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RÉSUMÉ EN FRANCAIS

L’Internet occupe une place incontestablement cruciale dans la vie quotidienne de la
population mondiale. Son importance transcende les frontières et les cultures, devenant
un pilier essentiel de la connectivité et de la communication. Cependant, cette ubiquité de
l’Internet engendre une demande sans cesse croissante pour une transmission de données
à haut débit et une communication en temps réel. Cette demande massive crée ainsi de
nouveaux défis majeurs pour les opérateurs de réseau qui s’efforcent de fournir la meilleure
qualité d’expérience à leurs utilisateurs. Parmi ces défis, la gestion de la congestion, les
retards dans la transmission des données, les pertes de paquets et la préservation de la
qualité de service figurent en bonne place. Ces enjeux complexes requièrent des solutions
innovantes pour maintenir et améliorer l’expérience des utilisateurs tout en faisant face à
une demande en perpétuelle augmentation.

Afin d’améliorer l’expérience des utilisateurs, des algorithmes de contrôle de conges-
tion ont été développés et intégrés dans de nombreux protocoles de transport, tels que
TCP et QUIC. Les algorithmes de contrôle de congestion jouent un rôle fondamental dans
la régulation des flux d’Internet, revêtant une importance capitale dans le maintien de
la stabilité et de l’efficacité de ce vaste réseau mondial. Leur fonction essentielle est de
surveiller en temps réel les conditions du réseau, garantissant ainsi que la quantité de
données transmises ne dépasse pas la capacité de traitement disponible. En d’autres ter-
mes, ils agissent comme des gardiens du trafic sur Internet, veillant à ce que les données
circulent de manière fluide, sans engorgement ni saturation des ressources. L’importance
de ces algorithmes réside dans leur capacité à prévenir la congestion excessive, qui pour-
rait entraîner des retards dans la transmission des données, des pertes de paquets et une
dégradation de la qualité de service. Grâce à leur intervention proactive, ils veillent à ce
que les performances du réseau restent optimales, garantissant ainsi une expérience util-
isateur fluide et de qualité. De plus, les algorithmes de contrôle de congestion s’adaptent
aux conditions changeantes du réseau, ajustant dynamiquement le débit de transmission
des paquets en fonction de la demande et de la capacité disponible. Cette adaptabilité est
cruciale pour faire face aux fluctuations naturelles du trafic Internet, qu’il s’agisse de pics
de demande ou de variations imprévisibles. En somme, les algorithmes de contrôle de con-
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gestion assurent la viabilité et la continuité d’Internet en régulant avec précision les flux
de données, contribuant ainsi à maintenir un réseau mondial fiable, rapide et accessible à
tous. Ils demeurent un pilier fondamental de l’infrastructure numérique moderne.

Ces dernières années, le domaine du troubleshooting de réseau a attiré une attention
significative de la part des chercheurs en raison de la complexité et de l’importance de
cette tâche. Il désigne le processus visant à identifier, diagnostiquer et résoudre les prob-
lèmes qui surviennent au sein d’un réseau informatique. Il revêt une importance cruciale
pour les opérateurs de réseau, car il permet de maintenir le bon fonctionnement du réseau,
d’assurer une expérience utilisateur optimale et de minimiser les interruptions de service.
La détection des anomalies dans les réseaux nécessite généralement d’effectuer des cap-
tures de paquets du trafic et de les analyser. La capture de paquets dans les réseaux
informatiques est une pratique essentielle pour le dépannage et revêt une importance cap-
itale pour les opérateurs afin de détecter et comprendre les différents types de dégradation
au sein de leurs réseaux. Cette technique consiste à intercepter et enregistrer les paquets
de données qui circulent à travers le réseau, permettant ainsi une analyse détaillée de leur
contenu et de leur comportement. L’importance de la capture de paquets réside dans sa
capacité à fournir une vue granulaire du trafic réseau en temps réel. Elle permet aux
opérateurs de surveiller étroitement les échanges de données entre les appareils. Cette
visibilité approfondie est particulièrement importante pour détecter et caractériser les
différentes formes de dégradation au sein du réseau. De plus, la capture de paquets peut
servir de précieuse source d’informations pour la planification et l’optimisation du réseau.
En analysant les données capturées sur une période plus longue, les opérateurs peuvent
identifier les tendances et les modèles de trafic, ce qui peut les aider à dimensionner cor-
rectement leur infrastructure, à améliorer l’efficacité de la gestion du réseau, et à anticiper
les besoins futurs.

L’observation des schémas d’émission des paquets éclaire le type de dégradation subi
par une connexion. Plus précisément, les paquets sont généralement envoyés selon un
schéma spécifique connu sous le nom de "schéma d’envoi de paquets". Dans le cas du
trafic de transport fiable où le contrôle de congestion est effectué, comme le trafic TCP ou
QUIC, ces schémas sont des décisions prises par l’algorithme de contrôle de congestion,
en fonction de sa propre perception des conditions du réseau. En particulier, les experts
en troubleshooting se basent sur ces schémas d’envoi des paquets lors du transfert de
données (transmission, retransmission, réception des accusés de réception, etc.) pour
identifier la cause de la dégradation. L’algorithme de contrôle de congestion intégré aux
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piles TCP/QUIC vise à atteindre, de manière équitable, le débit le plus élevé tolérable
en toute sécurité par le réseau. Sous son contrôle, le trafic émis diminue dès qu’il détecte
des signes de congestion, c’est-à-dire des paquets perdus ou de latence excessive. Ce
comportement peut être observé avec une capture des paquets du flux, mais également
via la séquence de transitions des états de l’algorithme de contrôle de congestion. Les
transitions d’état sont généralement déclenchées par des événements de dégradation tels
que la détection de signaux de congestion. La série de transitions de la machine à état
fournit des éléments cruciaux pour les experts de troubleshooting.

CUBIC est un algorithme de contrôle de congestion bien connu pour TCP, basé sur
la perte de paquets pour décider de l’évolution temporelle de la fenêtre de congestion.
Un algorithme de contrôle de congestion comme CUBIC réduit le débit d’envoi en cas de
pertes de paquets, ce qui entraîne une baisse de débit pour les utilisateurs. Afin d’offrir
une bonne qualité d’expérience à leurs clients, dans le cas de CUBIC, les opérateurs de
réseau doivent investir massivement pour améliorer leurs infrastructures afin de minimiser
la perte de paquets. En revanche, BBR est un algorithme de contrôle de congestion
introduit par Google en 2016, conçu pour utiliser les ressources réseau disponibles de
manière plus efficace que CUBIC. BBR optimise le débit d’envoi des paquets en fonction
des conditions estimées du réseau comme la bande passante moyenne mesurée et le temps
de propagation aller-retour minimal d’un paquet.

L’arrivée de BBR offre aux opérateurs la possibilité d’adapter leurs infrastructures
réseau. En effet, BBR offre une meilleure utilisation des ressources, des performances
améliorées et une latence réduite, tout en réduisant massivement le besoin en capacité
de buffer. Pour les opérateurs de réseau, il est important de comprendre quels sont les
algorithmes de contrôle de congestion utilisés sur leur réseau. Cela fournit des informa-
tions sur les performances du réseau et le comportement des appareils, aide à identifier
les goulots d’étranglement et à optimiser le réseau et permet de prendre des décisions sur
la conception, la configuration et la gestion du réseau. En effet, différents algorithmes
de contrôle de congestion ont des comportements et des stratégies variables pour gérer la
congestion du réseau, et en identifiant la variante de l’algorithme de contrôle de congestion
utilisée, les opérateurs de réseau peuvent obtenir des informations sur la manière dont
le trafic est contrôlé et optimisé. De plus, lorsque des problèmes réseau apparaissent, la
connaissance de l’algorithme de contrôle de congestion utilisé peut aider à diagnostiquer
et résoudre les problèmes, car les experts de troubleshooting analysent les paramètres des
algorithmes de contrôle de congestion pour identifier les causes potentielles de dégradation
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des performances.

La première contribution de cette thèse réside dans l’extraction de caractéristiques
permettant d’identifier la cause fondamentale d’une anomalie. Nous avons commencé
notre travail en analysant plus de 500 traces de paquets TCP montrant des connexions
médiocres que nous avons identifiées comme des anomalies. Nous avons sélectionné ces
captures en comparant le débit obtenu lors du téléchargement de fichiers depuis notre
serveur en utilisant TCP avec le débit atteint avec UDP. Contrairement à TCP, UDP
ne nécessite pas d’établir une connexion avant de transférer des données. UDP envoie
des paquets de données sans vérifier si le destinataire les a reçus. Cela signifie qu’UDP
offre une communication potentiellement plus rapide, mais au détriment de la fiabilité et
de l’impact sur le reste du trafic. Les téléchargements TCP réalisés étaient principale-
ment effectués en utilisant les algorithmes de contrôle de congestion BBR et CUBIC, qui
représentent ensemble la majorité du traffic TCP aujourdhui.

Pour capturer ces traces de paquets, des outils similaires à Wireshark ou Tcpdump
ont été utilisé. Ces outils capturent les en-têtes des paquets de la couche de transport
ainsi que leurs horodatages d’arrivée. Ainsi, nous obtenons une série temporelle à partir
d’une capture bidirectionnelle de paquets, qui représente la séquence chronologique des
paquets réseau capturés et enregistrés, accompagnée du temps à laquelle chaque paquet a
été capturé. Afin d’obtenir un ensemble de données complet, nos sondes ont été déployées
de manière stratégique dans une douzaine de filiales d’Orange. En collectant des traces
de paquets provenant de différents pays, notre objectif était d’incorporer une diversité de
délai de propagation, et de prendre en compte les différences régionales dans les conditions
du réseau.

Après la collecte des captures, nous avons utilisé le comportement des algorithmes
de contrôle de congestion et les changements entre leurs états pour analyser les captures
de paquets. Étudier le comportement des algorithmes de contrôle de congestion, ainsi
que leurs états et les transitions entre ces états, revêt une importance cruciale dans la
détection des causes fondamentales d’une anomalie dans une capture de paquets. En effet,
ces informations fournissent des indices précieux sur la manière dont le réseau gère le trafic
et sur la façon dont les données sont transmises entre les appareils. Les variations dans les
états des algorithmes de contrôle de congestion peuvent révéler des schémas spécifiques
liés à la dégradation du réseau. Par exemple, une transition fréquente vers un état de
congestion peut indiquer un problème persistant de surcharge. Comprendre ces variations
permet d’identifier la nature exacte des problèmes rencontrés.
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En analysant manuellement ces captures de paquets, nous avons classé quatre causes
fréquemment observées de dégradation du réseau : les problèmes de transmission, les prob-
lèmes de congestion, les problèmes de gigue et les limitations d’application. L’objectif de
ce travail n’était pas d’identifier toutes les causes de dégradation, mais de reconnaître
celles qui se répétaient le plus fréquemment dans notre réseau. Les problèmes de con-
gestion étaient parmi les plus courants, représentant plus de 50% des cas traités. Les
problèmes de transmission et les problèmes de gigue suivaient de près, couvrant ensemble
environ 45% des cas. Les problèmes liés aux limitations d’application n’ont été remarqués
que dans certains cas spécifiques (5% des cas) où l’algorithme de contrôle de congestion
utilisé était trop agressif, ou lorsque la machine réceptrice était ancienne et/ou avec une
capacité de buffer limitée.

Il convient de souligner que ce processus d’analyse était particulièrement complexe,
demandant un investissement de temps considérable pour examiner attentivement ces
captures. Par exemple, l’analyse de chaque capture en elle-même nécessite entre 10 et 30
minutes, selon le contexte, afin de déterminer la cause fondamentale de la dégradation. En
outre, bien que la sélection des traces de paquets défectueuses soit une tâche relativement
plus simple en comparaison avec l’analyse, il est important de noter que toutes les captures
utilisées ont été choisies et téléchargées manuellement. Ci-dessous, nous présenterons
les caractéristiques que nous avons identifiées comme représentatives de chaque type de
dégradation:

— Les problèmes de transmission se manifestent généralement par des pertes de pa-
quets individuelles et isolées, où des paquets spécifiques sont éliminés sans qu’il
n’y ait de signe de congestion associé. Ces pertes sont principalement observées
sur le réseau d’accès radio (RAN) et peuvent être attribuées à divers facteurs tels
que la présence de radars, les conditions météorologiques défavorables ou encore
des interférences dans l’environnement du RAN. Malgré leur caractère isolé, ces
pertes de transmission peuvent avoir des conséquences néfastes, notamment si elles
se répètent fréquemment. Si ces pertes isolées surviennent au début d’une connex-
ion, elles peuvent provoquer une sortie précoce de l’état Slow-Start de l’algorithme
de contrôle de congestion. Cette situation découle de l’interprétation erronée de
ces pertes par l’algorithme de contrôle de congestion. En effet, dans ce scénario,
l’algorithme considère ces pertes comme un signe de congestion, ce qui entraîne une
sous-estimation de la capacité du goulot d’étranglement du réseau. En conséquence,
la bande passante disponible n’est pas utilisée à son plein potentiel, ce qui affecte
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les performances globales de la connexion.
— La congestion réseau peut survenir lorsque le débit du trafic à écouler dépasse la

capacité du réseau. Ce phénomène peut affecter à la fois les réseaux sans fil et
filaires. Contrairement aux pertes de transmission, les problèmes de congestion
sont associés à des rafales de pertes de paquets. La présence d’une rafale de pertes
de paquets, accompagnée d’une augmentation significative du RTT (Round-Trip
Time), constitue une preuve claire de la congestion réseau. La rafale de pertes
correspond aux paquets surnuméraires arrivés immédiatement après un remplissage
du buffer. L’augmentation subséquente du RTT est directement liée au temps de
traversée de ce buffer.

— La gigue est un problème réseau qui affecte généralement les utilisateurs sans fil.
La gigue peut considérablement altérer les performances en amenant l’algorithme
de contrôle de congestion à une sortie précoce de l’état Slow-Start, interprétant à
tort la gigue comme un signe de congestion. Pour déterminer si la gigue est la cause
sous-jacente des performances médiocres, il est nécessaire d’identifier d’abord le
moment de sortie de l’état Slow-Start. Cela est réalisé en analysant le comportement
du l’algorithme de contrôle de congestion et en identifiant le point où il quitte la
phase Slow-Start. Au cours de cette analyse, nous recherchons spécifiquement des
indications de perte de paquets ou d’augmentation du RTT. Si aucune perte de
paquets n’est détectée mais qu’une soudaine variance élevée du RTT est observée,
cela suggère que l’algorithme de contrôle de congestion est sorti de l’état Slow-Start
en raison de la gigue.

— En plus des problèmes de réseau, la performance d’un transfert TCP peut également
être affectée par la capacité des extrémités à envoyer ou recevoir des données à un
débit suffisant. Dans ce contexte, l’attention se porte sur le cas d’un récepteur lent,
où l’extrémité réceptrice, généralement un appareil client, devient le facteur limitant
du transfert de données. Alors que les serveurs sont généralement conçus pour gérer
le trafic normal sans être submergés, les appareils clients, souvent alimentés par
batterie et ayant des ressources limitées, peuvent devenir le goulot d’étranglement
dans la communication. C’est pourquoi nous examinons spécifiquement le scénario
où l’appareil client agit en tant que récepteur lent. La situation de "récepteur lent"
se caractérise par la taille de la fenêtre de réception de l’utilisateur imposant un
plafond à la fenêtre de congestion.

Lors de notre analyse des captures de paquets, nous avons observé l’importance cru-
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ciale du premier état de l’algorithme de contrôle de la congestion. Cette phase, connue
sous le nom de Slow-Start, est vitale dans le processus de transfert de données. En effet,
dans l’état Slow-Start, la source estime la capacité du chemin en augmentant de manière
exponentielle son débit d’émission jusqu’à la réception d’un signal de congestion, puis
elle quitte l’état Slow-Start pour entrer dans une nouvelle phase avec une croissance de
taux beaucoup plus faible. Si l’état Slow-Start surestime le goulot d’étranglement, la
source dépassera la capacité du goulot d’étranglement et subira ainsi de multiples pertes
de paquets, dont la récupération est laborieuse. Au contraire, s’il sous-estime la capacité
du goulot d’étranglement et déclenche une sortie précoce de l’état Slow-Start, la source
n’utilisera pas pleinement la bande passante disponible et pourra connaître un faible débit.
C’est généralement le cas en présence de pertes de transmission ou d’une gigue excessive
liée à l’accès radio mobile, même en sous-charge. Dans les deux cas, la limitation "artifi-
cielle" du débit entraînera une mauvaise expérience client, sans aucun bénéfice en matière
de congestion, puisque celle-ci est inexistante.

La durée de l’état Slow-Start est donc un indicateur clé pour le diagnostic des défauts.
Cependant, la détection précise de cette phase était auparavant un processus manuel et
chronophage, effectué par des experts en dépannage. Par conséquent, la deuxième contri-
bution significative de cette thèse réside dans le développement d’une méthode automa-
tisée pour détecter l’instant de sortie de l’état Slow-Start. L’importance capitale de cette
méthode est qu’elle permet de gagner un temps précieux dans l’analyse des problèmes de
réseau. En automatisant la détection de l’état Slow-Start, nous avons pu non seulement
accélérer le processus d’analyse, mais aussi garantir une précision et une fiabilité accrues
dans l’identification de cette phase cruciale. Cette avancée contribue ainsi significative-
ment à l’amélioration des méthodes de dépannage, mettant en lumière l’importance de
cet état et son impact direct sur la performance du réseau.

En effet, cette identification a été rendue possible grâce à une nouvelle représentation
graphique: les octets en vol par rapport au numéro de séquence. Pour détecter l’état
Slow-Start, nous avons découvert une relation entre la valeur des octets en vol et la valeur
du numéro de séquence qui est uniquement valide pendant cette phase. Nous avons pu
calculer la pente, dans cette représentation, de la séparatrice entre la région Slow-Start et
le reste, ce qui nous a permis d’identifier la fin de cet état en ne considérant que le dernier
paquet au-dessus de cette séparatrice. Pour évaluer notre méthode, nous l’avons testée
sur les algorithmes de contrôle de congestion CUBIC et BBR. Pour détecter la sortie de
l’état Slow-Start dans ces algorithmes, nous avons réalisé une série d’expériences sur un
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serveur auquel accèdent plusieurs sondes actives via l’Internet public. Pour générer les
logs des algorithmes de contrôle de congestion sur le serveur, nous avons instrumenté les
piles Cubic et BBR du noyau Linux, puis effectué des mesures actives en réalisant à partir
de nos sondes de nombreux téléchargements avec ces deux algorithmes. Ensuite, nous
avons extrait les instants réels de sortie de l’état Slow-Start à partir de ces logs, lesquels
ont été utilisés comme oracle pour notre évaluation. Pour cette évaluation, nous avons
utilisé 219 captures de paquets de CUBIC et 241 de BBR. Pour évaluer la gravité de
l’écart entre la prédiction de notre méthode et le temps obtenu à partir des logs, nous
avons rapporté la différence au RTT initial de chaque capture. Avec CUBIC, nous avons
remarqué que cette erreur est inférieure à 1 RTT dans plus de 95% des cas. Il s’agit en
effet de la meilleure précision que l’on puisse espérer, car la granularité temporelle typique
des décisions de l’algorithme de contrôle de congestion est précisément 1 RTT. Avec BBR,
nous avons observé que 90% des cas se situent au-dessous de 2 RTT.

La troisième contribution de cette thèse réside dans l’identification de l’algorithme
de contrôle de congestion BBR. En effet, l’objectif principal de notre approche était de
détecter si un contrôle de l’envoi des paquets (’pacing’) est utilisé dans une connexion
TCP. Dans un TCP avec pacing et contrairement à un TCP ordinaire, au lieu d’envoyer
de nouveaux paquets immédiatement après la réception d’un accusé de réception, les
paquets sont espacés uniformément dans le réseau sur tout le temps de RTT. Dans ce cas,
les données ne sont pas envoyées en rafales, ce qui entraîne un trafic TCP moins irrégulier.
Or, il se trouve que la fraction "avec pacing" du trafic TCP mondial est directement
déterminée par les choix d’algorithmes de contrôle de congestion dans les serveurs: BBR,
algorithme avancé s’appuyant sur des mesures lissées par RTT, utilise le pacing; CUBIC,
algorithme plus ancien et plus simple à décisions "instantanées", ne l’utilise pas. Des
études récentes ont montré l’impact du pacing sur l’amélioration des performances TCP,
en particulier dans le cas des routeurs qui possèdent des buffers de petite capacité . Par
conséquent, la tendance naturelle est à l’augmentation de la proportion de TCP "avec
pacing".

