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Summary

This dissertation concerns new applications of discrete geometry and combinatorics in modern
statistics. First of them focuses on one of widely used remedies to the inevitable growth of data,
that is the use of penalized linear regresion methods. With an aim to recover the needed prop-
erties possessed by the vector of regression coefficients, we start our discussion with the Sorted
{1 Penalized Estimator (SLOPE), which was proposed almost a decade ago. Especially, we ex-
amine the notion of the SLOPE pattern, which maintains the information about the support,
sign and ranking between the regression coefficients. In particular, it preserves the clusters
of coefficients with the same absolute value. In Chapter 3 we provide the conditions, under
which SLOPE recovers the set of relevant covariables and the clusters when the design matrix
is orthogonal. We also derive new results on the strong consistency of the SLOPE estimator and
its pattern. Chapter 4 extends the discussion on SLOPE to a general class of fixed design ma-
trices. We provide the SLOPE irrepresentability condition, which is necessary and sufficient for
the pattern recovery in the noiseless case and illustrate it geometrically. Later on, we consider
the case of asymptotic growth of the number of explanatory variables and of the incremental
error. In Chapter 5 we study the wider class of penalized estimators, called the polyhedral
gauges. It allows one to use the notions from the geometry of polyhedra to generalize the
notion of the pattern and the results on its recovery. Chapter 6 is articulated around the exis-
tence of the Maximum Likelihood Estimator (MLE) for discrete exponential families. We give
its new characterization based on the notion of the set of uniqueness. Later on, we inspect
the size of independent identically distributed samples which is needed to ensure its existence
with high probability. For that reason we use the notions from the analysis of discrete hy-
percubes and apply our results in the environment of random graphs. Last of the chapters
connects the theory of graphical models in statistics with the notion of graph Laplacian matri-
ces and discretized Wiener processes. The thesis is based on three already published articles
and two preprints, which are available on-line.
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Streszczenie

Niniejsza rozprawa poswiecona jest nowym zastosowaniom geometrii dyskretnej i kombinatoryki
w nowoczesnej statystyce. Pierwsze z nich skupione jest na jednym z popularniejszych rozwiazan
na radzenie z ciagglym przyrostem danych, jest nim penalizowana regresja liniowa. Majac na
celu odtworzenie potrzebnych nam wtasnosci wektora wspétczynnikéw regresji, rozpoczynamy
dyskusje od estymatora SLOPE (Sorted ¢; Penalized Estimator), ktéry zostal wprowadzony
w poprzedniej dekadzie. Szczegdlna uwage poswiecamy pojeciu wzorca SLOPE, ktory zachowuje
informacje o nos$niku, znaku i rankingu miedzy wspélczynnikami regresji. Informuje on réwniez
o klastrach wspélczynnikéw o tej samej wartoéci bezwzglednej. W rozdziale trzecim podajemy
warunki, dla ktérych SLOPE poprawnie odtwarza noé$nik oraz klastry wektora wspotczynnikéw
regresji przy ortogonalnej macierzy eksperymentu. Przy tym zalozeniu wyprowadzamy tez nowe
wyniki dotyczace mocnej zgodnosci estymatora SLOPE i jego wzorca. Rozdzial czwarty rozsz-
erza dyskusje na temat SLOPE, pomijajac zalozenie o ortogonalnosci macierzy eksperymentu.
Wprowadzamy warunek niereprezentowalnoéci dla SLOPE, ktéry jest konieczny i dostateczny
do odtworzenia wzorca w przypadku braku szumu, po czym ilustrujemy ten warunek geome-
trycznie. Nastepnie rozwazamy przypadek asymptotycznego przyrostu liczby zmiennych objas-
niajacych i szumu rosnacego inkrementalnie. W rozdziale piatym omawiamy szersza klase pe-
nalizowanych estymatoréw zwana polyhedral gauges. Pozwala ona na wykorzystanie twierdzen
z geometrii wieloScianéw do uogdlnienia pojecia wzorca i wynikéw dotyczacych jego odtwarza-
nia. Rozdzial szésty dotyczy istnienia estymatora najwiekszej wiarogodnoséci (MLE) w dyskret-
nych rodzinach wykladniczych. Podajemy jego pelna charakteryzacje za pomoca pojecia zbioru
jednoznacznoéci. Nastepnie badamy rozmiar préby niezaleznych zmiennych losowych o tym
samym rozkladzie, ktora zapewnia istnienie MLE z wysokim prawdopodobienstwem. W tym celu
wykorzystujemy narzedzia z analizy hiperszescianéw dyskretnych i stosujemy otrzymane wyniki
w modelach wykltadniczych graféw losowych. Ostatni z rozdzialéw skupiony jest na potaczeniu
miedzy teorig modeli graficznych w statystyce, a pojeciami laplasjanu grafu oraz dyskretyza-
cji procesow Wienera. Rozprawa jest oparta na trzech opublikowanych artykutach oraz dwéch
preprintach dostepnych on-line.
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Résumé

Cette theése traite des applications de la combinatoire et de la géométrie discréte aux statis-
tiques modernes. La premiere application porte sur 'une des approches fréquemment utilisées
pour faire face au volume croissant des données, a savoir 'utilisation de méthodes de régression
linéaire pénalisée. Dans le but de retrouver la structure que possede le vecteur des coefficients
de régression, nous commencons notre discussion par I'estimateur SLOPE (Sorted ¢; Penalized
Estimator), qui a été proposé il y a presque dix ans. En particulier, nous examinons la notion
de schéma SLOPE, qui conserve I'information sur le support, le signe et le classement des coef-
ficients de régression. En particulier, il préserve les groupes de coefficients ayant la méme valeur
absolue. Dans le chapitre 3, nous fournissons les conditions, sous lesquelles SLOPE récupere
I’ensemble des variables pertinentes et des groupes lorsque la matrice de planification est orthog-
onale. Nous déduisons également de nouveaux résultats sur la forte consistance de I'estimateur
SLOPE et de son schéma. Le chapitre 4 étend la discussion sur l'estimateur SLOPE & une classe
générale de matrices de planification fixes. Nous fournissons la condition d’irreprésentabilité du
SLOPE, qui est nécessaire et suffisante pour la recouvrement du schéma dans le cadre non-bruité
et nous illustrons cette propriété géométriquement. Dans un deuxiéme temps, nous considérons
le cas asymptotique lorsque le nombre de variables explicatives tend vers l'infini et que ’erreur
est incrémentale. Dans le chapitre 5, nous étudions la classe plus large des estimateurs pénal-
isés, appelés les jauges polyédriques. Elle permet d’utiliser les notions issues de la géométrie des
polyedres pour généraliser la notion du schéma et les résultats sur sa récupération. Le chapitre
6 s’articule autour de 'existence de l'estimateur du maximum de vraisemblance (MLE) pour les
familles exponentielles discretes. Nous donnons sa nouvelle caractérisation basée sur la notion
d’ensemble d’unicité. Par la suite, nous inspectons la taille des échantillons indépendants iden-
tiquement distribués qui est nécessaire pour assurer son existence avec une grande probabilité.
Pour cela, nous utilisons les notions issues de 'analyse des hypercubes discrets et appliquons
nos résultats dans l'environnement des graphes aléatoires. Le dernier des chapitres relie la
théorie des schémas graphiques en statistique avec la notion de matrices laplaciennes de graphes
et de processus de Wiener discrétisés. La these est basée sur trois articles déja publiés et deux
prépublications, qui sont disponibles en ligne.
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Wstep

Obecnie mozna zauwazy¢ szybki i nieunikniony przyrost danych, zaréwno pod wzgledem liczby
obserwacji, jak i pod wzgledem liczby sposobdow, za pomoca ktorych da sie je zmierzyé. Duze
zbiory danych i ich analiza rosng na znaczeniu w zyciu codziennym, dzieki czemu statystyka
matematyczna oraz nauki zwigzane z analiza danych zyskuja coraz wicksze zainteresowanie
w innych dzialach matematyki i jej zastosowaniach. Jednak statystyka i analiza danych nie
powinny by¢ traktowane w oderwaniu od innych dzialéw matematyki. Kluczowym punktem
badan niniejszej rozprawy bedzie znajdowanie nowych potaczen miedzy wspdlczesng statystyka,
geometrig i kombinatoryka.

Dyskusja podjeta w tej rozprawie rozpoczyna sie od rozwazania przestrzeni euklidesowych
o skoniczonym wymiarze. Zwracamy uwage na przypadki, w ktorych zbiér wartoéci danego es-
tymatora mozna podzieli¢ na skonczong liczbe podzbioréw w taki sposdb, zeby istniata bijekcja
miedzy nami, a interesujacymi nas wlasno$ciami tego estymatora. Taki sposéb predykcji ob-
serwacji jest znany jako problem klasyfikacji [32], nad ktérym badania zostaly rozpoczete przez
Fishera [77] i ktéry jest stosowany w prawie kazdym dziale nauk zwiazanych z przetwarzaniem
danych.

PL.1 Penalizowana regresja liniowa

Za jedno z istotnych zastosowan problemu klasyfikacji mozemy uznaé¢ wersje regresji liniowej,
w ktérej zamiast dokladnego oszacowania wartosSci nieznanego wektora interesuja nas jego
wybrane wtasciwosci. W modelu regresji liniowej wielorakiej majacym n obserwacji i p zmie-

nnych objasniajacych zakladamy, Ze zmienna objasniana Y = (Y7,...,Y,)" € R" jest postaci
Y = X + ¢, gdzie X € R™*P jest macierza eksperymentu, 8 = (f1,...,5,) € RP jest niez-
nanym wektorem wspolczynnikéw regresji, a € = (e1,...,6,)" € R™ jest losowym wektorem

bledu (szumu). Gléwnym zagadnieniem regresji liniowej sa oszacowanie 3 oraz wydobycie jego
istotnych wlasnosci. Szeroka klasa zagadnien opartych na wyborze podzbioru wspoétrzednych
B, ktére beda najlepiej spetniaé oczekiwania dotyczace estymatora i jego ztozonoéci, znany jest
jako problem wyboru modelu. Wiecej informacji o tym zagadnieniu mozna znalezé w przegla-
dowym artykule [49]. Przez wigkszosé dyskusji zakladamy, ze wektor bledu € jest losowy, a
jego rozktad jest ciagly i symetrycznyn. Niektére z przedstawionych wynikéow dotycza réwniez
przypadku niezaszumionego, w ktérym € = 0, co pomoze w wyprowadzeniu wynikéw asympto-
tycznych w przypadku zaszumionym. Dzigki istniejacym wynikom dotyczacym rozktadu normal-
nego mozemy pokazaé ulepszone wyniki dla szumu gaussowskiego € ~ N(0,02I,,). Najbardziej
klasyczna metoda regresji liniowej, metoda najmniejszych kwadratéw (Ordinary Least Squares,
OLS), zostala wprowadzona przez Legendre’a na poczatku XIX wieku [10} 07, [124]. Estymator
OLS jest zdefiniowany jako wektor b minimalizujacy odlegtosé euklidesows miedzy Y, a Xb:

BOYS .= argmin||Y — Xb)s.
beRp

xiii
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Popularnosé estymatora najmniejszych kwadratéw ma miejsce ze wzgledu na swoja prostote,
dokladno$¢ przy wzglednie malej liczbie zmiennych [33 str. 4] i wielu innych przydatnych
statystycznych wlasnosci. Dla przyktadu, jezeli macierz X’'X jest odwracalna, a Cov(Y) =
021, dla ¢ > 0, to OLS jest najlepszym estymatorem w klasie nieobcigzonych liniowych esty-
matoréw (BLUE) [Il Theorem 2.7.1.] wektora 8. W tym przypadku istnieje wzdér jawny na
BOS | ktéry mozna w dosyé latwy sposéb wyprowadzié [1, str. 28]:

BOLS — (X/X)le/Y‘

Po dodaniu zatozenia o gaussowskosci wektora Y estymator OLS staje sie estymatorem na-
jwiekszej wiarogodnosci (MLE) [I], str. 28]. W przypadku, gdy macierz eksperymentu X jest
ortogonalna, tzn. X'X = cI,, ¢ > 0, powyzszy wzér sprowadza sie do SOV = 1X'Y. Przy
powyzszych zalozeniach OLS jest réwniez mocno zgodnym estymatorem dla 8 [6]. Z drugiej
strony, estymator ten nie jest jednoznacznie zdefiniowany, kiedy macierz X’X jest nieod-
wracalna, co ma miejsce w wysokowymiarowym przypadku, gdy p > n. Ponadto, przy ogélnie
przyjmowanych zalozeniach o bledzie e, OLS nie jest estymatorem rzadkim, z prawdopodobienist-
wem 1 sklada si¢ on z p wspélrzednych o parami réznych wartosciach. Mniej klasyczne zalozenia
o wektorze Y i macierzy X, przy ktorych estymator nie jest jednoznaczny, mozna znalezé miedzy
innymi w niedawno opublikowanym artykule Dupuisa i Vaitera [62]. W praktyce czesto wek-
tor B sktada sie ze wzglednie malej liczby niezerowych wspélrzednych, co w naturalny sposoéb
sugeruje metody, ktore promuja rzadkosé wektora B rozumiang jako malta liczbe niezerowych
wspotrzednych lub opisywalno$é 8 za pomocg matej liczby parametréw. Istniejg rézne propozy-
cje rozwigzania powyzszego problemu, m.in. poréwnanie pasujacych modeli przy pomocy kry-
terium informacyjnego, np. BIC [158] lub AIC [2]. Innym podejsSciem jest penalizowana regresja
liniowa postaci:

R 1
B :=argmin | -||Y — Xbl|3 + penr(b) |,
berr L2

gdzie pen, (b) jest ustalona nieujemna kara, ktéra mozna modyfikowaé za pomoca parametru A >
0. To podejscie jest wykorzystywane m.in. w neuroobrazowaniu [39], prognozowaniu cen energii
elektrycznej [106] [180] oraz w matematyce finansowej w celu grupowaniu aktywéw na podstawie
ich korelacji czesciowej z szeregiem czasowym stép zwrotu z funduszy inwestycyjnych [I16]. Pier-
wszym z zaproponowanych sposoboéw penalizowanej regresji byta metoda wyboru najlepszego
podzbioru [12], [102], gdzie kara pen,(b) = A||bl|p jest réwna liczbie wspélrzednych niezerowych
wektora b pomnozonej przez A. Klopot z jej zastosowaniem polega na tym, ze dla duzych
wartoSci p znalezienie najlepszego podzbioru w ten sposéb jest problemem NP-trudnym [78§].
Inna metoda na znalezienie rzadkiego rozwiazania jest metoda LASSO (skrét od Least Absolute
Shrinkage and Selection Operator [47, I76]), w ktérej kara nalozona na estymator b jest jego
norma ¢ pomnozona przez parametr A > 0:

R 1
BLASSO := arg min —HY—Xng—i—)\Hle :
beRr |2

Estymator LASSO jest obciazony. Jako estymator $ciagajacy (shrinkage estimator) sprowadza
on wspolrzedne BLASSO w strone zera. Niektore z nich zostaja $ciagniete catkowicie do zera,
co przynosi rezultat w postaci rzadszego estymatora. W przypadku, gdy macierz ekspery-
mentu X jest ortonormalna, tzn. X'X = I,, jawny wzor na BLASSO, wyprowadzony w pracy

Tibshiraniego [I76], jest oparty na B°US:

BEASSO _ ign(3915) max {|5015] - A, 0}
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Aby zapewni¢ istnienie rozwiazania zagadnienia penalizowanej regresji liniowej, czesto uzywana
jest kara wypukta, co umozliwia wykorzystanie narzedzi z analizy wypuktlej. Zainteresowanym
réznymi przyktadami pomystéw na modyfikacje estymatora LASSO mozna polecié artykul [78].
Warto zauwazy¢, ze kary niewypukle réwniez sg wykorzystywane m.in. przy wyborze najlepszego
pozdbioru [12} 102] lub estymatora SCAD (smoothly clipped absolute deviation [72]).

PL.2 SLOPE

Innym sposobem na zmniejszenie wymiaru jest estymator SLOPE (Sorted ¢; Penalized Esti-
mator [27], 26] [189]), ktéry poza uogdélnieniem metody LASSO, skleja takie same wspélczynniki
regresji B oraz skorelowane kolumny macierzy X. Zgodnie z nazwa, w estymatorze SLOPE
norma ¢; w funkcji kary zostala zastapiona przez zdefiniowang ponizej posortowana norme /£;:

p
INOED LI
i=1

gdzie Ay > 0, A1 > ..., A, > 0, natomiast |b[(1) > ... > |b](,) to wartosci bezwzgledne wspotrzed-
nych wektora b posortowane malejaco. Szczegdlny przypadek SLOPE z A bedacym ciagiem aryt-
metycznym jest znany pod nazwa OSCAR [29]. Zauwazmy, ze w parametr A zostal zastapiony
w SLOPE przez nierosnacy wektor A = (A1, Ag,...,\,)" parametréw (tuning vector). Mozemy
wiec nie tylko modyfikowa¢ wielkoé¢ wektora A, ale réwniez jego ksztalt. Gléwna motywacja
autoréw metody SLOPE bylo testowanie p hipotez zerowych HY : 8; = 0 i kontrola wspélezyn-
nika falszywych odkryé¢ (FDR control) zdefiniowanego jako oczekiwana proporcja miedzy liczba
falszywych odrzuceni hipotezy zerowej, a taczna liczba jej odrzucen (w przypadku braku odrzucen
przyjmuje sie¢ FDR = 0). Ponadto, SLOPE jest uogélnieniem poprzednich metod:

. )\12...:/\p:0:>BSLOPE:BOLS’

e M =...=\, > 0= BSLOPE _ BLASSO

e A is an arithmetic sequence = BSLOPE = BOSCAR.

Dokladniejszy opis historii badan nad estymatorem SLOPE znajduje sie w podrozdziale
W naszych badaniach skupiamy sie na odtworzeniu istotnych wtadciwosci wektora 3 za pomoca
estymatora SLOPE, ktére sa zakodowane w wektorze zwanym wzorcem SLOPE. Tak jak znak
wektora 8 w przypadku LASSO, wzorzec SLOPE mozna catkowicie opisa¢ za pomoca sub-
rozniczki funkcji kary. Dokladniej mowiac, niech k bedzie liczba klastrow wektora 8, tzn. liczba
niezerowych réznych wartosci wspoélrzednych |3].

Definicja PL.2.1 (Wzorzec SLOPE). Wzorzec SLOPE patt : RP — 7P jest zdefiniowany
nastepujgco:
patt(b); = sign(b;)rank(|b;|),

gdzie rank(|b;|) € {1,2,...,k} jest zdefiniowany jako liczba takich |c;|, dla ktorych |bi| > |c;],
gdzie |c1|, |cal, ..., |ck|, B < p sq niezerowymi réznymi wartosciami sposrod |bil,. .., |bp|. Przyj-
mujemy rank(0) = 0.

Wzorzec SLOPE zachowuje informacje nie tylko o znaku wektora, ale réwniez o jego klastrach,
tzn. zbiorach wspoélrzednych majacych te samg wartos¢ bezwzgledna oraz o hierarchii miedzy
tymi wartosciami.
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Fakt PL.2.1 (Wlasnosci wzorca SLOPE [156]).
(a) Dla kazdego 1 <1 < ||patt(b)|~ istnieje takie j, ze |patt(b);| =1,

(b) sign(patt(b)) = sign(b).
() [l = [bj] = [pate(b);| = |patt(b),],

(d) [bi] > [bj] = |patt(b)i| > |patt(b);].

Example PL.2.2. patt((4,0,—1.5,1.5,—-4)") = (2,0,-1,1,-2)".

- . ~SLOPE .
Méwimy, ze B odtwarza wzorzec 3, kiedy

~SLOPE

patt ([3 > = patt(B).

W rozdziale trzecim i czwartym omawiamy nowe warunki konieczne i dostateczne na odtwarzanie
wzorca SLOPE, jak réwniez nowe wyniki o zgodnoéci i mocnej zgodnosci SLOPE i jego wzorca
w przypadku, gdy n > p.

PL.2.1 Zgodnos¢

Gléwnym narzedziem do udowodnienia mocnej zgodnosci SLOPE w przypadku n > p jest
mocna zgodno$¢ estymatora najwiekszych kwadratéw udowodniona m.in. w pracy Andersona
i Taylora [6]. Gléwne wyniki dotyczace zgodno$ci LASSO mozna znalezé w nastepujacych pub-
likacjach:

o zgodno$é LASSO: Knight, Fu, 2000 [112],

o mocna zgodno$é LASSO: Chatterjee, Lahiri, 2011 [44],
Gléwne zalozenia: A, jest rzedu mniejszego niz n oraz Ele| < oc.

o zgodnosé¢ znaku LASSO: Zhao, Yu, 2006 [192].

Podrozdziaty 3.4 oraz 4.6 niniejszej rozprawy dotycza mocnej zgodnosci SLOPE i jego wzorca.
Warto zauwazy¢, ze w przypadku, gdy wektor A jest staly (LASSO), wzorzec SLOPE nie jest
zgodny, nawet jesli zalozenia o zgodnosci wektora znaku sa spetnione. Estymator LASSO nie odt-
warza klastrow, ktére sa elementem wzorca SLOPE. Zauwazmy tez, ze mocna zgodnosé¢ esty-
matora LASSO (SLOPE) nie implikuje mocnej zgodnosci jego znaku (ani jego wzorca). Jako
kontrprzyklad mozna rozwazy¢ ciag ((1/n,1/n,—1/n,—1/n)),>1, ktéry zbiega do (0,0,0,0)’,
podczas gdy jego znak i jego wzorzec SLOPE sa réwne (1,1,—1,—1)" dla wszystkich n.

PL.2.2 Warunek niereprezentowalnosci

Dla danych n,p > 0 zgodnos¢ zbioru niezerowych wspoétrzednych wektora ﬁLASSO jest prawie
rownowazna do warunku, w ktorym wspolrzedne spoza nosnika wektora @ nie sg reprezentowane
przez wspélrzedne don nalezace [192]. Z tego powodu warunek zostal nazwany warunkiem
niereprezentowalnosci (irrepresentability condition). W rozdziale 4. rozprawy wprowadzony jest
analogon powyzszego warunku dla estymatora SLOPE.
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PL.2.3 Penalizowana regresja liniowa i jej geometria

Dla lepszego zrozumienia powiazan miedzy BSLOPE, a BOLS, ilustrujemy je w przypadku
niskowymiarowym p < n dla p = 2. Tutaj wartosci estymatora SLOPE jest réwna rdéznicy
miedzy estymatorem najmniejszych kwadratéw, a jednym z jego rzutéw na (X' X)~1Cx, gdzie
Ch jest kula jednostkowa w normie dualnej do Jp. Powyzszy wynik ma latwa interpretacje
w przypadku ortogonalnym, w ktérym zaréwno X, jak i rzut na Cy, sg ortogonalne. Ta za-
leznos¢ ma rezultat w postaci jawnego wzoru na ,(:}SLOP E w przypadku ortogonalnym, ktéry
zostal niedawno wprowadzony przez Tardivela, Serviena i Concordeta [I75]. Wiecej ilustracji
zwiazkéw miedzy estymatorem SLOPE, a jego geometria, mozna znalez¢ w podrozdziale [£.4]
Zachodzi polaczenie miedzy estymatorami LASSO i SLOPE, a systemami pierwiastkowymi (root
systems) wykorzystywanymi w analizie harmonicznej. Dokladniej méwiac, mozna zauwazyc,
ze kula jednostkowa w normie £, dualnej do kary stosowanej w LASSO oraz kula jednostkowa
w normie J} dualnej do normy SLOPE sa proporcjonalne odpowiednio do powlok wypuktych
orbit grup Weyla odpowiadajacych p-tej potedze systemu pierwiastkowego A; oraz systemowi
B, [90], 144]. Wiecej na temat systeméw pierwiastkowych mozna znalez¢é m.in. w ksiagzce Hel-
gasona [100] oraz w publikacjach [92} 63].

Geometrie penalizowanej regresji liniowej i odtwarzania wzorcow jej estymatorow mozna
rozwaza¢ w ogOlniejszym przypadku, co robimy w rozdziale piatym. Mianowicie, estyma-
tor SLOPE mozna zaklasyfikowa¢ do jednej ze skonczonej liczby klas, gdy kara jest postaci
polyhedral gauge, tzn. nieujemna funkcja wypukla réwna maksimum skonczonej liczby
funkcji liniowych. Istotne wlasciwosci estymatora, réwniez nazwane jego wzorcem (pat-
tern), mozna caltkowicie opisa¢ za pomoca subrézniczki kary. Poniewaz nieréwnoéci liniowe
definiujace polyhedral gauge sa spelnione przez przekrdj skoniczonej liczby zwiazanych z nimi
péiprzestrzeni, zachodzi tutaj silne powiazanie z teoria wieloscianéw, z ktéra mozna zapoznaé
sie. m.in. w ksiazkach Grubera [94], Grinbauma [95], Hiriart-Urrutiego i Lemarechala [101]
oraz Zieglera [193].

W rozdziale pigtym uogélniamy niektore z nowo otrzymanych wynikéw SLOPE na powyzsza
klase estymatoréw. W tym celu rozwazamy pojecie klasy réwnowaznosci wzorca (pattern equiv-
alence class), ktéra pozwala nam opisa¢ odtworzenie wzorca jako odtworzenie wartoéci sub-
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rézniczki kary pen.

Wprowadzamy i charakteryzujemy pojecie osiagalnosci (accessibility) wzorca i wprowadzamy
warunek niereprezentowalnosci dla polyhedral gauges. 7Z pomoca narzedzi z geometrii
wieloScianéw, w szczegdlnosci pojecia stozkéw normalnych $cian rozwazanych wielodciandw,
rozwazamy wlasnosci réwnowaznosci wzorca.

Nastepnie skupiamy sie¢ na odtwarzaniu modelu przez estymatory progowane. Sg one uogdlnie-
niem progowanego LASSO, jednak w odr6znieniu od swojego poprzednika ich celem jest zmniej-
szenie ztozonosci estymatora nie tylko poprzez sprowadzenie czeéci wspolrzednych do zera, ale
rowniez do innych jego uproszczen zwiazanych z danym wzorcem. Rozszerzamy tez pojecie
jednorodnej jednoznacznosci estymatora znanej dla norm wielo$ciennych [156] do polyhedral
gauges.

PL.3 Dyskretne rodziny wyktadnicze

W rozdziale széstym przechodzimy z przestrzeni euklidesowych do przestrzeni ze skonczona
liczba elementéw (dyskretnych). Punktem naszych zainteresowan sa rodziny wykladnicze zde-
finiowane na skorficzonej przestrzeni stanéw X, |X| = K < oo. Z powiazana dyskusja na
temat przeliczalnych zbioréw mozna zapoznaé sie w pracy Jacobsena [105]. My rozwazamy
podprzestrzen liniowa B przestrzeni funkcji R?Y, do ktérej nalezy funkcja stala dodatnia. Na
zbiorze X wprowadzamy tez $cisle dodatnia wage u : X — (0,00). Rodzing wykladnicza kon-
struujemy nastepujaco:

Dla rzeczywistej funkcji ¢ definiujemy odpowiednio jej funkcje partycji oraz log-partycji:

Z(¢) =Y e’ Du(x), v(¢)=logZ(9),

reX

a takze gesto$¢ wykladnicza

p=e(d) =V = e?/7(9).
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Rodzina wyktadnicza rozpieta przez B jest ukazana ponizej.
e(B) = {p=c(®): ¢€B}.

Dzieki temu mozemy wprowadzi¢ funkcje wiarogodnoéci i log-wiarogodnosci. Ta ostatnia jest
$cisle wklesta, co zapewnia nam jednoznaczno$¢ MLE w przypadku jego istnienia. Istnienie esty-
matora nie jest zapewnione pomimo faktu, ze funkcja wiarogodno$ci jest ograniczona. W naszych
badaniach wyprowadzamy nowe kryterium na istnienie MLE i wykorzystujemy je w rodzinach
wyktadniczych rozpietych przez funkcje Rademachera i Walsha oraz w wyktadniczych modelach
graféw losowych.

Naszym gtéwnym narzedziem jest pojecie zbioru jednoznacznosci, czyli takiego zbioru U C X,
ze ¢ = 0 jest jedyna funkcja z zadanej klasy, ktéra jest rOwna zero na calym zbiorze U.
Dokladniej, pokazujemy, ze MLE istnieje dla e(B) oraz préby i.id. zi,z2,...,z, € X wtedy
i tylko wtedy, gdy zbiér {z1,...,z,} jest jednoznacznosci dla nieujemnego stozka funkcji
By :={¢e€B: ¢ >0} Powyzsze kryterium podajemy réwniez jako zagadnienie programowa-
nia liniowego.

Dodatkowo, w rozwazanych zastosowaniach wyznaczamy asymptotyczne wielkosci zbioréw jed-
noznaczno$ci. W tym celu uzywamy klasycznych wynikow z teorii graféw losowych oraz z prob-
lemu zbieracza kuponéw (Coupon Collector’s Problem) [I18| str. 194-195], [68], and [143].

W rodzinie rozpietej przez funkcje Walsha wykorzystujemy wlasnosci hipersze$cianu {—1, 1}*
(k = logy K), jego podkosci oraz zwiazanego z nim grafu hiperszescianu.

PL.4 Modele graficzne

Jednym z dzialéw nowoczesnej statystyki wykorzystujacych zaréwno MLE, jak i estymatoréw
penalizowanych jest teoria modeli graficznych (graphical models). Model graficzny jest rodzina
rozktadéw prawdopodobienistwa skoniczonego zbioru zmiennych losowych X, X, ..., Xy, ktoére
sa przedstawione za pomoca N wierzchotkéw grafu (skierowanego lub nieskierowanego, zaleznie
od zastosowania). Obecno$é krawedzi pomiedzy dwoma wierzchotkami $wiadczy w modelu
o zalezno$ci warunkowej miedzy powiazanymi z nimi zmiennymi. Z gaussowskim modelem
graficznym mamy do czynienia, kiedy zmienne Xi, Xo,..., Xy sa z rozkladu normalnego.
W tym przypadku pelna informacja o strukturze niezalezno$ci warunkowej miedzy zmiennymi
jest zawarta w macierzy odwrotnej do macierzy kowariancji (w macierzy precyzji) wektora
losowego X = (X1,...,Xn). Czytelnika zainteresowanego glebszym zapoznaniem sie z
modelami graficznymi zachecamy do ksiazek wprowadzajach do tej teorii [122), [187, [20].
Dyskusje nad istnieniem MLE w dyskretnych modelach hierarchicznych, w tym w modelach
graficznych, mozna znalezé w pracy Wanga, Rauha i Massam [I85]. Odpowiednik estymatora
LASSO w modelach graficznych zostal wprowadzony okolo pietnastu lat temu [I30] 188 [79]
i jest w dalszym ciagu uzywany [37]. Graficzny odpowiednik SLOPE zostal wprowadzony
niezaleznie w pracy doktorskiej Sobczyka [166] oraz w pracy Mazzy-Anthony’ego, Mazourego i
Coatesa [129].

Wréémy do struktury niezalezno$ci warunkowej w modelu graficznych. Mozna zauwazy¢,
ze polozenie zer w macierzy precyzji wektora X jest identyczne z polozeniem zer w laplasjanie
grafu opisujacego te strukture. Nasza dyskusja skupiona jest na tych z procesow Markowa,
ktérych dyskretyzacje maja macierz kowariancji roéwna odwrotno$ci macierzy zblizonej
do laplasjanu zadanego grafu. Jako przykiad mozna podaé¢ sytuacje, w ktérej zadany graf
jest n-wierzchotkowsq Sciezka. Wtedy dodanie 1 do lewego goérnego wyrazu laplasjanu skutkuje
macierza odwrotna do (X);; = min{i,j}, ktéra to jest dyskretyzacja macierzy kowariancji
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klasycznego procesu Wienera.

PL.5 Plan rozprawy

Rozprawa jest oparta na pieciu artykutach. Trzy z nich sg opublikowane, jeden zostal wystany
do czasopisma, a kolejny jest w przygotowaniu i niebawem zostanie wystany. Preprinty nieop-
ublikowanych artykuléw sa dostepne w repozytoriach arXiv oraz HAL.

1. Pattern recovery and signal denoising by SLOPE when the design matrix is orthogo-
nal [I65] (z P. Graczykiem, B. Kolodziejkiem i M. Wilczyniskim), Probability and Mathe-
matical Statistics, 42(2):283-302, 2022

2. Pattern recovery by SLOPE [23] (z M. Bogdan, X. Dupuisem, P. Graczykiem, B.
Kotodziejkiem, P. Tardivelem i M. Wilczynskim), wystany do recenzji https://arxiv.
org/pdf/2203.12086 . pdf

3. Pattern Recovery in Penalized and Thresholded Estimation and its Geometry [93] (z P.
Graczykiem, U. Schneider i P. Tardivelem), w przygotowaniu, https://hal.science/
hal-03262087v2/document

4. Maximum likelihood estimation for discrete exponential families and random graphs [22]
(z K. Bogdanem i M. Bosym), ALEA, 19, 1045-1070 (2022)

5. Remarks on Laplacian of Graphical Models in Various Graphs [164], Proceedings, GSI
2021, Paris, France, July 21-23, 2021

Plan niniejszej rozprawy jest nastepujacy:

Rozdzial drugi zawiera podstawowe pojecia dotyczace wynikéw uzywanych w dalszych rozdzia-
tach.

Rozdziat trzeci skupia si¢ na metodzie SLOPE w przypadku ortogonalnej macierzy ekspery-
mentu, tzn. X'X = nI,. W tym przypadku wprowadzamy réwniez nowe wyniki dotyczace
mocnej zgodnoéci estymatora SLOPE i jego wzorca. Nastepnie ilustrujemy numerycznie
zastosowanie SLOPE w klasteryzacji do odtwarzania sygnaléw o wysokiej frekwencji.

W rozdziale czwartym omawiamy odtwarzanie wzorca SLOPE bez ograniczen z poprzedniego
rozdzialtu. Pokazujemy, ze odtwarzanie wzorca mozna scharakteryzowaé za pomoca dwoéch
warunkéw, ktére nazywamy ’positivity condition’ oraz ’subdifferential condition’ Nastepnie
wprowadzamy ’irrepresentability condition’ dla SLOPE, ktéry jest uogdlnieniem ’irrepre-
sentability condition’ dla LASSO [82, 41] wraz z jego geometryczna interpretacja. W dalszej
kolejnosci podajemy bardziej wyrafinowane warunki asymptotyczne na zgodno$é¢ oraz mocng
zgodnosé estymatora SLOPE i jego wzorca.

Rozdzial piaty dotyczy odtwarzania wzorca w ogélniejszym przypadku kar postaci polyhedral
gauges. Wyprowadzamy warunki konieczne i dostateczne na jednorodng jednoznaczno$é
estymatora, tzn. jego jednoznacznos¢ dla dowolnej wartosci Y € IR™. Rowniez pokazujemy
kryteria na odtwarzanie wzorca dla podanych estymatoréw i ich progowanych (thresholded)
odmian. Ponadto, uogdlniamy irrepresentability condition na penalizacje poprzez polyhedral
gauges oraz opisujemy relacje pomiedzy wzorcem, a modelem rozwazanym w publikacji Vaitera
iin. [182].

W rozdziale széstym podajemy konieczne i dostateczne warunki na istnienie estymatora na-
jwiekszej wiarogodnosci (MLE) w dyskretnych rodzinach wyktadniczych. Gléwnym narzedziem
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uzywanym w tym celu jest pojecie zbioréw jednoznacznoéci, czyli takich pozdbioréw przestrzeni
stanow, na ktérym funkcja z danej klasy jest réwna zero wtedy i tylko wtedy, gdy jest ona stale
réwna zero na calej przestrzeni. Nastepnie wykorzystujemy nasze kryterium do klasy funkcji
Rademachera i Walsha oraz do modelu wykladniczych graféw losowych (ERGM).

W rozdziale siodmym rozwazamy powigzania miedzy gaussowskimi modelami graficznymi,
a macierzami kowariancji zdyskretyzowanych proceséw Wienera. W tym celu uzywamy
laplasjanu grafu, ktéry opisuje strukture niezaleznosci warunkowej zadanego modelu.
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Résumé

Récemment nous pouvons observer 1’émergence rapide de données massives, tant au niveau
du nombre d’observations que du nombre de variables explicatives & mesurer. En raison de
I’augmentation de l'influence des big data sur la vie quotidienne, la statistique mathématique
et la science des données gagnent un intérét croissant dans le domaine des mathématiques et
des sciences appliquées. Cependant, elles ne doivent pas étre considérées séparément des autres
branches des mathématiques. Dans cette these, nous nous attachons a proposer de nouveaux
liens entre la statistique moderne, la géométrie et la combinatoire. Nous commencgons notre
discussion par les espaces euclidiens de dimension finie. Nous prétons attention aux situations
ou 'espace des valeurs possibles de ’estimateur peut étre partitionné en un nombre fini de sous-
ensembles tels qu’il existe une correspondance bijective entre les sous-ensembles et les propriétés
spécifiques des estimations. Cette prédiction des propriétés d’une observation est mieux connue
sous le nom de probléme de classification [32], dont la recherche a été lancée par Fisher [77]
et qui est appliquée dans presque tous les domaines liés aux données.

FR.1 Reégression Linéaire Pénalisée

Parmi les applications importantes du probléme de la classification, on peut citer les modifica-
tions de la régression linéaire, qui ne se concentrent pas sur la valeur exacte de ’estimation mais
sur ses propriétés importantes.

Dans le modele de régression linéaire multiple ayant n observations et p variables explicatives,

nous supposons que le vecteur de réponse Y = (y1,...,yn) € R" est de la forme Y = X8 + ¢,
ou X € R™P est une matrice de planification, 8 = (f1,...,0p) € RP est un vecteur inconnu
de coefficients de régression et € = (e1,...,,)" € R"™ est un bruit aléatoire. L’objectif principal

de la régression est d’estimer B et de retrouver ses propriétés essentielles. La abondante classe
de problémes de choix du sous-ensemble de coordonnées de B, qui est le plus approprié pour
nos demandes sur l’estimation et sa parcimonie, est mieux connue sous le nom de probléme de
sélection de modele. Pour une étude sur le probleme du sélection de modele, cf. [49]. Dans
la plupart de nos discussions, nous supposons que l'erreur € a une distribution symétrique et
continue. Certains de nos résultats couvrent le cas sans erreur de € = 0, qui est outil pour
établir des résultats asymptotiques. En raison de I’abondance des connaissances existantes sur
la distribution gaussienne, nous sommes également en mesure de présenter des résultats plus
efficaces sur le comportement des estimateurs avec gausienne € ~ N(0,02I,). La méthode
de régression linéaire la plus classique, la méthode des moindres carrés ordinaires (OLS), a été
proposée par Legendre au début du XIXe siecle [10, 97, [124]. L’estimateur OLS est défini comme
le minimiseur de la somme des carrés des résidus, a savoir

BOYS .= argmin||Y — Xbs.
beRpP

xxiii
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OLS a gagné sa popularité dans le cas n > p en raison de sa simplicité, de son efficacité pour
un un nombre relativement bas de variables [33, str. 4] et de nombreuses propriétés statistiques
utiles. Par exemple, si la matrice X’X est inversible et Cov(Y) = 02I, pour ¢ > 0, alors
les OLS constituent le meilleur estimateur linéaire sans biais (BLUE) [I, Theorem 2.7.1.] de .
Dans ce cas, la formule exacte de BOLS peut étre calculée a partir de ’équation suivante pour
BOLS peut étre facilement déduite [I), str. 28]:

BOLS — (X/X)ilXIY.

Si nous supposons en plus la gaussianité de Y, alors les OLS sont aussi I’estimateur du maximum
de vraisemblance (MLE) de 3 [I} str. 28]. Lorsque la matrice de planification X est orthogonale,
Cest-a-dire que X' X = I, ¢ > 0, la formule ci-dessus se résume a B = cX'Y". Sous les
hypotheses ci-dessus, les OLS est également un estimateur fortement consistant de 8 [6]. Cepen-
dant, cet estimateur n’est pas défini de maniére unique lorsque la matrice X’X est unité. défini
lorsque la matrice X’X n’est pas inversible, ce qui est le cas dans un cadre de haute dimension
p > n. De plus, sous des hypotheéses communes sur le terme d’erreur €, I'estimation OLS n’est
pas parcimonieux, avec la probabilité 1 elle contient p coordonnées de valeurs mutuellement
différentes. Pour une exemple d’hypotheses inhabituelles sur Y et X et d’absence d’estimation
unique, nous pouvons référer a l'article récent par Dupuis et Vaiter [62]. Comme le vrai vecteur
B € RP des coefficients de régression pourrait contenir beaucoup moins de coordonnées non
nulles, il existe une voie naturelle pour proposer des méthodes qui favoriseraient la parcimonie
de B, c’est-a-dire un petit nombre de coordonnées non nulles, ou du moins favoriseraient les
estimations de 8 qui sont descriptibles par un petit nombre de parametres. Plusieurs solutions
ont été proposées pour traiter ce probleme. L’une d’entre elles consiste & comparer les modeles
appropriés par un critére d’information, par exemple BIC [I58] ou AIC [2]. Une autre approche
consiste a utiliser la régression pénalisée de la forme

B = argmin | LY~ XbJ} + pena(b)]
beRr L2

ot peny(b) est un pénalisateur arbitraire non négatif, modifiable en fonction de la valeur de
A > 0. Elle a été appliquée, par exemple, & I'imagerie cérébrale [39], a la prévision des prix de
Pélectricité [106], [180] ou encore dans les mathématiques financiéres pour regrouper les actifs en
fonction de leur corrélation partielle avec la série chronologique des rendements des fonds spécu-
latifs [I16]. La premiére présence de cette idée est la sélection du meilleur sous-ensemble [12, [102]
avec pen, (b) = A||b||o étant un nombre de coordonnées non nulles de b multiplié par A. Cepen-
dant, pour de grandes valeurs de p, trouver le meilleur sous-ensemble par cette méthode est un
probleme NP-difficile [78]. Pour une solution plus parcimonieuse, on peut utiliser l’estimateus
LASSO (Least Absolute Shrinkage and Selection Operator [47, [176]), dans lequel la pénalité
ajoutée & la somme des carrés des résidus 5||Y — X 3||3 est une norme ¢; de B et le paramétre
de régularisation est A > 0:

) 1
BEASSO = argmin |||V — Xb|3 + A||b]|1| -
berr L2

L’estimateur LASSO n’est pas sans biais, en tant qu’estimateur de rétrécissement il apporte
certains coefficients B]-LASSO vers zéro. Certaines des coordonnées sont compléetement réduites a
zéro, ce qui donne une estimation plus parcimonie. Lorsque la matrice de planification X est
orthonormée, c’est-a-dire X’'X = I,, la formule exacte de BLAS SO trouvée par Tibshirani [176]

est basée sur BOF5:
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B0 — sign(B0) mas {135 - 10}

Pour garantir ’existence d’une solution du probléme de la régression linéaire pénalisée, il y a
nombreux propositions que la pénalité soit convexe. Cela permet également d’appliquer les outils
de I'analyse convexe. Pour une comparaison plus large d’autres modifications d’un estimateur
LASSO, nous renvoyons a l'article [78]. Cependant, il existe également des applications de
pénalisateurs non convexes, par exemple la sélection du meilleur sous-ensemble [12] [102] ou
Pestimateur SCAD (Smoothly Clipped Absolute Deviation [72]).

