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Abstract
The effects of the planetary rotation on geophysical fluid motions are usually studied

using the traditional approximation. This consists in taking into account only the
vertical component of the planetary rotation vector at a given latitude, while the
horizontal component is neglected. This thesis studies the dynamics of a vortex when
the horizontal component is also taken into account (non-traditional approximation).
To this end, we perform direct numerical simulations of the evolution of a vertical
Lamb-Oseen vortex in the presence of the complete Coriolis force in a stably stratified
fluid. The results of these simulations are completed and interpreted by asymptotic
analyses when the horizontal component of the planetary rotation is small and the
Reynolds number is large. It is shown that the Coriolis force due to the horizontal
component of the planetary rotation generates a critical layer at the radius where
the angular velocity of the vortex is equal to the Brunt–Väisälä frequency when the
Froude number is greater than unity. As a result, an intense vertical velocity field and
a vertical vorticity anomaly are created in the vicinity of the critical layer. These flows
can then lead to two types of instability: a two-dimensional instability triggered by the
shear of the vertical vorticity anomaly and a three-dimensional instability due to the
shear of the vertical velocity field. The domains of existence of these two instabilities
are mapped in the parameter space. They both lead to a rapid decay of the vortex
until the critical layer disappears when the angular velocity is everywhere below the
buoyancy frequency. This process can occur even if the horizontal component of the
planetary rotation is very small when the Reynolds number is large. Therefore, the
horizontal component of the planetary rotation could have a much larger impact on
geophysical vortices than one might think by considering only its order of magnitude.
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Résumé
Les études des effets de la rotation planétaire sur les mouvements des fluides

géophysiques sont généralement réalisées dans le cadre de l’approximation tradition-
nelle. Celle-ci consiste à ne prendre en compte que la composante verticale du vecteur
de rotation planétaire à une latitude donnée, tandis que la composante horizontale est
négligée. Cette thèse étudie la dynamique d’un tourbillon lorsque l’on tient compte
également de la composante horizontale (approximation non traditionnelle). Dans ce
but, nous effectuons des simulations numériques directes de l’évolution d’un tourbillon
vertical de Lamb-Oseen en présence de la force de Coriolis complète dans un fluide strat-
ifié de manière stable. Les résultats de ces simulations sont complétés et interprétés par
des analyses asymptotiques lorsque la composante horizontale de la rotation planétaire
est petite et le nombre de Reynolds grand.

La dynamique du tourbillon est régie par cinq paramètres adimensionnels : le
nombre de Reynolds, le nombre de Froude qui mesure la stratification, les nombres
de Rossby traditionnel et non-traditionnel qui mesurent respectivement la rotation
d’ensemble verticale et horizontale et le nombre de Schmidt qui est toujours égal à
l’unité.

Pour des conditions initiales purement bidimensionnelles, les simulations
numériques montrent que le tourbillon reste complètement bidimensionnel tout
au long de son évolution, même s’il y a trois composantes de vitesse. Il peut cependant
devenir tridimensionnel lorsque de petites perturbations tridimensionnelles sont
ajoutées initialement. Nous avons donc divisé notre étude en deux parties : l’évolution
bidimensionnelle (chapitre 3) et l’évolution tridimensionnelle (chapitre 4).

Dans le cas bidimensionnel, les simulations numériques pour des nombres de Froude
supérieurs à l’unité ont montré qu’un champ de vitesse vertical et une anomalie de vor-
ticité verticale sont générés à un certain rayon en raison de la force de Coriolis non
traditionnelle. Progressivement, le champ de vitesse vertical et l’anomalie de vorticité
verticale se concentrent et s’amplifient au voisinage de ce rayon. A un certain mo-
ment, une instabilité bidimensionnelle apparâıt dans l’écoulement pour des nombres
de Reynolds suffisamment grands et des nombres de Rossby non-traditionnels R̃o suff-
isamment faibles.

Pour comprendre cette dynamique, nous avons effectué des analyses asymptotiques
pour de grands nombres de Rossby non-traditionnels R̃o. En l’absence d’effets visqueux
et de dépendance temporelle, l’analyse théorique montre que la vitesse verticale est
singulière lorsque le nombre de Froude est supérieur à l’unité à un rayon où la vitesse
angulaire est égale à l’inverse du nombre de Froude (c’est-à-dire la fréquence de Brunt-
Väisälä sous forme dimensionnelle). Cette singularité est d’abord régularisée par la
dépendance temporelle, puis par une combinaison d’effets visqueux et de dépendance
temporelle dans la phase de saturation. Ainsi, deux solutions linéaires pour la vitesse
verticale et l’anomalie verticale de vorticité ont été fournies pour chaque étape de cette
évolution. Ces solutions linéaires sont en parfait accord avec les simulations numériques
dans les deux phases. Une analyse asymptotique des effets non-linéaires a également
été réalisée. Les prédictions du système d’équations obtenu sont en meilleur accord
avec les simulations numériques, ce qui indique l’importance des effets non-linéaires.

Ensuite, nous avons montré qu’un point d’inflexion apparâıt dans le champ de
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vitesse angulaire et qu’il est responsable de l’apparition de l’instabilité bidimension-
nelle. En utilisant les solutions asymptotiques de la vorticité verticale, une condition
d’instabilité exprimée en termes des nombres adimensionnels (Re, R̃o) a été dérivée
à partir du critère de Rayleigh pour l’instabilité de cisaillement. Dans l’espace des
paramètres (Re, R̃o), le critère prédit parfaitement les domaines stables et instables et
montre que même pour de petits nombres de Rossby non traditionnels, le tourbillon
est instable si le nombre de Reynolds est grand.

Nous avons ensuite examiné l’évolution du tourbillon lorsque de petites pertur-
bations tridimensionnelles sont ajoutées initialement. Bien que l’évolution initiale
du tourbillon reste similaire, l’instabilité peut différer : elle est tridimensionnelle en
dessous d’un nombre de Rossby non traditionnel critique. Cette instabilité tridimen-
sionnelle semble similaire à l’instabilité de cisaillement observée par Boulanger et al.
(2007, 2008) sur un tourbillon incliné stratifié. Au-dessus du nombre de Rossby critique
non traditionnel, l’instabilité reste bidimensionnelle comme observé précédemment.
Par conséquent, l’instabilité dominante est déterminée par les paramètres du problème.

Pour comprendre la compétition entre les instabilités bidimensionnelles et tridi-
mensionnelles, nous avons effectué une analyse de stabilité linéaire des écoulements
issus des simulations numériques. Les résultats confirment que l’instabilité tridimen-
sionnelle devient dominante par rapport à l’instabilité bidimensionnelle lorsque R̃o
diminue. Nous avons également effectué des analyses de stabilité locale des solutions
asymptotiques linéaires et non linéaires fournies dans le chapitre 3 afin de mieux com-
prendre les instabilités. L’analyse locale de stabilité tridimensionnelle montre que le
taux de croissance de l’instabilité tridimensionnelle peut être prédit de manière cor-
recte par une équation de Rayleigh qui ne prend en compte que le champ de vitesse
vertical comme écoulement de base. Cependant, sa précision diminue lorsque R̃o aug-
mente pour un nombre de Reynolds donné. L’équation prenant en compte les effets
du second ordre offre alors une meilleure précision. En outre, l’analyse de la stabilité
bidimensionnelle locale donne une équation de Rayleigh avec le champ de vitesse an-
gulaire comme écoulement de base qui permet de bien prédire le taux de croissance de
l’instabilité bidimensionnelle.

Les analyses de stabilité locale démontrent ainsi que l’instabilité bidimensionnelle
est une instabilité de cisaillement due à un point d’inflexion dans le profil de vitesse
angulaire, tandis que l’instabilité tridimensionnelle est une instabilité de cisaillement
du profil de vitesse verticale. En outre, nous avons étudié les domaines d’existence
des instabilités dans l’espace des paramètres (Re, R̃o) au moyen d’analyses de stabilité
locale. Les résultats montrent que l’instabilité bidimensionnelle est la plus dangereuse
dans une gamme intermédiaire de R̃o tandis que l’instabilité tridimensionnelle est dom-
inante lorsque R̃o est plus bas.

Globalement, ces deux instabilités conduisent à une décroissance rapide du tour-
billon jusqu’à la disparition de la couche critique lorsque la vitesse angulaire est
partout inférieure à la fréquence de flottabilité. Ce processus peut se produire même
si la composante horizontale de la rotation planétaire est très faible lorsque le nom-
bre de Reynolds est grand. Par conséquent, la composante horizontale de la rota-
tion planétaire pourrait avoir un impact beaucoup plus important sur les tourbillons
géophysiques que ce que l’on pourrait penser en considérant seulement son ordre de
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grandeur.
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Chapter 1

Introduction

1.1 Geophysical Fluid dynamics

Geophysical fluid dynamics is a branch of fluid dynamics that focuses on the motion of
fluids on Earth, other planets, and stars. Studies of weather and climate dynamics in
the atmosphere, ocean dynamics, waves, vortices, and astrophysical phenomena such
as convection in stars are some examples. Research in geophysical fluid dynamics deals
with the specificity of these flows compared to classical fluid mechanics.

The density stratification of the fluid and the presence of a background rotation
separate geophysical fluid dynamics from classical fluid mechanics. The density varia-
tion can be due to the temperature gradient in the atmosphere or the salinity in the
ocean. A density field that decreases vertically is said to be stable. Vertical motions
are limited by the buoyancy force, but horizontal motions are not constrained by this
force. Besides, geophysical flows are subjected to a background rotation caused by
the rotation of the planet around its axis. This rotation adds an acceleration term
called Coriolis acceleration (force) in the equations of motion. One of the effects of a
background rotation is to impart rigidity along the axis of rotation to homogeneous
fluids as depicted in figure 1.1(a) in the famous experiment of Taylor (1923). This
effect is opposite to the one of a stable stratification which tends to spread the dye
horizontally (figure 1.1(b). Hence, the vertical variations in geophysical flows result
from the competition between these two effects. In the following, we try to explain
some important aspects of these two characteristics of geophysical flows.

1.2 Stratification

Density variations are a key characteristic of fluid in geophysical fluid dynamics. It is
essential that the lighter part of the fluid is placed above the heavier part of the fluid for
a fluid to be stably stratified. In oceans and atmospheres, density variations are typi-
cally observed vertically, but in the presence of an ambient flow and rotation, they can
also be observed horizontally due to the thermal wind relation. Brunt-Väisälä (buoy-

1
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(a) (b)

Fig. 1.1: (a) Columnar behavior of the injected dye in a vertical rotating fluid. (b)
Horizontal spreading of the injected dye in a stratified fluid. Source: Michael Le Bars.

ancy) frequency is used to measure stratification

N =

√
− g

ρ0

dρ

dz
, (1.1)

where g is the gravity, ρ0 a constant reference density and ρ̄(z) the mean density profile.
A parcel oscillates at the Brunt-Väisälä frequency when it is slightly displaced in the
vertical direction in a stably stratified fluid. Temperature variations in atmospheric
and oceanic flows are the major reasons for variation in density, although salinity
and compression of ocean waters also have an impact. Figure 1.2 shows the mean
Brunt-Väisälä frequency profile in the pacific Ocean (Maes & O’Kane, 2014) where the
temperature variations are mostly responsible for the density variations. To simplify
things in fundamental studies, the Brunt-Väisälä frequency can be often considered
constant, despite its change with depth.

The Froude number Fh is a dimensionless number that measures the ratio between
the inertial forces and the buoyancy forces: Fh ≡ U/(NLh) where U and Lh are the
reference velocity and length scales. If the Froude number is less than one, buoy-
ancy forces dominate the inertial forces and the flow is said to be strongly stratified.
Conversely, a flow with weak stratification has a Froude number larger than one.

1.3 Rotation

1.3.1 Basic concepts

It is more convenient to describe the motion of objects or fluids on Earth with respect
to the Earth’s surface. Consequently, all equations in geophysical fluid dynamics must
be rewritten in a frame that rotates with the Earth. Consider an object or a parcel
of fluid in a frame that rotates at a constant angular velocity Ωb with respect to the
inertial frame. If r is its position vector, the object velocity v (the position vector
derivative with respect to time) in the two rotating and inertial frames are connected
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Fig. 1.2: Mean profile of the squared Brunt–Väisälä frequency (cycles per hour) calcu-
lated from temperature profile (dashed line) and from both temperature and salinity
profiles (solid line) in the Pacific Ocean. Source: Maes & O’Kane (2014).

by

vI = vR +Ωb × r, (1.2)

where the subscripts I and R denote the inertial and rotating frames, respectively.
This relation is next derived in order to obtain the relation between the accelerations
a in the two frames which needed to apply Newton’s second law of motion

aI = aR + 2Ωb × vR +Ωb × (Ωb × r). (1.3)

The relation (1.3) shows us that two additional terms must be added to the acceleration
in the rotating frame. We call the first term, 2Ωb × vR, Coriolis acceleration, and the
second term, Ωb × (Ωb × r), the centrifugal acceleration. When multiplied by a mass,
they are called the Coriolis force and the centrifugal force, respectively.

1.3.2 Centrifugal force

The centrifugal force makes an outward pull in the rotating frame. However, it is
canceled thanks to the gravity of the Earth. The net force between gravity and the
centrifugal force is sometimes called effective gravity. The gravity is towards the center
of the Earth whereas the centrifugal force is perpendicular to the rotation vector.
Because of this horizontal component, the effective gravity is not exactly perpendicular
to the surface of the earth. However, in geophysical sciences, the surface of the Earth
is replaced by a virtual surface to which the net force is always perpendicular. This
virtual surface is called geoid. The geoid can also be defined as a surface with constant
geopotential or potential energy per unit mass.
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1.3.3 Coriolis force

In contrast, the Coriolis force is directly incorporated into the equations of motion.
From its definition, we can notice some properties of the Coriolis force: it is proportional
to the magnitude of the relative velocity and the rotation vector and perpendicular to
their directions. Without motions, the Coriolis force is then zero. In addition, for a
positive rotation, the direction of the force is always on the right side of the direction
of motion. The main effect of the Coriolis force is then to deflect particle motions in a
direction perpendicular to the velocity.

The Rossby number measures the ratio between the inertial forces and the Coriolis
force. It is defined as Ro ≡ U/(2ΩbLh) where Ωb is the rotation rate. Rotation effects
are negligible for large Rossby numbers. In contrast, when the Rossby number is small
Ro < 1, the rotation has a significant effect, as shown in figure 1.1(a). Consequently,
the Coriolis force becomes important when the turnover time scale Lh/U is at least of
the order of the inverse of Earth’s angular velocity Ω−1. Because of this, the effects of
the Coriolis force are more important on slow geophysical flows, i.e. large-scale flows.

1.3.4 Traditional approximation of the Coriolis force

Figure 1.3 shows the Earth rotating around its North-South pole axis at a constant
rate. Although the Earth is almost a sphere, Cartesian coordinates are appropriate and
more convenient for describing fluid motions when the scale of phenomena is smaller
than the radius of the Earth. These Cartesian coordinates (x, y, z) are built on a plane
that is tangent to the surface of the Earth (geoid) at the latitude ϕ. x is in the zonal
direction, y is in the meridional direction and z is always perpendicular to the geoid
surface. The rotation vector is expressed as

Ωb = Ωb cos (ϕ)ey + Ωb sin (ϕ)ez =
1

2

(
f̃ey + fez

)
, (1.4)

where f = 2Ωb sin (ϕ) is the vertical Coriolis parameter and f̃ = 2Ωb cos (ϕ) is the
horizontal Coriolis parameter. The sign and magnitude of the Coriolis parameters
depend on latitude. In particular, f is positive in the northern hemisphere and negative
in the southern hemisphere, whereas f̃ is always positive. At the poles, f̃ equals zero
while f is equal to zero at the equator.

In the so-called traditional approximation (Eckart, 1960), only accelerations due
to the vertical Coriolis parameter f (traditional Coriolis force) are considered in the
momentum equations while the terms proportional to f̃ are neglected. Apart from the
mathematical simplicity provided by the approximation, physical reasons also support
it. To see this, it is instructive to non-dimensionalize the continuity equation and
the inviscid momentum equations in the presence of the complete Coriolis acceleration
2Ωb × u

∇h.uh +
∂uz
∂z

= 0, (1.5a)

∂uh

∂t
+ uh.∇huh + w

∂uh

∂z
= −1

ρ
∇hp− fez × uh − f̃wex, (1.5b)
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∂w

∂t
+ uh.∇hw + w

∂w

∂z
= −1

ρ

∂p

∂z
+ b+ f̃u, (1.5c)

where p is the pressure, b the buoyancy and u = uh + wez the velocity field where
uh = uex + vey is the horizontal velocity. To do so, we introduce non-dimensional
variables with a prime such that

uh = Uu
′

h, w = Ww
′
, x = Lhx

′
, y = Lhy

′
, z = Lvz

′
,

t =
Lh

U
t
′
, p = ρU2p

′
, b = ρ

U2

Lv

b
′
.

(1.6)

Then, by using the relation U/Lh = W/Lv imposed by the continuity equation (1.5a),
the non-dimensional equations can be written

∇′

h.u
′

h +
∂u

′
z

∂z′ = 0, (1.7a)

∂u
′

h

∂t′
+ u

′

h.∇
′

hu
′

h + w
′ ∂u

′

h

∂z′ = −∇′

hp
′ − 1

Ro
ez × u

′

h −
1

R̃o

W

U
w

′
ex, (1.7b)

W 2

U2

[
∂w

′

∂t′
+ u

′

h.∇
′

hw
′
+ w

′ ∂w
′

∂z′

]
= −∂p

′

∂z′ + b
′
+

1

R̃o

W

U
u

′
, (1.7c)

where Ro = U/(fLh) and R̃o = U/(f̃Lh). We see that the non-dimensional terms

are all proportional to W/(UR̃o). Hence, these terms are a priori negligible since the
vertical velocity in geophysical flows is generally much smaller than the horizontal
velocity, either because the vertical scale is much smaller than the horizontal scale
or because large vertical motions are prevented by the stratification. On the other
hand, small-scale geophysical flows mainly have high-frequency motions, i.e. Ro and
R̃o are large so that rotation effects are too small to be important. This means that
the traditional approximation should be justified for most geophysical flows. If the
mentioned conditions are not met, the traditional approximation might be no longer
legitimate as shown by Gerkema et al. (2008) in a comprehensive review on the effect of
the non-traditional Coriolis force in geophysical flows. Following are some examples of
flows where the traditional approximation has been shown to fail to accurately describe
the dynamics.

1.3.5 Some effects of the non-traditional Coriolis force

Ocean deep convection is a process in which surface waters sink to great depths. This
leads to the transport of numerous small-scale convective plumes to the bottom of the
oceans. As deep convection has a long time scale and a strong vertical velocity, we
expect the non-traditional Coriolis force to be significant. Observations reported by
Pickart et al. (2002) revealed that plumes convection are slantwise in the Labrador Sea.
Shear currents are primarily responsible for slantwise convection, but the effect of the
non-traditional Coriolis force can also be significant (Marshall & Schott, 1999; Straneo
et al., 2002). Denbo & Skyllingstad (1996) numerically found that the non-traditional
Coriolis force creates asymmetries in the circulation of a single penetrating plume.
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Fig. 1.3: Local Cartesian coordinate on the Earth’s surface. x is in the zonal direction,
y is in the meridional direction and z is always perpendicular to the geoid. ϕ is the
latitude and λ is longitude. Source: Cushman-Roisin & Beckers (2011).

As a result of this asymmetry, the plume is inclined. In an experiment, Sheremet
(2004) showed a developed non-vertical plume in the presence of an inclined background
rotation (figure 1.4). While initially vertical (figure 1.4(a)), the plume becomes tilted
along the background rotation axis (figure 1.4(c)).

Similarly, geophysical vortices can respond to the non-traditional Coriolis effect by
a tilt of their axis. According to theoretical analyses (Gerkema et al., 2008), mesoscale
anticyclonic eddies (lenses) are predicted to be tilted in the presence of the complete
Coriolis forces. Lavrovskii et al. (2000) and Semenova & Slezkin (2003) discuss the
orientation of ellipsoidal vortex lenses in a linearly stratified fluid. Due to the non-
traditional Coriolis force, lenses incline in both vertical and horizontal directions. Mid-
latitude vortices are expected to have a vertical tilt of 30◦ to 10◦ and a horizontal tilt
of less than 1◦.

The non-traditional Coriolis force has also been shown to modify instabilities in
addition to its tilting effect. Etling (1971) and Leibovich & Lele (1985) argue that the
non-traditional Coriolis force enhances the instability of Ekman layers. Ekman currents
are horizontal, but they contain vertical motions due to the formation of vortex rolls
when they become unstable. The instability threshold decreases due to the effect of the
non-traditional Coriolis force on these vertical motions. Further, the non-traditional
Coriolis force can significantly modify the inertial instability (Chew et al., 2022; Park
et al., 2021; Kloosterziel et al., 2017; Tort et al., 2016; Hua et al., 1997). Chew et al.
(2022) showed that a meridionally homogeneous flow at rest is subjected to a novel
unstable mode. In addition, linear stability analysis by Park et al. (2021) indicates
that the growth rate of the inflectional instability is significantly increased when the
complete Coriolis force is present. Linear stability analysis of zonal jets done by Tort
et al. (2016) shows an increase of the growth rate in weakly stratified fluid under the
complete Coriolis force.

Wave dynamics are also affected by the non-traditional Coriolis force (Zhang &
Yang, 2021; Kohma & Sato, 2013; Gerkema et al., 2008). Gerkema et al. (2008) shows
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the effects of the non-traditional Coriolis forces on propagation and frequency range
of internal waves. Zhang & Yang (2021) studied how the non-traditional Coriolis force
influences the propagation of equatorial near-inertial solitary waves by altering the
dispersion relation and the interaction with the base flow.

Fig. 1.4: The development of the dyed plume at three consecutive times (a) t = 55 s,
(b) t = 476 s, (c) t = 1592 s from the start of the plume. The background rotation
makes an angle α = 30◦ with the vertical axis. Source: Sheremet (2004).

1.4 Geophysical vortices

This thesis will explore the effects of the non-traditional Coriolis force on vortices. A
vortex is a coherent structure with a closed circulation. They are observed both in
the atmosphere and in the oceans. Atmospheric cyclones are large air masses that
rotate around a center of low pressure. Different names are given to cyclones depend-
ing on their size and location of formation. The largest cyclones, known as synoptic
cyclones, have a horizontal scale extending up to thousands of kilometers. A tropical
or extra-tropical cyclone, a polar low, and a circumpolar vortex are examples of these
cyclones. They are often generated by several atmospheric instabilities. A tropical cy-
clone obtains its energy from warm ocean waters, resulting in powerful winds, waves,
and torrential rain. Tropical cyclones with maximum winds exceeding 65 knots are
called hurricanes in the Atlantic and east Pacific, and typhoons in the western north
Pacific. Figure 1.5(a) shows the tropical cyclone called Hurricane Katrina formed in
late August 2005 in the United States. It caused 1,392 deaths and around $145.5 billion
in damages (Knobby et al., 2023). There are also smaller vortices in the atmosphere
at the mesoscales. It is the vertical and horizontal shear of horizontal winds that form
some mesoscale vortices in the atmosphere. They can be of several types including
mesocyclones, tornadoes, and dust devils. Figure 1.5(b) shows a tornado. In spite of
the fact that their horizontal length scales are relatively small, ranging from 10 meters
to 1 kilometer, the wind speed of a tornado can reach 150 (m/s) causing considerable
destruction and casualties every year (Schecter & Montgomery, 2006).

In the oceans, vortices are caused by barotropic and baroclinic instabilities, a change
in ocean current direction, or even topography. Oceanic vortices can take the form of
rings on the surfaces or they can exist in the ocean’s depths. Oceanic eddies typically
have a radius of 50 to 150 km, but have a much smaller thickness. These eddies are
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(a)

(b)

Fig. 1.5: (a) Satellite image of the tropical cyclone called Hurricane Katrina that
sustained winds greater than 250 kilometers per hour and caused 1,392 fatalities.
Source:GOES 12 Satellite, NASA, NOAA. (b) A tornado captured by Jason Persoff.
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therefore dominated by horizontal motions. They are responsible for transporting heat,
and biological species, as well as mixing oceanic water masses (Flor, 2010).

Table 1.1 provides an estimation of the physical parameters of geophysical vortices.
According to the table, the first three columns indicate the characteristic rotational ve-
locity of the vortex U , its horizontal length scale Lh, and the ambient Brunt–Väisälä fre-
quency N as reported by Schecter & Montgomery (2006). For non-tropical vortices, the
Coriolis parameters f and f̃ are approximately taken at mid-latitude ϕ = 45◦. Based
on these physical parameters, we can estimate the horizontal Froude number Fh, the
traditional Rossby number Ro, and the non-traditional Rossby number R̃o defined as

Fh =
U

N(Lh/2)
, Ro =

U

(Lh/2)(f/2)
, R̃o =

U

(Lh/2)(f̃/2)
. (1.8)

The estimation of Fh, Ro and R̃o are listed in the last three columns of table 1.1. The
horizontal Froude number Fh varies from values higher than one for small-scale vortices
to small values for large-scale vortices. As a result, large-scale vortices are strongly
influenced by the buoyancy force. Furthermore, the traditional Rossby number Ro
is relatively low for horizontally large-scale vortices such as circumpolar and synoptic
vortices, which makes the traditional Coriolis force also important. Small-scale vortices
like dust devils and tornadoes, however, have very large Rossby numbers Ro≫ 1.

1.5 Critical layers

1.5.1 Classical critical layers

A key element of the thesis will be the presence of critical layers. Critical layers are
regarded as positions in which an inviscid small perturbation of a flow is potentially
singular. From a classical point of view, it appears in a homogeneous parallel shear
flow at a location where the phase speed of an imposed perturbation matches the local
mean flow velocity (Stewartson, 1977). Such perturbation can be internal (Hickernell,
1984) or can be imposed either by external forces acting on boundaries such as Rossby
waves (Stewartson, 1977). In theory, the singularity is smoothed either by introducing
time dependency, viscosity, or non-linearity (Maslowe, 1986). In particular, studies
have shown that a viscous critical layer length scale scaling as Re−1/3 can smooth
the singularity (Drazin & Reid, 2004). A critical layer can also lead to secondary
instabilities such as shear instability (Killworth & McIntyre, 1985), and Rayleigh-
Taylor instability (Lin et al., 1993).