Pour les opérateurs de réseau, comprendre si le TCP utilisé sur leur réseau utilise le
pacing ou non est important. Par exemple, détecter l’utilisation du pacing au sein des
réseaux des opérateurs les aide à mesurer l’irrégularité du trafic TCP résultant. Cette
irrégularité pourrait avoir un impact sur la dimension des buffers réseau. Les opérateurs
doivent alors ajuster les tailles de buffer et les stratégies de gestion réseau en conséquence.
De plus, un trafic irrégulier peut entraîner des pics soudains d’utilisation du réseau, provo-
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quant potentiellement de la congestion. En identifiant un trafic irrégulier, les opérateurs
peuvent mettre en place des mesures pour lisser le trafic, prévenant ainsi les problèmes
liés à la congestion.

Pour différencier le trafic "sans pacing" (CUBIC) du trafic "avec pacing" (BBR), nous
avons utilisé la durée de l’inter-paquet, qui représente le temps écoulé entre l’arrivée de
deux paquets consécutifs. Nous avons remarqué que les valeurs de l’inter-paquet sont
les plus différentes pendant l’état Slow-Start. En effet, La phase Slow Start de BBR
et CUBIC présente une augmentation exponentielle similaire du nombre des paquets,
mais elles diffèrent dans le mécanisme d’émission détaillé. Contrairement à CUBIC, BBR
n’attend pas les accusés de réception des paquets avant d’envoyer de nouveaux paquets, il
se base plutôt sur des estimations des ressources disponibles. Cela se traduit par un motif
d’émission "lisse", sans les pauses exhibées par CUBIC. Pour avoir une idée des propriétés
statistiques de la distribution de l’inter-paquet, nous avons travaillé avec les fonctions
de densité de probabilité pour des trafics BBR par rapport à des trafics CUBIC. Nous
avons remarqué que la distribution de CUBIC présente une caractéristique différente.
Elle est généralement un mélange de deux composantes, des inter-paquets courts pour
les paquets à l’intérieur des rafales et quelques inter-paquets longs correspondant à la
période de silence entre deux rafales, ce qui signifie qu’il est plus probable d’observer des
inter-paquets plus longs. Contrairement à la distribution des inter-paquets de CUBIC,
une distribution typique des inter-paquets de BBR présente une caractéristique distincte
où les pluparts des inter-paquets ont principalement de petites valeurs. L’occurrence de
grands inter-paquets est alors relativement rare dans BBR. La tâche de discrimination
entre les distributions BBR et CUBIC peut donc consister à reconnaître les distributions
monomodales dans le cas de BBR par rapport aux distributions bimodales dans le cas de
CUBIC.

Dans le cas de CUBIC, nous avons remarqué que la composante à inter-paquet longs
était écrasée par la composante à inter-paquet courts. Cela est dû au nombre d’événements
significativement plus élevé à l’intérieur d’une rafale par rapport au nombre relativement
faible de pauses entre les rafales. Cependant, pour discriminer entre un trafic CUBIC et
un trafic BBR, il est nécessaire de résoudre ce déséquilibre en donnant plus de poids pour
les inter-paquets longs. Nous avons alors pondéré les valeurs de l’inter-paquet par leur
propre valeur, ce qui nous a permis d’obtenir une nouvelle fonction de densité rééquilibrée.
Ensuite, pour mieux saisir les caractéristiques de la distribution, nous sommes passés
des fonctions de densité de probabilité aux fonctions de répartition cumulative. Nous
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avons appliqué notre approche sur un ensemble de données dédié à l’entraînement. Notre
objectif était de détecter le point qui sépare le mieux les courbes de fonctions de répartition
cumulative du trafic CUBIC et BBR. Nous avons choisi ce point en sélectionnant celui qui
minimise le taux d’erreur total (non-détections + identifications incorrectes). Dans cette
tâche, nous avons utilisé 221 captures de paquets CUBIC et BBR pour l’entraînement,
et le taux d’erreur total minimum atteint sur l’ensemble de données d’entraînement est
de 2,6 %. Après avoir déterminé le point de décision optimal atteignant ce taux sur
l’ensemble de données d’entraînement, nous l’avons testé avec un nouvel ensemble de
données composé de 583 captures de paquets BBR et CUBIC dédié à l’évaluation. Sur
ce jeu de données d’avaluation, notre modèle a été capable d’identifier les variantes TCP
avec un taux d’erreur global de seulement 4,1 %.
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Chapter 1

INTRODUCTION

1.1 Motivation

The Internet is an essential part of our lives. The ever-growing demand for high-
speed data transmission and real-time communication creates new challenges for network
operators. Operators face many critical problems in modern computer networks, like
congestion and transmission problems. The problems can cause network delays, packet
loss, and degraded Quality of Service (QoS), leading to a bad Quality of Experience
(QoE) for operators’ clients. In order to improve users’ experience, Congestion Control
Algorithms (CCAs) have been developed and integrated into many transport protocols,
such as the Transmission Control Protocol (TCP) and QUIC. CCAs aim to regulate
the transmission rate of packets over the network by monitoring network conditions to
prevent excessive data transmission that can cause further congestion and thus ensure
optimal network performance.

In recent years, the field of network troubleshooting has attracted significant attention
from researchers due to the complexity and importance of the task. Network troubleshoot-
ing is the process of detecting, identifying, and resolving network issues. Detecting anoma-
lies in networks usually requires packet level traffic capturing and analyzing. Indeed, the
observation of emission patterns sheds some light on the kind of degradation experienced
by a connection. More specifically, packets are typically sent in a specific pattern known
as the "packet send pattern". In the case of reliable transport traffic where congestion con-
trol is performed, such as TCP and QUIC traffic, these patterns are the fruit of decisions
made by the CCA, according to its own perception of network conditions. In particular,
troubleshooting experts rely on packet send patterns during data transfer (transmission,
retransmission, received acknowledgments, etc.) to identify the root cause of degrada-
tion. For example, in Radio Access Networks (RAN) an individual and isolated packet
retransmission indicating a packet loss is typically identified as a transmission problem.

CCAs regulate the flow of data within a network and optimize data transmission for
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efficiency and effectiveness. They do this by continuously estimating available network
resources (available bandwidth, latency, packet loss, etc.) and adjusting the data trans-
mission rate accordingly. CUBIC is a loss-based well-known CCA for TCP, that uses
a cubic function to model the temporal evolution of the congestion window (cwnd) size
after a congestion event. A CCA like CUBIC reduces the sending rate in case of high
levels of packet losses, leading to a drop in throughput for users. To provide good QoE to
their clients using CUBIC traffic, network operators need to invest heavily in order to pro-
vide sufficient bandwidth and buffering space, so as to minimize packet loss. Bottleneck
Bandwidth and Round-trip propagation time (BBR) is a CCA introduced by Google in
2016, designed to use available network resources more efficiently than CUBIC. BBR opti-
mizes the sending rate of the packets based on estimated network conditions, with a focus
on the Bandwidth-Delay Product (BDP), calculated as the measured average bandwidth
multiplied by the minimum Round Trip Time (RTT). The arrival of BBR, with its novel
approach both to congestion detection and sending rate control, presents an opportunity
for network operators to reduce investment in network infrastructure. Indeed BBR of-
fers better resource utilization, improved performance, and lower latency, while massively
reducing the need for buffering space. For network operators, understanding the CCAs
in use on their network is crucial. It provides information on network performance and
device behavior, helps identify bottlenecks and optimize the network, provides insight into
network usage patterns, and enables informed decisions on network design, configuration,
and management. Indeed, as different CCAs have varying behaviors and strategies for
managing network congestion, by identifying the CCA variant in use, network operators
can gain insights into how traffic is being controlled and optimized. Additionally, when
network issues appear, knowing the CCA being employed can assist in troubleshooting
and diagnosing problems, as troubleshooting experts analyze the CCAs’ parameters to
identify potential causes of performance degradation.

To enhance clients’ QoE and improve their QoS, operators use end-to-end diagnosing
techniques to troubleshoot networks by analyzing the performance of a communication
path between two endpoints. This aims to pinpoint the root cause of problems affecting
the data transfer for the end user. For decades, most operators’ end-to-end diagnosis
methods have been based on the observation of transport protocol packet headers collected
from exhaustive packet-level traces captured on network midpoints and endpoints using
active and passive probes. This approach remains the cornerstone of troubleshooting
for many operators. However, it is jeopardized by the explosive growth of QUIC where
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the encryption not only covers packet payload but also packet headers, making them
unreadable for a midpoint observer. It is true that active probes, by generating their own
traffic, are not impeded by encryption and can detect QoS degradation. However, contrary
to passive probes, their representativeness can be questioned for two reasons: first, test
traffic is not real client traffic. Second, active probes typically see only a subset of the
network. Operators can counter these problems through massive probe deployment, but
as current troubleshooting is mainly based on human diagnosis, automation is certainly
a key element for dealing with the data deluge collected via such a dense fleet of active
probes. There is therefore an urgent need to find new automated approaches and tools to
accelerate the troubleshooting process.

The main objective of this thesis is to provide automated techniques that permit
network operators to easily detect the degradation root cause and to identify the dominant
CCA on their networks. The behavior of a CCA is represented by a finite state machine
(FSM) that changes depending on the type of CCA in use. We mainly focus in our work
on the state transition of the CCA. By studying these states, we can reveal important
information about the network conditions. In addition, due to the particularity of some
states in each CCA variant, we can identify the type of CCA in use. In a nutshell, we
interpreted the importance of investing in the type of used CCA to offer a better quality
of experience to clients by adapting network infrastructures to better suit the dominant
CCA.

By analyzing multiple packet traces and extracting important packet patterns, we were
able to classify four of the most typical and repetitive degradation root causes relying on
the CCAs’ behavior and state transition. Thanks to this exhaustive and deep analysis, we
manually classified each of these degradations depending on certain characteristics that
we extracted and shared with the research community with a short paper.

By studying the finite state machine of the CCAs, we were interested in automatically
detecting the Slow-Start (SS) state of a CCA due to its importance for troubleshooting
experts in detecting the degradation root cause and identifying the CCA in use. While
state transitions can provide valuable insights into potential root causes, the SS exit time
holds particular significance in understanding the behavior of the network. In the SS
state, the source aims to estimate the capacity of the path by progressively increasing
its transmission rate through an exponential growth mechanism known as binary search.
This process continues until a congestion signal is detected, indicating that the network
is approaching its capacity limit. At this point, the source exits the SS state and enters
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a new phase characterized by a significantly slower rate of growth. Based on this deep
analysis of the SS state, we were able to develop a tool to automatically detect the exit
from the SS state. We also shared our approach and put an online test link to try our
method with the research community with a full paper.

After detecting the SS state, we were able to differentiate between a paced TCP traffic
and a non-paced TCP traffic. In TCP, pacing involves evenly spacing data transmission
over an RTT to avoid burstiness. As use cases, we worked with two CCAs: BBR and
CUBIC, BBR is a CCA that paces, and CUBIC is a CCA that does not. Currently,
CUBIC and BBR are estimated to represent together more than 73% of TCP traffic.
Due to the different methods of estimating the cwnd and detecting congestion, significant
differences in throughput can be observed between CUBIC and BBR on the same network.
These differences are strongly correlated with certain network conditions that give one of
them an advantage over the other. As network operators are interested in monitoring the
growth and percentage of paced TCP traffic to optimize their network infrastructure, we
set out to detect BBR traffic and distinguish it from CUBIC CCA. We also shared this
work with the research community with a full paper.

1.2 Contributions of the thesis

Apart from the introduction and the conclusion, this thesis is composed of two main
parts, the first part contains three chapters, and the second part contains two chapters.

Part I focuses on different aspects of network troubleshooting. It provides a compre-
hensive overview of different aspects of network troubleshooting, including the methods
and processes involved, the importance of congestion control algorithms, and the use of
packet traces analysis for identifying root causes of network anomalies.

— Chapter 2 emphasizes the importance of network monitoring and network perfor-
mance measurements for troubleshooting. It provides an overview of different meth-
ods and tools that can be used for this purpose.

— Chapter 3 provides an overview of UDP, TCP, and QUIC protocols and their differ-
ences. It then discusses the importance of CCAs for improving network performance
and the role of CCAs in troubleshooting network issues. Furthermore, the chapter
explores the different types of data that can be extracted from network traffic.

— Chapter 4 goes through the use of packet traces analysis as a tool for identifying the
root cause of network anomalies. Packet traces are a detailed record of the network
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traffic, and analyzing these traces can help identify specific patterns in packets or
flows that lead to detecting the root cause of issues in the network. The chap-
ter explores various techniques and tools for analyzing packet traces to isolate and
resolve network issues. The contributions of this chapter have been published in [46]:

Ziad Tlaiss. Anomaly root cause diagnosis from active and pas-
sive measurement analysis, 33rd International Teletraffic Congress
(ITC-33), PhD workshop, 2021

Part II focuses on our proposed methods to automate and accelerate the network
troubleshooting process. It provides insights into different approaches for monitoring and
detecting network performance issues. We mainly focus on analyzing time series and
proposing new packet trace visualization techniques and identifying congestion control
algorithms.

— Chapter 5 discusses the importance of automating the detection of the SS state
for network troubleshooting together with the challenges associated. As the SS is
the first state of a CCA in which the algorithm estimates the bandwidth capac-
ity, troubleshooting experts are interested in this particular state to investigate the
available resources in order to examine if they are optimally used or not. This chap-
ter proposes a new approach to detect the SS state accurately and automatically.
To automatically recognize the SS phase, we utilize a new representation based
on finding a relationship between the bytes-in-flights and the sequence number of a
packet that is only valid during the SS state. The main benefit of this representation
lies in its predictable shape and slope during the SS state phase. The chapter also
evaluates the proposed method using traffic generated by the two most prominent
CCAs nowadays, CUBIC and BBR. Moreover, the chapter discusses the benefits
of the proposed method for network troubleshooting and performance monitoring.
The contributions of this chapter have been published in [49] and [48]:
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Ziad Tlaiss, Isabelle Hamchaoui, Isabel Amigo, Alexandre Fer-
rieux, Sandrine Vaton. Troubleshooting Enhancement with
Automated Slow-Start Detection, 26th Conference on Innova-
tion in Clouds, Internet and Networks and Workshops (ICIN), 2023

Ziad Tlaiss, Alexandre Ferrieux, Isabel Amigo, Isabelle Ham-
chaoui, Sandrine Vaton. Automated Slow-Start Detection for
Anomaly Root Cause analysis and BBR Identification, Annals of
Telecommunications, 2023

— Chapter 6 explains how the distribution of the inter-packet arrival times during
the SS state can be used to distinguish between CUBIC and BBR algorithms. We
present an approach that characterizes the distribution of packet inter-arrival times
and use it for differentiating between CUBIC and BBR TCP traffic. We also eval-
uate the proposed method with real traffic. The contributions of this chapter have
been published in [47]:

Ziad Tlaiss, Alexandre Ferrieux, Isabel Amigo, Isabelle Hamchaoui,
Sandrine Vaton. Automated Identification of BBR Traffic based on
Packet Inter-Arrival Times Analysis, 35th International Teletraffic
Congress ITC (ITC-35), 2023

Finally, we summarise the thesis and offer perspectives for future research in Chapter
7.
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Chapter 2

TROUBLESHOOTING: METHODS AND

PROCESSES

2.1 Introduction

The computer network is a critical component of many organizations, providing a
platform for communication, data sharing, and collaboration [40]. Maintaining a com-
puter network is essential for most organizations. Hence, providing good QoE remains
one of the most crucial competitive advantages for an Internet Service Provider (ISP) as
it directly impacts its brand image. However, room for improvement remains consistent
for network operators as many networks are still impeded by crippling issues bitterly re-
ported by customers and commented on by media which affect operators’ reputations.
Improving customers’ experience is a necessary yet delicate task. It relies on continuous
and pervasive monitoring of the network and as soon as a degradation is detected, a quick
identification and fixing of the source of the problem is demanded [16]. In their quest
towards healthy networks, operators usually run continuous and massive observations, a
process named network monitoring [42]. Once a degradation is detected, they launch an
ad-hoc troubleshooting process so as to identify and locate the fault [50]. These two pro-
cesses (monitoring versus troubleshooting), however intricate and somehow overlapping,
are different in coverage (whole network versus affected entities), timing (a priori versus a
posteriori), and intent. While both processes aim to improve network performance, their
approach and goals differ.

In this chapter, we explore the crucial concepts of network monitoring and trou-
bleshooting, highlighting their differences and examining the various monitoring and
troubleshooting methods available. Furthermore, we focus on network performance mea-
surement and packet trace analysis, which play a critical role in network monitoring and
troubleshooting. We explore the use of active and passive measurement techniques and
how they can be utilized to gather network data. The chapter examines the advantages
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and disadvantages of each method and highlights how they can be applied in troubleshoot-
ing.

2.2 Monitoring vs Troubleshooting

2.2.1 Network monitoring

Network monitoring involves the continuous collection of network data, such as traffic
volume and bandwidth utilization in order to gain insight into the overall performance of
the network. Monitoring tools provide network operators with real-time data and metrics
that can detect anomalies to determine if a network is running optimally and to avoid
problems before their appearance. There are several different types of network monitor-
ing tools available, each with its own set of features and capabilities [21]. Some tools are
designed to monitor network traffic and extract important metrics (e.g. bottlenecks, con-
gestion, delays, etc.), while others focus on monitoring network devices such as switches,
routers, and servers.

2.2.2 Network troubleshooting

On the other hand, network troubleshooting is the process of identifying, diagnos-
ing, and resolving problems on the network after their appearance. The troubleshooting
process is initiated in response to an anomaly or degradation that has been detected by
monitoring tools or reported by users. It involves the use of diagnostic tools and tech-
niques to identify the root cause of the problem (e.g. a misconfigured device, a security
breach, etc.). The goal of network troubleshooting is to restore network functionality
as quickly as possible and minimize the impact on users by detecting and resolving the
source of the problem. Effective network troubleshooting requires an understanding of
network protocols, devices, and configurations, as well as experience with troubleshoot-
ing tools and techniques. The troubleshooting process can be time-consuming, requiring
significant expertise and training to diagnose and resolve issues.

2.3 Network monitoring methods

Network monitoring relies on a system that looks for slow or failing components, which
can affect the speed of traffic within the network. Upon detection of these problematic
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elements, the system promptly dispatches notifications to network administrators, who
are responsible for investigating the root cause of the decreased traffic speed. Network
administrators resolve these notifications through comprehensive analysis to identify the
underlying issues and devise appropriate solutions.

2.3.1 Counters polling

Counter polling is a technique used to collect data from network devices. It relies
on interrogating the network equipment in the lower layers (layers 2 and 3) such as
routers and switches to measure their performance using Simple Network Management
Protocol (SNMP) which is a protocol used to manage and monitor network devices [19].
Counter polling technique relies on SNMP counters on a network device to obtain essential
information such as interface traffic and the percentage of lost packets through a router.
The polling is typically done at regular intervals, to provide a continuous stream of data
that can be used to identify trends and anomalies over time. Once the data has been
collected it can be analyzed to identify issues or potential problem areas on the network.

SNMP proves beneficial due to its widespread support across devices within an IP
network. The data accessible through SNMP on a device is organized within an abstract
data structure known as a Management Information Base (MIB). A Network Measurement
Station (NMS) periodically initiates requests or polls for the relevant SNMP MIB data
from routers or other devices. Most routers and switches have standard MIBs that include
a cyclic counter, providing information about the quantity of transmitted and received
bytes on each interface. Therefore, by utilizing an SNMP poller that consistently captures
these counters, we can obtain fundamental traffic statistics for the entire network with
minimal additional infrastructure requirements.

