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Combinatoire de l’élimination de Lazard et Interactions

Résumé. Ce mémoire est tout entier consacré à la réécriture des inversions dans cer-

taines structures avec produit, leur réarrangements et les contreparties combinatoires de

ces transformations pour les partitions d’alphabets c’est à dire l’élimination de Lazard

de générateurs (LE) et les formules associées (en particulier dans leurs quotients). Les

théorèmes du type (LE) donnent lieu à des formules uniformes pour tous les alphabets

et ont des schémas similaires pour les groupes, les monöıdes, les algèbres de Lie et les

algèbres associatives avec unité. Ces outils donnent lieu à de nombreux algorithmes

implémentables. La forme la plus simple de (LE) se produit dans la catégorie des k-

algèbres de Lie (k étant un anneau unitaire), nous nous concentrons sur les monöıdes

et les algèbres de Lie et donnons des exemples sur des “smash-produits” itérés pour

lesquels la réécriture des mots (“string rewriting”) joue un rôle crucial non seulement

dans la compréhension des formes normales, mais encore dans la façon dont on con-

verge vers elles. La fin de cette thèse se concentre sur les utilisations supplémentaires

de (LE) et de l’indexation de mots dans le contexte du half-shuffle, des algèbres de

Zinbiel et de la dualité de Magnus. En outre, il aborde le sujet des hyperlogarithmes

et de la théorie des caractères.
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Combinatorics of Lazard Elimination and Interactions

Abstract. This memoir is all about rewriting of inversions in some product structures,

reordering and their combinatorial counterparts for partition of alphabets i.e. Lazard’s

elimination (LE) of generators and associated formulas (in particular their quotients).

(LE) theorems provide uniform formulas for every alphabet and have similar schemes

for groups, monoids, Lie algebras and unital associative algebras. These tools give

rise to many implementable algorithms. The most celebrated form of (LE) is on the

category of Lie k-algebras (k being a unitary ring), we concentrate on monoids and

Lie algebras and provide examples on iterated “smash-products”, where the rewriting

on words (“string rewriting”) plays a crucial rôle to understand the normal forms and

how one converges to them. The end of this thesis focuses on additional uses of (LE)

and word indexing in the context of half-shuffle, Zinbiel algebras and Magnus duality.

Furthermore, it delves into the topics of hyperlogarithms and character theory.
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Grinberg (Drexel University) for their valuable comments and reports which greatly

contributed to the improvement of this manuscript.

I would also like to thank Professors Anne Micheli from Université Paris Cité, Hi-
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Université Sorbonne Paris Nord) for spending time to discuss Maths and PhD life with

5



me during our weekend seminars.

- Thank you, Dr. Le Hoang Tri, my professor from the Department of Mathematics

at Danang University of Education. “You were the first person to introduce me to the

world of modern mathematics”.

- To Professors Nguyen Duy Tan (Hanoi University of Science and Technology), Nguyen

Viet Dung and Phung Ho Hai (Hanoi Institute of Mathematics, VAST) for your whole-

hearted support during my studies in Hanoi.

- I thank to the Fondation Sciences Mathématiques de Paris (FSMP) for awarding me
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Introduction

This memoir is all about rewriting of inversions in some product structures, reordering

and their combinatorial counterparts for partition of alphabets i.e. (Lazard’s) elimina-

tion of generators and formulas of the type

STRUCT ⟨x1, x2, . . . , xn⟩ ∼= NICE⟨x1, x2, . . . , xn⟩ ⋄ STRUCT1⟨x1, . . . , xn−1⟩ (0.1)

where NICE et STRUCT1 stand for algebraic structures generated (sometimes freely)

by generators xi. The diamond symbol being, according to the situation, a tensor

product, a semi-direct product or a plain (unique) factorization. For example, with

the symmetric group Sn and the pure braid group PBn [5] :

Sn
∼= Z /nZ ⋄Sn−1 and PBn ∼= Fn−1 ⋄ PBn−1.

Here, in the first case, ⋄ is only a product of permutable subgroups and the iterated

decomposition helps building the infinite chain of embeddings or construct a basis of

Q[Sn] adapted to the calculation needs of Dynkin’s projector [32]. In the second case

we have a semi-direct product (where Fn−1 is the Free Group with n− 1 generators).

Let us firstly see the case of two permutable subgroups1 (where the ⋄ is a symbol of

(unique) factorization), we have G = G1G2 = G2G1 (and it is required that G = G1.G2

be of unique factorization). Then, at the level of the terms, the rewriting reads

g2g1 −→ l(g1, g2)r(g1, g2) (0.2)

and, in the case when r(g1, g2) = g2 identically, we have a semi-direct product i.e. for

every (g1, g2) ∈ G1 × G2, g2g1g2
−1 ∈ G1, so that we only need to know the factor

l(g1, g2).

1A common occurrence in solvability.
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CONTENTS

The categories covered here will be

1. Set, the category of sets.

2. Mon, the category of monoids.

3. Grp, the category of groups.

4. k-Lie, the category of Lie k-algebras (where k is a given commutative ring).

5. k-AAU, the category of unital associative k-algebras (where k is again a given

commutative ring).

and (forgetful) functors between the are as follows

Mon(2) Grp(3)

Set(1) k-AAU(5)

k-Lie(4)

F12

F23

F25

F45F14

Figure 1: Similar lower diagram with algebras and k-Mod replacing Set.
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CONTENTS

This Ph. D. answers the following questions

Q1) What are the expressions of Lazard elimination (LE) in several categories where

there are sort of semi-direct products?

Q2) Are these universal? (i.e. is every semi-direct product the image of some Lazard

elimination? and is LE a free object?2)

Q3) What is the Combinatorial counterpart of these investigations? (Bases, codes,

formulas, etc.)

Q4) If possible, is there a deep reason for the similarity of the obtained formulas?

The results of this Ph. D. are

1. Main result: compatibility of a set of generators and relations w.r.t. a partition

of the alphabet.

• Application to the Partially Commutative Lie algebra.

• Application to the Drinfeld-Kohno Lie algebra.

2. Every semi-direct product is the image of a Lazard elimination: Boolean gradings.

3. Generalized gradings: in the vein of the enlargement allowed by Wikipedia [58]

and Bourbaki, the theory of gradings has been enlarged to additive semigroups

and applied to the Hilbert series of the Drinfeld-Kohno Lie algebra (and its

universal enveloping algebra) with infinite number of generators.

4. The computation of (Id)gen worked out completely for any enveloping algebra3 (it

could be thought as a computation of local coordinates, see Mathoverflow [111]).

5. The infinite product, bases in duality (and Magnus setting) and their compati-

bility with elimination.

2This rather vague sounding question as well as question 3 heading subsection 2.2.3 (i.e. “About M.-

P. Schützenberger’s questions on the Partially Commutative Free Lie algebra”) have been reinterpreted

in the language of (algebraic) categories as the “search of the source of a free (forgetful) functor”.
3Of a Lie algebra linearly free, over a Q-algebra as announced in [94].
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CONTENTS

6. Towards a theory of domains for Polylogarithms and Harmonic sums.

Preliminary remark. All results of this memoir (save the Section 3.4 which rests on

complex analysis) are of “locally finite” nature and can be reached without topology. In

particular the limiting processes of infinite sums and products boil down to the notion

of summable families4.

From time to time, concepts of general topology (like density and completion) have in-

tentionally been kept because a purely algebraic reformulation would be lengthy, clumsy

and poorly expressive.

In the same way, categories are oftentimes used as a unifying concept but many results

can be rephrased without using the language of category theory.

4Or pointwise finitely supported families, see [56] Def 1.7.2.
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Chapter 1

Preamble

Contents

1.1. The (endo)functor Seq. . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2. Free objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1. General principle. . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2. Presented structures. . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3. Free monoids. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4. Free associative algebras. . . . . . . . . . . . . . . . . . . . . 25

1.2.5. Free Lie algebras. . . . . . . . . . . . . . . . . . . . . . . . . 27

1.3. An example of free object with respect to graphs. . . . . . . . . . 32

The chapter contains general facts about “free objects” from the scheme “solutions

of universal problems” for categories

Mon,Grp,k-AAU,k-Lie (1.1)

k being a fixed unital commutative ring.

1.1 The (endo)functor Seq.

In the following, we will use the (endo)functor Seq : Set→ Set (here all sets of ZFC

are admissible whatever their cardinality). Then, a set X being given, Seq(X) is the

15



1.2. FREE OBJECTS.

set of all sequences of elements of X i.e.

Seq(X) :=
⊔
n≥0

X{1,··· ,n} (1.2)

where, for E,F sets, FE is the set of all maps E → F , and, for f : X → Y ,

Seq[f ](x1, · · · , xn) := (f(x1), · · · , f(xn)). (1.3)

It is not difficult to check that Seq is a functor.

Remark 1.1. In [50], P. Flajolet and R. Sedgewick, provide a host of functors and

bifunctors with Set (or graded sets1), there called “combinatorial classes” as domain

(see [50] Ch 1 §1.2 “Admissible constructions and specifications”). There can be found

a host of beautiful combinatorial functors Set→ Set as: Seq, Cyc, MSet, ....

Our functor Seq is then similar to their Seq functor (save a modification of its domain

which is the whole sets of ZFC i.e. Set).

1.2 Free objects.

1.2.1 General principle.

In this subsection, we introduce the combinatorial (free) objects we will use throughout

the manuscript 2. These objects (call themG(X)) together with a map jX : X → G(X)

are all solutions of universal problems. We will recall the definition, notation and

terminology about these free objects below (cf. in general Bourbaki [12] Ch IV §3 or

[80] and, in particular, [10] Ch I §7.1 and Lothaire [79] Prop 1.1.1 for free monoids,

Bourbaki [13] Ch II §2.2 Prop 1 and Reutenauer [94] Thm 0.4 for free Lie algebras and

Bourbaki [10] for enveloping algebras i.e. towards the free associative algebras with

unit), but here, we state the general principle.

The scheme is the same for all categories considered in Eq. (1.1) (k being a fixed ring).

1More rigorously, finite or denumerable sets, N-graded by finite blocks.
2Freeness is here with respect to sets. To be more complete we will give in Section 1.3 an example

of freeness with respect to graphs.
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CHAPTER 1. PREAMBLE

All objects of these categories can be considered as sets, we then have a natural

“forgetful” functor F such that, A being an object (of one of these categories), F (A) is

the set underlying the structure A. We are now in the position of stating the universal

problem corresponding to the forgetful functor F .

Universal problem (w.r.t. F ). –

For any set X (C being one of the categories as above) does there exist a pair (jX , G(X))

(G(X) being an object of C and jX : X → F (G(X)) a map) such that:

For any map f : X → F (A), there exists a unique f̂ ∈ HomC(G(X),A) such that

f = F (f̂) ◦ jX .

Remark 1.2. It might happen that G be not defined everywhere as shows the case

with C = FinSet, F being the inclusion functor (i.e. F (X) = X for every finite set

and F (f) = f for every set-theoretical map between finite sets).

However a solution of the universal problem (1.4), for all X, provides a free functor

G : Set → C, X 7→ G(X) which is left-adjoint to the forgetful functor F : C → Set.

The reader must be aware that, in general, the notion of “forgetful functor” (here

constructed from algebraic structures and sets) is informal (see [112]).

Set C
X A

G(X).

F

f

jX f̂

(1.4)

1.2.2 Presented structures.

For any category of the list (1.1), the notion of a “structure defined by generators and

relations” is well defined. For X a set and C ∈ {Mon,Grp,k-AAU,k-Lie}, a relator

is a set of equalities t
(1)
i = t

(2)
i (i ∈ I) where t

(j)
i are elements of the corresponding

free structure G(X). We can express the universal problem of presented structures in

terms of maps and co-equalization.

Let u, v : I → G(X) such that u(i) = t
(1)
i , v(i) = t

(2)
i , then the structure defined “by

generators and relations” with X as set of generators and r = {u(i) = v(i)}i∈I as set

17



1.2. FREE OBJECTS.

of relations is noted

M = ⟨X | r ⟩C ∈ C (1.5)

This object comes together with an arrow sr : G(X) → M . The pair (sr,M) is a

solution of the universal problem (see diagram (1.6)) such that

• s = sr is a morphism G(X)→M of C such that F (s) ◦ u = F (s) ◦ v 3

(F : C → Set being the “natural” forgetful functor) and

• For every morphism φ : G(X)→ N such that F (φ) ◦ u = F (φ) ◦ v 4 there exists

a unique morphism φ̂ : M → N such that φ = φ̂ ◦ s

This situation is summarized by the following diagram.

Set C C

I G(X) N

M

F

u

v

φ

sr
φ̂

(1.6)

Remark 1.3. When one has underlying groups (additive or multiplicative), expressions

like ui = vi can be made equivalent to wi = e (e is the neutral5). In these cases, the

list of relations can be replaced by a list of relators. But, in the case of monoids (and

other structures like semigroups), no such mechanism exists and we have to stick to a

list of relations of type ui = vi.

1.2.3 Free monoids.

Oftentimes, we will use free monoids as monomials (i.e. in this section C = Mon).

Elements of a free monoid G(X) = X∗ are usually called “words” which is why the

generating set X is often called an alphabet (see [79]).

3This means that, for all i ∈ I, s(ui) = s(vi).
4This means that, for all i ∈ I, φ(ui) = φ(vi).
5For abelian groups (noted additively) ui = vi is equivalent to ui − vi = 0. For groups noted

multiplicatively ui = vi is equivalent to uiv
−1
i = 1.

18



CHAPTER 1. PREAMBLE

Alphabets and words.

Given a set X, the free monoid on X is the set X∗ of all words over the alphabet X (i.e.

the empty word 1X∗ or non-empty words x1x2 · · · xn, here n ∈ N+ and xi ∈ X, ∀i ∈

[1, n]), made into a monoid using concatenation as

x1 · · · xn.y1 · · · ym := x1 · · ·xny1 · · · ym.

We notice that, for any X ∈ Set, the set underlying X∗ (i.e. F (X∗) in the perspective

of Subsection 1.2.1) is nothing but Seq(X) with another data structure i.e. words

instead of lists (i.e. under this identification, one has F (X∗) = Seq(X)).

We will denote by |w| the length of a word w from X∗ and a partial degree |w|x is

the number of occurrences of an element x of X within w.

A word w ∈ X∗ being given, we will denote by (w) the multidegree of w, that is the

family (|w|x)x∈X which belongs to N(X), the set of finitely supported families6 of NX

(which is the set of all functions i.e. families (αx)x∈X from X → N) (cf. [10] Ch I §7.7).

The subset of X∗ of the words of length n is denoted by

Xn = {w ∈ X∗ | |w| = n}. (1.7)

We also consider the subset of the words with a given multidegree α ∈ N(X), namely

Xα = {w ∈ X∗ | (w) = α}. (1.8)

Commentary 1. i) When an ambient free monoid X∗ is fixed, for any Y ⊂ X∗, the

notation Y ∗ stands for the submonoid (of X∗) generated by Y , this set might not be

free as a monoid. For example, in a∗ (the free monoid on one letter)

{a2, a5}∗ = {1, a2, a4} ∪ {an}n≥5 (1.9)

is not free.

ii) Save in Example 1.3, we will only use the regular expression (see [93]) B∗Z =

{uz}u∈B∗,z∈Z. It can be shown that (B∗Z)∗ is free.
6Families whose support

supp((αx)x∈X) := {x ∈ X |αx ̸= 0}

is finite.
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Free monoid and its universal property.

For X a set (viewed as an alphabet of noncommutative variables), the canonical embed-

ding of X1 (the set of words of length one, which we identify with X) will be denoted

by jX : X ↪→ X∗.

One can prove easily that the constructed pair (jX , X
∗) is a solution of the universal

problem corresponding to the following diagram (see description in Subsection 1.2.1,

here for C = Mon or [94] Prop 1.1):

Set Mon

X M

X∗.

F

f

jX f̂

(1.10)

It means that for every monoid M and set-theoretical map f : X →M , there exists a

unique morphism of monoids f̂ : X∗ →M such that f̂ ◦ jX = f .

In Subsections 1.2.4 and 1.2.5, we will recall the construction of free objects for

the category of associative k-algebras with unit k-AAU and in the category of Lie

k-algebras k-Lie.

Presentation of a monoid.

Following the general scheme, the monoid presented by a set of generators X and

relations r = ((ui = vi))i∈I i.e.

M = ⟨X | ((ui = vi))i∈I ⟩Mon = X∗ /
≡r

(1.11)

together with the natural arrow sr : X∗ → M is a solution of the universal problem

(see diagram (1.12)) of existence of a pair (s,M) such that

• s is a morphism of monoids X∗ →M such that F (s) ◦ u = F (s) ◦ v 7

(F : Mon→ Set being the forgetful functor as above) and

7This means that, for all i ∈ I, s(ui) = s(vi).
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• For all morphisms of monoids φ : X∗ → N such that F (φ)◦u = F (φ)◦v 8 there

exists a unique morphism φ̂ : M → N such that φ = φ̂ ◦ s

Set Mon Mon

I X∗ N

M

F

u

v

φ

sr
φ̂

(1.12)

Note that, due to intersection properties of congruences ([43] Ch 1 §5, see below), the

arrow sr is onto as this is the case of the analogue arrows for each category C of the

list (1.1).

In this situation, with all set of generators X and relations r = {(ui = vi)}i∈I
(ui, vi ∈ X∗), the pair (sr,M) exists. In fact, M is the quotient of X∗ by the congruence

generated by the family ((ui = vi))i∈I (see [43] Ch 1 §5).

Example 1.1. Free group (as a presented monoid). –

Let X be an alphabet (viewed as a set of generators), we can construct an implemen-

tation version of the free group Γ(X) as follows

• Create X, a disjoint copy of X, X̃ = X +X with the involution x→ x̄ such that

¯̄x = x

• Then Γ(X) = X̃∗
/

(xx̄ = 1)x∈X̃
.

Example 1.2. Dihedral group D5 (as a presented monoid). –

The Dihedral group D5 = ⟨ {s1, s2} | s21 = s22 = (s1s2)
5 = 1 ⟩Mon is known as the

symmetry group of the regular pentagon.

Definition 1.1. We now consider the following

i) In general, for any monoid M , we say that M is graded if

M =
⊎
m∈N

Mm and Mp.Mq ⊆Mp+q

8This means that, for all i ∈ I, φ(ui) = φ(vi).
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1

2

3 4

5

1

2

3

4

5

Figure 1.1: For D5 (group of order 10). Coxeter presentation is with s1 (symmetry

w.r.t. the line passing through node 5) and s2 (symmetry w.r.t. the line passing

through node 2) and relations [s2i = 1 ; (s1s2)
5 = 1].

with M0 = {1M}. It is equivalent to say that a monoid M is graded if there is

an additive9 proper10 length function l : M → N 11.

ii) If, moreover, for all m ∈ N, |Mm| < +∞, M is said finitely graded. It means

that the additive proper length function l satisfies the property

|{x ∈M | l(x) = m}| < +∞,∀m ∈ N and then l is called a finitely additive

proper length function on M .

iii) The Hilbert series of a monoid M is then the formal power series

Hilb(M, t) :=
∑
m≥0

|Mm| tm ∈ N[[t]]. (1.13)

To have such a Hilbert series it suffices that the monoid be a finitely graded set.

Assume that X is a finite alphabet, it is an exercise to check (by the definition of

finitely additive proper length function) that a monoid M presented by

M = ⟨X | ((ui = vi))i∈I ⟩Mon with |ui| = |vi| for all i ∈ I is a finitely graded monoid.

9l(xy) = l(x) + l(y) ∀x, y ∈M .
10l−1(0) = {1M}.
11It is a morphism of monoids M → N, but, due to the lack of inverses, the condition l−1(0) = {1M}

does not imply that it is injective, of course.
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Remark 1.4. A remark for the exercise above is that the set X is a finite alphabet

and relations r = {(ui = vi)}i∈I are homogeneous w.r.t. length meaning |ui |=|vi | for

all i ∈ I. Moreover, let Bi = ⟨ {a, b} | ab = 1 ⟩Mon be the bicyclic monoid [4], then

we can prove without difficulty that Bi admits no N-gradation because each additive

proper length function l on Bi satisfies 0 = l(1) = l(ab) = l(a) + l(b) ≥ 2 which

is a contradiction, this shows that we cannot relax the condition that the relator be

homogeneous.

However, one can consider the Hilbert series of a set of distinguished representatives

as the language L = {bsar}r,s∈N is a section of the presented monoid Bi.

The condition homogeneity w.r.t. length whereas it is sufficient, is not necessary

by an example presented as follows: consider a homomorphism of monoids l : M =

⟨ {a, b} | b3 = ab ⟩Mon → N extending from a monoid homomorphism {a, b}∗ → N

which sends a 7→ 2, b 7→ 1 by the coequalizer (1.12) over the relation b3 = ab, then

clearly l is a finitely additive proper length function on M and hence M is a finitely

graded monoid.

Example 1.3. Assume that A := {a, b} is a set of two letters with a < b.

1. Let us consider monoid

SF0(A) := ⟨A | a2 = b2 = 1⟩Mon = ⟨{a, b} | 1 = a2 = b2⟩Mon (1.14)

It is easy to show that the onto morphism s : {a, b}∗ → SF0(A) admits as a

section the square-free language12

L = {a, b}∗ \ ({a, b}∗a2{a, b}∗ ∪ {a, b}∗b2{a, b}∗) (1.15)

= (ab)∗(1 + a) + (ba)∗(1 + b). (1.16)

(the + in 1.16 is, in this case, a dijoint union).

Alternatively, we can consider the monoid

SF1(A) := ⟨A | a2 = a; b2 = b⟩Mon (1.17)

It also admits the square-free language as a section, but it is by no means the

same monoid (the first one is a group whereas the second is not).

12Description with regular expressions (extended with “set minus” for the second term, see [93]).
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In fact the correct setting for Hilb(V, t) is that of a free module or a vector space

then and here as the monoids (1.14) and (1.17) are not graded, we give the Hilbert

series of the “square free section” L where

• L0 = 1A∗ ;

• L1 = {a, b};

• L2 = {ab, ba};

• · · ·

• For all m ≥ 1, one has L2m = {(ab)m, (ba)m} and L2m+1 = {a(ba)m, b(ab)m}.

However these monoids are not finitely graded for this decomposition because

the grading is not compatible with the product (seen as a concatenation with

rewriting) then

Hilb(M, t) =
∑
m≥0

|Lm| tm (1.18)

= 1 +
∑
m≥1

2tm = 1 +
2t

1− t
=

1 + t

1− t
. (1.19)

2. Consider another monoid with length presented as

M(A) := ⟨A | a2 = b2⟩Mon = ⟨{a, b} | a2 = b2⟩Mon (1.20)

One section of it is the language of words without any b2 factor

L = A∗ \ A∗b2A∗. (1.21)

In this case, M(A) is a finitely graded monoid M(A) =
⊎
m∈NM(A)m where

• M(A)0 = 1A∗ ;

• M(A)1 = W1 = {a, b};

• M(A)2 = W2 = {aa, ab, ba}, |M(A)2 |=|M(A)1 | + |M(A)0 |;

• M(A)3 = W3 = {aaa, aab, aba, baa, bab} , |M(A)3 |=|M(A)2 | + |M(A)1 |;

• M(A)4 = W4 = {aaaa, aaab, aaba, abaa, abab, baaa, baab, baba}, and then

|M(A)4 |=|M(A)3 | + |M(A)2 |;
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• M(A)5 = W5 = {aaaaa, aaaab, aaaba, aabaa, aabab, abaaa, abaab, ababa,

baaaa, baaab, baaba, babaa, babab}, |M(A)5 |=|M(A)4 | + |M(A)3 |;

• · · ·

• For each m ≥ 2, M(A)m = Wm the set of all words of length m without any

b2 factor and then |M(A)m |=|M(A)m−1 | + |M(A)m−2 |.

We obtain that |M(A)m |= F (m) is the Fibonacci number (with initial condition

F (0) = 1, F (1) = 2 13) and then the Hilbert series

Hilb(M(A), t) =
∑
m≥0

|M(A)m| tm =
∑
m≥0

F (m)tm

= 1 + 2t+ 3t2 + 5t3 + 8t4 + 13t5 + · · · = 1 + t

1− t− t2
.

1.2.4 Free associative algebras.

Here, we deal with free associative algebras with unit (i.e. C = k-AAU). See just

below.

Free associative k-algebras and its universal property.

Let k be a commutative ring with unit. A noncommutative polynomial on X over k

is a linear combination over k of words on X. We simply say polynomial when no

confusion arises. If P is a polynomial, we write it as

P =
∑
w∈X∗
⟨P | w⟩w.

The set of all polynomials is denoted by k⟨X⟩. It has a k-algebra structure, with a

concatenation product

PQ =
∑
w∈X∗
⟨PQ | w⟩w,

where

⟨PQ | w⟩ =
∑
w=uv

⟨P | u⟩⟨Q | v⟩.

The polynomial algebra k⟨X⟩ is the free associative k-algebra with unit (free k-AAU)

generated by X. It means that, given the canonical embedding jX : X → k⟨X⟩, then

13Usually, the initial conditions are 0, 1, · · · .
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for every associative k-algebra with unit A and set-theoretical map f : X → A, there

exists a unique morphism of k-AAU f̂ : k⟨X⟩ → A such that f̂ ◦ jX = f . We get

an inclusion and one can prove that the pair (jX ,k⟨X⟩) is a solution of the universal

problem corresponding to the following diagram (see description in Subsection 1.2.1,

here for C = k-AAU)

Set k-AAU

X A

k⟨X⟩.

F

f

jX f̂

(1.22)

Graded structures of the free associative k-algebra.

We shall explain graded structures of the free associative k-algebra with unit k⟨X⟩.

The reader can review in Bourbaki [13] or Reutenauer [94] the concept of graded k-

algebra (in the latter, homogeneous for the multidegree is called finely homogeneous).

For n ≥ 0, we denote by

kn⟨X⟩ = spank{Xn} (1.23)

the sub k-module generated by Xn in k⟨X⟩ (the n-th tensor power of the free k-module

with basis X). The grading by the total degree of the free associative k-algebra k⟨X⟩

can be described as a direct sum of k-modules

k⟨X⟩ =
⊕
n∈N

kn⟨X⟩ (1.24)

with the concatenation multiplication

kn⟨X⟩.km⟨X⟩ ⊆ kn+m⟨X⟩. (1.25)

A member of one of the subspaces kn⟨X⟩ (1.24) is called an homogeneous polynomial.

On the other hand, given an α ∈ N(X) there is a sub k-module of k⟨X⟩, namely

kα⟨X⟩ = spank{Xα}. (1.26)
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The free associative k-algebra k⟨X⟩ can be also graded by multidegree

k⟨X⟩ =
⊕

α∈N(X)

kα⟨X⟩ (1.27)

with the concatenation multiplication

kα⟨X⟩.kβ⟨X⟩ ⊆ kα+β⟨X⟩. (1.28)

We also call the grading (1.27) a grading by homogeneous submodules or finely ho-

mogeneous submodules. Let α = (αx)x∈X ∈ N(X) and denote by kα⟨X⟩ the space of

finely homogeneous polynomials of partial degree αx in each letter x. Notice that the

set Xα is a basis of kα⟨X⟩ (cf. Bourbaki [13] Ch II §2.6 p.127 “multigraduation“ or

Reutenauer [94] p.178 Ch 8 §1.6 where this module is noted Eα).

1.2.5 Free Lie algebras.

Here, we deal with free Lie algebras (i.e. C = k-Lie). See just below.

Lie polynomials.

On the polynomial algebra k⟨X⟩ with the concatenation product PQ =
∑
w∈X∗
⟨PQ |

w⟩w, a Lie bracket is as usual defined by

[P,Q] = PQ−QP. (1.29)

With this bracket, k⟨X⟩ is a Lie algebra. A Lie polynomial is an element of the small-

est submodule of k⟨X⟩ containing X and closed under the Lie bracket. The set of all

Lie polynomials in k⟨X⟩ forms a Lie algebra and we denote it by Lk(X). It can be

shown, through Lyndon bases14, that the Lie algebra Lk(X) is the free Lie algebra over

k generated by X. It means that, in view of Subsection 1.2.1, the pair (jX ,Lk(X)) is

a solution of the universal problem corresponding to following diagram:

Set k-Lie

X g

Lk(X).

F

f

jX f̂

(1.30)

14See, with Hall bases [13] Ch 2 §2.11 and [94] Ch 4 Prop 4.9.
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Moreover, Lk(X) is homogeneous for the two gradings, where

Lk(X) =
⊕
n∈N

Lk(X)n ; Lk(X) =
⊕

α∈N(X)

Lk(X)α (1.31)

with

Lk(X)n := Lk(X)
⋂

kn⟨X⟩ (1.32)

(homogeneous Lie polynomials of total degree n) and, for a finitely supported α ∈ N(X)

Lk(X)α := Lk(X)
⋂

kα⟨X⟩ (1.33)

(homogeneous Lie polynomials of multidegree α).

Due to the fine grading of the free Lie algebra, for any (disjoint) partition X =

B + Z, we can set

Lk(X)B =
⊕

α∈N(X)

|α|Z=0

Lk(X)α (1.34)

and

Lk(X)BZ =
⊕

α∈N(X)

|α|Z>0

Lk(X)α (1.35)

where, for any subset Y ⊂ X we set |α|Y :=
∑

x∈Y α(x). It is straightforward to see

that

Lk(X) = Lk(X)BZ ⊕ Lk(X)B

and that Lk(X)BZ is a Lie ideal. Then we set15

Lk(X) = Lk(X)BZ ⋊ Lk(X)B

or, in the language of SES (short exact sequences), the following is split

0 Lk(X)BZ Lk(X) Lk(X)B 0.
j p

(1.36)

15For any Lie algebra b, h and an action by derivations of the Lie algebra b on h i.e. a Lie homomor-

phism α : b → Der(h), we can construct g, a split Lie algebra extension of b by h whose underlying

k-module is the external direct sum of modules g := h⊕b and the Lie bracket is given by the following

formula

[(h1, b1), (h2, b2)] =
(
[h1, h2] + α(b1)(h2)− α(b2)(h1), [b1, b2]

)
.

With our construction, we say that the Lie algebra g is a semi-direct product of b with h, denoted by

g := h⋊ b. See also Definition 2.1.
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Remark 1.5. As a remark, we add for the reader the following nice mnemonic about

the orientation of the vertical bar in the ⋉ (or ⋊) notation: the factor “who acts” is the

one with the screwdriver i.e. is on the bar’s side, this action being by automorphisms

for groups and by derivations for Lie algebras.

We will see later that this split SES can serve as a model for every semi-direct

product. The classical Lazard elimination theorem (Theorem 2.3 below) will give a

better understanding of this split SES ((1.36)), identifying Lk (X)B and Lk (X)BZ

as (isomorphic images of) concretely defined free Lie algebras (together with their

alphabets).

Presentation of a Lie algebra.

We here follow Bourbaki [13] Ch 2 §2.316. Let X be a set, g a Lie k-algebra and

a = {ax}x∈X a subset of g. Let us consider a Lie morphism

fa : Lk(X)→ g, X ∋ x 7→ ax. (1.37)

The elements of the kernel of fa are called the relators of the set a. The set a is called

generating (resp. free, basis ) if fa is surjective (resp. injective, bijective).

A presentation of g is an ordered pair (a, r) consisting of a generating set a = {ax}x∈X
and a set r = {rj}j∈J of relators of a generating17 Jr := Ker(fa) which is a Lie ideal of

Lk(X). We also say that g is presented by the set a related by the relators rj(j ∈ J)

and write

g = ⟨ a | r ⟩
k-Lie = Lk(X)

/
Jr
. (1.38)

Likewise, in other categories we could have defined a group by generators and relations

(see [81]) and written

G = ⟨ a | r ⟩Grp. (1.39)

16Adapted to our situation which requires WLOG that relators be gathered within a set (because

we will perform traces, see Subsection 2.2.2) rather than a family.
17This time as a Lie ideal.
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Adjoint representation and derivations of Lie algebras.

For convenience, the adjoint representation within g will be extended to sequences of

elements (Q1, Q2, · · · , Qn) ∈ Seq(g) as

ad(Q1,Q2,··· ,Qn) := adQ1 ◦ adQ2 ◦ · · · ◦ adQn ∈ End(g). (1.40)

We recall the classical notion of a Lie algebra derivation

Definition 1.2. Let g be a Lie k-algebra, we denote Endk(g) (or End(g)) the set of

k-linear endomorphisms of g viewed as a k-module. Then D ∈ Endk(g) is called a

derivation of g if and only if for all u, v ∈ g we have

D([u, v]) = [D(u), v] + [u,D(v)]. (1.41)

The set of derivations of g, noted Der(g), is a Lie subalgebra of End(g) (for the usual

bracket [f, g] := f ◦ g − g ◦ f).

Let g ∈ k-Lie, the adjoint representation is a Lie morphism

adg := ad : g→ Der(g), x 7→ adx . (1.42)

We can now extend the adjoint representation adg to U(g) by

adU(g)(g1 · · · gk) := adg
g1
◦ · · · ◦ adg

gk
. (1.43)

Moreover, our aim is to generalize this definition to the f -derivations, where f is a

fixed Lie algebra morphism

Definition 1.3. For any morphism of Lie algebras f : g1 → g2, a k-linear map D :

g1 → g2 is called a f -derivation if D([u, v]) = [D(u), f(v)] + [f(u), D(v)] for any

u, v ∈ g1.

Remark 1.6. i) We beware the reader that f -derivations do not form a Lie algebra

but only form a sub k-module of Homk(g1, g2). We will denote this sub k-module by

Der(f)(g1, g2).

ii) It is easily checked that, for D ∈ Der(f)(g1, g2) the kernel Ker(D) is Lie subal-

gebra of g1.
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We recall and prove some technical results as corollaries of Prop 8, [13] Ch II §2.8.

Lemma 1.1. (Corollary of Prop 8, [13] Ch II §2.8) Let X be a set. Every mapping

of X into Lk(X) can be extended uniquely to a derivation D : Lk(X) → Lk(X) i.e.

D ∈ Der(Lk(X)).

Lemma 1.2. Let X be a set, g2 be a Lie algebra and let f : Lk(X)→ g2 be a morphism

of Lie algebras. Every mapping of X into g2 can be extended uniquely to a f -derivation

D : Lk(X) → g2 i.e. D ∈ Der(f)(Lk(X), g2). We remark that Lemma 1.1 is as a

consequence of Lemma 1.2 for f = IdLk(X).

Proof. Let X be a set, let f be a morphism of Lie algebras Lk(X)→ g2, and let d be

a mapping of X into g2. Notice that g2 is a Lk(X)-module determined by the formula:

u.a = [f(u), a], for any u ∈ Lk(X) and a ∈ g2.

Prop 8, [13] Ch II §2.8 say that there exists one and only one linear mapping D of

Lk(X) into g2 extending d and satisfying the relation:

D([u, v]) = u.D(v)− v.D(u) for any u, v ∈ Lk(X),

it means that

D([u, v]) = [f(u), D(v)]− [f(v), D(u)] = [D(u), f(v)] + [f(u), D(v)]

for any u, v ∈ Lk(X). We obtain Lemma 1.2.

The following (easy) proposition gathers properties needed for the proof of our main

result in Subsection 2.2.2.

Lemma 1.3. Let g be a Lie k-algebra, D ∈ End(g) (i.e. the set of linear endomorphism

of g viewed as a k-module) and J a Lie ideal of g. Then one checks easily that

1. In order that exists a k-linear map [D] such that the following diagram commutes

g g

g /J g /J

D

sJ sJ

[D]

(1.44)

it is necessary and sufficient that D(J ) ⊂ J , in this case the ideal J is usually

called D-invariant.
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2. If, moreover, D is a derivation of g, then one has the induced map [D] ∈

Der(g /J ).

3. The inverse image D−1(J ) (D being still a derivation) is a Lie subalgebra of g.

Remark 1.7. The reader is invited to remark that the proof of the above does not

use the defining identities of a Lie algebra ([x, x] = 0 identically and Jacobi) and holds

true mutatis mutandis to any k-algebra (non necessarily associative nor unital).

