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Foreword

The journey behind this thesis starts on a cold and rainy day of December 2017
in London. Then a student at Imperial College London predestined to a career
in engineering, I met with Michael Benzaquen to discuss an internship opening
in his research group. As I was looking for a research experience in hydrodynam-
ics, I had stumbled on his webpage a few weeks earlier. There, internship and
PhD proposals broadly combining physics and economics had piqued my inter-
est. Due to my background in fluid mechanics, I ended up studying microfluidics
with Gabriel Amselem and himself at LadHyX. It would involve two months of
painstaking experiments, creating and deforming hundreds of droplets of around
half a millimeter in diameter in fragile silicon canals, but I had a foot in the door.

Towards the end of the internship, Gabriel — to whom I had mentioned my
interest for interdisciplinary science — told me about a seminar that was to be
given by Jean-Philippe Bouchaud, titled “De la Physique Statistique aux Sciences
Sociales™. From there, I left with not only a clearer picture of what “Econophysics”
was, but also with the conviction that, indeed, the sudden switch from a prosper-
ous economy to a recession is not so different to liquid water turning into an ice
cube. In any case, my mind was set, I needed to become a statistical physicist to
eventually study these complex systems.

Fast forward to a couple of years later. In order to find a good internship
and complete my “Physics of Complex Systems” master in Paris, I came back to
Michael, initially just to ask about the different statistical physics labs in the Paris
area. Of course, the idea of joining the then new EconophysiX chair had crossed
my mind, so when Michael mentioned a project co-supervised by Jean-Philippe
and linking portfolio optimization to the theory of spin-glasses, I did not hesi-
tate much — nonetheless making sure no microfluidic experiments were involved.
Although I did not initially know much about spin-glasses, their incredibly rich
phenomenology hidden behind a deceptive simplicity quickly caught my interest,
and the internship confirmed my motivation to pursue a PhD. Yet, before embark-
ing in these further studies, I had planned to explore another aspect of statistical
mechanics (and another region of the world) through a research experience in
Japan. Following the advice of my then teacher Prof. van Wijland, I had my eyes
set on Prof. Sasa’s lab in Kyoto to work on stochastic thermodynamics. This was
March 2020, however, so the project was cut short for a rather evident reason. So
be it, I had found a great lab and a research topic that I very much liked, and it
was with enthusiasm and excitement that I started my PhD in October 2020.

During the past three years, I was fortunate enough to work on a variety of
projects — some successful, others less so —, touching upon different aspects of
both socioeconomic modeling and of statistical mechanics. Clearly, a large part
of the thesis is rooted in the theory of disordered systems, in the continuity of



my very first work associating spin-glasses and optimal portfolios. Leveraging
and extending results from spin-glasses towards the specificities of socioeconomic
systems is, in my opinion, the main contribution of the thesis. This being said,
other problems outside of the realm of disordered systems encountered along the
way have proved to be extremely useful for my understanding of the challenges
of socioeconomic modeling and of the possible answers (or lack of) provided by
statistical mechanics.

Academic research being a collective phenomenon at heart, my PhD involved
many interactions. First and foremost with my immediate colleagues of course,
but also with many inspiring fellow students and scientists at schools in Cargese,
Beg Rohu or les Houches. Towards the end of my thesis, I also had the chance to
work hand in hand with others on two collaborative project. First in Prof. Sasa’s
group in Kyoto, where I eventually had the amazing opportunity of going for a
three month period in 2022. There, I benefited from countless discussions with
Andreas Dechant, and of his and Prof. Sasa’s expertise, providing me with the
ideal introduction to stochastic thermodynamics. Then, in my final year within
the EconophysiX research group with Ruben Zakine and Antoine-Cyrus Becharat,
allowing me to learn from Ruben’s competence in active matter and to guide, to
the best of my ability, Antoine-Cyrus in the first year of his PhD. The outcome of
these collaborations is partially included in the manuscript, with my coworkers’
agreement of course.

In addition to the diverse and stimulating scientific projects mentioned above,
my PhD also encompassed other responsibilities integral to the learning experience
of becoming a researcher. As a teaching assistant, on the one hand, at ENSAE
and Ecole polytechnique and for courses ranging from the first to final year of
studies. Within the EconophysiX research group on the other, as I was tasked with
organizing and chairing the monthly group meetings from the first year onwards.
Both these assignments turned out to be quite enjoyable and, in my opinion,
beneficial to communicate my research effectively and expand my scientific culture.

As hinted above, the present manuscript is predominantly written as a statisti-
cal physics work. Indeed, all of my publications have been in physics journals, and
our toy-modeling approach is undoubtedly different from what would be found in
typical economics research. Nonetheless, I would like the ideas exposed here to
be understandable to non-physicists. As a result, without being self-contained,
a relatively significant part is dedicated to theoretical background, which might
perhaps appear unnecessary to the initiated reader. If so, the dedicated chapter
(Chap. P) can of course be skipped, or only consulted when required (explicit
references will be made to the relevant subsections).
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Motivation and background






Chapter 1

Introduction

The difficulty lies not so much in developing new ideas as in escaping from old ones.

John Maynard Keynes

The idea of drawing parallels between collective human behavior and physics
is not new. Starting from Daniel Bernoulli® [7], who is most famous for his con-
tributions to hydrodynamics, theoretical economics has indeed long attempted to
establish laws, akin to the laws of physics, to describe markets, consumption or
production.

In this endeavor, the pioneers of neoclassical economics such as Léon Walras
initially found inspiration in mechanics and the rigorous mathematical formalism
around it [8]. Whether realistic or not, by considering individuals as egoistical,
non-interacting and clairvoyant, human behavior can indeed be put into determin-
istic equilibrium equations where supply perfectly matches demand. From then
on, economic theory has mostly evolved in a very axiomatic fashion, with a strong
preference towards very simple models that allow for rigorously proved theorems.

Interestingly, it is then theoretical physics that ventured back into socioeco-
nomics following the major advances of statistical mechanics in the XX™ century.
The discovery of universality, whereby the macroscopic properties of large classes
of systems turn out to be independent of their microscopic details, and the related
effectiveness of simplified toy models to describe complex phenomena have indeed
made the application of newly developed methods to socioeconomic problems very
compelling. Collective human systems such as the economy being comprised of a
large number of interacting individuals and prone to display abrupt changes such
as crises, these tools naturally appear quite adequate.

Not to be mistaken with his uncle Jacob Bernoulli, known for the Bernoulli numbers and
distribution, or his father Johannes specialized in infinitesimal calculus or any of the many other
Bernoulli mathematicians.



Chapter 1. Introduction

Being entirely at odds with the representative agent paradigm that has been
at the center of many classical theories, the fields of “Econophysics” and “Socio-
physics” have encountered mixed success overall. On one hand, a very large num-
ber of interesting models have emerged (see e.g. [9-15]), some of which replicate
essential empirical observations such as power law distributions [16]. In finance,
in particular, where data is plentiful and theories can be readily tested, some
tools from statistical physics have had a significant impact [17,[18]. On the other
hand, even some of the most elementary concepts in statistical mechanics have
not well permeated to mainstream economics, which is still extremely dependent
on general equilibrium models that rely on the typical assumptions of a rational
representative agent. This being said, the failure of macroeconomics to predict
the 2008 crisis has somewhat accelerated the acceptance that heterogeneity and
feedback loops might be key to understand and predict large scale complex phe-
nomena [19-22]. There is therefore still some hope for socioeconomics to embrace
what theoretical physics has to offer [23,24].

The opportunity for ideas from statistical physics to finally make a break-
through in socioeconomics is also driven by the success of the theory of disordered
systems in other fields. Indeed, the theory of spin-glasses, initiated to study the
effect of defects on magnetic materials roughly 50 years ago, has bloomed, through
its interaction with other disciplines, into complex systems science. Culminating
with Giorgio Parisi’s Nobel Prize in 2021, spin-glasses have been an extremely
fruitful playground both in terms of theory and applications, being simultane-
ously very general and simple in their statement, and incredibly profound and
far-reaching in their consequences. In a nutshell, the theory of disordered sys-
tems has demonstrated that heterogeneous interactions between a large number
of constituents have highly non-trivial effects, both on the static and dynamic
properties of the system. A priori, many socioeconomic models should fall within
this description.

The overarching goal of this thesis is to use and expand results from disordered
systems towards socioeconomic systems, which will also lead us to study some
specific problems using equilibrium and out-of-equilibrium statistical mechanics
along the way. In this introduction chapter, we will first present some very basic
phenomenology from spin-glasses and complex systems science. Following this
rather pedestrian overview, we will lay the ground rules on the socioeconomic side
to give an idea of the typical modeling assumptions that will be made in this thesis.
Finally, two prototypical examples of existing socioeconomic “toy models” will be
introduced to illustrate first what we mean by a toy model in this context and
second the two-way interaction that can exist in the modeling of human behavior
with physics-inspired approaches.

4



Chapter 1. Introduction

1.1 From spin-glasses to complex systems

1.1.1 A bit of history

Despite its apparent disconnection with physics, much of what will be presented
in this thesis can be traced back to to good old fashioned laboratory work. In the
1970s, an intriguing puzzle emerged from the study of Cu-Mn and Au-Fe alloys. In
these alloys, where a small fraction of moment-bearing elements (here Mn and Fe)
is incorporated in a non-magnetic host (Cu and Au), a sharp but non-divergent
peak in magnetic susceptibility can be identified for a concentration-dependent
critical temperature [25,26]. Surprisingly, the magnetization of the material is
not non-zero below the critical temperature as in a standard magnetic sample, in
which the susceptibility diverges at the transition. Instead, one can observe the
emergence of order, in the sense that the local polarization of magnetic atoms
stays correlated in time, but the orientation of individual atoms still appears to
be random. Understanding how these “spin-glasses”™ can display such frozen yet
disorganized low-temperature states then became a central theoretical question.

The answer to this mystery can be explained in relatively simple terms. In
the Cu-Mn or Au-Fe alloys, the interaction between polarized atoms oscillates in
sign with the distance between the particles. As a result, when there is a rela-
tively small fraction of the moment-bearing particles that is randomly distributed
in the non-magnetic host matrix, there will be no mean ferromagnetic or anti-
ferromagnetic (tendency for spins to align or anti-align respectively) interaction.
In the low temperature region, each spin will therefore align in the direction that
is favored by its local random environment. Importantly, the heterogeneity of the
sample gives rise to a phenomenon known as frustration, illustrated in Fig. .
Indeed, most sites will have contradicting interests with each other, explaining
why no single direction can emerge from the oscillating interactions. Note that
the effectively random nature of the interactions is why spin-glasses are classified
as disordered systems, which are typically understood to include a wider range of
models that are not necessarily describing spin-like quantities.

To describe this situation analytically and as generically as possible, Edwards
and Anderson proposed a simple Hamiltonian to describe the energy of spin-glasses
in 1975 [34]. In their model, the energy of a given configuration is simply the Ising
Hamiltonian

H==> J;SiS,, (1.1)
(4,5)

2Here, the term glass refers to the conceptual similarity between the seemingly random po-
larization of atoms and the positional disorder characteristic of conventional glasses.

3For a more complete history of spin-glasses, see the beautiful series of articles by P. W.
Anderson in Physics Today [27-83].



Chapter 1. Introduction

Figure 1.1: Illustration of the frustration phenomenon that arises in disordered sys-
tems. Solid links indicate J;; = J;; = 1 while dashed links represent J;; = J;; = —1.
Left: non-frustrated “ferromagnet”, all spins can be happily aligned. Right: frustrated
configuration, spin C' is undecided as it cannot simultaneously align with B and anti-align
with A.

where, importantly, J;; = Jj; the interaction between the spins on sites 7 and j
is taken to be random (with usually a zero mean), while the S;, i =1,..., N, are
standard binary spins, S; = +1.

In their original paper, Edwards and Anderson (EA) considered nearest neigh-
bor interactions, and showed the existence of a spin-glass phase below the critical
temperature. As will be detailed later, the fully connected version of the model
due to Sherrington and Kirkpatrick (SK) [B5] is simpler — or rather not as diffi-
cult — to study analytically and becomes particularly relevant for interdisciplinary
applications.

1.1.2 Main features

The theoretical understanding of these idealized spin-glasses then made tremen-
dous progress in the decades following their introduction. While some of these
results will be exposed in more detail in the next chapter, let us summarize the
main features that emerge from the toy models introduced by EA and SK.

First, these simplified models present very singular static properties as a result
of the frustration illustrated in Fig. [L.1]:

o A very large number of locally optimal spin configurations,

o These configurations are near-degenerate (multiplicity of quasi-equivalent
solutions) and separated by enormous energy barriers,

e The local optima are extremely sensitive to the interaction couplings, i.e.
solutions are “fragile”.

These unusual static properties then have important dynamic consequences, namely:

o A very strong dependence on initial conditions,
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o Extremely slow (sometimes infinitely slow) relaxation dynamics and ergod-
icity breaking.

The fact that such simply stated models can have this extremely rich and
complex phenomenology is remarkable in itself. One could even argue that the
theoretical models of spin-glasses are in some sense more interesting than the phys-
ical systems they originally aimed to describe, as they require an entire new way
of thinking about thermodynamics (due to their non-ergodic nature). Whether
this entire phenomenology is realistic in the context of metallic alloys is then
of secondary importance. As a matter of fact, it turns out that while both the
EA and SK model recover a finite susceptibility peak at the critical temperature,
they also give rise to a cusp in the specific heat, which has not been identified in
experiments.

1.1.3 The spin-glass cornucopia

It should now be clear that the merit of theoretical models of spin-glasses does
not lie in their ability to accurately describe real physical systems. If this is the
case and that they are merely an intellectual curiosity, then what is the fuss all
about, and more importantly why would the Swedish Academy of Sciences award
Giorgio Parisi a Nobel prize? (And what’s more shared with two climate scientists
who’s work then appears much more useful and relevant.)

The answer lies in what Philip Anderson elegantly called the spin-glass cornu-
copiaE [B2]. While being a relatively poor model of Cu-Mn alloys and of anything
too precise, spin-glasses are a great model for many other things.

First and foremost, the frustration characterizing spin-glasses means that find-
ing the ground state, i.e. the spin configuration minimizing a given Hamiltonian,
is what is known in optimization as an “NP-hard” problem. In other words, there
is no known algorithm that systematically finds the configuration {S; = +1} yield-
ing the lowest possible value of H defined in Eq. (El]) in less than ~ 2V steps.
While the statistical mechanics of this spin-glass will not give the solution for a
specific instance of the disorder, it can provide precious information on the typical
outcome one may expect. One may then use these insights to understand some key
aspects of other “NP-hard” optimization problems, such as graph partitioning [36]
or the famous traveling salesman problem [37,38]. The most notable contribution
from theoretical physics to these optimization problem is perhaps the heuristic
algorithm known as simulated annealing, introduced by Scott Kirkpatrick (of the
SK model) and coworkers in 1983 [39]. By slowly cooling the system from above
the critical temperature, the lower energy states can be reached with much higher
probability than if starting directly in the very low temperature region. While

4“Horn of plenty” in latin, i.e. a plentiful supply in this context.
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this is not true for all optimization problems, the technique can be very effective
in some cases.

Beyond these rather natural links towards optimization — the Hamiltonian
being only a specific instance of objective function to minimize — other fruitful
interdisciplinary extensions of spin-glasses have also emerged. Most notably, the
theory of both biological and artificial neural networks has been, and still is,
an extremely successful playing field for spin-glass physicists. Starting from the
seminal work of Little [40] and Hopfield [41], and subsequently of Gardner and
Derrida [42], the modeling of neuron activations as binary variables has given a
very natural application for the theory of spin-glasses. Given the poor theoretical
understanding of deep neural networks despite their popularity and effectiveness,
it appears likely that there is still a lot of potential for the application of spin-
glass theory to neural networks. The recent success of “transformers”, which can
be understood with modern Hopfield networks [43], and of diffusion models, for
which the physical interpretation is rather natural [44], also give very promising
perspectives in this direction. Other applications where spin-glasses have proved
to be conceptually important include evolutionary biology [45] and population
dynamics [46,17], as well as optimal portfolios [48] and agent-based models [49]
in the spirit of this thesis.

In the spin-glass community, these interdisciplinary applications are sometimes
referred to as the “beyond”, in reference to Mézard, Parisi and Virasoro’s now clas-
sic book “Spin glass theory and beyond” [60]. Amusingly, while this “beyond” was
originally restricted to the optimization and biological problems mentioned above,
the very first page of the book introduces the concept of frustration illustrated in
Fig. with the relationship between three individuals. Clearly, it is therefore
natural to imagine that frustration and heterogeneity play a role in the collective
behavior of socioeconomic systems. As a matter of fact, a chapter dedicated to
socioeconomic applications (and mentioning some of the results presented in this
thesis) is now included in the recently edited sequel, “Spin glass theory and far
beyond” [b1], which compiles the contribution of over a hundred authors.

1.2 Agent-based modeling in socioeconomics

Before making the link between statistical physics and any socioeconomic system,
some clarification is required as to what exactly is meant by the latter. Indeed,
both economics and sociology encompass a very wide range of approaches, some
of which are not necessarily quantifiable as such. Whether one is thinking of polit-
ical economics or the psychological (or even physiological) theories at the root of
human behavior, the possibility of drawing parallels with theoretical physics is not
evident at all. Let us define more precisely the prerequisites for a socioeconomic
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problem to be somewhat within the realm of the discipline in which this thesis
lies.

1.2.1 Agents as atoms

First and foremost, it is important to highlight that attempts at using statisti-
cal mechanics very often imply the presence of a large number of constituents in
the system. Instead of atoms or colloids, the elementary entity in this context
will often (but not always) be an agent. In practice, an agent can be very dif-
ferent things: an individual person or household obviously, but also a firm, an
organization, a central banks etc.

A popular idea in classical economics is then that of the representative agent.
To avoid going through what we will see is the painstaking process of accounting
for heterogeneity among a population for instance, the idea is to describe a model
or situation with a very small number of agents (often just a single “representative
consumer” and a handful of other actors), acting as proxies for the entire economy.
While this approach is not necessarily inherently wrongt, a large part of — if not
all — potential emergent behavior can very easily be lost. As indirectly admitted
by Nobel prize laureate Robert Lucas in a somewhat surreal attempt at defending
the failures of macroeconomics [62], a consequence of this paradigm is that the
2008 economic crisis was not predicted because economic theory predicts that such
events cannot be predicted. Indeed, by removing collective effects and feedback
loops, only exogenous shocks can typically destabilize a system under this repre-
sentative assumption, clearly contradicting empirical facts, see e.g. [53,b4] for a
comprehensive discussion on the topic.

To move away from this oftentimes simplistic reasoning, there has been sig-
nificant efforts since 2008 to develop genuine agent-based models, with a large
number of heterogeneous entities interacting to a certain degree. It is on these
type of models that we will mostly focus in this work and where statistical physics
likely has the largest part to play.

1.2.2 Utility theory

Regardless of the heterogeneous or representative nature of the agent considered,
a key and unavoidable step in any modeling endeavor then requires putting a
plain word description in equations or systematic rules. Reasoning in terms of
first principles, as one would do in physics, is not really possible when considering
socioeconomic systems as there are no evident universal or elementary rules (akin
for example to energy minimization), and is further complicated by the difficulty
of conducting repeatable behavioral experiments on humans and organizations.

®We will see how this idea can be revisited with Dynamical Mean-Field Theory in Chap. E
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As a major simplification, utility theory consists in postulating the existence
of a so-called utility function u(X), where here X would be (in a loose sense) a
state of the world, part of the set of possible alternatives offered to the agent [55].
In a typical consumer decision problem, the set of X are the possible consump-
tion choices for example (e.g. banana, apple and orange). The utility function
essentially quantifiest the agent’s satisfaction following a given decision. Usually
the state X is restricted to things that might vary following the agent’s action,
and can then be viewed as an agent-specific analogue of the energy. Whereas
energy is minimized, it is assumed that the agent maximizes his or her utility.
Importantly, the central assumption behind the utility is that an agent will prefer
the option with the highest utility if given a choice between two outcomes. To go
back to the previous subsection, one of the major differences between the repre-
sentative agent paradigm and the agent-based models of interest here is that the
utility in the latter is strongly affected by the choice of others, and not only by
the choices of oneself as in the former.

Within this framework, economists then usually make further postulates on
the mathematical properties of the function u [57]. Not without consequences,
when X is some measure of consumption, u(X) is taken to be strictly increasing
for example: more is always better and there is no satiation [55]. This hypothesis
is of course extremely debatable, particularly in today’s context where excessive
consumption is under scrutiny for obvious reasons, and should therefore be kept in
mind before making rash conclusions. To account for the fact that satisfaction is
(should be?) somewhat diminishing as goods are accumulated, the utility function
is also often assumed to be concave, which is known as the law of diminishing
marginal utility. In any case, the utility function will be explicitly given in the
specific problems we will consider, clearly stating the underlying assumptions that
are made.

1.2.3 Homo economicus, bounded rationality and the logit rule

Provided one accepts utility theory as the best way to formalize some measure
of satisfaction for agents, there remains the question of how agents use such a
hypothetical quantity to make their decision. Given the assumption that an in-
dividual should always go for the outcome leading to the highest value of utility
given the choice, the most direct approach is to take agents to be strict optimizers,
determining their next step as the one that will maximize their utility gain.

5To be perfectly precise, we are speaking here of a cardinal utility function, in contrast with so-
called ordinal utility functions that only rely on ordered preferences without having to precisely
quantify levels of utility.

"Note that the mirroring between utility and energy is likely not entirely coincidental: the
origins of utility theory can be traced back to the physicist Daniel Bernoulli [[7], while Irving
Fisher, who significantly contributed to its development, was trained by Willard Gibbs [56].
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This “homo economicus” paradigm is the most common in conventional eco-
nomics, despite some contradicting empirical evidence. Beyond any behavioural
experiment one could undertake to prove or disprove that human beings systemat-
ically improve their gain when possible, we will shortly see that this scenario can
also be challenged from a computational point of view. If there are many near-
degenerate solutions to the optimization problem at hand (like in a spin-glass),
then it appears unlikely for anyone to immediately find the optimum optimo-
rum in order to make their next decision — as it might be an “NP-hard” task!
In many cases, evidence points rather towards the unconscious use of powerful
heuristics [58], although the precise decision making process going on in one’s
mind is of course difficult, if not impossible, to decipher. In any case, it appears
relevant to introduce some variation to the strict optimizer belief.

There are several ways to relax such an assumption. One is that agents have
a limited attention and cannot process all the information accessible to them,
see e.g. [B9] and refs. therein. As argued by Gabaix, this may effectively lead
to perceived prices that differ from real prices for example. Another traditional
line of thought in the literature on choice theory is to replace the deterministic
utility optimization prescription by a stochastic choice rule: the utility will only
be maximized with a certain probability [60]. In some sense, this is a very general
approach, as the stochasticity in the decision making could be interpreted to
include a wide range of possible mechanisms.

A common model for this probabilistic decision making is the so-called “logit”
rule [60,61]. Given a set of choices A, it states that the probability for an agent
to pick the option « € A is given by

eBua

Z’yE.A eﬁu’y ’

where 3 is a parameter known as the “intensity of choice”, or more loosely as the
rationality of the agent, and u, is simply the utility associated to choice a.. In the
limit 8 — oo, one then recovers the “homo economicus” picture, as

P, = (1.2)

(1.3)

lim P, =

B—00 0 otherwise.

{1 if uq = max,c4 Uy,
On the other hand, the limit f — 0 will yield a completely random behavior in
which all options are equiprobable. As summarized in Ref. [15], there are several
ways to justify this proposition from classical choice theory.

The first is to imagine that the probabilistic nature of the rule stems from the
difference between the true utility of a choice u, and the perception of the agent
making the decision, which we will write @,. Taking the so-called “random utility

11
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model” [62]
g = U + €q, (1.4)

the logit decision rule is recovered if the €, are i.i.d. Gumbel random variables [63].
A natural question is then, why would these perturbations €, follow a distribution
which is more commonly encountered when dealing with extreme value statistics
than behavioral sciences? The short (but unsatisfying) answer to this question is
that it gives the logit rule, or in other words that this perceived utility idea is not
a great justification. A more complicated but interesting explanation is given in a
modest footnote of [64] (pp 32-33). In a nutshell, if the agent strictly maximizes a
Ulq that is now affected by new variables that are themselves Gaussian distributed,
then the extreme value statistics resulting from the maximization over these other
“hidden” random parameters allows one to recover the Gumbell distributed e,.
Despite this more subtle argument, the justification remains quite weak.

The second approach is to introduce an information cost for the agents, which
is taken to be a decreasing function of the entropy

S=-> P/logP, (1.5)
yEA

Indeed, the entropy is a rather natural measure of the precision of a distribution,
as it is maximized for uniform P, and minimized for an exact choice P, = 6.
Maximizing the total expected gain with this cost included

LIP] = Pu, - c(- > P 1ogP7>, with Y P, =1,  (16)

veA veA veA

one then recovers the logit rule, where 37! = —C’(S) > 0 can now be interpreted
as the marginal utility cost of information [65]. Within this interpretation, the
decision-making process is essentially an exploration-exploitation compromise [66].

A final way to justify the decision rule is to take the axiomatic road. Indeed,
Eq. (@) satisfies the axiom of independence from irrelevant alternatives (part of
the larger choice axiom [60]), meaning that the ratio P,/P,, a # v, is unaffected
by the introduction of a supplementary choice. Interestingly, having Gumbel
distributed €, in the random utility model is the only way to satisfy this axiom,
giving a bit more context to the first justification [64].

Naturally, being able to confirm or infirm either the logit rule itself or the
underlying axioms in experimental studies would be most desirable. Overall, most
empirical attempts have been either inconclusive, or ruled somewhat against the
traditional axioms of choice theory [67], see [68] for a more recent discussion. This
being said, it can be difficult to decipher whether classical choice theory is to
blame, or if utility theory itself is an underlying limitation.

12
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Despite this discouraging experimental picture, it is important to keep in mind
that most economic models do not even consider bounded rationality, and still rely
on strict utility maximization. While the logit rule may not be a perfect (or even
good) model for decision making, it is already a conceptually very important
development from what has traditionally been done. In that respect, the most
important justification for its use may just be the fact that it will allow us to
carry out many computations, as will become clear in the next chapter (and is
likely already clear for the reader familiar with statistical mechanics). As nicely
summarized by its father R. Duncan Luce [67], “ Despite [...| empirical difficulties,
there remains a tendency to invoke the choice axiom [which leads to the logit rule]
in many behavioural models — often implicitly. This is partly because it is so simple
and the resulting computations are so easy. Perhaps the greatest strength of the
choice axiom, and one reason it continues to be used, is as a canon of probabilistic
rationality.”

Let us mention a final interesting approach to bounded rationality, which will
be relevant at later stages of this thesis. Shortly after pioneering the concept of
bounded rationality [69], Herbert Simon proposed the idea of satisficing solutions
[70]. The word, which is a contraction of satisfying and sufficing, refers to the
fact that most people are likely to be content with a choice that matches or
exceeds their expectation, without necessarily being the absolute best possible
option. The idea can then be formalized by introducing an aspiration level for the
agent, written k < max,e4 u,, such that any option o with u, > k is satisficing
and can therefore be picked [69]. In many cases, the solution is non-unique as
a result, which we will see is in fact a very natural setting when considering
the solution landscape of many optimization problems. As an illustration, the
previously discussed logit rule can be seen as a satisficing solution to the bounded
rationality modeling problem from our perspective.

1.2.4 Simplicity versus fidelity

Having introduced utility theory as well as choice theory, we should be all set to
start designing models, perform numerical simulations, and, soon enough, attempt
to describe these models analytically. Before doing so, however, there remains
some important points to address in terms of our philosophy and approach.
Throughout the years, the evolution of agent-based modeling has gone hand
in hand with the increase in computational power available to researchers, and
more recently with the availability of an incredible wealth of data from a variety
of sources. An immediate temptation is therefore to complexify models as much as
possible, introducing a very large number of parameters and agents, with the idea
of calibrating models on real data and to then conduct numerical experiments on
an in silico version of the world. As an extreme example, some authors have for

13
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instance recently proposed a “1:1” model for the Hungarian housing market [[71],
comprising 4 million Hungarian households built using empirical micro-data, a
housing and rental market, construction sector, banking sector and even demo-
graphic trends. At the other end of the spectrum, what is considered to be a very
simple model of an economy, the “Mark-0” model of Gualdi et al., still includes
no less than 14 adjustable parameters in its barest form [72]. While essential to
study large scale economic systems and a necessary effort to eventually improve
the forecasts produced by economic theory, this sort of high fidelity agent-based
modeling is not the aim of the work presented in this thesis.

In an authentic statistical physics approach, our objective is rather to first
construct minimal models presenting a rich phenomenology, but with no immediate
aspiration at exactly replicating real systems. The objective is to identify how a
restricted set of conceptually important ingredients, and the interplay between
them, can affect the qualitative behavior of the system. The identification of
these ingredients should then help the design of more complete models down the
road. In physical modeling, these minimal phenomenological descriptions are often
referred to as toy models, and have proved absolutely essential to understand the
mechanisms behind some incredibly non-trivial observations.

1.3 Toy stories

Having established that we do not aim at studying incredibly detailed agent-
based model, let us now illustrate what we mean by a toy model in the context of
socioeconomic modeling. In the following, we will present two celebrated examples
that do not involve the theory of disordered systems but make use of classical
statistical mechanics.

1.3.1 The Schelling model, micromotives and macrobehaviours

The Sakoda-Schelling model is an interesting illustration of the role statistical
mechanics may play in understanding the emergence of unexpected and complex
phenomena in socioeconomics. In the very first issue of the Journal of Mathe-
matical Sociology published in 1971, James M. Sakoda proposed a very simple
model for the occupation of discrete sites on a two-dimensional square lattice by
two distinct populations [73], thereby pioneering agent based models and their
application to sociology. In the very following issue of this then novel journalf,
Thomas Schelling introduced a very similar set of rules, with the idea that some

8To be perfectly precise, the first mention of Sakoda’s model can be traced back to his un-
published PhD thesis completed in 1949, while Schelling’s work can be found in a 1969 working
paper [f4]. In any case, there is no reason to believe either author took inspiration from the
other, the objective of the papers being clearly quite different.
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Figure 1.2: Illustration of Grauwin et al.’s version of the Sakoda-Schelling model. (a)
Utility function of the density peaked at p* = 0.5. (b) Initial random configuration at
an average density pp = 0.5. (c) Final state with p, ~ 0.65 > p* (shown in (a)) in
occupied neighborhoods and presenting some fully empty blocks. Simulation performed
with H = 100 sites per neighborhood, @ = 36 blocks, and g = 10, courtesy of Max
Knicker.

aspects of urban segregation can be explained only by some very mild preference
towards being surrounded by neighbors from the same group — skin color in this
context — as oneself [75]. Unfortunately for Sakoda, history favored Schelling after
whom the model was named (and who was eventually awarded the Nobel Memo-
rial Prize in Economic Sciences), while his contribution did not have as big of an
impact, having been cited only twice in the ten years following publication.

To be fair, while his model was in fact not very well suited to explain seg-
regation, which is intimately related to past and present public policies rather
than self-organization [@, ﬁ], Schelling identified a key point that Sakoda did
not. Indeed, the important result is not so much that agents aggregate if they
are sectarian, but rather that they aggregate even if their ideal neighborhood is
comprised of only slightly more people of their kind. In other words, every agent
strictly choosing their own individual preference at each step seems to lead the
system to a sub-optimal outcome for everyone — Adam Smith’s “invisible hand”
completely fails. Schelling coined this sort of apparent paradox the opposition
between micromotives and macrobehaviours.

Many different versions of the Sakoda-Schelling model can be considered and
have their own specificity, as we will see in Chap. [. In its simplest form, one
can start with the occupation problem, i.e. the organization of a single type of
agents on the lattice, where agents now have a density-dependent utility. A major
simplification proposed by Grauwin et al. [@] is then to consider that the lattice
is divided in a fixed number ) of neighborhoods, in which we will find a number
ng < H, ¢ =1,...,Q, of the N (fixed) agents in the system. Each site can be
occupied by at most one agent, and the total number of site in the system H x Q is
therefore greater or equal to the number of agents. For concreteness, one can take
the city to be a square grid of size L x L with square neighborhoods, as illustrated
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in Fig. [L.9.

