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Pfiou. . . Voilà un grand chapitre de ma vie écrit, et je n’y serai jamais parvenue sans l’aide
d’un bon nombre de personnes que je souhaite remercier dès à présent.
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de mois de thèse ensemble, au plaisir de lire tes futurs papiers de grand chercheur Belge.
Charlie et Antoine D., deux ”grands” sportifs chacun à leurs manières qui ont fait vivre le
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0.1. Flow-induced deformation of flexible structures

0.1 Flow-induced deformation of flexible structures

A flexible system is able to bend without breaking when external forces are applied. This
type of deformation occurs under any type of loading, including from a surrounding fluid.
Flexible components have however long been overlooked by industry in favor of rigid ones,
especially in sectors such as aeronautics, turbines, and civil engineering. In such fields,
flexible systems may not seem suitable as they are deformable, or prone to instabilities and
vibrations caused by flows. Nevertheless, compliance is well established in the plant and
animal world.

0.1.1 Welcome to the plant life

Flexibility plays a major role in the adaptation of species to their environment. For example,
a tree must be able to survive in harsh external conditions such as strong winds, storms,
and drought. A rigid or fixed structure would make it difficult for the plant to survive.

U

U

a)

b)

UU

Figure 1: a) A tree leaf bends in the wind and adapts its shape to the flow velocity [1].b) Several
examples of leaves exposed to the wind at 20 m/s from [2]

To withstand these extreme conditions, trees have developed a passive strategy that takes
advantage of the flexibility of their leaves. When exposed to winds, the leaves bend and
adapt their shape to the surrounding fluid flow. These deformations must be somewhat
reversible so that in the absence of wind, the leaves return to a flat surface to capture
incident light rays. To understand this shape change, S. Vogel initiated a set of experimental
measurements of deformations induced by a flow around a single leaf or a cluster of leaves
attached to a branch (see Fig1b) [3, 4, 2]. More than shape-shifting, the study also focused
on the drag force Fd, which is defined as the fluid force component directed along the
incoming flow, and its evolution as a function of wind velocity U . The study compared
these measurements to those of a rigid system, which experiences a quadratic law Fd „ U2,
and found that the deformation of the plant is accompanied by a process of drag reduction.
This phenomenon is captured through a scalar V, called the Vogel exponent, which expresses
the drag evolution with a weaker power law: Fd „ U2`V . More details on this point will
be provided in the next section. Numerous studies have followed, classifying plant species
according to their flexibility and drag reduction capabilities [5, 6, 7, 1]. Some of them, such
as the tulip tree or the red marble leaf (see the first picture in Fig1), are able to roll up into
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a cone shape when in flow, and exhibit a streamlined shape that enhances its drag reduction
process [4]. The challenge for the plant is therefore to have foliage that is sufficiently rigid
to ensure a large surface area exposed to the sun, while also being highly flexible to adapt
passively to changing weather conditions. A quick discussion of another bio-strategy is
presented in the interlude no1.

All these phenomena are collectively referred to as reconfiguration. It is the process by which
flexible structures change their shape and adapt to external fluid loading. This strategy is
particularly interesting to exploit because it is passive and governed by structural properties.
Drag is also a force component that we generally seek to minimize. For rigid systems, one of
the few ways to achieve this is to actively change the body shape, which is not a sustainable
response to fluctuating environments.

Interlude no1 : Le Chêne et le roseau - some doubts about the moral of
the story

In his fable, Jean de La Fontaine illustrates his morals through the dialogue between
a small reed and a large, arrogant oak. When the wind rises, the reed ”bends but
does not break,” while the rigid and pretentious tree is uprooted, demonstrating the
importance of humility and avoiding pretense (see Fig a below). However, La Fontaine
did not know that trees can also resist violent storms, not only through the flexibility
of their foliage, as discussed earlier but also through a process called anemomorphosis.
In areas with high exposure to wind gusts, trees grow in an orientation that aligns
with the prevailing wind direction. As illustrated in figure b), the shape of the trunk
and branch network aligns with the surrounding fluid, reducing the overall forces
generated by the fluid and thus the bending moment on the trunk. By orienting their
growth, trees provide an additional response to chronic weathering [8].
Note that other strategies are possible, such as stronger rooting or more robust trunks,
but in any case, the oak has the tools to compete with the reed, contrary to what La
Fontaine thought.

a) b)

0.1.2 Shape-shifting for functionality

Aside from drag reduction effects, flow-induced deformation has inspired other fields of
research with applied perspectives. For example, in micro-channels, flexible valves can
passively deform in response to the moving fluid and regulate the flow throughout the
circuit. In this vein, Gomez et al. [9] placed a buckled blade in an axial flow, and when a
critical load was reached, the arch snapped to its other state which increased the channel
section (see Fig2). Alternatively, Brandenbourger et al. [10] studied the coupling between
elasticity, geometry, and fluid in a flexible valve network inspired by the lymphatic system,
seeking to understand the role of each parameter in regulating biological flows.

We can also mention studies on flapping flight where flexibility plays a predominant role for
insects. Passive deformation of the wings increases the effective amplitude of flapping and
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0.2. An hydro-elastic fight

a) b)

c)

Figure 2: a) A thin bent plate placed in an axial flow snaps to its other stable state when the fluid
loading increases, resulting in a wider micro-channel section locally [9]. b) Experimental reduced
model that mimics the lymphatic flexible valves [10]. c) Robotic flapping insect with flexible wings,
which improve its flight performances [11].

reorients the fluid forces in the direction of propulsion, thus improving propulsive perfor-
mances [11]. Finally, the flexibility of slender structures such as ropes/cables in flows can
lead to vibrating motions induced by vortex detachment [12]. One application is to extract
energy from such vibrations and manipulate the elastic properties to enhance efficiency.

These examples demonstrate the advantages of flexibility for systems operating in fluid envi-
ronments, where flow-induced deformation can be utilized as a self-protection strategy or to
perform a specific function. However, for the structure to fulfill its function, it must deform
in the appropriate way. Therefore, it is crucial to understand the fluid-elastic mechanisms
behind this deformation and identify ways to control it.

0.2 An hydro-elastic fight

The systems presented above have complex shapes, with localized stiffnesses along the veins
of leaves or insect wings. To better understand the interaction of such deformable surfaces
with a flow, a series of investigations have been conducted on model systems with simpler
and controlled geometry and stiffness.

0.2.1 An overview of the boxing ring

Building on Vogel’s findings, Alben et al. [13, 14] first investigated the case of a flexible
filament placed in a soap film flow and were able to describe their experiments using a two-
dimensional fluid-elastic model. They established a link between shapes and drag evolution,
as well as a scaling of drag with flow velocity for this purely two-dimensional configuration.
Schouveiler et al. [15] and Gosselin et al. [16] then examined the case of a thin disk cut
along one radius and or several radii, respectively. Figure 3a and b show the deformation
that becomes more pronounced with increasing flow speed. By changing the dimensions and
stiffness of the systems, it was shown that the flow-induced deformation (and the resulting
drag reduction) is the result of a balance between structural stiffness and fluid forces, as
further discussed in the following section.

Comparing these two disk-like systems illustrates that another factor must be considered:
the geometry. Indeed, the ribbons forming the disk with multiple cuts bend like cantilevered
beams (Fig3a), while the disk cut along only one radius rolls into a cone (Fig3b). The
morphologies reached in the flow are thus quite different depending on the initial geometry
considered. These differences are also reflected in the respective drag laws of the two systems,
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a)

b)

c)

Figure 3: Flow-induced deformation of, a) a disk cut along several radii [16], b) a disk cut along a
single radius [15], c) an uncut disk [17].

associated to different Vogel exponents (see interlude no3). A last striking example of the
importance of geometrical properties is given by a disk (again!) without any cuts (see Fig3c).
It deforms into draped shapes that have more and more lobes as the flow speed increases.
The sudden transition from one shape to another is related to a change in the configuration
that minimizes the energy of the system (including both the fluid and elastic contribution)
[17].

These three examples demonstrate the diversity of shapes and drag laws that can be achieved
through simple geometrical changes. Let us now delve a little deeper into the elasto-fluid
competition mentioned above.

Interlude no2 : Thin sheets prefer bending

Slender structures are very deformable and prone to instabilites (such as buckling),
which generally result from bending deformation. But why does it bend instead of a
stretch? Why is it difficult to extend a sheet of paper?
To understand this, we consider the energies associated to the two modes of defor-
mation of a sheet (see figure below): the energy of stretching Es, and the energy of
bending Eb which scale as [18]:

Es „ EWtε2 Eb „ EWt3γ2

where E is the Young’s modulus of the sheet (typically 1 ´ 4GPa for paper), W its
width, t its thickness, ε the in plane elongation and γ the curvature. The ratio of the
two energies scales as: Eb{Es „ t2pγ{εq2. For a slender sheet with t ! 1, this ratio is
small and it is therefore far easier to bend it than to stretch it.

L

EW

t

Stretching Bending

γε

0.2.2 The first fighter: elasticity of the slender body

We consider slender structures, which are defined as having one of its dimensions being
negligible compared to the others. This is the case with the tree leaves mentioned earlier,
which have a smaller thickness compared to their width or length, regardless of their shape.
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0.2. An hydro-elastic fight

In most cases discussed here, it will also be the thickness that is the smallest dimension.
It greatly affects the mechanical response, notably giving significant flexibility compared to
bulkier materials. Slender structures like paper sheets exhibit a preferred mode of defor-
mation. Due to its small thickness, it is much easier to bend a sheet than to lengthen it.
As discussed in the interlude no2, bending has a lower energetic cost than stretching, which
explains why all previous examples bend when subjected to a flow. The forces generated by
the fluid are then counteracted by the bending moment of the slender system considered.

This bending moment can be expressed as a linear function of the imposed curvature:
T “ EIγ, where EI is the bending stiffness. The latter takes into account both the geometry
of the object with the quadratic moment I “ Wt3{12 (with t the thickness and W the
width), and the nature of the material through the Young’s modulus E. Note that this
linear dependence is based on the assumption of low deformation [19] and must be corrected
if shear forces are present [20].

0.2.3 The opponent: fluid loading

The flow behavior of the surrounding fluid can be described by the Reynolds number Re “

UR{ν that compares inertia to viscous forces, with U the flow velocity, R a characteristic
linear dimension, and ν the kinematic viscosity. In the experiments discussed above (and in
our experiments), Re can be as large as 105, indicating that we are in an inertial regime and
that viscosity can be neglected (except in the turbulent wake formed downstream). The flow
then exerts normal dynamic pressure forces on the object, and the net force can be broken
down into a drag component in the direction of the flow and a lift component perpendicular
to it. For a solid object with a fixed shape, the drag writes as Fd “ 1{2CdSρU

2, with S
the reference area (that is often the projected frontal area) and Cd a dimensionless drag
coefficient that depends on the shape of the object and quantifies its resistance in a fluid
flow. The curve with a solid line in Fig4d, which corresponds to the drag force on a rigid
plate, illustrates such quadratic U2 evolution.

a) b)
*

*S S*

F~U2

F~U2+V

c)

d)

Figure 4: a-b) Schematic illustrating the drag reduction mechanisms through reconfiguration,
adapted from [21] and showing a tree leaf in a flow with a) low and b) high velocity. Drag is
impacted by the reduction of the frontal area S˚ ă S, shape streamlining C˚

d ă Cd and a change in
the effective velocity U˚ for confined configurations. c) Deformation of a flexible rectangular plate
in a flow of increasing speed U . d) Evolution of the drag force with U for such flexible plate (hollow
markers), compared to the drag on a rigid plate (black line) [16].

The quadratic relationship between drag and velocity is well-verified for rigid, bluff bodies.
However, if the system is flexible, things become more complex. As discussed in the context
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of plants, the shape-shifting caused by fluid loading can reduce the relative frontal area S
relative to the flow, and the slender body can align along the flow direction with a more
streamlined shape with lower Cd. Additionally, if the flexible system is porous or in a
confined flow, shape-dependent blockage may also change the effective flow speed around
the object. These drag reduction mechanisms are illustrated in Fig4a-b for a leaf, and in
Fig4c for a simpler flexible plate [16]. As the flow velocity increases, the plate bends, which
drastically reduces its frontal area and leads to a more streamlined shape. The impact
on drag is shown in Fig4d. At low speeds, the flexible specimen (hollow squares) exhibits
a similar drag as the rigid plate (solid circles), but as the fluid load increases, the shape
reconfiguration significantly reduces the drag compared to the rigid case. The drag no longer
follows a quadratic behavior, but a power law with a lower exponent characterized by the
Vogel coefficient V « ´2{3. Note that V can be determined through dimensional analysis
in the asymptotic regime of large deformation, as presented in interlude no3. Importantly,
this power law is a function of shape: a cone that rolls up or a filament does not reduce
drag in the same way, and different Vogel exponents are observed.

Figure 5: Reconfiguration number R for three different slender flexible systems:: rectangular plates
of varying size and stiffness, flexible filament (both from [21]); short fibers tested in soap film flow
by Alben et al. [13]. All are replotted as a function of Cauchy number.

0.2.4 The referee: the Cauchy number

To arbitrate the competition between these two fighters, we typically introduce a number
that balances the typical fluid loading on the structure and the elastic restoring forces. This
is the role of the dimensionless Cauchy number, Cy. In the case of the thin strip discussed
above, it is defined as the ratio of the dynamic pressure force and the bending rigidity of
the plate:

Cy “
fluid loading

elastic restoring force
“

ρU2WL2

EI
(1)

To illustrate the significance of this number in fluid-elastic processes, drag measurements for
deformable objects (plates, filaments and fibers) with varying stiffness can be replotted in a
dimensionless form as a function of Cy (instead of U). In addition to the Cauchy number,
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0.2. An hydro-elastic fight

Gosselin et al. introduced the reconfiguration numberR “ Fd{Fd,r, which compares the drag
of the flexible devices Fd to that of a rigid one with the same geometry Fd,r [16, 21, 13].
We will use this dimensionless quantity as well in our study to characterize the effect of
deformability on drag. As shown in Fig5, the data collapse onto a single curve. Behaviors are
indeed determined by the competition between elasticity and fluid forces, which is captured
by the Cauchy number. Fig5 also shows a transition between two drag regimes. At low Cy,
when the fluid load is small compared to the structural rigidity, the plate or fibers barely
deform and their drag forces are similar to that of a rigid object (i.e. R „ 1). For large
Cy, the reconfiguration of the deformable system reduces drag, and R decreases. In the
asymptotic regime of large deformation, it appears to decrease with a constant logarithmic
slope, yielding a new scaling of drag with flow speed, which is discussed in interlude no3.

For the flexible plate, the structural response is determined by the bending stiffness, as
flexion is the preferred mode of deformation. However, as we will see in this thesis, if
another mode is involved, the denominator of the Cauchy number will be modified to take
into account the new nature of the deformation. Note also that this number does not reflect
any notion of temporality. All the studies on reconfiguration presented so far have been
performed in a stationary regime, and our future experiments and models will also be in a
purely static framework.

Interlude no3 : Drag force on flexible plates Fd „ U?

U

L
W

t
EI

Gosselin et al. [16] show
that we can recover the
scaling of the drag force Fd

with flow speed U through
simple dimensional analy-
sis, in the asymptotic case
of large deformation. They
consider a flexible rectangular plate with length L, width W , and bending stiffness
B “ EI; it is immersed in a fluid with density ρ and flow velocity U (see left figure
below). In the case of large deformation, the length L is no longer relevant as the
plate aligns with the flow and only the portion close to the support bears drag forces
(see the right figure below). The physical problem is then reduced to four quantities
(and three dimensions): B [N.m], U [m.s´1], ρ [kg.m´3], and the drag per unit with
(for this two-dimensional problem) Fd{W [N.m´1]. The Vaschy-Buckingham theorem
then states that the problem can be described using only one dimensionless number:

Fd

W pEIq1{3ρ2{3U4{3

It gives a scaling of the drag force with flow velocity F „ U4{3 (that is V “ ´2{3),
which is in agreement with experimental measurements. Using a similar approach,
one can obtain Fd „ U (V “ ´1) for a disk cut along several radii, and Fd „ U2{3

(V “ ´4{3) for a disk with a single cut that rolls up into a cone [16, 15].

0.2.5 New levers to tune shapes and forces in a fluid flow

At this point, we conclude that deformable structures have the advantage of passively adapt-
ing their shape to an external fluid load. This reconfiguration offers a powerful means of
regulating fluid loading on the structure. It can notably reduce drag force to avoid damage
or rupture in strong winds or currents. Deformations can also fulfill a function, such as
flexible valves, enhancement of aerodynamic performance with deformable wings, or energy
extraction. However, to operate as desired, the structure must deform in the appropriate
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way. Therefore, it is important to understand the fluid-elastic underlying mechanisms and
find ways to control them.

So far, most of the experimental and modeling studies in the literature have focused on
the interaction with fluids of continuously flexible slender structures, such as beams or
plates, which are particularly prone to deformation. Different behaviors have been obtained
by changing the stiffness that resists deformation or the geometry of the object, with a
rectangular plate behaving differently than a disk, for example. In this PhD, we seek to
expand the range of accessible behaviors through a shift from the traditional approach.
We explore a new framework for the design of components exposed to flows, by adding a
set of folds or slits to thin surfaces. This is the technique of origami and kirigami, which
is presented in the following section. While it was initially an art, it has since emerged
as a promising engineering solution to fabricate structures with complex three-dimensional
deformation modes and to obtain interesting and predictable mechanical properties. For us,
it represents a new lever to tune deformation and forces in a fluid flow.

0.3 Ori- and Kiri-gami: new levers from Japanese art

0.3.1 A brief history of ancient paper art

a)

b)

c)

d)

Figure 6: a) Schematic illustration of Kawasaki’s theorem: It states that a one-vertex pattern is
flat-foldable if and only if alternatingly adding and subtracting the angles of consecutive folds around
the vertex gives zero .b) Origami street art from Mademoiselle Maurice. c) Origami and kirigami
are also used for Shinto ceremonies. d) Giant whale sculpture made of cut paper, done by Nahoko
Kojima.

Contrary to popular belief, the origin of cutting and folding paper comes from China, where
the art of jianzhi was practiced. Archaeological evidence from the 6th century shows that
it was mainly used for religious purposes. Although other materials like tissue or leather
were also used, the paper was preferred for its ease of manipulation. This art then spread to
Japan, where it developed into two distinct techniques: origami and kirigami. Both involve
creating complex 3D shapes by placing creases or cuts on thin materials.

Since their introduction in Japan around the 7th-8th century, origami and kirigami have
evolved from being used in Shinto religious ceremonies (Fig6c) to becoming art forms and
creative leisure activities. The main goal is to create harmonious geometric shapes or shapes
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0.3. Ori- and Kiri-gami: new levers from Japanese art

inspired by animals or plants, such as the crane, which gave rise to a famous Japanese legend
(see the cover picture of chapter 6) or the work of street artist Mademoiselle Maurice, who
covers streets walls with her colored foldings (Fig6b). Although origami is more famous in
popular culture, kirigami is becoming increasingly popular. It involves applying a specific
arrangement of cuts to a sheet to create three-dimensional forms. One impressive example
is the giant kirigami whale designed by artist Nahoko Kojima (see Fig6d).

a) b) c)

d)

Figure 7: a) The Miura-Ori pattern, which consists of multiple folded chevrons, allows for a flat and
inextensible sheet to form a saddle-shape with a non-zero Gaussian curve (from [22]). b) Generalized
Miura-ori tessellations can be used to fit arbitrarily complex curved surfaces [23].

More than just artistic methods, origami and kirigami have also inspired the scientific world,
as in the field of Mathematics with the Kawasaki and Meakawa theorems [24] (Fig6a). It
is also becoming increasingly important in the Engineering and Mechanics field, and in
Engineering and mechanics. The presence of these creases or cuts on an initially flat surface
creates a set of mechanical and morphing properties that will be described in the following
sections.

0.3.2 Shape morphing and new kinematics

Let us begin by discussing origami, a technique that involves folding a flat sheet along
predefined lines that form the crease pattern. This pattern conditions the three-dimensional
morphing, with the folds acting as hinges around which the facets rotate. In our study, we
will furthermore make the ”rigid facet approximation” that simplifies kinematics. It assumes
that facets are inflexible and that deformation only occurs along the folds. A significant
body of research then studied the relationship between shape change and folding patterns.

The interesting feature of the origami method for our current problem is its ability to
undergo extreme shape changes. A thin plate with a large surface area can be folded into
a very compact object, which is used in the storage or robust deployment of airbags [29]
and solar panels/sails [30] (see Fig9a and c). Studies have also sought to use the origami
method for shape morphing, such as reaching a targeted surface with arbitrarily complex
curvatures, as shown in Fig7b [23]. Another interesting example is the saddle shape of
Fig7a [22], which has a non-zero gaussian curvature that cannot be achieved by bending a

23



b)

c)a)

d)

Figure 8: a) Perpendicular slit pattern that allows for local rotation of the uncut parts, resulting in
bi-axial expansion of the sheet [25]. b) A flat sheet can be transformed to conform to a baseball ball,
changing its Gaussian curvature [26]. c) Parallel and staggered slit pattern, which extends through
the out-of-plane buckling of uncut parts. The tilted geometry can be used for the creation of solar
panels that can track the sun’s trajectory through simple sheet traction [27]. d) Kirigami can be
used to conform to moving supports, such as elbows or knees, for applications as medical patches
[28].

flat and inextensible sheet, as imposed by the ”theorema egregium” (Gauss theorem) for
isometric deformations. In brief, the strengths of the origami method are that it allows for
large and complex three-dimensional deformations, which are also programmable through
the crease pattern. Those significant shape changes will be interesting for the interaction
with a flow, where variations of the frontal area and streamlining greatly affect the drag
forces, as discussed earlier.

For the kirigami method, cuts replace folds. The network of slits allows for the sheet to
extend through the opening of the slits, as shown in Fig8. We remind, as discussed in
interlude no2, that a slender structure prefers to bend rather than stretch, energetically
speaking. Here, at first glance, kirigami sheets seem to refute this statement, but this
extensional capacity is ”effective” only. To understand this point, let us take a closer look
at the local mechanisms that make this super-extensibility possible through the examples
of two famous cutting patterns.

The first pattern shown in Fig8a divides the sheet into a set of polygons connected at their
ends by ligaments. When an external axial tension is applied, the polygons rotate by flexing
the ligaments which act as hinges, resulting in a bi-axial extension of the kirigami sheet.
This pattern allows the sheet to conform to sphere morphologies, such as a baseball ball
(Fig8b), with positive Gauss curvature, which cannot be achieved with an inextensible,
uncut sheet. This square pattern has already inspired applications to increase shoe friction
[31] and for soft robotics locomotion [32].

The second pattern, which is the focus of this thesis, consists of an array of parallel and
staggered slits. Upon stretching, the elementary blades formed by the uncut portions of
the sheet buckle out of the plane and further bend, forming a three-dimensional meso-
texture. This meso-texture will prove important in our study. It has also been exploited
by Lamoureux et al. [27], to design solar panels with inclined elements that can follow
the course of the sun over a day through simple sheet extension (Fig8c). The kirigami
morphing ability has also been used for medical patches (Fig8d), which better conform
to moving curved surfaces like elbows and knees [28] or even electronic probes to analyze
high-fast motions in baseball (see Fig9b). As with origami, the kirigami technique allows for
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0.3. Ori- and Kiri-gami: new levers from Japanese art

a)

b)

c)

Figure 9: a) Deployment of an origami solar sail from a compact shape to a large surface to capture
the sun’s rays, using a pattern inspired by the famous Miura Ori fold [30]. b) An extensible electronic
probe based on a kirigami network of slits allows for the analysis of rapid human movements, such
as those made during baseball pitching [33]. c) The origami method can be used for robust inflation
of a pre-folded airbag, while allowing for compact storage of the device [29].

arbitrarily complex shape-morphing, which can be controlled through the cutting parameters
[26, 34].

The examples of origami and kirigami tessellations presented here illustrate the close link
between the elementary pattern and global deformation. This relationship also impacts
mechanical properties. These structures hold many surprises in store!

0.3.3 The cornucopia of mechanical properties

Although many studies on origami and kirigami focused on the kinematics of deformation
and the geometrical relations imposed by the pattern, it has also sparked interest in me-
chanics. These structures have the interesting feature that they derive their mechanical
properties from the cut/fold pattern, rather than the constitutive sheet used to make them.
As such, they have been described as meta-sheet, a subset of mechanical meta-material.
More concretely, the interest lies in being able to engineer mechanical properties by tuning
the pattern of cuts or folds. We will now illustrate some examples of unusual mechanical
behaviors obtained.

a) b)

Figure 10: a) The Miura-ori pattern induces an auxetic behavior: pulling along the axial direction
lead to the extension in the transverse direction [30]. b) Bi-stable and auxetic kirigami pattern:
during a tensile test the bi-axial expansion of the sheet propagates from the bottom edge (fixed) to
the top one (moving) [35].
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Folding brings out interesting mechanical properties such as auxetism: the Miura-ori sheet of
Fig10a extends in the transverse direction when stretched (see Fig10a), as opposed to regular
materials that tend to shrink [36]. Folded structures are also able to support significant
loads while remaining ligthweight. This rigidity can be selective, with flexible modes of
deformation and stiff ones, for which deformation would require stretching or shear of the
constitutive sheet. It has been envisioned to design adaptive origami wheels for robots,
which can easily expand and still operate in extreme conditions [37]. Another interesting
feature of origami is multistability [38, 39, 40]. It notably allows foldable structures to be
stable in both their compact and deployed states. An example is the origami tube Fig11b,
where each elementary cell is bi-stable, and the whole tube can thus be locked in its folded
and deployed state. This type of system is of particular interest for developing new medical
stent technology that needs to be compacted during surgery and deployed once in place [41].
Multistability also allows for rapid and large shape changes to minor changes in the external
stimuli, such as a flow with increasing velocity as explored in our work.

a) b)

c)

Figure 11: a) Deformable robot wheels: an actuator changes the wheel shape and adapts it to the
ground condition [37]. b) Auxetic origami tube, which expands radially when extended longitudinally.
Both the folded and unfolded states are stable, making this structure a suitable candidate for the
next generation of stents. [41]. c) Multi-stable origami tessellation made of four hypar origami units,
which have twelve different stable configurations [39].

Cuts in kirigami sheets can produce interesting mechanical behaviors such as auxetic prop-
erties and multi-stability. It is the case of the pattern of Fig10b: it extends in the direction
perpendicular to the uniaxial loading, and its cutting cells are bistable, which notably leads
to non-uniform deployment [35]. However, one of the most prominent feature of kirigami
sheet is their extreme stretchability discussed earlier, which comes from the large bend-
ing of slender elements in the parallel-cut pattern of Fig8c. This has raised interest for
flexible electronics as shown in Fig12c. The electronic component can extend without actu-
ally stretching (and breaking) the conductive material, preserving the electrical circuit [42].
Because of the large deformation and elastic instabilities, kirigami sheets can have very
non-linear stress-strain curves (see Fig12a, [25]). The mechanical response can be modified
significantly through the cutting pattern, as illustrated by the two curves in Fig12a that
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0.4. Towards responsive origami/kirigami structures

correspond to different slit lengths. Several studies have investigated the relationship be-
tween the arrangement of cuts and mechanical properties, to achieve ”engineered elasticity”
[43, 44, 45, 46, 25]. High stiffness states were also reported when kirigami sheets deform
plastically upon stretching, as shown on Fig12b, [47].

a) b)

c)

Figure 12: a) Stress-strain curves from two kirigami sheets with different cutting parameters, which
leads to two distinct responses [25]. b) A plastically deformed sheet has a higher bending stiffness
than the flat cut sheet (inset) [47]. c) Flexible and extensible electronic component [42].

Origami and kirigami methods have proved to be promising for mechanics and engineer-
ing. The addition of slits/folds allowsto overcome certain limitations of regular sheets (that
only deforms isometrically with constant gaussian curvature for example) and to design
customized kinematics and mechanical behaviors. Note that mechanical studies have inves-
tigated the response of origami and kirigami sheets to only a few types of loading, typically
applying in-plane uniaxial traction to characterize stress-strain relationships. In the follow-
ing, we briefly discuss how these systems respond to other types of external solicitation, and
what will be the specific characteristics of loading from a fluid flow.

0.4 Towards responsive origami/kirigami structures

One of the ongoing challenges in the field of origami and kirigami structures is to actuate
them or make them responsive to changes in their environment (which is a fluid environment
for us). To achieve this, it is necessary to be able to program their mechanical response
to specific external stimuli. Previous investigations have mainly focused on axial tensile
loading to understand the mechanical response of these structures. In the following, we will
present other types of loading to which kirigami and origami have been subjected.

0.4.1 Different types of loading

Meta-structures can be actuated using shape-memory alloys (SMA) that have the ability to
return to their initial shape at a given temperature. It has been used for the deployment or
compacting of an origami stent, by simply varying the external temperature (Fig13a, [41]).
Fig13b shows another example of a thermally-actuated structure, with the kirigami opening
according to the ambient temperature [48]. By introducing a folded reflective substructure
inside the pores, the authors were able to passively tune the structure’s reflection capacity
according to external thermal conditions.

A commonly used method of actuation in soft robotics is through the use of pneumatic
networks or pouches. By pressurizing these embedded systems, it is possible to actuate an
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Figure 13: a) Tubular origami stent expanding once the external temperature is above 319 K [41].
b) Progressive deployment of kirigami reflector actuated thermally [48].

arm or enable locomotion. One of the challenges is to control the deformation of inflatable
structures. To this end, kirigami has been explored, introducing a cutting pattern within
an inflatable stretchable membrane [49]. Upon pressurization, a cylinder can then deform
into a hook (Fig14). Pneumatic actuation has also been used to deploy origami cellular
structures, using a pressurized air pouch enclosed inside. The non-trivial interaction between
the internal fluid volume and the global deformation of the structure can result in an unusual
negative stiffness, which could be exploited for energy absorption purposes [50].

Figure 14: Inflatables with programmable shapes, made of a kirigami sheet embedded in an elas-
tomeric membrane. Once pressurized, it deforms into a hook [49].

The above examples show the rich range of responses of origami and kirigami sheets to fluid
loading, which has the specificity of depending on the shape. However, fluid is mainly used
as a way to transmit uniform pressure forces, and no use has been made of its motion in
these studies so far. In the following, we will discuss a few studies that have subjected
origami and kirigami designs to flows. Note, however, that these studies focus exclusively
on rigid structures that are fixed in a given configuration and thus have no fluid-elastic
coupling.

0.4.2 Cuts in flows

There are limited studies on kirigami structures in the presence of fluid flow. The two
existing ones primarily use the kirigami technique as a way to produce a surface with a
three-dimensional texture that will manipulate flows. The sheet is frozen in the desired
configuration. The first study presents a kirigami fog-collector [51]. The local geometry
impacts the flow, creating vortices that improve aerosol capture while allowing the fluid
to pass through the structure (Fig15a). The second study covers an aircraft wing with
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a)

b)
c)

Figure 15: a) Kirigami fog collector; the 3D meso-texture forms vortices that trap the droplets
and increase the capture efficiency [51]. b) Kirigami patches placed over a wing in various states of
extension. c) The associated roughness shifts the stall angle [52].

a kirigami sheet to create a surface roughness that will affect the fluid boundary layer
(Fig15b,[52]). This roughness can be modified through the sheet extension, which shifts the
critical angle of attack at which the wing stalls and delay the phenomena (that is when the
lift coefficient suddenly drops, 15c).

Importantly, both of these studies focus on fixed, rigid structures, and do not explore the
possibility of allowing the kirigami sheet to deform in response to the flow. We aim to
investigate this aspect. As for the (uncut) flexible plates of the literature, it will involve a
coupling between the dynamic of the fluid and that of the deformable object. Forces exerted
by the fluid will depend on the structure deformation, which in turn will affect the fluid
flow. However, for kirigami structures, deformation involves a significant opening of the
sheet, forming pores that allow fluid to pass through. As mentioned before, the size and
geometry of those pore change with the sheet elongation, which will affect local fluid forces.
We aim to study this poro-elastic system and how to control the shapes and forces that
result from this interaction.

0.4.3 Folds in flows

Origami structures have also been little studied in the field of fluid-structure interaction. To
our knowledge, only two studies investigated the aerodynamics of folded structures. In one
study, the authors measure drag force and visualize wake patterns for a fixed configuration
of a Miura-ori unit (Fig16a) to determine which configuration generates the least drag [53].
They relate the generation of vortices induced by the folded shape to the decrease of forces.
In a more active situation (controlled by an external user), the work of Cozmei et al. (2020)
investigates the use of two folding patterns as surface controllers [54]. By actively changing
the folding state, they can modify the frontal area exposed to the fluid and, as a result,
the drag force. They demonstrate that by adjusting the configuration of creases, they can
achieve a targeted force for a given flow. This work suggests that changing the configuration
of a folded structure alters its aerodynamic properties and that large shape shifts can lead
to significant variations in fluid loads.
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Figure 16: a) Flow around a Miura ori cell, [53]. b) An origami unit (1) can be deployed/compacted
by a linear actuator connected to an Arduino and load sensor (2) [54]

Here, we are interested in studying deformable origami structures (as opposed to ones with
a fixed configuration) that passively adapt their shape to the fluid environment. Given the
large shape changes induced by the folding kinematics, we also expect new evolution of drag
with flow speed that will depend on the pattern features. Similar to the way three leaves
blow away in the wind, it is time to let the (meta)-structure be free.

0.5 Thesis outlines

In this thesis, we seek to answer the following question: Can we use origami and kirigami
techniques to tune the deformation of sheets in a flow, and the resulting drag
forces? To this end, we have to understand how folds and cuts impact the interaction with
a fluid flow. It departs from the traditional framework of fluid/structure interaction in two
ways. First, it involves unusual modes of deformations and mechanical properties. Second,
the interaction of the small-scale structure with flows can impact local fluid forces and thus
the deformation and dynamics at the larger scale. We investigated those aspects with an
approach combining experiments in water or wind tunnels and theoretical models. We also
adopted a bottom-up approach, starting with simple kirigami and origami geometries to
understand the underlying mechanisms, and then expanding to more complex ones to probe
the potential of the kirigami and origami methods.

This thesis is divided into two parts. The first part (chapters 1 to 4) focuses on deformations
in a flow, and the second one (chapters 5 and 6) on the corresponding evolution of drag
forces. The content of each chapter is introduced in the following.

In the first part, we investigate the use of the kirigami technique to control deformations
caused by fluid flow, focusing on patterns with parallel and staggered slits. In chapter 1, we
investigate the response of a uniform kirigami sheet in a water flow (the pattern is the same
throughout the sheet). We characterize the deformation for different cutting parameters
to understand the effects of these cuts on the fluid-structure interaction and compare the
experimental results to a theoretical model that helps to explain the underlying mechanisms.
We show that the cutting pattern controls both the elastic restoring forces that oppose the
external fluid loading and the shape of the pores during the opening kinematics. The pore
geometry leads to unexpected asymmetric deformations despite the symmetry of the initial
pattern.

The next two chapters investigate the effect of varying the pattern spatially (as opposed to
the uniform pattern used in chapter 1), starting with kirigami specimens with two different
zones. In chapter 2, we prescribe the direction of rotation of the local meso-texture and
vary it along the sheet. It impacts the orientation of local fluid forces and the resulting

30



0.5. Thesis outlines

macroscopic shape. In chapter 3, we change the cutting pattern along the sheet, creating a
non-uniform stiffness. Both of these spatial variations expand the range of possible shapes.
Interestingly, since the direction of rotation of the elementary cells is defined relative to
the flow, we show that the same non-uniform specimen can produce different deformations
depending on the direction of the fluid passing through it. In the shorter chapter 4, we
conclude the first part of the thesis by exploring potential ways to implement the inverse
shape morphing problem, which consists in determining the cutting pattern that would
create a desired shape in a given flow.

The second part of the thesis focuses on the impact of deformations on fluid drag forces. In
chapter 5, we show that the deformation and opening of kirigami sheets reduce their drag,
compared to that of a rigid structure. We analyze the evolution of drag with flow speed for
uniform specimens with different cutting parameters and relate it to the effective stiffness of
the sheet. Measurements on non-uniform specimens also yield interesting results: since the
same specimen can produce two different shapes, it also results in two different evaluations
of drag with flow speed.

Finally, chapter 6 studies the impact of folds (instead of slites) on the reconfiguration pro-
cess and the resulting drag. We focus on an elementary origami unit, the ”waterbomb base”,
which is selected for its ability to fold from a flat disk into a very compact configuration.
Drag measurements in an air flow show that these significant shape changes further enhance
the mechanisms of drag reduction, to the extent that drag no longer increases with flow
speed in regimes of large deformation. We characterize the origami behavior while changing
its parameters such as the stiffness and arrangement of folds, and show that it allows us to
tune the evolution of drag and in particular the value of the upper limit that it reaches.

Each chapter begins with a brief overview of the main content and key objectives and con-
cludes with a summary of the main results. Throughout this thesis, you will find interludes,
identified by a colored box and a number, which provide additional information or anecdotes
related to our study. These interludes are not essential to understanding the main text and
can be skipped for a quick read. Let us start the journey.
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PART I

INTRODUCING CUTS TO
CONTROL SHAPES IN A FLOW
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Ch. 11
Uniform kirigami pattern: a

complex interaction with flow

The purpose of this chapter is to characterize the influence of slits on the interaction of a
thin sheet with a fluid flow. We begin by analyzing a uniform pattern of parallel cuts and
investigate the relationship between the spatial arrangement of the slits and the deformation
in a water flow. It reveals intriguing behaviors such as asymmetric deformation despite a
symmetric cutting pattern. We also develop a simplified model to understand the underlying
fluid-elastic mechanisms.
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Chapter 1. Uniform kirigami pattern: a complex interaction with flow

1.1 Kirigami pattern with parallel slits

Kirigami art is created by adding cuts to a flat sheet to create complex shapes. To study
the interaction between a kirigami sheet and the surrounding flow, we focus on one specific
tessellation that consists of a periodically spaced and staggered network of slits, as shown in
Fig1.1. This cutting pattern is both simple enough for a representative experimental study
and rich enough to exhibit original mechanical and structural properties that have been
little explored in the field of fluid-structure interaction. Before submerging our kirigami
sheets in water, let us have a quick look at the existing literature on this pattern.

Figure 1.1: Kirigami with an array of parallel and staggered slits makes it highly stretchable.

1.1.1 Large stretchability

The addition of an array of parallel and staggered slits is not of particular artistic interest
but it is one of the kirigami patterns that has been extensively studied in mechanics and
engineering. Many fundamental works have notably focused on the particular mechanical
response of this pattern. As discussed in the introduction, the addition of those slits trans-
forms an initially inextensible sheet into a highly stretchable structure. I encourage the
reader to test this with the kirigami sheet provided with the manuscript. Upon traction,
the sheet can reach three to four times its initial length,[45]. This extensibility is not due
to the stretching of the sheet itself but results from the large local bending of the uncut
parts (see Fig1.1). Indeed, the slits divide the sheet into a set of slender plate elements
that buckle out-of-plane when tension is applied in the direction perpendicular to the slits.
The collective rotation and bending of those elementary plates allow for the global stretch-
ing of the entire structure. Such extensibility is interesting for us as it will result in large
deformations in a flow, and thus significant fluid-structure couplings.

1.1.2 Three-dimensional meso-texture

Figure 1.2: Three buckling modes depending on the cutting parameters and producing different
types of meso-texture [55].
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As discussed in the introduction, a three-dimensional texture forms on the kirigami sheet
as it stretches, with elementary blades that become increasingly tilted with elongation and
openings that widen. As we will see later, this 3D local texture will play a key role in the
interaction with a fluid flow.

The local deformation and the tilting direction of the blades can differ depending on the
cutting pattern. The pattern attached to the manuscript has narrow blades that rotate
in the same direction as the structure is stretched (as on the cover photo of the chapter).
However, this is not necessarily the case and other behaviors can be observed for different
cutting parameters. As we will discuss in detail when describing our fabrication method, the
cutting parameters for this tessellation can be reduced to only three quantities: the length
of the slits Ls, and the gap between cuts dy and between rows of cuts dx (see Fig1.3b).
By changing the latter, Yang et al. (2018) showed that different bending modes could be
selected and other meso-structures can form [55]. As illustrated by Fig1.2, the authors
distinguish two main modes: the first one is a symmetric bending with the rotation of the
blades in alternate directions, which is particularly observable for larger gap values dx (green
sheet) compared to the slit length Ls. The second one (orange sheet) is an asymmetric mode
where the cells rotate in the same direction. They also identify a third parameter range
where both modes coexist (yellow sheet). In our work, we will restrict our parameters to
the pure asymmetric mode which presents the most flexible behavior.

