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Résumé étendu

Introduction

Contexte : L’observation de la Terre (OT) consiste à étudier et analyser la Terre et son
environnement à l’aide de données de télédétection (Tang et al., 2021). Cette pratique per-
met de mesurer et observer en détail les structures de la surface terrestre, afin de comprendre
et surveiller les systèmes et phénomènes terrestres. Elle fournit également des informations
pour diverses applications, telles que la gestion des ressources naturelles (Shahbazi et al.,
2014), la surveillance du climat et des conditions météorologiques (Calbo & Sabburg,
2008), l’intervention en cas de catastrophe (Schumann et al., 2018) et l’aménagement du
territoire (Van Westen et al., 2008).

Les avancées technologiques dans le domaine de l’OT ont rendu disponibles une grande
variété de types de données, tels que les images multi/hyper-spectrales (Gerhards et al.,
2019) et les images radar à synthèse d’ouverture (SAR) (Li et al., 2021b), toutes en haute
résolution. Les images à haute résolution (HRRS) peuvent être collectées quotidiennement à
partir de diverses sources, notamment des drones, des capteurs aéroportés et principalement
des satellites (Dutta & Das, 2023), ce qui engendre des téraoctets de données rendant
difficile l’annotation précise de toutes les images. La gestion de ces volumes d’images
HRRS massifs est devenue une tâche critique et nécessaire pour l’observation intelligente
de la Terre. Par conséquent, il est d’une importance extrême d’analyser et de comprendre
le contenu sémantique des images HRRS volumineuses et complexes, qui présentent une
texture nette et des informations spatiales riches.

Plusieurs types d’analyse d’images HRRS existent, notamment la détection d’objets (Shin
et al., 2020), la détection des changements (Li et al., 2021b) et la classification d’images (Cheng
et al., 2017; Cheng et al., 2020; Dutta & Das, 2023), qui est considérée comme l’une des
tâches les plus importantes de l’analyse d’images HRRS. La classification d’images peut
être effectuée à différents niveaux de granularité, à savoir au niveau du pixel (également
appelée segmentation sémantique), au niveau de l’objet et au niveau de la scène. La
classification au niveau de la scène fournit des informations sémantiques, ce qui permet
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l’extraction de caractéristiques de niveau supérieur (Cheng et al., 2017; Cheng et al., 2020).
Ici, la “scène” fait référence à une zone d’image découpée dans une image de télédétection
à grande échelle qui contient des informations sémantiques pertinentes sur la surface
terrestre (par exemple, zone résidentielle, zone industrielle et zone commerciale) (Cheng
et al., 2020). Par conséquent, la classification des scènes suscite un intérêt croissant en
télédétection et constitue un domaine de recherche actif.

Problématique et motivations : La classification des images de scènes de télédétection
(RSISC) consiste à attribuer automatiquement une étiquette sémantique spécifique, telle
que airport, beach, farmland ou residential area, à chaque image de télédétection en fonction
de son contenu (Cheng et al., 2020). Plusieurs approches ont été proposées pour résoudre ce
problème, impliquant généralement deux étapes : l’extraction des caractéristiques visuelles
des images de scènes, suivie d’un algorithme d’apprentissage automatique pour effectuer la
classification. La classification des images de scènes étant généralement effectuée dans un
espace de caractéristiques, la construction d’une méthode précise de classification dépend
fortement de la qualité de la représentation des caractéristiques (Cheng et al., 2017). Les
méthodes récentes de classification des scènes d’images de télédétection se basent sur
l’apprentissage profond et ont montré une capacité impressionnante de représentation des
caractéristiques, ce qui a permis d’améliorer considérablement les performances. Cependant,
elles souffrent de certaines limitations dues à la nature des données de télédétection (Cheng
et al., 2020; Wang et al., 2022b).

Les images de scènes comprennent généralement non seulement les éléments principaux
de la scène, mais aussi des objets identifiables ou du contexte. Ainsi, les images de scènes
sont composées de divers objets, qui fournissent un modèle spatial en tant que zone
fonctionnelle qui est sémantiquement cohérente et qui reflète souvent le monde réel d’une
manière visuelle identifiable par les humains (Wang et al., 2019). De plus, une variation
significative peut être observée à l’intérieur des classes, tandis que des images de scène
appartenant à des catégories différentes peuvent parfois être très similaires en termes
de contenu visuel et donc difficiles à distinguer, même pour les humains. En effet, les
mêmes objets peuvent apparaître dans des images de scènes appartenant à des catégories
différentes.

La classification des images de scènes de télédétection est souvent considérée comme
une tâche difficile en raison de ces divers facteurs. Pour surmonter ces obstacles, la plupart
des approches proposées prennent en compte les relations inter- et intra-classes lors
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de la construction de l’extracteur de caractéristiques et de l’algorithme de classification.
Cependant, ces approches sont souvent conçues comme des classifieurs plats, qui considèrent
toutes les classes de scènes comme également distinctes, ce qui ignore les informations
sémantiques hiérarchiques potentielles entre elles (la relation étiquette-étiquette). En
conséquence, ces approches peuvent conduire à une confusion entre des classes non liées
sémantiquement. Néanmoins, en considérant ces difficultés d’un autre point de vue, il
serait possible d’obtenir un contexte sémantique plus global que la classe à grain fin. Ainsi,
l’utilisation d’informations sémantiques hiérarchiques reflétant l’interaction entre les classes
pourrait améliorer les performances des classifieurs de scènes et rendre les prédictions du
modèle plus cohérentes d’un point de vue sémantique.. Cette information hiérarchique est
généralement disponible explicitement via la hiérarchie de classes, ou implicitement dans
les données.

• Information hiérarchique explicite : La hiérarchie de classes est une organisa-
tion de classes à plusieurs niveaux dans laquelle les classes de scène sont les étiquettes
à grain fin au bas de la hiérarchie de classes, qui sont ensuite regroupées en fonction
des informations sémantiques partagées à des niveaux plus grossiers. Les étiquettes
à gros grain englobent donc une ou plusieurs étiquettes à grain fin.

La hiérarchie des classes est généralement disponible, telles que Corine Land
Cover (CLC) (Bossard et al., 2000) et L’European Nature Information System
(EUNIS) (Davies et al., 2004), ou facile à construire (manuellement ou automatique-
ment).

• Information hiérarchique implicite : Bien que la hiérarchie des classes ne soit
pas prise en compte pour décrire les relations entre les classes de scènes, les informa-
tions hiérarchiques sont néanmoins implicitement présentes entre les images de scènes.
Cette observation est soutenue par un concept appelé Gromov δ−hyperbolicity (Gro-
mov, 1987), appelé δ−hyperbolicity pour plus de simplicité, qui nous permet de
mesurer le degré d’information hiérarchique d’un ensemble de données. En pra-
tique, pour quantifier cette information hiérarchique, nous calculons généralement
la métrique invariante à l’échelle δrel (la δ−hyperbolicité relative) qui prend des
valeurs dans [0, 1], plus elle est proche de zéro, plus l’information hiérarchique est
forte (Khrulkov et al., 2020). En outre, une faible valeur de δrel indique que l’espace
d’intégration de données a une géométrie hyperbolique sous-jacente et que cet espace
hyperbolique conviendrait en tant qu’espace d’intégration (Tifrea et al., 2019).
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Afin de valider l’hypothèse concernant l’hyperbolicité des ensembles de données
visuelles, nous calculons la métrique invariante à l’échelle δrel de cinq ensembles de
données de scènes de télédétection. Nous observons que les valeurs δrel dérivées des
ensembles de données d’images de scènes sont nettement plus proches de 0 que de 1,
ce qui se traduit par un degré d’hyperbolicité assez élevé, suggérant ainsi que les
représentations hyperboliques des images de scènes peuvent être bénéfiques pour la
tâche de classification.

Objectifs Cette thèse vise à examiner comment les informations hiérarchiques, qu’elles
soient explicites ou implicites dans les données de télédétection, notamment entre les
différentes classes de scènes, peuvent impacter les méthodes d’extraction de caractéristiques
et de classification. L’objectif est donc de répondre aux questions de recherche suivantes :

• La hiérarchie des classes peut-elle être utile pour la classification de scènes de
télédétection ?

• L’espace hyperbolique est-il plus approprié pour représenter les données de télédé-
tection que l’espace euclidien, en particulier les images de scènes ?

Au cours de mon doctorat, j’ai contribué aux deux aspects mentionnés dessous : 1-
l’introduction explicite d’informations hiérarchiques lors de l’apprentissage d’un réseau
profond, 2- l’intégration des images de scènes dans l’espace hyperbolique qui accentue la
hiérarchie sous-jacente entre les classes de scènes.

Contributions de la thèse

Exploitation de la hiérarchie de classes via une fonction de perte
spécifique pour l’analyse de scènes de télédétection

Cette partie de la thèse se focalise sur le premier type d’information hiérarchique, à
savoir l’information explicite fournie par une hiérarchie de classes qui reflète les relations
sémantiques entre les classes de scènes. Des études récentes se sont intéressées à cette
direction de recherche et ont proposé diverses approches principalement associées aux trois
lignes de recherche :
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• Architectures hiérarchiques : les approches de cette catégorie modifient l’architecture
du modèle original en fonction de la hiérarchie de classes afin d’apprendre à recon-
naître les classes à différents niveaux.

• Encodage des étiquettes : les méthodes d’encodage des étiquettes (label-embedding)
convertissent l’espace discret des étiquettes en un espace continu en se basant sur les
relations entre les étiquettes données par la hiérarchie de classes.

• Fonction de perte hiérarchique : cette catégorie modifie la fonction de perte en
donnant plus de poids à des catégories spécifiques dans la hiérarchie de classes.

Dans cette partie de la thèse, nous proposons d’introduire la hiérarchie de classe via
une fonction de perte spécifique pour la classification d’images de scènes de télédétection.

Dans la première section de ce chapitre, nous procédons à une vérification initiale
qui vise à montrer les bénéfices potentiels de l’incorporation explicite de l’information
hiérarchique dans la construction des caractéristiques. Nous avons donc ajusté la recherche
présentée dans (Yu et al., 2020), qui proposait un auto-encodeur variationnel guidé (VAE)
pour intégrer des médicaments dont les étiquettes étaient disposées suivant une hiérarchie
de classes, à notre contexte. Plus précisément, nous utilisons le VAE pour intégrer des
images de scènes, tout en restreignant son espace latent à l’aide d’une perte de classement
local (soft local ranking loss), qui est paramétrée par la hiérarchie de classe. Nous évaluons
la qualité de l’espace latent du modèle, et donc la qualité des intégrations qui en résultent,
ainsi que la capacité à discriminer entre les classes à l’aide d’un classifieur simple de type
1−NN. Les résultats de nos expériences montrent que les informations hiérarchiques sur
les classes peuvent être une source d’information utile pour améliorer les performances du
classifieur.

Dans la deuxième section, nous proposons un réseau prototypique hiérarchique pour
la classification d’images de scènes avec peu d’exemples (few-shot). Plus précisément,
nous augmentons le réseau prototypique traditionnel (Snell et al., 2017) en établissant
des prototypes à chaque niveau de la hiérarchie de classes, plutôt qu’uniquement au
niveau des nœuds feuilles. Les informations relatives à la hiérarchie de classes sont alors
introduites par le biais de ces prototypes hiérarchiques qui seront impliqués dans une somme
pondérée de la perte d’entropie croisée sur les différents niveaux de la hiérarchie de classes.
Les résultats expérimentaux montrent les avantages de l’utilisation de la hiérarchie des
classes pour résoudre le problème du RSISC à quelques coups. Notre réseau prototypique
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hiérarchique a permis donc de régulariser l’espace latent, ce qui permet d’obtenir de
meilleures performances par rapport à son équivalent traditionnel.

Géométrie hyperbolique : application à l’analyse d’images de
scènes de télédétection

Dans cette deuxième partie de la thèse, nous nous concentrons sur les approches qui
traitent l’information hiérarchique implicite dans les données de télédétection en opérant
dans un espace hyperbolique. Ces espaces ont démontré leur pertinence pour représenter
des données hiérarchiques ou des données avec une hiérarchie sous-jacente. L’objectif
de cette partie est donc d’étudier le potentiel des représentations hyperboliques dans le
contexte des données de télédétection, avec un accent particulier sur les images de scènes.

De même que dans la section précédente, nous examinons deux contextes dans cette
étude : un contexte non supervisé et un contexte few-shot. Dans le cas non supervisé, nous
adoptons le framework VAE pour intégrer des images de scènes. Plus précisément, nous
utilisons l’extension de la distribution normale à l’espace hyperbolique pour construire
notre VAE hyperbolique. Cela implique de conserver l’ensemble du réseau VAE dans
l’espace euclidien en généralisant uniquement son espace latent, qui est conforme à une
distribution normale (Nagano et al., 2019). Dans le contexte few-shot, nous utilisons le
réseau prototypique pour l’intégration d’images de scènes. La généralisation de ce dernier
est réalisée par l’ajout d’une couche qui permet la passage des caractéristiques euclidiennes
générées par l’extracteur de caractéristiques à l’espace hyperbolique (Khrulkov et al., 2020).
Comme il s’agit dans les deux cas d’architectures hybrides euclidiennes-hyperboliques qui
présentent un risque de disparition du gradient, nous utilisons la technique de seuillage
des caractéristiques euclidiennes pour contourner ce problème et donc assurer la stabilité
numérique des deux modèles.

Dans des contextes non supervisés et avec peu d’images, nous montrons la supériorité
des intégrations hyperboliques d’images de scènes de télédétection par rapport à leurs
équivalents euclidiens. Néanmoins, le choix des hyper-paramètres tels que la courbure
hyperbolique est très important. Assurer la stabilité numérique dans l’espace hyperbolique
reste un défi majeur. Cependant, le seuillage des caractéristiques est une solution simple
mais efficace pour contourner ce problème.

En résumé, cette étude constitue une ouverture vers l’application de l’espace hyper-
bolique aux images de télédétection. Bien que difficiles, les propriétés des images de
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télédétection s’alignent bien avec les propriétés géométriques de l’espace hyperbolique, ce
qui ouvre une perspective prometteuse pour les futures recherches dans ce domaine.
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Chapter 1

Introduction

1.1 Context: Remote sensing scene classification

Earth observation (EO) is the study and analysis of the Earth and its environment using
remote sensing (RS) data (Tang et al., 2021). EO therefore measures and observes the
detailed structures of the Earth’s surface, in order to understand and monitor Earth systems
and processes, as well as to provide information for a variety of applications such as natural
resource management (Shahbazi et al., 2014), climate and weather monitoring (Calbo &
Sabburg, 2008), disaster response (Schumann et al., 2018) and land-use planning (Van
Westen et al., 2008).

With EO technologies continually developing, a variety of data types (e.g. multi/hyper-
spectral (Gerhards et al., 2019) and synthetic aperture radar (SAR) (Li et al., 2021b)) of
high-resolution RS images of the Earth’s surface are widely available. High-resolution RS
(HRRS) images can be collected every day via a range of sources such as drones, airborne
sensors and mainly satellites (Dutta & Das, 2023), resulting in terabytes of data, making
it almost impossible to accurately analyse every produced image. Effectively managing
these enormous volumes of HRRS images is therefore becoming an urgent and required
task for EO. Accordingly, analysing and understanding the semantic content of huge and
complex HRRS images, which have clear texture and rich spatial information, is extremely
important.

Several HRRS image analysis methods are available in the literature, including but not
limited to object detection (Shin et al., 2020), change detection (Li et al., 2021b), and image
classification (Cheng et al., 2017; Cheng et al., 2020; Dutta & Das, 2023). The latter is
considered to be one of the foremost tasks. Image classification can be performed at various
levels of granularity, namely pixel-level (also known as semantic segmentation), object-
level, and scene-level classification (Fig. 1.1). Scene-level classification provides semantic
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(a) (b) (c)

Figure 1.1: Three levels of remote sensing image classification: (a) Pixel-level classification
aims to assign a class label to each pixel. (b) Object-level classification aims at recognising
objects in remote sensing images. (c) Scene-level classification aims to categorise each
remote sensing image patch into a semantic class.

information, enabling the extraction of higher-level features (Cheng et al., 2017; Cheng
et al., 2020). The “scene” here refers to an image patch cropped out of a large-scale remote
sensing image which includes relevant semantic information about the earth’s surface
(e.g., dense residential area, medium residential area, and sparse residential area) (Cheng
et al., 2020). Consequently, scene classification has received increasing attention in RS and
constitutes an active research topic.

1.1.1 Remote sensing scene classification

Remote sensing image scene classification (RSISC) aims to automatically assign a specific
semantic label (e.g. airport, beach, farmland or residential area) to each remote sensing
image based on its content (Cheng et al., 2020). As scene classification is usually performed
in a feature space, the construction of an accurate scene classification method depends
strongly on the efficiency of the feature representation (Cheng et al., 2017). Several methods
have been proposed to carry out this task, which can be divided into three main categories
from the perspective of the features used: methods based on manual feature extraction,
methods based on unsupervised feature extractors, and methods based on deep learning.

Handcrafted-feature-based methods Most early RSISC approaches are based on
low-level or handcrafted features, e.g., colour histograms (Swain & Ballard, 1991), texture
descriptors (Ojala et al., 2002), scale-invariant feature transform (SIFT) (Lowe, 2004) and
histogram of oriented gradients (HOG) (Dalal & Triggs, 2005). These approaches mainly
rely on engineering skills and domain expertise to retrieve basic features from the scene
image such as colour, texture, shape, spatial and spectral information, or their combination
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resulting in human-engineering descriptors. These descriptors are then used for scene
classification. However, with the increasing volume and complexity of RS data, the ability
of human-engineered descriptors is becoming limited or even impoverished (Cheng et al.,
2017).

Unsupervised-feature-learning-based methods Learning features automatically
from unlabelled scene images has been considered a more practical approach and has
become an attractive alternative to human-engineering features. These emerging approaches
are referred to as medium-level or unsupervised feature learning. They aim to learn a set
of basis functions which encode the handcrafted features or raw pixel intensity values into
a set of learned features (Cheng et al., 2017; Cheng et al., 2020). As such, a wide variety of
scene classification approaches based on unsupervised learning have been proposed, such
as principal component analysis (PCA) (Chaib et al., 2016), k-means clustering (Zhao
et al., 2014), sparse coding (Cheriyadat, 2014) and auto-encoders (Zhang et al., 2015).
Automatically learned features derived from the scene images are more discriminating and
yield better classification performance than the manually designed features, yet they can
no longer satisfy the needs of a high-resolution scene classification (Cheng et al., 2017).

Deep-feature-learning-based methods Deep learning-based methods have shown
impressive feature representation capability which has significantly improved the per-
formance of remote sensing image scene classification. Most of these scene classification
deep-algorithms can be organised into four main categories: methods based on auto-
encoders (AE), methods based on convolutional neural networks (CNNs), methods based
on generative adversarial networks (GANs) and methods based on vision transformers
(ViTs) (Wu et al., 2020).

Auto-encoder based approaches are algorithms learned generally in an unsupervised
manner. Although they are deep networks, they are limited in their ability to learn
discriminative features, as they are generally learned in an unsupervised manner, relying
solely on the visual features of the image without utilising the scene labels.

Convolutional neural networks (CNNs), such as AlexNet (Krizhevsky et al., 2012),
VGGNet (Simonyan & Zisserman, 2015), and ResNet (He et al., 2016), are powerful
feature extractors that are primarily learned in a supervised manner. In this approach,
the semantic information provided by the category labels is utilised to obtain good
feature representations, commonly known as high-level features, and thus ensure the best

23

From Euclidean to Hyperbolic Space: Rethinking Hierarchical Classification of Remote Sensing Scene Images – Manal Hamzaoui 2023



Chapter 1 – Introduction

discrimination between classes. Some CNNs-based approaches, such as (Marmanis et al.,
2016; Yuan et al., 2019), use pre-trained models on ImageNet solely for feature extraction.
They then learn a new CNN classifier from scratch, which takes the extracted features
as input. However, achieving outstanding performance through training from scratch
requires a large labelled dataset as a training set, which is time consuming, expensive
and may require domain expertise. Unfortunately, in the RS community, there is not
yet a large labelled HRRS dataset at a comparable scale to ImageNet (contains over 14
million images) which satisfies the training requirements for CNN-based methods (Han
et al., 2020). Therefore, a possible option is to fine-tune pre-trained models on ImageNet
for the target datasets, which have been adopted by a large number of studies as (Bazi
et al., 2019; Castelluccio et al., 2015). Although fine-tuning pre-trained CNNs can achieve
remarkable performance, there may be some limitations with these approaches, such as
learned features that may not fully fit the characteristics of target dataset. Alternatively,
some studies such as (Chen et al., 2018) have opted to train shallow CNNs from scratch,
which, showed promising results. The recent Million-AID dataset (Long et al., 2021), which
includes one million images, may be a good data source for these line of approaches.