SNMP counters do not provide the number of packets per interval; instead, they only
offer a cumulative count. To compute packets per interval accurately, precise polling times
need to be established. SNMP data is subject to several known limitations. Firstly, data
can be lost during transmission as SNMP employs an unreliable transport protocol. Ad-
ditionally, if the NMS experiences a crash or reboot, data may not be captured effectively.
Furthermore, inaccuracies can arise due to suboptimal implementations of SNMP agents.
Counter wrapping can occur when a counter reaches its maximum representable value,
causing it to reset to zero and resume counting from there. This behavior is defined by
SNMP standards. Counter resets can also occur when a router undergoes a reboot. Ad-
ditionally, controlling the timing of SNMP polls can be challenging, leading to potential
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discrepancies in data accuracy.

Although counter polling is highly efficient in detecting major network device problems
like slow response times, packet drops, and connectivity issues, however, it is not efficient
in QoE improvement as it can’t track specific clients to detect their issues.

2.3.2 Traffic sampling

Traffic sampling is a technique used to gather and analyze data from a subset of
network traffic [14]. It allows sampling traffic flows based on particular input interfaces
and various fields in the packet header. Analyzing the totality of network traffic is often
resource-intensive, thus, capturing a smaller sample of the network traffic is then con-
sidered. The sampled traffic can then be analyzed for patterns or anomalies that may
indicate issues or problems on the network. Sampling can be done using a variety of tech-
niques. For example, network operators can analyze traffic over a specific time interval
or select traffic based on a specific protocol or traffic source. Once a traffic sample is
collected, it can be analyzed to identify issues.

NetFlow is a network protocol system developed by Cisco, it is used to sample network
traffic to provide insight into network performance [15]. It monitors, collects, and records
all traffic as it passes into or out of a network interface. When using NetFlow, a network
administrator can get IP flow information. In other words, when a packet gets to a router
or a switch, Netflow will collect information, such as IP source, IP destination, source
port, destination port, Bytes, etc... This information is then sent to a Netflow collector to
be analyzed and get important insight on your network, e.g. how much traffic is flowing
through the network, the top protocols being used, where the traffic is going, etc... In
order to not be overwhelmed by the amount of the collected data, network devices often
employ packet sampling techniques for generating NetFlow statistics. However, the use of
low sampling rates, one in every one thousand packets, significantly compromises network
visibility. This limitation can hinder the identification of performance issues by network
administrators. Moreover, by the very nature of its sampling process, Netflow does not
deal with loss nor latency, which are the root of many troubles and so it is more oriented
to check and analyze the network interface and it is not efficient to detect specific network
problems.
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2.4 Network troubleshooting method for an improved
QoE

After detecting a degradation in the network performance, operators launch an ad-hoc
troubleshooting process so as to identify and locate the fault. To achieve this, end-to-end
network performance measurements are still the operators’ best choice to identify and
localize the root cause of the degradation. In this section, we focus on the network perfor-
mance measurements and the difference between active and passive network performance
measurements.

2.4.1 End-to-End network performance measurements

End-to-end network performance measurements refer to the evaluation and analysis of
network performance from the source to the destination of data transmission. It involves
measuring various aspects of network performance, such as latency, throughput, packet
loss, jitter, and bandwidth utilization [37]. These metrics have a direct impact on the
QoE spotted by clients. By collecting and analyzing these metrics, network administra-
tors can pinpoint the root cause of problems and take the necessary steps to resolve them.
Network performance measurements have several advantages over other troubleshooting
techniques when it comes to ensuring good QoE for users as they provide detailed infor-
mation about the performance of the network for end users, hence operators can track
network performance changes over time for a specific user which helps to accurately detect
the root cause of degradation.

End-to-end network performance measurements involve the transmission of test pack-
ets or traffic between specific source and destination points. Typically, there are two
main types of network performance measurements: active and passive measurements [36],
each with its unique characteristics and benefits. In the next section, we will introduce
the concept of active and passive network measurements and discuss the differences and
advantages of each approach.
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2.4.2 Active and passive network performance measurements

Active measurements

Active measurements are a type of network measurement that involves injecting test
traffic using probes over a network and watching its behavior as it travels through the
network to extract and evaluate important network performance measures. Active mea-
surements can be performed using a variety of tools and techniques. For example, tracer-
oute and ping are among the most widely recognized active monitoring tools commonly
employed in IP networks to conduct connectivity tests, trace the path of network traffic,
and isolate network faults [56].

In our work, we focus on metrics of network performance that we derive from packet
traces. Packet traces, also known as packet captures, refer to the collection of data that
is captured when network packets are intercepted and recorded as they flow through
a network. Packet traces contain information about individual packets, including their
headers, payload, size, source and destination IP addresses, and timestamps. Packet
traces are often collected using specialized software or hardware tools such as Wireshark
or tcpdump and can be saved in various formats for later analysis [12], [9]. Although
packet captures are not normally known as active measurement techniques, however,
they can also be used for this purpose. Indeed, by using probes to generate traffic, the
generated traffic could be captured at the probe side (client side), or in cases where probes
are reaching a server that belongs to the operator the capture point could be at the other
end-point: the server side.

Figure 2.1 illustrates an example of how an active packet trace can be captured in
a network. In the figure, an end-to-end type measurement is being executed between
a probe and a server, both belonging to the operator. Here, we execute a download
of a file from a server using a probe/robot that plays the role of a customer. We then
capture this traffic from the user or server side and obtain a packet trace. We then extract
important measures from the packet trace to investigate the performance of the network.
For instance, from a packet trace, we can calculate the latency and throughput of the
connection by extracting information from the packet headers like the sequence number
of a packet. The primary disadvantage of active measurements is that it is invasive, as it
introduces additional traffic to the network and consumes network resources. Additionally,
with active measurement, we have a representativity issue as test traffic is not real clients’
traffic.
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Figure 2.1 – An example of active measurement

Passive measurements

Passive measurements use passive probes to gather packet trace data from real clients/users.
These probes can be special purpose devices that capture network traffic, or they can be
built into other devices such as routers, switches, or end node hosts. To capture the
biggest possible number of users usually passive probes are deployed in the center of the
network. The gathered data give a global view or a partial view of a network’s perfor-
mance depending on where the probes are deployed. Since with passive troubleshooting
we capture and analyze packet traces from actual users’ data, network administrators are
informed of issues that directly impact end-users.

Figure 2.2 shows an example of how passive measurements can be performed in a
network. In the example, several routers and switches are collecting network traffic to a
database. Passive measurements pose a significant challenge due to the vast amount of
data they collect. Moreover, the equipment required for capturing and analyzing these
data can be costly, as it needs to handle and store all the gathered information. High-
performance hardware is necessary, especially for main memory speed. Thus, to ensure
adequate measurement accuracy, passive measurements must minimize both the number
of measuring devices and the amount of data collected [10]. This can be achieved through
several techniques, such as discarding irrelevant data from network packets. For example,
by saving only the packet headers and removing the payload, the amount of stored data
can be reduced significantly.

2.5 Conclusion

This chapter has highlighted the difference between network monitoring and trou-
bleshooting and the importance of network troubleshooting for operators to ensure a
good QoE for their users. It has been shown that there are different monitoring and
troubleshooting methods and approaches. The advantages and disadvantages of these
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Figure 2.2 – An example of passive measurement

methods have been presented and compared. In our work, we focus on network perfor-
mance measurements gathered from the analysis of packet captures obtained using active
and passive probes. By analyzing packet traces, we can extract important metrics and
determine the root cause of network degradation. The following chapter will focus on
transport protocols and CCAs types and states. We will show the importance of analyz-
ing the behavior and mechanism of the CCA during a connection to investigate a packet
trace. We will also present the most important metrics and measures that we extract
from a packet trace.
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Chapter 3

CONGESTION CONTROL ALGORITHM

IMPORTANCE FOR TROUBLESHOOTING

3.1 Introduction

Transport layer protocols, such as TCP, UDP, and QUIC, play a vital role in ensur-
ing reliable data transfer across computer networks. These protocols are responsible for
establishing and maintaining end-to-end connections, as well as for handling congestion
control mechanisms. Congestion control is a crucial aspect of network troubleshooting to
maintain network health, as it helps to avoid network congestion and maintain good QoS
for end-users. This chapter will provide an overview of different transport layer protocols
and their congestion control algorithms. Furthermore, we will discuss the different states
of the congestion control algorithm and their importance for network troubleshooting.
Finally, we will explore the various data extraction techniques that can be applied to
packet captures to analyze and troubleshoot network congestion issues.

3.2 TCP, UDP, and QUIC

3.2.1 Transmission Control Protocol

TCP is a protocol used to establish and maintain reliable communication between two
devices on a network [18]. TCP operates at the transport layer of the TCP/IP protocol
stack and is responsible for providing error checking, flow control, and retransmitting
lost data [20]. TCP uses a three-way handshake process to establish a connection as
shown in Figure 3.1. This involves sending and receiving packets with synchronize (SYN),
synchronize-acknowledge (SYN-ACK), and acknowledge (ACK) flags, respectively [1].

Once a connection starts, TCP divides the data into segments and numbers each
segment and sends them individually to the receiver. The receiver acknowledges the
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Figure 3.1 – TCP Connection Establishment - Illustration demonstrating the three-way
handshake process for establishing a synchronized and reliable connection.

receipt of each segment, and if a segment is not acknowledged within a certain amount of
time, TCP retransmits it. This acknowledgment mechanism helps to ensure that all data
is received reliably and in the correct order. TCP also provides flow control by adjusting
the rate at which data is sent based on the receiver’s ability to process it. This helps
to prevent data loss or congestion on the network [6]. Additionally, TCP provides error
checking by using a checksum to verify the integrity of each segment [17].

TCP is widely used in applications that require reliable and ordered delivery of data
(e.g. web browsing, file transfer, email, remote access, etc.). Because of the reliability of
TCP as a connection-oriented protocol, it can be slower and less efficient than connec-
tionless protocols like UDP. As the foundation for many applications and services, several
studies found that TCP represents 85% of total Internet traffic [33], [38]. AS TCP traffic
dominates the Internet traffic, operators are interested in troubleshooting it. Any issues
or errors in TCP traffic can lead to degraded performance and ultimately a poor QoE for
users. Analyzing active and passive TCP packet traces is still the operators’ best choice
for anomaly root cause identification. Usually troubleshooting experts extract important
metrics from packet traces, more precisely from captured packet headers, and then they
analyze these metrics to detect the degradation type. From packet headers operators have
access to packet sequence numbers and acknowledgments. By interpreting the evolution
of the sequence number troubleshooting experts can detect when losses occurred. This
is possible by detecting the absence of the acknowledgment of some packets. Another
example of the use of packet headers is by calculating the time between sending a packet

38



3.2. TCP, UDP, and QUIC

and receiving its acknowledgment. This allows operators to track latency evolution during
the connection. More information about the extracted metrics is given in Section 3.5.

3.2.2 User Datagram Protocol

User Datagram Protocol (UDP) is a protocol used in computer networking for trans-
mitting data packets between devices [54]. UDP is a connectionless and unreliable pro-
tocol that does not establish a dedicated communication channel between devices before
transmitting data. It is designed for applications that prioritize speed and efficiency over
reliability and error checking. Unlike other transport protocols, UDP does not provide
data flow control or error recovery and does not guarantee that packets will be delivered
in the correct order. Instead, it simply sends packets to their destination using the link’s
maximum capacity and assumes that they will arrive intact. If a packet is lost or damaged
in transit, there is no mechanism for retransmission or recovery.

Because of its simplicity, UDP is often used for applications such as online streaming
and VoIP (Voice over Internet Protocol), where speed and low latency are critical. How-
ever, in the case of use of applications that require reliable data transfer TCP is a better
choice.

3.2.3 QUIC

QUIC is a relatively new protocol introduced and developed by Google in 2015. It
provides a secure, reliable, and low-latency connection over the Internet [25]. QUIC
operates at the transport layer of the TCP/IP protocol stack. But unlike TCP, it is
based on UDP, which makes it faster and more efficient than TCP [35] [29]. Furthermore,
QUIC is implemented on the application layer in user space instead of the lower level that
touches kernel space. As a result, QUIC can be developed and modified in a fast iteration,
making it easy to evolve without the need to update the operating system kernel on the
client and server site. Figure 3.2 illustrates the differences between QUIC and TCP stacks
in terms of their layered architecture.

QUIC is designed to address some of the limitations of TCP, such as the high latency
caused by the three-way handshake required to establish a connection and the reliance on
retransmission to recover from packet loss [45].

The traditional TCP connection establishment uses a 3-way handshake that takes 1.5
RTTs to finish. If TLS is also used, it takes 3 RTTs to establish a secure connection.
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Figure 3.2 – Comparison of the protocol stack between TCP and QUIC, highlighting the
differences in the transport and application layers.

However, QUIC allows a faster handshake. It uses a handshake process similar to TCP,
but with fewer round trips, and it incorporates mechanisms for error correction and packet
loss recovery, similar to those used in TCP.

0-RTT is the name of the feature in the QUIC protocol that allows for establishing
a connection and sending encrypted data in the very first round trip. With 0-RTT, a
client that has previously established a connection with a server can include encrypted
data in the initial request. The server, upon receiving the 0-RTT packet, can decrypt
the data and start processing the request immediately. 0-RTT enables faster connection
establishment and reduced latency for subsequent requests. Another important feature
of QUIC is that it provides end-to-end security [32]. QUIC applies encryption at the
transport layer, instead of above it. The entire UDP payload is authenticated, preventing
any transparent modification by intermediaries, and almost all transport information is
encrypted. All data sent over QUIC is encrypted by default, and there is no option for
clear text communication. This helps to protect against attacks, making QUIC a good
choice for applications that require high levels of security.

3.2.4 QUIC impact on network troubleshooting

QUIC is supported by several major web browsers such as Chrome and Firefox. It
is used by many popular websites and services like Google, Facebook, and YouTube. Its
popularity is expected to continue to grow after its standardization in 2022 as more web
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developers and network administrators become aware of its benefits.
The deep encryption of QUIC covers not only packet payload, as in the case of TCP,

but also packet headers which makes them unreadable for a midpoint observer as shown
in Figure 3.3. Due to this encryption, QUIC invalidates many troubleshooting methods
that rely on analyzing packet traces. More precisely, with QUIC passive measurements
are no longer possible because of its encryption mechanisms, ensuring that packet headers
remain secure and private during transmission and thus operators have no longer access to
packet sequence numbers or their acknowledgments. Although QUIC has an option that
allows monitoring latencies using the spin bit feature [52], it will likely not be implemented
by client software (e.g. browsers, mobile applications) in the future [25]. With the spin
bit, both endpoints, the client and the server, maintain a spin value, 0 or 1, for each
QUIC connection, and they set the spin bit on packets it sends for that connection to the
appropriate value. Both sides then send out packets with that spin bit set to the same
value for as long as one round trip lasts and then it toggles the value. The effect is then
a pulse of ones and zeroes in that bitfield that observers can monitor.

The spin bit feature is optional, that is to say, a QUIC implementation should allow
for its deactivation, either globally or on a per-connection basis. Additionally, even if
the spin bit is enabled, QUIC should deactivate it for at least one out of every sixteen
connections, randomly chosen, to prevent individuals who wish to remain discreet and
therefore disable the spin bit from being easily distinguishable from others. This is a
classic principle in privacy protection: one should not stand out. The argument made
by those who are not in favor of the addition of the spin bit to the protocol is that the
exposure of any information beyond the IP header and UDP header is not necessary and
not safe [34]. QUIC observability via passive probes will thus probably be lacking for a
long time.

Figure 3.3 – Comparison of packet header encryption in QUIC and TCP, in blue the not
encrypted part and in red the encrypted part

It is true that active probes, by generating their traffic, are not impeded by encryption
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and can detect QoS degradation. Indeed, the operator that generates this test traffic holds
the key to the encryption together with the other end-points. However, contrary to passive
probes, the representativity of active probes can be questioned as test traffic is not real
client traffic. This point can be balanced through a massive probe deployment. But as
current troubleshooting is mainly based on human diagnosis, automation is certainly a key
element for dealing with the data deluge collected via such a dense fleet of active probes.
Beyond this scalability issue, the whole troubleshooting process should be revisited in
light of active measurement specificity. Indeed, even if active end-to-end measurements
easily report QoS issues, they give no hints on their location as they indicate the situation
and performance of the whole network.

In this context, observing the source behavior appears as a promising strategy. Source
emission patterns (send rate, cwnd size, etc..)) derive from decisions of the CCA embedded
in TCP and QUIC stacks, and reflect network conditions rather accurately. The CCA is
in charge of regulating the source emission to obtain a good throughput without flooding
the network. It calms down as soon as it detects early signs of congestion, such as packet
loss or delay. Tracking its behavior thus reveals crucial hints for fault qualification. More
information on the CCA is given in the next section.

3.3 Congestion Control Algorithm

Amongst the CCAs, the most commonly encountered ones are CUBIC and BBR (Bot-
tleneck Bandwidth and Round-trip propagation time) [22], [8]. They alone contribute to
the vast majority of today’s traffic as they represent together more than 73% of TCP
traffic [2]. In particular, BBR traffic probably represents more than half of all Internet
traffic. Other CCAs can be observed but in a significantly lower proportion. However,
the CCA landscape remains diverse as many flavors coexist for a given CCA, depending
on the underlying implementation (e.g. Linux version on the server side). Furthermore,
QUIC primarily uses BBR CCA, even though it started by using CUBIC as its CCA in
2012 but today CUBIC is not directly associated with QUIC. In this section, we intro-
duce the different types of CCAs together with the most known states. We also compare
and contrast the similarities and differences between CUBIC and BBR as the two most
dominant algorithms among the used CCAs. We are particularly interested in comparing
CUBIC and BBR as one of our objectives is to detect the type of CCA in use in our net-
work, whether it is CUBIC or BBR. The importance of CCA identification is presented
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in Section 3.4.2.

3.3.1 CCA types

CCAs control the number of packets that can be transmitted over a network depend-
ing on the network conditions. They do this by controlling the data transmission rate so
that it does not exceed the so-called cwnd size [6]. The cwnd is a TCP parameter that
represents the amount of data that a sender can transmit to a receiver before receiving
an acknowledgment for the previous packet transmission. The cwnd size is continuously
determined by the CCA and adjusted based on network conditions. Depending on the
type of CCA, the cwnd size is modified to achieve the best performance while taking into
consideration factors such as packet losses, delay, and Packet Delay Variation (PDV),
among others. Different CCAs identify and respond to congestion in unique ways. By
understanding the CCAs and their responses, operators can use this information to trou-
bleshoot their network or adapt their network infrastructures in order to offer better
QoS and QoE to their clients. Thus, this insight is valuable for implementing targeted
solutions.

CCAs can be classified into three different types: loss-based, delay-based, and rate-
based.

Loss-based CCA:

Loss-based CCAs use packet losses to determine the congestion window size and buffer
size. Buffer size determines the amount of data that can be stored by routers and clients
before it is processed and transmitted to its intended destination. We note that usu-
ally, the network equipment buffer is larger than the client buffer. When packet loss is
detected, the algorithm reduces the sending rate of packets to alleviate congestion and
prevent further packet loss. These algorithms typically rely on the receipt of ACK pack-
ets to determine if packets have been successfully delivered and adjust their sending rates
accordingly. A loss-based CCA tries to use as much bandwidth as it can in order to ad-
just its bit rate to network conditions, via the Additive Increase/Multiplicative Decrease
(AIMD) mechanism. The algorithm slowly increases the congestion window when the
network conditions are good and strongly decreases its send rate, and thus the cwnd size,
when packet loss is detected by a multiplicative decrease factor.

These loss-based CCAs are susceptible to packet loss for reasons other than an over-
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loaded link, for example, a broken or unreliable link. This can result in poor performance
due to retransmissions and a decreased cwnd which can reduce the effective throughput.
Although loss-based algorithms are the simplest to implement, yet, they are limited in
their accuracy and functionality. Indeed, with a loss-based algorithm, any packet loss is
treated as a sign of congestion, even if this loss is isolated or happens occasionally. The
most well-known loss-based CCA is CUBIC [22].