1.3 An example of free object with respect to graphs.

We now introduce a particular class of monoids. They are known under various names

(monoid of commutations and rearrangements, monoid of traces, partially commuta-

tive monoid, Cartier-Foata monoid) and has many applications: in mathematics and

combinatorics [22] as well as in computer sciences [29]. It was introduced by Cartier

and Foata in 1969 and defined by a presentation consisting in commutations between

certain pairs of generators.

As relations of these presentations are only commutations, they can be read within

the categories Mon,Grp,k-AAU and k-Lie (cf. Duchamp and Krob [41]). In fact, for

(at least) these categories and M an object of one of them, the set of pairs (x, y) ∈M2

such that x and y commute is a reflexive and symmetric graph θM ⊂M2. We introduce

the definition of an alphabet with commutations.

Definition 1.4. Let X ∈ Set be a set viewed as a alphabet. A commutation relation

on X is a reflexive and symmetric graph θ ⊂ X2 (i.e. θ = θ−1 and ∆X := {(x, x)}x∈X ,

the diagonal of X, is a subset of θ).

The pairs (X, θ) where θ is a commutation relation onX form a category CommAlph,

the arrows of which are f : (X, θX)→ (Y, θY ) such that

• f : X → Y is a map

• for all (x1, x2) ∈ θX we have (f(x1), f(x2)) ∈ θY .
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What has been said before the definition shows us that for C one of the categories in

the list (1.1) we can assign to each M ∈ C an object F (M) := (M, θM) of CommAlph

where θM is the set of all pairs (x, y) of commuting elements of M (where the meaning

of “commuting” depends on C). It is not difficult to check that, in each case, F : C →

CommAlph is a functor. Then, for each category C of the list (1.1), one can state an

universal problem in the style of Subsection 1.2.1.

A pair (X, θX) ∈ CommAlph being given, does there exist a pair (j(X,θX), G(X, θX))

such that, for all A ∈ C and arrow f : (X, θX) → F (A), we have a unique f̂ ∈

HomC(G(X, θX),A) such that f = F (f̂) ◦ jX . Diagrammatically

CommAlph C

(X, θX) A

G(X, θX).

F

f

j(X,θX )
f̂

(1.45)

The theory of free partially commutative structures [41], which is the last one (in

characteristic zero) for which Magnus theory18 holds (see [40] Thm 3) provides, as for

the case of alphabets (sets), free objects. Let us give the two structures we will need

as well as their constructions

• The free partially commutative monoid M(X, θ)

• The free partially commutative Lie algebra Lk(X, θ).

As all categories in the list (1.1) have a mechanism of presentation19, then, unsurpris-

ingly M(X, θ) and Lk(X, θ) are quotients.

Firstly, M(X, θ) is the quotient of X∗ by the congruence20 generated by the family

(xy = yx)(x,y)∈θ. We will consider the canonical surjection sθ : X∗ →M(X, θ) as well

as jθ : M(X, θ)→ X∗ an arbitrary (but fixed) set-theoretical section of it. We will also

need the notion of a Terminal Alphabet which is, in the model of Viennot, the set of

18Magnus transformation, Lower central series of the Free group, Möbius counting of dimensions of

the free Lie algebra, &c.
19Which means definition of objects by generators and relations.
20An equivalence relation compatible with right and left translations of the monoid X∗ (see [43] Ch

1 §5)
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1.3. AN EXAMPLE OF FREE OBJECT WITH RESPECT TO GRAPHS.

pieces resting on the floor (see [105] Fig 1 “Heaps of Dimers”). This alphabet TAlph(t)

(where t ∈ M(X, θ)) can be characterized as the set of last letters of preimages of t

w.r.t. sθ, it means that

TAlph(t) = {x ∈ X | t ∈M(X, θ).x}.

Secondly, Lk(X, θ) is the quotient of Lk(X) by the ideal generated by the relator

rθ = {[x, y]}(x,y)∈θ.

The monoid M(X, θ) received a strikingly intuitive and powerful interpretation in

terms of heaps of pieces by G. X. Viennot in [105] (see also in Krattenthaler [72]). Let

B be a set (of pieces) that is identified with the set X, together with a symmetric and

reflexive binary relation R defined by xRx for any x ∈ B and xRy if (x, y) /∈ θ for any

x, y ∈ B. Let H(B,R) be the set of all heaps consisting of pieces from B, including the

empty heap, denoted by ∅. By introducing an (associative) binary operation ◦ which

is a composition of heaps (cf. Krattenthaler [72] Def 2.5), the reader can verify that

(H(B,R), ◦) is a monoid with unit ∅. We observe that words in the monoid M(X, θ)

can be encoded by heaps in the monoid H(B,R). Indeed, for a word t = x1 · · ·xn ∈

M(X, θ), one can define a heap Ht = (Pt,⪯t, ℓt) by the following

• A pair (Pt,⪯t) is a poset, where Pt = {x1, · · · , xn} is a set of n pieces and ⪯t is a

reflexive, antisymmetric and transitive binary relation defined on Pt by xi ⪯t xi
for all i ∈ {1, · · · , n}, xi ⪯t xj if xi appears before xj in the word t (from right

to left) and xiRxj.

• ℓt is a labelling of the elements of Pt by elements of B.

Of course, an equivalence class of the word t in M(X, θ) corresponds to the same heap

Ht in H(B,R). Under this correspondence, the composition of equivalence classes of

words induced by concatenation of words corresponds exactly to the composition of

heaps. We thus obtain an isomorphism of monoids

HC−F : M(X, θ)→ H(B,R), [t] 7→ Ht. (1.46)

Example 1.4. Let X = {b1, b2, · · · , b7} be a set. Given a commutation relation θ on

X as in the list below (not mentioning {(bi, bi)}i=1,··· ,7 the diagonal of X; if a relation
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CHAPTER 1. PREAMBLE

(bi, bj) ∈ θ then also (bj, bi) ∈ θ)

(b1, b2), (b1, b5), (b1, b6), (b2, b3), (b2, b4), (b2, b6), (b2, b7),

(b3, b4), (b3, b5), (b3, b7), (b4, b5), (b4, b6), (b4, b7), (b5, b6), (b5, b7).

Then the pieces are B = {b1, b2, · · · , b7} and the relations are (not mentioning the

relations of the form biRbi; if a relation biRbj holds then also bjRbi)

b1Rb3, b1Rb4, b1Rb7, b2Rb5, b3Rb6, b6Rb7. (1.47)

For a word t = x1x2x3x4x5x6x7x8 = b7b6b1b3b4b5b1b2 in M(X, θ), an equivalence class

of the word t will be the following sequence of interchanges

b7b6b1b3b4b5b1b2 ∼ b7b6b1b4b3b5b1b2 ∼ b7b6b1b4b5b3b1b2

∼ b7b6b1b5b4b3b1b2 ∼ b7b6b5b1b4b3b1b2 ∼ b7b5b6b1b4b3b1b2

∼ b5b7b6b1b4b3b1b2 ∼ b5b7b1b6b4b3b1b2 ∼ b5b7b1b4b6b3b1b2

∼ b5b7b1b4b6b3b2b1 ∼ b5b7b1b4b6b2b3b1 ∼ b5b7b1b4b2b6b3b1

∼ b5b7b1b2b4b6b3b1 ∼ b5b7b2b1b4b6b3b1 ∼ · · ·

Therefore, the corresponding heap Ht = (Pt,⪯t, ℓt) (where Pt = {x1, x2, · · · , x8} =

{b7, b6, b1, b3, b4, b5, b1, b2} is the set of 8 pieces) under the isomorphism HC−F (1.46)

can be illustrated in Figure 1.2 as below. We notice that, contrariwise to [72] we read

our word t (from a heap of pieces Ht in Figure 1.2) from top to bottom and left to

right.

Remark 1.8. Let t = x1 · · ·xn ∈M(X, θ). One can show that,

TAlph(t) = {xi | i ∈ [1, n] with (xj, xi) ∈ θ for all j ∈ [i+ 1, n]}.

Geometrically, under the isomorphism of monoids HC−F (1.46), when successive pieces

are piled from bottom to top, the set Terminal Alphabet TAlph(t) can be described

(as already said) as pieces (in the heap Ht) resting on the floor.
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b6 b1
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Figure 1.2: A heap of pieces Ht corresponding to the word

t = b7b6b1b3b4b5b1b2 ∈M(X, θ)

here TAlph(t) = {b1, b2} even if b1 and b6 commute. From

Krattenthaler [72], order of the letters has been reversed.

Remark 1.9. For (at least) the categories Mon,Grp,k-Lie,k-AAU, there is a for-

getful functor to the category CommAlph of alphabets with commutations, that of

pairs (X, θ) where ∆X ⊂ θ ⊂ X ×X and θ = θ−1 (in other words θ is a reflexive and

symmetric relation on X). An arrow f : (X, θX)→ (Y, θY ) is a map f : X → Y such

that for all (x, y) ∈ θX we have (f(x), f(y)) ∈ θY . All structures of (1.45) are free with

respect to these functors.
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Chapter 2

Lazard’s elimination
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Originated from the study of continuous groups [76], the theory of Lie algebras

began mostly by (differential) geometry and then algebra. The rôle of presented Lie

algebras grew in importance since the study of combinatorial group theory and its

infinitesimal counterpart on the one hand and the study (for mathematics, physics

and number theory) of infinite dimensional Lie algebras (see, for example the two

books with the same title “Infinite Dimensional Lie algebras” [65, 106], 1968 for Kac’s
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definition and 2001 for Wakimoto’s book, showing the continuous trail of interest).

It appears that Lazard’s elimination principle, expressed in the categories

Mon,Grp,k-Lie,k-AAU, (2.1)

has the same form

Free(B + Z) = Free(CB[Z]) ⋊ Free(B) (2.2)

where X = B + Z is a set of generators (an alphabet) divided in two sectors (set par-

tition) and CB[Z] is some code (i.e. a set built from the data of B and Z), Free is the

free functor attached to the considered category and ⋊ is a sort of semi-direct product1.

The study of quotients of Lazard’s eliminations for k-Lie is particularly interesting.

It arises from dividing the classical elimination over a relator on the free Lie algebra

Lk(X) which is compatible with the alphabet partition. An emblematic example is

that of infinitesimal braid relations and their decomposition. Let us first see how they

arise.

strand 2 start

strand 2 end

strand 3 (from the top)

strand 3 end

Figure 2.1: A braid on 6 strands.

1Classical for the categories Grp and k-Lie, smash product for k-AAU (see the book [87] by

Susan Montgomery) and by left translations for Mon.
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CHAPTER 2. LAZARD’S ELIMINATION

A braid with n strands is pictured geometrically as a collection of n pieces of string

joining n points at the top of the diagram with n points at the bottom in Euclidean

3-space (see Figure 2.1 above).

The braid group Bn on n strands is the group of isotopy classes of n-braids with

concatenation given by glueing (see Figure 2.2).

Figure 2.2: Glueing of braids and the identity of the braid group Bn.

Due to Emil Artin, Bn is also the group generated by the symbols σ1, · · · , σn−1 modulo

the relations:

• σiσi+1σi = σi+1σiσi+1 for i = 1, · · · , n− 2.

• σiσj = σjσi for | i− j |≥ 2.

strand i strand i+1

Figure 2.3: A standard generator σi of the braid group Bn.
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To each braid in Bn one can associate the permutation of the marked points, that is an

element of the symmetric group Sn. This leads to a natural homomorphism of group

π : Bn → Sn characterized by

σi 7→ (i, i+ 1).

The kernel of π is precisely the subgroup of Bn formed by braids inducing the trivial

permutation. It is called the pure braid group on n strands and denoted by PBn. Ge-

ometrically, the group PBn consists of those braids such that each strand starts and

ends at the same point (see Figure 2.4).

Figure 2.4: A pure braid on 4 strands.

Moreover, we can verify that the pure braid group PBn coincides with the fundamental

group of the complex configuration space

Cn
∗ = {z = (z1, . . . , zn) ∈ Cn|zi ̸= zj if i ̸= j}

i.e. PBn = π1(Cn
∗ ).
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CHAPTER 2. LAZARD’S ELIMINATION

Figure 2.5: A loop γ(t) in π1(C5
∗).

Via Artin’s presentation, PBn is the group generated by the twists

xij := (σj−1 · · ·σi+1)σ
2
i (σ

−1
i+1 · · ·σ−1

j−1)

(for i < j, i, j = 1, · · · , n, see Figure 2.6) modulo the relations

• (xij, xkl) = 1 for i < j < k < l,

• (xil, xjk) = 1 for i < j < k < l,

• (xijxik, xjk) = (xij, xikxjk) = 1 for i < j < k,

• (xklxikx
−1
kl , xjl) = 1 for i < j < k < l,

where, in a group (g, h) = g−1h−1gh is the commutator between g and h (see [13] Ch

II §4.4).

ji
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Figure 2.6: A standard twist generator of the pure braid group PBn.

Here, with i = j − 3, we have xij = σj−1σj−2σ
2
j−3σ

−1
j−2σ

−1
j−1 (diagram: top to bottom

and formula: left to right).

Given a pure braid β ∈ PBn, we can remove its last strand and obtain a pure braid

ρ(β) ∈ PBn−1. This yields a surjective homomorphism of groups ρ : PBn → PBn−1.

Let Fn−1 denote the free group on n − 1 letters x1, · · · , xn−1. It can be proved (cf.

Kassel and Turaev [68] Ch I §1.3) that we have a short exact sequence

0 Fn−1 PBn PBn−1 0ι
ρ = forget last strand

µ = insert straight last strand
(2.3)

where ι(xi) := xin = (σn−1 · · ·σi+1)σ
2
i (σ

−1
i+1 · · ·σ−1

n−1) for i = 1, · · · , n− 1. Furthermore,

one sees easily that this exact sequence is split (see the move µ in (2.3)), so that

PBn ∼= Fn−1 ⋊ PBn−1.

For any group G, a graded Z-module is associated to G. It is defined (cf. Bourbaki

[13] Ch II §4.6) as

grZ(G) :=
∞⊕
m=1

grm(G) (2.4)

where the associated m-th quotient

grm(G) := Gm
/
Gm+1

is itself defined over {Gm}m≥1, the lower central series (cf. Bourbaki [10] Ch I §6.3 Def

5 and [13] Ch II §4.6) of G is made up of normal subgroups2

G1 := G ⊇ G2 := (G1, G) ⊇ · · · ⊇ Gm+1 := (Gm, G) ⊇ · · · .

It is remarkable that this module, grZ(G), due to the identities of P. Hall and M.

Lazard (see [74]) is, in fact, a Lie Z-algebra (the bracket being the projection of the

commutator in the group).

Then, calling ti,j, the projection of xij into the graded Lie algebra grZ(PBn), it can

be found in some paper by Ihara (cf. [64] Cor 3.1.6 and Prop 3.2.1 and ff) that (2.3)

induces a split short exact sequence of Lie algebras

0 grZ(Fn−1) grZ(PBn) grZ(PBn−1) 0 . (2.5)

2For two subgroups A,B ⊂ G, (A,B) is the subgroup generated the commutators (x, y) :=

x−1y−1xy, x ∈ A, y ∈ B.
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Remark 2.1. The transfer by gr(−) of exact sequences is studied in Bourbaki [13] Ch

II §4 Exercise 2 (b), but this exercise does not guarantee the “split” part which is, in

fact, not automatic. In the case of pure braid groups, this can be recovered directly by

our main result, Theorem 2.6 and the presentation below (2.6).

Due to Ihara [64] and Kohno [70], the graded Lie algebra grZ(PBn) is isomorphic

to Drinfeld-Kohno Lie algebra DKZ,n that is the quotient of the free Lie algebra LZ(Tn)

generated by the set of noncommutative variables Tn = {tij}1≤i<j≤n modulo the Lie

ideal generated by infinitesimal pure braid relations3 (the corresponding set of relators

will be denoted by R[n], see formula (2.6))

R[n] =


R1[n] [ti,j, ti,k + tj,k] for 1 ≤ i < j < k ≤ n,

R2[n] [ti,j + ti,k, tj,k] for 1 ≤ i < j < k ≤ n,

R3[n] [ti,j, tk,l] for
1 ≤ i < j ≤ n,
1 ≤ k < l ≤ n, and |{i, j, k, l}| = 4.

(2.6)

Now, we extend Z to k. Readers that are not keen on categories may skip the following

paragraph and suppose k = Z.

For a commutative ring k with unit, let us consider an additive functor of abelian

categories

−⊗Z k : Z-Mod→ k-Mod.

As a consequence of Proposition 8.3.14, Kashiwara and Schapira [66] Ch 8 §8.3, then

any additive functor of abelian categories sends split exact sequences into split exact

sequences. Furthermore, Drinfeld-Kohno Lie algebra over k coincides with the image

of Drinfeld-Kohno Lie algebra over Z under the functor

−⊗Z k : Z-Lie→ k-Lie

i.e. there exists an isomorphism of Lie k-algebras

DKk,n
∼= DKZ,n ⊗Z k. (2.7)

3There are three ways to reach these relations

• The lower central series of PBn and

• A theorem of Kohno on “small” representations of PBn,

• Integrability condition for the KZn differential equation.
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Thus, an important consequence of our formulations is that we can construct a com-

mutative diagram of k-modules with split short exact rows

0 grk(Fn−1) grk(PBn) grk(PBn−1) 0

0 Lk(x1, · · · , xn−1) DKk,n DKk,n−1 0

∼= ∼= ∼= (2.8)

where the graded Lie algebra grk(G) = grZ(G) ⊗Z k for any group G. In particular,

we obtain an isomorphism of k-modules

DKk,n
∼= Lk(x1, · · · , xn−1)⊕DKk,n−1. (2.9)

A natural question is how to construct a Lie isomorphism from the Drinfeld-Kohno Lie

algebra to a semi-direct product of Lie algebras

DKk,n

∼=−→ Lk(x1, · · · , xn−1) ⋊ DKk,n−1.

We call the phenomenon by the decomposition of Drinfeld-Kohno Lie algebra and it will

be completely achieved in Corollary 2.17. Furthermore, we realize that this decomposi-

tion can be read directly in terms of alphabets partitioned in two blocks Tn = Tn−1+Tn,

this is the “raison d’être” of our main result here (the reader can refer to Subsection

2.2.2). We introduce the notion of quotients of Lazard’s eliminations which generalizes

the classical elimination on the free Lie algebra Lk(X) to a more general scheme. More

precisely, given X = B + Z a set partitioned in two blocks and a relator r ⊂ Lk(X)

which is compatible with the alphabet partition, our main results are to give a Lie

isomorphism [see Theorem 2.6 point (iii)]

Lk(X) /J
∼=−→ Lk(X)BZ

/
J Z
BZ

⋊ Lk(X)B
/
JB

and to determine a necessary and sufficient condition (see Proposition 2.9) so that

Lk(Z) ∼= Lk(X)BZ
/
J Z
BZ
.

The case of the infinitesimal pure braid relator is an example of a good relator sat-

isfying all hypotheses in our main theorem and Proposition 2.9, thus it gives rise to

the existence of the decomposition of Drinfeld-Kohno Lie algebra i.e there is DKk,n
∼=

Lk(x1, · · · , xn−1)⋊DKk,n−1. However, we consider the case of a relator over free partial
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CHAPTER 2. LAZARD’S ELIMINATION

commutations θ (see Definition 1.4), although this case does not satisfy the necessary

and sufficient condition mentioned just above, we are able to use our main result and

recover, by our setting complete answers to Pr. Schützenberger’s questions about the

Partially Commutative Free Lie algebra (see Corollary 2.16).

The structure of the chapter is the following:

The two first sections contain the main results of this chapter together with their

proofs. In first Section 2.1, we will introduce the notion of equivariant diagram of Lie

algebras which gives rise to a structure theorem analogous of the semi-direct product

of Lie algebras. Then, in Subsection 2.2.1 we recall internal and external versions of

Lazard’s elimination theorem. In Subsection 2.2.2, we introduce a relator on the free

Lie algebra being compatible with an elimination scheme, then we establish the main

theorem (Theorem 2.6). In last subsection 2.2.3, we first construct the necessary and

sufficient condition so that the left factor of the semi-direct product appeared in The-

orem 2.6 point (iii) to be a free Lie algebra by Proposition 2.9. Then we will apply our

main theorem to treat the special cases about Pr. Schützenberger’s questions on the

Partially Commutative Free Lie algebra in Corollary 2.16. Further, we first introduce

the notion of the Knizhnik-Zamolodchikov equation and explain the relationship with

Drinfeld-Kohno Lie algebra. Finally, we will obtain the existence of the decomposition

of Drinfeld-Kohno Lie algebra in Corollary 2.17 coming from standard materials such

as our main theorem together with Proposition 2.9 as already mentioned above.

In Section 2.3, we will discuss more categorical frameworks for Lazard’s elimination

in k-Lie. In Subsection 2.3.1, we describe the category of Short Exact Sequences with

Section (SESS) in k-Lie. In the last subsection 2.3.2, we first introduce S-graded ob-

jects in each category (2.1), where S is an additive commutative semigroup. We are in

particular interested in B-graded objects in k-Lie (where B = ({0, 1},∨) is the Boolean

semigroup). Then we can formalize these objects by the category of B-graded Lie al-

gebras, that is equivalent to the category of SESS in k-Lie by considering Proposition

2.18. Furthermore, we can perform Lazard’s elimination as a free functor from the
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category of double sets to the category of B-graded Lie algebras. Finally, in Subsection

2.3.3, we will concentrate on the Drinfeld-Kohno Lie algebra with an infinite number

of generators: from strange to generalized gradings.

Section 2.4 is devoted to investigate more formal aspects of Lazard’s elimination in

k-AAU and their interactions with Sections 2.1 and 2.2. We will first study crossed

and smash product of algebras by Theorem 2.25 and Corollary 2.26 respectively. Fur-

thermore, Example 2.7 gives us a natural and important example of smash product

algebras, this leads to Proposition 2.27 as an extension of Proposition 2.2 in Sections

2.1 under the universal enveloping functor. At the end of the day our real interest are

Lazard’s elimination and the quotient of Lazard’s elimination in k-AAU discussed in

the last two examples of this section, building only on the fundamental knowledge of

smash product of algebras and the main results appeared in Section 2.2.

In the last Section 2.5, we introduce a useful table to summarize our results of this

chapter for Lazard’s elimination principle (2.2) in all of categories Mon,Grp,k-Lie

and k-AAU.

2.1 Groups and Lie algebras.

We here construct and study the equivariant diagram property in the category of groups

and then Lie algebras which gives rise to a structure theorem analogous of the semi-

direct product of Lie algebras. These give at last main tools to establish the proof of

quotients of Lazard’s eliminations and the decomposition of Drinfeld-Kohno Lie alge-

bra appearing in Subsection 2.2.2 and Subsection 2.2.3.

We shall now study a Theorem of N. Bourbaki [14] which allows to consider semi-

direct products as categorical colimits. In the language of MO [108] 4, it reads

Theorem 2.1. ([14] §2.10 Prop 27) Let H and N be two groups and ϕ : H → Aut(N)

be a homomorphism of groups written as a indexed automorphism ϕh(n). Assume that

4See the discussion after this question, especially Andreas Thom’s answer.
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there exist f : N → G, g : H → G two homomorphisms into a group G such that

f(ϕh(n)) = g(h)f(n)g(h−1) (2.10)

for all n ∈ N , h ∈ H. Then there is a unique homomorphism k : N ⋊ H → G

extending f and g in the usual sense (i.e. k(n, h) = f(n).g(h) the product in G between

f(n) and g(h)), where the group operation in N ⋊ H is given by (n1, h1).(n2, h2) =

(n1ϕh1(n2), h1h2).

This is for groups, but we will tailor a similar property for Lie algebras remarking

that (2.1) can be, in bivariate notations, reformutated as

f(ϕ(h, n)) = AdG(g(h), f(n)), (2.11)

this is equivalent to saying that the following diagram commutes

H ×N G×G

N G.

g×f

ϕ AdG

f

As we want to highlight the similarity between semi-direct products of groups and Lie

algebras, we recall below the definition of it.

Definition 2.1. For any Lie algebras b, h and an action by derivations of the Lie

algebra b on h i.e. a Lie homomorphism α : b → Der(h), we can construct g, a split

Lie algebra extension of b by h whose underlying k-module is the external direct sum

of modules g := h⊕ b and the Lie bracket is given by the following formula

[(h1, b1), (h2, b2)] =
(
[h1, h2] + α(b1)(h2)− α(b2)(h1), [b1, b2]

)
.

We denote this Lie algebra by g := h⋊ b and call it “the semi-direct product of b with

h”.

Remark 2.2. It is not difficult to see that, likewise, semi-direct products of Lie algebras

are appropriate colimits5, see Commentary 2 below. As groups act on themselves

5For colimits, see Appendix 5.2. Moreover, we can survey the categorical framework of semi-direct

products in the context of Grp by discussions in MO [108].
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by automorphisms (inner adjoint representation Ad), Lie algebras, similarly, act on

themselves by derivations (resp. inner adjoint representation ad). We will have the

choice between the indexed notation Adh(g) := hgh−1 (resp. adh(g) = [h, g]) and a

bivariate one Ad(h, g) = hgh−1 (resp. ad(h, g) = [h, g]). In order to ease the writing

of diagrams and equivariance, we will adopt below the bivariate notation.

Adaptation of Bourbaki’s Proposition (i.e. Theorem 2.1) to our situation is then

the following:

Proposition 2.2. Let k be a commutative ring with unit and gi, i = 1, 2 be two Lie

k-algebras. We suppose given also a Lie k-algebra morphism α : g2 → Der(g1). Then

let f1 : g1 → g, f2 : g2 → g be two homomorphisms into a Lie k-algebra g, such that

f1(α(b, a)) = adg(f2(b), f1(a)) (2.12)

for all b ∈ g2, a ∈ g1 (α and adg are here written in bivariate notation in the obvious

way). Then there is a unique homomorphism f : g1 ⋊ g2 → g extending f1 and f2 in

the usual sense.

Again, this is equivalent to saying that the diagram (2.13) below commutes.

We are led to the following definition of SDT (“Semi-Direct Twist”) for the cate-

gories of groups and Lie algebras

Definition 2.2. i) A semi-direct twist in the category of groups is a triplet (G2, G1, α)

where α : G2×G1 → G1 is such that b 7→ α(b,−) is a group morphism G2 → Aut(G1).

ii) A semi-direct twist in the category of Lie k-algebras is a triplet (g2, g1, α) where

α : g2 × g1 → g1 is such that b 7→ α(b,−) is a Lie algebra morphism g2 → Der(g1).

In Grp (resp. k-Lie), a morphism between (G2, G1, α) and (H2, H1, β) (resp.

(g2, g1, α) and (h2, h1, β)) is an equivariant pairs of group morphisms fi : Gi → Hi

(resp. Lie algebra morphisms fi : gi → hi) i.e. such that (in both cases) the following

diagram

G2 ×G1 H2 ×H1

G1 H1

f2×f1

α β

f
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and

g2 × g1 h2 × h1

g1 h1

f2×f1

α β

f

commute. We are now led to define SDTGrp the category of semi-direct twists in

Grp and SDTk-Lie the category of semi-direct twists in k-Lie.

We have the following useful comments

Commentary 2. i) The functor F from Grp to SDTGrp defined by G 7→
(
G,G,AdG

)
is right-adjoint to the functor SDTGrp → Grp defined by (G2, G1, α) 7→ G1⋊G2 and

the same holds for the analogous functors in Lie algebras.

ii) More precisely, one has the following universal diagrams

SDTGrp Grp

(G2, G1, α) G

G1 ⋊G2

F

f2×f1

j
f̂

and

SDTk-Lie k-Lie

(g2, g1, α) g

g1 ⋊ g2.

F

f2×f1

j f̂

Remark 2.3. We would like here to formulate two remarks about equation (2.12)

Firstly, it can be proved only on generators.

More precisely, let G2 = {bj}j∈J and G1 = {ai}i∈I be set of generators of the Lie

algebras g2 and g1 respectively and assume that the diagram (2.13) commutes for

(b, a) ∈ G2 ×G1.

Now, given a fixed generator bj and using Jacobi identity, the two k-linear maps D1 :

g1 → g, a 7→ f1 ◦ α⊗(bj ⊗ a) and D2 : g1 → g, a 7→ adg
⊗ ◦ (f2 ⊗ f1)(bj ⊗ a) are f1-

derivations i.e. D1, D2 ∈ Der(f1)(g1, g). By assumption, we have that D1 −D2 is zero

on generators {ai}i∈I of g1 thus, by Remark 1.6 (ii), D1 − D2 = 0. This means that

49



2.2. A GENERALIZATION OF LAZARD’S ELIMINATION THEOREM.

for all a ∈ g1 one has

f1 ◦ α⊗(bj ⊗ a) = adg
⊗ ◦ (f2 ⊗ f1)(bj ⊗ a)

and this is true for all fixed bj ∈ G2. To summarize, the above equation is true for

(a, b) ∈ g1 ×G2. We then define the following submodule

m = {b ∈ g2 | (∀a ∈ g1) f1 ◦ α⊗(b⊗ a) = adg
⊗ ◦(f2 ⊗ f1)(b⊗ a)}.

and leave to the reader to check (by Jacobi identity) that m is a Lie subalgebra of g2.

Then, as inclusion G2 ⊆ m follows from the summary, one derives m = g2 and then

Eq. (2.12) is established.

Secondly Eq. (2.12) is equivalent to saying that the following commutes

g2 ⊗ g1 g⊗ g

g1 g

f2⊗f1

α⊗ adg⊗
f1

(2.13)

(here α⊗ and adg
⊗ are linear maps respectively induced from the bilinear maps α :

g2 × g1 → g1 and adg : g× g→ g).

2.2 A generalization of Lazard’s elimination theo-

rem.

We here introduce the classical Lazard’s elimination theorem and extend it to a more

general scheme, namely theory of quotients of Lazard’s eliminations. The main ap-

plications are to derive answers to Pr. Schützenberger’s questions about the Partially

Commutative Free Lie algebra (cf. Duchamp and Krob [41]) and the decomposition of

Drinfeld-Kohno Lie algebra described in Subsection 2.2.3.

2.2.1 Classical Lazard’s elimination.

Let us recall briefly Lazard’s elimination theorem in our setting.
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Theorem 2.3 (Lazard’s elimination theorem, see also in [13] Ch II §2.9 Props 9 and

10). Let X = B + Z be a set partitioned in two blocks. We have an isomorphism of

split short exact sequences

0 Lk(B∗Z) Lk(X) Lk(B) 0

0 Lk(X)BZ Lk(X) Lk(X)B 0

jB|Z (=rn)

rn Id

pB|Z

jB

j p

(2.14)

where B∗Z is the set of words B∗Z = {uz}u∈B∗,z∈Z (all letters are in B save the last

one which is in Z) and where the maps rn and jB are as follows

• the mapping rn is, by universal property, the unique Lie morphism Lk(B∗Z) →

Lk(X)BZ such that, for u = b1 · · · bk ∈ B∗ and z ∈ Z we get

rn(uz) =
(

ad
Lk(X)
b1

◦ · · · ◦ ad
Lk(X)
bk

)
(z) =: ad

Lk(X)
(u) (z) (2.15)

bracketing, see [94] Ch 1 §3 p.20 (indeed, we here use the same symbol rn for the

Lie morphism Lk(B∗Z) → Lk(X) and for the restriction to its image as in the

diagram (2.14)).

• for convenience to describe a fixed double symbol formed (j, p) of any short exact

sequence, the mapping jB|Z in the first arrow of the diagram (2.14) is in fact the

morphism rn : Lk(B∗Z) → Lk(X) and pB|Z is the Lie algebra homomorphism

Lk (X)→ Lk (B) that sends each b ∈ B to b and sends each z ∈ Z to 0.

• if jB : Lk(B)→ Lk(X) is the subalphabet embedding, (so that the restriction to

its image is the Lie isomorphism jB : Lk(B) → Lk(X)B) then jB ◦ pB|Z is the

projector on

Lk(X)B =
⊕

α∈N(X)

|α|Z=0

Lk(X)α.

The kernel of pB|Z is

Lk(X)BZ =
⊕

α∈N(X)

|α|Z>0

Lk(X)α.

• diagram (2.14) is a split SES, one of its section is given by jB.
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Commentary 3. i) The map rn acts as a substitution, for example

rn ([b1b2z1, b3z2]) = [[b1, [b2, z1]] , [b3, z2]]

for bi ∈ B and zi ∈ Z.

ii) What says Theorem 2.3 above is that

rn : Lk(B∗Z)→ Lk(X)BZ

is an isomorphism i.e. given Q ∈ Lk(X)BZ (each Lie monomial has at least one z ∈ Z

in its multidegree), there exists

a) words (u1z1, · · · , unzn)

b) a Lie polynomial P = P (u1z1, · · · , unzn) ∈ Lk(B∗Z)

such that rn(P ) = P (rn(u1z1), · · · , rn(unzn)) = Q and that P is unique.

For example with three letters {a, b, z} and Q = [[a, b], z] one has P = abz − baz.

Proof of Theorem 2.3 (Sketch of) :

• For all b ∈ B, the left translation t
(0)
b : B∗Z → B∗Z defined by t

(0)
b (uz) := buz

can be extended as a derivation t
(1)
b of Lk(B∗Z) (see Lemma 1.1 i.e. Corollary of

Prop 8, [13] Ch II §2.8).

For example, we have here,

t
(1)
b ([b1b2z1, b3z2]) = [bb1b2z1, b3z2] + [b1b2z1, bb3z2] .

• By universal property, the map b 7→ t
(1)
b : B → Der(Lk(B∗Z)) is extended

as a morphism of Lie algebras Q 7→ t
(2)
Q : Lk(B) → Der(Lk(B∗Z)) rewritten

at once bivariately as t
(2)
Q (P ) =: α(Q,P ) ∈ Lk(B∗Z) (i.e. we define a map

α : Lk (B)× Lk (B∗Z)→ Lk (B∗Z) by α (Q,P ) = t
(2)
Q (P )).

• We get a map α⊗ as in (2.13) (with g2 = Lk(B) and g1 = Lk(B∗Z)). This action

α (or α⊗) allows us to construct Lk (B∗Z) ⋊ Lk (B) (supported by Lk(B∗Z) ⊕

Lk(B)) according to Definition 2.1 (see also [13] Ch 1 §1.8 and our Proposition

2.2).
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• The pair of Lie homomorphisms f1 : Lk(B∗Z) → Lk(X) and f2 : Lk(B) →

Lk(X) defined by f1(uz) := rn(uz) (where rn is the right-normed bracketing,

see above) and f2(b) := b satisfy the equivariance condition6 of (2.12) w.r.t. α,

hence, by Prop. Proposition 2.2, there exists a unique Lie k-algebra morphism

f : Lk(B∗Z) ⋊ Lk(B)→ Lk(X) extending fi, i = 1, 2.

• In the inverse direction, a Lie algebra morphism Lk (X) → Lk (B∗Z) ⋊ Lk (B)

can be constructed by the universal property of Lk (X), sending each generator

b ∈ B to (0, b) and each generator z ∈ Z to (z, 0).

• The two obtained arrows are proven mutually inverse by a direct computation

on the generators.

• So far, we have proved that Lk (X) ∼= Lk (B∗Z)⋊Lk (B). In order to complete the

proof of Theorem 2.3, we remark that what precedes establishes the semidirect

product i.e. the top row of diagram 2.14; the bottom row follows by identifying

Lk (B∗Z) and Lk (B) with their images in Lk (X) and the fact that any nested

Lie bracket with a factor in X can be expressed as a linear combination of right-

normed B∗Z-brackets.

□

Remark 2.4. (Dynkin combs and their evaluations.)

i) In an algebra (A, ∗) (not necessarily associative), we define an operator evA(T , (x1, · · · , xn))

(where T is a binary tree with n leaves (noted |T |l = n) and (x1, · · · , xn) ∈ An) by

the recursion

evA(T , (x1, · · · , xn)) =


x1 if |T |l = 1,

evA(T1, (x1, · · · , xp)) ∗ evA(T2, (xp+1, · · · , xn))

if T = (T1,T2) and |T1|l = p.