The Sakoda-Schelling model adapted to this geometry can then be described
as follows. At each step of the simulation, an agent is selected at random, and
offered a move to an empty site in another neighborhood. The agent will then
accept or reject the move based on the difference of utility between the two sites.
The important simplification provided by the fixed neighborhoods is that the
utility function quantifying the agent’s preference, assumed to be the same for
all agents, is a function of the block’s density p, = ny/H only. An important
feature to recover Schelling’s apparent contradiction between micromotives and
macrobehaviours is then that this utility should be peaked at a value 0 < p* < 1,
representing an individual’s ideal environment, neither too empty nor too full. An
example of such a utility function with p* = 1/2 is shown in Fig. [L.2(a).

We assume the agents make their decision to accept or reject a proposed move
based on the logit rule introduced above. When the agents are poor optimizers
and (3 is small, we observe a uniform distribution of the population among all sites,
which will be referred to as the homogeneous phase. In this regime, the average
neighborhood density is simply the density of agents in the system pg = N/(Q X
H). For large 8 on the other hand, where moves overwhelmingly improve the
agent’s own satisfaction, we recover the peculiar behaviour described by Schelling
and shown in Fig. [L.2: the population concentrates in a few neighborhood where
the density will vastly exceed the optimal p*, and that even if we take pg = p*.

Predicting what values the block densities p, will take is not easy at first
glance, and is where statistical mechanics can play a part. Indeed, as will be
discussed more technically throughout this thesis, taking the appropriate choice
for the precise decision rule (sometimes) allows one to derive an effective free
energy that is minimized by the prescribed dynamics. Without going into the
details just yet, Grauwin et al. have shown that the neighborhood free energy
reads

flp) = /Op dp’u(p) — ; [plog p+ (1 — p)log(1 — p)], (L.7)

where u(p) is the utility function of an agent and the second term is an entropic
contribution that will vanish at § — oo. Maximizing this quantity under the
constraint that the total average density is fixed at pg (or equivalentlt performing
a double tangent construction on this free energy) is then clearly not the same as
maximizing u(p), even when the entropy is negligible (8 > 1). With these results
in mind, the model can then be expanded and enriched. Including a second type
of altruistic agents, that do maximize the average utility instead of their own, can
for instance be shown to have a strong catalytic effects on the total utility of the
system [7§].

While perhaps a bit vague at this stage, this simplified Schelling model is an
example of the motivation behind this thesis and the idea that statistical physics
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may be relevant to understand some aspects of socioeconomic models. A puzzle,
initially uncovered based on a purely socioeconomic motivation, can be understood
and formalized using the elementary concept of free energy minimization applied
to an extremely simplified version of the problem. As we will later see, such a direct
mapping between a socioeconomic model and equilibrium statistical mechanics is
the exception rather than the rule, but the underlying philosophy of going from
the microscopic constituents to the aggregate behaviour will remain the common
thread.

1.3.2 The Random-Field Ising Model

In the Sakoda-Schelling model, statistical mechanics is used as a tool to understand
and analyze an idealization devised in the socioeconomic context, providing an
exact solution to an agent-based model that aims at describing an idealized version
of the problem. Often times, the situation is somewhat reversed, however, and
results from general physical models can be used to design agent-based models. In
other words, while in the Sakoda-Schelling case statistical physics provides a way
to understand the passage from micromotives to macrobehaviours, we will now see
that the macroscopic behaviour of a physical system displaying features that may
be relevant in socioeconomics can provide ideas in the microscopic description of
agents and even be interpreted as such.

Originally devised by Imry & Ma in 1975E [80] to understand the influence
of random impurities on the properties of magnetic alloys, the Random-Field
Ising Model (RFIM) is — as its name conveniently suggests — a generalization of
the previously introduced Ising model. As before, it considers N binary spins
S; ==x1,9=1,..., N, which are now all interacting with a random magnetic field
that takes a different value at each site. The Ising Hamiltonian therefore includes
a new contribution,

H=— Z JijSiSj - Z(H + hl)Sz, (1.8)
(4,9) i

with h; the random component of the field’s influence at site ¢, assumed to be

independently drawn from the same zero-mean probability distribution p(h), and

H the average magnetic field strength acting on the sample. Now, suppose that

a zero temperature system is equilibrated in some configuration and that we vary

H. Each spin will then flip only if the local field acting on it changes sign, in other

9To be perfectly precise, Imry & Ma appear to be the first to have studied the effect of a
random field on the ferromagnetic phase, but considered soft (continuous) spins and a field-
theoretic formulation. In the discrete Ising spin case introduced above, the first description of
the model appears to be due to Schneider & Pytte [79] in 1977.
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Figure 1.3: Analytical solutions to the RFIM for Gaussian distributed random fields
with standard deviation for J =1, (a) o = 1, (b) o = 0.1, the continuous line showing
the solution propagated by increasing H and the dashed line by decreasing H. Insets:
graphical resolution of Eq. () at H = 0, dotted and continuous lines representing
the left hand and right hand sides respectively, dark and light circles showing stable and
unstable solutions respectively.

words

S; = sign Z JijSj+hi +H | . (1.9)
J#i
Clearly, if the random h; remain constant and are of zero mean, if H is varied
continuously then all spin flips will not occur at the same point.

To make a relatively long story short, the model can be solved exactly and
rather straightforwardly for N — oo if the network is fully connected and couplings
are taken to be constant, J;; = J/N [81]. Characterizing the sample by its total
magnetization

1
M = NZS“ (1.10)

one can show that this macroscopic property should satisfy the self-consistent
equation
M =2P.(—H —JM) — 1, (1.11)

with the survival function of the random field distribution Ps (k) = [, dsp(s).
For any probability distribution, the survival function Ps (h) is a strictly decreas-
ing function satisfying limy_, o, P~(h) = 1 and limp_,o, P~ (h) = 0 such that the
right hand side of the above equation is strictly increasing in M and goes from
-1 to 1. Solving the equation graphically, it immediately appears that it goes
from having single solution to three solutions at a critical point (when both sides
become tangent at their intersection).

The solution to the equation as well as this possible multiplicity of solutions is
illustrated in Fig. @ for J =1 and a Gaussian random field characterized by its
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standard deviation o. If the standard deviation is large enough, and the random
field is widely distributed, the self-consistent equation has a unique solution and
varying H from —oo to 400 gives the same solution as varying it in the other
direction. When the h; are tightly distributed (or, fixing o, if J is increased),
then two new solutions appear and the direction in which H is varied becomes
important. As displayed in Fig. @(b), the system displays hysteresis, which can
also be confirmed by performing numerical simulations at large N.

Perhaps more interestingly, the switch from M = —1 to M = 1 can be un-
derstood in terms of avalanche dynamics: going from negative to positive H, the
first spin flip will be for the site with the largest value of h;, resulting in a slight
increase in the value of M, which in turn will allow the next site with the largest
h; to switch etc. Close to the critical value at which hysteresis comes into play,
the precise distribution of avalanche sizes can be computed [81], revealing a power
law decay for large avalanches with exponent —3/2 (meaning the typical avalanche
size diverges in the vicinity of the critical point).

So how is this all related to socioeconomics? Superficially, the abrupt tran-
sition observed in the RFIM is already an interesting feature, as many socioeco-
nomic phenomena display this sort of sharp switches, from economic crises to fads
and trends. In this context, the model is interesting in the sense that it clearly
underlines the trade-off between heterogeneity (governed by the width of the dis-
tribution of the h;) and the tendency to align with the average (here materialized
by the term JM). Most importantly, the phenomenology of the RFIM appears to
be relevant in the context of widespread changes in opinions, which we can also
expect to spread throughout a group in an avalanche-like fashion like spin flips
here. As a matter of fact, Michard & Bouchaud [82] have shown that, beyond
this qualitative appeal, the anomalous exponent relating the slope of the magneti-
zation with H close to the critical point is quantitatively compatible with a large
number of real world systems. In this work, the authors have indeed collected
and measured the scaling relation between the height and the width of the peak
in the speed of change of birth rates, sales of cellphones and decay of applause —
all somewhat driven by social pressure — and found them to fall within the range
of the mean-field prediction of the RFIM.

In light of this empirical evidence, the original fixed point equation of the Ran-
dom Field Ising Model in Eq. ([l.9) can be reinterpreted. Suppose S; is now one
of two options, for example to vote for or against Brexit, to pay or avoid taxes,
to buy a new product or refrain etc. The first term is evidently one of imitation,
where {J;;} is now an interaction matrix that could in principle include both posi-
tive and negative entries. The random field h; can be an individual preconception
or preference, while finally the (possibly time-varying) H common to all agents
can be interpreted as some public information (e.g. news). The original physical
system can then be enriched in this context, for instance through the introduction
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of non-reciprocity in the interactions or of an underlying network structure. This
type of approach, whereby a general model from physics is extended and further
completed by ideas tailored to the socioeconomic system it now aspires to repre-
sent will be central in this work. In the same way that statistical physics may be
useful to understand socioeconomic models, models from statistical physics can
perhaps be of use to provide inspiration in order to recover empirically observable
phenomena.

1.3.3 A word on universality

At this stage, the reader uninitiated to statistical mechanics may well wonder
why we are even trying to model individuals as imaginary spins or a city as a
rectangular grid. The RFIM’s scaling exponent may perhaps have been found to
approximately match a handful of real world situation, but after all what if this is
just a lucky guess? This is actually a very common criticism to the econophysics
or sociophysics approaches — how could one even believe they are modeling a
socioeconomic systems without making experimental measurements, polls, and
data analyses? A priori, these toy models, as their name evidently indicate,
precisely appear to be mere toys for physicists to play with.

While we won’t argue with the necessity of experimental measurements and
data analyses, which are at the heart of the physics-inspired approach, there is
some justification for the appeal of toy modeling beyond analytical convenience.
As mentioned in the introductory remarks, the discovery of universality in emer-
gent phenomena has given much more credence to toy modeling for the under-
standing of even some of the most complex phenomena.

Going back to good old fashioned laboratory experiments, a highly complex
phenomenon in fluids which has long intrigued physicists is the so called liquid-
gas transition. For sufficiently high temperatures, there is a single phase region,
where one can go from a gas to a liquid simply by increasing the density. Below a
fluid-dependent critical temperature T;, however, one observes the emergence of a
two-phase region separating exclusively gas and exclusively liquid regions. Now,
looking more precisely at the vicinity of this continuous transition, the experi-
mental study of sulphurhexafluoride (7, ~ 319 K) reveals the power law behavior

‘p+ _ P—’ x ’T _ TC’D.327i0.006’ (1.12)

where pi corresponds to the coexisting densities in the two-phase region. Re-
markably, repeating the experiment on helium 3 atoms (7, ~ 3 K) yields,

‘p_'_ _ p_’ x |T _ TC|O.321:|:0.006’ (113)

i.e. an almost undistinguishable value of the exponent despite the difference in
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T [83]. Similar values have also been reported in binary fluids, such as solutions
of isobutyric acid and water or carbon disulfide and nitromethane [84].

This apparent universality in the coexistence densities in the vicinity of the crit-
ical temperature is very interesting in its own right, but this is not the end of the
story. Suppose we now consider the three-dimensional antiferromagnet DyAlOs
under a vanishing magnetic field. It is well documented that the material will lose
its magnetization if it is heated to a sufficiently high temperature. Approaching
the critical temperature T, ~ 3.5 K at which the magnetization M continuously
vanishes from the low temperature region, experimental measurements point to a
power law behavior of the form [83]

M o |T—Tc|0'311i0'005. (1.14)

Now truly surprisingly, the exponent is within the range of what was found in the
liquid-gas transition!

The introduction of the renormalization group (RG) provides a theoretical
framework to understand the existence of these universality classes in which the
critical behavior is virtually identical for widely different systems. Without going
into the details, the RG demonstrates that the microscopic details of a model
typically get “washed out” at the critical point, where everything becomes scale
invariant. Beyond this pictorial view, the RG also provides some powerful the-
oretical predictions. In the case of the three-dimensional ferromagnet described
by the Ising model for instance, the RG result for the magnetization exponent is
0.325 £ 0.0015, which is in very good agreement with experimental results [85].

Another perhaps more formal illustration of universality is the ubiquitous cen-
tral limit theorem (CLT), which we will invoke at various stages of the thesis. In
its simplest form, the theorem states that the arithmetic mean of N independent
and identically distributed random variables with finite variance will converge to
its mean value (as stated by the law of large numbers) plus Gaussian random fluc-
tuations, the variance of which decays as 1/N. Not only is this true regardless of
the underlying distribution of the summed random variables, it remarkably turns
out that the CLT holds under much weaker conditions. The random variables
can indeed in fact be weakly correlated or not quite identically distributed and
the fluctuations will remain Gaussian distributed. As a result, an incredibly wide
range of real-world statistics are effectively Gaussian, such as the incidence rate of
accidents, the gender-specific distributions of heights and weights, or the velocity
of stars [86]. Furthermore, when the variance diverges, a generalized central limit
theorem applies, by which the limit distribution of the arithmetic mean is now a
Lévy distribution. As a side note, these central limit theorems can also be under-
stood with the renormalization group mentioned above [87]. For a more complete
discussion of universality from a mathematical standpoint, see Ref. [86].
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To close this digression, universality is a key concept that is at the heart of
the effectiveness of statistical mechanics. As the macroscopic features turn out to
be almost independent of the microscopic details, universality notably allows to
make theoretical predictions using vastly simplified models, which is an extremely
powerful idea in the socioeconomic context. Given the undeniable complexity of
human behavior, it seems that our only hope to one day have robust predictions,
or at the very least scenarios, describing collective behavior in fact lies in this idea
that aggregation erases some of the details. Having said this, all the while avoiding
the now proverbial phrase more is diﬁerentE, we may embark in our journey at the
crossroads between socioeconomics, spin-glasses and out-of-equilibrium dynamics.

1.4 Thesis layout

This thesis is organized as follows. In Chapter E, we recall some basics of statistical
mechanics and key spin-glass results that will be important in the understanding
of the different problems we will study, and close the introductory part of the
thesis.

We start by exploring two specific socioeconomic problems illustrating the con-
cepts of radical complexity and bounded rationality in Part [[]. Chapter B, which
is largely based on the published work [1], explores a simple constrained portfolio
optimization problem that individual agents could face. We show that the prob-
lem has a very large number of quasi-degenerate solutions, challenging the very
notion of rationality and common information among agents. Having established
the motivation for boundedly rational decision making in the modeling of indi-
vidual agents, we revisit a classic object of consumer choice theory in Chapter [f,
the Slutsky matrix. This disorder-free digression, the results of which have been
presented in [2], allows us to illustrate how bounded rationality may be compati-
ble with established empirical results that were thought to support the infinitely
rational assumption. Moreover, this practical problem illustrates the possible
absence of a global utility (and therefore a global free energy) when agents are
selfish and interacting, underlining the necessity for a better understanding of
out-of-equilibrium dynamics.

Having well motivated the different ingredients that appear necessary to con-
struct interesting toy models, we enter Part E of the manuscript, dedicated to
the “SK-game”, a unifying binary decision model with bounded rationality, non-
reciprocity, and learning. The model is introduced in Chapter p, and its most
salient features are exposed using numerical simulations. In Chapter f, we un-
dertake a more technical analysis of the model. Its fixed point and limit cycle

10 Although it is tempting, it would feel very wrong not to cite P. W. Anderson’s illustrious
article anywhere in an interdisciplinary statistical physics thesis [8€].
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complexity are discusses and we notably employ Dynamical Mean-Field Theory
to study the N — oo dynamics of the problem. The results of both the chapters
of this part can be found in [3].

Part [[V| is devoted to disorder-free out-of-equilibrium systems — although some
aspects remain relevant in the understanding of disordered systems. Chapter
corresponds to the results of the collaboration with R. Zakine and A.-C. Becharat
published in [§]. In this chapter, we revisit the statistical mechanical treatment of
the Schelling model presented above. By removing the necessity for fixed neighbor-
hood and keeping the decision rule as general as possible, we study the robustness
of the condensation transition out-of-equilibrium, and exploit links with recent
results in the theory of active matter. Chapter §, which includes and leverages
some of the results published with A. Dechant and S.-i. Sasa in [{4], finally studies
the effect of out-of-equilibrium currents on the relaxation to steady-states that
preserve a given Gibbs-Boltzmann distribution, allowing us to isolate the effect of
irreversible contributions on the dynamics. While the chapter focuses on a very
simple single particle setup, such dynamics may also turn out to be beneficial to
accelerate the sampling of complex equilibrium distributions, which could include
some disordered agent-based models.

Part |V| of the manuscript finally discusses future directions and closing re-
marks.

Key results and messages will be summarized at the end of each chapter, while
some of the detailed calculations will be given in dedicated appendices at the end
of the manuscript.
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Chapter 2

Theoretical foundations

Merely quantitative differences, beyond a certain point, pass into qualitative changes.

Karl Marx

Before jumping into specific socioeconomic problems and their description with
statistical mechanics, let us provide some of the theoretical background that will
be useful in all subsequent chapters. The goal of this chapter is not to be a
self-contained lecture of all aspects of statistical physics, but rather to introduce
essential concepts and provide a non-exhaustive summary of some of the most
important results in the theory of disordered systems.

2.1 Equilibrium statistical mechanics

2.1.1 Thermodynamics and the Gibbs-Boltzmann measure

When considering atoms or molecules, a natural approach to thermodynamics
is to think in terms of the combinatorics of “microscopic” configurations {x}.
Given the discrete set of possible states of an isolated system, one can indeed
attempt at enumerating the number of such states Q(F) for which the system will
have an energy E. The fundamental postulate of thermodynamics is that all the
microscopic states at a certain energy are equally likely. This uniform probability
distribution is known as the microcanonical ensemble.

Px|E(x) = E) = ——. (2.1)

Now, recall that we usually draw an analogy between energy and utility. The
elementary postulate of the microcanonical ensemble therefore corresponds to as-
suming that all choices providing a given level of utility are equiprobable, which
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appears to be reasonable. This being said, the fact that the energy or the utility
is strictly fized, as it was assumed that the system is isolated, appears as a funda-
mental limitation. Beyond the fully rational case where we would assume that the
utility level is set to its largest possible amount, any notion of bounded rationality
implies that there is a range of possible utility levels rather than a unique value.

Luckily, the necessity to allow for energy fluctuations also quickly arose in
physics. Indeed, it is very unlikely for a system to be truly isolated. In most prac-
tical cases, the small system that one considers is in fact in contact with a much
larger environment. Concretely, if we are interested in studying the properties of
a glass of water sitting on a table, it is clear that the conditions of the room in
which the experiment takes place will be of paramount importance. In the ther-
modynamics jargon, the room acts as a thermostat for the glass of water: given it
is much larger, we can assume that the room is unaffected by what goes on in the
glass, and we can therefore take its temperature to be constant throughout the
experiment. The room then acts as an infinite thermal energy reservoir to fuel
jumps in between microscopic states of different energies, while the average inter-
nal energy inside of the glass remains constant once it has reached equilibrium.
We will shortly see that there is a very natural interpretation for the temperature
in an agent-based framework.

The number of combined microscopic states at a given total energy level E/ =
Egr + E, where Ep is the energy of the “reservoir” (the room), can be written as

QE") =Y Qr(E'— E(x)) =) _ exp(Sr(E' - E(x))), (22)
{x} {x}
where the number of states of the reservoir Qr(ER) at a given energy Fr, is related
to their entropy Sr(FRr) by the microcanonical definition of the entropy

S(E) = log Q(E). (2.3)

As detailed in any good statistical mechanics textbook, e.g. Ref. [89], one can then
use the fact that E' > E(x), by virtue of R being a reservoir, to Taylor expand
the entropy. Identifying the temperature, which in thermodynamics is formally
defined as T—! = 9gS(E), the probability to find the system in the state x is

finally given by the celebrated Gibbs-Boltzmann distribution
1
P(x) = —e PEX)
( ) Z ’
where 3 = T~ is the inverse temperature and Z is the partition function,

Z =Y e PP, (2.5)
{x}

"Note that we have implicitly taken kg = 1 in this discussion, meaning the temperature is
taken to be in units of energy.

(2.4)
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Remarkably, all terms are independent on the details of the reservoir, whose only
remaining property is the temperature.

Computing the logarithm of the partition function then gives access to virtually
all thermodynamic quantities of interest, for example the average internal energy

- ;6 log Z. (2.6)
Unless indicated otherwise, angular brackets will refer to averages with respect to
thermal fluctuations. In the following, an equilibrium distribution will refer to the
Gibbs-Boltzmann measure for a known energy function of the degrees of freedom.

Now, recall the logit decision rule presented in the introduction, which assigned
to the choice o € A the probability

U= (E)=

eBua
Z’YGA efur’

Clearly, this is none other than the Gibbs-Boltzmann distribution over the choices
of the agent. As a result, in this single-agent noisy decision-making process,
the results of standard thermodynamics can be immediately applied through the
analogy between energy and utility and by identifying the inverse temperature as
the intensity of choice. For example, the relation between the partition function
and the internal energy can be directly employed to compute the expected utility
of the agent. This being said, and as will be repeatedly stressed at various stages,
this will not necessarily be true when there are several agents. Note also that,
as discussed in the first chapter, this is only one possible decision rule. Unlike in
classical thermodynamics, there is no notion of a thermostat or thermal energy to
constrain the passage from the microcanonical to the canonical ensemble.

For completeness, let us mention the last thermodynamic ensemble. In general,
any of the ensembles can be seen as the probability distribution maximizing the
entropy= (recall Sec. ) under a different constraint [90]. In the microcanonical
ensemble, the energy is strictly fixed. In the canonical ensemble, we relaxed this
constraint and only fix the energy on average. In the remaining grand canonical
ensemble, it is the number of particles IV that is only fixed on average. Just as the
thermostat acts as an unlimited reservoir for energy fluctuations in the canonical
ensemble, we imagine that there is an infinite reservoir of particles in the grand
canonical ensemble. This particle reservoir is given a chemical potential analogous
to the temperature. More generally, we will call grand canonical ensemble any

P, =

12Here we mean the “statistical” definition of the entropy found by Gibbs and rediscovered
by Shannon S = —Z{x} p(x)log p(x), which can be neatly derived from the microcanonical
definition of Eq. (@) using Stirling’s approximation of factorials and the fact that the entropy
is additive [90].
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probability distribution where a constraint (that is not the energy or analogous)
is relaxed and only enforced on average instead of being strictly fixed, as will be
the case in Chap. . In this example, we will see that enforcing a budget constraint
at the average level greatly simplifies calculation.

Note that in classical thermodynamics, all ensembles turn out to give identical
results in the thermodynamic limit — that is when the number of particles IV tends
to infinity. A quick way to see the equivalence between the microcanonical and
canonical ensembles is to generalize Eq. (R.6) to higher order cumulants of the
energy, thereby also highlighting the role of the logarithm of Z as a generating
function. As it is usually an extensive quantity, log Z ~ N, one can show

(B?) —(E)* 1
(E) YN N

and similarly for higher order cumulants, meaning that the distribution of F in-
deed concentrates to an infinitely narrow peak about (E). This sort of concentra-
tion of measure about the average is at the heart of the effectiveness of statistical
mechanics to describe high dimensional systems, at odds with the famous “curse
of dimensionality”.

Let us close this modest primer of statistical mechanics by mentioning the
notion of a typical solution. To illustrate this idea, we can write the partition
function as a sum over all possible values of the energy instead of all possible
states,

0, 2.7)

7= QE)e P = ¥ e BE-TSED), (2.8)
{E) (&}

Where one can identify the Helmholtz free energy
F=E-TS(E). (2.9)

Now, what we mean by typical is the most probable value (i.e. the mode in a more
mathematical jargon). The typical value of the energy E* is the solution to

0
OE'

<Q(E’)e—ﬁE’) =0, (2.10)

which dominates the sum due to the expected exponential nature of both factors.
As a result, we can loosely approximate the partition function using a discrete
version of Laplace’s method,

log Z ~ —F(E™). (2.11)

In the canonical ensemble, we can use the fact that the standard deviation of
FE becomes negligible with respect to its mean in the thermodynamic limit to
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immediately conclude that the typical and mean values of the energy coincide.
In disordered systems, where one has to average over random bonds for instance,
Eq. () shows that the representative quantity to consider will be the average
of log Z and not of Z itself in order to recover the properties of a typical sample.

2.1.2 Detailed balance

So far, we have written the equilibrium distribution describing a statistical me-
chanical system with a prescribed energy at a given temperature. Remarkably,
the only requirement on the underlying system’s dynamics is through the fun-
damental postulate that all microscopic states of equal energy are equiprobable
when it is isolated. This is all well and good, but it is legitimate at this point
to wonder how a system would practically evolve towards an equilibrium state
from a random initial condition. Besides, as we expect a large number of degrees
of freedom, the partition function may be difficult to work out analytically, in
which case numerical simulations correctly sampling the equilibrium distribution
become essential to measure observables of interest.

Perhaps the simplest way to prescribe dynamics given a target probability
distribution is to write a Markov chain. Starting from a given initial condition
Xy, the idea is to successively jump between configurations X, ..., X;_1, Xy with
rates

W(x = x') = P(Xi41 = X'|X; = x). (2.12)

The assumption that the rate only depends on the current state and not on previ-
ous history is what defines the Markovian nature of the dynamics. The associated
evolution of the time-dependent probability distribution of the states then follows
the master equation

O P(x,t) = Z [P(x/, )W (x' — x) — P(x,t)W (x = x')] (2.13)
x'#x

which essentially enforces the conservation of the total probability [91]. In the
steady-state, we obviously require 9;P(x,t) = 0. A sufficient condition for this
steady-state to sample the target distribution P(x) is therefore the so-called de-
tailed balance criterion

P(x)W(x — x') = P(xX"Y\W(x' — x), (2.14)

enforcing the balance between outgoing and incoming probability flux at the “mi-
croscopic” level of each state.

Beyond its apparent simplicity, the detailed balance condition carries rather
profound implications. Indeed, it is also the only choice which enforces time
reversal symmetry (TRS) of the dynamics: the forward and backward trajectory
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in time between two states are equiprobable. In fact, the precise definition of
an equilibrium steady-state (in_opposition with a nonequilibrium steady-state) is
that it precisely satisfies TRS®. In the rest of the thesis, we will therefore use
detailed balance violating and irreversible interchangeably.

As will be discussed in detail in Chap. §, one can sample the correct Gibbs-
Boltzmann steady-state distribution while violating TRS by finding transition
rates W that satisfy global balance (i.e. setting the rhs of Eq. (@) to zero)
instead of detailed balance. In this case, the system is out-of-equilibrium, even
though its steady-state distribution corresponds to that of a known equilibrium
system.

Suppose we place ourselves in the equilibrium context and therefore want to
sample the Gibbs-Boltzmann distribution while satisfying detailed balance. Plug-
ging in the expression of P(x) in Eq. (@), the rates must satisfy

W(X — X,) _ e—,BAE

e AFE = BE(x') — B(x). (2.15)

An essential aspect of these rates is that they do not require any knowledge of
the partition function, but only the energy difference between two specific states
(which is usually easy to compute).

There are then many choices of transition rates that will satisfy this detailed
balance criterion [93]. The most common, which we will for instance use in the
simulations of Chap. @, is the Metropolis algorithm [94]

W(x — x') = min (1, e_BAE) . (2.16)

Another common choice for spin systems that is worth mentioning is the Glauber

dynamics [95]
o BAE

W(x — %) = (2.17)

1+ o PAE"

Interestingly, Glauber dynamics are also a rather common way to state the logit
decision rule. Indeed, in the socioeconomic context it is in fact more natural
to define a model through the transition rate, representing an agent’s behavior,
rather than some stationary distribution of the choices.

2.1.3 Langevin dynamics

While these transition rates can be readily interpreted in the agent-based context,
this is often not the case in physics. As previously mentioned, there are many

13 A modern definition is that an equilibrium steady-state is one where there is a zero entropy
production rate at the trajectory level, a quantity which measures the breaking of TRS [92].
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possible choices satisfying detailed balance and it might be awkward to postulate
how the system evolves in reality if one is interested in the precise dynamics.
Besides, if the state x is a continuous variable, it might be difficult to correctly
sample the entire support of its probability distribution with discrete rates.
A somewhat more physical approach is to follow the continuous overdamped
Langevin dynamics
x(t) = F(x(t)) + V2TE(t), (2.18)
where £ is a vector of independent, identically distributed white noises, i.e. satis-
fying
(&) =0, (&i(t)&i(s)) = di0(t — s). (2.19)
Physically, if the degrees of freedom can be understood as a position, this evolution
can be interpreted as Newton’s second law in the case where the ratio of the mass to
the friction goes to zero (e.g. a colloid in a viscous fluid). In the absence of the force
field F, the above is for instance simply the Wiener process describing the large
time behavior of the pollen particle in water observed by Robert Brown [96,97].
With these overdamped Langevin dynamics, the evolution of the probability
density of x is given by the Fokker-Planck equation, i.e. the continuous analogue
of the master equation

O P(x,t) = -V - [F(x)P(x,t) — TVP(x,t)] = =V - J(x,1), (2.20)

where J is the probability current [98]. The equivalent of global balance neces-
sarily satisfied in the steady-state is therefore for the probability current to be
divergence-free. The sufficient condition that is analogous to detailed balance is
then to have zero probability current in the steady-state,

F(x)P(x) —-TVP(x) =0 < VlogP(x)=pF(x), (2.21)

i.,e. F must be a conservative vector field and is thus purely gradient (i.e. in
three dimensions V x F(x) = 0 Vx). As in the discrete case, this much stronger
condition is necessary for the dynamics to be TRS and therefore for the steady-
state to be an equilibrium one. As a consequence, any non-gradient term will
drive the system out-of-equilibrium. Once again, out-of-equilibrium dynamics for
which the probability current is not zero everywhere may nonetheless lead to the
same steady-state as some equilibrium system (Chap. §).

Replacing P(x) with the equilibrium Gibbs-Boltzmann measure, we imme-
diately find that the required force field is given by F(x) = —VE(x), and the
overdamped Langevin equation becomes

x(t) = —=VE(x(t)) + V2T&(t). (2.22)

The above simply correspond to a gradient descent with noise minimizing the
objective function E(x), providing an appreciable intuitive picture.
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2.1.4 A word on the relaxation time

Regardless of the prescribed dynamics, an important aspect to mention is the
time required for the probability distribution to reach equilibrium. Formally, this
relaxation time can be studied by diagonalizing the transition rate matrix in the
discrete case or the Fokker-Planck operator in the continuous case. Asymptoti-
cally, the distance between the probability distribution at time ¢ and its stationary
limit will decay exponentially as e */7, where the characteristic relaxation time 7
is the inverse of the first nonzero eigenvalue®2 (in absolute value) [99].

At low temperatures, the relaxation time will be dominated by the potentially
large energy barriers between local minima of the energy function. This can be
understood pictorially with Eq. () if the noise term is small, it will take a very
long time for a large enough fluctuation to lead to the escape a local minimum
even though another minima might have a smaller energy. More precisely, the
time to escape a valley with a free energy barriertd of size AF

T x exp (BAF), (2.23)

first observed empirically by Arrhenius [102]. As we will see shortly, this scaling
is crucial to understand potential failures of classical statistical mechanics.

2.1.5 Ergodicity

The assumption that all states of identical energies are equally likely to be explored
by the system is at the heart of the thermodynamics presented in Sec. . This
conjecture, also known as the ergodic hypothesis, is actually unproven for most
systems of interest. It is therefore an essential aspect to keep in mind, particularly
when the classical theory fails to replicate some experimental or numerical results.

As a matter of fact, even some relatively simple systems already display quite
evident violations of the ergodic hypothesis in the form of spontaneous symmetry
breaking. The standard Ising ferromagnet is perhaps the most well known example.
In its simplest form, its energy is given by the Hamiltonian

J
H=— Z S:S;, (2.24)
(4.3)
with S; = £1, 4 = 1,..., N, and where (4,5) indicates a sum over bonds, say

nearest neighbors on a two-dimensional lattice. (The attentive reader might no-
tice that this is quite conveniently the mean-field Random Field Ising Model of

1411 the reversible (equilibrium) case, all eigenvalues are real.

