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Professeur Associé, QUANT, EM Lyon Business School Rapporteur

Mihai Cucuringu
Associate Professor, Department of Statistics, University of Oxford Rapporteur

Romuald Elie
Professor, LAMA, Université Gustave Eiffel Examinateur
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Résumé

Cette thèse se compose de trois parties. Les deux premières parties examinent respectivement
deux problèmes de prédiction en finance : la prédiction du rendement des actions et la prédiction
de la volatilité réalisée à court terme. La troisième partie traite d’un problème connexe : la
découverte de connexions d’artistes contemporains en utilisant les connaissances décrites dans
les deux premières parties.

Dans la première partie, nous présentons une solution univariée et une solution multivariée
pour le problème de la prédiction du rendement des actions avec les nouvelles financières.
Nous introduisons d’abord une procédure de prédiction univariée qui prédit le rendement court
terme d’une action après la publication d’une nouvelle qui l’associe (Chapitre 2). Dans cette
procédure, nous appliquons d’abord une méthode d’apprentissage par transfert pour générer
les embeddings contextualisés des mots dans le titre d’une nouvelle. Nous utilisons ensuite un
réseau neurones récurrent pour faire la prédiction à partir des embeddings générés. Avec les
expériences extensives qui comprennent les tests de précision et les simulations de trading, il est
démontré que cette approche possède une meilleure performance par rapport aux autres modèles
de référence. Nous étendons ensuite notre approche univariée à un modèle multivarié (Chapitre
3), dans lequel une nouvelle peut non seulement impacter la cour d’une action mais aussi toutes
les autres actions associées par les relations venant de différentes sources. Nous modélisons
cet effet de transmission à l’aide d’une structure innovative de réseau neurones convolutif en
multi-graphe. Nous démontrons l’efficacité de ce modèle avec les expériences similaires à celles
dans la première étude.

Dans la deuxième partie de cette thèse, nous nous intéressons à la prédiction de la volatilité
réalisée à court terme à partir des carnets d’ordres à cours limité à l’aide d’un modèle multivarié
(Chapitre 4). Pour atteindre cet objectif, nous concevons un réseau neuronal graphique
contenant à la fois des relations temporelles et transversales. Des opérateurs de transformation
graphique sont intégrés au modèle pour une meilleure précision et une meilleure efficacité de
calcul sur ce grand graphe. Grâce à des expériences basées sur plus de cinq cents actions, nous
démontrons qu’une approche multivariée basée sur un graphe a un meilleur pouvoir prédictif que
les lignes de base univariées couramment utilisées. En particulier, notre gain de performance
provient principalement des actions moins liquides avec moins d’informations dans leurs carnets
d’ordres limités, ce qui correspond à l’intuition qu’un nœud peut bénéficier des informations de
ses voisins dans un modèle de graphe lorsqu’il n’y a pas d’informations suffisantes sur lui-même.

Afin d’illustrer les champs étendus d’application des méthodes de traitement de langage naturel,
nous nous intéressons à l’art contemporain. Dans la troisième partie, nous présentons leurs
applications dans le domaine de l’art contemporain, où nous nous intéressons à l’identification
des relations entre les artistes à travers leurs biographies (Chapitre 5). Pour cette tâche, nous
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présentons un cadre générique de traitement de langage naturel, dans lequel nous continuons tout
d’abord à pré-entrâıner un modèle de langue anglaise générale existant avec une grande quantité
de textes non étiquetés liés à l’art. Nous affinons ensuite ce nouveau modèle pré-entrâıné avec
des paires de biographies étiquetées. Grâce à des expériences approfondies, nous démontrons
que notre approche atteint une précision de plus de 85% dans l’identification du lien entre
deux artistes et qu’elle surpasse d’autres modèles de référence. Nous visualisons et analysons
également quantitativement une œuvre d’artiste construite à partir des résultats de notre modèle.

Enfin, nous concluons la thèse par une vue d’ensemble des conclusions de toutes les recherches
et fournissons plusieurs pistes possibles pour des recherches ultérieures, en particulier les
applications du traitement du langage naturel et du réseau neuronal graphique dans la finance.

Mots clés: Prédiction de rendement des actions, traitement de langage naturel, apprentissage
profond, trading algorithmique, réseau neurones en graphe, modèle multi-graphe, prédiction de
la volatilité réalisée, carnet d’ordre, transformeur en graphe, art contemporain.
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Abstract

This thesis consists of three parts. The first two parts examen respectively two prediction
problems in finance: stock return prediction and short-term realized volatility prediction.
The third part discusses a related issue: contemporary artist connection discovery using the
knowledge described in the first two parts.

In the first part, we present a univariate and a multivariate deep learning solution to the
problem of stock return prediction with financial news. We first introduce a univariate prediction
procedure that predicts the short-term return of a stock after the publication of news associated
with this stock (Chapter 2). In this procedure, we first use a transfer learning based method
to generate contextualized embeddings of the words in a news’ headline, a recurrent neural
network is then used to make predictions from the generated embeddings. Through extensive
experiments, including accuracy tests and trading simulations, we show that this approach
outperforms other baseline models. We then extend our univariate approach to a multivariate
model (Chapter 3), in which a single news can not only impact one stock but also all other related
stocks. Through an innovative multi-graph convolutional network structure, we can model the
information transmission process from one stock to others based on stock relationships built from
different sources. We demonstrate the effectiveness of this approach with a similar experiment
setup as the first study.

In the second part of this thesis, we are interested in predicting short-term realized volatility
from limit order books with a multivariate model (Chapter 4). To achieve this goal, we design a
graph neural network containing both temporal and cross-sectional relations. Graph transformer
operators are integrated into the model for better accuracy and computing efficiency on this large
graph. Through experiments based on more than 500 stocks, we demonstrate that a graph-based
multivariate approach has better predictive power than commonly used univariate baselines. In
particular, our performance gain mostly comes from less liquid stocks with less information in
their limit order books, which corresponds to the intuition that a node can benefit from its
neighbors’ information in a graph model when there is no sufficient information on itself.

The Natural Language Processing (NLP) and transfer learning techniques that we studied in
the first part can go beyond the finance. In the third part, we introduce their applications
in contemporary art, in which we are interested in identifying the relations among the artists
through their biographies (Chapter 5). For this task, we present a generic NLP framework,
in which we first continue to pre-train an existing general English language model with a large
amount of unlabeled art-related texts. We then fine-tune this new pre-trained model with labeled
biography pairs. With extensive experiments, we demonstrate that our approach achieves more
than 85% accuracy in identifying the connection between two artists and outperforms other
baseline models. We also visualize and analyze quantitatively an artist work built from our
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model outputs.

Keywords: Stock movement prediction, natural language processing, deep learning, transfer
learning, algorithmic trading, graph neural network, multi-graph model, realized volatility
prediction, limit order book, graph transformer, contemporary art.
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Chapter 1

Introduction

Financial markets are highly uncertain. However, the investors in financial markets seek to gain
an advantage by predicting the market movement in advance, and this challenging topic has
attracted much attention.

ExodusPoint Capital Management is an active asset manager seeking to gain extra profits for
its clients by predicting the market in advance. This includes the directional stock return in the
equity trading business and the non-directional volatility in the options trading business. Hence,
to apply the rapidly developing deep learning methods to business needs, this thesis explores
different deep learning methods to predict stock return and volatility from various data sources.

Fama [1965] shows that the movement of a stock at a given moment can be explained by all
previously available information. However, it is difficult to collect and use this wide range of
data. Hence, researchers usually use certain part of the information to capture a fraction of
the market movement. Traditionally, the practitioners predict the market with easily accessible
data such as historical prices and company fundamentals. With the development of machine
learning, especially Natural Language Processing (NLP) and Graph Neural Networks (GNN), it
is possible to handle more complex information such as news and stock relations.

This chapter introduces two prediction problems in finance examined in this thesis: stock return
prediction with financial news and realized volatility prediction with limit order book. It also
introduces a related artist connection classification problem, which involves some NLP methods
applied in the first stock return prediction problem. This chapter is organized as follows:

In Section 1.1, we introduce the first topic: stock return prediction with financial news, and in
Section 1.2, we introduce the second topic: realized volatility prediction with limit order book
data. In each topic, we first give the context, the data we use and the problem definition. For
the first topic, we introduce a univariate and multivariate methods in Sections 1.1.2 and 1.1.3,
respectively. We then present a multivariate solution to the second topic in Section 1.2.2. In
addition, we present a generic NLP framework to discover the connections among contemporary
artists based on their biographies in Section 1.3, which uses a similar transfer learning scheme
applied in the first topic. In all four studies, we give a more detailed problem definition in each
context, the main challenges we face, our solutions to the challenges, the main innovations and
a summarized result.
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Chapter 1. Introduction

The details of all four studies are presented in Chapters 2, 3, 4 and 5.

We also add an overview of NLP and GNN in Appendix 2.B and 3.A for the readers who do not
have prior knowledge in these fields.

1.1 Part I: Stock Return Prediction with Financial News

1.1.1 Context and Objective

Forecasting the stock movement has always been an interesting topic and this is particularly
true for ExodusPoint Capital Management, an active asset manager. We seek to predict the
stock movement in the future from various data sources to make a profit for investors.

There are various approaches based on different data in the literature. For example,
econometricians use time series analysis to predict stock prices in the future based on historical
prices and trading volumes [Mills and Mills, 1990; Chen et al., 2007; Mondal et al., 2014].
Financial analysts use company fundamentals [Chan et al., 1993; Wang and Xu, 2004; Ozlen,
2014] and macroeconomic data [Narayan et al., 2014; Hoseinzade and Haratizadeh, 2019] to
achieve this goal. More recently, with the development of the natural language processing, we
can handle more unstructured information such as financial news [Ding et al., 2014,0; Hu et al.,
2018; Xu and Cohen, 2018].

We can also categorize this stock movement prediction task by univariate or multivariate
methods. The univariate method is the most commonly used in this task, meaning we
make predictions stock by stock while ignoring the connections among stocks. However, the
multivariate approach further considers the stock relationships from various data sources to
better model this signal transmission process. With the development of graph methods in
deep learning, we can handle this relational information more efficiently. There are multiple
multivariate methods applied in this task [Mehtab and Sen, 2020; Lof, 2012].

With the rapid development of the Internet, we observe significant growth in the number of
texts available. Unlike the traditional price and volume information, the textual data remains
largely unexplored. Hence, we want to focus on predicting the stock movement from the news
data with the help of the most recent deep learning methods. At first, we aim to predict the
short-term stock movement after a news (around 30 minutes for the news in trading hours and
one day for the news out of trading hours) in a univariate approach. We then focus on predicting
daily stock movement in a multivariate approach from the news and the relational data from
other sources such as the activity sector and the supply chain.

The financial news we use is Bloomberg News, a news data source widely used in the financial
industry. We show an example of this dataset in Table 1.1. The dataset includes the Headline
of the news and the TimeStamp and Ticker associated with this news. In addition, Bloomberg
also provides their sentiment analysis with Score, which is a value among -1, 0 and 1, denoting
negative, neutral and positive sentiment, respectively. Confidence is a value between 0 and
100 which gives the confidence level of the Score. We use Bloomberg’s analysis as one of our
benchmarks.

We formulate this return prediction problem as follows.
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Table 1.1: A small sample from the Bloomberg News dataset

Headline TimeStamp Ticker Score Confidence

1st Source Corp: 06/20/2015 - 1st
Source announces the promotion
of Kim Richardson in St. Joseph

2015-06-20
05:02:04.063

SRCE -1 39

Siasat Daily: Microsoft continues
rebranding of Nokia Priority
stores in India opens one in

Chennai

2015-06-20
05:14:01.096

MSFT 1 98

Rosneft, Eurochem to cooperate
on monetization at east urengoy

2015-06-20
08:01:53.625

ROSN RM 0 98

Given a stock s, we define its market adjusted return rs between t and t+ ∆t as:

rs,t =
Ps,t+∆t

Ps,t
−
Pm,t+∆t

Pm,t
(1.1)

where Ps,t denotes the price for stock s at time t, and Pm,t denotes the market index value
at time t. The market adjusted return removes the impact from the market index and better
reflects the impact of the news. We do not use beta to adjust market return as proposed in
the Capital Asset Pricing Model (CAPM) [Black et al., 1972], since Fama and French [2004]
demonstrate that the beta can over-estimate the impact for high-beta stocks and under-estimate
the impact for low-beta stocks.

We define the target of our stock movement prediction task for stock s between t and t+ ∆t as:

Ys,t =

{
1, rs,t > 0

0, rs,t ≤ 0
. (1.2)

The return prediction task can be written as:

Ŷs,t = f(Et, θ) (1.3)

where f denotes the prediction model, Et is all the information including the news available
before t, θ represents all the trainable parameters and Ŷs,t is the prediction given by the model.

We first introduce a univariate solution in Section 1.1.2, which forecasts the short-term return
for one stock after the news publication. We then further propose a multivariate solution in
Section 1.1.3, which forecasts the daily returns for all stocks based on all the news in one day
and the stock relationships built from different data sources.

1.1.2 Chapter 2: Stock Movement Prediction with Contextualized
Embedding

This subsection introduces the first subject of this thesis. The detailed study is in Chapter 2.
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Chapter 1. Introduction

Motivation and main challenges

In this subsection, our goal is to predict the stock movement from a news headline after
publication. For the news recorded in the trading hours1, the forecast horizon is 30 minutes. If
the news is published outside trading hours, we forecast its return between the previous market
close and the next market close. Our solution is univariate, meaning that we suppose the news
can only impact the price of the associated the stock and this information does not transmit to
other stocks. Equation 1.3 can therefore be refined as:

Ŷs,t = f(E0
s,t, θ) (1.4)

where E0
s,t denotes one piece of news about the stock s recorded at time t.

The first step in this task is to convert textual data into numerical data. In NLP, we can convert
a word into a fixed-length dense vector called embedding (Appendix 2.B.2). There are three
main challenges in this process:

1. We need a large number of corpus to extract the features in a language.

2. The embeddings trained with a large corpus do not have domain-specific knowledge. For
example, some words may have specific meanings in finance compared with general English.

3. The embedding is static. It means that the vector representation of a word is the same
in different sentences, even though their meanings can be significantly different depending
on the context.

To solve the first challenge, researchers usually use a large amount of English corpus to train a
general-purpose model for other downstream tasks. For example, Mikolov et al. [2013b] propose
Word2Vec and Pennington et al. [2014] propose GloVe, both of which are trained on a vast
corpus containing billions of tokens.

To solve the second challenge, Transfer Learning (Appendix 2.B.4) has recently become popular.
The idea is to train a general English model with a large corpus, then continue the training
process based on domain-specific corpus. Recently, several large-scale transfer learning models
have been proposed, including Embedding from Language Model (ELMo) [Peters et al., 2018a],
Bidirectional Encoder Representations from Transformers (BERT, Appendix 2.B.4) [Devlin
et al., 2018] and XLNet [Yang et al., 2019]. The transfer learning approach has been proven to
be robust and widely used in most NLP tasks.

To solve the last challenge, instead of using a pre-defined fixed word embedding from Word2Vec
model, we input all the words together into an interconnected model, such as the aforementioned
BERT model. In this case, a word embedding will be impacted by the embeddings of the words
in the same sentence. We can then obtain a contextualized embedding from the hidden layers
of this model.

Existing literature usually only partially solves these problems. For example, Ding et al.
[2015] propose one of the first deep learning solutions to this problem while heavily relying
on static embeddings generated from Word2Vec (points 2 and 3). Devlin et al. [2018] propose
a classification method along with BERT but ignore the domain-specific knowledge (point 2).

1from 9:00 to 17:30 CEST for most of the European markets.
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1.1. Part I: Stock Return Prediction with Financial News

Vargas et al. [2017] train a Word2Vec model only with financial texts. However, this method
cannot well train a model with the characteristics of general English, and the embeddings are
still static (points 1 and 3).

A stock movement prediction procedure with contextualized embeddings

Pre-trained

BERT

Pre-trained

BERT

with financial 

knowledge

Fine-tuned

BERT

Continued

pre-train

All financial 

documents 

(reports, news 

from other 

regions, etc.)

Train/test dataset

without labels

Fine-tune

Train dataset

with labels

Train/test dataset

without labels

Word2Vec

Train/test dataset

without labels

RNN

Static 

embedding

Contextualized 

embedding

Fine-tuned

contextualized 

embedding

RNN 

prediction

CE-RNN 

prediction

FT-CE-RNN 

prediction

Data input

Language 

Model

Embeddings

Prediction 

Model

Output

Figure 1.1: An illustration of the stock movement prediction procedure: FT-CE-RNN.

To consider all the factors above and close the gap in the research, we propose a prediction
procedure called FT-CE-RNN2 (Figure 1.1, details introduced in Section 2.5). We first continue
the pre-training process of the BERT model with a broader range of financial texts to add
financial knowledge to the model. We then fine-tune the model with labeled training data and
extract the contextualized embeddings from the hidden layers of the fine-tuned model. We finally
train a Recurrent Neural Network (RNN, Appendix 2.B.3) with the generated contextualized
embeddings. In addition, to better incorporate the investors’ needs, instead of evaluating the
model’s performance based on all the news, we propose a new evaluation metric based only on
extreme news (Section 2.6.2).

With extensive experiments such as accuracy tests and trading simulations on about 600 stocks
from the STOXX Europe 600 index, we prove that the FT-CE-RNN outperforms other baseline
models in the literature. A summarized accuracy result is shown in Table 1.2, and the full
results are shown in Section 2.6. We can see that the FT-CE-RNN outperforms the BERT
model by 1.3% and the Bloomberg score by 9.5% in accuracy based on the 2% most extreme
news. We also demonstrate that the contextualized embeddings from a fine-tuned model
give a better prediction result than the static and non-fine-tuned embeddings. For example,
using the fine-tuned contextualized embeddings records a 4.4% accuracy gain based on the 2%
most extreme news compared with static embeddings and 4.0% accuracy gain compared with
non-fine-tuned embeddings in the same situation.

2Fine-Tuned, Contextualized Embedding, Recurrent Neural Network

13



Chapter 1. Introduction

Table 1.2: Summarized accuracy result of FT-CE-RNN and other baseline models. The
percentile denotes the percentage of the most extreme scores on which we perform the accuracy
test.

percentile 1% 2% 5% 10%

Baseline models

NBC [Maron, 1961] 59.8 56.1 54.3 53.4
SSESTM [Ke et al., 2019] 56.3 55.4 54.4 53.2
Bloomberg [Proprietary] 58.3 58.3 58 54.5

BERT [Devlin et al., 2018] 73.6 66.5 59.3 56.1
FinBERT [Yang et al., 2020b] 73.9 66.5 59.2 55.6

Proposed model
and its variants

RNN 71.4 63.4 56.7 54.3
CE-RNN 70.9 63.8 57.9 54.7

FT-CE-RNN 74.5 67.8 59.3 56.6

We provide the details of this study in Chapter 2.

1.1.3 Chapter 3: Multivariate Stock Movement Prediction with Graph
Convolutional Network

This subsection introduces the second subject of this thesis. The detailed study is in Chapter 3.

Motivation and main challenges

In the study introduced in Section 1.1.2, we suppose that a piece of news only impacts one
associated stock. However, the stocks on the financial market can be highly correlated [Campbell
et al., 1993]. For example, good news on one stock can positively impact the company’s clients
and suppliers but negatively impact its competitors. Our goal is to improve the prediction
results by incorporating this relationship information into a multivariate prediction model. In
addition, we observe that some news can have a longer impact in time than other news, we
would like to predict the stock movement based on the news across multiple days in history
instead of only one news.

Hence, in addition to the news, we also use the data from different sources to build stock
relationships. For example, we can get a stock return correlation from the stock price data or
build a stock sector activity relationship with the activity sector data from GICS3. We can also
create a supply chain relationship with the supply chain data from Factset4. We can visualize
these relationships through their adjacency matrices in Figure 1.2.

Following the notations in the previous section, our goal can be rewritten as:

Ŷs,t = f([E∆T
1,t , ..., E

∆T
n,t ], [G1, ..., Gg], θ) (1.5)

where E∆T
s,t denotes all the news about stock s between t and t−∆T . In this equation, n is the

total number of stocks, Gi is the stock relationship built from source i and g is the number of

3https://www.msci.com/our-solutions/indexes/gics
4https://go.factset.com/marketplace/catalog/product/factset-supply-chain-relationships
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(c) Supply Chain Graph
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Figure 1.2: The adjacency matrices of the correlation graph, the sector graph and the supply
chain graph. The adjacency matrix A is a n× n matrix where Aij ∈ [0, 1] denotes the relation
between the stock i and stock j. Aij = 0 means that there is no relationship between these two
stocks while Aij = 1 means that the relationship between two stocks is strong.

relations that we construct from different data sources. The main difference from Equation 1.4
is that we look at all news on all stocks when making predictions instead of only looking at one
news on one stock. Another difference is that we look at all the news between t and t − ∆T
when predicting instead of considering only one news at t.

To summarize, we want to build a model with the following characteristics:

1. The model predicts the stock movement from textual news and stock relations.

2. The model can ingest multiple relations built from different sources.

3. The model considers the temporal interactions of the news.

For point 1, we use Graphs (Appendix 3.A.1) to model the stock relations and extract the
relational information. Recently, with the development of the machine learning, analyzing the
graphs with neural networks has attracted more attention and multiple Graph Neural Networks
(Appendix 3.A) have been proposed. Following Kipf and Welling [2016] and Chen et al. [2018],
we use Graph Convolutional Network (Appendix 3.A.2) for this multivariate stock movement
prediction task. In our case, each stock is a node in the graph and its node embedding (Appendix
3.A.2) is constructed as the aggregation of the news embedding for this stock in a day before t.
The edge is constructed with relational data such as historical price correlation, activity sector
and supply chain.

For point 2, we design a multi-graph structure in our network to extract information from
different relational data, we then use an attention mechanism [Vaswani et al., 2017] to aggregate
the outputs from all graphs in a non-linear way.

For point 3, we repeat the same procedure in point 1 and point 2 each day for ∆T days before t
to get ∆T embeddings. These embeddings are then taken by a similar Recurrent Neural Network
used in Section 1.1.2 to account for the temporal relations between news.

Previous research only partially solve this problem. Chen et al. [2015] use Long-Short Term
Memory (LSTM, Section 2.B.3) to model the temporal interactions between the news while
ignoring stocks’ relationships (points 1 and 2). Sawhney et al. [2020] consider a single pre-built
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stock relationship when predicting stock return from financial news (point 2). Li et al. [2021]
propose a prediction model with both textual data and relation data as input while only
accepting one stock graph and missing temporal considerations (points 2 and 3).
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Figure 1.3: The structure of our Multi-Graph Recurrent Network.

Combining all the factors above, we design a Multi-Graph Recurrent Network (MGRN, Figure
1.3, details in Section 3.4). There are three subcomponents in the MGRN: (1) Financial News
Encoder, which encodes textual news into a fixed-length vector for each stock and each day.
(2) Multi-Graph Convolutional Network, which first performs graph convolution on the encoded
daily news vectors and then combines all graph outputs through an attention mechanism. (3)
Recurrent Neural Network, which takes the combined embeddings during a look-back window
T as input and extracts temporal patterns among the news. Finally, through a fully-connected
layer, we get the stock price movement probability for either direction.

Through an accuracy test and a trading simulation on around 600 stocks of the STOXX Europe
600 index, we demonstrate better performance of our model compared with other benchmarks.
A summarized accuracy result is shown in Table 1.3, and the full results are shown in Section
3.5.4. We can see that the MGRN has a 13.2% accuracy gain compared with the Bloomberg
score, a 6.9% accuracy gain compared with the MAN-SF model proposed by Sawhney et al.
[2020] and 3.3% accuracy gain compared with the BERT model on the 10% most extreme
scores. In addition, we demonstrate that the MGRN with all three relationships outperforms
the vanilla MGRN without any relational data as input by 3.8%, which clearly shows the benefit
of multivariate prediction. We also include a detailed analysis of the performance gained from
each type of graph (Section 3.5.4), as well as a qualitative analysis of an example to show the
intuitiveness behind the result (Section 3.5.5).

We provide the details of this study in Chapter 3.

16



1.2. Part II: Realized Volatility Prediction with Limit Order Book

Table 1.3: Summarized accuracy result of MGRN and other baseline models. The percentile
denotes the percentage of the most extreme scores on which we perform the accuracy test.

percentile 100% 20% 10% 2%

Baseline models

ARIMA [Ho and Xie, 1998] 0.491 0.494 0.487 0.510
Bloomberg [Proprietary] 0.493 0.486 0.524 0.554

Mean-BERT [Devlin et al., 2018] 0.512 0.586 0.623 0.694
MAN-SF [Sawhney et al., 2020] 0.503 0.569 0.587 0.627

Proposed model
and its variants

RNN 0.527 0.576 0.618 0.677
MGRN-Corr 0.556 0.609 0.617 0.727

MGRN-Sector 0.532 0.589 0.640 0.705
MGRN-Supply 0.555 0.620 0.627 0.718

MGRN 0.561 0.629 0.656 0.728

1.2 Part II: Realized Volatility Prediction with Limit Order
Book

1.2.1 Context and Objective

Volatility is an important quantity in finance, it evaluates the price fluctuation and represents
the risk level of an asset. It is one of the most important indicators used in risk management and
equity derivatives pricing. Although the volatility is not observable, Andersen and Bollerslev
[1998] show that realized volatility is a good estimator of the volatility. Forecasting realized
volatility has therefore attracted the attention of various researchers. As an active asset manager,
ExodusPoint seeks to predict short-term realized volatility to be more competitive in its options
trading business.

Predicting realized volatility is not a new task, Brailsford and Faff [1996] propose using GARCH
(Generalized AutoRegressive Conditional Heteroskedasticity) model to predict realized volatility
based on daily prices. Gatheral and Oomen [2010] introduce some simple volatility estimators
based on Limit Order Book (LOB) data, showing that using LOB data can lead to better
prediction results. Rahimikia and Poon [2020b] further propose using deep learning models
based on LOB data to capture the non-linearity in the data. However, most previous researches
only adopt univariate prediction models for this task while ignoring the connections among the
stocks. For example, a sudden volatility jump on one stock can be transmitted significantly
to other stocks in the same sector [Hassan and Malik, 2007]. Hence, combining the current
situation in the academic research and our real-life needs, we are interested in predicting the
short-term realized volatility (from 10 minutes to 30 minutes) in a multivariate approach after
a given timestamp with the LOB data prior to this timestamp with a similar time window.

The Limit Order Book records outstanding limit orders maintained by the exchange. It records
buy and sell orders (quotes) placed by all market participants and the trades executed on the
market. It is the most detailed description of the market situation and is widely used to calculate
the short-term realized volatility of an asset. We show examples of the quotes and trades in the
LOB we use in our study in Table 1.4 and 1.5. For both quotes and trades, we have the records’
Date, Time and Symbol (stock identifier). In addition, we have the best bid (buy) order and
the best ask (sell) order with their price and volume for quotes and trade price and volume for
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trades.

Table 1.4: An example of the quotes in the LOB of stock A from 9:30:01 to 9:30:02 on Jan. 4th,
2021. The best bid size and the best ask size are in the unit of lots, which equals to 1,000 shares
of stocks.

Date Time Symbol Best Bid Price Best Bid Size Best Ask Price Best Ask Size

2021-01-04 9:30:01.002528512 A 118.53 1 118.94 2
2021-01-04 9:30:01.086944000 A 118.53 1 119 9
2021-01-04 9:30:01.086949376 A 118.53 1 118.87 2
2021-01-04 9:30:01.369885696 A 118.53 1 118.87 1
2021-01-04 9:30:02.513750784 A 118.54 1 118.87 1
2021-01-04 9:30:02.683774464 A 118.52 1 118.87 1

However, the raw LOB data shown in previous tables are not homogenous, meaning that the
number of records in the same length of time is not equivalent. For example, there are 7 trades
in the second of 9:30:01 while only 2 trades in the second of 9:30:02. For the sake of simplicity
without losing too much information, we sample our LOB data every second. For quote data,
we snapshot the best ask price (P 1

a ), best bid price (P 1
b ), best ask size (V 1

a ) and best bid size
(V 1

b ) for each stock at the end of each second. For trade data, we aggregate all the trades for
each stock during each second. We record the number of trades (Nt), the total number of shares
traded (Vt) and the volume-weighted average price (Pt) of all trades, defined as:

Pt =

∑Nt
i PiVi∑Nt
i Vi

(1.6)

where Pi is the price for trade i, and Vi is the number of shares traded. Nt is the total number
of trades recorded during second t. The sampled LOB of the example in Table 1.4 and 1.5 is
shown respectively in Table 1.6 and 1.7. We note that the second signifies the number of seconds
since the market start which is 9:30:00 in the US market.

We can formulate this realized volatility prediction task as follows.

We first define the log second return of the stock s at the t-th second as

r′s,t = log(
Ps,t

Ps,t−1
) (1.7)

Table 1.5: An example of the trades in the LOB of stock A from 9:30:01 to 9:30:02 on Jan. 4th,
2021.

Date Time Symbol Trade Volume Trade Price

2021-01-04 9:30:01.002522624 A 100 118.92
2021-01-04 9:30:01.002668032 A 3 118.91
2021-01-04 9:30:01.004687872 A 100 118.735
2021-01-04 9:30:01.051353600 A 13 118.94
2021-01-04 9:30:01.092121856 A 200 118.87
2021-01-04 9:30:01.369884928 A 1 118.87
2021-01-04 9:30:01.625717504 A 10 118.86
2021-01-04 9:30:02.081715968 A 102 118.7
2021-01-04 9:30:02.934643712 A 150 118.87
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Table 1.6: The one second sampled quotes for the trades in LOB shown in Table 1.4. We note
that V 1

b and V 1
a are in the unit of lots.

Date Symbol seconds P 1
b V 1

b P 1
a V 1

a

20210104 A 1 118.53 1 118.87 1
20210104 A 2 118.52 1 118.87 1

Table 1.7: The one second sampled trades for the trades in LOB shown in Table 1.5.

Date Symbol seconds Nt Vt Pt

20210104 A 1 8 427 118.852
20210104 A 2 7 252 118.801

where Ps,t is the last trade price of s at t.

Given a fixed window of ∆T seconds, our target Y ′s,t, the realized volatility for stock s between
t and t+ ∆t is defined as:

Y ′s,t =

√√√√t+∆T∑
i=t

r2
s,i (1.8)

Using the same notation as Equation 1.3, this short-term realized volatility prediction task can
therefore be written as

Ŷ ′s,t = f ′(Et, θ) (1.9)

where f ′ is the prediction model. The main difference from the Equation 1.3 is that our goal is
the realized volatility instead of the stock movement direction, which is a regression task instead
of a classification task.

Unlike the existing univariate models, we introduce a multivariate solution to this realized
volatility prediction task by combining LOB data and the relational data in Section 1.2.2.

1.2.2 Chapter 4: Multivariate Realized Volatility Prediction with Graph
Neural Network

This subsection introduces the third subject of this thesis. The detailed study is in Chapter 4.

Motivation and main challenges

The simplest method of forecasting the short-term realized volatility for the next ∆T seconds
from t is to predict only with a fragment of LOB data before t. For example, we can simply
use the realized volatility calculated from t − ∆T as the prediction of our target: the realized
volatility between t and t + ∆T . Zhou [1996] further proposes a more mature but intuitive
indicator for this task. This simple prediction process can be written as:

Ŷ ′s,t = f ′(Ds,t, θ) (1.10)
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where Ds,t = E∆T ′
s,t denotes the LOB data of the stock s between t − ∆T ′ and t. ∆T ′ is the

look-back window and should be on the same scale as T .

More recently, researchers adopt time-series methods to improve the prediction while ignoring
the connection among the stocks, such as Brailsford and Faff [1996], Gatheral and Oomen [2010]
and Rahimikia and Poon [2020b]. The model is improved as:

Ŷ ′s,t = f ′([Ds,t1 , ..., Ds,tm ], θ) (1.11)

where t1 < ... < tm = t. The method assumes that the past volatility for the stock s has an
impact on the future volatility of s, but the past volatility of other stocks has no impact on s.

However, as stated in Section 1.1.3, the stocks are not independent; we would like to consider
this effect and predict the realized volatility in a multivariate approach. Given n stocks s1, ..., sn,
we can rewrite our final model as:

Ŷ ′s,t = f ′

Ds1,t1 ... Ds1,tm

... ... ...
Dsn,t1 ... Dsn,tm

 ,G, θ
 (1.12)

where G denotes the relations among all Di,j . It includes both cross-sectional relationship Gs
and temporal relationship Gt.

In this study, we use the same cross-sectional relationships proposed in Section 1.1.3, including
stock correlation, activity sector and supply chain.

