). The result is that FRFs are
expressed in signal-signal instead of force-signal, and that the resulting matrix is non-hermitian. A
matrix of global transfers at a given frequency is denoted TG.

Then, direct transfers are computed from the global transfers. Diagonal terms are the inverse of
the product of diagonal impedance and admittance, see Eq. (8.30). Non-diagonal terms are negative
impedances normalized by their diagonal values, see Eq. (8.28). A matrix of direct transfers at a given
frequency is denoted TD. The resulting matrices for a given frequency are presented in Figure 9.3.
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(a) Global transfers TG (b) Direct transfers TD

Figure 9.3: Modulus of global and direct transfer matrices for a given frequency. The colorbar uses alogarithmic scale.
Comparing TD and Z can be done by looking at Figures 9.2a and 9.3b, but another way is pre-

sented here. In Figure 9.4, the modulus of each matrix is standardized, see Eq. (3.1), and plotted on
a colorbar with the same range, but centered around the mean value of the matrix. This figure al-
lows to compare how the values are distributed on the degrees of freedom of the matrix. While Z

is symmetric and contains strong values in specific regions, TD is non-symmetric with lower values
distributed on more degrees of freedom.

(a) Normalized Z (b) Normalized TD

Figure 9.4: Normalized modulus of impedance and direct transfers matrices. Colorbars are set to thesame range (with a logarithmic scale), but their center is set to the mean value of each matrix.
Finally, no comparison between experimental FRFs and numerical ones is presented as this would

only inform on how good the model is, which is not the interest here. Moreover, this would require
to add the DSEs of mounts and engines to have the correct equivalent impedances, as presented in
Section 8.3.4.
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9.2 . Visualizing a direct transfer matrix

While looking at a direct transfer matrix is informative, one can miss the underlying structure. In
the context of degrees of freedom relating to points in an aircraft structure, visualizing it through a
3D graph can enhance the understanding. This section aims to implement 3D visualizations of the
direct transfer matrix and see if they fit domain knowledge.

9.2.1 . Graph representation of the direct transfer matrix
As presented in [MG05], a direct transfer matrix can be seen as the connectivity or adjacency

matrix of a graph. A graph is a set of nodes connected by a set of edges. How the set of edges
connects the set of nodes is described by the adjacency matrix. As it is a weighted adjacency matrix,
it is denotedW. For a more formal presentation of graphs, see Chapter 10.

The objective of this section is to visualize the direct transfer matrix for a given frequency as a
3D graph. In this graph, the nodes are the degrees of freedom of the system, disposed at their XYZ
coordinates, and the edges are the connections between the nodes given by the direct transfer value.
Setting W = TD poses multiple problems. As the diagonal is non-zero, nodes are connected to
themselves which clutters the visualization. As there is no zero value in TD, all nodes are connected.
To overcome these problems, the diagonal is set to 0, as well as low values through a hard threshold.
In addition, values that are considered to be too high are also set to 0. It must be emphasized that this
is performed only for visualization, as identifying some strong local connections is not the point. Only
the modulus is considered as TD is a complex matrix. Thus, the elements ofW are set as follows:

Wii = 0, Wij =

{∣∣∣TD
ij

∣∣∣ if Q2 <
∣∣∣TD

ij

∣∣∣ < P99,

0 otherwise
∀ i ̸= j, (9.1)

where Q2 and P99 are the median and 99th percentile1 of ∣∣∣TD
ij

∣∣∣.
Figure 9.5 shows a representation ofW in the form of a 3D graph, for a frequency around 250 Hz.

Nodes are colored by their position along the longitudinal axis, as in Figure 9.1a, and edge weights are
represented by their width and color. At this frequency, links are very local. While the aircraft’s rear
shows some strong connections, the most distant ones are very weak. Again, this is only a snapshot
of a full 3D view allowing to move the camera into the structure and focus on specific zones. This
representation could be further improved by carefully adjusting the thresholds, set of colors, and
ranges of edge widths.

9.2.2 . Attenuation through the structure
An interesting thing to evaluate is how the nodes react to an excitation originating from the engine,

and how much their response is coherent with direct transfer values.
This is presented in Figure 9.6, where the graph is superposed to a rough aircraft frame drawn to

ease the visualization. Contrary to Figure 9.5, nodes’ diameter and color change with their normalized
response to the excitation (using a min-max normalization, see Eq. (3.2)), here imposed at the left
engine mount. Edges’ width and color are constant, but their opacity changes with the weight. Three
frequencies are used, representing three different modal behaviors.

1As 50% of values are above the median, 99% of values are below the 99th percentile.
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Figure 9.5: Graph representation of the direct transfer matrix TD at a given frequency transformedinto a weighted adjacency matrix W. Edges’ width and color denote their weight: wider and darkermeans more weight. Nodes’ color denotes their position in the structure along the longitudinal axis,as in Figure 9.1a (NB: a left-handed coordinate system is used).

(a) ∼10 Hz (b) ∼150 Hz (c) ∼250 Hz
Figure 9.6: Response of degrees of freedom to an excitation at the left enginemount at 3 frequencies.Node color and diameter denote the normalized response. For edges, only the opacity varies withtheir weight; their color and width are fixed.

For the low frequency, links are global, and most of the nodes have a high response. For the mid
frequency, the excitation is much more attenuated, and mostly seen around the rear of the aircraft,
with weaker links. For the high frequency, the effect is even stronger, and several nodes at the rear
show an attenuated response. Some nodes in the front have higher values than nodes at the rear,
whichmaybe informative of a direct transmissionpath or another phenomenon. Results are coherent
with the ones obtained previously in Section 8.1, showing that the attenuation increases with the
frequency and distance to the source.

To further assess the connection between attenuation and direct transfers, one could try to re-
construct the values using direct transfers and the values of neighboring nodes, as performed later
in Section 10.3.4.2 to evaluate a learned graph structure.

148



9.3. EXTRACTING PROPAGATION PATHS
9.3 . Extracting propagation paths

This section proposes an answer to the problem of identifying the vibration propagation paths
between any two given points, with a method based on the notion of direct transfer. First, the rel-
ative contributions of several paths are analyzed with regard to their frequency. Then, an iterative
algorithm to trace back to the excitation source is proposed, and applied on 3 target points at the
rear, center, and front of the aircraft.

9.3.1 . Relative frequency contributions of paths
Let us consider a point at the rear of the aircraft, attached to the frame through three beams,

close to the engine. This point is illustrated in Figure 9.1b as an orange triangle, where the three
attachment points are blue squares.

The global transfer between the left engine j and this point i can be written as a sum of paths,
see Eq. (8.31). The path C passing through a node k is defined as follows:

C
(k)
ij ≜ TD

ikT
G
kj , ∀i ̸= j. (9.2)

Ranking the path by their average broadband contribution2 allows to identify the main propaga-
tion paths. This is presented in Figure 9.7, highlighting the 3main paths. It shows that more than 80%
of vibrations go through these 3 points for almost all frequencies, corresponding to each attachment
point.

(a) Absolute value of each path (b) Proportion of each path
Figure 9.7: Highlight of the 3 main paths from the source j to the point i.

From this, it is possible to iterate and select the highest contributor argmaxk C
(k)
ij , corresponding

to the blue path, and set this as the target point i. The other degrees of freedom are removed here,
as they are not of interest.

The result is given in Figure 9.8, showing that the 3main paths stand out less, which is expected as
the new starting point is closer to the aircraft skin. A very interesting result here is that it is possible
to say that 80% of the vibrations go through the blue path at the frequency identified by a dotted

2Using a broadband value is a choice that is later confronted with alternatives.
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(a) Absolute value of each path (b) Proportion of each path
Figure 9.8: Highlight of the 3 main paths from the source j to the new target i, being the main pathat the previous step. The dotted line shows a frequency at which 80% of vibrations pass by the bluepath.

line. This has important applications in vibration characterization, as certain noises and vibrations
that must be suppressed are very localized in frequency. By repeating these steps multiple times,
a complete path corresponding to the main vibration propagation path can be identified. This is
detailed in the following.

