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Foreword
The journey behind this thesis starts on a cold and rainy day of December 2017
in London. Then a student at Imperial College London predestined to a career
in engineering, I met with Michael Benzaquen to discuss an internship opening
in his research group. As I was looking for a research experience in hydrodynam-
ics, I had stumbled on his webpage a few weeks earlier. There, internship and
PhD proposals broadly combining physics and economics had piqued my inter-
est. Due to my background in fluid mechanics, I ended up studying microfluidics
with Gabriel Amselem and himself at LadHyX. It would involve two months of
painstaking experiments, creating and deforming hundreds of droplets of around
half a millimeter in diameter in fragile silicon canals, but I had a foot in the door.

Towards the end of the internship, Gabriel – to whom I had mentioned my
interest for interdisciplinary science – told me about a seminar that was to be
given by Jean-Philippe Bouchaud, titled “De la Physique Statistique aux Sciences
Sociales”. From there, I left with not only a clearer picture of what “Econophysics”
was, but also with the conviction that, indeed, the sudden switch from a prosper-
ous economy to a recession is not so different to liquid water turning into an ice
cube. In any case, my mind was set, I needed to become a statistical physicist to
eventually study these complex systems.

Fast forward to a couple of years later. In order to find a good internship
and complete my “Physics of Complex Systems” master in Paris, I came back to
Michael, initially just to ask about the different statistical physics labs in the Paris
area. Of course, the idea of joining the then new EconophysiX chair had crossed
my mind, so when Michael mentioned a project co-supervised by Jean-Philippe
and linking portfolio optimization to the theory of spin-glasses, I did not hesi-
tate much – nonetheless making sure no microfluidic experiments were involved.
Although I did not initially know much about spin-glasses, their incredibly rich
phenomenology hidden behind a deceptive simplicity quickly caught my interest,
and the internship confirmed my motivation to pursue a PhD. Yet, before embark-
ing in these further studies, I had planned to explore another aspect of statistical
mechanics (and another region of the world) through a research experience in
Japan. Following the advice of my then teacher Prof. van Wijland, I had my eyes
set on Prof. Sasa’s lab in Kyoto to work on stochastic thermodynamics. This was
March 2020, however, so the project was cut short for a rather evident reason. So
be it, I had found a great lab and a research topic that I very much liked, and it
was with enthusiasm and excitement that I started my PhD in October 2020.

During the past three years, I was fortunate enough to work on a variety of
projects – some successful, others less so –, touching upon different aspects of
both socioeconomic modeling and of statistical mechanics. Clearly, a large part
of the thesis is rooted in the theory of disordered systems, in the continuity of
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my very first work associating spin-glasses and optimal portfolios. Leveraging
and extending results from spin-glasses towards the specificities of socioeconomic
systems is, in my opinion, the main contribution of the thesis. This being said,
other problems outside of the realm of disordered systems encountered along the
way have proved to be extremely useful for my understanding of the challenges
of socioeconomic modeling and of the possible answers (or lack of) provided by
statistical mechanics.

Academic research being a collective phenomenon at heart, my PhD involved
many interactions. First and foremost with my immediate colleagues of course,
but also with many inspiring fellow students and scientists at schools in Cargèse,
Beg Rohu or les Houches. Towards the end of my thesis, I also had the chance to
work hand in hand with others on two collaborative project. First in Prof. Sasa’s
group in Kyoto, where I eventually had the amazing opportunity of going for a
three month period in 2022. There, I benefited from countless discussions with
Andreas Dechant, and of his and Prof. Sasa’s expertise, providing me with the
ideal introduction to stochastic thermodynamics. Then, in my final year within
the EconophysiX research group with Ruben Zakine and Antoine-Cyrus Becharat,
allowing me to learn from Ruben’s competence in active matter and to guide, to
the best of my ability, Antoine-Cyrus in the first year of his PhD. The outcome of
these collaborations is partially included in the manuscript, with my coworkers’
agreement of course.

In addition to the diverse and stimulating scientific projects mentioned above,
my PhD also encompassed other responsibilities integral to the learning experience
of becoming a researcher. As a teaching assistant, on the one hand, at ENSAE
and École polytechnique and for courses ranging from the first to final year of
studies. Within the EconophysiX research group on the other, as I was tasked with
organizing and chairing the monthly group meetings from the first year onwards.
Both these assignments turned out to be quite enjoyable and, in my opinion,
beneficial to communicate my research effectively and expand my scientific culture.

As hinted above, the present manuscript is predominantly written as a statisti-
cal physics work. Indeed, all of my publications have been in physics journals, and
our toy-modeling approach is undoubtedly different from what would be found in
typical economics research. Nonetheless, I would like the ideas exposed here to
be understandable to non-physicists. As a result, without being self-contained,
a relatively significant part is dedicated to theoretical background, which might
perhaps appear unnecessary to the initiated reader. If so, the dedicated chapter
(Chap. 2) can of course be skipped, or only consulted when required (explicit
references will be made to the relevant subsections).
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Chapter 1

Introduction

The difficulty lies not so much in developing new ideas as in escaping from old ones.

John Maynard Keynes

The idea of drawing parallels between collective human behavior and physics
is not new. Starting from Daniel Bernoulli1 [7], who is most famous for his con-
tributions to hydrodynamics, theoretical economics has indeed long attempted to
establish laws, akin to the laws of physics, to describe markets, consumption or
production.

In this endeavor, the pioneers of neoclassical economics such as Léon Walras
initially found inspiration in mechanics and the rigorous mathematical formalism
around it [8]. Whether realistic or not, by considering individuals as egoistical,
non-interacting and clairvoyant, human behavior can indeed be put into determin-
istic equilibrium equations where supply perfectly matches demand. From then
on, economic theory has mostly evolved in a very axiomatic fashion, with a strong
preference towards very simple models that allow for rigorously proved theorems.

Interestingly, it is then theoretical physics that ventured back into socioeco-
nomics following the major advances of statistical mechanics in the XXth century.
The discovery of universality, whereby the macroscopic properties of large classes
of systems turn out to be independent of their microscopic details, and the related
effectiveness of simplified toy models to describe complex phenomena have indeed
made the application of newly developed methods to socioeconomic problems very
compelling. Collective human systems such as the economy being comprised of a
large number of interacting individuals and prone to display abrupt changes such
as crises, these tools naturally appear quite adequate.

1Not to be mistaken with his uncle Jacob Bernoulli, known for the Bernoulli numbers and
distribution, or his father Johannes specialized in infinitesimal calculus or any of the many other
Bernoulli mathematicians.

3



Chapter 1. Introduction

Being entirely at odds with the representative agent paradigm that has been
at the center of many classical theories, the fields of “Econophysics” and “Socio-
physics” have encountered mixed success overall. On one hand, a very large num-
ber of interesting models have emerged (see e.g. [9–15]), some of which replicate
essential empirical observations such as power law distributions [16]. In finance,
in particular, where data is plentiful and theories can be readily tested, some
tools from statistical physics have had a significant impact [17, 18]. On the other
hand, even some of the most elementary concepts in statistical mechanics have
not well permeated to mainstream economics, which is still extremely dependent
on general equilibrium models that rely on the typical assumptions of a rational
representative agent. This being said, the failure of macroeconomics to predict
the 2008 crisis has somewhat accelerated the acceptance that heterogeneity and
feedback loops might be key to understand and predict large scale complex phe-
nomena [19–22]. There is therefore still some hope for socioeconomics to embrace
what theoretical physics has to offer [23,24].

The opportunity for ideas from statistical physics to finally make a break-
through in socioeconomics is also driven by the success of the theory of disordered
systems in other fields. Indeed, the theory of spin-glasses, initiated to study the
effect of defects on magnetic materials roughly 50 years ago, has bloomed, through
its interaction with other disciplines, into complex systems science. Culminating
with Giorgio Parisi’s Nobel Prize in 2021, spin-glasses have been an extremely
fruitful playground both in terms of theory and applications, being simultane-
ously very general and simple in their statement, and incredibly profound and
far-reaching in their consequences. In a nutshell, the theory of disordered sys-
tems has demonstrated that heterogeneous interactions between a large number
of constituents have highly non-trivial effects, both on the static and dynamic
properties of the system. A priori, many socioeconomic models should fall within
this description.

The overarching goal of this thesis is to use and expand results from disordered
systems towards socioeconomic systems, which will also lead us to study some
specific problems using equilibrium and out-of-equilibrium statistical mechanics
along the way. In this introduction chapter, we will first present some very basic
phenomenology from spin-glasses and complex systems science. Following this
rather pedestrian overview, we will lay the ground rules on the socioeconomic side
to give an idea of the typical modeling assumptions that will be made in this thesis.
Finally, two prototypical examples of existing socioeconomic “toy models” will be
introduced to illustrate first what we mean by a toy model in this context and
second the two-way interaction that can exist in the modeling of human behavior
with physics-inspired approaches.
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Chapter 1. Introduction

1.1 From spin-glasses to complex systems

1.1.1 A bit of history

Despite its apparent disconnection with physics, much of what will be presented
in this thesis can be traced back to to good old fashioned laboratory work. In the
1970s, an intriguing puzzle emerged from the study of Cu-Mn and Au-Fe alloys. In
these alloys, where a small fraction of moment-bearing elements (here Mn and Fe)
is incorporated in a non-magnetic host (Cu and Au), a sharp but non-divergent
peak in magnetic susceptibility can be identified for a concentration-dependent
critical temperature [25, 26]. Surprisingly, the magnetization of the material is
not non-zero below the critical temperature as in a standard magnetic sample, in
which the susceptibility diverges at the transition. Instead, one can observe the
emergence of order, in the sense that the local polarization of magnetic atoms
stays correlated in time, but the orientation of individual atoms still appears to
be random. Understanding how these “spin-glasses”2 can display such frozen yet
disorganized low-temperature states then became a central theoretical question.3

The answer to this mystery can be explained in relatively simple terms. In
the Cu-Mn or Au-Fe alloys, the interaction between polarized atoms oscillates in
sign with the distance between the particles. As a result, when there is a rela-
tively small fraction of the moment-bearing particles that is randomly distributed
in the non-magnetic host matrix, there will be no mean ferromagnetic or anti-
ferromagnetic (tendency for spins to align or anti-align respectively) interaction.
In the low temperature region, each spin will therefore align in the direction that
is favored by its local random environment. Importantly, the heterogeneity of the
sample gives rise to a phenomenon known as frustration, illustrated in Fig. 1.1.
Indeed, most sites will have contradicting interests with each other, explaining
why no single direction can emerge from the oscillating interactions. Note that
the effectively random nature of the interactions is why spin-glasses are classified
as disordered systems, which are typically understood to include a wider range of
models that are not necessarily describing spin-like quantities.

To describe this situation analytically and as generically as possible, Edwards
and Anderson proposed a simple Hamiltonian to describe the energy of spin-glasses
in 1975 [34]. In their model, the energy of a given configuration is simply the Ising
Hamiltonian

H = −
∑
(i,j)

JijSiSj , (1.1)

2Here, the term glass refers to the conceptual similarity between the seemingly random po-
larization of atoms and the positional disorder characteristic of conventional glasses.

3For a more complete history of spin-glasses, see the beautiful series of articles by P. W.
Anderson in Physics Today [27–33].
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Figure 1.1: Illustration of the frustration phenomenon that arises in disordered sys-
tems. Solid links indicate Jij = Jji = 1 while dashed links represent Jij = Jji = −1.
Left: non-frustrated “ferromagnet”, all spins can be happily aligned. Right: frustrated
configuration, spin C is undecided as it cannot simultaneously align with B and anti-align
with A.

where, importantly, Jij = Jji the interaction between the spins on sites i and j
is taken to be random (with usually a zero mean), while the Si, i = 1, . . . , N , are
standard binary spins, Si = ±1.

In their original paper, Edwards and Anderson (EA) considered nearest neigh-
bor interactions, and showed the existence of a spin-glass phase below the critical
temperature. As will be detailed later, the fully connected version of the model
due to Sherrington and Kirkpatrick (SK) [35] is simpler – or rather not as diffi-
cult – to study analytically and becomes particularly relevant for interdisciplinary
applications.

1.1.2 Main features
The theoretical understanding of these idealized spin-glasses then made tremen-
dous progress in the decades following their introduction. While some of these
results will be exposed in more detail in the next chapter, let us summarize the
main features that emerge from the toy models introduced by EA and SK.

First, these simplified models present very singular static properties as a result
of the frustration illustrated in Fig. 1.1:

• A very large number of locally optimal spin configurations,

• These configurations are near-degenerate (multiplicity of quasi-equivalent
solutions) and separated by enormous energy barriers,

• The local optima are extremely sensitive to the interaction couplings, i.e.
solutions are “fragile”.

These unusual static properties then have important dynamic consequences, namely:

• A very strong dependence on initial conditions,
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• Extremely slow (sometimes infinitely slow) relaxation dynamics and ergod-
icity breaking.

The fact that such simply stated models can have this extremely rich and
complex phenomenology is remarkable in itself. One could even argue that the
theoretical models of spin-glasses are in some sense more interesting than the phys-
ical systems they originally aimed to describe, as they require an entire new way
of thinking about thermodynamics (due to their non-ergodic nature). Whether
this entire phenomenology is realistic in the context of metallic alloys is then
of secondary importance. As a matter of fact, it turns out that while both the
EA and SK model recover a finite susceptibility peak at the critical temperature,
they also give rise to a cusp in the specific heat, which has not been identified in
experiments.

1.1.3 The spin-glass cornucopia
It should now be clear that the merit of theoretical models of spin-glasses does
not lie in their ability to accurately describe real physical systems. If this is the
case and that they are merely an intellectual curiosity, then what is the fuss all
about, and more importantly why would the Swedish Academy of Sciences award
Giorgio Parisi a Nobel prize? (And what’s more shared with two climate scientists
who’s work then appears much more useful and relevant.)

The answer lies in what Philip Anderson elegantly called the spin-glass cornu-
copia4 [32]. While being a relatively poor model of Cu-Mn alloys and of anything
too precise, spin-glasses are a great model for many other things.

First and foremost, the frustration characterizing spin-glasses means that find-
ing the ground state, i.e. the spin configuration minimizing a given Hamiltonian,
is what is known in optimization as an “NP-hard” problem. In other words, there
is no known algorithm that systematically finds the configuration {Si = ±1} yield-
ing the lowest possible value of H defined in Eq. (1.1) in less than ∼ 2N steps.
While the statistical mechanics of this spin-glass will not give the solution for a
specific instance of the disorder, it can provide precious information on the typical
outcome one may expect. One may then use these insights to understand some key
aspects of other “NP-hard” optimization problems, such as graph partitioning [36]
or the famous traveling salesman problem [37,38]. The most notable contribution
from theoretical physics to these optimization problem is perhaps the heuristic
algorithm known as simulated annealing, introduced by Scott Kirkpatrick (of the
SK model) and coworkers in 1983 [39]. By slowly cooling the system from above
the critical temperature, the lower energy states can be reached with much higher
probability than if starting directly in the very low temperature region. While

4“Horn of plenty” in latin, i.e. a plentiful supply in this context.
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this is not true for all optimization problems, the technique can be very effective
in some cases.

Beyond these rather natural links towards optimization – the Hamiltonian
being only a specific instance of objective function to minimize – other fruitful
interdisciplinary extensions of spin-glasses have also emerged. Most notably, the
theory of both biological and artificial neural networks has been, and still is,
an extremely successful playing field for spin-glass physicists. Starting from the
seminal work of Little [40] and Hopfield [41], and subsequently of Gardner and
Derrida [42], the modeling of neuron activations as binary variables has given a
very natural application for the theory of spin-glasses. Given the poor theoretical
understanding of deep neural networks despite their popularity and effectiveness,
it appears likely that there is still a lot of potential for the application of spin-
glass theory to neural networks. The recent success of “transformers”, which can
be understood with modern Hopfield networks [43], and of diffusion models, for
which the physical interpretation is rather natural [44], also give very promising
perspectives in this direction. Other applications where spin-glasses have proved
to be conceptually important include evolutionary biology [45] and population
dynamics [46, 47], as well as optimal portfolios [48] and agent-based models [49]
in the spirit of this thesis.

In the spin-glass community, these interdisciplinary applications are sometimes
referred to as the “beyond”, in reference to Mézard, Parisi and Virasoro’s now clas-
sic book “Spin glass theory and beyond” [50]. Amusingly, while this “beyond” was
originally restricted to the optimization and biological problems mentioned above,
the very first page of the book introduces the concept of frustration illustrated in
Fig. 1.1 with the relationship between three individuals. Clearly, it is therefore
natural to imagine that frustration and heterogeneity play a role in the collective
behavior of socioeconomic systems. As a matter of fact, a chapter dedicated to
socioeconomic applications (and mentioning some of the results presented in this
thesis) is now included in the recently edited sequel, “Spin glass theory and far
beyond” [51], which compiles the contribution of over a hundred authors.

1.2 Agent-based modeling in socioeconomics

Before making the link between statistical physics and any socioeconomic system,
some clarification is required as to what exactly is meant by the latter. Indeed,
both economics and sociology encompass a very wide range of approaches, some
of which are not necessarily quantifiable as such. Whether one is thinking of polit-
ical economics or the psychological (or even physiological) theories at the root of
human behavior, the possibility of drawing parallels with theoretical physics is not
evident at all. Let us define more precisely the prerequisites for a socioeconomic
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problem to be somewhat within the realm of the discipline in which this thesis
lies.

1.2.1 Agents as atoms
First and foremost, it is important to highlight that attempts at using statisti-
cal mechanics very often imply the presence of a large number of constituents in
the system. Instead of atoms or colloids, the elementary entity in this context
will often (but not always) be an agent. In practice, an agent can be very dif-
ferent things: an individual person or household obviously, but also a firm, an
organization, a central banks etc.

A popular idea in classical economics is then that of the representative agent.
To avoid going through what we will see is the painstaking process of accounting
for heterogeneity among a population for instance, the idea is to describe a model
or situation with a very small number of agents (often just a single “representative
consumer” and a handful of other actors), acting as proxies for the entire economy.
While this approach is not necessarily inherently wrong5, a large part of – if not
all – potential emergent behavior can very easily be lost. As indirectly admitted
by Nobel prize laureate Robert Lucas in a somewhat surreal attempt at defending
the failures of macroeconomics [52], a consequence of this paradigm is that the
2008 economic crisis was not predicted because economic theory predicts that such
events cannot be predicted. Indeed, by removing collective effects and feedback
loops, only exogenous shocks can typically destabilize a system under this repre-
sentative assumption, clearly contradicting empirical facts, see e.g. [53, 54] for a
comprehensive discussion on the topic.

To move away from this oftentimes simplistic reasoning, there has been sig-
nificant efforts since 2008 to develop genuine agent-based models, with a large
number of heterogeneous entities interacting to a certain degree. It is on these
type of models that we will mostly focus in this work and where statistical physics
likely has the largest part to play.

1.2.2 Utility theory
Regardless of the heterogeneous or representative nature of the agent considered,
a key and unavoidable step in any modeling endeavor then requires putting a
plain word description in equations or systematic rules. Reasoning in terms of
first principles, as one would do in physics, is not really possible when considering
socioeconomic systems as there are no evident universal or elementary rules (akin
for example to energy minimization), and is further complicated by the difficulty
of conducting repeatable behavioral experiments on humans and organizations.

5We will see how this idea can be revisited with Dynamical Mean-Field Theory in Chap. 6.
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As a major simplification, utility theory consists in postulating the existence
of a so-called utility function u(X), where here X would be (in a loose sense) a
state of the world, part of the set of possible alternatives offered to the agent [55].
In a typical consumer decision problem, the set of X are the possible consump-
tion choices for example (e.g. banana, apple and orange). The utility function
essentially quantifies6 the agent’s satisfaction following a given decision. Usually
the state X is restricted to things that might vary following the agent’s action,
and can then be viewed as an agent-specific analogue of the energy. Whereas
energy is minimized, it is assumed that the agent maximizes his or her utility.7
Importantly, the central assumption behind the utility is that an agent will prefer
the option with the highest utility if given a choice between two outcomes. To go
back to the previous subsection, one of the major differences between the repre-
sentative agent paradigm and the agent-based models of interest here is that the
utility in the latter is strongly affected by the choice of others, and not only by
the choices of oneself as in the former.

Within this framework, economists then usually make further postulates on
the mathematical properties of the function u [57]. Not without consequences,
when X is some measure of consumption, u(X) is taken to be strictly increasing
for example: more is always better and there is no satiation [55]. This hypothesis
is of course extremely debatable, particularly in today’s context where excessive
consumption is under scrutiny for obvious reasons, and should therefore be kept in
mind before making rash conclusions. To account for the fact that satisfaction is
(should be?) somewhat diminishing as goods are accumulated, the utility function
is also often assumed to be concave, which is known as the law of diminishing
marginal utility. In any case, the utility function will be explicitly given in the
specific problems we will consider, clearly stating the underlying assumptions that
are made.

1.2.3 Homo economicus, bounded rationality and the logit rule
Provided one accepts utility theory as the best way to formalize some measure
of satisfaction for agents, there remains the question of how agents use such a
hypothetical quantity to make their decision. Given the assumption that an in-
dividual should always go for the outcome leading to the highest value of utility
given the choice, the most direct approach is to take agents to be strict optimizers,
determining their next step as the one that will maximize their utility gain.

6To be perfectly precise, we are speaking here of a cardinal utility function, in contrast with so-
called ordinal utility functions that only rely on ordered preferences without having to precisely
quantify levels of utility.

7Note that the mirroring between utility and energy is likely not entirely coincidental: the
origins of utility theory can be traced back to the physicist Daniel Bernoulli [7], while Irving
Fisher, who significantly contributed to its development, was trained by Willard Gibbs [56].
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This “homo economicus” paradigm is the most common in conventional eco-
nomics, despite some contradicting empirical evidence. Beyond any behavioural
experiment one could undertake to prove or disprove that human beings systemat-
ically improve their gain when possible, we will shortly see that this scenario can
also be challenged from a computational point of view. If there are many near-
degenerate solutions to the optimization problem at hand (like in a spin-glass),
then it appears unlikely for anyone to immediately find the optimum optimo-
rum in order to make their next decision – as it might be an “NP-hard” task!
In many cases, evidence points rather towards the unconscious use of powerful
heuristics [58], although the precise decision making process going on in one’s
mind is of course difficult, if not impossible, to decipher. In any case, it appears
relevant to introduce some variation to the strict optimizer belief.

There are several ways to relax such an assumption. One is that agents have
a limited attention and cannot process all the information accessible to them,
see e.g. [59] and refs. therein. As argued by Gabaix, this may effectively lead
to perceived prices that differ from real prices for example. Another traditional
line of thought in the literature on choice theory is to replace the deterministic
utility optimization prescription by a stochastic choice rule: the utility will only
be maximized with a certain probability [60]. In some sense, this is a very general
approach, as the stochasticity in the decision making could be interpreted to
include a wide range of possible mechanisms.

A common model for this probabilistic decision making is the so-called “logit”
rule [60, 61]. Given a set of choices A, it states that the probability for an agent
to pick the option α ∈ A is given by

Pα =
eβuα∑
γ∈A eβuγ

, (1.2)

where β is a parameter known as the “intensity of choice”, or more loosely as the
rationality of the agent, and uα is simply the utility associated to choice α. In the
limit β → ∞, one then recovers the “homo economicus” picture, as

lim
β→∞

Pα =

{
1 if uα = maxγ∈A uγ ,

0 otherwise.
(1.3)

On the other hand, the limit β → 0 will yield a completely random behavior in
which all options are equiprobable. As summarized in Ref. [15], there are several
ways to justify this proposition from classical choice theory.

The first is to imagine that the probabilistic nature of the rule stems from the
difference between the true utility of a choice uα and the perception of the agent
making the decision, which we will write ûα. Taking the so-called “random utility
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model” [62]
ûα = uα + ϵα, (1.4)

the logit decision rule is recovered if the ϵα are i.i.d. Gumbel random variables [63].
A natural question is then, why would these perturbations ϵα follow a distribution
which is more commonly encountered when dealing with extreme value statistics
than behavioral sciences? The short (but unsatisfying) answer to this question is
that it gives the logit rule, or in other words that this perceived utility idea is not
a great justification. A more complicated but interesting explanation is given in a
modest footnote of [64] (pp 32-33). In a nutshell, if the agent strictly maximizes a
ûα that is now affected by new variables that are themselves Gaussian distributed,
then the extreme value statistics resulting from the maximization over these other
“hidden” random parameters allows one to recover the Gumbell distributed ϵα.
Despite this more subtle argument, the justification remains quite weak.

The second approach is to introduce an information cost for the agents, which
is taken to be a decreasing function of the entropy

S = −
∑
γ∈A

Pγ logPγ . (1.5)

Indeed, the entropy is a rather natural measure of the precision of a distribution,
as it is maximized for uniform Pγ and minimized for an exact choice Pγ = δα,γ .
Maximizing the total expected gain with this cost included

L[P ] =
∑
γ∈A

Pγuγ − C

(
−
∑
γ∈A

Pγ logPγ

)
, with

∑
γ∈A

Pγ = 1, (1.6)

one then recovers the logit rule, where β−1 = −C′(S) > 0 can now be interpreted
as the marginal utility cost of information [65]. Within this interpretation, the
decision-making process is essentially an exploration-exploitation compromise [66].

A final way to justify the decision rule is to take the axiomatic road. Indeed,
Eq. (5.1) satisfies the axiom of independence from irrelevant alternatives (part of
the larger choice axiom [60]), meaning that the ratio Pα/Pγ , α ̸= γ, is unaffected
by the introduction of a supplementary choice. Interestingly, having Gumbel
distributed ϵα in the random utility model is the only way to satisfy this axiom,
giving a bit more context to the first justification [64].

Naturally, being able to confirm or infirm either the logit rule itself or the
underlying axioms in experimental studies would be most desirable. Overall, most
empirical attempts have been either inconclusive, or ruled somewhat against the
traditional axioms of choice theory [67], see [68] for a more recent discussion. This
being said, it can be difficult to decipher whether classical choice theory is to
blame, or if utility theory itself is an underlying limitation.
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Despite this discouraging experimental picture, it is important to keep in mind
that most economic models do not even consider bounded rationality, and still rely
on strict utility maximization. While the logit rule may not be a perfect (or even
good) model for decision making, it is already a conceptually very important
development from what has traditionally been done. In that respect, the most
important justification for its use may just be the fact that it will allow us to
carry out many computations, as will become clear in the next chapter (and is
likely already clear for the reader familiar with statistical mechanics). As nicely
summarized by its father R. Duncan Luce [67], “Despite [...] empirical difficulties,
there remains a tendency to invoke the choice axiom [which leads to the logit rule]
in many behavioural models – often implicitly. This is partly because it is so simple
and the resulting computations are so easy. Perhaps the greatest strength of the
choice axiom, and one reason it continues to be used, is as a canon of probabilistic
rationality.”

Let us mention a final interesting approach to bounded rationality, which will
be relevant at later stages of this thesis. Shortly after pioneering the concept of
bounded rationality [69], Herbert Simon proposed the idea of satisficing solutions
[70]. The word, which is a contraction of satisfying and sufficing, refers to the
fact that most people are likely to be content with a choice that matches or
exceeds their expectation, without necessarily being the absolute best possible
option. The idea can then be formalized by introducing an aspiration level for the
agent, written k ≤ maxγ∈A uγ , such that any option α with uα ≥ k is satisficing
and can therefore be picked [69]. In many cases, the solution is non-unique as
a result, which we will see is in fact a very natural setting when considering
the solution landscape of many optimization problems. As an illustration, the
previously discussed logit rule can be seen as a satisficing solution to the bounded
rationality modeling problem from our perspective.

1.2.4 Simplicity versus fidelity

Having introduced utility theory as well as choice theory, we should be all set to
start designing models, perform numerical simulations, and, soon enough, attempt
to describe these models analytically. Before doing so, however, there remains
some important points to address in terms of our philosophy and approach.

Throughout the years, the evolution of agent-based modeling has gone hand
in hand with the increase in computational power available to researchers, and
more recently with the availability of an incredible wealth of data from a variety
of sources. An immediate temptation is therefore to complexify models as much as
possible, introducing a very large number of parameters and agents, with the idea
of calibrating models on real data and to then conduct numerical experiments on
an in silico version of the world. As an extreme example, some authors have for
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instance recently proposed a “1:1” model for the Hungarian housing market [71],
comprising 4 million Hungarian households built using empirical micro-data, a
housing and rental market, construction sector, banking sector and even demo-
graphic trends. At the other end of the spectrum, what is considered to be a very
simple model of an economy, the “Mark-0” model of Gualdi et al., still includes
no less than 14 adjustable parameters in its barest form [72]. While essential to
study large scale economic systems and a necessary effort to eventually improve
the forecasts produced by economic theory, this sort of high fidelity agent-based
modeling is not the aim of the work presented in this thesis.

In an authentic statistical physics approach, our objective is rather to first
construct minimal models presenting a rich phenomenology, but with no immediate
aspiration at exactly replicating real systems. The objective is to identify how a
restricted set of conceptually important ingredients, and the interplay between
them, can affect the qualitative behavior of the system. The identification of
these ingredients should then help the design of more complete models down the
road. In physical modeling, these minimal phenomenological descriptions are often
referred to as toy models, and have proved absolutely essential to understand the
mechanisms behind some incredibly non-trivial observations.

1.3 Toy stories
Having established that we do not aim at studying incredibly detailed agent-
based model, let us now illustrate what we mean by a toy model in the context of
socioeconomic modeling. In the following, we will present two celebrated examples
that do not involve the theory of disordered systems but make use of classical
statistical mechanics.

1.3.1 The Schelling model, micromotives and macrobehaviours
The Sakoda-Schelling model is an interesting illustration of the role statistical
mechanics may play in understanding the emergence of unexpected and complex
phenomena in socioeconomics. In the very first issue of the Journal of Mathe-
matical Sociology published in 1971, James M. Sakoda proposed a very simple
model for the occupation of discrete sites on a two-dimensional square lattice by
two distinct populations [73], thereby pioneering agent based models and their
application to sociology. In the very following issue of this then novel journal8,
Thomas Schelling introduced a very similar set of rules, with the idea that some

8To be perfectly precise, the first mention of Sakoda’s model can be traced back to his un-
published PhD thesis completed in 1949, while Schelling’s work can be found in a 1969 working
paper [74]. In any case, there is no reason to believe either author took inspiration from the
other, the objective of the papers being clearly quite different.
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Figure 1.2: Illustration of Grauwin et al.’s version of the Sakoda-Schelling model. (a)
Utility function of the density peaked at ρ⋆ = 0.5. (b) Initial random configuration at
an average density ρ0 = 0.5. (c) Final state with ρq ≈ 0.65 > ρ⋆ (shown in (a)) in
occupied neighborhoods and presenting some fully empty blocks. Simulation performed
with H = 100 sites per neighborhood, Q = 36 blocks, and β = 10, courtesy of Max
Knicker.

aspects of urban segregation can be explained only by some very mild preference
towards being surrounded by neighbors from the same group – skin color in this
context – as oneself [75]. Unfortunately for Sakoda, history favored Schelling after
whom the model was named (and who was eventually awarded the Nobel Memo-
rial Prize in Economic Sciences), while his contribution did not have as big of an
impact, having been cited only twice in the ten years following publication.

To be fair, while his model was in fact not very well suited to explain seg-
regation, which is intimately related to past and present public policies rather
than self-organization [76, 77], Schelling identified a key point that Sakoda did
not. Indeed, the important result is not so much that agents aggregate if they
are sectarian, but rather that they aggregate even if their ideal neighborhood is
comprised of only slightly more people of their kind. In other words, every agent
strictly choosing their own individual preference at each step seems to lead the
system to a sub-optimal outcome for everyone – Adam Smith’s “invisible hand”
completely fails. Schelling coined this sort of apparent paradox the opposition
between micromotives and macrobehaviours.

Many different versions of the Sakoda-Schelling model can be considered and
have their own specificity, as we will see in Chap. 7. In its simplest form, one
can start with the occupation problem, i.e. the organization of a single type of
agents on the lattice, where agents now have a density-dependent utility. A major
simplification proposed by Grauwin et al. [14] is then to consider that the lattice
is divided in a fixed number Q of neighborhoods, in which we will find a number
nq ≤ H, q = 1, . . . , Q, of the N (fixed) agents in the system. Each site can be
occupied by at most one agent, and the total number of site in the system H×Q is
therefore greater or equal to the number of agents. For concreteness, one can take
the city to be a square grid of size L×L with square neighborhoods, as illustrated
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in Fig. 1.2.
The Sakoda-Schelling model adapted to this geometry can then be described

as follows. At each step of the simulation, an agent is selected at random, and
offered a move to an empty site in another neighborhood. The agent will then
accept or reject the move based on the difference of utility between the two sites.
The important simplification provided by the fixed neighborhoods is that the
utility function quantifying the agent’s preference, assumed to be the same for
all agents, is a function of the block’s density ρq = nq/H only. An important
feature to recover Schelling’s apparent contradiction between micromotives and
macrobehaviours is then that this utility should be peaked at a value 0 < ρ⋆ < 1,
representing an individual’s ideal environment, neither too empty nor too full. An
example of such a utility function with ρ⋆ = 1/2 is shown in Fig. 1.2(a).

We assume the agents make their decision to accept or reject a proposed move
based on the logit rule introduced above. When the agents are poor optimizers
and β is small, we observe a uniform distribution of the population among all sites,
which will be referred to as the homogeneous phase. In this regime, the average
neighborhood density is simply the density of agents in the system ρ0 = N/(Q×
H). For large β on the other hand, where moves overwhelmingly improve the
agent’s own satisfaction, we recover the peculiar behaviour described by Schelling
and shown in Fig. 1.2: the population concentrates in a few neighborhood where
the density will vastly exceed the optimal ρ⋆, and that even if we take ρ0 = ρ⋆.

Predicting what values the block densities ρq will take is not easy at first
glance, and is where statistical mechanics can play a part. Indeed, as will be
discussed more technically throughout this thesis, taking the appropriate choice
for the precise decision rule (sometimes) allows one to derive an effective free
energy that is minimized by the prescribed dynamics. Without going into the
details just yet, Grauwin et al. have shown that the neighborhood free energy
reads

f(ρ) =

∫ ρ

0
dρ′ u(ρ′)− 1

β
[ρ log ρ+ (1− ρ) log(1− ρ)] , (1.7)

where u(ρ) is the utility function of an agent and the second term is an entropic
contribution that will vanish at β → ∞. Maximizing this quantity under the
constraint that the total average density is fixed at ρ0 (or equivalentlt performing
a double tangent construction on this free energy) is then clearly not the same as
maximizing u(ρ), even when the entropy is negligible (β ≫ 1). With these results
in mind, the model can then be expanded and enriched. Including a second type
of altruistic agents, that do maximize the average utility instead of their own, can
for instance be shown to have a strong catalytic effects on the total utility of the
system [78].

While perhaps a bit vague at this stage, this simplified Schelling model is an
example of the motivation behind this thesis and the idea that statistical physics
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may be relevant to understand some aspects of socioeconomic models. A puzzle,
initially uncovered based on a purely socioeconomic motivation, can be understood
and formalized using the elementary concept of free energy minimization applied
to an extremely simplified version of the problem. As we will later see, such a direct
mapping between a socioeconomic model and equilibrium statistical mechanics is
the exception rather than the rule, but the underlying philosophy of going from
the microscopic constituents to the aggregate behaviour will remain the common
thread.

1.3.2 The Random-Field Ising Model

In the Sakoda-Schelling model, statistical mechanics is used as a tool to understand
and analyze an idealization devised in the socioeconomic context, providing an
exact solution to an agent-based model that aims at describing an idealized version
of the problem. Often times, the situation is somewhat reversed, however, and
results from general physical models can be used to design agent-based models. In
other words, while in the Sakoda-Schelling case statistical physics provides a way
to understand the passage from micromotives to macrobehaviours, we will now see
that the macroscopic behaviour of a physical system displaying features that may
be relevant in socioeconomics can provide ideas in the microscopic description of
agents and even be interpreted as such.

Originally devised by Imry & Ma in 19759 [80] to understand the influence
of random impurities on the properties of magnetic alloys, the Random-Field
Ising Model (RFIM) is – as its name conveniently suggests – a generalization of
the previously introduced Ising model. As before, it considers N binary spins
Si = ±1, i = 1, . . . , N , which are now all interacting with a random magnetic field
that takes a different value at each site. The Ising Hamiltonian therefore includes
a new contribution,

H = −
∑
(i,j)

JijSiSj −
∑
i

(H + hi)Si, (1.8)

with hi the random component of the field’s influence at site i, assumed to be
independently drawn from the same zero-mean probability distribution p(h), and
H the average magnetic field strength acting on the sample. Now, suppose that
a zero temperature system is equilibrated in some configuration and that we vary
H. Each spin will then flip only if the local field acting on it changes sign, in other

9To be perfectly precise, Imry & Ma appear to be the first to have studied the effect of a
random field on the ferromagnetic phase, but considered soft (continuous) spins and a field-
theoretic formulation. In the discrete Ising spin case introduced above, the first description of
the model appears to be due to Schneider & Pytte [79] in 1977.
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Figure 1.3: Analytical solutions to the RFIM for Gaussian distributed random fields
with standard deviation for J = 1, (a) σ = 1, (b) σ = 0.1, the continuous line showing
the solution propagated by increasing H and the dashed line by decreasing H. Insets:
graphical resolution of Eq. (1.11) at H = 0, dotted and continuous lines representing
the left hand and right hand sides respectively, dark and light circles showing stable and
unstable solutions respectively.

words

Si = sign

∑
j ̸=i

JijSj + hi +H

 . (1.9)

Clearly, if the random hi remain constant and are of zero mean, if H is varied
continuously then all spin flips will not occur at the same point.

To make a relatively long story short, the model can be solved exactly and
rather straightforwardly forN → ∞ if the network is fully connected and couplings
are taken to be constant, Jij = J/N [81]. Characterizing the sample by its total
magnetization

M =
1

N

∑
i

Si, (1.10)

one can show that this macroscopic property should satisfy the self-consistent
equation

M = 2P>(−H − JM)− 1, (1.11)

with the survival function of the random field distribution P>(h) =
∫∞
h ds p(s).

For any probability distribution, the survival function P>(h) is a strictly decreas-
ing function satisfying limh→−∞ P>(h) = 1 and limh→∞ P>(h) = 0 such that the
right hand side of the above equation is strictly increasing in M and goes from
-1 to 1. Solving the equation graphically, it immediately appears that it goes
from having single solution to three solutions at a critical point (when both sides
become tangent at their intersection).

The solution to the equation as well as this possible multiplicity of solutions is
illustrated in Fig. 1.3 for J = 1 and a Gaussian random field characterized by its
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standard deviation σ. If the standard deviation is large enough, and the random
field is widely distributed, the self-consistent equation has a unique solution and
varying H from −∞ to +∞ gives the same solution as varying it in the other
direction. When the hi are tightly distributed (or, fixing σ, if J is increased),
then two new solutions appear and the direction in which H is varied becomes
important. As displayed in Fig. 1.3(b), the system displays hysteresis, which can
also be confirmed by performing numerical simulations at large N .

Perhaps more interestingly, the switch from M = −1 to M = 1 can be un-
derstood in terms of avalanche dynamics: going from negative to positive H, the
first spin flip will be for the site with the largest value of hi, resulting in a slight
increase in the value of M , which in turn will allow the next site with the largest
hi to switch etc. Close to the critical value at which hysteresis comes into play,
the precise distribution of avalanche sizes can be computed [81], revealing a power
law decay for large avalanches with exponent −3/2 (meaning the typical avalanche
size diverges in the vicinity of the critical point).

So how is this all related to socioeconomics? Superficially, the abrupt tran-
sition observed in the RFIM is already an interesting feature, as many socioeco-
nomic phenomena display this sort of sharp switches, from economic crises to fads
and trends. In this context, the model is interesting in the sense that it clearly
underlines the trade-off between heterogeneity (governed by the width of the dis-
tribution of the hi) and the tendency to align with the average (here materialized
by the term JM). Most importantly, the phenomenology of the RFIM appears to
be relevant in the context of widespread changes in opinions, which we can also
expect to spread throughout a group in an avalanche-like fashion like spin flips
here. As a matter of fact, Michard & Bouchaud [82] have shown that, beyond
this qualitative appeal, the anomalous exponent relating the slope of the magneti-
zation with H close to the critical point is quantitatively compatible with a large
number of real world systems. In this work, the authors have indeed collected
and measured the scaling relation between the height and the width of the peak
in the speed of change of birth rates, sales of cellphones and decay of applause –
all somewhat driven by social pressure – and found them to fall within the range
of the mean-field prediction of the RFIM.

In light of this empirical evidence, the original fixed point equation of the Ran-
dom Field Ising Model in Eq. (1.9) can be reinterpreted. Suppose Si is now one
of two options, for example to vote for or against Brexit, to pay or avoid taxes,
to buy a new product or refrain etc. The first term is evidently one of imitation,
where {Jij} is now an interaction matrix that could in principle include both posi-
tive and negative entries. The random field hi can be an individual preconception
or preference, while finally the (possibly time-varying) H common to all agents
can be interpreted as some public information (e.g. news). The original physical
system can then be enriched in this context, for instance through the introduction
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of non-reciprocity in the interactions or of an underlying network structure. This
type of approach, whereby a general model from physics is extended and further
completed by ideas tailored to the socioeconomic system it now aspires to repre-
sent will be central in this work. In the same way that statistical physics may be
useful to understand socioeconomic models, models from statistical physics can
perhaps be of use to provide inspiration in order to recover empirically observable
phenomena.

1.3.3 A word on universality
At this stage, the reader uninitiated to statistical mechanics may well wonder
why we are even trying to model individuals as imaginary spins or a city as a
rectangular grid. The RFIM’s scaling exponent may perhaps have been found to
approximately match a handful of real world situation, but after all what if this is
just a lucky guess? This is actually a very common criticism to the econophysics
or sociophysics approaches – how could one even believe they are modeling a
socioeconomic systems without making experimental measurements, polls, and
data analyses? A priori, these toy models, as their name evidently indicate,
precisely appear to be mere toys for physicists to play with.

While we won’t argue with the necessity of experimental measurements and
data analyses, which are at the heart of the physics-inspired approach, there is
some justification for the appeal of toy modeling beyond analytical convenience.
As mentioned in the introductory remarks, the discovery of universality in emer-
gent phenomena has given much more credence to toy modeling for the under-
standing of even some of the most complex phenomena.

Going back to good old fashioned laboratory experiments, a highly complex
phenomenon in fluids which has long intrigued physicists is the so called liquid-
gas transition. For sufficiently high temperatures, there is a single phase region,
where one can go from a gas to a liquid simply by increasing the density. Below a
fluid-dependent critical temperature Tc, however, one observes the emergence of a
two-phase region separating exclusively gas and exclusively liquid regions. Now,
looking more precisely at the vicinity of this continuous transition, the experi-
mental study of sulphurhexafluoride (Tc ≈ 319 K) reveals the power law behavior

|ρ+ − ρ−| ∝ |T − Tc|0.327±0.006, (1.12)

where ρ± corresponds to the coexisting densities in the two-phase region. Re-
markably, repeating the experiment on helium 3 atoms (Tc ≈ 3 K) yields,

|ρ+ − ρ−| ∝ |T − Tc|0.321±0.006, (1.13)

i.e. an almost undistinguishable value of the exponent despite the difference in
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Tc [83]. Similar values have also been reported in binary fluids, such as solutions
of isobutyric acid and water or carbon disulfide and nitromethane [84].

This apparent universality in the coexistence densities in the vicinity of the crit-
ical temperature is very interesting in its own right, but this is not the end of the
story. Suppose we now consider the three-dimensional antiferromagnet DyAlO3
under a vanishing magnetic field. It is well documented that the material will lose
its magnetization if it is heated to a sufficiently high temperature. Approaching
the critical temperature Tc ≈ 3.5 K at which the magnetization M continuously
vanishes from the low temperature region, experimental measurements point to a
power law behavior of the form [83]

M ∝ |T − Tc|0.311±0.005. (1.14)

Now truly surprisingly, the exponent is within the range of what was found in the
liquid-gas transition!

The introduction of the renormalization group (RG) provides a theoretical
framework to understand the existence of these universality classes in which the
critical behavior is virtually identical for widely different systems. Without going
into the details, the RG demonstrates that the microscopic details of a model
typically get “washed out” at the critical point, where everything becomes scale
invariant. Beyond this pictorial view, the RG also provides some powerful the-
oretical predictions. In the case of the three-dimensional ferromagnet described
by the Ising model for instance, the RG result for the magnetization exponent is
0.325± 0.0015, which is in very good agreement with experimental results [85].

Another perhaps more formal illustration of universality is the ubiquitous cen-
tral limit theorem (CLT), which we will invoke at various stages of the thesis. In
its simplest form, the theorem states that the arithmetic mean of N independent
and identically distributed random variables with finite variance will converge to
its mean value (as stated by the law of large numbers) plus Gaussian random fluc-
tuations, the variance of which decays as 1/N . Not only is this true regardless of
the underlying distribution of the summed random variables, it remarkably turns
out that the CLT holds under much weaker conditions. The random variables
can indeed in fact be weakly correlated or not quite identically distributed and
the fluctuations will remain Gaussian distributed. As a result, an incredibly wide
range of real-world statistics are effectively Gaussian, such as the incidence rate of
accidents, the gender-specific distributions of heights and weights, or the velocity
of stars [86]. Furthermore, when the variance diverges, a generalized central limit
theorem applies, by which the limit distribution of the arithmetic mean is now a
Lévy distribution. As a side note, these central limit theorems can also be under-
stood with the renormalization group mentioned above [87]. For a more complete
discussion of universality from a mathematical standpoint, see Ref. [86].
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To close this digression, universality is a key concept that is at the heart of
the effectiveness of statistical mechanics. As the macroscopic features turn out to
be almost independent of the microscopic details, universality notably allows to
make theoretical predictions using vastly simplified models, which is an extremely
powerful idea in the socioeconomic context. Given the undeniable complexity of
human behavior, it seems that our only hope to one day have robust predictions,
or at the very least scenarios, describing collective behavior in fact lies in this idea
that aggregation erases some of the details. Having said this, all the while avoiding
the now proverbial phrase more is different10, we may embark in our journey at the
crossroads between socioeconomics, spin-glasses and out-of-equilibrium dynamics.

1.4 Thesis layout
This thesis is organized as follows. In Chapter 2, we recall some basics of statistical
mechanics and key spin-glass results that will be important in the understanding
of the different problems we will study, and close the introductory part of the
thesis.

We start by exploring two specific socioeconomic problems illustrating the con-
cepts of radical complexity and bounded rationality in Part II. Chapter 3, which
is largely based on the published work [1], explores a simple constrained portfolio
optimization problem that individual agents could face. We show that the prob-
lem has a very large number of quasi-degenerate solutions, challenging the very
notion of rationality and common information among agents. Having established
the motivation for boundedly rational decision making in the modeling of indi-
vidual agents, we revisit a classic object of consumer choice theory in Chapter 7,
the Slutsky matrix. This disorder-free digression, the results of which have been
presented in [2], allows us to illustrate how bounded rationality may be compati-
ble with established empirical results that were thought to support the infinitely
rational assumption. Moreover, this practical problem illustrates the possible
absence of a global utility (and therefore a global free energy) when agents are
selfish and interacting, underlining the necessity for a better understanding of
out-of-equilibrium dynamics.

Having well motivated the different ingredients that appear necessary to con-
struct interesting toy models, we enter Part III of the manuscript, dedicated to
the “SK-game”, a unifying binary decision model with bounded rationality, non-
reciprocity, and learning. The model is introduced in Chapter 5, and its most
salient features are exposed using numerical simulations. In Chapter 6, we un-
dertake a more technical analysis of the model. Its fixed point and limit cycle

10Although it is tempting, it would feel very wrong not to cite P. W. Anderson’s illustrious
article anywhere in an interdisciplinary statistical physics thesis [88].
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complexity are discusses and we notably employ Dynamical Mean-Field Theory
to study the N → ∞ dynamics of the problem. The results of both the chapters
of this part can be found in [3].

Part IV is devoted to disorder-free out-of-equilibrium systems – although some
aspects remain relevant in the understanding of disordered systems. Chapter 7
corresponds to the results of the collaboration with R. Zakine and A.-C. Becharat
published in [5]. In this chapter, we revisit the statistical mechanical treatment of
the Schelling model presented above. By removing the necessity for fixed neighbor-
hood and keeping the decision rule as general as possible, we study the robustness
of the condensation transition out-of-equilibrium, and exploit links with recent
results in the theory of active matter. Chapter 8, which includes and leverages
some of the results published with A. Dechant and S.-i. Sasa in [4], finally studies
the effect of out-of-equilibrium currents on the relaxation to steady-states that
preserve a given Gibbs-Boltzmann distribution, allowing us to isolate the effect of
irreversible contributions on the dynamics. While the chapter focuses on a very
simple single particle setup, such dynamics may also turn out to be beneficial to
accelerate the sampling of complex equilibrium distributions, which could include
some disordered agent-based models.

Part V of the manuscript finally discusses future directions and closing re-
marks.

Key results and messages will be summarized at the end of each chapter, while
some of the detailed calculations will be given in dedicated appendices at the end
of the manuscript.
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Chapter 2

Theoretical foundations

Merely quantitative differences, beyond a certain point, pass into qualitative changes.

Karl Marx

Before jumping into specific socioeconomic problems and their description with
statistical mechanics, let us provide some of the theoretical background that will
be useful in all subsequent chapters. The goal of this chapter is not to be a
self-contained lecture of all aspects of statistical physics, but rather to introduce
essential concepts and provide a non-exhaustive summary of some of the most
important results in the theory of disordered systems.

2.1 Equilibrium statistical mechanics

2.1.1 Thermodynamics and the Gibbs-Boltzmann measure
When considering atoms or molecules, a natural approach to thermodynamics
is to think in terms of the combinatorics of “microscopic” configurations {x}.
Given the discrete set of possible states of an isolated system, one can indeed
attempt at enumerating the number of such states Ω(E) for which the system will
have an energy E. The fundamental postulate of thermodynamics is that all the
microscopic states at a certain energy are equally likely. This uniform probability
distribution is known as the microcanonical ensemble.

P (x|E(x) = E) =
1

Ω(E)
. (2.1)

Now, recall that we usually draw an analogy between energy and utility. The
elementary postulate of the microcanonical ensemble therefore corresponds to as-
suming that all choices providing a given level of utility are equiprobable, which
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appears to be reasonable. This being said, the fact that the energy or the utility
is strictly fixed, as it was assumed that the system is isolated, appears as a funda-
mental limitation. Beyond the fully rational case where we would assume that the
utility level is set to its largest possible amount, any notion of bounded rationality
implies that there is a range of possible utility levels rather than a unique value.

Luckily, the necessity to allow for energy fluctuations also quickly arose in
physics. Indeed, it is very unlikely for a system to be truly isolated. In most prac-
tical cases, the small system that one considers is in fact in contact with a much
larger environment. Concretely, if we are interested in studying the properties of
a glass of water sitting on a table, it is clear that the conditions of the room in
which the experiment takes place will be of paramount importance. In the ther-
modynamics jargon, the room acts as a thermostat for the glass of water: given it
is much larger, we can assume that the room is unaffected by what goes on in the
glass, and we can therefore take its temperature to be constant throughout the
experiment. The room then acts as an infinite thermal energy reservoir to fuel
jumps in between microscopic states of different energies, while the average inter-
nal energy inside of the glass remains constant once it has reached equilibrium.
We will shortly see that there is a very natural interpretation for the temperature
in an agent-based framework.

The number of combined microscopic states at a given total energy level E′ =
ER + E, where ER is the energy of the “reservoir” (the room), can be written as

Ω(E′) =
∑
{x}

ΩR(E
′ − E(x)) =

∑
{x}

exp(SR(E
′ − E(x))), (2.2)

where the number of states of the reservoir ΩR(ER) at a given energy ER is related
to their entropy SR(ER) by the microcanonical definition of the entropy

S(E) = log Ω(E). (2.3)

As detailed in any good statistical mechanics textbook, e.g. Ref. [89], one can then
use the fact that E′ ≫ E(x), by virtue of R being a reservoir, to Taylor expand
the entropy. Identifying the temperature, which in thermodynamics is formally
defined11 as T−1 = ∂ES(E), the probability to find the system in the state x is
finally given by the celebrated Gibbs-Boltzmann distribution

P (x) =
1

Z
e−βE(x), (2.4)

where β = T−1 is the inverse temperature and Z is the partition function,

Z =
∑
{x}

e−βE(x). (2.5)

11Note that we have implicitly taken kB = 1 in this discussion, meaning the temperature is
taken to be in units of energy.
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Remarkably, all terms are independent on the details of the reservoir, whose only
remaining property is the temperature.

Computing the logarithm of the partition function then gives access to virtually
all thermodynamic quantities of interest, for example the average internal energy

U = ⟨E⟩ = − ∂

∂β
logZ. (2.6)

Unless indicated otherwise, angular brackets will refer to averages with respect to
thermal fluctuations. In the following, an equilibrium distribution will refer to the
Gibbs-Boltzmann measure for a known energy function of the degrees of freedom.

Now, recall the logit decision rule presented in the introduction, which assigned
to the choice α ∈ A the probability

Pα =
eβuα∑
γ∈A eβuγ

.

Clearly, this is none other than the Gibbs-Boltzmann distribution over the choices
of the agent. As a result, in this single-agent noisy decision-making process,
the results of standard thermodynamics can be immediately applied through the
analogy between energy and utility and by identifying the inverse temperature as
the intensity of choice. For example, the relation between the partition function
and the internal energy can be directly employed to compute the expected utility
of the agent. This being said, and as will be repeatedly stressed at various stages,
this will not necessarily be true when there are several agents. Note also that,
as discussed in the first chapter, this is only one possible decision rule. Unlike in
classical thermodynamics, there is no notion of a thermostat or thermal energy to
constrain the passage from the microcanonical to the canonical ensemble.

For completeness, let us mention the last thermodynamic ensemble. In general,
any of the ensembles can be seen as the probability distribution maximizing the
entropy12 (recall Sec. 1.2.3) under a different constraint [90]. In the microcanonical
ensemble, the energy is strictly fixed. In the canonical ensemble, we relaxed this
constraint and only fix the energy on average. In the remaining grand canonical
ensemble, it is the number of particles N that is only fixed on average. Just as the
thermostat acts as an unlimited reservoir for energy fluctuations in the canonical
ensemble, we imagine that there is an infinite reservoir of particles in the grand
canonical ensemble. This particle reservoir is given a chemical potential analogous
to the temperature. More generally, we will call grand canonical ensemble any

12Here we mean the “statistical” definition of the entropy found by Gibbs and rediscovered
by Shannon S = −

∑
{x} p(x) log p(x), which can be neatly derived from the microcanonical

definition of Eq. (2.3) using Stirling’s approximation of factorials and the fact that the entropy
is additive [90].
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probability distribution where a constraint (that is not the energy or analogous)
is relaxed and only enforced on average instead of being strictly fixed, as will be
the case in Chap. 4. In this example, we will see that enforcing a budget constraint
at the average level greatly simplifies calculation.

Note that in classical thermodynamics, all ensembles turn out to give identical
results in the thermodynamic limit – that is when the number of particles N tends
to infinity. A quick way to see the equivalence between the microcanonical and
canonical ensembles is to generalize Eq. (2.6) to higher order cumulants of the
energy, thereby also highlighting the role of the logarithm of Z as a generating
function. As it is usually an extensive quantity, logZ ∼ N , one can show√

⟨E2⟩ − ⟨E⟩2
⟨E⟩

∼ 1√
N

→
N→∞

0, (2.7)

and similarly for higher order cumulants, meaning that the distribution of E in-
deed concentrates to an infinitely narrow peak about ⟨E⟩. This sort of concentra-
tion of measure about the average is at the heart of the effectiveness of statistical
mechanics to describe high dimensional systems, at odds with the famous “curse
of dimensionality”.

Let us close this modest primer of statistical mechanics by mentioning the
notion of a typical solution. To illustrate this idea, we can write the partition
function as a sum over all possible values of the energy instead of all possible
states,

Z =
∑
{E′}

Ω(E′)e−βE′
=
∑
{E′}

e−β(E′−TS(E′)), (2.8)

Where one can identify the Helmholtz free energy

F = E − TS(E). (2.9)

Now, what we mean by typical is the most probable value (i.e. the mode in a more
mathematical jargon). The typical value of the energy E⋆ is the solution to

∂

∂E′

(
Ω(E′)e−βE′

)
= 0, (2.10)

which dominates the sum due to the expected exponential nature of both factors.
As a result, we can loosely approximate the partition function using a discrete
version of Laplace’s method,

logZ ≈ −βF (E⋆). (2.11)

In the canonical ensemble, we can use the fact that the standard deviation of
E becomes negligible with respect to its mean in the thermodynamic limit to
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immediately conclude that the typical and mean values of the energy coincide.
In disordered systems, where one has to average over random bonds for instance,
Eq. (2.11) shows that the representative quantity to consider will be the average
of logZ and not of Z itself in order to recover the properties of a typical sample.

2.1.2 Detailed balance
So far, we have written the equilibrium distribution describing a statistical me-
chanical system with a prescribed energy at a given temperature. Remarkably,
the only requirement on the underlying system’s dynamics is through the fun-
damental postulate that all microscopic states of equal energy are equiprobable
when it is isolated. This is all well and good, but it is legitimate at this point
to wonder how a system would practically evolve towards an equilibrium state
from a random initial condition. Besides, as we expect a large number of degrees
of freedom, the partition function may be difficult to work out analytically, in
which case numerical simulations correctly sampling the equilibrium distribution
become essential to measure observables of interest.

Perhaps the simplest way to prescribe dynamics given a target probability
distribution is to write a Markov chain. Starting from a given initial condition
X0, the idea is to successively jump between configurations X0, . . . ,Xt−1,Xt with
rates

W (x → x′) = P(Xt+1 = x′|Xt = x). (2.12)

The assumption that the rate only depends on the current state and not on previ-
ous history is what defines the Markovian nature of the dynamics. The associated
evolution of the time-dependent probability distribution of the states then follows
the master equation

∂tP (x, t) =
∑
x′ ̸=x

[
P (x′, t)W (x′ → x)− P (x, t)W (x → x′)

]
, (2.13)

which essentially enforces the conservation of the total probability [91]. In the
steady-state, we obviously require ∂tP (x, t) = 0. A sufficient condition for this
steady-state to sample the target distribution P (x) is therefore the so-called de-
tailed balance criterion

P (x)W (x → x′) = P (x′)W (x′ → x), (2.14)

enforcing the balance between outgoing and incoming probability flux at the “mi-
croscopic” level of each state.

Beyond its apparent simplicity, the detailed balance condition carries rather
profound implications. Indeed, it is also the only choice which enforces time
reversal symmetry (TRS) of the dynamics: the forward and backward trajectory
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in time between two states are equiprobable. In fact, the precise definition of
an equilibrium steady-state (in opposition with a nonequilibrium steady-state) is
that it precisely satisfies TRS13. In the rest of the thesis, we will therefore use
detailed balance violating and irreversible interchangeably.

As will be discussed in detail in Chap. 8, one can sample the correct Gibbs-
Boltzmann steady-state distribution while violating TRS by finding transition
rates W that satisfy global balance (i.e. setting the rhs of Eq. (2.13) to zero)
instead of detailed balance. In this case, the system is out-of-equilibrium, even
though its steady-state distribution corresponds to that of a known equilibrium
system.

Suppose we place ourselves in the equilibrium context and therefore want to
sample the Gibbs-Boltzmann distribution while satisfying detailed balance. Plug-
ging in the expression of P (x) in Eq. (2.14), the rates must satisfy

W (x → x′)

W (x′ → x)
= e−β∆E , ∆E = E(x′)− E(x). (2.15)

An essential aspect of these rates is that they do not require any knowledge of
the partition function, but only the energy difference between two specific states
(which is usually easy to compute).

There are then many choices of transition rates that will satisfy this detailed
balance criterion [93]. The most common, which we will for instance use in the
simulations of Chap. 4, is the Metropolis algorithm [94]

W (x → x′) = min
(
1, e−β∆E

)
. (2.16)

Another common choice for spin systems that is worth mentioning is the Glauber
dynamics [95]

W (x → x′) =
e−β∆E

1 + e−β∆E
. (2.17)

Interestingly, Glauber dynamics are also a rather common way to state the logit
decision rule. Indeed, in the socioeconomic context it is in fact more natural
to define a model through the transition rate, representing an agent’s behavior,
rather than some stationary distribution of the choices.

2.1.3 Langevin dynamics
While these transition rates can be readily interpreted in the agent-based context,
this is often not the case in physics. As previously mentioned, there are many

13A modern definition is that an equilibrium steady-state is one where there is a zero entropy
production rate at the trajectory level, a quantity which measures the breaking of TRS [92].
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possible choices satisfying detailed balance and it might be awkward to postulate
how the system evolves in reality if one is interested in the precise dynamics.
Besides, if the state x is a continuous variable, it might be difficult to correctly
sample the entire support of its probability distribution with discrete rates.

A somewhat more physical approach is to follow the continuous overdamped
Langevin dynamics

ẋ(t) = F(x(t)) +
√
2Tξ(t), (2.18)

where ξ is a vector of independent, identically distributed white noises, i.e. satis-
fying

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(s)⟩ = δi,jδ(t− s). (2.19)
Physically, if the degrees of freedom can be understood as a position, this evolution
can be interpreted as Newton’s second law in the case where the ratio of the mass to
the friction goes to zero (e.g. a colloid in a viscous fluid). In the absence of the force
field F, the above is for instance simply the Wiener process describing the large
time behavior of the pollen particle in water observed by Robert Brown [96,97].

With these overdamped Langevin dynamics, the evolution of the probability
density of x is given by the Fokker-Planck equation, i.e. the continuous analogue
of the master equation

∂tP (x, t) = −∇ · [F(x)P (x, t)− T∇P (x, t)] = −∇ · J(x, t), (2.20)

where J is the probability current [98]. The equivalent of global balance neces-
sarily satisfied in the steady-state is therefore for the probability current to be
divergence-free. The sufficient condition that is analogous to detailed balance is
then to have zero probability current in the steady-state,

F(x)P (x)− T∇P (x) = 0 ⇔ ∇ logP (x) = βF(x), (2.21)

i.e. F must be a conservative vector field and is thus purely gradient (i.e. in
three dimensions ∇ × F(x) = 0 ∀x). As in the discrete case, this much stronger
condition is necessary for the dynamics to be TRS and therefore for the steady-
state to be an equilibrium one. As a consequence, any non-gradient term will
drive the system out-of-equilibrium. Once again, out-of-equilibrium dynamics for
which the probability current is not zero everywhere may nonetheless lead to the
same steady-state as some equilibrium system (Chap. 8).

Replacing P (x) with the equilibrium Gibbs-Boltzmann measure, we imme-
diately find that the required force field is given by F(x) = −∇E(x), and the
overdamped Langevin equation becomes

ẋ(t) = −∇E(x(t)) +
√
2Tξ(t). (2.22)

The above simply correspond to a gradient descent with noise minimizing the
objective function E(x), providing an appreciable intuitive picture.
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2.1.4 A word on the relaxation time
Regardless of the prescribed dynamics, an important aspect to mention is the
time required for the probability distribution to reach equilibrium. Formally, this
relaxation time can be studied by diagonalizing the transition rate matrix in the
discrete case or the Fokker-Planck operator in the continuous case. Asymptoti-
cally, the distance between the probability distribution at time t and its stationary
limit will decay exponentially as e−t/τ , where the characteristic relaxation time τ
is the inverse of the first nonzero eigenvalue14 (in absolute value) [99].