There are three main challenges in this task:

1. How to encode the LOB data in a meaningful way.

2. How to build graphs based on both cross-sectional and temporal relationships.

3. How to compute efficiently on a large graph.

The first challenge states that the LOB data is in a tabular format. Therefore, we need to
find a method to transform it into a standardized numerical format for computation. To solve
this issue, we design a LOB data encoder (Section 4.4.1) that transforms both numerical (such
as price and volume) and categorical (such as stock symbol) features in the LOB data into a
fixed dimension vector. The numerical features are encoded with a set of intuitive indicators
similar to Kercheval and Zhang [2015], and the categorical features are encoded with a trainable
embedding layer (Appendix 2.B.2).

For the second challenge, we build a graph in which each node represents an observation Ds,t.
For temporal relationships, we fix s and create edges among different t; for cross-sectional
relationships, we build edges by fixing t and connecting different s. This method can represent
both types of relationships in the same graph (Section 4.5.2).

Although the above-mentioned graph design is intuitive, the main fallback is that the graph
becomes much larger than the graph containing only cross-sectional relations such as MGRN,
since we have m × n nodes in this graph as opposed to n nodes in MGRN. To solve this third
challenge, Gilmer et al. [2017] propose that the graph models can be seen as message passing
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models (Appendix 3.A.3). It means that instead of applying the operators on the whole graph,
we update each node embedding individually only based on its neighbors, the information is
therefore passed from the neighbors to itself. This idea allows us to train a graph-based network
in batches and avoid putting the graph in the memory as a whole. Based on this generalization,
Shi et al. [2020] further propose a Transformer-like [Vaswani et al., 2017] operator and achieve
the state-of-the-art performance. We use this Transformer-like operator to extract information
efficiently from the large graph in our research.

To the best of our knowledge, there is no multivariate realized volatility prediction method using
relationships built from external data in the literature. We also find no research which proposes
the use of graph neural networks in this task.
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Figure 1.4: The structure of our Graph Transformer Network for Volatility Forecasting.

To further improve our realized volatility prediction result and close the gap in the research,
combining all the three factors above, we design a Graph Transformer Network for Volatility
Forecasting (GTN-VF, Figure 1.4, details in Section 4.4). There are two main components in
GTN-VF: (1) LOB data encoder, which encodes the categorical and numerical from LOB into
a fixed-length vector. (2) Graph Transformer Network, which makes prediction by aggregating
the node embeddings of a node and its neighbors in an efficient way.

Through experiments based on about 500 stocks from S&P 500 index, we find better performance
for our model than for other benchmarks on all prediction horizons ∆T . A summarized RMSPE5

result based on test set is shown in Table 1.8, and the full results are shown in Section 4.5.4.
For example, our GTN-VF with all three cross-sectional relationships and temporal relationship
outperforms HAR-RV [Corsi, 2009] by 3.25% in RMSPE when ∆T equals 10 minutes, it also

5Root Mean Square Percentage Error
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outperforms TabNet [Arık and Pfister, 2021] by 1.91% in the same condition. To prove the
effectiveness of different relations, we include a detailed performance analysis for different types
of temporal and cross-sectional relationships (Table 4.5). In addition, we add some ablation
studies to show where the improvement in our model comes from (Section 4.6).

Table 1.8: Summarized RMSPE (lower is better) result of GTN-VF and baseline models.

∆T 600s 1200s 1800s

Baseline models

Näıve Guess 0.2834 0.2628 0.2364
HAR-RV [Corsi, 2009] 0.2612 0.2061 0.1939

lightGBM [Ke et al., 2017] 0.2492 0.2035 0.1963
MLP [Rumelhart et al., 1985] 0.2514 0.2308 0.1999

TabNet [Arık and Pfister, 2020] 0.2478 0.1996 0.2019

Proposed model
ans its variants

Vanilla GTN-VF 0.2498 0.2251 0.2160
GTN-VF Cross FC 0.2382 0.2196 0.2046
GTN-VF Temp FC 0.2358 0.1921 0.1853

GTN-VF Cross FC + Temp FC 0.2306 0.1917 0.1802
GTN-VF Cross Sector 0.2422 0.2248 0.2091

GTN-VF Cross Supply Chain 0.2411 0.2244 0.2000
GTN-VF 0.2287 0.1892 0.1798

We provide the details of this study in Chapter 4.

1.3 Part III: Beyond Finance - NLP Applications in
Contemporary Art

In this part, we introduce an application of NLP methodologies in contemporary art. Although
not a finance related problem, this subject applies and expands the knowledge in Part I about
NLP and transfer learning.

1.3.1 Context and Objective

The contemporary art market has been growing quickly since the beginning of this century
[Kräussl et al., 2016]. Traditionally, collectors rely on social interactions, professional advice
and media to find the artworks they wish to require. With an increasing number of artists
and artworks, recommending suitable artworks to collectors with different tastes becomes a
challenging problem. Recently, with the rapid development in artificial intelligence, researches
start to modernize and automatize this art discovery process.

Most researchers focus on the visual aspect of the artworks to find the similarities among them.
Elgammal et al. [2018] classify the styles of the paintings with some frequently used models in
computer vision. Kim et al. [2018] further expand this method to group artworks into pre-defined
art concepts and principles in multiple dimensions. However, these previous researches only focus
on the visual aspect of the contemporary artworks since contemporary art can go beyond the
aesthetics. For example, the artist practice and the influences used by the artist can both have
a strong influence on the taste in art.
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Hence, the easily available textual information such as the artists’ biographies comes to our
attention. In this work, we are interested in finding the relations among the artists through
their biographies. More concretely, given the biographies of two artists, we classify if they are
connected. We show an example of this task in Table 1.9.

Table 1.9: An example of our labeled artist biography pair data. bio a is the biography of the
artist a and bio b is the biography of the artist b. The label is manually annotated by a team
of professionals in the art industry signifying if two artists are connected (1 if connected and 0
if not connected). Our goal is to train a model which can tell if two artists are connected given
their biographies.

artist a artist b bio a bio b label

Carl
Edouard
Keita

Kudzanai
Violet
Hwami

Born in 1992 in Abidjan, Carl-Edouard Keita
now lives and works in New York. A 2021
graduate of the New York Academy of Art,
Carl-Edouard Keita also won the prize for
best draughtsman for his graduation work,
some of which is presented in this group
exhibition. Carl-Edouard Keita discovered the
history of African art during his economics
studies in Atlanta, through a course offered at
his university. As he describes it himself, this
discovery was a real aesthetic revelation for him.

Having fled her homeland due to the political
unrest and turmoil when she was a child,
Zimbabwe-born painter Kudzanai-Violet
Hwami expresses her personal experiences of
dislocation, displacement and fragmentation
through her striking figurative paintings. The
artist is interested in the collapsing of geography
and time and space symptomatic of a globalised
world and high-speed internet, through which
both people and information can travel quickly.

1

Sun
Xun

Cheng
Xinhao

Sun Xun was born in 1980 in Fuxin, Liaoning
province, China. Currently lives and works in
Beijing. Recent and past histories, intransigent
conflicts and tensions, sequential flashes of
hand-created images of these are the irrevocable
features of Sun Xun’s artistic practice that
fuses the line between art and animation. A
graduate from the Printmaking Department of
the China Academy of Arts in 2005, Sun Xun
was a professor at the prestigious Academy
before founding in 2006 his own Animation
Studio. His work primarily involves making
images using various materials such as colour
powder, woodcuts and traditional ink, and
collating these to produce a film, which is often
presented in an immersive setting.

Cheng Xinhao (b.1985, Yunnan, China). After
receiving his PhD on Chemistry from Peking
University in 2013, Cheng continued his career
as a photographer, investigating on the issues
in the modernization, the construction of
knowledge as well as the production of space in
Chinese society.

0

We can formulate this artist connection discovery problem as a binary classification problem.
Suppose that we have two artists Ai, Aj and their biographies are denoted by Bi, Bj . A team
of art professionals can determine if they are connected based on different aspects, including
background, themes, style, techniques, etc. We use Yi,j to denote this ground-truth, with

Yi,j =

{
1 if Ai and Aj are connected

0 otherwise
.

However, there are thousands of artists in our artist database, and it is impossible to determine
all relationships through manual annotation. Hence, in this study, we are interested in building
the connections among them automatically based on their biographies. We can describe this
process as

pi,j = f(Bi, Bj , θ)

where pi,j denotes our predicted probability of a connection between Ai and Aj . f is our
prediction model and θ denotes the trainable parameters.

Given f , our goal is to find θ which minimizes the cross-entropy loss [Good, 1992] defined as

−
∑
i,j

Yi,j · log pi,j + (1− Yi,j) · log(1− pi,j).
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Figure 1.5: Overview of our artist connection discovery method, including two unsupervised
pre-training phases and one supervised fine-tuning phase.

1.3.2 Chapter 5: Mapping the contemporary art world with ArtLM: an
art-specific NLP model

This subsection introduces the fourth subject of this thesis. The detailed study is in Chapter 5.

Motivation and main challenges

We aim to solve two main challenges in this task:

1. How to efficiently classify the connection between two artists given their labeled biography
pair.

2. How to improve the classification accuracy given some unlabeled art-related texts.

To find solutions to the first challenge, we can fine-tune some pre-trained Language Models
(LMs) following the same idea introduced in Section 1.1.2. However, different from the previous
research, our input is a pair of sentences instead of a single sentence. In this case, we concatenate
the pair of sentences while splitting them with a special character to form a single sentence and
continue the fine-tuning process (Section 5.4.3).

For the second challenge, we add another pre-training step before the fine-tuning. In this
procedure, we continue to pre-train the original pre-trained models with the unlabeled art-related
texts gathered from WikiArt6 using the same training targets of the original models. We also
apply this method on different publicly available pre-trained language models to prove the
robustness of this approach.

6https://www.wikiart.org/
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Although this pre-train/fine-tune scheme has been applied in the domain such as finance [Yang
et al., 2020b], we see no application in arts in the literature to the best of our knowledge.

ArtLM for artist connection discovery

To consider all the factors above and close the gap in the research, we propose a generic
NLP framework (called ArtLM, Section 5.4.2, Figure 1.5) to discover the connections among
contemporary artists based on their biographies. We first continue to pre-train existing language
models with unlabeled art-related texts to add artistic domain knowledge to the existing general
models. We then fine-tune the model with the biography pairs labeled by the professionals in
art. This procedure is robust and independent of the choice of base models, which is proved by
the experiments based on multiple base models, such as BERT [Devlin et al., 2018], DistilBERT
[Sanh et al., 2019] and RoBERTa [Liu et al., 2019].

Table 1.10: Summarized experiment results of ArtLM variants and baseline models

model accuracy F1
fine-tuning time

(min. / fold)
pre-training
time (min.)

Random Guess - 1 0.500 0.000 - -
Random Guess - 0.5 0.500 0.500 - -

word2vec embedding 0.539 0.196 - -
BERT embedding 0.581 0.320 - -

FT-Base-DistilBERT 0.838 0.826 6 -
FT-Base-BERT 0.844 0.832 12 -

FT-Base-RoBERTa 0.844 0.824 12 -

FT-Art-DistilBERT 0.846 0.826 6 10
FT-Art-BERT 0.856 0.840 12 18

FT-Art-RoBERTa 0.854 0.834 12 21

With extensive experiments, we demonstrate that our ArtLM achieves 85.6% accuracy and
84.0% F1-score and outperforms all other baseline models in a 5-fold cross-validation setup. A
summarized accuracy and F1-score results is shown in Table 1.10, and the full detailed results are
shown in Section 5.4. Comparing the results of the fine-tuned models (both FT-Base and FT-Art)
and the baseline models, we find that our supervised fine-tuning approach largely outperforms
the embedding based correlation methods. We also prove that adding domain-specific knowledge
by continuing the pre-training process can help improve the model performance, if we focus on
the accuracy discrepancies between the base models and the art models.

The generic ArtLM process can easily be generalized to other domains including finance. For
example, we can continue to pre-train a LM with unlabeled financial documents, then make
stock recommendations or sentiment analysis through manually labeled financial reports.

We provide the details of this study in Chapter 5.
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Chapter 1

Introduction (en français)

Les marchés financiers sont très incertains. Cependant, les investisseurs sur les marchés financiers
cherchent à obtenir un avantage en prévoyant l’évolution du marché à l’avance. Ce sujet difficile
a attiré beaucoup d’attention.

ExodusPoint Capital Management est un gestionnaire d’actifs actif qui cherche à obtenir des
bénéfices supplémentaires pour ses clients en prédisant le marché à l’avance. Cela inclut le
rendement directionnel des actions dans le domaine d’actions et la volatilité non directionnelle
dans le domaine des options. Ainsi, pour appliquer les méthodes d’apprentissage profond qui
se développent rapidement aux besoins des entreprises, cette thèse explore différentes méthodes
d’apprentissage profond pour prédire le rendement et la volatilité des actions à partir de diverses
sources de données.

Fama [1965] montre que le mouvement d’une action à un moment donné peut être expliqué
par toutes les informations précédemment disponibles. Cependant, il est difficile de
collecter et d’utiliser ce large éventail de données. Par conséquent, les chercheurs utilisent
généralement une partie de l’information pour capturer une fraction du mouvement du marché.
Traditionnellement, les praticiens prédisent le marché à l’aide de données facilement accessibles,
telles que les prix historiques et les fondamentaux des entreprises. Avec le développement de
l’apprentissage automatique, en particulier le traitement du langage naturel (NLP) et les réseaux
de neurones graphiques (GNN). Il est possible de traiter des informations plus complexes telles
que les nouvelles et les relations entre les différentes action.

Ce chapitre présente deux problèmes de prédiction en finance examinés dans cette thèse : la
prédiction du rendement des actions avec les nouvelles financières et la prédiction de la volatilité
réalisée avec le carnet d’ordres à cours limité. Il présente également un problème connexe de
classification de connexions d’artistes, qui fait appel à certaines méthodes NLP appliquées au
premier problème de prédiction de rendement boursier. Ce chapitre est organisé comme suit :

Dans la section 1.1, nous présentons le premier sujet : la prédiction du rendement des actions
à l’aide de nouvelles financières, et dans la section 1.2, nous présentons le deuxième sujet : la
prédiction de la volatilité réalisée à l’aide de données du carnet d’ordres à cours limité. Dans
chaque sujet, nous donnons d’abord le contexte, les données que nous utilisons et la définition
du problème. Pour le premier sujet, nous introduisons des méthodes univariées et multivariées
dans les sections 1.1.2 et 1.1.3, respectivement. Nous présentons ensuite une solution multivariée

27



Chapter 1. Introduction (en français)

pour le deuxième sujet dans la section 1.2.2. En outre, nous présentons un cadre NLP générique
pour découvrir les connexions entre les artistes contemporains sur la base de leurs biographies
dans la section 1.3, qui utilise un schéma d’apprentissage de transfert similaire à celui appliqué
au premier sujet. Dans les quatre études, nous donnons une définition plus détaillée du problème
dans chaque contexte, les principaux défis auxquels nous sommes confrontés, nos solutions à ces
défis, les principales innovations et un résultat résumé.

Les détails de toutes les quatres études sont présentées dans les Chapitres 2, 3, 4 et 5,
respectivement.

En outre, nous ajoutons un aperçu de NLP et GNN dans les Appendices 2.B et 3.A pour les
lecteurs qui n’ont pas de connaissance dans ces deux domaines.

1.1 Part I: Prédiction du Rendement des Actions avec les
Nouvelles Financières

1.1.1 Contexte et Objectif

La prévision de l’évolution des actions a toujours été un sujet intéressant et cela est
particulièrement vrai pour ExodusPoint Capital Management, un gestionnaire d’actifs. Nous
cherchons à prédire l’évolution des actions à l’avenir à partir de diverses sources de données afin
de faire des bénéfices pour les investisseurs.

Il existe dans la littérature diverses approches basées sur des données différentes. Par exemple,
les économétriciens utilisent l’analyse des séries chronologiques pour prédire les prix des actions
dans le futur sur la base des prix historiques et des volumes de transactions [Mills and Mills, 1990;
Chen et al., 2007; Mondal et al., 2014]. Les analystes financiers utilisent les fondamentaux des
entreprises [Chan et al., 1993; Wang and Xu, 2004; Ozlen, 2014] et les données macroéconomiques
[Narayan et al., 2014; Hoseinzade and Haratizadeh, 2019] pour atteindre cet objectif. Plus
récemment, avec le développement du traitement du langage naturel, nous pouvons traiter
davantage d’informations non structurées telles que les actualités financières [Ding et al., 2014,0;
Hu et al., 2018; Xu and Cohen, 2018].

Nous pouvons également classer cette tâche de prédiction du mouvement des actions en méthodes
univariées ou multivariées. La méthode univariée est la plus couramment utilisée dans cette
tâche, ce qui signifie que nous faisons des prédictions stock par stock en ignorant les connexions
entre les stocks. Cependant, l’approche multivariée prend en compte les relations entre les actions
provenant de diverses sources de données afin de mieux modéliser ce processus de transmission
de signaux. Avec le développement des méthodes de graphes dans l’apprentissage profond,
nous pouvons traiter ces informations relationnelles plus efficacement. Plusieurs méthodes
multivariées sont appliquées dans cette tâche [Mehtab and Sen, 2020; Lof, 2012].

Avec le développement rapide d’Internet, nous observons une croissance significative du nombre
de textes disponibles. Contrairement aux informations traditionnelles de prix et de volume,
les données textuelles restent largement inexplorées. Par conséquent, nous souhaitons nous
concentrer sur la prédiction du mouvement des actions à partir des données d’actualité à l’aide
des méthodes d’apprentissage profond les plus récentes. Dans un premier temps, nous cherchons
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à prédire le mouvement des actions à court terme après une nouvelle (environ 30 minutes pour
les nouvelles pendant les heures de négociation et un jour pour les nouvelles en dehors des heures
de négociation) dans une approche univariée. Nous nous concentrons ensuite sur la prédiction
du mouvement quotidien des actions dans une approche multivariée à partir des nouvelles et
des données relationnelles provenant d’autres sources telles que le secteur d’activité et la châıne
d’approvisionnement.

Les nouvelles financières que nous utilisons sont celles de Bloomberg News, une source de données
de nouvelles largement utilisée dans le secteur financier. Nous présentons un exemple de cet
ensemble de données dans le tableau 1.1. L’ensemble de données comprend le Headline de
l’actualité et les TimeStamp et Ticker associés à cette actualité. En outre, Bloomberg fournit
également son analyse du sentiment avec le Score, qui est une valeur comprise entre -1, 0 et
1, indiquant respectivement un sentiment négatif, neutre et positif. Confidence est une valeur
comprise entre 0 et 100 qui donne le niveau de confiance du Score. Nous utilisons l’analyse de
Bloomberg comme l’un de nos points de référence.

Table 1.1: Un exemple de données de Bloomberg News

Headline TimeStamp Ticker Score Confidence

1st Source Corp: 06/20/2015 - 1st
Source announces the promotion
of Kim Richardson in St. Joseph

2015-06-20
05:02:04.063

SRCE -1 39

Siasat Daily: Microsoft continues
rebranding of Nokia Priority
stores in India opens one in

Chennai

2015-06-20
05:14:01.096

MSFT 1 98

Rosneft, Eurochem to cooperate
on monetization at east urengoy

2015-06-20
08:01:53.625

ROSN RM 0 98

Nous formulons ce problème de prédiction du rendement comme suit.

Étant donné une action s, nous définissons son rendement ajusté au marché rs entre t et t+ ∆t
comme :

rs,t =
Ps,t+∆t

Ps,t
−
Pm,t+∆t

Pm,t
(1.1)

où Ps,t désigne le prix de l’action s au moment t, et Pm,t désigne la valeur de l’indice de marché
au moment t. Le rendement ajusté au marché élimine l’impact de l’indice de marché et reflète
mieux l’impact de la nouvelle.

Nous n’utilisons pas le bêta pour ajuster le rendement du marché comme le propose le modèle
d’évaluation des actifs financiers (MEDAF) [Black et al., 1972], puisque Fama and French [2004]
démontrent que le bêta peut surestimer l’impact des actions à bêta élevé et sous-estimer l’impact
des actions à bêta faible. sous-estimer l’impact des actions à faible bêta.

Nous définissons la cible de notre tâche de prédiction des mouvements de stock pour le stock s
entre t et t+ ∆t comme :
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Ys,t =

{
1, rs,t > 0

0, rs,t ≤ 0
. (1.2)

La tâche de prédiction du retour peut être écrite comme suit :

Ŷs,t = f(Et, θ) (1.3)

où f désigne le modèle de prédiction, Et est l’ensemble des informations, y compris les nouvelles,
disponibles avant t, θ représente l’ensemble des paramètres entrâınables et Ŷs,t est la prédiction
donnée par le modèle.

Nous présentons d’abord une solution univariée dans la section 1.1.2, qui prévoit le rendement
à court terme d’une action après la publication de la nouvelle. Nous proposons ensuite une
solution multivariée dans la section 1.1.3, qui prévoit les rendements quotidiens de toutes les
actions sur la base de toutes les nouvelles d’une journée et des relations entre les actions établies
à partir de différentes sources de données.

1.1.2 Chapitre 2: Prévision des Mouvements des Actions avec l’embedding
contextuelle

Cette sous-section présente le premier sujet de cette thèse. L’étude détaillée se trouve dans le
chapitre 2.

Motivation et Principaux Défis

Dans cette sous-section, notre objectif est de prédire le mouvement des actions à partir d’un
titre de nouvelle après sa publication. Pour les nouvelles enregistrées pendant les heures de
négociation 1, l’horizon de prévision est de 30 minutes. Si la nouvelle est publiée en dehors des
heures de cotation, nous prévoyons son rendement entre la clôture du marché précédent et la
clôture du marché suivant. Notre solution est univariée, ce qui signifie que nous supposons que
la nouvelle ne peut avoir un impact que sur le prix de l’action associée et que cette information
ne se transmet pas aux autres actions. L’équation 1.3 peut donc être affinée comme suit :

Ŷs,t = f(E0
s,t, θ) (1.4)

où E0
s,t représente une nouvelle concernant l’action s enregistrée au moment t.

La première étape de cette tâche consiste à convertir les données textuelles en données
numériques. En langage naturel, nous pouvons convertir un mot en un vecteur dense de longueur
fixe appelé � embedding � (Appendice 2.B.2). Ce processus comporte trois défis principaux :

1. Nous avons besoin d’un grand nombre de corpus pour extraire les caractéristiques d’une
langue.

1de 9h00 à 17h30 CEST pour la plupart des marchés européens
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2. Les embeddings formés avec un grand corpus ne possèdent pas de connaissances spécifiques
au domaine. Par exemple, certains mots peuvent avoir des significations spécifiques en
finance par rapport à l’anglais général.

3. L’embedding est statique. Cela signifie que la représentation vectorielle d’un mot est la
même dans différentes phrases, même si leur signification peut être très différente selon le
contexte.

Pour résoudre le premier défi, les chercheurs utilisent généralement une grande quantité de
corpus anglais pour entrâıner un modèle polyvalent pour d’autres tâches en aval. Par exemple,
Mikolov et al. [2013b] proposent Word2Vec et Pennington et al. [2014] proposent GloVe, qui
sont tous entrâınés sur un vaste corpus contenant des milliards de tokens.

Pour résoudre le deuxième défi, l’apprentissage par transfert (Appendice 2.B.4) est récemment
devenu populaire. L’idée est de former un modèle anglais général à l’aide d’un grand corpus,
puis de poursuivre le processus de formation sur la base d’un corpus spécifique au domaine.
Récemment, plusieurs modèles d’apprentissage par transfert à grande échelle ont été proposés,
notamment Embedding from Language Model (ELMo) [Peters et al., 2018a], Bidirectional
Encoder Representations from Transformers (BERT, Appendix 2.B.4) [Devlin et al., 2018] et
XLNet [Yang et al., 2019]. L’approche d’apprentissage par transfert s’est avérée robuste et
largement utilisée dans la plupart des tâches de TAL.

Pour résoudre le dernier défi, au lieu d’utiliser un embedding de mots fixe prédéfini du modèle
Word2Vec, nous introduisons tous les mots ensemble dans un modèle interconnecté, tel que
le modèle BERT mentionné ci-dessus. Dans ce cas, l’embedding d’un mot sera influencée
par l’embedding des mots de la même phrase. Nous pouvons alors obtenir un embedding
contextualisé à partir des couches cachées de ce modèle.

La littérature existante ne résout généralement que partiellement ces problèmes. Par exemple,
Ding et al. [2015] propose une des premières solutions d’apprentissage solutions d’apprentissage
profond à ce problème tout en s’appuyant fortement sur des embeddings statiques générés à
partir de Word2Vec (points 2 et 3). Devlin et al. [2018] proposent une méthode de classification
avec BERT mais ignorent les connaissances spécifiques au domaine (point 2). Vargas et al.
[2017] entrâınent un modèle Word2Vec uniquement avec des textes financiers. Cependant, cette
méthode ne permet pas d’entrâıner un modèle avec les caractéristiques de l’anglais général, et
les embeddings sont toujours statiques (points 1 et 3).

Une procédure de prédiction des mouvements boursiers avec des embeddings
contextualisés

Pour prendre en compte tous les facteurs ci-dessus et combler les lacunes de la recherche, nous
proposons une procédure de prédiction appelée FT-CE-RNN2 (figure 1.1, détails présentés dans
la section 2.5). Nous poursuivons d’abord le processus de pré-entrâınement du modèle BERT
avec un éventail plus large de textes financiers afin d’ajouter des connaissances financières au
modèle. Nous affinons ensuite le modèle avec des données d’entrâınement étiquetées et extrayons
les embeddings contextualisées des couches cachées du modèle affiné. Enfin, nous formons un
réseau neuronal récurrent (RNN, Appendice 2.B.3) avec les embeddings contextualisées générées.

2Fine-Tuned, Contextualized Embedding, Recurrent Neural Network
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Figure 1.1: Une illustration de la procédure de prédiction des mouvements boursiers :
FT-CE-RNN.

En outre, pour mieux intégrer les besoins des investisseurs, au lieu d’évaluer les performances du
modèle sur la base de toutes les nouvelles, nous proposons une nouvelle métrique d’évaluation
basée uniquement sur les nouvelles extrêmes (section 2.6.2).

Grâce à des expériences approfondies telles que des tests de précision et des simulations de
transactions sur environ 600 actions de l’indice STOXX Europe 600, nous prouvons que le
FT-CE-RNN surpasse les autres modèles de base de la littérature. Un résumé des résultats de
précision est présenté dans le tableau 1.2, et les résultats complets sont présentés dans la section
2.6. Nous pouvons constater que le FT-CE-RNN surpasse le modèle BERT de 1,3% et le score
Bloomberg de 9,5% en termes de précision sur la base des 2% de nouvelles les plus extrêmes. Nous
démontrons également que les embeddings contextualisés d’un modèle affiné donnent un meilleur
résultat de prédiction que les embeddings statiques et non réglés. Par exemple, l’utilisation des
embeddings contextualisés affinés permet d’obtenir un gain de précision de 4,4% sur la base
des 2% d’informations les plus extrêmes par rapport aux embeddings statiques et de 4,0% par
rapport aux embeddings non affinés dans la même situation.

Nous fournissons les détails de cette étude dans le chapitre 2.

1.1.3 Chapitre 3 : Prévision Multivariée des Mouvements Boursiers avec
un Réseau Convolutif Graphique

Cette sous-section présente le deuxième sujet de cette thèse. L’étude détaillée se trouve dans le
chapitre 3.
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Table 1.2: Résultat résumé de la précision de FT-CE-RNN et des autres modèles de base. Le
percentile indique le pourcentage des scores les plus extrêmes sur lesquels nous effectuons le test
de précision.

percentile 1% 2% 5% 10%

Baseline models

NBC [Maron, 1961] 59.8 56.1 54.3 53.4
SSESTM [Ke et al., 2019] 56.3 55.4 54.4 53.2
Bloomberg [Proprietary] 58.3 58.3 58 54.5

BERT [Devlin et al., 2018] 73.6 66.5 59.3 56.1
FinBERT [Yang et al., 2020b] 73.9 66.5 59.2 55.6

Proposed model
and its variants

RNN 71.4 63.4 56.7 54.3
CE-RNN 70.9 63.8 57.9 54.7

FT-CE-RNN 74.5 67.8 59.3 56.6

Motivation et Principaux Défis

Dans l’étude présentée dans la section 1.1.2, nous supposons qu’une nouvelle n’a d’impact que sur
une seule action associée. Cependant, les actions sur le marché financier peuvent être fortement
corrélées [Campbell et al., 1993]. Par exemple, une bonne nouvelle sur une action peut avoir
un impact positif sur les clients et les fournisseurs de l’entreprise mais un impact négatif sur ses
concurrents. Notre objectif est d’améliorer les résultats de la prédiction en incorporant cette
information sur les relations dans un modèle de prédiction multivarié. En outre, nous observons
que certaines nouvelles peuvent avoir un impact plus long dans le temps que d’autres, nous
aimerions prédire le mouvement des actions sur la base des nouvelles sur plusieurs jours dans
l’histoire au lieu d’une seule nouvelle.

Ainsi, en plus des nouvelles, nous utilisons également les données de différentes sources pour
établir des relations entre les actions. Par exemple, nous pouvons obtenir une corrélation entre
les rendements des actions à partir des données sur les cours des actions ou établir une relation
entre les secteurs d’activité des actions à partir des données sur les secteurs d’activité de GICS3.
Nous pouvons également créer une relation de châıne d’approvisionnement avec les données de
châıne d’approvisionnement de Factset4. Nous pouvons visualiser ces relations par le biais de
leurs matrices d’adjacence dans la figure 1.2.

En suivant les notations de la section précédente, notre objectif peut être réécrit comme suit :

Ŷs,t = f([E∆T
1,t , ..., E

∆T
n,t ], [G1, ..., Gg], θ) (1.5)

où E∆T
s,t désigne toutes les nouvelles concernant le titre s entre t et t−∆T . Dans cette équation,

n est le nombre total d’actions, Gi est la relation entre les actions construite à partir de la source
i et g est le nombre de relations que nous construisons à partir de différentes sources de données.
La principale différence par rapport à l’équation 1.4 est que nous prenons en compte toutes les
nouvelles sur toutes les actions lorsque nous faisons des prédictions au lieu de ne prendre en
compte qu’une seule nouvelle sur une action. Une autre différence est que nous considérons
toutes les nouvelles entre t et t−∆T lors de la prédiction au lieu de ne considérer qu’une seule
nouvelle à t.

3https://www.msci.com/our-solutions/indexes/gics
4https://go.factset.com/marketplace/catalog/product/factset-supply-chain-relationships
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(c) Supply Chain Graph
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Figure 1.2: Les matrices d’adjacence du graphe des corrélations, du graphe des secteurs et du
graphe des châınes d’approvisionnement. La matrice d’adjacence A est une matrice n× n où
Aij ∈ [0, 1] désigne la relation entre le stock i et le stock j. Aij = 0 signifie qu’il n’y a pas de
relation entre ces deux stocks tandis que Aij = 1 signifie que la relation entre deux stocks est
forte.

Pour résumer, nous voulons construire un modèle avec les caractéristiques suivantes :

1. Le modèle prédit le mouvement des actions à partir des nouvelles textuelles et des relations
entre les actions.

2. Le modèle peut ingérer de multiples relations construites à partir de sources différentes.

3. Le modèle prend en compte les interactions temporelles des nouvelles.

Pour le point 1, nous utilisons des graphes (Appendice 3.A.1) pour modéliser les relations entre
les actions et extraire les informations relationnelles. Récemment, avec le développement de
l’apprentissage automatique, l’analyse des graphes avec des réseaux neuronaux a attiré plus
d’attention et de multiples réseaux neuronaux graphes (Appendice 3.A) ont été proposés. À
la suite de Kipf and Welling [2016] et Chen et al. [2018], nous utilisons un réseau convolutif
graphique (Appendice 3.A.2) pour cette tâche de prédiction multivariée du mouvement des
actions. Dans notre cas, chaque action est un nœud du graphe et son embedding de nœud
(Appendice 3.A.2) est construit comme l’agrégation de l’embedding des nouvelles pour cette
action un jour avant t. L’arête est construite avec des données relationnelles telles que la
corrélation historique des prix, le secteur d’activité et la châıne d’approvisionnement.

Pour le point 2, nous concevons une structure multi-graphes dans notre réseau pour extraire
des informations de différentes données relationnelles, nous utilisons ensuite un mécanisme
d’attention [Vaswani et al., 2017] pour agréger les sorties de tous les graphes de manière non
linéaire.

Pour le point 3, nous répétons la même procédure au point 1 et au point 2 chaque jour pour ∆T
jours avant t pour obtenir ∆T embeddings. Ces incorporations sont ensuite prises en compte
par un réseau neuronal récurrent similaire à celui utilisé dans la section 1.1.2 pour tenir compte
des relations temporelles entre les nouvelles.

Les recherches précédentes ne résolvent que partiellement ce problème. Chen et al. [2015]
utilisent la mémoire à long et court terme (LSTM, section 2.B.3) pour modéliser les interactions
temporelles entre les nouvelles tout en ignorant les relations entre les actions (points 1 et
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2). Sawhney et al. [2020] considèrent une seule relation préétablie entre les actions lors de
la prédiction du rendement des actions à partir des nouvelles financières (point 2). Li et al.
[2021] proposent un modèle de prédiction avec à la fois des données textuelles et des données
de relation en entrée tout en n’acceptant qu’un seul graphique d’actions et en omettant les
considérations temporelles (points 2 et 3).
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Figure 1.3: La structure de notre Réseau Récurrent Multi-Graphes.