FR.2 SLOPE

Une autre approche pour réduire la dimensionnalité est 'estimateur pénalisé trié ¢; (SLOPE [27]
20, [189)]), qui, en plus de généraliser la méthode LASSO, regroupe les coefficients égaux de S et
les colonnes corrélées de la matrice de planification X. Comme son nom 'indique, dans SLOPE;,
la norme ¢1 comme pénalisateur est remplacée par la norme ¢; triée :

p
INOEDLIE

i=1
ouA >0,A >...>2X% >0cet ]b|(1) > ... > |b|(p) sont les valeurs absolues des coordonnées
de b triées par ordre décroissant. Le sous-cas particulier de SLOPE avec A étant une séquence
arithmétique est également connu sous le nom OSCAR [29]. Il est important de noter que
dans SLOPE, un seul parametre de régularisation A est remplacé par un vecteur non croissant
A = (M, X2,...,\y)" de p parametres de régularisation (le vecteur de régularisation). Ainsi,
il nous permet de modifier non seulement I’échelle de A, mais aussi sa forme. La principale
motivation des auteurs de SLOPE était de tester les p hypotheéses nulles Hé : B; = 0 et le controdle
du taux de fausses découvertes (le controle FDR), qui est défini par la proportion attendue entre
le nombre de faux rejets d’hypotheses nulles et le nombre total de rejets d’hypotheses nulles (en
cas d’absence de rejet, le FDR est défini comme égal a zéro). De plus, SLOPE généralise certaines
des approches précédentes en régression linéaire :

« A =...=),=0= BSLOPE _ gOLS

R )\1 — :>\p >0:>BSLOPE:BLASSO,

e A est une suite arithmétique = F5VOPE = OSCAR

Pour une description plus détaillée d’histoire des recherches sur ’estimateur SLOPE, voir la
Section {111

Dans notre recherche, nous nous concentrons sur une autre propriété importante de SLOPE, a
savoir la récouvrement des caractéristiques importantes d’'un vecteur de coefficients de régression
B, appelé son SLOPE schéma. 11 s’agit d’un analogue du vecteur de signe dans LASSO et, comme
son prédécesseur, il peut étre entierement décrit par le sous-différentiel de la norme pénalisante.
Pour étre plus spécifique, laissez k étre le nombre de clusters de patt(8) = (my,...,mp)" c’est-
a-dire le nombre de composantes distinctes non nulles de |3].

Définition FR.2.1 (SLOPE schéma). Le SLOPE schéma est une fonction
patt : RP — 7P telle que
patt(b); = sign(b;)rank(|b;|),
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ou rank(|b;|) € {1,2,...,k} est défini comme le nombre de |cj|’s satisfaisant |b;| > |c;|, ou
leil, e2l, - ..y |ekl, B < p, sont des valeurs distinctes non nulles parmi |bi|,. .., |bp|. Nous adoptons
la convention que rank(0) = 0.

Le SLOPE schéma ne préserve pas seulement le signe d’un vecteur, mais détecte également ses
clusters, c’est-a-dire les ensembles de coordonnées partageant la méme valeur absolue et 'ordre
entre ces valeurs absolues (ordre entre les clusters).

Fait FR.2.1 (Propriétés de base du SLOPE schéma [156]).
(a) pour chaque 1 <[ < ||patt(b)| il existe j tel que |patt(b);| =1,

(b) sign(patt(b)) = sign(b) (préservation du signe),
(c) |bs] = |bj| = |patt(b);| = |patt(b);| (préservation du cluster),
)

(d) |bi| > |bj| = |patt(b);| > |patt(b);| (préservation de l'ordre).

Exemple FR.2.2. patt((4,0,—1.5,1.5,—4)") = (2,0, —1,1, -2)".

~SLOPE
On dit que lestimateur SLOPE 3 récupere le schéma de B lorsque

~SLOPE

patt <,B ) = patt(B).

Dans les chapitres 3 et 4, nous discutons de nouvelles conditions nécessaires et suffisantes pour le
recouvrement du SLOPE schéma, ainsi que de nouveaux résultats pour n > p sur la consistance
et la forte consistance de ’estimation SLOPE et de son schéma.

FR.2.1 Consistance

L’outil principal pour montrer la consistance forte de SLOPE est la forte consistance
de l'estimateur des moindres carrés, dont la preuve a été présentée par exemple dans 'article
de Anderson et Taylor [6]. Les principaux résultats sur la consistance de LASSO peuvent étre
trouvés dans les articles suivants:

o consistance de LASSO: Knight, Fu, 2000 [112],

o forte consistance de LASSO : Chatterjee, Lahiri, 2011 [44],
Les principales hypotheses sont que le parametre de régularisation A, est d’un ordre in-
férieur a n et qu’il existe une espérance infinie de la valeur absolue d’un terme d’erreur.

o consistance du signe de LASSO: Zhao, Yu, 2006 [192].

Les sections 3.4 et 4.6 se concentrent sur la forte consistance de SLOPE et de son schéma. 11
est important de rappeler que si le vecteur d’accord A est constant (LASSO comme cas par-
ticulier de SLOPE), alors le SLOPE schéma n’est pas consistant, méme si I’hypothese sur la
consistance du vecteur de signe est satisfaite. A titre d’exemple, les clusters d’un vrai vecteur
de parametres, qui sont contenus dans un SLOPE schéma, ne sont pas préservés par LASSO.
Comme autre remarque intéressante, on peut mentionner que la forte consistance de LASSO (ou
SLOPE) n’implique pas nécessairement la forte consistance de son signe (de son schéma SLOPE).
Comme contre-exemple, on peut remarquer que la séquence ((1/n,1/n,—1/n,—1/n)),>1 con-
verge vers (0,0,0,0)’, alors que son signe et son schéma SLOPE sont égaux (1,1, —1,—1)" pour
tout n positif.
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BSLOPE o BOLS dans un plan orthogonal: X’'X = I, pour A =(2,1).

FR.2.2 Condition d’irreprésentabilité

Etant donné tout n, p > 0, dans LASSO, la consistance de la sélection du vrai sous-ensemble de 8
est presque équivalente a ce que les coordonnées en dehors du vrai support de 8 ne soient pas
représentables par les coordonnées a 'intérieur du support [I92]. Nous introduisons un analogue
de cette condition d’irreprésentabilité de LASSO a SLOPE. Puis nous dérivons la caractérisation
géométrique d’une estimation SLOPE.

FR.2.3 Géométrie de la régression linéaire pénalisée

Pour une meilleure compréhension des connexions entre BSLOPE et ,BOLS, nous donnons une illus-

tration d’un cas de bas dimension p < n pour p = 2. Ici, I'estimation SLOPE est une différence
entre I'estimation des moindres carrés et sa projection sur (X’'X)"1Cx, ot Cp est une boule
unité dans une norme double de Jp. Ce résultat est particulierement facile a interpréter dans
le cas ou X est une matrice orthogonale. Il en résulte une formule plus simple, qui a été récem-
ment proposée par Tardivel, Servien et Concordet [I75]. Pour une présentation plus large de
I’application de I’approche géométrique a I’estimateur SLOPE et a sa récouvrement de schémas,
nous invitons a la Section (4.4l

LASSO et SLOPE présentent une connexion avec la théorie des systémes racines. En partic-
ulier, on peut observer qu’une boule unité en norme ¢, qui est duale de la norme ¢; utilisée
dans LASSO et une boule unité en norme J3 sont proportionnelles, respectivement, aux coques
convexes des orbites des groupes de Weyl correspondant au produit cartésien p*®™¢ du systeme
racine A; et au systeme racine B, [90, 144]. Pour plus d’informations sur la théorie des sys-
témes racine et ses recherches actuelles, nous renvoyons a un cahier de cours de Helgason [100]
et a [92, [63]. La géométrie des estimateurs de régression linéaire pénalisés et leur recouvrement
peuvent étre inspectés dans un cas plus général, ce qui constitue ’essence du chapitre 5. En
effet, 'estimateur SLOPE peut étre classé dans 'une des classes d’un nombre fini de classes
lorsque la pénalité est une gauge polyédrique, c’est-a-dire une fonction convexe non négative,
qui est le maximum d’un nombre fini de fonctions linéaires. Les caractéristiques importantes
de cette estimation, aussi appelée son schéma, peuvent étre entierement décrites avec le sous-
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différentiel du pénaliseur. Puisque les inégalités pour les fonctions linéaires déterminant le gauge
polyédrique sont satisfaites par une intersection du nombre fini de demi-espaces correspondants,
ces estimateurs sont fortement liés a la théorie des polytopes, cf. les livres de Gruber [94],
Griinbaum [95], Hiriart-Urruty et Lemarechal [I0I] ou Ziegler [I93]. Dans le chapitre 5, nous
généralisons certains des nouveaux résultats pour SLOPE a la classe d’estimateurs ci-dessus.
Pour généraliser la notion du schéma & la classe des gauges polyédriques, nous considérons la
classe d’équivalence des patrons, ce qui nous permet de désigner son recouvrement, comme le
recouvrement de la sous-différentielle de pen.

Nous introduisons et caractérisons l’accessibilité du schéma et nous donnons une condition
d’irreprésentabilité pour les gabarits polyédriques. Avec des outils issus de la géométrie polyé-
drique, en particulier avec les cones normaux des faces des polyedres considérés, nous discutons
les propriétés de 1’égalité des schémas entre vecteurs. Nous étudions également les relations entre
les ensembles de vecteurs ayant le méme schéma avec la notion de sous-espace modele, cf. [182].
Plus tard, nous discutons de la récouvrement du schéma par les estimateurs pénalisés seuillés, qui
sont une généralisation du LASSO seuillé, qui ne consideére pas seulement le signe de I'estimateur,
mais son schéma entier. Notre discussion étend également la caractérisation de I'unicité uniforme
d’un estimateur de la classe des normes polyédriques [I56] aux gauges polyédriques.

FR.3 Familles exponentielles discretes

Dans le chapitre 6, nous passons des espaces euclidiens aux espaces discrets, c’est-a-dire les
espaces avec un nombre fini d’éléments. Ici, le point majeur de notre intérét sont les familles
exponentielles discretes, que nous comprenons comme des familles exponentielles définies sur un
espace fini d états X, |X| = K < oo. Pour les familles sur les ensembles infinis dénombrables,
voir Jacobsen [105]. Nous considérons ensuite un sous-espace linéaire B de l'espace des fonctions
linéaires R, qui contient une fonction constante strictement positive. Nous introduisons égale-
ment une fonction de poids strictement positive u : X — (0,00). Nous construisons la famille
exponentielle de la facon suivante:
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Pour une fonction & valeur réelle ¢, nous définissons les fonctions de partition et de log-partition,

Z(¢) = e®@u(x), P(¢)=logZ(¢),

reX

respectivement, et densité exponentielle
p=e(¢) = e’V =e?/Z(¢).
La famille exponentielle couverte par ’ensemble B est

e(B) :={p=el9): ¢<B}.

Cela nous permet de dériver la fonction de vraisemblance et de log-vraisemblance. La fonc-
tion de log-vraisemblance est strictement concave. Par conséquent, si I’estimateur du maximum
de vraisemblance (MLE) existe, il est unique. Malgré le caractére borné de la fonction de
vraisemblance, 'MLE peut ne pas exister. Notre objectif principal est d’établir une nouvelle
caractérisation de 'existence de 'MLE et de I'appliquer a des familles spécifiques, les familles
exponentielles couvertes par les fonctions de Rademacher et de Walsh, et les familles exponen-
tielles de graphes aléatoires.

L’outil clé dans notre discussion est la notion nouvellement introduite d’ensemble d’unicité,
c’est-a-dire un tel ensemble U C X, que ¢ = 0 est la seule fonction d’une classe donnée de fonc-
tions qui est égale & zéro sur U. Pour étre plus précis, nous montrons que le MLE pour e(B5)
et Iéchantillon ii.d. z1,z2,...,z, € X existe si et seulement si {z1,...,2,} est I'ensemble
d’unicité pour le cone non négatif By := {¢ € B : ¢ > 0}. Nous reformulons également ce
critére sous la forme d’un probléme de programmation linéaire.

De plus, pour les applications proposées, nous utilisons les limites de probabilité établies par les
outils classiques de la théorie des graphes aléatoires et du probleme du collecteur de coupons,
voir [I18, p. 194-195], [68], et [143]. Dans la famille des fonctions de Walsh, nous utilisons
les propriétés de I'hypercube {—1,1}* (k = log, K), de ses sous-cubes et du graphe hypercube
correspondant.

FR.4 Modeles graphiques

L’une des branches de la statistique qui est connue & la fois pour 'utilisation de ’'MLE et pour
son efficacité et pour appliquer I’estimation pénalisée est la théorie des modeles graphiques. Un
modele graphique est une famille de distributions de probabilités d’une collection finie de vari-
ables aléatoires X1, ..., Xy, qui sont codées par N sommets d’'un graphe (dirigé ou non dirigé).
La présence (ou l'absence) d’une aréte entre deux sommets renseigne sur la dépendance (ou
I'indépendance) conditionnelle entre les sommets correspondants. Lorsque toutes les variables
aléatoires sont gaussiennes, on parle de modeles graphiques gaussiens. Dans ce cas, la structure
d’indépendance conditionnelle est entiérement codée par ’emplacement des zéros dans l'inverse
de la matrice de covariance (la matrice de précision) d'un vecteur X = (Xi,...,Xy)". Par
savoir plus sur les modeles graphiques nous invitons a consulter les introductions existantes sur
ce sujet [122 187, 20]. Pour la discussion sur I'existence de MLE dans les modéles hiérarchiques
discrets, qui incluent les modeles graphiques, nous nous référons a 'article de Wang, Rauh et
Massam [I85]. La version modele graphique d’un estimateur LASSO a été proposée il y a env-
iron quinze ans [130, [I88|, [79] et gagne encore en popularité, cf. par exemple [37]. La SLOPE
graphique a été proposée indépendamment par Sobczyk dans sa theése de doctorat [166] et par
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Mazza-Anthony, Mazoure et Coates [129]. Revenons-en a la structure d’indépendance condi-
tionnelle. On peut observer que ’emplacement des zéros dans la matrice de précision de X est
le méme que dans la matrice laplacienne d’un graphe sous-jacent. Dans notre discussion, nous
examinons de plus pres de tels graphes et recherchons ces processus de Markov, dont les discréti-
sations ont une matrice de covariance qui est I'inverse d’une matrice laplacienne un peu modifiée.
A titre d’exemple, lorsqu'un graphique sous-jacent est un chemin de n sommets, I'ajout de 1 &
I’entrée supérieure gauche de sa matrice laplacienne donne une inverse égale & (3); ; = min{i, j},
qui est une version discrétisée de la matrice de covariance d’un processus de Wiener.

FR.5 Plan de la theése

La these est basée sur cinq articles, dont trois sont publiés, un est en cours de révision, et un
est une version étendue d’un preprint, qui peut étre trouvé sur le site de HAL.

1. Pattern recovery and signal denoising by SLOPE when the design matrix is orthogo-
nal [I65] (avec P. Graczyk, B. Kolodziejek et M. Wilczyniski), Probability and Mathemat-
ical Statistics, 42(2):283-302, 2022

2. Pattern recovery by SLOPE [23] (avec M. Bogdan, X. Dupuis, P. Graczyk, B. Kolodziejek,
P. Tardivel et M. Wilczynski), soumis, https://arxiv.org/pdf/2203.12086.pdf

3. Pattern Recovery in Penalized and Thresholded Estimation and its Geometry [93]
(avec P. Graczyk, U. Schneider et P. Tardivel), en préparation, https://hal.science/
hal-03262087v2/document

4. Maximum likelihood estimation for discrete exponential families and random graphs [22]
(avec K. Bogdan et M. Bosy), ALEA, 19, 1045-1070 (2022)

5. Remarks on Laplacian of Graphical Models in Various Graphs [164], Proceedings, GSI
2021, Paris, France, July 21-23, 2021

Le plan de la these est le suivant:

Le chapitre 2 contient les préliminaires de la recherche présentée et décrit les notions de
base et nouvelles utilisées dans les chapitres suivants. Dans le chapitre 3, nous nous concen-
trons sur 'estimation du SLOPE dans le cas ou la matrice de planification est orthogonale,
c’est-a-dire, X' X = nI,. En ce cas, nous présentons également de nouveaux résultats sur la
forte consistance des estimateurs SLOPE et sur la forte consistance de la récouvrement de
schémas par SLOPE et nous illustrons les avantages du regroupement SLOPE dans le contexte
du dénoissement de signaux & haute fréquence. Le chapitre 4 se concentre sur la récouvrement
du SLOPE schéma sans restriction sur la matrice X. Nous montrons que la récouvrement du
schéma peut étre déterminée par deux critéres, appelés condition de positivité et condition
subdifférentielle. Plus tard, nous introduisons une condition d’irreprésentabilité SLOPE,
qui généralise la condition d’irreprésentabilité LASSO [82, 41] et nous lillustrons ensuite
géométriquement. Plus tard, nous dérivons les conditions asymptotiques raffinées sur la
consistance et la consistance forte de I'estimation SLOPE et de son schéma. Le chapitre 5
concerne le probléeme de la récouvrement du schéma dans un cas général ou la pénalité est
une gauge polyédrique. Nous établissons la condition nécessaire et suffisante pour l'unicité
uniforme de l'estimateur. Ensuite, nous dérivons des conditions pour la récouvrement du
schéma des estimateurs pénalisés par une gauge polyédrique et pour leurs versions seuillées.
Enfin, nous généralisons la condition d’irreprésentabilité pour les pénalisateurs étant des gauges
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polyédriques et nous discutons des connexions entre un schéma et un modele de 'article de
Vaiter et al. [182].

Le chapitre 6 porte sur les conditions nécessaires et suffisantes pour l'existence de I'estimateur
du maximum de vraisemblance (MLE) dans les familles exponentielles discretes. L’outil
principal de cet article est la notion d’ensembles d’unicité, c’est-a-dire les sous-ensembles d’un
espace d’état sur lesquels une fonction d’une classe donnée est égale a zéro si et seulement si
elle est égale a zéro sur un espace entier. Nous appliquons nos résultats a la classe des fonctions
de Rademacher et de Walsh et aux modeles de graphes aléatoires exponentiels (ERGM). Dans
le chapitre 7, nous abordons le lien entre les modeles graphiques gaussiens et les matrices de
covariance des processus de Wiener discrétisés. Pour cela, nous utilisons la matrice laplacienne
discréte d’une structure graphique sous-jacente.
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Chapter 1

Introduction

In recent times we may observe the rapid and inevitable emergence of data collection, both
in the number of observations and in the number of features to measure them. Due to the increase
of the influence of big data on everyday life, mathematical statistics and data science gain
growth of interest in mathematics and applied sciences. However, they should not be considered
separately from other branches of mathematics. In this dissertation we focus on proposing
new connections of modern statistics with geometry and combinatorics.

We start our discussion with finite-dimensional Euclidean spaces. We pay attention to those
situations where the space of possible values of the estimator can be partitioned into a finite
number of subsets such that there is a one-to-one correspondence between the subsets and
specific properties of estimates. This prediction of the properties of an observation is better
known as a classification problem [32], research on which was started by Fisher [77] and is being
applied in almost all fields related to data processing.

1.1 Penalized Linear Regression

As one of important applications of the classification problem, we can point out the modifica-
tions of linear regression, which do not focus on the exact estimate value but on its important
properties. In the multiple linear regression model having n observations and p explanatory vari-
ables, we assume that the response vector Y = (Y1,...,Y,,) € R" is of the foom Y = X8 + ¢,
where X € R™P is a design matrix, 8 = (81,...,5p)" € R is an unknown vector of regression
coefficients and € = (e1,...,&,) € R" is a random noise. The main objective of linear regres-
sion is to estimate B and recover its essential properties. The wide class of problems of choosing
the subset of coordinates of 8, which is most suitable for our demands on the estimate and its
sparsity, is better known as the model selection problem. For the survey on the model selection
problem, cf. [49]. In most of our discussion, we assume that the error € has a symmetric and
continuous distribution. Some of our results cover the noiseless case of € = 0, which is a strong
tool for establishing asymptotic results. Due to the abundance of the existing knowledge on the
Gaussian distribution, we are also able to present more efficient results on the behavior of con-
sidered estimators with Gaussian &€ ~ N(0,02I,). The most classical linear regression method,
the Ordinary Least Squares method (OLS), was proposed by Legendre at the beginning of the
nineteenth century [10, 97, [124]. The OLS estimator is defined as the minimizer of the residual
sum of squares, namely

BOYS .= argmin||Y — Xb)s.
beRp

1
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The OLS estimator gained its popularity in the case n > p due to its simplicity, efficiency for
a relatively small number of variables [33, p. 4] and many useful statistical properties. For
example, if the matrix X’X is invertible and Cov(Y') = 021, for ¢ > 0, then the OLS is the
best linear unbiased estimator (BLUE) [I, Theorem 2.7.1.] of 8. In this case, the exact formula
for 95 can be easily deduced [1, p. 28]:

,BOLS (X X) Ix'y .

If we additionally assume the gaussianity of Y, then OLS is also the maximum likelihood
estimator (MLE) of B8 [I, p. 28]. When the design matrix X is orthogonal, i.e. X'X = cI,,
¢ > 0, the above formula boils down to 1S = %X’Y. Under the above assumptions, the OLS
is also a strongly consistent estimator of 8 [6]. However, this estimator is not uniquely defined
when the matrix X’X is not invertible, which is the case in a high-dimensional setting p > n.
Additionally, under common assumptions on the error term e, OLS estimate is not sparse, with
probability 1 it contains p coordinates of mutually different values. For an example of unusual
assumptions on Y and X and no unique estimate, one may get acquainted with to a recent
article by Dupuis and Vaiter [62]. As the true vector 8 € RP of regression coefficients could
contain much fewer nonzero coordinates, there is a natural pathway to propose methods that
would promote the sparsity of 8, that is, a small number of nonzero coordinates, or at least
to promote the estimates of B that are describable by a small number of parameters. Several
solutions were proposed to deal with such problem. One of them is to compare the suitable
models by an information criterion, for example BIC [I58] or AIC [2]. Another approach is to
use the penalized regression of the form

b= argmin | Y~ Xb[3 + pena 8)].
e p

where pen, (b) is an arbitrary nonnegative penalizer, modifiable according to the value of A > 0.
It has been applied, for example, in brain imaging [39], forecasting electricity prices [106], [180] or
in financial mathematics to group assets with respect to their partial correlation with the hedge
fund return times series [116]. The first presence of this idea is the best subset selection [12}, [102]
with pen, (b) = A||b||p being a number of nonzero coordinates of b multiplied by A\. However, for
large values of p, finding the best subset by this method is an NP-hard problem [7§]. For a sparser
solution, one may use the Least Absolute Shrinkage and Selection Operator (LASSO [47, I7€]),
in which the penalty added to the residual sum of squares ||[Y — X 3|2 is an ¢; norm of 8 and
the tuning parameter is A > 0:

R 1
BLASSO := arg min [HY — Xb”% + )\anl} :
beRr L2

The LASSO estimator is not unbiased, as a shrinkage estimator it brings some coefficients
BJLASSO toward zero. Some of the coordinates are being shrunk completely to zero, which results
in a sparser estimate. When the design matrix X is orthonormal, i.e. X’'X = I, the exact
formula for B“A55C found by Tibshirani [I76] is based on BOUS:

A0 — sign(B0) mas {135 - 10}

To guarantee the existence of a solution of the penalized linear regression problem, many pro-
posals offer the penalty to be convex. This also allows one to apply the tools from convex
analysis. For a broader comparison of other modifications of a LASSO estimator, we refer to the
article [78]. However, there are also applications of nonconvex penalizers, e.g., the best subset
selection [12], [102] or the smoothly clipped absolute deviation (SCAD) [72].
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1.2 SLOPE

Another approach to reduce dimensionality is the Sorted ¢; Penalized Estimator (SLOPE [27]
20, [189)]), which apart of generalizing the LASSO method, clusterizes the equal coefficients of 8
and correlated columns of the design matrix X. As the name suggests, in SLOPE the ¢; norm
as penalizer is replaced by the sorted ¢1 norm:

p

INOED LI

i=1

where Ay > 0,A\; > ..., A, > 0and |b\(1) > .. > \b\(p) are the absolute values of coordinates of b
sorted in descending order. The special subcase of SLOPE with A being an arithmetic sequence
is also known as the OSCAR estimator [29]. It is important to note that in SLOPE a single
tuning parameter X is replaced by a non-increasing vector A = (A, A2,...,Ap)" of p tuning
parameters (the tuning vector). Thus, it allows us to modify not only the scaling of A, but also
its shape. The main motivation of the authors of SLOPE was the testing of p null hypotheses
H? : B; = 0 and the control of the rate of false discoveries (the FDR control), which is defined as
the expected proportion between the amount of false rejections of null hypotheses and the total
amount of rejections of null hypotheses (in case of no rejections, the FDR is defined to equal
zero). Moreover, SLOPE generalizes some of the previous approaches in linear regression:

« A =...=),=0= BSLOPE _ gOLS

o A\ :___:/\p > 0:>BSLOPE:BLASSO’

e A is an arithmetic sequence = BSLOPE = BOSCAR.

A more detailed description of the history of research on SLOPE can be found in Section [4.1.1}
In our research, we focus on another important property of SLOPE, that is the recovery of im-
portant characteristics of a vector of regression coefficients 3, called its SLOPE pattern. It is
an analogue of the sign vector in LASSO and, like its precedessor, it is fully describable by the
subdifferential of the penalizing norm. To be more specific, let £ be the number of clusters
of patt(B) = (m1,...,mp) ie., the number of distinct nonzero components of |3|.

Definition 1.2.1 (SLOPE pattern). The SLOPE pattern is a function
patt : RP — 7P such that
patt(b); = sign(b;)rank(|b;|),

where rank(|b;]) € {1,2,...,k} is defined to be the number of |c;|’s satisfying |b;| > |c;|, where
lei]s |eal, - - |ckl, k < p, are distinct nonzero values among |by|, .. ., |by,|. We adopt the convention
that rank(0) = 0.

The SLOPE pattern does not only preserve the sign of a vector, but also detects its clusters, i.e.
the sets of coordinates sharing the same absolute value and the order between those absolute
values (hierarchy between clusters).

Fact 1.2.1 (Basic properties of SLOPE pattern [156]).
(a) for every 1 <[ < ||patt()| there exists j such that |patt(b);| =1,

(b) sign(patt(b)) = sign(b) (sign preservation),

(c) |bi| = |bj| = |patt(b);| = |patt(b);| (cluster preservation),
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(d) |bs| > |bj| = |patt(b);| > |patt(b);| (hierarchy preservation).

Example 1.2.2. patt((4,0,—1.5,1.5,—4)") = (2,0,—1,1, —2)".

~SLOPE
We say that the SLOPE estimator 8 recovers the pattern of 8 when

~SLOPE

patt (ﬂ > = patt(B).

In Chapter 3 and Chapter 4 we discuss novel necessary and sufficient conditions for the recovery
of the SLOPE pattern, as well as the novel results for n > p on the consistency and strong
consistency of both the SLOPE estimate and its SLOPE pattern.

1.2.1 Consistency

The main tool to show the strong consistency of SLOPE is the strong consistency of the Ordinary
Least Squares estimator, the proof of which was presented e.g. in the article of Anderson and
Taylor [6]. Main results on the consistency of LASSO might be found in the following articles:

o consistency of LASSO: Knight, Fu, 2000 [112],

o strong consistency of LASSO: Chatterjee, Lahiri, 2011 [44],
Main assumptions are that the tuning parameter A, is of a smaller order than n and that
there is a finite expectation of the absolute value of an error term.

o consistency of the sign of LASSO: Zhao, Yu, 2006 [192].

Sections 3.4 and 4.6 focus on the strong consistency of SLOPE and its pattern. It is important
to recall that if the tuning vector A is constant (LASSO as the special case of SLOPE), then the
SLOPE pattern is not consistent, even if the assumption on the consistency of the sign vector
is satisfied. As an example, the clusters of a true vector of parameters, which are contained
in a SLOPE pattern, are not preserved by LASSO. As another interesting remark, it may be
mentioned that the strong consistency of LASSO (or SLOPE) does not necessarily imply the
strong consistency of its sign (of its SLOPE pattern). As a counterexample, one may notice
that the sequence ((1/n,1/n,—1/n,—1/n)"),>1 converges to (0,0,0,0)", while its sign and its
SLOPE pattern are equal (1,1,—1,—1) for every positive n.

1.2.2 Irrepresentability condition

Given any n,p > 0, in LASSO, the consistency of selection of the true subset of 3 is almost
equivalent to the coordinates outside the true support of 8 not being representable by the coor-
dinates inside the support [I92]. We introduce an analogue of this Irrepresentability Condition
from LASSO to SLOPE. Then we derive the geometric characterization of a SLOPE estimate.

1.2.3 Geometry of penalized linear regression

For a better understanding of the connections between B5“OPE and BOLS, below we give an il-

lustration of a low-dimensional case p < n for p = 2. Here, the SLOPE estimate is a difference
between the least squares estimate and its projection onto (X’'X)~'Ca, where Cj is a unit ball
in a norm dual to Ja. This result is especially easy to interpret in the case of X being an or-
thogonal matrix. That resulted in an easier formula, which was recently proposed by Tardivel,
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Servien and Concordet [I75]. For a wider presentation of applying the geometrical approach to
the SLOPE estimator and its pattern recovery we invite the reader to Section [4.4]

LASSO and SLOPE estimators exhibit a connection to the theory of root systems. Namely, it
may be observed that a unit ball in £, norm, which is dual to the ¢; norm used in LASSO
and a unit ball in J} norm are proportional, respectively, to the convex hulls of orbits of Weyl
groups corresponding to the pt" Cartesian product of the root system A; and of the root sys-
tem B, [90} 144]. For more on the theory of root systems and its current research, we refer to
a coursebook of Helgason [100] and to [92] [63].

The geometry of penalized linear regression estimators and their pattern recovery may be in-
spected in more general case, which is the essence of Chapter 5. Indeed, the SLOPE estimator
can be classified into one of finite number of classes when the penalty is a polyhedral gauge,
i.e. a nonnegative convex function, which is a maximum of a finite number of linear functions.
The important features of this estimate, also named its pattern, may be fully described with the
subdifferential of the penalizer. Since the inequalities for linear functions determining the poly-
hedral gauge are satisfied by an intersection of the finite number of corresponding half-spaces,
those estimators are strongly connected with the theory of polytopes, cf. the books of Gru-
ber [94], Griinbaum [95], Hiriart-Urruty and Lemarechal [I0I] or Ziegler [193].

In Chapter 5 we generalize some of the new results for SLOPE to the above class of estimators.
To generalize the notion of pattern to the class of polyhedral gauges, we consider the pattern
equivalence class, which allows us to denote its recovery, as the recovery of the subdifferential
of pen.

We introduce and characterize the accessibility of the pattern and we give an irrepresentabil-
ity condition for polyhedral gauges. With tools from polyhedral geometry, especially with the
normal cones of faces of considered polyhedra, we discuss the properties of the pattern equality
between vectors. We also investigate the relations between sets of vectors having the same pat-
tern with the notion of the model subspace, cf. [182].

Later on, we discuss the pattern recovery by thresholded penalized estimators, which are a gen-
eralization of the thresholded LASSO, which considers not only the sign of the estimator, but
its entire pattern, Our discussion also extends the characterization of the uniform uniqueness
of an estimator from the class of polyhedral norms [I56] to polyhedral gauges.

1.3 Discrete exponential families

In Chapter 6 we move our focus from Euclidean to discrete spaces, i.e. spaces with a finite
number of elements. Here, the major point of our interest are the discrete exponential families,
which we understand as exponential families defined on a finite space of states X, |X¥| = K < oc.
For families on infinite countable sets, see Jacobsen [105]. Then we consider a linear subspace
BB of the space of linear functions R, which contains a strictly positive constant function. We
also introduce a strictly positive weight function p : X — (0, 00).We construct the exponential
family in a following way:

For a real-valued function ¢ we define the partition and log-partition functions,

Z(¢) =Y e’ Dpu(x), v(¢)=logZ(9),

reX

respectively, and exponential density

p=e(d) =V = e?/7(9).
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The exponential family spanned by B is

e(B) :={p=e(¢): ¢ <€ B}.

This allows us to derive the likelihood and log-likelihood function. The log-likelihood function
is strictly concave. Therefore, if the Maximum Likelihood Estimator (MLE) exists, then it is
unique. Despite the boundedness of the likelihood function, MLE may not exist. Our main
goal is to establish a new characterization of the existence of MLE and to apply it to specific
families, exponential families spanned by Rademacher and Walsh functions, and exponential
families of random graphs.

The key tool used in our discussion is the newly introduced notion of set of uniqueness, that is
such set U C &, that ¢ = 0 is the only function of a given class of functions that equal zero on U.
To be more specific, we show that the MLE for e(B) and the i.i.d. sample z1,z2,...,2, € X
exists if and only if {x,...,x,} is the set of uniqueness for the nonnegative cone By := {¢ €
B: ¢ >0}. We also restate this criterion as a linear programming problem.

Additionally, for proposed applications, we use the probability bounds established by classical
tools from random graph theory and from the Coupon Collector’s Problem, see [I18, pp. 194-
195], [68], and [143].

In the family spanned by Walsh functions, we use the properties of the hypercube {—1,1}*
(k = logy K), of its subcubes and of the corresponding hypercube graph.

1.4 Graphical models

One of those branches of statistics that is known both for using the MLE and for applying
penalized estimation is the theory of graphical models. A graphical model is a family
of probability distributions of a finite collection of random variables X, Xo,..., Xy, which
are encoded by N vertices of a graph (directed or undirected). The presence (or absence)
of an edge between two vertices informs about the conditional dependence (or independence)
between the corresponding vertices. When all random variables are Gaussian, we refer to
Gaussian graphical models. In this case, the conditional independence structure is fully encoded
by the location of zeros in the inverse of the covariance matrix (the precision matrix) of a
vector X = (Xi,..., Xy)". We invite the reader interested in graphical models to the existing
introductions for this topic [122} 187, [20]. For the discussion on the existence of MLE in discrete
hierarchical models, which include graphical models, we refer to the article of Wang, Rauh
and Massam [I85]. The graphical model version of a LASSO estimator was proposed around
fifteen years ago [130, (188, [79] and still gains popularity, cf. e.g. [37]. The graphical SLOPE
was proposed independently by Sobczyk in his Ph.D. dissertation [166] and by Mazza-Anthony,
Mazoure and Coates [129].

Let us come back to the conditional independence structure. It may be observed that the
location of zeros in the precision matrix of X is the same as in the Laplacian matrix of an
underlying graph. In our discussion we take a closer look at such graphs and look for those
Markov processes, the discretizations of which have a covariance matrix being an inverse of a
slightly modified Laplacian matrix. As an example, when an underlying graph is a path of n
vertices, then adding 1 to the top-left entry to its Laplacian matrix results in an inverse equal
to (X);; = min{¢, j}, which is a discretized version of a covariance matrix of a Wiener process.
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1.5 Plan of the dissertation

The dissertation is based on five articles, three of which are published, one is currently under
the review process, and one is an extended version of a preprint, which can be found on HAL
and will be submitted soon.

1. Pattern recovery and signal denoising by SLOPE when the design matrix is orthogo-
nal [I65] (with P. Graczyk, B. Kolodziejek and M. Wilczynski), Probability and Mathe-
matical Statistics, 42(2):283-302, 2022

2. Pattern recovery by SLOPE [23] (with M. Bogdan, X. Dupuis, P. Graczyk, B. Kolodziejek,
P. Tardivel and M. Wilczynski), submitted, https://arxiv.org/pdf/2203.12086.pdf

3. Pattern Recovery in Penalized and Thresholded Estimation and its Geometry [93] (with
P. Graczyk, U. Schneider and P. Tardivel), in preparation, https://hal.science/
hal-03262087v2/document

4. Maximum likelihood estimation for discrete exponential families and random graphs [22]
(with K. Bogdan and M. Bosy), ALEA, 19, 1045-1070 (2022)

5. Remarks on Laplacian of Graphical Models in Various Graphs [164], Proceedings, GSI
2021, Paris, France, July 21-23, 2021

The outline of the dissertation is the following:

Chapter 2 contains preliminaries of the presented research and describes the basic and novel
notions used in latter chapters.

In Chapter 3 we focus on the SLOPE estimation in case of design matrix being orthogonal,
that is, X’X = nI,. We also present new results on the strong consistency of the SLOPE
estimators and on the strong consistency of pattern recovery by SLOPE when the design matrix
is orthogonal and illustrate the advantages of the SLOPE clustering in the context of high
frequency signal denoising.

Chapter 4 focuses on the SLOPE pattern recovery with no restrictions on the design matrix.
Here, we show that recovery of the pattern can be determined by two criteria, called the positiv-
ity condition and the subdifferential condition. Later, we introduce a SLOPE irrepresentability
condition, which generalizes the well known LASSO irrepresentability condition [82] [41] and
then we illustrate it geometrically. Later on, we derive the refined asymptotic conditions
on both consistency and strong consistency of the SLOPE estimate and of its pattern.

Chapter 5 concerns the problem of pattern recovery in a general case of a penalty being
a polyhedral gauge. We establish the necessary and sufficient condition for the uniform
uniqueness of the estimator. Then we derive conditions for the pattern recovery of polyhedral
gauge penalized estimators and for their thresholded versions. Finally, we generalize the
irrepresentability condition for penalizers being polyhedral gauges and discuss the connections
between a pattern and a model from the article by Vaiter et al. [I82].

Chapter 6 focuses on the necessary and sufficient conditions for the existence of the Maximum
Likelihood Estimator (MLE) in discrete exponential families. The main tool in this article is
the notion of sets of uniqueness, i.e. such subsets of a state space on which a function from
a given class equals zero if and only if it equals zero on a whole space. We apply our results
to the class of Rademacher and Walsh functions and to exponential random graph models
(ERGM).

In Chapter 7 we discuss the connection between Gaussian graphical models and the covariance
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matrices of discretized Wiener processes. For that reason, we use the discrete Laplacian matrix
of an underlying graphical structure.
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CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries and basic notions on
penalized linear regression

2.1

Notation

The content of this section will be completed after unifying the notation in the whole dissertation.

A’ — transpose of a matrix A

|b|; — nonincreasing permutation of absolute values of coordinates of b
O0f (x) — subdifferential of f at «

By |(b,r) — ball of center b and radius r in norm || - |
cl(C) — closure of C

int(C') — interior of C'

aff(C') — affine hull of (C)

8 — unique linear space parallel to C'

cl(C) — closure of C

bd(C) — boundary of C

ri(C') — relative interior of C

rb(C) — relative boundary of C

conv(C') — convex hull of C

cone(C') — conic hull of C

rec(C') — recession cone of C'

P (x) — orthogonal projection of @ onto C'

C* — polar set of C

1,=(1,...,1) e RF

11
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1, €A,
o ly(x)= B — characteristic function of a set A
0, z¢A.

For the convenience of the reader, when a set A is defined as a set of points satisfying the
relation ¢ we reduce the notation from 1,41 (7) to Lig@), €8 Lizso)-

o J, e R, (Jp)ij =1 for every 1 <i,j <n.
o supp(v) ={ie€{l,...,p} s; # 0} — support of a vector v € RP

o diag(S) € RP*? — diagonal matrix with S € R? on the diagonal
(diag(S))ij = sil{i=j}

e M, — set of all possible SLOPE patterns of b € RP

lifz>0

e sign(z) :=<0ifz=0 — sign function
—1lifx <0

o sign(x) = (sign(z1),...,sign(z,))’ — sign vector

e RF :={keRF: k1 > Ky >...> K >0}
e S, — symmetric permutation group on the set {1,...,p}

e Q7 :=max{Q,0}.

2.2 Penalized linear regression

2.2.1 Linear regression

We consider the following linear regression model
Y = X3 +e,

where Y € R" is a response vector with n being a sample size, X € R"*P is a design matrix
with p being the number of unknown parameters, 8 € RP is an unknown parameter vector and
e € R" is a noise term.

The case of e = 0 (e # 0) is referred later as a noiseless (noisy) case.

In the penalized linear regression we want to find an estimator B of a vector B, which is of the
form

B := arg min 1||Y — X b3 + pena(b)|,

beRr L2
where, depending of the estimation method, A is a tuning parameter or a vector of tuning
parameters (tuning vector). When dealing with a single tuning parameter, we denote it with a
small letter A, restricting a capital letter A for a vector (Aq,...,\p)".
As we are mostly interested with recovering a pattern of a vector 3, we are interested to define
it in a general case. For that reason, we use a notion of a subdifferential and define two vectors
to have the same pattern if the penalizer has the same subdifferential at those vectors
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Definition 2.2.1 (Subdifferential). [{1, p. 76] Let f : RP — R be a convex function. A vector
d € RP is called a subgradient of f at point x € RP if

fly) > f(®) + (y —=)d, VyecR"

The set of all subgradients of the convex function f at x € RP is called the subdifferential of f
at x, and it is denoted by Of (x).

Remark 2.2.1. [I7, p. 716] = € RP is a minimum of a convex function f if and only if

0 € df(x).
Example 2.2.2. [89, Lemma D.5] The subdifferential of the ¢; norm at € RP is given by
{1} if ¢ >0

I|.Ii(x) = 9|.|(z1) x --- x J|.|(xp) where 9|.|(t) =< [-1,1] if t =0
{-1}ift <0

The subdifferential of the /., norm at 0 is the unit ball of the /; norm and for & € RP where
x # 0 this subdifferential is equal to

vy > 0if [z =
au.uoo(:c):{sew; sl = 1 and {l‘ > 0 [z] = [Jeoc }

s;x; = 0 otherwise

Definition 2.2.2 (Equality of patterns). Let pen : RP — R be a convex penalizer. We say that
x € R?P and z € RP have the same pattern with respect to pen when Open(x) = dpen(z), where
Open represents the subdifferential of pen.

We say that the estimator B recovers the pattern of 8 when
Jdpen (B) = dpen(f).

Example 2.2.3 (LASSO pattern). In the LASSO regression, i.e., when pen(x) = |||, the
pattern of B identifies with its sign vector:

patt(B) = sign(B).
The proof of the above example goes straightforwardly from Example

Theorem 2.2.4 (Subdifferential description of the SLOPE pattern [156]).
Let A = (A1,...,Ap) satisfy \y > ... >\, > 0. Then

patt(bl) = patt(bg) e OJA(bl) = aJA(bg)
The pattern of SLOPE defined in Definition coincides with the following definition.

Definition 2.2.3 (SLOPE pattern [23]). The SLOPE pattern is a function
patt : RP — 7P such that
patt(b); = sign(b;)rank(|b;|),

where rank(|b;]) € {1,2,...,k} is defined to be the number of |c;|’s satisfying |b;| > |c;|, where
leil, e2l, - ..y |ekl, k < p, are distinct non-zero values among |bi|, ..., |bp|. We adopt the conven-
tion that rank(0) = 0.
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Fact 2.2.5 (Basic properties of SLOPE pattern [I56]).
(a) for every 1 <[ < ||patt()| there exists j such that [patt(b);| =1,

(b) sign(patt(b)) = sign(b) (sign preservation),
(c) |bi] = |bj| = |patt(b);| = |patt(b);| (cluster preservation),

(d) |bi| > |bj| = |patt(b);| > |patt(b);| (hierarchy preservation).

Example 2.2.6. patt(4,0,—1.5,1.5,—4) = (2,0,—1,1,-2)".

As a (nonzero) cluster in a vector M € RP we denote a maximal (in terms of inclusion) set of
indices 7 in supp(M) such that the absolute value M is the same. For example, the vector
(3,-3,1,3,1,4) has three clusters: {1,2,4}, {3,5} and {6}.

Definition 2.2.4. Let M # 0 be a pattern in M, with k = ||M||« nonzero clusters. The
pattern matriz Uz € RP*F is defined as follows

(UM)ij = Sign(mi)l(‘mi‘:k+1_j), 1€ {1, e ,p}, jE {1, e k}

Example 2.2.7. Let 8 = (3,—4,-3,0,4,10). Then the pattern of B8 equals M =
(1,-2,-1,0,2,3) and

0 0 1
0 -1 0
0 0 -1

Um=1y o o
0 1 0
1 0 0]

Note that B can be represented by a product of Upg and the vector (10,4,3) € R3*. For every
B with pattern M such a vector in R3* exists.

Definition 2.2.5. Let M # 0 be a pattern in R? and k = max{||M ||, 1}.
For X € R"™P we define the clustered design matriz by Xm = XUwm € R™* and the clustered
parameter by Av = (Upn,) A

Example 2.2.8. Let X = (X1|X2|X3|X4), M = (1,2,-1,0)
and A = (A1,..., A1) € R*. Then |M|; = (2,1,1,0)". The clustered matrix and the clustered
parameter equal:

~ ~ A
X = (X2| X1 — X3) and Ay = (Az +1A3> .

2.3 Convex Polytopes and cones
2.3.1 Convex analysis
We consider R"™ with the norm || - |.

Definition 2.3.1 (Affine set). [33, Sec. 2.1.2] A set C € R" is affine if for any x1,x2 € C
and 0 € R we have 6x1 + (1 —0)xz € C.
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Definition 2.3.2 (Affine hull). [33, Sec. 2.1.2] The set of all affine combinations of points in
a set C € RP is called the affine hull of C' (aff(C')):

aff(C) = {911‘1—|—...9k1’k: Ty, 2, €C, O1,...,0, €R, 1+ ...+0 = 1}.
Remark 2.3.1. [33] Sec. 2.1.4] aff(C) is the smallest affine set containing C'.