(2.16)

As a particular case, we can define an operator evg(T , (x1, · · · , xn)) on a Lie k-algebra

6It is sufficient to test the equivariance on generators as stressed in the last part of remark (2.3).
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g by replacing the algebra operation ∗ by the Lie bracket [·, ·] i.e. for (x1, · · · , xn) ∈ gn

evg(T , (x1, · · · , xn)) =


x1 if |T |l = 1,

[evg(T1, (x1, · · · , xp)), evg(T2, (xp+1, · · · , xn))]

if T = (T1,T2) and |T1|l = p.

(2.17)

Now, we define a special sequence of trees (right-normed tree or Dynkin combs) with

n leaves, noted Dn, defined recursively by

D1 = • ; Dn+1 = (•,Dn). (2.18)

Then, for a Lie k-algebra g and any sequence (x1, · · · , xn) ∈ gn (or written as a word

x1 · · ·xn ∈ g∗ when there is no ambiguity), we can set

rn((x1, · · · , xn)) = rn(x1 · · ·xn) := evg(Dn, (x1, · · · , xn)). (2.19)

The action of rn as a Lie morphism is therefore that of a substitution: for example, its

action on Lie monomials of Lk(B∗Z) is as follows. For every tree with n leaves T and

list of words uizi ∈ B∗Z (could be called blocks, because B∗Z is a code in the sense of

[79], Prop 1.2.1)

rn
(
evLk(B∗Z)(T , (u1z1, · · · , unzn))

)
= evLk(X)BZ

(
T , (rn(u1z1), · · · , rn(unzn))

)
.

(2.20)

For example, let X = B + Z be a set partitioned in two blocks B = {b1, b2} and

Z = {z1, z2, z3}. Then the image of
[[
b1z3, b1b2z1

]
, b3b3z2

]
under the Lie algebra

morphism rn is rn
([[

b1z3, b1b2z1
]
, b3b3z2

])
=
[[
rn(b1z3), rn(b1b2z1)

]
, rn(b3b3z2)

]
=[[

[b1, z3], [b1, [b2, z1]]
]
, [b3, [b3, z2]]

]
.

ii) We have already called “monomial” (see Proposition 3.1) the bases of the free

Lie algebra (like Hall, Lyndon, Viennot, Schützenberger) coming from the bracketing

of a family of binary trees (Ti)i∈I through evaluation (see (2.20)). Lazard elimination

provides an algorithmic way to create new families of monomial bases in the following

way

• Partition the alphabet X as X = B + Z

• Totally order the new alphabet B∗Z
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• Choose any process (Hall, Lyndon, Viennot, Schützenberger) and get the asso-

ciated family of trees (Ti)i∈I such that (rn(Ti))i∈I is a (linear) basis of Lk(B∗Z)

and remark that each rn(Ti) is the evaluation of the tree obtained from Ti by

appending Dynkin combs (corresponding to each uz) to the leaves of Ti.

Let us now consider a situation where g = h⊕ b, h being an ideal and b a Lie sub-

algebra (hence we have the - internal - semidirect product g = h⋊ b). Implementation

of the associated arrows is the following

Theorem 2.4 (Ladder LET (internal version)). Let g = h⋊b be a semi-direct product

of Lie algebras, h (resp. b) being an ideal (resp. a Lie subalgebra) of g 7.

Let X = B ⊔ Z be a set partitioned in two blocks and φ : X → g a (set-theoretical)

map such that8

1. φ(B) is a generating set of b as a Lie algebra.

2. φ(Z) is a generating set of h as a Lie ideal of g.

Then

1. φ(X) is a generating set of g as a Lie algebra.

2. One has a commutative diagram of Lie algebras with split short exact rows (and

commuting sections)

0 Lk(B∗Z) Lk(X) Lk(B) 0

0 h g b 0.

jB|Z (=rn)

φ1

pB|Z

φ3 φ2

j p

(2.21)

The arrows jB|Z and pB|Z here are the ones constructed as in Theorem 2.3, j, p being

the canonical maps for the (internal) decomposition g = h⊕ b and

• φ3, φ2 are extensions of φ by universal property of Diagram (1.30)

7This means that g = h⋊ b is an internal semi-direct product.
8The maps pri, i = 1, 2 standing respectively for the first and second projections of the cartesian

product.
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• for u = b1 · · · bk ∈ B∗, z ∈ Z, we have

φ1(uz) :=
(

adg
φ(b1)
◦ · · · ◦ adg

φ(bk)

)
(φ(z)). (2.22)

In order to make a smooth transition with the subsequent point (i.e. 2.2.2), let us

give an external version of Theorem 2.4.

Theorem 2.5 (Ladder LET (external version)). Let g3 = g1 ⋊ g2 be a semi-direct

product of Lie algebras, constructed after a morphism of Lie k-algebras α : g2 →

Der(g1).

Let X = B + Z be a set partitioned in two blocks and φ : X → g3 a (set-theoretical)

map such that

1. φ(B) ⊂ {0} × g2 and pr2 ◦ φ(B) is a generating set of g2 as a Lie algebra.

2. φ(Z) ⊂ g1 × {0} and pr1 ◦ φ(Z) is a generating set of g1 as a Lie algebras with

operators (here, operators are provided by α : g2 → Der(g1)).

Then

1. φ(X) is a generating set of g3 as a Lie algebra.

2. One has a commutative diagram of Lie algebras with split short exact rows

0 Lk(B∗Z) Lk(X) Lk(B) 0

0 g1 g3 g2 0.

jB|Z (=rn)

φ1

pB|Z

φ3 φ2

j1 pr2

(2.23)

The arrows jB|Z and pB|Z here are the ones constructed as in Theorem 2.3, j1, pr2 being

the canonical maps for the (external) decomposition g3 = g1 ⊕ g2 and

• φ3 (resp. φ2) is the extension of φ (resp. pr2◦φ) by universal property of Diagram

(1.30)

• for u = b1 · · · bk ∈ B∗, z ∈ Z, we have

φ1(uz) := α[φ(b1)] ◦ · · · ◦ α[φ(bk)](φ(z)). (2.24)
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2.2.2 Quotients of Lazard’s eliminations.

In this subsection, we deal with a special kind of relators i.e. relators being compatible

with an elimination scheme. This situation encompasses presented Lie algebras like

Drinfeld-Kohno or partially commutative ones (cf. Duchamp and Krob [41]). The

situation will be described in the subsequent section.

Definition of the compatibility and an example.

Let k be a ring. Let X = B + Z be a set partitioned in two blocks. We suppose given

a relator r = {rj}j∈J ⊂ Lk(X) (cf. [13] Ch II §2.39) which is compatible with the

alphabet partition i.e. there exists a partition of the set of indices J = JZ ⊔ JB such

that

• rB = {rj}j∈JB = r ∩ Lk(X)B and rZ = {rj}j∈JZ = r ∩ Lk(X)BZ .

The notations being as above, we construct the ideals

• JB is the Lie ideal of Lk(X)B generated by {rj}j∈JB

• J ,JZ and JBZ are the Lie ideals of Lk(X) generated respectively by r, rZ and

rBZ := {adQ z}Q∈JB ,z∈Z .

Example 2.1. i) Let us recall that Tn+1 = {tij}1≤i<j≤n+1 is the set of variables and

the infinitesimal pure braid relator R[n + 1] (2.6) in the free Lie algebra Lk(Tn+1).

A typical example is for the graded set Tn+1 = Tn ⊔ Tn+1 (i.e. Tn+1 = {ti,n+1}1≤i≤n)

and the infinitesimal pure braid relator r := R[n + 1] ⊂ Lk(Tn+1). In this case, we

observe that the relator rTn is equal to R[n + 1] ∩ Lk(Tn+1)Tn = R[n] and the relator

rTn+1 = R[n + 1] ∩ Lk(Tn+1)TnTn+1 is equal to the following formulas
R†

1[n + 1] [ti,j, ti,n+1 + tj,n+1] for 1 ≤ i < j ≤ n,

R†
2[n + 1] [ti,j + ti,n+1, tj,n+1] for 1 ≤ i < j ≤ n,

R†
3[n + 1] ±[ti,j, tk,n+1] for

1 ≤ i < j ≤ n,
1 ≤ k ≤ n, and |{i, j, k}| = 3.

(2.25)

Then we can construct the following Lie ideals

9With I = X.

57



2.2. A GENERALIZATION OF LAZARD’S ELIMINATION THEOREM.

• JTn = JR[n] is the Lie ideal of Lk(Tn) generated by the infinitesimal pure braid

relator rTn = R[n].

• JTn+1 (resp. JTnTn+1) is the Lie ideal of Lk(Tn+1) generated by the relator rTn+1

(resp. rTnTn+1 = {adQ z}Q∈JR[n],z∈Tn+1).

• J = JR[n+1] is the Lie ideal of Lk(Tn+1) generated by the infinitesimal pure braid

relator R[n + 1].

ii) Of course, for instance, if we considered the relator R[4] ∪ {[t1,2, t2,3] + [t1,4, t3,4]},

then compatibility would no longer be fulfilled, for the added relator would neither

belong to Lk (X)B nor to Lk (X)BZ , and thus J would not be JZ ⊔ JB any more.

Main Result: Quotients of Lazard’s eliminations.

When we have such a type of relator, we can state the following theorem.

Theorem 2.6. (Main Result) Let k be a ring and X = B + Z be a set partitioned in

two blocks. We suppose given a relator r = {rj}j∈J ⊂ Lk(X) (cf. [13] Ch II §2.310)

which is compatible with the alphabet partition i.e. there exists a partition of the set of

indices J = JZ ⊔ JB such that

• rB = {rj}j∈JB = r ∩ Lk(X)B and rZ = {rj}j∈JZ = r ∩ Lk(X)BZ.

With these data, we construct the ideals

• JB is the Lie ideal of Lk(X)B generated by {rj}j∈JB

• J ,JZ and JBZ are the Lie ideals of Lk(X) generated respectively by r, rZ and

rBZ := {adQ z}Q∈JB ,z∈Z = {[Q, z]}Q∈JB ,z∈Z.

With these notations, we get the following properties:

i) we have J Z
BZ := JZ+JBZ ⊂ Lk(X)BZ. Moreover, J Z

BZ is a Lie ideal of Lk(X)BZ

(and even, by definition, of Lk(X))

10With I = X.
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ii) the action of Lk(X)B on Der(Lk(X)BZ) (by internal ad) passes to quotients as

an action

α : Lk(X)B → Der
(
Lk(X)BZ

/
J Z
BZ

)
(2.26)

such that rB ⊂ Ker(α) and then, we get an action

[α] : Lk(X)B
/
JB → Der

(
Lk(X)BZ

/
J Z
BZ

)
(2.27)

iii) we can construct an isomorphism (and its inverse) from presented Lie algebra

Lk(X) /J by the set r = {rj}j∈J of relators onto the semi-direct product of Lie

algebras Lk(X)BZ
/
J Z
BZ

⋊ Lk(X)B
/
JB which will be denoted by

β25 : Lk(X) /J
∼=−→ Lk(X)BZ

/
J Z
BZ

⋊ Lk(X)B
/
JB (2.28)

iv) in fact, one has a commutative diagram of Lie algebras with split short exact rows

0 Lk(X)BZ Lk(X) Lk(X)B 0

0 Lk(X)BZ
/
J Z
BZ

Lk(X) /J Lk(X)B
/
JB 0

j

sJZ
BZ

p

sJ sJB

[j] [p]

(2.29)

where, for any ideal I, sI stands for the natural quotient map.

Proof. i) The formula (1.35) implies that Lk(X)BZ =
⊕

α∈N(X)

|α|Z>0

Lk(X)α is a Lie

ideal of Lk(X) which contains rZ = r ∩ Lk(X)BZ . Hence, JZ (the Lie ideal

of Lk(X) generated by rZ) is a subset of Lk(X)BZ . Similarly for the case

rBZ = {adQ z}Q∈JB ,z∈Z ⊂ Lk(X)BZ , we easily show that JBZ ⊂ Lk(X)BZ .

Therefore J Z
BZ = JZ + JBZ ⊂ Lk(X)BZ . Then by taking the intersection,

it is seen that J Z
BZ ∩ JB ⊂ Lk(X)BZ ∩ Lk(X)B = {0} (see (2.14)) and then

J Z
BZ ∩ JB = {0}. The second assertion of (i) can be obtained from the fact that

J Z
BZ is a Lie ideal of Lk(X), thus J Z

BZ = J Z
BZ∩Lk(X)BZ is a Lie ideal of Lk(X)BZ .

ii) Let us recall briefly the adjoint representation

ad : Lk(X)B → Der(Lk(X)BZ) (2.30)

which is defined by adQ(P ) = [Q,P ] for any Q ∈ Lk(X)B and P ∈ Lk(X)BZ . It

is well-known that ad is a Lie algebra morphism. Let Q ∈ Lk(X)B then, due to
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the fact that J Z
BZ = JZ + JBZ is adQ-invariant and by Lemma 1.3, we have a

commutative diagram

Lk(X)BZ Lk(X)BZ

Lk(X)BZ
/
J Z
BZ

Lk(X)BZ
/
J Z
BZ
.

adQ

sJZ
BZ

sJZ
BZ

α(Q)

(2.31)

This construction is sufficient in order to get a well-defined morphism of Lie

algebras

α : Lk(X)B → Der
(
Lk(X)BZ

/
J Z
BZ

)
(2.32)

that is induced from the adjoint representation ad. Let us show that

rB ⊂ Ker(α). (2.33)

As Ker(α) is a Lie ideal, showing (2.33) is equivalent to showing

Lemma 2.7. With the notations and conditions (2.32) and (2.33), we have

(a) JB ⊂ Ker(α).

(b) There is a Lie algebra morphism

[α] : Lk(X)B
/
JB → Der(Lk(X)BZ

/
J Z
BZ

) (2.34)

which factorizes α as α = [α] ◦ sJB
.

Proof. We recall that the adjoint representation within Lk(X) can be extended to

sequences of Lie polynomials (Q1, Q2, · · · , Qn) ∈ Seq(Lk(X)) by equation (1.40)

ad(Q1,Q2,··· ,Qn) = adQ1 ◦ adQ2 ◦ · · · ◦ adQn ∈ End(Lk(X)).

Subsequences of letters will be noted as words as follows

(b1, · · · , bp︸ ︷︷ ︸
u

, Q, bp+1, · · · , bp+q︸ ︷︷ ︸
v

) = (u,Q, v). (2.35)

With these notations, we have the following
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Lemma 2.8. Let Q ∈ JB and u = b1 · · · bk ∈ B∗, then there exists two finite

sequences (u1, · · · , uN) ∈ (B∗)N and (Q1, · · · , QN) ∈ J N
B such that

ad(Q,u) = ad(Q,b1,··· ,bk) =
N∑
i=1

ad(ui,Qi) . (2.36)

Proof. We prove the fact by induction on k.

If k = 0, we are tautologically done.

If k > 0, we write u = b1v with b1 ∈ B, then

ad(Q,u) = ad(Q,b1v) = adQ ◦ adb1 ◦ ad(v) =

[adQ, adb1 ] ◦ ad(v) + adb1 ◦ adQ ◦ ad(v) =

ad[Q,b1] ◦ ad(v) + adb1 ◦ adQ ◦ ad(v) = ad[Q,b1] ◦ ad(v) + adb1 ◦ ad(Q,v) .

Now we observe that [Q, b1] ∈ JB and |v| = |u| − 1, then applying the induction

hypothesis for ([Q, b1], v) ∈ JB ×Bk−1 and (Q, v) ∈ JB ×Bk−1, we get the result

(of Lemma 2.8).

End of the proof of Lemma 2.7. –

Let Q ∈ Lk(X)B, due to the fact that Lk(X)BZ and J Z
BZ are adQ-invariant (they

are ideals)11, we have a commutative diagram (where, for any ideal J , sJ stands

for the natural quotient map)

Lk(X)BZ Lk(X)BZ

Lk(X)BZ
/
J Z
BZ

Lk(X)BZ
/
J Z
BZ
.

adQ

sJZ
BZ

sJZ
BZ

α(Q)

(2.37)

Now, for Q ∈ JB and (u, z) ∈ B∗ × Z, let us show that adQ(ad(u)(z)) ∈ JBZ .

From equation (2.36) of Lemma 2.8, we can write

adQ(ad(u) z) = ad(Q,u)(z) =
∑
i∈F

ad(ui,Qi)(z) =
∑
i∈F

ad(ui) ◦ adQi
(z) (2.38)

with Qi ∈ JB and ui ∈ B∗, then clearly the sum belongs to JBZ by the definition

of rBZ = {adQ z}Q∈JB ,z∈Z . In other words, for all (u, z) ∈ B∗ × Z, ad(u)(z) ∈

ad−1
Q (JBZ). But from the point 3 of Lemma 1.3 we know that ad−1

Q (JBZ) is a Lie

11For D-invariance, see Lemma 1.3.
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subalgebra of Lk(X)BZ but we also know that {ad(u)(z)}(u,z)∈B∗×Z is a generating

set of Lk(X)BZ , it follows that ad−1
Q (JBZ) = Lk(X)BZ i.e. adQ(Lk(X)BZ) = JBZ

and then

α(Q) ◦ sJZ
BZ

= sJZ
BZ
◦ adQ = 0. (2.39)

From the fact that sJZ
BZ

is onto, we see that α(Q) = 0.

As a conclusion (Q ∈ JB) implies (α(Q) = 0) which is the claim.

As a consequence of the construction of the Lie algebra morphism [α] the k-

module

gX := Lk(X)BZ
/
J Z
BZ
⊕ Lk(X)B

/
JB

is endowed with the structure of a Lie algebra given by the semi-direct product

gX := Lk(X)BZ
/
J Z
BZ

⋊ Lk(X)B
/
JB .

Here, the Lie bracket is given by the following formula

[(P0, Q0), (P1, Q1)] = ([P0, P1] + [α](Q0)(P1)− [α](Q1)(P0), [Q0, Q1]). (2.40)

With our construction, we thus have the split short exact sequence of Lie algebras

0→ Lk(X)BZ
/
J Z
BZ
→ gX → Lk(X)B

/
JB → 0. (2.41)

iii) In order to prove that Lk(X) /J ∼= Lk(X)BZ
/
J Z
BZ

⋊Lk(X)B
/
JB in k-Lie, we

follow the steps below:

a. A mapping β21 : X → gX is given by the formula

β21(x) :=

 (0, [x]) if x ∈ B

([x], 0) if x ∈ Z,
(2.42)

here [x] = x + JB if x ∈ B and [x] = x + J Z
BZ if x ∈ Z. The universal prop-

erty of the free Lie algebra Lk(X) shows that there is a Lie algebra morphism

β23 : Lk(X)→ gX such that the following triangle

X Lk(X)

gX

β22

β21

β23 (2.43)
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is commutative, where β22 is the embedding map. We claim that

β23(ad(u)(z)) = (ad(u)(z) + J Z
BZ , 0), (2.44)

for any u ∈ B∗ and z ∈ Z. Indeed, this follows by induction on the length of

word u,

• If |u| = 0: for any z ∈ Z, by equation (2.42) and diagram (2.43) we have

β23(z) = β21(z) = (z + J Z
BZ , 0).

• If |u| = 1: for any u = b ∈ B and z ∈ Z, by formulas (2.40), (2.42) and

diagram (2.43) we have

β23(ad(u)(z)) = β23([b, z]) = [β23(b), β23(z)]

= [(0, [b]), ([z], 0)] = ([α]([b])([z]), 0)

= ([b, z] + J Z
BZ , 0) = (ad(u)(z) + J Z

BZ , 0).

• Assume that β23(ad(u)(z)) = (ad(u)(z) + J Z
BZ , 0) for any u ∈ B∗ and |u| =

k − 1. For this assumption, for any u = b1b2 · · · bk ∈ B∗ and z ∈ Z, by

formulas (2.40), (2.42) and diagram (2.43) we also have

β23(ad(u)(z)) = β23
(
[b1, ad(b2···bk)(z)]

)
=
[
β23(b1), β23(ad(b2···bk)(z))

]
=
[
(0, [b1]), ([ad(b2···bk)(z)], 0)

]
(by ind. on k)

=
(
[α]([b1])([ad(b2···bk)(z)]), 0

)
=
(
[b1, ad(b2···bk)(z)] + J Z

BZ , 0
)

=
(

ad(b1···bk)(z) + J Z
BZ , 0

)
=
(

ad(u)(z) + J Z
BZ , 0

)
.

b. If j ∈ J = JZ ⊔ JB, then β23(rj) is, according to the properties of (2.42) and

(2.43), equal to

β23(rj) =

 (0, [rj]) = (0, 0) if j ∈ JB
([rj], 0) = (0, 0) if j ∈ JZ .

(2.45)

beacause, from (2.42), β23(rj) arrives in the sectors of

gX := Lk(X)BZ
/
J Z
BZ
⊕ Lk(X)B

/
JB

as precised in 2.45 and we know that, each time, the result is zero.

Thus, considering r = {rj}j∈J as a set, we have β23(r) = 0 and then β23(J ) = 0.
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This shows that β23 induces a morphism of Lie algebras

β25 := [β23] : Lk(X) /J → gX . (2.46)

Given the natural surjection here named β24 : Lk(X) ↠ Lk(X) /J , we can

construct a commutative diagram, namely

X gX

Lk(X) Lk(X) /J .

β21

β22
β23

β24

β25 (2.47)

c. In this part, using the equivariant property of Lie algebras of Section 2.1, we

describe the inverse isomorphism (called here β33) as follows

β33 : gX = Lk(X)BZ
/
J Z
BZ

⋊ Lk(X)B
/
JB → Lk(X) /J

In fact,

• There is the obvious embedding map j : Lk(X)BZ ↪→ Lk(X). We can easily

verify that j(J Z
BZ) = J Z

BZ ⊆ J , then j gives rise to a Lie morphism

g1 := [j] : Lk(X)BZ
/
J Z
BZ
→ Lk(X) /J .

By (2.44) and (2.46), one obtains β25 ◦ g1(ad(u)(z) +J Z
BZ) = [β23](ad(u)(z) +

J ) = β23(ad(u)(z)) = (ad(u)(z) + J Z
BZ , 0), for any u ∈ B∗ and z ∈ Z. From

the above calculation over generators {ad(u)(z)}(u,z)∈B∗×Z + J Z
BZ , it follows

that

β25 ◦ g1(P0) = (P0, 0),∀P0 ∈ Lk(X)BZ
/
J Z
BZ
. (2.48)

• Observe that there is the embedding map s : Lk(X)B ↪→ Lk(X) which is

a section of p : Lk(X) → Lk(X)B (as in 2.14). Since JB ⊆ J and then

s(JB) ⊆ J , so there is a Lie algebra morphism

g2 := [s] : Lk(X)B
/
JB → Lk(X) /J .

By (2.42), (2.43) and (2.46), one observes that

β25 ◦ g2(b+ JB) = [β23](b+ J ) = β21(b) = (0, b+ JB) ,
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for any b ∈ B. We calculated this over its generators, one derives the relation

β25 ◦ g2(Q0) = (0, Q0),∀Q0 ∈ Lk(X)B
/
JB . (2.49)

• Moreover, we show directly that morphisms g1 : Lk(X)BZ
/
J Z
BZ
→ Lk(X) /J

and g2 : Lk(X)B
/
JB → Lk(X) /J in the category k-Lie satisfy the

equivariant property (2.12) (or diagrammatically (2.13)) i.e. for any Q0 =

Q+ JB ∈ Lk(X)B
/
JB and P0 = P + J Z

BZ ∈ Lk(X)BZ
/
J Z
BZ

one has

g1
(
[α](Q0)(P0)

)
= [g2(Q0), g1(P0)]. (2.50)

Indeed, we give the following our proof without difficulty

g1
(
[α](Q0)(P0)

)
= g1

(
[α](Q+ JB)(P + J Z

BZ)
)

=

g1
(
[Q,P ] + J Z

BZ

)
= [Q,P ] + J = [Q+ J , P + J ]

= [g2(Q0), g1(P0)].

d. In terms of equivariant property (2.50) and by Proposition 2.2, they are

sufficient to conclude that there is a unique morphism of Lie algebras

β33 : gX = Lk(X)BZ
/
J Z
BZ

⋊ Lk(X)B
/
JB → Lk(X) /J (2.51)

which extends g1 and g2 in the usual sense i.e. β33(P0, 0) = g1(P0) and β33(0, Q0) =

g2(Q0), for any P0 ∈ Lk(X)BZ
/
J Z
BZ

and Q0 ∈ Lk(X)B
/
JB . We obtain two Lie

algebra morphisms β33 ◦ β25 : Lk(X) /J → Lk(X) /J and β25 ◦ β33 : gX → gX .

We now show that β25 is the inverse of β33

• By formula (2.42) and morphisms (2.43), (2.46) and (2.51), it give us to

compute in detail the following behavior: for any x ∈ X, then β33◦β25([x]) =

β33 ◦ [β23]([x]) = β33(β21(x)) = β33((0, [x])) = g2([x]) = [x] if x ∈ B

β33(([x], 0)) = g1([x]) = [x] if x ∈ Z.

Hence, β33 ◦ β25([x]) = [x] = IdLk(X)/J
([x]). As a consequence we clearly

derive that β33 ◦ β25 = IdLk(X)/J
.
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• Moreover, by formulas (2.48), (2.49) and the morphism (2.51), for any

(P0, Q0) ∈ Lk(X)BZ
/
J Z
BZ
⊕ Lk(X)B

/
JB , one has

β25 ◦ β33(P0, Q0) = β25 ◦ β33((P0, 0) + (0, Q0)) =

β25 ◦ (β33(P0, 0) + β33(0, Q0)) = β25(g1(P0) + g2(Q0)) =

β25(g1(P0)) + β25(g2(Q0)) = (P0, 0) + (0, Q0) = (P0, Q0).

The above calculation amounts to assert that β25 ◦ β33 = IdgX .

e. As a consequence, β25 is an isomorphism of Lie algebras. Hence, in the category

k-Lie, we constructed explicitly the isomorphism and its inverse

Lk(X) /J Lk(X)BZ
/
J Z
BZ

⋊ Lk(X)B
/
JB .

β25

β33
(2.52)

iv) From the above results, one thus derives a commutative diagram of Lie algebras

with split short exact rows

0 Lk(X)BZ Lk(X) Lk(X)B 0

0 Lk(X)BZ
/
J Z
BZ

Lk(X) /J Lk(X)B
/
JB 0.

j

sJZ
BZ

p

sJ sJB

[j] [p]

(2.53)

QED

Notation. – An alternative proof of the Theorem above 2.6, using B-gradings can

be found in Commentary 5.

2.2.3 Applications.

Elimination of the subalphabet Z.

In certain cases (which is that of the Lie algebras DKk,n), it can happen that the left

factor of the semi-direct product (2.28) be isomorphic to Lk(Z). We start from the
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commutative diagram (2.29) with an additional arrow

Lk(Z)

0 Lk(X)BZ Lk(X) Lk(X)B 0

0 Lk(X)BZ
/
J Z
BZ

Lk(X) /J Lk(X)B
/
JB 0

jZ

j

sJZ
BZ

p

sJ sJB

[j] [p]

(2.54)

where jZ is the subalphabet embedding such that

Im(jZ) = Lk(X)Z =
⊕

α∈N(X)

|α|B=0

Lk(X)α. (2.55)

We are now in the position to state the following

Proposition 2.9. With the notations as in Theorem 2.6, let us consider the composite

map β = sJZ
BZ
◦ jZ, then

a. In order that β be injective, it is necessary and sufficient that J Z
BZ ∩ Lk(X)Z =

{0}.

b. In order that β be surjective, it is necessary and sufficient that, for all (b, z) ∈

B × Z, we had

sJZ
BZ

([b, z]) ∈ sJZ
BZ

(Lk(X)Z). (2.56)

Proof. a. Firstly, it is clear that the composite sJZ
BZ
◦jZ is injective ⇐⇒ Ker(sJZ

BZ
◦

jZ) = {0} ⇐⇒ J Z
BZ ∩ Lk(X)Z = Ker(sJZ

BZ
◦ jZ) = {0}.

b. Secondly, we now have to prove that the composite map sJZ
BZ
◦ jZ is surjective if

and only if for all (b, z) ∈ B × Z, we have

sJZ
BZ

([b, z]) ∈ sJZ
BZ

(Lk(X)Z). (2.57)

Let us call β the composite map sJZ
BZ
◦ jZ . The proof goes as follows

”⇒ ”: Assume that β is surjective. This assumption shows that for any (b, z) ∈

B × Z, there exits Q ∈ Lk(Z) such that sJZ
BZ

([b, z]) = β(Q) = sJZ
BZ

(jZ(Q)) and

the fact that jZ(Q) ∈ Lk(X)Z proves the claim.

”⇐ ”: We first prove that, for all (b,Q) ∈ B × Lk(Z) we have

sJZ
BZ

([b, jZ(Q)]) ∈ sJZ
BZ

(Lk(X)Z). (2.58)
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Due to the fact that the homogeneous polynomials linearly generate Lk(Z) by

(1.31) and (1.32), it is sufficient to prove this for homogeneous (Lie) polynomials

of degree n for all n ∈ N≥1, we will do it by induction. Let then Q ∈ Lk(Z)n.

If n = 1 this is the hypothesis.

If n ≥ 2 (and Q homogeneous), then Q is a finite sum Q =
∑

i∈F [Qi1, Qi2] with

Qij ∈ Lk(Z)nij
and n = ni1 + ni2. Now, we have

[b,Q] =
∑
i∈F

[[b,Qi1], Qi2] + [Qi1, [b,Qi2]] (2.59)

and then the claim is a consequence of the induction hypothesis12 and the fact

that sJZ
BZ

(Lk(X)Z) is a Lie subalgebra.

Now we prove, by induction on |u| (u ∈ B∗) that, for all Q ∈ Lk(Z)

sJZ
BZ

(
ad(u)(jZ(Q))

)
∈ sJZ

BZ
(Lk(X)Z). (2.60)

If |u| = 0 this is trivial, otherwise u = bv for (b, v) ∈ B×B∗. From the induction

hypothesis (understated)

sJZ
BZ

(
ad(v)(jZ(Q))

)
= sJZ

BZ
(R)

for some R ∈ Lk(X)Z . But we have

sJZ
BZ

(
ad(u)(jZ(Q))

)
= sJZ

BZ

(
ad(bv)(jZ(Q))

)
= sJZ

BZ

(
[b, ad(v)(jZ(Q))]

)
= sJZ

BZ

(
[b, ad(v)(jZ(Q))−R]

)
+ sJZ

BZ
([b, R])

= sJZ
BZ

([b, R]) ∈ sJZ
BZ

(Lk(X)Z) by (2.58).

We just proved (2.60).

Thus, it permits us to verify that formula {sJZ
BZ

(ad(u)(z)) | (u, z) ∈ B∗ × Z} ⊂

Im(sJZ
BZ
◦ jZ) which is obviously the Lie subalgebra of Lk(X)BZ

/
J Z
BZ

. We

remind that {sJZ
BZ

(ad(u)(z)) | (u, z) ∈ B∗ × Z} is a generating set of the Lie

algebra Lk(X)BZ
/
J Z
BZ

, this yields

Im(sJZ
BZ
◦ jZ) = Lk(X)BZ

/
J Z
BZ
. (2.61)

The above formula i.e. (2.61) gives a consequence that sJZ
BZ
◦ jZ is surjective.

12Understated, but which can be unfolded on request.
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About M.-P. Schützenberger’s questions on the Partially Commutative Free

Lie algebra.

About the Free (partially commutative) Lie algebras, Pr. Schützenberger asked the

following questions [99]

1. Is the free partially commutative Lie algebra torsion free (over Z)?

2. If yes (in which case it is linearly free over Z), is it possible to construct combi-

natorial bases of it?

3. To which extent can it be considered as “free”? (more than “as a module”).

Question 3 has been answered in Section 1.3. The two remaining ones can be answered

by the following adaptation of §2.2.3.

Theorem 2.10. Let (X, θ) be an alphabet with commutations and M(X, θ) be the

free partially commutative monoid. We consider a partition of X, X = B + Z such

that Z is totally non-commutative i.e. no two letters of Z commute between themselves

(θ∩Z2 = ∆Z). As defined in Section 1.3, sθ is the canonical surjection X∗ →M(X, θ).

We also consider jθ : M(X, θ) → X∗, an arbitrary set-theoretical section of sθ. For

t ∈M(X, θ), we define the terminal alphabet of it

TAlph(t) = {x ∈ X | t ∈M(X, θ).x} (2.62)

as the set of last letters of preimages of t w.r.t. sθ and the code

CB(Z) = {sθ(uz)|u ∈ B∗, z ∈ Z,TAlph(sθ(uz)) = {z}} ⊂M(X, θ) (2.63)

Let C = jθ(CB(Z)) ⊂ B∗Z and jC be the composite map Lk(C) ↪→ Lk(B∗Z)
rn−→

Lk(X)BZ (where rn is the Lie isomorphism as in Diagram (2.14)), we have the diagram

Lk(C)

0 Lk(X)BZ Lk(X) Lk(X)B 0

0 Lk(X)BZ
/
J Z
BZ

Lk(X) /J Lk(X)B
/
JB 0.

jC

j

sJZ
BZ

p

sJ sJB

[j] [p]

(2.64)
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Then, with the above hypotheses (Z totally non-commutative and C = jθ(CB(Z))),

sJZ
BZ
◦ jC is an isomorphism.

In particular, the left factor of the semi-direct product (2.28), here Lk(X)BZ
/
J Z
BZ

is

a free Lie algebra.

Proof. For the proof that sJZ
BZ
◦ jC is one-to-one, we will need the three following

lemmas.

Lemma 2.11. Let g be a Lie k-algebra, G a set of generators of g as a Lie k-algebra

and R ⊂ g. Then, the ideal J (R) generated as an ideal by R is linearly (i.e. as a

module) generated by the elements

{adt(h)}t∈Seq(G)
h∈R

. (2.65)

Proof of Lemma 2.11 : For M a k-submodule of g, the set

S(M) = {g ∈ g | adg(M) ⊂M} (2.66)

is a Lie subalgebra of g from the Jacobi relation. Then, let N be the submodule of g

generated by the elements of (2.65). By the fact that {adt(h)}t∈Seq(G)
h∈R

⊂ J (R), one

has N ⊂ J (R). Moreover, we have, by construction, G ⊂ S(N) hence g ⊂ S(N) which

proves that N is an ideal containing R and then J (R). We obtain the claim. □

Consequence 2.12. Corresponding to rθ, and applying Lemma 2.11 to g = Lk(B), G =

B, we see that the ideal JB is generated (as a submodule) by the elements

{ad(u)([b1, b2])} u∈B∗
(b1,b2)∈θB

(2.67)

then applying Lemma 2.11 to g = Lk(X), G = X, we see that the ideal JZ is generated

(as a submodule) by the elements

{ad(u)([b, z])} u∈X∗
(b,z)∈θ∩(B×Z)

. (2.68)

Lemma 2.13. Let g be a Lie algebra and (p1, · · · , pn, q) ∈ Seq(g), then there exists

t =
∑

σ c(σ)σ ∈ Z[Sn] such that

[ad(p1,··· ,pn−1)(pn), q] =
∑
σ∈Sn

c(σ) ad(pσ(1),··· ,pσ(n))(q). (2.69)
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Proof of Lemma 2.13 : Let Y = {y1, · · · , yn, z} be an auxiliary alphabet of n +

1 letters and φ be the morphism Lk(Y ) → g defined by φ(yi) = pi and φ(z) =

q. Then, using the partition Y = {y1, · · · , yn} + {z} =: B + Z, we see that Q =

[ad(y1,··· ,yn−1)(yn), z] ∈ Lk(Y )BZ . Then

[ad(y1,··· ,yn−1)(yn), z] =
∑

u∈{y1,··· ,yn}∗
c(u) ad(u)(z). (2.70)

But Q is of multidegree (1, · · · , 1, 1) ∈ N(Y ) and then, each u in the support of the

decomposition (2.70) can be written u = yσ(1) · · · yσ(n) for some permutation σ ∈ Sn.