Delay-based CCA:

Delay-based CCAs use variations of latency to determine the cwnd size and buffer
size. These algorithms use more advanced measurements to examine and monitor net-
work conditions. They detect that a link is overloaded by measuring the delay in which
acknowledgments arrive, also known as the Round-Trip-Time (RTT). Delay-based algo-
rithms can respond to congestion more quickly, even before the first packet is lost, which
can improve the performance of some applications. Furthermore, instead of reducing the
congestion window by a fixed factor, such as 0.3 for CUBIC, these algorithms gradually
reduce the congestion window in proportion to the increase in the RTT value.

VEGAS is the most well-known CCA that uses delay as a key metric [55]. It uses packet
delay instead of packet loss to determine the optimal packet sending rate. Unlike CUBIC,
which only detects congestion after packet drops occur, VEGAS detects congestion at an
earlier stage by monitoring the increase in the RTT values. As a result, VEGAS is able
to detect network congestion before packet losses occur.

Rate-based CCA:

Recently, new rate-based CCAs have been introduced. A rate-based algorithm does
not adhere to the AIMD mechanism but is designed to improve Internet performance by
efficiently using available network resources. These algorithms send data at a rate that is
independent of current packet losses. The most well-known rate-based CCA is BBR [8].

BBR works by observing how fast a network is already delivering traffic and the current
latency. It then uses that data as input to control packet pacing in a way that can improve
performance. In contrast, BBR evaluates congestion by estimating both the RTT and the
available bandwidth to determine the optimal sending rate. It operates by maintaining
a model of the network path’s bottleneck bandwidth and RTT. It adjusts the sending
rate based on this model, striving to fill the network pipe without causing buffer bloat or
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excessive queuing delays. This mechanism provides higher and more stable throughput,
while also improving latency.

The BBR algorithm provides several advantages over other CCAs. CCAs such as
CUBIC and Vegas attempt to balance packet transmission with how they detect or re-
spond to congestion or packet loss. This can result in latency and throughput oscillation
because they more aggressively back off after a loss and they recover more cautiously in
response to packet loss detection. BBR responds more agilely to changing conditions but
continues to aggressively attempt to transmit as much data as possible even when there
are transient issues.

3.3.2 CCA states

CCA implementations are required to detect network condition changes. There are
many CCA implementations, each one improving the older one to be more reactive and
more precise. In this section, we discuss the states of the two most popular CCAs, BBR
and CUBIC. We explain how these algorithms work, their different states, and the impact
of these states on network performance. Understanding the states of these algorithms is
crucial for network troubleshooting and optimizing network performance. Indeed, trou-
bleshooting experts interpret the transition between the states and the time the CCA
stays in each state to detect the degradation type. Therefore, a deep understanding of
the CCAs and their states is essential to troubleshoot networks using packet trace analysis
techniques.

CUBIC

CUBIC is a loss-based congestion control algorithm that is designed to efficiently
utilize bandwidth and improve the performance of data transfer. It quickly responds to
network congestion as a single packet loss provokes a decrease of 30% on the cwnd size
[22]. The behavior of the algorithm is represented by a FSM with three states: Slow-Start
(SS), Congestion Avoidance (CA), and Fast Retransmit & Fast Recovery (FRR). Figure
3.4 shows the FSM of the CUBIC CCA. We note that we are only interested in the SS
and the CA states in our work and thus the FRR state and the transition from SS and
CA to this state are not considered.

− Slow-Start:
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Figure 3.4 – Finite State Machine of CUBIC.

During the SS phase, CUBIC increases its packet sending rate exponentially to
quickly reach the bottleneck capacity. The amount of data transmitted between the
sender and receiver is controlled by the value of the cwnd and the Receiver WINdow
(RWIN) value [6]. The first packets are sent according to the Initial Congestion
Window (ICW) and the cwnd size is doubled after every RTT upon reception of
acknowledgments for the sent packets [28], for this specific reason we talk about an
exponential growth during the SS phase.

CUBIC requires confirmation of received packets through acknowledgments be-
fore proceeding to send another burst of packets. In particular, this results in an
ON/OFF traffic emission pattern. Finally, upon a congestion signal reception, such
as packet loss or increased latency, as indicated by Hystart [5], or when the thresh-
old (ssthresh) is reached, CUBIC switches from the SS phase to the CA state [44].
The ssthresh is a value set to limit slow start, it determines the deactivation of slow
start. The cwnd is incremented until it reaches the ssthresh value and then exits
the SS state.

− Congestion Avoidance:

CUBIC is known as an AIMD-type CCA. To avoid congestion on the network the
exponential increase of cwnd must be halted. CA handles this by lowering the cwnd
evolution, a linear increase to only 1 packet for every RTT allows CUBIC to control
and lower the growth of the cwnd. The rate of growth changes depends on whether
CUBIC is in the convex or concave region of the cubic function that models CUBIC
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cwnd [24]. This process continues until congestion occurs and is detected either
through Retransmit Time Out (RTO) or duplicate acknowledgments [41], [6]. If the
RTO occurs, CA will then set ssthresh to half the current cwnd and after this reset
cwnd to one and initiate a SS. If CUBIC detects a duplicate acknowledgment, it will
force CCA to invoke the Fast retransmit and Fast recovery algorithms [6]. During
SS or CA state, if a loss is detected, CUBIC decreases its cwnd value by 30%.

BBR

BBR was introduced by Google in 2016, it optimizes the sending rate of the packets
based on estimated network conditions, with a focus on the Bandwidth-Delay Product
(BDP) that it calculates by using and estimating the bottleneck bandwidth (btlbw) and
latency instead of losses to determine the cwnd size. It uses the maximum available
bandwidth and the minimum RTT to build a model of the network capacity in order to
determine the packet sending rate [26]. Figure 3.5 shows the FSM of BBR CCA, with
four states: STARTUP, Drain, Probe_BW, and Probe_RTT. We note that on our work
we are only interested in the STARTUP and Drain states.

Figure 3.5 – Finite State Machine of BBR.

− STARTUP:
During the STARTUP phase, BBR performs a binary search and increases the cwnd
size exponentially by doubling the number of transmitted packets within 1 RTT. The
goal is to quickly reach the bottleneck bandwidth capacity. The STARTUP phase of
BBR and the SS phase of CUBIC have a similar exponential increase in cwnd size,
but they differ in the sending rate mechanism. Unlike CUBIC, BBR does not wait
for packet acknowledgments before sending new packets, relying instead on estimates
of available resources. This results in an emission pattern where there are mainly
no interruptions. Finally, once BBR determines that the pipe is full by estimating
the maximum bandwidth capacity, more particularly when the bandwidth growth
does not exceed 25% after 3 RTT, it exits the SS phase and enters the Drain state.
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Even if CUBIC and BBR differ in major ways, they share a few common mecha-
nisms, particularly at the beginning of the connection life. Should it be called "Slow
Start" or whatever equivalent (e.g. Start-UP, Hystart or Hystart++, see [5]), the
CCA behavior in the first state is the same: an exponential rate growth until reach-
ing the bottleneck capacity. An example of this exponential growth in the cwnd
value is shown in Figure 3.6 and Figure 3.7 for a CUBIC and BBR capture. For
simplicity’s sake, in the remainder of this thesis, we call both of these states, for
either CUBIC or BBR, the SS state.

Figure 3.6 – Congestion window over time evolution for a CUBIC capture showing SS &
CA states

− Drain:
The goal of this phase is to drain packets that have accumulated during the SS phase
by reducing its Bytes In Flight (BIF) value to 1 BDP (BDP = maximumBandwith×
minimumRTT ). The BIF value represents the number of bytes sent but not yet
acknowledged, the BIF value is usually strictly bounded to the cwnd size value. The
cause of packet accumulation is the aggressive SS that continues to exponentially
increase the cwnd even with multiple packet losses. When BBR estimates that the
buffer queue is fully drained, BBR enters the ProbeBW phase. BBR can temporally
enter the Drain state during the SS state, a phase that can be called STARTUP-
Drain. This state is entered when a loss occurs during the SS state. BBR reduces its
sending rate to drain any packets that may be in the network and then re-enters the
STARTUP state. In order to comprehensively understand the divergent behaviors
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Figure 3.7 – Congestion window over time evolution for a BBR capture showing SS state
and the drain state

of CUBIC and BBR Congestion Control Algorithms, a brief comparative analysis
of their distinct states is presented in Table 3.1.

State CUBIC BBR

SS

Congestion window is doubled
every RTT until congestion

is detected.

Exponential increase duringg
1 RTT in congestion window.

SS threshold determines
when to exit SS phase.

Exit determined when the bandwidth
growth does not exceed 25%

after 3 RTT.

CA/Drain

Additive increase: window
increased by 1 per RTT.
Multiplicative decrease

during congestion events.

Bytes in flight value ≤ 1 BDP.

Table 3.1 – Comparison of CUBIC and BBR Congestion Control Algorithm States during
SS and CA/Drain

3.4 Congestion control algorithms importance for net-
work troubleshooting

CCAs can provide important insights into the cause of the degradation, to pinpoint the
origin of the problem (e.g. congestion, transmission, etc.). On the other hand, identifying
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the used CCA among operators’ networks can help them to better understand network
behavior and optimize the system for improved QoE. In this section, we will explore the
importance of CCAs for network troubleshooting, focusing on the detection of degradation
root causes and the importance of identifying the type of CCA for network operators.

3.4.1 CCAs impact on degradation root cause identification

The CCA role is to prevent congestion collapse while taking into account fairness and
improving connection performance [20]. Roughly, the CCA embedded in TCP or QUIC
stacks aims at reaching, in a fair manner, the highest throughput safely tolerable by the
network. Under its control, the emitted traffic falls back as soon as it detects signs of
congestion, that is, lost packets or growing delays. This behavior can be observed with
an exhaustive capture of the flow’s packets, but also, via the sequence of transitions of
the CCA FSM. State transitions are typically triggered by degradation events such as
the detection of congestion signals. The FSM transitions series contains factually rich
semantic information providing crucial elements for troubleshooting.

3.4.2 CCAs identification impact on operators

CCAs aim to regulate the rate of data transmission over a network by monitoring
network conditions to prevent excessive data transmission and causing further congestion.
A loss-based algorithm like CUBIC reduces the sending rate in case of high levels of packet
losses, leading to a drop in throughput for users. To provide good QoE and QoS and
support applications and services running on data centers for clients using CUBIC traffic,
network operators need to invest heavily in their Data Center Networks (DCN) in order
to provide sufficient bandwidth, speed and minimize packet loss rates.

The arrival of BBR, which aims to enhance network connection performance and
efficiency, presents an opportunity for network operators to reduce investment in network
infrastructure. BBR offers better resource utilization, improved performance and lower
latency, reducing the need for additional resources to support the same number of users
or applications.

For network operators, understanding the CCAs in use on their network is crucial.
It provides information on network performance and device behavior, helps identifying
bottlenecks and optimizing the network, provides insight into network usage patterns, and
enables informed decisions on network design, configuration and management. Hence,
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network operators are interested in automatically identifying the type of CCA in use
on their network, particularly if it is BBR or not, in order to optimize their network
infrastructure accordingly.

3.5 Data: extraction, processing and analysis

Packet captures are a valuable source of information for network troubleshooting and
performance analysis. They allow us to observe network traffic in real-time and to cap-
ture the details of individual packets including their headers and payloads. However, the
captured data file is often too large and complex to be analyzed directly, it is then nec-
essary to extract specific metrics from packet headers to gain insight into specific issues
to identify and diagnose network problems such as packet loss, delay, and throughput. In
this section, we will discuss the different types of data that can be extracted from packet
captures and the steps involved in processing these data to extract meaningful metrics to
be analyzed in order to troubleshoot networks.

3.5.1 Data extraction

In this step, we use active and passive probes to carry out performance measures.
These probes have a similar functionality to Wireshark [12] and TCP dump [9]. These
tools capture transport layer packet headers together with their arrival times and so we
obtain a time series from a bidirectional packet capture that refers to the chronological
sequence of network packets that have been captured and recorded along with the time
at which each packet was captured. An example of a time series from a packet capture is
shown in Figure 3.8.

Captured data will be treated in real time or stored for further investigation. The
most important metrics that we collect directly from packet headers are :

− Sequence number (SEQ): identifies the first byte in a segment [53]. For a better
match-up with the acknowledgments, we denote SEQ as the last byte of the trans-
mitted segment plus one, i.e. SEQ = sequence number + length. By redefining the
SEQ number it is easier to analyze the SEQ values with the acknowledgment values.

− Acknowledgment (ACK): it informs the source about the sequence number of the
next expected segment.
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Figure 3.8 – A bidirectional packet trace showing the captured metrics with their arrival
times

− Receiver window (RWIN): it identifies the number of bytes that the receiver can
accept. It is sent to the source by the receiver in every ACK.

3.5.2 Data processing

This step consists of using algorithms that will manipulate the data collected in order
to present them in a more efficient way which will facilitate the analysis of the data.
Different manipulations like aggregating the packet headers and timestamps will not only
allow us to present the data in a much simpler form but it will even allow us to calculate
some important indicators. The most significant ones are:

− Bytes in flight (BIF): indicates the amount of data bytes sent by the source but
not yet acknowledged. BIF is not included in packet headers but can be deduced
from SEQ and ACK values by deducing the last received ACK value from the last
emitted SEQ value as shown in Figure 3.8 and Figure 3.9. As can be noticed in
Figure 3.8, at time 47.740081 sec the BIF was calculated using the SEQ value at
the same time and the ACK value that was captured immediately before the SEQ
arrival time. In this case, the BIF value is equal to 38679095 − 38616831 = 62264
bytes. We note that the BIF value is strictly bounded by the cwnd size at any given
time.

− Round-Trip-Time (RTT): represents the delay between a packet emission and the
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Figure 3.9 – BIF and RTT calculation method

reception of the corresponding acknowledgment. We can calculate the RTT value
using the SEQ and corresponding ACK arrival times as shown in Figure 3.9. As can
be noticed in Figure 3.8, if we focus on the SEQ and ACK tables, more precisely let
us track the SEQ value of 38684887 bytes at time 47.740322 sec. The ACK of this
packet is at time 47.949871 sec, thus, the RTT value is here equal to 47.949871 −
47.740322 = 0.209 sec.

− Packet inter-arrival times (INTRPKT): it represents the elapsed time between the
arrival of two consecutive packets. For example, in Figure 3.8, if we focus on the
first two consecutive SEQ values: 38679095 bytes and 38680543 bytes, in this case,
the INTRPKT is equal to 47.740272 − 47.740081 = 0.000191 sec.

3.5.3 Data analysis

Data analysis is the process of examining and interpreting data in order to extract
meaningful insights and draw conclusions. This step typically consists in visually ana-
lyzing the temporal evolution of the above-mentioned metrics, e.g. with a tool such as
tcptrace [30]. For each trace, a human expert should visually detect the state transitions
and QoS degradations affecting the connection to identify patterns, trends, and anomalies
that may indicate issues with network performance or reliability. Data analysis helps net-
work administrators pinpoint the root cause of the problem and take the necessary steps
to resolve it. This process demands a deep knowledge of the CCA mechanism by trou-
bleshooting experts to quickly detect a degradation root cause. Examples of the analysis
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of packet traces in order to extract the root cause of degradation are given in Chapter 4.
On the other hand, a well-trained eye can sometimes manually detect the type of CCA
in use by analyzing different captured metrics. This is possible by tracking the evolution
of the BIF over time and tracking the changes in the states and the behavior of the CCA
in each state.

Recently, network operators have shown increasing interest in automating the trou-
bleshooting process. Indeed, as networks are becoming more complex with a growing
number of devices, services, and users, manual troubleshooting is time-consuming, and
less accurate due to human error and it can lead to long downtime for users. Automation
should allow operators to quickly identify the root cause of a problem and take appropri-
ate actions to resolve it. It should also enable them to detect and address potential issues
before they impact the network performance. With automation, operators can increase
the efficiency of their troubleshooting process in order to improve their QoS and the QoE
for their users.

3.6 Conclusion

In this chapter, we explored the different transport protocols available and we high-
lighted the importance of CCAs for network troubleshooting. We focused on the two
popular CCAs CUBIC and BBR and we discussed their various states and roles. By ex-
tracting important data from packet captures, we can identify the root cause of network
degradation and determine the type of CCA in use, in this aspect we presented the most
important metrics that we extract from packet captures.

In the next chapter, we will introduce our packet capture analysis techniques together
with our interpretation of the CCA mechanism in order to detect the root cause of the
degradation.
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Chapter 4

PACKET TRACES ANALYSIS FOR

ANOMALY ROOT CAUSE IDENTIFICATION

The contributions of this chapter have been published in the con-
ference ITC [46]:

— Ziad Tlaiss. Anomaly root cause diagnosis from active and
passive measurement analysis, 33th International Teletraffic
Congress (ITC-33), PhD workshop, 2021

4.1 Introduction

This chapter serves as an introduction to our methods and strategies for detecting
the underlying causes of anomalies that impact clients’ QoE. Our analysis involved the
processing of faulty packet captures to identify the most recurring root causes of anomalies
and determine the essential characteristics required for effective diagnostics. The primary
objective was to identify common characteristics shared among the analyzed packet traces.

We have identified four frequently encountered root causes of anomalies, namely trans-
mission problems, congestion problems, application limitations, and latency/jitter issues.
A transmission problem refers to a flaw that occurs during the process of sending data
from one device to another over a network. These errors can happen due to various rea-
sons and can occur at different layers of the network stack. A congestion problem occurs
when there is a traffic overload in a network. Application Limited problem happens when
the performance of a network connection is limited not by the network itself but by the
processing capabilities or inefficiencies within the application running on the client device.
The jitter problem refers to the variability in the delay of received packets in a network.
It is the difference in the time it takes for packets to reach their destination.

To provide insights into our analysis, we present the results by showcasing the curve
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patterns of the metrics described in Chapter 3 that we observed for each of these anomaly
types. Additionally, we present the curve pattern representing a normal/good connection.
It is important to note that our packet traces analysis heavily relies on understanding the
behavior of the CCA. As a result, a deep knowledge of CCA functionalities is essential for
accurate analysis and interpretation of the results (refer to Section 3.3 for more details).
By examining the curve patterns of relevant metrics, we aim to establish a framework
for diagnosing and troubleshooting anomalies that affect clients’ QoE. This knowledge
will enable network administrators and engineers to quickly identify and address the
root causes of anomalies, leading to improved network performance and enhanced user
experiences. The following sections will explore in detail our methodology, providing a
comprehensive understanding of the analysis process and the insights gained from our
study. This study may be an important building block in the future for automating the
detection of the root cause of degradation and for the automation of the troubleshooting
process.

4.2 Packet traces capturing and visualisation

4.2.1 Packet traces capturing techniques

To ensure the representativeness of our packet traces, we collected them using active
probes that conducted numerous downloads from our servers. The servers belong to
Orange and are based in France and they are used by Orange engineers to troubleshoot
the network. The conducted downloads were predominantly carried out using: BBR,
CUBIC, and UDP. By utilizing these different CCAs, we aimed to capture a diverse
range of network scenarios and behaviors. In order to achieve a comprehensive dataset,
our probes were strategically deployed across 12 Orange affiliates, as shown in Figure 4.1.
The green dot represents a probe in use and the red dot represents a probe that was
put in sleep mode or shut down. By capturing packet traces from various countries, we
aimed to incorporate geographical diversity and account for regional differences in network
conditions. Each country represented in our dataset exhibited varying congestion levels,
reflecting different network usage patterns during peak and off-peak hours.

Capturing packet traces under different congestion levels allowed us to observe the
behavior of the network and the corresponding performance metrics during periods of
high and low traffic. This comprehensive approach enabled us to gather a rich and diverse
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Figure 4.1 – Active probes installed in different countries are represented with green and
red dots

set of data that covers a wide range of network scenarios and congestion conditions. The
extensive coverage of Orange affiliates and the inclusion of diverse congestion levels in our
dataset enhance the reliability and generalizability of our findings in terms of detecting the
most repeated degradation root causes among networks. This ensures that our analysis
and conclusions are applicable to a broad range of network environments.