Definition 2.3.3 (Relative interior). [33, Sec. 2.1.3] Let C C RP. The relative interior of a
set C' is defined as the interior of C with respect to its affine hull aff(C):

1i(C) :={x € C: By (z,r)Naff(C) C C for some r > 0}.
Definition 2.3.4 (Relative boundary). [33, Sec. 2.1.3]
rb(C) := C \ riC.

Definition 2.3.5 (Convex set). [33, Sec. 2.1.4] A set C € R" is convez if for any x1,x2 € C
and 0 € [0,1] we have 6x1 + (1 — 0)xs € C.

Definition 2.3.6 (Convex hull). [35, Sec. 2.1.4]
conv(C) :={bhx1+... +Opxy: ;€C,0;, >0, i=1,....k O1+...+6, =1}
Remark 2.3.2. [33] Sec. 2.1.4] conv(C) is the smallest convex set containing C.

Definition 2.3.7 (Convex cone). [35, Sec. 2.1.5] A set C' € RP is a convex cone if for any
x1,xo € C and 01,05 > 0 we have 011 + O35 € C.

Definition 2.3.8 (Conic hull). [33, Sec. 2.1.5]
cone(C) :=={bhx1+ ...+ Oy, : ¢, €C,0, >0, i=1,...,k}.
Remark 2.3.3. [33] Sec. 2.1.5] cone(C) is the smallest convex cone containing C'.

Definition 2.3.9 (Recession cone). [193, Definition 1.11. 2.1.5]] Let C € RP be a convex set.
Then the recession cone of C' is defined as

rec(C):={yeRP: x+tyecC foralaxecC,t>0}.

Remark 2.3.4. [I01, Prop. III. 1.2.1] A non-empty closed and convex set C' is compact if and
only if rec(C) = {0}.

Definition 2.3.10 (Orthogonal projection). [33, Sec. 8.1] Let C C RP be a closed set and let
xy € RP. The orthogonal projection of xg onto C is defined as

Po(xg) := arg min|jx — xo||2
xeC

Definition 2.3.11 (Half-space). [34, p. 9] Let y € RP and o € R. Then
K(y,a) = {w € R (z,y) < a}.
Definition 2.3.12 (Hyperplane). [3/, p. 9] Let y € RP and o € R. Then

H(y,a)={xcRV: (z,y) =a}l.
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Definition 2.3.13. Let A C R? be an affine space, i.e.

l
Elylﬂ"'7yl€IR'p7 Oél,-..,OélGIR, A:mH(ymal)
=1

Then by Z we define the unique linear space parallel to A
l
A = () H(y;,0).
i=1

Definition 2.3.14 (Polar set). [34, p. 37] For any M C RP, the polar set M* is defined by
M :={yeRP: Ve M: (x,y) <1}

Equivalently, M* = (| K(z,1).
reM

2.3.2 Polytopes

We recall basic definitions and facts about polytopes, which we will use throughout the proofs.
The following can be found in textbooks, such as [94] and [193].
A set P C R? is called a polytope if it is the convex hull of a finite set of points {v1,...,vr} C RP,
that is,

P = conv{vy,..., v}

The dimension dim(P) of a polytope is defined as the dimension of aff(P), the affine subspace
spanned by P. An inequality @’z < ¢ is called a valid inequality of P if P C {x € R? : a'z < c}.
A face F' of P is any subset F' C P that satisfies

F={xeP: axz=c}, where PC{xecRP: dzx <c},

for some a € R?P and ¢ € R. Note that F' = @ and F' = P are faces of P and that any face F
is again a polytope. A non-empty face F' with F # P is called proper. A point g € P lies in
ri(P) if &( is not contained in a proper face of P. We state two useful properties about faces in
the following lemma.

Lemma 2.3.1. Let P C R? be a polytope given by P = conv{vy,..., vy}, wherevy,...,v; € RP.
The following properties hold.

(a) If F and F are faces of P, then sois FNF.
(b) Let L be an affine line contained in the affine hull of P. If LNri(P) # &, then L intersects
a proper face of P.
2.3.3 Pattern equivalence class

Definition 2.3.15 (Pattern equivalence class).
(a) Let x € RP and let pen be a polyhedral gauge. The pattern equivalence class Cy is the set
of all vectors having the same subdifferential as x:

Cy :={w € R?: Open(w) = dpen(x)}.
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Definition 2.3.16. Let ' C RP. As F- we denote the orthogonal complement of aff(F;.
Example 2.3.5. For any « € R?, we have {z}+ = {0}+ = RP.

Lemma 2.3.2. Let xg € F. Then

lin(F —xp) = M.
Proof. By [101], Sec. II1.5.3.] we have
lin(Ry(F — x)) = aff (F) — .
The statement is proved after observing that lin(F — xg) = lin(R4 (F — x)) and aff(F) —xo =

aﬂ'(F;. O

2.3.4 Normal cones

Definition 2.3.17. [31, p. 15/, [101, p.136] The normal cone to a convex set C' at a point
x € C, written No(Z) is the convexr cone of normal vectors, i.e. vectors d in RP such that
(d,x —x) <0 for all points x in C.

Definition 2.3.18. [70, Def. 4.12.] If F is a face of a closed conver set K and x € riF, then,
Ni(x) does not depend on x € ri F' and is denoted by Nk (F') and is called the cone of normals
of K in F.

Lemma 2.3.3. [70, Lemma 3.1.] Let K be a closed convex set in R". To each € R™ there
exists a unique ' € K such that

2| = inf ||z —yl.
o=/l = inf o -yl

Definition 2.3.19. [70, Def. 3.2.] The map

pr R" — K
x— pg(x) =

of Lemma |2.3.5 is called the nearest point map relative to K.

Definition 2.3.20. [70, Def. 4.7.] Let © be a point of the closed convex set K. We call
Ng(z) := —x + pit(z)

the normal cone of K at x.

Proposition 2.3.1. The Definitions|2.5.17 and|2.5.2( are equivalent.

Proof. By [101], Proposition III. 5.3.3.], the point s € RP belongs to Nx (z) from Definition[2.3.17]
if and only if & = py(x + s). It implies that py'(x) = = + Ng(z), thus

Ni(@) = -z + px ().

Corollary 2.3.1. The normal cone Nk (x) is invariant under translations of the set K.
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Theorem 2.3.6. [70, Theorem 4.13.] Let K be a compact convex set in RP and x a relative
interior point of a face ' # @ of K. Then

{ri Ng(x): F is a face of K} = {ri Ng(F): F is a face of K}
is a partition (disjoint covering) of RP.

Definition 2.3.21 (Conjugate face). [34, p. 40] Let F be a face of a polytope P. The conjugate
face F° of a dual polytope P* is defined as follows

Fo:={yeP": (xz,y)=1 VxeF}

Equivalently, we get
F°= () Kz, 1)n (| H(',1),
reP el
where the first and second intersection are equal respectively to P* and aff(F°).
Consider a convex polytope P = {v € RP : (sj,v) <1, j=1,...,m}, cf. [10I], p. 138]. We
define its active set for x € RP as Ap(x) :={j=1,...,m: (sj,v) =7;}

Proposition 2.3.2. [9], Proposition 14.1] We have
Np(x) =cone({s; : j€ Ap(x)}).

Theorem 2.3.7. Let B* be the polar set of the polytope B. Let x € ri(F'), where F is a face
of B*. Then the normal cone at x to B* is given by Np«(x) = R4 F°, where F° C B is the
conjugate face to F.

Proof. (RyF° C Np«(x)):
Let y € Ry F°. Then there exists such v > 0, that y € vB and (x,y) = ~ for every € F. It
implies that

(v,y) <+ Vv e B*and (x,y)=yVaxel

Therefore (v,y) < (x,y) for all v € B*, i.e. (v—a,y) <0 for all v € B*, which means that
Yy € Np» (:L')

(Np+(x) C Ry F°):

Let y € Np«(x), i.e. (y,v—x) <0 for every v € B*. Thus the maximum of the value of
(y,v — x) over v € B* is attained at v = . Moreover, as (y,v) < (y,x) for every v € B*, we
get y € (y,z)B. Now it suffices to prove that for every v € F' we have (y,v) = (y, ).

Take any v € F. Since « € ri(F) C F, we have Np«(x) C Np-(v). Then (y,w — x) < 0 for
every w € B*, which implies that (y,v —x) <0, i.e. (y,v) < (y,x).

On the other hand, y € Np«(v). Therefore (y,w —v) < 0 for every w € B*, which implies that
(y,x —v) <0, ie (y,z) < (y,v).

Thus for every v € F' we have (y,v) = (y,x), hence y € (y,x)F° C R4 F°. O

2.3.5 Polyhedral gauges

Definition 2.3.22 (Gauge). [153, p. 53] Let K C RP be a closed convex set containing 0. The
gauge function of K is defined as

inf{A\>0: x € \K}
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The gauge function of K is also known as the Minkowski functional of K. When K is a
polyhedron, its gauge function is known as a polyhedral gauge pen and can be written as the
maximum of linear functions [152 [133]:

Vx € R?,pen(r) = max{0,u|x,...,ujx}, for some uy,...,u; € RP.
Note that a polyhedral gauge, whose unit ball {x € RP : pen(x) < 1} is a bounded and
symmetric with respect to the origin polyhedron, is a polyhedral norm.

2.3.6 Thresholded penalized least squares estimation

Definition 2.3.23 (Thresholded penalized least squares estimator).
Let pen be a polyhedral gauge, X € R™P, Y € R" and A > 0. Given B € Sx Apen(Y), we say
that B is a thresholded estimator of B if 8pen(,6) - 8pen(5)

Example 2.3.8. In SLOPE optimization problem, a vector 8 = (5,5,5,0,0) is a thresholded
estimator of 35OPF — (4,4,2,0,0)".
2.3.7 Permutahedron

Definition 2.3.24. Let A € RP. A permutahedron Pp is a convex hull of all possible permuta-
tions of A:
Pa := Conv((Ar(1), -+ > An(p) + T E Sp). (2.3.1)

Definition 2.3.25 (Signed permutahedron). Let A € RP. A signed permutahedron Cp is a
convex hull of all possible permutations and sign changes of A:

Ca ={m=(m,m,...,m) € RV: Z!ﬂ'| <Zx\j:i:1,2,...,p}. (2.3.2)

J<i J<i

CA is a unit ball in a norm J3 dual to the SLOPE norm Jj.

2.3.8 Basics on Moore-Penrose inverse

The notion of the Moore-Penrose inverse is crucial in the SLOPE irrepresentability condition
and is outlined below, see [91], [16].
If A is an n X p real matrix then a p x n matrix A" is called a Moore-Penrose inverse of A if

AATA=A, ATAAT = AT

and if the matrices AA" and AT A are symmetric.
There always exists a unique real Moore-Penrose inverse A" of a real matrix A. In some cases
it may be computed quickly to a more convenient form:

« If A’A is an invertible matrix, then AT = (A’A)~1 A’
o If AA’ is an invertible matrix, then AT = A’(AA")~!
e AT =A'(AAHT,

« 0t =0.

In general, the Moore-Penrose inverse A" is computed using the formula AT = A’(AA’)* and
the Singular Value Decomposition, which allows to do it numerically.
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Remark 2.3.9.
e AAT is an orthogonal projector onto col(A),

e col(AT) = col(A’).

2.3.9 Functional analysis

Definition 2.3.26 (Dual norm). [33, Appendiz A.1.6] Let || - || be a norm on RP. The dual
norm, denoted || - ||«, is defined as

|z = sup{z’b: ||b]| < 1}.
In particular, the dual sorted ¢; norm Ja has an explicit expression given in [136]:

bly -1 bl i1 16l
A1 ’ 23:1)\1' ’ ’ Zf:l)‘i

JZ(b):maX{ }, b e RP.

2.3.10 Tools from optimization

Definition 2.3.27 (Quasi-convexity). [33, Sec. 3.4.1] A function f : RP — R is called
quasiconvex if its domain and all its sublevel sets

Sa={z: f(z) <o},
for a € R, are convex. If a function —f is quasiconvex, then we say that f is quasiconcave.

Definition 2.3.28 (Semi-continuity). [101, Definition 3.2.1] We say that the convex function
f is lower semi-continuous, if
liminff(x) > /(o)

Tr—rTo

for all xg € RP. If a function —f is lower semi-continuous, then we say that f is upper semi-
continuous.

Theorem 2.3.10 (max-min inequality). [33, Sec. 5.4.1/

. -
s Jely S )= Jul pap (e t)

Definition 2.3.29 (Saddle point). [33, Sec. 5.4.2] The pair (a,b) € A x B is a saddle point
for a function f (and A and B) if

f(@,b) < f(@,b) < f(a,b)

for alla € A and b € B. In other words, we have

f(a,b) = inf f(a,b) = sup f(@,b).

acA

The existence of the saddle point implies that it attains the equality in the max-min inequality:

gup inf f(a,b) = inf sup f(a,b) = f(a,b).

Theorem 2.3.11 (Sion). [7, Ch. 7, Theorem 7.] Suppose that

(a) X andY are convex compact subsets,
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(b) for ally €Y the function x — f(x,y) is quasiconvex and lower semi-continuous,
(c) for all x € X the function y — f(x,y) is quasiconcave and upper semi-continuous,
Then there exists a saddle point {Z,y}.

Theorem 2.3.12 (Hardy-Littlewood-Pélya rearrangement inequality). [98, Theorem 368] For
everyxy < zo < ... <ap €R, 1 <yo < ... <y € R and for every permutation o € S we
have

Tpy1 + Tp—1Y2 + -+ T1Yk S oY1 F To@)Y2 - - To(k) Yk < T1Y1 + T2Y2 + o+ DYk

2.3.11 Tools from probability

Definition 2.3.30 (Convergence in distribution). [19, p. 329] Let X, and X be random
variables with respective distribution functions F,, and F. If F, — F, then X, is said to

converge in distribution or in law to X, written X, 4 X,

Definition 2.3.31 (Convergence in probability). [19, p. 330/

lim Pl X, — X| >¢] =0, for every e > 0.

A

Definition 2.3.32 (Consistency). B,, is a consistent estimator of B, if B, converges to B in
probability.

Definition 2.3.33 (Almost sure convergence). [19, pp. 59-60]
P (w : nlLI%OXn(w) — X(w)) =1.

Definition 2.3.34 (Strong consistency). Bn is a strong consistent estimator of B, if B, con-
verges to B almost surely.

Theorem 2.3.13 (Borel-Cantelli Lemma). [79, Theorem 4.53. and 4.4.]

(a) If > P(A,) converges, then IP <lim sup An> =0.

n—o0

(b) If {A,} is an independent sequence of events and Y P(A,) diverges, then

P (lim sup An) =1.
n—oo

Theorem 2.3.14 (Strong law of large numbers). [75, VII.8, Theorem 1] Let X1, X5 ... be i.i.d.

random variables with E(X) = 0. For each n > 1 denote Sy, :== X1+ ... X,. Then n~ 1S, =0

with probability 1.

Theorem 2.3.15 (Lindeberg-Feller Multivariate Central Limit Theorem). [147, Sec. 4.3.2]
Let X1, Xo..., X, beindependent random variables with multivariate distribution having mean
X - u) tends to N(0,X).

w and covariance matriz X. Then the distribution of \/n (%
Theorem 2.3.16 (CLT for linearly negative quadrant dependent variables). [115, Corollary

1.1] Let {&;} be a centered sequence of linearly negative quadrant dependent random variables
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such that {£2} is a uniformly integrable family, and let {an;, 1 < i < n} be a triangular array of
nonnegative numbers such that

and ‘
max —= — 0 as n — 0o, (2.3.3)

where 02 = Var <§: ani&). If
i=1

Z Cov(&, &) =0 as U — 00 uniformly in i>1,
Jili—jl>u

then, as n — oo,

1 & d
; Zam&, — N(O, 1).

=1
Theorem 2.3.17 (Tail inequality). If X ~ N(0,1), then

—t2/2 1

Nor3

Proof. [43] Note that for x >t > 0 we have ¥ > 1. Therefore

P(X >t) < -e

&+ | =

0. 0] oo
PX2t)=——= [1- e Pdr < —— [ L. gy = P2,
y 2T J t t

Theorem 2.3.18 (Law of Iterated Logarithm for triangular array). [117, Theorem 1 (i)] Let
{ei}icz be independent random variables such that

Ee, =0 and Ee? =0% foralln andsupEe? < oo (2.3.4)
n

[e.e]
for some r > 2. Let {an;} be a double array of constants satisfying Y. a2, < oo for every n.
—0o0
Define
[e.e]
Sn =Y anicn. (2.3.5)
—0o0
Assume that as n — oo,
o0
A, = Z aZ; — oo,
—0o0

and
sup a2, = o(A,(log A,))? for all p > 0. (2.3.6)

If there exist constants ¢; > 0 and d > 2/r such that

d
n
an — am|* < ( Z ci) for n>m > my (2.3.7)

1=m+1



2.3. CONVEX POLYTOPES AND CONES

and

d
(Z ci) =0(4,) a.s. n— oo,
i=my

then

. ||
1 < .S.
e (24, loglog A,)Y/2 — 7 s

23

(2.3.8)
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Chapter 3

Pattern recovery and signal
denoising by SLOPE when
the design matrix is orthogonal

3.1 Introduction

3.1.1 Introduction and motivations

The content of this chapter may be found in the recently published article of the author of the
dissertation, Graczyk, Kolodziejek and Wilczynski [165]. To start our discussion on the pattern
recovery by penalized linear regression methods, we start with the SLOPE estimator and the
simplest case of the design matrix X being orthogonal. For that reason let us recall the Linear
Multiple Regression. It concerns the model Y = X3 + €, where Y € R" is an output vector,
X € R™P is a fixed design matrix, 8 € R? is an unknown vector of predictors and € € R"
is a noise vector. The primary goal is to estimate 8. In the low-dimensional setting, that is,
when the number of predictors p is not greater than the number of explanatory variables n
and X is of full rank, the ordinary least squares estimator BOLS has an exact formula BOLS =
(X'X)"'X'Y. For practical reasons there is an urge to avoid the high-dimensionality curse,
therefore we want the estimate to be sparse, i.e., to be descriptible by a smaller number of
parameters. Several solutions were proposed to deal with such problem. One of them, the Least
Absolute Shrinkage and Selection Operator (LASSO [47, [I76]) involves penalizing the residual
sum of squares ||[Y — X 3|2 with an ¢; norm of 8 multiplied by a tuning parameter A:

R 1
BUASSO . — argmin | [|Y — X b3+ A|lbl| | -
beRr L2

We turn our focus on one of the extensions of LASSO, which is the Sorted ¢ Penalized Estimator
(SLOPE [27, 26} 189]). In addition, SLOPE allows one to clusterize the similar coefficients of
B. In SLOPE, the ¢; norm is replaced by its sorted version Ja, which depends on the tuning
vector A = (A1,...,Ap) € RP, where Ay > ... > X, > 0:

p
JA(B) == NilBla,
=1

where {|8]¢) P_| is a decreasing permutation of absolute values of 8, ..., By

A 1
BSLOPE . — argmin {HY — Xb|3 + Ja(b)].
beRrr L2

25



26 CHAPTER 3. SLOPE IN ORTHOGONAL DESIGN

The case of A being an arithmetic sequence was studied by Bondell and Reich [29] and called
the Octagonal Shrinkage and Clustering Algorithm for Regression (OSCAR). The special case
of SLOPE with A\; = Ay = ... = A\, > 0 is LASSO. For A = (0,...,0) we obtain the OLS
estimator.
Clustering the predictors allows for additional dimension reduction by identifying variables with
the same absolute values of the regression coefficients. Recently, interest has increased in meth-
ods that cluster highly correlated predictors [30), [85] 128, 137, 139, 168]. SLOPE is ideal for this
task, since it is capable to identify the low-dimensional structure, which is called the SLOPE
pattern, defined by Schneider and Tardivel with the subdifferential of the SLOPE norm Ju, see
Theorem 2.2.4
The clustering properties of SLOPE have been studied before, cf. [29, [76], but the researchers
consider strongly correlated predictors, which are used in financial mathematics to group the
assets with respect to their partial correlation with hedge fund return times series [116]. We
decided to consider the pattern recovery in more general case. We start with supposing the
orthogonal design

X'X =nl,. (3.1.1)

This is a classical and natural assumption in the case of experimental data; cf. [I76]. Moreover, in
the asymptotic case, where n — oo and p is fixed, it is usually supposed that X' X /n — C > 0,
cf. [192, 194]. In the design matrix X is orthogonal. Then, the Euclidean norm of each
n-dimensional column of X equals n. If it was 1, the terms of X would approach zero for large
n, which is not natural. This class of matrices is being widely used in signal analysis, [146], [48].
For general X the problem is considered in Chapter 4.

To study the properties of SLOPE we often use the closed unit ball C'p in the dual norm of
JA, which was studied, for example, by Zeng and Figueiredo [189]. This dual ball is described
explicitely as a signed permutahedron, see, e.g. [136, [156]:

Cp = {n— (m1, 7o, mp) ERP D |y <D Ajri= 1,2,...,p}. (3.1.2)

j<i j<i

Here we prove novel results on the strong consistency of SLOPE both in estimation and in
pattern recovery. We also introduce a new method, based on the minimax approach, to find the
relationship between B5FOPE and gOLS.

3.1.2 OQOutline

In Sectionwe derive the connections between BSLOPE and BOLS in the orthogonal design. We
use the minimax theorem of Sion, cf. [7]. In Section we focus on the properties of B5FOPE,
We use the geometric interpretation of SLOPE to explain its ability to identify the SLOPE
pattern and provide new theoretical results on support recovery and clustering properties using
a representation of SLOPE as a function of the ordinary least squares (OLS) estimator. A
similar approach for LASSO was used by Ewald and Schneider, cf. [71].

To analyze the asymptotic properties of the SLOPE estimator, e.g., its consistency, we have to
assume that the sample size n tends to infinity. Therefore, in Section we define a sequence
of linear regression models

Y™ =xMg4 E%n)-
In this sequence, the response vector Y™ ¢ R"™, the design matrix X (n) € R™*? and the error
term (™ = (5§n),€én), e ,sﬁl”))’ € R" varies with n and has the normal distribution N (0,021I,,).
We make no assumptions about the relations between €™ and (™) for n # m.
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In this chapter we consider the specific, but statistically important, model in which n > p and
the columns of X are orthogonal. The orthogonality assumption allows us to derive, by simple
techniques, relatively precise results on the SLOPE estimator (e.g., Theorem 3.1), which seem
unavailable when columns of X are not orthogonal. We provide the conditions under which
the SLOPE estimator is strongly consistent. Additionally, in case when for each n the design
matrix is orthogonal, we provide the conditions on the sequence of tuning parameters such that
SLOPE is strongly consistent in the pattern recovery. In Section we show the applications
of the SLOPE clustering in terms of high frequency signal denoising and illustrate them with
simulations. The Appendix covers the proofs of technical results.

Substantially more difficult techniques based on subdifferential calculus are developed in [23].
These techniques are used in [23] to establish the properties of the SLOPE estimator in the
general case, where the columns of X are not orthogonal and p may be much larger than n.
However, the asymptotic results of [23] are derived under stronger assumptions than those of
this paper. In [23] the sequence of error terms e(™ is incremental and the sequence of tuning
parameters has the form A\, = a,A, where a,, is a given sequence of positive numbers and
A € R? is fixed. In this paper we make no assumptions about the relations between €™ and
e(™) for n % m, and the sequence of tuning parameters has a general form.

3.2 Approach by minimax theorem

3.2.1 Technical results

Let X € R™ P be a real-valued matrix. Let rs,opg denote the minimum value of the SLOPE
,BSLOPE

criterion, attained by , i.e.
. 1 1 ~SLOPE ~SLOPE
rsLope i= min | =Y — Xb|5 + Ja(b) | = [|Y — X3 15+ Ja(B )-
beRp | 2 2
Since
~SLOPE ~SLOPE ~SLOPE ~SLOPE

18 2 < vplB oo and  Aq||B oo < JA(B ) < TSLOPE;

it follows that
~SLOPE 1 D
M [[B| < B rsiors < VB[ 5IY - X0[3 + Ja©)] = S Y 5.
2

We immediately get the following result.

~SLOPE||?

Corollary 3.2.1. Hﬂ

4
< My, where My = <P|B\f22)'
2 1
From this corollary it is seen that we can clearly limit our search to vectors 8 from the compact
set M C RP defined by M := {b € RP: ||b||3 < My}. Therefore, we can equivalently define a

SLOPE solution by

~ 1
BT _ e min [HY —Xb|2+ JA(b)} . (3.2.1)
beM L2

Proposition 3.2.1. Let C'p be the unit ball in the dual SLOPE norm. Then, for each b € RP,

Ja(b) = d. 3.2.2
A(b) max (3.2.2)
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The proof is a simple application of the definition of the dual norm and the reflexivity of
(RP, Jp) = (RP, JX)*. Thus

Ja(b) = [|bll(rr,75) = J§1(1p)<1m’b.
x:J3 ()<

Remark 3.2.1.
(a) A different, longer proof is given in |27, Proposition 1.1]

(b) The formula (3.2.2) holds in much greater generality for Lovdsz extensions in place
of the JA norm, see [132].

3.2.2 Saddle point

In this section we continue the assumption that X € R™*P is a real-valued matrix. Let the
function r : M x Ca — R be defined by

1
r(b,m) = §||Y — Xb|3 +7'b.

As an immediate consequence of (3.2.1)) and Proposition we obtain

. 1 . 1
rors = guin [ 1Y XbE +a®)| = iy, [ S1¥ — Xb[3+ I (b)

= min max [1HY — Xb|35+ ﬂ’b} = min max (b, ).
beMmeCp | 2 be MweCa

It turns out that the order of maximization over w € C and minimization over b € M can
be switched without affecting the result. To see this, note that both Cp and M are convex
and compact. Furthermore, for each fixed w € Cp, (b, ) is a convex continuous function with
respect to b € M and, for each fixed b € M, r(b, ) is concave with respect to w € Cp (in fact,
it is linear). Therefore, all assumptions of the Sion’s minimax theorem are fulfilled (see [7, p.
218]) and thus there exists a saddle point (8%, 7*) € M x Cp such that

. b _ . b o) = * %
we%}/ibel/{l/l T( 777) bHEH./I\l/l T( ' ) T(B - )

p— * pr— i b pr— .

s 7(8",) = juig v +(6,7) = rsvor

In the next section we shall see that the first coordinate of any saddle point (8%, 7w*) is the SLOPE
estimator.

3.2.3 SLOPE solution when X has full column rank

Since for each fixed w € Cp, the function r(b, ) is convex with respect to b € M, any point

or(b, )

by € M, at which the gradient b

is zero, is a global minimum. If we rewrite r(b, 7) as

1 1
r(b,w) = §Y/Y -Y'Xb+ ib’X’Xb +7'b
and differentiate with respect to b, we obtain

or(b, )

—_— / —
o X'(Y — Xb) + .
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Equating this gradient with 0 gives the following equation for the optimum point bsy:

X'Xbr = X'Y — .

(3.2.3)

Substituting this into the equation for r(bs, 7) and using the fact that (X'X)~! exists, we find

that

1 1
r(bg, ™) = 5Y’Y - X'Y + 5b’ﬁX/Xb7r + 'bg
1

1
= Y'Y b X'Y +bp X' Xbr + bpm — Jbp X' Xbre

1 1 1 1

= Y'Y - JbpX'Xbr = Y'Y - §b’ﬂ.X’X(X’X)_1X’Xb7r
1 1

= 5Y’Y — 5(X’Y ) (X' X)"YX'Y — ).

Let pj = |{i : |mi| = k 4+ 1 — j}| be the number of elements of the 5 cluster of 8, P; = 3 p;

and Py = p.

Lemma 3.2.1. Assume that X has full column rank. Let w* = (n7,...

solution of

7* = argmin [(X’Y —-m)(X'X)"Y(X'Y - 71')}
meCp

and let B* = (BY,...,B;)" be the corresponding point from M given by
= (X'X)H(XY - 7).
Then, (m — w*)'B* <0, for all @ € Ca and hence
(a) sign (B7) -sign (mf) >0,i=1,2,...,p,

(b) <|71'1‘], e |7r;|) and (|ﬁﬂ7 e |B;\) are similarly sorted, i.e.
if [(patt(B))i| = k +1— 3, then |7*|; € {Iﬂ*l(pj,ﬁl)y s Iﬂ*l(Pj)};

*
77Tp

i<y

) € Ca be any

(c) for any permutation T satisfying ’5:(1)’ > ... > \B:(p)\, if there is a k € {2,...,p} such

that K1
then

<YMl and

() | > 0

Brteny| = |Brc

The proof is given in the Appendix. An immediate consequence of the Lemma is the following

result.

Lemma 3.2.2. Assume that X has full column rank. The point (B*,w*) defined as in

Lemma is the saddle point of the function r(b, ).

The proof is given in the Appendix. We use the last lemma to prove the main result of this

section.

Theorem 3.2.2. Assume that X has full column rank. Let the point B* be defined as in

Lemma (3.2.1. Then B* is the SLOPE estimator of 3.
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Proof. Using the fact that max r(8*,7) = min max r(b, ) (see previous lemma) we have
TeCH be MrmeCp

1 * * ]' * *
S 1Y = XB' 3+ Ja(8") = max | 3 1Y - X"+ w5
TeCp 2

. 1 )
= max r(f",7) = min max r(b7) = min [QHY—XszJrJA(b)]-

Corollary 3.2.2. In the linear model satisfying %X’X = I, we have

) . 1L ’
BOLS__ﬁSLOPE:ZA,W*:zgfargnﬂn
n

N neCy

BOLS — || = argmin ,(:}OLS —

TI'GCA/n

)

.
2

d

3OLS
B

is the proxzimal projection of onto Cp /p-

Projections onto Cp are widely used in [I32] in the study of the notion of degrees of freedom.
However, the Corollary is not stated there explicitely.

Remark 3.2.3. Assume that X has full column rank. For each 7 € Cj, the point b, defined

in (3.2.3) belongs to
{bemrr: b3 < M},

where M is chosen so that M > max{My, M} with

M = max |[(X'X)"HX'Y — 7|3 < M.
meCp

3.3 Properties of SLOPE in the orthogonal design

3.3.1 SLOPE vs. OLS

By Theorem and Corollary when %X 'X = I, the orthogonal projection of the ordi-
nary least squares estimator BOLS = %X "Y" onto the unit ball C /n 18 equal to BOLS - BSLOPE .
For A = (200,100)" and n = 50 this property is illustrated in Figure The figure represents
BSLOPE (plack arrows) depending on the localization of B in the orthogonal design. For
BO"S being the blue point located in the area labeled by (1,0) the first component of BSLOPE g
positive and the second is null. For BOLS being the yellow point located on the area labeled by
(—1,1) both components of B5*°FPF have equal absolute value (clusterization), but their signs
are opposite. For BOLS being the red point located on the area labeled by (1,2), both compo-
nents of BSLOP E are positive and the first component is smaller than the second one. The blue
polytope is the dual SLOPE unit ball C'a and labels

My = {(0,0), (£1,0), (0, £1), (£1, £1), (£2, £1), (+1,+2)}

associated to the areas of this figure correspond to all SLOPE patterns for n = 50 and p =
2. In the orthogonal design, one may also explicitly compute the SLOPE estimator. Indeed,
by the Corollary ,@SLOPE is the image of BOLS by the proximal operator of the SLOPE
norm. Therefore, this operator has a closed form formula [26] [175] [61]. This explicit expression
gives an analytical way to learn that the SLOPE solution is sparse and built of clusters.
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Bo
%S
1 1 19 N1 1.9 1.1
.L,_L _Ljél \U s § 1.4 B e B
SLOP >
OLS /
Yy
21 ST.OP 9.1
AJ’.L el e Bl PR §
m* 0
LOPEOLS
7T »
° B
10 0.0 1.0
.L,U ULyY 1r,U
(_9 _1) 92 1
\ p J_} Ll, 1
(1. -1) (.1 -9) O L1 1.9 1.1
\ B _Lj \ 1 A} U’ 1 _L7 p _L’ 1

Figure 3.1: The dual unit ball Cy , for A = (200, 100)" and examples of BSLOPE and BOLS

in the orthogonal design for n = 50 and p = 2. The labels of each colored set refer to the pattern
of BSLOPE for BOLS lying in this set. The arrows point from (39S — BSLOPE) o GOLS,
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Lemma 3.3.1. In the linear model satisfying %X’X = I, we have

~OLS

B " —b

1
arg min —||Y Xb||2+JA(b)] = argmin l‘
beRpP becRP

2

+ JA(b)] . (3.3.1)
2
Our proof of this Lemma is given in the Appendix. The next theorem gives a sufficient condition
for the clustering effect of the SLOPE estimator in the orthogonal design.

Theorem 3.3.1. Consider a linear model with orthogonal design %X’X =1I,. Let 7 be a per-
mutation of (1,2,...,p) such that

~OLS| _ |40LS ~OLS
Bry| 2 |Br2)| = --- 2 |Bri) | -
Forie{1,2,...,p—1},
OLS ~OLS N ~SLOPE| |~SLOPE
if [Bagi) | — |Brgian| < 225 then |Brg) w(it1) |-

~SLOPE
Proof. By Lemma [3.3.1, in the orthogonal design, is the proximal map of JA/n(‘)
at BOS. The result may be inferred from [26, Lemma 2.3]. O

In the following theorem we derive the necessary and sufficient conditions under which SLOPE

in the orthogonal design recovers the support of the vector
~SLOPE

B=(B1,..-,B,) ie. 61 =0 < B,=0.
Theorem 3.3.2. Under orthogonal design %X’X = 1I,, let ™ be a permutation of (1,2,...,p)
that satisfies BTOF(I;? > ’BS(E% > > |B7(3(I£| Without loss of generality suppose that supp(8) =

{1,2,...,po} with py < p. The necessary and sufficient condition for SLOPE to identify the set
of relevant covariables is:

(a) 5018] ~OLS
TN R SN O

OLS Po
(b) Z (%) >%Zk)"u for k:]-aQa--‘va;

1=
k ]~0LS k
(c) 3 |Bay| <2 X N, for k=po+1,p0+2,...,p
i=po+1 i=po+1

Proof. The result may be inferred from the properties of the proximal SLOPE [27, Lemma 2.3
and Lemma 2.4] and from Lemma O

3.4 Asymptotic properties of SLOPE

In this section we discuss several asymptotic properties of SLOPE estimators in the low-
dimensional regression model in which p is fixed and the sample size n tends to infinity. For each
n > 1 we consider a linear model

Yy = xMg e, (3.4.1)

where Y = (ygn),yén) ...,yén))’ R" is a vector of observations, X e R"*P is a deter-

Y

ministic design matrix with rank(X ”)) =p, B=(B1,52,...,0p) € RP is a vector of unknown
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regression coefficients and e = (é‘gn), 5(2n), ... ,ESL”))’ € R" is a noise term, which has the nor-

mal distribution N(0,02I,). We make no assumptions about the dependence between €™ and

e(™) for n % m. In particular, €™ does not need to be a subsequence of (™).
~SLOPE

When defining the sequence (3, ) of SLOPE estimators, we assume that the tuning vector

varies with n. More precisely, for each n > 1 its coefficients )\gn) > )\gn) > ... > )\;(,n) >0
~SLOPE
are fixed and )\gn) > 0. By 8, we denote the SLOPE estimator corresponding to the tuning

vector A" = ()\gn), . .,)\Z(Dn))’:

~ 1 2
BTSLLOPE = arg min { HY(”) - X(”)bH + JA(n)(b)] - (3.4.2)
beRP 2 2

3.4.1 Strong consistency of the SLOPE estimator

Let us recall the definition of a strongly consistent estimator BELOPE of B, ie. VB € RP we

have BELOPE% B almost surely. Below, we discuss strong consistency of the sequence BTSLLOPE
of SLOPE estimators, defined by (3.4.2)).

Theorem 3.4.1. Consider the linear regression model (3.4.1) and assume that

ligbnn_1 (X(”))/X(") =C,

where C' is a positive definite matriz. Let 3
to the tuning vector A = ()\gn), )\gn), . ,)\](Dn))/.

~SLOPE
n ,n>1, be the SLOPFE estimator corresponding

(n) R
(a) Ifq}l)rgo% =0, then ,B:LOPE 5% 8.

(n)
(b) If li_)rn ZL — X\g > 0 and if the true parameter B satisfies the inequality Xo||Bloe >
n—oo N
B'CB/2, then BSLOPE does not converge to B. Hence, B5OFF is not strongly consistent

for B.

Before proving the above theorems, we start with stating a simple technical lemma. It follows
quickly from the Borel-Cantelli Lemma and the tail inequality:
If Z ~N(0,1), then P(Z > t) <t e "/2/\/27, t>0.

Lemma 3.4.1. Assume that (Qn)nen 5 a sequence of Gaussian random variables, defined
on the same probability space, which converges in distribution to N(0,0?) for some o € (0, 00).
Then, for any § > 0,
G
im

% Clog(a) V275~

Our proof of the strong consistency of SLOPE is based on the strong consistency of the OLS
estimator. The latter result is a folklore and we prove it in our setting.

Proposition 3.4.1. Consider the linear regression model (3.4.1)).
Iflimn~ Y (X ™Y X ™ = C, where C is positive definite, then BLS =% B.
n
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Proof. We have

B =B = (XX XYY ™ — g = (X X)X e,

OLS

Then /n (

nents satisfy the assumptions of Lemma Since log(n)'/?t9 = o(y/n), we get the assertion
by Lemma [3.41] O

Proof of Theorem[3.4.1]. (a) It follows from Theoremthat there exists a vector ), € C(pm)
such that

> has the normal distribution N(0,o2(n~"(X ™) X )=1) and its compo-

»SLOPE n n)\— n n *
B0 < (XY X (XYY ).
Since 7} takes values in C 5, it follows that ||7}[|cc < /\gn). Hence,
Tn a3, (3.4.3)
n
because ||—2| < 17 — 0. The assumption that rank(X () = p implies that the matrix
(X ("))’ X ™ is invertible and therefore the least squares estimator of 8 is unique and has the form
BSLS = (XMWY x™)=L(x MYy ™ Combining with (3.4.3) the fact that ,80 S as, = B3, we con-
clude that
B = (O XO) T yYY ) ) = B - (X X))

~ )y x(n)\ ~1
BSLS—<(X T)lX ) %%B—C*lozﬁ.

(b) Since BiLOPE minimizes over b € RP the function
1
I(b) := §||Y(") = XWb|3 + Ty (b)

and since )\ ||bHOO < Jpm) (b), it follows that

~SLOPE ~SLOPE

0 < 10) 1B, ) = By (x™yy ™
_ %(I@iLOPE) (X(”)) X(n)BSLOPE T (BSLOPE)
< BTy By (x )y x BT
- A HﬁSLOPEHoo=<BELOPE>'<X<”>>' mp,"
— By X (BT AT
~OLS

The last equality follows from the fact that (X ™)y ™ = (x®yx "3 B,
Suppose to the contrary that the true parameter B satisfies \o||B|lc0 > B’ C’B /2 (which is the

~SLOPE
case when ||| is sufficiently close to 0) and that 3, 22 B. Then, using the facts that
B 93y g and that limn— (X ™) X® = C, we have
n

10) — 1 as. o Lo '
(0) (T;Bn )_>BCI@_213013—/\0H,8HOO=;,Bcﬁ—)\OHIBHOO’
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which provides a contradiction. This proves the first part of Theorem m (b). To prove the
second part, note that strong consistency requires convergence for any value of the parameter

B. 0

Remark 3.4.2. The proof of Theorem (b) does not exclude the possibility that BiLOPE &5

B when S satisfies \o||B]|cc < 8'CB/2.

3.4.2 Asymptotic pattern recovery in the orthogonal design

We again consider a sequence of linear models (3.4.1)) but this time we assume that for each n
the deterministic design matrix X () of size n x p satisfies

(X™yx™ =n1,. (3.4.4)

As usual, we assume Gaussian errors ™ ~ N(0, 01 ,).

/
Let B0 07" = (,BfLOPE(n), o ﬁiLopE(n)) be the SLOPE estimator defined by (3.4.2). With

the above notation we present the main result of this section.

Theorem 3.4.3. Assume that

and that there exists & > 0 such that

(n) (n)
Ay
lim inf ! i+l

W (log(n)) /240

=m>0 for i=1,...,p— 1. (3.4.5)

Then we have
patt(B8;-°"F) % patt(B).
(n)

Note that above conditions are satisfied e.g. by \;’ =c(p+1 — i)n2/3 for any constant ¢ > 0.

Proof. Without loss of generality we may assume that 8 = (f1,...,3,) and 51 > 2 > ... >
Bp > 0. Indeed, we can always achieve such condition by permuting the columns of X (n
and changing their signs. Since the space of patterns is discrete, we have to show that for large
n, patt(B%LOPE) = patt(PB) a.s. We divide the proof into the following four parts:

N

(a) Bi =B; >0 = FPLOPE(p) = BJSLOPE(TL) a.s. for large n,
(b) Bi > Biy1 = BZ-SLOPE(n) > @SJ%IOPE(n) a.s. for large n,
(c) Bi=0 = BiSLOPE(n) =0 a.s. for large n,

(d) i >0 = BiSLOPE(n) > 0 a.s. for large n.

The points (b) and (d) follow quickly by the strong consistency of B5*°PE(n). To prove (a) and
(c) we observe that for each n we are in the orthogonal design case.
Let 7, be a permutation of (1,2,...,p) satisfying

BOLS) (n)] > [BOS, (n)] > ... > |BOE (n)].
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By the strong consistency of the OLS estimator, taking n sufficiently large, we may ensure that
the clusters of 8 do not interlace in BSLS in the sense that if §; > f3;, then @QLS(n) > BJOLS(n)
a.s. for n sufficiently large.
Let us now consider point (a). Let S; denote the cluster containing 3; > 0, that is, the set
Si ={je{l,....,p}: Bj = Bi}. In view of the ordering of B, there exists k; € {1,...,p} such
that

Si ={mn(j): j€{kiki+1,... ki +#S; —1}}.

We will show that if 7, (k), m,(k + 1) € S;, then for large n
BGYE(n) = BGES (n) aus., (3.4.6)

thus BJSLOPE(n) = BELOPE(n) for j, k € S;, which finishes the proof of (a).
Now assume that m,(k), m,(k+1) € S;. Then, by Theorem the condition ([3.4.6)) is satisfied
if

BOIG ()] = | B 1y (m)] < % (A =) (3.4.7)

holds for large n and both 37?”1?%)(”) and Bg“(i) (n) have the same sign. The latter is ensured by
the strong consistency of the OLS estimator and the fact that g; > 0.
If m,(k), mn(k + 1) € S;, then we have the following bound

[BOIS () = By ()] < 32 |BPMS(m) — BOS(m)]. (3.4.8)

JES;

Take any j € S;. Since both BJOLS (n) and @»OLS(n) have the normal distribution with the same
mean, by Lemma [3.4.1] we have

VR (B - BYMS(m)

T (logGE 0

In view of (3.4.8) and (3.4.5)), this implies that holds true for large n. Hence, (a) follows.
It remains to establish (c). Assume that 3,, > 0 = Bp,11 = ... = ;. Clearly, condition (a)
from Theorem is satisfied thanks to the strong consistency of the OLS estimator. For (b),
we have for kK =1,2,...,pog,

(n)

1 Po (n)
PO

which converges to 0. On the other hand, the left-hand side of (b) converges a.s. to > t°, 3;,
which is positive. Thus, condition (b) from Theorem holds for large n. Condition (c) from
Theorem follows from Lemma Indeed, we have for § >0 and k=py+1,...,p,

OLS
. \/ﬁ i 20LS b . |\/>5 ( )|
lim ————— E 1B h(n)| = E lim =0 a.s.,
g (log(n))1/2+5 Bt n (%) Bl n—oc (log(n ))1/2+6
while ( )
)\ > =m>0
. g, Z+ Z pzoﬂwo Viilog(m) /7%

Thus, all assumptions of Theorem [3.3.2 are verified and the proof is complete. 0
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OLS LASSO-CV | LASSO-LS | SLOPE-LS
MSE(S,-) | 613.6797 | 426.3705 171.7957 20.74967

Table 3.1: Comparison of MSE between different regression methods.

3.5 Numerical experiment

Below we present an application of SLOPE in signal denoising. In our example X € R300%100
is an orthogonal system of trigonometric functions, i.e.

