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RÉSUMÉ

Contexte

L’analyse des changements pour le suivi de l’environnement

L’époque contemporaine s’accompagne de changements toujours plus rapides et fréquents
de nos paysages, qu’ils soient causés par des processus géomorphologiques ou par des ac-
tivités humaines. Que ce soit par rapport à l’évolution du littoral, aux changements dans
les milieux montagneux ou au développement incessant des zones urbaines, l’ensemble
de notre monde est en constante transformation. L’érosion des falaises (Letortu et al.,
2015) ou des dunes côtières (Enríquez et al., 2019), souvent due à l’élévation du niveau
de la mer liée au changement climatique (Allan et al., 2021), sont des exemples de cette
modification du trait de côte. Dans les zones montagneuses, la fonte des glaciers (Hock,
2005) ou les glissements de terrain (Malamud et al., 2004) ont un impact considérable sur
le paysage comme le montre la Figure 1. En plus des transformations du paysage, ces mo-
difications peuvent mettre en danger la population locale (Pollock et Wartman, 2020),
et avoir un impact important sur l’économie. Bien qu’il soit souvent difficile d’attribuer
directement à un ou plusieurs processus géomorphologiques sous-jacents les modifications
topographiques, il semble important, dans un premier temps, d’être capable d’identifier
correctement les zones modifiées grâce à la détection et à la cartographie des changements.

Les milieux urbains sont en constante évolution en raison de la croissance constante
permanente de la population mondiale et des activités humaines, voir l’exemple de Manaus
au Brésil dans la Figure 1d. Selon les Nations Unies, le pourcentage de la population
mondiale vivant dans des milieux urbains a doublé entre 1950 et 2020 et tend toujours à
augmenter1. Cette évolution importante entraîne des modifications considérables des villes
et de leurs alentours. Pour générer des cartes adéquates et actualisées (Rottensteiner,
2008 ; Champion et al., 2010), pour aider dans les plans d’urbanisme (Sandric et al.,
2007 ; Feranec et al., 2007) et aussi pour identifier rapidement les dommages en cas de
catastrophes naturelles (Sofina et Ehlers, 2016 ; Vetrivel et al., 2018), la détection

1. Rapport sur les villes du monde 2022 : Envisager l’avenir des villes (https://unhabitat.org/wc
r/).
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Résumé en français

de changements et leur classification est une question cruciale également en ville.
L’observation de tels milieux se fait généralement par imagerie bidimensionnelle, mais

il parait également judicieux d’utiliser des données tridimensionnelles (3D) pour représen-
ter notre monde. En milieu urbain, la plupart des objets (bâtiments, végétation, etc.) sont
en effet principalement caractérisés par leur axe vertical. En ce qui concerne les change-
ments topographiques, la dimension verticale est également fondamentale. Dans tous ces
domaines, il est essentiel d’utiliser des données adéquates pour identifier et quantifier les
changements dans des reliefs complexes. Par conséquent, nous préconisons l’utilisation de
données tridimensionnelles (3D) telles que les nuages de points pour l’observation de la
Terre. Alors que la plupart des études existantes concernant la détection de changement
se concentrent uniquement sur des images bidimensionnelles (2D) (Shi et al., 2020a),
nous proposons dans cette thèse de nous concentrer sur des données 3D, qui sont mieux
adaptées pour refléter la géométrie du monde réel et évitent les problèmes des images
2D tels que la différence des angles de vue entre des acquisitions distinctes, la variabilité
spectrale des objets dans le temps, la perspective ou encore les effets de distorsion (Qin
et al., 2016). De plus, il a été remarqué que les informations radiométriques ne sont pas
suffisantes pour une détection précise des multiples changements urbains (Waser et al.,
2007 ; Guerin et al., 2014 ; Erdogan et Yilmaz, 2019).

La donnée 3D pour observer l’environnemnt

Grâce à l’acquisition photogrammétrique ou aux capteurs LiDAR, les nuages de points
3D sont de plus en plus populaires. Comme l’illustre la Figure 2a, le capteur LiDAR
(Light Detection And Ranging) repose sur un calcul de distance en visant la scène avec
un laser et en mesurant le temps de retour de la lumière réfléchie vers le récepteur. Ce
capteur a l’avantage de pouvoir pénétrer la végétation et de détecter le sol sous le couvert
végétal, ce qui est particulièrement intéressant en géosciences. Les levés LiDAR peuvent
être effectués à partir de plates-formes fixes ou mobiles (terrestres ou aériennes) en fonction
de l’application : pour la cartographie à grande échelle telle que la cartographie urbaine
ou dans les vastes zones montagneuses, les levés LiDAR aéroportés sont souvent utilisés.
Le levé terrestre est préféré pour analyser des objets plus spécifiques et locaux. La densité
de points résultante peut varier de moins d’un point (avec les levés aéroportés) à des
milliers (avec les levés terrestres) par mètre carré. En plus des coordonnées des points,
les capteurs LiDAR fournissent des informations supplémentaires, telles que l’intensité du
signal rétrodiffusé et le nombre d’échos.
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(a) Erosions des falaises de Zakyntos
(Plage du naufrage, Grèce)

(b) Fonte du glacier Gébroulaz
(Vanoise, France)

(c) Glissement de terrain
survenant à la suite d’un séisme

(Las Colinas, Santa Tecla, El Salvador)
(d) Expansion de la ville de Manaus

(1984-2020) (Brésil)

Figure 1 : Exemples de modifications géomorphologiques ou anthropiques de
nos paysages : (a) Source : 2014 Geotag Aeroview ; (b) Source : Office national des
Forêts et Parc national de la Vanoise ; (c) Source : García-Rodríguez et Malpica
(2010) ; (d) Source : Google Earth Timelapse (Google, Landsat, Copernicus).
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La photogrammétrie est un autre moyen habituel d’obtenir des nuages de points 3D.
Celle-ci consiste à assembler plusieurs images 2D avec des points de vue légèrement diffé-
rents pour obtenir une reconstitution 3D de la scène, comme l’illustre la Figure 2b. Elle
s’appuie sur la vision stéréoscopique, qui rassemble des images du même objet provenant
de deux ou plusieurs sources avec des angles de vue différents, pour obtenir une position
3D des objets observés. Ces données sont généralement composées de bandes de couleurs
(rouge, vert, bleu) dont les valeurs sont complémentaires aux coordonnées des points. No-
tons que par rapport aux données LiDAR, même si la précision spatiale est généralement
moindre avec les levés photogrammétriques, le processus d’acquisition (reconstruction
3D à partir des images) est moins coûteux. L’acquisition photogrammétrique peut être
terrestre, aérienne, ou même satellitaire. En particulier, les missions satellitaires sont inté-
ressantes, car, une fois lancées, l’acquisition de données régulières sur une grande surface
est peu coûteuse par rapport à un levé aérien, même si les nuages de points obtenus sont
moins denses et moins précis. Parmi les principales missions satellitaires d’acquisition de
données 3D, la constellation Pléiades fournit, depuis 2011, des images panchromatiques (à
70 cm de résolution) qui peuvent être utilisées pour la reconstruction photogrammétrique.
Comme cette mission va bientôt prendre fin, elle devrait normalement être remplacée par
la constellation Pléiades Néo, fournissant des images à une résolution de 30 cm permettant
d’améliorer considérablement l’acquisition de données 3D depuis l’espace. Le contexte de
cette thèse repose également sur le futur lancement de la mission CO3D (Constellation
Optique 3D) qui est spécialement prévue pour produire une acquisition 3D des surfaces
terrestres du monde entier (Lebègue et al., 2020). Cette mission vise à obtenir un modèle
numérique de surface (MNS), c’est-à-dire une modélisation de l’élévation du terrain, à une
résolution d’1 m. Enfin, bien que beaucoup moins courante, la tomographie à partir de ra-
dars à synthèse d’ouverture (SAR) peut également être utilisée pour générer des données
3D en couplant plusieurs images SAR avec des angles de vue légèrement différents (Zhu
et Bamler, 2010 ; Aghababaei et al., 2020).

Quel que soit le mode d’acquisition, les nuages de points 3D partagent des caractéris-
tiques communes radicalement différentes des images 2D habituelles. Un nuage de points
3D est un ensemble non ordonné et épars de points représentés par leurs coordonnées 3D
dans un système de référence (système de coordonnées cartésiennes), un exemple de telles
données est fourni dans la Figure 3. Contrairement aux images 2D organisées à travers
une grille régulière de pixels (rasters 2D), les nuages de points 3D sont désordonnés et
distribués de manière irrégulière, ce qui rend l’extraction d’informations dans ces données
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(b) LiDAR aérien
Source : swisstopo.admin.ch

(a) Photogrammetrie aérienne
Source : J. Vallet

Figure 2 : Schéma d’une acquisition aérienne LiDAR ou photogrammétrique.

délicate. Les comparaisons entre les dates le sont encore plus. En effet, il n’y a pas de
correspondance directe point à point et, comme on peut le voir sur la Figure 3, l’emplace-
ment et la distribution des points peuvent varier de manière significative même dans des
zones inchangées, ce qui rend la tâche de détection de changement plus difficile. Une autre
difficulté des nuages de points 3D est qu’ils contiennent des millions de points pour un seul
levé, ce qui complique le traitement des zones larges échelles étudiées pour l’observation
de la Terre. Les nuages de points sont épars, ce qui implique qu’aucune autre information
que l’emplacement précis des points n’est fournie. En plus de cette caractéristique, les
nuages de points 3D contiennent beaucoup d’occlusions, phénomène rencontré lorsqu’une
partie de la scène réelle n’est pas représentée dans le nuage de points. Des exemples de
telles occlusions sont visibles sur le nuage de points à la date 2 de la Figure 3, où les
façades des bâtiments ne sont pas acquises par le capteur LiDAR. Lorsque les occlusions
varient d’une date à l’autre, elles rendent délicate la distinction entre le changement réel
et les modifications des données dues à la configuration de l’acquisition.

Compte tenu de la complexité de la manipulation de ces données brutes, la rastérisa-
tion des nuages de points sur des grilles régulières de pixels de hauteur, appelée modèle
numérique de surface (MNS), est une solution pour faciliter l’application des approches
traditionnelles de traitement d’images et la comparaison directe des élévations. Cepen-
dant, le processus de rastérisation implique une perte d’informations potentiellement in-
téressantes, par exemple sur les façades des bâtiments. De plus, selon la taille de la grille
choisie, les points sont agrégés en une seule valeur, ce qui entraîne une perte d’information
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Nuage de points à la date 1 Nuage de points à la date 2

Figure 3 : Exemple de nuage de points LiDAR à deux dates. Les points 3D sont
représentés par les points blancs.

importante si les pas de discrétisation sont trop grands. D’autre part, une taille de grille
trop fine conduit à de nombreux pixels vides, généralement remplis par une interpola-
tion provoquant des données approximatives. Dans un esprit similaire à celui des MNS,
une grande majorité de méthodes en géosciences s’appuie sur des modèles numériques de
terrain (MNT), c’est-à-dire sur une rasterisation en 2,5D de nuages de points au niveau
du sol (sans le couvert végétal ou le bâti), pour mettre en évidence les modifications du
sol. En dehors des MNS ou MNT 2.5D, la rastérisation 3D en une grille de voxels 3D est
également une possibilité pour faciliter le traitement. Cependant, comme pour la rastéri-
sation 2D, un grand pas d’échantillonnage implique également une perte d’informations,
et une taille de grille trop fine devient rapidement coûteuse en termes de calcul en raison
de la caractéristique éparse des environnements 3D.

Apprentissage profond pour le traitement de données d’observation de la Terre

Grâce à l’augmentation des capacités de calcul, l’utilisation de l’apprentissage profond (ou
deep learning) s’est généralisée au cours de la dernière décennie. L’apprentissage profond
est un sous-ensemble d’algorithmes d’apprentissage automatique (ou machine learning)
qui utilise des approches mathématiques et statistiques pour donner aux ordinateurs la
capacité d’apprendre à partir de données afin de résoudre un problème posé, également ap-
pelé tâche. L’apprentissage automatique et l’apprentissage profond font tous deux partie
de ce que l’on appelle l’intelligence artificielle (IA). Alors que l’apprentissage automatique
repose sur l’élaboration manuelle de caractéristiques représentant la donnée, l’apprentis-
sage profond apprend à extraire ses propres caractéristiques liées à la tâche à résoudre.
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Depuis la première proposition de perceptrons (i.e., neurones artificiels) multi-couches
jusqu’aux réseaux profonds actuels, de nombreuses améliorations ont été apportées. Ils
peuvent désormais s’attaquer à de multiples tâches liées à la compréhension des données,
grâce à un apprentissage entièrement supervisé reposant sur des échantillons annotés, ou
même à un apprentissage non supervisé (c’est-à-dire sans l’utilisation d’échantillons éti-
quetés). La télédétection et l’observation de la Terre ont bénéficié de ces améliorations
méthodologiques (Zhu et al., 2017). En particulier, l’apprentissage profond est utilisé avec
succès pour la classification des sols (Kussul et al., 2017), la détection d’objets (Ding
et al., 2021), l’analyse de séries temporelles d’images satellites (Pelletier et al., 2019),
la super-résolution (Wang et al., 2020c), et enfin dans le contexte qui nous intéresse, la
détection des changements dans les images (Daudt et al., 2018).

Compte tenu des grandes différences entre les images et les nuages de points, et de
la complexité de ces derniers, l’utilisation de méthodes basées sur l’apprentissage pro-
fond pour la compréhension des nuages de points a commencé plus tard et de nombreux
travaux restent à faire. Cependant, depuis l’apparition de PointNet (Qi et al., 2017a),
l’apprentissage profond a prouvé sa capacité à traiter des données aussi compliquées.

À notre connaissance, au début de la thèse, les méthodes d’apprentissage profond
n’avaient jamais été utilisées pour la détection de changement dans les nuages de points
bruts. Cependant, compte tenu de leur capacité d’analyse de données complexes et de
leur possibilité de compréhension globale des scènes, il semble évident que l’extraction des
changements dans ces données particulières peut bénéficier des avancées méthodologiques
de l’apprentissage profond. Par conséquent, cette thèse vise à étudier comment utiliser
les concepts de l’apprentissage profond pour détecter les modifications (c’est-
à-dire les changements) dans nos paysages à partir de données 3D.

Objectifs de la thèse

L’objectif général de cette thèse est d’explorer la question de la détection de chan-
gement dans des données tridimensionnelles, et en particulier dans des nuages de
points 3D en se basant sur les récentes avancées méthodologiques de l’apprentissage
profond. En particulier, nous désirons comparer deux nuages de points acquis à deux
dates différentes comme dans la Figure 3, et à fournir en outre une identification des
zones modifiées via une segmentation au niveau des points du deuxième nuage de points
(c’est-à-dire du plus récent). Concernant les nuages de points 3D, des informations binaires
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(changement/absence de changement) ou multiples (nature du changement) peuvent être
extraites. La catégorisation des changements fait également référence à l’identification de
ceux-ci parmi plusieurs classes. Ensuite, comme pour les images en 2D, les méthodes de
détection des changements peuvent donner des résultats de classification ou de segmen-
tation. Dans un cadre de classification des changements, les résultats sont obtenus au
niveau des nuages de points en entier, c’est-à-dire une étiquette pour une paire de nuages
de points. En revanche, les résultats de la segmentation des changements sont donnés à
l’échelle du point. Les différents paramètres du problème de détection et de catégorisa-
tion des changements à partir de nuages de points 3D sont résumés dans la Figure 4.
Dans cette thèse, nous visons principalement à aborder la tâche de segmentation de
changements multiples (Figure 4d) qui parvient à une précision plus fine des résultats.
Notons que la résolution de la tâche de segmentation de changements multiples résout
également les autres tâches présentées dans la Figure 4.
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Figure 4 : Différents types de résultats de détection de changement, à l’échelle
du nuage de points (a et b) ou des points directement (c et d), et avec des classes binaires
(a et c) ou multiples (b et d). Cette thèse vise à aborder le problème des changements
multiples (d). Notons qu’à partir de cette tâche plus complexe, les autres tâches (a, b et
c) peuvent également être résolues.

Contributions

Cette thèse est structurée autour de cinq chapitres, résumés ci-dessous.

Chapitre 1 : La donnée pour la détection de changement en 3D

Ce chapitre présente une vue d’ensemble des jeux de données 3D multi-temporels existants
ainsi qu’une analyse de leurs propriétés. Les jeux de données publics existants ne sont pas
directement adaptés à notre objectif car ils ne disposent pas d’annotation en lien avec le
changement. Par conséquent, nous avons proposé de créer plusieurs jeux de données
pour aborder la tâche de segmentation des changements dans des nuages de points 3D.

À cette fin, un processus semi-automatique est proposé afin d’adapter des jeux
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de données 3D multi-temporels existants avec une annotation sémantique non-
relative au changement. Grâce à cette chaîne de traitement, un jeu de données (AHN-
CD) dérivé du jeu de données LiDAR aéroporté AHN (Actueel Hoogtebestand Nederland)
est créé. Bien que le processus semi-automatique permette de convertir rapidement et
facilement certains jeux de données 3D multi-temporels avec annotation sémantique à des
fins de détection des changements, l’annotation issue de ce processus contient quelques
erreurs de classification.

Afin d’obtenir un jeu de données avec une vérité terrain en laquelle il est possible
d’avoir pleinement confiance, un simulateur original de modèles urbains multi-
temporels est proposé, où les acquisitions 3D sont simulées en imitant un levé LiDAR
aéroporté. Ce simulateur permet d’acquérir des paires de nuages de points annotés afin
d’entraîner des méthodes supervisées. Le simulateur permet de personnaliser l’acquisition
des nuages de points selon différentes configurations. Ainsi, cinq sous-jeux de données dif-
férents avec des configurations d’acquisition variées sont créés afin d’illustrer la variabilité
en termes de qualité et de type de capteur à laquelleauxquels nous sommes confrontés
lors d’une acquisition réelle de nuages de points. Ces sous-jeux de données forment le jeu
de données Urb3DCD-V1. Une deuxième version du simulateur est développée pour ren-
forcer le réalisme des nuages de points en ajoutant de la végétation et des objets mobiles
aux scènes simulées. Une nouvelle simulation, Urb3DCD-V2, a été générée pour proposer
deux sous-jeux de données obtenus selon différentes conditions d’acquisition. Enfin, pour
imiter le jeu de données existant de Change3D (Ku et al., 2021), une dernière version des
jeux de données simulés, nommée Urb3DCD-Cls, fournit une paire de nuages de points
bi-temporelle centrés sur un point d’intérêt avec une annotation de changement au niveau
de la scène.

Les jeux de données conçus sont accessibles au public2 afin de soutenir la recherche
reproductible et d’encourager d’autres travaux sur la détection des changements en 3D,
notamment avec des méthodes d’apprentissage profond.

Chapitre 2 : État de l’art de la détection de changement 3D en
milieu urbain

Ce chapitre aborde tout d’abord une revue des méthodes existantes. Ensuite, une
comparaison expérimentale de différentes méthodes de détection et de catégorisation

2. Les jeux de données sont disponibles au lien suivant : https://ieee-dataport.org/open-acces
s/urb3dcd-urban-point-clouds-simulated-dataset-3d-change-detection.
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des changements dans un environnement urbain est proposée.
Six méthodes différentes utilisant soit des MNS, soit directement les nuages de points

3D sont évaluées. Plus précisément, des méthodes traditionnelles basées sur des distances,
une technique d’apprentissage automatique avec un algorithme de forêt d’arbres décision-
nels (random forest) basé sur des caractéristiques créées manuellement, et des architec-
tures d’apprentissage profond sont comparées. Ces méthodes fournissent des résultats à
des échelles différentes, du pixel 2D au point 3D. Pour les méthodes supervisées, la capa-
cité de l’apprentissage par transfert et l’influence de la taille de l’ensemble d’apprentissage
sont également étudiées.

Les résultats de cette évaluation montrent que le jeu de données simulé (Urb3DCD-V1)
en zones urbaines denses est un défi pour toutes les méthodes existantes. Les problèmes
restants concernent la gestion des nuages de points à faibles densités et la compréhen-
sion globale de la scène en cas d’occlusions dans les nuages de points. Pour les résul-
tats à l’échelle du point 3D, l’apprentissage automatique traditionnel est meilleur que les
méthodes basées sur des distances. Les méthodes d’apprentissage profond existantes ne
fournissent que des résultats à l’échelle d’une imagette extraite des MNS, ce qui est beau-
coup moins précis en termes de résultats. Alors que les méthodes d’apprentissage profond
semblent plus adaptées à l’apprentissage par transfert que les méthodes d’apprentissage
automatique, ces expériences mettent en évidence la nécessité de disposer de méthodes
d’apprentissage profond qui se basent directement sur les nuages de points 3D bruts.

Chapitre 3 : Détection de changement supervisée

Ce chapitre présente, tout d’abord, une architecture profonde originale, appelée Siamese
KPConv, dédiée à la détection et à la catégorisation des changements dans les
nuages de points. Cette méthode est basée notamment sur une architecture Siamoise
et des convolutions à points noyau (KPConv) pour élaborer, à notre connaissance, le
premier réseau profond capable de s’adapter à des paires de nuages de points 3D bruts
et d’effectuer une tâche de segmentation des changements. Différentes expériences sont
menées dans un environnement urbain en utilisant des jeux de données réels (AHN-CD) et
synthétiques (Urb3DCD-V2). Pour chaque jeu de données, notre technique dépasse l’état
de l’art avec une marge significative (environ 30% de l’indice de Jaccard (Intersection
Over Union) moyen sur les classes de changement).

Ensuite, la plus-value relative à l’ajout en entrée du réseau de caractéristiques
conçues manuellement est évaluée. Cela améliore considérablement les résultats de la
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segmentation des changements (environ 4,5% de l’indice de Jaccard moyen sur les classes
de changement). Plus précisément, l’ajout d’une caractéristique liée au changement joue
un grand rôle dans l’amélioration des résultats. Suite à cette étude, trois autres archi-
tectures sont conçues pour la segmentation des changements (OneConvFusion, Triplet
KPConv et Encoder Fusion SiamKPConv) afin de mettre l’accent sur les caractéristiques
profondes liées au changement. Toutes ces trois architectures obtiennent de meilleurs résul-
tats que le Siamese KPConv (de 1,5% à 5% de l’indice de Jaccard moyen sur les classes de
changement). Le réseau Encoder Fusion SiamKPConv, avec un encodeur spécifique qui fu-
sionne les caractéristiques de changement et mono-dates, permet de s’affranchir de l’ajout
de caractéristiques manuelles. Cela souligne l’importance d’appliquer la convolution
également sur les différences de caractéristiques.

Chapitre 4 : Détection de changement non-supervisée

Ce chapitre se concentre sur la manière de réduire le nombre de données annotées
nécessaires aux réseaux profond. Pour ce faire, nous avons d’abord proposé d’évaluer les
performances d’apprentissage par transfert du réseau profond Siamese KPConv par
rapport à d’autres réseaux profonds travaillant sur des MNS ou à l’algorithme de forêt
d’arbres décisionnels (random forest). Ensuite, ce chapitre évalue le bénéfice du pré-
entraînement du réseau sur un jeu de données simulées pour diminuer la taille de l’en-
semble d’entraînement nécessaire sur les données réelles. Grâce au pré-entraînement, une
réduction drastique du nombre de cylindres du domaine cible est possible pour atteindre
le score maximal. Cela réduit considérablement la charge de l’annotation manuelle.

Dans un deuxième temps, deux méthodes entièrement non supervisées sont pro-
posées pour aborder la détection de changement binaire. Elles sont basées sur de l’auto-
supervision et de l’apprentissage par transfert profond pour caractériser efficacement la
donnée cible dans l’espace latent. Ensuite, la méthode d’analyse de vecteurs de change-
ment profond (DCVA : deep change vector analysis) a été utilisée pour comparer les points
dans l’espace latent et segmenter la zone en parties changées et inchangées. Bien que sur
le jeu de données réel (AHN-CD), la méthode basée sur l’apprentissage auto-supervisé
ait permis d’obtenir une prédiction plus précise des changements que les méthodes tra-
ditionnelles basées sur la distance, ces méthodes non supervisées manquent toujours de
précision dans les zones urbaines denses et ne fournissent en outre que des informations
binaires sur les changements.

Ainsi, dans une dernière partie, ce chapitre propose une méthode faiblement supervisée

xxii

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Résumé en français

basée sur le principe du clustering profond, et en particulier de DeepCluster, pour aborder
la segmentation des changements multi-classes dans les nuages de points bruts. Les expé-
riences montrent l’importance du choix d’une architecture appropriée pour extraire des
caractéristiques liées aux changements. De même, il est préconisé de guider le réseau en
utilisant en entrée, en plus des coordonnées de points 3D, des caractéristiques créées ma-
nuellement. Grâce à cette configuration recommandée (architecture appropriée et ajout de
caractéristiques manuelles en entrée), la méthode que nous proposons, DC3DCD, permet
d’obtenir de meilleurs résultats qu’un algorithme d’apprentissage automatique tradition-
nel entièrement supervisé reposant sur des caractéristiques pré-calculées, et d’atteindre
les scores d’un réseau profond entièrement supervisé travaillant sur les rastérisations 2,5D
des nuages de points en MNS. Nous avons également proposé d’améliorer DC3DCD en
introduisant une fonction de perte contrastive pouvant conduire à des résultats compa-
rables à ceux d’un réseau profond entièrement supervisé dans un cas idéal où certaines
informations basiques sur les changements sont disponibles, ce qui n’est pas encore le cas.
Cela ouvre néanmoins à des perspectives prometteuses.

Chapitre 5 : Applications aux géosciences

En plus des expériences en milieu urbain effectuées tout au long des chapitres précédents,
dans ce chapitre, nous expérimentons nos architectures supervisées (Siamese KPConv et
Encoder Fusion SiamKPConv) dans deux applications liées aux géosciences, à savoir la
détection de l’érosion dans des falaises, et l’identification des sources et des dépôts de
glissements de terrain se manifestant à la suite d’un séisme. Au travers de ces deux ex-
périences, sur les acquisitions 3D multi-capteurs des falaises du Petit Ailly (Varengeville-
sur-Mer, France), et sur les levés LiDAR aériens de la région montagneuse de Kaikōura en
Nouvelle-Zélande, nous mettons en évidence que l’architecture Encoder Fusion SiamKP-
Conv n’est pas spécifique à l’environnement urbain pour autant que le jeu de données
soit suffisamment représentatif des classes d’intérêt. Une fois de plus, ces évaluations in-
sistent sur la supériorité du réseau Encoder Fusion SiamKPConv par rapport au modèle
Siamese KPConv, soulignant les conclusions précédentes relatives à la nécessité d’encoder
les changements via des convolutions sur la différence de caractéristiques mono-dates.
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INTRODUCTION

Context

Due to natural topography modifications, anthropogenic activities, and extreme events,
contemporary times are accompanied by ever more rapid and frequent changes in our
landscapes. Whether it is in relation to evolution in the coastline, to changes in the
mountainous environment, or to the incessant development of urban areas, all of our world
is finally in constant transformation. Cliff (Letortu et al., 2015) or coastal dune (Enríquez
et al., 2019) erosion often due to the sea level rise linked to the climate change (Allan et al.,
2021) are examples of such coastal line modification. When it comes to mountainous areas,
the glaciers melting (Hock, 2005) or landslides (Malamud et al., 2004) are considerably
impacting the landscape as visible in Figure 5. On top of landscape transformations,
these modifications may endanger local population (Pollock and Wartman, 2020), and
have a great impact on local economy. While it is often hard to directly attribute to
one or more underlying geomorphic processes causing the topographic modifications, it
seems important to, first, be able to identify correctly the modified areas through change
detection and mapping.

Because of the constant growth of the world population and human activities, urban
areas are continuously evolving, see the example of Manaus, Brazil in Figure 5d. Accord-
ing to the United Nations, the percentage of earth population living in urban areas has
doubled between 1950 and 2020 and still tends to increase3. This important evolution is
surely leading to considerable modifications in the urban areas and their surroundings.
To generate adequate and updated maps (Rottensteiner, 2008; Champion et al., 2010),
to help territorial planners in city management (Sandric et al., 2007; Feranec et al., 2007)
and also to quickly identify damage in the case of natural disasters (Sofina and Ehlers,
2016; Vetrivel et al., 2018), multi-class change detection is a crucial issue also in urban
areas.

Rather than limiting ourselves to a two-dimensional representation, it seems appro-

3. United Nations Habitat: World Cities Report 2022: Envisaging the Future of Cities (https:
//unhabitat.org/wcr/).
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(a) Zakyntos cliffs erosion
(Shipwrek beach, Greece)

(b) Gébroulaz glacier melting
(Vanoise, France)

(c) Landslide following an earthquake
(Las Colinas, Santa Tecla, El Salvador)

(d) Manaus city expansion (1984-2020)
(Brazil)

Figure 5: Examples of geomorphic or anthropogenic modifications of our land-
scape: (a) Source: 2014 Geotag Aeroview; (b) Source: Office national des Forêts and
Parc national de la Vanoise; (c) Source: García-Rodríguez and Malpica (2010); (d) Source:
Google Earth Timelapse (Google, Landsat, Copernicus).
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priate to use three-dimensional (3D) data to embody our world. In urban environments,
most objects (buildings, vegetation, etc.) are mainly characterized by their vertical axis.
With respect to topographic changes, it is essential to use adequate data to identify and
quantify changes in complex landforms. Therefore, we advocate for the use of 3D data
such as 3D Point Clouds (PCs) in Earth observation. While most existing studies concern-
ing change detection only focus on two-dimensional (2D) images (Shi et al., 2020a), we
propose to concentrate on 3D data, which is better suited to reflect real world geometry
and avoids 2D image problems such as the difference of viewing angles between distinct
acquisitions, spectral variability of objects over time, perspective, and distortion effects
(Qin et al., 2016). Furthermore, it has been noticed that radiometric information is not
sufficient for accurate multiple urban change detection (Waser et al., 2007; Guerin et al.,
2014; Erdogan and Yilmaz, 2019).

3D data for Earth observation

Thanks to photogrammetric acquisition or Light Detection And Ranging (LiDAR) sensors,
3D PC data are becoming more popular. As illustrated in Figure 6a, LiDAR sensor relies
on distance computation by targeting the scene with a laser and measuring the time
for the reflected light to return to the receiver. This sensor has the great advantage of
being able to penetrate the vegetation and detect the ground under the vegetation cover,
which is particularly interesting in the geosciences. LiDAR surveys can be performed
from fixed or mobile platforms (terrestrial or aerial) depending on the application: for
large scale mapping, such as for urban monitoring or for wide mountainous area, Aerial
Laser Scanning (ALS) is often used. Terrestrial Laser Scanning (TLS) is preferred to
analyze more specific and local objects. The resulting point density can vary from less
than a point (with ALS) to thousands (with TLS) per square meter. In addition to the
coordinates of points, LiDAR sensors provide additional information, such as the intensity
of the back-scattered signal and number of echoes.

The other usual way of obtaining 3D PCs is through photogrammetric acquisition.
This latter consists in assembling multiple 2D images with slightly different points of
views to obtain a 3D reconstitution of the scene, as it is illustrated in Figure 6b. It relies
on the stereoscopic vision of human, who gather two images of the same object coming
from both eyes to obtain a relief view. Such data are usually composed of color bands
(Red Green Blue (RGB)) whose values are complementary to the point coordinates. Let
us note that compared to LiDAR data, even if the spatial precision is generally lower with
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(a) Aerial LiDAR
Source: swisstopo.admin.ch

(b) Aerial photogrammetry
Source: J. Vallet

Figure 6: Illustration of aerial LiDAR and photogrammetry acquisition.

photogrammetric images, the acquisition process (3D reconstruction from images) is less
costly. Photogrammetric acquisition can be terrestrial, aerial, or even from satellites. In
particular, satellite missions are interesting since once launched, the acquisition of regular
data over large area is costless compared to an aerial survey, even though obtained PCs
are less dense and accurate. Among the main satellite missions to acquire 3D data, the
Pléiades constellation provides, since 2011, 70 cm pan-chromatic images that can be used
for photogrammetric reconstruction. As it will soon end, it should normally be replaced by
the Pléiades Néo constellation providing 30 cm resolution images allowing to considerably
improve 3D data surveying from space. The context of this thesis also relies on the
future launch of the 3D Optical Constellation (CO3D) mission that is planned to produce
3D acquisitions of worldwide land surfaces (Lebègue et al., 2020). This latter mission
aims to obtain a 2.5D modelling of the surface (i.e., Digital Surface Model (DSM)) at
1 m resolution. Finally, even though far less common, Synthetic Aperture Radar (SAR)
tomography can also be used to generate 3D data by coupling several SAR images with
slightly different viewing angles (Zhu and Bamler, 2010; Aghababaei et al., 2020).

No matter the way of acquisition, 3D PCs share common characteristics drastically
different from usual 2D images. A PC is an unordered and sparse set of points represented
by their 3D coordinates in a frame of reference (Cartesian coordinate system), an example
of such data is given in Figure 7. Unlike 2D images organized through a regular grid of
pixels (2D rasters), 3D PCs are disordered and irregularly distributed, which makes the
extraction of information from such data tricky, and between-timestamp comparisons are
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PC date 1 PC date 2

Figure 7: Example of LiDAR 3D Point Clouds (PCs) at two timestamps. 3D
points are represented by the white dots.

even trickier. Indeed, there is no direct point-to-point correspondence. And, as visible
in Figure 7, point locations and distribution can vary significantly even in unchanged
areas, making the change detection task harder. Another difficulty of 3D PCs is that they
involve millions of points for a single survey, which complicates the processing of large
remote sensing scenes. Lastly, in addition to the sparsity, which implies that no other
information is contained in the 3D space aside from the precise points’ location, 3D PCs
contain a lot of occlusions, i.e., part of the scene existing in the reality but not represented
in the PC. Examples of such occlusion are visible on the PC at date 2 of Figure 7, where
building facades are not acquired by the LiDAR sensor. When occlusions are varying from
one timestamp to another, they are making delicate the distinction between real changes
and changes in data due to the configuration of acquisition.

Considering the complexity of handling such raw data, rasterizing PCs onto regular
grids of pixels of height is a solution to ease the application of traditional 2D image
processing approaches and facilitate the direct elevation comparison. An example of
2.5D DSM rasterization, also called Digital Elevation Model (DEM), is given in Figure 8.
However, the rasterization process involves a loss of possibly interesting information,
e.g., on building facades. Furthermore, depending on the chosen grid size, points are
aggregated into a single value, leading to a potentially drastic loss of information with
too large steps. On the other hand, a too thin grid size leads to plenty of empty pixels,
generally filled with interpolation causing approximate data. In a similar spirit of DSM,
a wild majority of methods in geosciences relies on Digital Terrain Model (DTM), i.e., a
2.5D raterization of PCs at the ground level (without vegetation or buildings), to highlight
ground modification. Aside from 2D DSM or DTM rasterization, 3D rasterization into
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3D Point Cloud 2.5D DSM

50

0

Figure 8: Illustration of a 3D point cloud and its corresponding rasterization
into 2.5D DSM. The DSM is colorized as function of the height.

a 3D voxel grid is also a possibility to facilitate the processing. However, similarly to
2D rasterization, a large grid size also implies a loss of information, and a too thin grid
size quickly becomes computationally expensive because of the sparse characteristic of 3D
environments.

Deep learning for Earth observation

Thanks to the increase in computing capacity4, the use of deep learning has become
widespread in the recent decade. Deep learning is a subset of machine learning which
uses mathematical and statistical approaches to give to computers the ability to learn
from data to solve a given problem, also called task. Both machine and deep learning are
part of what is called artificial intelligence (AI). While machine learning relies on hand-
crafted features to represent the data, deep learning learns to extract its own features
related to the task to be solved. From the first proposal of multi-layer perceptron (a
perceptron being an artificial neuron) to the current deep networks, many improvements
have been made. They can now tackle multiple tasks related to data understanding,
thanks to fully supervised learning relying on annotated samples, or even unsupervised
learning (i.e., without the use of labeled samples). Remote sensing and Earth observation
also benefits from these methodological improvements (Zhu et al., 2017). In particular,
deep learning has been successfully used for land cover classification (Kussul et al., 2017),

4. Experimentation conducted in this thesis has been made available thanks to the access to clusters
from IRISA (https://cluster-irisa.univ-ubs.fr) and Jean Zay (http://www.idris.fr/jean-za
y/).
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object detection (Ding et al., 2021), satellite image time series analysis (Pelletier et al.,
2019), super-resolution (Wang et al., 2020c), and last but not least, 2D images change
detection (Daudt et al., 2018).

Given the great differences between 2D images and 3D PCs, and the complexity of the
latter, the use of deep learning-based method for 3D PCs understanding has started later.
However, since the emergence of PointNet (Qi et al., 2017a), deep learning has proven its
ability to handle such complex data.

To our knowledge, at the beginning of the thesis, deep learning methods had never been
used to tackle change detection in raw point clouds. However, given their ability to analyze
complex data and the possibility of global understanding of scenes, it seems clear that
the computation of changes in these particular data may be enhanced by deep learning.
Therefore, this thesis aims to investigate how to use deep learning concepts to
detect modifications (i.e., changes) in our landscapes from 3D data.

Objectives of the thesis

The general objective of this thesis is to explore the question of change detection into
three-dimensional data, and in particular 3D point clouds using recent developments
in deep learning. In particular, we aim at comparing two PCs acquired at two different
dates such as in Figure 7, and further providing an identification of changed areas via
a segmentation at point level of the second PC (i.e., the newer). Concerning 3D PCs
change detection, binary (change/no-change) or multiple (nature of change) information
can be extracted. Change categorization also refers to identification of changes among
multiple classes. Then, similarly to 2D images, change detection methods can return
either classification or segmentation results. In a change classification framework, results
are obtained at the level of the PCs, i.e., one label for one pair of PCs. Conversely,
change segmentation results are given at the point scale. The different settings of the
change detection and categorization problem from 3D point clouds are summarized in
Figure 9. In this thesis, we mainly aim to tackle the multiple change segmentation
task (Figure 9d) giving a finer precision of results. Note that solving the multiple change
segmentation task also solves the other tasks presented in Figure 9.
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Figure 9: Different types of change detection results, at the scale of PCs (a and
b) or points (c and d) and with binary (a and c) or multiple classes (b and d). This
thesis aims to tackle the multiple change issue (d). Note that from this more complex
task other tasks (a, b and c) can be solved as well.

To this end, the manuscript addresses the following research questions:

1. How traditional methods deal with change detection in such complex 3D
PCs data? How state-of-the-art methods are highlighting changes? How do they
classify different types of changes? How well they perform on this particular task?
We propose to benchmark main existing methods on common datasets to evaluate
their forces and weaknesses in various conditions.

2. How to make use of recent progresses in deep learning to solve multiple
change segmentation task in raw 3D PCs? How to handle bi-temporal 3D PCs
data in a deep neural network? How to compare two PCs, considering that there
is no point-to-point correspondence conversely to pixels of registered 2D images
and that even in unchanged areas point distribution are dissimilar? How to deal
with remote sensing large scale PCs? Given the wide range of applications, how to
develop method agnostic to the field of study? We propose to rely on both advances
in 2D change detection deep learning framework and 3D deep learning to propose
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different architectures dealing with multiple class change segmentation in raw 3D
PCs. We show the effectiveness of using such deep learning approaches compared to
traditional state-of-the-art methods in different use cases (urban and geosciences).

3. How to deal with the complexity of obtaining annotated data? How to train
deep networks given the lack of public dataset with change-related annotation? Is it
possible to rely on simulated data to train deep networks and to obtain interesting
results on real data? How to diminish and even get rid of the need for annotated data
to train deep models? We developed an original simulator to generate annotated
synthetic bi-temporal PCs. Then, we also explore unsupervised learning paradigm
to lighten the time-consuming annotation step.

What the thesis is not tackling

When using time series of 3D PCs, one first tricky step is PCs registration to obtain each
PC in the same coordinate frame. Performing accurate registration is a research question
in itself that we are not going to tackle. However, in the following experiments, PCs are
registered together using traditional methods such as iterative closest point (ICP) (Besl
and McKay, 1992) or its derivatives. We hope that developed methods will not be sensible
to small registration errors.

While the initial scope of the thesis was related to PC time series in the context of
the future CO3D mission, both the challenges raised by the bi-temporal change detection
problem and the lack of (annotated) datasets for PC time series led us to focus on the
change detection task.

Organization of the manuscript

Our manuscript is built around five main chapters.
Considering the compelling need for training data when machine learning is concerned,

and to be able to benchmark existing methods on a common dataset, Chapter 1 focuses on
reviewing potential existing multi-temporal PCs datasets. Observing the lack of annotated
public data, this chapter proposes to adapt an existing dataset to change detection task
and also provides a simulator to generate Urb3DCD, a synthetic annotated dataset suited
for multiple change segmentation task in urban areas. Chapter 1 answers question 3
partially and enables development of methods for question 2 by providing training data.

9
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Chapter 2 gives an overview of existing methods for change detection in 3D data.
Then, seven different methods representative from the state-of-the-art based on distance
computation, machine learning with hand-crafted features and even deep learning on 2D
rasterization of PCs are compared in the various configuration of Urb3DCD sub-datasets.
This chapter answers to question 1.

Based on the observation that none of the existing methods was trying deep learning
for change detection in the raw 3D PCs, Chapter 3 explores existing deep learning methods
(question 2) for 2D images change detection and for 3D PCs understanding to build upon
these developments several architectures related to 3D PCs change detection task. In this
chapter, an assessment of the methods in various conditions is performed.

In the view of the difficulty of 3D PCs annotation, Chapter 4 investigates how to
reduce the amount of annotated data required in usual supervised deep learning settings,
this completes the answer to question 3. Several strategies are explored based on transfer
learning, self-supervised learning, deep change vector analysis and deep clustering.

While experiments in Chapter 2, 3 and 4 were conducted on existing public datasets
all related to urban environment, Chapter 5 assesses proposed supervised methods in
the geoscience context for cliff erosion identification and landslides detection in wide
mountainous areas.

Finally, the Conclusion chapter summarizes the contributions of the manuscript and
provides final conclusions of the thesis. This part also presents some perspectives either at
short or long term to foster research in the understanding of our landscape modifications
using 3D PCs data and deep learning methodology.

Publications

This thesis has led to the publication of various articles and communications in peer-
reviewed journals and conferences, as detailed below:
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Chapter 1 – Data for 3D change detection

As far as supervised machine learning is concerned, annotated data are required to
train a model. Even in the case of an unsupervised method, some annotations on the
testing set are welcome to perform a quantitative evaluation.

As this PhD work refers to multi-class change detection, datasets made of multi-
temporal Point Clouds (PCs) associated with change annotations given at point level are
needed. In practice, such datasets with a reliable level of annotation are rare, especially for
point clouds, mainly because a manual annotation on such data is very time-consuming.
In addition, it is difficult to automate the annotation and even more if multi-temporal
comparisons are required because no point-to-point comparison is possible. Therefore, a
manual annotation is often the only possibility.

This chapter is concerned with this specific issue. After giving an overview of existing
multi-temporal datasets of 3D PCs (Section 1.1), in Section 1.2, we propose a strategy to
adapt these existing datasets to our specific task: 3D PCs change segmentation. Indeed,
this task requires change annotations at point level which, as will be seen in the first sec-
tion, are not available in public remote sensing datasets. However, this semi-automatic
annotation process is far from being perfect. As a consequence, in this chapter, we also
propose a simulator allowing us to generate multi-temporal 3D PCs containing semantic
changes. Using this simulator, we have created several datasets5 under different acquisi-
tion conditions that are presented in Section 1.3.

1.1 Existing public datasets

Similarly to 2D images, during last years an increasing number of public annotated
datasets has been published concerning 3D PCs mainly for semantic segmentation tasks.
But unfortunately, a small number of datasets is available regarding remote sensing multi-
temporal 3D PCs.

It should be noted that some public datasets containing only DSMs or DEMs are
excluded from this overview of existing multi-temporal 3D datasets. Although the field
is active for DSM change detection (Zhang et al., 2019; Coletta et al., 2022), it does not
exactly fall within our scope of change detection within 3D PCs. Indeed, in this thesis,
we focus on detecting changes directly into 3D PCs. Any rasterization process leads to a
loss of information especially for 2.5D rasterizations where only one point (e.g., top point)

5. These datasets have been presented in two different journal publications: Remote Sensing in 2021
(de Gélis et al., 2021b), and ISPRS Journal of Photogrammetry and Remote Sensing in 2023 (de Gélis
et al., 2023d).
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1.1. Existing public datasets

in a 2D cell is considered. In this case, all information on building facades, for example,
are lost.

Multi-temporal 3D point clouds datasets without annotation

When dealing with 3D data for earth observation, one should mention the OpenTopogra-
phy6 portal that provides access to terabytes of data over different areas in the world in
various context (e.g., urban, forest, land, . . . )(Krishnan et al., 2011; Crosby et al., 2011).
While some places contain multi-temporal data, it does not come with any annotation.
Some other examples of multi-temporal 3D datasets without any annotation are furnished
in Table 1.1. Notice that this is not an exhaustive list.

Multi-temporal 3D point clouds datasets with mono-date annotation

Focusing on annotated datasets, a large majority of multi-temporal 3D PCs datasets only
provides single-date semantic annotation. Though interesting, the single-date annotation
only segments each PC separately into different objects (e.g., ground, building, vegeta-
tion, . . . ). For example, Actueel Hoogtebestand Nederland (AHN) (Sande et al., 2010),
Abenberg-ALS (Hebel et al., 2013) and Hessigheim 3D (H3D) (Kölle et al., 2021) are
ALS datasets containing at least two acquisitions and single-date semantic annotation at
point level. Similarly, the TUM City Campus dataset (Gehrung et al., 2017; Zhu et al.,
2020) is made of two Mobile Laser Scanning (MLS) acquisitions, and provides single-date
semantic information in a total of 8 classes. Notice that Abenberg-ALS and TUM City
Campus datasets only provide the training set.

Multi-temporal 3D point clouds datasets with change-related annotation

Finally, in terms of datasets providing a change annotation, only a few papers can be
found in the literature. One can mention the Change3D dataset (Ku et al., 2021) and the
2017 Change Detection dataset (Palazzolo and Stachniss, 2018). However, both of these
datasets do not contain annotation at 3D point level. The 2017 Change Detection dataset
is composed of images, and corresponding 3D meshes derived from a photogrammetric
process. The annotation is provided for main changed object on corresponding 2D images.
This dataset only contains four scenes with one changed object. A summary of existing

6. The platform is available at the following link: https://opentopography.org/, accessed on
27/02/2023.
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Chapter 1 – Data for 3D change detection

public datasets is presented in Table 1.1. This list is not exhaustive for datasets without
annotation and with only single-date semantic annotation. As can be shown in this table,
most of them have been released recently (since 2020 or later) and concern mainly bi-
temporal data. For longer temporal monitoring, additional acquisitions can be scheduled,
as done in the Kijkduin beach–dune dataset (Vos et al., 2022) where acquisitions have
been made every hour for six months. Three of these datasets (AHN, H3D and Change3D)
are described in more detail later in this section.
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Chapter 1 – Data for 3D change detection

(a) AHN3 acquisition (b) AHN4 acquisition

Figure 1.1: Example of AHN multi-temporal dataset colorized as a function of
mono-date semantic annotation furnished with 3D PCs. Green represents ground points,
orange building points, red civil engineering points and blue clutter points.

Actueel Hoogtebestand Nederland (AHN) dataset

The Netherlands government was the first to provide a full coverage of their country by
ALS data (Sande et al., 2010). Since 2003, a total of four surveys has been delivered,
constituting the AHN dataset. Acquired in the early 2000s, the first survey has a density
ranging from 0.06 to 1 points/m2. The density of second and third versions (noted AHN2
and AHN3) varies from 10 to 14 points/m2 while AHN4 varies from 10 to 24 points/m2.
Because of the acquisition process, height and planimetric stochastic errors are 5 cm for
the three last versions. In addition to point coordinates, AHN data also includes RGB
colors, LiDAR intensity and the number of returns. Besides 3D data, the third and fourth
versions contain an annotation of points into 5 categories: ground, buildings, water,
civil engineering structures (e.g., bridges) and clutter. The classification is first made
automatically as a function of the height and number of echoes, then a manual correction
is performed to enhance the quality of the provided annotation. An example of two
versions of AHN dataset (AHN3 and AHN4) is given in Figure 1.1.

Pros and Cons of this dataset

Although very dense (the entire Netherlands is acquired) and multi-temporal, this dataset
does not contain any annotation concerning changes, but labels are rather related to the
semantic of the PC at a specific date. Furthermore, the semantic annotation is quite
general, in particular the ‘clutter’ class contains a lot of different objects (e.g., vegetation,
cars, etc.), see blue points in Figure 1.1.
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1.1. Existing public datasets

Figure 1.2: Example of H3D dataset (Kölle et al., 2021). The 11 classes are represented
in the different colors. Source: Image from (Kölle et al., 2021).