151t is essential to note that the important quantity is the free energy difference and not simply
the energy difference. As highlighted in [100], one can in fact have AE < 0 and still be confined
by the entropic term, see also [101] for an illustration of extremely slow relaxation without any
energy barriers.
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Sec. without the random field.) Importantly, this Hamiltonian has “Zg sym-
metry”, meaning that flipping the sign of all spins simultaneously does not change
the value of the energy. Now, in the low temperature region, the magnetization
M = % >;Si will be non-zero. In the absence of an external field as presented
so far, the magnetization has two equally likely values, M = +Mg, but every
instance of the system seemingly picks one of the two. The initial symmetry of
the Hamiltonian is thus said to be spontaneously broken because the resulting
equilibrium state is not invariant under the same symmetry. Note that while
spontaneous symmetry breaking implies ergodicity breaking (see below), the con-
verse is not true. As we will see with spin-glasses, there can be true ergodicity
breaking without apparent symmetry breaking.

At its root, ergodicity is a dynamical property. Indeed, it implies that the
entirety of the configuration space can eventually be explored by the dynamics.
Given a sufficiently long horizon, time averaged observables should therefore con-
verge to their ensemble average. Clearly, this is not true when there is spontaneous
symmetry breaking: if the system is truly stuck in an equiprobable £Mg state,
then averaging even over an infinite time will not give a zero mean magnetization
predicted by the Gibbs equilibrium state.

To understand this issue, let us dwell on the dynamics of the simple 2d-Ising
model. Suppose the system is in a state corresponding to the +Mg magnetization.
The least costly way to flip all spins and go to a —Mg state is a sweeping line defect
across the lattice [100]. It can be argued that the free energy barrier associated
to such a defect scales with its length, which is O(\/N ) in two dimensions. As a
result, AF diverges with N and, from the Eyring-Kramers scaling of Eq. (),
the free energy landscape is completely separated in two distinct regions in the
thermodynamic limit N — oo. As a consequence, one has to be careful in the
analytical treatment of the problem.

Such a situation is referred to as true ergodicity breaking. In other cases, the
configuration space is not strictly separated by infinitely large barriers, yet the
time required to explore an infinite system still diverges, and we therefore observe
non-trivial out-of-equilibrium dynamics. This is known as weak ergodicity break-
ing, and can for instance occur in so-called “trap” models [103] or with logarithmic
potentials [104], as well as some simplified spin-glasses [105] (see Sec. below).

2.2 Disordered systems

In the introduction chapter, we mentioned the Edwards-Anderson spin-glass, in
which neighboring spins tend to align or anti-align based on randomly drawn
interactions. Due to its very limited connectivity — 2d nearest neighbors in a d-
dimensional lattice — the EA model is extremely difficult to describe analytically,
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and as a matter of fact remains unsolved to this day.

A natural and more analytically favorable extension that we also mentioned
above is the “mean-field” version proposed by Sherrington and Kirkpatrick [35],
for which the Hamiltonian now reads

1
H = —5 éﬁ JijSiSja (2.25)
JFi

where the random symmetric couplings J;; = Jj; are still Gaussian but with a
variance that now scales as 1/N,

/| N _

In the following, we will take the SK model as the prototypical example of a dis-
ordered system, as the analytical challenges it poses are ideally suited to illustrate
essential concepts, which will be mentioned throughout the thesis.

NP

(#f. (2.26)

2.2.1 The replica method

In order to solve the model, the standard statistical mechanics path is to compute
the average of the logarithm of the partition function to obtain the typical free
energy density,

fo _Bi\fl()g 7, 7= e oMU, (2.27)
{s}

Here, overlines indicated averages with respect to the distribution of disorder given
in Eq. () To tackle the average of the logarithm, one can invoke the so-called
replica trick o
zZr—1
log Z = lim , (2.28)

n—0 n

where n will be treated as an integer throughout the calculation before being
famously (or infamously) analytically continued to 0 [50].
Rewriting the power as the product between n replicas of the system,

=13 3T, (2:29)
a=1 {Se}
and performing the average on the symmetric Gaussian bonds, we have
u 1 1 1 2
T 2 2 b
Zn —H{SZeXp (45 Nn+5f N%(N;sti) ) (2.30)
=1 a a
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Introducing the n X n overlap matrix
1
Qub =+ D osest, a#b (2.31)
i

which appears in Eq. () following the Gaussian average, the averaged repli-
cated partition function can be recasted (after a bit of work) as

7 | 11 (N/ﬁfdaz@ exp(~NA[Q)). (2.32)

Such an integral can be computed in the N — oo limit with Laplace’s method,

A N exp(—NA[Q*]), (2.33)

where Q* is the minimum (or saddle point in the complex case) of the effective
action A [106].

A priori, it seems perfectly adequate to treat the replicas as interchangeable,
and to assume that the overlap matrix has the much simplified structure

Qab =4q VCL, ba a 5& b. (234)

Solving the complete set of equations extremizing A within this ansatz, this
“replica-symmetric” (RS) solution finally yields the relatively simple self-consistent
relation

o0 dZ 2 _lZZ
qg= —— tanh*(8J/qz)e 2%, (2.35)
oo V2T
where this overlap can be interpreted as the Edwards-Anderson order parameter,

q = (S:) [B9)-

With this in mind, the solution appears perfectly suitable: we have ¢ = 0
for temperatures above T, = J, and ¢ > 0 below, reaching ¢ = 1 for T = 0, in
line with the phenomenology of the EA model and with numerical simulations.
Looking closer, however, this ideal picture starts to crumble. First, it is easy to
observe that the T" — 0 behavior of ¢ does not match numerical experiments,
approaching unity exponentially fast rather than quadratically. Calculating the
average energy per spin, one also finds U(T = 0) = —0.79, at odds with numerics
that suggest U(T = 0) ~ —0.76 for N — oo [107]. While these discrepancies
are already sufficient to convince most theoretical physicist that the theory might
not be entirely correct, things get worse. As the ultimate coup de grice, the RS
solution displays a negative zero-temperature entropy=, S(7 = 0) ~ —0.17.

18Tn a discrete system, the entropy is non-negative by definition, as it is the logarithm of an
integer number of configurations (Eq. (R.3)).
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Further investigation confirms the problem with the RS solution below the
critical temperature. Looking at the second derivative of the effective action A
on which the saddle point approximation is taken, it indeed turns out that this
solution is in fact unstable below the temperatures defined by the so-called de
Almeida-Thouless (AT) line [108]. In the SK model, the AT line coincides with
the critical temperature, and the replica-symmetric solution is invalid in the entire
spin-glass phase.

2.2.2 TAP approach

Facing the failure of the replica-symmetric solution and convinced that its root was
the order in which the N — oo and n — 0 limits are taken, Thouless, Anderson
and Palmer attempted to construct an alternative approach [109]. Indeed, given
the fully connected nature of the model, the mean-field limit should be exact,
and the problem well described by the magnetization at each site, m; = (S;). It
would therefore seem effective and natural to take a mean-field description before
averaging over the disorder distribution.

Brutally replacing the effect of the other spins by their average, the magneti-
zation at site ¢ appears to satisfy

m; = 2P(S; =1) — 1 =tanh | 8 Jym; |, (2.36)
J

known as the Naive Mean-Field Equation (NMFE) in the spin-glass literature
[110]. Unfortunately, the NMFE is very obviously wrong to describe the SK
model, as studying the linear stability of the paramagnetic m; = 0 solution gives
T. = 2J [50], twice the correct value. In other contexts however, we will see that
it is relevant and that it shares many of the interesting properties of the correct
TAP equations of the SK model (see below).

To obtain these correct TAP equations, it is actually essential to subtract
the “reaction” term, corresponding to the influence on the i*" spin on all others
(which is O(1/N) but acts on O(N) of its colleagues). Proceeding with a “cavity”
approach, i.e. considering the effect of an N + 1*! spin on a system of size N, it
is possible to show that the correct TAP equations read

m; = tanh BZ Jijm; — pm; Z ij(l — m?) . (2.37)
J J

From there, one can then define a TAP free energy Frap such that 0y, Frap =0
gives the TAP equations, which will be important to understand the relative
weight to give to different potential solutions.
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Now, these equations can reassuringly be checked to be consistent, in the
sense that their careful study for T' — 0 is compatible with ¢ approaching unity
quadratically and a positive value of the entropy. However, in the very words of
Thouless, Anderson and Palmer, “finding solutions [...] is not much easier than
the original problem”, as the equations are formulated for a given draw of the
disorder.

2.2.3 Complexity

An essential aspect explaining the difficulty of treating these TAP equations is the
(very) large number of solutions they admit. Very pictorially, one can imagine the
TAP free energy landscape as a high dimensional analogue to Fig. R.1|, where each
local minima is a solution to the TAP equations. Indeed, for a given realization of
the disorder, the number of solutions N; grows exponentially with the size of the
system. For a given draw of the disorder, this number can be computed “directly”,
by counting the fixed points among all possible configurations. Informally,

N
Ny = /Hdmié(TAP eq.). (2.38)
=1

Note that one must be careful to perform the proper change of variable such that
the Dirac § has a unit norm when the configuration is a solution to the TAP
equations [111]].

Computing the average of this number of solutions over the disorder, we obtain
the “annealed” complexity

S, = A}i_r)noo%log./\/}. (2.39)
However, and as will become clear in the practical case we will consider, the
exponential nature of the number of solutions means that this quantity may display
very large fluctuations from one realization to another. A more representative
measure of the typical number of solutions therefore comes in the form of the
“quenched” complexity

. 1 ———
Z:quen. = A}gnoo *IOgNJ. (240)

The disorder average of the logarithm can then be computed using the previously
introduced replica trick.

There is actually a fair bit of controversy and still many unknowns surrounding
the complexity of the TAP equations at finite temperature. As we will discuss
in more detail in Chap. [ff, the original annealed solution worked out by Bray &
Moore in the 1980s [112] was strongly challenged by the more mathematically
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Figure 2.1: Two-dimensional idealization of a complex free energy landscape. A large
number of local minima of similar depth are separated by large barriers.

sound “supersymmetric” solution developed in the early 2000s | (the potential
problem having first been identified by Kurchan in 1991 [114]). The Bray &
Moore solution was eventually saved by the fact that TAP states are not stable
minima but are in fact saddles with a single unstable direction in the N — oo
limit, justifying the broken supersymmetry [, ] Note that in the Bray &
Moore solution, quenched and annealed complexities coincide for solutions above
a certain free energy threshold [], although we will see that this is not always
true.d In any case, the important result to remember is that there exists an
extremely large number of solutions to the TAP equations for a given interaction
matrix. At T = 0, the result of Tanaka and Edwards N ~ e0-1992N [] holds
and illustrates this reality: for N = 100 there are close to half a billion solutions!

Interestingly, the direct approach of enumeration is very general as it does
not require one to know what the equilibrium measure is, and can be freely em-
ployed for any random equation. It should be noted, however, that an alternative
approach relating the complexity to the (replicated) free energy exists when the
system is described by a Hamiltonian [119]. In the portfolio problem presented in
Chap. B, we will also see that the annealed complexity can be approximated with
a cavity-like approach, albeit in a somewhat less controlled fashion.

"Tn general, the annealed average is an upper bound of its quenched counterpart by Jensen’s
inequality [@] and the concavity of the log.
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2.2.4 Replica symmetry breaking

The study of the TAP equations has shed light on an essential aspect of the spin-
glass solution landscape: the explosion of the number of local free energy minima.
This multiplicity of solutions in turn has an immediate effect on the problem’s
thermodynamics, which we can now relate to the failure of the replica symmetric
ansatz previously introduced.

When considering TAP states, attempting to measure thermodynamic prop-
erties (such as the average energy for instance) by taking an arithmetic average
over solutions turns out to be completely wrong. Instead, if one is interested in
the observable O, the correct approach is in fact to take

(0) = (O)awa,  wo e Fo, (2.41)

07

where (O),, and F,, are the averaged observable and the TAP free energy evaluated
in the TAP state « respectively. The states « are then referred to as pure states,
the linear combination of which leads to the Gibbs equilibrium state of the system
[b0]. Of course, given the exponential weight, only a relatively small fraction
of the solutions with the smallest free energies will actually contribute to the
thermodynamics. What is then of paramount importance is that in fully connected
models such as the SK, the energy barriers between the low energy TAP states
actually grows with NV and therefore diverges in the thermodynamic limit N — oo
[120]. Schematically, the free energy landscape is formed of distinct valleys, each
corresponding to a TAP state, that are completely separated from one another
(just as discussed in Sec. )

To study the problem averaged over the disorder, having a single value of the
overlap as in the replica symmetric case is therefore not enough [121]. Instead,
the correct approach is to study an overlap distribution,

1
P(q) = Zwawgé(qag -q), Gaf = me‘mf (2.42)
a,f i

As previously discussed, this is not technically specific to spin-glasses, as an Ising
ferromagnet without any external field also has an overlap distribution P(q) =
36(q — M2) + 30(q+ M32), see Sec. above. What is specific to the spin-glass
case is that the exponential number of quasi-degenerate solution means that P(q)
is a continuous function that is highly non-trivial.

The computation of the overlap distribution and the associated Parisi function
q(z), defined through the relation % = P(q), is where Parisi’s replica breaking
“scheme” comes into play [122,[123]. As this thesis does not contain bona fide
replica calculations, the procedure will not be detailed here. This being said, the

conceptual importance and dynamic consequences of replica symmetry breaking
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will be extremely important to understand some of the results presented in the
manuscript.

2.2.5 Dynamics

As might be expected at this stage, the extremely peculiar nature of the spin-
glass phase and its rugged free energy landscape (picture something like Fig.
but much more extreme) inevitably has consequences on the problem’s dynamics.
Simulating the SK model with a discrete Markov chain, using Glauber dynamics
for instance, some essential properties quickly appear below the critical tempera-
ture [124-126].

Defining the two-point correlation function

C(t.t) = 5 S S, (2.43)

(2
the most striking feature is probably that, for sufficiently large values of N, it
never reaches a time-translation invariant form C(¢,t') = C(t —t’) as one expects
in a finite-temperature equilibrium state. Instead, one observes aging, that is that
the behavior of C(ty,t, + t) remains a function of the waiting time (i.e. the age
of the system) t¢,,, even when it is taken to be large. The correlation function,
which will be discussed again in Chap. §, most often takes the additive form

C(tw, tw + 1) = Crelax(t) + Caging (t, tw)- (2.44)

Such a situation is illustrated in Fig. @ The leftmost part of the curves is
approximately invariant with the age of the system, corresponding to the Cielax(t)
regime, while the long time behavior is expected to be of the form

Chaging (t, tw) = Z C; < hh(ii))> (2.45)

in mean field models, where the (potentially infinite) sum runs over different “time
sectors” and the h; may be nonlinear functions [127].

Eq. () can_be superficially understood by picturing a rugged energy land-
scape as in Fig. R.1. At low temperatures, one can imagine that the system remains
stuck in local minima for extended periods of time. The relaxation component then
represents the first decorrelation which occurs due to thermal noise within a given
basin of attraction, and that is therefore independent of the age of the system.
The second component, on the other hand, represents the decorrelation following
a large thermal fluctuations leading to another valley in the configuration space,
with possibly a smaller free energy. As the system gets older, the configuration is
likely located deeper and deeper in the free energy landscape. The time required
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Figure 2.2: Two-point correlation function in the spherical SK model at T' = 0.3 for
different system ages, taken from [129]. Inset: same quantity represented as a function of
the time rescaled by the age, t/t,,, showing a clear collapse in the aging regime.

for a thermal fluctuation to overcome the larger energy barrier therefore increases,
inducing a dependency on t,,. This complex relaxation behavior is characteristic
of the weak ergodicity breaking phenomenon mentioned above [103]. Note that
this weak ergodicity breaking may occur in addition to (or in combination with)
the true ergodicity breaking®a, as in the SK model discussed here [[128].

An interesting example of a simplified spin-glass model displaying aging is
the spherical SK model (SSK). The SSK is essentially a continuous version of
the SK model [130]. Instead of Ising spins S; = £1, we now take “soft” spins
o; € R satisfying the spherical constraint >, 0?(t) = N Vt. Following Eq. (@),
the overdamped Langevin equation associated to the relaxation of the same SK
Hamiltonian in this continuous setting is then given by

Gi(t) = —u(t)oi(t) + > Jijoj(t) + V2T&(t),  i=1,...,N, (2.46)
j

where &;(t) is a Gaussian white noise, and the confining strength u(t) is adjusted
to keep the spherical constraint satisfied at all times. Importantly, this spherical
SK model has a significantly simpler free energy landscape relative to its Ising
counterpart that we have discussed so far. Indeed, the spherical version admits
an exact replica symmetric solution with only two equilibrium states in the low
temperature phase [130]. Nonetheless, the full resolution of its dynamics [129] has

demonstrated that the model retains interesting and non-trivial aging effects, with

Claging (t, tw) =C (i) as shown in Fig. @, and therefore displays weak ergodicity

breaking. These complex dynamics are inherently related to the fact that the

'8The main marker of true ergodicity breaking is to have lim;— oo C(tw, tw +t) > 0 whereas we
expect lim¢— o0 C(tw, tw + t) = 0 in the weak case.
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system does not reach equilibrium, even in this simpler setting, highlighting the
important difference between the statics and the dynamics of these problems.

2.3 Summary of the key notions

Let us summarize and clearly name some of the concepts that have been mentioned
in this section and that will be important throughout the thesis:

e When a system is defined by a global energy function, or Hamiltonian, it
has a Gibbs-Boltzmann measure and its static properties are studied with
the logarithm of its partition function (i.e. its free energy). Dynamics are
usually prescribed in the form of a detailed balance satisfying Markov Chain
or overdamped Langevin equation with only gradient contributions.

— If it is not disordered, the dynamics recover the statics and all is usually
well=, barring possible spontaneous symmetry breaking. This is for
instance the case of the system studied in Chap. H,

— If it is disordered, the statics will likely display replica symmetry break-
ing due_to a large number of solutions, as in the problem discussed in
Chap. B. As a consequence, any dynamics will probably get stuck in
some region of the solution space. The system displays weak and some-
times strong ergodicity breaking, and an equilibrium state might never
be reached. In this case, we have a Hamiltonian system with relax-
ational dynamics that is nonetheless perpetually out-of-equilibrium.

e When a system is defined through its dynamics, it may or may not be in
equilibrium.

— If the dynamics are relaxational, i.e. can be rewritten as a detailed
balance satisfying Markov Chain or overdamped Langevin equation
with only gradient contributions, we are back to the previous situations
in which the Gibbs-Boltzmann distribution is directly known,

— If this is not the case, there will always be some probability currents
in the steady-state. This is then a bona fide (nonrelaxational) out-of-
equilibrium system, for which the steady-state distribution is not known
in general, as the one studied in Chap. B To find the steady-state dis-
tribution, one has to solve the Fokker-Planck or master equation, which
might not be tractable analytically. It is possible that this steady-state
distribution matches a known equilibrium distribution, which will be
the focus of Chap. E, but this does not mean it is in equilibrium,

191t is actually possible to have a glassy regime and aging effects without disorder, as demon-
strated in [131] or [132] for instance — but the main idea stands.
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— It may very well be the case that such an out-of-equilibrium system is
also disordered, and displays weak or strong ergodicity breaking. This is
for example the case for a spin-glass like system with a non-symmetric
random interaction matrix, which will be the focus of Chaps. p and

This is, in a sense, the worse (or best, everything is a matter of
perspective) case scenario, as the steady-state distribution is unknown
and might never be truly reached due to the glassy dynamics.

In this summary, we have discretely introduced the notion of relazational (and
conversely nonrelazational) dynamics. Given its presence in the very title of this
manuscript, it may be worth clarifying what exactly this implies. In the context
of this thesis, relaxational dynamics will refer to any evolution which minimizes a
global free energy-like quantity. As a result, any detailed balance satisfying (i.e.
reversible) stochastic process falls within this definition, as hinted above. However,
this term also extends to deterministic dynamics with a Lyapunov function that
is monotonously decreased. Considering the evolution in time of a smooth field
for instance, as will be done in Chap. [, dynamics that can be written as the
functional derivative of a free energy-like quantity are then also relaxational.
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Key takeaways

e The logit rule is just another name for the Gibbs-Boltzmann distribu-
tion of equilibrium statistical mechanics over the choices of the agent.

 If the decision rule is applied to a system-wide utility function common
to all agents, the dynamics satisfy detailed balance and there is an
equilibrium steady-state that is entirely described by the free energy.

e When the system features random heterogeneous interactions, it is
said to be disordered.

e Disordered systems, such as the Sherrington-Kirkpatrick spin-glass,
are characterized by an extremely complex free energy landscape with
an exponential number of metastable states.

e This complexity generically leads to ergodicity breaking, meaning the
dynamics are trapped in some regions of the solution space and the
system truly never reaches its equilibrium state.
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Chapter 3

Rationality versus complexity:
the example of portfolio
optimization

Faites vos jeuz.. Rien ne va plus.

Chevalier de Balibari

As the very motivation for this thesis, we have argued that the “homo eco-
nomicus” viewpoint traditionally taken in socioeconomics is inherently limiting to
understand collective behaviors, and that statistical mechanics may be useful to
go beyond the rational representative agent paradigm. Before jumping into the
modeling of collective systems with interacting agents, let us first use a simple
example to further motivate the necessity for bounded rationality.

In an agent-based model, each individual will make decisions based on some
form of utility maximization. At this stage, we have also stressed that spin-
glasses exemplify how simple optimization problems may suffer from an extremely
large number of solutions, leading the optimization procedure to be “NP-hard”,
i.e. quickly computationally untractable. Bringing these two ideas together, it
is natural to ask if there are some realistic situations in which the maximization
procedure that is expected to be carried out by the agents is simply too difficult
and sensitive to be systematically and identically performed by all. As we will
see, another important consequence of this complexity is that it does not only
challenge the idea of rational decision-making, but also of common information at
the heart of game theory.

In this chapter, we reproduce the contents of [[], written under the supervision
of J.-P. Bouchaud and M. Benzaquen, barring a slight reorganization and some
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minor changes in phrasing and references.

3.1 The portfolio optimization problem

The idea of maximizing gains while minimizing risk for a portfolio of fluctuating
assets is one that is both at the origin and at the heart of quantitative finance. As
early as 1952, Harry Markowitz derived the general formula for the portfolio with
the smallest variance for a desired return [133], assuming the asset fluctuations are
fully described by a covariance matrix. Since then, Markowitz portfolio theory has
stood as a reference in portfolio management, and questions surrounding optimal
portfolios have been a very successful playground for physicists. By adapting
calculations from the physics of disordered systems, several theoretical results
have been obtained, mainly around the phase transition observed when the time
series used to infer the covariance matrix become too short relative to the size
of the portfolio [134-136], and the impact of having noisy covariance matrices in
general [137-139]. The effect of having further constraints in the optimisation
problem has also been explored, with very rich results. In particular, imposing
that investors must provide a deposit proportional to the value of the underlying
assets was shown to result in an exponential number of valid locally optimal
portfolios, reminiscent of the number of metastable states in a spin-glass [48]. As
argued in that paper, the existence of a very large number of nearly degenerate (or
satisficing) solutions for a given optimisation problem is conceptually important
because common knowledge can no longer be assumed. The complexity of the
problems faced by the agents generates irreducible uncertainty, a quandary called
radical complexity, and two strictly rational agents may then take very different
decisions if their information and its treatment is not exactly the same. In that
sense, radical complexity appears as a clear contradiction of the classical “homo
economicus” and rational expectations paradigm discussed in Chap. m

In practice, a constraint that has long attracted much interest in the risk man-
agement industry consists in enforcing long-only portfolios. Denoting w € RY the
vector of weights associated to each of the N possible assets an investor can con-
sider with ), w; = 1 (fully invested), a long position — which amounts to betting
on the increase of the asset price — corresponds to a weight w; > 0, and conversel
a short sell —in which case we bet on the decrease of the price — refers to w; < 0.
There are a variety of reasons why one might need to avoid short sells, ranging
from explicit investment mandates to extreme cases such as regulatory bans as

20While it might appear unusual to have negative weights in the portfolio, these can be under-
stood rather intuitively. Indeed, to perform a short sell, one actually borrows a stock to another
participant, and sells it at the current price, in hope of buying it at a later time for a smaller
price and returning it at that stage. The negative weight is then rather natural, as it indicates
that one owes this fraction of their portfolio of stock i to the other participant.
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those seen in Europe during the Coronavirus outbreak. On the fundamental level,
very interesting behavior has been observed when the long-only constraint is en-
forced, as portfolios quickly tend to become very sparse, resembling choices made
by individual stock pickers [140-{142]. Interestingly, this constraint also allows to
draw analogies with the ecological equilibria reached by some population dynam-
ics models, which have also attracted considerable attention from the spin-glass
community in recent years.

3.1.1 Problem statement

We consider a portfolio of N single assets, and assume (in line with the majority
of studies on portfolio optimisation) that asset returns are correlated Gaussian
variables. The portfolio statistics is fully characterized by its covariance matrix
Cij = (mimj)—pipj, where we have introduced for each asset i the fluctuating return
n; and its expectation p;, and where this expectation is typically approximated
as a time average in practice. The full correlation matrix is notoriously difficult
to infer from noisy financial time series (see e.g. [139]), which is why simplifying
hypotheses are generally used in the asset management literature. One of them is
given by the one-factor risk model, which, rather than attempting to incorporate
all possible sources of fluctuations, assumes that correlations are mostly due to
the market exposure. Indeed, empirical analyses on stocks show that the top
eigenvalue of the correlation matrix, corresponding to the so-called market mode,
is largely dominant relative to the other eigenvalues (see e.g. [143]). Such an
observation then suggests that all the assets have a common source of volatility
(the overall market) explaining a large part of the cross-correlations, and leading
to a covariance matrix of the form

Cij = 205 + BiB;- (3.1)

The asset-specific parameter z; = 01-2 , with o; the “idosyncratic volatility”, models
the uncorrelated asset volatility not accounted for by market-wide events, while [3;
is to be understood as the gensitivity to the market (Chap. 9 of [17] for a complete
discussion on the matter).

For an investor interested in constructing an optimal portfolio, the expected
returns are of course key parameters. However for this theoretical analysis, which
aims at drawing qualitative insights regarding the multiplicity of solutions and
its implication on portfolio stability, we impose the simplification g = 1, where
p = {itien, Ny (see Appendix for extensions to arbitrary pu;’s). In this case,

21Unfortunately the correlation to the market is widely known as the “beta coefficient” p,
which might induce some confusion with the intensity of choice or inverse temperature 8. There
is thankfully no such rationality parameter in this chapter, but we have adapted the typesetting
to avoid confusion.
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the optimal portfolio, also coined the Markowitz portfolio, which minimizes the
risk o2 = > Cijwiw; for the given expected return i, = 3, w; = 1 (which
conveniently also corresponds to the fully-invested constraint) enforced using a
Lagrange multiplier, is given by:

-1
_25%
= L

Zi,j Cij
Within the one factor model, the covariance matrix can be easily inverted using
the Woodbury matrix identity [144]. Up to a normalizing constant, one obtains:

R PR LT
wi o (1 B’1+ij5§/z]~>' (3.3)

This equation is central for the problem that we aim to explore in the following.

(3.2)

W

3.1.2 Link with population dynamics

Let us take a minor sidestep towards ecological equilibria. Consider now ¢ =
1,..., N species associated to a certain “carrying capacity” in the environment.
These species furthermore interact with each other, either competing for resources,
or in predator-prey relationships, or else in a mutualistic, cooperative mode.

In its simplest form, where we consider that all species have identical growth
rates p; = 1, the population dynamics are described by the general Lotka-Volterra
equations:

i(t) = i(t) | pi — pak; "wi(t) =Y agw(t)|, with =1 Vi,  (3.4)
J

where x; is the population of species 7, k; its carrying capacity, and oy; is the
N x N interaction matrix [47]. In this model, a positive entry a;; corresponds to
species ¢ and j competing for resources or 7 being a prey and j being a predator
(in which case aj; < 0). Setting &; = 0 to identify fixed points of the system yields
the equilibrium population of the species:

T = Z C;, (3.5)
J

where here Cj; = 2;0;; + o, with z; =k ! Naturally, in this context, one must
have z; > 0 V1 since populations cannot be negative.

Experimentally, it is very difficult to gain insights on the nature of the inter-
action matrix or its eigenvalues. As a matter of fact, it is this observation that
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initially motivated Robert May to use Random Matrix Theory arguments in his
seminal paper [145]. While the qualitative phase portrait for the dynamical be-
havior of the model is independent of the exact distribution of «a;; [47], it seems
natural from Eq. (@) that the equilibrium picture would be dependent on the
interaction matrix model.

Here, we propose a drastic simplification and choose the interaction matrix
to be of unit rank: «a;; = ;f;, corresponding to species competing for a single
common resource, in addition to the self-regulation included in Eq. @) We will
take ’s to be independent and identically distributed, with a probability density
function p(f3). Consistent with the common notation in disordered systems, aver-
ages over this distribution (of disorder) will be indicated by an overline henceforth.
The B; coefficients then quantify how strongly species ¢ competes for the unique
resource with other species, and the interaction between two species then only
depends on how strongly they both depend on the resource. With this model of
interactions, the equilibrium populations map to the long-only optimal portfolio
weights (up to a constant that does not affect the sign), and both problems can be
treated identically based on Eq. (@) Note that the case of heterogeneous growth
rates p; is_equivalent to different average returns for stocks, and is discussed in
Appendix @

Taking B > 0 is a natural choice, both to avoid placing ourselves in an un-
bounded growth regime, and more generally because ecosystems tend to be highly
competitive. Naturally, the variance o2 = B2 — BQ shall also play a key role in
the equilibrium picture of the system and its properties. Finally, it is important
to note that the unit rank model yields a symmetric interaction matrix, which
amounts to either cooperation or pure resource competition. Predator-prey re-
lations require, as noted above, asymmetric interactions between species ¢ and

7

3.1.3 Spin-glass formulation

Suppose we now enforce the non-negativity constraint common to the two prob-
lems. For the portfolio, this means the positions (assets) associated to short sells
after the Markowitz optimisation, i.e. associated to w; < 0, will have to be re-
moved from the portfolio altogether, reducing the effective universe from which
stocks may be picked. Likewise, an extinct species (z; < 0) is by definition re-
moved from the ecological universe, leading to an ecology with a reduced number
of viable species.

Here, we introduce “spins” {0} that can take the value #; = 1 if position i
is included in the (possibly reduced) asset or species universe and 6; = 0 if it is
excluded from it. Clearly, without excluding any specific entity, 2V combinations
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of {6} can be constructed from the N assets or species initially considered@. The
central question can therefore be reformulated as follows: we seek the number N
of possible configurations {#}, among these 2V, that satisfy the non-negativity
condition (see Eq. (B.) below). These spin variables are then related to the
weights of the underlying positions through Eq. (@) Indeed, only the included
positions, i.e. those with #; = 1, now contribute to the sums, while the weights
associate to positions with 6; = 0 are, by definition, discarded.

This quantity can easily be understood for financial assets, as it corresponds
to the number of long-only Markowitz-optimal portfolios that can be constructed
from a set of N assets. In the context of ecological equilibria, the interpretation is
similar even if species are not “selected” in the same way as stocks. Ny can then be
seen as the number of viable stable ecosystems that result from particular subsets
of the N interacting species. The existence of solutions with a lower number of
highly concentrated species in addition to the default, most diverse, solution is
actually particularly interesting in the ecology context when considering the so-
called Allee effect, which states that an increase in population density is correlated
with higher survival probability [146]. In both cases, this quantity, which may
appear somewhat artificial at this stage, will be essential in understanding how
disorder chaos arises and can impact these systems in a very concrete way.

Naively, one could try to characterize the number of solutions by its average,

Ne=>_T1© bwwn), (3.6)
{0y k

where we take the convention ©(0) = 1 for the Heaviside step function, and
averages are taken over the distribution of 3. At this stage, one may notice how
formally similar this enumeration is to the counting of TAP solutions discussed
in the previous chapter, where the Heaviside step function replaces the Dirac
0 distribution enforcing the TAP equations. As in the spin-glass setup, a key
quantity in the study of the number of solutions is the annealed complexity

_ log Ny
R Al (3.7)

As previously mentioned, in the Sherrington-Kirkpatrick spin-glass this quantity
is indeed equivalent to its more representative quenched counterpart where the
logarithm is averaged (requiring a more involved replica calculation) for metastable
states of sufficiently high energy [112]. Another useful observable is the sparsity,
describing the average fraction of the N possible entities that are included in the

229N _1 solutions to be exact, as the empty portfolio cannot satisfy the fully invested constraint.
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configuration. We can write it as

1 N
u= NZ;GZ». (3.8)

Among the N configurations satisfying the non-negativity constraint for a
given set {B;}, one will be “as full as it can be”, meaning u will reach its maxi-
mum value, the average value of which is noted m below, with m < 1. In asset
management terms, this quantity corresponds to the most diversified long-only
portfolios. For population dynamics, it is the most diverse ecosystem that can
result from all possible viable ecosystems resulting from the N species.