En combinant tous les facteurs ci-dessus, nous concevons un réseau récurrent multi-graphes
(MGRN, figure 1.3, détailé dans la section 3.4). Le MGRN comprend trois sous-composants
: (1) le codeur de nouvelles financières, qui code les nouvelles textuelles en un vecteur de
longueur fixe pour chaque action et chaque jour. (2) Réseau convolutionnel multigraphique,
qui effectue d’abord une convolution graphique sur les vecteurs d’informations quotidiennes
codées, puis combine toutes les sorties graphiques par un mécanisme d’attention. (3) Réseau
neuronal récurrent, qui prend en entrée les incorporations combinées pendant une fenêtre de
retour en arrière T et extrait les modèles temporels parmi les nouvelles. Enfin, grâce à une
couche entièrement connectée, nous obtenons la probabilité de mouvement du prix de l’action
dans l’une ou l’autre direction.

Par le biais d’un test de précision et d’une simulation de transactions sur environ 600 actions
de l’indice STOXX Europe 600, nous démontrons que notre modèle est plus performant que
d’autres références. Un résumé des résultats de précision est présenté dans le tableau 1.3, et les
résultats complets sont présentés dans la section 3.5.4. Nous pouvons constater que le MGRN
présente un gain de précision de 13,2% par rapport au score Bloomberg, un gain de précision de
6,9% par rapport au modèle MAN-SF proposé par Sawhney et al. [2020] et un gain de précision
de 3,3% par rapport au modèle BERT sur les 10% de scores les plus extrêmes. De plus, nous
démontrons que le MGRN avec les trois relations surpasse le MGRN vanille sans aucune donnée
relationnelle en entrée de 3,8%, ce qui montre clairement l’avantage de la prédiction multivariée.
Nous incluons également une analyse détaillée des performances obtenues avec chaque type de
graphe (section 3.5.4), ainsi qu’une analyse qualitative d’un exemple pour montrer l’intuitivité
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derrière le résultat (section 3.5.5).

Table 1.3: Résumé des résultats de précision de MGRN et d’autres modèles de base. Le
percentile indique le pourcentage des scores les plus extrêmes sur lesquels nous effectuons le
test de précision.

percentile 100% 20% 10% 2%

Baseline models

ARIMA [Ho and Xie, 1998] 0.491 0.494 0.487 0.510
Bloomberg [Proprietary] 0.493 0.486 0.524 0.554

Mean-BERT [Devlin et al., 2018] 0.512 0.586 0.623 0.694
MAN-SF [Sawhney et al., 2020] 0.503 0.569 0.587 0.627

Proposed model
and its variants

RNN 0.527 0.576 0.618 0.677
MGRN-Corr 0.556 0.609 0.617 0.727

MGRN-Sector 0.532 0.589 0.640 0.705
MGRN-Supply 0.555 0.620 0.627 0.718

MGRN 0.561 0.629 0.656 0.728

Nous fournissons les détails de cette étude dans le chapitre 3.

1.2 Part II: Prédiction de la Volatilité Réalisée avec un Carnet
d’Ordres Limité

1.2.1 Contexte et Objectif

La volatilité est une quantité importante en finance, elle évalue la fluctuation des prix et
représente le niveau de risque d’un actif. C’est l’un des indicateurs les plus importants utilisés
dans la gestion du risque et la fixation du prix des dérivés d’actions. Bien que la volatilité ne
soit pas observable, Andersen and Bollerslev [1998] montrent que la volatilité réalisée est un bon
estimateur de la volatilité. La prévision de la volatilité réalisée a donc attiré l’attention de divers
chercheurs. En tant que gestionnaire actif d’actifs, ExodusPoint cherche à prévoir la volatilité
réalisée à court terme afin d’être plus compétitif dans son activité de négociation d’options.

La prédiction de la volatilité réalisée n’est pas une tâche nouvelle. Brailsford and Faff
[1996] proposent d’utiliser le modèle GARCH (Generalized AutoRegressive Conditional
Heteroskedasticity) pour prévoir la volatilité réalisée sur la base des prix quotidiens. Gatheral
and Oomen [2010] présentent quelques estimateurs de volatilité simples basés sur les données du
carnet d’ordres à cours limité (LOB), montrant que l’utilisation des données LOB peut conduire
à de meilleurs résultats de prédiction. Rahimikia and Poon [2020b] proposent en outre d’utiliser
des modèles d’apprentissage profond basés sur les données LOB pour capturer la non-linéarité
des données. Cependant, la plupart des recherches précédentes n’adoptent que des modèles de
prédiction univariés pour cette tâche et ignorent les connexions entre les actions. Par exemple,
une hausse soudaine de la volatilité d’une action peut se transmettre de manière significative
à d’autres actions du même secteur [Hassan and Malik, 2007]. Par conséquent, en combinant
la situation actuelle dans la recherche académique et nos besoins réels, nous sommes intéressés
par la prédiction de la volatilité réalisée à court terme (de 10 minutes à 30 minutes) dans une
approche multivariée après un timestamp donné avec les données LOB avant ce timestamp avec
une fenêtre de temps similaire.
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Le carnet d’ordres à cours limité enregistre les ordres à cours limité en cours tenus par la bourse.
Il enregistre les ordres d’achat et de vente (quotes) passés par tous les participants au marché
et les transactions exécutées sur le marché. Il s’agit de la description la plus détaillée de la
situation du marché peut être utilisé pour calculer la volatilité réalisée à court terme d’un actif.
Nous montrons des exemples de cotations et de transactions dans la LOB que nous utilisons dans
notre étude dans le tableau 1.4 et 1.5. Pour les cotations et les transactions, nous disposons
des enregistrements Date, Heure et Symbole (identifiant du titre). En outre, nous disposons du
meilleur ordre d’achat (bid) et du meilleur ordre de vente (ask) avec leur prix et leur volume
pour les cotations et le prix et le volume des transactions pour les transactions.

Table 1.4: Un exemple des cotations dans la LPP de l’action A de 9:30:01 à 9:30:02 le 4 janvier
2021. La meilleure taille d’offre et la meilleure taille de demande sont dans l’unité de lots, ce
qui équivaut à 1 000 actions.

Date Time Symbol Best Bid Price Best Bid Size Best Ask Price Best Ask Size

2021-01-04 9:30:01.002528512 A 118.53 1 118.94 2
2021-01-04 9:30:01.086944000 A 118.53 1 119 9
2021-01-04 9:30:01.086949376 A 118.53 1 118.87 2
2021-01-04 9:30:01.369885696 A 118.53 1 118.87 1
2021-01-04 9:30:02.513750784 A 118.54 1 118.87 1
2021-01-04 9:30:02.683774464 A 118.52 1 118.87 1

Cependant, les données brutes LOB présentées dans les tableaux précédents ne sont pas
homogènes, ce qui signifie que le nombre d’enregistrements dans une même durée n’est pas
équivalent. Par exemple, il y a 7 transactions dans la seconde de 9:30:01 alors que seulement 2
transactions dans la seconde de 9:30:02. Par souci de simplicité, sans perdre trop d’informations,
nous échantillonnons nos données LOB toutes les secondes. Pour les données de cotation, nous
enregistrons le meilleur cours vendeur (P 1

a ), le meilleur cours acheteur (P 1
b ), la meilleure taille

du cours vendeur (V 1
a ) et la meilleure taille du cours acheteur (V 1

b ) pour chaque action à la fin de
chaque seconde. Pour les données sur les transactions, nous regroupons toutes les transactions
pour chaque action pendant chaque seconde. Nous enregistrons le nombre de transactions (Nt),
le nombre total d’actions négociées (Vt) et le prix moyen pondéré par le volume (Pt) de toutes
les transactions, défini comme suit :

Pt =

∑Nt
i PiVi∑Nt
i Vi

(1.6)

Table 1.5: Un exemple des transactions dans la LPP de l’action A de 9:30:01 à 9:30:02 le 4
janvier 2021.

Date Time Symbol Trade Volume Trade Price

2021-01-04 9:30:01.002522624 A 100 118.92
2021-01-04 9:30:01.002668032 A 3 118.91
2021-01-04 9:30:01.004687872 A 100 118.735
2021-01-04 9:30:01.051353600 A 13 118.94
2021-01-04 9:30:01.092121856 A 200 118.87
2021-01-04 9:30:01.369884928 A 1 118.87
2021-01-04 9:30:01.625717504 A 10 118.86
2021-01-04 9:30:02.081715968 A 102 118.7
2021-01-04 9:30:02.934643712 A 150 118.87
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où Pi est le prix de la transaction i, et Vi est le nombre d’actions négociées. Nt est le nombre
total de transactions enregistrées pendant la seconde t. La LOB échantillonnée de l’exemple du
tableau 1.4 et 1.5 est présentée respectivement dans le tableau 1.6 et 1.7. Nous notons que le
second signifie le nombre de secondes depuis le début du marché qui est de 9:30:00 sur le marché
américain.

Table 1.6: Les cotations échantillonnées à une seconde depuis la LOB sont montrées dans Table
1.4. On note que V 1

b et V 1
a sont dans l’unité des lots.

Date Symbol seconds P 1
b V 1

b P 1
a V 1

a

20210104 A 1 118.53 1 118.87 1
20210104 A 2 118.52 1 118.87 1

Table 1.7: Les transactions échantillonnées à une seconde depuis la LOB sont montrées dans
Table 1.5.

Date Symbol seconds Nt Vt Pt

20210104 A 1 8 427 118.852
20210104 A 2 7 252 118.801

Nous pouvons formuler cette tâche de prédiction de la volatilité réalisée comme suit.

Nous définissons d’abord le logarithme du rendement secondaire de l’action s à la t-ième seconde
comme suit

r′s,t = log(
Ps,t

Ps,t−1
) (1.7)

où Ps,t est le dernier prix de transaction de s à t.

Étant donné une fenêtre fixe de ∆T secondes, notre cible Y ′s,t, la volatilité réalisée pour le stock
s entre t et t+ ∆t est définie comme suit :

Y ′s,t =

√√√√t+∆T∑
i=t

r2
s,i (1.8)

En utilisant la même notation que l’équation 1.3, cette tâche de prédiction de la volatilité réalisée
à court terme peut donc être écrite comme suit

Ŷ ′s,t = f ′(Et, θ) (1.9)

où f ′ est le modèle de prédiction. La principale différence avec l’équation 1.3 est que notre
objectif est la volatilité réalisée au lieu de la direction du mouvement des actions, ce qui constitue
une tâche de régression au lieu d’une tâche de classification.

Contrairement aux modèles univariés existants, nous introduisons une solution multivariée à
cette tâche de prédiction de la volatilité réalisée en combinant les données LOB et les données
relationnelles dans la section 1.2.2.
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1.2.2 Chapter 4: Prédiction Multivariée de la Volatilité Réalisée avec un
Réseau Neurones Graphiques

Cette sous-section présente le troisième sujet de cette thèse. L’étude détaillée se trouve dans le
chapitre 4.

Motivation et Defis Principaux

La méthode la plus simple pour prévoir la volatilité réalisée à court terme pour les prochaines
∆T secondes à partir de t est de prévoir uniquement avec un fragment de données LOB avant t.
Par exemple, nous pouvons simplement utiliser la volatilité réalisée calculée à partir de t−∆T
comme prédiction de notre objectif : la volatilité réalisée entre t et t+ ∆T . Zhou [1996] propose
en outre un indicateur plus mature mais intuitif pour cette tâche. Ce processus de prédiction
simple peut être écrit comme suit :

Ŷ ′s,t = f ′(Ds,t, θ) (1.10)

où Ds,t = E∆T ′
s,t désigne les données LOB du titre s entre t − ∆T ′ et t. ∆T ′ est la fenêtre de

retour en arrière et devrait être sur la même échelle que T .

Plus récemment, les chercheurs ont adopté des méthodes de séries chronologiques pour améliorer
la prédiction tout en ignorant la connexion entre les actions, comme Brailsford and Faff [1996],
Gatheral and Oomen [2010] et Rahimikia and Poon [2020b]. Le modèle est amélioré comme :

Ŷ ′s,t = f ′([Ds,t1 , ..., Ds,tm ], θ) (1.11)

où t1 < ... < tm = t. La méthode suppose que la volatilité passée de l’action s a un impact sur
la volatilité future de s, mais que la volatilité passée des autres actions n’a aucun impact sur s.

Cependant, comme indiqué dans la section 1.1.3, les actions ne sont pas indépendantes. Nous
souhaitons prendre en compte cet effet et prédire la volatilité réalisée avec une approche
multivariée.

Étant donné n stocks s1, ..., sn, nous pouvons réécrire notre modèle final comme :

Ŷ ′s,t = f ′

Ds1,t1 ... Ds1,tm

... ... ...
Dsn,t1 ... Dsn,tm

 ,G, θ
 (1.12)

où G désigne les relations entre tous les Di,j . Elle comprend à la fois la relation cross-sectionnelle
Gs et la relation temporelle Gt.

Dans cette étude, nous utilisons les mêmes relations cross-sectionnelles proposées dans la
section 1.1.3, incluant la corrélation entre les stocks, le secteur d’activité et la châıne
d’approvisionnement.

Cette tâche comporte trois grands défis :

1. Comment coder les données LOB de manière significative.
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2. Comment construire des graphes basés sur des relations cross-sectionnelle et temporelles
en même temps.

3. Comment calculer efficacement sur un grand graphe.

Le premier défi est que les données LOB sont dans un format tabulaire. Par conséquent, nous
devons trouver une méthode pour les transformer en un format numérique standardisé pour le
calcul. Pour résoudre ce problème, nous concevons un codeur de données LOB (Section 4.4.1)
qui transforme les caractéristiques numériques (telles que le prix et le volume) et catégorielles
(telles que le symbole d’action) des données LOB en un vecteur de dimension fixe. Les
caractéristiques numériques sont codées à l’aide d’un ensemble d’indicateurs intuitifs similaires
à ceux de Kercheval and Zhang [2015], et les caractéristiques catégorielles sont codées à l’aide
d’une couche d’embedding entrâınable (Appendice 2.B.2).

Pour le second défi, nous construisons un graphe dans lequel chaque nœud représente une
observation Ds,t. Pour les relations temporelles, nous fixons s et créons des arêtes entre différents
t ; pour les relations cross-sectionnelles, nous construisons des arêtes en fixant t et en reliant
différents s. Cette méthode permet de représenter les deux types de relations dans le même
graphe (Section 4.5.2).

Bien que la conception du graphe susmentionné soit intuitive, le principal inconvénient est
que le graphe devient beaucoup plus grand que le graphe ne contenant que des relations
cross-sectionnelle comme le MGRN, puisque nous avons m × n nœuds dans ce graphe par
opposition à n nœuds dans le MGRN. Pour résoudre ce troisième défi, Gilmer et al. [2017]
propose que les modèles de graphes soient vus comme des modèles de passage de messages
(Appendice 3.A.3). Cela signifie qu’au lieu d’appliquer les opérateurs sur l’ensemble du graphe,
nous mettons à jour l’embedding de chaque nœud individuellement, uniquement sur la base de
ses voisins, l’information est donc transmise des voisins à lui-même. Cette idée nous permet
de former un réseau basé sur un graphe par batch et d’éviter de mettre le graphe en mémoire
dans son ensemble. Sur la base de cette généralisation, Shi et al. [2020] propose en outre un
opérateur de type Transformer [Vaswani et al., 2017] et obtient des performances de pointe.
Nous utilisons cet opérateur de type Transformer pour extraire efficacement des informations
d’un grand graphe dans notre recherche.

À notre connaissance, il n’existe pas dans la littérature de méthode de prédiction de la volatilité
réalisée multivariée utilisant des relations construites à partir de données externes. Nous ne
trouvons également aucune recherche qui propose l’utilisation de réseaux de neurones à graphes
dans cette tâche.

Réseau de Graphes à Transformer pour la Prédiction de la Volatilité

Pour améliorer encore notre résultat de prévision de la volatilité réalisée et combler les lacunes
de la recherche, en combinant les trois facteurs ci-dessus, nous concevons un réseau de graphes
à transformer pour la prediction de la volatilité (GTN-VF, Figure 1.4, détails dans la Section
4.4). Il y a deux composants principaux dans GTN-VF : (1) L’encodeur de données LOB, qui
encode les données catégorielles et numériques de la LOB dans un vecteur de longueur fixe. (2)
Graph Transformer Network, qui fait la prédiction en agrégeant les embeddings de nœuds d’un
nœud et de ses voisins d’une manière efficace.
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Figure 1.4: La structure de notre Réseau de Graphes à Transformer pour la Prédiction de la
Volatilité (GTN-VF)

Par le biais d’expériences basées sur environ 500 actions de l’indice S&P 500, nous trouvons de
meilleures performances pour notre modèle que pour les autres benchmarks sur tous les horizons
de prédiction ∆T . Le tableau 1.8 présente un résumé du résultat RMSPE5 basé sur l’ensemble
de test, et les résultats complets sont présentés dans la section 4.5.4. Par exemple, notre
GTN-VF avec les trois relations cross-sectionnelles et la relation temporelle surpasse HAR-RV
[Corsi, 2009] de 3,25% en RMSPE lorsque ∆T est égal à 10 minutes, il surpasse également
TabNet [Arık and Pfister, 2021] de 1,91% dans la même condition. Pour prouver l’efficacité de
différentes relations, nous incluons une analyse détaillée des performances pour différents types
de relations temporelles et cross-sectionnelles (Tableau 4.5). En outre, nous ajoutons quelques
études d’ablation pour montrer d’où vient l’amélioration de notre modèle (Section 4.6).

Nous fournissons les détails de cette étude dans le chapitre 4.

1.3 Part III: Au-delà de la finance - Applications de la NLP
dans l’art contemporain

Dans cette partie, nous présentons une application des méthodologies NLP dans l’art
contemporain. Bien que n’étant pas un problème lié à la finance, ce sujet applique et développe
les connaissances de la première partie sur la NLP et l’apprentissage par transfert.

5Root Mean Square Percentage Error
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Table 1.8: Résumé du résultat RMSPE (le plus bas est le meilleur) de GTN-VF et des modèles
de base.

∆T 600s 1200s 1800s

Baseline models

Näıve Guess 0.2834 0.2628 0.2364
HAR-RV [Corsi, 2009] 0.2612 0.2061 0.1939

lightGBM [Ke et al., 2017] 0.2492 0.2035 0.1963
MLP [Rumelhart et al., 1985] 0.2514 0.2308 0.1999

TabNet [Arık and Pfister, 2020] 0.2478 0.1996 0.2019

Proposed model
ans its variants

Vanilla GTN-VF 0.2498 0.2251 0.2160
GTN-VF Cross FC 0.2382 0.2196 0.2046
GTN-VF Temp FC 0.2358 0.1921 0.1853

GTN-VF Cross FC + Temp FC 0.2306 0.1917 0.1802
GTN-VF Cross Sector 0.2422 0.2248 0.2091

GTN-VF Cross Supply Chain 0.2411 0.2244 0.2000
GTN-VF 0.2287 0.1892 0.1798

1.3.1 Contexte et Objectif

Le marché de l’art contemporain connâıt une croissance rapide depuis le début de ce siècle
[Kräussl et al., 2016]. Traditionnellement, les collectionneurs s’appuient sur les interactions
sociales, les conseils de professionnels et les médias pour trouver les œuvres d’art qu’ils souhaitent
acquérir. Avec un nombre croissant d’artistes et d’œuvres d’art, recommander des œuvres
d’art appropriées à des collectionneurs ayant des goûts différents devient un problème difficile.
Récemment, avec le développement rapide de l’intelligence artificielle, les recherches commencent
à moderniser et à automatiser ce processus de découverte de l’art.

La plupart des chercheurs se concentrent sur l’aspect visuel des œuvres d’art pour trouver les
similitudes entre elles. Elgammal et al. [2018] classent les styles des peintures à l’aide de certains
modèles fréquemment utilisés en computer vision. Kim et al. [2018] étendent cette méthode pour
regrouper les œuvres d’art selon des concepts et des principes artistiques prédéfinis en plusieurs
dimensions. Cependant, ces recherches précédentes ne se concentrent que sur l’aspect visuel
des œuvres d’art contemporaines, car l’art contemporain peut aller au-delà de l’esthétique. Par
exemple, la pratique de l’artiste et les influences utilisées par l’artiste peuvent toutes deux avoir
une forte influence sur le goût pour l’art.

Par conséquent, les informations textuelles facilement disponibles telles que les biographies
d’artistes retiennent notre attention. Dans ce travail, nous sommes intéressés à trouver les
relations entre les artistes à travers leurs biographies. Plus concrètement, étant donné les
biographies de deux artistes, nous classons s’ils sont connectés. Nous montrons un exemple
de cette tâche dans le tableau 1.9.

Nous pouvons formuler ce problème de découverte de connexions d’artistes comme un problème
de classification binaire. Supposons que nous ayons deux artistes Ai, Aj et que leurs biographies
soient désignées par Bi, Bj . Une équipe de professionnels de l’art peut déterminer s’ils sont liés
en se basant sur différents aspects, notamment le contexte, les thèmes, le style, les techniques,
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Table 1.9: Un exemple de nos données de paires de biographies d’artistes labélisées. bio a est la
biographie du artiste a et bio b est la biographie du artiste b. Le label est annoté manuellement
par une équipe de professionnels de l’industrie artistique et indique si deux artistes sont connectés
(1 si connecté et 0 si non connecté). Notre objectif est d’entrâıner un modèle capable de dire si
deux artistes sont liés à partir de leurs biographies.

artist a artist b bio a bio b label

Carl
Edouard
Keita

Kudzanai
Violet
Hwami

Born in 1992 in Abidjan, Carl-Edouard Keita
now lives and works in New York. A 2021
graduate of the New York Academy of Art,
Carl-Edouard Keita also won the prize for
best draughtsman for his graduation work,
some of which is presented in this group
exhibition. Carl-Edouard Keita discovered the
history of African art during his economics
studies in Atlanta, through a course offered at
his university. As he describes it himself, this
discovery was a real aesthetic revelation for him.

Having fled her homeland due to the political
unrest and turmoil when she was a child,
Zimbabwe-born painter Kudzanai-Violet
Hwami expresses her personal experiences of
dislocation, displacement and fragmentation
through her striking figurative paintings. The
artist is interested in the collapsing of geography
and time and space symptomatic of a globalised
world and high-speed internet, through which
both people and information can travel quickly.

1

Sun
Xun

Cheng
Xinhao

Sun Xun was born in 1980 in Fuxin, Liaoning
province, China. Currently lives and works in
Beijing. Recent and past histories, intransigent
conflicts and tensions, sequential flashes of
hand-created images of these are the irrevocable
features of Sun Xun’s artistic practice that
fuses the line between art and animation. A
graduate from the Printmaking Department of
the China Academy of Arts in 2005, Sun Xun
was a professor at the prestigious Academy
before founding in 2006 his own Animation
Studio. His work primarily involves making
images using various materials such as colour
powder, woodcuts and traditional ink, and
collating these to produce a film, which is often
presented in an immersive setting.

Cheng Xinhao (b.1985, Yunnan, China). After
receiving his PhD on Chemistry from Peking
University in 2013, Cheng continued his career
as a photographer, investigating on the issues
in the modernization, the construction of
knowledge as well as the production of space in
Chinese society.

0

etc. Nous utilisons Yi,j pour désigner cette vérité de base, avec

Yi,j =

{
1 si Ai et Aj sont connectés

0 sinon
.

Cependant, notre base de données compte des milliers d’artistes et il est impossible de déterminer
toutes les relations par annotation manuelle. Par conséquent, dans cette étude, nous nous
intéressons à l’établissement automatique des relations entre eux à partir de leurs biographies.
Nous pouvons décrire ce processus comme suit

pi,j = f(Bi, Bj , θ)

où pi,j désigne notre probabilité prédite d’une connexion entre Ai et Aj . f est notre modèle de
prédiction et θ désigne les paramètres pouvant être entrâınés.

Étant donné f , notre objectif est de trouver θ qui minimise la perte d’entropie croisée [Good,
1992] définie comme suit

−
∑
i,j

Yi,j · log pi,j + (1− Yi,j) · log(1− pi,j).

1.3.2 Chapitre 5: Cartographier le monde de l’art contemporain avec
ArtLM : un modèle NLP spécifique à l’art

Cette sous-section présente le quatrième sujet de cette thèse. L’étude détaillée se trouve dans le
chapitre 5.
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Figure 1.5: Aperçu de notre méthode de découverte des connexions entre artistes, comprenant
deux phases de pré-formation non supervisées et une phase de fine-tuning supervisée.

Motivation et Defis Principaux

Nous cherchons à résoudre deux défis principaux dans cette tâche :

1. Comment classer efficacement le lien entre deux artistes à partir de leur paire de biographies
étiquetées.

2. Comment améliorer la précision de la classification à partir de textes non labélisés relatifs
à l’art.

Pour trouver des solutions au premier défi, nous pouvons affiner certains modèles linguistiques
(LM) pré-entrâınés en suivant la même idée que celle présentée dans la section 1.1.2. Cependant,
à la différence des recherches précédentes, notre entrée est une paire de phrases au lieu d’une
seule. Dans ce cas, nous concaténons la paire de phrases tout en les séparant avec un caractère
spécial pour former une seule phrase et continuer le processus de fine-tuning (Section 5.4.3).

Pour le deuxième défi, nous ajoutons une autre étape de pré-entrâınement avant le fine-tuning.
Dans cette procédure, nous continuons à pré-entrâıner les modèles pré-entrâınés originaux avec
les textes non labélisés relatifs à l’art recueillis sur WikiArt6 en utilisant les mêmes cibles
d’entrâınement que les modèles originaux. Nous appliquons également cette méthode à différents
modèles linguistiques pré-entrâınés disponibles publiquement afin de prouver la robustesse de
cette approche.

Bien que ce schéma de pré-entrâınement et de fine-tuning ait été appliqué dans des domaines
tels que la finance, nous ne voyons aucune application dans les arts à notre connaissance.

6https://www.wikiart.org/
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ArtLM pour la découverte de connexions entre artistes

Pour prendre en compte tous les facteurs ci-dessus et combler les lacunes de la recherche, nous
proposons un cadre NLP générique (appelé ArtLM, Section 5.4.2, Figure 1.5) pour découvrir
les liens entre les artistes contemporains à partir de leurs biographies. Nous continuons d’abord
à pré-entrâıner les modèles de langage existants avec des textes non étiquetés liés à l’art afin
d’ajouter des connaissances du domaine artistique aux modèles généraux existants. Nous affinons
ensuite le modèle avec les paires de biographies labélisées par les professionnels de l’art. Cette
procédure est robuste et indépendante du choix des modèles de base, comme le prouvent les
expériences basées sur plusieurs modèles de base, tels que BERT [Devlin et al., 2018], DistilBERT
[Sanh et al., 2019] et RoBERTa [Liu et al., 2019].

Table 1.10: Résultats d’expériences résumés des variantes d’ArtLM et des modèles de base

model accuracy F1
fine-tuning time

(min. / fold)
pre-training
time (min.)

Random Guess - 1 0.500 0.000 - -
Random Guess - 0.5 0.500 0.500 - -

word2vec embedding 0.539 0.196 - -
BERT embedding 0.581 0.320 - -

FT-Base-DistilBERT 0.838 0.826 6 -
FT-Base-BERT 0.844 0.832 12 -

FT-Base-RoBERTa 0.844 0.824 12 -

FT-Art-DistilBERT 0.846 0.826 6 10
FT-Art-BERT 0.856 0.840 12 18

FT-Art-RoBERTa 0.854 0.834 12 21

Grâce à des expériences approfondies, nous démontrons que notre ArtLM atteint une précision
de 85,6% et un score F1 de 84,0%, et qu’il surpasse tous les autres modèles de base dans une
configuration de validation croisée à 5 volets. Un résumé des résultats de précision et de score
F1 est présenté dans la Table 1.10, et les résultats détaillés complets sont présentés dans la
Section 5.4. En comparant les résultats des modèles fine-tuné (à la fois FT-Base et FT-Art)
et les modèles de base, nous constatons que notre approche de fine-tuning supervisé surpasse
largement les méthodes de corrélation basées sur l’embedding. Nous prouvons également que
l’ajout de connaissances spécifiques au domaine en poursuivant le processus de pré-entrâınement
peut contribuer à améliorer les performances du modèle, si nous nous concentrons sur les écarts
de précision entre les modèles de base et les modèles artistiques.

Le processus générique ArtLM peut facilement être généralisé à d’autres domaines, y compris
la finance. Par exemple, nous pouvons continuer à pré-entrâıner un LM avec des documents
financiers non labélisés, puis faire des recommandations d’actions ou des analyses de sentiments
avec des rapports financiers labélisés manuellement.

Nous fournissons les détails de cette étude dans le chapitre 5.
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Chapter 2

Stock Movement Prediction with
Contextualized Embedding from
BERT

Note:

• This chapter is authored by Qinkai Chen.

• This chapter is available as preprint arXiv:2107.08721.

• The method described in this chapter is applied in the trading system within ExodusPoint
Capital Management.

Abstract

News events can greatly influence equity markets. In this paper, we are interested in predicting the
short-term movement of stock prices after financial news events using only the headlines of the news. To
achieve this goal, we introduce a new text mining method called Fine-Tuned Contextualized-Embedding
Recurrent Neural Network (FT-CE-RNN). Compared with previous approaches which use static vector
representations of the news (static embedding), our model uses contextualized vector representations of
the headlines (contextualized embeddings) generated from Bidirectional Encoder Representations from
Transformers (BERT). Our model obtains the state-of-the-art result on this stock movement prediction
task. It shows significant improvement compared with other baseline models, in both accuracy and
trading simulations. Through various trading simulations based on millions of headlines from Bloomberg
News, we demonstrate the ability of this model in real scenarios.
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2.1 Introduction

Stock movement prediction has attracted a considerable amount of attention since the beginning
of the financial market, although the stock prices are highly volatile and non-stationary.
Fama [1965] showed that the movement of stock prices can be explained jointly by all known
information.

With the development of Internet, there is a rapid increase in the amount of financial news data
(Figure 2.1), and more studies have been done to use computational methods to predict stock
price changes based on financial news [Oliveira et al., 2013; Si et al., 2013; Xie et al., 2013;
Nguyen and Shirai, 2015; Luss and d’Aspremont, 2015; Rekabsaz et al., 2017; Ke et al., 2019;
Li et al., 2020a; Coqueret, 2020]. Following previous works, we explore an accurate method to
transform textual information into stock movement prediction signal.
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Figure 2.1: The number of news recorded by Bloomberg each year. For both world and European
countries, there is a significant increase in the number of news from 2014.

Schumaker and Chen [2009] use a classical feature engineering method to predict the market
behavior. More recently, deep learning methods are more frequently applied on this task. Ding
et al. [2014,0] employ structured representations to normalize a news then apply a Convolutional
Neural Network (CNN) on this formulation. Hu et al. [2018] apply an improved Transformer
model [Vaswani et al., 2017] to handle all the words in the raw text simultaneously to predict
the forward return. Luss and d’Aspremont [2015] propose a statistical learning method to
combine text data and the historical returns. Xu and Cohen [2018] improve the idea from
Luss and d’Aspremont [2015] by designing a deep neural network. Ke et al. [2019] adopts
a simple but effective classification method combining both regression and Term-Frequency
Inversed Document Frequency (TF-IDF) model [Jones, 1972]. Del Corro and Hoffart [2020]
further introduce an unsupervised method to extract market moving events from text data,
which overcomes the problem of lacking reliable labels in financial data. Wan et al. [2021]
recently propose a sentiment propagation model to jointly predict the price movement of all the
stocks.

Before applying computational models mentioned above, the first step usually involves converting
words into fixed-length vectors (these fixed-length vectors are called embeddings in natural
language processing, details are presented in Section 2.2.2). Mikolov et al. [2013b] propose
Word2Vec model to embed words based on words co-occurrence prediction and Pennington
et al. [2014] propose a similar GloVe model based on words co-occurrence frequencies. However,
both methods can only generate static non-contextualized embeddings. It means that a word is
converted to the same vector no matter its meaning or its context. This approach ignores

50



2.1. Introduction

the fact that the meaning of a word can change significantly in different contexts, which
impacts the performance of the model. As most of the previous researches rely heavily on
static non-contextualized embedding such as Word2Vec or GloVe, there can be accuracy loss.

Cer et al. [2018] and Peters et al. [2018b] propose methods to generate contextualized embeddings
by jointly considering all the words together. They published their models trained on large
English corpus. Although effective, the model is fixed and does not contain domain-specific
knowledge in finance.