Compared to CNN-based approaches, RSISC methods based on generative adversarial
networks (GANs) (Goodfellow et al., 2020) are less frequently reported in the RS literature.
These methods generally employ GANs as a data augmentation technique to generate
supplementary labelled samples, thus increasing the size of labelled RS datasets that will
be employed to train the CNN classifiers. For instance, (Han et al., 2020) proposed a
supervised Wasserstein Generative Adversarial Network (SWGAN) to generate synthetic
samples that are similar to real RS images. These synthetic samples are then combined
with real samples to train a deep neural network for scene classification. To perform a
classification task with a generative approaches, a classifier network is required. Although
these methods are learned in an unsupervised manner, they still require some labelled
data to guide the generation.

More recently, around the beginning of the thesis, methods based on vision transformers
(ViTs) (Dosovitskiy et al., 2021; Wu et al., 2020) have emerged in the computer vision
community. These methods have demonstrated outstanding performance when compared
to state-of-the-art CNNs, which has received significant attention from the remote sensing
community. Thus, several promising approaches have been proposed to solve the problem
of RS scene classification, such as (Deng et al., 2022; Lv et al., 2022; Sha & Li, 2022; Wang
et al., 2022a).
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In conclusion, RSISC deep learning approaches generally require a large set of labelled
data as a training set in order to achieve outstanding performance. More recent strategies,
such as semi-supervised learning (Castillo-Navarro et al., 2022; Miao et al., 2022), self-
supervised learning (Berg et al., 2022; Zhao et al., 2020) and few-shot learning (Li et al.,
2021c; Snell et al., 2017), have been considered to handle limited annotation samples.

Although these deep learning strategies are considered to be effective and provide high
level features resulting in better classification performance compared to low and medium
level features, they nevertheless suffer from some limitations due to the nature of the
remote sensing data (Cheng et al., 2020; Wang et al., 2022b). The current main challenges
of remote sensing image scene classification are discussed in the next section.

1.1.2 Main challenges

Generally, scene images contain not only a single object referring to a scene class, but
also additional objects relevant to the scene context (Wang et al., 2019). Thus, scene
images are composed of various objects (for example, Figure 1.1(b) shows that in a scene of
bridge, besides the bridge, we can also find water and land), providing a spatial model as a
functional area that is semantically consistent and often reflects the real world in a visual
and human-identifiable way (Wang et al., 2019). Furthermore, a significant intra-class
variation can be observed as shown in Figure 1.2(a) and (b) where two images of the
same bridge class are very different visually. Moreover, scene images belonging to different
categories are sometimes very similar in terms of visual content, and therefore difficult to
distinguish, even by humans. Indeed, the same objects may occur in scene images falling
into different categories, such as buildings in medium residential (Figure 1.2(c)) and dense
residential (Figure 1.2(d)) or a road in a runway and a freeway.

These aspects make the classification of remote sensing scene images rather a challenging
task. Therefore, the majority of the proposed approaches generally consider the inter- and
intra-class relationships among scene images when constructing the feature extractor and
the classification algorithm. However, looking at these aspects from another perspective
could potentially result in a more global semantic context than the fine-grained class.
For instance, images from circular farmland and rectangular farmland classes fall into a
coarser cultivated land class, as well as images from bridge, freeway and intersection fall
into a coarser transportation class. This suggests that hierarchical information between
scene images may exist and that fine-grained scene labels may belong to a hierarchical
organisation with multiple levels of granularity, as illustrated in Figure 1.3.
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(a) (b) (c) (d)

Figure 1.2: Inter-class similarity and intra-class variance in remote sensing scene data.
(a) and (b) variation of the bridge class images. Visual similarity between (c) medium
residential and (d) dense residential.

1

Remote sensing scene images

Water Cultivated land Transportation

Beach Sea ice Island Circular Rectangular Bridge freeway Intersection
farmland farmland

Coarse-grained

Fine-grained

Figure 1.3: Example of a hierarchical organisation of remote sensing scene labels at multiple
levels of granularity. A coarse-grained label is composed of several fine-grained labels.
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Few approaches have considered this hierarchical information when solving the remote
sensing scene classification, despite its relevance in better understanding the remote sensing
data. In the following section, we present the interest of this hierarchical information as
well as its possible forms.

1.2 Motivation: Hierarchical information for remote
sensing scene analysis

Remote sensing images are complex in nature and usually exhibit a hierarchical structure.
However, remote sensing image scene classification methods generally focus on the inter-
class and intra-class information via the image-label relationship. They are usually designed
as flat classifiers, which treat all non-target scene classes with the same importance,
ignoring the potential hierarchical semantic information between them (the label-label
relationship). As a result, confusing a medium residential image with a dense residential
image has the same severity as confusing it with an airport or other semantically unrelated
classes, which is inappropriate in terms of semantic understanding. Therefore, the use
of hierarchical semantic information that reflects the interaction between classes could
improve the performance of scene classifiers and, in addition, make the model predictions
more semantically coherent.

The hierarchical information, which reflects the interactions between classes, can be
represented via a class hierarchy (as explained below). It is expected to improve the
accuracy and the efficiency of RSISC models in several ways:

• Improving classification accuracy: hierarchical information about the class organisa-
tion regularises the feature space of the classifier, allowing coarse-grained categories
to be better distinguished and thus improving the classification accuracy at both
coarser and finer levels.

• Reducing mistake severity: a class hierarchy can further reduce the severity of
misclassifications by favouring those that share a similar semantic context over those
that are semantically distant.

• Fostering knowledge transfer: a class hierarchy can facilitate the knowledge transfer
from source classes to target classes sharing common semantic context, allowing
better generalisation of the classifier. This is applicable not only when source and
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target classes belong to the same dataset, as shown in (Garg et al., 2022; Li et al.,
2019), but also when they belong to different datasets, as in (Wang et al., 2020).

Moreover, remote sensing scene images are naturally hierarchical, as we will show later.
It would be of interest to consider this hierarchical nature when designing classification
models.

Explicit class hierarchy

The class hierarchy is a multi-level class organisation where the scene classes are the fine-
grained labels at the bottom of the class hierarchy which are then aggregated according to
the shared semantic information in coarser levels. The coarse-grained labels thus comprise
one or more fine-grained labels.

The class hierarchy is usually available, such as the well-known WordNet hierar-
chy (Miller, 1998) for natural images, or easily constructed (either manually or automati-
cally via text embedding and clustering algorithms (Li et al., 2019)). In addition to the
WordNet hierarchy, there are numerous domain-specific hierarchies, particularly in the
remote sensing community, such as the Corine Land Cover (CLC) (Bossard et al., 2000)
and the European Nature Information System (EUNIS) (Davies et al., 2004).

Furthermore, several datasets of high-resolution public remote sensing scene images
(such as UCMerced (Yang & Newsam, 2010), WHU-RS19 (Xia et al., 2010), NWPU-
RESISC45 (Cheng et al., 2017), AID (Xia et al., 2017) and PatternNet (Zhou et al., 2018))
have been introduced by different groups to learn and evaluate different scene classification
methods. However, in theses datasets, the scene image is only associated with its most
fine-grained class. To obtain coarser classes, it is necessary to resort to hierarchies such as
CLC and EUNIS. Nevertheless, these hierarchies do not fit well to scene datasets, thus
encouraging some studies to rather establish their own class organisation according to
the scene classes of the considered dataset, such as PatternNet (Liu et al., 2020b) and
NWPU-RESISC45 (Sen & Keles, 2022a; Zeng et al., 2022). More recently, (Long et al.,
2021) provided Million-AID, a new remote sensing scene classification dataset which scene
classes are organised into a hierarchy.

In this thesis, we evaluate our different approaches on the NWPU-RESISC45 database
as it is widely used to assess scene classification algorithms. Furthermore, some studies
such as (Sen & Keles, 2022a; Zeng et al., 2022) provide a hierarchical organisation of its
classes.
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NWPU-RESISC45 dataset The NWPU-RESISC45 (Cheng et al., 2017) dataset is
a widely used benchmark for remote sensing image scene classification. It consists of
31 500 images of 256 × 256 pixels; the spatial resolution varies from approximately 30 to
0.2 m per pixel. It covers 45 scene categories, each with 700 RGB images, which can be
organised hierarchically. Following (Liu et al., 2020b) and (Sen & Keles, 2022a), in which
the authors propose a hierarchical organisation of the scene classes of PatternNet and
NWPU-RESISC45 datasets, respectively, we construct a tree-like arrangement of these
scene classes which reflects their semantic relationships. We note that the leaf level of the
constructed class hierarchy corresponds to the original scene classes of the dataset. The
category tree of the dataset classes is summarised in Figure 1.4.

Implicit hierarchy: δ-hyperbolicity of remote sensing scene images

Although the class hierarchy is not considered to describe the relationships between
scene categories, hierarchical information is nevertheless implicitly present among scene
images. This is supported by a concept called the Gromov δ−hyperbolicity (Gromov, 1987),
referred to as δ−hyperbolicity for convenience, which enables us to measure the strength
of the hierarchical information in a dataset. In practice, to quantify this information, we
usually compute the scale-invariant metric δrel (the relative δ−hyperbolicity) which takes
values in [0, 1], the closer to zero the stronger the hierarchical information (Khrulkov
et al., 2020). Furthermore, a low δrel value indicates that the data embedding space has
an underlying hyperbolic geometry and that hyperbolic space would be suitable as an
embedding space (Tifrea et al., 2019).

In the remainder of this section, we provide some formal definitions of δ−hyperbolicity
and then show that RS scene images have intrinsic hierarchical relationships that could be
interpreted by choosing the right settings.

Gromov δ−hyperbolicity The δ−hyperbolicity provides a measure of how closely the
structure of a metric space X , equipped with the distance function d, resembles that of a
tree. Its calculation requires first computing the Gromov product for points x, y ∈ X with
respect to z ∈ X :

(x, y)z = 1
2 (d(z, x) + d(z, y) − d(x, y)) (1.1)
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Figure 1.4: Our NWPU-RESISC45 class hierarchy. All scene classes are hierarchically
organised in a four-level structure, with the root node placed at the first level. At the
second level, the 9 primary scene categories – residential land, natural land, public services,
commerce and service industry, sky, water area, transportation, industrial and mining
land, and cultivated land – are represented by 9 nodes that aggregate 20 parent nodes at
the third level. These 20 parent nodes further aggregate 45 leaf nodes at the fourth level.

The metric space (X , d) is then δ−hyperbolic if there exists a δ > 0 that fulfils the
four-point condition, which is defined for x, y, z, w ∈ X as:

(x, z)w ≥ min {(x, y)w, (y, z)w} − δ (1.2)

In practice, the δ value is defined as the largest coefficient in the matrix (M ⊗ M) − M

where M is the matrix of pairwise Gromov products (using eq.(1.1)) and ⊗ denotes the
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min-max matrix product defined as:

(A ⊗ B)ij = max
k

min {Aik, Bkj} (1.3)

For example, a tree is 0−hyperbolic, the Euclidean space Rn, n is the space dimension,
is not δ−hyperbolic (δ = ∞) while the Poincaré ball Bn (Nickel & Kiela, 2017) which is a
hyperbolic space is δ−hyperbolic with δ = log(1 +

√
2) ≈ 0.88 (Khrulkov et al., 2020).

Hyperbolicity of remote sensing scene images In order to validate the hypothesis
regarding the hyperbolicity of visual datasets, (Khrulkov et al., 2020) calculated the
scale-invariant metric δrel, also known as relative δ−hyperbolicity, of many natural image
datasets such as CIFAR10/100 (Krizhevsky & Hinton, 2009), CUB (Wah et al., 2011) and
MiniImageNet (Ravi & Larochelle, 2017), which revealed high degrees of hyperbolicity
as reported in Table 1.1 (low δrel values, the closer to zero the better). δrel is defined
as δrel(M) = 2δ(M)

diam(M) where M is the matrix pairwise Gromov products (eq. (1.1)) and
diam(M) denotes the maximal pairwise distance (the set diameter).

Table 1.1: The relative delta δrel values calculated for different natural image datasets.
Results are averaged across 10 sub-samples of size 1000. The standard deviation for all
the experiments did not exceed 0.02 (source (Khrulkov et al., 2020)).

Encoder Datasets
CIFAR10 CIFAR100 CUB MiniImageNet

Inception v3 0.25 0.23 0.23 0.21
ResNet34 0.26 0.25 0.25 0.21
VGG19 0.23 0.22 0.23 0.17

As we assume the hyperbolicity of the RS data, we adopt the procedure described
in (Khrulkov et al., 2020) and evaluate δrel for image scene embeddings of various RS
scene datasets extracted by various CNNs pre-trained on the ImageNet dataset. In par-
ticular, we consider VGG16 (Simonyan & Zisserman, 2015), ResNet18 (He et al., 2016),
GoogleNet (Szegedy et al., 2015), DenseNet (Huang et al., 2017) and SqueezeNet (Iandola
et al., 2016). Table 1.2 highlights the obtained δrel values for the five RS datasets including
UCMerced, WHU-RS19, NWPU-RESISC45, AID and PatternNet. We observe that the
δrel values derived from the scene image datasets are closer to 0 than to 1 which results in
a rather high degree of hyperbolicity, thus suggesting that hyperbolic representations of
scene images can benefit the classification task.
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Table 1.2: The relative delta δrel values calculated for different remote sensing image scene
datasets. For each dataset, we measured the Euclidean distance between the features
produced by various standard feature extractors pre-trained on ImageNet. Values of δrel

closer to 0 indicate a stronger hyperbolicity of a dataset. Results are averaged across 10
sub-samples of size 1500.

Dataset VGG16 ResNet18 GoogleNet DenseNet SqueezeNet
UCMerced 0.23 ± 0.01 0.26 ± 0.01 0.25 ± 0.01 0.25 ± 0.02 0.28 ± 0.03
WHU-RS19 0.22 ± 0.01 0.27 ± 0.01 0.25 ± 0.02 0.24 ± 0.01 0.31 ± 0.02

NWPU-RESISC45 0.23 ± 0.01 0.28 ± 0.01 0.24 ± 0.01 0.25 ± 0.01 0.31 ± 0.03
AID 0.23 ± 0.01 0.27 ± 0.01 0.23 ± 0.01 0.26 ± 0.01 0.31 ± 0.02

PatternNet 0.20 ± 0.01 0.27 ± 0.01 0.25 ± 0.02 0.25 ± 0.01 0.28 ± 0.02

1.3 Objectives of the Thesis

The focus of this thesis is to investigate the impact of hierarchical information which may
be either explicitly or implicitly available in remote sensing data, in particular between
scene classes, on feature extraction and classification methods. In this perspective, we thus
address the following research questions:

• Can class hierarchy be relevant for remote sensing scene classification?

• Is the hyperbolic space more suited to represent remote sensing data than
the Euclidean space, in particular for scene images?

During my PhD, I contributed to the two aspects mentioned above: 1- the explicit
introduction of hierarchical information during the learning of a deep network, 2- the
embedding of the scene images into the hyperbolic space which further highlights the
underlying hierarchy among scene classes.

1.4 Outline of the thesis

This manuscript is organised as follows:

• Chapter 2 provides a review of relevant studies carried out within the machine
learning community that focus on leveraging hierarchical information about the
data during the learning process, whether it is explicit or implicit. Additionally, a
review of related researches conducted in the remote sensing community is presented.
Moreover, several concepts that will be employed throughout the thesis, such as
distance and mean calculations in the hyperbolic space, and various evaluation
metrics are also defined.
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• Chapter 3 focuses on the first type of hierarchical information, namely explicit
information conveyed through a class hierarchy that reflects the semantic relations
between scene classes. In this context, we propose to introduce this information in
two different settings. In the first one, we present the label-driven VAE for scene
embedding, which utilises the soft local ranking loss to incorporate class hierarchy
information. We then evaluate the performance of the approach by assessing the
quality of the VAE latent space. In the second setting, we tackle few-shot learning by
proposing a hierarchical prototypical network, which establishes prototypes at every
level of the class hierarchy. Then, the class hierarchy information is incorporated
through hierarchical prototypes. The hierarchical prototypical network provides
regularisation of the latent space and outperforms the classical counterpart.

• Chapter 4 is devoted to the implicit hierarchical information that can potentially
exist among scene images. In this respect, we propose to adopt hyperbolic space
as an embedding space, as it has been shown (Nickel & Kiela, 2017) to be better
suited than Euclidean space for embedding data with an underlying hierarchy. We
adopt this hyperbolic space within the same frameworks as in Chapter 3, namely
the variational auto-encoder and the prototypical network. Both frameworks were
evaluated on a remote sensing scene image classification task and demonstrated the
superiority of the hyperbolic space with respect to the Euclidean space.

• We summarise our contributions and discuss potential avenues for future research in
Chapter 5, thereby concluding this thesis.

1.5 List of publications

The work presented in this manuscript has led to the following publications:

Journal article

(1) Hamzaoui, M., Chapel, L., Pham, M. T., & Lefèvre, S., Hyperbolic Prototypical
Network for Few Shot Remote Sensing Scene Classification, Pattern Recognition
Letters, Under review.
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Conference articles

(1) Hamzaoui, M., Chapel, L., Pham, M. T., & Lefèvre, S., (2023), Hyperbolic variational
auto-encoder for remote sensing scene embeddings, IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), Accepted for oral presentation.

(2) Hamzaoui, M., Chapel, L., Pham, M. T., & Lefèvre, S., (2022), A hierarchical
prototypical network for few-shot remote sensing scene classification, The 3rd Inter-
national Conference on Pattern Recognition and Artificial Intelligence (ICPRAI),
Paris, France, June 1-3, 2022. [Best paper award]

(3) Hamzaoui, M., Chapel, L., Pham, M. T., & Lefèvre, S. (2021). Hyperbolic Variational
Auto-Encoder for Remote Sensing Scene Classification. In Journées Francophones
des Jeunes Chercheurs en Vision par Ordinateur (ORASIS).
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Chapter 2

State-of-the-art: Learning with a class
hierarchy in machine learning

In this chapter, we review recent and popular ML approaches that have considered
hierarchical information during the learning process, either explicitly when the class
hierarchy is available or implicitly through hyperbolic space. We first introduce approaches
which explicitly incorporate the class hierarchy in Section 2.1 through the network, the
label-embedding or the loss function. Then, in Section 2.2, we provide some basics of
hyperbolic geometry and some relevant studies that are helpful in our research. Finally, in
Section 2.3, we present studies in remote sensing scene analysis that have incorporated
hierarchical information into the learning process. Section 2.4 describes relevant metrics
used to evaluate hierarchical approaches.

2.1 Learning strategies with a predefined class hier-
archy

Hierarchical information tends to be available as prior knowledge in the form of coarse
or most abstract labels with subsequent levels representing more specific categories (fine-
grained labels) (Garg et al., 2022). These different classes are organised into a hierarchy
of classes, usually a tree or a DAG (Direct Acyclic Graph). Exploiting this hierarchical
knowledge has been proven to be effective for many machine learning tasks, such as text clas-
sification (Xu & Du, 2020), object recognition (Marszalek & Schmid, 2007), retrieval (Barz
& Denzler, 2019; Ramzi et al., 2022), and mistake severity reduction (Bertinetto et al.,
2020). Approaches which explicitly consider the class hierarchy during learning are mainly
related to three lines of research:
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• Hierarchical architectures: approaches of this category change the original model’s
architecture according to the class hierarchy to learn to recognise the classes at
different levels.

• Label-embedding: label-embedding methods convert the discrete label space into a
continuous space based on the label relationships given by the class hierarchy.

• Hierarchical losses: this category alters the loss function by giving more weight to
specific categories in the class hierarchy.

In this section, we will focus on methods which explicitly incorporate the information
given by the class hierarchy to tackle the image classification/retrieval problems. Therefore,
we give a brief review of the three categories identified above as well as examples which
we consider relevant for a better understanding of each category.