Xi (24j—1) = sin(2mij/n) and X; (5,5 = cos(2mij/n) for i =1,...,100

and j=1,...,150. Here B8 € R? is a vector consisting of two clusters: 20 coordinates with
absolute value 100 and 20 coordinates with absolute value 80. The absolute values of coordi-
nates of B are sorted in a decreasing way. The signs of the nonzero coordinates are chosen
independently with random uniform distribution. To avoid large bias caused by the shrinkage
nature of LASSO and SLOPE, we debias them by combining with the OLS method. For that
reason we use the pattern matrix Upng and the clustered design matrix X ng, which is based on
the SLOPE pattern.

To perform the debiased SLOPE, we begin with recovering the support and clusters of a true
vector B with SLOPE. Then, using the obtained SLOPE pattern M, we replace the design
matrix with its clustered version X m = XUj;. Then we perform the Ordinary Least Squares
regression for the model Y = X /b + €, where b consists only of distinct absolute values of
BSLOPE

Analogously we proceed with the debiased LASSO. However, in this method we use the LASSO
pattern matrix defined in a following way:

For LASSO we have the LASSO pattern that is a vector of signs, see Chapter 5. For § €
{=1,0,1}?, ||S]|1 denotes the number of nonzero coordinates. If ||bS||; = k > 1, then we define
the corresponding pattern matrix Ug € RP** by

Ug = diag(S)Supp(S),

i.e. the submatrix of diag(.S) obtained by keeping columns corresponding to indices in supp(.S).
Then we define the reduced matrix X g by

X = XUg.

Equivalently, we have Xg = (SiXi)icsupp(s)- For a broader discussion on the pattern matrix,
we encourage to see the next Chapter. In our example € € N'(0,02I,,) and o = 30.

We compare the Mean Square Error and the signal denoising of the classical OLS estimation,
the LASSO with the tuning parameter A, minimizing the cross-validated error, the debiased
version of LASSO with A\ = 5., and the debiased version of SLOPE with the tuning vector A
chosen with respect to the sequence proposed below Theorem N=01(p+1-— i)nz/ 3).
We also compare debiased SLOPE with debiased LASSO based on a single trial, as shown in
Figure and Table[3.1} The horizontal lines correspond to the true values of 8. As one may ob-
serve, in the presented setting LASSO does not recover the true support, while debiased SLOPE
perfectly recovers support, sign and clusters.
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Figure 3.2: Comparison of signal denoising by OLS (a), LASSO (b), debiased LASSO (c) and
debiased SLOPE (d) on the coordinates [120,125] of the regression model Y = X3 + €. The

black lines correspond to the true values of X 3. The red lines correspond to the estimators
Y = X3.

DEBIASED SLOPE
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I
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I

Figure 3.3: Signal denoising by debiased SLOPE on all coordinates of the regression model
Y = X3 + e. The (almost overlapping) black line and the red line correspond respectively to
the true values of X8 and to Y = X 35LOPE,
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DEBIASED LASSO DEBIASED SLOPE
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betal ASSO_i
0

betaSLOPE _i
0

Figure 3.4: Pattern recovery by debiased LASSO (left) and by debiased SLOPE (right)
in the same setting as above.
3.6 Appendix

Proof of Lemma[3.2.1} Since the matrix (X’X)~! is nonnegative definite, it follows that the
function g : Cx — [0, 00) defined by

g(m) = (XY —n) (X' X)) (XY —n)

is convex in 7. Therefore, at the point 7#* = (77,...,my)’, where g attains its global minimum
over Cp, the gradient Vg of g satisfies

[Vg(r*)] (m —x*) >0, forall meCy.
This implies (7w — 7*)'8* <0, for all w € Cp, because
Vyg(r*) = 2(X'X)" (XY — %) = —28".

In the proof of parts (a), (b) and (c¢), we use the fact that @w* maximizes /8" over 7 € Cx.
To prove part (a), suppose that sign(37) - sign(n;) < 0 for some 7 and define

_ * * * % *\/
= (T Ty =T W15 e Tp)

Then we have (7*)'8* < #/B*, which is impossible since 7 € Cj.

(
(

To prove part (b), consider a permutation 7 of (1,2,...,n) such that

(|7rj(1)|, e |7T;’f(p)|) and (|87[,...,[Bp|) are similarly sorted. Define the point

T = (s1 - 7[':(1),82 7rj(2), ceySp TF;k_(p)), where s; = sign(gy), for ¢ = 1,2,...,p. If
(|7rj(1)|, ey |7rj(p)|) # (I71l,-..,|mp]), then, by the Hardy-Littlewood-Pélya rearrangement in-
equality,

p p
7B = w8 > Y 71187 = (v*) B,
=1 i=1

which is impossible since w € Ca.
Finally, to prove part (c), suppose that Zf;ll |777*_(i)\ < Zfz_ll Ai, and that |7rj(k)] > 0. In this case
there is a sufficiently small § > 0, such that

*

* * * * *\/
™ = (7T1,.. .,7T7;_2,7Ti_1 +55i71,7r7; *581',71-1'_’_1,.. . ,7Tp) S CA
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I |87 1y| > 87| then
B = (") B+ 6(187 ()| — [B7 ) > (=)' B,
which is impossible. ]

Proof of Lemma[3.2.3. At first we note that for all w € Ca

g m) = IV - XB3+ w8t = LY - X834 (x5

where the last inequality follows from the fact that (w — #w*)’8* < 0, for all @ € C}, see the

proof of [3.2.1] Therefore, max r(B*,m) =r(B*,®"). Moreover, from the definition of the point
TeCA

B* it is seen that r(B8*, ") = ém/\I}l r(B,m"). These two facts imply that
€

min max r(B,7) < max r(8%, w) =r(B", ")

BEM meCp TeCA
= min r(B,7*) < max min (3, ).
min r(8,7°) < max min 7(8,m)
Since max min r(8,7) < min max r(8,w) (by the max-min inequality), we have the equalit
max min 7(8,7) < min max r(f,) (by quality) quality
throughout. This completes the proof. O

Proof of Lemma[3.3.1. Observe that
1 2 LS, 2 / /
Y - Xb|2 = -Y'Y - 2Y'Xb+bb
n n n
~ 1 2
1B —b = SY'XX'Y - 2Y'Xb+bb.
n n

Therefore, both optimization problems differ by %(Y'Y — %Y/X X'Y'), which does not depend
on b, which implies their equivalence. O



Chapter 4

Pattern recovery by SLOPE

4.1 Introduction

Most of the content of this chapter may be found in the preprint of Bogdan, Dupuis, Graczyk,
Kolodziejek, the author of the dissertation, Tardivel and Wilczynski [23]. We decided to enrich
the chapter with geometrical explanation of the SLOPE pattern and its recovery to make it more
accessible for the general audience and to inform the reader about the connections between the
SLOPE estimator and the convex geometry. Such connections exist also for LASSO and may be
useful in its study. The geometrical approach was the one, which made us build the intuition,
which led us to establish the theoretical results.

In this chapter we give a deeper and more general focus on recovering the pattern of 8 by
SLOPE. Now we abstain from restricting to the case of the orthogonal design matrix and we
give novel results on the pattern recovery for a broad generality of situations.

In particular, unlike in the previous chapter, below we concern a model, in which the error is
incremental. We also extend the discussion on the properties of the SLOPE estimator to the
high-dimensional case, in which p may be much larger than n.

4.1.1 History of SLOPE

SLOPE estimator was introduced by Bogdan et al. [27, 26]. In their seminal paper, SLOPE was
motivated by the control of the expected rate of false discoveries (FDR control) in multiple hy-
potheses testing. Moreover, they proposed a choice of A being a Benjamini-Hochberg sequence
dependent on a parameter g € (0,1), under which, in the orthogonal design, SLOPE controls
FDR at a level ¢ - %, where k is the number of non-zero coordinates of 8. They also proposed

a fast proximal algorithm computing BS LOPE in the orthogonal design.

However, the first non-trivial example of SLOPE was introduced a few years earlier by Bondell
and Reich [29] under the name OSCAR. Their article deals with the tuning vector A being an
arithmetic sequence. The OSCAR penalty was reformulated in terms of a sorted ¢; norm by
Zeng and Figueiredo [190]. Going with the flow, they independently propose the SLOPE esti-
mator [I89] under the name OWL. In [76] they propose its representation as a gauge function,
compute its dual and propose another formula for the proximal operator algorithm.

Figueiredo and Nowak [76] prove that if the columns of X are correlated enough, then SLOPE
results in their clusterization. Negrinho and Martins [136] connect the SLOPE estimator with
the notion of a signed permutahedron Cp, noticing that it is a unit ball in the dual of SLOPE
norm. Bellec and Tsybakov [I3] prove the equality X8 = Y — Projc, /. (Y) in the linear re-
gression penalized by norm. They also propose novel oracle inequalities on a prediction error,

41
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given € ~ N(0,02I,) and \; = o log(%p)/n.

Su and Candes [I7I] prove that with A being the Benjamini-Hochberg sequence, SLOPE is
an asymptotically minimax estimator and show more detailed results on the asymptotics of its
squared error for orthogonal (X’'X = I,) and gaussian (X;; YN (0,1)) designs. Moreover,
they point out such sizes of the support of 8 ({p-sparsities), for which the risk for SLOPE is
much smaller than for LASSO or SURE. Bellec, Lecué and Tsybakov [14] extend the results of
Su and Candes [I71] on achieving the minimax optimal prediction rate of SLOPE. In particu-
lar, they allow the desing matrix X to be deterministic, leaving only mild assumptions on its
eigenvalues. They also derive sharp oracle inequalities and prove that the minimaxity holds for
an {4-estimation error for any 1 < ¢ < 2.

Under the gaussian design, Kos and Bogdan [I15] use the results of Su and Candes [I71] on the
asymptotics of SLOPE in order to propose conditions on the cardinality and magnitude of non-
zero coordinates of 3, under which the SLOPE with A being a Benjamini-Hochberg sequence
asymptotically achieves FDR — 0 and the power converging to 1. Hu and Lu [I03] put their
effort to look for an optimal choice of A in terms of type I error and power of variable selection.
They consider an asymptotic scenario, in which % — 0 >0, % — p > 0 and the vectors B, € and
A converge to limiting measures.

Sankaran, Bach and Bhattacharrya [I54] prove that SLOPE belongs to the family of Lovasz
extensions. They also propose the smoothed version of SLOPE (called SOWL) and derive suffi-
cient condition for its consistency. Minami [I32] studies the projections onto the dual norm ball
to study the notion of degrees of freedom. SLOPE is used here as one of examples of submodular
norm regularizations.

Schneider and Tardivel [I56] propose a geometrical approach to the SLOPE estimator. Firstly,
they give full characterization of the uniqueness of BSLOP E that for a given X holds for any
Y € R". They express this condition both in analytical and geometrical way. This is a gen-
eralization of an analogous result for LASSO [71]. They also introduce the notion of SLOPE
pattern and highlight its connection with faces of the unit ball in the dual J} of the SLOPE
norm. In their article, the definition of accessibility of the SLOPE pattern is also introduced
and enriched with its geometrical full characterization. Tardivel, Servien and Concordet [175]
propose an exact formula for SLOPE in the orthogonal case, using the Cesaro summation.

For gaussian designs, random 3, random € and for 2 P22 s > 0, Zhang and Bu [191] use the
projected gradient descent algorithm to find A, which reduces the Mean Squared Error (MSE)
and compare obtained MSE with ones achieved by SLOPE with Benjamini-Hochberg A and by
LASSO. To minimize MSE for arbitrary data, they propose finding A with help of a coordi-
nate descent algorithm, while imposing the restriction of A to contain no more than k distinct
values with k& << p. In their recent article, Larsson et al. [I20] improved solving numerically
the SLOPE optimization problem, using modifications of the proximal gradient descent and the
proximal coordinate descent algorithm.

Bu et al. [40] proposed an approximate message passing (AMP) algorithm, to quickly obtain a
solution, which they prove to converge in ¢5 to BSLOP E They also refine the asymptotic results
of the fy-convergence of B9OFE to the true 8. Larsson, Bogdan and Wallin [I19] introduced
the strong screening rule for SLOPE, which generalized the analogous rule for LASSO. The safe
screening rules were proposed by Bao, Gu and Huang [§] as well as by Elvira and Herzet [65].
Their safety is understood as no detection any non-zero coordinate of B as zero. It is useful in
situation, when some prior knowledge of 8 is available.

Brzyski et al. [38] introduce the group SLOPE method. Lee, Sobczyk and Bogdan [123] apply
SLOPE to gaussian graphical models, proposing the Neighborhood Selection SLOPE (nsSLOPE)
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algorithm with the FDR control of edges detection. Mazza-Anthony, Mazoure and Coates [129]
independently introduce the graphical SLOPE method (under the name gOWL), which applies
the SLOPE norm to estimate the precision matrix by clustering its off-diagonal entries. Re-
cently, Riccobello et al. [148] extended the discussion on graphical SLOPE to t-Student (Tslope)
data.

Other applications of SLOPE include e.g. the paper of Sepehri [161], who proposes the bayesian
approach in which SLOPE is considered as a maximum a posteriori (MAP) distribution
in a bayesian regression problem. Its adaptive version was later proposed by Jiang et al. [109].
Stucky and van de Geer [I70] introduce the Square Root SLOPE, in which | Y — X b||3 is replaced
by [|Y — Xbl|2. It is an analogue of the Square Root LASSO [I5].

Recently, Dexheimer and Strauch [56] found a way to apply the results of [14] and used SLOPE
to improve the estimation of the drift parameter in Lévy-driven Ornstein-Uhlenbeck processes.

4.1.2 Our contribution

In this chapter, we give the necessary and sufficient conditions for recovering the SLOPE pat-
tern. From a mathematical perspective, our main result is Theorem in which we propose
the positivity and the subdifferential condition for the pattern recovery. To ease the interpre-
tation, we also present the dual norm condition and the SLOPE irrepresentability condition,
which is a necessary and sufficient condition for pattern recovery in the noiseless case. The
word “irrepresentability” is a tribute to works written a decade ago on sign recovery by LASSO
[82, 130, 183, 192), 194]. However, we believe that our mathematical perspective is novel, and
paves the path for similar analyses of other penalized estimators. For the noisy case, in Theo-
rem we give the open SLOPE irrepresentability condition, which implies the consistency
of the SLOPE pattern for fixed X and the difference between non-equal coordinates of |3| di-
verging to oo. Later on, in Theorems and we give conditions for asymptotic pattern
recovery, when p is fixed and n diverges to oo. As another main results of this chapter, we
provide geometrical interpretations of irrepresentability conditions as well as refined results of
the strong consistency of BS LOPE and of its pattern.

4.1.3 Motivation

While the SLOPE ability to identify the pattern of the vector of regression coefficients 8 is
interesting by itself, the related reduction of model dimension also brings the advantage in
terms of the precision of the estimation of 8. This phenomenon is illustrated in Figure
which presents the difference in precision of the LASSO and SLOPE estimators when some of
the regression coeflicients are equal to each other.

In this example n = 100, p = 200, and the rows of the design matrix are generated as independent
binary Markov chains, with P(X;3 = 1) = P(X;; = —1) = 0.5 and P(Xjj41) # Xij) =
1 — P(Xj(j41) = Xij) ~ 0.0476. This value corresponds to the probability of the crossover
event between genetic markers spaced every 5 centimorgans. To be more specific, it is close
to the inverse of the Haldane mapping function [81, pp. 13-14] evaluated at 0.05, which is
equal to e~%%sinh(0.05). Our design matrix can be viewed as an example of 100 independent
haplotypes, each resulting from a single meiosis event. In this example, the correlation between
columns of the design matrix decays exponentially, p(X;, X ;) ~ 0.9048!"=3!. The design matrix
is then standardized so that each column has a zero mean and a unit variance, and the response
variable is generated according to the linear model Y = X8 + ¢, with 51 = ... = (3¢ = 40,
B31 = ...= B9990 = 0 and ¢ = 5. In this experiment, the data matrix X and the regression model
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Figure 4.1: Comparison of LASSO and SLOPE when the cluster structure is present in the
data. Here n = 100, p = 200, the rows of the matrix X are simulated as independent binary
Markov chains, with the transition probability 0.0476 (corresponding to the genetic distance of
5 centimorgans). The correlation between i** and the j** column of X decays exponentially as
0.9048/7=Jl. The first & = 30 columns of X are associated with Y and their nonzero regression
coefficients are all equal to 40 (other details are provided in the text). The left panel represents
the value of the tuning parameter for LASSO (solid line) and the sequence of tuning parameters
for SLOPE (crosses). The sequences are selected such that both LASSO and SLOPE recover
their corresponding patterns with a minimal bias. The right panel represents the LASSO and
SLOPE estimates.
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are constructed such that the LASSO irrepresentability condition holds. The tuning parameter
for LASSO is selected as the smallest value of A for which LASSO can correctly identify the
sign of 8. Similarly, the tuning parameter A is designed such that the SLOPE irrepresentability
condition holds and A is multiplied by the smallest constant for which SLOPE properly returns
the SLOPE pattern. The selected tuning parameters for LASSO and SLOPE are represented
in the left panel of Figure Both in the case of LASSO and SLOPE, the proposed tuning
parameters are close to the values minimizing the mean squared estimation error. Since in this
example both LASSO and SLOPE properly estimate null components of 3 at 0, the right panel
in Figure illustrates only the accuracy of the estimation of the nonzero coefficients. Here, we
can observe that the SLOPE ability to identify the cluster structure leads to superior estimation
properties. SLOPE estimates the vector of regression coefficients 8 virtually without an error,
while LASSO estimates are scattered over the interval between 36 and 44. In the result, the
squared error of the LASSO estimator is more than 100 times larger than the squared error of
SLOPE (63.4 vs 0.53).

4.2 Preliminaries on clustering properties by SLOPE
As the central notion of this chapter is the recovery of the SLOPE pattern, we recall its definition:
Definition 4.2.1. The SLOPE pattern is a function patt : RP — ZP such that

patt(b); = sign(b;)rank(|b;|),
where rank(|b;|) € {1,2,...,k} is defined to be the number of |c;|’s satisfying |b;| > |c;|, where
leils |eal, .- |ekl, B < p, are distinct non-zero values among |bi|,...,|by|. We adopt the conven-
tion that rank(0) = 0.

We also recall that R¥ = {k € R*: k; > ... > rj > 0} and that M, is the set of SLOPE
patterns of b € RP. Definition implies that for 0 # M € MELOPE and k = ||M||, for
b € R? we have

patt(b) = M <= there exists k € RFT such that b= Upk.

Example 4.2.1. Let b = (2,5,—-2,0,8)". Then M = patt(b) = (1,2,—1,0,3)’
and for k = (8,5,2)" we have

0 0 1

01 0 8
Umk=1|0 0 —1| |5|=0b

00 O 2

1 0 O

4.2.1 Clustered design matrix and clustered parameter

If M = patt(B) for B € RP satisfies ||M||oc < p, then the pattern M = (M, ..., M,)" leads
naturally to reduce the dimension of the design matrix X in the regression problem, by replacing
X by Xm. Actually, if patt(8) = M, then X8 = XUnmk = Xuk for k € RFF. In particular,

(a) null components m; = 0 lead to the elimination of columns X; from the design matrix X,
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(b) a cluster K C {1,...,p} of M (a subset of M having coordinates equal in absolute
value) leads to replace the columns (X;);cx by one column equal to their signed sum:

Z 81gn(ml)X1

113:¢
Example 4.2.2. Let b be from Example X = (X1|X2|X3|X4]|X5) and A =
(M1, A2, A3, A1, A5)’ € RPF. Then the clustered matrix and the clustered parameter are:

A1
XM:(X5‘X2‘X1—X3) and AM: )\2
A3+ M\

4.2.2 Sorted /; norm, dual sorted /; norm and subdifferential

As SLOPE is based on penalizing the residual sum of squared with the sorted ¢; norm, we recall
its definition:

p
JA(B) =D Aifbla), beR?,
i=1

where [b[(1) > ... > [b](,) are the sorted components of b with respect to the absolute value.
Given a norm ||-|| on RP, we recall that the dual norm ||-||* is defined by ||b||* = max{v'b: ||v| <
1}, for some b € RP. In particular, the dual sorted ¢; norm has an explicit expression given in
[136]:

blay iy bl i1 bl
JA(b) = ma , ye, — )
A( ) X{ AL 212:1 Ai Z?:l Ai

We recall the subdifferential of a norm || - || at b (see e.g. [101, Def. VI.1.2.1]:

- lI(b) = {veRr: [z = [Ib] +v'(z - b) Vz € R},
= {veRP: ||v]|* <1and v'b=|b|}. (4.2.1)

For the sorted ¢; norm, geometrical descriptions of the subdifferential at b € RP have been
given in the particular case where by > ... > b, > 0 [61 (156} [I75]. Below, for an arbitrary
b € RP, we propose a new and useful formula for the subdifferential of the sorted ¢; norm. This
representation is the crux of the mathematical content of the present chapter.

Proposition 4.2.1. Let b € RP and M = patt(b). Then:
0Ja(b) = {v € R : J3(v) <1 and Upw = Am . (4.2.2)

In Proposition we derive a simple characterization of elements of 9.J4(b). The notion of
SLOPE pattern is related to the subdifferential via the following result.

Proposition 4.2.2. Let a,b € R? and A = (A1,...,\p) where \y > ... > X\, > 0. We have
patt(a) = patt(b) if and only if 0Jx(a) = OJA(D).

A proof of Proposition can be found in [I56]. In the Appendix, we provide an independent
proof, which is based on Proposition
From now, to comply with Proposition we assume that the tuning parameter
A= (\i,..., ) satisfies
At> ... > A, > 0.
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4.2.3 Characterization of SLOPE solutions

SLOPE estimator is a solution of the following optimization problem:
1
Sx A(Y) = arg min {HY _ Xb|2 + JA(b)} . (4.2.3)
berr (2

We do not assume that Sx A (Y) is a singleton. However, note that the cases in which the SLOPE
estimator is not unique are very rare. Indeed, the family of matrices X € R"*P, for which there
existsa Y € R" such that Sx A (Y") is not a singleton, has a null Lebesgue measure on R"™*? [156].
If ker(X') = {0}, then Sx A(Y') consists of one element. Recall that a convex function f attains

its minimum at a point b if and only if 0 € 9f(b). Since 0 (%HY - XbH%) ={-X'(Y — Xb)},
the SLOPE estimator admits the following characterization:

BeSxalY) & X'(Y-XB)eda(B) (4.2.4)

4.3 Characterization of pattern recovery by SLOPE

The characterization of pattern recovery by SLOPE given in Theorem is one of most im-

~ — — -~ =+
portant results of this chapter. We recall that Py = (X;vI)JFX;v[ = XmXyp is the orthogonal
projection onto col(X ), where AT denotes the Moore-Penrose inverse of the matrix A.

Theorem 4.3.1. Let X € R, 0 # B € R?, Y = XB +¢, ¢ € R* and A € RPF.
Let M = patt(B) € MFXOPE and k = | M||. Denote

7 =X'"(Xp) Am + X' (I, — Py)Y. (4.3.1)
There exists B € Sx a(Y) with patt(B) = patt(B) if and only if the two conditions below hold:

there exists s € RF* such that Xli\AY —Am = }1\/{3(/1\/[8, (positivity condition)
™ € 0JA(M). (subdifferential condition)

If the positivity and subdifferential conditions are satisfied, then B =Ums € SxA(Y)
and m = X' (Y — XB).

Remark 4.3.2.
(a) When X is deterministic and € has a N(0,021I,) distribution, then the pattern recovery
by SLOPE is the intersection of statistically independent events:

A= {w € Q: there exists s € R¥* such that i;vIY(w) —Am = in\/IX/MS} )
B={weQ: mw(w)ecdJa(M)}.
Indeed, since 3(/1\/[ = /Xi\/IPM then /X;\/[Y(W) depends on e4(w) = Pye(w). Moreover,
7(w) depends on ep(w) = (I,, — Pym)e(w). Since Py is an orthogonal projection, then

both €4 and ep have null covariance matrices. But € is Gaussian and hence €4 and ep
are independent. Therefore the events A and B are independent.

(b) Under the positivity condition, the subdifferential condition is equivalent to

Ja(m) < 1. (dual norm condition)
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Indeed, observe that Apg € col(X ;v[) (or equivalently, X 1\4(} 1\4)4“.7&1\/[ = Apnp) is necessary

for the positivity condition. In view of , using the definition of 7, we see that
L = A s equivalent to X i\a(f 1\4)+1~XM = Anr. This follows from the fact that Py is

the projection matrix onto the vector subspace CO](XM), and thus 0’ = [(In—IBM)XM]' =
X' (I, — Pynp).

(c) The assertion of Theorem cannot be strengthened. Indeed, when the SLOPE solution
is not unique, the elements of Sx A(Y) may have different SLOPE patterns.

Even if many theoretical properties on sign recovery by LASSO are known (see e.g. [183]), we
believe that it is relevant to give a characterization of sign recovery by LASSO similar as the
characterization of pattern recovery by SLOPE given in Theorem [4.3.1]

To show the similarity between proposed irrepresentability condition for SLOPE and the irrepre-
sentability condition for LASSO [82, 192] [194], we propose analogous definitions to the clustered
design matrix and parameter.

Remark 4.3.3. Let 0 # S € {—1,0,1}? and k = ||S||; (k is the number of nonzero components
of 8). The signed matrix Ug € RP*¥ is defined by Ug = (diag(S))supp(s);

where diag(S) € RP*P is a diagonal matrix and (diag(S))spp(s) denotes the submatrix
of diag(S) obtained by keeping columns corresponding to indices in supp(S). Observe that
for any 0 # B € R? there exists a unique S € {—1,0,1}? and a unique k¢ € (0, oo)k such that
B = Ugkg. Define the reduced matrix X and the reduced parameter s by

Xg = XUg and g = Ay, where 1 = (1,...,1) € R*.

Similarly as in the proof of Theorem [£.3.I] one may prove that the necessary and suffi-
cient conditions for the LASSO sign recovery (i.e. existence of estimator BEASSO guch that
sign(BLA559) = sign(B) = S) are the following

there exists Kk € Rﬁ such that XISY - Xs = Xlsjfsn, (positivity condition)
X'(X/S)Jrlk + 1 X'(I,, — X/sig)Y € d| - ]|1(S). (subdifferential condition)

In the noiseless case, when € = 0 and Y = X, the subdifferential condition reduces
to X'(Xg)*1x € || - [1(S) (or equivalently, || X'(Xg)* 1k/jsc < 1 and 1j € col(Xg)). More-
over, if we have ker(Xg) = {0}, then 1, € col(/)fls) and therefore ||X’(/)E/S)+1;€||OO < 1 is equiv-
alent to || X2 X (X7 X 1) 'S;lc <1, where I = supp(S), I = {1,...,p} \ I and X (resp. X7)
denotes the submatrix of X obtained by keeping columns corresponding to indices in I (resp
T). This latter expression is known as the irrepresentability condition [82] 192 [194].

From now on, in the definition of SLOPE (4.2.3), we consider the penalty term Ja(b) (with
a fixed A € RP') to be multiplied by a scaling parameter o > 0 and we denote the set of
SLOPE solutions by Sx oA (Y).

4.3.1 SLOPE irrepresentability condition

As illustrated by Fuchs [82], Theorem 2], Bithlmann and van de Geer [41, Theorem 7.1] and
also reminded in Remark the irrepresentability condition is related to sign recovery by
LASSO in the noiseless case. Analogously, studying pattern recovery by SLOPE in the noiseless
case allows us to introduce the SLOPE irrepresentability condition. The latter condition will
be very useful in the discussed later case when € is no longer null. Corollary which
provides a characterization of pattern recovery by SLOPE in the noiseless case, is a consequence
of Theorem [£3.11
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Definition 4.3.1. Let X € R™P, A € RP" and 0 # B € RP. The noiseless pattern recovery
by SLOPE is defined as

Ja >0 3B € Sx.oa(XB) such that patt(B) = patt(B). (4.3.2)

Corollary 4.3.1. Let X € R™?, A € RP" and 0 # B € RP. The noiseless pattern recovery by
SLOPE is equivalent to

T (X (Xap) T AMm) < 1 and An € col(Xyg)

(or equivalently, to X/(/)av[)—FJN\M € 0JA(M)). Moreover, under this condition, there exists
ap > 0 such that for all o € (0, ) there exists B € Sx.aa(XB) for which patt(B) = patt(B).

Now we are ready to define the SLOPE irrepresentability condition.

Definition 4.3.2. Let M = patt(8). We define the SLOPE irrepresentability condition
as the following inequality and inclusion:

Ji (X' (X3 T Am) <1 and Am € col(Xyy). (4.3.3)

Remark 4.3.4. If ker(X ) = {0}, then X’(f;vl)* = X’XM(fivlfM)*l and consequently
the SLOPE irrepresentability condition reads JX(X’XM(X&IXM)_IKM) < 1.

Example 4.3.5. Let p = 2, A = (4,2), 8 = (5,0) and B8 = (5,3)". Consider a design matrix
X = (X1]|X3) € R™*? satisfying
o (1 06
XX = (0.6 1 ) '

o The SLOPE irrepresentability condition does not occur when 8 = (5,0)". Indeed, M =
patt(B) = (1,0), X = X (thus X&,IXM = 1) and Ay = A\; = 4. Therefore

Ti( X' (X ) T AM) = T3 (X' X m(X i Xm) P Am) = J3(AX X ) = 6.4/6 > 1.

+ The SLOPE irrepresentability condition occurs when B = (5,3)". Indeed, M = patt(B) =
(2,1), Xm = X and Apg = A. Therefore ker(X ) = {0} and

Ti(X (X ag) T AM) = JA(X'X(X'X)IA) = JL(A) =1 < 1.

Figure [4.2] corroborates graphically that SLOPE irrepresentability condition does not hold for 3,
but it is satisfied for 8. Note that, in this setup, the SLOPE solution is unique, since ker(X) =
{0}. By B(«) we denote the unique element of Sx oA (X 3). Then the SLOPE solution path is
the function (0,00) 3 a — B(a).
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Figure 4.2: SLOPE solution paths for p = 2 and A = (4,2) in the noiseless case. (3 is equal
respectively to (5,0) (left panel) and (5,3)" (right panel). As may be seen, the pattern of 8 =
(5,0)" cannot be recovered in the noiseless case for any scaling of A. The pattern of 8 = (5, 3)’
is recovered for a € (0,0.4).

4.4 Geometrical interpretation of Irrepresentability Condition

Let 0 # B € RP. By (4.2.4)), for a SLOPE minimizer Be Sx.aA (X B) the following occurs:

lX’X(ﬂ — B) € 8Ja(B).

«

In addition, for M = patt(ﬁ), the following facts hold:
e BB € col(Unm), thus 2X'X (8 — B) € X'X col(Un).
e OJA(B) = dJp(M).

Therefore, the mnoiseless pattern recovery by SLOPE implies that the vector space
— _ — ~

X'Xcol(Un) = col(X'X ) intersects 0Ja(M). Actually, the vector II = X'(X ;)T Am

appearing in Corollary may be interpreted in a geometrical way as we propose below.

Proposition 4.4.1. Let X € R™P, 0 # M € MSLOPE and A € RP*. Recall that
Xm = XUnt, Ay = Uy A and T = X'(X )" Ant. Then:
i) If Ant ¢ col(Xng), then aff(9Ja(M)) N col(X' X m) = &.
i) If An € col(Xpy), then aff(9J5(M)) N col(X' X y) = {II}.
i1i) Pattern recovery by SLOPE for € = 0 is equivalent to
col(X' X 1) N0Ja(M) # @.

In other words, the accessibility condition means that the intersection of col(X’ XM) N

aff(0Ja(M)) is not empty. Moreover, then it is equal to the vector IT = X’(Xli\/l)‘*'KM More-
over, when the accessibility condition holds, by Proposition iii) the noiseless recovery of
the SLOPE pattern is equivalent to the subdifferential condition IT € 9Jx (M).
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B2

col(X' X np)

Figure 4.3: Intersection II of col(X'Xny) = col((1,2/3)) and aff(dJa(M)) for X'X =
(2}3 2{3>, A = (4,1) and patt(8) = M = (1,0). Since IT = (4,8/3) ¢ 8Ja(M), then
in the noiseless case, by Proposition SLOPE does not recover M. However, as IT exists,
the pattern M is accessible, as in the latter examples.

Proof. i) Recall that, according to Lemma 2, aff(0JA(M)) = {v € RP: UM'v = Am )
If aff(0JA(M)) ﬂcol(X X)) # @, then there exists z € RF, where k = HMHOO, such

that X'Xmz € aff(8Ja(M)). Consequently, Ayy = UpX'Xnmz = XMXMz thus
Anm € col(/)avl).

i) If App € col(}\f;w), then II € aff(9JA(M)). Indeed, since X;V[(X;VI)* is the projection
onto Col(f;\/[), we have

_ — —~ ~ ~

Moreover, since col((X 1\/1) ) = col(Xm), we deduce that II € - col(X 'X ). To prove that IT
is the unique point in the intersection, we will show that col(X' Xnm) Neol(Upm)* = {0}. Indeed,
if v € col(X'X ) Ncol(Upg) L, then there exists such z € RF that v = X' Xnz = X/ X' XUmz
and (Upmz)v = 0. Therefore, (Upz)' X' XUpnz = 0, which h implies that XUpnz = Xnmz =0

and thus v = 0. Finally, if II € aff(dJa(M)) N col(X' X ), then II — IT € col(X'X )
and U (IT — II) = 0, which implies that IT = TI.

iii) According to Corollary - pattern recovery by SLOPE in the noiseless case is equivalent
to IT € 8.J5 (M) which is equivalent, by i) and ii), to col(X'Xn1) N 0Ja (M) # @. O

Proposition may be interpreted with a notion of the accessibility condition for SLOPE,
which was introduced in [I56].

Definition 4.4.1 (Accessible pattern). [156] Let X € R™ P, A\ > 0 and pen be a polyhedral
gauge. We say that the pattern of B € R? is accessible with respect to X and Apen, if there exist
y € R" and 5 € SX \pen(y) such that ,6’ i~

The accessibility of a pattern can be characterized in a geometric and an analytic way.

Proposition 4.4.2 (Characterization of accessible patterns). Let X € R™*P.

(a) Geometric characterization: The SLOPE pattern of B € RP is accessible with respect to X
if and only if
row(X) Ndpen(B) # 2.
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col(X' X m)

Figure 4.4: Intersection II of col(X'Xny) = col((1,1)) and aff(8Jx(M)) for X'X =
1 2/3
2/3 1
then in the noiseless case, by Proposition @ SLOPE recovers the pattern M of 3.

, A = (4,1) and patt(8) = M = (1,1)’. Since IT = (2.5,2.5)" € 9Jr(M),

B2
col(X' X np)

Figure 4.5: Intersection IT of col(X'Xn) = col((1,—1)) and aff(9Jx(M)) for X'X =
1 2/3
2/3 1
less case, by Proposition SLOPE recovers the pattern M of 3.

, A = (4,1) and patt(B) = M = (1,—1)". Since IT ¢ d.Jx (M), then in the noise-
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B2
dJIA(M) ]

A

col(X' X n)
Figure 4.6: Intersection IT of col(X'Xn) = col((2/3,1)) and aff(d.Jx(M)) for X'X =
2}3 2{3 VA = (4,1) and patt(8) = M — (0,1). Since TT = (8/3,4) ¢ 9.Ja(M), then

in the noiseless case, by Proposition @I, SLOPE does not recover M.

(b) Analytic characterization: The SLOPE pattern of B € RP is accessible with respect to X
if and only if for any b € RP we have

XpB =Xb = pen(B) < pen(b).

For p = 2,n > 2, a full rank matrix X and the models with zeros or with 2-element clusters,
the Proposition and Corollary are illustrated on Figures — They present
the SLOPE dual unit ball Ca, linear spaces col(X'Xpp) (blue lines) and, if existing, their
intersection points IT = X'(X ;\/I)JR/NXM (black dots) with the affine spaces aff(Fi) (red dashed
lines) of the corresponding pattern faces Fiy = 9Ja (M) (red segments). The existence of IT
is equivalent to the accessibility condition. The SLOPE irrepresentability condition holds if

and only if II € Fyg. It holds true in Figures and and fails in Figures and

In the low-dimensional setting, when the design matrix X is of a full column rank, another
geometrical interpretation of B5°FF might be used. As a corollary of Theorem one may
deduce that the difference between B85*OFF and BOL° is equal to

(X'X)lr* € (X'X) 71 Ch,

where Cp is the unit ball in J3 and 7* is defined as in Lemma On Figure we present
graphically this relation between B5*OTF and gOL3.

The illustration of the SLOPE dual norm unit ball Cx in RP for p = 3 may be found in the re-
cently published article of Schneider and Tardivel [I56]. We recall it to present that with growing
number of explanatory variables p the complexity of C'p rises drastically.
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Figure 4.7: Comparison of fSFOPE  FOLS and their difference (X'X) ' Xe € (X'X)"1Cy for

_ v _ | 1 2/3 _ /
p—Q,XX—lQ/3 1 and A = (4,1).
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Figure 4.8: C'p in R? for p = 3 with its two-dimensional subset corresponding to the intersection
of Cp with row(X) from [156, Example 4]. One may observe that in this example there are
only 17 accessible patterns out of all 147 patterns for p = 3.

While Ca consists of 17 faces for p = 2, for p = 3 the number of faces increases to 147. For
larger values of p, the exact number of faces of Cx may be found at the On-line Encyclopedia of
Integer Sequences [138, A080253]. The growth of the number of faces is super-exponential with
respect to p.

4.5 Asymptotics of pattern recovery and pattern consistency

In this section we consider two asymptotic scenarios and establish conditions on tuning param-
eters for which the pattern of 8 is recovered. In Section we consider the case where gaps
between distinct absolute values of B diverge and in Section [£.5.2] the case where the sample size
n diverges. The proofs rely on Theorem We show that the positivity and subdifferential
conditions are satisfied under our settings. It turns out that for the positivity condition the
tuning parameter cannot be too large, while for the subdifferential condition it cannot be too
small. In this way we consider a tuning parameter of the form aA, where A € RP* is fixed
and « varies. We determine the assumptions for the sequence («) for which both positivity and
subdifferential conditions hold true, i.e. for which the pattern is recovered.

4.5.1 X is a fixed matrix

The subdifferential condition, given in Theorem says that a vector 7 defined in (4.3.1))
belongs to dJua (M), where « is a scaling parameter. This condition is equivalent to requiring
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B2

col(X' X np)

Figure 4.9: Intersection II of col(X'Xny) = col((1,1/4)) and aff(dJa(M)) for X'X =
1 1/4
/4 1
but it lies on a boundary of Fy;. Therefore the open SLOPE irrepresentability condition does
not hold, even though the irrepresentability condition is satisfied.

, A = (4,1) and patt(8) = M = (1,0). Since II = (4,1)" € Fyy = 0JA(M),

that a vector 7/« belongs to 0Ja (M ). We denote the vector 7/« by

-~/

T = X'(X ) Am + X(I - Pm)Y = X'(X

-~/

)+AM+ Lx (I, — Py)e, (4.5.1)

where in the latter equality we use the fact that (I - PM) is an orthogonal projection onto
col(Xnm)* and therefore (I, — Py) X8 = (I, — Py) X s = 0, where 8 = Upgs

and s € RIMllect

By Theorem the probability of the pattern recovery by SLOPE is upper bounded by

(Ja(ma) <1),

(4.5.2)
0if Ay ¢ col(XM)

P (38 € Sxan(Y) such that patt(B) = patt(B)) < {

The first point in Theorem shows that the probability of pattern recovery matches with
the upper bound when gaps between different absolute values of terms of 8 are large
enough. The last point provides the pattern consistency by SLOPE.

Before stating this Theorem, we introduce the open SLOPE irrepresentability condition.

Definition 4.5.1 (Open SLOPE irrepresentability condition).
X'(X )" Am € ri (9J5(M)).

We illustrate the difference between the SLOPE irrepresentability condition and its open version

on Figure

Theorem 4.5.1. Let X € R™*?, 0 # M € M3XOPE and A = (\1,...,)\,) € RPT. Consider
a sequence of signals (/B(T))rzl with pattern M :

B =Ums™  with 7 e RF* and k = | Mo,
whose strength is increasing in the following sense:

o . (r) (r) \ r—oo . . (ry
A, = 1Iélililk (si — SZ_H) — 00, with the convention s; [, =0

and let Y = XB(") + ¢, where € is a vector in R".
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(a) Sharpness of the upper bound: Let o > 0. If € is random, then the upper bound (4.5.2)) is
asymptotically reached:

P (Ja(ma) < 1),

lim P (38 € Sx.aa(Y") such that patt(B) = M) = 2 2
700 ( B € Sxanl ) patt(B) ) {O if Am ¢ Col(Xivl).

(b) Pattern consistency: If a, — 00, ap /A, — 0 as r — oo and
— ~
X' (X pg)* At € 1i(8Ta (M),
then for any € € R™ we have

Jro>0Vr>r 3B € SX7QTA(Y(T)) such that patt(B) = M.

Remark 4.5.2. _, _
(a) The open SLOPE irrepresentability condition X'(X )T A € ri(0Ja(M)) is equivalent
to the following computationally verifiable conditions:

Ti (X' (X pg) T Am) < 1 and Ay € col(Xpy),
K . —~ ~ .
{ief, pb S X' X Amlg) = S5 A | = 1Mo
This equivalence follows from Proposition [4.9.1]

(b) Let us assume that the distribution of € and —e is equal. Because the unit ball of the dual

sorted ¢ norm is convex, when JX(X’()N(;\/I)J“./NXM) > 1 then, independently on a > 0, the
probability of pattern recovery is smaller than 1/2, namely

P (3,[:} € Sx.aa(Y) such that patt(3) = M) <1/2.
For LASSO, a similar inequality on the probability of sign recovery is given in [I83].

(c¢) In Section we illustrate that, under the open irrepresentability condition, one may
select a > 0 to fix the asymptotic probability of pattern recovery at a level arbitrarily
close to 1 (a similar result for LASSO is given in [I74]).

4.5.2 X is random, p is fixed, n tends to infinity

In this section we discuss asymptotic properties of the SLOPE estimator in the low-dimensional
regression model in which p is fixed and the sample size n tends to infinity.
For each n > p we consider a linear regression problem

Y, =X,0+¢n, (4.5.3)

where X,, € R™*P is a random design matrix. We will use the following assumptions:

A. e, =(e1,...,&,), where (g;); are i.i.d. centered with finite variance.
B1. A sequence of design matrices X1, Xo, ... satisfies the condition
1 P
~X, X, = C, (4.5.4)

where C' is a deterministic positive definite symmetric p X p matrix.
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B2. Foreach j=1,...,p,

maxi1, . [XJ)]

o) — 0.
i1 (X57)?

C. (Xn)n and (en)n are independent.
We will consider a sequence of tuning parameters (A,,), defined by
An = anA7

where A € RPT is fixed and (ay,), is a sequence of positive numbers.
Let B39PF be an element of the set Sx,, A, (Y ) of SLOPE minimizers. Under Assumption B1,
for large n with high probability, the set Sx, A, (Y ) consists of one element. Indeed, we have

P (ker(X,) = {0}) = P (X}, X, is positive definite) =3 1

and ker(X,) = {0} ensures existence of the unique SLOPE minimizer. In a natural setting,
the strong consistency of BELOPE can be characterized in terms of behaviour of the tuning
parameter. We use such approach in the Theorem [3.4.1] and Theorem [£.6.2] At this point we
note that if holds almost surely, then the condition «,, /n — 0 ensures that BELOPE 2% 8.
Thus, if B does not have any non-trivial clusters nor zeros, i.e. |patt(3)||- = p, then o, /n — 0
suffices for patt(B5OCF) L% patt(B). However, if ||patt(8)
complex as we shall show below.

The first of our asymptotic results concerns the consistency of the pattern recovery by the SLOPE
estimator. We note that Assumption B2 is not necessary for the SLOPE pattern recovery. This
assumption was introduced to ensure the existence of a Gaussian vector in the Theorem

(a).

Theorem 4.5.3. Under the assumptions A, B1, C, the following statements hold true.

| < p, then the situation is more

(a) If B2 is additionally satisfied and moreover oy, = \/n, then
lim P (patt(B5LOPF) = patt(8)) = P (J5(V) <1),
where V ~ N(CUM(U\CUM) A, 02[C — CUNM(UpyCUNM) U C)).
(b) Let
CUM(Uy\CUM) ' Ay € 1i(0Jp (M)). (4.5.5)
The pattern of SLOPE estimator is consistent, i.e.