Devlin et al. [2018] introduce a general-use language model called Bidirectional Encoder
Representations from Transformers (BERT). It is one of the most promising models in natural
language processing and it showed significant improvement on multiple benchmarks [Wang et al.,
2018]. The BERT model is pre-trained on a very large scale of textual data to leverage all the
features in natural languages, and it also provides the ability to fine-tune this pre-trained model
with domain-specific data without needing to start from the scratch. As we have a large amount
of financial texts, we can use them to add financial knowledge to the BERT model and generate
contextualized embeddings with domain-specific knowledge in finance from BERT.

In addition, previous researches evaluate the performance of the models based on the accuracy
calculated on all the news [Ding et al., 2015; Xu and Cohen, 2018; Hu et al., 2018]. However,
this evaluation metric does not reflect the real capability of the model since investors only care
about the news which can move the market significantly. The news identified as neutral have
little impact on investors’ decisions, as investors will simply ignore the news if they are classified
as neutral.

In this paper, aiming to solve the problems mentioned above, we want our research to have the
following characteristics:

• It adopts the contextualized embeddings instead of the static embeddings.

• The contextualized embeddings contain financial domain-specific knowledge.

• Our model has a better prediction on the news which can move the market significantly.

Hence, based on previous work (Sec. 2.2), we propose Fine-Tuned Contextualized-Embedding
Recurrent Neural Network (FT-CE-RNN) to predict the stock price movement based on the
headlines (Sec. 2.3). Using Bloomberg News dataset (Sec. 2.4), this model generates
contextualized embeddings with domain-specific knowledge using all the hidden vectors from
the BERT model fine-tuned on financial news. Then FT-CE-RNN uses a recurrent neural
network (RNN) to make use of the generated embeddings. (Sec. 2.5) We also introduce a new
evaluation metric which calculates the accuracy on various percentiles of the prediction scores
on the test set instead of the whole test set to better incorporate investors’ interests. Our
experiments show that our FT-CE-RNN achieves a state-of-the-art performance compared with
other baseline models. We also evaluate our model by running trading simulations with different
trading strategies. (Sec. 2.6)
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2.2 Related Work

2.2.1 Stock Movement Prediction

Stock movement prediction is a widely discussed topic in both finance and computer science
communities. Researchers predict the stock market using all available information, including
historical stock price, company fundamentals, third-party news sentiment score, financial news,
social media texts and even satellite images.

The most classical method is to use the historical stock prices to predict the future prices. Kraft
and Kraft [1977]; Sonsino and Shavit [2014]; Ariyo et al. [2014]; Kroujiline et al. [2016]; Jiang
et al. [2018] use time series analysis techniques to extract the patterns of historical returns, and
predict the future stock movement based on these patterns. More recently, researchers start to
use neural networks to analyze this pattern [Kohara et al., 1997; Adebiyi et al., 2012; Tashiro
et al., 2019; Chen and Ge, 2019; Mäkinen et al., 2019; Bai and Pukthuanthong, 2020].

Financial analysts usually use companies’ fundamental indicators from their financial reports to
predict the stocks’ prices in the future [Zhang and Yan, 2018]. This includes the use of earnings
per share (EPS) [Patell, 1976], debt-to-equity (D/E) ratio [Bhandari, 1988], cash flow [Liu et al.,
2007], etc. Nonejad [2021] builds a conditional model to jointly consider historical prices and
financial indicators.

With the rapid development of the natural language processing and deep learning, researchers
start to focus on predicting stock movement based on textual data, such as financial news and
social media texts, which were viewed as difficult to process systematically. Financial news
data vendors such as Bloomberg, ThomsonReuters and RavenPack all include their proprietary
sentiment analysis on the news. Coqueret [2020] thoroughly analyzes the sentiment classification
given by Bloomberg and finds disappointing results on its predicting power. Ke et al. [2019]
include the RavenPack’s proprietary score as a benchmark and find it less performing than other
models.

Hence, more researchers propose their own natural language processing models to improve the
predictability based on financial news. Luss and d’Aspremont [2015] propose an improved Kernel
learning method to extract the features in the texts. Ke et al. [2019] use statistical learning
methods to determine the sentiment of the words in the news. More recently, computer scientists
begin using state-of-the-art deep learning techniques to solve this problem. Ding et al. [2015];
Hu et al. [2018]; Xu and Cohen [2018]; Li et al. [2020a] propose different deep learning models
to extract information from both financial news and social media texts.

There are also other researches which use uncommon data to predict future stock prices. The
data includes key people compensation [Cooper et al., 2016], satellite images [Donaldson and
Storeygard, 2016] and the pictures included in the news [Obaid and Pukthuanthong, 2021].

2.2.2 Contextualized Embedding

In the natural language processing, the first step usually involves transforming words or sentences
into fixed-length vectors to allow numerical computations. These fixed-length vectors are known
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as the embeddings of the words or the sentences.

Historically, researchers use one-hot embeddings [Stevens et al., 1946] to encode words. However,
the dimension of the one-hot embedding is large since each unique word takes one dimension.
Hence, researchers start to develop methods to make the word embeddings denser.

The most widely used methods for word embedding are Word2Vec [Mikolov et al., 2013b] and
GloVe [Pennington et al., 2014], both of which are based on word co-occurrences. Such models
take in a large number of texts and output a fixed vector for each word in the texts. The more
frequently the two words co-occur, the more correlated two embeddings are. Once the model is
trained, the embeddings of the words no long change, therefore we call these embeddings static
embeddings. Such model generates the same embedding for one word no matter its context,
although the meanings of the words can depend on the context in which this word occurs.

Researchers propose contextualized embeddings to solve this issue. Instead of taking only one
words as input, the contextualized embedding model accepts the whole sentence as its input. The
model then generates the embeddings for each word in the sentence by jointly considering the
word and all the other words in the sentence. Cer et al. [2018] proposes Universal Sentence
Encoder (USE) to encode the whole sentence contextually. However, USE only gives the
embedding of the sentence as a vector without specifying the embedding of each word. Peters
et al. [2018b] proposed Embeddings from Language Models (ELMo) to embed words based on
their linguistic contexts, but ELMo is trained on general English language, making the generated
embeddings lack of financial domain-specific knowledge. However, Yang et al. [2020b] showed
domain-specific model outperforms general models in most of the tasks.

Recent researches on general-use language model such as BERT [Devlin et al., 2018] and XLNet
[Yang et al., 2019] reported impressive result on all natural language processing tasks. More
interestingly, these models propose a way to fine-tune its pre-trained model on general English
with domain-specific data.

Hence, we propose FT-CE-RNN to complement existing researches. FT-CE-RNN generates
contextualized embeddings with domain-specific knowledge from the BERT model, it then makes
the stock movement prediction based on this more advanced embedding.

2.3 Problem Formulation

Suppose that we have a stock s with a headline hs,t recorded at time t, and the headline has
N words, we denote them by w1, ..., wN . We first need to transform them into fixed-length
embeddings. Suppose that the length of the embedding is le, this process can be written as:

Embi = fs(wi) (2.1)

where Embi ∈ Rle is the embedding of the word wi and fs denotes the static embedding encoder.
In this case, each word has a fixed embedding independent of its context.

A contextualized embedding encoder has the same function of converting a word into a vector,
unless it considers all the words in a sentence together. We use fc to denote this contextualized
embedding encoder, it can be written as:

Embi = fc(wi|w1, ..., wN ) (2.2)
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We concatenate the embeddings of all words to get the embedding of the headline hs,t. We
define the embedding of this headline as:

Embhs,t = [Emb1, ..., EmbN ] (2.3)

where Embhs,t ∈ Rle×N .

Following the work of Luss and d’Aspremont [2015]; Ding et al. [2015]; Xu and Cohen [2018];
Ke et al. [2019], we formulate the stock movement prediction as a binary classification task1. It
means that we predict if a news has a positive impact or a negative impact on the related
stock.

We define its market-adjusted return rs,t as

rs,t =
Ps,t+∆t

Ps,t
−
Pm,t+∆t

Pm,t
(2.4)

where Ps,t denotes the price of stock s at time t and Pm,t denotes the value of the equity index
at time t.

We notice that it is necessary to use market-adjusted return instead of the simple return, as
the information contained in the price change is partially due to the information related to this
stock (such as news), and also partially due to the information related to other macroeconomic
information (such as interest rate, fiscal policies, etc.). As the macroeconomic effect impacts all
stocks, it can be explained by a weighted sum of all stocks, such as market index. We can simply
remove this impact by subtracting the index return from the stock return, and this adjusted
return can better explain the impact of the news.

Most researches in the stock movement prediction based on news simply suppose that all the
news induce the market change in the same way [Luss and d’Aspremont, 2015; Xu and Cohen,
2018; Hu et al., 2018; Ke et al., 2019], and therefore use the same ∆t to calculate the forward
returns of all news. However, Fedyk [2018] suggests that the news during the trading hours and
the news outside the trading hours have different market impact.

Hence, for different news, we choose different ∆t. For example, for the news published during
the trading hours, the price can change in several minutes after the arrival of the news. In this
case, we can choose a smaller ∆t of several minutes or several hours. However, for the news
published out of the trading hours, as the market is already closed, we cannot observe the effect
of the news until the next market open. Therefore, we need to choose a ∆t of several days.

We define the stock price movement as:

Ys,t =

{
1, rs,t > 0

0, rs,t ≤ 0
(2.5)

The goal is to predict Ys,t from the embeddings of the headlines Embhs,t . It can be written as:

Ŷs,t = g(Embhs,t) (2.6)

1 We can also formulate this problem as a multi-class classification task [Pagolu et al., 2016]. It means that,
instead of classifying a news into positive news and negative news, we can classify them into positive news,
negative news or neutral news, making it a three-class classification task. Moreover, we can classify a news into
different return intervals, making it a multi-class classification task. However, we find that the performance with
multi-class classification setup is less impressive. We provide the details of this study in Section 2.6.7.
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where g represents the prediction model.

2.4 Data

2.4.1 Data Description

The dataset that we use is Bloomberg News2. In this dataset, each entry contains a timestamp
showing when this news is published, a ticker which tells the stock related to this news and the
headline of this news. In addition to the necessary information above, there are two fields given
by Bloomberg’s proprietary classification algorithm. The score is among -1, 0 and +1, which
indicates if the news is either negative, neutral or positive. Confidence is a value between 0
and 100 related to score. A higher confidence value means that Bloomberg’s model is more sure
about its score. Bloomberg’s classification will serve as one of the benchmarks for our prediction
model. We present a sample dataset in Table 2.1.

Table 2.1: A small sample from the Bloomberg News dataset

Headline TimeStamp Ticker Score Confidence

1st Source Corp: 06/20/2015 - 1st
Source announces the promotion
of Kim Richardson in St. Joseph

2015-06-20
05:02:04.063

SRCE -1 39

Siasat Daily: Microsoft continues
rebranding of Nokia Priority
stores in India opens one in

Chennai

2015-06-20
05:14:01.096

MSFT 1 98

Rosneft, Eurochem to cooperate
on monetization at east urengoy

2015-06-20
08:01:53.625

ROSN RM 0 98

We need to address that in our dataset, we only have the headlines of the news instead of the
whole article.

In our experiment, we use the news data on all the stocks from the STOXX Europe 600 index3

which represents the 600 largest stocks of the European market. In order not to overfit, we
select a short period (from 01/01/2016 to 30/06/2018) as our training set and another short
period (from 01/07/2018 to 31/12/2018) as our development set. We tune the parameters of the
models only based on this subset of the data, we then test on the whole period (from 01/01/2011
to 31/12/2019) on a 3-year rolling basis. It means that we generate the classification result of
the year y using model trained between y−3 and y−1, without varying the parameters initially
obtained. Detailed statistics of the dataset are in Table 2.2. We can also find the number of
news in each year from Figure 2.1.

In addition to the Bloomberg news dataset, we also use the cooperate action adjusted share

2https://www.bloomberg.com/professional/product/event-driven-feeds/
3https://www.stoxx.com/index-details?symbol=SXXP
4We note that we do not simply apply our model trained on the training set on the test set. The training set

and the development set are only used to find the hyper-parameters for our models. We generate the scores on
test set using different models trained on a 3-year rolling basis, as described in section 2.4.1

55



Chapter 2. Stock Movement Prediction with Contextualized Embedding from BERT

Table 2.2: Statistics of the Bloomberg News dataset

Train Dev Test4

Total news 1,616,922 316,944 5,253,345
Word counts 17,650,629 3,554,324 55,410,309
From date 01/01/2016 01/07/2018 01/01/2011
End date 30/06/2018 31/12/2018 31/12/2019

(a) In trading hours (b) Outside trading hours

Figure 2.2: The distribution of the rs,t for both the news in the trading hour and those outside
the trading hour. The returns are calculated on all the news in the training set. For the news in
the trading hour (Figure (a)), we use the forward return of 30 minutes (∆ti = 30minutes), and
for those outside the trading hour (Figure (b)), we use the forward return of 1 day(∆te = 1day).
We can see that the market adjusted returns are symmetrically distributed.

prices at market close and intraday minute bar share prices for all the stocks. The share prices
are used to label our data and simulate our trading strategies.

2.4.2 Data Labelling

For this supervised learning task, we need to provide our model with the ground-truth as its
target. However, our data is simply the headlines of the financial news, it does not tell us if
a news is positive or negative. Hence, we need to give each news in the training set a label
(positive or negative) before training our model.

The intuition behind our labelling method is simply that if a news is positive, the investors
will start to overbuy the related stocks, the stock should therefore outperform the market and
vice versa. We use Equation 2.4 to calculate the market adjusted return for each news. As
discussed in Section 2.3, we consider the different effects of the news which occur during the
trading hour5 and those outside the trading hour. We use different ∆t (Eq. 2.4) for the news
during the trading hours and outside the trading hours. For the news inside trading hours, we
choose ∆ti and for the news outside the trading hours, we use ∆te.

6 We show an example of
the distribution of the returns for all the news in Figure 2.2.

59:00 to 17:30 CET for most European markets
6For ∆ti, we test 5,30,60,120 minutes; for ∆te, we test 1,2,3,5 days.
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We label the data based on the market-adjusted return mentioned above. As our task is to
identify market-moving news which investors focus on, we need to remove news which do not
have significant impact on the price. As we found that the return distribution is quite balanced
for the training set (Figure 2.2), we simply label the 15% news with most positive return as 1
and the 15% news with most negative return as 0. This can be written as:

Ys,t,train =


1, rs,t in top 15%

0, rs,t in bottom 15%

removed, otherwise

(2.7)

where Ys,t,train is the label for the news es,t for stock s recorded at time t in the training set.

However, for development and test sets, we label all news with positive return as 1 and all news
with negative return as 0. This can be written as:

Ys,t,dev/test =

{
1, rs,t > 0

0, rs,t ≤ 0
(2.8)

This difference in labelling is simply to avoid the information leakage. In real-life scenario we
cannot know the forward return of a news when it is published. Therefore, we cannot know if
the news is in the top 15-percentile or the bottom 15-percentile. We are supposed to give each
news a score when it is published regardless its forward return.

However, we can choose to exclude a news according to its score when calculating the metrics, as
this information is available immediately after we receive the news. We use this idea to construct
different test sets to evaluate of model. We present the details in Section 2.6.2.

2.5 Prediction Model

The general procedure of this stock movement prediction task is shown in Figure 2.3. In
this procedure, we first input the data into different language models to get different news
embeddings. We then use a prediction model such as RNN to generate predictions for all news.
We mainly focus on the language model and the prediction model in this study.

There are two main components in our procedure: a contextualized embedding encoder from
BERT model and a Recurrent Neural Network (RNN) which takes the contextualized embedding
as input and outputs the classification probability for both classes.

2.5.1 Contextualized Embedding Encoder from BERT

The Bidirectional Encoder Representations from Transformers (BERT) proposed by Devlin et al.
[2018] is a widely used language model in the natural language processing applications. It
is first pre-trained on very large scale data (WikiBooks7 and Wikipedia8) to learn the basic
characteristics of a language. After this pre-training phase, we can obtain a pre-trained base

7https://en.wikibooks.org/
8https://en.wikipedia.org/
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Figure 2.3: An illustration of the stock movement prediction procedure.

BERT model for all other downstream tasks (such as text classification). This pre-training
process is computationally intensive, we use the pre-trained BERT model published by Google9.
We continue the pre-training process using a large number of financial documents including
financial reports and the news headlines from all the regions (only the news associated with the
stocks from our European stock universe are used in the following fine-tuning process). We have
100 times more tokens in these unlabeled documents than the labeled headlines associated with
European stocks. This process is to ensure that the model has a financial language context.

Figure 2.4 shows the structure of BERT model. It has L layers and each layer has N nodes,
each node is a Transformer [Vaswani et al., 2017]. The first layer takes a tokenized headline as
input and the BERT model generates N ×L hidden vectors, denoted by Ti,j . The first token at
the first layer is a special [CLS] token reserved for fine-tuning.

For a specific downstream task, we can fine-tune the base BERT model suitable for this specific
task. It means that we do not initialize the parameters of BERT model randomly, we use the
pre-trained BERT model as our initial state instead. We update the parameters in the base
model with our domain-specific data. This approach adds domain knowledge to the large scale
language model [Yang et al., 2020b], it can help the BERT model better understand the texts
in specific situations. In our case, we can fine-tune the base BERT model with our labelled
financial news data mentioned in Section 2.4.2 to make it specialize in financial texts.

The fine-tuning process is straightforward. We input the class label (0 or 1) together with the
tokenized headline into the first layer of a pre-trained BERT model. We set the target to the
class label and loss function to cross-entropy, defined as:

loss =
∑

Yiln(P+
i ) + (1− Yi)ln(1− P+

i ) (2.9)

where Yi is the label for the news i and P+
i denotes the probability that the news i is positive

9https://storage.googleapis.com/bert models/2020 02 20/uncased L-12 H-768 A-12.zip
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Figure 2.4: BERT model with input headline ”company lost about 80 percent of its market value
after interim data” and the maximum length of model is set to 10 (N = 10). The last two
words interim and data are therefore trimmed. There are L layers in this BERT model. Toki
denotes the i-th token of the tokenized news and N denotes the maximum length of a headline.
Ti,j represents the hidden vector for the j-th transformer at layer i. The first [CLS] label is
simply a special string we choose to signify the class of this headline. This label is only used
when fine-tuning the model, we leave it blank when we generate the embeddings. The original
method to use BERT as classification model is to use directly [CLS] vector to represent the
whole sentence, while we choose to use all hidden vectors at one layer to represent the sentence.
The embedding generated with the model is shown in Equation 2.11.

given by the model. We use back-propagation [Hecht-Nielsen, 1992] to update the parameters
in the model. We repeat such operation for several epochs until the loss converges.

In order to generate the contextualized embedding, we can either directly use the base BERT
model or use the fine-tuned model. We first tokenize our headlines using SentencePiece tokenizer
[Kudo and Richardson, 2018]. If the number of tokens is smaller than N , we simply pad it to
N tokens by adding null tokens at the end. If there are more than N tokens, we remove the
last tokens to make this sentence have exactly N tokens. We input these tokens into pre-trained
BERT model as shown in Figure 2.4 with the first token which stands for [CLS] label left blank.
Suppose that our BERT model has L layers, we can then generate L different embeddings,
denoted by Embbase,l. We have,

Embbase,l = [Tl,2, Tl,3, ..., Tl,N ] (2.10)

where Embbase,l is a size(Tl,i) × (N − 1) matrix representing this headline and l denotes the
layer from which we generate the embedding. We have 1 ≤ l ≤ L.
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Similarly, we can generate another L embeddings from the fine-tuned BERT model, denoted by
Embtuned,l. We have,

Embtuned,l = [T
′
l,2, T

′
l,3, ..., T

′
l,N ] (2.11)

where T
′
l,i denotes the hidden vector for the i-th token at the l-th layer for the fine-tuned model.

2.5.2 RNN Prediction Model

The structure of our prediction model is simple and straightforward, it is shown in Figure 2.5.

Figure 2.5: Structure of our RNN network. Celli,j denotes the j-th cell on the i-th layer. The
cell can be either Vanilla RNN, LSTM or GRU. In addition, the output size reduces when it
approaches the last layer of the model.

There are several layers of cells which can either be Vanilla RNN [Cleeremans et al., 1989],
Long-Short Term Memory (LSTM) [Hochreiter and Schmidhuber, 1997] or Gated Recurrent
Unit (GRU) [Cho et al., 2014]. The size of output at each layer shrinks in order to reduce the
dimension of our features gradually and to make the remaining features more meaningful. Two
neighbor layers are connected by a dropout to overcome the overfitting problem in the network.
At the end of the last layer, a softmax is added to calculate the probability for each class based
on the last vector on the last layer.

Suppose that we choose to use Embbase,l to represent a sentence. We first initialize the
parameters in the RNN model randomly and input the embeddings of tokens (Tl,i) sequentially
into the cells (Cell1,i) in the first layer of the recurrent neural network. At the same time, we
set the target to the corresponding label of the headline. We use the same cross-entropy loss
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mentioned in Equation 2.10 as our loss function. We use the same back propagation procedure
in Section 2.5.1 to update the parameters in the model until we have a stable loss.

2.6 Experiments

In this section, we introduce our experiment setup and results in detail. We also include the
results of some baseline models to prove the effectiveness of our model. In addition to the final
result, we add some ablation experiment results to show the effect of some factors in our model.

2.6.1 Training Setup

We use the pre-trained 12-layer, 768-dimension, 12-heads BERT model10 to generate Ebase,l, then
we fine-tune this base model using our labelled dataset with the method mentioned in section
2.4.2.11 We choose the best-performing fine-tuned model to generate Etuned,l. Empirically,
the layer of BERT used as embedding should not be too close to the first layer, otherwise the
contextualized embedding will be too similar to the static embedding. Hence, we only test
embeddings with l = L,L− 1 or L− 2. This choice will be discussed in detail in Section 2.6.6.

The maximum length of a sentence is set to 32 tokens, as there are at most 29 tokens for all
headlines in our dataset. If there are fewer tokens, we pad it to 32 with null tokens.

For our RNN model, the cells are set to be LSTM. We use a four-layer single-directional RNN12

with a dropout rate of 50%.

2.6.2 Evaluation Metrics

Because of the huge volume of news that we receive daily, it is not realistic for either human
investors or systematic trading algorithms to react on all news. Otherwise, we lose a considerable
amount of transaction fees on the news which do not significantly move the market. It is more
logical that an investor first reads the news, then buys or sells the stock if he thinks that the
news can have substantial impact on the stock price. If he thinks that the news is neutral, he
will simply ignore the news. In this type of neutral-insensitive scenario, evaluating our model
on all news is less meaningful. Instead, we evaluate our model only on certain ”extreme” news
chosen based on their sentiment classification results.

We define the score of a news, denoted by Snews:

Snews = (P+(news)− 0.5)× 2 (2.12)

where P+(news) denotes the probability that this news belongs to the positive class given by
the prediction model. Snews is therefore a value between -1 and 1.

10This is the base pre-trained model published by Google, it is available at
https://storage.googleapis.com/bert models/2020 02 20/uncased L-12 H-768 A-12.zip
11We choose batch size: 32, 64, 128 and learning rate: 2e-6, 5e-6, 1e-5
12The hidden size for each layer is set to 256, 128, 64, 32 respectively.
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We use Pn to denote the nth percentile of all scores on the training set. We can then choose
the set on which we want to evaluate our model. We define this set E2n by:

E−n = {news|Snews < Pn}
E+

n = {news|Snews > P100−n}
E2n = E−n ∪ E+

n

(2.13)

We assume that the distributions of scores on the training set and the test set are the same. It
should contain about n% highest-score news and n% lowest-score news from the test set. We
evaluate our model on these subsets of news instead of all news in the test set.

Standard Metrics

Given a confusion matrix
( tp fn
fp tn

)
which contains the number of samples classified as true positive

(tp), false positive (fp), true negative (tn) and false negative (fn). We use both the accuracy and
the Matthews Correlation Coefficient (MCC) [Matthews, 1975] to evaluate our models. These
two values are defined by:

Accuracy:
tp+ tn

tp+ tn+ fp+ fn
(2.14)

Matthews Correlation Coefficient (MCC):

tp× tn− fp× fn√
(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)

(2.15)

Trading Strategies

However, those two metrics introduced above do not perfectly reflect the reality, as the profits
are quite different when the price goes up significantly or mildly, although they are both counted
as true positive. Hence, it is necessary to simulate these trades on real markets. We use two
simple trading strategies for simulations.

Strategy 1 (S1)

We simply follow the strategy used by Ke et al. [2019].

Before each market close, we search for all the news belonging to En with a maximum age of A
days. We group the selected news by stock and we calculate the average score for each stock.
We choose the 20 stocks with the highest scores, our target position for these stocks is $T. We
also choose the 20 stocks with the lowest scores, our target position for these stocks is -$T.

Strategy 2 (S2)
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The advantage of S1 is that it perfectly balances the long leg and the short leg.13 As such, we
have no exposure to the market, and it reduces the risk of the market movement. However, the
fallback of S1 is that it only focuses on the highest scores instead of considering all the stocks.
In this case, we will not be able to fully use our predictions. Hence, we design the following
strategy to solve this problem:

1. We first calculate the average score for each stock using the same method as described in S1.

2. We choose all the stocks with positive scores, s+
i denotes the score for the stock i.

3. The target position for the stock i is $20T × s+
i /
∑

j s
+
j .14

4. We invest in the stocks with negative scores in the same way. For a negatively scored stock
i, we invest −$20T × s−i /

∑
j s
−
j .

This strategy not only uses all the available classification results, but also has no exposure to
the market as S1, since the long position and the short position are both 20T .

To evaluate the performance of these strategies, we use the following two commonly used
indicators in finance.

Annualized return: defined by

1

N

N∑
t=1

rt ×D (2.16)

where D is the number of trading days in one year15, and rt denotes the daily return of the
portfolio for the day t, defined by the ratio of the profit on day t to the total position on day t.

Annualized Sharpe Ratio: defined by

r

σ(r)
×
√
D (2.17)

r denotes the mean of all the ri and σ(r) represents the standard deviation all the ri.

2.6.3 Baselines and Proposed Models

We use the following models as baselines.

• NBC [Maron, 1961]: Naive Bayes Classifier

One of the most traditional language classification models based on word frequency.

13 The long leg means the total amount invested positively, the short leg means the total amount invested
negatively

14 The multiplier 20 is to guarantee the homogeneity with S1. We invest $20T for each leg in both strategies.
15For the sake of simplicity, we choose 250 as the number of trading days for one year.
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• SSESTM [Ke et al., 2019]: Supervised Sentiment Extraction via Screening and Topic
Modeling.

A regression model based on word frequency and stock returns.

• Bloomberg (Proprietary): Bloomberg Sentiment Score

The sentiment score from Bloomberg’s proprietary model, which comes along with the
Bloomberg News dataset. An example of this sentiment score is shown in Table 2.1.

• BERT [Devlin et al., 2018]: Bidirectional Encoder Representations from Transformers

A general and powerful language model for a wide range of NLP tasks. We directly use
the [CLS] label as the final prediction, as proposed by the author.

• FinBERT [Yang et al., 2020b]: Financial Sentiment Analysis with BERT

The same structure as the BERT model but pre-trained with financial domain-specific
data.

To make a detailed analysis of the improvement brought by our proposed models, in addition
to the final version of our model (FT-CE-RNN), we add two other intermediate variants of our
RNN model.

• RNN: Recurrent Neural Network

The recurrent neural network introduced in Section 2.5.2. Instead of using contextualized
embeddings, we use the static Word2Vec embedding as its first layer.

• CE-RNN: Contextualized Embedding - Recurrent Neural Network.

The network structure is the same as RNN, but we use contextualized embedding generated
from base BERT model instead of Word2Vec.

• FT-CE-RNN: Fine-Tuned - Contextualized Embedding - Recurrent Neural Network

The same RNN using contextualized embedding generated from fine-tuned BERT.

2.6.4 Results

The detailed results for standard metrics are shown in Table 2.3 and Figure 2.6. We also list
the results from trading simulations in Table 2.4.

We find that in terms of accuracy, our FT-CE-RNN outperforms all the other baselines models.
Especially, comparing the accuracy of RNN and FT-CE-RNN, there is an improvement of 4.1%
when we test on the 1% most extreme news (E1). This result shows the power of contextualized
embedding against static embedding. We also notice that there is an improvement of 0.9%
compared with BERT result. This result explains that using all hidden vectors instead of
only one [CLS] vector helps improve the result. However, if we directly use the embedding
from the base BERT (CE-RNN) instead of the fined-tuned BERT (FT-CE-RNN), there is a

161% signifies that we test our result on E1, which includes about 1% of all news on the test set.
17In Bloomberg dataset, we have about 4% of the news with a maximum level score, therefore we have the

same result for E1 and E2.
18The annualized return, presented in percent.
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Table 2.3: Accuracy and MCC of baseline models and our proposed RNN variants.

1%16 2% 5% 10%

Acc MCC Acc MCC Acc MCC Acc MCC

NBC 59.8 0.2 56.1 0.12 54.3 0.09 53.4 0.07
SSESTM 56.3 0.13 55.4 0.11 54.4 0.09 53.2 0.06

Bloomberg17 58.3 0.42 58.3 0.42 58.0 0.34 54.5 0.31
BERT 73.6 0.46 66.5 0.45 59.3 0.43 56.1 0.42

FinBERT 73.9 0.46 66.5 0.45 59.2 0.43 55.6 0.42

RNN 71.4 0.45 63.4 0.44 56.7 0.43 54.3 0.42
CE-RNN 70.9 0.42 63.8 0.28 57.9 0.16 54.7 0.09

FT-CE-RNN 74.5 0.48 67.8 0.45 59.3 0.44 56.6 0.43
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Figure 2.6: Accuracy and MCC results of different models varied with En, the horizontal axis
represents the value of n

clear disadvantage. This result shows the necessity of including the domain knowledge in the
embeddings.

In addition, we observe that all our models have a significant margin compared with the
Bloomberg and SSESTM sentiment score, which is completely independent of our data labelling
and modelling process, this result can prove the efficiency of our models compared with other
widely used models in the industry.

In our trading simulations, we use a look-back window of 5 days (A = 5 days). We find that
the result of our FT-CE-RNN outperforms all other models in most of the cases. The most
significant improvement is on Sharpe Ratio. When trading on the 1% most extreme news using
strategy S2, there is an improvement of 0.69 (49%) in Sharpe ratio and an improvement of
6.62 (51%) in return if we compare BERT and FT-CE-RNN. It means that our model using
contextualized embedding is not only more profitable but also more stable.

We can also find that S2 performs better than S1, since S2 uses all the signals while S1 only
uses the signals on the top/bottom stocks. This proves that our classification is valid for most
of the stocks, making it a robust method.
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Table 2.4: Trading simulations of baselines and proposed models without transaction costs.

Strategy Model
1% 2% 5%

Ret.18 Sharpe Ret. Sharpe Ret. Sharpe

S1

NBC 9.61 1.09 2.35 0.26 2.44 0.27
SSESTM 2.39 0.41 1.57 0.24 2.74 0.35

Bloomberg 8.83 1.19 8.83 1.19 8.03 1.10
BERT 9.33 1.42 8.08 1.11 8.21 1.09

FinBERT 8.83 1.22 8.29 1.10 7.86 1.13

RNN 9.86 1.43 8.06 1.13 6.43 0.89
CE-RNN 8.39 1.07 7.31 0.99 7.62 1.01

FT-CE-RNN 10.75 1.50 12.31 1.70 11.32 1.50

S2

NBC 7.93 0.62 0.57 0.06 0.80 0.15
SSESTM 4.75 0.47 3.02 0.35 2.76 0.38

Bloomberg 10.76 1.61 10.76 1.61 9.82 1.56
BERT 13.10 1.42 11.42 1.56 9.87 1.53

FinBERT 11.35 1.24 9.85 1.21 12.85 1.97

RNN 17.53 1.75 15.47 1.72 12.70 1.79
CE-RNN 12.58 1.33 10.37 1.25 8.29 1.05

FT-CE-RNN 19.72 2.11 18.39 2.49 15.01 2.31

An example of trading simulation is shown in Figure 2.7. It shows how our profit evolves with
time. We observe that FT-CE-RNN is not only better on profitability and stability but also on
the absolute profit in dollars.

2.6.5 Transaction costs

Our trading simulations ignore transaction costs thus far, since the primary goal of this research
is to prove the effectiveness of our sentiment model with contextualized embedding. The
transaction costs have no impact on the result because all the models are in the same no-cost
environment.

That said, applying this model in real-life trading is another separate but interesting question.
To understand the real gain of our FT-CE-RNN model for the asset management, we rerun our
trading simulations with transaction costs.

In our simulations, we assume a transaction cost of 4bps19 proportional to the daily turnover20.
The simulation results with transaction costs are shown in Table 2.5.

Although the transaction costs cut our profits significantly, we can still have a profitable margin
when using our FT-CE-RNN model.

19basis points, 10−4

20defined as |posi − posi−1| for day i
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Figure 2.7: Trading simulation result in absolute profit. This trading simulation is run on 1%
most extreme news (E1) using strategy S2. We also include the market return, represented by
Europe STOXX 600 Index. We can see our models largely exceed the market return and the
Bloomberg sentiment score.