Hessigheim 3D (H3D) dataset

The H3D dataset consists of four different PCs at various dates and comes with labels re-
lated to 11 semantic classes that have been manually annotated (Kölle et al., 2021). Three
of the acquisitions (March 2018, November 2018 and March 2019) have been captured
over the same area with the same sensor configuration. The sensor platform includes
a LiDAR and cameras to perform multi-view-stereo photogrammetry. This results in
three acquisitions at a very high density (800 points/m2) as well as the corresponding 3D
meshes. H3D also includes a LiDAR-only epoch (March 2016) captured from an ALS
campaign with a sparse density and less accurate data since it has been acquired at large
scale by the Netherlands national mapping agency. Figure 1.2 shows an example of H3D
PC.

Pros and Cons of this dataset

This dataset contains high density data that are manually annotated. The annotation is
very precise, but, similarly to the AHN dataset, the annotation is not temporal. Again,
this dataset cannot be directly used for our purpose.
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Chapter 1 – Data for 3D change detection

Figure 1.3: Example of a scene from the Change3D dataset with the points of
interests and their corresponding labels taken from Ku et al. (2021).

Labels No change Removed Added Change Color change Total

Training set 351 (59.79%) 54 (9.20%) 100 (17.03%) 63 (10.73%) 19 (3.24%) 587
Testing set 90 (58.44%) 25 (16.23%) 15 (9.74%) 17 (11.04%) 7 (4.55%) 154

Table 1.2: Class distribution for the Change3D training and testing splits. For
each class, the number of samples along with the class proportion (in %) is given.

Change3D

Change3D is a dataset provided by CycloMedia Technology for the Shape Retrieval Chal-
lenge 2021 (SHREC21) track. This dataset consists of pairs of PCs from 2016 and 2020
in street scenes acquired over the city of Schiedam, The Netherlands. It aims at detecting
changes from bi-temporal PCs in a complex street environment (Ku et al., 2021). PCs
are acquired thanks to LiDAR sensors mounted on vehicles, and RGB information for
each point is also provided. In these 78 3D scenes, 741 urban objects, also called points
of interest, are identified by their coordinates and an associated label (see Figure 1.3 for
a scene example). Urban objects correspond for example to road signs, advertisements,
statues, or garbage bins. Each point of interest is manually annotated into one of the
following classes: no change, removed, added, change or color change. The distribution of
annotated objects in the training and testing splits is given in Table 1.2. As can be seen,
one major constraint when using this dataset for learning purposes is its highly imbalanced
settings, thus making the training set on less represented class very restricted.
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1.2. Adaptation of public dataset to change detection task

Pros and Cons of this dataset

Change3D dataset has been specifically designed for 3D multi-change classification task.
However, as explained, in the Introduction (see Figure 9), in this thesis we wish to tackle
multi-class change segmentation. Therefore, the annotation of this dataset (at the scene
level, i.e., at the point cloud scale results, see Introduction Figure 9b) is not precise enough
to meet our objectives.

According to this section, none of the existing public datasets are suitable for 3D PCs
multiple change segmentation task. Therefore, in the following sections, we will propose
to adapt an existing public dataset to change segmentation, and we will introduce a
simulator to generate annotated 3D PCs datasets.

1.2 Adaptation of public dataset to change detection
task

As seen in the previous section, available public datasets with multi-temporal PCs do
not contain annotation concerning changes at point level. Thereby, in the context of this
study, we need to adapt an existing dataset to change segmentation task. A first option
is to perform manual annotation. However, this solution is very time-consuming and does
not scale for large areas. Thus, we rather prefer a semi-automatic change annotation
process based on existing semantic segmentation labels. This allows us to derive a change
detection version of AHN public dataset, noted AHN Change Detection (AHN-CD).

1.2.1 Semi-automatic annotation of AHN-CD dataset

Using some bi-temporal data issued from AHN3 and AHN4, we define four labels of
change: unchanged, new building, demolition and new clutter. Our choice was motivated
by the relative imprecision of labels for other possible classes of change. Notice that we
decided to fuse the class “bridge” with the class “clutter” since the former contains only
a few points. Over selected areas, there are almost no points concerning water, thus
remaining water points are deleted.

When dealing with 3D PCs, comparison of point labels is not obvious since there is
no direct corresponding pair of points between PCs (refer to the Introduction chapter for
more details about PCs characteristics). A naive solution is to take the nearest point
in PC from AHN3 for comparison with labels of points in AHN4, but this yields very
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Chapter 1 – Data for 3D change detection

noisy results. By doing so, numerous errors are likely to occur, due to occlusions or to
object proximity. For example, in dense urban areas, points on new building roofs can
be associated with a point on the roof of a neighbor building present at the older date,
thereby the point is then annotated as unchanged. Direct nearest point label comparison
leads to numerous other similar failures in annotation. As a consequence, a more com-
plex processing chain has been chosen, illustrated in Figure 1.4. In particular, to obtain
smoother annotations, a label is given to each 3D connected component (CC) by major-
ity vote when comparing each point of the CC to the nearest 3D point in AHN3 for new
building and new clutter classes. Concerning demolition, a first extraction of potential
demolition points is made by comparing to the 2D nearest point in AHN3. 2D nearest
points are found by removing the Z coordinate of points in the search for the nearest
neighbor. A first removal of isolated points is made automatically by removing smaller
demolition CCs. Finally, a manual assessment is preferred to distinguish between real
demolition and building shadows. Figure 1.5 shows an example of the annotation derived
from this semi-automatic process.

1.2.2 AHN-CD properties

As previously mentioned, AHN provides full coverage of the Netherlands. So we select
some tiles to define our training, validation and testing sets. Selected areas are shown in
Figure 1.6. Tiles have been chosen in areas where changes occurred between AHN3 and
AHN4. In particular, we chose the following tiles: 31HN1_22, 31HN1_23, 31HZ1_04,
37FN1_06, 37EN1_08 and 37EN1_13 from the divided AHN dataset provided by the
website https://geotiles.nl/ (accessed on 27/02/2023). Indeed, divided tiles are
easier to manipulate than original AHN tiles which cover large areas. Some of these tiles
are only partly taken to focus on places containing changes.
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1.2. Adaptation of public dataset to change detection task

Figure 1.4: Flowchart for change detection annotation of AHN pairs (a.k.a.
AHN-CD) into four classes: unchanged, new building, demolition and new clutter. CC
stands for connected component.
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Chapter 1 – Data for 3D change detection

(a) PC 1: AHN3 (b) PC 2: AHN4 (c) GT
Unchanged New Building Demolition New Clutter

Figure 1.5: Sample extracted from AHN-CD dataset.

Figure 1.6: Selected parts of AHN-CD dataset for training, validation and test-
ing.
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1.2. Adaptation of public dataset to change detection task

(a) PC 1: AHN3 (b) PC 2: AHN4

Unchanged
New Building
Demolition
New Clutter

(c) GT

Figure 1.7: Sample from AHN-CD dataset illustrating some ground truth er-
rors.

1.2.3 On AHN-CD quality

However, this process has some limitations. First of all, in order to obtain our annotations,
we performed an automatic comparison of the two PCs, leading to a lot of misclassifica-
tions, since objects may have changed even if the label has not. To illustrate this, one can
focus on the left side of the house in Figure 1.5. With manual processing, the small garden
would have been annotated as new clutter because it is totally different to the vegetation
existing previously in AHN3 (Figure 1.5a), yielding difficulties in practice. Another ex-
ample is given in Figure 1.7 where we can observe a lot of new buildings omitted by the
ground truth. Indeed, in AHN3 the whole surface was covered by a glasshouse marked
as a building in the AHN classification. Therefore, in the label comparison step of our
annotation processing chain, new buildings were overlooked. Furthermore, it should be
outlined that the AHN classification of the term ‘building’ itself does not have exactly
the same definition for the building class for AHN3 and for AHN4.

Another difficulty comes with the clutter class of AHN, which is a mix of various types
of objects, ranging from all kinds of vegetation to cars or rubble. The boundary between
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mAcc mIoUch Per class IoU (%)
(%) (%) Unchanged New building Demolition New clutter

87.34 81.08 78.70 57.19 97.98 88.06

Table 1.3: Evaluation of AHN-CD semi-automatic annotation compared to the
manual annotation (considered as the ground truth). Metrics are defined in Chapter 3,
Equation 3.5 for the mean of accuracy (mAcc) and in Chapter 2, Equation 2.5 for the
Intersection over Union (IoU) and mIoUch.

the clutter and building classes in AHN annotation is not very clear in some cases, for
example when dealing with garden sheds, as visible on the right side of the house in
Figure 1.5, the shed is marked as clutter in the annotation.

Though the automatic process leads to a quick annotation of the dataset, it generates
a lot of misclassifications because of the difficulty of comparing one point of a PC with
several points in the other PC. Occlusions due to shadows of buildings, for example, make
the comparison and the manual checking over demolition part even more complex. To be
precise in the annotation, the manual checking should be applied to all classes, but this is
very time-consuming for large areas. Furthermore, such manual checking would not have
been sufficient to solve problems in clutter class or on objects that have changed but kept
the same semantics.

Finally, a sub-part of the AHN-CD testing set has been manually annotated to guar-
antee the consistency in area where the ground truth is entirely reliable. The sub-area
has been chosen to be representative of each class of change. It contains a total of 707,199
points distributed as follows: 61% ‘unchanged’, 29% ‘new building’, 7% ‘demolition’ and
3% ‘new clutter’. The selected area is about 12,400 m2. To assess the semi-automatic
process for annotation, a quantitative evaluation has been performed comparing the semi-
automatic annotation and the manual annotation considered as the ground truth. Results
are available in Table 1.3. These results confirm qualitative assessment of the dataset pre-
viously presented.

1.3 Proposed simulated datasets for point cloud change
detection

Due to the difficulty of having accurate annotated datasets for 3D PCs change detection
(see Tabel 1.3), we decided to create a simulator of urban ALS PCs. This simulator allows
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us to bypass time-consuming manual annotation and errors coming from the automation
of the annotation process.

1.3.1 Simulator of urban 3D point clouds

Principles of the simulator

We have developed a simulator to generate time series of PCs for urban datasets. Given
a 3D model of a city, the simulator allows us to introduce random changes in the model
and generates a synthetic aerial LiDAR Survey above the city. The 3D model is in prac-
tice issued from a real city, e.g., with Level of Detail 2 (LoD2) precision. The model
was provided in CityGML format, and we converted it to an OBJ file. From this model,
we extracted each existing building and the ground by parsing the input OBJ file corre-
sponding to the city 3D model. By adding or removing buildings in the model, we can
simulate construction or demolition of buildings. Notice that depending on the area, the
ground is not necessarily flat. The simulator allow us to obtain as many 3D PCs over
urban changed areas as needed. It could be useful, especially for deep learning supervised
approaches that require lots of training examples. Moreover, the created PCs are all di-
rectly annotated by the simulator according to the changes. As in each time-stamp 3D
city models are created by the simulator, the changes between two acquisitions directly
depend on the new/old objects added/removed by the simulator, and their annotation is
trivial. Thus, no time-consuming manual annotation needs to be done with this process.
The overall framework of the simulator is presented in Figure 1.8.

This simulator has been developed in Python 3. For each obtained model, the ALS
simulation is performed thanks to a flight plan and ray tracing with the Visualisation
ToolKit (VTK) Python library 7. Figure 1.9 gives an example of PCs at two timestamps
generated by the simulator. The second PC is labeled according to the changes between
the two timestamps generated by the simulator. Each simulation takes between a few
seconds and half an hour according to model’s dimensions and PC density. A simulation
is computed on a single central processing unit (CPU). Space between flight lines is
computed in accordance with predefined parameters such as density, covering between
swaths and scanning angle. Following this computation, a flight plan is set with a random
starting position and direction of flight in order to introduce more variability between
two acquisitions. Moreover, Gaussian noise can be added to simulate errors and lack of

7. https://vtk.org/, accessed on 27/02/2023.
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Figure 1.8: Overall framework of the first version of the simulator generating
bi-temporal urban 3D PCs.

precision in LiDAR range measuring and scan direction.

Unchanged New Building Demolition
(a) PC 1 (b) PC 2 (c) Labeled changes on PC 2

Figure 1.9: Sample of simulated PCs at two timestamps (a,b), with new buildings
(green), demolished buildings (yellow) and unchanged objects (purple) in (c).
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Figure 1.10: Overall framework of the second version of the simulator generating
bi-temporal urban 3D PCs.

Improvement of the simulator

We also propose an improved version of our simulator of urban 3D PCs to make it more
realistic. Vegetation has been added thanks to tree models created with Arbaro software
(Diestel, 2003). Three different models have been chosen and added to the city in bare
ground areas. Trees have been randomly scaled and rotated around the vertical axis
to add diversity to the vegetation. Between each city model, changes have also been
introduced into vegetation: some trees have been added, some have been deleted as if
they have been cut and finally, we simulated tree growth between timestamps. Moreover,
some mobile objects (cars and trucks) have also been added in streets. The size of mobile
objects, and in particular their length, is also set randomly, within a realistic range. All
mobile objects are randomly placed in the 3D model so that there is no collision with
other objects. Because the aim of our study is to retrieve long-term changes only, mobile
objects are assigned a single class in the change-related annotations. The flowchart of this
second version of the simulator is shown in Figure 1.10. We illustrate a pair of simulated
bi-temporal PCs in Figure 1.11. As can be seen on this figure, the new version of the
simulator also enables the annotation for single-date semantic segmentation.
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Ground Building Vegetation Mobile Objects
(a) PC 1 (b) PC 2

Unchanged New Building Demolition
New Vegetation Vegetation Growth Missing Vegetation
Mobile Objects

(c) Labeled changes on PC 2

Figure 1.11: Sample of simulated PCs with the second version of the simulator
at two timestamps (a,b) with the corresponding 7 types of changes simulated in (c).
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1.3.2 Urb3DCD: simulated datasets in different conditions

Notice that Urb3DCD datasets as well as their classification variant are made publicly
available8.

Version 1

To conduct fair qualitative and quantitative evaluation of PC change detection techniques,
we have built some datasets based on LoD2 models of the first and second districts of
Lyon, France9. For each simulation, buildings have been added or removed to introduce
changes into the model and to generate a large number of pairs of PCs. We also considered
various initial states across simulations, and randomly updated the set of buildings from
the first date through random additions or deletions of buildings to create the second
landscape. In addition, flight starting position and direction were always set randomly.
As a consequence, the acquisition patterns were not the same among the PCs generated;
thus, each acquisition may not have had exactly the same visible or hidden parts. In order
to illustrate various results of a given simulation over a same area, Figure 1.12 shows three
pairs of PCs generated by running the simulator three times over the same location. One
can see that even if the input model is the same, the resulting pairs are different. Moreover,
this figure also illustrates the different flight plans for each acquisition. Indeed, the scan
lines are not oriented similarly; thus, different facades are visible. This can also be noticed
in Figure 1.9(a-b) through a pair of PCs. However, to be sure that no redundancy exists
among training, validation and testing sets, the whole area was separated into three
distinct parts to constitute a proper split, as illustrated in Figure 1.13.

From terrestrial LiDAR surveying to photogrammetric acquisition by satellite images,
many different types of sensors and acquisition pipelines exist to obtain 3D PCs for ur-
ban areas, resulting in PCs with different characteristics. By setting different acquisition
parameters to our simulator, our goal is to provide a variety of sub-datasets with hetero-
geneous qualities to reproduce the real variability of LiDAR sensors or to mimic datasets
coming from a photogrammetric pipeline with satellite images (by using a tight scan angle
with high noise).

8. https://ieee-dataport.org/open-access/urb3dcd-urban-point-clouds-simulated-datas
et-3d-change-detection, accessed on 27/02/2023.

9. https://geo.data.gouv.fr/datasets/0731989349742867f8e659b4d70b707612bece89,
accessed on 27/02/2023.
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Simulation 1 Simulation 2 Simulation 3

(a1) (a2) (a3)

(b1) (b2) (b3)

Unchanged New Building Demolition

(c1) (c2) (c3)

Figure 1.12: Three simulation results generated from the same district of Lyon.
Elevation (relative to each PC) is shown in color for the first date (a) and the second date
(b). The automatic change annotations on the second PC are presented in (c).
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Figure 1.13: Urb3DCD dataset splits into 3 distinct parts: training, validation
and testing sets over the city of Lyon, France. Elevation is shown in color and is relative
to each sub-set.

Thus, we generated the following sub-datasets:

1. ALS with low density, low noise for both dates;

2. ALS with high density, low noise for both dates;

3. ALS with low density, high noise for both dates;

4. ALS with low density, high noise, tight scan angle (mimicking photogrammetric
acquisition from satellite images) for both dates;

5. Multi-Sensor (MS) data, with low density, high noise at date 1, and high density,
low noise at date 2.

33

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Chapter 1 – Data for 3D change detection

Urb3DCD-V1 Sub-Datasets
Parameters 1 2 3 4 5

a b c PC 1 PC 2

Amount of training pairs 1 10 50 10 10 10 10
Density (points/m2) 0.5 10 0.5 0.5 0.5 10

Noise range across track (◦) 0.01 0.01 0.2 0.2 0.2 0.01
Noise range along track (◦) 0 0 0.2 0.2 0.2 0

Noise scan direction (m) 0.05 0.05 1 1 1 0.05
Scan angle (◦) −20 to 20 −20 to 20 −20 to 20 −10 to 10 −20 to 20

Overlapping (%) 10 10 10 5 10
Height of flight (m) 700 700 700 700 700

Annotation level Point Point Point Point Point

Table 1.4: Acquisition configurations for all sub-datasets of Urb3DCD-V1.

Notice that sub-datasets 3 and 4 are quite similar, but the latter provides less visible
facades, due to the smaller scanning angle and overlapping percentage.

Finally, for the first configuration (ALS low density, low noise), we provided the three
following different training sets:

(1.a) Small training set: 1 simulation;

(1.b) Medium training set: 10 simulations;

(1.c) Large training set: 50 simulations.

By doing so, we wish to analyze the sensitivity of the methods with respect to the size
of the training set.

A summary of all acquisition configurations is given in Table 1.4. As for validation
area, only one simulation was performed on a larger area. In order to have statistically
relevant results, the testing set was composed of three simulations.

Figure 1.14 shows illustrations of sub-datasets 1.b, 2 and 3 to highlight differences in
terms of density and noise. Let us outline that, as expected, the multi-sensor sub-dataset
5 has a similar PC to one belonging to sub-dataset 3 (Figure 1.14c) and another PC
similar to one of sub-dataset 2 (Figure 1.14a).

Note that only the density has changed between sub-datasets 1 and 2. As a conse-
quence, one could have simply performed a sub-sampling of sub-dataset 2. However, this
would have required a sub-sampling strategy (e.g., grid sub-sampling), which would have
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(a) Sub-dataset 2 (b) Sub-dataset 1 a-b-c (c) Sub-dataset 3

Figure 1.14: Samples of sub-dataset 2 with high density (a), sub-dataset 1 with
low density (b) and sub-dataset 3 with low density and high noise (c). Height
is shown in color.

led to less realistic results than the proposed acquisition simulation tuned to a lower den-
sity. Therefore, for each sub-dataset, the simulator has been used with the configuration
given in Table 1.4.

Version 2

Using the second version of the simulator, we built another version of Urb3DCD dataset
containing two sub-datasets. The first sub-dataset has been simulated in very low den-
sity conditions (0.5 points/m2) with a very low noise level. This low density should be
challenging for detecting small objects such as cars. According to comparison made on
Urb3DCD-V1 sub-datasets (see Chapter 2), the most challenging data configuration for
change detection methods is the multi-sensor setting. Thus, we decided to simulate an-
other sub-dataset with a first PC with low density, high noise (mimicking PCs coming
from satellite photogrammetry) and a second PC with a higher density and very low
noise (mimicking aerial LiDAR acquisition). Acquisition configurations are summarized
in Table 1.3.2. Training, validation and testing areas are similar to Urb3DCD-V1 (see
Figure 1.13). Similarly to the previous version of the dataset, we run 10, 1 and 3 simula-
tions over each training, validation and testing areas respectively, in order to constitute
a dataset large enough for training and testing methods. Notice that the annotation is
given at the point scale. Thereby, 10 simulations over the training area corresponds to
about 1.5 million of labeled points for the low density sub-dataset and 20 times more for
the MS sub-dataset (as the labeled PC is the second one and it has a finer resolution).

Another particularity of these simulated datasets is that PCs contain occluded parts.
Occlusions are very typical of 3D PCs data because of objects shadows. In dense urban
areas, some parts could be very hard to sense using only ALS campaigns. Hence, we
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decided to simulate these 3D PCs artifacts to enhance the realism of our synthetic dataset
and challenge change detection methods on this particular problem. Indeed, by varying
the flight plan of the simulated ALS, occluded areas differ between the two acquisitions.
An example of such occlusion is given in Figure 1.15(a-b) where building facades without
point (hidden facades) are not at the same location in the two acquisitions.

In the following work, this dataset is referred to as Urb3DCD-V2.

Parameters
Urb3DCD-V2-1 Urb3DCD-V2-2

Urb3DCD-Cls
LiDAR low dens. MS

Both PCs PC 1 PC 2 Both PCs

Density (points/m2) 0.5 0.5 10 10
Noise range across track (◦) 0.01 0.2 0.01 0.01
Noise range along track (◦) 0 0.2 0 0

Noise scan direction (m) 0.05 1 0.05 0.05
Scan angle (◦) −20 to 20 −20 to 20 −20 to 20

Overlapping (%) 10 10 10
Height of flight (m) 700 700 700

Annotation level Point Point PC

Table 1.5: Acquisition configurations for the three sub-datasets of Urb3DCD-
V2 and Urb3DCD-Cls. Dens. stands for density.
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Ground Building Vegetation Mobile Objects
(a) PC 1 (b) PC 2

Unchanged New Building Demolition
New Vegetation Vegetation Growth Missing Vegetation
Mobile Objects

(c) Labeled changes on PC 2

Figure 1.15: Sample of Urb3DCD-V2 PCs illustrating examples of occlusions at
two timestamps (a,b) with the corresponding 7 types of changes simulated in (c).
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Labels No change New building Demolition New vege. Missing vege. Total

Training set 2,395 (51.77%) 865 (18.70%) 660 (14.27%) 321 (6.94%) 385 (8.32%) 4,626
Val. set 412 (51.12%) 173 (21.46%) 158 (19.60%) 19 (2.36%) 44 (5.46%) 806

Testing set 1,233 (51.10%) 554 (22.96%) 329 (13.63%) 160 (6.63%) 137 (5.68%) 2,413

Table 1.6: Class distribution for the Urb3DCD-Cls training, validation and
testing splits. Val. stands for validation; Vege. stands for vegetation. For each class,
the number of samples along with the class proportion (in %) is given.

1.3.3 Urb3DCD-Cls

A third sub-dataset version has been created from the simulated data. The aim here is
to propose pairs of PCs focused on mainly one type of change. The annotation is given
as a function of the majority change in the pair of PCs, thereby this sub-dataset allows
us to focus on the multiple change classification task (see Introduction, Figure 9b). This
classification version of the dataset is inspired by Change3D dataset (see Section 1.1)
(Ku et al., 2021). To build this dataset, pairs of cylinders of 15 m in radius have been
extracted in simulated acquisitions over the training, validation and testing areas pre-
sented in Figure 1.13. The acquisition configuration of the PCs is given in Table 1.3.2 in
Urb3DCD-Cls column. A label is given to the pair of cylinders as a function of the ma-
jority class. Pairs of cylinders where too many different classes were present are excluded
from this sub-dataset. Finally, pairs of cylinders are distributed into five different classes:
no change, new building, demolition, new vegetation and missing vegetation. The class
distribution of this dataset is given in Table 1.6.

1.4 Conclusion

In this chapter, an overview of existing multi-temporal 3D datasets has been pro-
posed along with an analysis of their properties. We showed in Section 1.1 that existing
public datasets are not directly suitable for our purpose. Indeed, to tackle 3D PCs change
segmentation, a dataset should contain multi-temporal PCs as well as corresponding anno-
tation at point level. However, we saw that most of existing datasets do not contain
any labels or only contain single-date semantic annotation. The single-date se-
mantic annotation can be useful for multi-temporal semantic segmentation of 3D PCs,
but cannot be directly used for change detection. Furthermore, existing datasets with
change related annotation only provide the labelisation at the scene level. Therefore, we
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proposed to create several datasets to tackle the 3D PC change segmentation
task.

To this end, we first suggested in Section 1.2 a semi-automatic process to adapt
existing 3D multi-temporal datasets with single-date semantic annotation to
the change detection task. Thanks to this workflow, we created AHN-CD dataset
derived from AHN ALS dataset. By investigating the AHN-CD dataset, we showed that
it still contains some misclassifications. Although the semi-automatic process allows to
rapidly and easily convert some 3D multi-temporal datasets with single-date semantic
annotation to change detection purpose, the annotation coming out of this process is not
perfect.

Thereby, we created an original simulator of multi-temporal urban models,
where 3D PC acquisitions are simulated by mimicking airborne LiDAR surveying.
As presented in Section 1.3, this simulator allowed us to acquire various pairs of annotated
PCs to further train supervised methods. Moreover, we were able to generate five differ-
ent sub-datasets with various acquisition configurations illustrating the variability
in terms of sensor quality and type as faced in real 3D PC acquisition. For one of
the sub-datasets, we also considered several training set sizes to assess the robustness
of the methods with respect to several training configurations. These seven sub-datasets
form Urb3DCD-V1 dataset. A second version of the simulator has been developed to
enhance realism of PCs by adding vegetation and mobile objects to simulated scenes.
Thanks to the second version of the simulator, Urb3DCD-V2 dataset was created with
two sub-datasets at different acquisition conditions. Finally, to mimic Change3D existing
dataset, Urb3DCD-Cls version has been created. The latter provides bi-temporal PCs
with change annotation at the scene level.

The datasets designed in this chapter are publicly available 10 to support reproducible
research and to foster further works on 3D change detection, especially with deep learning
methods.

In the next chapter, these datasets will be used to experimentally assess existing
methods for 3D PC change detection.

10. Designed datasets are available at the following link: https://ieee-dataport.org/open-acces
s/urb3dcd-urban-point-clouds-simulated-dataset-3d-change-detection.
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This chapter attempts to understand how 3D change detection is performed in the
literature, especially within the scope of urban environment. Notice that outside this
application, other methods do exist but are mostly DSM-based (for computational reason
or tailored for specific applications) implying, therefore, a limited use (Okyay et al., 2019).

While several methods for change detection in 3D data have already been published
(see Section 2.1), this line of research is still new, and there is no evaluation of the existing
approaches on a common dataset, making difficult the choice of a specific technique.
Indeed, available review papers (Qin et al., 2016; Okyay et al., 2019; Shirowzhan et al.,
2019; Kharroubi et al., 2022) do not provide quantitative comparison of methods on a
common public dataset but rather introduce or qualitatively analyze existing approaches.

Thus, Section 2.2 aims to propose a comparison11 between methods from the state-of-
the-art at different levels: 2D patches, 2D pixels and 3D points. Compared methods are
chosen to be representative of the different types of methods (distance-based, machine
learning on handcrafted features-based and deep learning-based) and depending on the
ease of use. Furthermore, analyzed methods solely rely on 3D data. Thanks to Urb3DCD-
V1 sub-datasets (described in Chapter 1, Section 1.3.2), an evaluation of methods is
performed on the different sub-datasets with various qualities. Furthermore, we evaluate
the robustness of supervised methods on training sets of various sizes and assess their
transfer learning capacities.

Section 2.3 gives a discussion about compared methods with regard to our results; we
also propose a critical analysis of the Urb3DCD-V1 dataset and the proposed simulator.

2.1 3D change detection methods in urban environ-
ment

In the following section, the related works concerning 3D change detection methods in
urban environment are given. When dealing with 3D data, methods can be divided into
two categories: the ones based on 2D rasterization in DSMs and others that directly
process raw 3D PCs.

11. This benchmark has been presented at IGARSS 2021 (de Gélis et al., 2021c) and further detailed
in a paper published in Remote Sensing in 2021 (de Gélis et al., 2021b).
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2.1.1 Digital Surface Model-based methods

Within this family, the principle for detecting changes between two 3D PCs is to compute
DSMs for both of them, and to directly subtract them to retrieve differences. It was used
for the first time for building change extraction in Murakami et al. (1999). Due to its
simplicity and its quality of results, it is still often used. This approach is also commonly
used in the earth observation community (Okyay et al., 2019).

DSMs difference (DSMd) for building change detection can be further refined with
a non-empirical choice of the threshold thanks to the histogram of obtained values (Vu
et al., 2004). One can also use the Otsu thresholding algorithm to segment resulting
differences. This algorithm extracts thresholds from a histogram of values by minimizing
the variance between each class (Otsu, 1979). As DSMs contain artifacts (due to interpo-
lation in occlusions or the difficulty of retrieving precise building boundaries, for example)
(Gharibbafghi et al., 2019), several methods apply more sophisticated pipelines to derive
more accurate and finer changes than positive or negative ones. For example, Choi et al.
(2009) used DSMd to identify change areas; then each change area was segmented via
filtering and grouping and finally, thanks to specific indicators such as roughness, size
and height, each segmented area was classified into three clusters: ground, vegetation
and building. Comparing clusters at each date among them allows one to characterize
changes. The selection of 3D building changes can also be done with regard to the size,
height and shape of remaining clusters of pixels after an empirical thresholding of DSMd
results (Dini et al., 2012). After applying a threshold to DSMd, Stal et al. (2013) re-
moved non-building objects by applying morphological filters (erosion and dilation) and
a threshold of roughness in order to get rid of vegetation. From 3D point clouds, one can
rely on ground points to extract DSMs and DTMs. Teo and Shih (2013) used DSMd and
a DTM to retrieve and classify each object at each date. Segmented objects could then be
compared between the two periods to identify changes. Still based on DSMd, Pang et al.
(2014) extracted building change candidates with a threshold on DSMd. After a connected
component analysis, they used a Random Sample Consensus (RANSAC) to extract roofs
and verify whether the objects were buildings. Finally, by comparing the heights of build-
ings, the authors classified them into four categories: ‘newly built’, ‘taller’, ‘demolished’
and ‘ shorter’ buildings. Other approaches use statistical region merging segmentation
of DSMd and compute shape similarity attributes to derive changes (Lyu et al., 2020)
and finally highlight building changes through a k-means algorithm. One can notice that
some studies use both information from DSMd and optical images in order to combine
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the advantages of both types of data (Peng and Zhang, 2016; Wang and Li, 2020; Warth
et al., 2019). Finally, DSMd with a basic thresholding or with further refinement is still
widely used in the literature on change detection for 3D urban monitoring (Warth et al.,
2019; Jang et al., 2019; Amini Amirkolaee and Arefi, 2019) and post-disaster building
damage assessments (Erdogan and Yilmaz, 2019; Wang and Li, 2020).

With the rise of deep learning methods in earth observation, change detection in urban
areas also benefits from these progresses using 2D images. This point will be discussed
in Chapter 3, Section 3.1.2. By focusing on the use of DSMs data, Zhang et al. (2018b)
and Zhang et al. (2019) have explored different architectures of Convolutional Neural
Network (CNN) to detect 3D changes in urban areas. Since the objective of Zhang et
al. (2018b) and Zhang et al. (2019) was to use bi-temporal multi-modal 3D information
from both ALS and photogrammetric PCs, they chose a Siamese architecture (this will be
detailed in Chapter 3, Section 3.1.2) in order to feed into one branch DSMs (directly the
DSMd or into two channels) and in the other branch the corresponding RGB orthoimages.
In their study, they also compute changed areas only with DSM information. In Zhang
et al. (2019), the authors also tried a more basic feed forward (FF) network, where both
DSMs were given as a single input with several channels, including both dates. They
achieved reliable results with a precision of 63% for both FF and the Siamese network on
DSM only, whereas DSMd only reached 38% of precision. Notice that DSMd was used per
patch; i.e., an average of DSMd was made for the whole patch, with which the distinction
between changed and unchanged patches was generated using a threshold.

2.1.2 Point Cloud-based methods

Another family of 3D change detection approaches directly rely on raw PCs, but has not
been directly applied on urban areas yet. First, Girardeau-Montaut et al. (2005) proposed
a cloud-to-cloud (C2C) comparison based on the Hausdorff point-to-point distance and
on an octree sub-division of PCs for a faster computation. Lague et al. (2013) developed
a more refined method for measuring mean surface change along a normal direction.
Surface normal and orientation are extracted at a consistent scale according to local
surface roughness. This method is called Multi-Scale Model-to-Model Cloud Comparison
(M3C2). This second technique allows the distinction between positive and negative
changes, which is not possible with the C2C approach (Shirowzhan et al., 2019).

Though previously presented methods use a distance computation, other kinds of
approaches directly extract information from each PC, then segment PCs and finally
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compare the results to obtain changes. These methods belong to the post-classification
change detection retrieval family, because they are first based on a semantic segmentation
of data and then a comparison of labeled data. There are few studies falling in this
category, especially for an urban environment. Among them, Awrangjeb et al. (2015)
first extracted buildings’ 2D footprints with boundary extraction from LiDAR data and
aerial images. Then, footprints were compared to highlight changes on a 2D map. In
the same spirit of building extraction and comparison, and inspired by Awrangjeb et
al. (2015), Siddiqui and Awrangjeb (2017) kept 3D information of buildings to retrieve
changes. More precisely, 3D buildings’ roof planes were retrieved at each date and then
3D buildings’ models were cross-correlated by using their sizes and heights in order to
classify them into categories of changes. The study in Xu et al. (2015b) also suggested
segmenting each PC in order to extract buildings. Then, a 3D surface difference map
should be created by computing a point-to-plane distance between a point in the first set
and the nearest plane in the second set. A classification should finally be performed to
identify various kind of changes (new dormer, addition of a floor, etc.). Dai et al. (2020)
also tried to retrieve and classify changes by relying on object extraction from the second
PC through the use of: i) a surface-based segmentation of filtered non-ground points, ii)
segment-based screening to extract roofs and iii) connected component analysis to extract
vegetation clusters. Then, a comparison of heights of roof segments extracted from both
PCs was performed to highlight and classify changes. The final results were contained in
a 2D map of changes. PC classification can also be done by traditional machine learning
methods, such as the Random Forest (RF) algorithm, which is largely used in remote
sensing. As an example, after extracting ground points and applying a region growing
algorithm to retrieve each separated object, Roynard et al. (2016) classified each remaining
object through a RF algorithm trained on several geometric and histogram-based features.

In opposition to post-classification methods, pre-classification methods first highlight
changes and then characterize them. As an example in an urban environment, Xu et al.
(2015a) first established an octree from one of the two PCs, and then directly extracted
changes in the other PC by identifying corresponding missing leaf nodes. Clustering of
changed points was performed to remove noise and separate the various changes. Finally,
the remaining clusters were classified according to fixed rules concerning the area, height,
or roughness. Recently, Huang et al. (2022b) also proposed a pre-classification framework
with a first change detection step through occupancy-based spatial difference identifica-
tion. They further refine their change identification, using semantics provided by a deep
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Figure 2.1: Stability features of changed and unchanged objects. Source: Figure
from Tran et al. (2018)

network.
Finally, the technique in Tran et al. (2018) combines classification and change detection

into a single step. To do so, the authors extracted features related to point distribution,
terrain elevation, the multi-target capability of LiDAR and a feature (called stability)
combining points of both PCs to detect changes. The Stability feature is defined as the
ratio of the number of points in the spherical neighborhood to the number of points in
the vertical cylindrical (oriented along the vertical axis) neighborhood in the other PC.
Thus, in each point of the current PC, Stability is the ratio between the 3D (n3D) and
2D (n2D) neighborhood in the other PC:

Stability = n3D

n2D

× 100 (2.1)

Notice that looking only at the number of points in the 3D neighborhood of each point
of both PCs is enough to retrieve changes on isolated buildings and trees. However,
in dense tree areas or when different objects are closed to each other, the 3D spherical
neighborhood may still contain points coming from some other unchanged entity. Thus,
taking the ratio with the 2D neighborhood is a way to take into account unchanged points
and to obtain an indicator of change and the instability of the object. Thereby, the ratio
will be near 100% if there is no change, and it tends to 0% if changes occur. On vegetation,
we expect the Stability value to be lower. An illustration of the Stability feature is given
in Figure 2.1. Then, an RF algorithm is trained on these features to obtain a supervised
classification of changes into different classes. The single step, consisting in classifying
directly multi-class changes, avoids propagating errors through the multiple stages.

While numerous works dealing with feature extraction, object detection, and segmen-
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tation in 3D PCs are available, the change detection issue still remains largely unexplored
with deep learning (Shi et al., 2020a). Apart from the works of Zhang et al. (2018b)
and Zhang et al. (2019) using 2.5D DSMs, another deep architecture has been reported
in Ku et al., 2021, namely Siamese Graph Convolutional Network (SiamGCN). This ar-
chitecture is designed in the context of the SHREC21 track on Change3D dataset. We
recall that this dataset was designed for multiple change classification in a complex street
environment, i.e., it consists in recognizing the type of change between two PCs centered
on an urban furniture, e.g., road signs (see Chapter 1, Section 1.1 for more details). Thus,
the expected result is provided at the PC scale corresponding to the multiple change clas-
sification task (Figure 9b of the Introduction). Thereby, despite processing directly raw
3D PCs, this architecture does not correspond to the change segmentation task that we
aim to tackle in this thesis.

2.2 Experimental comparison of state-of-the-art meth-
ods

Until now, five existing reviews/comparison papers dealing with change detection meth-
ods based on 3D data are available. The first one, Qin et al. (2016), provides a large
review of the state-of-the-art on 3D change detection. Besides a description of available
change detection methods for 3D data, it first draws up a list of applications; then different
types of 3D data are described; and finally, it identifies the challenges of change detection
retrieval in a 3D context. More recently, Okyay et al. (2019) provided an overview of
airborne LiDAR change detection methods for Earth science applications. However, this
survey does not tackle urban change detection and does not propose any comparison of
existing methods on a common dataset. Then, Kharroubi et al. (2022) proposed a review
of 3D change detection methods with a focus on deep learning12. However, this review
does not provide any performance comparison. Very recently, Stilla and Xu (2023) also
provided a survey on change detection in urban environment using 3D PCs. Although
they carefully describe this problem, they do not provide any quantitative comparison of
the methods as well. Finally, to the best of our knowledge, the study in Shirowzhan et al.
(2019) is the only one that has proposed a comparative analysis for 3D change detection
in an urban area. Five methods were compared regarding two criteria: the ability to

12. Notice that this recent review mostly presents methods that were not available when the benchmark
presented in this chapter was conducted.
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distinguish between demolished and new buildings, and giving information on the mag-
nitudes of changes. However, no quantitative results are available, and the evaluation
was performed on a private dataset. Moreover, this study did not include deep learning
methods that today represent the state-of-the-art in remote sensing (Zhu et al., 2017; Ma
et al., 2019).

Thus, we aim to propose a comparison between methods from the state-of-the-art
considering PCs with various qualities and evaluate the robustness of supervised methods
on training sets of various sizes while considering their transfer learning capacities.

2.2.1 Experimental protocol

We evaluated a set of methods relying both on extracted DSMs and PCs. The approaches
have been selected as representatives of the current literature and are based on distance
computation, machine learning with hand-crafted features or deep learning. As shown in
the previous section, three levels of outputs are accessible: at the 3D point level, in 2D
pixels or in 2D patches. Associated results can either be binary (changed/unchanged) or
multi-class (unchanged, new construction or destruction).

First, we used DSMd (Murakami et al., 1999), C2C (Girardeau-Montaut et al., 2005)
and M3C2 (Lague et al., 2013) with empirical thresholds, since these basic methods are
easy to use and constitute a good baseline. For the DSMd method, we also present
results obtained when choosing thresholds with the help of the popular Otsu algorithm
(Otsu, 1979) and considering a morphological filtering (opening), as suggested in Stal
et al. (2013), in order us to filter out isolated pixels and to clean up predictions. We
also considered the method of Tran et al. (2018) as a representative of classical machine
learning on hand-crafted features. As for hand-crafted features, we used the following
ones related to:

• point distribution represented by point normals (Nx, Ny, Nz) and information on
the distribution of points in the neighborhood (Lλ, Pλ, Oλ)

• height information (Zrange, Zrank, nH)

• change information (Stability)

Information on the distribution of points contained in the neighborhood are given by
the three variables: linearity Lλ, planarity Pλ and omnivariance Oλ. These variables
represent respectively the likelihood of a point to belong to a linear (1D), planar (smooth
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surface) (2D) or volumetric (3D) neighborhood. These three attributes are common
to extract information into 3D PCs. They are computed from the three eigenvalues
(λ1 ≥ λ2 ≥ λ3 ≥ 0) obtained after applying a Principal Component Analysis (PCA) to a
matrix containing 3D coordinates of points contained in the neighborhood. Formulas of
Lλ, Pλ and Oλ are given in Equations 2.2 to 2.4:

Lλ = λ1 − λ2

λ1
(2.2)

Pλ = λ2 − λ3

λ1
(2.3)

Oλ = 3
√

λ1λ2λ3 (2.4)

In practice, if λ1 is large compared to λ2 and λ3, Lλ is near to 1. In this situation, only
one eigenvalue is meaningful, i.e., only one principal axis results from the PCA and points
are mainly distributed along a single axis. If λ1 and λ2 are large regarding λ3, implying Pλ

near to 1, points are spread in a plan defined by eigenvectors corresponding to λ1 and λ2.
Lastly, Oλ is high if each of the three eigenvalues are of equal importance. This implies
the points are scattered along the three axis, i.e., in a 3D volumetric space.

Zrange and Zrank give information on the height by providing the maximum height (Z
coordinate) difference between points in the neighborhood and the rank of the height of
the considered points within the neighborhood. The normalized height nH also completes
height information by providing the difference between the height of the considered points
and the local DTM (rasterization of the PC at the ground level). Lastly, the Stability

feature described in Section 2.1.2 (see also Figure 2.1 and Equation 2.1) is given to provide
a bi-temporal information on the considered point. For all of these attributes, similarly
to Tran et al. (2018), when a neighborhood is required, it is based on the k nearest points
except for the Stability feature where neighborhoods are spherical and cylindrical based
on fixed radius. Thereby, most of hand-crafted features presented in Tran et al. (2018)
are used except those using LiDAR’s multi-target capability, because our dataset does
not contain such information.

Finally, even though deep learning methods are a little tougher to experiment with,
since training and validation sets need to be constructed, their growing success in remote
sensing make them unavoidable in any benchmark nowadays. Thus, we have implemented
the FF CNN and the Siamese CNN architectures of Zhang et al. (2019) and Zhang et al.
(2018b). Let us recall that each method has been described in Section 2.1.1 (for DSM-
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Figure 2.2: A presentation of the different state-of-the-art methods for change
detection and categorization compared in our benchmark, considering three dif-
ferent levels of information: raw PCs, 2D rasterized PCs and patches of DSMs.

based ones) or Section 2.1.2 (for 3D PCs ones). We provide more technical details about
methods and experimental settings in the next section. For the Siamese network, we used
the architecture proposed in Zhang et al. (2018b) because this study was conducted only
on DSMs, as in our study. In their publications, Zhang et al. (2018b) proposed only binary
classification of change. However here, as our dataset contains information on the type
of changes, we extended both networks to provide Multi-Class (MC) classifications of the
urban changes. Figure 2.2 summarizes the methods from the state-of-the-art considered
in our comparative study, organized according to their input data types and processing
scales.

As far as the metrics are concerned, let us emphasize that the urban change detection
problem usually faces the problem of large class imbalance (i.e., most of the 3D points
or 2D pixels are unchanged). Thus, the usual overall accuracy or precision is not an
appropriate for assessing the performance of a given method. Indeed, a method can reach
up to 99% precision even if every pixel or point is predicted as unchanged. We instead
prefer to rely on the IoU for each class as well as the mean of IoU (mIoU) over classes of

50

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



2.2. Experimental comparison of state-of-the-art methods

change (mIoUch). The IoU is given by the following equation:

IoU = TP

TP + FP + FN
(2.5)

where TP, TN, FP and FN respectively stand for True Positive, True Negative, False
Positive and False Negative. According to the type of output, it was computed for each
pixel, point or patch. In the case of binary classification, this corresponds to the IoU over
positive class. Otherwise, for a multi-class scenario, this is the average between the IoU
of the new construction class and the IoU of the demolition class.

All methods were tested on each sub-dataset of Urb3DCD-V1 presented in Chapter 1,
Section 1.3.2. Thus, a first category of tests experimented the capabilities of different
methods in various contexts: from high density with not much noise to low density very
noisy data as input. Thereby, five tests depending on source, density of points and level of
noise, see Section 1.3.2, were carried out for each of the six presented methods. Results are
presented in Section 2.2.3.1. For machine and deep learning methods, we conducted other
tests to evaluate the influence of the size of the training dataset thanks to sub-datasets
1.a, 1.b and 1.c presented in Table 1.4. Finally, we also aimed to study the behaviors of
methods trained on a dataset with a different configuration than the testing set. Thus,
for each sub-dataset, we trained machine and deep learning methods before testing them
on the other sub-dataset without any re-training process.

Before sharing our results, the next section describes the experimental settings.

2.2.2 Experimental settings

C2C and M3C2 were performed with CloudCompare software (Girardeau-Montaut, 2016).
We re-implemented feature extraction in Python with all features of Tran et al. (2018).
DTM computations were performed using Point Data Abstraction Library (PDAL) li-
brary13. We observed that some features are very dependent on the neighboring size
(radius or number of neighbors) that is chosen. As our datasets have different densities
than the dataset used in the study of Tran et al. (2018), we tested several values of the
radius and selected the best one according to each density. Note that the selection is
made on the validation set based on the mean of IoU over classes of change. Thus, for
all sub-datasets with the density of 0.5 points/m2, the radius was fixed to 5 m. For the
sub-dataset 2 with a density of 10 points/m2, a radius of 3 m was selected. Notice that

13. https://pdal.io/en/2.5-maintenance/index.html, accessed on 27/02/2023.
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with the multi-sensor sub-dataset 5, the best results were obtained with a radius of 4 m.
When the neighborhood is based on k nearest points, k was set to 10. Training was
realized on the training set only.

For deep methods, FF and Siamese network architectures were used similarly to the
original papers (Zhang et al., 2019; Zhang et al., 2018b). In their study, Zhang et al.
aimed to detect changes between one DSM made from ALS PC data and another one
made from photogrammetric data. They presented a few tests with various inputs relying
on DSMs only or also on DSMs, and color information coming from RGB orthoimages.
Since our dataset only contains information related to the 3D coordinates of points, we
kept only configurations where only height information was given. In the case of the FF
network, DSMs were provided as inputs through two different channels. For the Siamese
network, each DSM was fed into one branch. In our context, the two inputs were quite
similar (both were DSMs and came from the same type of sensor); thus, we decided to
share weights between the two Siamese branches and to consider a Euclidean distance
computation to gather branches, similarly to Zhang et al. (2018b). When training the
deep networks, weights were randomly initialized and all networks were trained from
scratch. Batch size was set to 128. For the Siamese network, we used Stochastic Gradient
Descent (SGD) with momentum as an optimizer with an initial learning rate of 0.003
and a momentum of 0.9. Unlike Zhang et al. (2019), we obtained better results with
an Adam optimizer with a learning rate of 0.001 for the FF network, so we kept this
configuration for the results presented further on. Notice that for both networks, a few
tests have been conducted to select the optimal hyper-parameters, i.e., providing the best
results on our datasets. Hyper-parameters selection is made on the validation set. The
same configurations were kept for all sub-datasets. Implementation was done in Python
with PyTorch.

For all methods relying on DSMs as inputs, we used a spatial resolution of 0.3 m. As
comparisons are made between results obtained on the different sub-datasets of Urb3DCD-
V1 presented in Chapter 1, Section 1.3.2, we decided to derive DSM resolution from
the PC density of sub-dataset 2 (10 points/m2). Thus, for all data of lower resolution,
interpolation was performed when there were no corresponding points in a given cell
(pixel). A coarser resolution could have been chosen, but this would have implied less
precise results for 2D pixels and also degraded DSM resolution, which can be obtained
with sub-dataset 2. Notice that we ran a test of the DSMd method at a coarser resolution
(1.40 m) on sub-dataset 1, but this did not lead to better results.
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Concerning thresholds, we chose −3 m and 3 m for MC classification, corresponding
to one little floor, since the dataset contains changes from building construction or demo-
lition. The opening filter was using a 10 pixels× 10 pixels kernel size. Empiric thresholds
for C2C and M3C2 methods varied according to the dataset; we tried several values and
systematically selected the best one for each sub-dataset.