The cutting parameters play a key role in not only the local deformation of the sheet but
also its mechanical properties, as discussed in the introduction. The pattern can be adjusted
to produce a predictable and robust change in the mechanical properties of the sheet. As
discussed in the introduction, deformations in flow depend on the structural resistance of
the object. In the following section, we will thus describe the fabrication of the kirigami
sheet and its mechanical characterization.

1.2 Manufacturing and mechanical properties

1.2.1 Cutting parameters

Ls
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x
cells)

(N
yc

el
ls

)

elementary cell

a)

b)

H

L

Figure 1.3: a) Schematic of the kirigami sheet with length L and height H, corresponding respec-
tively to Nx and Ny unit cells (the latter is shown in grey). b) Zoomed view showing the cutting
parameters: slits length Ls, and spacings dx and dy.

We consider a rectangular Mylar sheet with dimensions of length L “ 12cm, width H “

10.7cm, and thickness t “ 100µm that is small compared to L and H. More details on the
choice of Mylar material and the cutting techniques (laser-cutter) are provided below. The
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slit pattern consists of the periodic repetition of a unit cell shown in grey in Fig1.3a-b. It
is characterized by three parameters: the slit length Ls, the spacing between the row of
slits dx, and the spacing between slits within a row dy. The unit cell is repeated Nx times
along the sheet length L and Ny times along its height H. The different dimensions are
thus related by:

L “ 2Nxdx and H “ NypLs ` dyq (1.1)

These relations couple the dimensions of the cells and their number, reducing the parameter
space (for example, one cannot vary dx without also varying Nx, etc.). Additionally, in
order to preserve the asymmetric bending mode (tilting of the blades in the same direction)
as described in [55] and earlier, we ensure that Ls ą 3dy.

We manufactured nineteen specimens, divided into three series, where we systematically
varied each parameter while keeping the others fixed, as indicated in the following tables:

- Serie with varying Ls: dx = 3.8mm, dy= 4.4mm -

Ls (mm) 17.2 19.6 22.6 26.5 31.3 38.4 49.1
- Serie with varying dx: Ls = 31.6mm, dy= 4.4mm -

dx (mm) 1.9 2.1 2.3 2.7 3.1 4.7 6.3 9.4
- Serie with varying dy: Ls = 31.6mm, dx= 3.8mm -

dy (mm) 1.7 5.6 10.6 17.8

1.2.2 Mylar sheet

Let us briefly summarize the specifications for our choice of material: our experiments are
performed in water, so the materials must be waterproof with a density close to that of water
to limit any gravity or buoyancy effects (see interlude no5). Additionally, our kirigami sheets
will undergo large deformations, so we need to prevent plasticity. The literature offers a
variety of usable materials for kirigami fabrication, ranging from classical paper sheets [43]
to polymeric materials (PDMS) [56], and various types of plastic ones [45, 44, 55]. In light
of our application, we have chosen a PolyEthylene Terephthalate (PET) film with thickness
t “ 100µm. This material is widely used for its thermoforming properties in the food
industry. Our mylar sheets are cut from a roll and usually have a slight pre-curvature. To
remove it, they are placed in an oven at 75˝ for about 1 hour and pressed by a weight. The
sheets come out flat and ready to be cut!

1.2.3 Laser-cutting slits

All cuts are made using a laser cutting machine. The pattern is first generated by a custom
Matlab program that integrates all the parameters and constraints (Eq1.1). It is then loaded
onto a drawing software (Inkscape or Coreldraw) that serves as the interface between the
drawing and the cutting machine. We mainly performed our cuts using two models of the
EPILOG laser cutter machine: the Mini Helix 50W and the Fusion Pro 36 with parameters
specific to our materials and their thickness.

The use of a laser cutter is more reproducible and quicker than traditional hand-cutting
done in art. This tool also allows us to easily change the pattern. The final rendering of a
hand-cut or laser-cut slit is also different, with the edges of the slits being sharper in the first
case and the slits thinner, as shown in Fig1.4a-b. The slightly rounded cut edges, obtained
with laser cutting, also prevent the localization of stress under tension and potential tears
[20]. The width of the slits is however greater in the case of the laser (Fig1.4b). The laser
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a) b)

Figure 1.4: Zoomed views of slits on a mylar sheet (thickness t “ 100µm). The cuts have been
performed: a) by hand, and b) by a laser cutter machine.

beam strikes the sheet at the waist, whose width depends on the model and the laser cutting
parameters (speed and power). After optimizing the latter, we arrive at a width of about
0.2 ´ 0.5mm, which does not appear to influence the kinematics of opening or mechanical
behavior.

1.2.4 Force-displacement curve

To characterize the mechanical response of a kirigami, we conduct tensile tests, measuring
the force required to stretch a kirigami sheet (Fig1.5b). The sheet is clamped at its two
edges and we use an Instron 5865 equipped with a 200N force cell (model 2525-816) to
simultaneously record the displacement and the associated tensile forces, at a low imposed
velocity of 0.2mm/s, ensuring quasi-static deformation.
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Figure 1.5: a) The typical force-displacement curve for a kirigami sheet with the cutting parameters
pLs, dx, dyq “ p31.6, 4.7, 3.8qmm. b) Picture of a tensile test.

The test is manually stopped before rupture, all residual plastic deformations can then be
removed by using Mylar’s thermoformable property (one hour in an oven at 75 ´ 80˝C).
Fig1.5a shows a typical force-displacement curve. We observe a highly nonlinear behavior,
which is consistent with what is reported in the literature [43, 57, 45, 56, 58]. This curve
can be divided into three regimes (denoted by different gray levels):

1. Regime 1: In-plane deformation : The kirigami sheet deforms in the tensile
plane, and the curve presents a linear force-displacement relationship characterized by
an effective stiffness K1.
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2. Regime 2: Out-of-plane deformation : Past a critical displacement ∆c (associ-
ated with a critical force Fc), we observe a significant softening of the structure that
corresponds to the transition from in-plane to out-of-plane deformation induced by
buckling. This linear regime is valid over a large range of displacement and can be
characterized by an effective stiffness K2. Our structures in water mostly operate
within this regime.

3. Regime 3: Limit of deformation The kirigami sheet then finally hardens as it
further expands, with deformation focusing at the extremities of the cuts.

As discussed in the introduction, an advantage of the kirigami technique is that the mechan-
ical properties are mainly controlled by the cutting pattern, making it easy to tune them
through the slit arrangement. In the following, we will identify the relationship between the
cutting parameters and the properties of the sheet. We will specifically focus on the first two
regimes, which are characterized by their respective effective stiffness. In our fluid-structure
problem, K2 will prove to be the relevant stiffness, as deformation will mainly occur within
the intermediate regime. However, we will also use K1 at the end of this chapter to estimate
the effect of mechanical non-linearities. Therefore, we will discuss both K1 and K2 in the
next section.
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Figure 1.6: a) Illustrative test: four specimens with different slit lengths exhibit distinct deforma-
tion amplitudes when subjected to the same load (mass of 50g). Quantitative measurements of the
cutting parameters in the three series detailed in the tables above: b) Ls, c) dx, and d). We perform
mechanical characterization through uniaxial tensile tests, using an Instron 5865 with a load cell
2525-816. The color gradient represents an increasing order of stiffness (K2).

1.2.5 Engineered elasticity

All nineteen specimens with varying cut parameters were subjected to tensile tests. Before
discussing the results, let us focus on an illustrative example shown in Fig1.6a. Four kirigami
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sheets with different slit lengths Ls are subjected to the same load applied by a hanging
mass of 50g. Increasing Ls yields significantly larger deformations for a given load, showing
that the mechanical properties can be greatly varied through small changes in the cutting
parameters. Now, let us return to the tensile machine tests and be more quantitative.

The force-displacement curves are displayed in Fig1.6b-c-d, for each variation of parameters
(namely, Ls, dx, and dy). The color scale ranges from blue to yellow corresponding to an
increasing effective rigidity, the impact of each characteristic length is suggested by an arrow
in the graph. We see that increasing dx or dy results in stiffer specimens (Fig1.6c-d), and
increasing Ls produces more flexible specimens Fig1.6b. Here ”rigid” refers to the effective
stiffness coefficients K1,2, that we are going to detail.
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Figure 1.7: a) Effective stiffness K2 measured in the intermediate linear regime (and K1 measured
in the first regime, in the inset), and compared to the predicted scaling of Eq1.2. b) Schematics
showing the cutting parameters.

We determine the effective stiffness K1 and K2 through linear fits on the force-displacement
curve in each regime. These coefficients vary significantly with the cutting pattern. The
effects of each parameter on mechanical properties can be understood through a reasoning
in terms of equivalent springs, as proposed in previous studies [43, 57, 45, 58]. In these
models, a kirigami sheet is considered as a collection of slender plates that bend and act
as springs arranged in series (along the y´ axis in Fig1.3a) and in parallel (along the x´

axis). The spring-like stiffness of a beam relates the force applied to the resulting deflection,
and it is determined by its dimensions (length L, width W , and thickness tb) and its Young
modulus E [43]: Et3bW {L3.

In practice, changing the cutting parameters means changing the dimensions of the indi-
vidual beams. The first and second regimes, which correspond to in-plane bending and
out-of-plane bending (with rotation), must be distinguished. In the first regime, the set
of parameters pL,W, tbq is mapped to pLs ´ dy, t, dxq, and the stiffness of a beam scales as
Etd3xpLs ´ dyq3 [59]. In the second regime, the mapping is pL,W, tbq Ñ pLs ´ dy, dx, tq, and
the beam stiffness scales as Edxt

3{pLs ´ dyq3. The combined stiffness of all springs (Ny

springs in series, and 2Nx in parallel) gives the stiffness of the entire sheet in each regime:

K1 „
Etd3x

pLs ´ dyq3

Ny

2Nx
and K2 „

Edxt
3

pLs ´ dyq3

Ny

2Nx
(1.2)
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Fig1.7a compares our measurements for K2 to the predictions of Eq1.2 (and K1 in the
inset). In these graphs, each dot represents one specimen, with marker shapes (and colors)
differentiating the variation of each cutting parameter as explained in Fig1.7b (for example,
blue circles correspond to kirigami sheets with varying Ls). We find a good agreement: K2

scales as predicted by Eq.1.2 with a numerical coefficient of 30, consistent with previous
studies [43, 45, 58]. This coefficient is determined by the shape and boundary conditions
of the constitutive beams and is discussed in interlude no4. The logarithmic scale shows a
variation of K2 by more than two orders of magnitude in the range of cutting parameters
covered. Kirigami technique thus provides a valuable tool for predictable and largely tunable
elasticity. The stiffness K1 also shows reasonable agreement with the scaling ( Fig1.7c),
although with a larger dispersion. This is due to the fact that the slope in this first regime
is experimentally more difficult to measure as it covers a very small displacement range (see
Fig1.5a and Fig1.6b-c-d).

Interlude no4: Numerical coefficient for the stiffness scaling law

To determine the prefactor for K1 and K2, we need to further examine the bending
plate analogy. Following the approach of Shyu et al (2015) for the second defor-
mations regime, we consider the deformation of cells to be similar to that of four
small cantilever beams with free-clamped boundary conditions (see the picture a and
schematic b) [58]. A clamped-clamped beam with length l and bending stiffness EI,
subjected to a load at its free end, produces a deflection of δ1,beam “ p4Fl3q{pEIq.
By substituting the parameters of the kirigami unit cell and inverting the expression,
one deduces the force for a single beam.

F1 beam “
16Et3dx

pLs ´ dyq3
δ1 beam

The displacement of an entire cell is therefore expressed as δ “ 4δ1,beam. Similarly,
the force is F “ 4F1,beam. The cells are connected in series and parallel, so the
global formulation for effective stiffness in the second regime is finally obtained by
multiplying by the periodicity factor Ny{2Nx

K2 “ 32
Ny

2Nx

Et3dx
pLs ´ dyq3

Hwang et al. (2018) proposed a similar approach for the first regime[45], they find a
prefactor of around 16 for clamped-clamped boundary conditions.

out of plan deformation regime
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( L - d ) s y 
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1 cell

a) b)

c)

42



Ch. 1

1.2. Manufacturing and mechanical properties

1.2.6 Evolution of the local geometry with elongation

The stretching discussed earlier occurs through a significant opening up of the material. In
this thesis, we refer to the small-scale openings in the kirigami structure as ”pores,” as they
allow fluid to pass through. These pores become larger with sheet elongation and change
shape as the elementary beams become increasingly tilted and spaced apart. A relationship
between the rotation angle θ of these beams relative to the sheet centerline and the elongation
ε can be derived through simple geometry arguments [27]. Fig1.8b shows a side view of two
neighboring cells of width 2dx (see cell definition in Fig.1.3). Upon stretching, the blades
tilt at an angle θ and the distance between cells becomes d. These lengths and angles are
related by cos θ “ 2dx{d, and the elongation ε is defined as d “ 2dxp1` εq. We thus obtain:

cos θ “
1

1 ` ε
(1.3)

Note that this relationship does not depend on the blade size dx, meaning that the tilting
motion is purely geometric and independent of cutting parameters. The validity of Eq1.3
can be experimentally confirmed by taking pictures of kirigami sheets during elongation and
measuring the ratio of void to total surface, which corresponds to a porosity Φ “ pd ´ d1q{d
with d1 “ 2dx cos θ being the blade projection in the observation plane (as shown in Fig.1.8b).
This can be rewritten as a function of elongation:

Φ “
p1 ` εq2 ´ 1

p1 ` εq2
(1.4)

All the kirigami patterns were subjected to a simple controlled displacement test, and poros-
ity is measured through image analysis (typical snapshots can be seen in the inset of Fig1.8a).
After a binary thresholding process (as shown in Fig1.8c), Φ was calculated by counting the
black pixels relative to the total image size. The results are shown in Fig.1.8a (with markers
representing each family of parameters) and compared to Eq1.4 (dashed black line). The
two show good agreement, supporting the relationship between elongation and cell geometry
evolution.
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Figure 1.8: a) The evolution of porosity is plotted against elongation (experiments shown with
markers and the dashed black line represents eq.1.4). b) Schematic of cutting cells rotating out-of-
plane at an angle θ upon stretching. c) Thresholding process from a raw picture to a binary one,
with pores corresponding to black pixels.

Although the stiffness and non-linear mechanical properties of the kirigami sheets are closely
tied to the cutting pattern, the pore opening kinematics is the same for all. The rotation of
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the elementary cells out of the plane is purely a geometrical process and cannot be modified
without changing the nature of the paving. Now that the mechanical behavior has been
characterized, it’s (high) time to immerse the kirigami sheets in water.

1.3 Flow-induced deformation of a uniform kirigami sheet

1.3.1 Experimental set up

We conducted experiments in a closed circuit water tunnel, as depicted in Fig1.9a. A pump
placed below the test section drives the water flow, which is measured by an integrated
mechanical flow meter. The pump generates flow rates ranging from 40 to 300 LPM (liter
per minute), with increments of 20 LPM. The flow enters the test section (dashed red
rectangle in Fig1.9a) after passing through a converging section. The test section measures
15 ˆ 15 cm, resulting in typical speeds between 3-22 cm/s.
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P2
P1

P2

test section

water pump
control valveflow-meter

honey-comb
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magnetic wedge

cover

external fastening syst.
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 c
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0.85 cm
 

Figure 1.9: Schematic view of a) The water tunnel setup with its recirculating flow, b) The test
section with the clamped kirigami sheet, and c-d) The two ways for fixing the kirigami sheet in
the frame and their dimensions. The two red rectangles illustrate adhesive strips that improve the
fixation of the kirigami sheet.

As shown in Fig. 1.9b, the test section consists of three fixed walls with the top side being
a free surface. In our experiments, the top is always kept closed with a custom-designed
Plexiglas cover that has a slot to secure the frame holding the specimens. The kirigami sheet
is clamped at its two edges to the frame by sandwiching it between two Plexiglas plates that
are screwed together and further secured with double-sided tape. The dimensions of the
frame are shown in Fig1.9c. Note that the height of the kirigami sheet H is slightly smaller
than that of the inner frame Hf , leaving clearance between the frame and the sheet. To
prevent bending of the frame due to fluid forces, a magnet wedge is placed on the bottom
wall of the channel for a second point of support; no frame deformation is thus observed.
The kirigami can be clamped either horizontally as is the case in this chapter (Fig1.9c), or
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vertically as will be the case in the following chapters to facilitate visualizations (Fig1.9d).
The two configurations yield the same behavior indicating a negligible effect of gravity
(see interlude no5 as well). The deformation of the sheet is captured by a camera that is
positioned far enough to avoid distortions.

Interlude no5 : Effects of gravity (and buoyancy)

The structure deforms due to fluid forces generated by the flow. However, another
force, gravity, is also present. In all our experiments and modeling, we neglect gravity,
assuming that the forces associated with the flow are greater. To test this assumption,
we can calculate the magnitude of each force (per unit length): fluid force scale as
ρwU

2H (for our range of Reynolds number, given below) and gravity + buoyancy
forces give pρm ´ ρwqgHt, respectively. Where ρw and ρm “ 1.38g{cm3 are the
density of water and Mylar respectively, and g is the gravitational acceleration. With
a mass per unit length of approximately ρmHt « 14 g/m and a flow velocity U “ 0.15
m/s (mid-range value for our set-up), we find that the gravity and buoyancy effects
are approximately 60 times weaker than the fluid force.

In this setup, blockage effects are substantial as the frame and kirigami sheet take up nearly
90% of the test section when it’s undeformed. The impact on the flow will be considered in
the theoretical modeling later, but for the experimental results presented in the following, the
flow speed U will correspond to the flow passing through the empty frame. It is determined
by flow rate conservation and results in speeds between 4 and 32 cm/s.

The kirigami sheet quickly reaches its equilibrium deformed shape when subjected to a flow,
and no noticeable vibrations have been observed. Before discussing the first experimental
results, we will briefly introduce the image processing and analysis performed to quantify
the deformation of a kirigami sheet in flow.

ymax

a)

αi
i

i+1di

U
>0

αi<0

x

yb)

Figure 1.10: a) Typical shape profile extraction from top-view pictures, with orange dots locating
the center of elementary cutting cells (on the top row). ymax is the amplitude of the deformation
and di the distance between cell i and i ` 1. b) Corresponding deformation profile, the amplitude
ymax is highlighted by a red point.

1.3.2 Image analysis and shape extraction

Due to our choice of cutting pattern and boundary conditions, the deformation of the
kirigami sheet in a flow is invariant along its height. As a result, we can determine its shape
through a single snapshot (see Fig1.10a). We then track the position of each unit cell by
manually marking their centers using the ImageJ software (shown as dots in Fig.1.10a).
This tedious method was later improved and fully automated ( more details in Chapter 2).
We obtain a set of points pxi, yiq, where i P r1, Nxs is the cell number, which gives us the
global deformation profile (as shown in Fig1.10b). To describe the deformation, we define
several quantities, the simplest of which is the deformation amplitude, ymax “ maxpyiq,
marked by a red point in Fig1.10b. While focusing on the amplitude is a straightforward
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way to characterize deformations, it does not provide any information on the local scale.
We can also extract two other quantities:

1. Local elongation εi “
di´2dx
2dx

, with di “
a

pxi`1 ´ xiq2 ` pyi`1 ´ yiq2 the distance
between the i-th and the i+1-th cells, which is compared to the distance at rest 2dx.
Note that we can estimate the cells tilting inclination from this measurement using
the geometric relation in Eq1.3 (more details are given in the interlude no6).

2. Local profile inclination: αi “ atan
´

yi`1´yi
xi`1´xi

¯

. For a value of 0, the sheet is

perpendicular to the flow, and for π{2 it is parallel to it. This variable is algebraic
and can be either positive or negative (see sign convention in Fig1.10a).

1.3.3 Typical behavior: an asymmetric expansion

UU

U

U

a) b)

c) d)

0 5 10 15 20
0

0.2

0.4

0.6

0 0.5 1
0

0.2

0.4

0.6
4.3
8.3
13
17
21

U(cm/s) Top view

Figure 1.11: a) Deployment of a kirigami sheet in the water flow for a typical specimen (Ls “ 3.16
cm, dx “ 1.9 mm, dy “ 4.4 mm, Nx=30 and Ny=3). b) Top-view pictures. c) Typical shape
profiles of the sheet (of length L), when increasing the flow speed U (dots locate the cutting cells,
see Fig1.10a-b). d) Dimensionless amplitude ymax{L as a function of U .

Fig1.11a-b show the typical deformation of a kirigami sheet in the water flow. As we grad-
ually increase the flow speed, the sheet stretches, opening pores that let the fluid through.
The two-dimensional profiles (from a top view) are displayed in Fig1.11c, with the grayscale
indicating flow velocity U . It shows a significant expansion of the kirigami specimen, which
tends to slow down as the sheet becomes more and more porous. This expansion can be
quantified through the simple observable ymax (deformation amplitude), plotted as a func-
tion of U in Fig1.11d.

An important observation is that the profile is asymmetric with a lobe facing right, despite
the cutting pattern’s symmetry. This interesting feature is due to the three-dimensional
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Figure 1.12: a) Local elongation and b) profile angle, along the curvilinear coordinate S (defined
in the unstrained reference configuration), for the kirigami specimen of Fig1.11. The light-gray to
black color scale corresponds to increasing velocities, which are the same as in Fig1.11c-d.

geometry of stretched pores, which will be discussed in further detail later. The asymmetry
of the shape profile can also be seen at the local scale in Fig1.12. Fig1.12a displays the local
elongation versus the curvilinear coordinate S along the sheet, defined in the unstressed
reference configuration. It shows that half of the original sheet gradually elongates (for
S ď 0.5), while the other half remains fairly unstretched. As shown in Fig1.12b, this
undeformed portion tends to align with the flow direction (α „ ´90o).

In the following paragraph, we will present the evolution of these same variables but for
three patterns whose cells width differ, we thus apprehend the effect of a local geometry
change on the response in a flow.

Interlude no6: Cells tilting and elongation : θpεq

As previously stated, the rotation angle of the elementary beams θ is linked to the
local elongation ε through Eq1.3. This connection was confirmed experimentally for
kirigami sheets under uniaxial loading (and stretching in a plane) through the porosity
measurement (see Fig1.8). We can show that the same holds true for a kirigami sheet
deformed out-of-plane and in a water flow, as shown in the figure below. The figure
below shows the elongation ε and angle θ measured in our flow experiments. It shows
good agreement with Eq1.3.
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Eq 1.3

Except for the sign changes of θ that may occur near the clamping point, which can
result in a slight bending of the whole sheet, as shown in the attached picture.

1.3.4 Parametric study and Cauchy number

To evaluate the impact of the slit pattern on flow-induced deformation, experiments are
performed in the water tunnel for all kirigami specimens. As an illustration, Fig1.13a-b-c
display the profiles for three sheets with different slit row spacings dx, along with the corre-
sponding evolution of deformation amplitude ymax{L versus flow velocity U in Fig1.13d. All
specimens gradually expand, with a growth of ymax with U that gradually slows down, and
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Figure 1.13: Shape profiles for an increasing flow speed (same range than for Fig1.11c) for three
patterns from the dx series: a) dx “ 9.4 mm (Nx “ 6), b) dx “ 2.7 mm (Nx “ 18, c) dx “ 1.9
mm (Nx “ 30). d) Corresponding evolution of the deformation amplitude ymax{L as a function of
incoming velocity U

with increasingly asymmetric profiles. However, deformation is less pronounced for larger dx
at a given U . This result seems intuitive based on the earlier mechanical characterization,
which showed that increasing dx leads to stiffer sheets.

Alternatively, instead of presenting the evolution of deformation with U for a specific sheet,
we show in Fig1.14a the evolution of shapes at a fixed velocity U for sheets with different
stiffness. The colors distinguish samples with different dx, with blue representing soft sheets
and yellow representing stiffer ones. As previously observed, reducing stiffness leads to
larger expansion. More interestingly, the similar profile evolution in Fig1.13c and Fig1.14a
indicates that changing the flow speed is equivalent to changing sheet stiffness.

Amplitudes for all parametric series are presented in Fig1.14b-c-d as a function of flow
velocity U . Each curve corresponds to a specimen with a color gradient defined based
on the stiffness evolution (with blue corresponding to a soft sheet, and yellow to stiffer
sheets). It is observed that smaller dx and dy result in larger deformation (Fig1.14b-c), and
conversely decreasing Ls reduces the deformation. This order of the curves is similar to that
of force-displacement graphs, and the softer the sheet, the greater its deformation

A natural step is then to define a Cauchy number Cy, in line with previous studies and as
presented in the introduction. It compares the fluid loading per unit length ρU2H to the
sheet effective stiffness K2:

Cy “
ρU2H

K2
(1.5)

Fig1.15 shows the evolution of the deformation amplitudes for all kirigami specimens (the
three parametric series with varying Ls, dx and dy). Data collapse onto a single curve over
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Figure 1.14: a) Deformation profile of kirigami sheets with different parameter dx, in a flow with
fixed speed U “ 21 cm/s (maximum speed of the range explored). Dark blue corresponds to the
smallest dx (flexible sheet) in the parametric series (see series table), and yellow to the largest dx
(stiffer sheet). Amplitudes of deformations for all 19 cutting patterns, classified according to their
series b) dx, c) dy and d) Ls as a function of velocity U . For the last graph, two deformation shapes
are provided.

four orders of magnitude of Cy. It shows that the behavior of the kirigami sheets is indeed
governed by the balance between fluid loading and the elastic resistance of the sheet, which
is captured by this elasto-hydrodynamic Cauchy number. It also corroborates that stiffness
K2 is the relevant mechanical parameter in our study and that deformation is dominated
by pure stretching in the intermediate mechanical regime.

While the Cauchy number provides key insight into the amplitude of the deformation, it
does not account for its asymmetry. We discuss this point in the next section.

1.3.5 Origin of the shape asymmetry

As mentioned earlier, one has to look at the small-scale structure of the kirigami sheet to
understand the asymmetric deformation. The deformed elementary cells are analogous to
blades (highlighted in black in Fig1.16), which are tilted relative to the direction of the
incoming flow. Those inclined blades are subjected to both drag and lift forces. It results
in a local fluid loading on the sheet that not only has a normal component, but also a
transverse one. The latter induces local tension, consistently deflecting the profile to one
side.

Note that cut units should a priori collectively buckle up or down indiscriminately, but our
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Figure 1.15: Deformation amplitudes as a function of the Cauchy number Cy (see Eq1.5) for all
19 cutting patterns. Color gradients differentiate specimens within each parametric series, denoted
by symbols.

laser cutting fabrication seems to bias towards a preferred tilting orientation. The latter
can however be reversed by flipping the specimen upside down in the water tunnel. The
sheet then spontaneously deforms into the left-right mirror image (see the inset of Fig1.16
and the interlude no7).

1.4 Theoretical modeling

To improve our understanding of the complex interaction between fluid flow, the poro-
elastic kirigami sheet, and its changing mesostructure, we are seeking a theoretical model
that describes the macroscopic response. We will now outline the key components of the
model, and then compare its predictions with experimental results.

The literature presents various ways to theoretically describe flow-induced deformations
[13, 16, 60, 61, 17]. The basic idea behind those approaches is that static equilibrium shapes
result from the balance between the external fluid loading and the internal mechanical forces.
The complexity arises from the feedback of the structural deformation on the surrounding
flow, which in turn affects the fluid forces. For our kirigami structures, we will follow a
similar approach, but first, let us highlight the unique features present here.

flipped

U

Figure 1.16: The tilting of buckled cut units (outlined in black) induces tangential fluid forces,
resulting in asymmetric profiles prescribed by the buckling direction (reversed in the inset).

The first distinction lies in the mode of deformation. While previous studies primarily
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examine deformations in bending or torsion [13, 16, 60, 61, 15, 17], kirigami structures
undergo stretching. Secondly, the sheets are porous, and the shape and size of the pores
change along the sheet based on local elongation. It affects local interstitial flows and
fluid velocity. Furthermore, the three-dimensional pore morphology generates tangential
forces, whereas previous studies typically consider only normal pressure forces. These factors
demonstrate the complexity of the fluid-structure coupling that governs the deformation of
kirigami sheets in flow. We aim to capture these key components and their impact on
deformation with a simplified model.

1.4.1 Continuous description of the sheet
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Figure 1.17: a) Modeling of the kirigami sheet as a continuous membrane subjected to distributed
fluid forces fN and fT . b) Local fluid loading depends on the orientation α of the membrane relative
to the flow, and the internal mesostructure of tilted surface elements with angle θ

Inspired by previous work on porous flexible structures such as fishing nets [62], we choose a
continuous description with net properties instead of describing each cell individually. This
approach reduces computational complexity and has been proven efficient [62, 61, 63, 64],
even if it describes less accurately the details at a local scale. The kirigami sheet is described
as an equivalent membrane with length L, fixed at its extremities. It is subjected to an
external fluid loading fpSq defined per unit length of the reference un-stretched configuration,
parameterized by curvilinear coordinate S (see Figure 1.17a). This is balanced by local
internal membrane tension NpSq, resulting in local force balance:

pNtq1pSq ` fpSq “ 0 (1.6)

where the notation 1 denotes the spatial derivative with respect to S. The unit vector t
tangential to the profile is expressed as t “ cosαpSqe1 ` sinαpSqe2, with αpSq the angle of
the membrane relative to the undeformed configuration (see Fig1.17a). Finally, the fixed-
fixed boundary conditions at each end:

$

’

’

’

&

’

’

’

%

xp0q “ 0 xpLq “ L “

ż L

0
p1 ` εpSqqcospαpSqqdS

yp0q “ 0 ypLq “ 0 “

ż L

0
p1 ` εpSqqsinpαpSqqdS

(1.7)

To complete the models, two ingredients are still needed: a constitutive law connecting
internal forces to deformations and an expression for the external fluid loadings.

Based on experimental observations, we choose an elastic constitutive law linking the ten-
sion force N to the elongation ε: NpSq “ K2LεpSq. As previously stated, and discussed
further, the deformations induced by the flow are mainly in the linear second mechanical
regime. Fig1.18a shows the force-extension curve for a typical kirigami sheet with the sec-
ond mechanical regime (characterized by K2) shaded in gray. This same area is shown in
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Figure 1.18: a) Tensile force per unit length N{L as a function of elongation ε. The grey zone
delineates the second mechanical regime of deformation. b) Local flow-induced elongation along
the curvilinear coordinate S for this kirigami specimen, for increasing Cauchy number (denoted by
the greyscale). Inset : The limit between the extended and non-extended regions at S{L “ 0.5 is
indicated by the red dot on the experimental picture.

Fig1.18b, which shows local elongation along the kirigami length for increasing speeds (fol-
lowing the gray scale color). We observe that for each curve (each velocity), the first half
is mainly in the second regime, while the other half remains almost unstretched and would
belong to the first stiffer regime based on tensile test results. However, due to increasing
shape asymmetry, this last part tends to align with the flow, which will greatly reduce its
contribution in fluid-elastic interactions. Therefore, at first assumption, a purely elastic law
described solely by K2 could be assumed. The effect of non-linearities will be discussed at
the end of this chapter.

Due to the complex local morphology that evolves with elongation, finding a fluid loading
formulation is challenging. Direct local measurement is not possible because introducing
a sensor that is small enough to not affect the deformations is difficult. To overcome this
experimental challenge, we conduct fluid force measurements on a simplified model system
of parallel rigid blades that mimic the local geometry of stretched kirigami sheets. The
measurements and associated derivations will be presented in a later section. For now, let
us suppose that the fluid forces can be expressed as two components: one normal and one
tangential to the deformed shape, as shown in Fig1.17b. fpSq “ fnpSqn ` ftpSqt. Taking
into account both the elastic behavior and the fluid force decomposition, Eq1.6 can now be
expressed with the following system of equations:

$

’

’

&

’

’

%

εpSqα1pSq `
1

K2L
fnpSq “ 0

ε1pSq `
1

K2L
ftpSq “ 0

(1.8)

1.4.2 Formulation for the fluid forces

To model the forces induced by the flow on the kirigami that causes its expansion, a semi-
empirical approach is taken. Looking more closely at our specimens in Fig1.19a , we notice
that the elongated part (red box) can be described as a network of blades with the same
tilting angle along the deformation profile. To mimic the local geometry of stretched kirigami
sheets, we set up a frame with parallel rigid aluminum tilting blades (see Fig1.19b). The
whole system (frame and blades) is mounted on a six-component force sensor (FT-Nano-43
SI-9-0.125) which measures forces in the normal and tangential direction (to the array), we
finally subtract forces on the support frame alone to obtain the load on tilted blades.
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a) b)

Figure 1.19: a) Zoomed view shows an alignment of blades (highlighted in red). b) A simplified
system of parallel flat blades is used to experimentally characterize fluid loading and mimics the
previous alignment of elementary cells in flow.

Frame and blade dimensions are detailed in Fig1.20b. We vary the orientation of the blades
and their spacing to imitate the change of the kirigami macrotexture with stretching (with
blades becoming increasingly tilted and spaced apart). The number of blades, n, can range
from 6 to 12 by adjusting the spacing between them (maintaining a regular gap for all
configurations) that effectively varies between r1.1 ´ 2.2s cm. Each blade is attached to the
frame via a 3D-printed cylinder that fits onto the blades; we reduce their impact on further
measurements through their small size and round shape. All interface pieces are connected
to the frame via pivots, as illustrated by the gray points in Fig1.20a. The blades can rotate
relative to the frame by a common angle θ, and this tilting motion can be adjusted through
two shafts placed on the top of the frame (represented by red points). The position of the
blades is marked with a black line (Fig1.20a), and it is extracted through image analysis.

a)

n

ϴ=0 ϴ=π/4

0.8 cm

11 cm

12 cm

0.5 cm
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Figure 1.20: a) Top view of the blade array. Cylindrical 3D-printed pieces connect the blades to
the support frame (with a pivot represented by the central grey dot) and to a movable part (grey
dot on the edge of the cylinders) that allows the angle of the blades to be adjusted via external
shafts (red dots). The 3D-printed pieces are marked with a black line to measure the blade angle a
posteriori. b) Characteristic dimensions of the frame (in blue) and of the n blades (in grey).

Note that the entire setup (frame and blades) can be tilted by an angle α relative to the
flow to mimic the local orientation of the kirigami sheet relative to the flow. This parameter
will be explored later in the section. For now, let us place our system perpendicular to the
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incoming flow and examine the impact of blade rotation and blade spacing on the measured
fluid forces.

Normal and tangential fluid forces on the blades system

For each blade spacing (in practice, number of blades), we varied the blade angle θ in the
range of r0, π{2s at four different flow velocities: U “ r6.7, 10.1, 13.5, 16.8s cm/s. The force
sensor recorded 1024 values per second for one minute at each angle, and the normal and
tangential forces FN and FT on the array were calculated by averaging all recorded data.
The results are plotted in Fig1.21a-b as a function of blade inclination angle θ. The flow
speed corresponds to a marker type and the color represents the number of blades. The
two force components exhibit a similar trend with respect to the tilting blade angle θ for
all blade spacings and incoming flow velocities. In Fig1.21a, the normal fluid force FN is
highest when the blades are facing the flow (θ “ 0) and gradually decreases as they align
with it (θ Ñ π{2). The tangential forces, shown in Fig1.21b, are zero when the blades are
perpendicular or aligned with the flow and highest for θ „ π{4. Note that no stall (a decline
in the tangential lift component) is observed around the classical angle of θ „ 15´ 20˝ [65].
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Figure 1.21: a) Normal and b) tangential fluid forces on the array of blades as a function of
the rotation angle of the blades θ, for different flow speed U (denoted by the marker types) and a
different numbers of blades n (denoted by the color: from blue for n “ 6 to yellow for n “ 12). b)
Dimensionless normal force FN{p1{2ρnSbU

2q, with Ab the area of a single blade, as a function of θ.
c) Fluid force coefficient CN “ FN{p1{2ρnSbU

˚2, accounting for blockage effects through an effective
velocity U˚.

In the following, we describe how fluid loading expressions are derived from measurements.
We focus here on the normal fluid force on the array FN , which is larger than its tangential
counterpart FT and thus more illustrative, but the same reasoning applies to FT . As seen
in Fig1.21a, fluid forces increase with flow speed and the number of blades (that is also
the total exposed area). To reflect these trends, results are replotted in a dimensionless
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form in Fig1.21c using the characteristic pressure force on the cumulated blade surface area
1{2ρnSbU

2, where ρ is the water density and Sb is the rectangular area of a single blade. The
collapse of the curves across U variations shows a consistent quadratic velocity dependence.
However, significant differences appear when the number of blades varies, which affects the
water tunnel blockage. To account for these blockage effects, we consider that the flow
around the blades has a higher characteristic speed U˚ than the flow ahead of the array U .
This effective speed U˚ is calculated through the conservation of mass flow rate through the
open spaces:

U˚ “ U
S

S ´ nSb
(1.9)

with S the inner area of the frame. Replacing U by U˚ in the nondimensionalization of FN

collapses all curves (see Fig1.21d). We can then define an effective fluid force coefficient (for
the tangential force as well):

CN,T “
FN,T

1{2ρnSbU˚2
(1.10)

Here we have therefore implicitly assumed an inertial flow regime. An estimate of the
Reynolds number, Re, at around 10-2000, enables us to neglect viscous effects and focus
solely on dynamic pressure forces.

Fluid force coefficients

0 /4 /2

-1

-0.5

0

0.5

1
a) b)

0 /4 /2
-1

0

1

2

3

Figure 1.22: Fluid force coefficients CN and CT for the normal and tangential forces on the array,
as a function of the blades’ angle θ. The marker style and color line are the same as defined in
Fig1.21. The red solid line corresponds to the formulation of Eq1.11

The evolution of the fluid force coefficient CN and CT the rotation angle of the blade is
shown in Fig1.22, and we now seek to approximate it with an expression CN,T pθq. The
forces on angled plates or foils have been the subject of many studies [66, 67, 68, 69],
however, most of them were restricted to low angles of inclination (below the stall angle).
To our knowledge, the present blade arrangement has been little studied in the literature
over such a range of angles. We follow a logic similar to Hoerner [66] and his cross-flow
principle which states that fluid dynamic pressure forces on an inclined body correspond
only to the velocity component perpendicular to its axis. For a single blade, this normal
velocity component is U˚ cos θ. We can then project the normal pressure force in both the
normal and tangential directions to the blade array, giving respectively 1{2ρCN0SbU

˚2 cos3 θ
and 1{2ρCT0SbU

˚2 cos2 θ sin θ, with CN0 and CT0 numerical coefficients to be determined.
The corresponding fluid force coefficient of Eq1.11 can then be formulated as:
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CN “ CN0 cos
3 θ and CT “ CT0 cos

2 θ sin θ (1.11)

Fits of the data in Fig1.22 (red lines) show reasonable agreement, and yield values CN0 “ 2
and CT0 “ 0.8, attesting that our description of fluid forces is enough accurate to be
implemented into our theoretical modeling.

Effect of the centerline orientation
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Figure 1.23: a) The normal force on the array FN as a function of the blades’ angle θ, for different
angles for the array α (corresponding to colors, from dark blue 0o to yellow 53˝) and for different
flow speeds (distinguished by markers). b) Dimensionless normal force FN{p1{2ρnSbU

˚2 cos2 αq as
a function of θ.

Our setup also allows us to change the angle of the frame itself α (the entire assembly
rotates, including the sensor), to mimic the local orientation of the profile centerline in the
flow. We measure forces at α “ r0˝, 25˝, 35˝, 45˝, 53˝s, for a single configuration with n “ 8
blades and four flow velocities (the same ones as previously). Fig1.23a shows the normal
force component FN as a function of the blades’ angle θ. We see a similar θ-dependence in all
cases, but the magnitude of the force differs: FN is maximal when the array is perpendicular
to the incoming flow and decreases as it aligns with it. This effect can be taken into account
by considering only the velocity component normal to the array U˚ cosα, as shown by the
collapse of data requested in the dimensionless form FN{p1{2ρnSbU

˚2 cos2 αq in Fig1.23b.
This approach is similar to the literature [60, 61], which accounts for the local angle of a
flexible object relative to the incoming flow by assuming that it locally experiences a normal
flow with speed U.n (with n the normal unit vector).