2.1.1 Hierarchical networks

These methods attempt to incorporate the class hierarchy into the classifier architecture
without necessarily modifying the loss function. The main idea is to create a classification
tree whose internal nodes capture the most easily discriminated and relevant concepts
(general classes), which can be transferred to lower level nodes that are more difficult
to identify. Numerous studies have been conducted in this regard, including the work
by (Zhu & Bain, 2017). In this study, the authors introduced a CNN called B-CNN (Branch
Convolutional Neural Network) which incorporates prior knowledge of hierarchical category
relations. By going through the network layers, the B-CNN produces, at predefined levels,
several predictions ordered from coarse to fine, reflecting the hierarchical structure of the
target classes. The H-CNN (Hierarchical Convolutional Neural Network) (Seo & Shin,
2019), which is another type of branching CNN, was later proposed as a derivative of the
B-CNN model to predict a class hierarchy for a fashion image data set. Indeed, H-CNN can
be considered as a particular implementation of B-CNN, customised for fashion images, and
characterised by three prediction branches. H-CNN and B-CNN share similar architecture
and training algorithm, and hence, may also encounter similar training challenges, such
as the relevance of pre-selected indices matching prediction blocks to hierarchical class
levels - i.e., the placement of the prediction branches per granularity level is not obvious.
(Kolisnik et al., 2021) extended the B-CNN model by introducing a Condition-CNN,
which incorporates conditional probability to capture class relationships for hierarchical

36

From Euclidean to Hyperbolic Space: Rethinking Hierarchical Classification of Remote Sensing Scene Images – Manal Hamzaoui 2023



2.1. Learning strategies with a predefined class hierarchy

classification. In contrast to the B-CNN approach, which incorporates prediction branches
along the feature extractor blocks, the Condition-CNN defines prediction branches in
parallel after the common feature extraction step.

The effectiveness of hierarchical neural networks (HNNs) highlights the potential
of using hierarchical architectures in solving complex tasks. However, these approaches
primarily focus on enhancing the prediction accuracy of fine-grained classes (Mayouf &
de Saint-Cyr, 2022). Our aim, on the other hand, is to ensure hierarchical consistency
and enhance accuracy for both coarser-class and fine-grained class predictions, which
differs from the primary objective of the aforementioned approaches. Furthermore, the
HNN architecture is often domain-dependent (Goyal et al., 2021; Taoufiq et al., 2020),
requiring careful design and proper branch point selection to ensure that the HNN is able
to effectively capture the hierarchical relationships within the particular domain. This
may require extensive experimentation and tuning to determine the optimal branch point
placement to achieve the best possible HNN performance.

2.1.2 Label-embedding

An alternative approach to incorporate the class hierarchy is through label-embedding
methods, which can effectively facilitate knowledge sharing among classes. In contrast
to the previous category, label-embedding approaches do not necessarily require specific
architecture modifications. Such methods define each class as a soft embedding vector
instead of the typical one-hot vector by using a mapping function to associate classes with
representations to encode information about the inter-class relationships.

(Frome et al., 2013) proposed a deep visual-semantic embedding Model (DeViSE)
which is a visual object recognition approach involving semantic class information. They
suggested to map the target classes to a unit hyper-sphere by embedding them using a
word2vec model pre-trained on Wikipedia. Another hierarchy-based method was suggested
by (Barz & Denzler, 2019), in which they incorporate the hierarchical relationships of
classes into the hyper-sphere in order to learn semantically discriminative features for
hierarchical retrieval. They thus introduced an embedding algorithm such that all inter-
class distances represent similarities derived from the height of the lowest common ancestor
(LCA) given a class hierarchy. In the same direction, the authors in (Bertinetto et al.,
2020) have recently proposed an interesting approach to incorporate the class hierarchy
into the training of a deep classifier in a standard supervised setup. This approach, known
as soft labels, applies a mapping function to encode the class-relationship information,
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producing a categorical distribution over the classes. The class-relationship information
is derived from inter-class distances based on LCA (Lowest Common Ancestor). The
standard cross-entropy loss is employed to train the classifier, however, the soft label is
employed instead of the one-hot label.

Although label-embedding is considered a promising approach for capturing correlations
across hierarchical classes, in this thesis, we attempt to incorporate the class hierarchy via
the hierarchical loss approaches that will be described below to avoid being dependent on
the embedding strategy.

2.1.3 Hierarchical losses

The remaining direction to leverage the class hierarchy is through the loss function.
Modifying the optimised loss function is a reasonable and interesting approach to incor-
porate the class hierarchy when training the model. Numerous studies on hierarchical
classification/retrieval have adopted this strategy. In these methods, the loss function
is parameterised by the class hierarchy, thus classifying an image into a different but
semantically close category results in a lower loss than classifying it into a semantically
distant category, implying a higher penalty when predicting a more distant relative of the
true class.

(Bertinetto et al., 2020) have recently proposed a hierarchical loss which adapts the
well-known cross-entropy loss. The hierarchical cross-entropy loss (HXE) considers the class
hierarchy through the definition of a conditional distribution along the path connecting
each class node to the root node of the class hierarchy. (Ramzi et al., 2022) modified the
average precision measure by introducing the class hierarchy and proposed HAPPIER,
a hierarchical average precision learning approach for image retrieval. This approach is
based on the hierarchical rank, H-rank, which introduces a soft penalty for instances that
do not share the same fine-grained class as the query yet share more general semantics.
Some studies adopted pair-based losses, such as hierarchical triplet loss (Ge et al., 2018).
The authors suggested that the class hierarchy could be used to sample more reasonable
hard triplets as well as controlling the degree of aggregation/separation between samples
of different classes. Similarly, (Yu et al., 2020) used the class hierarchy to parameterise the
sampling strategy of the local ranking loss function which is typically utilised for aligning
preferences (Goyal et al., 2021). The authors in (Yang et al., 2022c) introduced a novel
approach to enhance the retrieval performance of deep metric models. Specifically, they
proposed a hierarchical proxy-based loss (HPL) that leverages the hierarchical relationships
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among classes. The method involves training finer-level proxies, which are proxies of finer
classes, as part of the embedding network parameters. The authors then extended this
idea to learn higher-level proxies, which are proxies of coarser classes. If a class hierarchy
is available, the higher-level proxies are learned following the same approach as the finer
proxies. Alternatively, pseudo super-classes are created by clustering the lower level proxies
using an unsupervised clustering algorithm (such as k-means), and the cluster centroids
are used as higher-level proxies. The model is then optimised using a weighted proxy-loss
over the different levels of the class hierarchy.

Hierarchical loss-based approaches are straightforward strategies to utilise the class
hierarchy in the context of hierarchical classification tasks. These approaches enable a flat
network to perform tasks that require the support of a class hierarchy. However, it is worth
noting that designing an effective hierarchical loss function can be challenging. The choice
of loss function, as well as its hyper-parameters, can greatly impact the performance of
the model. Careful consideration needs to be given to the design of the loss function to
ensure that it adequately captures the hierarchical relationships among classes. In this
thesis, we attempt to leverage the class hierarchy through the loss function.

2.2 Hyperbolic geometry for data embedding

As discussed earlier, the label information can be expressed explicitly as a hierarchical
arrangement of image classes which reflect the semantic relationships between the different
categories. This information can be explicitly taken into account according to different
approaches as presented above. Alternatively, the relationships between image labels may
not be explicitly provided by a class hierarchy, yet this information still exists. Recent
studies (Nickel & Kiela, 2017; Peng et al., 2022) have suggested working in a non-Euclidean
space, specifically hyperbolic space, which has been shown to be well suited to hierarchical
data or data with an underlying hierarchy.

In this section, we will focus on hyperbolic space. We will provide some mathematical
background and review several machine learning studies in which these spaces have been
used to represent hierarchical data or data with an underlying hierarchy, as well as a brief
overview of strategies used for optimisation in these spaces.
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2.2.1 Hyperbolic geometry

Different curvatures of Riemannian manifolds yield different geometries: Euclidean, which
has zero curvature, Elliptic, which has constant positive curvature, and Hyperbolic, which
has constant negative curvature (Figure 2.1); curvature essentially measures how far
manifolds deviate from flat Euclidean space (Peng et al., 2022).

Figure 2.1: Illustration of spherical, Euclidean and hyperbolic spaces. From left to right: a
surface of positive curvature (sphere), a surface of zero curvature (cylinder), and a surface
of negative curvature (hyperboloid).

In this part, we will focus on the hyperbolic space. There are five models of hyperbolic
space, each with a unique set of properties (Peng et al., 2022). These models are isometric,
which makes it easy to switch from one model to another. Among these, we are interested
in the two following models: the Poincaré Ball model and the Lorentz model which have
been most used in recent machine learning studies involving hyperbolic geometry (Peng
et al., 2022). The Poincaré Ball model represents the infinite hyperbolic space in a finite
ball. Its volume increases exponentially in proportion to its radius, leading to two main
strengths that make it well-suited for dealing with hierarchical data or data with an
underlying hierarchy. First, this exponential growth property closely matches the growth
rate of the tree data, resulting in a space with minimal distortion that fits hierarchies
particularly well, unlike the Euclidean space. The second point to note is that it is capable
of producing remarkably high-quality representations at low-dimensional embedding space.
This makes it particularly advantageous in situations where memory and storage resources
are limited (Yang et al., 2022b). Apart from its benefits in representing data, it is very
useful for visualisation. The Lorentz model (or hyperboloid model) refers to the upper
half (positive sheet) of a two-sheet hyperboloid. This model provides a relatively simple
geodesic formula and is therefore useful for computation. We briefly review the two models
and refer to the reference texts (Peng et al., 2022) for more details on the fundamentals of
hyperbolic geometry and these two models.
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Poincaré Ball model

The Poincaré Ball model (Ganea et al., 2018; Nickel & Kiela, 2017) (Bd, gB) is a Riemannian
manifold defined by the open d−dimensional ball of radius 1√

c
, Bd

c = {x ∈ Rd : c ∥x∥2 < 1},
where k = −c (c > 0) is the negative curvature of the Hyperbolic space which measures
how far the manifold deviates from the flat Euclidean space, ∥.∥ is the Euclidean norm.
The Poincaré Ball model is endowed with the Riemannian metric tensor gBd

c (x) = λc
x

2gE,
where x ∈ Bd

c , λx = 1
1−c∥x∥2 is the conformal factor and gE = Id denotes the Euclidean

metric tensor. The figure 2.2 shows an example of two–dimensional Poincaré Ball model
as well as some operations in this space.

o
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Figure 2.2: Two–dimensional Poincaré Ball model with negative curvature k = −1. (left)
Grid of Geodesics and the geodesic distance to the origin. (right) Point x ⊕ y represents
the Möbius sum of points x and y. HypAvg stands for the hyperbolic average of the points
a, b and c. The dashed red line represents the shortest distance between x and y.

Distance The shortest path between two points x, y ∈ Bd
c is given by the geodesic

distance defined as:

dB(x, y) = 2√
c

arctanh
(√

c ∥−x ⊕c y∥
)

(2.1)

where ⊕ is Möbius addition defined as follows:

x ⊕c y =

(
1 + 2c ⟨x, y⟩ + c ∥y∥2

)
x +

(
1 − c ∥x∥2

)
y

1 + 2c ⟨x, y⟩ + c2 ∥x∥2 ∥y∥2 (2.2)
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where ∥.∥, ⟨., .⟩ are the norm and the scalar product in the Euclidean space, respectively.

Tangent space The tangent space TxBd
c is a d−dimensional vector space which corre-

sponds to a first order linear approximation of Bd
c around x.

Exponential and logarithmic maps Working in hyperbolic space is not easy: it
requires generalising basic operations, such as vector addition, matrix-vector multiplication
and vector translation to these spaces, which is not trivial or sometimes even impossi-
ble (Ganea et al., 2018). A simple and straightforward way to accomplish this is to move
the data from a hyperbolic space to a tangent space, a local Euclidean space in which
the operations are constructed as in Euclidean space (Ganea et al., 2018). To switch
respectively from and to the hyperbolic space, we first need to define a bijective function
from Rd to Bd

c . This function maps vectors from the Euclidean space to the hyperbolic
space, and vice versa.

Formally, the exponential map at x (expc
x : TxBd

c
∼= Rd → Bd

c) maps an Euclidean
tangent vector v ∈ TxBd

c onto Bd
c and it is defined as:

expc
x(v) = x ⊕c

(
tanh

(
√

c
λc

x ∥v∥
2

)
v√

c ∥v∥

)
(2.3)

The logarithmic map at x (logc
x : Bd

c → TxBd
c) has an inverse role and maps points

u ∈ Bd
c to the tangent space at x TxBd

c following:

logc
x(u) = 2√

cλc
x

arctanh
(√

c ∥−x ⊕c u∥
) −x ⊕c u

∥−x ⊕c u∥
(2.4)

In practice, we use the exponential and logarithmic maps at the origin, denoted by
expc

0 and logc
0 respectively, to move from Euclidean space to the Poincaré Ball.

Lorentz model

The Lorentz model (Chen et al., 2022b; Nickel & Kiela, 2018) also known as the Hyperboloid
model is one of the typical hyperbolic models that refers to the upper sheet of a two-sheet
d−dimensional hyperboloid (Figure 2.3). Formally, the Lorentz model is a Riemannian
manifold with negative curvature k = −c (c > 0) defined as Ld

c = (Hd
c , gl), where gl is the

Riemannian metric tensor and Hd
c denotes the upper sheet of a two sheet d-dimensional
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hyperboloid:
Hd

c = {x ∈ Rd+1 : c⟨x, x⟩L = −1, x0 > 0} (2.5)

where ⟨., .⟩L is the Lorentzian inner product, also known as the metric tensor, defined as:

⟨x, y⟩L = −x0y0 +
d∑

i=1
xiyi (2.6)

for points x, y ∈ Rd+1.

µ0

Figure 2.3: Two–dimensional Lorentz model with negative curvature k = −1, µ0 = [1, 0, 0]
is the origin of hyperbolic space.

We note that for any point x = (x0, x′) ∈ Rd+1

x ∈ Hd
c ⇔ x0 =

√
1
c

+ ||x′||2 (2.7)

The origin of hyperbolic space is referred as a vector µ0 =
[

1√
c
, 0, . . . , 0

]
∈ Hd

c .

Geodesic distance The shortest path between two points x, y ∈ Hd
c is given by a

relatively simple formula of the geodesic distance and is defined as:

dc
L(x, y) = 1√

c
arcosh(−c ⟨x, y⟩L) (2.8)

Tangent space The tangent space at x ∈ Hd
c (TxHd

c) can be described as a subspace of
Rd+1. It is represented by a set of points v ∈ Rd+1 satisfying the orthogonality relation
with respect to the Lorentzian product:

TxHd
c = {v ∈ Rd+1 | ⟨v, x⟩L = 0} (2.9)
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Note that Tµ0Hd
c , the tangent space at the origin, consists of points u ∈ Rd+1 with v0 = 0

and ∥v∥L =
√

⟨v, v⟩L = ∥v∥.

Exponential and logarithmic maps Exponential map projects a tangent space vector
v ∈ TxHd

c onto the hyperbolic space Hd
c (see Figure 2.4 for illustration). It is defined

locally and only projects a small neighbourhood of the tangent space origin x onto its
neighbourhood in the hyperbolic space. The exponential map of the Lorentz model is then
given by:

expc
x : TxHd

c → Hd
c

expc
x(v) = cosh

(√
c ∥v∥L

)
x + 1√

c
sinh

(√
c ∥v∥L

) v

∥v∥L

(2.10)

The logarithmic map, also known as the inverse exponential map, is defined for u, x ∈ Hd
c

as:

logc
x : Hd

c → TxHd
c

logc
x(u) = (expc

x)−1 (u) = dc
L(x, u) u + c ⟨x, u⟩L x

∥u + c ⟨x, u⟩L x∥
(2.11)

µ0 = (1, 0)

H1
={x 2 R2 : hx, xiL = �x2

0 + x2
1 = �1}

x

TxH1
1x1

x0

µ0

x

Parallel transport

v0 = PT 1
µ0!x(v)

v

v0

µ0

x

u

v

Exponential and logarithmic maps

u = exp1
x(v) v = log1

x(u)

Figure 2.4: From left to right: (Left) The one-dimensional Lorentz model H1
1 (orange) and

the tangent space at x TxH1
1 (blue). (Centre) Parallel transport that carries v ∈ Tµ0H1

1
(green) to v′ ∈ T§H1

1 (blue). (Right) Exponential map projects the v ∈ TxH1
1 (blue) to

u ∈ H1
1(red).

Parallel transport For any couple of points x, y ∈ Hd
c , parallel transport from x to y

(PTc
x→y) is a map that carries a vector v ∈ TxHd

c along the geodesic to their corresponding
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vector v′ ∈ TyHd
c while preserving its metric tensor i.e. ⟨PTc

x→y(v), PTc
x→y(v′)⟩L = ⟨v, v′⟩L

(see Figure 2.4 for illustration). For the Lorentz model, this map is given by:

PTc
x→y(v) = v − ⟨logc

x(y), v⟩L

dc
L(x, y)2

(
logc

x(y) + logc
y(x)

)
(2.12)

The inverse parallel transport (PTc
x→y)−1 simply carries back the vector in TyHd

c to TxHd
c

along the geodesic and is defined as:

v = (PTc
x→y)−1(v′) = PTc

y→x(v′) (2.13)

Switching between Poincaré Ball and Lorentz models The five models of hyper-
bolic geometry are isometric, which makes it easy to switch from one model to another.
We can thus move from and to the Poincaré Ball model to the Lorentz model via the
following equations:

ΠHd
c →Bd

c
(x0, . . . , xd) =

√
c

1 +
√

cx0
(x1, . . . , xd) , x = [x0, . . . , xd]T ∈ Hd

c (2.14)

ΠBd
c →Hd

c
(x1, . . . , xd) = (1 + ∥x∥2, 2x1, . . . , 2xd)√

c (1 − ∥x∥2) , x = [x1, . . . , xd]T ∈ Bd
c (2.15)

Mean in the hyperbolic space

The mean calculation, simple yet valuable, is one of the key operations in machine learning
approaches. The path to extend this weighted mean calculation to hyperbolic space
is much less obvious. The averaging cannot be accomplished simply by averaging the
vectors since this does not guarantee that the resulting mean is always on the manifold.
Theoretically, we can generalise the mean calculation to the hyperbolic space thanks to
one of three approaches: the Fréchet mean method (Fréchet, 1948), the tangent space
aggregation (Chami et al., 2019) and the Einstein midpoint method (Peng et al., 2022).

An equivalent of the Euclidean mean in hyperbolic space is the Fréchet mean (Fréchet,
1948), which, however, has no closed-form solution. Solving the Fréchet mean currently
requires an iterative computation which significantly slows down learning and inference.
Alternatively, tangent aggregation is a simpler method to compute the average in hyperbolic
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space, which is in fact the same as the simple average in Euclidean space. However, rather
than approximating the mean in tangent space, the hyperbolic mean can be calculated
using the Einstein midpoint which is an extension of the mean operation to hyperbolic
space, having the simplest form with Klein1 coordinates:

HypAve(x1, . . . , xn) =
n∑

i=1
γixi/

n∑
i=1

γi (2.16)

where xi are embeddings in Klein model Kd
c and γi = 1√

1−c∥xi∥2 are the Lorentz factors.
We can therefore easily compute the hyperbolic mean by simply projecting to and from

the Klein model to various hyperbolic space models as all are isomorphic. The transfer to
and from the the Klein model to the Poincaré Ball model is thus carried out via the two
matching functions:

ΠBd
c →Kd

c
(x) = 2x

1 + c ∥x∥
, x ∈ Bd

c (2.17)

ΠKd
c →Bd

c
(x) = x

1 +
√

1 − c ∥x∥2
, x ∈ Kd

c (2.18)

Similarly, the transfer to and from the Klein model to the Lorentz model is accomplished
by:

ΠHd
c →Kd

c
(x0, . . . , xd) =

(
x1, . . . , xd√

cx0

)
, x = [x0, . . . , xd]T ∈ Hd

c (2.19)

ΠKd
c →Hd

c
(x1, . . . , xd) = 1√

1 − c∥x∥2

(1
c
, x1, . . . , xd

)
, x = [x1, . . . , xd]T ∈ Kd

c (2.20)

2.2.2 Hyperbolic geometry in machine learning

Although hyperbolic space has been known since the 19th century, it has rarely been used
in machine learning (ML) despite its attractive theoretical properties. Traditionally, ML
researches have focused mainly on approaches operating in Euclidean space, with less
interest in other spaces, regardless of the nature of the data being manipulated and their
specificities. However, this trend has begun to change following the publication of (Nickel
& Kiela, 2017) (as depicted in Figure 2.5). The authors propose to embed data with a

1. The Klein model is one of the five models of hyperbolic geometry. Similarly to the Poincaré Ball
model, it is defined on the set Kd

c = {x ∈ Rd : c ∥x∥2
< 1}, however, with a different metric.