9.3.2 . Main path identification
This methodology presented previously can be turned into an iterative algorithm to identify the

main vibration path to the source. Algorithm 5 proposes an implementation allowing to iteratively go
back to the source j from a target i. The set of all degrees of freedom is denoted S, and the path is
described as a list denoted P . At each step, the next degree of freedom is identified using a ranking
algorithm. The previous target is added to the list P , and removed from the set S as it does not have
to be explored again. The algorithm stops when the source j is reached.
Algorithm 5 Iterative main propagation path identification
Require: TG,TD ∈ Cn×n with n ∈ S, source j, target i, ranking algorithmLet P = [∅] be an ordered empty list
while i ̸= j do

P ← P + [i]

Compute C
(k)
ij for all k in S

Identify the main path p = argmaxk C
(k)
ij using the ranking algorithm

S ← S \ {i}
i← p

end while

One thing to define is the ranking algorithm. Previously in Section 9.3.1, a broadband criterion
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is used, meaning that the whole frequency range is considered for the ranking. An alternative is to
define a frequency range, which is helpful if a phenomenon characterized by a specific frequency
needs to be suppressed. In the case of Figure 9.8b, it could be interesting to consider a frequency
range centered around the dotted line.

(a) ∼10 Hz (b) ∼150 Hz (c) ∼250 Hz
Figure 9.9: Propagation paths from the left enginemount to an accelerometer at the rear, for differentfrequencies. The path color denotes the step number.

In Figure 9.9, the paths identified for 3 frequencies are compared, from the left engine to the same
accelerometer used previously. The path color denotes the step in the algorithm. Performing the
ranking by considering the value at a specific frequency can make the result sensitive to noise. Thus,
a frequency range of 5Hz centered around the frequency is considered to increase robustness. A path
length is defined here as the number of nodes it contains. At the low frequency, the path is long and
many connections are important all over the structure, corresponding to a global behavior. At the high
frequency the path is short, which is consistent with the expected local behavior. More connections
are observed in the mid-frequency range, but the number of connections remains limited.
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Figure 9.10: Path length measured in number of degrees of freedom, depending on the frequencycriterion used, on a log-log scale.
The effect of the frequency on path length is presented in Figure 9.10, where all degrees of free-

dom are considered. The length only considers the number of nodes and is not weighted by the
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distance or impedance value. The black line is the average across accelerometers. The trend con-
firms the previous observations and is consistent with the physics of propagation: the higher the
frequency, the shorter the path. This is due to the fact that at high frequencies, behaviors become
very local, and thus the algorithm is dealing with noise. Finally, an interesting result is that the aver-
age curve presents localized trends in frequency that seem to be shared with all accelerometers: the
initial decrease in path length is followed by two peaks before finally reaching a plateau. This effect
should be studied more in-depth and may result from the iterative algorithm implemented or the
distance metric used. It is unclear whether it is a numerical artifact of the algorithm or if it reflects the
physics. One way to explore this would be to weigh the distance by the direct transfer or impedance
values.

(a) Rear (b) Center (c) Front
Figure 9.11: Propagation paths from left engine mount to various accelerometers, considering abroadband path. The path color denotes the step number.

Using a broadband criterion is thus a more robust way to proceed as it consists in considering
the complete frequency range to perform the ranking. In Figure 9.11, Algorithm 5 is applied using
such a criterion, for 3 accelerometers at the rear, center, and front of the aircraft. Their path length is,
respectively, 8, 7, and 8 degrees of freedom, corresponding to the plateau of Figure 9.10. Qualitatively,
the paths are consistent with domain knowledge. For example, the main path for the accelerometer
at the rear follows the frames from below before arriving at the left engine mount, which looks like a
shortest path. However, it looks like the left degree of freedom on the frame is skipped, whereas it is
included in the main path for the other accelerometers.

9.4 . Conclusion and perspectives

In this Chapter, the challenge of vibration propagation paths identification is tackled. To do so, the
tools introduced in Chapter 8 are used: a Finite Element model is reduced into a Dynamic SuperEle-
ment, from which direct transfers are computed using Advanced Transfer Path Analysis.

After presenting the computation of direct transfers, two domain-oriented 3D visualizations are
provided. Results are consistent with those presented in Section 8.1, which are based on engineering
knowledge. Then, propagation paths are studied in terms of their direct transfer, and an iterative
algorithm allowing to extract the main propagation path between two points is implemented. This
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algorithm can be used with any given path ranking criterion. Frequency-specific, as well as broad-
band criteria are considered. The paths identified with the method are in good agreement with the
expected physics. With the 3D visualizations proposed, results are easily interpretable. Moreover, it
is possible to quantify at each frequency the contribution of neighboring degrees of freedom.

The method is still at an exploratory stage. Only the modulus has been considered so far, but it
could be useful to take into account phase information as well. The identified paths are based on
the concept of direct transfer, which needs to be tied more closely to physics. This method could
be applied to experimental data through the use of model developed in Section 6.1, or on a learned
graph, as presented in Chapter 10. The methodology provided here is thus a first step to exploiting a
structural representation of an aircraft and better understanding how vibrations propagate.

Finally, the ranking algorithm could be improved, as well as the iterative algorithm, and allow to
extract more than the first path. For example, one could find the shortest on a graph built from a
direct transfer matrix using Dijkstra’s algorithm [Dij59]. Finding the minimum spanning tree on such
a graph could highlight the most connected nodes in the aircraft, see Section 10.1.2.
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A natural way of representing an array of sensors is through graphs, which can represent data
on a possibly irregular domain. In the previous chapter, direct transfers computed from a numerical
model can be treated as a graph. Here, the question is how can this be linked with experimental data.

Graph theory is introduced in this chapter. Then, the field of Graph Signal Processing is presented,
allowing to extend signal processing tools to graphdomains. A specific tool is of interest here: learning
a graph structure from experimental data collected at various points in the aircraft. They are applied
in Section 10.3, where the results of a Graph Signal Processing algorithm are compared to an ad-hoc
correlation-based graph. This work has been presented in [FNM+22].

10.1 . Graph theory

Graph theory is a branch of mathematics that deals with the study of graphs, which are struc-
tures used to represent relationships between objects. Graphs are used to model various real-world
scenarios, such as social networks [HYL18, LG21] or transportation networks [Bar11]. This section
provides a brief introduction to graphs.

10.1.1 . Formal definition
A graph can be defined as a set of nodes (or vertices), linked by a set of edges. Let G be a directed

graph of size N . It consists of:
• A set of nodes/vertices such that V = {1, ..., N}. The size of G is the number of nodes.
• A set of edges/links that connects pairs of nodes such that E ⊂ V × V .
• A set of edge weights such thatW : E → R.
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An undirected graph is a directed graph whose edge set is symmetric: ∀ (u, v) ∈ E , (v, u) ∈ E .

A weighted graph has weights wij ∈ R assigned to each edge, quantifying the importance of the
connection between nodes. If wij ∈ {0, 1}, it is a binary graph. An illustration of different types of
graphs is given in Figure 10.1. In this section, only undirected graphswith no self-loops are considered,
i.e., ∀u ∈ V, (u, u) /∈ E , with a maximum of one edge for each pair of nodes.

(a) Directed graph (b) Undirected graph

3

1
1

1
2

1

(c) Weighted graph
Figure 10.1: Representation of different types of graphs.

A graph can be described by its weighted adjacency matrixW, its degree matrixD, and its Lapla-
cian matrix L. The weighted adjacency matrixW ∈ RN×N contains edges weights such that:

Wij ≜

{
W(i, j) if(i, j) ∈ E ,
0 otherwise.

(10.1)
The degree of a node corresponds to the sum of connected edges’ weights. For a binary graph,

it is the number of nodes to which it is connected. The degree matrix D ∈ RN×N contains all the
degrees arranged diagonally such that:

Dii ≜
N∑
j=1

Wij . (10.2)

Finally, the Laplacian matrix L ∈ RN×N , more specifically the combinatorial graph Laplacian, is
defined as the difference between the degree matrix and the weighted adjacency matrix:

L ≜ D−W. (10.3)
A graph is entirely defined by its Laplacian matrix. Figure 10.2 provides an example of a weighted

undirected graph with its matricesD,W, and L.
As G is defined here as being undirected with no self-loops, L is a real symmetric positive semi-

definite matrix such that xTLx > 0 ∀x ∈ RN . Thus, it can be written as:
L = UΛUT, (10.4)

withU the eigenvectors matrix of L and Λ = diag (λ1, . . . , λN ) the diagonal eigenvalues matrix of L.
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(a) Graph G

D =


3 0 0 0 0 0
0 5 0 0 0 0
0 0 4 0 0 0
0 0 0 1 0 0
0 0 0 0 4 0
0 0 0 0 0 3


(b) Degree matrix

W =


0 3 0 0 0 0
3 0 1 0 1 0
0 1 0 1 1 1
0 0 1 0 0 0
0 1 1 0 0 2
0 0 1 0 2 0


(c) Weighted adjacency matrix

L =


3 −3 0 0 0 0
−3 5 −1 0 −1 0
0 −1 4 −1 −1 −1
0 0 −1 1 0 0
0 −1 −1 0 4 −2
0 0 −1 0 −2 3


(d) Laplacian matrix

Figure 10.2: Illustration of a binary undirected graph G and its matricesD,W and L.