In addition to parallel shear flows, studies have shown that vortices also possess
critical layers. Le Dizès (2000) has studied the critical layers that appear in a vortex
subjected to a rotating strain field. The critical layer is located at the point where
the angular velocity of the vortex equals the angular frequency of the strain. Similar
to classical shear flows, singularity is then smoothed by the introduction of viscous
and non-linear effects in the critical-layer region. Helical Rossby waves can also induce
critical layers in vortices at a location where the frequency over the azimuthal mode
of the imposed wave matches the vortex’s angular velocity (Maslowe & Nigam, 2008).
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Vortex type U
(m/s)

Lh

(km)
N
(1/s)

f.10−4

(1/s)
f̃ .10−4

(1/s)
Fh Ro R̃o

Dust devils 5-15 0.005-
0.002

0.01 1 1 50-600 2000-
30000

2000-
30000

Tornadoes 30-
150

0.01-1 0.01 1 1 6-300 300-
15000

300-
15000

Tropical cyclones 20-80 15-100 0.01 0.2-
0.5

1.4 0.04-1 1-250 1-40

Polar lows 20-40 10-100 0.01 1 1 0.04-
0.8

1-40 1-40

Supercell mesocy-
clones

5-15 5-15 0.01 1 1 0.06-
0.6

1-30 1-30

Island wake vortices 5-10 10-20 0.01 0.2-1 1-1.5 0.05-
0.2

1-25 1-5

Synoptic-scale cy-
clones

10-30 500-
1000

0.01 1 1 0.002-
0.01

0.1-
0.6

0.1-
0.6

Oceanic eddies 1-2 50-150 0.01 1 1 0.001-
0.01

0.05-
0.5

0.05-
0.5

Circumpolar vortex 50-
100

3000 0.02-
0.03

1 1 0.001-
0.005

0.2-
0.3

0.2-
0.3

Table 1.1: Estimated physical parameters of atmospheric vortices and oceanic eddies
reported by Schecter & Montgomery (2006). The corresponding horizontal Froude

number Fh, traditional Rossby number Ro and non-traditional Rossby number R̃o
are also indicated. For non-tropical vortices, the traditional Coriolis parameter and
non-traditional Coriolis parameters are taken at mid-latitude ϕ = 45◦.



11 CHAPTER 1. INTRODUCTION

Maslowe & Nigam (2008) argue that non-linear effects have a greater theoretical sig-
nificance in smoothing critical layers than viscous effects. Caillol (2012) has studied
the existence of critical layers in a rapidly rotating vortex. He shows the creation of
secondary vortices at the critical radius that rotates around the basic vortex axis.

1.5.2 Baroclinic critical layers

A baroclinic critical layer is another type of critical layer found in stratified flows. Con-
sider a horizontal shear flow Ux(y) in a stratified fluid with a Brunt–Väisälä frequency
N . For perturbations with a wavenumber kx and a frequency ω, a baroclinic critical
layer occurs at the position y = yc where ω + kxUx(y) = ±N . Wang & Balmforth
(2020, 2021) have studied analytically the dynamics of forced baroclinic critical layers
in horizontal shear flows Ux = Λy (figure 1.6 (a)). A wavemaker at y = 0 constantly
generates perturbations with zero frequency and wavenumbers kx and kz. The baro-
clinic critical layers are then located at kxΛy = ±N . They derived analytical solutions
applying to two distinct time ranges: at early times, they provide an unsteady linear
solution near the critical layer connected to a steady solution far from it. The former
solution grows and thins over time. At late times, they have derived a reduced model
taking into account non-linear effects which describes the mean-flow responses. To
study secondary two-dimensional instabilities of the solutions, small perturbations are
added to both linear and non-linear reduced models. Wang & Balmforth (2021) have
shown that the mechanism of the instability is based on the formation of inflectional
points induced by the critical layers to the mean flow. During the saturation stage
of the instability, a coherent vortex appears near the critical layer (figure 1.6 (b)). In
addition, the instability is self-replicating. The coherent vortex excites a new quasi-
steady wave by acting as a wavemaker. New critical layers are then created by this
new wave (figure 1.6 (b)). Subsequently, vortices form at the new critical layers, and
so on.

Fig. 1.6: (a) The model studied by Wang & Balmforth (2020, 2021). The wavemaker is
located at y = 0, forcing the baroclinic critical levels at kxΛy = ±N . (b) A secondary
instability creates a coherent vortical structure that excites a new wave with a different
phase speed. The new wave then forces a new set of baroclinic critical levels. Source:
Wang & Balmforth (2021).

In the case of a vortex with angular velocity Ω, baroclinic critical layers can also
exist when ω+mΩ = ±N for a perturbation with an azimuthal mode m and frequency
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ω. Boulanger et al. (2007, 2008) have experimentally studied an inclined vortex in a
stratified fluid. Because the vortex axis is tilted with respect to gravity forces, a steady
perturbation with azimuthal modem = 1 is imposed to the vortex. A baroclinic critical
layer then develops at the radius where Ω = N (the frequency of the perturbation is
zero). Near the critical layer, an intense axial flow and strong density variations are
observed (figure 1.7 (a, b)). For a sufficiently large Reynolds number, the critical layer
deforms into several vortices with a zig-zag structure (figure 1.7 (c, d, e, f)). They are
due to a three-dimensional shear instability caused by the strong shear of the axial
velocity. In a theoretical study, they smoothed the singularity by introducing viscous
effects and provided an expression for the axial flow (Boulanger et al., 2007). The
theoretical expressions of the axial flow were used to perform a stability analysis and
a good agreement was found with the experimental results (Boulanger et al., 2008).

Fig. 1.7: Shadowgraph sequence of the vortex in a vertical longitudinal plane. The time
interval is 1.1 rotation period. The parameters are: Froude number F = 3, Reynolds
number Re = 720 and inclination angle α = 0.07 rad. Source: Boulanger et al. (2008).
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1.6 Goals of the dissertation

In this thesis, we study the evolution of a vortex in a stratified rotating fluid under
the complete Coriolis force, i.e. in the presence of background rotation in both vertical
and horizontal directions. In our review, we have demonstrated that considering the
complete Coriolis force might be essential for flows with non-negligible vertical motion
or weakly stratified fluids. Instabilities are triggered, modified, or enhanced, and wave
dynamics are changed due to the non-traditional Coriolis force. However, little is known
about its effect on vortices. In order to tackle this problem, we have conducted direct
numerical simulations (DNS) of a single vertical stratified vortex under the complete
Coriolis force. These simulations are accompanied by asymptotic analyses for a small
non-traditional Coriolis parameter in order to understand the dynamics.

In this configuration, the buoyancy force is misaligned with the rotation vector
similarly as the tilted stratified vortex studied by Boulanger et al. (2007, 2008) where
the resulting strong shear of the vertical velocity in the critical layer leads to a three-
dimensional instability (figure 1.7). The present DNS also shows a critical layer appear-
ing at a radius where the angular velocity of the vortex is equal to the Brunt–Väisälä fre-
quency. However, two types of instability will be shown to develop: a two-dimensional
and a three-dimensional instabilities.

In order to understand the mechanism of both instabilities, the competition between
them, as well as the evolution of the critical layer, asymptotic analyses have been per-
formed for large non-traditional Rossby numbers (based on the horizontal component
of the background rotation) and large Reynolds numbers. They also demonstrate the
similarity between the evolution of the critical layer in this thesis and the critical layers
studied in Boulanger et al. (2007, 2008) and Wang & Balmforth (2020, 2021).

Chapter 2 gives initial conditions and governing equations as well as a brief ex-
planation of the numerical methods that have been used. In chapter 3, we study the
stratified vortex under the complete Coriolis force with a purely two-dimensional initial
conditions. The evolution of the vortex with slightly three-dimensional initial condi-
tions will be presented in chapter 4. Finally, conclusions as well as perspectives are
discussed in chapter 5.
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Chapter 2

Numerical methods

To perform direct numerical simulations (DNS), we have used the numerical code NS3D
(Deloncle et al., 2008; Deloncle, 2014) based on the pseudo-spectral method. As the
numerical code NS3D originally only considered a vertical background rotation, we
have modified it to perform a simulation under the complete Coriolis force, i.e. with
a horizontal and vertical background rotation. In this chapter, we first provide initial
conditions and governing equations. Following this, we will construct the spectral form
of the non-dimensional governing equations and discuss the boundary conditions, as
well as space and time discretizations, used in the numerical code.

2.1 Initial simulations

Figure 2.1 illustrates the geometry of simulations. At the center of the box with
dimensions of lx × ly × lz, a single Lamb-Oseen stratified vortex is located with a
vorticity field

ω(x, t = 0) = ζ0ez =
Γ

πa20
e−r2/a20ez, (2.1)

where Γ is the circulation, a0 is the radius. Here, x = (x, y, z) and (r, θ, z) are Carte-
sian and cylindrical coordinates, respectively, and (ex, ey, ez) and (er, eθ, ez) are the
associated unit vectors. The vortex is subjected to a background rotation vector Ωb

that is decomposed into two vertical and horizontal components: 2Ωb = f̃ey + fez

where f = 2Ωb sin (ϕ) and f̃ = 2Ωb cos (ϕ), where ϕ is the angle between the back-
ground rotation vector and the unit vector in the y direction, ey. The fluid is stably

stratified with a constant Brunt–Väisälä frequency N =
√

−(g/ρ0)∂ρ̄/∂z, where g is
the gravity, ρ0 a constant reference density and ρ̄(z) the mean density profile.

15
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Fig. 2.1: Sketch of the initial vortex in a stratified rotating fluid with a background
rotation Ωb inclined with an angle ϕ

2.2 Governing equations

2.2.1 Dimensional form

The incompressible Navier-Stokes equations under the Boussinesq approximation gov-
ern the dynamics

∇.u = 0, (2.2)

∂u

∂t
= u× ω −∇

(
p

ρ0
+

u2

2

)
+ bez − 2Ωb × u+ ν∇2u, (2.3)

∂b

∂t
+ u.∇b+N2uz = κ∇2b, (2.4)

where u = (ux, uy, uz), b and p are the velocity, buoyancy and pressure, respectively.
The buoyancy is b = −gρ/ρ0 where g is the gravity, ρ is the density perturbation
related to the total density field ρt via ρt(x, t) = ρ0 + ρ̄(z) + ρ(x, t). Finally, ν and κ
are the viscosity of the fluid and the diffusivity of the stratifying agent, respectively.

2.2.2 Non-dimensionalization and control parameters

The governing equations are non-dimensionalized by using 2πa20/Γ and a0 as time and
length units:

∇.u = 0, (2.5)

∂u

∂t
= u× ω −∇

(
p

ρ0
+

u2

2

)
+ bez − 2

(
1

Ro
ez +

1

R̃o
ey

)
× u+

1

Re
∇2u, (2.6)

∂b

∂t
+ u.∇b+

1

F 2
h

uz =
1

ReSc
∇2b, (2.7)

where the same notation has been kept for the non-dimensional variables. In the follow-
ing, all results will be reported in non-dimensional form. The problem is controlled by
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five non-dimensional numbers: the Reynolds, Froude, traditional and non-traditional
Rossby and Schmidt numbers

Re =
Γ

2πν
, Fh =

Γ

2πa20N
, Ro =

Γ

πa20f
, R̃o =

Γ

πa20f̃
, Sc =

ν

κ
. (2.8)

The traditional Rossby number Ro and non-traditional Rossby number R̃o are defined
with the vertical and horizontal components of the rotation vector, respectively. The
Schmidt number will be always set to unity.

2.3 Direct Numerical Simulations

2.3.1 Spectral form of the governing equations

The spectral form of the equations is built by applying a three-dimensional Fourier
transform to (2.2-2.4). The three-dimensional Fourier transform of a periodic quantity
q is defined as

q̂(k, t) =

∫ lz

0

∫ ly

0

∫ lx

0

q(x, t)e−ik.xdx, (2.9)

where q̂ is the three-dimensional Fourier transform of q and k = (kx, ky, kz) is the total
wavenumber. Considering the periodicity of quantities, applying the three-dimensional
Fourier transform to (2.5) then gives

k.û = 0. (2.10)

It shows the orthogonality of the velocity field and wave vector in spectral space.
Similarly, the spectral form of (2.3) is given by[

∂

∂t
+

1

Re
∥k∥2

]
û = û × ω + ik

̂(
p

ρ0
+

u2

2

)
− 2

(
1

Ro
ez +

1

R̃o
ey

)
× û+ b̂ez. (2.11)

Using the tensor P⊥

P⊥(k) =

[
δmn −

kmkn

∥k∥2

]
1⩽m,n⩽3

, (2.12)

where δmn is the Kronecker delta, we then project (2.11) on the space of solenoidal
fields D(ek

⊥) where ek = k/∥k∥ is the unit wave vector

∂ûek
2t/Re

∂t
= P⊥

(
û × ω − 2

(
1

Ro
ez +

1

R̃o
ey

)
× û+ b̂ez

)
ek

2t/Re. (2.13)

In (2.13), the orthogonality of the velocity field and wave vector has been enforced.
Note that the pressure p is absent in (2.13) due to the projection on the space of
solenoidal fields. Similarly, the spectral form of (2.4) is derived by applying the three-
dimensional Fourier transform to (2.4):[

∂

∂t
+

1

ReSc
∥k∥2

]
b̂ = −ik.b̂u−N2uz, (2.14)
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which is equivalent to

∂b̂ek
2t/(ReSc)

∂t
=
[
−ik.b̂u−N2uz

]
ek

2t/(ReSc). (2.15)

2.3.2 Boundary conditions

As mentioned earlier, periodic boundary conditions are implemented in NS3D. Accord-
ing to Pradeep & Hussain (2004), the periodicity of a domain can result in nonphysical
results and must be implemented cautiously. When a single vortex is simulated, a
strain field is induced due to the periodicity of the domain. In addition, periodic
boundary conditions imply a zero net circulation of the domain, whereas a single vor-
tex has a non-zero net circulation. This implies that the initial condition is not exactly
ω(x, t = 0) as defined in (2.1) but ω

′
(x, t = 0) = ω(x, t = 0) − Γ/(lxly) where the

artificial background vorticity Γ/(lxly) makes the net circulation zero. It is therefore
necessary to have a sufficiently large domain in order to minimize these effects of pe-
riodicity. As shown by Bonnici (2018), with a horizontal domain of lx = ly = 18,
the artificial background vorticity Γ/(lxly) represents only 1% of the maximum vortex
vorticity. The strain field due to the image vortices is also very small. Therefore, all
simulations reported throughout this thesis are carried out with a horizontal domain
of lx = ly = 18.

2.3.3 Space and time discretizations

We use Cartesian coordinates x = (x, y, z) to discretize the physical space with the
resolution Nx × Ny × Nz. Similarly, the spectral coordinates k = (kx, ky, kz) are
discretized with the same resolution. In view of the fact that dissipation requires
small scales to be resolved, the resolution needed to resolve small scale depends on the
Reynolds number. The maximum resolution, however, will be limited by computational
costs. Consequently, several tests are required to confirm that the resolution is suitable
while the computational cost is reasonable. For example, in the case of two-dimensional
simulations, the velocity field has been found to differ by less than 0.1 % when the
horizontal resolution is doubled from Nx = Ny = 512 to Nx = Ny = 1024 for Re =
2000.

Time integration is performed using the fourth-order Runge-Kutta method. In this
method, the initial value problem

∂q

∂t
= f(q, t), q(t0) = q0, (2.16)

is discretized in time by the approximation

q(tn+1) = q(tn) +
1

6
(k1 + 2k2 + 2k3 + k4) δt, (2.17)
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where δt is the time step tn+1 = tn + δt and

k1 =f(q(tn), tn),

k2 =f(q(tn) + k1
δt
2
, tn +

δt
2
),

k3 =f(q(tn) + k2
δt
2
, tn +

δt
2
),

k4 =f(q(tn) + k3δt, tn + δt).

(2.18)

Since the Runge-Kutta method is an explicit method, the time step δt must satisfy
the Courant–Friedrichs–Levy (CFL) convergence condition

δt

(
ux
δx

+
uy
δy

+
uz
δz

)
≤ C, (2.19)

where (δx, δy, δz) = (lx/Nx, ly/Ny, lz/Nz) and C = 1 is the Courant number. For
example, the time step is δt = 0.01 for the resolution Nx = Ny = 512 in accordance
with other parameters in (2.19). For the resolutions, the time step is modified so as to
satisfy (2.19).

2.3.4 Pseudo-spectral method

Using the fourth-order Runge-Kutta, equations (2.13) and (2.15) are integrated in time.

Computations of the non-linear terms û × ω and b̂u in spectral space are, however,
highly expensive in the spectral method. In the so-called pseudo-spectral method, a
backward Fourier transform of the terms (û, ω̂, b̂) is performed, then non-linear terms
are computed in physical space and finally, a forward Fourier transform is applied to the
non-linear terms. In spite of the lower computation cost of the pseudo-spectral method,
computations of non-linear terms lead to an aliasing error, which is the transposition of
higher-order terms into lower-order terms because of the periodicity of the quantities
(Orszag, 1971; Delbende, 1998). To get rid of aliasing errors, the top one-third of the
modes along each direction is removed.
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Dynamics of a stratified vortex under the complete

Coriolis force: two-dimensional three-components

evolution
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Abstract: We study the dynamics of an initially axisymmetric and vertical Lamb-Oseen
vortex in a stratified-rotating fluid under the complete Coriolis force on the f plane, i.e.
in presence of a background rotation both along the vertical and horizontal directions.
By a combination of direct numerical simulations and asymptotic analyses for small
horizontal background rotation, we show that a critical layer appears at the radius
where the angular velocity of the vortex is equal to the buoyancy frequency when the
Froude number is larger than unity. This critical layer generates a vertical velocity
which is invariant along the vertical and which first increases linearly with time and
then saturates at an amplitude scaling like Re1/3, where Re is the Reynolds number. In
turn, a quasi-axisymmetric anomaly of vertical vorticity is produced at the critical ra-
dius through the non-traditional Coriolis force. Below a critical non-traditional Rossby
number R̃o (based on the horizontal component of the background rotation) depending
on Re, the Rayleigh’s inflectional criterion is satisfied and a shear instability is subse-
quently triggered rendering the vertical vorticity fully non-axisymmetric. The decay of
the angular velocity is then enhanced until it is everywhere lower than the buoyancy
frequency. A theoretical criterion derived from the Rayleigh condition predicts well the
instability. It shows that this phenomenon can occur even for a large non-traditional
Rossby number R̃o for large Re. Hence, the non-traditional Coriolis force might have
much more impact on geophysical vortices than anticipated by considering the order
of magnitude of R̃o.

3.1 Introduction

The Coriolis force due to the planetary rotation is an essential ingredient of geophysical
fluid dynamics. When studying its effect on fluid motions, it is common to use the so-
called traditional approximation which amounts to take into account only the vertical
component, Ωb sin(ϕ), of the planetary angular velocity vector Ωb at a given latitude ϕ.
Its horizontal component Ωb cos(ϕ) is neglected mainly because the associated Coriolis
force (called non-traditional Coriolis force) involves vertical motions or appears in
the vertical momentum equation, whereas geophysical flows are usually in hydrostatic
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balance with weak vertical motions compared to horizontal motions (Gerkema et al.,
2008).

However, Gerkema et al. (2008) have reviewed several circumstances where the
effect of the non-traditional Coriolis force becomes non-negligible. This occurs for
example when the vertical velocity is not small like for the instability of Ekman layers
(Wippermann, 1969; Etling, 1971) and for deep convection (Sheremet, 2004). In the
latter case, its effect is particularly intuitive since convective cells become slanted along
the axis of rotation instead of the direction of gravity. The non-traditional Coriolis
force may have also many effects on equatorial flows (Hayashi & Itoh, 2012; Igel &
Biello, 2020) and on the propagation and frequency range of internal waves, especially
when the stratification is weak (Gerkema et al., 2008). Recently, the non-traditional
force has been shown to significantly modify several instabilities: the inertial instability
(Tort et al., 2016; Kloosterziel et al., 2017), the symmetric instability (Zeitlin, 2018)
and the shear instability (Park et al., 2021). Tort & Dubos (2014) and Tort et al. (2014)
have also derived shallow water models taking into account the complete Coriolis force.

In the case of vortices, Lavrovskii et al. (2000) and Semenova & Slezkin (2003) have
shown analytically that the equilibrium shape of a meddy-like anticyclonic vortex in
a stratified fluid is slightly tilted with respect to the horizontal in presence of the full
Coriolis force. However, they have assumed that the vortex has a uniform vorticity and
is embedded within a fluid a rest. Hence, there exist both a discontinuity of vorticity
and velocity at the vortex boundary. Here, we study numerically and theoretically
the evolution of a vortex with a continuous distribution of vorticity under the com-
plete Coriolis force. The vortex is initially axisymmetric and columnar with a vertical
axis in a stratified-rotating fluid under the Boussinesq and f -plane approximations.
Since there is a misalignment between the buoyancy force and the rotation vector,
this configuration is somewhat similar to the tilted vortex in a stratified non-rotating
fluid considered by Boulanger et al. (2007, 2008). They have shown that a critical
layer develops at the radius where the angular velocity of the vortex is equal to the
Brunt–Väisälä frequency. Near this critical layer, they observed an intense axial flow
and strong density variations that are uniform along the vortex axis but that lead to a
three-dimensional shear instability under certain circumstances. We will show that a
similar critical layer develops in the present configuration when the Froude number is
larger than unity. For some parameters, an instability will be also triggered but it will
be two-dimensional instead of being three-dimensional and due to a different mecha-
nism. In addition, we will show that the critical layer evolution contains two different
regimes: first, an unsteady inviscid phase followed by a second viscous phase which
can be steady or can evolve non-linearly depending on the parameters. Such evolution
is similar to the one evidenced by Wang & Balmforth (2020, 2021) in their studies of
forced baroclinic critical layers. They have also reported the subsequent development
of a two-dimensional shear instability and studied its non-linear evolution by means of
a reduced model. Our investigations are based on direct numerical simulations coupled
to asymptotic analyses of the critical layer in the limit of small non-traditional Corio-
lis parameter following the lines of Boulanger et al. (2007, 2008); Wang & Balmforth
(2020, 2021).

As a preliminary remark, we stress that the present study has been first carried out
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by means of three-dimensional numerical simulations. However, the flow turned out
to remain independent of the vertical coordinate although the vertical velocity is non-
zero. In other words, the dynamics were two-dimensional but with 3 components of
velocity (2D3C). As we will see later, this can be easily understood from the governing
equations. For this reason, the subsequent simulations reported in this paper have
been restricted to a two-dimensional configuration. However, in a future paper, we will
show that the introduction of infinitely small three-dimensional perturbations may also
lead for some parameters to a full three-dimensionalisation of the vortex, i.e. a 3D3C
dynamics, via an axial shear instability similar to the one reported by Boulanger et al.
(2007, 2008). We stress that the two-dimensional dynamics is still observed in this full
three-dimensional configuration in a significant range of the parameters space.

The paper is organized as follows. The problem is first formulated in §3.2. Direct
numerical simulations are described in §3.3. Asymptotic analyses are conducted for
small non-traditional Coriolis parameter in §3.4. In §3.5, the numerical and asymptotic
results are compared. The origin of the full non-axisymmetric dynamics of the vortex
will be investigated in §3.6. Finally, the late evolution is discussed in §3.7 and the
conclusions are given in §3.8.

3.2 Formulation of the problem

3.2.1 Governing equations

We use the incompressible Navier-Stokes equations under the Boussinesq approxima-
tion

∇.u = 0, (3.1)

∂u

∂t
+ (u.∇)u = −∇

(
p

ρ0

)
+ bez − 2Ωb × u+ ν∇2u, (3.2)

∂b

∂t
+ u.∇b+N2uz = κ∇2b, (3.3)

where u is the velocity field, p is the pressure and b = −gρ/ρ0 is the buoyancy, g is
the gravity, ρ is the density perturbation and ρ0 is a constant reference density. ez

is the vertical unit vector and Ωb is the background rotation vector. It is assumed
to have not only a vertical component but also a horizontal component along the y
direction: 2Ωb = f̃ey + fez where f = 2Ωb sin (ϕ) and f̃ = 2Ωb cos (ϕ), where ϕ is the
latitude or, equivalently, the angle between the background rotation vector and the
unit vector in the y direction, ey (figure 3.1). ν and κ are the viscosity of the fluid
and diffusivity of the stratifying agent, respectively. The total density field ρt reads
ρt(x, t) = ρ0 + ρ̄(z) + ρ(x, t), where ρ̄ is the mean density profile along the z-axis. The
Brunt–Väisälä frequency

N =

√
− g

ρ0

dρ̄

dz
(3.4)

will be assumed to be constant.
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Fig. 3.1: Sketch of the initial vortex in a stratified fluid and in presence of a background
rotation Ωb inclined with an angle ϕ.

3.2.2 Initial conditions

A single vertical vortex with a Lamb-Oseen profile is taken as initial conditions. Its
vorticity field reads

ω(x, t = 0) = ζez =
Γ

πa20
e−r2/a20ez, (3.5)

where Γ is the circulation, a0 is the radius and r is the radial coordinate. The geometry
of the flow is sketched in figure 3.1.

3.2.3 Non-dimensionalization

Equations (3.1-3.3) are non-dimensionalized by using 2πa20/Γ and a0 as time and length
units:

∇.u = 0, (3.6)

∂u

∂t
+ (u.∇)u = −∇p+ bez − 2

(
1

Ro
ez +

1

R̃o
ey

)
× u+

1

Re
∇2u, (3.7)

∂b

∂t
+ u.∇b+

1

F 2
h

uz =
1

ReSc
∇2b, (3.8)

where the same notation has been kept for the non-dimensional variables. Note that
ρ0 has been eliminated by redefining the pressure p. The Reynolds, Froude, Rossby
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and Schmidt numbers are defined as

Re =
Γ

2πν
, Fh =

Γ

2πa20N
, Ro =

Γ

πa20f
, R̃o =

Γ

πa20f̃
, Sc =

ν

κ
. (3.9)

Note that two Rossby numbers Ro and R̃o are defined based on the two components of
the rotation vector. The Schmidt number will be always set to unity. In the following,
all results will be reported in non-dimensional form.