46

From Euclidean to Hyperbolic Space: Rethinking Hierarchical Classification of Remote Sensing Scene Images – Manal Hamzaoui 2023



2.2. Hyperbolic geometry for data embedding

latent hierarchy, more specifically graphs, in Poincaré model rather than Euclidean space.
They provided evidence to support the superiority of this space in learning high-quality
embeddings.
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Figure 2.5: Number of publications in machine learning from 2012 to 2022. Data from
Google scholar advanced search: “hyperbolic space” and “machine learning”

This paper drew the attention of the ML community to the hyperbolic space and signif-
icantly advanced researches which seek to better represent data with a latent hierarchy in
several applications such as word embedding (Tifrea et al., 2019), text classification (Zhu et
al., 2020), text generation (Dai et al., 2021), node classification and link prediction (Chami
et al., 2019). As such, many recent works use the hyperbolic space to learn data representa-
tions, and various machine learning methods have been adapted to this framework. Among
them, we can mention the hyperbolic SVM (Cho et al., 2019) or the hyperbolic neural
network (Ganea et al., 2018). Other studies have provided a generalisation of normal
distributions on hyperbolic space that can be used to build and learn a probabilistic model
like Variational Auto-Encoder (VAE) (Mathieu et al., 2019; Nagano et al., 2019). The
proposed hyperbolic VAEs (H-VAE) are among the earliest studies dealing with images
in a hyperbolic space. They were used to embed images in a hyperbolic latent space and
then infer the underlying hierarchical structure. These methods have been validated on
MNIST and Atari 2600 Breakout datasets, showing that the H-VAE is able to retrieve
their hierarchical nature. However, those datasets are simple and do not reflect complex
scenario as in real-world images. Moreover, the MNIST dataset is not hierarchical whereas
real-world images can show hierarchical structures, either within the image (Cui et al.,
2015), or between the images, when a hierarchy of classes is available (Dhall et al., 2020;
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Khrulkov et al., 2020; Liu et al., 2020b). Given this setting, an interesting study (Yu et al.,
2020) was suggesting to rather guide the VAE learning in order to drive the construction
of its latent space such that it reflects a given class hierarchy.

Inspired from these two studies, the computer vision community was no exception
and followed the trend of the machine learning community, as hierarchical information
can also be found in image data, although this remains in progress and has not yet been
widely applied. The study proposed in (Khrulkov et al., 2020) is considered one of the
pioneering papers in the image community. The authors provide a methodology for image
embedding in hyperbolic space and have evaluated their method when solving the person
identification and a few-shot image classification tasks, showing the benefits of these spaces
and their superiority. Further studies have targeted other applications such as image
classification (Atigh et al., 2021; Ermolov et al., 2022; Guo et al., 2022b) and semantic
segmentation. However, some studies have introduced additional information such as
the class hierarchy to drive the learning process and further benefit from the geometric
properties of the hyperbolic space, tackling challenges such as object detection (Lang
et al., 2022), semantic segmentation (Li et al., 2022a) or zero-shot classification (Liu et al.,
2020a).

2.2.3 Optimisation in the hyperbolic space

In most machine learning applications, learning is performed in a Euclidean space, mainly
because of its convenient mathematical properties, especially those required for constructing
deep neural networks, such as vector structures or closed forms for distance calculation.
However, this is rather less obvious when dealing with the hyperbolic space, considering
the difficulty of expanding the hyperbolic counterparts of deep neural architectures.
Optimisation in these Riemannian spaces is not trivial either and is challenging, as is
the construction of neural networks. Considering these challenges, the development of
Riemannian models and optimisation techniques in this hyperbolic space is rather not as
efficient as in Euclidean space, which results in relatively limited resources to be used by
the computer vision community, until very recently.

A pioneering study was presented in (Ganea et al., 2018) which provides a framework
for reasonably generalising classical Euclidean deep learning tools to hyperbolic space.
Accordingly, numerous recent researches have suggested alternative approaches to generalise
deep learning operations to the hyperbolic space, as this represents a major step towards
hyperbolic deep neural networks. Therefore, we can consider two possible approaches
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to generalise neural networks to the hyperbolic space. The first, which is simple and
straightforward, requires transferring the data from hyperbolic space to tangent space and
then applying traditional operations as used in Euclidean networks. The second alternative,
which is less obvious, is to construct the network directly in hyperbolic space. In this
regard, we point to some studies that started to explore this aspect: linear layers (Shimizu
et al., 2021), softmax layer (Ganea et al., 2018) and activation functions (Ganea et al.,
2018).

Early hyperbolic neural networks (Ganea et al., 2018) adopted the Poincaré Ball model
due to its ability to have an infinite space in a finite one. The Poincaré Ball’s Radius,
defined as 1√

c
, results in a finite space when c > 0. However, it’s worth noting that while

the boundary of the ball doesn’t belong to the hyperbolic space, it represents points
that are infinitely distant. This hyperbolic space expands exponentially as the radius of
the ball increases, making it an ideal choice for representing trees where the number of
children increases exponentially as they move away from the root of the tree. This property
allows for an effective representation of hierarchical data. However, this exponential growth
property sometimes leads to numerical instability when the hyperbolic embeddings get too
close to the boundaries of the Poincaré model, resulting in values that are unrepresentable
in floating point arithmetic and lead to undefined distances (NaN values). To avoid this
problem, some studies such as (Chami et al., 2019; Nagano et al., 2019) have rather
adopted the Lorentz model which provides a simpler distance formula.

As for the optimisation of these hyperbolic networks, the study in (Bonnabel, 2013)
represents one of the pioneers of stochastic optimisation in Riemannian manifolds in which
they introduce the Riemannian stochastic gradient descent (RSGD) optimisation. Further
studies have followed the trend of hyperbolic space and have proposed a generalisation of
other optimisers to Riemannian manifolds such as RADAM and RAMSGRAD (Sakai &
Iiduka, 2022). However, the gradient sometimes vanishes during the optimisation, which
is due to the hybrid architecture of the networks that connect Euclidean features to
hyperbolic layers (Guo et al., 2022b). A potential solution to this issue could be to adopt
fully hyperbolic networks as was done in (Chen et al., 2022b), although this is not yet
possible for all varieties of architectures. Indeed, the authors in (Guo et al., 2022b) have
suggested that Euclidean features should be clipped before moving to hyperbolic layers,
which seems to avoid the vanishing gradient problem.

Through this brief review, we can observe that neural networks are not yet very
well established in the hyperbolic space and further work remains to be accomplished in
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order to attain a more standard framework as it is in Euclidean space. However, none
of this changes the merits of these spaces. As for optimisation in this hyperbolic space,
a standard Manifold interface for Riemannian optimisation is provided by the Geoopt
framework (Kochurov et al., 2020) which is developed in Pytorch.

2.3 Leveraging class hierarchy for remote sensing
scene analysis

In the last decade, deep learning (DL) methods have induced a significant revolution across
diverse research areas, with a particular emphasis on computer vision tasks, including, but
not limited to, object detection (Lang et al., 2022), image classification (Zhao et al., 2020),
semantic segmentation (Castillo-Navarro et al., 2022) and image generation (Han et al.,
2020). Typically, these methodologies follow a two-step process, whereby the initial step
involves the automated extraction of meaningful patterns from the images. Subsequently,
in the second step, these learned representations are applied to downstream tasks that
could be supervised, such as classification and object detection, or unsupervised, such as
compression, generation, or clustering.

Within the specific context of remote sensing, various tasks such as ship classifica-
tion (Chen & Qian, 2022), hierarchical object detection (Shin et al., 2020), tree spices
classification (Lei et al., 2022), and urban building classification (Taoufiq et al., 2020) have
utilised class hierarchies. Typically, such class hierarchies are incorporated into the network
architecture, such as in the case of HierarchyNet (Taoufiq et al., 2020), which was inspired
from the B-CNN (Zhu & Bain, 2017) and introduced a novel hierarchical network for
urban building classification. Alternatively, a combination of hierarchical network and loss
function can be used, as demonstrated in (Chen & Qian, 2022). The hierarchical network
architecture in this approach includes two output channels. The first channel is organised
based on a hierarchy and exclusion (HEX) graph, which models the class hierarchy and
encodes semantic relations between classes. The corresponding probabilistic classification
loss for this channel reflects the hierarchical structure of the HEX graph. While the second
output channel is dedicated to the finest-grained classes, and its multi-class cross-entropy
loss is designed to improve the classifier’s discriminative power for these classes.

Regarding RS scene analysis, although there exist some hierarchical solutions in the
literature, the hierarchy is usually defined based on the clustering of similar features (Sen
& Keles, 2022b) such as (Goel et al., 2019; Liu et al., 2019). Newer studies, such as (Guo
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et al., 2022a; Liu et al., 2020b; Sen & Keles, 2022b; Zeng et al., 2022), which focus on
scene classification and retrieval tasks, have considered a predefined class hierarchy and
explicitly incorporated it during the learning process. To the best of our knowledge, these
methods appear to belong solely to the first category.

In (Liu et al., 2020b), the authors introduced a triplet network designed for RS scene
retrieval. The proposed network utilises the class hierarchy to choose appropriate triplets,
consisting of an anchor, a positive sample, and a negative sample, as inputs. Notably,
the positive sample does not necessarily need to belong to the same class as the anchor,
but rather should be semantically closer to it than the negative sample. Furthermore,
the authors leveraged the class hierarchy to parameterise the loss function and enable an
adaptive “pull-push” mechanisms. As for (Sen & Keles, 2022b), they described a hierarchical
network for scene classification. They introduced a coarser classifier to predict the high-level
class category, and fine classifiers were defined for each coarser class in the hierarchy. The
selection of the finer classifier to use was based on the output of the coarser classifier, and
finer predictions were made using the selected finer classifier. Likewise, the hierarchical
network introduced in (Zeng et al., 2022) aimed to tackle the scene classification task. They
proposed a single classifier per level, which were learned in parallel. The network learned
fine-grained features, which were utilised as inputs for both the fine classifier and coarser
classifier, in addition to coarse-grained features. Similarly, (Guo et al., 2022a) introduced
a multiple granularity semantic learning network (MGSN), which is a hierarchical network
consisting of multiple independent branches, each corresponding to a level in the class
hierarchy. The purpose of the MGSN is to leverage various levels of semantic information
about scenes and guide the network in learning global and local features simultaneously.
However, the authors treat RS scene image classification as a multi-label classification
task and opt to learn the different granularity semantics independently and in parallel.

Incorporating class hierarchy into the learning process enables the data embeddings
to incorporate valuable information from both class-specific and semantically related
classes. This facilitates information transfer between semantically similar classes, leading
to improved accuracy values at coarser levels, while simultaneously reducing the severity
of mistakes. Furthermore, hierarchical information about the classes can be particularly
valuable in situations where there is limited labelled data available for training. By
leveraging the hierarchical structure of the classes, the model can effectively transfer
knowledge from related classes to those with few or no labelled samples, improving its
ability to make accurate predictions even with limited training data (Li et al., 2019; Liu
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et al., 2020a).
As far as hyperbolic space is concerned, to our knowledge, it has only been referenced

in two studies within the RS community, namely (Li et al., 2022b; Sun et al., 2022).
In (Sun et al., 2022), the authors focused on reducing the dimensionality of hyperspectral
images (HSI) through an unsupervised approach for selecting more consistent bands.
HSI have numerous spectral bands, and not all of them are informative or contribute to
the desired classification or analysis task. As such, (Sun et al., 2022) proposed a novel
hyperbolic clustering-based band hierarchy (HCBH) approach which aims to select a subset
of informative bands for HSI analysis. The HCBH method uses hyperbolic clustering to
construct a hierarchy of bands based on their similarity in the hyperbolic space. The
resulting hierarchy of bands is then used to select a subset of representative bands based on
an adaptive hyperbolic distance of each band to the “origin” of the Poincaré Ball, suggesting
that bands closer to the origin are more prominent in their group and capture the most
significant spectral information in the HSI. While authors in (Li et al., 2022b) proposed a
hybrid attention-enhanced neural network (HAENet) to perform semantic segmentation of
RS images. A key component of the HAENet is the similarity hybrid attention module
(SHAM) which fuses position-specific attention maps from both Euclidean and hyperbolic
spaces.

2.4 Hierarchical evaluation metrics

The performance of classification algorithms can be evaluated according to several criteria.
Therefore, different measures usually assess different properties derived from the classifica-
tion algorithm. This section presents an overview of the evaluation metrics employed to
assess the performance of hierarchical classification approaches in the literature. Some of
them will be used to evaluate the methods proposed in this thesis.

Accuracy

Accuracy is the most widely used metric to evaluate the effectiveness of classification
algorithms. It is calculated as the percentage of correctly predicted samples, i.e. predictions
ŷ ∈ Ŷ identical to the ground truth labels y ∈ Ŷ .

Acc = 1
|Y |

∑
(y,ŷ)

1 (ŷ = y) (2.21)
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where x → 1(x) is the indicator function defined as: 1(ŷ = y) = 1 if ŷ = y else 0.
Naturally, it is a flat measure which does not consider the class hierarchy. However, it

can be easily derived into a hierarchical metric by computing the accuracy at each level of
the class hierarchy when it is available.

Hierarchical distance of mistake

As opposed to the previous metric which measures the correctness of the classification
algorithm, the hierarchical distance of mistake (HDM) (Bertinetto et al., 2020) rather
assesses the severity of the error. This metric is defined as the distance dH between the
true class y and the predicted class ŷ in the class hierarchy H, which is represented by the
height of their Lowest Common Ancestor (LCA). However, we only consider misclassified
entries N = {(y, ŷ), y ̸= ŷ}, i.e. when the predicted class ŷ is different from the ground
truth class y. The smaller the value of this measure the better. Formally, it is defined as:

HDM = 1
|N |

∑
(y,ŷ)∈N

dH(y, ŷ) (2.22)

Hierarchical precision

Hierarchical precision (PH) (Liu et al., 2021) is an augmented version of the precision
which uses the class hierarchy. Unlike pair-based measures such as accuracy, this measure
operates on the full sets of predicted and true classes, including their ancestors. It is
computed as:

PH =

∣∣∣Ŷaug ∩ Yaug

∣∣∣∣∣∣Ŷaug

∣∣∣ (2.23)

|.| is the cardinality of a set. Ŷaug and Yaug are the augmented sets of ŷ and y which refer
to the predicted and ground truth classes, respectively, that may be expanded by including
their ancestors in the class hierarchy H. In other words, they represent the sets of classes
along the path from the predicted class ŷ, resp. ground truth class y, to the root class in
the class hierarchy H and are defined as:

Yaug = AncestorsH (y) ∪ {y}
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Ŷaug = AncestorsH (ŷ) ∪ {ŷ}

AncestorsH(y) returns, for y as a leaf, all non-leaf nodes in the class hierarchy H that lie
along the path from y to the root node, the root node itself is excluded from this set. The
higher PH , the better.

Hierarchical F-score

The hierarchical F-score (Liu et al., 2021) is an adaptation of the F-Score, which is based
on the hierarchical recall RH and hierarchical precision PH , as previously defined. It can
be expressed as:

FH = 2 × PH × RH

PH + RH

(2.24)

with RH defined as:

RH =

∣∣∣Ŷaug ∩ Yaug

∣∣∣
|Yaug|

(2.25)

Lowest common ancestor

Lowest Common Ancestor (LCA) (Liu et al., 2021) is a hierarchical evaluation metric
derived from FH . The main change is in the calculation of the augmented sets. Rather
than having classes from the leaf node (predicted class or ground truth class) up to the
root node, we consider only classes up to the closest ancestor class found between the
true class and the predicted class in the class hierarchy H. The higher the LCA value, the
better.

Tree-induced error

The Tree-Induced Error (TIE) (Liu et al., 2021) is a metric which measures the severity
of a misclassification, similar to HDM. However, TIE considers all cases, whether the
predicted class is different from or the same as the ground truth class. This metric is
defined by the distance between the true class y and the predicted class ŷ in the class
hierarchy H; the distance is given by the number of edges connecting the true class to
the predicted class in H. The smaller the value of this measure the better. Formally, it is
defined as:

TIE = |EdgesH (y, ŷ)| (2.26)
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2.5 Conclusion

This chapter has outlined some approaches which allow us exploiting hierarchical informa-
tion when learning data embeddings for ML tasks such as classification and retrieval. The
first category of approaches explicitly considers the class hierarchy, and can be related to
three lines of research: defining a hierarchical loss function, altering the network architec-
ture or the label-embedding space. To the best of our knowledge, most studies carried out
in the remote sensing community for scene analysis fall into this first category. The second
direction implicitly exploit hierarchical information by considering the hyperbolic space
as an embeddings space. The hyperbolic space has attracted a lot of attention recently
and has proven beneficial for data representation in various applications, especially when
the data has a hidden or underlying hierarchical structure. In the two following chapters,
we address both lines of research. In Chapter 3, we will discuss explicit methods for
incorporating class hierarchy when analysing remote sensing scene images. In particular,
we will consider the incorporation of class hierarchy via the loss function. In chapter 4, we
investigate the relevance of hyperbolic space for remote sensing scene image analysis. In
both cases, we will consider the two following learning frameworks: VAE-based embedding
and few-shot learning.
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Chapter 3

Leveraging class hierarchy via loss
functions

The content of this chapter is mainly built upon the research presented in the two articles:
“Hyperbolic Variational Auto-Encoder for Remote Sensing Scene Classification” (Hamzaoui
et al., 2021) and “A Hierarchical Prototypical Network for Few-Shot Remote Sensing Scene
Classification” (Hamzaoui et al., 2022).

3.1 Introduction

In computer vision, the issue of mistake severity has been discussed in several works
(Bertinetto et al., 2020), especially after the release of the ImageNet dataset (Deng et
al., 2009), whose classes are organised into a class hierarchy according to the WordNet
ontology (Miller, 1998). Nevertheless, this issue has only recently regained attention
after having been largely neglected since the advent of the deep learning. A recent and
noteworthy study presented in (Bertinetto et al., 2020) incorporates the class hierarchy
through two distinct approaches: a label-embedding-based approach and a loss-based
one. The objective is to train a classifier that is capable of mitigating the severity of
classification errors.

As discussed in Chapter 1, RS data are naturally hierarchical, it would therefore be
interesting to consider this information when learning the scene classifier. Some recent
studies, such as (Liu et al., 2020b; Sen & Keles, 2022b; Zeng et al., 2022), have benefited
from this nature by explicitly introducing the class hierarchy into the learning process in
order to enhance the performance and ensure more meaningful predictions even when they
are incorrect. We share an interest in this research direction and intend in this chapter to
explicitly incorporate the semantic information provided by the class hierarchy. Specifically,
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we propose to introduce the class hierarchy via the loss function to learn a more meaningful
scene classifier.

The first section of this chapter is an initial check which aims to demonstrate the
potential benefits of explicitly incorporating hierarchical information in feature construction.
As such, we customised the research presented in (Yu et al., 2020), which proposed a guided
variational auto-encoder (VAE) to embed drugs whose labels were arranged in a class
hierarchy, to suit our context. To be specific, we employ the VAE to embed scene images,
while restricting its latent space using a soft local ranking loss, which is parameterised by
the class hierarchy. This approach shows that adding the class hierarchy information can
improve classification performance. Consequently, in the second section, we address another
challenging task, namely the few-shot learning problem. Here we adopt a prototypical
network as a framework to encode the scene images. The class hierarchy is then leveraged
to derive prototypes at different levels of the class hierarchy, which will then be fed to a
weighted sum of cross-entropy losses in order to optimise the network and guide feature
learning.

3.2 Label-driven variational auto-encoder learning

In order to determine whether the incorporation of hierarchical information affects the
quality of remote sensing representations, particularly the performance of RS scene image
classifier, we conducted an initial investigation to validate its potential benefits.

In this section, we expand upon the methodology presented in (Yu et al., 2020), which
employs a simple data embedding technique using VAE, to embed RS scene images. To
incorporate the class hierarchy, they utilised the soft local ranking loss, which guides the
construction of the VAE latent space. We evaluate the effectiveness of this framework
and thus the benefits of incorporating the class hierarchy by analysing the quality of the
embeddings through a classification task.

3.2.1 Variational auto-encoder

Variational Auto-Encoder (VAE) (Kingma & Welling, 2014) is a probabilistic generative
model relevant to representation learning in which we aim to learn good representations,
such as interpretable representations or representations that give a better generalisa-
tion (Mathieu et al., 2019). A VAE model is composed of two components: an encoder that
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embeds observations xi into a low dimensional latent space z ∈ Z, and a decoder generating
observations x̂i out of this latent space. Formally, the VAE consists of a probabilistic
decoder defined as a likelihood function pθ(xi|z) and parameterised by θ which generates
data x̂i given the latent variable z as well as a posterior distribution qϕ(z|xi) that can be
considered as a probabilistic encoder parameterised by ϕ. The parameters ϕ and θ are
learned simultaneously by maximising the evidence lower bound (ELBO) which is defined
for each observation xi by:

log pθ(xi) ≥ Ez∼qϕ(z|xi)[log pθ(xi|z)] − DKL(qϕ(z|xi)||pθ(z)) (3.1)

where the first term after the inequality encourages the decoder to learn to reconstruct
the observation xi, and the second is a regularisation term that promotes latent space
representations to follow a predefined distribution, E and DKL being respectively the
expectation and the Kullback–Leibler (KL) divergence. Usually, pθ(z) is chosen as a
standard Normal distribution with mean zero and variance one N (0, I) where I is the
identity matrix.