Multiple particular graphs can be defined. If all nodes are connected, it is a complete graph. In
reality, most real networks are sparse, or at least a sparse representation is preferable. If it is a di-
rected graph with no cycle, meaning that the same node is never encountered twice by following the
edges, it is a directed acyclic graph. Such graphs have applications in many fields, such as biology
[SPP+05] and genetics [ZGB+13], and can represent causal relationships [SGS93]. The problem of
learning a directed acyclic graph from data is NP-hard [Chi96, CHM04]. However, a continuous opti-
mization approach has been proposed in [ZARX18], which complexity has been reduced from cubic
to quadratic in [DS22]. A unitary directed cyclic graph can be used as the support of a time-varying
signal, where each node represents a time step. This type of graph ismentioned again in Section 10.2.
Figure 10.3 illustrate those 3 graphs.

10.1.2 . Paths and distances on a graph
To navigate on a graph, the notions of paths and distances have to be defined. A path is an

ordered list of nodes in V . The length of a path can be defined as the number of elements in this
ordered list. This gives a first notion of distance. It can be developed by taking into account edge
weights.

In Chapter 9, graphs are generated and paths are extracted. The shortest path problem is a
classic and widely studied problem in graph theory. It involves finding the shortest path between
two nodes in a graph, where the length of the path is determined by the sum of the weights of its
constituent edges.

Dijkstra’s algorithm [Dij59], mentioned in Chapter 9, is a popular solution for the shortest path
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(a) Undirected complete graph (b) Directed acyclic Graph

1 1 1

1

(c) Unitary directed cyclic Graph
Figure 10.3: Particular graphs.

problem in graphs with non-negative edge weight. The algorithm works by maintaining a set of un-
visited nodes and continuously picking the node with the smallest tentative distance from the start
node, then updating the tentative distances to its neighboring nodes. Common alternatives to this
algorithm are the Bellman-Ford algorithm [Shi55, Bel58, For56, Sho59], more versatile but slower,
and the A* algorithm (pronounced A-star) [HNR68], which can be seen as an extension of Dijkstra’s
algorithm, adding heuristics to achieve better performances.

Aminimum spanning tree of a weighted graph is a subset of the graph’s edges that connects all
the vertices without any cycles and with the minimum possible total edge weight, see Figure 10.4. In
other words, it is a tree-shaped subset of the graph that includes every vertex and has the smallest
possible total edge weight.
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5
3

Figure 10.4: Highlight of the minimum spanning tree of a graph.

There are several algorithms to find the minimum spanning tree of a graph, such as Prim’s algo-
rithm and Kruskal’s algorithm. Prim’s algorithm [Jar30] is similar to Dijkstra’s algorithm, but instead of
choosing the edge with the smallest weight from the start node, it chooses the edge with the smallest
weight connected to the tree constructed so far. Kruskal’s algorithm [Kru56], on the other hand, sorts
all the edges from the lowest weight to the highest and keeps adding the lowest edges that do not
form a cycle until all nodes are included.

All of these tools can be used to better understand a graph, provided that its structure contains
the correct information. Learning a graph structure is a possibility given by Graph Signal Processing.
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10.2. GRAPH SIGNAL PROCESSING
10.2 . Graph Signal Processing

GSP (Graph Signal Processing) [SNF+13][OFK+18][SDS19] is a growing field that generalizes signal
processing to graph domains. It extends concepts such as Fourier transform and filters to graphs
and allows, under some hypothesis, to learn a graph structure given a set of signals. This section
introduces the tools of GSP before focusing on the graph learning methodologies.

10.2.1 . Tools
A graph signal is defined as a function x : V → RN that assigns a scalar value to each node. It

can be represented as a vector x ∈ RN with xi the function value at node i. An illustration of a graph
signal is given in Figure 10.5.

Time

(a) Temporal signal (b) Graph signal
Figure 10.5: Two signals representation, through time, and on a graph. The height of vertical bluelines denotes the signal value.

By using the eigendecomposition of the Laplacianmatrix, see Eq. (10.4), theGraph Fourier Trans-
form of a graph signal x can be defined:

x̂ ≜ UTx. (10.5)
The components of x̂ are interpreted as Fourier coefficients, the eigenvalues λ of Λ as distinct

frequencies, and the eigenvectors u ofU as a decomposition basis.
A signal lying on a unitary directed cyclic graph such as the one presented in Figure 10.3c is equiv-

alent to a classical temporal signal. Applying a graph Fourier transform on such a signal produces
the same result as applying a Fourier transform on the temporal signal. Indeed, the eigenvector de-
composition of a Laplacian matrix gives a Fourier matrix [SMLR16, HGW+16]. However, as it can be
applied to any graph describing an irregular domain, its interpretation can be of a spatial decompo-
sition of the signal. The frequency, described by eigenvalues, gives information about variations in
the graph space instead of time. From the definition of the graph Fourier transform can be defined
spectral sparsity and smoothness.

A graph signal x admits a k ∈ N+ sparse spectral representationwith respect to a graph G if for
x̂ = UTx, the number of non-zero elements in its Fourier coefficient vector is equal to k:

∥x̂∥0 = k, (10.6)
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CHAPTER 10. GRAPH SIGNAL PROCESSING FOR STRUCTURE LEARNING
where ∥ · ∥0 is the l0-pseudonorm denoting the number of non-zero elements1. This definition can
also be referred to as the bandlimitedness of the graph signal. Spectral sparsity can be associated
with the number of clusters on a graph [von07, SBL19], and to the sampling problem on a graph
[CVSK15, TEOC20], where k is related to number of nodes required to reconstruct a signal properly.

The smoothness of a signal x on a given graph describes the notion that signal values taken on
adjacent nodes should take similar values, and can be written as:

smoothness(x) ≜
∥∥∥L1/2x

∥∥∥2
2
= xTLx =

1

2

∑
(i,j)∈E

Wij(xi − xj)
2, (10.7)

where a lower value denotes a smoother signal. The smoothness of an eigenvector u of L is its
eigenvalue λ:

smoothness(ui) = uT
i Lui = λi. (10.8)

As in signal processing, filters can be defined on a graph. The transfer function between a graph
signal x and its filtered counterpart y is the weighted sum of the Laplacian matrix at various powers:

y =

(
p∑

i=0

hiL
i

)
x, (10.9)

which is equivalent to applying the Laplacian operator multiple times, and can be seen as a diffusion
process on a graph. Equivalently in the graph frequency domain :

ŷ =

(
p∑

i=0

hiλ
i

)
x̂. (10.10)

SinceΛ is diagonal in Eq. (10.4), filtering in the graph frequency domain is equivalent to computing:
ŷj = λ̃j x̂j , (10.11)

where λ̃j =
∑p

i=0 hiλ
i
j . Thus, filtering is done by building a function h that acts on the eigenvalues

such that:
λ̃j = h(λj). (10.12)

10.2.2 . Structure learning
The problemof interest here is to learn the structure of a graph based on node values. To this end,

multiplemethods based on various assumptions are presented. In addition, the common assumption
is graph-stationarity, meaning that the graph does not change over time.

In this chapter, the algorithm GL-SigRep (Graph Learning for Smooth Signal Representation) pro-
posed in [DTFV16] is applied. Based on a smoothness assumption, a Laplacian matrix is learned such

1In practice l0 is not even a pseudonorm as it does not satisfy the scalability property.
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10.3. APPLYING GRAPH STRUCTURE LEARNING ON VIBRATION DATA
that the graph signal is smooth on the learned graph. In practice, it consists of learning, from a mea-
sured signal X, the Laplacian matrix L and a smooth signal reconstruction Y using a least square
optimization under regularization constraints:

min
L,Y
∥X−Y∥2F + αtr(YTLY) + β ∥L∥2F , s.t.


tr(L) = N,

Lij = Lji ≤ 0, i ̸= j,

L1 = 0

(10.13)

whereα and β are twopositive regularization hyperparameters. The first one is related to the smooth-
ness, and the second one is a Tikhonov regularization, see Section 5.3.1. Moreover, 1 and 0 are con-
stant unitary and null vectors, while tr( · ) and ∥ · ∥F are respectively the trace and the Frobenius normof a matrix. Regarding the constraints, the first one acts as a normalization factor to avoid trivial
solution, while the second and third constraints guarantee that L is a valid Laplacian matrix.