3.2.4 Numerical method

A pseudo-spectral method with periodic boundary conditions is used to integrate the
equations (3.1-3.3) in space (Deloncle et al., 2008). Time integration is performed with
a fourth-order Runge–Kutta scheme. Most of the aliasing is removed by truncating
the top one third of the modes along each direction. The viscous and diffusive terms
are integrated exactly. The horizontal sizes of the computational domain have been
set to lx = ly = 18. As shown by Bonnici (2018) and Billant & Bonnici (2020), this is
sufficiently large to minimize the effects of the periodic boundary conditions and to give
results independent of the box sizes. In particular, the periodic boundary condition
imposes that the net circulation over the domain is zero implying that the initial
vorticity is not exactly (3.5) but ζ

′
= ζ − Γ/(lxly). However, with lx = ly = 18, the

artificial background vorticity Γ/(lxly) is weak and represents only 1% of the maximum
vorticity of the vortex. The horizontal resolution has been varied from nx = ny = 512
for Re = 2000 up to nx = ny = 1024 for Re = 10000. As mentioned in the introduction,
preliminary simulations were fully three-dimensional with a resolution nz and a vertical
size lz similar to the horizontal ones. However, the flow were always observed to remain
independent of the vertical coordinate. It can be seen indeed from (3.6-3.8) that if
∂/∂z = 0 at t = 0, then the flow will remain independent of the vertical coordinate
for all time. Therefore, only two-dimensional simulations but with 3 components of
velocity will be presented in the following. Several tests using different horizontal
resolutions have been performed in order to verify the accuracy of the computations.
For Re = 2000, the velocity has been found to differ by less than 0.1% when the
resolution is increased from 512 × 512 to 1024 × 1024. Similarly, for Re = 10000, the
relative variation of the velocity is less than 0.5% when the resolution is increased from
1024× 1024 to 1536× 1536.

3.3 Direct Numerical Simulations

3.3.1 Illustrative example of the vortex dynamic

To get an overview of the effect of the complete Coriolis force, we start by presenting
the vortex evolution for the sample set of parameters Re = 2000, Fh = 10, Ro = 23.1,
ϕ = 60◦ (R̃o = 40). Figures 3.2 and 3.3 show the evolution of the vertical velocity
and vertical vorticity at six different times (A movie is available in the supplementary
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Fig. 3.2: Vertical velocity at different times: (a) t = 1 , (b) t = 30 , (c) t = 60, (d)
t = 75, (e) t = 80 and (f) t = 90 for Re = 2000, Fh = 10, Ro = 23.1, ϕ = 60◦

(R̃o = 40).

material). Initially, the vortex is completely axisymmetric (figure 3.3(a)) and the ver-
tical velocity is zero (figure 3.2(a)). As time goes on, a vertical velocity field with an
azimuthal wavenumber m = 1 develops (figure 3.2(b)). This structure tends to inten-
sify and becomes more and more concentrated at a particular radius (figure 3.2(c)).
Concomitantly, a ring of negative vertical vorticity appears and grows at the same ra-
dius (figure 3.3(b, c)). Later, the vertical velocity structure and the ring of anomalous
vertical vorticity are no longer perfectly circular (figure 3.3(d, e, f)). Two negative
vortices appear on the vertical vorticity ring and revolve around the vortex center (fig-
ure 3.3(e, f)). Simultaneously, the shape of the vertical velocity structure is deformed
similarly (figure 3.2(e, f)). As already mentioned, preliminary three-dimensional sim-
ulations with various vertical sizes lz of the computational domain and resolutions nz

have shown that the velocity and vorticity fields remain always completely indepen-
dent of the vertical coordinate, i.e. the same evolution is observed in any horizontal
cross-section. It is also important to stress that this phenomenon occurs only in pres-
ence of the complete Coriolis force. Indeed, if R̃o = ∞, the vertical velocity remains
identically zero while the vertical vorticity simply decays by viscous diffusion.

From figure 3.3, we can distinguish two phases in the evolution of the vortex. First,
a circular ring of anomalous vertical vorticity develops and then, this ring becomes
non-axisymmetric. A more in-depth analysis of these two phases will be discussed
later. Let us first examine the effects of the control parameters on this phenomenon.
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Fig. 3.3: Vertical vorticity at different times: (a) t = 1 , (b) t = 30 , (c) t = 60, (d)
t = 75, (e) t = 80 and (f) t = 90 for Re = 2000, Fh = 10, Ro = 23.1, ϕ = 60◦

(R̃o = 40).

3.3.2 Effects of the stratification

When the Froude number is decreased from Fh = 10 to Fh = 2, the same evolution of
the vertical velocity (figure 3.4 (a)− (d), see the movie in the supplementary material)
and the vertical vorticity (figure 3.4 (e) − (h)) is observed but at a smaller radius.
However, the anomaly of the vertical vorticity does not become negative this time
and the maximum vertical velocity is also lower than for Fh = 10. Figure 3.5(a)
shows the evolution of the vertical velocity maximum uzm. In fact, three phases can
be distinguished. First, uzm increases linearly with time with some small oscillations
superimposed which will be later attributed to inertia-gravity waves. The propagation
of waves can be also seen in the vertical velocity field at the beginning of the movies.
Then, uzm saturates and tends to slightly decrease. When t ≳ 60, large oscillations
arise when the vortex becomes fully non-axisymmetric.

If the Froude number is below unity, such evolution is no longer observed. In §3.4,
it will be shown that this phenomenon is due the presence of a critical layer where
the angular velocity of the vortex is equal to the non-dimensional Brunt–Väisälä fre-
quency, i.e. Ω = 1/Fh, where Ω is the non-dimensional angular velocity of the vortex
corresponding to the vorticity field (3.5).

3.3.3 Effects of the Rossby numbers

When the traditional Rossby number Ro, which is based on the vertical component
of the background rotation, is varied, while keeping the other numbers fixed (Re, Fh,
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Fig. 3.4: Vertical velocity (top) and vertical vorticity (bottom) at different times: (a, e)
t = 10 , (b, f) t = 40 , (c, g) t = 65 and (d, h) t = 80 for Re = 2000, Fh = 2, Ro = 23.1,

ϕ = 60◦ (R̃o = 40).

Fig. 3.5: Maximum vertical velocity as a function of time for Fh = 2 and (a) Re = 2000,

Ro = 23.1, ϕ = 60◦ (R̃o = 40), (b) Re = 2000, Ro = 20.3, ϕ = 80◦ (R̃o = 115.2) and

(c) Re = 10000, Ro = 20.3, ϕ = 80◦ (R̃o = 115.2).
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R̃o), the vortex evolution remains strictly identical. This is consistent with the fact
that the dynamics is independent of the vertical coordinate so that the Coriolis force
associated with Ro can be eliminated from (3.7) by redefining the pressure.

In contrast, varying the non-traditional Rossby number R̃o, which is based on
the horizontal component of the background rotation, has important effects on the
evolution of the vortex. Since the Rossby number Ro has no effect, the effect of R̃o has
been studied by varying the latitude ϕ while keeping the background rotation rate Ωb

constant. Hence, both R̃o and Ro varies. Figure 3.6 shows the evolution of the vertical
velocity and vertical vorticity when the latitude is increased from ϕ = 60◦ to ϕ = 80◦

(R̃o is increased from R̃o = 40 to R̃o = 115.2) while keeping the other parameters fixed
(A movie is available in the supplementary material). The initial evolution (figure
3.6(a, b, e, f) is similar to the one in figure 3.4 but, later (figure 3.6(c, d, g, h)), the
fields keep the same shape, i.e. no significant asymmetric deformations can be seen in
contrast to figure 3.4(d, h). As seen in figure 3.5(b), only two phases are then present
in the evolution of the maximum vertical velocity. First, a phase where uzm grows
linearly with weak oscillations and, second, a phase where uzm remains approximately
constant. In addition, the maximum vertical velocity is lower (figure 3.6(b, c)) and
the anomalous vorticity ring is weaker (figure 3.6(g)) than in figure 3.4. At late time
t = 200 (figure 3.6(d, h)), we can see that the vertical velocity has decreased by viscous
diffusion while the vertical velocity field has moved towards the center of the vortex.
This is consistent with the critical layer’s interpretation since, as the angular velocity
decays, the radius where Ω = 1/Fh decreases.

3.3.4 Effects of the Reynolds number

Figure 3.7 shows the evolution of the vertical velocity and vertical vorticity when the
Reynolds number is increased from Re = 2000 to Re = 10000 while keeping the
other parameters as in figure 3.6. A movie is also available in the supplementary
material. The maximum vertical velocity is almost doubled and the vertical velocity
field is much thinner and focused near a given radius (figure 3.7(b)) than in figure 3.6.
Furthermore, the ring of anomalous vertical vorticity (figure 3.7(f)) is more intense.
Later, asymmetric deformations of this ring and of the vertical velocity field are clearly
visible (figure 3.7(c, d, g, h)) in contrast to figure 3.6. Oscillations are then visible in
the evolution of uzm (figure 3.5(c)).

3.3.5 Combined effects of R̃o and Re

In the previous sections, we have seen that the vertical vorticity becomes fully non-
axisymmetric in a second stage if ϕ is sufficiently lower than 90◦, i.e. if R̃o is not too
large (figure 3.4) or if the Reynolds number is large enough (figure 3.7), otherwise the
vertical vorticity field remains quasi-axisymmetric (figure 3.6). Figure 3.8 summarizes

several other simulations for various R̃o and Reynolds numbers Re keeping the Froude
number equal to Fh = 2. Yellow and blue symbols indicate simulations where the ver-
tical vorticity remains quasi-axisymmetric or becomes non-axisymmetric, respectively.
We can see that the critical Rossby number R̃oc above which the vortex remains quasi-
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Fig. 3.6: Vertical velocity (top) and vertical vorticity (bottom) at different times:
(a, e) t = 10 , (b, f) t = 50 , (c, g) t = 150 and (d, h) t = 200 for Re = 2000, Fh = 2,

Ro = 20.3, ϕ = 80◦ (R̃o = 115.2).
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Fig. 3.7: Vertical velocity (top) and vertical vorticity (bottom) at different times: (a, e)
t = 10 , (b, f) t = 100 , (c, g) t = 150 and (d, h) t = 200 for Re = 10000, Fh = 2,

Ro = 20.3, ϕ = 80◦ (R̃o = 115.2).
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Fig. 3.8: Map of the simulations in the parameter space (Re, R̃o) for Fh = 2. The
yellow and blue circles represent simulations where the vertical vorticity remains quasi-
axisymmetric or not, respectively. The solid and dashed lines represent the criterion
(3.71) for different values of (a, c): (∞, 0) and (∞, 0.4), respectively. The numbers
near some points indicate the figure numbers where the corresponding simulation is
shown.

axisymmetric increases with the Reynolds number from R̃oc ≃ 100 for Re = 2000 to
R̃oc ≃ 400 for Re = 10000.

3.4 Asymptotic analyses

In order to understand the vortex evolution observed in the DNS, it is interesting
to perform an asymptotic analysis for small horizontal component of the background
rotation, i.e. for R̃o ≫ 1, and for large Reynolds number. To this end, it is first
convenient to rewrite (3.6-3.8) in cylindrical coordinates (r, θ, z)

1

r

∂rur
∂r

+
1

r

∂uθ
∂θ

+
∂uz
∂z

= 0, (3.10a)
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∂ur
∂t

+ ur
∂ur
∂r

+
uθ
r

∂ur
∂θ

+ uz
∂ur
∂z

− uθ
2

r
= −∂p

∂r
+

2uθ
Ro

− 2uz

R̃o
cos (θ)

+
1

Re

(
∇2ur −

2

r2
∂uθ
∂θ

)
,

(3.10b)

∂uθ
∂t

+ ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+ uz
∂uθ
∂z

+
uruθ
r

= −1

r

∂p

∂θ
− 2ur
Ro

+
2uz

R̃o
sin (θ)

+
1

Re

(
∇2uθ +

2

r2
∂ur
∂θ

)
,

(3.10c)

∂uz
∂t

+ur
∂uz
∂r

+
uθ
r

∂uz
∂θ

+uz
∂uz
∂z

= −∂p
∂z

+b+
2ur

R̃o
cos (θ)− 2uθ

R̃o
sin (θ)+

1

Re
∇2uz, (3.10d)

∂b

∂t
+ ur

∂b

∂r
+
uθ
r

∂b

∂θ
+ uz

∂b

∂z
+
uz
F 2
h

=
1

ReSc
∇2b. (3.10e)

It is also convenient to consider the equation for the vertical vorticity ζ:

∂ζ

∂t
+ u.∇ζ = (ω +

2

Ro
ez).∇uz +

2

rR̃o

[
∂

∂r
(ruz sin (θ)) +

∂

∂θ
(uz cos (θ))

]
+

1

Re
∆ζ,

(3.11)
where ω = ∇× u.

The solution is expanded with the small parameter ε = 2/R̃o≪ 1 in the form

(ur, uθ, uz, p, b) = (0, uθ0, 0, p0, 0) + ε(ur1, uθ1, uz1, p1, b1) + ..., (3.12)

where uθ0 = rΩ, with Ω = (1− e−r2)/r2, is the non-dimensional angular velocity of the
vortex corresponding to the vorticity field (3.5).

It is first instructive to consider a steady and non-diffusive flow, i.e. ∂/∂t = 0 and
Re = ∞. Then, (3.10b) reduces at leading order to the cyclostrophic balance

−u
2
θ0

r
= −∂p0

∂r
+

2uθ0
Ro

, (3.13)

whereas (3.10a,3.10c-3.10e) are identically zero at leading order. At first order in ε, it
is sufficient to consider only (3.10d) and (3.10e):

Ω
∂uz1
∂θ

= −rΩ sin (θ) + b1, (3.14a)

Ω
∂b1
∂θ

= −uz1
F 2
h

. (3.14b)

The solution is

uz1 =
rΩ2F 2

h

F 2
hΩ

2 − 1
cos (θ), (3.15a)
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b1 =
−rΩ

F 2
hΩ

2 − 1
sin (θ), (3.15b)

showing that the Coriolis force due to the horizontal component of the background
rotation (first term in the right hand side of (3.14a) forces a vertical velocity and
buoyancy fields. These fields are independent of the vertical coordinate as observed
in the DNS. However, we can remark that (3.15a-3.15b) are singular if there exists a
radius rc where Ω(rc) = 1/Fh. Such critical radius exists wherever Fh > 1 since the
non-dimensional angular velocity decreases from unity on the vortex axis to zero for
r → ∞.

A similar critical layer occurs in the case of a tilted vortex in a stratified fluid
(Boulanger et al., 2007) and in stratified rotating shear flow (Wang & Balmforth, 2020).
This singularity can be smoothed if the flow is no longer assumed to be steady or invis-
cid. Although these two effects can a priori operate simultaneously, the unsteadiness
turns out to be, first, the dominant effect while diffusive effects are negligible followed
by a second phase where it is the opposite.

3.4.1 Unsteady inviscid analysis

Accordingly, we first consider (3.10a-3.10e) in the inviscid limit Re = ∞ but keeping
the time derivatives. At leading order, the equations reduce to

−u
2
θ0

r
=
∂p0
∂r

+
2uθ0
Ro

, (3.16)

∂uθ0
∂t

= 0, (3.17)

so that uθ0 = rΩ as before. At first order, the equations (3.10d-3.10e) become

∂uz1
∂t

+ Ω
∂uz1
∂θ

= b1 − rΩ sin (θ), (3.18a)

∂b1
∂t

+ Ω
∂b1
∂θ

= −uz1
F 2
h

. (3.18b)

The only difference with (3.15) is the presence of the time derivatives. By imposing
uz1 = b1 = 0 at t = 0, the solutions can be found in the form

uz1 = uzpe
iθ + u∗zpe

−iθ, (3.19a)

b1 = bpe
iθ + b∗pe

−iθ, (3.19b)

where the star denotes the complex conjugate and

uzp =
rΩ

4

[
− 1

α

(
1− eiαt

)
+

1

β

(
1− e−iβt

)]
, (3.20a)

bp = −i rΩ
4Fh

[
1

α

(
1− eiαt

)
+

1

β

(
1− e−iβt

)]
, (3.20b)
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with

α =
1− FhΩ

Fh

, β =
1 + FhΩ

Fh

. (3.21)

Compared to the steady solution (3.15), the additional terms present in (3.20) corre-
spond to waves generated at t = 0 to satisfy the initial conditions. These waves oscillate
at the frequencies 1/Fh−Ω and −1/Fh−Ω, i.e. the non-dimensional Brunt–Väisälä fre-
quency with an additional Doppler shift coming from the azimuthal motion of the
vortex. Hence, they correspond to inertia-gravity waves with zero vertical wavenum-
ber. In contrast to (3.15), we see now that the vertical velocity and buoyancy (3.19a-
3.19b) are no longer singular at the radius rc where Ω(rc) = 1/Fh. Indeed, we have
(1− eiαt)/α ≃ −it when α → 0 so that (3.20a-3.20b) remain finite at r = rc.

Following Wang & Balmforth (2020), the behaviour of these solutions in the vicinity
of the critical radius can be studied more precisely by introducing the variable η = r−rc.
When η ≪ 1, the vertical velocity approximates to

uz1 =

[(
rcΩc

2ηΩ′
c

+
Ωc

2Ω′
c

+
rc
2
− rcΩ

′′
cΩc

4Ω′
c
2

)(
1− cos (ηΩ

′

ct)
)
+
rc
4

(
1− cos

(
2

Fh

t

))]
cos (θ)

−
[(

rcΩc

2ηΩ′
c

+
Ωc

2Ω′
c

+
rc
2
− rcΩ

′′
cΩc

4Ω′
c
2

)
sin (ηΩ

′

ct) +
rc
4
sin

(
2

Fh

t

)]
sin (θ) +O(η),

(3.22)

where the subscript c indicates a value taken at rc. The terms involving ηΩ
′
ct in the

sin and cos functions have not been expanded in (3.22) since this quantity can be large
when t is large even for small η. The approximation (3.22) is therefore uniformly valid
whatever t. Taking into account only the leading order, (3.22) can be simplified and
rewritten as

uz1 =
rcΩct

2

[(
1− cosU

U

)
cos (θ)− sinU

U
sin (θ)

]
+O(1), (3.23)

where U = ηΩ
′
ct. This expression shows that the radial profile of the vertical velocity

in the vicinity of rc depends only on the self-similar variable U . This implies that the
vertical velocity will be more and more concentrated around rc as time increases. In
addition, (3.23) shows that the amplitude of uz1 will increase linearly with time for a
fixed value of U . In practice, the approximation (3.23) will be accurate only when t
is large since the neglected terms are of order unity. Since Ωc = 1/Fh, this will occur
more and more later when Fh increases. We emphasize that the inertia-gravity wave
oscillating at frequency 1/Fh + Ωc = 2/Fh is neglected in (3.23) unlike in (3.22).

3.4.2 Unsteady viscous analysis

Here, viscous and diffusive effects are taken into account in addition to the time evo-
lution. Following Boulanger et al. (2007) and Wang & Balmforth (2020, 2021), we
assume that the Reynolds number is large Re ≫ 1 and consider only the vicinity of
the critical radius by introducing a rescaled radius such that r̃ = Re1/3(r − rc). We
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also assume that the evolution occurs over the slow time T = Re−1/3t. Since Re ≫ 1,
the leading order solution of (3.10a-3.10e) is still uθ0 = rΩ. At order ε, the equations
(3.10d-3.10e) become

1

Re1/3
∂uz1
∂T

+

(
Ωc +

r̃Ω
′
c

Re1/3
+O

(
1

Re2/3

))
∂uz1
∂θ

= b1

−
(
rcΩc +

r̃(Ωc + rcΩ
′
c)

Re1/3
+O

(
1

Re2/3

))
sin (θ) +

1

Re1/3
∂2uz1
∂r̃2

+O

(
1

Re2/3

)
,

(3.24a)

1

Re1/3
∂b1
∂T

+

(
Ωc +

r̃Ω
′
c

Re1/3
+O

(
1

Re2/3

))
∂b1
∂θ

= −uz1
F 2
h

+
1

Sc

[
1

Re1/3
∂2b1
∂r̃2

+O

(
1

Re2/3

)]
.

(3.24b)
These equations can be solved by expanding uz1 and b1 as follows

uz1 = Re1/3
[
ũz1(r̃, T )e

iθ + c.c.
]
+ ũz2(r̃, T )e

iθ + c.c.+ ..., (3.25a)

b1 = Re1/3
[
b̃1(r̃, T )e

iθ + c.c.
]
+ b̃2(r̃, T )e

iθ + c.c.+ .... (3.25b)

By substituting (3.25a-3.25b) in (3.24a-3.24b), we get at order O(Re1/3)

iΩcũz1 = b̃1, (3.26a)

iΩcb̃1 = − ũz1
F 2
h

, (3.26b)

which both yields

b̃1 = iΩcũz1. (3.27)

The equations at order O(1) are

∂ũz1
∂T

+ iΩcũz2 + ir̃Ω
′

cũz1 = b̃2 −
rcΩc

2i
+

d2ũz1
dr̃2

, (3.28a)

∂b̃1
∂T

+ iΩcb̃2 + ir̃Ω
′

cb̃1 = − 1

F 2
h

ũz2 +
1

Sc

d2b̃1
dr̃2

. (3.28b)

By using (3.27), the solvability condition to find b̃2 and ũz2 from (3.28a-3.28b) requires
ũz1 to satisfy

∂ũz1
∂T

+ ir̃Ω
′

cũz1 =
i

4
rcΩc +

1

2

(
1 +

1

Sc

)
d2ũz1
dr̃2

. (3.29)

As shown by Wang & Balmforth (2020, 2021), the solution is

ũz1 = iA
1

π

∫ ∣∣∣Ω′
c

∣∣∣T/γ
0

exp

(
−z

3

3
+ iγr̃z

)
dz, (3.30)
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where

A =
πrcΩc

2
∣∣∣2Ω′

c

∣∣∣2/3(1 + 1

Sc

)1/3
, γ =

∣∣∣2Ω′

c

∣∣∣1/3(
1 +

1

Sc

)1/3
. (3.31)

When
∣∣Ω′

c

∣∣T/γ ≫ 1, the upper bound in the integral can be replaced by infinity so
that (3.30) recovers the steady solution (Boulanger et al., 2007)

ũz1 = iAHi(iγr̃), (3.32)

where Hi is the Scorer’s function (Abramowitz & Stegun, 1972). We will see that the
time interval where both the unsteadiness and viscous effects are important is short so
that (3.32) turns out to be reached quickly after the inviscid regime.

3.4.3 Effect on the vertical vorticity

We now turn to the study of the effect of the vertical velocity on the vertical vorticity.
Since the flow is invariant along the vertical, the equation for the vertical vorticity
(3.11) reduces to

∂ζ

∂t
+ u.∇ζ =

ε

r

[
∂

∂r
(ruz sin (θ)) +

∂

∂θ
(uz cos (θ))

]
+

1

Re
∆hζ. (3.33)

This equation shows that the vertical velocity generated at order O(ε) will in turn
force a vertical vorticity field at order O(ε2). In order to compute this second order
horizontal flow, the vertical vorticity and stream function can be expanded as

ζ = ζ0 + ε2ζ2 + ..., (3.34)

ψ = ψ0 + ε2ψ2 + ..., (3.35)

where (ζ0, ψ0) are the non-dimensional vertical vorticity and stream function of the
base flow (3.5) and ζ2 = ∆hψ2. The second order vertical vorticity follows

∂ζ2
∂t

+ Ω
∂ζ2
∂θ

− 1

r

∂ψ2

∂θ

∂ζ0
∂r

=
1

r

[
∂

∂r
(ruz1 sin (θ)) +

∂

∂θ
(uz1 cos (θ))

]
+

1

Re
∆hζ2. (3.36)

Since the first order vertical velocity uz1 has an azimuthal wavenumber m = 1, ζ2 and
ψ2 can be sought in the form

ζ2 = ζ20(r, t) +
[
ζ22(r, t)e

2iθ + c.c.
]
, (3.37)

ψ2 = ψ20(r, t) +
[
ψ22(r, t)e

2iθ + c.c.
]
. (3.38)

In the following, we will determine only the axisymmetric part ζ20 since we will show
that the component ζ22 grows slower than ζ20.
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Inviscid evolution of ζ20

When uz1 follows the unsteady inviscid expression (3.19a), the axisymmetric vertical
vorticity ζ20 is given by

∂ζ20
∂t

= − i

2r

∂

∂r

(
r(u∗zp − uzp)

)
. (3.39)

By assuming that ζ20 = 0 at t = 0, the solution reads

ζ20 =
ζ0
4

(
cos (αt)− 1

α2
+

cos (βt)− 1

β2

)
+
rΩΩ

′

4

[
αt sin (αt) + 2(cos (αt)− 1)

α3
− βt sin (βt) + 2(cos (βt)− 1)

β3

]
.

(3.40)

Considering the vicinity of the critical radius η = r− rc, this solution approximates
at leading order to

ζ20 =
rcΩc

4Ω′
c
2η3

[
2
(
1− cos (ηΩ

′

ct)
)
− ηΩ

′

ct sin (ηΩ
′

ct)
]
+O

(
1

η2

)
, (3.41)

where ηt has been considered finite as in (3.22) so that the approximation remains
valid even for long time. In terms of the similarity variable U , (3.41) can be rewritten

ζ20 =
rcΩcΩ

′
ct

3

4

[
2(1− cosU)− U sinU

U3

]
+O

(
1

η2

)
. (3.42)

This expression shows that ζ20 remains finite and even vanishes when U → 0 but ζ20
is more and more concentrated in the vicinity of the critical layer as time increases.
Furthermore, its amplitude increases like t3 at leading order.

Using the same approach for ζ22, it can be shown that its amplitude grows like
t2 instead of t3. Indeed, the forcing term of ζ22 is proportional to t2 like for ζ20 but
the left hand side of (3.36) is dominated by the term 2iΩcζ22 instead of ∂ζ20/∂t for
the axisymmetric component. Thus, ζ22 is proportional to t2, at least initially. This
explains why the vertical vorticity is observed in the DNS to remain quasi-axisymmetric
during the first two phases.

Viscous evolution of ζ20

When the vertical velocity is given by the unsteady viscous solution (3.25a) and (3.30),
it is possible to also obtain its effect on the second order axisymmetric vertical vorticity
ζ20. Expressing first (3.36) in terms of r̃ and T gives at leading order when Re≫ 1

1

Re1/3
∂ζ20
∂T

=
−i
2
Re2/3

∂

∂r̃
(ũ∗z1 − ũz1) +O(Re1/3) +

1

Re1/3
∂2ζ20
∂r̃2

+ ... . (3.43)

As shown by Wang & Balmforth (2021), the exact solution of (3.43) can be found
by means of a Fourier transform in r̃ using (3.30). This gives

ζ20 = −iReA
2γπ

∫ ∣∣∣Ω′
c

∣∣∣T
0

exp

(
−q3

3γ3
+ iqr̃

)(
1− exp

(
q3/
∣∣Ω′

c

∣∣− q2T
)

q

)
dq+c.c. . (3.44)
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In appendix, an approximation of (3.44) valid for large time T ≫ 1 is found in the
form

ζ20 = ζ
(1)
20 + ζ

(2)
20 , (3.45)

where

ζ
(1)
20 (r̃) = Re

A

2

∫ r̃

0

(Hi∗(iγu) + Hi(iγu)) du, (3.46a)

ζ
(2)
20 (r̃, t) = −Re A

2γ
erf

(
r̃√

4tRe−1/3

)
. (3.46b)

This approximation shows that ζ20 saturates and tends toward (3.46a) for tRe−1/3 → ∞
for r̃ = O(1). However, when |r̃| → ∞ and tRe−1/3 is finite, ζ20 vanishes. The
approximation (3.45) will be compared to numerical solutions of (3.43) as well as DNS
in section (3.5.2).