3.1.4 Empirical data

In order to study the likely number of valid solutions, it is essential to have some
information on the distribution of the 3 coefficients.

For the portfolio problem, where 3 is a widespread metric for an asset’s corre-
lation relative to the market, high quality data is readily available. Using returns
from a large number of US stocks over a two year time span (up to November
2020) reveals that the s are normally distributed about 1, as shown in Fig. B.1j(a).
We shall thus take as a starting point i.i.d. variables B; ~ N (1, ¢?), which conve-
niently implies that o and N are the problem’s sole parameters. Nevertheless, all
calculations can easily be generalized to any B # 1 since the problem is invariant
under the simultaneous scaling of all Bs and all zs by an arbitrary factor « and
a?, respectively.

This being said, other distributions for 3 can also be of interest. In particular,
if one focuses on specific sectors, the empirical distribution of volatility matches a
uniform distribution relatively well as can be seen in Figure B.1i(b). Alternatively,
looking at weekly returns rather than daily returns to construct the volatility gives
thicker tails, between a Gaussian and Laplace distribution, as well as some slight
skewness, visible in Fig. @(c)

As mentioned in the previous section, there is unfortunately no such data for
the interaction matrix in ecological communities, so in this context our model
parameters should be considered with a grain of salt.

In the following numerical experiments, markers labeled by “Data” will be re-
ferring to calculations that are using the empirical distributions of 3 from Fig. B.1].
Practically, the shape and width of the empirical distributions are obtained by
fitting the histograms, and data points are then constructed by random sampling
with replacement for different values of V.
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Figure 3.1: Distributions of  computed using the variance and covariance of returns
averaged over one and two years respectively (as accurately estimating covariance requires
more data). (a) Daily returns of the 1500 largest capitalisation stock, and fit to a normal
distribution. (b) (dark green) Daily returns of the 120 largest capitalisation stocks in the
energy and utilities industries, (light green) uniformly distributed points over the same
interval for the same sample size. (c) Weekly returns of the 1000 largest capitalisation
stocks, and fit to a generalized normal distribution of shape parameter b ~~ 3/2.

3.2 Numerical experiments

We start by performing numerical experiments in order to find a relevant scaling
regime. As we are interested by the static properties of a complicated optimization
problem, there are no obvious dynamics to simulate in our problem. Instead,
several approaches are possible.

3.2.1 Exact enumeration

As previously stated, our spin-glass inspired framing of the problem means that
there are generically 2V possible configurations to explore, giving as many unique
Markowitz optimal solutions®d among which only a fraction are expected to sat-
isfy the long-only constraint. The simplest approach is therefore to exhaustively
explore these configurations, computing the Markowitz weights every time and
determining whether there are any negative entries in the solution vector. This
“bruteforce” approach, which will be referred to as exact enumeration, is obvi-
ously exponentially expensive computationally, and can therefore only be carried
out for small to intermediate system sizes (N = 32 already gives over 4 billion
Markowitz portfolios to compute!). However, it has the advantage of giving ac-
cess to all properties of the solution space, allowing for a precise comparison of
the properties of valid solutions.

231n the following, a solution refers to any non-negative w for which Eq. (@) taken on the
covariance matrix restricted to the indices where 0; = 1 is satisfied
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First, one can consider the quadratic form

N
H{B}, {0}) = Z Cijtiwi0w;, (3.9)

,5=1

with the weights w; solutions to Eq. (@) with summations restricted to positions
with 6; = 1, represents the metric that is minimized under constraint, i.e. the
energy of a configuration in physical terms. For the portfolio problem, this is
obviously the total portfolio square volatility. Although less straightforward, H
can also be understood intuitively in the population dynamics context. Indeed,
as Cj; represents the level of competition for the resource between species 7 and j,
the quantity to be minimized corresponds to the aggregated level of competition
(including self-competition) for the surviving species.

The second quantity of interest is the overlap between two configurations {6}
and {#}. We choose to define it as

- 1L 1 1L
i=1 i=1 i=1

This definition differs from the usual spin-glass expression with the addition of
the second term on the rhs, that is included to ensure that two statistically inde-
pendent configurations have zero overlap on average.

Using these two metrics, we can study the distribution among valid configu-
rations of their excess variance or level of competition relative to the value for
the globally optimal configuration {6*} = argmingg, H({B}, {0}) for a given draw
{B},

AN =H{B} {0}) —H{B}{0"}) (3.11)

as well as their normalized overlap with this global optimum

_ a({6},{0"})
Q= 20 (7)) (3.12)

A value of Q close to 1 indicates a configuration has a large number of common
species or assets with the optimal configuration, Q close to 0 corresponds to so-
lutions much sparser than the optimum while negative values of the overlap are
reached for configurations that are largely full but orthogonal to the best possible
outcome.

The distributions of AH and Q can be obtained directly from the exact enu-
merations for small values of N repeated over several draws of the disorder. Such
a result for normally distributed [ is shown in Fig. , which also displays the
joint density of the two quantities. Looking at the overlap, we find that, as one
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Figure 3.2: Solution space explored by exact enumeration for Gaussian 3 with N = 28,
o = 0.1, averaged over 30 realizations. Top left: distribution of overlap relative to the
optimal configuration Q. Bottom left: distribution of excess variance relative to the
optimal configuration AH. Right: heatmap of the joint density of these two quantities.

could have expected, the majority of valid solutions are composed of a relatively
small number of non-zero spins and therefore have Q close to zero. More surpris-
ingly, looking at AH reveals that a very large fraction of these are associated to
a small excess variance or level of competition relative to the minimum. This is
further confirmed by the joint distribution, where we indeed observe that many
configurations display a small value of AH despite having Q =~ 0. As such, the
multiplicity of solutions and associated complexity is of a great importance in this
problem. Not only do we find a large number of portfolios or ecosystems that
satisfy the constraint, a large fraction of these achieve a portfolio variance or level
of competition very close to the best possible outcome. These quasi-degenerate
solutions might therefore become optimal following a small change in the disor-
der. This idea is at the root of the disorder chaos investigated in Section @,
and related to the de facto limitation of rational choice arguments in complex
situations.

3.2.2 “Pruning” algorithm

As previously stated, exactly enumerating the long-only solutions for a given draw
of disorder is a powerful approach, as it allows the precise study of all valid
solutions, but comes at a very high computational cost. To explore larger N that
are relevant for practical applications and the impact of the system size on the
optimal solution in an analytically tractable regime, we turn to a greedy heuristic
which turns out to be exact in this case.

The algorithm simply consists in removing iteratively entries for which Eq.
(B.3) gives negative weights, i.e. setting 6; = 0 for these positions, until all posi-
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tions are acceptable (see [147]). In the population dynamics context and given we
are considering homogeneous growth rates, this “pruning” approach is in fact a
very straightforward Darwinian evolution in the sense that most vulnerable species
(i.e. those with the largest 3;) are extinct first, until all species in the ecosystem
survive (and represent a positive fraction of the population). The outcome of
the algorithm is then the most diverse solution possible, for which the fraction of
non-zero entries is the previously defined sparsity m. The pruning algorithm will
therefore allow us to probe the evolution of this quantity for different values of o
and N for much larger systems than what was possible with an exhaustive search.

The result for stock-compatible B ~ A(1,02) in Fig. @(a) is consistent with
the findings of Lehalle and Simon [141]: the sparsity decreases rapidly and non-
trivially when the (s cease to be very tightly distributed about unity. Interestingly,
the sparsity clearly appears to be a function of the parameter y = o N only (see
Fig. B.3(a)). Such a scaling provides precious insight for the analytical formulation
of the problem, as will become apparent in the following section. It should be
noted that such a scaling result ceases to hold for large values of o, as a large
standard deviation yields a significant fraction of assets with negative 3 that can
obviously be included in the long-only portfolios (see Eq. (@)), thereby causing
m to increase again at large o.

This effect can be partially observed in the empirical points that have a slightly
wider distribution of 3 (¢ &~ 0.3) and a few negative entries (not shown). This
being said, in a range for N and o relevant for applications, the evolution of m
for real data points appears to be roughly in line with the x = o N scaling curve
where the fully numerical points lie.

The same procedure may be repeated for uniformly distributed 3 as show in
Fig. B.4(a). The result is qualitatively very similar, albeit with a slower decrease
in m with N. Interestingly we recover the scaling yx = ¢ N where ¢ now governs
the width of the distribution. Like in the Gaussian case, the points sampled from
empirical data appear to be slightly too widely distributed to perfectly match the
points from continuous probability densities, although the evolution of m appears
to be very close up to some offset.

Note that the pruning algorithm can be slightly modified in order to explore a
larger region of the solution space, beyond the globally optimal solution. Indeed,
by introducing some stochasticity in the iterative process, i.e. by setting 6; = {0, 1}
for stocks with negative and non-negative weights respectively with probability, the
algorithm will evolve towards some slightly sub-optimal (and therefore less diverse)
yet still valid solutions. Depending on the probability with which a priori valid
and non-valid stocks or species are excluded and included in the solution, one will
explore solutions with a more or less large overlap with the best possible outcome.
In other words, playing with this probability will shed light on different regions
of the joint distribution presented in Fig. B.2.
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Figure 3.3: Numerical and theoretical results for  ~ N (1,02). (a) Maximum sparsity
m as a function of x = 0N, inset focusing on the large x region. (b) Number of solutions
N, as a function of N, obtained by exact enumerations averaged over relatively few
(4-10) samples. Straight lines display the respective theoretical predictions, dotted line
corresponds to 2V. (c) Complexity ¥ as a function of 0N resulting from the exact
enumerations and normalized by log 2, inset zooming out to show the large x region. The
full line is the numerically exact result, and the dotted line is an asymptotic approximation
based on Eq. () below. The legends are shared for (b) and (c).

a C
ONN (<)
1 ()«—EEEIEI!’;;.‘L
0.8 ;
0.9 \\
0.61 ~ !
- 00.81 . i
o S R ﬂﬁ
. .71 4\\
0.2 0.61 10! 10°
’ —— Theory
0.0 I 05 === Asymptote
T T T ; T T T .0 T T
1071 100 10! 102 103 10 20 30 100 10!
x=0oN N x=0oN

Figure 3.4: Numerical and theoretical results for § ~ U(1 ++/20). See Fig. @ for the
detailed caption.

58



Chapter 3. Rationality versus complexity: the example of portfolio optimization

3.3 Analytical setup

3.3.1 Self-consistent equation

While it may appear natural to attempt to directly tackle the enumeration of valid
solutions using Eq. (B.6) and a Fourier representation of the Heaviside function,
such a calculation quickly requires a Gaussian assumption on the distribution of
 and thus lacks generality. The alternative taken here is to first study directly
the maximum sparsity m as a function of N, before translating this quantity back
to the number of long-only portfolios.

Going back to Eq. (@g that relates the weight of position i to its (3;, it imme-
diately appears that there should be a threshold value B+ above which a position
will likely be shorted (or a species go extinct), which must thus be excluded. This
is quite reasonable intuitively: an investor wishing to take the least possible risk
and unable to balance volatility through shorts will be unlikely to pick excessively
risky stocks or bonds. Likewise, since large values of 3 are associated to species
subject to increased competition, those species are likely to go extinct and thus
not be present in the equilibrium population. Given the distribution p(f3), the
average maximum sparsity m is then related to the threshold B+ through:

[5+
m=[" o) (3.13)

Therefore, calculating 7 will directly yield m. Of course, this threshold is only
valid in a statistical sense, and for a given set of B’s its value will differ from
the mean. Writing BT the fluctuating variable representing the largest 3 to be
included for a unique realization of the disorder, and modifying Eq. (@) with the
previously introduced spin notation directly gives

5 Z Bzﬂj/Z’j +1
T==1J 3.14
g > Bibi/z (3.14)

where we now have 6; = 1 for B; < [§+ and 0; = 0 otherwise. In order to
recover the typical behavior of interest, we introduce the probability of inclusion
conditioned to 3. We define Prob(6; = 1|3;) = Fn (i), where Fx () is a smooth
step-like function, centered about the mean B*. Clearly, we require Fy(f) to be
monotonously decreasing, with

Fn(—o00) =1 and Fn(o0)=0, (3.15)

and Fy(B) is therefore peaked in a region around B, the width of which is
expected to decrease as N increases.
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At this stage, we start by assuming that two spins are uncorrelated at order
N~!, which shall be checked a posteriori by ensuring the Onsager “reaction”
term is o(N~1!). The sums at the numerator and denominator of Eq. () may
therefore be treated using the central limit theorem, i.e. for N > 1

Ly B e+ L (3.16)
el ~ & )
N j 2; VN
where the partial expectation operator (- --)) is defined, for an arbitrary test func-

tion ¢g(.), as

(6(B) = [ dBg(Bo(BIFN() (317)
and is a zero-mean Gaussian variable, with a variance that depends on k.
Eq. (B.14) may then be rewritten as

~ 1
BT =pT + — 3.18
=t (3.13)
where the full expressions of ¥ and ¢ are given in Appendix @ From the very
definition of Fy(f3), which represents the probability of inclusion in the reduced
universe of an asset or species with respectively correlation or interaction strength

3, one can write Fy(f3) = Prob ([3 < B*) Using that ¢ is a Gaussian noise, this

can be expressed as

(3.19)

Fn(B) = %erfc [\/N(B_BJF)] ’

V2

where «y is the standard deviation of &.

We now place ourselves in the scaling regime where ¢ = x/N (motivated
by numerical results). In this case the width of the distribution of f — 1 scales
as N~!. Assuming that in this regime v — 0, one finds that to leading order
(B*) =m+ O (N~1'). Now, given the expression for 42 in App. @, one finally
obtains

v=0 (N_1/2> , when o=0 (N_l) , (3.20)

which justifies our assumption that v — 0 for large N. It furthermore shows that
the width of the smoothed step function Fx(f3) (Eq. ()) scales as N~ 1.

This result then allows us to_explicitly make Sommerfeld-like expansions of
averages, as described in App. , that now have no contribution at order N1,
Eliminating the higher order terms appropriately finally yields the equation for
the mean threshold

2, 1 z 1
BT = <<[?s>>c TN, O (N?) ’ (3.21)
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valid in the regime of interest o = x/N, with Z = (z*1>_1 and

B+
(9(B)e= [ aBo(BIn(e). (3:22)
—0oQ
Eq. () is self-consistent in the sense that B+ appears in both sides of the

equation.

Recall that this equation for BT assumes negligible correlations between the
occupation variables 6;. In the spirit of a bona fide cavity calculation, one should
look at the effect of the introduction of an additional asset or species on the
already existing #;. Knowing the importance of the Onsager reaction term in
Sherrington-Kirkpatrick spin-glasses, that turns the naive mean-field equation into
the celebrated TAP equation (Sec. @), it is important to ensure that the average
threshold is not affected by a similar term. This is done in App. where we
check that the introduction of a new spin does not alter the above equation at
order N~!. As such, Eq. () is our central analytic result for the problem at
hand, which we shall solve for different distributions p(f) in Sec. B.4.

3.3.2 Complexity and number of solutions

Now, we define N (K, N) to be the average number of solutions satisfying the
constraint with K among the N possible spins included. We may write an iter-
ative equation to describe the evolution of this quantity as N — N + 1. First,
the addition of this new element — that we will take to be at index 0 and associ-
ated to 3o — is only possible if (3¢ is small enough. If we recall the probabilistic
interpretation of the maximum sparsity m = Prob(Bg < BT), the probability of
6o = 1 being compatible with the constraint is simply given by m(co, K). In order
to form such a solution, with K among the now N 4 1 spins included, the new
element must be added to a solution previously comprising K — 1 spins. However,
a fraction of the solutions with K — 1 nonzero spins are rendered invalid due to
the fact that BT is a decreasing function of K. Those positions are such that
BT (K) < B; < BT(K — 1), and occur with probability

BH(K-1)
oK) = [ dBp®) = me K - ) - m@K), (329
BH(K)
and given (s are drawn independently, we finally find the expression
N(K,N +1) =N(K,N) +m(o, K)[1 — p(o, K)]EIN(K —1,N)  (3.24)

to describe the evolution of the number of solutions with K non-zero spins as N
increases. To properly initialise and close the recursion, we require

N(0,00=1 and N(N+1,N)=0. (3.25)
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The quantity that interests us, the average total number of solutions satisfying
the constraint, is then simply given by

N
Ne=> N(K,N). (3.26)

K=1

Defining n(z,t) to be the continuous analogue of N (K, N) with K — z and
N — t, the iterative equation may be rewritten as a partial differential equation,
valid in the large N limit. To leading order, i.e. neglecting a diffusion term of
order N1, one has

Az, t) + *' %) w(gz) Oyn(x, t) = ') p(ox) n(x, t) (3.27)

where we have used the scaling result m(N, o) = ¢(x) with x = o N as observed
in numerical experiments, and further justified by the analytical calculations in
the next section.

This inhomogeneous advection equation may then be treated with the method
of characteristics [148]. Taking the characteristic curve s in (x,t) space, and
writing z(s) = n(x(s),t(s)) the solution along the curve, the problem reduces to
the system of ordinary differential equations

dt

o (3.28)
ij = "D o(u(s)) (3.29)
dz z(s)¢’ (oz(s

5 = T pou(s)) 2(a(s), 1(s), (3.30)

with boundary conditions
t(0)=0, z(0)=0, z(0)=1. (3.31)

The solution satisfying these boundary conditions then directly corresponds, for
t = N, to the dominating term in the sum given in Eq. ()

To summarize, the self-consistent equation () allows one to determine the
average threshold BT for the inclusion of an asset or species in the non-negative
solution for a given sparsity. This quantity will in turn yield the expression of
the maximum sparsity m(N, o) = ¢(x) in the regime o = x/N. Solving the set
of characteristic equations tracing back to the known boundary conditions shall
finally give an expression of the average number of solutions, and therefore the

annealed complexity.
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3.4 Distribution-specific results

3.4.1 Gaussian disorder

As argued with the data presented in Fig. El](a), taking B to be normally dis-
tributed with mean 1 and variance o appears to be a good approximation for
the portfolio problem. Going back to Eq. (), all the terms of interest can
be written exactly using the Gaussian cumulative distribution function ®(z) =
3(1 + erf(z/v/2)). Taking o = x/N and introducing the ansatz

ﬁ+=1+xaf) (3.32)

allows one to rewrite the self-consistent equation as

z 1 _1
xf(x) = m E—éﬂ_e zf(X)27 (3.33)

with m = ¢(x) = ®(f(x)). As anticipated in the previous section, m(N, o) indeed
only depends on x in the scaling regime.

Setting Z = 1 (without loss of generality, since it simply corresponds to the
rescaling xy — x/Z) this equation may be solved numerically for f at given Yy,
the result of which is plugged back into the expression for m and is shown by the
continuous line in Fig. B.3(a). This analytical result is in excellent agreement with
numerical experiments, which gives us confidence that our self-consistent equation
is exact in the regime of interest. As expected, while qualitatively reasonable, the
model does not perfectly describe the sparsity corresponding to more broadly
distributed empirical (3’s.

This numerically obtained m = ) can also be injected in the iterative
expression for N (K, N) given in Eq. (@) Summing all contributions, the mean
number of solutions A, and associated complexity ¥ are computed and shown
by the continuous lines in Fig. @(b—c). The match between this semi-analytical
solution and the numerical results is also excellent, this time for both the arbitrary
and empirically determined values of o.

Based on the numerical solution of Eq. (), we find that f(x > 1) quickly
reaches large negative values. The error functions through which ¢ is expressed
can therefore be approximated asymptotically through the method of steepest
descent. Keeping the first two terms in the series expansion of m = ¢ in the
self-consistent equation, and taking iterated logarithms, one finally finds, at the
leading order in the scaling regime:

e(x) ~ ﬂ>?g><7 (x>1) (3.34)
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This asymptotic result is compared to the numerical experiments in the inset of
Fig. (a), displaying a very good fit for values as small as y ~ 10.

As detailed in App. , this result may be used in the characteristic Eq. ()
At the leading order, we find the expression of x along the characteristic

2(s) = \/Q:S(mgas)i [1 +0 (%)] . (3.35)

Eq. () may then be integrated to find z(s) the number of solutions along the

characteristic,
log 2(s) = 1/ 2 (log os)% |1+ 0 [ — (3.36)
z(s) =1/ — os .
& o & log os

From Eq. (B.28) and the associated boundary condition, we may now finally set
s =t = N. Going back to original variables of the problem, we therefore have the
asymptotic evolution for the number of non-negative solutions

N, ~ exp (,/ g(log aN)i> (3.37)

and the associated annealed complexity

N

5~ v/ 180T (3.38)
VX

This fully analytical asymptote is compared to the previously obtained numerically
exact solution of the recursion relation (dubbed “semi-analytical” below) in the
inset of Fig. @(c) The result appears satisfactory, although the conclusions are
limited by the numerical difficulty of obtaining the semi-analytical result for large
values of N. A careful observation suggests a small shift between the two curves,
which might be explained by the second derivative (diffusion) term in the partial
differential Eq. (@), which we neglected.

In any case, this result corresponds to a growth slightly faster than eVN but
significantly slower than e/V: asymptotically, the complexity of the rank-one port-
folio problem, or of the rank-one ecological problem, is zero, contrarily to the
spin-glass case. But the average number of different possible solutions is still very
large when N is large.

It immediately appears however, that this solution is somewhat contradictory
with the previously found behavior of the maximum sparsity. Indeed, taking a
closer look at the solution for x(s) along the characteristic curve, we find that the
associated sparsity u* = x(t)/t is given by

1
oa}
oyt 1081 (3.39)

VX
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Comparing with Eq. (), we find that u* > ¢(x) for x > 1.

In other words, it appears that the configurations dominating the count of the
mean number of solutions are those with a number of non-zero spins K* greatly
exceeding the theoretical prediction mN. While surprising at first, this result
means that the average (over $s) number of solutions is dominated by extremely
rare configurations {f3;} that allow K* > mN positions to survive in the portfolio.
Even if rare, such configurations allow an exponentially large number of portfolios
to exist, i.e. Cﬁ*. Hence the distribution of N is heavily skewed towards large
values, corresponding to events that are extremely unlikely to be witnessed in
reality. For typical configurations of the 3;’s, on the other hand, one expects that
eligible portfolios are much smaller, and contain at most mN assets. Correspond-
ingly, the typical number of solutions is expected to be of order of eN™ < Nj. In
order to compute precisely the typical number of solutions, one should compute
log N and the associated quenched complexity. This would require going back to
the direct formulation given in Eq. (B.6), expressing the Heaviside step function
with its Fourier representation and making use of the replica trick as detailed in
numerous works relating to spin-glasses (see [50,112]). We leave such a calcu-
lation for later investigations. The computation of the probability of observing
these rare configurations that dominate the average solution count, that is likely
directly dependent on the distribution of the 3;’s, is also left for future work.

This difference between the typical (and average) maximum sparsity m and the
most likely effective sparsity u* resulting from the iterative procedure is apparent
in Fig. that considers normally distributed 3, and is comparable in the uniform
case. Here, we stress that the former corresponds to the self-averaging fraction
of positions that may be included in a long-only Markowitz optimal portfolio,
while the later corresponds to the fraction of occupied positions associated to the
portfolio that dominated the calculation of N at large N (i.e. the solution at
the saddle in the spin-glass language). For small y, we have u* = % < m, as
naively expected. However, beyond y =~ 5 we find that indeed the mean behavior
u* exceeds the typical sparsity m. In this region, we would therefore expect the
calculation of A, and the associated annealed complexity 3 to deviate from that
observed in a moderate number of numerical experiments. The divergence between
u* and m appears to be relatively slow however, explaining why it is not clearly
noticeable in the numerical results in Fig. and B.4, where only a small fraction
of elements are excluded as m is still close to unity.

3.4.2 Uniform disorder

We now extend the results to other distributions of 3. The uniform distribution
is an interesting case, as it can model the case of stocks restricted to certain
industries (see @(b))
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Figure 3.5: Evolution of the effective sparsity of the maximum of N (K, N) calculated
iteratively for Gaussian  of variance o2, up to N = 400 (points), compared to the
maximum sparsity (line). The red vertical line separates a small x regime where one
expects that Ny ~ NP from a large x regime where N, > NP when N — co.

In the uniform case, the distribution is still centered about 3 = 1 but now has
width 21v/20. Once again, we take the scaling y = o N from numerical experiments,
and the ansatz BT = 1+xf(x)/N. The moments up to the threshold p* assuming
BT < 1+ /20 may then be easily written explicitly given the simple expression
of the uniform distribution. Taking the self-consistent equation at order N—1!,
where we can once again take Z = 1 without loss of generality, finally gives the
expression for the function f(x) = —v/2 £+ 2%4/,/x, from which the maximum
sparsity directly follows by picking the solution giving the positive result. This
solution requires the threshold to be before the right edge of the distribution, and
hence must be completed with the result beyond which saturates the maximum
value m = 1. Combining both gives a closed form solution for the entirety of the
domain without having to rely on asymptotics

1 forxg%, 510
p(x) = s forx> o (3.40)

This solution corresponds to the continuous line in Fig. @(a). Once again, the
match with numerical simulations is very good, whereas — as discussed in Sec-
tion — there is a small offset relative to the empirically sampled points that lie
slightly outside of the analytically tractable region. Note that the typical sparsity
of the portfolios decreases with N much more slowly in the uniform case than in
the Gaussian case.

The fully analytical solution for m = ¢(x) is substituted in the iterative
formula for the mean number of solutions, resulting in the continuous lines in
Fig. @(b—c). Clearly, this theoretical result displays a very good match with the
numerical points across all values of o tested.
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As before, we now employ this expression in the set of ordinary differential
equations to solve the partial differential equations describing the evolution of the
number of solutions. Thanks to the simple expression for ¢ that is now valid for
all values of y, the integration may be carried out with no difficulty (|A.4), giving

s = (7 22) [0 ()] 3a)

and thus simply replacing s =t = N,

N ~ exp { <253/4\]/VE> g} . (3.42)

As we might have expected from the slower decrease in maximum sparsity relative
to the Gaussian result, the average number of solutions grows faster in the uniform
case. The annealed complexity is now asymptotically given by

3 1
that is plotted with the dashed line in the inset of Fig. @(c) Here, the fully
analytical expression appears more or less in line with the semi-analytical iterative

solution.
As for the Gaussian case, we notice that the sparsity of the configurations

win

dominating the enumeration is given by u* = x(¢t)/t ~ XT3 > o(x). Just as
before, we have therefore calculated a mean number of solutions that appears to
greatly exceed the typical result observed. The typical behavior would then also
require to compute log Ny, which in this uniform case would not be as similar to
typical spin-glass calculations that rarely, if ever, involve uniform distributions
with a finite support. We note however that the typical number of solutions in
this case should grow as exp(v/N), i.e. much faster than in the Gaussian case

where it only grows as exp(y/log V).

3.4.3 Bridging the gap: generalized normal distribution

To understand why two different decays in maximum sparsity hold for the normal
and uniform distributions, we use of the generalized normal distribution
b —( 11| )b
() = ——=———€e ‘ov2 3.44
pu(B) 2o (1/h) (3.44)
where b is a shape parameter allowing to recover the usual normal distribution
of unit mean and standard deviation o2 for b = 2, and the uniform distribution
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centered at 1 and of width 2v/20 by taking the limit b — co. Moreover, probing
b < 1 can provide insights on the problem with heavier tailed distributions of
f’s, b = 1 corresponding to the Laplace case, which may be of interest when
considering e.g. the weekly returns presented in Fig. B.1(c).

The first step in our search for an analytical solution in this general formulation
is to express the moments up to the threshold (B). and (B2). as well as m itself in
workable forms. As detailed in App. , this can be done by reintroducing the
expressions for ¢ and BT. The generalized self-consistent equation now reads

zZ  x [

xf(x) = T . duu p(u), (3.45)

where u = ( — 1)/+/20 and we have postulated f(x) < 0 which is intuitive from
the expression of BT (we expect the threshold to be smaller than the mean value
of B, regardless of the distribution). Taking b = 2, the integral can be evaluated
exactly and we recover Eq. () as expected. As for the two previous cases,
setting Z = 1 simply corresponds to rescaling x — x/Zz.

For b sufficiently small, we may approximate the integrals asymptotically as
we expect f(x) to have a large magnitude for these widely distributed $’s. The
resulting self-consistent equation (App. ) now reads

Sy x FOONT?
W ﬁbm/b)< ﬂ> (3.46)

while the maximum sparsity at the leading order is

A ol
s (va)

m=¢(x) = (3.47)

Introducing the variables
|f(x)|>b X
= | —== and = —=—\ 3.48
Y < V2 N R (1)) (3.48)

the self-consistent equation takes the much simpler form
Y heY =1, (3.49)

giving in turn 2I'(1/b)¢ = ylfi/a:. For a given value of b, this simplified self-
consistent equation can be either solved semi-analytically or asymptotically in
the limit of x and therefore x large. For instance taking b = 2, Eq. () gives
y = W(z) the Lambert W function and thus

VQI\A//?,T(? ~ Y Qi?gx, (3.50)

m =
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Figure 3.6: Scaled sparsity as a function of b, 0 and N for generalized normal distribu-
tions. The continuous, dashed and dot-dashed lines correspond to the uniform, Gaussian
and Laplace asymptotes respectively.

thereby recovering the previously obtained result. Interestingly, the case b = 1
corresponding to Laplace distributed f3’s yields the exact relation

1 1
m= —

2 = Vax’ (3.51)
suggesting N, ~ e\/ﬁ, slightly slower than for Gaussian (3’s. Both asymptotic
solutions are shown in Fig. B.0, displaying a good match as x increases.

For b > 1, the problem is not as straightforward. Indeed, as the shape of
the distribution approaches the uniform case, the effective support narrows to
reach sharp cutoffs at B = 1 4 v/2 for b — oco. In this limit, we therefore require
—f(x) < V2, which is obviously unsuitable for the previously taken asymptotic
approximations of the integrals. Instead, the limit b — oo must be taken before
evaluating the integral. Doing so, one can directly recover the uniform expressions
for f(x) and m from the previous section, and therefore m = (ﬂx)_%

Rescaling the b — oo result suggests 2¢I'(1/b) ~ v/2/+/x for large b. This large
b solution, and the crossover between the two regimes, with ¢ decays as Xfé and
X! respectively, can be seen in Fig. B.6. Interestingly, for all finite values of b the
second regime will be reached eventually as x is increased, and only the uniform
distribution will remain in the first regime, the slower decay of which translates
in a larger number of solutions. As such, the uniform distribution will be the case
within the generalized normal family allowing for the largest number of solutions,
with finite b > 2 cases only affecting the exponent of the logarithmic term in the

complexity.
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While the above theoretical setup should hold for finite b < 1, it is difficult to
avoid a large number of negative 3’s when considering thicker tails, at which point
we would cease to observe a monotonous decrease of m in y. Besides, it seems
unlikely that a heavy tailed distribution of infinite support would correctly depict
the distribution of asset correlations. For interacting species, negative interac-
tions are not as unreasonable, as mutually beneficial relations between species can
exist, however their study would require a different analytical framework. Yet, if
negative values remain rare, it is clear from the self-consistent equation that as
tails get thicker, the number of solutions N further decreases before one enters a
new regime when negative 3’s start proliferating.

3.5 Disorder chaos

Having found that the number of solutions satisfying the non-negativity con-
straint is near exponential for relevant distributions of B (in the regime § > 0
and o0 = x/N), we ask ourselves if we can observe disorder chaos in this system.
Disorder chaos in this context is essentially the question of the stability of the
optimal solution if the disorder [ is slightly altered, particularly in the case of
large N. Indeed, if there is an exponential number of valid solutions, some with
similar values of the objective function, it is not hard to imagine that a slight
modification in the disorder could yield a complete reshuffling in the spin configu-
ration. This idea is further supported by the numerical exploration of the solution
space that was conducted in Section , where we found that a large number of
configurations with little overlap with the optimal solution indeed have very close
properties.