~ P
patt(B,-°7F) — patt(B),

if and only if
(7% . Op

s, =0 and o lim o= oo
(¢) The condition
Ji (CUMUMCUM) ' AM) < 1 (4.5.6)

is mecessary for pattern consistency of SLOPE estimator.
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The random vector V' belongs to the smallest affine space containing 9Ja (b), i.e. aff(0Ja (b)) =
{veRP: Uy =Anm}, see Lemma

Condition is the open SLOPE irrepresentability condition in the n — co regime. The
above result should be compared with [192, Theorem 1], where the same conditions on the
LASSO tuning parameter ensure consistency of sign recovery by LASSO estimator. Below we
make one step further and consider the strong consistency of SLOPE pattern recovery by BELOPE.
Although this was not the main focus of Zhao and Yu, it can be deduced from [192, Theorem 1]
that if for ¢ € (0,1) the LASSO tuning parameter \,, satisfies A,,/n — 0 and )\n/anJrc — 00, then
under the strong LASSO irrepresentability condition, one has sign(B%ASSO) 2% sign(B). Even
though the patterns are discrete objects, as the underlying probability space is uncountable, the
convergence in probability does not imply the almost sure convergence. Below we show that if
an/n — 0 and a,/+/n — oo, then patt(BSFOFF) is not strongly consistent and one actually has

to impose a slightly stronger condition (4.5.7)).
For the purpose of the a.s. convergence, we strengthen the assumption on design matrices:

B’ Assume that the rows of X, are independent and that each row of X, has the same law as
=, where E is a random vector whose components are linearly independent almost surely
and that E[2?] < oo fori=1,...,p.

Remark 4.5.4. Under B’, by the strong law of large numbers, we have n~! X! X,, %% C, where
C = (Cjj)ij with Cj; = E[E;E;]. Moreover, C' is positive definite if and only if the random
variables (Zi,...,E,) are linearly independent almost surely. Indeed, for ¢ € RP we have
t'Ct=E[XL, ;E:)% > 0 if and only if >-F_, ,5; # 0 a.s. for all t € R? \ {0}.

Since B’ ensures that holds a.s., it also implies that for large n, there almost surely exists
a unique SLOPE minimizer. We denote this element by gSFOPE,

Theorem 4.5.5. Under A, B' and C, assume that a sequence (ay,)y satisfies

li Qp 0 d li Qn

im — = an im ————— =0
n=>o0o n n—oo y/nloglogn

If (4.5.5) holds, then the sequence (BELOPE)n recovers almost surely the pattern of B asymptot-
ically, i.e.

(4.5.7)

patt(BSLOPE) L2 patt(B). (4.5.8)

Remark 4.5.6. Assume that is satisfied and set o, = cy/nloglogn for ¢ > 0. Then
(4.5.7) is not satisfied and the probability that the correct SLOPE pattern is not recovered
is greater than zero. In Section [4.6.1] we present more refined results on the strong consistency of
the SLOPE pattern. The loglogn correction in comes from the law of iterated logarithm.

4.6 Strong consistency of SLOPE and its pattern

4.6.1 Refined results on strong consistency of the SLOPE pattern

In this section we aim to give assumptions on the design matrix that are weaker than condition

B’, but they ensure the almost sure convergence of the pattern of BELOPE.
A’ g, = (e1,...,en), where (g;); are independent random variables such that
Ele,) =0 and Var(e,) =02 foralln, and supE[|e,|"] < oo (4.6.1)
n

for some r > 2.
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B”. A sequence of design matrices X1, Xo, ... satisfies the condition
1 / a.s. C
HX”X" = C, (4.6.2)

where C' is a deterministic positive definite symmetric p X p matrix.

With X,, = (X.“?))ij,

)

lim (log n)P

n—o0

‘X ‘ =0 as. forall p>0 (4.6.3)

and there exist nonnegative random variables (¢;);, constants d > 2/r and my € N such
that for n > m > my,

=1 i=m+1

d
sup [Z (ij)—xl.(j?”))2+ 3 (XZ.(]’.”)Q] < (‘Z ci) as., (4.6.4)
d
(Z ci) =0(n) as. (4.6.5)

C. (Xn)n and (e,)n are independent.

We note that conditions and are trivially satisfied in the i.i.d. rows setting of Re-
mark or Assumption B’ The main ingredient of the proof of the strong pattern consistency
is the law of iterated logarithm which holds trivially under B’ Below we establish the
same result under more general B”. The technical assumption is a kind of weak continuity
assumption on the rows of X, as it says that the £y distance between j** rows of X, and X,,
should not be too large.

Lemma 4.6.1. Assume A’, B” and C. Then

. | X enlloo
1 — 8. 4.6.6
171gsolip nloglogn > a5 ( )

Proof. In view of we have for j =1,...,p,
n LA = p Z (x5 ) = (nflx;bxn)jj &5 055 > 0. (4.6.7)

We apply the general law of iterated logarithm for weights forming a triangular array from [117].
The result follows directly from [I17, Theorem 1], which we recall in Theorem [2.3.18| Defining

agi) = Xi(jm fori=1,...,n,5=1,...,p, n>1 and 0 otherwise, we have

(X'en); Z am &

i=—00

and therefore we fall within the framework of - Then, (4.6.1)), (4.6.3), (4.6.4) and (4.6.5)
coincide with (2.3.4), (2.3.6), (2.3.7) and (2.3.8), respectively. Let P( -|(X,)n) be a regular
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conditional probability. Then, applying Theorem [2.3.18 on the probability space (€2, F,Px) to
our sequence, we obtain that for j =1,...,n,

X! en);
P (limsup ’( n€n)j| — <o (Xn)n) =1 a.s.
noo /941 log log AP
Averaging over (X,,), and using (4.6.7)) again, we obtain the assertion. O

Theorem 4.6.1. Assume A’, B” and C. Suppose that (o), satisfies

lim %:O and lim Lzoo

n—oo n n—oo (/nloglogn
If [@5.5) is satisfied, then patt(BSOFF) 22 patt(B).

Comments:

(a) Under reasonable assumptions (see e.g. [I17, Theorem 1 (iii)]), one can show that

. | X enlloo
limsup —(—2—— >0
n—)oop vnloglogn
Since a; ' X/, e,, *% 0 is necessary for the a.s. pattern recovery, we can show that the con-
dition «,,/v/nloglogn — oo cannot be weakened. Thus, the gap between the convergence
in probability and the a.s. convergence is integral to the problem and in general cannot
be reduced.

(b) One can relax assumption B” by imposing stronger conditions on the error €,. For example,
if g, is Gaussian, then one can use results from [167]. We note that [167] offers a very
similar result as [117], but their assumptions are not quite comparable, see [167, Section
3 i)] for detailed discussion.

(c) For Gaussian errors, one can consider a more general setting where one does not assume
any relation between &, and €,41, i.e. the error need not be incremental. For orthogonal
design such approach was taken in [I65]. It is proved there that one obtains the a.s.
SLOPE pattern consistency with the second limit condition of Theorem [£.6.1] replaced by
nlLHéO an/v/nlogn = oo. This result can be generalized to non-orthogonal designs.

4.6.2 Strong consistency of the SLOPE estimator

Lemma 4.6.2. Let g, = (e1,...,&,) with ¢; i.i.d., centered and having finite variance.
Suppose that
1
EXQLX,L 2% C > 0. (4.6.8)

and that (€n)n and (X,), are independent. Then n~*X e, < 0.

Proof. Denote by P( - | (X,),) the regular conditional probability. By [52, Th. 1.1] applied
to the sequence (n~!X/e,); on the probability space (Q,F,P( - | (X,)n)), we obtain

P ( lim n~ (X en); =0 | (Xn)n) =1, j=1,...,p, a.s.

n—oo

Thus, applying the expectation to both sides above we obtain the assertion. O
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Theorem 4.6.2. Assume thatY, = X, +sn, where BeRP, e, =(e1,...,6n) withe; i.i.d.,
centered and having finite variance. Suppose (4 and that (en)n and (X ,,)n are independent.

Let Ay, = ()\g ), Cee )\;(, ))'. Then, for large n, an, (V) = {BSLOPEY glmost surely.
If B #£ 0, then
SLOPE a Sy 1
(B B) (nh_{rgon = > . (4.6.9)

If B =0 and lim,,_, % =0, then BELOPE 2% 0.

Proof of Theorem[{.6.4 The assumption implies that the matrix X/, X, is positive def-
inite for large n almost surely and hence ensures that ker(X,) = {0}. It implies the uniqueness
of the SLOPE solutlon

By Proposition ,BSLOP Eis the SLOPE estimator of 8 in a linear regression model
Y,=X,B+e, 1f and only if for m, = X' (Y, — X,,B5°PE) we have

Ji(mn) <1 (4.6.10)
and
Upt, Tn = An, (4.6.11)

( SLOPE)

where M ,, = patt and An = U| M., iA”' By the definition of 7,, we have

. 1 -1/

Since in our setting BSLS is strongly consistent, ,BSLOP E 23 8 if and only if
a.s

(n !X, X)) (niw,) 5 0. In view of -, we have (n=!X! X,)~! (n7tm,) &5 0
if and only if n='7, <5 0.
Assume n_l)\gn) — 0. By (4.6.10) we have ||7"||c < )\g"), which gives

<ZL 0.
) n

Therefore, 9) implies that BSLOPE 2% 8.
Now assume that B # 0 and BSLOP E is strongly consistent, i.e. n=lm, =3 0. Then,

gives

Tn

n

Plimalloc = (UM, allso = [Anlloo = AT (4.6.12)
provided M,, # 0. Applying (4.6.10) for BELOPE = 0, we note that M, (w) = 0 if and only if
Ticia, (0 XY a(w) < 1.

In view of Lemma it can be easily verified that n ' XY ,, % CB. Since
1 1 1
D M .

>

Tym, =0}
(o]

Lm,=0p =

o0 o

we see that for 8 # 0, we have M,, # 0 for large n almost surely. Thus, for 8 # 0 we eventually
obtain for large n

(n)
Mo

n

Uy

n

o0
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4.7 Simulation study

Our simulations aim at illustrating Theorems [4.5.1] and [4.5.3] and at showing that the results
provided in these theorems are somehow unified. We consider the linear regression model Y =
X3 + e, where X € R™P and € € R" has i.i.d. N(0,1) entries. Up to a constant, we choose
components of A = (A1,...,\,) as expected values of ordered standard Gaussian statistics. Let
Viiy = ... = V|p) be ordered statistics of i.i.d. N(0,1) random variables. An approximation of
E[V(;] for some i € {1,...,p}, denoted E(i,p), is given below (see [99] and references therein)

| 0.375
E(i,p) = -~ ( - ) :

p+1—0.750

where @ is the cumulative distribution function of a N(0,1) random variable. We set \; =
E(i,p)+ E(p — 1,p) — 2E(p,p) for i = 1,...,p. Note that since E(1,p) > ... > E(p,p), then
A=\, ..., 0) €RPE.

For the design matrix X and the vector of regression coefficients 8 we consider two cases:

e X is orthogonal, and the components of 8 are all equal with a magnitude that tends to
infinity.

e X is asymptotically orthogonal, the sample size diverges to infinity and the components
of B are equal to 1.

4.7.1 Sharp upper bound when X is orthogonal

In Figure we have p = 100, X € R"*? is orthogonal (i.e X'X = Ijp) and B = ... =
Bp = ¢ > 0. To compute the value g5 of the scaling parameter for which the upper bound

equals 0.95, we note that 7, is a Gaussian vector of N (X/(Xivl)*]\M, a2 X'(I - XMXK/I)X)
distribution. Moreover, since M = patt(B) = (1,...,1)’, we have

p

~r 1 1
X'(Xy) " Am = (Z)\i,...,Z)\z) and (4.7.1)
pi:l pi:l
1-1/p —-1/p ... —1/p
X'(In - XmuXy)X = _1./1’
: g —1/p
—1/p . —=1/p 1-1/p

Since the distribution of 7, is given and the open SLOPE irrepresentability condition occurs,
for arbitrary ¢ € (0,1) one can choose «, for which P(J3(m,,) < 1) =g¢.

In the following graph, ¢ = 0.95 and «ag.95 ~ 1.391.
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Probability of pattern recovery
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c: common value of the regression coefficients

Figure 4.10: The estimates of probability of pattern recovery by SLOPE as a function of ¢
where ¢ = 81 = ... = Bigo > 0. For each point the probability is computed via 10° Monte-Carlo
experiments. The scaling parameter agg9s =~ 1.391 is chosen to fix the upper bound at 0.95.
Note that when c is large, the probability of pattern recovery is approximately equal to 0.95.

4.7.2 Limiting probability when X is asymptotically orthogonal

In Figure X € R™19 has ii.d. N(0,1) entries, 81 = ... = B0 = 1 and g g5 ~ 1.391.
Actually, since n='X’X converges to I109, when patt(B) = (1,...,1)" the Gaussian vector
involved in the limiting probability has the same mean and covariance as (4.7.1)).

Probability of pattern recovery

Probability
0.4

0.2

0.0
1

T T T T T T
0 5000 10000 15000 20000 25000

n: number of rows

Figure 4.11: The estimates of probability of pattern recovery by SLOPE as a function of n. For
each point the probability is computed via 10> Monte-Carlo experiments.

4.8 Discussion

This chapter makes an important step in understanding the clustering properties of SLOPE and
we have shown that the irrepresentability condition provides theoretical guarantees for SLOPE
pattern recovery. However, this by no means closes the topic of the SLOPE pattern recovery.
Similarly to the irrepresentability condition for LASSO, SLOPE irrepresentability condition is
rather stringent and imposes a strict restriction on the number of nonzero clusters in 8. On the
other hand, in [I74] it is shown that a much weaker condition for LASSO is required to separate
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Figure 4.12: Comparison of LASSO and SLOPE when the cluster structure is present in the
data. Here n = 100, p = 200, and the correlation between i*" and j** column of X is equal
to 0.9048/"~7!. First k = 100 columns of X are associated with Y and their nonzero regression
coefficient are all equal to 40. The SLOPE and LASSO irrepresentability conditions are not
satisfied, but SLOPE, contrary to LASSO, satisfies the accessibility condition.

the estimators of the null components of 8 from the estimators of nonzero regression coefficients.
This condition, called accessibility (also called identifiability), requires that the vector B has a
minimal ¢; norm among all vectors < such that X3 = X~. Thus, when the accessibility
condition is satisfied, one can recover the sign of 8 by thresholding LASSO estimates. Empirical
results from [I74] suggest that this weaker condition is also sufficient for the sign recovery by
the adaptive LASSO [194]. In Chapter [5|it is shown that a similar result holds for SLOPE. In
this case, the accessibility condition is satisfied if the vector 8 has the smallest sorted ¢; norm
among all vectors v such that X8 = X~. In Chapter 7?7 it is shown that when the accessibility
condition is satisfied then SLOPE properly ranks the estimators of regression coefficients and
the SLOPE pattern can be recovered by shrinking similar estimates towards the cluster centers.
Figure illustrates this phenomenon and shows that the accessibility condition for SLOPE
can be much less restrictive than the accessibility condition for LASSO. In this example, the
matrix X and the vector Y are generated as in the example illustrated in Figure and the
only difference is that now first £k = 100 = n regression coefficients are all equal to 40. In this
situation, the accessibility condition for LASSO is not satisfied and LASSO can not properly
separate the null and nonzero regression coefficients. Also, despite the selection of the tuning
parameter so as to minimize the squared estimation error, the precision of LASSO estimates is
very poor. As far as SLOPE is concerned, the irrepresentability condition is not satisfied, but
the accessibility condition holds. Thus, while SLOPE can not properly identify the pattern, it
estimates 8 with such a good precision that the difference between the estimated and the true
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pattern is hardly visible on the graph. These nice ranking and estimation properties of SLOPE
bring a promise for efficient pattern recovery by appropriate thresholded and adaptive SLOPE
versions.

4.9 Appendix — Proofs

4.9.1 Proof of Proposition 4.2.1

Note that if M = 0, then the statement is valid by - Thus, we may later assume that
M # 0. To simplify the notation, we write A instead of Api. The elements of A are denoted
by Ay, l=1,....k Letk= || M ||~ Before proving Proposmon note that, by assumption,
there exists s € R*" such that b = Upgs. Consequently, |bl, = U\mj, s and thus

Ja(b) = Atlbly + ...+ Aplbly = A'Ujpg, 8 = A's = s1A1 + ... + sy,
Moreover, with p; = |[{i: |ms| >k +1—1}], we have A; = Appg41+ - F N, =1, k.
Proof of Proposition |4.2.1].
First, we prove the inclusion 0Jx (b) C {v e€RP: Ji(v) <1and Uyv = A}. Let v € 0JA(b).
Since J3 (v) <1 (see (4 ) then, by definition of the dual sorted ¢; norm, for all

je{l,2,... ,p} we have ZZ 1 vle) < S7_, Ai. Tt remains to prove that Ujw = A.
For all [ € {1,...,k} we have the follovvlng inequality

l l

Z[ MYl = Z sign(m;)v; < Z lv;| < Z vy < Z)\ = ZK, (4.9.1)

=1 i |mi|>k+1-1 i |mg|>k+1-1 i=1 =1
Note that
k k—1 ! k
/ / !/
b'v=(Ums)v = Zsi[UMv]i = Z (51— s141) > [Unmv)i + sk Z Upvli
1=1 =1 i=1 i=1

k—

1 k
<Zsl—sl+1 ZA —i—skZA ZS[A[ZJ
=1

Moreover, since v € dJa(b), we have b'v = JA(b) (see (4.2.1])). Therefore,

l

!
Z[Ung]izz& for 1=1,...,k

i=1 i=1
and thus the inequalities given in (4.9.1) are the equalities. Thus
Uy =A; for 1=1,...,k

and hence that Ujv = A.

Now we prove the other inclusion, 0J (b) D {v e€RP: Ji(v) <1land Upyv = KM} Assume
that v € RP satisfies J} (v ) < 1 and U v = A. To prove that v € dJ(b), it remains
to establish that b'v = JA(b) (see . Since b = Ungs, we have

b'v = (UMS)’U = s Upv = s'A = JA(D).
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4.9.2 Proof of Proposition 4.2.2]
Lemma 4.9.1. Let A € RPT and b€ RP. If A € dJA(b), then by > ... > b, > 0.

Proof. Let us assume that b; < 0 for some i € {1,...,p}.
For 7t = (A1, ..., Ai—1, =i, Aig1, ..., Ap) we have J3 () < 1 and one may deduce that

A'b < 7'b < max{n'b: Jy(m) <1} = Ja(b).

Consequently A ¢ 9Ja(b), which leads to a contradiction.
Now, let us assume that b; < b; for some 1 < ¢ < j < p. We define 7 as the following:

Mo if kA0 k£
if k=1, k=1,...,p.
if k=7,

ﬁ'k = )\j
Ai

Note that J3(7) < 1. Since A\; > A;, by the rearrangement inequality we have A\;b; + A\jb; <
Ajbi + Aibj. Thus, one may deduce the following inequality

A'b < 7'b <max{n'b: we RP Ji(mw) <1} = Ja(b).

Consequently, A ¢ 0Ja(b), which again leads to a contradiction. O
Let ¢ be an orthogonal transformation defined by ¢: x € RP — (vib.(1),. .-, Vpbr(p)) Where
v1,...,vp € {—1,1} and let r be a permutation on {1,...,p}. Before proving Proposition

let us recall that for any a,b € RP we have Jo(b) = Ja(¢(b)), JA(b) = JA(¢(b))
and b'a = 1¥(b)'1(a), therefore dJA (1(b)) = 1(0JA(D)).

Proof of Proposition[4.2.4 1f patt(a) = patt(b), then, according to Proposition [4.2.1]
0Ja(a) = 0Jpa(b). Set M = patt(a) and M = patt(b). It remains to prove that
if Ja(a) = 0JA(b), then M = M. Since the subdifferential dJa(a) depends on a only
through its pattern, then by Proposition we have 0Jp(a) = 0JA(M) and similarly
DJA(b) = DJA(M).

First let us assume that M = |M/|; namely M; > My > ... > M, > 0. In this case, M'A =
JA(M) and hence A = (A1,...,Ap) € dJA(M). Since OJA(M) = dJA(M), it follows from
Lemma that MI > ... > Mp > 0, because A € 8JA(]\~4). To prove that M = M, first
let us establish that M, = Mp =0or M, = Mp =1 If M, = 0 and Mp = 1, then we set
7= (A1,...,Ap—1,0), where J3 (#) < 1. Because

JA(M) =AM =% M and Jy (M) = A'M > 7'M,

we have 7 € 9J (M) and 7 ¢ dJ (M) which provides a contradiction. We proceed analogously

for M, = 1 and M, = 0. To achieve proving that M = M , let us establish that m; = m;4
and m@ = ﬁ”bi+1 or ™y > M1 and ﬁ”LZ > mi+1. If m; = Miy1 and ﬁ”LZ > ﬁlprl then we define 7
satisfying Jj (%) < 1, as follows

e ifk#i kA1,
Fp={ i1 itk =4, k=1,...,p.
N ifk=i41,
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Since A\ymy; + Air1mip1 = Aipimy + Aymyp1 and Aimy; + 1M1 > Aip1my + Aymyyq then
JA(M) =AM = 7'M and Jy(M) = A'M > 7' M.

Consequently 7 € 0J5(M) and 7 ¢ 0Jx (M), which provides a contradiction. We proceed
analogously for m; > m;;1 and m; = m;q1. Finally, if M # |M|;, then we may pick an
orthogonal transformation ¢ as defined above for which (M) = |M]|;. Since 0JA(M) =
8Ja (M) implies that dJa(p(M)) = 8Jx(¢(M)), then the first part of the proof establishes
that (M) = ¢(M) and thus M = M.

O

Recall that J} (x) < 1 if and only if
|ZE’(1)—|-’£L'|(])§)\1—|——|—)\], i=1,...,p. (492)
The following result follows from the proof of Proposition

Proposition 4.9.1. Assume x € RP satisfies Jy(x) < 1 and let b € RP. Then x belongs
to OJA(b) if and only if the following three conditions hold true:

(a) If b; # 0, then sign(z;) = sign(b;),
(b) If [bi] > [bj] then [zi| > |x;],

(¢) The equalities hold in (4.9.2)) for j € {ni,na,...,ng}, where nj = [{i: |m;| > k+1— j}|
with (M, ..., M,)" = patt(b).

4.9.3 Proof of Theorem [4.3.1

Proof of Theorem[{.3.1. Necessity. ~ Let us assume that there exists B € Sxa(Y)
with patt(8) = M. Consequently, B = Upps for some s € RFT.
By Proposition X' (Y — XB) € 0JA(B) = dJa(M). Multiplying this inclusion by Uy,

due to (4.2.2), we get X;\/I(Y — XB) = Ay and so
XY — Ay = Xy XB = Xy Xms. (4.9.3)

The positivity condition is proven.

—~ ~ —~ —~
We apply (X pp)" from the left to (4.9.3) and use the fact that Pny = (X)X is the pro-
jection onto col(X ). Since X B € col(Xm), we have Py X 8 = X 3. Thus,

PuY — (Xy)tAm = XB.
The above equality gives the subdifferential condition:

8JA(M) 5> X'(Y — XB) = X'(Y — (PmY — (Xp)tAm)) (4.9.4)
- X'(Xy) Am + X/ (I, — Py)Y = .

Sufficiency. Assume that the positivity condition and the subdifferential conditions hold true.
Then, by the positivity condition, one may pick s € R*¥* for which

IKM = };\/IY — };\/[}MS (4.9.5)
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Let us show that Ums € Sxa(Y). By definition of Um, we have patt(Ums) = M,
thus 0JA (Unms) = 0Ja(M). Moreover, using (4.9.4) and (4.9.5) one may deduce that

0IA(Ums) 57 = XY — PmY + (Xp0) Am)
= XY - PyY + (X)) (XmY — Xy Xwms))
= X'(Y = XUps).

Consequently, Ums € Sx A (Y). O

4.9.4 Proof of Corollary
Proof of Corollary[{.3.1 If SLOPE recovers the pattern of 8 in the noiseless case, then, by The-

orem the subdifferential condition reads as: X’(Xiw +Apn € OJA(M).

Conversely, if X'(X 1\4)+1~XM € 0JA(M) then, by Theorem @ it remains to show that the pos-
itivity condition occurs for a > 0 small enough. Since 8 = Uns for some s € R*T, where
k = || M|, we have

X;\/IY — Oé_/NXM = X;v[X/MS — QKM.

Therefore for a > 0 small enough, X;\/IY —aAy € X;\/Ii MRFT and thus, the positivity
condition is proven. O

4.9.5 Proof of Theorem [4.5.7]
Lemma 4.9.2. Let 0 # b € R? and M = patt(b). Then the smallest affine space containing
OJA(b) is aff (DJA (D)) = {v € RP: Upyv = Am}-
Proof. According to Proposition we have
aff(0JA (b)) C {v € RP: Upv = Am}.

Moreover, according to Theorem 4 in [I56] we have

dim (aff(9Ja(5))) = | M]oe = dim({v € R”: Uhyo = Ant}),
which achieves the proof. O

Proof of Theorem[{.5.1 (i) Sharpness of the upper bound. According to Theorem the
pattern recovery by SLOPE is equivalent to have simultaneously the positivity condition and
the subdifferential condition satisfied. The upper bound coincides with the probability of
the subdifferential condition. Thus to prove that this upper bound is sharp, it remains to show
that the probability of the positivity condition tends to 1 when r tends to co. Clearly the upper

bound is reached when Apy ¢ Col(fg\/l) thus we may assume that Ang € col(X M) Recall that
B = Ups™ for s € RF and thus X Y( N = XMXMS( "+ XMEI As XM(XM) =
X;\AEI/M(X;\/IX/MPL is the projection on col(XM), we obtain

) ~

XY — Ay = X Xnms™ — apAnt + X pge
~ ~ o~ —~ ~ ~ ~ =~ ~ ~
= XX s — ap X ap X n(Xap X ) A + X Xm (X pg Xm)F X e
— —~ 1 — ~ 1 —r — —
— X XA, <s<r> _ O X Xm) A+ (X;4XM)+X§\AE> .
A, A, A,

Note that by the assumption on A,:
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o the vector s /A, € RFt is component-wise larger than or equal to (k,..., 1),
e lim a,/A, =0and lim 1/A, =0.
r—00 T—00
Consequently, for r large enough we have
e (r) A ¥ 3 k+
XY —a,Am € Xy XMmRPF.
Since this fact is true for any realization of €, we get

lim P (X/i\/IY(T) — OAT_KM S X;vlfM]RkJr) = 1.

r—00

(ii) Pattern consistency. In the proof of the previous part, we see that positivity condition
occurs when r is sufficiently large. Thus it remains to prove that subdifferential condition

occurs as r — 0o when X’(E(/;\/I)J“KM € 1i(0JA(M)). First we observe that

_ - 1 - — -
X'(Xpp) Am + — X (In — Pr)e = X' (X pg) " A (4.9.6)
Qy

Note by Lemma that X’(X;/I)“'JNXM + a; ' X'(I,, — Py)e € aff(8J5(M)). Indeed, since
Anm € col(/)avl), we have

— ~ 1 ~ ~
Ul X' (X pp) ™A +— UnX'(I — Pue(w) = Awm.

A 0

The second term above is zero due to the fact that (I, — ﬁM) is an orthogonal projection

onto col(Xpr)t. When X’(f;v[)*]&M € 1i(0Ja(M)), due to (4.9.6), one may deduce that
for sufficiently large r we have

— - 1 -
X'(Xpg)FAM + —X(I, — Pai)e € 9J5(M).

Qp

Consequently, when r is sufficiently large, both the positivity and the subdifferential conditions
occur which, by Theorem [4.3.1] concludes the proof. O

4.9.6 Proofs from Section 4.5.2]

In this part we give proofs of Theorem and Theorem They are preceded by a series
of simple lemmas. For reader’s convenience we recall the setting of Section [4.5.2]

A. €, = (c1,...,e,), where (g); are i.i.d. centered with finite variance o?.

Bl n !X’ X, — C > 0.

max;—1 n ‘X,L(Jn)| P

""" — 0, where X,, = (XZ-(;L))M, for each j =1,...,p.
S (X

B’ Rows of X,, are i.i.d. distributed as 2, where 2 is a random vector whose components
are linearly independent a.s. and such that E[E7] < co for i = 1,...,p.

C. (Xn)n and (ep)n are independent.
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We consider a sequence of tuning parameters (A,), defined by A, = a,A, where A € RPT
is fixed and (o), is a sequence of positive numbers.

To ease the notation, we write the clustered matrices and clustered parameters without the sub-
script indicating the pattern M, i.e. A= U|M|¢A A = a,A and X, =X, Um.

Lemma 4.9.3.
(a) Under A, B1, B2 and C,

1
%X’nen 4, vV ~ N(0,020). (4.9.7)

(b) Under A, B1 and C,

1
X ) (4.9.8)
(¢) Under A, B’ and C,
X, nioo
0 < limsup A Xnenlloe. < o0 a.s. (4.9.9)

n—oo y/nloglogn
Proof of (4.9.7)). It is enough to show that for any Borel subset A C R? one has
1
P (\/ﬁxgsn €Al (Xn)n> Eip(vea. (4.9.10)
Since both sides above are bounded the convergence in probability implies convergence in L'

and therefore establishes . To show ({4.9.10)), we will prove that for any subsequence (ny)x,
there exists a sub—subsequence (nkl) for which, as | — oo,

]. a.s.
Pl —X, en, €A (Xp)n| == P(V € A). (4.9.11)
Let Px denote the regular conditional probability P(- | (X)) on (£, F). By assumptions B1
and B2, from sequences (ny); one can choose a subsequence (ny,); for which
max | X; nkl)\

i=1,. T a.s

— 0, j5=1,...,p.

1
—X;Llenkl “% C >0 and . —
k k
l iz (X )2

We have

1 1
Varx < X/nkl Enkl> = F [X’ Eny, r-:;Llenkl | (Xn)n}

N,

2
| X, = =X, Xy, 25 0%C >0,
ng, !

and one can apply multivariate Lindeberg-Feller CLT on the space (2, F, Px) to prove (4.9.11)).
Alternatively, the same result follows from Theorem which concerns more general Cen-
tral Limit Theorem for linearly negative quadrant dependent variables with weights forming a
triangular array (in particular assumption B2 coincides with ) For our application, the
assumption of nonnegative weights in Theorem is not essential.

:—X’ E{s e
N, Tk =Ny

For (ii) we observe that previous derivations imply that Varx(n=!1X/e,) L, 0. We deduce

that Px(n~ ' X! e,) 2, 0 and hence (ii) follows upon averaging over (X, )y.
Eq. (4.9.9) is the law of iterated logarithm for an i.i.d. sequence (Z;&;);. O
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Lemma 4.9.4. Let M = patt(3). Assume oy /n — 0.
(a) Under A, Bl and C, the positivity condition is satisfied for large n with high probability.
(b) Under A, B’ and C, the positivity condition is almost surely satisfied for large n.

Proof. If M = 0, then the positivity condition is trivially satisfied. Thus, we consider M # 0.
/—\// —~
(i) Since X,, X, is invertible for large n with high probability, the positivity condition is equiv-
alent to L, _, N
sn = (X, Xn) X, Y, — A,] € RFF
Let s9 € R** be defined through 8 = Upsg, where k = | M ||o. We will show that if o, /n — 0,
then s, LN 0. Since R** is an open set, this will imply that for large n with high probability,

the positivity condition is satisfied.
First we rewrite s,, as

-~/ =< —~/ —~ —~— ~
sn= (X, X)X, Y, —an(X,X,) A
Since 8 = Umsg, we conclude X,,8 = X, Unmsg = ano, so the linear regression model takes

the form Y,, = X,,s0 + €,. Thus, (flnfn)*lflnYn is the OLS estimator of sg.
By assumption B and Lemma we deduce that

ey . 1
(X X,) ' XY, = so+ (n—lxgxn)—lUMﬁxgsn Ly 50+ [(UjCUM) " Um]0 = so.

To complete the proof, we note that

(X, X ) 'A = % (X, X.)'A] 50 [(UMCUM)T'A] = 0.
(ii) If one assumes B’ instead of B1, then n~! X, X, *% C and by [£.9.9), n"'X/e, &3 0.

The result follows along the same lines as (i). O

For M # 0 we denote

al) = X;(f;)"'xn, x? = X'
T = 71'%1) + ﬂ'@,
which simplifies in the M = 0 case to m,, = a2 = x 'Y .
Recall that the subdifferential condition is equivalent to J3 (m,) < 1 and A, € col(X 1\4) and
the latter is satisfied in our setting. Since aJp = Jua, the subdifferential condition is satisfied
if and only if
1> J) (a;lﬂ'n) =J) (a;lwg) + ﬁn‘”%r@) .

Qp

In view of results shown below, o« 17:';11) converges almost surely, while n=/ 27&'%2) converges

in distribution to a Gaussian vector. Thus, the pattern recovery properties of SLOPE estimator
strongly depend on the behavior of the sequence (a,/v/n)n.

Lemma 4.9.5. (a)
(i) Assume A, B1 and C. If M # 0, then

1 ~
— ) B cUM(U}CUM) A

Qp
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(i) Assume A, B1, B2 and C. The sequence (n*1/27r£?)) converges in distribution to a Gaus-
n

sian vector V. with

V ~ N (0,0% [C = CUMUMCUM) ' UNC])

1) Assume A, Bl and C. If lim,_, o oy = oo, then a‘lﬂ'g) . o.
(iti) ; ; -

(b) Assume A, B’ and C.

(i’) If M # 0, then
1 a.s, 1%
— ) 2% CUM(UNCUM) A

Qp

(’l’L’) If hmn—>oo Oén/ nlOg IOgTL = 00, then a;lﬂg) % 0.

Proof. (i) Assumption B implies that

~ 1
X' X (X, X)L = XX Un(Uin ™ X0 X Un) ! L cUM(UMCUM) ™.

(ii) When 8 = Umso, then the linear regression model takes the form Y, = ano+€n. Since

P,, is the projection matrix onto col(X,,), we have (I,, — P,)X, = 0. Thus,

nV2x2) = 12X (I, — P,)Y, =n"2X' (I, — P,)e,
= 1, - X, X Un(U X}, X, Unt) " U] [n72X 6]

By assumption B we have,
n X! X U (Upgn X! X Unp) WU - CUM(UCUM) Ul

Thus, by Lemma [4.9.3] and Slutsky’s theorem, we obtain (ii).
(iii) follows directly from (ii). Assumption B’ implies that n~' X/ X,, %% C and thus (i’)
is proven in the same way as (i). (ii’) follows from (4.9.9).

O

Proof of Theorem[].5.3 (a) is a direct consequence of Lemmas and Since positivity
condition is satisfied for large n with high probability, for (b) we have with M = patt(B),

Tim P (patt(B3-O"F) = M) = lim P (m, € 0Jo,a(M)) = lim P (a;'m, € 0Ja(M))
(4.9.12)
> lim P (a;lwn € ri(&JA(M))) =1,

n—oo

where in the last inequality we use Portmanteau Theorem, assumption and the fact
that the sequence (a,'m,), converges in distribution to CUnNM(Uy\CUMm) ! if and only if
an/\/n — oo.

Condition implies that CUM(UpCUM)™! € 0Ja(M). Since (a;,'my), converges
in probability to CUn(UyCUn) ™!, the necessity of this condition is explained by . O
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Proof of Theorem [{.5.5. By Lemma the positivity condition is satisfied for large n almost
surely. By Lemma [4.9.5] (i) and (iii), we have

1 ~

a, = —m, =% CUM(UEVICUM)_IA =: ayp.

A
It is easy to see that Ujga, = A. By the condition aq € ri(Ja(M)) it follows that a, € Ja (M)
almost surely for sufficiently large n. Therefore 7, € Ja,, (M) for large n almost surely and thus
the subdifferential condition is also satisfied. O



Chapter 5

Geometry of Pattern Recovery by
Penalized and Thresholded
Estimators

5.1 Introduction

The content of this chapter is based on the preprint of Graczyk, Schneider, the author of the
dissertation and Tardivel [93].
As in previous chapters, we consider the linear regression model

Y = X3 +e¢,

where X € R™*? is a design matrix, 8 € RP is an unknown vector of regression coefficients and
e € R" is a random noise term. We assume that the distribution of € is symmetric, continuous
and its density is strictly positive.

Many penalized estimators of 8 have been broadly studied in literature, e.g., LASSO [47, [176],
SLOPE [189] 26}, 136], OSCAR [29], fused LASSO [I177], fused adaptive LASSO [149], clustered
LASSO [163], PACS [162] and generalized LASSO [I79]. When the loss function is the residual
sum of squares, these estimators minimize, with respect to b € RP, a function:

1
fb) =5llY - Xb||3 + Apen(b),

where A > 0 is the tuning parameter and the penalty term pen is a real-valued polyhedral
gauge, i.e. a nonnegative convex function, homogeneous, vanishing at 0 and whose unit ball is
a polyhedron. Note that in this definition we do not require boundedness of a unit ball.

The literature related to penalized least squares estimators is vast and many of these estimators
have interesting and relevant structures as illustrated, e.g., in [I82]. For instance, LASSO
is sparse, i.e. some components of this estimator are null. The fused LASSO is a sparse
and piecewise constant estimator [I77], the supremum norm promotes a cluster of components
maximal in absolute value [I07], and SLOPE and OSCAR estimators promote clusters made of
those components of these estimators, which are equal in absolute value [29, [76], 156] 24 [165].

5.1.1 Pattern recovery by penalized least squares estimators

We define a polyhedral gauge pen as a nonnegative convex function, homogeneous, vanishing at
0 and whose unit ball is a polyhedron. Every polyhedral gauge can be written as the maximum

75
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of a finite number of linear functions [152, [133]
Vx € RP, pen(x) = max{0,u|x,...,ujz}, for some uy,...,u; € RP.

Note that a polyhedral gauge with a bounded and symmetric unit ball {x € RP : pen(x) < 1}
is a polyhedral norm.

Given X € R™P, Y € R" and A > 0, the set Sx xpen(Y) of solutions of a penalized least
squares optimization problem is defined as follows:

1
Sx apen(Y) := argmin ~ |Y — Xb||3 + Apen(d). (5.1.1)
beRr 2

It is important to know that the set Sx xpen(Y') is not empty:

Theorem 5.1.1. Let X € R™P, Y € R", A > 0 and pen(x) = max{0, v\ x, ..., ujx}, where
ui,...,u; € RP. Then the function

£(6) = 1Y~ Xbl3 + pen(d)

has at least one minimizer.

The proof is given in the Appendix.

Note that, potentially, the set Sx ypen(Y) might be not a singleton, i.e. the penalized least
squares estimator might be not unique. Below we recall the definition of the pattern equivalence
class, which is one of the most important notions in this chapter.

Definition [2.2.2] (Equality of patterns). Let pen : R? — R be a polyhedral gauge. We say
that € RP and z € R? have the same pattern with respect to pen, denoted x 2" 2, when

Open(x) = dpen(z),

where OJpen is the subdifferential of pen. The set of all vectors having the same subdifferential
as x, denoted Cy, is called the pattern equivalence class.

In Theorem we prove that pattern equivalence classes, illustrated in Section 2.2, are given
by normal cones of B*, where B* is the polar set of the unit ball of pen.

For the ¢; norm penalization, two vectors @,z € RP have the same pattern if and only if
sign(x) = sign(z). More generally, two vectors having the same pattern with respect to a
polyhedral gauge penalty have a specific structure as illustrated on many examples in Section
Given X and Y, we aim at recovering the pattern of 3. For LASSO this means the recovery
of sign(B).

In Theorem we give a necessary condition for pattern recovery by penalized least squares
estimators, called noiseless recovery condition. Later, in Section we introduce penalized
estimators relaxing this condition. Beforehand, we recall some of the already known conditions
for pattern recovery.

Conditions for pattern recovery — examples

LASSO. Below we assume the uniqueness of the LASSO estimator. Then we note BLASSO as

a unique element of Sx y|,(Y’). As mentioned above, LASSO estimation is a sparse method
that nullifies some of the components with positive probability, entailing that the estimator
also performs variable selection. Instigated by this sparsity property, an abundant literature
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has arisen to deal with the recovery of the location of the non-null components of 8, or, more
specifically, the recovery of the sign vector of 8 [83] 130, [183] 192, 194]. An evident necessary
condition for sign recovery by LASSO is for sign(f3) to be accessible by LASSO, i.e. for a fixed
A > 0, there has to exist such Y € R™ that sign(3“*5°(Y)) = sign(B). Otherwise, the
sign recovery is impossible. A geometrical characterization of accessible sign vectors is given in
[160, 156]. However, the accessibility of sign(8) by LASSO does not mean that the probability
of sign recovery by LASSO is close to 1 even if the non-null components of 3 are extremely large.
Actually, for sign recovery with a probability larger than 1/2 a stronger condition is needed,
called the irrepresentability condition [I83], which is satisfied when

I XX (XX 1) sign(B)llse < 1,

where I :={i € [p]: B; #0}and I :={i € [p]: B; = 0}.

SLOPE. The notions of accessibility condition and irrepresentability condition for SLOPE have
been recently introduced respectively in [I56] and in Chapter In particular, in Chapter
[ similarly as for LASSO, when the SLOPE irrepresentability condition does not occur, the
probability of pattern recovery is smaller than 1/2.

Generalized LASSO. By substituting the ¢; norm with a polyhedral gauge pen = ||D.|;
for a fixed matrix D of a linear map on IR?, one constructs an estimator B € Sx, )\”D-”l(Y)’
where DB has some null components. It is a reason why the generalized LASSO is frequently
used for structure recovery. One should be aware that the structure induced by generalized
LASSO depends on the matrix D.

For instance, when D is a matrix such that Db = (by — b1, ...,b, — by—1)’ (denoted D" below),
then the penalty term ||D.||; promotes equality between neighbouring components of B More-
over, this estimator can recover the jump set: {i € [p—1]: 5; # Bix1} [104]. Actually, articles
[145, 140] provide theoretical properties for the jump set recovery under the irrepresentability
condition.

The noiseless recovery condition and the irrepresentability condition can be relaxed using thresh-
olded estimators as explained below.

5.1.2 Pattern recovery by a thresholded estimator

Theorem [5.5.1] generalizes results known for LASSO to a wide class of penalized estimators.
Specifically, we prove that thresholding penalized least squares estimators allows the recovery
of the pattern of 8 with large probability under a weaker condition than before. We recall the
definition of thresholded estimator below.

Definition [2.3.23l R
Let pen be a polyhedral gauge, X € R"*?, Y € R" and A > 0. Given 8 € Sx xpen(Y'), we say
that 8 is a thresholded estimator of 8 if dpen(B) C dpen(B).

One of the examples of a thresholded penalized estimator is the thresholded LASSO
Given a threshold 7 > 0, the thresholded LASSO BYASSO.7 ig defined as follows

/BZ‘LASSO if ‘,BlLASSO| > T,

ALASSO
B; T = {

0 otherwise.
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is a thresholded estimator of BLASSO in the sense of Definition
The thresholded LASSO does not have the same statistical properties as LASSO, cf. [131], [186].
Concerning sign recovery by thresholded LASSO, the accessibility condition is necessary and
sufficient, which was proven by Tardivel and Bogdan [I74]. Moreover, they also proved that,
contrarily to LASSO, thresholded LASSO can recover the sign of 8 with a large probability
under the accessibility condition, even if the irrepresentability condition is not satisfied, as soon
as non-null components of B are sufficiently large. This nice property for sign recovery by
thresholded LASSO remains true for thresholded basis pursuit [I53), 55) H4].

Note that for every 7 > 0 we have 9||.|;(8"*%%°) C 8||.||]?BLASSO7T) and thus BLASSO.T
2.3.23

5.2 Geometry of pattern equivalence

Let F be a face of a polytope P. We propose the following relation between normal cones Np(x)
and Np(x) for & € ri(F), that seems unknown.

Proposition 5.2.1. Let x € ri(F) C P. Then
lin(Np(x)) = Np(x).
Proof. A polytope P can be represented as {v € RP : (s;,v) <rj;, j=1,...,m}, cf. [I0L p.
138]. Then one may describe a face F' C P as
F=Pn{veRl: (—s;,v) < —rj, j€ Ap(x)},

where Ap(x) :=={j =1,...,m : (s;j,v) = r;} is the set of active constraints for . Without
loss of generality one may rearrange the sequence {s;}7", such that Ap(x) = {1,...,a}, where
a <m. Then F' is equal to

F={veRl: (s;,v) <7, j=1,...,m+a}l,

where

N S; ) <m - T 1<m
sj:{]’ ‘?_ ’ and rj:{]’ -7
—Sj—m; J>m

The corresponding set of active constraints Ap(x) is equal to
Ap(x) =Ap(x)U{m+1,...,m+a}.
By Proposition we obtain
Np(x) = cone{s; : j € Ap(x)} = cone{sj,—s;: j € Ap(x)} =lin{s; : j € Ap(x)} = lin(Np(x)).
O

We will also use the following property of normal cones.