In order to derive 2D ground truth from 3D PC labeling, we used a majority voting
strategy. Each pixel was given the most frequent label within its corresponding points.
When a label was required as the patch scale, we followed the same process as in Zhang
et al. (2019), and marked a patch as changed if the ratio of changed pixels was greater
than 10%. For multi-class patch labeling, when a patch was considered as changed, we
selected the label according to the majority of pixels in each class of change.

Inspired by Zhang et al. (2019), patch selection was done with a half-overlap sampling.
Classes were largely imbalanced; indeed, there were more unchanged areas than changed
ones. This imbalance is also visible when looking at the number of patches in each class.
We thus relied on data augmentation only for patches of change, as in Zhang et al.
(2019). A similar kind of data augmentation was applied, i.e., vertical and horizontal
flips, as well as rotations with angles of 90◦, 180◦ and 270◦. Finally, patches at the edge
of the acquisition could contain some empty pixels, since all patches were square but the
acquisition area was not. Thus, another threshold was fixed at 90% non-empty pixels to
consider a patch as valid. Patch size was set to 100 pixels × 100 pixels, corresponding to
30 m× 30 m on the ground.

2.2.3 Results

We now report the experimental results obtained using the methodology described in
Sections 2.2.1 and 2.2.2. First, we assess the performances of the different methods on
the various sub-datasets to evaluate their behavior in various acquisition conditions (e.g.,
density, noise, etc.). We then study the influence of the training set size and the ability
of each method to cope with domain adaptation.

2.2.3.1 Experiments with various acquisition configurations

Let us recall that results come with different levels depending on the method. All methods
dealing with DSMs furnished results in 2D. First, DSMd led to the per-2D-pixel results
presented in Table 2.1. This table summarizes results for all sub-datasets with different
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ways of selecting thresholds (via an empirical choice or Otsu algorithm, as mentioned
in the Section 2.2.1). It also contains the results of the DSMd method with an opening
operation and the Otsu algorithm. For each sub-dataset and type of classification (Binary
or MC), bold results indicate the best performing methods for this scenario. Following
these quantitative results, Figures 2.3–2.7 give a zoomed view of the testing set for each
of the five sub-datasets. These figures contain DSMs extracted from the original PCs, the
2D corresponding ground truth and the results for the three versions of DSMd. We also
provide each result with an error map (g, h, i). One can notice the difference in terms of
quality of DSMs among different sub-datasets. In particular, Figures 2.4(a, b) and 2.7b
correspond to DSMs of high resolution with low-noise PCs. DSMs of Figure 2.3(a, b)
corresponding to low density but not noisy ALS data (sub-dataset 1.b) are a slightly less
precise. Finally, Figures 2.5(a, b), 2.6(a, b) and 2.7a were extracted from low density and
noisy PCs, and thereby seem more inaccurate and blurry.

While the initial results with empirical thresholding are not convincing, we can observe
a significant improvement when using the Otsu algorithm to select thresholds (values
of about −9 m and 9 m). The results were further improved when an opening filter
was added to remove isolated pixels that do not correspond to real changes. Visual
assessment confirmed the utility of the opening filter (f, i) compared to the initial results
with empirically-set thresholds (d, g) or using the Otsu algorithm (e, h), and its ability
to remove isolated pixels (Figures 2.3–2.7). Unsurprisingly, the best results were achieved
on the second sub-dataset corresponding to pairs of PCs with high density and a low
level of noise. Notice that the gap in quality between DSMd with a filtering operation
and DSMd with the Otsu algorithm was higher for sub-datasets containing noisy data
(sub-datasets 3, 4 and 5). Indeed, Table 2.1 reports a gain of about 12 points of mean
of IoU between DSMd+Otsu and DSMd+Otsu+Opening methods for sub-datasets 1.b
and 2 with low levels of noise, whereas the opening filter increased this metric by 17–22
points for datasets that contain noisy PCs. Indeed, noisy data led to numerous false
detection instances in isolated parts of the DSM, which could be eliminated through
this morphological operation. This is visible in Figures 2.5(d, g) and 2.6(d, g), where
isolated pixels marked as new construction or demolition can be seen. In addition to
these isolated pixels, almost all building edges were highlighted with empirical thresholds,
especially because of the noise on vertical facades that particularly interferes with the
extraction of the DSM. Indeed, such noise makes the facade not straight and difficult to
distinguish precisely from an above point of view, as highlighted in sub-datasets 3, 4 and
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5 (Figures 2.5–2.7). Notice that with Otsu thresholding, it remained visible (at a lower
level though).

When looking at Table 2.1, one can notice that even if the worst results were obtained
for sub-datasets 3 and 5 without the filtering operation, the scores became comparable
with sub-dataset 1.b when adding the filtering step. Thus, even in cases of noisy data
(for one or both PCs), we could achieve similar performance as with a low-noise setup
thanks to the morphological operation. However, results in the multi-sensor scenario
(sub-dataset 5) remained lower than with sub-dataset 2, even though one of the PCs of
sub-dataset 5 has the same quality as sub-dataset 2. The visual assessment of the effects
of the opening operation on sub-datasets 3 and 5 (Figures 2.5(f, i) and 2.7(f, i)) shows
quite similar results. True changes are visible, but there are still quite a few instances of
false change detections.

Surprisingly, the fourth sub-dataset obtained a high mean of IoU on classes of change
according to Table 2.1. This is particularly visible for DSMd with the Otsu algorithm
and the opening filter. This sub-dataset is composed of a pair of PCs with low density
(0.5 points/m2) and high noise, as the sub-dataset 3. However, the range of scanning
angles during acquisition and the overlap between flight tracks were both halved (see
Table 1.4). Using this configuration, we aimed to mimic photogrammetric PCs acquired
thanks to satellite images. These images have a top-down point of view, leading to fewer
shadows. Indeed, the higher the scanning angle and the higher the building, the more
shadows in the PCs. In the context of DSM extraction, a building shadow implies empty
pixels. In this study, we filled them through interpolation, but this may lead to errors or at
least a lack of precision in these areas. Moreover, the flight plan was not the same for the
acquisitions of the pair of PCs; hence, shadows are not the same in each PC. Thus, high
difference values can be obtained even in unchanged areas. For a qualitative illustration,
refer to Figure 2.4(d, e), where a band of pixels marked as changed is always visible on
the same side of every building. Indeed, we can also see the difference in DSMs: the north
sides of buildings seem more blurry than the other sides in DSM 1 (Figure 2.4a), due to
a lack of information in the area just near the facade because of building shadows. In
comparison, as the flight plan was not the same for DSM 2 (Figure 2.4b), building edges
are more distinct at the bottom of the image. Some misclassifications could be corrected
by the opening filter, but only up to a certain extent (i.e., not the larger ones). Finally,
sub-dataset 4 contains fewer building shadows, leading to easier identification of true
changes. This explains the higher results achieved on this photogrammetric, look-alike
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sub-dataset 4 and reported in Table 2.1. Note that the edges of the buildings have also
been highlighted in the figure 2.6(d, e) because of the noisiness of the photogrammetric,
look-alike sub-dataset 4. This differs from sub-dataset 3, where both effects are visible
on buildings’ edges: some edges are continuous in one class of change corresponding
to building shadows, and predictions of other edges are more heterogeneous. Notice that
heterogeneous parts are easily cleaned with the opening operation, leading to a significant
difference of results between sub-datasets 3 and 4 in Table 2.1.

Table 2.2 presents results at the 2D patch level for deep learning methods. When
comparing both FF and Siamese networks, we can see that better results were obtained
with the FF architecture. The same trend was reported in Zhang et al. (2019) when
only the DSM information was given to the networks. However, in these original works
(Zhang et al., 2018b; Zhang et al., 2019), results were only binary. We propose here to
extend these approaches to deal with MC classification. For FF architectures, the quality
of MC results is close to the binary case, with only 3–5 points less, depending on the
sub-dataset. On the contrary, the Siamese architecture leads to a higher gap, with a
7–10% loss between binary and MC classification. Thereby, Siamese architecture seems
less efficient in this context. Better results were again obtained for the high density sub-
dataset 2; they were rather similar for sub-datasets 1.b, 3 and 5. Here again, identification
of true changed patches seemed to be easier for sub-dataset 4, which showed better results
than sub-datasets 1.b, 3 and 5.

For the sake of comparison, we have adapted at the patch level the DSMd method
and its variant, i.e., considering Otsu thresholding and morphological filtering. To do so,
we have followed the patch-wise strategy introduced in previous works and reported in
Section 2.2.2. Namely, we divided with half-overlap sampling the different DSMd results
into patches in order to extract the same patches as those that are extracted for deep
learning methods. To retrieve labels at patch level, we set a threshold on the percentage
of changed pixels according to each DSMd result. For MC classification, when a patch was
identified as changed, we have the label of the most prominent class of change. Thresholds
of validity and changed pixels were set based on the setup used with deep learning methods
(90% and 10%, respectively). Results are given in Table 2.2. We can see that DSMd with
the Otsu algorithm and opening filter overtook deep methods for all sub-datasets. Let us
note that the coarseness of the analysis (patch instead of pixel) hinders the interest of a
visual assessment.

Finally, Table 2.3 gives results at the 3D point level. Notice that the C2C method
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(a) DSM 1 (b) DSM 2 (c) GT

Unchanged New Building Demolition
(d) Empiric (e) Otsu (f) Otsu + Opening

(g) Difference with GT
(Empiric)

(h) Difference with GT
(Otsu)

(i) Difference with GT
(Otsu + Opening)

Figure 2.3: Results at the 2D pixel level for sub-dataset 1.b (ALS, low den-
sity): (a,b) DSMs with their elevations in meters and (c) ground truth (GT). Results
of DSMd with empirical thresholding (d), thresholds from the Otsu algorithm (e) and
post-processing with an opening filter (f). Respective errors maps (g–i) highlight the
differences (in red) from the ground truth.
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(a) DSM 1 (b) DSM 2 (c) GT

Unchanged New Building Demolition
(d) Empiric (e) Otsu (f) Otsu + Opening

(g) Difference with GT
(Empiric)

(h) Difference with GT
(Otsu)

(i) Difference with GT
(Otsu + Opening)

Figure 2.4: Results at the 2D pixel level for sub-dataset 2 (ALS High den-
sity): (a,b) DSMs with their elevations in meters and (c) ground truth (GT). Results
of DSMd with empirical thresholding (d), thresholds from the Otsu algorithm (e) and
post-processing with an opening filter (f). Respective errors maps (g–i) highlight the
differences (in red) from the ground truth.
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provides unsigned results, which makes impossible the distinction between positive and
negative changes; thus, only binary results are provided. Here again, one method sur-
passed the others for each kind of sub-dataset. Indeed, the machine learning method
of Tran et al. (2018), using the RF algorithm trained on hand-crafted features with a
Stability feature, had more precise results. Notice that M3C2 did not seem to have in-
teresting results in the context of quite low density PCs: the means of IoU for classes
of change were higher than 50% only for the sub-dataset with the higher density. As
far as binary results are concerned, C2C seems more suitable if no labeled training set
is available. The RF algorithm with hand-crafted features has quite similar results for
binary and MC classification. Let us emphasize that Tran et al. (2018) designed their
method and especially the feature extraction for a MC classification scenario.

For the sake of qualitative assessment at the 3D point level, Figures 2.8 and 2.9 provide
PCs for both dates; the associated ground truth according to the change; and the results
provided by C2C, M3C2 and the RF method with hand-crafted features. Firstly, one
should outline the difference of quality between all sub-datasets. Indeed, Figure 2.8(a,b)
presents low-noise PCs at low density, (a) corresponding to the first sub-dataset, and high
density, (b) corresponding to the second sub-dataset. Figure 2.9(a–c) shows PCs of noisy
sub-datasets. In Figure 2.9c, the difference between the noisy, low-density PC and the
precise, high-density PC is substantial.

From a quantitative point of view, the same tendency is visible in Table 2.3. C2C
binary results do not seem so far from ground truth in changed areas; however, it led
to some false positive predictions on building facades. M3C2 led to even more false
positives, but also it did not highlight changes in some areas. This is particularly visible
in Figure 2.8b, where a lot of points lying on unchanged facades are identified as changed,
conversely to points on the facade of the new building. Moreover, in the same example,
some points were even identified as destruction instead of construction. For all sub-
datasets, the RF method (Tran et al., 2018) seemed to bring quite accurate results, except
for the ground points near buildings; those points were identified as deconstructed. This is
visible in Figures 2.8a and 2.9(a,c), corresponding to the building shadow effects already
mentioned. When looking directly at the PCs of both dates, it is particularly visible in
Figure 2.8a that all points assigned to a deconstruction label at ground level which are
not true deconstruction, are points that do not exist in the first PC (PC 1).

Notice that no confusion between the two classes of change seems to have arisen in
the RF method. More specifically, this method seems to have learned that deconstruction
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is always at ground level; this is not the case for the M3C2 method. Indeed, since only
thresholding was applied, some deconstruction parts could appear on facades. Finally,
point predictions on roofs were not so far from ground truth for all methods, though
M3C2 results were the least accurate.
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(a) DSM 1 (b) DSM 2 (c) GT

Unchanged New Building Demolition
(d) Empriric (e) Otsu (f) Otsu + Opening

(g) Difference with GT
(Empiric)

(h) Difference with GT
(Otsu)

(i) Difference with GT
(Otsu + Opening)

Figure 2.5: Results at the 2D pixel level for sub-dataset 3 (ALS, low density,
high noise): (a,b) DSMs with their levels of elevation in meters and (c) ground truth
(GT). Results of DSMd with empirical thresholding (d), thresholds from the Otsu algo-
rithm (e) and post-processing with an opening filter (f). Respective errors maps (g–i)
highlight the differences (in red) from the ground truth.
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(a) DSM 1 (b) DSM 2 (c) GT

Unchanged New Building Demolition
(d) Empriric (e) Otsu (f) Otsu + Opening

(g) Difference with GT
(Empiric)

(h) Difference with GT
(Otsu)

(i) Difference with GT
(Otsu + Opening)

Figure 2.6: Results at the 2D pixel level for sub-dataset 4 (photogrammetric):
(a,b) DSMs with their elevation levels in meters and (c) ground truth (GT). Results
of DSMd with empirical thresholding (d), thresholds from the Otsu algorithm (e) and
post-processing with an opening filter (f). Respective errors maps (g–i) highlight the
differences (in red) from the ground truth.
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(a) DSM 1 (b) DSM 2 (c) GT

Unchanged New Building Demolition
(d) Empriric (e) Otsu (f) Otsu + Opening

(g) Difference with GT
(Empiric)

(h) Difference with GT
(Otsu)

(i) Difference with GT
(Otsu + Opening)

Figure 2.7: Results at the 2D pixel level for sub-dataset 5 (Multi-sensor):
(a,b) DSMs with their elevation levels in meters and (c) ground truth (GT). Results
of DSMd with empirical thresholding (d), thresholds from the Otsu algorithm (e) and
post-processing with an opening filter (f). Respective errors maps (g–i) highlight the
differences (in red) from the ground truth.
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(a) Sub-dataset 1.b (b) Sub-dataset 2

PC 1 PC 1

PC 2 PC 2

GT GT

C2C C2C

M3C2 M3C2

RF (with Stability feat.) RF (with Stability feat.)
Unchanged New Building Demolition

Figure 2.8: Results on PCs for methods at 3D point level for sub-datasets 1.b
(a) and 2 (b). Both PCs corresponding to both dates are given. The corresponding
ground truth (GT) indicates changes in the second PC (PC 2) compared to the previous
PC (PC 1). C2C results are only binary: purple corresponds to unchanged parts and
yellow to changed areas.
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(a) Sub-dataset 3 (b) Sub-dataset 4 (c) Sub-dataset 5

PC 1 PC 1 PC 1

PC 2 PC 2 PC 2

GT GT GT

C2C C2C C2C

M3C2 M3C2 M3C2

RF (with Stability feat.) RF (with Stability feat.) RF (with Stability feat.)
Unchanged New Building Demolition

Figure 2.9: Results on PCs for methods at the 3D point level for sub-datasets 3
(a), 4 (b) and 5 (c). Both PCs corresponding to both dates are given. The corresponding
ground truth (GT) indicates changes in the second PC (PC 2) compared to the previous
PC (PC 1). C2C results are only binary: purple corresponds to unchanged parts and
yellow to changed areas.
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2.2.3.2 Experiments with various training configurations

Having quantitatively and qualitatively assessed the performances of the different meth-
ods when applied to various acquisition conditions, as demonstrated in our pool of sub-
datasets, we now focus on the generalization capacities of supervised methods. We espe-
cially study their behaviors when trained on datasets of various sizes or having different
characteristics. Indeed, most often, no annotated data are available for the target areas,
and/or such areas are not covered by the same sensors (or the same acquisition condi-
tions) as the training areas. Thus, it is crucial to assess the ability of techniques trained
on synthetic data to perform well on various datasets.

Results reported in Table 2.4 analyze the influence of the training set size. Indeed,
the three sub-datasets were of similar type (ALS with low density and low noise); the
difference lays in the size of the set by varying the number of pairs of simulated PCs (1,
10 and 50). Note that the validation set was the same for the three tests. Unsurprisingly,
the best results were obtained with the largest training set (1.c), which is consistent with
common observations using neural networks or RF. However, in the latter case using
hand-crafted features, the improvement was limited compared with the case of a neural
network: a bit less than 6% using RF between sub-datasets 1.a and 1.c, compared to 27%
and 19% with FF method (binary and MC), and 20% and 11% with Siamese network
(binary and MC), respectively. One can notice that for the smallest training set (1.a), the
Siamese network led to better binary results than the FF network. Contrary to the RF
method, the gap between sub-datasets 1.a and 1.b was larger than between sub-datasets
1.b and 1.c.

Finally, one can notice that DSMd with the Otsu thresholding and opening filtering
was still a bit better than deep networks at the 2D patch level trained on the larger
dataset (see Table 2.2).

Figure 2.10 provides clues to assess the transfer capacity, through training (and vali-
dating) on a dataset with different characteristics than the testing set. Here, we consider
each transfer learning scenario with various training configurations related to all five sub-
datasets discussed above. Notice that the trained models were directly applied to the
testing set, without re-training. In each line of Figure 2.10, the ‘star’ corresponds to the
scenario where training and testing sets were similar, i.e., without transfer learning (and
this can be seen as the reference). Let us recall that methods based on neural networks
lead to results on patches, whereas RF methods lead to results on PCs. Thus, a direct
comparison between deep learning and the RF methods is not possible. However, it is
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Method at 3D Point Level Methods at 2D Patch Level

Sub-Datasets RF (with Stability Feat.)
Tran et al. (2018)

FF
Zhang et al. (2019)

Siamese
Zhang et al. (2018b)

Bin. MC Bin. MC Bin. MC

a 61.51 61.34 57.52 58.43 58.62 55.07
1 ALS Low Dens. b 63.70 63.41 77.64 75.47 71.58 64.16

c 67.28 67.10 81.98 77.28 78.85 66.58

Table 2.4: Results of different supervised methods with varying training set
sizes (training sets of sub-dataset 1.a, 1.b and 1.c contained, respectively, 1, 10 and 50
simulations). Means of IoU over classes of change are given (%) at point level for the RF
method, and at patch level for both FF and Siamese networks. Bin. stands for binary
classification results, MC for multi-class classification results, Dens. for density. For each
type of results, the best values are shown in bold.

still interesting to outline that the RF method with hand-crafted features seems to be the
more impacted by the nature of training sets. Depending on the configurations of train-
ing and testing sets, great variability in terms of results can be observed. For example,
when transferring from a noisy photogrammetric type of PC (sub-dataset 4) to noise-free
ALS data (sub-dataset 1, 2) or multi-sensor data (sub-dataset 5), results go down from
68.87% for the reference test to, respectively, 31.43%, 9.56% and 5.1% when transferring
to sub-dataset 1, 2 and 5; see Figure 2.10d. As expected, the more different the data,
the more the RF method struggles to retrieve changes. Indeed, both noisy datasets (sub-
datasets 3 and 4) produce similar outcomes. When looking at Figure 2.10b, it is worth
noting that the results of tests on the multi-sensor sub-dataset are nearly equivalent to
the reference test results corresponding to tests on high-density ALS data. Indeed, the
second part of the multi-sensor sub-dataset has a similar configuration to sub-dataset 2.
Thus, the extracted hand-crafted features are likely to be similar. However, as can be
seen in Figure 2.10, a larger difference of results appears when training on sub-dataset
5 and testing on sub-dataset 2. Finally, let us outline that training on sub-dataset 1
leads to a lower difference among results when transferring to another sub-dataset (Fig-
ure 2.10a). Sub-dataset 1 has the same density as sub-datasets 3 and 4, and the first
instance of the sub-dataset 5, but is not noisy like sub-dataset 2 and the second instance
of the sub-dataset 5.

When looking at deep learning methods, results on transfer learning are quite similar
to those obtained without transfer leaning. However, the Siamese architecture seems to be
more affected by the transfer learning scenario, considering training on the multi-sensor
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(a) Sub-dataset 1 (b) Sub-dataset 2 (c) Sub-dataset 3

(d) Sub-dataset 4 (e) Sub-dataset 5

Figure 2.10: Results of different tests of transfer learning. Each sub-figure presents
results when training on the training set of a specific sub-dataset and testing on other
sub-datasets. Results marked with stars correspond to reference tests without transfer.
Means of IoU over classes of change are given (%). Bin. stands for binary classification
results, MC for multi-class classification results, Dens. for density.

dataset and testing on the other sub-dataset. Let us also notice that results issued from
transferring to the sub-dataset 4 are often lower. In this case, as seen in Section 2.2.3.1,
the characteristics of sub-dataset 4 differ significantly from those of the others, since it
corresponds to a photogrammetry-like scenario. Even if change detection on DSMs seems
easier for sub-dataset 4 (see results in Tables 2.1 and 2.2), the very different characteristics
with respect to the other sub-datasets used for the test make these transfer learning
scenarios achieving lower results. More generally, we can observe deep neural network
approaches exhibited relatively good generalization properties. This is very encouraging,
since one can easily learn on simulated data to classify changes in real PCs. Conversely,
when considering the RF method with hand-crafted features (Tran et al., 2018), it seems
better to train on a smaller dataset than on datasets with different characteristics.
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2.3 Discussion

Complementary to the experimental results presented in the previous section, we provide
here an in-depth discussion addressing the change detection methods, the dataset used in
this study and the simulation tool that has been employed.

2.3.1 Accuracy of methods

In this study, we have compared methods producing results at different levels on various
kinds of 3D change datasets. For the DSMd method, even if the Otsu thresholding sub-
stantially improves the results, we observed that changes below 9 m cannot be retrieved.
Even if such a situation rarely occurs in our datasets, it could still be problematic in prac-
tice, e.g., in low residential zones. One example of low building changes better retrieved
with empirical thresholds (set at −3 m and 3 m) can be seen in Figure 2.7.

While deep learning have been shown to generally surpass traditional ones in remote
sensing, this tendency was not confirmed in our study. Indeed, existing deep learning
methods for 3D change detection only give patchwise results, leading to no fine change
object boundaries (Dai et al., 2020). The best results obtained at 2D patch level were
those provided by the traditional DSMd coupled with Otsu thresholding and the open-
ing filter. Zhang et al. (2019) also compared their results on DSMd at the 2D patch
level, but they assigned a label to each patch of DSMd according to the average height
difference (AHD) in the patch. Conversely, we first extracted labels at the pixel level
before applying majority vote filtering to produce results at the patch level. However, we
have experimentally observed that both strategies (AHD vs. majority vote) were actu-
ally leading to the same results. In addition, Zhang et al. (2019) also applied the Otsu
thresholding algorithm, but they did not consider a morphological operation to filter out
isolated pixels. One other non-negligible difference from our study is that our dataset
does not contain vegetation. In such a simple situation, the DSMd method enhanced
with a filtering operation and a selection of adequate thresholds with the Otsu algorithm
would lead to satisfying results. One can assume the deep networks also benefited from
this simpler setup.

Let us recall that Zhang et al. (2018b) reported in the binary case an IoU over the
class of change of 67%. However, a direct comparison with our results is not possible,
since our dataset is different. Still, it is worth noting that quantitative results showed
similar ranges. Similarly to Zhang et al. (2018b), we used a Siamese network with shared
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weights as both input data or DSMs. This was also the case for sub-dataset 5 on multi-
sensor data, even through the two PCs (from which DSMs have been extracted) have
different characteristics. Notice that for this multi-sensor sub-dataset, we also tried a
pseudo-Siamese network with unshared weights, as is commonly done when inputs have
dissimilarities (Mou et al., 2017; Touati et al., 2020a), even if both inputs remain DSMs.
We did not observe convincing results, probably because the pseudo-Siamese networks
come with higher complexity (more parameters), thereby requiring larger training sets.

When focusing on methods dealing directly with the raw PCs, we observed a huge gap
between traditional approaches and machine learning-based ones. However, one should
notice that C2C and M3C2 methods were not especially designed for urban change detec-
tion. More particularly, M3C2 was presented in a study using TLS PCs with tremendously
higher density than ours. While Lague et al. (2013) sought changes at the centimetric
scale within PCs of millimetric resolution (point spacing was about 10 mm horizontally
and 5 mm vertically) acquired at a distance of 50 m, our point spacing in sub-dataset 2
with the higher density was about 20 cm to 30 cm, and we focused on changes on a metric
scale. Their method is thus possibly inadequate for our settings. Both C2C and M3C2
are very sensitive, and the optimal thresholds are specific to each dataset (conversely
to DSMd, where the threshold value is the same for all datasets). Automatic threshold
selection, with using the Otsu algorithm, did not lead to satisfying results.

2.3.2 Specificities with regard to the datasets

Our experimental results allowed us to compare different methods on a same dataset
and in various conditions. We have also highlighted inherent difficulties of each kind of
sub-dataset. The first sub-dataset has a low density, and although it embeds low noise,
it contains lots of building shadows and hidden facades due to the acquisition settings.
Therefore, both PCs do not contain the same hidden parts and building shadows, making
a direct comparison difficult. The second sub-dataset with high density and low noise
seems to be the easiest one for change detection and categorization. Indeed, all methods
performed best on this sub-dataset. The third sub-dataset is composed of PCs with
low density and high noise, and includes some shadows due to the different flight tracks
of LiDAR during the acquisition of both PCs. This sub-dataset generally led to results
worse than with the fourth sub-dataset, which is also composed of low-density, noisy PCs,
but with a lower scanning angle, leading to fewer shadows and to more similar hidden
parts between PCs. As already discussed in the previous section, it has a significant
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impact on all change detection methods. With this fourth sub-dataset, we aimed to
mimic photogrammetric PCs extracted from satellites images. A possibility to enhance
the realism would be to adapt the registration error from the acquisition sensor (Nuth and
Kääb, 2011), but this remains quite specific to each sensor. Finally, the fifth sub-dataset
is composed of multi-sensor data: the first PC is from a low-density, noisy ALS, and
the second PC has a high density and low noise. Results achieved on this multi-sensor
sub-dataset are similar to those obtained on the first sub-dataset composed of low density
but not noisy PCs.

Completion of all experiments led us to conclude that density seems to have more of
an impact than noise on the final results. However, since changes in the dataset occurred
at building scale (new construction or destruction) and noise was set to be about 1 m, it
seems rational that the main changes were retrieved. The main difficulties remain at the
buildings’ edges, since in this situation, noise makes it difficult to distinct boundaries of
changed objects.

Finally, even though Urb3DCD-V1 may appear too simple because it only contains
ground and buildings, results show that there are some difficulties in dealing with dense
urban areas where building shadows and hidden parts are frequent. These shadows and
hidden parts are frequent in real 3D data and greatly challenge the comparison between
two point clouds (Czerniawski et al., 2021). Moreover, one can observe that, even for
the sub-dataset with high density and low noise, all methods were still far from attaining
100% for their means of IoU over classes of change. Indeed, the best methods obtained
about 80% at the 2D pixel level, 90% at the 2D patch level and 70% at the 3D point level.
Thereby, this calls for new change detection and categorization methods, and indicates
as well the possible difficulties future methods need to surpass with our dataset.

2.3.3 Generation of simulated data

Let us recall that our dataset is made of artificial PCs generated thanks to a novel sim-
ulator of multi-temporal 3D urban PCs developed in this thesis. The annotation is done
automatically by the simulator, thus avoiding any time-consuming manual annotation.
The new construction label corresponds to all points located on a new building. For the
demolition class of change, we proceeded by extracting the convex hull of the building
footprint on the ground. In our 3D models, the majority of buildings are convex, but
in some isolated cases this could lead to some small difference with the actual building
footprints. Nevertheless, such a case remains very rare with respect to the large number
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of annotated points, so it does not have a significant influence on the quantitative results
that have been reported.

Results presented in Section 2.2.3.2 concerning the size of the training set also show
some additional interest of our simulator. Indeed, up to 50 simulations of PC pairs have
been performed in order to generate the larger sub-dataset 1.c. All these simulations have
been made over the same area but, for each generated PC, we randomly selected both
the buildings to be updated and the flight tracks to be followed, thus leading to a high
variability in the dataset, as illustrated in Figure 1.12. Though each simulated pair may
not be considered as a totally new data (since similar buildings could be randomly chosen
several times), this process can be seen as data augmentation, allowing us to significantly
increase the results, as shown in previous section (e.g., up to 24% for the binary FF
network between the smaller (1.a) and the larger (1.c) sub-dataset). Finally, it should be
noted that even if the same buildings can be randomly chosen several times, the resulting
3D points lying on the building will not be at the exact same coordinates because of the
random flight plan and noise.

2.4 Conclusion

This chapter discussed about 3D change detection methods. First, a review of existing
methods given in Section 2.1 divides the literature into two categories: DSMs-based and
PCs-based strategies. Then, we have proposed an experimental comparison of different
methods of change detection and categorization in an urban environment.

We have experimented and assessed six different methods for change detection
and categorization using either PCs rasterizations in 2D DSMs, or by directly
coping with the 3D PCs. More precisely, we have compared traditional distance-
based methods such as DSMd with different types of thresholding and a filtering op-
eration (Murakami et al., 1999; Otsu, 1979; Stal et al., 2013), C2C (Girardeau-Montaut
et al., 2005) and M3C2 (Lague et al., 2013); with a machine learning technique, a
random forest fed with hand-crafted features (Tran et al., 2018); and with deep
learning architectures through feed forward (Zhang et al., 2019) and Siamese (Zhang
et al., 2018b) networks. These methods provide different results: 2D pixels, 2D patches
and 3D points. For the supervised methods, we have also studied the capacity of transfer
learning and the influence of the training set size. All experiments have been performed
on each sub-dataset of Urb3DCD-V1 described in Chapter 1.
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The results of this evaluation showed that the simulated dataset (Urb3DCD-V1)
in dense urban areas is a challenge for all existing methods. The remaining issues
concern the management of point clouds with low densities and the global
understanding of the scene in case of occlusions in the point clouds. For 3D
point scale results, traditional machine learning is better than distance-based methods.
Existing deep learning methods only provide results at the scale of patches extracted
from DSMs, which is much less accurate in terms of results. While deep learning methods
seem to be more suitable for transfer learning than machine learning methods, these
experiments highlighted the need for deep learning methods that are based directly on
raw 3D point clouds. Thereby, the following of thesis will focus on developing original 3D
change detection and categorization methods able to understand the 3D context even at
a low density or multi-sensor configuration.
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As stated in Chapter 2, existing methods are still limited to efficiently process 3D
PC change detection. While deep learning provides interesting results in remote sensing
images (Zhu et al., 2017; Ma et al., 2019) or 3D PCs object detection and segmentation
(Qi et al., 2017b; Shi et al., 2019; Thomas et al., 2019; Guo et al., 2020), to the best of our
knowledge, there is no deep learning method for the multiple change segmentation task
dealing directly with raw 3D PCs. Thereby, in this chapter, we aim to tackle this task by
proposing the first deep architectures14 able to deal with multiple change segmentation
from 3D PCs, providing results at point scale.

Section 3.1 recalls some state-of-the-art solutions for deep learning on 3D PCs data,
and provides as well an overview of deep learning for change detection in 2D images.
Inspired by these developments, we build a network based on a Siamese architecture
with 3D kernel point convolutions enabling to process directly raw 3D PCs. We extend
this network in two versions (described in Section 3.2), named Siamese Kernel Point
Convolution (KPConv) for change segmentation and Siamese KPConv Cls variant for
change classification in 3D point clouds. Results and discussions are given in Section 3.3.
Finally, we propose to further improve change segmentation results by considering hand-
crafted features as input to the network and introducing evolutions of Siamese KPConv
network 15 in Section 3.4.

3.1 Related work

In this related work section, we will put a focus on deep learning. First, we will see how
deep learning has been used for 3D PCs understanding. Then, we will describe how to
perform change detection into 2D images using deep learning-based methods.

3.1.1 Deep learning for 3D point clouds

Recent years have seen an increasing interest in developing deep learning frameworks
dealing with 3D PCs. Specific PC characteristics (sparsity, irregularity of the distribution
of points, continuity, etc.) require in fact particular attention in order to define adapted
networks and associated operations.

14. These models were presented at ISPRS Congress 2021 (de Gélis et al., 2021a) and further detailed
in a paper published in ISPRS Journal of Photogrammetry and Remote Sensing in 2023 (de Gélis et al.,
2023d).

15. These enhancements of Siamese KPConv are submitted for publication and a preprint version is
available (de Gélis et al., 2023b).
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To this end, existing techniques can be distinguished into three categories, namely
projection-based, discretization-based or point-based methods. Projection-based methods
consist in projecting 3D PCs onto regular 2D grids (rasters, spheres, etc.) in order to
apply traditional existing 2D approaches (Boulch et al., 2018; Wu et al., 2018; Guiotte
et al., 2020). In a similar spirit, discretization-based methods also transform 3D PCs into
discrete representation in 3D voxels (Tchapmi et al., 2017; Rethage et al., 2018). This
rasterization process, whatever the dimensions of the output (2D or 3D), brings severe
issues such as loss of information through the aggregation of multiple points into a single
cell, and possible empty cells (especially in the 3D case) due to the regular sampling.
While being popular in the early years, they are now most often neglected in favor of pure
3D PC approaches.

Conversely, point-based methods are appealing since they avoid rasterization or dis-
cretization steps and their aforementioned drawbacks. As reported in a recent survey
(Guo et al., 2020), they have become the most popular strategy to deal with 3D PCs.
To this end, PointNet (Qi et al., 2017a) allows to learn per-point features using shared
Multi-Layer Perceptron (MLP) and global features using symmetrical pooling function to
deal with 3D PCs characteristics (orderless and unstructured). A simplified illustration
of PointNet is given in Figure 3.1. Further improved by Qi et al., 2017b to group points
hierarchically and learn features at different scales, PointNet is still the basis of numerous
works in deep learning for 3D PCs (Lang et al., 2019; Shi et al., 2019). However, such a
popular framework shows its limitations when applied in a remote sensing context, where
large PCs could be acquired through ALS surveys (Landrieu and Simonovsky, 2018) and
where no prior assumption can reasonably be made regarding the scene size (in terms of
exact number of points).

Alternative point-based strategies have then been introduced to counter weaknesses of
PointNet and its variants. Most often, they rely on a specific definition of the convolution
operator, and/or on the underlying graph representation. While the latter has led to
various successful frameworks (Landrieu and Simonovsky, 2018; Wang et al., 2019a; Wang
et al., 2019b; Lin et al., 2021), but requires an initial mapping of the PC into a graph
structure, the former has the advantage of being more natural for transferring existing
deep learning know-how for 2D images, including the well-explored problem of change
detection in remote sensing.

Among graph-based methods, Landrieu and Simonovsky (2018) propose to transform
the PC into a superpoint graph. This graph is obtained by performing a geometric
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Figure 3.1: A simplified architecture of PointNet (Qi et al., 2017a) for point cloud
object classification, where parameters n and m denote point number and feature dimen-
sion, respectively. Source: Figure from Xiao et al. (2023).

partition, i.e., a division of the PC into simple yet meaningful shape. Each of these
shapes is associated to a superpoint. Then, a graph is formed using superpoints as nodes
of the graph and edges represent the spatial adjacency between superpoints. The semantic
information is extracted through specific edge convolutions applied on the superpoint
graph. As it transforms the PC to a smaller set of superpoints, this method is well-suited
for large scale PCs. Other graph-based methods, such as Wang et al. (2019a) and Wang
et al. (2019b), rely on a simpler graph constructed by linking points from a k-Nearest
Neighbors (kNN) neighborhood. Neighbor points are searched first in the spatial space,
then, after each convolutional layer, in the current feature space to modify the area of
influence of the convolution. Here, a vertex represents each point. Then, different edge
convolution operators have been defined according to methods relying on diverse ideas
such as MLP (Wang et al., 2019b), attention (Wang et al., 2019a; Zhiheng and Ning, 2019),
similarity computation (Lin et al., 2021), focusing on local geometric characteristics (Zhou
et al., 2021a), lightweight operators (Landrieu and Simonovsky, 2018), etc.

Let us now focus on the point convolution, which is defined for a point x ∈ R3 as:

(F ∗ g)(x) =
∑

xi∈R3

g(xi − x)fi (3.1)

where xi is a point in the entire set of points P ∈ RN×3, fi its corresponding features in the
feature set F ∈ RN×D, with D the number of input features and g is the kernel function
associated with the correlation. A crucial issue remains in the definition of the kernel
function g. A first category is based on MLP and fully connects all points together, i.e.,
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the support of g is R3 (Wang et al., 2018; Li et al., 2018b; Hermosilla et al., 2018; Boulch,
2020), while another family relies on geometric kernels and connects points only on a local
neighborhood, i.e., the support of g is a ball B3

R,xi
= {x ∈ R3 s.t. ∥x− xi∥ ≤ R}, R ∈ R

is the neighborhood size. Convolutions involving MLP are more complex, require more
trainable parameters and exhibit limited performances. Geometric kernels can be defined
with linear functions on kNN (Groh et al., 2018), polynomial functions (Xu et al., 2018),
weights in voxels (Hua et al., 2018) or even kernel points (Atzmon et al., 2018; Thomas
et al., 2019). Among these convolutions, Kernel Point Convolution (KPConv) (Thomas
et al., 2019) achieved very good results on segmentation and classification tasks, even on
large urban ALS datasets (Varney et al., 2020). KPConv also outperforms numerous other
traditional deep learning methods such as PointNet++ (Qi et al., 2017b) or graph-based
methods.

We now recall the main ideas from KPConv, and refer the interested reader to the
original paper (Thomas et al., 2019) for more details. The kernel function g defined in
KPConv makes it possible to apply different weights to different areas inside the ball B3

R,xi

of radius R centered on a point xi of the PC. These weights are defined for all points x̃k

inside the ball. These K x̃k points are called kernel points. This domain definition inside
a specific area ensures robustness to density variation, which is an interesting property
compared to kernel functions based on kNN. Let {Wk | k ≤ K} ⊂ RDin×Dout be the
associated weight matrices that map features of all kernel points x̃k from dimension Din

to Dout. Thus, the kernel function g is defined as follows for any centered neighbors
yi = xi − x with x ∈ B3

R,xi
:

g(y) =
∑

k≤K

h(y, x̃k)Wk (3.2)

where h is the correlation function between x̃k and y, as defined by equation (3.3). This
correlation function makes it possible to define how each kernel point impacts the con-
volution results. Basically, it should be higher when x̃k is closer to y depending on the
influence distance of the kernel points σ:

h(y, x̃k) = max
(

0, 1− ∥y − x̃k∥
σ

)
(3.3)

Notice that the positions of kernel points are crucial to define KPConv. Thomas et
al., 2019 proposed two versions of their convolution with rigid or deformable kernels. In
the rigid case, kernel points are distributed in order to be as far as possible from each
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Figure 3.2: Illustration of Kernel Point convolution on 2D points. Source: Figure
from Thomas et al. (2019).

other. In the deformable case, positions of kernel points are adapted to the PC. In fact,
a local shift of each kernel point is learned by the network to adapt to the scene. In
practice, deformable kernels considerably increase the number of training parameters and
give even worst results than rigid kernels in outdoor scenes where the variability is lower
(Thomas et al., 2019). An illustration of KPConv is given in Figure 3.2. These con-
volutions were included into deep networks, named Kernel Point – Convolutional Neural
Network (KP-CNN) and Kernel Point – Fully Convolutional Neural Network (KP-FCNN)
to respectively tackle classification and semantic segmentation of 3D PCs. These networks
are presented in Figure 3.3.

3.1.2 Deep learning for change detection in 2D images

With the rise of satellite and aerial imagery, several methods have been developed in
order to highlight and categorize changes in multi-temporal 2D images. In particular,
these past years have seen a lot of deep supervised methods to tackle this issue (Shi
et al., 2020a; Jiang et al., 2022a; Shafique et al., 2022) providing some relevant results.
Existing deep networks for change detection can be mainly classified into two categories:
single-stream and double-stream methods. Both are illustrated in Figure 3.4. Single-
stream methods consist of a single branch network where either the difference of images is
taken into account (Geng et al., 2017) or data are stacked to create a multi-channel input
composed of both images (Gong et al., 2015; Lei et al., 2019; Li et al., 2019b). Although
efficient, these early fusion (EF) networks are limited when using heterogeneous data that
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Figure 3.3: 3D deep networks based on KPConv: KP-CNN and KP-FCNN for
classification and semantic segmentation respectively. Source: Figure from Thomas et al.
(2019).

cannot be directly fused. For the latter challenge, double-stream networks that involve
two distinct branches for both images are more suitable.

Firstly developed in computer vision (Chopra et al., 2005; Zagoruyko and Komodakis,
2015), Siamese networks belong to the double-stream architecture family. Siamese net-
works are parts of reference architectures for change detection or similarity computations
between two inputs. As such, they have been largely used for remote sensing applications
(Zhan et al., 2017; Lefèvre et al., 2017; He et al., 2018; Shi et al., 2020a), and they pro-
vide reliable results even with significantly heterogeneous inputs, such as optical and SAR
images (Mou et al., 2017). In particular, a Siamese network encoder part is composed of
two similar branches extracting features from input data, which will then be fed into a
decision-maker component to highlight changes. Thus, each input image is given sepa-
rately to a branch of the encoder acting as a feature extractor. Usually, the two branches
of the encoder share exactly the same architecture. However, their weights may be shared
for pure Siamese networks (Zhan et al., 2017; Hedjam et al., 2019; Jiang et al., 2020) or
unshared in pseudo-Siamese networks (Touati et al., 2020a; Xu et al., 2020). The latter
lead to more flexibility to deal with data of various sources even though the number of
trainable parameters is higher, yielding more complexity during the training stage (Dong
et al., 2018). In addition, in order to classify changes, one can also use deep Siamese fully
convolutional network (FCN). As in a conventional Siamese network, the encoder part
is composed of two branches. Each branch is a succession of traditional convolution and
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(a) Single-stream (FC-EF) (b) Double-stream (FC-Siam-diff)

Figure 3.4: Illustration of single-stream Fully-Convolutional Early Fusion (a) and
double-stream Fully-Convolutional Siamese with difference (b) methods. Source: Fig-
ures from Daudt et al. (2018).

pooling layers in order to extract information at several scales. A particularity of Siamese
FCN remains in concatenating or fusing at each pooling step the difference between ex-
tracted features of the two encoder branches to the corresponding scale in the decoder
part (Daudt et al., 2018). Finally, Siamese FCNs are inspired by the U-Net architecture
(Ronneberger et al., 2015) with skip connections between the encoder and decoder. How-
ever, in Siamese FCNs, skip links come from a fusion (by concatenation or differentiation)
of information provided by each branch of the encoder part. An illustration of Siamese
FCN is given in Figure 3.4b. Siamese networks remain the basis of numerous works in
change detection.

It has been shown that taking into account the multi-scale properties of remote sensing
images is important for change detection (Yu et al., 2019). First, the focus can be put
on multi-scales features by using convolutions with different receptive fields (Zhang et al.,
2018a; Wang et al., 2020b; Chen et al., 2022a; Song et al., 2021; Jiang et al., 2022b) or
by using other back-bones such as U-Net++ (Zhou et al., 2018) that allows to emphasize
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deep connections between each scale of the network and to produce multi-scale outputs
that are usually all combined in the loss function (Li et al., 2020; Fang et al., 2021). Note
that using U-Net++ back-bone also yields interesting results for single-stream network
(Peng et al., 2019). Furthermore, driven by the idea that each layer of a network produces
a feature map at different scale, the combination of outputs from different layers can be
used to merge multi-scale information. In Mao et al. (2022), they are gathered to feed a
transformer. The outputs of each layer of the decoder can be used by directly applying
a classifier on them and merging the results of these classifiers (Zhou et al., 2023). Fang
et al. (2021) uses an attention module on the concatenation of the outputs of each layer
of the decoder to select and focus on more effective information. Chen et al. (2022a) also
use attention modules to combine multi-scale information. In particular, the multi-scale
features are not only combined through multi-output fusion, but also through multiple
attention mechanisms to fuse the multiple scales at each layer. They further introduce
selective kernel convolutions that are convolutions with adapted receptive fields (e.g.,
kernel size and dilation rate) to extract information according to different scales. Multi-
scale information is also assessed thanks to adapted convolution module with different
kernel sizes (from 1 × 1 to 9 × 9) (Xiang et al., 2021; Jiang et al., 2022b). Song et al.
(2021) combine a special multi-scale convolution and cross-scale global context fusion
to get information from different scales. Notice that studies using different kernel sizes
join studies using dilated convolutions with different rates (Zhang et al., 2018a; Wang
et al., 2020b; Chen et al., 2022a) with the common goal of varying the receptive field
of the convolutions. Bao et al. (2020) propose to combine pixel-level and patch-level
information. Lei et al. (2022) focus more on multi-scale boundary extraction to enhance
building change detection.

Recent studies have also shown that data fusion is a crucial step in change detection.
Paying more attention on how to fuse information coming from the two network inputs
can improve change detection results. It has for example been demonstrated that multi-
temporal fusion leads to better results when it is performed at multiple scales (Daudt
et al., 2018; Chen et al., 2019a; Zhang and Shi, 2020; Zheng et al., 2023). While Daudt
et al. (2018) propose to merge information from both branches either by concatenation
or differentiation of features, other studies propose more advanced fusion modules. For
example, Song et al. (2021) propose a network based on the three results of addition,
subtraction, and concatenation of features at multiple scales. Jiang et al. (2022b) take
a step aside from the traditional Siamese network with one input for each branch, by
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proposing to take in one branch the concatenation of the images and in the other the
difference forming two sub-networks with different properties. At the output of each layer,
the features of the two branches are summed and then concatenated at the corresponding
scale in the decoder thanks to skip connections. Yin et al. (2023) propose to embed some
fusion modules relying on multi-scale features difference aggregation and attention on
concatenation of bi-temporal features. Note that according to Peng et al. (2020), taking
into account both concatenation and difference of input images is more efficient even in
single-stream methods. As with multi-scale consideration, another category of methods
uses attention mechanism to help the network focus on the most important features for
multi-temporal information fusion (Jiang et al., 2020; Chen et al., 2021b; Song et al.,
2021; Chen et al., 2022a).

Finally, while the majority of studies use a traditional classification loss function such
as cross-entropy (Jiang et al., 2022a), it is also possible to adapt the loss function to the
change detection task. In particular, a contrastive loss function enabling to push away
features of the changed pixels and get closer features of the unchanged pixels is sometimes
used (Zhan et al., 2017; Wang et al., 2020b; Wang et al., 2023). Zhang et al. (2018a)
further improve change detection by using a triplet loss function instead of a contrastive
loss function to take advantage of greater spatial relationship between pixel.

3.2 Siamese KPConv: 3D change detection with deep
learning

The following section describes the proposed methods for change detection between bi-
temporal 3D PCs whether at PC or points scale levels (see Figure 9 in the general Intro-
duction). Based on the literature of change detection in 2D images and on the state-of-
the-art in deep learning for processing 3D PCs, we propose a Siamese FCN with Kernel
Point Convolution (KPConv). In fact, standard 2D convolution involved in Siamese FCN
(Daudt et al., 2018) is not directly suitable for 3D PCs. We therefore combine Siamese
FCN with specific 3D PC convolutions, namely KPConv (Thomas et al., 2019). Indeed,
as pointed out in the Section 3.1.1, KPConv is chosen because of its high performances
against the state-of-the-art and its intrinsic compatibility with the Siamese framework.
We recall the appealing properties of KPConv over the well-established PointNet in our
change detection context, i.e., its ability to scale to large datasets and to deal with different
numbers of points from each of the input PCs.
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3.2.1 Siamese KPConv network

To extend the Siamese principle to 3D PCs, we propose here to embed the KPConv in a
deep Siamese network, as presented in Figure 3.5. We detail here the different parts of
our architecture. Both input PCs will pass through encoders consisting of a stack of five
layers containing two convolutional blocks, the first one being “strided” except for the
first block.