This phenomenon has been observed in spin-glasses [149-151], and may be
formulated in a formally very similar way. It should be noted that this form of
instability under changes in the quenched disorder, sometimes also referred to
as static chaos, is not to be confused with temperature chaos [152] (as the use
of B might induce some confusion in the spin-glass context). Introducing the
perturbation e, we alter the disorder as

Bi—1=(Bi—1) <\1/%) , (3.52)

where v; is a Gaussian random variable with zero mean and unit variance. This
definition allows one to keep the variance of the modified 3s unchanged.

To compare the optimal/most diverse non-negative solution to the original
problem to the perturbed one, it is necessary to introduce some measure of the
overlap between solutions. Recalling our definition of the overlap between two
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Figure 3.7: Overlaps obtained numerically for different fixed values of o, € while N is
varied up to 104, averaged over 64 realizations. Left: p ~ N(1,02), data collapsed with
Nigs. Right: p ~U(1+ \/50), data collapsed with Nioz. Insets represents the overlap
subtracted from 1, its maximum value for identical disorder, plotted in log-log.

configurations, Eq. (), we subsequently define the portfolio correlation as

o dg9y,10y (V)

On(w, W) = — )
\/Q{e},{e}(N) (I{é}7{é}(N)

where {#} and {A} correspond to the original and altered configurations respec-
tively. With this definition we ensure On(w, W) = 0 for independent portfolios,
and Oy (w,w) =1 for w = w.

The resulting overlap for Gaussian and uniform 3’s compatible with market
data is shown in Fig. B.7. Qualitatively, both collapsed plots appear similar, with
a decrease in the overlap as N gets large and other parameters are kept fixed.
Taking a closer look, it is clear that the disorder chaos is stronger for uniformly
distributed B’s, which is consistent with the fact that the number of solutions N
is larger in this case, as found in the previous section. While the reduction of the
overlap in N is easily understandable, the detailed scaling behavior in ¢ found
numerically is more challenging to describe analytically.

In any case, the logarithmically scaled insets shows a clean power law behavior
in N. Asymptotically, our results therefore suggest that Onx(w,w) — 0 for any
€ > 0 as N — oo, characteristic of disorder chaos. On both plots, the data points
sampled from empirical 3’s are well aligned with numerical simulations, suggesting
the chaos observed is robust somewhat beyond the regime studied analytically.

Regardless of the precise behavior of the overlap with the problem’s parame-
ters, the disorder chaos observed here is first and foremost a qualitative insight.
What this observation tells us has a practical consequence on the way one might
approach the systematic construction of a long-only portfolio. Supposing one picks

(3.53)
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among 3000 stocks for example, which is a reasonable number for a large asset
manager, a change of the order of 10% of the B’s could result in a significant
reshuffling in the positions that should be held, particularly if the assets consid-
ered are within the same or similar industries for instance. Such a change could
e.g. come from empirical estimation errors of the correlations, or simply because
the ’s naturally evolve in time depending on the many factors not incorporated
in the present risk model. Besides, if one decides to modify the portfolio to match
the new optimal result, it is likely that significant transaction costs could come
into play, particularly given the highly concentrated nature of large long-only
portfolios, so it would rather make sense to choose a portfolio that is a mix of
many different quasi-degenerate solutions of the optimisation problem. Note that
such a portfolio would then not be optimal in the Markowitz sense (i.e. would not
satisfy Eq. (@)), but would likely reduce the volatility as the B;’s are allowed to
vary.

From a conceptual point of view, disorder chaos means that two perfectly
rational investors with a slightly different method of estimating the 3s might end
up with very different optimal solutions in the large N limit. As emphasised
in [48] and recalled in the introduction of this chapter, the presence of a very
large number of quasi-degenerate solutions, at the heart of disorder chaos, leads
to some irreducible uncertainty in the decision of agents, even assumed to be fully
rational.

In terms of ecological equilibria, this observation also has concrete implica-
tions. Indeed, it suggests that a moderate change in the interaction between the
N species considered can lead to a significantly different outcome in terms of
surviving species at the equilibrium. It seems reasonable to imagine that some
physical changes to the environment (e.g. through temperature changes or the in-
troduction of chemicals) could alter the strength of interactions between species,
which could then lead to a significantly different equilibrium picture of the ecosys-
tem (on this point, see also [153]).

3.6 Conclusion

Let us summarize what we have achieved in this chapter. Through the introduc-
tion of a spin-glass inspired formalism, we have shown that IV assets or species can
be recombined in a exponential number of solutions satisfying the non-negativity
constraint associated to the portfolio and ecological equilibrium problems, in the
special case where the interaction matrix is of unit rank. More precisely, we have
computed the average (or annealed) number of solutions and have shown that its
logarithm grows as N, where o < 2/3 depends on the distribution of asset corre-
lations and interaction strength respectively. This average number does however
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not correspond to the typical behavior of the system, observed through a limited
number of numerical experiments for example. Indeed, we have found that in this
problem the mean number of solutions is heavily skewed by the existence of very
unlikely occurrences that yield an exponential number of solutions. In the case
of a full rank Gaussian interaction matrix, recent work confirms this idea, as the
annealed and quenched complexities of the Lotka-Volterra equilibria are found to
be markedly different in some region of the parameter space [[154,[155]. Finding
the typical (or quenched) number of solutions, by means of a replica calculation,
therefore appears to be a natural extension of the present work. We conjecture
that the result will be related to the typical sparsity m (V) of the solutions, namely
log N o« Nm(N). Hence, the number of possible long-only configurations that
can be constructed from the N entities considered remains large, specially for a
strictly bounded distributions of B’s for which Nm(N) ~ v/N.

We have also shown numerically that the solution landscape is similar to that
of other complex optimisation problems like spin-glasses, i.e. many very different
configurations or portfolios are quasi-degenerate, in the sense that they lead to
nearly identical values of the objective function (energy for spin-glasses, risk for
portfolios). Correspondingly, the phenomenon of “disorder chaos” in spin-glasses,
i.e. the extreme sensitivity of the optimal solution on the detailed specification of
the problem when N is large, is also present in our long-only portfolio problem
(or in its ecological counterpart).

For asset management, this result suggests that, in the presence of transaction
costs, the construction of long-only portfolios should account for such an instability
and in fact blend together optimal portfolios obtained by slightly varying the risk
model (here the value of the 5’s). More importantly in the context of this thesis, as
emphasized in the original paper from Gallucio et al. [48] and recalled above, such
a sensitivity is interesting in the sense that it questions the meaning of a rational
decision when there is a very large number of quasi-degenerate (or satisficing)
solutions. This type of radical uncertainty is characteristic of the idea of radical
complexity at the heart of this thesis.

For ecological equilibria, while there is unfortunately no empirical data to
support our choice of interaction matrix and to choose appropriate distributions
of 3, we believe that most of the conclusions drawn for parameters compatible
with stocks should hold for highly competitive environments with a large number
of similarly interacting species, as discussed in a different context in [153]. Indeed,
the analytical description can be generalized to any values of B > 0 that could be
appropriate for the ecology problem, and we have shown that our results are in fact
valid for a wide range of distributions of . While not explicitly discussed here,
heterogeneous expected returns (or growth rates) u; can be analyzed similarly, see
Appendix @ We find that the solution is akin to the one obtained with u; = 1,
with a threshold that is no longer on 3 alone but on the ratio (3/pu.
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In both the portfolio and population dynamics cases, the choice of the effective
interaction matrix Cj; is the main limiting factor in our study. Extending results to
more general (random) matrix models could be an interesting avenue to explore in
the future. This being said, the very general formulation of the problem, in essence
studying the non-negativity of a linear equation, leads us to believe that long-only
portfolios and ecological equilibria are not the only applications for the analytical
description detailed in Sec. . Due to its links with population dynamics, the
survival of firms in macroeconomic systems [[156,1157] could for example be another
problem to study with this spin-glass inspired approach.
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Key takeaways

e Given N financial assets described by their risk sensitivity to the mar-
ket, there are on average ~ exp (N®) number of ways to construct a
locally optimal long-only portfolio.

e The typical number of configurations is expected to be smaller, al-
though it likely remains very large for plausible values of N.

o A large fraction of these configurations are near optimal in risk despite
being composed of entirely different assets.
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e As a result of this quasi-degeneracy, a minute change in risk sensitiv-
ities leads to a complete reshuffling of the best possible outcome.

e This is an example of radical complexity leading to radical uncertainty:
the very meaning of “rational” decision making is put into question,
and we can no longer assume common information.

e The above results can be directly mapped onto the equilibria of Lotka-
Volterra equations with self-regulation in population dynamics.
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Chapter 4

Slutsky matrices and the
necessity of a global utility

You guys really believe that?

Philip Warren Anderson

In the previous chapter, we have seen how disorder generically gives rise to a
large number of nearly equivalent solutions, even in a simple optimization prob-
lem, challenging the idea that agents may be entirely rational and have access to
identical information from the purely practical point of view. Considering this
result, we now turn to a standard economic problem in consumer choice theory,
and revisit the classical result after introducing a parameter controlling the effec-
tiveness of the agents’ maximization of their utility, i.e. accounting for bounded
rationality in the decision making process.

This chapter is largely based on [2], written under the supervision of M. Benza-
quen and J.-P. Bouchaud, with an enriched discussion on detailed balance violation
in the interest of the overall thesis message.

4.1 Consumer choice theory

Consumer choice theory is based on the idea that, for a given bundle of M goods
with prices p € Rﬁf , agents choose a basket x to maximize their utility function
u(x), while subject to the constraint p-x = w, where w is the consumption budget.
Here, the basket compositions x;, representing the quantity of good ¢ acquired by
the agent, are taken to be real numbers, and further assumed to be non-negative.

As touched upon in Sec. , the utility function must then satisfy some
elementary conditions. In particular, it is taken to be an increasing function of
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the quantity of goods for any of the products considered, i.e. 9;,u > 0 Vi and more
of anything is always better, with no satiation. While the utility must therefore
have a positive first derivative, its rate of increase should be a decreasing function
of the absolute quantity of goods. In other words, utility is postulated to be
concave, i.e. the marginal utility gain diminishes as goods are accumulated.

Assuming that the agent is fully rational, the optimal basket that maximizes
the agent’s satisfaction x* is then simply given by

x* = argmax[u(x) |p - x = w]. (4.1)
x>0

Conventionally one defines the Marshallian demand x(p, w) which corresponds to
that obtained from solving problem (4.1), and the Hicksian demand (also known as
the compensated demand curve) h(p, u) defined as the demand that minimizes the
expenditure e(p, u) for a fixed utility level u [158]. Setting h(p,u) = x*(p, e(p, u))
and differentiating, one obtains the Slutsky equation describing the change in
consumption of good ¢ following a change in the price of good j

al’i . 8]11 _x'%
8}9]' _apj ]810'

(4.2)

Changes dx in the optimal basket’s composition in response to a price change dp
can thus be separated into two contributions: the substitution effect (first term
in the rhs of Eq. (@)), describing how consumption is impacted by changes in
relative prices of goods, and the income effect (second term in the rhs of Eq. @)),
expressing the impact of changes in purchasing power. The substitution effect is
often described in terms of the Slutsky matrix S, with entries therefore defined as

Y 0p; Op; T ow’

(4.3)

Provided that the utility function is sufficiently regular, S can then be shown to
be symmetric, negative semi-definite, and equal to the Hessian of the expenditure
function. In practice, the Hicksian demand cannot be observed directly, but the
Slutsky matrix can be estimated as the other two terms in Eq. (4.3) should be
accessible empirically. In the following, we will give an alternative theoretical
expression for the Slutsky matrix in terms of consumption fluctuations.

Before moving on to our statistical physics inspired study of bounded ratio-
nality, let us clarify the meaning of the Slutsky matrix in simpler terms, and
illustrate the type of situation it describes in practice. Suppose an agent typically
buys a quantity x4 of a given consumption good, say apples, and a quantity xp
of another, say bananas. Now, if the price of apples decreases, a kilogramme of
apples becomes relatively cheaper than that of bananas, so the consumer might
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be tempted to replace some of its consumption of bananas by apples (after all,
both are tasty fruits). This is the substitution effect mentioned above. Simultane-
ously, the fact that the price of apples has decreased without the overall budget
of the agent being altered means that they might have extra change after having
satisfied their fruit needs. With this freed up budget, the consumer might then
be tempted to get some chocolate that they previously could not afford. This is
the income effect previously introduced. The Slutsky matrix aims at isolating the
substitution effect, which is not directly observable as the utility of an agent —
that is supposed to be kept fix through this substitution — is not something that
one can measure (assuming it even exists).

4.2 Thermodynamics of bounded rationality

As described in the introduction chapter and emphasized above, taking agents to
be perfect optimizers seems to be an unrealistic assumption in most contexts, and
there are several ways to relax such an assumption. One is that agents have a
limited attention and cannot process all the information accessible to them, see
e.g. [p9] and refs. therein. As a result, agents experience perceived prices that
differ from real prices, which in turn affects the symmetry of the Slutsky matrix.

Here, we will instead turn to the previously introduced logit stochastic choice
rule, such that the stationary choice distribution is given by a Gibbs-Boltzmann
measure (see below) with an intensity of choice parameter acting as the inverse
temperature. As we shall see, this prescription allows us to describe a rather
wide e of phenomena while ensuring mathematical tractability of the model

1.

(Sec. )

4.2.1 A single agent

Formally, considering first a single agent, one can always write the probability
density for selecting the basket of goods x in the form

Lov®)  ifp.x =
Pix)=47° " BRI (4.4)
0 otherwise,

where v(x) is a certain function overweighting or underweighting basket x, and
Z a normalizing factor. Random choice theory postulates that v(x) is related to
the utility function through v(x) = fu(x), where we remind that § is known as
the intensity of choice. This is the specification we will adopt in the following,
however, some of our results below (such as Eq. (4.7)) are in fact more general
and would hold for an arbitrary function v(x).
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We recall that the normalization factor Z is known in statistical physics as the
partition function, which, given the hard budget constraint enforced here, writes

Z:/dxeﬂu(x)é(p~x—w), (4.5)
+

where [ 4 means that we integrate over non-negative baskets x > 0. For finite
values of 5, the basket x must now be statistically described, since different real-
izations of the system will lead to different outcomes. A suited definition of the
Slutsky matrix must therefore be considered. Here, we propose to replace all x;
by their averages (x;),
0 0
Sig = )+ (o) g ), (4.6)

with angular brackets referring to an average over the distribution given in Eq. (@),
to wit

1
(0} = 5 [ ax 0 e O5(p x - )
Z Jy
Note that in the limit 8 — oo, one recovers the standard Slutsky matrix since

Our set up of the problem allows us to draw several analogies with the statisti-
cal mechanics foundation of thermodynamics introduced in Chap. P. For example,
the strict application of the budget constraint §(p - x — w) is reminiscent of the
so-called canonical ensemble, where the conservation of the number of particles
in the system is strictly enforced. We will see later that one can also work in the
analogue of the grand-canonical ensemble where the budget constraint is only en-
forced on average. This eases some analytical calculations while being equivalent
to the canonical ensemble in some limits (for example when the number of goods
is large). One can argue that in some cases, allowing the budget to fluctuate (due
to loans for example) can be realistic as well.

4.2.2 A fluctuation-response relation

More interestingly, statistical mechanics also provides relations between the re-
sponse of certain quantities to external perturbations to spontaneous fluctuations
of these quantities in the absence of perturbations. These relations can be es-
tablished using the derivatives of the partition function, assuming an equilibrium
state has indeed been reached. In particular, the Slutsky matrix can indeed be
expressed in terms of other correlations (as was first mentioned in [159]). In
App. , we derive the following “fluctuation-response” formula in the single
agent case:

Sij = —I'(2ixj)c — Ow(@izj)e, (4.7)
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with I' = 0, log Z and the “connected” correlations (x;z;). := (xiz;) — (zi)(x;).
Note that, interestingly, the utility function u(x) does not appear explicitly in
Equation (4.7), which is manifestly symmetric in ,j. It shows that even with
bounded rationality, the Slutsky matrix is still symmetric, for any value of 3, not
only in the rational limit 8 — oo. Hence, the symmetry of the Slutsky matriz
may not be used as an argument for or against the rationality of economic agents,
contrarily to some claims made in [159] for example.

Our fluctuation formula Eq. ({.7) is also interesting from an econometric
standpoint, as it provides a way to measure the Slutsky matrix without varying
prices. Measuring response quantities from equilibrium correlations is in fact
commonly used in statistical mechanics, through what is referred to as fluctuation-
dissipation relations [[160], or, in a restricted context, to Einstein’s relation relating
mobility to diffusion for Brownian particles. Note that we do not have to specify
the nature of the dynamics or the structure of temporal shocks, provided these
lead to an equilibrium of the form given by Eq. (4.4).

One can go one step further and eliminate all derivatives from Eq. (@), but
only provided the utility function is known. One finds (see App. )

;U@zwﬁc = ZK%%;ZJ + 2<$i><33j><§;€> - <$z‘f€j><$€>

g . (4.8)
- <xi><wj§xk> - (:cj><m,»§m>},
and
= i<§;€>, (4.9)

both equations being valid for an arbitrary choice of k. These expressions consid-
erably simplify in the near-rational limit § — oo, see Section below.

4.2.3 Many agents

In practice, agents make correlated choices and we must adapt our formalism to
treat interactions. We thus consider N agents, indexed by « = 1,..., N, and
postulate that the stationary distribution for a simultaneous set of choices {x}
is still given by a constrained Gibbs-Boltzmann distribution

%eBU({xa}) if p-x®=w", Va,

_ (4.10)
0 otherwise,

P({x"}) = {

where U({x®}) is a certain function that generalizes the single agent utility func-
tion while encoding interactions between agents. Interactions mean that U cannot
in general be written as a sum of individual utility functions u®. At this stage, it is
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important to note that while this function should always exist in the steady-state,
explicitly relating it to dynamics at the agent level may not be straightforward,
see Section . Note in particular that Eq. () does not require the existence
of a “central planner”.

The probability that the N agents choose a bundle of goods {x®} is propor-
tional to exp(SU)/Zy, where the aggregate partition function Zy writes

Zn :/ (Hde >eﬂU<{X"}> ﬁa(p-xawa). (4.11)
a=1

a=1i=1

Here, we integrate over the M x N degrees of freedom, i.e. the quantities z§' of
good i consumed by agent «, while enforcing that all agents respect their own
specific budget w®. Analytically computing this partition function is usually very
difficult due to the product of Dirac ¢ distributions in the integrand. Depending
on the form of the utility, one might need to slightly relax the budget constraints.
As mentioned above, a way to do this is to move to the so-called grand-canonical
partition function Zy, defined as

2y = / (Hde > S (D)~ T0 hpx], (4.12)

a=11i=1

where the u®, known in physics as “chemical potentials”, are fixed by enforcing
that budgets are satisfied on average, i.e. p - (x*) = w®, Va. In general, the two
partition functions are not equivalent; however, many quantities calculated from
the two ensembles become identical in the large M limit and/or in the rational
limit 8 — oo, see Section ) for a detailed discussion.

Consistent with the smgle agent definition, we take the individual Slutsky
matrix of agent « to be given by

O 102y 4 (a2) 2

J Owe

a

ij -—@

(x%), (4.13)

where we have assumed that prices are the same for all agents. Note that we
have also taken a uniform system-wide rationality parameter [, although a gen-
eralization to different 5%’s is possible and would be an interesting extension of
our work.

As in the single agent case, the partition function allows one to derive a
fluctuation-response expression for the Slutsky matrix in terms of correlations.
Equation (@) may be rewritten (see App. ) in what will be referred to as
its “thermodynamic” form

0

o o 0 .
S5 ==Y [Daafa)de + 5= (@fal)e+ (1 = d) @] 5

~

(x?ﬁ : (4.14)
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with Iy, = Oy~ log Zn. This is the central theoretical result of this chapter, which,
to the best of our knowledge, is new. Again, the function U({x“}) does not
explicitly appear in this result. Importantly, unlike in the single-agent case, Eq.
(@) does not allow one to infer anything general about the symmetry of the
Slutsky matrices. In the case where interactions between agents are negligible,
i.e. when U({x“}) is the sum of individual utility functions, correlations between
agents are zero whenever v # « and we recover the single agent expression, as
expected.

Assuming the function U ({x“}) is known, one can again go further and express
derivatives with respect to budgets w? as a function of some correlations. For our
problem we find a generalization of the formula obtained for a single agent in the
canonical ensemble (see App. )

‘“ ot (4.15)
as well as
r - £€<;UZ>7 (4.16)

both again valid for any good k. From these expressions and given a utility
function U({x“}), all terms in Eq. () can be computed in principle, at least
numerically. Bear in mind, however, that these relations are only valid if the
system has reached equilibrium, which might take a very long time, for example
near a phase transition point. Note here the important distinction between the
thermodynamic equilibrium that we are referring to, which is characterized by
the fact that the system correctly samples the Gibbs-Boltzmann distribution of
Eq. (), and the idea of an economic equilibrium that is postulated from the
very beginning. As we shall see in Section , one can easily construct a system
that still represents an economic equilibrium but is devoid of a thermodynamic
equilibrium state.

4.2.4 Aggregate Slutsky matrices

There are a priori two possible definitions of the Slutsky matrix at the aggregate
level. One is simply to take the average over all agents of the individual Slutsky
matrices, to wit

_ 1 o
«
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However, empirical measurements often rely on estimates at the aggregate level.
In that case, a better suited definition uses aggregate consumption:

Sy 1= go-(E) + (@) 50, (4.15)

with overlines indicating averaging over agents e.g.

T; = %fo‘,
«

and similarly for the average budget w. In that case, as shown in App. , the
thermodynamic expression becomes

Sij =% [F»y<x§"x]7>c + %(x?wﬁc + ((@Y) - WTJ’) 8<33?>]7 (4.19)

a7’y
with the possibly heterogeneous factor

kY = @
ow

Clearly, if consumption is proportional to wages and if all wages scale with the
average wage, i.e. w7’ = k7w, then <$;I> = k7Z;, and there is no contribution from
the last term. In this case, we find an expression very close to the single-agent
case. More generally, S;; has no reason to be symmetric, except when all agents
are identical. In such a case, even in the presence of interactions and for bounded
rationality (8 < +00), S;; is always symmetric, whereas ?ij is not, as we in the
next sections.

4.2.5 Near-rational limit 5 —

In order to simplify the problem and get some intuition, we place ourselves in the
near-rational case where  — oo. This corresponds to the low temperature case
in a physical system, where one can expect that all relevant configurations {x*}
are close to the optimal configuration {x®*} that maximizes the function U ({x*})
subject to budget constraints. We thus write dz§' := z§* — 2% and Taylor-expand
to second order, resulting in

1
U{x“}) =~ U* 4+ 5{5XQ}TH{5XO‘} + O(62%), (4.20)
with H the (M x N) x (M x N) Hessian of the system evaluated at the maximum

of the function U({x“}), for a given set of budget constraints w®. Here we only
consider deviations {x®} that all satisfy the budget constraints, so that the first
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derivative terms U’ are zero as we expand around a maximum along all directions
but one. Calculating the partition function and correlations then simply amounts
to computing Gaussian integrals, although the budget constraints must still be
handled with care. At this stage we emphasize that in the context of large 3 all
fluctuations are small and Gaussian, and therefore our results in that limit are
actually very general. By taking the Fourier representation of the Dirac § (see

App. ), we finally find, to leading order in S~ 1:
1 _ _ \nw _
Oy =lafajle = —3 [(H D - ZZ(H (G oYL (4.01)
n,v5k,
with the N x N matrix G defined as
=D pE Y, (4.22)
T

and where the second term in the rhs of Eq. () is the result of the constraint
being applied.

Let us first illustrate this formula in the N = 1 case. In the canonical ensemble
and large § regime, one has

ou
—— ) = App + O(B?
(Foc) = Mu+0(572),
where A is the Lagrange parameter enforcing that the budget constraint is satisfied.
Hence the first term Eq. (4.7) remains finite since I diverges as § when (z;x;).
tends to zero as 1. The second term, on the other hand, tends to zero at least
as fL. It then follows that for a single and near-rational agent,

H 'p
VP H 'p
This is the classic expression for the Slutsky matrix, which our framework therefore
allows to recover in the corresponding limit, with corrections in B~' that can
be computed. Since the Hessian is both symmetric and negative semi-definite
at a utility maximum, we recover the classic properties of the Slutsky matrix.
“Homogeneity” is also easily recovered by checking that multiplying the matrix
by p indeed gives a zero eigenvalue.

When N > 1, we will need to specify the function U({x®}) to make the final

result more explicit. Keeping U fully general and taking the limit 3 — oo only
allows one to simplify the general expression Eq. () to

sy -y
v

yF

S =) [H—l - uuT} +O(BY), u= (4.23)

ZH"‘”C o™, (4.24)

Pj kv
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where we have used Eq. () and expanded 0,U to first order in dx. A similar
expression can be derived for the aggregate Slutsky matrix S;; as well. Remember
that C is of order 37! (see Eq. ()) so Si% is well behaved in the large /3 limit.
Although the final expression is not transparent, it is clear that Sf‘j has no reason
to be always symmetric, except when agents’ choices are uncorrelated, in which
case Ciajv = 0 whenever a # v and Cf3 is symmetric by construction. We will now
turn to an explicit model with herding, where the asymmetry of Slutsky matrix
can be made apparent.

4.3 Animal spirits

Both anecdotal evidence about fads and fashion and more serious scientific studies
point to the fact that agents’ choices can be strongly influenced by the choice
of others (see e.g. [15,[161-165]), an effect also known as “keeping up with the
Joneses” [166,167], see also [168]. We now propose a family of models which
account for interactions between boundedly rational agents, allowing for strong
imitation and herding, or “animal spirits” as famously coined by J.M. Keynes [169].
Indeed, these models lead, in some regions of parameters, to “concentration” (or
“condensation”) of choices, much in the spirit of the model proposed by Borghesi
and Bouchaud [170] (see also [171] for a recent extension). As we shall see, close
to the concentration transition, the non-symmetric contribution to the Slutsky
matrix reaches a maximum.

4.3.1 Interactions and herding

In order to study imitation or fashion effects, we first consider agents with log-
utilities and take the aggregate function U({x“}) to simply be the sum of all
agent-specific utilities,

N M
U({x“}) = Z Z ai log xf. (4.25)

a=1i=1

where af describes the preference of agent a for good i. In the following, we
assume that agents are homogeneous (a$ = a;, Va) but interacting, by which we
mean that the preference for good i depends on how much good i is consumed
by other agents. Mathematically, we posit that the preference for goods increases
with the k-th power of their average consumption:

a4 — a; [1 + c(@-)ﬂ , (4.26)

where we remind Z; is the average consumption of good i (over all agents), and ¢
and k are non-negative parameters that describe the strength and nature of the
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interactions.@ The interpretation of this specific aggregate utility-like quantity at
the agent level is discussed in Section .

The non-interacting case ¢ = 0 (or equivalently k£ = 0, up to some rescaling of
the a;) may be treated exactly in the canonical ensemble, i.e. strictly enforcing
the budget constraint. As detailed in App. , the equilibrium configurations
are given by
(@) = wh_ 1+pai

‘ Di Zk(1+5ak)7
which will henceforth be referred to as the non-condensed or uniform solution.
This solution matches results from numerical experiments, as illustrated in the two
top panels of Figure @(a) in the fully rational case, for example. For details about
how numerical simulations have been performed, see App. . The agent specific
Slutsky matrices Sj; can then also be written explicitly from the original definition,
verifying both symmetry and negative semi-definiteness for any . In this non-
interacting case, budget heterogeneities simply affect the magnitude of any given
agent Slutsky matrix entries and are thus inconsequential for the properties of
interest.

Taking k£ > 0 and increasing ¢, we expect the system to progressively depart
from this solution and concentrate on some product(s) as ¢ — oo, as observed
in the numerical simulations shown in Fig. .1j(a), bottom panel. To evaluate
how this concentration occurs, we start by taking w® = w, Va, that is a system
of interacting but identical agents, both in wealth and preferences. As is often
the case in statistical mechanics, the partition function cannot be computed ex-
actly for interacting systems for general IV, but can be more and more accurately
approximated in the large N limit.

In our case, it is convenient to relax the budget constraint and to place our-
selves in the grand-canonical ensemble where the budget constraint is only en-
forced on average. The procedure, detailed in App. @, allows us to rewrite
the grand-canonical partition function as an integral over the mean consumption
vector X

(4.27)

(0.9

ZN = / dxe VB, (4.28)
0

where f is usually called the “free energy density”, here given by

BF®) = [BupiTi — (1 + Bai[l + c(@)*]) (1 + log Z; — log(1 + Bas[1 + c(T:)"))

(2
—log I(1 + Ba[1 + c(@;)])] + o(1).
(4.29)
with p the “chemical potential” that can be thought of as the Lagrange multiplier
used to enforce the averaged constraint ) . Z;p; = w, taken to be identical for

Z4For an alternative specification, see App. @
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all agents, and I'(:) is the Gamma function. Importantly, this grand-canonical
description allows one to have a free energy density f(X) that is a sum over
entirely decoupled goods. The only coupling is through the value of y, which can
generally not be expressed as an explicit function of Z; and must therefore be
determined self-consistently.

Given that N — oo, the shape of the free energy then completely determines
the state of the system. Indeed, for large N the partition function can be estimated
using Laplace’s method, such that the values Z; = (x;) that minimize the free
energy are overwhelmingly more probable than any other values. Setting ¢ = 0
and solving the set of equations 8% = 0, one can for example check that the
previously obtained solution is recovered.

As in statistical physics, we expect to identify the phase transition from
the uniform to the condensed (concentrated) phase where herding dominates
[15,[170]. This occurs when the single minimum in free energy associated to the
non-condensed solution becomes a maximum while one or several new minima
appear. Such a change of topology occurs for some value cqit, as illustrated in
Fig. (b) in the case where there are only two products. For given values of ¢,
the depth of the minima in the concentrated phase will depend on the a; and p;.
The most favorable configuration (in this case having more of the least expensive
of the two products, as here a; = 1, Vi) is associated to a lower free energy.

4.3.2 Concentration for § — oo

In order to find precisely when and how concentration occurs, we first study the
case of fully rational agents, 8 — oco. Carefully rescaling the free energy density,
we find that an extremum is reached for the configurations X* satisfying

ai[l + (@) (1 + klogT})] = ppia;, (4.30)

with the value of the chemical potential being such that
> Tpi=w. (4.31)
i

As previously described, the critical value cqit = coo Where this transition occurs
in the fully rational case can be found by looking at the Hessian of the free energy
evaluated at the non-condensed solution. Doing so (see App. ), and choosing
for the sake of simplicity a; = p; = 1 for all agents, one finds

1 w

— = <M>k [2k 14 k(k—1)log (%)} . (4.32)

As long as the right hand side is strictly positive, there will therefore be a value
of ¢ above which concentration occurs when § — oo, while if this is not the
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(a) (b) )

0.171 % NC [ e e

[/ L l>—</
] 0 ' 1

3 0.18 g\ PC Tip1/w Tip1/w
=
2y
[ (c)

_U
9
w/M
NC

-
o

Figure 4.1: (a) Monte Carlo simulations at 5 — oo for M = 6 products, N = 256
identical agents, k = 2 and p; = a; = 1, compared to the non-condensed solution (dashed
line). Top: Non-Condensed (NC) region where the value of ¢, diverges [w = 0.5, ¢ = 1].
Middle: Possible Concentration (PC) region for ¢ < ¢o [w = 10, ¢ = 0.01]. Bottom:
PC region for ¢ > ¢o [w = 10, ¢ = 0.1], the system concentrates on one of the products
and departs from the non-condensed solution. (b) Illustration of the free energy f for
some rationality 5 in the PC phase for M = 2 products, ps > p; and as = a;. Left:
before the transition, ¢ < cqji;. Right: after the transition ¢ > ¢, the deeper minima
corresponding to increasing values of ¢. (c¢) Theoretical phase diagram of the NC and PC
regions at 8 — oo, a; = p; = 1.
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case concentration never occurs, regardless of the strength of interactions. The
resulting theoretical phase diagram is shown in Fig. @(c) for k = 2, a value that
we shall keep fixed henceforth. This phase diagram is in perfect agreement with
our numerical simulations, as shown in Fig. §.1|(a). Note that this procedure can
be repeated for different values of a; and p;, leading to qualitatively similar results.
Since the Hessian of the free energy is diagonal in our case, the critical value coo
would then correspond to the first change of sign of a diagonal element of the
matrix.