At low temperatures, the relaxation time will be dominated by the potentially
large energy barriers between local minima of the energy function. This can be
understood pictorially with Eq. (2.22): if the noise term is small, it will take a very
long time for a large enough fluctuation to lead to the escape a local minimum
even though another minima might have a smaller energy. More precisely, the
time to escape a valley with a free energy barrier15 of size ∆F

τ ∝ exp (β∆F ) , (2.23)

first observed empirically by Arrhenius [102]. As we will see shortly, this scaling
is crucial to understand potential failures of classical statistical mechanics.

2.1.5 Ergodicity
The assumption that all states of identical energies are equally likely to be explored
by the system is at the heart of the thermodynamics presented in Sec. 2.1.1. This
conjecture, also known as the ergodic hypothesis, is actually unproven for most
systems of interest. It is therefore an essential aspect to keep in mind, particularly
when the classical theory fails to replicate some experimental or numerical results.

As a matter of fact, even some relatively simple systems already display quite
evident violations of the ergodic hypothesis in the form of spontaneous symmetry
breaking. The standard Ising ferromagnet is perhaps the most well known example.
In its simplest form, its energy is given by the Hamiltonian

H = − J

N

∑
(i,j)

SiSj , (2.24)

with Si = ±1, i = 1, . . . , N , and where (i, j) indicates a sum over bonds, say
nearest neighbors on a two-dimensional lattice. (The attentive reader might no-
tice that this is quite conveniently the mean-field Random Field Ising Model of

14In the reversible (equilibrium) case, all eigenvalues are real.
15It is essential to note that the important quantity is the free energy difference and not simply

the energy difference. As highlighted in [100], one can in fact have ∆E < 0 and still be confined
by the entropic term, see also [101] for an illustration of extremely slow relaxation without any
energy barriers.
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Sec. 1.3.2 without the random field.) Importantly, this Hamiltonian has “Z2 sym-
metry”, meaning that flipping the sign of all spins simultaneously does not change
the value of the energy. Now, in the low temperature region, the magnetization
M = 1

N

∑
i Si will be non-zero. In the absence of an external field as presented

so far, the magnetization has two equally likely values, M = ±MS , but every
instance of the system seemingly picks one of the two. The initial symmetry of
the Hamiltonian is thus said to be spontaneously broken because the resulting
equilibrium state is not invariant under the same symmetry. Note that while
spontaneous symmetry breaking implies ergodicity breaking (see below), the con-
verse is not true. As we will see with spin-glasses, there can be true ergodicity
breaking without apparent symmetry breaking.

At its root, ergodicity is a dynamical property. Indeed, it implies that the
entirety of the configuration space can eventually be explored by the dynamics.
Given a sufficiently long horizon, time averaged observables should therefore con-
verge to their ensemble average. Clearly, this is not true when there is spontaneous
symmetry breaking: if the system is truly stuck in an equiprobable ±MS state,
then averaging even over an infinite time will not give a zero mean magnetization
predicted by the Gibbs equilibrium state.

To understand this issue, let us dwell on the dynamics of the simple 2d-Ising
model. Suppose the system is in a state corresponding to the +MS magnetization.
The least costly way to flip all spins and go to a −MS state is a sweeping line defect
across the lattice [100]. It can be argued that the free energy barrier associated
to such a defect scales with its length, which is O(

√
N) in two dimensions. As a

result, ∆F diverges with N and, from the Eyring-Kramers scaling of Eq. (2.23),
the free energy landscape is completely separated in two distinct regions in the
thermodynamic limit N → ∞. As a consequence, one has to be careful in the
analytical treatment of the problem.

Such a situation is referred to as true ergodicity breaking. In other cases, the
configuration space is not strictly separated by infinitely large barriers, yet the
time required to explore an infinite system still diverges, and we therefore observe
non-trivial out-of-equilibrium dynamics. This is known as weak ergodicity break-
ing, and can for instance occur in so-called “trap” models [103] or with logarithmic
potentials [104], as well as some simplified spin-glasses [105] (see Sec. 2.2.5 below).

2.2 Disordered systems

In the introduction chapter, we mentioned the Edwards-Anderson spin-glass, in
which neighboring spins tend to align or anti-align based on randomly drawn
interactions. Due to its very limited connectivity – 2d nearest neighbors in a d-
dimensional lattice – the EA model is extremely difficult to describe analytically,
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and as a matter of fact remains unsolved to this day.
A natural and more analytically favorable extension that we also mentioned

above is the “mean-field” version proposed by Sherrington and Kirkpatrick [35],
for which the Hamiltonian now reads

H = −1

2

∑
j ̸=i

JijSiSj , (2.25)

where the random symmetric couplings Jij = Jji are still Gaussian but with a
variance that now scales as 1/N ,

P (Jij) =

√
N

2πJ2
e
−N

2

(
Jij
J

)2

. (2.26)

In the following, we will take the SK model as the prototypical example of a dis-
ordered system, as the analytical challenges it poses are ideally suited to illustrate
essential concepts, which will be mentioned throughout the thesis.

2.2.1 The replica method
In order to solve the model, the standard statistical mechanics path is to compute
the average of the logarithm of the partition function to obtain the typical free
energy density,

f = − 1

βN
logZ, Z =

∑
{S}

e−βH({Si}). (2.27)

Here, overlines indicated averages with respect to the distribution of disorder given
in Eq. (2.26). To tackle the average of the logarithm, one can invoke the so-called
replica trick

logZ = lim
n→0

Zn − 1

n
, (2.28)

where n will be treated as an integer throughout the calculation before being
famously (or infamously) analytically continued to 0 [50].

Rewriting the power as the product between n replicas of the system,

Zn =

n∏
a=1

∑
{Sa}

e
β
2

∑
j ̸=i JijS

a
i S

a
j , (2.29)

and performing the average on the symmetric Gaussian bonds, we have

Zn =
n∏

a=1

∑
{Sa}

exp

(
1

4
β2Nn+

1

2
β2N

∑
a<b

(
1

N

∑
i

Sa
i S

b
i

)2)
. (2.30)
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Introducing the n× n overlap matrix

Qab =
1

N

∑
i

Sa
i S

b
i , a ̸= b (2.31)

which appears in Eq. (2.30) following the Gaussian average, the averaged repli-
cated partition function can be recasted (after a bit of work) as

Zn =

∫ ∏
a<b

(√
Nβ2

2π
dQab

)
exp(−NA[Q]). (2.32)

Such an integral can be computed in the N → ∞ limit with Laplace’s method,

Zn ∼
N→∞

exp(−NA[Q⋆]), (2.33)

where Q⋆ is the minimum (or saddle point in the complex case) of the effective
action A [106].

A priori, it seems perfectly adequate to treat the replicas as interchangeable,
and to assume that the overlap matrix has the much simplified structure

Qab = q ∀a, b, a ̸= b. (2.34)

Solving the complete set of equations extremizing A within this ansatz, this
“replica-symmetric” (RS) solution finally yields the relatively simple self-consistent
relation

q =

∫ ∞

−∞

dz√
2π

tanh2(βJ
√
qz) e−

1
2
z2 , (2.35)

where this overlap can be interpreted as the Edwards-Anderson order parameter,
q = ⟨Si⟩2 [35].

With this in mind, the solution appears perfectly suitable: we have q = 0
for temperatures above Tc = J , and q > 0 below, reaching q = 1 for T = 0, in
line with the phenomenology of the EA model and with numerical simulations.
Looking closer, however, this ideal picture starts to crumble. First, it is easy to
observe that the T → 0 behavior of q does not match numerical experiments,
approaching unity exponentially fast rather than quadratically. Calculating the
average energy per spin, one also finds U(T = 0) ≈ −0.79, at odds with numerics
that suggest U(T = 0) ≈ −0.76 for N → ∞ [107]. While these discrepancies
are already sufficient to convince most theoretical physicist that the theory might
not be entirely correct, things get worse. As the ultimate coup de grâce, the RS
solution displays a negative zero-temperature entropy16, S(T = 0) ≈ −0.17.

16In a discrete system, the entropy is non-negative by definition, as it is the logarithm of an
integer number of configurations (Eq. (2.3)).
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Further investigation confirms the problem with the RS solution below the
critical temperature. Looking at the second derivative of the effective action A
on which the saddle point approximation is taken, it indeed turns out that this
solution is in fact unstable below the temperatures defined by the so-called de
Almeida-Thouless (AT) line [108]. In the SK model, the AT line coincides with
the critical temperature, and the replica-symmetric solution is invalid in the entire
spin-glass phase.

2.2.2 TAP approach
Facing the failure of the replica-symmetric solution and convinced that its root was
the order in which the N → ∞ and n → 0 limits are taken, Thouless, Anderson
and Palmer attempted to construct an alternative approach [109]. Indeed, given
the fully connected nature of the model, the mean-field limit should be exact,
and the problem well described by the magnetization at each site, mi = ⟨Si⟩. It
would therefore seem effective and natural to take a mean-field description before
averaging over the disorder distribution.

Brutally replacing the effect of the other spins by their average, the magneti-
zation at site i appears to satisfy

mi = 2P(Si = 1)− 1 = tanh

β∑
j

Jijmj

 , (2.36)

known as the Naive Mean-Field Equation (NMFE) in the spin-glass literature
[110]. Unfortunately, the NMFE is very obviously wrong to describe the SK
model, as studying the linear stability of the paramagnetic mi = 0 solution gives
Tc = 2J [50], twice the correct value. In other contexts however, we will see that
it is relevant and that it shares many of the interesting properties of the correct
TAP equations of the SK model (see below).

To obtain these correct TAP equations, it is actually essential to subtract
the “reaction” term, corresponding to the influence on the ith spin on all others
(which is O(1/N) but acts on O(N) of its colleagues). Proceeding with a “cavity”
approach, i.e. considering the effect of an N + 1th spin on a system of size N , it
is possible to show that the correct TAP equations read

mi = tanh

β∑
j

Jijmj − βmi

∑
j

J2
ij(1−m2

j )

 . (2.37)

From there, one can then define a TAP free energy FTAP such that ∂miFTAP = 0
gives the TAP equations, which will be important to understand the relative
weight to give to different potential solutions.
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Now, these equations can reassuringly be checked to be consistent, in the
sense that their careful study for T → 0 is compatible with q approaching unity
quadratically and a positive value of the entropy. However, in the very words of
Thouless, Anderson and Palmer, “finding solutions [...] is not much easier than
the original problem”, as the equations are formulated for a given draw of the
disorder.

2.2.3 Complexity
An essential aspect explaining the difficulty of treating these TAP equations is the
(very) large number of solutions they admit. Very pictorially, one can imagine the
TAP free energy landscape as a high dimensional analogue to Fig. 2.1, where each
local minima is a solution to the TAP equations. Indeed, for a given realization of
the disorder, the number of solutions NJ grows exponentially with the size of the
system. For a given draw of the disorder, this number can be computed “directly”,
by counting the fixed points among all possible configurations. Informally,

NJ =

∫ N∏
i=1

dmi δ (TAP eq.) . (2.38)

Note that one must be careful to perform the proper change of variable such that
the Dirac δ has a unit norm when the configuration is a solution to the TAP
equations [111].

Computing the average of this number of solutions over the disorder, we obtain
the “annealed” complexity

Σann. = lim
N→∞

1

N
logNJ . (2.39)

However, and as will become clear in the practical case we will consider, the
exponential nature of the number of solutions means that this quantity may display
very large fluctuations from one realization to another. A more representative
measure of the typical number of solutions therefore comes in the form of the
“quenched” complexity

Σquen. = lim
N→∞

1

N
logNJ . (2.40)

The disorder average of the logarithm can then be computed using the previously
introduced replica trick.

There is actually a fair bit of controversy and still many unknowns surrounding
the complexity of the TAP equations at finite temperature. As we will discuss
in more detail in Chap. 6, the original annealed solution worked out by Bray &
Moore in the 1980s [112] was strongly challenged by the more mathematically
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Figure 2.1: Two-dimensional idealization of a complex free energy landscape. A large
number of local minima of similar depth are separated by large barriers.

sound “supersymmetric” solution developed in the early 2000s [113] (the potential
problem having first been identified by Kurchan in 1991 [114]). The Bray &
Moore solution was eventually saved by the fact that TAP states are not stable
minima but are in fact saddles with a single unstable direction in the N → ∞
limit, justifying the broken supersymmetry [115, 116]. Note that in the Bray &
Moore solution, quenched and annealed complexities coincide for solutions above
a certain free energy threshold [112], although we will see that this is not always
true.17 In any case, the important result to remember is that there exists an
extremely large number of solutions to the TAP equations for a given interaction
matrix. At T = 0, the result of Tanaka and Edwards NJ ≈ e0.1992N [118] holds
and illustrates this reality: for N = 100 there are close to half a billion solutions!

Interestingly, the direct approach of enumeration is very general as it does
not require one to know what the equilibrium measure is, and can be freely em-
ployed for any random equation. It should be noted, however, that an alternative
approach relating the complexity to the (replicated) free energy exists when the
system is described by a Hamiltonian [119]. In the portfolio problem presented in
Chap. 3, we will also see that the annealed complexity can be approximated with
a cavity-like approach, albeit in a somewhat less controlled fashion.

17In general, the annealed average is an upper bound of its quenched counterpart by Jensen’s
inequality [117] and the concavity of the log.
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2.2.4 Replica symmetry breaking
The study of the TAP equations has shed light on an essential aspect of the spin-
glass solution landscape: the explosion of the number of local free energy minima.
This multiplicity of solutions in turn has an immediate effect on the problem’s
thermodynamics, which we can now relate to the failure of the replica symmetric
ansatz previously introduced.

When considering TAP states, attempting to measure thermodynamic prop-
erties (such as the average energy for instance) by taking an arithmetic average
over solutions turns out to be completely wrong. Instead, if one is interested in
the observable O, the correct approach is in fact to take

⟨O⟩ =
∑
α

⟨O⟩αwα, wα ∝ e−βFα , (2.41)

where ⟨O⟩α and Fα are the averaged observable and the TAP free energy evaluated
in the TAP state α respectively. The states α are then referred to as pure states,
the linear combination of which leads to the Gibbs equilibrium state of the system
[50]. Of course, given the exponential weight, only a relatively small fraction
of the solutions with the smallest free energies will actually contribute to the
thermodynamics. What is then of paramount importance is that in fully connected
models such as the SK, the energy barriers between the low energy TAP states
actually grows with N and therefore diverges in the thermodynamic limit N → ∞
[120]. Schematically, the free energy landscape is formed of distinct valleys, each
corresponding to a TAP state, that are completely separated from one another
(just as discussed in Sec. 2.1.5).

To study the problem averaged over the disorder, having a single value of the
overlap as in the replica symmetric case is therefore not enough [121]. Instead,
the correct approach is to study an overlap distribution,

P (q) =
∑
α,β

wαwβδ(qαβ − q), qαβ =
1

N

∑
i

mα
i m

β
i . (2.42)

As previously discussed, this is not technically specific to spin-glasses, as an Ising
ferromagnet without any external field also has an overlap distribution P (q) =
1
2δ(q−M2

S) +
1
2δ(q+M2

S), see Sec. 2.1.5 above. What is specific to the spin-glass
case is that the exponential number of quasi-degenerate solution means that P (q)
is a continuous function that is highly non-trivial.

The computation of the overlap distribution and the associated Parisi function
q(x), defined through the relation dx

dq = P (q), is where Parisi’s replica breaking
“scheme” comes into play [122, 123]. As this thesis does not contain bona fide
replica calculations, the procedure will not be detailed here. This being said, the
conceptual importance and dynamic consequences of replica symmetry breaking
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will be extremely important to understand some of the results presented in the
manuscript.

2.2.5 Dynamics
As might be expected at this stage, the extremely peculiar nature of the spin-
glass phase and its rugged free energy landscape (picture something like Fig. 2.1
but much more extreme) inevitably has consequences on the problem’s dynamics.
Simulating the SK model with a discrete Markov chain, using Glauber dynamics
for instance, some essential properties quickly appear below the critical tempera-
ture [124–126].

Defining the two-point correlation function

C(t, t′) =
1

N

∑
i

⟨Si(t)Si(t′)⟩, (2.43)

the most striking feature is probably that, for sufficiently large values of N , it
never reaches a time-translation invariant form C(t, t′) = C(t− t′) as one expects
in a finite-temperature equilibrium state. Instead, one observes aging, that is that
the behavior of C(tw, tw + t) remains a function of the waiting time (i.e. the age
of the system) tw, even when it is taken to be large. The correlation function,
which will be discussed again in Chap. 6, most often takes the additive form

C(tw, tw + t) = Crelax(t) + Caging(t, tw). (2.44)

Such a situation is illustrated in Fig. 2.2. The leftmost part of the curves is
approximately invariant with the age of the system, corresponding to the Crelax(t)
regime, while the long time behavior is expected to be of the form

Caging(t, tw) =
∑
i

Ci
(
hi(t)

hi(tw)

)
(2.45)

in mean field models, where the (potentially infinite) sum runs over different “time
sectors” and the hi may be nonlinear functions [127].

Eq. (2.44) can be superficially understood by picturing a rugged energy land-
scape as in Fig. 2.1. At low temperatures, one can imagine that the system remains
stuck in local minima for extended periods of time. The relaxation component then
represents the first decorrelation which occurs due to thermal noise within a given
basin of attraction, and that is therefore independent of the age of the system.
The second component, on the other hand, represents the decorrelation following
a large thermal fluctuations leading to another valley in the configuration space,
with possibly a smaller free energy. As the system gets older, the configuration is
likely located deeper and deeper in the free energy landscape. The time required
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Figure 2.2: Two-point correlation function in the spherical SK model at T = 0.3 for
different system ages, taken from [129]. Inset: same quantity represented as a function of
the time rescaled by the age, t/tw, showing a clear collapse in the aging regime.

for a thermal fluctuation to overcome the larger energy barrier therefore increases,
inducing a dependency on tw. This complex relaxation behavior is characteristic
of the weak ergodicity breaking phenomenon mentioned above [103]. Note that
this weak ergodicity breaking may occur in addition to (or in combination with)
the true ergodicity breaking18, as in the SK model discussed here [128].

An interesting example of a simplified spin-glass model displaying aging is
the spherical SK model (SSK). The SSK is essentially a continuous version of
the SK model [130]. Instead of Ising spins Si = ±1, we now take “soft” spins
σi ∈ R satisfying the spherical constraint

∑
i σ

2
i (t) = N ∀t. Following Eq. (2.22),

the overdamped Langevin equation associated to the relaxation of the same SK
Hamiltonian in this continuous setting is then given by

σ̇i(t) = −u(t)σi(t) +
∑
j

Jijσj(t) +
√
2Tξi(t), i = 1, . . . , N, (2.46)

where ξi(t) is a Gaussian white noise, and the confining strength u(t) is adjusted
to keep the spherical constraint satisfied at all times. Importantly, this spherical
SK model has a significantly simpler free energy landscape relative to its Ising
counterpart that we have discussed so far. Indeed, the spherical version admits
an exact replica symmetric solution with only two equilibrium states in the low
temperature phase [130]. Nonetheless, the full resolution of its dynamics [129] has
demonstrated that the model retains interesting and non-trivial aging effects, with
Caging(t, tw) = C

(
t
tw

)
as shown in Fig. 2.2, and therefore displays weak ergodicity

breaking. These complex dynamics are inherently related to the fact that the
18The main marker of true ergodicity breaking is to have limt→∞ C(tw, tw + t) > 0 whereas we

expect limt→∞ C(tw, tw + t) = 0 in the weak case.
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system does not reach equilibrium, even in this simpler setting, highlighting the
important difference between the statics and the dynamics of these problems.

2.3 Summary of the key notions
Let us summarize and clearly name some of the concepts that have been mentioned
in this section and that will be important throughout the thesis:

• When a system is defined by a global energy function, or Hamiltonian, it
has a Gibbs-Boltzmann measure and its static properties are studied with
the logarithm of its partition function (i.e. its free energy). Dynamics are
usually prescribed in the form of a detailed balance satisfying Markov Chain
or overdamped Langevin equation with only gradient contributions.

– If it is not disordered, the dynamics recover the statics and all is usually
well19, barring possible spontaneous symmetry breaking. This is for
instance the case of the system studied in Chap. 4,

– If it is disordered, the statics will likely display replica symmetry break-
ing due to a large number of solutions, as in the problem discussed in
Chap. 3. As a consequence, any dynamics will probably get stuck in
some region of the solution space. The system displays weak and some-
times strong ergodicity breaking, and an equilibrium state might never
be reached. In this case, we have a Hamiltonian system with relax-
ational dynamics that is nonetheless perpetually out-of-equilibrium.

• When a system is defined through its dynamics, it may or may not be in
equilibrium.

– If the dynamics are relaxational, i.e. can be rewritten as a detailed
balance satisfying Markov Chain or overdamped Langevin equation
with only gradient contributions, we are back to the previous situations
in which the Gibbs-Boltzmann distribution is directly known,

– If this is not the case, there will always be some probability currents
in the steady-state. This is then a bona fide (nonrelaxational) out-of-
equilibrium system, for which the steady-state distribution is not known
in general, as the one studied in Chap. 7. To find the steady-state dis-
tribution, one has to solve the Fokker-Planck or master equation, which
might not be tractable analytically. It is possible that this steady-state
distribution matches a known equilibrium distribution, which will be
the focus of Chap. 8, but this does not mean it is in equilibrium,

19It is actually possible to have a glassy regime and aging effects without disorder, as demon-
strated in [131] or [132] for instance – but the main idea stands.

42



Chapter 2. Theoretical foundations

– It may very well be the case that such an out-of-equilibrium system is
also disordered, and displays weak or strong ergodicity breaking. This is
for example the case for a spin-glass like system with a non-symmetric
random interaction matrix, which will be the focus of Chaps. 5 and
6. This is, in a sense, the worse (or best, everything is a matter of
perspective) case scenario, as the steady-state distribution is unknown
and might never be truly reached due to the glassy dynamics.

In this summary, we have discretely introduced the notion of relaxational (and
conversely nonrelaxational) dynamics. Given its presence in the very title of this
manuscript, it may be worth clarifying what exactly this implies. In the context
of this thesis, relaxational dynamics will refer to any evolution which minimizes a
global free energy-like quantity. As a result, any detailed balance satisfying (i.e.
reversible) stochastic process falls within this definition, as hinted above. However,
this term also extends to deterministic dynamics with a Lyapunov function that
is monotonously decreased. Considering the evolution in time of a smooth field
for instance, as will be done in Chap. 7, dynamics that can be written as the
functional derivative of a free energy-like quantity are then also relaxational.
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Key takeaways

• The logit rule is just another name for the Gibbs-Boltzmann distribu-
tion of equilibrium statistical mechanics over the choices of the agent.

• If the decision rule is applied to a system-wide utility function common
to all agents, the dynamics satisfy detailed balance and there is an
equilibrium steady-state that is entirely described by the free energy.

• When the system features random heterogeneous interactions, it is
said to be disordered.

• Disordered systems, such as the Sherrington-Kirkpatrick spin-glass,
are characterized by an extremely complex free energy landscape with
an exponential number of metastable states.

• This complexity generically leads to ergodicity breaking, meaning the
dynamics are trapped in some regions of the solution space and the
system truly never reaches its equilibrium state.
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Chapter 3

Rationality versus complexity:
the example of portfolio
optimization

Faites vos jeux… Rien ne va plus.

Chevalier de Balibari

As the very motivation for this thesis, we have argued that the “homo eco-
nomicus” viewpoint traditionally taken in socioeconomics is inherently limiting to
understand collective behaviors, and that statistical mechanics may be useful to
go beyond the rational representative agent paradigm. Before jumping into the
modeling of collective systems with interacting agents, let us first use a simple
example to further motivate the necessity for bounded rationality.

In an agent-based model, each individual will make decisions based on some
form of utility maximization. At this stage, we have also stressed that spin-
glasses exemplify how simple optimization problems may suffer from an extremely
large number of solutions, leading the optimization procedure to be “NP-hard”,
i.e. quickly computationally untractable. Bringing these two ideas together, it
is natural to ask if there are some realistic situations in which the maximization
procedure that is expected to be carried out by the agents is simply too difficult
and sensitive to be systematically and identically performed by all. As we will
see, another important consequence of this complexity is that it does not only
challenge the idea of rational decision-making, but also of common information at
the heart of game theory.

In this chapter, we reproduce the contents of [1], written under the supervision
of J.-P. Bouchaud and M. Benzaquen, barring a slight reorganization and some

47



Chapter 3. Rationality versus complexity: the example of portfolio optimization

minor changes in phrasing and references.

3.1 The portfolio optimization problem
The idea of maximizing gains while minimizing risk for a portfolio of fluctuating
assets is one that is both at the origin and at the heart of quantitative finance. As
early as 1952, Harry Markowitz derived the general formula for the portfolio with
the smallest variance for a desired return [133], assuming the asset fluctuations are
fully described by a covariance matrix. Since then, Markowitz portfolio theory has
stood as a reference in portfolio management, and questions surrounding optimal
portfolios have been a very successful playground for physicists. By adapting
calculations from the physics of disordered systems, several theoretical results
have been obtained, mainly around the phase transition observed when the time
series used to infer the covariance matrix become too short relative to the size
of the portfolio [134–136], and the impact of having noisy covariance matrices in
general [137–139]. The effect of having further constraints in the optimisation
problem has also been explored, with very rich results. In particular, imposing
that investors must provide a deposit proportional to the value of the underlying
assets was shown to result in an exponential number of valid locally optimal
portfolios, reminiscent of the number of metastable states in a spin-glass [48]. As
argued in that paper, the existence of a very large number of nearly degenerate (or
satisficing) solutions for a given optimisation problem is conceptually important
because common knowledge can no longer be assumed. The complexity of the
problems faced by the agents generates irreducible uncertainty, a quandary called
radical complexity, and two strictly rational agents may then take very different
decisions if their information and its treatment is not exactly the same. In that
sense, radical complexity appears as a clear contradiction of the classical “homo
economicus” and rational expectations paradigm discussed in Chap. 1.

In practice, a constraint that has long attracted much interest in the risk man-
agement industry consists in enforcing long-only portfolios. Denoting w ∈ RN the
vector of weights associated to each of the N possible assets an investor can con-
sider with

∑
iwi = 1 (fully invested), a long position – which amounts to betting

on the increase of the asset price – corresponds to a weight wi > 0, and conversely
a short sell – in which case we bet on the decrease of the price – refers to wi < 0.20

There are a variety of reasons why one might need to avoid short sells, ranging
from explicit investment mandates to extreme cases such as regulatory bans as

20While it might appear unusual to have negative weights in the portfolio, these can be under-
stood rather intuitively. Indeed, to perform a short sell, one actually borrows a stock to another
participant, and sells it at the current price, in hope of buying it at a later time for a smaller
price and returning it at that stage. The negative weight is then rather natural, as it indicates
that one owes this fraction of their portfolio of stock i to the other participant.
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those seen in Europe during the Coronavirus outbreak. On the fundamental level,
very interesting behavior has been observed when the long-only constraint is en-
forced, as portfolios quickly tend to become very sparse, resembling choices made
by individual stock pickers [140–142]. Interestingly, this constraint also allows to
draw analogies with the ecological equilibria reached by some population dynam-
ics models, which have also attracted considerable attention from the spin-glass
community in recent years.

3.1.1 Problem statement
We consider a portfolio of N single assets, and assume (in line with the majority
of studies on portfolio optimisation) that asset returns are correlated Gaussian
variables. The portfolio statistics is fully characterized by its covariance matrix
Cij = ⟨ηiηj⟩−µiµj , where we have introduced for each asset i the fluctuating return
ηi and its expectation µi, and where this expectation is typically approximated
as a time average in practice. The full correlation matrix is notoriously difficult
to infer from noisy financial time series (see e.g. [139]), which is why simplifying
hypotheses are generally used in the asset management literature. One of them is
given by the one-factor risk model, which, rather than attempting to incorporate
all possible sources of fluctuations, assumes that correlations are mostly due to
the market exposure. Indeed, empirical analyses on stocks show that the top
eigenvalue of the correlation matrix, corresponding to the so-called market mode,
is largely dominant relative to the other eigenvalues (see e.g. [143]). Such an
observation then suggests that all the assets have a common source of volatility
(the overall market) explaining a large part of the cross-correlations, and leading
to a covariance matrix of the form

Cij = ziδij + βiβj . (3.1)

The asset-specific parameter zi = σ2i , with σi the “idosyncratic volatility”, models
the uncorrelated asset volatility not accounted for by market-wide events, while βi

is to be understood as the sensitivity to the market (Chap. 9 of [17] for a complete
discussion on the matter).21

For an investor interested in constructing an optimal portfolio, the expected
returns are of course key parameters. However for this theoretical analysis, which
aims at drawing qualitative insights regarding the multiplicity of solutions and
its implication on portfolio stability, we impose the simplification µ = 1, where
µ = {µi}i∈[1,N ] (see Appendix A.6 for extensions to arbitrary µi’s). In this case,

21Unfortunately the correlation to the market is widely known as the “beta coefficient” β,
which might induce some confusion with the intensity of choice or inverse temperature β. There
is thankfully no such rationality parameter in this chapter, but we have adapted the typesetting
to avoid confusion.
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the optimal portfolio, also coined the Markowitz portfolio, which minimizes the
risk σ2p =

∑
i,j Cijwiwj for the given expected return µp =

∑
iwi = 1 (which

conveniently also corresponds to the fully-invested constraint) enforced using a
Lagrange multiplier, is given by:

wi =

∑
j C

−1
ij∑

i,j C
−1
ij

. (3.2)

Within the one factor model, the covariance matrix can be easily inverted using
the Woodbury matrix identity [144]. Up to a normalizing constant, one obtains:

wi ∝
1

zi

(
1− βi

∑
j βj/zj

1 +
∑

j β
2
j/zj

)
. (3.3)

This equation is central for the problem that we aim to explore in the following.

3.1.2 Link with population dynamics
Let us take a minor sidestep towards ecological equilibria. Consider now i =
1, . . . , N species associated to a certain “carrying capacity” in the environment.
These species furthermore interact with each other, either competing for resources,
or in predator-prey relationships, or else in a mutualistic, cooperative mode.

In its simplest form, where we consider that all species have identical growth
rates µi = 1, the population dynamics are described by the general Lotka-Volterra
equations:

ẋi(t) = xi(t)

µi − µik
−1
i xi(t)−

∑
j

αijxj(t)

 , with µi = 1 ∀i, (3.4)

where xi is the population of species i, ki its carrying capacity, and αij is the
N ×N interaction matrix [47]. In this model, a positive entry αij corresponds to
species i and j competing for resources or i being a prey and j being a predator
(in which case αji < 0). Setting ẋi = 0 to identify fixed points of the system yields
the equilibrium population of the species:

xi =
∑
j

C−1
ij , (3.5)

where here Cij = ziδij + αij , with zi = k−1
i . Naturally, in this context, one must

have xi ≥ 0 ∀ i since populations cannot be negative.
Experimentally, it is very difficult to gain insights on the nature of the inter-

action matrix or its eigenvalues. As a matter of fact, it is this observation that
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initially motivated Robert May to use Random Matrix Theory arguments in his
seminal paper [145]. While the qualitative phase portrait for the dynamical be-
havior of the model is independent of the exact distribution of αij [47], it seems
natural from Eq. (3.5) that the equilibrium picture would be dependent on the
interaction matrix model.

Here, we propose a drastic simplification and choose the interaction matrix
to be of unit rank: αij = βiβj , corresponding to species competing for a single
common resource, in addition to the self-regulation included in Eq. (3.4). We will
take β’s to be independent and identically distributed, with a probability density
function ρ(β). Consistent with the common notation in disordered systems, aver-
ages over this distribution (of disorder) will be indicated by an overline henceforth.
The βi coefficients then quantify how strongly species i competes for the unique
resource with other species, and the interaction between two species then only
depends on how strongly they both depend on the resource. With this model of
interactions, the equilibrium populations map to the long-only optimal portfolio
weights (up to a constant that does not affect the sign), and both problems can be
treated identically based on Eq. (3.3). Note that the case of heterogeneous growth
rates µi is equivalent to different average returns for stocks, and is discussed in
Appendix A.6.

Taking β > 0 is a natural choice, both to avoid placing ourselves in an un-
bounded growth regime, and more generally because ecosystems tend to be highly
competitive. Naturally, the variance σ2 = β2 − β

2 shall also play a key role in
the equilibrium picture of the system and its properties. Finally, it is important
to note that the unit rank model yields a symmetric interaction matrix, which
amounts to either cooperation or pure resource competition. Predator-prey re-
lations require, as noted above, asymmetric interactions between species i and
j.

3.1.3 Spin-glass formulation

Suppose we now enforce the non-negativity constraint common to the two prob-
lems. For the portfolio, this means the positions (assets) associated to short sells
after the Markowitz optimisation, i.e. associated to wi < 0, will have to be re-
moved from the portfolio altogether, reducing the effective universe from which
stocks may be picked. Likewise, an extinct species (xi < 0) is by definition re-
moved from the ecological universe, leading to an ecology with a reduced number
of viable species.

Here, we introduce “spins” {θ} that can take the value θi = 1 if position i
is included in the (possibly reduced) asset or species universe and θi = 0 if it is
excluded from it. Clearly, without excluding any specific entity, 2N combinations
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of {θ} can be constructed from the N assets or species initially considered22. The
central question can therefore be reformulated as follows: we seek the number Ns

of possible configurations {θ}, among these 2N , that satisfy the non-negativity
condition (see Eq. (3.6) below). These spin variables are then related to the
weights of the underlying positions through Eq. (3.3). Indeed, only the included
positions, i.e. those with θi = 1, now contribute to the sums, while the weights
associate to positions with θi = 0 are, by definition, discarded.

This quantity can easily be understood for financial assets, as it corresponds
to the number of long-only Markowitz-optimal portfolios that can be constructed
from a set of N assets. In the context of ecological equilibria, the interpretation is
similar even if species are not “selected” in the same way as stocks. Ns can then be
seen as the number of viable stable ecosystems that result from particular subsets
of the N interacting species. The existence of solutions with a lower number of
highly concentrated species in addition to the default, most diverse, solution is
actually particularly interesting in the ecology context when considering the so-
called Allee effect, which states that an increase in population density is correlated
with higher survival probability [146]. In both cases, this quantity, which may
appear somewhat artificial at this stage, will be essential in understanding how
disorder chaos arises and can impact these systems in a very concrete way.

Naively, one could try to characterize the number of solutions by its average,

Ns =
∑
{θ}

∏
k

Θ(θkwk), (3.6)

where we take the convention Θ(0) = 1 for the Heaviside step function, and
averages are taken over the distribution of β. At this stage, one may notice how
formally similar this enumeration is to the counting of TAP solutions discussed
in the previous chapter, where the Heaviside step function replaces the Dirac
δ distribution enforcing the TAP equations. As in the spin-glass setup, a key
quantity in the study of the number of solutions is the annealed complexity

Σ =
log Ns

N
. (3.7)

As previously mentioned, in the Sherrington-Kirkpatrick spin-glass this quantity
is indeed equivalent to its more representative quenched counterpart where the
logarithm is averaged (requiring a more involved replica calculation) for metastable
states of sufficiently high energy [112]. Another useful observable is the sparsity,
describing the average fraction of the N possible entities that are included in the

222N−1 solutions to be exact, as the empty portfolio cannot satisfy the fully invested constraint.
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configuration. We can write it as

u =
1

N

N∑
i=1

θi. (3.8)

Among the Ns configurations satisfying the non-negativity constraint for a
given set {βi}, one will be “as full as it can be”, meaning u will reach its maxi-
mum value, the average value of which is noted m below, with m ≤ 1. In asset
management terms, this quantity corresponds to the most diversified long-only
portfolios. For population dynamics, it is the most diverse ecosystem that can
result from all possible viable ecosystems resulting from the N species.

3.1.4 Empirical data

In order to study the likely number of valid solutions, it is essential to have some
information on the distribution of the β coefficients.

For the portfolio problem, where β is a widespread metric for an asset’s corre-
lation relative to the market, high quality data is readily available. Using returns
from a large number of US stocks over a two year time span (up to November
2020) reveals that the βs are normally distributed about 1, as shown in Fig. 3.1(a).
We shall thus take as a starting point i.i.d. variables βi ∼ N (1, σ2), which conve-
niently implies that σ and N are the problem’s sole parameters. Nevertheless, all
calculations can easily be generalized to any β ̸= 1 since the problem is invariant
under the simultaneous scaling of all βs and all zs by an arbitrary factor α and
α2, respectively.

This being said, other distributions for β can also be of interest. In particular,
if one focuses on specific sectors, the empirical distribution of volatility matches a
uniform distribution relatively well as can be seen in Figure 3.1(b). Alternatively,
looking at weekly returns rather than daily returns to construct the volatility gives
thicker tails, between a Gaussian and Laplace distribution, as well as some slight
skewness, visible in Fig. 3.1(c).

As mentioned in the previous section, there is unfortunately no such data for
the interaction matrix in ecological communities, so in this context our model
parameters should be considered with a grain of salt.

In the following numerical experiments, markers labeled by “Data” will be re-
ferring to calculations that are using the empirical distributions of β from Fig. 3.1.
Practically, the shape and width of the empirical distributions are obtained by
fitting the histograms, and data points are then constructed by random sampling
with replacement for different values of N .
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Figure 3.1: Distributions of β computed using the variance and covariance of returns
averaged over one and two years respectively (as accurately estimating covariance requires
more data). (a) Daily returns of the 1500 largest capitalisation stock, and fit to a normal
distribution. (b) (dark green) Daily returns of the 120 largest capitalisation stocks in the
energy and utilities industries, (light green) uniformly distributed points over the same
interval for the same sample size. (c) Weekly returns of the 1000 largest capitalisation
stocks, and fit to a generalized normal distribution of shape parameter b ≈ 3/2.

3.2 Numerical experiments

We start by performing numerical experiments in order to find a relevant scaling
regime. As we are interested by the static properties of a complicated optimization
problem, there are no obvious dynamics to simulate in our problem. Instead,
several approaches are possible.

3.2.1 Exact enumeration

As previously stated, our spin-glass inspired framing of the problem means that
there are generically 2N possible configurations to explore, giving as many unique
Markowitz optimal solutions23 among which only a fraction are expected to sat-
isfy the long-only constraint. The simplest approach is therefore to exhaustively
explore these configurations, computing the Markowitz weights every time and
determining whether there are any negative entries in the solution vector. This
“bruteforce” approach, which will be referred to as exact enumeration, is obvi-
ously exponentially expensive computationally, and can therefore only be carried
out for small to intermediate system sizes (N = 32 already gives over 4 billion
Markowitz portfolios to compute!). However, it has the advantage of giving ac-
cess to all properties of the solution space, allowing for a precise comparison of
the properties of valid solutions.

23In the following, a solution refers to any non-negative w for which Eq. (3.2) taken on the
covariance matrix restricted to the indices where θi = 1 is satisfied
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First, one can consider the quadratic form

H({β}, {θ}) =
N∑

i,j=1

Cijθiwiθjwj , (3.9)

with the weights wi solutions to Eq. (3.3) with summations restricted to positions
with θi = 1, represents the metric that is minimized under constraint, i.e. the
energy of a configuration in physical terms. For the portfolio problem, this is
obviously the total portfolio square volatility. Although less straightforward, H
can also be understood intuitively in the population dynamics context. Indeed,
as Cij represents the level of competition for the resource between species i and j,
the quantity to be minimized corresponds to the aggregated level of competition
(including self-competition) for the surviving species.

The second quantity of interest is the overlap between two configurations {θ}
and {θ̃}. We choose to define it as

q({θ}, {θ̃}) = 1

N

N∑
i=1

θiθ̃i −

(
1

N

N∑
i=1

θi

)(
1

N

N∑
i=1

θ̃i

)
. (3.10)

This definition differs from the usual spin-glass expression with the addition of
the second term on the rhs, that is included to ensure that two statistically inde-
pendent configurations have zero overlap on average.

Using these two metrics, we can study the distribution among valid configu-
rations of their excess variance or level of competition relative to the value for
the globally optimal configuration {θ⋆} = argmin{θ}H({β}, {θ}) for a given draw
{β},

∆H = H({β}, {θ})−H({β}, {θ⋆}) (3.11)

as well as their normalized overlap with this global optimum

Q =
q({θ}, {θ⋆})
q({θ⋆}, {θ⋆})

. (3.12)

A value of Q close to 1 indicates a configuration has a large number of common
species or assets with the optimal configuration, Q close to 0 corresponds to so-
lutions much sparser than the optimum while negative values of the overlap are
reached for configurations that are largely full but orthogonal to the best possible
outcome.

The distributions of ∆H and Q can be obtained directly from the exact enu-
merations for small values of N repeated over several draws of the disorder. Such
a result for normally distributed β is shown in Fig. 3.2, which also displays the
joint density of the two quantities. Looking at the overlap, we find that, as one
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Figure 3.2: Solution space explored by exact enumeration for Gaussian β with N = 28,
σ = 0.1, averaged over 30 realizations. Top left: distribution of overlap relative to the
optimal configuration Q. Bottom left: distribution of excess variance relative to the
optimal configuration ∆H. Right: heatmap of the joint density of these two quantities.

could have expected, the majority of valid solutions are composed of a relatively
small number of non-zero spins and therefore have Q close to zero. More surpris-
ingly, looking at ∆H reveals that a very large fraction of these are associated to
a small excess variance or level of competition relative to the minimum. This is
further confirmed by the joint distribution, where we indeed observe that many
configurations display a small value of ∆H despite having Q ≈ 0. As such, the
multiplicity of solutions and associated complexity is of a great importance in this
problem. Not only do we find a large number of portfolios or ecosystems that
satisfy the constraint, a large fraction of these achieve a portfolio variance or level
of competition very close to the best possible outcome. These quasi-degenerate
solutions might therefore become optimal following a small change in the disor-
der. This idea is at the root of the disorder chaos investigated in Section 3.5,
and related to the de facto limitation of rational choice arguments in complex
situations.

3.2.2 “Pruning” algorithm
As previously stated, exactly enumerating the long-only solutions for a given draw
of disorder is a powerful approach, as it allows the precise study of all valid
solutions, but comes at a very high computational cost. To explore larger N that
are relevant for practical applications and the impact of the system size on the
optimal solution in an analytically tractable regime, we turn to a greedy heuristic
which turns out to be exact in this case.

The algorithm simply consists in removing iteratively entries for which Eq.
(3.3) gives negative weights, i.e. setting θi = 0 for these positions, until all posi-
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tions are acceptable (see [147]). In the population dynamics context and given we
are considering homogeneous growth rates, this “pruning” approach is in fact a
very straightforward Darwinian evolution in the sense that most vulnerable species
(i.e. those with the largest βi) are extinct first, until all species in the ecosystem
survive (and represent a positive fraction of the population). The outcome of
the algorithm is then the most diverse solution possible, for which the fraction of
non-zero entries is the previously defined sparsity m. The pruning algorithm will
therefore allow us to probe the evolution of this quantity for different values of σ
and N for much larger systems than what was possible with an exhaustive search.

The result for stock-compatible β ∼ N (1, σ2) in Fig. 3.3(a) is consistent with
the findings of Lehalle and Simon [141]: the sparsity decreases rapidly and non-
trivially when the βs cease to be very tightly distributed about unity. Interestingly,
the sparsity clearly appears to be a function of the parameter χ = σN only (see
Fig. 3.3(a)). Such a scaling provides precious insight for the analytical formulation
of the problem, as will become apparent in the following section. It should be
noted that such a scaling result ceases to hold for large values of σ, as a large
standard deviation yields a significant fraction of assets with negative β that can
obviously be included in the long-only portfolios (see Eq. (3.3)), thereby causing
m to increase again at large σ.

This effect can be partially observed in the empirical points that have a slightly
wider distribution of β (σ ≈ 0.3) and a few negative entries (not shown). This
being said, in a range for N and σ relevant for applications, the evolution of m
for real data points appears to be roughly in line with the χ = σN scaling curve
where the fully numerical points lie.

The same procedure may be repeated for uniformly distributed β as show in
Fig. 3.4(a). The result is qualitatively very similar, albeit with a slower decrease
in m with N . Interestingly we recover the scaling χ = σN where σ now governs
the width of the distribution. Like in the Gaussian case, the points sampled from
empirical data appear to be slightly too widely distributed to perfectly match the
points from continuous probability densities, although the evolution of m appears
to be very close up to some offset.

Note that the pruning algorithm can be slightly modified in order to explore a
larger region of the solution space, beyond the globally optimal solution. Indeed,
by introducing some stochasticity in the iterative process, i.e. by setting θi = {0, 1}
for stocks with negative and non-negative weights respectively with probability, the
algorithm will evolve towards some slightly sub-optimal (and therefore less diverse)
yet still valid solutions. Depending on the probability with which a priori valid
and non-valid stocks or species are excluded and included in the solution, one will
explore solutions with a more or less large overlap with the best possible outcome.
In other words, playing with this probability will shed light on different regions
of the joint distribution presented in Fig. 3.2.
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Figure 3.3: Numerical and theoretical results for β ∼ N (1, σ2). (a) Maximum sparsity
m as a function of χ = σN , inset focusing on the large χ region. (b) Number of solutions
Ns as a function of N , obtained by exact enumerations averaged over relatively few
(4-10) samples. Straight lines display the respective theoretical predictions, dotted line
corresponds to 2N . (c) Complexity Σ as a function of σN resulting from the exact
enumerations and normalized by log 2, inset zooming out to show the large χ region. The
full line is the numerically exact result, and the dotted line is an asymptotic approximation
based on Eq. (3.27) below. The legends are shared for (b) and (c).
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3.3 Analytical setup

3.3.1 Self-consistent equation
While it may appear natural to attempt to directly tackle the enumeration of valid
solutions using Eq. (3.6) and a Fourier representation of the Heaviside function,
such a calculation quickly requires a Gaussian assumption on the distribution of
β and thus lacks generality. The alternative taken here is to first study directly
the maximum sparsity m as a function of N , before translating this quantity back
to the number of long-only portfolios.

Going back to Eq. (3.3) that relates the weight of position i to its βi, it imme-
diately appears that there should be a threshold value β+ above which a position
will likely be shorted (or a species go extinct), which must thus be excluded. This
is quite reasonable intuitively: an investor wishing to take the least possible risk
and unable to balance volatility through shorts will be unlikely to pick excessively
risky stocks or bonds. Likewise, since large values of β are associated to species
subject to increased competition, those species are likely to go extinct and thus
not be present in the equilibrium population. Given the distribution ρ(β), the
average maximum sparsity m is then related to the threshold β+ through:

m =

∫ β+

−∞
dβ ρ(β). (3.13)

Therefore, calculating β+ will directly yield m. Of course, this threshold is only
valid in a statistical sense, and for a given set of β’s its value will differ from
the mean. Writing β̃+ the fluctuating variable representing the largest β to be
included for a unique realization of the disorder, and modifying Eq. (3.3) with the
previously introduced spin notation directly gives

β̃+ =

∑
j β

2
jθj/zj + 1∑
j βjθj/zj

, (3.14)

where we now have θi = 1 for βi < β̃+ and θi = 0 otherwise. In order to
recover the typical behavior of interest, we introduce the probability of inclusion
conditioned to β. We define Prob(θi = 1|βi) = FN (βi), where FN (β) is a smooth
step-like function, centered about the mean β+. Clearly, we require FN (β) to be
monotonously decreasing, with

FN (−∞) = 1 and FN (∞) = 0, (3.15)

and F ′
N (β) is therefore peaked in a region around β+, the width of which is

expected to decrease as N increases.
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At this stage, we start by assuming that two spins are uncorrelated at order
N−1, which shall be checked a posteriori by ensuring the Onsager “reaction”
term is o(N−1). The sums at the numerator and denominator of Eq. (3.14) may
therefore be treated using the central limit theorem, i.e. for N ≫ 1

1

N

∑
j

βk
j θj

zj
≈ ⟨z−1⟩⟨⟨βk⟩⟩+ 1√

N
ξk (3.16)

where the partial expectation operator ⟨⟨· · ·⟩⟩ is defined, for an arbitrary test func-
tion g(.), as

⟨⟨g(β)⟩⟩ :=
∫ ∞

−∞
dβ g(β)ρ(β)FN (β) (3.17)

and ξk is a zero-mean Gaussian variable, with a variance that depends on k.
Eq. (3.14) may then be rewritten as

β̃+ = β+ +
1√
N
ξ, (3.18)

where the full expressions of β+ and ξ are given in Appendix A.1. From the very
definition of FN (β), which represents the probability of inclusion in the reduced
universe of an asset or species with respectively correlation or interaction strength
β, one can write FN (β) = Prob

(
β < β̃+

)
. Using that ξ is a Gaussian noise, this

can be expressed as

FN (β) =
1

2
erfc

[√
N(β− β+)

γ
√
2

]
, (3.19)

where γ is the standard deviation of ξ.
We now place ourselves in the scaling regime where σ = χ/N (motivated

by numerical results). In this case the width of the distribution of β − 1 scales
as N−1. Assuming that in this regime γ → 0, one finds that to leading order
⟨⟨βk⟩⟩ = m+ O

(
N−1

)
. Now, given the expression for γ2 in App. A.1, one finally

obtains
γ = O

(
N−1/2

)
, when σ = O

(
N−1

)
, (3.20)

which justifies our assumption that γ → 0 for large N . It furthermore shows that
the width of the smoothed step function FN (β) (Eq. (3.19)) scales as N−1.

This result then allows us to explicitly make Sommerfeld-like expansions of
averages, as described in App. A.2, that now have no contribution at order N−1.
Eliminating the higher order terms appropriately finally yields the equation for
the mean threshold

β+ =
⟨β2⟩c
⟨β⟩c

+
1

N

z

⟨β⟩c
+O

(
1

N2

)
, (3.21)
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valid in the regime of interest σ = χ/N , with z = ⟨z−1⟩−1 and

⟨g(β)⟩c :=
∫ β+

−∞
dβ g(β)ρ(β). (3.22)

Eq. (3.21) is self-consistent in the sense that β+ appears in both sides of the
equation.

Recall that this equation for β+ assumes negligible correlations between the
occupation variables θi. In the spirit of a bona fide cavity calculation, one should
look at the effect of the introduction of an additional asset or species on the
already existing θi. Knowing the importance of the Onsager reaction term in
Sherrington-Kirkpatrick spin-glasses, that turns the naive mean-field equation into
the celebrated TAP equation (Sec. 2.2.2), it is important to ensure that the average
threshold is not affected by a similar term. This is done in App. A.3 where we
check that the introduction of a new spin does not alter the above equation at
order N−1. As such, Eq. (3.21) is our central analytic result for the problem at
hand, which we shall solve for different distributions ρ(β) in Sec. 3.4.

3.3.2 Complexity and number of solutions
Now, we define N (K,N) to be the average number of solutions satisfying the
constraint with K among the N possible spins included. We may write an iter-
ative equation to describe the evolution of this quantity as N → N + 1. First,
the addition of this new element – that we will take to be at index 0 and associ-
ated to β0 – is only possible if β0 is small enough. If we recall the probabilistic
interpretation of the maximum sparsity m = Prob(β0 ≤ β+), the probability of
θ0 = 1 being compatible with the constraint is simply given by m(σ,K). In order
to form such a solution, with K among the now N + 1 spins included, the new
element must be added to a solution previously comprising K−1 spins. However,
a fraction of the solutions with K − 1 nonzero spins are rendered invalid due to
the fact that β+ is a decreasing function of K. Those positions are such that
β+(K) < βi < β+(K − 1), and occur with probability

p(σ,K) =

∫ β+(K−1)

β+(K)
dβ ρ(β) = m(σ,K − 1)−m(σ,K), (3.23)

and given βs are drawn independently, we finally find the expression

N (K,N + 1) = N (K,N) +m(σ,K)[1− p(σ,K)]K−1N (K − 1, N) (3.24)

to describe the evolution of the number of solutions with K non-zero spins as N
increases. To properly initialise and close the recursion, we require

N (0, 0) = 1 and N (N + 1, N) = 0. (3.25)
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The quantity that interests us, the average total number of solutions satisfying
the constraint, is then simply given by

Ns =

N∑
K=1

N (K,N). (3.26)

Defining n(x, t) to be the continuous analogue of N (K,N) with K → x and
N → t, the iterative equation may be rewritten as a partial differential equation,
valid in the large N limit. To leading order, i.e. neglecting a diffusion term of
order N−1, one has

∂tn(x, t) + exφ
′(σx) φ(σx) ∂xn(x, t) = exφ

′(σx) φ(σx)n(x, t) (3.27)

where we have used the scaling result m(N, σ) = φ(χ) with χ = σN as observed
in numerical experiments, and further justified by the analytical calculations in
the next section.

This inhomogeneous advection equation may then be treated with the method
of characteristics [148]. Taking the characteristic curve s in (x, t) space, and
writing z(s) = n(x(s), t(s)) the solution along the curve, the problem reduces to
the system of ordinary differential equations

dt

ds
= 1 (3.28)

dx

ds
= ex(s)φ

′(σx(s)) φ(σx(s)) (3.29)
dz

ds
= ex(s)φ

′(σx(s)) φ(σx(s)) z(x(s), t(s)), (3.30)

with boundary conditions

t(0) = 0, x(0) = 0, z(0) = 1. (3.31)

The solution satisfying these boundary conditions then directly corresponds, for
t = N , to the dominating term in the sum given in Eq. (3.26).

To summarize, the self-consistent equation (3.21) allows one to determine the
average threshold β+ for the inclusion of an asset or species in the non-negative
solution for a given sparsity. This quantity will in turn yield the expression of
the maximum sparsity m(N, σ) = φ(χ) in the regime σ = χ/N . Solving the set
of characteristic equations tracing back to the known boundary conditions shall
finally give an expression of the average number of solutions, and therefore the
annealed complexity.
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3.4 Distribution-specific results

3.4.1 Gaussian disorder
As argued with the data presented in Fig. 3.1(a), taking β to be normally dis-
tributed with mean 1 and variance σ2 appears to be a good approximation for
the portfolio problem. Going back to Eq. (3.21), all the terms of interest can
be written exactly using the Gaussian cumulative distribution function Φ(x) =
1
2(1 + erf(x/

√
2)). Taking σ = χ/N and introducing the ansatz

β+ = 1 +
χf(χ)

N
(3.32)

allows one to rewrite the self-consistent equation as

χf(χ) =
z

m
− 1

m

χ√
2π

e−
1
2
f(χ)2 , (3.33)

with m = φ(χ) = Φ(f(χ)). As anticipated in the previous section, m(N, σ) indeed
only depends on χ in the scaling regime.

Setting z = 1 (without loss of generality, since it simply corresponds to the
rescaling χ → χ/z) this equation may be solved numerically for f at given χ,
the result of which is plugged back into the expression for m and is shown by the
continuous line in Fig. 3.3(a). This analytical result is in excellent agreement with
numerical experiments, which gives us confidence that our self-consistent equation
is exact in the regime of interest. As expected, while qualitatively reasonable, the
model does not perfectly describe the sparsity corresponding to more broadly
distributed empirical β’s.

This numerically obtained m = φ(χ) can also be injected in the iterative
expression for N (K,N) given in Eq. (3.24). Summing all contributions, the mean
number of solutions Ns and associated complexity Σ are computed and shown
by the continuous lines in Fig. 3.3(b-c). The match between this semi-analytical
solution and the numerical results is also excellent, this time for both the arbitrary
and empirically determined values of σ.

Based on the numerical solution of Eq. (3.33), we find that f(χ ≫ 1) quickly
reaches large negative values. The error functions through which φ is expressed
can therefore be approximated asymptotically through the method of steepest
descent. Keeping the first two terms in the series expansion of m = φ in the
self-consistent equation, and taking iterated logarithms, one finally finds, at the
leading order in the scaling regime:

φ(χ) ≈
√
2 logχ

χ
, (χ≫ 1) (3.34)
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This asymptotic result is compared to the numerical experiments in the inset of
Fig. 3.3(a), displaying a very good fit for values as small as χ ∼ 10.

As detailed in App. A.4, this result may be used in the characteristic Eq. (3.29).
At the leading order, we find the expression of x along the characteristic

x(s) =

√
2s

σ
(log σs)

1
4

[
1 +O

(
log log σs

log σs

)]
. (3.35)

Eq. (3.30) may then be integrated to find z(s) the number of solutions along the
characteristic,

log z(s) =

√
2s

σ
(log σs)

1
4

[
1 +O

(
1

log σs

)]
(3.36)

From Eq. (3.28) and the associated boundary condition, we may now finally set
s = t = N . Going back to original variables of the problem, we therefore have the
asymptotic evolution for the number of non-negative solutions

Ns ∼ exp

(√
2N

σ
(log σN)

1
4

)
(3.37)

and the associated annealed complexity

Σ ≈
√
2
(logχ)

1
4

√
χ

. (3.38)

This fully analytical asymptote is compared to the previously obtained numerically
exact solution of the recursion relation (dubbed “semi-analytical” below) in the
inset of Fig. 3.3(c). The result appears satisfactory, although the conclusions are
limited by the numerical difficulty of obtaining the semi-analytical result for large
values of N . A careful observation suggests a small shift between the two curves,
which might be explained by the second derivative (diffusion) term in the partial
differential Eq. (3.27), which we neglected.

In any case, this result corresponds to a growth slightly faster than e
√
N but

significantly slower than eN : asymptotically, the complexity of the rank-one port-
folio problem, or of the rank-one ecological problem, is zero, contrarily to the
spin-glass case. But the average number of different possible solutions is still very
large when N is large.

It immediately appears however, that this solution is somewhat contradictory
with the previously found behavior of the maximum sparsity. Indeed, taking a
closer look at the solution for x(s) along the characteristic curve, we find that the
associated sparsity u⋆ = x(t)/t is given by

u⋆ ∼ (logχ)
1
4

√
χ

. (3.39)
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Comparing with Eq. (3.34), we find that u⋆ ≫ φ(χ) for χ≫ 1.
In other words, it appears that the configurations dominating the count of the

mean number of solutions are those with a number of non-zero spins K⋆ greatly
exceeding the theoretical prediction mN . While surprising at first, this result
means that the average (over βs) number of solutions is dominated by extremely
rare configurations {βi} that allow K⋆ ≫ mN positions to survive in the portfolio.
Even if rare, such configurations allow an exponentially large number of portfolios
to exist, i.e. CK⋆

N . Hence the distribution of Ns is heavily skewed towards large
values, corresponding to events that are extremely unlikely to be witnessed in
reality. For typical configurations of the βi’s, on the other hand, one expects that
eligible portfolios are much smaller, and contain at most mN assets. Correspond-
ingly, the typical number of solutions is expected to be of order of eNm ≪ Ns. In
order to compute precisely the typical number of solutions, one should compute
logNs and the associated quenched complexity. This would require going back to
the direct formulation given in Eq. (3.6), expressing the Heaviside step function
with its Fourier representation and making use of the replica trick as detailed in
numerous works relating to spin-glasses (see [50, 112]). We leave such a calcu-
lation for later investigations. The computation of the probability of observing
these rare configurations that dominate the average solution count, that is likely
directly dependent on the distribution of the βi’s, is also left for future work.

This difference between the typical (and average) maximum sparsity m and the
most likely effective sparsity u⋆ resulting from the iterative procedure is apparent
in Fig. 3.5 that considers normally distributed β, and is comparable in the uniform
case. Here, we stress that the former corresponds to the self-averaging fraction
of positions that may be included in a long-only Markowitz optimal portfolio,
while the later corresponds to the fraction of occupied positions associated to the
portfolio that dominated the calculation of Ns at large N (i.e. the solution at
the saddle in the spin-glass language). For small χ, we have u⋆ = 1

2 < m, as
naively expected. However, beyond χ ≈ 5 we find that indeed the mean behavior
u⋆ exceeds the typical sparsity m. In this region, we would therefore expect the
calculation of Ns and the associated annealed complexity Σ to deviate from that
observed in a moderate number of numerical experiments. The divergence between
u⋆ and m appears to be relatively slow however, explaining why it is not clearly
noticeable in the numerical results in Fig. 3.3 and 3.4, where only a small fraction
of elements are excluded as m is still close to unity.

3.4.2 Uniform disorder

We now extend the results to other distributions of β. The uniform distribution
is an interesting case, as it can model the case of stocks restricted to certain
industries (see 3.1(b)).
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Figure 3.5: Evolution of the effective sparsity of the maximum of N (K,N) calculated
iteratively for Gaussian β of variance σ2, up to N = 400 (points), compared to the
maximum sparsity (line). The red vertical line separates a small χ regime where one
expects that Ns ≈ N typ.

s , from a large χ regime where Ns ≫ N typ.
s when N → ∞.

In the uniform case, the distribution is still centered about β = 1 but now has
width 2

√
2σ. Once again, we take the scaling χ = σN from numerical experiments,

and the ansatz β+ = 1+χf(χ)/N . The moments up to the threshold β+ assuming
β+ < 1 +

√
2σ may then be easily written explicitly given the simple expression

of the uniform distribution. Taking the self-consistent equation at order N−1,
where we can once again take z = 1 without loss of generality, finally gives the
expression for the function f(χ) = −

√
2 ± 25/4/

√
χ, from which the maximum

sparsity directly follows by picking the solution giving the positive result. This
solution requires the threshold to be before the right edge of the distribution, and
hence must be completed with the result beyond which saturates the maximum
value m = 1. Combining both gives a closed form solution for the entirety of the
domain without having to rely on asymptotics

φ(χ) =

{
1 for χ ≤ 1√

2
,

1
21/4

√
χ

for χ > 1√
2
.

(3.40)

This solution corresponds to the continuous line in Fig. 3.4(a). Once again, the
match with numerical simulations is very good, whereas – as discussed in Sec-
tion 3.2 – there is a small offset relative to the empirically sampled points that lie
slightly outside of the analytically tractable region. Note that the typical sparsity
of the portfolios decreases with N much more slowly in the uniform case than in
the Gaussian case.

The fully analytical solution for m = φ(χ) is substituted in the iterative
formula for the mean number of solutions, resulting in the continuous lines in
Fig. 3.4(b-c). Clearly, this theoretical result displays a very good match with the
numerical points across all values of σ tested.
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As before, we now employ this expression in the set of ordinary differential
equations to solve the partial differential equations describing the evolution of the
number of solutions. Thanks to the simple expression for φ that is now valid for
all values of χ, the integration may be carried out with no difficulty (A.4), giving

log z(s) =

(
3

25/4
s√
σ

) 2
3
[
1 +O

(
1

3
√
σs

)]
(3.41)

and thus simply replacing s = t = N ,

Ns ∼ exp

{(
3

25/4
N√
σ

) 2
3

}
. (3.42)

As we might have expected from the slower decrease in maximum sparsity relative
to the Gaussian result, the average number of solutions grows faster in the uniform
case. The annealed complexity is now asymptotically given by

Σ ∼
(

3

25/4
1
√
χ

) 2
3

, (3.43)

that is plotted with the dashed line in the inset of Fig. 3.4(c). Here, the fully
analytical expression appears more or less in line with the semi-analytical iterative
solution.

As for the Gaussian case, we notice that the sparsity of the configurations
dominating the enumeration is given by u⋆ = x(t)/t ∼ χ− 1

3 ≫ φ(χ). Just as
before, we have therefore calculated a mean number of solutions that appears to
greatly exceed the typical result observed. The typical behavior would then also
require to compute logNs, which in this uniform case would not be as similar to
typical spin-glass calculations that rarely, if ever, involve uniform distributions
with a finite support. We note however that the typical number of solutions in
this case should grow as exp(

√
N), i.e. much faster than in the Gaussian case

where it only grows as exp(
√
logN).