Our study primarily focused on the analysis of TCP packet traces exhibiting poor
connections. To identify TCP packet traces with bad connections, we employed a com-
parative approach by comparing the throughput obtained during file downloads using
TCP BBR or TCP CUBIC with the throughput achieved using a UDP connection. UDP,
being a connectionless protocol that prioritizes speed and efficiency over reliability, pro-
vides a reference point for comparison. In an ideal condition, the throughput of TCP
and UDP connections should be similar. Therefore, any significant difference in through-
put between the TCP and UDP connections is considered as indication of an anomaly
within the TCP packet trace. This approach allows us to detect instances where the TCP
connection deviates from the expected behavior, potentially pointing to underlying issues
affecting the connection quality. Upon collecting the necessary packet traces, we con-
ducted a detailed analysis of each trace. Manual classification was employed to identify
and categorize the anomalies’ root causes that we had previously identified. By examin-
ing various performance metrics, including throughput, we were able to gain insights into
the nature and characteristics of the anomalies present in the TCP packet traces. This
methodology enabled us to effectively identify and classify different types of anomalies,
providing a comprehensive understanding of the root causes impacting TCP connections’
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quality.

4.2.2 Packet traces visualization and analysis techniques

In this section, we dive into the analysis technique that we follow in each capture.
To analyze the captured packet traces, our initial step involved graphically visualizing
the time series of the various metrics mentioned in Section 3.5: SEQ, ACK, BIF, etc...
We visualize each metric by plotting its values over time (in seconds). This visual rep-
resentation allowed us to gain insights into the behavior and patterns exhibited by these
metrics throughout the duration of each packet trace. As we rely on the CCA to detect
and diagnose network degradation types, we focused on identifying specific abnormalities
in the curves of the metrics. Our particular interest lies in investigating the following
aspects within each packet trace: the SS state phase, packet losses, latency, and client
buffer. We focus on these aspects because they provide a comprehensive view of how data
flows through the network, allowing for efficient troubleshooting. For example, Having
many packet losses or/and high latency directly affects the end-user QoE.

The SS state stage holds great significance in network troubleshooting. While the pri-
mary purpose of the CCA exiting the SS state is to prevent bandwidth saturation, it can
occur due to various circumstances. For example, jitter can also prompt the CCA to exit
this state. Understanding the underlying reasons behind the SS state exit is crucial for
accurate diagnosis and effective troubleshooting of network issues. By carefully analyzing
the metrics and identifying anomalies or irregularities in the curves, we can gain deeper
insights into the behavior of the network and the factors influencing its performance. This
detailed examination allows us to pinpoint potential causes of degradation, such as con-
gestion or excessive latency, which can have a significant impact on the QoS experienced
by end users.

Slow-Start state importance during a connection

During the analysis of a packet trace for any type of CCA, the SS exit time emerges
as a crucial element for troubleshooting experts. While state transitions can provide
valuable insights into potential root causes, the SS exit time holds particular significance
in understanding the behavior of the network. In the SS state, the source of the packet
trace aims to estimate the capacity of the path by progressively increasing its transmission
rate through an exponential growth mechanism known as binary search. This process
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generally continues until a congestion signal is detected, indicating that the network is
approaching its capacity limit. At this point, the source exits the SS state and enters a
new phase characterized by a significantly slower rate of growth.

Should the SS overestimate the bottleneck, then the source will exceed the bottle-
neck capacity and thus experience multiple packet losses, from which recovery is painful.
This situation can be particularly problematic as the source will need to recover from
these losses, resulting in degraded performance and potentially impacting the user’s QoE.
However, it is worth noting that bottleneck overestimation is relatively uncommon in
practice. On the other hand, if the SS underestimates the bottleneck capacity and trig-
gers an early exit from the SS state, the source will underutilize the available bandwidth.
This can result in poor throughput and minimal network performance. Underestimation
of the bottleneck capacity is a much more common cause of low performance in network
scenarios.

An early SS exit occurs when the SS mistakenly detects a congestion signal, leading
to an unnecessary reduction in the transmission rate. This can happen due to various
factors, including transmission losses or excessive jitter, particularly in Radio Access Net-
works (RAN), even when they are underloaded. In such cases, limiting the transmission
rate based on a false congestion signal only serves to restrict the throughput, resulting in
a disappointing customer experience without any real benefit in terms of reducing non-
existent congestion. Understanding the dynamics of the SS and its potential shortcomings
is crucial for troubleshooting network performance issues. By accurately detecting and
responding to congestion signals, network protocols and algorithms can optimize the uti-
lization of available resources and deliver an improved QoE to users.

Packet losses

The identification of packet losses in a packet trace is a crucial step in diagnosing
network anomalies. One effective method for detecting packet losses is by examining the
sequence number (SEQ) values of the transmitted packets. A decrease in the SEQ value
indicates packet retransmission, implying that the original packet was lost or not success-
fully delivered. In Figure 4.2, we can observe an example of such a scenario. At around
2.27 seconds, there is a packet transmission indicated by the initial SEQ value. However,
at 2.45 seconds, there is a noticeable drop in the SEQ value, indicating a retransmission
of the packet. This retransmission suggests that the initial transmission was lost or did
not reach its intended destination. The presence of packet losses in a packet trace can
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Figure 4.2 – A use case of packet retransmission indicating packet losses

provide valuable insights into the underlying network conditions and potential anoma-
lies. By accurately detecting and analyzing packet losses, we can further investigate the
root causes of these anomalies and take appropriate actions to improve network perfor-
mance and enhance the user experience. After detecting packet losses, we usually try to
understand the origin of these losses and investigate their occurrences.

Latency

Measuring and analyzing latency is a crucial aspect of network analysis, and it is
typically done by examining the RTT values. The RTT value represents the time taken
by a packet to travel from the source to the destination and back again. It is worth noting
that the RTT curve often exhibits noise due to the inherent variability in RTT values.
However, significant changes or spikes in the RTT value are particularly important as
they can have a direct impact on the decisions made by the CCA.

For instance, in the case of the CUBIC algorithm, excessive latency is interpreted as
a sign of congestion. When CUBIC detects high latency, it responds by reducing the
sending rate. If the CCA is in the SS state during this period, the excessive latency can
trigger an early exit from the SS phase. Excessive latency is detected when an impor-
tant increase in its value is noticed. In other words, the algorithm looks for spikes in
RTT, which suggests that the bottleneck buffer is filling up [5]. Therefore, monitoring
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Figure 4.3 – The evolution of the RTT over time

and analyzing latency is crucial for identifying and distinguishing between different net-
work anomaly root causes. In particular, latency variation or latency stability can help
differentiate between congestion problems, transmission problems, and packet delay vari-
ation problems. More information about the use of latency to differentiate between these
problems is given in Section 4.3.

Figure 4.3 provides an example of an RTT curve where noticeable peaks can be ob-
served, indicating significant changes in latency. These peaks highlight instances where
latency has experienced substantial fluctuations or variations. By carefully analyzing the
RTT curve and identifying such latency changes, we can gain valuable insights into the
nature and potential causes of network anomalies. In the case of Figure 4.3, we can con-
clude that these peaks are due to congestion events during the connection. Indeed, these
spikes indicate the filling of the bottleneck and thus the saturation of the network.

Client buffer

Client buffer is another important element we look at when analyzing a packet trace.
The client buffer, represented by the RWIN value, plays a significant role in determining
the flow of data between the server and the client. The server continuously gets informed
of the value of the available RWIN (it is communicated using the window size value field of
the TCP header) from the client to ensure efficient data transmission. In our analysis, we
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Figure 4.4 – The evolution of the RWIN and BIF over time

compare the RWIN value to the BIF value to identify any potential relationship between
them. By comparing the RWIN and BIF values, we can determine if the RWIN is influ-
encing the decrease in the BIF value observed in the packet trace. Figure 4.4 provides an
example of a scenario where the RWIN value is causing a limitation in the server’s ability
to send packets with a higher BIF value. This limitation can be visualized in the RWIN
curve, preventing the BIF value from increasing. This behavior suggests that the client’s
buffer is not allowing the server to transmit data at a higher rate, potentially leading to
performance degradation. Identifying such cases of RWIN limitation is crucial for under-
standing the factors contributing to network degradation. By analyzing the relationship
between the RWIN and BIF values, we can gain insights into the performance limitations
imposed by the client buffer. This analysis helps in differentiating between degradation
that appeared because of the operator’s infrastructures or caused by the limitations in
the clients’ equipment.

4.3 Root cause identification

In this section, we outline our methods for identifying the root causes of anomalies in
packet traces based on the behavior of the CCA. Our analysis focuses on four prevalent
and frequently observed network incidents. We describe our approach to analyzing and
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manually classifying each packet trace into one of these degradation types. To begin, we
leverage the behavior of the CCA as a key indicator in identifying network anomalies.
Our goal is to identify the common patterns and characteristics associated with each
degradation type. Through a meticulous analysis of more than 500 faulty packet captures,
we have selected and studied the most repeated anomalies and recognized the important
characteristics required for accurate diagnosis. We have identified four major root causes
of anomalies: transmission problems, congestion problems, application limitations, and
latency/jitter problems.

We should note that this analysis process was heavy as it took a substantial amount of
time to analyze these captures. For instance, the analysis process itself for each capture
requires between 10 to 30 min (sometimes in some rare cases more time is needed),
depending on the case, in order to extract the root cause of degradation. Additionally,
the faulty packet traces were also manually selected and downloaded to be analyzed.

4.3.1 Normal/Ideal Case

Before delving into the curve patterns associated with specific anomaly root causes,
it is important to establish a reference point by examining a normal case where the
throughput of a TCP connection closely matches that of a UDP connection. In this
scenario, both TCP variants can effectively utilize the full capacity of the bottleneck.

A key characteristic of a normal connection is the consistent BIF value that remains
close to the value obtained when the CCA exits the SS state. This indicates an accurate
estimation of the bottleneck capacity during the SS phase. The stability of the BIF value
throughout the connection reveals the optimal utilization of the available bandwidth. In
addition to the stable BIF value, a good connection is characterized by minimal packet
losses and low latency. Packet losses should be exceptional, indicating reliable data trans-
mission, while latency should be kept at a minimum, ensuring efficient communication.

Figure 4.5 provides an example of a normal connection, illustrating the aforementioned
characteristics. The BIF curve remains relatively steady after the SS exit, indicating
a precise estimation of the bottleneck capacity. Furthermore, the packet loss rate is
minimal, and the latency remains consistently low during the connection. By establishing
this normal case as a benchmark, we can better understand the deviations and patterns
associated with different anomaly root causes.
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Figure 4.5 – BIF evolution over time for a Case of a packet capture with good QoE

4.3.2 Transmission Loss

Transmission losses refer to the occurrence of packet drops in a network without any
associated congestion. These losses predominantly affect RAN and can be attributed to
factors such as radars, weather conditions or interference within the RAN environment.
By analyzing the SEQ of packets and their corresponding ACK, we can identify instances
of packet loss. Transmission loss is characterized by individual and isolated packet losses
where specific packets are dropped without a congestion signal. In Figure 4.6, we observe
two instances of individual packets retransmission occurring at 13.61s and 13.82s, indi-
cating the occurrence of two packet losses. These losses are evident from the decrease in
SEQ values due to packet retransmission.

While transmission losses manifest as isolated occurrences, they can have a harmful
impact, particularly if repeated frequently. If these isolated losses take place at the be-
ginning of a connection, they can cause the CCA to prematurely exit the SS state. This
happens due to the misinterpretation of these losses by the CCA. Indeed, in this case, it
deals with the losses as a sign of congestion, leading to an underestimation of the net-
work bottleneck. As a result, the available bandwidth is not fully utilized and the overall
performance of the connection is damaged.
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Figure 4.6 – Transmission loss detection using SEQ and ACK evolution during time

4.3.3 Congestion Loss

Network congestion can occur when the traffic throughput being transmitted exceeds
the capacity of the network. This phenomenon can affect both wireless and wireline
networks and is primarily influenced by factors such as link capacity and buffer sizes.
Unlike transmission losses, which occur without congestion, detecting congestion involves
identifying a burst of packet losses.

In Figure 4.7, we can observe a burst of packet losses occurring between 1.88s and
1.94s. This burst is indicative of congestion in the network.

These lost packets are accompanied by a notable increase in the RTT, as depicted
in Figure 4.8. At 1.90s, the RTT value starts to rise from 200ms and reaches 625ms by
2.30s. The presence of a burst of packet losses, coupled with a significant increase in
RTT, provides clear evidence of network congestion. The burst of losses means that the
network is unable to handle the incoming traffic at the current rate, leading to packet
drops. The subsequent rise in RTT is a consequence of increased queuing delays caused by
congestion in the network. Detecting and understanding congestion is crucial for network
troubleshooting, as it allows for the identification of capacity-related issues and helps in
implementing appropriate congestion control mechanisms. By analyzing the patterns of
packet losses and the associated changes in RTT, network experts can effectively diagnose
congestion problems and take necessary measures to mitigate their impact on network
performance.
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Figure 4.7 – Congestion detection using SEQ and ACK evolution during time

Figure 4.8 – RTT evolution during time

4.3.4 Jitter

Packet delay variation, commonly known as jitter, is a network issue that typically
impacts wireless users. Jitter can significantly degrade performance by causing the CCA to
prematurely exit the SS state phase, mistakenly interpreting jitter as a sign of congestion.
To determine if jitter is the underlying cause of poor performance, we must first identify
the SS exit time to determine the specific cause of this exit. This is achieved by analyzing
the behavior of the CCA and identifying the point at which it transitions out of the SS
phase (end of the exponential growth). Once the SS exit time is determined, we can
proceed to correlate it with other relevant time series data, such as SEQ, ACK, and RTT.
During this analysis, we specifically look for indications of packet loss or an increase in
RTT. If no packet loss is detected, but a sudden high variance in RTT is observed, it
suggests that the CCA exited SS due to jitter. This is because the jitter introduces
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significant variations in the packet arrival times, leading the CCA to incorrectly perceive
it as congestion and triggering an early exit from SS.

Figure 4.9 illustrates an example where the CCA exits SS at 50000 bytes (around
0.7s), while the actual bottleneck capacity, derived from the end of the transmission, is
around 1.6 × 106 bytes, as shown in Figure 4.10. This underestimation of the bottleneck
capacity results in a poor connection throughput.

Figure 4.9 – BIF evolution during time focusing on the beginning of the
connection

Figure 4.10 – BIF evolution over time for the same capture as in Figure
4.9 focusing on the whole connection
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4.3.5 Application limited

In addition to network issues, the performance of a TCP transfer can also be impacted
by the endpoints’ ability to send or receive data at a sufficient rate. In this context,
the focus is on the case of a "slow receiver", where the receiving endpoint, typically a
client device, becomes the limiting factor in the data transfer. While servers are typically
designed to handle normal traffic without being overwhelmed, client devices, often battery-
powered with limited resources, can become the bottleneck in communication. Therefore,
we specifically examine the scenario where the client device acts as a slow receiver.

The "slow receiver" situation is characterized by the RWIN value imposing a limitation
on the BIF value, as can be noticed in Figure 4.11. The graph shows the exponential
growth of the BIF during the Slow Start phase, reaching the RWIN’s limitation at 1.4s.
This indicates that the receiver’s buffer has reached its maximum capacity and cannot
grow beyond that size. In consequence, the sending rate from the source cannot increase
further without overwhelming the receiver’s capabilities.

Figure 4.11 – Application limited detection using RWIN & BIF evolution

4.4 Conclusion

The rapid growth of Internet traffic has presented new challenges in detecting and re-
solving network degradation issues. Identifying the root cause of degradation is a complex
and time-consuming task, especially with the increasing scale and complexity of modern
networks. However, in order to minimize the impact on customer experience, it is essential
to detect and address these issues promptly.
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Root Cause of Degradation Main Characteristics

Transmission problem Isolated losses with no remarkable
increase in the RTT value

Congestion problem Burst of losses with a significant
increase in the RTT value

Jitter

Exiting the SS with no loss or any
increase in the RTT value + BIF value

at the end of the connection much greater
than its value at exiting the SS state

Application limited BIF value blocked by the RWIN

Table 4.1 – Root Causes of Degradations and Their Main Characteristics

Our study focused on manually analyzing packet traces to identify and classify the
root causes of anomalies affecting clients’ QoE in network connections. Our analysis was
based on the behavior of the CCA. By analyzing packet captures with bad performance,
we identified common patterns and important characteristics necessary for diagnostic
purposes. A summary of each root cause of degradation with its main characteristics
is shown in Table 4.1. From the manual analysis, we recognize the importance of the
detection of the SS state as a key element for network troubleshooting in identifying the
anomaly root cause. In the next chapter, we focus on automatically detecting the SS state
in order to accelerate the troubleshooting process and rapidly detect the degradation root
cause.
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Chapter 5

NEW PACKET TRACES VISUALIZATION

APPROACH FOR SLOW-START

AUTOMATED DETECTION

The contributions of this chapter have been published in the confer-
ence ICIN [49] and the journal annals of telecommunications [48]:

— Ziad Tlaiss, Isabelle Hamchaoui, Isabel Amigo, Alexandre
Ferrieux, Sandrine Vaton. Troubleshooting Enhancement
with Automated Slow-Start Detection, 26th Conference on
Innovation in Clouds, Internet and Networks and Workshops
(ICIN), 2023

— Ziad Tlaiss, Alexandre Ferrieux, Isabel Amigo, Isabelle Ham-
chaoui, Sandrine Vaton. Automated Slow-Start Detection for
Anomaly Root Cause Analysis and BBR Identification, An-
nals of Telecommunications, 2023

5.1 Introduction

When analyzing a packet trace, the SS exit time is a key element for troubleshooting
experts. While many state transitions suggest specific root causes, SS exit time has a
particular significance. Indeed, in SS, the source estimates the value of the path’s capacity
by exponentially increasing its rate until a congestion signal is received, then it exits the
SS state to enter a new phase with a much lower growth of rate.

Should the SS overestimate the bottleneck, then the source will exceed the bottleneck
capacity and thus experience multiple packet losses, from which recovery is painful. On
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the contrary, if it underestimates the bottleneck capacity and triggers an early SS exit, the
source will underuse the available bandwidth and possibly experience poor throughput.
This is typically the case in the presence of transmission loss, or excessive jitter related to
radio mobile access - even underloaded. In both cases, limiting the rate will lead to a bad
customer experience, without any benefit regarding a non-existent congestion. The SS
state duration is thus a key indicator for the diagnosis of faults; this indicator is estimated
empirically by human experts today, which is time-consuming and a cumbersome task
with large error risks. As current troubleshooting is mainly based on human diagnosis,
automation is certainly a key element for dealing with the data deluge collected via such
a dense fleet of active and passive packet captures.

In this Chapter, we design a method and develop a tool to automatically detect the SS
exit time on collected traces. For this purpose, we introduce a novel representation, that is
the BIF versus SEQ representation that replace the BIF over time representation. We use
this representation in order to identify the last packet in the SS state of the CCA, by using
a relation between the sequence number values and the bytes-in-flight values that is true
only during the SS phase. Due to the similarity of QUIC and TCP CCAs, this method
applies to both. However, as it requires accessing transport headers information, it can
be applied to QUIC traffic only with active measurements (implying we can decrypt the
traffic) while it could be used on TCP traffic with both active and passive measurements.
We also introduce how our SS detection method could be used as a powerful tool to easily
discriminate between network typical fault types.

5.2 Visual CCA states identification

As explained in section 3.4, the FSM state series, and particularly the SS exit time
gives crucial insight into degradation root causes. To get hold of these state series, the
first idea that comes to mind in order to identify the CCA states is direct introspection in
the sender stack. Unfortunately, this introspection requires cooperation from the sender’s
server, which is rather impractical, as many servers belong to third-party Internet content
providers, often reluctant to open their infrastructures. As a consequence, sticking to
measurements from active and passive probes is still the operators’ best choice to build
these state series.

In this context, troubleshooting experts are used to perform visual analysis of the
BIF against time to detect the end of the exponential growth, namely the SS exit time.
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This method is highly time-consuming and inaccurate. We can see in Figure 5.1 an
exponential increase of the BIF against time until t = 1.3 sec, a telltale sign of the SS
phase. Root cause analysis is then completed thanks to the SEQ against time graph
(Figure 5.2) showing bursts of packet retransmission at this very same time, a typical
effect of congestion loss [46]. The SS exit is then a legitimate reaction of the CCA to
reaching the actual bottleneck.