4.3.3 Finite [ effects

Placing ourselves in the regions where condensation does occur in the fully rational
limit, we now set out to understand how bounded rationality might alter the
phase transition. In the general case, analytical expressions are difficult to obtain.
However, numerically finding where the Hessian (which is still diagonal in i, 7)
loses stability for the non-condensed solution yields a semi-analytical critical line in
(¢, B) space. It should be noted that this condition, explicitly given in App. ,
is independent of the value of u, suggesting that the location of the transition is
identical in the canonical and grand-canonical descriptions.

Our analytical result can be compared to numerical simulations, for which
the transition to fashion dominated consumption is identified by looking at the
rescaled Herfindahl index

- S(@ipi/w)? —1/M
H= 1—-1/M '

This index takes the values 0 and 1 in the uniform (z; = w/(Mp;), Vi) and fully
concentrated (T; = w/p; for one product and = 0 for all others) cases respectively.
As shown in Fig. f.9(a), the numerical phase diagram and the theoretical critical
line match very well, despite the fact that the semi-analytical calculation is based
on the grand-canonical ensemble, whereas numerical simulations strictly enforce
the budget constraints for all agents. Furthermore, using the theoretical values
for cqit(8) to rescale the evolution of the average basket as a function of ¢/ceit
(as plotted in Fig. §.2(c)), we observe that the evolution of the mean basket and
related quantities appears to be largely independent of .

4.4 Consequences on the Slutsky matrix

Using a simple interacting model, we have shown that introducing herding in
the problem leads to a concentration transition and radical changes in the way
agents allocate their budget among the M available goods. We now set out to
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Figure 4.2: Effect of bounded rationality on concentration from numerical experiments
for M = 4 products, N = 64 agents, k = 2, w = 10, p; = a; = 1. (a) Herding phase
diagram, with the normalized Herfindahl 1ndex H calculated over the mean basket among
agents, giving H = 0 in the Non-Condensed (NC) phase and quickly reaching H=1
when condensation (C) occurs, indicating fashion dominated consumption. The critical
line calculated analytically is shown by the dashed line, and perfectly matches numerical
results. (b) Monte-Carlo dynamics of the mean basket for 5 =1, ¢ & ¢cit, showing large
fluctuations and switching behavior. The non-condensed solution is shown by the dashed
line. (c) Evolution of the rescaled average basket for different values of the rationality
parameter § as a function of ¢, collapsed using the analytical values of ¢t visible in the
phase diagram. The analytical solution at 5 — oo is shown as the continuous line. Inset:
normalized Herfindahl, that clearly reveals the transition around c for all values of 3.

evaluate the impact of such a transition on the Slutsky matrix and its properties,
in particular its negative semi-definiteness and symmetry.

Whereas the grand-canonical theory allowed us to calculate (z{*) =z} for the
entire range of 8 and c¢ self-consistently, the absence of an explicit expressions
prevents us from directly computing S7j. Instead, because we have found that
results are largely independent of 5 provided c is rescaled as ¢/ceit, we may gain
insight from the Gaussian approximation of the Slutsky matrix introduced in
Section and valid for 5 — oco. Equation () can now be made explicit and
writes (see App. @)

> (o )1+ Flog )] + (1= 8) 14 () ) €
73

(4.33)
for any £ = 1... M. As the most probable values X* can be obtained by solving
Eq. (@), the last step is to invert the Hessian of the function U({x®}) in order
to compute the covariance matrix C. Due to the homogeneous nature of the
interactions, the Hessian has a very regular structure and may thus be inverted
explicitly, as detailed in App. . Doing so and replacing in Eq. (), we find
that C has the following form

1 1
Cij’y = B |:90ij5a7 + N¢Z]:| ’
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where ¢;; and 1;; are both symmetric and O(1) in N, and, of course, depend on
X*. Such correlations, which can be checked to match numerical simulations very
well, finally yield an identical Slutsky matrix for all agents,
7 — J— —
Sij =~ pj% [ke(pij + i) (@) log T + [1 + ()" ]pis]. (4.34)
J

Together with Eq. (), this is a key result of our work.

Thus far, we have considered the case where all agents and goods are identi-
cal. In the present context, however, it is more illustrative to break the symmetry
between products by introducing heterogeneous p; and a;, leading to clear pref-
erences between products. An example with M = 4 goods is given in Fig. ,
showing a very good agreement between the fully rational theory and numerical
simulations with finite 8 and N sufficiently far from the transition region.e2 Upon
inspection of opposing entries, it quickly appears that the symmetry of the matrix
is not satisfied near the critical value of ¢ where condensation first occurs. Note
that all matrix entries quickly become very small once the system has entered
the concentrated phase. This can be understood for large ¢ by making the ansatz
T =w/pi — %Z#i y; for the dominant product and 7} = y;/c for others. Plug-
ging such a guess in Eq. () indeed solves the equations, and predicts S;; ~ 1/c
to leading order in ¢!,

The first property of the matrix that interests us is its spectrum, and in partic-
ular the non-positivity of its eigenvalues. As shown in Fig @.4(a), the fully rational
theory provides a very good description of the matrix eigenvalues, which remain
non-positive for the entire range of ¢. The leading eigenvalue actually peaks close
to the transition. Consistent with the decay of the matrix entries themselves, the
magnitude of the eigenvalues also vanish as ¢ increases beyond the transition. As
a result, our theory and numerical experiments show that the Slutsky matrix does
remain negative semi-definite for all value of ¢ and 5. The main consequence of the
herding transition on the spectrum is the decay in the magnitude of eigenvalues,
as confirmed by looking at the trace of the matrix shown in Fig. §.4(b).

The other essential property of the Slutsky matrix is its symmetry. Due to
the decay in the magnitude of the matrix entries once the system has entered the
herding phase, this property becomes difficult to measure as c is increased beyond
carit- Indeed, as both S;; and Sj; become very small, any finite numerical error
¢ affecting either entries will result in a very large relative asymmetry, at which
point most common measures of asymmetry will fail. To minimize the impact of

%5 Close to the transition, agents flip-flop between different basket compositions (Fig. @(b))7
which leads to anomalously strong fluctuations and corrections to the Laplace saddle point
method used in all our analytical calculations. This is a well known effect in statistical physics,
which leads to interesting phenomena in their own right, but that we do not explore further here.
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Figure 4.3: Evolution of the individual Slutsky matrix entries with ¢ for M = 4 product,
k=2 w=10, p = [22,2.1,1.6,2.3], a; = 1 from theory at 8 — oo (continuous
lines) and numerical experiments for § = 4, N = 16, calculated using both the pathwise
derivative estimates introduced App. (circles) and the fluctuation-response relations
(crosses), averaged over all agents, errorbars indicating one standard deviation. The
dashed horizontal line indicates 0, while dotted lines correspond to £0.1 as no vertical
scale is shown for visual clarity. Opposing entries have identical vertical scales as to
highlight the strong asymmetry of some entries (e.g. 13 and 31) close to the herding
transition.
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Figure 4.4: Properties of the individual Slutsky matrix shown in Fig. @ (a) Real part
of the Slutsky matrix eigenvalues ;. (b) Trace of the matrix, dotted line indicating zero.
(c) Asymmetry measure y. The analytical results for the aggregate matrix & are given
by the dashed lines for comparison (note that & remains symmetric for all ¢).

such numerical errors on the conclusions of our study, we propose an asymmetry
measure x defined as

Y = Ea Z]<Z(S% - S]az)
> 2j<i (55 +55)

which should be equal to zero for symmetric matrices, and diverge in the anti-
symmetric case. Employing this metric with the § — oo theoretical Slutsky
matrix, we find that the matrix is very close to (but not exactly) symmetric far
from the condensation transition. In the vicinity of ¢t however, strong interac-
tions give rise to a significant value of x, contradicting the conventional lore even
in the fully rational case. This theoretical result, compared with numerical re-
sults, is shown in Fig. 1.4(c), while also visible in Fig. 4.3. Note that, as expected
given our choice of identical agents with identical budgets, the previously intro-
duced aggregate Slutsky matrix & remains symmetric even as the concentration
of choice occurs. The theoretical results for this alternate definition are shown by
the dashed lines in Fig. @, where it is clear that the asymmetry measure y is
always zero. Interestingly, the eigenvalues of the matrix are very similar for the
individual (S;;) and aggregate (S;;) definitions.

Regardless of the metric, Fig. @ also illustrates the discrepancy between the
equilibrium theory we have devised and the numerical measurements in the tran-
sition region. As expected, the system indeed takes a very long time to reach the
Gibbs-Boltzmann distribution when the transition occurs. These non-equilibrium
effects are also reflected in the difference between the numerical measurements ob-
tained with finite differences and those calculated using the fluctuation-response
relations and the associated “thermodynamic” expression of the Slutsky matrices.
We expect that such effects will also be present in real empirical data, specially if
herding effects bring the system close to a transition point, as seemed to be the

, (4.35)
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case in the Salganik et al. experiment [164,[170].

4.5 Discussion

Before concluding our study, let us examine two subtle points that the above
analysis has treated in a somewhat cavalier way.

4.5.1 Global vs. individual utilities

In the numerical (Monte Carlo) investigation of our model of interacting agents,
we have assumed that individual agents change their basket of goods according to
the change of the “global utility” U({x®}) (i.e. a Hamiltonian) of the population
rather than of their own utility. In other words, agents also take into account the
change of utility of others when they update their choices. The main motivation
behind this specification is that the dynamics will then spontaneously reach the
Gibbs-Boltzmann equilibrium measure, Eq. () However, in the absence of a
social planner coordinating all agents, such a dynamics is not very realistic. Yet,
following an agent-based framework where individuals set out to improve their
own utility function, including the herding component ¢(Z)¥, would likely bring
us in the realm of nonrelaxational dynamics, for which general analytical tools are
still lacking.

Indeed, suppose we now consider dynamics where agents follow the logit rule
but this time on their individual utility and not on the sum of individual utilities
U =), u" Theindividual utility change of a randomly selected agent ~ following
a change in their basket of goods x” — x” 4+ Ax is

a; ke
AuY = Z — |1+ (@) + — (@) a] logz] | Az + O(AX?). (4.36)
7 i N
Now, we assume that there exists a global utility function U acting as the energy
of the interacting system, meaning that at each timestep and for all agents we
require

A =U(x' . X+ Ax,.. xN) U x7, . xY)

M ~
oU 4.37
:ZWA$i+O(Ax2) Vv € [1, N, (4.37)

i=1 "1

which by identification with Eq. (4.3¢) would give
ou  a e ke

97 = Pl [1 + ()" + N(xl) z] logz] | . (4.38)
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An obvious requirement for U (as for any other function) is that its Hessian must
be symmetric. Taking the derivative with respect to another agent’s consumption
of the same product, it immediately becomes apparent that the required symmetry
is violated due to the logz] term and that there can be no such function U. This
contradiction therefore demonstrates that having individualistic agents maximize
their own utility here means the system is non-Hamiltonian, and its dynamics are
therefore nonrelaxational and necessarily detailed balance violating.

Natural questions are now (i) how may the current (equilibrium) model still
be interpreted at the agent level and (ii) how is the phenomenology of the system
impacted if we abandon the Hamiltonian description and take agents to maximize
their own utilities.

To answer the former question, we start by writing the change in global utility
AU if the randomly selected agent ~ in the Monte Carlo dynamics accepts the
proposed basket of goods x7 + Ax. Assuming N > 1, we have

Mo v
AU ~ Z % <1 +c {1 + k%log xz] (xi)k> Ax, (4.39)
i=1 """ ’

where we remind the reader that the overline notation refers to arithmetic av-
erages over the agents. By analogy with Eq. (), this equation shows that
the dynamics can in fact be interpreted in terms of agents only concerned with
their own utility, albeit with modified values of the interaction parameter ¢ (¢ —
cl =c¢ [1 + k%@] ). The effective individual utility function is therefore con-
figuration dependent and varies in between agents due to the difference in their
consumption baskets, as somewhat expected given agents all coordinate to improve
the overall outcome. Interestingly, the fact that agents maximize the global util-
ity promotes the concentration phenomenon, as the logarithmic term will strongly
penalize goods that have lost the favor of the crowd.

Regarding point (ii), simulating the system with a decision rule based on the in-
dividual utility but with a constant ¢ —i.e. placing ourselves in a non-Hamiltonian
setting — results in a largely unchanged phenomenology, with the same herding
transition as was observed in the Hamiltonian case. The absence of this logarith-
mic penalty for small Z; appears to push the transition to slightly higher values
of ¢ and leads to more volatile Monte Carlo trajectories, with the appearance of
more frequent switches in the vicinity of the transition. Although the absence of
a solid theoretical framework to describe the steady-state in that case prevents
us from drawing definitive conclusions at this stage, we conjecture that most of
the results obtained at equilibrium regarding the Slutsky matrix continue to hold,
with only minor quantitative modifications.

Alternatively, one could also purposefully write a global utility for which the
detailed balance condition matches the maximization of an agent-specific utility.

96



Chapter 4. Slutsky matrices and the necessity of a global utility

To do so, the interaction term must be entirely symmetric in the sense that the
change in global utility is identical regardless of the randomly selected agent (which
was not the case with the previously studied model). For instance, one could take

U({x*}) = Zaalogx + = ZJM z])P, (4.40)

o

with J; a symmetric interaction matrix and 0 < p < 1 to preserve the concavity
of the utility. In this case, we then have

= Sl ptaty @), wan

¢
! Fo

which is equal to the “selfish” derivative of utility of agent a defined as

*({x°}) = Z a;log ' + Z T ()P (2])P. (4.42)
7#@

(Note the factor § difference between the definition of U and that of u®.) This
means that in such a model, the decision-making process based on a purely in-
dividualistic change of utility leads to an equilibrium distribution given by the
Boltzmann weight exp(SU) (see [14] for a similar discussion in the context of the
Schelling model mentionned in the introduction chapter).

The mean-field approximation of this model J;' = @;J/N is studied in the
limit 8 — oo in App. . For p > %, concentration will occur for sufficiently large
values of J, and we therefore expect our results for the Slutsky matrix properties
to remain largely unchanged.

In the case where J; is not symmetric, the problem may no longer be treated
with the standard techniques of equilibrium statistical mechanics. The system
can then still be simulated with a decision rule maximizing the individual utility
of the agent, but we can no longer assume that the system reaches an equilibrium
given by the Gibbs-Boltzmann distribution Eq. (%} The impact of such non-
reciprocal interactions will be at the heart of Part below.

4.5.2 Equivalence of ensembles

In order to study analytically the equilibrium properties of our interacting set
of agents and to determine when the herding transition occurs, we had to relax
the budget constraint and place ourselves in the “grand-canonical” ensemble. As
previously mentioned, the equivalence of results between the canonical and grand-
canonical ensembles is not guaranteed a priori, although in the present case the
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Figure 4.5: Evolution of the realized budget fluctuations in the grand-canonical ensemble
as a function of ¢/cei for M =4,k =2,w =10,a; =p; = land 8 = 0.5,1,2, 4,10, dotted
lines showing the unconcentrated solution. Inset: log-log scale showing 0?3 decreasing as
1/c (dashed line) for ¢ = ceit-

analytical (grand-canonical) results appear to match (canonical) simulations ex-
tremely well.

To formally assess the possible differences between the two ensembles, the bud-
get fluctuations in the grand-canonical ensemble must be studied. The ensemble
equivalence corresponds to cases where the variance of the realized budget are
vanishingly small. Hence, we set out to compute

o2 = < (éxf‘pi - w) 2> (4.43)

in the grand-canonical ensemble. This computation may be performed by intro-
ducing small heterogeneous perturbations to the chemical potential, y — pu+ du®
and differentiating log Zny with respect to du®. The calculation, detailed in
App. @, finally yields

M

_ (T7pi)?
7 = T Bl + (4.44)

The evolution of this quantity for different values of 5 as a function of ¢ in the
previously discussed case a; = p; = 1 is shown in Fig. . As expected, this
quantity vanishes for § — oo, as well as for ¢ — oco. In the ¢ < cqjt region,
where fluctuations are expected to be the strongest and thus where the difference
between the ensembles is expected to be the largest, the non-condensed solution
(dotted lines on Fig. @) gives 02 ~ O(M™'). As such, the grand-canonical
and canonical ensembles will become strictly equivalent only in the limit M —
oo. This being said, the Hessian of the free energy being independent of the
chemical potential suggests that despite this apparent absence of strict equivalence
between the ensembles for finite M, the onset of the transition appears to be
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largely unaffected. In any case, although precise measures of the fluctuations of
the system in the grand-canonical ensemble should be inaccurate for smaller values
of 3, this difference will not change the key results presented in this work. Besides,
one should expect that some amount of budget fluctuations are indeed present in
the real world!

4.6 Conclusion

Let us summarize what we have achieved in this chapter. By introducing a ratio-
nality parameter (or “intensity of choice”) 5 to account for the fact that agents
are not strict utility maximizers, we have first reformulated the Slutsky equation
within a general “fluctuation-response” framework, which allows one to express
the Slutsky matrix in terms of consumption fluctuations only, without having to
measure changes of consumptions when prices are slightly modified.

We have then shown that irrationality does not necessarily result in the break-
down of the symmetry of the Slutsky matrix. As a result, the hypothetical symme-
try of empirically measured Slutsky matrices cannot be used as a general argument
against bounded rationality [L159].

When accounting for herding within large assemblies of agents, we found that
symmetry is no longer guaranteed in general. Introducing a simple model of util-
ity with interactions, we have indeed shown using the powerful methods offered
by statistical mechanics that a concentration transition may occur, at which point
strong selection of goods occurs. At the transition, the individual Slutsky matrix
becomes markedly asymmetric, although the Slutsky matrix constructed using
aggregate consumption can still remain symmetric when all agents are identical.
Hence our result is not necessarily incompatible with existing work on non-unitary
households [172]. From simulations, we also found that asymmetry is further am-
plified by out-of-equilibrium effects near the critical point. In line with standard
consumer choice theory and most empirical studies, our model preserves the nega-
tive semi-definiteness of the Slutsky matrix regardless of interactions. Nonetheless
and although not studied here, it should be noted that introducing some inter-
actions in between products (representing redundancy or complementarity for
example) in a similar framework appears to lead to positive eigenvalues [173].

Of course, further empirical studies on the properties of the Slutsky matrix
would be of great interest, in particular to contrast our model of interacting,
bounded rational agents with the recent sparsity-based approach of Gabaix [59].
To this end, we believe that fluctuation-response relations such as those presented
in this work could be a very valuable econometric tool. Given the difficulty of
conducting repeatable experiments in socioeconomic systems, the ability to es-
timate derivative quantities without actually requiring prices to change appears
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quite promising.

Importantly in the context of this thesis, this first encounter with a socioeco-
nomic model of interacting agents has also illustrated the limitations of equilib-
rium statistical mechanics. Indeed, in order to study the concentration transition
and its effects on the Slutsky matrix analytically, we have implicitly assumed
that agents are altruisitc and all work at improving a global utility. While this
is usually the rule in physics, where the energy is necessarily common to all con-
stituents of the system, it is clear that a realistic description of human behavior
should allow for individualistic dynamics. In Sec. , we have seen that the
very existence of a global utility acting as the energy of the interacting system
is the exception rather than the rule when the dynamics are prescribed at the
agent level. This specificity of socioeconomic systems will be at the heart of the
upcoming “SK-game” and of our version of the Schelling model in Chap. H
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Key takeaways

e The Slutsky matrix describing the change in the demand of a product
following the price change of another is known to be symmetric when

agents are rational and noninteracting.

o Contrary to the common belief in economics, this symmetry is not
a proof of rationality: the Slutsky matrix is also symmetric when
modeling choices with the boundedly rational logit rule.

o Strong interactions, however, may lead to a violation of the symmetry
of the matrix, particularly near a collective phase transition.

Uniform
0.21 phase

Slutsky matrix asymmetry

X

Condensed
phase

102 10!

e While equilibrium statistical mechanics is appropriate to describe a
single agent following the logit rule, this is often no longer the case if

interacting agents are individualistic.

10°
Relative strength of interactions

10!
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Chapter 5

Presentation of the model and
numerical results

All in the Game, yo... All in the Game.

Omar Little

So far, we have established that assuming agents to be purely rational is likely
unrealistic due to the overwhelming complexity and associated uncertainty that
may arise in even simple optimization problems. With this is mind, we have
explored the consequences of having a probabilistic decision rule on simple non-
interacting and interacting consumer choice models. Importantly, when agents are
interacting, we have seen that describing the system with an equilibrium statistical
mechanics formalism brings strong limitations to the possible dynamics that can
be chosen at the agent level. Interactions between agents must notably be entirely
reciprocal and constructed in a very particular way for a global utility function to
be the suitable object to analyze the system’s the steady-state.

To go beyond these limitations we will now introduce a simple, unifying model,
built at the agent level, and including not only bounded rationality and non-
reciprocity but also learning.

The contents of this chapter and the following are largely reproduced from [3],
written under the supervision of J.-P. Bouchaud and M. Benzaquen, to which
technical details have been added.

5.1 Motivation

As discussed in the introduction chapter, classical economics is based on the idea
that rational agents make optimal decisions, i.e. optimize their expected utility
over future states of the world, weighted by their objective probabilities. Such an
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idealization of human behavior has been criticized by many (see e.g. [69,174-177)]).
In particular, assuming that all agents are rational, allowing one to use game the-
oretic arguments to build such optimal strategies — often the result of complicated
mathematical calculations — is implausible, to say the least (see above).

A way to possibly save the rational expectation paradigm is to posit that agents
are able to learn best responses from past experience. Yes, agents are only partially
(“boundedly”) rational, but they learn and in the long run, they act “as if” they
were rational [178]. This is clearly expressed by Evans and Honkapohja in their
review paper on the subject [179]. They note that “[i/n standard macroeconomic
models rational expectations can emerge in the long run, provided the agents’
environment remains stationary for a sufficiently long period.”

While seemingly reasonable, this proposition is by no means guaranteed to be
legitimate. Indeed, the hypothesis that the environment should be stationary over
“sufficiently long periods” can be restated in terms of the speed of convergence
of the learning process, that should be short enough compared to the correlation
time scale of the environment. However, in many circumstances and in particular
in complex games, the convergence of the learning process to a collectively optimal
state can be exceedingly long, or may in fact never take place. For example, rea-
sonable learning rules can trap the system in some sub-optimal regions of the (high
dimensional) solution space, see e.g. [180-183]. In other words, the learning pro-
cess itself can be non-ergodic, even if the environment is described by an ergodic,
stationary process. Another possibility is that agents’ strategies, even probabilis-
tic, evolve chaotically forever, as was found by T. Galla & D. Farmer [184] in
the context of competitive multi-choice two-player games, or by Bouchaud & R.
Farmer [185] in a simple binary choice, multiplayer game. In such cases, the prob-
abilities governing the different possible choices are not fixed but must themselves
be described by probabilities.

This is in fact a generic feature of “complex systems”. As proposed by G.
Parisi [186,[187], the description of such systems requires the introduction of prob-
abilities of probabilities, as their statistical behavior themselves (and not only
individual trajectories) are highly sensitive to the small changes in parameters,
initial conditions, or time. The inability to describe such systems with knowable
probabilities was coined “radical complexity” in [188], a concept introduced in
Chap. E above.

The sensitivity of optimal solutions to the parameters of the problem, or to
the algorithm used to find them, has a very real consequence: one can no longer
assume that all agents, even fully rational, will make the same decision, since any
small perturbation may lead to a completely different solution, although similar
in performance. In other words, the common knowledge assumption is not war-
ranted. This has already been underlined in the context of portfolio optimisation
in Chap. E and [48], or in the context of networked economies [183,[189], but is
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expected to be of much more general scope, as anticipated by Keynes long ago and
emphasized by many heterodox economists in the more recent past [69,175-177].

Here we want to dwell on this issue in the context of a multi-player binary
game — the “SK-game” —, understood as an idealization of the economic world
where agents strongly interact in such a way that their payoffs depend on the
action of others. In our setting, some relationships are mutually beneficial, while
others are competitive. Agents have to learn how to coordinate to optimize their
expected gains, which they do in a standard reinforcement way by observing the
payoff of their actions and adapting their strategies accordingly.

5.2 A simple model for a complex world

5.2.1 Set-up of the model

As a minimal, stylized model for decision making in a complex environment of
interacting agents, we restrict ourselves to binary decisions, as in many papers on
models with social interactions, see e.g. [15,64,[165,185]. At every timestep ¢, each
agent ¢ plays S;(t) = +1, with ¢ = 1,..., N, which can be thought of, for example,
as the decision of an investor to buy or to sell the stock market, or the decision of a
firm to increase or to decrease production, etc. The incentive to play S;(t) = +1 is
Q;(t) and is the agent’s estimate of the payoff associated to S;(t) = +1 compared
to that of S;(t) = —1. The actual decision of agent ¢ is probabilistic and drawn
using the extensively discussed “logit” rule [61], i.e. sampled from a Boltzmann
distribution over the choices of an agent,

PLSit) = 1 = Gam remam — gt Flanh (BQi@)], (5.1

or, equivalently, the expected choice (or “intention”) of agent i at time ¢ is given
by
mi(t) = (Si(t)) = tanh (BQ(1)) (5.2)

Parameter 3, assumed to be independent of ¢ henceforth, is again analogous to the
inverse temperature in statistical physics and represents the agent’s rationality or
intensity of choice. As mentioned in Chap. [l and in the previous chapter, the
limit f — oo corresponds to perfectly rational agents, that will systematically
pick the choice that has their preference (given by the sign of Q;(t)), while setting
B = 0 gives erratic agents that randomly pick either decision with probability 1/2
regardless of the value of Q;(t).

The evolution of the preference @Q;(t) is where the learning takes place. We
resort in so-called “Q-learning” [190], i.e. reinforcement learning with a memory
loss parameter o. Given the (yet unspecified) reward +R;(¢) associated to making

107



Chapter 5. Presentation of the model and numerical results

the choice £1 at time ¢, the evolution of incentives (an, in turn, beliefs) is given
by
Qi(t+1) = (1 — )Qi(t) + aR;(t). (5.3)

This map amounts to calculating an Exponentially Weighted Moving Average
(EWMA) on the history of rewards R;(t). Taking o = 0, the agent’s preferences
are fixed at their initial values, and we thus restrict ourselves to o > 0. When
a — 0, Q;(t) is approximately given by the average reward over the last a~! time
steps. Note here that this averaging of past rewards is not exactly the same as the
accumulation rule (where the reward would not be multiplied by « in Eq. (@))
appearing in some forms of “Experience Weighted Attraction” that are popular
in the socioeconomic context [191].

Now, the missing ingredient is the specification of the rewards, that encodes
heterogeneity and non-reciprocity of interactions. Inspired by the theory of spin-
glasses, in particular by the Sherrington-Kirkpatrick (SK) model of Sec. @, we
set

N
Ri(t) = JijS;(t). (5.4)
j=1

Here, the matrix elements J;; specify the mutually beneficial or competitive nature
of the interactions between i and j. (Note that .J;; measures the impact of the
decision of j on the reward of i.)

In the context of firm networks, a client-supplier relation would correspond to
Jij > 0, whereas two firms 4, j competing for the same clients would correspond
to Ji; < 0. In the so-called “Dean problem”, J;; > 0 means that agents i and
J get along well whereas J;; < 0 means that they are in conflict [192]. The
sign of S; determines in which of the two available rooms agent i should sit, in
order to minimize the number of possible conflicts. A predator-prey situation
is when J;; x Jj; < 0, meaning that if ¢ makes a gain, j makes a loss and vice
versa. Importantly, whenever the interactions are non-symmetric, i.e. Jj; # Jij,
there cannot be a global utility function in the sense of Sec. of the previous
chapter. In other words, such an explicit non-reciprocity means the dynamics are
nonrelaxational and the system non-Hamiltonian.

Note that the reward R;(t) depends on the actual (realized) decision of other
players, and not their expected decisions or intentions. In other words, agents
resort in online learning, which differs from offline learning where other players’
decisions S;(t) are averaged over large batch sizes during which their inclinations
would be assumed constant and replaced by their expectation m;(t).

Based on the learning dynamics, agents thus make a decision based on an
imperfectly learned approximation of what other players are likely to do. Bringing
equations (p.2), (p.3), (p.4) together, the evolution of agent i’s intention can be
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written as

N
mi(t+1) =tanh [ B> Jym§ () (5.5)
j=1

where m$(t) is the estimate of agent j’s expected decision at time ¢+ 1 based on
its past actions up to time ¢. Explicitly writing the accumulated reward (EWMA)
one has

M) =aY (1-a)"S(t). (5.6)

<t

Expressed in this form, it is clear that there is characteristic timescale 7, ~ 1/«
over which past choices contribute to the moving average mg'(t). Note that offline
learning would correspond to a different evolution equation, namely

N
m;(t +1) = tanh [ 8> Jim;(t) | | (5.7)
j=1

although the two coincide in the o — 0 limit.

At this stage, it may be useful to compare and contrast the present model with
previous work. On the one hand, the learning procedure closely resembles the
original proposition by Sato & Crutchfield [193], and its treatment by Galla [194,
195] and others [196-198], however these authors considered games comprising
only two players with many strategies. Subsequent cases explored by Galla and
Farmer considering a larger number of players [184,199] therefore lie closer to
our setting but still consider many strategies, while the similar binary decision
models proposed by Semeshenko et al. [200,201] are restricted to perfectly rational
agents and homogeneous interactions J;; = J > 0 Vi,j. Importantly, all these
works also consider accumulated rewards and offline learning, in contrast with our
averaged rewards and online learning. On the other hand, replicator models with
random non-symmetric interactions between a large number of species [202,203]
share many features with the system at hand, but the prescribed dynamics are
inherently linked to evolutionary principles such as extinction that are not present
in our model. Finally, other Ising-inspired games such as that introduced in [204]
are conceptually similar, in particular in their extension with myopic strategy
revision (meaning updating based on future expectations and not directly passed
realizations as done here) [205]. So far, however, these models have been studied
without heterogeneities and therefore do not present the radical complexity related
to the presence of a very large number of possible solutions discussed hereafter.
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5.2.2 The interaction matrix

In order to rely on known results about the SK model, we will assume in the
following that all agents randomly interact with one another, meaning that all
elements of the matrix J are non-zero. Sparse matrices, corresponding to low-
connectivity interaction matrices, would probably be more realistic in an economic
context. However, we expect that many of the conclusions reached below will
qualitatively hold in such cases as well.

We choose interactions J;; between i and j to be random Gaussian variables
of order N~/2, with Jij in general different from Jj;, accounting for possible non-
reciprocity of interactions. More precisely, we introduce the parameter € and write
the interaction matrix as

Ji = (1=5) I8+ S8 (5.8)
with J¥ a symmetric matrix and J# an anti-symmetric matrix. The entries of both
these matrices independent and sampled from a Gaussian distribution of mean 0
and variance 02/N. This defines what we will call the “SK-game” henceforth A
non-zero average value of J° will be discussed below.

In the following we set 0 = 1 without loss of generality. The resulting variance
of J;; is thus given by

1
v(e) :== NVar(J;;) =1 —¢+ 552. (5.9)

The specific cases € = {0, 1,2} hence correspond to fully symmetric (J;; = Jj;),
a-symmetric (i.e. J;; and Jj; independent) and anti-symmetric (J;; = —Jj;) in-
teractions respectively. We can thus also characterize the correlation between J;;
and Jj; through parameter 7,

R LA (5.10)

where overlines indicate an average over the disorder.
It may actually be insightful to allow for a non-zero average value to the
interaction parameters, and define the reward R;(t) as

N
Ri(t) = 32 JSi() + JoM(t);  M(t) = % $O85(0). (5.11)
j=1

Finally, one may think that agents have some idiosyncratic preferences, or
different costs associated to the two possible decisions S; = 4+1. This would
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amount to adding to the reward R;(t) a time independent term H;, where H;
favors S; = +1 if positive and S; = —1 if negative, see the RFIM discussed in
Sec. . Here, we will restrict to H; = 0, Vi, but one expects from the literature
on spin-glasses that the main results discussed below would still hold for small
enough H;s. Beyond some threshold value, on the other hand, agents end up
aligning to their a priori preference, i.e. m;H; > 0.