2.6.6 Effect of Embedding Layer

In this section, we discuss our choice of BERT hidden layer to be used as embedding.

Empirically, the final layer of BERT model should be used to generate our contextualized
embedding as the final layer is more ”mature” and contains more information compared with
other layers which are closer to the first layer. However, our result listed in Table 2.6 shows the
opposite.

We find that the best result for CE-RNN is acquired when we use layer L while the best result
for FT-CE-RNN is obtained when using layer L − 1. The reason for this phenomenon is that
the last layer of the fine-tuned BERT is biased towards the classification result, since the goal
for the fine-tuning process is to make the first token of the last layer close to the classification
target. If we use the last layer of the fine-tuned BERT as the input for RNN, we are simply
replicating the classification process of the BERT, instead of improving the result. Using one
deeper layer (L− 1) helps reduce this bias [Xiao, 2018]. However, the base BERT does not have
this bias on the last layer since it has no previous knowledge on the training set. This explains
why CE-RNN has a better performance when using the embedding from the last layer (L).

If we use an even lower layer to generate contextualized embedding, such as L − 2, the
performance declines as it is too close to the embedding layer and lacks contextualized
characteristics.

21L denotes the last layer of the BERT model, L− n represents the n-th last layer of the BERT model.
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Table 2.5: Trading simulations with transaction costs. The result is obtained based on E1 test
set using the trading strategy S2.

Model
No cost With cost

Ret. Sharpe Ret. Sharpe

NBC 7.93 0.62 2.09 0.16
SSESTM 4.75 0.47 -1.80 -0.18

Bloomberg 10.76 1.61 4.49 0.67
BERT 13.10 1.42 5.98 0.65

FinBERT 11.35 1.24 3.88 0.42

RNN 17.53 1.75 11.57 1.15
CE-RNN 12.58 1.33 6.15 0.65

FT-CE-RNN 19.72 2.11 12.60 1.35

Table 2.6: Accuracy using different layers of BERT model as contextualized embedding. The
result is acquired on the E1 test set.

Embedding layer L21 L− 1 L− 2

CE-RNN 70.9 68.1 63.3
FT-CE-RNN 73.0 74.5 66.7

2.6.7 Effect of Classification Classes

During our initial researches, we also explored the possibility of using a 3-class classification
instead of a 2-class classification. It means that we do not classify a news into a positive or a
negative news, we classify if a news is either positive, negative or neutral. This is the method
adopted in the Bloomberg’s proprietary model.

Table 2.7: The accuracy for the 2-class classification and the 3-class classification model. The
result is based on the test set E1. For 3-class classification, we choose the n

2 % largest scores for
the positive class and the n

2 % largest scores for the negative class as our En. The guarantees
the same number of the news considered in both cases.

Acc 1% 2% 5% 10%

2-class 74.5 67.8 59.3 56.6
3-class 61.0 58.4 55.5 53.6

The result of using a 3-class classification model is shown in Table 2.7. We find a significant
worse performance if we add another possibility to our model. This is because a 3-class model
supposes a clear difference between the market-moving news and the neutral news, however, this
is not always the case. It is not obvious to find a threshold, above which the news is positive and
below which the news is neutral. In this scenario, we are not able to construct a clear training
set for our model to learn the difference between a neutral news and a market-moving news.

Hence, in our final model, we decide to classify the news into two classes instead of three.
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2.6.8 Qualitative Analysis of the Classification Result

We analyze the news in E1 to see if there is any pattern, for example, some frequent words in
them. We include the 50 most frequent words appeared in E+

0.5 and 50 most frequent words in
E−0.5 in Appendix 2.A, along with their frequencies. We exclude all the stopwords in English,
such as to, for, a, etc.

We can find that for the news identified as the most positive, some common words include buy,
upgrade, raise, etc. For the news identified as the most negative, downgrade, cut and miss are
among common words. These are also logical keywords for the humans, making the result from
the neural network intuitive.

We can also find in this collection that there are also some less natural words, such as fly, say
neutral, etc. However, as these words appear in both categories, the effect of such words is
neutralized if we empirically assume the effect of a word is its positive impact minus its negative
impact.

This result is similar to the result we get from the word frequency-based method, such as NBC
and SSESTM. However, we demonstrate that our FT-CE-RNN model is significantly more
powerful than these two baseline models (Section 2.6.4). This phenomenon implies that our
model is capable of capturing complex information in the news on top of the word frequency.

2.7 Conclusion

We build the whole pipeline for the stock movement prediction task with headlines from financial
news, including labeling the news, generating contextualized embedding, training a neural
network model, validating the model with various metrics and building trading strategies based
on the model output.

We design a FT-CE-RNN model which uses fine-tuned contextualized embeddings from BERT
instead of the traditional static embeddings. We also introduce our new evaluation metrics
focusing on market-moving news, which are more suitable for asset manager’s needs.

Through various experiments on the Bloomberg News dataset, we demonstrate the effectiveness
of our FT-CE-RNN model. We find a better performance, in both accuracy and trading
simulations, than other widely used baseline models. We also include other ablation studies
to discuss the choice of some important parameters and to demonstrate the intuitiveness of the
result.

In the future, we will continue our research on the stock movement prediction using natural
language processing methods based on longer texts (such as earning call transcripts, financial
reports, etc.) instead of the headlines. By using more information, we aim to build a model
which helps achieve better stock movement prediction result.
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2.A Frequent Words in Market Moving News
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Table 2.A.1: The most frequent words in the most positively scored news and the most negatively
scored news

positive negative

word frequency word frequency

buy 0.0344 downgraded 0.0252
upgraded 0.0187 cut 0.0240

deal 0.0172 fly 0.0173
said 0.0172 bank 0.0142

raised 0.0158 misses 0.0110
fly 0.0131 falls 0.0106

order 0.0107 neutral 0.0092
talks 0.0094 hold 0.0092
gets 0.0075 cuts 0.0088

neutral 0.0071 sell 0.0086
raises 0.0065 buy 0.0078
wins 0.0054 miss 0.0078
hold 0.0054 estimates 0.0073

billion 0.0053 outlook 0.0061
street 0.0052 sales 0.0058
stake 0.0048 profit 0.0054
unit 0.0047 earnings 0.0054

insider 0.0046 tradegate 0.0050
buyback 0.0041 says 0.0049
outlook 0.0038 sees 0.0043

offer 0.0037 downgrades 0.0036
agrees 0.0036 shares 0.0036
buys 0.0035 revenue 0.0035
says 0.0034 underperform 0.0029

group 0.0032 underweight 0.0029
berenberg 0.0030 credit 0.0028

near 0.0029 close 0.0028
sell 0.0029 lower 0.0027
bid 0.0026 results 0.0027

tradegate 0.0026 loss 0.0025
approval 0.0025 leave 0.0025

new 0.0025 forecast 0.0023
buyout 0.0025 guidance 0.0022
bank 0.0025 growth 0.0022

acquire 0.0025 overweight 0.0021
outperform 0.0024 negative 0.0020

rises 0.0023 downgrade 0.0020
worth 0.0023 outperform 0.0020

eu 0.0022 loses 0.0019
contract 0.0022 weight 0.0019

close 0.0021 seeking 0.0019
overweight 0.0020 drops 0.0018

credit 0.0020 equal 0.0018
set 0.0019 close 0.0017
fiat 0.0018 new 0.0017

gains 0.0018 perform 0.0017
sees 0.0017 indicated 0.0016

merger 0.0017 price 0.0016
takeover 0.0016 target 0.0016
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2.B Overview of Natural Language Processing

In this section, we introduce the necessary knowledge in the Natural Language Processing (NLP)
used in this chapter and the following chapters.

The goal of NLP is a computer capable of understanding the contents of documents. The NLP is
seen as a challenging problem since Turing [2009] proposed using the automated interpretation
and generation of natural language as criterions of intelligence.

In early ages, researchers adopt statistical models to achieve this goal. For example, Mosteller
and Wallace [1963] propose using Näıve Bayes Classifier (NBC, Section 2.B.1) as a text
classification model by counting the word appearance in different classes. Luhn [1957] and
Jones [2004] further improve the NBC model by proposing Term Frequency - Inverse Document
Frequency (TF-IDF) model which discriminates the most frequent words in the documents with
Inverse Document Frequency.

Nowadays, with the development of the machine learning, researchers propose using neural
networks to handle texts and achieve better performance compared with statistical models.
Mikolov et al. [2010] prove the efficiency of the Recurrent Neural Network (RNN, Section 2.B.3)
as a language model. It solves the problem that statistical models do not handle properly the
context of a word, since the hidden state in the RNN can represent information about all the
preceding words.

More recently, transfer learning (Section 2.B.4) approach has attracted more attention in the
NLP community. The idea is to first train a model with very large corpus to extract the
basic knowledge in general English and then fine-tune this model with domain specific data.
This approach is similar to the learning procedure of humans and achieves state-of-the-art
performance in all NLP tasks. One of the popular transfer learning models is the Bidirectional
Encoder Representations from Transformers (BERT, Section subsubsec:bert) proposed by Devlin
et al. [2018].

2.B.1 Statistical Models

In early ages, statisticians and linguisticians use statistical models to process natural languages.
The method is usually based on the frequency of a word or a set of words. These methods are
simple but effective during the time when the computation resources were not adequate. One
of the most used methods is Näıve Bayes Classifier (NBC) and it is still frequently used as a
benchmark model in modern researches.

Näıve Bayes Classifier

As its name states, NBC is used for classification tasks. Its goal can therefore be formulated as

ĉ = arg max
c∈C

P (c|d) (2.18)

where C denotes all possible classes and d denotes a document to classify.
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Using Bayes’ rule, the Equation 2.18 becomes

ĉ = arg max
c∈C

P (d|c)P (c)

P (d)
= arg max

c∈C
P (d|c)P (c) (2.19)

since P (d) is a constant for a given document d.

We then decompose a document d into words w1, w2, ..., wn, the Equation 2.19 can be then
rewritten as

ĉ = arg max
c∈C

P (w1, w2, ..., wn|c)P (c) (2.20)

In NBC, we have two assumptions

• Bag of words assumption: the positions of words do not matter

• Näıve Bayes assumption: the words are independent from each other

The previous equation then becomes:

ĉ = arg max
c∈C

P (c)
∏
w∈V

P (w|c) (2.21)

where V is the vocabulary set.

To avoid overflow in the computation, we calculate the log probability instead, it then becomes

ĉ = arg max
c∈C

logP (c)
∑
w∈V

logP (w|c) (2.22)

The problem now becomes learning the probability P (w|c). A simple method is to count the
number of words appearing in each class, where we use the frequency as an estimator of the
probability:

P̂ (w|c) =
count(w, c) + 1∑

w∈V(count(w, c) + 1)
=

count(w, c) + 1∑
w∈V count(w, c) + |V|

(2.23)

where count(w, c) denotes the number of w shown in the documents in the class c. We note that
we add one to all count in order to avoid zero when we calculate log.

We can therefore build a Näıve Bayes Classifier using Equation 2.23 for training and Equation
2.22 for inference.

2.B.2 Word Embedding

The first task in the modern NLP applications is to convert a word into a vector for further
processing. We usually convert the word into a fixed-dimension vector called word embedding.
There are several methods for this conversion, including sparse embedding, static embedding
and contextualized embedding.
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Sparse Embedding

The simplest method for this task is to represent a word with a vector of dimension |V|, where
V is the vocabulary of the corpus. The i-th word in the vocabulary is hence represented by

[0, ..., 0︸ ︷︷ ︸
1 to i−1

, 1, 0, ..., 0︸ ︷︷ ︸
i+1 to |V|

]

However, this method has a few drawbacks. Firstly, the vocabulary of English is large. The
dimension of the vector can be huge if we have many different words in our corpus. Secondly,
this method does not show the connection between words since the cosine similarity between
any two words is 0. For example, word good and great has a similar meaning and we want them
to have a larger cosine similarity compared with other pairs with no connection. Hence, we need
a better word embedding model to achieve this goal.

Static Embedding - Word2Vec model

Mikolov et al. [2013b] propose a Word2Vec model to convert a word into a static dense vector.
The embeddings generated with this model show better performance than sparse embeddings
and it has been widely use across different NLP tasks.

The Word2Vec model is trained with a simple binary classification task: is a context word c
appears near the target word w? It means that given a tuple (w, c), the classifier will return the
probability that c is a context word around w, denoted as:

P (+|w, c) = σ(−ccc ·www) (2.24)

where ccc and www are the embeddings of the word c and w respectively. σ denotes the sigmoid
function22.

The probability that c is not a context word around w is therefore:

P (−|w, c) = 1− P (+|w, c) = σ(ccc ·www) (2.25)

Suppose that we have a positive training example (w, cpos), we sample k different negative
training examples from the vovabulary denoted by (w, cnegi) where 1 ≤ i ≤ k. The loss function
to minimize for the word w in this context can be expressed using a cross-entropy [De Boer
et al., 2005] function:

Lw = −log

[
P (w|w, cpos)

k∏
i=1

P (−|w, cneg)

]

= −

[
logσ(cpos · w) +

k∑
i=1

logσ(−cnegi · w)

] (2.26)

We minimize this function using stochastic gradient descent [Bottou, 2010]. The hidden vector
www from the trained model is the embedding for the word w.

22σ(x) = 1
1+exp(−x)
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We note that we do not need data labels during the training process, instead we are using the
texts themselves as implicitly labeled data. We then run supervised classification task based on
the same dataset. This idea is often called self-supervised learning and it is widely used in other
NLP models such as BERT.

Contextualized Embedding

The embeddings we get from the Word2Vec model are static embeddings, meaning that the
method learns one fixed embedding for each word. However, the meaning of a word can largely
depend on the context in English. For example, the word bank has very different meanings in
the sentence bank of america and river bank. Hence, it is important to have contextualized
embeddings, in which the vector for each word is different in different contexts.

There are different models to generate contextualized embeddings. The idea is to input all
the words in the model at once, the model then calculates the new embedding for one word
based on its embedding and the embeddings of other words. The BERT model can generate
contextualized embeddings and we introduce its details in Section 2.B.4.

2.B.3 Neural Networks for Natural Language Processing

Language is a temporal phenomenon. We read and speak a sentence word by word and we can
view this process as a continuos temporal process. It is therefore important to consider this
characteristic when we build language models. A simple feed-forward neural network has shown
promising results in NLP tasks but does not well model the temporality in a language.

Hence, the researchers propose two famous solutions to this challenge, including recurrent neural
network and transformer network. The recurrent neural network adopts a recurrent structure to
consider both the current word and the words in the past at the same time. More recently, the
transformer networks are proposed to further consider the relations between a word and other
words in the past or in the future over a long distance through the self-attention mechanism.

Recurrent Neural Network

The simple recurrent neural network (RNN) is first introduced by Elman [1990]. It is a neural
network that contains a cycle within the connections, meaning that the value of a unit depends
on earlier outputs. It is proven to be powerful in language modeling since it models well the
temporality in the languages.

An unit of simple RNN is shown in Figure 2.B.1. Same as a simple feed-forward neural network,
we have the input xt at time t, a hidden layer ht and the output yt. The difference in RNN is
that the model can see the information passed from t− 1: ht−1, which is shown with the dashed
line.

The propagation rules in the RNN can be written as:

ht = g(Uht−1 +Wxt) (2.27)
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Figure 2.B.1: An unit of simple recurrent neural network. (Source: Jurafsky and Martin [2021])

yt = f(V ht) (2.28)

where W ∈ Rdh×din , U ∈ Rdh×dh and V ∈ Rdout×dh are all trainable parameters. g and f are
activation functions. In classification tasks, we usually use a softmax function as f to compute
the probability distribution for each class. The cross-entropy loss function we use in the training
process is therefore given as:

L = −
∑
c∈C

yt[c]log(ŷt[c]) (2.29)

where c is the class and yt[c] ∈ 0, 1 is an indicator function which denotes if the yt is in the class
c. ŷt[c] ∈ [0, 1] is the probability that yt belongs to c given by the prediction model.

Mikolov et al. [2010] first propose using RNN as a language model in NLP, the idea is simply
that we treat xt as the embedding of the t-th word in the sentence.

In practice, we can also stack this RNN structure to have a multi-layer RNN. This is shown in
Figure 2.5 and used as a part of our model.

Long-Short Term Memory

In practice, it is difficult to train an effective language model with the aforementioned simple
RNN since the current point of processing has limited access to distant information. Although
ht contains the information from all previous words in theory, this information is still quite
local and more relevant to the most recent parts of the sentence. This is because the hidden
layer performs two tasks simultaneously: recording the current information and carrying the
information to the next state.

To solve this issue, researchers start using Long-Short Term Memory (LSTM) [Hochreiter and
Schmidhuber, 1997] in RNN instead of the simple RNN unit. The structure of a LSTM unit
is illustrated in Figure 2.B.2. The main difference from the simple RNN unit is that we have
two hidden vectors for each input: ht and ct. The goal of the newly added ct is to represent
the information in the longer context. In other words, ht is the short memory and ct is the long
memory.

There are three steps in the computation of a LSTM unit. The first step is to forget some
information that is no longer useful. It is written as:

ft = σ(Ufht−1 +Wfxt) (2.30)

kt = ct−1 � ft (2.31)
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Figure 2.B.2: The structure of a LSTM. (Source: Jurafsky and Martin [2021])

where σ is the sigmoid function and � denotes the point-wise multiplication. In this step, we
first select the information to forget (ft) with the previous state (ht−1) and the current input
(xt). We then use a point-wise multiplication to force this forget process.

The second step is to select the information to remember and add this information to the context.
We use the following equations to describe this step.

gt = tanh(Ught−1 +Wgxt) (2.32)

it = σ(Uiht−1 +Wixt) (2.33)

jt = gt � it (2.34)

ct = jt + kt (2.35)

We first use the same feed forward structure as the simple RNN to get gt. Then, similar to the
first step, we use it to select the information to remember from gt. We then add this information
to the context to pass to the next step ct.

The third and final step is to decide what information needed for the current hidden state (ht).
We use the similar idea by doing a point-wise multiplication:

ot = σ(Uoht−1 +Woxt) (2.36)

ht = ot � tanh(ct) (2.37)

The whole computation for a LSTM unit is illustrated in Figure 2.B.2.

Transformer Networks

Although using LSTM instead of simple RNN unit in recurrent neural networks allows it to
deal with more distant information, there is still information loss in the propagation process.
Hence, Vaswani et al. [2017] propose a transformer network, which uses full connections instead
of recurrent connections. With this improvement, a word xt can see all previous words , thus
eliminating the need of a hidden vector which carries information from a long distance.
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The key component in the transformer unit is self-attention mechanism used to combine xt and
the information which all previous words {xi, i < t}. The self-attention is indeed a weighted
sum, it can be written as:

yt =
∑
i≤t

αtixi (2.38)

. Hence, the main question is how we compute the weight αti.

There are three main components in this process: key (kt), query (qt) and value (vt). They are
calculated with:

qt = WQxt; kt = WKxt; vt = W V xt (2.39)

where WQ, WK and W V are all trainable parameters with the size of d× d.

At each t, the query qt is used to compute scores using the keys of all previous words:

score(xt, xi) = qt · ki (2.40)

.

We then normalize these scores with a softmax function and the normalized score is the attention
(αti) of the word xt on one previous word. This is written as:

αti =
exp(score(xt, xi))∑t
j=1 exp(score(xt, xj))

(2.41)

.

We finally sum the values of all words with their weights to get the final output yt:

yt =
∑
i≤t

αtivt (2.42)

.

The computing process of self-attention is shown in Figure 2.B.3.

We can then use this self-attention mechanism to build a transformer unit with a structure
shown in Figure 2.B.4,

The computation process can be expressed as:

z = LayerNorm(x+ SelfAttn(x)) (2.43)

y = LayerNorm(z + FFNN(z)) (2.44)

where LayerNorm denotes the normalization [Ba et al., 2016].

The layer normalization is defined as:

LayerNorm = γx̂+ β (2.45)

where γ and β are trainable parameters and

x̂ =
x− µ
σ

(2.46)

with µ denoting the mean of the vector x and σ denoting the standard deviation of x.

Similar to the RNN with LSTM units, we can the stack several layers of transform units to build
a transformer network.
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Figure 2.B.3: The structure of self-attention. (Source: Jurafsky and Martin [2021])

2.B.4 Transfer Learning Models

Transfer Learning

Transfer learning refers to storing knowledge gained while solving one problem and applying it
to a different but related problem in machine learning. This approach is widely used in NLP
and it is proven to be highly effective.

This transfer learning process is intuitive since it is similar to the learning process of humans. It
is estimated that an adult native English speaker has a vocabulary size from 30,000 to 100,000,
although only a small proportion of them are learnt from school classes. Hence, most of the
knowledge in the language is acquired through daily life, such as talking and reading. This
process leads us to believe that we can learn the meanings of the words through a large number
of corpus without any groundings. This idea is usually referred as pre-training.

Another observation is that the knowledge one acquires from the pre-training process can be
very useful during language processing long after its initial acquisition. For example, there are
many words in the laws with specific meanings. For a student majoring in laws, the English
knowledge is essential when learning these words, even though their initial meanings can be very
different or he has never encountered these words. This process of continued learning based on
previous knowledge is referred as fine-tuning.

Based on the two previous steps, researchers propose a transfer learning framework in NLP with
two steps: pre-training and fine-tuning. In the pre-training process, we feed the model with a
large number of documents without labels to learn the general structure of a language. We then
use a smaller labeled dataset to fine-tune the model to make the model work on a specific task.

There are different transfer learning NLP models in the literatures with different structures,
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Figure 2.B.4: The structure of a transformer unit. (Source: Jurafsky and Martin [2021])

including BERT [Devlin et al., 2018], XLNet [Yang et al., 2019] etc. However, all of them follow
this pre-training fine-tuning process in NLP tasks.

BERT

With the idea of transfer learning, Devlin et al. [2018] develop a Bidirectional-Encoder
Representations from Transformers using the transformer units introduced in Appendix 2.B.3.
The BERT model shows a significant improvement compared with RNN models on all NLP
tasks included in the GLUE dataset [Wang et al., 2018].

The structure of the BERT model is already shown in Figure 2.4 and its fine-tuning process is
introduced in Section 2.5.1. We introduce the pre-training of the BERT model in this section.

There are two training objectives used in the pre-training of the BERT model: masked language
modeling (MLM) and next sentence prediction.

The MLM uses the same idea as training a Word2Vec model introduced in Section 2.B.2.
However, instead of using a two class classification, the MLM lets the model predict among
all the words in the vocabulary, meaning that it is a multi-class classification with the number
of classes equaling the number of words in the vocabulary. We simply randomly select a number
of words in a sentence and replace them with a special mask character. We also randomly select
a proportion of words and replace them with incorrect words. The objective is to minimize the
sum of cross-entropy for these replaced words. The MLM process is illustrated in Figure 2.B.5.

The goal of MLM is to predict the words from surrounding contexts and to produce effective word
embeddings. However, an important number of NLP tasks involves determining the relationship
between a pair of sentences. Hence, BERT proposes the next sentence prediction task in order
to capture this relationship. In the training dataset, we have 50% of positive paris sampled from
the corpus and the other 50% are negative pairs. During training, the two sentences are sent to
the model with a specific separating character between them. We then use the same training
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Figure 2.B.5: Masked language model. (Source: Jurafsky and Martin [2021])

method mentioned in Figure 2.4 for this binary classification task.

The pre-trained BERT model is trained on very large corpus, including 800 million words from
BookCorpus [Zhu et al., 2015], 2.5 billion tokens from English Wikipedia. This large scale allows
the BERT model to be effective in English language modeling.
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Chapter 3

Graph-Based Learning for Stock
Movement Prediction with Textual
and Relational Data

Note:

• This chapter is co-authored by Qinkai Chen and Christian-Yann Robert.

• This chapter is published in Volume 4, Issue 4 of The Journal of Financial Data Science.

• The method described in this chapter is applied in the trading system within ExodusPoint
Capital Management.

Abstract

Predicting stock prices from textual information is a challenging task due to the uncertainty of the
market and the difficulty in understanding the natural language from a machine’s perspective. Previous
researches mostly focused on sentiment extraction based on single news. However, the stocks on the
financial market can be highly correlated, one news regarding one stock can quickly impact the prices of
other stocks. To take this effect into account, we propose a new stock movement prediction framework:
Multi-Graph Recurrent Network for Stock Forecasting (MGRN). This architecture allows to combine the
textual sentiment from financial news and multiple relational information extracted from other types of
financial data. Through an accuracy test and a trading simulation on the stocks of the STOXX Europe
600 index, we demonstrate a better performance of our model compared with other benchmarks.
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3.1 Introduction

Fama [1965] and Malkiel [1989] show that the movement of stock price can be explained jointly
by all known information, although it is volatile and non-stationary [Adam et al., 2016]. The
information can include all types of available information, such as historical prices [Kohara et al.,
1997], macroeconomic indicators [Garcia and Liu, 1999], financial news [Ding et al., 2014], etc.
Most of the research focuses on the time series analysis of the numerical indicators, i.e., using
historical prices to predict future prices [Luo et al., 2017]. Although simple and efficient, this
method does not consider the market sentiment and market moving events, based on which
most rational human investors trade. With the development of the natural language processing,
more recent research works start to use textual data for stock movement prediction [Ding et al.,
2014,0; Hu et al., 2018]. However, these researches assume that all the stocks are independent
and predict the price movement of each stock independently, although Hou [2007] shows that
the movement of one stock can significantly impact other correlated stocks.

To take stock correlation into consideration, Guo et al. [2018] and Ye et al. [2021] integrate
the relationship information into traditional time series analysis without using textual data.
Cheng et al. [2020] and Sawhney et al. [2020] design neural networks to take both textual data
and one pre-defined relationship graph into consideration. However, the stock relationships
can come from multiple aspects, such as price correlation [Campbell et al., 1993], sector of
economic activities [Vardharaj and Fabozzi, 2007] and supply chain [Pandit et al., 2011]. We will
demonstrate that considering multiple relationships at the same time can benefit the prediction
performance.

Hence, we want to design an improved model which has the following characteristics: (1) learn
from both textual data and relational data, (2) incorporate a large number of relational graphs
into the structure, (3) take temporal patterns of the news into account instead of learning from
only one news at a time.

To address the above-mentioned challenges, we first present previous works (Sec. 2), we propose
a new stock price movement prediction framework: the Multi-Graph Recurrent Network for
Stock Forecasting (MGRN). MGRN combines textual information from a financial news provider
and relationship data from different sources to predict the variation of stock prices (Sec. 3).
MGRN jointly learns from texts and relationships through its graph-based structure, it can
also learn from news’ temporal patterns with its recurrent structure (Sec. 4). With various
experiments, we show the performance of our MGRN model as well as other benchmark models
(Sec. 5). We also perform trading simulations to show the profitability of our results in real-life
scenario (Sec. 6).

3.2 Related Work

3.2.1 Stock Movement Prediction

There are various approaches to predict stock prices and the researches on this topic span on
different domains. Econometricians use time-series analysis [Mills and Mills, 1990] to predict
future prices based on historical prices and volumes data. Financial analysts rely on company
fundamental data such as earnings and debt ratios [Ozlen, 2014; Wang and Xu, 2004], or
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macroeconomic data such as GDP and CPI index [Hoseinzade and Haratizadeh, 2019] to predict
the trend of stock prices from a economic point of view. Computer scientists tend to use machine
learning techniques to interpret the stock price movement. With the development of the natural
language processing, more researches focus on predicting stocks prices based on financial news
or social media texts.

Schumaker and Chen [2009] use a classical feature engineering method to extract features from
text data, Ke et al. [2019] use a TF-IDF [Crnic, 2011] like method to identify positive and
negative words in financial texts. Nowadays, more researches adopt deep learning methods to
analyze financial news. Ding et al. [2014,0] use structured representations and convolutional
networks to analyze news sentiments. Hu et al. [2018] apply attention mechanism to directly
handle the raw text without using widely used recurrent neural network. Xu and Cohen [2018]
propose a model which considers jointly text and price information. All these methods assume
that all news are independent to simplify the problem. Although useful, this is contrary to the
the common sense and some findings [Hou, 2007; Klößner and Wagner, 2014] which explain the
price interactions among stocks.

3.2.2 Graph Neural Network

With the popularity of graph learning, more researchers start to use graph-based structure
to capture complex non-linear interactions among the nodes. Graph Convolutional Network
(GCN) is one of the most used graph networks, and it has gained more popularity since it
obtains outstanding results on node classification task [Kipf and Welling, 2016]. Some recent
researches apply this technique on stock movement prediction tasks.

Chen et al. [2018] and Kim et al. [2019] combine historical price and corporation relationship
knowledge graph through graph-based models. However, they only take historical price data
as input without considering the information from news or social media texts. Sawhney et al.
[2020] design a Multipronged Attention Network (MAN-SF) to consider both textual data and
relationship data at the same time. However, the study only considers one pre-built graph from
Wikidata1. In the real world, the relationships among companies come from multiple dimensions
and it can change significantly over time.

To close the gap in the researches, we propose MGRN, which can ingest both textual data and
a large number of relationship graphs built from different sources, as opposed to the previous
researches. In addition, MGRN contains a recurrent structure to model the temporal interactions
of the news, instead of assuming the independence of the news.

3.3 Problem Formulation

Following Ding et al. [2015] and Xu and Cohen [2018], we formulate the stock movement
prediction as a binary classification task. Given a universe of stocks S, for a stock s ∈ S,
we define its market adjusted return rs between t and t+ ∆t as:

1https://www.wikidata.org/
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rs,t =
Ps,t+∆t

Ps,t
−
Pm,t+∆t

Pm,t
(3.1)

where Ps,t denotes the price for stock s at time t, and Pm,t denotes the market index value at
time t.

We define the target of our stock movement prediction task for stock s between t and t+ ∆t as:

Ys,t =

{
1, rs,t > 0

0, rs,t ≤ 0
. (3.2)

For a traditional single stock movement prediction task, the goal is to predict Ys,t from all the
news related to the stock s in a look-back window T . It can be written as:

Ŷs,t = f(ET
s,t, θ) (3.3)

where ET
s,t denotes all the news for stock s between t − T and t and θ denotes the trainable

parameters.

However, our goal is to consider both news and cross effects among stocks when predicting stock
movement. Our prediction is hence written as:

Ŷs,t = f([ET
1,t, ..., E

T
n,t], [G1, ..., Gg], θ) (3.4)

where n is the number of stocks in our universe S, Gi is the graph constructed from data source
i and g is the number of graphs we construct from different data sources.

3.4 Multi-Graph Recurrent Network for Stock Forecasting

The architecture of our MGRN model is shown in Figure 3.1. It has three sub-components:
Financial News Encoder, Multi-Graph Convolutional Network and Recurrent Neural Network.
We introduce the details of each component in the following subsections.

3.4.1 Financial News Encoder

Single news embedding

For each news e, we need to represent it with an embedding ve ∈ Rd. Following the work of
Sawhney et al. [2020], we simply use Universal Sentence Encoder [Cer et al., 2018] to convert a
sentence into a fixed-length embedding.
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Figure 3.1: An overview of the architecture of the MGRN model. Our MGRN model includes
three sub-components: (1) Financial News Encoder, which encodes textual news into a fixed
length vector for each stock and each day (vs,d). (2) Multi-Graph Convolutional Network,
which takes the encoded daily news vectors and the graphs as input. Through this multi-graph
structure, we get multiple node embeddings for each stock. We then combine these node
embeddings into a single embedding (x̂s,d) through an attention mechanism. (3) Recurrent
Neural Network, which takes the combined embeddings during a look-back window T as input
and extracts temporal patterns among the news. hi,j denotes the j-th LSTM cell on the i-th
layer. Finally, through a fully-connected layer, we predict whether the stock price increases or
decreases (ŷs,d).

Aggregated news embedding

Unlike stock movement prediction based on single news, graph-based network structure requires
a valid node embedding for each node when we train and predict. Hence, we need to choose a
reasonable time window to make sure that for most of the stocks, there is at least one piece of
news in this window. This is to avoid too many zero vectors as node embeddings. We simply
choose a period of one day when we aggregate the news, following Kim et al. [2019] and Li et al.
[2020b]. It means that for stock s and on day d, we select all the news concerning s between
the market close time on day d and the market close time on day d − 1 to get its aggregated
embedding.

Iyyer et al. [2015] and Wieting et al. [2015] show that a simple average aggregation can have
similar and even better performance than more complicated recurrent models such as LSTM.
For the sake of simplicity without sacrificing the accuracy, we use an average over all news
embeddings of a stock s as its aggregated news embedding on day d. We denote it by vs,d. We
have:

vs,d =
1

|E1
s,d|

|E1
s,d|∑

i=1

eis,t (3.5)

where eis,t ∈ E1
s,d is the embedding of the i-th news about s occurring at time t between d and

d− 1.
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3.4.2 Multi-GCN Attention Network

Graph Representation

We model a stock relationship with a graph G. We use the graph’s adjacency matrix A ∈ Rn×n

to represent the relationships among the n stocks. The element Ai,j denotes the intensity of
relationship between stock i and stock j. We set Ai,i = 1.