Formulation for the fluid forces on the effective membrane

The final step is to extend those semi-empirical formulations for fluid forces to the case of
our equivalent membrane. Unlike our model system of parallel blades, the blades’ angle and
the spacing between them do not change independently for kirigami sheets. As discussed
earlier, it is related through:

cos θ “
1

1 ` ε
and sin θ “ ´

c

1 ´
1

1 ` ϵ
(1.12)

Together with previous results from the blades’ array (see Eq1.11), it provides expressions
for the effective fluid force coefficients CN pεq and CT pεq that are elongation dependent:

$

’

’

&

’

’

%

CN pεq “ CN0 cos
3 θ “ CN0

1

p1 ` εq3

CT pεq “ ´CN0 cos
2 θ sin θ “ CT0

a

p1 ` εq2 ´ 1

p1 ` εq3

(1.13)
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Note that Eq1.12 corresponds to a clockwise buckling orientation that matches experiments
(that is θ P r´π{2, 0s). One can however change the direction of rotation of the blades
through the +○ or -○ sign of the sin in Eq1.12, which changes the sign of tangential forces,
as reported in the interlude no7.

The fluid loading is normal and tangential to the membrane then writes:

$

’

&

’

%

fN pε, αq “
1

2
ρHCN pεqpU˚cosαq2

fT pε, αq “
1

2
ρHCT pεqpU˚cosαq2

(1.14)

with H the membrane height. Note that fN and fT are defined per unit length of the
reference unstretched configuration (parameterized by the curvilinear coordinate S). Unlike
the inflation of pressurized balloon [19], the surface that is bearing fluid forces does not
extend here (meaning that the kirigami constitutive sheet itself does not stretch).

In Eq1.14, U˚ cosα denotes the speed of the flow impinging perpendicular to the membrane.
It reflects it local orientation in the channel α, and blockage effects through the effective
velocity U˚. Similarly to the blades’ array, the latter is related to the incoming speed U
and the sheet opening upon extension through the conservation of mass flow rate. Namely,
let us consider a small section of the sheet of length l and height H, which is smaller than
the frame inner height Hf , leaving clearance spaces at the top and bottom (see Fig1.9c-d).
Once the section is stretched with elongation ε, flow arriving in the extended area lpε`1qHf

with speed U passes through the openings in the sheet and clearance spaces with total area
lεH ` lp1 ` εqpHfHq, with effective speed U˚. Conservation of mass flow rate then yields:

U˚ “ γpεqU, with γpεq “
1 ` ε

ε ` p1 ´ H{Hf q
(1.15)

We take H{Hf “ 0.86 based on experimental values. Note also that the additional term
p1 ´ H{Hf q associated with clearance spaces (with Hf the frame height), prevents fluid
loading from diverging for small ε, reflecting the gradual kirigami deployment observed as
flow speed increases from zero.

Eq1.14 and Eq1.15 give a formulation for fN{T that only depends on ε and α. This function
is thus the same for all kirigami specimens, regardless of the cutting parameters. This is
verified experimentally in the following section. Note also that we consider in Eq1.15 a
uniform incoming velocity U , which does not account for potential retroaction of the sheet
presence on the flow at a large scale.

1.4.3 Comparison of theoretical predictions with experiments

Injecting the fluid forces expressions of Eq1.14 and Eq1.15 into Eq1.8, and using the non
dimensional spatial variable S̃ “ S{L, yields the equation for the membrane equilibrium
shape:

$

’

&

’

%

εα1 `
Cy

2
CN pεqpγpεqcosαq2 “ 0

ε1 `
Cy

2
CT pεqpγpεqcosαq2 “ 0

(1.16)

with Cy “
ρHU2

K2
the same Cauchy number as defined in the experimental section, and prime

now denoting the derivative with respect to S̃. The boundary value problem given by Eq1.16
and Eq1.7, is solved using shooting methods, using the bvp4c function of Matlab. The initial
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Figure 1.24: Comparison between theoretical predictions and experimental results (for the spec-
imen with parameters Ls “ 3.16 cm,dx “ 1.9 mm, and dy “ 4.4 mm). Theoretical predictions are
computed for logarithmically increasing values of Cy in 103–10 (denoted by the gray scale). a) Shape
profiles, b) Local elongation ε along the curvilinear coordinate S, c) Local inclination α.

seed is chosen to guarantee convergence at low Cauchy values. The shape is then calculated
for increasing Cy values by using the previously obtained solution as the initial condition for
the shooting method at each iteration. Note that the Cauchy number is the sole parameter,
which captures both the impact of stiffness and velocity variations.

Fig1.24a shows the resulting shapes for Cauchy numbers in the same range as experiments.
The model reproduces qualitatively the asymmetric expansion observed in experiments, with
the gradual deviation of the lobe to one side. The model is also able to predict the local
deformation field. In Fig1.24b, elongation ε follows the same pattern as the experiments,
with half of the original sheet gradually elongating with Cy while the other half remains
largely unstretched. A comparison of the local profile angle α also indicates good agreement,
both in terms of the values and the trend, with the unstretched part becoming increasingly
aligned with the flow for high Cy (α “ ´90o), see Fig1.24c.

Further analysis of the deformation amplitude, shown in Figure 1.25, shows that the model
captures as well the experimental sublinear trend ymaxpCyq, although it overestimates the
displacement. The agreement is however reasonable given the absence of any fitting parame-
ter and the simplifying assumptions. Some of the discrepancies could stem from mechanical
nonlinearities, which are discussed later in this section. This does not change the observed
trends but tends to slightly reduce the elongation and amplitude of ymax.

This simplified model, therefore, corroborates experiments and captures the underlying
fluid-elastic mechanisms governed by the dimensionless Cauchy number. It also reveals the
critical role played by the kirigami substructure in modulating the magnitude and direction
of local fluid forces. The evolution of pore size and shape affects the velocity of interstitial
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Figure 1.25: Theoretical evolution of the dimensionless deformation amplitude ymax{L with the
Cauchy number Cy, compared to experimental data points (same legend as in Fig1.15).

flows (blockage effect) and therefore the fluid dynamic pressure, as well as the orientation
of the surfaces subjected to these pressure forces.

Interlude no7 : Polarity - the first meeting

Polarity is defined as the direction of rotation of the elementary cells when they
move out of the plane. As suggested in the Fig1.16, inverse the polarity of a uniform
kirigami pattern (in practice flip the sheet side facing the flow) provide a symmetrical
expansion pathway. To confirm this, we perform experimental measurement of a single
pattern for the two polarity states identify by their respective sign +○ and -○. As
expected the reached shapes expand symmetrically and the resulting lobe deviates in
an opposite direction, with a similar amplitude of deformation (see attached graph).
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Reversing polarity theoretically involves changing the sign of the rotation angle θ (a
variable that only depends on elongation), which results in a change of direction for
the local tangential force ft. The theory also predicts that the expansion will be
symmetrical between the two polarities, which is supported by the above graph.

The theoretical model can be expanded to incorporate variations in the blade tilt orientation
along the sheet (as described in Chapter 2), or non-uniform cutting patterns (resulting
in non-uniform stiffness, as discussed in Chapter 3). It will also be valuable for inverse
design (finding the cutting pattern that results in a specific shape), providing insights, and
guiding optimization algorithms (as implemented in Chapter 4). We will now conclude this
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section by discussing an intriguing aspect revealed by the model, namely that fluid forces
are independent of the cutting pattern, and the impact of mechanical nonlinearities.

1.4.4 Fluid forces do not depend on the cutting parameters

We have demonstrated that the cutting pattern is crucial as it affects the sheet’s elastic
resistance to deformation and creates the blade-like mesostructure that produces asymmet-
rical shapes in flow. However, our previous analysis showed that the fluid loading on the
sheet is only dependent on the elongation ε and the local orientation of the sheet in the flow
α, and not on the cutting parameters. In fact, our theoretical description of the sheet as a
continuous effective membrane does not include any information about the cutting geometry
(Ls, dx, and dy), except for its impact on the stiffness K2. In this section, we verify this
point experimentally by studying the deformation of kirigami sheets in flow with different
cutting patterns but the same effective stiffness.
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Figure 1.26: a) Example of two distinct cutting patterns with the same effective stiffness K2. In
the latter case, the wider spacing between rows of slits is balanced by longer slits. b) Force-elongation
curves for three iso-stiffness kirigami sheets.

For two patterns A and B to have the same effective stiffness K2 in the second regime of
deformation, their cutting parameters must meet the following criteria (according to the
stiffness law formulation of Eq1.2):

NA
y

2NA
x

dAx
pLA

s ´ dAy q3
“

NB
y

2NB
x

dBx
pLB

s ´ dBy q3
(1.17)

In practice, we choose to fix the parameters of one pattern and vary the spacing between
rows of slits dx of the other. This variation is then compensated in the transverse direction
(slit length Ls and spacing dy) to preserve the stiffness K2. An example of two iso-stiffness
patterns with different cutting parameters is shown in Fig1.26a. We manufactured three
sets of kirigami sheets (with 3 to 4 specimens per set) with three different stiffnesses K2 “

r1.2, 3.1, 11sN/m. In Fig1.26b, we present the stress-strain curves obtained from tensile tests
for three specimens with the same K2 “ 11 N/m. Despite some variations, behavior in the
second regime is similar for all patterns, with similar values of K2 (indicated on the graph).
Deviations at higher strains are due to the emergence of the third regime of deformation,
which is dependent on the cutting parameters [45, 58] and is not captured by Eq1.17.

Fig.1.27a shows the deformation profiles for increasing flow velocity, for the four kirigami
sheets with K2 “ 3.1N/m, represented with different colors (for clarity, only five speeds
are shown). The four specimens deform similarly in the flow. The evolution of the defor-
mation amplitude is also shown in Fig1.27b, alongside two other sets of kirigami patterns
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Figure 1.27: a) Shape profiles for increasing flow speeds for the four iso-stiffness patterns with the
same K2 “ 3.1N/m, distinguished by different colors. b) Deformation amplitudes as a function of
the incoming flow rate in liters per minute) for all specimens, with three sets of curves corresponding
to the three tested stiffnesses (differentiated by line styles).

with different stiffnesses (denoted by the line style, with one curve corresponding to one
specimen). Specimens with the same stiffness exhibit similar deformation amplitudes, even
though some patterns have cutting cells that are up to twice as large as others. The cutting
parameters thus primarily affect the effective stiffness, and not the evolution of fluid forces
with elongation, which also supports the relevance of our continuous theoretical description.

1.4.5 Effect of mechanical nonlinearities

In our study, we modeled kirigami sheets as a membrane with linear elasticity in order to
construct the simplest possible model that could replicate observed behaviors and capture
underlying mechanisms. Mechanical nonlinearities can nonetheless be incorporated in the
theoretical model to assess its effect on flow-induced deformations. To that end, in this
sub-section, we are going to modify the membrane constitutive law to account for an initial
stiffer behavior. As reported by Isobe et al. (2016) [43, 45], this first regime can be described
by a linear force-extension relation, with associated stiffness K1.
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Figure 1.28: a) Tensile force per unit length N{L as a function of elongation ε, for specimens with
varying slit length Ls. An initial linear regime with stiffness K1 is followed by a second softer one
with stiffness K2. b) Theoretical non-linear constitutive law of Eq1.18 (solid line) superimposed to
experimental force data replotted in dimensionless form N{pK2Lq. The dashed line corresponds to
the elastic law N “ K2Lε used previously.

This K1 is dependent on the cutting parameters (as illustrated in Fig1.28a), but is related
to K2 by K1{K2 „ pdx{tq2 with t the sheet thickness (see the previous section of mechanical
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properties). The two regimes are indeed both associated with the bending of the elementary
plates delineated by slits, but bending occurs in-plane for the first one and out-of-plane
for the second. The cross-over from hard to soft regime occurs when the two competing
energies of in-plane and out-of-plane deformations are equal, which happens for a critical
elongation εc „ pt{dxq2 (described in [43, 45]). Based on these scalings, force data can be
recasted in dimensionless form N{pLK2q in Fig1.28b, showing a reasonable collapse in the
two regimes discussed. This serves as a basis to define a constitutive law as a piece-wise
linear function (solid black line in Fig1.28b), connected by a third order polynomial in the
range rεc ´ ∆, εc ` ∆s (with ∆ “ 5.103) to ensure differentiability:

N

K2L
“

#

λε if ε ă εc ´ ∆

ε ` εcpλ ´ 1q if ε ą εc ` ∆
(1.18)

With λ “ K1{K2 “ 15and εc “ 1.4.102, estimated experimentally from tensile tests and
averaged overall kirigami specimens. Note that here, parameters λ and εc are taken as
constants as a first approximation, disregarding their dependence on parameter dx. Similar
values are however obtained for the series of specimens with varying dx.
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Figure 1.29: a)Theoretical and experimental evolutions of the dimensionless deformation amplitude
ymax{L with Cy. b) Local elongation along the curvilinear coordinate S for logarithmically increasing
values of Cy, for nonlinear (solid lines) and linear (dashed lines) mechanical properties

Theoretical deformations in flow are computed using the modified constitutive law of Eq1.18,
for increasing values of the Cauchy number. Fig1.29a shows the evolution of the dimension-
less amplitude ymax{L , which is compared to the results of the model with linear elasticity
as well as experimental data. Accounting for mechanical non-linearities slightly reduces the
amplitude of predicted deformations, but does not modify the observed trends. Further
comparisons of local deformations fields for both models in Fig1.29d also show similar re-
sults, with slightly smaller elongations for the one with mechanical nonlinearities. Those
smaller deformations can be interpreted in light of the positive offset in the force-extension
curve of Fig1.28b. Higher tensile restoring forces are thus opposing fluid loading which
decreases both the local elongation and global amplitudes.

A more realistic constitutive law leads to slightly better predictions compared to our pre-
vious linear elastic formulation. However, our linear approach offers a universal description
without requiring any additional parameters, aside from Cy, to account for variations in the
cutting pattern. Both models exhibit a similar trend that accurately captures experimental
observations at all scales. As a result, we use the simpler elastic law in our subsequent
analysis.
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1.5 Conclusion

This chapter introduces the main tools needed to understand the interaction between a
kirigami sheet and its surrounding fluid flow. We begin by explaining the singular mechan-
ical behavior of a uniform cutting pattern consisting of parallel slits that turn flat materials
into highly stretchable sheets with meso-textures emerging from the local cells bucking.
We establish a direct correlation between cutting parameters, local structural deformation
modes, and mechanical properties. We also reveal the existence of a nonlinear constitutive
law determined by the local design. We finally provide an analytical expression for the effec-
tive stiffness, which describes the elasticity of the entire sheet, by modeling each elementary
cell as a linear spring with a rigidity tune through the local design.

Our extensive experiment in a water channel revealed the mechanisms behind the expansion
of a kirigami sheet in flows. More specifically, we pinpoint the role of the stiffness that mod-
ulates the amplitude of deformation, which then results in a balance between the structural
elasticity and the external fluid loading, embodied by the Cauchy number. We also find
a qualitative argument to describe the unusual asymmetric expansion of a uniform design:
the local cell tilting leads to the emergence of a transverse fluid force that shifts the global
shape aside.

The porous properties also influence the resulting shapes, the surrounding flow passes
through our meta sheet and induces large deformation which impacts the local velocity
field. This complex interplay is theoretically described through continuous modeling, which
described our kirigami sheet as an elastic membrane that undergoes external fluid loads.
The analytical expression of the latter is derived from a semi-empirical approach to analyz-
ing a rigid system of blades network. After having dealt with the uniform cutting pattern,
it is time to take the plunge and investigate a non-uniform one!
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2
Global shapes tuning through

polarity control

Edvard Munch : ”Without fear and illness (bipolarity) I could never had accomplish all I have”

Our work has demonstrated that the 3D meso-texture formed during the out-of-plane buck-
ling of kirigami cells determines the direction of fluid load. The direction of cell rotation,
known as polarity, impacts local forces and creates asymmetrical shapes for unipolar patterns
(Chapter 1). In this chapter, we will vary the local polarity spatially to study its effect on
shape-shifting. We will begin by examining bi-zonal patterns with opposite rotations. By
adjusting the size of each portion, we can move from an asymmetric to a symmetric shape,
which has not been achieved with homogeneous patterns. Having established the role of po-
larity in fluid direction, we will extend our modeling to include this feature and test more
complex multipolar configurations and show the limits of this new lever.
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2.1 Fluid force orientations and polarity control

External loads commonly encountered in mechanics are typically uniaxial: tensile or com-
pressive forces applied on materials to determine their behavior and nature, or the ubiquitous
volumetric gravity load. In this line, kirigami sheets have been extensively studied through
this type of load in order to characterize their mechanical properties and their link with the
cutting pattern [43, 58, 45].

Here we are dealing with fluid loading, whose specific characteristics were discussed in
the previous chapter as part of the development of the theoretical model, including the
dependency of the orientation of the surface on which the force is applied. As we will see,
we can modify our cutting technique to take advantage of this property. This will be further
explained in the following introductory section.

2.1.1 Why is fluid loading so specific?

The forces exerted on deformable systems by the surrounding fluid are closely tied to pressure
and velocity fields. One example of this is the static pressure force for an elastic balloon, as
drawn in Fig2.1a. The pressure inside the balloon (Pi) is slightly higher than the external
pressure (P0), resulting in a force acting along the normal of the balloon surface (from inside
to outside). This leads to the deformation of the membrane and an elastic tensile force in
response, which ultimately results in the balloon’s equilibrium state[70].

The ”clapping book phenomenon” described by Buchak et al. (2010) [71] provides a more
complex illustration. It involves a stack of partially clamped paper sheets placed in a wind
tunnel (see Fig2.1b). The fluid flow lifts the pages, causing them to stack together, then
gravity makes them fall, and the cycle repeats.

Pi

P0

a)

Pi

P0
T

b)

Figure 2.1: a) The fluid trapped inside the balloon imposes a loading purely normal (black arrows)
on the elastic membrane inducing internal tensile stress (green arrows). b) Snapshots of the ”clap-
ping book phenomenon” at different time slots for a given fixed flow speed and its schematic view,
extracted from [71].

The authors develop a theoretical model to explain the periodical clapping book phe-
nomenon. They consider the fluid forces that depend on the local orientation of the sheet,
represented by the angle θ (shown in Fig2.1b). They also incorporate a non-trivial depen-
dence on the spatial variation of this angle, which takes into account the fluid acceleration
that follows the sheet’s shape (known as reactive forces). By balancing these fluid forces
with the bending moment and gravity load, they can predict the periodic clapping process

As these examples illustrate, fluid forces act on the surface and depend on its local incline,
making them particularly relevant for deformable systems that change shape in response to
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external loads. This distinguishes fluid forces from other forces commonly encountered in
mechanics, such as gravity, friction, and inertia [19]. We will now delve into the specificities
that arise with kirigami sheets.

In our description of fluid loading, we considered the force distribution to apply to the
normal of an equivalent membrane surface. However, the micro-texture created by rotating
cells results in a second tangential component that runs along the membrane relative to the
polarity. This is a key concept that refers to the direction in which the elementary cells
rotate when they buckle out of the plane during expansion. In the following we will denote
a counter-clockwise rotation as +○ and a clockwise rotation as -○.

In Chapter 1 we highlight that polarity causes symmetry breaking in flow-induced expansion.
flipping the unipolar kirigami sheet (=inverting the polarity) leads to symmetrically inverted
deformation lobe localization (see interlude no7). This first insight into the polarity effect
paves the way for further investigation.

Up to now, we studied homogeneous specimens with a uniform polarity distribution through-
out the pattern (unipolar kirigami sheet). In this chapter, we aim to manipulate the local
polarity within the same pattern to gain control of local fluid efforts and provide new mor-
phologies. Let’s start by describing how to tune the cell tilt kinematics.

2.1.2 Buckling control: from Euler column to magic notches

In chapter 1, we discussed the nonlinear mechanical behaviors of kirigami structures and
their connection to deformation states. Indeed beyond a critical tensile force, the uncut
part of the sheet suddenly rotates out of the plane, and all elementary cells tilt in the
same direction, referred to as polarity. This buckling transition is influenced by cutting
parameters and well documented in the literature [43, 57, 56, 55, 44]. Our purposes are
to bias this mechanical transition and gain control over the local polarity. One commonly
used method for controlling the buckling process is adding defects, which we are going to
illustrate with the following simplified example.

=
P>Pe P>Pe

*

P P

2 post-buckling shapes 1 post-buckling shape

a) b)

Figure 2.2: Euler’s column (with free-clamped boundary condition) undergone a compressive force
P gives: a) two post-buckling solutions. b) only one solution if a default is added

Let us consider a homogeneous and isotropic slender beam (known as an Euler column)
as shown in Fig2.2. Beyond a certain load Pe the beam state changes; rather than being
compressed, the beam is bending: this transition is a classical example of a buckling process.
The critical force Pe depends on the beam material and boundary conditions. Despite being
widely described and predictable [19, 20], the direction of beam bending is unknown. In a
2D system as in Fig2.2a, the buckled beam can bend in two directions (right or left), which
are energetically equivalent.

To bias the buckling process, one common idea is to introduce defects in the system, as
a cropped part in the beam in Fig2.2b. The latter creates a bias in compression forces
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which favors the right solution, a new critical load P ˚
e . Thus adding a preconditioned defect

removes the final state degeneracy and allows better control of the resulting shapes of a
buckling process, let us extend this idea to the kirigami pattern.
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Figure 2.3: a) Cut (lines) and notch (rectangles) pattern of kirigami sheet, black rectangles for the
front side notches and grey for the reverse side. A 3D schematic view of the notch sizes is in the red
box. b) Bipolar kirigami specimen from [56], by inverse the position of notch pattern (recto- verso)
they could invert the polarity at the middle of the pattern (green and yellow areas), the upper part
turns counterclockwise, and the lower part clockwise.

For our kirigami sheets, the deflection of each cell, occurring between the in and out of
plane deformation regimes, is similar to that of the Euler beam instance. Indeed at a first
glance, nothing conditions post-buckling bending directions of the elementary cells, in other
words, polarity is not directly controlled. However, as discussed in Chapter 1, the polarity
is preserved throughout the sheet as all cells bend in the same direction. This can be
attributed to our choice of cutting pattern, which is restricted to an asymmetric bending
mode. This ensures uniformity in polarity, which is not predictable when the sheet is in
its undeformed state. For more information, (more details in [55] and a quick overview on
interlude no8 gives some insights about the post-buckling shapes reached).

Thus for the uniform kirigami sheets, each polarity state +○ and -○ is enabled and leads to
a symmetrical expansion of the deformation profile toward the left and right respectively.

In order to gain control of local polarity and access to new morphologies we need to influence
the buckling process. In this way, Tang et al. (2017) had the ingenious idea of introducing
a notch sub-pattern near each slit [56]. Notches are staggered on the front and back side
(as shown in Fig2.3a), and their presence breaks the degeneracy related to the polarity by
inducing a bias when the kirigami sheets experienced an external tensile force, such that
the notches play a similar role as defects in Euler’s column.

The authors go further and propose multi-polarity configurations, (ie where the notch pat-
tern is non-uniform and changes along the kirigami sheet), for example, Fig2.3b presents a
bipolar configuration, the lower half (colored in green) is designed to tilt for anti-clockwise
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+○. Repeating the same notch pattern as the bottom half but with switching the forward
and back notches positions, the top half (colored in yellow) will then tilt clockwise -○.

The method developed by Tang then allows for bias of the buckling process and control of
the rotation side of the elementary blades. Based on this technique we will probe the effect
of a non-inform polarity across a given pattern. Let us begin with a bipolar configuration
(two opposite signs) that we are going to describe in the next section.

Interlude n08 : Post-buckling shapes

We can predict the post-buckling shape of the elementary cells through the reduced
beam model employed in interlude n4. According to the picture below, each kirigami
cell can be considered as a combination of two cantilevered beams undergoing flexion
due to external load F (representing the global tensile force in a tensed kirigami
sheet). The equation for deflection ypxq, with x as the curvilinear abscissa in the
initial configuration, is derived from the Euler–Bernoulli beam theory.

EIyp4q “ 0 ÝÑ ypxq “
F

6EI
x2p3L ´ xq

L
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To gain an initial understanding, we set the bending modulus to EI “ 1 and beam
length L “ 0.5 and plot the deflection for various values of F . These shapes resemble
experimental observations and show good agreement, despite the assumption of low
deflection.

2.2 A relevant specimen: bipolar case

The method developed by [56], allows multiple polarity inversion along the pattern. To be
more familiar with the interplay between local polarity changes and deformation shapes in a
flow, we mainly focused on a bipolar case, characterized by a single polarity inversion, that
we are going to present in the following.

2.2.1 Parametric definitions

As defined in Fig2.4a, the polarity distribution along the cutting sheet is split into two
parts (highlighted by the shaded area). The transition between each of them is localized
by the parameter a P r0, 1s, such as the length aL corresponding to the shaded part size,
conventionally defined as the left portion of the pattern. The illustrative specimen in Fig2.4a
represents the case a “ 0.5 (i.e. a transition in the middle of the cutting pattern). Notice
that the parameter a only localizes the transition, thus each part can have both polarities
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(as a reminder: anti-clockwise: +○ and clockwise: -○), so we can have `´ or ´` for a
given a.

Actually, the polarity is a property defined relative to the incoming flow direction U (see
Fig2.4c) and can be inverted by flipping the pattern from a recto side to a verso one. In
this way, each side corresponds to a polarity configuration (or state) distinguished by their
signs `´ and ´` in the rest of the manuscript.

aL

a) recto verso

30 mm

7.5 m
m

5.7 mm

2.6 mm
4 mm

d)

a = 50 % 43 % 37 % 31 % 25 % 18 %
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+
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Figure 2.4: a) Both sides of a typical bipolar kirigami pattern, the notches network is staggered
from one side to the other. The polarity inversion is localized at a distance aL “ 0.5L from the
left end, each part of the kirigami sheet buckle along an opposite direction. b) Definition of cutting
parameters for the parametric study on a : pLs, dx, dyq “ p30, 3.75, 5.7q mm and notches definition
pln, wn, tnq “ p0.4 ˆ Ls, 2.8 ˆ t, 0.6 ˆ tq with t “ 1.5 mm. c) Schematic side views of the specimen
a) each polarity configuration is defined according to the flow direction U , in practice to invert the
polarity state we flipped the pattern which keeps a unchanged. d) All the patterns tested for our
parametric study on a (verso view only)

Two parametric studies were carried out on these bipolar specimens; we first probe the effect
of a, by varying this parameter from 0.18 to 0.5 through six different parameters all drawn
in Fig2.4d. In this first experimental campaign, we impose a similar cutting pattern for all
sheets detailed in Fig2.4b, which ensures to keep constant the effective stiffness as we will
check in the next subsection.

By this means, we only vary the notches distribution and then shift the transition location.
Notice also that we don’t experimentally investigate values of a higher than 0.5, because we
supposed that the case pattern a and 1 ´ a are equivalent, in the sense that they should
deform symmetrically under flow (a further discussion will be proposed in the theoretical
section of the chapter).

We also perform a second campaign in which we keep fixed the parameters a “ 0.5 value
and vary the effective stiffness by changing the length of the slit for three patterns Ls “

r2.75, 3, 3.25s with associated effective stiffnesses varying from K2 “ r7.7, 3.9, 2.7s. Through
these two campaigns, we probe the effects of stiffness and polarity independently and then
provide a first insight into nonuniform kirigami design.
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2.2.2 Manufacturing process, notches between slits

To engrave notches near the cuts, we need to switch to a different material as the current
thin mylar cannot sustain deep engraving without risking perforation. We opted for 1.5mm
thick rubber sheets, which offer the same thickness and elasticity as the PDMS used by
Tang et al. (2017).

However, laser cutting the new material is more challenging than Mylar films, so we use
a two-step process. First, we create the slit tessellation, then we engrave the notches on
each side of the previously cut sheet. To stay consistent with Tang’s work, we selected
characteristic notch sizes that are median to their values: pln, wn, tnq “ p0.4 ˆ Ls, 2.8 ˆ

t, 0.6ˆ tq. These lengths remain constant for both campaigns previously mentioned, as they
have little impact on the mechanical behavior in the out-of-plane regime, as noted in [56].
Let us check this point in the following.

2.2.3 Stiffnesses seem similar

To confirm that a value does not impact the mechanical property and determine the effective
stiffness of the six specimens of the first campaign (same cutting parameters), we conduct
uniaxial tensile tests on a Zwick machine equipped with a 100 N load cell.
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Figure 2.5: a) Tensile forces as a function of displacement for all kirigami bipolar specimens defined
in Fig2.4, it exhibit the same trend so an equivalent effective stiffness K2 “ 3.9N{m .b) Zoomed
view of the polarity transition (red arrow) for the specimen a “ 0.5 at the configuration r`´s.

Figure 2.5a shows the force-displacement curves for the bipolar pattern set, with each color
representing a value of parameter a. The non-linear mechanical behavior mentioned in
Chapter 1 is still evident, including the two linear regimes and the sharp increase in forces
at high displacement. The variation in a has no effect on the behavior, as the curves remain
similar regardless of the deformation regime and a value, suggesting that the mechanical
behavior is solely determined by the cutting pattern. This leads to an estimated mean
effective stiffness of K2 “ 3.9N{m. This implies that all specimens will have a comparable
Cauchy number in subsequent sections (keep that in mind !).

One can also notice that the transition between deformation regimes is smoother with a
rubber sheet compared to previous specimens made with mylar films. This is because the
presence of notches reduces the critical force for out-of-plane cell buckling [56] and the
gravity effect also tends to reduce the non-linearities and trigger the pore opening at low
tensile load (see the interlude no9 for more details).

Before describing the result of the first experimental campaign, let us improve the image
processing methods introduced in chapter 1.
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Interlude no9: Impact of weight on tensile measurements

g

fixed end

free end

The rubber sheet is significantly heavier than the
mylar one, due to the large difference in thick-
ness (15 times thicker). As a result, the rubber
kirigami tends to stretch under its own weight
when in a vertical position, as shown in the at-
tached picture. One may consider the impact of
weight on displacement force measurements. To
quantify this effect, we aim to estimate the typ-
ical displacement caused by gravity. We do this
by balancing the elastic restoring forces with the
weight of the kirigami along its length.

k∆Lg “

ż L

0
ρrgtHxdx

by integrating :

∆Lg “
ρrgtHL2

2k
“

ρrgtHL

2K

A direct calculation shows that the change in length due to gravity (∆Lg) is approx-
imately 24 mm, which is around 10% of the maximum displacement reached during
our tensile test. Thus, the effect of gravity on the stiffness measurement of the second
regime K2 can be disregarded. However, it’s important to note that gravity alone is
able to open the top part of the kirigami sheet. In this region, the weight loading is
higher than the critical buckling force. This is why the transition from in-plane to
out-of-plane deformation appears smoother for rubber kirigami sheets

2.2.4 Semi-automatic image processing methods

The previous chapter manually extracted deformation profiles by pinpointing the center of
each elementary cell. This method allowed us to determine local variables such as elongation
(ε) and profile inclination (α). However, this method is too much tedious and does not
provide information on blade inclination. To overcome this and work faster, we developed a
custom Matlab algorithm to automate the profile extraction which is processed in two steps
as illustrated in Fig2.6a and described in detail below.

We ”assist” cell detection by marking the cell centers with a black line (refer to Fig.2.5b).
The line only marks the cells’ centers, leaving a white gap between each blade. Such as
during the thresholding step, our algorithm detects only the black line. Lastly, we use the
Matlab function ”regionprops” to fit all detected cells as equivalent elliptical shapes. These
ellipses are defined by their ”centroid” (which represents the center of the kirigami cell),
and the inclination angle φ relative to the flow direction (as defined on Fig2.5c. The angle
runs from ´90 to 90 degrees, where φ “ 0o represents a blade facing the flow, and ˘90o

corresponds to a parallel configuration. The sign follows the polarity definition, with φ ă 0
indicating a -○ configuration.

Our semi-automatic method provides a rapid and precise extraction of deformation pro-
files and local variables. Its efficiency was checked by comparing it to our previous manual
method and by verifying the angles with direct measurement on ImageJ for selected speci-
mens, all present a very good agreement.
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Figure 2.6: a) The image processing method is based on two major steps, 1) thresholding: from
colorized pictures, we make a binary to extract the center of each blade (deformation profile ex-
traction). 2) we fit each connected component with an ellipse (blades tilting angles extraction). b)
Zooming view of extracted and fitted blades at the last step. c) Schematic view of variables extracted
from our custom image processing program.

2.3 A-symmetry control in flows

In this section we will detail the different experimental studies on bi-polar specimens, we
will evaluate the impact of the parameter a, the stiffness K2, and the hiding role of polarity
inversion, but first, let us start with the symptomatic and symmetric case a “ 0.5.

2.3.1 Case a=0.5 symmetric profiles

According to the definitions introduced in section 2.2, the polarity inversion is located at
the center for this specimen, such that each half portion rotates along an opposite direction,
identified by their the +○ or -○ sign (depending on the direction relative to the flow). We
will then distinguish the two polarity states, namely: `´ and ´` . It’s now time to put
the specimen in the water channel.

Polarity control splits the response

Unlike the uniform patterns explored in Chapter 1, this bipolar kirigami achieves a symmet-
rical shape when in a flow as shown in the two pictures in Fig2.7a (one for each configura-
tion), taken at U “ 21cm{s. Both polarity states have their lobe localized in the middle of
the water channel, but with different morphologies: the ´` case results in a parabolic-like

shape, while the `´ exhibits a semicircular-like one.

This observation holds true at any flow rate and results in different expansion kinematics,
as shown in the graph in Fig2.7b, with each configuration indicated by a different line style.
Additionally, the amplitude reported in Fig.2.7c reveals that the parabolic shape of the
´` configuration has higher ymax values than the reverse polarity, especially for high flow
speeds regimes.

Before discussing the development of local variables and the origin of these two splitting
solutions, let us emphasize the new behavior that arises from the bipolar case. Unlike the
well-known homogeneous case, where the +○ or -○ uniform polarity (unipolar specimen)
provides two asymmetric deformation profiles, but which follows a symmetrical deviation of
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Figure 2.7: a) Symmetric deformation profiles of the bipolar kirigami sheets a “ 0.5 atU “ 21cm{s,
for the r´`s case the left half rotates clockwise while the right one rotates counterclockwise as
indicated by the inset schematics, and inversely for the r`´s case. b) Expansion kinematics of both
polarity states when increasing the flow (denoted by the grayscale). c) Deformation amplitudes of
graph b) spotted by their respective markers and line styles

the lobe to the right or left with a similar amplitude for both configurations (see chapter 1,
and interlude no7). The bipolar pattern results in two non-symmetrical solutions according
to the polarity state considered, each with a unique morphology and amplitude. Therefore,
controlling the polarity of the kirigami sheet allows for two different solutions based on the
flow direction. Next, we will examine the impact of this characteristic on local elongation
and angular variables

Local variables as a function of polarity state

The local variables calculated from image analysis are shown in Fig 2.8. Let us begin with
graph a) which displays the elongation at various flow velocities (denoted by the grey color
gradient) as a function of the curvilinear abscissa S{L. As for the global shapes, each polarity
state yields a different strain evolution. while the semicircular shape of `´ stretches mainly
around the middle of the sheet, with a peak of strain around S{L „ 0.4 ´ 0.6, the inverse
configuration elongates the areas near the boundaries. These different trends are in line with
the pictures reported in Fig2.7a, where the parabola solution is less deform at the center of
the lobe and more at its edges than the semicircular one as suggested by the schematic view
of the tilting blades (see inset of each photo). Thus, the differences in expansion kinematics
and resulting global shapes can also be detected at the local level through the examination
of the elongation for instance.

With our new image processing algorithm, we can now determine the φ angles that each
cell forms relative to the incident flow (as defined on Fig 2.6c). These angles are shown on
the graph in Fig2.8b and reveal a clear difference between the two polarity states. The ´`

configuration shows values close to ´90o, meaning the cells are normal to the flow, while the
`´ solution gradually moves towards 0o as velocity increases, with blades almost aligned
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Figure 2.8: a) Local strains as a function of curvilinear abscissa for both polarity states (denoted
by line styles) when increasing flow velocities (greyscale color). b) Local tilting blades angles φ
relative to the flow direction.

with the flow direction for large flow rate. This trend can be also appreciated in the real
images in Fig2.7a for both configurations.

All of these variables highlight the significant difference that emerges from bipolarity. This
new lever thus induced the coexistence of two solutions for the same pattern depending
on the side exposed to the flow (namely: configuration or polarity state). Having a better
understanding of the typical response of a bipolar kirigami and the two configurations, we
will now discuss the results of the first experimental campaign, which focuses on the impact
of the parameter a.

2.3.2 Playing with a to adjust symmetry

The position of the transition, represented by the values of a, affects the size of each sub-
portion of polarity. Here we study the impact of this parameter on shape-shifting caused
by flows, by testing six values of a, whose patterns are shown in Fig2.4d.

To get a first idea, pictures of deformation profiles for different a at the same flow speed
U “ 32cm/s are reported in Fig2.9a-b, where each row corresponds to a polarity state and
column a value. For each picture, the transition is highlighted by a red circle on the cell
concerned.

a=0.18 a=0.25 a=0.37 a=0.43+

U

+

a)

b)

configuration

configuration

Figure 2.9: Typical shapes in flows for four specimens with varying a values from 18% to 43%
at U “ 0.32m/s, the transition is localized by a red circle around the concerned cell. Each row
corresponds to a polarity state: a) r´`s and b) r`´s

After quickly reviewing the pictures from left to right (in increasing order of a), we see
that for a fixed incident flow and polarity, the shapes vary. As a increases, the morphology
becomes more symmetrical. A low a results in a nearly uniform pattern with most cells
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rotating in the same direction, leading to an asymmetrical lobe as seen in chapter 1 (unipolar
specimens). However, when the polarity inversion is close to the center and the symptomatic
case of a “ 0.5, the forms tend toward a symmetrical morphology. This holds for both
polarity states (configuration), even if the shapes are slightly different.

Our observation is confirmed by Fig2.10a, which plots the deformation extracted from the
pictures using a parula color gradient (from dark blue a “ 0.18 to orange a “ 0.5) to
denote the a value. The deviation from an asymmetric to a symmetric shape can be easily
distinguished at a fixed velocity and varied a. the polarity effect can be also noticed, with
the ´` solution (solid lines) being more deformed than the `´ case (dashed lines). To
highlight these two results, a new type of graph is presented in Fig2.10b, which we are going
to detail.
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Figure 2.10: a) Deformations profiles for all a values (denoted by parula scale color) at their two
polarity states (line styles) at fixed flow velocity U “ 0.32 m/s (the same as in Fig2.9). b) Trajectories
of the cells associated with the maximal deformation, each point corresponds to one velocity, each
curve one pattern at their respective polarity state (line style). The deviation xmax are the abscissa
attached to the amplitude ymax

Instead of just focusing on amplitude evolution (i.e ymax) as in the previous chapter, we
propose here to include the corresponding xmax abscissa to better track the cell’s trajectory
with maximal deformation at each velocity (a point a speed). This plot ( Fig2.10b) enables us
to study the lobe trajectory and quantify its asymmetry. Thus, a symmetrical deformation
lobe (orange curve for) associated with a “ 0.5, will result in a trajectory close to the center
of the vein (x{L “ 0.5marked by a dotted red line), while an asymmetrical profile like that
of the dark blue curve for a “ 0.18 will show a curved trajectory shifted to the left for the
`´ configuration or to the right for the opposite polarity state.

This graph exacerbates the impact of parameter a, which affects the symmetry of the shape
underflow, as seen in the increasingly symmetrical order of the trajectories with increasing
a. This graph also reveals the non-symmetry between the two polarity states, with the `´

configuration profiles having lower amplitude and greater lateral deviation than for ´` .
We will discuss this further when comparing with the theoretical model, which allows a
more comprehensive examination across the entire range of a values (from 0 to 1).

2.3.3 Side campaign: stiffness and polarity

The second experimental campaign examines the variation and differences in shapes resulting
from changes in effective stiffness (i.e. cutting pattern). Three patterns with a similar
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number of cells (Nx “ 16) and fixed value of a “ 0.5, but different effective stiffness K2 “

r7.7, 3.9, 2.7sN/m, are tested in flows. We report their respective deformation profiles for
both configurations in Fig2.11a-b, where each curve color corresponds to one pattern (i.e
stiffness value).
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Figure 2.11: Deformation shapes of 3 bipolar kirigami sheets with a “ 0.5 fixed and various slits
length Ls “ r2.75, 3, 3.25s and their respective stiffness K2 “ r7.7, 3.9, 2.7sN/m for both configura-
tions, a) r´`s parabola-like shapes. b) r`´s semi-circular-like one. c) Their respective amplitude
ymax evolution against Cauchy number Cy, the black lines represent the theoretical prediction.