In practice, we approximate the reconstruction term by sampling using a Monte Carlo
estimator:

Ez∼qϕ(z|xi)[log pθ(xi|z)] ≈ 1
L

L∑
l=1

log pθ(xi|z(i,l)) (3.2)

where L is the number of samples per data point xi, z(i,l) = gϕ(ϵ(i,l), xi) = µi
ϕ + σi

ϕ ⊙ ϵ(i,l)

is the reparameterisation trick, ⊙ indicates an element-wise product and ϵ(i,l) ∼ N (0, I) is
a random noise vector. µi

ϕ and σi
ϕ are outputs of the encoder, representing respectively the

mean and the standard deviation of the target distribution.

The regularisation term DKL (Odaibo, 2019) encourages the approximate posterior
qϕ(z|xi) to be close to the prior pθ(z) and is defined as:

DKL

(
qϕ

(
z|xi

)
∥ pθ(z)

)
= Eqϕ

[
log qϕ (z|xi)

pθ(z)

]

= −1
2

d∑
j=1

[
1 + log

(
σi

j,ϕ

2)− σi
j,ϕ

2 − µi
j,ϕ

2] (3.3)

where d is the dimension of z, µi
j,ϕ and σi

j,ϕ denote the jth element of the encoder output.
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The objective function to be maximised during training is therefore given by:

L(θ, ϕ; xi) = 1
L

L∑
l=1

log pθ(xi|z(i,l)) + 1
2

d∑
j=1

[
1 + log

(
σi

j,ϕ

2)− σi
j,ϕ

2 − µi
j,ϕ

2] (3.4)

and the loss function to be optimised is simply taken as the negative of L(θ, ϕ; xi).

3.2.2 Label-driven VAE

VAE only considers visual information when learning image embeddings. Here, we detail
the incorporation of the hierarchical class structure into the VAE learning process so as
to supervise and guide the construction of the latent space Z (see Figure 3.1). To do
this, and following (Yu et al., 2020), we use a class hierarchy-based pairwise similarity
measurement between images, which aims to bring semantically similar images closer
together and distancing them from those that are less similar.
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Figure 3.1: Overall framework of the proposed hierarchical VAE

We therefore drive the construction of our latent space Z by optimising the Soft Local
Ranking (SLR) loss defined as :
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LSLR(xi, T ; ϕ) = −
∑
i,j

log Pr(xi, xj; ϕ),

where

Pr(xi, xj; ϕ) = e−d(µi
ϕ,µj

ϕ
)∑

j′∈N (i,j) e−d(µi
ϕ

,µj′
ϕ

)
,

(3.5)

where µi
ϕ is the mean of the input image xi, d(µi

ϕ, µj
ϕ) is the Euclidean distance between

µi
ϕ and µj

ϕ.
N (i, j) is the set referencing images semantically less similar to xi than xj including

xj, which is given by N (i, j) =
{
j′ : dT

(
yi, yj′

)
> dT (yi, yj)

}
∪ {j} where dT (i, yj) is

the path-length between yi and yj, labels of images xi and xj respectively, in the class
hierarchy H.

We then formulate our label-driven VAE for scene image embedding as:

arg max
ϕ,θ

((1 − γ)LELBO (x, ϕ; θ) − γ LSLR (x; T , ϕ)) , (3.6)

The first term is the VAE objective which embeds the scene images based on their
visual similarity, while the second term is the SLR objective detailed above.

The label-driven VAE objective can thus be detailed as:

arg max
ϕ,θ

(
(1 − γ)

(
Ez∼qϕ(z|xi)

[
log pθ(xi|z)

]
− β DKL

(
qϕ(z|x(i))||pθ(z)

) )
− γ LSLR (x, T ; ϕ)

)
(3.7)

where xi are scene images, ϕ and θ are VAE parameters, β and γ are the scaling hyper-
parameters controlling the weight relative to the KL divergence and SLR during training.

3.2.3 Experimental study

This study focuses on the relevance of explicitly considering, via a loss function, the
hierarchical information among classes in the context of remote sensing, rather than
competing with the most recent scene embedding approaches. The objective is therefore to
investigate whether the guided VAE, referred to as VAE+SLR, outperforms the baseline
flat VAE as well as a simple CNN classifier trained with a few labelled data.

In this perspective, for both the VAE+SLR and the VAE, we adopt a simple VAE
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architecture with regard to those used recently in the remote sensing community (Cheng
et al., 2017; Cheng et al., 2020; Dutta & Das, 2023). As for the classifier, for a fair
evaluation, we also adopt a simple architecture by using the same encoder of VAE as the
feature extractor, followed by two fully connected layers for classification.

We evaluate the quality of the resulting VAE embeddings and the ability to discriminate
classes using the simple 1−NN classifier.

Experimental setup

Dataset The experiments are conducted on a subset of the NWPU-RESISC45 (Cheng
et al., 2017) remote sensing scene dataset (Section 1.2). All 45 classes are considered, for
each, we randomly select 100 images for the training set, 50 images for the validation set
and 80 images for the test set. Within the training set, we consider only 10% of the images
in each class as labelled .

Implementation details For both the VAE and the VAE+SLR, we choose the same
following architecture. Both the encoder and the decoder are composed of 5 convolutional
layers and a linear layer, each convolutional layer is followed by a batch normalisation
layer and a Leaky ReLU activation, except for the decoder last convolutional layer which
is followed by a tanh activation. The input size of the encoder network is set to 64 × 64.
As the architecture we are using is not commonly applied in RS, we do not have prior
knowledge of the optimal latent space dimension d for the embedding z. Therefore, in our
experiments, we explore different values of d, including 8, 16, 32, 64, and 128.

The Adam optimiser (Kingma & Ba, 2015) acts as optimiser with a constant learning
rate of 1e−3. The models are trained with mini-batches of size 64 for 1500 epochs with an
early stopping of 50 epochs and 10 negative samples to optimise the SLR term.

The ELBO term is approximated by Monte Carlo (MC) estimation with L = 1
(Eq. (3.2)). β scaling hyper-parameter weight of the KL divergence was chosen experimen-
tally and set to 5e−5 while γ, the scaling hyper-parameter weight of the SLR loss, is set to
0.1.

As for the classifier, we adapt the dimension of the first fully connected layer to match
the dimension of the VAE latent space, while the dimension of the second fully connected
layer corresponds to the number of classes in the dataset, which is 45.

62

From Euclidean to Hyperbolic Space: Rethinking Hierarchical Classification of Remote Sensing Scene Images – Manal Hamzaoui 2023



3.2. Label-driven variational auto-encoder learning

Results and discussion

We evaluate the quality of the resulting embeddings of both VAEs and the ability to
discriminate between classes using the simple 1−NN classifier. We also provide the classi-
fication results of a simple CNN classifier trained only on the labelled images available
for the Label-driven VAE (VAE+SLR). Experiments are conducted on a subset of the
NWPU-RESISC45 dataset and reported in Table 3.1, results are averaged over 3 runs.

Table 3.1: 1-NN classification results computed on the test set of the NWPU-RESISC45
dataset at different levels of the class hierarchy: overall acc represents the classification
accuracy at the leaves (level 4) and thus the NWPU-RESISC45 classes; L3-acc and L2-acc
give the accuracy at level 3 and level 2, respectively (the higher, the better); HDM is the
hierarchical distance of mistakes (the smaller the better). Results are averaged over 3 runs.

Metric Latent Space Dimension d
8 16 32 64 128

CNN classifier

Overall acc 8.11 ± 0.10 10.58 ± 0.07 13.72 ± 0.52 14.49 ± 0.40 15.76 ± 0.40
L3-acc 14.05 ± 0.84 16.55 ± 0.77 19.89 ± 0.90 21.47 ± 0.53 23.58 ± 1.00
L2-acc 24.27 ± 1.24 27.14 ± 1.05 29.52 ± 0.66 32.71 ± 0.37 33.76 ± 1.44
HDM 2.71 ± 0.01 2.71 ± 0.01 2.71 ± 0.01 2.70 ± 0.01 2.71 ± 0.01

VAE

Overall acc 12.00 ± 0.15 13.96 ± 0.56 13.21 ± 0.21 12.08 ± 0.10 12.39 ± 0.32
L3-acc 18.38 ± 0, 42 20.64 ± 0.41 19.33 ± 0.13 17.93 ± 0.57 17.88 ± 0.24
L2-acc 28.34 ± 0, 57 31.49 ± 0.38 30.97 ± 0.16 29.96 ± 0.47 29.95 ± 0.49
HDM 2.74 ± 0.01 2.72 ± 0.01 2.72 ± 0.01 2.73 ± 0.01 2.74 ± 0.00

VAE+SLR

Overall acc 13.24 ± 0.49 14.04 ± 0.21 15.97 ± 0.41 15.58 ± 0.38 16.97 ± 0.63
L3-acc 20.68 ± 0.74 21.53 ± 0.46 23.48 ± 0.46 22.83 ± 0.52 24.16 ± 0.40
L2-acc 31.64 ± 0.60 32.07 ± 0.65 33.80 ± 0.44 33.20 ± 0.40 35.09 ± 0.25
HDM 2.70 ± 0.01 2.70 ± 0.01 2.70 ± 0.01 2.71 ± 0.02 2.70 ± 0.01

When comparing VAE+SLR against the flat VAE and the flat classifier, we observe
that VAE+SLR outperforms both models in terms of classification accuracy across different
levels and dimensions. Although our VAE+SLR model’s performance falls significantly
short of the state-of-the-art (Miao et al., 2022), we anticipated it would outperform the
two other models, owing to its ability to utilise both labelled and unlabelled images. The
unsupervised component of the VAE allowed for learning the underlying data distribution
from the unlabelled images. Meanwhile, the labelled images were utilised to improve the
organisation of the latent space while ensuring that the class hierarchy constraints were
met. Our SLR term is specifically designed to encourage a more structured and informative
latent space that aligns with prior knowledge about the data, i.e., the class hierarchy. This,
in turn, led to improved regularisation of the latent space and enhanced classification
performance.

We evaluate the performance of various approaches over different dimensions. For the
CNN classifier, we modified the dimension of the layer preceding the softmax layer to
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ensure a fair comparison. By using cross-validation, we determined that the baseline VAE
attains its peak performance on the validation set when the optimal latent dimension is set
to 16. This dimension was also optimal on the test set, although other dimensions showed
relatively similar performances. In contrast, the performance of the CNN classifier is
strongly impacted by the dimension, with a overall accuracy gain of nearly twice observed
in dimension 128 as compared to dimension 8. Our guided VAE, on the other hand,
leveraged the strengths of both the VAE and the classifier, demonstrating promising
performance at small latent dimensions derived from the VAE. Additionally, the labelled
data further improved the model’s performance at higher dimensions.

Regarding the misclassified images which are organised according to the class hierarchy,
we observe that VAE+SLR slightly improves the misclassification of the VAE. This implies
that incorporating the class hierarchy to guide the construction of the VAE latent space
has enabled a more effective reorganisation, thereby reducing the severity of mistakes.
However, there is still a considerable margin for improvement and the first alternative
we can think of is to use feature extractors which are already widely used in the RS
community.

3.2.4 Conclusion

In this section, we conducted a preliminary study on the potential benefits of introducing
the class hierarchy in the learning. In particular, we examined a label-driven VAE, in
which the latent space construction is guided by a pairwise loss function that exploits
the class hierarchy to select the relevant pairs. We evaluate the hierarchical VAE on the
NWPU-RESISC45 dataset and showed that the class hierarchy is an appealing source of
information that allows improving the classification performance.

Having established that incorporating the class hierarchy is advantageous in the remote
sensing context, we can now proceed to a more challenging task, namely the few-shot
RSISC. Here, we incorporate the class hierarchy in order to transfer semantic information
from the source (seen) classes to the target (unseen) classes.
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3.3 Hierarchical prototypical network for few-shot
classification

Inspired by the human ability to learn new abstract concepts from very few (or even one)
examples and to generalise quickly to new instances (Shi et al., 2020), Few-shot learning
(FSL) was introduced as one of the alternative ways to deal with the “data-hungry” issue.
FSL methods can be divided into three categories (Sun et al., 2021): metric learning,
meta-learning and transfer learning. Metric learning methods learn a distance function
that brings samples from the same category as close as possible in the feature space while
pushing samples from other categories as far away as possible. As for meta-learning, also
known as learning to learn, it is the most common approach in FSL, which efficiently
optimises the model parameters to new tasks. Transfer learning aims at using the knowledge
gained from relevant tasks towards new tasks, e.g. fine-tuning the pre-trained models is a
powerful transfer method.

Recently, the combination of meta-learning and metric learning has been one of the
most studied approaches in FSL for natural image classification (Snell et al., 2017; Vinyals
et al., 2016) and for remote sensing scene classification (Zhang et al., 2021a). First, based
on meta-learning, these approaches construct tasks with few labelled samples, which
enhances the generalisation performance of the model for new tasks. Then, the similarity
between image features is measured to make predictions. Some of related methods include
relation network (Sung et al., 2018), classical matching network (Vinyals et al., 2016) and
prototypical network (Snell et al., 2017).

In recent years, several approaches were proposed to tackle the problem of few-shot
remote sensing scene classification (FSRSSC). In (Li et al., 2021a), the authors adopted
the attention mechanism to delve into the inter-channel and inter-spatial relationships to
discover discriminative regions in the remote sensing scene images. The authors in (Cheng
et al., 2022) used a Siamese-prototype network with prototype self-calibration and inter-
calibration to learn more discriminative prototypes. In (Zhang et al., 2021a), the authors
introduced a pre-training step on the base data to provide better initialisation of the
feature extractor and performed the few-shot remote sensing scene classification using
cosine distance metric. However, to the best our knowledge, the majority of these methods
have focused only on visual scene information to improve feature representations without
considering semantic knowledge that may exist within these classes. Yet this type of
semantic knowledge about classes, which can consist of attributes, word embeddings or
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even a knowledge graph (e.g. WordNet (Miller, 1998)), is commonly used in zero-shot
learning (ZSL) and increasingly in few-shot natural image classification approaches.

Although incorporating semantic knowledge is not a novelty in ZSL, it has only recently
been applied in FSL. (Chen et al., 2019) proposed the TriNet to tackle the “1-shot” task
by synthesising the instance features from the semantic space which is given by the label
embeddings. In (Yang et al., 2022a), the authors proposed a method called Semantic
Guided Attention (SEGA) mechanism which leverages semantic knowledge to guide the
visual perception in learning the discriminative visual features of each class. Most of these
FSL approaches that introduce semantic knowledge involve the text modality. However,
few attention has been paid to knowledge transfer based on the class hierarchy which is
either built using text modality as in (Li et al., 2019) or already predefined as in (Liu
et al., 2022). In (Li et al., 2019), the authors proposed a hierarchical image recognition
approach by performing Softmax optimisation on all levels of the class hierarchy. This
allows learning transferable visual features through this class hierarchy which encodes
semantic relationships between seen and unseen classes. In (Liu et al., 2022), a class
hierarchy was introduced to address the multi-class FSL problem. The authors proposed a
“memory-augmented hierarchical-classification network (MahiNet)” model which leverages
the hierarchy as prior knowledge to train a coarse-to-fine classifier where each coarse class
can cover multiple finer classes.

According to (Liu et al., 2022), FSL with knowledge transfer can be accomplished
independently of an additional modality such as text and yields competitive performances,
when the class hierarchy is known or easily obtained, which fits well with our research
interests. As we mentioned in Chapter 1, the remote sensing classes can be easily arranged
in a hierarchical structure following well-known organisations such as Corine Land Cover
(CLC), the European Nature Information System (EUNIS) habitat classification scheme
or other structures such as done in (Liu et al., 2020b) where they propose a hierarchical
organisation of the scene classes of the PatternNet (Zhou et al., 2018) remote sensing
scene dataset.

In this section, we build on prototypical networks to define a hierarchical variant: in a
nutshell, hierarchical prototypes are attached to each level of the hierarchy, allowing us to
first consider high-level aggregated information before making a fine prediction.
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3.3.1 Problem formulation

In few-shot classification, we assume that we have two sets, a large labelled training set,
referred to as the base set Dbase, and a test set with few labelled images per class, the novel
set Dnovel. The classes that constitute the base and novel sets, denoted Cbase and Cnovel

respectively, are disjoint Cbase ∩ Cnovel = ∅. To mimic the sparsity of the test data in the
training stage, we adopt the K−way N−shot strategy (an episodic learning strategy) used
in various FSL studies (Snell et al., 2017; Vinyals et al., 2016), in which K refers to the
number of classes and N (usually set to 1 or 5) is the number of labelled images per classes
during a training/testing episode. For each training episode, we randomly sample a subset
of K classes out of Cbase which we denote Ce. We then randomly sample N labelled images
from Dbase for each class k ∈ Ce, resulting in the episode support set S = {(xi, yi)}K×N

i=1 ,
where xi is an image and yi ∈ Ce its corresponding label. Furthermore, for the same K

selected classes, we sample N ′ labelled images for each class k ∈ Ce to form a set known as
the query set Q = {(xi, yi)}K×N ′

i=1 . A training episode therefore has a total of K × (N + N ′)
samples. In this training step, the support set S and the query set Q are used to learn the
model that projects the input images into the feature space.

The testing step is also carried out with the same episodic strategy where we have an
unlabelled query set Q (drawn from Dnovel) for which we want to predict the class label
of each query sample xi ∈ Q using the labelled support set S (also drawn from Dnovel).
Fig. 3.2 shows a visualisation of the K-way N-shot episodes.

3.3.2 Prototypical networks

Prototypical networks (Snell et al., 2017) are metric learning-based methods which learn a
distance function in order to bring samples within the same category as close as possible
in the feature space, while pushing away samples from other categories. They adopt an
episodic strategy to train the meta-learner classifier. Given an episode with a support set
S and a query set Q, we compute the representations of the images in both sets S and Q

using the meta-learner feature extractor fΦ (a neural network such as CNN) parameterised
by Φ. Thereafter, the support set representations are averaged to compute the prototypes
pk for each class k ∈ Ce as follows:

pk = 1
N

∑
(xi,yi)∈Sk

fΦ(xi) (3.8)
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Figure 3.2: Illustration of K-way N-shot classification episodes. The left side shows the M
episodes of the training step; each episode consists of K × N support samples and K × N ′

query samples. The testing step is similarly defined on M ′ episodes, as shown on the right.

where Sk is the subset of the episode support set S that contains the samples of class
k ∈ Ce, Ce is the set of classes sampled during episode e.

To optimise the feature extractor fΦ, we minimise the loss function:

L = − 1
K × N ′

∑
k∈Ce

∑
(xi,yi)∈Qk

log pΦ(yi = k | xi) (3.9)

where Qk is the subset of the episode query set Q composed of samples from class k and
pΦ(yi = k | xi) is the probability of predicting a query sample (xi, yi) ∈ Q as class k and
is given as:

pΦ(yi = k|xi) = exp(−d(fΦ(xi), pk)/τ)∑
k′∈Ce

exp(−d(fΦ(xi), pk′)/τ) (3.10)
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where d(.) is the Euclidean distance (Snell et al., 2017) and τ is the temperature hyper-
parameter.

3.3.3 Leveraging the class hierarchy in prototypical network
learning

Overall framework

We propose a meta-learning framework whose complete pipeline is illustrated in Fig. 3.3 to
solve the few-shot classification problem when a hierarchy that describes the organisation
between the classes is available. We train a meta-learner classifier by adopting an episodic
training strategy. During training stage, using the support set S, we compute N prototypes
P =

{
pk
}

k∈Ce

for each class in the current task (episode) and Kh hierarchical prototypes
for their super-classes. The query features are then compared to both the scene and the
hierarchical prototypes, allowing us to compute an episodic error at different levels of the
class hierarchy T to be minimised and used to fine-tune the parameters Φ of the feature
extractor fΦ. At testing stage, the parameters Φ of the feature extractor fΦ are fixed and
the meta-learner classifier is evaluated on a set of episodes sampled from the novel classes
in Dnovel.
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Hierarchical prototypical network

Here, we rely on the prototypical networks and introduce the hierarchy knowledge thanks
to the definition of hierarchical prototypes. The overall idea is to regularise the latent
space by putting closer classes that are in the same branch of the class hierarchy T , and
pushing apart classes that have common ancestors in higher levels of the class hierarchy T .