As this optimization problem is not jointly convex inL andY, an alternatingminimization scheme
is used: Y is first initialized to be equal to the observed signalX, and L is determined by Eq. (10.14).
Then, L is fixed and Y is determined by Eq. (10.15). Finally, graph weights with a value under 10−4

are set to zero using a hard threshold.

min
L

αtr(YTLY) + β ∥L∥2F , s.t.


tr(L) = N,

Lij = Lji ≤ 0, i ̸= j,

L1 = 0

(10.14)

min
Y
∥X−Y∥2F + αtr(YTLY). (10.15)

Alternatives exist, such as ESA-GL (Estimated-Signal-Aided Graph Learning) proposed in [SBL19].
Instead of using a smoothness assumption, it is based on a sparsity assumption. A Fourier basis is
learned instead of a Laplacian matrix, and the algorithm has a complexity of at least O(N8).

Finally, IGL-3SR (Iterative Graph Learning for Smooth and Sparse Spectral Representation) is an
algorithm proposed in [LBHOK19, HBO+21], based on both a smoothness and a sparsity assumption.
It aims to learn the Laplacianmatrix and a smooth bandlimited approximation of the observed signal.
FGL-3SR (Fast Graph Learning for Smooth and Sparse Spectral Representation), proposed also in
[LBHOK19, HBO+21], uses relaxation to accelerate the resolution, and offers a complexity of O(N5).

10.3 . Applying graph structure learning on vibration data

The tools previously introduced are nowapplied to experimental data. Given a set of experimental
measurements, the goal is to learn the underlying structure linking accelerometers.

10.3.1 . Dataset generation
Adataset similar to the oneused in Section 7.1 is extracted. The aircraft is flying, andonly stabilized

flight phases are considered. Broadband separation is applied, see Section 4.1, and the signals are
reduced into RMS levels per frequency band, see Section 4.2.2. Each frequency band is considered
independently: the matrix X ∈ Rm×N contains the values of N = 36 accelerometer channels on
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CHAPTER 10. GRAPH SIGNAL PROCESSING FOR STRUCTURE LEARNING
m = 170 flight points for a given frequency band B. The position of the 12 tri-axial accelerometers is
given in Figure 10.6.

Z
X

Y

V8XYZ
V9XYZ

V10XYZ

V2XYZ
V3XYZ 

V0XYZ
V1XYZ

V4XYZ
V5XYZ
V6XYZ
V7XYZ

V11XYZ

Figure 10.6: Position of the accelerometer channels considered in this study (NB: a left-handed coor-dinate system is used).
A graph signal is written x = Xt: and denotes the t-th row of X, thus nodes values at time t. A

temporal signal is written X:p and denotes the p-th column of X thus the values of accelerometer p
through time. Before being used for the graph learning, X is log-transformed and normalized using
a min-max normalization, see Eq. (3.2).

10.3.2 . Learning algorithm
The learning problem is the following: given a multivariate time series X ∈ Rm×N , the goal is to

learn a graph structure, thus the link between each node representing an accelerometer. A graph
stationarity hypothesis is made: the graph is assumed to be invariant for allm signals on the graph.
For each frequency band, the goal is thus to learn an undirected graph with positive weights.

The GL-SigRep algorithm is used, allowing to learn the Laplacian matrix L of a graph G for each
frequency bandB based on the assumption that signalx is smooth on the graphG. Two regularization
parameters α and β must be set before the optimization process. When α = β = 0, a completely
connected graph is learned with equal weights on each node. Outside of this case, only the β/α ratio
has a significative influence [DTFV16]. Here, it is fixed at 1, with α = β = 10−6.

As a comparison point, graphs built from accelerometer correlations are also used. This method
assumes no model of the data and is purely based on observation, and may thus be sensitive to
the noise it contains [DTRF19]. If Pearson’s correlation coefficient ρ between two accelerometers,
see Eq. (4.6), is higher than a threshold λ, then the nodes representing those accelerometers are
connected with a weight equal to the correlation value:

Wii = 0, Wij =

{
ρ (X:i, X:j) if ρ (X:i, X:j) > λ,

0 otherwise
∀ i ̸= j. (10.16)
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10.3. APPLYING GRAPH STRUCTURE LEARNING ON VIBRATION DATA
The lower the threshold λ, the more connected the graph, and each node depends on a higher

number of neighbors. A value of λ = 0.8 is chosen as a compromise between a low number of
connections and a low reconstruction error.

10.3.3 . Evaluation through signal reconstruction
For the learning process, 80% of the dataset is used as a training set and 20% as a test set, using

a random split.
In the absence of a specific protocol to evaluate the learned structure, a reconstruction task is

defined. The goal is to reconstruct node values from neighbor node values. By assuming a linear
system satisfying the Markov property2, the reconstruction in a given frequency band can be defined
as:

X̂ = XWTadjusted, (10.17)
with X̂ the reconstructed signal, X the measured signal, and Wadjusted the adjusted weighted adja-
cencymatrix, obtained fromW by setting connections between the different axes of each accelerom-
eter to zero (so that the reconstruction of each accelerometer is not based on any information related
to that accelerometer). It is then normalized by rows. Figure 10.7 shows the transformation fromW

toWTadjusted.

(a)W (b)WTadjusted
Figure 10.7: Transformation of the weighted adjacencymatrix built from correlations in the bandB17.

The reconstruction quality is then assessed using the MALE metric, see Eq. (5.34), applied on un-
normalized data.

10.3.4 . Results
Two types of results are presented: first, a qualitative analysis of the learned graphs, and second,

a quantitative analysis of signal reconstruction.
2Past information is not useful to predict the present

163



CHAPTER 10. GRAPH SIGNAL PROCESSING FOR STRUCTURE LEARNING
10.3.4.1 . Graphs evaluation

Figure 10.8 shows the graphs learned for 4 different frequency bands, exhibiting the 4 main
regimes observed. Nodes are disposed horizontally according to their position along the structure,
and the vertical separation corresponds to different axes of a same accelerometer. The width and
opacity of edges are proportional to their weight. The weighted adjacency matrix is represented to
the right of each graph. Node numbering is done according to their position: if i is close to j, then
Wij is the weight between two spatially close nodes. Edges are sparse, and the structure of the graphis strongly dependent on the frequency band. Below, an analysis of graphs presented in Figure 10.8
is proposed.

(a) B1 graph (b) B2 graph

(c) B12 graph (d) B17 graph
Figure 10.8: For 4 frequency bands, graph G learned with the smoothness assumption (left), with itsweighted adjacencymatrixW (right). The horizontal axis represents the position of the accelerometerin the aircraft. The three axes of each accelerometer are stacked vertically and represented withdifferent colors. Edges’ width and opacity denote their weight. In the weighted adjacency matrix,nodes are ordered along their position in the structure from front to rear.

• The first frequency B1 contains the global structural modes. The learned graph shows connec-
tions that are independent of the distance, which is consistent with the global nature of modes.
This is also visible inWwhere weights are not grouped around the diagonal. The different axes
of a single sensor are rarely connected.

• Conversely, the second frequency band B2 contains more local modes. Thus, connections are
more localized in the structure, and 3 clusters are identified which roughly correspond to the
front, middle, and rear of the aircraft. These 3 groups of sensors in the same zones having a
similar response can be identified inW.

• The frequency bandB12 is more difficult to interpret in terms of relevant phenomena. Connec-
tions are mainly between the different axes of a single sensor, or between close sensors, with
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10.4. CONCLUSION ON GRAPH LEARNING
some connections between distant sensors. The connections appear to be less related to the
horizontal position of the accelerometer in the aircraft.

• Finally, the frequency band B17 corresponds to random excitations originating from the aero-
dynamic field. Even more than for the previous band, connections are very localized and are
mostly between the different axes of a single sensor. This can be seen on the graph through
the vertical links or on the matrix by the weights being close to the diagonal ofW.

Even though no physical constraint has been included explicitly in the optimization process, the
learned graphs are consistent with the physics of the different frequency bands.