3.4.3 Bridging the gap: generalized normal distribution
To understand why two different decays in maximum sparsity hold for the normal
and uniform distributions, we use of the generalized normal distribution

ρb(β) =
b

2
√
2σΓ(1/b)

e
−( |β−1|

σ
√
2
)
b

(3.44)

where b is a shape parameter allowing to recover the usual normal distribution
of unit mean and standard deviation σ2 for b = 2, and the uniform distribution
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centered at 1 and of width 2
√
2σ by taking the limit b → ∞. Moreover, probing

b ≤ 1 can provide insights on the problem with heavier tailed distributions of
β’s, b = 1 corresponding to the Laplace case, which may be of interest when
considering e.g. the weekly returns presented in Fig. 3.1(c).

The first step in our search for an analytical solution in this general formulation
is to express the moments up to the threshold ⟨β⟩c and ⟨β2⟩c as well as m itself in
workable forms. As detailed in App. A.5, this can be done by reintroducing the
expressions for σ and β+. The generalized self-consistent equation now reads

χf(χ) =
z

m
− χ

m

∫ ∞

−f(χ)
duu ρ(u), (3.45)

where u = (β− 1)/
√
2σ and we have postulated f(χ) < 0 which is intuitive from

the expression of β+ (we expect the threshold to be smaller than the mean value
of β, regardless of the distribution). Taking b = 2, the integral can be evaluated
exactly and we recover Eq. (3.33) as expected. As for the two previous cases,
setting z = 1 simply corresponds to rescaling χ→ χ/z.

For b sufficiently small, we may approximate the integrals asymptotically as
we expect f(χ) to have a large magnitude for these widely distributed β’s. The
resulting self-consistent equation (App. A.5) now reads

e(
|f(χ)|√

2
)
b

=
χ√

2bΓ(1/b)

(
|f(χ)|√

2

)2−2b

(3.46)

while the maximum sparsity at the leading order is

m = φ(χ) =
e
−( |f(χ)|√

2
)
b

2Γ(1/b)

(
|f(χ)|√

2

)1−b

. (3.47)

Introducing the variables

y =

(
|f(χ)|√

2

)b

and x =
χ√

2bΓ(1/b)
, (3.48)

the self-consistent equation takes the much simpler form

y2−
2
b ey = x, (3.49)

giving in turn 2Γ(1/b)φ = y1−
1
b /x. For a given value of b, this simplified self-

consistent equation can be either solved semi-analytically or asymptotically in
the limit of χ and therefore x large. For instance taking b = 2, Eq. (3.49) gives
y =W (x) the Lambert W function and thus

m =

√
W (x)

2
√
πx

∼
√
2 logχ

χ
, (3.50)
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Figure 3.6: Scaled sparsity as a function of b, σ and N for generalized normal distribu-
tions. The continuous, dashed and dot-dashed lines correspond to the uniform, Gaussian
and Laplace asymptotes respectively.

thereby recovering the previously obtained result. Interestingly, the case b = 1
corresponding to Laplace distributed β’s yields the exact relation

m =
1

2x
=

1√
2χ
, (3.51)

suggesting Ns ∼ e
√
N , slightly slower than for Gaussian β’s. Both asymptotic

solutions are shown in Fig. 3.6, displaying a good match as χ increases.
For b ≫ 1, the problem is not as straightforward. Indeed, as the shape of

the distribution approaches the uniform case, the effective support narrows to
reach sharp cutoffs at β = 1 ±

√
2 for b → ∞. In this limit, we therefore require

−f(χ) <
√
2, which is obviously unsuitable for the previously taken asymptotic

approximations of the integrals. Instead, the limit b → ∞ must be taken before
evaluating the integral. Doing so, one can directly recover the uniform expressions
for f(χ) and m from the previous section, and therefore m = (

√
2χ)−

1
2 .

Rescaling the b→ ∞ result suggests 2φΓ(1/b) ≈
√
2/
√
x for large b. This large

b solution, and the crossover between the two regimes, with φ decays as χ− 1
2 and

χ−1 respectively, can be seen in Fig. 3.6. Interestingly, for all finite values of b the
second regime will be reached eventually as χ is increased, and only the uniform
distribution will remain in the first regime, the slower decay of which translates
in a larger number of solutions. As such, the uniform distribution will be the case
within the generalized normal family allowing for the largest number of solutions,
with finite b > 2 cases only affecting the exponent of the logarithmic term in the
complexity.
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While the above theoretical setup should hold for finite b < 1, it is difficult to
avoid a large number of negative β’s when considering thicker tails, at which point
we would cease to observe a monotonous decrease of m in χ. Besides, it seems
unlikely that a heavy tailed distribution of infinite support would correctly depict
the distribution of asset correlations. For interacting species, negative interac-
tions are not as unreasonable, as mutually beneficial relations between species can
exist, however their study would require a different analytical framework. Yet, if
negative values remain rare, it is clear from the self-consistent equation that as
tails get thicker, the number of solutions Ns further decreases before one enters a
new regime when negative β’s start proliferating.

3.5 Disorder chaos

Having found that the number of solutions satisfying the non-negativity con-
straint is near exponential for relevant distributions of β (in the regime β > 0
and σ = χ/N), we ask ourselves if we can observe disorder chaos in this system.
Disorder chaos in this context is essentially the question of the stability of the
optimal solution if the disorder β is slightly altered, particularly in the case of
large N . Indeed, if there is an exponential number of valid solutions, some with
similar values of the objective function, it is not hard to imagine that a slight
modification in the disorder could yield a complete reshuffling in the spin configu-
ration. This idea is further supported by the numerical exploration of the solution
space that was conducted in Section 3.2.1, where we found that a large number of
configurations with little overlap with the optimal solution indeed have very close
properties.

This phenomenon has been observed in spin-glasses [149–151], and may be
formulated in a formally very similar way. It should be noted that this form of
instability under changes in the quenched disorder, sometimes also referred to
as static chaos, is not to be confused with temperature chaos [152] (as the use
of β might induce some confusion in the spin-glass context). Introducing the
perturbation ε, we alter the disorder as

β̃i − 1 = (βi − 1)

(
1 + ευi√
1 + ε2

)
, (3.52)

where υi is a Gaussian random variable with zero mean and unit variance. This
definition allows one to keep the variance of the modified βs unchanged.

To compare the optimal/most diverse non-negative solution to the original
problem to the perturbed one, it is necessary to introduce some measure of the
overlap between solutions. Recalling our definition of the overlap between two
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configurations, Eq. (3.10), we subsequently define the portfolio correlation as

ON (w, w̃) =
q{θ},{θ̃}(N)√

q{θ},{θ}(N) q{θ̃},{θ̃}(N)
, (3.53)

where {θ} and {θ̃} correspond to the original and altered configurations respec-
tively. With this definition we ensure ON (w, w̃) = 0 for independent portfolios,
and ON (w, w̃) = 1 for w = w̃.

The resulting overlap for Gaussian and uniform β’s compatible with market
data is shown in Fig. 3.7. Qualitatively, both collapsed plots appear similar, with
a decrease in the overlap as N gets large and other parameters are kept fixed.
Taking a closer look, it is clear that the disorder chaos is stronger for uniformly
distributed β’s, which is consistent with the fact that the number of solutions Ns

is larger in this case, as found in the previous section. While the reduction of the
overlap in N is easily understandable, the detailed scaling behavior in σ found
numerically is more challenging to describe analytically.

In any case, the logarithmically scaled insets shows a clean power law behavior
in N . Asymptotically, our results therefore suggest that ON (w, w̃) → 0 for any
ε > 0 as N → ∞, characteristic of disorder chaos. On both plots, the data points
sampled from empirical β’s are well aligned with numerical simulations, suggesting
the chaos observed is robust somewhat beyond the regime studied analytically.

Regardless of the precise behavior of the overlap with the problem’s parame-
ters, the disorder chaos observed here is first and foremost a qualitative insight.
What this observation tells us has a practical consequence on the way one might
approach the systematic construction of a long-only portfolio. Supposing one picks
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among 3000 stocks for example, which is a reasonable number for a large asset
manager, a change of the order of 10% of the β’s could result in a significant
reshuffling in the positions that should be held, particularly if the assets consid-
ered are within the same or similar industries for instance. Such a change could
e.g. come from empirical estimation errors of the correlations, or simply because
the β’s naturally evolve in time depending on the many factors not incorporated
in the present risk model. Besides, if one decides to modify the portfolio to match
the new optimal result, it is likely that significant transaction costs could come
into play, particularly given the highly concentrated nature of large long-only
portfolios, so it would rather make sense to choose a portfolio that is a mix of
many different quasi-degenerate solutions of the optimisation problem. Note that
such a portfolio would then not be optimal in the Markowitz sense (i.e. would not
satisfy Eq. (3.2)), but would likely reduce the volatility as the βi’s are allowed to
vary.

From a conceptual point of view, disorder chaos means that two perfectly
rational investors with a slightly different method of estimating the βs might end
up with very different optimal solutions in the large N limit. As emphasised
in [48] and recalled in the introduction of this chapter, the presence of a very
large number of quasi-degenerate solutions, at the heart of disorder chaos, leads
to some irreducible uncertainty in the decision of agents, even assumed to be fully
rational.

In terms of ecological equilibria, this observation also has concrete implica-
tions. Indeed, it suggests that a moderate change in the interaction between the
N species considered can lead to a significantly different outcome in terms of
surviving species at the equilibrium. It seems reasonable to imagine that some
physical changes to the environment (e.g. through temperature changes or the in-
troduction of chemicals) could alter the strength of interactions between species,
which could then lead to a significantly different equilibrium picture of the ecosys-
tem (on this point, see also [153]).

3.6 Conclusion

Let us summarize what we have achieved in this chapter. Through the introduc-
tion of a spin-glass inspired formalism, we have shown that N assets or species can
be recombined in a exponential number of solutions satisfying the non-negativity
constraint associated to the portfolio and ecological equilibrium problems, in the
special case where the interaction matrix is of unit rank. More precisely, we have
computed the average (or annealed) number of solutions and have shown that its
logarithm grows as Nα, where α ≤ 2/3 depends on the distribution of asset corre-
lations and interaction strength respectively. This average number does however
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not correspond to the typical behavior of the system, observed through a limited
number of numerical experiments for example. Indeed, we have found that in this
problem the mean number of solutions is heavily skewed by the existence of very
unlikely occurrences that yield an exponential number of solutions. In the case
of a full rank Gaussian interaction matrix, recent work confirms this idea, as the
annealed and quenched complexities of the Lotka-Volterra equilibria are found to
be markedly different in some region of the parameter space [154, 155]. Finding
the typical (or quenched) number of solutions, by means of a replica calculation,
therefore appears to be a natural extension of the present work. We conjecture
that the result will be related to the typical sparsity m(N) of the solutions, namely
logNs ∝ Nm(N). Hence, the number of possible long-only configurations that
can be constructed from the N entities considered remains large, specially for a
strictly bounded distributions of β’s for which Nm(N) ∼

√
N .

We have also shown numerically that the solution landscape is similar to that
of other complex optimisation problems like spin-glasses, i.e. many very different
configurations or portfolios are quasi-degenerate, in the sense that they lead to
nearly identical values of the objective function (energy for spin-glasses, risk for
portfolios). Correspondingly, the phenomenon of “disorder chaos” in spin-glasses,
i.e. the extreme sensitivity of the optimal solution on the detailed specification of
the problem when N is large, is also present in our long-only portfolio problem
(or in its ecological counterpart).

For asset management, this result suggests that, in the presence of transaction
costs, the construction of long-only portfolios should account for such an instability
and in fact blend together optimal portfolios obtained by slightly varying the risk
model (here the value of the β’s). More importantly in the context of this thesis, as
emphasized in the original paper from Gallucio et al. [48] and recalled above, such
a sensitivity is interesting in the sense that it questions the meaning of a rational
decision when there is a very large number of quasi-degenerate (or satisficing)
solutions. This type of radical uncertainty is characteristic of the idea of radical
complexity at the heart of this thesis.

For ecological equilibria, while there is unfortunately no empirical data to
support our choice of interaction matrix and to choose appropriate distributions
of β, we believe that most of the conclusions drawn for parameters compatible
with stocks should hold for highly competitive environments with a large number
of similarly interacting species, as discussed in a different context in [153]. Indeed,
the analytical description can be generalized to any values of β > 0 that could be
appropriate for the ecology problem, and we have shown that our results are in fact
valid for a wide range of distributions of β. While not explicitly discussed here,
heterogeneous expected returns (or growth rates) µi can be analyzed similarly, see
Appendix A.6. We find that the solution is akin to the one obtained with µi ≡ 1,
with a threshold that is no longer on β alone but on the ratio β/µ.
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In both the portfolio and population dynamics cases, the choice of the effective
interaction matrix Cij is the main limiting factor in our study. Extending results to
more general (random) matrix models could be an interesting avenue to explore in
the future. This being said, the very general formulation of the problem, in essence
studying the non-negativity of a linear equation, leads us to believe that long-only
portfolios and ecological equilibria are not the only applications for the analytical
description detailed in Sec. 3.3. Due to its links with population dynamics, the
survival of firms in macroeconomic systems [156,157] could for example be another
problem to study with this spin-glass inspired approach.
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Key takeaways

• Given N financial assets described by their risk sensitivity to the mar-
ket, there are on average ∼ exp (Nα) number of ways to construct a
locally optimal long-only portfolio.

• The typical number of configurations is expected to be smaller, al-
though it likely remains very large for plausible values of N .

• A large fraction of these configurations are near optimal in risk despite
being composed of entirely different assets.
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• As a result of this quasi-degeneracy, a minute change in risk sensitiv-
ities leads to a complete reshuffling of the best possible outcome.

• This is an example of radical complexity leading to radical uncertainty:
the very meaning of “rational” decision making is put into question,
and we can no longer assume common information.

• The above results can be directly mapped onto the equilibria of Lotka-
Volterra equations with self-regulation in population dynamics.
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Chapter 4

Slutsky matrices and the
necessity of a global utility

You guys really believe that?

Philip Warren Anderson

In the previous chapter, we have seen how disorder generically gives rise to a
large number of nearly equivalent solutions, even in a simple optimization prob-
lem, challenging the idea that agents may be entirely rational and have access to
identical information from the purely practical point of view. Considering this
result, we now turn to a standard economic problem in consumer choice theory,
and revisit the classical result after introducing a parameter controlling the effec-
tiveness of the agents’ maximization of their utility, i.e. accounting for bounded
rationality in the decision making process.

This chapter is largely based on [2], written under the supervision of M. Benza-
quen and J.-P. Bouchaud, with an enriched discussion on detailed balance violation
in the interest of the overall thesis message.

4.1 Consumer choice theory
Consumer choice theory is based on the idea that, for a given bundle of M goods
with prices p ∈ RM

+ , agents choose a basket x to maximize their utility function
u(x), while subject to the constraint p·x = w, where w is the consumption budget.
Here, the basket compositions xi, representing the quantity of good i acquired by
the agent, are taken to be real numbers, and further assumed to be non-negative.

As touched upon in Sec. 1.2.2, the utility function must then satisfy some
elementary conditions. In particular, it is taken to be an increasing function of
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the quantity of goods for any of the products considered, i.e. ∂xiu > 0 ∀i and more
of anything is always better, with no satiation. While the utility must therefore
have a positive first derivative, its rate of increase should be a decreasing function
of the absolute quantity of goods. In other words, utility is postulated to be
concave, i.e. the marginal utility gain diminishes as goods are accumulated.

Assuming that the agent is fully rational, the optimal basket that maximizes
the agent’s satisfaction x∗ is then simply given by

x∗ = argmax
x≥0

[u(x) |p · x = w] . (4.1)

Conventionally one defines the Marshallian demand x(p, w) which corresponds to
that obtained from solving problem (4.1), and the Hicksian demand (also known as
the compensated demand curve) h(p, u) defined as the demand that minimizes the
expenditure e(p, u) for a fixed utility level u [158]. Setting h(p, u) = x∗(p, e(p, u))
and differentiating, one obtains the Slutsky equation describing the change in
consumption of good i following a change in the price of good j

∂xi
∂pj

=
∂hi
∂pj

− xj
∂xi
∂w

. (4.2)

Changes δx in the optimal basket’s composition in response to a price change δp
can thus be separated into two contributions: the substitution effect (first term
in the rhs of Eq. (4.2)), describing how consumption is impacted by changes in
relative prices of goods, and the income effect (second term in the rhs of Eq. (4.2)),
expressing the impact of changes in purchasing power. The substitution effect is
often described in terms of the Slutsky matrix S, with entries therefore defined as

Sij :=
∂hi
∂pj

=
∂xi
∂pj

+ xj
∂xi
∂w

. (4.3)

Provided that the utility function is sufficiently regular, S can then be shown to
be symmetric, negative semi-definite, and equal to the Hessian of the expenditure
function. In practice, the Hicksian demand cannot be observed directly, but the
Slutsky matrix can be estimated as the other two terms in Eq. (4.3) should be
accessible empirically. In the following, we will give an alternative theoretical
expression for the Slutsky matrix in terms of consumption fluctuations.

Before moving on to our statistical physics inspired study of bounded ratio-
nality, let us clarify the meaning of the Slutsky matrix in simpler terms, and
illustrate the type of situation it describes in practice. Suppose an agent typically
buys a quantity xA of a given consumption good, say apples, and a quantity xB
of another, say bananas. Now, if the price of apples decreases, a kilogramme of
apples becomes relatively cheaper than that of bananas, so the consumer might
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be tempted to replace some of its consumption of bananas by apples (after all,
both are tasty fruits). This is the substitution effect mentioned above. Simultane-
ously, the fact that the price of apples has decreased without the overall budget
of the agent being altered means that they might have extra change after having
satisfied their fruit needs. With this freed up budget, the consumer might then
be tempted to get some chocolate that they previously could not afford. This is
the income effect previously introduced. The Slutsky matrix aims at isolating the
substitution effect, which is not directly observable as the utility of an agent –
that is supposed to be kept fix through this substitution – is not something that
one can measure (assuming it even exists).

4.2 Thermodynamics of bounded rationality

As described in the introduction chapter and emphasized above, taking agents to
be perfect optimizers seems to be an unrealistic assumption in most contexts, and
there are several ways to relax such an assumption. One is that agents have a
limited attention and cannot process all the information accessible to them, see
e.g. [59] and refs. therein. As a result, agents experience perceived prices that
differ from real prices, which in turn affects the symmetry of the Slutsky matrix.

Here, we will instead turn to the previously introduced logit stochastic choice
rule, such that the stationary choice distribution is given by a Gibbs-Boltzmann
measure (see below) with an intensity of choice parameter acting as the inverse
temperature. As we shall see, this prescription allows us to describe a rather
wide range of phenomena while ensuring mathematical tractability of the model
(Sec. 2.1.1).

4.2.1 A single agent

Formally, considering first a single agent, one can always write the probability
density for selecting the basket of goods x in the form

P (x) =

{
1
Z e

v(x) if p · x = w,

0 otherwise,
(4.4)

where v(x) is a certain function overweighting or underweighting basket x, and
Z a normalizing factor. Random choice theory postulates that v(x) is related to
the utility function through v(x) = βu(x), where we remind that β is known as
the intensity of choice. This is the specification we will adopt in the following,
however, some of our results below (such as Eq. (4.7)) are in fact more general
and would hold for an arbitrary function v(x).
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We recall that the normalization factor Z is known in statistical physics as the
partition function, which, given the hard budget constraint enforced here, writes

Z =

∫
+
dx eβu(x)δ(p · x− w), (4.5)

where
∫
+ means that we integrate over non-negative baskets x ≥ 0. For finite

values of β, the basket x must now be statistically described, since different real-
izations of the system will lead to different outcomes. A suited definition of the
Slutsky matrix must therefore be considered. Here, we propose to replace all xi
by their averages ⟨xi⟩,

Sij :=
∂

∂pj
⟨xi⟩+ ⟨xj⟩

∂

∂w
⟨xi⟩, (4.6)

with angular brackets referring to an average over the distribution given in Eq. (4.4),
to wit

⟨f(x)⟩ := 1

Z

∫
+
dx f(x) eβu(x)δ(p · x− w).

Note that in the limit β → ∞, one recovers the standard Slutsky matrix since
⟨xi⟩ → x∗i .

Our set up of the problem allows us to draw several analogies with the statisti-
cal mechanics foundation of thermodynamics introduced in Chap. 2. For example,
the strict application of the budget constraint δ(p · x − w) is reminiscent of the
so-called canonical ensemble, where the conservation of the number of particles
in the system is strictly enforced. We will see later that one can also work in the
analogue of the grand-canonical ensemble where the budget constraint is only en-
forced on average. This eases some analytical calculations while being equivalent
to the canonical ensemble in some limits (for example when the number of goods
is large). One can argue that in some cases, allowing the budget to fluctuate (due
to loans for example) can be realistic as well.

4.2.2 A fluctuation-response relation
More interestingly, statistical mechanics also provides relations between the re-
sponse of certain quantities to external perturbations to spontaneous fluctuations
of these quantities in the absence of perturbations. These relations can be es-
tablished using the derivatives of the partition function, assuming an equilibrium
state has indeed been reached. In particular, the Slutsky matrix can indeed be
expressed in terms of other correlations (as was first mentioned in [159]). In
App. B.1.1, we derive the following “fluctuation-response” formula in the single
agent case:

Sij = −Γ⟨xixj⟩c − ∂w⟨xixj⟩c, (4.7)
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with Γ = ∂w logZ and the “connected” correlations ⟨xixj⟩c := ⟨xixj⟩ − ⟨xi⟩⟨xj⟩.
Note that, interestingly, the utility function u(x) does not appear explicitly in
Equation (4.7), which is manifestly symmetric in i,j. It shows that even with
bounded rationality, the Slutsky matrix is still symmetric, for any value of β, not
only in the rational limit β → ∞. Hence, the symmetry of the Slutsky matrix
may not be used as an argument for or against the rationality of economic agents,
contrarily to some claims made in [159] for example.

Our fluctuation formula Eq. (4.7) is also interesting from an econometric
standpoint, as it provides a way to measure the Slutsky matrix without varying
prices. Measuring response quantities from equilibrium correlations is in fact
commonly used in statistical mechanics, through what is referred to as fluctuation-
dissipation relations [160], or, in a restricted context, to Einstein’s relation relating
mobility to diffusion for Brownian particles. Note that we do not have to specify
the nature of the dynamics or the structure of temporal shocks, provided these
lead to an equilibrium of the form given by Eq. (4.4).

One can go one step further and eliminate all derivatives from Eq. (4.7), but
only provided the utility function is known. One finds (see App. B.1.3)

∂

∂w
⟨xixj⟩c =

β

pk

[〈
xixj

∂u

∂xk

〉
+ 2⟨xi⟩⟨xj⟩

〈 ∂u
∂xk

〉
− ⟨xixj⟩

〈 ∂u
∂xk

〉
− ⟨xi⟩

〈
xj

∂u

∂xk

〉
− ⟨xj⟩

〈
xi
∂u

∂xk

〉]
,

(4.8)

and
Γ =

β

pk

〈 ∂u
∂xk

〉
, (4.9)

both equations being valid for an arbitrary choice of k. These expressions consid-
erably simplify in the near-rational limit β → ∞, see Section 4.2.5 below.

4.2.3 Many agents
In practice, agents make correlated choices and we must adapt our formalism to
treat interactions. We thus consider N agents, indexed by α = 1, . . . , N , and
postulate that the stationary distribution for a simultaneous set of choices {xα}
is still given by a constrained Gibbs-Boltzmann distribution

P ({xα}) =

{
1
Z e

βU({xα}) if p · xα = wα, ∀α,
0 otherwise,

(4.10)

where U({xα}) is a certain function that generalizes the single agent utility func-
tion while encoding interactions between agents. Interactions mean that U cannot
in general be written as a sum of individual utility functions uα. At this stage, it is
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important to note that while this function should always exist in the steady-state,
explicitly relating it to dynamics at the agent level may not be straightforward,
see Section 4.5.1. Note in particular that Eq. (4.10) does not require the existence
of a “central planner”.

The probability that the N agents choose a bundle of goods {xα} is propor-
tional to exp(βU)/ZN , where the aggregate partition function ZN writes

ZN =

∫
+

( N∏
α=1

M∏
i=1

dxαi

)
eβU({xα})

N∏
α=1

δ(p · xα − wα). (4.11)

Here, we integrate over the M × N degrees of freedom, i.e. the quantities xαi of
good i consumed by agent α, while enforcing that all agents respect their own
specific budget wα. Analytically computing this partition function is usually very
difficult due to the product of Dirac δ distributions in the integrand. Depending
on the form of the utility, one might need to slightly relax the budget constraints.
As mentioned above, a way to do this is to move to the so-called grand-canonical
partition function ZN , defined as

ZN =

∫
+

( N∏
α=1

M∏
i=1

dxαi

)
eβ[U({xα})−

∑
α µαp·xα], (4.12)

where the µα, known in physics as “chemical potentials”, are fixed by enforcing
that budgets are satisfied on average, i.e. p · ⟨xα⟩ = wα, ∀α. In general, the two
partition functions are not equivalent; however, many quantities calculated from
the two ensembles become identical in the large M limit and/or in the rational
limit β → ∞, see Section 4.5.2 for a detailed discussion.

Consistent with the single agent definition, we take the individual Slutsky
matrix of agent α to be given by

Sα
ij :=

∂

∂pj
⟨xαi ⟩+ ⟨xαj ⟩

∂

∂wα
⟨xαi ⟩, (4.13)

where we have assumed that prices are the same for all agents. Note that we
have also taken a uniform system-wide rationality parameter β, although a gen-
eralization to different βα’s is possible and would be an interesting extension of
our work.

As in the single agent case, the partition function allows one to derive a
fluctuation-response expression for the Slutsky matrix in terms of correlations.
Equation (4.13) may be rewritten (see App. B.1.2) in what will be referred to as
its “thermodynamic” form

Sα
ij = −

∑
γ

[
Γγ⟨xαi x

γ
j ⟩c +

∂

∂wγ
⟨xαi x

γ
j ⟩c + (1− δαγ)⟨xγj ⟩

∂

∂wγ
⟨xαi ⟩

]
, (4.14)
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with Γγ = ∂wγ logZN . This is the central theoretical result of this chapter, which,
to the best of our knowledge, is new. Again, the function U({xα}) does not
explicitly appear in this result. Importantly, unlike in the single-agent case, Eq.
(4.14) does not allow one to infer anything general about the symmetry of the
Slutsky matrices. In the case where interactions between agents are negligible,
i.e. when U({xα}) is the sum of individual utility functions, correlations between
agents are zero whenever γ ̸= α and we recover the single agent expression, as
expected.

Assuming the function U({xα}) is known, one can again go further and express
derivatives with respect to budgets wγ as a function of some correlations. For our
problem we find a generalization of the formula obtained for a single agent in the
canonical ensemble (see App. B.1.3)

∂

∂wγ
⟨xαi x

γ
j ⟩c =

β

pk

[〈
xαi x

γ
j

∂U

∂xγk

〉
+ 2⟨xαi ⟩⟨x

γ
j ⟩
〈 ∂U
∂xγk

〉
− ⟨xαi x

γ
j ⟩
〈 ∂U
∂xγk

〉
− ⟨xαi ⟩

〈
xγj

∂U

∂xγk

〉
− ⟨xγj ⟩

〈
xαi

∂U

∂xγk

〉]
,

(4.15)

as well as
Γγ =

β

pk

〈 ∂U
∂xγk

〉
, (4.16)

both again valid for any good k. From these expressions and given a utility
function U({xα}), all terms in Eq. (4.14) can be computed in principle, at least
numerically. Bear in mind, however, that these relations are only valid if the
system has reached equilibrium, which might take a very long time, for example
near a phase transition point. Note here the important distinction between the
thermodynamic equilibrium that we are referring to, which is characterized by
the fact that the system correctly samples the Gibbs-Boltzmann distribution of
Eq. (4.10), and the idea of an economic equilibrium that is postulated from the
very beginning. As we shall see in Section 4.5.1, one can easily construct a system
that still represents an economic equilibrium but is devoid of a thermodynamic
equilibrium state.

4.2.4 Aggregate Slutsky matrices

There are a priori two possible definitions of the Slutsky matrix at the aggregate
level. One is simply to take the average over all agents of the individual Slutsky
matrices, to wit

Sij :=
1

N

∑
α

Sα
ij . (4.17)
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However, empirical measurements often rely on estimates at the aggregate level.
In that case, a better suited definition uses aggregate consumption:

Sij :=
∂

∂pj
⟨xi⟩+ ⟨xj⟩

∂

∂w
⟨xi⟩, (4.18)

with overlines indicating averaging over agents e.g.

xi :=
1

N

∑
α

xαi ,

and similarly for the average budget w. In that case, as shown in App. B.1.4, the
thermodynamic expression becomes

Sij = − 1

N

∑
α,γ

[
Γγ⟨xαi x

γ
j ⟩c +

∂

∂wγ
⟨xαi x

γ
j ⟩c +

(
⟨xγj ⟩ − κγxj

) ∂

∂wγ
⟨xαi ⟩

]
, (4.19)

with the possibly heterogeneous factor

κγ :=
∂wγ

∂w
.

Clearly, if consumption is proportional to wages and if all wages scale with the
average wage, i.e. wγ = κγw, then ⟨xγj ⟩ = κγxj , and there is no contribution from
the last term. In this case, we find an expression very close to the single-agent
case. More generally, Sij has no reason to be symmetric, except when all agents
are identical. In such a case, even in the presence of interactions and for bounded
rationality (β < +∞), Sij is always symmetric, whereas Sij is not, as we in the
next sections.

4.2.5 Near-rational limit β → ∞

In order to simplify the problem and get some intuition, we place ourselves in the
near-rational case where β → ∞. This corresponds to the low temperature case
in a physical system, where one can expect that all relevant configurations {xα}
are close to the optimal configuration {xα∗} that maximizes the function U({xα})
subject to budget constraints. We thus write δxαi := xαi − xα∗i and Taylor-expand
to second order, resulting in

U({xα}) ≈ U∗ +
1

2
{δxα}⊤H{δxα}+O(δx3), (4.20)

with H the (M ×N)× (M ×N) Hessian of the system evaluated at the maximum
of the function U({xα}), for a given set of budget constraints wα. Here we only
consider deviations {δxα} that all satisfy the budget constraints, so that the first
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derivative terms U ′ are zero as we expand around a maximum along all directions
but one. Calculating the partition function and correlations then simply amounts
to computing Gaussian integrals, although the budget constraints must still be
handled with care. At this stage we emphasize that in the context of large β all
fluctuations are small and Gaussian, and therefore our results in that limit are
actually very general. By taking the Fourier representation of the Dirac δ (see
App. B.1.5), we finally find, to leading order in β−1:

Cαγ
ij :=⟨xαi x

γ
j ⟩c = − 1

β

[
(H−1)αγij −

∑
η,ν,k,ℓ

(H−1)αηik pk(G
−1)ηνpℓ(H

−1)νγℓj

]
, (4.21)

with the N ×N matrix G defined as

Gην =
∑
i,j

pi(H
−1)ηνij pj , (4.22)

and where the second term in the rhs of Eq. (4.21) is the result of the constraint
being applied.

Let us first illustrate this formula in the N = 1 case. In the canonical ensemble
and large β regime, one has 〈 ∂u

∂xk

〉
= λpk +O(β−2),

where λ is the Lagrange parameter enforcing that the budget constraint is satisfied.
Hence the first term Eq. (4.7) remains finite since Γ diverges as β when ⟨xixj⟩c
tends to zero as β−1. The second term, on the other hand, tends to zero at least
as β−1. It then follows that for a single and near-rational agent,

S = λ
[
H−1 − uu⊤

]
+O(β−1), u =

H−1p√
p⊤H−1p

. (4.23)

This is the classic expression for the Slutsky matrix, which our framework therefore
allows to recover in the corresponding limit, with corrections in β−1 that can
be computed. Since the Hessian is both symmetric and negative semi-definite
at a utility maximum, we recover the classic properties of the Slutsky matrix.
“Homogeneity” is also easily recovered by checking that multiplying the matrix
by p indeed gives a zero eigenvalue.

When N > 1, we will need to specify the function U({xα}) to make the final
result more explicit. Keeping U fully general and taking the limit β → ∞ only
allows one to simplify the general expression Eq. (4.14) to

Sα
ij = −β

∑
γ

λγC
αγ
ij −

∑
γ ̸=α

⟨xγj ⟩
pj

∑
k,ν

Hαν
ik C

αν
ik +O(β−1), (4.24)
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where we have used Eq. (B.20) and expanded ∂xU to first order in δx. A similar
expression can be derived for the aggregate Slutsky matrix Sij as well. Remember
that C is of order β−1 (see Eq. (4.21)) so Sα

ij is well behaved in the large β limit.
Although the final expression is not transparent, it is clear that Sα

ij has no reason
to be always symmetric, except when agents’ choices are uncorrelated, in which
case Cαγ

ij = 0 whenever α ̸= γ and Cαα
ij is symmetric by construction. We will now

turn to an explicit model with herding, where the asymmetry of Slutsky matrix
can be made apparent.

4.3 Animal spirits
Both anecdotal evidence about fads and fashion and more serious scientific studies
point to the fact that agents’ choices can be strongly influenced by the choice
of others (see e.g. [15, 161–165]), an effect also known as “keeping up with the
Joneses” [166, 167], see also [168]. We now propose a family of models which
account for interactions between boundedly rational agents, allowing for strong
imitation and herding, or “animal spirits” as famously coined by J.M. Keynes [169].
Indeed, these models lead, in some regions of parameters, to “concentration” (or
“condensation”) of choices, much in the spirit of the model proposed by Borghesi
and Bouchaud [170] (see also [171] for a recent extension). As we shall see, close
to the concentration transition, the non-symmetric contribution to the Slutsky
matrix reaches a maximum.

4.3.1 Interactions and herding
In order to study imitation or fashion effects, we first consider agents with log-
utilities and take the aggregate function U({xα}) to simply be the sum of all
agent-specific utilities,

U({xα}) =
N∑

α=1

M∑
i=1

aαi log x
α
i . (4.25)

where aαi describes the preference of agent α for good i. In the following, we
assume that agents are homogeneous (aαi = ai, ∀α) but interacting, by which we
mean that the preference for good i depends on how much good i is consumed
by other agents. Mathematically, we posit that the preference for goods increases
with the k-th power of their average consumption:

ai → ai

[
1 + c(xi)

k
]
, (4.26)

where we remind xi is the average consumption of good i (over all agents), and c
and k are non-negative parameters that describe the strength and nature of the
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interactions.24 The interpretation of this specific aggregate utility-like quantity at
the agent level is discussed in Section 4.5.1.

The non-interacting case c = 0 (or equivalently k = 0, up to some rescaling of
the ai) may be treated exactly in the canonical ensemble, i.e. strictly enforcing
the budget constraint. As detailed in App. B.3.1, the equilibrium configurations
are given by

⟨xαi ⟩ =
wα

pi

1 + βai∑
k(1 + βak)

, (4.27)

which will henceforth be referred to as the non-condensed or uniform solution.
This solution matches results from numerical experiments, as illustrated in the two
top panels of Figure 4.1(a) in the fully rational case, for example. For details about
how numerical simulations have been performed, see App. B.2. The agent specific
Slutsky matrices Sα

ij can then also be written explicitly from the original definition,
verifying both symmetry and negative semi-definiteness for any β. In this non-
interacting case, budget heterogeneities simply affect the magnitude of any given
agent Slutsky matrix entries and are thus inconsequential for the properties of
interest.

Taking k > 0 and increasing c, we expect the system to progressively depart
from this solution and concentrate on some product(s) as c → ∞, as observed
in the numerical simulations shown in Fig. 4.1(a), bottom panel. To evaluate
how this concentration occurs, we start by taking wα = w, ∀α, that is a system
of interacting but identical agents, both in wealth and preferences. As is often
the case in statistical mechanics, the partition function cannot be computed ex-
actly for interacting systems for general N , but can be more and more accurately
approximated in the large N limit.

In our case, it is convenient to relax the budget constraint and to place our-
selves in the grand-canonical ensemble where the budget constraint is only en-
forced on average. The procedure, detailed in App. B.3.2, allows us to rewrite
the grand-canonical partition function as an integral over the mean consumption
vector x

ZN =

∫ ∞

0
dx e−Nβf(x), (4.28)

where f is usually called the “free energy density”, here given by

βf(x) =
∑
i

[βµpixi − (1 + βai[1 + c(xi)
k])(1 + log xi − log(1 + βai[1 + c(xi)

k])

− log Γ(1 + βai[1 + c(xi)
k])] + o(1).

(4.29)
with µ the “chemical potential” that can be thought of as the Lagrange multiplier
used to enforce the averaged constraint

∑
i xipi = w, taken to be identical for

24For an alternative specification, see App. B.4.
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all agents, and Γ(·) is the Gamma function. Importantly, this grand-canonical
description allows one to have a free energy density f(x) that is a sum over
entirely decoupled goods. The only coupling is through the value of µ, which can
generally not be expressed as an explicit function of xi and must therefore be
determined self-consistently.

Given that N → ∞, the shape of the free energy then completely determines
the state of the system. Indeed, for large N the partition function can be estimated
using Laplace’s method, such that the values x∗i = ⟨xi⟩ that minimize the free
energy are overwhelmingly more probable than any other values. Setting c = 0
and solving the set of equations ∂f

∂xi
= 0, one can for example check that the

previously obtained solution is recovered.
As in statistical physics, we expect to identify the phase transition from

the uniform to the condensed (concentrated) phase where herding dominates
[15, 170]. This occurs when the single minimum in free energy associated to the
non-condensed solution becomes a maximum while one or several new minima
appear. Such a change of topology occurs for some value ccrit, as illustrated in
Fig. 4.1(b) in the case where there are only two products. For given values of c,
the depth of the minima in the concentrated phase will depend on the ai and pi.
The most favorable configuration (in this case having more of the least expensive
of the two products, as here ai = 1, ∀i) is associated to a lower free energy.

4.3.2 Concentration for β → ∞

In order to find precisely when and how concentration occurs, we first study the
case of fully rational agents, β → ∞. Carefully rescaling the free energy density,
we find that an extremum is reached for the configurations x∗ satisfying

ai[1 + c(x∗i )
k(1 + k log x∗i )] = µpix

∗
i , (4.30)

with the value of the chemical potential being such that∑
i

x∗i pi = w. (4.31)

As previously described, the critical value ccrit = c∞ where this transition occurs
in the fully rational case can be found by looking at the Hessian of the free energy
evaluated at the non-condensed solution. Doing so (see App. B.3.2), and choosing
for the sake of simplicity ai = pi = 1 for all agents, one finds

1

c∞
=
( w
M

)k [
2k − 1 + k(k − 1) log

( w
M

)]
. (4.32)

As long as the right hand side is strictly positive, there will therefore be a value
of c above which concentration occurs when β → ∞, while if this is not the
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Figure 4.1: (a) Monte Carlo simulations at β → ∞ for M = 6 products, N = 256
identical agents, k = 2 and pi = ai = 1, compared to the non-condensed solution (dashed
line). Top: Non-Condensed (NC) region where the value of c∞ diverges [w = 0.5, c = 1].
Middle: Possible Concentration (PC) region for c < c∞ [w = 10, c = 0.01]. Bottom:
PC region for c > c∞ [w = 10, c = 0.1], the system concentrates on one of the products
and departs from the non-condensed solution. (b) Illustration of the free energy f for
some rationality β in the PC phase for M = 2 products, p2 > p1 and a2 = a1. Left:
before the transition, c < ccrit. Right: after the transition c > ccrit, the deeper minima
corresponding to increasing values of c. (c) Theoretical phase diagram of the NC and PC
regions at β → ∞, ai = pi = 1.
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case concentration never occurs, regardless of the strength of interactions. The
resulting theoretical phase diagram is shown in Fig. 4.1(c) for k = 2, a value that
we shall keep fixed henceforth. This phase diagram is in perfect agreement with
our numerical simulations, as shown in Fig. 4.1(a). Note that this procedure can
be repeated for different values of ai and pi, leading to qualitatively similar results.
Since the Hessian of the free energy is diagonal in our case, the critical value c∞
would then correspond to the first change of sign of a diagonal element of the
matrix.

4.3.3 Finite β effects

Placing ourselves in the regions where condensation does occur in the fully rational
limit, we now set out to understand how bounded rationality might alter the
phase transition. In the general case, analytical expressions are difficult to obtain.
However, numerically finding where the Hessian (which is still diagonal in i, j)
loses stability for the non-condensed solution yields a semi-analytical critical line in
(c, β) space. It should be noted that this condition, explicitly given in App. B.3.2,
is independent of the value of µ, suggesting that the location of the transition is
identical in the canonical and grand-canonical descriptions.

Our analytical result can be compared to numerical simulations, for which
the transition to fashion dominated consumption is identified by looking at the
rescaled Herfindahl index

H̃ =

∑
i(xipi/w)

2 − 1/M

1− 1/M
.

This index takes the values 0 and 1 in the uniform (xi = w/(Mpi), ∀i) and fully
concentrated (xi = w/pi for one product and = 0 for all others) cases respectively.
As shown in Fig. 4.2(a), the numerical phase diagram and the theoretical critical
line match very well, despite the fact that the semi-analytical calculation is based
on the grand-canonical ensemble, whereas numerical simulations strictly enforce
the budget constraints for all agents. Furthermore, using the theoretical values
for ccrit(β) to rescale the evolution of the average basket as a function of c/ccrit
(as plotted in Fig. 4.2(c)), we observe that the evolution of the mean basket and
related quantities appears to be largely independent of β.

4.4 Consequences on the Slutsky matrix
Using a simple interacting model, we have shown that introducing herding in
the problem leads to a concentration transition and radical changes in the way
agents allocate their budget among the M available goods. We now set out to
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Figure 4.2: Effect of bounded rationality on concentration from numerical experiments
for M = 4 products, N = 64 agents, k = 2, w = 10, pi = ai = 1. (a) Herding phase
diagram, with the normalized Herfindahl index H̃ calculated over the mean basket among
agents, giving H̃ = 0 in the Non-Condensed (NC) phase and quickly reaching H̃ = 1
when condensation (C) occurs, indicating fashion dominated consumption. The critical
line calculated analytically is shown by the dashed line, and perfectly matches numerical
results. (b) Monte-Carlo dynamics of the mean basket for β = 1, c ≈ ccrit, showing large
fluctuations and switching behavior. The non-condensed solution is shown by the dashed
line. (c) Evolution of the rescaled average basket for different values of the rationality
parameter β as a function of c, collapsed using the analytical values of ccrit visible in the
phase diagram. The analytical solution at β → ∞ is shown as the continuous line. Inset:
normalized Herfindahl, that clearly reveals the transition around ccrit for all values of β.

evaluate the impact of such a transition on the Slutsky matrix and its properties,
in particular its negative semi-definiteness and symmetry.

Whereas the grand-canonical theory allowed us to calculate ⟨xαi ⟩ = x∗i for the
entire range of β and c self-consistently, the absence of an explicit expressions
prevents us from directly computing Sα

ij . Instead, because we have found that
results are largely independent of β provided c is rescaled as c/ccrit, we may gain
insight from the Gaussian approximation of the Slutsky matrix introduced in
Section 4.2.3 and valid for β → ∞. Equation (4.24) can now be made explicit and
writes (see App. B.3.3)

Sα
ij = −β

∑
γ

(
aℓ
pℓx

∗
ℓ

[1 + c(x∗ℓ )
k(1 + k log x∗ℓ )] + (1− δαγ)

aj
pjx∗j

[1 + c(x∗j )
k]

)
Cαγ
ij ,

(4.33)
for any ℓ = 1 . . .M . As the most probable values x∗ can be obtained by solving
Eq. (4.30), the last step is to invert the Hessian of the function U({xα}) in order
to compute the covariance matrix C. Due to the homogeneous nature of the
interactions, the Hessian has a very regular structure and may thus be inverted
explicitly, as detailed in App. B.3.3. Doing so and replacing in Eq. (4.21), we find
that C has the following form

Cαγ
ij =

1

β

[
φijδαγ +

1

N
ψij

]
,
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where φij and ψij are both symmetric and O(1) in N , and, of course, depend on
x∗. Such correlations, which can be checked to match numerical simulations very
well, finally yield an identical Slutsky matrix for all agents,

Sij = − aj
pjx∗j

[kc(φij + ψij)(x
∗
j )

k log x∗j + [1 + c(x∗j )
k]φij ]. (4.34)

Together with Eq. (4.14), this is a key result of our work.
Thus far, we have considered the case where all agents and goods are identi-

cal. In the present context, however, it is more illustrative to break the symmetry
between products by introducing heterogeneous pi and ai, leading to clear pref-
erences between products. An example with M = 4 goods is given in Fig. 4.3,
showing a very good agreement between the fully rational theory and numerical
simulations with finite β and N sufficiently far from the transition region.25 Upon
inspection of opposing entries, it quickly appears that the symmetry of the matrix
is not satisfied near the critical value of c where condensation first occurs. Note
that all matrix entries quickly become very small once the system has entered
the concentrated phase. This can be understood for large c by making the ansatz
x∗i = w/pi − 1

c

∑
j ̸=i yj for the dominant product and x∗j = yj/c for others. Plug-

ging such a guess in Eq. (4.30) indeed solves the equations, and predicts Sij ∼ 1/c
to leading order in c−1.

The first property of the matrix that interests us is its spectrum, and in partic-
ular the non-positivity of its eigenvalues. As shown in Fig 4.4(a), the fully rational
theory provides a very good description of the matrix eigenvalues, which remain
non-positive for the entire range of c. The leading eigenvalue actually peaks close
to the transition. Consistent with the decay of the matrix entries themselves, the
magnitude of the eigenvalues also vanish as c increases beyond the transition. As
a result, our theory and numerical experiments show that the Slutsky matrix does
remain negative semi-definite for all value of c and β. The main consequence of the
herding transition on the spectrum is the decay in the magnitude of eigenvalues,
as confirmed by looking at the trace of the matrix shown in Fig. 4.4(b).

The other essential property of the Slutsky matrix is its symmetry. Due to
the decay in the magnitude of the matrix entries once the system has entered the
herding phase, this property becomes difficult to measure as c is increased beyond
ccrit. Indeed, as both Sij and Sji become very small, any finite numerical error
ε affecting either entries will result in a very large relative asymmetry, at which
point most common measures of asymmetry will fail. To minimize the impact of

25Close to the transition, agents flip-flop between different basket compositions (Fig. 4.2(b)),
which leads to anomalously strong fluctuations and corrections to the Laplace saddle point
method used in all our analytical calculations. This is a well known effect in statistical physics,
which leads to interesting phenomena in their own right, but that we do not explore further here.
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Figure 4.3: Evolution of the individual Slutsky matrix entries with c for M = 4 product,
k = 2, w = 10, p = [2.2, 2.1, 1.6, 2.3], ai = 1 from theory at β → ∞ (continuous
lines) and numerical experiments for β = 4, N = 16, calculated using both the pathwise
derivative estimates introduced App. B.2 (circles) and the fluctuation-response relations
(crosses), averaged over all agents, errorbars indicating one standard deviation. The
dashed horizontal line indicates 0, while dotted lines correspond to ±0.1 as no vertical
scale is shown for visual clarity. Opposing entries have identical vertical scales as to
highlight the strong asymmetry of some entries (e.g. 13 and 31) close to the herding
transition.
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Figure 4.4: Properties of the individual Slutsky matrix shown in Fig. 4.3. (a) Real part
of the Slutsky matrix eigenvalues λi. (b) Trace of the matrix, dotted line indicating zero.
(c) Asymmetry measure χ. The analytical results for the aggregate matrix S are given
by the dashed lines for comparison (note that S remains symmetric for all c).

such numerical errors on the conclusions of our study, we propose an asymmetry
measure χ defined as

χ =

∣∣∣∣∣
∑

α

∑
j<i(S

α
ij − Sα

ji)∑
α

∑
j<i(S

α
ij + Sα

ji)

∣∣∣∣∣ , (4.35)

which should be equal to zero for symmetric matrices, and diverge in the anti-
symmetric case. Employing this metric with the β → ∞ theoretical Slutsky
matrix, we find that the matrix is very close to (but not exactly) symmetric far
from the condensation transition. In the vicinity of ccrit however, strong interac-
tions give rise to a significant value of χ, contradicting the conventional lore even
in the fully rational case. This theoretical result, compared with numerical re-
sults, is shown in Fig. 4.4(c), while also visible in Fig. 4.3. Note that, as expected
given our choice of identical agents with identical budgets, the previously intro-
duced aggregate Slutsky matrix S remains symmetric even as the concentration
of choice occurs. The theoretical results for this alternate definition are shown by
the dashed lines in Fig. 4.4, where it is clear that the asymmetry measure χ is
always zero. Interestingly, the eigenvalues of the matrix are very similar for the
individual (Sij) and aggregate (Sij) definitions.

Regardless of the metric, Fig. 4.4 also illustrates the discrepancy between the
equilibrium theory we have devised and the numerical measurements in the tran-
sition region. As expected, the system indeed takes a very long time to reach the
Gibbs-Boltzmann distribution when the transition occurs. These non-equilibrium
effects are also reflected in the difference between the numerical measurements ob-
tained with finite differences and those calculated using the fluctuation-response
relations and the associated “thermodynamic” expression of the Slutsky matrices.
We expect that such effects will also be present in real empirical data, specially if
herding effects bring the system close to a transition point, as seemed to be the
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case in the Salganik et al. experiment [164,170].

4.5 Discussion
Before concluding our study, let us examine two subtle points that the above
analysis has treated in a somewhat cavalier way.

4.5.1 Global vs. individual utilities
In the numerical (Monte Carlo) investigation of our model of interacting agents,
we have assumed that individual agents change their basket of goods according to
the change of the “global utility” U({xα}) (i.e. a Hamiltonian) of the population
rather than of their own utility. In other words, agents also take into account the
change of utility of others when they update their choices. The main motivation
behind this specification is that the dynamics will then spontaneously reach the
Gibbs-Boltzmann equilibrium measure, Eq. (4.10). However, in the absence of a
social planner coordinating all agents, such a dynamics is not very realistic. Yet,
following an agent-based framework where individuals set out to improve their
own utility function, including the herding component c(x)k, would likely bring
us in the realm of nonrelaxational dynamics, for which general analytical tools are
still lacking.

Indeed, suppose we now consider dynamics where agents follow the logit rule
but this time on their individual utility and not on the sum of individual utilities
U =

∑
α u

α. The individual utility change of a randomly selected agent γ following
a change in their basket of goods xγ → xγ +∆x is

∆uγ =
∑
i

ai
xγi

[
1 + c(xi)

k +
kc

N
(xi)

k−1xγi log x
γ
i

]
∆xi +O(∆x2). (4.36)

Now, we assume that there exists a global utility function Ũ acting as the energy
of the interacting system, meaning that at each timestep and for all agents we
require

∆uγ = Ũ(x1, . . . ,xγ +∆x, . . . ,xN )− Ũ(x1, . . . ,xγ , . . . ,xN )

=
M∑
i=1

∂Ũ

∂xγi
∆xi +O(∆x2) ∀γ ∈ [1, N ],

(4.37)

which by identification with Eq. (4.36) would give

∂Ũ

∂xγi
=
ai
xγi

[
1 + c(xi)

k +
kc

N
(xi)

k−1xγi log x
γ
i

]
. (4.38)
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An obvious requirement for Ũ (as for any other function) is that its Hessian must
be symmetric. Taking the derivative with respect to another agent’s consumption
of the same product, it immediately becomes apparent that the required symmetry
is violated due to the log xγi term and that there can be no such function Ũ . This
contradiction therefore demonstrates that having individualistic agents maximize
their own utility here means the system is non-Hamiltonian, and its dynamics are
therefore nonrelaxational and necessarily detailed balance violating.

Natural questions are now (i) how may the current (equilibrium) model still
be interpreted at the agent level and (ii) how is the phenomenology of the system
impacted if we abandon the Hamiltonian description and take agents to maximize
their own utilities.

To answer the former question, we start by writing the change in global utility
∆U if the randomly selected agent γ in the Monte Carlo dynamics accepts the
proposed basket of goods xγ +∆x. Assuming N ≫ 1, we have

∆U ≈
M∑
i=1

ai
xγi

(
1 + c

[
1 + k

xγi
xi

log xi

]
(xi)

k

)
∆xi, (4.39)

where we remind the reader that the overline notation refers to arithmetic av-
erages over the agents. By analogy with Eq. (4.37), this equation shows that
the dynamics can in fact be interpreted in terms of agents only concerned with
their own utility, albeit with modified values of the interaction parameter c (c→
cγi = c

[
1 + k

xγ
i
xi
log xi

]
). The effective individual utility function is therefore con-

figuration dependent and varies in between agents due to the difference in their
consumption baskets, as somewhat expected given agents all coordinate to improve
the overall outcome. Interestingly, the fact that agents maximize the global util-
ity promotes the concentration phenomenon, as the logarithmic term will strongly
penalize goods that have lost the favor of the crowd.

Regarding point (ii), simulating the system with a decision rule based on the in-
dividual utility but with a constant c – i.e. placing ourselves in a non-Hamiltonian
setting – results in a largely unchanged phenomenology, with the same herding
transition as was observed in the Hamiltonian case. The absence of this logarith-
mic penalty for small xi appears to push the transition to slightly higher values
of c and leads to more volatile Monte Carlo trajectories, with the appearance of
more frequent switches in the vicinity of the transition. Although the absence of
a solid theoretical framework to describe the steady-state in that case prevents
us from drawing definitive conclusions at this stage, we conjecture that most of
the results obtained at equilibrium regarding the Slutsky matrix continue to hold,
with only minor quantitative modifications.

Alternatively, one could also purposefully write a global utility for which the
detailed balance condition matches the maximization of an agent-specific utility.
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To do so, the interaction term must be entirely symmetric in the sense that the
change in global utility is identical regardless of the randomly selected agent (which
was not the case with the previously studied model). For instance, one could take

U({xα}) =
∑
i,α

aαi log x
α
i +

1

2

∑
i,α,γ
γ ̸=α

Jαγ
i (xαi )

ρ(xγi )
ρ, (4.40)

with Ji a symmetric interaction matrix and 0 < ρ < 1 to preserve the concavity
of the utility. In this case, we then have

∂U

∂xαi
=

ai
xαi

[
1 + ρ(xαi )

ρ−1
∑
γ ̸=α

Jαγ
i (xγi )

ρ
]
, (4.41)

which is equal to the “selfish” derivative of utility of agent α defined as

uα({xα}) =
∑
i

ai log x
α
i +

∑
i,γ
γ ̸=α

Jαγ
i (xαi )

ρ(xγi )
ρ. (4.42)

(Note the factor 1
2 difference between the definition of U and that of uα.) This

means that in such a model, the decision-making process based on a purely in-
dividualistic change of utility leads to an equilibrium distribution given by the
Boltzmann weight exp(βU) (see [14] for a similar discussion in the context of the
Schelling model mentionned in the introduction chapter).

The mean-field approximation of this model Jαγ
i = aiJ/N is studied in the

limit β → ∞ in App. B.4. For ρ > 1
2 , concentration will occur for sufficiently large

values of J , and we therefore expect our results for the Slutsky matrix properties
to remain largely unchanged.

In the case where Ji is not symmetric, the problem may no longer be treated
with the standard techniques of equilibrium statistical mechanics. The system
can then still be simulated with a decision rule maximizing the individual utility
of the agent, but we can no longer assume that the system reaches an equilibrium
given by the Gibbs-Boltzmann distribution Eq. (4.10). The impact of such non-
reciprocal interactions will be at the heart of Part III below.

4.5.2 Equivalence of ensembles
In order to study analytically the equilibrium properties of our interacting set
of agents and to determine when the herding transition occurs, we had to relax
the budget constraint and place ourselves in the “grand-canonical” ensemble. As
previously mentioned, the equivalence of results between the canonical and grand-
canonical ensembles is not guaranteed a priori, although in the present case the
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Figure 4.5: Evolution of the realized budget fluctuations in the grand-canonical ensemble
as a function of c/ccrit for M = 4, k = 2, w = 10, ai = pi = 1 and β = 0.5, 1, 2, 4, 10, dotted
lines showing the unconcentrated solution. Inset: log-log scale showing σ2β decreasing as
1/c (dashed line) for c ≳ ccrit.

analytical (grand-canonical) results appear to match (canonical) simulations ex-
tremely well.

To formally assess the possible differences between the two ensembles, the bud-
get fluctuations in the grand-canonical ensemble must be studied. The ensemble
equivalence corresponds to cases where the variance of the realized budget are
vanishingly small. Hence, we set out to compute

σ2 =

〈( M∑
i=1

xαi pi − w
)2〉

(4.43)

in the grand-canonical ensemble. This computation may be performed by intro-
ducing small heterogeneous perturbations to the chemical potential, µ→ µ+ δµα

and differentiating logZN with respect to δµα. The calculation, detailed in
App. B.3.4, finally yields

σ2 =

M∑
i=1

(x∗i pi)
2

1 + βai[1 + c(x∗i )
k]
. (4.44)

The evolution of this quantity for different values of β as a function of c in the
previously discussed case ai = pi = 1 is shown in Fig. 4.5. As expected, this
quantity vanishes for β → ∞, as well as for c → ∞. In the c < ccrit region,
where fluctuations are expected to be the strongest and thus where the difference
between the ensembles is expected to be the largest, the non-condensed solution
(dotted lines on Fig. 4.5) gives σ2 ∼ O(M−1). As such, the grand-canonical
and canonical ensembles will become strictly equivalent only in the limit M →
∞. This being said, the Hessian of the free energy being independent of the
chemical potential suggests that despite this apparent absence of strict equivalence
between the ensembles for finite M , the onset of the transition appears to be
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largely unaffected. In any case, although precise measures of the fluctuations of
the system in the grand-canonical ensemble should be inaccurate for smaller values
of β, this difference will not change the key results presented in this work. Besides,
one should expect that some amount of budget fluctuations are indeed present in
the real world!

4.6 Conclusion

Let us summarize what we have achieved in this chapter. By introducing a ratio-
nality parameter (or “intensity of choice”) β to account for the fact that agents
are not strict utility maximizers, we have first reformulated the Slutsky equation
within a general “fluctuation-response” framework, which allows one to express
the Slutsky matrix in terms of consumption fluctuations only, without having to
measure changes of consumptions when prices are slightly modified.

We have then shown that irrationality does not necessarily result in the break-
down of the symmetry of the Slutsky matrix. As a result, the hypothetical symme-
try of empirically measured Slutsky matrices cannot be used as a general argument
against bounded rationality [159].

When accounting for herding within large assemblies of agents, we found that
symmetry is no longer guaranteed in general. Introducing a simple model of util-
ity with interactions, we have indeed shown using the powerful methods offered
by statistical mechanics that a concentration transition may occur, at which point
strong selection of goods occurs. At the transition, the individual Slutsky matrix
becomes markedly asymmetric, although the Slutsky matrix constructed using
aggregate consumption can still remain symmetric when all agents are identical.
Hence our result is not necessarily incompatible with existing work on non-unitary
households [172]. From simulations, we also found that asymmetry is further am-
plified by out-of-equilibrium effects near the critical point. In line with standard
consumer choice theory and most empirical studies, our model preserves the nega-
tive semi-definiteness of the Slutsky matrix regardless of interactions. Nonetheless
and although not studied here, it should be noted that introducing some inter-
actions in between products (representing redundancy or complementarity for
example) in a similar framework appears to lead to positive eigenvalues [173].

Of course, further empirical studies on the properties of the Slutsky matrix
would be of great interest, in particular to contrast our model of interacting,
bounded rational agents with the recent sparsity-based approach of Gabaix [59].
To this end, we believe that fluctuation-response relations such as those presented
in this work could be a very valuable econometric tool. Given the difficulty of
conducting repeatable experiments in socioeconomic systems, the ability to es-
timate derivative quantities without actually requiring prices to change appears
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quite promising.
Importantly in the context of this thesis, this first encounter with a socioeco-

nomic model of interacting agents has also illustrated the limitations of equilib-
rium statistical mechanics. Indeed, in order to study the concentration transition
and its effects on the Slutsky matrix analytically, we have implicitly assumed
that agents are altruisitc and all work at improving a global utility. While this
is usually the rule in physics, where the energy is necessarily common to all con-
stituents of the system, it is clear that a realistic description of human behavior
should allow for individualistic dynamics. In Sec. 4.5.1, we have seen that the
very existence of a global utility acting as the energy of the interacting system
is the exception rather than the rule when the dynamics are prescribed at the
agent level. This specificity of socioeconomic systems will be at the heart of the
upcoming “SK-game” and of our version of the Schelling model in Chap. 7.
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Key takeaways

• The Slutsky matrix describing the change in the demand of a product
following the price change of another is known to be symmetric when
agents are rational and noninteracting.

• Contrary to the common belief in economics, this symmetry is not
a proof of rationality: the Slutsky matrix is also symmetric when
modeling choices with the boundedly rational logit rule.

• Strong interactions, however, may lead to a violation of the symmetry
of the matrix, particularly near a collective phase transition.
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• While equilibrium statistical mechanics is appropriate to describe a
single agent following the logit rule, this is often no longer the case if
interacting agents are individualistic.
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Part III

A unifying disordered model:
the SK-game





Chapter 5

Presentation of the model and
numerical results

All in the Game, yo... All in the Game.

Omar Little

So far, we have established that assuming agents to be purely rational is likely
unrealistic due to the overwhelming complexity and associated uncertainty that
may arise in even simple optimization problems. With this is mind, we have
explored the consequences of having a probabilistic decision rule on simple non-
interacting and interacting consumer choice models. Importantly, when agents are
interacting, we have seen that describing the system with an equilibrium statistical
mechanics formalism brings strong limitations to the possible dynamics that can
be chosen at the agent level. Interactions between agents must notably be entirely
reciprocal and constructed in a very particular way for a global utility function to
be the suitable object to analyze the system’s the steady-state.

To go beyond these limitations we will now introduce a simple, unifying model,
built at the agent level, and including not only bounded rationality and non-
reciprocity but also learning.

The contents of this chapter and the following are largely reproduced from [3],
written under the supervision of J.-P. Bouchaud and M. Benzaquen, to which
technical details have been added.

5.1 Motivation
As discussed in the introduction chapter, classical economics is based on the idea
that rational agents make optimal decisions, i.e. optimize their expected utility
over future states of the world, weighted by their objective probabilities. Such an
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idealization of human behavior has been criticized by many (see e.g. [69,174–177]).
In particular, assuming that all agents are rational, allowing one to use game the-
oretic arguments to build such optimal strategies – often the result of complicated
mathematical calculations – is implausible, to say the least (see above).

A way to possibly save the rational expectation paradigm is to posit that agents
are able to learn best responses from past experience. Yes, agents are only partially
(“boundedly”) rational, but they learn and in the long run, they act “as if” they
were rational [178]. This is clearly expressed by Evans and Honkapohja in their
review paper on the subject [179]. They note that “[i]n standard macroeconomic
models rational expectations can emerge in the long run, provided the agents’
environment remains stationary for a sufficiently long period.”