To properly formulate our approach, given an episode, we first compute the prototypes
per class which are prototypes at the leaf-level of the class hierarchy T (following Eq. 3.8).
We then compute the hierarchical prototypes by aggregating the leaf-level prototypes
according to T .

The prototypes of the super-classes k ∈ C l
e (the hierarchical prototypes) at level

(1 < l < L with l = 1 the root node and L = height(T )) are denoted as Pl =
{
pk

l

}
k∈Cl

e

and computed as the mean of support samples of the super-class sub-tree Sk
l similarly to

Eq. 3.8:
pk

l = 1
|Sk

l |
∑

(xi,yi)∈Sk
l

fΦ(xi) (3.11)

Note that when l = L, the prototypes at level l are the prototypes at the lowest level
of T (leaf-level prototypes).

The hierarchical prototypical network outputs a distribution over classes for each query
sample xq ∈ Q at different levels of T , based on a Softmax over the distances to the
prototypes of each level l in T . We then formulate the probability of predicting the query
features fΦ(xq) and the prototype pk

l of its super-class k at level l in T as formulated in
Eq. 3.10 as:

pΦ(yl
i = k|xi) = exp(−d(fΦ(xi), pk

l )/τ)∑
k′∈Cl

e
exp(−d(fΦ(xi), pk′

l )/τ) (3.12)

where yl
i is the ancestor of yi at level l, C l

e represents the super-classes at level l at the
current episode.

We therefore optimise a new loss function given as

LH−proto =
L∑

l=2
λlLl (3.13)

where λl = γl−1∑L

l′=2 γl′−1 , γ is a hyper-parameter that controls the importance of each level in

the hierarchy and ∑L
l=2 λl = 1. Ll represents the prototypical network loss at level l of the
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Table 3.2: NWPU-RESISC45 FSL splits

Split Categories
Meta-train chaparral, bridge, commercial area, golf course, dense residen-

tial, meadow, forest, airport, freeway, church, harbor, baseball
diamond, circular farmland, medium residential, mobile home
park, desert, basketball court, lake, beach, cloud, island, airplane,
ground track field, industrial area, intersection.

Meta-validation roundabout, wetland, ship, terrace, storage tank, sparse residen-
tial, tennis court, thermal power station, stadium, snowberg, sea
ice, runway.

Meta-test overpass, railway station, mountain, river, parking lot, palace,
railway, rectangular farmland.

class hierarchy T .
As such, we can tune the importance of each level of the hierarchy into the learning

process: by choosing low values of γ, we put more importance into organising the higher
levels of the hierarchy; a value close to one gives the same importance for all the levels; a
high value tends to behave like the flat cross entropy loss formulation.

3.3.4 Experimental study

Experimental setup

Dataset All models are learned on the NWPU-RESISC45 (Cheng et al., 2017) remote
sensing scene dataset. We split the dataset into three disjoint subsets: meta-training Dbase,
meta-validation Dval, and meta-test Dnovel containing 25, 12, and 8 categories, respectively
(Table 3.2). We note that the meta-validation set is used for hyper-parameter selection
in the meta-training step. The meta-training set is further divided into three subsets:
training, validation, and test sets. In our experiments, we follow (Zhang et al., 2021a) and
resize all the images to 80 × 80 pixels to fit our designed feature extractor.

Implementation details

Following recent FSRSSC studies (Li et al., 2021c; Zhang et al., 2021a; Zhang et al., 2021b;
Zhang et al., 2021c), we utilise ResNet-12 as a backbone for feature extraction. We also
adopt the pre-training strategy as suggested in (Zhang et al., 2021a) to better initialise
the meta-learner feature extractor.
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We train our meta-learning for 400 epochs, with the best model parameters chosen
based on the best overall accuracy on the validation set. In standard deep learning, an
epoch implies that the entire train set passes through the deep neural network once.
However, in meta-learning, an epoch is a set of episodes randomly sampled from the base
set Dbase, which we set to 500 episodes per epoch. We optimise the model based on the
average loss of 2 episodes, i.e. the batch size is set to 2 episodes. We use SGD optimiser to
update the network parameters with a momentum set to 0.9 and a weight decay set to
0.0005. The learning rate is fixed to 10−3. After each training epoch, we test our model on
a validation set Dval by randomly sampling 500 episodes, the network weights with the
highest validation overall accuracy are retained as the best results. For the hierarchical
hyper-parameter γ, we assigned different values (γ = 1, γ < 1 and γ > 1) in order to
observe its impact on the framework performances.

For the meta-testing stage, we conduct a 5−way 1−shot and 5−way 5−shot classifi-
cation following the widely used meta-learning protocol. We evaluate the best model on
1000 randomly sampled episodes from the test set Dnovel. Following the FSL evaluation
protocol (Snell et al., 2017), for K-way N-shot episode, we randomly sample 15 images per
class to form the query set Q, making a total of K × 15 query images per episode.

As for the meta-training episodes, if at test time a K-way classification and N-shot
learning is expected, the training episodes could be composed of K ways and N support
samples per class. However, (Snell et al., 2017) observed that it can be highly advantageous
to train with a larger number of ways than will be used at test time, while maintaining
the same N-shot for training and testing. Furthermore, within our framework, opting
for a larger number of ways during training promotes the aggregation of prototypes into
hierarchical prototypes and thus boosts the transfer of semantic information between
classes via these prototypes. In the default setting (same K-way in training as in the test,
K = 5), given the distribution of the train classes across the class hierarchy, having only 5
classes for training decreases the chances that two neighbouring classes in the hierarchy
occur most often in the same episode. Therefore, considering a higher K-way for training
seems to be an appropriate solution. We thus set K to 10 for the meta-training episodes.

Baselines

In both 5-way K-shot configurations, N = 1 or 5, We evaluate our approach against the
following methods:
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ProtoNet ProtoNet refers to the original flat prototypical network (Snell et al., 2017)
which use the Euclidean distance as a similarity function.

Soft-labels The soft-label method (Bertinetto et al., 2020) was introduced to learn a
deep classifier in a standard supervised setting while incorporating hierarchical information
about the classes. It encodes information about the relationships between classes through
a mapping function ysoft(C) resulting in a categorical distribution over the classes, which
is defined as follows:

ysoft
A (C) = exp (−β d(A, C))∑

B∈C exp (−β d(B, C)) (3.14)

where d is the class distance function defined over the class hierarchy as the height of
LCA(Ci, Cj) divided by the height of the class hierarchy and β is a hyper-parameter;
β → ∞ result in standard one-hot setting while β = 0 gives the uniform distribution.

The soft classifier is then learned by optimising the following loss function:

Lsoft(x, C) = −
∑
A∈C

ysoft
A (C) log p(y = A|x) (3.15)

where C is the set of classes (leaf nodes in the class hierarchy), C is the target class for
example x and p(y = A|x) is the probability of predicting x as class A.

We adapt this approach to the few-shot context by deriving soft-labels based on a
sub-hierarchy covering only the current episode’s classes.

Results and discussion

Table 3.3 and table 3.4 report the classification performance of the different approaches in
both 5-way N-shot configurations, N = 5 and N = 1 respectively. We re-implement the flat
method (ProtoNet) according to (Zhang et al., 2021a).

Our proposed h-ProtoNet achieves the highest accuracy and outperforms both flat
prototypes (ProtoNet) and the soft-labels hierarchical loss in the 5-shot setting. We obtain
the best performance with γ = 2, that is to say when we put more weights on the
prototypes that correspond to the lower level of the hierarchy (corresponding to the leaf
nodes, γ > 1). In the 1-shot setting, we outperform the flat ProtoNet achieving better
results with γ = 0.5 which corresponds to the higher level of the hierarchy (corresponding
to nodes close to the root, γ < 1). We observe that that incorporating information related
to the class hierarchy leads to improved performance in our approach, as well as with soft
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Table 3.3: 5-shot classification results computed on the test set of the NWPU-RESISC45
dataset at different levels of the class hierarchy: overall acc represents the classification
accuracy at the leaves (level 4) and thus the NWPU-RESISC45 classes; L3-acc and L2-acc
give the accuracy at level 3 and level 2, respectively; PH is the hierarchical precision.
All accuracy results are averaged over 1000 test episodes and are reported with a 95%
confidence interval.

Method #HP overall acc L3-acc L2-acc PH

ProtoNet (Snell et al., 2017) 1 77.84 ± 0.40 80.89 ± 0.37 85.55 ± 0.41 81.43 ± 0.35
Soft-labels (Bertinetto et al., 2020) 4 76.77 ± 0.41 79.93 ± 0.37 85.39 ± 0.42 80.70 ± 0.35
h-ProtoNet (ours) 0.5 77.75 ± 0.39 80.98 ± 0.35 85.53 ± 0.41 81.42 ± 0.34
h-ProtoNet (ours) 1 78.41 ± 0.40 81.60 ± 0.36 85.99 ± 0.40 82.00 ± 0.34
h-ProtoNet (ours) 2 78.65 ± 0.40 81.72 ± 0.36 85.99 ± 0.40 82.12 ± 0.34

Table 3.4: 1-shot classification results computed on the test set of the NWPU-RESISC45
dataset at different levels of the class hierarchy: overall acc represents the classification
accuracy at the leaves (level 4) and thus the NWPU-RESISC45 classes; L3-acc and L2-acc
give the accuracy at level 3 and level 2, respectively; PH is the hierarchical precision.
All accuracy results are averaged over 1000 test episodes and are reported with a 95%
confidence interval.

Method #HP overall acc L3-acc L2-acc PH

ProtoNet (Snell et al., 2017) 1 58.90 ± 0.61 62.56 ± 0.63 72.24 ± 0.71 64.57 ± 0.57
Soft-labels (Bertinetto et al., 2020) 4 61.69 ± 0.62 65.66 ± 0.62 74.88 ± 0.70 67.41 ± 0.57
h-ProtoNet (ours) 0.5 60.72 ± 0.62 64.77 ± 0.63 74.21 ± 0.70 66.57 ± 0.57
h-ProtoNet (ours) 1 60.20 ± 0.62 64.00 ± 0.62 72.83 ± 0.73 65.68 ± 0.59
h-ProtoNet (ours) 2 60.08 ± 0.62 64.09 ± 0.62 73.58 ± 0.71 65.92 ± 0.58

labels. The performance of our hierarchical prototypes is comparable to that of soft labels,
indicating that we are effectively taking hierarchical information into account. Further
investigation is needed to understand why our performance is either superior or inferior to
that of soft labels, which we plan to explore in future research.

We observe that our h-ProtoNet is more sensitive to the class hierarchy when few
labelled data are available (the 1-shot setting), thus further enhancing the performance
of the flat ProtoNet. In this case, prototypes at higher levels of the hierarchy allow for
significant information transfer between leaf prototypes.

Note that these values of γ = 2 for 5-shot and γ = 0.5 for 1-shot would have been selected
if we perform a cross-validation on the validation set. We argue that the improvement
observed in the case of the hierarchical prototypes is due to an efficient regularisation of
the latent space, with a loss that encourages leaves within the same branch of the level
hierarchy to be closer. As such, the performances at level 2 and 3 are improved, but also
the overall accuracy.
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Impact of γ hyper-parameter The aim of this investigation is to analyse the impact
of the γ hyper-parameter of h-ProtoNet on the regularisation of its latent space, which
in turn affects the transfer of hierarchical information among the prototypes at the leaf
level. To achieve this, a series of experiments were carried out using a 5-shot 5-way setup
with different values of the hyper-parameter γ. Additionally, we set the dimension of the
latent space to 2 in order to obtain a visual comprehension of how the regularisation of
the latent space is affected by the γ hyper-parameter.

Table 3.5 reports the accuracy values of various configurations of h-ProtoNet at both the
finest and coarsest levels of the class hierarchy. Additionally, Figure 3.4 illustrates the latent
space of a training episode for various configurations, providing a visual representation of
the effect of the γ hyper-parameter on the learned latent space.

We experimented with four γ values: 0.5, 1, 2 and ∞. By definition, when γ = 1, equal
importance is assigned to prototypes at every level of the class hierarchy. This leads to
a latent space that strives to maintain the membership constraint at each level of the
class hierarchy with equal significance (Figure 3.4(b)). Values of γ < 1 tend to prioritise
prototypes at the upper levels of the class hierarchy (i.e., class nodes closer to the root),
thereby assigning greater importance to predictions at coarser levels while being relatively
less concerned with predictions at finer levels. This can be observed in Figure 3.4(a), where
classes such as transportation and public services serve as examples. Values of γ > 1, on
the other hand, tend to give greater weight to the lower levels of the hierarchy (i.e., leaf
nodes), which can result in a decreased adherence to hierarchical constraints (Figure 3.4(c)).
This is confirmed by Table 3.5 where we can observe that increasing the value of the
hyper-parameter γ results in a decrease of the accuracy at the coarse classes (L2-acc),
eventually leading to a flat ProtoNet when the γ = ∞ (Figure 3.4(d)).

Table 3.5: 5-shot classification accuracy of the two-dimensional h-ProtoNet on the test
set of the NWPU-RESISC45 dataset at both the finest and coarsest levels of the class
hierarchy. All accuracy results are averaged over 1000 test episode and are reported with a
95% confidence interval.

γ 0.5 1 2 ∞
Overall acc 54.18 ± 0.49 52.28 ± 0.50 51.80 ± 0.49 52.10 ± 0.49

L2-acc 74.99 ± 0.64 74.69 ± 0.63 71.47 ± 0.70 69.27 ± 0.70

Does visual-semantic proximity matter? Although the hierarchy we have defined
over the NWPU-RESISC45 classes is not a visual hierarchy per se, it nevertheless reflects

75

From Euclidean to Hyperbolic Space: Rethinking Hierarchical Classification of Remote Sensing Scene Images – Manal Hamzaoui 2023



Chapter 3 – Leveraging class hierarchy via loss functions

F
in

es
t

le
ve

l

Finest level

intersection

baseball diamond

chaparral

ground track field

basketball court

harbor

bridge

desert

airport

church

C
oa

rs
es

t
le

ve
l

(a) γ = 0.5

Coarsest level

transportation public services natural land residential land

(b) γ = 1 (c) γ = 2 (d) γ =∞

Figure 3.4: Two-dimensional embeddings of our h-ProtoNet at different γ values for the
finest (top) and coarsest (bottom) levels of the class hierarchy.

some visual relationships between the dataset scene images. Figure 3.5 illustrates this
feature by representing the latent space of both two-dimensional flat prototypical network
(Figure 3.5(a) and (c)) and our hierarchical approach, γ = 0.5, (Figure 3.5(b) and (d))
of a training episode at the finest and coarsest levels of the class hierarchy. ProtoNet
models, both flat and hierarchical, were trained using a 5-shot 5-way setting, with a
two-dimensional latent space.

As we can observe, the flat ProtoNet has successfully managed at some point to
organise its latent space by only considering the visual similarity between the scene images
which also tend to reflect their semantic relationships, such as for the categories medium
residential and dense residential which are clustered in the same area (see Figure 3.5(a))
resulting in the coarser class residential land (Figure 3.5(c)). However, it was difficult
to distinguish other classes such as intersection and church, in which we can find visual
similarities, although they are semantically distant according to the hierarchy we have
defined. This issue is overcome by our h-ProtoNet (see Figure 3.5(b) and (d)).

As visual features are leveraged by deep networks, it is interesting to investigate the
relevance of our approach with regard to the particularity of the class hierarchy. This leads
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Figure 3.5: Two-dimensional embeddings of both the flat prototypical network (a and c)
and our hierarchical approach, γ = 0.5, (b and d) at the finest (a and b) and coarsest (c
and d) levels of the class hierarchy. The hierarchy below is the sub-hierarchy covering the
finest training episode classes.

to answering the following question: what happens if we impose an arbitrary hierarchy that
can potentially alter the relationship between visual and semantic proximity?

Therefore, based on the class hierarchy we defined, we swapped between: lake and
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freeway, airplane and forest, bridge and dense residential, mobile park home and circular
farmland, basketball court and desert, in order to build a new class hierarchy that violates
the visual-semantic proximity relationship and repeat our experiment.

As illustrated in Figure 3.6, our h-ProtoNet (Figure 3.6(b) and (d)) has succeeded in
reorganising its latent space following the new class hierarchy of classes for a given training
episode. Nevertheless, it fails to generalise to new classes as shown in table 3.6.

Table 3.6: 5-shot classification accuracy of the two-dimensional h-ProtoNet on the test set
of the NWPU-RESISC45 dataset at both the finest and coarsest levels of the new class
hierarchy. All accuracy results are averaged over 1000 test episode and are reported with a
95% confidence interval.

γ 0.5 1 2 ∞
Overall acc 45.01 ± 0.59 46.83 ± 0.59 44.83 ± 0.65 52.10 ± 0.49

L2-acc 52.51 ± 0.70 54.12 ± 0.68 50.25 ± 0.69 59.96 ± 0.65

Thus, the model performs better under the assumption that there are visual similarities
between images of scenes within the same sub-hierarchy. However, if visual-independent
semantic proximity relationships are desired, a more powerful semantic representation,
such as text, may be required.

3.3.5 Conclusion

In this section, we have explicitly leveraged the hierarchical information about the classes
to tackle a challenging issue, namely the few-shot RSISC.

We presented a novel prototypical network which defines hierarchical prototypes that
match the nodes of the class hierarchy. We evaluated our method on the NWPU-RESISC45
RS scene dataset in an FSL context and showed that the hierarchical prototypes provide
latent space regularisation, providing mostly better performance than the flat prototypes
but also than a competitive hierarchical loss introduced in another context. Moreover,
we assessed the impact of the γ hyper-parameter and visually illustrated the resulting
behaviour in a two-dimensional space. We also examined the effect of a pre-defined class
hierarchy, which revealed that the model’s performance improves when images of scenes in
the same sub-hierarchy are assumed to have visual similarities.
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and d) levels of the new class hierarchy. The hierarchy bellow is the sub-hierarchy covering
the training episode classes.
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3.4 Chapter summary

This chapter focused on investigating whether explicit incorporation of the semantic
knowledge of RS scene classes, provided by the class hierarchy, can improve the performance
of RSISC. In this context, we have considered two challenging settings.

The initial investigation aims to confirm the potential benefits of incorporating a class
hierarchy within an RS context. In particular, we introduced the label-driven VAE which is
an extension of classic VAE. Together with this architecture, we used the soft local ranking
loss to drive the construction of the VAE latent space according to the class hierarchy.
Our experiments, revealed that hierarchical information about classes can be an appealing
source of information which can be used as a supplement to improve the performance of
our framework. Nevertheless, it is important to note that this study was only a preliminary
exploration of the advantages offered by the additional information provided by the class
hierarchy.

In the second investigation, within the few-shot setting, we have proposed a hierarchical
prototypical network for image scene classification. More precisely, we have augmented
the traditional prototypical network establishing prototypes at every level of the class
hierarchy, rather than solely at the leaf node level. The class hierarchy information is
then brought in through these hierarchical prototypes which will be involved as part of a
weighted sum of the cross-entropy loss over the different levels of the class hierarchy. The
experimental results showed the advantages of utilising the class hierarchy for addressing
the few-shot RSISC problem. Our hierarchical prototypical network provided regularisation
of the latent space and achieved better performance compared to the classical counterpart.

In the forthcoming chapter, we examine alternative methods for incorporating hierar-
chical information, specifically implicit hierarchical information. To accomplish this, we
utilise hyperbolic space, which has demonstrated its effectiveness in embedding hierarchical
data or data with underlying hierarchies.
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Chapter 4

Classification of remote sensing scene
images in the hyperbolic space

This chapter is built upon the research presented in the two articles “hyperbolic Prototypical
Network for Few Shot Remote Sensing Scene Classification”, which has been submitted
to PRL, and “hyperbolic variational auto-encoder for remote sensing scene embeddings”,
which has been accepted for presentation at IGARSS23.

4.1 Introduction

In this second part of the thesis, we focus on approaches that deal with the implicit
hierarchical information by operating in hyperbolic space. Such a space has demonstrated
its suitability for representing hierarchical data or data with an underlying hierarchy (Nickel
& Kiela, 2017; Peng et al., 2022). The objective of this chapter is therefore to investigate
the potential of hyperbolic representations in the context of RS data, with a specific focus
on scene images. Additionally, we will assess whether the claims made in prior works
utilising hyperbolic space hold true in this context.