In this context, experts often rely on visual analysis of the BIF over time to identify the
FSM state transition, particularly the SS exit time, which marks the end of exponential
growth. Figure 5.1 illustrates the typical pattern of an exponential increase in the BIF
over time until t = 1.3 sec, indicating the occurrence of the SS phase. This exponential
growth is a characteristic behavior during the initial phase of data transmission. To
further investigate and detect the end of the SS state, experts also examine the SEQ over
time graph, as shown in Figure 5.2. This graph reveals how packet bursts doubled after
each RTT until about t = 1.25 sec, at this time packet number stopped doubling and
we can notice packet retransmissions occurred at around the same time as the SS exit
time identified in the BIF vs. time curve. This observation suggests that the SS exit is a
legitimate response of the CCA to reaching the actual bottleneck in the network.

While visual analysis of BIF and SEQ graphs over time has been a traditional approach
for detecting the SS exit time, it is important to note that it can be time-consuming and
subject to interpretation biases (human error). To overcome these limitations, researchers
are exploring automated methods and algorithms that can provide faster and more ac-
curate detection of the SS exit time and other relevant metrics [59], [57], [2]. These
automated approaches aim to improve the efficiency and reliability of the SS state detec-
tion, allowing for more precise identification of degradation root causes in communication
systems, identifying and inferring the CCA variant in the network, and helping study
fairness between different CCA variants.

5.3 State of the art on CCA states identification

In this section, we will discuss the relevant works that focus on the detection of the SS
state and troubleshooting tools. In consequence, we identify two areas that are directly
connected to our work: identification of the CCA and network troubleshooting tools.

Hagos et al. [23] use machine learning approaches to recognize loss-based TCP CCAs
and infer the congestion window within passively collected traffic at mid-point. Although
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Figure 5.1 – BIF against time during SS state
for a CUBIC packet capture

Figure 5.2 – SEQ against time during SS state
for the same capture in Figure 5.1

estimating the cwnd can be useful for network operators to troubleshoot their network,
it does not cover no-loss based CCAs such as BBR. Our work differs from theirs as our
method focuses on the application of CCA SS state detection in order to detect network
root causes of anomalies and identify the type of CCA in use. Furthermore, our method
could be applied to all types of CCA, loss-based or not.

Padhye et al. [39] developed the TCP Behavior Inference Tool (TBIT), which per-
forms active measurements to infer various TCP behaviors such as the initial window and
congestion window (cwnd) of a remote Web server. TBIT can also detect which of the
following CCAs is running on a Web server: Reno, New Reno, Reno Plus, or Tahoe.
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Yang et al. [57] proposed an active CCA identification approach that uses a random
forest algorithm to classify the CCA variants of a Web server. The classification is based
on two features: the multiplicative decrease parameter applied when a loss is detected
during the SS state and the window growth function driving the congestion avoidance
state. The authors were able to identify several famous CCAs, such as NewReno, BIC,
VEGAS, and CUBIC.

Jaiswal et al. [27] introduce a passive measurement methodology to infer the cwnd
and round-trip-time. They build a replica of the CCA state for each TCP connection at
midpoint. This replica updates its estimate of the cwnd based on the observed acknowl-
edgments that could change the CCA state. They use those estimates to recognize three
of the TCP flavors: Reno, NewReno, and Tahoe. Even if [27] are interested in initial
cwnd, SS state, and congestion avoidance states to identify the CCA types, they do not
try to accurately locate state transitions.

Kato et al. [51] use unidirectional packet traces to characterize TCP CCAs. They
define a new metric that is seen as being proportional to cwnd size and apply curve fitting
to recognize the CCA. In the continuity of their work Kato et al. [31] identify TCP CCAs
using a sequence number vs packet arrival time representation.

Zhang et al. [59] analyze TCP passive packet captures and investigate CCA mecha-
nisms to understand the origins of limitations in the transmission rates of flows by group-
ing packets into flights (they consider each packet burst as a flight) using a round-trip-time
estimator.

Mishra et al. [2] developed Gordon, an active tool that measures the congestion
window size and identifies TCP CCA variants among websites. Gordon measures the
cwnd and then analyzes the reaction of the TCP variants to packet losses to classify
them. In particular, depending on the decrease factor after a loss or/and the increase
factor during the congestion avoidance state, the TCP variant is identified. To do this
they do not rely on common active measurements, but manipulate the client to force the
server to react against several scenarios, generating a considerable amount of traffic. For
rate-based CCAs such as BBR, which does not change its cwnd after a loss, the no-loss
reaction is used to determine the CCA as BBR or unknown.

Apart from works related to identifying CCA, some researchers proposed some auto-
mated troubleshooting tools that use packet captures to diagnose the networks and detect
some degradations. Guo et al. [13] developed pingmesh, a tool for large-scale data cen-
ter network latency measurement and analysis to track network latency issues. Zhu et
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al. [58] proposed Everflow, a packet-level tracing and analysis tool. While [13] and [58]
are 2 troubleshooting solutions, their scope is limited to a specific set of equipment-level
performance metrics; this makes sense from a "repairman"’s point of view, to whom exon-
erating a specific router from guilt is critical, but is not sufficient to address an end-to-end
scenario, where the offending connection spans continents and (possibly non-cooperative)
actors. In our work, we aim to get a broader view of the issue at hand, by providing a
cause-agnostic observable, the SS exit time, as input to further investigations.

In summary, [59], [57] and [2] show interest in the detection of the SS state. However,
[59]’s method tracks the SS state in the first flights based on explicit segmentation, which
does not work consistently in real life, e.g. when ACKs are not "bursty". On the other
hand, [57] and [2] only take losses into consideration in the detection of the SS state.

On the other hand, aside [2], none of the previously mentioned works addresses the
identification of BBR on its own by analyzing a packet capture, nor do they compare
CUBIC and BBR traffic. Our method differs from these works in that it relies only on the
analysis of bidirectional packet traces obtained from classical TCP downloads to identify
BBR traffic. Unlike [39] and [2], we don’t need to generate multiple traffic and control the
cwnd by holding the acknowledgments which can be laborious, as our method consists of
analyzing a simple packet trace so one single download/packet capture is sufficient. We
also differ from [57] as we do not use a heavyweight machine learning algorithm: indeed,
our parameter space is extremely small (two variables), thanks to a novel, well-motivated
feature extraction step that taps into the core design differences between the CCAs. And
similarly to the aforementioned works, we do not need to process our data online, as
our objective is to allow operators to quantify the amount of each CCA present on their
networks.

5.4 Challenges towards automation

Network troubleshooting experts often rely on manual detection of CCA states, partic-
ularly the SS state, to identify network anomalies and troubleshoot performance issues.
However, as network traffic continues to increase in volume and complexity, a manual
detection process becomes increasingly difficult and time-consuming. As a result, there
is a growing need for automated methods that can accurately detect and identify CCA
states, particularly SS, in a timely and efficient manner. In this section, we will explore
the challenges associated with automating the detection of SS state in CCA.

78



5.4. Challenges towards automation

5.4.1 Noise

Network traffic can be affected by some intrinsic factors such as network topology
and routing, which can cause variations in packet delay, loss, and jitter, which signifi-
cantly impact network behavior. These factors introduce variations in packet delay, loss,
and jitter, making it challenging to develop accurate models and predictions of network
performance.

While manual analysis by human experts can often handle the noise and irregularities
present in the data, automating such procedures can be difficult, for example, some fil-
tering techniques may be needed. Automated methods need to account for and adapt to
the complexities introduced by the aforementioned factors. For instance, in the context of
our study, the exponential growth patterns depicted in Figures 5.1 and 5.2 might require
smoothing techniques to properly identify and recognize the growth trends. This smooth-
ing process ensures that the underlying exponential behavior is more distinguishable from
the noise present in the data.

5.4.2 Non-stationarity

Network traffic is constantly changing over time, and the characteristics of network
traffic can vary significantly between different periods. For example, a network may
experience increased traffic during certain times of day or during peak usage periods,
which can affect the performance of the network and the behavior of the CCA. On the
other hand, the performance of a CCA can also be affected by the application running
on top of it. Different applications have different traffic patterns and requirements, and
the CCA must be able to adapt to these different conditions. This can make it difficult
to automate the detection of the SS state, as the behavior of the algorithm may vary
depending on the application being used. Additionally, network conditions like packet
losses deteriorate the visibility and raise the non-stationarity. An example of this non-
stationarity can also be observed in a single packet capture as can be noticed in Figure 5.3
and Figure 5.4. Moreover, in a broader sense, the graphs representing network behavior
may need to be segmented into homogeneous regimes or segments, as in the case of Figure
5.3, before any pattern recognition or analysis can be applied.

Figure 5.3 shows the evolution of BIF over time, while Figure 5.4 represents the
arrival times of the captured packets. The latter focuses on the so-called "on/off pattern"
of packet arrival times which reflects the basic congestion window mechanism, waiting for
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Figure 5.3 – BIF against time showing the non stationarity and noise on BIF values

Figure 5.4 – Packets arrival times - blurring of on/off pattern over time

ACKs before sending a new burst of packets. However, while this on/off pattern can be
detected at the beginning of the connection (from 0 sec to 0.8 sec), it blurs over time,
due to TCP’s (intentional) tendency towards "ACK clocking" [6]. In fact, TCP employs
a self-clocking scheme that times the sending of packets. The data packets are sent in a
burst when the returning acknowledgment packets are received. This self-clocking scheme
(also known as ack-clocking) is deemed a key factor in the burstiness of TCP traffic. After
reaching the bottleneck capacity, the packet starts to fill the buffer of the slowest link as
shown in Figure 5.5. Consequently, the transmitted packets are spaced out, causing the
corresponding ACKs to also be distributed more evenly. As a result, the new packets sent
subsequently exhibit reduced burstiness.

In conclusion, because of all of the above-mentioned complexity, the automation of
the detection of the SS state and of the troubleshooting process in general is not trivial.
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Figure 5.5 – ACK clocking impact on bursts

5.4.3 Exponential regression approach

All previously mentioned challenges invalidate different methods that we have con-
sidered and tried when working on the automated detection of the SS state. The most
promising approach yielding better initial results was "exponential regression", i.e. fitting
the BIF-against-time with an exponential. The objective is to detect the exponential part
in the SS state that starts from the beginning of a connection until exiting the SS state.

Exponential growth is a phenomenon that occurs when a quantity increases at a con-
stant percentage rate over time. This growth pattern is commonly observed in a wide
range of scientific fields. When analyzing data that exhibit exponential growth, it is of-
ten useful to employ an exponential regression analysis, which can provide insights into
the underlying growth rate and help make predictions about future trends. Exponential
regression is a statistical method that involves fitting a curve to a set of data points using
an exponential function. The exponential function takes the form y = ae(bx), where y

represents the dependent variable, x represents the independent variable, a is the initial
value of y, and b is the growth rate. The goal of exponential regression is to determine
the values of a and b that best fit the data as shown in Figure 5.6.

To perform exponential regression, we plotted the data on a logarithmic scale, which
helped us to linearize the relationship between the variables. We used a multiple expo-
nential model, which involves fitting multiple exponential curves to the BIF data and
selecting the one that minimizes the error between the curve and the data. We select the
best curve by calculating the sum of the squared differences between the data and each
curve, and we choose the curve that yields the smallest value as it is shown in Figure
5.6. The use of multiple exponential curves allows us to choose the curve that best fits
the data, and the process of minimizing the error helps to ensure that the chosen curve
provides an accurate representation of the growth pattern.

Although the exponential regression approach was promising in the majority of the
cases, however, it turns out that in the case of very early SS exits (within 2 or 3 RTT), the

81



Part II, Chapter 5 – New Packet Traces Visualization approach for Slow-Start automated
detection

Figure 5.6 – Optimizing BIF Curve Fitting: Selecting the Best Exponential Fit

exponential part is dwarfed by the subsequent evolution, making it impossible to detect
the exponential part reliably. This is unfortunate, as our objective is to use SS state
detection to troubleshoot networks, where the most frequent cases of bad performance
are correlated with a premature exit from SS. As it turns out, this fundamental problem
is resolved using the new representation that we introduce in the next section.

5.5 Automated Slow-Start detection method

As the use of CCAs becomes increasingly prevalent in modern networking protocols,
it is essential to have accurate methods for detecting when a network flow transitions
between different states, specifically exiting the SS state. In this section, we introduce a
novel approach for automatically detecting the exit from the SS state using a representa-
tion based on BIF versus SEQ. We show how this representation can be used to accurately
identify the last packet in the SS state of a CCA by leveraging the unique relationship
between SEQ values and BIF values that is only true during the SS phase.
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5.5.1 Bytes-in-Flight vs sequence number: a timeless represen-
tation

In light of our troubleshooting experience, it turns out that the main hurdle to au-
tomation lies in the on/off patterns of the source emissions. These patterns introduce
significant variation in the inter-packet spacing, making it difficult to identify and distin-
guish different phases of the CCA. To overcome this challenge in a natural way without
any loss of information we decided to switch to a timeless representation. To this effect,
we chose to represent BIF as a function of SEQ as shown in Figure 5.7. In essence, we
replace the time axis with the sequence number progression, this naturally wipes out all
burst, silence, or RTT variation effects that are commonly observed in time-domain rep-
resentations. The resulting representation allows us to focus on the essential correlations
between significant indicators of CCA dynamics, enabling more accurate and efficient de-
tection of the exit from SS and other key events in the congestion control process. This
approach has the potential to significantly improve and open the way for more effective
automation of network troubleshooting and optimization.

Figure 5.7 – BIF against SEQ: new representation to detect the SS state exit time

5.5.2 BIF vs SEQ characterization during Slow-Start

A few basic properties of the BIF vs SEQ representation can easily be derived analyt-
ically. To begin with, the shape of the graph is readily predictable during two phases:

(a) During burst emissions: in the absence of any acknowledgment, during this phase,
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each sent packet increments both SEQ and BIF by an equal value, which is the
segment’s length.

(b) During the reception of burst acknowledgments: assuming all packets previously
sent were received, the BIF quickly drops back to zero.

As a result of these two phases, every round-trip time, the graph is expected to display
a triangular shape made of a slope 1 due to phase (a), followed by the vertical drop
described in (b), as depicted in Figure 5.8.

Figure 5.8 – Theoretical representation of the BIF vs SEQ evolution

Furthermore, in an ideal SS state, the vertical extent of this triangular shape, which
represents the cwnd, is expected to double every RTT. Thus, the graph should display a
fractal series of triangles, each one being twice the size of the one before. The position
of the highest SEQ point and highest BIF point in the graph, after n round-trip-times, is
thus expected to be:

SEQ =
n−1∑
i=0

a × 2i = a × (2n − 1) (5.1)

BIF = a × 2n−1 (5.2)

The slope of the line from the origin to this point is thus

BIF/SEQ = 2n−1

2n − 1 (5.3)
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Hence its limit is
lim

n→+∞
BIF/SEQ = 1/2 (5.4)

It can further be seen that this asymptote y = x/2 is in fact "approached from above", as
the top of each triangle satisfies: BIF/SEQ = 2n−1

2n−1 > 1/2

However, as soon as the SS state is exited, the exponential growth of the BIF stops,
and no further point can stand above the y = x/2 line.
This yields a very simple and practical criterion: the SS exit occurs immediately after the
last point satisfying: BIF ≥ SEQ

2 .
It should be stressed that the power of this method lies in its simplicity: no regression or
filtering is needed, and a simple linear inequality suffices, once we are in the appropriate
representation space.

5.5.3 Slow-Start exit time detection

While the critical state transition event is well characterized by the above criterion,
some attention is due to properly interpret the earlier features of the representation.
During the SS phase, as mentioned before, local slopes are typically 1, with a series of
abrupt drops. As a result, the graph keeps crossing the asymptote, thus, a local decision
is not appropriate, as it would readily generate false positives. Fortunately, the global
criterion of the last point above the asymptote is more robust. This is fundamentally
linked to the fact that after exiting SS, the CCA essentially takes very careful steps to
refrain from going too fast, and by definition will never "catch up" to the exponential
regime. The asymptote is never to be crossed again. Figure 5.9 is an example of our slope
1/2 method application. We can see the BIF vs SEQ curve slightly exceeding the y = 1

2x

line until it abruptly drifts below, marking the instant when the CCA has exited the SS
state.

5.6 Method evaluation

In this section we assess the accuracy of our method by comparing the SS exit time
we obtain, against a "groundtruth" which we define as the CCA state transition time
recorded in the server stack logs.
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Figure 5.9 – Automatically detecting SS state exit time with slope 1/2 method

5.6.1 Testbed

To evaluate the effectiveness of our proposed method for detecting the exit from SS
in the Cubic and BBR CCA, we conducted a series of experiments on a server that is
accessed by multiple active probes through the public Internet as presented in Figure
5.10. To generate CCA logs, we instrumented the Cubic and BBR stacks on the server
and then performed active measurements by executing many downloads using both CCAs
from our probes. We then extracted the groundtruth SS exit times from these logs, which
were used as the basis for our evaluation.

Figure 5.10 – Testbed illustration
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5.6.2 Characterization of packet captures

In order to ensure that our experimental results are representative of real-world net-
work conditions, we deployed our probes across four different Orange affiliates located in
different countries. These countries were chosen to provide a diverse range of average RTT
and packet loss levels. Specifically, the average RTT ranged from 20ms to 200ms, reflect-
ing the typical range of values observed in different regions of the world. Additionally, we
performed our downloads in each of these countries at different times of day, including
both peak and off-peak hours, in order to capture variations in network congestion levels.

This approach allowed us to obtain a comprehensive view of the performance and be-
havior of the CUBIC and BBR CCAs under a range of realistic network conditions. By
conducting our experiments across multiple countries and time periods, we were able to
gather a rich dataset that reflects the diversity and complexity of real-world network en-
vironments. This is particularly important in the context of congestion control, where the
performance of different CCAs can be highly dependent on the specific network conditions
and traffic patterns.

5.6.3 Groundtruth extraction and error calculation

To evaluate the effectiveness of our proposed method for detecting the exit from SS
in the Cubic and BBR CCAs, we needed to establish a groundtruth for the SS exit
times. To extract this groundtruth from the resulting CCA logs, we identified the packets
that corresponded to the SS phase from these logs by investigating the state transition
communicated by the CCA and we extracted the arrival time of the last packet that
signaled the end of this phase as the groundtruth SS exit times.

Investigating the CCA logs for CUBIC and extracting the groundtruth SS exit times
was highly accurate. However, we encountered a significant challenge in the evaluation
process once we focused on extracting BBR groundtruth due to the nature of the Linux
BBR implementation that we used. In particular, we found that the SS phase, which is
typically identified through a binary search period, was very difficult to detect, especially
in the presence of massive packet loss. This is because the SS phase is not a single state,
but rather a region in parameter space that is difficult to identify precisely, e.g. Startup-
Drain phase (see Section 3.3.2). As a result, we had to carefully analyze the instrumented
kernel’s CCA logs (an example of the logs is shown in Figure 5.11) and use additional
post-processing to identify the SS exit times accurately.
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Figure 5.11 – BBR logs illustration

Detecting the groundtruth SS exit times for BBR CCA also presented another chal-
lenge due to the nature of the algorithm itself [7]. Specifically, we observed that BBR waits
for three round-trip times (RTT) before announcing that it has exited the SS state. To
account for this delay, we subtracted three times the value of RTT that we obtained dur-
ing the connection’s initial handshake from the SS exit time obtained through BBR CCA
logs. However, we found that this calculation introduced inaccuracies in the groundtruth
SS exit time, especially in cases where the RTT values increased during the connection.

To calculate the error between our method and the groundtruth, we measured the
difference between the SS exit time obtained through our method and the SS exit time
obtained from the groundtruth data. To better visualize the results, we normalized the
time difference by the RTT value for each capture. Thus, the error is computed as:

error = tSSOurMethod
− tSSGroundT ruth

RTT

The resulting error is then represented in Figures 5.12 and 5.13, in RTT units. In the
next section, we analyze the two curves and discuss our results.

5.6.4 Method evaluation with CUBIC traffic

In this section, we analyze the performance of our method for predicting the exit
from SS state for the CUBIC stack. Figure 5.12 represents the distribution of error in

88



5.6. Method evaluation

prediction for the CUBIC stack on 219 downloads. The figure shows that the error in
prediction is less than 1 RTT in more than 95% of cases, which is a remarkable accuracy
considering that the typical time granularity of CCA decisions is precisely the RTT. We
note that the remaining 5% of cases exhibit higher errors, which can be attributed to
some fluctuations in RTT values. The high accuracy of our method demonstrates its
effectiveness in automating the detection of the SS exit time, which can save considerable
time and effort in network management and troubleshooting.