While seemingly reasonable, this proposition is by no means guaranteed to be
legitimate. Indeed, the hypothesis that the environment should be stationary over
“sufficiently long periods” can be restated in terms of the speed of convergence
of the learning process, that should be short enough compared to the correlation
time scale of the environment. However, in many circumstances and in particular
in complex games, the convergence of the learning process to a collectively optimal
state can be exceedingly long, or may in fact never take place. For example, rea-
sonable learning rules can trap the system in some sub-optimal regions of the (high
dimensional) solution space, see e.g. [180–183]. In other words, the learning pro-
cess itself can be non-ergodic, even if the environment is described by an ergodic,
stationary process. Another possibility is that agents’ strategies, even probabilis-
tic, evolve chaotically forever, as was found by T. Galla & D. Farmer [184] in
the context of competitive multi-choice two-player games, or by Bouchaud & R.
Farmer [185] in a simple binary choice, multiplayer game. In such cases, the prob-
abilities governing the different possible choices are not fixed but must themselves
be described by probabilities.

This is in fact a generic feature of “complex systems”. As proposed by G.
Parisi [186,187], the description of such systems requires the introduction of prob-
abilities of probabilities, as their statistical behavior themselves (and not only
individual trajectories) are highly sensitive to the small changes in parameters,
initial conditions, or time. The inability to describe such systems with knowable
probabilities was coined “radical complexity” in [188], a concept introduced in
Chap. 3 above.

The sensitivity of optimal solutions to the parameters of the problem, or to
the algorithm used to find them, has a very real consequence: one can no longer
assume that all agents, even fully rational, will make the same decision, since any
small perturbation may lead to a completely different solution, although similar
in performance. In other words, the common knowledge assumption is not war-
ranted. This has already been underlined in the context of portfolio optimisation
in Chap. 3 and [48], or in the context of networked economies [183, 189], but is
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expected to be of much more general scope, as anticipated by Keynes long ago and
emphasized by many heterodox economists in the more recent past [69,175–177].

Here we want to dwell on this issue in the context of a multi-player binary
game – the “SK-game” –, understood as an idealization of the economic world
where agents strongly interact in such a way that their payoffs depend on the
action of others. In our setting, some relationships are mutually beneficial, while
others are competitive. Agents have to learn how to coordinate to optimize their
expected gains, which they do in a standard reinforcement way by observing the
payoff of their actions and adapting their strategies accordingly.

5.2 A simple model for a complex world

5.2.1 Set-up of the model
As a minimal, stylized model for decision making in a complex environment of
interacting agents, we restrict ourselves to binary decisions, as in many papers on
models with social interactions, see e.g. [15,64,165,185]. At every timestep t, each
agent i plays Si(t) = ±1, with i = 1, . . . , N , which can be thought of, for example,
as the decision of an investor to buy or to sell the stock market, or the decision of a
firm to increase or to decrease production, etc. The incentive to play Si(t) = +1 is
Qi(t) and is the agent’s estimate of the payoff associated to Si(t) = +1 compared
to that of Si(t) = −1. The actual decision of agent i is probabilistic and drawn
using the extensively discussed “logit” rule [61], i.e. sampled from a Boltzmann
distribution over the choices of an agent,

P [Si(t) = ±1] =
e±βQi(t)

eβQi(t) + e−βQi(t)
=

1

2
[1± tanh (βQi(t)) ], (5.1)

or, equivalently, the expected choice (or “intention”) of agent i at time t is given
by

mi(t) := ⟨Si(t)⟩ = tanh (βQi(t)) . (5.2)

Parameter β, assumed to be independent of i henceforth, is again analogous to the
inverse temperature in statistical physics and represents the agent’s rationality or
intensity of choice. As mentioned in Chap. 1 and in the previous chapter, the
limit β → ∞ corresponds to perfectly rational agents, that will systematically
pick the choice that has their preference (given by the sign of Qi(t)), while setting
β = 0 gives erratic agents that randomly pick either decision with probability 1/2
regardless of the value of Qi(t).

The evolution of the preference Qi(t) is where the learning takes place. We
resort in so-called “Q-learning” [190], i.e. reinforcement learning with a memory
loss parameter α. Given the (yet unspecified) reward ±Ri(t) associated to making
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the choice ±1 at time t, the evolution of incentives (an, in turn, beliefs) is given
by

Qi(t+ 1) = (1− α)Qi(t) + αRi(t). (5.3)

This map amounts to calculating an Exponentially Weighted Moving Average
(EWMA) on the history of rewards Ri(t). Taking α = 0, the agent’s preferences
are fixed at their initial values, and we thus restrict ourselves to α > 0. When
α→ 0, Qi(t) is approximately given by the average reward over the last α−1 time
steps. Note here that this averaging of past rewards is not exactly the same as the
accumulation rule (where the reward would not be multiplied by α in Eq. (5.3))
appearing in some forms of “Experience Weighted Attraction” that are popular
in the socioeconomic context [191].

Now, the missing ingredient is the specification of the rewards, that encodes
heterogeneity and non-reciprocity of interactions. Inspired by the theory of spin-
glasses, in particular by the Sherrington-Kirkpatrick (SK) model of Sec. 2.2, we
set

Ri(t) =
N∑
j=1

JijSj(t). (5.4)

Here, the matrix elements Jij specify the mutually beneficial or competitive nature
of the interactions between i and j. (Note that Jij measures the impact of the
decision of j on the reward of i.)

In the context of firm networks, a client-supplier relation would correspond to
Jij > 0, whereas two firms i, j competing for the same clients would correspond
to Jij < 0. In the so-called “Dean problem”, Jij > 0 means that agents i and
j get along well whereas Jij < 0 means that they are in conflict [192]. The
sign of Si determines in which of the two available rooms agent i should sit, in
order to minimize the number of possible conflicts. A predator-prey situation
is when Jij × Jji < 0, meaning that if i makes a gain, j makes a loss and vice
versa. Importantly, whenever the interactions are non-symmetric, i.e. Jji ̸= Jij ,
there cannot be a global utility function in the sense of Sec. 4.5.1 of the previous
chapter. In other words, such an explicit non-reciprocity means the dynamics are
nonrelaxational and the system non-Hamiltonian.

Note that the reward Ri(t) depends on the actual (realized) decision of other
players, and not their expected decisions or intentions. In other words, agents
resort in online learning, which differs from offline learning where other players’
decisions Si(t) are averaged over large batch sizes during which their inclinations
would be assumed constant and replaced by their expectation mi(t).

Based on the learning dynamics, agents thus make a decision based on an
imperfectly learned approximation of what other players are likely to do. Bringing
equations (5.2), (5.3), (5.4) together, the evolution of agent i’s intention can be
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written as

mi(t+ 1) = tanh

β N∑
j=1

Jijm̃
α
j (t)

 (5.5)

where m̃α
i (t) is the estimate of agent j’s expected decision at time t+ 1 based on

its past actions up to time t. Explicitly writing the accumulated reward (EWMA)
one has

m̃α
i (t) = α

∑
t′≤t

(1− α)t−t′Si(t
′). (5.6)

Expressed in this form, it is clear that there is characteristic timescale τα ∼ 1/α
over which past choices contribute to the moving average m̃α

i (t). Note that offline
learning would correspond to a different evolution equation, namely

mi(t+ 1) = tanh

β N∑
j=1

Jijmj(t)

 , (5.7)

although the two coincide in the α→ 0 limit.
At this stage, it may be useful to compare and contrast the present model with

previous work. On the one hand, the learning procedure closely resembles the
original proposition by Sato & Crutchfield [193], and its treatment by Galla [194,
195] and others [196–198], however these authors considered games comprising
only two players with many strategies. Subsequent cases explored by Galla and
Farmer considering a larger number of players [184, 199] therefore lie closer to
our setting but still consider many strategies, while the similar binary decision
models proposed by Semeshenko et al. [200,201] are restricted to perfectly rational
agents and homogeneous interactions Jij = J > 0 ∀i, j. Importantly, all these
works also consider accumulated rewards and offline learning, in contrast with our
averaged rewards and online learning. On the other hand, replicator models with
random non-symmetric interactions between a large number of species [202, 203]
share many features with the system at hand, but the prescribed dynamics are
inherently linked to evolutionary principles such as extinction that are not present
in our model. Finally, other Ising-inspired games such as that introduced in [204]
are conceptually similar, in particular in their extension with myopic strategy
revision (meaning updating based on future expectations and not directly passed
realizations as done here) [205]. So far, however, these models have been studied
without heterogeneities and therefore do not present the radical complexity related
to the presence of a very large number of possible solutions discussed hereafter.
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5.2.2 The interaction matrix
In order to rely on known results about the SK model, we will assume in the
following that all agents randomly interact with one another, meaning that all
elements of the matrix J are non-zero. Sparse matrices, corresponding to low-
connectivity interaction matrices, would probably be more realistic in an economic
context. However, we expect that many of the conclusions reached below will
qualitatively hold in such cases as well.

We choose interactions Jij between i and j to be random Gaussian variables
of order N−1/2, with Jij in general different from Jji, accounting for possible non-
reciprocity of interactions. More precisely, we introduce the parameter ε and write
the interaction matrix as

Jij =
(
1− ε

2

)
JS
ij +

ε

2
JA
ij , (5.8)

with JS a symmetric matrix and JA an anti-symmetric matrix. The entries of both
these matrices independent and sampled from a Gaussian distribution of mean 0
and variance σ2/N . This defines what we will call the “SK-game” henceforth A
non-zero average value of JS will be discussed below.

In the following we set σ = 1 without loss of generality. The resulting variance
of Jij is thus given by

υ(ε) := NVar(Jij) = 1− ε+
1

2
ε2. (5.9)

The specific cases ε = {0, 1, 2} hence correspond to fully symmetric (Jij = Jji),
a-symmetric (i.e. Jij and Jji independent) and anti-symmetric (Jij = −Jji) in-
teractions respectively. We can thus also characterize the correlation between Jij
and Jji through parameter η,

η =
JijJji

J2
ij

=
1− ε

υ(ε)
, (5.10)

where overlines indicate an average over the disorder.
It may actually be insightful to allow for a non-zero average value to the

interaction parameters, and define the reward Ri(t) as

Ri(t) =
N∑
j=1

JijSj(t) + J0M(t); M(t) :=
1

N

N∑
j=1

Sj(t). (5.11)

Finally, one may think that agents have some idiosyncratic preferences, or
different costs associated to the two possible decisions Si = ±1. This would
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amount to adding to the reward Ri(t) a time independent term Hi, where Hi

favors Si = +1 if positive and Si = −1 if negative, see the RFIM discussed in
Sec. 1.3.2. Here, we will restrict to Hi ≡ 0, ∀i, but one expects from the literature
on spin-glasses that the main results discussed below would still hold for small
enough His. Beyond some threshold value, on the other hand, agents end up
aligning to their a priori preference, i.e. miHi > 0.

5.3 Overview and numerical results
Having established the rules of the SK-game, a first and natural step is to simulate
the evolution of the system from Qi(0) = 0 ∀i at finite values of N . Exploring
the parameter space in this way, we can establish the broad types of behaviors
displayed by the model. In the following, we will summarize these results before
jumping into a more technical analysis in the following chapter.

5.3.1 A word on the average reward
In the SK-game, the payoff of each agent is a random function of the decisions of
all other agents. Hence, learning the optimal strategy (in terms of the probability
for agent i to play +1 or −1) is bound to be extremely difficult.

Defining the average reward as

RN :=
1

N

∑
i

SiRi =
1

N

N∑
i,j=1

JijSiSj , (5.12)

and noting that
∑N

i,j=1 JijSiSj =
(
1− ε

2

)∑N
i,j=1 J

S
ijSiSj , the largest possible av-

erage reward R∞ for N → ∞ can be exactly computed using the celebrated Parisi
replica-symmetry breaking scheme of the classical SK model and reads [50]:

lim
N→∞

RN := R∞ = 0.7631...× (2− ε). (5.13)

However, in practice there is no known algorithm to find the global minimum
for a given draw of the disorder in polynomial time in N – although it has been
shown that one can devise an algorithm with time growing like K(ϵ)N2 to find
configurations {Si} that reach a value of at least 1− ϵ the optimum (5.13), ϵ > 0
[206]. In any case, it is expected that simple learning algorithms will inevitably
fail to find the true optimal solution. Nevertheless, we also know from the spin-
glass folklore (see below for more precise statements) that many configurations
of {Si}’s correspond to quasi-optima, or, in the language of H. Simon, satisficing
solutions [69]. It is in a sense the proliferation of such sub-optimal solutions
that prevent simple algorithms to find the optimum optimorum. Furthermore, if
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Figure 5.1: Qualitative phase diagram in the (ε, α) plane for the SK-game in the (a)
noiseless (β → ∞) and (b) weak noise (β ≫ 1) regimes. FP refers to “fixed point”, “Para”
means that players’ strategies are completely random, whereas “chaos” means that at a
given instant of time players have well defined intentions mi but these evolve chaotically
with time.

learning indeed converges (which is not the case when ε is too large, i.e. when
interactions are not reciprocal enough), the obtained fixed point heavily depends
on the initial condition and/or the specific interaction matrix J.

5.3.2 Phase diagram in the noiseless limit
Let us first consider the case where agents always choose the action that would
have had the best average reward in the past Qi(t) (this assumes that other agents
still played what they played). This corresponds to the noiseless learning limit
β → ∞. In this case, the iteration map Eq. (5.5) becomes

Si(t+ 1) = sign

∑
t′≤t

(1− α)t−t′
N∑
j=1

JijSj(t
′)

 , (5.14)

and the model is fully specified by two parameters: α (controlling the memory time
scale of the agents) and ε (controlling the reciprocity of interactions). For N not
too large, the evolution of Eq. (5.14) leads to either fixed points, or oscillations,
or else chaos. The schematic phase diagram in the plane (α, ε) is shown in Fig.
5.1(a).

One clearly sees a region for (α, ε) small where learning reaches a fixed point,
where the average reward is close, but significantly below the theoretical optimum
R∞ given by Eq. (5.13), see Fig. 5.2.26 Note that learning definitely helps:
for ε = 0, most fixed points are characterized by a typical reward R ≈ 1.01
(which can be computed by taking an unweighted average on all TAP states, see

26Note that there are finite N corrections that must be taken into account for such a compar-
ison, which read [207] RN ≈ R∞ −AN−2/3, A ≈ 0.75× (2− ε), see also Fig. 5.4(b).
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Sec. 2.2.2) [112], significantly worse than the value ≈ 1.40 reached by our learning
agents extrapolated to N → ∞.

As ε and α are varied one observes the following features:

• When ε is not too large (interactions sufficiently reciprocal) and α increases
(shorter and shorter memory) learning progressively ceases to converge and
oscillations start appearing: impatient learning leads to cycles. This leads
to a sharp decrease of the average reward (see Fig. 5.2(a)), as agents over-
react to new information and are no longer able to coordinate on a mutually
beneficial equilibrium. A similar effect was observed in a dynamical model of
firm network, where over-reaction leads to oscillating prices and production
[157] (see also [189]).

• Conversely, when α is small (long memory) and ε increases, the probability to
reach a fixed point progressively decreases, and when a fixed point is reached,
the average reward is reduced see Fig. 5.2(b). Beyond some threshold
value, the dynamics becomes completely chaotic, leading to further loss of
reward. Note that “chaos” here means that at although at any given instant
of time, agents have well defined intentions mi(t) ̸= 0, these intentions evolve
chaotically forever.27

• Surprisingly, oscillations reappear when ε becomes larger than unity, i.e.
when interactions are mostly anti-symmetric, “predator-prey” like. Perhaps
reminiscent of the famous Lotka-Volterra model, agents’ decisions and pay-
offs become periodic, with a period that scales anomalously as α−1/2, i.e.
much shorter than the natural memory time scale α−1 (see Chap. 6 below).
Although not the Nash equilibrium28 mi ≡ 0, these oscillations allow the av-
erage reward to be positive when ε is not too large, although at each instant
of time, some agents have negative rewards. In these cases, the system there-
fore self-organizes in such a way that the collective outcome outperforms the
Nash equilibrium, despite the agents being individualistic.

• Only close to the extreme competition limit ε = 2 (corresponding to a zero
sum game, cf. Eq. (5.13)) and for small α, are agents able to learn that the
unique Nash equilibrium is to play random strategies mi ≡ 0 (see Fig. 5.1,
bottom right region).

• Finally, in the extreme (and unrealistic) case α = 1, where agents choose
their strategy based on the last reward only, the system evolves, as ε in-

27Note that the role of ε is somewhat similar to that of parameter Γ in [184]: increasing
competition leads to chaos.

28The Nash equilibrium is the solution found such that no individual can improve their outcome
by changing their choice, see [55].
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Figure 5.2: Evolution of the average reward with (a) the memory loss rate α, for ε =
{0, 0.6, 0.85, 1.05, 1.5, 2} from dark purple to light green, β → ∞; (b) the asymmetry ε for
α = 0.01 and α = 0.1, β → ∞, the vertical dotted line indicates the value εc for which
the system becomes chaotic [208]. In both (a) and (b), N = 256 and the dashed line
represents the Parisi solution for R∞.

creases from zero, from high frequency oscillations with period L = 2 to
“weak chaos” to “strong chaos” when ε ≈ 1 and finally back to oscillations
of period L = 4 when ε→ 2.

In order to characterize more precisely such temporal behaviors, it is useful to
(re)introduce the two-point auto-correlation function of the expected decisions or
intentions:

C(t, t+ τ) =
1

N

∑
i

⟨mi(t)mi(t+ τ)⟩, (5.15)

where the angular brackets now refer to an average over initial conditions.29 In
cases where the dynamics are assumed to be time-translation invariant, we will
write C(τ) which corresponds to the above quantity averaged over time after the
system has reached a steady-state.

The autocorrelation function corresponding to the different cases described
above are plotted in Fig. 5.3. Note that the signature of oscillations of period
L is that C(nL) ≡ 1 for all integer n. However, note that when ε < εc, not all
spins flip at each time step. The fact that C(2n + 1) = 0 means that half of the
spins in fact remain fixed in time, while the other half oscillate in sync between
+Si and −Si.30 In the chaotic phases, C(τ) tends to zero for large τ , with either
underdamped or overdamped oscillations. Hence in these cases, the configuration
{Si} evolves indefinitely with time, and hardly ever revisit the same states.

29Of course, in the β → ∞ limit discussed in this subsection, one can replace mi(t) by the
actual decision Si(t) in the definition of C(t, t + τ). More generally, the spin-spin correlation
function is given by (1− q(t))δ(τ) + C(t, t+ τ) with q(t) = ⟨m2

i (t)⟩.
30Note the rather large error bar on C(2n + 1), meaning that there are actually substantial

fluctuations of the number of idle spins around the value N/2 when N is finite.
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Figure 5.3: Evolution of the steady-state two-point correlation function for α = 1,
β → ∞, markers indicating simulations of the game at N = 256 averaged over 128
samples of disorder and initial conditions, error-bars showing 95% confidence intervals.
The continuous lines representing the solution to the Dynamical Mean-Field Equations
that will be discussed in Chap. 6 below. (a) ε = 0.1 (ε < εc ≈ 0.8), cycles of length L = 2.
(b) ε = 0.85 (εc < ε < 1), “weakly” chaotic behavior. (c) ε = 1.05 (1 < ε < 2 − εc),
“strongly” chaotic behavior. (d) ε = 1.5 (ε > 2− εc), cycles of length L = 4.

5.3.3 Noisy learning

In the presence of noise, the “convictions” |mi| of agents naturally decrease, and in
fact become zero (i.e. decisions are totally random) beyond a critical noise level
that depends on the asymmetry parameter ε: more asymmetry leads to more
fragile convictions (see Fig. 6.9 below for a more precise description). Because of
the noise, strict fixed points do not exist anymore, but are replaced (for ε small
enough) by quasi-fixed points – in the sense that the intentionsmi fluctuate around
some plateau value for very long times, before evolving to another configuration
completely uncorrelated with the previous one. This process goes on forever, albeit
at a rate that slows down with time: plateaus become more and more permanent.
This corresponds to the aging phenomenon introduced in Chap. 2 for the original
SK model, and will be discussed in more detail in a dedicated section of the next
chapter.

In a socio-economic context, it means that a form of quasi-equilibrium is
temporarily reached by the learning process, but such a quasi-equilibrium will
be completely disrupted after some time, even in the absence of any exogenous
shocks. This is very similar to the quasi-nonergodic scenario recently proposed in
Ref. [185], although in our case the evolution time is not constant but increases
with the “age” of the system, i.e. the amount of time the game has been running.

Perhaps counter-intuitively, however, the role of noise is on average beneficial
when 1/β is not too large. Indeed, as shown in Fig. 5.4(a), the average reward first
increases as a small amount of noise is introduced, before reaching a maximum
beyond which “irrationality” becomes detrimental. The intuition is that without
noise, the system gets trapped by fixed points with large basins of attraction,
but low average rewards. A small amount of noise allows agents to reassess their
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Figure 5.4: Evolution of the average reward for N = 256 with (a) the noise level 1/β
for α = 0.01, ε = {0, 0.6} (dark purple and blue respectively), note the non-monotonic
behavior. The dashed line represents the Parisi solution for R∞; (b) system size N for
α = 0.01, β → ∞, ε = {0, 0.6} (dark purple and blue respectively), continuous lines
showing fits RN = R∞ −AN−2/3, excluding N = 32. The dotted line indicates the best
fit for the SK ground state, for which A ≈ 1.5 [207].

intentions and collectively reach more favorable quasi-fixed points, much as with
simulated annealing.

When learning leads to a chaotic evolution, i.e. when Jij and Jji are close to
uncorrelated (ε ∼ 1), noise in the learning process does not radically change the
evolution of the system: deterministic chaos just becomes noisy chaos. However,
there is still a distinction between a low-noise phase where at each instant of
time, agents have non-zero expected decisions mi (that will evolve over time)
from a high-noise phase where agents always make random choices between ±1
with probability 1/2 (see Fig. 5.1).

Finally, in the case where learning leads to cycles, any amount of noise irre-
mediably disrupts the synchronisation process, and cycles are replaced by pseudo-
cycles, with either underdamped or overdamped characteristics. In the limit
ε → 2, any level of fluctuations drive the system to a paramagnetic state where
q = C(0) = 0 (see Fig. 6.10), meaning the agents remain undecided (corresponding
to the previously mentioned Nash equilibrium).

5.3.4 Distribution of individual rewards
As we have noted above, the average reward is close, but significantly below the
theoretical optimum R∞ given by Eq. (5.13). However, some agents are better
off than others, in the sense that the individual reward ei at the fixed point (when
fixed points exist), is different from agent to agent. Noting that

ei := S⋆
i R

⋆
i =

∣∣∣∣∣∣
∑
j

JijS
⋆
j

∣∣∣∣∣∣ , (5.16)
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Figure 5.5: Distribution of individual rewards at β → ∞ for N = 512 and 128 initial
conditions and realizations of the disorder in the fully symmetric case ε = 0 for α =
{0.5, 0.1, 0.01} (dark to light coloring). The dashed line is the Sommers-Dupont analytical
solution to the SK model [209]. Inset: associated survival function in a lin-log scale and
focusing on the right tail, dotted line corresponding to a Gaussian fit.

where the second equality holds because at the fixed point one must have S⋆
i =

sign(R⋆
i ), it is clear that in the fully reciprocal case ε = 0, all rewards ei are

positive.
The distribution ρ(e) of these rewards over agents is expected to be self-

averaging for large N , i.e. independent of the specific realization of the Jij and
of the initial condition. Such distribution is shown in Fig. 5.5. One notices that
ρ(e) vanishes linearly when e→ 0

ρ(e) ≈
e→0

κe, κ ≈ 1.6,

as for the standard SK model, although the value of κ is distinctly different from
the one obtained for the true optimal states of the SK model, for which κSK ≈ 0.6
[209, 210]. Such a discrepancy is expected, since the fixed points are obtained as
the long time limit of the learning process – in particular, since κ > κSK, the
number of poorly rewarded agents is too high compared to what it would be in
an optimal state. Note that once α is sufficiently small for the system to reach a
fixed point, its precise value does not seem to have an impact on the distribution
of rewards and κ.

Another important remark is that the distribution of rewards ρ(e) does not
develop a “gap” for small e, i.e. a region where ρ(e) is exactly zero. In other words,
although all agents have positive rewards, some of them are very small. This is
associated with the so-called “marginal stability” of the equilibrium state [211], to
wit, its fragility with respect to small perturbations, as discussed in more details
in the next subsection.

For very large e, the distribution ρ(e) decreases like a Gaussian (Fig. 5.5 inset),
corresponding to a Central Limit Theorem behavior in that regime, as for the SK
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Figure 5.6: Evolution of individual rewards in time for N = 256, α = 0.01, β → ∞, (a)
ε = 0 and (b) ε = 0.6. Right: histogram of the individual rewards after a single timestep
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Figure 5.7: Distribution of individual rewards for N = 256 and α = {1, 0.5, 0.01}
represented by black triangles, purple squares and green circles respectively, β → ∞,
measured over 32 initial conditions and realizations of the disorder. From left to right:
ε = {0, 0.1, 0.85, 1.05, 1.5, 2}.

model.31 Fig. 5.6 shows how the rewards of individual agents evolve from an
initially random configuration, before settling to constant (but heterogeneous)
values at the fixed point.

As competitive effects get stronger (i.e. as ε increases) and the system ceases
to reach a fixed point, the distribution ρ(e) develops a tail for negative values of
e, meaning that some agents are systematic losers, see Fig. 5.7. In the extreme
“predator-prey” limit ε = 2, the distribution ρ(e) becomes perfectly symmetric
around e = 0, as expected – see Fig. 5.7, rightmost plot.

5.3.5 Unpredictability of equilibria
Now, the interesting point about our model is that the final rewards are highly
dependent on the initial conditions and/or the realization of the Jij ’s. In other
words, successful agents in one realization of the game become the losers for an-
other realization obtained with different initial conditions. A way to quantify
this is to measure the cross-sectional correlation of final rewards for two different

31One would expect a different behavior in the possibly relevant case of a fat-tailed distribution
of the Jij , see [212–214]. We leave this question for further investigations.
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Figure 5.8: Overlap between solutions for different initial conditions and identical draws
of interactions, for α = 0.01, β → ∞, ε = 0. (a) Distribution of overlaps shifted by the
mean and rescaled with the system size N to the power 2/3. (b) Average overlap as a
function of system size in log-log coordinates, with the best regression line N−0.85. Error-
bars show the 95% confidence interval over 16 different draws of the disorder.

realizations, i.e.

C×
N :=

1

N

∑
i

(eai − ⟨ea⟩)(ebi − ⟨eb⟩), a ̸= b (5.17)

where a, b corresponds to two different initial conditions and ⟨e⟩ corresponds to
the cross-sectional average reward. As shown in Fig. 5.8, C×

N goes to zero at large
N , indicating that the final outcome of the game, in terms of the winners and
the losers, cannot be predicted. The dependence on N appears to be non-trivial,
with different exponents governing the decay of the mean overlap C×

N (decaying
as N−0.85) and its standard deviation (decaying as N−2/3).

A similar effect would be observed if instead of changing the initial condition
one would randomly change the interaction matrix J by a tiny amount ϵ. The
statement here is that for any small ϵ, C×

N goes to zero for sufficiently large N . This
is the “disorder chaos” discussed in the portfolio problem of Chap. 3; by analogy
with known results for the SK model, we conjecture that C×

N is a decreasing
function of Nϵζ , where ζ = 3 in the SK case [215]. This means that when N ≫
ϵ−ζ the rewards between two systems with nearly the same interaction structure,
starting with the same initial conditions, will be close to independent.

Such a sensitive dependence of the whole steady-state of the system (in our case
the full knowledge of the intentions mi of all agents) once again prevents any kind
of “common knowledge” assumption about what other agents will decide to do in
a specific environment. No reasonable learning process can lead to a predictable
outcome; even the presence of a benevolent social planner assigning their optimal
strategy to all agents would not be able to do so without a perfect knowledge of all
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Figure 5.9: (a) Evolution of the average reward with the incentive to cooperate J0
for N = 512, α = 0.01, β → ∞ and ε = {0, 0.6, 0.85, 1.05, 1.5, 2} with colors ranging
from purple to light green with increasing ε. (b) Average intention in the long time limit
M = limt→∞M(t) for the same parameters. Note the rather strong finite size effects, in
particular for ε = 0.

interactions between agents and without exponentially powerful (in N) computing
abilities. Such a “radically complex” situation leads to “radical uncertainty” in
the sense that the behavior of agents, even rational, cannot be predicted. Learning
agents can only achieve satisficing solutions, that are furthermore hypersensitive
to details. Moreover, as we have seen in Sec. 5.3.3, any amount of noise in the
learning process will make the whole system “jump” from one satisficing solution
to another in the course of time.

5.3.6 Increasing cooperativity
A way to help agents coordinate is to use rewards given by Eq. (5.11) with J0 > 0,
representing a non-zero average cooperative contribution to rewards. This term
obviously helps agents finding mutually beneficial strategies. (Note that with
our normalisation, the J0 term is in fact N−1/2 times smaller than the random
interaction terms Jij .)

The impact of such a term is well understood in the case of the SK model for
ε = 0 [216]. For β = ∞, one finds that whenever J0 ≤ 1, the average intention
M(t) remains zero for large N and one expects that the learning process is not
affected by such a “nudge”. When J0 > 1, on the other hand, the situation
changes as all agents start coordinate on one of the two possible choices: the
average intention becomes non-zero, although a finite fraction of agents still play
opposite to the majority because of their own idiosyncratic rewards.

For J0 ≫ 1, radical complexity disappears and learning quickly converges to
the obvious optimal strategy where all agents make the same move Si = +1 or
Si = −1, ∀i. In this case, RN = J0 as M(t) eventually reaches unity, see Fig. 5.9.
For ε > 0, the same occurs barring some rescaling, as visible in Fig. 5.9.

120



Chapter 5. Presentation of the model and numerical results

In the case J0 < 0 with |J0|≫ 1, the only solution of Eq. (5.7) (valid for α→ 0)
is mi = 0 for all i, i.e. agents cannot coordinate and play random strategies.

5.3.7 Self-reinforcement and habit formation
Up to this point, all results have assumed that there is no self-interaction, Jii = 0.
Nonetheless, it is interesting to consider the possibility of having an O(1) positive
diagonal term in the interaction matrix. In the socioeconomic context, such a
contribution is relevant as it represents self-reinforcement of past choices, which
is also called “habit formation” where agents stick to past choices, a popular idea
in behavioral science, see e.g. [180,182] and refs. therein.

The introduction of a diagonal contribution has important consequences for
the problem. Assuming the self-interaction is identical for all agents, Jii = Jd > 0,
it will rather intuitively favor the emergence of fixed points since agents will be
tempted to stick to past choices. It is for instance known that in the case of
fully random interactions ε = 1, fixed points will start to appear when Jd is
sufficiently large [217]. Interestingly, these fixed points can be very difficult to
reach dynamically with standard Hopfield dynamics (α = 1).

Adding such diagonal contribution to our learning dynamics, we have observed
that the fraction of trajectories converging to seemingly dynamically inaccessi-
ble configurations significantly increases, specially when α ≪ 1. While further
work would be required to precisely assess the effectiveness of learning when self-
reinforcement is present, particularly as finite size effects appear to play a signifi-
cant role, such a result is consistent with the overall influence of learning reported
here.

5.4 Core message
Before jumping into a more technical analysis of the different regimes of the SK-
game, let us summarize the broad conclusions we draw in terms of socioeconomic
modeling. In line with the core message of Galla & Farmer [184], our multi-agent
binary decision model provides an explicit counter-example to the idea advocated
in [179] that learning could save the rational expectation framework (cf. Sec. 5.1).

Learning in general does not converge to any fixed point, even when the
environment (in our case the interaction matrix J) is completely static: non-
stationarity is self-induced by the complexity of the game that agents are trying
to learn, as also recently argued in [183].

When learning does indeed converge (which requires a minima a high level
of reciprocity between agents) the collective state reached by the system is far
from the optimal state, which only a benevolent, omniscient social planner with
formidable powers can achieve. In other words, even more sophisticated learning
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rules would not really improve the outcome: the SK-game is unlearnable and – as
argued by H. Simon [69] – agents must resort to satisficing solutions.

Furthermore, any small random perturbation (noise in the learning process, or
slow evolution in the environment) eventually destabilizes any fixed point reached
by the learning process, and completely reshuffles the collective state of the system:
in the long run, agents initially favoring the + end up favoring −, and better-off
agents end up being the underdogs, and vice-versa (much as in the simpler model
of Ref. [185]).

Finally, even in the most favorable case of a fully reciprocal game with slow
learning, the average reward is in fact improved when some level of noise (or
irrationality) is introduced in the learning rule, before degrading again for large
noise.
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Key takeaways

• The SK-game is a unifying model of a radically complex world in which
N players make a binary choice at every time step:

– The incentive to play either ±1 is based on past rewards, that
agents forget with a memory loss rate α,

– Agents make their decision following the logit rule with a ratio-
nality parameter β,

– Rewards are based exclusively on the decisions of others and are
non-reciprocal, with a payoff asymmetry parameter ε.

• When agents have long term memory and interactions are sufficiently
reciprocal, intentions reach “satisficing” (and fragile) fixed points.

• The average reward in these fixed points is markedly below the best
possible solution, but significantly above the memoryless outcome.

• When interactions are close to completely uncorrelated, the agents’
intentions evolve chaotically.

• When interactions are mostly non-reciprocal, intentions display oscil-
lations that do not correspond to the Nash equilibrium.

• In the fixed point regime, irrationality is initially somewhat beneficial,
but leads to permanent non-stationarity in the form of aging.

0 1 2
ε

0

1

α

FP

L = 2

cycle

L = 4

cycle

L ∼ α−
1
2

ch
ao

s

β →∞

0 1 2
ε

0

1

α

aging oscil. pa
ra

.

noisy chaos

ch
ao

s

β � 1

• Overall, learning cannot save the rational expectation framework
when radical complexity is involved.
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Chapter 6

Detailed analysis of the model

In order to solve this differential equation you look at it till a solution occurs to you.

George Polya

We have seen that the SK-game displays a wide variety of complex collective
behavior. In this chapter, we delve into the detailed analysis of the model’s statics
and dynamics, and attempt to describe its rich phenomenology analytically.

6.1 Fixed point analysis and complexity
Only in some cases does learning converge to non-trivial fixed points where strate-
gies are probabilistic but with time independent probability p± to play ±1, such
that p± = (1 ±m⋆

i )/2 for agent i. Such a steady-state would be analogous to an
economic equilibrium (although it is essential to dissociate this notion from that of
a thermodynamic equilibrium, which may only exist in the case of fully reciprocal
interactions, ε = 0).

We will mostly focus, in the following, on the long term memory case α ≪ 1
which is most relevant for thinking about learning in a (semi-)realistic context.
In this case, one can show that the exponential moving average on the realized
values Si(t) converges to one on the expected values mi(t). Indeed, as detailed in
Appendix C.1,〈α∑

t′≤t

(1− α)t−t′(mi(t
′)− Si(t

′))

2〉
≤ α

2− α
−−−→
α→0

0. (6.1)

This means that up to fluctuations of order
√
α, we can describe the dynamics of

the system through a deterministic iteration on mi(t). (In fact, we will see below
that the neglected fluctuations are of order

√
α/β.)
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Further making the ansatz that the mean-field dynamics will eventually reach
a fixed point mi(t) = m⋆

i ∀i given sufficient time, Eq. (5.5) then yields

m⋆
i = tanh

β∑
j

Jijm
⋆
j

 . (6.2)

This is none other than the Naive Mean-Field Equations (NMFE) introduced in
Sec. 2.2.2 when ε = 0, and defines a so-called static Quantal Response Equilibrium,
similar to its fully mean-field equivalent (Jij = J/N) studied in [204].

As previously mentioned, the NMFE are very similar to the celebrated TAP
equations [109] describing the mean magnetization in the Sherrington-Kirkpatrick
(SK) spin-glass [35]. Physically, the NMFE are satisfied when extremizing the
free energy of a system of N sites comprising M → ∞ binary spins, with sites
interacting through an SK-like Hamiltonian [110]. Despite being seemingly simpler
than its previously mentioned TAP counterpart, which includes an additional
Onsager “reaction term”, the NMFE share many of its properties. Relevant to
our problem, both the NMFE and the TAP equations have a paramagnetic phase
(m⋆

i = 0 ∀i) for β < βc, while above this critical value there is a spin-glass phase
where q⋆ = N−1

∑
i(m

⋆
i )

2 > 0 and solutions are exponentially abundant in N
[110, 218, 219]. Recall the NMFE has a critical temperature 1/βc = 2 as opposed
to 1/βc = 1 in the TAP case, while the two equations become strictly equivalent
in the β → ∞ limit.

Using known properties from the spin-glass literature, we can therefore already
establish that if the system reaches a fixed point when interactions are fully re-
ciprocal (ε = 0) and memory is long ranged, it will be either a trivial fixed point
where agents continue making random decisions for ever (m⋆

i = 0 ∀i), or, when
learning is not too noisy (β > βc) the number of fixed points is ∼ exp[Σ(β)N ],
where we remind Σ(β) is called the “complexity”. In this second case, the fixed
point actually reached by learning depends sensitively on the initial conditions
and the interaction matrix J.

How is this standard picture altered when interactions are no longer reciprocal?
In such cases, the system cannot be described using the equilibrium statistical
mechanics machinery.

6.1.1 Critical noise level
In order to extend the notion of critical noise βc to ε > 0, one can naively look
at the linear stability of the paramagnetic solution m⋆

i = 0 ∀i to Eq. (6.2). Just
as in the TAP case [50], expanding the hyperbolic tangent to the second order
and projecting the vector of mi on an eigenvector of J, the stability condition
can be expressed with the largest eigenvalue of the interaction matrix. Adapting
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known results from random matrix theory to our specific problem formulation, the
spectrum of J can be expressed as an interpolation between a Wigner semi-circle
on the real axis (ε = 0), the Ginibre ensemble (ε = 1) and a Wigner semi-circle
on the imaginary axis (ε = 2) [220]. The resulting critical “temperature” is then
given by

Tc(ε) =
1

βc(ε)
=

1

2

(2− ε)2√
υ(ε)

, (6.3)

recovering the known result 1/βc = 2 for the case ε = 0. (We recall that we have
set the interaction variance σ2 to unity. If needed σ can be reinstalled by the
rescaling β → βσ.)

6.1.2 The elusive complexity
To determine if there are still an exponential number of fixed point to reach below
the candidate critical noise level, i.e. if there is a spin-glass phase, for β > βc(ε)
when ε > 0, we should study the complexity, defined just as in the portfolio
problem,

Σ(β, ε) = lim
N→∞

1

N
logNJ(N, β, ε), (6.4)

where NJ is the number of fixed points in the system for a given interaction matrix.
As discussed above, there are then two ways to compute an average of this quantity
over the disorder: the “quenched” complexity, where the mean of the logarithm
of the number of solutions is considered, and its “annealed” counterpart, where
the logarithm is taken on the mean number of solutions. The former is usually
considered to be more representative, as unlikely samples leading to an abnormally
large number of solutions can be observed to dominate the latter (recall Chap. 3),
but requires a more involved calculation with the use of the replica trick. In
the TAP case, quenched and annealed complexities coincide for solutions above a
certain free energy threshold [112] (where most solutions lie but importantly not
the ground state).

As a matter of fact, we have brought up that, even in the annealed case,
the computation of the TAP complexity has proved to be a formidable task, and
has sparked a large amount of controversy, as the original solution computed by
Bray & Moore (BM) [112] has been put into question before being (partially)
salvaged by the metastability of TAP states in the thermodynamic limit [115].
For a relatively up to date summary of the situation, we refer the reader to G.
Parisi’s contribution in [221].

While the BM approach can be adapted to the NMFE [218,222], several aspects
of the calculation remain unclear, particularly as the absence of a sub-dominant re-
action term means that the argument of the metastability of states in the N → ∞
limit is no longer valid a priori, although numerical results support the marginally
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Figure 6.1: (a) Annealed complexity of the Naive Mean-Field Equation in (T, ε) space,
where we recall T = β−1, measured numerically for N = 40. The dashed line represents
the critical temperature Tc(ε) for which the paramagnetic fixed point ceases to be stable,
while the continuous line indicates ε = 1 inferred from the β → ∞ result. (b) Annealed
complexity as a function of ε for varying temperatures T < 1/

√
2, i.e. in the bottom

region of (a) where the complexity vanishes at ε = 1. The continuous line represents the
β → ∞ analytical solution, recovering the result of Tanaka and Edwards [118] Σ ≈ 0.1992
for ε = 0. For ε > 1 and T = 0, the only possible fixed point is m⋆

i = 0, ∀i.

stable nature of NMFE fixed points in the thermodynamic limit [218]. Its exten-
sion to ε > 0 is still ongoing.

Nevertheless, the previously introduced critical βc and the existing computa-
tion of the number of fixed points as a function of ε in the β → ∞ limit [208,223]
can be used to conjecture the boundaries of the region in (β, ε) space where the
complexity Σ is non-vanishing. Indeed, in the zero temperature case, it has been
shown [208] that the annealed complexity can be expressed as a function of the
asymmetry parameter η defined in Eq. (5.10) as

Σ(η) = −1

2
ηx2 + log 2 + logΦ(ηx), (6.5)

with Φ the Gaussian cumulative density Φ(x) = 1
2 erfc (−

x√
2
) and x is the solution

to
xΦ(ηx) = Φ′(ηx). (6.6)

The main insight provided by this result is that the complexity vanishes at η = 0,
corresponding to ε = 1, where the paramagnetic fixed point is supposed to be
unstable as βc(ε = 1) =

√
2. As the complexity is a decreasing function of

temperature, this therefore means that ε = 1 is an upper limit for the existence of
fixed points when β is finite. This conjecture is also consistent with the breakdown
of fixed point solutions to the dynamical mean-field theory below the critical noise
level that will be discussed in Sec. 6.5.1, as well as the saddle point equations
obtained when adapting the BM calculation to ε > 0 (not presented here).

Combining these two somewhat heuristic delimitation for the existence of a
large number of non-trivial fixed points, we obtain the critical lines shown in
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Fig. 6.1(a). Overlaying these borders with the annealed complexity measured
numerically following the method of [222], we find a very good agreement. In
particular, the vanishing of the complexity at ε = 1 in appears to be consistent for
T < Tc(ε = 1) = 1/

√
2, as shown in Fig. 6.1(b). The agreement with the β → ∞

analytical result, represented by the continuous line, also appears to validate our
counting method at low temperatures. Note that one can in fact show that for
ε > 1 and N = ∞, the only fixed point (or Nash equilibrium) is the “rock-paper-
scissors” equilibrium m⋆

i = 0, ∀i.
Let us finally briefly discuss the zero-temperature annealed complexity Σ when

a cooperative contribution J0 > 0 is present in Eq. (5.11), and in the special case
ε = 0. As detailed in Appendix C.2, the difficulty with this computation is that
the spin-glass solution M = 0 remains a valid fixed point for all values of J0. While
we expect that it becomes unstable to single-flip perturbations for J0 > J0c, this
stability criterion is not straightforward to implement analytically. Looking for
solutions to the saddle point equations numerically, we find a solution associated
to a mixed (M > 0) phase for J0 > J0c ≈ 1.3. Importantly, the complexity in this
mixed phase is markedly non-zero, although it decreases with J0 as the solution
approaches the ferromagnetic fixed point M = 1. In any case, we therefore expect
most of the J0 = 0 results to hold for J0 < J0c, but also perhaps in this mixed
region where the complexity remains non-zero.

6.2 Counting limit cycles
In the previous section, we have established the region of parameter space where
exponentially numerous fixed points exist, which might possibly be reached by
learning in the slow limit α ≪ 1. However, limit cycles of various lengths turn
out to also be exponentially numerous when ε < 1, so we need to discuss them
as well before understanding the long term fate of the learning process within our
stylized complex world.

6.2.1 Cycles without memory
In this memory-less limit, the dynamics becomes that of the extensively studied
Hopfield model [41, 223, 224] where the binary variable represents the activation
of a neuron evolving as

Si(t+ 1) = sign

(∑
j

JijSj(t)

)
, (6.7)

with parallel updates. Counting limit cycles of length L is even more difficult
than counting fixed points (which formally correspond to L = 1). Some progress
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have been reported by Hwang et al. [208] in this memory-less case α = 1. The
notion of fixed point complexity Σ (defined in Eq. (6.4)) can be extended to limit
cycle complexity ΣL for limit cycles of length L, with ΣL=1 ≡ Σ. The results of
Ref. [208] can be summarized as follows:

• When ε < 1, limit cycles with L = 2 have the largest complexity, which
is exactly twice of the fixed point complexity: Σ2 = 2Σ1 (as was in fact
previously shown by Gutfreund et al. [223]).

• The complexities ΣL(ε) all go to zero when ε = 1.

• When 1 < ε ≤ 2, limit cycles with L = 4 dominate, with Σ4(ε) ≥ Σ2(2− ε).

• Close to ε = 1, the cut-off length Lc, beyond which limit cycles become
exponentially rare, grow exponentially with N : Lc ∼ eaN , where a weakly
depends on ε.

From this analysis, one may surmise that:

a. When a limit cycle is reached by the dynamics, it is overwhelmingly likely
to be of length L = 2 for ε < 1 and of length L = 4 for 1 < ε ≤ 2.

b. Even if exponentially less numerous, exponentially long cycles will dominate
when eaN > eNΣ2 , which occurs when εc < ε < 2− εc, with εc ≈ 0.8.

These predictions are well obeyed by our numerical data, recall Fig. 5.3(b) and
see Fig. 6.3 below. Note however the strong finite N effects that show up in the
latter figure, which we will be at the heart of the next section.

6.2.2 Cycles with memory
When α < 1 and β = ∞, the update of Si(t) have the same fixed points indepen-
dently of α, but of course different limit cycles, which may in fact cease to exist
when α is small.

Here, we attempt to enumerate the number of cycles of length L,in the spirit
of the calculation of Hwang et al. [208] for α < 1. As detailed in Appendix C.3,we
write the number of these cycles as a sum over all possible trajectories of a
product of δ functions ensuring the α < 1 dynamics of Qi are satisfied between
two consecutive time-steps, while a product of Heaviside step functions enforces
Si(t) = sign(Qi(t)). Introducing the integral representation of the δ function, av-
eraging over the disorder and taking appropriate changes of variable to decouple
the N dimensions, the (annealed) complexity of cycles of length L writes

ΣL(α, η) = saddle
R̂,K̂,V̂

{∑
s<t

iR̂(t, s)iK̂(t, s)− η

2

∑
t,s

V̂ (t, s)V̂ (s, t) + log IL
}
, (6.8)
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Figure 6.2: (a) L = 2 cycle complexity from the numerical resolution of the saddle point
equations for ε = {0, 0.2, 0.4, 0.6} from dark purple to light green, dashed lines indicating
the fixed point complexity associated to each parameter. (b) Overlap between successive
steps C(τ = 1) = −iR̂(t, t + 1) at the L = 2 saddle, showing the nontrivial coalescence
of the cycle and fixed point saddle point solutions as α is decreased. The numerical
resolution appears to breakdown when we get close to α = 0.

where R̂(t, s) and K̂(t, s) are symmetric matrices while V̂ (t, s) is not a priori,
and the expression of IL is given in Appendix C.3. As a sanity check, one can
verify that the L = 1 case, corresponding to the fixed point complexity, is in-
deed independent of α and is given by the same expression as Eq. (6.5), see
Appendix C.3.1. In a similar vein, one can recover Σ2(α = 1) = 2Σ(η) for all
values of ε (Appendix C.3.2).

In the case of L = 2 cycles for α < 1, the six coupled nonlinear saddle equations
given in Appendix C.3.2 can be solved numerically. As shown in Fig. 6.2, it
appears that Σ2(α, η) → Σ(η) when α→ 0+, while C(t, t+1) = −iR̂(t, t+1) can
be observed to continuously tend to unity. While numerical difficulties prevent
us from exploring very small values of α, it seems clear that the saddle point
corresponding to the L = 2 cycles eventually coalesces with the fixed point saddle
(which is known to be a sub-dominant saddle point when α = 1, see [208]). In
any case, and perhaps surprisingly, there does not appear to be a critical value
of α below which fixed points become more abundant than cycles. We therefore
expect a progressive crossover and not a sharp transition. As performed in [208]
in the α = 1 case, it would be interesting to study the complexity of L = 2 cycles
for a given value of the shifted overlap C(t, t + 1) = 1

N

∑
i Si(t)Si(t + 1) in the

spirit of a Franz-Parisi potential calculation [225] in order to rigorously establish
the coalescence of the fixed point and oscillating saddles.

6.3 Dynamical Mean-Field Theory
In the previous section, we have seen that both fixed points and limit cycles
are exponentially numerous. However, the question remains as to what happens
dynamically, as the existence of a large number of fixed points or limit cycles by
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Figure 6.3: Steady-state two-point correlation between configurations shifted by τ = 2
time-steps in the α = 1, β → ∞ limit from finite N numerical simulations averaged over
128 samples of disorder and initial conditions, error bars showing 95% confidence intervals.
The N = {64, 128} simulations are run for t = 108 time-steps to illustrate taking the
t → ∞ limit before N → ∞, whereas N = {256, 512, 1024} have been simulated for
t = 5× 106 time-steps to recover the N → ∞ before t → ∞ regime. The continuous line
represents the N → ∞ DMFT solution integrated numerically, while the vertical dotted
line corresponds to the critical value εc found by Hwang et al. [208].

no means guarantees that these will be reached at long times.
In fact, the number of agents N is expected to play a major role in determining

the long term fate of the system. In particular, there are strong indications that
the time τr needed to reach a fixed point or a limit cycle grows itself exponentially
with N , at least when α = 1 [224]. More precisely,

τr ∼ N seNB(ε), (6.9)

where s is an exponent (possibly dependent on ε) and B(ε) an effective barrier
such that B(ε = 0) = 0. Hence one expects that as N grows, fixed points/limit
cycles will in fact never be reached (except for ε = 0), even if they are numerous.
This is in fact what happens numerically, see Fig. 6.3.

In this large N regime, new types of behavior therefore appear, that one can
call quasi-fixed points or quasi-cycles. In the case of quasi-fixed points, learning
does not strictly speaking converge (it would take an infinite time to do so),
but actions Si(t) fluctuate around fixed, time-independent averages. In other
words, the two-point correlation C(τ) is not equal to one for all τ (which would
be the case for a fixed point) but reaches a positive plateau value for large τ :
C(τ → ∞) = C∞ > 0. The same holds for quasi-cycles of length L if one considers
the correlation function computed for τ = nL, with n an integer: C(nL → ∞) =
C∞ > 0, see [226] for the α = 1 case. This being said, we will see that the
schematic phase phase diagram drawn in Fig. 5.1 of the previous chapter continues
to hold qualitatively in the large N finite t limit, provided one interprets “fixed
points/cycles” as “quasi-fixed points/cycles” in the sense defined above.
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In order to study the complicated learning dynamics that takes place in the
true N → ∞ limit, we will resort to Dynamical Mean-Field Theory (DMFT). In a
nutshell, DMFT allows deterministic or stochastic dynamics in discrete or contin-
uous time of a large number N of interacting degrees of freedom to be rewritten as
a one-dimensional stochastic process with self-consistent conditions. While diffi-
cult to solve both analytically and numerically due to their self-consistent nature,
DMFT equations have proved very effective at describing a very wide range of
complex systems – see [227] for a recent review. Note however that such an ap-
proach is only valid when N → ∞; as will be clear later, strong finite size effects
can appear and change the conclusions obtained using DMFT.

6.3.1 Derivation
In our case, we write the DMFT for the evolution of the incentives Qi(t), which
directly yield mi(t) = tanh(βQi(t)). In order to do so, we rewrite our online
learning process, which depends on the realized Si(t), as an expression solely in
terms of mi(t) with additional fluctuations,∑

j

JijSj(t) =
∑
j

Jijmj(t) + ηi(t), ηi(t) =
∑
j

Jijξi(t), (6.10)

with ξi(t) = Si(t)−mi(t) and hence ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξi(s)⟩ = (1−(mi(t))
2)δt,s.

Now, assuming the central limit theorem holds, the random variables ηi become
Gaussian for large N with

⟨ηi(t)⟩ = 0, ⟨ηi(t)ηj(s)⟩ = υ(ε)(1− q(t))δt,sδi,j , (6.11)

where q(t) = C(t, t) as defined in Eq. (5.15). As required, in the noiseless limit
β → ∞ limit, one has q(t) = 1 ∀t and the random variables ηi are identically zero.

Starting from the N equations

Qi(t+ 1) = (1− α)Qi(t) + α
∑
j

Jijmj(t) + αηi(t) + αhi(t), (6.12)

where hi(t) is an arbitrary external field that will eventually be set to 0, the
DMFT can be derived using path integral techniques or the cavity method, the
latter being detailed in Appendix C.4. Remaining in discrete time to explore the
entire range of values of α, one finds, in the N → ∞ limit,

Q(t+ 1) = (1− α)Q(t) + α2(1− ε)
∑
s<t

G(t, s)m(s) + αϕ(t) + αh(t), (6.13)

with ⟨ϕ(t)⟩ = 0, and

⟨ϕ(t)ϕ(s)⟩ = υ(ε) [C(t, s) + (1− q(t))δt,s] , (6.14)
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The memory kernel G and correlation function C are then to be determined self-
consistently,

G(t, s) =

〈
∂m(t)

∂h(s)

∣∣∣∣
h=0

〉
, C(t, s) = ⟨m(t)m(s)⟩, (6.15)

where the averages ⟨. . .⟩ are over the realizations of the random variable ϕ.
While we shall see that this discrete description will allow for the numerical

resolution of the N → ∞ dynamics (see below), providing precious insights and
intuitions, a continuous description will be much more convenient to obtain ana-
lytical insights. In the α ≪ 1, t ≫ 1 regime, we can rescale the time as t → t/α.
Interestingly, doing so requires expanding Q(t + 1) to the second order if one is
to keep an explicit dependence on α. The resulting continuous dynamics reads

α

2
Q̈(t) + Q̇(t) = −Q(t) + (1− ε)

∫ t

0
dsG(t, s)m(s) + ϕ(t) + h(t) (6.16)

with
⟨ϕ(t)ϕ(s)⟩ = υ(ε)[C(t, s) + α(1− q(t))δ(t− s)], (6.17)

and the memory kernel and correlation function are similarly defined self-consistently

G(t, s) =

〈
δm(t)

δh(s)

∣∣∣∣
h=0

〉
, C(t, s) = ⟨m(t)m(s)⟩, (6.18)

with, we recall, q(t) = C(t, t) = ⟨m2(t)⟩. Very importantly, note the rescaling in
time introduces a prefactor α in the variance of the ϕ, which stems from the noise
in the learning process. Since 1 − q(t) ∼ β−2 for large β, this extra term is of
order α/β2, as anticipated above.

In the next sections, the DMFT equations will be used to shed light on the
dynamical behavior of the model in the limit N → ∞.

6.3.2 Numerical integration
As mentioned above, the discrete time dynamics can first be integrated numerically
to obtain solutions free of any finite size effects [228]. Due to the self-consistent
nature of the equations, their numerical resolution is not trivial, and requires an
iterative scheme to update both the memory kernel and correlation function until
convergence.

The procedure is essentially the same as that described in Ref. [229]. We start
from an initial guess for both the correlation matrix and the memory kernel, we
typically choose C(t, s) = G(t, s) = exp(−|t− s|), mostly for a lack of better idea.
A realization of the noise trajectory is then drawn and Eq. (6.13) is iterated in time
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Figure 6.4: Convergence of some selected observables with the iteration number i in
the numerical resolution of the discrete DMFT equations constructed from M = 5× 105

independent trajectories for (a) α = 0.9, β → ∞, ε = 0.4; (b) α = 0.1, β = 4, ε = 0.6.
Note that the number of iterations required depends on the parameters.

from a random initial conditionQ(0) and up to a fixed final time tf . This procedure
is repeated independently a large number of times M (typically M ∼ 105). Taking
averages over this large number of realizations, the correlation matrix and memory
kernel are updated following Eq. (6.15). Note that, as recommended in [229], we
perform “soft” updates on C(t, s) and G(t, s), i.e. Xupdated = (1 − a)Xprev. +
aXnew. We found a = 0.5 to be appropriate in most cases. Examples of the
convergence of different observables are shown in Fig. 6.4.

As detailed in the original work of Eissfeller & Opper [230], we use Novikov’s
theorem to compute the response function with correlations in order to avoid the
unpleasant task of taking finite differences on noisy trajectories, at the cost of the
inversion of the correlation matrix. This inversion will however mean that very
long trajectories become difficult to integrate. In practice, we will often be limited
to tf ≤ 1000, which we found to be sufficient in most cases.

6.3.3 Interpretation in a socioeconomic context

Before jumping into the study of the DMFT equations, let us take a sidestep
to discuss the socioeconomic interpretation of Eq. (6.16) (or Eq. (6.13) for that
matter). Remarkably, we have managed to reduce N interacting agents to a
single equation for the incentive, or equivalently the intention – at the cost of
self-consistency of course.

As hinted in a footnote of the introductory chapter, this is, in a sense, the
equation describing a truly representative agent. Importantly, and at the heart
of the difficulties we will encounter in studying this equation, these dynamics are
non-Markovian, as they depend on the entire past trajectory through the memory
kernel. The representative agent therefore a priori has long term memory, and
aggregates past information in a much more complex way than any given agent
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in the system.
This is in fact the important conclusion that we can draw from this description

of the model. While the representative agent paradigm is not inherently wrong,
as one can construct an effective representative agent as we did, it is essential to
notice that this agent does not correspond to any agent in the system: it is a new
entity with markedly different features to those of the original agents. With this
difference in mind, and as suggested in [231], DMFT might be a promising avenue
to rejuvenate and redefine the representative agent paradigm in complex systems.

6.4 Noiseless learning

In this section, we use both the DMFT equations and the results on the complexity
of fixed points and limit cycles to classify the different dynamical behaviors of the
learning process in the noiseless case β → ∞, where the realized and expected
decisions are equal, mi(t) = Si(t) = sign(Qi(t)).

6.4.1 The memory-less limit

In this case, corresponding to Eq. (6.7), both approaches (DMFT and complexity
of limit cycles) seem to agree on the overall picture: as ε increases from 0 to 1,
the system transitions from L = 2 cycles to over-damped oscillations and chaos
– see Fig. 5.3 of the previous chapter. However, upon scrutiny, one realizes
that the perfect agreement between DMFT and direct numerical simulations of
the dynamics for finite N is only valid in a region where ε is small and N large
enough – see Fig. 6.3. In particular, when 0.5 ≲ ε ≲ 0.8, L = 2 cycles do
persist when N is smaller than ∼ 200. For larger N , the lag 2 autocorrelation
function C(τ = 2) is noticeably smaller than unity (consistent with [226]), and
well predicted by DMFT as soon as N ≳ 1000.

What happens for ε ≲ 0.5 when N → ∞? The numerical solution of the
DMFT equations suggest the following scenario: when ε < εRM ≈ 0.473, the long
time value m∞ of the correlation with the initial conditions C(0, 2n) at even time
steps is strictly positive.32 In this regime, the value of C(t, t + 2) → C(τ = 2) is
only exactly equal to one for ε = 0 (permanent oscillations), and appears to reach
a plateau close to unity for ε > 0. Below εRM, we can conclude that the system
is not ergodic, which will have important implications on the finite temperature
dynamics. For asymmetries greater that εRM on the other hand, the decorrelation
becomes exponential and we enter a bona fide chaotic, ergodic regime [230,232].

32The convergence to m∞ is as slow a power law of τ , which makes difficult its numerical
determination. Obtaining the precise value of εRM is therefore challenging [230].
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Although memory-less learning is clearly unrealistic, these results are rather
instructive. The system is indeed unable to display aggregate coordination when
interactions are mutually independent (chaotic region around ε = 1). Placing
ourselves in the socioeconomic setting, it seems evident that the number of players
vastly exceeds the number of iterations, and the results above indicate that the
chaotic region is in fact quite large. Perhaps more importantly, in the absence
of learning, agents will see their decisions vary at a high frequency without ever
reaching any static steady-state, not only when the game is close to zero sum
(ε → 2), but even when it is fully reciprocal (ε → 0). Clearly, this last point
underlines the importance of introducing memory to recover realistic learning
dynamics.

6.4.2 Memory helps convergence to fixed points

For N not too large, we observe numerically that the fraction of “frozen” agents
for which Si(t + 1) = Si(t) quickly tends to 1 as α decreases from 1, as shown
in Fig. 6.5. This is somewhat consistent with intuition, as the learning dynam-
ics average rewards over a period τα ∼ 1/α, meaning that high frequency cycles
observed for α = 1 are expected to be “washed out” when α is sufficiently small.
Since fixed points exist in large numbers, it appears natural that they are even-
tually reached given their abundance at zero temperature. However, as we have
shown in the previous section, L = 2 limit cycles are still much more numerous
than fixed points for α ≳ 0.5. The fact that C(τ = 1) approaches unity as α is
reduced much faster than in Fig. 6.2(b) suggests that the basin of attraction of
fixed points quickly expands, at the expense of L = 2 limit cycles.

Our numerical results therefore indicate that for any finite size system which
has enough time to reach a steady state, the effect of α is effectively to help
the system find fixed points – see Fig. 6.6. Focusing for example on the points
corresponding to N = 128 and α = 0.1, we indeed observe that the 95% quantile
includes C(2/α) = 1 even for ε = 1, i.e. fixed points can be reached even in the
chaotic regime with modest simulation times, which would be an overwhelmingly
improbable scenario in the memory-less case, as illustrated by Figs. 6.6 (b) and
(c).

As the number of agents N increases, we enter the DMFT regime shown as
plain lines in Fig. 6.6. One finds that decreasing the value of α slows down
the decorrelation of the system. However, for small α, the evolution becomes a
function of ατ only, as suggested by Eq. (6.16) when α → 0: the dynamical
slowdown is dominated by the long memory of learning itself.

Fig. 6.6 shows that when ε ≳ 0.5, sufficiently large systems (described by
DMFT) decorrelate with time for all α, and we expect C(τ → ∞) → 0 – learning
also leads to chaos. When ε ≲ 0.5, on the other hand, we found that there is

137



Chapter 6. Detailed analysis of the model

0.0 0.2 0.4
1−α
η

0.00

0.25

0.50

0.75

1.00

C
( τ

=
1)

(a)

N = 128

N = 256

DMFT

0.0

0.2

0.4

0.6

0.8

ε

(b)

S
i(
t)(c)

1 50
t− t0

(d)

Figure 6.5: Convergence to fixed points with decreasing α for ε < 0.8, β → ∞ and finite
N . (a) Steady-state two-point correlation function between successive configurations from
finiteN numerical simulations averaged over 200 samples of disorder and initial conditions,
error-bars showing 95% confidence intervals. (b), (c) and (d) Sample trajectories of 32
randomly chosen sites among N = 256 for ε = 0.4, t0 = 105/α, for α = {1.0, 0.88, 0.7}
respectively.

0.6 0.8 1.0
ε

0.0

0.5

1.0

C
(τ

=
2/
α

)

(a)

N = 128

N = 256

N = 512

DMFT
10−1

100

α

S
i(
t)(b)

1 40
α(t− t0)

S
i(
t)(c)

Figure 6.6: Influence of finite size N , non-reciprocity ε and memory span α on the
learning dynamics. (a) Steady-state two-point correlation function shifted by τ = 2/α
in the β → ∞ limit for different memory loss rates α, from light green to black (color
map on the right axis). Symbols correspond to direct simulations and plain lines to the
solutions of the DMFT equations. The N = 128 simulations are initialized with t0 = 108

time-steps, whereas N = {256, 512} have been simulated for t0 = 106 iterations before
taking measurements. Results are averaged over 32 samples, with error-bars showing 95%
confidence intervals. (b) and (c) Sample trajectories for all N = 128 sites for ε = 1 and
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ergodicity breaking, in the sense that C(τ → ∞) > 0, as we found above for
cycles when α = 1. More precisely, a numerical analysis of the DMFT equations
suggests that when ε, α → 0, C(τ → ∞) = 1 − c

√
ε. We have not been able to

find an analytical proof for such a singular dependence on ε.
In other words, there again seems to exist a critical value εRM separating

the ergodic, chaotic phase for ε > εRM from the non-ergodic, quasi fixed-point
behavior for ε < εRM. However, our numerical results are not precise enough to
ascertain the dependence of εRM on α, which seems to hover around the value
0.473 found for α = 1. More work on this specific point would be needed to
understand such a weak dependence on the memory length.