Convolutions are performed here with KPConv presented in Section 3.1.1. To mimic
2D “strided” convolutions, “strided” KPConv operations reduce the number of points to
compute features at different scales. At each layer j, the cell size dlj corresponding to the
minimum distance between two consecutive points is recursively defined as dlj = 2×dlj−1.
As for the first layer, dl0 is set according to the dataset density and the level of detail
in the changes we aim to retrieve. KPConv radius R for convolutions also depends on
the layer and is set to Rj = 2.5 × dlj. The decoder part is composed of a stack of five
layers holding a nearest upsampling and concatenation stage and a unary convolution.
The unary convolution behaves like a fully connected layer. We can observe that encoder
and decoder architectures are very similar to KP-FCNN used for semantic segmentation
(Thomas et al., 2019).

Equivalently to a typical FCN with skip connections, the network enables the passing
of information between intermediate layers of the encoder and the decoder. In Siamese
networks however, a strategy should be used to fuse data coming from both encoders.
Daudt et al. (2018) showed that a difference of features coming from both encoder layers
gives better results for change detection. The same conclusion is made in SiamGCN (Ku
et al., 2021): the difference of features leads to more accurate results than concatenating
both sets of features into the decoder part. Inspired by these results, we concatenate
the difference of extracted features associated with the corresponding encoding scale (see
Figure 3.5). In practice, computing such feature difference is not obvious, since PCs do
not contain the same number of points and are not defined at the same positions, even
in non-changed areas. To cope with this issue, we compare each point of the second PC
with its spatially closest point in the first PC. Thus, for two PCs P1 and P2, with their
corresponding features F1 and F2, the feature difference –⃝ is computed between features
f2i ∈ F2 of each point x2i ∈ P2 of the second PC and features f1j ∈ F1 of the nearest
point x1j ∈ P1. Thereby:

(P1,F1) –⃝(P2,F2) = f2i − f1j|j=arg min(∥x2i−x1j∥) (3.4)
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Within the encoder, “strided” convolutions sub-sample PCs at each layer, leading us
to perform nearest neighbor computation for the feature difference each time the PC is
sub-sampled.

Let us observe that while both our Siamese KPConv network and the original KP-FCNN
share the principle of embedding KPConv into a deep neural network, they significantly
differ to address their respective tasks: semantic segmentation for KP-FCNN vs. multiple
change segmentation for our Siamese KPConv. Indeed, our model relies on two encoders
enabling to take two different PCs as input, before fusing the encoded information through
some subtraction layers.

The network takes as input the 3D point coordinates and, similarly to state-of-the-
art deep models for 3D PCs, is also flexible to any supplementary input features such
as RGB information, LiDAR intensity, etc. In practice, literature reports that there is
no systematic gain when using color information (Boulch, 2020). Fusion of color and
geometric information can lead to better results but remains an open problem (especially
when they come from two different data sources) (Widyaningrum et al., 2021). Since this
question is out-of-scope of our study, we simply recommend following the usual practice
in the field (characterize each point by the geometric coordinates X,Y,Z and any available
supplementary features such as RGB, number of echoes, etc.) as early done by the authors
of PointNet (Qi et al., 2017a). Supplementary features can still be easily added as inputs
by modifying the input dimension of weight matrix of kernel points of the first layer.

Let us note that beyond possible supplementary features, one constant feature is al-
ways kept to encode the geometry of the PC for the network (as illustrated by the depth
of the input feature map (in green) in the Figure 3.5). We refer the reader to the original
KPConv paper (Thomas et al., 2019) for more details.

We propose two versions of this network: encoder with shared or unshared weights (the
latter being equivalent to a pseudo-Siamese network). Let us notice that even if weights are
not shared in two encoders of the Pseudo-Siamese version, other hyper-parameters remain
similar. Both will be evaluated in Section 3.3.3. Usually, pseudo-Siamese networks are
used when data to be compared come with different characteristics.
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Figure 3.5: Our Siamese KPConv network architecture. The Pseudo-Siamese ver-
sion of the network is the same without shared weights symbolized by dotted purple
arrows. Links between successive layers are omitted for the sake of concision.

3.2.2 Siamese KPConv network for classification of change at
PCs scale

In order to compare our proposed method to the state-of-the-art which remains limited to
PCs change classification, we built a second version of Siamese KPConv dedicated to this
task (see Figure 9b in the general Introduction), henceforth referred as Siamese KPConv
Cls. The architecture is presented in Figure 3.6. It is composed of the same encoder part
as in Siamese KPConv network, except that a fully connected layer has been added at the
end of the last layer. Then, features coming from the last layer of each encoder are fused
through a difference based on nearest neighbor (as in the previous architecture), that will
feed the input of a fully connected layer. A global average pooling is done in order to
downscale to the global PC scale. Finally, after a last fully connected layer, PC change
classification results are obtained.

Notice that several configurations of this network have been empirically tested to select
the best architecture in terms of number of layers or parameters at each layer. Let us note
that while SiamGCN contains an average pooling layer after each encoder (i.e., before the
feature difference), we have experimentally observed that for our Siamese KPConv Cls,
applying the average pooling after the feature difference was leading to better results.
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Figure 3.6: Our Siamese KPConv Cls network architecture for classification.

3.3 Experimental assessment

In the following section, we present the experimental results of our methods on both
simulated and real datasets. Before describing them into detail, let us first introduce the
experimental protocol.

3.3.1 Experimental protocol

To compare our approach with typical change detection techniques, we first compare our
method for change segmentation with a traditional machine learning approach based on
the RF model and trained using handcrafted features proposed by Tran et al., 2018. We
consider this technique as representative of the state-of-the-art since it obtains the best
results for change detection at 3D point level on Urb3DCD-V1 dataset, as demonstrated in
Chapter 2. We recall that we re-implemented the computation of all features of Tran et al.,
2018 except those using LiDAR’s multi-target capability because Urb3DCD datasets do
not contain such information. As mentioned above, to the best of our knowledge, there is
no deep learning method for change detection operating directly on 3D PCs. Nevertheless,
we have designed two deep learning baselines illustrating the current performances of
existing networks for change detection. Inspired by the work on 2D images of Daudt
et al., 2018 or on 2.5D DSMs (Zhang et al., 2019), we consider DSMs extracted from
our PCs as input 2D matrices to train a fully connected Siamese network (DSM-Siamese)
and a fully connected network with early fusion (DSM-FC-EF). These networks rely on
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usual 2D convolutions performed on 2D rasterization of PCs. Architectures are similar to
those presented in Daudt et al., 2018. DSM-Siamese decoder relies on features difference
to gather information from both encoder branches. 2D results can be straightforwardly
propagated back to original 3D PCs to be compared with pure methods dealing with
raw 3D PCs. Finally, our proposed method as well as the DSM-Siamese one are both
tested using Siamese and Pseudo-Siamese networks, i.e., with shared or unshared weights
respectively, between Siamese branches. To evaluate the variability of our results, all tests
have been conducted at least three times and we report average and standard variation of
performances. This strategy will be followed in all experiments presented in this thesis.

These experiments are carried on Urb3DCD-V2 LiDAR low density and multi-sensor
sub-datasets, as well as on AHN-CD datasets. We recall that these datasets were presented
in Chapter 1.

Concerning change classification, we propose to compare our Siamese KPConv Cls
with SiamGCN network (Ku et al., 2021). This Siamese network relies on graph con-
volution, in particular edge convolution (EdgeConv) operator based on MLP (Wang et
al., 2019b). From input PCs, graphs are constructed from the kNN connections. Thus,
points form graph vertices and edges are set according to kNN relationships. Conversely
to our method, the merging of the two branches of the Siamese network is done after a
max-pooling operation, thus it does not imply a point-to-point substraction of features.
This is an important difference with our Siamese KPConv Cls architecture. Finally, our
method is also compared on the Change3D dataset to Point Cloud Change Detection
with Hierarchical Histograms (PoChaDeHH) and Hybrid Graph Inception Change Detec-
tion (HGI-CD) algorithms. These two methods competed with SiamGCN in SHREC21
challenge (Ku et al., 2021). PoChaDeHH is a fully handcrafted method based on his-
togram clustering. HGI-CD relies on both handcrafted and learned-based features. The
learned-based part relies on Graph Convolution Network (GCN). The handcrafted parts
of these two methods were specifically designed for the Change3D dataset experiments
and as such, cannot be applied to any other dataset, including our Urb3DCDV2-Cls.
Comparison with HGI-CD and PoChaDeHH is then limited to the Change3D dataset.

Since in change detection and categorization datasets are in general largely imbalanced
(i.e., most data belong to the unchanged class despite this class not being the most
interesting one), we prefer to discard the overall accuracy or precision scores that are not
very indicative of method performance in such settings. We therefore select the mean
of accuracy (mAcc) and the mean of IoU over classes of changes (mIoUch) for reliable
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quantitative assessment of the different methods. IoU formula is indicated in Equation 2.5,
and the accuracy is given in the following formula:

Acc = TP + TN

TP + TN + FP + FN
(3.5)

where TP, TN, FP and FN respectively stand for True Positive, True Negative, False
Positive and False Negative. The IoU is also reported for each class of change.

3.3.2 Experimental settings

Similarly to the segmentation task in KPConv experiments, we do not feed entire PCs
to the network for computational reasons. Indeed, the PCs are too large to be processed
as a whole. Thus, Thomas et al., 2019 have proposed to divide their dataset into small
spherical sub-clouds. In the context of urban PC change detection, we prefer to use
cylinders aligned to the vertical axis rather than spheres since the vertical direction is of
a different nature compared to the two horizontal ones. By doing so, we also avoid empty
sub-clouds (note that the centers of the cylinders are the same for both dates). Indeed, if
a sphere is centered at the top of a building that does not include any ground point, and
if this building is demolished, the sphere obtained in the second PC will be free of points
and this will disturb the training of the network. To illustrate this, examples of two input
cylinders are given in Figure 3.7. Let us consider a point in the center of the building’s
roof (center of Figure 3.7b). In this case, the corresponding sphere at the second date
could have been empty. Indeed, depending on the radius, no ground points would have
been visible. By taking cylinders, we ensure that each of the sub-clouds contains ground.
At testing, cylinders are chosen regularly with some overlap to ensure that all points are
seen at least once by the network. For points seen several times, predicted probabilities
are averaged to decide the final label, similarly to voting schemes. It should be outlined
that classes are largely imbalanced in the change detection problem. As a matter of fact,
the unchanged area represents up to 98% of points according to datasets. Thus, during
training, the centers of the cylinders are chosen thanks to a weighted random drawing.
Weights are set as a function of dataset balance, in order to set the probability higher for
smaller classes. This allows our network to regularly observe changes during the training
phase. Moreover, we perform data augmentation through both random rotation around
the vertical axis for each selected cylinder and random Gaussian noise at point scale.
Notice that a random rotation angle is selected for each pair of cylinders and to keep

90

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



3.3. Experimental assessment

(a) First cylinder (b) Second cylinder

Figure 3.7: Example of input cylinders with changes between the first and the
second cylinders (buildings have been added). The two input PCs (a-b) are colorized
based on their relative elevation.

valid the registration, the same rotation angle is applied both PCs in the pair.
As mentioned in Section 3.2, a first sub-sampling rate (dl0) has to be chosen to design

the network. In practice, this has been set to 1 m for experiments on a simulated dataset.
We have empirically set the radius of cylinders to 50 m, following the recommendation of
KPConv authors who set the radius to 50×dl0. For the real dataset AHN-CD, as density
is higher than in Urb3DCD-V2 datasets, we set dl0 to 0.5 m, implying cylinders of 25 m
in radius. According to our experiments, a compromise should be made to use cylinders
as large as possible to take into account enough context and the sub-sampling rate, to
avoid losing too many available points.

Parameter settings (summarized in Table 3.1) have been largely influenced by the
original KPConv proposed values. We thus use a SGD with a momentum of 0.98, to
minimize a point-wise negative log-likelihood (NLL) loss, given by the following equation:

ℓNLL(yt, yp) = −(yt log(yp) + (1− yt) log(1− yp)) (3.6)

where yt and yp correspond to the target label and the predicted label, respectively. As
prediction is expected at point scale on the second PC, the loss is applied for each point
x2i ∈ P2 and its corresponding predicted (y2ip) and ground truth (y2it) labels. A batch
size of 10 is used. The initial learning rate is set to 10−2 and scheduled to decrease
exponentially.

Unlike KP-FCNN, we included a probability dropout of 0.5 in the last classification
layer. Conversely, no dropout is used for Siamese KPConv Cls. In addition, in order
to prevent overfitting, we set a L2 loss regularization balanced by a coefficient of 10−6.
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Concerning Kernel Point Convolution, experiments were conducted with rigid kernels of
25 points. Finally, and as already indicated, input cylinders are randomly chosen in
training. Thus, the number of input cylinders is another hyper-parameter to be set.
After experimenting with several configurations, the best results were obtained when
6,000 pairs of cylinders were seen by the network per epoch, which corresponds to 600
optimizing steps with a batch size of 10. As for the validation, 3,000 and 500 pairs are
used for Urb3DCD-V2 and AHN-CD datasets, respectively.

Concerning change classification task, experiments are performed on Urb3DCD-Cls
and Change3D. Regarding Change3D, only 3D coordinates of the center of objects of
interest are given, further preparation of the dataset is left to the user. In particular, the
authors suggest extracting a vertical cylinder centered on the point of interest. In our
experiments, we decided to extract vertical cylinders of 3 m in radius, as done in the pre-
processing step of the SiamGCN deep learning method. Thus, concerning Urb3DCD-Cls
and Change3D, inputs are already cylinders of 15 m and 3 m in radius. Thereby, only the
first sub-sampling rate should be chosen to run experiments with our Siamese KPConv
Cls architecture. It has been set respectively to 0.3 m and 0.06 m for Urb3DCD-Cls and
Change3D dataset. As a matter of fact, the scales of changes to retrieve are different and
dl0 has to be adapted to expected changes. Regarding Siamese KPConv Cls, the same
training parameters as for Siamese KPConv are used except for the learning rate set to
10−3, as done in object classification experiment by Thomas et al. (2019) in their KPConv
study. As the results are expected at pairs of PCs scale, the NLL loss is computed for
each pair of PCs target and prediction labels. As datasets for classification are smaller,
Siamese KPConv Cls network is trained on 1,000 examples of pairs of cylinders per epoch.
Batch size is also set to 10 for the classification task. For experiments over the Change3D
dataset, RGB information is needed to distinguish the class ‘color change’. Thereby, for
these experiments, our Siamese KPConv Cls network takes as input both RGB information
and 3D coordinates.

The whole development is implemented in PyTorch and relies on KPConv implemen-
tation available in Torch-Points3D (Chaton et al., 2020). Concerning the nearest point
feature difference (Equation 3.4), the nearest point is determined thanks to the kNN im-
plementation available in PyTorch Geometric, which is graphics processing unit (GPU)
compliant for faster computation.

In order to compare with more traditional machine learning techniques, we also per-
form a RF for change detection. For this comparison, let us remark that some features are
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Optimizer Initial LR LR scheduler Dropout Loss Batch size Convolution

Siamese KPConv SGD 10−2 Exponential Yes NLL 10 Rigid KPConv
Siamese KPConv Cls SGD 10−3 Exponential No NLL 10 Rigid KPConv

SiamGCN Adam 10−3 Step No NLL 16 EdgeConv
DSM-based DL Adam 10−3 Exponential No NLL 32 2D convolution

Table 3.1: Summary of training parameters for deep learning methods. Notice
that training parameters for DSM-based deep learning methods are all the same for the
three different networks experimented. LR stands for learning rate.

dependent on the neighboring radius size. To choose this radius we tested several values.
We then set it to 5 m, 4 m and 3 m respectively for the low density simulated dataset, the
MS simulated dataset and AHN-CD.

Concerning deep learning methods dealing with DSM, the same architectures as Daudt
et al., 2018 are set up. DSM resolution is set to 0.5 m for Urb3DCD-V2 and 0.3 m
for AHN-CD.

A summary of parameters according to methods and datasets is given in Table 3.2.

Finally, regarding comparisons on the classification task, results for PoChaDeHH and
HGI-CD are directly taken from the publication of Ku et al., 2021. For SiamGCN,
experiments have been done using the implementation provided by the authors, training
parameters are given also in Table 3.1. Let us note that the difference between our results
and the original SiamGCN paper (Ku et al., 2021) come from the methodology used for
training/validation/testing data splitting. Indeed, we initially failed to reproduce their
results. We thus investigated their code and found that all the training, validation and
testing steps were carried out on the same set. This is obviously a severe flaw from
a machine learning perspective16. In our experiments, we have followed a scientifically
rigorous strategy, i.e., put apart the testing set and divide the train set into training and
validation splits according to the ratio 80/20% as it was also done by authors of HGI-CD.
Notice that for fair comparison, the same training and validation split is used for the
training of Siamese KPConv Cls.

Concerning all experiments using deep learning, a single GPU (Nvidia Tesla V100
SXM2 16 GB) is used to perform training and inferences.

16. We have contacted the authors, as well as the Editor-in-Chief of Computer & Graphics, and the
publication of a corrigendum is in progress.
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Deep learning 3D Deep learning 2D RF
Siamese KPConv (Cls)

Input cylinders
radius (m)

dl0
(m)

Input samples DSM
resolution (m)

Neighboring
radius (m)Dataset Training Validation

Urb3DCD-V2-1 50 1 6,000 3,000 0.5 5
Urb3DCD-V2-2 50 1 6,000 3,000 0.5 4

AHN-CD 25 0.5 6,000 500 0.3 3
Urb3DCD-Cls 15 0.3 1,000 all - -

Change3D 3 0.06 1,000 all - -

Table 3.2: Summary of input parameters according to the five datasets and the three
families of methods.

3.3.3 Results

3.3.3.1 Semantic change results on synthetic datasets

Quantitative results concerning the Urb3DCD-V2 dataset for low density LiDAR are
presented in Table 3.3 and 3.5 and qualitative results are shown in Figures 3.8 and 3.9.
As can be observed, the Siamese KPConv method with both shared or unshared weights
for encoders largely improves global results when looking at mAcc or mIoUch. Indeed,
an enhancement of about 30% of mIoUch can be seen between the traditional machine
learning method with handcrafted features and our proposed method. Also, focusing on
deep learning-based methods in Table 3.3, we can notice that the direct processing of
3D PCs instead of rasterizing data into DSM highly improves scores. When looking at
DSM-based methods, the Siamese and the FC with early fusion are quite comparable
though the Siamese is not very stable. Let us emphasize that, when rasterizing PCs into
DSM, the size of the training set is considerably diminished, from one label per point
to one label per cell/pixel (a 2D pixel gathers multiple 3D points). Since DSM-based
networks rely on smaller training sets, we assume they are more prone to overfitting.
Pseudo-Siamese networks have more trainable parameters than their Siamese counterpart
because the two encoders need to be trained, thereby there might be not enough data to
train them properly. This leads to high variation observed within the results.

Concerning per-class performance in Table 3.5, very high scores are reached by our
method, especially on ‘new buildings’, ‘new vegetation’, ‘mobile objects’ and ‘unchanged’
classes as can also be seen in Figure 3.8f. In particular, results are very impressive for
mobile objects. To explain this, with an average density of 0.5 points/m2, mobile objects
are represented by only a few 3D points. This leads to very low scores for DSM-based
methods since the rasterization process implies a loss of information that is even more
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visible on small objects. The vegetation growth class seems to be the hardest to predict
for all methods. This is logical, since this category is more related to an evolution than
an abrupt change. Furthermore, on vegetation, points are not regularly distributed on
the surface of the objects, as LiDAR can penetrate the foliage of trees. More generally,
our results (Figures 3.8f-3.9f) are consistent with the ground truth (Figures 3.8c-3.9c).
Conversely, the RF method (Figures 3.8d-3.9d) gives less convincing results with several
confusions between classes, e.g., in the foreground low building it mixes new building and
new vegetation classes in Figure 3.8d (see the ellipse showing the region of interest). In
Figure 3.9, some occlusions are shown. While they are very common in processing 3D
PCs data especially in dense urban areas, they remain an important challenge for change
detection methods. Indeed, as can be observed when comparing both PCs (Figure 3.9(a-
b)), hidden facades are not in the same location between the two epochs because of
different positions of the sensor during the acquisition. When looking at results of different
methods, deep learning based approaches bring better results in these particular areas
while the RF algorithm on handcrafted features mix with new building class the building
facades that appear only in the second PC (because of occlusion) (see the ellipse showing
the region of interest in Figure 3.9d). As our method learns deep features from raw 3D
PCs, it seems to be able to characterize objects as a whole. This ability probably comes
from the different scales (or network layers) in the feature extraction process. DSM-based
methods also provide accurate results in hidden facades. Indeed, the prediction is made
only on roofs of buildings by definition of DSM, so predicting no change on the roof leads
to the whole facade below to be marked as unchanged as well in the 3D re-projection
step. However, DSM-based methods face some problems with occlusions due to building
shadows (as no point is acquired resulting in empty pixels in the rasterization) that are
generally filled using an interpolation (thus implying imprecision in building edges). When
looking at qualitative results of DSM-FC-EF method (Figure 3.9e), one can observe that
small roofs details are confused with mobile objects. Indeed, this method rather identifies
cars than roofs probably because these details are similar to cars on this low density
dataset.
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Ground Building Vegetation Mobile Objects
(a) PC 1 (b) PC 2 (c) GT

(d) RF (e) DSM-FC-EF (f) Siamese KPConv (ours)
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 3.8: Visual change detection results on Urb3DCD-V2 low density LiDAR
sub-dataset: (a-b) the two input point clouds; (c) ground truth (GT): simulated
changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et
al., 2018 FC-EF to DSM inspired by Zhang et al., 2019 works) results; (f) our results
with Siamese KPConv. Region of interest specifically discussed in the text is highlighted
with an ellipse.
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Ground Building Vegetation Mobile Objects
(a) PC 1 (b) PC 2 (c) GT

(d) RF (e) DSM-FC-EF (f) Siamese KPConv (ours)
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 3.9: Visual change detection results on Urb3DCD-V2 low density LiDAR
sub-dataset in an area containing occlusions: (a-b) the two input point clouds; (c)
ground truth (GT): simulated changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-
EF (adaptation of Daudt et al., 2018 FC-EF to DSM inspired by Zhang et al., 2019 works)
results; (f) our results with Siamese KPConv. Regions of interest specifically discussed
in the text are highlighted with ellipses.
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Method mAcc mIoUch

Siamese KPConv (ours) 91.21 ± 0.68 80.12 ± 0.02
Pseudo-Siamese KPConv (ours) 91.31 ± 2.34 77.80 ± 1.69

DSM-Siamese 80.91 ± 5.29 57.41 ± 3.77
DSM-Pseudo-Siamese 75.17 ± 10.03 55.30 ± 8.17

DSM-FC-EF 81.47 ± 0.55 56.98 ± 0.79
RF (Tran et al., 2018) 65.82 ± 0.05 52.37 ± 0.10

Table 3.3: General results in % on Urb3DCD-V2 low density LiDAR dataset.
DSM-based methods are adaptation of Daudt et al., 2018 networks to DSM inspired by
Zhang et al., 2019 works.
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Quantitative results for the MS dataset are presented in Tables 3.4 and 3.6. The
Siamese KPConv method with shared weights does not outperform state-of-the-art as
much as the pseudo-Siamese KPConv does. This was expected, since even if both pieces
of data are 3D PCs, they embed very different characteristics. Thus, unshared weights
allow each branch of the encoder to specialize in extracting features from one type of
sensor. Even for the unshared weights configuration of our method (Pseudo-Siamese
KPConv), the results are lower than for the previous dataset. However, the same gap
between methods can be seen: Pseudo-Siamese KPConv still improves mIoUch of about
30% versus the RF method. Among DSM-based methods, early fusion obtains the best
results. This is consistent with results obtained in Chapter 2, especially for the MS
sub-dataset. As described previously, the number of ground truth labels in the DSM
and 3D PCs databases are substantially different because of the rasterization process.
Hence, probably due to overfitting problems, it explains why DSM-Pseudo-Siamese is
worse than DSM-Siamese even in the MS configuration, conversely to Siamese KPConv
results. Furthermore, we believe that in 3D PCs the difference of sensor is more visible
than in 2D rasterization. Indeed, in DSMs most differences are seen at edges of buildings
which are very distinct in the noiseless DSM while blurry in the noisy DSM. Even if
original PCs are very different in terms of quality, they are converted to more similar
2D data during the rasterization process since the same grid size is chosen. Still, the
noise present in the first point cloud leads to a noisy DSM, especially on the building
edges. Overall, the high similarity between the two input DSMs makes relevant the use
of DSM-Siamese with shared weights. Thus, similar filters (and similar weights) can be
used to identify changes among pairs of DSMs, conversely to pairs of PCs. Let us note
that when applied on 2D images, pseudo-Siamese networks are used mostly in case of
pairs of images coming from different sensors, e.g., change detection between optical and
SAR inputs (Touati et al., 2020a; Zhou et al., 2021b).

It is worth noting that the quality of data seems to impact less DSM based results
when comparing low density and MS results in Tables 3.3 and 3.4, which is in our mind
not so surprising because the rasterization process tends to smooth original data by fusing
several points into a single pixel.

Concerning per-class results, the same trend as for the low density LiDAR dataset
is observed in Table 3.6. When looking at qualitative results in Figures 3.10 and 3.11,
the missing vegetation class is almost always mixed with demolition in RF results (3.10d-
3.11d). Changed objects boundaries are not precise in DSM-FC-EF results (3.10e-3.11e)
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due to the rasterization process. Despite the difference of quality between the two in-
put PCs (3.10(a-b)-3.11(a-b)), our method seems capable of retrieving and classifying
changes correctly, even for challenging classes such as vegetation growth. Looking at oc-
clusions visible in Figure 3.11, we can draw the same conclusion as already made on the
Urb3CDCD-V2 low density dataset.

Regarding computation time, Siamese KPConv takes about one day train on these
synthetic datasets with 6,000 cylinders as input. The inference on the entire testing set is
about 4 minutes for the low density sub-dataset and 10 minutes for the MS sub-dataset.

Method mAcc mIoUch

Siamese KPConv (ours) 73.24 ± 5.70 58.55 ± 4.86
Pseudo-Siamese KPConv (ours) 87.86 ± 0.94 74.48 ± 0.59

DSM-Siamese 69.91 ± 6.18 49.14 ± 4.92
DSM-Pseudo-Siamese 66.50 ± 10.82 46.60 ± 10.13

DSM-FC-EF 81.25 ± 1.86 55.59 ± 1.84
RF (Tran et al., 2018) 62.20 ± 0.02 46.81 ± 0.01

Table 3.4: General results in % on Urb3DCD-V2 MS dataset. DSM-based methods
are adaptation of Daudt et al., 2018 networks to DSM inspired by Zhang et al., 2019 works.
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Ground Building Vegetation Mobile Objects
(a) PC 1 (b) PC 2 (c) GT

(d) RF (e) DSM-FC-EF (f) P-Siamese KPConv
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 3.10: Visual change detection results on Urb3DCD-V2 MS sub-dataset:
(a-b) the two input point clouds; (c) ground truth (GT): simulated changes; (d) RF
(Tran et al., 2018) results; (e) DSM-FC-EF (adaptation of Daudt et al., 2018 FC-EF to
DSM inspired by Zhang et al., 2019 works) results; (f) our results with Pseudo-Siamese
KPConv. Regions of interest specifically discussed in the text are highlighted with ellipses.
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Ground Building Vegetation Mobile Objects
(a) PC 1 (b) PC 2 (c) GT

(d) RF (e) DSM-FC-EF (f) P-Siamese KPConv
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 3.11: Visual change detection results on Urb3DCD-V2 MS sub-dataset
in an area containing occlusions: (a-b) the two input point clouds; (c) ground truth
(GT): simulated changes; (d) RF (Tran et al., 2018) results; (e) DSM-FC-EF (adaptation
of Daudt et al., 2018 FC-EF to DSM inspired by Zhang et al., 2019 works) results; (f)
our results with Pseudo-Siamese KPConv. Regions of interest specifically discussed in the
text are highlighted with ellipses.
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Method mAcc mIoUch

Siamese KPConv (ours) 81.86 ± 0.72 59.93 ± 0.14
Pseudo-Siamese KPConv (ours) 84.44 ± 1.24 52.32 ± 4.31

DSM-Siamese 62.85 ± 1.13 33.18 ± 3.56
DSM-Pseudo-Siamese 67.04 ± 0.77 41.40 ± 0.62

DSM-FC-EF 74.98 ± 0.80 44.73 ± 2.16
RF (Tran et al., 2018) 50.11 ± 0.01 28.56 ± 0.02

Table 3.7: General results on AHN-CD dataset given in %. DSM-based methods are
adaptation of Daudt et al., 2018 networks to DSM inspired by Zhang et al., 2019 works.

Method Per class IoU (%)
Unchanged New building Demolition New clutter

Siamese KPConv (ours) 95.94 ± 0.06 83.19 ± 1.54 56.05 ± 1.74 40.53 ± 0.56
Pseudo-Siamese KPConv (ours) 92.96 ± 1.34 76.54 ± 11.39 43.67 ± 1.88 36.76 ± 2.95

DSM-Siamese 88.58 ± 2.53 60.95 ± 5.54 18.04 ± 1.59 20.54 ± 3.59
DSM-Pseudo-Siamese 92.25 ± 0.11 73.26 ± 0.68 22.91 ± 1.82 28.02 ± 0.73

DSM-FC-EF 92.95 ± 1.49 74.21 ± 0.37 33.68 ± 6.84 26.32 ± 0.04
RF (Tran et al., 2018) 93.13 ± 0.00 70.50 ± 0.21 2.04 ± 0.04 13.27 ± 0.02

Table 3.8: Per class IoU results on AHN-CD dataset. DSM-based methods are
adaptation of Daudt et al., 2018 networks to DSM inspired by Zhang et al., 2019 works.

3.3.3.2 Semantic change results on real dataset

Results on AHN-CD dataset are presented in Table 3.7 and 3.8. As in previous experi-
ments, Siamese KPConv networks provide better results than other methods. A significant
gap (around 31% of mIoUch) between our results and RF persists on this real dataset.
Similarly to simulated datasets, the fully convolutional network with early fusion performs
better than Siamese networks on DSMs, with lower scores, however, than our method.
As can be seen in Figure 3.12, Pseudo-Siamese KPConv predictions (3.12d) are globally
similar to the ground truth (3.12c).

As seen in Table 3.7 and 3.8, the scores of all methods are lower with AHN-CD than
scores obtained on Urb3DCD-V2 datasets. Despite the fact that it might be more difficult
to perform change detection and categorization on these real data, our results seem quite
coherent with visible changes when comparing AHN3 and AHN4, as shown in Figure 3.12.
In our opinion, the main difficulty comes from change annotation. Indeed, as shown in
the quality assessment of AHN-CD in the Chapter 1 (Section 1.2.3), the ground truth
is far from being perfect. In Figure 3.13, we illustrate the same problem in the ground
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(a) PC 1 : AHN3 (b) PC 2: AHN4 (c) GT (d) Siamese KPConv
Unchanged New Building Demolition New Clutter

Figure 3.12: Qualitative results on AHN-CD dataset. See the discussion regarding
the quality of the ground truth (GT). Regions of interest specifically discussed in the text
are highlighted with ellipses.

truth as the one given in the Chapter 1 (Section 1.2.3). On this example, new buildings
are omitted because of the presence of the glasshouse in AHN3 PC. As can be seen, this
challenging situation is interesting because our method correctly predicted the majority of
all new buildings. Similarly, when looking at the garden sheds visible in Figure 3.12 and
3.13, the ground truth marked it as a new clutter or unchanged whereas it is sometimes
predicted as new building or even unchanged because of the glasshouse present in the
older PC as explained before (Figure 3.13).

Another remark should be made on the demolition class. Indeed, this class is largely
underrepresented: it contains only 0.2% of points in the training dataset whereas the
‘unchanged’, ‘new building’ and ‘new clutter’ classes represent 87.83%, 7.84% and 4.41%
respectively. This undoubtedly explains the lower scores for demolition, even if we adapted
the training stage to alleviate this issue. An example of demolition omitted by our network
is visible on the ground replacing the demolished glasshouse of Figure 3.13d (see region
of interest on the right side). However, this example might be a difficult situation since
in the older PC, the glasshouse was mapped with both points of the ground and on its
roof, since the LiDAR signal was partly reflected on the glass surface, and partly passing
through it and reflected on the ground. Indeed, the demolition is well predicted in easier
configurations such as in the left side of Figure 3.13.

Despite this imperfect annotation, we thought it was interesting to perform some
tests on such real data. However, figures should be read with caution and analyzed in
comparison to other methods. Nevertheless, let us point out that the visual results of our
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(a) PC 1: AHN3 (b) PC 2: AHN4

(c) GT (d) Siamese KPConv (ours)
Unchanged New Building Demolition New Clutter

Figure 3.13: Qualitative results on AHN-CD dataset, illustrating some ground
truth (GT) errors contrasting with relevant prediction by our method. Regions
of interest specifically discussed in the text are highlighted with ellipses.

method seem very promising. In particular, the fact that our method provides results
in some cases closer to reality than the ground truth, as seen in Figure 3.13, highlights
the robustness against mislabeled data. Therefore, it would be interesting to possess a
method capable of indicating the confidence level of the prediction, such as Bayesian deep
learning methods. Indeed, it has been shown that some errors in the ground truth can be
highlighted by looking at the confidence level (Dechesne et al., 2021).

Finally, we now give results of the sub-part of AHN-CD testing set that has been
manually annotated, see Chapter 1 (Section 1.2.3) for more details. Results are given in
Table 3.9 and 3.10. Again, our methods lead to better results than other state-of-the-art
methods based on handcrafted features or DSM. In particular, scores are very satisfying
on unchanged, new building and demolition classes. Concerning the new clutter class,
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Method mAcc mIoUch

Siamese KPConv (ours) 85.65 ± 1.55 72.95 ± 2.05
Pseudo-Siamese KPConv (ours) 87.87 ± 1.89 69.33 ± 1.99

DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48
DSM-Pseudo-Siamese 70.71 ± 5.09 48.85 ± 7.03

DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98
RF 47.94 ± 0.02 29.45 ± 0.02

Table 3.9: General results (given in %) on the AHN-CD dataset sub-part that
has been manually annotated. DSM-based methods are adaptation of Daudt et al.,
2018 networks to DSM inspired by Zhang et al., 2019 works.

Method Per class IoU
Unchanged New building Demolition New clutter

Siamese KPConv (ours) 89.75 ± 2.18 82.77 ± 5.38 86.44 ± 0.88 46.65 ± 0.16
Pseudo-Siamese KPConv (ours) 88.90 ± 1.89 86.93 ± 5.32 84.01 ± 0.87 37.08 ± 2.85

DSM-Siamese 77.10 ± 1.51 76.77 ± 0.79 4.91 ± 8.33 11.20 ± 1.71
DSM-Pseudo-Siamese 78.00 ± 5.09 75.32 ± 8.59 47.46 ± 11.92 23.76 ± 0.56

DSM-FC-EF 70.77 ± 1.13 90.32 ± 0.61 30.58 ± 1.76 15.81 ± 0.81
RF 78.24 ± 0.00 74.64 ± 0.03 0.00 ± 0.00 13.72 ± 0.06

Table 3.10: Per class IoU results (given in %) on the AHN-CD dataset sub-part
that has been manually annotated. DSM-based methods are adaptation of Daudt
et al., 2018 networks to DSM inspired by Zhang et al., 2019 works.

results are less impressive but still better than other methods. However, as stated before,
this class is a mix of several types of objects. Notice that these results are obtained with
the network trained on the AHN-CD dataset without manual correction of the ground
truth. Hence, it demonstrates the robustness of our method to errors in the training
database.

To improve change classification results, it would also be interesting to add RGB
information or LiDAR intensity, available in the AHN data, as input to the network.

As for computation time, we report an inference time for Siamese KPConv of about
30 minutes in a single GPU computer (Nvidia Tesla V100 SXM2 16 GB) for cylinders of
25 m in radius in the testing area of Figure 1.6. The testing set corresponds to around
27,000 cylinders extracted from the pair of original PCs, i.e., a total of around 34 and 81
million of points for each PC respectively, resulting in about 9 millions points in each PC
after the first sub-sampling step. The training stage takes about one day on AHN-CD
dataset with 6,000 cylinders in the training set and 500 in the validation set.
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Method mAcc (%) mIoU (%)

Siamese KPconv Cls (ours) 88.75 ± 1.59 80.30 ± 1.58
SiamGCN 76.45 ± 1.14 57.27 ± 0.52

Table 3.11: Change classification results on Urb3DCD-Cls synthetic dataset.
Results are given in %. Veg. stands for vegetation.

Per class IoU (%)
Method No change New building Demolition New veg. Veg. removed

Siamese KPconv Cls 82.10 ± 0.98 73.65 ± 1.56 80.50 ± 1.60 85.81 ± 1.64 79.45 ± 2.87
SiamGCN 68.63 ± 0.97 61.43 ± 0.79 70.29 ± 1.08 38.31 ± 0.59 47.69 ± 0.92

Table 3.12: Per class change classification results on Urb3DCD-Cls synthetic
dataset. Results are given in %. Veg. stands for vegetation.

3.3.3.3 Change classification results

Results regarding the change classification task for both synthetic and real datasets are
presented in Tables 3.11, 3.12, 3.13 and 3.14, respectively. Our architecture is reaching
some quite reliable results for each class of the Urb3DCD-Cls dataset. It also strongly
outperforms SiamGCN. When looking at Table 3.14 for the Change3D dataset, results of
Siamese KPConv Cls are still higher than other methods except for classes “no change”
and “color change”. Indeed, on these two classes, the hand-crafted PoChaDeHH method
is performing better. As shown in Table 1.2 the “color change” class is underrepresented
(3.24% of the training set), surely explaining lower scores of methods requiring a training
phase (Siamese KPConv Cls, SiamGCN and HGI-CD). Furthermore, this class is the only
one representing colorimetric changes instead of geometric ones. Even if it outperforms
other methods on the “change” class, Siamese KPConv Cls leads to an unsatisfactory IoU
score and has an important variation over different training runs. This class stands for
slight changes in a remaining object, therefore the scale of change is different for this class
compared to “removed” or “added” ones where the entire object changes, making the
change detection task harder. Finally, when looking at global results (mAcc and mIoU),
one can observe that our method outperforms state-of-the-art methods for the change
classification task.
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Method mAcc mIoU

Siamese KPconv Cls (ours) 49.64 ± 1.35 34.64 ± 1.18

PoChaDeHH 45.18 30.22
HGI-CD 25.82 17.17

SiamGCN 32.04 ± 6.49 19.18 ± 1.03

Table 3.13: Change classification results on Change3D real dataset. PoChaDeHH,
HGI-CD, and SiamGCN have been introduced in Ku et al., 2021. For PoChaDeHH and
HGI-CD, results are directly taken from the original publication. For SiamGCN, the
public code has been used to retrain the model on a valid train/val/test split. Results are
given in %.

Per class IoU (%)
Method No change New building Demolition New veg. Missing veg.

Siamese KPconv Cls 55.35 ± 2.80 43.41 ± 3.71 47.93 ± 4.74 19.85 ± 9.25 6.67 ± 11.55

PoChaDeHH 61.06 31.58 40.00 4.17 14.29
HGI-CD 55.30 16.28 14.29 0.00 0.00

SiamGCN 42.56 ± 1.78 24.33 ± 0.83 11.27 ± 3.07 14.00 ± 2.19 3.70 ± 4.94

Table 3.14: Per class change classification results on Change3D real dataset.
PoChaDeHH, HGI-CD, and SiamGCN have been introduced in Ku et al., 2021. For
PoChaDeHH and HGI-CD, results are directly taken from the original publication. For
SiamGCN, the public code has been used to retrain the model on a valid train/val/test
split. Results are given in %.
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3.4 Beyond Siamese KPConv

While the results achieved by our Siamese KPConv are promising, especially w.r.t. the
state-of-the-art, we believe there is still room for improvement. Thus, in this section, we
explore two strategies to further enhance supervised deep learning for PC change detec-
tion: on the one hand, we evaluate the added-value of adding hand-crafted features as
input along with 3D point coordinates; on the other hand, we design new deep architec-
tures that better encode the change information between the two PCs.

3.4.1 Considering hand-crafted features

While a general trend in deep learning-based method is to give as input the raw data
and to let the network combining inputs to obtain discriminating features, it appears
interesting to also feed the network with some hand-crafted features designed with scene
and data knowledge. Indeed, some specific hand-crafted features have been cautiously
designed to perform classification, segmentation, or change detection tasks using machine
learning frameworks. As an example, we recall here that the RF methods based on hand-
crafted features outperform other distance-based methods on multiple or binary change
detection into 3D PCs (see Chapter 2 Section 2.2.3.1). Thus, this raises a question: would
giving hand-crafted features in addition to 3D point coordinates help or in the contrary
disturb the deep network to extract informative features?

Even if not usual in deep learning, some studies showed that combining deep and
hand-crafted features improves final results in computer vision (Nanni et al., 2017) or
even in remote sensing (Nijhawan et al., 2019). Hsu and Zhuang (2020) also showed that
incorporating hand-crafted features into a deep learning framework allows improving PCs
semantic segmentation. In particular, they evaluate the benefice of giving some different
types of features in addition to 3D points coordinates for PointNet (Qi et al., 2017a) and
PointNet++ (Qi et al., 2017b) 3D deep frameworks. It is shown that depending on the
dataset (MLS or ALS), PointNet basic architecture can equalize or even outperform more
complex architectures such as PointNet++ or KP-FCNN (Thomas et al., 2019) when
input embeds hand-crafted features.

Therefore, in this section, we study whether adding hand-crafted features in Siamese
KPConv deep network influences the change segmentation results. We extracted the same
hand-crafted features as used in the Random Forest (RF) experiments. These features
are selected according to the study of Tran et al. (2018). More specifically, chosen hand-
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Method # of input features mAcc mIoUch

Pseudo-Siamese KPConv 0 91.31 ± 2.34 77.80 ± 1.69
10 93.58 ± 0.68 85.01 ± 0.53

Siamese KPConv

0 91.21 ± 0.68 80.12 ± 0.02
10 93.65 ± 0.16 84.82 ± 0.58
9 w/o Stability 91.44 ± 0.47 80.49 ± 0.64
1 Stability only 92.92 ± 0.47 83.80 ± 0.89

Table 3.15: Comparison of our architectures with different input features on
Urb3DCD-V2 low density LiDAR dataset. Results are given in %. The ten input
features are: Nx, Ny, Nz, LT , PT , OT , Zrange, Zrank, nH and Stability.

crafted features provide information on point distribution (Nx, Ny, Nz, LT , PT , OT ),
height (Zrange, Zrank, nH) and change (Stability). These features are described more
precisely in Chapter 2 (Section 2.2.1). We recall that Siamese KPConv architecture takes
as many input features as desired, by simply modifying the number of inputs of the first
layer of the encoders.

Quantitative results are given in Table 3.15. First, we can observe that providing
as input hand-crafted features in addition to point coordinates considerably improves
both Siamese KPConv and Pseudo-Siamese KPConv. Then, we assessed the importance
of the unique change-related hand-crafted feature (Stability). As visible, it seems that
point distribution and height hand-crafted features have only a slight beneficial impact
(+0.37% of mIoUch) on change segmentation results. On the opposite, the Stability

feature seems to have a major impact (+3.67% of mIoUch) on both metrics mAcc and
mIoUch. More specifically, when looking at the per class gain in IoU, the Stability feature
on its own principally helps for ‘new building’, ‘demolition’ and ‘missing vegetation’ classes
(see Figure 3.14).

In conclusion, the Siamese KPConv network seems to be able to derive deep features
related to points and their neighborhoods at a single date, indeed, providing features
linked to point distribution and height does not bring any significant change on the results.
However, even though looking at the results presented in Section 3.3.3, our architecture is
able to recover the change on its own, it seems that giving a hand-crafted feature related
to the change as input helps the network to focus on the change.
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Input: XYZ (baseline)
Input: XYZ + 10 hand-crafted features
Input: XYZ + 9 hand-crafted features
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Figure 3.14: Influence on per class IoU of adding hand-crafted features along
with 3D point coordinates as input to Siamese KPConv. For classes ‘new build-
ing’, ‘demolition’ and ‘missing vegetation’, the high disparity in IoU shows that adding
hand-crafted features to the input has a greater influence than on classes where results
are grouped around a same value.

3.4.2 Siamese KPConv architecture evolutions

Following the observed benefit of adding the Stability change-related hand-crafted feature
as input along with 3D points coordinates, we explore how to learn this change information
through novel deep networks. To do so, we build upon our Siamese KPConv model
and propose three original architectures that emphasize change related features (e.g., the
nearest point features difference in Siamese KPConv).

A first option is to lighten the network by fusing both PCs information just after the
first layer, as illustrated in Figure 3.15. The following layer of the encoder takes as input
only the nearest point features difference (noted –⃝). Then, for the following layers of
the encoder and the decoder, they take as input the output of the previous layer as in a
classical FCN. Here, the idea is to evaluate the benefits of dealing with differences earlier
in the process. This architecture is named OneConvFusion.

However, mono-date features of the first layer might not be sufficient for accurate
change identification. Therefore, we designed the Triplet KPConv network. It contains
two encoders to extract mono-date information (as in the Siamese KPConv network) and
an additional encoder whose goal is to extract change related features. The “change
encoder” takes as input the nearest point difference computed after the first layer of
mono-date encoders. Then, the following layers of the change encoder take as input the
concatenation of the output features of the previous layer and the result of the nearest
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Figure 3.15: OneConvFusion architecture for 3D PCs change segmentation.

point features (from mono-date encoder) difference of the corresponding scale. Thereby,
multi-scale mono-date information is taken into account as well as multi-scale change
information. The decoder uses features extracted by the change encoder as input. Notice
that mono-date encoders can share weights or not (leading to pseudo-Triplet KPConv), as
for Siamese KPConv and Pseudo-Siamese KPConv. This network is shown in Figure 3.16.

The third version of the architecture is designed to directly fuse mono-date and change
features in a same encoder. This network is called Encoder Fusion SiamKPConv. A
first encoder extracts mono-date features of the older PC using convolution layers (top
of Figure 3.17), as in all previous architectures. Then, as illustrated in the bottom of
Figure 3.17, the second encoder is more specific to combine output features from the
newer PC and the nearest point difference of features. In particular, each layer of this
second encoder takes as input the concatenation of output features of the previous layer
and the difference of features from this encoder and the mono-date encoder of the older
PC. Thereby, both mono-date and change features can be combined in convolutional
layers. As with Triplet KPConv and OneConvFusion architectures, the idea is to encode
the differences earlier in the process, but here they are combined with features of the
second PC.

These proposed new architectures are in line with recent developments for 2D image
change detection concerning data fusion (see Section 3.1.2). Indeed, by convolving change
features in the encoder, we expect that the network will put more attention on changes
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Figure 3.16: Triplet KPConv architecture for 3D PCs change segmentation.

Figure 3.17: Encoder Fusion SiamKPConv architecture for 3D PCs change seg-
mentation.
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3.4. Beyond Siamese KPConv

and also better combine multi-scale change features.

3.4.3 Experimental results

In the following sub-section, we evaluate the three architectures on Urb3DCD-V2 LiDAR
low density dataset. The same training configurations are used as the one used for Siamese
KPConv assessment, as described in Section 3.3.2. In particular, the same first sub-
sampling rate (dl0), cylinder radius, and learning rate are used.

Quantitative results of the evaluation of the three architectures are presented in Ta-
bles 3.16 and 3.17. It is worth noting that each of the three architectures outperforms
Siamese KPConv network. In particular, the best architecture is Encoder Fusion SiamKP-
Conv nearly followed by Triplet KPConv, while OneConvFusion is only slightly better
(1.5% of mIoUch) than Siamese KPConv. When looking at per class results (Table 3.17
and Figure 3.18), Encoder Fusion SiamKPConv network provides a significant improve-
ment for ‘new building’, ‘demolition’, ‘new vegetation’, ‘missing vegetation’ and ‘vege-
tation growth’ classes. Qualitative results are shown in Figures 3.19 and 3.20. As can
be seen, the three architectures provide very similar results to the ground truth. In Fig-
ure 3.20, each of the three Siamese KPConv evolutions show results more accurate than
Siamese KPConv in the new building facades. These facades are particularly hard to cor-
rectly detect, because in the first PC (Figure 3.20a), the neighbor facade was not visible.
Thereby, identifying the new facade in the class ‘new building’ while neighboring facades
are unchanged is not obvious. In particular, the network should understand that if the
roof is new, the facade is probably new also. In the same way, if the roof has not changed,
the facade also should be identical. Another difference with Siamese KPConv results is
visible in Figure 3.19, where a part of the church roof is identified as new vegetation for
Siamese KPConv while not for the other architectures. The misclassification is probably
due to the shape of the dome roof that looks like a tree in simulated data. Indeed, even
if tree models are not totally spherical (in particular the Arbraro software (Diestel, 2003)
was used to obtain OBJ models of trees, see Chapter 1 Section 1.3.1), LiDAR simulation
on these models render a quite spherical object with only a few points inside the foliage of
the tree unlike real LiDAR acquisition. Therefore, aside from the shape, the main way to
distinguish between the vegetation and the dome is that trees are generally on the ground.
These examples, highlight the fact that the network should be able to understand the PC
at multiple scales and predict changes with regard to surrounding objects.
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Chapter 3 – Supervised change detection

Method mAcc mIoUch

Siamese KPConv 91.21 ± 0.68 80.12 ± 0.02
Siamese KPConv (+10 input features) 93.65 ± 0.16 84.82 ± 0.58

OneConvFusion 92.62 ± 1.10 81.74 ± 1.45
Triplet KPConv 92.94 ± 0.53 84.08 ± 1.20

Encoder Fusion SiamKPConv 94.23 ± 0.88 85.19 ± 0.24

Table 3.16: General results in % of the three Siamese KPConv evolutions on
Urb3DCD-V2 low density LiDAR dataset.