There are two types of relationships: (1) boolean relationship represented by a simple graph
and (2) continuous relationship represented by a weighted graph.

For a boolean relationship, we have Ai,j ∈ {0, 1}. If there is a connection between stocks i and
j, Ai,j is set to 1. Otherwise, it is set to 0. For example, GICS sector 2 relationship is a boolean
relationship. If two stocks are in the same sector, we assert that they are connected. Supply
chain relationship is also a boolean relationship. If one company is another company’s supplier,
we assert that they are connected.

However, for a continuous relationship, we have Ai,j ∈ [0, 1]. The more important the relation
between two stocks, the larger this value. For example, the historical price relationship is a
continuous relationship. The intensity of the relationship between two stocks is then calculated
as the correlation coefficient of two stocks’ daily return time series.

Following Duvenaud et al. [2015] and Kipf and Welling [2016], we normalize our adjacency
matrix with a symmetric normalization:

Â = D−
1
2AD−

1
2 (3.6)

where D ∈ Rn×n is the generalized diagonal node degree matrix for both simple graphs and
weighted graphs, defined as:

Di,j =

{∑
k Ai,k, i = j

0, i 6= j
(3.7)

Such normalization guarantees that the operations involving A do not change the scale of the
result on both simple graphs and weighted graphs.

Single Graph Convolutional Network

We use the same GCN structure as proposed by Kipf and Welling [2016]. For day d, we construct
our daily news matrix with Xd = [v1,d, ..., vn,d]T . We also have one graph G and its adjacency
matrix is A.

Our GCN with L layers can be written as the following function:

H(l+1) = σ(ÂH(l)W (l)) (3.8)

2https://www.msci.com/gics
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with H(0) = Xd and H(L) = Zd as the final graph output. We have H(l) ∈ Rn×fl where fl
denotes the number of output features for layer l. In Equation (3.8), σ denotes the activation
function and W (l) represents the weight matrix for layer l.

With such an operation, we obtain a new node representation of dimension fL for each stock
from H(L).

Attention Aggregation Layer

Given g graphs G1, ..., Gg with their adjacency matrix A1, ..., Ag, we attribute each graph an
independent GCN. For day d, we have g graph outputs Zd,1, ..., Zd,g. We combine these graph
outputs to get an aggregated graph output with an attention mechanism [Vaswani et al., 2017].

We define Wa ∈ RfL×w and q ∈ Rw×1, both of which are trainable parameters. We then calculate
the attention coefficients αi ∈ Rn×1 for graph i using the following formula:

αi =
exp(Zd,iWaq)∑
j exp(Zd,jWaq)

. (3.9)

We then aggregate all the Zd,i using:

Zd =
∑
i

αi ⊗ Zd,i (3.10)

where ⊗ denotes element-wise multiplication.

Finally, we concatenate the graph output Zd with the original daily news embeddings. Our final
output after the graph layer for day d becomes:

X̂d = Xd ⊕ Zd (3.11)

where ⊕ denotes concatenation. This is to ensure that we can capture the information from
both graphs and the orignal text embeddings.

3.4.3 Recurrent Neural Network

We then build a recurrent network to capture the temporal patterns in the news. The structure
of the RNN is shown in Figure 3.2.

We first repeat the same process described in Section 3.4.2 from day d to day d − T . We have
the outputs from the graph layer denoted by X̂d, ..., X̂d−T as the input of our recurrent network.

We use a straightforward multi-layer recurrent neural network with LSTM cells [Hochreiter and
Schmidhuber, 1997] shown on the right-hand side of Figure 3.1. At the final layer, we use a fully
connected layer followed by a softmax to make the final prediction.

We input the concatenated outputs from the graph layer and financial news encoder layer
sequentially into the first layer of the RNN model. For each stock at each day, we get the
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Figure 3.2: Structure of the Recurrent Neural Network in MGRN. The input x̂s,d comes from
the graph layer: the concatenated output for the stock s on day d. We use this RNN model to
extract the temporal patterns in the news. hi,j denotes the j-th LSTM cell on the i-th layer.
We use the last hidden state at the last layer (hl,d) to make the final prediction ys,d.

probability P+
s,d that the stock price will increase the next day and P−s,d = 1− P+

s,d representing
the price drop probability.

We train our MGRN network with an Adam optimizer [Kingma and Ba, 2014] by minimizing
the binary cross entropy loss, given as:

l =
∑
s

∑
d

Ys,dln(P+
s,d) + (1− Ys,d)ln(1− P+

s,d) (3.12)

where Ys,d is the true stock price movement defined in Equation (3.2).
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3.5 Experiments

3.5.1 Datasets and Graph Building

Financial News Dataset

The dataset that we use is Bloomberg News3. In this dataset, each entry contains a timestamp
denoting when this news happened, a ticker which signifies the stock related to this news and
the headline of this news. In addition to the necessary information above, we can also find a
score which is among -1, 0 and +1, and a confidence between 0 and 100 associated with the
score. These two fields are given by Bloomberg’s proprietary classification algorithm, it will
serve as one of the benchmarks for our prediction model. We use the sample news dataset as
the previous chapter, an example is shown in Table 2.1.

It is worth noting that we remove the stocks which do not have enough news. This is to ensure
that we do not have too many zero vectors as our daily news vector (Equation (3.5)). We only
select the stocks which have more than 2 news per day in average. With a such filter, we have
168 stocks in the stock universe, and we observe that there are only 15% (Table 3.1: Zero vector
rate) zero vectors among all daily news vectors, meaning that given a stock and a date, there is
a 85% chance there is at least one piece of news.

This is to ensure that we do not have too many zero vectors for the daily news vector of
Equation (3.5) and still keep the simplicity of the method, since Rossi et al. [2021] show that
GCN does not have a good training result when there are too many missing features. However,
this removal does not mean that our model cannot handle missing features, we can see that
there are still around 20% of all the observations which are missing (Table 3.1, zero vector rate).
For these missing points, the model predicts from other companies that are connected. This can
be explained by Equation (3.8), when a row in H(l) is zero, the same row for H(l)W (l) is also
zero, but Â is a normalized adjacency matrix, the same row for H(l+1) is therefore the weighted
mean of its neighbors.

Stock Price Dataset

We extract all the market close prices for all the stocks in the universe, we also extract the Europe
STOXX 600 index value at the market close time4 for our market adjusted return calculation.
We use the stock prices for both labelling and building a correlation graph from stock returns.

For labelling, we follow the procedure described in Section 3.3. However, we observe that there
are some delisted stocks which no longer have prices after a certain date, preventing us from
correctly calculating their returns. Hence, we remove the stocks which are delisted during our
training period. There are three such stocks, leaving us 165 stocks in total in our experiments.

We also use the stocks prices to build a weighted graph Gc. For all stocks, we first calculate its
market adjusted returns with Equation (3.1). We obtain a vector vs = [rs,1, ..., rs,Tc ] containing
all the returns from the first day until the last day in our training dataset. We calculate the

3https://www.bloomberg.com/professional/product/event-driven-feeds/
417:30 Central European Time

91



Chapter 3. Graph-Based Learning for Stock Movement Prediction with Textual and
Relational Data

Pearson Correlation Coefficient [Freedman et al., 2007] between stock i and stock j, such that
its adjacency matrix Ac is given by:

Ac,i,j =
cov(vi, vj)

std(vi)std(vj)
(3.13)

where cov represents the covariance and std denotes the standard deviation.

Stock Sector Data

In finance, each company is classified into a specific sector with Global Industry Classification
Standard (GICS). We use this data to construct a sector graph Gs. Its adjacency matrix As is
defined as:

As,i,j =

{
1, sector(i) = sector(j)

0, otherwise
(3.14)

There are four granularities in GICS sector data: Sector, Industry Group, Industry,
Sub-Industry. We can therefore construct four graphs with this dataset. In our experiments, we
use the Industry granularity as it gives the best performance. The performances with different
sector graphs are discussed in Section 3.5.4

Supply Chain Data

We use the supply chain data from Factset5 to construct a supply chain graph. This dataset
describes the supplier-customer relationship (SCR) among different companies. We construct a
supply chain graph Gsc such that

Asc,i,j =

{
1, i and j have SCR

0, otherwise
(3.15)

We show the heatmaps of three graphs in Figure 3.3.

Dataset Split

Following the standard in deep learning researches, we split our dataset into three sub-datasets:
train, dev and test. The details are shown in Table 3.1.

Parameter Settings

We use a look-back window T = 20 days and we use a look-forward window ∆t = 1 day to label
our data.

5https://www.factset.com/marketplace/catalog/product/factset-supply-chain-relationships
6Number of stocks multiplied by number of trading days, this equals the total predictions we make in each

dataset.
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(c) Supply Chain Graph
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Figure 3.3: The heatmaps of our three graphs Gc, Gs and Gsc. We can see some common
characteristics in these heatmaps, for example, the top-left corner of the correlation graph and
the sector graph. However, the graphs are rather uncorrelated, we prove this with the experiment
results in Section 3.5.4.

Table 3.1: Statistics of the news dataset used in our experiments. Zero vector rate means the
ratio of zero vector among all embedded daily news vectors vs,t. We only select the 165 stocks
which have relatively more news to make this value as small as possible in order not to impact
our GCN model.

Train Dev Test

Total news 1,199,367 316,944 1,814,796
Start 01/2016 07/2018 01/2019
End 06/2018 12/2018 12/2021

Nb. Stocks 165 165 165
Trading days 652 118 757
Data points6 107,580 19,470 124,905

Zero vector rate 15% 17% 21%

The GCN model we use has two hidden layers, with 128 and 64 dimensions respectively. Our
RNN model also has two layers, with 128 and 64 LSTM cells respectively. We train our model
with an Adam optimizer for 10 epochs. We set the batch size to 32.

3.5.2 Evaluation Metrics

Standard Metrics

Following previous researches on the stock movement prediction task, we use accuracy [Ding
et al., 2015; Hu et al., 2018] and Matthews Correlation Coefficient (MCC, Matthews [1975]) [Xu
and Cohen, 2018; Sawhney et al., 2020] to evaluate the performance of our model.

Given a confusion matrix
( tp fn
fp tn

)
which contains the number of samples classified as true positive

(tp), false positive (fp), true negative (tn) and false negative (fn), we define these two metrics
as
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accuracy =
tp+ tn

tp+ tn+ fp+ fn
(3.16)

MCC =
tp× tn− fp× fn√

(tp+ fp)(tp+ fn)(tn+ fp)(tn+ fn)
. (3.17)

However, these simple metrics do not reflect the need of a real-life investor, since he does not
need to make trades on all prediction results. The investor only trades when he is more confident
about the prediction. In other words, the accuracy on the predictions with higher probability
is more important than those with a mediocre probability. Hence, we also include ”percentile
accuracy” in our evaluation metrics.

We denote the score Ss,d ∈ [−1, 1] for a stock s on day d as:

Ss,d = (P+
s,d − 0.5)× 2 (3.18)

For each day, we choose the top q
2 -percentile scores and the bottom q

2 -percentile scores of that
day, where q is a value between 0 and 100. We denote the the accuracy and the MCC calculated
based on such selection as Accq and MCCq, respectively.

Trading Simulation

We use a simple long/short trading strategy similar to Ke et al. [2019]. For each day, we attribute
equally weighted (EW) long positions for the stocks whose scores are in the top q

2 -percentile.
For the stocks whose scores are in the bottom q

2 -percentile, we give each stock the same short
position. We also include a market capitalization weighted (MW) strategy to make sure that
there is no bias on small-cap stocks. In both weighting methods, our long position equals to our
short position7, leaving no market exposure for our strategy.

We use annualized return and Sharpe ratio [Sharpe, 1994] to evaluate the performance of our
strategies. The annualized Sharpe ratio is defined as the ratio of the expected return R to its
standard deviation multiplied by square root of the number of trading days Dy in one year:

Sharpe =
E(R)

σ(R)
×
√
Dy (3.19)

3.5.3 Baseline Models

We compare the performance of our MGRN model with other baseline models to demonstrate
its performance.

We include the following baseline models:

7For MW strategy, we resize our long positions with a ratio to make sure that the sum of all long positions is
the same as the sum of all short positions.
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Table 3.2: The accuracy and MCC of baseline models and MGRN models with different
q-percentiles. The results are based on test set.

q 100% 50% 20% 10% 2%

metric Acc. MCC Acc. MCC Acc. MCC Acc. MCC Acc. MCC

ARIMA 0.491 0.007 0.492 0.010 0.494 0.015 0.487 -0.002 0.510 0.035
BBG 0.493 0.010 0.490 0.007 0.486 0.007 0.524 0.140 0.554 0.188

Mean-BERT 0.512 0.037 0.551 0.121 0.586 0.200 0.623 0.259 0.694 0.410
MAN-SF 0.503 0.021 0.518 0.044 0.569 0.130 0.587 0.220 0.627 0.275

RNN 0.527 0.055 0.544 0.089 0.576 0.155 0.618 0.247 0.677 0.393
MGRN-Corr 0.556 0.114 0.593 0.192 0.609 0.226 0.617 0.243 0.727 0.458

MGRN-Sector 0.532 0.064 0.552 0.106 0.589 0.184 0.640 0.296 0.725 0.453
MGRN-Supply 0.555 0.112 0.589 0.183 0.620 0.250 0.627 0.264 0.718 0.501

MGRN 0.561 0.124 0.598 0.200 0.629 0.271 0.656 0.339 0.728 0.543

• ARIMA: Auto-Regressive Integrated Moving Average model [Ho and Xie, 1998] based on
historical prices.

• BBG: The prediction given by Bloomberg which comes along with Bloomberg News dataset
(Table 2.1).

• Mean-BERT: We fine-tune the Bidirectional Encoder Representations from Transformers
(BERT) model proposed by Devlin et al. [2018] as a classification model. We use the
average score of all the news for stock s on day d as its Ss,d.

• MAN-SF8: A stock movement prediction framework proposed by Sawhney et al. [2020]. The
model combines price data, news data and relational data to predict stock return.

• RNN: The model introduced in Sec. 3.4.3 without adding any graph. This is the same as a
MGRN model with an identity matrix as graph adjacency matrix.

To make a detailed analysis of the improvement brought by different graphs, we train our MGRN
model with different graphs:

• MGRN-Corr: MGRN model with the return correlation graph Gc (Eq. (3.13)).

• MGRN-Sector: MGRN model with the sector graph Gs (Eq. (3.14)).

• MGRN-Supply: MGRN model with the supply chain graph Gsc (Eq. (3.15)).

• MGRN: the full MGRN model using three graphs Gc, Gs and Gsc at the same time.

3.5.4 Experiment Results

Table 3.2 shows the accuracy and MCC of different models on the test set with different
q-percentiles. We find that our MGRN model shows the best performance, outperforming other
baseline models in both accuracy and MCC.

8MAN-SF only allows to have one relationship, we choose the Pearson correlation for this model.
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Table 3.3: Trading simulations of all models with different q-percentiles.

q 100 50 20 10 2

metric Ret. Sp. Ret. Sp. Ret. Sp. Ret. Sp. Ret. Sp.

EW

ARIMA -0.5 -0.25 -0.81 -0.09 0.36 0.09 0.61 0.24 2.12 0.26
BBG 1.51 0.28 3.09 0.56 6.05 0.62 8.67 0.68 10.61 0.83

Mean-BERT 2.11 0.55 4.42 0.83 7.59 1.06 11.28 1.21 14.33 1.05
MAN-SF 1.01 0.09 3.97 0.85 3.97 0.7 5.25 0.51 6.08 0.63

RNN 3.00 0.39 3.79 0.86 4.56 0.72 3.71 0.42 7.81 0.85
MGRN-Corr 2.00 0.64 4.39 0.91 5.70 0.83 9.59 0.56 14.33 0.99

MGRN-Sector 1.64 0.45 3.47 0.47 5.00 0.59 11.82 1.16 16.62 1.11
MGRN-Supply 2.94 0.62 3.86 0.60 6.49 0.86 10.50 1.04 14.17 0.96

MGRN 2.39 0.76 5.24 1.11 8.84 1.12 16.99 1.38 16.15 1.19

MW

ARIMA -2.82 -0.55 -1.17 -0.14 1.53 0.13 0.00 0.00 4.97 0.38
BBG 1.36 0.29 3.61 0.12 6.12 0.83 5.02 0.37 13.63 0.92

Mean-BERT 2.08 0.56 3.19 0.62 6.82 0.84 12.15 1.30 11.05 0.99
MAN-SF 0.61 0.11 2.15 0.54 4.33 0.7 3.01 0.42 7.99 0.68

RNN 2.79 0.66 3.66 0.86 4.59 0.76 3.85 0.46 7.40 0.84
MGRN-Corr 1.81 0.61 4.21 0.92 5.34 0.81 9.05 0.59 9.43 0.90

MGRN-Sector 2.42 0.40 4.17 0.42 4.76 0.61 12.23 0.91 10.32 1.09
MGRN-Supply 2.75 0.60 4.77 0.61 5.90 0.85 11.07 1.11 14.69 1.04

MGRN 2.15 0.72 4.90 1.10 8.20 1.14 15.74 1.43 17.02 1.26
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We compare the single graph models (MGRN-Corr, MGRN-Sector and MGRN-Supply) and
the vanilla model without graph (RNN). We find that all the graphs can help improve the
performance, especially for the most extreme scores (a smaller q value). However, it is difficult
to say which graph has the best performance, since each graph has different optimal performances
on different percentiles. For example, the sector graph has the most added value on the most
extreme scores (highest with q = 10), while the return correlation graph is more powerful on
less extreme scores (highest with q = 50 and q = 100). This also signifies that the information
in each graph is rather complementary, making it more reasonable to combine different graphs.

We validate our hypothesis that combining different graphs can help improve model performance
by comparing the full model (MGRN) with the single graph models. We find that when using
all three graphs together, we have a significant improvement in accuracy (4.8% with q = 10 and
5,3% with q = 20). It proves that our model can absorb necessary information from multiple
complementary graphs at the same time, validating the effectiveness of combining relationship
from different sources.

We also notice that adding a graph can lead to a worse result compared with the no-graph RNN
in some scenario, for example, MGRN-Corr is worse than RNN when q = 10. However, when
combining with other graphs, the result is better than using any graph individually. This is
because the errors usually come from several particular stocks, especially when we only have
one source of information. If the source is incorrect, it can lead to significant error. The benefit
of using multiple graphs is to reduce the impact of these cases by making decisions based on
more than one source of information.

Table 3.3 shows the trading simulation result using the strategy described in Sec. 3.5.2. We
can also confirm that our MGRN model outperforms other models and that combining the
graphs together is beneficial. We also find that the equally weighted strategy (EW) has a
similar performance as market-cap weighted strategy (MW), showing that there is little bias
from small-cap stocks.

Sector Graphs

As we mentioned in Section 3.5.1, there are four granularities in our GICS sector data. We
compare the performances for the four granularities, and we find that the Industry level (the
third granularity) shows the best performance, especially on more extreme scores. Hence, we
choose to use Industry level to build Gs. The detailed result is shown in Table 3.4.

Table 3.4: The accuracy of MGRN-Sector model but with the sector graphs built from different
GICS sector granularities.

level name 100% 20% 10%

1 Sector 0.540 0.582 0.626
2 Industry Group 0.519 0.563 0.618
3 Industry 0.532 0.589 0.640
4 Sub-Industry 0.528 0.564 0.617
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3.5.5 Qualitative Analysis: An Example

We give a detailed study on one specific case to show how our MGRN model helps improve stock
movement prediction.

We focus on the stock ORSTED DC9 on the Feb. 8, 2021. We notice a news in the evening
of that day: Big Oil Takes Over Next Generation of U.K. Offshore Wind. This is a positive
signal since Orsted was expanding its business. Based on this piece of news among others, our
vanilla MGRN (RNN) without any relational input gives a slightly positive score for this stock
at 0.022. However, we observe a return of -4.7% on the next trading day which is contrary to
our prediction result.

The same prediction from MGRN-Sector model is -0.065, which is a correctly predicted negative
value among the bottom 20-percentile. The only reason this new prediction is very different
from that of vanilla MGRN is the impact from other related stocks. We find that IBE SM10

has the most negative score from vanilla MGRN in the same sector. When we look at the news,
we can find plenty of negative news about this company on the same day, such as Edinburgh
power cut: These are all the Capital postcodes to report electricity outages. These negative news
caused the price drop of IBE SM by 1.5%, which potentially caused the negative return (-1.3%)
in the same sector since we do not observe many negative news for other companies.

We can also see the same phenomenon with MGRN-Corr since the correlation between two
stocks is relatively high (0.39), but the prediction from MGRN-Supply is still false because
there is no supplier-customer relationship between these two stocks. We show the detail of this
analysis in Table 3.5.

Table 3.5: Detailed results of the case study for ORSTED DC on the Feb. 8, 2021.
MGRN-Corr and MGRN-Sector both give correct results because the negative signal from IBE
SM can reach ORSTED DC through the graphs, but MGRN-Supply still gives the wrong
prediction since these two stocks do not have connection on this graph.

Model Ai,j Ticker Score Result

RNN 0
ORSTED DC 0.023 False

IBE SM -0.239 True

MGRN-Corr 0.39
ORSTED DC -0.005 True

IBE SM -0.220 True

MGRN-Sector 1
ORSTED DC -0.065 True

IBE SM -0.157 True

MGRN-Supply 0
ORSTED DC 0.008 False

IBE SM -0.262 True

This example shows how our MGRN model helps improve prediction results compared with a
traditional recurrent model without relational modeling: the related stocks can transmit their
information through the meaningful graph. The model can then make decision based on both
its own information and the transmitted information.

9Orsted A/S is a Danish multinational power company based in Fredericia, Denmark.
10Iberdrola is a Spanish multinational electric utility company based in Bilbao, Spain. Scottish Power is a

subsidiary of Spanish utility firm Iberdrola.
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3.6 Conclusion

We predict the stock movement by jointly considering financial news, multiple graph-based
features and temporal patterns of the news. We introduce Multi-Graph Recurrent Network
(MGRN) for this task. Through extensive experiments and trading simulations, we demonstrate
the effectiveness of the model structure. The result also proves that adding relationship
information, especially different relationship information from multiple sources, can help better
predict stock movement. We plan to incorporate more types of data (such as time series) in our
model and apply feature filling techniques [Taguchi et al., 2021] to further improve the prediction
accuracy.
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Appendix

3.A Overview of Graph Neural Networks

In this section, we introduce the necessary knowledge in the Graph Neural Networks (GNN)
used in this chapter and the following chapters.

3.A.1 Graph

Graph is a data structure used to describe the relationship among elements. It is widely used
in many domains such as social science [Myers et al., 2014], physics [Sanchez-Gonzalez et al.,
2020] and biology [Fout et al., 2017]. Nowadays, researchers use neural networks to extract
information from graphs and propose various Graph Neural Networks (GNN). The GNN shows
ground-breaking results compared with traditional approaches in recent papers.

A graph G consists of a finite set of vertices (or nodes, V ) and edges (E). A note usually
describes an element and an edge describes the relationship between two notes. The edges can
be either directed or undirected. We show a directed graph in Figure 3.A.1.

A

CB

Figure 3.A.1: An example of undirected graph.

We introduce two important matrices linked to a graph: the adjacency matrix (A) and the
degree matrix (D).

The adjacency matrix A is a |V | × |V | matrix such that its element Aij is one if there is an edge
from node i to node j. The adjacency matrix for the graph shown in Figure 3.A.1 is0 1 1

1 0 0
1 0 0

 .
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We note that the adjacency matrix of an undirected graph is symmetric.

The degree matrix is a |V | × |V | diagonal matrix which contains information about the number
of edges attached to each node. It is defined as:

Dij =

{
deg(vi), if i = j

0, otherwise
(3.20)

where deg(vi) denotes the number of edges that terminate at that vertex. For example, the
degree matrix of the graph shown in 3.A.1 is2 0 0

0 1 0
0 0 1

 .

The node matrix can be used to normalize the adjacency matrix.

3.A.2 Graph Convolutional Network

The goal of Graph Convolutional Network (GNN) is to learn a function which takes both node
features and the graph as input.

For each node i, we use a fixed number of features to represent the characteristics of this node.
These features can be stored in a fixed length vector xi ∈ (R)d×1 where d denotes the number of
features. This vector is also called the node embedding for the node i. Suppose that there are
n nodes in the graph, we can therefore get a feature matrix X ∈ Rn×d. We use the adjacency
matrix (A) to represent this graph. The goal can therefore be written as

Z = f0(X,A) (3.21)

where Z is the graph output.

The propagation process in a GCN can be composed of multiple layers, each layer can be written
as a function

H(l+1) = f(H(l), A) (3.22)

where H(l) ∈ Rn×fl with fl being the number of features in the l-th layer. We also note that
H(0) = X and H(L) = Z where L is the total number of layers in the GCN.

In GCN, the propagation rule f is given as

f(H(l), A) = σ(ÂH(l)W (l)) (3.23)

where W (l) ∈ Rf×wl is a learnable weight matrix for the l-th layer and σ is an activation function.
Â is the normalized adjacency matrix calculated with

Â = D−
1
2AD−

1
2 . (3.24)

where D is the degree matrix of the graph. This normalization guarantees that each row of the
Â sums to one, avoiding feature scale changes at each layer.

102



3.A. Overview of Graph Neural Networks

3.A.3 Message Passing Models

One of the fallbacks of the aforementioned GCN model is that it cannot handle a very large
graph, since we need to put the A, a |V | × |V | matrix into the memory during the training
process. When there is a large number of nodes, it is no longer possible to perform this task.

Hence, we can view this graph network as a spatial network instead of a spectral network [Zhou
et al., 2020]. It means that we define the convolution operation based on the graph topology
instead of the whole graph. This spatial view of the network is also known as a message passing.

Message passing works in three steps:

1. For each node in the graph, gather all neighbor node embeddings (messages).

2. Aggregate all messages via an aggregate function.

3. The pooled messages are passed through a neural network.

Suppose that the hidden vector for the node i in the l-th layer is h
(l)
i and the neighbors of this

node are in N (i). This message passing model can be written as

h
(l)
N (i) = AGGl({h

(l−1)
j ,∀j ∈ N (i)}) (3.25)

h
(l)
i = σ(W (l) · CONCAT(h

(l−1)
i , h

(l)
N (i))) (3.26)

where AGGl denotes the aggregation function for the l-th layer and W (l) are trainable
parameters. Hamilton et al. [2017] propose three examples for the aggregation function: mean
aggregator, LSTM aggregator and polling aggregator.

Hamilton et al. [2017] also prove that when using the mean aggregator, the spatial message
passing model is equivalent to the spectral GCN model introduced in the previous section. We
can therefore apply graph neural networks on large scale graphs with this generalized message
passing models.
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Multivariate Realized Volatility
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Abstract

The existing publications demonstrate that the limit order book data is useful in predicting short-term
volatility in stock markets. Since stocks are not independent, changes on one stock can also impact
other related stocks. In this paper, we are interested in forecasting short-term realized volatility in
a multivariate approach based on limit order book data and relational data. To achieve this goal, we
introduce Graph Transformer Network for Volatility Forecasting. The model allows to combine limit order
book features and an unlimited number of temporal and cross-sectional relations from different sources.
Through experiments based on about 500 stocks from S&P 500 index, we find a better performance for
our model than for other benchmarks.
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4.1 Introduction

Volatility is an important quantity in finance, it evaluates the price fluctuation and represents
the risk level of an asset. It is one of the most important indicators used in risk management and
equity derivatives pricing. Although the volatility is not observable, Andersen and Bollerslev
[1998] show that realized volatility is a good estimator of volatility. Forecasting realized volatility
has therefore attracted the attention of various researchers.

Brailsford and Faff [1996] propose using GARCH (Generalized AutoRegressive Conditional
Heteroskedasticity) models to forecast realized volatilities based on daily prices. Gatheral and
Oomen [2010] introduce several simple volatility estimators based on Limit Order Book (LOB)
data, showing that the use of LOB data can lead to better predicting results. More recently,
Rahimikia and Poon [2020b] and Zhang and Rosenbaum [2020] use machine learning techniques
such as Recurrent Neural Network (RNN) to improve such predictions.

The aforementioned literatures adopt a univariate approach in this task, which means that the
model only considers one outcome for one stock at the same time, instead of jointly considering
the situations of all stocks, although the asset returns on the financial markets can be highly
correlated [Campbell et al., 1993]. Andersen et al. [2005] propose linear multivariate volatility
forecasting methods based on daily price data to take into account this correlation, while Bucci
[2020] further uses neural networks to forecast realized volatility covariance matrix non-linearly.
Bollerslev et al. [2019] first propose a parametric multivariate model based on LOB data using
covolatility and covariance matrices. More recently, a Kaggle multivariate realized volatility
prediction competition1 was sponsored by Optiver to challenge data scientists to propose new
multivariate forecasting methods.

Compared with the univariate approach, multivariate models can capture the relations among
observations. Most recently, Graph Neural Networks (GNN) [Bruna et al., 2013] are proposed to
integrate such relationship into the commonly used non-linear neural networks. This approach
achieves significant success in multiple applications, such as traffic flow prediction [Li et al.,
2017], recommender systems [Berg et al., 2017] and stock movement prediction [Sawhney et al.,
2020; Chen and Robert, 2021]. To the best of our knowledge, no graph-based structure for
volatility forecasting has been proposed in the literatures.

Hence, to further improve the volatility forecasting performance, inspired by previous researches
(Sec. 2), the Kaggle competition and our real-life use cases, we build a multivariate volatility
forecasting model (Sec. 3) based on Graph Neural Network: Graph Transformer Network
for Volatility Forecasting (GTN-VF). This model predicts the short-term volatilities from LOB
data and both cross-sectional and temporal relationships from different sources (Sec. 4). With
various experiments on about 500 stocks from the S&P 500 index, we demonstrate that GTN-VF
outperforms other baseline models with a significant margin on different forecasting horizons
(Sec. 5).

1https://www.kaggle.com/c/optiver-realized-volatility-prediction
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4.2 Related Work

4.2.1 Volatility Forecasting

As introduced in Section 4.1, there are two types of volatility forecasting models: univariate
models and multivariate models.

In univariate approaches, researchers can design intuitive estimators [Zhou, 1996; Zhang,
2006], without considering relations among observations. More commonly, researchers adopt
time-series methods to model the time dependence while ignoring the cross-sectional relations
and calibrating one set of parameters for each asset. For example, Brailsford and Faff [1996]
propose GARCH models, Sirignano and Cont [2019] use RNN models with Long Short-Term
Memory (LSTM) and Ramos-Pérez et al. [2021] adopt a Transformer structure [Vaswani et al.,
2017].

Multivariate models add cross-sectional relationships and achieve better results. For example,
Kwan et al. [2005] introduce multivariate threshold GARCH model and Bollerslev et al. [2019]
propose a multivariate statistical estimator based on co-volatility matrices. It is worth noting
that all models above only use asset covariance as the source to build the relationship while
ignoring the intrinsic relations between the companies that issue the stocks.

4.2.2 Graph Neural Network

A graph is composed of nodes and edges, where a node represents an instance in the network and
an edge denotes the relationship between two instances. It is an intuitive structure to describe
the relational information. Recently, many researches focus on generalizing neural networks on
graph structure to capture non-linear interactions among the nodes.

Bruna et al. [2013] first generalize the Convolutional Neural Network (CNN) on graph-based
data, while Kipf and Welling [2016] propose Graph Convolutional Network (GCN) and Defferrard
et al. [2016] introduce ChebNet, both of which have reduced network complexity and better
predictive accuracy.

However, the aforementioned models are required to load all the graph data into the memory
at the same time, making training larger relation networks impossible. Gilmer et al. [2017]
state that Graph Neural Networks are essentially message passing algorithms. It means that the
model makes decision not only based on one node’s observation, but also the information passed
from all other related nodes defined in the format of a graph. Based on this generalization,
Hamilton et al. [2017] propose GraphSAGE which allows batch training on graph data.

Shi et al. [2020] further show that using a Transformer-like operator to aggregate node features
and the neighbor nodes’ features gives a better performance than a simple average such as
GraphSAGE or an attention mechanism such as Graph Attention Network [Veličković et al.,
2017].

To close the gap in the researches, we propose GTN-VF, which adopts the state-of-the-art
Graph Neural Networks to model the relationships. In addition, GTN-VF allows to integrate
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an unlimited number of relational information, including both widely used covariance and other
external relations such as sector and supply chain, which were rarely used in previous researches.

4.3 Problem Formulation

We formulate this multivariate volatility forecasting problem as a regression task. The goal is
to predict the realized volatility vector over the next ∆T seconds at a given time t with all
previously available data.

We first define the return of stock s at time t as

rs,t = log(
Ps,t

Ps,t−1
) (4.1)

where Ps,t is the last trade price of s at t.