10.3.4.2 . Reconstruction performances
Using the previously definedmetric MALE, see Eq. (5.34), it is possible to assess the reconstruction

quality of an accelerometer axis given the values of other accelerometers. In Table 10.1, the average
error over the different accelerometers and frequency bands is given for each graph learningmethod
and dataset.

Correlations SmoothnessTraining set (%) 7.67 4.55Test set (%) 7.78 4.60

Table 10.1: MALE, see Eq. (5.34), averaged over accelerometers and frequency bands foreach graph learning method and dataset. Lower values are better.
The differences in performance between the training and test sets are negligible. Graphs learned

using the smoothness assumption allow significantly better reconstruction and reduce the error of
roughly 40% compared to correlation-based graphs.

Figure 10.9 details the results for each accelerometer and frequency band. Correlations-based
graphs are prone to higher errors in high frequencies, a phenomenon not observed on smoothness-
based graphs. Accelerometers V1XYZ and V4X seem particularly hard to reconstruct, along with the
frequency band 430 to 536 Hz.

Although some reconstruction problems are shared between the two methods, the smoothness-
basedone seems tobe less dependent on the accelerometer and frequency band than the correlations-
based one. The good performances are notable given the order of the measurement uncertainties
present in the data.

10.4 . Conclusion on graph learning

A graph learning-based approach is implemented to reconstruct the vibration environment within
the structure of an aircraft. The method directly extracts relevant connections in the data without
taking into account explicit physical constraints and performs significantly better than the ad-hoc
correlations-based method.
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(a) Correlations-based (b) Smoothness-based
Figure 10.9: Reconstruction performances on the test set depending on the graph learning algorithm:correlations-based (left) or smoothness-based (right). Lower values are better.

Two avenues for improvement are possible. The first one is related to graph learning, which could
be based on different assumptions. Using ESA-GL [SBL19] would replace the smoothness assumption
with a sparsity assumption, while using IGL-3SR or FGL-3SR [LBHOK19, HBO+21] would add a sparsity
assumption to the smoothness assumption. Frequency bands are treated separately, but could be
incorporated into a single graph to model their relationships and potentially enhance reconstruction
performances. Additionally, physical information could be included within the learning assumptions
to add new connections or even nodes within a graph without measurements.

The second avenue for improvement concerns the reconstruction method. The linearity assump-
tion could be compared with other regression methods, particularly those tailored for graph-based
data [NGO13], [RMG17].

Perspectives include extending this to other types of data, such as ground test experimental data
or even numerical data generated from a DSE, see Section 8.3. Instead of learning graphs on broad-
band signals, kinematic lines from a single source could be used as in Chapters 6 and 9. The model
developed in Section 6.1 can be used to generate data to inject into the DSE. The link between a
learned graph weighted adjacency matrix and a system equivalent impedance or direct transfer ma-
trix could be investigated.

Hence, the proposed method opens the door to various developments and could lead to predic-
tive models of the vibration environment throughout the structure of an aircraft. From an industrial
point of view, such tools could also be used to reconstruct missing or faulty values of accelerometers
during flight tests.
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Summary of Part III

In this part, the framework presented in Parts I and II is extended to the prediction at any point
of the aircraft structure.

In Chapter 8, numerical models adapted to the low-, mid-, and high-frequency ranges are pre-
sented. While being the primary solution tomodel vibrations in the industry, they are not the solution
chosen for the problem at hand because of their limitations. To study vibration propagation paths,
Dynamic SuperElements are used for model reduction and are analyzed using the formalism of Ad-
vanced Transfer Path Analysis. Results are presented in Chapter 9. An algorithm enabling main
path identification is proposed, and provides results coherent with domain knowledge.

In Chapter 10, experimental data generated by the Flight Test Center is used again. Graphs can
be a natural way of representing an array of sensors and are introduced along with Graph Signal
Processing, allowing to manipulate signals on graphs. These tools are applied to the case of learn-
ing a graph structure from data. They provide a way to reconstruct the data based on identified
connections, which seem consistent with structural paths. The reconstruction quality is superior to
that obtained with ad-hoc correlation-based methods. This work has been presented in [FNM+22].
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Conclusion

This thesis proposes different ways to answer the challenge of predicting the vibration environ-
ment of an aircraft through a multidisciplinary data-driven approach. Various tools from machine
learning and Graph Signal Processing are combinedwith expert knowledge in order to construct anal-
ysis and predictive tools. The main contributions of the manuscript are summarized below.
First, a methodology is presented for transforming test data from its voluminous and hard-to-

handle original state. It allows us to define a robust framework for the data-driven study of vibra-
tion environment. Several efficient low-order representations are proposed to provide robust and
domain-interpretable ways to transform and compress the data. The introduced spectral separation
is an essential part of these transformations, and the hypothesis is confirmed by experimental re-
sults. This process, detailed as a set of algorithms, is implemented in a software prototype written in
Python. Tools from the field of unsupervised learning, such as clustering, are shown to be an efficient
way to generate physical insight and understand the cause of vibration. They can be used to identify
the most important features for modeling.

Prediction of the vibration environment at any point in the flight domain/feature space is ad-
dressed by applying machine learning to experimental data generated at the Flight Test Center. Kine-
matic lines are predicted during ground tests, and the prediction is found to be robust to test con-
ditions. A methodology is proposed to transpose this prediction during flight. This method is ex-
ploratory, but has important implications. It could allow the prediction of non-instrumented points
during flight from ground test data. Broadband spectra are predicted in the flight domain using the
spectra separation hypothesis. Prediction of stabilized flight phases is the first step that allows for
results that meet industrial needs and a degree of robustness. The model is evaluated for a standard
random split protocol as well as for an extrapolation protocol, which makes it possible to assess its
ability to generalize. Furthermore, the interpretability of the models is studied, which is crucial in this
aeronautical context. The prediction is then extended to the full spectrum for unsteady flight phases,
essential for specification. A model adapted to temporal dependencies is used, and good results are
obtained. Different parts of the spectrum (kinematic lines and broadband) and of the flight domain
(steady/unsteady) can also be predicted independently, which could be useful to provide additional
insight.

Finally, the problem of structural modeling is also addressed. Two approaches are used. First,
numerical models are used to study vibration propagation. An algorithm to extract the main propa-
gation paths is proposed and shows results consistent with the expected physics. Second, a method
from Graph Signal Processing is used to learn a structure from experimental data. Several graphs are
learned, one for each frequency band. Again, the results show consistency with the physics and pro-
vide excellent reconstruction results. Both approaches can be combined; they are closely related. The
first approach uses Dynamic SuperElements to reduce a numerical model, but such a reduced model
can be obtained from experimental data. The second approach learns a graph from experimental
data, but it could be generated from a numerical model. Vibration propagation path identification
can be applied on these two types of representation.
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CONCLUSION
The different prediction methods presented here are building blocks that could be integrated

into a comprehensive data-driven framework leveraging existing experimental measurements and
numerical model results in order to improve the vibration environment prediction in early design
phases. The model could then be iteratively enriched with new experimental data when the aircraft
goes through successive design phases as ground and flight tests are conducted.
Because this work is primarily exploratory, several avenues for expansion are suggested. The use

of machine learning in the aviation industry can certainly become a subject of standards. In this con-
text, it is crucial to explore the interpretability of models, and predictions should be explainable and
justified. SHAP is used here, but other methods should be tested. In the line of thought, robustness
must be ensured, at least by showing when a model should not be relied upon, e.g., when an en-
semble model shows diverging individual predictions. Using Occam’s razor as a heuristic, relying on
simpler models for specific contexts could be an option as long as feature engineering is performed
thoroughly. Furthermore, the quantification of uncertainties is crucial to enable model confidence.

The study of vibration propagation paths needs to be further explored, using algorithms from
graph theory and relying more on physics. It should be applied to data generated by other models,
different systems, and also to experimental data. Since results depend on system substructuring
(the set of nodes chosen), solutions implemented to tackle this issue in the context of SEA could be
adapted to our problem. The field of Graph Signal Processing itself should be studied in more depth.
Other methods of graph learning and interpolation on a graph need to be tested. Examining signals
in the graph space could also provide a new way of interpreting data.

Other mid-frequency numerical approaches could be explored. While this thesis focused on ma-
chine learning, theories such as the variational theory of complex rays would benefit from being stud-
ied.