To summarize, the axisymmetric vertical vorticity correction at order O(ε2), ζ20,
follows two distinct regimes. First, it evolves purely inviscidly and grows like t3 ac-
cording to (3.40). Then, it tends to saturate and follows the approximation (3.45) for
large times. This shows that ζ20 saturates toward the steady solution (3.46a) for finite
r̃.

3.4.4 Non-linear analysis of the critical layer

The viscous linear analysis of the critical layer in sections 3.4.2 and 3.4.3 has shown
that the vertical velocity scales as uz = O(εRe1/3). This creates a vorticity correction
of the order δζ = O(ε2Re) (see (3.34), (3.37), (3.45)-(3.46)). Since r = rc + r̃/Re1/3 in
the critical layer, the corresponding angular velocity correction δΩ is given at leading
order by δζ ≃ rcRe

1/3∂δΩ/∂r̃ so that δΩ = O(ε2Re2/3). In turn, we see that this
angular velocity correction would have the same order as the other terms of order
O(1/Re1/3) in (3.24) if ε2Re2/3 = O(1/Re1/3), i.e. if

Re =
R̃e

ε2
, (3.47)

where R̃e is of order unity. For this distinguished limit, there is therefore a non-linear
feedback of the horizontal flow on the evolutions of the vertical velocity and buoyancy
as considered by Wang & Balmforth (2020, 2021). Using the scaling (3.47), the typical
order of magnitudes of the different variables can be expressed in terms of ε only:
uz = O

(
ε1/3
)
, b = O

(
ε1/3
)
, δζ = O (1), δΩ = O

(
ε2/3
)
, ur = O

(
ε4/3
)
and the radius

and slow time are r̃ = ε−2/3(r − rc) and T = ε2/3t, respectively. We also assume
∂/∂z = 0. Accordingly, we expand the variables as follows:

uz = ε1/3
[
ũz1e

iθ + c.c.
]
+ ε

[
ũz2e

iθ + c.c.
]
+ ..., (3.48a)

b = ε1/3
[
b̃1e

iθ + c.c.
]
+ ε

[
b̃2e

iθ + c.c.
]
+ ..., (3.48b)

Ω = Ω0 + ε2/3Ω1 + ..., (3.48c)
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ur = ε4/3ur1 + ..., (3.48d)

ζ = ζ0 + ζ1 + ε2/3ζ2 + ..., (3.48e)

where Ω0 and ζ0 are the non-dimensional angular velocity and vorticity corresponding
to (3.5). In the vicinity of rc, they can be expanded as

Ω0 = Ωc + r̃Ω
′

cε
2/3 + ..., (3.49a)

ζ0 = ζc + r̃ζ
′

cε
2/3 + .... (3.49b)

Note that there are only components of the form exp(±iθ) in (3.48a-3.48b) because the
flow is invariant along the vertical and because third harmonics arise only at higher
order. Then, (3.10d-3.10e) become at leading order

ε
∂ũz1
∂T

+ εur1
∂ũz1
∂r̃

+ i
(
Ωc + Ω

′

cr̃ε
2/3
)
ε1/3ũz1 + iεΩ1ũz1 + iεΩcũz2

= ε1/3b̃1 + εb̃2 − ε
rcΩc

2i
+

ε

R̃e

∂2ũz1
∂r̃2

+O
(
ε5/3
)
,

(3.50a)

ε
∂b̃1
∂T

+ εur1
∂b̃1
∂r̃

+ i
(
Ωc + Ω

′

cr̃ε
2/3
)
ε1/3b̃1 + iεΩ1b̃1 + iεΩcb̃2

= −ε
1/3

F 2
h

ũz1 −
ε

F 2
h

ũz2 +
ε

R̃eSc

∂2b̃1
∂r̃2

+O
(
ε5/3
)
.

(3.50b)

Similarly, the equation (3.11) for the vorticity becomes

ε2/3
∂ζ1
∂T

+
(
Ωc + Ω

′

cr̃ε
2/3
) ∂ζ1
∂θ

+ ε2/3Ω1
∂ζ1
∂θ

+ ε2/3ur1
∂ζ1
∂r̃

+ ε2/3Ωc
∂ζ2
∂θ

= ε2/3
∂

∂r̃

((
ũz1e

iθ + ũ∗z1e
−iθ
)
sin (θ)

)
+
ε2/3

R̃e

∂2ζ1
∂r̃2

+O
(
ε4/3
)
.

(3.51)

At leading order, (3.50-3.51) become

ε1/3iΩcũz1 = ε1/3b̃1, (3.52a)

ε1/3iΩcb̃1 = −ε
1/3

F 2
h

ũz1, (3.52b)

Ωc
∂ζ1
∂θ

= 0. (3.52c)

The first two equations are identical to (3.26) and the third one implies ζ1 ≡ ζ1(r̃, T )
and ur1 = 0. At the next order, we have

∂ũz1
∂T

+ iΩ
′

cr̃ũz1 + iΩ1ũz1 + iΩcũz2 = b̃2 −
rcΩc

2i
+

1

R̃e

∂2ũz1
∂r̃2

, (3.53a)

∂b̃1
∂T

+ iΩ
′

cr̃b̃1 + iΩ1b̃1 + iΩcb̃2 = − ũz2
F 2
h

+
1

R̃eSc

∂2b̃1
∂r̃2

, (3.53b)
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∂ζ1
∂T

+ Ωc
∂ζ2
∂θ

= − i

2

∂

∂r̃

(
ũ∗z1 − ũz1 + ũz1e

2iθ − ũ∗z1e
−2iθ
)
+

1

R̃e

∂2ζ1
∂r̃2

. (3.53c)

Equations (3.53a) and (3.53b) are identical to (3.28) except for the presence of the
terms involving Ω1. They can be combined to give

∂ũz1
∂T

+ iΩ
′

cr̃ũz1 + iΩ1ũz1 =
i

4
rcΩc +

1

2R̃e

(
1 +

1

Sc

)
∂2ũz1
∂r̃2

, (3.54)

whereas (3.53c) splits into

∂ζ1
∂T

= − i

2

∂

∂r̃
(ũ∗z1 − ũz1) +

1

R̃e

∂2ζ1
∂r̃2

, (3.55a)

Ωc
∂ζ2
∂θ

= − i

2

∂

∂r̃

(
ũz1e

2iθ − ũ∗z1e
−2iθ
)
. (3.55b)

Since ζ1 = rc∂Ω1/∂r̃, the equations (3.54-3.55a) form a closed system of equations. An
equation for Ω1 can be obtained by integrating (3.55a):

∂Ω1

∂T
= − i

2rc
(ũ∗z1 − ũz1) +

1

R̃e

∂2Ω1

∂r̃2
. (3.56)

Equation (3.55b) shows that the azimuthal wavenumbers m = ±2 are generated
in the vorticity only at higher order explaining again why the vorticity remains quasi-
axisymmetric in the DNS during the first two phases. For this reason, components of
the form exp(±3iθ) arise in the vertical velocity and density (3.48a-3.48b) only at the
higher order ε5/3.

3.5 Comparison between the DNS and the asymp-

totic analyses

We now compare in details the asymptotic and numerical results.

3.5.1 Vertical velocity

Figure 3.9 shows the evolution of the maximum vertical velocity uzm(θ, t) (solid line) for
θ = 0 (figure 3.9(a)) and θ = π/2 (figure 3.9(b)) for the set of parameters Re = 10000,

Fh = 2, Ro = 20.3, ϕ = 80◦ (R̃o = 115.2). Two different angles are considered since
the theoretical vertical velocity has the form uz = uzc(r, t) cos (θ) + uzs(r, t) sin (θ).
Hence, the plots for θ = 0 and θ = π/2 allow us to check the predictions for uzc and
uzs, respectively.

We can see that the inviscid theoretical solution (3.19a) (red dashed line in figure
3.9(a, b)) predicts very well the initial linear increase of the maximum vertical velocity
in the DNS for both angles. The unsteady viscous solution (3.25a,3.30) (yellow dashed
line) increases also linearly initially and is in good agreement with the DNS except that
it lacks the small oscillations. They are indeed due to inertia-gravity waves oscillating
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at frequency 1/Fh + Ω = 2/Fh near rc (see the last term of (3.20a)) and of the two
lines of (3.22) which are neglected in (3.23) and section 3.4.2.

When the growth of uzm is no longer linear, the time-dependent viscous solution
(3.30) remains in very good agreement with the DNS and describes perfectly the transi-
tion towards the steady viscous solution (3.32) (green dashed line). The latter solution
is close to the levels of saturation of uzm(θ, t) for θ = 0 and θ = π/2 in the DNS, al-
though the agreement is not as good as for the initial regime. However, the non-linear
equations (3.54,3.56) (blue dashed lines) are in better agreement with the DNS indi-
cating that non-linear effects are also active in the saturation. By essence, none of the
theoretical solutions can exhibit oscillations associated with the late non-axisymmetric
evolution observed in the DNS.

Figures 3.9(c, d) show a similar comparison when the Reynolds number is reduced
to Re = 2000, keeping the other parameters fixed. In this case, uzm(θ = 0, t) and
uzm(θ = π/2, t) do not oscillate at late time in the DNS (black solid line). The
agreement with (3.19a) and (3.30) or (3.32) are then excellent in the initial and satu-
ration regimes, respectively. In addition, we see that the predictions of the non-linear
equations (3.54,3.56) remain very close to the linear ones, i.e. (3.30), showing that
non-linear effects are weak in this case.

Figure 3.9 shows that the transition from the unsteady inviscid solution (3.19a) to
the steady viscous one, (3.32), occurs in a short time range. Therefore, the unsteady
viscous solution (3.30) can be well approximated by (3.19a) for t ≤ T and (3.32) for
t ≥ T , where

T = 2π
Re1/3Hi(0)

|2Ω′
c|
2/3(1 + 1/Sc)1/3

, (3.57)

is the time when the overall maximum given by (3.19a) and (3.32) becomes equal.

This time is independent of R̃o and depends only on the Reynolds number, the Froude
number via Ω

′
c and the Schmidt number.

Figure 3.10 displays a detailed comparison of the radial profile of uz for θ = 0 and
θ = π/2 predicted by (3.19a) (red dashed line) and observed in the DNS (black solid
line) for different instants in the inviscid regime, i.e. t ≤ T for the same parameters
as figures 3.9(a, b). We see that the agreement is excellent even when t ≃ T (figures
3.10(c, f)). The approximation (3.30) and the solution of the non-linear equations
(3.54,3.56) for the vertical velocity are also represented by yellow and blue dashed lines,
respectively, in figures 3.10(b, c, e, f). The approximation (3.23) is almost identical to
(3.30) in this time range and not represented. As expected, the agreement between
the DNS and (3.30) or (3.54,3.56) is very good near rc but deteriorates away from
rc. We can notice that the blue and yellow dashed lines are superposed everywhere
except close to the critical radius rc for t = 40 (figures 3.10(c, f) ). In this region, the
blue dashed lines are in very good agreement with the DNS indicating that non-linear
effects are important there. However, away from rc, it is (3.19a) (red dashed line)
which better agrees with the DNS. For t = 5 (figures 3.10(a, d)), the approximations
(3.30) and (3.54,3.56) are not accurate and not shown. This is because the profile of uz
is not yet sufficiently localized around rc at this early time and, therefore, it cannot be
well described by a local approximation near rc. Indeed, we can see in figures 3.10(a, d)
that the profiles of uz are quite different from those in figures 3.10(b, c, e, f).
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Fig. 3.9: Comparison between the maximum vertical velocity in the DNS (black solid
line), predicted by the unsteady inviscid solution (3.19a) (red dashed line), by the
unsteady viscous solution (3.25a,3.30) (yellow dashed line), by the steady viscous solu-
tion (3.25a,3.32) (green dashed line) and by the non-linear equations (3.54,3.56) (blue
dashed line) for (a) θ = 0 and (b) θ = π/2 for Re = 10000, Fh = 2, Ro = 20.3,
ϕ = 80◦ and for (c) θ = 0 and (d) θ = π/2 for Re = 2000, Fh = 2, Ro = 20.3, ϕ = 80◦

(R̃o = 115.2).
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Figure 3.11 shows again the vertical velocity profiles observed in the DNS for the
same parameters, but for t ≥ T this time they are compared to the unsteady and
steady viscous solutions (3.30) (yellow dashed lines) and (3.32) (green dashed lines)
as well as the predictions of the non-linear equations (3.54,3.56) (blue dashed lines).
At t = 40 (figures 3.11(a, d)), the steady viscous solution (3.32) (green dashed lines)
is already in good agreement with the DNS since t = 40 is close to the time T where
the transition from (3.19a) to (3.32) occurs (figures 3.9(a, b)). Nevertheless, it departs
slightly from the DNS near rc unlike the unsteady viscous solution (3.30) and non-
linear predictions from (3.54,3.56). At longer times, t = 60 (figures 3.11(b, e)) and
t = 80 (figures 3.11(c, f)), (3.30) and (3.32) become almost identical and remain in
satisfactory agreement with the vertical velocity profiles of the DNS. Nevertheless, we
can see a shift between the numerical and theoretical profiles. In contrast, the solution
of the non-linear equations (3.54,3.56) remains in very good agreement with the DNS
and does not exhibit such shift. This indicates that the shift is due to the viscous
and non-linear variations of the angular velocity. For example, this makes the critical
radius where Ω(rc) = 1/Fh to move towards the vortex center as seen in figure 3.11.
This phenomenon is absent from the linear equations (3.30,3.32) since they do not take
into account any variation of the angular velocity.

3.5.2 Vertical vorticity

The asymptotic analyses have shown that the axisymmetric component of the vertical
velocity is given by ζ = ζ0(r)+ε

2ζ20(r, t)+ ..., where ζ20 follows (3.40) and (3.44) in the
inviscid and viscous regimes, i.e. t ≤ T and t ≥ T , respectively. A global view of these
two regimes and the associated approximations can be gained by plotting ∂ζ20/∂r at
r = rc (figure 3.12). The black solid line shows the evolution of ∂ζ20/∂r(rc, t) computed
numerically from (3.44). ∂ζ20/∂r(rc, t) increases initially like t4 in agreement with
the approximation (3.42) (red dashed line). Subsequently, for t ≫ T , ∂ζ20/∂r(rc, t)

increases more slowly and saturates towards ∂ζ
(1)
20 /∂r(rc) (black dashed line) for t→ ∞.

The approximation (3.45) (blue dashed line) is in good agreement with the solution
(3.44) (black line) in this regime. It will allow us to derive a theoretical criteria for the
onset of non-axisymmetry in section 3.6.4.

Figure 3.13 compares the radial profile of the theoretical vorticity ζ = ζ0(r) +
ε2ζ20(r, t) + ... with ζ20 given by the unsteady inviscid solution (3.40) (red dashed
line) to the DNS when t ≤ T . The agreement is excellent and predicts very well the
deformation of the vertical vorticity profile near rc ≃ 1.2. A similar comparison is
displayed in figure 3.14 for three different times such that t ≳ T and ζ20 given by the
unsteady viscous solution (3.44). The agreement continues to be very good even for
t = 85 (figure 3.14(c)), confirming the validity of the solution (3.44). A slight shift
can be however noticed near rc and near the vortex axis. In contrast, the predictions
of the non-linear equations (3.54,3.56) (blue dashed lines) are in very good agreement
with the DNS near rc. This shows again that non-linear effects are not negligible in
the critical layer.

Finally, the prediction for late time t ≫ T based on the steady viscous solution
(3.45) has been compared to a DNS for a larger non-traditional Rossby number R̃o =
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Fig. 3.10: Comparison between the vertical velocity at θ = 0 (top row) and θ = π/2
(bottom row) in the DNS (black solid line), predicted by the unsteady inviscid solution
(3.19a) (red dashed line), by the unsteady viscous solution (3.30) (yellow dashed line)
and by the non-linear equations (3.54,3.56) (blue dashed line) at (a, d) t = 5, (b, e)

t = 25 and (c, f) t = 40 for Re = 10000, Fh = 2, Ro = 20.3, ϕ = 80◦ (R̃o = 115.2).
The circle symbols represent the location of the critical radius in the unsteady inviscid
solution (3.19a).
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Fig. 3.11: Comparison between the vertical velocity at θ = 0 (top row) and θ = π/2
(bottom row) in the DNS (black solid line), predicted by the unsteady viscous solution
(3.25a,3.30) (yellow dashed line), by the steady viscous solution (3.25a,3.32) (green
dashed line) and by the non-linear equations (3.54,3.56) (blue dashed line) at (a, d)
t = 40, (b, e) t = 60, (c, f) t = 80 for Re = 10000, Fh = 2, Ro = 20.3, ϕ = 80◦

(R̃o = 115.2). The circle symbols represent the location of the critical radius in the
unsteady viscous solution (3.25a).
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Fig. 3.12: Comparison between the evolution of ∂ζ20/∂r(rc, t) from the theoretical ex-
pressions: the unsteady viscous solution (3.44) (Black solid line), the unsteady inviscid
solution (3.40) (red dashed line), the viscous solutions (3.45) (blue dashed line) and
(3.46a) (black dashed line) for Re = 10000, Fh = 2.

500, the other parameters being identical. The vortex remains then quasi-axisymmetric
in the DNS (figure 3.8) allowing us to see the late evolution of the vorticity without
the non-axisymmetric perturbations. Figure 3.15 shows that the deformation of the
vorticity profile near rc is weak but well predicted by (3.45) although there is a shift
for t ≥ 300. In this case, the predictions from the non-linear equations (3.54,3.56)
(not shown) are identical to those from (3.45) indicating that the non-linear effects are
weak. However, if we take also into account the global viscous decay of the leading
order vorticity ζ0 which is significant for these large times, then the agreement with
the DNS is perfect (yellow dashed line).

Besides, a feature of high interest is that the vertical vorticity profile exhibits two
extrema near rc, dζ/dr = 0, as soon as t ≥ 40 (figures 3.13(c) and 3.14). According
to the Rayleigh’s inflectional criterion (Rayleigh, 1880), this is a necessary condition
for the shear instability. However, only the first extremum, where ζ has a local mini-
mum, satisfies the stiffer Fjørtoft (1950) instability condition [Ω(r)−Ω(rI)]∂ζ/∂r < 0,
where rI is the extremum. This gives us hindsight on the possible origin of the late
non-axisymmetric evolution of the vertical vorticity. The next section will investigate
whether or not this hypothesis is correct.

3.6 Analysis of the non-axisymmetric evolution

As seen in the previous sections, a ring of anomalous vertical vorticity develops near
the critical radius and, subsequently, this ring may become non-axisymmetric when the
non-traditional Rossby number R̃o is below a critical value depending on the Reynolds
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Fig. 3.13: Comparison between the vertical vorticity at θ = π/2 in the DNS (black
solid line) and the asymptotic expressions ζ = ζ0+ε

2ζ20 where ζ20 follows the unsteady
inviscid solution (3.40) (red dashed line) and ζ = ζ0+ζ1 with ζ1 given by the non-linear
equations (3.54,3.56) (blue dashed line) at (a) t = 25, (b) t = 35 and (c) t = 40 for

Re = 10000, Fh = 2, Ro = 20.3, ϕ = 80◦ (R̃o = 115.2). The circle symbols represent
the location of the critical radius in the unsteady inviscid solution (3.40).

Fig. 3.14: Comparison between the vertical vorticity at θ = π/2 in the DNS (black
solid line) and the asymptotic expressions ζ = ζ0+ε

2ζ20 where ζ20 follows the unsteady
viscous solution (3.44) (red dashed line) and ζ = ζ0+ζ1 with ζ1 given by the non-linear
equations (3.54,3.56) (blue dashed line) at (a) t = 50, (b) t = 65 and (c) t = 85 for

Re = 10000, Fh = 2, Ro = 20.3, ϕ = 80◦ (R̃o = 115.2). The circle symbols represent
the location of the critical radius in the unsteady inviscid solution (3.44).
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Fig. 3.15: Comparison between the vertical vorticity at θ = π/2 in the DNS (black
solid line) and the asymptotic expressions ζ = ζ0 + ε2ζ20 where ζ20 follows the viscous
solution (3.45) (red dashed line) and ζ = ζ0 + ζ1 with ζ1 given by the non-linear
equations (3.54,3.56) and the viscous decay of ζ0 also taken into account (yellow dashed
line) at (a) t = 200, (b) t = 300 and (c) t = 400 for Re = 10000, Fh = 2, Ro = 20.0,

ϕ = 87.7◦ (R̃o = 500). The circle symbols represent the location of the critical radius
in the viscous solution (3.45).

number (figure 3.8). In this section, the main question is: what is the origin of this
non-axisymmetric evolution? Is it due to a shear instability associated to the inflection
point in the vertical vorticity profile (see figure 3.14)? or is it an intrinsic behaviour
of the vortex under the complete Coriolis force? Regarding the latter hypothesis,
we have seen indeed from (3.36-3.38) that the vertical velocity field forces not only an
axisymmetric vertical vorticity field but also a non-axisymmetric one with an azimuthal
wavenumber m = 2.

3.6.1 Azimuthal decomposition of ζ and uz

In order to better understand the onset of non-axisymmetric vertical vorticity, we have
first decomposed ζ thanks to an azimuthal Fourier transform

ζ̂m(r, t) =

∫ 2π

0

ζ(r, θ, t)e−imθdθ, (3.58)

where ζ(x, y, t) has been first interpolated on a grid of cylindrical coordinates (r, θ).
The same transform has been applied to uz in order to obtain ûzm . The mean power
in each azimuthal wavenumber is then defined as

Eζ(m, t) =

∫ lx/2

0

ζ̂2m(r, t)rdr∫ lx/2

0

rdr

=
8

l2x

∫ lx/2

0

ζ̂2m(r, t)rdr, (3.59)

and

Euz(m, t) =
8

l2x

∫ lx/2

0

û2zm(r, t)rdr. (3.60)
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Fig. 3.16: Evolution of the power (a) Eζ(m, t) for the azimuthal wavenumbers m = 0
(black solid line), m = 2 (red dashed line) and m = 4 (green dashed line) and the
power (b) Euz(m, t) for the azimuthal wavenumbers m = 1 (black solid line), m = 3
(red dashed line) and m = 5 (green dashed line) for Re = 10000, Fh = 2, Ro = 20.3

and ϕ = 80◦ (R̃o = 115.2).

Figure 3.16(a) displays the evolution of the logarithm of the power of the first three
azimuthal wavenumbers of the vertical vorticity. These are only even, i.e. m = 0,
m = 2, m = 4. Similarly, figure 3.16(b) shows the logarithm of the power of the first
three azimuthal wavenumbers of uz. They are odd in this case: m = 1, m = 3, m = 5.
It can be seen that Eζ(0, t) and Euz(1, t) (black solid lines) remain approximately
constant except that Euz(1, t) sustains large oscillation after t ≃ 120.

It is also worth to point out that Eζ(2, t) starts to grow at the beginning of the
simulation since ζ22 increases like t2 due to the forcing by the vertical velocity as
shown in §3.4.3 (figure 3.16 (b)). However, when t ≤ 80, its power remains negligible
compared to the one of the axisymmetric mode, Eζ(0, t). In contrast, after t ≃ 80,
Eζ(2, t) grows exponentially before saturating at t ≥ 120. There is therefore a clear
transition towards an exponential growth, a feature consistent with the instability
hypothesis. Nevertheless, we can see that the azimuthal mode m = 3 of uz (figure
3.16(b)) grows also exponentially at the same time. The higher modes, m = 4 of ζ
and m = 5 of uz, start to increase also exponentially but somewhat later. Thus, it
is unclear if the growth of Euz(3, t) is a consequence of the growth of Eζ(2, t), if it is
the opposite, or if the exponential growth is due to a coupling between Euz(3, t) and
Eζ(2, t).

3.6.2 Truncated model

To answer the latter question, we have derived a truncated model taking into account
only the first azimuthal wavenumbers of each quantity. More precisely, the different
variables have been written as

ur = ûr2c(r, t) cos (2θ) + ûr2s(r, t) sin (2θ), (3.61a)

uθ = ûθ0(r, t) + ûθ2c(r, t) cos (2θ) + ûθ2s(r, t) sin (2θ), (3.61b)
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p(r, θ) = p̂0(r, t) + p̂2c(r, t) cos (2θ) + p̂2s(r, t) sin (2θ), (3.61c)

ζ = ζ̂0(r, t) + ζ̂2c(r, t) cos (2θ) + ζ̂2s(r, t) sin (2θ), (3.61d)

uz = ûz1c(r, t) cos (θ) + ûz1s(r, t) sin (θ), (3.61e)

b = b̂1c(r, t) cos (θ) + b̂1s(r, t) sin (θ). (3.61f)

These decompositions have been introduced in (3.10a-3.10e) and the following gov-
erning equations have been obtained for the vertical velocity and buoyancy by trun-
cating all the higher modes:

∂ûz1c
∂t

=− 1

2

(
ûr2c

∂ûz1c
∂r

+ ûr2s
∂ûz1s
∂r

)
− 1

r

(
ûθ0ûz1s +

1

2
(ûθ2cûz1s − ûθ2sûz1c)

)
+ b̂1c +

1

Re
∇2ûz1c +

1

R̃o
(ûr2c − ûθ2s),

(3.62a)

∂ûz1s
∂t

=
1

2

(
ûr2c

∂ûz1s
∂r

− ûr2s
∂ûz1c
∂r

)
+

1

r

(
ûθ0ûz1c −

1

2
(ûθ2cûz1c + ûθ2sûz1s)

)
+ b̂1s +

1

Re
∇2ûz1s +

1

R̃o
(ûr2s + ûθ2c − 2ûθ0),

(3.62b)

∂b̂1c
∂t

=− 1

2

(
ûr2c

∂b̂1c
∂r

+ ûr2s
∂b̂1s
∂r

)
− 1

r

(
ûθ0 b̂1s +

1

2
(ûθ2c b̂1s − ûθ2s b̂1c)

)
− ûz1c

F 2
h

+
1

ReSc
∇2b̂1c,

(3.62c)

∂b̂1s
∂t

=
1

2

(
ûr2c

∂b̂1s
∂r

− ûr2s
∂b̂1c
∂r

)
+

1

r

(
ûθ0 b̂1c −

1

2
(ûθ2c b̂1c + ûθ2s b̂1s)

)
− ûz1s

F 2
h

+
1

ReSc
∇2b̂1s.