First note that the trends suggested by Fig2.11a-b, confirm the result of chapter 1: a higher
stiffness results in lower expansion. This point is attested in both polarity states, which
conserve their symptomatic shapes previously presented in the first insight of subsection
2.3.1: parabola like for ´` and semicircular for `´ , all the more marked that the stiffness
is low.

Our definition of the Cauchy number Cy “ ρU2H{K2 and its associated hydro-elastic forces
balance are used to cast the amplitude evolution in Fig2.11c, normalized by the sheet length
L. The results reveal a collapse onto two different curves according to the polarity state. This
master curve splitting is a reminiscence of the effect of nonuniform polarity and highlights
that the Cauchy number fails to capture this effect: one pattern, one Cy but two shapes.

Our experiments demonstrate the effectiveness of using polarity to control flow-induced
deformations in kirigami sheets. We present a simple yet significant bizonal scenario where
the deformation and symmetry can be adjusted by altering the position of the polarity
transition point a and its effective stiffness K2. Our findings suggest that two different
expansion kinematics and resulting shapes can be achieved by reversing the polarity state
in a given bipolar specimen, a property style unobserved for the unipolar case.

2.4 What about theory ?

2.4.1 New ingredient and first results

We experimentally proved that programming the polarity gives access to a shape control
lever. We seek here to introduce this property into the theoretical model established in
Chapter 1.

Since polarity control has no effect on mechanical properties, we will only modify the fluid
force expression. Let us recall that our fluid force model split the external load into two
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components: normal (fN ) and tangential (fT ) relative to the surface of the equivalent
membrane that represents the kirigami sheet. Hence, controlling the local polarity adjusts
the direction of fluid forces, specifically the tangential component, which is dependent on
the local cell rotation angle (θ) and its respective sign (polarity). We also assume that this
new feature has no impact on the normal component. A more detailed examination of the
role of each force component is proposed in the interlude no10.
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Figure 2.12: Direct comparison between theoretical prediction and experimental results on shapes
for the same range of Cy P r0, 4.5s and both configurations for a bipolar kirigami pattern at a “ 0.5:
a) r´`s. b) r`´s

If we first only focus on the bipolar case with polarity inversion localized at a distance aL
from its left edge (as described above), we introduce a new function sgnpS̃q to ensure the
local sign changes (where S̃ “ S{L curvilinear abscissa in its dimensionless form). The
latter is defined as a step function with a `1 or ´1 value depending of the polarity state
encoded at each sub-part of the pattern, such as the tangential component per unit length
for the ´` configuration is defined :

fT “ sgnpS̃q
1

2
ρCT pεqpUγpεq cospαqq2

∣∣∣∣sgnpS̃q “ ´1 if 0 ď S̃ ď a

sgnpS̃q “ `1 if a ă S̃ ď 1
(2.1)

Where γpεq is a local factor for effective velocity Uγpεq, and CT pεq the coefficient that takes
into account the blade tilting effect. We inject this expression into the equilibrium equations
of the previous chapter which is now expressed as:

$

’

&

’

%

εα1 `
Cy

2
CN pεqpγpεqcosαq2 “ 0

ε1 ` sgnpS̃q
Cy

2
CT pεqpγpεqcosαq2 “ 0

(2.2)
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This system has been solved for a range of Cauchy numbers similar to the experimental val-
ues and will be directly compared in the following paragraphs. Let us begin with Fig2.12,
which displays the predicted deformation profile for the case a “ 0.5 in its two polarity
states. The comparison with experiments reveals a remarkable agreement; our model suc-
cessfully captures both the parabolic and semicircular morphologies (relative to the flow
configurations) distinguished in our previous measurements.

Interlude no10: ft ´ ft „ fn ? The impact of tangential component

Reversing the polarity sign of each portion for the bipolar kirigami sheet inverts the
direction of tangential forces. This raises the question of whether this component
still influences the deformation process for the specific a “ 0.5. As each sub-part
now pulls on the sheet in the opposite direction, it seems reasonable to assume that
it cancels out the tangential loads, leaving only the normal component in the force
balance. In other words, is setting a “ 0.5 equivalent to having ft “ 0 across the
entire profile?
To address the issue, we compare three theoretical solutions for Cy P r0, 4.5s: first,
the two states of polarity at a “ 0.5, and the non-realistic case where only fn is
considered and ft “ 0. We observe that, although the deformation profiles remain
similar, the amplitudes do not align with either of the two solutions and result in an
intermediate evolution between the states. There are also some noticeable differences
in shapes, indicating that tangential forces, regardless of their direction, can make
the profile rounder or sharper depending on the polarity configuration.
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It’s important to note that without tangential forces, our equilibrium equation system
leads to a constant strain along the entire profile: ε1 “ 0. The value of this elongation
is determined by the boundary conditions.

Fig2.11c also allows for a direct comparison of the amplitudes ymax and Cy for specimens
with a “ 0.5 and varying K2 (second experimental campaign). The theoretical results
(represented by black lines) accurately capture both the qualitative and quantitative aspects
of the observations. The model particularly predicts that the `´ configuration experiences

less expansion in flows compared to the ´` case.

The agreement is also confirmed at a local level on Fig.2.13 for both strain and profile
inclination with a similar tendency as observed experimentally. Particularly for elongation,
the polarity state `´ shows more deformation in the center (S{L “ 0.5) while the ´` case
has it along the edges, although the theoretical predictions appear slightly more pronounced
than our observations.

Given the accuracy of our model for a “ 0.5 pattern, we will now explore the impact of
varying this parameter over a range that encompasses our experimental data.
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Figure 2.13: Trends comparison of local values (line style corresponds to a polarity configuration)
for the specimen a “ 0.5: a) elongation ε. b) Profile inclination α.

2.4.2 Let us push the theoretical prediction further

Let’s compare the amplitude trajectory evolution (ymax vs xmax) for varying a. Fig2.14a
combines experimental measurements from Fig2.10 for all six a values (denoted by the parula
gradient color) and the theoretical predictions (colored lines). At a first glance, the theory
appears to follow similar trends as the experiments with deviations to the right or left as
a decreases. However, the model shows larger deviations than what was observed in the
water channel. Despite this, our continuous approach still captures the progressive deviation
trend as a changes. As reported by experimental data, the theoretical trajectories are not
symmetrical according to the polarity state considered: for same a (i.e. color) dashed curves
are not symmetrical to solid ones.

But let us expand our model. In the experiments, for symmetry reasons (assumed before-
hand), we only considered values of a between 0.18 and 0.5. However, this constraint can be
lifted by using the theoretical model, as evidenced by the different profiles shown in Fig2.14b
and c. Where each colored curve corresponds to a different value of a, ranging from blue
(a “ 0) to yellow (a “ 1) for a high Cauchy value (Cy “ 10) to highlight the differences.
We confirm our hypothesis: specimens a and 1 ´ a exhibit symmetrical expansions for a
given polarity state (split into two graphs). Additionally, while the unipolar cases (a “ 0 or
1) are identical for both configurations, the deviations and deformations for intermediate a
values follow different pathways, with larger amplitudes for the ´` case and smaller ones

for `´ as a approaches 50% as suggested by the red arrows.

Therefore, both theory and experiment demonstrate that for a bipolar specimen, influencing
the value of a (polarity transition localization) offers a new tool for manipulating the shape-
shifting symmetry. This results in a new behavior with the presence of two expansion
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Figure 2.14: a) Amplitude trajectories for six specimens with a varying value of parameter a
(parula grad color), the theoretical prediction is defined by the solid and dash line which follows the
same color code. Deformation profiles derived from theory for a varying from 0 (blue curves) to 1
(yellow) at Cy “ 10 for both polarity states : b)r´`s and c) r`´s .

kinematics, depending on the polarity state, thus one pattern generates two non-symmetrical
deformation shapes for a bipolar kirigami pattern. Based on this understanding, let us now
examine multipolar configurations.

2.5 Multipolarity: ever more control ?

We have previously focused on simple bipolar patterns by modifying either the cutting or
notch patterns. However, more complex cases with multiple inversions are supposed to
provide richer results. As proposed in [56], the author presents specimens with complex
shapes, as shown in Fig2.15 with a quadri- and tri-polar cases.

quadripolar axial case tripolar transverse case

Figure 2.15: Multi-polar kirigami sheet with axial and transverse inversions. Tang et al. (2017
successfully showcased a ”T” design within the pattern. All images sourced from [56].

We are exploring the effect of a greater number of polarity blocks on flow-induced defor-
mations through experimental testing of quadri-polar specimens divided into four areas and
three polarity inversions. For even more complex configurations, we will use theoretical
modeling, which will be discussed later.
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2.5.1 Experimental investigation: quadri-polar case

Even if the fabrication methods enable fine polarity control without size and complexity
restrictions, the water channel and experimental setup sizes limit the number of cells and
polarity inversions. Despite this constraint, we test a quadri-polar specimen following the
same cutting parameters as previously defined in our first campaign (characterized by the
effective stiffness K2 “ 3.9N/m).

As shown in Fig2.16a, the kirigami sheet is divided into four equal-sized blocks (three cells)
with alternating polarity. Like in bipolar cases, the rotation side changes when the sheet is
flipped (fluid low direction), leading to two different configurations, ` ´ `´ and ´ ` ´` .
An example of the latter in lows at U “ 0.21m/s is reported in the picture of Fig2.16b.
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Figure 2.16: a) Quadri-polar Kirigami case viewed schematically (3 inversions, 4 blocks), each
block represents 1/4 of the total size. b) r´ ` ´`s configuration in water flow, inversions shown by
red circles. c) Deformation shapes extracted by using a custom Matlab program, (velocity denoted
by greyscale color and polarity state shown by line styles). d) Amplitudes derived from c.

Fig2.16c and d present the deformation profiles and amplitudes of the quadripolar speci-
men in its two polarity states. It is observed that the deformation profiles are symmetrical,
like the bipolar specimen at a “ 0.5, for both configurations. However, here, amplitudes
and shapes remain close throughout the kinematics (see Fig. 2.16d), which suggests that
increasing the number of inversions reduces the impact of tangential forces on the macro-
scopic shape and converges toward a similar morphology. To confirm this hypothesis, further
numerical analysis is required.
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Figure 2.17: Theoretical deformation shapes obtain by varying Cy within the range r0, 10s (denoted
by an inverted greyscale) and changing the polarity block number Nb “ Ni ` 1. The results are split
into two rows based on the parity of Nb: a) even and b) odd.

2.5.2 More and more inversions or less and less control ?

Increasing the polarity block number (i.e. polarity inversion), poses limitations in experi-
ments (such as water vein and kirigami cell sizes, laser cutter precision,...). To overcome
these constraints, we plan to study more complex cases using theoretical modeling. In
practice, we modify the sign function sgnpS̃q to account for Nb blocks (or Ni “ Nb ´ 1
inversions) in Eq2.2, which we assume to be equally spaced. Fig2.17a-b display six different
multi-polar kirigami sheets with varying Nb, and increasing Cauchy numbers from 0 to 10.
We categorize the profiles based on polarity block number parity (odd or even) into two
rows.

The distinction between even and odd values of the number of polarity changes (indicated
by Nb) is significant because it affects the response of the system in two ways. If Nb is
even, as shown in Fig2.17a, the profile morphologies are similar to those of symmetrical
bipolar cases (a “ 0.5) with decreasing amplitude for higher numbers of inversions. On the
other hand, if Nb is odd (see Fig2.17b), the deformation shapes turn from asymmetric to
symmetric with lower lateral deviation as the block number increases (it should be noted
that Nb “ 9 is almost perfectly symmetrical and looks like Nb “ 12), while the amplitude
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marginally increases, in contrast to the even previous case.
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Figure 2.18: Evolution of deformed shapes maximum coordinates for a given Cy “ 15 when Nb is
increasing: a) amplitudes b) deviations, both odd and even block numbers (line style) are illustrated
and converge to same values.

To analyze the deviation and amplitude variation of two parities, we present their evolution
in the corresponding graphs of Fig2.18. Each line represents the ymax or xmax values attained
for a constant Cy “ 15 as the function of blocks number Nb. The previously noted trend in
the shape-shifting graphs is evident, particularly the fact that as the number of inversions
increases, both amplitudes and deviations converge to similar values, resulting in equivalent
morphology. This implies a limitation in using polarity to control shape: the block sizes
must be large enough to generate a substantial effect from tangential forces, otherwise the
kirigami sheets will have similar shapes as noted in the interlude no10.

2.6 Conclusion

In this second chapter, we examined a new set of kirigami patterns with a non-uniform
polarity, through a simple but relevant example: bipolar specimens. These bipolar patterns
are characterized by their structural stiffness K2 and the parameter a, which defines the
size of each portion. When the transition is localized in the center (a “ 0.5), the resulting
shapes under flow are symmetrical, unlike the uniform patterns from chapter 1.

We emphasized the significance of the polarity state relative to the flow for these patterns.
Both configurations, ´` and `´ , result in distinct responses. The first creates a parabolic-
like shape with cells perpendicular to the flow, while the second exhibits smaller semicircular-
like shapes with blades that tend to align with the incoming flow.

We conducted two experimental campaigns to study the morphological evolution of bipolar
kirigami sheets with the same stiffness but varying a. Our results showed that altering
parameter a affects the position and symmetry of the deformation lobe, while inversing
polarity state provides non-symmetrical expansion kinetics (unlike the unipolar cases of
chapter 1). In a second experimental campaign, we the effective stiffness while keeping the
transition at the center (a “ 0.5). Our results confirm that the stiffness effect described in
Chapter 1 can be captured by the Cauchy number, however, here the two possible polarity
states provide a distinct response in flow.

The theoretical model, previously expanded to include this new feature, is used to compare
these two campaigns. Our continuous membrane description aims to determine the shapes
and amplitudes using the same parameters, a and K2, as those tested experimentally. The
results show a remarkable agreement, confirming the reliability of the continuous description
even for complex configurations with varying polarity. This theoretical modeling has en-
abled us to investigate the response of more complex configurations with multiple inversion
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numbers. However, we find that multi-polar patterns converge to equivalent deformation
profiles when the number of polarity blocks is ”excessive” relative to the sheet size.

Hence, polarity control is a noteworthy solution for our shape control challenge under fluid
loading. However, adjusting the orientation of local forces remains limited if they are only
applied to a small part of the cutting pattern.
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Reaching new shapes through
spatial stiffness variation

Figure 3.1: “You’re next, Hook(E) ! This time you’ve gone too far!” Peter Pan

The mechanical behavior of a kirigami sheet is mainly determined by the local design and
characterized by its effective stiffness. In this chapter, we explore the impact of varying the
cutting pattern by introducing heterogeneity and examining its effect on the shapes reached
in a flow. We focus on nonuniform bizonal cases divided into two portions of different sizes
and stiffness. Our experiments and a simplified model reveal new behaviors such as non-
monotonical expansion kinematics or a surprising convergence toward a universal shape.
The introduction of heterogeneities within the cutting pattern is then a new lever to reach
new morphologies. Thus, our bizonal specimens pave the way for more complex stiffness
distributions.
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3.1 Non-uniform kirigami patterns

The pioneering works of Isobe et al (2016), followed by multiple research groups, have
demonstrated the direct link between mechanical properties and the cutting parameters
[43, 57, 58, 45, 72]. It promotes kirigami art as a method to tune the mechanical behavior
by adjusting the local design. In chapter 1, we have introduced the effective stiffness of
the whole kirigami sheet as a function of the local geometry, and its impact on expanding
kinematics in flows. However, these studies and our work so far have dealt with uniform
cutting patterns, it’s time to go further and make it vary spatially.

Several studies have already investigated non-uniform cutting patterns and their effect on
structural properties. Concerning our parallel-slit pattern, Taniyama et al. already probed
the subject, their main motivation was to reduce the boundary effects that appear once a
homogeneous kirigami sheet is stretched [73]. The latter concern the rows close to each
clamped border, as illustrated in Fig3.2a, these two portions experience lower deformation
than the middle part which induces an important Poisson’s effect.

a) b)

c) d)

Figure 3.2: a) Classic homogeneous kirigami sheet, the clamped boundaries impede the buckling
process and the slit opening at the edges. b) A heterogeneous cutting pattern limits those boundary
effects and reduces the Poisson effect. c-d) A non-uniform kirigami cylinder or plate can respectively
extend /contract radially and morph with a dome shape, according to the heterogeneities located
within the cutting tessellation. Pictures (a-b) come from [73] and (c-d) to [47]

The authors proposed to reduce local stiffness near each edge to avoid non-uniform deforma-
tion. This is done by cutting cells in the axial direction, as seen in Fig3.2b. The resulting
”softer” kirigami cells erase boundary effects, resulting in homogeneous deformation and
a lower Poisson’s ratio. Though it may seem counter-intuitive, a non-uniform pattern is
necessary to achieve uniform deformation.

The heterogeneous patterns can be also used to control the out-of-plane deformation by ge-
ometric frustration [47]. These patterns cause local kinematic incompatibilities with neigh-
boring cells, leading to programmable global shape changes, as seen in the kirigami pipe
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with a variable section or the formation of a large bump on a flat sheet (see Fig3.2c-d).

As a third example, consider another family of patterns with a collection of squares that
rotate relative to each other [25]. An et al.(2020) introduce a secondary subset of cuts on
one half of a sheet, resulting in a non-uniform specimen (see Fig3.3a). Upon stretching, the
kirigami sheet opens in two steps, with the top section expanding before the bottom one, as
illustrated in Fig3.3b. This sequential opening is reflected as well in the mechanical response,
where the stress-strain curve is a combination of the responses of the two individual patterns
(Fig3.3c-d). This work shows that the mechanical behavior of a heterogeneous pattern can
be inferred from the properties of each constitutive block (sub-portion). The mechanical
response can thus be tuned by varying the arrangement of cuts along the sheet.

a) b)

c) d)

Figure 3.3: a) Hierarchical kirigami pattern, with two parts: the top portion has simple square
cells, and the bottom one contains an additional subset of cuts. b) The pores open sequentially,
with the top part first then followed by the bottom one. Stress-strain curves of : c) each portion
separately, and d) the bi-zonal kirigami sheet [25].

These examples demonstrate the potential of the kirigami method. By using non-uniform
patterns, new and more controllable mechanical and kinematic behaviors can be achieved,
providing a new lever for shape control. This chapter examines the effect of adding hetero-
geneities on flow-induced deformation.

3.2 A two-part kirigami sheet

In our kirigami pattern with parallel slits, all three cutting parameters - pLs, dy, dxq - can
be varied spatially. Variation can occur along either the y-axis (by altering Ls and dy) or
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x-axis (by changing dx). Our focus is on the latter option, as outlined in interlude no11.
We will also deal with a simple heterogeneous configuration: a bizonal kirigami specimen,
which combines two different patterns. Let us describe this pattern in the following section.

3.2.1 Bizonal kirigami pattern: user’s guide

We define bizonal kirigami as the addition of two sub-patterns in series, such that each
sub-part contains cells with different widths d1,2. A typical example is reported in Fig3.4a
with a color and number assigned to each part, red for the soft portion (1) and blue for
the rigid one (2), the latter therefore leading to larger cell widths: d1 ă d2. To ensure
a representative parametric study, we keep constant both the total length of the kirigami
L “ 12cm and the nature of the soft part (d1 common to all our patterns, keep that in
mind).

b =  1.8 b = 2.6

b = 4 b = 7.1

d  = 0.2 cm d  = 0.24 cm

d  = 0.4 cmd  = 0.3 cm

d  = 0.15 cm1

2 2

2 2

2d2

dy

a) b)2d1

LS

aL

Figure 3.4: a) Example of a bi-zonal pattern, a characterizes the length of the soft (red) part, and
b the relative stiffness. Each portion has a different cell width d1 and d2 (with d2 “

?
bd1), while Ls

and dy is kept the same. In this example, pa, bq “ p0.6, 4q. b) The shared soft part is associated to
four other patterns with their receptive b values.

Thus, the description of a bizonal pattern is reduced to only two parameters a and b as-
sociated respectively with the size of the portions and their relative stiffness. Note that
the other cutting parameters (along y-axis): slits length Ls “ 3cm and transverse spacings
dy “ 0.47cm are fixed for all patterns.

The parameter a P r0, 1s is associated with the length aL which represents the size of the
soft part, leaving then the rigid part covered in the residual length (i.e. p1 ´ aqL). Thus
a “ 1 corresponds to a homogeneous soft specimen illustrated of the Fig3.5b (specimen
number

2N1d1 “ aL 2N2d2 “ p1 ´ aqL (3.1)

The second parameter b compares the rigidity of each part. This ratio can be explicitly
defined through the expression of effective stiffness defined in chapter 1, which leads to a
simplified expression of b, which only depend on cell widths.

k1,2 “ 32
ENyt

3d1,2
2N1,2pLs ´ dyq3

ˆ 2d1,2N1,2 b “
k2
k1

“

ˆ

d2
d1

˙2

ą 1 (3.2)

These two parameters completely define our bizonal specimens. As an example, we show
two typical specimens on Fig3.5b. For number 2○, the soft section covers 70% of the
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total surface, and the rigid portion is 2.6 times more rigid, whereas specimen 3○ has a
main rigid portion, covering 60% and with a stiffness ratio about 7.1. All of the b values
investigated are reported on Fig3.4b. The non-integer values of the b parameter result from
our manufacturing method which we will not detail here but which ensures the respect of the
geometrical constraints previously mentioned. In practice, we then adjust cell periodicities
N1 and N2 and d2 from d1 “ 0.15 to 0.4cm.

Interlude no11 : varying cutting parameters along y-axis

The previously discussed manufacturing method is limited to adjusting cutting pa-
rameters along the x-axis (tensile direction). In this interlude no11, we will explain
why this choice is the optimal experimental option.
While cutting tessellation can also be tuned along the other direction by manipulating
both slits length Ls and gaps dy (as shown in the new bi-zonal design), there’s a main
issue. When tension is applied, non-uniform deformation occurs, leading to unequal
stretching along one-half of the kirigami as seen in the pictures below. This results
in non-uniform shapes along the y-axis, breaking the symmetry and significantly
increasing complexity.

We also note that along the width direction the length of the slit constraint the phase
space of pa, bq parameters, kirigami cells being longer than wide: Ls ` dy ą dx

Attention : here the index 1 or 2 on the stiffness k does not refer to the deformation regime
in or out of the plane (as in chapter 1) but to the bizonal portion respectively soft and stiff.

To study the impact of two parameters on flow-induced deformations, we varied a from 0.2
to 0.8 for each of the four values of b, and added the uniform stiff a “ 0 and soft a “ 1 cases
(i.e. 33 patterns in total) as illustrated by dots or squares in the phase diagram of Fig3.5a.
Let us now explore in detail this vast parameter space!

This results in 33 patterns, shown as dots or squares in Fig.3.5a. We now delve deeper into
this extensive parameter space.

3.2.2 Typical deformation in a flow

To give a first insight of a typical response of a heterogeneous kirigami sheet in flows, we
choose to first present the results for a “ 0.5 and b “ 4 (at the medium range of our
experimental parameter space) and compare its expansion kinematic to the reference soft
case a “ 1 (all data/curve relative to this specimen will be reported in black subsequently).

Once in the water flow we take pictures and extract data by following the same procedure as
detailed in the two previous chapters (i.e. with a semi-automatic image process). For each
specimen, both polarities have been probed. Notice that in this chapter all cells tilt along a
samer direction, hence experiencing a uniform polarity, in the following, we will distinguish
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Figure 3.5: a) Phase diagram of parameters a and b, the squares correspond to homogeneous
specimens and the rounds to non-uniform configuration. b) Three pattern , 1○ is the reference
specimen a “ 1, and cases 2○ and 3○ of typical non-uniform bizonal patterns.

only two solutions identified by their sign: +○ or -○ which respectively correspond to counter-
clockwise and clockwise rotation sides. Each polarity state is reminded on the Fig3.6a that
shows the deformations of the two patterns (homogeneous -black box and bizonal - green
box) at U “ 0.32 m/s.

Recall first that as illustrated by the black curves profiles in Fig3.6b (associated to a “ 1)
a homogeneous specimen deforms into an asymmetric lobe progressively deflected as the
flow speed increases. As detailed in chapter 1, this symmetry breaking comes from the
local geometry of the rotating cells. At the local scale, such typical shapes correspond to a
strong elongation of the half part opposite to the deviation side, while the other half remains
unstretched as shown by the elongation variations of the black curves in Fig3.7b.

(a,b)=(1,1)

0 0.5 1
0

0.2

0.4

0.6

0.8b)a)
(a,b)=(0.5,4)

Figure 3.6: a) Raw pictures from experiments in a water channel for two specimens: uniform
pa, bq “ p1, 1q and bi-zonal one pa, bq “ p0.5, 4q for both polarity at given inlet velocity U “ 0.32cm/s,
amplitudes are marked by a circle. b) Shapes shifting for an increasing flow speed for both specimens
and polarities, transition cell is identified by a red square as in real pictures for the bi-zonal case.
The line styles and color lines are described in Fig3.7

If the polarity of cell rotation is reversed, the shapes remain the same but with opposite
symmetrical kinematics. More concretely, where the polarity state -○ corresponds to a
lobe deviated to the right, the configuration +○ experiences a lateral symmetrical deviation
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to the left (compare the solid and dash lines on Fig3.6b ), with an equivalent amplitude
(ymax). This symmetry is well marked in the trajectories evolution in Fig3.7a which tracks
the position of the deformation amplitudes pxmax, ymaxq. Keep in mind that for uniform
kirigami, the polarity states have equivalent shapes and elongations. Let us now compare
it to a bizonal case.
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Figure 3.7: Respective trajectories (a) of amplitudes previously spotted by circle markers on Fig3.6.
b) Local elongation ε as a function of curvilinear abscissa.

For the non-uniform specimen pa, bq “ p0.5, 4q, things get more complicated. In one direction
(polarity -○) the shapes, elongation and trajectories are remarkably similar to those obtained
in the homogeneous case as if the presence of the four times stiffer half does not affect the
deformation process.

While the opposite polarity +○ leads to another kinematics, profile expansions following
quasi-symmetrical shapes (see green dash lines in Fig3.6b and associated picture in a). We
report a more complex pathway in the trajectory graph in Fig3.7a, with a lobe that firstly
deforms along the right, as for the -○ state, before shifting along the channel center (i.e.
xmax „ 0.5) and finally reached the right side. The deformation profiles are also marked
by a larger amplitude than -○ solution or the uniform case (black dash line). At the local
scale, the symmetrical and strongly expended morphologies result in an elongation of the
whole pattern (see Fig3.7b), contrary to the uniform case with strain evolution which only
concerns half part of the sheet.

In conclusion, the bizonal case highlights a new property: a single pattern corresponds to
two different expansion kinematics according to the polarity state. While the solution -○
remains close to the reference soft specimen, the configuration +○ deforms in a new way
with a changing trajectory and elongations distributed on the whole kirigami sheet. Let us
discuss the two polarity states separately, as well as probe the role of the parameters a and
b in the next section.

3.3 Influence of the relative size and stiffness

The preliminary results of the previous section indicate that the deformation of a bi-zonal
specimen seems to follow non-trivial kinematics not yet explored. In particular, we distin-
guish two responses according to the two polarity states. Indeed cells tilting side plays a
role in the stretched kirigami sheet portion which impact the resulting deformation shape.
In this section, we will compare the behavior of our heterogeneous specimens with the soft
reference (a “ 1) and the purely rigid ones (a “ 0 for all b).

At the same time, we aim to explore the parameters space pa, bq, by fixing b and varying a.
We’ll begin with the solution -○ before flipping the kirigami sheet.
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3.3.1 Polarity -○

In the previous section, we found that the bi-zonal specimen pa “ 0.5, b “ 4q displays similar
expansion kinematics as the control pa “ 1q for polarity -○ in terms of global morphology,
amplitudes, deviation, and local elongations, with comparable values and trends.
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Figure 3.8: Pictures, deformations profiles and local strain for three specimens: a) homogeneous
one, b) a “ 0.7 and b “ 2.6, c) a “ 0.2 and b “ 7.1. Elongation curves and experimental pictures
are taken at the same velocity U “ 0.32m{s.

Before discussing the origin of these multiscale similarities, let us take a look at some other
specimens. The pictures in Fig3.8a-b-c show the deformation for different values of a and b
(taken at the antipode of the phase space). We notice that despite these gaps in parameters
the morphologies reached at a similar flow speed (U “ 0.32m{s) are qualitatively equivalent.
Moreover, both profiles and local strain evolution (see Fig3.8d) confirm this insight and
exhibit a similar trend whatever a and b.

This result can be generalized to the whole phase space. Indeed, if we look at the evolution
of all trajectories on Fig3.9, where each graph corresponds to a value of b and each curve to
those of a, we note the universality of the shape-shifting process. All profiles are deviated
along the right side with fairly close amplitudes, despite the great disparities in stiffness
ratio and size of the rigid part. All bizonal patterns deform like the control soft case (solid
black line).

To understand this non-trivial and universal behavior, let us take a closer look at the bizonal
case pa, bq “ p0.2, 7.1q, whose parameters are the farthest from the reference case. If we track
the transition between the stiff portion on this pattern, localized by the red diamond on
Fig3.8c, this point tends to follow the trajectory of the deformation amplitudes (blue circles).
We therefore suggest that the whole deformation is held up by the short soft part alone,
while the stiff part remains almost unstretched.

Indeed, when we look at the three images as well as the corresponding spatial elongation
variation (Fig3.8), we attest that in all cases, the stretching is mainly localized on the soft
portion. Even if the latter represents a small percentage of the total sheet surface (only 20%
in the previously mentioned case!).

More concretely, the counter-clockwise rotation of elementary kirigami cells (polarity -○)
induces a symmetry break, which leads to the opening of the soft part. Thus fluid forces
exerted on this portion push the profile towards the right where the rigid part is located,
which is then in the unstretched zone, as shown by the evolution of the elongation for the
three profiles surveyed. For the polarity -○, the stiff part has therefore little effect on the
whole deformations which are fully driven by the soft one. Given that this portion is shared
by all bizonal specimens, it leads to the universal expansion kinematics observed (see all
trajectories in Fig3.9).

The effects of a and b are thus reduced here to disparities in amplitude, lower for specimens
far from the reference case. But also on a local scale as suggested by maximal strain values
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Figure 3.9: Trajectories linked to all profiles with a varying a values (parula color scale) and fixed
b, such as a) b “ 1.8, b) b “ 2.6, c) b “ 4 and d) b “ 7.1

reported in Fig3.8d. Indeed, we note that the larger b and the smaller a, the more the soft
part will stretch.

The weak impact of both parameters on the morphology for -○ is an unexpected result.
Indeed very different cutting patterns actually return the same universal shape once in
flows, testifying to a strong resilience of the soft part, which almost alone drives the opening
kinematics. This result leaves a bitter taste as it suggests that adjusting stiffness may not be
effective in generating new morphologies. Let’s examine the kirigami sheet before making a
hasty conclusion.

3.3.2 Polarity +○

The initial review in the prior section showed that configuration +○ produced new responses
in flows. The high-amplitude, the quasi-symmetrical lobe was notably different from the
homogeneous case (refer to the green dashed and solid lines in Fig3.6 and 3.7). Both stiff
and soft parts were noted to be stretched, resulting in a ”symmetrical” appearance. We will
now closely examine the effect of parameters a and b on this polarity state.

Let us first emphasize that contrary to the previous configuration, the cells rotation side
(here clockwise) should lead to the stretching of the stiff part. However, by definition,
this portion is less deformable than its neighbor and therefore impacts the further opening
kinematic in a flow. Thereafter, we split the parameter space at a “ 0.5 value and distinguish
two different behaviors in flows.

case 1 - soft parts outshine a ą 0.5

Here we focus on a pattern with a predominant soft part only (light grey circles in the
phase space, Fig3.5a). As an illustrative example, the Fig3.10 reports the evolution of
three specimens at fixed a “ 0.7 for all b values (row b-d-d) and the reference case (row
a). For each deformation shapes we mark the transition position with a red diamond and
the respective strain ε for only three velocities represented by different marker types. To
highlight the cells width variation (b ratio), we also draw the pattern used.
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Figure 3.10: Shapes shifting and local strain evolution of the reference case a), a “ 1 and three
bizonal kirigami patterns with a fixed a “ 0.7 (soft part in red on the pattern draw represent 70%
of whole sheet area) and varying b “ b) 2.6 c) 4 and d) 7.1, for each bizonal specimen we report the
respective cutting pattern.

As expected, the deformation lobes are all located to the left (see all shapes of Fig3.10).
Indeed this polarity induces a clockwise rotation and the fluid forces push the profiles toward
the soft part of the pattern. Note also that the shapes reached by the three bizonal specimens
are close to the uniform case a “ 1, as suggested by the evolution of their trajectories which
converges onto the dash black line in Fig3.11a. This observation is generalized to all the
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Figure 3.11: a) Trajectories of four patterns presented in Fig3.10, the marker type, corresponding
to the different b values and black color to the reference state (a “ 1). b) Direct comparison of
elongation as a function of curvilinear abscissa, the increasing stiffness ratio shift the strain evolution
to the left and concern more than half part of the sheet.

patterns with a ą 0.5 as shown by the trajectories on Fig3.12 which all follow the kinematics
of the reference case. Here again, the soft part seems to play a crucial role.

However, slight morphological differences are observed, with a slope break appearing near
the stiffness transition (indicated by red diamonds on the deformation profiles in Fig.3.10).
As previously noted, polarity +○ causes the rigid part to open, reducing local deformation
and resulting in a steeper slope within the rigid region. This break results in a flatter
morphology, more pronounced for larger b values as shown in Fig.3.10c-d.

Let us now study more closely the evolution of the local elongation εpS{Lq associated with
the deformation profiles previously discussed. We first note that the stretched part of the
lobe still represents around 50% of the total sheet length, as for the homogeneous reference
case (see Fig3.10a). However, this part is shared by the two portions of different stiffness:
the 30% of rigid and about 20% of soft (as a reminder in the pattern of the Fig3.10b-c-d
the soft part represents 70%). The transition between these two zones leads to a significant
jump in elongation, particularly for high velocity and b values. velocity and b values.

This jump in strain induces a change of slope and a lower global amplitude as previously
argued. We can also compare the elongation at the same flow rate and variable b plot in the
same graph of Fig3.11b, and note that the greater the ratio the more the stretched soft part
is extended on the pattern, with an area greater than 50% for b “ 4 and 7.1 (the maximal
strain shifts to the left as b increases). This additional participation of the soft part allows
for reaching similar global shapes and trajectories.

Except for a few details (slope break, elongation on wider areas and flat profiles), the
morphologies reached for the polarity state +○ and a ą 0.5 tend towards the soft uniform
solution. In light of the results established for the polarity -○, we point out that despite the
presence of a small rigid stretched part the prevailing soft portion leads to similar monotonic
expansion kinematics and ensure alone almost all the deformation. Let us now study the
opposite case, in which the rigid portion predominates.

case 2 - stiff part is coming back a ď 0.5

Up to now, we have dealt with configurations of polarity or parameter values that leave the
soft part free to expand. In this section, we are going to focus on a range where the rigid
portion drives the kinematics due to its predominance with a ď 0.5 ( indicated by a dark
gray circle on Fig.3.5a , 16 specimens in total). These kirigami bizonal patterns are the
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Figure 3.12: Trajectories for bizonal pattern with a ą 0.5 values (parula color scale) and all stiffness
ratio b, such as a) b “ 1.8, b) b “ 2.6, c) b “ 4 and d) b “ 7.1

most different from the reference case a “ 1, and therefore are the most likely to generate
new behaviors in flows.
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Figure 3.13: Profile expansions, trajectory evolution and local strain for three velocities, all for
the specimen pa, bq “ p0.3, 2.6q and respectively reported in a-b and c). Finally, four pictures of its
expansion are shown in d). The localization of the transition between the two portions is indicated
by a red marker/circle.

To get a general idea, we plot the evolution of two specimens’ trajectories and elongations,
and profile evolutions in the middle of the parameter range (b “ 2.6 and b “ 4 for a “

0.3) in Fig.3.13 and Fig.3.14. Each figure also includes four pictures showing the state of
deformation at different flow rates, increasing from left to right.

Let us start with the b “ 2.6 pattern. We immediately notice that the lobe no longer
deploys monotonically but experiences a changing asymmetry. Indeed, as suggested by the
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Figure 3.14: Profile expansions, trajectory evolution and local strain for three velocities, all for the
specimen pa, bq “ p0.3, 4q and respectively reported in a-b and c). Four pictures of its expansion are
shown in d, the lobe suddenly reaches the left side for high flow speed.

trajectory of the amplitude (see Fig3.13b) , the lobe first moves towards the right, which is
the conventional direction of the solution -○, before recentering and finally moving towards
the left, as expected for the polarity state.
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Figure 3.15: Profile expansions, trajectory evolution and local strain for three velocities, all for the
specimen pa, bq “ p0.3, 7.1q and respectively reported in a-b and c). Four pictures of its expansion
are shown in d and highlights that the stiff part remains close

This three-stage expanding process displays a new non-monotonic kinematic that we are
going to detail by looking at the local scale. Indeed the essential difference between the
previous case (a ą 0.5) is that both sides of the lobe are stretched as shown in the elongation
graphs of Fig3.13c and 3.14c. However, the gap in stiffness between the two parts leads
to a two-step pores opening. As briefly discussed in the interlude no12, the soft portion
buckles out of the plane first and is followed by a progressive opening of the rigid part.
This phenomenon is all the more marked as the b ratio is high and a weak. Thus, at low
flow rates, the short soft portion opens first and leads to an unconventional global lobe
deviation towards the right. The opening of the rigid portion for higher speeds straightens
the profile at the water channel center and at the end reaches the (conventional) left side, as
the reference case. The rigid portion is thus more and more elongated while the soft portion
tends to decrease its contribution as suggested by the red arrows on Fig3.14c.
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On pictures and trajectories of the b “ 4 pattern (see Fig3.14b and d), we observe a sudden
decrease in amplitude and change in shape (from symmetrical to asymmetrical lobe) for
high-velocity range. This state transition deserves a deeper investigation and constitutes
one of the perspectives of my thesis work. We can just remark that this type of morphological
modification appears as reminiscent of the phenomenon observed by Schouveiler et al. [74]:
a continuous thin disk placed facing a flow, exhibits a rich variety of bending deformation,
from cylindrical to multi-lobes shapes depending on the inlet flow velocity. The underlying
mechanisms, therefore, involve notions of energetically favorable deformation states. In our
case, it seems that stretching the single rigid portion is more favorable than extending both
portions beyond a certain flow speed.
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Figure 3.16: Trajectories for bizonal pattern with a ă 0.5 values (parula color scale) and all stiffness
ratio b, such as a) b “ 1.8, b) b “ 2.6, c) b “ 4 and d) b “ 7.1

To discuss the effects of the parameters a and b let us look at the set of trajectories for
all a ď 0.5 patterns on Fig3.16. For a given b, we note that the smaller the soft part the
lower flow velocities needed to change lobe direction, i.e. for these graphs, it corresponds
to lower values of ymax all identified by a red circle. While for a given a, the first deviation
phase to the right will be more pronounced for large b with a transition to the left occurring
for higher speeds. This last observation coincides with a later opening of the rigid part for
patterns with a high stiffness ratio.

For the extreme parameters’ values: b “ 7.1 and a P r0.3, 0.4s we even note cases in which
the rigid part remains closed and the lobe stays oriented along the right side as shown in the
data sets of Fig3.15. The morphologies obtained as well as the trajectories tracking then
correspond to the usual results obtain for the opposite polarity -○. However, the effective
rotation side of the cells covering the stretched soft part respects counter-clockwise imposes
by the state +○. Indeed, the combined effect of the strong elongation of the soft portion and
the global profile inclination holds the lobe to the right. This particular regime is briefly
discussed in the interlude no13 and mainly comes from mechanical nonlinearities.
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Interlude no12 : Opening in two steps

The spatial evolution of the elongation in our bizonal cases shows that the cells of
the soft portion buckle out of plane before the rigid portion, causing a delay in local
pores opening and leading to non-monotonic deviation and asymmetric deployment.
To demonstrate this two-step opening kinematics, a typical bizonal pattern pa, bq “

p0.5, 2.6q was subjected to an elongation test. A displacement ∆ is then imposed and
the average displacement of each of the two parts is reported in the graph below ∆1,2.
The results show that the soft portion (red curve) stretches more and the rigid portion
(blue) remains closed until reaching critical displacement ∆c. At this point, the rigid
portion buckles, opening the rest of the kirigami sheet. This implies that bizonal
specimens have non-uniform local porosity, unlike the homogeneous cases discussed
in chapter 1
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Further experiments on the values of ∆c as a function of pa, bq parameters are under
investigation and will allow identifying the non-linear mechanism leading to the new
deformation laws in flows.