5.3 Overview and numerical results

Having established the rules of the SK-game, a first and natural step is to simulate
the evolution of the system from @Q;(0) = 0 Vi at finite values of N. Exploring
the parameter space in this way, we can establish the broad types of behaviors
displayed by the model. In the following, we will summarize these results before
jumping into a more technical analysis in the following chapter.

5.3.1 A word on the average reward

In the SK-game, the payoff of each agent is a random function of the decisions of
all other agents. Hence, learning the optimal strategy (in terms of the probability
for agent i to play +1 or —1) is bound to be extremely difficult.

Defining the average reward as

N

1 1

RN = N ZSsz = N Z JijSiSj, (5.12)
7 3,j=1

and noting that 2%:1 JijSiS; = (1-5) nyj:l JgSZ-Sj, the largest possible av-

erage reward R for N — 0o can be exactly computed using the celebrated Parisi

replica-symmetry breaking scheme of the classical SK model and reads [50]:

lim Ry = Roo = 0.7631... X (2 —¢). (5.13)

N—oo
However, in practice there is no known algorithm to find the global minimum
for a given draw of the disorder in polynomial time in N — although it has been
shown that one can devise an algorithm with time growing like K (¢)N? to find
configurations {5;} that reach a value of at least 1 — € the optimum (), e>0
[206]. In any case, it is expected that simple learning algorithms will inevitably
fail to find the true optimal solution. Nevertheless, we also know from the spin-
glass folklore (see below for more precise statements) that many configurations
of {S;}’s correspond to quasi-optima, or, in the language of H. Simon, satisficing
solutions [69]. It is in a sense the proliferation of such sub-optimal solutions
that prevent simple algorithms to find the optimum optimorum. Furthermore, if
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Figure 5.1: Qualitative phase diagram in the (e, «) plane for the SK-game in the (a)
noiseless (8 — co0) and (b) weak noise (8 > 1) regimes. FP refers to “fixed point”, “Para”
means that players’ strategies are completely random, whereas “chaos” means that at a
given instant of time players have well defined intentions m; but these evolve chaotically
with time.

learning indeed converges (which is not the case when ¢ is too large, i.e. when
interactions are not reciprocal enough), the obtained fixed point heavily depends
on the initial condition and/or the specific interaction matrix J.

5.3.2 Phase diagram in the noiseless limit

Let us first consider the case where agents always choose the action that would
have had the best average reward in the past Q;(t) (this assumes that other agents
still played what they played). This corresponds to the noiseless learning limit
B — oo. In this case, the iteration map Eq. (p.5) becomes

N
Si(t+1) =sign [ > (1 —a)™" > " J;S;t) |, (5.14)
j=1

v<t

and the model is fully specified by two parameters: « (controlling the memory time
scale of the agents) and e (controlling the reciprocity of interactions). For N not
too large, the evolution of Eq. () leads to either fixed points, or oscillations,
or else chaos. The schematic phase diagram in the plane («,¢) is shown in Fig.
b.1(a).

One clearly sees a region for (a,e) small where learning reaches a fixed point,
where the average reward is close, but significantly below the theoretical optimum
R~ given by Eq. (), see Fig. @ Note that learning definitely helps:
for ¢ = 0, most fixed points are characterized by a typical reward R ~ 1.01
(which can be computed by taking an unweighted average on all TAP states, see

26Note that there are finite N corrections that must be taken into account for such a compar-
ison, which read [207] Ry = Roo — AN"2/3 A~ 0.75 x (2 — €), see also Fig. @(b)
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Sec. ) [112], significantly worse than the value ~ 1.40 reached by our learning
agents extrapolated to N — oo.
As ¢ and « are varied one observes the following features:

o When ¢ is not too large (interactions sufficiently reciprocal) and « increases
(shorter and shorter memory) learning progressively ceases to converge and
oscillations start appearing: impatient learning leads to cycles. This leads
to a sharp decrease of the average reward (see Fig. (a)), as agents over-
react to new information and are no longer able to coordinate on a mutually
beneficial equilibrium. A similar effect was observed in a dynamical model of
firm network, where over-reaction leads to oscillating prices and production
[157] (see also [189)]).

o Conversely, when « is small (long memory) and ¢ increases, the probability to
reach a fixed point progressively decreases, and when a fixed point is reached,
the average reward is reduced see Fig. @(b) Beyond some threshold
value, the dynamics becomes completely chaotic, leading to further loss of
reward. Note that “chaos” here means that at although at any given instant
of time, agents have well defined intentions m;(t) # 0, these intentions evolve
chaotically forever.

e Surprisingly, oscillations reappear when € becomes larger than unity, i.e.
when interactions are mostly anti-symmetric, “predator-prey” like. Perhaps
reminiscent of the famous Lotka-Volterra model, agents’ decisions and pay-
offs become periodic, with a period that scales anomalously as o'/2, i.e.
much shorter than the natural memory time scale a~! (see Chap. [j below).
Although not the Nash equilibrium#a m; = 0, these oscillations allow the av-
erage reward to be positive when ¢ is not too large, although at each instant
of time, some agents have negative rewards. In these cases, the system there-
fore self-organizes in such a way that the collective outcome outperforms the
Nash equilibrium, despite the agents being individualistic.

o Only close to the extreme competition limit € = 2 (corresponding to a zero
sum game, cf. Eq. ()) and for small o, are agents able to learn that the
unique Nash equilibrium is to play random strategies m; = 0 (see Fig. EI,
bottom right region).

o Finally, in the extreme (and unrealistic) case & = 1, where agents choose
their strategy based on the last reward only, the system evolves, as ¢ in-

*"Note that the role of ¢ is somewhat similar to that of parameter T' in [184]: increasing
competition leads to chaos.

28The Nash equilibrium is the solution found such that no individual can improve their outcome
by changing their choice, see [b5].
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Figure 5.2: Evolution of the average reward with (a) the memory loss rate a, for ¢ =
{0,0.6,0.85,1.05,1.5,2} from dark purple to light green, 8 — oo; (b) the asymmetry ¢ for
a = 0.01 and o = 0.1,  — oo, the vertical dotted line indicates the value €, for which
the system becomes chaotic [208]. In both (a) and (b), N = 256 and the dashed line
represents the Parisi solution for R...

creases from zero, from high frequency oscillations with period L = 2 to
“weak chaos” to “strong chaos” when € &~ 1 and finally back to oscillations
of period L = 4 when ¢ — 2.

In order to characterize more precisely such temporal behaviors, it is useful to
(re)introduce the two-point auto-correlation function of the expected decisions or
intentions:

Olt,t47) = o 3 el 1 7)), (5.15)
1

where the angular brackets now refer to an average over initial conditions.@ In

cases where the dynamics are assumed to be time-translation invariant, we will

write C(7) which corresponds to the above quantity averaged over time after the

system has reached a steady-state.

The autocorrelation function corresponding to the different cases described
above are plotted in Fig. . Note that the signature of oscillations of period
L is that C(nL) = 1 for all integer n. However, note that when € < ¢, not all
spins flip at each time step. The fact that C'(2n + 1) = 0 means that half of the
spins in fact remain fixed in time, while the other half oscillate in sync between
+S5; and —S;.22 In the chaotic phases, C'(7) tends to zero for large 7, with either
underdamped or overdamped oscillations. Hence in these cases, the configuration
{S;} evolves indefinitely with time, and hardly ever revisit the same states.

20f course, in the § — oo limit discussed in this subsection, one can replace m;(t) by the
actual decision S;(t) in the definition of C'(¢,t + 7). More generally, the spin-spin correlation
function is given by (1 — q(¢))d(r) + C(¢,t + 7) with ¢(¢) = (m2(¢)).

3%Note the rather large error bar on C(2n + 1), meaning that there are actually substantial
fluctuations of the number of idle spins around the value N/2 when N is finite.
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Figure 5.3: Evolution of the steady-state two-point correlation function for a = 1,

B8 — oo, markers indicating simulations of the game at N = 256 averaged over 128
samples of disorder and initial conditions, error-bars showing 95% confidence intervals.
The continuous lines representing the solution to the Dynamical Mean-Field Equations
that will be discussed in Chap. f] below. (a) e = 0.1 (¢ < &, = 0.8), cycles of length L = 2.
(b) e = 0.85 (e, < € < 1), “weakly” chaotic behavior. (¢) e = 1.05 (1 < & < 2 — &),
“strongly” chaotic behavior. (d) e = 1.5 (¢ > 2 — ¢..), cycles of length L = 4.

5.3.3 Noisy learning

In the presence of noise, the “convictions” |m;| of agents naturally decrease, and in
fact become zero (i.e. decisions are totally random) beyond a critical noise level
that depends on the asymmetry parameter €: more asymmetry leads to more
fragile convictions (see Fig. below for a more precise description). Because of
the noise, strict fixed points do not exist anymore, but are replaced (for e small
enough) by quasi-fixed points — in the sense that the intentions m; fluctuate around
some plateau value for very long times, before evolving to another configuration
completely uncorrelated with the previous one. This process goes on forever, albeit
at a rate that slows down with time: plateaus become more and more permanent.
This corresponds to the aging phenomenon introduced in Chap. P for the original
SK model, and will be discussed in more detail in a dedicated section of the next
chapter.

In a socio-economic context, it means that a form of quasi-equilibrium is
temporarily reached by the learning process, but such a quasi-equilibrium will
be completely disrupted after some time, even in the absence of any exogenous
shocks. This is very similar to the quasi-nonergodic scenario recently proposed in
Ref. [185], although in our case the evolution time is not constant but increases
with the “age” of the system, i.e. the amount of time the game has been running.

Perhaps counter-intuitively, however, the role of noise is on average beneficial
when 1/ is not too large. Indeed, as shown in Fig. @(a), the average reward first
increases as a small amount of noise is introduced, before reaching a maximum
beyond which “irrationality” becomes detrimental. The intuition is that without
noise, the system gets trapped by fixed points with large basins of attraction,
but low average rewards. A small amount of noise allows agents to reassess their
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Figure 5.4: Evolution of the average reward for N = 256 with (a) the noise level 1/3
for « = 0.01, e = {0,0.6} (dark purple and blue respectively), note the non-monotonic
behavior. The dashed line represents the Parisi solution for R; (b) system size N for
a = 0.01, 8 — oo, e = {0,0.6} (dark purple and blue respectively), continuous lines
showing fits Ry = Roe — AN~2/3_ excluding N = 32. The dotted line indicates the best
fit for the SK ground state, for which A ~ 1.5 [207].

intentions and collectively reach more favorable quasi-fixed points, much as with
simulated annealing.

When learning leads to a chaotic evolution, i.e. when J;; and Jj; are close to
uncorrelated (¢ ~ 1), noise in the learning process does not radically change the
evolution of the system: deterministic chaos just becomes noisy chaos. However,
there is still a distinction between a low-noise phase where at each instant of
time, agents have non-zero expected decisions m; (that will evolve over time)
from a high-noise phase where agents always make random choices between +1
with probability 1/2 (see Fig. b.1)).

Finally, in the case where learning leads to cycles, any amount of noise irre-
mediably disrupts the synchronisation process, and cycles are replaced by pseudo-
cycles, with either underdamped or overdamped characteristics. In the limit
€ — 2, any level of fluctuations drive the system to a paramagnetic state where
g = C(0) =0 (see Fig. ), meaning the agents remain undecided (corresponding
to the previously mentioned Nash equilibrium).

5.3.4 Distribution of individual rewards

As we have noted above, the average reward is close, but significantly below the
theoretical optimum R, given by Eq. () However, some agents are better
off than others, in the sense that the individual reward e; at the fixed point (when
fixed points exist), is different from agent to agent. Noting that

€; = SZ*R: = Z JZJS; s (5.16)
J
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Figure 5.5: Distribution of individual rewards at 5 — oo for N = 512 and 128 initial
conditions and realizations of the disorder in the fully symmetric case ¢ = 0 for a =
{0.5,0.1,0.01} (dark to light coloring). The dashed line is the Sommers-Dupont analytical
solution to the SK model [209]. Inset: associated survival function in a lin-log scale and
focusing on the right tail, dotted line corresponding to a Gaussian fit.

where the second equality holds because at the fixed point one must have S =
sign(R}), it is clear that in the fully reciprocal case ¢ = 0, all rewards e; are
positive.

The distribution p(e) of these rewards over agents is expected to be self-
averaging for large N, i.e. independent of the specific realization of the J;; and
of the initial condition. Such distribution is shown in Fig. . One notices that
p(e) vanishes linearly when e — 0

p(e) e Kk =~ 1.6,

as for the standard SK model, although the value of k is distinctly different from
the one obtained for the true optimal states of the SK model, for which ks ~ 0.6
[209,210]. Such a discrepancy is expected, since the fixed points are obtained as
the long time limit of the learning process — in particular, since k > kgk, the
number of poorly rewarded agents is too high compared to what it would be in
an optimal state. Note that once « is sufficiently small for the system to reach a
fixed point, its precise value does not seem to have an impact on the distribution
of rewards and k.

Another important remark is that the distribution of rewards p(e) does not
develop a “gap” for small e, i.e. a region where p(e) is exactly zero. In other words,
although all agents have positive rewards, some of them are very small. This is
associated with the so-called “marginal stability” of the equilibrium state [211], to
wit, its fragility with respect to small perturbations, as discussed in more details
in the next subsection.

For very large e, the distribution p(e) decreases like a Gaussian (Fig. @ inset),
corresponding to a Central Limit Theorem behavior in that regime, as for the SK
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Figure 5.6: Evolution of individual rewards in time for N = 256, a = 0.01, § — o0, (a)
e =0 and (b) ¢ = 0.6. Right: histogram of the individual rewards after a single timestep
(shaded) and at the final time (unshaded).
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Figure 5.7: Distribution of individual rewards for N = 256 and o = {1,0.5,0.01}
represented by black triangles, purple squares and green circles respectively, 8 — oo,
measured over 32 initial conditions and realizations of the disorder. From left to right:
e ={0,0.1,0.85,1.05,1.5, 2}.

model.@ Fig. @ shows how the rewards of individual agents evolve from an
initially random configuration, before settling to constant (but heterogeneous)
values at the fixed point.

As competitive effects get stronger (i.e. as ¢ increases) and the system ceases
to reach a fixed point, the distribution p(e) develops a tail for negative values of

e, meaning that some agents are systematic losers, see Fig. . In the extreme
“predator-prey” limit e = 2, the distribution p(e) becomes perfectly symmetric
around e = 0, as expected — see Fig. , rightmost plot.

5.3.5 Unpredictability of equilibria

Now, the interesting point about our model is that the final rewards are highly
dependent on the initial conditions and/or the realization of the J;;’s. In other
words, successful agents in one realization of the game become the losers for an-
other realization obtained with different initial conditions. A way to quantify
this is to measure the cross-sectional correlation of final rewards for two different

310ne would expect a different behavior in the possibly relevant case of a fat-tailed distribution
of the J;;, see [@7} We leave this question for further investigations.
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Figure 5.8: Overlap between solutions for different initial conditions and identical draws
of interactions, for « = 0.01, 8 — oo, ¢ = 0. (a) Distribution of overlaps shifted by the
mean and rescaled with the system size N to the power 2/3. (b) Average overlap as a
function of system size in log-log coordinates, with the best regression line N~285, Error-
bars show the 95% confidence interval over 16 different draws of the disorder.

realizations, i.e.

Cx = %Z(e? - (5.17)

i

where a,b corresponds to two different initial conditions and (e) corresponds to
the cross-sectional average reward. As shown in Fig. p.§, C goes to zero at large
N, indicating that the final outcome of the game, in terms of the winners and
the losers, cannot be predicted. The dependence on N appears to be non-trivial,
with different exponents governing the decay of the mean overlap C; (decaying
as N~0-8%) and its standard deviation (decaying as N~2/3).

A similar effect would be observed if instead of changing the initial condition
one would randomly change the interaction matrix J by a tiny amount €. The
statement here is that for any small €, C5; goes to zero for sufficiently large N. This
is the “disorder chaos” discussed in the portfolio problem of Chap. B; by analogy
with known results for the SK model, we conjecture that C’]f, is a decreasing
function of NeS, where ¢ = 3 in the SK case [215]. This means that when N >
€< the rewards between two systems with nearly the same interaction structure,
starting with the same initial conditions, will be close to independent.

Such a sensitive dependence of the whole steady-state of the system (in our case
the full knowledge of the intentions m; of all agents) once again prevents any kind
of “common knowledge” assumption about what other agents will decide to do in
a specific environment. No reasonable learning process can lead to a predictable
outcome; even the presence of a benevolent social planner assigning their optimal
strategy to all agents would not be able to do so without a perfect knowledge of all
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Figure 5.9: (a) Evolution of the average reward with the incentive to cooperate Jy
for N = 512, a = 0.01, 8 — o0 and ¢ = {0,0.6,0.85,1.05,1.5,2} with colors ranging
from purple to light green with increasing €. (b) Average intention in the long time limit
M = lim;_,o, M (t) for the same parameters. Note the rather strong finite size effects, in
particular for € = 0.

interactions between agents and without exponentially powerful (in N) computing
abilities. Such a “radically complex” situation leads to “radical uncertainty” in
the sense that the behavior of agents, even rational, cannot be predicted. Learning
agents can only achieve satisficing solutions, that are furthermore hypersensitive
to details. Moreover, as we have seen in Sec. , any amount of noise in the
learning process will make the whole system “jump” from one satisficing solution
to another in the course of time.

5.3.6 Increasing cooperativity

A way to help agents coordinate is to use rewards given by Eq. () with Jy > 0,
representing a non-zero average cooperative contribution to rewards. This term
obviously helps agents finding mutually beneficial strategies. (Note that with
our normalisation, the Jy term is in fact N=/2 times smaller than the random
interaction terms J;;.)

The impact of such a term is well understood in the case of the SK model for
e = 0 [216]. For 8 = oo, one finds that whenever Jy < 1, the average intention
M (t) remains zero for large N and one expects that the learning process is not
affected by such a “nudge”. When Jy > 1, on the other hand, the situation
changes as all agents start coordinate on one of the two possible choices: the
average intention becomes non-zero, although a finite fraction of agents still play
opposite to the majority because of their own idiosyncratic rewards.

For Jy > 1, radical complexity disappears and learning quickly converges to
the obvious optimal strategy where all agents make the same move S; = +1 or
S; = —1, Vi. In this case, Ry = Jy as M (t) eventually reaches unity, see Fig. @
For € > 0, the same occurs barring some rescaling, as visible in Fig. p.9.

120



Chapter 5. Presentation of the model and numerical results

In the case Jy < 0 with |Jo|> 1, the only solution of Eq. (@) (valid for o — 0)
is m; = 0 for all 4, i.e. agents cannot coordinate and play random strategies.

5.3.7 Self-reinforcement and habit formation

Up to this point, all results have assumed that there is no self-interaction, J; = 0.
Nonetheless, it is interesting to consider the possibility of having an O(1) positive
diagonal term in the interaction matrix. In the socioeconomic context, such a
contribution is relevant as it represents self-reinforcement of past choices, which
is also called “habit formation” where agents stick to past choices, a popular idea
in behavioral science, see e.g. [180,182] and refs. therein.

The introduction of a diagonal contribution has important consequences for
the problem. Assuming the self-interaction is identical for all agents, J;; = Jq > 0,
it will rather intuitively favor the emergence of fixed points since agents will be
tempted to stick to past choices. It is for instance known that in the case of
fully random interactions ¢ = 1, fixed points will start to appear when Jy is
sufficiently large [217]. Interestingly, these fixed points can be very difficult to
reach dynamically with standard Hopfield dynamics (o = 1).

Adding such diagonal contribution to our learning dynamics, we have observed
that the fraction of trajectories converging to seemingly dynamically inaccessi-
ble configurations significantly increases, specially when o < 1. While further
work would be required to precisely assess the effectiveness of learning when self-
reinforcement is present, particularly as finite size effects appear to play a signifi-
cant role, such a result is consistent with the overall influence of learning reported
here.

5.4 Core message

Before jumping into a more technical analysis of the different regimes of the SK-
game, let us summarize the broad conclusions we draw in terms of socioeconomic
modeling. In line with the core message of Galla & Farmer [184], our multi-agent
binary decision model provides an explicit counter-example to the idea advocated
in [179] that learning could save the rational expectation framework (cf. Sec. p.1)).

Learning in general does not converge to any fixed point, even when the
environment (in our case the interaction matrix J) is completely static: non-
stationarity is self-induced by the complexity of the game that agents are trying
to learn, as also recently argued in [183].

When learning does indeed converge (which requires a minima a high level
of reciprocity between agents) the collective state reached by the system is far
from the optimal state, which only a benevolent, omniscient social planner with
formidable powers can achieve. In other words, even more sophisticated learning
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rules would not really improve the outcome: the SK-game is unlearnable and — as
argued by H. Simon [69] — agents must resort to satisficing solutions.

Furthermore, any small random perturbation (noise in the learning process, or
slow evolution in the environment) eventually destabilizes any fixed point reached
by the learning process, and completely reshuffles the collective state of the system:
in the long run, agents initially favoring the 4+ end up favoring —, and better-off
agents end up being the underdogs, and vice-versa (much as in the simpler model
of Ref. [185]).

Finally, even in the most favorable case of a fully reciprocal game with slow
learning, the average reward is in fact improved when some level of noise (or
irrationality) is introduced in the learning rule, before degrading again for large
noise.
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Key takeaways

e The SK-game is a unifying model of a radically complex world in which
N players make a binary choice at every time step:

— The incentive to play either 41 is based on past rewards, that
agents forget with a memory loss rate a,

— Agents make their decision following the logit rule with a ratio-
nality parameter 3,

— Rewards are based exclusively on the decisions of others and are
non-reciprocal, with a payoff asymmetry parameter ¢.

e When agents have long term memory and interactions are sufficiently
reciprocal, intentions reach “satisficing” (and fragile) fixed points.

e The average reward in these fixed points is markedly below the best
possible solution, but significantly above the memoryless outcome.

e« When interactions are close to completely uncorrelated, the agents’
intentions evolve chaotically.

e When interactions are mostly non-reciprocal, intentions display oscil-
lations that do not correspond to the Nash equilibrium.

e In the fixed point regime, irrationality is initially somewhat beneficial,
but leads to permanent non-stationarity in the form of aging.

1 B — o0 1 B>1
L= L=4 noisy chaos
cycle cycle
s & S
© 1
L~a™ § o
FP aging < oscil. &
0 . 0 .
0 1 2 0 1 2
€ €

e Overall, learning cannot save the rational expectation framework
when radical complexity is involved.
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Chapter 6

Detailed analysis of the model

In order to solve this differential equation you look at it till a solution occurs to you.

George Polya

We have seen that the SK-game displays a wide variety of complex collective
behavior. In this chapter, we delve into the detailed analysis of the model’s statics
and dynamics, and attempt to describe its rich phenomenology analytically.

6.1 Fixed point analysis and complexity

Only in some cases does learning converge to non-trivial fixed points where strate-
gies are probabilistic but with time independent probability pL to play 41, such
that p+ = (1 £m})/2 for agent i. Such a steady-state would be analogous to an
economic equilibrium (although it is essential to dissociate this notion from that of
a thermodynamic equilibrium, which may only exist in the case of fully reciprocal
interactions, € = 0).

We will mostly focus, in the following, on the long term memory case o < 1
which is most relevant for thinking about learning in a (semi-)realistic context.
In this case, one can show that the exponential moving average on the realized
values S;(t) converges to one on the expected values m;(t). Indeed, as detailed in
Appendix @,

2

< az<1 — o) (ma(t) — Si(t)) > < 2?@ — 0. (6.1)

<t

This means that up to fluctuations of order /a, we can describe the dynamics of
the system through a deterministic iteration on m;(t). (In fact, we will see below
that the neglected fluctuations are of order /a//3.)
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Further making the ansatz that the mean-field dynamics will eventually reach
a fixed point m;(t) = m} Vi given sufficient time, Eq. (@) then yields

m; =tanh | 3 Z Jigm} | - (6.2)
J

This_is none other than the Naive Mean-Field Equations (NMFE) introduced in
Sec. when ¢ = 0, and defines a so-called static Quantal Response Equilibrium,
similar to its fully mean-field equivalent (J;; = J/N) studied in [204].

As previously mentioned, the NMFE are very similar to the celebrated TAP
equations [[109] describing the mean magnetization in the Sherrington-Kirkpatrick
(SK) spin-glass [35]. Physically, the NMFE are satisfied when extremizing the
free energy of a system of N sites comprising M — oo binary spins, with sites
interacting through an SK-like Hamiltonian [[110]. Despite being seemingly simpler
than its previously mentioned TAP counterpart, which includes an additional
Onsager “reaction term”, the NMFE share many of its properties. Relevant to
our problem, both the NMFE and the TAP equations have a paramagnetic phase
(mr = 0Vi) for B < S, while above this critical value there is a spin-glass phase
where ¢* = N713".(m¥)? > 0 and solutions are exponentially abundant in N
[110,218,219]. Recall the NMFE has a critical temperature 1/8. = 2 as opposed
to 1/B. = 1 in the TAP case, while the two equations become strictly equivalent
in the f — oo limit.

Using known properties from the spin-glass literature, we can therefore already
establish that if the system reaches a fixed point when interactions are fully re-
ciprocal (¢ = 0) and memory is long ranged, it will be either a trivial fixed point
where agents continue making random decisions for ever (m} = 0Vi), or, when
learning is not too noisy (8 > f.) the number of fixed points is ~ exp[X(8)N],
where we remind Y () is called the “complexity”. In this second case, the fixed
point actually reached by learning depends sensitively on the initial conditions
and the interaction matrix J.

How is this standard picture altered when interactions are no longer reciprocal?
In such cases, the system cannot be described using the equilibrium statistical
mechanics machinery.

6.1.1 Critical noise level

In order to extend the notion of critical noise 8. to € > 0, one can naively look
at the linear stability of the paramagnetic solution m} = 0V¢ to Eq. (@) Just
as in the TAP case [50], expanding the hyperbolic tangent to the second order
and projecting the vector of m; on an eigenvector of J, the stability condition
can be expressed with the largest eigenvalue of the interaction matrix. Adapting
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known results from random matrix theory to our specific problem formulation, the
spectrum of J can be expressed as an interpolation between a Wigner semi-circle
on the real axis (¢ = 0), the Ginibre ensemble (¢ = 1) and a Wigner semi-circle
on the imaginary axis (¢ = 2) [220]. The resulting critical “temperature” is then
given by
1 (2 —¢)?
Be(e) NOIOK
recovering the known result 1/5. = 2 for the case ¢ = 0. (We recall that we have
set the interaction variance o2 to unity. If needed o can be reinstalled by the
rescaling f — fo.)

T.(¢) = % (6.3)

6.1.2 The elusive complexity

To determine if there are still an exponential number of fixed point to reach below
the candidate critical noise level, i.e. if there is a spin-glass phase, for § > (.(¢)
when € > 0, we should study the complexity, defined just as in the portfolio
problem,

£(8,2) = lim < log Ny(N, 6,2), (6.4)

where A is the number of fixed points in the system for a given interaction matrix.
As discussed above, there are then two ways to compute an average of this quantity
over the disorder: the “quenched” complexity, where the mean of the logarithm
of the number of solutions is considered, and its “annealed” counterpart, where
the logarithm is taken on the mean number of solutions. The former is usually
considered to be more representative, as unlikely samples leading to an abnormally
large number of solutions can be observed to dominate the latter (recall Chap. E),
but requires a more involved calculation with the use of the replica trick. In
the TAP case, quenched and annealed complexities coincide for solutions above a
certain free energy threshold [112] (where most solutions lie but importantly not
the ground state).

As a matter of fact, we have brought up that, even in the annealed case,
the computation of the TAP complexity has proved to be a formidable task, and
has sparked a large amount of controversy, as the original solution computed by
Bray & Moore (BM) [112] has been put into question before being (partially)
salvaged by the metastability of TAP states in the thermodynamic limit [115].
For a relatively up to date summary of the situation, we refer the reader to G.
Parisi’s contribution in [221].

While the BM approach can be adapted to the NMFE [218,222], several aspects
of the calculation remain unclear, particularly as the absence of a sub-dominant re-
action term means that the argument of the metastability of states in the N — oo
limit is no longer valid a priori, although numerical results support the marginally
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Figure 6.1: (a) Annealed complexity of the Naive Mean-Field Equation in (T, ) space,
where we recall T = 37!, measured numerically for N = 40. The dashed line represents
the critical temperature T,(¢) for which the paramagnetic fixed point ceases to be stable,
while the continuous line indicates ¢ = 1 inferred from the S — oo result. (b) Annealed
complexity as a function of ¢ for varying temperatures T < 1/4/2, i.e. in the bottom
region of (a) where the complexity vanishes at ¢ = 1. The continuous line represents the
8 — oo analytical solution, recovering the result of Tanaka and Edwards [] >~ 0.1992
for e = 0. For € > 1 and T' = 0, the only possible fixed point is m} = 0, Vi.

stable nature of NMFE fixed points in the thermodynamic limit [] Its exten-
sion to € > 0 is still ongoing.

Nevertheless, the previously introduced critical 5. and the existing computa-
tion of the number of fixed points as a function of ¢ in the f — oo limit []
can be used to conjecture the boundaries of the region in (3, ¢) space where the
complexity ¥ is non-vanishing. Indeed, in the zero temperature case, it has been
shown [] that the annealed complexi‘ﬁan be expressed as a function of the

asymmetry parameter 1 defined in Eq. ( ) as
1
(1) = —5na” +log2 + log @(nz), (6.5)

with @ the Gaussian cumulative density ®(z) = 1 erfe (— %) and z is the solution
to
r®(nx) = &' (nx). (6.6)

The main insight provided by this result is that the complexity vanishes at n = 0,
corresponding to € = 1, where the paramagnetic fixed point is supposed to be
unstable as B.(e = 1) = v/2. As the complexity is a decreasing function of
temperature, this therefore means that € = 1 is an upper limit for the existence of
fixed points when [ is finite. This conjecture is also consistent with the breakdown
of fixed point solutions to the dynamical mean-field theory below the critical noise
level that will be discussed in Sec. , as well as the saddle point equations
obtained when adapting the BM calculation to € > 0 (not presented here).
Combining these two somewhat heuristic delimitation for the existence of a
large number of non-trivial fixed points, we obtain the critical lines shown in
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Fig. El] . Overlaying these borders with the annealed complexity measured
numerlcally following the method of [222], we find a very good agreement. In
particular, the vanishing of the complex1t at ¢ = 1 in appears to be consistent for
T < T.(e = 1) = 1/4/2, as shown in Fig. \?Ell . The agreement with the 8 — oo
analytical result, represented by the contlnuous line, also appears to validate our
counting method at low temperatures. Note that one can in fact show that for
e > 1 and N = oo, the only fixed point (or Nash equilibrium) is the “rock-paper-
scissors” equilibrium m} = 0, Vi.

Let us finally briefly discuss the zero-temperature annealed complexity > when
a cooperative contribution Jy > 0 _is present in Eq. (), and in the special case
€ = 0. As detailed in Appendix , the difficulty with this computation is that
the spin-glass solution M = 0 remains a valid fixed point for all values of Jy. While
we expect that it becomes unstable to single-flip perturbations for Jg > Jo., this
stability criterion is not straightforward to implement analytically. Looking for
solutions to the saddle point equations numerically, we find a solution associated
to a mixed (M > 0) phase for Jy > Jo. ~ 1.3. Importantly, the complexity in this
mixed phase is markedly non-zero, although it decreases with Jy as the solution
approaches the ferromagnetic fixed point M = 1. In any case, we therefore expect
most of the Jy = 0 results to hold for Jy < Jy., but also perhaps in this mixed
region where the complexity remains non-zero.

6.2 Counting limit cycles

In the previous section, we have established the region of parameter space where
exponentially numerous fixed points exist, which might possibly be reached by
learning in the slow limit o < 1. However, limit cycles of various lengths turn
out to also be exponentially numerous when ¢ < 1, so we need to discuss them
as well before understanding the long term fate of the learning process within our
stylized complex world.