Unchanged New building Demolition New vegetation  Vegetation growth Missing vegetation Mobile Object
Classes

60

65

70

75

80

85

90

95

100

Io
U 

[%
]

Siamese KPConv
SKPConv (+10 input features)
OneConvFusion
Triplet KPConv
Encoder Fusion SiamKPConv

Figure 3.18: Influence on per class IoU of the three Siamese KPConv evolu-
tions, namely OneConvFusion, Triplet KPConv and Encoder Fusion SiamKPConv. For
comparison purpose, results of Siamese KPConv with 10 hand-crafted input features are
also shown.
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Chapter 3 – Supervised change detection

Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) Siamese KPConv (e) OneConvFusion

(f) Triplet KPConv (g) Encoder Fusion SiamKPConv
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 3.19: Visual change detection results on Urb3DCD-V2 low density
LiDAR sub-dataset: (a-b) the two input point clouds; (c) ground truth (GT): sim-
ulated changes; (d) Siamese KPConv results; (e) OneConvFusion results; (f) Triplet
KPConv results; (g) Encoder Fusion SiamKPConv results. Region of interest specifically
discussed in the text is highlighted with an ellipse.
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Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) Siamese KPConv (e) OneConvFusion

(f) Triplet KPConv (g) Encoder Fusion SiamKPConv
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 3.20: Visual change detection results on Urb3DCD-V2 low density
LiDAR sub-dataset in an area containing occlusions: (a-b) the two input point
clouds; (c) ground truth (GT): simulated changes; (d) Siamese KPConv results; (e)
OneConvFusion results; (f) Triplet KPConv results; (g) Encoder Fusion SiamKPConv
results. Regions of interest specifically discussed in the text are highlighted with ellipses.
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Chapter 3 – Supervised change detection

Figure 3.21: Variant architecture for Triplet KPConv (Figure 3.16) with skip con-
nection only with the nearest point difference.

3.4.4 Discussion

Variant of Triplet KPConv and Encoder Fusion SiamKPConv networks

Table 3.18 and 3.19 present complementary results for Triplet KPConv and Encoder
Fusion SiamKPConv architectures. In particular, we evaluate whether it is better to fuse
in the decoder skip connections with the concatenation of features from the precedent layer
and the nearest neighbor difference, as assessed in the previous results section, or only the
nearest neighbor difference. Illustration of such variant of architectures are presented in
Figures 3.21 and 3.22 for Triplet KPConv and Encoder Fusion SiamKPConv respectively.
In these figures, skip connections provide only the nearest neighbor difference to the
decoder part conversely to architectures in Figures 3.16 and 3.17. For Encoder Fusion
SiamKPConv, there is no significant difference of results between the variants. However,
a skip connection with only the difference of features worsens Triplet KPConv results of
about 2.5% of mIouch. These results show that convolved difference features are important
to fuse in the decoder for Triplet KPConv. We again emphasize the advantage of change-
related features obtained by convolution over the simple difference of single-date features
for change detection.
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3.4. Beyond Siamese KPConv

Figure 3.22: Variant architecture for Encoder Fusion SiamKPConv (Figure 3.17)
with skip connection only with the nearest point difference.

Method Skip co. mAcc mIoUch

Triplet KPConv all 92.94 ± 0.53 84.08 ± 1.20
Triplet KPConv diff. 93.15 ± 0.64 81.54 ± 0.67

Encoder Fusion SKPConv all 94.23 ± 0.88 85.19 ± 0.24
Encoder Fusion SKPConv diff. 93.27 ± 0.58 85.36 ± 0.13

Encoder Fusion SKPConv (+10 input feat.) all 94.13 ± 0.97 85.87 ± 1.08
Encoder Fusion SKPConv (+10 input feat.) diff. 93.80 ± 0.81 85.82 ± 1.10

Table 3.18: Complementary results in % for Triplet KPConv and Encoder Fu-
sion SiamKPConv on Urb3DCD-V2 low density LiDAR dataset. For both ar-
chitectures, we provide results with the difference concatenated with features from the
previous layer (all), or, a variant where only the nearest point difference (diff.) are used
as content of the skip connections (sk. co.). The first configuration is the one presented
in Table 3.16. Results obtained with 10 hand-crafted features as input to the Encoder
Fusion network are also provided. Feat. stands for features.
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Chapter 3 – Supervised change detection

On the importance of learning change information

These results of Siamese KPConv architecture evolutions show the relevance of applying
convolution also on the nearest point features difference at multiple scale to obtain change-
related features. Lower results of OneConvFusion network exhibit that it is important to
keep multi-scale mono-date features in the architecture. Then, the fact that Encoder Fu-
sion SiamKPConv provides better results than the Triplet network shows that combining
both mono-date semantic features and change features as input to convolutional layers
can extract useful discriminative features for the change segmentation task. Both Triplet
KPConv and Encoder Fusion SiamKPConv are closer to results on the benefit of adding
hand-crafted features as input to the network. More specifically, Encoder fusion SiamKP-
Conv gets better results than the Siamese KPConv with the 10 hand-crafted features.
Finally, we tried to add hand-crafted features as input to Encoder Fusion SiamKPConv
network, results are only very slightly improved (less than 1% of mIoUch, see Tables 3.18
and 3.19). This shows that an architecture more specifically designed for change detec-
tion is capable of extracting discriminative features on its own. This is especially true
for change-related features such as the Stability which is no longer required in Encoder
Fusion SiamKPConv architecture.
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Chapter 3 – Supervised change detection

3.5 Conclusion

In this chapter, we have presented an original deep neural network, called Siamese
KPConv, dedicated to change detection and categorization on 3D point clouds. We build
upon successful deep components such as a Siamese network and Kernel Point Convolution
to elaborate, to our knowledge, the first deep network able to cope with pairs of raw
3D point clouds and perform change segmentation task. We conducted various
experiments in an urban environment using synthetic (Urb3DCD-V2) and real
(AHN-CD) datasets. For each dataset, our technique outperforms the state-of-
the-art with a significant margin, around 30% of mean IoU over classes of change.
Since the best existing method before our Siamese KPConv relies on traditional machine
learning algorithm trained on handcrafted features, as reported in Chapter 2, and there
is no deep learning method dealing with change detection and categorization over raw
3D PCs, we have also been inspired by the literature to provide as baselines two different
networks (a Siamese and a Fully-Connected network with early fusion) on 2D rasterization
of PCs (DSMs). Our method consistently leads to significant improvement, between 15%
to 30% in mean of IoU over classes of change when compared with the best deep baseline.

Then, we further analyzed the benefit of adding hand-crafted features as in-
put to the network along with 3D points coordinates. This significantly improves
change segmentation results (around 4.5% of mean IoU over classes of change). More
specifically, the addition of a change-related feature plays a great role in the enhancement
of results. Following this study, we designed three other architectures for change
segmentation (OneConvFusion, Triplet KPConv and Encoder Fusion SiamKP-
Conv) to emphasize change-related deep features. All the three get better
results than Siamese KPConv (from 1.5% to 5% of mean IoU over classes of change).
The Encoder Fusion SiamKPConv network, with a specific encoder that fuses change
and mono-date features, allows getting rid of the addition of hand-crafted features. This
emphasizes the importance of applying convolution also on features difference.

Furthermore, we proposed an adapted version of Siamese KPConv for the change
classification task that outperforms state-of-the-art methods including deep
learning based networks on both synthetic and real (Change3D) datasets.

Finally, this chapter showed the interest of developing methods directly processing
3D PCs without any rasterization as well as the advantage of using a deep learning-
based method over traditional methods with hand-crafted features in a supervised context.
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3.5. Conclusion

However, and even more when it comes to deep learning, annotations are crucial and
moreover difficult to obtain. Thus, in the next chapter, we will see strategies to perform
change segmentation without any annotation or with only a few annotations from real
datasets.
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Chapter 4

UNSUPERVISED CHANGE DETECTION

Contents
4.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.1.1 Unsupervised representation learning for 3D point clouds . . . 129

4.1.2 2D change detection with low supervised learning . . . . . . . . 131

4.2 Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.2.1 Transfer learning assessment of Siamese KPConv network . . . 134

4.2.2 Transfer from simulated to real data in a weakly supervised
context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3 Unsupervised binary change detection with deep change vec-
tor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3.2 Experimental results and discussion . . . . . . . . . . . . . . . 143

4.4 Unsupervised multiple change detection with deep clustering 152

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 158

4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

127

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Chapter 4 – Unsupervised change detection

In the previous chapter, we showed that deep supervised learning can successfully
tackle the 3D PCs change segmentation task thanks to our proposed method Siamese
KPConv. However, the training process needs a large amount of labeled data. In a 3D
PCs change segmentation supervised context, training data signifies annotated data at
point level. With regard to the difficulty of obtaining 3D point scale change annotations
discussed in Chapter 1, the question of the benefits of the deep learning paradigm when
no or only a few annotations are available is open. This is addressed in this chapter.

We saw in Chapter 2 that deep learning based methods seem to better transfer knowl-
edge from one source dataset to a target dataset compared to traditional machine learning
ones (e.g., Random Forest (RF) algorithm). Thereby, one first approach to perform 3D
change segmentation without or with only few labels from the target dataset would be
to transfer learning from a labeled source dataset (e.g., our simulated dataset) to the
unlabeled target dataset. This is described in Section 4.2.

In Section 4.3, unsupervised binary change segmentation is tackled by comparing deep
features from both PCs. To extract discriminating features, two different strategies are
tested to train a deep network to effectively characterize the target area. These two
strategies relies on transfer learning and self-supervised learning17

Finally, in Section 4.4 multiple change segmentation is tackled. Instead of training a
network for semantic segmentation and then comparing extracted features to highlight
changes, the network is directly trained to predict changes thanks to recent advances on
deep clustering18.

4.1 Related work

Because of the difficulty of getting annotated data, the recent years have seen a growing
interest over unsupervised or low-supervised deep learning methods for 2D image under-
standing (Ericsson et al., 2022; Wang et al., 2022; Berg et al., 2022; Yang et al., 2022) as
well as for 3D PCs data (Xiao et al., 2023). More generally, by unsupervised methods, we
mean any method that does not rely on human annotation for learning, unlike supervised
approaches. We give here a general overview of existing unsupervised learning techniques

17. These methods have been developed in the frame of a mobility in the AI4EO Future lab (Technical
University of Munich). A paper has been subsequently submitted for publication in a journal and a
preprint version is available (de Gélis et al., 2023e).

18. This method has been submitted for publication in a journal and a preprint version is available
(de Gélis et al., 2023c)
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4.1. Related work

for 3D PCs representation learning, as well as for 2D image change detection.

4.1.1 Unsupervised representation learning for 3D point clouds

Most of 3D unsupervised representation learning methods consist in finding pre-text tasks
that do not require some human annotation in order to pre-train a network to extract
some discriminating features. These unsupervised methods, based on auxiliary tasks,
are also called Self-Supervised Learning (SSL) methods. Then, to tackle a downstream
task (i.e., the final task such as object classification, semantic segmentation, . . . ), the
pre-trained network is usually fine-tuned with a few labels from the downstream task.
As in 2D computer vision (Jing and Tian, 2020), unsupervised representation learning
methods for 3D PCs can mainly be divided into two main categories: generation-based
and context-based as described in Xiao et al. (2023).

Concerning generative methods, as for 2D image processing, we can distinguish
between auto-encoders (AEs) and Generative Adversarial Networks (GANs). AEs en-
code inputs into representation vectors and decode them back to the original input data,
thereby the ground truth is the input data itself (Kramer, 1991). This enables to pre-train
the encoding part of a network without any labeled data. This typical architecture has
been adapted to 3D PC data by using specific:

• losses: point permutation invariant losses (Fan et al., 2017) such as Chamfer distance
or Earth Mover’s distance;

• representations for 3D PCs: sparse 3D points (Zhao et al., 2019b; Yang et al., 2021),
graphs (Yang et al., 2018; Chen et al., 2019b; Gao et al., 2020; Chen et al., 2021a),
3D voxels (Girdhar et al., 2016; Sharma et al., 2016; Hess et al., 2023);

• strategies: by exploring different scales in PCs (Liu et al., 2019) or multiple resolu-
tions (Gadelha et al., 2018; Chen et al., 2021a; Yang et al., 2021), by synthesizing
the reconstruction problem in the decoder by the deformation of a 2D grid (Yang
et al., 2018; Chen et al., 2021a), by modeling the self-reconstruction problem as
a point distribution learning task (Yang et al., 2019; Shi et al., 2020b; Sun et al.,
2020), . . .

On the other hand, 3D PCs GANs versions have also been proposed. A GAN consists
in a generator trained to fool a discriminator by generating data samples as realistic as
possible. The role of the discriminator is to distinguish between real and synthesized
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data samples (Goodfellow et al., 2020). As far as 3D PCs data are concerned, some
3D voxel-based (Wu et al., 2016), graph-based (Valsesia et al., 2018) and raw 3D PC-
based (Achlioptas et al., 2018; Li et al., 2018a) GANs have been developed. Furthermore,
generative pre-text task is also often derived in up-sampling task (e.g., via AEs (Remelli
et al., 2019) or GANs (Li et al., 2019a)) or PCs completion task (e.g., reconstruction of
masked PCs part (Yuan et al., 2018; Wen et al., 2020; Wang et al., 2020a; Mittal et al.,
2021)). Finally, even if 3D PCs data generation is well studied through AE or GAN
adaptations, it is often not suitable for real large remote sensing PCs. Indeed, most of the
state-of-the-art only focuses on synthetic PC objects available in ModelNet (Wu et al.,
2015) or ShapeNet (Chang et al., 2015) datasets (Xiao et al., 2023).

The second category of unsupervised methods for representation learning is based on
context information learning. Here, different pre-text tasks (similarly to 2D) can be
designed to learn spatial context structures of PCs such as 3D Jigsaw (Sauder and Sievers,
2019; Alliegro et al., 2021), rotation angle prediction (Poursaeed et al., 2020), 3D distor-
tion recognition (Chen et al., 2021c), etc. Others approaches consist in learning context
similarities through contrastive learning. Recently, contrastive learning has emerged as an
attractive branch of self-supervised learning in computer vision in general. This involves
forcing a network to predict similar features for data belonging to the same class, and
dissimilar features for data from different classes. The main question in contrastive learn-
ing is how to collect multiple instances of similar and dissimilar data, respectively called
positive and negative samples. A first set of methods relies on augmented views of a same
object to get the positive example. On the contrary, negative samples are taken from
the rest of the dataset. Different studies in the literature use such a data augmentation
approach to generate positive views (Sanghi, 2020; Wang et al., 2021). However, these
studies are designed for 3D PC objects and not for scene-level experiments. Focusing
more on scene-level, Xie et al. (2020) proposed PointContrast which relies on different
views (partial scans) of a scene to generate positive and negative point samples by using
a nearest neighbor mapping to match the points together. Because of its efficiency on
various downstream tasks (classification, semantic segmentation and object detection),
PointConstrast is the basis of many other works. For example, Hou et al. (2021) start
from PointContrast ideas and introduce some spatial context. In DepthContrast (Zhang
et al., 2021c), authors further improve PointContrast idea by proposing a solution with
single view data thanks to data augmentation. To overcome the constraints of data aug-
mentation and multi-view data, Mei et al. (2022b) propose to rely on clustering principle.
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In the category of learning context similarity, clustering approach consists in grouping
similar data thanks to traditional clustering algorithm such as k-means. Further notice
that most of the time clustering principle is used along with other pre-text tasks such as
contrastive learning (Zhang and Zhu, 2019; Liang et al., 2021; Huang et al., 2022a; Mei et
al., 2022a) or self-reconstruction (Hassani and Haley, 2019). Finally, a last set of methods
learns context from temporal data such as Red Green Blue – Depth (RGB-D) video or
LiDAR sequential data by using contrastive learning (Chen et al., 2022b) or by trying to
minimize the mean squared errors between features of two PCs from the same temporal
sequence (Huang et al., 2021). The latter is an of bootstrap your own latent (BYOL) con-
cept (Grill et al., 2020) to 3D PCs data. Notice that these temporal 3D data are far from
3D PCs data used for change detection in remote sensing as they consist in continuous
data frames. Even if there are some scene-level studies in the aforementioned works, none
of them are applied on large scale remote sensing PCs. To the best of our knowledge,
the study in Zhang et al. (2021a) is the only one to propose an unsupervised learning
approach for terrain classification in ALS data. It is entirely based on deep clustering
principle on 3D voxelisation of PCs (Zhang et al., 2021a).

Aside from these two main categories, two additional groups of methods can be out-
lined even though they are less representative of the state-of-the-art. Some other pre-text
tasks lie in learning local descriptors. For example, Tang et al. (2020) propose to
retrieve geometric properties such as the normal in the self-supervision stage. Some other
studies rely on rotation invariant local descriptor (Deng et al., 2018) or 3D PCs registra-
tion (Jiang et al., 2021).

Finally, multi-modal based methods combine 3D PCs with other sources of informa-
tion such as 2D views of the 3D PC (Jing et al., 2021; Afham et al., 2022) or even text
(Chen et al., 2020).

In this section, we saw that a consequent number of studies have been conducted
recently to learn unsupervised representation of 3D data. However, to the best of our
knowledge, in this unsupervised context, 3D PCs change detection task has not been
tackled yet.

4.1.2 2D change detection with low supervised learning

We saw in Chapter 3 (Section 3.1.2) that numerous studies propose specific deep learning-
based methods for supervised change detection. Obtaining annotated ground truth is also
critical for 2D change detection. Considering the difficulty of data annotation, numerous
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deep frameworks have been designed to address the change detection task in an unsuper-
vised way. As highlighted in Shi et al. (2020a), a first category of methods is based on the
generation of credible change pseudo-labels to train a deep model. Generation of training
data relies on various ideas such as combination of unsupervised traditional methods (e.g.,
Change Vector Analysis (CVA)) (Song et al., 2018; Li et al., 2021; Seydi and Hasanlou,
2021), fuzzy clustering (Gao et al., 2016; Zhan et al., 2018; Zhang et al., 2021b), met-
ric learning (Zhao et al., 2019a) or even unsupervised deep framework, e.g., AEs (Gong
et al., 2017) or GANs combined with metric learning (Tang et al., 2021). To counter
the class imbalance problem (i.e., changed areas are in minority compared to unchanged
ones), additional GANs can be used to enrich changed class pseudo-labels (Zhang et al.,
2021b). In general, pixels are classified into three categories: changed, unchanged and
uncertain. Only certain pixels are taken into account for the loss computation. Even if it
has been shown that final change maps predicted by the deep network are more accurate
than the original pseudo-change classification, these methods may somehow be limited by
the pseudo-label quality.

Therefore, a second category of methods is based on latent change map generated
by deep features. Transfer learning is a common strategy to train the deep model to
extract useful features (Saha et al., 2019). However, transfer learning still requires the
availability of an annotated source dataset. Therefore, fully unsupervised networks such
as AEs (Lv et al., 2018; Bergamasco et al., 2019; Kalinicheva et al., 2019; Touati et al.,
2020b; Zheng et al., 2021) or GANs (Niu et al., 2018) are used as well. Self-supervised
learning strategies have shown great success recently, including for change detection task.
In Saha et al. (2021), the authors take the advantage of the underrepresentation of changed
areas and of the multi-sensor configuration to force the network to learn similar features
in patches from the same spatial location and different features for two random patches
through a contrastive loss. Contrastive learning is also used at super-pixel level (Chen
and Bruzzone, 2022) or to separate features from similar and dissimilar patches generated
using an unsupervised image segmentation algorithm (Cai et al., 2021). Leenstra et
al. (2021) experimented two different pre-text tasks: overlapping and non-overlapping
patches discrimination, and minimizing the difference between overlapping patches in the
feature space. Notice that the second task seems to bring better change detection results,
this is in line with the work of Saha et al. (2021). Dong et al. (2020) make use of the
discriminator of a GAN trained to differentiate samples from bi-temporal images. When
image time series are available, the prediction of the natural order of images seems to be a
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suitable pre-text task for change detection (Saha et al., 2020). Pre-trained models can also
be used to generate latent features further transformed in the final change map. Building
upon this idea, Saha et al. (2019) propose to adapt the well-known CVA algorithm (Malila,
1980) to deep latent features with Deep Change Vector Analysis (DCVA) method. A
deep change magnitude coefficient is computed for each pixel from automatically selected
deep features. These pixel-wise coefficients, named the latent change map, are then
converted to the final change map through thresholding. Let us also outline that in the
literature, different other strategies are experimented to generate the latent change map
using features similarity analysis (Zhang et al., 2016; Chen and Bruzzone, 2022), slow
features analysis (Du et al., 2019), features distance combined with mutual information
metric (Zheng et al., 2021), multi-scale feature map fusion (Li et al., 2022). Thresholding
operation is very common to obtain the final change map (Liu et al., 2016; Du et al., 2019;
Chen and Bruzzone, 2022; Zheng et al., 2021), but clustering is also used for binary (Zhang
et al., 2016; Lv et al., 2018; Touati et al., 2020b) or multi-class change identification (Wu
et al., 2021).

4.2 Transfer learning

A first strategy to reduce the need for annotated training data is to use transfer learning.
Indeed, by training (and validating) on another dataset containing annotation (called the
source dataset), the method might be able to also detect changes on another dataset
(called the target dataset). However, because source and target data may be of different
nature, a fine-tuning, e.g., retraining of the whole or at least of some layers of the pre-
trained network, can be used to adapt more the model to the target dataset specificities
(characteristics and/or classes). In the following section, we aim at assessing the transfer
capacity of Siamese KPConv network, from simulated to real datasets. The goal is to
explore the ability of a model trained on a specific dataset to generalize data of various
types. In this section, we will assess the transfer learning capacities of our previous models,
Siamese KPConv and Pseudo-Siamese KPConv (defined in Chapter 3 Section 3.2). In
particular, two different experiments are proposed: transfer from the Multi-Sensor (MS)
to the low-density LiDAR simulated sub-dataset without fine-tuning, and transfer from
the simulated dataset to the real AHN-CD dataset with a fine-tuning using only small
amounts of training data.
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mIoUch
Per class IoU (%)

Method Unch. New build. Demol. New veg. Veg. growth Miss. veg. M.O.

P-Siam KPConv 59.10 92.91 69.73 63.71 40.88 35.80 65.69 78.79

DSM-Siamese 37.07 92.08 74.61 54.67 39.41 0.43 38.05 15.25
DSM-P-Siam 35.77 91.55 69.36 56.02 36.30 4.76 30.11 17.94
DSM-FC-EF 42.01 92.87 67.11 55.63 33.41 1.14 39.10 29.72

RF 14.48 87.74 54.03 21.91 8.24 0.47 0.02 2.19

Table 4.1: Transfer learning tests with training on the Urb3DCD-V2 MS sub-
dataset and testing on the Urb3DCD-V2 low-density LiDAR dataset. DSM-
based methods are adaptation of Daudt et al. (2018) networks to DSM inspired by Zhang
et al. (2019) works. Results are given in %. Unch., build., demol., veg., miss. and
M.O. stand for unchanged, building, demolition, vegetation, missing, and mobile object
respectively. P-Siam stands for Pseudo-Siamese.

4.2.1 Transfer learning assessment of Siamese KPConv network

In Table 4.1, we report the transfer results between a training on Urb3DCD-V2 MS sub-
dataset and a test on the low-density LiDAR sub-dataset. Notice that no retraining has
been necessary to adapt to the other dataset (since the classes are identical). As expected,
results are worse than when the training is performed on a training set containing the
same types of PCs as the testing set. However, our Pseudo-Siamese KPConv still gives
better results than other methods when observing change classes corresponding to mIoUch.
Notice that the generalization capacity is not the same according to the classes. Indeed,
low scores are obtained on new vegetation or vegetation growth, whereas missing vegeta-
tion obtains very similar results to the without-transfer method. We have not included
our Siamese KPConv in this comparison since its training on the MS sub-dataset is not
reliable (see Table 3.4) and therefore the pre-trained network would lead to non-reliable
features. One can note that scores obtained with Pseudo-Siamese KPConv trained on
the MS dataset are slightly higher than those obtained when training an RF algorithm
directly on the low-density LiDAR dataset. In particular, it allows us to obtain more re-
liable results than the RF method without transfer for ‘unchanged’, ‘vegetation growth’,
‘missing vegetation’ and ‘mobile objects’ classes (see Table 3.5). Table 4.1 recalls the poor
generalization capacity of the RF method, even though it requires a smaller training set
than deep learning methods (see experiments on training set size in Chapter 2, Table 2.4).
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4.2.2 Transfer from simulated to real data in a weakly super-
vised context

The issue of the size of the training set is crucial since automatic data annotation is tricky
(see Chapter 1, Section 1.2.3) and manual annotation is time-consuming.

To deal with this issue, an idea would be to pre-train a network on simulated data
and then to fine-tune it on a few examples of real data. In order to assess the behavior
of our network in such a small training dataset configuration, we trained the network
from scratch with different sizes of training sets (symbolized by the number of cylinders
given as input) and we compared results with the network pre-trained on a simulated
dataset and fine-tuned on real data. The results are depicted in Figure 4.1. For these
experiments, input cylinders are randomly chosen among the whole training set according
to the class balance before the training, conversely to results shown in Chapter 3 (Sec-
tion 3.3.3.1), where, for each training epoch, 6,000 cylinders are chosen randomly in the
training set according to class balance (see Chapter 3, Section 3.3.2). Chosen cylinders
are the same for both training from scratch and transfer learning tests. Notice that classes
from Urb3DCD-V2 and AHN-CD are not the same. Therefore, we initialized weights with
those issued from the Urb3DCD-V2 pre-training except for the last layer of the network,
which gives the final label. This last layer is initialized randomly, as for the whole net-
work when trained from scratch. Pre-trained weights are taken from Siamese KPConv
with shared weight configuration trained on the sub-dataset Urb3DCD-V2-1 (low-density
LiDAR), with input cylinders of 50 m in radius (dl0 = 1 m). Even if the results are slightly
higher when weights are not shared, the shared weights configuration provides better gen-
eralization capacities according to our experimental observations. Based on this figure, we
can make several observations. The proposed fine-tuning strategy allows us to reduce the
number of cylinders to 100, to achieve the same score. It should be noticed that our fine-
tuning is straightforward, and one could expect better results using domain adaptation
or meta-learning (Rußwurm et al., 2020). We have also observed that using more than
100 training cylinders did not improve the results further. This is due to an overfitting
situation faced by our training procedure since we do not consider a random drawing for
cylinders selection at each epoch, conversely to the process proposed by Thomas et al.
(2019) that requires up to 36,000 cylinders in total (considering 60 epochs) and that was
followed in Chapter 3. Improving the simulator to generate data closer to real data (in
terms of resolution, noise, and classes) would definitely help, but this requires knowing
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the target data in advance, which is not realistic in all use cases.

Figure 4.1: Comparison between training from scratch and using pre-trained
weights learned a simulated dataset of Siamese KPConv. The mean of IoU over
classes of change is given as a function of the number of cylinders of 50 m in diameter
given as input. In red, the best results obtained with Siamese KPConv trained from
scratch over 6,000 cylinders with random drawing.
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4.3 Unsupervised binary change detection with deep
change vector analysis

In the following section, we propose unsupervised methods for binary change detection in
raw 3D PCs. These methods are inspired by state-of-the-art in unsupervised 2D images
change detection methods.

4.3.1 Methodology

Our proposed method is fully unsupervised and is composed of two major steps, as de-
scribed in Figure 4.2. The first one consists in extracting deep features that will be
compared in the second step to extract changes. In the first stage, a network is trained to
segment each PC individually into two different strategies following recent works in unsu-
pervised 2D change detection (Saha et al., 2019; Saha et al., 2021). Sub-sections 4.3.1.1
and 4.3.1.2 focus on the training of the deep feature extractor. In this study, to adapt
such a framework to 3D PCs, we use the Kernel Point – Fully Convolutional Neural Net-
work (KP-FCNN) (Thomas et al., 2019) as the back-bone for the deep feature extraction
part. Detailed descriptions of KP-FCNN and Kernel Point Convolution (KPConv) com-
posing this architecture are available in Chapter 3 (Section 3.1.1). The third sub-section
introduces how we adapt DCVA to 3D PC change detection.

We will denote P a PC and F l its associate features at the layer l ∈ {0 . . . L} of the
network symbolized by fKP-FCNN. The index 1 (resp. 2) corresponds to the older PC
noted P1 (resp. newer PC noted P2) and N denotes the number of points p in the PC P .

4.3.1.1 Training deep feature extraction: annex task

A first option to train the feature extraction network is to rely on annex tasks such as
semantic segmentation using labels available in a public dataset.

Indeed, while datasets annotated according to the change are not common when deal-
ing with 3D PCs, public datasets with a mono-date semantic annotation in urban envi-
ronment are widely spread (Hackel et al., 2017; Roynard et al., 2018; Varney et al., 2020;
Kölle et al., 2021). By choosing a public dataset as close as possible to the unlabeled
change detection dataset to perform supervised training of the network, one could expect
that extracted features will be consistent in unchanged areas and different in the case of
changes. In our study, we use the H3D ALS to train the network for semantic segmen-
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Figure 4.2: Overview of the proposed method for unsupervised binary change
detection.

tation. Further described in Chapter 1, we recall that the H3D dataset consists of four
different PCs at various dates and comes with labels related to 11 semantic classes that
have been manually annotated (Kölle et al., 2021). In practice, the training is performed
on H3D PCs acquired in March 2016 on behalf of the national mapping agency of Baden-
Württemberg, Germany. In the following study, we refer to this method by Supervised
Semantic Segmentation Training (SSST).

4.3.1.2 Training deep feature extraction: self-supervision

Inspired by Saha et al. (2021), we propose a self-supervised approach that does not require
complementary data to train the feature extraction network. While in Saha et al. (2021),
self-supervised learning idea is based on learning to extract similar features from very
different SAR and optical acquisitions from a same scene, we thought the variation in 3D
points distribution may also be an advantage. Let us note that even in unchanged parts,
3D PCs may have different distributions due to the various acquisition plans, sensors,
weather conditions, etc. Although differences in distributions make the direct comparison
of PCs impossible, this property can be an asset for training a network to predict similar
attributes over an unchanged area regardless of distribution.
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Random
shuffling

Figure 4.3: Schema of the self-supervised training of the back-bone. The three
different losses are alternatively used to modulate the model weights: the deep clustering
loss LDC , the temporal consistency loss L1,2 (with attractive arrows) and the contrastive
loss L′1,2 (with repulsive arrows).

This is the idea of the self-supervised part. The network is trained using three dif-
ferent losses on an unlabeled training set from the same two campaigns of acquisition as
the testing set. At each iteration, the back-propagation of the gradient is made using
alternatively one of the three losses. Thereby, in each iteration, a batch of B tiles of the
older PC, denoted as X1 =

{
x1

1, . . . , xB1
}
, and the corresponding B tiles (i.e., cylinders) of

the newer PC, X2 =
{
x1

2, . . . , xB2
}
, are independently given to the network, resulting in

features y:

yb
1 = fKP-FCNN(xb

1) (4.1)

yb
2 = fKP-FCNN(xb

2) (4.2)

where yb
1 and yb

2 have the dimension N b
1 ×K and N b

2 ×K respectively. We recall that N b
1

and N b
2 are the number of points in the corresponding tiles. K refers to the dimension

of the output which is in practice the number of desired clusters (see the deep clustering
loss below).

As for losses, we alternatively use three different terms, as illustrated in Figure 4.3.
The first one is based on the deep clustering principle to force the network to learn
discriminative features. Deep clustering relies on a pseudo-label assignment, which will
be used to train the network (Caron et al., 2018). More details on its principles will be
given in Section 4.4.1. In this study, pseudo-labels are obtained for each point by taking
the argument of the maxima as the output of the network. For example, for each point i

of the tile xb
1 ∈ X1, the corresponding pseudo-label cb

1,i is defined as:
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cb
1,i = arg max

k≤K
yb

1,i(k) (4.3)

where K is the number of clusters, which is a hyper-parameter to fix. It can be linked
with the number of semantic classes to segment in a single PC (note that this does not
concern the number of classes of change between two PCs). However, intuitively, if K

is small, learned features will not be discriminative enough as large sets of points will
be classified in the same class. On the contrary, with excessively high value, features
will be too precise, and no generalization will be possible. In this study, it has been set
empirically.

Based on these pseudo-labels, two deep clustering losses L1 and L2 are defined as the
cross-entropy between (c1, y1) and between (c2, y2) respectively. The average of these two
terms is taken to modulate weights:

LDC = L1 + L2

2 (4.4)

However, with such losses, we observed that the network was collapsing and predicting
all the points in a single cluster. To prevent this obvious solution, a weighting of the
cross-entropy losses was done by applying the following weights:

Wk = 1√
αNCk

(4.5)

for each cluster k ∈ {1, . . . , K}, NCk
being the number of points in the cluster k. α is fixed

to K
∑K

h=1NCh
as done in the public implementation of KP-FCNN in the Torch-Points3D

framework (Chaton et al., 2020). Weights are recomputed at each epoch. Intuitively,
the deep clustering loss enables the network to learn discriminative features to be able to
segment each point into clusters.

In addition to these clustering losses, we add a temporal consistency loss whose rule
is to push the network to make similar predictions for tiles from different times but at
similar places. As a matter of fact, even in unchanged areas, the point distribution in 3D
point clouds differ from each other. Thus, by assuming that permanent changes between
two dates are rare in proportion to the unchanged parts in urban areas, the temporal
consistency loss enforces the network to make similar predictions for each point of the
newer PC compared to the corresponding nearest point in the older PC. Therefore, both
predictions (yb

1 and yb
2) are ordered before computing the loss:
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yb
1ordered

= yb
1

j|j=arg min(∥p2i−p1j ∥),∀p2i∈xb
2

(4.6)

yb
2ordered

= yb
2

i,∀p2i∈xb
2

(4.7)

lb
12,i = ∥yb

1ordered,i − yb
2ordered,i∥1 (4.8)

The temporal consistency loss, L1,2, is then given by taking the mean of lb
12,i over all

considered points (pb
2i ∈ X2) of all tiles of the batch. Notice that this strategy of nearest

point correspondence is similar to the nearest point difference implemented for features
fusion in supervised networks developed in Chapter 3.

The third loss is a contrastive loss to encourage the network to produce dissimilar
features for different tiles. As proposed in Saha et al. (2019), the contrastive loss is
computed in a similar way to L1,2 by having previously randomly shuffled the batch X2

into X ′2 to obtain different tiles between X1 and X ′2. The loss lb′
12,i is defined as follows:

yb
1ordered

= yb
1

j|j=arg min(∥p′
2i

−p1j ∥),∀p′
2i

∈xb′
2

(4.9)

yb′

2ordered
= yb′

2
i,∀p′

2i
∈xb′

2

(4.10)

lb′

12,i = −∥yb
1ordered,i − yb′

2ordered,i∥1 (4.11)

Similarly to Saha et al. (2019), L′1,2 is given by taking the mean of the exponential of the
term lb′

12,i over all considered points of all tiles in the batch X ′2. Here the exponential is
added to avoid overpenalizing the network when lb′

12,i is too far from 0. Indeed, even by
shuffling X2, some areas can keep the same semantic, for example there might always be
some ground points.

To summarize, the deep clustering loss makes it possible to learn discriminative fea-
tures, the temporal consistency loss forces the network to predict similar features for
similar areas regardless of the point distribution, and the contrastive loss avoids a trivial
solution where all predictions are similar for both times. The overall process is given in
Algorithm 1 and illustrated in Figure 4.3. This method is referred to as Self-Supervised
Learning (SSL) in the following part.
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Algorithm 1 Self-supervised training of the back-bone using three different losses.
Initialize KP-FCNN weights
for e← 1 to E do

Sample B tiles from P1, denoted as X1
Obtain corresponding B tiles from P2, denoted as X2
Obtain X ′2 as random shuffling of X2
for i← 0 to I − 1 do

for b ∈ B do
yb

1 = fKP-FCNN(xb
1)

yb
2 = fKP-FCNN(xb

2)
yb′

2 = fKP-FCNN(xb′
2 )

end for
Compute the weights Wk considering yb

1 and yb
2

Calculate weighted deep clustering loss L1
Calculate weighted deep clustering loss L2
Calculate temporal consistency loss L1,2
Calculate contrastive loss L′1,2
if i mod 3 = 0 then

Use LDC = L1+L2
2 to modulate KP-FCNN weights

else if i mod 3 = 1 then
Use L1,2 to modulate KP-FCNN weights

else
Use L′1,2 to modulate KP-FCNN weights

end if
end for

end for
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4.3.1.3 Deep feature comparison

Once a model is trained to perform a segmentation task, it can be used on both input
PCs to extract features at different levels of abstraction and complexity depending on
the layer. These extracted features can be used in order to highlight changes applying
the Deep Change Vector Analysis (DCVA) principle, initially developed for 2D pixel
change retrieving through deep features comparison (Saha et al., 2019). As shown in the
comparison module of Figure 4.2, the point-wise change identification is realized by taking
the magnitude of the difference (δl) between feature vectors computed for each point of
the newer PC, p2i ∈ P2, with the nearest point of the older PC, p1j ∈ P1. In other words,
the feature difference δl is computed between features F l

1 and F l
2 for each PC, P1 and P2

respectively, according to the following equation:

δl
i = f l

2i − f l
1j|j=arg min(∥p2i−p1j∥) (4.12)

with f l
1j ∈ F l

1, f l
2i ∈ F l

2, p1j ∈ P1 and p2i ∈ P2. Notice that δl corresponds to –⃝ operation
in supervised architectures presented in Chapter 3 (Equation 3.4). The magnitude of the
difference, also called deep feature magnitude coefficient, is obtained by taking the L2-
norm of δl. A threshold is applied on the deep feature magnitude coefficient to distinguish
between changed and unchanged points. As in Saha et al. (2019), the threshold is selected
using the Otsu algorithm (Otsu, 1979). The trained network extracts similar features for
two similar areas, thus the deep magnitude coefficient is close to zero in the unchanged
part. The choice of the layer from which features are taken is a hyper-parameter to be set.
Combined with SSL, the method is called Self-Supervised Learning - Deep Change Vector
Analysis (SSL-DCVA), whereas combined with SSST, the method is referred as Supervised
Semantic Segmentation Training - Deep Change Vector Analysis (SSST-DCVA).

4.3.2 Experimental results and discussion

4.3.2.1 Experimental protocol and settings

Experiments with SSST-DCVA and SSL-DCVA methods are conducted on the real AHN-CD
dataset introduced in Chapter 1 (Section 1.2) as well as on the simulated dataset with
the LiDAR low density configuration (Urb3DCD-V2-1). Concerning the AHN-CD ex-
periments, quantitative results are provided using the sub-part that has been manually
annotated to consider a ground truth without errors (see Chapter 1 Section 1.2), further
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Dataset Method Input cylinders
radius (m)

dl0
(m)

Nb. classes/
pseudo-clusters

Nb pre-training
epochs

DCVA
layer

Urb3DCD-V2-1 SSST-DCVA 50 1 7 45 8
SSL-DCVA 50 1 6 15 7

AHN-CD SSST-DCVA 10 0.2 7 90 8
SSL-DCVA 20 0.5 6 15 7

Table 4.2: Summary of hyper-parameters for SSL-DCVA and SSST-DCVA as
function of the datasets.

qualitative analysis is performed on a larger part of the testing set.
As done in the supervised deep framework for 3D PC change detection from Chapter 3,

vertical 3D cylinders are chosen to make sure that whatever changes occur between the
two dates, at least the ground is visible.

For the SSST part, two different trainings of KP-FCNN are performed to better fit
with the final target dataset, i.e., Urb3DCD-V2-1 or AHN-CD, as they do not have the
same point density. KP-FCNN is trained using cylinders of 10 m in radius with a first sub-
sampling rate of 0.2 m (corresponding to pre-training further used for AHN-CD), and 50 m
in radius with a first sub-sampling rate of 1 m (for the pre-training used for Urb3DCD-
V2-1). A total of 6,000 cylinders are used for the training at each epoch. The batch size
is 10. The 11 H3D classes are fused into 7 classes better suited for the target datasets. It
requires around 90 epochs to converge for AHN-CD and 45 for Urb3DCD-V2-1.

Concerning SSL, the training is realized using cylinders of 20 m in radius and a first
sub-sampling rate of 0.5 m for AHN-CD. The best results are obtained using 6 clusters for
the deep clustering loss, and after 15 epochs of training. One hundred cylinders are used
for each epoch, with a batch size of 10. The same configuration is used of Urb3DCD-V2-1
dataset except that with regard to the low point density of this dataset, the input cylinder
radius is set at 50 m with a first sub-sampling rate of 1 m.

Networks are optimized using a stochastic gradient descent with a momentum of 0.98.
The learning rate is set at 0.01 and decreases exponentially. Regardless of the first sub-
sampling rate, the final results are given at the original resolution.

For the choice of the layer to take features for the DCVA, several configurations have
been tested. Knowing that KP-FCNN has 9 layers, the best results, reported here, are
obtained using the 7th layer for SSST and the 8th for the SSL strategy.

Following the thresholding step, a cleaning of isolated predictions is realized to spa-
tially smooth the results.
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Even if no specific unsupervised deep method exists so far in the literature for 3D
change detection, for AHN-CD experiments, we decided to compare with the supervised
Siamese KPConv network (presented in Chapter 3 Section 3.2) trained on the simulated
Urb3DCD-V2-1 dataset and directly applied to our AHN-CD testing set without any re-
training. The supervised baseline with Siamese KPConv whether trained on the AHN-CD
training part (with the semi-automatic annotation of change) or Urb3DCD-V2-1 training
set is also given. To further benchmark our methods against the state-of-the-art, we pro-
vide a comparison with C2C (Girardeau-Montaut et al., 2005) and M3C2 (Lague et al.,
2013) distance-based methods. These methods constitute unsupervised baselines for 3D
point-based binary change detection (Shirowzhan et al., 2019). In particular, to obtain
final binary change information, a thresholding based on Otsu algorithm (Otsu, 1979)
is applied on the Hausdorff point-to-point distance computed in C2C. The traditional
M3C2 method uses local surface normal and orientation to compute the 3D distances
between two PCs (Lague et al., 2013). This method relies on statistical tests on distances
between local surface normal and orientation features of the two PCs to automatically
extract significant changes. Conversely to Chapter 2 where thresholds are applied on
M3C2 distance to distinguish between positive and negative changes, we only need here
binary change information, directly available in the significant change variable computed
by M3C2 plugin in CloudCompare software. Finally, and to ensure a fair comparison, let
us note that we apply as post-processing the same cleaning of isolated predictions on C2C
and M3C2 results as done with our methods.

4.3.2.2 Results on real AHN-CD dataset

Quantitative results are given in Table 4.3. Corresponding qualitative results on the
manually annotated testing set are presented in Figure 4.4. To complete the qualita-
tive analysis of the results, a larger scene has been visually inspected to understand the
behavior of our methods in multiple conditions (see Figure 4.5).

As can be seen in Table 4.3, SSL-DCVA outperforms other methods including SSST-DCVA.
It is worth noting that despite its simplicity (no training is required), C2C provides rel-
evant results. However, the point-to-point distance seems limited in places where for
example trees have been replaced by a building of approximately the same height (see
regions of interest in Figure 4.4h) or where a new building replaced an old one as in the
top of zoom 1 where buildings in AHN3 and AHN4 are very different (Figure 4.5(a,d,h)).
Conversely to C2C, M3C2 provides inconsistent results here (see Figure 4.4g): the ground

145

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Chapter 4 – Unsupervised change detection

mAcc IoU (%) Computation time
(%) Unchanged Changed Training Testing

SSL-DCVA (ours) 85.20 78.91 69.38 9 min 40 sec
SSST-DCVA (ours) 81.88 70.02 63.85 17 hours 40 sec

Siamese KPConv transfer 81.83 75.80 63.73 28 hours 25 sec
M3C2 (Lague et al., 2013) 51.77 3.66 39.90 - 5 sec

C2C (Girardeau-Montaut et al., 2005) 76.67 76.98 53.34 - 5 sec
Siamese KPConv (supervised) 94.23 92.27 87.65 15 hours 25 sec

Table 4.3: Quantitative results of SSL-DCVA and SSST-DCVA on AHN-CD
dataset. Approximate computation times are provided for the training and testing (on
the manually annotated part) step.

elevation has changed slightly between the two acquisitions, so almost all areas are marked
as changed. Notice that even when removing ground points for metric computation, the
M3C2 method is lagging behind other methods (still about 10% of mAcc behind the
SSST-DCVA algorithm evaluated under the same conditions). Moreover, in this study,
we aim at detecting changes in object semantics (new buildings, demolition, new vege-
tation, etc.), so a change in the ground height is not of interest to us and has not been
marked as changed in the ground truth. To further explain the relative poor results of
M3C2, we recall that this method was originally developed in a geoscience context to
detect changes at different scales including centimetric (Lague et al., 2013). Thereby, it
might be inadequate for urban environments, as already noticed in Chapter 2. A distance-
based method may not distinguish between topographic and semantic changes as long as
the geometry of objects has changed. Learning-based methods (see Figure 4.4(d-f)) seem
to also retrieve small changed objects, which is not possible with distance-based methods
without including too many changes.

By looking at the results of the Siamese KPConv change detection network with trans-
fer onto AHN dataset from Urb3DCD-V2 simulated dataset, we can see that performances
are quite similar to the SSST-DCVA but are overtaken by SSL-DCVA method. In par-
ticular, some differences with the ground truth are visible in the demolished area and at
object boundaries. This is probably due to the difference of building types present in
the selected area of AHN dataset. Indeed, Urb3DCD dataset contains buildings from a
French city center different from training and testing areas, as for example, AHN3 data
(time 1) contains a glasshouse. The same problem occurs with SSST-DCVA methods,
since H3D PCs have different resolution and quality than AHN PCs. This shows the
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advantage of training directly on a dataset with similar properties to the testing set and
using recent developments in self-supervised learning. However, when compared to the
supervised Siamese KPConv network, unsupervised methods can still largely be improved.
The main differences of SSL-DCVA with the ground truth are visible on small objects such
as vehicles, road signs or vegetation (see Figure 4.4(c,d)). Furthermore, as can be seen in
the buildings on the left side of Figure 4.4 and right side of Figure 4.5b, some omissions
remain on new buildings with a flat roof. When looking at the mono-date segmentation
of the PC realized before the DCVA step, one can see that flat roofs are classified in the
same class as ground so, when comparing features, no changes are highlighted. This raises
the difficulty of late-fusion change identification. Indeed, errors in the feature extraction
step are propagated in the comparison step. Finally, some false detections are visible on
the ground, forming a large trapezium (see Figure 4.4d). This is due to changes in the
orientation of the ground surface.

Both of our methods encounter difficulties in unchanged vegetated areas (see the top
of zoom 2 in Figure 4.5(i-k)) certainly because of the complexity of LiDAR data in such
areas with a high variation of point distribution even without changes in the semantics
of objects. This results in a mixture of points predicted as changed and unchanged.
Furthermore, these vegetated areas may have grown, and the acquisition not realized
in the same season implies some differences on the 3D representation of trees. Looking
at Figure 4.5l, we can observe that C2C method is not better in this zoom where the
vegetation has been removed. Indeed, in AHN3 some points are acquired from the ground
to the top of the tree canopy thanks to the LiDAR sensor, thereby the point-to-point
distance is not an efficient indicator for changes.

The one-to-one nearest neighbor correspondence lacks precision in the presence of
occlusion in the 3D PCs. Indeed, due to the geometry of acquisition, some occlusions
may appear in PCs, these hidden parts may not be similar in the two compared PCs
leading to difficulties when comparing points in the DCVA part.