3.4 Theoretical analysis

After this extensive discussion on the experimental results of the bi-zonal kirigami sheets in
a water flow, we complete our approach with a theoretical perspective.

We opt for a more simplistic approach than the continuous model used in the previous
chapters. Indeed, at first sight, our experimental observations on bizonal specimens can be
reduced to a competition between two elastic strands of different stiffness and a fluid loading
oriented according to the polarity state. These external forces lead to the elongation of
these two strands and deviate the simplified profile along the corresponding direction. This
reduced-order model (only 2 degrees of freedom) allows us to isolate the essential physical
ingredients.

3.4.1 Toy model: Two telescopic shafts

Let us then consider two extensible and inflexible shafts connected to each other at B and
whose two remaining ends are placed in hinges A and C.

As illustrated in the schematic view of Fig3.17a, the junction B○ is located by the coordinates
pX,Y q. The rest length of the strands (without loads) is provided respectively by L0

1 and
L0
2 such as the total length writes L0 “ L0

1 `L0
2. A deformed configuration can therefore be

described by the two rotation angle α1 and α2 and associated strains ε1 and ε2.
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From the definition of our bizonal pattern, we introduce the parameter a such as L0
1 “ aL0

and b “ k2{k1 the ratio of the two rode’s stiffness k1,2, with k2 ą k1. The stiffer part is
always placed on the right side.

As illustrated in Fig3.17b Strands are subjected to an external set of load q, decomposed
along the normal pqN1, qN2q (red arrows) and the tangential directions pqT1, qT2q (green
arrows). These pressure forces induce an internal structural response: two tensile forces T1

and T2 assumed uniform along each elementary rode (blue arrows).
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Figure 3.17: Schematic view of two rodes model link a the junction B localized at pX,Y q coordi-
nates, geometrical details is provided on draw a) and forces balance on b).

Before deriving the force balance, let us briefly detail the geometrical relations which reduce
the geometrical description of the whole deformed configuration into only two degrees of
freedom.

Geometrical relationships

By using elementary trigonometric relations, one can deduce two relations between the
deformation parameters of rode 1 and 2 (see Fig3.17a) :∣∣∣∣L0

1p1 ` ε1q cospα1q ` L0
2p1 ` ε2q cospα2q “ L0

L0
1p1 ` ε1q sinpα1q “ L0

2p1 ` ε2q sinpα2q
(3.3)

The tilting angle α2 and elongation ε2 of the second bar can then be expressed in terms of
the first one: ∣∣∣∣∣∣α2 “ atan

”

L0
1p1`ε1q sinpα1q

L0´L0
1p1`ε1q cospα1q

ı

ε2 “
L0
1p1`ε1q sinpα1q

L0
2 sinpα2q

´ 1
(3.4)

As announced, the deformation profile is completely characterized by the strain and tilting
motion of the first rode only (2 DOF) :∣∣∣∣X “ p1 ` ε1qL0

1 cospα1q

Y “ p1 ` ε1qL0
1 sinpα1q

(3.5)

Force balance - equilibrium state

We now aim to establish the equilibrium equations system, where each components are
detailed on Fig3.17b. We first assume the force balance along the y-direction in the whole
set of shafts:

´T1 sinpα1q´T2 sinpα2q`qN1L1 cospα1q`qT1L1 sinpα1q`qN2L2 cospα2q´qT2L2 sinpα2q “ 0
(3.6)
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And along the x-axis :

´T1 cospα1q`T2 cospα2q´qN1L1 sinpα1q`qT1L1 cospα1q`qN2L2 sinpα2q`qT2L2 cospα2q “ 0
(3.7)

The resolution of these two equations gives the position of junction pX,Y q as a function
of the external forces q. The analytical expression of the tangential and normal loads are
deduced from chapter 1 and depend on the deformation states.

∣∣∣∣ qN “ 1
2ρCNHU2 cos2pαq cos3pθq

qT “ sign1
2ρCTHU2 cos2pαq cos2pθq sinpθq

with cospθq “
1

1 ` ε
(3.8)

Where we take into account both rodes inclinations and cells tilting (cf chapter 1). Note
that here the values of pα, εq are constant along each strand, as well as the resulting external
fluid force. It only remains to define the mechanical behavior of each bar.

Considering that each shaft is inflexible, we restrict the deformation mode to elongation
only. As for the continuous modeling, we assume an elastic behavior with a linear evolution
of the elongation T1,2 “ k1,2ε.

Thus, as for the continuous approach, we define the Cauchy number Cy “ ρU2H{k1 to
ensure a non-dimensional form of the equilibrium equation (rewritten expressions of Eq3.7
and 3.6 are not detailed here).

Our model’s main constraint is that the transition between the two sections overlaps with
amplitude pX,Y q (as the shape examined is a triangle). The impact of a cannot be solely
studied as it affects the location of the maximum deformation and the expansion kinematics
of the double bar network. Hence, we will set a “ 0.5 (each rode has the same length).

3.4.2 Toy model: Results

Before testing our theoretical model for the bizonal case, let us begin with the typical
solutions for a homogeneous configuration, i.e b “ 1. The expansion kinematics of both
polarity sates are reported in Fig3.18, the grey scale color corresponds to an increasing
Cauchy number Cy P r0.01, 30s
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Figure 3.18: Expansion of a set of uniform elastic rodes, b “ 1 according to their polarity states :
a) -○ and b)+○. Their respective trajectories are reported on c).

As for the continuous approach, this simplified model captures well the symmetry breaking,
the higher the flow velocity (here Cy) the more the profile deviates laterally. The uniform
configuration experiences a symmetrical expansion as suggested by the two trajectories
corresponding to the polarity states in Fig3.18c.

Now let us get closer to the experiences, and introduce a difference in stiffness between the
two bars through the ratio b, we performed the derivation for two values b “ 1.8 and 4 in
both polarities, (where the rigid part is along the right side), results are reported in Fig3.19.
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Figure 3.19: Deformation profiles for heterogeneous sets of shafts at their two polarity states: a)
and b) for b “ 1.8 c) and d) for b “ 4

In contrast to homogeneous results, inverting the polarity state does not result in similar
responses. Indeed, the -○ solution produces shapes close to those observed on the Fig3.18 for
b “ 1, with a clear deviation to the right, while the opposite configuration +○ presents a more
complex pathway. The deviation of the junction is first to the right before reaching the center
and finally moving right as expected for this polarity state. This typical non-monotonic
expansion kinematics is reminiscent of the one previously identified in experiments with
bizonal specimens with a ă 0.5 and polarity +○.
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Figure 3.20: Trajectories evolution for varying b and polarity states

The comparison is furthered by varying parameter b within the experimental range, we re-
port the trajectories evolution for both polarities in Fig3.20. Previous trends are confirmed:
the trajectory of -○ follows monotonic kinematics with a stronger transverse deviation for
high b values, while the polarity +○ exhibits a direction shifting from left to center-right,
with a pathway more pronounced for larger b. The experimental trajectory trends are thus
captured by using this simplified two-bar model. The difference in stiffness impacts the de-
flection of the deformation profile, which changes orientation depending on the fluid loading
applied. The stiff shaft (right portion here), remains almost entirely undeformed at low
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Cauchy values, while the soft portion lengthens, pushing the profile to the right. When Cy

increases, the tension forces are sufficient to stretch the rigid rode which restores the profile
towards the center before following the direction imposed by the polarity, i.e. to the left.
Here again, b exacerbates the changing direction process.

Interlude no13: Critical velocity - opening (or not) the stiffer part

Before the profile moves from the center to the right (its conventional position), we
have to distinguish the state where the stiff part cells are still closed and the one
where they start to buckle. In this interlude no13, we will estimate the critical flow
speed needed to induce the stretching of the rigid portion, and its dependence on
bizonal parameters pa, bq.
Let us assume that the opening process is allowed if the internal tension in the profile
exceeds the critical tension Tc “ bT0 with T0 „ 0.02 N for the soft portion. Due to the
stiffness gap, the soft part pulls on the rigid portion with a stress proportional to the
fluid forces this specific portion which scale as pρ{2qU2HaL, where aHL represents
the surface covered by the soft part. We balance the two forces to obtain an estimation
of the fluid force needed :

Uc “

d

2bT0

ρHaL

The evolution of the critical opening velocity Uc is plotted on the graph below with
an illustration of the transition between the two states previously discussed. The set
of curves corresponds to four values of a that vary between 0.2 and 0.5. The red line
represents the maximum velocity achieved by the water channel. Thus, it can be seen
that based on this scaling, some specimens cannot be opened in our experimental
setup.
Though this simple method ignores the gradual opening process of cells and the com-
plex relationship between flow velocity and stiffness, it can still differentiate between
specimens where the stiff part stays closed.
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Nevertheless, we note that this simplified model does not take into account the observations
mentioned at the end of the previous section with patterns whose rigid part remains closed
(high b specimens). Indeed, this effect is linked to non-linear mechanical behaviors and
cannot be captured by our current simplified model. We proposed a rough estimate for the
critical flow velocity to open the stiff portion within the interlude no13

We demonstrated through a simplified model that reproducing the non-monotonic deforma-
tion kinematics seen in our experiments is possible. Under certain assumptions, the complex
behavior of heterogeneous kirigami patterns can be described by two single elastic rodes.
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3.5 Conclusion

As introduced in the first chapter the cutting pattern controls the effective mechanical
response of the whole structure. Playing with this parameter along the sheet modifies both
its cells opening kinematics under tensile stress and the shapes reached in a flow.

To examine the effect of stiffness variability within a kirigami sheet, we studied the response
of a bizonal pattern. The sheet was divided into two regions: a soft section with close-
set slits and a stiff section with wider spacing. To perform a comparative experimental
campaign, we keep constant the pattern of the soft portion and changed both the length a
and stiffness ratios b of the two parts. We then tracked the deformation of each specimen,
according to their two polarity states +○ and -○, which leads to different behaviors.

Contrary to a uniform kirigami pattern for which both polarity states are symmetrically
equivalent, the bizonal specimens propose a new deployment pathway. On the one hand, we
first examined the configuration -○ that mainly involves the opening of the soft portion part
which is common to all our specimens. Thus trajectories, shapes and elongations experience
a similar trend and values whatever the parameters pa, bq. The opening of the soft part
drives the whole deployment process and leads to equivalent shapes as the reference case.

On the other hand, the polarity state +○ involves the opening of the rigid part. We have
distinguished two types of responses according to the area covered by the soft portion
(parameter a). If the latter dominates, the shapes obtained also tend towards morphologies
similar to the homogeneous cases. While, if the rigid portion is predominant (i.e. a ď 0.5),
we note a non-monotonic expansion kinematics with a lobe deviation that passes from right
to left as the rigid portion progressively stretched. We therefore suspect that the non-
linearities in local pores opening imply this new shape-sifting process.

Finally, we have proposed a simplified theoretical model that captures the experimental
trends previously described with a network of two extensible rodes of different linear stiffness
which undergo external fluid forces. We show that this ”toy model” is able to mimic the
kinematics of the expansion of the bi-zonal kirigamis, with the subtleties related to the
choice of polarity relative to the incoming flow direction.

We are now sufficiently equipped to attack the inversion of the problem which is at the heart
of chapter 4.
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Figure 4.1: ”L’acte d’étudier une question consiste à mobiliser des idées ; pas n’importe lesquelles,
mais celles dont nous pouvons raisonnablement attendre la solution désirée.” J. Hadamard

In previous chapters, we demonstrated that we can achieve various shapes by manipulating
the cutting pattern and polarity. In this section, we will address the inverse problem: given
a desired shape and a specified flow speed, we will seek to determine the appropriate cutting
pattern that will allow us to attain it. In this chapter, we will present a first approach based
on the theoretical model previously developed to find the spatial distribution of stiffness that
approaches the desired shape. Due to the continuous nature of the model, the optimized
continuous distributions will then be transposed into a pattern with a finite number of cuts,
which is realized and tested experimentally in flow.

This chapter does not aim to provide a definite solution for shape morphing. The results
presented are still preliminary and not entirely conclusive. Instead, the goal is to present
the basic building blocks necessary for understanding and addressing this complex issue.
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4.1 Inverse problem

4.1.1 Kirigami shape morphing problems

Controlling the shape of objects, known as shape-morphing, is a challenging problem in
materials science and advanced engineering. It has potential applications in various fields
such as aeronautics to optimize wing shapes and enhance flight performance [75, 76], soft
robotics where it can be used to achieve new functionalities and pre-programmed movement
of a robotic arm [77, 78], or even in the medical field for prosthetics or implants. The goal of
shape-morphing is to produce deformable systems that tend towards a desired shape once
subjected to a controlled external loading (pressure, gravity, tensile force, or fluid flow here).

a) b)

c)

Figure 4.2: The adjustment of a cutting network on a thin sheet allows to reach desired shapes
when subjected to a different types of external loads: a) tensile forces, [26], b) internal pressure
forces on a kirigami embedded in an inflatable membrane, [49], or a gravitational loading applied to
an auxetic pattern resulting in a surface with two minima [79].

The resolution of this problem depends on the characteristics of the deformable system
such as its dimensions, mechanical and structural properties, and the external load applied.
Kirigami’s versatility makes it a valuable tool for shape programming, as demonstrated by
its promising results in previous research studies. As shown in Fig4.2a, non-uniform kirigami
patterns have been designed to reach complex three-dimensional shapes when subjected to
external tension [26]. In [79], a cutting pattern with a network of rotating triangles is used
to program multi-curved shapes under gravity, as illustrated in Fig4.2c. Finally, a Chinese
vase can be obtained by embedding a non-uniform kirigami tessellation within a pressurized
soft elastic cylinder (see Fig4.2b, [49]). In this chapter, we propose a new kind of external
stimulus, which is a fluid flow. A specificity of this stimulus is the coupling between the
deformation and the loading that is shape-dependent. Indeed the forces exerted by the
surrounding flow change as the kirigami sheet deforms (unlike gravity), and with a non-
uniform distribution over the whole sheet (unlike pneumatic) that depends on the local
orientation with respect to the flow and elongation (that conditions 3D texture).
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Figure 4.3: Resolution diagram for the inverse problem, each colored block corresponds to a part
of the algorithm.
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4.1.2 Overview of our inverse problem

Our objective is to determine the optimal non-uniform cutting pattern for achieving a specific
target shape, given a water flow velocity. Before delving into the specific methods, we
provide here an overview of the key points. The optimization algorithm is informed by the
continuous theoretical model presented in Chapters 1 and 2. Our approach consists of three
steps: initializing the optimization process with intuitive values, minimizing the difference
between the target shape and the shapes generated by the model using an appropriate cost
function and criterion, and finally transforming the continuous solution obtained into a
discrete cutting pattern and evaluating it.

4.2 Steps of the inverse problem

4.2.1 Hypothesis and constraints of the optimization problem

To avoid the issue of ”ill-posed” problems (or lack of information), as defined by Hadamard
[80], we must first specify constraints or fix some parameters to ensure a unique solution.

Parameters for the kirigami sheet

As a starting point, we only manipulate the spatial distribution of cuts (and thus the
effective stiffness distribution), without altering the polarity along the sheet (no notches).
Additionally, to ensure a purely 2D deployment without geometrical frustration, we keep
identical rows of slits and only vary their spacing dx. The slit length Ls and spacing dy
along a row are thus kept fixed (as in Chapter 3). The varying parameter dx is referred to
as d for simplicity in the following.
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Figure 4.4: a) Distribution of stiffness per block of non-uniform kirigami pattern encoded to reach
a triangular shape in flows, the optimal solution k from the model (black line) and their receptive
discretized values. b) Cutting tessellation associated with the k distribution defined in a).

Instead of continuously varying d (which would be complicated due to the small length of
our sheets), we vary it in blocks. The pattern is thus divided into Nb sub-blocks, which each
contain Ni rows of cells characterized by a spacing di. The pattern is thus fully characterized
by the distributions d “ rdis andN “ rNis with i P r1, Nbs, which are the varying parameters
of our optimization problem. The fixed length of the kirigami sheet L “ 12 cm also imposes
a relationship between parameters d and N, :

L “ 2
Nb
ÿ

i“1

Nidi (4.1)
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An example is presented in Fig4.4, showing a specimen with Nb “ 4 blocks with d “

r0.19, 0.66, 0.053, 0.42s cm and N “ r3, 4, 9, 5s.

Corresponding parameters for the theoretical effective membrane

In our model, the kirigami sheet is represented as a continuous elastic membrane, and the
cutting parameters effectively alter its stiffness. The experimental parameters d and N are
thus transformed into a set of stiffnesses and block sizes in the model. The size of each
block is defined by vector a, such that the i-th block covers a portion pai ´ ai´1qL of the
entire kirigami tessellation. To avoid overlap, it must satisfy ai ą ai´1, with a1 “ 0 and
aNb`1 “ 1.

Each block has an effective stiffness per unit length ki, relating the internal tension Ni to
the elongation ε through Ni “ kiε. Note that this stiffness per unit length is related to the
stiffness Ki used in previous chapters by ki “ Kipai ´ ai´1qL. This ki is further defined
with respect to a reference value k0, as:

ki “ bik0 (4.2)

The reference k0 is used to define the Cauchy number Cy “ ρU2HL{k0, which is considered
known here (with H the kirigami height, ρ the water density and U the flow velocity). The
parameters of the theoretical model are thus a “ rais (with i P r1, Nb ` 1s) and b “ rbis
(with i P r1, Nbs).

Finally, we impose an upper limit for the rigidity, that is 0 ă bi ă blim, to avoid portions
that are too stiff and would not deform.

The system of equation for the local strain ε and profile inclination α for the i-th block then
writes:∣∣∣∣∣ εpS̃qα1pS̃q `

Cy

bi
fnpεpS̃q, αpS̃qq “ 0

εpS̃q1 ` sgnpS̃q
Cy

bi
ftpεpS̃q, αpS̃qq “ 0

with S̃ P rai´1, ais and Cy “
ρU2HL

k0
(4.3)

Where S̃ “ S{L is the non-dimensional curvilinear abscissa, and fn,t are the fluid forces per
unit lengths as defined in Chapter 1.

4.2.2 Optimization: reaching the target shape

Our inverse problem is therefore to optimize the theoretical distribution of stiffness in a
non-uniform pattern defined by blocks to create shapes approaching a specific target. One
important question remains: what measure/indicator can we use to determine how close the
model is to the target ?

Cost function and criterion

In shape morphing problems, we aim to minimize the distance between the curve predicted
by theory and the target. But, what do we mean by distance? And how does this relate
to a cost function? Let us first suppose that the desired form is described by a continuous
function ỹ “ Γpx̃q (where x̃ “ x{L and ỹ “ y{L), while the theoretical curve corresponds to
a finite number Nr of resolution points px̃, ỹqi with i P r1, Nrs (see Fig4.5a). The distance
between these two curves is quantified by measuring the minimal distance δi between the
target curve and each point of resolution, that is the minimum of

a

px̃ ´ xiq2 ` pΓpx̃q ´ yiq2.
By summing the distances δi for all resolution points, we get a good indicator of the overall
gap between the theory and the desired shape:

F “

Nr
ÿ

i“1

δi (4.4)
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Figure 4.5: a) The minimal distances between the targeted curve ỹ “ Γpx̃q and a set of theoretical
points px, yqi given by the model, are defined by the lengths δi (red lines). b) Evolution of the cost
function F (sum of δi) as a function of the number of iterations, for a triangular target shape and
four-block specimen (Nb “ 4).

At each iteration of the optimization process, a theoretical profile is created and the value of
the cost function F is determined. This value is then compared to a criterion C arbitrarily
chosen (a scalar value). We then distinguish two cases: if the cost function is lower than
the criterion (F ă C), the loop will end, indicating that the theoretical shape is sufficiently
close to the target shape. Otherwise, if (F ą C), a new iteration will be done to further
adjust the stiffness distribution. The Fig4.5b illustrates how the cost function evolves with
the number of iterations for the triangular target form shown in the insets. For values of F
close to the criterion (here, C “ 0.2), the two shapes are almost overlaid.

The scalar C is defined as a tolerance distance (normalized by the length of the kirigami L),
for which the theoretical profile is considered to be close enough to the target. If convergence
is not guaranteed (too complex shapes) or if the initial parameters do not allow to reach
the criterion, a stopping condition is implemented. To approach the target shape as closely
as possible, it is necessary to choose low C. In practice, a value of C ă 0.5 ´ 0.7 provides
good enough results, as illustrated by Fig4.5b.

Optimal distribution
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First step

Second step L

New stiffness distrib. 
k

S0 1a1 a2 a3

rk,

d   r       

Opti. by varying Ls
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Figure 4.6: Schematic view of the discretization process, how can we transform the theoretical
solution into a real pattern?
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Optimization algorithm

At each iteration of the optimization process, a new set of parameters is generated using the
fminsearchcon function in Matlab [81]. This function is based on the Nelder-Mead simplex
method, which minimizes the cost function within a space of dimensions equal to the number
of input parameters (2Nb ´ 1 here). This algorithm has already demonstrated effectiveness
in programming the shape-morphing of a kirigami sheet embedded within an inflatable
membrane. (see Fig4.2b) [49]. It notably allows to impose constraints on distributions,
like restricting the values of b and maintaining the proper order in block sizes a to prevent
overlap here.

Interlude no14: How to reduce errors on the stiffness distribution ?

A way to reduce the error on the stiffness br (in comparison to b) corresponding
to the new distribution of spacings dr is to modify the values of the other cutting
parameters Ls, dy and Ny (while keeping them uniform over the whole sheet). These
three variables are related by the height constraint H “ NypLs `dyq, and we actually
only tune Ls and keep Ny “ 3 and H “ 10.4cm fixed (with Ls ą dy see chapter 1
and [55])
In graph a) below, we vary Ls in the range of r2.5, 4.5s mm and measure the cumulative
difference (error) between the block stiffnesses |

ř

br,i ´ bi| for a case where the target
shape is triangular. We observe that the error varies non-monotonically with Ls, with
several local minima. By selecting one of these minima, for example, by choosing
Ls “ 2.76 cm, we obtain a new stiffness distribution br with a low error value that
is much closer to the solution predicted by the optimization loop as shown in the
attached graph.
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4.2.3 Discretization: from a theoretical prediction to a real cutting pat-
tern

Upon reaching the optimization criterion, we obtain the optimal stiffness distribution char-
acterized by the parameters b (stiffness values in each block) and a (block sizes). Let us
detail in this sub-section how to transform these distributions into a real kirigami sheet with
a finite number of cuts. Recall that we keep identical rows of slits (with the same Ls, dy,
and Ny) and only change the spacing between rows di and the number of cells’ rows Ni in
each block. We can relate pdi, Niq to pai, biq by using the relationship derived in Chapter 1
between the cutting parameters and the effective stiffness:

di “

d

bik0pLs ´ dyq3

32NyEt3
and Ni “

Z

pai ´ ai´1qL

2di

V

(4.5)

With k0 the reference stiffness previously defined (that is set by our choice of imposed Cy

and U).
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In Eq4.5, the number of rows of cells Ni must be an integer (as symbolized by the brackets
[82]), which is most often not the case. To ensure this and maintain the total length (i.e.
L “ 2

ř

Nidi), we slightly modify the distribution of spacings dr (where ”r” stands for
”real”). This also results in a slightly different stiffness distribution br compared to the
optimized solution b. As an example, Fig4.4a compares the two distributions k (black line)
and kr (dash line), used to obtain a triangular shape To minimize the discrepancy between
the prediction and reality, we adjust the cutting parameters along the y-axis (which are
kept uniform throughout the pattern) and more information about this can be found in
the interlude no14. The entire discretization process is illustrated in the schematic view of
Fig4.6.

4.3 First tests, and ideas for improvement

4.3.1 Two tests for the inverse problem

A symmetrical shape with a uni-polar pattern?

In our first test, we want to reach a symmetrical trapezoidal shape in a flow with speed
U “ 0.15 m/s and a Cauchy number of Cy “ 1. We (arbitrarily) impose a sheet made of
four blocks (Nb “ 4) and with a +○ polarity.
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Figure 4.7: a) Symmetrical target curve (red) and optimized deformation profile (black) for a 4
blocks-kirigami sheet at Cy “ 1. b) Shape obtained for the real kirigami in a flow with velocity
U “ 0.15 m/s. c) Optimized solutions k (black solid line) and real stiffness distribution kr (green
dotted line). d) Corresponding cutting pattern (with slits length Ls “ 3.12 cm and Ny “ 3).

Fig4.7a displays the target shape, which is symmetrical and consists of two slopes and a
plateau at y{L “ 0.45. Note that it is challenging to achieve a symmetrical shape for
a unipolar specimen without adjusting the polarity (except in specific velocity regimes as
observed in Chapter 3 for some bizonal cases). The optimization loop was run with stopping
criterion C=0.7 and after N=382 iterations, the theoretical solution, shown in Fig4.7a with
a black line, was obtained. This solution exhibits a symmetrical shape similar to the target,
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but with a smoother geometry, as angular edges are difficult to reproduce using only four
blocks.

Fig4.7c shows the associated solution for the stiffness distribution obtained through opti-
mization k “ bk0 (in black). The distribution is finally discretized to produce the cutting
pattern shown in Fig4.7d, where each block is identified by the same numbers in Fig4.7c.
The corresponding real stiffness distribution kr is shown with green dotted lines in Fig4.7c
(these values were optimized using the method described in the interlude no14).

The kirigami sheet is fabricated through laser-cutting a 100 µm-thick Mylar sheet (as in
Chapter 1 and 3) and placed in a water flow with a velocity of U “ 0.15 m/s. As shown
in Fig4.7b, the specimen deforms symmetrically, as desired. However, the amplitude and
overall shape deviate from the target. Some parts of the kirigami have not been stretched,
while the softest parts (2 and 3) carry the deformations alone. Possible explanations for
this inconclusive result are proposed in the following section. Now, let us move on to the
second test, where the target resembles... a slice of pie.

It’s not a piece of cake!
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Figure 4.8: a) Target curve (red) and optimized deformation profile (black) for a 4 blocks-kirigami
sheet at Cy “ 1. b) Real shape obtained in a flow with U “ 0.15 m/s. c) Optimized solutions k
(black solid line) and real stiffness distribution kr (green dotted line). d) Corresponding cutting
pattern (with slits length Ls “ 2.98 cm and Ny “ 3).

The second example involves an asymmetrical target shape, with a circular arc on the right
half and a constant slope on the left half (see red line in Fig4.8a), reached in a flow with
U “ 0.15 m/s for Cauchy number Cy “ 1.5 and polarity -○. The theoretical optimized
profile (with convergence criteria C “ 0.6) closely resembles the desired shape (black and
red lines in Fig4.8a). The Fig4.8c-d display the stiffness distributions and patterns to cut.

As for the previous case upon testing in a flow, the outcome was not matching with the
shape except even if the deviation is aligned with the theoretical prediction (see Fig4.8b).
A closer examination of the multi-zonal kirigami in the water flow reveals that sections 2
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and 4 in Fig. 4.8d rotate in opposite directions, whereas the pattern should be unipolar.
This will be addressed in the following section.

4.3.2 Ideas for improvements

Despite the inconclusive results of previous inverse problem tests, we will not abandon the
effort. Let us examine the limitations of our method, particularly regarding the theoretical
model and discretization process, and explore potential solutions to improve the algorithm’s
performance.

Discretization process

One potential source of error is the discretization process, which results in a cutting pattern
with a stiffness distribution that does not perfectly match the solution generated by the
optimization algorithm. This problem is particularly pronounced in our case due to the
small size of the sheet and the limited number of cutting cells. To eliminate the need for a
discretization algorithm, each row of cells could be modeled as an independent spring. This
approach may be more computationally complex, but it provides a solution that already
takes into account the final cutting pattern properties. This discrete modeling approach is
commonly used to describe the mechanical behavior of kirigami sheets [46, 73], and holds
promise for further exploration.

Accounting for mechanical nonlinearities in the model

stiffer block

a)

b)

Figure 4.9: a) A Kirigami sheet with gradually increasing spacings dx results in a coexistence
of open and closed states. b) A rigid block sandwiched between two softer blocks can reverse the
rotation direction of the cells.

We modeled kirigami sheets as membranes with linear elasticity, ignoring the initial stiff
regime. These nonlinearities did not have a significant impact on the homogeneous kirigami
specimens discussed in Chapter 1, as the unstretched part of the sheet is aligning with the
flow. They also had a minor effect on the bipolar specimen made of rubber in Chapter 2,
where the first stiff regime was less noticeable (see interlude no9. However, nonlinearities
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may play a role in the non-homogeneous Mylar specimens analyzed here. As discussed in
the general introduction and observed in the experiments here, this leads to the sequential
opening of pores, with flexible portions opening while rigid ones remain fully closed (rather
than gradually opening to a lesser extent). This phenomenon is illustrated in Figure4.9a
with a ”gradient kirigami” (without flow) where the spacing between cells gradually increases
in the direction of tension, resulting in a clear transition from a closed to an opened state.
The large differences in stiffness between blocks in our case might exacerbate these nonlinear
effects. It would be interesting to further investigate this aspect through mechanical tests, by
subjecting non-uniform specimens to tensile tests and measuring the cellular displacement
field, and then incorporating the results into the model, for example using methods similar
to those used in hierarchical kirigami studies [25].

Complex interaction between polarity and stiffness

Mechanical nonlinearities have another surprising effect on the direction of blade rotation.
As shown in Fig4.9b, a rigid block that is not extended between two softer blocks can reverse
the rotation direction of cells. This results in variations of the polarity along the sheet, which
affect fluid loading in flow as for the ”piece of cake”-like shape. Further investigation into the
mechanical behavior of non-uniform patterns is necessary to notably determine the stiffness
difference that causes this phenomenon.

Refining the model for fluid forces

In our model, the fluid forces are dependent on the angle θ of the blade-like cells relative
to the centerline of the sheet, and the angle α of that centerline relative to the flow, which
determines the velocity of the local normal flow (see Fig4.10a). Although this description
accurately captures the experimental results in Chapters 1 and 2, it has limitations when
there is a combination of large α and large θ (i.e. large elongations), which reverses the
orientation of the blades relative to the flow (see Fig4.10b). In the configuration of Fig4.10b,
our model would predict tangential fluid forces towards the right, while the orientation of
the blades relative to the flow suggests fluid forces towards the left. A new formulation
for fluid forces could be explored, taking into account the blade angle α ` θ relative to the
inflow.
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Figure 4.10: a) Fluid forces depend on the cell rotation angles θ and profile tilt α. b) For large
values of θ and α, the orientation of the blades relative to the flow suggests tangential fluid forces
towards the left, while our model would produce rightward forces.

4.4 Conclusion

The aim of this chapter is to integrate the findings from the previous three chapters on
fluid-induced deformations of kirigami sheets, in order to address the inverse problem: to
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determine the cutting pattern that results in a desired shape when subjected to a specific
fluid flow.

As a starting point, we vary the cutting pattern in blocks, effectively modifying the distribu-
tion of effective stiffness. The optimization process is guided by the continuous membrane
model described in earlier chapters. It approaches the target profile by adjusting the stiff-
ness and size of each block. The optimal solution is then discretized to produce the cutting
pattern, which is then fabricated and tested in a water flow. Our first two tests were not
very conclusive, producing shapes that deviate somewhat from the target profile. However,
they reveal interesting phenomena that would be worth exploring in future studies and could
improve the inverse problem method presented in this chapter. In particular, we have iden-
tified the impact of mechanical non-linearity for non-uniform configurations, which affects
both the opening kinematics of the pores and the polarity along the sheet. A more compre-
hensive study of fluid flow through the sheet would also help in refining our formulation for
fluid forces, particularly in predicting high-deformation situations with significant variations
in the blade’s angle relative to the incoming flow.
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Influence of slits on drag

Figure 5.1: “Fish,” he said softly, aloud, ”I’ll stay with you until I am dead.” E. Hemingway, The
Old Man and the Sea

After studying the deformation of kirigami sheets in a flow, we now focus on how such
shape changes alter the drag force on the system. The evolution of drag with flow speed
is impacted by the macroscopic shape change, but also by the opening of pores and their
evolving three-dimensional geometry. We show that this shape reconfiguration reduces the
increase of drag with flow speed, compared to that of a rigid object. For a kirigami sheet
with a uniform pattern, we further show that the drag scales with the sheet stiffness and its
evolution with the Cauchy number are compared to our previous theoretical model. We then
briefly address the effect of varying spatially the cutting pattern. We observed in chapters 2
and 3 that the same sheet may deform in different ways depending on the direction of the
flow traversing it. Here we show that it leads to two different evolutions of drag with flow
speed, a new feature compared to traditional porous surfaces.
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5.1 Drag force on deformable porous structures

In the context of fluid-solid interaction, the only information on deformation is incomplete.
In order to estimate the coupling between a structure of variable forms and a surrounding
flow, it is particularly interesting to study the forces generated. By linking the morphology
to a given fluid force, one can then predict both the kinematic evolution of the structure
itself and the forces experienced.

For rigid systems, we are generally interested in the drag force, defined as the component
of fluid load parallel to the incoming flow. The latter is at the heart of many studies on the
resistance of systems subjected to a moving fluid in civil engineering to reduce the damage of
a storm and in aeronautics, to reduce the fuel consumption of an airplane or increase flight
performance. The flow regimes in these situations being characterized by a high Reynolds
number, the effects of viscosity are usually neglected and the drag forces D are expressed
through the dynamic pressure according to a quadratic evolution in velocity: D9U2.

Nonetheless, things become more complex when the system in question is deformable, as
discussed in the introduction, the modification of the shape induced by the flow changes
the forces exerted on the deformed structure. This mechanism can lead to a reduction of
drag, it allows plants and trees to withstand wind fluctuation. Also, whether for rigid or
deformable systems, the knowledge of the drag law (force evolution as a function of the
surrounding flow velocity) is an asset to predict system behavior in a fluid environment and
then prevent vibrations or damage due to deformations.

a) b)

c) d)

Figure 5.2: a) Fog collector in Alto Patache, Chili. b) Active grid to control the flow impacting
a wind turbine (from [83]).c) Medieval Scandinavian ice fishing technique in 1555. d) Fishing boats
using strong motors to raise their nets

In addition to being deformable, our kirigami sheets have the particularity of being porous.
The modeling and measurement of drag forces on porous surfaces are at the heart of many
current problems. For instance, fog nets (see Fig5.2a) are an ecological and innovative
contraption that allows for the collection of drops suspended in the air, but depending on
their geographical location the impact of the wind can be devastating, and break the whole
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structure. It is then necessary to optimize the porosity to reduce the wind loading and keep
a high collection efficiency at the same time [7, 84]. Even if constitutive fibers are soft,
the pre-stress imposed to keep all fibers straight ensures global surface rigidity at constant
porosity. Another example of a stiff porous system is the grid-like system to control air
flow in a wind tunnel (see Fig5.2b); their porosity is adjustable to create the desired level
of turbulence and pressure drop in a wind tunnel [85, 83]. Finally, porous surfaces and
nets are also widely used for fishing, to the historical era and the fabrication method used,
their braiding and sizing are adapted. Where an old seine net can be used by two peoples
(Fig 5.2c), contemporary fishing dredge methods require a hydraulic engine with strong
torque capacity mounted on a trawler to pull the net underwater (Fig5.2d). Thus in order
to reduce the efforts required for their use, several theoretical modelings and reduced-scale
experiments have been performed.

U

a) b)

c)

d)

Figure 5.3: a) Experimental setup used in [61], that is able to extract both deformation profile, drag
forces and velocity field of the flow that passes through a perforated strip. b) Typical distribution
of the porosity in a ribbon. c) Equilibrium deformations shapes for an increasing velocity of three
different porosity strips β. The three figures come from [61]. d) Drag coefficient as a function of
porosity β, the blue and red dots are experimental data from [60] and their respective linear fitting
Cd “ Cdrp1 ´ λβq

As will be discussed in this chapter, the experimental and theoretical study of systems
like fishing nets is complex, so a continuous description with effective properties is often
preferred. Fundamental studies have been conducted on flexible ribbons placed in front of an
incident flow. A uniform circular or square pore array is affixed on this ribbon with one end
clamped and the other free as exposed in Fig5.3a. The authors of both studies, measure the
drag force experienced by the flexible porous ribbon as a function of the flow regimes and the
imposed porosity (Fig5.3b). They also performed shape-shifting measurements by averaging
the position, see Fig5.3c. Guttag et al. suggested the effect of porosity on fluid forces can
be modeled by an empirical drag coefficient with a linear behavior: Cd “ Cdrp1 ´ λβq,
where Cdr is the coefficient for a rigid strip and λ a fitting parameter (see Fig5.3d). Hence
increasing porosity leads to reduced both drag and ribbon deflection [60].

While Jin et al. go further and complete the approach by analyzing the velocity field passing
through the perforated ribbon by using the PIV method (see Fig5.3a), they also prove the
presence of a second regime of drag evolution at high porosity and low velocity with a
drag coefficient that first increases higher than for a rigid strip (positive Vogel coefficient)
before decaying as previously discovered [61]. The authors suggested that the bending
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induced by the flow on the perforated strip alters the local velocity which could explain
this phenomenon. This complex evolution of drag in porous and flexible structures shows
that both elastic response and porosity play important roles in deformations and forces
experienced.

All previous examples and illustrative systems can be mainly deformed in flexion for the
simple ribbon or through low stretching for the fishing net, let us now focus on our kirigami
structure for which fluid passing through induces large expansion, with a complex evolution
of the size and geometry of pores. We then address the following question: what is the drag
law of an extensible and porous kirigami sheet in flows?

5.2 First experiments - drag law for uniform kirigami pattern

To understand the typical evolution of drag forces on a kirigami sheet, we first explore the
response of patterns with a uniformly distributed cutting pattern (see chapter 1). First of
all, let us detail the experimental protocol devised to measure these efforts.

5.2.1 Experimental set up

All experiments of the first thesis part have been conducted in a water channel, where the
kirigami sheet is fixed inside a frame which is itself clamped at both ends in the test section
(for more details see the sub-section n of chapter 1). This frame fastening system must be
modified to allow measurement of the drag force on the pattern.

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

kirigami

kirigami + frame

frame

U

D
a) b)

fastening syst. loading cell

Figure 5.4: a) Schematic view of the experimental setup used to measure the drag force, a unidi-
rectional load cell is linked to the kirigami’s frame. b) Drag forces distribution as a function of flow
velocity U , the kirigami sheet experiences the higher part of the load.

As shown in Fig5.4a-b the new experimental setup has only one fixing point, indeed the
frame where the kirigami is attached is directly mounted on the force sensor outside the test
section, while the other end is free. The load cell used (Futek-500g) allows unidirectional
measurement; we connect the latter to the QuickDaq software via an acquisition card.

The boundary conditions (fixed-free end) of the frame can lead to a slight bending of the
whole system in high flows. In order to reduce the impact of this parasitic deformation on
our measurements, we work across a lower speed range than for deformation experiments.
The sensor calibration is ensured by using a mass, wire and pulley system attached to the
middle of the frame, which would roughly correspond to the point of application of the net
drag force. The calibrated masses are gradually added in order to find the linear relationship
that links the sensor output voltage and the force experienced.
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To validate our force measurement system, we have previously evaluated the drag coefficient
on a smooth sphere also placed in the middle of the test section, with a similar lever arm to
our {kirigami + frame} assembly. Indeed the drag force experienced on a smooth sphere is
well known, with a classical bluff body law in U2 and a drag coefficient Cd almost constant in
our Reynolds number range, our setup provides Cd „ 0.43 which is consistent with existing
literature.

The force measurement is performed at a fixed frequency (1024Hz), with a continuous
acquisition for 30 seconds, the real drag force D (only the kirigami sheet) is deduced from
the average value of Dt total drag force on the whole system tframe+kirigamiu minus the
drag experienced on the frame alone Df such as D “ Dt ´ Df . To illustrate the typical
intensity of each drag component, all are reported in Fig5.4b. This graph exemplifies the
quadratic evolution of drag force on the frame. Note that it plays a minor role in the total
drag sum which is dominated by kirigami the component, especially for the low velocities
range (low deformation).

A 3D printed piece ensures the junction between the sensor and the frame and allows easy
removal of the frame once the experiment is done without moving the sensor. The sensor
is itself mounted on an external Norcan assembly, kept fixed during the whole experimental
campaign.

This experimental setup has been used in all the measurement campaigns presented in this
chapter, let us begin with the study of the drag of homogeneous cutting patterns.

5.2.2 Experimental results

Shape shifting of kirigami sheets induced by surrounding fluid flow has been extensively
discussed in the four previous chapters. We have highlighted that the complex coupling
between the local fluid forces and the tensile forces controlled by the cutting parameters can
explain the versatile shapes reached by our kirigami sheets immersed in a water channel.
In this section, we will enrich the set of these results by measuring the global drag on these
meta-structures. Let us focus on the case of homogeneous patterns characterized by their
effective stiffness K2 as described in chapter 1.