Figure 5.12 – Cumulative distribution function of the difference in RTT units between
the SS exit times from the slope 1/2 method and the one logged by the CUBIC server

5.6.5 Method evaluation with BBR traffic

We also analyzed the prediction error distribution for the BBR TCP stack, as shown
in Figure 5.13 for 241 downloads. We observed that 90% of the cases are bounded between
-2 and 2 RTT, indicating a larger deviation in prediction error compared to the CUBIC
stack. However, we believe that this deviation is not entirely due to mispredictions of our
slope 1/2 method, but rather due to the difficulty in obtaining an accurate groundtruth
in the case of BBR. As we mentioned earlier, BBR algorithm waits for 3 RTT before
announcing the exit from the SS state. Moreover, the BBR implementation we used does
not have a single state for SS, but rather a region in the parameter space. These factors
make it challenging to accurately identify the groundtruth SS exit times.
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Figure 5.13 – Cumulative distribution function of the difference in RTT units between
the SS exit times from the slope 1/2 method and the one logged by the BBR server

5.7 Method application to network fault identifica-
tion

This representation has revealed distinct patterns that serve as indicators of various
types of network degradation. These patterns can be readily identified using straightfor-
ward criteria, enabling efficient classification of network faults. The ability to recognize
and understand these patterns is crucial in diagnosing and resolving issues that affect
network performance. Several common faults have been observed, the graphical repre-
sentations corresponding to these faults are described below. We mainly focus on three
cases that were already mentioned in Chapter 4: normal QoS, QoS degradation due to
loss (transmission and congestion), and QoS degradation due to jitter.

5.7.1 Case 1: Normal QoS

In this ideal scenario, the binary search procedure conducted during the SS phase
effectively identifies the path bottleneck within the network. As a result, the BIF curve
as a function of SEQ remains constant, as illustrated in Figure 5.14, after exiting the SS
state. This consistent and unchanging BIF = f(SEQ) curve means a state of good and
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stable QoS within the network.

Figure 5.14 – Constant BIF after SS exit: good QoS

The constant BIF = f(SEQ) curve indicates that the CCA successfully maintains
a balance between the rate at which packets are transmitted and the available network
capacity. This equilibrium is essential for ensuring that network resources are optimally
utilized and that there is no excessive buildup of data in transit. In such an ideal case,
the network is efficiently handling the traffic load without experiencing congestion or
performance degradation. This stable QoS is indicative of a well-provisioned network
infrastructure and effective congestion control mechanisms in place, it demonstrates the
network’s robustness and its capacity to deliver consistent and reliable service to users.
Such an outcome is desirable for ensuring smooth and uninterrupted data transmission,
minimizing delays, and maximizing the overall efficiency of the network.

5.7.2 Case 2: QoS degradation due to loss

Figure 5.15 showcases a distinct pattern characterized by a sudden decrease in the
BIF value following the identified SS exit time. Subsequently, the BIF value remains
significantly lower than its peak value during the SS phase. This pattern is commonly
associated with a degradation in QoS attributed to packet loss due to the CCA mechanism
that decreases the BIF value in case of losses. These losses could be isolated in the case
of transmission problems, or in bursts in the case of congestion problems.
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Figure 5.15 – BIF plunge after SS exit: loss

The observed drop in the BIF value indicates a reduction in the amount of data in
transit within the network. Such a decrease can be caused by various factors, including
cross-traffic competition and transmission errors. Cross-traffic competition refers to the
presence of data traffic generated by other sources sharing the network infrastructure,
this can lead to congestion and subsequent packet loss due to the high demand, resulting
in the observed pattern in the BIF curve. In addition, transmission errors can contribute
to the loss of packets within the network. These errors may appear due to issues such
as signal interference, network disruptions, or faulty transmission equipment. The loss of
packets can adversely affect the overall QoS by disrupting the timely and reliable delivery
of data, forcing the CCA to exit the SS before reaching the full true bottleneck capacity.
To differentiate between transmission and congestion problems, we should focus on the
losses, and thus, on the decrease in the BIF value as after each loss the CCA reduces its
BIF value. In the case of a congestion problem, the decrease should happen successively
and so the BIF value keeps decreasing as multiple packet losses are noticed in congestion
problems. On the other hand, in the case of transmission problems, the losses are isolated.
Therefore the reduction in the BIF value should happen only for one time before the BIF
value reincreases.

By recognizing this pattern, network administrators and engineers can identify po-
tential sources of congestion or transmission errors and take appropriate measures to
mitigate the impact on QoS. This may involve adjusting network configurations, opti-
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mizing resource allocation, or implementing error correction mechanisms to enhance the
reliability and performance of the network.

5.7.3 Case 3: QoS degradation due to jitter

In addition to packet loss, another common underlying cause for early SS exit is packet
delay variation, also known as jitter [5]. Jitter refers to the variability in the time it takes
for packets to traverse the network, and it can occur even before the bottleneck capacity
has been reached. Figure 5.16 demonstrates this particular scenario.

In contrast to the first case that represents a case without degradation (5.7.1 where
the BIF stays stable after the SS exit time, the Figure 5.16 case shows a continuous
growth in the BIF, but at a much slower rate. This increase indicates that the CCA
did not reach the true bottleneck capacity during the SS state, therefore the BIF value
continues to increase after. This distinct difference between the two patterns allows for
easy discrimination between them. This behavior is frequently observed in mobile access
networks that are impacted by large jitter values. Jitter can occur due to various factors,
including network congestion, variations in transmission speeds, or fluctuations in the
wireless signal strength. These variations in packet delay can lead to early SS exit, as
the CCA perceives the increased delay as a sign of network congestion, prompting it to
prematurely exit the SS phase.

Identifying and distinguishing these different patterns is crucial for effectively diag-
nosing and troubleshooting network performance issues. By recognizing the characteristic
behaviors associated with packet loss and jitter, network administrators can gain insights
into the root causes of QoS degradation in mobile access networks. This understanding
can guide the implementation of appropriate mitigation strategies to minimize the impact
of jitter and improve the overall performance and reliability of the network.

5.8 Conclusion

As many network operators use the SS state duration as a key indicator for the diag-
nosis of faults, it is crucial to automate its extraction to save human experts time. In this
work, we have presented a method to automatically detect the exit from the Slow-Start
state, enabled by an innovative timeless representation of the observed packet series. We
deployed our method in active and passive probes in four countries with varied access
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Figure 5.16 – Slow BIF growth after SS exit: jitter issue

networks and traffic conditions and tested it with both CUBIC and BBR. This evaluation
shows the method to be accurate enough for the purpose, i.e. very often within 1 RTT
of the oracle.

In the next chapter, we explore how this automated SS detection tool is a powerful
tool that allows us to identify TCP BBR traffic among other CCA variants.
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Chapter 6

BBR IDENTIFICATION

The contributions of this chapter have been published in the con-
ference ITC [47]:

— Ziad Tlaiss, Alexandre Ferrieux, Isabel Amigo, Isabelle Ham-
chaoui, Sandrine Vaton. Automated Identification of BBR
Traffic based on Packet Inter-Arrival Times Analysis, 35th
International Teletraffic Congress ITC (ITC-35), 2023

6.1 Introduction

The Internet is a complex and constantly evolving system, and CCAs play a crucial
role in ensuring its functioning by managing network performance. These algorithms
regulate the flow of data within a network and optimize data transmission for efficiency
and effectiveness. They do this by continuously estimating available network resources
and adjusting the data transmission rate accordingly. For network operators, identifying
the CCAs being used on their network is essential to gain valuable insights into network
performance and device behavior. This information can help them gain a better under-
standing of how the network is being utilized and which algorithms are most effective
in different scenarios. With a clear understanding of the CCAs in use, they can make
decisions about network design, configuration, and management.

A loss-based algorithm like CUBIC reduces the sending rate in case of high levels of
packet losses, leading to a drop in throughput for users. In order to ensure a high-quality
user experience for clients utilizing CUBIC traffic, network operators are required to make
substantial investments. These investments are crucial for provisioning bandwidth and
buffering capacity, thereby minimizing the occurrence of packet loss and enhancing overall
service quality. The arrival of BBR, with its novel approach both to congestion detection
and sending rate control, presents an opportunity for network operators to reduce invest-
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ment in network infrastructure. Indeed BBR offers better resource utilization, improved
performance, and lower latency, while massively reducing the need for buffering space.

Network operators seek automated methods to identify the specific CCA employed
within their network, specifically discerning whether it is BBR or another variant. This
information is vital for optimizing their network infrastructure effectively. In this chap-
ter, we present a method for automatically identifying BBR traffic on the Internet. Our
method relies on analyzing packet inter-arrival times, specifically comparing the distri-
bution of packet inter-arrival times during the Slow-Start state of a BBR capture with
those of a CUBIC capture. In our method, we focus on detecting the silence period after
packet bursts that are present in almost all non-BBR congestion control algorithms. This
method is characterized by a very simple frontend signal processing that exploits the al-
gorithms’ core principles, allowing for a tiny parameter space dimension (two), which is
sufficient for robust discrimination.

6.2 Motivation of the method

One of the main objectives of our approach is to detect whether or not pacing is used
in a TCP connection. In a paced TCP, instead of sending new packets immediately after
receiving an acknowledgment, the packets are held back for a certain duration, which
results in less bursty TCP traffic [3]. In other words, TCP pacing is used to evenly space
data sent into the network over an entire round-trip-time; in this case, data is not sent
in a burst. To measure the fraction of TCP traffic that is paced, we illustrate this using
BBR and CUBIC CCAs. BBR, with its novel approach both to congestion detection and
sending rate control, is a TCP CCA that paces. On the other hand, CUBIC, a loss-based
algorithm that reduces its sending rate in case of high levels of packet loss, is a TCP
CCA that does not pace. Recent studies show the impact of pacing on improving TCP
performance [11], especially in the case of shallow buffers (i.e. small buffer size in routers).

For network operators, understanding whether the TCP in use on their network is
paced or not is crucial. For instance, detecting whether pacing is employed within op-
erators’ networks helps them measure the burstiness of the resulting TCP traffic. This
burstiness might have an impact on how network buffers are dimensioned; operators need
to adjust buffer sizes and network management strategies accordingly. For example, the
guidelines outlined in [4] might no longer be applicable. Additionally, bursty traffic can
lead to sudden spikes in network utilization, potentially causing congestion. By identi-
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fying bursty traffic, operators can implement measures to smooth out traffic patterns,
thereby preempting congestion-related issues.

By design, of the two end-points of a connection, only the source has explicit knowledge
of the running CCA flavor (CUBIC or BBR). As a consequence, in this paper, we work
with traces from controlled sources (i.e. our lab servers) to calibrate our recognition
algorithm. Extension of this method to real life traffic from third-party servers will be
considered in section 6.4.

From the mere observation of traces, it can be seen that at the beginning of the
connection, BBR and CUBIC emission patterns are particularly dissimilar (Figure 6.1):
CUBIC is typically bursty whereas BBR exhibits a smooth emission pattern. This results
from a fundamental difference between these two CCAs: BBR is rate-based while CUBIC
is window-based. In other words, CUBIC sends its full window in a burst and waits for
acknowledgements, while BBR paces its emissions according to a rate-based policy.

Figure 6.1 – SEQ against time graph of real CUBIC and BBR connections during SS

However, after SS exit, CUBIC also tends to behave smoothly, as it is subject to the
so-called "ACK clocking" phenomenon [6], due to bottleneck-induced pacing, as shown in
Figure 6.2. This precisely happens when reaching the bottleneck capacity, typically on
SS exit.

In a nutshell, the best period for discrimination appears to be during the SS. As a
consequence, we isolate the SS period of each connection and characterize the emission
patterns - more precisely, the burstiness - in this period only. To assess it, our approach
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Figure 6.2 – SEQ against time for a CUBIC capture

relies on analyzing the distribution of packet inter-arrival times (INTRPKT), derived from
the packet capture.

6.3 Analyzing packet inter-arrival times: modelling
and inference

BBR and CUBIC are two popular congestion control algorithms representing together
the main part of Internet volume [2]. As their behavior is particularly contrasted in the
presence of loss or other degradation, it is crucial to differentiate them when investigations
are conducted. Indeed, erroneous conclusions can easily be drawn in case of misidentifica-
tion of the CCA flavor. For example, analyzing the behavior and reaction of a CCA after
a loss highly depends on the type of CCA in use on the network. Despite the abundant
literature on their respective strengths and weaknesses, little has been proposed on solid
discrimination tools. In the present section, we propose an identification method based
on their different behavior during the SS state.

6.3.1 Characterization of CUBIC and BBR during SS state

In order to analyze and understand the statistical properties of the INTRPKT dis-
tribution, we present the histograms in Figure 6.3 for a BBR connection (shown in red)
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compared to a CUBIC connection (shown in blue). These histograms plots reveal distinct
differences in the shapes of the distributions between the two algorithms.

The BBR distribution appears to have a narrower shape, indicating that the packet
arrival times follow a more tightly clustered pattern. This is because BBR tends to
maintain a more consistent and controlled pacing of packet transmission, resulting in a
less varied distribution of INTRPKT. On the other hand, the CUBIC distribution displays
a different characteristic. It is typically a mixture of two components: short INTRPKTs
for the packets inside the bursts and a few long INTRPKTs corresponding to the period
of silence between 2 bursts, meaning that it has a greater likelihood of observing larger
INTRPKTs. This nature is because CUBIC can experience longer delays or variations in
packet arrival times, which may result in a less consistent transmission rate.

Figure 6.3 – The PDF of INTRPKT for a CUBIC and BBR capture

CUBIC INTRPKT distribution

The main peak of a CUBIC inter-arrival distribution corresponds to the short IN-
TRPKTs within bursts, while the tail of the distribution corresponds to long INTRPKTs
resulting from periods of silence between two bursts as shown in Figure 6.4. Let’s consider
N the average number of packets in a burst. In this context, we can determine the proba-
bility of an inter-packet arrival time belonging to a burst or a silence between two bursts.
The probability for an INTRPKT to belong to a burst (respectively to silence between
two bursts) is N

N+1 (respectively 1
N+1). We can then express the pdf of the INTRPKT as
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Figure 6.4 – Packet arrivals in a CUBIC connection

a mixture distribution f , as shown in this equation:

f(x) = 1
N + 1g(x) + N

N + 1h(x) (6.1)

Here, g(x) is the pdf of the OFF periods that correspond to large INTRPKTs, while h(x)
is the pdf of packet interarrival times within bursts.

BBR INTRPKT distribution

In contrast to the CUBIC inter-arrival distribution, a typical BBR INTRPKT distri-
bution shows a distinct characteristic with a peak primarily observed on small INTRPKT
values. The occurrence of large INTRPKT is relatively rare in BBR due to its smooth
emission pattern. The discrimination task between BBR and CUBIC distributions can
therefore be simplified to recognize the difference between single-peak distributions (BBR)
and two-component mixture distributions (CUBIC).

Expanding small contributions

In the CUBIC case, it can be observed from Equation 6.1 that the probability of
occurrence of a large INTRPKT component is significantly smaller in comparison to the
probability of occurrence of a short-INTRPKT component. This is primarily due to the
large number of events within a burst, which outweighs the relatively smaller number
of pauses between bursts. As our objective is to discriminate between single-peak and
two-component mixture distributions, it is essential to address this inherent imbalance by
magnifying the minority contribution, specifically the long-INTRPKT component. Since
the two components’ mixture behavior of the CUBIC distribution is of particular interest,
enhancing the representation of the long-INTRPKT component becomes crucial.

Note that, as with any distribution, the CUBIC pdf (Eq. 6.1) can be approximated
using an empirical distribution based on the measured INTRPKT values:

f̂(x) = 1
T

T∑
i=1

1xi
(x) (6.2)
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We note that T is the number of INTRPKTs and 1xi
(x) is the indicator function that is

equal to 1 when x = xi and to 0 otherwise.

To magnify the minority contribution of the long-INTRPKT component in the CUBIC
distribution, we thus weight each observed INTRPKT value xi by:

wi = xi∑T
j=1 xj

This ensures that the two-component nature of the distribution receives adequate
attention and significance during the discrimination process. So we now consider the
rebalanced empirical distribution f̂bal:

f̂bal(x) =
T∑

i=1
wi1xi

(x) = 1∑T
j=1 xj

∑
i

xi1xi
(x) (6.3)

Notably, if the timescale is renormalized to [0, 1] for the observation period (SS state),
then ∑T

j=1 xj = 1 and
f̂bal(x) =

∑
i

xi1xi
(x)

It is interesting to notice that the resulting empirical distribution f̂bal closely approx-
imates the distribution of INTRPKTs that would be observed if sampling was uniform
over time as shown in Figure 6.7 rather than uniform over packets as shown in Figure
6.8. Figure 6.5 and Figure 6.6 represent real-life examples of the two sampling techniques.
This observation highlights the impact of the sampling method on the resulting distribu-
tion. Choosing each sampling instant uniformly over the observation period corresponds
to a Poisson sampling.

The PASTA (Poisson Arrivals See Time Averages) property is a fundamental property
of Poisson processes, a result of this property states that the probability of a sampling
instant falling during a particular event is equal to the ratio of the average duration
of that event to the average total duration of both events combined. In the context of
INTRPKT, this implies that the probability of a sampling instant occurring during a
burst or a silence period (ON and OFF period as shown in Figure 6.9) can be determined
based on the average durations of these periods. Specifically, let TON denote the average
duration of a burst, and TOF F represent the average duration of a silence period. Thus,
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Figure 6.5 – The PDF of INTRPKT for a
CUBIC and BBR capture using the uni-
form over packets sampling

Figure 6.6 – The PDF of INTRPKT for a
CUBIC and BBR capture using the uni-
form over time sampling

Figure 6.7 – Uniform sampling over time.

the probability of a sampling instant falling during a burst is given by:

TON

TON + TOF F

Similarly, the probability of a sampling instant occurring during a silence period is
given by:

TOF F

TON + TOF F

These probabilities reflect the relative durations of bursts and silences. The longer the
average duration of a burst compared to the average duration of silence, the higher the
probability of a sampling instant falling within a burst, and vice versa. Therefore f̂bal(x)
is an empirical approximation of the following mixture distribution:

ϕ(x) = TOF F

TON + TOF F

g(x) + TON

TON + TOF F

h(x) (6.4)
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Figure 6.8 – Uniform sampling over packets.

Figure 6.9 – Illustration of the two events ON and OFF

It can be observed that the weight TOF F

TON +TOF F
of g(x) in Eq. 6.4 is not negligible (contrary

to the weight 1
N+1 in Eq. 6.1). Replacing a uniform sampling strategy across packets

with a uniform sampling strategy over time gives more weight to the inter-packets which
correspond to silences between two bursts. This is an interesting property because it
makes it possible to better differentiate the distribution of INTRPKT between CUBIC
and BBR.

6.3.2 Separating CUBIC connection from a BBR connection us-
ing CDFs

To better capture distribution features, we switch from PDFs (Probability Density
Functions) to CDFs (Cumulative Distribution Functions). Figures 6.10 and 6.11 respec-
tively show the raw and re-balanced CDFs of INTRPKTs during the SS state of CUBIC
and BBR. We see that in the rebalanced case (which mimics a uniform sampling over
time), the two distributions are much better separated than in the raw case (correspond-
ing to the original uniform sampling over packets).

Let us assume that our objective is to determine whether a connection is carrying
BBR traffic or not. To accomplish this, we can frame the problem as a hypothesis test
between two options: H0 : CUBIC and H1 : BBR. During the SS state, we measure
INTRPKT values x1, x2, . . . , xT , and propose a method that makes a decision based on
these values.

Since CUBIC tends to have more long INTRPKTs, we decide that the connection is
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Figure 6.10 – CDF of INTRPKT for a CUBIC and BBR capture using the raw distribution
(uniform sampling over packets)

using CUBIC if the proportion of values (xi)i=1,T smaller than a threshold x is smaller
than y. Conversely, if the proportion of values (xi)i=1,T smaller than x is greater than y,
then we conclude that the connection is using BBR.