Hence

[ad(y1,··· ,yn−1)(yn), z] =
∑
σ∈Sn

c(σ) ad(yσ(1),··· ,yσ(n))(z). (2.71)

Now, with the notations of Lemma 2.13,

[ad(p1,··· ,pn−1)(pn), q] = φ([ad(y1,··· ,yn−1)(yn), z])

=
∑
σ∈Sn

c(σ)φ(ad(yσ(1),··· ,yσ(n))(z))

=
∑
σ∈Sn

c(σ) ad(pσ(1),··· ,pσ(n))(q). (2.72)

□

Consequence 2.14. Still with r = rθ and in view of §2.2.2 we have the generator

rBZ := {adQ z}Q∈JB ,z∈Z. We know, from Consequence, 2.12 that JB is generated (as a

module) by the elements {ad(u)([b1, b2])} u∈B∗
(b1,b2)∈θB

. Then, here JBZ is generated by the

elements

{[ad(u)([b1, b2]), z]} u∈B∗
(b1,b2)∈θB , z∈Z

(2.73)

and then, from Lemma 2.13 and tracking the position of [b1, b2], JBZ is generated by

elements

{ad(u),[b1,b2],(v)(z)} u,v∈B∗
(b1,b2)∈θB , z∈Z

(2.74)

(where, recalling that in the part “End of the proof of Lemma 2.7”, for any Q ∈ JB and

(v, z) ∈ B∗×Z, from equation (2.36) of Lemma 2.8, we have shown that ad(Q),(v)(z) ∈

JBZ. Thus, for Q = [b1, b2], we can write {ad(u),[b1,b2],(v)(z)} u,v∈B∗
(b1,b2)∈θB , z∈Z

⊂ JBZ).
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The last lemma characterizes the kernel of a morphism which performs identifica-

tions and annihilation of letters

Lemma 2.15. Let Y1, Y2 be alphabets and φ0 : Y1 → Y2 ∪ {0} ⊂ Lk(Y2) with

Y2 ⊂ φ0(Y1). Let φ1, be the morphism Lk(Y1) → Lk(Y2) constructed from φ0 by

the mechanism (1.30). Then the kernel of φ1 is the ideal generated by the elements

req = {x− x′}φ0(x)=φ0(x′)∈Y2 ; rnil = {x}φ0(x)=0.

Proof of Lemma 2.15 : Still with req and rnil defined as above, call R the relator13

i.e. R = req ∪ rnil. It is easily checked that R ⊂ Ker(φ1) and then J (R) ⊂ Ker(φ1)

(J (R) being the ideal generaled by R). We then have a morphism

φ3 : Lk(Y1)
/
J (R) → Lk(Y2). (2.75)

It is surjective due to the condition Y2 ⊂ φ0(Y1). Now let us consider the following

candidate to be an inverse of φ3. Remarking that, for y2 ∈ Y2 and y1 a preimage of

y2 (φ1(y1) = y2), the class y1 + J (R) is independent from the choice of y1. We define

φ4 : Lk(Y2) → Lk(Y1)
/
J (R) by φ4(y2) := y1 + J (R). A routine check shows that

φ3 ◦ φ4 = IdDom(φ4) and φ4 ◦ φ3 = IdDom(φ3). □

End of the proof of Theorem 2.10. –

We now consider the following composition

Lk(C) Lk(X)BZ Lk(X)BZ
/
J Z
BZ

jC
sJZ

BZ (2.76)

and, as α31 := rn : Lk(B∗Z) → Lk(X) (see (2.14)) is injective with image Lk(X)BZ ,

we also note α31 = rn : Lk(B∗Z) → Lk(X)BZ the corresponding isomorphism and

β13 : Lk(X)BZ → Lk(B∗Z) its inverse.

We define φ : Lk(B∗Z)→ Lk(C) of the type considered in Lemma 2.15 by φ : B∗Z →

C ∪ {0} as follows

φ(uz) = jθ ◦ sθ(uz) if TAlph(sθ(uz)) = {z} and φ(uz) = 0 otherwise. (2.77)

13As a type, R is a mere subset of Lk(Y1) but “relator” means that it is intended to be the generating

set of an ideal.
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Let us prove that Ker(φ◦β13) = α31(Ker(φ)) ⊃ JZ +JBZ = J Z
BZ . In fact, from (2.74),

we know that JBZ is generated by elements

{ad(u),[b1,b2],(v)(z)} u,v∈B∗
(b1,b2)∈θB , z∈Z

.

Set Q = ad(u),[b1,b2],(v)(z) and remark that from the Jacobi identity one has

Q = ad(u),b1,b2,(v)(z)− ad(u),b2,b1,(v)(z) = α31(ub1b2vz)− α31(ub2b1vz)

= α31(ub1b2vz − ub2b1vz). (2.78)

But ub1b2vz−ub2b1vz ∈ Ker(φ) because b1 and b2 commute in M(X, θ), hence one has

α31(Ker(φ)) ⊃ JBZ . Now, from (2.68), we know that JZ is generated by the elements

{ad(u)([b, z])} u∈X∗
(b,z)∈θ∩(B×Z)

.

Set Q = ad(u)([b, z]) and remark that

Q = ad(u)([b, z]) = ad(ub)(z)− ad(uz)(b) = α31(ubz − uzb) (2.79)

but, again, φ(ubz) = φ(uzb) because b and z commute in M(X, θ). Then we arrive at

α31(Ker(φ))) ⊃ JZ .

And now, we can construct the factorization to quotient of φ ◦ β13 as follows

Lk(C) Lk(X)BZ
/
J Z
BZ

Lk(X)BZ Lk(B∗Z) Lk(X)BZ

Lk(X)BZ
/
J Z
BZ
.

jC

α

β13

sJZ
BZ

α31

φ

β13

sJZ
BZ

Figure 2.7: Diagram of the arrows involved in the proof of Theorem 2.10 (beware this

diagram is not commutative in general).

Let us show that sJZ
BZ
◦ jC and α are mutually inverse and, firstly remark that, for

uz ∈ B∗Z, jθsθ(uz) is the unique representative of uz within C. Then, for uz ∈ C, we

have β13jC(uz) = uz. This shows that, for uz ∈ C, we have φβ13jC(uz) = φ(uz) =

jθsθ(uz) = uz and then φ ◦ β13 ◦ jC = IdLk(C). From this, we get

α ◦ sJZ
BZ
◦ jC = φ ◦ β13 ◦ jC = IdLk(C) . (2.80)
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In particular α is onto and sJZ
BZ
◦ jC is into. Let us prove (which is sufficient) that

sJZ
BZ
◦ jC is onto. Our strategy is to show that Im(sJZ

BZ
◦ jC) contains sJZ

BZ
α31(B

∗Z).

Let us show that, if uz ∈ B∗Z and TAlph(sθ(uz)) ̸= {z}, we have sJZ
BZ
α31(uz) = 0.

Indeed, we claim that, for any uz = b1 · · · bkz ∈ B∗Z such that (b1, z) ∈ θ and (b1, bj) ∈

θ for all j ∈ [2, k], then α31(uz) ∈ J Z
BZ . Indeed, if |u| = 1 then α31(uz) = [b1, z] ∈ JZ ⊆

J Z
BZ since (b1, z) ∈ θ∩(B×Z). If |u| = 2 i.e. u = b1b2 ∈ B∗, (b1, z) ∈ θ and (b1, b2) ∈ θ,

then α31(uz) = [b1, [b2, z]] = [b2, [b1, z]] + [z, [b2, b1]] = adb2([b1, z]) − ad[b2,b1](z) ∈ J Z
BZ

since adb2([b1, z]) ∈ JZ and ad[b2,b1](z) ∈ JBZ . If |u| = k ≥ 3 i.e. u = b1b2 · · · bk ∈ B∗,

it is obtained from the induction hypothesis and by the formula

α31(uz) = ad(b1b2···bk)(z) = [b1, [b2, ad(b3···bk)(z)]]

= adb2([b1, ad(b3···bk)(z)])− ad[b2,b1](ad(b3···bk)(z))

= adb2(α31(b1b3 · · · bkz))− ad[b2,b1](ad(b3···bk)(z)).

Now, if uz = b1 · · · bkz ∈ B∗Z and TAlph(sθ(uz)) ̸= {z}, by Remark 1.8 there exists

i ∈ [1, k] so that (bi, z) ∈ θ and (bi, bj) ∈ θ for all j ∈ [i+ 1, k]. Thus, sJZ
BZ
α31(uz) = 0

because α31(uz) = ad(b1···bi−1)(α31(bi · · · bkz)) ∈ J Z
BZ (here α31(bi · · · bkz) ∈ J Z

BZ by the

claim above).

Otherwise, if TAlph(sθ(uz)) = {z}, we have jθsθ(uz) ∈ C and

α31(uz − jθsθ(uz)) ∈ JBZ

because JBZ contains all the commutations of θB, then

sJZ
BZ
α31(uz) = sJZ

BZ
α31(uz − jθsθ(uz) + jθsθ(uz))

= sJZ
BZ
α31(jθsθ(uz)) ∈ sJZ

BZ
α31(C) = sJZ

BZ
jC(C). (2.81)

All in all sJZ
BZ
α31(B

∗Z) ⊂ sJZ
BZ
◦ jC(Lk(C)). Thus, sJZ

BZ
◦ jC and α are mutually

inverse. We proved our theorem.

QED
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It would be interesting to have alternative proofs for answers to Schützenberger’s

questions about the Partially Commutative Free Lie algebra (cf. Duchamp and Krob

[41] Thm III.3) as a consequence of our main theorem (Theorem 2.6).

Corollary 2.16. (Lazard’s Partially Commutative Elimination) Let X be a set equipped

with a commutation relation θ and B be a subset of X such that Z = X −B is totally

non-commutative. Then there is an isomorphism from the free partially commutative

Lie algebra Lk(X, θ) to the semi-direct of product of Lie algebras, namely

Lk(X, θ) ∼= Lk(C) ⋊ Lk(B, θB) in k-Lie. (2.82)

Proof. A partial result of our main theorem [Theorem 2.6 (iii)] deals the following

decomposition

Lk(X, θ) ∼=k-Lie
Lk(X)BZ

/
J Z
BZ

⋊ Lk(B, θB).

Therefore, in the category k-Lie, the formula Lk(C) ∼= Lk(X)BZ
/
J Z
BZ

is immediately

seen from the fact that the composite sJZ
BZ
◦ jC is isomorphism of Lie algebras by our

result in Theorem 2.10. We thus obtain the corollary.

Knizhnik-Zamolodchikov equation, Drinfeld-Kohno Lie algebra and its de-

composition.

In this part, we give a sample of the application of our main theorem (Theorem 2.6)

and by Proposition 2.9 to the decomposition of Drinfeld-Kohno Lie algebras. We

remind the reader that the decomposition has deep relations with the study of special

solutions of Knizhnik-Zamolodchikov equations (KZn, for n = 3, 4) by polylogarithms

and hyperlogarithms (cf. Drinfeld [30, 31], Cartier [20], Brown [16], Oi and Ueno [90]).

For n ≥ 2, assume that Tn = {ti,j}1≤i<j≤n is a set of
(
n
2

)
endomorphisms ti,j of W, where

W is a finite-dimensional vector space over C. We consider the Knizhnik-Zamolodchikov

(KZ) equation (cf. Knizhnik and Zamolodchikov [69], Drinfeld [30, 31], Cartier [19],

Kassel [67])

(KZn) dF(z) = Ωn(z)F(z) (2.83)

defined over the complex configuration space

Cn
∗ = {z = (z1, · · · , zn) ∈ Cn|zi ̸= zj for i ̸= j},
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where the system (so-called the KZ connection of 1-forms)

Ωn(z) =
∑

1≤i<j≤n

ti,j
2iπ

d log(zi − zj) (2.84)

and F = F(z) is a function defined on an open subset of Cn
∗ with values in the complex

space EndC(W ).

As a consequence of a classical integrability criterium (cf. Drinfeld [30], Cartier

[19], Kohno [71]), the system (2.84) is completely integrable if and only if dΩn −Ωn ∧

Ωn = 0, and this imposes relations between the endomorphisms ti,j. These relations

are precisely the infinitesimal pure braid relations. Considering now ti,j as abstract

variables (or generators) and no longer endomorphisms, we repeat these relations here

i.e. Tn = {ti,j}1≤i<j≤n satisfy the following infinitesimal pure braid relations

R[n] =


R1[n] [ti,j, ti,k + tj,k] for 1 ≤ i < j < k ≤ n,

R2[n] [ti,j + ti,k, tj,k] for 1 ≤ i < j < k ≤ n,

R3[n] [ti,j, tk,l] for
1 ≤ i < j ≤ n,
1 ≤ k < l ≤ n, and |{i, j, k, l}| = 4.

(2.85)

Remark 2.5. It is remarkable that these relations be the same as those obtained by

the functor grZ(−) (see (2.6)).

Example 2.2. For n = 3, by Drinfeld transformation (see [30, 31, 67]), the KZ equation

(2.83) has a solution of the form

F(z) = (z3 − z1)
1

2iπ
(t1,2+t1,3+t2,3)S(

z2 − z1
z3 − z1

) (2.86)

where S(z) satisfies the first order differential equation with three regular singular

points at 0, 1 and ∞
d

dz
S(z) =

1

2iπ

(
t1,2
z

+
t2,3
z − 1

)
S(z).

By setting x0 := t1,2
2iπ

and x1 := − t2,3
2iπ

, we then transform X := {x0, x1} as an object

in Set, this arises to consider the first order noncommutative differential equation (see

(3.38)) d(S) = (ω0(z)x0 + ω1(z)x1)S, (NCDE)

lim
z∈Ω,z→0

S(z)e−x0 log(z) = 1H(Ω)⟨⟨X⟩⟩, asymptotic initial condition,
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where, ω0(z) = z−1dz and ω1(z) = (1 − z)−1dz are two differential forms on the

complement of the union of the real half-lines ] − ∞, 0] and [1,+∞[ in the complex

plane i.e. the simply-connected domain Ω = C\ (]−∞, 0]∪ [1,+∞[) and for any series

S ∈ H(Ω)⟨⟨X⟩⟩ over H(Ω) the algebra (for the pointwise product) of complex-valued

functions which are holomorphic on Ω and d stands for the term by term derivation

d(S) =
∑

w∈X∗
d

dz
(⟨S | w⟩)w.

Assume that k is a commutative ring with unit. We also transform the set of

endomorphisms Tn as an object in Set. The Drinfeld-Kohno Lie algebra14 DKk,n is

then presented as

DKk,n = ⟨ Tn |R[n] ⟩
k-Lie = Lk(Tn)

/
JR[n]

(2.87)

where JR[n] is the Lie ideal of the free Lie algebra Lk(Tn) generated by R[n] (2.6).

By using the Knizhnik-Zamolodchikov equations, Kohno proved in [70] that DKZ,n

can be identified with grZ(PBn) the graded Lie algebra of the pure braid group PBn.

The Drinfeld-Kohno Lie algebra DKk,n
∼= DKZ,n ⊗Z k is also called the Lie algebra of

infinitesimal braids.

Corollary 2.17. (Decomposition of Drinfeld-Kohno Lie algebra, cf. Etingof et al.

[44]) Given k a commutative ring with unit and n ≥ 0, there is an isomorphism of Lie

algebras from Drinfeld-Kohno Lie algebra to the semi-direct product of Lie algebras

DKk,n+1
∼= Lk(Xn) ⋊ DKk,n, (2.88)

where Xn is any alphabet of cardinality n.

Proof. Recall in Example 2.1, we decompose Tn+1 = Tn + Tn+1 and consider the in-

finitesimal pure braid relator r = R[n + 1] ⊂ Lk(Tn+1). We then can easily check

through direct calculation that r is a good relator satisfying all hypotheses in Theorem

2.6 and Proposition 2.9. This provides us with effective tools to derive the existence of

the decomposition of Drinfeld-Kohno Lie algebra, namely, there is a Lie isomorphism

DKk,n+1
∼= Lk(Xn) ⋊ DKk,n, where we identified Tn+1 with the alphabet Xn.

14It was originally invented and named such in Kohno [70] and Etingof et al. [44] respectively.
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Remark 2.6. The above method gives, as a consequence, that the Drinfeld-Kohno Lie

algebra is an iterated semi-direct product of free Lie algebras, more precisely

DKk,n+1
∼= Lk(Xn) ⋊ (Lk(Xn−1) ⋊ (· · ·⋊ Lk(X1)) · · · )

in the category k-Lie (see Etingof et al. [44] §3.10). We also remark that, in [25]

Cor 4.4, the authors used Gröbner-Shirshov bases for the Drinfeld-Kohno Lie algebra

to also show that DKk,n+1 is an iterated semi-direct product of free Lie algebras (the

reader can study an exposition15 of the theory of Gröbner-Shirshov bases for associative

algebras, Lie algebras, groups, semigroups, Ω-algebras, operads, etc. in the survey of

L. A. Bokut and Y. Chen [7]).

We will return to this point with strange and generalized gradings in Subsection

2.3.3.

2.3 Lazard elimination as a free object.

In this section, we investigate more categorical frameworks for Lazard’s elimination in

k-Lie. In the first subsection, we introduce the category of Short Exact Sequences

with Section (SESS) in k-Lie. In the last subsection, we will study the category of

B-graded Lie algebras, where B = ({0, 1},∨) is the Boolean semigroup, which can be

proved to be equivalent to the previous category in Proposition 2.18. Finally, we will

perform Lazard’s elimination as a free functor from the category of double sets to the

category of B-graded Lie algebras.

2.3.1 Category of SESS in Lie algebras.

Assume that we have a SES of Lie algebras

0 −→ gl
j−→ g

p−→ gr −→ 0, (2.89)

(we also say that g is an extension of gr by gl). The extension of Lie algebras is said

to split if SES (2.89) is split i.e. there is a Lie algebra homomorphism σ : gr → g such

that p◦σ = Idgr (σ is called a section of p. In this case (2.89) can be pictured as below

15Where the semi-direct decomposition of DKk,n+1 is also established.
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(see (2.92) and look there for a formal definition of the category of SSES) will be called

“Short Exact Sequence with Section (SESS)”). Thus, if the extension of Lie algebras

is split, then there is a Lie ideal h := Ker(p) and a Lie subalgebra b := Im(σ) such

that g can be uniquely decomposed as an internal direct sum of submodules g = h⊕b.

Then p (resp. σ) induces a Lie isomorphism h ∼= gl (resp. b ∼= gr) and then a module

isomorphism g ∼= gl⊕gr (external direct sum of modules). Moreover, one clearly defines

an action of the Lie algebra b (resp.gr) on h (resp. gl) by derivations. In other words,

at the level of elements b (resp.gr) acts on h by Db(h) = [σ(b), h] (resp.internal brackets

i.e. the adjoint representation).

In this vein, we have the following

Remark 2.7. i) In general, any SES (2.89) is not necessarily split. For example, the

Heisenberg Lie algebra (see Blasiak et al. [6]), denoted by LH, is presented as

LH = ⟨ a†, a, e | [a, a†] = e, [a†, e] = [a, e] = 0 ⟩
k-Lie. (2.90)

If we consider the one-dimensional Lie algebra

L1 = ⟨ z | ∅ ⟩
k-Lie

and the two-dimensional abelian Lie algebra

L2 = ⟨x, y | [x, y] = 0 ⟩
k-Lie,

the reader can verify that 0 −→ L1
j−→ LH

p−→ L2 −→ 0 is a SES of Lie algebras,

but not split, where j : L1 → LH, z 7→ e is an injective Lie homomorphism and

p : LH → L2, a
† 7→ x, a 7→ y, e 7→ 0 is a surjective Lie homomorphism (but there is no

existence of a section s of p as, otherwise, this central extension would be commutative,

see Lemma 5.1).

ii) With the semi-direct construction (see Definition 2.1), we give a SES of Lie

algebras

0 −→ h −→ g = h⊕ b −→ b −→ 0 (2.91)

but it is better than a simple extension because this SES is split and the Lie algebra g

is a semi-direct product of b with h, denoted by g := h⋊ b.
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As a consequence of the remark above, if SES (2.89) is split then g = h ⋊ b and

g ≃ gr ⋊ gl in k-Lie.

Let us define the category of SESS in k-Lie, denoted by k-SSLie, as follows

• Objects: an object is a SESS of Lie algebras

0 gl g gr 0
j

p

σ (2.92)

• Morphisms: a morphism between two objects

0 gl1 g1 gr1 0
j1

p1

σ1

and

0 gl2 g2 gr2 0
j2

p2

σ2

is a commutative diagram in k-Lie with SESS arrows

0 gl1 g1 gr1 0

0 gl2 g2 gr2 0.

j1

φl

p1

σ1

φ φr

j2
p2

σ2

(2.93)

2.3.2 An equivalence of categories and a Lazard elimination

functor.

Given a set S, an object X in Set is said to be S-graded if it can be written as

X =
⊔
s∈S Xs a disjoint union structure (i.e. the coproduct) of a family of subsets

{Xs}s∈S. Furthermore, if S is an additive commutative semigroup, an object M (resp.

g,A) in one of categories

Mon or Grp (resp. k-Lie,k-AAU)

is said to be S-graded if it can be written as M =
⊎
s∈SMs a disjoint union of a

family of subsets {Ms}s∈S (resp. g =
⊕

s∈S gs an internal direct sum of a family of k-

submodules {gs}s∈S, A =
⊕

s∈S As an internal direct sum of a family of k-submodules

{As}s∈S) such that the binary operation respects this gradation Ms.Mt ⊆Ms+t (resp.
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the Lie bracket respects this gradation [gs, gt] ⊆ gs+t, the multiplication respects this

gradation As.At ⊆ As+t).

Commentary 4. We summarize these definitions by the following table

Structure Grading support Formula Internal structure Global structure

Set Set X =
⊔
s∈S Xs subsets No

Mon or Grp Monoid M =
⊎
s∈SMs subsets Ms.Mt ⊆Ms+t

k-Lie Semigroup g =
⊕

s∈S gs submodules [gs, gt] ⊆ gs+t

k-AA Semigroup A =
⊕

s∈S As submodules As.At ⊆ As+t
k-AAU Monoid A =

⊕
s∈S As submodules As.At ⊆ As+t

Table 1: S-graded structures for the list of categories, where “Internal structure”

means “Algebraic internal structures of the components”.

Remark 2.8. 1. In case M ∈Mon and (N,+, 0) the commutative monoid of non-

negative integers, if we assume that M0 = {1M} then M =
⊎
m∈NMm a N-graded

monoid is called succinctly “graded monoid” in Definition 1.1. We recall the

Hilbert series of a finitely graded moinoid M is the formal power series

Hilb(M, t) =
∑
m≥0

|Mm | tm ∈ N[[t]] (⊂ Q[[t]]).

More generally, this definition is still valid when internal structures of the com-

ponents are subsets (i.e. for Set, Mon or Grp).

2. From now on and until the end of this remark k is assumed to be a field. Then, in

case of k-AAU, an N-graded (or graded for short) associative algebra with unit

A =
⊕

m∈NAm is said finitely graded if each k-module Am is finite dimensional.

The Hilbert series of a finitely graded associative algebra A is the formal power

series

Hilb(A, t) :=
∑
m≥0

dimkAm.tm ∈ Q[[t]]. (2.94)

More generally, this definition is still valid when internal structures of the com-

ponents are free submodules (i.e. for k-Lie or k-AAU).
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3. The Hilbert series of direct sum and standard tensor product of two finitely graded

modules A and B is Hilb(A⊕B, t) = Hilb(A, t)+Hilb(B, t) and Hilb(A⊗B, t) =

Hilb(A, t).Hilb(B, t), respectively.

Now we attempt to find a bivariate Hilbert series of U(DKk,n+1) the universal

enveloping algebra of the Drinfeld-Kohno Lie algebra that has a nice description in the

next subsection 2.3.3 (see Definition 2.3 and Example 2.5). Firstly, we say that the

monovariate Hilbert series are known.

Example 2.3. (cf. Kohno [70], Etingof et al. [44]) The Hilbert series of the universal

enveloping algebra of the Drinfeld-Kohno Lie algebra is

Hilb(U(DKk,n+1), t) =
n+1∏
i=2

1

1− (i− 1)t
∈ Q[[t]].

Remark 2.9. Bourbaki’s book [10], Algebra Ch II §11.1 deals with graded k-algebras

over a commutative monoid. However, for other structures (like Lie algebras), semi-

groups can replace monoids with the same crucial properties (homogeneous compo-

nents, generators &c.). This will be sufficient for our purposes (indeed for the infinite

Drinfeld-Kohno Lie algebra DKk,∞, we will need the additive commutative semigroup

(N≥2,∨)× (N≥1,+), see in Subsection 2.3.3).

Here, we will use semigroups for Lie algebras as in the above table.

The category of B-graded Lie algebras.

For a Boolean semigroup B = ({0, 1},∨) 16, a B-graded Lie algebra g can be described

as follows: g = g1 ⊕ g0 is the direct sum of two submodules g1 and g0 such that

[g0, g0] ⊆ g0∨0 = g0,

[g0, g1] ⊆ g0∨1 = g1,

[g1, g0] ⊆ g1∨0 = g1,

[g1, g1] ⊆ g1∨1 = g1. (2.95)

Thus, the B-graded Lie algebra g can be written as g = h ⊕ b, where h := g1 being a

Lie ideal and b := g0 a Lie subalgebra (hence we have the semi-direct product g = h⋊b).

16In fact, B is a monoid.
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We now define the category of B-graded Lie algebras over k, denoted by B-GrLie,

as follows

• Objects: an object is a Lie k-algebra g = h ⋊ b, h is a Lie ideal and b a Lie

subalgebra of g.

• Morphisms: a morphism of two objects g1 = h1 ⋊ b1 and g2 = h2 ⋊ b2 is a Lie

algebra homomorphism φ : g1 → g2 such that φ(h1) ⊆ h2 and φ(b1) ⊆ b2.

We then can define a functor F : k-SSLie → B-GrLie from the category of SESS in

k-Lie to the category of B-graded Lie algebras by the following

• F ((2.92))
def
= (g = h⋊ b), where h = Ker(p) the Lie ideal and b = Im(σ) the Lie

subalgebra of g, that is an object in B-GrLie;

• F ((2.93))
def
= (φ : g1 = h1 ⋊ b1 → g2 = h2 ⋊ b2), here F ((2.93)) is a morphism in

B-GrLie because φ(h1) = φ(Ker(p1)) = φ(Im(j1)) = φ ◦ j1(gl1) = j2 ◦ φl(gl1) ⊆

j2(g
l
2) = Im(j2) = Ker(p2) = h2 and φ(b1) = φ(Im(σ1)) = φ ◦ σ1(gr1) = σ2 ◦

φr(gr1) ⊆ σ2(g
r
2) = Im(σ2) = b2.

Moreover, one has the following

Proposition 2.18. The functor F : k-SSLie→ B-GrLie is

• an essentially surjective functor (i.e. every object g = h⋊b ∈ B-GrLie, there ex-

ist an object (2.92) ∈ k-SSLie and an isomorphism F ((2.92))) ∼= g in B-GrLie,

see [66] Def 1.2.11) and

• a fully faithful functor.

Proof. We first prove that F is essentially surjective. Indeed, for every object g =

h⋊ b ∈ B-GrLie, we take the following natural SESS in k-Lie

0 h g = h⊕ b b 0
j

p

σ (2.96)

which is an object in k-SSLie. We then easily see that F ((2.96)) = g in B-GrLie

which corresponds to Idg : g → g because F ((2.96)) = (g = Ker(p) ⋊ Im(σ) = h ⋊ b).

We verified that F is an essentially surjective functor. Further, for each pair of objects

0 gl1 g1 gr1 0
j1

p1

σ1
(2.97)
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and

0 gl2 g2 gr2 0
j2

p2

σ2
(2.98)

in k-SSLie, for short we will designate SESS (2.97) by x1 and SESS (2.98) by x2, then

the function

F : Hom
k-SSLie(x1, x2) → HomB-GrLie(F (x1), F (x2))

(2.93) 7→ φ : g1 = h1 ⋊ b1 → g2 = h2 ⋊ b2

is a bijection in Set by the following properties

• Surjectivity: in fact, for any morphism φ : g1 = h1 ⋊ b1 → g2 = h2 ⋊ b2 in

HomB-GrLie(F (x1), F (x2)), we construct two Lie homomorphisms φl := r2 ◦φ ◦

j1 : gl1 → gl2 and φr := p2◦φ◦σ1 : gr1 → gr2, where r2 : g2 → gl2 is a retract of j2 i.e.

r2 is a Lie algebra homomorphism such that r2 ◦ j2 = Idgl2
. One notes that since

φ(h1) ⊆ h2 by assumption, we get that φ◦ j1(gl1) = φ(h1) ⊆ h2 = j2(g
l
2) and then

for any al1 ∈ gl1 there exists al2 ∈ gl2 such that φ◦j1(al1) = j2(a
l
2) (al2 is unique since

j2 is injective). We can now obtain that φl(al1) = r2 ◦φ◦ j1(al1) = r2 ◦ j2(al2) = al2,

and then j2◦φl(al1) = j2(a
l
2) = φ◦j1(al1). Thus, j2◦φl = φ◦j1. Moreover, we also

remark that φ(b1) ⊆ b2 by assumption, then φ ◦ σ1(gr1) = φ(b1) ⊆ b2 = σ2(g
r
2),

thus for any ar1 ∈ gr1 there exists ar2 ∈ gr2 such that φ◦σ1(ar1) = σ2(a
r
2) (ar2 is unique

since σ2 is injective). It is sufficient to obtain that φr(ar1) = p2 ◦ φ ◦ σ1(ar2) =

p2 ◦ σ2(ar2) = ar2, we thus have σ2 ◦ φr(ar1) = σ2(a
r
2) = φ ◦ σ1(ar1). We arrive at

σ2 ◦ φr = φ ◦ σ1. As a consequence, we can obtain the following commutative

diagram in k-Lie with SESS arrows

0 gl1 g1 gr1 0

0 gl2 g2 gr2 0.

j1

φl

p1

σ1

φ φr

j2
p2

σ2

(2.99)

We therefore conclude that the function F is a surjection because F ((2.99)) = (φ :

g1 = h1⋊b1 → g2 = h2⋊b2), where (2.99) is a morphism in Hom
k-SSLie(x1, x2).

• Injectivity: we start with a morphism φ : g1 = h1 ⋊ b1 → g2 = h2 ⋊ b2 in

HomB-GrLie(F (x1), F (x2)) as above, we assume that there is an another mor-
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phism

0 gl1 g1 gr1 0

0 gl2 g2 gr2 0

j1

ψl

p1

σ1

φ ψr

j2
p2

σ2

(2.100)

in Hom
k-SSLie(x1, x2) such that F ((2.100)) = (φ : g1 = h1⋊b1 → g2 = h2⋊b2).

By (2.99) and (2.100), observe that for any al1 ∈ gl1 then j2 ◦ψl(al1) = φ◦ j1(al1) =

j2 ◦ φl(al1), one has ψl(al1) = φl(al1) because j2 is injective. We obtain that

ψl = φl. Similarly, it is not hard to show that ψr = φr. Consequently two

morphisms (2.99) and (2.100) are equal in Hom
k-SSLie(x1, x2). We proved the

injectivity of the function F .

Thus, F is a fully faithful functor. We proved our proposition.

It follows from the above proposition that F is an equivalence of these categories.

Thus, two categories k-SSLie and B-GrLie are equivalent17. In a more explicit way,

we can construct an inverse functor G : B-GrLie→ k-SSLie as follows

• For an object g = h⋊ b ∈ B-GrLie, by (2.96), we set

G(g = h⋊ b)
def
= (0 h g = h⊕ b b 0)

j
p

σ

which is obviously an object in k-SSLie;

• For a morphism φ : g1 = h1 ⋊ b1 → g2 = h2 ⋊ b2 in B-GrLie, we set G(φ)
def
=

0 h1 g1 b1 0

0 h2 g2 b2 0

j1

φ|h1

p1

σ1

φ φ|b1

j2
p2

σ2

which is a commutative diagram in k-Lie with SESS arrows i.e. a morphism in

k-SSLie.

17Two categories C and D are called equivalent if there exists an equivalence between them i.e. there

are functors F : C → D, G : D → C and natural isomorphisms α : 1C → G ◦ F, β : 1D → F ◦ G.

Moreover, Proposition 2.18 is a criterion for testing whether any functor F : C → D is a part of an

equivalence of categories in this sense, see [66] Prop 1.3.13.
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Commentary 5. i) Let us provide an alternative proof of Theorem 2.6 using the tools

above.

1. The fact that the alphabet X is bisected as X = B + Z induces a B-grading in

Lk(X) with B → 0, Z → 1 (in fact, by Lemma 5.3, a regrading of the fine

grading of Lk(X)).

2. Likewise the partitioning r = rB ⊔ rZ means that the relators are homogeneous

w.r.t. this B-grading and, hence the Lie ideal J generated by r is itself B-graded,

let us denote J = J1 ⊕ J0 be its homogeneous decomposition.

3. The only thing we have to prove is that J0 = JB and J1 = JZ + JBZ which can

be done as follows

(a) The inclusion JB + JZ + JBZ ⊂ J is straightforward considering the defi-

nitions of the summands.

(b) We observe that JB +JZ +JBZ is a Lie ideal of Lk(X). This is due to the

fact that, for all b ∈ B and z ∈ Z, we have [b,JB] ⊂ JB and [z,JB] ⊂ JBZ
by definition, the other summands (JZ and JBZ) being Lie ideals.

(c) Then, as r ⊂ JB + JZ ⊂ JB + JZ + JBZ, we get the reverse inclusion

JB + JZ + JBZ ⊃ J .

(d) Finally we have J0 = J ∩Lk(X)B = JB and J1 = J ∩Lk(X)BZ = JZ+JBZ
by counting the degrees.

Then, the conclusions of Theorem 2.6 can be revisited as follows

i) J Z
BZ (resp. JB) is the 1-component (resp. 0-component) of J i.e. J1 =

JZ + JBZ = J Z
BZ (resp. J0 = JB).

ii-iv) The remainder of the theorem is a consequence of the following general fact

which says that a Lie ideal of g which is B-graded as a submodule is a B-

graded Lie ideal (i.e. the kernel of a B-morphism, see Proposition 5.2 in

Appendix 5.4.1).

Lemma 2.19. Let g be a B-graded Lie algebra and h be a Lie ideal of g

which is {0, 1}-graded as a submodule. Then
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i. h0 is a Lie ideal of g0, h1 is a Lie ideal of g (and then of g1).

ii. We have the following commutative diagram

0 g1 g g0 0

0 g1
/
h1

g
/
h g0

/
h0 0.

j1

s1

p

j0

s s0

[j1]
[p]

[j0]

Proof. This is a particular case of Proposition 5.2 with S = B.

ii) For implementation purposes, one can remark that the Lie ideal JB is the set of Lie

polynomials on {ad(u)(rj)}u∈B∗,j∈JB .

A free functor on the category of double sets.

Our next aim is to investigate that Lazard’s elimination defines a free functor from the

category of double sets to the category of B-graded Lie algebras with respect to the

forgetful functor F : B-GrLie→ Set2 defined in the following way

• Given an object g = h ⋊ b ∈ B-GrLie, then F (g = h ⋊ b)
def
= (h, b), where h

and b are only underlying sets (forgetting their Lie structures), so is an object in

Set2 (the product of the category Set with itself);

• Given a B-GrLie-morphism g1 = h1 ⋊ b1
φ→ g2 = h2 ⋊ b2, we define F (φ) as

F (φ)
def
= (h1, b1)

F (φ)−→ (h2, b2)

the underlying (double) set-theoretical map corresponding to

F (φ)((h1, b1)) = (φ(h1), φ(b1)).

We first start with a pair of sets (Z,B) ∈ Set2, and then under the Lie homomorphism

α : Lk(B)→ Der(Lk(B∗Z)) (appearing in the proof of Theorem 2.3) we can construct

the below classical elimination which is a SESS of Lie algebras

0 Lk(B∗Z) Lk(B∗Z) ⋊ Lk(B) Lk(B) 0.
jB|Z

pB|Z

sB|Z
(2.101)

In this situation, we now set g(Z,B) := Lk(B∗Z) ⋊ Lk(B) = g1(Z,B) ⊕ g0(Z,B)

with the grading g1(Z,B) := jB|Z(Lk(B∗Z)) the Lie ideal of the Lie algebra g(Z,B)
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and g0(Z,B) := sB|Z(Lk(B)) the Lie subalgebra of it. One notes that g(Z,B) =

g1(Z,B)⊕g0(Z,B) is indeed an object in B-GrLie. Moreover, we define the morphism

j(Z,B) = (jZ , jB) : (Z,B)→ (g1(Z,B), g0(Z,B)) = F (g(Z,B)) in Set2, where jZ : Z →

g1(Z,B) and jB : B → g0(Z,B) are set as the composites

Z → Lk(B∗Z)→ jB|Z(Lk(B∗Z)) and B → Lk(B)→ sB|Z(Lk(B)), respectively.