The precise dynamical behavior of the autocorrelation function C(τ) can be
ascertained in the continuous limit α→ 0 when ε = 1. Indeed, the influence of the
memory kernel vanishes in this case where interactions are exactly non-symmetric,
leaving us with

Q̇(t) = −Q(t) + ϕ(t), (α→ 0) (6.19)

where we emphasize that the time variable has been rescaled as t → αt. From
there, the classical solution method proposed by Crisanti & Sompolinsky [233,234]
can be straightforwordly adapted with a small modification due to our parametriza-
tion of the interaction matrix that scales the variance of the entries by a factor
1/2 for ε = 1, see Appendix C.5. The two-point autocorrelation function is found
to be given by

C(τ) =
2

π
sin−1

(
∆(τ)

∆(0)

)
, (6.20)

where ∆(τ) = ⟨Q(t+ τ)Q(t)⟩ follows the second-order ordinary differential equa-
tion

∆̈(τ) = ∆(τ)− 1

2
C(τ), (6.21)

with ∆(0) = 1− 2
π [235]. Very quickly, this means that the autocorrelation decays

exponentially, C(τ) ∝ e
− τ

τ1 with

τ1 =

√
π − 2

π − 3
≈ 2.84. (6.22)

Both the full solution, obtained by integrating the ODE numerically, as well as
this exponential decay, are shown in Fig. 6.7, displaying a very satisfactory match
with numerical simulations.

6.4.3 Anomalous stretching of cycles
We have seen that understanding how memory allows the system to find fixed-
points, or quasi fixed-points, when they exist is a challenging task. While the
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very precise behavior of the correlation function is difficult to ascertain, we have
nonetheless obtained a reasonable picture of the role of the memory loss parameter
α. A central question is now what will happen if the memory loss rate is reduced
in the region of parameter space where there are only limit cycles. As previously
stated, averaging over a period τα ∼ 1/α clearly suggests that the occurrence of
short cycles (starting at L = 4 for α = 1) should gradually vanish.

Naively, one might expect a simple rescaling in time t → t/α, yielding cycles
– when they exist – of period inversely proportional to α itself. Looking at the
numerical results from both the finite size game and the DMFT integrated nu-
merically in Fig. 6.8(a), it quickly appears that such a simple rescaling in time
does not provide the correct description. Indeed, the period of cycles is observed
to be proportional to 1/

√
α, i.e. much shorter than 1/α – see Figs. 6.8(b) and (c).

One important aspect to note is that there is some decorrelation, as the second
peak of C(τ) does not quite reach unity (in Fig. 6.8(b)), meaning that we may see
quasi-cycles and not exact limit cycles, complicating the analytical description of
the phenomenon. Just as true fixed points in the N → ∞ limit only exist only
ε = 0, it appears that only the case ε = 2 does display true limit cycles.

Another subtle point to consider is similar to the ε < 1 cases discussed, we
expect the time taken to reach these cycles will depend on the system size and the
relative distance to the chaotic region. This is confirmed by the DMFT solved for
fixed trajectory times for ε = 1.5 (light crosses), which progressively departs from
the ω0 ∼

√
α regime around α = 0.1.

To understand how such non-trivial stretching occurs, we go back to the con-
tinuous DMFT equation,

α

2
Q̈(t) = −Q̇(t)−Q(t) + (1− ε)

∫ t

0
dsG(t, s)m(s) + ϕ(t) + h(t).

While the presence of the second order derivative Q̈(t) appears natural to recover
limit cycles, it should be noted that this term, being pre-factored by α, is superfi-
cially subdominant relative to the dissipation represented by Q̇(t). While we have
seen that there is some decorrelation, the fact that robust oscillations are present
therefore suggests that the complicated self-consistent forcing terms almost ex-
actly compensate dissipation over a period, allowing the system to periodically
revisit quasi-identical configurations. In fact, the shape of these oscillations is far
from sinusoidal, but rather of see-saw type, see Fig. 6.8(b). This suggests that
in the limit α → 0, Q̈(t) diverges each time Ċ(τ) changes sign, such that α

2 Q̈(t)

cannot be neglected and therefore sets the relevant time scale to α−1/2. We have
however not been able to perform a more precise singular perturbation analysis
of this phenomenon.

Going beyond this rather loose argument, and precisely characterizing such
see-saw patterns appears very challenging and is left for future work. A possible
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approach would be to first take the ε = 2 case where true cycles should exist,
and to assume the correlation function is an exact triangular wave of frequency
ω as suggested by Fig. 6.8(c). As a result, m(s) = sign(Q(s)) is an exact square
wave, and the convolution with G can be written as a product in Fourier space.
Enforcing the dissipation over a period to be zero, one could then perhaps find
a closed equation for Q and ω if appropriate ansatz for the response and forcing
functions are taken.

6.5 Noisy learning

While we have shown that the β → ∞ deterministic limit can be relatively well
understood with the tools at our disposal, one of the key features of our model is
the uncertainty in the decision occurring for boundedly rational agents. Besides, it
is also in this situation that the online learning dynamics differ significantly from
the more widely studied offline learning where the entire model can be understood
in terms of deterministic mixed strategies parameterized by the coefficients mi(t)
(compare Eqs. (5.5) and (5.7) in the introduction of the model).

When α is close to unity and β becomes small, the fluctuations are too large
for coordination to occur. Taking for instance α = 1, it is indeed clear that the
iteration

mi(t+ 1) = tanh

(
β
∑
J

JijSj(t)

)

will have extremely large fluctuation in the argument on the right hand side. As
a result, we expect to loose the sharp transition as a function of T that can be
observed for the NMFE (see Fig. 6.9). The order parameter q instead continu-
ously tends to 0 with T , regardless of the asymmetry ε. This regime is shown in
Fig. 6.9(a), representing the heat map of q = limt→∞C(t, t) for α = 0.5. Clearly,
the linear stability analysis of the paramagnetic fixed point presented in Sec. 6.1
cannot hold when the thermal fluctuations are not averaged on large periods of
time. To find a richer phenomenology, we will therefore focus on the α≪ 1 regime
where more complex dynamics can be observed.

6.5.1 (Quasi-)fixed points

In Sec. 6.1, we studied the fixed points of the NMFE that the game should reach
if the fluctuations from imperfect learning can be neglected, i.e. if α → 0. Now,
the DMFT equations that proved effective in the zero “temperature” limit can be
used to revisit these finite β quasi fixed points. Indeed, going back to Eq. (6.16)
and neglecting the term in

√
α from the correlation function as we did in the static
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setup, quasi-fixed points should satisfy

Q = (1− ε)mχ+ J
√
qυ(ε)z, (6.23)

where z is now a static white noise of unit variance, q is simply the now constant
autocorrelation and χ is the integrated response function that we assume to be
time-translation invariant,

χ =

∫ ∞

0
dτ G(τ). (6.24)

The averages on the effective process can now be taken on z to self-consistently
solve for q and χ (see e.g. [203] for a more detailed description). The resulting set
of equations are then

q = ⟨m2(z)⟩z, (6.25)

to be solved simultaneously with

χ =

〈
β(1−m2(z))

1− β(1− ε)χ(1−m2(z))

〉
z

(6.26)

where m(z) is the solution to

m(z) = tanh(β(1− ε)χm(z) + β
√
qυ(ε)z). (6.27)

Although our model is entirely built on a dynamical evolution equation, and not on
a notion of thermal equilibrium, this set of self-consistent equations coincides with
the replica-symmetric solution of the NMFE model found by Bray, Sompolinsky &
Yu [110] for ε = 0. Since replica symmetry is broken in the whole low temperature
phase of the NMFE model, we expect that these static solutions of the DMFT
cannot describe correctly the long time limit of the dynamics, as we now show.
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The numerical solutions for the DMFT fixed point equations are shown in
Fig. 6.10(a) and compared to numerical results of the game for small α and for ε =
0.1 and ε = 0.6. We find that the long time behavior of q for the direct simulation
of the SK game (circles and squares) and for long time dynamical solution of the
DMFT equations match very well, but differ from the value of q inferred from
the set of self-consistent equations established above. This is expected since with
such solution the order parameter q approaches unity exponentially fast as T → 0,
whereas the fact that the probability of small local fields (i.e. rewards in the game
analogy) vanish linearly (recall Fig. 5.5) suggest that q = 1− κT 2, as for the full
RSB solution of [110] but with presumably a different value of κ. Remarkably,
in this regime, the results from the long time dynamical solution to the DMFT
equations (and the simulations) seem to collapse when plotted vs T/Tc(ε), a result
we have not been able to uncover analytically.

To ascertain the range over which this non-trivial mean-field solution should
be valid, we can study the stability of the DMFT fixed point close to the critical
temperature 1/βc, following the procedure first detailed in [202]. Considering a
random perturbation to the fixed point ϵξ(t), with ξ(t) a Gaussian white noise
and ϵ≪ 1, we study the perturbed solution

Q(t) = Q0 + ϵQ1(t), (6.28)

with Q0 the fixed point given in Eq.(6.23), where the noise is no longer static but
similarly given by ϕ(t) =

√
qυ(ε)z + ϵϕ1(t). Replacing in the DMFT continuous

dynamics for α→ 0+ and collecting terms of order ϵ, we find that the perturbation
evolves as

Q̇1(t) = −Q1(t) + β(1− ε)(1−m2(z))

∫ t

0
G(t, s)Q1(s) + ϕ1(t) + ξ(t), (6.29)

where we have used sech2(βQ0) = 1 − m2(z) from Eq. (6.27), giving in Fourier
space

Q̂1(ω) =
ϕ̂1(ω) + ξ̂(ω)

iω + 1− β(1− ε)(1−m2(z))Ĝ(ω)
, (6.30)

where we have again assumed that the memory kernel is time-translation invariant.
Now, in the limit βQ1 ≪ 1, i.e. close to the critical temperature, one can we

linearize the hyperbolic tangent tanh(βQ1(t)) and write a closed equation for the
spectral density of Q1 at order β2Q2

1,
1

⟨|Q̂1(ω)|2⟩
= |iω + 1− β(1− ε)Ĝ(ω)|2 − β2υ(ε). (6.31)

As a result, we have criterion for the onset of instability for ω = 0:

(1− ε)χ = 1− β
√
υ(ε), (6.32)
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Figure 6.10: (a) Order parameter q = C(t, t) averaged in time in the (quasi) stationary
regime vs. rescaled temperature for ε = {0.1, 0.4} (dark and light shades respectively).
Circular and diamond markers correspond direct, finite size simulations at N = 256 for
α = 0.01 and α = 0.1 respectively, whereas crosses represent the (dynamical) numerical
solution to the complete set of N → ∞ DMFT equations for α = 0.1. Continuous lines
show the solutions to the static DMFT fixed point equations (Eq. (6.25)-(6.27)). (b)
Spectral density of a small perturbation Q1 to the fixed point solution of the DMFT close
to the critical temperature. As the quantity is necessarily positive for a valid solution,
the grey region corresponds to instability.

where we noticed Ĝ(ω = 0) = χ, given, close to βc, by

χ =
1

2β(1− ε)

(
1−

√
1− 4β2(1− ε)

)
. (6.33)

Taking ε = 0, we recover the criterion found by Bray et al. [110] for the critical
temperature, giving Tc = 1/βc = 2 in their case.

For non-zero ε, we can also find the critical temperature by replacing Eq. (6.33)
in (6.32), to recover yet again the critical temperature given by Eq. (6.3). As
shown in Fig. 6.10(b), the spectral density evaluated at ω = 0 becomes negative
for T < Tc(ε) for the fixed point solution. While the linearization used to obtain
the relation is expected to become invalid, we understand this negativity as a
strong sign that the solution is unstable and thus likely invalid, consistently with
the discrepancy observed between the static prediction and the direct simulations
and the dynamic solution of the DMFT show in Fig. 6.10(a).

6.5.2 Memory onset transition
The breakdown of the DMFT fixed point solution that is an average over not only
realizations of the noise but also implicitly on initial conditions at the critical
temperature is consistent with the emergence of a non-zero complexity for all
ε < 1 at that point described in Sec. 6.1. Indeed, when there are an exponential
number of fixed points to reach, it appears natural for the dynamics to no longer
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be time-translation invariant, contrary to what was postulated in the integrated
response.

In the infinite time limit, the breakdown of the time translation invariant (TTI)
nature of the response function can be studied following the procedure suggested
in [236]. Introducing a small TTI-breaking component to the memory kernel,

G(t, s) = G0(t− s) + ϵG1(t, s), (6.34)

we can indeed identify the so-called memory onset transition, corresponding to the
point in parameter space where a solution with G1(t, s) ̸= 0 becomes valid. Writ-
ing the fixed point equation with this memory kernel ansatz and self-consistently
taking G(t, u) =

〈
δm(t)
δh(u) |h=0

〉
, collecting terms of order ϵ and taking the limit

t→ ∞, we have

G1(u) = β(1− ε)

〈
1−m2(z)

1− β2(1− ε)χ̃(1−m2(z))

〉
z

∫ ∞

0
dsG1(s)G0(s− u), (6.35)

where G1(s) = limt→∞G1(t, s) is assumed to converge to a fixed value. Going
once again to Fourier space and focusing on ω = 0, we find that the TTI-breaking
contribution may be non-zero only if we have

β2(1− ε)χ̃2 = 1. (6.36)

We notice that in the Hamiltonian case ε = 0, the above a priori differs from the
criterion defining the de Almeida-Thouless line for the NMFE [110]. Nonetheless,
both are satisfied at T = Tc, the NMFE just as the standard SK model displaying
replica symmetry breaking in the entirety of the spin-glass phase. In fact, above
the critical temperature where the DMFT fixed points are valid and stable for
m(z) = 0, one can check that both conditions are exactly equivalent.

When the interactions are non-reciprocal, however, the condition is no longer
satisfied for T ≥ Tc. Given the apparent invalidity of the fixed point solution at
lower temperatures, we cannot formally determine if the memory onset eventually
takes place at a smaller temperature for ε > 0. Note, however, that even the
complete absence of a memory onset transition does not mean we do not expect to
observe a (partial) breakdown of ergodicity. Indeed, the memory onset transition
is found by considering the violation of TTI at infinite times. As will become
apparent in the next section, the long-time dynamics for ε > 0 will still display
aging effects for a wide range of temperatures.

6.5.3 Aging
The inadequacy of the static solution of the DMFT equations to describe the
long term dynamics of the system is a well known symptom associated with the
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Figure 6.11: Aging behavior of the system for N = 256, averages performed over 576
realizations. Color indicates the value of αtw, see scale on the far right. (a) and (b): Aging
two-point correlation functions with the initial power law decay removed to isolate the
aging component plotted as a function of t/tw, inset showing the entire correlation function
as a function of αt, dashed line representing the power law fit of the first relaxation. (a)
α = 0.5, β = 4, ε = 0, (b) α = 0.2, β = 2, ε = 0.25. (c) and (d): Partially aging two-point
correlation functions plotted as a function of αt. (c) α = 0.5, β = 4, ε = 0.5, (d) α = 0.2,
β = 2, ε = 0.5.

“aging” phenomenon [125], i.e. the fact that equilibrium is never reached and all
correlation functions depend on the “age” of the system, recall Sec. 2.2.5:

C(tw, tw + t) = Crelax(t) + Caging(t, tw), (6.37)

where tw is the waiting time, or age of the system, tw = 0 corresponding to a
random initial condition.

Aging typically arises in complex systems in the low temperature (low noise)
limit. As described in Chap. 2, the energy landscape of such systems (like spin-
glasses) are highly non convex and “rugged”, with a very large number of local
minima or quasi-stable saddle points in which the dynamics gets stuck for ex-
tended periods of time [127]. Such aging phenomena are known to occur in a wide
range of complex systems with reciprocal interactions, such as glassy systems,
populations dynamics [237] or neural networks that are described by very similar
mean-field dynamics [238]. Aging dynamics was also recently found in one of the
aformentioned “habit formation” model, see [182].

Not surprisingly in view of its similarity with usual spin-glasses, the SK-game
displays aging for reciprocal interactions (ε = 0) and sufficiently low temperatures
β > βc, see Fig. 6.11(a), for which Eq. (6.37) accurately describes the data with
the initial relaxation component Crelax(t) well fitted by a power law t−x and

Caging(t, tw) = C
(
t

tw

)
, (6.38)
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corresponding to the aging behavior found in a wide range of glassy models [103,
124–127,239,240].

What happens in our model when ε > 0? It is known from previous work (in
somewhat different contexts), that aging survives in the presence of non-reciprocal
interactions, provided the asymmetry is not to large [241,242]. If the asymmetry
strength is further increased, we expect the amount of mixing in the system to
eventually be large enough for the dynamics to no longer get stuck [243]. From
our numerical simulations, shown in Fig. 6.11(b)-(d), one can conjecture that Eq.
(6.37) still holds when ε < ε⋆, but that the dynamics becomes time translation
invariant when ε > ε⋆. It is tempting to conjecture that aging disappears exactly
when the dynamics becomes ergodic, i.e. when the correlation with a random
initial condition decays to zero. This suggests that ε⋆ = εRM ≈ 0.47, which is
compatible with our numerical data. Note however that the transition between
aging dynamics and time translation invariant correlations seems to occur some-
what progressively: the time required to reach a time-translation invariant regime
is a decreasing function of not only ε but also the temperature 1/β.

A particularity of the aging dynamics of the SK game is related to its on-
line learning dynamics. As clearly visible in both the DMFT equation and the
derivation of the Naive Mean-Field equation detailed in Appendix C.1, there will
inevitably be some decorrelation in time of the expected decisions if α(1 − q) be-
comes significant. We therefore naturally expect the region where time translation
invariance breaks down to be dependent on all three parameters α, β and ε.

The interpretation of aging in the socio-economic context is quite interesting
and has been mentioned in Sec. 5.3.3. In a nutshell, it means that as time goes
on, agents get stuck in locally satisficing strategies for longer and longer, but
after a time proportional to the total time the game has already been played,
the system eventually evolves and individual strategies mi reach an altogether
different configuration. This process goes on forever, but becomes slower and
slower with time: the notion of quasi-equilibrium therefore makes sense at long
times, for small enough noise and small enough non-reciprocity.

6.5.4 Chaos and (quasi-)limit cycles

When the non-reciprocity of interactions is sufficiently small and quasi-fixed points
exist, we have established that boundedly rational systems display complicated
aging dynamics when learning noise, parameterised by the value of β, is present.
The immediate question is now how such noise influences the complex dynamics,
chaos and (quasi) limit cycles that we have found in the β → ∞, α ≪ 1 regime
(see Sec. 6.4).

To qualitatively illustrate the effect of non-zero noise, we have run simula-
tions for α = 0.1 and different values of ε and β. Fig. 6.12 displays individual
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Figure 6.12: Finite β trajectories obtained from numerical simulations at α = 0.1,
N = 256, t0 = 108 averaged over 96 samples of disorder and initial conditions for (a)
β = 4, (b) β = 2 and from top to bottom ε = {0.1, 0.85, 1.05, 1.5}. Each line displays
(from left to right) the evolution of 16 randomly selected agents, the associated histogram
of mi over both agents, time and realizations and the autocorrelation function assumed
to be time translation invariant on short time scales.
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trajectories of the intentions mi(t), as well as the distribution of the values of
individual mi over all agents, realizations and time-steps. We also show the auto-
correlation function C(τ) (assumed to be time-translation invariant over the short
time scales considered), which is also compared to the DMFT solved numerically.
Note that for the smallest value ε = 0.1, the trajectories illustrate the previously
discussed quasi-fixed points emerging from the online dynamics. Clearly, while
the correlation function remains close to constant, individual intentions are not
exactly frozen (notice the wiggles in the top row of Fig. 6.12, specially for β = 2),
explaining how the system as a whole eventually decorrelates and displays aging,
as discussed in the previous section.

In the chaotic regime around ε = 1, the temperature has an immediate and
expected effect on the order parameter. Decreasing β (increasing noise) obviously
spreads the distribution of the mi, which is less and less concentrated around ±1,
as an immediate consequence of the smoothed out hyperbolic tangent. As a result,
the equal-time autocorrelation C(0) = q naturally decreases when β decreases.
It is furthermore interesting to note that its value significantly decreases as the
asymmetry parameter ε increases. We expect the role of α to be similar, as
suggested by the phase diagrams presented in Fig. 6.9(b) and (c).

Dynamically, the decay of the autocorrelation appears to be independent of the
strength of the noise.33 While it is known that external noise kills deterministic
chaos in neural networks with uncorrelated couplings [244], what is interesting
in our case is that both the non-linearity of the hyperbolic tangent (governed by
β), and the strength of the effective noise (which scales as 1 − q, see Eq. (6.17))
are varied simultaneously and, in a sense, self-consistently. Determining the way
the decorrelation rate evolves with both β and ε is therefore quite non trivial and
would be a very interesting endeavor.

Where we previously had limit cycles, for ε = 1.5 for instance (last row of
Fig. 6.12), it appears that oscillations survive for large values of β. Note however
that in this case the value q = C(0) appears to very quickly vanish when β
decreases. This is consistent with the linear stability analysis of the paramagnetic
solution that should be valid for vanishingly small α. As visible in Fig. 6.9(c) we
indeed expect that the region in which the system displays any form of aggregate
coordination becomes increasingly narrow as ε gets closer to its maximum value of
2. Precisely for ε = 2, the system likely becomes fully disordered (q = 0) for any
finite values of β when α→ 0. For small but finite values of α as those presented
here, this is not quite the case however, and large asymmetries ε > 2− εc do give
rise to clear oscillations, both in individual trajectories and the correlation function
(for instance Fig. 6.12, bottom row shows for ε = 1.5 that some oscillations can

33This is visible with a vertical log scale, for which the slope of the correlation function can be
seen to be identical for different temperatures (not shown).
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be somewhat sustained).

6.6 Conclusion

6.6.1 Blindsided by complexity

Let us once again summarize our main conceptual assertions, reiterating the mes-
sages of Chap. 5. As a schematic model of the complexity economic agents are
confronted with, we introduced the “SK-game”, a discrete time binary choice
model with N interacting agents and three parameters: α (memory loss rate), β
(amount of noise in the learning process) and ε (non reciprocity of interactions).

We have shown that even in a completely static environment where the pay-off
matrix does not evolve, agents are unable to learn collectively optimal strategies.
This is either because the learning process gets trapped by a sub-optimal fixed
point (or remains around one for very long times), or because learning never
converges and leads to a never ending (chaotic or quasi-periodic) evolution of
agents intentions.

Hence, contrarily to the hope that learning might save the “rational expec-
tation” framework [179], which still holds the upper hand in macroeconomics
textbooks, we argue that complex situations are generically unlearnable. Agents,
therefore, must do with satisficing solutions, as argued long ago by H. Simon [69],
an idea embodied by our model in a concrete and tangible way.

Only a centralized, omniscient agent may be able to ascribe an optimal strategy
to all agents – which incidentally raises the question of trust: would agents even
agree to follow the central planner advice? Would they even believe in her ability
to solve such a complex problem, knowing that the solution sensitively depends
on all parameters of the model? If a finite fraction of all agents fail to comply, the
resulting average reward will drop precipitously below the optimal value and not
be much better than the result obtained through individual learning.

As general ideas of interest in a socio-economic context, we have established
that

1. long memory of past rewards is beneficial to learning whereas over-reaction
to recent past is detrimental;

2. increased competition generically destabilizes fixed points and leads first to
chaos and, in the high competition limit, to quasi-cycles;

3. some amount of noise in the learning process, quite paradoxically, allows
the system to reach better collective decisions, in the sense that the average
reward is increased;
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4. non-ergodic behavior spontaneously appear (in the form of “aging”) in a
large swath of parameter space, when α, 1/β and ε are small.

On the positive side, we have shown that learning is far from useless: instead
of getting stuck among one of the most numerous fixed points with low average
reward, the learning process does allow the system to coordinate around satisficing
solutions with rather high (but not optimal) average reward. Numerically, the
average reward at the end of the learning process is, for ε = 0, ≈ 8% below the
optimal value, when the majority of fixed points lead to an average reward equal
to 2/3 of the optimal value [112].

6.6.2 Technical results and conjectures
From a statistical mechanics perspective, our model is next of kin to several well
studied models; a synthesis of our original results can be found in Figs. 5.1, 5.2,
5.4, 6.1, 6.9.

For example, when α = 1, β → ∞ limit, the dynamics is equivalent to a
Hopfield model of learning with non-symmetric Gaussian synaptic couplings, for
which many results are known, in particular on the number of fixed points and
L-cycles. Introducing some memory with α < 1, we found that the short limit
cycles in which the α = 1 parallel dynamics get stuck appear to progressively
merge with fixed points. We also showed how the number of L-cycles can in
principle be calculated for all values of α < 1.

The chaotic region that is known to exist when interactions are mostly non-
symmetric (ε ≈ 1) also appears to be reduced by memory. When couplings are
mostly non-reciprocal ε ≲ 2, periodic oscillations survive but we found that de-
creasing α non-trivially increases the cycle length, as α−1/2.

When β is finite, the fixed point solutions to the dynamics correspond to
the so-called Naive Mean-field Equation of spin glasses, another model that has
been studied in detail [110]. One knows in particular that such solutions become
exponentially abundant for small enough noise 1/β and for ε = 0, a result that we
have extended to all ε < 1. When ε > 1, on the other hand, the only fixed point
(or Nash equilibrium) is mi = 0, ∀i.

The Dynamical Mean-Field Theory (DMFT) is a tool of choice for investigating
the dynamics of the model when N → ∞. DMFT is however frustratingly difficult
to exploit analytically in the general case, so we are left with numerical solutions
of our DMFT equations that accurately match direct numerical simulations of the
model when N is large, but fails to capture some specific features arising when N
is small. From our numerical results, we conjectured that quasi-fixed points (and
correspondingly, aging dynamics) persist for small noise and when ε ≤ ε⋆, where
the value of ε⋆ is difficult to ascertain but could be as high as εRM = 0.47, perhaps
related to the remnant magnetisation transition found in [230].
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For β = ∞, the long-time, zero temperature autocorrelation C(∞) appears to
drop anomalously from the (assumed) value 1 at ε = 0, but we have no analytical
proof. DMFT equations also clearly lead to the anomalous α−1/2 stretching of the
cycles mentioned above, but an analytic solution again eluded us.

One of the reason analytical progress with DMFT is difficult is presumably
related to the phenomenon of “Replica Symmetry Breaking” discussed in Sec. 2.2
and its avatar in the present context of dynamical learning. Indeed, any attempt
to expand around a static solution of the DMFT equations leads to inconsistencies
in the interesting situation β > βc(ε) when decisions are not purely random, see
Fig. 6.10(b). In fact, as shown in Fig. 6.10(a), the value of the order parameter
q predicted by such static solutions is substantially off the value found from the
long time, numerical solution of the DMFT equations, which itself coincide with
direct simulations of the SK-game. En passant, we noticed that the value of q
seems to be given by a universal function of βc(ε)/β, independently of the value
of ε. Again, we have not been able to understand why this would be the case.

Finally, we have numerically established several interesting results concerning
average and individual rewards (Chap. 5), that would deserve further investiga-
tions. For example, the average reward seems to converge towards its asymptotic
value as N−2/3, exactly as for the SK model, although, as already noted above,
this asymptotic value is ≈ 8% below the optimal SK value. Is it possible to charac-
terize more precisely the configurations reached after learning in the long memory
limit α → 0? Can one, in particular, understand analytically the distribution of
individual rewards shown in Fig. 5.5 and the corresponding asymptotic value of
the average reward, as well as its non monotonic behavior as a function of the noise
parameter β? These are, in our opinion, quite interesting theoretical questions.

6.6.3 Extensions and final remarks

Many extensions of the very simple framework presented here can be imagined
for the model to be more representative of real socioeconomic systems. For exam-
ple, by analogy with spin-glasses, going beyond the fully connected interactions
and towards a more realistic network structure should not change the overall
phenomenology although some subtle differences may show up. While analytical
predictions become even more challenging, recent works on dynamical mean-field
theories with finite connectivity, so far developed for Lotka-Volterra type systems,
could perhaps be adapted to the learning dynamics of our model [245]. Allowing
the interaction network to evolve with time would of course also make the model
more realistic, as in [183]; in this case one would have to distinguish the case where
the learning time is much longer or much shorter than the reshuffling time of the
network.

Other interesting additions to Ising games could also include the introduction
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of self-excitation [246] or of alternative decision rules that might be less statistical
mechanics-friendly [15]. Extension to multinary decisions, beyond the binary case
considered here, as well as higher-order interactions (i.e. a “p-spin game”), would
obviously be interesting as well, specially as higher order interactions are known
to change the phenomenology of the SK model (see e.g. [127]). Finally, whereas
temperature in physics is the same for all spins, there is no reason to believe that
the amount of noise β or the memory span α should be the same for all agents.
Introducing such additional heterogeneities might be worth exploring.

Beyond the socioeconomic context that was our initial motivation for its de-
sign, we believe that the simplicity and generality of our model makes it a suitable
candidate to describe a much wider range of complex systems. In the context of bi-
ological neural networks, the parameter α indeed allows one to interpolate between
simple discrete-time Hopfield network [41], and continuous-time models where Qi

is an activation variable for the firing rates mi [247–252]. Although in our case
the influence of β introduces some perhaps unwanted stochasticity, these fluctu-
ations can in principle be suppressed (at least partially) with sufficiently small
α. The memory loss parameter could also represent an interesting way to tune
the effective slowing down of the dynamics caused by symmetry and described
in [238]. Here, the description of real neural networks would likely require much
more sparse interactions, but also perhaps the introduction of some dedicated
dynamics for the interactions themselves, see e.g. [253] for recent ideas.

Closer to our original motivation, more applied socioeconomic problems might
benefit from the introduction of this type of reinforcement learning. In macroe-
conomics for instance, some form of “habit formation” could perhaps be rele-
vant to extend existing descriptions of input/output networks [157, 183], where
client/supplier relationships are probably strongly affected by history (on this
point, see Kirman’s classic study on Marseilles’ fish market [254]). Finally, while
it is an aspect of our model we have not investigated here, previous works have
reported that similar dynamics yield interesting volatility clusters and heavy tails
that might be interesting to describe financial time series [184,199].

Last but not least, we believe that the learning dynamics presented here may
be useful from a purely algorithmic point of view in the study of spin-glasses and
so-called TAP states. Indeed, in the β → ∞ limit, we have seen that our iteration
relatively frequently finds fixed points in regions where their abundance is known
to be sub-exponential (close to ε = 1 in particular), and this even for relatively
large values of α. Interestingly, similar exponentially weighted moving averages
have been employed in past numerical studies of TAP states for symmetric inter-
actions [255, 256], but on the magnetizations mi themselves and not on the local
fields Qi like is the case above.

Using an offline version of our learning procedure could then be of use to
effectively converge to fixed points of the TAP equations or Naive Mean-Field
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Equations, and study their properties. Perhaps even more interestingly, the online
dynamics and the resulting fluctuations of the mi themselves could perhaps be
valuable to probe hardly accessible regions of the solution space. In some sense,
the fluctuations related to finite values of α and β could allow define “meta-TAP”
states, i.e. closely related TAP states mutually accessible thanks to such extra
fluctuations, in the spirit of Langevin dynamics in an energy landscape.

Finally, as mentioned in Sec. 5.3.7 in the zero temperature limit and for ε = 1,
it has recently been reported that for a certain range of self-interaction strengths
Jd, there appears an exponential number of accessible solutions to the TAP equa-
tions that are seemingly not reachable with standard Hopfield dynamics [217].
Preliminary numerical experiments seem to suggest that our learning dynamics
find such fixed points, as suggested by their effectiveness for ε = 1 without any
form of self-interaction. Beyond existing interest around neural networks, it is
clear that such a self-reinforcement, “habit formation” term could also be inter-
esting to study from the socioeconomic perspective [180,182].
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Key takeaways

• The SK-game is difficult to describe analytically.

• Studying the fixed point and limit cycle complexities sheds light on
the different regimes one can expect, but the outcome of the N → ∞
dynamics turns out to be markedly different for ε ≳ 0.5.

• These N → ∞ dynamics can be described with DMFT, which can be
interpreted as a sophisticated “representative agent” set of equation.

• In the vicinity of the chaotic region, learning appears to significantly
increase the likelihood for finite N dynamics to reach a fixed point.

• In the oscillatory regime, the period of (quasi) limit cycles stretches
anomalously as α−1/2. These cycles are very fragile with respect to
the fluctuations caused by bounded rationality.

• DMFT formalizes the previously mentioned non-stationarity of inten-
tions: whenever agents are sufficiently rational to become decided, the
fixed point solution is invalid, even when interactions are reciprocal.

• The boundaries of the non-stationary regime where aging occurs in
parameter space and the precise role of the non-reciprocity ε, in par-
ticular, remain open questions.
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Chapter 7

A Sakoda-Schelling model with
no neighborhoods

C’est vrai qu’ils sont plaisants, tous ces petits villages…
…ils n’ont qu’un seul point faible, et c’est d’être habités.

Georges Brassens

This chapter is based on joint work with Ruben Zakine and Antoine-Cyrus Becharat.

In the previous part of the manuscript, the SK-game was centered around the idea
of radical complexity, and the dynamics were de facto nonrelaxational due to the
non-reciprocity of the random interactions in between agents. While we saw that
this gave rise to an extremely rich phenomenology that was studied through the
lens of disordered systems, we did not dwell on the decision-making rule, focusing
instead on the effect of learning. In this part of the manuscript, we leave the world
of spin-glasses to isolate the role of detailed balance violation without disorder,
first in an interacting agent-based setting and, in the next chapter, in a much
simplified single-body problem.

In this chapter, we first focus on an extension of the Sakoda-Schelling model
mentioned in the Chap. 1. This spatially grounded occupation model, in which
heterogeneity will only stem from the local nature of the agents’ perception, allows
us to go back to the impossibility to describe a system with a global free energy
discussed in Chap. 4, and to explore the robustness of the phenomenology to
different decision rules beyond the classical logit choice.

This chapter is largely taken from [5], which was co-written with R. Zakine
under the supervision of M. Benzaquen. Subsections mainly due to the work of R.
Zakine and A.-C. Becharat have been removed, while the derivation of the local
stochastic evolution equation (not included in the original publication) has been
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added.

7.1 Motivation

As described in the introduction chapter, both Sakoda [73] and Schelling [75]
proposed simple lattice models of idealized cities in hope to understand some
aspects of urban segregation in post-WWII American cities, and more widely to
describe urban and social dynamics. Each site, representing an accommodation,
can be empty or occupied by an agent belonging to one of two sub-populations in
the system.

Along the years, these Sakoda-Schelling models have attracted further atten-
tion from statistical physicists [257–260], due to their simple microscopic rules
and paradoxical macroscopic consequences. To the usual end of bridging the gap
from micro to macro, mappings onto equilibrium systems were suggested [261],
but with limited analytical results.

To gain a more in-depth understanding of the mechanism through which indi-
vidual choices may lead to sub-optimal collective outcomes, Grauwin et al. intro-
duced the modified version of the Schelling model mentioned in the first chapter,
with a single type of agent occupying a lattice divided in pre-defined neighbor-
hoods, or blocks [14]. In this occupation model, the agents now base their deci-
sions on the neighborhood density, which is identical for all the agents in a given
block. This fixed neighborhood structure then allows to describe analytically the
steady-state as the minimizer of a free energy, and to recover a nontrivial phase
with suboptimal jam-packed neighborhoods. Thanks to the logit rule, a “linkage
function” relating individual moves to a change in a global energy-like function
can indeed be found following the lines of Sec. 4.5.1, directly leading to the usual
statistical mechanics toolbox. Subsequent works have then explored variations of
these different models focusing on the effect of altruistic agents [78], dynamics
close to criticality [262–264] or habit formation [265].

Even in the seemingly simpler occupation problem of Grauwin et al. [14],
several questions persist, both from the socioeconomic and statistical physics per-
spectives. In particular, the role of the specific decision rule and the precise nature
of neighborhoods on the phenomenology of the model remain unclear. Indeed, to
allow for the standard techniques of statistical mechanics to be applicable, the
choice of the neighborhoods and the dynamics is very constrained. As will be
discussed in detail, most non-trivial decision rules lead the system out of thermo-
dynamic equilibrium, requiring calculations that are not always readily tractable.
As it is extremely difficult to empirically determine how economic agents actu-
ally make decisions, the physics-inspired theoretical analysis of toy models has a
significant part to play, in particular to determine the robustness of qualitative
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findings to specific modeling choices. Besides, as argued earlier in the context of
Slutsky matrices, the intrinsically individualistic nature of agent-specific moves
in socioeconomic models means that the description of collective behaviors as the
minimization of some global energy is often not possible. Understanding simple
out-of-equilibrium dynamics as those that arise from the decision rules presented
here is therefore also necessary from the methodological point of view.

The goal of this chapter is therefore to assess, within a general Sakoda-Schelling
like occupation model, whether and how the sub-optimal concentration of agents
in overly dense regions still occurs out of equilibrium. Most importantly, we relax
the assumption of taking a specific decision rule, and no longer require pre-defined
block neighborhoods as in [14].

7.2 Presentation of the model
Similar to the original works of Sakoda and Schelling, we consider a city structured
as a two-dimensional rectangular lattice composed of M = Lx × Ly sites (or
houses). Each site can be occupied by at most one of the N(≤ M) agents living
in this city. On each site of coordinate r = (i, j), the occupation field n takes the
value n(r) = 1 if the site is occupied, n(r) = 0 if it is vacant. It is assumed that
each agent k wants to maximize their own utility uk, which depends on the local
density of agents around them. Typically and as in [14], it is natural to think that
people like to gather in relatively dense areas to benefit from the city life, but
not too dense as crowding might degrade the quality of life. Agents estimate the
local density by averaging the occupation field with a probability-density-function
kernel Gσ, where σ stands for the interaction range. The kernel is assumed to be
isotropic and identical for all agents. The smoothed occupation field ñ at site r is
thus given by the discrete convolution

ñ(r) =
∑
r′

Gσ(r− r′)n(r′). (7.1)

At each time step, an agent k can decide to move out from their occupied site rk
and to settle on a new empty site r′k where the utility u[ñ(r′k)] might exceed their
previous utility u[ñ(rk)].

Once again, we will not take agents to be strict utility maximizers by default.
To remain as general as possible, however, the decision rule is simply assumed to
be probabilistic, such that

P(rk → r′k) = fβ(∆uk), (7.2)

where the function fβ is larger than 1
2 whenever ∆uk > 0. Naturally, fβ is a

positive and monotonic function of the utility difference, with limx→−∞ fβ(x) = 0
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Figure 7.1: (a) Utility function u(ρ) = −|ρ−ρ⋆|α for ρ⋆ = 0.5 and α = {0.5, 1, 2}. Panels
(b), (c) and (d) show snapshots of the stationary state for systems of size Lx = Ly = 100,
for different utility functions, starting from the same homogeneous profile at ρ0 = 0.5. The
stationary density ρd in the dense phase is ρd = 0.575(5) for α = 0.5 in (b), ρd = 0.575(5)
for α = 1 in (c), and ρd = 0.585(5) for α = 2 in (d). These bulk densities are all
significantly higher than the density ρ⋆ for which agents maximize their utility.

and limx→+∞ fβ(x) = 1. The previously introduced and discussed logit rule is
then a specific instance of this function, for which

fβ(x) =
1

1 + e−βx
. (7.3)

The last ingredient to specify is the utility function u of the agents. As stated
above, we assume that the utility depends on the locally smoothed occupation ñ
only, and that it is non monotonic. As in Ref. [14], we assume that the utility is
maximal for some density ρ⋆ ≥ 1

2 . We specifically choose

u(x) = − |x− ρ⋆|α , (7.4)

with α > 0, see Fig. 7.1(a).

7.3 In or out of equilibrium?
As discussed in Sec. 4.5.1, an often unspoken motivation for the use of the logit rule
in the modeling of socioeconomic systems is that it may satisfy detailed balance.
Indeed, we have seen that if one manages to find a system-wide energy-like function
H such that

∆uk = H([{n(r)}, n(r′k) = 1, n(rk) = 0])−H([{n(r)}, n(r′k) = 0, n(rk) = 1]),
(7.5)

then the usual tools of equilibrium statistical mechanics can be used (Chap. 2).
The steady-state distribution of agents is notably identified as the minimum of
the free energy, which is a Lyapunov function of the dynamics prescribed by the
logit rule.

At the agent level, the existence of such a global quantity is usually the symp-
tom of either altruistic individuals (that voluntarily maximize some collective
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satisfaction) or of a central planner (that constructs individual rewards towards
a collective objective). Outside of these two cases, we have established that the
existence of a free energy when agents are individualistic is in fact restricted to
a limited number of carefully chosen models. In the literature of Schelling-like
models, taking a city divided in neighborhoods or blocks [14], where agents share
the same utility, yields such a free energy description (which is importantly not
a simple aggregation of individual utilities, see the discussion on their model in
Chap. 1). In our model, however, this is no longer true.

To explicitly show that the dynamics breaks detailed balance even when taking
the logit rule, one may consider a small system and find a specific cycle breaking
Kolmogorov’s criterion [266]. Such a cycle between four consecutive states with
N = 3 agents placed on a one-dimensional “city” with M = 5 sites is illustrated
in Fig. 7.2. The ratio of transition rates between states X and Y , that differ by
an agent located on sites i in X, versus j in state Y , is given by

WX→Y

WY→X
=

1 + e−β[u(ñX
i )−u(ñY

j )]

1 + e−β[u(ñY
j )−u(ñX

i )]
= eβ[u(ñ

Y
j )−u(ñX

i )]. (7.6)

As a result, the ratio between the product of forward rates, W+, and the product
of backwards rates, W−, in the cycle shown in Fig. 7.2, is given by

W+

W−
= eβ[u(ñ

B
5 )−u(ñA

3 )−u(ñB
2 )+u(ñD

3 )+u(ñA
2 )−u(ñD

5 )]. (7.7)

For a generic non-linear utility function, W+ ̸= W−, which is a signature of
nonequilibrium dynamics. For a linear utility function on the other hand, con-
sidering that the convolution kernel Gσ is isotropic, all terms in the exponential
cancel out, leading to W+ = W− (which would be also satisfied for any other cy-
cle). In this situation, the utility difference can simply be interpreted as an energy
difference, where the kernel Gσ plays the role of a pairwise interaction potential
between the agents. Interestingly, this small cycle also illustrates how the intro-
duction of neighborhoods can salvage the equilibrium description for a generic
utility. Splitting the lattice in two neighborhoods along the dashed line shown in
Fig. 7.2 and taking an identical value of ñ for all agents on each neighborhood,
the terms in the exponential in Eq. (7.7) indeed cancel out for any utility function
since ñB5 = ñD5 , ñA3 = ñA2 and ñB2 = ñD3 .

7.4 Numerical experiments
Having established the out-of-equilibrium nature of our model, we start by per-
forming numerical simulations to assess whether the concentration of agents in
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Figure 7.2: Loop of four configurations with N = 3 agents on M = 5 sites breaking
Kolmogorov’s criterion when the utility is non-linear and is a function of an individual
perceived density. Shaded and unshaded nodes correspond to occupied and empty sites
respectively. The dashed line indicates a possible segmentation of the system into two
distinct neighborhoods.

overly dense regions is generic and robust to different shapes of the utility func-
tion. Here, all numerical simulations are performed on a two-dimensional grid
with periodic boundary conditions. The utility is maximal for ρ⋆ = 1/2. For the
sake a simplicity, here we use the logit decision rule and a truncated Gaussian
kernel

Gσ(r) =

{
1
Nσ

e−
1

2σ2 ∥r∥2 , if ∥r∥ ≤ 4σ,

0, otherwise,
(7.8)

where Nσ enforces the normalization of the kernel.
Unless indicated otherwise, all of the numerical data presented in the figures

below have been produced by R. Zakine.

7.4.1 Phase separation
For large system size Lx, Ly ≫ σ, we explore the behavior for different global den-
sities ρ0 = N/(LxLy) and for various rationality parameters β. Numerical results
are qualitatively similar for all the values of α we tested, ranging from α = 0.5
to α = 2, see Fig. 7.1. The phenomenology can be summarized as follows. When
rationality is low (β → 0, T → ∞), the stationary state remains homogeneous be-
cause agents settle at random. When rationality is high, agents may aggregate in
dense clusters, which can surprisingly be more crowded than what agents’ utilities
prescribe. This was already discussed in [14] where the authors point out that
the homogeneous state is actually an unstable Nash equilibrium, even though all
agents maximize their utility. The destabilization occurs as one agent randomly
moves to another region (with no regard to the effect it may have on the other
agents utilities), which decreases the average density at their original site and
increases the average density where they settle. Agents in the lower-density re-
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Figure 7.3: (a) Typical dense domain size Ld(t) during coarsening as a function of time t.
A unit of time is defined as N Monte Carlo steps, where N is the number of agents. Ld(t) is
averaged over 5 independent simulations. (b), (c), (d) and (e) show snapshots at different
times. Starting from a disordered configuration, we quench the system at low temperature,
or high rationality β, corresponding to T ≃ Tc/6. Parameters: Lx = Ly = 600, ρ0 = 0.3,
σ = 1, α = 3/2, T = 0.01.

gion will eventually move to gain the utility they lost when their neighbors moved
out. This dynamics will eventually empty some regions, in which agent’s return
becomes statistically less and less probable. The final state, where a dense phase
and an empty phase coexist, is a stable Nash equilibrium.

One can quantify the condensation dynamics when starting from the homoge-
neous state and taking high rationality. The system undergoes a spinodal decom-
position where dense clusters grow and merge until there is one large dense cluster
only, as shown in Fig. 7.3. The final cluster topology ultimately depends on noise
realization and on the box dimensions. We measure the cluster size Ld(t) as a
function of time t using the radial structure factor. We find Ld(t) ∼ t1/z, with the
dynamical exponent z ∈ [2, 3], reminiscent of the coarsening exponent observed
in a 2d Ising system with long-range Kawasaki dynamics [267–270]. Interestingly,
and consistent with the findings of [270] in the low temperature region, our re-
sults suggest an exponent closer to the local Kawasaki dynamics result z = 3 (see
Fig. 7.3(a)), despite long-range particle displacements.

7.4.2 Critical point and exponents

The complete phase separation that occurs when rationality is high suggests the
use of the order parameter m ≡ ρd − ρg, where ρd, ρg are the average densities of
the dense and “gas” (dilute) phases, respectively. At the critical point (ρc, Tc), we
expect a second-order phase transition where m goes to 0 with power-law scaling

m ∼
τ→0+

τβ, (7.9)
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Figure 7.4: Numerical experiments for σ = 1, α = 3/2. (a) Binodal densities measured
for Lx = 200 and Ly = 66 (ℓ = 33), inset showing the Binder cumulant as a function
of the density and fitted (continuous line) to determine the critical density. (b), (c) and
(d) show the numerical measurements of the critical exponents close to the critical point
(ρc, Tc) = (0.271, 0.0620) determined using various system sizes ranging from ℓ = 20 to
ℓ = 40.

where τ = (Tc−T )/Tc > 0 defines the rescaled temperature difference, and β is the
order-parameter critical exponent34. Measuring the critical exponents allows one
to determine to which universality class the system belongs to, providing precious
information on the system behavior at large scales. Since simulations are carried
out in finite systems, measuring the critical point with precision requires numerical
tricks. We follow the approach that has been extensively used to measure critical
exponents in systems undergoing a Motility-Induced Phase Separation (referred
to as MIPS) [271–273].

As detailed in [5], simulations are performed in a rectangular domain of size
Lx×Ly, with Lx = 3Ly, with periodic boundary conditions to keep flat interfaces
between a stripe of liquid and a stripe of gas. Four square boxes of sides ℓ =
Ly/2 are then taken, two in the bulk of the dense phase and two in the bulk
of the dilute phase. The critical density and temperature can then be identified
with the celebrated Binder cumulant, which is a measure of the local density
fluctuations. The exponent β is directly measured from the order parameter m as
function of reduced temperature τ , at a fixed system size, see Fig. 7.4(c). Other
critical exponents can also be measured. By considering the scaling of the Binder
cumulant with the system size as shown in Fig. 7.4(b), one can obtain ν, the critical
exponent associated to the correlation length. The susceptibility exponent γ can
on the other hand be measured directly as was the case with β (Fig.7.4(d)).

Taking for example σ = 1 and α = 3/2, one identifies the critical point at
ρc = 0.271(5) and Tc = 0.0620(2), where the uncertainty on the last digit appears
in the parentheses. The phase diagram in space (ρ, T ) is shown in Fig. 7.4(a), the
black star indicating the critical point and the circular markers showing the den-

34Again, this choice of letter seems quite unfortunate given the presence of the rational-
ity/inverse temperature β, even though the typesetting has been adapted.
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sities of the coexisting phases: they define the binodal frontier. Regarding critical
exponents, we measured β ≈ 0.12, γ ≈ 1.75 and ν ≈ 1.00. We immediately remark
that these values are very close or identical (up to measurement uncertainties) to
those associated to the 2d-Ising universality class, for which β = 1/8, γ = 7/4
and ν = 1. These results enjoin us to assert with a high degree of confidence that
the model considered here belongs to the 2d-Ising universality class. Since the
system is out of equilibrium and particle displacements can be of infinite range,
recovering the Ising universality class is nontrivial and is a remarkable feature, in
our opinion. This result must also be put into perspective with the recent debate
on the universality class of systems undergoing MIPS [271–274]. Indeed, the inter-
action kernel Gσ provides a so-called quorum-sensing interaction, like that found
in assemblies of bacteria [275]. The particle dynamics is however quite different
for bacteria and for our agents.

7.5 Mean-field description
We start by writing the expectation of the occupation number nr,s+1 ≡ n(r, s+1)
of site r at time s+1, conditioned on the previous configuration {nr,s}. Averaging
over multiple realizations of noise and using a mean-field approximation in which
all correlation functions factorize, one obtains

⟨nr,s+1⟩ − ⟨nr,s⟩ = (1− ⟨nr,s⟩)
∑
r′ ̸=r

⟨nr′,s⟩fβ(∆usr′→r)

− ⟨nr,s⟩
∑
r′ ̸=r

(1− ⟨nr′,s⟩)fβ(∆usr→r′),
(7.10)

where ∆usr→r′ ≡ u(⟨ñr′,s⟩) − u(⟨ñr,s⟩). For convenience, we take the continuous
time and continuous space limit, following the common procedure to obtain a
mean-field description of exclusion processes on lattices (see e.g. [276]). The aver-
age occupation number ⟨n⟩ is now described by the density ρ, while the spatially
smoothed average occupation number ⟨ñ⟩ is described by the field ϕ ≡ Gσ ∗ρ. The
master equation for the occupation probability then takes the form of a noiseless
hydrodynamic equation, in our case:

∂tρ(x, t) = [1− ρ(x, t)]

∫
dy ρ(y, t)wβ([ϕ], y, x, t)

− ρ(x, t)

∫
dy [1− ρ(y, t)]wβ([ϕ], x, y, t),

(7.11)

with the transition rate from y to x explicitly given by

wβ([ϕ], y, x, t) = ωfβ [u(ϕ(x, t))− u(ϕ(y, t))] , (7.12)
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where ω is homogeneous to an inverse time scale. Eq. (7.11) is valid in any
dimension, but, for simplicity, we will work out the mean-field computations in
dimension 1 in space. This can be justified a posteriori when we compare the
mean-field (MF) to the Monte Carlo (MC) simulations. Let us also mention that
the dimension does not play a role in determining the phase densities in the steady-
state of coarse-grained field theories (Allen-Cahn [277], Cahn-Hilliard [278], etc.).

Integrating Eq. (7.11) over space, one immediately sees that the total density∫
ρ is conserved. One can also check that in the very specific case where u(ϕ) is

linear in ϕ, one can build a free energy functional that is a Lyapunov function
of the non-local MF dynamics, ensuring a convergence towards local minima and
preventing limit cycles and oscillatory dynamics. This is a natural consequence
of the fact that detailed balance is satisfied at the microscopic level. In App. D.1,
we construct this free energy and show that the dynamics are relaxational.

7.5.1 Linear stability analysis

In the general case, we would like to understand how the homogeneous state
becomes unstable. To do so, we consider a small perturbation around the homo-
geneous state: ρ(x, t) = ρ0 + ρ1(x, t), with ρ1 the perturbation. By linearity of
the convolution, one has ϕ(x, t) = ρ0 + ϕ1(x, t), with ϕ1 ≡ Gσ ∗ ρ1. A Taylor
expansion of Eq. (7.11) combined with mass conservation (i.e

∫
D ρ1 =

∫
D ϕ1 = 0,

where D is the full domain), finally yields:

∂tρ(x, t) = 2Ωρ0(1− ρ0)f
′
β(0)u

′(ρ0)ϕ1(x, t)− Ωfβ(0)ρ1(x, t), (7.13)

with Ω the full domain size. Defining the Fourier transform for any field h as
ĥ(k) =

∫
dx e−ikxh(x), one obtains

∂tρ̂1(k, t) = Λ(k)ρ̂1(k, t), (7.14)

Λ(k) = Ωfβ(0)

(
2ρ0(1− ρ0)

f ′β(0)

fβ(0)
u′(ρ0)Ĝσ(k)− 1

)
. (7.15)

This last equation shows that the homogeneous state is unstable if there exists a
mode k⋆ such that

2ρ0(1− ρ0)
f ′β(0)

fβ(0)
u′(ρ0)Ĝσ(k

⋆) > 1. (7.16)

The manifold for which the inequality becomes an equality defines the spinodal in
the phase diagram (ρ0, β). In particular, for any monotonically decreasing kernel
Gσ(|x|) ∈ L2(R), one has Ĝσ(0) > |Ĝσ(k)|, such that for large system size, the
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stability of the homogeneous state is given by the stability of modes k → 0, and
the spinodal is thus defined by the equation

2ρ0(1− ρ0)
f ′β(0)

fβ(0)
u′(ρ0) = 1. (7.17)

Note that this criterion is generic as it only depends on the decision rule through
fβ(0) and f ′β(0). The simulations also reveal the existence of a bistable region
in the vicinity of this spinodal. This is the binodal region, which can be fully
characterized in the case of an equilibrium system [259]. Here however, there is
a priori no free energy one can rely on to describe the nucleation scenario and to
obtain the densities of the phase-separated state.

7.5.2 Comparison with numerical simulations

The MF prediction is expected to be accurate for systems with high connectivity,
which here corresponds to large σ. In the following, we shall take the limit L→ ∞,
σ → ∞ with σ/L → 0 to obtain mean-field predictions that are independent of
both σ and L, and perform numerical simulations as close as possible to this
scaling regime.

The first analytical prediction of the MF description is the spinodal, that de-
termines the onset of instability of the homogeneous state, see Eq. (7.17). The
spinodal is the dashed line in the (ρ, T ) phase diagram in Fig. 7.5(a). To check
the prediction, we start in the MC simulations from a uniformly distributed con-
figuration of agents for three different values of temperature, T = 0.04, 0.08, 0.11,
and we detect the frontier across which the homogeneous profile either coarsens,
or needs a nucleation event to converge to the separated state. This frontier is
marked with the diamonds, which agrees with the MF prediction.

Second, the MF dynamical Eq. (7.11) can be solved numerically with an Euler
explicit scheme. From the numerical solution, one obtains the densities of the bulk
of each phase when a phase separation occurs: these densities define the binodal,
the continuous line in Fig. 7.5(a). These MF phase densities are perfectly recovered
by the MC simulations (circles). In addition, one can compare the steady-state
average density profile from MC simulations to the mean-field stationary density,
which superimpose almost exactly, see Fig. 7.5(b).

As previously stated, the MF predictions fail for small values of σ. The phase
diagram in Fig. 7.4(a) is for instance obtained for σ = 1, and indeed strongly
differs from the MF solution. For σ = 1, we notably identified the critical point as
(ρc, Tc) = (0.271, 0.0620), whereas the MF predicts (ρc, Tc)MF = (0.2763, 0.1418),
where, as expected, T σ=1

c < TMF
c .
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Figure 7.5: (a) Phase diagram for α = 3/2, σ = 7 and Lx = 200, Ly = 66 (ℓ = 33).
The dot-dash black line corresponds to the binodal densities of the numerical solution to
the mean-field Eq. (7.11), circles are measured from Monte Carlo (MC) simulations. The
dashed black line represents the mean-field spinodal from linear stability analysis, while
diamonds indicate the loss of stability of the homogeneous state in the MC simulations.
The black square is the critical point for σ/L→ 0. (b) Averaged density profile ρ(x) from
MC simulations (continuous green line) for the same parameters as (a) and ρ0 = 0.35,
T = 0.05. The dashed black line is the stationary numerical solution of the mean-field
equation Eq. (7.11).

7.5.3 Local move approximation

To make progress into the identification of a possible effective free energy func-
tional, it may be convenient to consider slightly modified dynamics where jumps
are now only authorized in the direct neighborhood of the agents. Indeed, consid-
ering an evolution enforcing a local mass conservation will allow for more familiar
partial differential equations (PDEs) and field theoretic approaches on conserved
scalar fields. Here, the absence of macroscopic density currents in the steady-
state, both in MC simulations and in the MF solution suggests that the system
generically converges to a stationary stable fixed point, where the details of the
dynamics become inconsequential. In addition, when the majority of agents have
aggregated in a single dense cluster in the steady-state, it is unlikely that they
would perform moves outside of the bulk, in low-density regions, since the util-
ity there is minimal. The local-move approximation, as it strongly simplifies the
description, thus appears natural.35

Following the Taylor expansion outlined in App. D.2, the local mean-field
dynamics is given by

∂tρ = fβ(0)∂
2
xρ− 2f ′β(0)∂x[ρ(1− ρ)∂xu], (7.18)

35Dynamically, the coarsening exponent z ≃ 3 displayed in Fig. 7.3(a), and which is also
observed in a Cahn-Hilliard relaxation dynamics can also be invoked to support the idea of local
moves.
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which can be rewritten as the canonical equation for the mass-conserving dynamics

∂tρ = ∂x[M [ρ]∂xµ([ρ], x)], (7.19)

with the mobility operator M [ρ] = ρ(1 − ρ), stemming from the non-overlaping
nature of the agents, and with the chemical potential µ = µent. + µutil. where

µent. = fβ(0) log

(
ρ

1− ρ

)
(7.20)

µutil. = −2f ′β(0)u[ϕ(x)]. (7.21)

The first contribution to the chemical potential µent. is purely local and accounts
for entropy in the system where agents cannot overlap. The second contribution
µutil. encodes the drive from agents’ utility. This term exhibits non-locality with
respect to the field ρ, and as a consequence, cannot be expressed as a functional
derivative of any free energy, in general [279–281]. However, in the particular case
of a linear utility in ϕ, one again recovers that µutil. + µent. can be written as the
functional derivative of the free energy F given in App. D.1. Let us emphasize that,
here again, the decision rule is kept general, and that the entire local dynamics
only depend on it through fβ(0) and f ′β(0).

Performing the linear stability analysis on the dynamics with local moves (see
App. D.2), we find that the criterion for the homogeneous solution to be unstable
is identical to that given in Eq. (7.17), when moves are global. Also, the stationary
density profiles computed either with the local, or with the non-local MF PDEs
for the same parameters are identical. Both these observations therefore allow
us to confirm the relevance of the local-move approximation to characterize the
system in the long-time limit.

7.5.4 Alternative derivation and fluctuating hydrodynamics
Within the local move approximation, we may perform an alternative derivation
of the mean-field equation, which will also yield the fluctuations about the de-
terministic hydrodynamics. Following Biroli & Lefèvre [282], we may write the
generating function for particles (locally) diffusing on a lattice as

Z[{n, n̂}] =
∫
{dn dn̂} e−S[{n,n̂}], (7.22)

with the Martin-Siggia-Rose-Jansen-de Dominicis (MSRJD) action

S[{n, n̂}] = −
∫

dt

−
∑
i

n̂i∂tni +
∑
(i,j)

niWij(e
n̂j−n̂i − 1)

 , (7.23)
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where Wij is the transition rate from site i to j. In the case of an exclusion process
such as the one we are considering here, we take

niWij = ni(1− nj)fij , (7.24)

such that it takes the value 0 if site i is empty and/or if site j is occupied. Now, we
assume that the function f can be locally expanded as fij = f(0)+ aeij ·∇f(0)+
O(a2), where a is the lattice spacing and eij is the unit vector pointing in the
correct direction (we are generically considering d dimensional lattices). We can
similarly expand nj but need to go to an additional order for n̂j in to recover the
correct expansion

en̂j−n̂i − 1 = aeij · ∇n̂i +
a2

2
[(eij · ∇)2n̂i + (eij · ∇n̂i)2]. (7.25)

Combining all terms and expanding up to order a2, the sum over neighbouring
sites in the action gives

∑
(i,j)

niWij(e
n̂j−n̂i − 1) =

∑
(i,j)

[
af(0)ni(1− ni)eij · ∇n̂i +

a2

2
f(0)ni(1− ni)(eij · ∇)2n̂i

+
a2

2
f(0)ni(1− ni)(eij · ∇n̂i)2 − a2f(0)ni(eij · ∇ni)(eij · ∇n̂i)

+ a2ni(1− ni)(eij · ∇f(0))(eij · ∇n̂i)
]
.

(7.26)
The first term of order a vanishes by symmetry, as the unit vector retains its sign
and adjacent sites thus cancel out as a → 0. In this continuous limit, the sum
becomes an integral (time may be rescaled as required), and the action becomes

S[{n, n̂}] = −
∫

dt

∫
dx

{
− ρ̂∂tρ+ f(0)ρ(1− ρ)∇2ρ̂+ f(0)ρ(1− ρ)(∇ρ̂)2

− 2f(0)ρ∇ρ · ∇ρ̂+ 2ρ(1− ρ)∇f(0) · ∇ρ̂
}
,

(7.27)
where the factor 2 comes from the fact that summing squared terms over all
neighboring sites j always gives pairs of terms (for example on a d = 1 lattice we
have a derivative going forward and backward that are both evaluated at i and
so give twice an identical term). At this stage, one can finally perform several
integration by parts to recover only terms factorized by ρ̂ of (∇ρ̂)2, corresponding
to the deterministic and fluctuating contributions of the final action respectively.

Skipping details of this straightforward procedure, the generating functional
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is finally given by

S[{n, n̂}] = −
∫

dt

∫
dx

{
− ρ̂∂tρ+ f(0)ρ̂∇2ρ− 2ρ̂∇ · (ρ(1− ρ)∇f(0))

+ f(0)ρ(1− ρ)(∇ρ̂)2
}
,

(7.28)

corresponding to the Langevin equation

∂tρ = ∇ ·
[
f(0)∇ρ− 2ρ(1− ρ)∇f(0) +

√
ρ(1− ρ)ξ

]
(7.29)

with the Gaussian white noise ξ correlated as

⟨ξ(x, t)ξ(x′, t′)⟩ = 2f(0)δd(x− x′)δ(t− t′). (7.30)

The deterministic part of the dynamics correctly recovers the previously derived
mean-field expression of Eq. (7.19). As such, the fluctuating hydrodynamics in a
single dimension can finally be written as before,

∂tρ = ∂x[M [ρ]∂xµ([ρ], x) +
√
2f(0)M [ρ]η], (7.31)

with η a Gaussian white noise, and the same chemical potential µ = µent. + µutil.
and mobility operator M [ρ] as before. While not central to the present study, these
fluctuations can be studied in more detail, providing information on the nucleation
scenarii and on transition paths between macroscopic states for instance [283–286].