It is essential to study how experimental data and methods, e.g., from the field of Graph Signal
Processing, can be integrated into numerical models used in the aircraft design phase. On the one
hand, the numerical model contains a spatially resolved description of the structure, but its prediction
is likely to contain inaccuracies, while on the other hand, the graph representation provides a correct
prediction over a coarse discretization of the structure, corresponding to instrumented points. How
to combine the information from both is a crucial question. Hybridization could also be used through
frequency domain extrapolation: models that can predict only the low frequencies could be combined
with data that gives results over the entire frequency range.

Asmentioned in the first chapter, the vibration environment also takes into account shocks, which
are not studied here. This would be an important thing to study and could be done using some of the
methodological elements developed here.

By further exploring and developing thesemethods, a comprehensive data-driven approach com-
bining theoretical, numerical, and experimental sources of knowledge could be implemented. This
could be used to predict the vibration environment of a complete aircraft from the design stage, gen-
erating significant cost and time savings.

170



A - Résumé étendu en français

A.1 . Introduction

Les vibrations, que ce soit au sol ou en vol, sont un phénomène ressenti par tout passager em-
pruntant l’avion. La prédiction et l’atténuation de ces vibrations sont l’un des aspects critiques du
confort des passagers. Par ailleurs, les niveaux vibratoires peuvent avoir un impact significatif sur la
sécurité et la durabilité de l’avion et de ses équipements [Vib12]. La prédiction de l’ambiance vibra-
toire d’un avion est par conséquent essentielle pour garantir des conditions opérationnelles sûres et
efficaces.

L’ambiance vibratoire est un terme utilisé pour décrire les sollicitations dynamiques de 10 à 2000
Hz subies par les équipements embarqués durant l’utilisation de l’avion. Ces sollicitations sont gé-
nérées par diverses sources d’excitations externes, telles que les interactions avec le champ aérody-
namique, ou internes, provenant notamment des machines tournantes telles que les moteurs et les
pompes. L’ambiance vibratoire doit être spécifiée relativement tôt dans le processus de conception
d’un avion, qu’il soit civil ou militaire, et consiste à déterminer les niveaux de robustesse et d’endu-
rance que l’équipement doit être capable de supporter. Alors que ces spécifications doivent être pro-
duites au moment de la conception d’un nouvel avion, l’ambiance vibratoire ne peut être déterminée
qu’au moment des essais en vol, qui sont réalisés dans les dernières phases d’un programme.

L’ambiance vibratoire est mesurée à l’aide d’accéléromètres uniaxiaux ou triaxiaux avec une fré-
quence d’échantillonnage élevée, fixée ici à 5000 Hz. Situés au pied des équipements, ils sont reliés
à une instrumentation d’essais qui permet également de mesurer les informations nécessaires à ca-
ractériser l’état de l’appareil à tout instant, appelées dans ce manuscrit paramètres généraux. Les
signaux mesurés par les accéléromètres sont généralement analysés via leur contenu fréquentiel à
l’aide de densités spectrales de puissance.

Il n’y a à l’heure actuelle pas de solution permettant demodéliser le comportement dynamique d’un
avion complet dans la gamme de fréquence considérée, s’étendant jusqu’à 2000 Hz. Par conséquent,
les spécifications sont basées sur les normes existantes et l’expérience des avions antérieurs. Cette
approche peut avoir deux conséquences négatives : le surdimensionnement de l’équipement, qui a
un impact négatif sur la masse totale de l’aéronef, ou un retard de qualification des équipements
dans le but de démontrer leur tenue aux niveaux spécifiés.

Pour réaliser des spécifications plus précises, les limitations des modèles numériques doivent
être contournées pour permettre de modéliser un avion complet. Différentes familles de modèles
ont été développées pour modéliser le comportement dynamique dans différentes gammes de fré-
quences, mais aucune n’est adaptée à la problématique rencontrée ici.

Dans le domaine des basses fréquences, les techniques se concentrent sur le comportement mo-
dal pour extraire des réponses localisées en fréquence. Des méthodes déterministes telles que la
méthode des éléments finis [ZTZ10] ou la méthode des éléments de frontière [BB94] sont utilisées.
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APPENDIX A. RÉSUMÉ ÉTENDU EN FRANÇAIS
En pratique, ces méthodes sont limitées aux basses fréquences car elles requièrent un niveau élevé
de discrétisation en espace et en temps, et un degré élevé d’interpolation pour contrer les effets de
pollution numérique et de dispersion [DBB99].

Dans le domaine des hautes fréquences, l’intérêt est cette fois de décrire un comportement glo-
bal en termes d’énergie, la densité modale étant élevée. La SEA ou analyse statistique en énergie
[LM62, LDD95, Smi62, LB04, CLK05] est adaptée à cette gamme de fréquences car elle modélise les
transferts d’énergie vibratoire entre les sous-systèmes d’une structure. Les échanges entre les sous-
systèmes sont décrits à partir d’un ensemble d’équations linéaires décrivant l’apport, le stockage, la
transmission et la dissipation de l’énergie via un ensemble de coefficients à déterminer. La réponse
étant moyennée en termes de fréquence et d’espace, elle n’est pas adaptée à une caractérisation
locale.

Dans le domaine des moyennes fréquences, ni les approches basses fréquences ni les approches
hautes fréquences ne sont appropriées : les méthodes basses fréquences deviennent trop coûteuses
en raison du raffinement élevé du maillage nécessaire pour réduire l’effet de pollution numérique,
et les méthodes hautes fréquences ne fournissent pas de réponses locales. Les méthodes moyennes
fréquences peuvent être divisées entre les approches hybrides (combinant des méthodes basses et
hautes fréquences) et les méthodes de Trefftz (approximant la solution comme une combinaison
linéaire de fonctions de forme satisfaisant a priori les équations d’équilibre), cf. la revue de littérature
[DOP12]. Toutefois, des travaux supplémentaires sont nécessaires pour les rendre applicables dans
un contexte industriel.

Les outils de prédiction pourraient bénéficier de la richesse considérable des informations obte-
nues à partir des données d’essais en vol, qui ne sont généralement utilisées qu’au cours des der-
nières phases du programme. Le défi de cette thèse est de déterminer comment intégrer ces infor-
mations dans un outil prédictif. Parmi les questions abordées figurent la compression des données,
l’extraction des variables d’intérêt et la modélisation robuste. L’apprentissage automatique offre
une grande variété de techniques pour traiter ces différents problèmes.

Parmi les modèles d’apprentissage automatique, les réseaux de neurones artificiels se sont avé-
rés efficaces pour prédire les vibrations dans une grande variété d’applications telles qu’en aérodyna-
mique, exploitation minière ou génie civil. Dans le domaine temporel, l’architecture LSTM (Long Short-
Term Memory) s’est révélée efficace pour prédire la réponse de systèmes mécaniques complexes à
une excitation large bande [SCC+22, NB18]. Elle a également été en mesure de prédire les vibrations
excessives de moteurs d’avion [EWHD16]. Les LSTM ont également été utilisés pour prédire l’envi-
ronnement vibratoire des voitures électriques et se sont avérés plus performants que les modèles
ARMAX (Auto Regressive Moving Average with eXternal inputs) classiques [DGD+20]. Dans le domaine
fréquentiel, il a été constaté que les réseaux de neurones artificiels pouvaient prédire avec succès
les contraintes structurelles [WOdS20]. Ils ont également été appliqués aux écoulements turbulents
pour prédire des niveaux de bruit à partir de mesures limitées de pression dans les écoulements de
jets [TGRB20], ainsi qu’au bord de fuite d’un profil aérodynamique [AF21]. Parmi les autres applica-
tions des réseaux de neurones artificiels figure la prédiction des vibrations du sol dues au dynamitage
pour les applicationsminières [Sin04], avec des performances qui se sont avérées supérieures à celles
de la régression conventionnelle [BP20]. Enfin, ils peuvent permettre de déterminer les niveaux de
vibration du sol dus au passage de trains [PDCFN18].

172



A.1. INTRODUCTION
L’objectif à terme du sujet est d’utiliser efficacement les données d’essais et lesméthodes d’appren-

tissage automatique pour prédire l’ambiance vibratoire dans un avion complet, et ce dès la phase de
conception. Pour remplir cet objectif, les étapes suivantes ont été identifiées :

• La première étape est de permettre l’extraction et l’analyse de l’important volume de données
d’ambiance vibratoire généré par les essais en vol. Des représentations adaptées de ces don-
nées ainsi que des méthodes de réduction doivent être implémentées, en plus d’outils permet-
tant la prise en compte des règles métier.