We then use RVs,t,∆T to denote the realized volatility for stock s between t and t + ∆T , it is
defined as:

RVs,t,∆T =

√√√√t+∆T∑
i=t

r2
s,i (4.2)

Previous researches [Malec, 2016; Rahimikia and Poon, 2020a,0] usually calibrate one model for
each stock. This prediction model fs for stock s can be written as:

̂RVs,t,∆T = fs([Ds,t1 , ..., Ds,tm ], θ) (4.3)

where Ds,t denotes the limit order book data related to stock s between t and t − ∆T ′, and
t1 < ... < tm < t. ∆T ′ is a parameter denoting the backward window used to build features for
t, while θ represents the model parameters.

However, as stated in Section 4.1, the realized volatilities of the stocks are related through their
LOBs. We want to consider this effect in our model and we write our prediction model g0 as:

̂RVs,t,∆T = g0(

Ds1,t1 ... Ds1,tm

... ... ...
Dsn,t1 ... Dsn,tm

 ,Gs, θ) (4.4)

where Gs is the relationship of stock s with all other stocks s1, ..., sn. It means that our model
jointly considers all the features from all other stocks when predicting realized volatility for stock
s and its relationship with other stocks, instead of only taking its own features into account.

In additional to the relationship among stocks, we can also consider the relationship among
the timestamps we predict. For example, at time t, we can check whether the behaviors of the
stocks are similar to their behaviors at previous timestamps. We use Gt to denote this temporal
relationship. Our prediction model g is finally written as:

̂RVs,t,∆T = g(

Ds1,t1 ... Ds1,tm

... ... ...
Dsn,t1 ... Dsn,tm

 ,Gs,Gt, θ) (4.5)
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4.4 Graph Transformer Network for Realized Volatility
Forecasting

Our model consists of two main components: a LOB data encoder and a Graph Transformer
Network. The LOB data encoder transforms numerical LOB data into multiple features. It also
transforms categorical information, such as the stock ticker, into a fixed-dimension embedding.
It finally concatenates the numerical features and the embedding for categorical features as the
node feature.

The Graph Transformer Network then takes all the node features and the pre-defined relationship
information as input. After training, it will give each node a new meaningful embedding which
contains information from both LOB data and relational data. With a fully connected layer, we
can get the final prediction of realized volatility for this node.

An illustration of the whole structure is shown in Figure 4.1.
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Ds,t
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Ds,t
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Functions

Fs,t
cat

Fs,t
num

...
... Fs,t
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LOB Data Encoder

..
..
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...

hs,t

...

Graph
Transformer

(1) (1)

Sample
Neighbors

...
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Graph
Transformer

(L)
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. . .

. . .
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Graph Transformer Network

Figure 4.1: Structure of our Graph Transformer Network for Volatility Forecasting. This
illustration shows the prediction process for one node nodes,t. The LOB data encoder first
transforms its LOB data into a fixed-dimension node feature Fs,t. GTN then takes this node
feature and all the features from all other nodes connected with this node (Fs,t). After L

Graph Transformer operations, we get the node embedding h
(L)
s,t as output. We then use a fully

connected layer to transform this node embedding into our final prediction ̂RVs,t,∆T .

4.4.1 LOB data encoder

We first divide our LOB data Ds,t into two parts: numerical data Dnum
s,t and categorical data

Dcat
s,t . For numerical data, we can define different functions to aggregate them into numerical

values. Suppose that we have knum such functions f1, ..., fknum , we get knum features and we
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put them into a single vector Fnum
s,t where

Fnum
s,t = [f1(Dnum

s,t ), ..., fknum(Dnum
s,t )]> (4.6)

F knum
s,t is therefore a vector of size knum × 1.

Following Kercheval and Zhang [2015]; Bissoondoyal-Bheenick et al. [2019]; Mäkinen et al. [2019],
we define a similar set of numerical features. We also add some other features which are suitable
for our dataset. We show the detailed list of features we use in our experiments in Appendix
4.A.

For other categorical features, such as stock ticker, we simply adopt an embedding layer to
transform them into a fixed-dimension vector F cat

s,t . This vector is of size kcat × 1 where kcat is
the embedding dimension we can choose.

We then concatenate these two vectors into one vector Fs,t ∈ Rk×1, where k = knum +kcat. This
operation is written as

Fs,t = Fnum
s,t ⊕ F cat

s,t (4.7)

where ⊕ denotes the concatenation operation.

4.4.2 Graph Transformer Network

As stated in Section 4.2.2, Graph Transformer operator shows a better performance compared
with other structures, we use it to build our network in this study.

We first build a graph with m × n nodes where m is the number of timestamps and n is the
number of stocks. Each node nodes,t represents the situation of stock s at time t. Its initial
node feature is Fs,t (Equation 4.7) encoded by LOB data encoder. From the relationship Gs and
Gt, we can find all other nodes connected with nodes,t. We use Ns,t to denote all the connected
nodes. For each stock s at time t, the model takes both its own LOB features and the LOB
features from other related pairs of (s, t) into account. It then forecasts the realized volatility
based on both self node features and neighbor node features, instead of the traditional approach
which considers only self node features.

The Graph Transformer operator for the l-th layer with C heads is written as:

ĥ
(l+1)
s,t,c = W1,ch

(l)
s,t +

∑
nodei,j∈Ns,t

αi,j,cW2,ch
(l)
i,j (4.8)

h
(l+1)
s,t = σ(⊕C

c=1ĥ
(l+1)
s,t,c ) (4.9)

Equation 4.8 first calculates the output vector ĥ
(l+1)
s,t,c for one single head c, in which h

(l)
i,j ∈

Rdl×1 is the l-th layer hidden node embedding for nodei,j , W1,c,W2,c ∈ (Rd̂l+1×dl)2 are trainable
parameters. αi,j,c are attention coefficients associated with nodei,j for head c. It is calculated
via dot product attention [Bahdanau et al., 2014] by

αi,j,c = softmax(
(W3,ch

(l)
s,t)
>(W4,ch

(l)
i,j)√

dl
) (4.10)
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where W3,c and W4,c are both trainable parameters of size d̂l+1 × dl.

We then use Equation 4.9 to aggregate the output from all heads into a final output vector

h
(l+1)
s,t for the l-th layer. It is then used as the input for the (l + 1)-th layer. In this equation,
⊕ denotes the concatenation operation and σ is an activation function such as ReLU [Glorot
et al., 2011]. We show the structure of this operator in Figure 4.2.

...

...

...

...

Attention Head (1)

Attention Head (2)
..

..
..

Attention Head (C)

...
...

...

...

Figure 4.2: Illustration of Graph Transformer operator. Hl
s,t represents the l-th layer hidden

vectors for all the nodes in Ns,t. We can then accumulate multiple layers of this structure to
build a Graph Transformer Network.

We can then accumulate multiple layers of this structure to better retreive information. Suppose
that our Graph Transformer Network (GTN) has L layers in total, for each node, its initial node

features h
(0)
s,t = Fs,t will be transformed into a node embedding h

(L)
s,t ∈ RdL×1. We then use a

fully-connected layer to get the final predictions of realized volatility from the node embeddings.
This operation is written as

̂RVs,t,∆T = σ(W>0 h
(L)
s,t ) (4.11)

where W0 ∈ RdL×1 are trainable parameters in the fully connected layer.

We then use Root Mean Square Percentage Error (RMSPE) as our loss function to evaluate the
model and propagate back into the model. It is define as

RMSPE =

√√√√ 1

N

∑
s,t

(
̂RVs,t,∆T −RVs,t,∆T

RVs,t,∆T + ε
)2 (4.12)

where N is the total number of nodes in the graph and ε is a small constant to avoid overflow.
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We use RMSPE instead of the standard Mean Square Error (MSE) because the volatilities
of different stocks are intrinsically different. For example, more liquid stocks are usually more
volatile than less liquid stocks [Domowitz et al., 2001]. The RMSPE loss function helps normalize
the difference among stocks to make sure that the model has a similar effect on all stocks.

4.5 Experiments

4.5.1 LOB data

We use NYSE daily TAQ data2 as our limit order book data. The data contains all the quotes
(only first limit, i.e., best bid and best ask) and trades happening in the US stock exchanges.
We select the entries concerning all the stocks included in the S&P 500 index3 as our universe.
Compared with other researches (5 stocks in Mäkinen et al. [2019], 23 stocks in Rahimikia and
Poon [2020b]), this large selection of around 500 stocks also covers some less liquid stocks. We
will show that it is more difficult to have a good prediction on less liquid stocks in Section 4.6.1.

Data Sampling

Following Barndorff-Nielsen et al. [2009]; Rahimikia and Poon [2020a], we first sample the data
with a fixed frequency Tf . Since we focus on short-term volatility forecasting in this paper, we
use a one second sampling frequency instead of 5 minutes used by Rahimikia and Poon [2020a]
to forecast daily volatility. Our sampling strategy is as follows:

• For quote data, we snapshot the best ask price (P 1
a ), best bid price (P 1

b ), best ask size
(V 1

a ) and best bid size (V 1
b ) for each stock at the end of each second.

• For trade data, we aggregate all the trades for each stock during each second. We record
the number of trades (Nt), the total number of shares traded (Vt) and the volume weighted
average price (Pt)

4 of all trades.

An example of sampled quote and trade data for stock A on Jan. 3rd, 2017 is shown in Table
4.1 and 4.2. In addition to the previously defined LOB fields, we also have Date, Symbol and
seconds. The seconds field signifies the number of seconds after the market open. We note that
the seconds are not continuous. This is because there are occasions that there is no update in
the LOB in that second. For quote data it implies that the quote is the same as the last second,
for trade data it implies that there is no trade in that second.

2https://www.nyse.com/market-data/historical/daily-taq
3https://www.spglobal.com/spdji/en/indices/equity/sp-500/#overview

4Pt =
∑Nt

i PiVi∑Nt
i Vi

where Pi is the price for trade i and Vi is the number of shares traded. Nt is the total number

of trades recorded during second t.

114



4.5. Experiments

Date Symbol seconds P 1
b V 1

b P 1
a V 1

a

1/3/2017 A 0 45.92 1 46.09 1
1/3/2017 A 1 45.92 3 46 2
1/3/2017 A 2 45.92 2 46 2
1/3/2017 A 5 45.92 2 46 1
1/3/2017 A 6 45.94 1 46.05 3

Table 4.1: Sampled quote data

Date Symbol seconds Nt Vt Pt

1/3/2017 A 0 8 1500 45.802
1/3/2017 A 1 7 24959 45.94963
1/3/2017 A 2 1 300 45.96
1/3/2017 A 3 1 100 45.9544
1/3/2017 A 5 7 916 45.97817

Table 4.2: Sampled trade data

Data Bucket

As introduced in Section 4.3, our goal is to forecast the realized volatility ∆T seconds after a
given timestamp t based on the features built from a backward window of ∆T ′ seconds.

Hence, we need to build buckets which have the length of ∆T + ∆T ′ seconds between t−∆T ′

and t + ∆T . In each bucket, we only use the returns between t and t + ∆T to calculate our
target RVs,t,∆T , we use both returns and other information from LOBs between t−∆T ′ and t
to build a set of features with LOB data encoder.

In our experiments on US stocks, we create 6 buckets for each stock each day. We select 10:00,
11:00, 12:00, 13:00, 14:00 and 15:00 EST as 6 different t. For the sake of simplicity, we use
∆T = ∆T ′. We use three different ∆T of 600 seconds, 1200 seconds and 1800 seconds to
show that our model is robust to this choice and is capable of forecasting volatility on different
horizons. This choice also ensures that there is no overlap between buckets to avoid information
leakage. The detailed experiment results are shown in Section 4.5.4.

Data Split

We split our LOB data into 3 parts: train, validation and test. We ensure that the validation
set and the test set are no earlier than the training set to avoid backward looking. We also
remove the buckets where there are no quotes or trades during ∆T . Detailed statistics of our
dataset are shown in Table 4.3.
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Table 4.3: The statistics of the LOB data with ∆T = 600.

train val test

start Jan-17 Jan-20 Jan-21
end Dec-19 Dec-20 Oct-21

# time 4,464 1,505 1,236
# stock 494 494 494

# bucket 2,141,108 743,068 607,770
proportion 61% 21% 18%

4.5.2 Graph Building

As stated in Section 4.3, we consider both temporal (Gt) and cross-sectional (Gs) relationships
among buckets. In this subsection, we first introduce a method to construct relations without
using other data than our LOB data. We also introduce other relations we constructed with
external data, for example, stock sector and supply chain data.

Temporal Relationship

To construct the temporal relationship among the nodes, we only use LOB data. The intuition
behind this temporal relationship is that at a new moment t, we check if there are moments in
the history which are similar.

As introduced in Equation 4.6, for each nodes,t, we can calculate knum features. Suppose that
f is,t is the i-th feature for stock s at time t. For each time t, we let

Qi
t = ([f i1,t, ..., f

i
n,t])

> (4.13)

where Qi
t ∈ Rn×1 represents the feature i of all stocks at time t.

Given a time t0, we calculate the RMSPE (Equation 4.12) of Qi between t0 and all other
t. We then choose the K-smallest RMSPE to form K pairs of times, represented by Gt0 =
[(t0, t1), ..., (t0, tK)]. Then for each such pair (ti, tj), we connect the two nodes where s is the
same and the time is ti and tj respectively. This can be written as:

∀(ti, tj) ∈ Gt0 , ∀k ∈ [1, n],

connect nodesk,ti and nodesk,tj
(4.14)

After this operation, we get K ×n single-directed edges in the graph for t0. We then repeat the
same process for all t, and get K × n×m edges in total.

In our study, we use two features to get 2×K × n×m edges in the graph, namely, the average
quote WAP5 for the first 100 seconds and the average quote WAP for the last 100 seconds in
the bucket.

5Weighted Average Price, defined as
P1
b V 1

a +P1
aV 1

b

V 1
a +V 1

b
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Cross-sectional Relationship

Unlike times, there are intrinsic relations among stocks since each stock represents a company
in the real life. Hence, in addition to building relationship based on LOB features, we can also
build the cross-sectional graph with external data.

Feature Correlation

Using the same idea introduced in 4.5.2, we first build

Q
′i
s = ([f is,1, ..., f

i
s,m])> (4.15)

Q
′i
s ∈ Rm×1 represents the feature i of stock s at t.

We then build the edges for s0 with

∀(si, sj) ∈ Gs0 ,∀k ∈ [1,m],

connect nodesi,tk and nodesj ,tk
(4.16)

with Gs0 = [(s0, s1), ..., (s0, sK′)] denoting the stock pairs which are among the K ′-smallest
feature RMSPE for stock s0.

We repeat the same process for all stocks and we use the same features as in 4.5.2 to build
another 2×K ′ × n×m edges.

Stock Sector

In finance, each company is classified into a specific sector with Global Industry Classification
Standard6 (GICS). It is shown that the performances of stocks in the same sector are often
correlated [Vardharaj and Fabozzi, 2007]. Hence, we simply connect the times of a pair of
stocks if they belong to the same sector. This is written as:

∀ Esec, ∀si ∈ Esec,∀sj ∈ Esec and sj 6= si,

∀k ∈ [1,m], connect nodesi,tk and nodesj ,tk
(4.17)

where Esec is the ensemble of all the stocks in the sector sec.

There are four granularities in GICS sector data: Sector, Industry Group, Industry,
Sub-Industry. We can therefore construct four different types of edges with this GICS sector
data. In our experiments, we use the Industry granularity as it gives a good performance with
a reasonable number of edges. The detail of this choice is discussed in Section 4.6.3.

Supply Chain

Supply chain describes the supplier-customer relation between companies and it is proved to be
useful in multiple financial tasks such as risk management [Yang et al., 2020a] and performance
prediction [Chen and Robert, 2021]. We use the supply chain data from Factset7 to build this

6https://www.msci.com/our-solutions/indexes/gics
7https://www.factset.com/marketplace/catalog/product/factset-supply-chain-relationships
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graph. We connect two companies if they have a supplier-customer relationship in the training
period. This is described as:

∀(si, sj) ∈ Gsupply, ∀k ∈ [1,m]

connect nodesi,tk and nodesj ,tk
(4.18)

where Gsupply is the ensemble of all the supplier-customer relations among the stocks.

We show a detailed statistics of each type of relationship we built in Table 4.4. In addition to
using these relations separately, we can also join these relations by simply putting all the edges
together in the same graph. We will show that combining the edges can help improve the result
in Section 4.5.4. The pseudocode used to build all four relationships is included in Appendix
4.B.

Table 4.4: The number of edges in each relationship. The total number denotes the number of
all the edges combined. It is not exactly the sum of all individual edge counts since there are
duplicated edges. These numbers are based on the nodes in the training set for ∆T = 600.

Type Relation # edges

Temporal Feature Corr 8.36M

Cross-sectional

Feature Corr 8.21M
Sector 47.86M

Supply Chain 22.22M

Total 76.33M

4.5.3 Experiment Setup

In order to prove the effectiveness of our model structure, we also include the performance of
some other widely used models as our benchmarks.

• Naı̈ve Guess: We simply use the realized volatility between t−∆T ′ and t to predict the
target. It is written as ̂RVs,t,∆T = RVs,t−∆T ′,∆T ′ .

• HAR-RV: Heterogeneous AutoRegressive model of Realized Volatility. A simple but effective
realized volatility prediction model proposed by Corsi [2009].

• LightGBM: A gradient boosting decision tree model introduced by Ke et al. [2017]. It is
proven to be highly effective on tabular data.

• MLP: Multi-Layer Perception network [Rumelhart et al., 1985]. We build a fully connected
neural network with three layers, which have 128, 64, 32 hidden units respectively.

• TabNet: A neural network proposed by Arık and Pfister [2020] which specializes in dealing
with tabular data.

• Vanilla GTN-VF: Our Graph Transformer Network for Volatility Forecasting trained
without any relationship information.
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In addition, we show the model performance with different relations individually to demonstrate
how different types of relational data help improve the result compared with Vanilla GTN-VF
and other benchmarks.

In addition, we compare the model performance with different relations individually to
demonstrate how different types of relational data help improve the result compared with Vanilla
GTN-VF and other benchmarks. These variants include Cross-sectional Feature Correlation
(GTN-VF Cross FC), Temporal Feature Correlation (GTN-VF Temp FC), Cross-sectional Sector
relationship (GTN-VF Sector) and Cross-sectional Supply Chain relationship (GTN-VF Cross
Supply Chain). The full GTN-VF includes all four types of relations.

MLP, TabNet and all the variants of our GTN-VF model are implemented in PyTorch [Paszke
et al., 2019] with Adam optimizer [Kingma and Ba, 2014]. For our GTN-VF, we use a 3-layer
(L = 3) Graph Transformer Network with 8 heads (C = 8). All three layers have 128 channels
(d1 = d2 = d3 = 128). We embed our numerical features into a 73-dimension vector (knum = 73,
Section 4.4.1) and categorical features into a 32-dimension vector (kcat = 32). Other baseline
models are implemented without deep learning framework.

In order to provide a fair comparison and guard against hyperparameter hacking, we sweep over
the same set of hyperparameters for all GTN-VF variants and choose the best setting for each
variant according to the performance on the validation set. We then fix these parameters for
all experiments on the test set. The appendix contains further implementation details on both
baseline models and GTN-VF models.

4.5.4 Experiment Results

Table 4.5: RMSPE values of all the models on both validation set and test set. In addition to the
baseline models, we also include the individual performance of the GTN-VF with four relations
(Table 4.4), i.e., Cross-sectional Feature Correlation (GTN-VF Cross FC), Temporal Feature
Correlation (GTN-VF Temp FC), Cross-sectional Sector relationship (GTN-VF Sector) and
Cross-sectional Supply Chain relationship (GTN-VF Cross Supply Chain). The full GTN-VF
includes all four types of relations.

∆T = 600 ∆T = 1200 ∆T = 1800

Model val test val test val test

Näıve Guess 0.2911 0.2834 0.2650 0.2628 0.2296 0.2364
HAR-RV 0.2684 0.2612 0.2149 0.2061 0.1968 0.1939

LightGBM 0.2583 0.2492 0.2414 0.2035 0.2349 0.1963
MLP 0.2431 0.2514 0.2200 0.2308 0.2270 0.1999

TabNet 0.2517 0.2478 0.2212 0.1996 0.2204 0.2019

Vanilla GTN-VF 0.2457 0.2498 0.2229 0.2251 0.2092 0.2160
GTN-VF Cross FC 0.2414 0.2382 0.2162 0.2196 0.2066 0.2046
GTN-VF Temp FC 0.2326 0.2358 0.1974 0.1921 0.1896 0.1853

GTN-VF Cross Sector 0.2406 0.2422 0.2067 0.2248 0.2071 0.2091
GTN-VF Cross Supply Chain 0.2430 0.2411 0.2105 0.2244 0.2057 0.2000

GTN-VF Cross FC + Temp FC 0.2326 0.2306 0.1936 0.1917 0.1848 0.1802
GTN-VF 0.2314 0.2287 0.1916 0.1892 0.1809 0.1798
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In our short-term realized volatility forecasting task, we use a 3-layer (L = 3) Graph Transformer
Network with 8 heads (C = 8). All three layers have 128 channels (d1 = d2 = d3 = 128). We
embed our categorical features into a 32-dimension vector (kcat = 32).

The detailed results of our experiments are shown in Table 4.5. We can see that our full GTN-VF
model with all four types of relational information outperforms all baseline models and each type
of relational information individually on all prediction horizons. The improvement is significant.
In average, we gain 6% in RMSPE compared with Näıve Guess and 2% compared with the
best baseline model TabNet on test set. It proves that our GTN model structure and relation
building methods are effective.

In terms of individual relationship, all relations are useful since they all show improvement
compared with the vanilla model. The temporal feature correlation shows the most predicting
power, contributing 1.2% RMSPE gain while the Sector relation only contributes 0.7%
improvement when the window is set to 600 seconds although it has the largest number of
edges. This can be explained by the ’noise’ included in this type of information since we need to
connect every two stocks in the same sector although not all of them have significant connection.
However, feature correlation only selects the two most related stocks or times, making it more
discriminational when building edges. This suggests that if we have the constraint on the number
of edges in the graph, quality is more important than quantity. On the other hand, these relations
are complementary to each other, adding more relations on top of existing relations can help
improve the prediction if we have enough computing power.

It is also worth noting that when we forecast the realized volatility with a longer forward looking
and backward looking window, the result is better. This is simple because the same volatility
jump causes more volatility changes in shorter forecasting horizon [Ma et al., 2019].

4.6 Ablation Studies

4.6.1 Prediction accuracy and stock liquidity

In general, it is more difficult to have a good prediction on less liquid stocks because there are
fewer market participants for them. One sudden change in quote or trade can cause significant
volatility jump, which is difficult to foresee. We analyze the result to understand where the
improvement comes from.

We first split the stocks into 50 buckets according to their average daily turnover, which
represents the liquidity of a stock. We calculate the RMSPE in each bucket for both Näıve
Guess and GTN-VF. The result is illustrated in Figure 4.3.

First, we notice that more liquid stocks have smaller RMSPE for both models, which is intuitive.
The prediction for the most liquid stocks is 5% better than the least liquid stocks in terms of
RMSPE, which is a large margin in realized volatility forecasting. We can also see that our graph
based model has more improvement on the less liquid stocks (around 8% for more liquid stocks
and 2% for less liquid stocks), although it is more effective than Näıve Guess on all scenarios.
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Figure 4.3: The relationship between stock liquidity and prediction RMSPE. The dots denote
the RMSPE for the buckets and the dashed lines are the trend lines calculated with linear
regression. This figure is based on test result and ∆T = 600.

4.6.2 Prediction accuracy and node connection

We also investigate how our model performs on different nodes. We use the same approach
in Section 4.6.1 by splitting nodes into buckets according to the number of edges connected to
each node. We can see from Figure 4.4 that more connected nodes usually have better RMSPE
result, with a 2% difference between the most connected and the least connected. This can be
explained by the fact that mode connected nodes make decision based on more information from
their neighbor, while the nodes with fewer or no connections can only rely on the information
from themselves. This phenomenon proves again the effectiveness of our graph based method.

4.6.3 Sector Relationship

As introduced in Section 4.5.2, there are four granularities in the GICS sector data. We run
different experiments to evaluate the performance of each type of sector relationship. The result
is shown in Table 4.6.

Table 4.6: Test RMSPE with different granularities of GICS sector. The result for Sector is not
available as the number of edges is too big to fit in the memory.

Granularity # edges test RMSPE

Sector 178.7M N.A.
IndustryGroup 83.39M 0.2578

Industry 47.86M 0.2422
SubIndustry 19.88M 0.2441

We observe that Industry shows the best performance with a modest number of edges. If we
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Figure 4.4: The relationship between node connection and RMSPE. This figure is based on test
result and ∆T = 600.

add more edges, such as IndustryGroup, the RMSPE decreases since the relations among stocks
are less meaningful. For the Sector granularity, we are not even able to obtain a result since
the number of edges exceeds the memory limit. Hence, in our final model combining multiple
sources of relations, we choose Industry as our sector relationship.

4.7 Conclusion

We forecast the short-term realized volatility in a multivariate approach. We design a graph
based neural network: Graph Transformer Network for Volatility Forecasting which incorporates
both features from LOB data and relationship among stocks from different sources. Through
extensive experiments on around 500 stocks, we prove the that our method outperforms other
baseline models, both univariate and multivariate. In addition, the model structure allows to
combine an unlimited number of relations, the study of the effectiveness of other relational data
is open for future researches.
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Appendix

4.A List of node features

We introduce the features we use in our experiments.

In each bucket, we have ∆T ′ lines as training data. We first calculate an indicator for each line,
we then aggregate these indicators in the same bucket with an aggregation function (aggregator).
In such way, we have one value per indicator per aggregator as one feature for the bucket. The
full list of indicators and aggregators are listed in Table 4.B.1.

For some important indicators, we also calculate their progressive features. It means that instead
of applying an aggregator on all the lines, we apply it on the lines between 0 and ∆T ′/6, ∆T ′/3,
∆T ′/2, 2∆T ′/3, 5∆T ′/6, ∆T ′. In such way, we have 6 features per indicator per aggregator for
an progressive feature. This is shown in the column Progressive in Table 4.B.1.

We define our aggregation functions as follows. We use ai to denote the i-th line in the bucket
and N represents the total number of lines.

• gini coefficient [Gini, 1921] ∑N
i

∑N
j |ai − aj |

2N2a

• percentage difference ∑N
i 1ai 6=ai−1

N

• realized volatility (Equation 4.2) √√√√ 1

N

N∑
i

a2
i

• percentage greater than mean ∑N
i 1ai>a

N

• percentage greater than zero ∑N
i 1ai>0

N
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• median deviation

median(|ai − a|)

• energy

1

N

N∑
i

a2
i

• InterQuartile Range (IQR)

Q75(a)−Q25(a)

where Qi(a) denotes the i-th percentile value for the series a.

4.B Graph Building Pseudocode

To help better understand our graph building process, we give the pseudocode we used in
each type of graph. Temporal feature correlation relationship is built with Algorithm 1,
cross-sectional feature correlation relationship is built with Algorithm 2, cross-sectional activity
sector relationship is built with Algorithm 3 and cross-sectional supply chain relationship is built
with Algorithm 4.

Algorithm 1 Graph building algorithm for temporal feature correlation relationship

Input:
Selected features: I
Selected features for all stocks and all times: {f is,t | ∀s ∈ [1, ..., n],∀t ∈ [1, ...,m],∀i ∈ I}
Number of pairs selected for each t: K

Output:
Temporal feature correlation among the buckets: Rt

1: for i ∈ I do
2: for t = 1, ...,m do
3: Qi

t ← ([f i1,t, ..., f
i
n,t])

>

4: end for
5: end for
6: Rt ← {} . Initialize an empty list for all relations
7: for i ∈ I do
8: for t0 = 1, ...,m do
9: for t = 1, ..., t0 do

10: Lt0,t ← RMSPE(Qi
t0 , Q

i
t)

11: end for
12: Gt0 ← K pairs of (t0, t) with the smallest Lt0,t

13: Rt0 ← {}
14: for s = 1, ..., n do
15: Rt0 ← Rt0 ∪ {(nodes,t0 , nodes,t)}
16: end for
17: Rt ← Rt ∪Rt0

18: end for
19: end for
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Table 4.B.1: The list of features built from LOB data

Type Notation Description Aggregators Progressive Count

Quote

P 1
b V

1
a +P 1

aV
1
b

V 1
a +V 1

b
WAP

mean, std, gini
N 5mean of first 100, mean of last 100

P 1
a Ask Price % difference N 1
P 1
b Bid Price % difference N 1

P 1
a−P 1

b

P 1
a+P 1

b
Price Relative Spread mean, std, gini N 3

WAP − P 1
b WAP bid difference mean, std, gini N 3

log( WAPi
WAPi−1

) Return realized volatility Y 6

log( WAPi
WAPi−1

)2 Squared Return std, gini N 2
V 1
a −V 1

b

V 1
a +V 1

b
Size Relative Spread mean, std, gini N 3

V 1
a Ask Size % difference N 1
V 1
b Bid Size % difference N 1

V 1
a /V

1
a Normalized Ask Size mean, std, gini N 3

V 1
a + V 1

b Total Size sum, max N 2
|V 1

a − V 1
b | Size Imbalance sum, max N 2

Trade

Pt Price
% greater than mean, % less than mean

N 5median diviation, energy, IQR

log(
Pt,i

Pt,i−1
) Return

realized volatility Y 6
% greater than 0, % less than 0 N 2

log(
Pt,i

Pt,i−1
)2 Squared Return std, gini N 2

Vt Size
sum Y 6

max, median diviation, energy, IQR N 4
t Seconds count Y 6

Nt Order Count
sum Y 6
max N 1

Pt × Vt Amount sum, max N 2

Total 73125
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Algorithm 2 Graph building algorithm for cross-sectional feature correlation relationship

Input:
Selected features: I
Selected features for all stocks and all times: {f is,t | ∀s ∈ [1, ..., n],∀t ∈ [1, ...,m],∀i ∈ I}
Number of pairs selected for each s: K ′

Output:
Cross-sectional feature correlation among the buckets: Rs

1: for i ∈ I do
2: for s = 1, ..., n do
3: Q

′i
s ← ([f is,1, ..., f

i
s,m])>

4: end for
5: end for
6: Rs ← {} . Initialize an empty list for all relations
7: for i ∈ I do
8: for s0 = 1, ..., n do
9: for s = 1, ..., s0 do

10: Ls0,s ← RMSPE(Qi
s0
, Qi

s)
11: end for
12: Gs0 ← K ′ pairs of (s0, s) with the smallest Ls0,s

13: Rs0 ← {}
14: for t = 1, ...,m do
15: Rs0 ← Rs0 ∪ {(nodes0,t, nodes,t)}
16: end for
17: Rs ← Rs ∪Rs0

18: end for
19: end for

Algorithm 3 Graph building algorithm for cross-sectional activity sector relationship

Input:
Stock sectors: S = {S1, ...,SNs}

Output:
Sector relationship among the buckets: Rsector

1: Rsector ← {} . Initialize an empty list for all relations
2: for i = 1, ..., Ns do
3: for sj ∈ Si do
4: for sk ∈ Si do
5: if sj 6= sk then
6: for t = 1, ...,m do
7: Rsector ← Rsector ∪ {(nodesj ,t, nodesk,t)}
8: end for
9: end if

10: end for
11: end for
12: end for
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Algorithm 4 Graph building algorithm for cross-sectional supply chain relationship

Input:
Supply chain relations among stocks: Gsc = {(si, sj) | si and sj have supplier-customer
relationship }

Output:
Supply chain relationship among the buckets: Rsc

1: Rsc ← {} . Initialize an empty list for all relations
2: for (si, sj) ∈ Rsc do
3: for t = 1, ...,m do
4: Rsc ← Rsc ∪ {(nodesi,t, nodesj ,t)}
5: end for
6: end for

4.C Details on Experiment Setup

4.C.1 Model Details

In all baseline models, except for Näıve guess and HAR-RV that do not need features, the input
features (Fs,t) are the same as GTN-VF, including 73 numerical features and 1 categorical
feature. The categorical feature embedding is of size 32 whenever applicable. All loss functions
are set to RMSPE. The hyperparameters are chosen based on validation set performance and
the results presented are based on the best set of hyperparameters.

HAR-RV

The model is written as

̂RVs,t+1d,∆T = c+ β(d)RV
(d)
s,t + β(w)RV

(w)
s,t + β(m)RV

(m)
s,t (4.19)

where RV
(d)
s,t , RV

(w)
s,t and RV

(m)
s,t are respectively the daily, weekly and monthly average realized

volatilities before t. β(d), β(w), β(m) and c are coefficients determined by linear regression. The

weekly and monthly average realized volatilities are calculated with RV
(w)
s,t = 1

5(RVs,t + ... +

RVs,t−4d) and RV
(w)
s,t = 1

21(RVs,t + ...+RVs,t−20d).

In our implementation, we calibrate one HAR-RV model for each sampling time since we find
a better result than mixing all the sampling times and calibrate only one model. Therefore, we
have 6 different HAR-RV models for 10:00, 11:00, 12:00, 13:00, 14:00 and 15:00.