Unfortunately, the procedure described here does not appear suited to an
extension to non-local moves. Indeed, if i and j are not neighbors in Eq. (7.23),
then we can unfortunately not expand the exponential term in n̂j − n̂i. While
not having gradient expansions for all term is not necessarily an issue, it seems
that we must be able to have local terms in the conjugate variable to identify the
deterministic and fluctuating contributions at the very end.

7.6 Generalized thermodynamic mapping
Even though µ in Eq. (7.19) cannot be written as a functional derivative [279–
281], the dynamics can be analyzed by resorting to a gradient expansion. Indeed,
expanding the chemical potential up to O(∇4, ρ2) terms yields

µ[ρ] = g0(ρ) + λ(ρ)(∇ρ)2 − κ(ρ)∇2ρ+O(∇4, ρ2), (7.32)

with g0, λ, κ local function of the field ρ, and a generalized thermodynamic map-
ping [287,288] can yield the prediction of the binodal densities.
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For simplicity, we will now assume that the smoothing kernel is a Gaussian
distribution of zero mean and variance σ2. In Fourier space, the smoothed field is
given by ϕ̂(k) = ρ̂k exp(−σ2k2/2), which can be truncated to leading order:

ϕ̂k ≃ ρ̂k

(
1− k2σ2

2
+O(σ4|k|4)

)
. (7.33)

In real space, this translates into ϕ = ρ + σ2

2 ∇2ρ + O(∇4, ρ). This allows us to
further expand the µutil. given in Eq. (7.21). To leading order in the O(∇, ρ)
expansion, one has

µutil. = −2f ′β(0)

[
u(ρ) +

σ2

2
u′(ρ)∂2xρ+O(∂4x, ρ)

]
. (7.34)

Combining this expansion of µutil. with the entropic contribution µent., it is now
possible to identify the different terms in Eq. (7.32), namely:

g0(ρ) = −2f ′β(0)u(ρ) + fβ(0) log

(
ρ

1− ρ

)
; (7.35)

λ(ρ) = 0; κ(ρ) = f ′β(0)σ
2u′(ρ). (7.36)

This identification enables us to follow up to the next step, which is finding the
proper function R(ρ) and the generalized functional G[R] by means of which the
dynamics will be given by

∂tρ(x, t) = ∂x ·
[
M [ρ]∂x

δG
δR(x, t)

∣∣∣
R(ρ)

]
, (7.37)

allowing the identification of the fixed points through the study of G.
Since λ(ρ) = 0 in our case, the differential equation that the function R must

satisfies (see [287,288]) is

κ(ρ)R′′(ρ) = −κ′(ρ)R′(ρ), (7.38)

which simplifies into (κR′)′ = 0, where the ′ denotes the derivative with respect
to ρ. Given R is a priori bijective, one can define a new chemical potential
g[R] ≡ µ[ρ(R)]. As described in [287, 288], the effective free energy functional
G[R] can then be obtained by requiring

g =
δG
δR

, with G =

∫
dx
[
Φ(R) +

κ

2R′ (∂xR)
2
]
, (7.39)

with the generalized free energy density Φ(R). We can finally recover the coex-
istence densities by performing a double tangent construction, or equivalently a
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Figure 7.6: (a) Utility u(ρ) (solid line), and thermodynamic mapping change of variable
R(ρ) (dashed line) for α = 3/2 and ρ⋆ = 1/2. (b) Comparison between the semi-analytical
prediction (dark line) and the binodal densities both obtained via the MC simulations
(green circles) and solving numerically the mean-field Eq. (7.11) (dot-dash green line).
Inset: double-tangent construction on Φ(R) for T = 0.083.

Maxwell construction, on Φ and tracking back to ρ thanks to the bijectivity of
R(ρ). For more details on the procedure, as well as the challenges posed by the
change of sign in κ caused by the non-monotonous nature of the utility function,
see the dedicated section, mainly due to R. Zakine, in [5].

An illustration of the change of variable to R(ρ) is shown in Fig. 7.6(a), while
a specific example of the effective free energy density Φ is visible in the inset
of Fig. 7.6(b). Numerically implementing the Maxwell construction to efficiently
explore a range of temperatures yields a semi-analytical solution for the binodal,
which is compared to the MC results in Fig. 7.6(b), displaying an excellent match.
Note that the interaction range σ, that appears in κ but not in Φ, does not play
a role in the predicted coexistence densities of the infinite size system, thereby
confirming that the sub-optimal aggregation of agents in a dense cluster is not
limited to finite size lattices.

7.7 Two population extension
A natural extension of the problem is to restore some diversity among agents, as
initially considered by both Sakoda and Schelling. Here we consider two types of
interacting agents (say A and B), with possibly different utility functions, which
could for example represent higher and lower revenue individuals, or city dwellers
and business professionals, etc. A central question in this case is whether the
system reaches fixed points, or if more complicated dynamics can persist in the
long time limit, especially if the two populations have competing interests. Recent
work has been devoted to studying nonreciprocal interactions between different
kinds of particles, exhibiting the wealth of possible dynamical behavior when
particle displacements are local [289,290]. An interesting question in our setup is
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for instance: do propagating waves (or frustrated states) survive when nonlocal
moves are allowed? Indeed, one may expect that enforcing local displacement
constitutes a dynamical constraint that drives the system in a particular way.
Allowing for nonlocal moves may change the dynamics of how the frustrated states
are resolved. One may think of three major types of interactions:

• First, a cooperative interaction where agents A and agents B may maximize
their utility when agents of opposite type are found in their neighborhood.
This kind of interaction will typically lead to homogeneous well-mixed sys-
tems, or to some condensation into a dense phase where agents are well-
mixed, but since frustration is not implemented in the microscopic rules, we
reasonably expect stationary states.

• Second, each agent type may decide to settle among peers and/or avoid
agents of the other type in their surroundings. One should then expect a
complete phase separation into two domains, one displaying a majority of
As and, the other, a majority of Bs. Whether the A − B phase separation
additionally displays some condensation depends on the self-affinity of each
agent type.

• Third, frustrated situations in which A settles with A but wants to avoid B
agents, while B agents would like to gather and settle close to A. In this
situation, we may expect non stationary patterns, stemming from the fact
that all agents cannot be satisfied at the same time.

With this last situation in mind, we have considered the following utility func-
tions (uA for A agents and uB for B agents):

uA(x, [ϕA,B]) = −|ϕA(x)− ρ⋆|2+c1ϕB(x) (7.40)
uB(x, [ϕA,B]) = −|ϕA(x)− ρ⋆|2+c2ϕB(x), (7.41)

where c1 < 0 translates the fact that As are fleeing from B, and c2 > 0 translates
the fact that Bs have a tendency to gather with Bs. The term −|ϕA−ρ⋆|2 enjoins
both populations to settle among A populated areas. Of course, the specific shape
of utilities taken here may be restrictive and can be easily generalized.

The extension of the mean-field dynamics to this two population problem is
rather straightforward. Writing ρA(x, t) (resp. ρB(x, t)) the density of agents A
(resp. B) at location x and time t, and denoting the total density by ρ(x, t) ≡
ρA(x, t) + ρB(x, t), we now have an evolution equation of the form

∂tρA(x, t) = [1− ρ(x, t)]

∫
ρA(y, t)wβA

([ϕA,B], y, x, t) dy

− ρA(x, t)

∫
[1− ρ(y, t)]wβA

([ϕA,B], x, y, t) dy,

(7.42)
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(a) (b)

Figure 7.7: Snapshots of the system for two frustrated interaction parameter choices.
(a) Stationary demixing in a region where LSA presents complex eigenvalues. The agent
A phase still contains some B agents. Parameters: c1 = −2, c2 = 1, σ = 3, ρ̄A = 0.2,
ρ̄B = 0.5, β = 10. (b) Chaotic propagation of polarized blobs in a region where LSA
presents pure real eigenvalues (null imaginary part). Parameters: c1 = −2, c2 = 0.5,
σ = 7, ρ̄A = 0.6, ρ̄B = 0.2, β = 100. For both (a) and (b), Lx = Ly = 300.

and, by symmetry, a similar equation for B. The transition rates depend on
the utility function of each agent type and are a priori agent specific. Denoting
uZ(x) ≡ uZ(x, [ϕA,B]) (with Z = A or B), we set

wβZ
([ϕA,B], y, x, t) = ωZfβZ

[uZ(x)− uZ(y)], (7.43)

where ωZ and βZ can be agent dependent.
In App. D.3, we perform the linear stability analysis of the homogeneous state.

As expected, in the frustrated two-population system, unstable modes can display
temporal oscillations. However, these oscillations may stop when nonlinear terms
become relevant, and the system may end up in a stationary phase separation
(similar to classical demixing in equilibrium systems), as displayed in Fig. 7.7(a).
Reciprocally, non-oscillating growing modes at the linear level may give rise to
propagating structures and waves when nonlinearities become important, as shown
in Fig. 7.7(b) (see Supplementary Material in [5]). In our system, and at odds with
recent work [289,290], the oscillatory nature of the non-homogeneous steady-state
cannot be predicted from a simple linear stability analysis about the homogeneous
solution.

A thorough analysis of the emerging behaviors in the multi-population system
would require more work, beyond the scope of the present chapter. Still, it is
remarkable that, here as well, the linear stability analysis in the case of local
jumps yields exactly the same instability conditions as the nonlocal dynamics
ones (see results of Appendices D.3 and D.4). As a consequence, we expect that
some results of the recent works [289, 290] should be relevant, to some extent, to
describe our multi-population system.
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7.8 Conclusion

Let us summarize what we have achieved in this chapter. We have introduced a
neighborhood-less extension of the Sakoda-Schelling model for the occupation of
a lattice representing a city. In this version of the model, the agents attempt to
maximize a utility that is a function of their perceived local density, and are most
satisfied when they are located in a site where such density is of an intermediate
value, i.e. neither empty nor too crowded. Having that agents only consider their
own site dependent utility, and that their utility is nonlinear, drives the system out
of equilibrium. As a result, the system can no longer be studied by constructing
a free energy directly from an aggregate system-wide utility function, as was done
by Grauwin et al. [14] for agents inhabiting predefined neighborhoods or blocks in
which the utility is identical for all (see Sec. 1.3.1). Using numerical simulations
as well as a mean-field description of the nonequilibrium dynamics, we have es-
tablished that the apparent disparity between micromotives and macrobehaviours
initially observed by Schelling [75] is robust to the absence of neighborhoods and
to the out-of-equilibrium nature of our extension. Interestingly, we find that the
transition between the fully homogeneous state and the phase-separated one likely
belongs to the 2d Ising universality class, a debated topic in the active matter
literature regarding the very similar Motility Induced Phase Separation (MIPS)
phenomenon. Taking advantage of the similarity between our problem and the
Active Model B (describing MIPS), we predict the local density in the bulk of the
concentrated phase, confirming that the majority of agents find themselves in a
sub-optimal situation with a perceived density exceeding the ideal value.

While seemingly technical, the fact that the original observations of Schelling is
robust to out-of-equilibrium dynamics actually carries far reaching consequences,
in our opinion. Indeed, as discussed in Sec. 7.3, equilibrium descriptions of so-
cioeconomic problems require the decision rule fβ(x) to be the logit function.
This very specific choice is a common source of criticism, as any results are then
a priori uncertain to hold for other decision rules. Here, on the other hand, our
out-of-equilibrium description presents no such restriction, as all calculations have
been written as generally as possible and, interestingly, turn out to only depend
on fβ(0) and f ′β(0). While the final results presented here are those using the
classical choice of the logit function for lack of a more plausible decision rule, one
could readily adapt the outcomes following behavioral evidence that another func-
tion is more appropriate, and we expect the results to hold qualitatively for any
other sigmoid function. More generally, we believe that this robustness to other
decision rules holds for a large number of socioeconomic models that have been
described using the methods of statistical physics, for instance that of Chap. 4.36

36One might also note that in the different context of the SK game, weakly non-reciprocal
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Of course, subtleties around the dynamics, such as the relaxation time towards
the steady-state or the coarsening dynamics discussed here, will inherently be af-
fected by the specific choice that governs transition rates. This being said, we have
observed a remarkable similarity in the local and non-local versions of our model
for which the dynamics are yet qualitatively very different. It is therefore possible
that there also exists some degree of universality in the dynamical behavior of
different decision rules, at least at the mean-field level.

Going back to the Sakoda-Schelling model, we have also considered the in-
troduction of different sub-populations, leading to dynamical patterns that are
impossible to observe in an equilibrium version of the model. Another important
extension would be to introduce a housing market, and to determine under which
conditions such a market might destroy condensation – see the dedicated section
presenting the work of A.-C. Becharat in [5]. In order to identify the plausible
effects of the housing market, a thorough analysis of real estate transactions ap-
pears to be a promising avenue, in particular given the increasing availability of
open datasets in this area in major European cities. An extensive study of French
data is currently underway, hopefully allowing the coupling of this continuous
Sakoda-Schelling model with realistic price dynamics in the near future [291].

interactions (which also violate detailed balance) were also found to leave the phenomenology of
the model largely unaffected.
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Key takeaways

• Replacing fixed neighborhoods by a space-dependent perception of the
density drives the Sakoda-Schelling model out of equilibrium, regard-
less of the decision rule.

• When the perception range is large, the spinodal delimiting the region
where a homogeneous density is linearly stable can be determined
analytically with a mean-field approximation.

• Due to the out-of-equilibrium nature of the system, the coexistence
densities in the phase separated region, defining the binodal, cannot
be determined from a free energy minimization.

• A generalized thermodynamic mapping, originally developed for the
theory of active matter, can be employed to circumvent this difficulty.
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• We find the sub-optimal aggregation of agents in concentrated clusters
to be largely unaffected by the nonequilibrium nature of the model and
the specific choice of decision rule.

• The field-theoretic description of the model offers many possible ex-
tensions, notably to several sub-populations and to the coupling with
a price field.
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Chapter 8

Steady-state preserving
out-of-equilibrium currents

急がば回れ
More haste, less speed.

Japanese proverb

This chapter is based on joint work with Andreas Dechant.

Throughout this thesis, we have seen how the specificities of socioeconomic sys-
tems may lead to out-of-equilibrium dynamics that cannot be described with the
equilibrium statistical mechanics toolbox. While we have more or less been able to
study these out-of-equilibrium systems with analytical methods, such as DMFT
or the generalized thermodynamic mapping, these ultimately required some rather
involved numerical schemes and were by no means systematic.

In order to acquire a better understanding of nonequilibrium steady-states
(NESS), an interesting approach that has emerged is to purposefully construct out-
of-equilibrium models with a prescribed steady-state distribution, corresponding to
that of a known equilibrium system. As hinted in Chap. 2, it is indeed possible to
sample an equilibrium distribution while violating detailed balance. In addition
to allowing one to compute many observables thanks to the explicit knowledge
(and intuitive understanding) of the steady-state distribution – a rare occurence
out-of-equilibrium –, we will see that these peculiar systems may also provide an
appreciable speedup in the sampling of complex equilibrium distributions. Beyond
this practical interest, this chapter also allows us to get acquainted with the theory
of stochastic thermodynamics, which has brought some significant progress in the
understanding of out-of-equilibrium systems in recent years.
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8.1 General idea
In the following, we will focus on Langevin dynamics as they allow for a visual
interpretation of the out-of-equilibrium currents considered, but most of the ideas
and results discussed can be transposed to discrete Markovian dynamics.

8.1.1 Physical setup
In order to derive analytical results, we will turn to the very simple case of a single
particle under the influence of a fixed force field. The dynamics are assumed to
follow the overdamped Langevin equation introduced in Sec. 2.1.3,

ẋ(t) = F(x(t)) +
√
2Tξ(t), x ∈ Rd (8.1)

where ξ is a vector of independent, identically distributed white noises, i.e. with
zero mean and δ-correlated, ⟨ξi(t)ξj(s)⟩ = δi,jδ(t−s). We saw that such dynamics
satisfy detailed balance if the force is conservative,

F(x) = −∇U(x), (8.2)

where U is the potential (i.e. energy) describing the equilibrium steady-state
P (x) ∝ e−βU(x), where as before we have β = 1/T the inverse temperature.

Suppose we now introduce a detailed balance violating (i.e. irreversible) com-
ponent Fneq(x) to the force field,

F(x) = −∇U(x) + Fneq(x), (8.3)

and recall the global balance condition ensuring that P (x) is the steady-state
solution to the Fokker-Planck equation,

∇ · [F(x)P (x) + T∇P (x)] = 0. (8.4)

If we require that P (x) remains the Gibbs-Boltzmann distribution of the original
equilibrium system, then we necessarily have −∇U(x)P (x) + T∇P (x) = 0. As a
result, the condition for the out-of-equilibrium forcing to preserve this steady-state
distribution is simply

∇ · (Fneq(x)P (x)) = 0, (8.5)
or more explicitly

∇ · Fneq(x)− βFneq(x) · ∇U(x) = 0. (8.6)
The resulting out-of-equilibrium system then has a non-zero average steady-state
entropy production rate given by

σ ≡ 1

T
⟨F2

neq⟩ > 0, (8.7)

where angular brackets indicate an average over the steady-state distribution [92].
As a result, we have an irreversible NESS with a known steady-state distribution.
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8.1.2 Relaxation to the NESS
Suppose we now have an out-of-equilibrium forcing field satisfying Eq. (8.5) and
therefore preserving the steady-state distribution P (x) ∝ e−βU(x). While it is clear
that a central difference between the original system and its out-of-equilibrium
counterpart is the presence of probability currents and therefore a non-zero entropy
production rate in the steady-state, the relaxation to this steady-state is also
altered.

Rewriting the Fokker-Planck equation in an operator formalism, we have

∂tP (x, t) = L(x)P (x, t), L(x) = −∇ · F(x) + T∇2. (8.8)

Now, in the equilibrium case, the forcing field is purely gradient, implying ∂xjFi =
∂xiFj . As a result, one can show that the equilibrium Fokker-Planck operator is
self-adjoint,

Leq(x) = L†
eq(x), (8.9)

which does not hold for out-of-equilibrium dynamics [98].
To solve the time-dependent Fokker-Planck equation, the standard method is

to invoke the separation ansatz,

P (x, t) =
∞∑
k=0

φk(x)e
−λkt (8.10)

leading to the eigenvalue problem for the operator

L(x)φk(x) = −λkφk(x), (8.11)

and the associated eigenvalue problem for its adjoint

L†(x)φ∗
k(x) = −λ∗kφ∗

k(x). (8.12)

Ordering the eigenvalues by their real parts, Re(λ0) ≤ Re(λ1) ≤ . . . , the existence
of a steady-state to Eq. (8.10) clearly requires λ0 = 0, with the associated eigen-
function corresponding to the steady-state distribution φ0(x) = P (x). Note that
when detailed balance is satisfied and the operator is self-adjoint, all eigenvalues
are purely real and non-degenerate.

As mentioned in Chap. 2 in the equilibrium case and as can be seen from
Eq. (8.10), the probability distribution relaxes exponentially to this steady-state
at long times, with a characteristic time

τ :=
1

Re(λ1)
. (8.13)
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Importantly, the spectral gap Re(λ1) − Re(λ0) = Re(λ1) can only be increased
by the presence of out-of-equilibrium currents [292], see also [293] for a more
intuitive discussion in the discrete Markov jump context. As a result, τ ≤ τeq,
and the NESS can therefore be reached quicker than the equilibrium steady-state.
We will shortly see that complementary bounds can be devised, allowing one to
understand the role of these nonequilibrium currents more precisely.

In addition to this improvement on the convergence time, it has also been
shown that the introduction of out-of-equilibrium currents leads to a reduction in
the asymptotic variance of arbitrary observables [294,295].

8.1.3 Barrier crossing out-of-equilibrium
When we introduced the relaxation time in Chap. 2, we immediately mentioned
that it is dominated by the crossing of the highest energy barrier when the temper-
ature is small. For reversible Langevin dynamics, the most precise statement is the
Eyring-Kramers formula, which states that the average transition time between
two wells with minima located at x1 and x2 asymptotically follows

⟨τ eqx1→x2
⟩ ∼
β→∞

2π

λ⋆,eq+

√
|detH(x⋆)|
detH(x1)

exp (β∆U) , (8.14)

where x⋆ is the location of the saddle point in between the two minima, which
has a potential difference of ∆U = U(x⋆) − U(x1) with the starting point x1.
H(x) refers to the Hessian of the potential U evaluated at the point x, and λ⋆,eq+

is the magnitude of the negative eigenvalue of this Hessian at the saddle point (we
assume there is only one unstable direction at the saddle). Notice that the details
regarding the specific wells considered are relegated to the prefactor, meaning the
dominating transition time is solely determined by ∆U .

This Eyring-Kramers formula has been rigorously extended to irreversible
Langevin equations [296], see also [297, 298]. In this out-of-equilibrium context,
we must define the quasipotential V which generalizes the role of the potential
function U . Formally, it is defined as the minimum action between a stable fixed
point of the force field x1 and an arbitrary point x̃,

V (x1, x̃) = inf
{x(t)}

S[x] u.c. lim
t→−∞

x(t) = x1, lim
t→∞

x(t) = x̃, (8.15)

with the Freidlin-Wentzell action functional

S[x] =

∫ ∞

−∞
dt [ẋ− F(x)]2, (8.16)

which can be derived by considering the generating functional of noisy trajectories,
similarly to what we have done in Sec. 7.5.4 of the previous chapter.
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In the particular case considered here where the steady-state distribution is un-
altered by the out-of-equilibrium currents, the generalized Eyring-Kramers equa-
tion yields

⟨τx1→x2⟩ ∼
β→∞

2π

λ⋆+

√
|detH(x⋆)|
detH(x1)

exp (βV (x1,x⋆)) , (8.17)

where now x1 and x2 are stable fixed points of the total force F(x) = −∇U(x) +
Fneq(x), while x⋆ is the saddle point of the quasipotential separating the basins of
attraction of x1 and x2 [296]. Importantly, λ⋆+ is also redefined as the magnitude
of the negative eigenvalue of the Jacobian of F evaluated at x⋆.

Clearly, the topology of the modified force field will be of central importance for
potential improvements of the relaxation time at low temperatures. In any case,
while one must keep in mind that the generalized Eyring-Kramers formula only
formally holds for vanishing temperatures, this scaling will be useful to understand
the effectiveness (or lack-off) of possible out-of-equilibrium contributions at small
temperatures.

8.2 Theoretical bounds on the correlation time
Before jumping into a more precise study of specific steady-state preserving out-of-
equilibrium currents, it is interesting to further study the nonequilibrium steady-
states of interest in full generality. In this section, we adapt and detail the deriva-
tion of the bounds presented in [4].

So far, we have defined the relaxation time as the inverse of the real part of the
first non-zero eigenvalue of the Fokker-Planck operator associated to the dynamics.
While this is a mathematically precise approach to the relaxation dynamics, the
diagonalization of the operator is, in general, a very difficult task that cannot be
performed systematically.

Instead, we now consider the (de)correlation time specific to a given observable
z. We define

τ z :=

∫∞
0 dtCov(z(t), z(0))

Var(z(t))
. (8.18)

Intuitively, τ z can be understood as the typical time on which the correlations
of z(t) = z(x(t)) decay, and therefore characterizes the time required for the
self-averaging of an observable along a trajectory.

8.2.1 General variational statement
A common approach in stochastic thermodynamics – the study of averages over
individual, possibly out-of-equilibrium, trajectories rather than ensembles – is
to use rigorous variational principles to derive upper or lower bounds on various
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quantities. The celebrated Thermodynamic Uncertainty Relation [299,300], which
limits the square of the average current from above by the variance of current times
the entropy production, is an example of such bound.

The starting point to establish a variational relation for the correlation time
τ z is to introduce the time-integrated observable

ZT =

∫ T

0
dt z(x(t)). (8.19)

To characterize the fluctuations of this time integral, we also introduce its rescaled
cumulant generating function

kZ(h) = lim
T →∞

1

T
log⟨ehZT ⟩. (8.20)

Generalizing the known variational formulae for time-integrated currents [301,302]
to this time-integrated observables at hand, we may write

kZ(h) = sup
y

Φz[y], with Φz[y] = h⟨z⟩y − 1

4
β⟨y2⟩y, (8.21)

where ⟨·⟩y refers to an average taken with respect to the steady-state distribution
of the original Langevin dynamics with the added drift y,

ẋ(t) = F(x(t)) + y(x(t)) +
√
2Tξ(t). (8.22)

Now, for any given steady-state P y(x), we can find a unique drift vector y∗(x)
that maximizes Φz[y], with the idea of eventually maximizing with respect to
this steady-state distribution. Proceeding to the maximization on y under the
constraint that P y(x) is a steady-state solution to the Fokker-Planck equation
associated to Eq. (8.22) and rearranging terms, one eventually finds

Φz[y∗] = h⟨zeχ⟩ − 1

4
T ⟨(∇(η∗ + χ))2eχ⟩, (8.23)

where χ(x) = log
(
P y(x)
P (x)

)
and η∗(x) is essentially a Lagrange multiplier enforcing

the constraint rewritten as

∇ ·
[
P (x)eχ(x)(Fneq(x) + T∇η∗(x))

]
= 0, (8.24)

which, importantly, is the Euler-Lagrange equation of the convex minimization
problem

inf
η

[
⟨(T (∇η)2 + 2∇η · Fneq)e

χ⟩
]
. (8.25)
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Further manipulating the terms in the right hand side of Eq. (8.23) and maximiz-
ing with respect to P y(x), or equivalently χ(x) provided eχ(x)P (x) is a normal-
ized probability density, the rescaled cumulant generating function can finally be
rewritten as

kZ(h) = sup
χ

inf
η

[
1

⟨eχ⟩

(
h⟨zeχ⟩+ ⟨∇η · Fneqe

χ⟩+ T ⟨(∇η)2eχ⟩ − 1

4
T ⟨(∇χ)2eχ⟩

)]
.

(8.26)
We can now use this variational expression to find bounds on functions of the

cumulants of ZT . Taylor expanding the rescaled cumulant generating function,
we indeed have

kZ(h) ≈ h⟨z⟩+ 1

2
h2T Var(zT ) +O(h3), (8.27)

where we have identified the time average

zT =
1

T

∫ T

0
dt z(x(t)), (8.28)

and assumed that the system is ergodic i.e.

lim
T →∞

zT = ⟨z⟩. (8.29)

Rescaling χ → hχ, η → hη and similarly expanding Eq. (8.26) in powers of h,
we find that the linear contributions in h cancel out while equating second order
terms yields

1

2
T Var(zT ) = sup

χ
inf
η

[
Cov(z, χ) + ⟨χ∇η · Fneq⟩+ T ⟨(∇η)2⟩ − 1

4
T ⟨(∇χ)2⟩

]
.

(8.30)
Finally, going back to the original interpretation of τ z, z(x(t)) can be considered
to be independent to z(x(t+T )) for T > τ z. As a result, the time average can be
understood as a sum of independent random variables, in which case by a central
limit theorem argument (subdividing T in independent chunks of length 2τz),

τ z

T
≈ 1

2

Var(zT )

Var(z)
(8.31)

for T ≫ τ z. Linearly rescaling χ and η and subsequently solving the extremizing
problem on their respective factors, the final variational formula for τ z reads

τ z =
1

Var(z)
sup
χ

[
Cov(z, χ)2

T ⟨(∇χ)2⟩+ supη f(η, χ)

]
, f(η, χ) =

⟨χ∇η · Fneq⟩2

T ⟨(∇η)2⟩
. (8.32)

This is a rather technical statement, and the previously summarized derivation
is quite involved. Nonetheless, we will see that it provides an essential basis to
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derive more intuitive bounds that significantly clarify the role of the different
properties of detailed balance violating currents.

Before doing so, let us discuss some points relative to this bound in the context
of equilibrium dynamics. First, in the spirit of the result on the spectral gap of
the operator, notice that τ z ≤ τ zneq, as the out-of-equilibrium contribution in the
denominator can only decrease the object that we aim to minimize. Note also that
the variational expression allows us to derive a general bound in the equilibrium
case Fneq(x) = 0 by taking χ(x) = z(x), resulting in

τ zeq ≥ Var(z)

T ⟨(∇z)2⟩
. (8.33)

While seemingly purely mathematical, this upper limit on the decorrelation time
can be understood rather intuitively. Indeed, it can be shown that the short-time
fluctuations of the displacement are given by

lim
δt→0

1

2

Var(δz)

δt
= T ⟨(∇z)2⟩, where δz = z(x(t+ δt))− z(x(t)). (8.34)

As a result, the bound of Eq. (8.33) implies that the correlation time is limited
by a tradeoff between short and long time fluctuations of the observable. Finally,
consider the intrinsic correlation time defined as

τ∗ := sup
z

[τ z] , (8.35)

which can be understood as the time required for the slowest observable to decor-
relate. First taking the supremum on z, we find

τ∗eq = sup
χ

[
Var(χ)

T ⟨(∇χ)2⟩

]
. (8.36)

Remarkably, the right hand side is a known variational formula for the small-
est non-zero eigenvalue of the Fokker-Planck operator when detailed balance is
satisfied [98], meaning we recover the relaxation time,

τ∗eq =
1

λ1
. (8.37)

This equality thus formally establishes a link between the relaxation of the prob-
ability distribution and the time required for the slowest observable in the system
to decorrelate. Unfortunately, no such variational expression exists for the eigen-
values of the Fokker-Planck operator in the irreversible case.
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8.2.2 Dissipation speed limit
When the system is not in detailed balance, it is desirable to relate the improve-
ment in the relaxation to the rate of entropy production, which quantifies the
violation of time-reversal symmetry.

Going back to the variational formula for τ z, we may notice that

⟨χ∇η · Fneq⟩2 = ⟨(χ− χ0)∇η · Fneq⟩2 (8.38)

when χ0 is a constant, as ⟨∇η ·Fneq⟩ = 0 from integration by parts and the global
balance condition. By the Cauchy-Schwarz inequality, we then have

⟨χ∇η · Fneq⟩2 ≤
1

T
⟨(χ− χ0)

2F2
neq⟩T ⟨(∇η)2⟩, (8.39)

and as a result,

f(η, χ) ≤ 1

T
⟨(χ− χ0)

2F2
neq⟩ = ⟨χ2σ̃⟩ − 2χ0⟨χσ̃⟩+ χ2

0σ, (8.40)

where we have defined the local rate of entropy production σ̃(x) ≡ 1
T F

2
neq(x) such

that σ ≡ ⟨σ̃⟩. Maximizing over the constant χ0, the equality of Eq. (8.32) becomes
an inequality,

τ z ≥ 1

Var(z)
sup
χ

[
Cov(z, χ)2

T ⟨(∇χ)2⟩+ ⟨χ2σ̃⟩ − 1
σ ⟨χσ̃⟩2

]
. (8.41)

This bound can finally be loosened to improve its interpretation by arbitrarily
taking χ(x) = z(x), resulting in

τ z ≥ Var(z)

T ⟨(∇z)2⟩+ σVarσ(z)
, (8.42)

where Varσ(·) refers to the variance taken with respect to the entropy-rescaled
probability density Pσ(x) :=

σ̃(x)
σ P (x).

We refer to this bound as the dissipation speed limit. Indeed, it demon-
strates that while the dynamics of the system are accelerated by driving it out-
of-equilibrium, there is a minimum amount of dissipation, characterized by the
entropy production rate, associated to this acceleration.

A very interesting byproduct of this speed limit is that it may be used to pro-
vide a lower bound on the rate of entropy production by measuring the correlation
time, see [4]. The novelty of such an approach is that the dissipation may be es-
timated even from a time-symmetric observables when there are no observable
real-space currents. This possibility is particularly interesting in models, e.g. of
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active matter, where the TRS violation may be apparent only in hidden degrees
of freedom, preventing its direct observation, see [303] and references therein.

Note that a very similar bound, which may also be used to estimate the rate of
entropy production, can be established in the frequency domain [304]. Whereas a
reversible process displays a monotonously decaying power spectral density (PSD)
for the fluctuations of any observable z, the introduction of nonequilibrium cur-
rents generically leads to the emergence of a peak at a finite frequency. It is then
the magnitude of this peak relative to the high frequency asymptote of the PSD
that can be bounded and related to the rate of entropy production.

8.2.3 Geometric speed limit

Alternatively, following an integration by parts, we may notice that

⟨χ∇η · Fneq⟩2 = ⟨η∇χ · Fneq⟩2. (8.43)

Restricting ourselves to fields χ(x) = χ⊥(x) the gradient of which are orthogonal
to the out-of-equilibrium currents, i.e. satisfying ∇χ⊥(x) ·Fneq(x) = 0, the above
equality allows us to write the alternative bound

τ z ≥ 1

Var(z)
sup
χ⊥

[
Cov(z, χ⊥)

2

T ⟨(∇χ⊥)2⟩

]
. (8.44)

This geometric speed limit is now importantly independent of the specific detailed
balance violation and its strength. As a result, we conclude that one cannot
accelerate the dynamics arbitrarily much simply by increasing the dissipation and
therefore the rate of entropy production in the system.

Intuitively, such a result can be interpreted as follows. Going back to the
correspondance between the largest correlation time and the eigenvalue gap of
the Fokker-Planck operator, the relaxation in an equilibrium system is limited by
its slowest timescale. Driving the system out-of-equilibrium first allows one to
speedup this bottleneck process, at the cost of introducing dissipation. At some
point, however, another process that originally was associated to a faster timescale
and is unaffected by the driving37 becomes the bottleneck. This new bottleneck
being immune to the effects of the out-of-equilibrium currents, further increasing
the driving strength and dissipation will not improve the situation, unless the
geometric structure of the driving is also altered.

37If the observable itself satisfies ∇z(x) ·Fneq(x) = 0, then the geometric speed limit is τz⊥ ≥
Var(z⊥)

T ⟨(∇z⊥)2⟩ , corresponding to the equilibrium bound from Eq. (8.33), meaning there is no speedup
for such observables.
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8.3 Accelerating relaxation in practice

We have determined that having a non-zero detailed balance violating component
Fneq(x) may be beneficial to speedup convergence. At this stage, however, it is
not clear what specific choice to take given the very general form of the criterion
given in Eq. (8.5). Building on existing methods and the insights provided by the
speed limits derived above, we will now attempt to understand why specific force
fields may or may not be effective to accelerate the dynamics.

8.3.1 Ichiki-Ohzeki forcing

Let us start with a simple yet important observation. Placing ourselves in a single
dimension, the constraint on the nonequilibrium force becomes

d

dx
(Fneq(x)P (x)) = 0, (8.45)

leaving Fneq(x) ∝ eβU(x) as the only possibility. Not only is this somehwat re-
strictive, but it is also rather prohibitive from the numerical standpoint. Indeed,
having a force of exponential magnitude will likely require a very fine discretiza-
tion in time, meaning that the improvement provided by the driving might be
overshadowed by a possibly costly time step requirement. As a matter of fact, the
same holds for the trivial forcing Fneq(x) ∝ 1eβU(x) in higher dimensions.

As an alternative for all dimensions (including d = 1), Ichiki & Ohzeki (IO)
proposed to take two copies of an identical equilibrium system and to introduce
a detailed balance violating coupling between the two [305]. More precisely, the
dynamics follow

ẋ(1)(t) = −∇x(1)U(x(1)(t)) + γ∇x(2)U(x(2)(t)) +
√
2Tξ(1)(t)

ẋ(2)(t) = −∇x(2)U(x(2)(t))− γ∇x(1)U(x(1)(t)) +
√
2Tξ(2)(t),

(8.46)

where the noise terms are taken to be entirely independent and γ is a coupling
constant setting the strength of the nonequilibrium currents.

The change of sign in front of the second terms on the right hand sides leads
the combined force vector to be divergence-free with respect to the combined de-
grees of freedom, while its orthogonality with the gradient of the potential ensures
that Eq.(8.6) is satisfied. In more intuitive terms, this means that the out-of-
equilibrium currents are purely non-gradient and along equiprobability lines of the
joint probability distribution of the two copies. Such currents are represented in
a simplified setting in Fig. 8.1. As a result, one can show that (i) the fixed points
of the modified force field are identical to that of the equilibrium dynamics, and
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therefore remain the extrema of the potential and (ii) that the quasipotential be-
tween a minimum and its associated saddle point is equal to the potential differ-
ence of the duplicated equilibrium problem [306]. In addition to these properties,
the very constrained geometry of the force suggests that the geometrical bound
of Eq. (8.44) is quickly reached, as many observables will likely not benefit from
the acceleration that is essentially limited to “stirring” inside each well.38

With these specificities in mind, we can go back to the generalized Eyring-
Kramers relation given in Eq. (8.17). Due to points (i) and (ii) raised above, the
only difference between the equilibrium and out-of-equilibrium escape times lies
in λ⋆+. As pointed out in Ref. [306], assuming the trajectory of interest leaves a
stiff well (i.e. for which the determinant of the Hessian of U is large), then in the
small driving limit the scaling suggests

τ ∼ 1

1 + γ2
τeq. (8.47)

How effective are these IO currents to accelerate relaxation in practice? In their
original publication, Ichiki & Ohzeki reported a very significant acceleration in the
sampling of a simple one-dimensional double well and, importantly, an elimination
of the critical slowing down of the XY model for γ = 10 [305]. To accommodate for
this large forcing, however, the stochastic dynamics must be implemented using
a Heun scheme, as the standard explicit Euler-Murayama method is insufficiently
precise.

Perhaps more interestingly in the context of this thesis largely dedicated to
disordered systems, Ghimenti & Van Wijland proposed an implementation of the
scheme in the mean-field (N → ∞) dynamics of the spherical p-spin [306], which is
known to display ergodicity breaking below the so-called dynamical temperature
Td for p ≥ 3.39 Above Td, the authors find an appreciable reduction in the
relaxation time, with an improvement scaling as Eq. (8.47) for γ ≲ O(1) (but
expected to saturate at some point). At lower temperatures, however, the forcing
is unfortunately insufficient to shift the value of Td and the dynamics remain frozen
below this unchanged dynamical temperature in the p = 3 case tested.

This being said, one must keep in mind that the spherical p-spin for p ≥ 3
is a very harsh test for the Ichiki-Ohzeki method. Indeed, at the dynamical
temperature Td, the free energy landscape of the model goes from having a single
minimum to an exponential number of metastable states, i.e. a finite complexity.
Moreover, these minima are separated by barriers that scale with N and therefore
diverge in the N → ∞ limit, leading to true ergodicity breaking. As such, and as
we have seen that divergence-free currents only affect one of the prefactors of the

38Note that this was already pointed out in Ref. [306].
39The spherical p-spin is the generalization to order p interactions of the spherical SK model

mentioned in Chap. 2, which corresponds to p = 2.
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Figure 8.1: Total force fields F(x) = −∇U(x)+Fneq(x) for the 2d double well potential
of Eq. (8.51), colors given by the value of the potential (lighter corresponding to smaller)
for (a) original equilibrium system; (b) standard Ichiki-Ohzeki forcing with γ = 5. Light
stars, dark stars and dark squares correspond to stable fixed points, saddle points (single
unstable direction) and unstable fixed points of the force field respectively.

generalized Eyring-Kramers law, it is somewhat natural that Ichiki-Ohzeki forcing
is unable to overcome such energy barriers in the mean-field dynamics.

Note that generically this type of divergence-free current can be constructed
without having to duplicate the system when d ≥ 2. Indeed, introducing a d× d
skew-symmetric matrix JT = −J, one can take

Fneq(x) = γJ∇U(x), (8.48)

which is also divergence-free and orthogonal to the probability density gradient.
In contrast with the standard Ichiki-Ohzeki prescription, the choice of the matrix
J is not very constrained, and picking a particular structure can therefore be
awkward in high dimensions.

8.3.2 An extension to complicated currents

To go beyond divergence-free currents, a recent proposition formulated by Dechant
[307] is to take the temperature dependent out-of-equilibrium force term

FT
neq(x) = γ(x)J∇U(x)− TJ∇γ(x), (8.49)

where γ(x) is now a detailed balance violating coupling field. For a constant
γ(x), one immediately recovers the divergence-free choice mentioned above, while
this type of forcing can also be understood in an Ichiki-Ohzeki way by taking
x = [x(1) x(2)]T and subsequently adapting the gradient terms and the skew
symmetric matrix.
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In the β → ∞ limit, the contribution that is not orthogonal to the gradient
of the potential vanishes, as required by Eq. (8.6). As a result, the effect of the
current is expected to be identical to the standard Ichiki-Ohzeki method at very
small temperatures. Note that this is consistent with intuition: without thermal
fluctuations, having currents going across iso-probability lines would undoubtably
change the steady-state distribution. At small but finite temperatures, however,
the fixed points of this new force field do not necessarily coincide with the minima
and saddles of the potential. As a result, we expect that the entire generalized
Eyring-Kramers equation can be modified when the temperature is small but still
finite, and not only the eigenvalue of the Jacobian as was the case above. At first
glance, the fact that the current is no longer restricted to be along equiprobability
lines appears promising: very pictorially, the out-of-equilibrium currents could
perhaps help the system “hike” its way out of a well!

In the following, we will focus on the d = 2 case, which is easy to visualize and
understand in terms of gradient and rotational contributions, and take

J =

[
0 1
−1 0

]
(8.50)

to be as close as possible to the Ichiki-Ohzeki prescription. Considering a two-
dimensional double-well potential,

U(x) =
2∑

i=1

(
1

4
x4i −

1

2
x2i

)
, (8.51)

we have illustrated the standard IO forcing in Fig. 8.1 and more complicated
temperature-dependent currents in Fig. 8.2.

A first interesting option offered by this extension to a coupling field is to only
enforce a strong driving where it actually has a significant effect on the relaxation
dynamics. As highlighted by the previously derived geometric bound, we indeed
know that brutally driving the system will eventually not improve the situation in
general. More specifically, the Eyring-Kramers equation has allowed us to identify
that the standard Ichiki-Ohzeki forcing only has a sizable effect due to its influence
at the saddle point. In Fig. 8.2(a), we therefore consider the forcing field

γ(x) = γ
∑
{x⋆}

e
− (U(x)−U(x⋆))

2

U0 , (8.52)

where the sum is over all the saddle points of the potential and U0 is an adjustable
parameter parametrizing the confinement of the forcing to the saddle points. Of
course, such a prescription requires the knowledge of the saddle points, however
one could imagine a heuristic weight based on the numerical exploration of the
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Figure 8.2: Total force fields F(x) = −∇U(x) + Fneq(x) for the 2d double well po-
tential of Eq. (8.51), colors given by the value of the potential (lighter corresponding
to smaller) for generalized Ichiki-Ohzeki forcing with (a) the targeted coupling field
given in Eq. (8.52), γ = 5, T = 0.1; (b) an arbitrary space dependent coupling field
γ(x) = γ

∑
x⋆

e−
(x−x⋆)2

κ , γ = 5, κ = T = 0.1. Light stars, dark stars and dark squares
correspond to stable fixed points, saddle points (single unstable direction) and unstable
fixed points of the force field respectively.

model or analytical calculations. The main advantage here would be to reduce the
computational constraint on the step size that can result from large forcing. Even
conceptually, this is an interesting example to illustrate that a simple increase in
the rate of entropy production (resulting from a homogeneous forcing in the entire
system) will not improve the effects of the driving due to geometrical limitations.
Numerical experiments confirm the equivalent effectiveness of this targeted IO
current relative to the original prescription (Fig. 8.3(b)).

To obtain more interesting and complicated currents, one needs to decouple the
forcing field from the potential. As mentioned above, doing so at sufficiently large
temperatures, we can create force fields that have new or modified fixed points.
Remarkably, this also includes stable fixed points, as illustrated in Fig. 8.2(b).
As a result of this much stronger modification, the transition path between two
minima no longer has to go through the saddle point of the original potential. This
phenomenon is illustrated with numerically simulated trajectories in Fig. 8.3(a).
This being said, engineering an effective force field is not an easy task. Besides,
what the thermodynamic bounds on the correlation time has demonstrated is that
the acceleration will not affect all observables equally. At this time, we have not
managed to find a non-trivial force field that clearly does better than the standard
Ichiki-Ohzeki method in terms of the numerically observed relaxation time, see
Fig. 8.3(b). At low but finite temperatures, it nonetheless appears unlikely that
the IO driving field is optimal – we have in fact shown that it is not for a given
amount of entropy production.
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Figure 8.3: (a) Sample of trajectories going from one well to another in almost directly
(here leaving )x(0) = [−1 1]T and reaching a small circle around x = [−1 − 1]T) for
the complicated force field illustrated in Fig. 8.2(b), albeit for T = 0.3. The black star
represents the saddle point of the original potential, which is clearly not visited by the
most probable trajectories in the modified force field. (b) Comparison of the reduction
in relaxation time (measured by fitting the relaxation dynamics of the position) for the
original IO forcing and the two force fields of Fig. 8.2 (T = 0.1). The continuous line
represents the full Eyring-Kramers prediction of the standard IO acceleration.

8.3.3 Perspectives

In order to improve our understanding of what constitutes a good topology for
accelerating relaxation, studying the most probable transition path and the asso-
ciated quasipotential at low but finite temperature appears to be the natural next
step. This being said, computing this trajectory when the temperature is finite
and currents much richer is not entirely straightforward. Indeed, the standard
instanton, i.e. the most likely trajectory between two points in the vanishing tem-
perature limit, is found by minimizing the previously introduced Freidlin-Wentzell
action of Eq. (8.16) for T = 0 strictly. At finite temperatures, on the other hand,
we should also consider the effects of thermal fluctuations.

Formally, one must study the probability to find a trajectory within a small
tube, as the probability of a single trajectory at finite temperature is always
zero [308, 309]. The most likely infinitesimal tube of trajectories can then be
shown to be that minimizing the Onsager-Machlup action

ST [x] =

∫ ∞

−∞
dt ([ẋ− F(x)]2 + T∇ · F(x)). (8.53)

The new temperature-dependent term in the action has been shown to be essential
to recover the correct transition paths, including with laboratory experiments
[310]. As a matter of fact, this term is likely of even greater importance for
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our generalized IO currents, as it is of the same order in temperature as the
leading contribution stemming from the ∇γ term in Eq. (8.49). Beyond the strict
numerical minimization of ST (e.g. using the method detailed in [286, 311–313]
or [314]), a possible and interesting extension is to study the distribution of these
paths. At finite temperature, the transition paths are indeed formally drawn
from a Gibbs-Boltzmann distribution P [{x(t)}] ∝ exp(−βST [x]). One can then
for instance sample these paths by following the evolution of trajectories in a
fictitious time with a functional Langevin equation, where ST [x] now plays the
role of the potential – an approach coined metadynamics in [315].

In any case, once the feasibility of effective complicated currents is determined
(with minimum action paths or otherwise), it would be extremely interesting to
assess if these non-trivial force fields could now alter the low temperature ergod-
icity breaking phenomena displayed by glassy models. In mean-field spin-glasses
such as the spherical p-spin discussed above, the divergence of energy barriers sug-
gests that the freezing in the low temperature phase is unavoidable, but simpler
trap models may be somewhat less challenging.

In two dimensions, where the physical understanding of the driving appears
more accessible than in high-dimensional systems, an appropriate test case for the
effectiveness of a given force field (or a general construction method) could be that
of a Gaussian random potential ϕ(x). Such a random potential is usually taken
to be of zero mean, and is characterized by its correlation function,

ϕ(x)ϕ(x′) = Γ(|x− x′|). (8.54)

Gaussian potentials are indeed known to display “super Arrhenius” behavior [316],
meaning the relaxation time averaged over the disorder scales as

τ eq ∼ exp
(
β2A

)
. (8.55)

Beating the Arrhenius scaling at low but finite temperature using an appropriately
designed current would therefore provide a very sizable improvement to the diffu-
sion at large scales in this type of random potential. A more extreme test would
be to take the squared Gaussian potential ψ(x) = 1

2ϕ(x)
2. Unlike the standard

Gaussian in which the dynamics are only frozen at strictly zero temperature, the
squared Gaussian potential is a bona fide trap model with a dynamical transition
temperature Td = 1 below which τ eq diverges [317].

8.4 Conclusion
In this chapter, we have taken a rather significant sidestep from the socioeconomic
leitmotiv of the thesis. Indeed, all the problems we had studied so far were char-
acterized by strong interactions: between assets in the portfolio problem, between
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individual agents in the interacting version of the Slutsky problem, the SK-game
and the Sakoda-Schelling model. Here, we have considered a much more simple
setup, with a single particle following the standard overdamped Langevin equa-
tion. Yet, doing so has importantly allowed us to isolate the impact of detailed
balance violating contributions to the dynamics. Enforcing that the steady-state
distribution remains unchanged indeed provides a somewhat unique opportunity
to compare the equilibrium and out-of-equilibrium relaxations on an equal foot-
ing. Given the common occurence of detailed balance violation in agent-based
models as a direct consequence of individualistic decision-making rules, improving
our understanding of out-of-equilibrium driving in such a simple case can only
help our intuition regarding more complex systems.

It has long been known that the introduction of irreversible currents generically
reduces the relaxation time, offering a straightforward application to steady-state
preserving out-of-equilibrium currents in numerical sampling. With this potential
use in mind, we have derived more precise bounds on the correlation time of
arbitrary observables. In equilibrium, the largest correlation time of the system
can formally be shown to coincide with the relaxation time to the steady-state.
Although this direct link has no equivalent out-of-equilibrium, the influence of
irreversible currents on the correlation time (which can also only be improved by
the detailed balance violation) remains instructive.

Starting from a general variational formulation of the correlation time of a
given observable, two relevant speed limits can be identified. First, a dissipation
bound, which formally establishes that a minimal amount of dissipation, i.e. of
entropy production, is required to accelerate the dynamics of the system. Second,
and perhaps more counterintuitively, a geometrical bound, demonstrating that a
given amount of dissipation will not accelerate all observables in the system, as
some will necessarily be orthogonal to the current. As such, blindly increasing the
amount of dissipation in the system will not improve the relaxation time arbitrarily
much. There is necessarily a saturation at some point, caused by the fact that
the slowest observable in the system eventually becomes one that is not affected
by the driving.

These bounds may then be of use to support the design of out-of-equilibrium
currents aimed at reducing the relaxation time towards a given Gibbs-Boltzmann
distribution. The geometric bound, in particular, suggests that the standard
Ichiki-Ohzeki method, which relies on the introduction of purely rotational cur-
rents that only act along equiprobability lines, might not be the best possible
approach. At finite temperatures, it is indeed possible to extend this method to
more complicated currents, for which the most probable path from an energy well
to another may be strongly modified (Fig. 8.2(a)). While we have only presented
very preliminary results and ideas on this problem, future research using the tools
developed for vanishing temperature instantons appears to be a promising avenue.
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Going back to socioeconomic systems, this research direction may turn out
to be relevant on two fronts. First, from a purely computational point of view.
In disordered systems described by a Gibbs-Boltzmann distribution, for example
the SK game with symmetric interactions (ε = 0), it is indeed always interesting
to accelerate relaxation in numerical experiments.40 In addition to this practical
consideration, a central question in the application of statistical mechanics to
socioeconomics system is the robustness of equilibrium results to potentially more
realistic agent-based models where detailed balance is violated. This issue, which
was at the heart of Chap. 7 and discussed in Chap. 4, may indeed benefit from
a precise assessment of the possible consequences of detailed balance violation on
the phenomenology of relatively complex systems. Determining if the currents
studied in this chapter may for instance kill the “super Arrhenius” behavior of
particles diffusion in a random Gaussian potential would be a first step in this
direction.

40Similarly to the p-spin discussed above, we expect such acceleration to be limited in radically
complex models such as the SK-game.
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Key takeaways

• By enforcing global balance instead of the usual detailed balance, one
can construct out-of-equilibrium dynamics with the same steady-state
distribution as a prescribed equilibrium system.

• The presence of irreversible currents is known to accelerate relaxation.

• A variational expression on the correlation time of any arbitrary state
observable allows the derivation of two distinct lower bounds:

1. A dissipation bound establishes that a minimal amount of en-
tropy production is required to achieve a given reduction of the
correlation time.

2. A geometric bound demonstrates that one can however not re-
duce the correlation time arbitrarily much simply by increasing
the dissipation.

• These speed limits can be used to support the understanding of the
effect of given irreversible currents, for example the saturation of the
divergence-free Ichiki-Ohzeki acceleration.

• At finite temperature, the introduction of more complicated currents
could lead to improvements, although what constitutes an effective
geometry is still unclear at this stage.

Ichiki-Ohzeki Generalized
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Conclusion

The best that most of us can hope to achieve in physics
is simply to misunderstand at a deeper level.

Wolfgang Pauli

Overview of the results
Let us briefly summarize what we have achieved in this thesis.

Through the study of a constrained portfolio optimization problem, we have
first illustrated how simple problems may lead an agent to face radically complex
situations [1]. Due to a very large number of quasi-equivalent solutions, the out-
come of the risk minimization that is expected from the agent becomes extremely
sensitive to the problem parameters. As a result, both rational decision making
and common information can no longer be assumed.

With this in mind, we have revisited a classical problem in consumer choice
theory with a boundedly rational decision rule [2]. Thanks to our specific choice
of decision rule, we were able to use the powerful methods of statistical mechanics
to show that bounded rationality does not necessarily lead to a breakdown of
the proverbial symmetry of the Slutsky matrix, which quantifies the change in
demand of a good following the change of price of another. When agents are
interacting, however, we found this symmetry to be violated, in particular at the
transition of a collective concentration phenomenon. Importantly, the illustrative
interacting socioeconomic system that we considered also revealed an inherent
limitation of equilibrium statistical mechanics to describe agent-based models.
Thermodynamic equilibrium indeed requires a global free energy to be minimized
by the dynamics of the system, which generally cannot be the case when agents
are somewhat individualistic in their decision making.

Following these results and observations, we introduced a unifying binary
choice model, the “SK-game”, showcasing bounded rationality, non-reciprocity,
and learning [?]. At odds with the belief that agents learn the best response to a
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situation based on past experience, we found that non-stationarity is self-induced
by the complexity of the game that the agents are trying to learn. Even when the
interactions are sufficiently reciprocal for the learning to converge, the outcome
is far from optimal, and the agents end up in satisficing solutions. Despite its
relatively simple statement, the model displays a wide range of out-of-equilibrium
phenomena that have proved very challenging to understand analytically.

Departing from this high-dimensional, spin-glass inspired formalism, we con-
sidered a generalized Sakoda-Schelling occupation model [5]. As a result of the
individualisation of the density perceived by the agents, the system is driven
out-of-equilibrium for any non-trivial choice of the utility function and regard-
less of the decision making process, reiterating that detailed balance satisfying
dynamics in agent-based models are the exception rather than the rule. Fortu-
nately, the mean-field description of the model allowed us to draw parallels with
the theory of active matter, which has generated much progress in the under-
standing of nonequilibrium dynamics in recent years. Importantly, we found the
condensation of agents in suboptimal tightly packed clusters to be robust to this
out-of-equilibrium setting and to decision rules beyond the usual logit choice.

Finally, taking a minor sidestep to improve our understanding of the impact
of out-of-equilibrium currents on the relaxation towards a steady-state, we stud-
ied the influence of driving when it preserves the Gibbs-Boltzmann steady-state
distribution. We first derived some rigorous bounds on the correlation time of
arbitrary observables [4]. Using a very simple example, we then illustrated how
these bounds can be used in the design of complicated out-of-equilibrium currents
aiming at accelerating the relaxation of the system. Beyond the direct application
of these currents to improve the numerical sampling of socioeconomic systems de-
scribed by an equilibrium distribution, the way detailed balance violation may or
may not impact the phenomenology of relatively complex models could provide
clues regarding the robustness of some known results to decision rules beyond the
standard logit choice in a more general context.

In even fewer words, the main messages of this thesis can be condensed as:

i. The heterogeneous nature of the interactions in socioeconomic systems very
likely leads to radical complexity and a highly non-trivial solution space, at
odds with the common unique “equilibrium” assumption;

ii. While equilibrium statistical mechanics may be suitable to characterize some
socioeconomic systems, the intrinsically individualistic decision rules de-
scribing agents generically lead to out-of-equilibrium dynamics, which must
then be analyzed accordingly (although the phenomenology may be rela-
tively unchanged);

iii. As a consequence of both points (i) and (ii), simple learning rules are unlikely
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to salvage any form of rational expectations. When fixed points exist they
are non-unique and lead to subtle long-time dynamics, when they do not
then the agents’ strategies evolve forever.

Extensions and closing remarks

Throughout the manuscript, we have mentioned some of the very numerous ex-
tensions that one could imagine for each of the problems considered. Without
going into too much detail, let us mention what we believe are the most evident
future directions to explore.

First and foremost, our analytical understanding of the SK-game remains lim-
ited, and therefore requires further investigations. We can notably mention the
long-time behavior of the small asymmetry, low temperature region in the limit
of long-term memory, as it is unclear at what stage the intentions of agents par-
tially or entirely decorrelate in time. This question is, in our opinion, particularly
important, as we have highlighted its relevance for other complex systems, bio-
logical neural networks in particular. In a similar vein, we were unable to clearly
understand the influence of learning on the period of the limit cycles that emerge
with perfectly rational agents in the close to zero sum regime. Recall that this
region of the parameter space is particularly important conceptually, as agents
spontaneously coordinate to do better on average than the Nash equilibrium, at
the cost of their own instantaneous individual rewards.

Other notable immediate extensions to the present work include the compu-
tation of the quenched complexity in the portfolio problem, and the inclusion of
a coupled price field in our neighborhood-less Schelling model.

In a sense, any progress towards the clarification and simplification of the fun-
damental understanding of these complex systems would be beneficial, in particu-
lar if we hope for these ideas to one day permeate towards mainstream economics.
Indeed, the problems considered here have proved to be extremely rich in terms
of statistical physics, and as a consequence many of the results are rather techni-
cal and subtle. Of course, this is what makes these interdisciplinary applications
exciting: by considering new constraints and rules, we unveil new physics and
make a modest contribution to the wealth of phenomena described by statistical
mechanics. In doing so however, it is sometimes easy to lose sight of the original
objectives and motivations. While there undoubtedly remains some aspects to
expand upon and to understand more clearly, an important future effort should
perhaps be to carefully communicate some of the key ideas presented here to a
wider audience, in particular towards the economics community. As noted in the
introduction, mainstream economics tends to be quite insular and reluctant to
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new ideas, to say the least, making this endeavor sometimes difficult.41 The very
idea of toy models, which have been at the center of our work, is in particular often
perceived as an admission of weakness, as highlighted in [318]. But we should not
despair, if there is one thing to remember from the theory of disordered systems,
it is that old things may take a very long time to change, but eventually they
always end up doing so. In the meantime, the best we can hope for is to be a
modest part of the small fluctuation that will eventually lead the system to a new,
but just as temporary, form of consensus.

41Our contribution to the boundedly rational description of the Slutsky matrix was for instance
judged “more narrow than typical” (when it did not trigger a bona fide lecture on the difference
between cardinal and ordinal utility functions) by economic journals.
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Résumé substantiel en français

Contexte

La théorie économique classique repose largement sur l’idée que les agents (indi-
vidus, foyers, entreprises etc.) agissent de manière parfaitement rationnelle. En
d’autres termes, ils sont censés être capables d’utiliser toute l’information à leur
disposition afin de prendre une décision “optimale”, c’est à dire qui maximise
strictement leur satisfaction, quantifiée par l’utilité.

Cependant, la physique des systèmes désordonnés a démontré que des prob-
lèmes en apparence simples peuvent avoir un nombre incommensurable de solu-
tions quasi équivalentes quand de l’hétérogénéité est introduite dans les inter-
actions entre un grand nombre de constituants (on parle alors de désordre). Les
verres de spin en particulier – qui sont des modèles simplifiés d’alliages métalliques
– présentent des paysages énergétiques extrêmement rugueux et complexes. Il de-
vient alors presque impossible de trouver la configuration du système qui minimise
son énergie, ce qui conduit la dynamique à être perpétuellement hors d’équilibre
et à présenter une phénoménologie riche et hautement non-triviale.

Les systèmes socioéconomiques réels étant constitués d’un très grand nom-
bre d’agents en interaction et souvent fortement hétérogènes, il semble naturel
d’imaginer qu’ils présentent eux aussi un espace de solutions que nous qualifierons
de radicalement complexe. Une conséquence serait alors la remise en cause de la
supposition que les agents sont rationnels, car ils ne pourraient simplement pas
déterminer quel choix est optimal face à cette complexité.

L’objectif de cette thèse est d’utiliser les méthodes de la physique des systèmes
désordonnés et de la physique statistique hors d’équilibre, introduites dans le
Chapitre 2, pour étudier des systèmes socioéconomiques simplifiés (ou “modèles
jouets”) présentant potentiellement de la complexité radicale. Nous identifierons
notamment dans quel cadre celle-ci émerge puis ses conséquences sur la dynamique
collective des agents. Ce faisant, nous étudierons aussi d’autres modèles inspirés
des systèmes socioéconomiques sous l’angle de la physique statistique.
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Complexité radicale et rationalité bornée
Nous commençons par étudier un problème typique auquel un agent économique
peut être confronté : l’optimisation de portefeuille. Plus précisément, nous nous
intéressons dans le Chapitre 3 au cas où l’on cherche à minimiser le risque d’un
portefeuille d’actifs corrélés (par exemple des actions) sans avoir accès à des ventes
à découvert, c’est-à-dire les portefeuilles “long-only”. Du fait de cette contrainte
non-linéaire sur le signe de la solution, le problème peut être reformulé à l’aide de
spins binaires qui représentent alors l’inclusion ou l’exclusion des actifs dans une
solution.

Tirant parti de l’analogie avec les verres de spin, nous calculons la fraction
d’actifs inclus dans la solution optimale en fonction de la distribution des corréla-
tions. Le premier résultat est que cette fraction d’actifs inclus décroit rapidement
quand la taille du système augmente : les portefeuilles “long-only” optimaux sont
très concentrés autour d’un faible nombre d’actifs. Cette quantité nous permet
par ailleurs de calculer le nombre moyen de portefeuilles qui satisfont la contrainte
en utilisant une selection encore plus restreinte d’actifs. Parmi ces autres solu-
tions, qui sont presque exponentiellement nombreuses, une grande partie s’avère
être quasi-optimales et ne sont que marginalement plus risquées que la solution
optimale. Cette quasi-dégénérescence du problème a des conséquences pratiques
importantes. En effet, supposons par exemple que deux agents ont des informa-
tions (ici sur les corrélations entre actifs) très légèrement différentes. Dû au grand
nombre de solutions quasi-optimales et de leur nature clairsemée, ces deux agents
peuvent alors avoir un optimum complètement différent. L’incertitude autour de
la “bonne” solution optimale nous permet donc d’illustrer la notion de complex-
ité radicale héritée des systèmes désordonnés. Le problème auquel un agent est
confronté est si complexe et sensible aux paramètres que la notion même de ra-
tionalité devient caduque : un changement infime de l’environnement de l’agent le
conduirait probablement à prendre un choix opposé. Il faut donc aller au-delà de
l’agent rationnel.