Finally, once again, SSL-DCVA seems more interesting than SSST-DCVA when look-
ing at training time. SSST-DCVA takes about 17 hours to train on H3D dataset, while
SSL-DCVA only requires about 9 minutes to train. The DCVA part on the manually
annotated testing set takes about 40 seconds. All experiments were realized on a single
GPU (Nvidia Tesla V100 SXM2 16 GB).
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a) AHN3 data (time 1) b) AHN4 data (time 2)
Unchanged Changed

c) Ground Truth

True Negative
True Positive
False Negative
False Positive

d) SSL-DCVA e) SSST-DCVA

f) Siamese KPConv transfer g) M3C2 h) C2C

Figure 4.4: Qualitative results on the manually annotated testing set. Changes
are indicated in red. Even if not perfect, deep learning based methods (SSL-DCVA (d),
SSST-DCVA (e) and Siamese KPConv transfer (f)) seem to better retrieve changes in
small objects than distance based methods (M3C2 (g) and C2C (h)). Regions of interest
specifically discussed in the text are highlighted with ellipses.
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(a) AHN3 data
(time 1)

(b) SSL-DCVA
results

(c) SSST-DCVA
results

(d) AHN4 data
(time 2)

(e) Zoom 1:
SSL-DCVA

(f) Zoom 1:
SSST-DCVA

(g) Zoom 1:
SKPConv transfer

(h) Zoom 1:
C2C

(i) Zoom 2:
SSL-DCVA

(j) Zoom 2:
SSST-DCVA

(k) Zoom 2:
SKPConv transfer

(l) Zoom 2:
C2C

Figure 4.5: Qualitative results on the testing set (not annotated). Changes are
indicated in red. For more precise results, zoom 1 and 2 are visible in (e) to (l), while
zoom Fig. 4.4 corresponds to the manually annotated area presented in Figure 4.4.
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mAcc IoU (%)
(%) Unchanged Changed

SSL-DCVA 74.02 84.10 40.38
SSST-DCVA 74.24 78.64 36.30

M3C2 (Lague et al., 2013) 71.40 65.41 29.89
C2C (Girardeau-Montaut et al., 2005) 74.37 89.53 46.96

Siamese KPConv (supervised) 94.52 96.03 82.63

Table 4.4: Quantitative results of SSL-DCVA and SSST-DCVA on Urb3DCD-
V2-1 dataset.

4.3.2.3 Results on simulated Urb3DCD-V2-1 dataset

Quantitative results on the simulated Urb3DCD-V2-1 dataset are presented in Table 4.4.
On this table, and conversely to previous results on AHN-CD dataset, we observed that
both of the proposed methods do not seem to provide relevant results. Indeed, C2C
distance-based method ends with a better change detection performance according to the
IoU of changed and unchanged areas.

To explain these results, let us remark that SSL-DCVA method relies on two assump-
tions, one of which is that changes are rare. Even if this dataset is largely imbalanced
(with a large proportion of points labeled as unchanged), it still contains a lot of changed
objects (see illustrations of the simulated dataset for example in Figure 1.11). Thereby,
the temporal consistency loss (Equation 4.8) may be disturbed. To assess this parameter,
we propose to filter out training cylinders according to the percentage of unchanged points
(using the ground truth). In Figure 4.6, we show the mIoU as a function of a purity coeffi-
cient corresponding to the threshold set on the percentage of unchanged points in training
cylinders. When purity is 0, the threshold is set to 0 and all cylinders can be used for the
SSL training, whereas when it is set to 0.9, cylinders used for the training contains at least
90% of unchanged points. As can be seen on this figure, there is a slight augmentation of
performances of the methods when cylinders are filtered (purity coefficient strictly greater
than 0). Notice that the real increase in performance is only visible with a threshold at
98% of unchanged points in training cylinders. To explain this, let us note that cylinders
from this dataset contain around 84%(±10%) of unchanged points. Thus, a purity be-
tween 0 and 0.8 almost does not filter any training cylinders. On the opposite, setting the
purity coefficient to 1 is not optimal. Indeed, in this dataset, cylinders containing only
unchanged points are very rare (≈ 0.3% of the sampled cylinders without any selection,
e.g., purity set to 0). Therefore, forcing the purity at 1 surely involves several times the
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Figure 4.6: Mean of IoU results for SSL-DCVA method as a function of the
purity coefficient. Purity coefficient corresponds to the threshold set on the percent-
age of unchanged points in training cylinders. M3C2, C2C and SSST-DCVA mIoU are
indicated for comparison purpose, these methods do not depend on the assumption that
changes are rare.

same cylinders in a training epoch and leads to overfitting.
On top of being simpler, C2C stays better than our methods in the simulated dataset,

even with a large purity coefficient. A problem more inherent to the method seems
however to persist. To our opinion, the problem comes from the DCVA part which relies
on a point-to-point comparison based on the nearest point. This point comparison is not
optimal in occluded parts as well as in dense urban areas (which is the case for Urb3DCD
datasets that are acquired on models of Lyon city center). This last point has been
already mentioned when describing C2C misclassifications in AHN-CD results in the last
sub-section (see region of interest in Figure 4.4g). Even if DCVA comparison relies on
multiple deep features, avoiding the problem when the two points being compared have
different latent embeddings, the problem remains when the latent embedding of the two
points under comparison is similar, meaning the same class is predicted by the back-bone
network (whether trained by transfer learning or self-supervision). Indeed, in this case,
the deep magnitude coefficient computed from deep features will be similar.

Furthermore, DCVA part relies on a binary thresholding (through Otsu method) of
the histogram of the deep magnitude coefficient. This thresholding is performed of the
testing set. To obtain a meaningful value, the area must contain enough changed objects
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which is not always the situation in our experiments.
Finally, these methods provide only binary change segmentation. By looking at results

on both datasets, a distance based method (C2C) seems to provide results not so far from
our methods, or even better. Thereby, with regard to the complexity of training a deep
method for only a binary change detection, we would recommend using a traditional
method (e.g., C2C distance-based method) until more refined techniques are proposed.
Considering the wide diversity of changed objects, binary change segmentation seems
restrictive, thus appealing for unsupervised methods for multiple change segmentation.

4.4 Unsupervised multiple change detection with deep
clustering

Depending on the use case, distinguishing between multiple types of changes can be a
matter of interest. For example, in an urban context, some applications would require
to identify new buildings, while others would rather focus on new balconies on remaining
buildings. When dealing with supervised change detection, the annotation simply follows
the use case. However, for unsupervised settings, the question is more complex. It would
rather be interesting to have a method able to cluster a PC into several change categories
and then let the user select which category is interesting for his use case. To do so, we
propose to rely on the deep clustering principle, and in particular on DeepCluster (Caron
et al., 2018). Deep clustering consists in jointly optimizing deep representation of the
data and performing clustering with learned features (Ren et al., 2022; Zhou et al., 2022).

4.4.1 Methodology

Before describing our method for 3D PCs multiple change segmentation, an overview of
DeepCluster (Caron et al., 2018) is given as it is an important component of our model.

DeepCluster principle

Among the variety of studies related to deep clustering (Ren et al., 2022; Zhou et al.,
2022), DeepCluster appears to be one of the most fundamental. Proposed by Caron et al.
(2018), this method resides in a rather simple idea of alternatively clustering deep latent
representation of data to obtain pseudo-labels further used to train a Convolutional Neural
Network (CNN), as illustrated in Figure 4.7. In particular, the convolutional network is
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trained in a supervised manner using pseudo-labels as objective for prediction. In a
traditional supervised approach, giving a set of N images xn (n ∈ [1, N ]), a parametrized
classifier gW predicts the correct labels (yn) using the features extracted by fθ(xn) (W
and θ being the parameters from the classifier and the back-bone convolutional model,
respectively). They are optimized according to the following problem:

min
θ,W

1
N

N∑
n=1

ℓ(gW (fθ(xn)), yn) (4.13)

where ℓ is the loss function, a classical negative log-likelihood (Equation 3.6) in their
method. This cost function is minimized using standard mini-batch stochastic gradient
descent and backpropagation to compute the gradient. The difficulty in an unsupervised
setting is therefore to define yn.

In DeepCluster, Caron et al. (2018) proposed to rely on a classical clustering algorithm
such as k-means (MacQueen, 1967) or power iteration clustering (PIC) (Lin and Cohen,
2010) to obtain a pseudo-label (yP Ln) that is used instead of yn. Caron et al. (2018)
showed that the choice of the clustering algorithm is not crucial. Thereby, for illustration
purposes, we continue with the example of k-means algorithm. This clustering method
matches data to k groups (pseudo-clusters) by minimizing distance between each data and
its corresponding cluster center, called centroid (and contained in the centroid matrix C

in practice).
Finally, the unsupervised training process alternates between i) clustering the output

features of the back-bone convolutional model (fθ(xn)) (clustering step), and ii) update
parameters θ and W using the obtained pseudo-labels (yP Ln) thanks to Equation 4.13
(training step). This relies on the fact that a MLP classifier on top of a standard CNN
with randomly initialized weights (θ) provides results far above from the chance (i.e.,
random) level (Noroozi and Favaro, 2016).

In practice, a few tricks are required to avoid trivial solutions, e.g., assigning all the
inputs to the same cluster. First, the authors get rid of empty clusters by randomly
dividing in two groups the largest cluster when an empty cluster appears. Second, if the
pseudo-cluster representation of data is largely imbalanced, the deep model will tend to
assign all data to the most represented pseudo-cluster. To counter this, they propose
to sample input images during the training based on a uniform distribution over the
pseudo-labels.

They showed the robustness of their method by training different architectures (Alexnet
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Figure 4.7: Illustration of DeepCluster method. Source: Illustration from Caron
et al. (2018).

(Krizhevsky et al., 2017) and VGG-16 (Simonyan and Zisserman, 2014)) on ImageNet
(Deng et al., 2009) or YFCC100M (Thomee et al., 2016) images datasets.

In the following, we adapt this principle to 3D PCs change detection.

DC3DCD: unsupervised learning for 3D multiple change extraction

Whereas the task and the data (2D image classification) of DeepCluster is far from 3D
PCs multiple change segmentation, we nevertheless decided to adapt this method to our
task and particular data. By replacing the CNN by a 3D PCs change detection back-
bone, some change-related features can be extracted. Thereby, the clustering of these deep
features results in change-related pseudo-clusters. We further rely on these pseudo-clusters
to optimize the trainable parameters θ of the change detection back-bone. Figure 4.8
illustrates our method called DeepCluster 3D Change Detection (DC3DCD).

Algorithm 2 Fully unsupervised DeepCluster 3DCD training
Initialize the back-bone trainable parameters θ
for e← 1 to E do

Run mini-batch k-means to obtain centroids C on the whole training set
Assign to each point of the training set a pseudo-cluster
Replace parameters of the prototype layer by C
Compute the weights Wk considering pseudo-label distribution in the training set
Training sample selection: random drawing considering Wk

for i← 1 to I do
Use LNLL (weighted by Wk) to modulate the back-bone trainable parameters (θ) considering pseudo-labels

end for
end for

The overall training process of our method is given in the Algorithm 2. Even if the
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CD 
Decoder

Clustering (K-means)

Change Pseudo-labels

PC1

PC2
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Prototypes

Change Segmentation 

Change detection back-bone

CD/Mono-date
Encoder

CD/Mono-date
Encoder

Figure 4.8: Illustration of our proposed method: DC3DCD. It is trained by
alternatively clustering deep features to match a pseudo-label to each point of PC 2.
These pseudo-labels are used to optimize the back-bone trainable parameters.

general idea of DeepCluster remains, some specific features of DC3DCD distinguishing it
from the original DeepCluster proposal should be noted, namely:

• Back-bone model: Traditional CNN model cannot be used in raw 3D PCs and
furthermore, it does not render change-related deep features. In the Chapter 3 of
this thesis, we defined different architectures for supervised change detection in 3D
PCs. These architectures can be used as back-bone to our unsupervised method.
In practice, both Siamese KPConv (Figure 3.5) and Encoder Fusion SiamKPConv
(Figure 3.17) will be experimented. Thus, parameters θ to be optimized are param-
eters of these back-bone architectures.

• Use of a prototype layer: In the original version of DeepCluster, the final classi-
fication layer of gW is re-initialized before each parameter optimization session (i.e.,
training steps) because there is no correspondence between two consecutive cluster
assignments. The authors further proposed an improved version of DeepCluster
(DeepCluster-V2) by replacing the classifier gW by the prototypes, i.e., cluster cen-
ters. This ends up with an explicit comparison of the features and the centroid
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matrix C, and tends to improve stability and performance of DeepCluster (Caron
et al., 2020). According to preliminary experiments, we also decided to use the
centroid matrix C defining pseudo-cluster centers. Therefore, the last fully con-
nected layer parameters of the back-bone are set using the centroid matrix C. This
so-called prototype layer is updated after each clustering step and fixed during the
training step.

• Input data: We aim at detecting changes into raw 3D PCs. In addition of using
a specific back-bone able to compute features directly in 3D PCs, some pairs of
bi-temporal vertical cylinders need to be used as input to the network (as for pre-
vious methods of this thesis). Furthermore, in their experimentation, Caron et al.
(2018) provide Sobel-filtered images as input to the CNN instead of RGB images.
Sobel filtering acts as an edge detector thanks to the computation of gradients on
the image. This seems an important step in their method (Caron, 2021; Mustapha
et al., 2022) and acts as a pre-computation of relevant features. However, when
dealing with 3D PCs, there is no direct equivalent to Sobel filtering. As presented
in Chapter 2, some traditional hand-crafted features are designed to extract geo-
metric attributes in 3D PCs (e.g., linearity, planarity, omnivariance, etc.). Similarly,
these hand-crafted features may support the network to focus on interesting PCs at-
tributes as shown in Chapter 3 (Section 3.4.1). Thus, we will experimentally assess
the contribution of hand-created features used as input to the network together with
point coordinates. The hand-crafted features are related to point distribution (Nx,
Ny, Nz,Lλ, Pλ, Oλ), height (Zrange, Zrank, nH), and change (Stability). Although
very different from the gradient computation idea, Stability could be interesting to
guide the network in the change detection task (Chapter 3 Section 3.4.1). These
ten hand-crafted features are detailed in the Chapter 2 (Section 2.2.1).

• Size of the training set: Change segmentation task implies assigning a pseudo-
label to each point of the second PC (of pairs of the training set). To fit in memory,
a mini-batch k-means (Sculley, 2010) clustering is used. The principle of splitting
the largest cluster when an empty cluster appears is used as in DeepCluster.

• Imbalanced dataset: As already mentioned, change detection datasets are highly
imbalanced. To avoid falling in a trivial solution where the back-bone predicts
all points with the same label, after each clustering step weights Wk (considering
pseudo-labels distribution) are computed using the same formula as in Equation 4.5.

156

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



4.4. Unsupervised multiple change detection with deep clustering

These weights are further used to both select training cylinders and weight the loss
(LNLL). We remind that the cylinder selection process was also applied in the
supervised context. It aims at giving more training samples of underrepresented
pseudo-clusters. It also acts as a kind of data augmentation because from one
epoch to another, selected cylinders may differ according to the random drawing
of the cylinder’s central point. There are surely overlapping between cylinders, but
the center of the cylinder may differ conversely to when the whole set is predicted
(as in the clustering of the training set, where cylinders are selected according to a
grid to cover the whole area). Without this trick, the method is likely to collapse
to a single class prediction.

• 3D PCs data augmentation: During the training step, data augmentation ap-
pears to be crucial for stability and performance of the method. The same data
augmentations as in the supervised frameworks are used: random cylinders rotation
around the vertical axis (same angle for both cylinders of a pair), and addition of a
Gaussian noise at point level.

From predicted pseudo-labels to real labels

The above training using DC3DCD method is fully unsupervised, thereby no use of a
ground truth is required. At the end of the overall training process, the back-bone predicts
labels for all points of the second PC according to the change. Predicted labels do not
directly correspond to the real labels. There is an oversegmentation of PCs inducted by
the choice of K, the number of pseudo-clusters, which is often large compared to the
number of real classes. By opting for such an oversegmentation setting, we expect to be
able to address various use cases with different size and precision of classes. One real
class is then composed of several predicted clusters, while we assume a predicted cluster
to contain only one real class. To map a real label onto each predicted label, a mapping
step is necessary. For this mapping, we consider that the user should be involved in order
to select the kind of changes that is of interest given the use case. DC3DCD enables
to train a back-bone to segment the PC into small areas containing the same types of
change or unchanged objects. Thus, the user just has to select for each predicted cluster
a corresponding real class. It can be viewed as a kind of active learning process. This is
illustrated in Figure 4.9. This strategy finally involves K annotations to obtain a final
change segmentation over the whole testing set (no matter its size). K corresponds to
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Unchanged
Missing 

vegetation
Unchanged New 

building

Mobile 
Object

PC date 1 PC date 2

K clusters annotation5 clusters annotation

Figure 4.9: Weakly supervised mapping of predicted clusters to real classes. For
the K predicted clusters, a mapping with the corresponding real class is performed by a
user to obtain the final change segmentation of the PC. 5 mappings are provided for the
sake of illustration. Segmenting the whole dataset requires K annotations only. This is
far less than the millions of points that need to be annotated in order to build training
and validation sets in a supervised setting.

the number of pseudo-clusters used during the training. This hyper-parameter to the
method has to be fixed beforehand. For this reason, we describe our method as weakly
supervised, as the required K annotations are much smaller than the millions of points
contained in the dataset. In practice, for the experimental assessment of our method, we
map a predicted cluster onto a real class taking into account the real majority class it
contains.

4.4.2 Experimental results

4.4.2.1 Experimental settings and protocol

Below, we detail how we fix the main hyper-parameters and experimental set-up.
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4.4. Unsupervised multiple change detection with deep clustering

• Number of pseudo-clusters K: As shown in different studies related to Deep-
Cluster (Caron et al., 2018; Mustapha et al., 2022), the choice of the number of
pseudo-clusters is important. We experimented several values for K on the simu-
lated dataset and found that 1,000 was an adequate compromise to have a stable
training and not too many clusters. A too small value may not reflect all different
types of changes (and thus not allow the user to select the changes of interest), while
a too large value ends up with along training and annotation time. The same value
will be used also with the real dataset AHN-CD.

• Training step and parameters optimization: For the training step, a SGD with
momentum of 0.98 is applied to minimize a point-wise negative log-likelihood (NLL)
loss (Equation 3.6) using the pseudo-labels defined in the clustering step. A batch
size of 10 is used. The initial learning rate is set to 10−3 and scheduled to decrease
exponentially. As in Caron et al. (2018), we experimentally verified that reassigning
the clustering after each epoch is better than an update after each n epochs. Indeed,
if several training epochs are conducted, the model seems to converge in the first
local minimum associated with a non-optimal pseudo-clustering. In each epoch,
3,000 cylinder pairs are seen by the model. A total of 55 epochs, i.e., 55 clustering
and training steps, is performed.

• Datasets: Both simulated Urb3DCD-V2 in low density LiDAR configuration and
real AHN-CD dataset will be experimented. During the training, we make no use
of the ground truth unless for the method assessment purpose (see Section 4.4.2.2).
The first sub-sampling rate dl0 is set to 1 m and the cylinder radius to 50 m for
Urb3DCD-V2-1 while for AHN-CD dl0 is set to 0.5 m and the cylinder radius to
20 m because of the difference of density of both datasets.

• Comparisons with supervised methods: A comparison with supervised meth-
ods proposed in Chapter 3 is provided, namely Siamese KPConv, Encoder Fusion
SiamKPConv, DSM-based deep learning methods (adaptation of Daudt et al. (2018)
networks to DSM inspired by Zhang et al. (2019)) and the RF algorithm trained on
hand-crafted features (Tran et al., 2018).

• Adaptation of a supervised method to a weakly supervised setting: To
evaluate the benefit of our method, we propose a comparison with deep learning-
based supervised methods tuned to a weakly supervised setting. In practice, we use
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Encoder Fusion SiamKPConv, the best of our supervised techniques presented in 3.
To this end, we trained it with the same amount of annotated data as our DC3DCD
setting. However, this is not straightforward since this network cannot be trained
with only 1,000 points. Indeed, as during the supervised training of this network,
labels should be provided for each point of the second PC of the pair, and as a
cylinder contains more than 1,000 points (about 3,500), we cannot directly compare
the supervised training with the same amount of labels (i.e., K = 1, 000). Thus,
both training and validation sets, we chose 7 cylinders, each one centered on one of
the 7 classes contained in Urb3DCD-V2 to be sure that each class is represented.
Note that with this minimal training configuration, the number of annotated points
in the 14 cylinders is around 50,000. As 7 cylinders are less than the batch size of 10
used for all other deep learning-based method, we also provide results with a batch
size of 2.

• Comparisons with unsupervised methods: To the best of our knowledge, there
is no other weakly supervised or unsupervised deep learning method tackling 3D PCs
multiple change segmentation (DCVA deals with the binary case only). Thereby,
we provide a comparison with a k-means algorithm applied to the ten hand-crafted
features of Tran et al. (2018) dedicated to change detection in 3D PCs. Note that
LiDAR specific features (e.g., intensity or number of echoes) used in Tran et al.
(2018) are ignored here since the simulated dataset does not contain such informa-
tion. For fair comparison, the k-means is set to predict also K = 1, 000 pseudo-
clusters. The same user-guided mapping is done as proposed in the previous section
(Figure 4.9) to assign the final classes.

Before presenting the quantitative results, we analyze in the next section the behavior
of the network during the training.

4.4.2.2 Analysis of the learning process

Before presenting the results on the different datasets, we propose to study the behavior
of DC3DCD during the training phase. To do so, we rely on the Encoder Fusion SiamKP-
Conv back-bone and the configuration without the use of the ten hand-crafted features
as input, so considering only 3D points coordinates. Note that the same tendencies are
obtained with hand-crafted features or with Siamese KPConv back-bone, but we prefer to
show results with a network that takes into account the minimum information regarding
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4.4. Unsupervised multiple change detection with deep clustering

changes. In practice, we compute criteria associated with the clustering quality and the
pseudo-cluster distribution along the training process.

The evolution of the clustering quality during training epochs is computed by com-
paring the pseudo-clusters obtained thanks to the k-means on deep features, and the real
classes. More precisely, we compute the normalized mutual information (NMI) given by
the following formula:

NMI(Y, YC) = I(Y, YC)√
H(Y )H(YC)

(4.14)

where Y and YC contain the probabilities pi, pCi
, of each label i = {1...N} associated

with the true and pseudo-labels. H is the entropy defined as:

H(Y ) = −
N∑

i=1
pi log2 pi (4.15)

and I is the mutual information, defined as:

I(Y, YC) = H(Y )−H(Y |YC) (4.16)

Intuitively, the NMI is a measure of the information shared between two clusterings, i.e.,
in our case the clustering of deep features and real classes. If the NMI is equal to 0, the
two clusterings are totally independent. On the opposite, if the NMI is equal to 1, there
is a perfect correlation between the two clusterings, i.e., one of them is deterministically
predictable from the other.

We present the evolution of the clustering quality along the epochs in Figure 4.10a
by giving the NMI between the clustering and the real labels of Urb3DCD-V2 dataset.
As can be seen, the clustering tends to get closer to real classes along with the training
process. It seems to stabilize after 30-40 epochs. Let us remark that at the end of the
training, the NMI is around 0.35. It is still far to 1, but the same trend was observed
in DeepCluster training quality assessment by Caron et al. (2018). In Figure 4.10b, we
evaluate the number of reassignments of cluster from one epoch to the following using
the NMI between the clustering of the two epochs. It seems that during the first epochs,
there is an important evolution of the clustering, but the training rapidly converges to a
rather stable clustering (NMI > 0.8). Again, the same tendency was obtained by Caron
et al. (2018) for DeepCluster on ImageNet dataset.

As for the pseudo-cluster distribution, we remind that, ideally, a pseudo-cluster
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(a) Clustering quality (b) Cluster reassignment

Figure 4.10: Analysis of the behavior of DC3DCD during the training. The
evolution of clustering quality (a) is given thanks to the NMI between the clustering and
the real labels of Urb3DCD-V2 dataset. The NMI between the clustering at epoch t and
the clustering at epoch t− 1 gives the cluster reassignment (b).

contains only one real class, and a real class can be distributed into several pseudo-
clusters. To measure the purity of a pseudo-cluster, we propose to investigate the entropy
H (Equation 4.15) of each pseudo-cluster. If it is near 0, then the pseudo-cluster contains
almost only one real class. However, if a pseudo-cluster is divided into several classes, the
entropy is higher. In Figure 4.11 is given the pseudo-cluster distribution at epoch 10 and
50. Pseudo-clusters are sorted in increasing entropy values. First, as can be seen, there
is an improvement between epoch 10 and 50. The area under the entropy curves (dotted
points in Figure 4.11) is indeed smaller at epoch 50 (0.24 of mean entropy) than at epoch
10 (0.39 of mean entropy), meaning that entropy values are globally smaller. Then, after
50 epochs of training, 80% of the pseudo-clusters have a “purity level” greater or equal to
93%. These results confirmed the relevance of the proposed weakly-supervised strategy
to automatically map a pseudo-cluster onto the majority real class for the evaluation, as
stated in the method description section (see Section 4.4.1).

After having studied the training behavior of the DC3DCD method, we will now
compare it to the state-of-the-art on the testing set of both simulated and real datasets.
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(a) Epoch 10

(b) Epoch 50

Figure 4.11: Ground truth class distribution in pseudo-clusters sorted by increas-
ing entropy value at epoch 10 (a) and 50 (b). Each pseudo-cluster entropy is given by
the dotted black curve.
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4.4.2.3 Results on simulated Urb3DCD dataset

Quantitative evaluation of DC3DCD on the simulated Urb3DCD-V2-1 dataset is given
in Tables 4.5 and 4.6. In these tables, we also recall supervised results of Chapter 3 for
comparison purpose with a supervised technique. Let us first analyze DC3DCD results
without hand-crafted features (two first lines of the bottom part of Tables 4.5 and 4.6).
As can be seen, results for both Siamese KPConv and Encoder Fusion SiamKPConv
back-bones are rather low. Indeed, while requiring the same annotation effort, k-means
algorithm trained on the same hand-crafted as the RF method proposed in Tran et al.
(2018) provides better results (cf. first line of middle part in Table 4.5). However, these
results are interesting because the two experimented back-bones provide significantly dif-
ferent results. In particular, Encoder Fusion SiamKPConv ends up with a mIoUch 1.5
times higher than Siamese KPConv. While in a supervised setting, the improvement of
Encoder Fusion SiamKPConv was of 5 points of mIoUch, in the weakly supervised context
the choice of the architecture seems even more crucial.

Then, when hand-crafted features are added to the input of the network, results are
largely improved (cf the two last lines of Table 4.5). While DC3DCD with Siamese
KPConv architecture and hand-crafted features provides results comparable to the k-
means algorithm, DC3DCD becomes interesting with both hand-crafted features and
the Encoder Fusion SiamKPConv architecture. Indeed, in this configuration there is
more than 15 points of mIoUch of improvement compared to the k-means. Furthermore,
DC3DCD with this configuration is better than a fully supervised RF, and provides results
comparable with fully supervised deep architectures trained on 2.5D rasterization of 3D
PCs. Thereby, providing hand-crafted features is an important step in weakly supervised
settings. One possible interpretation is that the unsupervised version is very tricky to
train in reason of the large number of possible local minima. Adding hand-crafted features
probably helps the initialization to be closer to the global minimum.

Notice that the Encoder Fusion SiamKPConv in a weakly supervised setting provides
rather low results given the higher annotation effort required (about 50,000 annotated
points). Results with a batch size of 10 are not stable. This is explained by the fact that
only one batch is seen per epoch, and the same learning rate scheduler as with a batch
size of 2 is used. Thus, this training is more prone to fall in a local minimum. Even
with a reduced batch size, leading to more stable results, we can see the benefit of using
DC3DCD for the training of Encoder Fusion SiamKPConv network because the effort of
annotation is lower.
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Method mAcc (%) mIoUch (%)

Su
pe

rv
ise

d Siamese KPConv 91.21 ± 0.68 80.12 ± 0.02
Encoder Fusion SiamKPConv 94.23 ± 0.88 85.19 ± 0.24

DSM-Siamese 80.91 ± 5.29 57.41 ± 3.77
DSM-FC-EF 81.47 ± 0.55 56.98 ± 0.79

RF 65.82 ± 0.05 52.37 ± 0.10

W
ea

kl
y

su
p.

k-means 56.15 ± 0.62 41.46 ± 0.53
Encoder Fusion SiamKPConv (batch size 10) 29.03 ± 22.46 12.84 ± 18.49
Encoder Fusion SiamKPConv (batch size 2) 53.09 ± 3.73 36.60 ± 3.18

DC3DCD Siamese KPConv 28.28 ± 3.73 14.43 ± 3.70
DC3DCD Encoder Fusion SiamKPConv 52.30 ± 2.41 37.75 ± 2.11

DC3DCD Siamese KPConv (with input features) 54.91 ± 5.45 42.27 ± 6.64
DC3DCD Encoder Fusion SiamKPConv (with input features) 68.45 ± 1.10 57.06 ± 0.41

Table 4.5: Quantitative evaluation of DC3DCD on Urb3DCD-V2 low density
LiDAR dataset. Top: supervised methods. KPConv based methods refer to the pro-
posed ones in Chapter 3. DSM-based methods are adaptation of Daudt et al. (2018)
networks to DSM inspired by Zhang et al. (2019) and RF refers to Random Forests. Mid-
dle: Weakly supervised methods with k-means and Encoder Fusion SiamKPConv results
using 7 training cylinders in the training and validation set (equivalent to about 50,000
annotated points). Bottom: Weakly supervised methods with our proposed DC3DCD
evaluated in 4 different settings: with Siamese KPConv or Encoder Fusion SiamKPConv
architectures and with or without the addition of 10 hand-crafted features as input to the
network.
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Two different examples are given for a qualitative assessment of the method in Fig-
ures 4.12 and 4.13. As visible in Figure 4.13, main changes (e.g., new buildings or de-
molitions) seem quite well retrieved by the k-means and both DC3DCD configurations.
However, when going more into details, some misclassifications can be seen on new build-
ing facades (Figure 4.12) or vegetation. For new building facades, a slight improvement
over k-means is reached by DC3DCD, but it is still not perfect. The k-means technique
has the same tendency as the RF method (see Chapter 3 Figure 3.8) and confuses small
new buildings with new vegetation, surely because they have the same height as visible in
Figure 4.12. As depicted in Table 4.6, main difficulties of the DC3DCD method concern
vegetation growth and missing vegetation. Note that this was already the most diffi-
cult classes in the supervised context. The missing vegetation is almost always confused
with demolition in DC3DCD with hand-crafted input features and the Encoder Fusion
SiamKPConv architecture. This is even worse with the k-means and missing vegetation is
never predicted with DC3DCD without hand-crafted input features. However, this make
sense, since the ‘missing vegetation’ and ‘demolition’ classes are both negative changes.
Surprisingly, mobile objects are quite well retrieved, especially for DC3DCD with hand-
crafted input features and the Encoder Fusion SiamKPConv architecture (Table 4.6).
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Chapter 4 – Unsupervised change detection

Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) k-means (e) DC3DCD EFSKPConv (f) DC3DCD EFSKPConv (in. feat.)
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 4.12: Visual change detection results on Urb3DCD-V2 low density
LiDAR sub-dataset (area 1): (a-b) the two input point clouds; (c) ground truth
(GT): simulated changes; (d) k-means results; (e) DC3DCD with the Encoder Fusion
SiamKPConv architecture results; (f) DC3DCD with the Encoder Fusion SiamKPConv
architecture and the addition of 10 hand-crafted features as input results.
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Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) k-means (e) DC3DCD EFSKPConv (f) DC3DCD EFSKPConv (in. f.)
Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 4.13: Visual change detection results on Urb3DCD-V2 low density
LiDAR sub-dataset (area 2): (a-b) the two input point clouds; (c) ground truth
(GT): simulated changes; (d) k-means results; (e) DC3DCD with the Encoder Fusion
SiamKPConv architecture results; (f) DC3DCD with the Encoder Fusion SiamKPConv
architecture and 10 hand-crafted input features.
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4.4.2.4 Results on real AHN-CD dataset

Concerning the real AHN-CD dataset, quantitative results on the manually annotated
testing set are given in Table 4.7, and Table 4.8 for per class results. For comparison
purpose, we also provide results of supervised methods. However, we recall that they have
been trained on the semi-automatically annotated AHN-CD dataset containing several
ground truth errors (see Chapters 1 and 3). This explains lower results of the RF compared
to the k-means which have been mapped onto real classes using the manually annotated
set (as for DC3DCD method). As for the simulated dataset, we can see that DC3DCD
provides better results than the k-means algorithm. Figure 4.14 shows that main changes
are well retrieved for both weakly supervised methods. However, in the k-means results,
larger objects of the clutter class such as trucks are mixed up with buildings. There are
also lots of misclassifications in unchanged vegetation and unchanged building facades
(see region of interest in Figure 4.14f). As far as DC3DCD is concerned, unchanged
vegetation is well classified. A few mistakes are visible in some ‘new clutter’ objects.
We recall that this class is a mix of a lot of objects, from vegetation to cars or garden
sheds, surely explaining why its classification score is lower. Complementary results on
a larger AHN-CD testing tile are shown in Figure 4.15. The ground truth is given by
the semi-automatic process detailed in Chapter 1 (Section 1.2). The mapping onto the
real classes is performed using this ground truth for both k-means method and DC3DCD.
As visible in this example, most of ‘new clutter’ class objects are omitted or mixed up
with the new building class, also the demolition class is totally omitted by the k-means
algorithm (Figure 4.15d). In the DC3DCD results in Figure 4.15e, clutter class seems
better retrieved, even though it is not perfect implying the main differences with the
ground truth (Figure 4.15g). In the areas of interest depicted by the black rectangles in
Figure 4.15, we observe that DC3DCD seems to better adapt to the user context (i.e., by
the ground truth defined by the user) than the k-means, even though the same ground
truth-guided mapping step has been performed. Indeed, here buildings are not set as new
in the ground truth and in DC3DCD, conversely to k-means. Finally, on this tile, if we
compare to the ground truth, DC3DCD obtains 55.91% of mIoUch, while the k-means
only 24.63%.
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(a) PC date 1 (b) PC date 2 (c) Ground truth

(d) k-means (e) DC3DCD EFSKPConv (i. f.)
Unchanged New Building Demolition New Clutter

(f) k-means errors (g) DC3DCD EFSKPConv (i. f.) errors
GT differences

Figure 4.14: Qualitative results on the manually annotated sub-part of AHN-CD
dataset: (a-b) PCs at date 1 and 2; (c) ground truth; k-means results (d) and errors (f);
DC3DCD results (e) and errors (g) using the Encoder Fusion SiamKPConv architecture
and the 10 hand-crafted features in input. Regions of interest specifically discussed in the
text are highlighted with ellipses.
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(a) PC date 1 (b) PC date 2 (c) Ground truth

Unchanged
New Building
Demolition
New Clutter

(d) k-means (e) DC3DCD EFSKPConv (i. f.)

GT differences

(f) k-means errors (g) DC3DCD EFSKPConv (i. f.)
errors

Figure 4.15: Qualitative results on the semi-automatically annotated AHN-
CD dataset: (a-b) PCs at date 1 and 2; (c) ground truth; k-means results (d) and
corresponding errors (f); DC3DCD results (e) and corresponding errors (g) using the
Encoder Fusion SiamKPConv architecture and the 10 hand-crafted features in input.
Regions of interest specifically discussed in the text are highlighted with rectangles.
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Method mAcc (%) mIoUch (%)

Su
pe

rv
ise

d

Siamese KPConv 85.65 ± 1.55 72.95 ± 2.05
Encoder Fusion SiamKPConv 90.26 ± 0.22 75.00 ± 0.74
DSM-Siamese 50.87 ± 1.15 30.96 ± 2.48
DSM-Pseudo-Siamese 70.71 ± 5.09 48.85 ± 7.03
DSM-FC-EF 71.47 ± 1.43 45.57 ± 0.98
RF 47.94 ± 0.02 29.45 ± 0.02

W
S k-means 70.07 ± 0.56 53.12 ± 0.79

DC3DCD Encoder Fusion SiamKPConv (10 in. feat.) 83.18 ± 1.10 66.69 ± 2.19

Table 4.7: Qualitative assessment of DC3DCD on the manually annotated sub-
part of AHN-CD dataset. Top: supervised methods. KPConv-based methods refer to
the proposed one in Chapter 3. DSM-based methods are adaptation of Daudt et al. (2018)
networks to DSM inspired by Zhang et al. (2019) and RF refers to Random Forests. In
supervised settings, the training is performed on the semi-automatically annotated AHN-
CD dataset containing some errors (see Chapters 1 and 3). Bottom: Weakly supervised
methods with k-means and our proposed DC3DCD with Encoder Fusion SiamKPConv
architecture and with the addition of 10 hand-crafted features as input to the network.
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4.4. Unsupervised multiple change detection with deep clustering

4.4.3 Discussion

In this section, we have proposed an unsupervised change detection method with a weakly
user-guided mapping to real classes providing interesting results. This problem is still open
and complex and in the following, we point out some observations and discussions about
possible improvements.

Importance of network’s architectures and input features
We saw in the result section that the choice of the back-bone architecture and the addition
of hand-crafted features as input along with 3D point coordinates are crucial. This is in
agreement with the original publication of DeepCluster, where authors provided gradi-
ent of images as input to obtain interesting results (Caron et al., 2018). These results
in a weakly supervised context also emphasizes conclusions of Chapter 3 on the neces-
sity of applying convolution on features difference. To explain this, let us note that the
unsupervised context is a largely unconstrained problem. While the annotation allows
counterbalancing architectures weaknesses, this is indeed no longer possible for the un-
supervised setting. Thereby the choice of an architecture that more specially extracts
change-related features through convolutions of difference of features from both inputs at
multiple scales, and the addition of well-designed hand-crafted features, allows guiding
the training of the network toward a relevant minimum, leading to a reliable change seg-
mentation.

Comparison with binary change detection methods
Previously in this chapter, we proposed to decrease the need for annotation by using
transfer learning from simulated data to real data (see Section 4.2), or by presenting some
unsupervised methods based on DCVA for binary change detection (see Section 4.3). In
Table 4.9, we propose to compare all the developed methods on the manually annotated
subpart of AHN-CD in a binary change segmentation setup. DC3DCD results presented
here are obtained using the user-guided mapping directly to the changed and unchanged
classes. As visible in these quantitative results, DC3DCD is much more accurate than
other fully-unsupervised methods, however it requires 1,000 annotation for the mapping
of the pseudo-clusters to the real classes. This weakly supervised setting might be a
compromise between high results of supervised methods, but obtained with millions of
annotated points, and lower results of unsupervised methods without any annotation at
all.
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Chapter 4 – Unsupervised change detection

mAcc IoU (%)
Method (%) Unchanged Changed

Su
p. Siamese KPConv 97.08 95.39 92.95

Encoder Fusion SiamKPConv 96.75 94.79 92.10

U
ns

up
.

SSL-DCVA 85.20 78.91 69.38
SSST-DCVA 81.88 70.02 63.85
Siam. KPConv transfer 79.29 77.89 58.89
M3C2 (Lague et al., 2013) 51.77 3.66 39.90
C2C (Girardeau-Montaut et al., 2005) 76.67 76.98 53.34

W. Sup DC3DCD Encoder Fusion SiamKPConv (10 in. feat.) 94.43 91.24 86.96

Table 4.9: Comparison of all methods proposed in this chapter on the manually
annotated sub-part of AHN-CD dataset.

Improving DC3DCD with contrastive learning
As mentioned, the problem in an unsupervised setting is to train a network to extract
appropriate features for a specific task. In a task involving comparison of similar and
dissimilar data (like change detection task), the contrastive loss is often used to force the
network to extract identical features for similar data. Therefore, an idea can be to force
the network to predict similar features for unchanged areas. To test this principle, we
propose to introduce the following contrastive term in the loss function:

Lcontrastive = 0.5× ysim × F 2
CD with ysim =

 1 if similar
0 else.

(4.17)

where FCD is the L2-norm of output features and ysim is the similarity term (set to 1
for unchanged points, and 0 elsewhere). Using this contrastive term in the loss aims at
forcing to 0 change-related features in unchanged areas. To test this idea, we combine the
contrastive loss in Equation 4.17 with the deep clustering loss (NLL using the pseudo-
label, Equation 3.6) taking the mean, and train the Encoder Fusion SiamKPConv network
since it gave the best results.

We first carried out experiments by taking the similarity ysim from the ground truth
(as ysim is not available in practice, we first test the idea by taking real values of ysim).
Results were really interesting since, as visible in Tables 4.10 and 4.11, DC3DCD reached
73.51% of mIoUch without the use of hand-crafted features and 82.63% of mIoUch with the
use of hand-crafted features on Urb3DCD-V2-1 dataset. We recall that on this dataset
and in a fully supervised setting Siamese KPConv and Encoder Fusion SiamKPConv
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networks obtained 80.12% and 85.19% of mIoUch respectively. Thus, the addition of the
contrastive part allows meeting fully supervised results (in an ideal case where ysim is
known).

This first experience validated the idea of using the contrastive loss. However in
practice, ysim needs to be estimated. To obtain the similarity ysim, we first used the
significant changes given by M3C2 or a binary thresholding of C2C distance. Results
are mitigated (see Tables 4.10 and 4.11) since the best results obtained using M3C2 for
ysim allow us to improve by only 2 points DC3DCD without hand-crafted input features.
With hand-crafted input features, results are worsened when the contrastive term is added
during the training (using ysim based on M3C2, obtained mIoUch is 46.42%).

Another idea is to rely on multi-task learning (Vandenhende et al., 2021; Zhang and
Yang, 2021): a multi-task framework based on DC3DCD that jointly extracts mono-date
features that can be used for similarity computation has been designed. As illustrated
in Figure 4.16, we added decoders for mono-date semantic segmentation to the back-
bone architectures to also obtain semantic segmentation of PCs. Both Siamese KPConv
and Encoder Fusion SiamKPConv have encoders to extract mono-date features, therefore
we just added a decoder taking as input these mono-date features instead of feature
differences for Siamese KPConv for example. Thereby, we used the same idea as before
to train the network but with two separate clusterings, performed on output features of
the change decoder on one side, as in previous experiments, and on output features of
mono-date decoders on the other side. This results in both change pseudo-labels and
mono-date pseudo-labels which are used to modulate change encoder-decoder and mono-
date encoders-decoders respectively. In practice, we shared trainable parameters between
mono-date encoders and decoders. We trained first the semantic segmentation part and
then apply a binary clustering (using k-means) on the nearest point mono-date features
difference to obtain the similarity ysim used in the contrastive term of the change detection
loss. Concerning, the number of pseudo-clusters for mono-date Kmono−date , 4 and 500 have
been tested (4 is the number of semantic segmentation classes in Urb3DCD-V2 dataset,
500 is considered as a sample large bound). While semantic segmentation scores, using
the same user-guided mapping for mono-date semantic segmentation, are very promising
(90.79% of mIoU on the 4 semantic segmentation classes of Urb3DCD-V2 with hand-
crafted input features and Kmono−date = 500), using the associated ysim still leads to
unsatisfactory results (see Tables 4.10 and 4.11). Indeed, when Kmono−date is set to 500, we
obtain 50.14% of mIoUch (with hand-crafted features) which is better than with distance-
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CD 
Decoder

Clustering (K-means)
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Semantic segmentation 

Semantic Pseudo-labels

Semantic segmentation 

Semantic Pseudo-labels

Change Segmentation 
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Clustering (K-means)

CD
Encoder

Mono-date
Encoder

Mono-date
Encoder

Figure 4.16: DC3DCD-V2 using multi-task learning.

based methods (M3C2 or C2C) but worse than without the contrastive part of the loss.
Thereby, computing similarity from the nearest point mono-date features difference does
not seem adapted. Two main reasons for this non-success can be advanced: i) the nearest
point comparison faces finally the same problems as DCVA method (namely problems
in occlusion and dense urban areas, see Section 4.3.2.3), and ii) the method predicts 500
different mono-date semantic classes (far more than existing real classes) and nothing
forces that two clusters that are near in semantics (e.g., belonging to the same real class)
are near in the feature space, leading to differences of features likely to be very high.
To counterbalance this last point, we tested using only 4 mono-date pseudo-clusters, but
results are even worse, probably due to the fact that the DeepCluster strategy to train a
network required a number of pseudo-clusters greater than the number of real classes.

Qualitative assessment of these results is supported by Figures 4.17 and 4.18. When
the similarity comes from the binary change ground truth, visual results really lookalike
the multi-change ground truth (Figures 4.17f and 4.18c). Qualitative results of multi-task
learning are quite encouraging. Surprisingly, borders of ‘missing vegetation’ seems well
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4.4. Unsupervised multiple change detection with deep clustering

retrieved, but the center is still confused with demolition.
Concerning the real dataset AHN-CD, the same types of results are obtained as de-

tailed in Tables 4.12 and 4.13. When the similarity comes from the binary change ground
truth, we obtained results approaching the supervised setting. Since on this dataset,
we have obtained better results for binary change detection with our deep unsupervised
methods than with existing distance-based methods, we decided to take the similarity
provided by SSL-DCVA (Section 4.3.1.2). However, this leads to worse results than with-
out the contrastive term in the loss, surely because SSL-DCVA results are still far from
perfect.

All these experiments aim at evaluating the potential of contrastive losses to improve
our unsupervised results. Results with the similarity ysim issued from ground truth are
very promising since they reach comparable results than the fully supervised networks.
However, the method is highly dependent on the quality of this binary change annotation,
and in case of mitigated binary annotation, it worsens DC3DCD results. These first per-
spective experimentations are, to our opinion, encouraging to limit the annotation effort
while preserving interesting results. Our future work will concentrate on the estimation
of precise ysim.
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Method i. f. ysim mAcc (%) mIoUch (%)

Su
p. SKPConv 91.21 ± 0.68 80.12 ± 0.02

EFSKPConv 94.23 ± 0.88 85.19 ± 0.24

W
ea

kl
y

su
pe

rv
ise

d

DC3DCD EFSKPConv 52.30 ± 2.41 37.75 ± 2.11
DC3DCD-V2 EFSKPConv GT 83.45 ± 2.22 73.51 ± 3.74
DC3DCD-V2 EFSKPConv M3C2 54.01 ± 3.54 39.59 ± 4.18
DC3DCD-V2 EFSKPConv C2C 39.74 ± 1.84 25.57 ± 1.97
DC3DCD-V2 EFSKPConv Multi-task (Kseg.sem. = 4) 34.31 ± 5.85 19.21 ± 5.81
DC3DCD-V2 EFSKPConv Multi-task (Kseg.sem. = 500) 47.62 ± 6.76 32.07 ± 6.15

DC3DCD EFSKPConv ✓ 68.45 ± 1.10 57.06 ± 0.41
DC3DCD-V2 EFSKPConv ✓ GT 89.04 ± 0.70 82.63 ± 0.73
DC3DCD-V2 EFSKPConv ✓ M3C2 58.80 ± 2.14 46.42 ± 2.45
DC3DCD-V2 EFSKPConv ✓ C2C 42.01 ± 0.67 28.04 ± 0.60
DC3DCD-V2 EFSKPConv ✓ Multi-task (Kseg.sem. = 4) 53.04 ± 8.22 38.90 ± 8.51
DC3DCD-V2 EFSKPConv ✓ Multi-task (Kseg.sem. = 500) 62.95 ± 1.81 50.14 ± 3.85

Table 4.10: Quantitative evaluation of DC3DCD-V2 on Urb3DCD-V2 low den-
sity LiDAR dataset. Top: supervised methods. KPConv based methods refer to the
proposed ones in Chapter 3. Middle: Weakly supervised methods with our proposed
DC3DCD and DC3DCD-V2 with Encoder Fusion SiamKPConv architecture without the
addition of 10 hand-crafted features as input to the network. Bottom: Weakly supervised
methods with our proposed DC3DCD and DC3DCD-V2 with Encoder Fusion SiamKP-
Conv architecture and with the addition of 10 hand-crafted features (i. f.) as input to
the network.
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Chapter 4 – Unsupervised change detection

Method i.f ysim mAcc (%) mIoUch (%)

Su
p. SKPConv 85.65 ± 1.55 72.95 ± 2.05

EFSKPConv 90.26 ± 0.22 75.00 ± 0.74

W
.s

up
. DC3DCD EFSKPConv ✓ 83.18 ± 1.10 66.69 ± 2.19

DC3DCD-V2 EFSKPConv ✓ GT 84.43 ± 1.13 70.78 ± 2.22
DC3DCD-V2 EFSKPConv ✓ SSL-DCVA 78.53 ± 0.83 64.70 ± 1.27

Table 4.12: Quantitative evaluation of DC3DCD-V2 on AHN-CD dataset
(manually annotated part). Top: Siamese KPConv (SKPConv) and Encoder Fu-
sion SiamKPConv (EFSKPConv) supervised methods proposed in Chapter 3. Bottom:
Weakly supervised methods with our proposed DC3DCD and DC3DCD-V2 with Encoder
Fusion SiamKPConv (EFSKPConv) architecture and with the addition of 10 hand-crafted
features (i. f.) as input to the network.