(3.62d)

Applying the same truncation approach for the vertical vorticity gives

∂ζ̂0
∂t

=− 1

2

(
ûr2c

∂ζ̂2c
∂r

+ ûr2s
∂ζ̂2s
∂r

)
− 1

r

(
ûθ2c ζ̂2s − ûθ2s ζ̂2c

)
+

1

Re
∇2ζ̂0,

+
1

R̃o

(
∂ûz1s
∂r

+
ûz1s
r

) (3.63a)

∂ζ̂2c
∂t

= −ûr2c
∂ζ̂0
∂r

− 2ûθ0
r
ζ̂2s +

1

Re
∇2ζ̂2c −

1

R̃o

(
∂ûz1s
∂r

− ûz1s
r

)
, (3.63b)

∂ζ̂2s
∂t

= −ûr2s
∂ζ̂0
∂r

+
2ûθ0
r
ζ̂2c +

1

Re
∇2 +

1

R̃o

(
∂ûz1c
∂r

− ûz1c
r

)
, (3.63c)

where

ζ̂0 =
1

r

∂rûθ0
∂r

, (3.64a)

ζ̂2c =
1

r

∂rûθ2c
∂r

− 2

r
ûr2s , (3.64b)
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Fig. 3.17: Evolution of the power (a) Eζ(2, t) and (b) Euz(1, t) in the DNS (black solid
line) and in the truncated model (red dashed line) for Re = 10000, Fh = 2, Ro = 20.3

and ϕ = 80◦ (R̃o = 115.2).

ζ̂2s =
1

r

∂rûθ2s
∂r

+
2

r
ûr2c . (3.64c)

The divergence equation also implies

1

r

∂rûr2c
∂r

+
2

r
ûθ2s = 0, (3.65a)

1

r

∂rûr2s
∂r

− 2

r
ûθ2c = 0. (3.65b)

Such truncated model can be seen as a heuristic extension of the asymptotic anal-
yses. Indeed, it takes into account both time dependence and diffusive effects in the
evolution of the vertical velocity and buoyancy (3.62). Moreover, the modifications of
the axisymmetric flow field (ûθ0) and the generated m = 2 mode (ûr2c , ûr2s , ûθ2c , ûθ2s)
are also taken into account. The latter is governed by (3.63b-3.63c) and it appears also
in the evolution of the axisymmetric flow field (3.63a). However, like in the asymptotic
analyses, only the first azimuthal wavenumber of uz and b are considered, i.e. the mode
m = 3, m = 5, ... are neglected. Similarly, the higher modes m = 4, m = 6, ... are
neglected in the evolution of the horizontal flow field (3.63).

Figures 3.17 (a, b) compares the power Eζ(2, t) and Euz(1, t), respectively, obtained
in the DNS and in the truncated model. There are some differences for t ≥ 100 but,
qualitatively, the same type of evolution as in the DNS is obtained with the truncated
model. This is remarkable since the truncated model crudely neglects many azimuthal
modes and, in particular, the azimuthal mode m = 3 in the vertical velocity and
buoyancy fields. Hence, this proves that the growth of Euz(3, t) in figure 3.16(b) does
not play a key role in the onset of non-axisymmetry in the vertical vorticity.

We can make a step further in the understanding of this phenomenon by freezing the
axisymmetric velocity field. In other words, the time evolution of (ûθ0 , ζ̂0) is suppressed
after a given time tf . We also set the forcing terms due to the non-traditional Coriolis
force to be zero in (3.63b) and (3.63c). Hence, the latter equations become

∂ζ̂2c
∂t

= −ûr2c
∂ζ̂0(r, tf )

∂r
− 2ûθ0(r, tf )

r
ζ̂2s +

1

Re
∇2ζ̂2c, (3.66a)
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Fig. 3.18: Evolution of the power Eζ(2, t) in the truncated model (black solid line)
or using (3.66) for different freezing times: tf = 85 (green dashed line), tf = 65
(red dashed line), tf = 50 (blue dashed line) and tf = 40 (yellow dashed line) for

Re = 10000, Fh = 2, Ro = 20.3 and ϕ = 80◦ (R̃o = 115.2).

∂ζ̂2s
∂t

= −ûr2s
∂ζ̂0(r, tf )

∂r
+

2ûθ0(r, tf )

r
ζ̂2c +

1

Re
∇2ζ̂2s. (3.66b)

These equations describe simply the linear evolution of perturbations with azimuthal
wavenumber m = 2 on a steady axisymmetric vortex with azimuthal velocity ûθ0(r, tf ).
The perturbations (ûr2c , ûθ2c) and (ûr2s , ûθ2s) are initialized by a white noise whose
amplitude is adjusted so as to have a power of the same order as Eζ(2, tf ). Figure 3.18
shows the evolution of the power Eζ(2, t) for different freezing time tf ; tf = 40 (yellow
dashed line), tf = 50 (blue dashed line), tf = 65 (red dashed line), tf = 85 (green
dashed line) compared to the evolution of Eζ(2, t) in the truncated model (black solid
line). Strikingly, we see that Eζ(2, t) grows also exponentially regardless of the value of
tf investigated. Furthermore, the growth rate, i.e. the slope, increases with tf . Most
interestingly, the growth rate for tf = 85 is close to the one observed in the truncated
model (black solid line). This demonstrates that the onset of non-axisymmetry in
the vertical vorticity is due to an instability of the vortex profile. When the anomaly
of vertical vorticity is sufficient to have an extremum, a shear instability with an
azimuthal wavenumber m = 2 develops. Subsequently, this triggers the growth of
higher azimuthal modes through the coupling with the non-traditional Coriolis force.

3.6.3 Equivalent vortex with piecewise uniform vorticity

A simple model of the instability can be obtained by considering the inviscid limit
and by using a vortex with piecewise uniform vorticity with four concentric regions
as considered by Carton & Legras (1994) and Kossin et al. (2000). As shown by two
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examples in figure 3.19, the vorticity profile in the DNS can be crudely approximated
by four levels of constant vorticity:

ζ =



ζ1 = 2 0 < r < r1

ζ2 = ζc − δv/2 r1 < r < r2

ζ3 = ζc + δv/2 r2 < r < r3

ζ4 = 0 r3 < r

(3.67)

where r1 = rc − δh, r2 = rc and r3 = rc + δh where δv and δh are the amplitude and
size of the vorticity anomaly in the vicinity of the critical radius rc. More explicitly,
δv is the difference between the local maximum and minimum of the vorticity and δh
is the distance between these two extrema. The corresponding angular velocity of the
vortex is continuous and given by

Ω(r) =
1

2



ζ1 0 < r < r1

ζ2 − (ζ2 − ζ1)(r1/r)
2 r1 < r < r2

ζ3 − (ζ2 − ζ1)(r1/r)
2 − (ζ3 − ζ2)(r2/r)

2 r2 < r < r3

−(ζ2 − ζ1)(r1/r)
2 − (ζ3 − ζ2)(r2/r)

2 + ζ3(r3/r)
2 r3 < r

(3.68)
For a given Froude number Fh, the position of the critical radius rc and the value of
ζc are fixed. Hence, the problem has only two control parameters: δv and δh. The
stability of such vortex with respect to perturbations of the form ψeimθ+σt is governed
by the eigenvalue problem (Carton & Legras, 1994; Kossin et al., 2000)


mΩ(r1) +

1
2
(ζ2 − ζ1)

1
2
(ζ2 − ζ1)(r1/r2)

m 1
2
(ζ2 − ζ1)(r1/r3)

m

1
2
(ζ3 − ζ2)(r1/r2)

m mΩ(r2) +
1
2
(ζ3 − ζ2)

1
2
(ζ3 − ζ2)(r2/r3)

m

−1
2
ζ3(r1/r3)

m −1
2
ζ3(r2/r3)

m mΩ(r3)− 1
2
ζ3



ψ1

ψ2

ψ3

 = σ


ψ1

ψ2

ψ3

 .

(3.69)
Figure 3.20 (a) shows the growth rate contours for the m = 2 perturbations for

Fh = 2 as a function of (δv, δh). We see that the growth rate is positive only when δv
and δh are sufficiently away from zero in the ranges investigated. The symbols in figure
3.20(a) indicate the parameters (δv, δh) estimated by fitting (3.67) to the vorticity field
ζ̂0(r, tf ) at different times tf for Fh = 2, for two different latitudes ϕ = 80◦ (red circles)
and ϕ = 75◦ (black squares). For example, for ϕ = 80◦, the time tf varies from tf = 45
(leftmost point) to tf = 85 (rightmost point). The size of the vorticity anomaly δh
does not vary very much and is around δh ≃ 0.2 for both latitudes. In contrast, the
amplitude of the anomaly δv increases with tf as expected. Figure 3.20(b) displays the
growth rate as a function of δv (circle and square symbols). The dashed lines show the
corresponding growth rate computed from (3.66), i.e. by considering the continuous
vorticity profile ζ̂0(r, tf ) and with the perturbations initialized by white noise. This
shows that the piecewise vortex model is able to predict quite well the growth rate of
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Fig. 3.19: Examples of the piecewise uniform vorticity (red line) fitting the continuous
vertical vorticity profiles (black line) at (a) t = 40, (b) t = 50 for Re = 10000, Fh = 2,

Ro = 20.3 and ϕ = 80◦ (R̃o = 115.2). The circle symbols represent the location of the
critical radius.

the instability observed in the truncated model, which is itself in good agreement with
the DNS.

Using (3.69), we have also computed the growth rate of higher azimuthal wavenum-
bers m > 2. The results show that the most unstable wavenumber is not m = 2 but
is between m = 3 and m = 5 for the parameters indicated by the symbols in figure
3.20(a). Three reasons might explain the actual dominance of m = 2. First, the ve-
locity jumps in the piecewise vortex model could favor larger wavenumbers compared
to a continuous vorticity profile. Second, we have seen from (3.36-3.37) that the non-

traditional Coriolis force generates not only an axisymmetric vorticity at order 1/R̃o
2

but also a vorticity field with with an azimuthal wavenumber m = 2. Figure 3.17(a)
shows that the latter is weak before the onset of the instability. However, it is not
zero and, therefore, this small amplitude could favor its dominance over more unstable
higher wavenumbers whose initial amplitudes are much lower (see m = 4 in figure
3.17(a)). Third, the vortex profile is continuously evolving with time while, in the
stability problems (3.66) or (3.69), we have frozen this evolution. Hence, the m = 2
wavenumber could be selected first when the vortex becomes slightly unstable. This
early selection would then ensure its subsequent dominance even if it is no longer the
most unstable wavenumber. Such effect has been evidenced by Wang & Balmforth
(2021) in their study of the evolution of the wavenumber selection as the critical layer
becomes finer.

3.6.4 Theoretical criterion

Even if the Rayleigh-Fjørtoft criterion is only a necessary condition for the shear insta-
bility in inviscid fluids, we can try to use it to establish a theoretical criterion for the
onset of the shear instability in the DNS for finite Reynolds numbers. Since the radial
derivative of the vorticity is maximum at r = rc and is negative away from the critical
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Fig. 3.20:
(a) Growth rates contours of the piecewise vortex model as a function of δh and δv for
Fh = 2. The contour interval is 0.03. The bold line indicates the growth rate σ = 0.
The symbols correspond to the values of δh and δv estimated at different freezing times
for ϕ = 80◦ (R̃o = 115.2) (red circles) and ϕ = 75◦ (R̃o = 77.27) (black squares) for
Re = 10000, Fh = 2.
(b) Growth rates as a function of δv obtained by the truncated model at different
freezing times (symbols) and given by (3.69) for m = 2 (dashed lines) for ϕ = 75◦

(R̃o = 77.27) (black) and ϕ = 80◦ (R̃o = 115.2) (red), Re = 10000 and Fh = 2.

radius, a necessary condition ensuring that there exists extrema, dζ/dr = 0, reads

dζ(rc, ts)

dr
≥ c, (3.70)

where c = 0 is the minimum requirement for the existence of an inflection point, but
we have explored also the consequences of larger values of c. Besides, the time ts will
be set as ts = aT , where a is a constant larger than unity. Indeed, the onset of the
shear instability always occurs after the time T . Therefore, the vorticity ζ will be
taken as the asymptotic axisymmetric vorticity ζ = ζ0 + ε2ζ20 where ζ20 is given by
(3.45). As seen in figure 3.12, ∂ζ20/∂r(rc, t) is indeed well predicted by (3.45) for large
times. Then, (3.70) becomes

Re2/3

R̃o
≥
∣∣∣2Ω′

c

∣∣∣1/3(1 + 1

Sc

)1/6
√√√√√√ c− 3Ω

′

c − rcΩ
′′

c

2πrcΩc

(
Hi(0)−

(
1 + 1/Sc

8aπ2Hi(0)

)1/2
) . (3.71)

Remarkably, the right-hand side depends only on the Froude number through rc, the
Schmidt number Sc and the constants a and c. The criterion (3.71) when c = 0 and
a = ∞ is represented by a solid line in figure 3.8. It delimits quite well the quasi-
axisymmetric/non-axisymmetric domains observed in the DNS, except for the lowest
Reynolds number investigated Re = 2000. Such difference for moderate Reynolds and
Rossby numbers is not surprising since the asymptotics have been derived for high
Reynolds number and large Rossby number R̃o. Furthermore, viscous effects might
damp the shear instability growth when the Reynolds number is moderate.
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As seen from the piecewise vortex model, the shear instability for m = 2 does
not appear when δh ≃ 0.2 as soon as δv > 0. It can be roughly estimated that the
instability arises only when δv such that δv/δh ≳ 0.4 (figure 3.20(a)). Therefore, we
can estimate ∂ζ/∂r = c ≃ δv/δh = 0.4. The criterion (3.71) with this value of c and
a = ∞ is represented by a dashed line in figure 3.8. The agreement with the DNS is as
good as the criterion (3.71) with c = 0. The actual threshold is likely to be in between
these two curves, i.e. in the hatched region (figure 3.8). Finally, we stress that the
criterion (3.71) applies only to the shear instability due to an inflection point and not
to other types of instability that may exist in viscous shear flows.

3.7 Late evolution of the vortex

Finally, figures 3.21 and 3.22 show the late evolution of the angular velocity profile
(bottom row) when the instability develops or not, respectively. The DNS are the same
as those already presented in section §3.3 for Re = 2000, Fh = 2 and different latitudes:
ϕ = 60◦ (R̃o = 40) (figures 3.4 and 3.21) and ϕ = 80◦ (R̃o = 115.2) (figures 3.6 and
3.22). The corresponding vorticity fields are also shown again in the top row of figures
3.21 and 3.22 for convenience. In figures 3.21(c, d, g, h), we see that the instability
ceases when the angular velocity is almost everywhere below 1/Fh (horizontal green
dashed line), i.e. when a critical radius no longer exists. Due to the development of the
critical layer and resulting instability, the decay of the angular velocity in the vortex
core is accelerated compared to a pure viscous decay Ω = 1

r2
(1− exp( −r2

1+4t/Re
)) (shown

by red dashed lines in figures 3.21(e, f, g, h)). When there is no instability (figure 3.22),
the evolution of the angular velocity is slower and follows more closely a pure viscous
diffusion law except in the vicinity of the critical radius where the decay is also slightly
enhanced.

3.8 Conclusion

We have studied numerically and theoretically the evolution of a Lamb-Oseen vortex
in a stratified-rotating fluid under the complete Coriolis force on the f -plane. The
problem is governed mainly by the Froude number Fh, the Reynolds number Re and
the non-traditional Rossby number R̃o based on the horizontal component of the back-
ground rotation.

Starting from a purely two-dimensional axisymmetric vortex, the DNS shows that
a strong vertical velocity field with an azimuthal wavenumber m = 1 is generated
at a particular radius when the Froude number is larger than unity. This radius
increases with the Froude number. Simultaneously, the vertical vorticity develops a
quasi-axisymmetric anomaly near the same radius. Later, this anomalous ring may be-
come fully non-axisymmetric with an azimuthal wavenumberm = 2 when the Reynolds
number is sufficiently large and the non-traditional Rossby number R̃o not too large.
At late time, the vorticity returns to a quasi-axisymmetric shape. Even if the vertical
velocity is non-zero, all the fields remain independent of the vertical coordinate. In
other words, the flow is 2D3C, i.e. two dimensional but with 3 velocity components.
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Fig. 3.21: Vertical vorticity (top) and angular velocity profile (bottom) obtained from
DNS (black line) at (a, e) t = 50 , (b, f) t = 80 , (c, g) t = 120 and (d, h) t = 250

for Re = 2000, Fh = 2, Ro = 23.1, ϕ = 60◦ (R̃o = 40). The red dashed lines show
the angular velocity profile if only viscous diffusion were active. The horizontal green
dashed line represents the critical angular velocity value 1/Fh.

Fig. 3.22: Vertical vorticity (top) and angular velocity profile (bottom) obtained from
DNS (black line) at (a, e) t = 50 , (b, f) t = 80 , (c, g) t = 120 and (d, h) t = 250 for

Re = 2000, Fh = 2, Ro = 23.1, ϕ = 80◦ (R̃o = 115.2). The red dashed lines show
the angular velocity profile if only viscous diffusion were active. The horizontal green
dashed line represents the critical angular velocity value 1/Fh.
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For this reason, the dynamics is independent of the traditional Rossby number Ro
based on the vertical component of the background rotation.

An asymptotic analysis for large non-traditional Rossby number R̃o has allowed
us to unravel this evolution. First, it shows that the non-traditional Coriolis force
generates a vertical velocity and buoyancy fields at order 1/R̃o which are invariant
along the vertical. When the Froude number Fh is larger than unity and in the absence
of time dependence and viscous effects, these fields present a singularity at the radius
where the angular velocity is equal to the Brunt–Väisälä frequency (i.e. the inverse of
the Froude number in non-dimensional form). The asymptotic analyses show that this
singularity is first regularized by the time dependence. This leads to a linear increase
of the amplitude of the vertical velocity while the width of the critical layer shrinks at
a rate inversely proportional to time. After a certain time, viscous effects saturate this
evolution. The vertical velocity field is then steady with an amplitude proportional to
Re1/3 and a critical layer width scaling like Re−1/3 as found by Boulanger et al. (2007)
in the case of a tilted vortex in a stratified fluid. These asymptotic predictions are all
in very good agreement with the DNS.

In turn, the non-traditional Coriolis force due to the vertical velocity modifies the

vertical vorticity field at order 1/R̃o
2
. The dominant effect is the development of an

axisymmetric ring of anomalous vorticity near the critical radius. This leads to the
development of extrema in the vorticity profile. Again, the asymptotic predictions for
the axisymmetric component of the vorticity are in good agreement with the DNS.
Following Wang & Balmforth (2020, 2021), we have further carried out a non-linear
asymptotic analysis that takes into account the effect of the anomaly of axisymmetric
vorticity back on the evolution of the vertical velocity. The predictions of this non-
linear analysis are in better agreement with the DNS than those of the linear analysis
indicating that both viscous and nonlinear effects operate in the critical layer.

In order to understand the origin of the subsequent non-axisymmetric evolution of
the vorticity field, we have first decomposed the vertical velocity and vorticity in the
DNS by an azimuthal Fourier transform. This analysis shows that several azimuthal
modes grow exponentially during the onset of non-axisymmetry: the odd modesm = 3,
m = 5, etc for the vertical velocity and the even modes m = 2, m = 4, etc for the
vertical vorticity. We have then introduced a highly truncated model which keeps
only the m = 1 azimuthal wavenumber of the vertical velocity and the m = 0 and
m = 2 wavenumbers of the vertical vorticity. Such truncated model exhibits also an
onset of non-axisymmetry like in the DNS demonstrating that this behavior is not
due to an unstable coupling between azimuthal modes. Furthermore, we have shown
that if we freeze the profile of the axisymmetric component of the vertical vorticity
at the time where the non-axisymmetry starts to appear and initializes the m = 2
mode by white noise, the latter mode grows exponentially at a rate comparable to the
one observed in the DNS. In addition, the stability of an equivalent piecewise vortex
model with four levels of vorticity has been investigated and have been found to give
growth rates for m = 2 in agreement with those of the truncated model. Altogether,
this proves that the onset of non-axisymmetry comes from a two-dimensional shear
instability related to the presence of a minimum in the vorticity profile. Finally, using
the asymptotic expression of the axisymmetric component of the vorticity at late time
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at leading orders, the necessary condition for the shear instability has been converted
into an instability condition in terms of (Re, R̃o). This condition delimits well the

quasi-axisymmetric/non-axisymmetric domains in the parameter space (Re, R̃o).
The overall effect of the instability is to accelerate the decay of the angular velocity

compared to a pure viscous diffusion. The instability ceases when the angular velocity
is everywhere lower than the Brunt–Väisälä frequency (i.e. the inverse of the Froude
number in non-dimensional form).

In summary, we have seen that the dynamics of a vortex for large Reynolds number
can be strongly affected by the non-traditional Coriolis force even if the non-traditional
Rossby number R̃o is large, i.e. even for a small value of the horizontal component of
the background rotation. Since the typical Reynolds number of geophysical vortices
is generally huge, this means that the non-traditional Coriolis force might have much
more impact than expected by just considering its order of magnitude through the non-
traditional Rossby number R̃o. It should be reminded however that another crucial
condition is Fh > 1 that ensures the presence of a critical layer. Hence, such process
might affect intense but not too large vortices in geophysical flows.

In the future, we will investigate the effect of three-dimensional perturbations on
this phenomenon. Indeed, the vertical velocity is also responsible for an axial shear that
might lead to another kind of shear instability if small three-dimensional perturbations
are present as observed by Boulanger et al. (2007) for the case of a tilted vortex. It
could be interesting also to study the configurations where the vortex is initially aligned
with the background rotation vector or not columnar.

Appendix

A Approximation of the solution of (3.43) for large

time

The solution (3.44) can be simplified for large time T ≫ 1, i.e. t ≫ Re1/3. It is first
convenient to derive ζ20 with respect to r̃.

∂ζ20
∂r̃

=
ReA

2γπ

∫ ∣∣∣Ω′
c
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0
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−q3

3γ3
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∣∣∣− q2T
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dq + c.c. (3.72)

By using the change of variable z = q/γ for the first part of the integrand and
x = q

√
T for the second part, (3.72) can be rewritten
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(3.73)
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When T ≫ 1, the first integral tends to the Scorer’s function (Abramowitz & Stegun,
1972) whereas the terms proportional to 1/T 3/2 can be neglected compared to the other
terms in the second integral. This yields

∂ζ20
∂r̃

≃ ReA

2
Hi(iγr̃)− ReA

2γπ
√
T

∫ ∣∣∣Ω′
c

∣∣∣T 3/2

0

exp

(
−x2 + i

xr̃√
T

)
dx+ c.c. . (3.74)

By introducing another change of variable

U = x− ir̃

2
√
T
, (3.75)

(3.74) becomes
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The imaginary terms in the integral cancel with those of the complex conjugate
giving

∂ζ20
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The remaining integral can be approximated by
√
π/2 since T ≫ 1, leading finally

to
∂ζ20
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Integrating back in r̃ gives the approximation (3.46).
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1LadHyX, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

(Ready for submission)

Abstract: The three-dimensional evolution of a Lamb-Oseen vortex is studied in a
stratified rotating fluid under the complete Coriolis force. In a companion paper, it
was shown that the non-traditional Coriolis force generates a vertical velocity field and
a vertical vorticity anomaly at a critical radius when the Froude number is larger than
unity. Below a critical non-traditional Rossby number R̃o (based on the horizontal com-
ponent of background rotation), a two-dimensional shear instability was next triggered
by the vorticity anomaly. Here, we test the robustness of this pure two-dimensional
evolution with respect to small three-dimensional perturbations. Direct numerical sim-
ulations (DNS) show that the two-dimensional shear instability then develops only in

an intermediate range of non-traditional Rossby numbers. For lower R̃o, the instability
is three-dimensional and resembles the one observed by Boulanger et al. (2008) on a
stratified tilted vortex. Stability analyses of the flows in the DNS prior to the onset
of the instability fully confirm the existence of these two competing instabilities. In
addition, stability analyses of the local linear and non-linear theoretical flows at lead-
ing order in the vicinity of the critical layer demonstrate that the three-dimensional
instability is due to the shear of the vertical velocity field. However, the growth rate
of the three-dimensional instability obtained from such local stability analysis agrees
quantitatively with the stability analyses of the DNS flows only if second order effects
due to the traditional Coriolis force (related to the vertical component of background
rotation) and the buoyancy force are taken into account. The latter effects tend to
damp the three-dimensional instability. For this reason, the two-dimensional insta-
bility becomes dominant over the three-dimensional instability when the traditional
Rossby number is decreased keeping the other parameters fixed.

4.1 Introduction

A common approximation in geophysical fluid dynamics is the traditional approxima-
tion that ignores the horizontal component of the planetary rotation when considering
a local Cartesian frame at a given latitude. The Coriolis force then takes into ac-
count only the vertical component of the planetary rotation. However, as reviewed by
Gerkema et al. (2008), several recent studies examining geophysical flows beyond the
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traditional approximation suggest that the complete Coriolis force, i.e. with a back-
ground rotation along both vertical and horizontal axes, plays a non-negligible role
for flows where significant vertical motions or a weak stratification are present. These
studies show that the non-traditional Coriolis force generates horizontal asymmetry for
horizontally symmetrical flows (Semenova & Slezkin, 2003; Sheremet, 2004), modifies
and enhances instabilities (Tort et al., 2016; Zeitlin, 2018; Park et al., 2021; Chew
et al., 2022), and changes wave dynamics (Gerkema et al., 2008; Zhang & Yang, 2021).