The Fig5.5 shows the drag evolution results of five specimens whose distance between slits
rows dx varies between 1.5 and 4 mm, while the cutting parameters along the transverse
direction are kept fixed: pLs, dy, Nyq “ p30, 5.7, 3q mm. This induces modifications on the
effective stiffness K2, which evolve between 0.35 and 3.3 N respectively (note that these
specimens are those used in chapter 3).

For each pattern, both polarities (i.e elementary cells rotation side) +○ and -○ have been
tested, according to line the style used. As a reminder, the polarity induces the formation
of symmetrical lobes (same amplitudes) along the left or right direction depending on the
rotation side of the cells. We change it by simply flipping the assembly {frame + kirigami}.

All the raw results are present on the graph in Fig5.5 that we will discuss in the following
paragraphs.

A first glance

First of all, one cannot help but notice that kirigami sheets exhibit drag laws that do not
follow a classical U2 evolution for a rigid object but experience slower increases in drag
with velocity (see Fig5.5a). Indeed the deformation occurring when the flow passes through
the structure leads to a quasi-linear dependence in U . This trend is actually common for
flexible systems, one can mention the example of a thin sheet that bends when facing the
flow, where the drag evolves as:D9U1.33 or a cut disk which rolls up on itself D9U0.67 (from
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Figure 5.5: a) Drag force D on five kirigami sheets as a function of fluid velocity U , stiffness
evolution K2 varies according to the parula color, in practice, our parameter is the gap dx between
slits rows. b) Asymmetrical deformation shapes associated to drag curves (a), for the stiffest specimen
(yellow curve) with K2 “ 3.3N/m and the softest one (blue curve) K2 “ 0.35N/m for a given velocity
U “ 0.25 cm/s. c) Dimensionless drag forces against Cauchy number make all data collapse onto
a single master curve. d) Deformation profiles for the two different specimens of (b) at a similar
Cy „ 4.4, we observed that the same global shapes experienced the same drag force in flows.

[16, 15]). Before discussing qualitatively the origin of this reduction and this symptomatic
trend, let us focus on other non-trivial results.

The polarity inversion does not impact the amplitudes of the drag forces generated, the
dashed and solid curves being very close for a given pattern (thus at given stiffness K2) in
Fig5.5a. In part 1 of the thesis, we reported that the polarity inversion did not modify the
morphology for a uniform pattern and led to a similar evolution of amplitude and elongation.
In the same way, the global drag forces are identical for a pattern whatever the flow direction
(polarity).

One also notes that the forces are stronger the stiffer the kirigami sheets are, to understand
this curve order we can take a look at the shapes. The pictures of Fig 5.5b are taken at the
same velocity which illustrates that stiffer kirigami deforms less and therefore experiences
larger drag forces. The coupling between drag and deformation level is reminiscent of the
analyses conducted in part 1.

Stiffness: a key for re-scale

All our previous observations suggest a strong link between the expansion state and drag
force. That conveys the result of the competition between the external fluid force linked to
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the flow velocity and the internal elastic force linked to the stiffness of the profile. It seems
clear (for the assiduous reader that you are!) that Cauchy’s number is not far away.

This number drives the deformation in flows, as suggested by the pictures in Fig5.5d where
two different stiffness patterns (the same as those reported in Fig5.5b) reach the same
deformation shape for a given Cauchy number (estimated around 4.4). Nevertheless, this
value of Cy will not be reached at the same velocities, where the rigid profile (yellow) is
subjected to a flow at U “ 0.25 m/s, the softer one (bluer) is taken at a lower velocity of
0.09 m/s.

Interlude no15: Same stiffness involves similar drag forces ?

We previously demonstrated in chapter 1 that similar deformations occur in various
cutting tessellations with the same effective stiffness see graph below). This indicates
that the details of the local geometry have no significant impact on the expansion
pathway. Here we want to check if it is also the case with drag force.
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The graph above shows the evolution of drag force for four iso-stiffness patterns
with stiffness of K2 „ 3.1 N/m (taken from chapter 1 studies). The color gradient
represents the spacing between slits, as indicated in the legend. To show the variation
in drag forces for the iso-stiffness patterns, two additional curves from Fig.5.5 (in red
and blue) are added to provide a typical difference in drag.
We observe that the measurements obtained stay well grouped regardless of the dx
values, as long as K2 is kept constant, and no order seems to be established be-
tween them. We can therefore conclude that, like the shapes and amplitudes of these
four specimens, the associated drag laws are substantially similar. This once again
emphasizes the significance of K2 in describing the overall mechanical behavior.

This difference in speeds will induce a gap in loads, to reduce it we normalize the drag by
the order of magnitude of the tensile force K2L. In this way specimens of higher stiffness
that exhibit low deformations and high drag value will be divided by a larger coefficient.
By recasting the raw data previously presented we obtain the graph of Fig5.5c, in which
all curves gather onto a single master curve. This universal behavior attests that both re-
scalings are able to capture the stiffness effect and velocity differences. Another proof of
the link between stiffness and drag forces is given in the interlude o15, where we investigate
the global load evolution for iso-stiffness pattern. Nevertheless, the Cauchy number can not
explain the origin and the drag trends experienced...

As briefly discussed in the general introduction as well as extensively covered in several
studies dealing with the reconfiguration process [3, 16, 7]. The drag reduction of a flexible
device comes mainly from the two effects of the frontal surface decaying (relative to the in-
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cident flow) and the streamlining of the structure itself, both resulting from the deformation
induced by the surrounding flow. These two effects are often coupled but can be isolated as
we will see in the last chapter for origami structures. However, in our current experiments,
a third component linked to the porous nature of the kirigami has to be taken into account.
Indeed the expansion opens the pores which modify the local flow speed. This variation of
effective velocity modulates the local forces and thus impacts the global drag force. Due
to the strong interplay between the three mechanisms, it is difficult to quantify their con-
tribution independently. We then propose to extend our theoretical model which is able to
consider these three mechanisms, to compare the force predictions with the experimental
results.

5.3 Theoretical prediction for the drag

5.3.1 It’s a long (scientific) way to kirigami

Theoretical characterization of fluid forces acting on a porous structure has been widely
studied for various applications: from the optimization of fishing net meshes to minimizing
fluid stress on fog nets. The challenge is to understand how the porosity and deformation of
such systems can influence the fluid loading on the one hand and the surrounding flow on the
other hand. With more and more accurate theoretical predictions significant improvements
have been made in the manufacture of fishing nets increasing their resistance, capacity and
efficiency, let us briefly introduce two classical ways to describe such fluid-structure interplay
problem.

The first modeling approach is based on a discrete description, in Morrison’s model [86, 87]
all periodic elements constituting the screen (knots and strands for a net, cells for a kirigami)
are considered as independent and evolving within a flow not disturbed by their neighbors.
To estimate the global drag force, the idea is to sum the contribution of each elementary
component. This approach has been used as a basis for many studies and has already shown
its effectiveness. Nonetheless, its accuracy decreases for the configuration with low porosity,
because it is no longer allowed to ignore the backflow induced by neighbors elements (a
recent more complex theoretical derivation probes a way to take into account this effect, see
[63])

To overcome such limitations, a series of more recent models proposed a different approach
[64, 63, 62], which is based on a continuous description of a porous surface, that is reduced
to an equivalent flexible and porous membrane. While porous properties can be then taken
into account by ensuring a correction on the effective velocity passing through the nets.
This model is similar to our theoretical approach, already used in the previous chapter. So
let us begin by extending our previous prediction to capture drag force evolution.

5.3.2 Get back and continuous

Using the force model outlined in Chapter 1, we can adopt a similar approach as those used
in [64, 61, 62], where the porous surface is described as a continuous membrane. First, let
us recall that our fluid force modeling is based on a semi-empirical law where we divide the
external load into two components: fN , normal to the screen, and fT , along the tangential
direction (as shown in Fig5.6a).

From this vectorial splitting, the total drag force experienced by our equivalent membrane
is obtained by integrating along the kirigami length the projection of each component as
follows:

D “

ż L

0
rfN pε, αqcospαq ` fT pε, αqsinpαqs p1 ` εqdS (5.1)
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Where fN pε, αq and fT pε, αq (defined by units of length) represent explicit functions of local
elongation εpSq and profile inclination αpSq. Their formulations also take into account the
there effects as previously mentioned and highlighted by three different colors :

∣∣∣∣∣fN pε, αq “
ρU2H

2 γpεq2CN pεqcos2pαq

fT pε, αq “
ρU2H

2 γpεq2CT pεqcos2pαq
&

∣∣∣∣ CN pεq “ CN0 cos
3pθq

CT pεq “ CT0 cos
2pθq sinpθq

(5.2)

We then distinguish the blockage effect implied by porous properties and which involves
velocity correction, the blade tilting rotation as a function of local elongation θpεq and the
fluid flow orientation where we consider only the component of the velocity field normal to
the membrane.
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Figure 5.6: a) Local fluid loading depends on the orientation α of the membrane relative to
the flow, and the internal mesostructures of tilted surface elements via angle θ. Our theoretical
modeling described kirigami sheets as an equivalent elastic membrane that experiences normal fN
and tangential fT distributed loading, from which we derive global drag D and lift Li forces. b)
Theoretical predictions of dimensionless drag force D̃ “ D{K2L as a function of Cauchy number Cy.
c) Comparisons with experimental measurements on the uniform kirigami design from Fig5.5c, the
log-log scale highlights the deviation from bluff body law (slope 1 ) to linear behavior of drag forces
identified with the slope 1{2 .

By incorporating each individual force component (as defined in Equation 5.3.2) into the
overall drag equation (Equation 5.1), and normalizing the result by the internal tension
K2L, we can express the total drag force in dimensionless form, similar to how it was done
for the experiments :
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D̃ “
D

K2L
“

Cy

2

ż 1

0
γpεq2rCN pεqcos3pαq ` CT pεqcos2pαqsinpαqs p1 ` εqdS̃ (5.3)

Where we have defined two dimensionless variables: the Cauchy number: Cy “ ρU2H{K2

and curvilinear abscissa S̃ “ S{L. An illustrative schematic view of each component for
drag force definition is shown in Fig 5.6a. Note that the definition of the lift component
can also be derived from our continuous description and is discussed further in the interlude
no16 ´ 17.

Interlude no16 : what about lift force ?

This chapter focuses primarily on drag force, but it’s important to note that fluid
forces come in pairs, including lift. In our experiments, we only measure drag using
a load sensor, but we can estimate the magnitude of lift using our theoretical model.
As for drag forces, we derived a dimensionless form for lift L̃i “ Li{K2L :

L̃i “
Cy

2

ż 1

0
r´CN pεq cos2pαq sinpαq ` CT pεq cos3pαqqs dS

The figure below shows how the lift changes as a function of the Cauchy number. Both
polarities are shown and correspond to the same lift values, but with opposite signs ac-
cording to local blades rotation and lobe deviation side. In comparison with Fig5.6b,
lift forces are of the same order of magnitude as the drag component. Additional
experiments using a six-component sensor could be done to confirm this observation.
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The graph on Fig5.6b features the dimensionless drag evolution D̃ as a function of Cy with
the details of each component DN and DT (as defined in Eq5.3) according to the color of
the curve. This splitting shows the main contribution to the drag is the force component
normal to the membrane ie DN . Polarity inversion provides similar results in force and is
not reported here (while differences in sign exist for lift as indicated within the interlude
no16).

We finally propose two direct comparisons with experimental results and theoretical pre-
dictions for the same range of Cy. On the Fig5.6c both are reported in a log-log scale, in
order to better estimate the non-quadratic evolution with velocity (slope one for Cauchy
number). Indeed here the drag force tends to follow a linear evolution highlighted with 1{2

slope (C
1{2
y „ U), this tendency is confirmed by our modeling which provides an accurate

qualitative load description. We also directly compare the drag force value in Fig5.5c, which
indicates an acceptable quantitative agreement in view of the strong hypotheses imposed in
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the theory. Indeed, if we refer to our results in chapter 1, our theoretical modeling over-
estimated the deformations. Larger elongations, therefore, lead to a weaker blocking effect
with a lower local velocity and thus lower global forces.

Despite this deviation (specially marked for large Cauchy number), our theoretical descrip-
tion of the three underlying mechanisms is able to capture the non-trivial evolution of fluid
forces on expanding kirigami sheets in flows. As for part 1, we now turn to more complex
configurations and probe the effect of adding heterogeneity on the evolution of the global
force.

5.4 Drag force on non-uniform kirigami specimen

After having measured and modeled the fluid forces of uniform slits tessellation, it is time
to move on to the more complex cases of non-uniform configurations and their impact on
the evolution of drag.

Indeed, in chapter 2, we mentioned that playing with the local rotation side of the cells
induces different shapes for the same flow velocity. We suspect that this gap could therefore
imply two distinct force evolution.

5.4.1 Bipolar case: the role of cells tilting

Let us start by looking at the drag of bipolar kirigami, as a reminder these specimens
present a non-uniform polarity, the elementary cells once out of the plane, tilt in an opposite
direction, with a transition located at distance aL with a P r0, 1s (see chapter 2). In practice,
we added notches near each slit in order to control the direction of the post-buckling rotation
of the cells. We performed two experimental campaigns, one varying the stiffness (through
different slits lengths) where three specimens with a polarity inversion placed at a “ 0.5
(the half of the sheet) were tested and a second campaign in which we changed the position
of the transition while keeping the same stiffness (same cutting pattern). Let us now look
at the drag force evolution for these two campaigns.

Drag for varying stiffness pa “ 0.5q

In chapter 2 we established that if the transition was placed at the center a “ 0.5, the shape
obtained once in the flow was symmetrical, with an amplitude depending on the global
stiffness and polarity considered (i.e. `´ or ´` ). As a reminder, the ´` configuration

experienced a parabola shape with a higher amplitude than the `´ case characterized by
its hemispherical morphology (see Fig 5.7b). Thus the same pattern leads to two shapes,
what about their drag evolution?

To answer this question, we measure the drag loads of three different cutting patterns,
with associated effective stiffness: K2 “ r2.7, 3.9, 7.7s N/m (curve colors) and the transition
localized in the middle of the pattern pa “ 0.5q. Measurements were carried out on both
polarity configurations (line styles) and the results as a function of the input velocity are
exposed in Fig5.7a. As for the uniform cases, we first note that a stiffer pattern experiences
a higher drag. Nonetheless, a significant difference must be noticed: for the same pattern,
the two polarities do not evolve along the same tendency.

This difference is especially marked for high velocities, with the parabolic shape of the ´`

polarity (solid lines) which experienced stronger drag than the `´ configuration (dash
lines). This increasing gap comes from the fact that each polarity exhibits a different drag
trend, the case ´` assuming an almost linear evolution, while `´ tending towards a
plateau at high speed. The difference in force between the two configurations of the same
cutting pattern is a notable finding: a bipolar specimen presents two different laws depending
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Figure 5.7: a) Drag force evolution as a function of inlet flow velocity for three bipolar specimens
of different stiffness (curve colors) and different polarity configurations (line styles). b) Pictures of
the two polarity states, for the medium stiff kirigami sheet (blue curves) at the same flow speed
U “ 0.21 m/s. c) Dimensionless drag against Cauchy number Cy, the collapse provides two sets of
curves, one for each configuration. d) Theoretical results for drag force in the same range of Cauchy
number, with the uni-polar case in red.

on the direction of flow (i.e. polarity). In contrast, a traditional fishing net made of fibers
and knots does not exhibit this property, as flow directions are equivalent in both cases (in
terms of drag and shape).

Introducing the same dimensionless variables as for the uniform patterns, we recast the
data on Fig5.7c. Here, contrary to the previous case, two sets of curves clearly emerge.
The collapse in stiffness is still valid, but the master curve obtained is split into two parts
according to the polarity state (line styles), which is a reminiscence of the amplitude evolu-
tion reported in chapter 2. Thus, differences in expansion of the same pattern induced by
a non-uniform polarity bring a new behavior; the drag laws can differ for the same pattern
depending on the polarity relative to the flow.

These results are corroborated by theoretical predictions as shown in Fig5.7d. Each config-
uration gives a different drag evolution whose order and trends are in agreement with the
experiments. We then compare these predictions to the global drag force of a uni-polar cut-
ting pattern (whose shape under flow tends toward an asymmetric lobe) which experiences
a load in between the two symmetrical bipolar configurations. This theoretical observation
suggests the effect of varying the transition position (value of parameter a), which will be
investigated in the following section. But before moving on to this effect, let us try to
explain why no collapse occurs.
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Frontal area

The origin of these two master curves splitting is therefore related to the different expand-
ing pathways between the two configurations. More than global morphological differences
(parabolic/hemispherical-like shapes), there are local dissimilarities when we look at the cell
scale. As seen in Fig5.7b, the cells in the ´` case are almost perpendicular to the flow,

while those in the `´ case are partially parallel. One can intuitively guess that the first
configuration will experience stronger fluid loads, as the drag contribution is greatest when
an object is facing the flow.
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Figure 5.8: a) φi angle defines the orientation of the i-th blade relative to the flow and allows the
definition of the frontal surface highlighted with a grey rectangle. b) Frontal area evolution of the
three bipolar kirigami sheets of Fig5.7 against Cauchy number

An interesting indicator of such consideration may be given by the frontal area of the whole
kirigami Sf . This surface is the one relative to the incoming flow and is obtained by summing
up the contribution of each tilted cell. In practice we project the length of each cell relative
to the flow direction, through the angle φ as indicated by the gray rectangle on Fig5.8a,
such as the total frontal area is defined :

Sf

S0
“

N
ÿ

i“1

sinpφiq (5.4)

Where the index i corresponds to the i-th elementary blade-like cells. The evolution of the
projected surface, for the three previous bipolar patterns, normalized by the surface in the
absence of deformation S0 as a function of the velocity Cy is plotted in Fig 5.8b.

At first glance, the frontal areas of different stiffness patterns also collapse onto singles trends
according to their polarity state. In fact, the parabolic ´` case stays almost constant with

values of Sf close to S0, (S{S0 „ 0.9) whereas the `´ configuration exhibits a decay by
almost 70 % at high flow speed for the softest specimen. Indeed the lower the stiffness the
higher the deformations hence the lower surface relative to the flow.

Comparing the differences in frontal areas to those in drag forces (Fig5.7c) between two
polarity states shows that surface reduction alone does not explain the distinct trends in
load. Other factors must be considered to understand why such large differences in areas
lead to small gaps in fluid forces. However, we note that the trends are well respected with
the highest surface area for the polarity that experiences the stronger forces (i.e. ´` case).
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Interlude no17: Symmetric shapes induce lift force ?

The bipolar specimen at a “ 0.5 expend in a lobe that points to the center of the
channel; the two portions of the kirigami sheet are therefore similarly stretched. So
one can wonder: what is the result of the transverse lift forces of such a morphology?
Using the theoretical formulation of the lift presented in interlude o17, we deduce the
evolution of L̃i “ L{K2L for the symmetrical bipolar case (a “ 0.5) reported in the
graph below (in which we add the lift of uni-polar cases)
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As expected the symmetrical shape experiences no global lift forces which implies
a strong interplay between shapes and fluid forces. By tuning morphology we can
adjust force as well and even cancel lift load.

Drag for varying a (fixed stiffness)

This first campaign on the three bipolar specimens of different stiffness has highlighted that
the polarity state plays a role in the drag law by splitting the trend according to the flow
orientation. In chapter 2 experiments also showed that varying (a P r0, 1s) changed the
overall shape, particularly the localization of the lobe, from a symmetrical form at a “ 0.5
to an asymmetrical one when a is close to 0 or 1 (unipolar case). We finally pointed out
that the two configurations ´` and `´ were not equivalent in their deformation shapes
for a given a (compare Fig5.9b and d), so we can expect a difference drag force as well.

In order to investigate the mixing effect of a and polarity selection, we measure the drag
on six specimens with the same effective stiffness K2 „ 3.9 N/m and a evolving between
0.18 and 0.5 (see chapter 2 for more details). As for the previous measurements, both
configurations have been tested, and the set of results are reported in Fig5.9a, as a function
of the Cauchy number.

The data is separated into two groups of curves based on the configuration distinction out-
lined earlier: the ´` case (represented by circle markers) shows almost linear drag growth,

while the `´ configuration (represented by square markers) results in forces plateauing for
high Cy. No noticeable order appears in the a value for each curve group. Let’s examine
what theory predicts.

Fig5.9c presents theoretical drag force results for a values identical to those tested exper-
imentally. It confirms the idea that different configurations produce different drag laws.
A solid red line highlights the unipolar case (a “ 0 or 1) and separates the two sets of
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Figure 5.9: a) Dimensionless drag force as a function of Cauchy number for varying a (polarity
transition localization), line style is associated to polarity state and color to a value. b) Theoretical
predictions for drag force experienced by kirigami sheets whit the same a value as experiments and
compare to the uniform solution (red curve). c) and d) Typical profiles for the six different specimens
at Cy „ 3, both configurations are reported (from theory).

curves. Changing the a value affects the force intensity and moves the curves within their
sets, but all curves follow an order according to a. Values close to 0 (e.g. a “ 0.18) have
drag forces that approach the unipolar solution, while symmetrical forms (e.g. a “ 0.5)
majorize/minorize the drag of each set. The dispersion in our measurements (Fig5.9a), may
be due to slight differences in stiffness between the specimens (see the section on elasticity
in chapter 2).

The measurement of drag on bipolar non-uniform cases opens the way to a wider variety of
behaviors. Indeed, the absence of collapse when normalizing by stiffness and Cauchy indi-
cates that this parameter does not capture all the underlying mechanisms. This observation
is a consequence of variations in shapes presented in chapter 2: a bipolar kirigami sheet
has two dissimilar deformation profiles depending on the polarity relative to the flow, in
the same way, two different drag evolutions are noticed. By playing on the local inclination
of the cells it is then possible to reduce or increase the drag of a kirigami according to the
configuration, in addition to making its profile symmetrical.

After having investigated the fluid loading of non-uniform polarity, let us move on to the
case of the specimens of heterogeneous stiffness.

5.4.2 Bizonal case: two stiffnesses lead to two drag evolutions

Chapter 3 presents the effect of the deformation of adding a stiffer portion within the
pattern. We have shown that playing on the size of this portion p1 ´ aqL, its stiffness with
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respect to the soft part (parameter b) and the polarity relative to the flow influence the
kinematics of expansion of the bi-zonal kirigami sheets. Indeed each polarity state imposes
the opening of the respective soft for +○ and stiff part for -○, which induce notable changes
in the morphology according to the chosen polarity (direction of rotation of the elementary
cells). The opening kinematic requires greater efforts for the rigid portion, the shapes then
differ for a given flow speed. As in the bipolar cases, a bi-zonal kirigami then exhibits two
associated shapes for the same pattern. Thus, after having shown that the addition of a
simple rigid portion opens a range of new morphologies and behaviors, let us investigate its
impact on the drag force law.
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Figure 5.10: Drag forces evolution against fluid velocity for both polarity states (line styles) of the
following specimen (all with a “ 0.5): a) b “ 1.8 b) b “ 4 c) b “ 7.1. For comparison, the dark
grey curve corresponds to a “ 0 case (full stiff pattern) and the light one to a “ 1 (full soft). For
each graph, the cutting pattern is recalled with the rigid part on the bottom half, characterized by
wider cells. Their respective expansion pathways are also reported, with red markers to localize the
transition.

In order to present the main features of the bi-zonal kirigami tessellations, only three spec-
imens will be discussed in this section. To examine the effect of stiffness ratio (b), a was
fixed at 0.5 so each portion covers half of the sheet. Fig5.10 shows the graphs of drag force
vs. flow speed for each b, with their respective cutting patterns and expanding pathways in
flow. The forces and shapes for the bizonal patterns are plotted as black curves with differ-
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ent line styles for the polarity states. For comparison, the case of a “ 1 (soft specimen) is
represented in light grey and a “ 0 (stiff specimen) in dark.

Our observation shows that in all bi-zonal cases, the drag force falls between the values
for soft and stiff specimens. For all patterns, the polarity -○, which induces the opening
of the soft part, experiences drag forces close to the fully soft one (light grey curve). This
portion of the sheet actually drives both deformation kinematics with similarity on shapes
(an important result of chapter 3) and global fluid loads, whatever the stiffness of the second
half!

Flipping the pattern (inverting polarity) shows that the +○ configuration has a different drag
response and heavily depends on the b value. With a low ratio, b “ 1.8 (seen in Fig5.10a),
both configurations have a similar drag with a maximum difference of about 0.09N at high
flow velocities. The deformation profiles (dashed lines) show symmetrical pathways with
those of the -○ state. Hence the ratio value is not enough important to induce a large
difference, let us increase this value.

Fig5.10b presents the b “ 4 case, which demonstrates significant differences in drag and
shape changes between the two polarities. The profiles are symmetrical and correspond
to high fluid loads. The last graph shows that the highest tested ratio (b “ 7.1) results
in similar drag evolution (see Fig5.10c), with a close expansion in flow. In this case, the
stiff part remains close for both polarities, and only the soft part expands, explaining the
similarities in shape and load.

Our experiments have shown that similar shapes result in similar drag forces when using
our reasoning on shape-drag links. The response in loads is tightly connected to the flow
expansion and must be evaluated individually based on the values of a and b. So keep just
in mind that such interplay allows an original lever to tune flow response both in shapes
and now in drag forces.

5.5 Conclusion

A deformable system placed in a fluid modifies and adapts its shape according to flow
speed and effective structural elasticity. This shape-shifting process is accompanied by an
evolution of the fluid forces which depend on the deformation kinematics. In this chapter,
we have completed the morphological studies developed in part 1 of the manuscript by
measuring and modeling the evolution of the drag force of our homogeneous, bi-polar and
bi-zonal kirigami sheets.

We first established a close link between mechanical stiffness, deformation and drag. Thus
a uniform and stiff specimen will be less deformed than a soft one for a given speed and will
experience higher global drag forces. This behavior is a reminder of the competition between
the external fluid forces which tend to expand the structure and the internal elastic restoring
forces. As for the amplitude of expansion in flow, the introduction of the Cauchy number
and the normalization by the stiffness allows the collapse of the drag law, thus showing the
universal character of this competition, which then drives both results in shapes and forces.

However, things become more complicated when heterogeneity is introduced into the cutting
tessellation. The bipolar case shows that the variation of stiffness for the symmetrical shape
induces two different laws in force evolution, the notion of polarity relative to the fluid
becoming relevant. Thus, a type of morphology gives a trend in drag and so on. This link
between shapes and forces is exacerbated when we look at the response of the bi-zonal cases
where the difference in force can reach a factor of 2 for the same specimen depending on
the side exposed to the fluid. Thus our kirigami sheets pave the way to the development of
smart sails or nets that could adapt both their forms and forces depending on flow intensity
and direction.
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6
Origami folding sets an upper

limit on drag

Figure 6.1: ”One thousand origami cranes”, is a Japanese legend, which tales if a person folds 1000
origami cranes, gods will grant one wish...

In this last chapter, we present a new type of meta-structures based on origami methods.
The presence of folds in a structure localizes the deformations and induces large changes in
shape once placed in flows. These morphological variations lead to new drag laws depending
on the crease pattern. We will see how and why the presence of creases allows an important
reconfiguration process of the structure and involves a surprising saturation in drag, with
a non-dependence on surrounding flow velocity. These experiments are finally compared
to a theoretical model based on real geometry and the underlying physical phenomena are
explained using a simplified model.
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6.1 Introduction

As illustrated in the general introduction and at the beginning of the previous chapter,
the shape-shifting of a flexible system subjected to a flow modifies the forces exerted on it.
This mechanism is known as the reconfiguration process, in the sense that the deformable
structure changes its configuration according to the velocity and direction of the incoming
flow. This phenomenon also deeply impacts the fluid forces exerted on the structure and
induces the reduction of drag. The origins of this process come from a combined effect of
reduction of the frontal surface, and streamlining induced by the deformation [16, 7].

6.1.1 Origami in science - a quick reminder

The studies cited in the general introduction, concern mainly deformations by bending.
The latter is isometric and imposes shape and drag law limitations. Our idea is therefore
to access the new deformation mode and gain control of the reconfiguration process. The
previous chapter provided a first insight into the force response of an architectured structure
in flows. We highlighted that the drag reduction process was modulated by the effective
stiffness of the kirigami pattern and that a non-uniform sheet led to different fluid force
evolution depending on the flow direction. It is high time to put the kirigami aside, after
five chapters on the art of cut paper, let us deal with the art of folding: origami.

A fancy way to overcome this shape limitation and induce larger deformation and more
generally to program shape morphing is to localize the deformation along a pattern on flat
material, which is the hallmark of origami technique.

θ

Ψ
m

Ψ
v

mountain fold

valley fold

R

a)

b)

c) d)

Figure 6.2: a) Waterbomb crease pattern with N “ 8 folds on a disk with radius R. b) Folded
state characterized by the opening angle θ between a valley fold and the central axis passing through
the vertex. The angles of mountain and valley folds, Ψm and Ψv, respectively, are derived from the
chosen parameter θ for this single degree-of-freedom mechanism. c) Folding instruction to obtain
the origami water-bomb cell from a flat sheet. d) Waterbomb unit in its two stable states, from [88].

The elementary principle of this Japanese art is to affix a creases tessellation on a sheet.
Each fold is defined along a direction called a valley or mountain according to the angle
sign. More concretely adding such folds on a plane condition the 3D configuration reaches
once folded can allow large and quick changes in shape from the initial flat end to expand
the state to a fully compact one.
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As previously illustrated in the main introduction, folded structures are already widely used
in the engineering field. The presence of folds in a structure allows it to exhibit new and
programmable mechanical and geometrical properties [89, 90].

However, to our knowledge, the mechanical response to a flowing fluid has been little ex-
plored, to the exception of two recent studies on the tumbling of an origami unit and a
crumpled sheet in a viscous shear flow [91, 92]. So let us pave that way!

6.1.2 Umbrella-origami

Origami folding offers nearly limitless possibilities for pattern creation, each with its own
unique characteristics that must comply with mathematical principles to maintain face
rigidity [24]. Our aim is to find a simple pattern for flow experiments and theoretical
modeling, while still allowing enough shape transformations to compare with traditional
continuous cases. We chose the well-known waterbomb base, a basic origami unit that
serves as a building block for more intricate designs, previously used for self-deploying
medical stents [93, 94].

The waterbomb base is an origami cell characterized by its umbrella shape and its bi-stable
property (see Fig 6.2b and d). Before going any further, I recommend the reader to use
his/her manual skills and fold the sheet of paper attached to the manuscript following the
steps indicated in Fig 6.2c. The crease pattern, shown in Fig6.2a, consists of a disk of
radius R patterned with an even number N of creases, radiating from a central vertex and
separated by equal sector angles. It folds into an alternation of mountain and valley folds,
which form N{2 lobes.

This origami unit is also known for its large shape changes with well-characterized kinematics
that has the particularity of having a single degree of freedom. Note that it is the case only
if all origami faces are rigid (see next section) and if the folding is symmetric, meaning that
all lobes close in the same way. Each crease is characterized by its angle Ψm or Ψv, for
mountain or valley type respectively. Based on previous kinematics studies [88, 95, 96], we
choose to describe the whole folded state using the opening angle θ as the single degree of
freedom, which is the angle between a valley fold and the central axis passing through the
vertex as shown in Fig6.2b. As θ goes from 0o to 90o, the units morph from a flat disk to a
very compact configuration. This large shape change is likely to have a significant impact
on the fluid forces acting on the structure.

Note that a simple manipulation of the unit (do it !) exhibits the existence of the two
equilibrium configurations. This property is not at the heart of our studies but will be the
subject of the last section of the chapter as a future opening.

Before placing this cell in an airflow, we are going to discuss the mechanical properties of
our folded structure.

6.2 Mechanics behind folds

6.2.1 Creases everywhere, even in the trash

The presence of folds in a flat structure is the signature of origami art but folds commonly
form in thin sheets that undergo large deformations. Fig6.3 shows the example of a crumpled
sheet: when compacting an initial flat piece of paper into a ball, a set of creases appears.
Several studies [97, 98, 59] interpret the physical origin of such folds and their statistics
through arguments based on the balance between bending and compression energy, forming
singularities along lines: the folds (See Fig 6.3b).

From this view, an unfolded crumpled paper sheet becomes a kind of origami with a random
crease pattern. The formation of folds in a thin sheet thus proceeds from localization of
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a) b)

Figure 6.3: a) Cross section of a paper dumpling, the compression of the sheet leads to the presence
of folds, whose distribution follows a random pattern as shown in b). From [99, 100]

the deformations, to gain control of the latter and to study experimentally their mechanical
behavior let us investigate a simplified case of inflexible facets.

6.2.2 Rigid face hypothesis

As presented in the introductory part, one interest of origami is the ability to control the de-
formation kinematics through simple geometrical arguments. However, this programmable
property is better achieved if the deformation is localized along the folds, while facets remain
rigid. The flat facets than simply rotate around the flexible creases.

a)

b)

c)

Ψ

Ψ

Ψ

flexible faces rigid faces

Figure 6.4: a) Example of a fold with flexible facets (from [101]). b) laser line on flexible facets, the
fold is localized through the sharp angle (from [96]). c) Flexible and thin Mylar sheet makes the link
between two rigid and thick panels, this fold was made using the manufacturing process described
below.

This ”rigid facet approximation” [89, 96] greatly simplifies the kinematic and mechanical
description. Each of the folds is then fully characterized by a single opening angle Ψ , and
its mechanical response can be modeled as two rigid panels (facets) connected by an elastic
hinge (crease). Note that this approximation can be related to a length comparison, when
the size of the facets is smaller than the characteristic ”origami length” as detailed in the
interlude no18.

Figure 6.4 shows two typical modes of deformation. Figs 6.4a and b are made from a single
sheet of thin Mylar, deformation under traction opens the folds and causes bending of the
faces. The deformation affects the entire system {fold + faces}. While in Fig 6.4c, faces are
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made with a thicker Mylar sheet which ensures their height bending rigidity and deformation
will only occur at the crease. Let us now describe our manufacturing method.

Interlude no18: Origami length and deformation modes

In their article [96], the authors study the mechanical behavior of a single crease made
of a homogeneous Mylar sheet. They define a characteristic length (called origami
length) L˚ which compares the fold stiffness κ and the bending stiffness of the facets
B :

L˚ “
B

κW

One can therefore distinguish two regimes: if the facet length is larger than the
origami one L ą L˚ then the flexibility of the facets drives the deformation, conversely,
if L ă L˚ the facets can be considered as undeformable, and the fold is like a torsional
spring connecting two rigid panels.
In this study, we want to fall in the second case, by increasing the facet thickness
(350µm, while the creases are around 65µm on average, see manufacturing section).
We thus obtain a large bending rigidity B „ 0.0278N.m2 for faces in comparison
with the fold stiffness κ „ 0.03N . In our case, the origami length is thus around
L˚ „ 0.93m. Given the size of our systems (around 0.07m for the larger specimens),
the ”rigid facet approximation” is thus ensured for our experiments.

L
t

κ

κ

B

Flexible facets

Rigid facets

L>L

L<L*

*

6.2.3 Manufacturing process: overlaying Mylar sheets

The objective of our manufacturing method is to produce origami specimens with rigid
facets and deformation localized at the folds. To that end, we overlay two sheets of PET
Mylar of different thicknesses (see Fig 6.5a). This thermoplastic material has already been
used in several studies to build folded structures [102, 103, 104], and it is the same material
that we used to fabricate our kirigami sheets. We first laser-cut a thick 350µm sheet that is
previously covered with double-sided tape. This first layer will constitute the facets, and it
is then affixed to the thinner sheet that will form the folds. To ensure precise positioning of
the facets, the latter are connected to each other through an outer ring, which is removed
post-assembly. Facets are separated by a 2.5 mm spacing, which delineates the flexural
hinge that will act as a fold through bending (see Fig6.5b for the typical thickness of the
different layers).

The flat specimen is then folded manually into an alternation of mountain and valley folds.
An important step remains: how to prescribe the rest configuration? That is the state in the
absence of mechanical loading. Inspired by previous work [104], we use the thermoplastic
property of Mylar to set it through annealing. In the latter study, they shaped folds with
a specific angle by heating PET thermoplastic sheets in a mold and then cooling it down.
This protocol was shown to produce folds with a reversible mechanical response, returning
to the same assigned reference configuration once the loading is removed. In line with this
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laser cutter
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t = [30-100] µm

face

fold
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face
 350 µm PET

Figure 6.5: a) Cells are fabricated through the layering of a thick and thin Mylar sheet (attached
with double-sided tape), forming stiff facets and flexible creases. The flat structure is then hand-
folded to the desired extent and placed in an oven to set its rest configuration through annealing. b)
Fold layering details. c) Example of an origami specimen, in its two stable rest configurations.

technique, our origami units are fastened in the desired rest configuration, placed in an oven
at a temperature of 75˝C for one hour, and then left to cool down at room temperature
for an hour. This temperature is chosen around the glass transition temperature of PET
(around 70´80˝C), but below the maximum operating temperature of the double-sided tape
(80˝C) to prevent facets from unsticking. We thus impose the rest configuration, which is
characterized by the initial opening angle θ0 (see Fig 6.5c) with an accuracy of ˘2o.

The layering method enables rigid facets and concentrates deformation on folds. We there-
fore adjust fold rigidity by varying Mylar sheet thickness for creases, in our study four
thicknesses have been investigated: 30, 48, 75 and 100 µm, which we are going to mechani-
cally characterize below.

6.2.4 Crease stiffness measurements

In this section, we characterize the mechanical properties by probing the response of a single
fold, manufactured using the protocol described above.

As discussed earlier, in the ”rigid facet approximation”, folds can be regarded as a torsional
hinge that connects two unbending panels [96]. This hinge is characterized by a torsional
stiffness κ that relates the applied torque T to the resulting angular deflection relative to
the rest position Ψ ´ Ψ0. We have: T “ κW pΨ ´ Ψ0q, with W “ 4cm (here) the crease
width.

We measure the evolution of the crease opening angle as we apply an increasing pulling
force to the center of one square facet, while the other is attached to a vertical support (see
Fig6.6a). In practice, the force is applied by adding weights of controlled mass M in a bag
attached to a string at the center of the free face. The torque T is evaluated from the fold
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Figure 6.6: a) Experimental set-up to measure the crease stiffness. b) Applied torque T as a
function of the angular deflection relative to the rest angle Ψ ´Ψ0 for folds made with flexible sheets
of variable thickness and Ψ0 “ 100o.

opening angle and the lever arm between the rotation axis and the point of application of
the force T “ MgpW {2qsinΨ . The mass of the hanging facet is taken into account in the
expression of the total mass M .

Results are shown in Fig6.6b for samples made of flexible sheets with different thicknesses
t and similar rest angle Ψ0 „ 100o. Folds exhibit a linear relationship between the torque T
and the angle deflection Ψ ´ Ψ0, over a range of 60o. Similar to those attained in wind flow
experiments for our waterbomb origami unit. Linear fits yield the following values for the
crease stiffness (red dash lines):

thickness t (µm) 30 48 80 100

stiffness κ (.10´3N) 3.0 9.9 21.3 61.3

The relationship between the thickness of the Mylar sheets used for the folds and the tor-
sional stiffness is further illustrated in Fig 6.7b. From this plot, one obtains a power law
κ9t2.3 that is consistent with the scaling laws reported in the literature. Indeed, two differ-
ent fold stiffness laws have been observed depending on the crease manufacturing method:
a sharp crease angle induced by plastic deformation in a single thin Mylar sheet (see Fig6.4a
and b) leads to a quadratic dependence κ9t2, [96, 105]. While a fold formed by a flat flexible
plate as described in Hanna et al. [88, 95] gives κ9t3. Our power law gives an intermediate
value between those expected by the scalings, which indicates that the mechanical response
of our folds lies in between that of a highly localized crease and of a flexural pivot. A deeper
discussion is proposed in the interlude no19.

To evaluate the impact of the initial opening Ψ0 on the fold stiffness, we performed mea-
surements on four folds with the same sheet thickness (t “ 80µm) and different Ψ0 values.
The collapse of the load-deflection curves in Fig 6.7a shows that κ depends primarily on the
constitutive flexible sheet and its thickness, and little on the rest angle. To further assess
the variability of mechanical properties, we performed measurements on twelve indepen-
dent folds with identical parameters pt “ 80µm, Ψ0 “ 90oq. It shows good repeatability
(consistently with Fig 6.7a), with a standard deviation of 0.3.10´3 N.
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Figure 6.7: a) Torque as a function of the angular deflection for folds with different rest angles Ψ0

and the same sheet thickness t “ 80 µm. b) Crease stiffness κ as a function of the sheet thickness t,
fitted by a power law (red line) yielding κ9t2.3.