Per class IoU (%)
Method i.f ysim Unchanged New building Demolition New clutter

Su
p. SKPConv 89.75 ± 2.18 82.77 ± 5.38 86.44 ± 0.88 46.65 ± 0.16

EFSKPConv 94.79 ± 0.34 95.31 ± 1.95 88.87 ± 1.59 41.16 ± 1.30

W
.s

up
. DC3DCD ✓ 91.34 ± 1.21 89.91 ± 0.72 69.52 ± 4.97 40.63 ± 0.97

DC3DCD-V2 ✓ GT 95.03 ± 0.98 92.31 ± 0.62 78.86 ± 6.62 41.18 ± 0.18
DC3DCD-V2 ✓ SSL-DCVA 89.90 ± 0.81 83.71 ± 1.55 80.91 ± 4.24 29.41 ± 0.72

Table 4.13: Per class quantitative evaluation of DC3DCD-V2 on AHN-CD
dataset (manually annotated part). Top: Siamese KPConv (SKPConv) and Encoder
Fusion SiamKPConv (EFSKPConv) supervised methods proposed in Chapter 3. Bottom:
Weakly supervised methods with our proposed DC3DCD and DC3DCD-V2 with Encoder
Fusion SiamKPConv architecture and with the addition of 10 hand-crafted features (i. f.)
as input to the network.
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Ground Building Vegetation Mobile Objects

(a) PC 1 (b) PC 2 (c) GT

(d) DC3DCD EFSKPConv
(i. f.)

(e) DC3DCD-V2 EFSKPConv
(i. f., ysim from multi-task)

(f) DC3DCD-V2 EFSKPConv
(i. f., ysim from GT)

Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 4.17: Visual change detection results on Urb3DCD-V2 low density
LiDAR sub-dataset: (a-b) the two input point clouds; (c) ground truth (GT): sim-
ulated changes; (d) DC3DCD with the Encoder Fusion SiamKPConv architecture and
10 hand-crafted input features (i. f.) results; (e) DC3DCD-V2 with the Encoder Fusion
SiamKPConv architecture, 10 hand-crafted input features results and the similarity ysim

computed from the multi-task configuration(Kmono−date = 500); (f) DC3DCD-V2 with the
Encoder Fusion SiamKPConv architecture, 10 hand-crafted input features results and the
similarity ysim computed from the ground truth (GT).
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(a) Ground truth (b) DC3DCD-V2 EFSKPConv
(i. f., ysim from multi-task)

(c) DC3DCD-V2 EFSKPConv
(i. f., ysim from GT)

Unchanged New Building Demolition New Vegetation
Vegetation Growth Missing Vegetation Mobile Objects

Figure 4.18: Visual change detection results on Urb3DCD-V2 low density
LiDAR sub-dataset (area 2): (a) ground truth (GT): simulated changes; (b)
DC3DCD-V2 with the Encoder Fusion SiamKPConv architecture, 10 hand-crafted
input features (i. f.) and the similarity ysim computed from the multi-task
configuration(Kmono−date = 500); (c) DC3DCD-V2 with the Encoder Fusion SiamKP-
Conv architecture, 10 hand-crafted input features and the similarity ysim computed from
the ground truth (GT). For comparison, one can refer to Figure 4.13 providing k-means
and DC3DCD results over the same area.
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4.5 Conclusion

In this chapter, we focused on how to reduce the number of annotated data for 3D
PCs change detection task. To do so, we first proposed to evaluate the transfer learning
performances of Siamese KPConv deep network compared to other deep networks
on DSM or to the RF algorithm. Then, we also evaluated the benefit of pre-training
the network on simulated dataset to decrease the size of training set needed
on the real data. Thanks to pre-training, only less than 1/3000 of cylinders from the
target domain are needed to reach the maximal score. It significantly reduces the burden
of manual annotation.

In a second time, we proposed two fully unsupervised methods to tackle 3D
binary change detection based on self-supervised learning and deep trans-
fer learning to effectively characterize the target area in the deep latent space. Then
the Deep Change Vector Analysis (DCVA) has been used to compare points in
the feature space and segment the area in change and unchanged parts. While in the
real dataset AHN-CD, the self-supervised learning-based method allowed getting more
accurate change prediction than traditional distance-based methods, these unsupervised
methods still lack of precision in dense urban areas and further only provide binary change
information.

Therefore, in a last section, we proposed a weakly supervised method based on
the DeepCluster principle to tackle multi-class change segmentation in raw
3D PCs. We saw the importance of the choice of an appropriate architec-
ture to extract valuable change-related features. Also, guiding the network using
hand-crafted input features along with 3D points coordinates is advocated. Using
these recommended configuration, our proposed method, DeepCluster 3D Change
Detection (DC3DCD), allows obtaining better results than a fully supervised
traditional machine learning algorithm relying on hand-crafted features and to reach
scores of fully supervised deep networks trained on 2.5D rasterization of PCs
(i.e., the only existing models in the literature before this thesis). We further proposed to
improve DC3DCD by introducing a contrastive loss leading to comparative results
as fully supervised deep network in an ideal case where the similarity boolean used in the
contrastive loss is faultless. However, there are still improvements to be made to find a
right manner to obtain the similarity.

While the unsupervised methods designed in this chapter and the supervised ones
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introduced in Chapter 3 were assessed on urban contexts, we will consider another appli-
cation context to illustrate the ability of deep networks to deal with various use cases.
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APPLICATIONS TO GEOSCIENCES
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Chapter 5 – Applications to geosciences

This chapter is focused on experimentation in geosciences. Until now, our exper-
iments have been focused on urban environments because of the prime importance of
monitoring such environments and the lack of public annotated datasets in other fields
of study. We experiment here our supervised networks (Siamese KPConv and Encoder
Fusion SiamKPConv) in two different use cases in geosciences where we collected some
annotated data.

First, in collaboration with researchers from the Littoral, Environnement, Géomatique,
Télédétection (LETG) lab (UMR 6554) in Brest (France), we built up a dataset with a
manual ground truth annotation for erosion detection in steep cliffs. As presented in
Section 5.1, the dataset contains several multi-sensor 3D acquisitions over Petit Ailly
cliffs in Varengeville-sur-Mer, France19.

In a second part, we focused on landslide sources and deposits caused by a magni-
tude Mw 7.8 earthquake in a wide mountainous area in Kaikōura region, New-Zealand.
This work, presented in Section 5.220, was realized in collaboration with researchers from
Observatoire des Sciences de l’Univers de Rennes (OSUR) lab (UMR 6118) in Rennes
(France).

5.1 Cliff monitoring

The dynamics of cliff erosion is a complex phenomenon triggered by various factors whose
relative contribution is still difficult to estimate. Since cliff erosion is likely to increase
with sea level rise due to climate change (Slott et al., 2006; Ashton et al., 2011; Masson-
Delmotte et al., 2021), understanding changes in coastal cliffs in order to better manage
them would ensure the safety of communities and infrastructure threatened by erosion.
In cliff erosion, one can distinguish mass movements and debris falls. According to Varnes
(1978), debris falls refer to tiny rocks falling from the cliff face, whereas mass movements
refer to rock falls corresponding to larger scale movements of parts or all of the cliff. To
quantify cliff retreat rates over decades, the simplest way is to measure the distance from
different cliff top locations using aerial photographs or historical maps (Lee and Clark,
2002; Brooks and Spencer, 2010). However, since changes at the cliff top may not be
representative of changes over the entire cliff face (Young et al., 2009), comparisons be-
tween cliff face 3D PCs are also used. For this second approach, methods such as TLS,

19. This study was presented in the ISPRS Congress 2022 (de Gélis et al., 2022).
20. This study will be presented in IGARSS 2023 (de Gélis et al., 2023a).
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5.1. Cliff monitoring

ALS, MLS, unmanned aerial vehicle (UAV) photogrammetry, or terrestrial photogram-
metry (TP) are used to monitor the cliff face (Young et al., 2010; James and Robson,
2012; Michoud et al., 2014; Letortu et al., 2018). Surveys are taken over time and PCs
are compared using tools such as C2C (Girardeau-Montaut et al., 2005) in CloudCompare
software (Girardeau-Montaut, 2016). Manual analysis of the differences is then performed
to determine areas of erosion on the cliff face and accumulation at the cliff foot. PCs dif-
ferences provide cliff retreat rates and allow for estimation of eroded volume (Letortu
et al., 2015). Different methods trying to automate cliff faces changes extraction and cliff
top and toe delineation exist, however most of them do not process 3D data directly but
2.5D rasterization of PCs and finally use DEM differences (Young and Ashford, 2006;
Swirad and Young, 2021). For example, in Young and Ashford (2006), the elevation vari-
ability is calculated through DEM difference where negative cells represent erosion and
positive cells represent accumulation, enabling to highlight significant erosion areas on
cliffs with slight slope. In Swirad and Young (2021), inventories of erosion and deposition
objects are retrieved with a method consisting in four steps: i) PC processing, ii) cliff face
identification, iii) change object inventories, and iv) object classification. Erosion rates
are calculated using 2.5D DEM analysis combined with vertical and planimetric detection
thresholds, Normalized Difference Vegetation Index (NDVI), machine learning processes
and manual quality control. These methods, although relevant, are not applicable on
vertical or very steep cliffs. A direct 3D approach is more adapted to study vertical cliffs
and to limit the loss of information generated by the data rasterization. Thereby, we
propose to try our supervised networks to retrieve erosion and accumulation in cliffs.

5.1.1 Study area

For this study, we focus on a section of cliffs at Varengeville-sur-Mer, located in Nor-
mandy, Seine-Maritime (Northwestern France), along the English Channel. Cliffs of
Seine-Maritime cover 120 km of coast (from Le Havre to Le Tréport), and are around
60 m to 70 m high. Geologically, they are part of the sedimentary Paris Basin and made
of Upper Cretaceous chalk interbedded with flint bands (Pomerol et al., 1987; Costa,
1997; Laignel, 2003; Mortimore and Duperret, 2004). Along the Cap d’Ailly, where
Varengeville-sur-Mer is located, cliffs are specific: the residual flint formation over San-
tonian chalk strata has been replaced by a bed of clay and sandy sediments from the
Paleogene age (Bignot, 1962). The Cap d’Ailly is an erosion hotspot where retreat rates
can locally exceed 0.80 m/y (Letortu et al., 2014). In Varengeville-sur-Mer, the Petit Ailly
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Figure 5.1: Panorama and aerial photography of Petit Ailly cliff (Varengeville-
sur-Mer) and instrumentation used for the TLS survey (2016-01-28). Source:
modified from Letortu et al. (2018).

cliff face (250 m to 350 m long, 40 m high, slope from 70◦ to overhang) (Letortu et al.,
2018; Jaud et al., 2019) (see Figure 1) is monitored from 2010 every 4-5 months (Letortu
et al., 2015; Letortu et al., 2019) in the framework of DYNALIT French Observatory
Service by terrestrial laser scanning and photogrammetry (Letortu et al., 2018) to im-
prove knowledge on retreat rates and main triggering mechanisms for rock fall activity.
This large dataset highlights that rock fall activity is intense over 250 m to 350 m, with a
retreat rate of 0.36 m/y and 4 rock falls over 1,000 m3 (Letortu et al., 2019).

5.1.2 Varengeville-sur-Mer 3D change detection dataset

PCs used in this study are taken from several sources: TP and TLS, with various densities
(see Table 5.1). The PC from TP survey contains a significant larger number of points
than PCs from TLS surveys, hence TP PC has a larger point density than TLS PCs
(9,440 points/m2 for 2016 TP PC and a maximum of 381 points/m2 for 2017 TLS PC).
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Date Type Nb of points
(pts)

Mean surface density
(points/m2)

2013-09-25 TLS 2,148,462 202
2016-01-28 TP 123,702,868 9,440
2017-11-02 TLS 4,154,905 381
2018-01-16 TLS 4,038,505 334
2020-04-14 TLS 3,293,548 276

Table 5.1: Petit Ailly PCs dataset.

Thereby, the following study is based on multi-sensor acquisitions.

Terrestrial Laser Scanning survey

The TLS used for this study is a Riegl® VZ-400 emitting a laser pulse in the near-infrared
(1,550 nm), using the time-of-flight of laser pulse to measure the position of a point. Scan
data provided by this instrument have a theoretical accuracy of 0.005 m and a precision of
0.003 m at a range of 100 m. The Riegl® VZ-400 is equipped with a Nikon D800 camera
with a fisheye lens, providing photographs that can be used to texturize the 3D point
cloud. The georeferencing of the PCs is performed with the Trimble M3 total station to
measure several reflective targets used as ground control points (GCPs). The advantage
of the use of a total station is that it allows to measure targets closer to the base of the cliff
without being affected by mask effects as a Differential Global Positioning System (DGPS)
would be. PCs are projected in RGF 93 – Lambert 93 and IGN69, i.e., official planimetric
coordinate system and vertical datum in France, respectively. Numerous TLS targets (see
Figure 5.1) are used (redundancy of measurements) and set at different distances from
the scanner to limit the alignment error (Letortu et al., 2018).

Terrestrial Photogrammetry survey

The terrestrial photogrammetric device used in this study is a Nikon D800 reflex camera
configured with a 35 mm focal length. The camera positions should be a short distance
apart and at least 20 m from the cliff face. Photographs are acquired from multiple
positions at 10◦ to 20◦ angular intervals over a wide range of angles to cover the area
(James and Robson, 2012). To ensure a quality result, an overlap of at least 60% (80%
is recommended for Structure-from-Motion (SfM) photogrammetry) is required between
each photograph, and each scene must be taken from various points of view (Letortu et al.,
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Class distribution (%)

PC pairs Type Unchanged Erosion Accumulation ‘No data to
compare’

2013-09-25 – 2016-01-28 TLS – TP 51.77 40.57 1.32 6.33
2016-01-28 – 2017-11-02 TP – TLS 66.07 22.43 0.47 11.02
2017-11-02 – 2018-01-16 TLS – TLS 79.65 16.20 3.19 0.96
2018-01-16 – 2020-04-14 TLS – TLS 69.67 29.92 0.00 0.41

Table 5.2: Petit Ailly PC pairs.

2018). In order to georeference the models, GCPs are also needed for TP survey. We use
TP targets and measure their absolute coordinates with a total station (see Figure 5.1).
To limit doming effect due to radial distortion and erroneous camera model, GCPs should
be numerous (James and Robson, 2014; Jaud et al., 2017). Photographs of the cliff and
target coordinates are used to derive a georeferenced 3D PC using the Structure-from-
Motion Multiview Stereo Photogrammetry (SfM-MVS) algorithm in Agisoft Metashape.
Accuracy is not measured directly for TP survey because it requires geodetic references
(surveyor’s nails) that are not visible in the 2016 PC. Comparison between TLS and TP
2016 PCs reveals a mean error value from 0.013 m to 0.03 m. Further details on the TP
survey method used are described in Letortu et al. (2018).

Point clouds annotation

Manual annotation is performed between the PC pairs (see Table 5.2) using C2C tool in
order to assign a label to each point of the second PC of the pair. Four classes are defined:
‘unchanged’, ‘erosion’, ‘accumulation’ and ‘no data to compare’. The ‘unchanged’ class
designates points whose position is unchanged or almost unchanged (with a tolerance
margin of 20 cm) between the two surveys of each PC pair. Points of the most recent
PC of the pair are considered as ‘erosion’ when they appear behind the oldest PC and
as ‘accumulation’ when they are located in front of the oldest PC and rather at the cliff
foot or on slight slopes (below 15◦) (see Figure 5.2). A ‘no data to compare’ class is
also defined to address the problem of an occlusion (due to different methods of data
acquisition) only visible in the oldest PC of the pair of PCs. Indeed, in this case, the C2C
distance computed between the two PCs is inconsistent, thus preventing us to evaluate
whether it is accumulation, erosion or no change. We recall that the C2C distance has
just been used to help the manual annotation task. To annotate the datasets with respect
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Unchanged Erosion Accumulation No data to compare

Figure 5.2: Petit Ailly cliff annotation: (a) annotation of the PC from 2016-01-28
compared to the PC from 2013-09-25; (b) western part of Ailly cliff and transect position;
(c) transect showing erosion of the cliff with accumulation at the cliff base.

to the distance separating the two PCs of each pair, a threshold of 50 cm is used, and
refined to 20 cm for some parts. Thereby, in this study, we mainly focus on extracting
movements greater than 20 cm to 50 cm, thus smaller movement like debris falls may be
missed.

Dataset configuration

In order to conduct our experimentation, we divide our dataset into three parts dedicated
to training, validation, and testing. We recall that data are annotated according to the
previous acquisition, forming 4 pairs of PCs. As can be seen in Table 5.2, each class
is not equally represented in each PCs. As a matter of fact, accumulation class is very
rare compared to eroded and even unchanged areas. It is further not present in each PC
acquisition. Thus, the division of the dataset is made in such a way that each split is as
representative as possible of each class of change. Thereby, the split of pairs of PCs in
each training, validation and testing set is made as indicated in Table 5.3. Accumulation
class is less represented in point clouds, thus we divided the 2016-2017 and 2017-2018
pairs into eastern and western parts at the dry valley of Petit Ailly (see Figure 5.1) to
have examples of accumulation in all of the training, validation, and testing set.
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Training set Validation set Testing set
2013-2016

2016-2017 West
2016-2017 East
2017-2018 West

2017-2018 East
2018-2020

Table 5.3: Split of the dataset into training, validation and testing sets. For each
pair of PCs, years relates to the year of acquisition given in Table 5.1. The annotation is
always given for the second PC of the pair with regard to the first PC.

5.1.3 Experimental results

5.1.3.1 Experimental settings

In the following, both Siamese KPConv (Chapter 3, Section 3.2.1) and Encoder Fusion
SiamKPConv (Chapter 3, Section 3.4.2) are assessed. To setup experiments, we have
to choose the initial sub-sampling rate (dl0) of PCs. Thus, no matter the type of input
PC (TLS or TP), the input PC’s resolution at the first layer is always the same. Notice
that final results are interpolated back to initial PC resolution given in Table 5.1. To
our opinion, dl0 should be chosen as small as possible to stick with PC’s initial density,
while in the same time fitting with available memory in the GPU. Finally, this first sub-
sampling rate is directly linked with the size of input given to the network. Indeed, as
for satellite images divided into patches, PCs are also subdivided to feed the network.
Conversely to urban change detection experiments of Chapter 3, we choose here to divide
PCs into spheres and not vertical cylinders. Indeed, in urban areas, the motivation of
considering cylinders instead of spheres is to be sure to always include ground in vertical
cylinders (see Chapter 3). The study case here is quite different, and spheres appear more
suited than cylinders because they contain fewer points, allowing to choose a larger radius
(we recall that considering too many points as input for the network leads to memory
capacity issues). Spheres are centered on a point of the second date PC, thus the radius
should not be chosen too small to ensure to give also points of the first PC in case of large
changes as well as providing enough context. In Thomas et al. (2019), the authors chose
the radius of input sphere of 50 times dl0. However, according to our own experiments,
the best results were obtained with spheres of 10 m in radius and dl0 set to 0.15 m.

As far as other network hyper-parameters are concerned, we use the same configuration
as in Chapter 3: a SGD with momentum to minimize a point-wise negative log-likelihood
loss, with a batch size of 10, a momentum of 0.98 and an initial learning rate of 10−2.
The learning rate is scheduled to decrease exponentially. A probability dropout of 0.5 in
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the last classification layers is set. Also, in order to prevent from overfitting, we set a L2

loss regularization with a factor of 10−6. As the dataset is largely imbalanced, the loss is
weighted according to training set class distribution. For the training, as for the urban
context, 3,000 samples are used at each training epoch. Data augmentation (addition of a
random Gaussian noise, and input spheres rotation the around vertical axis) are also used.
Conversely to urban application, the random rotation around the vertical axis is fixed to
randomly vary between −15◦ and 15◦, in order to prevent from situations where a PC
initially in front of the other to be found behind, thus disturbing the erosion detection.

In the following experiment, we decided to normalize input spheres along X and Y
axis by retrieving the minimum value into the sphere of X and Y axis respectively. As for
the vertical Z axis, we do not perform any normalization regarding the minimum value
in the whole cliff, in order to keep information related to elevation. This may help for
change classification, in particular for accumulation class, since it is mainly located at the
cliff foot.

For presented experiments, the training time was about 20 hours on a single GPU
(Titan RTX), while the prediction for the whole testing set (see Table 5.3) takes about 8
minutes.

We provide a comparison with a distance-based method, M3C2, giving a mean surface
change along a normal direction (Lague et al., 2013). Based on this distance, we apply
an empirical thresholding at −0.2 m and 0.2 m to extract accumulation, unchanged and
erosion areas.

5.1.3.2 Qualitative and quantitative results

Quantitative results are shown in Table 5.4. As can be seen, Encoder Fusion SiamKPConv
architecture brings better results than Siamese KPConv on this dataset. In particular,
per class IoU indicates that unchanged areas and erosion are well classified by Encoder
Fusion SiamKPConv. This is confirmed by qualitative results presented in Figures 5.3,
5.4 and 5.5 corresponding to each part of the testing dataset. Main differences with the
ground truth appear at boundaries of erosion parts and in some more intricate areas, as
for instance in the top middle left side of the Figure 5.4 where erosion, unchanged and
‘no data to compare’ classes are almost mixed up and cliff structure is more complex.
Concerning the ‘no data to compare’ class, main parts classified as such in the ground
truth are well classified by Encoder Fusion SiamKPConv. However, more areas identified
as ‘no data to compare’ by the network are present. To explain this, let us remark that
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Per class IoU(%)
Unchanged Erosion Acc. No data to compare

Siamese KPConv21 83.39 61.06 21.88 26.21
Encoder Fusion SiamKPConv 93.84 87.78 26.68 55.22

M3C2 + threshold 95.06 87.23 48.20 41.58

Table 5.4: Quantitative results for Siamese KPConv, Encoder Fusion SiamKP-
Conv and M3C2 methods for cliff erosion detection. Acc. stands for accumulation.

in some parts, only a few points allow the annotator to label with high precision whether
there is or not a change, whereas in some other parts, the identification is trickier, or even
impossible, leading to an annotation as ‘no data to compare’. Thereby, ground truth and
prediction should not be strictly compared.

A huge difference with the ground truth is visible in Figure 5.3b for the accumulation
class where our methods seem unclear. As related by quantitative results, accumulation
class obtains a considerably lower score in comparison to erosion. In this fully super-
vised context, these results are surely explained by the only few accumulation examples
available in the whole dataset. Indeed, the training set contains only 1.5% of points for
accumulation, whereas the erosion represents 31.1% of points. It is worth noting that
testing set follows the same trend (see Figure 5.3(a), 5.4(a) and 5.5(a)).

5.1.4 Discussion

Comparison between Siamese KPConv and Encoder Fusion SiamKPConv
architectures

As seen in the previous section, Siamese KPConv provides lower results than Encoder
Fusion SiamKPConv. The same trend was obtained in urban datasets (see Chapter 3
Section 3.4), however the gap between the two methods is higher in Petit Ailly cliff dataset
than for the urban context. To explain this, let us remark that in cliff erosion detection,
the semantic of sensed objects (i.e., cliff) remains the same through time. Changes to be
identified in this task are indeed rather related to the studied object in itself: the cliff
semantic is the same, but its shape is modified through time. This might explain the great
gap between results of the two architectures. Indeed, Siamese KPConv detects changes
only through mono-date encoder feature difference while Encoder Fusion SiamKPConv

21. Results presented in this chapter are different from those included in the paper presented at ISPRS
Congress 2022 (de Gélis et al., 2022) due to some implementation changes.
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(a) Ground truth

(b) Encoder Fusion SiamKPConv

(c) M3C2
Unchanged Erosion Accumulation No data to compare

Figure 5.3: Results on the eastern part of the cliffs between 2017 and 2018
acquisitions: (a) ground truth; (b) Encoder Fusion SiamKPConv results; (c) M3C2
results. A zoom over the accumulation is also given.
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(a) Ground truth

(b) Encoder Fusion SiamKPConv (c) M3C2
Unchanged Erosion Accumulation No data to compare

Figure 5.4: Results on the eastern part of the cliffs between 2018 and 2020
acquisitions: (a) ground truth; (b) Encoder Fusion SiamKPConv results; (c) M3C2
results.

(a) Ground truth

(b) Encoder Fusion SiamKPConv (c) M3C2
Unchanged Erosion Accumulation No data to compare

Figure 5.5: Results on the western part of the cliffs between 2018 and 2020
acquisitions: (a) ground truth; (b) Encoder Fusion SiamKPConv results; (c) M3C2
results

.
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architecture has a specific part of the network to encode feature difference at multiple
scales thanks to convolution. In the Petit Ailly cliff dataset, each point of the two PCs
has the same mono-date semantic, surely leading to quite comparable mono-date features
extracted by the encoder of Siamese KPConv, explaining the rather low results of this
method.

Comparison with M3C2 results

In Table 5.4, a comparison with the distance-based method M3C2 is provided. To distin-
guish between different types of changes, a threshold is applied on this distance. According
to Table 5.4, M3C2 obtains better results on the accumulation class. However, as seen
in the results’ description part, our methods obtained lower results mainly because of
the lack of representativity of the accumulation class in this dataset. It is worth noting
that M3C2 method is also far from being perfect on this class. Indeed, M3C2 results are
only based on a measure of distance between two PCs. Thereby, when the accumulation
appears ‘behind’ the first PC, i.e., when the stock of debris accumulated at the foot of
the cliff decreases from one survey to the other, accumulation will not be highlighted by
M3C2 method and will be even mixed with erosion (negative distance). Note that the
testing set does not contain exactly such examples, but it is likely to happened in real-
ity. Still, in Figure 5.3c, this is visible when comparing M3C2 results with the ground
truth where only the half of the accumulation is well identified. Furthermore, as visible
in Figures 5.3c and 5.5c, some little accumulations are identified on the cliff by M3C2,
conversely to the ground truth probably corresponding to vegetation growth. Using only
a distance-based method will never allow to automatically distinguish between different
positive (or negative) changes. Even though our methods do not bring optimal results
here, explained by the extremely low percentage of accumulation class in the dataset, they
also give an interpretation of changes by giving directly a categorization. For example,
for accumulation class, the morphology, and position with regard to the cliffs should be
taken into account and our architectures automatically extract features based on points
neighborhood at different scales (with Kernel Point convolution operations). Finally, our
methods give a categorization of changes based on surroundings of points. For a gener-
alization on various types of cliffs, other classes of change (e.g., on vegetation) could be
added using Encoder Fusion SiamKPConv method, which would not be possible with a
threshold applied on a distance-based method such as M3C2.
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Class representativity

Encoder Fusion SiamKPConv can be applied on cliffs with various slope degrees with
satisfactory results, but it should be noted that the results are dependent to the annotation
quality. Notice that the same protocol for the cleaning of 3D PCs and annotation should
be applied for each pair of PCs. Despite encouraging results obtained by this method,
supervised deep learning still requires a dataset both large and representative of each
class during the training phase. Thus, the accumulation class that is underrepresented
might obtain better results if our dataset contains more examples. The same remark
stands for the ‘no data to compare’ class, which is also (as mentioned in Section 5.1.3)
more subjective. Conversely to urban context, cliff variability is important (especially in
cavity) so information from missing data at the first PC of the pair cannot be interpolated
as it is done for hidden building facade in urban environment in previous chapters. Hence,
we need to create this class in areas where no conclusions on cliff dynamics can be drawn.

Artifact robustness

It is worth noting that input data should be registered together. However after the
experimentation, we noticed a Z offset error on the eastern part of the 2013-2016 pair,
probably due to a target movement during the survey or the depression of the TLS during
acquisition on a wet sandy foreshore, leading to mislabeling of erosion parts. Although
this pair is in the training set, we saw that erosion identification is satisfactory, showing
robustness of the method to acquisition artifacts and mislabeled data during the training.

Because of their verticality, Normandy chalk cliffs and more precisely Varengeville-sur-
Mer cliffs have a very scarce vegetation cover, limiting the training on vegetation growth
and retreat. Hence, these classes are not highlighted in the ground truth (correspond-
ing points are labeled as unchanged), and subsequently ignored by the deep networks.
Nevertheless, these classes should be considered if applying the method on vegetalized
cliffs.

Training configurations

In order to select the best training configuration, several settings of input data have been
tested. As explained in Section 5.1.3.1, input geometry (spherical or cylindrical) as well
as first sub-sampling rate dl0 have an influence on results. Indeed, considering a too
large sphere radius implies a higher sub-sampling rate, thus avoiding change extraction.
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Similarly, choosing a too thin sub-sampling rate requires to diminish input sphere ra-
dius, implying that not enough context can be taken into account for feature extraction.
Furthermore, we noticed that with spheres of a fixed 10 m radius, diminishing the sub-
sampling rate finally does not improve results: this may be explained by the fact that
setting dl0 to 0.15 m is enough accurate compared to ground truth precision. Thereby,
the sub-sampling rate and the size of input sphere should be chosen according to the level
of details of the ground truth.

We have reported results with spherical sub-PCs, conversely to the vertical cylindrical
inputs used with urban data of Chapter 3 that were motivated by the verticality of changes
and the need for including ground in PCs. In this cliff context, changes are more likely to
happen on horizontal axis, so we also conducted an experiment by taking some cylindrical
inputs oriented according to north-south axis as the cliff is oriented along eastern-western
axis (see Figure 5.1). Results were quite similar to those obtained with spherical inputs.
Another idea would have been to select cylinders oriented according to the normal of the
cliff face to be more precise in the orientation of cylinders.

Erosion detection scale

The method developed here presents an interest for the long-term monitoring of cliffs since
it allows the detection of mass movements of rocks. In order to detect debris falls, more
time should be spent to annotate data very accurately and adjustment of the first sub-
sampling rate (dl0) is required. This rate should be chosen equal or thinner than debris
size, worth noting that the minimum threshold for detecting erosion and accumulation
would be the ground sampling distance (GSD) of the sparser PC of the initial dataset.
Thus, initial clouds resolution should be homogeneous and adequate regarding the size of
the minimal debris falls to detect. Indeed, without homogeneity between the resolutions
of the different datasets, detection artifacts could appear.

We have shown the relevance of our networks to deal not only with urban data but
also with a first application in geosciences. In the next section, we will cope with landslide
dynamics in a use case that require dealing with vegetation as well.

5.2 Post-earthquake landslide detection

Extreme events such as earthquakes and storms often cause thousands of landslides leading
to hazard for local populations (Pollock and Wartman, 2020), and cause severe hillslope
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and landscape erosion (Malamud et al., 2004). Landslide analysis is essential to better
understand the mechanics of landslides, hillslope erosion (Marc et al., 2019), and to predict
hydro-sedimentary hazards such as alteration of river dynamics due to landslide sediment
deposit (Croissant et al., 2017). To this end, the creation of efficient and exhaustive
landslide maps is essential. In mountainous areas, topographic changes are difficult to
localize because of the access difficulty and the large size of studied areas. Thereby,
landslide mapping is performed through 2D satellite or aerial images (Behling et al., 2014;
Marc et al., 2019) or 3D point clouds acquired via aerial LiDAR survey or photogrammetry
(Ventura et al., 2011; Bernard et al., 2021). In particular, elevation data ease landslide
volume computation and change detection (Okyay et al., 2019) while 2D images may
lead to omitted topographic changes in vegetated areas (Bernard et al., 2021). For this
reason, 3D data appear again to be an interesting solution. Yet, the majority of studies
rely on 2.5D rasterization of 3D data into DEMs of each epoch (Okyay et al., 2019), and
then subsequently using a DSMd, also called Difference of DEM (DoD) in the geosciences
community (Bernard et al., 2021; Okyay et al., 2019). However, on top of information loss
due to the rasterization process (cell size and interpolation), DoD leads to strong errors
in very steep surfaces (Bernard et al., 2021). To overcome these issues, we propose to
apply our supervised architectures to process directly the raw 3D PCs to detect landslide
sources and deposits.

5.2.1 Study area and dataset

We focus on the Kaikōura region in New-Zealand where severe topographic modifications
have been sensed following the magnitude Mw 7.8 earthquake of 14 November 2016 (see
Figure 5.6a). Following this extreme event, around 30,000 landslides over a 10,000 km2

were detected (Massey et al., 2020). Two aerial LiDAR acquisitions were realized with
2 years and 8 months difference before and after the earthquake. Acquisitions have an
average ground point density of 3.8± 2.1 and 11.5± 6.8 points/m2 respectively.

Bernard et al. (2021) proposed a semi-automatic workflow called 3D point cloud differ-
encing (3D-PcD) for the detection of landslide sources and deposits from multi-temporal
airborne LiDAR data. This method is based on the M3C2 algorithm (Lague et al., 2013)
and on a two-step approach to filter out false detections that can emerge due to vege-
tation classification errors and geometrical inaccuracies: i) using significant topographic
changes (provided by M3C2 algorithm) and ii) exploiting a patch-based metric to detect
remaining false detections. Thereby, the ground truth has been obtained by a combina-
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Figure 5.6: Kaikōura study area: (a) regional map of the regional context and lo-
cation of the study area near Kaikōura (Source: Bernard et al. (2021)); (b-c) pre- and
post-earthquake ALS acquisitions colorized as function of the split for our deep learning
experiments.

tion of 3D-PcD (Bernard et al., 2021), vegetation filtering (to prevent from the detection
of inaccurate changes), and manual visual analysis for label refinement.

Taking the 5 km2 area where landslide sources and deposits were retrieved in Bernard
et al. (2021), we selected three non-overlapping areas to constitute our training, validation
and testing sets. These three splits are depicted in Figure 5.6. Unlike Bernard et al.
(2021), our network is fed with raw 3D point clouds without any filtering of vegetation.
It is trained to highlight sources and deposit areas in a single prediction step.

5.2.2 Experimental results

5.2.2.1 Experimental settings

Siamese KPConv and Encoder Fusion SiamKPConv architectures, presented in Chapter 3,
are again experimented.

In the following experiments, only the 3D coordinates of points are given as input
to the network. In this context, interesting changes are more of vertical nature, thus as
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for urban change detection, and unlike steep cliff application, we use vertical cylinders
to segment the dataset. In particular, cylinders of a radius of 30 m are used with a first
sampling rate dl0 at 0.8 m. Concerning other hyper-parameters, we use similar values
as those considered for urban settings. In particular, 3,000 samples are used at each
training epoch. They are selected using the same random drawing according to the class
representativity as in urban context. The same data augmentation process is used, i.e.,
cylinder rotation and addition of a Gaussian noise.

5.2.2.2 Results and discussion

Quantitative and qualitative results are presented in Table 5.5, Figures 5.7 and 5.8. Sim-
ilarly to the Petit Ailly cliffs, Siamese KPConv fails in recovering landslide sources and
deposits. Though only the vegetation does not appear to be identified as changes, it seems
that almost all ground surfaces are highlighted as sources or deposits (see for example
the zoom in Figure 5.8b). In addition, Siamese KPConv widely over detects both sources
and deposits. These unsatisfactory results are surely explained by the same reason as the
one given for the Petit Ailly cliff dataset concerning the changes not in the semantic but
rather in the shape of objects (see Section 5.1.4). This is even emphasized by the fact
that Siamese KPConv manages to distinguish between ground and vegetation thanks to
its mono-date encoders. Conversely, Encoder Fusion SiamKPConv seems to perform well
on this dataset (with a significant improvement over Siamese KPConv), as indicated both
by the quantitative results in Table 5.5 and the visual comparison with ground truth in
Figures 5.7 and 5.8.

Conversely, Encoder Fusion SiamKPConv predictions are very similar to the ground
truth. In particular, the main landslide sources and deposits have been correctly retrieved
even under the vegetation cover. Principal differences between the ground truth and the
prediction appear in smaller changed areas. Some overdetection of sources are visible, as
for example in the river bed at the bottom of Figure 5.7e. This is not so surprising since
there are indeed some modifications in the river bed, despite these modifications being not
interesting for landslide source and deposit identification task. River bed in the training
and validation set represents only a small proportion of the data, surely explaining why
the network has not learned that changes in river bed are out-of-interest, as it does for
changes related to vegetation. This highlights the added value of deep learning methods
over distance-based methods that cannot be used as is to identify landslides and other
ground changes in vegetated areas. Indeed, a first step of vegetation removal is required,
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Per class IoU (%)
Method mAcc (%) mIoU (%) Unchange Source Deposit

Siamese KPConv 60.59 36.88 59.83 18.03 32.78
Encoder Fusion SiamKPConv 93.87 83.84 93.58 74.38 83.57

Table 5.5: Results on Kaikōura landslide detection dataset given in %.

as done for the ground truth annotation of Kaikōura dataset. However, errors is the
vegetation identification impact the change detection step as outlined in Bernard et al.
(2021). Using Encoder Fusion SiamKPConv allows to directly use raw 3D PCs without
any task-specific pre-processing step.
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(a) Pre-earthquake (b) Post-earthquake (c) Ground truth

(d) Siamese KPConv (e) Encoder Fusion SiamKPConv

Source Deposit

Figure 5.7: Qualitative results of landslide source and deposit identification in
Kaikōura testing set. Pre- (a) and post-earthquake (b) input point clouds are shown
along with the ground truth in (c). The landslide source and deposit predictions are
visible for Siamese KPConv (d) and Encoder Fusion SiamKPConv (e) networks. Zooms
into rectangles are available in Figure 5.8.
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(a) Zoom in the
ground truth

(b) Zoom in the prediction
of Siamese KPConv

(c) Zoom in the prediction
of Encoder Fusion SKPConv

Source Deposit

Figure 5.8: Zoom in qualitative results of landslide source and deposit iden-
tification in Kaikōura dataset. The ground truth is provided in (a). The landslide
source and deposit predictions are visible for Siamese KPConv (b) and Encoder Fusion
SiamKPConv (c) networks.
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5.3 Conclusion

In this chapter, we experimented our supervised architectures (Siamese KPConv
and Encoder Fusion SiamKPConv) in two applications related to geosciences, namely
cliff erosion detection, and post-earthquake landslide source and deposit iden-
tification. Through these two experiments over the multi-sensor 3D acquisitions over
Petit Ailly cliffs (Varengeville-sur-Mer, France) and the aerial LiDAR surveys over the
mountainous region of Kaikōura (New-Zealand), we highlighted that Encoder Fusion
SiamKPConv is not specific to urban environment as long as the dataset is suf-
ficiently representative of the classes of interest. Once again, these assessments outlined
the primacy of Encoder Fusion SiamKPConv over Siamese KPConv, emphasizing previ-
ous conclusions over the necessity of encoding changes via convolutions over the
mono-date feature difference.
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Conclusions of the thesis

In this thesis, we proposed several methods to detect multiple classes of changes
from raw 3D PCs. The objective is to associate with each point of an actual PC a label
related to the change with regard to a past PC. In particular, we investigated how to
tackle this task using deep neural networks and how to handle particularly complex raw
3D PC data.

To our knowledge, this is the first study that considers deep learning-based methods
for tackling 3D PC change detection. We showed the possibility of using such methods
to obtain valuable change segmentation into diverse contexts, varying from urban appli-
cations to geosciences. While the main criticism of using deep learning-based methods
relies on the large number of required annotated data to train associated networks, we
further investigated how to lower the need for such annotated data.

The main contributions of this thesis are summarized below:

• Public annotated datasets for 3D PCs change detection: Given the lack
of public dataset with bi-temporal PCs and change-related annotation, we first
proposed in Chapter 1 a semi-automatic process to obtain AHN-CD, a bi-
temporal PC dataset containing change annotation. Although the semi-
automatic process allows to rapidly and easily obtain per-point change-related labels
from a dataset with mono-date semantic annotation, AHN-CD dataset still contains
a lot of ground truth errors due to the difficulty of automatically comparing two
PCs. Therefore, we further developed an original simulator of multi-temporal
urban models and propose to reproduce an airborne LiDAR surveying cam-
paign over these simulated models to finally obtain multi-temporal 3D PCs. As
changes in urban models are introduced by the simulator, acquired PCs are directly
annotated according to the change and also the semantic of the scene objects
at each timestamp. The simulator lets the possibility to configure the LiDAR acqui-
sition as a function of density and noise level. Thereby, we deliver Urb3DCD22, a

22. The dataset is publicly available at the following link: https://ieee-dataport.org/open-acces
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simulated dataset containing different sub-datasets to mimic various sensor quality
and type in order to experiment methods in diverse conditions.

• Supervised deep networks for raw 3D PCs change detection: After bench-
marking state-of-the-art methods for 3D PCs change detection in Chapter 2, we
came to the conclusion that existing methods are still limited, especially for un-
derstanding the scene at a global scale. Therefore, building upon the success of
deep learning in Earth observation, we proposed in Chapter 3 Siamese KPConv,
a deep network relying on 3D kernel point convolutions (Thomas et al., 2019)
and well-known Siamese architecture to tackle change segmentation directly from
raw PCs. After assessing this method on various datasets under different conditions,
we showed that our proposed method was obtaining far more precise results than the
state-of-the-art methods, including in more difficult areas containing occlusions. By
exploring variants of Siamese KPConv, we emphasized the sake of extracting
change-related features through convolutions applied on the mono-date fea-
ture difference. In Chapter 5, we also showed the effectiveness of these methods
in the field of geosciences for cliff erosion detection and post-earthquake landslide
source and deposit identification.

• Reducing the need of annotation: Considering the difficulties of obtaining ac-
curate ground truths and training sets, we explored in Chapter 4 different methods
relying on transfer learning, self-supervised learning, deep change vector
analysis and deep clustering to lower the need of annotation. We experi-
mented these methods on both real and simulated datasets, and demonstrated some
promising prospects for weakly supervised raw 3D PCs change segmentation outper-
forming traditional unsupervised and fully supervised machine learning methods.
However, we also highlighted some difficulties inherent to PCs data (e.g., point-
to-point comparison), and to the largely unconstrained problem of unsupervised
learning.

In addition to these main contributions, we would like to point out few take-home
messages. First, similarly to observations in other remote sensing tasks (e.g., 2D satel-
lite image understanding), deep learning is able to provide very accurate results for
multi-class change segmentation into raw 3D PCs in a supervised setting.

s/urb3dcd-urban-point-clouds-simulated-dataset-3d-change-detection.
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Then, both supervised and unsupervised experiments showed the importance of applying
convolutions on multi-scale features differences in order to obtain better change
detection task-related features. Lastly, we demonstrated promising possibilities in reduc-
ing the amount of necessary annotated data. However, as unsupervised setting is a
largely unconstrained problem, it is important to steer the network toward the
change detection task by a careful choice of the architecture of the deep network, and
by guiding the network through the use of well-designed hand-crafted features.

Perspectives

3D point clouds are becoming more and more widespread. For example, we can cite
the example of France, where the entire territory will be covered with a high density
(HD) aerial LiDAR (∼10 points/m2) by the end of 2025. In addition, satellite missions
providing 3D data are multiplying (e.g., Pléiades, Pléiades Néo, CO3D), allowing access
to more and more 3D data such as multi-temporal point clouds. This calls for methods
able to process these particular data and especially under the angle of change detection.
While in this thesis, we opened the field of deep learning for 3D PCs change detection
and demonstrated the possibilities offered by these deep methods, it appeals for more
development. By looking at the rapid evolution of deep learning methods, for example in
the field of computer vision, we hope multi-temporal PCs understanding can benefit from
it. In the following, we outline some future perspectives at both short and long terms.

Short-term perspectives

• Supervised techniques: Concerning supervised methods, even though we already
obtained some probing results, some recent advances can be applied in our context.
For example, one could imagine introducing attention mechanism for multi-scale
fusion of both change-related and mono-date features, as was already successfully
experimented in recent studies in 2D image change detection (Fang et al., 2021;
Chen et al., 2022a; Yin et al., 2023). Investigating transformers (Guo et al., 2021)
is for sure an interesting perspective for the improvement of our method. However,
the scaling to large remote sensing PCs is often not immediate. Note that if it is suc-
cessful in a supervised setting, these improvements can also be directly introduced
in the DC3DCD weakly supervised method by updating the back-bone.
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• Unsupervised techniques: In the Chapter 4, we proposed a method (DC3DCD)
to tackle multiple change segmentation into 3D PCs in a weakly supervised setting.
While the training of DC3DCD is fully unsupervised, the user is required to map
pseudo-clusters onto real classes. One perspective would be to combine this user-
guided mapping with interactive deep learning. Even if we saw that a majority
of pseudo-clusters is almost pure (i.e., contains only one real class) (see Figure 4.11),
some pseudo-clusters still contain several real classes. An idea would be to let the
user indicate if a cluster needs to be divided or to be fixed as is. Thereby, i) a
large amount of points will consequently be annotated according to real classes cor-
responding to all points contained in fixed clusters; ii) using interactive learning
idea (Kontogianni et al., 2020; Lenczner et al., 2022), these annotated points can be
further used as a sparse ground truth to fine-tune the whole network in a few
iterations; iii) for all fixed clusters in the ‘unchanged’ class, the contrastive loss pro-
posed at the end of Chapter 4 can be used for these points where a trustable ground
truth has been established; iv) we can imagine forcing the clustering algorithm to
divide clusters indicated as not pure (using for example ideas of hierarchical divisive
methods). Also, once the whole model is trained using DC3DCD strategy to ex-
tract discriminative change-related features, it can be interesting to train an MLP
on top of the frozen network to adapt more to user recommendation (namely,
grouping or division of clusters) to iteratively and rapidly converge (just the MLP
parameters need to be updated) to a satisfactory change solution.

• Problems of PCs comparison: Concerning DC3DCD method, we also presented
some preliminary experiments showing that adding a contrastive term in the loss
could improve results up to fully supervised methods if we have a faultless partition
of points into binary changes. We already tried several methods (e.g., through multi-
task learning) to obtain this binary partition of points, but we obtained mitigated
results due to the complexity of directly comparing two PCs. Indeed, a direct point-
to-point comparison is impossible unless a strategy is used to match points from the
two dates. While in this thesis we basically used the nearest point strategy, some
recent works (Courty et al., 2016; Fiorucci et al., 2023) proposed to use optimal
transport strategies to match points of the two dates. Indeed, as a PC can be
modelled in an empirical discrete probability distribution, optimal transport can be
used to match these two distributions of the two PCs.

212

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Long-term perspectives

• In an urban context, we proposed a simulator to generate annotated 3D PCs. In
Chapter 4, we showed first experiments on how to take the advantage of such sim-
ulated data to pre-train a deep network, and thus, drastically diminish the use of
annotated real data without any specific fine-tuning strategies. In a more general
way, the process that consists of using simulations to pretrain networks is appealing,
in particular to limit the number of annotated data. To go further, we can exploit
knowledge distillation (Wang and Yoon, 2021) between a teacher network trained
on the simulated data and a student network for predicting change in the real data.
This amounts to domain adaptation, as recently presented for 3D PCs from different
modalities, including synthetic-to-real data adaptation (Cardace et al., 2023; Zahs
et al., 2023) or 2D images of multiple sources adaption (Liu et al., 2022a; Liu et al.,
2022b).

• Depending on the use case, different types of changes can interest a user. We
proposed in the weakly supervised setting to cluster all types of changes and to let
the user selecting those of interest. One perspective consists of making the network
predicting a hierarchical change map. Hierarchical change segmentation would
allow attributing several labels concerning the scale of the change. For example,
to distinguish between changed buildings with large modification (e.g., totally new
building) to medium changes (e.g., modification in the roof shape, house extensions,
supplementary floors, . . . ) or even only slight modification (e.g., new dormer or
balcony), it would be interesting to tag this modified building with different labels
to more easily select the scale of desired change extraction. Teruggi et al. (2020)
showed the sake of multi-scale hierarchical segmentation in 3D PCs for cultural
heritage buildings (such as cathedrals) using machine learning. However, to the
best of our knowledge, no deep learning method for hierarchical segmentation of 3D
PCs exist yet.

• While bi-temporal change detection was tackled in this thesis, with the multipli-
cation of 3D PC acquisitions, it could be interesting to further use time series
of 3D PCs. Note that the thesis was motivated by the support of CO3D with
dedicated time series analysis solutions. In the change detection task, time series
help to distinguish between permanent and non-permanent changes. For example,
this can be an asset for vegetation monitoring affected by seasonal variation. Also,
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in geosciences, 3D PC time series are often available to monitor a specific area (e.g.,
the Varengeville-sur-Mer cliff erosion dataset detailed in Chapter 5, beach-dune
monitoring (Vos et al., 2022), glacier monitoring (Zahs et al., 2022)). Thus, having
methods to tackle multi-temporal change detection could be interesting to monitor
non-abrupt long-term changes, for example. Furthermore, the use of time series
may help in the proposed perspective of detecting changes in a hierarchical context.
Indeed, relying on several dates may help in retrieving more general evolution ten-
dency of certain areas. For example, an isolated change may be distinguished from
a global one thanks to long term time series. This could be used for urban planing,
for example among others.