Toghraei & Billant (2022) have recently studied the evolution of an initially two-
dimensional vortex in a stratified fluid under the complete Coriolis force by means
of direct numerical simulations (DNS). Due to the horizontal background rotation, a
critical layer appears at the radius where the angular velocity of the vortex is equal to
the Brunt–Väisälä frequency (i.e. the inverse of the Froude number in non-dimensional
form). Such radius exists only if the Froude number is larger than unity. The critical
layer induces a vertical velocity field and a vertical vorticity anomaly that first grow
linearly with time while being more and more concentrated around the critical radius
until they finally saturate. In parallel to the DNS, Toghraei & Billant (2022) have per-
formed a linear asymptotic analysis for large non-traditional Rossby numbers (based on
the horizontal component of the background rotation). It shows that the singularity of
the critical layer is smoothed by both viscosity and unsteadiness, like for the baroclinic
critical layer in a horizontal shear flow studied by Wang & Balmforth (2020, 2021). A
non-linear asymptotic analysis has been also conducted following Wang & Balmforth
(2020, 2021) to obtain the velocity and vorticity fields in the critical layer when their
amplitude is large. The linear and non-linear asymptotic solutions for the vertical ve-
locity and the vertical vorticity anomaly have been found to be in excellent agreement
with the DNS. Finally, it has been shown that the critical layer generates an inflection
point in the vertical vorticity profile which triggers a two-dimensional shear instability
for sufficiently high Reynolds numbers and low non-traditional Rossby numbers. A
theoretical criterion predicting the occurrence of the two-dimensional instability has
been derived from the inflection point condition.

The vortex dynamics described by Toghraei & Billant (2022) is purely two-
dimensional but with three velocity components. It can be indeed shown from
the governing equations that if the initial conditions are two-dimensional, all the
velocity fields remain two-dimensional throughout their evolutions. In the present
paper, we will test the robustness of such evolution with respect to infinitesimal
three-dimensional perturbations added at the beginning of the DNS. We will see
that the dynamics remains two-dimensional as in Toghraei & Billant (2022) for some
parameters, while for other parameters, a three-dimensional instability develops. This
newly observed instability resembles the three-dimensional instability reported by
Boulanger et al. (2007, 2008) in their experimental study of an inclined vortex in
a stratified fluid. To some extent, such configuration is similar to the present one,
since in both cases, there is a tilt with respect to the gravity forces. A critical layer
develops in the tilted vortex at the radius where the angular velocity of the vortex
is equal to the Brunt–Väisälä frequency and induces an intense vertical velocity
field. For sufficiently large tilt angle and Reynolds number, a three-dimensional
instability leads to the formation of rows of vortices with a zig-zag structure. In order
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to determine the origin of the instability, Boulanger et al. (2008) have performed a
local stability analysis of the critical layer using the vertical velocity field derived
theoretically by means of a linear viscous analysis of the critical layer. Considering
only the leading-order terms when the vertical velocity is large, they have shown
that the local stability problem reduces to a Rayleigh equation around the vertical
velocity field as for the stability of inviscid parallel shear flows. The growth rate
predictions obtained by neglecting the azimuthal dependence of the vertical velocity
field, are in good agreement with the experimentally measured growth rates. Hence,
Boulanger et al. (2008) have concluded that the three-dimensional instability comes
from a shear instability of the vertical velocity field generated in the critical layer.
Here, we will follow their local approach in order to determine if the characteristics of
the three-dimensional and two-dimensional instabilities can be predicted.

The paper is organized as follows. The initial conditions, governing equations
and numerical methods are first presented in §4.2. §4.3 describes qualitatively the
two distinct instabilities observed in DNS when the non-traditional Rossby number is
varied while the other parameters are kept constant. Linear stability analyses of the
flows in the DNS prior to the onset of the instabilities are carried out in §4.4. This
is completed in §4.5 by linear stability analyses of the local theoretical flows in the
critical layer. The results of both types of stability analysis are then compared in §4.6.
Finally, §4.7 studies the effects of the Reynolds number and of the traditional Rossby
number. Conclusions are drawn in §4.8.

4.2 Formulation of the problem

4.2.1 Initial conditions

A single vertical Lamb-Oseen vortex with vorticity

ω(x, t = 0) = ζ0ez =
Γ

πa20
e−r2/a20ez, (4.1)

where Γ is the circulation and a0 the radius, is considered as initial conditions accom-
panied by small random perturbations. In the following, we will use either Cartesian
(x, y, z) or cylindrical (r, θ, z) coordinates. The associated unit vectors are denoted
(ex, ey, ez) and (er, eθ, ez), respectively. The geometry of the flow is sketched in fig-
ure 4.1. The vortex is located at the center of a box with dimensions of lx × ly × lz.
The background rotation vector Ωb is decomposed into two vertical and horizontal
components: 2Ωb = f̃ey + fez where f = 2Ωb sin (ϕ) and f̃ = 2Ωb cos (ϕ), where
ϕ is the angle between the background rotation vector and the unit vector in the y
direction, ey. The fluid is stably stratified with a constant Brunt–Väisälä frequency

N =
√

−(g/ρ0)∂ρ̄/∂z, where g is the gravity, ρ0 a constant reference density and ρ̄(z)
the mean density profile.
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Fig. 4.1: Sketch of the initial vortex in a stratified rotating fluid with a background
rotation Ωb inclined with an angle ϕ.

4.2.2 Governing equations

The governing equations are non-dimensionalized by using 2πa20/Γ and a0 as time and
length units:

∇.u = 0, (4.2)

∂u

∂t
+ (u.∇)u = −∇p+ bez − 2

(
1

Ro
ez +

1

R̃o
ey

)
× u+

1

Re
∇2u, (4.3)

∂b

∂t
+ u.∇b+

1

F 2
h

uz =
1

ReSc
∇2b, (4.4)

where u, b and p are the non-dimensional velocity, buoyancy and pressure, respectively.
The problem is controlled by five non-dimensional numbers: the Reynolds, Froude,
Rossby and Schmidt numbers defined as follows

Re =
Γ

2πν
, Fh =

Γ

2πa20N
, Ro =

Γ

πa20f
, R̃o =

Γ

πa20f̃
, Sc =

ν

κ
. (4.5)

where ν is the viscosity and κ the diffusivity of the stratifying agent. The two Rossby
numbers– traditional Rossby number Ro and non-traditional Rossby number R̃o–
measure the two components of the rotation vector. The Schmidt number will be always
set to unity. In the following, all the results will be presented in a non-dimensional
form.

4.2.3 Numerical methods

A pseudo-spectral method with periodic boundary conditions and fourth-order
Runge–Kutta time integration is used as in Toghraei & Billant (2022). The horizontal
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sizes of the computational domain have been set to lx = ly = 18, to minimize the
effect of the periodic boundary conditions (see Toghraei & Billant (2022) for details).
The vertical size has been set to lz = 8 in order to adequately accommodate several
vertical wavelengths of the dominant three-dimensional instability. For all the DNS,
the Reynolds number will be kept constant and set to Re = 2000. As shown by
Toghraei & Billant (2022), the horizontal resolution required for this value of Re is
nx = ny = 512. Accordingly, the vertical resolution has been set to nz = 256. The
time step is δt = 0.01. A number of DNS have been conducted to test the accuracy
of the configurations. In particular, the tests have shown that the velocity differs by
less than 0.2% when the vertical resolution is increased from nz = 256 to nz = 512.
Random three-dimensional perturbations are added initially to the vortex. They
consist in a divergence-free white noise with amplitude 0.001.

4.3 Typical examples of the vortex dynamic

The objective of this section is to present qualitatively the different vortex evolutions
observed in the DNS. Figure 4.2 shows the evolution of the vertical velocity at three
different times for the set of parameters Re = 2000, Fh = 4, Ro = 23.1, R̃o = 40. In
this figure, three planes are displayed: a horizontal cross-section at the middle plane
z = lz/2 (first row) and two vertical cross-sections at the planes y = ly/2 (second
row) and x = lx/2 (third row) going through the initial vortex center. Figure 4.3
shows the corresponding evolution of the vertical vorticity. Since the vertical vorticity
remains predominantly quasi-asymmetric, only two planes are displayed: a horizontal
cross-section in the plane z = lz/2 (first row) and a vertical cross-section at the plane
y = ly/2 (second row).

As previously reported by Toghraei & Billant (2022), the presence of the non-
traditional Coriolis force generates a vertical velocity field with azimuthal wavenumber
m = 1 (figure 4.2(a, d, g)). This vertical velocity field concentrates at the critical radius
rc where the non-dimensional angular velocity of the vortex Ω equals the inverse of the
Froude number Ω(rc) = 1/Fh. A ring of vertical vorticity anomaly also develops at
rc (figure 4.3(a, d)). The vortex appears still two-dimensional at t = 40. However,
later on (figures 4.2(b, e, h) and 4.3(b, e)), three-dimensional variations become visible
in both the vertical velocity field and the vertical vorticity anomaly. At t = 56 (figures
4.2(c, f, i) and 4.3(c, f)), the amplitude of the deformations along the vertical has
grown and the vertical cross-section of the vertical vorticity (figure 4.3(f)) exhibits a
structure similar to the one observed by Boulanger et al. (2007, 2008) on a stratified
tilted vortex. Although there are some irregularities due to the randomness of the
initial three-dimensional perturbations, we can distinguish five wavelengths along the
vertical, i.e. a dominant wavenumber k ≈ 4. We can also see that the deformations are
in opposite phases on the two sides of the vortex (figure 4.3 (f)). In the horizontal cross-
sections (figures 4.2(c) and 4.3(c)), non-axisymmetric deformations can be also seen
but they are irregular and weak compared to those of the two-dimensional instability
reported by Toghraei & Billant (2022).

A similar three-dimensional instability has been observed when the non-traditional
Rossby number is increased to R̃o = 60 or R̃o = 80 while keeping the other parameters
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fixed (see figures 4.24-4.27 in appendix A). Note that the corresponding traditional

Rossby number Ro varies also slightly from Ro = 23.1 to Ro = 20.7 when R̃o is
increased since it is ϕ that is varied whereas Ωb = 0.1 is kept constant. However, when
the non-traditional Rossby number is further increased to R̃o = 115 (figures 4.4 and
4.5), three-dimensional deformations are no longer visible while two-dimensional non-
axisymmetric disturbances with an azimuthal modem = 2 can be seen in the horizontal
cross-sections at late times t = 167 and t = 175 (figures 4.4(b, c) and 4.5(b, c)) as
observed by Toghraei & Billant (2022).

The nature of the dominant instability, therefore, depends on the parameters. The
vertical velocity and vorticity fields observed before the instability have a similar shape
for R̃o = 40 (figures 4.2(a, d, g) and 4.3(a, d)) and R̃o = 115 (figures 4.4(a, d, g) and
4.5(a, d)). However, we can notice that the maximum vertical velocity is larger by 50%

for R̃o = 40 than for R̃o = 115 and the vertical vorticity anomaly is also much stronger
for R̃o = 40 than for R̃o = 115.

4.4 Linear stability analysis of the flows in the DNS

In order to further describe the competition between the two-dimensional and three-
dimensional instabilities, we have carried out linear stability analyses of the flows in
the DNS at different times before the onset of the instability.

4.4.1 Methods

To do so, a two-dimensional simulation was first run for each set of parameters. Then,
the velocity and buoyancy fields U = (Ux, Uy, Uz) and B have been frozen at a given
time t = tb. They are next perturbed by infinitesimal perturbations

[u, b](x, t) = [U , B](x, y, tb) + [u
′
, b

′
](x, t), (4.6)

denoted with a prime. The perturbations are governed by the equations (4.2-4.4)
linearized around (U , B):

∇.u
′
= 0, (4.7)

∂u
′

∂t
+(U.∇)u

′
+
(
u

′
.∇
)
U = −∇p

′
+b

′
ez−2

(
1

Ro
ez +

1

R̃o
ey

)
×u

′
+

1

Re
∇2u

′
, (4.8)

∂b
′

∂t
+U.∇b

′
+ u

′
.∇B +

1

F 2
h

u
′

z =
1

ReSc
∇2b

′
, (4.9)

Such ”freezing” method is expected to give reliable results if the time evolution of the
flow (U , B) is slow compared to the growth rate of the perturbations.

The equations (4.7-4.9) are integrated with [u
′
, b

′
] initialized by white noise using

the same numerical code and the same resolution and domain size in the horizontal
directions as for the DNS. Since the base flow (U , B) is uniform along the vertical and
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Fig. 4.2: Vertical velocity field in a horizontal cross-section at z = lz/2 (first row) and
two vertical cross sections at y = ly/2 (second row) and x = lx/2 (third row) at three
different times: (a, d, g) t = 40, (b, e, h) t = 53, (c, f, i) t = 56 for Re = 2000, Fh = 4,

Ro = 23.1 and R̃o = 40.
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Fig. 4.3: Vertical vorticity field in a horizontal cross-section at z = lz/2 (first row) and
a vertical cross sections at y = ly/2 (second row) at three different times: (a, d) t = 40,

(b, e) t = 53, (c, f) t = 56 for Re = 2000, Fh = 4, Ro = 23.1 and R̃o = 40.
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Fig. 4.4: Same as figure 4.2 but for R̃o = 115 and Ro = 20.3: (a, d, g) t = 100, (b, e, h)
t = 152, (c, f, i) t = 167.
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Fig. 4.5: Same as figure 4.3 but for R̃o = 115 and Ro = 20.3: (a, d) t = 100, (b, e)
t = 152, (c, f) t = 167.
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the equations (4.7-4.9) are linear, the amplitude [ûk, b̂k] of each vertical wavenumber
of the perturbation:

[u
′
, b

′
] =

kmax∑
k=−kmax

[ûk, b̂k](x, y, t)e
ikz (4.10)

evolve independently of the others. Hence, by integrating (4.7-4.9) for a sufficiently
long time, the perturbations [ûk, b̂k] for each vertical wavenumber will be dominated
by the most unstable mode. The vertical size and resolution have been set to lz = 32
and nz = 64 in order to cover the wavenumber band −2π ≤ k ≤ 2π with the resolution
∆k = π/16.

In practice, the growth rate for each vertical wavenumber σr(k) is retrieved from
the total kinetic energy Ek(t) =

∫ ∫
1/2

(
û2x + û2y + û2z

)
dxdy by means of the formula

σr(k) =
1

2(tf − ti)
log

(
Ek(tf )

Ek(ti)

)
, (4.11)

where the two times ti and tf are chosen to be large and sufficiently separated in order
to eliminate the oscillations of Ek when the instability is oscillating (Typically, ti = 140
and tf = 190). The pulsation σi(k) of the instability can be also retrieved by searching
the successive times tn for which the relative kinetic energy Ek(t)/(Ek(ti)e

2σr(t=ti)) is
maximum. An estimation of the pulsation is then given by

σi(k) =
nmax−1∑
n=1

1

(nmax − 1)

2π

2(tn+1 − tn)
, (4.12)

where nmax is the number of maxima detected. In the following, only positive wavenum-
ber k will be presented since negative ones are identical owing to the symmetry z → −z.

4.4.2 Results

Figure 4.6 shows the growth rate as a function of the vertical wavenumber k for the
four different values of R̃o investigated in §4.3 for Re = 2000 and Fh = 4. For each
case, we have computed the stability of the flows at four different times tb prior to
the time at which the instabilities become visible in the DNS. Globally, the growth
rate levels increase with tb and decrease with R̃o. For R̃o = 40 (figure 4.6(a)), all
the wavenumbers are strongly unstable but there is a growth rate peak at k ≈ 4 − 5
in agreement with the dominant wavenumber k ≈ 4 observed in the DNS (figures
4.2 and 4.3). Figure 4.7(a) shows the pulsation σi corresponding to this peak (circle
symbols) as a function of tb. It is nearly constant σi ≈ 0.2 when tb ≥ 40 and clearly
differs from the pulsation of the two-dimensional instability (i.e. k = 0) which is
also plotted by square symbols. The vertical velocity of the eigenmodes corresponding
to the dominant three-dimensional instability and to the two-dimensional instability
have also a different structure (figure 4.8) even if they are both concentrated around
the critical radius. The two-dimensional eigenmode (figure 4.8(a)) exhibits a well-
defined azimuthal wavenumber m = 3 which rotates with little change of shape. In
contrast, the thee-dimensional eigenmode (figure 4.8(b)) presents an irregular azimuthal
dependence which is modulated over the oscillation period of the instability.
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As the non-traditional Rossby number is increased to R̃o = 60 (figure 4.6(b)) and

R̃o = 80 (figure 4.6(c)), a peak continues to be observed around k ≈ 4− 5 but it is less
pronounced relative to the growth rate at k = 0. In other words, the three-dimensional
instability is still dominant for these values of R̃o as observed in the DNS but its
strength weakens comparatively to the two-dimensional instability. The pulsation cor-
responding to the growth rate peak is still around σi ≈ 0.2 (figure 4.7(b, c)). However,
the pulsation of the two-dimensional instability switches from σi ≈ 0.5 at early times
to σi ≈ 0.8 at late times.

For R̃o = 115 (figure 4.6(d)), the growth rate is then maximum at k = 0 in agree-
ment with the observation of a two-dimensional instability in the DNS (figures 4.4
and 4.5). A local peak around k ≈ 4 − 5 is however still observed when tb ≤ 80
whereas it is less apparent for tb ≥ 100. The present linear stability analysis, therefore,
confirms that there is a cross-over of the dominant instability from three-dimensional
to two-dimensional as R̃o increases. As seen in figure 4.7(d), the pulsations of the
three-dimensional and two-dimensional instabilities are now σi ≈ 0.2 and σi ≈ 0.5, re-
spectively, independently of tb. Interestingly, figure 4.9(a) shows that the eigenmode of
the two-dimensional instability exhibits now a m = 2 azimuthal structure, as observed
in the DNS (figures 4.4 and 4.5), instead of m = 3 for R̃o = 40 (figure 4.8(a)). This
change of the dominant azimuthal wavenumber of the two-dimensional instability ex-
plains why the pulsation switches from σi ≈ 0.8 for R̃o = 40 to σi ≈ 2/3×0.8 ≈ 0.5 for

R̃o = 115. The three-dimensional eigenmode for R̃o = 115 (figure 4.9(b)) looks some-

what different from the one for R̃o = 40 (figure 4.8(b)) because they do not correspond
to the same phase of the oscillation cycle.

Although the stability analysis has been performed by freezing a time-evolving
flow [U , B], we can notice in figure 4.6 that the growth rate curves for the two last
times tb (red and blue lines) are very close for each plot. This indirectly suggests that
the flow [U , B] has little evolved between these two times, legitimating the present
analysis. The slow evolution of the base flow [U , B] when the instability develops will
be confirmed in the next section.

4.5 Local stability analysis of the theoretical solu-

tions in the critical layer

In order to further shed light on the competition between the three-dimensional and
two-dimensional instabilities, we will now turn to a stability analysis of the local solu-
tions in the critical layer that have been derived analytically for large Reynolds numbers
and small non-traditional Rossby numbers in Toghraei & Billant (2022).

We first briefly recall the asymptotic analyses and the resulting solutions. Then,
the stability of these solutions will be investigated.

4.5.1 Local base flow in the critical layer

Toghraei & Billant (2022) have solved (4.2-4.4) by assuming ε = 2/R̃o ≪ 1 and
Re≫ 1 and by considering the vicinity of the critical radius rc by means of the variable
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Fig. 4.6: Growth rate σr obtained from the stability analysis of the DNS flow as a
function of the vertical wavenumber k for Re = 2000, Fh = 4, Ωb = 0.1 (Ro ≈ 20)

and (a) R̃o = 40, (b) R̃o = 60, (c) R̃o = 80 and (d) R̃o = 115. The colored lines
corresponds to different times tb:
(a) tb = 35 (black line), tb = 40 (green line), tb = 45 (red line), tb = 50 (blue line),
(b) tb = 40 (black line), tb = 50 (green line), tb = 55 (red line), tb = 60 (blue line), (c)
tb = 45 (black line), tb = 55 (green line), tb = 65 (red line), tb = 75 (blue line), (d)
tb = 50 (black line), tb = 70 (green line), tb = 90 (red line), tb = 100 (blue line).
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Fig. 4.7: Pulsation σi obtained from the stability analysis of the DNS flow for k = 0
(squares) and at the most amplified wavenumber in the range k > 4 (circles) as a

function of the time tb for Re = 2000, Fh = 4, Ωb = 0.1 (Ro ≈ 20) and (a) R̃o = 40,

(b) R̃o = 60, (c) R̃o = 80 and (d) R̃o = 115.
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Fig. 4.8: Vertical velocity field of the eigenmode for (a) k = 0 and (b) k = 4.5 for

R̃o = 40 and Re = 2000, Fh = 4, Ro = 23.1 at tb = 50.

Fig. 4.9: Same as figure 4.8 but for (a) k = 0 and (b) k = 5.3 for R̃o = 115 and
Ro = 20.3 at tb = 100.
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r̃ = Re1/3(r− rc). A slow time T = Re−1/3t has been also introduced. Both linear and
non-linear analyses have been carried out following Boulanger et al. (2007) and Wang

& Balmforth (2020, 2021). The latter assumes the distinguished scaling Re = R̃e/ε2

where R̃e is of order unity. The solutions for the vertical velocity, buoyancy, angular
velocity and vertical vorticity then read at leading order in ε:

Uz = ε1/3R̃e
1/3
Ũz + ..., (4.13a)

B = ε1/3R̃e
1/3
B̃ + ..., (4.13b)

Ω = Ω0 + ε2/3R̃e
2/3

Ω1 + ..., (4.13c)

ζ = ζ0 + R̃eζ1 + ..., (4.13d)

where Ũz = Ũz1e
iθ + c.c. and B̃ = B̃1e

iθ + c.c.. At the leading order, Ω0 and ζ0, are the
non-dimensional angular velocity and vertical vorticity corresponding to (4.1). In the
vicinity of rc, they can be expanded as

Ω0 = Ωc + r̃Ω
′

cε
2/3R̃e

−1/3
+ ..., (4.14a)

ζ0 = ζc + r̃ζ
′

cε
2/3R̃e

−1/3
+ ..., (4.14b)

where the subscript c denotes the value at r = rc. The vertical velocity Ũz1 and
angular velocity correction Ω1 have been found to be governed by the following coupled
equations:

∂Ũz1

∂T
+ iΩ

′

cr̃Ũz1 + iR̃eΩ1Ũz1 =
i

4
rcΩc +

1

2

(
1 +

1

Sc

)
∂2Ũz1

∂r̃2
, (4.15a)

∂Ω1

∂T
= − i

2rc

(
Ũ∗
z1 − Ũz1

)
+
∂2Ω1

∂r̃2
. (4.15b)

The equation (4.15a) describes the evolution of the vertical velocity Ũz1 near rc due to
viscous and diffusive effects (last term) and the effect of the angular velocity correction
Ω1 (last term of the left-hand side). The viscous effects and the time derivative smooth
the solution Ũz1, which without these terms would be Ũz1 = rcΩc/(4Ω

′
cr̃) and would

be therefore singular at rc. The equation (4.15b) shows that the vertical velocity Ũz1

forces the angular velocity correction Ω1. This comes from the non-traditional Coriolis
force in the horizontal momentum equation. The corresponding buoyancy and vertical
vorticity corrections are given by B̃1 = iΩcŨz1 and ζ1 = rc∂Ω1/∂r̃.

The linear solutions derived by Toghraei & Billant (2022) can be most simply
obtained from (4.15) by neglecting the third term in the left-hand side of (4.15a).

Indeed, the linear solutions are expected to be valid when R̃e≪ 1, i.e. when Re/R̃o
2
≪

1. In this case, (4.15a) can be integrated analytically

Ũz1 = i
A
π

∫ ∣∣∣Ω′
c

∣∣∣T/γ
0

exp

(
−z

3

3
+ iγr̃z

)
dz, (4.16)
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where

A =
πrcΩc

2
∣∣∣2Ω′

c

∣∣∣2/3(1 + 1

Sc

)1/3
, γ =

∣∣∣2Ω′

c

∣∣∣1/3(
1 +

1

Sc

)1/3
. (4.17)

Then, the solution of (4.15b) can be found in the form

Ω1 = − A
2γπrc

∫ ∣∣∣Ω′
c

∣∣∣T
0

exp

(
−q3

3γ3
+ iqr̃

)(
1− exp

(
q3/
∣∣Ω′

c

∣∣− q2T
)

q2

)
dq + c.c.. (4.18)

These theoretical solutions are compared in figure 4.10 to the flows observed in
the DNS prior to the onset of the instability for the four values of R̃o investigated
previously for Re = 2000 and Fh = 4. This figure displays the maximum vertical
velocity Uzm(θ, t) for θ = 0 (figure 4.10(a)) and θ = π/2 (figure 4.10(b)). The solid

lines correspond to the DNS for R̃o = 40 (grey), R̃o = 60 (green), R̃o = 80 (red) and

R̃o = 115 (blue) whereas the corresponding linear and non-linear solutions (4.13,4.16)
and (4.13,4.15) are plotted with dashed lines and dotted dashed lines, respectively,
with the same color.

Both the linear (4.13,4.16) and the non-linear (4.13,4.15) solutions predict well the

initial increase of Uzm(θ, t) in the DNS for all values of R̃o despite missing the initial
oscillations observed in the DNS. These oscillations are due to inertia-gravity waves
excited at t = 0. However, since their amplitude remains constant whereas the rest
of the solution grows linearly with time, their relative importance becomes negligible
for large times. They are absent in (4.16) and (4.15) because these solutions are valid

only for T ≳ O(1), i.e. large time: t≫ ε−2/3R̃e
1/3

.
After the linear increase, there is a saturation of Uzm(θ, t) towards a level which is

inversely proportional to R̃o. While the linear solution (4.13,4.16) saturates to constant
values, the non-linear solution (4.13,4.15) exhibits transient oscillations towards a mean

value. The amplitude of these oscillations increases as R̃o decreases. The difference
between the linear and non-linear solutions also increases as R̃o decreases for a constant
Re since non-linear effects scale like R̃e = Re/R̃o

2
.