Interlude no19: Relationships between the fold stiffness and the sheet
thickness

The relationship between the crease stiffness and the thickness of its constitutive
sheet depends on the fabrication process of the fold. There are two types of folds:
marked folds (sharp angle) made through crushing or molding [96, 105]. The elastic
energy of a crease Eel is then associated to bending within a region of length W and
width t with curvature 1{t (see schematics a), and scales as Eel9BtW {t2 with B the
sheet bending rigidity that varies as t3. It thus yields a t2 dependency for the crease
elastic energy, and hence for its stiffness (since Eel “ 1{2κW pΨ ´ Ψ0q2).
While the second type of fold is a flexural joint made of a flat plate without a crease
that connects two rigid facets (see photo b adapted from [88, 95]). The elastic energy
of deformation will come from the plate bending, then Eel.9t3 and so does the crease
stiffness.
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6.3 Origami in the wind

We manufactured and tested thirteen waterbomb specimens. We systematically varied the
radius R “ 4´7 cm, fold stiffness κ “ 3´60ˆ10´3N (by changing the Mylar sheet thickness
as described above), the angle of the rest configuration θ0 “ 14´57o and the number of folds
N “ 6´ 12. Each parameter has been varied independently while fixing the other ones. All
those series share one specimen serving as a reference, with intermediate parameter values:
R “ 5cm, κ “ 9.9 ˆ 10´3N, θ “ 32o and N “ 8.

6.3.1 Exprimental set-up

We characterize the response of the origami units in a flow following the protocol described
in the following. Structures are subjected to a controlled uniform air flow generated by an
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open jet wind tunnel with a square test section of 40 ˆ 40cm2, and a flow velocity that is
varied gradually within U “ 1 ´ 19 m/s and calibrated with a Pitot tube. The origami cell
is attached at its vertex to an upstream elbow and held at the center of the channel with its
convex side facing the incoming flow (Fig.6.8a). We take particular care to ensure that the
fastening system does not prevent the folding of our origami unit. The mount is connected
to a six-component force balance that measures the drag of the specimen Fd. The drag on
the support alone is measured and subtracted from the data (as for kirigami and frame drag
forces in chapter 5).

F

S

Force balance

U

0 m/s 5.0 m/s 9.9 m/s 16.1 m/s

a)

b)

U

Figure 6.8: a) An experimental system with the origami cell held in an incoming uniform air flow
with speed U . The drag force Fd is measured by a force balance, while simultaneously extracting
the frontal area S to quantify shape changes. b) Typical reconfiguration experiment in a flow of
increasing speed, for a specimen with N “ 8, R “ 5 cm, fold stiffness κ “ 9.9.10´3 N, and rest angle
θ0 “ 32o.

The shape changes induced by the flow are quantified using the cell frontal area S, which is
the one projected in the plane perpendicular to the flow. It is imaged by a camera placed
downflow of the set-up and extracted through Matlab custom image analysis. As shown in
Fig6.8b, the cell deforms symmetrically and the folding kinematics is thus consistent with
the 1-DOF mechanism discussed earlier and details in the following section. The full shape
of the cell can then be inferred from the S area metrics, which will be used to characterize
its degree of closure. The geometrical relationship between S and θ will be explicitly derived
in the theoretical section later.

6.3.2 Behavior of a typical origami cell

Fig6.8b presents a typical experiment for an eight-creased specimen. In the absence of flow
(U “ 0 m/s), the cell is in its reference configuration. Flow loading then induces a nearly
symmetrical closing of the four lobes, which is all the more pronounced as the velocity U
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is increased. The corresponding frontal area is reported as a function of the incoming flow
in Fig 6.9a. Fluid loading induces a significant shape reconfiguration, with a decrease of
the frontal area with U , around 60-70% compared to the unloaded reference state S0. Note
however that the fastening system does not allow for a complete cell closure.

~U2
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Figure 6.9: Evolution as a function of the free-stream velocity U of a) the cell frontal area S relative
to the area at rest S0 , and b) the drag force Fd. The cell parameters are: N “ 8, rest angle θ0 “ 32o,
radius R “ 5cm, and fold stiffness κ “ 9.9.10´3 N. The drag on the equivalent rigid origami cell (i.e.
with the same geometry) is reported by a black line for comparison.

This large shape variation and the reduction of the frontal surface significantly impact the
drag on the structure. As illustrated in Fig 6.9b, it allows the cell to drastically reduce the
load it has to sustain, compared to the drag it experiences when frozen in its reference state
(black curve).

While the rigid unit exhibits a classical U2 quadratic bluff body behavior, Fd increases
more slowly for its flexible counterpart and reaches an upper limit at higher flow velocities,
where it ceases to depend on U . Drag reduction is commonly observed for flexible structures
deforming in flows, but such cancellation of the velocity dependence for Fd has rarely been
reported. We can quote the exception of the flexible ribbon weighted at its end by [106],
which also features such drag evolution at high flow speed.

Large shape reconfiguration thus has a significant impact on drag which plateaus at high
flow speed, despite increasing U . Let us now change the fold stiffness and cell size in the
following sub-section.

6.4 Stiffness and size: hello Cauchy my old friend

One can guess that changing size and elastic properties should impact both the deforma-
tion and drag force on origami units. To investigate these two parameters, we performed
experiments with four different cell radii (solid lines) and fold stiffness (dash lines). All the
results are reported in Fig 6.10, where markers differentiate specimens with varying crease
stiffness κ (and the same radius), while the color gradient denotes the radius R (for the
same κ). Here, the number of folds is kept constant at N “ 8, as well as the rest opening
angle θ0 “ 32o.

Let us first have a look at size effects. At low velocities, we observe that larger waterbomb
units experience stronger drag, which is expected given their greater area exposed to flow.
However, the four various-sized cells reach the same constant Fd at higher flow velocities,
thus resulting in speed- and size-independent drag.

Regarding the fold stiffness, κ affects the degree of structure closing in the flow, with less
area shrinkage for the most rigid specimens (see Fig6.10b). As a result, the latter exhibit
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Figure 6.10: Evolution as a function of the free-stream velocity U of a) the drag force Fd. Cells
share the same N “ 8, and rest angle θ0 “ 32o. The same rigid specimen than Fig 6.9 is reported
for comparison, and b) the cell frontal area S relative to its area at rest S0.

a higher drag. Fig6.10a shows that drag eventually flattens for all cells but for a value and
past a critical speed that both depend on κ. Indeed the plateau behavior is reached at
U “ 15m/s for a stiff cell (κ “ 21.3 ˆ 10´3N), while the softest one starts experiencing
a constant drag force around U “ 5m/s. The interlude no20 discusses the flow regimes
occurring in our experiments, we especially prove that despite the large deformations the
inertial regime can be always considered.

Those trends reflect the competition between the fluid loading and the elastic restoring force
that underlies the structural reconfiguration. In line with previous chapters, we therefore
define (again) an associated Cauchy number :

Cy “
ρU2R2

κ
(6.1)

Unlike the one used to describe the expansion of kirigami sheets in a flow, here we used the
fold stiffness κ to take into account for structural rigidity. It compares the magnitude of
the work of pressure forces that scales as ρU2R3 and the elastic energy κR. One can then
recast all the previous data in dimensionless form by introducing Fd “ Fd{κ on Fig6.11.

C
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d
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0

2

4

6

8

10

Figure 6.11: Dimensionless drag Fd “ Fd{κ as a function of the Cauchy number Cy. Legends are
the same as in Fig6.10.
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The data for all specimens collapse onto a single curve. This master curve highlights the
general and shared tendency: large morphological changes lead to a saturation of the drag
at higher Cy, with the plateau height related to the elastic resistance to deformation κ.

The behavior of the cells is thus governed by this Cauchy number, which captures the
competition between rigidity and fluid loads. This dimensionless number notably reflects
the effect of origami size and stiffness on shape reconfiguration in the flow. Before presenting
experimental results for more specific parameters (rest angle θ0 and fold numbers N), we
will deeply detail our theoretical approach in the following section.

Interlude no20: Let us talk about Reynolds number(s)

0 5 10 15 20
103

104

105

radius R : stiffness κ :

4 cm
5 cm
6 cm
7 cm

3.0.10-3 N
9.9.10-3 N
21.3.10-3 N
61.3.10-3 N

*

The dimensionless
number widely used to
characterize the flow
regime is the Reynolds
number Re, which
compare inertial and
viscous fluid forces.
For our origami, we
can first define a
Re “ UR{ν based
on the cell radius
R „ 3 ´ 7cm, and
which roughly varies in
from Re “ 103 ´ 105.
Alternatively, we can
define a Reynolds
number that accounts for the change in frontal area S of the cell as it folds in the
flow: R˚

e “ U
?
S{ν, based on the characteristic length

?
S. Values of R˚

e are shown
in the figure attached for the specimens with varying radius R and crease stiffness κ
that are featured in Fig6.10. We observe an initial increase of R˚

e with flow speed,
which is then offset by the decrease of S with U . For all specimens, values are within
the same range as for the original Reynolds number Re, and consistent with a flow
regime dominated by inertial forces.

6.4.1 Blockage effect in wind-flow experiments

Regarding drag force measurements on kirigami structures (refer to Chapter 5), one can
wondering about the influence of the origami structure on the fluid flow. As previously
mentioned, the presence of a blockage effect generally leads to increased fluid velocity,
thereby altering the aerodynamic characteristics of the object within the flow. Several
studies [107, 108] have explored this effect on drag coefficient measurements, considering
various blockage factors denoted as β “ S{Sv. Here, β represents the ratio between the
frontal area of the object under investigation, denoted as S, and the cross-sectional area of
the wind tunnel, known as Sv. Collectively, these studies suggest that the impact of the
blockage effect becomes noticeable when β exceeds 3% in the case of closed wind tunnels
and bluff bodies (such as plates or other similar geometries [107, 109]).

In our set-up, we can estimate this factor by considering the maximum value of S “ S0 „

0.5πR2, which corresponds to the area of the kirigami structure in its unfolded state without
any load. This estimation yields a blockage factor of β „ 2.4% for a channel section with
dimensions Sv “ 40cm ˆ 40cm. Given that our wind tunnel is open (low border impact),
we can safely neglect the blockage effect in our future analysis. Therefore, the primary
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contribution to drag reduction in our case arises from the reduction in frontal surface area
and the associated streamlining effects.

6.5 Theoretical modeling

In order to rationalize our experimental results, and get more insight into the interplay
between flow and our folding cell, we derive a simplified theoretical model in the following.
We start with a 2D toy model of a single fold in a flow to introduce our theoretical approach
and then move on to a 3D geometry more faithful to the waterbomb cell.

The models are based on an energetic approach. The static equilibrium of the cell (or fold)
in a flow with a given speed is obtained by minimizing the energy Eel ´ W . It takes into
account the elastic potential energy Eel associated with crease folding, and W the work of
fluid forces acting on the facets. From this equilibrium configuration, we can determine the
drag force exerted by the surrounding fluid on our structure.

6.5.1 Two panels and one hinge in a steady flow

0 50 100
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0 50 100
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0.5
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n
θ

U
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κ
θ

Figure 6.12: a) Opening angle θ evolution as a function Cauchy number Cy. (inset : 2D toy model
system : one crease of length R is modeled as an elastic hinge with stiffness κ and described by its
opening angle θ). b) Dimensionless drag force Fdp “ FdpR{κ on a 2D fold rest angle θ0 “ 45o

Let us first consider a 2D fold made of two rigid facets of length R as illustrated in Fig 6.12a,
and invariant along the third dimension. As previously discussed, the crease is modeled by
an elastic hinge characterized by a torsional stiffness κ. This single-fold faces an incoming
uniform flow with velocity U . The closing induced by the fluid flow is assumed to be
symmetrical and characterized by the opening angle θ, which varies between the rest angle
θ0 and the closed configuration θ “ 0. The elastic potential energy per unit of length writes
Eel “ 1{2κp2θ ´ 2θ0q2. This term is then balanced by the work of pressure forces acting on
the facets. Remark that in our flow regime, characterized by a Reynolds number within a
range 103 ´ 105 (see interlude no20) the dynamic pressure forces are preponderant and the
frictional component can be first neglected. Inspired by models previously developed in the
literature [16, 15, 17, 60, 61], this load scales with the momentum carried by the flow in
the direction perpendicular to the facet: ρpU.nθq2 “ ρU2sin2pθq, with nθ the normal unit
vector. The work of pressure forces is then obtained by integrating along the trajectory xdθ
of each facet, where x is a radial coordinate evolving along the face, the total energy of the
system per unit length can be expressed as :

pEel ´ W q2D “
1

2
κp2θ ´ 2θ0q2 ` 2

ż θ

θ0

ż R

0
ρpU.nθ1q2xdxdθ1 (6.2)
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Energy minimization, that is the zero of d pEel ´ W q2D {dθ, gives the equilibrium angle θ
for a given Cauchy number Cy, which then satisfies :

pθ ´ θ0q `
Cy

4
sin2 θ “ 0 with Cy “

ρU2R2

κ
(6.3)

The equation is solved numerically for increasing Cauchy number, and the results are plotted
in Fig6.12a. As expected, increasing the Cauchy number leads to the closure of the fold.
From these equilibrium positions, we can deduce the drag force by integrating and projecting
the pressure field along the direction of the incoming flow. The dimensionless form Fdp,2D “

Fdp,2DR{κ is the 2D analog of the one introduced previously for our experimental data in
Fig6.11. It writes:

Fdp,2D “ 2
1

κR

ż R

0
pU.nθq2. sinpθqdx “ 2Cy sin

3pθq (6.4)

The evolution of the force with Cy is reported in Fig6.12b. Although the geometry is highly
simplified, our toy model reproduces the main features observed experimentally: the flow-
induced folding limits the increase of drag with the Cauchy number. This effect is large
enough to saturate Fdp,2D, and finally leads to a drag decrease at higher Cy as the cell
further closes. This theoretical decaying phase is however not observed experimentally,

Before moving to a more realistic 3D model, we further use this simpler 2D model to discuss
different modeling for fluid dynamics. We compare our constant-pressure formulation to a
more realistic pressure field and take into account skin friction that can be relevant for a
high degree of closing when facets tend to align with flow.

6.5.2 A more realistic pressure field

The geometry of the 2D model is similar to a wedge, which has been widely studied in
the literature on fluid dynamics. We use the Falkner-Skan approach here that models the
two-dimensional laminar boundary layer forming on such wedge-shaped bodies [110, 111],
as illustrated in Fig6.14a. We distinguish two regions: a near-wall boundary layer affected
by viscosity (in gray on Fig6.14a), and the outer flow where viscous effects are neglected and
that satisfies Euler equations. While the boundary layer is described by Prandlt equations
[112, 65], which provide an expression for the pressure and shear stress along the walls.

The main assumption of the Falkner-Skan analysis is that the pressure across the boundary
layer varies a little along the y axis normal to the wedge surface. Thus the outer flow
actually imposes its pressure field. Euler’s equations provide a self-similar solution for the
velocity at the boundary layer edge and in the outer region: uepxq “ Upx{Rqm, where x
is the coordinate measured along the wedge wall, and m “ θ{pπ ´ θq is the self-similarity
coefficient that depends on the wedge angle θ. This model of the external flow assumes that
the velocity at the downstream edge of the facet is equal to the far-field velocity: uepRq “ U .
It means that the pressure in the wake is equal to the far-field pressure. The differential
pressure P across a facet is then given by Bernoulli’s equation P pxq ` 1{2ρu2epxq “ 1{2ρU2,
which yields:

P pxq “
ρU2

2

„

1 ´

´ x

R

¯2m
ȷ

(6.5)

As previously, we evaluate the work W done by the pressure forces, which competes with
the potential energy of the elastic hinge. The total energy per unit length is then expressed
as:
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Figure 6.13: a) Dimensionless pressure drag F dp,2D “ Fdp,2DR{κ, and b) opening angle θ, as a
function of the Cauchy number Cy, for a fold with rest angle θ0 “ 45o. The black line corresponds
to the predictions with the pressure formulation based on momentum conservation arguments, and
the grey one to the pressure distribution from Falkner-Skan model.

Eel´W “
1

2
κp2θ´2θ0q2`2

ż θ

θ0

ˆ
ż R

0
P pxqxdx

˙

dθ “
1

2
κp2θ´2θ0q2`

ρU2R2

2

ż θ

θ0

ˆ

1 ´
1

m ` 1

˙

dθ

(6.6)

The equilibrium angle then corresponds to the minimum of Eel´W , and can be analytically
expressed as :

4κpθ ´ θ0q `
ρU2R2

2

ˆ

1 ´
1

m ` 1

˙

“ 0 ÝÑ θ “
θ0

1 ` Cy{8π
(6.7)

The evolution of θ as a function of Cauchy number is then reported in Fig6.13b, and com-
pared to the results obtained for the simpler uniform pressure field ρU2 sin2 θ. In the same
way, drag force can be computed as the component of pressure forces in the direction of the
flow Fdp,2D “ 2

şR
0 P pxqdx sin θ, which can be expressed in a dimensionless form:

Fdp,2D “ 2Cy
m

2m ` 1
sin θ (6.8)

It is also compared to the previous pressure drag (Eq6.4) in Fig6.13a. The two models
predict values of drag that are consistent (with a factor of two), and show a similar trend:
the drag reaches an upper limit at a comparable Cauchy number (with a factor of 3 between
both models) before decreasing. This evolution of drag is correlated with similar evolution
of the fold opening angle in Fig6.13b, with some disparities for high Cauchy values. The
uniform pressure model thus provides a reasonable approximation of the more rigorous flow
model derived from the Falkner-Skan analysis. It also has the advantage of being easier to
implement for 3D geometries and will therefore be used later when modeling the waterbomb
geometry. Before addressing this theoretical extension, let us have a look at the effect of
skin friction.

6.5.3 Skin drag

To evaluate the effect of skin friction, we then incorporate the shear stress on the wall from
the Falkner-Skan boundary layer solution. The flow in the boundary layer is derived from
Prandlt equations, with a no-slip condition at the wall and a boundary condition at the layer
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edge that is given by the outer region solution (discussed earlier). Falkner and Skan (1931)
showed that auto-similarity solutions can be obtained when the velocity and boundary layer
thickness are power law functions of x, as is the case here [110]. The stream function can

then be expressed in terms of a function fpηq with the similarity variable η “ y
b

pm`1qU
2νRmx1´m ,

where y is the coordinate perpendicular to the wall (see Fig6.14a) and ν the kinematic
viscosity of the air. It satisfies the Falkner-Skan equation:

f3 ` ff2 `
2m

m ` 1
p1 ´ f 12q “ 0, with m “

θ

π ´ θ
(6.9)

where primes denote differentiation with respect to η. The boundary conditions previously
discussed are : fp0q “ f 1p0q “ 0, f 1p8q “ 1. Eq6.9 is solved numerically with a classic
shooting method. One can then derive the velocity, and the shear stress along the wall
[111]:

τpxq “ ρν

ˆ

Bu

By

˙

y“0

“ ρ

c

νU3
pm ` 1q

2

x3m´1

R3m
f2p0q (6.10)

where m and f2p0q are function of the opening angle of the wedge 2θ, f2p0q is given by
solving Eq6.9.

This shear stress induces tangential friction forces on the facets. Note that the latter does not
impact the equilibrium shape, as it is tangential and thus induces no torque on the crease.
It however adds a new contribution to the total drag, which is the skin drag Fds,2D “

2
şR
0 τpxqdx cos θ corresponding to the component of friction forces in the direction of the

flow [113]. In a dimensionless form, it writes:

Fds,2D “ Fds,2DR{κ “
2
a

2pm ` 1q

3m ` 1

Cy
?
Re

f2p0qcospθq (6.11)

With Re “ UR{ν the Reynolds number. Note that in previous inviscid flow models, drag
depends on the flow velocity and fluid parameters (like the density ρ) only through the
Cauchy number Cy “ ρU2R2{κ. Accounting for viscous boundary layers however introduces
the Reynolds number as a new dimensionless parameter. The drag-vs-Cy curve will thus no
longer be universal, as it is Reynolds-dependent. To evaluate F ds,2D as a function of Cy,
the velocity appearing in the Re of Eq6.11 is thus determined from Cy as U “

a

κCy{ρR2,
taking a value κ “ 30 ˆ 10´3N chosen in the mid-range of experimental values.

The total dimensionless drag now takes into account the contribution of the pressure drag
and the skin drag: Fd,2D “ Fdp,2D ` Fds,2D. It is shown in Fig 6.14b (solid red line), and
is to be compared to the pressure drag alone (solid grey line) and the skin friction along
(dashed grey line). Skin friction has a negligible contribution, about an order of magnitude
smaller than form drag, except at large deflections as facets nearly align with the flow. It
then causes a re-increase of the total drag for the high Cauchy number. Accounting for skin
friction is thus not expected to significantly alter the conclusions of our theoretical analysis,
except at large deflections. Note that the drag plateau that is observed in the experiment
(rather than a decay) could notably be attributed to such skin friction effects, although we
would need to reach higher Cy in experiments to confirm it.

This discussion on a more accurate description of flow shows that such considerations can
be put aside at first, and our previous simplified approach based on a uniform pressure
field is enough to capture the phenomenon of reconfiguration and drag reduction of a folded
structure. It is now time to transpose this model to the real geometry of a waterbomb cell.
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Figure 6.14: a) Schematics of the Falkner-Skan boundary layer on the wedge-shaped fold. b)
Dimensionless friction drag Fds,2D “ Fds,2DR{κ, pressure drag Fdp,2D “ Fdp,2DR{κ, and total drag
Fd,2D “ Fds,2D `Fdp,2D, as a function of the Cauchy number, computed with parameters: θ0 “ 45o,
κ “ 30 ˆ 10´3N, ρ “ 1.225 kg.m´3 and ν “ 1.471 ˆ 10´5 m2.s´1.

6.5.4 Model for origami 3D cell

We now extend the modeling to the three-dimensional geometry of waterbomb cell, using
the same energy approach. Before deriving the total energy of the cell, let us have a closer
look at the geometry of the waterbomb unit and its folding kinematics. We indeed need
to know the opening angle of each fold to compute the elastic potential energy, and the
trajectory and orientation of the facets to calculate the work of pressure forces.

Origami geometry and folding kinematics

The origami unit is modeled as rigid facets connected by torsional hinges. All motion is thus
localized at the hinge simplifying the kinematics analysis. As observed in experiments, we
assume that the cell deforms symmetrically, meaning that all mountain or valley folds are
deflected by the same amount. The folded state can be entirely determined from a single
variable, chosen as angle θ (see Fig6.15a-b).

A kinematic analysis of waterbomb bases is presented in the papers from Hanna et al.
(2014, 2015), modeling the units by using spherical trigonometry tools [88, 95]. Brunck
et al. (2016) proposed an alternative analysis that expresses the deformation in terms of
vectors associated with the crease network [38]. We use the latter formalism, which is more
convenient here and yields compact expressions. In the following, we succinctly recall the
main results adapted with our notations.

The geometry of the waterbomb base is described by unit vectorsw that lie along each crease.
For a symmetrical deformation, components of these vectors in the Cartesian coordinates
system shown in Fig6.15b write as:

w2p “ psinϕ cos 2pα, sinϕ sin 2pα, cosϕq

w2p`1 “ psin θ cos p2p ` 1qα, sin θ sin p2p ` 1qα, cos θq (6.12)

With w2p and w2p`1 the unit vectors corresponding respectively to mountain and valley
folds, where p “ 0, ..., pN{2 ´ 1q and w0 “ wN, and α “ 2π{N the sector angle of a facet,
which links to successive folds. Here, ϕ denotes the angle between a mountain fold and
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Figure 6.15: a) Folded state of the waterbomb base, characterized by the opening angle θ between
a valley fold and the central axis passing through the vertex. All other angles are functions of this
input parameter. b) Unit vectors lying along each crease, shown for one of the facets and all defined
by Eq6.12. The inset shows the parameterization used to compute the work of fluid forces on a facet
and further pressure drag derivation. c) Experimental measurements of the dimensionless frontal
area S{πR2 as a function of θ for a cell with N “ 8 folds and a radius R “ 5cm (data black points),
compared to the theoretical prediction (solid line) provide by Eq6.16. d) Evolution of S as a function
of θ for cells with different number of folds N .

the central axis (see Fig6.15a-b) and is a function of θ as expressed below. Note that the
direction of the Cartesian unit vector ez is chosen here based on the direction of flow speed
and is opposite of the one used in [89], thus affecting the angle definition.

Rigid facet approximation imposes a geometrical constraint: the conservation of the dot
product between two successive unit vectors w2p.w2p`1 “ cosα. This equality yields a
relationship between ϕ and θ:

cos θ cosϕ ´ cosαp1 ´ sin θ sinϕq “ 0 (6.13)

It rewrites as :

ϕpθq “

$

’

’

&

’

’

%

arccos

ˆ

cosα cos θ

1 ` sin θ sinα

˙

, for 0 ď θ ď π{2

arccos

ˆ

cosα cos θ

1 ´ sin θ sinα

˙

, for π{2 ă θ ď π ´ α
(6.14)

Each expression corresponds to a different regime of motion on each side of the flat config-
uration: the opening part from π{2 ă θ ď π ´ α and the closing one when 0 ď θ ď π{2.
Except in the last section, all our studies will be in the closing regime. We can then define
the unit vector perpendicular to the facet n, which reflects the orientation of the facet in
the flow and will be used to compute the work of fluid forces:
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n “
w0 ˆ w1

}w0 ˆ w1}
“

1

sinα
p´ cosϕ sin θ sinα, cosϕ sin cosα ´ sinϕ cos θ, sin θ sinϕ sinαq

(6.15)

From this normal vector, we can also derive the frontal area S of the cell (i.e. projected in
the xy plane) that has been serving as a metric for its degree of folding in experiments:

S “ N

ˆ

πR2

N
n.ez

˙

“ πR2 sin θ sinϕ (6.16)

To validate this geometrical formulation, experiments have been performed on a classic
waterbomb cell (N “ 8). In practice, we placed the origami unit on a low-friction plane
and pushed down the vertex to open symmetrically the origami at a given θ angle. By
taking pictures from above, the frontal area is obtained and compared to the geometrical
prediction in Fig6.15c. The good agreement between experiments and theory supports the
rigid face approximation and the one degree of freedom kinematics. We can also have a
look at the effect of the number of folds N . This parameter modifies the sector angle α in
the expression of ϕ, Eq6.14, and impacts the folding pathway. Nonetheless, it induces little
differences in the evolution of frontal area S with θ, as shown in Fig6.15d.

Interlude no21: Whole energy landscape and bi-stability

The evolution of the potential energy reported on the Fig6.16 corresponds to only
one part of the kinematics for θ P r0, π{2s, and around a single equilibrium point
identified as θ0.
The waterbomb cell is however also well famous for its bistable property [88, 95,
38]. The latter is graphically ”visible” if we extend the domain of definition of the
opening angle to θ P r0;π ´ αs. We therefore notice the existence of a second stable
configuration marked by θ˚

0 within the range rπ{2;π ´ αs. Three values of θ0 are
reported and their respective second equilibrium angle in order to probe the effect
of these parameters on the (whole!) energy landscape. One can clearly note that
shifting θ0 changes both the value θ˚

0 and global curve shapes, as well as the energy
barrier of the unstable state localized at π{2 (flat configuration). The link between
θ0 and θ˚

0 will be briefly discussed in the interlude no24.
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Potential energy landscape

Based on our mechanical modeling of a single fold as a torsional spring, here we extend this
approach to a real waterbomb unit. Each valley and mountain fold of length R is modeled
as an elastic hinge of rigidity κ. The elastic potential energy of a unit Eel is then the sum
of the contributions of the N{2 mountain and N{2 valley creases:
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Eel “
NRκ

4
rpΨm ´ Ψ0

mq2 ` pΨv ´ Ψ0
v q2s (6.17)

Where the angular deviation of each mountain and valley fold with respective angles Ψm

and Ψv (see Fig6.15a) is considered with respect to their position at rest (denoted by 0).
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Figure 6.16: a) Dimensionless potential energy Eel{κR as a function of the dimensionless frontal
area S{πR2, for a cell with N “ 8 folds and rest angle θ0 “ 32˝ (rest frontal area S0). Potential
energy landscape for cells with b) different rest angles θ0 and N “ 8 folds, and c) different N and
θ0 “ 32˝. In the inset of (b), results are re-casted as a function of the deviation of S to its rest value
S0. The cell parameters are the same as the ones tested experimentally. For each curve, only the
closing kinematic part is plotted.

A geometrical analysis based on vector projections yields the expressions of these angles as
a function of the opening angle θ [89]:

Ψv “ 2ϕ and Ψm “ 2θ (6.18)

Thus, as for folding kinematics, the elastic potential energy of a waterbomb cell is a function
of the single degree of freedom θ. Note that values of Ψ0

v and Ψ0
m are determined from the

prescribed rest angle θ0, from Eq6.18.

Fig6.16a shows a typical evolution of the potential energy as a function of the frontal area
S (instead of θ), for consistency with experimental measurements. However, another plot is
proposed in the interlude no21 as a function of the opening angle θ, for the whole angular
range. For this first curve the rest state is chosen at θ0 “ 32˝ (that is S0{πR2 “ 0.48, with
S0 the frontal area at rest) localized by a circle marker of the Fig6.16a. Our experiment
focuses on the closing motion under fluid loading and thus only the left side of the rest
position is studied, as illustrated by the schematic above the curve.

Fig6.16b reports the effect of changing the configuration at rest θ0 (or S0) on the potential
energy. The four rest angles chosen are the same as the ones used in the experimental
campaign. When replotting the results as a function of S ´ S0 (inset graph), one can
compare the energy landscape around each equilibrium state. All curves present a similar
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evolution of Eel. Slight differences are attributed to the non-linear evolution of the crease
angles with the input parameter θ along the folding kinematics.

Finally, Fig6.16c shows the last parameter, the number of folds N , and its impact on the
mechanical response. As for our experimental cells, all curves have the same θ0, associated
with slightly different surfaces S0 (see disparities in Fig6.15d). The grey zone represents the
deformation range investigated experimentally; in this domain, all cells have comparable
evolution of the energy despite different fold numbers. Indeed, although more folds involve
more springs, those springs require less torsion to attain a given global shape (that is a given
S). Divergences however arise for a higher degree of closure of the cells, but outside of the
experimental range.

As for the previous 2D models, it is now time to describe the other part of the energy
balance: the work of fluid forces.

Work of fluid forces

As discussed earlier, only the pressure form drag will be considered for this 3D model, as
the skin friction forces are not expected to significantly change the analysis except for the
largest deflections. We also take a uniform pressure field over each facet, as for the first
version of the 2D toy model. Let us compute the work produced by the fluid force on each
origami facet.

Due to the symmetry of the unit, the work done by the pressure forces on each facet will be
the same. As the origami deforms from the rest state θ0 to a given equilibrium position θ1,
the total work will write:

W “ N

ż θ1

θ0

ż

Sf

PdSfn.dX (6.19)

The pressure P “ ρpUez.nq2 is obtained through momentum conservation arguments as
before, with n the normal unit vector expressed in Eq6.15. It sums the work of pressure
forces exerted on each surface element of the facet (whose area is Sf “ πR2{N), as it is
displaced by dX along its trajectory. Note that n and X are functions of the folded state
θ. The expression of dX is derived below.

The path of each surface element can be derived from the previous kinematics analysis. We
consider the facet of Fig6.15b associated to the two successive crease vectors:

w0 “ psinϕ, 0, cosϕq

w1 “ psin θ cosα, sin θ sinα, cos θq (6.20)

From the parameterization of the facet reported in Fig6.15: the position vector X is iden-
tified by its distance r P r0, Rs from the vertex and polar angle β P r0, αs. It writes as
X “ rer, with er the radial unit vector that lies in the pw0,w1q plane and can thus be
expressed as a linear combination of those two fold vectors:

er “
w0 ` Cw1

}w0 ` Cw1}
“

w0 ` Cw1

1 ` 2C cosα ` C2
(6.21)

With the parameter C that verifies er.w0 “ cosβ. It is a function of the facet geometry α
and the angle β, and its expression can be derived from Eq6.20-6.21:

C “ cosα

ˆ

1

2 cosβ
´ 1

˙

`

d

cos2 α

ˆ

1

2 cosβ
´ 1

˙2

`
1

cosβ
´ 1 (6.22)
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As the waterbomb unit folds by dθ, the points of the facet move as dX “
dX

dθ
dθ “ r

der
dθ

dθ.

It then writes as:

dX “

¨

˝

dϕ
dθ cosϕ ` C cos θ cosα

C cos θ sinα

´
dϕ
dθ sinϕ ´ C sin θ

˛

‚

rdθ

1 ` 2C cosα ` C2
(6.23)

The expression of the work done by fluid forces on the entire origami unit in Eq6.19 can
thus be explicitly rewritten as :

W “ ´
NR3ρU2

3

ż θ1

θ0

sin2 θ sin2 ϕ

„

A
dϕ

dθ
sin θ ` B sinϕ

ȷ

dθ (6.24)

with ϕpθq given by Eq6.14, and A and B integrals that depend only on the number of folds
(through α):

A “

ż α

0

C

1 ` 2Ccosα ` C2
dβ and B “

ż α

0

1

1 ` 2Ccosα ` C2
dβ, with Cpβ, αq given by Eq6.22.

(6.25)

The sign of this work is a consequence of the definition of our frame; unfolding kinematics
will lead to a positive sign and closing kinematics (as is the case here) to a negative sign.
Using the expressions of the two energetic sources, namely the elastic potential energy
(Eq6.17) and the work of external fluid force (Eq6.24), we are presently able to establish
the equilibrium equation.

Mechanical equilibrium and dimensionless drag

The static equilibrium configuration in a flow is obtained through the minimization of the
total energy Eel. ´ W , as performed previously. The equilibrium angle θ is thus given by
the zero of dpEel. ´ W q{dθ. We obtain the equation satisfied by θ:

`

Ψm ´ Ψ0
m

˘ dΨm

dθ
`

`

Ψv ´ Ψ0
v

˘ dΨv

dθ
`

2

3
Cy sin

2 θ sin2 ϕ

„

A sin θ
dϕ

dθ
` B sinϕ

ȷ

“ 0 (6.26)

with the Cauchy number defined as in the experimental section Cy “ ρU2R2{κ. This
equation is solved numerically using the nonlinear system solver fsolve of Matlab. From the
obtained equilibrium angle θ, we then calculate the frontal area of the cell S using Eq6.16
and the dimensionless drag force Fd “ Fd{κ, to compare it with experimental results. The
drag force is given by projection along wind flow direction Fd “ N rPSfns .ez, which yields:

Fd “ πCy sin
3 θ sin3 ϕ (6.27)

In the next section, we are going to present further experimental results on parameters
specific to waterbomb crease pattern (number of folds and rest angle) before comparing
those theoretical predictions to our experimental measurements.

6.5.5 Theoretical overview on experimental parametric study

From the equilibrium angle obtained through energy minimization of Eq6.26, we infer both
the evolution of the drag force and the frontal area for different Cauchy numbers. Those
theoretical predictions are plotted in the dimensionless form in Fig6.17 (solid lines), and
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Figure 6.17: Theoretical prediction of a) the dimensionless drag force Fd “ FdR{κ, and b) the
relative frontal surface S{S0 as a function of Cy (solid black lines), for the 3D origami geometry shown
in the inset (only one facet and its neighbors are represented). Theoretical results are compared to
experimental data, reported with the same markers and color code as in Fig6.11.

compared with experimental data of the series with varying stiffness and size (markers and
parula colors already defined in Fig6.11).

Theoretical predictions show reasonable qualitative and quantitative agreement with exper-
imental data, especially without any fitting parameters and given the simplifying assump-
tions on the fluid force formulation. Indeed, even if the model underestimates the drag force
(Fig6.17a) and overestimates the frontal area (Fig6.17b) at larger Cy values, it captures the
global trend. For low Cauchy numbers, the origami cell barely deforms and S{S0 „ 1; the
drag force thus follows a quasi bluff body law: Fd „ Cy. Past a critical Cauchy number
Cy „ 10 ´ 20, the plateau in drag appears, which correlates with the strong decay of the
surface area jointly observed by experiments and models.

In accordance with the two-dimensional fold model of Fig6.12, theoretical predictions suggest
that this plateau-like behavior is more of a transition preceding a decrease of Fd with Cy.
However, this range of larger Cauchy number is not attainable with our experimental setup.
As suggested by our further analysis on two-dimensional, a contribution of friction drag is
also expected in this large-Cy regime, which will tend to prevent the force decay.

This fruitful comparison encourages us to further investigate the effect of parameters more
specific to our crease pattern

6.6 Number of folds and rest configuration

We have established that size and stiffness affect the balance between fluid loading and elastic
restoring force, results confirm by our realistic theoretical modeling. Our origami fabrication
allows us to change less straightforward parameters: namely, the rest configuration sets by
θ0, and the number of creases N .

First, we consider four origami units with rest angles ranging from θ0 “ 14 ´ 57o, shown in
Fig 6.18a (the stiffness κ “ 9.9 ˆ 10´3 N, radius R “ 5 cm and N “ 8 are kept constant).
The drag force is reported in the dimensionless form as a function of the Cauchy number.

161



Ch. 6

Chapter 6. Origami folding sets an upper limit on drag

0 50 100

0 50 100

a)

b)

32o

40o

57o

14o

F
d

F
d

θ
0

= 40o

θ
0

= 32oθ
0

= 14o

θ
0

= 57o

N=6 N=8

N=10 N=12

6

10

8

12

θ
0

=

N =

0

5

10

15

0

2

4

6

8

10

C
y

C
y

Figure 6.18: Dimensionless drag force Fd “ Fd{κ as function of the Cauchy number Cy for cells
with a) different rest angles θ0 and N “ 8 folds, and b) different number of folds N and θ0 “ 32o.
Frontal (taken down-flow) images illustrate the geometry of the specimens of each parametric series
in their rest state. All specimens in (a-b) have the same radius R “ 5 cm and crease stiffness
κ “ 9.9 ˆ 10´3 N.

While changing θ0 does not affect the folding pathway along which the unit deforms, it shifts
the starting point. This is reflected through different initial slopes of the Fd-vs-Cy curve
for each specimen: a cell that is initially more open experiences a larger drag force than a
compact one, owing to its greater frontal area and less streamlined shape. All specimens
eventually enter a plateau-like phase at higher velocities (higher Cy), but its height increases
with the initial degree of opening of the cell. For example, the specimen with θ0 “ 57o has a
force plateau six times higher than the one with θ0 “ 14o. In this way, θ0 variable is another
lever to adjust drag force law (as for fold stiffnesses).

Then, we test four values of the number of creases N “ 6, 8, 10 and 12 (parity constraint
[38]), with fixed κ and R and θ0 “ 32o defined for all cells as the angle between a valley
fold and the central axis. The units are shown in their rest position in Fig6.18b, which
correspond to barely different frontal area S0 (see geometrical basis description above). The
crease pattern (number of folds) conditions the morphing kinematics, as well as the elastic
properties through the number and arrangement of torsional springs. The N value is thus
excepted to impact the shape reconfiguration and the subsequent drag reduction process.
Nonetheless, the drag force evolution reported in Fig6.18b shows that all cells experience
similar drag as the flow velocity (or Cy) is gradually increased from zero, with deviations
only arising at higher Cy, a quick discussion on how to capture the N impact on drag is
proposed in the interlude no22.

The 3D model enables examination of a generalized waterbomb design, where the number
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Figure 6.19: Non-dimensional drag force Fd as a function of the Cauchy number Cy a) for different
rest angles θ0 and N “ 8, and b) for different numbers of folds N and θ0 “ 32˝ predicted by our 3D
theoretical analysis. Values of N and θ0 correspond to those of the specimens tested experimentally.

of folds N and the rest configuration θ0 can be changed by adjusting the elastic potential
terms in Eq.6.26 and 6.17. Let us present the theoretical prediction for these less trivial
parameters.

The Fig6.19 presents the trends of the model, which should be compared to our data in
Fig6.18. As in experiments, theoretical predictions in Fig6.19a show that cells starting
from a more open rest state (higher θ0) experience a larger drag force, before reaching an
upper plateau whose height increases with θ0. Meanwhile, Fig 6.19b presents the drag for
origami cells with different N , which experiences a similar force at low Cauchy number with
a deviation when Cy increases. Those trends can be interpreted using our analysis of the
origami elastic energy landscape in Fig6.16c. Close to their rest configuration, all specimens
with different numbers of folds have a similar elastic potential energy. Deviations occur at
higher deformations, following the N order, which is consistent with the trend observed in
the drag.