De fait, des théories de rationalité limitée existent. Nous adoptons une ap-
proche stochastique, selon laquelle les agents prennent la décision qui maximise
leur utilité avec une certaine probabilité. Grace à cette formulation, certains prob-
lèmes peuvent être traités à l’aide de la mécanique statistique d’équilibre. Nous
l’illustrons dans le Chapitre 4 avec le problème concret de microéconomie de la
matrice dite de Slutsky, qui lie la demande d’un produit au changement de prix
d’un autre.

En exprimant les entrées de la matrice à l’aide de relations de fluctuation-
réponse (analogues à la relation d’Einstein pour le mouvement Brownien), nous
montrons que la matrice d’un agent seul reste symétrique quel que soit son niveau
de rationalité. Contrairement à ce qui a pu être affirmé en économie classique,
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l’observation empirique de la symétrie de cette matrice ne peut alors pas être
utilisée comme une preuve de la rationalité stricte d’un agent. Dans le cas où
nous introduisons plusieurs agents en interaction en revanche, la symétrie de la
matrice n’est plus garantie, et ce même dans le cas où les agents sont parfaitement
rationnels. Pour étudier ce phénomène concrètement, nous introduisons un mod-
èle d’agents en interaction où la consommation est influencée par un paramètre
d’imitation. Nous montrons que ce système simplifié présente une transition de
phase : il existe une valeur critique de l’imitation en dessous de laquelle la consom-
mation d’un agent n’est pas affectée par celle des autres, et au dessus de laquelle
les choix des agents se concentrent sur les produits les plus populaires. Nous ob-
servons que la violation de la symétrie de la matrice de Slutsky des agents est
maximale lors de cette transition.

L’introduction de ce modèle d’agent nous permet aussi de souligner une lim-
itation importante de la mécanique statistique d’équilibre pour la description de
systèmes socioéconomiques. En effet, celle-ci repose intégralement sur l’existence
d’une fonction globale minimisée par la dynamique du système (qui n’est autre
que l’énergie en physique). Or les modèles dans lesquels une telle quantité glob-
ale peut être construite à partir des règles de décision individuelles d’agents font
cependant figures exceptions. De fait, toute forme de non-réciprocité dans les
interactions entre les individus nous mène à une situation hors équilibre – ou non-
relaxationnelle – où aucune quantité globale n’est minimisée. Là où la physique
statistique d’équilibre décrit efficacement la rationalité limitée d’un seul agent,
seule des suppositions fortes sur la nature des interactions nous permet de le faire
dans le cas où il y a plusieurs agents.

Un modèle type : le “SK-Game”

Ayant établi que la complexité radicale résultant des hétérogénéités est synonyme
de rationalité bornée et que la non-réciprocité des interactions entre agents place
probablement les systèmes hors de l’équilibre thermodynamique, nous proposons
dans le Chapitre 5 un modèle d’agent minimaliste – le “SK-game” – incluant
non-seulement ces aspects mais aussi un mécanisme d’apprentissage. En effet,
une croyance courante en économie est que là où les agents sont possiblement
irrationnels, l’aggregation de l’information dans la temps et l’apprentissage permet
aux individus d’agir de manière effectivement rationnelle. S’inspirant du verre de
spin de Sherrington-Kirkpatrick, notre modèle présente une diversité remarquable
de comportements hors équilibre.

Nous montrons tout d’abord que l’apprentissage permet aux intentions d’agents
suffisamment rationnels et interagissant de manière majoritairement réciproque
d’atteindre des points fixes ou quasi-points fixes. La récompense moyenne des
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agents dans ces solutions est bonne – au sens où elle est supérieure à celle d’un des
nombreux points fixes du système qui serait sélectionné aléatoirement – mais elle
est significativement sous-optimale. Dans les termes de Herbert Simon, le système
atteint spontanément des solutions “satisficing”, à savoir suffisamment bonnes
pour être satisfaisantes. Étonnamment, nous observons que l’irrationalité permet
dans un premier temps d’améliorer la récompense moyenne, car l’incertitude dans
la décision permet d’explorer une région plus vaste de l’espace des solutions. De
manière semblable aux solutions du problème de portefeuilles, l’issue du système
est extrêmement sensible au point de départ, et il est donc impossible de prévoir à
l’avance quels agents obtiendront les récompenses les plus importantes ou les plus
faibles.

Si la non-réciprocité entre les agents est accentuée, le système rentre dans une
région chaotique, et ce quelque soit leur capacité à apprendre ou leur niveau de
rationalité. Les intentions des agents sont alors perpétuellement changeantes et
imprévisibles, et leur récompenses moyenne sont par conséquent largement dé-
gradées.

Dans le cas où les interactions entre agents sont hautement compétitives, c’est
à dire que le modèle tend à devenir un jeu à somme nulle, nous observons enfin
des cycles limites qui deviennent des oscillations amorties si les agents sont dotés
d’une rationalité limitée. Ici, l’apprentissage a un effet hautement non trivial :
la fréquence de ces oscillations décroit comme la racine carrée du temps carac-
téristique d’apprentissage. Il est par ailleurs interessant de constater que dans la
plupart des cas le système ne converge pas vers l’équilibre de Nash, où les agents
choisiraient entièrement au hasard, mais conservent des intentions marquées qui
évoluent dans le temps.

Nous étudions tout ces phénomènes en détail analytiquement et numérique-
ment en utilisant les méthodes de la physique des systèmes désordonnés dans le
Chapitre 6, nous menant à revisiter des questions fondamentales. Dans le contexte
de notre modèle, nous concluons que ce type de problème radicalement complexe
est de fait inapprenable. En effet, quand l’apprentissage permet à la dynamique
de converger à des (quasi-)points fixes, ceux-cis sont sous-optimaux, et sont par
ailleurs associés à des comportements dynamiques non-stationnaires subtils quand
les agents ne sont pas strictement rationnels. Dans le cas où les interactions sont
d’avantage non-réciproques, alors l’apprentissage ne permet tout simplement plus
à la dynamique de converger.

Dynamiques hors-équilibre en l’absence de désordre

Afin de mieux comprendre l’influence d’une dynamique hors d’équilibre sur le
comportement collectif de systèmes socioéconomique plus simples, nous étudions
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enfin des problèmes ne présentant pas de désordre. Dans le Chapitre 7, nous
revisitons en particulier un modèle de Sakoda-Schelling, dans lequel une ville est
représentée par un réseau où chaque site peut être vide ou occupé par un agent.
Dans le modèle classique, ce réseau est séparé en quartiers. Chaque quartier est
alors caractérisé par son taux d’occupation, qui définit lui même l’utilité des agents
qui y vivent. On propose ensuite aléatoirement aux agents de déménager vers un
logement libre dans un autre quartier, ce qu’ils acceptent si le changement conduit
à une augmentation de leur utilité. De manière surprenante, on observe alors
rapidement que le niveau d’occupation des quartiers est largement sous optimal :
plutôt que de se répartir uniformément dans les quartiers au taux d’occupation
qui maximise leur utilité, les agents s’agrègent dans quelques quartiers et laissent
les autres entièrement vide. Ce phénomène peut ensuite être compris à l’aide de la
mécanique statistique d’équilibre, car une utilité globale peut être définie à l’aide
de la dynamique individuelle, du fait du découpage du système en quartiers.

Nous généralisons le modèle au cas où il n’y a plus de quartiers fixes, et où
les agents décident à présent d’occuper ou non un site qui leur est proposé en
fonction d’une perception locale de la densité. Nous montrons tout d’abord que le
système est alors hors d’équilibre en général, et ce quelque soit la règle de décision
choisie. Malgré cela, la dynamique non-relaxationelle peut être étudiée suivant
une approximation de champ moyen. Celle-ci nous permet de mettre en évidence
l’existence d’une transition de phase, et donc de la robustesse de la phénoménologie
du modèle original à une large classe de règles de décision et de fonctions d’utilité.
En effet, les agents continuent à se concentrer de manière sous-optimale dans
des régions de l’espace, malgré l’absence de quartiers prédéfinis. Nous établissons
enfin un parallèle avec la théorie de la matière active, et utilisons une méthode
de thermodynamique généralisée pour calculer les densités de coexistence dans la
phase de condensation. Cette étude nous permet donc de conjecturer que la na-
ture précise de la règle de décision des agents ne devrait pas radicalement changer
la phénoménologie dans la plupart des modèles jouets. Comme il existe relative-
ment peu d’études empiriques sur les règles de décision, cela constitue un résultat
important en faveur de la pertinence de la mécanique statistique d’équilibre pour
comprendre qualitativement les systèmes socioéconomiques.

Le Chapitre 8 est lui dédié à l’étude plus théorique de l’influence d’une classe
de courants hors d’équilibre qui préservent une distribution stationnaire donnée.
En effet, il est possible d’introduire un terme non-relaxationnel à une équation
de Langevin qui ne change toutefois pas la statistique échantillonnée par le pro-
cessus stochastique. Par ailleurs, il est possible de démontrer qu’une telle con-
tribution ne peut que réduire le temps nécessaire à atteindre l’état stationnaire
du système. L’introduction de tels courants pourrait donc s’avérer précieuse afin
d’étudier numériquement des systèmes où la relaxation vers l’état stationnaire
est extrêmement lente. Nous commençons par établir des bornes sur le temps
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de décorrelation dans ces systèmes. D’une part, nous montrons qu’une certaine
quantité de production d’entropie (quantifiant l’irréversibilité d’un processus hors
d’équilibre) et donc de forçage est nécessaire afin d’atteindre un certain niveau
d’accélération. D’autre part, nous mettons en évidence qu’il n’est pas possible
d’accélérer arbitrairement la dynamique en augmentant simplement l’intensité du
courant hors d’équilibre : il y a une contrainte géométrique sur ces courants qui
ne doivent pas seulement être importants mais aussi avoir une influence dans des
régions spécifiques de l’espace des probabilités. Cette borne géométrique nous per-
met notamment de mieux comprendre les limitations d’une méthode d’acceleration
de la dynamique, dite d’Itchiki-Ohzeki, basée sur le couplage de deux copies d’un
système. Pour aller au delà, des courants nettement plus complexes peuvent être
introduits quand le systèmes est à température finie. Nous montrons numérique-
ment que de telles contributions permettent de significativement altérer la chemin
de transition le plus probable entre deux minimums locaux d’énergie, ce qui pour-
rait ouvrir la voie vers des procédures d’acceleration plus efficaces. Étant donné la
pertinence des dynamiques hors d’équilibre dans le contexte socioéconomique, une
meilleure compréhension de ces courants préservant la distribution stationnaire est
une première étape importante.
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Optimal portfolios

This section reproduces the Appendices of [1].

A.1 Full self-consistent equation
Starting from

β̃+ =

∑
j β

2
jθj/zj + 1∑
j βjθj/zj

(A.1)

we make use of the central limit theorem as for N ≫ 1

1

N

∑
j

βk
j θj/zj ≃ ⟨z−1⟩⟨⟨βk⟩⟩+ 1√

N
ξk (A.2)

where ξk are Gaussian noises with mean ⟨ξk⟩ = 0 and variance

⟨ξ2k⟩ = ⟨z−2⟩⟨⟨β2k⟩⟩ − ⟨z−1⟩2⟨⟨βk⟩⟩2. (A.3)

After factorisation and expansion of the denominator, Eq. (A.1) can be written
as

β̃+ =
⟨⟨β2⟩⟩
⟨⟨β⟩⟩

+
1

N

[
z

⟨⟨β⟩⟩
− z2

⟨⟨β⟩⟩2

(
⟨ξ1ξ2⟩ −

⟨⟨β2⟩⟩
⟨⟨β⟩⟩

⟨ξ21⟩
)]

+O

(
1

N2

)
+

1√
N

z

⟨⟨β⟩⟩

(
ξ2 −

⟨⟨β2⟩⟩
⟨⟨β⟩⟩

ξ1

)
+O

(
1

N3/2
.

)
︸ ︷︷ ︸

fluctuations

,
(A.4)

with z = ⟨z−1⟩−1, which can be rewritten as β̃+ = β+ + 1√
N
ξ with the final noise

term
ξ =

z

⟨⟨β⟩⟩

(
ξ2 −

⟨⟨β2⟩⟩
⟨⟨β⟩⟩

ξ1

)
(A.5)
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that still has zero mean and variance

γ2 =
z2⟨z−2⟩
⟨⟨β⟩⟩2

(
⟨⟨β4⟩⟩ − 2

⟨⟨β2⟩⟩⟨⟨β3⟩⟩
⟨⟨β⟩⟩

+

(
⟨⟨β2⟩⟩
⟨⟨β⟩⟩

)2

⟨⟨β2⟩⟩

)
. (A.6)

Substituting the correct values for ⟨ξ1ξ2⟩ and ⟨ξ21⟩, the deterministic term can be
rewritten as

β+ =
⟨⟨β2⟩⟩
⟨⟨β⟩⟩

+
1

N

[
z

⟨⟨β⟩⟩
− z2⟨z−2⟩

⟨⟨β⟩⟩2

(
⟨⟨β3⟩⟩ − ⟨⟨β2⟩⟩2

⟨⟨β⟩⟩

)]
+O

(
1

N2

)
. (A.7)

Now, as detailed in the following section for the case α = 1, at the leading order one
may Taylor expand the averages about the threshold β+ as FN (β) = H(Nα(β−
β+)), with α ≥ 1/2 from the form of FN found in the main text. As a result,
⟨⟨βk⟩⟩ ≃ m+ σ(. . . ) + · · ·+ σk(. . . ) and so in the regime σ = χ/N we have both

⟨⟨β3⟩⟩−⟨⟨β2⟩⟩2

⟨⟨β⟩⟩
= 0+O

(
1

N

)
and ⟨⟨β4⟩⟩−2

⟨⟨β2⟩⟩⟨⟨β3⟩⟩
⟨⟨β⟩⟩

+

(
⟨⟨β2⟩⟩
⟨⟨β⟩⟩

)2

⟨⟨β2⟩⟩ = 0+O

(
1

N

)
.

As such, the second term in N−1 may be eliminated from Eq. (A.7), and we find
that the variance γ2 is at most of order N−1.

A.2 Sommerfeld-like expansions
Starting from the averages

⟨⟨βk⟩⟩ =
∫ ∞

−∞
dββkρ(β)FN (β), (A.8)

we may define ψ(β) =
∫ β

−∞ dββkρ(β) such that integrating by parts∫ ∞

−∞
dββkρ(β)FN (β) = −

∫ ∞

−∞
dβψ(β)F ′

N (β). (A.9)

as the boundary term vanishes given ψ(−∞)ρ(−∞) = 0 and FN (+∞) = 0. As
previously mentioned, F ′

N (β) is peaked in a small region around β+, therefore
we can expand ψ in this region with a Taylor series in the spirit of Sommerfeld
expansions in condensed matter physics [319], giving in turn∫ ∞

−∞
dβφ(β)FN (β) =− ψ(β+)

∫ ∞

−∞
dβF ′

N (β)

− ψ′(β+)

∫ ∞

−∞
dβ (β− β+)F ′

N (β) +O((β− β+)2).

(A.10)
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Now, changing variables as x = N(β− β+) the equation becomes∫ ∞

−∞
dβφ(β)FN (β) = −ψ(β+)

∫ ∞

−∞
dxH ′(x)− 1

N
ψ′(β+)

∫ ∞

−∞
dxxH ′(x)+O(N−2)

(A.11)
where the first integral in x easily gives -1 given our knowledge of H(x), while the
second can be written as

κ = −
∫ ∞

−∞
dxxH ′(x) =

∫ ∞

0
dx (H(x) +H(−x)− 1) (A.12)

that will clearly be zero in the case of a symmetric function written like H(x >
0) = 1

2 + ϵ(x) and H(x < 0) = 1
2 − ϵ(x). Given that in our case H(x) is a

complementary error function and is thus symmetric, we therefore have∫ ∞

−∞
dββkρ(β)FN (β) =

∫ β+

−∞
dββkρ(β) +O

(
1

N2

)
(A.13)

or, using the compact notations introduced in the main text,

⟨⟨βk⟩⟩ = ⟨βk⟩c +O

(
1

N2

)
(A.14)

A.3 Reaction term
We essentially adapt the Onsager cavity field approach to our problem. Consid-
ering a system with N assets and their associated spins {θ}, the threshold for
inclusion was shown to be given by

β̃+
N =

∑
j β

2
jθj/zj + 1∑
j βjθj/zj

= β+
N +

1√
N
ξ (A.15)

After introduction of a new asset, at the index 0 for simplicity, this threshold is
altered as

β̃+
N+1 =

∑
j β

2
jθj/zj + β2

0θ0/z0 + 1∑
j βjθj/zj + β0θ0/z0

(A.16)

that can be expressed, after applying the central limit theorem to sums and ex-
panding the denominator as before, as

β̃+
N+1 = β+

N +
1√
N
ξ +

1

N
c(β0) (A.17)

with the reaction term

c(β0) =
1

⟨⟨β⟩⟩

(
β2
0θ0
z0

− ⟨⟨β2⟩⟩
⟨⟨β⟩⟩

β0θ0
z0

)
. (A.18)
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Now, just like we took FN (β) = Prob (ξ ≥ β− β+), we have

FN+1(β) = Prob

(
ξ ≥ β− β+ − 1

N
c(β0)

)
,

which may be Taylor expanded and averaged over the distribution β0 such that

FN+1(β) = FN (β) +
1

N

e
− 1

2(
β−β

+
N

γ )
2√

2πγ2

∫ ∞

−∞
dβ0 c(β0)ρ(β0)FN (β0) +O

(
1

N2

)
.

(A.19)
Then, simply going back to the definition of the averages ⟨⟨βk⟩⟩, we clearly find
the integral in the second term becomes

⟨⟨c(β0)⟩⟩ =
1

⟨⟨β⟩⟩z0

(
⟨⟨β2⟩⟩ − ⟨⟨β2⟩⟩

⟨⟨β⟩⟩
⟨⟨β⟩⟩

)
= 0. (A.20)

As such, the reaction term has no contribution at order 1/N , and the naive self-
consistent equation for β+ requires no further modification.

A.4 Detailed resolution of the characteristic equations
Starting with the Gaussian case, the characteristic equation for x, rewritten as

s =

∫ x

0
dv

e−vφ′(σv)

φ(σv)
(A.21)

is split between the small σv region, that yeilds a constant contribution, and the
large σv region where we had the asymptote

φ(σv) =

√
2 log σv

σv
. (A.22)

Using this expression, we explicitely write the derivative in the exponent

φ′(σv) =
1− 2 log σv

σv2
√
2 log σv

. (A.23)

Now, for v ≫ 1, vφ′(σv) decreases like
√
log σv/(σv) ≫ 1, justifying a Taylor

expansion of the exponential. As such,

e−vφ′(σv) = 1 +
2 log σv − 1

σv
√
2 log σv

+O

(
log σv

(σv)2

)
(A.24)
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and thus the integrand of Eq. (A.21) is given by

e−vφ′(σv)

φ(σv)
=

σv√
2 log σv

+ 1− 1

2 log σv
+O

(√
log σv

σv

)
. (A.25)

The integration of the first term presents a slight challenge, but taking the change
of variable σv = e

w2

2 ,∫ x

dv
σv√

2 log σv
=

1

σ

∫ √
2 log σx

dw ew
2
=

1

σ
e2 log σxF

(√
2 log σx

)
(A.26)

with F the Dawson integral function. Using the asymptotic expansion of this
special function [320], this first term finally becomes

σx2

2
√
2 log σx

[
1 +O

(
1

log σx

)]
. (A.27)

The third term in Eq. (A.25) can also be expanded asymptotically, as

1

2

∫ x

dv
1

log σv
=

li(σx)

2σ
=

x

2 log σx

[
1 +O

(
1

log σx

)]
(A.28)

where equalities are up to an additive constant, and li is the well known logarithmic
integral function. Bringing everything together,

s =
σx2

2
√
2 log σx

[
1 +O

(
1

log σx

)]
+x

[
1− 1

2 log σx
+O

(
1

(log σx)2

)]
+O

(
(log σx)

3
2

)
.

(A.29)
In the large x limit, the very first term will largely dominate others and we may
therefore recover the expression given in the main text,

s ∼ σx2

2
√
2 log σx

. (A.30)

Rearranging this expression, we have

σx =
√
2σs(2 log σx)

1
4 (A.31)

and thus we can take the iterated logarithm

log σx =
1

2
log σs+

3

4
log 2 +

1

4
log log σx (A.32)

and thus

σx =
√
2σs(log σs)

1
4

[
1 +O

(
log log σs

log σs

)] 1
4

, (A.33)
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giving the asymptotic relation

x(s) ∼
√

2s

σ
(log σs)

1
4 . (A.34)

The final characteristic ODE can then be integrated,

log z =

∫ s

0
dv ex(v)φ

′(σx(v)) φ(σx(v)), (A.35)

once again splitting the constant contribution from the small σv region and the
known asymptotic behaviour. Replacing with the expression for x(s), we have

log σx(v) =
1

2
log σv

[
1 +O

(
log log σv

log σv

)]
(A.36)

and thus

x(v)φ′(σx(v)) = −(log σv)
1
4

√
σv

[
1 +O

(
log log σv − 1

log σv

)]
. (A.37)

For σv ≫ 1, the exponential term in Eq. (A.35) can therefore be Taylor expanded.
Given

φ(σx(v)) =
(log σv)

1
4

√
2σv

[
1 +O

(
log log σv

log σv

)]
, (A.38)

the integral can finally be written as

log z =

∫ s

dv
(log σv)

1
4

√
2σv

−
∫ s

dv

√
log σv√
2σv

+O

(∫ s

dv
log log σv

√
σv(log σv)

3
4

)
. (A.39)

Now, the first term will clearly dominate for large s. The integral may be evalu-
ating by taking the change of variable σv = e2w:∫ s

dv
(log σv)

1
4

√
2σv

=
2

3
4

σ

∫ 1
2
log σs

dww
1
4 ew =

√
2s

σ
(log σs)

1
4

[
1 +O

(
1

log σs

)]
(A.40)

where the final equality may be shown by integrating by parts [321].
So far, we have used the position along the characteristic s, however integrating

the first characteristic equation with the associated boundary condition, we have
s = t. Recalling that the continuous variable t is analogous to the size of the
problem N and z to the average number of solutions ⟨Ns⟩, we may finally express
the result with the quantites of interest

⟨Ns⟩ ∼ exp

{√
2N

σ
(log σN)

1
4

}
, (A.41)
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as given in the main text. It should be noted that as the error terms are of
logarithmic orders, we expect the convergence to this asymptote to be relatively
slow in N .

For the uniform case, the calculations are much easier thanks to the simpler
form of the maximum sparsity. For σv > 2−

1
2 large we remind that

φ(σv) =
1

2
1
4
√
σv
, (A.42)

giving in turn
vφ′(σv) = − 1

2
5
4
√
σv
. (A.43)

The integral given in Eq. (A.21) therefore amounts to

s =

∫ s

dv

[
2

1
4
√
σv +

1

2
+O

(
1√
σv

)]
(A.44)

after Taylor expanding the exponential term, and removing the constant contri-
bution by using the boundary condition. One then easily finds

s =
2

5
4
√
σx

3
2

3

[
1 +O

(
1√
σx

)]
, (A.45)

and thus for σx≫ 1, which is expected for large N ,

x(s) ∼

(
3

2

s√√
2σ

) 2
3

. (A.46)

As for the Gaussian case, this may be reinjected in the expressions of φ and
φ′ to calculate log z. We find

φ(σx(v)) =

(
2

3

1√
2σv

) 1
3

and x(v)φ′(σx(v)) = −1

2

(
2

3

1√
2σv

) 1
3

, (A.47)

resulting in, after Taylor expanding the exponential term,

log z =

∫ s

dv

(
2

3

1√
2σs

) 1
3

+
1

2

∫ s

dv

(
2

3

1√
2σs

) 2
3

+O

(∫ s

dv
1

σv

)

=

(
3

2

s√√
2σ

) 2
3 [

1 +O

(
1

3
√
σs

)]
.

(A.48)

Like before, realising s = t directly gives the mean number of solutions and asso-
ciated annealed complexity as a function of N .
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A.5 Generalized normal distribution
Taking the generalised normal distribution and performing the change of variable
u = β−1√

2
, we have

m =
b

2σΓ(1/b)

∫ β+−1√
2

−∞
du e−(

|u|
σ )

b

, (A.49)

⟨β⟩c = m+
b
√
2

2σΓ(1/b)

∫ β+−1√
2

−∞
duu e−(

|u|
σ )

b

(A.50)

and finally

⟨β2⟩c = m+
b
√
2

σΓ(1/b)

∫ β+−1√
2

−∞
duu e−(

|u|
σ )

b

+
b

σΓ(1/b)

∫ β+−1√
2

−∞
duu2 e−(

|u|
σ )

b

.

(A.51)

At this stage, one may first notice that if σ ∼ N−1, then the integrals involving uk
will be of order N−k. As such, as we are interested only in terms in N−1 or higher,
rewriting m = φ and ⟨β⟩c = φ−ψ we therefore also have ⟨β2⟩c = φ−2ψ+O(N−2),
where ψ scales as N−1. As such, the self-consistent equation simplifies to

β+ =
φ− 2ψ

φ− ψ
+

1

N

z

φ
+O

(
1

N2

)
. (A.52)

At this stage, we can reintroduce the ansatz β+ = 1+χf(χ)/N such that at order
N−1 the self-consistent equation becomes

χf(χ) =
z

φ
− Nψ

φ
(A.53)

that corresponds to the equation given in the main text

χf(χ) =
z

m
− χ

m

b

2
√
2Γ(1/b)

∫ ∞

−f(χ)
duu e

−( |u|√
2
)
b

. (A.54)

We now look at the case of finite b. The know asymptote∫ b

a
dt f(t) ext ∼ exb

[
n∑

k=1

(−1)k−1f (k−1)(b)x−k

]
(A.55)

as x → ∞ can then be used with minor tweaking. For all three integrals, we can
use the fact that in the regime of interest β+ − 1 < 0 so being careful with signs
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one may take the substitution t = ub to have an integrand in the form of the
formula above. This then yields

φ ≃ 1

2Γ(1/b)
e
−( |f(χ)|√

2
)
b
[(

|f(χ)|√
2

)1−b

− b− 1

b

(
|f(χ)|√

2

)1−2b
]

(A.56)

ψ ≃ χ

N
√
2Γ(1/b)

e
−( |f(χ)|√

2
)
b
[(

|f(χ)|√
2

)2−b

− b− 2

b

(
|f(χ)|√

2

)2−2b
]

(A.57)

giving, once plugged in Eq. (A.53)

2Γ(1/b) e(
|f(χ)|√

2
)
b

=χf(χ)

[(
|f(χ)|√

2

)1−b

− b− 1

b

(
|f(χ)|√

2

)1−2b
]

+
√
2χ

[(
|f(χ)|√

2

)2−b

− b− 2

b

(
|f(χ)|√

2

)2−2b
]
.

(A.58)

Finally, given the we know that β+ < 1 in this regime, then we can simply realise
that f(χ) = −|f(χ)| and so terms on the right hand side cancel out to give

e(
|f(χ)|√

2
)
b

=
χ√

2bΓ(1/b)

(
|f(χ)|√

2

)2−2b

, (A.59)

the final equation to be approximated.

A.6 Heterogeneous returns and growth rates
To extend our model to more realistic conditions, it is important to generalise
the calculations to variable values of µi. In such a case, the long-only portfolio
and population dynamics calculations are no longer strictly equivalent, as in the
portfolio µi and zi are independent while regarding species we have zi = µi/ki.

Starting with the long-only portfolio, we now have

θi = Θ

(
µi − βi

∑
βjµj/zj∑

j β
2
j/zj + 1

)
. (A.60)

The first important aspect to notice here is that, just as was the case for β, we may
fix the mean of µ to 1 without loss of generality as any multiplicative rescaling
µi → αµi leaves the above equation invariant. From there, we may proceed as
before, now defining a threshold on the quantity ϕ = β/µ:

ϕ̃+ =

∑
j ϕ

2
jµ

2
jθj/zj + 1∑

j ϕjµ
2
jθj/zj

. (A.61)
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The probability for an asset to be included in the portfolio is now given by the
function FN (ϕ) that is qualitatively identical to the previously introduced equiv-
alent for β alone. Taking µi and βi to have the joint probability distribution
ρ(β, µ), we must calculate

⟨⟨ϕkµ2⟩⟩ =
∫

dϕ

∫
dµ

∫
dβϕkFN (ϕ)µ2ρ(β, µ) δ

(
ϕ− β

µ

)
. (A.62)

From the results of A.2 , we know that this integral can be calculated as

⟨⟨ϕkµ2⟩⟩ =
∫ ϕ+

−∞
dϕϕkh(ϕ) +O

(
1

N2

)
(A.63)

where the key step is therefore calculating

h(ϕ) =

∫
dβ

∫
dµµ2ρ(β, µ) δ

(
ϕ− β

µ

)
(A.64)

that will act as an effective distribution of ϕ. Assuming now that both β and µ
are distributed around 1 with a standard deviation scaling in N−1, we may shift
and rescale the problem by taking

β = 1 +
x

N
, µ = 1 +

y

N
, ϕ = 1 +

w

N
(A.65)

and ρ̃(x, y) that is the distribution of β and µ centred now at 0 and with standard
deviation of order 1. Using the scaling property of the Dirac delta distribution,
we finally have the rescaled effective density for ϕ that is given by

h̃(u) =

∫
dx

∫
dy

(
1 +

2y

N

)
ρ̃(x, y) δ(w − x+ y) +O

(
1

N2

)
=

∫
dy ρ̃(u+ y, y) +O

(
1

N

)
,

(A.66)

as it will be shortly apparent that the N−1 contribution vanishes in the self-
consistent equation. Note that when ρ̃(x, y) is a bivariate Gaussian, h̃(u) is also
Gaussian.

Expressing the threshold in ϕ+ as

ϕ+ = 1 +
f̃

N
, (A.67)

where f̃ depends on the parameters describing the distribution h̃. We may go
back to the self-consistent equation that is analogous to that for β+ and reads

ϕ+ =
⟨ϕ2⟩c
⟨ϕ⟩c

+
1

N

1

⟨ϕ⟩c
+O

(
1

N2

)
(A.68)
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with now

⟨ϕk⟩c =
∫ ϕ+

−∞
dϕϕkh(ϕ) =

∫ f̃

−∞
du

(
1 +

ku

N

)
h̃(u) +O

(
1

N2

)
. (A.69)

As such, we finally obtain an equation that is almost identical to the homogeneous
µi = 1 case, contributions of order 1 cancel out and we have, at order N−1,

f̃ =
1

m
+

1

m

∫ f̃

−∞
duuh̃(u) (A.70)

with

m =

∫ f̃

−∞
du h̃(u). (A.71)

Clearly, the N−1 term in the expression of h̃(u) is dominated and therefore the
µ2 term that was initially present turns out to be inconsequential.

With this result in mind, we can look at the equilibrium ecosystem problem.
As previously mentioned, the relation zi = µi/ki means that the threshold is now
given by

ϕ̃+ =

∑
j ϕ

2
jkjµjθj + 1∑
j ϕjkjµjθj

. (A.72)

Thus, leaving aside the kj that play no part in the inclusion or not of the species
(as was the case for zj), the problem is identical to the long-only portfolio problem,
albeit with ⟨⟨ϕkµ⟩⟩ to be calculated instead of ⟨⟨ϕkµ2⟩⟩. Having just determined that
when taking µ to be distributed in an N−1 region about its mean its contribution
in the integral is negligible, we find ourselves with exactly the same self-consistent
equation as above.
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Appendix B

Slutsky matrices

This section reproduces the Appendices of [2].

B.1 General “thermodynamic” relations

B.1.1 Single agent Slutksy matrix

Assuming the equilibrium distribution is reached, Eq. (4.6) can be rearranged to
be rewritten through correlation functions. Indeed, from the quotient rule the
first term becomes

∂

∂pj
⟨xi⟩ =

1

Z

∫
dxxixje

βu(x)δ′(x ·p−w)− ⟨xi⟩
Z

∫
dxxje

βu(x)δ′(x ·p−w). (B.1)

Now, using the fact that

δ′(x · p− w) = −∂wδ(x · p− w), (B.2)

then for a test function f(x)

1

Z

∫
dx f(x) eβu(x)δ′(x · p− w) = − ∂

∂w
⟨f(x)⟩ − ⟨f(x)⟩∂w logZ. (B.3)

Therefore bringing everything together we have

Sij = ⟨xi⟩∂w⟨xj⟩+⟨xi⟩⟨xj⟩∂w logZ−∂w⟨xixj⟩−⟨xixj⟩∂w logZ+⟨xj⟩∂w⟨xi⟩, (B.4)

or in a more compact form, with ⟨xixj⟩c = ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ and Γ = ∂w logZ,

Sij = −Γ⟨xixj⟩c − ∂w⟨xixj⟩c. (B.5)
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B.1.2 Many agent Slutsky matrix
The agent-specific Slutsky matrix is defined as

Sα
ij =

∂

∂pj
⟨xαi ⟩+ ⟨xαj ⟩

∂

∂wα
⟨xαi ⟩. (B.6)

Once again assuming equilibrium is reached, we wish to rewrite this expression
through correlations to retrieve some information on the symmetry of the matrix.
As before, we look at the first term in the above equation,

∂

∂pj
⟨xαi ⟩ =

1

ZN

∫
Dxxαi e

βU({xγ}) ∂

∂pj

∏
γ

δ(xγ · p− wγ)

− ⟨xαi ⟩
ZN

∫
Dx eβU({x}γ) ∂

∂pj

∏
γ

δ(xγ · p− wγ),

(B.7)

with hereafter the shorthand notation
∫
Dx :=

∫
+

∏
α,i dx

α
i . Now, by the gener-

alized chain rule we have

∂

∂pj

∏
γ

δ(xγ · p− wγ) = −
∑
γ

∂

∂wγ
xγj
∏
η

δ(xη · p− wη), (B.8)

which may be plugged back into Eq. (B.7). Noticing that〈 ∂

∂wγ
f(xη)

〉
=

∂

∂wγ
⟨f(xη)⟩+ Γγ⟨f(xη)⟩, (B.9)

with Γγ = ∂
∂wγ logZN , then

∂

∂pj
⟨xαi ⟩ = −

∑
γ

[
Γγ⟨xαi x

γ
j ⟩c +

∂

∂wγ
⟨xαi x

γ
j ⟩ − ⟨xαi ⟩

∂

∂wγ
⟨xγj ⟩

]
. (B.10)

Bringing everything together, we finally have

Sα
ij = −

∑
γ

[
Γγ⟨xαi x

γ
j ⟩c +

∂

∂wγ
⟨xαi x

γ
j ⟩ − ⟨xαi ⟩

∂

∂wγ
⟨xγj ⟩

]
+ ⟨xαj ⟩

∂

∂wα
⟨xαi ⟩. (B.11)

When there are no interactions, γ ̸= α, ⟨xαi x
γ
j ⟩c = 0, as well as ∂

∂wγ ⟨xαi ⟩ = 0. As
a result, we are simply left with

Sα
ij = −Γα⟨xαi xαj ⟩c −

∂

∂wα
⟨xαi xαj ⟩c, (B.12)

which is symmetric and identical to the single-agent system, as expected.
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B.1.3 Fluctuation-response relations
We start from the most general expression for the partition function

ZN =

∫
Dx eβU({xγ})

∏
γ

δ(xγ · p− wγ), (B.13)

and set-out to find a readily measurable expression for Γα = ∂
∂wα logZN . Starting

from the computation of
∂ZN

∂wα
=

∫
Dx eβU({xγ}) ∂

∂wα

∏
γ

δ(xγ · p− wγ); (B.14)

we employ the generalized chain rule,
∂

∂wα

∏
γ

δ(xγ · p− wγ) =
∑
γ

∂

∂wα
δ(xγ · p− wγ)

∏
η ̸=γ

δ(xη · p− wη)

= − 1

pi

∑
γ

∂wγ

∂wα

∂

∂xγi
δ(xγ · p− wγ)

∏
η ̸=γ

δ(xη · p− wη) ∀i.

(B.15)
Now, regardless of the assumption on their distribution, the agents’ individual
budgets are not related, and as such ∂wγ

∂wα = δαγ . Reinjecting in the previous
expression and integrating by parts, we obtain

∂ZN

∂wα
=

1

pi

∫
Dx

∂

∂xαi

[
eβU({xγ})

]∏
η

δ(xη · p− w), (B.16)

which finally gives
Γα =

∂

∂wα
logZN =

β

pi

〈 ∂U
∂xαi

〉
∀i. (B.17)

The other terms in the thermodynamic Slutsky matrix expression can be sim-
plified in similar ways. Indeed starting from
∂

∂wγ
⟨xαi x

γ
j ⟩ =

1

ZN

∫
Dxxαi x

γ
j e

βU({xη}) ∂

∂wγ

∏
η

δ(xη ·p−wη)−Γγ⟨xαi x
γ
j ⟩, (B.18)

and reusing Eq. (B.15) and subsequent iterations by parts, it is straightforward
to show that
∂

∂wγ
⟨xαi x

γ
j ⟩ =

1

pk

[
δikδαγ⟨xγj ⟩+ δjk⟨xαi ⟩+ β

(〈
xαi x

γ
j

∂U

∂xγk

〉
− ⟨xαi x

γ
j ⟩
〈 ∂U
∂xγk

〉)]
∀k,

(B.19)
from which we can also derive

∂

∂wγ
⟨xαi ⟩ =

1

pj

[
δijδαγ + β

(〈
xαi

∂U

∂xγj

〉
− ⟨xαi ⟩

〈 ∂U
∂xγj

〉)]
∀j. (B.20)
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B.1.4 Aggregate Slutsky matrix
We now take

Sij :=
∂

∂pj
⟨xi⟩+ ⟨xj⟩

∂

∂w
⟨xi⟩, (B.21)

with w the arithmetic mean over the agents’ budgets. Now, the above can simply
be rewritten as

Sij =
1

N

∑
α

∂

∂pj
⟨xαi ⟩+

1

N2

∑
α,γ

⟨xαj ⟩
∂

∂w
⟨xγi ⟩. (B.22)

The fluctuation-dissipation relation for the first term still holds as before, while
for the derivative with respect to the mean budget we have, in general,

∂

∂w
⟨xγi ⟩ =

∑
η

κη
∂

∂wη
⟨xγi ⟩, (B.23)

with
κη :=

∂wη

∂w
.

As a result, we may write

1

N2

∑
α,γ

⟨xαj ⟩
∂

∂w
⟨xγi ⟩ =

1

N2

∑
α,γ,η

κη⟨xαj ⟩
∂

∂wη
⟨xγi ⟩ =

1

N

∑
γ,η

κηxj
∂

∂wη
⟨xγi ⟩. (B.24)

Bringing both expressions together and changing indices appropriately, we find

Sij = − 1

N

∑
α,γ

[
Γγ⟨xαi x

γ
j ⟩c +

∂

∂wγ
⟨xαi x

γ
j ⟩c +

(
⟨xγj ⟩ − κγxj

) ∂

∂wγ
⟨xαi ⟩

]
. (B.25)

In the limit β → ∞, we have shown that the second term in the sum vanishes. In
this case, we therefore recover a symmetric Slutsky matrix whenever ⟨xγj ⟩ = κγxj .
This is for example the case when the budgets are proportional to the mean i.e.
wγ = κγw and all agents have identical preferences.

Now, in a simple model where wγ = κγw, ∀γ, and all agents have identical
preferences, then

⟨xγj ⟩ ≡ κγxj

and the second contribution to Sij identically vanishes, so

Sij = − 1

N

∑
α,γ

[
Γγ⟨xαi x

γ
j ⟩c +

∂

∂wγ
⟨xαi x

γ
j ⟩c
]
, (B.26)

which is always symmetric when all agents are identical.
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Interesting things may happen when agents are more heterogeneous, or in a
model where a change of average wealth does not affect all agents in an affine way.
Imagine agents are characterized by a label κα ∈ R such that

wα = w0F

(
καw

w0

)
, (B.27)

where w0 is a certain fixed wealth scale, w a varying parameter and F a possibly
non-linear function. We must impose that

w

w0
=

1

N

∑
α

F

(
καw

w0

)
.

For example when F (x) = x one finds the above linear model: wα = καw with

w =
w

κ
.

More generally, one has
∂w

∂w
= κF ′

(
κw

w0

)
and

∂wα

∂w
= καF ′

(
καw

w0

)
,

so in general
∂wα

∂w
̸= wα

w

and the resulting Slutsky matrix has no longer obvious reasons to be symmetric.

B.1.5 Gaussian fluctuations
We take xα − ⟨xα⟩ = δxα and set out to calculate ⟨xαi x

γ
j ⟩c = ⟨δxαi δxαj ⟩. At this

stage, for simplicity, we combine the N × M degrees of freedom in the single
column vector v = [x11, . . . , x

1
M , . . . , x

N
1 , . . . , x

N
M ]⊤ such that the correlations of

interest are given by

⟨δvk1δvk2⟩ =
eβU

∗

ZN

∫ ∞

−∞

(∏
α

dµ̂α

2π

)∫ ∞

−∞

(M×N∏
k=1

dδvk

)
δvk1δvk2 e

β
2
δv⊤Hδv+iδv·p̃,

(B.28)
with the resized price vector p̃ ∈ RM×N , p̃k = µ̂αpi, k =M(α− 1)+ i, and where
the product of budget constraints has been rewritten using the Fourier represen-
tation of the Dirac δ. In this Gaussian approximation, the partition function can
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be calculated exactly with two consecutive integration by parts,

ZN = eβU
∗
∫ ∞

−∞

(∏
α

dµ̂α

2π

)∫ ∞

−∞

(M×N∏
k=1

dδvk

)
e

β
2
δv⊤Hδv+iδv·p̃

= eβU
∗

√
(2π)M×N+N

det(−βH) det(−G/β)
,

(B.29)

with the N ×N matrix G defined as

Gαγ =
∑
i,j

pi(H
−1)αγij pj . (B.30)

Going back to Eqs. (B.28), completing the square in the exponent gives the change
of variable δu = δv + i

βH
−1p̃. The integral then reads

⟨δvk1δvk2⟩ =
eβU

∗

ZN

∫ ∞

−∞

(∏
α

dµ̂α

2π

)
e

1
2β

p̃⊤H−1p̃
∫ ∞

−∞

(M×N∏
k=1

dδuk

)
×
(
δuk1δuk2 −

1

β2
(H−1p̃)k1(H

−1p̃)k2

)
e

β
2
δu⊤Hδu.

(B.31)

The first term is straightforward, and simply gives − 1
β (H

−1)k1k2 as without the
constraint. The second term requires more care, as we have

(H−1p̃)k1 =
∑
ℓ1

(H−1)k1ℓ1 p̃ℓ1 =
∑
ℓ1

(H−1)k1ℓ1 µ̂
α(ℓ1)pi(ℓ1). (B.32)

As a result,∫ ∞

−∞

(∏
α

dµ̂α

2π

)
(H−1p̃)k1(H

−1p̃)k2 e
1
2β

µ̂⊤Gµ̂

= −β

√
(2π)N

det(−G/β)

∑
ℓ1,ℓ2

(H−1)k1ℓ1pi(ℓ1)(G
−1)α(ℓ1)α(ℓ2)(H

−1)k2ℓ2pi(ℓ2).

(B.33)
Bringing everything together, we finally have

⟨δvk1δvk2⟩ = − 1

β
(H−1)k1k2 +

1

β

∑
ℓ1,ℓ2

(H−1)k1ℓ1pi(ℓ1)(G
−1)α(ℓ1)α(ℓ2)(H

−1)k2ℓ2pi(ℓ2),

(B.34)
which, after replacing with the correct indices, is the expression given in the main
text.
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B.2 Numerical methods

B.2.1 General idea
To measure equilibrium properties of the system, we choose to follow a Monte
Carlo approach, although a stochastic gradient descent of the global utility (i.e.
Langevin dynamics) should be equivalent. The system is first initialized by ran-
domly allocating the N baskets following a uniform distribution. We then employ
a Metropolis-Hastings algorithm (see next subsection), as a modification ∆x to
a randomly selected agent’s basket is proposed and accepted with a rate verify-
ing detailed balance [322]. To satisfy the non-negativity of the baskets and to
correctly sample the small xαi region if high concentration occurs, the move is
actually constructed in terms of logarithms. For a randomly selected agent γ, we
take log(xγ + ∆x) = log xγ + ξ, with ξi ∼ N (0, 1), resulting in a log-normally
distributed multiplicative noise. The budget constraint is then enforced by a sim-
ple rescaling of the resulting basket of goods. Here, it is essential to note that
the proposal distribution is not symmetric. As a result, the asymmetry must be
accounted for in the acceptance rate, giving in our specific case

P(xγ → xγ +∆x) = min
(
1, eβ∆U+

∑
i[log(x

γ
i +δxi)−log xγ

i ]
)
,

with ∆U the change in the global utility42 caused by the move (see next subsec-
tion). From each run, average quantities such as ⟨xα⟩ are measured by taking
arithmetic means in algorithmic time once the system is equilibrated.

B.2.2 Metropolis-Hastings acceptance rate
In its most general form, the Metropolis-Hastings acceptance rate is given by

W (x → y) = min

(
1,
q(y |x)
q(x |y)

π(y)

π(x)

)
, (B.35)

where π(x) is the probability density function we wish to sample, and q(y |x)
is the conditional probability of proposing the state y given the current state x.
In our case, and as usual in statistical mechanics (Sec. 2.1.2), we simply have
π(y)/π(x) = eβ∆U . The ratio of conditional probabilities requires more care.
Given the noise yi = xie

ξ, with ξ a Gaussian noise, the probability density of
which will be noted ρ, we have

q(xi | yi) =
∫
R
dξ ρ(ξ) δ(yi − xie

ξ) =
1

yi
ρ
(
log

yi
xi

)
, (B.36)

42See Section 4.5.1 for a complete discussion on the consequences of optimizing the global
utility.
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and very similarly

q(yi |xi) =
1

xi
ρ
(
− log

yi
xi

)
. (B.37)

Given the symmetry of ρ for zero-mean noise as is the case here, and the fact that
all dimensions are statistically independent,

q(y |x)
q(x |y)

=

M∏
i=1

q(yi |xi)
q(xi | yi)

= e
∑

i log (
yi
xi
)
, (B.38)

yielding the expression in the previous subsection.

B.2.3 Computing the Slutsky matrix

To compute the entries of the Slutsky matrix, one can use the fluctuation-response
relations derived here, which do not require derivatives. However, out-of-equilibrium
effects can become significant, in which case these relations do not hold. For
this reason, it is essential to compute as a check the original expression given in
Eq. (4.13). This is not entirely straightforward, as taking discrete derivatives af-
ter time averaging may induce some biases. Instead, we rely on so-called pathwise
derivative estimates, often used in mathematical finance to compute risk sensi-
tivities [323, 324]. In a nutshell, we generate perturbed trajectories based on the
original simulation that will use the same random numbers (both for proposed
moves and acceptance), and measure finite differences at every step.

B.3 Interacting model
We consider the global utility

U({xα}) =
N∑

α=1

M∑
i=1

ai log x
α
i [1 + c(xi)

k], xi =
1

N

N∑
α=1

xαi . (B.39)

B.3.1 Non-interacting limit – canonical ensemble

We start by solving the much simplified non-interacting limit, setting c = 0.
When there are no interactions in general, the canonical partition function entirely
decouples and can be written as a product,

ZN =
N∏

α=1

zα, with zα =

∫ ∞

0

(
M∏
i=1

dxαi

)
eβu(x

α)δ(p · xα − wα). (B.40)

260



Appendix B. Slutsky matrices

Now, plugging in the desired utility function and rewriting the Dirac delta with
its integral representation, we have

zα =

∫ ∞

0

(
M∏
i=1

dxαi

)∫ i∞

−i∞

dµ

2πi
eβ

∑
i ai log x

α
i −µ

∑
i pix

α
i +µwα

. (B.41)

This integral now decouples in a product over i, and performing the integral on
xαi with the appropriate change of variable,

zα =

∫ i∞

−i∞

dµ

2πi
eµw

α
∏
i

Γ(1 + βai)

(µpi)1+βai

=

(∏
i

Γ(1 + βai)

p1+βai
i

)
L−1
µ

{
µ−

∑
i(1+βai)

}
(wα)

=
(wα)

∑
i(1+βai)−1

Γ(M + β
∑

i ai)

M∏
i=1

Γ(1 + βai)

p1+βai
i

,

(B.42)

where we have used the known inverse Laplace transform of a power law. Taking
the product over all agents then gives the result in the text for the partition
function.

To find the average ⟨xαi ⟩, we proceed directly, by computing

⟨xαi ⟩ =
1

ZN

[∫ ∞

0

(
M∏
i=1

dxαi

)
xαi e

βu(xα)δ(p · xα − wα)

] ∏
γ ̸=α

zγ (B.43)

i.e. exactly as before except for the agent and product considered, for which we
must now calculate∫ ∞

0
dxαi

∫ i∞

−i∞

dµ

2πi
xαi e

βai log x
α
i −µpix

α
i +µwα

=

∫ i∞

−i∞

dµ

2πi

Γ(2 + βai)

(µpi)2+βai

=

∫ i∞

−i∞

dµ

2πi

1 + βai
µpi

Γ(1 + βai)

(µpi)1+βai
,

(B.44)
where we have used the property Γ(x + 1) = xΓ(x). The integration over µ is
then identical with only the change in the exponent. At this stage, we can plug
back everything together, all γ ̸= α, j ̸= i terms will cancel out from the ZN at
the denominator, and we are left with

⟨xαi ⟩ =
wα

pi

1 + βai∑
k(1 + βak)

. (B.45)
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Thanks to this explicit form, the agent-specific Slutsky matrix entries read

Sα
ij =

wα

pipj

1 + βai∑
k(1 + βak)

[
1 + βaj∑
k(1 + βak)

− δij

]
, (B.46)

which, as predicted by thermodynamic relations, is clearly symmetric, and where
the heterogeneous budgets only act as a prefactor altering the magnitude, such
that we can write Sα

ij = wαKij . The distribution of Sα
ij is then simply a rescaling

of the original distribution of wα in the large N limit.

B.3.2 Finite interactions – grand-canonical ensemble
To tackle finite interactions, we need to place ourselves in the grand-canonical
ensemble, where calculations are possible. Enforcing the value of xi to be the
arithmetic mean over all agents with a Dirac distribution expressed in integral
form, we have

ZN =

∫ ∞

0

(
N∏

α=1

M∏
i=1

dxαi

)∫ ∞

0

(
M∏
i=1

dxi

)∫ i∞

−i∞

(
M∏
i=1

dλi
2πi

)
exp

(
β
∑
α,i

ai log x
α
i [1 + c(xi)

k]

− βµ
∑
α,i

xαi pi −N
∑
i

xiλi +
∑
α,i

xαi λi

)
.

(B.47)
We may begin by integrating over xαi . Given the positive support and logarithmic
utility, the result is simply a Gamma function for the N identical agents,

ZN =

∫ ∞

0

(
M∏
i=1

dxi

)∫ i∞

−i∞

(
M∏
i=1

dλi
2πi

)(
M∏
i=1

Γ(1 + βai[1 + c(xi)
k])

(βµpi − λi)1+βai[1+c(xi)k]

)N

e−N
∑

i xiλi .

(B.48)
The entire integrand can thus be rewritten as an exponential with N as a prefactor,

ZN =

∫ ∞

0

(
M∏
i=1

dxi

)∫ i∞

−i∞

(
M∏
i=1

dλi
2πi

)
exp

(
−N

∑
i

[
xiλi − log Γ(1 + βai[1 + c(xi)

k]

+ (1 + βai[1 + c(xi)
k]) log(βµpi − λi)

])
,

(B.49)
a form which naturally points to the saddle point approximation as N → ∞.
Indeed, the integral over λi above may first be rewritten as approximated as∫ i∞

−i∞

(
M∏
i=1

dλi
2πi

)
e−Ng(x,λ) ∼

√
2π

N |detH∗|
e−Ng(x,λ∗), (B.50)
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where λ∗ is a minimum of g, and H∗ is the Hessian with respect to λ evaluated
at that point. At the saddle, we have
∂g

∂λi
= xi −

1 + βai[1 + c(xi)
k]

βµpi − λ∗i
= 0 ⇒ λ∗i = βµpi −

1

xi
(1 + βai[1 + c(xi)

k]),

(B.51)
and the Hessian is entirely diagonal and given by

Hij =
1 + βai[1 + c(xi)

k]

(βµpi − λi)2
δij ⇒ |detH∗|=

M∏
i=1

(xi)
2

1 + βai[1 + c(xi)k]
. (B.52)

As a result, the partition function can finally be expressed in the desired form,

ZN =

∫ ∞

0
dx e−βF (x), (B.53)

with F (x) = Nf(x), and where from the above equations we have

βf(x) =
∑
i

[βµpixi − (1 + βai[1 + c(xi)
k])[1 + log xi − log(1 + βai[1 + c(xi)

k])]

− log Γ(1 + βai[1 + c(xi)
k])]

+
1

2

logN

N
+

1

N

[∑
i

[
log xi −

1

2
log(1 + βai[1 + c(xi)

k])
]
− 1

2
log 2π

]
︸ ︷︷ ︸

o(1)

,

(B.54)
which is completely decoupled in between degrees of freedom. Keeping only O(1)
terms, we find the expression given in the main text that we will use onward.

In the thermodynamic limit, the state of the system can once again be de-
termined through the saddle point approximation, as the system will reach a
minimum of f with overwhelming likelihood. This amounts to solving

∂f

∂xi
=− 1

x∗i

( 1
β
− µpix

∗
i + ai

[
1 + c(x∗i )

k(1 + k[ψ(1 + βai[1 + c(x∗i )
k])

− log(1 + βai[1 + c(x∗i )
k]) + log x∗i ])

])
= 0,

(B.55)

with ψ the digamma function. To determine the nature of stationary points, we
will also require

∂2f

∂x2i
=

1

(xi)2

[
(1/β + ai[1− c(k − 1)(xi)

k])2

1/β + ai[1 + c(xi)k]
− kcai(xi)

k
(
βkcai(xi)

kψ(1)(1 + βai[1 + c(xi)
k])

+ [k − 1][ψ(1 + βai[1 + c(xi)
k])− log(1 + βai[1 + c(xi)

k]) + log xi]
)]
,

(B.56)
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where ψ(1) is the first polygamma function. Remarkably, the second derivative
is not dependent on the chemical potential µ. Importantly, one can evaluate the
partition function by steepest descent to show that, consistent with intuition,

⟨xi⟩ = − 1

Nβµ

∂

∂pi
logZ = x∗i , (B.57)

when N → ∞, straight from Eq. (B.54) as all derivatives other that those with
respect to pi are zero at the saddle by construction.

c = 0 solution Taking c = 0, we easily recover the unconcentrated solution

x∗i =
w

pi

1 + βai∑
k(1 + βak)

(B.58)

β → ∞ limit In order to better understand the influence of the different terms on
the equilibrium solution of the system, we start by studying the zero temperature,
or fully rational, limit of the system. Knowing the asymptotics of the digamma
function ψ(z) ∼ log z − 1

2z , we obtain

ai[1 + c(x∗i )
k(1 + k log x∗i )] = µpix

∗
i ,

∑
i

x∗i pi = w, (B.59)

i.e. a set of M +1 equations for the M variables x∗i and the correct value of µ for
the given budget w. To obtain the solution as a function of c, one can numerically
solve the system of equations.

Knowing what the uniform solution is, we may then identify where the phase
transition occurs, i.e. what the value of c∞ is, by studying the stability of the free
energy at that point, as it should go from being a minimum to a maximum at the
transition. Now in this limit, we have

∂2f

∂x2i
=

ai
(xi)2

[
(1− c(k − 1)(xi)

k)2

1 + c(xi)k
− kc(xi)

k

(
kc(xi)

k

1 + c(xi)k
+ (k − 1) log xi

)]
.

(B.60)
Setting to zero at the saddle, and solving for c∞ finally yields

1

c∞
= max

x∗
i

(x∗i )
k [2k − 1 + k(k − 1) log x∗i ] . (B.61)

In the case where all products are equivalent, we recover the expression in the
main text.
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Finite β In the general case, the equations for x∗i are much harder to manipulate
due to the presence of the highly nonlinear logarithm and digamma functions.
However, the method outlined to obtain the critical value of c remains valid: the
c = 0 solution is to be plugged into the second derivative that is set to zero.
Solving numerically (Eq. (B.56)) then yields the critical line in (c, β) shown in the
main text and in Fig. 4.2.

B.3.3 Slutsky matrix in the β → ∞ limit
We wish to employ the previously devised Gaussian approximation for the Slutsky
matrix at β → ∞ for our interacting model. To do so means evaluating the
“thermodynamic” expression of the Slutsky matrix that requires computing the
cross-agent term ⟨xγj ⟩

∂
∂wγ ⟨xαi ⟩. For our specific choice of utility,

∂U

∂xγj
=
aj
xγj

[1 + c(xj)
k] + kcaj(xj)

k−1log xj , (B.62)

with overlines indicating arithmetic averages over the N agents. As we are in-
terested in the N → ∞ behavior, we can first notice that in the vicinity of the
maximum

xi = x∗i +
1

N

∑
α

δxαi = x∗i +O

(
1√
N

)
(B.63)

by virtue of the central limit theorem. Similarly,

log xi =
1

N

∑
α

log(x∗i + δxαi ) = log x∗i +
1

N

∑
α

[
δxαi
x∗i

− 1

2

(
δxαi
x∗i

)2

+ o

(
1

β

)]
= log x∗i +O

(
1√
N

)
+O

(
1

β

)
.

(B.64)
To leading order, we therefore have

∂U

∂xγj
=

aj
x∗j + δxγj

[1 + c(x∗j )
k] + kcaj(x

∗
j )

k−1 log x∗j +O

(
1√
N

)
. (B.65)

As a result, developing to the second order in δxγj〈
xαi

∂U

∂xγj

〉
− ⟨xαi ⟩

〈 ∂U
∂xγj

〉
= − aj

(x∗j )
2
⟨xαi x

γ
j ⟩c[1 + c(x∗j )

k] +O

(
1√
N

)
, (B.66)

so plugging back this expression in the fluctuation-response relation gives

∂

∂wγ
⟨xαi ⟩ =

1

pj

(
δijδαγ − β

aj
(x∗j )

2
⟨xαi x

γ
j ⟩c[1 + c(x∗j )

k]
)

∀j. (B.67)
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Given the Gaussian fluctuations scale as ⟨xαi x
γ
j ⟩c ∼ β−1, this term will clearly

have a non-negligible contribution to the Slutsky matrix at β → ∞.
Using the fluctuation-response relation to compute the first term in the Slutsky

matrix,
Γγ =

β

pℓ

〈
∂U

∂xγℓ

〉
∀ℓ

= β
aℓ
pℓx

∗
ℓ

[
1 + c(x∗ℓ )

k(1 + k log x∗ℓ ) +O

(
1

β

)]
,

(B.68)

we can finally write, choosing ℓ = j

Sα
ij = −β

∑
γ

⟨xαi x
γ
j ⟩c

aj
pjx∗j

(
kc(x∗j )

k log x∗j + δαγ [1 + c(x∗j )
k]
)
. (B.69)

There now remains to compute the pairwise correlations, which requires us to
invert the Hessian of the utility function. In our specific case

Hαγ
ij =

∂2U

∂xαi ∂x
γ
j

= −
[

ai
(xγi )

2
[1 + c(xi)

k]δαγ −
kc

N
ai(xi)

k−1

(
1

xαi
+

1

xγi

)
+
k(k − 1)c

N
ailog xi(xi)

k−2

]
δij .

(B.70)
Due to the homogeneity in between agents, this M×N matrix has the very simple
structure

H =


A 0 · · · 0
0 A · · · 0
...

... . . . ...
0 0 · · · A

+


B B · · · B
B B · · · B
...

... . . . ...
B B · · · B

, (B.71)

with A,B ∈ RM×M , both having the additional simplification of being symmetric
matrices. We take the ansatz that the inverse has an identical structure,

H−1 =


F 0 · · · 0
0 F · · · 0
...

... . . . ...
0 0 · · · F

+


D D · · · D
D D · · · D
...

... . . . ...
D D · · · D

. (B.72)

As such, we have

HH−1 =


AF 0 · · · 0
0 AF · · · 0
...

... . . . ...
0 0 · · · AF

+

E E · · · E
E E · · · E
...

... . . . ...
E E · · · E

, E = AD+BF+NBD,

(B.73)
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obtained from the multiplication of these simple block matrices. As a result,
setting HH−1 = I amounts to

F = A−1, D = −(A+NB)−1BA−1. (B.74)

Going back to Eq. (B.70) (evaluated at the maximum x∗), we have

Aij = −ai
(
1 + c(x∗i )

k

(x∗i )
2

+
kc

N
(x∗i )

k−2[2 + (k − 1) log x∗i ]

)
δij (B.75)

and
Bij =

kc

N
ai(x

∗
i )

k−2[2 + (k − 1) log x∗i ]δij . (B.76)

The diagonal matrix can be inverted (almost) exactly in the large N limit, yielding

Fij = −δij
ai

(x∗i )
2

1 + c(x∗i )
k

[
1− kc

N

(x∗i )
k

1 + c(x∗i )
k
(2 + (k − 1) log x∗i ) +O

(
1

N2

)]
, (B.77)

and similarly at the leading order

[(A+NB)−1]ij =− δij
ai

(x∗i )
2

1 + c(x∗i )
k[1− k(2 + (k − 1) log x∗i )]

×
[
1− kc

N

(x∗i )
k(2 + (k − 1) log x∗i )

1 + c(x∗i )
k[1− k(2 + (k − 1) log x∗i )]

]
,

(B.78)

finally giving

Dij = −kc
N

δij
ai

(x∗i )
k+2(2 + (k − 1) log x∗i )

(1 + c(x∗i )
k)(1 + c(x∗i )

k[1− k(2 + (k − 1) log x∗i )])
+O

(
1

N2

)
.

(B.79)
Using the inverse of the Hessian, we can then compute the correlations of

interest. We first need
Gαγ =

∑
i,j

pi(H
−1)αγij pj , (B.80)

which can clearly be split in diagonal and off-diagonal parts, therefore the matrix
has a similar structure to the Hessian, but reduced in dimension. We have G =
aI+ bE with I and E respectively and identity matrix and a matrix full of ones,
both of dimension N ×N . Taking the same ansatz as before but with scalars, we
have

G−1 =
1

a
I+ dE, with d = − b

a(a+Nb)
, a = p⊤Fp, b = p⊤Dp (B.81)
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Bringing everything together, we finally find,

⟨xαi x
γ
j ⟩c = − 1

β
(δαγFii +Dii)δij +

pipj
β

[FiiFjj(δαγa
−1 + d)

+ (a−1 +Nd)(FiiDjj +DiiFjj +NDiiDjj)]

=
1

β

[
φijδαγ +

1

N
ψij

] (B.82)

with
φij = Fiiδij − a−1pipjFiiFjj (B.83)

and
1

N
ψij = Diiδij − pipj [dFiiFjj + (a−1 +Nd)(FiiDjj +DiiFjj +NDiiDjj)] (B.84)

the non-interacting and interacting parts respectively. Given that Dii ∼ 1
N and

d ∼ 1
N , it is clear that we have φij = O(1) and ψij = O(1), as expected.

Ultimately, in the N → ∞, β → ∞ limits, the Slutsky matrix is thus given by

Sα
ij = Sij = −aj

pj

[
kc(φij + ψij)(x

∗
j )

k−1 log x∗j + [1 + c(x∗j )
k]φij

]
. (B.85)

The evolution of this analytical expression for some a,p with c, compared with
numerical simulations, is shown in Figure 4.3 of the main text.