Figures 4.11 and 4.12 display a detailed comparison between the radial profiles of
the vertical velocity in the DNS and from the asymptotic solutions for R̃o = 40 and
R̃o = 115, respectively. The comparison has been conducted at θ = 0 (left column)
and θ = π/2 (middle column) and at two different times denoted tb1 and tb2. The
first time tb1 is approximately when Uzm(θ = 0, t) given by the non-linear equations
(4.13,4.15) reaches the saturation level of Uzm(θ = 0, t) given by the linear solution
(4.16) (circles in figure 4.10(a)). The time tb2 is when Uzm(θ = 0, t) given by the non-
linear solution (4.13,4.15) reaches its first peak (squares in figure 4.10(a)). These two
times are sufficiently large for the theoretical solutions to be valid. For both values
of R̃o, there is a good agreement between Uz(r, θ, t) in the DNS (black solid lines)
and predicted by the linear solutions (green dashed lines) and non-linear solutions

(red dashed lines). However, the linear solution for R̃o = 40 (figure 4.11(a, b, d, e)) is
shifted along the radius compared to the DNS whereas the non-linear solution is in
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Fig. 4.10: Comparison between the maximum vertical velocity in the DNS (solid line),
predicted by the linear solution (4.13,4.16) (dashed line) and by the non-linear equa-
tions (4.13,4.15) (dotted dashed line) for (a) θ = 0 and (b) θ = π/2 for Re = 2000,

Fh = 4, Ωb = 0.1 (Ro ≈ 20) and R̃o = 40 (grey lines), R̃o = 60 (green lines), R̃o = 80

(red lines) and R̃o = 115 (blue lines). The circle and square symbols in (a) indicate
the times tb1 and tb2, respectively.

better agreement. This is due to the non-linear effect involving the angular velocity
correction Ω1 in (4.15a) that effectively moves the location of the critical radius. For

R̃o = 115 (figure 4.12), there is also a slight shift between the linear and non-linear
vertical velocity profiles at tb = 100 (figure 4.12(d, e)). It is however smaller since

non-linear effects are weaker for R̃o = 115.

The corresponding profiles of vertical vorticity at the same times are compared in
figure 4.11(c, f) (R̃o = 40) and figure 4.12(c, f) (R̃o = 115). We see that there is
also a good agreement between the asymptotic solutions and the DNS. The non-linear
solution is, again, more accurate than the linear one for R̃o = 40 (figure 4.11(c, f)).

Similar comparisons are displayed in appendix A for R̃o = 60 (figure 4.28) and

R̃o = 80 (figure 4.29).

4.5.2 Local stability analysis of the base flow in the critical
layer

Having shown that the asymptotic solutions (4.13) are in good agreement with the flows
observed in the DNS before the onset of the instabilities, we will now study the stability
of these theoretical solutions in order to further understand the competition between
the two-dimensional and three-dimensional instabilities. To do so, the equations (4.2-
4.4), written in cylindrical coordinates, are linearized around the flow (4.13) and are
expressed in terms of the local coordinate r̃ and with the vertical coordinate rescaled
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Fig. 4.11: Comparison between the vertical velocity at θ = 0 (left column) and θ =
π/2 (middle column) in the DNS (black solid line), predicted by the linear solution
(4.13,4.16) (green dashed line) and by the non-linear equations (4.13,4.15) (red dashed

line) at tb1 = 40 (top row) and tb2 = 50 (bottom row) for R̃o = 40 and Re = 2000,
Fh = 4, Ro = 23.1.
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Fig. 4.12: Comparison between the vertical velocity at θ = 0 (left column) and θ =
π/2 (middle column) in the DNS (black solid line), predicted by the linear solution
(4.13,4.16) (green dashed line) and by the non-linear equations (4.13,4.15) (red dashed

line) at tb1 = 50 (top row) and tb2 = 100 (bottom row) for R̃o = 115 and Re = 2000,
Fh = 4, Ro = 20.3.
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similarly: z̃ = ε−2/3R̃e
1/3
z. They read at leading orders in ε:

ε−2/3R̃e
1/3∂ur

∂r̃
+

1

rc

∂uθ
∂θ

+ ε−2/3R̃e
1/3∂uz

∂z̃
= 0, (4.19a)

∂ur
∂t

+ Ω
∂ur
∂θ

+ ε−1/3R̃e
2/3
Ũz
∂ur
∂z̃

−
(
2Ω +

2

Ro

)
uθ = −ε−2/3R̃e

1/3∂p

∂r̃

− εuz cos (θ) + ε2/3R̃e
−1/3

(
∂2ur
∂r̃2

+
∂2ur
∂z̃2

)
,

(4.19b)

∂uθ
∂t

+ Ω
∂uθ
∂θ

+ ε−1/3R̃e
2/3
Ũz
∂uθ
∂z̃

+

(
ζ +

2

Ro

)
ur = − 1

rc

∂p

∂θ
+ εuz sin (θ)

+ ε2/3R̃e
−1/3

(
∂2uθ
∂r̃2

+
∂2uθ
∂z̃2

)
,

(4.19c)

∂uz
∂t

+ Ω
∂uz
∂θ

+ ε1/3R̃e
1/3uθ

rc

∂Ũz

∂θ
+ ε−1/3R̃e

2/3
Ũz
∂uz
∂z̃

+ ε−1/3R̃e
2/3
ur
∂Ũz

∂r̃
=

− ε−2/3R̃e
1/3∂p

∂z̃
+ b+ εur cos (θ)− εuθ sin (θ) + ε2/3R̃e

−1/3
(
∂2uz
∂r̃2

+
∂2uz
∂z̃2

)
,

(4.19d)

∂b

∂t
+ Ω

∂b

∂θ
+ ε1/3R̃e

1/3uθ
rc

∂B̃

∂θ
+ ε−1/3R̃e

2/3
Ũz
∂b

∂z̃
+ ε−1/3R̃e

2/3
ur
∂B̃

∂r̃
=

− uz
F 2
h

+
ε2/3

R̃e
1/3
Sc

(
∂2b

∂r̃2
+
∂2b

∂z̃2

)
,

(4.19e)

where

Ω = Ωc + ε2/3R̃e
−1/3

[r̃Ω
′

c + R̃eΩ1] + ..., (4.20a)

ζ = ζc + R̃eζ1 + ε2/3R̃e
−1/3

r̃ζ
′

c + .... (4.20b)

Local three-dimensional stability analysis

We see that the leading terms in (4.19) scale as ε−1/3R̃e
2/3

provided that ∂/∂z̃ is of
order unity. Hence, in order to study the three-dimensional instability, we rescale the

time as follows t = τ t̃ where τ = ε1/3R̃e
−2/3

and the pressure as p = τR̃ep̃ such that
the time derivatives and the pressure gradient are of the same order as the dominant
terms. Then, (4.19) reduces at first and second order in ε to:

∂ur

∂t̃
+ Ũz

∂ur
∂z̃

+ τΩc
∂ur
∂θ

− τ

(
2Ωc +

2

Ro

)
uθ = −∂p̃

∂r̃
(4.21a)

∂uθ

∂t̃
+ Ũz

∂uθ
∂z̃

+ τΩc
∂uθ
∂θ

+ τ

(
ζc + R̃eζ1 +

2

Ro

)
ur = 0, (4.21b)
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∂uz

∂t̃
+ Ũz

∂uz
∂z̃

+ ur
∂Ũz

∂r̃
+ τΩc

∂uz
∂θ

= −∂p̃
∂z̃

+ τb, (4.21c)

∂b

∂t̃
+ Ũz

∂b

∂z̃
+ ur

∂B̃

∂r̃
+ τΩc

∂b

∂θ
= −τ uz

F 2
h

, (4.21d)

∂ur
∂r̃

+
∂uz
∂z̃

= 0, (4.21e)

whereas terms of order ε2/3 and higher are neglected. If only the leading order terms
are retained, then all the terms proportional to τ can be neglected and (4.21) reduces
simply to

∂ur
∂r̃

+
∂uz
∂z̃

= 0, (4.22a)

∂ur

∂t̃
+ Ũz

∂ur
∂z̃

= −∂p̃
∂r̃
, (4.22b)

∂uz

∂t̃
+ Ũz

∂uz
∂z̃

+ ur
∂Ũz

∂r̃
= −∂p̃

∂z̃
, (4.22c)

whereas the equations (4.21b) and (4.21d) for uθ and b do not need to be considered
since these two quantities do not appear in (4.22).

Hence, as shown previously by Boulanger et al. (2008), the local stability prob-
lem (4.22) corresponds at leading order to the two-dimensional stability of a paral-
lel non-stratified shear flow Ũz. However, a difference with the classical configura-
tion is that the base flow Ũz does not depend only on r̃ but also on θ. Boulanger
et al. (2008) have solved (4.22) by writing the perturbations in the form (ur, uz, p̃) =

[ûr, ûz, p̂] (r̃, θ)e
σ̃t̃+ik̃z̃ + c.c.. Then, (4.22) recovers the classical Rayleigh equation[

σ̃ + ik̃Ũz

] [ d2

dr̃2
− k̃2

]
ûr = ik̃

d2Ũz

dr̃2
ûr, (4.23)

where θ can be considered as an external parameter. The solution is then thought as
a local eigenmode around the particular value of θ investigated.

If we consider also the next order terms in ε in (4.21), the previous local approach
can be still used only if we neglect the advection terms in the azimuthal direction,
i.e. Ωc∂/∂θ = 0. Without this strong assumption, (4.21) would correspond to a full
three-dimensional stability problem of a base flow varying in both r̃ and θ directions.
Hence, it would be as complicated to solve as the stability analysis of the DNS flow
performed in section §4.4.

In contrast, the simplifying assumption ∂/∂θ = 0 allows us to still consider θ as
an external parameter. Hence, by writing perturbations in the form (ur, uz, p̃, b) =[
ûr, ûz, p̂, b̂

]
(r̃, θ)eσ̃t̃+ik̃z̃ + c.c., (4.21) can be reduced to a single equation

s̃

[(
1 +

Ñ2

s̃2

)
d2ûr
dr̃2

− k̃2

(
1 +

ϕ̃

s̃2

)
ûr

]
= ik̃

[
d2Ũz

dr̃2
+
Ñ

s̃

d2B̃
′

dr̃2
− i

k̃Ñ

s̃2
dŨz

dr̃

dB̃
′

dr̃

]
ûr

+ ik̃

[
Ñ

s̃

dB̃
′

dr̃
+
Ñ2

s̃2
dŨz

dr̃

]
dûr
dr̃

,

(4.24)
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where s̃ = σ̃ + ik̃Ũz, B̃
′
= B̃/Ωc and

Ñ =
τ

Fh

, ϕ̃ = τ 2
(
2Ωc +

2

Ro

)(
ζc +

2

Ro

)
(4.25)

are the inverse of the Froude number and the Rayleigh discriminant. The Rayleigh
equation (4.23) is recovered by (4.24) when τ = 0, i.e. Ñ = 0 and ϕ̃ = 0. Since (4.24)
is still one-dimensional, it will allow us to study simply the second order effects. This
equation is effectively solved by means of a pseudo-spectral Chebyshev method and
the function eig from Matlab.

The dependence of Ũz and B̃
′
on the parameters rc and Sc can be further eliminated

for a large time by the additional rescaling

Ũz = ÛzA, B̃
′
= B̂A, r̃ =

r̂

γ
, k̃ = k̂γ, σ̃ = σ̂γA, τ = τ̂ γA,

Ñ = N̂γA, ϕ̃ = ϕ̂(γA)2,

(4.26)

where A and γ are defined in (4.17). Then, the equation has the same form as (4.24)
but with tildes replaced by hats.

Figure 4.13 shows the normalized growth rate σ̂r as a function of the normalized
wavenumber k̂ given by (4.24) for different N̂ and ϕ̂. The linear solution (4.13,4.16) for
T = Re−1/3t = ∞ is taken as base flow for two angles θ = 0 (solid line) and θ = π/2
(dashed line). For N̂ = ϕ̂ = 0 (black line) corresponding to the Rayleigh equation
(4.23), the maximum growth rate σ̂rmax is σ̂rmax ≈ 0.116 for k̂max ≈ 0.54 when θ = 0
and σ̂rmax ≈ 0.107 for k̂max ≈ 0.59 when θ = π/2. The flow is therefore slightly more
unstable for θ = 0 in agreement with the results of Boulanger et al. (2008). Since
the time has been scaled by τ , this implies that the maximum unscaled growth rate is

proportional to σr ∼ 1/τ = ε−1/3R̃e
2/3

.

The effect of N̂ for ϕ̂ = 0 is investigated in figure 4.13(a). When N̂ is increased to
N̂ = 0.1 (red lines) and then to N̂ = 0.2 (green lines), there is a significant decrease
of the maximum growth rate both for θ = 0 (solid lines) and θ = π/2 (dashed lines).
Similarly, when ϕ̂ is varied while N̂ is kept to zero (figure 4.13(b)), the maximum
growth rates drop dramatically as soon as ϕ̂ becomes non-zero: ϕ̂ = 0.005 (red line),
ϕ̂ = 0.02 (green line). In terms of the original parameters, the control parameters

N̂ and ϕ̂ are proportional to R̃o/Re2/3 and R̃o
2
/Re4/3, respectively. When the non-

traditional Rossby number R̃o is increased or the Reynolds number is decreased, we
expect therefore the growth rate to deviate more and more from the one given by the
Rayleigh equation (4.23). Similarly, the dependencies of N̂ on the Froude number
or of ϕ̂ on the traditional Rossby number imply a decrease of the growth rate as Fh

decreases, or as Ro decreases.

In summary, the maximum unscaled growth rate σr of three-dimensional distur-

bances scales at leading order as ε−1/3R̃e
2/3

= εRe2/3 but second order effects measured
by the parameters N̂ and ϕ̂ can reduce significantly σr.
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Fig. 4.13: Normalized growth rate σ̂r obtained from (4.24) as a function of the nor-
malized vertical wavenumber k̂. The linear base flow (4.13,4.16) is taken at T = ∞ for
θ = 0 (solid line) and θ = π/2 (dashed line). The different colored curves correspond
to: (a) N̂ = 0, ϕ̂ = 0 (black line), N̂ = 0.1, ϕ̂ = 0 (red line) and N̂ = 0.2, ϕ̂ = 0
(green line) and (b) N̂ = 0, ϕ̂ = 0 (black line), N̂ = 0, ϕ̂ = 0.005 (red line) and N̂ = 0,
ϕ̂ = 0.02 (green line).
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Local two-dimensional stability analysis

The equations (4.21) have been obtained thanks to the assumption ∂/∂z =

O(ε−2/3R̃e
1/3

), i.e. that the perturbations vary along the vertical as rapidly as along
the radius. In other words, the dimensional vertical wavenumber k should be large.

These equations are therefore not valid when k is small and in particular in the
two-dimensional limit ∂/∂z = 0. To treat this limit, we introduce the different scaling

p = R̃e
−1/3

ε2/3p̄, (4.27a)

∂

∂θ
= R̃e

1/3
ε−2/3 ∂

∂θ̄
, (4.27b)

∂

∂t̄
=

∂

∂t
+ ΩcR̃e

1/3
ε−2/3 ∂

∂θ̄
, (4.27c)

where the new time t̄ is introduced to conveniently simplify the following calculations.
Then, (4.19) reduces at leading order in ε to

∂ur
∂t̄

+
(
r̃Ω

′

c + R̃eΩ1

) ∂ur
∂θ̄

−
(
2Ωc +

2

Ro

)
uθ = −∂p̄

∂r̃
(4.28a)

∂uθ
∂t̄

+
(
r̃Ω

′

c + R̃eΩ1

) ∂uθ
∂θ̄

+

(
ζc + R̃eζ1 +

2

Ro

)
ur = − 1

rc

∂p̄

∂θ̄
(4.28b)

∂ur
∂r̃

+
1

rc

∂uθ
∂θ̄

= 0, (4.28c)

whereas the equations (4.19d,4.19e) for uz and b do not need to be considered since
they are decoupled from (4.28). By introducing perturbations of the form (ur, uθ, p̄) =
(ûr(r), ûθ(r), p̂(r))e

σt̄+im̄θ̄, a Rayleigh equation is again recovered[
σ

R̃e
+ im̄

(
r̃Ω

′
c

R̃e
+ Ω1

)][
∂2

∂r̃2
− m̄2

r2c

]
ûr = i

m̄

rc

∂ζ1
∂r̃

ûr. (4.29)

It is the same as (4.23) with rc

(
r̃Ω

′
c/R̃e+ Ω1

)
and m̄/rc replacing Ũz and k, respec-

tively. This equation governs the growth rate of azimuthal disturbances on the local
azimuthal velocity profile near the critical layer.

In contrast to the three-dimensional case, the dependence on R̃e can not be com-
pletely eliminated from (4.29). This is because the angular velocity correction Ω1 is of

the same order as the term r̃Ω
′
c/R̃e of the pre-existing angular velocity Ω0. However,

most of the dependence of Ω1 on rc can be eliminated by the further rescaling r̃ = r̂/γ,

Ω1 = Ω̂1A/(rcγ2), ζ1 = ζ̂1A/γ, m̄ = m̂rcγ, σ = σ̂R̃eA/γ. Then, (4.29) becomes[
σ̂ + im̂

(
−r̂χ+ Ω̂1

)] [ ∂2
∂r̂2

− m̂2

]
ûr = im̂

∂2Ω̂1

∂r̂2
ûr, (4.30)

where the control parameter χ is

χ =

∣∣Ω′
c

∣∣γrc
R̃eA

. (4.31)
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This parameter depends on the Froude number Fh through the position of the critical
layer, the Reynolds number Re and the non-traditional Rossby number R̃o through
R̃e. Figure 4.14(a) shows the normalized growth rate σ̂r obtained from (4.30) for three
values of χ. The angular velocity correction Ω̂1 has been taken as the linear solution
(4.18) for Fh = 4, Re = 2000 at two different times T = Re−1/3t = 4 (dashed line)
and T = 8 (solid line). Since the angular velocity correction increases with time and
saturates only when T is very large, the growth rates increase significantly when T
varies from T = 4 to T = 8. These times correspond to t = 50 and t = 100 for
Re = 2000. Figure 4.14(a) shows also that the maximum growth rate σ̂rmax increases
as χ increases from χ = 0.06 (black line) to χ = 0.5 (blue line). Such variation of χ

corresponds to R̃o varying from R̃o = 40 to R̃o = 115 for Fh = 4 and Re = 2000. Figure
4.14(b) displays the corresponding unscaled growth rate σr = σ̂rR̃eA/γ, as a function

of the unscaled wavenumber m = m̂R̃e
1/3
ε−2/3rcγ. The curves are now in reverse

order compared to figure 4.14(a) since σr is proportional to R̃eσ̂r. Hence, if σ̂r were

independent of R̃e and T , the maximum growth rate of the two-dimensional instability
would simply scale as R̃e = Reε2. However, since σ̂r decreases via χ as R̃e increases,
the dependence of σr on R̃e is slower than a linear relationship. Furthermore, since the
instability appears earlier as R̃e increases, the time tb2 corresponds to approximately
T = 8 for R̃o = 115 (R̃e = 0.6) and T = 4 for R̃o = 40 (R̃e = 5). Therefore, this effect

also reduces the linear scaling of σr on R̃e. It is also interesting to notice in figure
4.14(b) that the most unstable azimuthal wavenumber ranges from m = 2 to m = 4

depending on χ (i.e. R̃e).
In summary, the unscaled growth rates of the two-dimensional and three-

dimensional instabilities scale at leading order in ε like R̃e = ε2Re and

ε−1/3R̃e
2/3

= εRe2/3, respectively. From these scalings, one would therefore ex-
pect that the two-dimensional instability is dominant at large ε (i.e. small R̃o) and the
three-dimensional instability at small ε for a given Reynolds number in contradiction
with the results of the DNS (section §4.3) and the stability analysis (section §4.4).
However, we will see in the next section that the additional dependencies of the
growth rates on the parameters, discussed above, can account for the observations.

4.6 Comparison between the stability analyses of

the DNS flows and the theoretical solutions in

the critical layer

We now compare the predictions of the local stability analyses to the results of the
stability analysis of the DNS flows performed in section §4.4. For each value of R̃o, the
comparisons are conducted at the two different times tb1 and tb2 indicated in figure 4.10.
In addition, the local three-dimensional stability analysis considers that θ = 0 since
the maximum growth rate is always larger than for θ = π/2 (figure 4.13). We remind
also that this analysis is expected to be valid only for large vertical wavenumbers.

Figure 4.15 compares the growth rate of the DNS flow (black line) for R̃o = 40
at tb1 = 40 (figure 4.15(a)) and tb1 = 50 (figure 4.15(b)) to the growth rate predicted
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Fig. 4.14: (a) Normalized growth rate σ̂r obtained from (4.30) as a function of the
normalized azimuthal wavenumber m̂ and (b) growth rate σr as a function of the
azimuthal wavenumber m. The linear base flow (4.13,4.18) has been taken at T = 4
(dashed line) and T = 8 (solid line) for Re = 2000 and Fh = 4. The different colored
curves correspond to: χ = 0.06 (black line), χ = 0.13 (green line), χ = 0.24 (red line)
and χ = 0.5 (blue line).

by the local two-dimensional (square symbols) and three-dimensional (lines) analyses.
The dashed and solid lines show the prediction of the leading order equation (4.23) and
of the second order equation (4.24), respectively. The green and red colors correspond
to the linear solution (4.13,4.16,4.18) and to the non-linear solution (4.13,4.15) as base
flow, respectively.

The local three-dimensional stability analysis predicts a growth rate peak around
k ≃ 3 − 5 whatever the base flow and the stability equation used, in good agreement
with the stability analysis of the DNS flow at both times. Although there are some
differences between the various predictions depending on which stability equation and
which base flow solution are used, it is difficult to say that one is particularly in better
agreement with the stability analysis of the DNS flow than the others. Away from
the three-dimensional growth rate peak, the local stability analyses depart from the
stability analysis of the DNS flow since the former neglect any azimuthal variations of
the disturbances and of the base flow. However, at k = 0, the local two-dimensional
stability analysis, that does take into account azimuthal disturbances, predicts a growth
rate (square symbols) in good agreement with the growth rate computed at k = 0 for
the DNS flow.

For R̃o = 60 (figure 4.16) and R̃o = 80 (figure 4.17), there are large differences
between the growth rates obtained from the Rayleigh equation (4.23) and the second

order equation (4.24). For both R̃o, the predictions of (4.24) are in much better
agreement with the stability analysis of the DNS flow, especially the maximum growth
rate values. The locations of the growth rate peak are also in good agreement except
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for R̃o = 80 at tb1 = 45 (figure 4.17(a)). We can also notice that there are much fewer

differences between the green and red curves than for R̃o = 40 (figure 4.15) since the

linear and non-linear solutions become closer as R̃e = 4Re/R̃o
2
decreases, i.e. as R̃o

increases for a fixed Reynolds number Re. The local two-dimensional stability analysis
(square symbols) is also in very good agreement with the stability analysis of the DNS
flow at k = 0 and t = tb2. For t = tb1, the agreement is less good probably because the
vorticity anomaly is less concentrated around the critical radius at this early time so
that the local assumption is not well verified.

Finally figure 4.18 displays the comparison for R̃o = 115. Again, we can see that
the local two-dimensional stability analysis agrees well with the stability analysis of the
DNS flow at t = tb2. There is again a large departure between the predictions of (4.23)
and (4.24) but the maximum growth rate obtained from the second order equation
(4.24) is in fair agreement with the black curves. However, the locations of the growth
rate peaks are not well predicted. In appendix B, we have tested the effect of the
assumption ∂/∂θ = 0 in the local three-dimensional stability analysis by considering
perturbations comprising several azimuthal modes, i.e. u =

∑Nm

n=−Nm
une

inθ in (4.21),
where Nm is the maximum azimuthal wavenumber considered. The growth rate peaks
are then no longer located at the same wavenumbers but the maximum growth rate
is approximately the same. In addition, some of the discrepancies might come from
the next order terms in (4.19) which are neglected in (4.21). While in (4.19), the

leading order terms that scale as ε−1/3R̃e
2/3

= Re2/3/R̃o actually decrease as the

non-traditional Rossby number R̃o increases for a given Re, the third-order terms

(in particular dissipation terms) that scale as ε2/3R̃e
−1/3

= 1/Re remain unchanged.
Hence, the third-order terms could become important for large non-traditional Rossby
numbers.

Figure 4.19 summarizes the figures 4.15, 4.16, 4.17 and 4.18 by showing the growth
rate of the two-dimensional instability at k = 0 (dashed lines with square symbols)
and the maximum growth rate of the three-dimensional instability (lines with circle

symbols) as a function of the non-traditional Rossby number R̃o. The latter growth
rate is taken as the maximum growth rate in the wavenumber range k > 4. For
simplicity, only the results for the time t = tb2 and the results of the local stability
analyses of the non-linear flow (4.13,4.15) are plotted. The black curves represent again
the growth rate obtained from the stability analysis of the DNS flows.

The growth rates of the two instabilities clearly decrease at different rates as the
non-traditional Rossby number increases. From the stability analysis of the DNS flow,
the two-dimensional instability is expected to become dominant for R̃o ≳ 100. A
similar trend can also be seen in growth rates given by the local stability analyses,
even if the cross-over between the two-dimensional and three-dimensional instabilities
occurs for a somewhat larger non-traditional Rossby number: R̃o ≳ 120. Figure
4.19 demonstrates also that the growth rate predicted by the pure three-dimensional
Rayleigh equation (4.23) (red dashed line with squares) decays slower than predicted

by (4.24) as R̃o increases and remains always well above the growth rate of the two-
dimensional instability. It is therefore only the second order local stability equation
(4.24) that can explain the transition between the two instabilities as R̃o increases.
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Fig. 4.15: Growth rate σr of the DNS flow (black solid line) and predicted by the
local stability analyses (colored curves) as a function of the vertical wavenumber k for

R̃o = 40 and Re = 2000, Fh = 4, Ro = 23.1 at (a) tb1 = 40 and (b) tb2 = 50. The dashed
and solid lines have been obtained from (4.23) and (4.24), respectively. The square
symbols show the maximum growth rate obtained from the two-dimensional Rayleigh
equation (4.29). Green and red colors correspond to the linear solution (4.13,4.16,4.18)
and the non-linear solution (4.13,4.15), respectively.

Fig. 4.16: Same as figure 4.15 but for R̃o = 60 and Ro = 21.2 at (a) tb1 = 40 and (b)
tb2 = 60.
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Fig. 4.17: Same as figure 4.15 but for R̃o = 80 and Ro = 20.7 at (a) tb1 = 45 and (b)
tb2 = 75.

Fig. 4.18: Same as figure 4.15 but for R̃o = 115 and Ro = 20.3 at (a) tb1 = 50 and (b)
tb2 = 100.
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Fig. 4.19: Growth rates of the two-dimensional instability (lines with square symbols)
and of the three-dimensional instability (lines with circle symbols) at t = tb2 as a

function of R̃o for Re = 2000, Fh = 4 and Ωb = 0.1 (Ro ≈ 20). The different colors
correspond to the stability analysis of the DNS flow (black) and to the local stability
equations (4.23) (red dashed line with circles), (4.24) (red solid line with circles) and
(4.29) (red dashed line with squares) using the non-linear solution (4.13,4.15).