• La deuxième étape est de développer une méthodologie de prédiction de l’ambiance vibra-
toire en tout point de vol (ou tout point de l’espace des paramètres d’entrée), et ce en utilisant
les données précédemment mises en forme ainsi que des modèles d’apprentissage automa-
tique. Elle aurait ainsi des applications notamment en détection d’anomalies, où unmodèle est
comparé aux mesures, et où tout écart génèrerait une alerte nécessitant l’attention d’un ingé-
nieur. Une autre application possible serait l’optimisation des essais en vol via l’identification
des points de vol maximisant l’apport d’information.

• La troisième étape est d’étendre cette prédiction à tout point de la structure avion, y compris
ceux non instrumentés par un accéléromètre. Une représentation adaptée de la structure doit
alors être définie. Ceci permettrait notamment l’optimisation de l’instrumentation d’essais, où
le placement des accéléromètres serait choisi de sorte à maximiser l’apport d’information.

Une perspective à terme serait d’étendre ces prédictions à un nouvel avion. L’idée générale serait
de définir une représentation équivalente paramétrée à partir de connaissances métier. Des estima-
tions préliminaires pourraient être obtenues sans données expérimentales dès la phase de concep-
tion ; ces estimations seraient ensuite raffinées dès les premiers essais. Une telle méthodologie pour-
rait aider à la conception d’un nouvel avion en alertant sur de possibles problèmes liés aux vibrations
et en aidant au processus de spécification.
Pour répondre à ces problématiques, le manuscrit est organisé en trois parties, se terminant cha-

cune par un résumé. La Partie I se concentre sur l’extraction et la représentation des données. Le
Chapitre 1 introduit l’ambiance vibratoire, et le Chapitre 2 détaille les algorithmes implémentés pour
la génération de jeux de données. Les différentes techniques de représentation des données sont
introduites dans le Chapitre 3, puis appliquées dans le Chapitre 4 sur des données d’essais en vol.
La Partie II s’attache au problème de la prédiction en tout point de vol. L’apprentissage supervisé
est présenté dans le Chapitre 5, avec un accent sur les méthodes de régression. Ces méthodes sont
alors appliquées dans le Chapitre 6 pour prédire les valeurs des raies cinématiques, générées par des
sources isolées et localisées, et dans le Chapitre 7 pour prédire les niveaux large bande. La Partie III
traite de l’extension de la prédiction à une structure avion complète. À cette fin, les modèles numé-
riques (à bases physiques ou mécaniques) sont introduits dans le Chapitre 8, ainsi que la réduction
de modèle basée sur des super-éléments dynamiques, et l’analyse des chemins de propagation. Ces
outils sont alors appliqués dans le Chapitre 9, où les chemins de propagation des vibrations sont iden-
tifiés en combinant les outils précédemment introduits ainsi qu’un algorithme de classement. Enfin, le
Chapitre 10 présente la théorie des graphes et le traitement du signal sur graphes, avant d’appliquer

173



APPENDIX A. RÉSUMÉ ÉTENDU EN FRANÇAIS
une méthode permettant d’apprendre la structure sous-jacente de données provenant d’un réseau
de capteurs uniquement à partir de mesures.

Cette thèse a pour but de rechercher des solutions innovantes répondant aux problématiques
précédemmentmentionnées, et ce par le biais d’une collaboration industrielle avec Dassault Aviation.
Du fait de la nature des données traitées, ces travaux sont centrés sur la méthodologie et toutes les
figures sont anonymisées, bien qu’un maximum d’information soit conservé.

A.2 . Résumé de la partie I

La première partie traite de l’ensemble des transformations appliquées aux données expérimen-
tales générées aux essais en vol. En permettant la génération de différents jeux de données adaptés à
l’analyse et lamodélisation de l’ambiance vibratoire, il constitue la base de laméthodologie orientée
données décrite dans les Parties II et III.

Une introduction à l’ambiance vibratoire est tout d’abord proposée dans le Chapitre 1. Il décrit
ce qu’est l’ambiance vibratoire, ses sources, et la nécessité de son étude dans un contexte industriel
aéronautique. Plusieurs représentations fréquentielles standards des signaux sont présentées, dont
certaines utilisées dans la méthodologie développée dans ce manuscrit.

Puis, une vue d’ensemble du processus de génération des jeux de données est présentée dans
le Chapitre 2. Il comprend des techniques d’identification basées sur les connaissances métier, qui
sont décrites en détail. Il permet également d’appliquer plusieurs techniques de représentation des
données, présentées dans le Chapitre 3 au côté de techniques de clustering pour l’extraction de va-
riables.

Dans le Chapitre 4, lesméthodes introduites dans le chapitre précédent sont appliquées pour pro-
duire une représentation réduite des données d’ambiance vibratoire et permettre une meilleure
compréhension des phénomènes via une exploration des données. Les techniques de représentation
utilisées dans le reste du manuscrit sont ici justifiées.

A.3 . Résumé de la partie II

Sur la base des outils présentés dans la Partie I, cette partie vise à fournir une méthodologie de
prédiction applicable en n’importe quel point de vol, ou plus généralement une prédiction en tout
point de l’espace des paramètres d’entrée. Elle précède ainsi les travaux présentés dans la Partie III,
ayant pour but d’étendre ces prédictions à la structure complète de l’avion.

Tout d’abord, une bibliographie de l’apprentissage supervisée est présentée dans le Chapitre 5,
détaillant différents modèles, leur entrainement, et leur évaluation. Après avoir abordé les défis liés
à l’implémentation pratique de ces méthodes, la question de l’interprétabilité des modèles est trai-
tée. Puis, sur la base de l’hypothèse de séparation du large bande présentée dans la Section 4.1.1,
les problématiques de prédiction des raies cinématiques et des spectres large bande sont abordées
séparément dans les chapitres suivants.

La prédiction des raies cinématiques est présentée dans le Chapitre 6 en mettant l’accent sur
les raies cinématiques générées par le moteur gauche, une source puissante et isolée. Un proces-
sus gaussien est d’abord utilisé pour reconstruire les valeurs RMS centrées sur la fréquence des raies
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cinématiques pendant des essais au sol, avec une robustesse aux conditions environnementales d’es-
sai. Ensuite, une méthodologie de transposition des conditions au sol vers les conditions de vol est
proposée, avec la perspective de prédire les niveaux de points non instrumentés dans la structure
pendant les essais en vol.

La prédiction du large bande est présentée dans le Chapitre 7, en commençant par la prédic-
tion des phases de vol stabilisé. Plusieurs modèles sont comparés, et un ensemble de réseaux de
neurones artificiels est sélectionné comme étant le meilleur modèle. Un accent est mis sur la bonne
évaluation de la capacité de généralisation desmodèles, ce via un découpage du jeu de données basé
sur les connaissancesmétier. La problématique de l’interprétabilité est abordée à l’aide de laméthode
SHAP. Ce travail a été publié dans [FNM+23a]. Une extension à toute phase de vol est ensuite propo-
sée, et est basée sur l’utilisation d’un ensemble de réseaux de neurones récurrents, permettant de
modéliser les relations temporelles. Ce travail a été présenté dans [FNM+23b].

A.4 . Résumé de la partie III

Dans cette partie, la méthodologie présentée dans les Parties I et II est étendue à la prédiction
en tout point de la structure.

Dans le Chapitre 8, lesmodèlesnumériques adaptés aux basses,moyennes et hautes fréquences
sont présentés. Bien qu’étant des solutions industrielles standards, elles ne sont pas adaptées à la
problématique traitée de par leurs limitations. Pour étudier les chemins de propagation des vibra-
tions, des super-éléments dynamiques sont utilisés pour la réduction de modèle, puis analysés en
utilisant le formalisme de l’Advanced Transfer Path Analysis. Les résultats sont présentés dans le Cha-
pitre 9. Un algorithme permettant l’identification du chemin de propagation principal est proposé, et
offre des résultats en adéquation avec les connaissances métier.

Dans le Chapitre 10, les données expérimentales générées par les essais en vol sont de nou-
veaux utilisées. Les graphes peuvent être considérés comme une manière naturelle de représenter
un champ de capteurs, et sont présentés aux côtés du traitement du signal sur graphes, permet-
tant demanipuler des signaux reposant sur des graphes. Ces outils sont appliqués à la problématique
de l’apprentissage de graphe à partir de données. Ils permettent la reconstruction de signaux à
partir des connexions apprises, qui sont cohérentes avec les chemins structuraux. La qualité de re-
construction est supérieure à celle produite via les corrélations. Ces travaux ont été présentés dans
[FNM+22].