Proposition 5.2.2. Let © € ri(F') C P. Then the normal cone Np(x) has the property

lin(Np(2)) = (afE(E))
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Proof. (C) We start by noticing that for any d € lin(Np(x)) = Np(x) and for any s € F we
have (d,s —x) = 0. Indeed, since s = x — (x — s) and = € ri(F'), then there exists such § > 0
that  + 0(x — s) € F. Therefore,

=(d,x —x) =

—dz—(z—(x-9))+ (d,x — (z+0(z - 9))),

0+1 0+1

while both summands are not larger than zero. Thus, (d,x — s) = (d,x — (x — (x — s))) = 0.

It means that for every s € aff(F') we have (d, s) = (d, x). It implies that for every s € aff(F') we
n 1
have (d,s) =0, thus d € (aff(F)) . By the arbitrariness of d, we obtain Np(x) C <aﬂ'(F;)
L
and then lin(Np()) C (aff (F 3)

L
(D) Let v € (aff(F)) Lemma R332, n{w—x: we F}. Then (v,x —w) =0 for every w € F.
It implies that v € Np(x), which by Proposition equals lin(Np(x)). O

Remark 5.2.1. In addition to the property of normal cones from Proposition [2.3.2] we deduce
from Propositions [5.2.2] and [2.3.2] that

lin ({s; : j € Ap(@)}) = (aE(E)) .

5.2.1 Pattern equivalence classes and normal cones

Definition [2.3.15| (Pattern equivalence class). [Pattern equivalence class| Let & € RP and let
pen be a polyhedral gauge. The pattern equivalence class Cy is the set of all vectors having the
same subdifferential as x:

Cy :={w € R?: Open(w) = dpen(x)}.
Lemma 5.2.1. Let pen be a polyhedral gauge and x # 0. Then Cy C N(Fy).

Proof. Let w € Cy and s € ri(Fy). Since s € Fy = Fy, then, for all z € B*, we have

/ _ / . / _ _
w(z—s)= wz ws < pen(w) — pen(w) =0
<pen(W) =pen(w)

Consequently, w € Np-(s) = Np«(Fy). O
Theorem 5.2.2. The pattern cone Cy is the relative interior of the normal cone of the face Fy

of the dual unit ball B*
Cy =r1i(Np=+(Fy)). (5.2.1)

Proof. If Open(x) = F, we denote Cq = Cp. RP can be partitioned both into pairwise disjoint
pattern sets and into pairwise disjoint relative interiors of corresponding normal cones:

|_|OF R? = | |ri(N(F)).

F

Thus it is sufficient to prove the inclusion Cr C ri(N(F)), or equivalently

Cp C 1i(Np (Fy)) for a € RP. (5.2.2)
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Let w € Cp. We want to show that w € ri(Np«(F3)), i.e. there exists § > 0 such that any
point z € B(w,d) Naff(Np«(Fy)) belongs to Cy.

According to Lemma for 4 > 0 small enough we obtain F, C F,,, which equals F, since
w € Cy. Moreover, if F, # F,, then one may pick uw € F, C F, and v € F; \ F,. Observe that

u—veE aﬂ“(Fx;. Then, by Lemma m we have x € Cp C Np«(Fy), which by Lemma
i
belongs to (aff(Fw i) . Therefore (z,u —v) = 0.

1
We also have z € aff(Np«(Fy)) = lin(Np«(Fy)), which by Lemma [5.8.1| belongs to (aﬂ"(Fw ))
Therefore (z,u — v) = 0, too.
Consequently, v’z = u'z = pen(z) and thus v € F, which leads to a contradiction. Therefore
F, = F,, which means that z € C,. O

5.2.2 Model subspace recovery

More generally, for a wide class of penalty terms including polyhedral gauges, Vaiter et al. [I82]
showed that the irrepresentability condition is sufficient for the model subspace recovery by
penalized least squares estimators. The notion of model subspace is related to the notion
of pattern. Specifically, the model subspace of * € RP is a vector subspace of R? per-
pendicular to dpen(x). For the ¢; norm two vectors &,z € RP have the same model sub-
space when supp(x) = supp(z). In the particular case of LASSO, Theorem 6 in [182] shows
that HX’TXI(X'IXI)_lsign(ﬂI)||OO < 1 is a sufficient condition for model subspace recov-
ery, i.e. the recovery of supp(8). Whereas correct, this statement is not optimal. Indeed,
when || X2X (XX 1) sign(B)lle < 1, it is well known that LASSO actually can recover
stgn(B) and a fortiori supp(B) [I83]. Whereas we do not retain the notion of model subspace,
in Theorem [5.2.3] we prove that the model subspace coincides with the linear span of a pattern
equivalence class.

Definition 5.2.1 (Model subspace). ([182]) The model subspace Sy of x is the orthogonal

complement of aff (F ):
Sy 1= <aﬂ'(Fm;>L,

Our objective in this section is to prove that S; = lin(Cy), i.e. the linear space generated
by a pattern equivalence class coincides with the model subspace from [182].

Theorem 5.2.3. S, = lin(Cy).

Proof.
Sy = (mcr(z«ﬁ)L Prov B2y (N (Fy)) = lin(i(N () T B2 1in(Cy).

O]

Remark 5.2.4. The equality S; = lin(C,) does not hold for general penalizers. Indeed, when
pen is a strictly convex function, then S; = RP, but lin(Cy) does not need to be equal to RP.
For example, pen(zx) = ||z||3 gives lin(Cp) = {0} # RP.
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5.3 Examples of polyhedral gauges and their patterns

Pattern for the /; norm (LASSO):

Subdifferentials 9||.||1(x) = 9||.||1(2z) are equal if and only if sign(x) = sign(z). For instance,
if ¢ = (1.45,-0.38,1.56,0,—2.76)', then sign(x) = (1,—1,1,0,—1)". Figure illustrates the
A

comparison between projections onto B* and the signs of B for p = 2 and orthogonal X.

(—1,1) (1,1)

(_17_1) (17_1)

Figure 5.1: Pattern (sign) equivalence classes for LASSO in orthogonal design with p = 2:
pen(b) = ||b||1 = |b1|+]b2|. On the left the blue polytope is B*. Red and green (unbounded) sets
are the preimages, with respect to the projection onto B*, of its vertices and edges, respectively.
The picture on the right presents sign equivalence classes of vectors in R2.

Pattern for the /., norm:
The vector sign™(x) € {—1, %, 1} is defined as follows
1 if z; > 0 and if z; = |||/ 00,

Vi € [p] sign®™(x); 1= < * if x; =0 or if |z;| < ||7]c,

-1 ifx; <0and if z; = —||7]|co-

The notation * represents components that are not maximal in absolute value. Subdifferen-
tials 9].||co(x) = 9||.|lcc(2) are equal if and only if sign™(x) = sign®(z). For instance,
if € = (1.45,1.45,0.56,0,—1.45)" then sign®™(x) = (1,1,%,%,—1). Figure illustrates
the comparison between projections onto B* and the pattern equivalence classes of B for
pen(x) = ||z|loo, p = 2 and orthogonal X.

Pattern for the SLOPE norm:
Let € RP. The SLOPE pattern of @, patt(x), is defined by
patt(x); = sign(z;) rank(|z|);, Vi € [p]

where rank(|z|); € {0,1,...,k}, k is the number of non-zero distinct values in {|z1],..., |zp|},
see Let A € R? where A\ > --- > X\, > 0. Then the subdifferentials 0J(x) = 0JA(2)
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(+,1)

(*7 *1)

Figure 5.2: Pattern equivalence classes for £, norm, orthogonal X and p = 2: pen(b) = ||b||cc =
max{|b1],|b2]}. On the left the blue polytope is B*. Red and green (unbounded) sets are the
preimages, with respect to the projection onto B*, of its vertices and edges. The picture on the
right presents pattern equivalence classes of vectors in R2.

are equal if and only if patt(x) = patt(z). For instance, if x = (3.1, —-1.2,0.5,0,1.2,—3.1)’, then

patt(x) = (3,-2,1,0,2,—-3)". Figure illustrates the comparison between projections onto B*
~SLOP

and the patterns of 8 for p = 2 and orthogonal X.

(*132) (172)

Figure 5.3: Pattern equivalence classes for SLOPE in orthogonal design with p = 2 and A =
(2,1)": pen(b) = Ja(b) = A1]b](1) + A2[b[(2). On the left the blue polytope is B*. Red and green
(unbounded) sets are the preimages, with respect to the projection onto B*, of its vertices and
edges. The picture on the right presents pattern equivalence classes of vectors in R?.

Furthermore, the composition of a polyhedral gauge with a linear map is still a polyhedral gauge.
For example, for generalized LASSO, the penalty term is the polyhedral gauge € R?P — || Dx||;
where D € R™*P. Note that, when ker(D) # 0, the function @ € RP — || Dz||; is not a norm
but only a semi-norm. Below we present two examples of generalized LASSO.
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o Total variation:
Let p > 2 and let DY € R®P~D*P he the first order difference matrix defined as follows

-1 1 0 0

D — 0 -1 1
- 0
0 0 -1 1

e (1 trend filtering:
Let p > 3 and let DY € RP=2*? he the second order difference matrix defined as follows

-1 2 -1 0 0
Dt 0 -1 2 -1

- 0

0 0 -1 2 -1

The total variation and the ¢; trend filtering [I11] are examples of the generalized LASSO
with the penalty term || D" ||; and || D' ||1, respectively.

Pattern for the total variation || D'.|;:

Let p > 2. The vector jump(x) € { 7, —, \JP~! is defined as follows

itz >
Vi € [p—1], jump(z); == — if 2,41 = x;
\ if Tiv1 < I

Subdifferentials || D*.||1(x) = 0| D".||1(2) are equal if and only if jump(x) = jump(z). For
instance, if = (1.45,1.45,0.56,0.56, —0.45, 0.35)" then jump(z) = (=, \, =, \, /)", Figure
compares the projections onto B* with the jump sets of 8 for p = 2 and orthogonal X.

Pattern for the trend filtering || D'Y.||;:

Let p > 3. The vector knot(x) € {l,cx,cv}P~2 is defined as follows

cx if x; < (1‘Z‘+1 — xi_l)/Q,
Vi€ [2:p—1],knot(x); := <1 if z; = (w41 — xi-1)/2,

cv if ;> (Ti41 — xi-1)/2.

p—1
Consider the piecewise linear curve Ly := |J [(¢, ), (i + 1,z;+1)]. Note that knot(z); is equal
=1

1=

to I (resp. cx or cv) when, in the neighborhood of i, the curve L, is linear (resp. convex
or concave). Subdifferentials 9| D'Y.||;(z) = 9||DY.||1(2) are equal if and only if knot(x) =
knot(z). Figure provides an illustration of knot(x) for x = (1,3,5,7,6,5,4,6,5)" € R?.
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Ve —

pN

Figure 5.4: Pattern equivalence classes for the total variation in orthogonal design with p = 2:
pen(b) = |by — b2|. On the left the blue polytope is B*. Red and green (unbounded) sets are
the preimages, with respect to the projection onto B*, of its vertices and edges. The picture on
the right presents pattern equivalence classes of vectors in R?.
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Figure 5.5: In this figure the dotted curve represents the piecewise linear curve L, for @ =
(1,3,5,7,6,5,4,6,5). Here knot(x) = (I,1,cv,l,1, cx,cv).

5.4 Pattern recovery in penalized estimation

5.4.1 Accessibility condition

Below we recall the notion of accessible patterns in the following definition, which generalizes
the notion of accessible sign vectors [160, [I56] and accessible SLOPE patterns [156] to a broad
class of estimators penalized with polyhedral gauges.

Definition 5.4.1 (Accessible pattern). Let X € R™ P, A > 0 and pen be a polyhedral gauge.
We say that the pattern of B € IRP is accessible with respect to X and Apen, if there exist y € R™

pen

and B € SX \pen(y) such that B ~ B.
The accessibility of a pattern can be characterized in a geometric and an analytic way.

Proposition 5.4.1 (Characterization of accessible patterns). Let X € R"*P and pen : RP — R
be a real-valued polyhedral gauge.

(a) Geometric characterization: The pattern of B € RP is accessible with respect to X and
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Apen if and only if
row(X) Ndpen(B) # 2.

(b) Analytic characterization: The pattern of B € RP is accessible with respect to X and Apen
if and only if for any b € RP we have

XpB =Xb = pen(B) < pen(b).

Based on Proposition one may see that the notion of accessibility does not depend
on the tuning parameter A.

5.4.2 Noiseless recovery condition

The solution path for a penalized estimator is defined as the curve 0 < A — B(A) where B()\)
is the unique element of Sx ypen(Y') for fixed Y € R™ and X € R™*P. The solution paths
for the generalized LASSO or OSCAR and the Clustered LASSO are studied in [I79] or [173],
respectively. Based on this notion, below we define the noiseless recovery condition. Note that
the following definition does not require the uniqueness of an estimator.

Definition 5.4.2 (Noiseless recovery condition). Let pen be a polyhedral gauge, X € R™*P and
B € RP. We say that the pattern of B satisfies the noiseless recovery condition with respect to
X and pen if

pen

A\ > 0,38 € Sxapen(X B) such that g =" 8.
This condition generalizes the noiseless pattern recovery condition for SLOPE (4.3.2)).

Remark 5.4.1. 8 = 0 satisfies the noiseless recovery condition with respect to X and pen,
because X8 = 0 and 0 € Sx xpen(0). In other words, the noiseless recovery condition means
that in the noiseless case when Y = X3, in the solution path, one may pick such tuning
parameter A, that the minimizer has the same pattern as S.

Example 5.4.2. (Solution path for LASSO):
Consider the LASSO optimization problem for

C(5/6 10 B B ,
X—<1/3 0 1), e=0 and B =(10,0,0)".

Then the LASSO solution path 0 < A — B*A950()) is the following curve:

5.4.3 Irrepresentability Condition for polyhedral gauges

The following theorem is one of the main results of this chapter. Its proof is based on Theorem
0.2.2)

Theorem 5.4.3. Let pen be a polyhedral norm. Let e = 0 and B € RP, B # 0. Then the
existence of B € Sx apen(X B) recovering the pattern of B is equivalent to

X/Xlin(Cﬂ) N Fﬂ 75 .
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LASSO solution path
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— 3rd component
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Figure 5.6: Coordinates and the sign of Y550 ag the functions of A > 0: BLASSO()) (black
curve), SEFASSO(N) (red) and BFASSO()) (blue). Note that sign(B) = (1,0,0)" is not recovered
for any A > 0.

Proof. (= ): R
Let B € Sx apen(XB) and FE = Fj. Then, by the subdifferential properties, %X'X(,B—ﬁ) € Fp.

B recovers the pattern of 8, thus we have 3, B € lin(Cp). Therefore B KB € lin(Cg) and finally
+X'X(B - B) € X'X1in(Cp).

(=)

By Theorem the pattern set Cj is relatively open.

Let X'Xlin(Cg) N Fs # @, i.e. there exists such z € Vj that X'Xz € Fg. Consider 8 =
B — Az. Since B € C3 = 1i(Cy) and z € lin(Cp), then for A small enough we have FE = Fp.
Moreover, we obtain %X’(X,B - XB) = X'X z € Fp. Therefore Be S Apen (X B), which ends
the proof. O

Below we provide a geometrical characterization of the noiseless recovery condition. Neither the
above definition nor the geometrical characterization provide an analytic expression for checking
the noiseless recovery condition, but for some of the penalized estimators analogous formulas
have been already given. For example, when pen = ||.||1, the noiseless recovery condition is
equivalent to

|X'(X})" sign(B;) oo < 1 and sign(B;) € row(X ), (5.4.1)

where I = {i € [p] : B; # 0} and X is the matrix whose columns are (X ;);ec;. Note that
under the assumption that ker(X;) = {0} we obtain sign(B8;) € row(X) and the expres-
sion coincides with the irrepresentability condition: || X%X (X7 X 1)~ sign(B;)lle <1
where X7 is a matrix whose columns are (X;);¢; 41, 183, 194, 192]. Thus, the well known
irrepresentability condition for LASSO can be thought of as an analytical shortcut for check-
ing the noiseless recovery condition, see Figure [5.6] Indeed, in the above example, we have
I X2X (X7 X 1) 'sign(B;)|lc = 30/29 > 1 and based on Figure one may observe that
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the noiseless recovery condition does not hold for 8. For SLOPE with M = patt(3), the
noiseless recovery condition is equivalent to

Ji(X'(Xyp) T AMm) < 1 and Ap € row(X ),

where Jp is the sorted ¢ norm, X M is the clustered matrix and ./NXM is the clustered parameter,
cf. Definition In Appendix we also provide an analytic characterization of noiseless pattern
recovery when the penalty term is the supremum norm. Below we show that

(a) The noiseless recovery condition is necessary to recover the pattern with a probability
larger than 1/2, see Theorem m

(b) Thresholded penalized estimators can recover the pattern of 8 under much weaker condi-
tion than the noiseless recovery condition, see Section [5.5

Theorem 5.4.4. Let Y = X3 + € where X € R™*P is a fized matriz, 8 € RP and € follows
a symmetric distribution. Let pen be a polyhedral gauge. If B does mot satisfy the mnoiseless
recovery condition with respect to X and pen, then

P (31> 03B € Sx rpen(Y) such that B B) < 1/2.

Corollary 5.4.1. If the noiseless recovery condition does not hold for the LASSO (for example,
when ||X'TX1(X'IXI)_13ign(,BI)||OO > 1), the following holds

Iid (EI)\ >0 HB € Sx ||, (Y) such that sign(B) = sign(ﬁ)) <1/2.

The above result extends the Theorem 2 from [I83], which shows that P(sign(8*5°()\)) =
sign(B)) < 1/2 for fixed A > 0.

If B satisfies the noiseless recovery condition with respect to X and pen, then B is accessible
with respect to X and pen, by taking y = X 3 in the definition of accessibility. In the following
section, we show that thresholded penalized least-squares estimators recover the pattern of 3
under the accessibility condition.

5.5 Pattern recovery by thresholded estimators

In practice, some additional information about B may be priorly known, e.g. its sparsity.
Therefore it is quite natural to threshold small components of B3 and to consider the
thresholded LASSO estimator B“*3597 for some threshold 7 > 0:

Definition 5.5.1 (Thresholded LASSO). The thresholded LASSO [17]] is defined in a following
way [41, Sec. 2.9]:
BLASSO jp | BLASSO|

) (5.5.1)
0 otherwise.

ALASSO
Bi T = {

Moreover, if the threshold is appropriately selected, the estimator allows to recover sign(S3)
under weaker conditions than LASSO itself [I74]. We aim at generalizing this property to
the class of penalized estimators with polyhedral penalty. Before introducing the notion of
a thresholded estimator, recall that for any threshold 7 > 0, the inclusion |.||;(8“A959) C
Z?H.Hl(BLASSO’T) occurs. This last inclusion is the keystone concept to introduce the notion of a
thresholded estimator as defined in Definition

The notion of accessibility introduced for penalized estimators in Section also covers

the thresholded estimators as can be seen below.
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Proposition 5.5.1. Let pen be a real-valued polyhedral gauge, X € R™ P and B € RP. Then

pen

JyeR", 3 B € Sxapen(y) such that 7' 8
— JyeR",3IBe SX \pen(¥y) such that dpen(B) C dpen(B).

According to Propositions [£.4.2] and [5.5.1] if the pattern of B is not accessible with respect to X
and Apen, i.e. there exists b € RP such that Xb = X3 and pen(b) < pen(B), then for any
y € R", A>0,and B € Sx Apen(y) we have dpen(B) Z dpen(B). Consequently, no penalized
nor thresholded penalized estimator can recover the pattern of 3.

On the other hand, if the accessibility condition is satisfied, then both penalized and thresholded
penalized estimator can recover the pattern of 8 with different choices of y. However, in practice,
instead of choosing an appropriate y to recover the pattern of B, the response of a linear
regression model is being used to infer this pattern.

In this direction, by Theorem [5 if y = XB + &, then the recovery of the pattern of 8
with probability larger than 1/ 2 requires the noiseless recovery condition, which is stronger than
the accessibility condition. This result remains true for any symmetric and continuous noise.
In Theorem we relax the stringent noiseless recovery condition by considering a thresh-
olded estimator. Before stating this theorem, we introduce the following class of thresholded
estimators.

Definition 5.5.2 (7-thresholded penalized Estimator). Let pen be a real-valued polyhedral gauge,
X e R, Y € R" and A > 0. Given B € Sx pen(Y'), we say that ,BT is a T-thresholded
estimator of B if

(a) Open(B) < Open(B’),
(@) IB=B8"lw <7,
(a) dim(8pen(b)) < dim(dpen(B")) for all b with ||B — b|js < 7.

The thresholded LASSO is, in fact, an example of a T-thresholded estimator with the threshold
7. Another example of a 7-thresholded estimator when the penalty term is the supremum
norm, is given in Algorithm [I] Theorem shows that a thresholded estimator recovers the
pattern of B under the accessibility condition and the assumption that the signal is large enough,
as formalized in the following theorem.

Theorem 5.5.1. Let pen be a real-valued polyhedral gauge, X € R™*P B € RP, and A > 0.
Assume that the uniform uniqueness holds, i.e. for any y € R"™, the set Sx apen(y) consists of
one element B(y) For e € R"™ and for r € Ny set y") = X (rB) +e. If pen(b) > pen(B) for
any b € RP with Xb = X, then there exists ro € N4 and 7 > 0 such that for all v > rg

{8pen(b) C dpen(B) for any b € By (B(T)

,7)

by € EOO(B(T), 7) such that by '~ 3

Consequently, a T-thresholded penalized estimator BT(y(T)) recovers the pattern of B.

Similar results in which non-null components are large enough (i.e., 7 > ro in Theorem [5.5.1])
are given in [I74] and [54]. In particular, Theorem corroborates Theorem 1 in [I74],
which proves that the thresholded LASSO estimator recovers the sign of 3 once the accessibility
condition holds and non-null components of 8 are large enough. Similarly as thresholded LASSO,
while pen = ||.||oo, @ T-estimator can be explicitly computed by Algorithm
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Algorithm 1 Thresholded penalized estimator when the penalty term is the £, norm:

Require: estimate: B , threshold 7 > 0.
if ||B]|co < 7 then
~T

B <+ 0.
else
~ (IBlle =7 i |Blloc — 27 < B; and §; > 0,
Vi €lpl 6] « {—lIBllc + 7 if Bj < —[IBllc + 27 and 3; <0,
Bj otherwise.
end if

return BT

5.6 Full characterization of the uniform uniqueness

For the pattern recovery by the 7-thresholded penalized estimator, in Theorem we assume
the uniform uniqueness. For that reason, below we provide a a necessary and sufficient condition
for uniform uniqueness of the penalized optimization problem in Theorem This
theorem extends the Theorem 1 from [I56] to all polyhedral gauges.

Theorem 5.6.1 (Necessary and sufficient condition for uniform uniqueness). Let X € R"*P

and X\ > 0. Let pen be a polyhedral gauge, i.e., pen(x) = max{0,u\z,... , wx} for some
ug,...,u; € RP. Fory € R™ consider the following optimization problem
1
Sx apen(y) = argmin  [ly — Xb|3 + Apen(b). (EH)
beRpP

Then the solution to the above problem is unique, i.e, SX  pen(y) is a singleton for all y € R"
if and only if row(X) does not intersect a face of the polytope B* = conv{0,u1,...,u;} whose
dimension is smaller than dim(ker(X)).

Note that every face F' of B* satisfies
dim(F') < dim(ker(X)) <= codim(F) > rk(X),

where codim(F') = p—dim(F'). For a better explanation of the non-uniqueness of the estimator,
below we give an example for the generalized LASSO with pen(b) = || Db|;. Note that if
ker(X) Nker(D) = {0}, then for every B € Sx D, (¥) and g € ker(X) N ker(D) we have
B +g € Sx\|p.|: (), too. Thus for every y € R" the minimizer is not unique. Consequently,
ker(X) Nker(D) = {0} is a necessary condition for uniform uniqueness, yet, it is not sufficient,
as illustrated in the example given in [9], which we revisit below.

Example 5.6.2. [9 p. 19] Consider the following optimization problem

1 1
argmin ~||Y — Xb||3 + =| Db||1,
g 2 2

€ RP
where
1 11 110 1
X=|3 11|,D=]1 0 1| andY =1
V2 0 0 2 1 1 0
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We have SX,%HD.Hl(Y) = conv{(0,1/2,0)’,(0,0,1/2)'} |9, p. 19]. Since
HDb”l = max{:t(4b1 + 2by + 2[)3), :i:(le + 2[)2), :|:(2()1 + 21)3)}

then B* = conv{=£(4,2,2)",+(2,2,0)',£(2,0,2)'}. Because the vertex F' = (4,2,2)" is a face of
B* which lies in row(X) and satisfies dim(F') = 0 < 1 = dim(ker(X)) then, according to Theo-
rem the uniform uniqueness cannot hold. This complies with the fact that Sy 1D, (Y)
is not a singleton.

When ker(X) Nker(D) = {0}, in broad generality, the set of generalized LASSO solutions is a
polytope (a bounded polyhedron) [9, Proposition 4.3.] and its extremal points can be explicitly
computed [62]. This description is relevant when this set is not a singleton.

Lemma 5.6.1. Consider the function
1
fb) =5llY — Xb|3 + pen(b),

where pen(b) = max{0,u}b,...,ub} is a polyhedral gauge. Then the condition ker(X) N
ker(D) = {0} is necessary for the uniform uniqueness of the minimizer of f.

Proof. Let 0 # h € ker(X) Nker(pen) and let Be Sx xpen(Y'). Then

F(B) < (B +h)= S|Y ~ X(B+ W3+ pen(B+h) = ¥ — X3+ max{0,w; (B +h),...uil

Since pen(h) = 0, we have u;h < 0 for every i € [I], hence
. 1 . . . .
F(B+h) < S|V = XBI3 + max{0,ui B, ..., w8} = f(B).

Therefore B is not a unique minimizer of f. O

5.7 Numerical experiments

Below, in our simulations, we consider the linear regression model Y = X 3 + € where:
o The matrix X = (X1]...|X150) € R!*1%0 hag i.i.d. N(0,1/100) entries.

o The random noise € € R™ has i.i.d. (0, 1) entries.

5.7.1 Numerical experiments for LASSO

For LASSO, the noiseless recovery condition and the accessibility condition depend on 8 through
sign(B) € {—1,0,1}P. Moreover, since the distribution of X is invariant by permutations and
sign changes of the columns of X, then the probability that a k—sparse vector satisfies the
noiseless recovery condition is equivalent to the irrepresentability condition:

Px (| X'(X}) 1ifloe < 1and 15 € row(X)),

where I = [k] and 1; = (1,...,1)" € R¥. Moreover, the accessibility condition is satisfied with
probability
Px (min{||v]: : Xv = X1} =k).

B+h)}.
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Accessibility and noiseless recovery curves: LASSO
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Figure 5.7: Probability of the noiseless recovery condition and the accessibility condition as
functions of the support size k. The highlited values of k are k1 = 50/log(150) ~ 9.9 and
k2 = 100pp7(2/3) ~ 47.8, which are the preimages of 0.5 for the noiseless recovery curve [183]
and the accessibility curve [59, 60], respectively.

Figure provides these probabilities as functions of k.

Figure[5.§]illustrates sign recovery properties by LASSO and thresholded LASSO for a particular
observation of X € R109%10 o particular observation of Y € R'% and for k-sparse 8 € R0
with 81 =+ = B/ = 20 and By/941 = --- = B = —20. Our examples are given for k£ = 4 and
k = 30. For the LASSO estimator, we consider the following setting:

o LASSO with a large tuning parameter A = 2,/21og(150) (as suggested by Candes and
Plan [42]).

¢ LASSO with a small tuning parameter; the one provided by SURE formula, which for a
given X and Y minimizes the function 0 < A — £[|Y — XB\)||3+ [{i € [p] : Bi(A) # 0}]
where B()) is the LASSO estimator (see e.g. [179] or [I81]).

5.7.2 Numerical experiments when the penalty term is the supremum norm

For the /., regularization, the noiseless recovery condition and the accessibility condition depend
on B through sign®(B8) € {—1,%,1}P. Same as for LASSO, since the distribution of X is
invariant by permutations and sign changes of the columns of X, then the probability that
a non-zero vector having k non-maximal components in absolute value satisfies the noiseless
recovery condition is given by

p—k
Px(X (X)ter = e1) where X = (X1|X) with X; = > X, and I = {p—k+1,...,p}.
=1

An explicit formula for checking the noiseless recovery condition is given in the Appendix.
Moreover, the accessibility condition is satisfied with probability

Px (minf]lv]ee : X7 = X1} = 1).
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LASSO with a large tuning parameter when k=4 LASSO with a small tuning parameter when k=4
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Figure 5.8: Illustrations of sign recovery by LASSO and thresholded LASSO. On the top, when
k = 4, both the noiseless recovery condition and the accessibility condition hold. Thus, both
LASSO and thresholded LASSO can recover the sign of 8. With the large tuning parameter
A = 2,/2log(150) the sign of B is recovered both by LASSO and thresholded LASSO (top
left). When the tuning parameter is small (computed by SURE), some null components of 3
are not correctly estimated at 0 (black points outside the x-axis), but there exists a threshold,
for which the thresholded LASSO recovers the sign of B (top right). On the bottom, when
k = 30, the accessibility condition holds but the noiseless recovery condition does not hold, thus
thresholded LASSO can recover the sign of 8 but LASSO cannot. When the tuning parameter
is large: A = 2,/21og(150), both LASSO and thresholded LASSO fail to recover the sign of 8
(bottom left). When the tuning parameter is small, some null components of 8 are not correctly
estimated at 0, but there exists a threshold, for which the thresholded LASSO recovers the sign
of B (bottom right).

Figure provides both the probability of the accessibility condition and the probability of the
noiseless recovery condition as functions of k.

In Figure we illustrate the pattern recovery properties by a penalized estimator and a
thresholded penalized estimator for the supremum norm. Specifically, 8 € R0 satisfies 81 =
coo= Pgo = 20, Bg1 = -+ = P1a0 = —20 and F1o1 = --- = Bi50 = 0. The tuning parameter
is given by the SURE formula, which for a given X and Y minimizes the function 0 < A —
Y = XBWN)|3+1{i € [p] : |Bi] < ||B(N)||oc}], where B(X) is the unique element of Sx xpen(Y')
(see e.g. [132] or [181]).
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Accessibility and noiseless recovery curves:
supremum horm
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Figure 5.9: Probability of the noiseless recovery and the probability of the accessibility condition
as functions of the number £ of non-maximal components in absolute value. The value k = 50
[4] provides, approximately, the preimage of 0.5 for the accessibility curve.

Supremum norm penalized estimator:
tuning parameter selected by SURE

o ]
S ég@om@QB%g 5
3 o
= o _|
E T °-
17 @0 o
g ° 7 OOOQ%?O@;%
ﬂl’ Oo o ©0
s e
S |
< © @ o
8| | &Dg@ 92%003@
T T T
0 50 100 150

index

Figure 5.10: Illustrations of the pattern recovery by a penalized estimator and a thresholded
penalized for the supremum norm. When k& = 30, the accessibility condition holds, but the
noiseless recovery condition does not hold. Thus, as illustrated on this picture, the recovery of
the pattern of g requires thresholding the estimator.

5.8 Appendix

5.8.1 Facts about real-valued polyhedral gauges

Lemma[5.8. 1] characterizes the connection between elements of a certain class of convex functions
(which encompasses polyhedral gauges) and the faces of a related polytope. It is needed to prove

Theorem [5.6.1]

Lemma 5.8.1. Let vy,...,v; € RP, P = conv{vy,...,v;} and
¢(x) = max{viz,..., vz} for ¢ € RP.
Then the subdifferential of ¢ at x is a face of P and is given by
d¢(x) = conv{v;: l€Iy(x)} ={se€ P: s'e=¢(x)}, where Iy(x)={l€ [k]: vix=d(x)}.
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Conversely, let F' be a non-empty face of P. Then F = d¢(x) for some x € RP.

Proof. The fact that 0¢(x) = conv{w; : [ € Ig(x)} can be found in [I0I], p. 259]. To prove the
second equality, we consider the following. If I € I4(x), then by definition of I4(x), vj = ¢(x)
and thus v; € {s € P: s'@ = ¢(x)}. Since the latter set is convex, one may deduce that

conv{v;: € Iy(xz)} C{seP: sz =¢p(x)}.

For the other inclusion, assume that s € P is such that s ¢ conv{v; : | € Is(x)}. Then we have
k k

s = Y ayv; where ai,...,05 >0, > oy =1 and oy, > 0 for some Iy ¢ I(x). Since vjx < ¢(x)
=1 =1

for all I € [k] and vy x < ¢(x), we also get

k
sz => oz < ¢(x).
=1

Consequently, s'x # ¢(x) and thus
{seP: sx=¢(x)} Cconv{v : | € I,(x)}.

Therefore, d¢(x) = conv{v; : | € Iy(x)} = {s € P: s’z = ¢(x)}. Now we show that the
subdifferentials of ¢ are the non-empty faces of P. Let € RP. By definition of ¢, vjx < ¢(x)
for every I € [k], so the inequality «’s < ¢(x) holds for all s € P. This implies that d¢(x) is a
non-empty face of P. Now we show that any non-empty face F' of P is equal to d¢(a) for some
a €RP. Let F={s € P: a's = c} be a non-empty face of P where a € R, ¢c € R and a’s < ¢
is a valid inequality for all s € P. We prove that F = d¢(a). Indeed, take any s € F. We get
a's = c as well as a’s < ¢(a) as shown above, implying that ¢ < ¢(a). Analogously, for any
s € d¢p(a), a's = ¢(a) as well as a’s < ¢ since d¢p(a) C P, yielding ¢(a) < c¢. Therefore one

may deduce that ¢(a) = ¢ and thus F' = d¢(a). O
Corollary 5.8.1. Let X € R™P and A > 0. Let pen be a polyhedral gauge, i.e., pen(x) =
max{0,u\x,...,ujz} for some ui,...,u; € RP. Then the polar set of the unit ball of pen
equals

B* = conv{0,uy,...,u}.

The following lemma, also needed to show Theorem states that the fitted values are unique
over all non-unique solutions of the penalized problem for a given y. It is a generalization of
Lemma 1 in [I78], which shows this fact for the special case of the LASSO.

Lemma §.8.2. LetNX € R"Xf, ye R”™, A > 0 and pen be a polyhedral gauge. Then XB = XB
and pen(fB) = pen(B) for all B, € Sx pen(Y).

Proof. Assume that X3 # X3 for some 3,3 € SxX xpen(Y') and let B = (B + B)/2. Because
the function g € R"™ + ||Y — p||3 is strictly convex, one may deduce that

Y 1 ~ 1 ~
Y~ XBI3 < 5lly— XBI3 + 5|¥ — XBI3.
Moreover, by convexity of pen, we have pen(B) < %(pen(B) + pen(B)). Consequently,
1 o o 1/1 ~ - 1 ~ ~
SIY = XBIE + xwen(B) < 5 (51 = XBI3 + Apen(B) + 51 - XBI} + Apen(B) ).

which contradicts both B and B being minimizers. Finally, X B = X B implies that

o~ ~

pen(B) = pen(B). O
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5.8.2 Proofs
Proof of Theorem [5.1.1]

For v > 0, as P, we denote the polyhedron:
P,={beR’: pen(b) <y} ={beRP: uib<~,...,ub <~}

Lemma 5.8.3. Let X € R"P, Y € R", u1,...,u; € RP and R > 0. Then the optimization
problem
min ||Y — Xb||3 subject to the constraint ujb < R,...,ujb < R. (5.8.1)

be Pr

has at least one solution.

Proof. Let us set z = Xb in the optimization problem (5.8.1)). Since the set X Pg is a closed
convex set, the problem of minimizing ||Y — z||3 subject to the constraint z € X Pg has a
unique solution z € X Pr. Consequently, Z = Xb for some b € Pr. Finally, b is a solution of

the optimization problem ([5.8.1]). O

Let us revisit the polyhedron P,. As every polyhedron, P, can be decomposed as the sum of its
recession cone and a bounded polyhedron [193] Theorem 1.2. and Proposition 1.12.]. Therefore,
for v = 1 we have:

P={beRP: u/b<0,...,ulb<0}+E,

where E' is a polytope. Note that, for an arbitrary v > 0, we have P, = Py + vE.

Proof of[5.1.1] Let m := bin}%’{p f(b). Note that 0 < m < f(0) = 3|Y||3. We want to show the
€

existence of such 8* € RP that f(8%) = m. If f(0) = m, then we are done. Assume then that
f(0) = m+ 9§ for some § > 0. By the definition of infimum, one may consider such sequence
(Bi)p=1 that f(By) <m+ 2 < f(0) for every k > 1.

Step 1: Convergence of (X 3},)r>1 and (pen(By))r>1:

At first we show that (X 3})r>1 is bounded. Indeed, we have

1 1
0< §||Y — X B3 < f(By) < §HY|\%-

Thus || X Bill2 < |[Y |2+ X B —Y |2 < 2||Y ||2 and the sequence (X 8;,)x>1 is bounded. Thus, if

it is not convergent, then there exist two subsequences (X 3, )r>1 "2 p and (X Bs, k1 ho g
converging to two different limits. By the strict convexity of o(t) := ||Y — t||2, one may deduce

the following inequality:

Pre tBuyp _y 7 E8

1 1
5 T2 < SIY - IR+ 5V - sl

lim |Y — X
k—o00

Moreover, the convexity of pen yields

pen <ﬁ”“—;ﬁs’“) < % (pen(B,,) +pen(8,,))

Consequently,

lim sup f

k—o00

(ﬂrk + B,

2 ) <3 (88, +18,)) =m.
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which contradicts m = binﬂg ) f(b). Therefore the sequence (X B )r>1 is convergent and thus
1 >

(pen(B;,))k>1 converges, too.

Step 2: Existence of the minimizer:

Denote g := lim XS, and v := lim pen(8;). Then we have
k—o0 k—o0

1
= inf ~|Y —gl3 :
m= inf f(b)=2lY —glz+M
Let B be an arbitrary solution of (5.8.1) with R = 5. We are going to prove that f(8) =
Y = gl3 + Xy =m.

Case 1:

If v > 0, then for k large enough such that pen(8;) > 0 one may set vy := -~ /3 By

have pen(vy) = v and thus vy, € P,. Consequently, by definition of B3, we have Y — Xka% >
|Y — X B||3. Therefore

—

f(B) = *HY X B3+ Apen(B) < SIY = Xvgl3 + 2 =F Y - gl + My =m.

Case 2:

Let v = 0. Because P; = Py + E, where E is a bounded polyhedron, one may write 3, =
vy, + pen (B, )wy, where vy, € Py and wy, € E. Because X ), — g and pen(8;,)wy — 0, one may
deduce that Xwvj — g. Moreover, since pen(3;)vy € Py, we have the following inequality:

F(B) =5 [v —XB| < L 1Y - Xue2 25 Ly — gl =m

which achieves the proof. O

Proof of Theorem [5.6.1]

Proof of Theorem[5.6.1 ( =) Assume that there exists a face F' of B* = conv{0,u1,...,u}
that intersects row(X) and satisfies dim(F") < dim(ker(X')). By Lemma F' = dpen(B) for
some B € RP. Let z € R" with X'z € F, which exists by assumption. Now let y = X3 + \z.

Note that B € SX apen(y) since

0cd (;Ily — XB|%+ Apen(fa)) = X'XJ — X'y + \open(B) (5.8.2)
— %X’(y — XB) = X'z € dpen(B). (5.8.3)

Now we construct B €  Sxpen(y) with B #+ B ) According to Lemma
c'?pen(,B) = conv{ul clel} where I = Ien(B) = {l € [k] : uiﬁ = pen(B)} and thus
ulﬁ < pen(,@) whenever [ ¢ I. Now we show that it is possible to pick h € ker(X) with h # 0,
but ujh = 0 for all [ € I. Then we can make h small enough such that ul(E +h) < pen(B)
still holds for all [ ¢ I, which in turn implies that pen(,B +h) = max{ulﬂ lel} = pen(,@).
This, together with X8 = X(B + h), yields B £ B = B+h e Sx pen(y). The existence of
0 # h € ker(X) such that ujh = 0 for every [ € I is equivalent to ker(X) N (col(U))+ # {0},
where U = (u;);e; € RP*II. To prove it, we distinguish two cases:

1) Assume that 0 € aff{u; : [ € I}. Then aff{u; : [ € I} = col(U) and rk(U) = dim(F) <
dim(ker(X')). This implies that

dim(ker(X)) + dim((col(U))*) > p,
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which proves what was claimed.
2) Assume that 0 ¢ aff{w; : [ € I}. It implies that v = X'z € row(X) Nconv{w, : [ € I}
satisfies X'z # 0. We also have tk(U) = dim(aff{u; : [ € I})+1 = dim(F)+1 < dim(ker(X)),
which implies that

dim(ker(X)) + dim((col(U))*) > p.

If ker(X) N (col(U))* = {0}, then R? = ker(X) @ (col(U))*. But, since v € row(X)Nconv{u; :
I € I}, we also have ker(X) C v+ and (col(U))* C v', yielding a contradiction and proving
the claim.

( <= ) Assume that there exists y € R" such that B,B € SX Apen(y) with B # (. Then
1 ~ ~ 1 ~ ~
XX’(y — X ) € dpen(B) and XX’(y — X B) € dpen(B).

According to Lemma X3 = Xj, thus 1 X' (y — XB) = 1X'(y — XB) € row(X).

~ ~

Consequently, one may deduce that row(X) intersects the face dpen(8) N dpen(B). Let F* =

o~ ~

conv{w; : | € I"} be a face of dpen(B) N dpen(B) of the smallest dimension among all faces
of Open(B) N dpen(B) intersecting row(X). By minimality of dim(F*), row(X) intersects the
relative interior of F*, namely, there exists z € R"™ such that v = X'z lies in F*, but not on a
proper face of F*. Now we will show that if dim(F*) > dim(ker(X)), then row(X) intersects a
proper face of F*, yielding a contradiction.

For this, we start with observing that dim(F™*) = dim(aff{u; : | € I*}) and that we can write

%

the affine space aff{u; : | € I*} = w;, + col(U ) where |y € I* and U* = (w =g )1er\ {10} €

RP*II=1 1 implies that dim(F™) = rk(U ). R N
Now, let h = 8 — 8 # 0. By Lemma h € ker(X) and pen(f) = pen(8) b Lemmam

and. Moreover, since u; € dpen(8) N 6pen(§) for all [ € I, then by Lemma we get
uwh = u)B — u)B = pen(B) —pen(B) =0 Ve I*.

Therefore, h € ker(X) N col(U*)*-, where U* = (u;);e+ € RP*I
Assume that dim(F*) > dim(ker(X)). Then

%

dim(row(X)) 4+ dim(col(U )) > rk(X) + dim(ker(X)) = p.

~ % ~

If row(X) Ncol(U ) = {0}, then R? = row(X) @ col(U ). However, the last equation cannot

—~%

hold since row(X) = ker(X )+ C ht and col(U ) C col(U*) C ht, where h # 0. Consequently,

there exists 0 # v € row(X) N COl(U*). The affine line L = {X'z+tv : ¢t € R} C row(X)

intersects the relative interior of F* at ¢t = 0. It is contained in aff(F"™*) = u;, + col(U *), since

%

X'z € F* and © € col(U ). Therefore, L must intersect a proper face of F* by Lemma [2.3.1| (ii).
But then also row (X)) intersects a proper face of F*, which yields the required contradiction. [
Proof of Proposition [4.4.2

The following lemma can be seen as a generalization of Proposition 4.1 from [88] from the ¢;
norm to all convex functions.

Lemma 5.8.4. Let B € RP and ¢ be a convez function on RP. Then row(X) intersects 0p(3)
if and only if, for any b € RP, the following implication holds

XB=Xb = ¢(8) < ¢(b). (5.8.4)
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Proof. Consider the function ¢5 : R? — {0, 00} given by

0, when Xb=Xg,
tp(b) =
oo, else.