4.7 Parametric study

4.7.1 Effect of the Reynolds number

So far the Reynolds number has been fixed to Re = 2000, we now investigate the
effect of a larger Reynolds number in the range 4000 ≤ Re ≤ 10000 on the critical
non-traditional Rossby number between the three-dimensional and two-dimensional in-
stabilities. However, three-dimensional DNS for such Reynolds numbers would require
very high resolutions. Since the maximum growth rates provided by the local stability
analyses are in reasonable agreement with the stability analysis of the DNS flow (figure
4.19), the present study will be therefore based only on the local analyses.

Figure 4.20 displays the domain in the parameter space (Re, R̃o) where the two-
dimensional instability (open light blue circles) and three-dimensional instability (open
dark blue circles) are dominant. The open yellow circles represent the parameters for
which the two-dimensional instability is stable for any azimuthal wavenumber larger
than unity. The filled circles with the same color represent the observations made
from the DNS for Re = 2000. The Froude number and background rotation rate
are fixed to Fh = 4 and Ωb = 0.1 (i.e. Ro ≈ 20) as before. The grey dashed line
shows the theoretical critical non-traditional Rossby number for the existence of the
two-dimensional instability derived in Toghraei & Billant (2022) (equation (3.71) for
Fh = 4, a = ∞ and c = 0.4).

Figure 4.20 is therefore similar to figure 3.8 from chapter 3 except that the Froude
number was lower Fh = 2 in the latter figure. We see in figure 4.20 that the two-
dimensional instability should be the most dangerous instability in an intermediate
region of R̃o for each Reynolds number investigated. Three-dimensional instability is
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Fig. 4.20: Map of the dominant instability in the parameter space (Re, R̃o) for Fh = 4
and Ωb = 0.1 (Ro ≈ 20). Two-dimensional and three-dimensional instabilities are
represented by light and dark blue circles, respectively. The two-dimensional instability
has not been observed at the yellow circles. Filled and open circles correspond to the
results of the stability analyses of the DNS flow and the local non-linear solution,
respectively. The dashed grey line represents the criterion (3.71) from chapter 3 for
Fh = 4, a = ∞ and c = 0.4.

dominant only for lower R̃o.

It seems however difficult to derive a theoretical criterion for the critical non-
traditional Rossby number between the two-dimensional and three-dimensional insta-
bilities. Indeed, this would require scaling laws for the growth rate of each instability
in order to be able to compare their strength. Since the growth rate of the three-
dimensional instability can be reasonably well predicted only by taking into account
second order effects, it does not appear easy to obtain a simple scaling law for this
instability. However, this might be possible by solving the stability problem (4.21)
asymptotically with τ as a small parameter instead of solving it as a whole as done
in (4.24). This approach will be tested in the future. Similarly, the dependence of

the growth rate of the two-dimensional instability on Re and R̃o is complicated (figure
4.14). Nonetheless, it could be worth trying in the future to obtain an analytic scaling
law from (4.30).
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4.7.2 Effect of the traditional Rossby number

The effect of the traditional Rossby numberRo has been investigated for the parameters
Re = 2000, Fh = 4 and for a constant non-traditional Rossby number R̃o = 40 by
means of DNS. When Ro is decreased from Ro = 23.1 (figures 4.2 and 4.3) to Ro = 5
(not shown), the three-dimensional instability continues to be observed but becomes
weaker. However, when Ro is further decreased down to Ro = 2.5 (figures 4.21 and
4.22), the three-dimensional instability is no longer observed. The two-dimensional
instability then develops at a later time (figures 4.21(c, f, i) and 4.22(c, f)).

The local stability analysis of the non-linear solution (4.13,4.15) has been inves-
tigated for the same parameters. Figure 4.23 shows the growth rates of the three-
dimensional instability (red circles) and of the two-dimensional instability (red squares)

as a function of the traditional Rossby number for R̃o = 40, Re = 2000 and Fh = 4.
When the traditional Rossby number is reduced from Ro = 23.1 to Ro = 2.5, the
growth rate of the three-dimensional instability drops and becomes almost equal to
the growth rate of the two-dimensional instability that is independent of Ro. This
can be explained thanks to the local three-dimensional stability analysis taking into
account second order terms (4.24). The importance of these terms is controlled by the
parameters ϕ̂ and N̂ . From (4.24), we can see that ϕ̂ depends on the inverse of the tra-
ditional Rossby number. Hence, ϕ̂ increases from ϕ̂ = 0.002 for Ro = 23.1 to ϕ̂ = 0.046
for Ro = 2.5. As shown in figure 4.13, the maximum growth rate decreases strongly
when ϕ̂ increases only slightly. As a result, decreasing the traditional Rossby number
Ro strongly damps the three-dimensional instability and favors the two-dimensional
instability.

4.8 Conclusion

We have studied the three-dimensional evolution of a stratified vortex under the
complete Coriolis force by means of DNS. When the initial conditions are purely
two-dimensional, Toghraei & Billant (2022) have reported that the dynamics re-
mains strictly two-dimensional but with three-velocity components. Due to the
non-traditional Coriolis force, a vertical velocity field and vertical vorticity anomaly
are generated in the flow at the critical radius rc where the angular velocity of the
vortex is equal to the inverse of the Froude number (the Brunt–Väisälä frequency
in dimensional form) when it is larger than unity. The strengths of the vertical

velocity field and vertical vorticity anomaly are proportional to Re1/3/R̃o and Re/R̃o
2
,

respectively. They are concentrated around the critical radius rc over the viscous
length scale r̃ = Re1/3(r − rc). Then, a two-dimensional shear instability develops

for a sufficiently large non-traditional Rossby number R̃o due to the inflection point
created by the vorticity anomaly. This evolution resembles the one reported by Wang
& Balmforth (2020, 2021) for a forced baroclinic critical layer in a horizontal shear
flow.

To test the robustness of this dynamics with respect to small three-dimensional
perturbations, we have performed DNS of the vortex disturbed initially by a small
three-dimensional white noise for four different non-traditional Rossby numbers ranging
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Fig. 4.21: Same as figure 4.2 but for Ro = 2.5 and R̃o = 40: R̃o = 115 (Ro = 20.3)
(a, d, g) t = 40, (b, e, h) t = 56, (c, f, i) t = 85.
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Fig. 4.22: Same as figure 4.3 but for Ro = 2.5 and R̃o = 40: (a, d) t = 40, (b, e) t = 56,
(c, f) t = 85.

Fig. 4.23: Growth rates of the two-dimensional instability (red dashed line with square
symbols) and of the three-dimensional instability (red solid line with circle symbols)
obtained from local stability analyses of the non-linear solution (4.13,4.15) as a function

of Ro for R̃o = 23.1, Re = 2000 and Fh = 4 at tb2 = 50.
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from R̃o = 40 to R̃o = 115 while keeping the other parameters fixed to Re = 2000, Fh =
4 and Ro ≈ 20. In the presence of such perturbations in the initial conditions, the initial
evolution of the vortex remains identical to the one described in Toghraei & Billant
(2022). For all the investigated parameters, the vortices eventually become unstable.

For R̃o ≲ 80, a three-dimensional instability with a dominant vertical wavenumber
k ≈ 4 develops. It resembles the instability reported by Boulanger et al. (2007, 2008) on

a stratified tilted vortex. For R̃o = 115, the instability is two-dimensional as observed
by Toghraei & Billant (2022). Hence, the dominant instability can be two-dimensional
or three-dimensional depending on the parameters.

In order to understand the competition between the two instabilities, we have per-
formed a linear stability analysis of the DNS flows by freezing them at a given time
tb, before the onset of the instabilities. The results are fully consistent with the DNS.
They show that the growth peak near the vertical wavenumber k = 4 gradually decays
as R̃o increases and becomes lower than the growth rate in the two-dimensional limit
(k = 0).

To gain a deeper understanding of the instabilities, we have next conducted stabil-
ity analyses of the local linear and non-linear solutions in the vicinity of the critical
radius provided by Toghraei & Billant (2022). We have first shown that these local
solutions are in good agreement with the flows in the DNS. The local three-dimensional
stability analysis assumes that the vertical variations are of the same order as the radial
variations and neglects any azimuthal variations following Boulanger et al. (2008). At
leading order, the problem is governed by a well-known Rayleigh equation around the
vertical velocity field. The growth rate then scales as Re2/3/R̃o. We have also provided
another stability equation taking into account the second order terms. These second
order terms become important for large non-traditional Rossby numbers for a given
Reynolds number. The results show that the maximum growth rate drops significantly
in comparison to the Rayleigh equation as the non-traditional Rossby increases. Re-
sults have also shown that the vertical velocity profile at θ = 0 is more unstable than
at θ = π/2 in agreement with Boulanger et al. (2008). Such local three-dimensional
stability analysis is not valid at small vertical wavenumbers, especially at k = 0. There-
fore, we have also conducted a local two-dimensional stability analysis which fully takes
into account the azimuthal variations. A Rayleigh equation around the angular veloc-
ity anomaly has been thereby derived. The dependence of the growth rate on Re and

R̃o has been found to be of the form σr = Re/R̃o
2
F(Re/R̃o

2
) where F(Re/R̃o

2
) tends

to a constant for Re/R̃o
2
→ ∞. However, for the parameters investigated in the DNS,

the dependence on Re and R̃o through F is not negligible.

In a second step, we have compared the results of these local stability analyses to the
stability analysis of the DNS flows. Both local three-dimensional and two-dimensional
stability analyses are in good agreement with the maximum growth rates observed in
the stability analysis of the DNS flows. The local three-dimensional Rayleigh equation
predicts well the growth rates of the three-dimensional instability for R̃o ≲ 60, but its

accuracy weakens when R̃o is larger. In contrast, the stability equation incorporating
second order terms predicts reasonably well the maximum growth rate of the three-
dimensional instability. To improve these predictions for large R̃o, it would be necessary
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to abandon the assumption of zero azimuthal variations and/or to consider higher
order terms. The local two-dimensional Rayleigh equation also correctly predicts the
growth rates at k = 0 of the DNS flows. Thereby, the stability analyses of the local
theoretical solutions in the critical layer predict that the two-dimensional instability
should dominate the three-dimensional instability for R̃o ≳ 120 in good agreement
with the DNS.

Thanks to the reliability of the local stability analyses for predicting the maximum
growth rates of each instability, we have determined the dominant instability in the
parameter space (Re, R̃o) for larger values of Re. The two-dimensional instability is

dominant in an intermediate range of R̃o for each Reynolds number investigated. The
three-dimensional instability is dominant only for lower R̃o. We have also investigated
the effect of the traditional Rossby number Ro by means of DNS. As Ro decreases while
keeping the other parameters fixed, the strength of the three-dimensional instability
weakens so that the two-dimensional instability becomes dominant for the lowest value
of Ro investigated. The local stability analyses are in full agreement with this behav-
ior. As the traditional Rossby number Ro decreases, the second order terms increase
and damp the three-dimensional instability whereas the two-dimensional instability is
independent of Ro.

In summary, when small three-dimensional perturbations are introduced initially,
the evolution of a vortex under the complete Coriolis force becomes three-dimensional
for certain parameters while for others, it remains purely two-dimensional as in
Toghraei & Billant (2022). The three-dimensional and two-dimensional instabilities
are due to different mechanisms and different components of the flow generated in the
critical layer. The two-dimensional instability comes from the shear of the angular
velocity profile whereas the three-dimensional instability comes from the shear of the
vertical velocity field. The latter is strong and develops more quickly than the former.
However, the three-dimensional shear instability is highly sensitive to the damping
effects due to the traditional Coriolis force (i.e. ϕ̂) and to the stable stratification and
the buoyancy field (i.e. N̂) that oppose against three-dimensional variations.

A theoretical criterion for the occurrence of the two-dimensional instability has
been provided by Toghraei & Billant (2022). In the future, it would be interesting
to obtain also an analytical criterion for the threshold between the three-dimensional
and two-dimensional instabilities. It would be also interesting to investigate whether a
similar competition of instabilities exists if the vortex axis is aligned along the rotation
vector Ωb instead of the vertical.

Appendix

A Additional figures

The figures 4.24,4.25 and 4.26,4.27 show the evolution of the vortex for the intermediate
values of the non-traditional Rossby number R̃o = 60 and R̃o = 80. The figures 4.28
and 4.29 compares also the DNS flows to the local theoretical solutions for these two
values of R̃o.
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Fig. 4.24: Same as figure 4.2 but for R̃o = 60 and Ro = 21.2: (a, d, g) t = 50, (b, e, h)
t = 75, (c, f, i) t = 80.
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Fig. 4.25: Same as figure 4.3 but for R̃o = 60 and Ro = 21.2: (a, d) t = 50, (b, e)
t = 75, (c, f) t = 80.
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Fig. 4.26: Same as figure 4.2 but for R̃o = 80 and Ro = 20.7: (a, d, g) t = 50, (b, e, h)
t = 98, (c, f, i) t = 102.
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Fig. 4.27: Same as figure 4.3 but for R̃o = 80 and Ro = 20.7: (a, d) t = 50, (b, e)
t = 98, (c, f) t = 102.
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Fig. 4.28: Comparison between the vertical velocity at θ = 0 (left column) and θ =
π/2 (middle column) in the DNS (black solid line), predicted by the viscous solution
(4.13,4.18-4.16) (green dashed line) and by the non-linear equations (4.13,4.15) (red

dashed line) at tb1 = 40 (top row) and tb2 = 60 (bottom row) for R̃o = 60 and
Re = 2000, Fh = 4, Ro = 21.2.
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Fig. 4.29: Comparison between the vertical velocity at θ = 0 (left column) and θ =
π/2 (middle column) in the DNS (black solid line), predicted by the viscous solution
(4.13,4.18-4.16) (green dashed line) and by the non-linear equations (4.13,4.15) (red

dashed line) at tb1 = 45 (top row) and tb2 = 75 (bottom row) for R̃o = 80 and
Re = 2000, Fh = 4, Ro = 20.7.
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Fig. 4.30: Growth rate as a function of k for R̃o = 115 at tb2 = 100 using the linear
solution (4.13,4.16,4.18) for Re = 2000, Fh = 4 and Ro = 20.3. The different curves
correspond to: (4.24) (green), (4.21) with Nm = 3 (red), Nm = 5 (blue), Nm = 9
(orange) and Nm = 15 (black).

B Test of the assumption ∂/∂θ = 0 in the three-

dimensional local stability analysis

In order to test the effect of the assumption ∂/∂θ = 0 used to derive (4.24) from
(4.21) and to solve simple the stability problem, we have also solved (4.21) without
this hypothesis by writing the perturbations in the form

[ur, uθ, uz, b, p](r, θ, z, t) =

(
Nm∑

n=−Nm

[urn, uθn, uzn, bn, pn](r)e
inθ

)
eσt+ik̃z + c.c., (4.32)

where Nm is the maximum azimuthal wavenumber. Then, (4.21) has been solved by
using a pseudo-spectral Chebyshev collocation method along the radial direction as
done for (4.24). The eigenvalue problem is much larger than for (4.24) but can be still
computed easily using the function eigs instead of eig from Matlab.

Figure 4.30 shows the growth rate obtained for various values of Nm for R̃o = 115
at tb2 = 100 using the linear solution (4.13,4.16,4.18) for Re = 2000, Fh = 4 and
Ro = 20.3. The green curve corresponds to the growth rate obtained from (4.24),
i.e. by assuming ∂/∂θ = 0, and which is already plotted in figure 4.18(b). When Nm

is increased, we can see that the first peak disappears but the level of the remaining
peak is close to one predicted by (4.24). Furthermore, the curves for Nm = 9 (orange
line) and Nm = 15 (black line) are almost superposed indicating a convergence as the
number of azimuthal modes increase. Hence, the assumption ∂/∂θ = 0 does not seem
to be too crude.
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Chapter 5

Conclusions and perspectives

We have studied the evolution of a Lamb-Oseen vortex in a stratified rotating fluid
under the complete Coriolis force. Our study employed DNS as well as asymptotic
analyses. According to the non-dimensional form of the governing equations, the dy-
namics of the vortex is governed by five parameters: the Reynolds number, the Froude
number, and traditional and non-traditional Rossby numbers that measure the vertical
and horizontal background rotation, respectively, and the Schmidt number that has
been always set to unity.

For pure two-dimensional initial conditions, DNS shows that the vortex remains
completely two-dimensional throughout its evolution even if there are three velocity
components. It may become three-dimensional, however, when small three-dimensional
perturbations are added initially. Thus, we divided our study into two parts: the two-
dimensional evolution (chapter 3) and the full three-dimensional evolution (chapter
4).

In the two-dimensional case, DNS for Froude numbers larger than unity have shown
that a vertical velocity field and a vertical vorticity anomaly are generated at a certain
radius due to the non-traditional Coriolis force. Gradually, the vertical velocity field
and the vertical vorticity anomaly concentrate and increase around this radius. At
some point, a two-dimensional instability occurs in the flow for Reynolds numbers
sufficiently large and non-traditional Rossby numbers R̃o sufficiently low.

To unravel this dynamics, we have carried out asymptotic analyses for large non-
traditional Rossby numbers R̃o. In the absence of viscous effects and time dependence,
the theoretical analysis shows that the vertical velocity is singular when the Froude
number is larger than unity at a radius where the angular velocity is equal to the inverse
of the Froude number (i.e. the Brunt–Väisälä frequency in dimensional form). This
singularity is first regularized by the time dependence and then by a combination of
viscous effects and time dependence in the saturation phase. Hence, two linear solutions
for the vertical velocity and the vertical vorticity anomaly have been provided for each
stage of this evolution. These linear solutions are in great agreement with the DNS in
both stages. A non-linear set of equations has been also provided. It is in even better
agreement with the DNS, indicating the importance of nonlinear effects.

Next, we have shown that an inflection point appears in the vertical vorticity
field and that it is responsible for the onset of the two-dimensional instability. Us-

109
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ing the asymptotic solutions of the vertical vorticity, an instability condition in terms
of (Re, R̃o) has been derived from the Rayleigh criterion for the shear instability. In

the parameter space (Re, R̃o), the criterion predicts perfectly the stable and unstable
domains and shows that even for small non-traditional Rossby numbers, the vortex is
unstable for large Reynolds numbers.

We have then examined the evolution of the vortex when small three-dimensional
perturbations are added initially. Although the initial evolution of the vortex remains
similar, the instability can differ: it is three-dimensional below a critical non-traditional
Rossby number. This three-dimensional instability appears similar to the shear insta-
bility reported by Boulanger et al. (2007, 2008) on a stratified tilted vortex. Above
the critical non-traditional Rossby number, the instability remains two-dimensional as
observed before. Hence, the dominant instability is determined by the parameters.

To understand the competition between the two-dimensional and three-dimensional
instabilities, we have performed a linear stability analysis of the DNS flows. The
results confirm that the three-dimensional instability becomes dominant over the two-
dimensional instability when R̃o decreases. We have also conducted local stability
analyses of both linear and non-linear solutions provided in chapter 3 in order to gain a
deeper understanding of the instabilities. The local three-dimensional stability analysis
shows that the growth rate of the three-dimensional instability can be adequately
predicted by a Rayleigh equation taking into account only the vertical velocity field
as base flow. However, its accuracy weakens when R̃o increases for a given Reynolds
number. The equation taking into account second order effects then provides better
accuracy. In addition, the local two-dimensional stability analysis gives a Rayleigh
equation with the angular velocity field as base flow that is reliable for predicting the
growth rate of the two-dimensional instability.

The local stability analyses demonstrate thereby that the two-dimensional insta-
bility is a shear instability due to an inflection point in the vertical vorticity profile,
while the three-dimensional instability is a shear instability of the vertical velocity.
In addition, we have investigated the domains of existence of the instabilities in the
parameter space (Re, R̃o) by means of the local stability analyses. Results show that
the two-dimensional instability is the most dangerous instability in an intermediate
range of R̃o while the three-dimensional instability is dominant for lower R̃o.

Finally, in order to discuss whether or not the process described in this thesis can
occur on atmospheric and oceanic vortices, we have reproduced in figure 5.1 their
domains of existence in the parameter space (Fh, R̃o) from table 1.1 in chapter 1. Only
some of these vortices are mapped in figure 5.1, while others are not shown either
because they are outside our region of interest or cover a small area. Two dashed
lines are also shown in figure 5.1 separating the stable region (above the line) and
the unstable region (below the line). They have been obtained from the instability
criterion (3.71) from chapter 3 for the Reynolds numbers Re = 105 (black dashed line)
and Re = 107 (grey dashed line) for a = ∞ and c = 0.4. The Reynolds numbers are
chosen merely to show the trend of the criterion when Re increases. The vertical solid
line represents also the condition Fh > 1 required to have a critical layer. Only the
region Fh < 10 is displayed since the instabilities are expected to be strong when the
Froude number is not too large so that the critical radius is close to the vortex core.
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Fig. 5.1: Map of some geophysical vortices in the parameter space (Fh, R̃o). Two
dashed lines are showing the criterion (3.71) from chapter 3 for Re = 105 (black
dashed line) and Re = 107 (grey dashed line) for a = ∞ and c = 0.4. Vortices below
the dashed lines are unstable. The black solid line shows the critical Froude number
Fh = 1.

It is striking that no geophysical vortices are observed in the range of Froude num-
bers 1 < Fh < 6 where the critical layer and associated instabilities are expected to
be strong. In fact, the instabilities themselves may explain why no vortices are found
in this range of Froude number. Furthermore, the instabilities grow quite quickly
and affect the vortices typically after 50-100 non-dimensional time units, as seen from
the DNS. When converted in real-time for specific vortices, such duration is relatively
short. For example, for tornadoes with a turnover time scale Lh/U of the order of a few
minutes, this corresponds to a time of the order of one hour. Hence, the instabilities
should appear quickly after the vortex formation leading to its rapid decay. This might
explain why no vortices are observed in the Froude number range 1 < Fh < 6. We
can conclude from this that considering the full Coriolis force might have a significant
impact on the formation of vortices and force them to exist in the stable region.

As far as perspectives are concerned, it would be interesting to study a stratified
vortex under the complete Coriolis force experimentally. Making a horizontal back-
ground rotation i.e. misaligning the buoyancy force and the rotation vector, is the
most challenging part. This can be done by rotating a turn table very fast since the
apparent gravity is then the sum of the gravity and the centrifugal force. There is
therefore an angle with the vertical rotation vector. This method has been used for
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example by Sheremet (2004) to study convection.
It could be also interesting to study numerically different vortex configurations un-

der the complete Coriolis force. For example, the case of a vortex whose axis is tilted
between the vertical and total background rotation vector could be investigated. A
study of vortices with lenticular shapes would be also of interest. It could be also
worth investigating the effects of the full Coriolis force on waves propagating within
the vortex. The horizontal component of the background rotation could trigger wave
resonances, causing instabilities similar to the elliptical instability, or generate sec-
ondary flows as a result of a new critical layer similar to the vortex studied by Caillol
(2012) under the traditional approximation.
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Résumé : Les études des effets de la rota-
tion planétaire sur les mouvements des fluides
géophysiques sont généralement réalisées dans
le cadre de l’approximation traditionnelle. Celle-ci
consiste à ne prendre en compte que la composante
verticale du vecteur de rotation planétaire à une la-
titude donnée, tandis que la composante horizon-
tale est négligée. Cette thèse étudie la dynamique
d’un tourbillon lorsque l’on tient compte également
de la composante horizontale (approximation non tra-
ditionnelle). Dans ce but, nous effectuons des si-
mulations numériques directes de l’évolution d’un
tourbillon vertical de Lamb-Oseen en présence de
la force de Coriolis complète dans un fluide stra-
tifié de manière stable. Les résultats de ces simu-
lations sont complétés et interprétés par des ana-
lyses asymptotiques lorsque la composante horizon-
tale de la rotation planétaire est petite et le nombre
de Reynolds grand. Il est montré que la force de
Coriolis due à la composante horizontale de la rota-
tion planétaire génère une couche critique au rayon
où la vitesse angulaire du tourbillon est égale à
la fréquence Brunt–Väisälä lorsque le nombre de

Froude est supérieur à l’unité. De ce fait, un champ
de vitesse verticale intense et une anomalie de vor-
ticité verticale sont créés au voisinage de la couche
critique. Ces écoulements peuvent alors conduire
à deux types d’instabilité : une instabilité bidimen-
sionnelle déclenchée par le cisaillement de l’ano-
malie de vorticité verticale et une instabilité tridi-
mensionnelle due au cisaillement du champ de vi-
tesse verticale. Les domaines d’existence de ces
deux instabilités sont cartographiés dans l’espace
des paramètres. Elles conduisent toutes deux à une
décroissance rapide du tourbillon jusqu’à la dispari-
tion de la couche critique lorsque la vitesse angu-
laire est partout inférieure à la fréquence de flottabi-
lité. Ce processus peut se produire même si la com-
posante horizontale de la rotation planétaire est très
faible lorsque le nombre de Reynolds est grand. Par
conséquent, la composante horizontale de la rotation
planétaire pourrait avoir un impact beaucoup plus im-
portant sur les tourbillons géophysiques que ce que
l’on pourrait penser en considérant seulement son
ordre de grandeur.

Title : Dynamics of a vortex in stratified-rotating fluids under the complete Coriolis force.
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Abstract : The effects of the planetary rotation on
geophysical fluid motions are usually studied using
the traditional approximation. This consists in taking
into account only the vertical component of the plane-
tary rotation vector at a given latitude, while the ho-
rizontal component is neglected. This thesis studies
the dynamics of a vortex when the horizontal com-
ponent is also taken into account (non-traditional ap-
proximation). To this end, we perform direct numerical
simulations of the evolution of a vertical Lamb-Oseen
vortex in the presence of the complete Coriolis force
in a stably stratified fluid. The results of these simu-
lations are completed and interpreted by asymptotic
analyses when the horizontal component of the pla-
netary rotation is small and the Reynolds number is
large. It is shown that the Coriolis force due to the hori-
zontal component of the planetary rotation generates
a critical layer at the radius where the angular velocity
of the vortex is equal to the Brunt–Väisälä frequency

when the Froude number is greater than unity. As a
result, an intense vertical velocity field and a vertical
vorticity anomaly are created in the vicinity of the cri-
tical layer. These flows can then lead to two types of
instability : a two-dimensional instability triggered by
the shear of the vertical vorticity anomaly and a three-
dimensional instability due to the shear of the vertical
velocity field. The domains of existence of these two
instabilities are mapped in the parameter space. They
both lead to a rapid decay of the vortex until the critical
layer disappears when the angular velocity is everyw-
here below the buoyancy frequency. This process can
occur even if the horizontal component of the plane-
tary rotation is very small when the Reynolds number
is large. Therefore, the horizontal component of the
planetary rotation could have a much larger impact on
geophysical vortices than one might think by conside-
ring only its order of magnitude.
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