Amazingly, we now remark that the pair (j(Z,B), g(Z,B)) satisfies the following uni-

versal problem: for any object (Z,B) in Set2 and L = L1 ⋊ L0 in B-GrLie, for each

morphism f = (fZ , fB) : (Z,B) → F (L) = (L1,L0) in Set2 (this simply means

that fZ : Z → L1 and fB : B → L0 are morphisms in Set), there exists a unique

f̂ ∈ HomB-GrLie(g(Z,B),L) such that f = F (f̂) ◦ j(Z,B), it means that the below

diagram commutes

Set2 B-GrLie

(Z,B) L = L1 ⋊ L0

g(Z,B) = g1(Z,B) ⋊ g0(Z,B).

F

f=(fZ ,fB)

j(Z,B) f̂

(2.102)

In fact, if we take uz = b1 · · · bkz ∈ B∗Z then [fB(b1), · · · , [fB(bk), fZ(z)] · · · ] ∈ L1 since

L1 is a Lie ideal of L. We thus construct a Lie morphism Lk(B∗Z)
f1−→ L1 that is the

unique extension of a map fBZ : B∗Z → L1, b1 · · · bkz 7→ [fB(b1), · · · , [fB(bk), fZ(z)] · · · ]

by universal property of Diagram (1.30). Similarly, we can also find a Lie homomor-

phism Lk(B)
f0−→ L0 as the unique extension of a map fB : B → L0. As a result,

we arrive at Lie homomorphisms f̂1 : Lk(B∗Z) → L and f̂0 : Lk(B) → L by such

embedding f1 and f0 into L, respectively. Further, it is straightforward to check on

generators that these Lie homomorphisms and the action α : Lk(B)→ Der(Lk(B∗Z))

induce the following commutative diagram

Lk(B)⊗ Lk(B∗Z) L⊗ L

Lk(B∗Z) L.

f̂0⊗f̂1

α⊗ adL⊗

f̂1

(2.103)

The equivariant diagram (2.103) say that there is a unique Lie morphism f̂ : g(Z,B) =

Lk(B∗Z) ⋊ Lk(B)→ L extending f̂0 and f̂1 in the usual sense i.e. f̂ ◦ sB|Z(Lk(B)) =
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f̂0(Lk(B)) and f̂ ◦ jB|Z(Lk(B∗Z)) = f̂1(Lk(B∗Z)). In particular, we observe that

f̂(g1(Z,B)) = f̂ ◦ jB|Z(Lk(B∗Z)) = f̂1(Lk(B∗Z)) ⊆ L1 and f̂(g0(Z,B)) = f̂ ◦

sB|Z(Lk(B)) = f̂0(Lk(B)) ⊆ L0, proving that f̂ : g(Z,B) = g1(Z,B) ⋊ g0(Z,B) →

L = L1 ⋊ L0 is a morphism in B-GrLie. Moreover, the following lemma is sufficient

for our investigation

Lemma 2.20. One has f̂ ∈ HomB-GrLie(g(Z,B),L) is the unique morphism in

B-GrLie such that f = F (f̂) ◦ j(Z,B).

Proof. It is immediate to verify by calculation that for any (z, b) ∈ (Z,B) then

F (f̂) ◦ j(Z,B)[(z, b)] = F (f̂)(jZ(z), jB(b)) =
(
f̂(jZ(z)), f̂(jB(b))

)
= (f̂1(z), f̂0(b)) =(

fBZ(z), fB(b)
)

= (fZ(z), fB(b)) = f((z, b)), thus clearly f = F (f̂)◦j(Z,B). On the other

hand, if there is a morphism g : g(Z,B)→ L in B-GrLie which is an another solution

of the diagram (2.102), we then see that for each b ∈ B, one notes that g ◦ sB|Z(b) =

g(jB(b)) = fB(b) = f̂0(b), thus g ◦ sB|Z(Lk(B)) = f̂0(Lk(B)). Moreover, for each

uz = b1 · · · bkz ∈ B∗Z, then g◦jB|Z(z) = g(jZ(z)) = fZ(z) = fBZ(z) = f̂1(z) and hence

g ◦ jB|Z(uz) = g((uz, 0)) = g([(0, b1), · · · , [(0, bk), (z, 0)] · · · ]) = [g ◦ sB|Z(b1), · · · , [g ◦

sB|Z(bk), g ◦ jB|Z(z)] · · · ] = [fB(b1), · · · , [fB(bk), fZ(z)] · · · ] = fBZ(uz) = f̂1(uz), we

arrive at g ◦ jB|Z(Lk(B∗Z)) = f̂1(Lk(B∗Z)). As a consequence, the morphism g :

g(Z,B) → L extends f̂0 and f̂1 in the usual sense. Thus, g = f̂ by the uniqueness of

the equivariant extension. We verified our lemma.

As a result, the solution of the universal problem (2.102) provides a free functor

L : Set2 → B-GrLie, (Z,B) 7→ g(Z,B), so-called the Lazard elimination functor,

which is left-adjoint to the forgetful functor F : B-GrLie→ Set2.

Remark 2.10. To prove directly that these functors L and F determine an adjunction

Set2 B-GrLie,

L

F

⊣

we can construct a pair (1Set2
η⇒ F ◦ L,L ◦ F ε⇒ 1B-GrLie)

of natural transformations (called the unit and counit of the adjunction) satisfying the

triangle identities

L
Lη //

1L

##

L ◦ F ◦ L

εL

��

F
ηF //

1F

##

F ◦ L ◦ F

Fε

��
L F
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(then they are commutative diagrams in the functor categories [Set2,B-GrLie] and

[B-GrLie,Set2], respectively.)

2.3.3 Drinfeld-Kohno Lie algebra with infinite number of gen-

erators: from strange to generalized gradings.

More general semigroups and strange gradings.

Now, for any integer n ∈ N, let ([2, n + 1],∨) be the upper semi-lattice (where we

use the classical supremum i ∨ j := sup{i, j} for all i, j ∈ [2, n + 1]). We remark

that, ([2, n + 1],∨) is also a commutative semigroup. We then claim that iterated

decompositions of the Drinfeld-Kohno Lie algebras are naturally graded by supremum.

In fact, we now describe a ([2, n + 1],∨)-graded structure of the Drinfeld-Kohno Lie

algebra DKk,n+1 = Lk(Tn+1)
/
JR[n+1]

as follows: for each j ∈ [2, n+ 1], we introduce

DK
(j)
k,n+1 the Lie subalgebra of DKk,n+1 generated by the set

[Tj] := {[ti,j] = ti,j + JR[n+1] | i ∈ [1, j − 1]},

that is in fact a free Lie algebra over k because DK
(j)
k,n+1

∼= Lk(Tj) ∼= Lk(Xj−1) as Lie

algebras, where Xj−1 is a set of j − 1 elements {x1, · · · , xj−1}.

Tn+1 =

T2 T3 T4 . . . . . . Tn+1

t1,2 t1,3 t1,4 . . . . . . t1,n+1

t2,3 t2,4 . . . . . . . . .

t3,4 . . . . . . . . .

. . . . . . . . .

. . . . . .

tn,n+1

It is not hard to show that for all i, j ∈ [2, n+ 1], one has

[DK
(i)
k,n+1,DK

(j)
k,n+1] ⊆ DK

(i∨j)
k,n+1

and moreover we get that the Drinfeld-Kohno Lie algebra DKk,n+1 is an iterated semi-

direct product of free Lie algebras (see Remark 2.6)

DKk,n+1 = DK
(n+1)
k,n+1 ⋊

(
DK

(n)
k,n+1 ⋊ (· · ·⋊ DK

(2)
k,n+1) · · ·

)
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∼= Lk(Xn) ⋊ (Lk(Xn−1) ⋊ (· · ·⋊ Lk(X1)) · · · ). (2.104)

In particular, DKk,n+1 =
⊕

2≤j≤n+1 DK
(j)
k,n+1 is a ([2, n+ 1],∨)-graded Lie algebra.

Strange gradings allow not only to manage semi-direct products but, more com-

plex elimination schemes like iterated decompositions. Indeed, suppose we had an

elimination scheme (0.1)

STRUCT ⟨x1, x2, . . . , xn⟩ ∼= NICE⟨x1, x2, . . . , xn⟩ ⋄ STRUCT1⟨x1, . . . , xn−1⟩

where NICE et STRUCT1 stand for algebraic structures generated (sometimes freely)

by generators xi. Iterating it, we get

STRUCT ⟨x1, x2, . . . , xn⟩

∼= NICE⟨x1, x2, . . . , xn⟩ ⋄ (NICE⟨x1, x2, . . . , xn−1⟩ ⋄ (· · · ⋄NICE⟨x1⟩) · · · ).

In the next part, we can even manage infinite decompositions with (N≥2,∨) or non-

linear eliminations with other semigroups.

Remark 2.11. Iterated semi-direct decompositions (i.e. formulas like Equation (2.104))

provide a natural grading by the semigroup (I,∨) where I = {i1 < i2 < · · · < in} for

arbitrary Lie algebras such that

g = gin ⋊
(
gin−1 ⋊ (· · ·⋊ gi1) · · ·

)
. (2.105)

The direct limit of Drinfeld-Kohno Lie algebras.

If we consider the direct system that is a chain of embeddings

DKk,2
f2−→ DKk,3 −→ · · · −→ DKk,n

fn−→ DKk,n+1
fn+1−→ · · · (2.106)

where the structure Lie monomorphisms fn : DKk,n → DKk,n+1 are defined in the

following way

fn(P + JR[n]) = P + JR[n+1], where P ∈ Lk(Tn) ⊂ Lk(Tn+1),

then lim−→DKk,n the direct limit with such structure homomorphisms (2.106) has a very

simple and in a sense a tame description by the following proposition
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Proposition 2.21. Consider the infinite Drinfeld-Kohno Lie algebra DKk,∞, defined

by the quotient of the free Lie algebra Lk(T∞) generated by an infinite set of non-

commutative variables T∞ = {ti,j}1≤i<j<+∞ modulo the Lie ideal JR[∞] generated by

infinitesimal pure braid relations

R[∞] =


R1[∞] [ti,j, ti,k + tj,k] for 1 ≤ i < j < k < +∞,

R2[∞] [ti,j + ti,k, tj,k] for 1 ≤ i < j < k < +∞,

R3[∞] [ti,j, tk,l] for
1 ≤ i < j < +∞,
1 ≤ k < l < +∞, and |{i, j, k, l}| = 4

(2.107)

then the infinite Drinfeld-Kohno Lie algebra is indeed the direct limit of such structure

homomorphisms (2.106)

DKk,∞ = lim−→DKk,n.

Proof. We construct the structure Lie homomorphisms ϕn : DKk,n → DKk,∞ that are

determined by setting

ϕn(P + JR[n]) = P + JR[∞], where P ∈ Lk(Tn) ⊂ Lk(T∞),

these are clearly also Lie monomorphims between two presented Lie algebras. Then a

pair (DKk,∞, ϕn) is a target of such direct system {DKk,n
fn−→ DKk,n+1}n≥2 in category

k-Lie because it satisfies the following property

ϕn = ϕm ◦ fnm whenever n ≤ m, where fnn = IdDKk,n
and fnm = fm−1 ◦ · · · ◦ fn.

Suppose we are given a target (g, ψn) with ψn : DKk,n → g in k-Lie, then we construct

a Lie homomorphism u0 : Lk(T∞)→ g that is a unique extension of the mapping from

T∞ to g corresponding to ti,j 7→ ψj([ti,j]) = ψj(ti,j +JR[j]) (where 1 ≤ i < j < +∞) by

universal property of Diagram (1.30). Further, we now show that for any polynomial

P of type R[∞] we have u0(P ) = 0 because we have the following properties

• for each 1 ≤ i < j < k < +∞ then u0([ti,j, ti,k + tj,k]) = [u0(ti,j), u0(ti,k) +

u0(tj,k)] =
[
ψj([ti,j]), ψk([ti,k])+ψk([tj,k])

]
=
[
ψk◦fjk([ti,j]), ψk([ti,k])+ψk([tj,k])

]
=[

ψk([ti,j]), ψk([ti,k])+ψk([tj,k])
]

= ψk
(
[ti,j, ti,k+tj,k]+JR[k]

)
= ψk(0) = 0, and then

similarly one has u0([ti,j + ti,k,+tj,k]) = ψk
(
[ti,j + ti,k, tj,k] + JR[k]

)
= ψk(0) = 0;
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• for each 1 ≤ i < j < +∞, 1 ≤ k < l < +∞ such that |{i, j, k, l}| = 4, assume

that l = max{i, j, k, l} then we can obtain u0([ti,j, tk,l]) = [u0(ti,j), u0(tk,l)] =[
ψj([ti,j]), ψl([tk,l])

]
=
[
ψl◦fjl([ti,j]), ψl([tk,l])

]
=
[
ψl([ti,j]), ψl([tk,l])

]
= ψl

(
[ti,j, tk,l]+

JR[l]

)
= ψl(0) = 0.

We verified that u0(P ) = 0, thus clearly JR[∞] is in the kernel of u0. We arrive at

a conclusion that u0 induces a Lie homomorphism u : DKk,∞ → g, and moreover

u◦ϕn = ψn for each n ≥ 2 because they equal on its generators: for each 1 ≤ i < j ≤ n

then u ◦ ϕn(ti,j + JR[n]) = u(ti,j + JR[∞]) = ψj(ti,j + JR[j]) = ψn ◦ fjn(ti,j + JR[j]) =

ψn(ti,j + JR[n]). As a result, we can take a commutative diagram of Lie algebras

DKk,n DKk,m

DKk,∞

g.

fnm

ϕn

ψn

ϕm

ψm

u

In particular, it is easy to verify that u is a unique Lie homomorphism such that

u ◦ ϕn = ψn for each n ≥ 2. By this universal property, we thus deduce that DKk,∞ =

lim−→DKk,n.

Under the universal enveloping functor

U : k-Lie→ k-AAU, g 7−→ U(g) (2.108)

which is a left adjoint to the Liezation functor F : k-AAU → k-Lie, we have the

following

Corollary 2.22. Consider the direct system that is a chain of embeddings

U(DKk,2)
U(f2)−→ U(DKk,3) −→ · · · −→ U(DKk,n)

U(fn)−→ U(DKk,n+1)
U(fn+1)−→ · · · ,(2.109)

then the universal enveloping algebra of infinite Drinfeld-Kohno Lie algebra is indeed

the direct limit of such structure morphisms (2.109) in k-AAU

U(DKk,∞) = lim−→U(DKk,n).
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Proof. As a left-adjoint, the universal enveloping functor preserves colimits, so in par-

ticular it sends direct limits in k-Lie to direct limits in k-AAU. We therefore obtain

that

U(DKk,∞) = U(lim−→DKk,n) = lim−→U(DKk,n).

Further, we consider (N≥2,∨) the upper semi-lattice on the classical supremum

m ∨ n := sup{m,n} (for all m,n ∈ N≥2), in the same way as above we now describe

a (N≥2,∨)-graded structure of the infinite Drinfeld-Kohno Lie algebra DKk,∞ by the

following way: for all m ∈ N≥2, if we denote DK
(m)
k,∞ the Lie subalgebra of DKk,∞

generated by [Tm] := {[ti,m] = ti,m + JR[∞] | i ∈ [1,m − 1]}, then one verifies without

difficulty that DK
(m)
k,∞
∼= Lk(Tm) ∼= Lk(Xm−1) is indeed a free Lie algebra over k.

T∞ =

T2 T3 T4 . . . . . . Tm . . .

t1,2 t1,3 t1,4 . . . . . . t1,m . . .

t2,3 t2,4 . . . . . . . . . . . .

t3,4 . . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . .

tm−1,m . . .

. . .

By using infinitesimal pure braid relations R[∞] (2.107), it is not hard to prove that

[DK
(m)
k,∞,DK

(n)
k,∞] ⊆ DK

(m∨n)
k,∞ (for all m,n ∈ N≥2)

and moreover we have an infinite iterated semi-direct product of free Lie algebras

DKk,∞ = · · ·⋊
(

DK
(m)
k,∞ ⋊ (DK

(m−1)
k,∞ ⋊ (· · ·⋊ DK

(2)
k,∞) · · · )

)
. (2.110)

As a consequence, we write the infinite Drinfeld-Kohno algebra as the direct sum

DKk,∞ =
⊕
m≥2

DK
(m)
k,∞

which is a (N≥2,∨)-graded Lie algebra over k. Furthermore, due to the injections

DKk,n ↪→ DKk,∞, the set T∞ = {ti,j}1≤i<j can be considered as a subset of DKk,∞ and
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due to the semi-direct decompositions DKk,∞ is a free module (see the formula (2.110))

and embeds within its enveloping algebra U(DKk,∞). We have the following

Proposition 2.23. Under the natural projection s∞ : k⟨T∞⟩ → U(DKk,∞), the image

of the set of words of the form

ti1,j1ti2,j2 . . . tin,jn ∈ T ∗
∞

(where n ≥ 0 and 2 ≤ j1 ≤ j2 ≤ . . . ≤ jn) is a k-linear basis of the algebra U(DKk,∞).

Proof. See Proposition 5.7 in Appendix 5.4.2.

S-graded Lie algebras and properties of them and their enveloping algebras

with respect to Hilbert series.

Definition 2.3. Assume that (S,+) is a commutative semigroup satisfying “Condition

(D)”18. Let A =
⊕

s∈S As be a S-graded algebra in finite dimensions, the Hilbert series

of A is given by

Hilb(A) =
∑
s∈S

dimk(As).s ∈ Q[[S]],

where the total semigroup algebra Q[[S]] is the completion of the Hausdorff topological

semigroup algebra Q[S] (see Appendix 5.3.2), where Q[[S]] is a Q-module of all infinite

sum
∑

s∈S αss and the convolution product

(∑
s1∈S

αs1s1

)(∑
s2∈S

βs2s2

)
=
∑
s∈S

 ∑
s1,s2∈S
s1+s2=s

αs1βs2

 s.

Proposition 2.24. Suppose we are given two finitely S-graded algebras A =
⊕

s∈S As
and B =

⊕
s∈S Bs. Then, so are direct sum and tensor product, moreover two Hilbert

series

Hilb(A⊕ B) = Hilb(A) +Hilb(B) and Hilb(A⊗ B) = Hilb(A).Hilb(B).

18A semigroup (S,+) is said to satisfy “Condition (D)” if each s ∈ S admits only a finite number

of factorizations s = s1 + · · ·+ sk (the positive integer k is fixed). To be more precise, for any s ∈ S,

the set D2(s) = {(s1, s2) ∈ S × S | s1 + s2 = s} is finite i.e. the map µ2 : [S]2 → S, (s1, s2) 7→ s1 + s2

has finite fibers, see Bourbaki [10] Ch III § 2.10.
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Proof. As a S-graded algebra A⊕ B =
⊕

s∈S As ⊕ Bs =
⊕

s∈S(A⊕ B)s, we get that

Hilb(A⊕ B) =
∑
s∈S

dimk(As ⊕ Bs).s

=
∑
s∈S

dimk(As).s+
∑
s∈S

dimk(Bs).s

= Hilb(A) +Hilb(B).

Moreover, by using “Condition (D)”, we arrive at a finitely S-graded structure

A⊗ B =

(⊕
s1∈S

As1

)
⊗

(⊕
s2∈S

Bs2

)
=
⊕
s∈S

 ⊕
s1,s2∈S
s1+s2=s

As1 ⊗ Bs2

 =
⊕
s∈S

(A⊗ B)s,

then the Hilbert series is

Hilb(A⊗ B) =
∑
s∈S

dimk

 ⊕
s1,s2∈S
s1+s2=s

As1 ⊗ Bs2

 .s

=
∑
s∈S

 ⊕
s1,s2∈S
s1+s2=s

dimk(As1) dimk(Bs2)

 .s

=
∑

s1,s2∈S

dimk(As1) dimk(Bs2).(s1 + s2)

=

(∑
s1∈S

dimk(As1).s1

)(∑
s2∈S

dimk(Bs2).s2

)
= Hilb(A).Hilb(B).

Furthermore, for the grading of enveloping algebras of S-graded Lie algebras see

Appendix 5.4.2.

Remark 2.12. Assume that (S,+) is locally finite19 commutative semigroup and g =⊕
s∈S gs is a S-graded Lie algebra. If g is a finitely S-graded i.e. each k-module gs is

free of finite rank, so is the S ⊔ {0}-graded enveloping algebra U(g) (5.23).

19In computer science, it means that each s ∈ S admits only a finite number of factorizations

s = s1 + · · ·+ sk (k ∈ N≥1) i.e. the map µ : [S]+ = [S]∗ \ 1[S]∗ , (s1, . . . , sk) 7→ s1 + . . .+ sk has finite

fibers, see Eilenberg [43]. Remarkable that “locally finite” induces “Condition (D)”, but the converse

is not true in general.
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Now we will deal with a more general graded type of the infinite Drinfeld-Kohno

Lie algebra and then its enveloping algebra as follows

Example 2.4. Let us recall that the infinite Drinfeld-Kohno Lie algebra

DKk,∞ =
⊕
m≥2

DK
(m)
k,∞

is a (N≥2,∨)-graded Lie algebra and moreover each component

DK
(m)
k,∞
∼= Lk(Xm−1) =

⊕
n≥1

Lk(Xm−1)n

in the category k-Lie (see Subsection 1.2.5 for more details). Let us denote by DK
(m,n)
k,∞

the set of all homogeneous Lie polynomials of total degree n of each free Lie alge-

bra DK
(m)
k,∞, that is Lie algebra isomorphic to Lk(Xm−1)n. Furthermore, it is obvi-

ously a free k-module with a Lyndon basis Pl, where l ∈ LynXm−1 and the length

| l |= n, here we used the indexed set (LynXm−1, <) which is the totally ordered

set of all Lyndon words over Xm−1. As a consequence, under the one to one cor-

respondence between l and Pl, one then has dimk(DK
(m,n)
k,∞ ) = dimk(Lk(Xm−1)n) =

#{Lyndon words of length n on Xm−1}, denoted Lyn(m − 1, n). We hence deduce

that the infinite Drinfeld-Kohno Lie algebra

DKk,∞ =
⊕
m≥2

DK
(m)
k,∞ =

⊕
m≥2
n≥1

DK
(m,n)
k,∞

is in fact equipped with a (N≥2,∨)× (N≥1,+)-graded Lie algebra structure. Therefore,

the enveloping algebra U(DKk,∞) inherits a [(N≥2,∨)×(N≥1,+)]⊔{0}-graded structure

(5.23)

U(DKk,∞) =
⊕

s∈SN∪{0}

Us(DKk,∞),

where SN := (N≥2,∨) × (N≥1,+) and Us(DKk,∞) = Ts(DKk,∞)
/
Js , here we used

Ts(DKk,∞) =
⊕

w∈[SN]∗

µ(w)=s

Tw(DKk,∞) as in the formula (5.22). Note that the Hilbert

series

Hilb(U(DKk,∞)) =
∑

s∈SN∪{0}

dimk(Us(DKk,∞)).s ∈ Q[[SN ∪ {0}]],

where for each s ∈ SN ∪ {0}, dimk(Us(DKk,∞)) = (m − 1)n if s = (m,n) ∈ SN and

dimk(U0(DKk,∞)) = 1 otherwise. As a final consequence, we can translate this series
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into the commutative algebra of formal power series of two variables Q[[t1, t2]] (endowed

with the convolution product that is with the supremum w.r.t. t1 and ordinary Cauchy

product w.r.t. t2
20) by the following

Hilb(U(DKk,∞), t1, t2) =
∏
m≥2

(
1 +

tm1 (m− 1)t2
1− (m− 1)t2

)
∈ Q[[t1, t2]]

where, for each m ∈ N≥2,

1 +
tm1 (m− 1)t2

1− (m− 1)t2
= 1 +

∑
n≥1

(m− 1)ntm1 t
n
2 .

Let us give a calculation example for this multiplication,

(1 +
t21t2

1− t2
)(1 +

t312t2
1− 2t2

) = 1 +
t21t2

1− t2
+

t312t2
1− 2t2

+
t2∨31 t2.2t2

(1− t2)(1− 2t2)

= 1 +
t21t2

1− t2
+

2t31t2
1− 2t2

+
2t31t

2
2

(1− t2)(1− 2t2)
.

Example 2.5. In the same manner as above, the Drinfeld-Kohno Lie algebra DKk,n+1

can be equipped with a ([2, n+ 1],∨)× (N≥1,+)-graded Lie algebra structure

DKk,n+1 =
⊕

2≤i≤n+1

DK
(i)
k,∞ =

⊕
2≤i≤n+1
1≤j<+∞

DK
(i,j)
k,∞.

and then the enveloping algebra U(DKk,n+1) inherits a [([2, n+1],∨)× (N≥1,+)]⊔{0}-

graded structure (5.23)

U(DKk,n+1) =
⊕

s∈TN∪{0}

Us(DKk,n+1),

where TN := ([2, n+ 1],∨)× (N≥1,+). Therefore, the Hilbert series

Hilb(U(DKk,n+1), t1, t2) =
∏

2≤i≤n+1

(
1 +

ti1(i− 1)t2
1− (i− 1)t2

)
∈ Q[[t1, t2]].

When t1 = 1, we can recover Kohno’s formula appearing in Example 2.3.

20In other words, two series
∑

m1,n1≥0 αm1,n1t
m1
1 tn1

2 and
∑

m2,n2≥0 βm2,n2
tm2
1 tn2

2 being given in

Q[[t1, t2]], then their convolution product is

∑
mi,ni≥0

αm1,n1
βm2,n2

tm1∨m2
1 tn1+n2

2 =
∑

m,n≥0

 ∑
mi,ni≥0

m1∨m2=m
n1+n2=n

αm1,n1
βm2,n2

 tm1 tn2

the internal sum being finite because the monoid of monomials has “D” property.
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2.4 Smash product algebra and Lazard’s elimina-

tion.

In this section, we investigate other aspects of Lazard’s elimination within k-AAU the

category of unital associative k-algebras. We first introduce crossed and smash prod-

ucts of algebras and discuss some relevance with semi-direct products of Lie algebras

and the universal enveloping functor by Example 2.7 and Proposition 2.27. In the last

two examples of this section, we will study a practical application to achieve Lazard’s

elimination and the quotient of Lazard’s elimination in k-AAU.

Let k be a commutative ring with unit. We now study the crossed product of

algebras, especially a smash product of a bialgebra and an associative algebra with

unit. The reader who is only interested in studying these products may turn to R.K.

Molnar [84], S. Montgomery [86] and A. Borowiec, W. Marcinek [8], which can be read

independently to what is presented as follows.

Definition 2.4. Let A,B,H be three objects in k-AAU. Assume that there are

monomorphisms iA : A → H and iB : B → H in k-AAU. We say that H is a crossed

(twisted) product of A and B if the canonical mapping Φ : A ⊗ B → H, a ⊗ b 7→

(iA ⊗ iB)(a⊗ b) is an isomorphism in k-Mod.

As an immediate consequence of the above definition, a crossed product of two

objects A and B is unique up to an isomorphism in k-AAU.

Example 2.6. The standard tensor product of algebras A⊗B is a crossed product of

two objects A and B in k-AAU (here Φ = Id), where iA : A → A⊗ B, a 7→ a ⊗ 1B

and iB : B → A⊗ B, b 7→ 1A ⊗ b are the natural monomorphisms in k-AAU 21.

The following definition is necessary for describing the main theorem of crossed

product of algebras.

21If k is only a ring, embeddings may fail as shows the example of Z /3Z = A and Z = B as two

Z-algebras.
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Definition 2.5. Suppose given two objects A and B in k-AAU. A morphism τ :

B ⊗ A → A ⊗ B in k-Mod is called an algebra cross if it satisfies the following

conditions

c1) τ(1B ⊗ a) = a⊗ 1B,

c2) τ ◦ (mB ⊗ IdA) = (IdA⊗mB) ◦ (τ ⊗ IdB) ◦ (IdB⊗τ),

d1) τ(b⊗ 1A) = 1A ⊗ b,

d2) τ ◦ (IdB⊗mA) = (mA ⊗ IdB) ◦ (IdA⊗τ) ◦ (τ ⊗ IdA).

Theorem 2.25. If τ : B ⊗ A → A⊗ B is an algebra cross then the tensor product of

algebras A ⊗ B equipped with the multiplication mτ = (mA ⊗mB) ◦ (IdA⊗τ ⊗ IdB) is

an object in k-AAU, denoted by A⋊τ B := (A⊗ B,mτ , 1A⊗B). Moreover, A⋊τ B is

a crossed product of A and B if k is a field.

Proof. We want to prove that A⋊τ B ∈ k-AAU.

Associativity can be proved by direct computation (as below for the unit (2.111)) or

found in the literature (see also Proposition 2.2 in [27] or Proposition 2.3 and Remark

2.4 (1) in [24]) or even diagrammatically (i.e. using Penrose-like calculus). In fact, the

diagram

(A⊗ B)⊗ (A⊗ B)⊗ (A⊗ B) (A⊗ B)⊗ (A⊗ B)

(A⊗ B)⊗ (A⊗ B) A⊗ B

IdA⊗B ⊗mτ

mτ⊗IdA⊗B mτ

mτ

commutes by using the above relations (c1),(c2), (d1),(d2) and the associative laws

mA ◦ (IdA⊗mA) = mA ◦ (mA ⊗ IdA),mB ◦ (IdB⊗mB) = mB ◦ (mB ⊗ IdB). The only

thing left to prove is that 1A⊗B = 1A⊗1B is a unit for the multiplication mτ . Then, for

the fact that it is a unit on the right we just need the condition (c1) as τ(1B⊗a) = a⊗1A,

then

mτ [(1A ⊗ 1B)⊗ (y1 ⊗ y2)] = (mA ⊗mB) ◦ (IdA⊗τ ⊗ IdB)[(1A ⊗ 1B)⊗ (y1 ⊗ y2)]

= (mA ⊗mB)[IdA(1A)⊗ τ(1B ⊗ y1)⊗ IdB(y2)]

= (mA ⊗mB)[1A ⊗ y1 ⊗ 1B ⊗ y2] = y1 ⊗ y2. (2.111)
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For the unit on the right, we must use the condition (d1) as

mτ [(x1 ⊗ x2)⊗ (1A ⊗ 1B)] = (mA ⊗mB) ◦ (IdA⊗τ ⊗ IdB)[(x1 ⊗ x2)⊗ (1A ⊗ 1B)]

= (mA ⊗mB)[x1 ⊗ 1A ⊗ x2 ⊗ 1B] = x1 ⊗ x2.

We also observe that if k is a field then iA : A → A⋊τ B, a 7→ a⊗ 1B and iB : B →

A⋊τ B, b 7→ 1A⊗ b are the natural monomorphisms in k-AAU. Further, the mapping

Φ : A⊗ B → A⋊τ B, a⊗ b 7→ mτ ◦ (iA ⊗ iB)(a⊗ b) = (mA ⊗mB) ◦ (IdA⊗τ ⊗ IdB) ◦

(iA ⊗ iB)(a ⊗ b) = a ⊗ b is a canonical isomorphism in k-Mod. Thus, A ⋊τ B is a

crossed product of A and B.

Remark 2.13. i) In general, when k is a unital commutative ring and τ : B ⊗ A →

A⊗B is an algebra cross, we will also say that A⋊τ B is a crossed (twist) product of

A and B if no confusion arises.

ii) The standard twist map τ : B⊗A → A⊗B defined as τ(b⊗ a) = a⊗ b satisfies

all conditions for the algebra cross in Definition 2.5 and then A ⋊τ B is the standard

tensor product of algebras A and B.

iii) (See A. Borowiec and W. Marcinek [8]) Let f1 : A1 → B1, f2 : A2 → B2 be

two morphisms in k-AAU. Given two algebra crosses τ : A2 ⊗ A1 → A1 ⊗ A2 and

σ : B2⊗B1 → B1⊗B2, then f : A1⋊τ A2 → B1⋊σ B2, a⊗ b 7→ f1(a)⊗f2(b) is a crossed

product algebra homomorphism if and only if the following diagram commutes

A2 ⊗A1 B2 ⊗ B1

A1 ⊗A2 B1 ⊗ B2.

f2⊗f1

τ σ

f1⊗f2

iv) It can be shown that if τ : B ⊗ A → A⊗ B is an algebra cross, then τ0 := τ12ττ12

(where τ12 is the standard tensor flip x⊗ y → y ⊗ x) is an algebra cross

τ0 : A0 ⊗ B0 → B0 ⊗A0

where the (−)0 operator means passing to the opposite algebra.

We now give the general theory of the crossed product of algebras to a particular

case that is efficient in practice. Let A be an associative algebra with unit 1A i.e.
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A ∈ k-AAU and B be a bialgebra i.e. (B,mB, 1B,∆B, eB) with the usual axioms. We

suppose given a left B-module with action denoted by ▷ : B⊗A → A i.e. b1 ▷ (b2 ▷a) =

(b1b2)▷a and 1B ▷a = a identically. The algebra A is said to be a left B-module algebra

if it satisfies

i) b ▷ (a1a2) =
∑

(1)(2) (b(1) ▷ a1)(b
(2) ▷ a2), where we have used Sweedler’s notation22

∆B(b) =
∑

(1)(2) b
(1) ⊗k b

(2),

ii) and b ▷ 1A = ϵB(b)1A.

It is easy to verify that the following corollary is true.

Corollary 2.26. (Smash Product A♯B) With the preceding conditions and the following

multiplication m♯ : (A⊗ B)⊗ (A⊗ B)→ A⊗B,

m♯[(x1 ⊗ x2)⊗ (y1 ⊗ y2)] =
∑
(1)(2)

x1(x
(1)
2 ▷ y1)⊗ x(2)2 y2 (2.112)

A♯B = (A⊗ B,m♯, 1A⊗B) is an object in k-AAU. This algebra is called the smash

product algebra between the bialgebra B and the left B-module algebra A.

Proof. If the mapping ▷ : B ⊗ A → A is a left B-module algebra action then one can

easily check through direct calculation that the mapping τ : B ⊗ A → A ⊗ B, b ⊗

a 7→
∑

(1)(2) b
(1) ▷ a ⊗ b(2) is an algebra cross in k-Mod. According to Theorem 2.25,

we deduce that A♯B ≡ A ⋊τ B is an object in k-AAU, where the multiplication

m♯ = (mA ⊗mB) ◦ (IdA⊗τ ⊗ IdB) = mτ .

Remark 2.14. Assume that the bialgebra B and the left B-module algebra A are

endowed with Hopf structures satisfying suitable circumstances introduced in Molnar

[84] Thm 2.13, then the smash product algebraA♯B has a unique Hopf algebra structure

in which A⊗k1B and k1A⊗B are Hopf subalgebras (where k1A and k1B are the group

algebras), called the semi-direct product of Hopf algebras.

Here is an important and natural example of smash product algebras.

Example 2.7. Let gi, i = 1, 2 be two objects in k-Lie and α : g2 → Der(g1) be

a morphism in k-Lie. We first extend α from g2 to Der(U(g1)) ⊂ End(U(g1)) as

22See Montgomery [86] Ch 1 §1.4.2.
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in Bourbaki [13] Ch I §2.8 Prop 7. Moreover, we can also extend α as a morphism

αU : U(g2)→ End(U(g1)) in k-AAU by the universal property (5.37). Together with a

bialgebra structure (U(g2), µU , 1k,∆U , ϵU), we then obtain a left U(g2)-module algebra

action ▷ : U(g2)⊗U(g1)→ U(g1), b⊗ a 7→ b ▷ a = αU(b)(a). As we already constructed

above, by Corollary 2.26, the k-module U(g1) ⊗ U(g2) can be endowed with a smash

product structure U(g1)♯U(g2) = (U(g1)⊗ U(g2), 1k ⊗ 1k), where the multiplication is

m♯[(u1 ⊗ u2)⊗ (v1 ⊗ v2)] =
∑
(1)(2)

u1αU(u
(1)
2 )(v1)⊗ u(2)2 v2. (2.113)

This brings us to the following proposition

Proposition 2.27. Let g1 and g2 be two objects in k-Lie. We suppose given also a

Lie k-algebra morphism α : g2 → Der(g1) and fi : gi → g, two Lie homomorphisms

into a Lie k-algebra g satisfying the equivariance (2.13)

g2 ⊗ g1 g⊗ g

g1 g,

f2⊗f1

α⊗ adg⊗
f1

or equivalently (2.12) i.e.

f1(α(b, a)) = adg(f2(b), f1(a))

for all b ∈ g2, a ∈ g1. Then one has

1. There is a unique morphism f : g1 ⋊ g2 → g in k-Lie extending f1 and f2 in the

usual sense.