Point Cloud Change Detection in the Wild

We demonstrated the relevance of our supervised methods in different scopes from urban
to geosciences with erosion or landslides detection, for example. We strongly believe that
our deep supervised methods, in particular Encoder Fusion SiamKPConv, are already
mature enough. Being agnostic to the type of 3D PCs and application, supported by
publicly available source code, they can solve various change detection problems if well-
used. Indeed, as shown in this thesis, if a large enough annotated dataset is available
(with splits containing a fair distribution of all classes of change), the method is able to
predict different kind of changes. This opens new possibilities to study the evolution of
our landscapes for a more global understanding of environmental dynamics.
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triggered by the MW 7.8 2016 Kaikōura Earthquake, New Zealand, derived from digital
surface difference modeling», in: Journal of Geophysical Research: Earth Surface 125.7,
e2019JF005163.

Masson-Delmotte, Valérie, Panmao Zhai, Anna Pirani, Sarah L. Connors, C. Péan, So-
phie Berger, Nada Caud, Y. Chen, Leah Goldfarb, Melissa I. Gomis, Mengtian Huang,
Katherine Leitzell, Elisabeth Lonnoy, J. B. Robin Matthews, Thomas K. Maycock,
Tim Waterfield, Özge Yelekçi, R. Yu, and Botao Zhou, eds. (2021), Climate Change
2021: The Physical Science Basis. Contribution of Working Group I to the Sixth As-
sessment Report of the Intergovernmental Panel on Climate Change, Cambridge Uni-
versity Press.

231

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Mei, Guofeng, Xiaoshui Huang, Juan Liu, Jian Zhang, and Qiang Wu (2022a), «Unsu-
pervised Point Cloud Pre-Training Via Contrasting and Clustering», in: 2022 IEEE
International Conference on Image Processing (ICIP), IEEE, pp. 66–70.

Mei, Guofeng, Cristiano Saltori, Fabio Poiesi, Jian Zhang, Elisa Ricci, Nicu Sebe, and
Qiang Wu (2022b), «Data Augmentation-free Unsupervised Learning for 3D Point
Cloud Understanding», in: arXiv preprint arXiv:2210.02798.

Michoud, Clément, Dario Carrea, Stéphane Costa, Marc-Henri Derron, Michel Jaboyedoff,
Christophe Delacourt, Olivier Maquaire, Pauline Letortu, and Robert Davidson (Dec.
2014), «Landslide detection and monitoring capability of boat-based mobile laser scan-
ning along Dieppe coastal cliffs, Normandy», in: Landslides 12.2, pp. 403–418, doi:
10.1007/s10346-014-0542-5, (visited on 01/03/2022).

Mittal, Himangi, Brian Okorn, Arpit Jangid, and David Held (2021), «Self-Supervised
Point Cloud Completion via Inpainting», in: arXiv preprint arXiv:2111.10701.

Mortimore, Rory N. and A. Duperret (2004), Coastal Chalk Cliff Instability, en, Geological
Society of London, isbn: 978-1-86239-150-5.

Mou, L., M. Schmitt, Y. Wang, and X. X. Zhu (2017), «A CNN for the identification of
corresponding patches in SAR and optical imagery of urban scenes», in: 2017 Joint
Urban Remote Sensing Event (JURSE), IEEE, pp. 1–4.

Murakami, H., K. Nakagawa, H. Hasegawa, T. Shibata, and E. Iwanami (1999), «Change
detection of buildings using an airborne laser scanner», in: ISPRS Journal of Pho-
togrammetry and Remote Sensing 54.2-3, pp. 148–152.

Mustapha, Ahmad, Wael Khreich, and Wasim Masr (2022), «A Deep Dive into Deep
Cluster», in: arXiv preprint arXiv:2207.11839.

Nanni, Loris, Stefano Ghidoni, and Sheryl Brahnam (2017), «Handcrafted vs. non-handcrafted
features for computer vision classification», in: Pattern Recognition 71, pp. 158–172.

Nijhawan, Rahul, Josodhir Das, and Balasubramanian Raman (2019), «A hybrid of deep
learning and hand-crafted features based approach for snow cover mapping», in: In-
ternational journal of remote sensing 40.2, pp. 759–773.

Niu, Xudong, Maoguo Gong, Tao Zhan, and Yuelei Yang (2018), «A conditional adver-
sarial network for change detection in heterogeneous images», in: IEEE Geoscience
and Remote Sensing Letters 16.1, pp. 45–49.

Noroozi, Mehdi and Paolo Favaro (2016), «Unsupervised learning of visual representa-
tions by solving jigsaw puzzles», in: Computer Vision–ECCV 2016: 14th European

232

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024

https://doi.org/10.1007/s10346-014-0542-5


Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI,
Springer, pp. 69–84.

Nuth, Christopher and Andreas Kääb (2011), «Co-registration and bias corrections of
satellite elevation data sets for quantifying glacier thickness change», in: The Cryosphere
5.1, pp. 271–290.

Okyay, U., J. Telling, C.L. Glennie, and W.E. Dietrich (2019), «Airborne lidar change
detection: An overview of Earth sciences applications», in: Earth-Science Reviews
198, p. 102929.

Otsu, Nobuyuki (1979), «A threshold selection method from gray-level histograms», in:
IEEE TSMC 9.1, pp. 62–66.

Palazzolo, Emanuele and Cyrill Stachniss (2018), «Fast image-based geometric change
detection given a 3D model», in: 2018 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, pp. 6308–6315.

Pang, S., X. Hu, Z. W., and Y. Lu (2014), «Object-based analysis of airborne LiDAR
data for building change detection», in: Remote Sensing 6.11, pp. 10733–10749.

Pelletier, Charlotte, Geoffrey I Webb, and François Petitjean (2019), «Temporal convolu-
tional neural network for the classification of satellite image time series», in: Remote
Sensing 11.5, p. 523.

Peng, Daifeng and Yongjun Zhang (2016), «Building change detection by combining Lidar
data and ortho image», in: International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences 41.

Peng, Daifeng, Yongjun Zhang, and Haiyan Guan (2019), «End-to-end change detection
for high resolution satellite images using improved UNet++», in: Remote Sensing
11.11, p. 1382.

Peng, Xueli, Ruofei Zhong, Zhen Li, and Qingyang Li (2020), «Optical remote sensing
image change detection based on attention mechanism and image difference», in: IEEE
Transactions on Geoscience and Remote Sensing 59.9, pp. 7296–7307.

Pollock, William and Joseph Wartman (2020), «Human vulnerability to landslides», in:
GeoHealth 4.10, e2020GH000287.

Pomerol, B., H. W. Bailey, C. Monciardini, and R. N. Mortimore (Dec. 1987), «Lithos-
tratigraphy and biostratigraphy of the lewes and seaford chalks: A link across the
Anglo-Paris basin at the Turonian-Senonian boundary», en, in: Cretaceous Research
8.4, pp. 289–304, issn: 0195-6671, doi: 10.1016/0195-6671(87)90001-2, (visited on
12/13/2021).

233

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024

https://doi.org/10.1016/0195-6671(87)90001-2


Poursaeed, Omid, Tianxing Jiang, Han Qiao, Nayun Xu, and Vladimir G Kim (2020),
«Self-supervised learning of point clouds via orientation estimation», in: 2020 Inter-
national Conference on 3D Vision (3DV), IEEE, pp. 1018–1028.

Qi, Charles R, Hao Su, Kaichun Mo, and Leonidas J Guibas (2017a), «Pointnet: Deep
learning on point sets for 3D classification and segmentation», in: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 652–660.

Qi, Charles Ruizhongtai, Li Yi, Hao Su, and Leonidas J Guibas (2017b), «Pointnet++:
Deep hierarchical feature learning on point sets in a metric space», in: Advances in
neural information processing systems 30.

Qin, R., J. Tian, and P. Reinartz (2016), «3D change detection – approaches and ap-
plications», in: ISPRS Journal of Photogrammetry and Remote Sensing 122, pp. 41–
56.

Remelli, Edoardo, Pierre Baque, and Pascal Fua (2019), «Neuralsampler: Euclidean point
cloud auto-encoder and sampler», in: arXiv preprint arXiv:1901.09394.

Ren, Yazhou, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, Philip S Yu,
and Lifang He (2022), «Deep clustering: A comprehensive survey», in: arXiv preprint
arXiv:2210.04142.

Rethage, Dario, Johanna Wald, Jurgen Sturm, Nassir Navab, and Federico Tombari
(2018), «Fully-convolutional point networks for large-scale point clouds», in: Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 596–611.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015), «U-net: Convolutional net-
works for biomedical image segmentation», in: International Conference on Medical
image computing and computer-assisted intervention, Springer, pp. 234–241.

Rottensteiner, Franz (2008), «Automated updating of building data bases from digi-
tal surface models and multi-spectral images: Potential and limitations», in: ISPRS
Congress, Beijing, China, vol. 37, pp. 265–270.

Roynard, X., J.-E. Deschaud, and F. Goulette (2016), «Fast and robust segmentation and
classification for change detection in urban point clouds», in: ISPRS Archives XLI-B3,
pp. 693–699.

Roynard, Xavier, Jean-Emmanuel Deschaud, and François Goulette (2018), «Paris-Lille-
3D: A large and high-quality ground-truth urban point cloud dataset for automatic
segmentation and classification», in: Int. J. of Robotics Research 37.6, pp. 545–557,
doi: 10.1177/0278364918767506.

234

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024

https://doi.org/10.1177/0278364918767506


Rußwurm, Marc, Sherrie Wang, Marco Korner, and David Lobell (2020), «Meta-learning
for few-shot land cover classification», in: Proceedings of the ieee/cvf conference on
computer vision and pattern recognition workshops, pp. 200–201.

Saha, Sudipan, Francesca Bovolo, and Lorenzo Bruzzone (2019), «Unsupervised deep
change vector analysis for multiple-change detection in VHR images», in: IEEE Trans-
actions on Geoscience and Remote Sensing 57.6, pp. 3677–3693.

— (2020), «Change detection in image time-series using unsupervised LSTM», in: IEEE
Geoscience and Remote Sensing Letters.

Saha, Sudipan, Patrick Ebel, and Xiao Xiang Zhu (2021), «Self-supervised multisensor
change detection», in: IEEE Transactions on Geoscience and Remote Sensing 60,
pp. 1–10.

Sande, Corné Van Der, Sylvie Soudarissanane, and Kourosh Khoshelham (2010), «As-
sessment of relative accuracy of AHN-2 laser scanning data using planar features», in:
Sensors 10.9, pp. 8198–8214.

Sandric, Ionut, Bogdan Mihai, Ionut Savulescu, Bogdan Suditu, and Zenaida Chitu (2007),
«Change Detection Analysis for Urban Development in Bucharest-Romania, using
High Resolution Satellite Imagery», in: 2007 Urban Remote Sensing Joint Event,
IEEE, pp. 1–8, doi: 10.1109/URS.2007.371848.

Sanghi, Aditya (2020), «Info3d: Representation learning on 3D objects using mutual infor-
mation maximization and contrastive learning», in: European Conference on Computer
Vision, Springer, pp. 626–642.

Sauder, Jonathan and Bjarne Sievers (2019), «Self-supervised deep learning on point
clouds by reconstructing space», in: Advances in Neural Information Processing Sys-
tems 32.

Sculley, David (2010), «Web-scale k-means clustering», in: Proceedings of the 19th inter-
national conference on World wide web, pp. 1177–1178.

Seydi, Seyd Teymoor and Mahdi Hasanlou (2021), «A new structure for binary and mul-
tiple hyperspectral change detection based on spectral unmixing and convolutional
neural network», in: Measurement 186, p. 110137.

Shafique, Ayesha, Guo Cao, Zia Khan, Muhammad Asad, and Muhammad Aslam (2022),
«Deep learning-based change detection in remote sensing images: a review», in: Remote
Sensing 14.4, p. 871.

235

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024

https://doi.org/10.1109/URS.2007.371848


Sharma, Abhishek, Oliver Grau, and Mario Fritz (2016), «Vconv-dae: Deep volumetric
shape learning without object labels», in: European conference on computer vision,
Springer, pp. 236–250.

Shi, Shaoshuai, Xiaogang Wang, and Hongsheng Li (2019), «Pointrcnn: 3D object pro-
posal generation and detection from point cloud», in: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 770–779.

Shi, Wenzhong, Min Zhang, Rui Zhang, Shanxiong Chen, and Zhao Zhan (2020a), «Change
detection based on artificial intelligence: State-of-the-art and challenges», in: Remote
Sensing 12.10, p. 1688.

Shi, Yi, Mengchen Xu, Shuaihang Yuan, and Yi Fang (2020b), «Unsupervised deep shape
descriptor with point distribution learning», in: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 9353–9362.

Shirowzhan, S., S.M.E Sepasgozar, H. Li, J. Trinder, and P. Tang (2019), «Comparative
analysis of machine learning and point-based algorithms for detecting 3D changes in
buildings over time using bi-temporal lidar data», in: Automation in Construction
105, p. 102841.

Siddiqui, F. U. and M. Awrangjeb (2017), «A novel building change detection method
using 3D building models», in: 2017 International Conference on Digital Image Com-
puting: Techniques and Applications (DICTA), IEEE, pp. 1–8.

Simonyan, Karen and Andrew Zisserman (2014), «Very deep convolutional networks for
large-scale image recognition», in: arXiv preprint arXiv:1409.1556.

Slott, Jordan M., A. Brad Murray, Andrew D. Ashton, and Thomas J. Crowley (Sept.
2006), «Coastline responses to changing storm patterns», in: Geophysical Research
Letters 33.18, p. L18404, issn: 0094-8276, doi: 10.1029/2006GL027445, (visited on
01/03/2022).

Sofina, Natalia and Manfred Ehlers (2016), «Building change detection using high resolu-
tion remotely sensed data and GIS», in: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 9.8, pp. 3430–3438.

Song, Ahram, Jaewan Choi, Youkyung Han, and Yongil Kim (2018), «Change detection
in hyperspectral images using recurrent 3D fully convolutional networks», in: Remote
Sensing 10.11, p. 1827.

Song, Lei, Min Xia, Junlan Jin, Ming Qian, and Yonghong Zhang (2021), «SUACDNet:
Attentional change detection network based on siamese U-shaped structure», in: In-
ternational Journal of Applied Earth Observation and Geoinformation 105, p. 102597.

236

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024

https://doi.org/10.1029/2006GL027445


Stal, C., F. Tack, P. De Maeyer, A. De Wulf, and R. Goossens (2013), «Airborne pho-
togrammetry and lidar for DSM extraction and 3D change detection over an ur-
ban area–a comparative study», in: International Journal of Remote Sensing 34.4,
pp. 1087–1110.

Stilla, Uwe and Yusheng Xu (2023), «Change detection of urban objects using 3D point
clouds: A review», in: ISPRS Journal of Photogrammetry and Remote Sensing 197,
pp. 228–255.

Sun, Yongbin, Yue Wang, Ziwei Liu, Joshua Siegel, and Sanjay Sarma (2020), «Pointgrow:
Autoregressively learned point cloud generation with self-attention», in: Proceedings
of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 61–70.

Swirad, Zuzanna M and Adam P Young (2021), «Automating coastal cliff erosion mea-
surements from large-area LiDAR datasets in California, USA», in: Geomorphology,
p. 107799.

Tang, Lulu, Ke Chen, Chaozheng Wu, Yu Hong, Kui Jia, and Zhi-Xin Yang (2020), «Im-
proving semantic analysis on point clouds via auxiliary supervision of local geometric
priors», in: IEEE Transactions on Cybernetics.

Tang, Xu, Huayu Zhang, Lichao Mou, Fang Liu, Xiangrong Zhang, Xiao Xiang Zhu, and
Licheng Jiao (2021), «An unsupervised remote sensing change detection method based
on multiscale graph convolutional network and metric learning», in: IEEE Transac-
tions on Geoscience and Remote Sensing 60, pp. 1–15.

Tchapmi, Lyne, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese
(2017), «Segcloud: Semantic segmentation of 3D point clouds», in: 2017 international
conference on 3D vision (3DV), IEEE, pp. 537–547.

Teo, Tee-Ann and Tian-Yuan Shih (2013), «Lidar-based change detection and change-
type determination in urban areas», in: International Journal of Remote Sensing 34.3,
pp. 968–981.

Teruggi, Simone, Eleonora Grilli, Michele Russo, Francesco Fassi, and Fabio Remondino
(2020), «A hierarchical machine learning approach for multi-level and multi-resolution
3D point cloud classification», in: Remote Sensing 12.16, p. 2598.

Thomas, Hugues, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François
Goulette, and Leonidas J Guibas (2019), «KPConv: Flexible and deformable convolu-
tion for point clouds», in: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6411–6420.

237

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Thomee, Bart, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Dou-
glas Poland, Damian Borth, and Li-Jia Li (2016), «YFCC100M: The new data in
multimedia research», in: Communications of the ACM 59.2, pp. 64–73.

Touati, R, M Mignotte, and M Dahmane (2020a), «Partly Uncoupled Siamese Model
for Change Detection from Heterogeneous Remote Sensing Imagery», in: Journal of
Remote sensing and GIS 9.1.

Touati, Redha, Max Mignotte, and Mohamed Dahmane (2020b), «Anomaly feature learn-
ing for unsupervised change detection in heterogeneous images: A deep sparse residual
model», in: IEEE Journal of Selected Topics in Applied Earth Observations and Re-
mote Sensing 13, pp. 588–600.

Tran, T.H.G., C. Ressl, and N. Pfeifer (2018), «Integrated change detection and classifi-
cation in urban areas based on airborne laser scanning point clouds», in: Sensors 18.2,
p. 448.

Valsesia, Diego, Giulia Fracastoro, and Enrico Magli (2018), «Learning localized genera-
tive models for 3D point clouds via graph convolution», in: International conference
on learning representations.

Vandenhende, Simon, Stamatios Georgoulis, Wouter Van Gansbeke, Marc Proesmans,
Dengxin Dai, and Luc Van Gool (2021), «Multi-task learning for dense prediction
tasks: A survey», in: IEEE transactions on pattern analysis and machine intelligence
44.7, pp. 3614–3633.

Varnes, David J (1978), «Slope movement types and processes», in: Special report 176,
pp. 11–33.

Varney, Nina, Vijayan K Asari, and Quinn Graehling (2020), «DALES: a large-scale aerial
LiDAR data set for semantic segmentation», in: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops, pp. 186–187.

Ventura, Guido, Giuseppe Vilardo, Carlo Terranova, and Eliana Bellucci Sessa (2011),
«Tracking and evolution of complex active landslides by multi-temporal airborne Li-
DAR data: The Montaguto landslide (Southern Italy)», in: Remote Sensing of Envi-
ronment 115.12, pp. 3237–3248.

Vetrivel, Anand, Markus Gerke, Norman Kerle, Francesco Nex, and George Vosselman
(2018), «Disaster damage detection through synergistic use of deep learning and 3D
point cloud features derived from very high resolution oblique aerial images, and
multiple-kernel-learning», in: ISPRS journal of photogrammetry and remote sensing
140, pp. 45–59.

238

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Vos, Sander, Katharina Anders, Mieke Kuschnerus, Roderik Lindenbergh, Bernhard Höfle,
Stefan Aarninkhof, and Sierd de Vries (2022), «A high-resolution 4D terrestrial laser
scan dataset of the Kijkduin beach-dune system, The Netherlands», in: Scientific Data
9.1, pp. 1–11.

Vu, T. T., M. Matsuoka, and F. Yamazaki (2004), «LIDAR-based change detection of
buildings in dense urban areas», in: IGARSS 2004. 2004 IEEE International Geo-
science and Remote Sensing Symposium, vol. 5, IEEE, pp. 3413–3416.

Wang, Hanchen, Qi Liu, Xiangyu Yue, Joan Lasenby, and Matt Kusner (2020a), «Pre-
training by completing point clouds», in.

Wang, Jue, Yanfei Zhong, and Liangpei Zhang (2023), «Change Detection Based on Super-
vised Contrastive Learning for High-Resolution Remote Sensing Imagery», in: IEEE
Transactions on Geoscience and Remote Sensing.

Wang, Lei, Yuchun Huang, Yaolin Hou, Shenman Zhang, and Jie Shan (2019a), «Graph
attention convolution for point cloud semantic segmentation», in: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10296–10305.

Wang, Lin and Kuk-Jin Yoon (2021), «Knowledge distillation and student-teacher learning
for visual intelligence: A review and new outlooks», in: IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Wang, Moyang, Kun Tan, Xiuping Jia, Xue Wang, and Yu Chen (2020b), «A deep siamese
network with hybrid convolutional feature extraction module for change detection
based on multi-sensor remote sensing images», in: Remote Sensing 12.2, p. 205.

Wang, Peng-Shuai, Yu-Qi Yang, Qian-Fang Zou, Zhirong Wu, Yang Liu, and Xin Tong
(2021), «Unsupervised 3D learning for shape analysis via multiresolution instance
discrimination», in: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 4, pp. 2773–2781.

Wang, Shenlong, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun
(2018), «Deep parametric continuous convolutional neural networks», in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2589–2597.

Wang, Xue and Peijun Li (2020), «Extraction of urban building damage using spectral,
height and corner information from VHR satellite images and airborne LiDAR data»,
in: ISPRS Journal of Photogrammetry and Remote Sensing 159, pp. 322–336.

Wang, Yi, Conrad M Albrecht, Nassim Ait Ali Braham, Lichao Mou, and Xiao Xiang
Zhu (2022), «Self-supervised learning in remote sensing: A review», in: arXiv preprint
arXiv:2206.13188.

239

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin
M Solomon (2019b), «Dynamic graph cnn for learning on point clouds», in: ACM
Transactions On Graphics (TOG) 38.5, pp. 1–12.

Wang, Zhihao, Jian Chen, and Steven CH Hoi (2020c), «Deep learning for image super-
resolution: A survey», in: IEEE transactions on pattern analysis and machine intelli-
gence 43.10, pp. 3365–3387.

Warth, G., A. Braun, C. Bödinger, V. Hochschild, and F. Bachofer (2019), «DSM-based
identification of changes in highly dynamic urban agglomerations», in: European Jour-
nal of Remote Sensing 52.1, pp. 322–334.

Waser, LT, Emmanuel Baltsavias, H Eisenbeiss, C Ginzler, Armin Grün, M Kuechler, and
P Thee (2007), «Change detection in mire ecosystems: assessing changes of forest area
using airborne remote sensing data», in: International archives of the photogrammetry,
remote sensing and spatial information sciences 36.7/C50, pp. 313–318.

Wen, Xin, Tianyang Li, Zhizhong Han, and Yu-Shen Liu (2020), «Point cloud completion
by skip-attention network with hierarchical folding», in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1939–1948.

Widyaningrum, Elyta, Qian Bai, Marda K Fajari, and Roderik C Lindenbergh (2021),
«Airborne laser scanning point cloud classification using the DGCNN deep learning
method», in: Remote Sensing 13.5, p. 859.

Wu, Bichen, Alvin Wan, Xiangyu Yue, and Kurt Keutzer (2018), «Squeezeseg: Convolu-
tional neural nets with recurrent crf for real-time road-object segmentation from 3D
lidar point cloud», in: 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), IEEE, pp. 1887–1893.

Wu, Chen, Hongruixuan Chen, Bo Du, and Liangpei Zhang (2021), «Unsupervised change
detection in multitemporal VHR images based on deep kernel PCA convolutional
mapping network», in: IEEE Transactions on Cybernetics.

Wu, Jiajun, Chengkai Zhang, Tianfan Xue, Bill Freeman, and Josh Tenenbaum (2016),
«Learning a probabilistic latent space of object shapes via 3D generative-adversarial
modeling», in: Advances in neural information processing systems 29.

Wu, Zhirong, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and
Jianxiong Xiao (2015), «3D ShapeNets: A deep representation for volumetric shapes»,
in: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1912–1920.

240

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Xiang, Shao, Mi Wang, Xiaofan Jiang, Guangqi Xie, Zhiqi Zhang, and Peng Tang (2021),
«Dual-task semantic change detection for remote sensing images using the generative
change field module», in: Remote Sensing 13.16, p. 3336.

Xiao, Aoran, Jiaxing Huang, Dayan Guan, Xiaoqin Zhang, Shijian Lu, and Ling Shao
(2023), «Unsupervised Point Cloud Representation Learning with Deep Neural Net-
works: A Survey», in: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence.

Xie, Saining, Jiatao Gu, Demi Guo, Charles R Qi, Leonidas Guibas, and Or Litany (2020),
«Pointcontrast: Unsupervised pre-training for 3D point cloud understanding», in: Eu-
ropean conference on computer vision, Springer, pp. 574–591.

Xu, Hao, Liang Cheng, Manchun Li, Yanming Chen, and Lishan Zhong (2015a), «Using
octrees to detect changes to buildings and trees in the urban environment from airborne
LiDAR data», in: Remote Sensing 7.8, pp. 9682–9704.

Xu, Quanfu, Keming Chen, Xian Sun, Yue Zhang, Hao Li, and Guangluan Xu (2020),
«Pseudo-Siamese Capsule Network for Aerial Remote Sensing Images Change Detec-
tion», in: IEEE Geoscience and Remote Sensing Letters.

Xu, Sudan, George Vosselman, and Sander Oude Elberink (2015b), «Detection and classi-
fication of changes in buildings from airborne laser scanning data», in: Remote sensing
7.12, pp. 17051–17076.

Xu, Yifan, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao (2018), «Spidercnn: Deep
learning on point sets with parameterized convolutional filters», in: Proceedings of the
European Conference on Computer Vision (ECCV), pp. 87–102.

Yang, Guandao, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath
Hariharan (2019), «Pointflow: 3D point cloud generation with continuous normaliz-
ing flows», in: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 4541–4550.

Yang, Juyoung, Pyunghwan Ahn, Doyeon Kim, Haeil Lee, and Junmo Kim (2021), «Pro-
gressive seed generation auto-encoder for unsupervised point cloud learning», in: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6413–
6422.

Yang, Xiangli, Zixing Song, Irwin King, and Zenglin Xu (2022), «A survey on deep semi-
supervised learning», in: IEEE Transactions on Knowledge and Data Engineering.

241

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Yang, Yaoqing, Chen Feng, Yiru Shen, and Dong Tian (2018), «Foldingnet: Point cloud
auto-encoder via deep grid deformation», in: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 206–215.

Yin, Hongyang, Liguo Weng, Yan Li, Min Xia, Kai Hu, Haifeng Lin, and Ming Qian
(2023), «Attention-guided siamese networks for change detection in high resolution
remote sensing images», in: International Journal of Applied Earth Observation and
Geoinformation 117, p. 103206, issn: 1569-8432, doi: https://doi.org/10.1016/j
.jag.2023.103206, url: https://www.sciencedirect.com/science/article/pii
/S1569843223000286.

Young, A. P. and S. A. Ashford (Mar. 2006), «Application of airborne LIDAR for seacliff
volumetric change and beach-sediment budget contributions», in: Journal of Coastal
Research 22.2, pp. 307–318, issn: 0749-0208, doi: 10.2112/05-0548.1, (visited on
01/04/2022).

Young, Adam P., R. E. Flick, R. Gutierrez, and R. T. Guza (Nov. 2009), «Comparison
of short-term seacliff retreat measurement methods in Del Mar, California», in: Geo-
morphology 112.3-4, pp. 318–323, issn: 0169-555X, doi: 10.1016/j.geomorph.2009
.06.018, (visited on 01/03/2022).

Young, Adam P., M. J. Olsen, N. Driscoll, R. E. Flick, R. Gutierrez, R. T. Guza, E. John-
stone, and F. Kuester (Apr. 2010), «Comparison of Airborne and Terrestrial Lidar
Estimates of Seacliff Erosion in Southern California», in: Photogrammetric Engineer-
ing and Remote Sensing 76.4, pp. 421–427, issn: 0099-1112, doi: 10.14358/PERS.76
.4.421, (visited on 01/03/2022).

Yu, Xiao, Junfu Fan, Peng Zhang, Liusheng Han, Dafu Zhang, and Guangwei Sun (2019),
«Multi-scale convolutional neural network for remote sensing image change detection»,
in: Geoinformatics in Sustainable Ecosystem and Society, Springer, pp. 234–242.

Yuan, Wentao, Tejas Khot, David Held, Christoph Mertz, and Martial Hebert (2018),
«Pcn: Point completion network», in: 2018 International Conference on 3D Vision
(3DV), IEEE, pp. 728–737.

Zagoruyko, Sergey and Nikos Komodakis (2015), «Learning to compare image patches via
convolutional neural networks», in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4353–4361.

Zahs, Vivien, Katharina Anders, Julia Kohns, Alexander Stark, and Bernhard Höfle
(2023), «Classification of structural building damage grades from multi-temporal pho-

242

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024

https://doi.org/https://doi.org/10.1016/j.jag.2023.103206
https://doi.org/https://doi.org/10.1016/j.jag.2023.103206
https://www.sciencedirect.com/science/article/pii/S1569843223000286
https://www.sciencedirect.com/science/article/pii/S1569843223000286
https://doi.org/10.2112/05-0548.1
https://doi.org/10.1016/j.geomorph.2009.06.018
https://doi.org/10.1016/j.geomorph.2009.06.018
https://doi.org/10.14358/PERS.76.4.421
https://doi.org/10.14358/PERS.76.4.421


togrammetric point clouds using a machine learning model trained on virtual laser
scanning data», in: arXiv preprint arXiv:2302.12591.

Zahs, Vivien, Lukas Winiwarter, Katharina Anders, Jack G Williams, Martin Rutzinger,
and Bernhard Höfle (2022), «Correspondence-driven plane-based M3C2 for lower un-
certainty in 3D topographic change quantification», in: ISPRS Journal of Photogram-
metry and Remote Sensing 183, pp. 541–559.

Zhan, Tao, Maoguo Gong, Xiangming Jiang, and Shuwei Li (2018), «Log-based trans-
formation feature learning for change detection in heterogeneous images», in: IEEE
Geoscience and Remote Sensing Letters 15.9, pp. 1352–1356.

Zhan, Yang, Kun Fu, Menglong Yan, Xian Sun, Hongqi Wang, and Xiaosong Qiu (2017),
«Change detection based on deep siamese convolutional network for optical aerial
images», in: IEEE Geoscience and Remote Sensing Letters 14.10, pp. 1845–1849.

Zhang, Jinming, Xiangyun Hu, and Hengming Dai (2021a), «Unsupervised Learning of
ALS Point Clouds for 3-D Terrain Scene Clustering», in: IEEE Geoscience and Remote
Sensing Letters 19, pp. 1–5.

Zhang, Ling and Zhigang Zhu (2019), «Unsupervised feature learning for point cloud un-
derstanding by contrasting and clustering using graph convolutional neural networks»,
in: 2019 international conference on 3D vision (3DV), IEEE, pp. 395–404.

Zhang, Mengya, Guangluan Xu, Keming Chen, Menglong Yan, and Xian Sun (2018a),
«Triplet-based semantic relation learning for aerial remote sensing image change de-
tection», in: IEEE Geoscience and Remote Sensing Letters 16.2, pp. 266–270.

Zhang, Min and Wenzhong Shi (2020), «A feature difference convolutional neural network-
based change detection method», in: IEEE Transactions on Geoscience and Remote
Sensing 58.10, pp. 7232–7246.

Zhang, Puzhao, Maoguo Gong, Linzhi Su, Jia Liu, and Zhizhou Li (2016), «Change de-
tection based on deep feature representation and mapping transformation for multi-
spatial-resolution remote sensing images», in: ISPRS Journal of Photogrammetry and
Remote Sensing 116, pp. 24–41.

Zhang, Xinzheng, Hang Su, Ce Zhang, Xiaowei Gu, Xiaoheng Tan, and Peter M Atkinson
(2021b), «Robust unsupervised small area change detection from SAR imagery us-
ing deep learning», in: ISPRS Journal of Photogrammetry and Remote Sensing 173,
pp. 79–94.

Zhang, Yu and Qiang Yang (2021), «A survey on multi-task learning», in: IEEE Trans-
actions on Knowledge and Data Engineering 34.12, pp. 5586–5609.

243

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Zhang, Z., G. Vosselman, M. Gerke, C. Persello, D. Tuia, and M.Y. Yang (2019), «De-
tecting building changes between airborne laser scanning and photogrammetric data»,
in: Remote sensing 11.20, p. 2417.

Zhang, Z., G. Vosselman, M. Gerke, D. Tuia, and M. Y. Yang (2018b), «Change detection
between multimodal remote sensing data using siamese CNN», in: arXiv preprint
arXiv:1807.09562.

Zhang, Zaiwei, Rohit Girdhar, Armand Joulin, and Ishan Misra (2021c), «Self-supervised
pretraining of 3D features on any point-cloud», in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 10252–10263.

Zhao, Wenzhi, Lichao Mou, Jiage Chen, Yanchen Bo, and William J Emery (2019a),
«Incorporating metric learning and adversarial network for seasonal invariant change
detection», in: IEEE Transactions on Geoscience and Remote Sensing 58.4, pp. 2720–
2731.

Zhao, Yongheng, Tolga Birdal, Haowen Deng, and Federico Tombari (2019b), «3D point
capsule networks», in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 1009–1018.

Zheng, Xiangtao, Xiumei Chen, Xiaoqiang Lu, and Bangyong Sun (2021), «Unsupervised
change detection by cross-resolution difference learning», in: IEEE Transactions on
Geoscience and Remote Sensing 60, pp. 1–16.

Zheng, Xiaolong, Dongdong Guan, Bangjie Li, Zhengsheng Chen, and Lefei Pan (2023),
«Global and Local Graph-Based Difference Image Enhancement for Change Detec-
tion», in: Remote Sensing 15.5, p. 1194.

Zhiheng, Kang and Li Ning (2019), «PyramNet: Point cloud pyramid attention network
and graph embedding module for classification and segmentation», in: arXiv preprint
arXiv:1906.03299.

Zhou, Haoran, Yidan Feng, Mingsheng Fang, Mingqiang Wei, Jing Qin, and Tong Lu
(2021a), «Adaptive graph convolution for point cloud analysis», in: Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4965–4974.

Zhou, Huaping, Minglong Song, and Kelei Sun (2023), «A Full-Scale Feature Fusion
Siamese Network for Remote Sensing Change Detection», in: Electronics 12.1, p. 35.

Zhou, Liang, Yuanxin Ye, Tengfeng Tang, Ke Nan, and Yao Qin (2021b), «Robust Match-
ing for SAR and Optical Images Using Multiscale Convolutional Gradient Features»,
in: IEEE Geoscience and Remote Sensing Letters 19, pp. 1–5.

244

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Zhou, Sheng, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Jiajun Bu, Jia Wu, Xin Wang,
Wenwu Zhu, Martin Ester, et al. (2022), «A comprehensive survey on deep clustering:
Taxonomy, challenges, and future directions», in: arXiv preprint arXiv:2206.07579.

Zhou, Zongwei, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang
(2018), «Unet++: A nested u-net architecture for medical image segmentation», in:
Deep learning in medical image analysis and multimodal learning for clinical decision
support, Springer, pp. 3–11.

Zhu, Jingwei, Joachim Gehrung, Rong Huang, Björn Borgmann, Zhenghao Sun, Ludwig
Hoegner, Marcus Hebel, Yusheng Xu, and Uwe Stilla (2020), «TUM-MLS-2016: An
annotated mobile LiDAR dataset of the TUM city campus for semantic point cloud
interpretation in urban areas», in: Remote Sensing 12.11, p. 1875.

Zhu, Xiao Xiang and Richard Bamler (2010), «Very high resolution spaceborne SAR
tomography in urban environment», in: IEEE Transactions on Geoscience and Remote
Sensing 48.12, pp. 4296–4308.

Zhu, Xiao Xiang, Devis Tuia, Lichao Mou, Gui-Song Xia, Liangpei Zhang, Feng Xu,
and Friedrich Fraundorfer (2017), «Deep learning in remote sensing: A comprehensive
review and list of resources», in: IEEE Geoscience and Remote Sensing Magazine 5.4,
pp. 8–36.

245

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



LIST OF ABBREVIATIONS

2D two-dimensional

3D three-dimensional

3D-PcD 3D point cloud differencing

AE auto-encoder

AHD average height difference

AHN Actueel Hoogtebestand Nederland

AHN-CD AHN Change Detection

AI artificial intelligence

ALS Aerial Laser Scanning

BYOL bootstrap your own latent

C2C cloud-to-cloud

CC connected component

CPU central processing unit

CNN Convolutional Neural Network

CO3D 3D Optical Constellation

CVA Change Vector Analysis

DC3DCD DeepCluster 3D Change Detection

DCVA Deep Change Vector Analysis

DEM Digital Elevation Model

247

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



DGPS Differential Global Positioning System

DoD Difference of DEM

DSM Digital Surface Model

DSMd DSMs difference

DTM Digital Terrain Model

EF early fusion

EdgeConv edge convolution

FCN fully convolutional network

FF feed forward

GAN Generative Adversarial Network

GCN Graph Convolution Network

GCP ground control point

GPU graphics processing unit

GSD ground sampling distance

H3D Hessigheim 3D

HD high density

HGI-CD Hybrid Graph Inception Change Detection

ICP iterative closest point

IoU Intersection over Union

kNN k-Nearest Neighbors

KPConv Kernel Point Convolution

KP-CNN Kernel Point – Convolutional Neural Network

248

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



KP-FCNN Kernel Point – Fully Convolutional Neural Network

LETG Littoral, Environnement, Géomatique, Télédétection

LiDAR Light Detection And Ranging

LoD2 Level of Detail 2

M3C2 Multi-Scale Model-to-Model Cloud Comparison

mAcc mean of accuracy

MC Multi-Class

mIoU mean of IoU

MLP Multi-Layer Perceptron

MLS Mobile Laser Scanning

MS Multi-Sensor

NDVI Normalized Difference Vegetation Index

NLL negative log-likelihood

NMI normalized mutual information

OSUR Observatoire des Sciences de l’Univers de Rennes

PC Point Cloud

PCA Principal Component Analysis

PDAL Point Data Abstraction Library

PIC power iteration clustering

PoChaDeHH Point Cloud Change Detection with Hierarchical Histograms

RANSAC Random Sample Consensus

RF Random Forest

249

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



RGB Red Green Blue

RGB-D Red Green Blue – Depth

SAR Synthetic Aperture Radar

SfM Structure-from-Motion

SfM-MVS Structure-from-Motion Multiview Stereo Photogrammetry

SGD Stochastic Gradient Descent

SHREC21 Shape Retrieval Challenge 2021

SiamGCN Siamese Graph Convolutional Network

SSL Self-Supervised Learning

SSL-DCVA Self-Supervised Learning - Deep Change Vector Analysis

SSST Supervised Semantic Segmentation Training

SSST-DCVA Supervised Semantic Segmentation Training - Deep Change Vector Anal-
ysis

TLS Terrestrial Laser Scanning

TP terrestrial photogrammetry

UAV unmanned aerial vehicle

VTK Visualisation ToolKit

250

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



LIST OF FIGURES

1 Exemples de modifications géomorphologiques ou anthropiques de nos pay-
sages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

2 Schéma d’une acquisition aérienne LiDAR ou photogrammétrique . . . . . xv
3 Exemple de nuage de points LiDAR à deux dates . . . . . . . . . . . . . . xvi
4 Différents types de résultats de détection de changement . . . . . . . . . . xix
5 Examples of geomorphic or anthropogenic modifications of our landscape . 2
6 Illustration of aerial LiDAR and photogrammetry acquisition . . . . . . . . 4
7 Example of LiDAR 3D point clouds at two timestamps . . . . . . . . . . . 5
8 Illustration of a 3D PC and its corresponding rasterization into 2.5D DSM 6
9 Different types of change detection results . . . . . . . . . . . . . . . . . . 8

1.1 Example of AHN multi-temporal dataset . . . . . . . . . . . . . . . . . . . 18
1.2 Example of H3D dataset (Kölle et al., 2021) . . . . . . . . . . . . . . . . . 19
1.3 Example of a scene from the Change3D dataset (Ku et al., 2021) . . . . . . 20
1.4 Flowchart for change detection annotation of AHN pairs . . . . . . . . . . 23
1.5 Sample extracted from AHN-CD dataset . . . . . . . . . . . . . . . . . . . 24
1.6 AHN-CD dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.7 Sample from AHN-CD dataset illustrating some ground truth errors . . . . 25
1.8 Framework of the simulator generating bi-temporal urban 3D PCs V1 . . . 28
1.9 Sample of simulated PCs at two timestamps from the simulator V1 . . . . 28
1.10 Framework of the simulator generating bi-temporal urban 3D PCs V2 . . . 29
1.11 Sample of simulated PCs at two timestamps from the simulator V2 . . . . 30
1.12 Three simulation results generated from the same district of Lyon . . . . . 32
1.13 Urb3DCD dataset training, validation and splits . . . . . . . . . . . . . . . 33
1.14 Samples of the different simulated sub-datasets . . . . . . . . . . . . . . . . 35
1.15 Sample PC from the simulator V2 illustrating examples of occlusions . . . 37

2.1 Stability features of changed and unchanged objects . . . . . . . . . . . . . 46
2.2 Presentation of the different compared SoTA methods . . . . . . . . . . . . 50
2.3 Results at the 2D pixel level for sub-dataset 1.b (ALS, low density) . . . . 57

251

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



2.4 Results at the 2D pixel level for sub-dataset 2 (ALS High density) . . . . . 58
2.5 Results at the 2D pixel level for sub-dataset 3 (ALS, low density, high noise) 62
2.6 Results at the 2D pixel level for sub-dataset 4 (photogrammetric) . . . . . 63
2.7 Results at the 2D pixel level for sub-dataset 5 (Multi-sensor) . . . . . . . . 64
2.8 Results on PCs for methods at 3D point level for sub-datasets 1.b and 2 . 65
2.9 Results on PCs for methods at the 3D point level for sub-datasets 3, 4 and 5 66
2.10 Results of different tests of transfer learning . . . . . . . . . . . . . . . . . 69

3.1 A simplified architecture of PointNet . . . . . . . . . . . . . . . . . . . . . 78
3.2 Illustration of Kernel Point convolution . . . . . . . . . . . . . . . . . . . . 80
3.3 3D deep networks based on KPConv . . . . . . . . . . . . . . . . . . . . . 81
3.4 Illustration of single-stream and double-stream methods . . . . . . . . . . . 82
3.5 Siamese KPConv network architecture . . . . . . . . . . . . . . . . . . . . 87
3.6 Siamese KPConv Cls network architecture . . . . . . . . . . . . . . . . . . 88
3.7 Example of input cylinders . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.8 Visual change detection results on Urb3DCD-V2 low density LiDAR sub-

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.9 Visual change detection results on Urb3DCD-V2 low density LiDAR sub-

dataset in an area containing occlusions . . . . . . . . . . . . . . . . . . . . 97
3.10 Visual change detection results on Urb3DCD-V2 MS sub-dataset . . . . . . 101
3.11 Visual change detection results on Urb3DCD-V2 MS sub-dataset in an area

containing occlusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.12 Qualitative results on AHN-CD dataset . . . . . . . . . . . . . . . . . . . . 105
3.13 Qualitative results on AHN-CD dataset, illustrating some ground truth

errors contrasting with relevant prediction by our method . . . . . . . . . . 106
3.14 Influence on IoU of adding hand-crafted features . . . . . . . . . . . . . . . 112
3.15 OneConvFusion architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.16 Triplet KPConv architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.17 Encoder Fusion SiamKPConv architecture . . . . . . . . . . . . . . . . . . 114
3.18 Influence on IoU of the three Siamese KPConv evolutions . . . . . . . . . . 116
3.19 Visual change detection results of the three Siamese KPConv evolutions . . 118
3.20 Visual change detection results of the three Siamese KPConv evolutions in

an area containing occlusions . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.21 Variant architecture for Triplet KPConv . . . . . . . . . . . . . . . . . . . 120
3.22 Variant architecture for Encoder Fusion SiamKPConv . . . . . . . . . . . . 121

252

Apprentissage profond pour la détection de changements dans des nuages points 3D Iris de Gélis 2024



4.1 Comparison between training from scratch and using pre-trained weights
learned a simulated dataset of Siamese KPConv . . . . . . . . . . . . . . . 136

4.2 Overview of the proposed method for unsupervised binary change detection 138
4.3 Schema of the self-supervised training of the back-bone . . . . . . . . . . . 139
4.4 Qualitative results of SSL-DCVA and SSST-DCVA on the testing set man-

ually annotated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.5 Qualitative results of SSL-DCVA and SSST-DCVA on the testing set not

annotated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.6 Mean of IoU results for SSL-DCVA method as a function of the purity

coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.7 Illustration of DeepCluster (Caron et al., 2018) method . . . . . . . . . . . 154
4.8 Illustration of our proposed method: DC3DCD . . . . . . . . . . . . . . . . 155
4.9 Weakly supervised mapping of predicted clusters to real classes . . . . . . . 158
4.10 Analysis of the behavior of DC3DCD during the training. . . . . . . . . . . 162
4.11 Ground truth class distribution in pseudo-clusters . . . . . . . . . . . . . . 163
4.12 Qualitative assessment of DC3DCD method on Urb3DCD-V2 dataset (area 1)168
4.13 Qualitative assessment of DC3DCD method on Urb3DCD-V2 dataset (area 2)169
4.14 Qualitative results on the manually annotated sub-part of AHN-CD dataset 171
4.15 Qualitative results on the semi-automatically annotated AHN-CD dataset . 172
4.16 DC3DCD-V2 using multi-task learning. . . . . . . . . . . . . . . . . . . . . 178
4.17 Qualitative assessment of DC3DCD-V2 method on Urb3DCD-V2 dataset . 183
4.18 Qualitative assessment of DC3DCD-V2 method on Urb3DCD-V2 dataset

(area 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.1 Panorama and aerial photography of Petit Ailly cliff (Varengeville-sur-Mer) 190
5.2 Petit Ailly cliff annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.3 Results on the eastern part of the cliffs between 2017 and 2018 acquisitions 197
5.4 Results on the eastern part of the cliffs between 2018 and 2020 acquisitions 198
5.5 Results on the western part of the cliffs between 2018 and 2020 acquisitions 198
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Titre : Apprentissage profond pour la détection de changements dans des nuages de points 3D
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Résumé : L’époque contemporaine s’accom-
pagne de changements toujours plus rapides et
fréquents de nos paysages, qu’ils soient cau-
sés par des processus géomorphologiques ou
par des activités humaines. Le suivi de ces évo-
lutions nécessite une modélisation régulière de
notre environnement. Plutôt que se limiter à une
conception bidimensionnelle, il parait judicieux
d’utiliser des nuages de points 3D. La complexité
de ce format de données rend néanmoins né-
cessaire la création de méthodologies spéci-
fiques pour leur analyse. Aussi, l’apprentissage
profond apparait comme la solution adéquate
pour traiter les observations 3D de la Terre.
Cette thèse se concentre donc sur la détection
de changements dans des nuages de points 3D
par apprentissage profond.

Dans un premier temps, un simulateur de
nuages de points 3D en milieu urbain a été dé-
veloppé pour générer aléatoirement des jeux de
données avec une évolution réaliste de l’envi-
ronnement urbain. Après une comparaison ex-
périmentale des méthodes existantes, des archi-
tectures Siamoises sont proposées pour la dé-
tection supervisée de changements tant dans le
milieu urbain qu’en géosciences en utilisant des
convolutions à points noyaux (KPConv). Afin de
réduire l’annotation fastidieuse des données, la
thèse s’intéresse aussi aux méthodes faiblement
supervisées avec l’apprentissage par transfert,
l’auto-supervision et le clustering profond. Bien
que ces méthodes se révèlent prometteuses,
une importance particulière doit être portée à la
conception de l’architecture profonde.

Title: Deep learning for change detection in 3D point clouds

Keywords: Change detection, 3D point clouds, deep learning

Abstract: Whether caused by geomorphic pro-
cesses or by human activities, contemporary
times are accompanied by ever more rapid and
frequent changes in our landscapes. Monitoring
these changes requires regular modeling of our
environment. Rather than limiting ourselves to a
two-dimensional representation, it seems appro-
priate to use 3D data to embody our world, us-
ing point clouds for example. However, the com-
plexity of this data format makes it necessary to
create specific methodologies for their analysis.
Therefore, deep learning appears to be the ap-
propriate solution to process 3D observations of
the Earth. This thesis focuses on change detec-
tion in 3D point clouds with deep learning.

First, a 3D point cloud simulator in an urban en-
vironment has been developed. It allows to ran-
domly generate datasets with a realistic evolu-
tion of the urban environment. After an experi-
mental comparison of the state-of-the-art meth-
ods, this thesis proposes Siamese architectures
for supervised change detection both in urban
environment and in geosciences using kernel
point convolutions (KPConv). Finally, in order
to reduce tedious data annotation, the thesis fo-
cuses on weakly supervised methods with trans-
fer learning, self-supervision and deep cluster-
ing. These methods are promising in this con-
text, nevertheless a particular importance must
be given to the design of the deep architecture.
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