B.3.4 Equivalence of ensembles
We wish to compute

σ2 =
〈(∑

i

xαi pi − w
)2〉

=
〈(∑

i

xαi pi

)2〉
− w2. (B.86)

To this end, we take an agent-specific perturbation to the chemical potential
µ → µ + δµα, playing the role of an external field in conventional statistical
physics. The grand-canonical partition function then reads

ZN =

∫ ∞

0

(∏
α,i

dxαi

)
eβ[U({x})−µ

∑
α,i x

α
i pi−

∑
α,i δµ

αxα
i pi], (B.87)

such that

1

ZN

∂ZN

∂δµα
= −β

〈∑
i

xαi pi

〉
= −βw and

1

ZN

∂2ZN

∂δµα2
= β2

〈(∑
i

xαi pi

)2〉
,

(B.88)
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giving

σ2 =
1

β2
∂2

∂δµα2
logZN . (B.89)

As a result, assuming δµα to be small, we need to calculate the free energy to the
second order in this perturbation. Following the previous calculation, we have

ZN =

∫ ∞

0

(
M∏
i=1

dxi

)∫ i∞

−i∞

(
M∏
i=1

dλi
2πi

)∏
α,i

Γ(1 + βai[1 + c(xi)
k])

(βµpi + βδµαpi − λi)1+βai[1+c(xi)k]
e−N

∑
i xiλi .

(B.90)
Expanding at the second order in the perturbation, we may write

ZN =

∫ ∞

0

(
M∏
i=1

dxi

)∫ i∞

−i∞

(
M∏
i=1

dλi
2πi

)
e−N [g0(x,λ)+g1(x,λ)δµ+g2(x,λ)δµ2], (B.91)

to be evaluated through a saddle point approximation, with g0(x,λ) corresponding
to the exponent in the unperturbed expression previously studied,

g1(x,λ) =
∑
i

pi
µpi − λi/β

(1 + βai[1 + c(xi)
k]) (B.92)

and
g2(x,λ) = −1

2

∑
i

p2i
(µpi − λi/β)2

(1 + βai[1 + c(xi)
k]), (B.93)

while the previously introduced overline notation implies an arithmetic average
over agents, i.e. δµ = 1

N

∑
α δµ

α. Now before actually using these expressions, one
may use the properties at the saddle to identify the necessary terms to evaluate
at the leading order. Indeed, at the saddle in λ, which decouples in i so can be
treated in one dimension for now, we will have

λ = λ∗ + θ1δµ+ θ2δµ2 +O(δµ3) (B.94)

solution to
∂g0
∂λi

+
∂g1
∂λi

δµ+
∂g2
∂λi

δµ2 = 0, (B.95)

and thus where λ∗ corresponds to the previously calculated unperturbed solution.
Now to evaluate the integrand at the saddle, we may expand all expressions to
the second order, yielding

ZN =

∫ ∞

0

(∏
i

dxi

)
e−Nβf(x), (B.96)
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with

βf(x) = g0(x,λ
∗) +

1

2
θ⊤
1 Hλ(g0(x,λ

∗))θ1(δµ)
2 + g1(x,λ

∗)δµ+ g2(x,λ
∗)δµ2,

(B.97)
with Hλ(g0(x,λ

∗)) the Hessian of g0 with respect to the λi evaluated at the saddle
at the leading order, which is diagonal in our decoupled problem, i.e.

Hλ(g0(x,λ
∗)) = diag

∂2g0
∂λ2i

∣∣∣∣
x,˘∗

. (B.98)

We may now evaluate the remaining integrals over xi by taking a new saddle,
found at

x = x∗ + κ1δµ+ κ2δµ2 + κ3(δµ)
2, (B.99)

the solution to the set of equations ∂f
∂xi

= 0. Once again expanding all solutions
about the saddle, we finally find

βf(x) = g0(x
∗,λ∗) +

1

2

[
θ⊤
1 Hλ(g0(x

∗,λ∗))θ1 + κ⊤
1 Hx(g0(x

∗,λ∗))κ1

]
(δµ)2

+ g1(x
∗,λ∗)δµ+ g2(x

∗,λ∗)δµ2.
(B.100)

However, at this stage, one may notice that

∂2

∂δµα2
(δµ)2 =

2

N2
, (B.101)

whereas
∂2

∂δµα2
δµ2 =

2

N
. (B.102)

At the leading order in N , we therefore simply have to evaluate g2 at the original
saddle. The result then reads

σ2 =
2

β2
g2(x

∗,λ∗) =
1

β2

∑
i

p2i
(µpi − λ∗i /β)

2
(1+βai[1+c(x

∗
i )

k])+O

(
1

N

)
. (B.103)

Plugging in the known expression of λ∗i at the original saddle, we finally obtain
at the thermodynamic limit

σ2 =
∑
i

(x∗i pi)
2

1 + βai[1 + c(x∗i )
k]
. (B.104)

As expected, this quantity vanishes for β → ∞, as well as for c → ∞ ∀β > 0.
In the c < ccrit region, plugging in the non-condensed solution x∗i = w

pi
1+βai∑
i(1+βai)

yields

σ2 =
w2∑

i(1 + βai)
= O

(
1

M

)
. (B.105)

270



Appendix B. Slutsky matrices

B.4 A Hamiltonian utility function
We now take

U({xα}) =
∑
i,α

ai log x
α
i +

1

2

∑
i,α,γ
γ ̸=α

Jαγ
i (xαi )

ρ(xγi )
ρ, (B.106)

with symmetric interactions Jγα
i = Jαγ

i , ∀i, α, γ and 0 < ρ < 1.
We expect such a Hamiltonian model to be qualitatively similar to the one

studied in this work. To check that this is the case, we may start by taking the
mean-field case Jαγ

i = aiJ/N and the β → ∞ limit. Introducing the Lagrange
multipliers µα, the Lagrangian to minimize is

L({xα}, {µα}) =
∑
i,α

ai log x
α
i +J

∑
i,α

ai(x
α
i )

ρxρi−
∑
α

µα
(∑

i

pix
α
i −wα

)
, (B.107)

where the overline again means an average over all agents. This yields the following
N × (M + 1) equations

∂L
∂xαi

=
ai
xαi

[
1 + Jρ(xαi )

ρxρi

]
− µαpi = 0 (B.108)

∂L
∂µα

=
∑
i

pix
α
i − wα = 0. (B.109)

Now assuming that all agents have identical budgets, the maximum will be given
by xαi = x∗i ∀α. The solution then satisfies

x∗i =
w

pi

ai[1 + Jρ(x∗i )
2ρ]∑

j aj [1 + Jρ(x∗j )
2ρ]
. (B.110)

In the non-interacting case J = 0 we recover the c = 0 solution of the previous
model.

Now, a phase transition will occur due to changes in the sign of the Hessian
of the utility, which is given by

∂2U

∂xi2

∣∣∣∣
x∗
i

= − ai
(x∗i )

2

[
1− Jρ(2ρ− 1)(x∗i )

2ρ
]
. (B.111)

Clearly, assuming J > 0, we require ρ > 1
2 regardless of the value of other param-

eters for a transition to occur. In that case, concentration will indeed occur for
J > J∞ the critical value for the β → ∞ solution. For finite β, the critical value
will be given by Jcrit ≥ J∞ just as in our original model.
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SK-game

C.1 Static NMFE
We claim that for α≪ 1

m̃α
j (t) ≃ α

t∑
t′=1

(1− α)t−t′mj(t
′). (C.1)

Indeed, given the assumption of independence in time, i.e.〈(
Sj(t

′)−mj(t
′)
) (
Sj(t

′′)−mj(t
′′)
)〉

= δt,t′
(
1−m(t)

)
,

we have〈(
m̃α

j (t)− α
∑
t′≤t

(1− α)t−t′mj(t
′)
)2〉

= α2
∑
t′≤t

(1− α)2(t−t′)
〈
(Sj(t

′)−mj(t
′))2
〉

+α2
∑
t′≤t

∑
t′′ ̸=t′

(1− α)t−t′(1− α)t−t′′
〈(
Sj(t

′)−mj(t
′)
) (
Sj(t

′′)−mj(t
′′)
)〉

= α2
∑
t′≤t

(1− α)2(t−t′)
(
1− (mj(t

′))2
)

≤ α2
∑
t′≤t

(1− α)2(t−t′) =
α

2− α
−−−→
α→0

0.

(C.2)
We can then make the ansatz that the expected decision reaches a fixed point m⋆

j

after some time. For sufficiently large t and small but finite values of α, we will
therefore have 〈

m̃α
j (t)

〉
≃ m⋆

j (C.3)
with fluctuations characterized by〈(

m̃α
j (t)−m⋆

j

)2〉
=
α

2

(
1− (m⋆

j )
2
)
+O(α2). (C.4)
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C.2 Fixed point complexity with cooperativity

Using the “direct” approach, the average number of fixed points in the β → ∞
limit with J0 > 0 is given by

NJ =
∑
{S}

∏
i

Θ

(
Si
∑
j

JijSj + Si
J0
N

∑
j

Sj

)

= lim
δ→0+

∑
{S}

∫ ∞

−∞

∏
i

dµi
2π(iµi + δ)

ei
J0
N

∑
ij µiSiSjei

∑
ij µiSiJijSj .

(C.5)

Now, we can rewrite SiJijSj = J̃ij , with J̃ij a zero mean and identical variance
Gaussian variable, as the interactions reweighed by the Ising spins are still Gaus-
sian. Therefore,

NJ = lim
δ→0+

∑
{S}

∫ ∞

−∞

∏
i

dµi
2π(iµi + δ)

ei
J0
N

∑
ij µiSiSjei

∑
ij µiJ̃ij . (C.6)

Performing the average on these reweighed bonds,

ei
∑

ij µiJ̃ij = exp

(
− 1

2N

(
1− ε

2

)2∑
i<j

(µi + µj)
2 − 1

2N

(ε
2

)2∑
i<j

(µi − µj)
2

)

= exp

(
− 1

4N
υ(ε)

∑
i ̸=j

(µ2i + µ2j )−
1

2N
(1− ε)

∑
i ̸=j

µiµj

)
.

(C.7)
Plugging this in the previous expression,

NJ = lim
δ→0+

∑
{S}

∫ ∞

−∞

∏
i

dµi
2π(iµi + δ)

exp

(
i
J0
N

∑
ij

µiSiSj −
1

2
υ(ε)

∑
i

µ2i −
J2

2N
(1− ε)

(∑
i

µi

)2)
.

(C.8)
Now, the goal is to completely factorize the expression with respect to the indices
i. We therefore introduce a Hubbard-Stratonovitch transform for the squared
sum,

e−
1

2N
(1−ε)(

∑
i µi)

2

=

√
N

2π(1− ε)

∫ ∞

−∞
dx e

− N
2(1−ε)

x2−ix
∑

i µi , (C.9)

and fix the magnetization

M =
1

N

∑
i

Si (C.10)
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with an auxiliary variable M̂ , such that the original expression becomes

NJ ∝ lim
δ→0+

∑
{S}

∫ ∞

−∞
dx

∫ 1

0
dM

∫ ∞

−∞

dM̂

2π

∫ ∞

−∞

∏
i

dµi
2π(iµi + δ)

exp

(
iJ0M

∑
i

µiSi

− 1

2
υ(ε)

∑
i

µ2i − ix
∑
i

µi + iM̂
∑
i

Si −
N

2(1− ε)
x2 − iNM̂M

)
,

(C.11)
which is fully decoupled in-between agent indices. As a result, we can finally write

NJ ∝
∫ ∞

−∞
dx

∫ 1

0
dM

∫ ∞

−∞

dM̂

2π
exp

(
N

[
− 1

2(1− ε)
x2 − iMM̂ + logJ

]
︸ ︷︷ ︸

Σ̃

)

∼ exp(NΣ(ε, J0)),
(C.12)

with the annealed complexity

Σ(ε, J0) = saddle
x,M,M̂

Σ̃(x,M, M̂, ε, J0), (C.13)

and

J =
∑
S=±1

eiM̂S lim
δ→0+

∫ ∞

−∞

dµ

2π(iµ+ δ)
exp

(
− 1

2
υ(ε)µ2 + i

[
J0MS − x

]
µ

)

=
∑
S=±1

eiM̂SΦ

(
J0SM − x√

υ(ε)

)
,

(C.14)
where Φ(x) = 1

2erfc
(
− x√

2

)
is the Gaussian cumulative distribution function. Tak-

ing the change of variable x→ − (1−ε)√
υ(ε)

x, we finally obtain

Σ̃(x,M, M̂, ε, J0) = −1

2
ηx2− iMM̂ +log

∑
S=±1

eiM̂SΦ

(
ηx+

J0√
υ(ε)

SM

)
. (C.15)
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The three saddle equations are then given by

∂Σ̃

∂(iM̂)
= −M +

∑
S=±1 Se

iM̂SΦ

(
ηx+ J0√

υ(ε)
SM

)
∑

S=±1 e
iM̂SΦ

(
ηx+ J0√

υ(ε)
SM

) = 0, (C.16)

∂Σ̃

∂M
= −iM̂ +

J0√
υ(ε)

∑
S=±1 Se

iM̂SΦ′
(
ηx+ J0√

υ(ε)
SM

)
∑

S=±1 e
iM̂SΦ

(
ηx+ J0√

υ(ε)
SM

) = 0, (C.17)

∂Σ̃

∂x
= −ηx+ η

∑
S=±1 e

iM̂SΦ′
(
ηx+ J0√

υ(ε)
SM

)
∑

S=±1 e
iM̂SΦ

(
ηx+ J0√

υ(ε)
SM

) = 0. (C.18)

Taking J0 = 0, we straightforwardly find M = M̂ = 0 and recover Eq. (6.5)-
(6.6). Interestingly, the replica-symmetric solution of Sherrington and Kirkpatrick
(ε = 0) yields the self-consistent equation

M =

∫ ∞

−∞

dz√
2π

e−
1
2
z2 sign(J0M + z) = 2Φ(J0M)− 1, (C.19)

that corresponds to the saddle point x = M̂ = 0, which is the valid solution only
when J0 ≫ 1. This replica-symmetric solution predicts a non-zero magnetization
to appear for J0 =

√
π
2 ≈ 1.25 [35], as opposed to J0 = 1 in the correct replica

symmetry-breaking calculation [216], see also the Supplementary Material of [325]
for a discussion on the topic in the context of maximum likelihood estimators.

Note that in this calculation we have not introduced any stability criterion for
the fixed point. In this discrete case, the criterion should be single-flip stability
which is not easy to enforce. As a result, the M = 0 fixed point is always a
valid saddle point to the complexity, even though we expect is to be dynamically
unreachable for large enough J0. In this annealed calculation we expect that with a
correct stability criterion we should lose the stability of the spin-glass saddle point
at the replica-symmetric critical value J0 =

√
π
2 . As a result, in order to recover

what we believe is the correct annealed complexity, we solve the above saddle
equations numerically by taking an initial guess far from the M = 0 solution.

Doing so for ε ≤ 0.5, we find a discontinuous transition towards non-zero
magnetization for J0 slightly above

√
π
2 as shown in Fig. C.1, which suggests that

this value is indeed compatible with the value we would get with an appropriate
stability criterion on the solution. The important result here is that the complexity
appears to remain non-zero throughout the mixed phase. Whether or not this
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0 1 2 3

J0/
√
υ(ε)

0.0

0.5

1.0
M

(a)

0 1 2 3

J0/
√
υ(ε)

0.0

0.1

0.2

Σ

(b)

Figure C.1: (a) Magnetization and (b) annealed complexity as a function of the rescaled
incentive to cooperate J0/

√
υ(ε) for ε = {0, 0.25, 0.5} shown in dark purple, blue and

light green respectively. The dotted lines represent the replica-symmetric transition point√
π
2 , while the dashed line in (a) represents the replica-symmetric solution for the mag-

netization. The dot-dashed line is the RSB result close to its critical point J0 = 1,
M ∼ (J0 − 1)

3
4 [216].

annealed approximation is relevant to describe the typical behavior of the system
is left for future work.

C.3 Limit cycle complexity with memory

To study the influence of the memory loss rate α < 1, we may adapt the method of
Hwang et al., although this requires the introduction of either a strong nonlinearity
in the exponent and subsequent saddle equations, or of new variables. We opt for
the latter, and write the number of cycles of length L as

NL(N,α, ε) =
∑

{Si(t)}

∫ ∞

−∞

( N∏
i=1

L∏
t=1

dQi(t)

)
|detJ α|N Θ(Qi(t)Si(t))

×
∏
i,t

δ
(
Qi(t+ 1)− (1− α)Qi(t)− α

∑
j

JijSj(t)
)
,

(C.20)

where the Dirac δ ensures that the dynamics are satisfied at each step, while the
second enforces Si(t) = sign(Qi(t)) ∀t. The L× L matrix J α is the α-dependent
Jacobian ensuring that the zeros of the δ function are correctly weighted, i.e. for
L > 1

J α
ts =


−(1− α), if s = t (mod L)

1, if s = t+ 1 (mod L)

0 otherwise.
(C.21)
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The first step is, as usual, to perform the average over the disorder after intro-
ducing the integral representation of the Dirac δ,

NL(N,α, ε) = |detJ α|N
∑

{Si(t)}

∫ ∞

−∞

( N∏
i=1

L∏
t=1

dQi(t)
dλi(t)

2π

)(∏
i,t

Θ(Si(t)Qi(t))

)

exp

[
− i
∑
i,t

λi(t)Qi(t+ 1) + i(1− α)
∑
i,t

λi(t)Qi(t)

− 1

2N
α2
(
1− ε

2

)2∑
i<j

(∑
t

[λi(t)Sj(t) + λj(t)Si(t)]
)2

− 1

2N
α2
(ε
2

)2∑
i<j

(∑
t

[λi(t)Sj(t)− λj(t)Si(t)]
)2]

.

(C.22)
The last two terms, resulting from the average on disorder, may be rearranged to
give

− α2

2N

∑
t,s

(∑
i,j

[
υ(ε)λi(t)Sj(t)λi(s)Sj(s) + (1− ε)λi(t)Sj(t)λj(s)Si(s)

]
− 1

2
(ε− 2)2

∑
i

λi(t)Si(t)λi(s)Si(s)

)
.

Similar to ref. [208], we introduce a set of auxiliary functions,

U(t, s) =
1

N

∑
i

λi(t)Si(t)λi(s)Si(s), (C.23)

V (t, s) =
1

N

∑
i

λi(t)Si(s), (C.24)

R(t, s) =
1

N

∑
i

λi(t)λi(s), (C.25)

K(t, s) =
1

N

∑
i

Si(t)Si(s), (C.26)

such that the last term gives

−1

2
Nα2

∑
t,s

[
υ(ε)R(t, s)K(t, s) + (1− ε)V (t, s)V (s, t)− (2− ε)2

2N
U(t, s)

]
.
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In the limit N → ∞, the O(N−1) term is insignificant and can thus be neglected.
The complete expression is then,

NL(N,α, ε) = |detJ α|N
∑

{Si(t)}

∫ ∞

−∞

(∏
i,t

dQi(t)
dλi(t)

2π

)(∏
i,t

Θ(Si(t)Qi(t))

)
(∏

t,s

dK(t, s)
dK̂(t, s)

2π
dR(t, s)

dR̂(t, s)

2π
dV (t, s)

dV̂ (t, s)

2π

)
exp

[
− i
∑
i,t

λi(t)Qi(t+ 1) + i(1− α)
∑
i,t

λi(t)Qi(t)

− 1

2
Nα2

∑
t,s

[
υ(ε)R(t, s)K(t, s) + (1− ε)V (t, s)V (s, t)

]
− i
∑
t,s

K̂(t, s)
(
NK(t, s)−

∑
i

Si(t)Si(s)
)

− i
∑
t,s

R̂(t, s)
(
NR(t, s)−

∑
i

λi(t)λi(s)
)

− i
∑
t,s

V̂ (t, s)
(
NV (t, s)−

∑
i

λi(t)Si(s)
)]
.

(C.27)
Now, one can notice that

∫ ∞

−∞

(∏
t,s

dR(t, s)

2π

)
e−

∑
t,s iR(t,s)[NR̂(t,s)− 1

2
iNα2υ(ε)K(t,s)] =

∏
t,s

δ

(
NR̂(t, s)−1

2
iNα2υ(ε)K(t, s)

)
,

(C.28)
which means the integral over K(t, s) now reads,

∫ ∞

−∞

(∏
t,s

dR(t, s)

2π

) ∏
t,s

e−iNR̂(t,s)R(t,s)δ

(
NR̂(t, s)−1

2
iNα2υ(ε)K(t, s)

)
= e

− 2N
α2υ(ε)

∑
t,s R̂(t,s)K̂(t,s)

(C.29)
For V (t, s), we have to be a bit more careful, as the expression is not linear for
all terms, as the diagonal for t = s gives a quadratic term that will have to be
treated separately. Noticing that the product V (t, s)V (s, t) is symmetric, we start
by considering the t < s,

∫ ∞

−∞

(∏
t<s

dV (t, s)

2π

)
e−

∑
t<s iV (t,s)[NV̂ (t,s)−iNα2(1−ε)V (s,t)] =

∏
t<s

δ
(
NV̂ (t, s)−iNα2(1−ε)V (s, t)

)
.

(C.30)
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Now integrating over the V (t, s) for t > s,∫ ∞

−∞

(∏
t>s

dV (t, s)

2π

)∏
t>s

e−iNV̂ (t,s)V (t,s)δ
(
−iα2(1−ε)V (s, t)+2V̂ (t, s)

)
= e

− N
α2(1−ε)

∑
t>s V̂ (t,s)V̂ (s,t)

.

(C.31)
Finally, the diagonal V (t, t) for which the expression is quadratic can be computed
with a Gaussian integral,∫ ∞

−∞

(∏
t

dV (t, t)

)
e−

1
2
Nα2(1−ε)

∑
t V (t,t)2−iN

∑
t V (t,t)V̂ (t,t) ∼ e

− N
2α2(1−ε)

∑
t V̂ (t,t)2

(C.32)
Up to an O(1) multiplicative constant, the complete expression now reads

NL(N,α, ε) ∼ |detJ α|N
∑

{Si(t)}

∫ ∞

−∞

(∏
i,t

dQi(t)
dλi(t)

2π

)(∏
i,t

Θ(Si(t)Qi(t))

)
(∏

t,s

dK̂(t, s)dR̂(t, s)dV̂ (t, s)

)
exp

(
− i
∑
i,t

λi(t)Qi(t+ 1)

+ i(1− α)
∑
i,t

λi(t)Qi(t) + i
∑
i,t

νi(t)Qi(t)Si(t)

− 2N

α2υ(ε)

∑
t,s

R̂(t, s)K̂(t, s)− N

2α2(1− ε)

∑
t,s

V̂ (t, s)V̂ (s, t)

+ i
∑
t,s

K̂(t, s)
∑
i

Si(t)Si(s) + i
∑
t,s

R̂(t, s)
∑
i

λi(t)λi(s)

+ i
∑
t,s

V̂ (t, s)
∑
i

λi(t)Si(s)

)
.

(C.33)
Taking the changes of variable

R̂(t, s) → 1

2
α2υ(ε)R̂(t, s)

K̂(t, s) → 1

2
α2υ(ε)K̂(t, s)

V̂ (t, s) → α2(1− ε)V̂ (t, s)

(C.34)

for convenience, we can entirely factorize the problem in N , finally giving

NL(N,α, ε) ∼
∫ ∞

−∞

(∏
t,s

dK̂(t, s)dR̂(t, s)dV̂ (t, s)

)
exp

(
N

[
− 1

2
α2υ(ε)

∑
t,s

R̂(t, s)K̂(t, s)

− 1

2
α2(1− ε)

∑
t,s

V̂ (t, s)V̂ (s, t) + log IL + log |detJ α|
])
.

(C.35)
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where

IL =
∑
{S(t)}

∫ ∞

−∞

(∏
t

dQ(t)
dλ(t)

2π

)(∏
t

Θ(S(t)Q(t))

)
exp

[
− i
∑
t

λ(t)Q(t+ 1)

+ i(1− α)
∑
t

λ(t)Q(t) +
1

2
α2υ(ε)

∑
t,s

(S(t)S(s)iK̂(t, s)

+ λ(t)λ(s)iR̂(t, s)) + α2(1− ε)
∑
t,s

λ(t)S(s)iV̂ (t, s)

]
.

(C.36)
At this stage, we may notice that S(t)2 = 1 ∀t and as such that the diagonal part
of the sum over K(t, s) can be taken out of IL. Doing so and combining this
contribution to the first term of the exponent of Eq. C.35, we have

NL(N,α, ε) ∼
∫ ∞

−∞

(∏
t,s

dK̂(t, s)dR̂(t, s)dV̂ (t, s)

)
exp

(
N

[
1

2
α2υ(ε)

∑
t

(iR̂(t, t) + 1)iK̂(t, t)

+
1

2
α2

(
1− ε+

ε2

2

)∑
s ̸=t

iR̂(t, s)iK̂(t, s)

− 1

2
α2(1− ε)

∑
t,s

V̂ (t, s)V̂ (s, t) + log IL + log |detJ α|
])
.

(C.37)
Now, the first term in the exponent can be integrated over the K̂(t, t) exactly,
yielding a product of δ functions fixing

iR̂(t, t) = −1 ∀t, (C.38)

as expected and introducing only a sub-dominant correction O
(
logN
N

)
in the

complexity.
In the N → ∞ limit, the complexity is then finally given by

ΣL(α, ε) = saddle
R̂,K̂,V̂

{
1

2
α2υ(ε)

∑
s ̸=t

iR̂(t, s)iK̂(t, s)− 1

2
α2(1− ε)

∑
t,s

V̂ (t, s)V̂ (s, t)

+ log IL + log |detJ α|
}
,

(C.39)
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with now

IL =
∑
{S(t)}

∫ ∞

−∞

(∏
t

dQ(t)
dλ(t)

2π

) ∏
t

Θ(S(t)Q(t)) exp

[
− i
∑
t

λ(t)Q(t+ 1)

+ i(1− α)
∑
t

λ(t)Q(t) + α2(1− ε)
∑
t,s

λ(t)S(s)iV̂ (t, s)

− 1

2
α2υ(ε)

[∑
t

λ(t)2 −
∑
s ̸=t

(S(t)S(s)iK̂(t, s)− λ(t)λ(s)iR̂(t, s))
]]
.

(C.40)
This integral may be rewritten as

IL =
∑
{S(t)}

e
1
2
α2υ(ε)

∑
s ̸=t S(t)S(s)iK̂(t,s)

∫ ∞

−∞

(∏
t

dQ(t)√
2π

dλ(t)√
2π

) ∏
t

Θ(S(t)Q(t))

exp

(
−1

2
λ⊤Aλ− ib⊤λ

)
.

(C.41)
with the L× L matrix A constituted of

A(t, s) = α2υ(ε)(δts − (1− δts)iR̂(t, s)), (C.42)

and b ∈ RL,

b(t) = Q(t+ 1)− (1− α)Q(t)− α2(1− ε)
∑
s

V̂ (t, s)S(s), (C.43)

such that we in fact have

b = J αQ+ c, c(t) = −α2(1− ε)
∑
s

V̂ (t, s)S(s). (C.44)

Computing the Gaussian integral on λ,

IL =
∑
{S(t)}

e
1
2
α2υ(ε)

∑
s ̸=t S(t)S(s)iK̂(t,s)

√
detA

∫ ∞

−∞

(∏
t

dQ(t)√
2π

) ∏
t

Θ(S(t)Q(t))

exp

(
−1

2
(J αQ+ c)⊤A−1(J αQ+ c)

)
.

(C.45)

Taking the change of variable u = J αQ+ c, the above becomes

IL =
∑
{S(t)}

e
1
2
α2υ(ε)

∑
s ̸=t S(t)S(s)iK̂(t,s)

|detJ α|
√

det Ã

∫ ∞

−∞

(∏
t

dQ(t)√
2π

)
∏
t

Θ(S(t)(Q− (J α)−1c)(t)) exp

(
−1

2
Q⊤Ã−1Q

)
,

(C.46)
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where Ã = (J α)−1A(J α)−1 As a result, the |detJ α| contributions in the com-
plexity cancel out, and we find ourselves with

ΣL(α, ε) = saddle
R̂,K̂,V̂

{
1

2
α2υ(ε)

∑
s ̸=t

iR̂(t, s)iK̂(t, s)− 1

2
α2(1− ε)

∑
t,s

V̂ (t, s)V̂ (s, t) + log IL
}
,

(C.47)
with now

IL =
∑
{S(t)}

e
1
2
α2υ(ε)

∑
s ̸=t S(t)S(s)iK̂(t,s)√
det Ã

∫ ∞

−∞

(∏
t

dQ(t)√
2π

)
∏
t

Θ(S(t)(Q− (J α)−1c)(t)) exp

(
−1

2
Q⊤Ã−1Q

)
.

(C.48)

The integral is challenging to study in generality, as the non-diagonal nature of J α

and A means that we cannot factorize the integrand. We now move on to specific
cases of interest. The equations can be further simplified through the rescalings
α2υ(ε)K̂(t, s) → K̂(t, s), α

√
υ(ε)V̂ (t, s) → V̂ (t, s) and Q(t) → α

√
υ(ε), in which

case we finally get

ΣL(α, η) = saddle
R̂,K̂,V̂

{∑
s<t

iR̂(t, s)iK̂(t, s)− η

2

∑
t,s

V̂ (t, s)V̂ (s, t) + log IL
}
, (C.49)

IL =
∑
{S(t)}

e
∑

s<t S(t)S(s)iK̂(t,s)ΨL(Γ1(α, η), . . . ,ΓL(α, η);C), (C.50)

where ΨL(x1, . . . , xL;C) is the cumulative distribution of an L-dimensional Gaus-
sian with a zero mean vector and covariance matrix C evaluated up to xt, t ∈
{1, . . . , L}. In our case, the upper bounds of integration are given by Γ =
S ◦ (J α)−1c, with now

c(t) = η
∑
s

V̂ (t, s)S(s), (C.51)

while the covariance matrix must be taken with care as the off-diagonal elements
must be adapted to the presence of S(t) in the Heaviside step function. As a
result, off-diagonal elements must be multiplied by S(t)S(s). As a result, we have

C(t, s) =

{
Ã(t, t) for t = s

S(t)S(s)Ã(t, s) for t ̸= s
(C.52)

with Ã = (J α)−1A(J α)−1 and

A(t, s) = δts − (1− δts)iR̂(t, s). (C.53)
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C.3.1 Fixed points
We can start by checking that we recover the known result for L = 1. In this case,
J α = α, and we only have to solve for a scalar V̂ (1, 1) = x. Here,

IL = 2Ψ1

(
η

α
x;

1

α2

)
= 2Φ(ηx), (C.54)

therefore the saddle point equation becomes

Σ1(α, η) := ΣFP(η) = max
x

{
−1

2
x2 + log 2 + logΦ(ηx)

}
, (C.55)

from which the expression in the main text can immediately be recovered.

C.3.2 Two-cycles

There are now six variables to solve for: iR̂, iK̂, V̂1 = V̂ (1, 1), V̂2 = V̂ (2, 2),
V̂12 = V̂ (1, 2) and V̂21 = V̂ (2, 1). In this case, the Jacobian matrix is given by

J α =

[
−(1− α) 1

1 −(1− α)

]
⇒ (J α)−1 =

1

1− (1− α)2

[
1− α 1
1 1− α

]
,

(C.56)
giving the bounds of integration

Γ =
η

1− (1− α)2

[
V̂21 + S1S2V̂2 + (1− α)(V̂1 + S1S2V̂12)

V̂12 + S1S2V̂1 + (1− α)(V̂2 + S1S2V̂21)

]
(C.57)

and the covariance matrix

C =
1

(1− (1− α)2)2

[
1 + (1− α)2 − 2(1− α)iR̂ S1S2(2(1− α)− (1 + (1− α)2)iR̂)

S1S2(2(1− α)− (1 + (1− α)2)iR̂) 1 + (1− α)2 − 2(1− α)iR̂

]
.

(C.58)
Now, it is immediately apparent that IL is a function of the product S1S2 = ±1
rather than S1 and S2. As a result, the complexity is given by

Σ2(α, η) = saddle
R̂,K̂,V̂1,V̂2,V̂12,V̂21

{
iR̂iK̂ − η

2
(V̂ 2

1 + V̂ 2
2 + 2V̂12V̂21) + log 2 + log

∑
S=±1

eSiK̂Ψ2(Γ1,Γ2;C)

}
.

(C.59)
The six saddle point equations read

iR̂
∑
S=±1

eSiK̂Ψ2(Γ1,Γ2;C) +
∑
S=±1

SeSiK̂Ψ2(Γ1,Γ2;C) = 0, (C.60)
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(
iK̂ +

iR̂

1− (iR̂)2

) ∑
S=±1

eSiK̂Ψ2(Γ1,Γ2;C)

− 1

2

∑
S=±1

eSiK̂
∫ Γ1

−∞
dQ1

∫ Γ2

−∞
dQ2Q

⊤∂C
−1

∂iR̂
Q
e−

1
2
Q⊤C−1Q

2π
√
detC

= 0

(C.61)

− ηV̂1
∑
S=±1

eSiK̂Ψ2(Γ1,Γ2;C) +
η(1− α)

1− (1− α)2

∑
S=±1

eSiK̂
∫ Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
√
detC

+
η

1− (1− α)2

∑
S=±1

SeSiK̂
∫ Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
√
detC

= 0

(C.62)

− ηV̂2
∑
S=±1

eSiK̂Ψ2(Γ1,Γ2;C) +
η

1− (1− α)2

∑
S=±1

SeSiK̂
∫ Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
√
detC

+
η(1− α)

1− (1− α)2

∑
S=±1

eSiK̂
∫ Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
√
detC

= 0

(C.63)

− ηV̂21
∑
S=±1

eSiK̂Ψ2(Γ1,Γ2;C) +
η(1− α)

1− (1− α)2

∑
S=±1

SeSiK̂
∫ Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
√
detC

+
η

1− (1− α)2

∑
S=±1

eSiK̂
∫ Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
√
detC

= 0

(C.64)

− ηV̂12
∑
S=±1

eSiK̂Ψ2(Γ1,Γ2;C) +
η

1− (1− α)2

∑
S=±1

eSiK̂
∫ Γ2

−∞
dQ2

e−
1
2
Q⋆

2
⊤C−1Q⋆

2

2π
√
detC

+
η(1− α)

1− (1− α)2

∑
S=±1

SeSiK̂
∫ Γ1

−∞
dQ1

e−
1
2
Q⋆

1
⊤C−1Q⋆

1

2π
√
detC

= 0,

(C.65)
with Q∗

1 = [Q1 Γ2]
⊤ and similarly for Q∗

2, and

∂C−1

∂iR̂
=

1

(1− (iR̂)2)2

×
[

2iR̂(1 + (1− α)2)− 2(1− α)((iR̂)2 + 1) S(−4iR̂(1− α) + (1 + (1− α)2)((iR̂)2 + 1))

S(−4iR̂(1− α) + (1 + (1− α)2)((iR̂)2 + 1)) 2iR̂(1 + (1− α)2)− 2(1− α)((iR̂)2 + 1)

]
.

(C.66)
In the specific case where α = 1, we expect two-cycles with a zero overlap

in between consecutive steps, meaning iR̂ = 0. As a result, the matrix C is the
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identity matrix, and thus

Ψ2(Γ1,Γ2;C) = Φ
(
η(V̂21 + SV̂2)

)
Φ
(
η(V̂12 + SV̂1)

)
. (C.67)

In order for iR̂ = 0 to satisfy Eq. (C.60), we then require iK̂ = 0 and V̂1 = V̂2 = 0

such that
∑

S=±1 Se
iK̂Ψ2(Γ1,Γ2;C) = 0. Given

∂C−1

∂iR̂

∣∣∣∣
iR̂=0

=

[
0 S
S 0

]
(C.68)

for α = 1, the solution iK̂ = 0 satisfies the saddle point equation (C.61) while the
independence of the integrands on S ensures that V̂1 = V̂2 = 0 are compatible with
Eqs. (C.62)-(C.63). Eqs. (C.64)-(C.65) then suggest the ansatz V̂12 = V̂21 = x, in
which case the problem is finally reduced to

Σ2(α = 1, η) = max
x

{
−ηx2 + 2 log 2 + 2 log Φ(ηx)

}
= 2ΣFP(η),

(C.69)

recovering the known solution of [208,223].

C.4 Derivation of the DMFT equations
We start from the N ≫ 1 discrete difference equations to which we have added
an external field hi(t)

Qi(t+1) = (1−α)Qi(t)+α
∑
j

Jijmj(t)+αηi(t)+hi(t), ⟨ηi(t)ηsj ⟩ ≈ υ(ε)(1−q(t))δt,sδi,j

(C.70)
and introduce a new agent at index i = 0. The influence of this newly introduced
agent on the dynamic equation of agents i ̸= 0 is then∑

j

Jijmj(t) + hi(t) →
∑
j

Jijmj(t) + Ji0m0(t) + hi(t) (C.71)

Given N is large, we consider the response at the linear order, meaning that the
expected decision of all agents i > 0 becomes

mi(t) → mi(t) +
∑
s<t

∑
j

∂mi(t)

∂hj(s)

∣∣∣∣
h=0︸ ︷︷ ︸

χij(t,s)

Jj0m0(s), (C.72)
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as Jj0m0(t) can be seen as the modification of the effective field “felt” by all agents
j, and χij(t, s) is simply the linear response function to a small external field. The
dynamics that the newly introduced agent follows is then given by

Q0(t+1) = (1−α)Q0(t)+α
∑
i>0

J0imi(t)+
∑
s<t

(∑
ij

J0iχij(t, s)Jj0

)
m0(s)+αη0(t)+h0(t).

(C.73)
The sum on i, j can be split in its diagonal and off-diagonal parts. On the diagonal,
we assume the central limit theorem holds, yielding∑

i

J0iχii(t, s)Ji0 = N

[
⟨J0iχii(t, s)Ji0⟩+O

(
1√
N

)]
≈ (1− ε)⟨χii(t, s)⟩, (C.74)

while the off-diagonal contribution will be sub-dominant as its mean will be zero
given non-opposing entries in the interaction matrix are uncorrelated. We can also
assume the CLT is valid for the sum on indices i at the leading order, in which
case ∑

i

J0imi(t) ≈ 0 + υ(ε)ξ0(t), (C.75)

where ξ0 is a Gaussian of zero mean and correlated in time as ⟨ξ0(t)ξ0(s)⟩ =
C0(t, s) = ⟨m0(t)m0(s)⟩. Bringing everything together, one realizes that there is
no cross contributions between agents at the leading order and thus that we can
drop the index 0 and recover the equation in the main text

Q(t+ 1) = (1− α)Q(t) + α2(1− ε)
∑
s<t

G(t, s)m(s) + αϕ(t) + αh(t), (C.76)

with a new noise term combining the original thermal-like fluctuations and the
effective contribution from the disorder averaging, with ⟨ϕ(t)⟩ = 0, and

⟨ϕ(t)ϕ(s)⟩ = υ(ε)[C(t, s) + (1− q(t))δt,s], (C.77)

and where the memory kernel and correlation function are to be determined self-
consistently,

G(t, s) = ⟨χii(t, s)⟩ =
〈
∂m(t)

∂h(s)

∣∣∣∣
h=0

〉
, C(t, s) = ⟨m(t)m(s)⟩. (C.78)

Note that in order to eliminate the external field, we have expressed the suscep-
tibility with the noise term, resulting in a rescaling G(t, s) → αG(t, s). From this
expression, the continuous limit can be taken, changing the sum in time weighted
by α into an integral,

α

2
Q̈(t) + Q̇(t) = −Q(t) + (1− ε)

∫ t

0
dsG(t, s)m(s) + ϕ(t) + h(t). (C.79)
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C.5 Adapting the Sompolinsky & Crisanti result
We start from the much simplified DMFT equation,

Q̇(t) = −Q(t) + ϕ(t), ⟨ϕ(t)ϕ(s)⟩ = 1

2
C(t, s) (C.80)

with C(t, s) = ⟨m(t)m(s)⟩, m(t) = sign(Q(t)) in the β → ∞ limit. As shown by
Sompolinsky & Crisanti [233], we can write a second order differential equation
for the two-point autocorrelation of Q(t),

∆̈(τ) = ∆(τ)− 1

2
C(τ), (C.81)

with therefore ∆(τ) = ⟨Q(t + τ)Q(t)⟩, and where thanks to the Gaussian nature
of the fluctuations we have

C(τ) =

∫ ∞

−∞

dz√
2π

e−
1
2
z2
[ ∫ ∞

−∞

dx√
2π

e−
1
2
x2

sign
(√

∆(0)− |∆(τ)|x+
√
|∆(τ)|z

)]2
=

∫ ∞

−∞

dz√
2π

e−
1
2
z2 erf

(√
|∆(τ)|

∆(0)− |∆(τ)

z√
2

)2

=
2

π
sin−1

(
∆(τ)

∆(0)

)
,

(C.82)
(see [326] for the last step above). Now, by identifying that our problem is only
different of their’s by a factor 2 in ∆, we can directly use their result ∆(0) = 1− 2

π ,
found by enforcing the condition required for ∆(τ) to decay monotonously, see
[235]. Following Crisanti & Sompolinsky, we may finally expand the inverse sine
to recover

∆̈(τ) ∼
τ≫1

(
1− 1

π∆(0)

)
∆(τ) (C.83)

and therefore
C(τ) ∼

τ≫1

2

π
e
− τ

τ1 , τ1 =

√
π − 2

π − 3
≈ 2.84. (C.84)

As a sidenote, we notice that the value of the characteristic time is identical in
the standard Sompolinsky & Crisanti case (clearly C(τ) is invariant to a rescaling
in ∆(τ)), and is therefore not equal to the incorrect value

√
π

π−2 ≈ 1.66 given
in [234] and [233].

288



Appendix D

Schelling model

This section reproduces the relevant Appendices of [5] and thus includes contribu-
tions from R. Zakine and A.-C. Becharat.

D.1 Lyapunov function for non-local moves
In this section, we explicitly show that the non-local mean-field dynamics cor-
respond to the relaxation of a free engergy functional when the utility is linear.
This result is a direct consequence of the dynamics following the logit rule being
in detailed balance with the Gibbs-Boltzmann measure e−βF . Starting from the
pairwise Hamiltonian

H = −ν
2

∑
r,r′

n(r)Gσ(r− r′)n(r′), (D.1)

which can be shown to satisfy Eq. (7.5) when u(ϕ) = νϕ, taking the continu-
ous limit and accounting for the entropic contribution, one finds the free energy
functional

F [ρ] = −ν
2

∫
dx dy ρ(x)Gσ(x− y)ρ(y) + TS[ρ], (D.2)

with the entropy S[ρ] =
∫
[ρ log(ρ) + (1 − ρ) log(1 − ρ)]. We define the chemical

potential

µ(x) =
δF
δρ(x)

= −νϕ(x) + T log
( ρ(x)

1− ρ(x)

)
, (D.3)

such that inverting the equation yields

ρ(x) =
e

β
2
(µ(x)+νϕ(x))

D(x)
, (D.4)
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with D(x) ≡ 2 cosh[β2 (µ(x) + νϕ(x))]. Then, computing the total time derivative
on the functional yields

dF
dt

=

∫
x

δF
δρ(x)

∂tρ(x, t)dx

=

∫
x
µ(x)(1− ρ(x, t))

∫
y
ρ(y, t)wβ([ϕ], y, x, t)dydx

−
∫
x
µ(x)ρ(x, t)

∫
y
(1− ρ(y, t))wβ([ϕ], x, y, t)dydx

=−
∫∫

dxdy
Z(x, y)

4D(x)D(y) cosh[β2 (ϕ(x)− ϕ(y))]
,

(D.5)

where we have replaced wβ by the logit decision rate [see Eq. (7.12)] and we have
symmetrized and simplified the second line to obtain the third line, and where we
define Z(x, y) ≡ [µ(y) − µ(x)](e

β
2
(µ(y)−µ(x)) − e

β
2
(µ(x)−µ(y))) > 0, ∀x, y. We thus

conclude that dF
dt ≤ 0, i.e. that F is a Lyapunov function of the hydrodynamic

evolution when the utility is linear.

D.2 Local mean-field description and LSA
In this section, we consider a modified dynamics where agents are allowed to
relocate on neighboring site only. For simplicity, we also consider that the system
is one dimensional. It is thus possible to perform a Taylor expansion of the
different fields assuming that all fields are smooth in the mean-field limit. The
jump probability between two neighboring sites becomes

fβ [u(x+ a)− u(x)] = fβ

(
a∂xu+

a2

2
∂2xu

)
, (D.6)

where a is the lattice size, and u is the utility on position x. The evolution of the
density (for non-overlapping agents) is thus given by

∂tρ =ρ(x+ a)[1− ρ(x)]fβ(−a∂xu− a2

2
∂2xu)

+ ρ(x− a)[1− ρ(x)]fβ(a∂xu− a2

2
∂2xu)

− ρ(x)[1− ρ(x+ a)]fβ(a∂xu+
a2

2
∂2xu)

− ρ(x)[1− ρ(x− a)]fβ(−a∂xu+
a2

2
∂2xu).

(D.7)
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After Taylor expansion up to O(a2) and time rescaling, it turns out that the
evolution equation simplifies into

∂tρ = fβ(0)∂
2
xρ− 2f ′β(0)∂x[ρ(1− ρ)∂xu]. (D.8)

Then, expanding around an homogeneous state, we write ρ = ρ0 + ρ1(x, t), ϕ =
ρ0 + ϕ1(x, t), and we obtain to leading order in the perturbation:

∂tρ1 = fβ(0)∂
2
xρ1 − 2f ′β(0)ρ0(1− ρ0)u

′(ρ0)∂
2
xϕ1. (D.9)

In Fourier space the evolution of the mode k is given by ∂tρ̂1 = Λ(k)ρ̂1, with

Λ(k) = −k2fβ(0)

(
1− 2

f ′β(0)

fβ(0)
ρ0(1− ρ0)u

′(ρ0)Ĝσ(k)

)
. (D.10)

From this, we deduce that the homogeneous system is unstable if there exists a
mode k⋆ such that

1 < 2
f ′β(0)

fβ(0)
ρ0(1− ρ0)u

′(ρ0)Ĝσ(k
⋆). (D.11)

This criterion is exactly the same as the one found for the non-local move dynam-
ics.

D.3 Linear stability for two coupled populations
We consider the evolution of a perturbation of the homogeneous state in Eq. (7.42)
(and in its coupled analogue for the field ρB). Close to the homogeneous state
ρA(x) ≡ ρ̄A, ρB(x) ≡ ρ̄B, with ρ0 = ρ̄A + ρ̄B, we expand the fields ρZ(x, t) =
ρ̄Z + ρZ,1(x, t), with Z = A or B, and the perturbation fields are denoted with
index 1. One also has ρ(x, t) = ρ0 + ρ1(x, t), and ϕZ(x, t) = ρ̄Z + ϕZ,1(x, t).
Keeping leading order terms in Eq. (7.42) yields

∂tρA,1 = ΩωA

(
− ρ̄AfβA

(0)ρ1(x, t)− (1− ρ0)fβA
(0)ρA,1(x, t)

+ 2(1− ρ0)ρ̄Af
′
βA

(0)[ϕA,1(x, t)∂1uA + ϕB,1(x, t)∂2uA]
)
,

(D.12)

where ∂1uA is a shorthand notation for ∂uA
∂ρ̄A

[ρ̄A, ρ̄B]. Taking the logistic function
fβA

(0) = 1
2 , f ′βA

(0) = βA
4 , the linear evolution simplifies into

∂tρA,1(x, t) =
ΩωA

2

(
− ρ̄Aρ1(x, t)− (1− ρ0)ρA,1(x, t)

+ (1− ρ0)ρ̄AβA[ϕA,1(x, t)∂1uA + ϕB,1(x, t)∂2uA]
)
.

(D.13)
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Similarly, we obtain for the evolution of B:

∂tρB,1(x, t) =
ΩωB

2

(
− ρ̄Bρ1(x, t)− (1− ρ0)ρB,1(x, t) (D.14)

+ (1− ρ0)ρ̄BβB[ϕA,1(x, t)∂1uB + ϕB,1(x, t)∂2uB]
)
. (D.15)

Denoting ρ̂Z(k, t) the Fourier transform of ρZ,1(x, t), the evolution equation can
be cast in Fourier space into

∂t

(
ρ̂A(k, t)
ρ̂B(k, t)

)
= L

(
ρ̂A(k, t)
ρ̂B(k, t)

)
, (D.16)

with

L =
Ω

2

[
ωA(ρ̄B − 1 + (1− ρ0)ρ̄AβAĜσ(k)∂1uA) ωA(−ρ̄A + (1− ρ0)ρ̄AβAĜσ(k)∂2uA)

ωB(−ρ̄B + (1− ρ0)ρ̄BβBĜσ(k)∂1uB) ωB(ρ̄A − 1 + (1− ρ0)ρ̄BβBĜσ(k)∂2uB)

]
.

(D.17)

For simplicity, we will consider that agents are equally rational (βA = βB = β)
and that their moving rates are also identical (ωA = ωB = ω).

We are looking for conditions to observe dynamical patterns and/or static
phase separation. Notably, the homogeneous state is linearly unstable if one
eigenvalue of L has a positive real part. It is important to stress that the linear
stability analysis is unable to predict the dynamic behavior when nonlinear terms
become relevant. Whether the eigenvalues display an imaginary part or not does
not bring any information on the final dynamics of the system. For the sake of
completeness, we explicitate the criteria to have eigenvalues with positive real part
and zero imaginary part, referred to as case (i), and eigenvalues with positive real
part and nonzero imaginary part, referred to as case (ii). We lie in case (i) if{

TrL > 0

(TrL)2 − 4 detL > 0,
or
{
TrL < 0

detL < 0.
(D.18)

Case (ii) is obtained if {
TrL > 0

(TrL)2 − 4 detL < 0.
(D.19)

The criterion TrL > 0 notably simplifies into

ρ̄A∂1uA + ρ̄B∂2uB >
1

βĜσ(k)

(
2− ρ0
1− ρ0

)
. (D.20)
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In the main text we have come up with utility functions that lead to eigenvalues
with positive real parts and non zero imaginary parts, thus suggesting chasing
instability. In some cases, oscillations were observed close to the homogeneous
state but they eventually vanished at late times. Whether or not the chasing
instability or oscillations are sustained cannot be predicted from the simple linear
stability analysis but would require to perform a weakly non-linear analysis which
is beyond the scope of this present paper.

D.4 LSA for two populations with local moves
We start from the local jump approximation of the mean-field equation for the
coupled fields. We find that the dynamics can be cast into

∂tρA = ∂x[ρA(1− ρA − ρB)∂xµ([ρA,B], x)], (D.21)

with µ = µent. + µutil.,

µent. = wβA
(0) log

(
ρA

1− ρA − ρB

)
, (D.22)

µutil. = −2w′
βA

(0)uA([ρ], x), (D.23)
and likewise for ρB. One can look into the stability of an homogeneous state
with densities ρ̄A and ρ̄B, expanding around this state with a utility u(ϕA, ϕB)
for agents A and v(ϕA, ϕB) for agents B. For convenience, we will take wβA

(0) =
wβB

(0) = ωfβ(0) = ω/2 and w′
βA

(0) = w′
βB

(0) = ωf ′β(0) = ωβ/4. Expanding
around the homogeneous state (ρ̄A , ρ̄B) leads to{
∂tρA,1 =

ω
2

[
(1− ρ̄B)∂

2
xρA,1 + ρ̄A∂

2
xρB,1 − ∂x(βρ̄A(1− ρ0)∂xϕA,1∂1u+ ∂xϕB,1∂2u)

]
∂tρB,1 =

ω
2

[
(1− ρ̄A)∂

2
xρB,1 + ρ̄B∂

2
xρA,1 − ∂x(βρ̄B(1− ρ0)∂xϕA,1∂1v + ∂xϕB,1∂2v)

]
,

(D.24)
Hence, in Fourier space, the linear system can be cast into

∂t

(
ρ̂A(k, t)
ρ̂B(k, t)

)
= K

(
ρ̂A(k, t)
ρ̂B(k, t)

)
, (D.25)

with

K =
ωk2

2

[
ρ̄B − 1 + βρ̄A(1− ρ0)Ĝσ(k)∂1u −ρ̄A + βρ̄A(1− ρ0)Ĝσ(k)∂2u

−ρ̄B + (1− ρ0)ρ̄BβĜσ(k)∂1v ρ̄A − 1 + (1− ρ0)ρ̄BβĜσ(k)∂2v

]
.

(D.26)

It is interesting to note that the evolution matrix K is directly proportional to L
and, as a consequence, the stability criterion of the homogeneous state with local
moves is exactly the same as the one found for non-local moves.
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Titre : Naviguer dans la complexité radicale : l’influence du désordre, d’une dynamique non-relaxationnelle et
de l’apprentissage sur la coordination agrégée
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Résumé : Comment un comportement collectif peut-il émerger
d’un système radicalement complexe ? En contradiction avec le pa-
radigme de l’“homo economicus” de l’économie classique, dans le-
quel un état stationnaire unique et optimal est supposé atteint par
des agents rationnels, la théorie des verres de spin a démontré
que des problèmes d’optimisation simples peuvent produire un
nombre immense de solutions lorsque qu’ils incluent des interac-
tions hétérogènes. L’objectif de cette thèse est d’étudier comment
des agents peuvent se coordonner dans un environnement radica-
lement complexe.
Nous commençons par illustrer la notion de complexité radicale
dans le contexte socio-économique en étudiant l’abondance de
solutions dans un problème d’optimisation de portefeuille. Nous
observons un très grand nombre de solutions quasi-optimales, et
par conséquent une extrême sensibilité de la solution optimale
aux paramètres du problème, remettant en question l’idée même
de décision rationnelle. Par ailleurs, ces résultats peuvent être
directement appliqués aux équilibres écologiques des équations
de Lotka-Volterra multispécifiques avec autorégulation. Ayant mo-
tivé la nécessité d’une rationalité limitée dans la modélisation des
agents, nous revisitons un objet classique en microéconomie reliant
la demande aux changements de prix : la matrice de Slutsky. Cet
exemple nous permet d’illustrer à la fois l’efficacité de la mécanique
statistique à l’équilibre pour aller au delà de certaines croyances
conventionnelles, mais aussi ses limites dans la modélisation
d’agents supposés égoı̈stes.
Nous proposons ensuite un “jeu” inspiré du verre de spin de

Sherrington et Kirkpatrick, mêlant rationalité bornée, interactions
non réciproques et apprentissage. Nous montrons que ce modèle
présente une multitude de phénomènes hors d’équilibre, tels que
des cycles limites, du chaos et du vieillissement. Pour comprendre
ces observations, qui démontrent que l’apprentissage est insuffi-
sant pour surmonter la complexité radicale, nous étudions l’explo-
sion du nombre de points de points fixes du problème, puis sa dyna-
mique non-relaxationnelle à l’aide de la Théorie du Champ Moyen
Dynamique. En raison de la richesse phénoménologique qu’il
présente, nous estimons que ce ”SK-game”, incarne un modèle
unificateur pour les systèmes socio-économiques désordonnés.
La dernière partie de la thèse est consacrée à des systèmes
hors d’équilibre exempts de désordre. Nous revisitions d’abord
un modèle d’occupation de type Schelling, dans lequel des
agents en interaction peuplent un réseau. En remplaçant les
quartiers prédéfinis par une perception locale de la densité, le
système est conduit hors d’équilibre, mais nous montrons que sa
phénoménologie demeure largement inchangée et est relativement
indépendante de la règle de décision choisie. Enfin, nous exami-
nons l’influence plus générale des courants hors d’équilibre sur la
relaxation vers des états stationnaires préservant une distribution
d’équilibre donnée. En établissant des bornes sur le temps de cor-
relation d’observables quelconques, nous étudions l’(in)efficacité
de certains courants en vue d’accélérer la relaxation du système
vers son état stationnaire, offrant des perspectives pour évaluer la
robustesse de certains phénomènes collectifs à d’autres règles de
décision.

Title : Navigating radical complexity: the influence of disorder, nonrelaxational dynamics and learning on
aggregate coordination

Keywords : Statistical physics, disordered systems, out-of-equilibrium, phase transitions, self-organization,
complex systems

Abstract : How does aggregate coordination occur in complex
systems? At odds with the conventional “homo economicus” para-
digm of classical economics, in which a unique and optimal steady-
state is assumed to be reached by rational agents, spin-glasses
have demonstrated that simple problems may yield an overwhel-
ming number of solutions when heterogeneous interactions are
present. The aim of this thesis is to study how idealized agents
may navigate the radical complexity that likely emerges from their
environment.
In a first part, we start by illustrating the notion of radical com-
plexity in the socioeconomic context by studying the abundance
of solutions in a constrained portfolio optimization problem. We
find that there is a very large number of quasi-optimal solutions,
and therefore an extreme sensitivity of the best possible outcome
to the specific draw of problem parameters, challenging the very
notion of a rational decision in this context. Remarkably, these re-
sults may be directly applied to ecological equilibria of multispe-
cies Lotka–Volterra equations with self-regulation. Having motiva-
ted boundedly rational decision making in the modeling of indivi-
dual agents, we revisit a classical object of consumer choice theory
measuring the sensitivity of demand following a price change: the
Slutsky matrix. This example allows us to illustrate both the effec-
tiveness of equilibrium statistical mechanics to go beyond some
conventional beliefs, but also its limitations to model agents that
are assumed to be individualistic.

We then introduce a game inspired by the Sherrington-Kirkpatrick
spin-glass, combining bounded rationality, non-reciprocal interac-
tions and learning. We show that this model displays a wealth of
dynamical phenomena, such as limit cycles, chaos and aging. To
understand these observations, which demonstrate that learning is
insufficient to overcome radical complexity, we study the explosion
of the number of fixed points solutions to the problem, and its nonre-
laxational dynamics with Dynamical Mean-Field Theory. Due to the
very rich phenomenology it offers, we believe that this ”SK-game”
offers a unifying model for disordered socioeconomic systems.
A last part is devoted to disorder-free out-of-equilibrium systems.
We first revisit a Schelling-like occupation model, in which interac-
ting agents populate a lattice. While replacing fixed neighborhoods
by a space-dependent perception of the density drives the system
out of equilibrium, we find that its phenomenology is largely unchan-
ged and independent of the details of the decision rule. We finally
consider the more general influence of out-of-equilibrium forcing on
the relaxation towards steady-states that have the particularity of
matching a prescribed equilibrium distribution, allowing us to iso-
late the role of irreversible currents. By deriving upper bounds on
the correlation time of arbitrary state variables, we study how given
out-of-equilibrium contributions may (or may not) effectively acce-
lerate the relaxation of the system, which could in turn be useful
to assess the robustness of some collective phenomena to a wide
range of decision rules.

Institut Polytechnique de Paris
91120 Palaiseau, France


	I Motivation and background
	Introduction
	From spin-glasses to complex systems
	A bit of history
	Main features
	The spin-glass cornucopia

	Agent-based modeling in socioeconomics
	Agents as atoms
	Utility theory
	Homo economicus, bounded rationality and the logit rule
	Simplicity versus fidelity

	Toy stories
	The Schelling model, micromotives and macrobehaviours
	The Random-Field Ising Model
	A word on universality

	Thesis layout

	Theoretical foundations
	Equilibrium statistical mechanics
	Thermodynamics and the Gibbs-Boltzmann measure
	Detailed balance
	Langevin dynamics
	A word on the relaxation time
	Ergodicity

	Disordered systems
	The replica method
	TAP approach
	Complexity
	Replica symmetry breaking
	Dynamics

	Summary of the key notions


	II Radical complexity and detailed balance violation in socioeconomics
	Rationality versus complexity: the example of portfolio optimization
	The portfolio optimization problem
	Problem statement
	Link with population dynamics
	Spin-glass formulation
	Empirical data

	Numerical experiments
	Exact enumeration
	``Pruning'' algorithm

	Analytical setup
	Self-consistent equation
	Complexity and number of solutions

	Distribution-specific results
	Gaussian disorder
	Uniform disorder
	Bridging the gap: generalized normal distribution

	Disorder chaos
	Conclusion

	Slutsky matrices and the necessity of a global utility
	 Consumer choice theory
	Thermodynamics of bounded rationality
	A single agent
	A fluctuation-response relation
	Many agents
	Aggregate Slutsky matrices
	Near-rational limit 

	Animal spirits
	Interactions and herding
	Concentration for 
	Finite  effects

	Consequences on the Slutsky matrix
	Discussion
	Global vs. individual utilities
	Equivalence of ensembles

	Conclusion


	III A unifying disordered model: the SK-game
	Presentation of the model and numerical results
	Motivation
	A simple model for a complex world
	Set-up of the model
	The interaction matrix

	Overview and numerical results
	A word on the average reward
	Phase diagram in the noiseless limit
	Noisy learning
	Distribution of individual rewards
	Unpredictability of equilibria
	Increasing cooperativity
	Self-reinforcement and habit formation

	Core message

	Detailed analysis of the model
	Fixed point analysis and complexity
	Critical noise level
	The elusive complexity

	Counting limit cycles
	Cycles without memory
	Cycles with memory

	Dynamical Mean-Field Theory
	Derivation
	Numerical integration
	Interpretation in a socioeconomic context

	Noiseless learning
	The memory-less limit
	Memory helps convergence to fixed points
	Anomalous stretching of cycles

	Noisy learning
	(Quasi-)fixed points
	Memory onset transition
	Aging
	Chaos and (quasi-)limit cycles

	Conclusion
	Blindsided by complexity
	Technical results and conjectures
	Extensions and final remarks



	IV Detailed balance violation in the absence of disorder
	A Sakoda-Schelling model with no neighborhoods
	Motivation
	Presentation of the model
	In or out of equilibrium?
	Numerical experiments
	Phase separation
	Critical point and exponents

	Mean-field description
	Linear stability analysis
	Comparison with numerical simulations
	Local move approximation
	Alternative derivation and fluctuating hydrodynamics

	Generalized thermodynamic mapping
	Two population extension
	Conclusion

	Steady-state preserving out-of-equilibrium currents
	General idea
	Physical setup
	Relaxation to the NESS
	Barrier crossing out-of-equilibrium

	Theoretical bounds on the correlation time
	General variational statement
	Dissipation speed limit
	Geometric speed limit

	Accelerating relaxation in practice
	Ichiki-Ohzeki forcing
	An extension to complicated currents
	Perspectives

	Conclusion


	V Conclusion and future works
	References
	Appendices
	Résumé substantiel en français
	Optimal portfolios
	Full self-consistent equation
	Sommerfeld-like expansions
	Reaction term
	Detailed resolution of the characteristic equations
	Generalized normal distribution
	Heterogeneous returns and growth rates

	Slutsky matrices
	General ``thermodynamic'' relations
	Single agent Slutksy matrix
	Many agent Slutsky matrix
	Fluctuation-response relations
	Aggregate Slutsky matrix
	Gaussian fluctuations

	Numerical methods
	General idea
	Metropolis-Hastings acceptance rate
	Computing the Slutsky matrix

	Interacting model
	Non-interacting limit – canonical ensemble
	Finite interactions – grand-canonical ensemble
	Slutsky matrix in the  limit
	Equivalence of ensembles

	A Hamiltonian utility function

	SK-game
	Static NMFE
	Fixed point complexity with cooperativity
	Limit cycle complexity with memory
	Fixed points
	Two-cycles

	Derivation of the DMFT equations
	Adapting the Sompolinsky & Crisanti result

	Schelling model
	Lyapunov function for non-local moves
	Local mean-field description and LSA
	Linear stability for two coupled populations
	LSA for two populations with local moves