2. There is a unique morphism f∗ : U(g1)♯U(g2)→ U(g) in k-AAU extending f ∗
i :=

U(fi) : U(gi) → U(g) (for i = 1, 2) in the usual sense, where U : k-Lie →

k-AAU, g 7→ U(g) is the universal enveloping functor.

3. If f : g1 ⋊ g2 → g is an isomorphism in k-Lie then f∗ : U(g1)♯U(g2) → U(g) is

an isomorphism in k-AAU.

Proof. 1. It is indeed a consequence of Proposition 2.2.
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2. Let us define a k-module morphism f∗ : U(g1)♯U(g2) → U(g) sending u1 ⊗ u2 to

f ∗
1 (u1)f

∗
2 (u2). We now prove that f∗ is a morphism in k-AAU. In fact, one has

f∗ ◦m♯[(u1 ⊗ u2)⊗ (v1 ⊗ v2)] = f∗[
∑
(1)(2)

u1αU(u
(1)
2 )(v1)⊗ u(2)2 v2]

=
∑
(1)(2)

f ∗
1 (u1)f

∗
1 (αU(u

(1)
2 )(v1))f

∗
2 (u

(2)
2 )f ∗

2 (v2)

= f ∗
1 (u1)

[ ∑
(1)(2)

f ∗
1 (αU(u

(1)
2 )(v1))f

∗
2 (u

(2)
2 )
]
f ∗
2 (v2)

and then f∗ ◦m♯[(u1⊗u2)⊗ (v1⊗v2)] = f∗(u1⊗u2)f∗(v1⊗v2) if we have an equa-

tion
∑

(1)(2) f
∗
1 (αU(u

(1)
2 )(v1))f

∗
2 (u

(2)
2 ) = f ∗

2 (u2)f
∗
1 (v1) in U(g). This formula can be

obtained from inductive processes and by the following extension of the equivari-

ance (2.13) (where the below right-hand side is the right-normed bracketing in

U(g))

f ∗
1 (αU(v)(u)) = ad

U(g)
f2(b1)

◦ · · · ◦ ad
U(g)
f2(bk)

[f ∗
1 (u)] (2.114)

for all v = b1 · · · bk ∈ U(g2) and u ∈ U(g1), where bi in g2 and f ∗
2 (v) =

f2(v1) · · · f2(vk). More precise, if v1 ∈ g1 and u2 ∈ g2 then ∆U(u2) = u2 ⊗

1k + 1k ⊗ u2, thus one has∑
(1)(2)

f ∗
1 (αU(u

(1)
2 )(v1))f

∗
2 (u

(2)
2 ) = f1(αU(u2)(v1)) + f1(v1)f2(u2)

= ad
U(g)
f2(u2)

[f1(v1)] + f1(v1)f2(u2)

= f2(u2)f1(v1) = f ∗
2 (u2)f

∗
1 (v1);

in general case if v1 = av′1 ∈ U(g1) and u2 = bu′2 ∈ U(g2), where (a, b) ∈ g1 × g2

and (v′1, u
′
2) ∈ U(g1)×U(g2), we leave it as a small exercise to interested readers

(hints: we notice that ∆U(u2) = ∆U(b)∆U(u′2) = (b⊗ 1k + 1k ⊗ b)(
∑

(1)(2) u
′(1)
2 ⊗

u′
(2)
2 ) =

∑
(1)(2)

[
bu′

(1)
2 ⊗ u′

(2)
2 + u′

(1)
2 ⊗ bu′

(2)
2

]
). Further, the uniqueness of the

algebra homomorphism f∗ comes from the definition of the mapping because

f∗(u1 ⊗ u2) = f∗ ◦m♯[(u1 ⊗ 1k)⊗ (1k ⊗ u2)]

= f∗(u1 ⊗ 1k)f∗(1k ⊗ u2) = f ∗
1 (u1)f

∗
2 (u2).

3. If g : g → g1 ⋊ g2 is an inverse Lie homomorphim of f . Then, the k-algebra

morphism f∗ can be reversed by constructing an algebra homomorphism g∗ :
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U(g) → U(g1)♯U(g2) as an extension of g : g → g1 ⋊ g2 ↪→ U(g1)♯U(g2) by

the universal property (5.37). It immediately implies that f∗ ◦ g∗ = IdU(g) and

g∗ ◦ f∗ = IdU(g1)♯U(g2).

It turns out that this result is very useful, in examples below a lot more algebra

isomorphism structures are presented, which are just a little bit harder to state imme-

diately to the reader. More precisely, we now treat the first application of the scheme

to the free associative algebra (k⟨X⟩, conc, 1X∗).

Example 2.8. Let X = B + Z be a graded set and α : Lk(B) → Der(Lk(B∗Z))

be a morphism in k-Lie defined immediately by the extension of the left translation

t
(0)
b : B∗Z → B∗Z, uz 7→ buz (for all b ∈ B) to the derivation t

(1)
b ∈ Der(Lk(B∗Z)) and

then, by universal property, the map b 7→ t
(1)
b : B → Der(Lk(B∗Z)) can be extended to

α that is indeed a morphism in k-Lie between the free Lie algebra Lk(B) and the usual

Lie algebra Der(Lk(B∗Z)) (the reader can review the above construction in the proof

of Theorem 2.3). We consider the pairs of Lie homomorphisms f1 : Lk(B∗Z)→ Lk(X)

and f2 : Lk(B) → Lk(X) defined by f1(uz) = rn(uz) (where rn is the right-normed

bracketing i.e. rn(uz) = ad
Lk(X)
b1

◦ · · · ◦ ad
Lk(X)
bk

(z) = ad
Lk(X)
(u) (z) for each u = b1 · · · bk ∈

B∗ and z ∈ Z) and f2(b) = b satisfying the equivariance condition of (2.13) with

respect to α. Then, the basic results of Proposition 2.27 are applied and summarized

in the following properties

i) one has a morphism of Lie algebras f : Lk(B∗Z)⋊Lk(B)→ Lk(X) extending fi

(i = 1, 2) in the usual sense by Proposition 2.27 point (1).

ii) the algebra homomorphism f∗ between the smash product U(Lk(B∗Z))♯U(Lk(B))

and the enveloping algebra U(Lk(X)) which sends u1 ⊗ u2 7→ f ∗
1 (u1)f

∗
2 (u2) ex-

tending f ∗
1 : U(Lk(B∗Z)) → U(Lk(X)) and f ∗

2 : U(Lk(B)) → U(Lk(X)) is an

isomorphism in k-AAU by obtaining from Proposition 2.27 points (2),(3) and

the fact that f is a Lie isomorphism as a consequence of Theorem 2.3 which

constructed Lazard’s elimination in k-Lie.

iii) then, recall that the free associative algebra k⟨X⟩ is identified with U(Lk(X))
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the universal enveloping algebra of the free Lie algebra Lk(X) 23, thus one has

k⟨B∗Z⟩ = U(Lk(B∗Z)) and k⟨B⟩ = U(Lk(B)). We call these phenomenons

k⟨B∗Z⟩♯k⟨B⟩
∼=−→ k⟨X⟩ in k-AAU by Lazard’s elimination in k-AAU.

This example deals with a more general type of the above example for quotients of

Lazard’s eliminations in k-Lie.

Example 2.9. As in Subsection 2.2.2, we suppose given a set X = B+Z (partitioned

in two blocks) and a relator r = {rj}j∈J ⊂ Lk(X) which is compatible with the

alphabet partition i.e. there exists a partition of the set of indices J = JZ ⊔ JB
such that rB = {rj}j∈JB = r ∩ Lk(X)B and rZ = {rj}j∈JZ = r ∩ Lk(X)BZ . As

we have seen in Subsection 2.2.2, we considered that JB is the Lie ideal of Lk(X)B

generated by {rj}j∈JB , J ,JZ and JBZ are the Lie ideals of Lk(X) generated by r, rZ

and rBZ = {adQ z}Q∈JB ,z∈Z respectively. With these constructions above, by Theorem

2.6, we have the following

i) a morphism [α] : Lk(X)B
/
JB → Der(Lk(X)BZ

/
J Z
BZ

) of Lie algebras, where

J Z
BZ = JZ + JBZ is the Lie ideal of Lk(X)BZ .

ii) g1 : Lk(X)BZ
/
J Z
BZ
→ Lk(X) /J and g2 : Lk(X)B

/
JB → Lk(X) /J are two

morphisms in k-Lie satisfying the equivariant property (2.13) w.r.t. [α].

iii) a morphism of Lie algebras (2.28)

β33 : Lk(X)BZ
/
J Z
BZ

⋊ Lk(X)B
/
JB → Lk(X) /J

extending g1 and g2 in the usual sense is an isomorphism in k-Lie (meaning the

quotient of Lazard’s elimination in k-Lie).

We are now ready to give an another important application of Proposition 2.27 point

(2) and point (3). More precisely, the algebra homomorphism (β33)∗ from the smash

product algebra U(Lk(X)BZ
/
J Z
BZ

)♯U( Lk(X)B
/
JB ) to the universal enveloping al-

gebra U(Lk(X) /J ) extending g∗1 : U(Lk(X)BZ
/
J Z
BZ

) → U(Lk(X) /J ) and g∗2 :

U( Lk(X)B
/
JB )→ U(Lk(X) /J ) in the usual sense i.e. (β33)∗(u1⊗u2) = g∗1(u1)g

∗
2(u2)

is an isomorphism in k-AAU. We call these phenomenons by the quotient of Lazard

23See Appendix 5.4.4, Remark 5.6 point (iii).
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elimination in k-AAU.

We would now like to treat this consequence to special cases:

• Firstly, applying the quotient of Lazard’s elimination (in k-AAU) to Lazard’s

Partially Commutative Elimination i.e. Corollary 2.16, if X is a set equipped

with a commutation relation θ and B is a subset of X such that Z = X − B is

totally non-commutative, then there is an isomorphism in k-AAU

U(Lk(X, θ)) ∼= U(Lk(C))♯U(Lk(B, θB)). (2.115)

• Furthermore, if we consider the decomposition of Drinfeld-Kohno Lie algebra in

Corollary 2.17, one has an isomorphism

U(DKk,n+1) ∼= U(Lk(Xn))♯U(DKk,n) (2.116)

in k-AAU, where Xn is any alphabet of cardinality n.
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2.5 Table of Lazard elimination formulas.

We summarize Lazard’s elimination principle (2.2)

Free(B + Z) = Free(CB[Z]) ⋊ Free(B)

in each category formed (2.1)

Mon,Grp,k-Lie and k-AAU

by the following table

Category Abbreviation Elimination formula (free)

Monoids Mon X∗ = (B∗Z)∗B∗

Groups Grp Γ(X) = Γ(CB(Z)) ⋊ Γ(B)

Lie k-algebras k-Lie Lk(X) ∼= Lk(B∗Z) ⋊ Lk(B)

Unital associative k-algebras k-AAU k⟨X⟩ ∼= k⟨B∗Z⟩♯k⟨B⟩

Table 2: Lazard’s elimination for the list of categories.
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Contents

3.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.2. Convolution algebra and factorization. . . . . . . . . . . . . . . . . 111

3.3. Bases in duality: Zinbiel algebra and Magnus basis. . . . . . . . . 122

3.4. Extension of characters: A theory of Domains for Harmonic Func-

tions and its Symbolic Counterpart. . . . . . . . . . . . . . . . . . 134

3.4.1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

3.4.2. Polylogarithms: from global to local domains. . . . . . . . . 139
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stuffle characters and their symbolic computations. . . . . . 155

3.1 Introduction.

This chapter is about some characters, their convolutions and their extensions1. Taking

a bialgebra (B, µ, 1B,∆, ϵ) it is known that the set Ξ(B) = Hom
k-AAU(B,k) of char-

acters of the algebra part (B, µ, 1B) is a monoid under convolution2 and, if an antipode

1The readers can find definitions about bi- and Hopf algebras in [56].
2Will be defined below Section 3.2.
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is at hand (then B is a Hopf algebra), this monoid is a group (inversion being provided

by precomposition with the antipode, see [34]).

Here will be dealt mainly with two types of characters

• Shuffle characters which will be provided by the algebra of polylogarithms (at

first indexed with noncommutative polynomials C⟨x0, x1⟩ and extended to series

of Dom(Li) ⊊ C⟨⟨x0, x1⟩⟩ (as in Figure 3.2).

• Stuffle characters that are provided by Harmonic sums defined on a word w =

ys1 · · · ysr by

Hw = Hs1,··· ,sr =
∑

N≥n1>···>nr>0

1

ns11 · · ·nsrr
.

• The link between Polylogarithms, Harmonic sums and then to MZV which are

(some of) their limits being provided (classically) by Taylor expansion around

zero (see Proposition 3.13) of some Polylogarithms, the transfer of the extended

domain Dom(Li) to Harmonic sums is warranted by normal families of functions

(a.k.a. such in the work [85]).

Shuffle and Stuffle characters are particular cases of convolution characters on en-

veloping algebras, the link with Lazard elimination and, more generally, with semidirect

products is highlighted by formula (3.7).

On the side of indexation, one remarks that the Stuffle product is a perturbation3

of the Shuffle product. Many such perturbations can be found in the literature (see a

non exhaustive table of them in [33]) as well as their shifted variants ([9, 42, 57, 47]),

some of them directly linked to conjectures about MZV ([47]).

The structure of the chapter is the following:

In the next part (i.e. Section 3.2), we define what is the convolution product in general

(i.e. between linear maps, not only characters and infinitesimal ones). This allows

to express the generating series of the identity (i.e. (IdEnd)gen) as an infinite product

of exponentials of rank one infinitesimal characters (this formula is a resolution of

the identity). To this end, we first provide two examples (in Example 3.1), one with

3In the sense of [42].

110



CHAPTER 3. CHARACTERS

the shuffle and one with the stuffle product. We end this paragraph with the general

formula (which holds for enveloping algebras of linearly k-free Lie algebras, k being

itself a Q-algebra).

We saw that a crucial step is this expression of (IdEnd)gen is to express it as a

summable series of tensor products obtained through dual bases. A remarkable com-

binatorial realization of such bases in duality is provided within the next section (see

Section 3.3) and is performed through half-shuffle and Zinbiel algebras.

The end of the chapter is devoted to extensions of some characters relating to

special functions: Polylogarithms for the shuffle product (a character with values in

holomorphic functions) and Harmonic functions for the Stuffle. The transfer of the

properties of the extended domain from Li to Harmonic sums is performed by row

inequalities and columns limits (see Lemma 3.17).

3.2 Convolution algebra and factorization.

Throughout this section k is assumed to be a Q-algebra.

Let us first give a famous example of the aimed factorization (see [91, 94]) for the

special case when the Lie algebra g is the free Lie algebra (i.e. g = Lk(X)).

We consider the usual Hopf enveloping algebra U(Lk(X)), this algebra inherits the

following Hopf structure Hconc(X) = (k⟨X⟩, conc, 1X∗ ,∆�, ϵ)
4. As we will see below,

formulas (3.1) (with their proper indexation) hold true for multihomogeneous bases, in

particular bases like Hall, Lyndon, Viennot, Schützenberger which are monomial i.e.

obtained by bracketting. For simplicity, we return here to the Lyndon basis5 (Pl)l∈LynX

of the free Lie algebra Lk(X) and (Sw)w∈X∗ , computed from (Pw)w∈X∗ by duality (where

(Pw)w∈X∗ is the Poincaré-Birkhoff-Witt - PBW for short - basis associated to (Pl)l∈LynX

for the standard lexicographic order) is such that, by restriction, (Sl)l∈LynX is6 a tran-

4See also Remark 5.6, Appendix 5.4.4.
5For this basis, we have Px = x if x ∈ X and Pl = [Pl1 , Pl2 ] if st(l) = (l1, l2) (a pair of Lyndon

words (l1, l2) is called the standard factorization of a Lyndon word l /∈ X if l = l1l2 and l2 is the

longest Lyndon proper right factor of l).
6Here, Sx = x if x ∈ X and Sl = xSu if l = xu ∈ LynX \X.

111



3.2. CONVOLUTION ALGEBRA AND FACTORIZATION.

scendence basis of the unital shuffle algebra (k⟨X⟩,�, 1X∗)7, indexed by (LynX,<) the

totally ordered set of all Lyndon words over X. The PBW basis (Pw)w∈X∗ of the free

associative algebra k⟨X⟩ and its dual family8 (Sw)w∈X∗ can be expressed as follows:

each word w ∈ X∗ can be written uniquely as a decreasing product of Lyndon words

w = li11 · · · l
ik
k (where li ∈ LynX, l1 > · · · > lk and i1, · · · , ik ∈ N), then

Pw = P i1
l1
· · ·P ik

lk
and Sw =

S�i1l1
� · · ·� S�iklk

i1! · · · ik!
. (3.1)

Example 3.1. In this case U(g) = k⟨X⟩ and the generating function of Id (a.k.a

(IdEnd)gen, see also [91], Def 3.8 and Prop 5.25), expressed in the complete tensor

product k⟨⟨X⟩⟩⊗̂k⟨X⟩ reads (as Equation (3.6))

(IdEnd)gen =
∑
w∈X∗

w ⊗ w =
∑
w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl), (3.2)

where the first equality follows Equation (5.13). This decomposition is called MRS9

factorization.

Furthermore, note that the Lyndon basis (Pl)l∈LynX (as any Hall or monomial basis)

is multi-homogeneous with respect to the N(X)-grading, where by Subsection 1.2.5, a

Lie polynomial P ∈ Lk(X) =
⊕

α∈N(X) Lk(X)α is called multi-homogeneous if there

exists α = (αx)x∈X ∈ N(X) so that P ∈ Lk(X)α. Now, let g = g1⊕g2 be a Lie k-algebra

decomposed (internal) into two Lie subalgebras. Assume that g is free k-module then

we say that a basis B of g is compatible with this decomposition if

B = B1 + B2, where B1 = B ∩ g1,B2 = B ∩ g2.

Proposition 3.1. Every basis of the free Lie algebra Lk(X) which is multi-homogeneous

10 is compatible with the classical Lazard elimination Lk(X) = Lk(X)BZ ⋊ Lk(X)B.

Proof. Assume that B is a multi-homogeneous basis of the free Lie algebra Lk(X). We

7See Reutenauer’s [94] §5.2, Thm 5.3, Cors 5.5 and 5.6 for more details.
8In fact, the coordinate family, in this case a basis of the multihomogneous graded dual, a subspace

of the dual space k⟨⟨X⟩⟩.
9After Mélançon, Reutenauer and Schützenberger (see [94]).

10e.g. monomial bases, Hall, Lyndon, Viennot, Schützenberger [79, 94, 98, 104].
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now put

B1 := B ∩ Lk(X)BZ = B ∩

 ⊕
α∈N(X)

|α|Z>0

Lk(X)α


and

B2 := B ∩ Lk(X)B = B ∩

 ⊕
α∈N(X)

|α|Z=0

Lk(X)α

 .

Now, for each P ∈ B then P ∈ Lk(X)α, where α = (αx)x∈X ∈ N(X). Clearly, if |α|Z > 0

then P ∈ B ∩ Lk(X)BZ = B1, otherwise if |α|Z = 0 one has P ∈ B ∩ Lk(X)B = B2.

We then obtain that B = B1 + B2. We verified our result.

General case. – Given a Lie algebra g over k a commutative ring with unit

and its universal enveloping algebra U(g), let us consider the usual Hopf algebra

(U(g), µU , 1k,∆U , ϵU) as mentioned in Appendix 5.4.4. On the k-module End(U(g)),

there is a structure of unital associative algebra, called the convolution algebra, in which

the product of two k-linear maps f, g ∈ End(U(g)) is defined by the formula

f ⋆ g = µU ◦ (f ⊗ g) ◦∆U ∈ End(U(g)),

whose unit element is 1End = 1k ◦ ϵU ∈ End(U(g)). The inverse element of the identity

map IdEnd with respect to the convolution product is given by the antipode SU , the

antiautomorphism of U(g) characterized by SU(x) = −x for any x ∈ g.

At (U(g),∆U , ϵU), the (full) dual space U∗(g) = Hom(U(g),k) is a unital associative

algebra induced from the transposes of ∆U and ϵU , respectively. More precisely, the

convolution product mU∗ : U∗(g)⊗U∗(g)→ U∗(g) (resp. a unit λU∗ : k→ U∗(g)) is the

composite map U∗(g) ⊗ U∗(g) → (U(g) ⊗ U(g))∗
∆∗U−−→ U∗(g) (resp. k → k∗ ϵ∗U−→ U∗(g))

(cf. Grinberg and Reiner [56] § 1.6 Exercise 1.6.1 (a)).

We suppose now that g is free as a k-module. Then, due to the fact that U(g) is also

k-linearly free, the canonical map Φ : U∗ ⊗ U → End(U), is into. One can show

that the image of Φ is dense in End(U) when endowed with the topology of pointwise

convergence (see Example 5.3).
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Suppose further that k is a Q-algebra and fix a totally ordered basis B = (bi)i∈I

of the Lie algebra g (which is therefore supposed to be is a free k-module). This

datum leads to an associated PBW basis of U(g), denoted by (Bα)α∈N(I) , which is

constructed by the following multi-index notation: for any α =
∑

i∈I αiei ∈ N(I),

where the elementary multi-indices ei ∈ N(I) is defined for all i ∈ I by ei(j) = δji

(Kronecker delta) and supp(α) ⊆ {i1 < · · · < ik}, we set

Bα = b
αi1
i1
· · · bαik

ik
= (Bei1 )αi1 · · · (Beik )αik ∈ U(g). (3.3)

Notice that Bα+β ̸= BαBβ if supp(α) ∩ supp(β) ̸= ∅ and that the standard order

considered here is, in the free case, the opposite lexicographic order. At the present

stage, it is straightforward to transform the above PBW basis of U(g) to its dual

(so-called) basis11 (Bα)α∈N(I) of U∗(g) in terms of the duality given by

⟨Bα | Bβ⟩ = δβα (the Kronecker delta), for all α, β ∈ N(I),

where the pairing ⟨• | •⟩ : U∗(g) ⊗ U(g) → k, φ ⊗ u 7→ φ(u) is the usual one. More

precisely, for these constructions, we have

Theorem 3.2. One has the following

Bα ⋆ Bβ =
(α + β)!

α!β!
Bα+β,

Bα =
(b⋆i1)

⋆αi1 ⋆ · · · ⋆ (b⋆ik)⋆αik

αi1 ! · · ·αik !

=
(Bei1 )⋆αi1 ⋆ · · · ⋆ (Beik )⋆αik

αi1 ! · · ·αik !
, (3.4)

where any α ∈ N(I) is expressed in the above notation and with the formula α! :=∏
i∈I αi!.

Proof. We can easily check that the coproduct ∆U of any PBW basis is given by

∆U(Bγ) =
∑

α,β∈N(I)
α+β=γ

γ!

α!β!
Bα ⊗ Bβ, for any γ ∈ N(I) (3.5)

because ∆U is a morphism of algebras and the elements of g are primitive.

Now, for each α, β ∈ N(I), it follows that

⟨Bα ⋆ Bβ | Bγ⟩ = ⟨mU∗(Bα ⊗ Bβ) | Bγ⟩
11In fact, the family of coordinate forms.

114



CHAPTER 3. CHARACTERS

= (mU∗(Bα ⊗ Bβ))(Bγ)

= (Bα ⊗ Bβ)(∆U(Bγ))

= (Bα ⊗ Bβ)
( ∑

α1,β1∈N(I)

α1+β1=γ

γ!

α1!β1!
Bα1 ⊗ Bβ1

)

=
∑

α1,β1∈N(I)

α1+β1=γ

γ!

α1!β1!
Bα(Bα1)Bβ(Bβ1)

=
∑

α1,β1∈N(I)

α1+β1=γ

γ!

α1!β1!
δα1
α δ

β1
β

= δγα+β
γ!

α!β!
.

This leads to the equation Bα ⋆Bβ = (α+β)!
α!β!
Bα+β. By telescoping the products, for each

α1, · · · , αk ∈ N(I) we obtain

Bα1 ⋆ · · · ⋆ Bαk
=

(α1 + α2)!

α1!α2!

(α1 + α2 + α3)!

(α1 + α2)!α3!
· · · (α1 + · · ·+ αk)!

(α1 + · · ·+ αk−1)!αk!
Bα1+···+αk

=
(α1 + · · ·+ αk)!

α1! · · ·αk!
Bα1+···+αk

.

In particular, considering αiei = ei + · · ·+ ei︸ ︷︷ ︸
αi times

∈ N(I), where i ∈ I, αi ∈ N and the

elementary multi-index ei ∈ N(I), the dual basis element Bαiei can then be expressed

as

Bαiei =
(ei!)

αi

(αiei)!
Bei ⋆ · · · ⋆ Bei︸ ︷︷ ︸

αi times

=
(Bei)⋆αi

αi!
.

Thus, for any multi-index α =
∑

i∈I αiei = αi1ei1 + · · ·+αikeik ∈ N(I), where supp(α) ⊆

{i1 < · · · < ik}, one has

Bα =
(αi1ei1)! · · · (αikeik)!

(αi1ei1 + · · ·+ αikeik)!
Bαi1

ei1
⋆ · · · ⋆ Bαik

eik

=
αi1 ! · · ·αik !

α!
Bαi1

ei1
⋆ · · · ⋆ Bαik

eik

= Bαi1
ei1
⋆ · · · ⋆ Bαik

eik
(since α! = αi1 ! · · ·αik !)

=
(Bei1 )⋆αi1 ⋆ · · · ⋆ (Beik )⋆αik

αi1 ! · · ·αik !
.

We just proved our theorem.

We now work out what is written in Reutenauer’s Prop 1.10 [94] by the following
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Proposition 3.3. The linear isomorphism Φ
−1

: End(U(g)) → U∗(g)⊗̂U(g) sending

any f to
∑

α∈N(I) Bα ⊗ f(Bα). It is a morphism of rings from the convolution algebra

End(U(g)) to the complete tensor product U∗(g)⊗̂U(g) as in Example 5.3.

Proof. Proof omitted (general fact, see Example 5.3 or see [35]).

Correspondingly, the image of the identity map IdEnd under the ring isomorphism

Φ
−1

is denoted by (IdEnd)gen. We can carry out a systematic formulation of the gener-

alized identity as follows

Theorem 3.4 ([35]). Let k be a Q-algebra and g be a Lie k-algebra endowed with a

totally ordered basis B = (bi)i∈I of the Lie algebra g (hence free as a k-module) then

i) The following infinite product identity holds in the complete topological associative

algebra U∗(g)⊗̂U(g)

(IdEnd)gen =
∑
α∈N(I)

Bα ⊗ Bα =

↗∏
i∈I

exp(Bei ⊗ Bei). (3.6)

ii) Moreover, if the ordered basis B = (bi)i∈I is split in two successive parts B1 = (bi)i∈I1

and B2 = (bi)i∈I2 where I = I1 →+ I2 is an ordinal sum, we have

(IdEnd)gen =

↗∏
i∈I

exp(Bei ⊗ Bei) =

↗∏
i∈I1

exp(Bei ⊗ Bei)×
↗∏
i∈I2

exp(Bei ⊗ Bei). (3.7)

Proof. i) First equality follows from (5.13). The last right-hand side of (3.6) is

↗∏
i∈I

exp(Bei ⊗ Bei) =

↗∏
i∈I

(∑
n≥0

1

n!
(Bei)⋆n ⊗ (Bei)n

)
that is equal to∑

i1<······<ik
0≤αi1

,··· ,αik

1

αi1 ! · · ·αik !
(Bei1 )⋆αi1 ⋆ · · · ⋆ (Beik )⋆αik ⊗ (Bei1 )αi1 · · · (Beik )αik

by the usual expression. Let us however say a word about convergence. We consider

the nets of finite partial sums and products

SF =
∑

α∈N(I)
supp(α)⊂F

Bα ⊗ Bα PF =

↗∏
i∈F

exp(Bei ⊗ Bei)

for all F ⊂finite I. Convergence of these nets to (IdEnd)gen goes as follows.

The nets Φ(SF ) and Φ(PF ) converge pointwise to IdEnd due to the following
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Lemma 3.5. Let M be a free module with basis B = (βi)i∈I , endowed with the discrete

topology, then, for a net

N = (φα)α∈A within End(M), TFAE

1. N converges pointwise to φlim .

2. For all i ∈ I, φα(βi) converges to φlim(βi).

Proof. A net N = (φα)α∈A within End(M) converges pointwise to ℓ ∈ End(M) if and

only if

(∀F ⊂finite M)(∃B ∈ A)(∀α ≥ B)(φα|F = ℓ|F ) (3.8)

Now, due to the equation (3.3) and Theorem 3.2, we deduce our result.

ii) First proof. – Second equality is a particular case of ordinal partition of indices

for infinite ordered products.

Now, for the reader who wants to feel what is happening inside (3.7), we give a second

- combinatorial - proof.

Second proof. – By using I = I1 →+ I2, the last right-hand side of (3.7) is

↗∏
i∈I1

exp(Bei ⊗ Bei)×
↗∏
i∈I2

exp(Bei ⊗ Bei)

=

↗∏
i∈I1

(∑
n≥0

1

n!
(Bei)⋆n ⊗ (Bei)n

)
×

↗∏
i∈I2

(∑
n≥0

1

n!
(Bei)⋆n ⊗ (Bei)n

)

=

 ∑
i1<······<ik∈I1
0≤αi1

,··· ,αik

1

αi1 ! · · ·αik !
(Bei1 )⋆αi1 ⋆ · · · ⋆ (Beik )⋆αik ⊗ (Bei1 )αi1 · · · (Beik )αik



×

 ∑
i1<······<ik∈I2
0≤αi1

,··· ,αik

1

αi1 ! · · ·αik !
(Bei1 )⋆αi1 ⋆ · · · ⋆ (Beik )⋆αik ⊗ (Bei1 )αi1 · · · (Beik )αik


=

∑
i1<······<ik∈I
0≤αi1

,··· ,αik

1

αi1 ! · · ·αik !
(Bei1 )⋆αi1 ⋆ · · · ⋆ (Beik )⋆αik ⊗ (Bei1 )αi1 · · · (Beik )αik

=

↗∏
i∈I

(∑
n≥0

1

n!
(Bei)⋆n ⊗ (Bei)n

)
=

↗∏
i∈I

exp(Bei ⊗ Bei) = (IdEnd)gen.

We have then completed the second proof.

117



3.2. CONVOLUTION ALGEBRA AND FACTORIZATION.

QED

Example 3.2. Two applications. –

i) Formula (3.7) generalizes without difficulty to the case when the totally ordered set

I splits as I = I1 →+ · · · →+ Im (m-factor ordinal sum) as

(IdEnd)gen =

↗∏
i∈I1

exp(Bei ⊗ Bei)× · · · ×
↗∏
i∈Im

exp(Bei ⊗ Bei). (3.9)

Recall that the Drinfeld-Kohno Lie algebra DKk,n+1 =
⊕

2≤j≤n+1 DK
(j)
k,n+1 is a ([2, n+

1],∨)-graded Lie algebra in which each factor DK
(j)
k,n+1 is a free Lie algebra Lk(Tj) (see

Equation (2.104)). Thus, under the n-factor ordinal sum Tn+1 = T2 →+ · · ·→+ Tn+1,

the Lie algebra DKk,n+1 has a k-linear basis B =
⋃
l∈IDK

Pl, where we used the to-

tally ordered set IDK := Lyn(T2) →+ · · · →+ Lyn(Tn+1). As a consequence, we have

the following infinite product identity in the complete topological associative algebra

U∗(DKk,n+1)⊗̂U(DKk,n+1) (over k a Q-algebra)

(IdEnd)gen =

↘∏
l∈IDK

exp(Sl ⊗ Pl) =

↘∏
l∈Lyn(Tn+1)

exp(Sl ⊗ Pl)× · · · ×
↘∏

l∈Lyn(T2)

exp(Sl ⊗ Pl).

ii) We now define a deformation of the shuffle product (in fact an interpolation between

shuffle and stuffle products12).

Let Y be the infinite alphabet {yk | k ≥ 1} and take a parameter q in k. If the ground

ring was R and q is seen as formal, take k = R[q], later, but not now, we will require

that k be a Q-algebra. The q-deformed stuffle product, noted q, is defined by the

following recursion

u q1Y ∗ = 1Y ∗ qu = u, (3.10)

yk1u qyk2v = yk1(u qyk2v) + yk2(yk1u qv) + qyk1+k2(u qv) (3.11)

for all yk1 , yk2 ∈ Y and u, v ∈ Y ∗.

12Deformation is in the sense of [83] Ch 4 i.e. such that, at q = 0 we get the shuffle product and at

q = 1 we get the stuffle product.
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i) As was said, when q = 0, we get the shuffle product:

y2y1� y3y1y2 = y2(y1� y3y1y2) + y3(y2y1� y1y2)

= y2y1y3y1y2 + 2y2y3y
2
1y2 + y2y3y1y2y1 + 2y3y2y

2
1y2

+y3y2y1y2y1 + y3y1y2y1y2 + 2y3y1y
2
2y1.

One can also see this product as indexed by paths (with North and East steps)

from A to B as below

•
A

•B

y3 y2 y1

y2

y1

For instance,

evaluation of the path

•
A

•B

y3 y2 y1

y2

y1

is y3y2y1y2y1;

and evaluation of the path

•
A

•B

y3 y2 y1

y2

y1

is y3y
2
2y

2
1; etc.

ii) When q = 1, one gets the stuffle product:

y2y1 y3y1y2 = y2(y1 y3y1y2) + y3(y2y1 y1y2) + y5(y1 y1y2)

= y2y1y3y1y2 + 2y2y3y
2
1y2 + y2y3y1y2y1 + y2y3y1y3 + y2y3y

2
2

+y2y4y1y2 + 2y3y2y
2
1y2 + y3y2y1y2y1 + y3y2y1y3 + y3y

3
2

+y3y1y2y1y2 + 2y3y1y
2
2y1 + y3y1y2y3 + y3y1y4y1 + y23y1y2

+y23y2y1 + y23y3 + 2y5y
2
1y2 + y5y1y2y1 + y5y1y3 + y5y

2
2.

iii) In general, one can also see the q-stuffle product as indexed by paths (with North,

North-East and East steps, each North-East path provides a q) from A to B as

below
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•
A

•B

y3 y2 y1

y2

y1

.

For instance,

the path

•
A

•B

y3 y2 y1

y2

y1

y5
evaluates as q.y5y2y

2
1;

and the path

•
A

•B

y3 y2 y1

y2

y1

y4

y2

evaluates as q2.y3y4y2; etc.

iv) The complete q-stuffle product containing the two terms above is

y2y1 qy3y1y2 = y2(y1 qy3y1y2) + y3(y2y1 qy1y2) + qy5(y1 qy1y2)

= y2y1y3y1y2 + 2y2y3y
2
1y2 + y2y3y1y2y1 + qy2y3y1y3 + qy2y3y

2
2

+qy2y4y1y2 + 2y3y2y
2
1y2 + y3y2y1y2y1 + qy3y2y1y3 + qy3y

3
2

+y3y1y2y1y2 + 2y3y1y
2
2y1 + qy3y1y2y3 + qy3y1y4y1 + qy23y1y2

+qy23y2y1 + q2y23y3 + 2qy5y
2
1y2 + qy5y1y2y1 + q2y5y1y3 + q2y5y

2
2.