Then ([5.8.4) holds for any b € R if and only if 8 is a minimizer of the function ¢(b) + ¢5(b).
By definition of the subdifferential it may be shown that dig(8) = row(X). Therefore we can
deduce that the implication (5.8.4) holds for any b € R? if and only if

0 € row(X) + 99(B) <= row(X)NIP(B) # @
O
Proof of Proposition[{.4.2 By Lemma the geometric characterization of accessible pat-

terns is equivalent to the analytic one. We show the geometric characterization.
( = ) If the pattern of 3 is accessible with respect to X and Apen, then there exists y € R"

and B € SxX Apen(¥y) such that B ™' B. Because B € Sx xpen(Y), we get %X’(y — XB) €
dpen(B) = dpen(B), thus row(X) intersects Ipen(3).

( < ) If row(X) intersects the face dpen(B), then there exists z € R™ such that X'z €
dpen(B). For y = X B+ Az, we have 1 X'(y — X8) = X'z € dpen(B), so that B € Sx pen(¥),
and the pattern of 8 is accessible with respect to X and Apen. O
Proof of Theorem [5.4.4]
Lemma 5.8.5. Let ¢ : RP — R be the polyhedral gauge defined as
#(x) = max{0,u)x,...,ujz} for some uy,...,u; € R?.

If 0¢(x) = 0¢(v), then Op(x) = Op(ax + (1 — a)v) = dp(v) for all a € [0, 1].
Proof. Let s € 0¢(x) = 0¢p(v). Since s is both a subgradient at  and at v, the following
inequalities hold

¢(ax + (1 - a)v)

¢(ax + (1 - a)v)

(@) - (1-a)s'(z—v)

>
> ¢(v) + as'(x — v).

Multiplying the first inequality by «, the second by (1 — ) and adding them, we get
plaz + (1 — a)v) > ad(x) + (1 — a)p(v).

Using the convexity of ¢, we arrive at
¢(ax + (1 - a)v) = ag(x) + (1 — a)p(v).

By Lemma [5.8.1] we have d¢(x) = conv{u; : | € I}, where Is(x) = {l € [k] : ujz = ¢(x)}.
Therefore, if u; € 9¢p(x) = 0¢(v), then wjx = ¢(x) and ujv = ¢(v), thus

uj(ax + (1 — a)v) = ad(z) + (1 — a)d(v) = ¢(az + (1 — a)v).

Consequently, u; € 9¢(ax + (1 — «)v). On the other hand, if u; ¢ d¢(x), then ujz < ¢(x) and
ujv < ¢(v), thus

uj(az + (1 — a)v) < ad(z) + (1 — a)p(v) = ¢(az + (1 — a)v).

Consequently, u; ¢ 0¢(ax + (1 — a)v) and the claim follows. O
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Lemma 5.8.6. Let X € R™"*P and 8 € RP. Then the following set is convex

pen

Vs={yeR": 3IA>0 3B € Sx.rpen(y) such that 8 X' g}.
Note that Vs may be an empty set.

Proof. Assume that Vg # @. Let y, y € V3. Then there exist A > 0 and X > 0 such that
B € Sx pen(y) and B € Sy Xpen@) with dpen(8) = dpen(3) = dpen(B). Consequently,

X'(y — XB) € Apen(B) and X'(y — X B) € Adpen(B).

Let a € (0,1) and § = ay + (1 — ). Define A = aA+ (1 — a)X and B = o + (1 — a)5. Now
we show that § € V. Indeed, observe that

b ¢ (1} — XB) = aX’(y—XB)—i—(l—a)X’(@—XB) € aXdpen(B)+(1—a)Adpen(B) = Adpen(B).

By Lemma dpen(B) = dpen(aB + (1 — )B) = dpen(B), then also B € Sx ipen(¥);
O

which proves the claim.

Proof of Theorem [5.4.4] Assume that the noiseless recovery condition does not hold for 3. Then
XpB ¢ V3, where Vg is defined as in Lemma m Consequently, by convexity of Vg, for any
realization of € € R" we have X8 +¢e ¢ Vg or X8 — e ¢ V. Therefore

I=P.({XB+ed Vs U{XB—e¢Vs})
<SP ({XB+e¢ Va}) +P-({XB—-edVp})=2P.({XB+e¢Vz})

Consequently,

1 -~ = pen
5 2 P-({XB +eeVp}) =P(3A > 03B € Sx rpen(Y) such that j = B).

Proof of Proposition [5.5.1

Proof of Proposition[5.5.1. We only need to prove the implication ( <= ), as the other im-
plication is obvious. Assume that 8pen(B) C Jpen(f). Since B € SX \pen(y), we have
1X'(y — X B3) € dpen(B) C dpen(B). Consequently, row(X) intersects dpen(3) which implies
that the pattern of B is accessible with respect to X and pen by Proposition[4.4.2] Consequently,
there exists y € R™ and there exists B € SxX xpen(y) for which B 2 B. O

Proof of Theorem [5.5.1]

Lemma 5.8.7. Let pen be a polyhedral gauge on RP; X € R™*P, and v € col(X). Let K,
Ky > 0 be large enough such that the set C = {b € RP : pen(b) < K1, || Xb —v|j2 < Ky} is
non-empty. If ker(X) Nker(pen) = {0}, then C is compact.

Proof. Clearly, C is closed and convex. If pen(d) > 0 or Xd # 0, then d ¢ rec(C). Conse-
quently, rec(C) C ker(X) Nker(pen) = {0} and thus C' is compact. O
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Lemma 5.8.8. Let X € R"P, A > 0 and pen be a polyhedral gauge on RP. Assume that the
uniform uniqueness holds for (5.1.1). Let B8 € R?, € € R™ and set y(") = X(rB) +e.
If B is accessible with respect to X and pen, then

lim B(y")/r = B.

r—00

Proof. Since B (y(T)) € Sx, Apen(y(r)), the following inequality holds
Sy = XBO)I3 + Apen(By™)) < Sy — X ()3 + Apenr).
y") — X (rB) = e, therefore one may deduce that
Slle+ X08) = XBly™) B+ pen(Bly™) < Slelf + Apen(rB)  (5:85)
and in particular
wwen(Bly™) < 3 lell3 + Apen(rp)

~ I 2
— pen(B?)/r) < 52 1 pen()
— limsup pen(B(y™)/r) < pen(B). (5.8.6)

T—00

Consequently, the sequence (pen(,@ (y"))/ 7")) N is bounded. By the Cauchy-Schwarz inequal-
reNy
ity, the inequality ((5.8.5)) implies that

— llell2 1% (rB) = XB(y")ll2 + %I\X(Tﬁ) — XB(y")|3 < Apen(rB) — Apen(B(y"))

(5.8.7)
el (3<y‘”> - 5> Ay (mym) . B) o dwen(d) A (B(y“))) |
r T 5 2 r ) r r r
(5.8.8)
Let a € [0, 00] be the limes superior of the sequence
(|x (B =8)|,) - (5.8.9)
By we get
i sup en(B) ~ Apen(B(y)/r) {a2/2 fa <o
r—00 r 00 if a = 0.

Moreover, since the sequence (pen(B(y(T)) /r)) N is bounded, we obtain
reiN+

=0.

lim sup Apen(B) — Apen(B(y™))/r)

r—00 r

We conclude that o = 0 and the sequence ((5.8.9) converges to 0.
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Due to unlform umqueness by Lemma p we have ker(pen) N ker(X) = {0} and thus,
by Lemma the sequence )/7)rex is bounded.  Therefore, to prove that
le B(y™) /r = B, it suffices to show that 8 is the unique accumulation point of this se-
T o0

quence. We extract a subsequence (B(yq(r)) /q(1))ren converging to v € RP. By (/5.8.6]), one
may deduce that pen(vy) < pen(3). Moreover, we have

0= lim | X (B /o) - 8)|, = IX (v B)IB.

r—00

Finally, ~ satisfies
X~ = X and pen(v) < pen(B).

Because the pattern of 8 is accessible, by Lemma we also have pen(8) < pen(«). Then,
Lemma implies that v = 3. Therefore,

By
lim B(y'")

r—00 r

=B.
]

Lemma 5.8.9. Let pen be a polyhedral gauge on RP. Then there exists 1o > 0 depending on B
such that
Open(b) C dpen(B) for all b € Buoo(B,70).

Proof. Let I ={l € [k] : uj8 = pen(B)}. By Lemma[5.8.1] dpen(8) = conv{u;}e;. Since
wjB < pen(B) VI ¢ I.
and by the continuity of pen, one may pick 79 > 0 small enough such that
ub < pen(b) VI ¢ I, Vb € Boo(B,70)-
Consequently, for any b € By (8, 7), we have J = {l € [k] : ujb = pen(b)} C I and thus
dpen(b) = conv{u; }ie; C conv{u;}ic; = dpen(B).
0

Proof of Theorem[5.5.1 By Lemma m there exists 70 > 0 such that for any b € Boo(B,70)
we have dpen(b) C dpen(B). By Lemma B(y™)/r converges to B when r tends to oc.
Consequently, we have

3 rg € N such that Vr > rq, HB(y(T))/T — Blloo < 10/2.

Consequently, for » > rg we have

{vgeB (/}(y ))/r,70/2), Open(b) C dpen(B)
b € Boo(B(y™) /1, 70/2), Open(b) = dpen(B).

Since for any ¢ > 0 and any « € RP, we have dpen(x) = dpen(tx), one may deduce that

{\ﬂg € Boo(B(y").770/2), Open(b) C dpen(B)
3b € Boo(B(y")), 710/2), dpen(b) = dpen(B).

Consequently, the claim follows by taking 7 = r7(/2. O
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Noiseless recovery condition for the supremum norm

Recall the noiseless pattern recovery for the supremum norm:

I\ > 03B € Sx | (XB) such that 3 1= g.

Remark 5.8.1. Let pen > 0 be minimized at 0. Then 8 = 0 minimizes the function
1
f(b) = S Xb]3 + Apen(b).

Proof. The proof is a direct consequence of 0 minimizing both || X b||2 and pen(b). O

Corollary 5.8.2. The noiseless pattern recovery is satisfied by B = 0 for every polyhedral gauge
pen.

Proposition 5.8.1. Let 0 # 8 € RP and I :== {i € [p] : |Bi] < |Blloo}. Let X = (X1|X7),
where
X1=>) sign(8)X;.
i¢l
Then the noiseless pattern recovery occurs if and only if

X'(X")Te; = ey,
where e; = (1,0,...,0)".
Before giving the proof, we recall that the subdifferential of the £, norm at 0 is the unit ball of
the ¢1 norm and for & # 0 this subdifferential is equal to

Ol llso(x) = {s€R:|s[h<1and s'z =z}

x> () if | =
= {sERp:HsHl:land {Sm— if [z Hmlloo}

si=20 otherwise

(5.8.10)

Proof. (=) Let us assume that there exists A > 0 and B e SX ||l (X B) such that J¢] I e 8.
Then the following property holds

TXX(B—B) € 0l (8) = 0o B). (5.8.11)

-
Il
P
O)

Let us set ¢ = (]| Bloo, B7)" and & = (|| B0, 3})'. By construction, X8 = Xc and X

Consequently, according to (5.8.11]), we have
1

XX’X(c—é) € 9|l (B)- (5.8.12)

By the representation (5.8.10]) of 9 - ||oo(8), the relation above implies that
Vie I, X!X(c—¢&) =0,
X 2 sign(B) XX (c—¢) =1,
¢l
therefore

1 - . _ _
XX’X(C—&) =e; = X(c—&)=\X")Te.
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Using the last implication and ([5.8.12)), one may deduce that
~ 1 ~
X' (X"ter = XXIX(C_ ¢) €9 |l(B).
Finally, we prove that X’(X")"e; = ey:

_ Viel Xi(X)*t 61—0 L
XX OB =) 5 sign(5) X(X) e = Xy(X)rer =1 = X (X Ter=er
gl

(«<=) Again, let ¢ = (||8]|co, B7)". Denote & = ¢ — AXT(X')*e; and set B as follows:

. A ¢; when 1 € I,
Vi € [p], [ . ~ .
sign(B;)é1 when i ¢ 1.

Note that [|B]lsc = ¢1 = ||B]lso. Moreover, by definition of I, ¢; is the unique coordinate of
¢ having the maximal absolute value. Therefore, for A small enough, we have ¢ = [|¢]|co. It
implies that ||B]|cc = ¢ and this value is attained exactly at coordinates §; : i ¢ I. Therefore
{iepl: 1Bl < 1Bllec} = {i € [p] : 18| < Blloc} = I. Moreover, for i ¢ I we have 3;8; =
Bisign(Bi)ér = ||Bllocér > 0. Consequently, for A small enough we have sign®(8) = sign™(8).
To conclude the proof it is enough to show that 8 € SX Al (X B), ice. 1X (XB — XB) €
9|.llso(B). By Remark X X7 is the projection onto col(X) and col(( "NT) = col(X).

Therefore
1 o ~
)\ X(B-B)=~-X'"(Xc— X&) = X'XXT(X')e; = X'(X")Tey.

Then it suffices to prove that the latter term belongs to 9||.|leo(8). As we assumed that
X'(X")Te; = ey, we have

v (! _ X1 (X"Yter =1
(X'(X)ter=e) = {WGIX(X) -
{z sign () Xj(X')Ter = 1
=

igl ] = (X'(X')*er € 0] [|~(8))
Viel Xi(X')rer =0

Consequently, for A > 0 small enough, 8 € SX [l (X B) and sign®(B) = sign™(B).
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Chapter 6

Maximum likelihood estimation for
discrete exponential families and
random graphs

6.1 Introduction and preliminaries

The content of this chapter comes from the published paper of Bogdan, Bosy and the author
of the dissertation [22].

Exponential families are of paramount importance in probability and statistics. They were
introduced by Fisher, Pitman, Darmois and Koopman in 1934-36 and have many properties
that make them indispensable in theory and applications, see [125] (Section 2.7), [I1] (Chapter
9), [5], [57] (Chapter 9.E), [58], and [I12I]. In this paper we study discrete exponential families,
more specifically, exponential families on finite sets, and give a new characterization of the
existence of the maximum likelihood estimator (MLE) for exponential family and the data at
hand. We also present applications, in particular for specific exponential families we give a
threshold of the sample size sufficient for the existence of MLE with high probability for i.i.d.
samples.

The computation of MLE is in general difficult with the number of variables increasing. On
the other hand, for given data and an exponential family, MLE may fail to exist. In particular,
[50, BI] pointed out to problems with the maximum likelihood estimation when the number of
parameters is too large for the sample size. He also gave a sufficient condition for MLE to exist
almost surely — the Haar condition.

A complete characterization of the existence of MLE for rather general exponential families
was given by Barndorff-Nielsen. Namely, by [I1] (Theorem 9.13), MLE for a sample and an
exponential family exists if and only if the vector of the sample means calculated for a basis of
the linear space of exponents belongs to the interior of the convex hull of the pointwise range of
the basis.

This beautiful criterion is alas cumbersome to apply. Therefore, [I05] gives an alternative
condition for discrete exponential families, together with applications to Cox regression, logistic
regression and multiplicative Poisson models. Similar condition is presented by [3] for log-
linear model. [96] gives a characterization of the existence of MLE for hierarchical log-linear
models. His conditions can be interpreted in terms of polytope geometry, see also [69], and [75].
[36] characterizes the existence of MLE when the log-partition function is steep and regularly
convex, and interprets the problem of finding MLE as the optimization of the Kullback-Leibler

105
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divergence. [53] connect the properties of MLE in decomposable models with graph-theoretical
notions, thus starting the theory of graphical models in statistics. Sufficient conditions for
the existence of MLE in specific exponential families are also given by [169] and [25]. [86]
looks for MLE in the closure of convex exponential families, relates the existence of MLE with
the linear programming feasibility problem, and in the case of nonexistent MLE, reduces the
considered exponential family until MLE exists for the family. He also applies MCMC algorithms
to calculate MLE. A comparison between the conditions of Barndorff-Nielsen and Jacobsen is
discussed in [I14]. In addition, Konis presents an implementation of Jacobsen’s test using linear
programming. A broad survey of the history of log-linear models and further motivation for the
study of the existence of MLE can be found in [74, [75].

The main inspiration for our work is [2I] (Theorem 2.3) on the existence of MLE for exponential
families of continuous functions on finite interval. In Theorem below we propose a similar
characterization, which is new in the setting of discrete exponential families. We obtain the
result by a straightforward, self-contained approach, which does not depend on the delicate
convex analysis of [I1].

The paper is composed as follows. In Section [6.2] we state and prove our criterion, using the
notion of set of uniqueness. The criterion is restated in Section [6.2.2] as a linear programming
problem. In Section [6.3] we give applications to exponential families spanned by Rademacher
and Walsh functions, and to exponential families of random graphs. In particular we give sharp
or plain thresholds for the sample size to secure the existence of MLE with high probability.
In Appendix we give auxiliary results and reformulations of our criterion and pin down its
connections with the criterion of Barndorff-Nielsen.

Acknowledgments: We are grateful to Malgorzata Bogdan, Piotr Ciotek, Persi Diaco-
nis, Héléne Massam, Sumit Mukherjee, Krzysztof Oleszkiewicz, Krzysztof Samotij, Maciej
Wilezynski and anonymous referees for comments, corrections, references and discussion.

6.1.1 Discrete exponential family

Consider a finite set X # @ and weight function px : X — (0,00). As usual, R¥ is the family
of all the real-valued functions on X. For ¢ € RY we define the partition and the log-partition
functions,

Z(¢) =Y e’ Dpu(x), ¥(¢)=logZ(¢), (6.1.1)

reX
respectively, and the exponential density

p=e(d) ="V =¢?/Z(g). (6.1.2)

Clearly, p > 0 and >,y p(z)p(x) = 1. For arbitrary real number ¢ we have ¢ (¢+c) = ¢(¢) +c,
hence

e(p+c) =e(p). (6.1.3)
Moreover, for ¢1,¢s € RY we have e(¢1) = e(¢2) if and only if ¢; — ¢o is constant. Consider
x1,..., T, € X, a sample. For ¢ € RY we denote, as usual,

b= o).

=1

The likelihood function of p = e(¢) is defined as

Leg) (@1, 2n) = Ly (21, ,20) = Hp(zi),
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and the log-likelihood function is

le() (01, n) =108 Le(g) (@1, ., n) = (6= 1 (9)) (6.1.4)
Of course, for every ¢ € R we have

le(¢+c) (:L'l, ce ,l‘n) = le(qb) (:L‘l, e ,."L‘n). (6.1.5)

We note that the likelihood functions are uniformly bounded. Indeed, for every ¢ € R,

- #(x) > i
P(p) log;( e u(x) > max o+ min log u, (6.1.6)

and so by (6:14) and (6-1.6),

legg) (T, ., 00) < =1 m/,‘;n logp and Ly (21,...,70) < (m/%n )" (6.1.7)

We fix a linear subspace B C R*Y. The ezponential family spanned by B is
e(B) :={p=ce(¢): ¢ € B}. (6.1.8)

Since X is a finite set, e(B) will be called discrete exponential family (we do not consider infinite

countable sets, for which see [105]).
We call p € e(B) an MLE for z1,...,x, and e(B) if

Ly (z1,...,2n) = sup Ly (z1,...,25),
p€e(B)
or, equivalently,
L (x1,...,xn) = sup b (z1,...,25).
pEe(B)

The following result is well known (see, e.g., [I10] (Theorem 2.1) or [57] (p. 177)), but for the
reader’s convenience we give a proof in Appendix

Lemma 6.1.1. If MLE exists, then it is unique.
Despite the boundedness (6.1.7), MLE may fail to exist, as shown by the following example.

Example 6.1.1. Let X = {0,1}, p =1, B=RY¥ n =1and ;1 = 1. Let a,b € R and
6= a+blyy. Then Z(g) = (1 +e), e(g) = P /(1 + ), and Lygg(z1) = e(9)(1) =
e’/(1 + €b). Thus, sup Le(gy(71) = 1, but the supremum is not attained for any a,b € R, so
MLE does not exist in this case. On the other hand, if n = 3, 1 = 22 = 0, and x3 = 1, then
Le(gy (w1, 72, 23) = e?/(1 + €b)3. By calculus, the maximum is attained when e® = 1/2, therefore
p=(2—1y)/3 is the MLE in this case.

We note that the first supremum in Example[6.1.1]is approached when b — oo, or for the density
p = 11y, which, however, is not in e(R%) but rather in e(RH}). Below in Theorem we
characterize the situation when the genuine MLE exists, and in Theorem [6.2.5] we treat, by a
suitable reduction of X, the case when the supremum of the likelihood function is “attained at
infinity”. Before we proceed, we owe the reader some comments on the notation used in this
paper and in the literature.



108 CHAPTER 6. MLE FOR DISCRETE EXPONENTIAL FAMILIES

6.1.2 Alternative setting

Let d be a natural number. Consider a nonempty finite set S C R, weight m on S and the linear
space spanned by the coordinate functions on R%. The corresponding exponential densities have
the form

mo(y) = "V /C(0), ye€ S, (6.1.9)

where 6 € RY, - is the scalar product in R? and ((6) = doyes e?¥m(y). Thus, is a natural,
or standard, exponential family, see [126] or [36]. Since the range of the vector of parameters 0 is
the whole of R, which is open, the exponential family is reqular, see [122] (Appendix D.1).
The setting is actually generic, as we explain momentarily. If functions ¢1, ..., ¢4 span the linear
space B in the general discussion above and we let T'(z) = (¢1(x),. .., ¢q(x)) for x € X, then
for every ¢ € B there is # € RY such that ¢(z) = 0 - T'(x) for z € X, and

e(p)=€e’T/Z(0-T). (6.1.10)

This is the form used by most authors, see [122] or [110], and T is called the canonical statistics.
Furthermore, we let § = T(X) C R* and m(y) = ¥ ,.7(z)y () for y € S. With the notation

of and we have
mo(y) =e(¢)(z) i T(x)=y. (6.1.11)

If x1,...,2, € X is the sample and we denote y; = T(x1),...,yn = T(x,), then the correspond-
ing likelihoods are equal, too. Therefore 7, is the maximum likelihood estimator for yy,...,yx
and {mp : 0 € RY} if and only if e(d - T) is the maximum likelihood estimator for z1,...,z,
and {e(¢) : ¢ € B}. This makes a complete connection between our setting and the setting
of natural exponential families with finite support S. The same setting of discrete exponential
families on finite set is described, using slightly different language, in [172] (§6.2). We also recall
that if ¢1, ..., ¢4 are affinely independent, then the representation (6.1.10) is minimal, see [110]
(Chapter 1) or [122], where the affine independence means that 6 - T' = const implies § = 0. In
general, one allows the representation to be nonminimal because over-parametrization is often
natural in applications. We shall return to this discussion again in Section but for now
we get back to the setting of B and . The latter allows to work without coordinates and
benefit from properties of specific linear spaces B, which could otherwise be obscured by an
arbitrary choice of T' and S.

6.2 Main results

Let 1 denote the function on X identically equal to 1. Assume that 1 € B. This entails no
restriction on the considered exponential families e(B), but allows an elegant formulation of the
criterion of existence of MLE in terms of B, in fact in terms of the cone of nonnegative functions
in B:

By :={pecB: ¢>0}

We note in passing that Appendix gives a reformulation of our criterion for the existence
of MLE without requiring that 1 € B.

Let U C X. We say that U is a set of uniqueness for B if ¢ = 0 is the only function in B such
that ¢ = 0 on U. Similarly, we say that U is a set of uniqueness for By if ¢ = 0 is the only
function in B4 such that ¢ = 0 on U. Put differently, U is of uniqueness for B if the conditions
¢ € By and ¢ = 0 on U imply that ¢ = 0 on X. Of course, if U is a set of uniqueness for B,
then U is a set of uniqueness for By .
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Example 6.2.1. Let X = {—2,—-1,0,1,2} C R. Let B denote the class of all real functions on
X that are of the form a+ bz on {—2,—1,0} and a+ cx on {0, 1,2} with some a,b,c € R. Then
{—1,2} is a set of uniqueness for By but {—2,2} is not. We also observe that {—1,2} is not a
set of uniqueness for B, so the nonnegativity of functions in B4 plays a role here.

Being a set of uniqueness is a monotone property in the sense that every set larger than a set
of uniqueness is also of uniqueness. Furthermore, if U is a set of uniqueness for By and A is a
linear subspace of B, then U is of uniqueness for A, .

The following is a crucial definition: For U C X and ¢ € B we let

A = max ¢ — min ¢.
0(9) = max ¢ — ming
Here is our characterization of the existence of MLE for discrete exponential families.

Theorem 6.2.2. MLE for e(B) and z1,...,x, € X exists if and only if {x1,...,z,} is of
uniqueness for By.

Proof. Let us start with the “only if” part. If U = {x1,...,2,} is not a set of uniqueness for
B, then there is a nonzero function f € By such that f(x;) = ... = f(x,) = 0. Let ¢ € B be
arbitrary. Let ¢ = ¢ — f. We have ¢ = ¢, but () < 1)(¢), where v is defined in (6.1.1)). So,
by (6.1.4), le(g) (@1, -+, 0n) <lep) (%1, -+, 2n). Therefore no ¢ € B is MLE for x1,...,z,. To
prove the other implication, we let U be a set of uniqueness for B;. By for ¢ € B,

(o1, sz) = (7 = 0)) <n (5 (mime+ (0 - D) = 0 ().

Let C' = mingey log p(z). By (6.1.6), (6.1.5),

leoy (T1, -+ Tn) §mUing0+(n— 1)m§xgp—nmxaxgp—n0

= —Au(p) —nC = —o0,

as \y(yp) — oco. By Lemma Av(p) = 00 if Ax(p) — oo. In particular, there exists M > 0
such that if Ay (p) > M, then

le(<p)(351, .. .,l‘n) < le(o)(xl, e ,xn) = —nlogu(z’l’).

By (6.1.5) and continuity, the maximum of l¢(y) (21, ...,2y,) is attained on the compact set
{peB: 0< o< M} O

The above proof is different from that of [2I] (Theorem 2.3), [II] (Theorem 9.13) and [172]
(Theorem 8.2.1); the use of Ay makes our arguments more direct.

Remark 6.2.3. By Theorem [6.2.2| we see that the existence of MLE depends on the sequence
(z1,...,2y,) only through the set {z1,...,2,}. Furthermore, the existence of MLE does not
depend on p, i.e., we may take constant p without loosing generality. Summarizing, the existence
of MLE depends only on B and the set {z1,...,2,}. Of course, the actual MLE, say p, does
depend on the sequence (z1,...,z,), the weight u and B.
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6.2.1 Nonexistence of MLE

In this section we elaborate on the case of nonexistence of MLE in the spirit of [86]. To this
end we fix z1,...,2, € X and assume that there is a nontrivial § € By such that §(z1) = ... =
d(zpn) = 0. By Theorem SUPpee(B) lp (21, - -, T5) is not attained at any p € e(B). However,
the supremum is “attained at infinity”, in fact for an exponential density on a proper subset of
the state space X. Indeed, fix § as above. If ¢ € B and k € (0, 00), then

le() (155 0) < lepois) (1, -+, Tn),
see the first part of the proof of Theorem Furthermore,

Y (¢ — ko) — log Z @ u(x),  as k — oco. (6.2.1)
z€X:6(x)=0

We let X = {z € X : §(z) = 0} and carrying on with the notation for X we obtain measure
f, linear space B with cone B+, log-partition function w, likelihood function L, log-likelihood
function [ and exponential family e(B). Put simpler, we discard {z € X : §(z) > 0} and achieve
the following reduction.

Lemma 6.2.1. SUPs_ (&) (21, .., 2n) = SuPpee(s) bp (T1,- -+, Tn).

Proof. For ¢ € B we let ¢ = @3- Since {z1,...,2,} C X,

> dlwi) = %Zaﬁ(:ri) = 9. (6.2.2)
Furthermore,

P(¢) = log <Z e“”u(fﬁ)) > log (Z e‘z’(x)u(x)) = ().

TeX

Thus ¢ —(¢) < ¢ — ¥(4), and so

sup lp(21,...,2n) < sup I~ S(@1,.. ., zn).
pee(B) pEe(B)

Let 0 € B+ and k be as in (6.2.1). Using (6.2.1]) and (6.2.2)),

le(p—ks) (T2, -+ zn) = 1 (¢)(x1,...,xn), as k — oo.
Therefore,
sup ly(21,...,2n) > sup I~ S(@1,. .., zn).
pE€e(B) pEe(B)
O
Motivated by Lemma [6.2.1]} we define
{xla"' 7$n}3+ nQb {O} (623)
where the intersection is taken over all ¢ € By such that ¢(z1) = ... = ¢(x,) = 0. Thus for
all ¢ € By, if ¢ vanishes on {z1,...,2,}, then it vanishes on {x1,...,z,}5,, and the latter is
the largest such set. Put differently, if there is 6 € By such that 6(x;) = ... = §(z,) = 0 but
d(x) > 0, then x ¢ {x1,...,2,}5, , and conversely. In particular, U C X is set of uniqueness for

By if and only if Ug, = X.
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Example 6.2.4. In the setting of Example we have {2}z, = {2} and {-1}5, =
{~2,-1,0}.

We note that if & {x1,...,2,}5,, then there is ¢ € By such that ¢ = 0 on {z1,...,2,}
but ¢(z) > 0. Since X is finite, by adding such functions we can construct § € B, that
vanishes precisely on {z1,...,2n}85,, i.e., 6 1({0}) = {@1,...,2,}5,. We adopt the setting of
Lemmawith this 4, in particular with X = {z1,...,2n}5,, and we get the following result.

Theorem 6.2.5. There is a unique p € e(g) such that Zl;(xl, cy @) = SUPpee(B) bp (T15 -+ Tn).

Proof. By the definition of {x1,...,2,}5, and by Theorem Lemma and there
is a unique p € e(B) such that

lg(xl, ceyTp) = sup. ’lza(xl, cop) = sup by (z1,...,2p).
pee(B) pEe(B)

O]

Example 6.2.6. For the first sample in Example we get X = {z1}s, = {1}, and p = 1
on X.

For more substantial applications of Theorem [6.2.5| we refer to Example and Example[6.3.5

6.2.2 Linear programming

Before we address special spaces B, we offer the reader a down-to-earth perspective. To start
with, by a comment at the beginning of Section [6.2] we get the following simple result.

Corollary 6.2.1. If{x1,...,x,} is of uniqueness for B then MLE exists for e(B) and x1, ..., xy,.

Notably, the condition in Corollary [6.2.1] may be verified by solving the following linear problem:

¢ € B?
¢(x1) = ... = d(an) = 0.

Indeed, {z1,...,x,} is of uniqueness for B if and only if the homogeneous linear system has
only the trivial solution. In contrast, Theorem [6.2.2] is a linear programming problem. Indeed,
{z1,...,2,} is of uniqueness for By if and only if the supremum of the (objective) function
> wex ¢(x) is zero for the class of functions satisfying

¢ € B,

¢(z1) = ... = ¢(zn) =0,
¢ > 0.

In this vein [I50] (Appendix C) observe that the condition of Barndorff-Nielsen is actually a
linear programming problem and make connections to the geometry (of the convex hull of the
set S in Section . The linear programming also occurs in the study of the closures of
convex exponential families [86] or binary logistic regression models [114]. Furthermore, [I85]
consider the linear programming in the case when MLE fails to exist. See also [I72] for further
information on linear programming and cases of nonexistence of MLE for discrete exponential
families. Since the linear programming in general runs in polynomial time, see [I57], it should
be the method of choice when verifying the existence of MLE for discrete exponential families
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and data at hand. Having said this, for special linear spaces B one can come across interesting
mathematics, as we demonstrate below. We also remark in passing that the linear problem
in Corollary is the Haar condition of [51] in our setting. Quite generally, the sufficient
Haar condition of Crain for the existence of MLE is in the uniqueness of a linear problem while
our necessary and sufficient condition is in the uniqueness of a linear-programming problem.
The latter is still computationally manageable but more subtle (and optimal); see also the last
sentence in Example [6.2.T] for a difference between these two conditions in a very simple setting.

6.3 Applications

Maximization of likelihood is fundamental in estimation, model selection and testing. In many
procedures it is important to know if MLE actually exists for given data zi,...,z, and the
linear space of exponents B; see [75] (Introduction) for a list of such problems. [75] interpret
the existence of MLE by using the geometry of the polyhedral cone spanned by the rows of a
specific design matrix. This result is connected with the criterion of [IT]. They also inquire
which parameters are estimable when MLE is missing.

Below we show that the notion of the set of uniqueness is useful in characterizing the existence
of MLE in discrete exponential families for specific spaces B. There are two types of results we
propose:

(a) conditions for the existence of MLE for a given sample,

(b) probability bounds for the existence of MLE for independent identically distributed sam-
ples.

To this end let X and B be as in Section Let X1, Xo,... be i.i.d. random variables with
values in X'. We define the random (stopping) time

Vuniq = inf{n >1: {Xj,...,X,} is a set of uniqueness for By }.

We will estimate tails of the distribution of vyniq in terms of X, B and n. Typically we are
interested in uniformly distributed X;’s: P(X; =z)=1/K,x € X,i=1,2,..., where K = |X|.
In the setting of Theorem we consider B = RY. We fix arbitrary 1 > 0 on X, see
Remark [6.2.3] Here is a trivial observation.

Lemma 6.3.1. MLE for e(RY) and x1,...,x, evists if and only if {x1,...,2,} = X.

Proof. By Theorem it is enough to verify that & is the only set of uniqueness for Rf .
Obviously, X is a set of uniqueness for ]Rf (in fact for R*). On the other hand, if U C X and
xo € X'\ U, then 1, vanishes on U but not on X, hence U is not of uniqueness for Rf (neither
it is for RY). O

Example 6.3.1. Using notation of Section we have Ug, = U, for every U C &'. Clearly,
U C Ug,.. On the other hand, using Equation (6.2.3), one may observe that for every = ¢ U the
function ¢(r) = 1,y € By and ¢ = {0} on U, but x ¢ ¢~1({0}), so Ug, C U. In particular,

{z1,..., 20}, = {21,..., 25} is the new state space X.

Later on we give examples which use the full strength of Theorem [6.2.2] and the nonnegativity
of functions in By therein. For now we propose a probabilistic consequence of Lemma [6.3.1
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Corollary 6.3.1. Let B=R" and K = |X|. Let X1, Xa,... be independent random variables,
each with uniform distribution on X. Then, for every ¢ € R,

lim P (vyniq < Klog K + Kc) = e e "

K—o0

Proof. Let vy =inf{n >1: {X;,...,X,} = X}. The random variable vy yields a connection
to the classical Coupon Collector Problem, see [68], and [143]. Namely, by [6§],

lim P (vy < KlogK + Kc¢) =e™ ¢ °

K—o0

By Lemma Vx = Vuniq, and the proof is complete. O

We aim to cover with large probability the whole of X by a sample of suitable size depending
on K.

Corollary 6.3.2. Lete € (0,1), K = |X| and B=RY. Let X1, Xo,... be independent random
variables, each with uniform distribution on X. If K — oo, then

P (Vunig < (1 —e) KlogK) =0 and P (Vynig < (1+¢)KlogK) — 1. (6.3.1)

Proof. By Lemma [6.3.1] and Corollary for every ¢ € R we get

limsup P (vuniq < (1 —€) K'log K) < limsup P (vyniq < K log K + Kc)

K—o0 K—oo

Thus limg 00 P (Vuniq < (1 —€) Klog K) = 0. The second part of (6.3.1) is obtained analo-
gously. O

Remark 6.3.2. We summarize by saying that K log K is a sharp threshold of the sample
size for the existence of MLE for e(R*) and uniform i.i.d. samples. Sharp thresholds are widely
used in the theory of random graphs, see [67] (Equation 3). It is also convenient to use them
here to indicate the minimal size of ¢.¢.d. samples that guarantees the existence of MLE with
high probability.

6.3.1 Rademacher functions

For k € N, let us consider X = @y := {—1,1}*, the k-dimensional discrete cube with, say,
the uniform weight p(x) = 27%, x € Qs (but see Remark [6.2.3). Thus, K = |X| = 2¥. For
j=1,....;kand x = (x1,--.,Xk) € Qx we define the Rademacher functions:

i (X) = Xjs

and we denote ro(x) = 1. Let
Bk = Lin{ro,n, ey Tk}.

We define, as usual, the exponential family
e(B*) = {e(r) : r e B}

Theorem 6.3.3. MLE for e(B*) and x1,...,2, € Qg exists if and only if for all j = 1,... k
we have {rj(x1),...,rj(zn)} = {—1,1}.
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Proof. By Theorem we only need to prove that the above condition characterizes the sets

of uniqueness for B%. If j € {1,...,k} is such that rj(z1) = ... = rj(z,) = 1, then we let
r = ro —rj. Clearly, r € Bf‘; and r is not identically zero, but r(x;) = 0 for all i = 1,...,n.
Thus, {x1,...,2,} is not a set of uniqueness for B%. Similarly, if rj(z1) = ... = rj(z,) = —1,

then we consider the function r = r9 +r; € Bi. For the converse implication we consider
arbitrary

k
r= Zajrj € Bi.

§=0
Let x = —(sign(ai),...,sign(ax)), where, say, sign(0) = 1. Obviously, x € Q, and since
r(x) > 0, we get
k
ap > |ajl. (6.3.2)
j=1

Assume that » =0 on {z1,...,2,}. Let j € {1,...,k}. There are z,2’ € {x1,...,2,} such that
rj(z) =1 and r;j(z") = —1. We have

0=r(z)+r) =2a9+ Zai[ri(a:) +ri(2))].
1#]

It follows that

ap < Z |a;|.

i#]
By (6.3.2), a; = 0, for every j > 1. Thereby ag = 0 and r = 0. We see that {z1,...,z,} is a set
of uniqueness for Bi. 0

Example 6.3.4. Let © € Qp be arbitrary. By Theorem [6.3.3, MLE for e (Bk) and {x,—z}
exists.

We define the positive and negative half-cubes, respectively:
Hf ={xeQu: rj() =1}, Hy ={xeQ: r;(x)=—1}, j=1,....k  (63.3)

We note that B¥ is also spanned by the indicator functions of half-cubes, namely 11;“ = (ro+7;)/2
and ]lj_ = (7“0 —Tj)/2, j = 1,...,k.

Corollary 6.3.3. MLE for e(B*) and x1,...,2, € Q) exists if and only if {x1,...,x,} has a
nonempty intersection with each half-cube.

The proof of Corollary [6.3.3] is immediate from Theorem [6.3.3] and the discussion above.

Example 6.3.5. If MLE fails to exist for e(B%) and x1, ..., z, € Qp, then the following analysis
may shed some light on Theorem Let

J={e{l,. . k}: {ri(z),. . rj(z)t = {=1,1}}, J ={1,...,k}\J

Since we consider the case when MLE does not exist, by Theorem J' #+ @. For j € J we
let



6.3. APPLICATIONS 115

Clearly, this is a half-cube, see (6.3.3]). We will show that
{xl,...,xn}gi = m Hj. (634)
jeJ’

We note that for j € J’, r; is constant on the right-hand side of (6.3.4). Accordingly, the
right-hand side of (6.3.4)) is isomorphic to {—1,1}” or to Q-

Now if r = Z?:o a;rj € BY and r(z1) = ... = r(z,) = 0, then r = Yjesajri +¢ >0 on
{—1, 1}l where ¢ = ao+> ey a;jrj(z1) is the sum of terms which are constant on ;¢ ;- Hj. In
the case when J = @, it is obvious that {z1,... 7$n}8§ = Njes Hj = {x1}, since 21 = ... = z,,.

However, if J # &, then by definition of J and Theorem with k = [J|, r = 0 on ;e Hj.
Thus Njey Hj C {21, .., xn}Bﬁ' On the other hand, we observe that for each j € .J', ILH; =0on

the sample and ILH; > 0 on HY, hence Hf N{x1,... 7$n}8i =g and {z1,.. "x"}B_’i C Njes Hj-
By Theorem MLE exists for e(B¥) and zi,...,z, with the measure i := pl 3 on X =

Njes Hj. Of course, X is isomorphic with @)z, if we ignore the J " coordinates of the points in

X. In this way we may also think that g and z1,...,2;, are on Q|;. Thus, one may calculate
the supremum of the log-likelihood function for e(B¥), x1,...,z, and p as the maximum of a
log-likelihood function on @);. Of course, the total mass of 1 is a fraction of that of u. For
instance, if 11 is the uniform probability weight on Qj, then [i is uniform with the total mass 2~/'|,
which adds n|.J'|log2 to the log-likelihood that would be obtained for Q) with the uniform

probability weight, see, e.g., (6.1.2]).
Here is a probabilistic application of Theorem [6.3.3]

Corollary 6.3.4. Let £k € N and X1, Xo,...,X,, be independent random wvariables, each with
uniform distribution on Q. Then,

1 k
P (MLE exists for e(B*) and X1, ... ,Xn) = (1 — 2n_1>

>1-— — 1, asn — oo.
on—1

Proof. We have P(X; = z) = 2% for all # € Q and i = 1,...,n. We let R;; = r;(X;)
for i =1,...,nand j = 1,...,k. Thus, P(R;; = 1) = P(R;; = —1) = % and {R;;};; are
independent. By Theorem [6.3.3]

P (MLE exists for e(B¥) and X1, ... ,Xn>

k
CP({Ry: i= 1y n} = {11} forj=1,....k) = <1> |
Applying the Bernoulli inequality finishes the proof. O

Corollary 6.3.5. For k € N let Xi,...,X,x) be independent random wvariables, each with
uniform distribution on Q. If n(k) =logy k + b+ o(1) for some b € R as k — oo, then

lim P (MLE exists for e(B*) and X1, ... ,Xn(k)> =27

k—o0

Proof. By Corollary

1 k
P (MLE exists for e(Bk) and Xl, . 7Xn(k)) = (1 — k2b_1+0(1))
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— e_glib, as k — oo. (6.3.5)

O]

Corollary 6.3.6. log, k is a sharp threshold of the sample size for the existence of MLE for
e(B¥) and i.i.d. uniform samples on Qy.

Proof. Let € € (0,1) and (the sample size) n = n(k) < (1 — ¢)logy k. Then,
P (Vuniq < 1) < P (Vuniq < (1 —¢)logy k) .
For every b € R by the equation in (6.3.5) we have

limsup P (vuniq < (1 — €)logy k) < limsup P (vyniq < logs k + b)
k—o0 k—o0

_21717

=e .

Since b is arbitrary, we conclude that limsupy_, . P (/uniq < n(k)) = 0. Analogously, for the
sample size n = n(k) > (1 + ¢)logy k we get
liminf P (vuniq > n(k)) =1,

k—o0

which ends the proof. O

The above is in stark contrast to Corollary as summarized in Remark Indeed, in
the present setting we have K = |Qg| = 2k so the sharp threshold for the sample size needed
for the existence of MLE is log, log, K. The following result on the expectation of vyniq agrees
well with the sharp threshold.

Lemma 6.3.2. Let vy be as in Corollary |6.53.5. Let Hj, = 5:1% be the k-th harmonic
number. Then,
Hy, Hy,
1<E ) < —— +2, k=1,2,....
log 2 +1=< (Vumq) log 2 + 2, )
Proof. Observe that vyniq = max {r,..., 7}, where

7 =min{n >1: {r;(X1),...,m(Xn)} ={-1,1}}, j=1,...,k
From the fact that X7, X, ... are independent and uniformly distributed, we deduce that
L. (x)#r(x1), 1=2,3,..., j=12...,
are independent with symmetric Bernoulli distribution. Then 71, ..., 7 are independent, and
7; + 1 ~ Geom (1/2)
for j =1,...,k. The result follows from [64]. O

In Section [6.5] we return to Rademacher functions, but for now we turn to exponential families
of random graphs, a major motivation for this work.
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6.4 Random graphs

In this section we focus on random graphs. Their various applications can be found in [I50],
[159] and [134]. What is important for us, many such models are indeed discrete exponential
families. As usual, maximum likelihood can be used to select a suitable graph model within the
exponential family, see, e.g., [I42] (Chapter 1 and 8) and [I8]. In this section we characterize
the existence of MLE in such context. The theory of random graphs started with probabilistic
proofs of the existence or nonexistence of specific graphs by Erdés, see, e.g., [28]. Asymptotic
properties of random graphs were developed in the seminal papers of [66] 67] and [87]. [150]
discuss geometric interpretations of the existence of MLE for discrete exponential families with
applications to random graphs and social networks. [45] give normalizing constants that are
crucial for the computation of MLE for exponential random graph models. Furthermore, they
include examples when MLE fails to exist. The same authors together with Sly discuss in [46]
the asymptotic probability of the existence and uniqueness of MLE for the S-model of graphs.
This allows to connect the S-model with a random uniform model of graphs with a given degree
sequence, which is then explored using graphons (graph limits, see [127]). They also present an
algorithm for the computation of MLE in the S-model.