Limited studies within the image community have considered hyperbolic space as
an embedding space despite its popularity within the ML community. We mention two
hyperbolic studies that we believe are worth investigating: hyperbolic VAE, which is
among the first frameworks to deal with images in a hyperbolic space, and prototypical
networks, which were introduced in a pioneering study addressing image embedding in
hyperbolic space. It is noteworthy that, to our knowledge, the investigations conducted
by (Li et al., 2022b; Sun et al., 2022) represent the only studies within the RS community
that has examined hyperbolic space. The authors in (Sun et al., 2022) aimed to reduce the
dimensionality of hyperspectral images (HSI) by employing an unsupervised approach to
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select more consistent bands. On the other hand, the authors in (Li et al., 2022b) proposed
a hybrid attention module (SHAM) to perform semantic segmentation.

Hyperbolic VAEs (H-VAEs) have been successfully used to embed data into a hyperbolic
space (Mathieu et al., 2019; Nagano et al., 2019) so that meaningful features can be
extracted. They were validated on the MNIST and Atari 2600 Breakout datasets by
performing a classification step on the resulting embeddings, which showed that the
H-VAE is able to better embed the data. Furthermore, despite the absence of a clear
hierarchy within these datasets, in particular MNIST dataset, a hierarchical structure was
induced. This suggests that even better results can be anticipated for images that possess
a genuine hierarchical arrangement, namely RS scene images.

The first section of this chapter therefore investigates the suitability of H-VAE to embed
remote sensing scene images in hyperbolic space and whether hierarchical information
among scene classes can be recovered. The second part of this chapter is dedicated to
hyperbolic prototypical networks. Here we use the prototypical network defined in the
hyperbolic space, particularly the Poincaré Ball model, to better classify scene images
within the few-shot setting.

4.2 Hyperbolic variational auto-encoder for remote
sensing scene embeddings

Hyperbolic variational auto-encoder (H-VAE) was introduced by (Mathieu et al., 2019). In
this work, the authors proposed a generalisation of the normal distribution to the hyperbolic
space, in particular the Poincaré model. They evaluated the H-VAE on the MNIST dataset
and demonstrated outstanding results. Furthermore, despite the non-obvious hierarchy
present in MNIST, H-VAE was able to recover the underlying hierarchical structure of
the data through its hyperbolic latent space. This highlights the potential of H-VAE
in capturing underlying hierarchical representations even in datasets lacking obvious
hierarchical information. Moreover, H-VAE produced high-quality representations at low-
dimensional embedding space. In line with the work of (Mathieu et al., 2019), (Nagano
et al., 2019) proposed an alternative to the normal distribution in the Lorentz model, which
was used to define a H-VAE in the Lorentz model. They evaluated their H-VAE on both
the MNIST and Atari 2600 Breakout datasets, and demonstrated superior performance
compared to the Euclidean VAE (E-VAE).

Several researchers were inspired by the interesting outcomes of the aforementioned
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studies and sought to explore alternative ways of modelling data. As such, H-VAEs have
been employed in various tasks across different types of data, including text generation (Dai
et al., 2021), unsupervised segmentation of 3D voxel-grid biomedical images (Hsu et al.,
2021) and semi-supervised drug embedding (Yu et al., 2020). In each of these tasks, H-VAE
has consistently demonstrated superiority over its Euclidean counterpart.

Driven by the effectiveness of H-VAE and its promising outcomes, this section aims to
employ an H-VAE to embed remote sensing scene images in hyperbolic space. Our objective
is to investigate whether the performance of H-VAE is superior to E-VAE when dealing
with hierarchically-structured data. To achieve this, we assess the quality of both H-VAE
and E-VAE embeddings and, consequently, their latent spaces by solving a classification
task.

4.2.1 Overall framework

Inspired from previous studies (Mathieu et al., 2019; Nagano et al., 2019), we adopt a
hybrid architecture of the hyperbolic VAE in which the encoder and decoder networks are
Euclidean networks and only the latent space of the VAE is hyperbolic. The wrapped normal
distribution (Nagano et al., 2019) is a generalisation of this distribution to hyperbolic
space, namely the Lorentz model, which we discuss in more detail in subsection 4.2.3.
Furthermore, we add the Euclidean feature clipping technique (Guo et al., 2022b) to
overcome the numerical problems arising from hyperbolic projection operations that result
in out-of-space embeddings due to unrepresentable values in floating point arithmetic.
Feature clipping limits the effective radius of the Poincaré Ball model (Nickel & Kiela,
2017), which pushes the hyperbolic embeddings further from the boundary. However, in the
Lorentz model, it constrains the tangent embeddings to remain proximate to the Lorentz
origin in order to ensure numerical stability of the Lorentz projection. We provide further
details on feature clipping in the section below. The overall framework of the approach is
illustrated in Figure 4.1.

4.2.2 Feature clipping

Extending deep neural networks to hyperbolic space is a challenging task considering
the generalisation complexity of the basic required operations. Therefore, the majority
of studies on hyperbolic space use hybrid “Euclidean-hyperbolic” architectures. However,
passing between the Euclidean and hyperbolic layers of these hybrid architectures often
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Figure 4.1: Overview of the hyperbolic VAE for remote sensing image embeddings.

leads to numerical problems resulting in the vanishing of the gradient. (Guo et al., 2022b)
suggested that the Euclidean features should be clipped before moving to the hyperbolic
layers which allows to push the hyperbolic embeddings further away from the Poincaré
boundary. Figure 4.2 illustrates the relationship between the clipping value and the effective
radius of the Poincaré Ball. The clipping technique allows hybrid architectures to cope with
numerical problems, which seems to avoid the vanishing gradient problem. Furthermore, it
enhances the performance of hyperbolic networks and makes their behaviour steadier; it is
defined as:

xE
r = min

{
1,

r

||xE||

}
.xE (4.1)

where xE
r is the clipped embedding of xE which lies in the Euclidean space and r is the

clipping value.
We consider the Lorentz model as the hyperbolic space of the H-VAE, as it allows a

better generalisation of the normal distribution in the hyperbolic space (Nagano et al.,
2019). Thus, the clipping here constrains the Euclidean embeddings which are in the origin
tangent space to remain close to the origin in order to ensure the numerical stability of
the Lorentz projection.

4.2.3 Hyperbolic Variational Auto-Encoder

Hyperbolic Variational Auto-Encoder (H-VAE) is a variant of VAE (we choose the E-VAE
notation for Euclidean VAE) in which the latent variables are defined on a hyperbolic
space. A wrapped normal distribution was proposed by (Nagano et al., 2019) for the
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Figure 4.2: The relation between the clipping value r and the effective radius of the
Poincaré Ball (c = 1).

Lorentz model, which we denote G (µ, Σ), where µ ∈ Hd
1 and Σ are defined as positive. In

the following, the curvature of the Lorentz model is set to −1, we thus drop the curvature
c from the hyperbolic notations for simplicity. Sampling from the distribution G (µ, Σ) can
be summarised in 3 steps:

(1) sample a vector from the Gaussian distribution ṽ ∼ N (0, Σ) and interpret it as an
element of the tangent space at the origin µ0, v = [0, ṽ] ∈ Tµ0Hd;

(2) parallel transport v ∈ Tµ0Hd to the tangent space of the desired location µ, u =
PTµ0→µ(v);

(3) use expµ to map the transported vector u from the tangent space TµHd to the
manifold Hd, z = expµ(u).

This sampling strategy, which is summarised in Algorithm 1, is used in the H-VAE as
a reparameterisation trick. Therefore our hyperbolic latent variables z(i,l) ∼ qϕ(z|xi) are
defined as:

z(i,l) = gϕ

(
v(i,l), µi

ϕ

)
= expµi

ϕ

(
PTµ0→µi

ϕ

(
v(i,l)

))
(4.2)

where v(i,l) =
[
0, ṽ(i,l)

]
and ṽ(i,l) ∼ N (0, Σi

ϕ). Σi
ϕ and µi

ϕ are outputs of the encoder. µi
ϕ is

assured to be in Hd by applying expµ0 to the final layer of the encoder.
The Kullback-Leibler divergence (Eq. 3.3) must also be adapted to the hyperbolic
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Algorithm 1 reparameterisation trick in the Lorentz model
Inputs: parameters µ ∈ Hd, Σ
Output: z ∈ Hd

Require: µ0 =
[

1√
c
, 0, . . . , 0

]T
∈ Hd

Sample ṽ ∼ N (0, Σ) ∈ Rd

v = [0, ṽ] ∈ Tµ0Hd

Move v ∈ Tµ0Hd to u ∈ TµHd: u = PTµ0→µ(v) ▷ Eq. 2.12
Map u ∈ TµHd to z ∈ Hd: z = expµ(u) ▷ Eq. 2.10

space. We therefore need to extend the logarithmic probability density function p(z) to
Lorentz model as follows:

log p(z) = log p(v) − (d − 1) log
(

sinh (∥v∥L)
∥v∥L

)
(4.3)

where z ∈ Hd, v is defined in the algorithmic description Algorithm 2 which summarises
the calculation of the logarithmic probability density function (pdf) in the Lorentz model.

Algorithm 2 Log-pdf calculation in the Lorentz model
Inputs: sample z ∈ Hd, parameters µ ∈ Hd, Σ
Output: log p(z)
Require: µ0 = [1, 0, . . . , 0]T ∈ Hd

Map z ∈ Hd to u ∈ TµHd: u = logµ(z) ∈ TµHd ▷ Eq. 2.11
Move u ∈ TµHd to v ∈ Tµ0Hd: v = PTµ→µ0(u) ∈ Tµ0Hd ▷ Eq. 2.12
Calculate log p(z) according to Eq. 4.3

4.2.4 Experimental study

This study focuses on the relevance of hyperbolic space in the context of remote sensing.
The objective is therefore to investigate whether hyperbolic space fulfils its promise in the
context of remote sensing and outperforms Euclidean space. In this perspective, for both
the E-VAE and the H-VAE, we adopt a very simple VAE architecture with regard to those
used recently in the remote sensing community (Cheng et al., 2017; Cheng et al., 2020;
Dutta & Das, 2023). We evaluate the quality of the resulting embeddings and the ability
to discriminate between classes using the simple 1−NN classifier.
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Experimental setup

Dataset The two models are learned on a subset of the NWPU-RESISC45 (Cheng et al.,
2017) remote sensing scene dataset. All 45 classes are considered, for each, we randomly
select 100 images for the training set, 50 images for the validation set and 80 images for
the test set.

Implementation Details For both the E-VAE and the H-VAE, we choose the same
following architecture. Both the encoder and the decoder are composed of 5 convolutional
layers and a linear layer, each convolutional layer is followed by a batch normalisation
layer and a Leaky ReLU activation, except for the decoder last convolutional layer which is
followed by a tanh activation. The input size of the encoder network is set to 64 × 64. The
latent space dimension d of the embedding z is set to 8, 16, 32, 64 and 128 respectively.

The Adam optimiser (Kingma & Ba, 2015) acts as our optimiser with a constant
learning rate of 1e−3. The models are trained with mini-batches of size 64 for 1500 epochs
with an early stopping of 50 epochs. The ELBO term is approximated by Monte Carlo
(MC) estimation with L = 1. β scaling hyper-parameter weight of the KL divergence was
chosen experimentally and set to 5e−5. The clipping hyper-parameter r is cross-validated.

Results and discussion

To compare our hyperbolic VAE (H-VAE) not only to its Euclidean counterpart, but also
the reference model (H-VAE without clipping), we evaluate the quality of the resulting
embeddings of different VAEs and the ability to discriminate between classes using the
simple 1−NN classifier. Experiments are conducted on a subset of the NWPU-RESISC45
dataset and reported in Table 4.1, results are averaged over 3 runs. The reported scores
correspond to models trained with hyper-parameters providing most times the best
performance across different dimensions (clipping value r = 1).

Prior studies (Mathieu et al., 2019; Nagano et al., 2019) have demonstrated the
superiority of hyperbolic VAE w.r.t. its Euclidean counterpart in various context (images
and graphs). However, this observation does not hold in our context. We further investigate
this behaviour and we show that it is due to the numerical problems arising from hyperbolic
projection operations that result in out-of-space embeddings. Prior studies (Mathieu et al.,
2019; Nagano et al., 2019) have demonstrated the superiority of hyperbolic VAE w.r.t. its
Euclidean counterpart in various context (images and graphs). However, this observation
does not hold in our context. To avoid this problem, we suggest utilising feature clipping as
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Table 4.1: 1-NN classification results computed on the test set of the NWPU-RESISC45
dataset at different levels of the class hierarchy: overall acc represents the classification
accuracy at the leaves (level 4) and thus the NWPU-RESISC45 classes; L3-acc and L2-acc
give the accuracy at level 3 and level 2, respectively (the higher the better); Results are
averaged over 3 runs.

Space Clip r Metric Latent Space Dimension d
8 16 32 64 128

E-VAE /
Overall acc 12.00 ± 0.15 13.96 ± 0.56 13.21 ± 0.21 12.08 ± 0.10 12.39 ± 0.32

L3-acc 18.38 ± 0.42 20.64 ± 0.41 19.33 ± 0.13 17.93 ± 0.57 17.88 ± 0.24
L2-acc 28.34 ± 0.57 31.49 ± 0.38 30.97 ± 0.16 29.96 ± 0.47 29.95 ± 0.49

H-VAE

None
Overall acc 11.38 ± 0.58 11.53 ± 0.30 10.77 ± 1.02 10.21 ± 0.96 11.33 ± 0.53

L3-acc 17.83 ± 0.58 17.45 ± 0.45 15.90 ± 0.66 14.82 ± 0.90 16.43 ± 1.02
L2-acc 28.58 ± 0.68 28.46 ± 0.33 27.85 ± 0.83 29.96 ± 1.71 29, 77 ± 0, 90

1
Overall acc 12.36 ± 0.53 14.18 ± 0.42 14.17 ± 0.42 14.18 ± 0.44 12.87 ± 0.54

L3-acc 18.80 ± 0.61 20.89 ± 0.59 20.50 ± 0.22 20.00 ± 0.71 18.39 ± 0.82
L2-acc 28.46 ± 0.40 31.54 ± 0.67 31.91 ± 0.43 31.66 ± 0.78 30.11 ± 0.73

proposed in (Guo et al., 2022b). Consequently, we observe an improvement of 0.22 − 2.10%
and 0.98 − 3.97% compared to the E-VAE and the baseline H-VAE, respectively, across
the latent space dimension.

We note that the low accuracy values are due to the choice of the VAE architecture.
Remote sensing data are complex and require very deep networks with a large amount of
data to reach high performances. This was not used in this study since the focus was on
comparing hyperbolic and Euclidean spaces rather than achieving the best results.

Impact of the clipping value Figure 4.3 shows the 1−NN classification accuracy
values on the test set in function of the clipping value r.

We observe that the H-VAE generally performs better with small values of the clipping
hyper-parameter (r < 1.2). Larger clipping values often result in Euclidean tangent
features far from the space origin. The projection operation (Eq. (2.10)) is employed to
map these Euclidean tangent features to the Lorentz model. Nonetheless, in this scenario,
performing such an operation necessitates a remarkably high floating point precision
(i.e., a considerable number of bits) to adequately represent the resulting embeddings in
the Lorentz model. This, however, is not feasible in PyTorch, as double precision is the
highest floating-point number available, occupying 64 bits. The possibility of out-of-space
embeddings therefore increases, leading to numerical instability of the network, which is
reflected by the significant decrease of classification scores across dimensions.
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Figure 4.3: 1-NN classification accuracy of different VAE models on a subset of the NWPU-
RESISC45 remote sensing scene dataset w.r.t. the clipping value r.

4.2.5 Conclusion

In this section, we investigated our hypothesis that hyperbolic space is better suited for
handling RS scene images, which present an underlying hierarchical structure, compared
to Euclidean space. To accomplish this, we utilised the VAE framework and compared the
performance of the H-VAE against its Euclidean counterpart, the E-VAE. We confirmed
the superiority of hyperbolic embeddings, in particular Lorentz embeddings, over Euclidean
embeddings via the simple 1-NN classifier. We have also shown the importance of hyper-
parameters, in particular the clipping which ensures a better numerical stability of the
network during the learning, allowing hyperbolic embeddings to outperform their Euclidean
counterparts.

Since our intuition has been confirmed in the HVAE context, we are now examining a
more challenging context, namely few-shot learning.

4.3 Hyperbolic prototypical network for few-shot re-
mote sensing scene classification

After the successful application of hyperbolic space to embed hierarchical data, the
computer vision community began to take notice of this space, dedicating efforts to
perform advanced studies on complex image datasets.
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The work on hyperbolic image embedding (Khrulkov et al., 2020) was among the
pioneering research studies which inspired further research in computer vision to consider
hyperbolic space as a possible substitute for Euclidean space. (Liu et al., 2020a) presented
a framework for embedding images and their corresponding semantic classes, provided by
the class hierarchy and class descriptions, into a shared hyperbolic space, with the aim of
addressing the zero-shot problem. Similarly, (Zhang et al., 2022) proposed a framework for
few-shot classification, which comprises a fully hyperbolic network which takes precomputed
features, along with a module that learns class prototypes from a hierarchical organisation
of classes. (Ermolov et al., 2022) introduced transformers to the hyperbolic space, which
were learned through pairwise cross-entropy loss, to enable image retrieval.

The aforementioned examples represent only a fraction of the research conducted on
the utilisation of hyperbolic space in addressing computer vision problems. Although these
works mainly focus on image classification and retrieval, it is worth noting that there
are other studies that explore the application of hyperbolic space in object detection (Ge
et al., 2022; Lang et al., 2022) and semantic segmentation (Chen et al., 2022a; Li et al.,
2022b) tasks. For instance, (Ge et al., 2022) suggested a contrastive learning framework
that combines Euclidean and hyperbolic spaces. Specifically, object embeddings were
learned in the Euclidean space, while scene embeddings were encouraged to be located
near the representations of their component objects in the hyperbolic space. (Chen et al.,
2022a) designed a Hyperbolic Uncertainty Loss (HyperUL), which is an extension of the
cross-entropy loss, to address the issue of uncertainty in semantic segmentation. The
authors employed the hyperbolic distance metric to estimate the uncertainty of individual
pixels in a more efficient manner. They then leveraged these calculated uncertainties as
weights to adjust the training process for each pixel.

In this previous part of the chapter, we closely examined the dominant trend in image
analysis within hyperbolic space, which aligns with our theme. In the upcoming sections,
we will investigate the scene image representations obtained via a hyperbolic prototypical
network and validate their effectiveness by performing few-shot classification. Unlike the
previous section, we consider here the Poincaré Ball model as a hyperbolic space, which is
found to be more efficient in representing image data than the Lorentz model (Guo et al.,
2022b).
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4.3.1 Hyperbolic prototypical network

To extend prototypical networks to the Poincaré Ball model and to perform different
operations in this hyperbolic space, we first need to map the Euclidean features to the
hyperbolic space (Eq. 2.3). The calculation of the class prototypes is then simply carried
out in the Klein model via the Einstein midpoint, which is summarised in the Algorithm 3.

Algorithm 3 Poincaré prototypes
Inputs: (xi, yi) ∈ Sk where xi ∈ Bd

c

Output: pk ∈ Bd
c

Project Poincaré embeddings xi into Klein model : x̂i = ΠBd
c →Kd

c
(xi) ∈ Kd

c ▷ Eq. 2.17
Compute class prototype via Einstein midpoint: p̂k = HypAve(x̂i) ∈ Kd

c ▷ Eq. 2.16
Project class prototype p̂k into Poincaré Ball model: pk = ΠKd

c →Bd
c

(
p̂k
)

∈ Bd
c ▷ Eq. 2.18

However, hyperbolic prototypical networks also adopt a hybrid network architecture.
Only final operations are performed in hyperbolic space, namely the computation of
prototypes and distances which are used to derive class membership probabilities for
queries. The previous step, namely the feature extraction, is performed in the Euclidean
space. We therefore require clipping of Euclidean features before moving to the hyperbolic
space in order to ensure numerical stability and to improve the performance of hyperbolic
networks. Figure 4.4 illustrates the overall framework of the hyperbolic prototypical
network which we use to tackle the few-shot remote sensing scene classification problem.

4.3.2 Experimental study

Experimental setup

Dataset As in Section 3.3.4, the NWPU-RESISC45 dataset is splited into three disjoint
subsets: meta-train, meta-validation and meta-test containing respectively 25, 12 and 8
categories. Furthermore, the meta-training set is also split into three subsets: training,
validation and testing sets. Both meta-validation and validation sets are utilised in selecting
the optimal model and hyper-parameters. We follow (Zhang et al., 2021a) and scale all
images to 80 × 80 pixels to fit the feature extractor.