In other words, we are seeking a point (x,y) that separates the red and blue curves in
Figure 6.11. If the curve (x, f̂bal(x)) (Eq. 6.3) is below this point, we decide CUBIC; if
it is above the point, we decide BBR. Since there are two types of risk in a hypothesis
test between two options, false alarm (detecting BBR but the capture was with CUBIC)
and non-detection (detecting CUBIC but the capture was with BBR), we propose to fix
y = θ(x) for a particular value of x, so that the two risks have equal probability. This
roughly corresponds to positioning the point (x, y) in the middle, between the green and
red curves in Figure 6.11 (assuming equal numbers of CUBIC and BBR connections). We
then search for the best value of x that minimizes the total (false-alarm + non-detection)
probability of error, which is the probability of misclassifying a connection. Put simply,
let us consider we fix x = 0.01, and we then calculate y that separates the best the red
and blue curves and we fix it. We then took x = 0.02 (0.01 step) and we calculated y that
best separates the two curves. We keep repeating this procedure and we finally select the
(x, y) point that separates the two curves with the minimum error rate. In the case where
multiple points are selected with equal error rates, we selected the central point to ensure
a wider margin.
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6.4. Model evaluation

Figure 6.11 – CDF of INTRPKT for the same captures in Figure 6.10 using the re-balanced
distribution (uniform sampling over time). A typical decision point (x; y) is shown.

6.4 Model evaluation

In this section, we present the evaluation of our method and model for classifying
connection captures. To assess the performance and effectiveness of our approach, we
utilized two datasets: a training dataset consisting of 221 packet captures and a testing
dataset consisting of 583 packet captures. The training dataset was used to train our
model in order to select a decision point that separates a CUBIC connection from a
BBR connection, while the testing dataset was employed to evaluate its classification
performance.

During the training phase, we selected a single decision point based on the analysis
of the training dataset. This decision point serves as a reference for the classification
process and guides the model in distinguishing between BBR and CUBIC captures. We
measured the classification performance by comparing the predicted classifications against
the ground truth labels assigned to each connection capture.

6.4.1 Packet traces characterization

The packet traces were captured on one of our servers based in Paris, which was
accessed by multiple active probes via the public Internet. The measurements were per-
formed by conducting several downloads from our server with BBR and CUBIC CCA
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algorithms. Our server is based in Europe and our probes are on another continent.
For the sake of representativity, we positioned our probes across different countries. In

addition, our downloads were carried out during peak and off-peak hours, seeking different
levels of congestion. Table 6.1 shows the variations in the exit time of the SS state across
the different downloads (packet captures), showing different resource conditions for the
different TCP connections. Indeed, as the CCA stays in the SS state as long as it estimates
that the bottleneck capacity is not yet reached, the variation of the exit time of the SS state
reveals variations in the available network resources. The average RTT of our captures
varies between 100ms and 400ms, while the majority fall between 200ms and 300ms as
shown in Table 6.2. For the considered probe destinations and by taking into account
the distance between the probes and the server, an RTT value less than 250 ms usually
indicates a good QoE, on the other hand, an RTT value higher than 250 ms normally
means a congested network.

SSET (sec) <0.4 [0.4;1[ [1;1.6[ [1.6;2.2[ [2.2;2.8[ >2.8
Donwloads 1% 14% 22% 30% 32% 1%

Table 6.1 – Distribution of exit time of the SS state (SSET) for the considered dataset.
Variation on the exit time of the SS state can be an indicator of variation of the available
network resources.

RTT value (ms) <200 [200;250[ [250;300[ >300
Downloads 1% 53% 45% 1%

Table 6.2 – Distribution of RTT values for the considered dataset. For the considered
destinations less than 250 ms corresponds to good connections and higher than 250 ms
to a congested network.

6.4.2 Choice of the decision point using a training dataset

In order to identify the optimal decision point, we trained on a dataset of 221 packet
captures, consisting of 133 BBR captures and 88 CUBIC captures. By applying the equal-
error-rate minimization described above to the CDF curves of these packet captures,
depicted in Figure 6.12, we determined that the decision point should be set at (x =
0.14, y = 0.503): in other words, the optimal decision criterion amounts to comparing the
median of the INTRPKT distribution with 0.14 ∗ RTT .
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6.5. Conclusion

Using this decision point, the minimum total error rate achieved on the training dataset
is 2.6%.

Figure 6.12 – Choice of the decision point on the training set

6.4.3 Testing the decision point to identify BBR CCA

To assess our approach, we gathered a total of 583 packet captures, consisting of 389
BBR and 194 CUBIC captures. The CDF curves of all 583 captures are presented in
Figure 6.13. By using the decision point we obtained on the training dataset, the model
is able to identify TCP variants with an overall error rate of only 4.1%. None of the
194 CUBIC captures is misclassified, and 16 out of the 389 BBR captures are mistakenly
classified as CUBIC. This slight bias points to the necessity of a larger and more diverse
training set, slated for future work.

6.5 Conclusion

In this chapter, we presented a method to automatically differentiate between BBR
and CUBIC traffic. Our method focuses on the sending rate of each CCA during the
slow-start phase, specifically by analyzing the inter-arrival times of packets. We used the
empirical CDF of inter-arrival times, under a pertinent resampling allowing us to give a
significant weight to underrepresented events (long inter-arrival times, corresponding to
off periods). These CDFs are then compared to a decision point calculated during the
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Figure 6.13 – Model evaluation on an independent test set

training phase so as to minimize the total equal error rate. Our method was trained
on 221 packet traces, including 133 BBR and 88 CUBIC captures, and evaluated on 583
traces, including 389 BBR and 194 CUBIC captures collected over a 4-month period under
various network conditions. Our method achieved a 4.1% total error rate with no false
negatives among the 389 BBR captures.

Our "BBR vs. CUBIC" classifier for TCP connections is both extremely cheap in
training and runtime computational resources (as the model comprises only two dimen-
sionless scalars and feature extraction is trivial), and quite promisingly accurate as per
our preliminary evaluation. Despite our confidence in the approach, we recognize that
there are various obstacles that could jeopardize it if newer versions of CUBIC and BBR
were to be widely adopted by the industry. The first that comes to mind is BBRv2 [43],
the most recent version of BBR, which incorporates an improved loss detection mecha-
nism to better react to changes in network conditions. However, this improvement does
not impact our method since the pacing rate during the SS state remains unchanged. Of
more concern could be newer versions of CUBIC resorting to some level of pacing, which
might blur the rather clear contrast with BBR during the SS phase. However, at the time
of writing only a small part of providers turn to this option, partly due to its absence in
the default stack tuning of popular operating systems. Should this state of affairs evolve,
one might consider addressing this 3-class task with two decision points, with somewhat
lowered accuracy.
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Chapter 7

CONCLUSION

The work presented in this thesis focuses on the automation of network troubleshooting
using performance measurements extracted from packet captures. Our first objective was
to propose new approaches and tools that allow operators’ network troubleshooting ex-
perts to quickly identify the root cause of degradation. Networks generate vast amounts of
data from various sources, and analyzing these data manually is nearly impossible, making
automation essential for effective troubleshooting. Automation can significantly reduce
operational costs by decreasing the time and manpower required for troubleshooting. It
allows experts to focus on more complex issues that require human intervention. We
started our work by analyzing over 500 TCP packet traces exhibiting poor connections
and identified them as anomalies (Chapter 4). We selected these captures by compar-
ing the throughput obtained during file download from our server using TCP with the
throughput achieved using UDP. By manually analyzing these packet captures, we classi-
fied four frequently observed network degradation root causes, which are transmission loss,
congestion, jitter, and application-limited behavior. The focus of this work was not on
identifying all of the degradation root causes but on recognizing the most frequent ones
that occurred across our networks. Congestion problems were among the most salient
ones, weighing more than 50% of the total. Transmission problems and jitter problems
come next covering together about 45% of the cases. Application-limited behavior was
only observed in some specific cases (5% of the cases) where the used congestion control
algorithm was too aggressive (TCP-BBR) or where the used probe was old and/or with
a small buffer capacity.

As a consequence of the manual analysis, by identifying common patterns and charac-
teristics, we recognized the importance of the Slow-Start state in the congestion control
algorithm for network packet trace analysis as a key element for identifying the root cause
of degradation. To accelerate the troubleshooting process, we proposed a new tool that
permits troubleshooting experts to automatically detect the Slow-Start state (Chapter 5).
This detection is based on a new representation of the sequence number versus the bytes-
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in-flights. In the context of our research, we adopt this particular representation with the
purpose of discerning the last packet within the Slow-Start state of the Congestion Con-
trol Algorithm (CCA). This determination relies on a distinctive relationship between the
sequence number values and the bytes-in-flight values, which holds true exclusively dur-
ing the SS phase. Notably, this methodology holds applicability to both QUIC and TCP
Congestion Control Algorithms, benefiting from their structural similarities. Nonetheless,
by requiring the bytes-in-flight, its utilization for QUIC traffic necessitates active mea-
surements, implying the ability to decrypt the traffic, while its application to TCP traffic
remains feasible in both active and passive measurement contexts. In order to assess the
efficacy of our suggested approach for detecting the exit from the Slow-Start phase, we
tested it with Cubic and BBR Congestion Control Algorithms as they represent the two
most used congestion control algorithms. With our method, in the case of CUBIC, we
were able to predict the exit from Slow-Start in 95% of the cases with a prediction error
of less than 1 RTT. In the case of BBR and due to the complexity in accurately detecting
the true exit time from the Slow-Start state, in 90% of the cases the prediction error
was below 2 RTT. The Slow-Start exit time tool proves to be helpful in quickly identify-
ing three of the degradation root causes mentioned above, namely, congestion problems,
transmission problems, and jitter issues. Thus we implemented our tool across Orange
probes and it is used today by Orange troubleshooting experts to accelerate the process
of troubleshooting in order to quickly identify the repeated degradations, which allows
them to focus on more complicated degradation problems. We believe that by using our
Slow-Start exit time detection tool, scientists could refine the criteria so as to identify
more classes and integrate the method into an automated classifier. On another aspect,
detecting the Slow-Start state exit time could be a powerful tool to investigate the fair
share of a connection between multiple TCP variants, and it can be used to identify TCP
flavors.

After isolating the Slow-Start state in a TCP connection, we focused on developing a
method for detecting the use of pacing in TCP connections (Chapter 6). Paced TCP is
a methodology where packets are transmitted in a more evenly distributed flow of data,
minimizing bursty behavior in TCP traffic. This controlled approach ensures that data
transmission is spaced evenly across the entire round-trip time, preventing sudden bursts
of data. Due to the impact of pacing, particularly in scenarios with shallow buffers,
emphasizing its potential to enhance TCP performance, network operators are highly
interested in detecting its presence in their TCP networks. This knowledge enables oper-
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ators to measure the burstiness of TCP traffic, a factor critical in determining appropriate
buffer sizes and network management strategies. Traditional buffer dimensioning guide-
lines might need revision in light of this pacing-induced shift in traffic behavior. Moreover,
bursty traffic patterns can lead to abrupt spikes in network utilization, potentially causing
congestion. Identifying such traffic allows operators to proactively implement measures
to smooth out these patterns, mitigating congestion-related challenges and ensuring a
more stable network environment. As TCP flavors continue to diversify, understand-
ing and managing paced TCP traffic will remain crucial for efficient network operation
and performance optimization. In order to detect paced TCP traffic, we employed BBR
and CUBIC Congestion Control Algorithms as case studies to demonstrate the concept
of paced TCP. BBR embodies a pacing approach, in contrast, CUBIC does not utilize
pacing. Our analysis has highlighted a distinct contrast in emission patterns between
CUBIC and BBR Congestion Control Algorithms. This dissimilarity is rooted in the core
mechanisms of the two Congestion Control Algorithms. CUBIC sends its entire window
of packets at once and then pauses to await acknowledgments. This behavior results in
observable patterns of packet bursts followed by periods of silence. This burst-like be-
havior is intrinsic to CUBIC, as it ensures the successful reception of sent packets before
initiating the transmission of the next burst. In contrast, BBR adopts a rate-based strat-
egy, pacing its emissions accordingly. Consequently, the distinct burst/silence pattern
observed in CUBIC traffic is absent in BBR. To decide whether the TCP flavor in use
is CUBIC or BBR, we focused on the analysis of packet inter-arrival times. We noticed
that the occurrence of large packet inter-arrival times is relatively rare in BBR, there-
fore, to discriminate between BBR and CUBIC distributions we aimed to recognize the
monomodal distributions in the case of BBR vs. the bimodal distributions in the case
of CUBIC. In view of the significantly large number of events within a burst compared
to the relatively small number of pauses between bursts in CUBIC, we noticed that the
large-inter-arrival component is dwarfed by the short-inter-arrival component. Thus, in
order to effectively discriminate between mono- and bimodal distributions, it is neces-
sary to address this imbalance by amplifying the minority contribution, specifically the
large-inter-arrival component. After giving more weight to this component, we found a
way to compute a decision point that effectively separates the CUBIC from the BBR
curves by minimizing the total probability of error, which encompasses both false alarm
and non-detection probabilities. we then evaluated our method for classifying connection
captures, using two datasets: one of 221 packet captures for training, and the other of
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583 packet captures for testing. The minimum total error rate attained on the training
dataset amounts to 2.6% (With this decision point, 1 over 88 CUBIC captures would
be mis-identified as BBR, and 2 over 133 BBR captures would be mis-identified as CU-
BIC). We then tested the decision point obtained with the testing dataset to the captures
gathered for evaluation. Our model was capable of identifying the TCP variants with an
overall error rate of only 4.1%. None of the 194 CUBIC captures are misclassified, while
16 out of the 389 BBR captures are mistakenly classified as CUBIC.

This thesis has three main contributions: the BIF = f(SEQ) representation, the
slope-1/2 method for SS detection, and the weighted-interpacket CDF view to detect
pacing. While clearly deserving refinements, we hope they can, together or in isolation,
serve as building blocks - or inspiration - for a family of more ambitious, fully automated
troubleshooting tools.

Perspectives and recommendations for further explo-
ration

In the pursuit of advancing the applicability and effectiveness of our proposed network
troubleshooting tools, in future research, we aim to make our Slow-Start detection tool
even better by checking how well it works in different types of networks. For instance,
we want to make sure the tool can handle encrypted data while still being effective. We
plan to expand our Slow-Start detection mechanism to include the passive measurement of
QUIC traffic. This enhancement will specifically focus on accurately estimating the bytes-
in-flight values. As QUIC traffic continues to grow and significantly influence network
traffic patterns, a strategic expansion would be to ensure that our diagnostic capabilities
will evolve alongside. Envision a future where QUIC’s ubiquity demands a specialized
approach for its unique challenges. This approach will enable us to precisely identify and
address performance issues unique to this protocol.

In the future, we plan to develop an extension towards a fully automated tool capa-
ble of autonomously detecting the root causes of network degradation. This tool will be
invaluable for quick fault detection and is designed to operate independently from opera-
tors. It aims to enhance the diagnostic process by exploiting correlations between diverse
data extracted through active and/or passive probes. By analyzing these correlations,
the tool will systematically identify and locate faulty segments within the network, fa-
cilitating fast resolution. While network operators will find this tool useful for efficient
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issue resolution, its primary focus goes beyond operational contexts. Researchers will be
able to leverage this automated tool as a valuable resource for in-depth studies on net-
work behaviors, gaining insights into the complexity of network degradation causes. This
prospective development promises not only to advance operational efficiency but also to
provide a transformative tool for researchers exploring the details of network behavior. It
marks a step towards autonomous network troubleshooting, signaling significant progress
in our ability to understand and manage network performance issues.

In the pursuit of future developments in network traffic identification, extending the
identification of BBR traffic and classifying between BBR and CUBIC traffic opens av-
enues for broader applicability. The next steps involve expanding this capability to cover
a wide spectrum of congestion control algorithms beyond BBR and CUBIC, thus creating
a classification framework. A particularly intriguing prospect is the real-world testing of
BBR traffic identification ("in the wild") using passive probes, allowing for a more holistic
assessment of its efficacy across diverse network environments. Furthermore, combining
the BBR identification method with the Slow-Start detection method presents a com-
pelling avenue for studying the fairness between different congestion control algorithms.
This integrated approach not only enhances the sophistication of our diagnostic tools but
also facilitates in-depth investigations into the interactions of various congestion control
algorithms under real-world network conditions.

Moving forward, an essential area for future research involves extending the method-
ology used to identify BBR traffic and distinguish between paced and bursty TCP traffic
beyond its current application during the Slow Start phase. By expanding the scope
to encompass all phases of BBR traffic, we open up a promising avenue for enhanced
flexibility in traffic classification. Accurately capturing the distinctive characteristics of
paced and bursty TCP throughout its entire lifecycle will allow us to refine our diagnostic
capabilities and improve the classification between different types of TCP traffic. Such
an extension will also foster a deeper understanding of the behaviors of both BBR and
CUBIC congestion control algorithms. This evolution in our identification method sets
the stage for developing a more robust diagnostic tool, capable of accurately discerning
between paced and bursty TCP traffic across various network conditions and phases.
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Titre : Méthodes automatisées d’analyse des traces de paquets réseau pour la reconnaissance des ano-
malies et l’identification des variantes TCP

Mot clés : trace de paquet, variants TCP, mesures active, algorithmes de contrôle de congestion

Résumé : Ces dernières années, le domaine du
dépannage réseau a suscité un intérêt particulier
de la part des chercheurs en raison de la com-
plexité et de l’importance de cette tâche. Le travail
présenté dans cette thèse se concentre sur l’auto-
matisation du dépannage réseau à l’aide de me-
sures de performance extraites des captures de pa-
quets. La première contribution de cette thèse ré-
side dans l’extraction de caractéristiques permet-
tant d’identifier la cause fondamentale d’une ano-
malie en analysant des traces de paquets TCP mon-
trant des connexions médiocres. Nous avons classé
quatre causes de dégradation fréquemment obser-
vées : les problèmes de transmission, les problèmes
de congestion, les problèmes de gigue et les limi-
tations d’application. La deuxième contribution de
cette thèse réside dans le développement d’une mé-

thode automatisée pour détecter l’instant de sortie
de l’état Slow-Start. L’importance de cette méthode
réside dans le gain de temps précieux dans l’ana-
lyse des problèmes réseau, étant donné que l’état
Slow-Start est un indicateur clé pour le diagnos-
tic des défauts. La troisième contribution de cette
thèse consiste en l’identification de l’algorithme de
contrôle de congestion BBR. L’objectif principal est
de détecter si un contrôle de l’envoi des paquets
(’pacing’) est utilisé dans une connexion TCP. Cette
méthode repose sur la modélisation de la distri-
bution de la durée de l’inter-paquet pendant l’état
Slow-Start. L’objectif est de reconnaître les distribu-
tions monomodales de l’inter-paquet dans le cas de
BBR par rapport aux distributions à deux compo-
santes mélangées dans le cas de CUBIC.

Title: Automated network packet traces analysis methods for fault recognition and TCP flavor identification

Keywords: packet trace, TCP variants, active measurements, Congestion Control Algorithms

Abstract: In recent years, the field of network
troubleshooting has garnered significant attention
from researchers due to the complexity and impor-
tance of this task. The work presented in this the-
sis focuses on automating network troubleshooting
using performance metrics extracted from packet
captures. The first contribution of this thesis lies
in extracting features to identify the root cause of
an anomaly by analyzing TCP packet traces with
bad performance. We have categorized four fre-
quently observed causes of degradation: transmis-
sion problems, congestion problems, jitter problems,
and application-limited problems. The second con-
tribution of this thesis involves developing an auto-

mated method to detect the moment of exiting the
Slow-Start state. The significance of this method
lies in saving valuable time in the analysis of net-
work degradation, as the Slow-Start state serves as
a key indicator for fault diagnosis. The third contri-
bution of this thesis revolves around identifying the
BBR congestion control algorithm. The primary goal
of our approach is to detect whether packet pacing
is employed in a TCP connection. This method re-
lies on modeling the distribution of inter-packet du-
ration during the Slow-Start state. The objective is
to distinguish unimodal distributions of inter-packet
intervals in the case of BBR compared to mixed two-
component distributions in the case of CUBIC.
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