Interlude no22: (N)o collapse ?
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The experimental curves for different rest-
ing positions θ0 and fold numbers N (Fig-
ures 6.18 and 6.19) do not collapse, suggest-
ing the Cauchy number does not account for
these two parameters. To address this, we
propose a simple scaling for the N param-
eter based on the potential energy of defor-
mation in the theoretical model, represented
by torsional springs arranged in series. We
deduce that the effective stiffness of the unit

K scales as K „ Nκ. Normalizing the drag force and the Cauchy number by N leads
to a collapse of the drag laws towards a single curve, suggesting the waterbomb cell
can be modeled as a series of linear springs.

Having established that our theoretical model is consistent with experimental trends, we
now compare those answers to the literature on continuously flexible systems, to highlight
the role of folds in flow-induced reconfiguration and its impact on drag reduction.
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6.7 Reconfiguration process of an origami cell

All the tested specimens involve a drag reduction process in comparisons of an equivalent
rigid geometry that differs according to the imposed parameters (stiffness κ, size R, position
θ0, geometry N). Thus, in order to give an overview of all the results, we introduce a new
quantity: the reconfiguration number R.

6.7.1 A universal character ?

Introducing the reconfiguration number R is a common practice in the literature on drag
reduction through deformation [15, 16]. Here, R “ Fd{Fd,r compares the drag force on a
deforming origami cell Fd to that on a rigid unit with the same geometry Fd,r. This rigid
reference corresponds to the cell frozen in its rest configuration, and thus differs for each
specimen. The corresponding drag Fd,r is evaluated by fitting a rigid body U2 law on drag
measurements at low speed where the deformation is still negligible.
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Figure 6.20: Reconfiguration number R “ Fd{Fd,r comparing the drag force on a deforming cell Fd

to that of a rigid one with the same geometry Fd,r, plotted as a function of Cy. Symbols correspond
to different parametric series of cells.

The evolution of R as a function of the Cauchy number is reported in Fig 6.20, with one
marker type for each series as detailed in the legend. The remarkable collapse onto a single
universal curve reflects similar effects of deformability for all waterbomb origami geometries.
The curve also shows a clear transition of the drag scaling with flow speed (or with Cy).
At low Cy, when the fluid loading is small compared to the origami cell rigidity, the drag
follows a bluff body law, hence R „ 1. When Cy increases, fluid forces become dominant
and result in significant deformation. The reconfiguration number then decays. In log-log
scale this decay follows a constant slope near ´1, which is consistent with a plateau-like
drag force evolution : R „ C´1

y „ F´1
dr

9U´2, which leads to Fd9U0.

More discussions on this number and a comparison with the literature will be performed at
the end of this section, let us first investigate the origins of this drag reduction process.

6.7.2 Streamlining and surface reduction

To investigate the universal character of the drag reduction process, we further look into its
origins, namely: the shrinkage of the frontal area exposed to the flow, and the evolution of
the drag coefficient characterizing the effect of shape streamlining.

In order to probe the streamlining effect, we first compute the instantaneous drag coefficient
of our folded shapes defined as Cd “ Fd{p1{2ρU2πR2q where we take the flat state πR2 as
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Figure 6.21: a) Instantaneous drag coefficient Cd “ Fd{p1{2ρU2πR2q as a function of the frontal
area S (normalized with the flat disk area πR2), characterizing the cell aerodynamics as it folds.
Data are compared to that of a hollow cone with varying opening angles (red line), adapted from a
linear fit of Hoerner’s data in [114]. b) Dimensionless frontal area relative to the one at rest S{S0 as
a function of the Cauchy number Cy.

the reference area. The values of Cd are reported in Fig6.21a as a function of frontal area
S{πR2 normalized by the flat area, which reflects its degree of closure. Data collapse onto a
single curve. It is expected for cells with the same N “ 8 crease pattern, corresponding to
data points of the κ´ and R´series (circle markers), and of the θ0´series (triangles). Those
specimens indeed fold along the same kinematic pathway, meaning that they go through the
same continuous sequence of shapes that determines instantaneous fluid forces. The collapse
of data for cells with varying N (squares) is however less expected, as their crease patterns
produce different geometries and folding pathways. Nonetheless, origami cells with the same
degree of closure (i.e. same S{πR2) but a different number of lobes, appear to have similar
drag coefficients. As a baseline for comparison, we also report the experimental data of
Hoerner, [114] for a nearby but simpler geometry of hollow cone with varying opening angle
(red line in Fig.6.21a). Despite their more complex shapes, origami values are consistent
with that of a cone, although slightly smaller overall.

In Fig6.21b, we report the shrinkage of the frontal area exposed to the flow S{S0 for all
our origami specimens. Here again, data gather onto a master curve. A given flow thus
induces similar area reduction regardless of the number of folds or the initial state. This
non-dependence on θ0 is surprising: deployed units (large θ0) are subjected to stronger fluid
loading, and we would therefore expect greater relative closure than for small-θ0 ones. The
minor influence of the number of folds is also non-intuitive as it determines the shape of
the cell and its mechanical properties, which both play a role in its reconfiguration in a
flow. Regarding the latter shape aspect, Fig6.21a tends to show that geometrical differences
related to the number of lobes affect little the aerodynamics of the cell. As for the mechanical
properties, we discuss in the section on theoretical models the similarities between the elastic
potential energy landscape associated with each folding pattern (see 6.16), which would offer
a possible explanation for the collapse of Fig6.21b.

The two figures thus show that origami cells feature a similar evolution of the frontal area
with the Cauchy number, and of the drag coefficient relative to this area. Taken together,
those shared empirical trends lead to the universal curve for RpCyq (see interlude no23 as
well). We therefore understand that the drastic area decay past a critical Cauchy number,
combined with the streamlining effect, works together to counteract the increase of dynamic
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pressure forces with flow speed. It leads to the observed velocity-independent drag that we
are going to compare with the typical response of flexible continuous systems.

Interlude no23: Collapses for Cd and S{S0 provide R

The master curve obtained when plotting the reconfiguration number as a function
of the Cauchy number in Fig6.20 can be ”mathematically derived” from the collapse
of the data in Fig6.21a and Fig6.21b. Fig6.21b shows that S{S0 “ fpCyq, meaning
that the surface ratio (for all specimens) is a function of Cy. Additionally, the linear
trend in the log-log plot of Fig6.21a suggests that Cd is a power law function of the

frontal area: Cd “
`

S{πR2
˘λ
. By definition, the instantaneous drag coefficient is

related to the drag force by Fd “ 1{2CdρU
2πR2, the reconfiguration number rewrites

as R “ Fd{Fd,r “ Cd{CdpS0q. Using the previous relationships, we get:

R “

ˆ

S

S0

˙λ

“ fpCyqλ (6.28)

Note that this derivation predicts λ “ 3 (by combining Eq 6.16 and 6.27) and and
the experimental fitting gives λ « 2.3.

6.7.3 Super-Reconfiguration

The waterbomb unit significantly differs from the continuous flexible structures of the liter-
ature. In particular, due to the nature of mechanical deformation that is focused on creases.
The latter act as torsional hinges and control the deformation’s kinematics, enabling sig-
nificant shape changes.his leads to a significant change in fluid forces, resulting in a drag
component that is no longer dependent on the incoming flow velocity for large deformations.

Despite this, our findings align with previous studies on fluid-elastic behavior in continuous
flexible materials. The shape reconfiguration is still determined by the equilibrium of fluid
forces and structural stiffness, as reflected by the Cauchy number[13, 15, 16]. However, the
source of elastic restoring forces in our case comes from folds rather than bending, thus
requiring a revised definition of the Cauchy number.

The evolution of RpCyq for our folding structure (Fig6.20) exhibits the same trend as a
flexible plate or disk, shown in Fig6.22c. A critical Cy triggers a shift in the dependence of
drag on flow speed, as fluid pressure surpasses elastic resistance to deformation. The drag
then departs from a solid object behavior R „ 1, and decreases with a constant logarithmic
slope. The associated power law differs depending on the geometry of the object, as shown
in Fig6.22a. A rectangular plate that bends downstream in a flow reduces its drag as
R9C´0.65

y , while it follows R9C´0.55
y for a disk cut along a single radius that rolls up into

a cone (Fig6.22b). Here, the drag reduction is even more pronounced with a reconfiguration
number that follows the power law R9C´1

y , reflecting the plateauing of drag with flow
speed. This is attributed to the folds’ ability to allow very large deformations: facets can
almost align with the flow, and the frontal area exposed to the flow collapses. Thus, with a
simple origami cell, we reach a state of ”super-reconfiguration”.

6.8 Further investigations

In this section we will briefly present some preliminary results, exploring avenues for future
research on waterbomb units in a flow. First, we will go back to a property of our origami
cell that we have not exploited yet: its bistability, and see its impact on both the deployment
kinematics and the drag evolution. Then we will probe the impact of stiffness heterogeneity
within the cell on the reconfiguration phenomenon.
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Figure 6.22: Flow-induced deformations of several continuous flexible devices: a) thin plat and disk
cut along many radii b) or single radius, the latter rolling up into a cone shape. c) Reconfiguration
number R against Cauchy numberC̃y (adapted form to take into account for blockage effect) for the
two flexible cut disks, which experience different drag reduction processes. All pictures and graph
come from [16, 15]

6.8.1 Bistability

One of the most sought-after properties of mechanical studies on foldable structures inspired
by origami technology is multi-stability. Whether it is a complete multi-vertex partition or
a simple cell, the presence of several stable configurations allows one to predict the shape
of an object and program its resting state. This is particularly valuable for systems such
as Miura-ori folding maps in Fig6.23, where one clearly distinguishes the two stable states:
the compact configuration and the unfolded one; to ensure their stabilities the manufacturer
plays on the angle α that define the elementary pattern (inset in Fig6.23a)[89]. Another
insight is given by the origami tube which uses a zig-zag crease pattern to program a
curvature once unfolded. Here again compact and deployed states are both stable (see
Fig6.23b). The multi-stable property also allows for significant shape changes with weak
external loading variations, making it valuable for fluid-structure interaction.

As mentioned before, the waterbomb cell has two stable rest configurations, with respective
angles θ0 and θ˚

0 , and it can snap from one to the other by passing through the unstable
state θ “ 90o (see Fig6.23c and interlude no21). Nevertheless, we have not exploited this
bistability yet, as we have focused so far on the closing of origami units in a flow starting
from the rest angle θ0. To exploit it, we just have to turn the origami around, with its
concave side facing the incoming flow. As we increase the flow speed, the cell then opens
towards its flat state, as shown by the evolution of the frontal area S in Fig6.24a. It induces
a strong increase of the drag force, which is then larger than the load on a rigid origami with
the same geometry, shown in black in Fig6.24b. As it reaches its planar state, the origami
snaps to its second equilibrium configuration θ˚

0 , with a convex side now facing the flow.
This sudden shape change ∆S « 0.33% induces a drop of the drag force ∆F « 0.14N (
63% of the maximal value) in Fig6.24b. Note that the flat configuration is unstable so that
the slightest perturbations coming from the flow or other sources can overturn the origami
before reaching a totally flat state (that is S{S0 “ 1 in Fig6.24a). Therefore the critical
velocity Uc is expressed experimentally as an interval as illustrated by the red shaded area
in Fig6.24a.

After the snap transition, the deformation kinematics is the same as described in the pre-
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a)

b)

c) θ0

θ0*

Figure 6.23: a) Folded map in this two equilibrium states, based on the miura ori crease tessellation
(from Miura-ori Lab and [89]).b) Origami arch in its two stable states, compact and deployed [115].c)
Classic waterbomb unit in its two stable rest configurations, characterized by θ0 and θ˚

0 respectively.
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Figure 6.24: a) Evolution the frontal area S{πR2 relative to the area of the flat configuration, as a
function of the free-stream velocity U . The transition between the opening and closing regime occurs
in velocity interval around the critical velocity Uc “ r6, 7.3s m/s (red area). b) Evolution of the drag
force with U , with a drop ∆F (in dark blue). It is compared to a rigid origami (in black line) and
with the flipped configuration with the same cell parameters: N “ 8, θ0 „ 30o, κ “ 9.9 ˆ 10´3 N
and R “ 5cm. All experimental data come from R. Nain’s experiments

vious sections, with a decrease in the surface area and a plateauing of the drag force. For
comparison, the force curve associated with the closing process is reported in the dash light
blue line on Fig6.24b. One can note that if the two origami units have the same initial
and mechanical parameters, the plateau does not converge to a similar force value. This
difference is explained by the fact that the equilibrium state is no longer the same for the
two curves. Indeed, in the case of a pure closure pathway, the cell has θ0 as the reference
state, whereas the second one equilibrates at θ˚

0 after snaping. The differences and the links
between θ0 and θ˚

0 are briefly presented in the interlude no24, but let us simply remember
that this second equilibrium state corresponds to a larger surface and therefore to a more
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6.8. Further investigations

consequent force setting. As proven by our experimental series on θ0, more open angles
generate larger drag forces.

Experimental studies (which will not be detailed here) have been carried out by Rishabh
Nain on the effect of the origami parameters (stiffness, geometry,...) on such behavior and
on the value of the critical speed Uc. This work shows that it is also possible to tune both the
transition speed and the force jump by changing the fold stiffness, the initial configuration,
the radius and the number of folds. These results are also captured by a theoretical model
similar to ours, extended to encompass the entire deployment kinematics. In his PhD,
Rishabh Nain also proposes a possible application of the waterbomb cell to create of a
passive valve: it uses bistability to modify the pressure drop within a duct, an illustrative
overview of its work is proposed in the main conclusion.

Note that we studied a single origami geometry here, but it opens the way to the investigation
of other patterns with multiple vertices, or non-uniform fold arrangements, which will have
various kinematics of deployment. One can also think of a heterogeneous distribution of
fold stiffness, as we will probe in the next subsection.

Interlude no24: Two stable states : θ˚
0 as a function of θ0
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The gap between the two drag force curves
and the origami pictures (Fig6.23c) indicates
that the two states of stability correspond
to different opening angles. The geometrical
analysis of the waterbomb cell in the the-
oretical section showed that θ0 is the angle
that minimizes the elastic energy with a zero
value (Eel “ 0). To determine the second
equilibrium state θ˚

0 , we need to find the sec-
ond root of dEel.{dθ0 in the second domain
of definition (rπ{2, π ´ αs).

2pθ˚
0 ´ θ0q ` pϕ˚

0 ´ ϕ0q
dϕ

dθ
|θ“θ˚

0
“ 0

¨Our direct numerical resolution shows the evolution of θ˚
0 pθ0q on the graph. We

observe that the two states are not symmetrical with respect to π and then lead to
different plateaus of drag.

6.8.2 Folds with different stiffness

So far we have studied the response of symmetrical crease patterns, with folds that have
the same stiffness. But many folded structures in nature, such as insect wings or tree leaves
[116, 117], have complex networks of folds/veins with varying stiffness distribution. In order
to probe the effect of adding heterogeneity in our study, we have modified the stiffness of a
single crease in a waterbomb cell and studied its reconfiguration (closure kinematics only).

The cell tested (shown in Fig6.25a) has seven folds of stiffness κ1 “ 9.9 ˆ 10´3 N and one
almost five times stiffer κ2 “ 5.3ˆ 10´2 N. To characterize shape changes, we measure both
the evolution of the total frontal surface (four lobes, highlighted in blue) and that of the
rigid fold (in red), both being normalized by their surface in the absence of flow, and plotted
as a function of the incoming velocity in Fig6.25a.

Although both surfaces decrease with increasing flow velocity, the lobe with the stiffer
fold closes less than the whole structure due to its higher stiffness. Some images of the
deformation are shown in Fig6.25b: the presence of this fold generates an asymmetrical
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Figure 6.25: a) The frontal area of the whole origami units and the non-uniform lobes against fluid
flow velocity, both normalized by their initial values.b) Evolution of the drag forces for a non-uniform
waterbomb unit, the stiffer fold leads to a double drag plateau.

folding with two lobes closing while the stiffer lobe and the opposite one remain open. They
then close at higher speeds, around 15 m/s. This kinematics leads to a different evolution
of the drag force. The two-stage closure kinematics results in two stagnation regimes for
the force illustrated by the dotted red lines in Fig6.25b. It should also be noted that the
height of the two plateaus does not correspond to either of the two fold stiffness. Indeed,
the elasticity parameter is not sufficient to explain the reconfiguration mechanism. It is
necessary to take into account the new folding kinematics and the stiffness ratio between
the two types of folds.

A further step would be to investigate the effect of the stiffness ratio between the two types
of folds and change the number of folds. Indeed here the presence of four lobes induces an
asymmetrical closure and impacts the lobe opposite to the stiffened one, but if the structure
had three lobes (N “ 6) we can suspect a different impact on the kinematics.

6.9 Conclusion

In this chapter, we show that origami articulated kinematics impacts the shape reconfigu-
ration process induced by a flow. We focus on the specific geometry of the water-bomb cell:
this elementary unit undergoes large shape changes, with its facets progressively aligning
with the flow. This collapse of the frontal area enhances drag reduction, to the point that
fluid loading no longer increases with flow speed in the regime of large deformation. Such
cancellation of velocity dependence was rarely reported in the literature.

The Origami technique further allows us to easily change mechanical properties through the
folds parameter, in order to tune the evolution of fluid forces with flow speed. In particular,
our result shows that the upper limit set on drag can be varied by adjusting the fold stiffness
or the initial rest configuration. Varying the number of folds otherwise led to unanticipated
results. Within the range of crease patterns tested, it appears that details of the folding
kinematics do not impact the early stages of the reconfiguration process. Specimens with a
different number of lobes share similar global aerodynamics and mechanical load-deflection
curves, thus producing similar responses. Some deviations are however observed for larger
deformations, which implies that exploring the role of this parameter through the whole
kinematics can provide another lever for force control or shape morphing. By comparing
the experimental trend with the results reported from previous studies on flexible systems,
we show that origami folding can then exacerbate the drag reduction process and reach a
super reconfiguration state.
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6.9. Conclusion

Our experimental approach was complemented by a theoretical model that couples aerody-
namics and structural elasticity. We model our origami cell as a collection of rigid panels
connected by elastic hinges, and the fluid forces are approximated through a simplified pres-
sure formulation with no retroaction of the body on the fluid. To support this assumption,
we implement a more rigorous potential flow model on a single 2D fold, more amenable
to such derivations, and which can also take into account frictional forces. Through this
simpler geometry, we both demonstrate that our formulation is enough to capture the un-
derlying mechanism in the ”super-reconfiguration process” and that skin drag is negligible
in the velocity range reached by our wind tunnel setup. Despite our simplifying assump-
tions, the model is thus consistent with experimental observations and may be adapted to
other folding geometries. It paves the way to study the flow-induced deformation of more
complex origami specimens.
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Contributions: another brick in the wall

In this thesis, we aimed to connect the field of fluid-structure interaction with the growing
area of research on origami and kirigami. Prior studies on flow-induced deformation primar-
ily concentrated on continuous flexible systems such as beams or plates, and revealed that
the behavior can be altered through the object’s geometry and mechanical properties. In
this work, we extend these studies beyond the traditional framework and examine the im-
pact of a cut and fold substructure on flow behavior. Specifically, we intended to determine
if we could control the deformation and forces on a sheet through its cut and folded design.

Part 1 - Introducing cuts to control shapes in a flow

Chap. 1 : Uniform pattern The first chapter focuses on the deformation of a uniform
kirigami sheet in a water flow. We start with a cutting pattern made up of parallel and
staggered slits on a flat and thin Mylar sheet, which is simple enough for our extensive
study and has intriguing features such as extreme stretchability and the creation of a three-
dimensional mesotexture upon stretching. We examine the impact of the cuts and their
spatial arrangement on the deformations induced by the surrounding fluid flow. A kirigami
sheet acts as a poro-elastic system, where the cutting pattern influences both the elastic
properties and the evolution of the pore shape and size, impacting fluid loading.

The mechanical behavior and elasticity of kirigami sheets are determined by an effective
stiffness that is directly related to the cutting parameters, allowing for engineered elasticity.
This enables us to control the sheet’s elastic resistance to fluid forces and regulate its defor-
mation under flow. The interplay between external fluid loads and internal elastic restoring
force is captured by the Cauchy number.

We have observed a surprising effect on fluid dynamics due to the presence of cuts: an
asymmetrical expansion of the deformation profiles, despite having a uniform cutting pat-
tern. This unique deformation kinematics is due to the formation of a local meso-texture
during the stretching of the kirigami sheet. The uncut parts of the sheet rotate out of the
traction plane and behave like inclined blades in flow. It generates tangential fluid forces
that break the global profile symmetry and causes the sheet to deviate towards one side,
which is determined by the local direction of rotation (polarity).

This fluid-structure coupling is multi-scale and complex, with local interactions with the
flow at the pore scale impacting the global deformation, which in turn affects the pore ge-
ometry. We rationalize our experimental results by developing a continuous model, which
provides us with a better understanding of these complex fluid-structure interactions. Hav-
ing determined the underlying mechanisms of this coupling, we explore ways to manipulate
the two factors (stiffness and polarity) to influence the deformation under fluid loading in
the next two chapters.

Chap. 2 : Bi-polar pattern In the previous chapter, the elementary cells rotated in the
same direction along the sheet. In this chapter, our goal is to vary this direction spatially
and explore the effects of a multipolar configuration (specimens with non-uniform polarity
along the pattern). To start, we mainly studied bipolar cases, in which the kirigami sheets
are divided into two parts, with each portion rotating in opposite directions designated by
a sign: +○ or -○ based on the standard trigonometric direction.

By adjusting the transition position (the size of each section), the symmetry and amplitude
of the resulting shapes can be altered. For instance, a symmetrical morphology can be
achieved when the transition is in the center of the sheet, unlike the unipolar kirigami sheets
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of Chapter 1. Furthermore, switching the polarity from a `´ to a ´` configuration results
in different profiles that are no longer left-right mirror images as seen in the specimens of
Chapter 1. For example, a parabolic shape transforms into a hemispherical one in the
previously mentioned bipolar symmetrical scenario. Importantly, the direction of rotation
is defined relative to the incoming flow. It means that the same kirigami would deform in
different ways depending on the direction of the flow direction passing through it.

Controlling polarity provides an interesting lever to influence the symmetry of deforma-
tion lobes, motivating us to investigate more intricate arrangements such as tri- or quadri-
polarity. However, configurations with excessive polarity changes result in the same sym-
metrical form as if tangential forces were counteracting each other resulting in a purely
normal net force.

Chap. 3 : Bi-zonal pattern We explore a second lever by varying the cutting pattern,
leading to a modulation of stiffness (as previously established in Chapter 1). Here again,
we start with a simple configuration where the kirigami sheet is divided into two zones: a
soft and stiff one whose respective size and relative stiffness are varied (the cutting pattern
of the soft portion is kept constant, hence in practice only the stiff part is altered)

Like for the previous bi-polar configuration, the addition of non-uniformity in stiffness dis-
rupts the symmetry of the pattern and provides a different deformation profile depending
on the direction of the incoming flow. Thus, according to the polarity exposed to the flow,
the fluid forces induce internal tensions that promote the extension of different portions of
the pattern. Two distinct scenarios are therefore related: first if the flexible part is strained
the resulting deformation profiles tend toward similar shapes regardless of the stiffness dif-
ference or size of the rigid part. While if the stiff part is under stress, new behaviors arise
such as non-monotonic expansion kinematics characterized by a shift in the lobe trajectory,
from the right to the left. Such deviations are still unobserved in the two last chapters for
uniform or bi-polar specimens. For several bizonal patterns (rigid portion four times stiffer),
we even note an abrupt transition from a symmetrical morphology in which both sides of
the sheet is highly stretch to a more conventional asymmetric shape with only the stiff part
extending.

This transition is characterized by a sudden decrease in amplitude near a critical velocities
range, which is reminiscent of Schouveiler et al. (2013) [74], who studied the transition of a
deformation in a continuously flexible disk subjected to a uniform flow. They found specific
velocity ranges where distinct deformation modes emerge with sudden shifts between ranges.
As such, slight changes in external fluid stimulus are likely to result in large shape variations.

The shift in symmetry during expansion is caused by the competition between two portions
of the pattern. Due to the difference in stiffness, the pores open in a sequential manner
- starting with the soft part and then the rigid one. This delay in the opening process
leads to this non-monotonic expansion in flows that are significantly exacerbated by the gap
in stiffness. These singular phenomena can be described using a simplified model or two
extensible beams of different stiffness subjected to external fluid loading (whose expression
comes from the previous chapters). This simplistic modeling is nevertheless able to capture
the non-monotonic kinematics of expansion reported by the experiments and describe the
balance between the tension involved by each beam and the external fluid loading.

Modifying the cutting pattern and playing on the stiffness is also an effective way to influence
the deformations in flows. The two last chapters provide two levers to influence the kirigami
shape, let us finish this first phase by establishing an inverse problem.

Chap. 4 : Shape morphing The two previous chapters pave the way to a wider
variety of morphologies and behaviors in flows by introducing heterogeneities in the cutting
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pattern. The logical outcome of our story is to reverse the approach and finally solve the
shape-morphing problem: ”given a desired shape and a specified flow speed, we will seek
to determine the appropriate cutting pattern that will allow us to attain it.” Thus in this
short chapter, we give some insights and clues to address this objective.

Based on an extended version of our theoretical modeling, we propose a complete optimiza-
tion algorithm to find the polarity and stiff distribution which fit the best with the targeted
shapes. From this continuous result, we deduce the real pattern to manufacture through
a discretization algorithm and finally test the kirigami sheet predicted. Our unsuccessful
attempts indicate that the theoretical formulation must be improved to take into account
the mechanical subtleties of non-uniform kirigami patterns.

Part 2 - Drag reduction of cut and folded structures

Chap. 5 : Kirigami sheet and drag force In the second part of the manuscript, we
explored the effect of folds and cuts on the evolution of fluid forces acting on our textured
structures, comparing them to flexible continuous deformable systems.

In line with the previous chapters, we began with the kirigami structures, whose large
deformations significantly impact the evolution of drag FdpUq, resulting in a smaller velocity
dependence than the typical quadratic behavior of undeformable bluff-body bodies Fd9U2.
We first proceeded to drag measurements on uniform specimens of varying effective stiffness
K2 (as detailed in chapter 1). We then demonstrate how fluid forces can be re-scaled by
introducing the Cauchy number and normalizing the forces by stiffness: Fd{K2pCyq.

In the previous section, we demonstrated that the fluid-elastic competition, as characterized
by Cy, determines the deformation. We now extend this reasoning to include the drag
forces, stiffer patterns will experience a weaker deformation and a stronger drag, leading to
the rescaling of Fd with K2. Hence, effective stiffness plays a crucial role in determining
both the deformation state and fluid forces. For a given value of K2, the resulting forces and
shapes will be nearly identical, regardless of the local design of the pattern (i.e., iso-stiffness
patterns).

Our prior theoretical modeling used to describe flow-induced deformation has been employed
again to estimate the global fluid force, obtained by integrating along the whole deformation
profile, the projection of local forces. The results of the model indicate a complex relation-
ship between drag and shape, including a lower blockage and frontal area facing the flow,
as well as an increasing streamlining effect. Comparison between theoretical predictions
and experiments shows good agreement, suggesting that our simplified modeling captures
essential physical aspects (at least for uniform configurations).

We extend our approach to the non-uniform patterns of chapters 2 and 3. We previously
showed that the presence of heterogeneities resulted in two different solution forms based
on the polarity relative to the incoming flow direction. Similarly, a non-uniform pattern (in
terms of polarity or stiffens distribution) experiences two distinct drag laws. This testifies
once again to the close link between deformation and fluid forces.

Chap. 6 : Origami unit and reconfiguration In this final chapter, we shift our
focus from cuts to folds and explore the world of origami. Compared to the kirigami we
can distinguish two key differences: the way it deforms, its elasticity being localized only
along folds (rigid face approximation), and its interaction with the surrounding flow, which
occurs around the structure instead of through it. Despite these differences, both kiri- and
ori-gami methods allow for significant shape changes and engineered elasticity through the
local tessellation.
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For our experiment, we selected a cell origami pattern, which has symmetrical folding and
unfolding kinematics and only one degree of freedom. The pattern, known as the waterbomb
unit, is composed of alternating mountain and valley folds radiating from a common vertex.
This base is renowned for its bistable properties, but for our purposes, we will focus primarily
on its high compaction capacity which leads to modifications of the frontal surface.

Simultaneous measurement of drag and frontal surface evolution reveals unusual behavior.
The fluid flow impacting the waterbomb facets leads to the symmetrical compaction of the
whole cell, it induces a significant decrease in frontal surface and a marked reduction in
drag. This results in the force reaching a plateau where it no longer increases with velocity,
indicating an upper limit in the drag evolution.

By varying the parameters of the origami cell: size R, fold stiffness κ, number of folds
N and initial equilibrium position θ0, we notice that these influence both the deformation
and forces under flow. The latter result of the comparison between fluid force and elastic
response captured by the Cauchy number Cy “ ρU2R2{κ. Note that for an origami pattern,
the structural rigidity is characterized by the crease rigidity κ. Here again, by normalizing
the drag force with the fold stiffness, we report the collapse of the trends, meaning that the
upper limit of drag is notably controlled by the latter.

Our approach is completed by the derivation of a theoretical model based on the minimiza-
tion of the balance between an elastic potential energy term that models the folding pattern
as a network of torsional springs (acting as hinges between two rigid facets) and the work
of the fluid pressure forces depending of the folded state. This theoretical model is able to
describe the experimental results and identifies the influence of subtle parameters, such as
initial angle and number of folds, on the deformation and drag reduction process.

Finally, despite the dissimilarity in deformation kinematics between origami articulated sys-
tems and continuously flexible materials, they both exhibit similar reconfiguration scenarios:
at low speeds, drag follows the bluff body law in U2, but beyond a certain critical Cauchy
range, a significant change in the shapes occurs with a marked decrease in forces. The
presence of folds enables higher levels of deformation and results in a super reconfiguration
state with a more pronounced reduction of drag than the continuous flexible systems.

How large is the wall?

Our study illustrates the potential of folded and cut structures to gain control of shapes and
force evolution within a fluid environment. By modifying the local patterns, we influence
the internal structural stiffness that counterbalances the external fluid loading that provides
a complex and rich interplay between the sub-structure and the surrounding flow. By
making the bridge between flow-induced deformation problems and architectured design
we, therefore, pave the way if a new type of fluid-structure interaction problem.
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Perspectives: Some stones to mark the trail

The work presented in this manuscript mainly focused on a single type of cutting and folding
pattern, as a starting point of this novel approach. We selected patterns simple enough to
allow for representative parametric studies, and complex enough to produce new behaviors
compared to traditional continuous flexible systems.

Nevertheless, as illustrated throughout the different chapters, other tessellations exist and
have already been investigated in the literature, whether for mechanical or purely geomet-
rical studies. The coupling with a fluid flow is expected to depend on the type of network,
with a new pattern constituting a new problem. To this end, we have already explored some
leads that we will present as a perspective for future work. Most of the following points
have been investigated in the context of research internships that I co-supervised, and the
name of the person (whom I thank again) is indicated in the title.

Other cutting patterns - E. Forestier
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Figure 6.26: a) Cuts divide the sheet into a collection of squares or rectangles, which provide
different stretching capacities and porosity-strain law, from [72] b) typical 3D shape reached by a
kirigami sheet with a square pattern, the deformation profiles are extracted from a side view for
two patterns with different rigidities (different slits lengths).c) Changing the shape and connectivity
of the pattern has an impact on the kinematics of the pore opening, here the uncut parts form a
network of the triangle that exhibits a large porosity, from [118].

Another popular kirigami pattern is an array of perpendicular slits as shown in Fig6.26a,
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which allows the sheet to open up and stretch through a rotation in the plane of the uncut
material. Cuts divide the sheet into a collection of squares, which are connected at their
vertex by slender flexible ligaments that act as hinges. To avoid any plasticity effects in the
latter, we worked with rubber materials. Upon stretching, coordinated rotation of the rigid
tiles results in the bi-axial expansion of the sheet.

Those kirigami sheets were clamped at their four edges and subjected to a water cross-flow.
Fig6.26b shows the shape profiles of two specimens with different slits lengths. Here again,
varying the cutting parameters impacts the effective stiffness, which affects the amplitude
of the deformation (amplitudes deformation profiles reported in Fig6.26b).

A new lever is to play on the shape and size of the pores by modifying the pattern layout.
One can for example introduce an aspect ratio and use rectangles instead of squares (see
Fig6.26a), which will modify both the porosity-elongation law and the bi-axial extension
capacity [72]. Or even use triangles or other polygons whose connectivity can be tuned
to enlarge the deformation domain [118], and reach a new type of 3D morphologies (see
Fig6.26c).

Passive flow controller

In this manuscript, we often neglected the retroaction of the structure on the fluid flow,
which was modeled with an undisturbed uniform velocity. An exception is the blockage
effect for kirigami sheets, which was accounted for by a velocity correction factor depending
on the local porosity. While this simplified description of the fluid captured reasonably well
experimental behaviors, it would be interesting to look at the flow structures generated by
our sheets.

U = 9.6 cm/s

U = 18.5 cm/s

a)
b)

c)

U 

Figure 6.27: a) Snapshot of the PTV measurement, the beads pass through the deformed kirigami
sheet, by tracking the beads we aim to find the velocity field. At a first glance, we report the mapping
of the average velocity of each bead along its trajectory, two flow speed is reported b) U “ 9.6cm{s
,c) U “ 18.5cm{s. The deformation impacts the downstream flow.

We carried out coarse preliminary measurements of the velocity field of the flow through a
uniform kirigami sheet with Particle Tracking Velocimetry. Namely, we seeded the water
channel with iso-dense particles, illuminated a plane crossing the kirigami sheet in the
middle of the channel, and tracked the motion of the particles with a high-speed camera
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(see Fig6.27a). The trajectory of each particle is reported in Fig6.27b-c, and color-coded
with the corresponding average speed (from blue to yellow for increasing speeds). Upstream
of the kirigami sheet, the flow is fairly uniform and parallel to the channel walls. However,
the kirigami seems to reorient it to one side in its wake, and we also notice a recirculation
zone with lower speeds behind the lobe (in blue, and delineated by a red line). Modeling
those flow features does not seem crucial to capture experimental behaviors here. However,
such large-scale fluid structures could play a more significant role in other configurations
and lead to interesting behaviors. In this case, we would have to resolve the dynamics of
the fluid as well to model the fluid-structure interaction.

Alternatively, instead of focusing on the sheet itself, one could use it as a way to influence
fluid flow. We could then test other morphologies (symmetrical for example) to change the
wake and influence the surrounding flow.

wind turbine

origami cell
confined flow 

a)

b)

U 
Figure 6.28: a) Experimental set-up of a passive valve, with a waterbomb unit regulating the air
flow in a tube. b) The origami gradually opens and obstructs the flow before snapping to its second
equilibrium state.

Passive smart sail and Drag forces control - S. Van Heiningen

In the manuscript, we talked about designing kirigami sheets to reach a targeted shape in
a flow. We could extend this approach to fluid forces, and find the cutting pattern that
produces a desired drag in a given flow or tune its evolution with the flow speed. For that,
we would need to further investigate the relationship between flow-induced deformations
and the resultant drag.

Such poro-elastic mechanisms are interesting to reduce the fluid load on porous sails or nets
for example and protect them in strong winds or currents. If we control the evolution of
forces with flow speed, we could also have a system that is operational in a given range of
flow speeds (as a lifting surface for a sail for example), while preventing breakage in extreme
conditions.
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We have also pointed out that shapes and drag can depend on the direction of the flow
that is passing through the porous sheet. This unusual property may be interesting for
applications such as filtration or fog capture where the direction of the incident flow can
play a role (fishing net, fog net,...). We could also imagine new sails or soft windmills which
behave differently depending on the flow direction.

Let us now discuss another research topic (the ultimate one !) related to origami folded
structures.

Foldable valve - R. Nain

The origami project can be investigated further along several axes. Before discussing new
patterns and the non-uniformity of folds, let us envision a possible application of the water-
bomb unit as a passive valve / hydro-breaker.

As discussed in chapter 6, this elementary origami cell is bistable (although we have not ex-
ploited it in our current studies). In his PhD, Rishabh Nain uses this property to implement
a valve that opens and closes passively in an airflow inside a pipe (see its experimental set up
in Fig6.28a). As the flow speed increases, the cell (that is placed with its concave side facing
the flow) progressively opens and obstructs the conduct, as reported by the snapshots in
Fig6.28b. Upon reaching a flat configuration, it then snaps to its second equilibrium state,
clearing the way for the flow. One can change the critical flow speed at which it snaps
through the structural parameter of the origami, and tune the relationship between the
pressure drop across the origami valve and the flow rate.

The end

These perspectives are examples of research avenues that build on the two elementary bricks
that we have laid. For my part, the journey ends here =(, but I think that the view of the
landscape is beautiful from here.
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Appendix: Substantial Summary

Advertisement, this substantial summary has been written in French but the whole
manuscript is in English.
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Titre : Flow-gamis : Interaction de structures pliées et coupées avec un écoulement

Mots clés : Interactions fluide-structure, Elasticité, Origami, Kirigami, Reconfiguration, Réduction de trainée

Résumé : Une structure souple et élancée se
déforme dans un écoulement fluide, adaptant sa
morphologie à son environnement. Cela lui confère
une meilleure résistance dans un écoulement fluc-
tuant, via le processus de réduction de traı̂née. Les
déformations passives induites par le fluide en mou-
vement peuvent également jouer un rôle fonctionnel,
pour améliorer les performances aérodynamiques ou
comme levier dans des problématiques de contrôle
d’écoulement. Pour remplir ce rôle, il faut néanmoins
être capable de programmer la réponse mécanique
et prévoir les formes atteintes. Jusqu’à présent, la
littérature s’est principalement concentrée sur l’inter-
action avec l’écoulement de structures élancées se
déformant en flexion, en faisant varier leur rigidité et
leur géométrie. Dans cette thèse, nous tirons parti
d’une autre technique de changement de forme pro-
grammable inspirée de l’art du pliage origami et de la
découpe kirigami.

L’introduction de plis et de coupures sur une feuille
mince permet des changements de forme 3D com-
plexes et modifie ses propriétés mécaniques, ce qui
affecte son comportement dans un écoulement. Nous
étudions expérimentalement l’effet de l’ajout d’une
telle sous-structure sur la déformation et les forces
fluides, en faisant varier systématiquement le motif
des fentes ou des plis. Ces études expérimentales
sont combinées avec le développement de
modèles théoriques qui permettent une meilleure
compréhension des mécanismes sous-jacents.
Nous montrons que la déformation résulte d’une
compétition entre la charge fluide (qui évolue avec
la déformation) et la rigidité structurelle qui est condi-
tionnée par l’arrangement des plis/coupures. En va-
riant spatialement ces motifs, il est ainsi possible
de moduler les formes et les forces induites par un
écoulement, offrant ainsi un moyen de contrôle riche
et inédit

Title : Flow-gamis: Interaction of folds and cuts with a flow

Keywords : Fluid-structure interaction, Elasticity, Origami, Kirigami, Reconfiguration, Drag reduction

Abstract : A flexible and slender structure deforms
in a fluid flow, adapting its morphology to its environ-
ment. This gives it better resistance in a fluctuating
flow, in particular by reducing its drag. These pas-
sive deformations can also play a functional role, to
improve aerodynamic performance. To fulfill this role,
one must nevertheless be able to program its mecha-
nical response. So far, the literature has mainly focu-
sed on the interaction with the flow of slender struc-
tures deforming in bending, varying their stiffness and
geometry. In this PhD, we take advantage of ano-
ther programmable morphing technique inspired by
origami folding art and kirigami cutting art.
The introduction of folds and cuts on a thin plate al-
lows complex 3D shape changes and modifies its me-

chanical properties, which will affect its behavior in
a flow. We study experimentally the effect of such a
substructure on the deformation and the fluid forces,
by systematically varying the pattern of cuts or folds.
These experimental studies are combined with the de-
velopment of theoretical models that allow a better un-
derstanding of the underlying mechanisms. We show
that the deformation results from a competition bet-
ween the fluid loading (which evolves with the defor-
mation) and the structural rigidity which is conditio-
ned by the crease/cut arrangement. By spatially va-
rying these patterns, it is thus possible to modulate
the shapes and forces generated by a flow, thus offe-
ring a rich control lever
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