LightGBM

We use the LightGBM package8 to implement this baseline model. We use gradient boosting
decision tree (GBDT) algorithm and set its learning to 0.1. The model is trained for a maximum

8https://github.com/microsoft/LightGBM
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of 1,000 iterations and the training process is stopped earlier if there is no improvement on the
validation set for 50 iterations.

MLP

There are three hidden layers in this fully-connected neural network. Their sizes are 128, 64 and
32 respectively. The learning rate of Adam optimizer is set to 0.01, and the batch size is set to
2048. The model is trained for a maximum of 200 iterations and the training process is stopped
earlier if there is no improvement on the validation set for 20 iterations.

It is worth noting that we normalize our features to values between -1 and 1 before training.
This is to avoid overflow in the computation process.

TabNet

We set the width of both prediction layer and attention embedding to 16. All other settings,
including learning rate, batch size, training epochs, early stopping and feature normalization
are the same as the MLP model.

GTN-VF and its variants

In our experiments, the GTN-VF and its variants share the same set of hyperparameter and
model dimension. The model dimension is already introduced in Section 5.3.

During training, we set the batch size to 2048 and the initial learning rate to 0.001. The model
is trained for a maximum of 100 iterations and the training process is stopped earlier if there is
no improvement on the validation set for 20 iterations. We also reduce the learning rate by half
if there is no improvement for 5 epochs.

In the neighbor sampling process, we sample all the connected neighbors without a maximum
limit.

4.C.2 Hardware

Except for Näıve Guess, HAR-RV and LightGBM which can be quickly trained without GPU,
we ran the experiments on a single machine with one NVIDIA Tesla V100 GPU (16GB RAM
and 32GB/s bandwidth), 8 cores of Intel Xeon CPU (Broadwell E5-2686 v4) and 61GB of RAM.
In average, a GTN-VF with all four relationships takes one hour to train. For comparison, the
training time for MLP is 20 minutes and 3 hours for TabNet.
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Mapping the contemporary art
world with ArtLM: an art-specific
NLP model
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• This chapter is available as preprint arXiv:2212.07127.

• This chapter is submitted to the 32nd International Joint Conference on Artificial
Intelligence.

Abstract

With an increasing amount of data in the art world, discovering artists and artworks suitable to collectors’
tastes becomes a challenge. It is no longer enough to use visual information, as contextual information
about the artist has become just as important in contemporary art. In this work, we present a generic
Natural Language Processing framework (called ArtLM) to discover the connections among contemporary
artists based on their biographies. In this approach, we first continue to pre-train the existing general
English language models with a large amount of unlabeled art-related data. We then fine-tune this new
pre-trained model with our biography pair dataset manually annotated by a team of professionals in the
art industry. With extensive experiments, we demonstrate that our ArtLM achieves 85.6% accuracy and
84.0% F1 score and outperforms other baseline models. We also provide a visualization and a qualitative
analysis of the artist network built from ArtLM’s outputs.
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5.1 Introduction

The contemporary art market has been growing at an unprecedented pace since the beginning
of this century [Kräussl et al., 2016]. Traditionally, collectors rely on social interactions,
professional advice and media to find the artworks they wish to acquire. However, with
more artists and their artworks on the market, this process of recommending suitable artworks
to collectors with different tastes became inefficient. Recently, with the wave of accelerated
digitization in the art industry due to the COVID-19 pandemic [Noehrer et al., 2021] and the
rapid development in artificial intelligence, researchers started to modernize this art discovery
process with state-of-the-art technologies.

Most researchers focus on the visual aspect of the artwork. Elgammal et al. [2018] fine-tune
some commonly used model structures in computer vision, such as AlexNet [Krizhevsky et al.,
2017] and ResNet [He et al., 2016], to classify the styles of the paintings. Kim et al. [2018]
further expand this method to group artworks into pre-defined art concepts and principles in
multiple dimensions. However, the visual information has certain limits as contemporary art
goes beyond the aesthetics. The surrounding narration is also essential: the artist practice,
the message conveyed in the work, the influences used by the artist and many more contextual
attributes also have a strong influence on the taste in art.

Hence, the easily available textual information, such as the artists’ biographies, comes to
our attention. Few existing research in the literature focus on this domain. Kim et al.
[2022] transform style labels into a fixed-length embedding with the help of Natural Language
Processing (NLP) models and combine it with visual elements. Fosset et al. [2022] tag the
artworks by analyzing the authors’ biographies through static (Word2Vec [Mikolov et al., 2013a])
or contextualized (BERT [Devlin et al., 2018; Chen, 2021]) embeddings without supervised
fine-tuning or unsupervised pre-training.

To close the gap in the existing research introduced in Section 5.2, adopting the idea of transfer
learning [Weiss et al., 2016], we introduce a generic NLP framework that we call ArtLM to solve
this artist discovery problem formulated in Section 5.3. The details of ArtLM are introduced
in Section 5.4. In ArtLM, we first reuse a general English language model pre-trained on a
very large amount of English texts. We then continue the pre-training process with a large
non-labeled art-related text dataset from WikiArt1 in order to add art knowledge to the general
English model. We finally fine-tune this pre-trained art model with a small set of biography
pairs manually labeled by a team of professionals in the contemporary art industry (an example
is shown in Table 5.1). This last step makes our model specialized in this particular artist pair
classification task.

In section 5.5, with extensive experiments, we demonstrate that our ArtLM approach
outperforms other baseline models in both accuracy and F1 score. We also prove that the
continued pre-training and the fine-tuning are both essential to the state-of-the-art performance,
and that these two steps are robust to the base model choices. In addition, we visualize the
artist network built from our model output and compare it with the ground-truth.

1https://www.wikiart.org/
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Table 5.1: An example of our labeled artist biography pair data. bio a is the biography of the
artist a and bio b is the biography of the artist b. The label is manually annotated by a team
of professionals in the art industry signifying if two artists are connected (1 if connected and 0
if not connected). Our goal is to train a model which can tell if two artists are connected given
their biographies.

artist a artist b bio a bio b label

Carl
Edouard
Keita

Kudzanai
Violet
Hwami

Born in 1992 in Abidjan, Carl-Edouard
Keita now lives and works in New
York. A 2021 graduate of the New
York Academy of Art, Carl-Edouard
Keita also won the prize for best
draughtsman for his graduation work,
some of which is presented in this
group exhibition. Carl-Edouard Keita
discovered the history of African art
during his economics studies in Atlanta,
through a course offered at his university.
As he describes it himself, this discovery
was a real aesthetic revelation for him.

Having fled her homeland due to the
political unrest and turmoil when she
was a child, Zimbabwe-born painter
Kudzanai-Violet Hwami expresses her
personal experiences of dislocation,
displacement and fragmentation through
her striking figurative paintings. The
artist is interested in the collapsing
of geography and time and space
symptomatic of a globalised world and
high-speed internet, through which
both people and information can travel
quickly.

1

Sun
Xun

Cheng
Xinhao

Sun Xun was born in 1980 in Fuxin,
Liaoning province, China. Currently
lives and works in Beijing. Recent and
past histories, intransigent conflicts
and tensions, sequential flashes of
hand-created images of these are the
irrevocable features of Sun Xun’s artistic
practice that fuses the line between
art and animation. A graduate from
the Printmaking Department of the
China Academy of Arts in 2005, Sun
Xun was a professor at the prestigious
Academy before founding in 2006 his
own Animation Studio. His work
primarily involves making images using
various materials such as colour powder,
woodcuts and traditional ink, and
collating these to produce a film, which is
often presented in an immersive setting.

Cheng Xinhao (b.1985, Yunnan, China).
After receiving his PhD on Chemistry
from Peking University in 2013, Cheng
continued his career as a photographer,
investigating on the issues in the
modernization, the construction of
knowledge as well as the production of
space in Chinese society.

0
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5.2 Related Work

5.2.1 Artwork Discovery and Recommendation

Recently, art discovery and application of recommendation systems to the contemporary art
scene attracted attention from the research community. For example, Messina et al. [2018]
study the impact of including metadata of artworks in addition to visual features on artwork
recommendation. With images and transaction data from UGallery2 online artwork store, they
show that a hybrid approach improves the performance of the recommendation.

Fosset et al. [2022] propose a novel and innovative approach to build a recommendation engine
suited for contemporary art complexities. They combine visual attributes of artworks and
contextual information about artists to build similarity graphs, allowing them to make a global
and informed recommendation close to users’ artistic tastes. However, for the contextual aspect
in this work, the authors rely mainly on static Word2Vec embeddings to tag text data with
different aspects conveyed by the artists, such as themes, subjects, emotions, etc.

More recently, Wang et al. [2022] use Named Entity Recognition (NER) to extract the topics from
the texts from Wikipedia and Graph Convolutional Networks (GCN) to build a artists graph.
They further build a recommendation framework (SSAR-GNN) based on the relationship among
the artists.

5.2.2 Language Model

In Natural Language Processing, a Language Model (LM) refers to a model that can represent
the probability distribution over sequences of words in a language. LMs are generally trained on
very large corpus with unsupervised learning tasks. They are usually used as general-propose
models and can be adapted to various downstream tasks, including sentence pair classification,
through transfer learning [Weiss et al., 2016].

There are two main types of LM in modern NLP: Masked Language Modeling (MLM) [Taylor,
1953; Devlin et al., 2018] and Causal Language Modeling (CLM) [Radford et al., 2018]. The main
difference between these two types of models is the training target. MLM aims at predicting a
randomly masked word in a sentence given the context before and after the word. This target
is used in LMs such as BERT, RoBERTa [Liu et al., 2019], etc. In contrary, CLM’s target is to
predict the next word given its preceding words, such as GPT [Radford et al., 2019]. There are
also models which use both training targets, for instance, XLNet [Yang et al., 2019] and XLM
[Lample and Conneau, 2019].

Another commonly used training target is Next Sentence Prediction (NSP), which is a binary
classification loss for predicting whether two segments follow each other in the original text. The
NSP task is usually combined with other tasks such as MLM or CLM, although some researchers
argue that the NSP task does not have a clear contribution in the language modeling process
[Joshi et al., 2019; Lample and Conneau, 2019].

In this study, we use MLM as our training target since MLM shows better results when the goal

2https://www.ugallery.com/
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is to learn a good representation of the input documents while CLM is more advantageous for
text generation tasks such as machine translation and chatbots [Eo et al., 2021]. We also choose
different base models with and without the NSP loss to demonstrate the usefulness of this task.

5.2.3 Natural Language Processing in Art

NLP has already been proven to be useful and is widely used in many domains, including
machine translation [Stahlberg, 2020], finance [Chen and Robert, 2022], music [Oramas et al.,
2018], etc. However, in the visual art industry, previous research mostly focuses on the visual
aspect of the artworks and ignore the rich information in the texts associated with the artists
and the artworks.

There are several early attempts in applying NLP technologies on artworks, such as Kim et al.
[2022] and Fosset et al. [2022]. Nevertheless, both works only use the language models to generate
embeddings from the texts and combine them with the visual elements, without training a
task-specific model. To the best of our knowledge, there is no previous work which focuses on
discovering artist relationships based on their biographies.

5.3 Problem Formulation

We formulate this artist connection discovery problem as a sentence pair binary classification
problem. Our goal is to determine if two artists are connected given their respective biographies.

Suppose that we have two artists Ai, Aj and their biographies are denoted by Bi, Bj . A team
of art professionals can determine if they are connected based on different aspects, including
background, themes, style, techniques, etc. We use Yi,j to denote this ground-truth, with

Yi,j =

{
1 if Ai and Aj are connected

0 otherwise
.

However, there are thousands of artists in our artist database and it is impossible to determine
all relationships through manual annotation. Hence, in this study, we are interested in building
the connections among them automatically based on their biographies, which comprise the
information of the artists in different dimensions. We can describe this process as

pi,j = f(Bi, Bj , θ)

where pi,j denotes our predicted probability of a connection between Ai and Aj . f is our
prediction model and θ denotes the trainable parameters.

Given f , our goal is to find θ which minimizes the cross-entropy loss [Good, 1992] defined as

−
∑
i,j

Yi,j · log pi,j + (1− Yi,j) · log(1− pi,j).
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5.4 Identifying Artist Connection with ArtLM

There are three main components in our artist connection discovery method:

1. (unsupervised) pre-train a LM with generic English corpus

2. (unsupervised) continue to pre-train the LM with the same goal, but with art-related texts
to get a LM with domain-specific knowledge in art (ArtLM)

3. (supervised) fine-tune the ArtLM with labeled artist biography pairs

The method is illustrated in Figure 5.1 and we introduce each component in detail in the
following subsections.

Language 

Model

Randomly  

Initialized LM

Pre-trained

LM

Unlabeled large-scale 

general English texts 

(e.g., Wikipedia, 

BookCorpus)

Unlabeled medium-

scale art-related texts 

(e.g., WikiArt)

Training

MLM target

Model Input

ArtLM

Labeled small-scale 

Artist biography 

pairs

Training

MLM target

Fine-tuned

ArtLM

Training

Cross Entropy 

target

Usage General NLP tasks
(e.g., sentiment analysis, 

Q&A, text generation, etc.)

Art-related NLP tasks
(e.g., art style classification, 

biography summarization, etc.)

Artist connection 

discovery with 

biography

Figure 5.1: Overview of our artist connection discovery method, including two unsupervised
pre-training phases and one supervised fine-tuning phase.

5.4.1 Pre-trained LM

At first, we want to learn the general characteristics of a language as our base model, which we
refer as the pre-trained base language model.

In order to generalize, this model is usually trained on a very large corpus. For example, the
BERT model is trained on BookCorpus [McEnery et al., 2006] and English Wikipedia which
have more than 3.3 billion words in total. Hence, this process is computationally expensive and
time consuming. In our experiments, we use publicly available pre-trained English LMs instead
of training from scratch by ourselves.

To prove that our approach is generic and not model-dependant, we adopt three different
pre-trained LMs of different sizes and training targets as our base models, including DistilBERT,
BERT and RoBERTa. Their details are shown in Table 5.2.
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Table 5.2: Details of the pre-trained models used in our experiments

model size
# params.
(millions)

training target
training dataset

size

DistilBERT-based-uncased
[Sanh et al., 2019]

small 66 MLM, NSP 16GB

BERT-base-uncased
[Devlin et al., 2018]

large 110 MLM, NSP 16GB

RoBERTa-base
[Liu et al., 2019]

large 125 MLM 160GB

5.4.2 ArtLM

Howard and Ruder [2018] show that further pre-training a LM with domain-specific data helps
improve the performance. For example, Araci [2019] and Chen [2021] further pre-train BERT
model with financial corpus, Wada et al. [2020] applies this methodology on medical texts, etc.

Following the same idea, we reuse the weights in the pre-trained base models and continue to
train these models with MLM target (Section 5.2.2) with a large amount of art-related texts.
Concretely, it means that we randomly replace around 15% of the words in the sentences with
a special character [MASK] and we ask the model to predict this word. We minimize the sum
of cross-entropy loss of all the masked characters using stochastic gradient descendant (SGD)
[Robbins and Monro, 1951]. We use ArtLM (Art Language Model) to denote this derived model.

In our case, we use the texts from WikiArt for this propose. We introduce this dataset in detail
in Section 5.5.1.

5.4.3 ArtLM Fine-tuning

Starting from a language model, we can continue to fine-tune it with labeled data to get a model
specializing in our task: artist biography pair classification. As recommended by Devlin et al.
[2018], we construct our labeled dataset in the format of [CLS]Trunc(Bi)[SEP]Trunc(Bj), where
[CLS] denotes the special character for class labels (0 or 1 in our case) and [SEP] represents the
special character separating two biographies. Trunc is the truncating function which removes
the tailing words if the number of words in a biography exceeds the maximum limit. This is to
ensure that two biographies are homogeneous with similar characteristics.

In this step, we add another fully-connected layer and a softmax function3 at the end of the
model. This layer takes the vector representing [CLS] as input and outputs pi,j , the predicted
probability of a connection between artists Ai and Aj . We train this fully-connected layer and
all other layers in the model jointly with the target function shown in Equation 5.3. Our final
prediction can therefore be written as

Ŷi,j = 1pi,j>0.5

where 1 denotes the indicator function.

3softmax(~z)i = ezi∑K
j=1 e

zj
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5.5 Experiments

5.5.1 Datasets

In this study, we use two different datasets to pre-train and fine-tune our ArtLM. We use a large
dataset scraped from WikiArt to add art-related knowledge to the pre-trained base model and
we use a smaller manually annotated artist biography pair dataset to fine-tune this model. We
introduce the details of these two datasets in the following subsections.

WikiArt Data

WikiArt is an online art encyclopedia that contains art-related text data. We only use artists’
biographies in this database, which is the most relevant to our task.

There are 3,110 articles scrapped from the WikiArt database, accounting for more than 1.3
million tokens in total.

Labeled Artist Biography Pair Data

To build the annotated biography pair data, we select about 850 contemporary artists spanning
different artistic movements, techniques and expressing a variety of subjects and themes through
their artworks. This leads to around 360,000 possible pairs in total, which is too large to annotate
manually. To sample a smaller dataset for manual labeling, we first use the baseline model to get
a set of potential connections. We then randomly sample a subset with around 1,500 pairs. We
ask art curators from a renowned university to label these pairs as 0 if no relationship between
the artists can be drawn based on the biographies, and label as 1 otherwise.

An example of the labeled data is already shown in Table 5.1. We provide some statistics of the
dataset in Table 5.3.

The average number of words of all the biographies is 191, while the maximum number of words
can reach 2,000. If there are more than 255 words in a sentence, we truncate the tailing words
as mentioned in Section 5.4.3 to ensure that the sample fits in the model.

Table 5.3: Some statistics of the labeled artist biography pair data

label meaning count proportion word count

0 not connected 767 52.6% 315k
1 connected 691 47.4% 242k

total 1,458 100.0% 557k
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5.5.2 Baseline Models

In order to prove the effectiveness of our ArtLM approach, we compare its performance with
other baseline models. We include the following baseline models.

Random Guess We randomly assign the label 0 or 1 to each biography pair, with probability
of P0 and P1 respectively. We test two scenarios: P0 = 1 (all pairs are predicted as 0) and
P0 = 0.5 (the proportion of the label 0 in the ground-truth). We use the expression Random

Guess - P0 to denote the random guess prediction results with different probabilities.

Static embedding from Word2Vec We use Word2Vec embeddings to create associations
between artists biographies and themes based on keywords from a pre-defined list of themes.
We consider that two artists are linked if they have at least one tag in common.

Contextualized embedding from BERT Instead of using static embeddings from
Word2Vec, we use contextualized embeddings generated from the last layer of BERT.

Fine-tuned base models In addition to the above baseline models, we also report the results
from fine-tuning base models without continuous pre-training on WikiArt data (we skip the step
2 mentioned in Section 5.4). This intermediate result helps demonstrate the performance gain
from pre-training a ArtLM instead of directly using the pre-trained base models.

In the following sections, we use the prefix FT-Base to denote the results from a fine-tuned
base model and the prefix FT-Art to denote the results from a fine-tuned ArtLM. For example,
two BERT variants are respectively denoted by FT-Base-BERT and FT-Art-BERT. We report the
performance from all three base models mentioned in Table 5.2.

5.5.3 Experiment Setup

Experiment Method

For the ArtLM pre-training process (Section 5.4.2), we randomly mask 15% of the words of all
the sentences included in the WikiArt articles and continue to pre-train from the last checkpoint
of one of the pre-trained base models. For all base models, we set the learning rate to 2e-5 and
iterate on the dataset for 3 epochs.

In contrary, for the ArtLM fine-tuning process (Section 5.4.3), we split our data into 5 folds
randomly for a cross-validation, since the size of our manually annotated data is relatively small.
It means that we split the data equally into 5 parts, and we fine-tune 5 different models with
one part being the test set and the remaining 4 parts being the training set and validation set.
This helps avoid the bias caused by data split. In this fine-tuning process, we set the learning
rate to 2e-5 and iterate on the dataset for 20 epochs. We select the best epoch according to the
F1 score on the validation set and perform inference on the test set.
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We use the mean and the standard deviation of the accuracy and F1 score of 5 folds to evaluate

the model. Given a confusion matrix

(
tp fn
fp tn

)
4, the accuracy is defined as

Acc =
tp+ tn

tp+ tn+ fp+ fn

and the F1 score is defined as

F1 =
2tp

2tp+ fp+ fn
.

Hardware

The experiments are conducted on a Nvidia Tesla V100 GPU with 16 GB memory and 900 GB/s
bandwidth. The machine also has 8 cores of Intel Xeon E5-2686 CPU for other computationally
inexpensive jobs. An ArtLM pre-training process usually takes 10-20 minutes to finish depending
on the base model size, while an ArtLM fine-tuning process generally takes 30-60 minutes for
all 5 folds.

5.5.4 Experiment Results

The detailed results of different ArtLM variants and the baseline models mentioned in Section
5.5.2 are shown in Table 5.4.

Table 5.4: Experiment results of the ArtLM variants and other baseline models. If applicable,
the numbers of accuracy and F1 score in this table are shown in the format: average of 5 folds
± standard deviation of 5 folds. The fine-tuning time is calculated as the mean on 5 folds.
We note that no training is involved in the embedding baseline methods, there is therefore no
cross-validation and the accuracy and F1 score are calculated based on the whole dataset.

model accuracy F1
fine-tuning time

(min. / fold)
pre-training
time (min.)

Random Guess - 1 0.500 0.000 - -
Random Guess - 0.5 0.500 0.500 - -

Word2Vec embedding 0.539 0.196 - -
BERT embedding 0.581 0.320 - -

FT-Base-DistilBERT 0.838 ± 0.016 0.826 ± 0.019 6 -
FT-Base-BERT 0.844 ± 0.022 0.832 ± 0.020 12 -

FT-Base-RoBERTa 0.844 ± 0.021 0.824 ± 0.021 12 -

FT-Art-DistilBERT 0.846 ± 0.020 0.826 ± 0.019 6 10
FT-Art-BERT 0.856 ± 0.023 0.840 ± 0.021 12 18

FT-Art-RoBERTa 0.854 ± 0.024 0.834 ± 0.826 12 21

First, we note that all fine-tuned models outperform random guess and the baseline models based
on embeddings. This phenomenon demonstrates that the task-specific information added during
the fine-tuning process helps the model better predict the connections between the artists.

4tp, fn, fp and tn denote true positive, false negative, false positive and true negative respectively.
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Secondly, comparing the results from the fine-tuned base models and the fine-tuned ArtLMs, the
ArtLM outperforms the base model on all three cases. This proves the effectiveness of adding
domain-specific information through continuing the pre-training process on a large amount of
art-related texts. It also demonstrates that our ArtLM approach is effective on all base models
and is robust to the model choices.

Finally, we observe that among the three ArtLM variants, FT-Art-BERT has the best
performance, surpassing the both smaller FT-Art-DistilBERT and the larger FT-Art-RoBERTa,
although RoBERTa reports a superior performance than BERT on most of the NLP tasks
[Liu et al., 2019]. A possible cause is that the RoBERTa model removes the NSP task in the
pre-training process, as mentioned in Section 5.2.2 and in Table 5.2. However, our artist pair
classification usage is similar to the idea behind the NSP task, which leads to the performance
degradation after its removal. Another possible explanation is that the RoBERTa is trained on a
much larger corpus than BERT, it may require more art-related data in this second pre-training
process in order to be significant.

5.5.5 Artist Network

With the prediction results in Section 5.5.4, we can build artist networks which can be used
to visualize their relationships or to recommend related artists based on collector’s interests in
further studies. We visualize some artist networks in Figure 5.2. In each sub-figure, a node
denotes an artist. An edge between two nodes signifies that the two authors are connected,
either from the ground-truth or from the prediction. We first construct an artist network using
the labeled ground-truth data. We then zoom into one of the sub-graphs (Figure 5.2a) for a
qualitative analysis.

(a) a sub-network of the ground-truth network (b) FT-Art-BERT prediction of (a)

Figure 5.2: Artist network. Figure (a) is a sub-network of the artist network built from the
ground-truth. We perform analysis on this sub-network. Figure (b) is the prediction of (a)
made from our FT-Art-BERT model.

Figure 5.2b is the prediction of Figure 5.2a made from our FT-Art-BERT model. In this figure,
black edge denote the correctly predicted edges, red edges denote the edges that are present
in the ground-truth but identified as not connected by FT-Art-BERT. Blue edges represent the
relations that are present in the predictions but not in the ground-truth. We can see that the
ArtLM helps rebuild the framework of ground-truth network, although there are mismatches on
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some biography pairs5, especially in the tails of the graph.

A potential usage of this artist network is artwork recommendation. For example, we can
recommend the frames of the connected artists if one collector likes an artist.

5.6 Conclusion

In this work, we classify if two contemporary artists are closely connected through their
biographies. We introduce a transfer learning based approach: Art Language Model (ArtLM),
which comprises an unsupervised pre-training step and a supervised fine-tuning step. Through
extensive experiments, we demonstrate that ArtLM outperforms other benchmark models. We
also prove that both pre-training and fine-tuning are essential to a better performance, and that
this procedure is generic and robust to the choices of the base models.

For future study, we seek to integrate the ArtLM’s outputs into a recommender system [Resnick
and Varian, 1997] to further enhance the artwork discovery process. We can also combine the
visual and textual aspects of the artworks in a more complex system.

We also plan to enrich our manually annotated biography pair dataset with the appreciations
from different aspects. It means that instead of classifying a pair of artists in a binary manner,
we label their relationships from different dimensions, for example, style, background, influence,
etc. This problem will therefore become a multi-class classification problem and allow us to
better understand the relationship between two artists.

5The Graph Edit Distance (GED) [Gao et al., 2010] between two graphs is 7.
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Conclusion and Outlook

This thesis aims to tackle some prediction problems in finance with deep learning methods.

In the first study, we built a pipeline for univariate stock movement prediction from financial
news. It includes data labeling, contextualized embedding generation, model training and
performance evaluation. The experiment results demonstrated the effectiveness of contextualized
embeddings instead of static embeddings. We also compared the performance of our model with
other models widely used in the industry to prove its power in real-life trading.

We then extended our study to a multivariate approach by considering news and stock
relationships. In the second study, we introduced a graph-based model that considers jointly
financial news, multiple stock relationships and temporal patterns of the news for stock
movement prediction. The results of this study confirmed the necessity of stock relationship
modeling in this stock movement prediction task. It was also proved that disjointed relationship
information from multiple sources could further boost the prediction power.

In the third study, we forecasted the short-term realized volatility from limit order book in a
multivariate approach by designing a graph transformer network. Unlike the previous study, we
combined both cross-sectional and temporal relationships into the same graph, although both
studies were based on graph neural networks. In addition, we adopted a spatial message passing
model to compute on this large graph. Experiment results confirmed the effectiveness of this
model design through performance gain compared with baseline models, especially on less liquid
stocks where there was less available information.

In the fourth study, we applied some NLP methods studied in the first two parts on contemporary
arts to discover the connections among the artists. For this task, we presented a generic NLP
framework, in which we first continued to pre-train an existing general English language model
with a large amount of unlabeled art-related texts. We then fine-tuned this new pre-trained
model with labeled biography pairs. The results of this study demonstrated the effectiveness of
this fine-tuning approach as well as the improvement brought by the extra pre-training step.

There are several research directions to pursue following these studies. For the stock return
prediction task, our studies focused on using the headlines of the financial news. We can further
extend to predicting from long texts such as financial reports or earnings call transcripts. We
also notice that our second study is limited to the stocks with sufficient news to reduce the
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number of missing features in the GCN, which can cause inefficient training. It is interesting to
explore feature filling techniques [Taguchi et al., 2021] to apply this method to a larger universe
of stocks.

For the realized volatility prediction task, we mainly focused on modeling the feature interactions
among prediction buckets while using a fixed set of features constructed from limit order book.
It is also interesting to understand the role each feature plays and select the most impactful
features to further improve training efficiency.

I sincerely hope that the studies presented in this thesis will be helpful to both academic
researchers wanting to know more about the application of deep learning methods in finance, and
to the practitioners in the asset management aiming at improving their prediction algorithms.
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Titre : Solutions d’Apprentissage Profond à Quelques Problèmes de Prédiction en Finance

Mots clés : Prédiction de cours de l’actions, volatilité réalisée, traitement de langage naturel, apprentissage
profond, apprentissage par transfert, réseau neurone de graphe

Résumé : Cette thèse est composée de deux parties
connectées qui examinent respectivement deux problèmes de
prédictions en finance: la prédiction du rendement des actions et
la prédiction de la volatilité réalisée court terme des actions. Une
dernière partie additionnelle est consacré à résoudre un problème
de découverte des relations parmi les artistes contemporains, avec
quelques méthodes dérivées de deux premières parties.
Dans la première partie, nous présentons une solution univariée
et une solution multivariée pour le problème de la prédiction du
rendement des actions avec les nouvelles financières. Nous intro-
duisons d’abord une procédure de prédiction univariée qui prédit
le rendement court terme d’une action après la publication d’une
nouvelle qui l’associe (Chapitre 2). Dans cette procédure, nous
appliquons d’abord une méthode d’apprentissage par transfert
pour générer les embeddings contextualisés des mots dans le
titre d’une nouvelle. Nous utilisons ensuite un réseau neurones
récurrent pour faire la prédiction à partir des embeddings générés.
Avec les expériences extensives, il est démontré que cette ap-
proche possède une meilleure performance par rapport aux autres
modèles de référence. Nous étendons ensuite notre approche uni-
variée à un modèle multivarié (Chapitre 3), dans lequel une nou-
velle peut non seulement impacter la cour d’une action mais aussi
toutes les autres actions associées par les relations venant de
différentes sources. Nous modélisons cet effet de transmission à

l’aide d’une structure innovative de réseau neurones convolutif en
multi-graphe. Nous démontrons l’efficacité de ce modèle avec les
expériences similaires à celles dans la première étude.
Dans la seconde partie de cette thèse, nous nous intéressons à la
prédiction multivariée de la volatilité réalisée court terme des ac-
tions avec les carnets d’ordre (Chapitre 4). Pour cette étude, nous
désignons un réseau neurones en graphe qui prend en compte
les relations temporelles et cross-sectionnelles en même temps.
Nous intégrons les opérateurs de transformeur en graphe dans
le modèle pour améliorer la précision et l’efficacité de calcul sur
ce grand graphe. Avec les expériences sur plus de 500 actions,
nous prouvons que cette méthode multivariée en graphe a une
meilleure performance que les modèles de référence univariés
dans la littérature.
Dans la troisième partie, nous introduisons une solution pour
découvrir les relations parmi les artistes contemporains avec leurs
biographies (Chapitre 5). Dans ce but, nous créons un modèle dans
lequel nous continuons d’abord à entraı̂ner un modèle de langage
général avec les textes de l’art non-labélisés. Nous affinons en-
suite le nouveau modèle avec les paires de biographes labélisées.
Il est démontré que notre approches atteint plus de 85% en taux de
précision en identification de connexion entre deux artistes, et qu’il
surpasse les modèles de référence dans les expériences.

Title : Deep Learning Solutions to Some Prediction Problems in Finance

Keywords : stock movement prediction, realized volatility, natural language processing, deep learning, transfer
learning, graph neural network

Abstract : This thesis consists of two connected parts that exa-
men respectively two prediction problems in finance, stock return
prediction and short-term volatility prediction. It also has another
additional part which examens a related issue in contemporary ar-
tists connection discovery with some methods derived from the two
first parts.
In the first part, we present a univariate and a multivariate deep
learning solution to the problem of stock return prediction with fi-
nancial news. We first introduce a univariate prediction procedure
that predicts the short-term return of a stock after the publication
of news associated with this stock (Chapter 2). In this procedure,
we first use a transfer learning based method to generate contex-
tualized embeddings of the words in a news’ headline, a recurrent
neural network is then used to make predictions from the genera-
ted embeddings. Through extensive experiments, we show that this
approach outperforms other baseline models. We then extend our
univariate approach to a multivariate model (Chapter 3), in which
a single news can not only impact one stock but also all other re-
lated stocks. Through an innovative multi-graph convolutional net-
work structure, we can model the information transmission process
from one stock to others based on stock relationships built from dif-

ferent sources. We demonstrate the effectiveness of this approach
with a similar experiment setup as the first study.
In the second part of this thesis, we are interested in predicting
short-term realized volatility from limit order book with a multiva-
riate model (Chapter 4). To achieve this goal, we design a graph
neural network containing both temporal and cross-sectional rela-
tions. Graph transformer operators are integrated into the model
for better accuracy and computing efficiency on this large graph.
Through experiments based on more than 500 stocks, we demons-
trate that a graph-based multivariate approach has better predictive
power than commonly used univariate baselines.
In the third part, we introduce a solution to discovering the relations
among the contemporary artists through their biographies (Chap-
ter 5). For this purpose, we design a general NLP framework, in
which we first continue to pre-train an existing general language
model with unlabeled art-related texts. We then fine-tune this new
pre-trained model with labeled biography pairs. We demonstrate
that our approach achieves more than 85% accuracy in identifying
the connection between two artists and outperforms other baseline
models in the experiments.
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