6.2.1 Cycles without memory

In this memory-less limit, the dynamics becomes that of the extensively studied
Hopfield model [41,223,224] where the binary variable represents the activation
of a neuron evolving as

Si(t + 1) = sign (Z J,‘ij (t)) , (67)
J

with parallel updates. Counting limit cycles of length L is even more difficult
than counting fixed points (which formally correspond to L = 1). Some progress
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have been reported by Hwang et al. [208] in this memory-less case a = 1. The
notion of fixed point complexity ¥ (defined in Eq. (@)) can be extended to limit
cycle complexity ¥ for limit cycles of length L, with ¥7_; = ¥. The results of
Ref. [208] can be summarized as follows:

e When ¢ < 1, limit cycles with L = 2 have the largest complexity, which
is exactly twice of the fixed point complexity: Yo = 237 (as was in fact
previously shown by Gutfreund et al. [223]).

« The complexities ¥r,(¢) all go to zero when € = 1.
o When 1 < ¢ < 2, limit cycles with L = 4 dominate, with ¥4(g) > ¥2(2 — ¢).

e Close to € = 1, the cut-off length L., beyond which limit cycles become
exponentially rare, grow exponentially with N: L. ~ e*", where a weakly
depends on e.

From this analysis, one may surmise that:

a. When a limit cycle is reached by the dynamics, it is overwhelmingly likely
to be of length L =2 for ¢ < 1 and of length L =4 for 1 < ¢ < 2.

b. Even if exponentially less numerous, exponentially long cycles will dominate
when e*V > eN>2 which occurs when e, < € < 2 — e, with £, ~ 0.8.

These predictions are well obeyed by our numerical data, recall Fig. @(b) and
see Fig. @ below. Note however the strong finite N effects that show up in the
latter figure, which we will be at the heart of the next section.

6.2.2 Cycles with memory

When a < 1 and 8 = oo, the update of S;(t) have the same fixed points indepen-
dently of «, but of course different limit cycles, which may in fact cease to exist
when « is small.

Here, we attempt to enumerate the number of cycles of length L,in the spirit
of the calculation of Hwang et al. [208] for v < 1. As detailed in Appendix ,we
write the number of these cycles as a sum over all possible trajectories of a
product of § functions ensuring the a < 1 dynamics of ); are satisfied between
two consecutive time-steps, while a product of Heaviside step functions enforces
S;(t) = sign(Q;(t)). Introducing the integral representation of the § function, av-
eraging over the disorder and taking appropriate changes of variable to decouple
the N dimensions, the (annealed) complexity of cycles of length L writes

by = saddle thsths Vit,s)V st—HoI} 6.8
L) RKV{; ( -3%0 2Zib, (69)
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Figure 6.2: (a) L = 2 cycle complexity from the numerical resolution of the saddle point
equations for e = {0,0.2,0.4,0.6} from dark purple to light green, dashed lines indicating
the fixed point complexity associated to each parameter. (b) Overlap between successive
steps C(r =1) = —iR(tﬂf + 1) at the L = 2 saddle, showing the nontrivial coalescence
of the cycle and fixed point saddle point solutions as « is decreased. The numerical
resolution appears to breakdown when we get close to o = 0.

where R(t, s) and K(t, s) are symmetric matrices while V(t, s) is not a priori,
and the expression of Zj, is given in Appendix . As a sanity check, one can
verify that the L = 1 case, corresponding to the fixed point complexity, is in-
deed independent of « and is given by the same expression as Eq. (@), see
Appendix . In a similar vein, one can recover Yo(a = 1) = 23(n) for all
values of ¢ (Appendix )

In the case of L = 2 cycles for a@ < 1, the six coupled nonlinear saddle equations
given in Appendix can be solved numerically. As shown in Fig. , it
appears that Xo(a, ) — X(n) when a — 0, while C(t,t 4+ 1) = —iR(t,t + 1) can
be observed to continuously tend to unity. While numerical difficulties prevent
us from exploring very small values of «, it seems clear that the saddle point
corresponding to the L = 2 cycles eventually coalesces with the fixed point saddle
(which is known to be a sub-dominant saddle point when a = 1, see [208]). In
any case, and perhaps surprisingly, there does not appear to be a critical value
of a below which fixed points become more abundant than cycles. We therefore
expect a progressive crossover and not a sharp transition. As performed in [20§]
in the a = 1 case, it would be interesting to study the complexity of L = 2 cycles
for a given value of the shifted overlap C(t,t +1) = % >, Si(t)S;(t + 1) in the
spirit of a Franz-Parisi potential calculation [225] in order to rigorously establish
the coalescence of the fixed point and oscillating saddles.

6.3 Dynamical Mean-Field Theory

In the previous section, we have seen that both fixed points and limit cycles
are exponentially numerous. However, the question remains as to what happens
dynamically, as the existence of a large number of fixed points or limit cycles by
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Figure 6.3: Steady-state two-point correlation between configurations shifted by 7 = 2
time-steps in the a = 1, § — oo limit from finite N numerical simulations averaged over
128 samples of disorder and initial conditions, error bars showing 95% confidence intervals.
The N = {64,128} simulations are run for ¢ = 10® time-steps to illustrate taking the
t — oo limit before N — oo, whereas N = {256,512,1024} have been simulated for
t =5 x 10% time-steps to recover the N — oo before t — oo regime. The continuous line
represents the N — oo DMFT solution integrated numerically, while the vertical dotted
line corresponds to the critical value e, found by Hwang et al. [20§].

no means guarantees that these will be reached at long times.

In fact, the number of agents IV is expected to play a major role in determining
the long term fate of the system. In particular, there are strong indications that
the time 7, needed to reach a fixed point or a limit cycle grows itself exponentially
with N, at least when o = 1 [224]. More precisely,

7 ~ NoeVBE), (6.9)

where s is an exponent (possibly dependent on ¢) and B(e) an effective barrier
such that B(e = 0) = 0. Hence one expects that as N grows, fixed points/limit
cycles will in fact never be reached (except for e = 0). even if they are numerous.
This is in fact what happens numerically, see Fig. @

In this large N regime, new types of behavior therefore appear, that one can
call quasi-fixed points or quasi-cycles. In the case of quasi-fixed points, learning
does not strictly speaking converge (it would take an infinite time to do so),
but actions S;(¢) fluctuate around fixed, time-independent averages. In other
words, the two-point correlation C(7) is not equal to one for all 7 (which would
be the case for a fixed point) but reaches a positive plateau value for large 7:
C(1 — 00) = Cs > 0. The same holds for quasi-cycles of length L if one considers
the correlation function computed for 7 = nL, with n an integer: C(nL — c0) =
Co > 0, see [226] for the o = 1 case. This being said, we will see that the
schematic phase phase diagram drawn in Fig. of the previous chapter continues
to hold qualitatively in the large N finite ¢ limit, provided one interprets “fixed
points/cycles” as “quasi-fixed points/cycles” in the sense defined above.
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In order to study the complicated learning dynamics that takes place in the
true N — oo limit, we will resort to Dynamical Mean-Field Theory (DMFT). In a
nutshell, DMFT allows deterministic or stochastic dynamics in discrete or contin-
uous time of a large number IV of interacting degrees of freedom to be rewritten as
a one-dimensional stochastic process with self-consistent conditions. While diffi-
cult to solve both analytically and numerically due to their self-consistent nature,
DMEFT equations have proved very effective at describing a very wide range of
complex systems — see [227] for a recent review. Note however that such an ap-
proach is only valid when N — oo; as will be clear later, strong finite size effects
can appear and change the conclusions obtained using DMFT.

6.3.1 Derivation

In our case, we write the DMFT for the evolution of the incentives Q;(t), which
directly yield m;(t) = tanh(8Q;(t)). In order to do so, we rewrite our online
learning process, which depends on the realized S;(t), as an expression solely in
terms of m;(t) with additional fluctuations,

Z Jij Sj(t Z Jijmi(£) +ni(t), Z Jij&i(t) (6.10)

with &(t) = Si(t)—m;(t) and hence (&(¢)) = 0 and (& (t)&(s)) = (1—(m;(t))?)d¢.s.
Now, assuming the central limit theorem holds, the random variables 7; become
Gaussian for large N with

i(t)) =0, (ni(t)n;(s)) = v(e)(1 = q(t))d,50i5, (6.11)

where ¢(t) = C(t,t) as defined in Eq. () As required, in the noiseless limit
B — oo limit, one has ¢(t) = 1Vt and the random variables 7; are identically zero.
Starting from the N equations

Qit+1)=(1—a)Qi(t +aZJUmJ ) 4 ani(t) + ahy(t), (6.12)

where h;(t) is an arbitrary external field that will eventually be set to 0, the
DMFT can be derived using path_integral techniques or the cavity method, the
latter being detailed in Appendix . Remaining in discrete time to explore the
entire range of values of «, one finds, in the N — oo limit,

Qt+1)=(1-a)Q(t)+a’(1—2) Y Gt s)m(s) + ag(t) + ah(t),  (6.13)

s<t

with (¢(t)) = 0, and
(0(t)p(s)) = v(e) [O(t, ) + (1 = q(t))drs], (6.14)
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The memory kernel G and correlation function C' are then to be determined self-
consistently,

_/om(t)
Glt,s) = < h(s)

where the averages (...) are over the realizations of the random variable ¢.
While we shall see that this discrete description will allow for the numerical
resolution of the N — oo dynamics (see below), providing precious insights and
intuitions, a continuous description will be much more convenient to obtain ana-
lytical insights. In the a < 1, ¢ > 1 regime, we can rescale the time as ¢t — t/a.
Interestingly, doing so requires expanding Q(¢ 4+ 1) to the second order if one is
to keep an explicit dependence on «. The resulting continuous dynamics reads

>, C(t,s) = (m(t)m(s)), (6.15)
h=0

Qo -

200+ QM) = QM) + (- <) /0 ds G(t, s)m(s) + 6(t) + h(t)  (6.16)

with
(@(1)o(s)) = v(e)[C(t,5) + a1 — q(t))d(t — s)], (6.17)

and the memory kernel and correlation function are similarly defined self-consistently

_ /ém(t)
Glt,s) = <(5h(s)

with, we recall, ¢(t) = C(t,t) = (m?(t)). Very importantly, note the rescaling in
time introduces a prefactor « in the variance of the ¢, which stems from the noise
in the learning process. Since 1 — q(t) ~ B2 for large 3, this extra term is of
order /B2, as anticipated above.

In the next sections, the DMFT equations will be used to shed light on the
dynamical behavior of the model in the limit N — oo.

>, C(t,s) = (m(t)m(s)), (6.18)

h=0

6.3.2 Numerical integration

As mentioned above, the discrete time dynamics can first be integrated numerically
to obtain solutions free of any finite size effects [228]. Due to the self-consistent
nature of the equations, their numerical resolution is not trivial, and requires an
iterative scheme to update both the memory kernel and correlation function until
convergence.

The procedure is essentially the same as that described in Ref. [229]. We start
from an initial guess for both the correlation matrix and the memory kernel, we
typically choose C(t,s) = G(t,s) = exp(—|t — s|), mostly for a lack of better idea.
A realization of the noise trajectory is then drawn and Eq. () is iterated in time
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Figure 6.4: Convergence of some selected observables with the iteration number ¢ in
the numerical resolution of the discrete DMFT equations constructed from M = 5 x 10°
independent trajectories for (a) a = 0.9, 8 — o0, € = 0.4; (b) @« = 0.1, 8 =4, e = 0.6.
Note that the number of iterations required depends on the parameters.

from a random initial condition Q(0) and up to a fixed final time ¢¢. This procedure
is repeated independently a large number of times M (typically M ~ 10°). Taking
averages over this large number of realizations, the correlation matrix and memory
kernel are updated following Eq. () Note that, as recommended in [229], we
perform “soft” updates on C(t,s) and G(t,s), i.e. Xupdated — (1 _ g)XxPrev. 4
aX™W. We found a = 0.5 to be appropriate in most cases. Examples of the
convergence of different observables are shown in Fig. @

As detailed in the original work of Eissfeller & Opper [230], we use Novikov’s
theorem to compute the response function with correlations in order to avoid the
unpleasant task of taking finite differences on noisy trajectories, at the cost of the
inversion of the correlation matrix. This inversion will however mean that very
long trajectories become difficult to integrate. In practice, we will often be limited
to t¢ < 1000, which we found to be sufficient in most cases.

6.3.3 Interpretation in a socioeconomic context

Before jumping into the study of the DMFT equations, let us take a sidestep
to discuss the socioeconomic interpretation of Eq. () (or Eq. () for that
matter). Remarkably, we have managed to reduce N interacting agents to a
single equation for the incentive, or equivalently the intention — at the cost of
self-consistency of course.

As hinted in a footnote of the introductory chapter, this is, in a sense, the
equation describing a truly representative agent. Importantly, and at the heart
of the difficulties we will encounter in studying this equation, these dynamics are
non-Markovian, as they depend on the entire past trajectory through the memory
kernel. The representative agent therefore a priori has long term memory, and
aggregates past information in a much more complex way than any given agent
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in the system.

This is in fact the important conclusion that we can draw from this description
of the model. While the representative agent paradigm is not inherently wrong,
as one can construct an effective representative agent as we did, it is essential to
notice that this agent does not correspond to any agent in the system: it is a new
entity with markedly different features to those of the original agents. With this
difference in mind, and as suggested in [231], DMFT might be a promising avenue
to rejuvenate and redefine the representative agent paradigm in complex systems.

6.4 Noiseless learning

In this section, we use both the DMFT equations and the results on the complexity
of fixed points and limit cycles to classify the different dynamical behaviors of the
learning process in the noiseless case § — 0o, where the realized and expected
decisions are equal, m;(t) = S;(t) = sign(Q;(t)).

6.4.1 The memory-less limit

In this case, corresponding to Eq. (@), both approaches (DMFT and complexity
of limit cycles) seem to agree on the overall picture: as ¢ increases from 0 to 1,
the system transitions from L = 2 cycles to over-damped oscillations and chaos
— see Fig. of the previous chapter. However, upon scrutiny, one realizes
that the perfect agreement between DMFEFT and direct numerical simulations of
the dynamics for finite N is only valid in a region where ¢ is small and N large
enough — see Fig. @ In particular, when 0.5 < ¢ < 0.8, L = 2 cycles do
persist when N is smaller than ~ 200. For larger N, the lag 2 autocorrelation
function C(7 = 2) is noticeably smaller than unity (consistent with [226]), and
well predicted by DMFT as soon as N 2 1000.

What happens for ¢ < 0.5 when N — oo? The numerical solution of the
DMEFT equations suggest the following scenario: when e < ery ~ 0.473, the long
time value mq, of the correlation with the initial conditions C'(0,2n) at even time
steps is strictly positive.@ In this regime, the value of C(t,t +2) — C(1 = 2) is
only exactly equal to one for € = 0 (permanent oscillations), and appears to reach
a plateau close to unity for € > 0. Below ery, we can conclude that the system
is not ergodic, which will have important implications on the finite temperature
dynamics. For asymmetries greater that gy on the other hand, the decorrelation
becomes exponential and we enter a bona fide chaotic, ergodic regime [230,232].

32The convergence to Mmoo is as slow a power law of 7, which makes difficult its numerical
determination. Obtaining the precise value of erym is therefore challenging [23(].
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Although memory-less learning is clearly unrealistic, these results are rather
instructive. The system is indeed unable to display aggregate coordination when
interactions are mutually independent (chaotic region around ¢ = 1). Placing
ourselves in the socioeconomic setting, it seems evident that the number of players
vastly exceeds the number of iterations, and the results above indicate that the
chaotic region is in fact quite large. Perhaps more importantly, in the absence
of learning, agents will see their decisions vary at a high frequency without ever
reaching any static steady-state, not only when the game is close to zero sum
(¢ — 2), but even when it is fully reciprocal (¢ — 0). Clearly, this last point
underlines the importance of introducing memory to recover realistic learning
dynamics.

6.4.2 Memory helps convergence to fixed points

For N not too large, we observe numerically that the fraction of “frozen” agents
for which S;(t + 1) = S;(t) quickly tends to 1 as « decreases from 1, as shown
in Fig. . This is somewhat consistent with intuition, as the learning dynam-
ics average rewards over a period 7, ~ 1/a, meaning that high frequency cycles
observed for o = 1 are expected to be “washed out” when « is sufficiently small.
Since fixed points exist in large numbers, it appears natural that they are even-
tually reached given their abundance at zero temperature. However, as we have
shown in the previous section, L. = 2 limit cycles are still much more numerous
than fixed points for o 2 0.5. The fact that C(7 = 1) approaches unity as « is
reduced much faster than in Fig. @(b) suggests that the basin of attraction of
fixed points quickly expands, at the expense of L = 2 limit cycles.

Our numerical results therefore indicate that for any finite size system which
has enough time to reach a steady state, the effect of « is effectively to help
the system find fixed points — see Fig. . Focusing for example on the points
corresponding to N = 128 and a = 0.1, we indeed observe that the 95% quantile
includes C'(2/a) = 1 even for € = 1, i.e. fixed points can be reached even in the
chaotic regime with modest simulation times, which would be an overwhelmingly
improbable scenario in the memory-less case, as illustrated by Figs. (b) and
(c).

As the number of agents N increases, we enter the DMFT regime shown as
plain lines in Fig. . One finds that decreasing the value of a slows down
the decorrelation of the system. However, for small «, the evolution becomes a
function of at only, as suggested by Eq. () when o — 0: the dynamical
slowdown is dominated by the long memory of learning itself.

Fig. @ shows that when ¢ = 0.5, sufficiently large systems (described by
DMEFT) decorrelate with time for all «, and we expect C(7 — o0) — 0 — learning
also leads to chaos. When ¢ < 0.5, on the other hand, we found that there is
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Figure 6.5: Convergence to fixed points with decreasing « for € < 0.8, 8 — oo and finite
N. (a) Steady-state two-point correlation function between successive configurations from
finite N numerical simulations averaged over 200 samples of disorder and initial conditions,
error-bars showing 95% confidence intervals. (b), (c¢) and (d) Sample trajectories of 32
randomly chosen sites among N = 256 for ¢ = 0.4, ty = 10%/a, for a = {1.0,0.88,0.7}
respectively.
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Figure 6.6: Influence of finite size N, non-reciprocity € and memory span « on the
learning dynamics. (a) Steady-state two-point correlation function shifted by 7 = 2/«
in the 8 — oo limit for different memory loss rates a, from light green to black (color
map on the right axis). Symbols correspond to direct simulations and plain lines to the
solutions of the DMFT equations. The N = 128 simulations are initialized with ¢y = 10%
time-steps, whereas N = {256,512} have been simulated for ¢, = 105 iterations before
taking measurements. Results are averaged over 32 samples, with error-bars showing 95%
confidence intervals. (b) and (¢) Sample trajectories for all N = 128 sites for ¢ = 1 and
a = {1.0,0.1} respectively, clearly reaching chaotic and fixed-point steady-states.
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ergodicity breaking, in the sense that C'(1r — oo) > 0, as we found above for
cycles when o = 1. More precisely, a numerical analysis of the DMFT equations
suggests that when e,a — 0, C(7 — o00) = 1 — ¢y/e. We have not been able to
find an analytical proof for such a singular dependence on ¢.

In other words, there again seems to exist a critical value ery separating
the ergodic, chaotic phase for € > egy from the non-ergodic, quasi fixed-point
behavior for € < egy. However, our numerical results are not precise enough to
ascertain the dependence of egyt on «, which seems to hover around the value
0.473 found for @« = 1. More work on this specific point would be needed to
understand such a weak dependence on the memory length.

The precise dynamical behavior of the autocorrelation function C'(7) can be
ascertained in the continuous limit o« — 0 when € = 1. Indeed, the influence of the
memory kernel vanishes in this case where interactions are exactly non-symmetric,
leaving us with

Q) = -Q(t) +6(t),  (a—0) (6.19)
where we emphasize that the time variable has been rescaled as t — «at. From
there, the classical solution method proposed by Crisanti & Sompolinsky [233,234]
can be straightforwordly adapted with a small modification due to our parametriza-
tion of the interaction matrix that scales the variance of the entries by a factor

1/2 for e = 1, see Appendix . The two-point autocorrelation function is found
to be given by
2 . (A7)
= — 2
C(r) —sin <A(O) , (6.20)

where A(7) = (Q(t + 7)Q(t)) follows the second-order ordinary differential equa-
tion

A7) = Alr) - 50(r), (6.21)

with A(0) =1— % [235]. Very quickly, this means that the autocorrelation decays

exponentially, C(7) e 71 with

—2
T 3~ 2.8 (6.22)

T =
7T_

Both the full solution, obtained by integrating the ODE numerically, as well as
this exponential decay, are shown in Fig. 6.7, displaying a very satisfactory match
with numerical simulations.

6.4.3 Anomalous stretching of cycles

We have seen that understanding how memory allows the system to find fixed-
points, or quasi fixed-points, when they exist is a challenging task. While the
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Figure 6.7: Evolution of the time shifted autocorrelation function in the non-symmetric
case € = 1, B — oo, for different system sizes and memory loss parameters averaged over
20 realizations. Left: lin-lin scale, errobars showing 95% confidence intervals, continuous
lines representing the numerically integrated full DMFT equations (Eq. ()) Right:
lin-log scale and rescaling of the time shift by « such that points collapse onto a single
curve (errobars not shown), black continuous line representing the analytical solution
found by solving the Sompolinsky & Crisanti ODE Eq. (), dashed line representing a
pure exponential decay with characteristic time 7.
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Figure 6.8: Evolution of the oscillation frequency wy with the memory loss rate « for
8 — 00, € > 2 — g, averaged over 96 samples of disorder and initial conditions, errorbars
showing 95% confidence interval. (a) Log-log plot of wy as a function of «, dashed line
correponding to wg ~ y/a. (b) Two-point autocorrelation for ¢ = 1.8, N = 256 as a
function of the rescaled time lag for different values of . (c) Power spectrum of the
autocorrelation for the same parameters, displaying secondary peaks at odd multiples of
this fundamental frequency, as expected from the triangular aspect of C(7).
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very precise behavior of the correlation function is difficult to ascertain, we have
nonetheless obtained a reasonable picture of the role of the memory loss parameter
«. A central question is now what will happen if the memory loss rate is reduced
in the region of parameter space where there are only limit cycles. As previously
stated, averaging over a period 7, ~ 1/« clearly suggests that the occurrence of
short cycles (starting at L = 4 for « = 1) should gradually vanish.

Naively, one might expect a simple rescaling in time ¢t — ¢/«, yielding cycles
— when they exist — of period inversely proportional to « itself. Looking at the
numerical results from both the finite size game and the DMFT integrated nu-
merically in Fig. @(a), it quickly appears that such a simple rescaling in time
does not provide the correct description. Indeed, the period of cycles is observed
to be proportional to 1/+/«, i.e. much shorter than 1/« — see Figs. @(b) and (c).

One important aspect to note is that there is some decorrelation, as the second
peak of C(7) does not quite reach unity (in Fig. p.§(b)), meaning that we may see
quasi-cycles and not exact limit cycles, complicating the analytical description of
the phenomenon. Just as true fixed points in the N — oo limit only exist only
€ = 0, it appears that only the case € = 2 does display true limit cycles.

Another subtle point to consider is similar to the ¢ < 1 cases discussed, we
expect the time taken to reach these cycles will depend on the system size and the
relative distance to the chaotic region. This is confirmed by the DMFT solved for
fixed trajectory times for e = 1.5 (light crosses), which progressively departs from
the wy ~ /a regime around o = 0.1.

To understand how such non-trivial stretching occurs, we go back to the con-
tinuous DMFT equation,

t
%Q(t) =-Qt)-Q1t)+(1-e) /0 ds G(t, s)m(s) + ¢(t) + h(t).
While the presence of the second order derivative Q(t) appears natural to recover
limit cycles, it should be noted that this term, being pre-factored by «, is superfi-
cially subdominant relative to the dissipation represented by Q(t) While we have
seen that there is some decorrelation, the fact that robust oscillations are present
therefore suggests that the complicated self-consistent forcing terms almost ex-
actly compensate dissipation over a period, allowing the system to periodically
revisit quasi-identical configurations. In fact, the shape of these oscillations is far
from sinusoidal, but rather of see-saw type, see Fig. @(b) This suggests that
in the limit a — 0, Q(t) diverges each time C(r) changes sign, such that %Q(t)
cannot be neglected and therefore sets the relevant time scale to o~ /2. We have
however not been able to perform a more precise singular perturbation analysis
of this phenomenon.

Going beyond this rather loose argument, and precisely characterizing such
see-saw patterns appears very challenging and is left for future work. A possible
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approach would be to first take the ¢ = 2 case where true cycles should exist,
and to assume the correlation function is an exact triangular wave of frequency
w as suggested by Fig. 6.§(c). As a result, m(s) = sign(Q(s)) is an exact square
wave, and the convolution with G can be written as a product in Fourier space.
Enforcing the dissipation over a period to be zero, one could then perhaps find
a closed equation for ) and w if appropriate ansatz for the response and forcing
functions are taken.

6.5 Noisy learning

While we have shown that the § — oo deterministic limit can be relatively well
understood with the tools at our disposal, one of the key features of our model is
the uncertainty in the decision occurring for boundedly rational agents. Besides, it
is also in this situation that the online learning dynamics differ significantly from
the more widely studied offiine learning where the entire model can be understood
in terms of deterministic mixed strategies parameterized by the coefficients m;(t)
(compare Egs. (@) and (@) in the introduction of the model).

When « is close to unity and 5 becomes small, the fluctuations are too large
for coordination to occur. Taking for instance a = 1, it is indeed clear that the
iteration

mi(t + 1) = tanh (5 Z Jm‘Sj(i))

J

will have extremely large fluctuation in the argument on the right hand side. As
a result, we expect to loose the sharp transition as a function of T' that can be
observed for the NMFE (see Fig. 5.9). The order parameter ¢ instead continu-
ously tends to 0 with T', regardless of the asymmetry €. This regime is shown in
Fig. p.9(a), representing the heat map of ¢ = lim;_,o, C(t,t) for @ = 0.5. Clearl
the linear stability analysis of the paramagnetic fixed point presented in Sec. @
cannot hold when the thermal fluctuations are not averaged on large periods of
time. To find a richer phenomenology, we will therefore focus on the o < 1 regime
where more complex dynamics can be observed.

6.5.1 (Quasi-)fixed points

In Sec. @, we studied the fixed points of the NMFE that the game should reach
if the fluctuations from imperfect learning can be neglected, i.e. if « — 0. Now,
the DMFT equations that proved effective in the zero “temperature” limit can be
used to revisit these finite 8 quasi fixed points. Indeed, going back to Eq. ()
and neglecting the term in y/« from the correlation function as we did in the static
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Figure 6.9: Heat map of ¢ = lim; o, C(t,t) = C(r = 0) in (T = 1/8,¢) space from
numerical simulations for N = 256, ty = 10% averaged over 32 samples of disorder and
initial conditions and (a), (b) and (c) corresponding to a = {0.5,0.1,0.01} respectively.
The white dashed line represents the critical temperature 7.(¢) where the paramagnetic
solution (¢ = 0) becomes linearly unstable (Sec. B.1).

T/2

setup, quasi-fixed points should satisfy

Q=(1—-¢e)myx+ J/qu(e)z, (6.23)

where z is now a static white noise of unit variance, ¢ is simply the now constant
autocorrelation and y is the integrated response function that we assume to be
time-translation invariant,

X:/o dr G(7). (6.24)

The averages on the effective process can now be taken on z to self-consistently
solve for ¢ and x (see e.g. [203] for a more detailed description). The resulting set
of equations are then

q = (m*(2))., (6.25)

to be solved simultaneously with

o) ) 6.26)

= <1 — B —e)x(1—m2(2))

where m(z) is the solution to

m(z) = tanh(B(1 — e)xm(z) + B/ qu(e)z). (6.27)

Although our model is entirely built on a dynamical evolution equation, and not on
a notion of thermal equilibrium, this set of self-consistent equations coincides with
the replica-symmetric solution of the NMFE model found by Bray, Sompolinsky &
Yu [[110] for e = 0. Since replica symmetry is broken in the whole low temperature
phase of the NMFE model, we expect that these static solutions of the DMFT
cannot describe correctly the long time limit of the dynamics, as we now show.
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The numerical solutions for the DMFT fixed point equations are shown in
Fig. (a) and compared to numerical results of the game for small a and for ¢ =
0.1 and ¢ = 0.6. We find that the long time behavior of ¢ for the direct simulation
of the SK game (circles and squares) and for long time dynamical solution of the
DMEFT equations match very well, but differ from the value of ¢ inferred from
the set of self-consistent equations established above. This is expected since with
such solution the order parameter ¢ approaches unity exponentially fast as T' — 0,
whereas the fact that the probability of small local fields (i.e. rewards in the game
analogy) vanish linearly (recall Fig. @) suggest that ¢ = 1 — kT2, as for the full
RSB solution of [110] but with presumably a different value of k. Remarkably,
in this regime, the results from the long time dynamical solution to the DMFT
equations (and the simulations) seem to collapse when plotted vs T'/T(¢), a result
we have not been able to uncover analytically.

To ascertain the range over which this non-trivial mean-field solution should
be valid, we can study the stability of the DMFT fixed point close to the critical
temperature 1/5,, following the procedure first detailed in [202]. Considering a
random perturbation to the fixed point €£(t), with £(¢) a Gaussian white noise
and € < 1, we study the perturbed solution

Q(t) = Qo + €Q1(t), (6.28)

with Qg the fixed point given in Eq.(), where the noise is no longer static but
similarly given by ¢(t) = \/qu(e)z + €p1(t). Replacing in the DMFT continuous
dynamics for « — 07 and collecting terms of order €, we find that the perturbation
evolves as

)= -0+ 50— 1 - m*) [ "G 5)0u(s) + dn(t) +€(0), (6.29)

where we have used sech?(3Qg) = 1 — m?(z) from Eq. (), giving in Fourier
space

Ot — b réw)
iw—+1—L3(1—¢e)(1—m2(2)G(w)
where we have again assumed that the memory kernel is time-translation invariant.
Now, in the limit Q1 < 1, i.e. close to the critical temperature, one can we
linearize the hyperbolic tangent tanh(8Q1(t)) and write a closed equation for the
spectral density of Q; at order 52Q?,

ot
(1Q1(w)[?)

As a result, we have criterion for the onset of instability for w = 0:

(1—-e)x =1-Bv(e), (6.32)

(6.30)

= |iw+1— (1 —e)G(w)]> = Bule). (6.31)
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Figure 6.10: (a) Order parameter ¢ = C(t,t) averaged in time in the (quasi) stationary
regime vs. rescaled temperature for ¢ = {0.1,0.4} (dark and light shades respectively).
Circular and diamond markers correspond direct, finite size simulations at N = 256 for
a = 0.01 and o = 0.1 respectively, whereas crosses represent the (dynamical) numerical
solution to the complete set of N — oo DMFT equations for a = 0.1._Continuous lines
show the solutions to the static DMFT fixed point equations (Eq. ()—()) (b)
Spectral density of a small perturbation Q1 to the fixed point solution of the DMFT close
to the critical temperature. As the quantity is necessarily positive for a valid solution,
the grey region corresponds to instability.

where we noticed G (w=0) = x, given, close to S, by
-1 (1—\/1—452(1—5» (6.33)
X281 -¢) ' '

Taking e = 0, we recover the criterion found by Bray et al. [110] for the critical
temperature, giving 7. = 1/, = 2 in their case.

For non-zero €, we can also find the critical temperature by replacing Eq. ()
in (), to recover yet again the critical temperature given by Eq. (@) As
shown in Fig. (b), the spectral density evaluated at w = 0 becomes negative
for T' < T¢(e) for the fixed point solution. While the linearization used to obtain
the relation is expected to become invalid, we understand this negativity as a
strong sign that the solution is unstable and thus likely invalid, consistently with
the discrepancy observed between the static prediction and the direct simulations
and the dynamic solution of the DMFT show in Fig. (a).

6.5.2 Memory onset transition

The breakdown of the DMFT fixed point solution that is an average over not only
realizations of the noise but also implicitly on initial conditions at the critical
temperature is consistent with the emergence of a non-zero complexity for all
e < 1 at that point described in Sec. . Indeed, when there are an exponential
number of fixed points to reach, it appears natural for the dynamics to no longer
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be time-translation invariant, contrary to what was postulated in the integrated
response.

In the infinite time limit, the breakdown of the time translation invariant (TTT)
nature of th