Implementation Details Following recent FSRSSC studies (Li et al., 2021c; Zhang
et al., 2021a; Zhang et al., 2021b; Zhang et al., 2021c), we use ResNet−12 as a backbone
for feature extraction. We also adopt the pre-training strategy as suggested in (Zhang et al.,
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Figure 4.4: Overall framework of the hyperbolic prototypical network for few-shot image
classification. In this example (5-shot), K = 5, N = 5, N ′ ≥ 1 (usually set to 15) and the
latent space dimension d = 2.

2021a) to better initialise the meta-learner feature extractor and enhance its performances.
For both the Euclidean and hyperbolic approaches, we train the meta-learner for 400
epochs, with the best model parameters been selected based on the highest accuracy over
the validation set.

During training, we randomly sample 500 episodes in each epoch to learn the model
which parameters are updated every 2 episodes, i.e. the batch size is set to 2 and the average
loss over the 2 episodes is used to learn the network parameters. The SGD optimiser is
used to update the network parameters with momentum set to 0.9 and weight decay set to
0.0005. For the hyperbolic parameters, we use the Riemannian SGD optimiser (Bonnabel,
2013). The learning rate is set to 10−4. We evaluate the learned model on a validation set
after each training epoch by randomly sampling 500 episodes, the network weights with
the highest accuracy over the validation set are retained as the best parameters.

For the meta-testing stage, we evaluate the best model on 1000 randomly sampled
episodes from the test set Dnovel.

For the hyperbolic hyper-parameters, we follow (Khrulkov et al., 2020) and set the
hyperbolic curvature c to 0.01, in both pre-training and meta-training while the clip value
and the temperature τ are cross-validated. A sensitivity study of these hyper-parameters
is further discussed in Section 4.3.2.
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Results and discussion

In both 5-way N -shot configurations (with N = 1 or 5), we compare our hyperbolic
prototypical network (H-ProtoNet) not only to the reference model (Khrulkov et al.,
2020) but also to the Euclidean prototypical network (Snell et al., 2017) counterpart (E-
ProtoNet). We also compare with the cosine metric as a similarity function (C-ProtoNet)
as advocated in a similar context (Zhang et al., 2021a). We re-implement these methods
and cross-validate their hyper-parameters for a fair comparison.

Table 4.2: 1−shot classification results computed on the NWPU-RESISC45 test set. All
accuracy results are averaged over 1000 test episodes and are reported with a 95% confidence
interval. ∗ refers to the baseline model (Khrulkov et al., 2020).

Approach Metric Latent Space Dimension d
32 128 512

E-ProtoNet Acc 62.40 ± 0.62 64.15 ± 0.65 63.89 ± 0.59
PH 67.75 ± 0.59 69.38 ± 0.60 69.27 ± 0.55

C-ProtoNet Acc 61.58 ± 0.65 63.85 ± 0.63 63.72 ± 0.62
PH 67.15 ± 0.60 69.03 ± 0.59 69.05 ± 0.57

H-ProtoNet∗ Acc 56.89 ± 0.64 61.69 ± 0.63 63.48 ± 0.62
PH 62.87 ± 0.62 67.37 ± 0.60 69.07 ± 0.57

H-ProtoNet (ours) Acc 63.30 ± 0.63 66.05 ± 0.64 65.09 ± 0.63
PH 68.69 ± 0.59 71.26 ± 0.58 70.39 ± 0.58

Table 4.3: 5−shot classification results computed on the NWPU-RESISC45 test set. All
accuracy results are averaged over 1000 test episodes and are reported with a 95% confidence
interval. ∗ refers to the baseline model (Khrulkov et al., 2020).

Approach Metric Latent Space Dimension d
32 128 512

E-ProtoNet Acc 78.96 ± 0.36 80.24 ± 0.37 77.79 ± 0.41
PH 82.19 ± 0.34 83.52 ± 0.33 81.26 ± 0.37

C-ProtoNet Acc 76.76 ± 0.41 79.76 ± 0.37 78.75 ± 0.40
PH 80.43 ± 0.36 83.03 ± 0.34 82.09 ± 0.36

H-ProtoNet∗ Acc 74.31 ± 0.41 78.45 ± 0.38 78.24 ± 0.38
PH 77.96 ± 0.39 81.95 ± 0.36 81.93 ± 0.33

H-ProtoNet
(ours)

Acc 79.37 ± 0.39 82.75 ± 0.33 80.74 ± 0.37
PH 82.79 ± 0.34 85.81 ± 0.29 84.04 ± 0.32

Table 4.2 and Table 4.3 reports the classification accuracy on various latent space
dimensions for 1-shot and 5-shot respectively. We stopped at dimension 32 as going further
deteriorated the performance considerably. We report accuracy values and the hierarchical
precision which is a global hierarchical metric to assess the model’s ability to better reflect
the semantic relationships between the novel scene categories.

We observe that the baseline H-ProtoNet (Khrulkov et al., 2020), which was reported
to perform well in the literature, actually performs worse than both Euclidean ProtoNets
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(E-ProtoNet and C-ProtoNet). However, our H-ProtoNet, which uses the clipping technique,
outperforms not only the baseline H-ProtoNet but also both Euclidean ProtoNets.

Interestingly, our H-ProtoNet also improves the hierarchical precision over different
dimensions of the latent space, especially in the 5-shot scenario. This supports to some
extent our hypothesis that hyperbolic geometry, if carefully tackled, better handles data
with an underlying hierarchical structure and allows for more meaningful embeddings.

Impact of hyper-parameters

Table 4.3 shows the scores of models trained with hyper-parameters providing most times
the best performance across different dimensions. In this section, we investigate the impact
of the hyper-parameter values on the performance of the three approaches. For a better
understanding of the investigation, we only report the study done for 5-shot setting on
dimension 128 which yields the best scores.

The inverse-temperature 1/τ In Figure 4.5, we compare the test accuracy of the
three models: E-ProtoNet, C-ProtoNet and our H-ProtoNet with respect to different 1/τ

values.
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Figure 4.5: Test accuracy w.r.t. the inverse-temperature 1/τ .

We observe that small 1/τ values are beneficial for E-ProtoNet unlike C-ProtoNet and
our H-ProtoNet which favour larger values. Moreover, we notice that the latter are robust
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when 1/τ ≥ 50 and 1/τ ≥ 100, respectively. Accordingly, we select best 1/τ values, i.e. 1,
50 and 100 for the E-ProtoNet, C-ProtoNet and our H-ProtoNet, respectively

Feature clipping Figure 4.6 shows the classification accuracy on the test set in function
of the clipping value r while fixing the 1/τ to the value that yielded best performance.
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Figure 4.6: Test accuracy w.r.t. the clipping value r.

We observe that the model performs better with larger values of the clipping hyper-
parameter r. Small clipping values constrain too much the latent space forcing hyperbolic
embeddings to be positioned very close to the centre. This results in small hyperbolic
distances between the query representations and the class prototypes, which reduces the
benefits of working in hyperbolic space and makes model optimisation more difficult.

The higher the clipping values, the larger the effective hyperbolic latent space, tending
towards a hyperbolic space without clipping.

Accordingly, we adopt a clipping of 10 which yields the best performance and corre-
sponds approximately to 80% of the hyperbolic radius, resulting in a satisfactorily large
hyperbolic space, while preventing the hyperbolic embeddings being close to the space
boundary.

4.3.3 Conclusion

In this section, we investigate the ability of hyperbolic space, in particular the Poincaré
Ball model, to handle a difficult task in the context of remote sensing, which is the few
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shot scene classification, since the scene categories usually have an intrinsic hierarchical
structure. We show that hyperbolic prototypes better encode the scene images and the
intrinsic hierarchical relationships among them, providing a better latent space arrangement
and thus higher performance than Euclidean prototypes. However, in practice, we have
observed that great care is required when dealing with hyper-parameters. Specifically, we
have identified two hyper-parameters that are especially important in our context: the
clipping value and the temperature.

4.4 Chapter Summary

In contrast to the preceding chapter, where we introduced the class hierarchy explicitly,
the current chapter was centred on the second type of hierarchical information which is
implicitly inherent among the image data. In line with the current trend in the machine
learning community, we utilised the hyperbolic space as an embedding space as it has been
demonstrated to be highly suitable for embedding data with an inherent hierarchy. Much
like the preceding chapter, we investigated two settings in this study: an unsupervised
setting and a few-shot setting.

In the unsupervised setting, similar to chapter 3, we adopted the VAE framework
to embed scene images. To be more specific, we utilised the extension of the normal
distribution to hyperbolic space in order to construct our hyperbolic VAE. This entails
retaining the entire VAE network in Euclidean space while generalising solely its latent
space, which conforms to a normal distribution.

Similar to the approach in chapter 3, in the few-shot setting, we employed the proto-
typical network for scene image embeddings. The generalisation of the latter is achieved
by adding a layer that enables the transition from the Euclidean features generated by the
feature extractor to the hyperbolic space.

Since both are hybrid Euclidean-hyperbolic architectures, we utilised Euclidean feature
clipping to ensure the numerical stability of both models.

In both unsupervised and few-shot settings, we have shown the superiority of the
hyperbolic embeddings of RS scene images over their Euclidean counterparts. Nevertheless,
operating within these spaces is not necessarily a straightforward process and does not
necessarily guarantee superior results from the initial application. It is crucial to be mindful
of hyper-parameters, such as the clipping value, which has a significant influence on the
effectiveness of hyperbolic algorithms. Ensuring numerical stability in hyperbolic space
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remains a major challenge. However, feature clipping is a simple yet effective solution to
address this issue.

In summary, this chapter serves as an opening towards the application of hyperbolic
space to remote sensing images. Although challenging, the properties of remote sensing
images align well with the geometric properties of hyperbolic space, presenting a promising
avenue for future research in this field.
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Chapter 5

Conclusion and further works

In this concluding chapter, we aim to provide a summary of our main contributions
in section 5.1. In section 5.2, we outline several future research directions, which have
the potential to enhance the methods proposed in this thesis as well as to open up
new perspectives for the remote sensing community related to the hierarchical image
classification.

5.1 Conclusion

This thesis focused on the hierarchical information present among remote sensing scene
images, which has received limited attention so far. Two primary methodologies were
proposed to handle this information, which resulted in two main contributions.

As a first contribution of this thesis, we proposed a technique to leverage the explicit
hierarchical information about the RS scene classes, which is provided by a multi-level
class hierarchy, when learning the latent scene representation. Initially, we examined the
effectiveness of the hierarchy in improving the scene representation in a generative context.
Once we confirmed this hypothesis, we proposed a new hierarchical loss-based approach
that incorporates the class hierarchy via hierarchical prototypes, which were assessed in
the context of few-shot learning. Our experiments showed that the hierarchical approach
outperformed its respective flat counterpart, highlighting the potential of utilising class
hierarchy information to enhance remote sensing image scene classification performance.

The second contribution centred around the implicit form of the hierarchical information.
As such, we proposed using the hyperbolic space as an embedding space, since it has been
proven to handle data with an underlying hierarchy more effectively than the Euclidean
space. During the initial phase of this thesis, which aligned with the early stages of
learning in hyperbolic space, we investigated this research direction. We suggested to
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embed RS scene images via a hyperbolic variational auto-encoder (H-VAE) and assess
the quality of its embeddings, as well as its latent spaces, by solving a classification
task. However, we encountered unexpected performance results (Hamzaoui et al., 2021)
that were not consistent with what has been reported in the literature. We therefore
focused on the introduction of the explicit hierarchy. Over time, new techniques and a
deeper comprehension of hyperbolic space came to light (Guo et al., 2022b). Subsequently,
we revisited the hyperbolic spaces. We explored two different settings, an unsupervised
setting which is a revised H-VAE and a few-shot one. Our experimental results in both
scenarios confirmed that, as we initially anticipated, hyperbolic space is well-suited for RS
data, particularly for scene image classification. Our findings highlighted the significance
of clipping technique (Guo et al., 2022b) as it is essential to ensure the superiority of
hyperbolic space in our context, in contrast to research in other fields.

5.2 Perspectives

In light of the findings presented in this thesis, there are a number of perspectives that
can guide future research in this field. First, we summarise various direct improvements
of the proposed methods. Subsequently, we suggest some potential future research topics
concerning the application of hyperbolic space in remote sensing, drawing inspiration from
the work presented in this study.

5.2.1 Perspectives of our contributions

Extensions to hyperbolic space

Having gained a better understanding of how to achieve successful outcomes in the
hyperbolic space, we can now reexamine the mid-thesis contributions (Chapter 3) in light
of this novel space which seems to be a straightforward extension.

Label-driven VAE extension for hyperbolic space We pursued this direction in
(Hamzaoui et al., 2021), where we attempted to adapt the label-driven variational auto-
encoder to the hyperbolic space. Unfortunately, this approach did not yield the desired
results, and the Euclidean variant outperformed it. Nonetheless, given the findings of
Chapter 4 regarding practical techniques to be employed in order to benefit from the
efficiency of hyperbolic space with respect to remote sensing images, it is worth revisiting
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this direction. Since our previous attempt yielded poor performance, it is worth considering
a more appropriate network architecture, better suited to our images, to further highlight
the relevance of hyperbolic space in the remote sensing community.

Hierarchical ProtoNet extension for hyperbolic space Following the same reason-
ing, an extension of hierarchical prototypes to hyperbolic space seems to be an intriguing
pursuit. However, an exploratory search for hyper-parameters that accentuate the hierar-
chical loss in the hyperbolic space and allow reaching the optimal performance should be
carried out.

Hierarchical C-ProtoNet

The experiments conducted in Section 4.3 revealed that a prototypical network utilising
cosine similarity as a distance measure produced results that were at least as good, if not
better, than those obtained by a prototypical network employing Euclidean distance as a
similarity function under standard conditions (where the latent dimension is 512). Hence,
it is reasonable to contemplate the usage of a spherical embedding space for computing
hierarchical prototypes and subsequently employing the cosine metric as a similarity
function.

5.2.2 A step further

Leveraging class hierarchy via loss function in hyperbolic space

Our immediate plan is to extend our hierarchical approaches from Chapter 3 straight to
hyperbolic space, followed by an exploration of the set of hyper-parameters to identify the
ones that favour the hyperbolic space. However, it is important to note that the losses
we intend to adjust were originally designed for Euclidean space, and their generalisation
to hyperbolic space is achieved solely through modifications to the similarity function.
Hence, it remains to be seen whether these adjusted losses will be as effective in hyperbolic
space as they were in Euclidean space. As such, there is a compelling need to formulate a
specialised loss function that takes into consideration not only the hierarchical information
between classes but also the geometric properties specific to hyperbolic space. This would
be highly advantageous in optimising performance for tasks involving hyperbolic space.
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Chapter 5 – Conclusion and further works

Hyperbolic space for hierarchical information within images

This thesis has investigated the relevance of hierarchical information between scene images
in a classification context. Nonetheless, there is another type of hierarchical information
that exists within images which describes the relationships between different pixels or
objects in the image. The classes of these objects are often defined at multiple spatial-scales,
and they have certain hierarchical relations between them. For example, at a finer level
of detail, a building and its surrounding vegetation may be grouped together to form a
residential area at an intermediary level based on their arrangement and the presence of
certain types of vegetation or land cover. At a coarser level, larger urban areas can be
defined based on overall characteristics such as population density, building density, and
land use.

Although this thesis has concentrated on hierarchical information among images,
it is important to consider the hierarchical relationships among objects within images.
This can offer significant insights for numerous applications, including urban planning
and environmental monitoring. As a result, comprehending and utilising hierarchical
information at various scales can enhance the precision and detail of image analysis. This
methodology can also be applied to segment images into significant regions and to identify
objects of interest at different levels of detail.

Although hierarchical knowledge can be explicitly defined through multi-scale semantic
labels, typically only one level of detail is provided. In either situation, hyperbolic space
appears to be a compelling alternative for embedding images to better reflect the hierarchy
or for discovering the underlying hierarchy.
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Titre : De l’espace euclidien à l’espace hyperbolique : Repenser la classification hiérarchique
des images de scènes de télédétection

Mot clés : classification de scènes, hiérarchie de classes, espace hyperbolique

Résumé : Les images de télédétection sont
complexes et présentent généralement une
structure hiérarchique qui est souvent négli-
gée, en particulier par les méthodes de clas-
sification de scènes. Ces dernières ont ten-
dance à traiter toutes les non cibles classes de
manière égale, ce qui peut conduire à des er-
reurs importantes lorsqu’il y a confusion entre
des classes non liées sémantiquement. En in-
troduisant l’information hiérarchique dans leur
apprentissage, ces approches peuvent être
rendues plus cohérentes. Cette information
est souvent disponible de manière explicite via
la hiérarchie de classes ou implicitement dans
les données. Cette thèse se concentre donc
sur la classification de scènes à l’aide de l’in-
formation de la hiérarchie.

D’abord, nous introduisons la hiérarchie
de classes dans l’apprentissage d’un classi-

fieur via une fonction de perte hiérarchique.
Nous évaluons son impact dans un cadre
avec peu d’exemples (few-shot) avec des pro-
totypes hiérarchiques définis à chaque niveau
de la hiérarchie de classes. Les résultats des
expérimentations montrent que la hiérarchie
de classes est une source d’information pro-
metteuse pour améliorer les performances du
classifieur. Ensuite, nous utilisons l’espace hy-
perbolique comme espace d’analyse car il
est mieux adapté au traitement des données
présentant une hiérarchie sous-jacente. Nous
évaluons cette approche dans deux cadres :
non supervisé et few-shot. Les résultats des
expérimentations mettent en évidence le po-
tentiel de l’espace hyperbolique pour la classi-
fication de scènes, ce qui en fait une approche
prometteuse pour la communauté de la télédé-
tection.

Title: From Euclidean to Hyperbolic Space: Rethinking Hierarchical Classification of Remote
Sensing Scene Images

Keywords: scene classification, class hierarchy, hyperbolic space

Abstract: Remote sensing images are com-
plex and typically exhibit a hierarchical struc-
ture which is often overlooked, particularly in
scene classification methods. These methods
tend to treat all non-target classes with equal
importance, which can lead to severe mis-
takes when confusion between semantically
unrelated classes. By introducing hierarchical
information into the learning process, these
approaches can provide more coherent pre-
dictions. This hierarchical information is often

available explicitly via the class hierarchy or
implicitly within the data. This thesis therefore
focuses on scene classification with hierarchi-
cal information.

Firstly, we introduce the class hierarchy
when training a classifier via a hierarchical
loss function. We evaluate its impact in a few-
shot setting with hierarchical prototypes de-
fined at each level of the class hierarchy. Ex-
perimental results reveal that the class hierar-
chy is a promising source of information to im-



prove the scene classifier performance. Sub-
sequently, we consider the hyperbolic space
as an embedding space as it is better suited
to handle data with an underlying hierarchy.
We evaluate the approach within two settings:

unsupervised and few-shot. The experimen-
tal results highlight the potential of the hyper-
bolic space for scene classification, making it
a promising approach for the remote sensing
community.

117

From Euclidean to Hyperbolic Space: Rethinking Hierarchical Classification of Remote Sensing Scene Images – Manal Hamzaoui 2023


	Résumé étendu
	List of Figures
	List of figures
	List of Tables
	List of tables
	Introduction
	Context: Remote sensing scene classification
	Remote sensing scene classification
	Main challenges

	Motivation: Hierarchical information for remote sensing scene analysis
	Objectives of the Thesis
	Outline of the thesis
	List of publications

	State-of-the-art: Learning with a class hierarchy in machine learning
	Learning strategies with a predefined class hierarchy
	Hierarchical networks
	Label-embedding
	Hierarchical losses

	Hyperbolic geometry for data embedding
	Hyperbolic geometry
	Hyperbolic geometry in machine learning
	Optimisation in the hyperbolic space

	Leveraging class hierarchy for remote sensing scene analysis
	Hierarchical evaluation metrics
	Conclusion

	Leveraging class hierarchy via loss functions 
	Introduction
	Label-driven variational auto-encoder learning
	Variational auto-encoder
	Label-driven VAE
	Experimental study
	Conclusion

	Hierarchical prototypical network for few-shot classification
	Problem formulation
	Prototypical networks
	Leveraging the class hierarchy in prototypical network learning
	Experimental study
	Conclusion

	Chapter summary

	Classification of remote sensing scene images in the hyperbolic space
	Introduction
	Hyperbolic variational auto-encoder for remote sensing scene embeddings 
	Overall framework
	Feature clipping
	Hyperbolic Variational Auto-Encoder
	Experimental study
	Conclusion

	Hyperbolic prototypical network for few-shot remote sensing scene classification
	Hyperbolic prototypical network
	Experimental study
	Conclusion

	Chapter Summary

	Conclusion and further works
	Conclusion
	Perspectives
	Perspectives of our contributions
	A step further


	Bibliography