In fact, q is the dual of the comultiplication

∆ q : k⟨Y ⟩ → k⟨Y ⟩ ⊗ k⟨Y ⟩

defined on letters by

∆ q(ys) = ys ⊗ 1Y ∗ + 1Y ∗ ⊗ ys + q.
∑
p+q=s
p,q≥1

yp ⊗ yq

and, with the grading ||w|| = ||yi1 · · · yik || = i1 + · · · + ik, one checks easily that the

bialgebra

H q(Y ) = (k⟨Y ⟩, conc, 1Y ∗ ,∆ q , ϵ) (3.12)
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is connected, cocommutative and N-graded.

Then, due to the fact that
(−1)n−1

n
.(I+)⋆ n is summable (see [13] Ch II §1.6 or Cartier

[21] Thm 3.6.1), H q(Y ) = U(Prim(H)) and using the Eulerian projector

π1 = log(I) =
∑
n≥1

(−1)n−1

n
(I+)⋆ n

(i.e. the Eulerian projector as in [94]), one constructs two bases (of k⟨Y ⟩) in duality

Πw and Σw. Then

(Id)gen =
∑
w∈Y ∗

w ⊗ w =
∑
w∈Y ∗

Σw ⊗ Πw =

↘∏
l∈LynY

exp(Σl ⊗ Πl),

for details, see [17].

Example 3.3. A motivation. –

In this example, we show an application of Lazard’s elimination to the combinatorics

of polylogarithms.

Among multihomogeneous bases (Hall, Schützenberger-Viennot-Hall, Shirshov, etc.),

one is particularly interesting, the Lyndon basis and its dual family (which is this case

admits a nice combinatorial resursion). With the same notations as in Section 3.1 and

as in the beginning of Section 3.2, we first construct {Pw}w∈X∗ from the Lyndon basis

(see [79] and [94]) and its dual family {Sw}w∈X∗ which satisfies the following recursion

([94] Thm 5.3)

Sl = xSu, for l = xu ∈ LynX \X,

Sw =
S�i1l1

� . . .� S�iklk

i1! . . . ik!
for w = li11 . . . l

ik
k , l1 > . . . > lk . (3.13)

A table of the first elements, up to length 6, can be found in Appendix 5.5.1.

The polylogarithmic function is a shuffle character on (C⟨X⟩,�, 1X∗) (X = {x0, x1})

with values in H(Ω)13

(C⟨X⟩,�, 1X∗)
Li

(H(Ω),×, 1Ω) (3.14)

13Ω ⊂ C is a simply-connected domain convenient for the system (3.38) as, for instance,

Ω = C \ (]−∞, 0] ∪ [1,+∞[).

121



3.3. BASES IN DUALITY: ZINBIEL ALGEBRA AND MAGNUS BASIS.

built from (3.38).

Product formula (3.2) provides a factorization of Li (in fact of any shuffle character)

 L =
∑
w∈X∗

Liw w =
∑
w∈X∗

LiSw Pw =

↘∏
l∈LynX

exp(LiSl
Pl). (3.15)

Using Lazard’s elimination with X = {x0, x1} = B →+ Z where B = {x0} and Z = {x1}

and this, by (3.7), automatically splits the product as

 L =

↘∏
l∈LynX
|l|x1≥1

exp(LiSl
Pl)×

↘∏
l∈LynX
|l|x1=0

exp(LiSl
Pl) =  L+ × exp(x0 log(z)). (3.16)

Now, using recursion (3.13), one checks that all terms LiSl
in the exponent of  L+ tend

to zero as z ∈ Ω tends to zero. This entails that lim
z∈Ω,z→0

 L(z)e−x0 log(z) = 1H(Ω)⟨⟨X⟩⟩ which

is precisely the asymptotic initial condition of (3.38).

3.3 Bases in duality: Zinbiel algebra and Magnus

basis.

Here, we deal with Magnus basis on the free associative algebra arising from Lazard’s

elimination in k-AAU. We then focus on Zinbiel algebras and present a systematic

method to study Magnus duality in Theorem 3.9. In the last part of this section, there

are several applications of the Magnus duality introduced in Remark 3.2.

For convenience, in this section we suppose that k is a commutative ring with unit

and X = B + Z is a finite set partitioned in two blocks, where B = {b1, · · · , bM} and

Z = {z1, · · · , zN}. Now we formulate and prove the following corollary:

Corollary 3.6. (Magnus basis) Let us consider the free associative algebra

k⟨X⟩ = k⟨b1, · · · , bM , z1, · · · , zN⟩.

The collection of polynomials (called by Magnus polynomials, cf. [81] Ch V §5.6)

rn(w1zi1) · · · rn(wkzik).w, (3.17)

where k ≥ 0, w1, · · · , wk, w ∈ B∗; i1, · · · , ik ∈ [1, N ] (if k = 0 then rn(w1zi1) · · · rn(wkzik)

will be denoted by 1X∗), is a k-linear basis of k⟨X⟩.
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Proof. It follows from Example 2.8 points (ii) and (iii) that the natural algebra homo-

morphism

f∗ : k⟨B∗Z⟩♯k⟨B⟩ → k⟨X⟩, u1 ⊗ u2 7→ f ∗
1 (u1)f

∗
2 (u2)

is an isomorphism in k-AAU. Moreover, the families of monomials {w1zi1 · · ·wkzik | k ≥

0, w1, · · · , wk ∈ B∗; i1, · · · , ik ∈ [1, N ]} and {w | w ∈ B∗} form k-linear bases of, respec-

tively, k⟨B∗Z⟩ and k⟨B⟩. Under the algebra isomorphism f∗(u1 ⊗ u2) = f ∗
1 (u1)f

∗
2 (u2),

we thus deduce that the collection of Magnus polynomials (3.17) is a k-linear basis of

k⟨X⟩. We verified our corollary by applying Lazard’s elimination in k-AAU.

Our next aim is to describe the dual of Magnus basis under the standard pairing

⟨• | •⟩ : k⟨X⟩ ⊗ k⟨X⟩ → k (3.18)

classically defined by, for T ∈ k⟨X⟩ and P ∈ k⟨X⟩, ⟨T | P ⟩ =
∑

w∈X∗⟨T | w⟩⟨P | w⟩,

where, when w is a word, ⟨T | w⟩ stands for the coefficient of w in T (see Subsection

1.2.4). More precisely, in this case, there is a unique dual of these polynomials because

the Magnus basis (3.17) is multi-homogeneous with respect to the N(X)-grading 14.

We start with a notion of Zinbiel algebras that were introduced by Jean-Louis Loday

in [77] (see also in Loday [78]) as the Koszul dual operad to Leibniz algebras (hence

the name coined by the topologist J.M. Lemaire), which is more than adequate for our

purpose which means to construct the dual of Magnus basis.

Definition 3.1. A (left) Zinbiel algebra over k (a unital commutative ring) is a k-

module A equipped with a bilinear map ≺ satisfying the following relation

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (z ≺ y), for all x, y, z ∈ A. (3.19)

Moreover, an element 1A of a (left) Zinbiel algebra A is called the unit if for any

1A ̸= x ∈ A,

1A ≺ x = 0, x ≺ 1A = x,

and 1A ≺ 1A is not define.

14We recall that a polynomial T ∈ k⟨X⟩ is called multi-homogeneous if T ∈ kα⟨X⟩, for α =

(αx)x∈X ∈ N(X) (see also Subsection 1.2.4).
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However, we can replace the usual (left) Zinbiel algebra by its opposite algebra,

called (right) Zinbiel algebra. Namely,

Definition 3.2. A k-module A equipped with a bilinear map ≻ is called (right) Zinbiel

algebra if it satisfies the identity

x ≻ (y ≻ z) = (x ≻ y) ≻ z + (y ≻ x) ≻ z, for all x, y, z ∈ A. (3.20)

The behavior of ≻ with respect to the unit 1A ∈ A is given by (for any 1A ̸= x ∈ A)

1A ≻ x = x, x ≻ 1A = 0,

note that 1A ≻ 1A is not defined.

Unital (right) Zinbiel algebras form a category denoted by k-Zinb (the category of

unital (right) Zinbiel k-algebras). Moreover, for any (right) Zinbiel algebra A, we can

construct a corresponding commutative associative algebra by using the symmetrized

product

x ∗ y = x ≻ y + y ≻ x. (3.21)

In other word, (A, ∗) is an associative and commutative algebra.

Starting from the paper of M. P. Schüzenberger [98] in 1958, the author originally

introduced the concept of (left) half-shuffle on the free associative algebra k⟨X⟩, it also

was studied in the recent works of E. Burgunder [18], L. Foissy and F. Patras [51], H.

Nakamura [89]. In our context, we now introduce a notion of (right) half-shuffle on

k⟨X⟩ as the linear extension of the binary product on words given by

(x1 · · ·xp)
r
� (xp+1 · · ·xn) = (x1 · · ·xp� xp+1 · · · xn−1)xn,

1X∗
r
� (xp+1 · · ·xn) = xp+1 · · · xn,

(x1 · · ·xp)
r
� 1X∗ = 0.

In terms of the (right) half-shuffle product, we can easily verify without difficulty that

(k⟨X⟩,
r
�, 1X∗) is a unital (right) Zinbiel algebra. Moreover, by the symmetric product

x ∗ y = x
r
� y + y

r
� x = x � y, the commutative algebra associated to the unital
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Zinbiel algebra (k⟨X⟩,
r
�, 1X∗) is the unital shuffle algebra (k⟨X⟩,�, 1X∗).

Before introducing the Magnus’s duality theorem on the free associative algebra

(k⟨X⟩, conc, 1X∗) and the Zinbiel algebra (k⟨X⟩,
r
�, 1X∗), we proceed to the following

propositions that are necessary for describing our general picture how they arise.

Proposition 3.7. Let us consider k⟨X⟩Z ⊕ k.1X∗ ∼= k⟨B∗Z⟩ (resp. k⟨X⟩B ∼= k⟨B⟩)

the subalgebra of the free associative algebra k⟨X⟩ generated by B∗Z ∪ {1X∗} (resp.

B∗). Then

i) k⟨X⟩B and k⟨X⟩Z ⊕ k.1X∗ are unital shuffle subalgebras of (k⟨X⟩,�, 1X∗).

ii) k⟨X⟩B and k⟨X⟩Z ⊕ k.1X∗ are unital Zinbiel subalgebras of (k⟨X⟩,
r
�, 1X∗).

iii) We have k⟨X⟩ = (k⟨X⟩Z ⊕ k.1X∗)� k⟨X⟩B, as shuffle algebras.

Proof. It is straightforward to show that k⟨X⟩B and k⟨X⟩Z ⊕ k.1X∗ are close under

the shuffle (resp. Zinbiel) product � (resp.
r
�). One derives (i) and (ii). To prove

(iii), as a consequence of Radford’s results [92], one can write down a basis of any free

shuffle algebra in terms of Lyndon words over X, where X = B →+ Z is an ordinal

sum. This implies that any polynomial P ∈ k⟨X⟩ can be written uniquely as a linear

combination of the shuffle of words in B∗ with polynomials in k⟨X⟩Z ⊕ k.1X∗

P =
∑
k≥0

Pk � wk, Pk ∈ k⟨X⟩Z ⊕ k.1X∗ and wk ∈ B∗, (3.22)

where the families (Pk)k≥0 being finitely supported. We verified our claim and then we

omit the obvious proof of the point (iii).

Let us consider multi-homogeneous polynomials of k⟨X⟩Z⊕k.1X∗ arising by Zinbiel

product of B∗Z, so-call Zinbiel polynomials, defined by

(· · · ((w1zi1
r
� w2zi2)

r
� w3zi3)

r
� · · ·

r
� wk−1zik−1

)
r
� wkzik , (3.23)

where k ≥ 0, w1, · · · , wk ∈ B∗ and i1, · · · , ik ∈ [1, N ] (if k = 0 then (3.23) will be

denoted by 1X∗). Henceforth we write simply w1zi1
r
� · · ·

r
� wkzik instead of (3.23)

(please don’t mistake this for an associative expression).

The above formulas lead to the next assertion
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Proposition 3.8. The Zinbiel algebra k⟨X⟩Z ⊕ k.1X∗ is a free k-module with a nat-

ural monomial basis formed w1zi1 · · ·wkzik , where w1, · · · , wk are words in B∗ and

i1, · · · , ik ∈ [1, N ]. Moreover, the Zinbiel algebra has a second k-linear basis formed as

(3.23).

Proof. The first item is trivial. To prove the next statement, one claims that any

monomial basis element w1zi1 · · ·wkzik of the free k-module k⟨X⟩Z⊕k.1X∗ is a k-linear

combination of multi-homogeneous polynomials formed as (3.23). In fact, we now prove

the claim by induction on k : if k = 1 then we first observe that w1zi1 = w1zi1 satisfies

our claim. Now, for any word w1, · · · , wk, wk+1 in B∗, where i1, · · · , ik, ik+1 ∈ [1, N ]

then, by the formula (3.22), there is ul ∈ B∗ and Pl ∈ k⟨X⟩Z ⊕ k.1X∗(∀l ∈ N) such

that

w1zi1 · · ·wkzikwk+1 =
∑
l≥0

Pl � ul,

where (Pl)l≥0 being finitely supported and each Pl ∈ k⟨X⟩Z ⊕ k.1X∗ is k-linear com-

bination of multi-homogeneous polynomials arising by Zinbiel product (the right half-

shuffle) of B∗Z

v1zi1
r
� · · ·

r
� vkzik , where v1, · · · , vk are words in B∗

by inductive hypothesis. Therefore, let us consider the concatenation product of the

above equation with the letter zik+1
on the right, one has

w1zi1w2zi2 · · ·wkzikwk+1zik+1
=

(∑
l≥0

Pl � ul
)
zik+1

=
∑
l≥0

Pl
r
� ulzik+1

and so is a k-linear combination of multi-homogeneous polynomials formed as (3.23)

because in general in terms of the non associative identity (3.2) on Zinbiel product, it is

straightforward that for any v1, · · · , vk, vk+1, · · · , vn ∈ B∗ and i1, · · · , in ∈ [1, N ] then

(v1zi1
r
� · · ·

r
� vkzik)

r
� (vk+1zik+1

r
� · · ·

r
� vnzin) is a k-linear combination of elements

(3.23). We verified our claim. On the other hand, as may be easily verified, under the

totally ordered set X splits as X = B →+ Z, the largest monomial in w1zi1
r
� · · ·

r
� wkzik

will be the following

w1zi1 · · ·wkzik , (3.24)
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they will occur with coefficient 1. It is obvious that distinct elements in (3.23) have

distinct largest terms (3.24), hence the linearly independent of the elements (3.23) is

then verified by taking and evaluating any k-linear expression of elements (3.23). We

then deduce our result.

As a consequence of Proposition 3.7 and Proposition 3.8, the collection of Zinbiel

polynomials

(w1zi1
r
� · · ·

r
� wkzik)� w (3.25)

(where k ≥ 0, w1, · · · , wk, w ∈ B∗ and i1, · · · , ik ∈ [1, N ]) is a k-linear basis of

(k⟨X⟩,
r
�, 1X∗).

The next theorem shows that for the descriptions of the above propositions it is

sufficient to consider the duality of the Magnus basis in the free associative algebra

(k⟨X⟩, conc, 1X∗).

Theorem 3.9. (Magnus duality, cf. Nakamura [89]) The collections of Magnus polyno-

mials (3.17) and Zinbiel polynomials (3.25) are dual bases of, respectively (k⟨X⟩, conc, 1X∗)

and (k⟨X⟩,
r
�, 1X∗).

Remark 3.1. It is interesting to consider the following useful discussions

i). Our main technical idea to solve the above theorem is similar to the tool of

constructing and proving the PBW basis Pw and its dual Sw (w words on X)

presented in Reutenauer’s book [94] §5.2. But, our approach is in generalized

graded bialgebra type structures studied in Appendix 5.4.5.

ii). We survey briefly in the Reutenauer’s book [94] §1.5 (more precisely, see Ap-

pendix 5.4.4) that the k-module k⟨X⟩ of the noncommutative polynomials has

two natural graded Hopf algebra structures which are dual to each other (in the

graded sense), that is Hconc(X) = (k⟨X⟩, conc, 1X∗ ,∆�, ϵ) and its graded dual

H�(X) = (k⟨X⟩,�, 1X∗ ,∆conc, ϵ).

iii) Our approach appeared in Appendix 5.4.5 is indeed the (right) Zinbiel bialgebra

Z r
�

(X) := (k⟨X⟩,
r
�, 1X∗ ,∆conc, ϵ) and its graded dual the Zinbc-As-bialgebra
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Zconc(X) := (k⟨X⟩, conc, 1X∗ ,∆ r
�
, ϵ). This mathematical framework provides

useful computing techniques that will be presented to the reader as below.

Recall the Lazard’s elimination in the category k-AAU meaning there exists the

natural algebra isomorphism f∗ : k⟨B∗Z⟩♯k⟨B⟩ → k⟨X⟩ which has been completely

studied in Section 2.4. Let us denote k⟨X⟩BZ⊕k.1X∗ := f∗(k⟨B∗Z⟩) the subalgebra of

the free associative algebra k⟨X⟩ generated by {rn(wz)}w∈B∗,z∈Z∪{1X∗}. The following

proposition will be the first step on the way of presenting our proof of Theorem 3.9.

Proposition 3.10. (Conc & Half shuffle duality) The families of Magnus polynomi-

als rn(w1zi1) · · · rn(wkzik) and Zinbiel polynomials w1zi1
r
� · · ·

r
� wkzik (where k ≥

0, w1, · · · , wk ∈ B∗ and i1, · · · , ik ∈ [1, N ]) are dual bases of, respectively (k⟨X⟩BZ ⊕

k.1X∗ , conc, 1X∗) and (k⟨X⟩Z ⊕ k.1X∗ ,
r
�, 1X∗).

Proof. We assume that B = {b1, · · · , bM} and Z = {z} only one element. To show

that any standard pairing ⟨w1z
r
� · · ·

r
� wkz | rn(u1z) · · · rn(ukz)⟩ = δ

(u1,··· ,uk)
(w1,··· ,wk)

(that

is the Kronecker delta, over two chains of words (w1, · · · , wk) and (u1, · · · , uk) (k ≥ 1)

over B, equal to 0 or 1 if the chains coincide not respectively), we now have computing

processes

⟨w1z
r
� · · ·

r
� wkz | rn(u1z) · · · rn(ukz)⟩

(1)
= ⟨[w1z

r
� · · ·

r
� wk−1z]⊗ wkz | ∆ r

�
[rn(u1z) · · · rn(ukz)]⟩

(2)
= ⟨[w1z

r
� · · ·

r
� wk−1z]⊗ wkz | ∆�[rn(u1z) · · · rn(uk−1z)]∆ r

�
[rn(ukz)]⟩.

where, the first equality passing from the adjoint (for the scalar product ⟨• | •⟩ above)

⟨T
r
� P | Q⟩ = ⟨T ⊗ P | ∆ r

�
(Q)⟩ (T, P,Q are polynomials such that ⟨Q | 1X∗⟩ = 0)

studied in Appendix 5.4.5, and the second equality passing from the compatible re-

lation ∆ r
�

(TP ) = ∆�(T )∆ r
�

(P ) (where T, P polynomials) in Example 5.8 point (ii),

Appendix 5.4.5. We also have the expression ∆�[rn(uiz)] = rn(uiz)⊗ 1 + 1⊗ rn(uiz)

for each primitive elements rn(uiz) because we have the fragment {rn(uiz)}1≤i≤k−1 ⊆

Lk(X) ⊆ PrimHconc(X), see more details in Remark 5.6 point (ii), Appendix 5.4.4.

The following lemma is necessary for the proof.
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Lemma 3.11. For any polynomials T1, T2 ∈ k⟨X⟩Z and double polynomial P =∑m
i=1 P

i
1⊗P i

2 ∈ k⟨X⟩⊗k⟨X⟩, then ⟨T1⊗T2 | P.∆ r
�

[rn(wz)]⟩ = ⟨T1⊗T2 | P.[1⊗rn(wz)]⟩

for each word w over the alphabet B.

Proof. If w = 1X∗ then ⟨T1 ⊗ T2 | P.∆ r
�

[rn(wz)]⟩ = ⟨T1 ⊗ T2 | P.∆ r
�

(z)⟩ = ⟨T1 ⊗ T2 |

P.(1 ⊗ z)⟩ by the definition of ∆ r
�

in Appendix 5.4.5. Assume that for any word w

over B of length k, then ⟨T1⊗ T2 | P.∆ r
�

[rn(wz)]⟩ = ⟨T1⊗ T2 | P.[1⊗ rn(wz)]⟩ for any

polynomials T1, T2 ∈ k⟨X⟩Z and double polynomial P =
∑m

i=1 P
i
1⊗P i

2 ∈ k⟨X⟩⊗k⟨X⟩.

Now, in case w = bm1 · · · bmk
bmk+1

∈ B∗, where m1, · · · ,mk+1 ∈ [1,M ], it follows from

the compatible relation of ∆ r
�

in Appendix 5.4.5 that one has

∆ r
�

[rn(wz)] = ∆ r
�

[bm1 .rn(bm2 · · · bmk+1
z)− rn(bm2 · · · bmk+1

z).bm1 ]

= ∆�(bm1)∆ r
�

[rn(bm2 · · · bmk+1
z)]−∆�[rn(bm2 · · · bmk+1

z)]∆ r
�

(bm1)

= (bm1 ⊗ 1 + 1⊗ bm1)∆ r
�

[rn(bm2 · · · bmk+1
z)]−∆�[rn(bm2 · · · bmk+1

z)](1⊗ bm1)

= (bm1 ⊗ 1 + 1⊗ bm1)∆ r
�

[rn(bm2 · · · bmk+1
z)]

−[rn(bm2 · · · bmk+1
z)⊗ bm1 + 1⊗ rn(bm2 · · · bmk+1

z)bm1 ].

Thus, by the above formula and the inductive hypothesis, we arrive at the following

⟨T1 ⊗ T2 | P.∆ r
�

[rn(wz)]⟩ = ⟨T1 ⊗ T2 | P.(bm1 ⊗ 1 + 1⊗ bm1)∆ r
�

[rn(bm2 · · · bmk+1
z)]⟩

− ⟨T1 ⊗ T2 | P.[rn(bm2 · · · bmk+1
z)⊗ bm1 ]⟩

− ⟨T1 ⊗ T2 | P.[1⊗ rn(bm2 · · · bmk+1
z)bm1 ]⟩

= ⟨T1 ⊗ T2 | P.(bm1 ⊗ 1 + 1⊗ bm1)[1⊗ rn(bm2 · · · bmk+1
z)]⟩

− ⟨T1 ⊗ T2 | P.[rn(bm2 · · · bmk+1
z)⊗ bm1 ]⟩

− ⟨T1 ⊗ T2 | P.[1⊗ rn(bm2 · · · bmk+1
z)bm1 ]⟩

= ⟨T1 ⊗ T2 | P.[bm1 ⊗ rn(bm2 · · · bmk+1
z)]⟩

− ⟨T1 ⊗ T2 | P.[rn(bm2 · · · bmk+1
z)⊗ bm1 ]⟩

+ ⟨T1 ⊗ T2 | P.[1⊗ rn(bm1bm2 · · · bmk+1
z)]⟩

= ⟨T1 ⊗ T2 | P.[1⊗ rn(bm1bm2 · · · bmk+1
z)]⟩,

where we obtained ⟨T1 ⊗ T2 | P.[bm1 ⊗ rn(bm2 · · · bmk+1
z)]⟩ =

∑m
i=1⟨T1 ⊗ T2 | P i

1.bm1 ⊗

P i
2.rn(bm2 · · · bmk+1

z)⟩ = 0 by using T1 ∈ k⟨X⟩Z, and similarly one has ⟨T1 ⊗ T2 |

P.[rn(bm2 · · · bmk+1
z)⊗ bm1 ]⟩ = 0. We verified our lemma.
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End of the proof of Proposition 3.10. –

By the above lemma, one has

⟨[w1z
r
� · · ·

r
� wk−1z]⊗ wkz | ∆�[rn(u1z) · · · rn(uk−1z)]∆ r

�
[rn(ukz)]⟩

= ⟨[w1z
r
� · · ·

r
� wk−1z]⊗ wkz | ∆�[rn(u1z) · · · rn(uk−1z)][1⊗ rn(ukz)]⟩.

Thus, from the equation above and a standard formula ⟨wkz | rn(ukz).T ⟩ = 0 for

each non empty monomial T of the set {rn(uiz)}1≤i≤k−1, we arrive at the following

computational processes

⟨w1z
r
� · · ·

r
� wkz | rn(u1z) · · · rn(ukz)⟩

= ⟨[w1z
r
� · · ·

r
� wk−1z]⊗ wkz | ∆�[rn(u1z) · · · rn(uk−1z)][1⊗ rn(ukz)]⟩

= ⟨[w1z
r
� · · ·

r
� wk−1z]⊗ wkz |

[rn(u1z)⊗ 1 + 1⊗ rn(u1z)] · · · [rn(uk−1z)⊗ 1 + 1⊗ rn(uk−1z)][1⊗ rn(ukz)]⟩

= ⟨[w1z
r
� · · ·

r
� wk−1z]⊗ wkz | rn(u1z) · · · rn(uk−1z)⊗ rn(ukz)⟩

= ⟨w1z
r
� · · ·

r
� wk−1z | rn(u1z) · · · rn(uk−1z)⟩.⟨wkz | rn(ukz)⟩

= ⟨w1z
r
� · · ·

r
� wk−1z | rn(u1z) · · · rn(uk−1z)⟩.δukwk

= δu1w1
· · · δuk−1

wk−1
δukwk

= δ
(u1,··· ,uk)
(w1,··· ,wk)

(by the inductive progresses) .

Moreover, we now state to the general case B = {b1, · · · , bM} and Z = {z1, · · · , zN}.

Let k be a positive integer. For convenience, we will borrow and extend some of the

notations and techniques appeared in Nakamura’s paper [89] which the author used to

prove the Magnus duality in case X = B +Z where B = {x0} and Z = {xλ}λ∈Λ (Λ: a

nonempty index set). We now denote ι = (i1, · · · , ik) ∈ [1, N ]k and for w1, · · · , wk, w ∈

B∗ = {b1, · · · , bM}∗ we shall denote

P
(ι)
(w1,··· ,wk)

= rn(w1zi1) · · · rn(wkzik),

S
(ι)
(w1,··· ,wk)

= w1zi1
r
� · · ·

r
� wkzik ,

w
(ι)
(w1,··· ,wk,w)

= w1zi1 · · ·wkzik .w.

We now prove that the pairing ⟨S(ι)
(w1,··· ,wk)

| P (λ)
(u1,··· ,uh)⟩ is equal to the Kronecker delta

δ
(λ;u1,··· ,uh)
(ι;w1,··· ,wk)

, where ι = (i1, · · · , ik) ∈ [1, N ]k, w1, · · ·wk ∈ B∗ and λ = (λ1, · · · , λh) ∈

[1, N ]h, u1, · · · , uh ∈ B∗. Given a fix ι = (i1, · · · , ik) ∈ [1, N ]k. Let us consider Vι a
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submodule of k⟨X⟩ generated by the monomials {w(ι)
(w1,··· ,wk,w)

: w1, · · · , wk, w ∈ B∗}.

We easily observe that if ι = (i1, · · · , ik) ̸= λ = (λ1, · · · , λh) then Vι and Vλ are

orthogonal under the standard pairing ⟨• | •⟩. One also observes that

• Given a fix λ, then P
(λ)
(u1,··· ,uh) ∈ Vλ, for any u1, · · · , uh ∈ B∗.

• Given a fix ι, then S
(ι)
(w1,··· ,wk)

∈ Vι, for any w1, · · · , wk ∈ B∗.

Thus, if ι ̸= λ, then ⟨S(ι)
(w1,··· ,wk)

| P (λ)
(u1,··· ,uh)⟩ = 0 = δ

(λ;u1,··· ,uh)
(ι;w1,··· ,wk)

. We only consider the

case ι = λ = (i1, · · · , ik). We now introduce the following notations

P(w1,··· ,wk) = rn(w1z) · · · rn(wkz),

S(w1,··· ,wk) = w1z
r
� · · ·

r
� wkz,

w(w1,··· ,wk,w) = w1z · · ·wkz.w,

and then Vk a submodule of k⟨B, {z}⟩ generated by the monomials {w(w1,··· ,wk,w) :

w1, · · · , wk, w ∈ B∗}. The mapping ϕι : Vk → Vι, w(w1,··· ,wk,w) 7→ w
(ι)
(w1,··· ,wk,w)

is an

isomorphism of k-modules and preserves the standard pairing ⟨• | •⟩ (for this tool, see

[89] Thm 3.2). Thus, one has the following

⟨S(ι)
(w1,··· ,wk)

| P (ι)
(u1,··· ,uk)⟩ = ⟨ϕι(S(w1,··· ,wk)) | ϕι(P(u1,··· ,uk))⟩ = ⟨S(w1,··· ,wk) | P(u1,··· ,uk)⟩

= ⟨w1z
r
� · · ·

r
� wkz | rn(u1z) · · · rn(ukz)⟩ = δ

(u1,··· ,uk)
(w1,··· ,wk)

= δ
(ι;u1,··· ,uk)
(ι;w1,··· ,wk)

.

Consequently, we verified the “Conc & Half shuffle duality” that means ⟨S(ι)
(w1,··· ,wk)

|

P
(λ)
(u1,··· ,uh)⟩ = δ

(λ;u1,··· ,uh)
(ι;w1,··· ,wk)

. The proof is complete.

QED

Proof of Theorem 3.9 : We recall the graded set X = B + Z, where B =

{b1, · · · , bM} and Z = {z1, · · · , zN}. Let k be a positive integer. To approach the no-

tations already used when proving Proposition 3.10, although in a more sophisticated

way, if ι = (i1, · · · , ik) ∈ [1, N ]k and for each w1, · · · , wk, w ∈ B∗ = {b1, · · · , bM}∗, we

consider useful notations

P
(ι)
(w1,··· ,wk,w)

= rn(w1zi1) · · · rn(wkzik).w,
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S
(ι)
(w1,··· ,wk,w)

= (w1zi1
r
� · · ·

r
� wkzik)� w,

w
(ι)
(w1,··· ,wk,w)

= w1zi1 · · ·wkzik .w.

We now prove that ⟨S(ι)
(w1,··· ,wk,w)

| P (λ)
(u1,··· ,uh,u)⟩ is equal to the Kronecker delta δ

(λ;u1,··· ,uh,u)
(ι;w1,··· ,wk,w)

.

Given a fix ι = (i1, · · · , ik) ∈ [1, N ]k. According to the proof of Proposition 3.10, let

us recall Vι that is a submodule of k⟨X⟩ generated by the monomials {w(ι)
(w1,··· ,wk,w)

:

w1, · · · , wk, w ∈ B∗}. We also recall that if ι = (i1, · · · , ik) ̸= λ = (λ1, · · · , λh) then

Vι and Vλ are orthogonal under the standard pairing ⟨• | •⟩. Then, we observe certain

properties

• Given a fix λ, then P
(λ)
(u1,··· ,uh,u) ∈ Vλ, for any u1, · · · , uh, u ∈ B∗.

• Given a fix ι, then S
(ι)
(w1,··· ,wk,w)

∈ Vι, for any w1, · · · , wk, w ∈ B∗.

As a consequence, if ι ̸= λ, one has ⟨S(ι)
(w1,··· ,wk,w)

| P (λ)
(u1,··· ,uh,u)⟩ = 0 = δ

(λ;u1,··· ,uh,u)
(ι;w1,··· ,wk,w)

. We

finally consider the case ι = λ = (i1, · · · , ik). According to the adjoint ⟨T � P | Q⟩ =

⟨T ⊗P | ∆�(Q)⟩ (T, P,Q are polynomials) successfully achieved from constructing the

graded Hopf algebraHconc(X) = (k⟨X⟩, conc, 1X∗ ,∆�, ϵ) and its graded dualH�(X) =

(k⟨X⟩,�, 1X∗ ,∆conc, ϵ) (see Appendix 5.4.4), we shall present

⟨S(ι)
(w1,··· ,wk,w)

| P (ι)
(u1,··· ,uk,u)⟩ = ⟨(w1zi1

r
� · · ·

r
� wkzik)� w | rn(u1zi1) · · · rn(ukzik).u⟩

= ⟨w1zi1
r
� · · ·

r
� wkzik ⊗ w | ∆�

[
rn(u1zi1) · · · rn(ukzik).u

]
⟩

= ⟨w1zi1
r
� · · ·

r
� wkzik ⊗ w | [rn(u1zi1)⊗ 1 + 1⊗ rn(u1zi1)]

· · · [rn(ukzik)⊗ 1 + 1⊗ rn(ukzik)](bm1 ⊗ 1 + 1⊗ bm1) · · · (bm|u| ⊗ 1 + 1⊗ bm|u|)⟩,

where we putted u = bm1 · · · bm|u| ∈ B∗. It follows from the fact that ⟨T | P ⟩ = 0 if

T ∈ k⟨X⟩Z and P ∈ k⟨X⟩B, after expressing the right-hand side of the last pairing

above as a linear sum of Q1 ⊗ Q2 (Qi ∈ k⟨X⟩), we clearly have that the last equality

is equal to ⟨w1zi1
r
� · · ·

r
� wkzik ⊗ w | rn(u1zi1) · · · rn(ukzik) ⊗ u⟩. Then, Proposition

3.10 is used to verify the following equation

⟨w1zi1
r
� · · ·

r
� wkzik ⊗ w | rn(u1zi1) · · · rn(ukzik)⊗ u⟩

= ⟨w1zi1
r
� · · ·

r
� wkzik | rn(u1zi1) · · · rn(ukzik)⟩⟨w | u⟩

= δ
(u1,··· ,uk)
(w1,··· ,wk)

δuw = δ
(u1,··· ,uk,u)
(w1,··· ,wk,w)

= δ
(ι;u1,··· ,uk,u)
(ι;w1,··· ,wk,w)

,
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and then ⟨S(ι)
(w1,··· ,wk,w)

| P (ι)
(u1,··· ,uk,u)⟩ = δ

(ι;u1,··· ,uk,u)
(ι;w1,··· ,wk,w)

. We give a complete proof of the

Magnus’s duality and then our theorem. □

Remark 3.2. Our constructions and results above for the Magnus basis and their

duality in case the finite graded set X = B + Z (where B = {b1, · · · , bM} and Z =

{z1, · · · , zN}) can be automatically approached to any graded set X = B + Z where

B = {bγ}γ∈Γ and Z = {zλ}λ∈Λ (Γ,Λ are nonempty index sets). In caseX = B+Z where

B = {x0} and Z = {xλ}λ∈Λ (Λ: a nonempty index set, for example N+), the Magnus

duality also appeared in [89] Thm 3.2 to derive a formula of Le-Murakami [75], Furusho

type [52] that expresses arbitrary coefficients of a group-like series J ∈ k⟨⟨x0, x1⟩⟩ (k

is a field of characteristic zero) in terms of the “regular” coefficients of J ([89] Thm

4.1). On the other hand, images of the Magnus polynomial and its dual under the anti-

automorphism Φ of k⟨X⟩ (which sends w 7→ w̃ for all words on X, where w̃ reverses the

order of letters in the word w) belong in the (left) Zinbiel bialgebra and its dualisation

framework [18], Appendix: Associative-Zinbiel bialgebras. The images also appeared

in [60] Prop 5.10 to describe the coefficients of the complete generating series (3.37)

 L(z) =
∑
w∈X∗

Liw(z)w

(whereX = {x0, x1}) in terms of the indeterminates are monomials of the set {rn(xk0x1) =

adkx0 x1}k≥0, where  L(z) is the group-like solution of the following first order noncom-

mutative differential equation (3.38) (the Knizhnik-Zamolodchikov equation KZ3 due

to Drinfeld [30, 31])

 d(S) = (ω0(z)x0 + ω1(z)x1)S, (NCDE)

lim
z∈Ω,z→0

S(z)e−x0 log(z) = 1H(Ω)⟨⟨x0,x1⟩⟩, asymptotic initial condition,

where, ω0(z) = z−1dz and ω1(z) = (1−z)−1dz are two differential forms on the simply-

connected domain Ω = C \ (]−∞, 0] ∪ [1,+∞[) and for any series S ∈ H(Ω)⟨⟨x0, x1⟩⟩

over H(Ω) the algebra (for the pointwise product) of complex-valued functions which

are holomorphic on Ω (for more details see in [60] Prop 5.10 and Subsection 3.4.1).
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3.4 Extension of characters: A theory of Domains

for Harmonic Functions and its Symbolic Coun-

terpart.