A.5 . Conclusion

Cette thèse propose un ensemble de solutions permettant de répondre à la problématique de la
prédiction de l’ambiance vibratoire dans un avion, et ce via une approche multidisciplinaire centrée
sur les données. Différents outils provenant des domaines de l’apprentissage automatique et du trai-
tement du signal sur graphes sont combinés avec des connaissances métier dans le but de produire
des outils d’analyse et de prédiction. Les principales contributions de ce manuscrit sont détaillées
ci-dessous.
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Tout d’abord, une méthodologie est proposée pour transformer les données à partir de leur état

d’origine, volumineux et complexe à manipuler. Elle permet de définir un cadre robuste adapté à
l’étude de l’ambiance vibratoire centrée sur les données. Plusieurs représentations d’ordre réduit
sont proposées pour fournir des transformations de l’information robustes et interprétables par le
métier. La séparation spectrale introduite est une étape essentielle de ces transformations, et l’hy-
pothèse sur laquelle elle repose est corroborée expérimentalement. Ce processus, détaillé sous la
forme d’un ensemble d’algorithmes, est implémenté dans un prototype logiciel écrit en Python. Des
outils provenant du domaine de l’apprentissage non-supervisé tels que le clustering se révèlent ef-
ficaces pour fournir un éclairage physique et mieux comprendre l’origine de certaines vibrations. Ils
peuvent également être utilisés pour identifier les variables les plus pertinentes pour lamodélisation.

La prédiction de l’ambiance vibratoire en tout point du domaine de vol / de l’espace des para-
mètres d’entrée est abordée en appliquant des modèles d’apprentissage automatique aux données
expérimentales générées par le centre d’essais en vol. Les raies cinématiques sont prédites au cours
d’essais sol, et ces prédictions s’avèrent robustes aux conditions environnementales d’essai. Unemé-
thodologie permettant de transposer ces prédictions aux conditions de vol est proposée. Cette mé-
thode reste exploratoiremais a des implications importantes : elle pourrait permettre la prédiction en
vol de points non-instrumentés à partir d’essais sol. Les spectres large bande sont prédits dans le do-
maine de vol à partir de l’hypothèse de séparation spectrale. La prédiction au cours des phases de vol
stabilisé est la première étape qui offre des résultats répondants au besoinmétier et un certain degré
de robustesse. Le modèle est évalué via un découpage aléatoire classique des données ainsi que via
une extrapolation, ce qui permet d’évaluer sa capacité à généraliser. De plus, l’interprétabilité du mo-
dèle est étudiée, élément crucial dans un contexte aéronautique. La prédiction est ensuite étendue à
un spectre complet en phases de vol instationnaires, qui sont également à prendre en compte pour
les spécifications. Un modèle adapté à la modélisation des relations temporelles est utilisé, fournis-
sant de bons résultats. La prédiction des différentes parties d’un spectre (raies cinématiques et large
bande) et du domaine de vol (palier stabilisé / manœuvres) peut être réalisée indépendamment, ce
qui permet une meilleure compréhension des phénomènes en jeu.

Enfin, le problème de la prédiction à travers la structure est également abordé. Deux approches
sont étudiées. Tout d’abord, des modèles numériques sont utilisés pour étudier la propagation des
vibrations. Un algorithme d’extraction du chemin de propagation principal est proposé, fournissant
des résultats cohérents avec la physique. Puis, une méthode provenant du traitement du signal sur
graphes est utilisée pour apprendre une structure à partir de données expérimentales. Plusieurs
graphes sont appris, un par bande de fréquence. Encore une fois, les résultats sont cohérents avec la
physique et fournissent de très bons résultats en reconstruction. Ces deux approches peuvent être
combinées. La première se base sur un super-élément dynamique pour réduire un modèle numé-
rique, mais cette réduction peut se faire à partir de données expérimentales. La seconde, qui consiste
à apprendre un graphe à partir de données expérimentales, peut se baser sur des données générées
à partir d’un modèle numérique pour apprendre les graphes. Sur ces deux types de représentations,
la méthodologie d’identification des chemins de propagation peut être appliquée.

Les différentes méthodologies de prédiction présentées peuvent être considérées comme des
briques élémentaires pouvant être assemblées dans un cadre plus général, exploitant les données
expérimentales existantes et lesmodèles numériques à disposition afin de permettre la prédiction de
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l’ambiance vibratoire d’un avion encore phase de conception. Un modèle pourrait alors être enrichi
de manière itérative par de nouvelles données expérimentales au fur et à mesure que l’avion passe
par les phases de conception successives et que les essais au sol et en vol sont réalisés.

Ce travail étant avant tout exploratoire, plusieurs pistes de développement sont suggérées. L’utili-
sation de l’apprentissage automatique dans l’industrie aéronautique va certainement être soumise à
un certain nombre de normes. Dans ce contexte, il est important d’explorer la problématique de l’in-
terprétabilité des modèles, leurs prédictions devant être explicables et justifiées. La méthode SHAP
est utilisée ici, mais d’autres méthodes existent et doivent être étudiées. De la même façon, la robus-
tesse doit être garantie et ce a minima en indiquant quand un modèle ne peut pas être considéré
comme fiable, par exemple quand les prédictions d’un modèle ensembliste divergent. En utilisant le
rasoir d’Occam comme heuristique, s’appuyer sur des modèles plus simples dans certains contextes
pourrait être envisagé, à condition que l’ingénierie des caractéristiques (feature engineering) soit réa-
lisée de manière approfondie. En outre, la quantification des incertitudes est cruciale pour assurer la
confiance au modèle.

L’étude des chemins de propagation des vibrations doit être approfondie, en utilisant notamment
des algorithmes provenant de la théorie des graphes et en se basant d’avantage sur la physique. Elle
devrait être appliquée également sur des données générées par d’autres modèles, pour différents
systèmes, ainsi qu’à des données expérimentales.

Étant donné que les résultats dépendent de la sous-structuration du système (l’ensemble des
nœuds choisis), les solutionsmises enœuvre pour résoudre ce problèmedans le contexte de l’analyse
statistique énergétique pourraient être adaptées à ce problème. Le domaine du traitement du signal
sur graphe devrait être étudié plus en détail : d’autresméthodes d’apprentissage et d’interpolation sur
un graphe doivent être testées. L’examen des signaux dans l’espace des graphes pourrait également
apporter une nouvelle façon d’interpréter les données.

D’autres approches numériques adaptées aux moyennes fréquences pourraient être explorées.
Bien que cette thèse se soit concentrée sur l’apprentissage automatique, des approches telles que la
théorie variationnelle des rayons complexes mériteraient d’être étudiées.

Il est essentiel d’étudier comment les données expérimentales et les méthodes, provenant par
exemple du domaine du traitement du signal sur graphe, peuvent être intégrées dans lesmodèles nu-
mériques utilisés dans la phase de conception des avions. D’une part, le modèle numérique contient
une description spatialement fine de la structure, mais sa prédiction est susceptible de contenir des
inexactitudes, tandis que d’autre part, la représentation par graphe fournit une prédiction correcte
sur une discrétisation plus grossière de la structure, correspondant aux points instrumentés.

La question de comment combiner les informations provenant de ces deux sources est cruciale.
L’hybridation pourrait également être utilisée par le biais de l’extrapolation dans le domaine des fré-
quences : les modèles qui ne peuvent prédire que les basses fréquences pourraient être combinés
avec des données expérimentales qui fournissent des résultats sur toute la gamme de fréquences.

Comme mentionné dans le premier chapitre, l’environnement vibratoire tient compte des chocs
(au contraire de l’ambiance vibratoire), qui ne sont pas étudiés ici. Il serait utile de les étudier, notam-
ment en utilisant certains des éléments méthodologiques développés ici.

En poursuivant les études et le développement de ces méthodes, il serait possible de mettre en
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œuvre une approche globale axée sur les données, combinant des sources de connaissances théo-
riques, numériques et expérimentales. Cette approche pourrait être utilisée pour prédire l’ambiance
vibratoire d’un avion complet dès sa conception et ainsi réaliser d’importantes économies en termes
de coûts et de délais.
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