[141] put nonasymptotic conditions for the existence of MLE in various random graph mod-
els parameterized by vertex-specific parameters. [I51] characterize the existence of MLE for
B-models. They interpret the Barndorff-Nielsen’s criterion using the geometry of multidimen-
sional polytopes of vertex-degree sequences, see also [75]. [I85] transfer the criterion into discrete
hierarchical models, using the notion of simplicial complices. These models include, e.g., graph-
ical models and Ising models. Wang, Rauh and Massam also improve the approximation of the
set of estimable parameters in the case of the nonexistence of MLE, which is discussed in the
setting of marginal polytopes.

Let us start with the notation. Graph is a pair G = (V, E), where V.= {1,..., N}, N € N, is
the set of nodes and F is the set of edges, i.e.,

Ec(Y)={(rs): 1<r<s<N}.

We only consider simple undirected graphs (containing no loops or multiple edges). Let m = |E|.
Ifm= (J;[ ), then the graph is called complete and is denoted as K. On the other hand, the
empty graph (with m = 0) is denoted as K. For graphs G = (V, Ey) and H = (V, E3) we let,
as usual,

GUH:Z(‘/,ElUEQ), GOHI:(‘/,ElﬂEg).

Furthermore, G C H means that £y C Fs. Let Gy be the family of all the graphs with N nodes,
ie, with V' ={1,..., N}. By a random graph we understand a random variable G with values
in Gn. The families of distributions of such random variables are called random graph models.
We focus on the exponential model of random graphs Gy . defined as follows.

For1 <r <s< N and G € Gy, we let

1, if (r,s) € E,
1g(r,s) =
a(r:s) {0, otherwise.

We define x, s : Gy — {—1,1} by xrs(G) =1 —21g(r, s). We consider the linear space

B9~ :Lin{ Lixrs(G): 1<r<s< N}.
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Let c € R(g) be a corresponding vector of coeflicients. Following the setting of Section we
let u(G) =1 for each G € Gy (but see Remark [6.2.3)) and consider the exponential family

gN,c = e(BgN) = {pc = €¢C_¢(¢C) T CcE R(\;)} , (641)
where
0c(G) = D crsxns(G), b(ge) =log 3 (@),
(T‘,S)E(g) GeGn

for G € Gn, see also (6.1.3)). As usual, for p. € Gy we let Ly (G1,...,Gy) = [T pe(Gi), ete.
Lemma 6.4.1. Let c € ]R(g) and let G be a random graph with distribution Gy .. Let 1 <r <
s < N. Then the probability of the appearance of the edge (r,s) in G equals

ecr,s

= —. 6.4.2
14 efrs ( )

Prs
The result is well known but for convenience a proof is given in Appendix
\%
Lemma 6.4.2. Let ¢ € 1R<2) and let G be a random graph with distribution Gn.. Let 1 <
r1,81,72,82 < N, r1 < 81,19 < 82, and (r1,81) # (r2,s2). Then the appearances of edges (11, s1)
and (rg, s2) in G are independent events.

The proof of the result is similar to that of Lemma and can be found in Appendix [6.6.4]
For instance, if p,s = p € (0,1) for every edge (r,s), then the exponential random graph
with distribution Gy is the Erd6s-Rényi random graph Gy, in [66, 67]. The latter means
that P(e € E(G)) = p for every edge e € (‘2/), and the events e € F(G) and f € E(G) are
independent for different edges e, f.

Theorem 6.4.1. MLE for e(B9~) and Gy,...,Gy € Gy exists if and only if

UGi=EKn and () Gi=EKn.
i=1 i=1

Proof. By Theorem m MLE exists if and only if {Gq,...,G,} is of uniqueness for Bg_N .
We first prove the “only if' part of Theorem [6.4.1] Let us assume that there exists an
edge (ro,s0) ¢ Uj—; Gi. Then the function x,,s, € BiN equals zero on Gq,...,G,, but
not on the whole Gy. In addition, if there is an edge (rg,sp) € iz Gi, then the function
(14 Xro,s0) € BJQFN vanishes for G1,..., Gy, but it is not equal to zero, e.g., for the graph K.
We next prove the ‘if’ part of the theorem. Let ¢ = ko+ >, krsXrs € BQN, where ko, ks € R
forall 1 <r < s < N. Since ¢(G) > 0 for every G € Gy,

ko > > |krsl. (6.4.3)

r<s

Let (ro,so) € (‘2/) Let ¢(G1) = ... = ¢(Gy) = 0. Since U, G; = Ky and N, G; = Ky,
there exists a pair of graphs G',G” € {G1,...,Gy} such that x5, (G") = 1, Xr.50(G") = —1.
Therefore,

0= ¢(G/) + ¢(GH) = 2ko + Z kr,s (XT,S(G,) + XT,S(GH))

r<s
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= 2kO + Z k;r,s (Xr,s(G,) + XT,S(G”))-
r<s
(r,8)#(r0,50)

It follows that ko < 3= 5)£(rg,s0) |kr,s| and eventually we get ks, = 0, thanks to (6.4.3). Since
(ro, o) is arbitrary, k, s = 0 for every 1 <r < s < N. Then also ¢y = 0, and thus ¢ = 0. O

In the above random graph model it is possible to compute explicitly the probability of the
existence of MLE for i.i.d. samples of graphs in Gy. To this end, for 1 <r <s< N we fix
crs € R. By Lemma the probability of the appearance of the edge (r, s) in random graph
G with distribution Gy is

ecr,s

pT’,S = 1 + eCrs :

Lemma 6.4.3. Let {G1,..., Gy} bei.i.d. with distribution Gy .. Then the probability of the ex-
istence of MLE for e(B9N) equals

I (1-ph—(=po)"). (6.4.4)

1<r<s<N

Proof. By Theorem MLE for e(B9V) exists if and only if among the random graphs

G1,..., Gy, every edge (r,s8), 1 < r < s < N, appears at least once, but not n times. For
every edge (r,s) the above condition is satisfied with probability 1 — (1 — p,s)" — (pr,s)". The
independence of the occurrences of different edges in Gy . yields the product (6.4.4). O

In particular, if ¢ = 0, then the probability of the existence of MLE for e(B9V) equals

which is an analogue of Corollary From the above results we can deduce asymptotic
bounds for the i.i.d. sample size for which MLE exists with high probability. To this end we
recall the classical result on p = p(IN) € (0,1) such that G from Gy has at least one edge with
high probability.

Remark 6.4.2. [80] (Lemma 1.10) Let Gy p(n) be a random graph with distribution Gy ,(x)-
Then
0 if p(N)=o(N"?),

lim PP (GN,puv) has at least one edge) - {1 if N~2=o0(p(N)).

N—o0

The above may be summarized by saying that N2 is a threshold for the probability p such that
G with distribution Gy, has at least one edge. For more information on threshold functions
in the theory of random graphs see, e.g., [80]. In particular, a sharp threshold (mentioned
previously) is a threshold but the converse is not true in general.

Lemma 6.4.4. Let Gq,..., G, be i.i.d. random variables with distribution Gy .. Then log N is
a threshold of the sample size n for the existence of MLE for e(BIN).

Proof. According to Lemma the probability of the existence of MLE for e(B9N) and
G, ..., Gy, equals

Pae= ] (1 —prs— (1 — pns)n) :

1<r<s<N
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We define the function
flz)=1-2"—-(1-2)", =x€(0,1), w>2. (6.4.5)

Clearly, f(xz) = f(1 — ) and for w > 2 we have f increasing when 0 < = < % and decreasing
when % < x < 1. Using (§6.4.5)) we can bound Pyp from above by

Pgig = (1 — 217n) (1;]) .

Applying Corollary and the equality in for k = (];7 ), we observe that for every b € R
and for n = n(N) = logy (§) + b + 0(1) we have Pgig — ¢ 2", as N — oo. Therefore, for
n(N) = o(log N) we obtain Pyrg < Ppig — 0, as N — oo.

We consider the sample size n = n(N) (depending on N). We will prove that if log N/n — 0 as
N — o0, then Pypg — 1. To this end we bound Pyg from below by

N
Psvarn == (1 — phax — (1 _pmax)n)(z) ;

where Cpax = Maxi<y<s<n |Crs| and pmax = e“max /(1 4 efmax).

Take n independent Erdds-Rényi random graphs Hy, ..., H, with distribution Gy ,,... Then
the probability of the existence of MLE for e(B9~V) and for Hy, ..., T, equals exactly PsyArLL-
Note that intersection and union of the graphs are also Erdés-Rényi random graphs, namely

n n n _
ﬂ H_Iz ~ ngpgxax7 U H_IZ = ﬂ H_Il ~ gNzl_qz;'lax7
i=1 i=1 i=1
where
e_cmax
Gmax ‘= 1 — Pmax = m-
From Remark [6.4.2] with high probability we have
n 7 n -
(N H: =Ky and U Hi = K,

i=1 i=1
provided

Phax = o(N7?) and =o(N7?).

n
qmax

By definition, cmax > 0, SO Pmax > @max. In order to get Psyarn — 1 as n — oo, it suffices to
have p".. = o(N~2). If n(N)/log N — oo as N — oo, then the above condition is satisfied.
Therefore log N is a threshold of the sample size for existence of MLE for e(B9") and independent

G,...,Gy, from Gy e. O

6.5 Applications to Walsh functions

We return to Rademacher functions to discuss the spaces spanned by their products. Let k € N,
1<qg<k, and
B]; =Lin{wg: SC{1,...,k} and |S| < ¢},

where

wg(x) = Hri(:z:), x€Qr, ScC{l,... k},

€8
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are the Walsh functions, see, e.g., [10§].
The case BY = B* was discussed in Section and the case ¢ = 2 is related to the Ising model
of ferromagnetism in statistical mechanics, see [184] (Example 3.1).

Lemma 6.5.1. The dimension of the linear space Bg is Zj‘:o (I;)

The proof of Lemma [6.5.1] is given in Appendix

Corollary 6.5.1. For g < % we have

q
dim (Bg) < 9kH2(}) < <ek> ,
q

where Ha(p) = —plogyp — (1 — p) logy(1 — p) is the binary entropy function.

The proof follows from Lemma[6.5.1] and the entropy bound for the sum of binomial coefficients,
see, e.g., [84] (Theorem 3.1).

Characterization of the existence of MLE for e(ij) and the related sharp thresholds seem to be
hard for general g, even for ¢ = 2, see Remark In the next section we discuss the products
of k — ¢ Rademacher functions for fixed ¢ € N (¢ < k). We especially focus on the products of
k — 1 and k Rademacher functions. Below we characterize the existence of MLE for e(Bf_,).
As we will see, we get a qualitatively different result than that in Section Let £ and O
be the sets of all those points in i that have an even and odd number of positive coordinates,
respectively.

Theorem 6.5.1. MLE exists for e(Bf_,) and x1,...,2, € Qg if and only if £ or O C
{z1,...,2n}.

Proof. Thanks to Theorem [6.2.2] we only need to characterize the sets of uniqueness for
(B,’j_l)+. To this end, we consider the hypercube Gg,, defined as the graph with vertices

in @ and edges between all pairs of points which differ by exactly one coordinate. Thus,

V(Gq,) = Qr and E(Gq,) = {{z,y} € QuxQr: [{7:7j(x) #rj(y)}| =1}

Let U = {z1,...,2,}. Assume that U is a set of uniqueness. Let e € £ and o € O. The
hypercube graph G, is connected, so there exists a path (e,vi,vs,...,v2p,0) in Gg,. Then

(ﬂ{e,vl} + 11{U2,v3} +.o+ ]l{vgp,o}) - (l{vl,vg} + 11{1}3,’()4} +.o..+ ]]_{Uprlv’UQp}) (6.5.1)
=1y + 1) (6.5.2)

is a nontrivial nonnegative function on Q. Therefore, we must have {e,o} N U # @. Then we
easily conclude that £ C U or O C U.
For the converse implication, we consider ¢ € {0,...,k} and (k — g)-subcubes defined as follows,

q

() Hj. (6.5.3)
i=1
where 1 < ji < jo < ... < jy < kand Hj, = H]'t or H; , see 6.3.3). When ¢ = k — 1, the
intersection, or a 1-cube, is a pair of points in (J; which differ by exactly one coordinate, so they
have a different parity. Moreover, each such pair can be obtained in this way. Using (6.5.3)), as
in the proof of Lemma we see that 1., € B’,j_l for each e € £ and 0 € O. Furthermore,
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each g-subcube of Q) with ¢ > 1 can be covered by disjoint pairs {e, o} as above. Therefore,
the functions 1., € B,’ifl with e € £ and o € O span the linear space B,’jfl.
We next claim that for every f € B’kf_l,

S i@ =Y ). (6.5.4)
€O zel
Indeed, if f =1y, 3 with e € £ and 0 € O, then the equality is true because both sides of
are equal to 1. Since such functions span B,’j_l it follows that is true for every f € B,’j_l.
Finally, if nonnegative f € B’,j_l vanishes on &, then the sum over O also equals zero, hence
f = 0, and the same conclusion holds if we assume that f = 0 on O. Thus U is the set of
uniqueness if O C U or £ C U. t

Remark 6.5.2. A naive extension of Corollary fails for e(B%), if we try to replace the
half-cubes with (k — 2)-subcubes, that is, quarter-cubes. This is seen from Theorem for
k = 3. Indeed, the set

{(1,1,-1),(1,-1,1),(-1,1,1),(1,-1,-1),(—1,1,-1),(-1,-1,1)}

is not of uniqueness for (B3)., as follows from (6.5.1]) with e = (—1,—1,—1) and o = (1,1, 1),
even though the set has nonmpty intersection with each quarter-cube.

We will briefly treat the case of e(BY), as follows.

Corollary 6.5.2. k2Flog?2 is a sharp threshold of the sample size for the existence of MLE for
e(BF) and i.i.d. samples uniform on Q..

Proof. Observe that e(B) is isomorphic to e(RY) for |X| = 2¥. The existence of MLE for
e(Bf) is characterized in (more general) Lemma and the sharp threshold is given after

Corollary O

Corollary is in stark contrast with the result for the (smaller) space e(B¥) because for e(B¥)
the sharp threshold, and so the threshold, equal log, k, by Corollary

Remark 6.5.3. Let 1 < ¢; < ¢o < k. Then every set U of uniqueness for (852)+ is of uniqueness
for (BF )+, because (BE )1 c (BE),.

A characterization of the existence of MLE for e(ij) for arbitrary q, even for ¢ = 2, turned out
to be difficult. Accordingly, we do not give a sharp threshold for the size of the uniform i.i.d.
sample needed for the existence of MLE for e(BF). However, the case of e(B;_ ;) seems a little
easier in the sense that we are able to give the less precise threshold for the existence of MLE for
e(B,’j_q). Moreover, for each fixed ¢ the threshold for e(B’,j_q) is the same as for e(Bf), namely
k2% as k — oo.

Lemma 6.5.2. Fiz q € N. Then k2% is a threshold of the sample size for the existence of MLE
for e(B,’ij) and i.i.d. sample uniform on Q.

Proof. If limy,_,o0 n(k)/(k2F) = oo, then by Remark and Corollary for k — oo we get

P ({Xl, e ,Xn(k,)} is of uniqueness for (Bllj_q)Jr)
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>P ({Xl, ey Xn(k)} is of uniqueness for B’,:) — 1,

as needed. On the other hand, every set U of uniqueness for (B q)+ must intersect with every
subcube defined by fixing last k — ¢ coordinates, because each g-subcube is the support of a
function in (B’,j_ q)+, to wit, of its indicator. There are 2577 such g-subcubes, each of which we
can suggestively denote by (*,...,%*,e441,...,€), Where 441,...,65 = £1. Observe that the
family of the above subcubes is a partition of Q). We consider each g-subcube as a coupon in the
Coupon Collector Problem. If a sample point falls into the g-subcube, we consider the coupon

as collected. The probability of collecting a given coupon is 297, Therefore, if n(k) = o (2"%),
hence n(k) = o (2k_q (k— q)), then

r ({Xl, ... an(k)} is of uniqueness for (Bl,j_q)Jr) =0, ask— oo,

as needed. O

6.6 Appendix

6.6.1 Proof of Lemma [6.1.1]

Let p = e(¢o),p = e(¢1) € e(B) and p # p, so that ¢1 — ¢o # const. Let ¢ = ¢o + t(¢p1 — ¢o),
pt = e(¢t) for t € R and I(t) = lp, (21, ..., 2,). We claim that [ is strictly concave, that is I < 0.

Indeed, since ¢y = ¢g + t¢y is a linear function, by (6.1.4) we get

2

d
1"(t) = ) log Z ().

Let X be a random variable with values in & such that P(X = z) = p(z)u(x). As usual, for
every f: X — R we have

Ef(X) =) f(x)p(x)u(w).

reX

! " I 2
Clearly, (log Z(¢¢)) = ZZ(@?) and (log Z(¢))" = Zz(g:;t)) - (ZZ((?;))) . Hence, thanks to (6.1.1)),

Z(¢) =Y e®Dp(a) (¢1(x) — po(x))

reX
Z(¢)" =Y ") (41(x) = go(x))*.
reX
Thus,
Z(¢r)" 3 Z(¢)" N 2
Z(o ~ El01(0) = (X)) 26y~ EloX) — do(X)]
and so
d2

T 108 Z(61) = B [61(X) — 60(X) — E(¢1(X) — 0(X))]" >0,

since ¢1 — ¢p is not constant. Hence, [ is strictly concave, in particular 1(1/2) > (I(0) +
1(1))/2. If suppees) Lp(z1s---yan) = Ly(z1,...,2n) = Ly(z1,...,20), then [(1/2) >
SUPpce(B) lp(x1,...,xy), which is absurd; thus at most one of p and p can be the MLE.
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6.6.2 Control by oscillations

Ay defined in Section may be thought of as a specific measure of oscillation of ¢. Of course,
Ay > 0. Furthermore, for every ¢ € R,

Av(¢+e)= (o), ¢€B, (6.6.1)

and for every (positive number) k > 0 we have (homogeneity),
(ko) =k u(p), ¢ € B,k>0. (6.6.2)

If U = X, then Ay(—¢) = Ax(¢) for ¢ € B, and so Ay is a seminorm. Clearly, \y < Ay.
However, if there is a nontrivial ¢ € By such that ¢ = 0 on U, then Ay (¢) = supy ¢ > 0 but
Av(—¢) = 0. The following result is the engine of Theorem

Lemma 6.6.1. U C X is the set of uniqueness for By if and only if Ay is comparable with Ax
on B, i.e., there exist constants c1,co > 0 such that ci Ax(¢) < Ay(@) < Ax (@) for all ¢ € B.

Proof. We first prove the “if” part. Assume U is not a set of uniqueness for By. Then there
exists a nonzero function ¢ € B such that ¢ =0 on U. We have A\yy(—¢) = 0 and Ax(—¢) > 0,
hence Ay and Ay are not comparable on B.

We now prove the “only if” part, which is delicate. For all 9, ¢ € B we have

Au (¥ + @) < m)z(xxz?—i—m)z{%xgb - mUin19 - mUinqb
= Av(¥) + Au (@) < Au(¥) + Ax(9).

It follows that Ay (9) > Ay (9 — @) — Ax(¢), hence

Au(0+ @) > Ap(9) — Ax ().

Therefore, vertAy (9 + ¢) — Ay (9)vert < Ax(¢). As a consequence, Ay is continuous on 5.

We will prove that there is a number A > 0 such that A\y(¢) > hAx(¢) for every ¢ € B. Let
S={pe€B: mnyo =0and maxy¢ = 1}. Let ¢ € S. If A\y(¢) = 0, then ¢ = 1 on U.
Consider ¢ = 1 — ¢. Clearly, ¢ > 0 and ¢ = 0 on U. It follows that ¢ = 0 on X, because U
is of uniqueness. Then ¢ = 1, which contradicts the assumption ¢ € S. Therefore, Ay (¢) > 0.
Since S is compact and Ay is continuous, h := ming Ay > 0. By and we obtain
Av (@) > hAx(¢) for all ¢ € B. O

6.6.3 Proof of Lemma [6.4.1]
By (6.4.1)), each G € Gy appears in Gy with probability p.(G) = e?e(G)=¥(¢e)  Then,

P ((rs) € E(@)) e
Drs = T,8) € =
egy 2Geoy e?<(®)
(r,s)EE(G)

S Geon e®e(G)

(r,s)EE(G)

:Z cegy €%+ gegy €%e(@)
(r,s)€E(G) (r,s)EE(G)
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Z(M)e(‘g) k1 Xk,1(G)

> S
= _— ez(k)we(g) ) Y ceon ez(kal>€(‘2/) craxk(G) (6.6.3)
(r,s)EE(G) (r,s)¢E(G)
Note that
Z cixkl(G) = ¢rsxrs(G) + C(G),
(kDE(y)
where
CG) = > crxw(G)
(kne(Y)
(kD)#(r,s)
Therefore
ez(k,z)e(‘{) kit Xit (G) — Crsxns(G) LO(G)

Clearly, ¢, sxr,s(G) is ¢ 5 if (r,s) € E(G) and it is 0 if (r,s) ¢ E(G). Thus, (6.6.3) equals

ecrs Z GeGn C(G)
(r,s)EE(G)

> Gegy €9 e 3 gegy 9O
(r,s)€E(G) (r,s)2E(G)

Let S be the graph with only one edge (r,s). The map G — G\ S is a bijection between the
graphs with the edge (r, s) and graphs without (r, s). In addition, C(G) = C(G\ S), and so we
get (6.4.2).
6.6.4 Proof of Lemma [6.4.2]
By (6.4.1)), each G € Gy appears in Gy with probability p.(G) = e®e(G)=¥(¢e)  Then,
IP((T’l,Sl),('f‘Q,SQ) EE(G)): —_——— -
GGZQN > a6y ebe(G)

(r1,51),(r2,52)€EE(G)

As in the proof of Lemma we observe that

Z Ck,le,l(G) = Cry,51 Xr1,51 (G) + Cra,s2 Xra,s2 (G) + 6(0)7

(i) (})
where N
C(G) = Z Ck,le,l(G)~
(kDE()
(kvl)7é(rlvsl)
(k»l)7é(T2752)
Thus,

G ~
ez(k,l)G(‘Q/) ck,le,l( ) _ eCTlﬁslxrl’sl (G) eCT‘Q,SQXT'2¢32 (G) eC(G)‘

Let S; and Sy be the graphs with only one edge, (r1,s1) and (r2, s2), respectively. Let

Gn, ={Gegn: S1CG,S C G},
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Gn,={Gedn: S1CG,S ¢ G},
Gne, ={G€gn: S1¢G,5 C G},
gNOOZ{GEgN: 81¢G,52§ZG}.

a partition of Gy. We observe that the maps
G'—)G\Sl, GHG\SQ, G'—)G\(SlLJSQ)
are bijections between Gn,,, Gny,, GN,y, Tespectively, and Gn,,. Also, for every G € Gy,

C(G)=C(G\ 81) =C(G\ S3) = C(G\ (S1USy)).

Put differently, C'(G) does not depend on the edges (r1,s1) and (re,s2). As in the proof of
Lemma we obtain

P ((r1,s1),(r2,s2) € E(G))
eCfri1:s1 eCra.s2

T 1 4 efris1 4 eCrassa 4 eCrist efrasse

= Pri,s1 Pra,sa-

6.6.5 Proof of Lemma [6.5.1]

Proof. Consider the positive half-cubes H f s H ,j . Let
B:Lin{H 1,+: I, C{0,...,k} and || gq}.
i€ly

We have B = ij, because 19 = 1q,, 7; = 21+ — 1, and by induction it is easy to see that for
every S C {1,...,k} and |S]| < ¢, if Walsh function wg € B then their product with Rademacher

function wgr; € B, for any ¢ = 0,...,n. Note that for any permutation o of {1,2,...,q},
]lH.+ ]lH.+ T ILH.* = ILH.* ILH.Jr T ]lH.+ .
11 ) tq Yo (1) Yo (2) ‘o (q)

The functions 1g, and Ty o1y, 1 <4y < ... <y <k, are linearly independent. Indeed,
5t iq
assume that
ri= Oé()lle-f— Z Ozil...z‘q]lH_jL -"]lH_ =0.
ilv--'viqe{lv'"vk} " "

There are points 29 € oy H;, x4, .. Tig € Miefin,igy H O Migiy,..5, Hy for each 1 <4y <
ip < ... < iy < k. We obtain g = r(x9) = 0 and o, ...;, = r(z4,..;,) = 0 as needed. O

6.6.6 Propagation of extrema, relative interior and the criterion of Barndorff-
Nielsen

In this section we give auxiliary results, but also explain connections to the criterion of Barndorft-
Nielsen. Let B be an arbitrary linear subspace of RY. In Corollary below we adapt the
criterion in Theorem to such e(B). Let B’ be the linear space spanned by B and 1.

Lemma 6.6.2. If U C X, then ¢ = miny ¢ on U implies ¢ = miny ¢ on X for every ¢ € B if
and only if = maxy ¢ on U implies ¢ = maxy ¢ on X for every ¢ € B.
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Proof. The property with the minima is equivalent to the one with the maxima because B is
closed upon multiplication by —1 and because max(—¢) = — min ¢. O

Definition 6.6.1. We say that U C X propagates extrema for B if ¢ = infx ¢ on U implies
that ¢ = infx ¢ on X for every ¢ € B.

Due to Lemma [6.6.2] the property could be equivalently stated using maxima.

Lemma 6.6.3. A nonempty U C X propagates extrema for B if and only if U is of uniqueness
for B,

Proof. Assume that U is of uniqueness for B,. Let ¢ € B and ¢ = miny ¢ on U. Then
p=¢—miny¢p € B and p =00n U, so ¢ =0 on X and ¢ = miny ¢ on X. It follows that
U propagates extrema for B. Conversely, assume that U propagates extrema for B. Let ¢ € B.
Then ¢ = ¢ + ¢ for some p € Band c € R. If ¢ > 0 and ¢ = 0 on U, then ¢ = miny ¢ = —c¢
on U, hence ¢ = —c on X, and so ¢ = 0 on X. Thus, U is of uniqueness for B’,. O

Theorem yields the following.

Corollary 6.6.1. MLE for e(B) and x1,...,x, € X exists if and only if {x1,...,x,} propagates
extrema for B.

Proof. The MLE for e(B) and e(B’) must be the same. Indeed, we have e(B) = e(B’) so the
suprema of the likelihood functions are the same, see Section Of course, if ¢ € B and e(¢)
is the MLE for e(B) then it is also the MLE for e(B’). Conversely, if ¢ € B’, then ¢ = ¢ + ¢
for some ¢ € B and ¢ € R. If e(¢) is the MLE for e(X’), then e(yp) is the MLE for e(B).
Considering B, by Theorem we see that MLE for e(B') and 1, ...,z, € X exists if and
only if {z1,...,2y} is of uniqueness for B, and — by Lemma —if and only if {z1,...,2,}
propagates extrema for B. 0

The next lemma hinges on the trivial observation that if the sample mean equals the minimum,
then the sample is constant.

Lemma 6.6.4. {z1,...,z,} propagates extrema for B if and only if for every ¢ € B, miny ¢ <
maxy ¢ implies miny ¢ < ¢ < maxy ¢.

Proof. Let {x1,...,x,} propagate extrema for B. If miny¢ = ¢, then ¢ = miny ¢ on
{z1,...,2,}, hence = miny ¢ on X and so miny ¢ = maxy ¢. A similar argument works
if ¢ = maxy ¢; see also Lemma Conversely, if {x1,...,z,} does not propagate extrema
for B then there is ¢ € B such that ¢ = miny ¢ on {x1,...,2,}, but maxy ¢ > miny ¢. Then
miny ¢ = ¢ < maxy ¢. O

Recall the setting and notation of Section [6.1.2] The following theorem was essentially proved
n [II] (Theorem 9.13), except that it was stated for the minimal representation of exponential
families. The formulation presented in Theorem below was given in [110] (Theorem 3.5),
which covers the arbitrary canonical representation and does so with a more direct proof. No-
tably, [I10] uses the notion of relative interior of a convex set. Let C be the convex hull of S.
We say that t € R? is in the relative interior of C if for every 6 € R, mingec 0y < maxyec 0-y
implies mingec 6 -y < 0 -t < maxyec 6 - y.

Theorem 6.6.1. [110] (Theorem 3.5.) MLE for e(B) and w1, ...,x, € X exists, if and only if
T is in the relative interior of C.
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To close the circle of ideas, we give a self-contained proof of Theorem which may also be
used to obtain Theorem [6.2.2] from Theorem [6.6.1]

Proof of Theorem [6.6.1] By the discussion in this section we know very well that MLE for
Z1,...,xn and e(B) exists if and only if for every ¢ € B, miny ¢ < maxy ¢ implies miny ¢ <
¢ < maxy ¢. Recall that ¢ € B if and only if there is § € R% such that ¢ = 6 - T. Then
mingey ¢(r) = minges -y = minyee -y, maxzex ¢(x) = maxyec 0y, and, of course, 6=06-T.
Therefore the existence of MLE for z1, ..., 2, and e(B) is equivalent to T being in the relative
interior of C. O

For clarity, we recall that we agreed in Example[6.1.2that the existence of MLE for 21, ..., x, € X
and e(B) is the same as the existence of MLE for x, ..., x,, and the exponential family given by
the canonical statistics T" and , and that it is equivalent to the existence of MLE for the
sample y; 1= T(21), ..., yn = T(z,) € R? and the standard exponential family in (6.1.11). From
the above discussion we also see that the convex hull C' and the notion of relative interior are
merely auxiliary objects to express the property in Lemma[6.6.4] or the propagation of extrema

property.



Chapter 7

On Laplacian of Graphical Models in
Various Graphs

7.1 Introduction

The content of this chapter comes from the published article [I64] of the author of the dissertation
from the conference “Geometric Science of Information 2021”7 in Sorbonne University, Paris.
Let G = (V, E,C) be a simple undirected graph, where V' = {1,2,...,n} is a set of vertices,
E C (3) is a set of edges and C' C V is a set of source vertices, which will be called later as a
"root set” or a "root”. As a degree deg(v) of a vertex v € V' we treat a number of its neighbours.
In our convention the graph Laplacian is defined as L(G) = {l;;}1<ij<n With l;; = deg(i),
l;j = —1if {i,j} is an edge in G and zeros otherwise, cf. e.g. [35]. Note that the graph Laplacian
is a singular matrix, since its entries in each row (and each column) sum up to 0. Therefore we
introduce an augmented graph Laplacian by adding 1 to every entry .. corresponding to c € C'.
In other words,

L5(G) := L(G) + Ec

with E¢ being a square matrix with 1 in (c,c) for ¢ € C' and zeros everywhere else. We define
Ly (G) ={l7 j }hr<ij<n With I, = 1 j + Liizjecy-

7.2 'Trees

Let T = (V, E) be an undirected tree. We may orient it in a following way: Choose one root
vertex C' = {c}. Then we orient every edge in a direction from c. Following this method we
may induce a partial order < on the set of vertices such that v < ¢’ if and only if there exists a
directed path from v’ to v.

For every vertex v € V' we define its ancestry AN(v) := {w € V : v < w} as a set of vertices in a
unique path from v to ¢. Note that both the partial order and AN depend strictly on the choice
of c.

Now consider an n-dimensional Gaussian random variable (X7, ..., X, ) with a covariance matrix
Y= {Ui,j}lgi,jgn such that

0ij = |[AN() N AN(j)|

for every 1 <i,5 < n.

129
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cl.—><

11111 2 -1 0 0 0
1 2 2 2 2 -1 4 -1 -1 -1
1 2 3 2 2 0o -1 1 0 0
a) Underlying graph G 1 2 2 3 2 0 -1 0 1 0
1 2 2 2 3 0 -1 0 0 1
(b) Covariance matrix (c) Augmented Laplacian L7 (G)

b

Theorem 7.2.1. Let (X1,...,X,) be a Gaussian graphical model with an underlying graph G
being a tree rooted in C' = {c}. Assume that its covariance matriz X = (0;;) satisfies

015 = |AN(i) N AN()|.
Then the precision matrizv K = 271 of (Xy,...,X,) is equal to L = L}(G).

Proof. Tt suffices to prove that L(G) - ¥ = I,,. At first consider the case i = j = ¢. Observe
that for any 1 < k < n we have 0., = 1. Therefore:

n
(LZE)C,C = Z l:,kak,c = l:,cac,j + Z l:,kak,c = (deg(c) + 1) + deg(c) ’ (_1) -1=1
k=1 k~c
Now consider i = j # c:

n
*
k=1

ke~ ki
keAN(7) 1€AN(k)
= deg( )O'” — (Ui,i — 1) — (deg(z) — 1)0‘1‘71' =1.

Now we will prove that the outside of the diagonal of (L*3X) consists only of zeros. Observe that
for i = ¢, j # ¢ we have:

(LiS)ij =Y ligon; =05+ >, Lok + Y. Lipow; =
= KEAN() kAN ()
= (deg(i) +1)-1—(deg(i) —1)-1—-1-2=0.

On the other hand, if j = ¢, # ¢, then:

(LiX)ij =Y lponj = lig-1=0,
k=1 k=1

because each row of the graph Laplacian sums up to 0. Now we let 4, j # c,i # j. If i € AN(j),
then:

n n
X)ij =Y ok =D lik Orj=
k=1 k=1

= deg(z) “ 045 — (deg(z) - 2)0’1'73‘ -1 (O'i,j - 1) -1 (Ji,j + 1) = 0.
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Analogously, if j € AN(i), then oy, ; = 0;; for every k ~ i. Therefore:
(LZE)ZJ = Z l;kakd = Z li,k . Jk,j = deg(z) * 045 — deg(z) c 045 = 0.
k=1

k=1

The same argument may be applied in the only case left, when i # j; 4,7 # ¢,
i ¢ AN(j) and j ¢ AN(¢). Therefore here also (L;X); ; = 0. O

7.3 Discussion and non-tree graphs

7.3.1 Non-tree graphs
Cycles and complete graphs

The description of the inverse of L*(G) for general G is much harder for G not being a tree. So
far we are not able to present a general formula, thus we consider examples of such inverse for
specific classes of graphs G. Below we show some examples of n x X = [L}(G)]~! for cycles Cy,
and complete graphs K, with the root C' = {1}:

2
3

c=1 3 -1 0 0 -1 55 5 5 5

4 1 2 -1 0 0 59 8 7 6

5 0 -1 2 -1 0 5 8 11 9 7

(a) Graph Cs 0 0 -1 2 -1 5 7 9 11 8

1 0 0 -1 2 56 7 8 9

(b) Li(Cs) (¢) 5 x (Li(Cs))~"

Theorem 7.3.1. The inverse matriz 3 = (0;;) of L*(Cy) is a symmetric matriz satisfying

p— 1 —7+1
0i7j:1+(2 )(nn s ), for i <.

Proof. Again, we show that LY = I,, we assume that the cycle is
1—+2—-3—...—>n—1and take C = {1}. Then

n n
(LTE)C,C = Z lc,ko-k:,c = Z lc,k =L
k=1 k=1

If j # ¢, then we have

n

(Li%)ej = > lekOkj = lecOej + o202 + lemOn,j =

k=1
—3-1+(—1)-(1+1'(”;j+1))+(—1)-(1+(j—nl>'1>

and, analogously,

(LTE)Z',C = Z li,kak,c = Z li,k =0.
k=1 k=1
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If i, j # ¢, then on the main diagonal we have

n

*
(L1%);; = Z likori =lii—10i-1; + 10 + liit10i41,; =

:k_1<1+(i—2)(n—i+l))+2<1+(i—1)(n—i+1)>_<1+(i—1)(n—i)> _
—(z'—2)(n—z'+nl)+2(z'—1)(n—i+1)—(in—1)(n—i) '

_ m—i+2)+(i—-1) _q

Note that the above calculations are also true for i« = n and the (n + 1) row/column of L

and ¥ being treated as ¢! row/column. Now we only need to consider the outside of the main
diagonal. Note that ¢;, =1+ % Thus

n
(L*%)in = Z li kOkn = —0Ci—1n + 205 — 0ip1,n = 0.
k=1
Also,

n
(L*S)nj = Y InkOkj = —0On-1j + 200 — Ocj =

k=1
—1)-1
+2+u
n n

:_1_w .2-1=0.

Finally, for i,j # 1,n, i # j we have
n
(L*E)i,j = Z li,ko'k’j =—0;-1,;+ 20’1'7]' —Oi41,y = (*)
k=1

Observe that as i, j,n are pairwise distinct, either ¢ +1 < j or ¢ — 1 > j. Therefore

{i +1<j=(¥)=—-1— (i—=2)(n—j+1) +24+9. (i=1)(n—j+1) 1 _ @n—j+l) _ 0,

n n n

i—1>j= () =—-1— (=1 (n—i+2) +242. U=Dn—itl) 1 G=Dn=i) _ 0

n )

which ends the proof.

O
Theorem 7.3.2.
1 ifi=1o0rj=1,
LK) =91+ 2 ifl<i=j,
1+ % else.

Proof. For proving that claim we observe that L} (K,) = L(K,)+ E1 =nI, —J, + E;. Thus
Li(K,) belongs to an associative algebra being the 5-dimensional matrix space spanned by
1, E J, EJ, and J,E;. Therefore (L}(K,))~! has to be looked for under the form

1
—I,+aE{+bJ,+cE1J,+dJ,E".
n

Clearly (L*(K,))~! is a symmetric matrix, thus d = ¢. Solving the linear system in a, b, ¢ gives
a=0,b=(n+1)/nand c=—1/n. O
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Daisy graphs

The daisy graphs (cf. e.g. Nakashima and Graczyk [I35]) may be understood as a notion
between a complete bipartite graph and a complete graph. To be more specific, the daisy graph
D, is built as a sum of the complete bipartite graph K, ; and a complete subgraph K,, i.e.

Doy :=(V=V,4UVR,E), V=V,4UVg, (r,y) € E < {z,y} NV # 2.

We may interpret V4 and Bp as the internal and the external part of a daisy, respectively.
To give an intuition, graphical models based on daisy graphs may be useful for analysis of a
internal features of data (without knowledge of any independence among them) and b mutually
conditionally independent external factors, which can influence the internal environment. Note
that for b = 1 we have D, being a complete graph K 1 and for a = 1 we have D, being a
star graph, which is a tree (cf. [7.2).

=S =

a) Graph D32 b) Graph Ds 3

The augmented Laplacian (and its inverse) depends on the choice of a root set C' C V. Below
we consider four choices of a root in D, ; and their augmented Laplacians:

L}, := L(Dgyy) + E. for C ={c}, ceVy,

Ly :=L(Dgy) + > B for C = Vi,
ceEA

L}, = L(D,) + E. for C ={c}, ceVp,

L= L(Dap) + Y _ E. for C' = Vp.
ceEA

Without loss of generality we imply such ordering on vertices that the internal vertices precede
the external ones. Moreover, concerning cases of one rooted internal (external) vertex we label
it as the first (last) vertex.

The exact formulas for (L*)~!(D,;) are presented below:
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Theorem 4: Inverses of augmented Laplacians of daisy graphs

1 ifi=1orj=1, L .
1 . . . . . a(n’ri)}—l) lfi,jga,z#j,
1+ = if2<i,j<a,i#j
n — " — ) TL+CL1 le:]Sa,
oo ]r+2 if2<i=j<a, R
* -1 _ *% -1 _ 1 oo .
[Lm(Da,b)]i,j - 1+% if2<i<a<j, [Lm(Da,b)]i,j —Va if i <a <y,
1 . Lo .
L, = f
1+% ifa<i,j, i+#7, a ifa<ij i#J,
2 . .: .
14 98-l f g < =3, a ifa<i=j
1 ifi=norj=n, nz%l i, < a,itj,
1+1 ifa<i,j<n,i#j,
n+b+1 ifi=j<a,
. 1—1—3 ifa<i=j<n, . 1lm ; N
L* (D -1 _ L*(D T =< 7 iti<a< ‘,
[ ez( ll,b)]z,] 1_’_% ifi§a<j<n, [ ex( a,b)}z,j b . — J

L+t ifij<a, i# ],

1+l jfj=j <a.

eI ifa<i=j.

m 1fa<1,’]’1,§é]’

Proof. Similarly to the proof relies on the associative algebras being 6-dimensional (for
L},) or 11-dimensional (for L},) matrix spaces. The resulting inverses of augmented Laplacians
follow from solving the corresponding systems of equations. O

7.3.2 Eigenvalues of augmented Laplacian

Below we show that if the root consists of only one vertex ¢, then the determinant of L} (QG)
does not depend on the choice of the root vertex. Moreover, it can be proved that it is equal to
the number of spanning trees of G.

Remark 7.3.3. Let A} < A2 < ... < A, be the eigenvalues of L’. Then
[ N = det(L}) = #{spanning trees (G)}.
i=1

Proof. Recall that L’ (G) differs from L(G) only at l.., where ¢ is a root vertex of G. Let M
be a matrix obtained from L by replacing the ¢ column with a column with 1 at the ¢ row
and zeros elsewhere. Then

det(L:(G)) = det(L(G)) + det(M).
As discussed earlier, the Laplacian matrix L(G) is singular. We can observe that det(M) is an
(n—1) x (n—1) cofactor of L(G). By the Kirchhoff’s matrix-tree Theorem, any (n—1) x (n—1)
cofactor of L(G) is equal to the number of spanning trees of G. O
7.3.3 Discussion

Interpretations of the inverse of the augmented Laplacian

Below we couple the obtained inverses of L* matrices with the covariance matrices of some
classical examples of random walks. At first let us remind that the covariance function of the
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Wiener process (Wi)i>o is Cov(Ws, W) = min{s,t}. For example, (Wi, Wa, ..., W,,) has its
covariance matrix equal to (X); ; = min{¢, j}. At Theorem we proved that this is exactly
the inverse of the augmented Laplacian of a path graph with an initial vertex in one of its
endpoints. This observation stays consistent with the conditional independence of Wy, and

11111 2 -1 0 0 0
2 3 4 ) 1 2 2 2 2 -1 2 -1 0 0
c=10—0—0—0—0 123 3 3 0 -1 2 -1 0
(a) Path graph P, 1 2 3 4 4 0 o -1 2 -1
1 2 3 45 0 0 0o -1 1
(b) Covariance matrix (c) Inverse of covariance matrix
b)) >t

Wi, under W, for any t; < t < to. Similarly, the broader class of trees and their augmented
Laplacians can be connected with sums of the standard Gaussian random variables 'branched’
according to the underlying tree graph.

®3 Zy + Zy + Z3
92 AR
Z

1 2 2 2 2

@5 1 2 3 2 2 21+ Za + Z5
(a) Underlying graph G 1 2 2 3 2 (¢) Gaussian random variables with
1 2 2 2 3 covariance X
(b) Covariance matrix

b

To observe the analogy of the previous examples for the cycle graph C),, we may note that
replacing the edge (n,1) with (n,n+ 1) (with n + 1 ¢ V') gives a path graph

e=1—-[2—...— [n+1]).

Therefore we may consider the model corresponding to the cycle graph as the Wiener model
(W1, ..., Wy, Wy41) conditioned by W,, 11 = Wj. This gives a sum of a random variable W7 ~
N(0,1) and a Brownian bridge "tied down” at 1 and (n 4 1). Therefore the covariance matrix
of (Wq,...,W,) is equal to

,— 1 —74+1
oiy=1+ U )(Z it

cf. Theorem
In order to find a model with a covariance matrix equal to

1 ifi=1lorj=1,
[Li(K))j = 1+ 2 ifl<i=j,

2
1
1+ else,
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observe that all vertices (except of the initial one) are isomorphic and connected, therefore
each of their correspondent random variables are mutually equally dependent Let ¢ = 1 and let
Z1,. .., Zp be iid. random variables from N(0,1). Therefore X;, Xs,..., X, are of the form

X1 =7
XQ:Zl+OéZ2+B(Z3—|—Z4—|-...+Zn)
X3:Z1+aZ3—|—B(ZQ—|—Z4—|—...—|—Zn)

Xn:Z1—i—OdZn—l—ﬂ(ZQ—l-Zg—i-...—f—Zn_l).

The restriction on the covariance matrix of (Xi,..., X)) induces a system of equations, which

_ /T
is satisfied only for 8 = Vi and a = 8+ \/%

n—1
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