In this section, we begin by reviewing the calculus induced by the framework of [39].

In there, we extended Polylogarithm functions over a subalgebra of noncommutative

rational power series, recognizable by finite state (multiplicity) automata over the

alphabet X = {x0, x1}. The stability of this calculus under shuffle products relies

on the nuclearity of the target space [97]. We also concentrated on algebraic and

analytic aspects of this extension allowing to index polylogarithms, at non positive

multi-indices, by rational series and also allowing to regularize divergent polyzetas,

at non positive multi-indices [39]. As a continuation of works in [39] and in order to

understand the bridge between the extension of this “polylogarithmic calculus” and the

world of harmonic sums, we propose a local theory, adapted to a full calculus on indices

of Harmonic Sums based on the Taylor expansions, around zero, of polylogarithms

with index x1 on the rightmost end. This theory is not only compatible with Stuffle

products but also with the Analytic Model. In this respect, it provides a stable and fully

algorithmic model for Harmonic calculus. Examples by computer are also provided.

3.4.1 Introduction.

Riemann’s zeta function is defined by the series

ζ(s) :=
∑
n≥1

1

ns
(3.26)

where s is a complex number. It is absolutely convergent for ℜ(s) > 1 (for any s ∈ C,

ℜ(s) stands for the real part of s).

It can be extended to a meromorphic function on the complex plane C with a single

pole at s = 1 [95]15.). In fact, the story began with Euler’s works to find the solution

15Whence the famous sum ζ(−1) = 1 + 2 + 3 + · · · = − 1

12
by which, among other ”results”, S.

Ramanujan was noticed by G. H. H. Hardy (see [1]).
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of Basel problem. In these works, Euler proved that [45]

ζ(2) =
∑
n≥1

1

n2
=
π2

6
. (3.27)

Moreover, for suitable s1, s2, Euler gave an important identity as follows16:

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s1 + s2) + ζ(s2, s1), (3.28)

where

ζ(s1, s2) :=
∑

n1>n2≥1

1

ns11 n
s2
2

. (3.29)

The numbers ζ(s1, s2) were called “double zeta values” at (s1, s2). More generally, for

any r ∈ N+ and s1, · · · , sr ∈ C, we denote

ζ(s1, · · · , sr) :=
∑

n1>···>nr≥1

1

ns11 · · ·nsrr
. (3.30)

Then H. Furusho et al. [53] showed that the series ζ(s1, · · · , sr) converges absolutely

for s ∈ Hr where

Hr := {s = (s1, · · · , sr) ∈ Cr|∀m = 1, · · · , r; ℜ(s1) + · · ·+ ℜ(sm) > m} .(3.31)

In the convergent cases, ζ(s1, · · · , sr) they are called “polyzeta values” (or MZV17) at

multi-index s = (s1, · · · , sr). Indeed s 7→ ζ(s) is holomorphic on Hr and has been

extended to Cr as a meromorphic function (see [55, 107]).

Then, for any r-uplet (s1, · · · , sr) ∈ Nr
+ ∩Hr, r ∈ N+ i.e. with s1 ≥ 2, the polyzeta

ζ(s1, · · · , sr) is also the limit at z = 1 of the polylogarithmic function, defined by:

Lis1,··· ,sr(z) :=
∑

n1>···>nr>0

zn1

ns11 · · ·nsrr
(3.32)

for any z ∈ C such that |z |< 1. It is easily seen that, for any si ∈ N+, r > 1,

z
d

dz
Lis1,··· ,sr(z) = Lis1−1,··· ,sr(z) if s1 > 1

16In fact, in Euler’s formula, s1, s2 ∈ N+. This identity appeared under the name “Prima Methodus

...” (see [46] pp 141-144).
17Multiple Zeta Values.
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(1− z)
d

dz
Li1,s2,··· ,sr(z) = Lis2,··· ,sr(z) if r > 1 (3.33)

and this formulas will be ended at the “seed” Li1(z) = log

(
1

1− z

)
.

Moreover, if X∗ is the free monoid of rank two (generators, or the alphabet, X =

{x0, x1} and the neutral 1X∗) then the polylogarithms indexed by a list

(s1, · · · , sr) ∈ Nr
+ can be reindexed by the word xs1−1

0 x1 · · ·xsr−1
0 x1 ∈ X∗x1 (3.34)

In order to reverse the recursion introduced in Equations (3.33) (two equations), we

introduce two differential forms

ω0(z) = z−1dz and ω1(z) = (1− z)−1dz, (3.35)

on Ω18. We then get an integral representation19 of the functions (3.32) as follows20

(see Def 3.2 [39] and Figure 3.1)

Liw(z) =



1H(Ω) if w = 1X∗∫ z

0

ω1(s) Liu(s) if w = x1u∫ z

1

ω0(s) Liu(s) if w = x0u and |u|x1 = 0, i.e. w ∈ x∗0∫ z

0

ω0(s) Liu(s) if w = x0u and |u|x1 > 0, i.e. w /∈ x∗0,

(3.36)

the upper bound z belongs to Ω (as Ω = C\ (]−∞, 0]∪ [1,+∞[) is a simply-connected

domain, the integrals, which can be proved to be convergent in all cases, depend only

on their bounds). The neutral element of the algebra of analytic functions H(Ω), a

constant function, will be here denoted 1H(Ω).

This provides not only the analytic continuation of (3.32) to Ω but also extends the

indexation to the whole monoid X∗, allowing to study the complete generating series

 L(z) =
∑
w∈X∗

Liw(z)w (3.37)

18Ω is the simply-connected domain C \ (]−∞, 0] ∪ [1,+∞[).

19In here, we code the moves z
d

dz
(resp. (1 − z)

d

dz
) - or more precisely sections

∫ z

0

f(s)

s
ds (resp.∫ z

0

f(s)

1− s
ds) - with x0 (resp. x1).

20Given a word w ∈ X∗, we note |w|x1 the number of occurrences of x1 within w.
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1X∗

x0

x20

x30x1x
2
0

x1x0

x0x1x0x21x0

x1

x0x1

x20x1x1x0x1

x21

x0x
2
1x31

Figure 3.1: Tree of addresses and corresponding coefficients below.

and show that it is the solution of the following first order noncommutative differential

system (see [31]) d(S) = (ω0(z)x0 + ω1(z)x1)S, (NCDE)

lim
z∈Ω,z→0

S(z)e−x0 log(z) = 1H(Ω)⟨⟨X⟩⟩, asymptotic initial condition,
(3.38)

where, for any S ∈ H(Ω)⟨⟨X⟩⟩ and d stands for the term by term derivation d(S) =∑
w∈X∗

d

dz
(⟨S | w⟩)w.

This differential system allows to show that  L is a �-character21 i.e.

∀u, v ∈ X∗, ⟨ L | u� v⟩ = ⟨ L | u⟩⟨ L | v⟩ and ⟨ L | 1X∗⟩ = 1H(Ω). (3.39)

⟨ L | xn0 ⟩ =
log(z)n

n!
; ⟨ L | xn1 ⟩ =

(− log(1− z))n

n!

⟨ L | x0x1⟩ = Li2(z) =
∑
n≥1

zn

n2
; ⟨ L | x1x0⟩ = ⟨ L | x1�x0 − x0x1⟩(z)

⟨ L | x20x1⟩ = Li3(z) =
∑
n≥1

zn

n3
; ⟨ L | x1x0⟩ = (− log(1− z)) log(z)− Li2(z)

⟨ L | xr−1
0 x1⟩ = Lir(z) =

∑
n≥1

zn

nr
; ⟨ L | x21x0⟩ = ⟨ L | 1

2
(x1�x1�x0)− (x1�x0x1) + x0x

2
1⟩.

Note that, in what precedes, we used the pairing ⟨• | •⟩ between series and poly-

nomials, classically defined by, for S ∈ k⟨⟨X⟩⟩ and P ∈ k⟨X⟩

⟨S | P ⟩ =
∑
w∈X∗
⟨S | w⟩⟨P | w⟩, (3.40)

21Here, the shuffle product is denoted by �. Its definition is classical and recalled in the equation

(3.66) of Subsection 3.4.5.
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where, when w is a word, ⟨S | w⟩ stands for the coefficient of w in S and k any

commutative ring with unit (as here H(Ω)). With this at hand, we extend at once the

indexation of Li from X∗ to C⟨X⟩ by

LiP :=
∑
w∈X∗
⟨P | w⟩Liw =

∑
n≥0

(∑
|w|=n

⟨P | w⟩Liw

)
. (3.41)

In [39], it has been established that the polylogarithm, well defined locally by (3.32),

could be extended to some series (with conditions) by the last part of formula (3.41)

where the polynomial P is replaced by some series. A complete theory of global do-

mains was presented in [39], the present work concerns the whole project of extending

H• [38, 63] over stuffle subalgebras of rational power series on the alphabet Y , in partic-

ular the stars of letters and some explicit combinatorial consequences of this extension.

In fact, we focus on what happens in (well chosen) neighborhoods of zero (see

Section 3.4.3), therefore, the aim of this work is manyfold.

(a) Use the extension to local Taylor expansions22 as in (3.32) and the coefficients of

their quotients by 1− z, namely the harmonic sums, denoted H• and defined, for

any w ∈ X∗x1, as follows23 (and also related literature [3, 63])

Liw(z)

1− z
=
∑
N≥0

HπY (w)(N)zN , (3.42)

by a suitable theory of local domains which assures to carry over the computation

of these Taylor coefficients and preserves the stuffle indentity, again true for

polynomials over the alphabet Y = {yn}n≥1, i.e.24

∀S, T ∈ C⟨Y ⟩, HS T = HSHT and H1C⟨Y ⟩ = 1CN , (3.43)

note that 1C⟨Y ⟩ is identified with 1Y ∗ and 1CN is the constant (to one) function25

N→ C. This means that

H• : (C⟨Y ⟩, , 1Y ∗) −→ (C{Hw}w∈Y ∗ ,×, 1)

22Around zero.
23Here, the conc-morphism πX : (C⟨Y ⟩, conc, 1Y ∗) → (C⟨X⟩, conc, 1X∗) is defined by πX(yn) =

xn−1
0 x1 and πY is its inverse on Im(πX). See [39] for more details and a full definition of πY .
24Here, stands for the stuffle product which will be recalled as in the subsection 3.4.5.
25In fact, it could be Q but we will use afterwards C-linear combinations.
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mapping any word w = ys1 · · · ysr ∈ Y ∗ to

Hw = Hs1,··· ,sr =
∑

N≥n1>···>nr>0

1

ns11 · · ·nsrr
(3.44)

is a (unital) morphism26.

(b) Extend these correspondences (i.e. Li•,H•) to some series (over X and Y , re-

spectively) in order to preserve the identity27

LiπX(S)(z)

1− z
⊙

LiπX(T )(z)

1− z
=

LiπX(S T )(z)

1− z
(3.45)

true for polynomials S, T ∈ C⟨Y ⟩.

To this end, we use the explicit parametrization of the conc-characters obtained

in [39] and the fact that, under the stuffle products, they form a group.

3.4.2 Polylogarithms: from global to local domains.

Now we are facing the following constraint:

In order that the results given by symbolic computation reflect the reality with com-

plex numbers (and analytic functions), we have to introduce some topology28.

Let H(Ω) = Cω(Ω;C) be the algebra (for the pointwise product) of complex-valued

functions which are holomorphic on Ω. Endowed with the topology of compact con-

vergence 29, it is a nuclear space30.

Definition 3.3. (i) Let S ∈ C⟨⟨X⟩⟩ be a series decomposed in its homogeneous

(w.r.t. the length) components

Sn =
∑
|w|=n

⟨S | w⟩w

26In fact, it was shown that this morphism is into, see [62] Thm 4.
27Here ⊙ stands for the Hadamard product [59].
28Readers who are not keen on topology or functional analysis may skip the details of this section

and hold its conclusions.
29This topology is defined by the seminorms (where K ⊂ Ω is compact) pK(f) = sups∈K |f(s)|.
30Space where commutatively convergent and absolutely convergent series are the same. This will

allow the domain of the polylogarithm to be closed by shuffle products (i.e. the possiblity to compute

legal polylogarithms through shuffle products).
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(so that S =
∑
n≥0

Sn) is in the domain of Li if and only if the family (LiSn)n≥0

is summable in H(Ω) in other words, due to the fact that the space is complete

(see [97]), if and only if one has

(∀ W ∈ BH(Ω))(∃F ⊂finite N)(∀F ′ ⊂finite (N \ F )),

(∑
j∈F ′

LiSj
∈ W

)
(3.46)

where BH(Ω) is the set of neighbourhoods of 0 in H(Ω).

(ii) The set of these series will be noted Dom(Li) and, for S ∈ Dom(Li), the sum∑
n≥0

LiSn will be noted LiS.

Of course, the criterium (3.46) is only a theoretical tool to establish properties of

the domain of Li. In further calculations (i.e. in practice), we will not use it but the

stability of the domain under certain operations.

Example 3.4 ([39]). For example, the classical polylogarithms: dilogarithm Li2, trilog-

arithm Li3, etc... are defined and obtained through the coding (3.34) by

Lik(z) =
∑
n≥1

zn

nk
= Lixk−1

0 x1
(z) = ⟨ L(z) | xk−1

0 x1⟩

(where  L(z) is as in Equation (3.37)) but, one can check that, for t ≥ 0 (real), the

series (tx0)
∗x1 belongs to Dom(Li•) (see Definition 3.3. (ii)) iff 0 ≤ t < 1. In fact, in

this case,

Li(tx0)∗x1(z) =
∑
n≥1

zn

n− t
.

This opens the door to Hurwitz polyzetas [61].

The map Li• is now extended to a subdomain of C⟨⟨X⟩⟩, called Dom(Li•) (see Def.

3.3, and also [39]).

Example 3.5. For any α, β ∈ C, (αx0)
∗, (βx1)

∗ and (αx0 + βx1)
∗ = (αx0)

∗
� (βx1)

∗.

We have

Li(αx0)∗(z) = zα ; Li(βx1)∗(z) = (1− z)−β ; Li(αx0+βx1)∗(z) = zα(1− z)−β

where z ∈ Ω.

Proposition 3.12. (i) The domain Dom(Li) is a shuffle subalgebra of (C⟨⟨X⟩⟩,�, 1X∗).
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Dom(Li) Crat⟨⟨X⟩⟩A

C⟨⟨X⟩⟩

Figure 3.2: Domain of Polylogarithms and the algebra A.

(ii) The extended polylogarithm Li : Dom(Li) → H(Ω) is a shuffle morphism, i.e.

S, T ∈ Dom(Li), we still have

LiS�T = LiS LiT and Li1X∗ = 1H(Ω) . (3.47)

Proof. This proof has been done in [39].

The picture about Dom(Li) within the algebra (C⟨⟨X⟩⟩,�, 1X∗), the positioning of

Crat⟨⟨X⟩⟩ (rational series, see [2, 39]) and shuffle subalegbras as, for example, A =

C⟨X⟩� Crat⟨⟨x0⟩⟩� Crat⟨⟨x1⟩⟩ read as follows:

3.4.3 From Polylogarithms to Harmonic sums.

Definition of Dom(Li) has many merits31 and can easily be adapted to arbitrary (open

and connected) domains. However this definition, based on a global condition over

a fixed domain Ω ⊂ C \ ([0,+∞[) with 0 ∈ Ω, does not provide a sufficiently clear

interpretation of the stable symbolic computations around a point, in particular at

z = 0. One needs to consider a sort of “symbolic local germ” worked out explicitely.

Indeed, as the harmonic sums (or MZV) are the coefficients of the Taylor expansion at

zero of the convergent polylogarithms divided by 1 − z, we only need to know locally

these functions. In order to gain more indexing series and to describe the local situation

at zero, we reshape and define a new domain of Li around zero to Domloc(Li•).

31As the fact that, due to special properties of H(Ω) (it is a nuclear space [97]), one can show that

Dom(Li) is closed by shuffle products.
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The first step will be to characterize the polylogarithms having a removable singu-

larity at zero. The following proposition helps us characterize their indices.

Proposition 3.13. Let P ∈ C⟨X⟩ and f(z) = ⟨ L | P ⟩ =
∑

w∈X∗
⟨P | w⟩Liw.

1. The following conditions are equivalent

(i) f can be analytically extended around zero.

(ii) P ∈ C⟨X⟩x1 ⊕ C.1X∗.

2. In this case Ω itself32 can be extended to Ω1 = C \ (]−∞,−1] ∪ [1,+∞[).

Sketch. (ii) =⇒ (i) being straightforward, it remains to prove that (ii) =⇒ (i). Let

then P ∈ C⟨X⟩ such that f(z) = ⟨ L | P ⟩ has a removable singularity at zero. As

a consequence of Proposition 3.7 point (iii) for the set partitioned X = x0 + x1, this

implies that our polynomial reads

P =
∑
k≥0

Pk � x� k0 with Pk ∈ C⟨X⟩x1 ⊕ C.1X∗ (3.48)

the family (Pk)k≥0 being unique and finitely supported. Using (3.48) and (3.39), we

get

LiP (z) =
∑
k≥0

LiPk
(z) log(z)k.

We can see that only the term with k = 0 survives using monodromy, for example, as

follows.

We suppose that LiP (z) =
∑

k≥0 LiPk
(z) log(z)k can be analytically extended in a

neighbourhood of zero (say Br(0)). Let z ∈ Ω∩Br(0). Using the path γn(t) = z.e2inπ.t

(starting and ending at z winding n times around zero), we get

LiP (z) = LiP0(z) +
∑
k≥1

LiPk
(z)(log(z) + 2inπ)k

for all n ∈ Z which entails LiPk
(z) = 0 for all k ≥ 1. This holds for all z ∈ Ω ∩ Br(0)

and hence we must have Pk = 0 for all k ≥ 1.

The second step will be provided by the following Proposition which says that, for

appropriate series, the Taylor coefficients behave nicely.

32The domain, for z of LiP .
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Proposition 3.14. Let S ∈ C⟨⟨X⟩⟩x1 ⊕ C1X∗ such that S =
∑
n≥0

[S]n where

[S]n =
∑

w∈X∗,|w|=n

⟨S | w⟩w, ([S]n are the homogeneous components of S),

we suppose that 0 < R ≤ 1 and that
∑
n≥0

Li[S]n is unconditionally convergent (for the

standard topology) within the open disk | z |< R33. Remarking that
1

1− z
∑
n≥0

Li[S]n(z)

is unconditionally convergent in the same disk, we set

1

1− z
∑
n≥0

Li[S]n(z) =
∑
N≥0

aNz
N .

Then, for all N ≥ 0,
∑
n≥0

HπY ([S]n)(N) = aN .

Proof. Let us recall that, for any w ∈ X∗x1, the function (1 − z)−1 Liw(z) is analytic

in the open disk |z| < R. Moreover, one has

1

1− z
Liw(z) =

∑
N≥0

HπY (w)(N)zN .

Since [S]n =
∑

w∈X∗,|w|=n
⟨S | w⟩w and (1 − z)−1

∑
n≥0

Li[S]n absolutely converges (for the

standard topology34) within the open disk D<R, one obtains, for all |z| < R

1

1− z
∑
n≥0

Li[S]n(z) =
1

1− z
∑
n≥0

∑
w∈X∗,|w|=n

⟨S | w⟩Liw(z)

=
∑
n≥0

∑
w∈X∗,|w|=n

⟨S | w⟩Liw(z)

1− z

=
∑
n≥0

∑
w∈X∗,|w|=n

⟨S | w⟩
∑
N≥0

HπY (w)(N)zN

(∗)
=

∑
N≥0

∑
n≥0

∑
w∈X∗,|w|=n

⟨S | w⟩HπY (w)(N)zN

=
∑
N≥0

∑
n≥0

HπY ([S]n)(N)zN ,

33With the definition given later (3.49) this amounts to say that

S ∈ C⟨⟨X⟩⟩x1 ⊕ C1X∗ ∩DomR(Li) .

34For this topology, unconditional and absolute convergence coincide [97].
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(∗) being possible because
∑

w∈X∗,|w|=n
is finite. This implies that, for any N ≥ 0,

aN =
∑
n≥0

HπY ([S]n)(N).

To prepare the construction of the “symbolic local germ” around zero, let us set,

in the same manner as in [39],

DomR(Li) := {S ∈ C⟨⟨X⟩⟩x1 ⊕ C1X∗ |
∑
n≥0

Li[S]n is unconditionally convergent in H(D<R)}(3.49)

and prove the following:

Proposition 3.15. With the notations as above, we have:

1. The map given by R 7→ DomR(Li) from ]0, 1] to 2C⟨⟨X⟩⟩ (the target is the set of

subsets35 of C⟨⟨X⟩⟩ ordered by inclusion) is strictly decreasing

2. Each DomR(Li) is a shuffle (unital) subalgebra of C⟨⟨X⟩⟩.

Proof. 1. For 0 < R1 < R2 ≤ 1 it is straightforward that DomR2(Li) ⊂ DomR1(Li).

Let us prove that the inclusion is strict. Take | z |< 1 and let us, be it finite or

infinite, evaluate the sum

M(z) =
∑
n≥0

|Li[S]n(t)(z) |=
∑
n≥0

⟨S(t) | xn1 ⟩ |Lixn1 (z) |

then, by means of Lemma 3.16, with x+1 = x1x
∗
1 = x∗1−1 and S(t) =

∑
m≥0

tm(x+1 )�m,

we have

M(z) =
∑
n≥0

|S(t) | xn1 |Lixn1 (z) |=
∑
n≥0

∑
m≥0

| tm(x+1 )�m | xn1 |Lixn1 (z) |

=
∑
m≥0

m!tm
∑
n≥0

S2(n,m)
|Lix1(z) |n

n!
≤
∑
m≥0

m!tm
∑
n≥0

S2(n,m)
Linx1(|z |)

n!
,

due to the fact that |Lix1(z) |≤ Lix1(|z |) (Taylor series with positive coefficients).

Finally, in view of equation (3.52), we get, on the one hand, for |z |< (t+ 1)−1,

M(z) ≤
∑
m≥0

tm(eLix1 (|z|) − 1)m =
∑
m≥0

tm(
|z |

1− |z |
)m =

1− |z |
1− (t+ 1) |z |

.

35For any set E, the set of its subsets is noted 2E .
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This proves that, for all r ∈]0,
1

t+ 1
[,
∑
n≥0

∥Li[S]n(t)(z)∥r < +∞.

On the other hand, if (t+1)−1 ≤|z |< 1, one has M(|z|) = +∞, and the preceding

calculation shows that, with t choosen such that

0 ≤ 1

R2

− 1 < t <
1

R1

− 1,

we have S(t) ∈ DomR1(Li) but S(t) /∈ DomR2(Li) whence, for 0 < R1 < R2 ≤ 1,

DomR2(Li) ⊊ DomR1(Li).

2. One has (proofs as in [39])

(a) 1X∗ ∈ DomR(Li) (because 1X∗ ∈ C⟨X⟩) and Li1X∗ = 1H(Ω).

(b) Taking S, T ∈ DomR(Li) we have, by absolute convergence, S � T ∈

DomR(Li). It is easily seen that S � T ∈ C⟨⟨X⟩⟩x1 ⊕ C1X∗ and, moreover,

that36

LiS LiT = LiS�T .

The combinatorial Lemma needed in the Theorem 3.18 is the following:

Lemma 3.16. For a letter “a”, one has

〈
(a+)�m|an

〉
= m!S2(n,m), (3.50)

(S2(n,m) being the Stirling numbers of the second kind). The exponential generating

series of R.H.S. in equation (3.50) (w.r.t. n) is given by

∑
n≥0

m!S2(n,m)
xn

n!
= (ex − 1)m. (3.51)

Proof. The expression (a+)�m is the specialization of

Lm = a+1 � a+2 � · · ·� a+m

to aj → a (for all j = 1, 2 · · ·m). The words of Lm are in bijection with the surjections

[1 · · ·n]→ [1 · · ·m], therefore the coefficient ⟨(a+)�m|an⟩ is exactly the number of such

36Proof by absolute convergence as in [39].
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surjections namely m!S2(n,m). A classical formula37 says that∑
n≥0

m!S2(n,m)
xn

n!
= (ex − 1)m. (3.52)

In Theorem 3.18 below, we study, for series taken in C⟨⟨X⟩⟩x1 ⊕ C.1X∗ , the corre-

spondence Li• to some H(D<R), first (point 1) establishes its surjectivity (in a certain

sense) and then (points 2 and 3) examine the relation between summability of the func-

tions and that of their Taylor coefficients. For that, let us begin with a very general

Lemma on sequences of Taylor series which adapts, for our needs, the notion of normal

families as in [85].

Lemma 3.17. Let τ = (an,N)n,N≥0 be a double sequence of complex numbers. Setting

I(τ) := {r ∈]0,+∞[ |
∑
n,N≥0

|an,NrN | < +∞},

one has

1. I(τ) is an interval of ]0,+∞[, it is not empty iff there exists z0 ∈ C \ {0} such

that ∑
n,N≥0

|an,NzN0 | < +∞. (3.53)

In this case, we set R(τ) := sup(I(τ)) > 0 and one has,

(a) For all N , the series
∑
n≥0

an,N converges absolutely (in C). Let us note aN -

with one subscript - its limit.

(b) For all n, the convergence radius of the Taylor series Tn(z) =
∑
N≥0

an,Nz
N is

at least R(τ) and
∑
n∈N

Tn is summable for the standard topology of H(D<R(τ))

with sum T (z) =
∑
N≥0

aNz
N .

2. Conversely, we suppose that there exists R > 0 such that

(a) Each Taylor series Tn(z) =
∑
N≥0

an,Nz
N converges in H(D<R).

37See [100], the twelvefold way, formula (1.94b)(pp. 74) for instance.
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(b) The series
∑
n∈N

Tn converges unconditionnally in H(D<R).

Then I(τ) ̸= ∅ and R(τ) ≥ R.

Proof. 1. The fact that I(τ) ⊂]0,+∞[ is straightforward from the Definition. If

there exists z0 ∈ C \ {0} such that
∑

n,N≥0

|an,NzN0 |< +∞ then, for all r ∈]0, |z0|[,

we have

∑
n,N≥0

|an,NrN |=
∑
n,N≥0

|an,NzN0 |
(

r

|z0 |

)N
≤
∑
n,N≥0

|an,NzN0 | < +∞

in particular I(τ) ̸= ∅ and it is an interval of ]0,+∞[ with lower bound zero.

(a) Take r ∈ I(τ) (hence r ̸= 0) and N ∈ N, then we get the expected result as

rN
∑
n≥0

|an,N |=
∑
n≥0

|an,NrN |≤
∑
n,N≥0

|an,NrN |< +∞.

(b) Again, take any r ∈ I(τ) and n ∈ N, then
∑
N≥0

|an,NrN |< +∞ which proves

that R(Tn) ≥ r, hence the result38. We also have

|
∑
N≥0

aNr
N |≤

∑
N≥0

rN |
∑
n≥0

an,N |≤
∑
n,N≥0

|an,NrN |< +∞

and this proves that R(T ) ≥ r, hence R(T ) ≥ R(τ).

2. Let 0 < r < r1 < R and consider the path γ(t) = r1e
2iπt, by Cauchy’s formula,

we have

|an,N |=|
1

2iπ

∫
γ

Tn(z)

zN+1
dz |≤ 2π

2π

r1∥Tn∥K
rN+1
1

≤ ∥Tn∥K
rN1

with K = γ([0, 2π]), hence

∑
n,N≥0

|an,NrN |≤
∑
n,N≥0

∥Tn∥K(
r

r1
)N ≤ r1

r1 − r
∑
n≥0

∥Tn∥K < +∞.

Remark 3.3. (i) First point says that every function analytic at zero can be repre-

sented around zero as LiS(z) for some S ∈ C⟨⟨x1⟩⟩.
38For a Taylor series T , we note R(T ) the radius of convergence of T .
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(ii) In point 2, the arithmetic functions HπY (S) ∈ QN, for S ∈ DomR(Li) are quickly

defined (and in a way extending the old definition) and we draw a very important

bound saying that, in this condition, for some r > 0 the array
(
HπY ([S]n)(N)rN

)
n,N

converges (then, in particular, horizontally and vertically).

(iii) Point 3 establishes the converse.

Theorem 3.18. 1. Let T (z) =
∑
N≥0

aNz
N be a Taylor series converging on some

non-empty disk centered at zero i.e. such that lim supN→+∞ |aN |
1

N = B < +∞,

then the series

S =
∑
N≥0

aN(−(−x1)+)�N (3.54)

is summable in C⟨⟨X⟩⟩ (with sum in C⟨⟨x1⟩⟩), S ∈ DomR(Li) with R = (B+ 1)−1

and LiS = T .

2. Let S ∈ DomR(Li) and S =
∑
n≥0

[S]n (homogeneous decomposition), we define

N 7−→ HπY (S)(N) by39

LiS(z)

1− z
=
∑
N≥0

HπY (S)(N)zN . (3.55)

Then,

∀r ∈]0, R[,
∑
n,N≥0

|HπY ([S]n)(N)rN |< +∞. (3.56)

In particular, for all N ∈ N, the series (of complex numbers),
∑
n≥0

HπY ([S]n)(N)

converges absolutely to HπY (S)(N).

3. Conversely, let Q ∈ C⟨⟨Y ⟩⟩ with Q =
∑
n≥0

Qn (decomposition by weights), we

suppose that there exists r ∈]0, 1] such that

∑
n,N≥0

|HQn(N)rN |< +∞, (3.57)

39This definition is compatible with the old one when S is a polynomial.
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in particular, for all N ∈ N,
∑
n≥0

HQn(N) = ℓ(N) ∈ C unconditionally (= abso-

lutely) converges (in C). Under such circumstances, S := πX(Q) ∈ Domr(Li)

and, for all z ∈ C such that |z |< r,

LiS(z)

1− z
=
∑
N≥0

ℓ(N)zN . (3.58)

Proof. 1. The fact that the series (3.54) is comes from the fact that

ω(aN(−(−x1)+)�N) ≥ N.

Now from the Lemma 3.16, we get

(S)n =
∑
N≥0

(aN(−(−x1)+)�N)n = (−1)N+naNN !S2(n,N)xn1
∑
N≥0

(−1)N+naNN !S2(n,N)xn1 .

Then, with r = supz∈K |z | (we have indeed r = ||Id||K) and taking into account

that

∥Lix1 ∥K ≤ log(
1

1− r
),

we have

∑
n≥0

∥Li(S)n ∥K ≤
∑
n≥0

∑
N≥0

|aN | N !S2(n,N)∥Lixn1 ∥K

≤
∑
n≥0

∑
N≥0

|aN | N !S2(n,N)
∥Lix1 ∥nK

n!

≤
∑
N≥0

|aN |
∑
n≥0

N !S2(n,N)
∥Lix1 ∥nK

n!

≤
∑
N≥0

|aN | (elog(
1

1−r
) − 1)N

=
∑
N≥0

|aN |
(

r

1− r

)N
.

Now, if we suppose that r ≤ (B + 1)−1, we have r(1− r)−1 ≤ 1

B
and this shows

that the last sum is finite. Moreover, by Lemma 3.16 and Lixn1 =
logn( 1

1−z
)

n!
for all

n ≥ 0, one clearly has LiS = T .

2. This point and next point are consequences of Lemma 3.17. Now, considering

the homogeneous decomposition S =
∑
n≥0

[S]n ∈ DomR(Li). We first establish
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inequation (3.56). Let 0 < r < r1 < R and consider the path γ(t) = r1e
2iπt, we

have

|HπY ([S]n)(N) |=| 1

2iπ

∫
γ

Li[S]n(z)

(1− z)zN+1
dz |≤ 2π

2π

∥Li[S]n ∥K
(1− r1)rN+1

1

,

K = γ([0, 1]) being the circle of center 0 and radius r1. Taking into account that,

for K ⊂compact D<R, we have a decomposition
∑
n∈N
∥Li[S]n ∥K = M < +∞, we get∑

n,N≥0

|HπY ([S]n)(N)rN | =
∑
n,N≥0

|HπY ([S]n)(N)rN1 | (
r

r1
)N

=
∑
N≥0

(
r

r1
)N
∑
n≥0

|HπY ([S]n)(N)rN1 |

≤
∑
N≥0

(
r

r1
)N

M

(1− r1)r1

≤ M

(1− r1)(r1 − r)
< +∞.

The series
∑
n≥0

Li[S]n(z) converges to LiS(z) in H(D<R) (D<R is the open disk

defined by |z| < R). For any N ≥ 0, by Cauchy’s formula, one has,

HπY (S)(N) =
1

2iπ

∫
γ

LiS(z)

(1− z)zN+1
dz

=
1

2iπ

∫
γ

∑
n≥0 Li[S]n(z)

(1− z)zN+1
dz

=
1

2iπ

∑
n≥0

∫
γ

Li[S]n(z)

(1− z)zN+1
dz

=
∑
n≥0

HπY ([S]n)(N)

the exchange of sum and integral being due to the compact convergence. The

absolute convergence comes from the fact that the convergence of
∑
n≥0

Li[S]n(z) is

unconditional [97].

3. Fixing N ∈ N, from inequation (3.57), we get
∑
n≥0

| HQn(N) |< +∞ which

proves the absolute convergence. Remark now that (πX(Q))n = πX(Qn) and

πY (πX(Qn)) = Qn, one has, for all |z |≤ r |z |< r,

|LiπX(Qn)(z) |=|1− z ||
∑
N∈N

HQn(N)zN |≤ 2 |
∑
N∈N

HQn(N)rN | .

Thus, for all K ⊂compact D<r and z ∈ K, we arrive at

|LiπX(Qn)(z) |≤ 2 |
∑
N∈N

HQn(N)rN |,

150



CHAPTER 3. CHARACTERS

in other words,

∥LiπX(Qn) ∥K ≤ 2 |
∑
N∈N

HQn(N)rN |

and

∑
n∈N

∥LiπX(Qn) ∥K ≤ 2 |
∑
n,N∈N

HQn(N)rN |< +∞

which shows that πX(Q) ∈ Domr(Li). The equation (3.58) is a consequence of

point 2, taking S = πX(Q).

Now, we have have a better understanding of what can (and will) be the domain,

Dom(H•), of harmonic sums.

Definition 3.4. We set Domloc(Li) =
⋃

0<R≤1

DomR(Li); Dom(H•) = πY (Domloc(Li))

and, for S ∈ Domloc(Li),

LiS(z) =
∑
n≥0

Li[S]n(z) and
LiS(z)

1− z
=
∑
N≥0

HπY (S)(N)zN .

3.4.4 Applications.

We remark that formula (3.32), i.e.,

Lis1,··· ,sr(z) :=
∑

n1>···>nr>0

zn1

ns11 · · ·nsrr
,

still makes sense for |z| < 1 and (s1, · · · , sr) ∈ Cr so that we will freely use the indexing

list to get index lists with si ∈ Z for any i = 1, · · · , r and r ∈ N+.

Recall that for any s1, · · · , sr ∈ N, we can express Li−s1,··· ,−sr(z) as a polynomial of
1

1− z
with integer coefficients. Then, using (3.47) and (kx1)

∗ = [(x1)
∗]� k, we get

1

(1− z)k
= Li(kx1)∗(z), ∀k ∈ N+

and we obtain a polynomial P ∈ Dom(Li) ∩ C[x∗1] = C[x∗1] such that Li−s1,··· ,−sr = LiP

(see [39]). Using Theorem 3.18, we have

LiP (z)

1− z
=
∑
N≥0

HπY (P )(N)zN .
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This means that we can provide a class of elements of Dom(H•) (as in Definition 3.4)

relative to the set of indices of harmonic sums at negative integer multiindices. Here

are some examples.

Example 3.6. For any |z| < 1, we have

Lix∗1(z) =
1

1− z
; Lix∗1−1X∗ (z) =

z

1− z
= Li0(z) ; Li(2x1)∗−x∗1(z) =

z

(1− z)2
= Li−1(z);

Li(2x1)∗−2x∗1+1X∗ (z) =
z2

(1− z)2
= Li0,0(z);

Li12(5x1)∗−33(4x1)∗+31(3x1)∗−11(2x1)∗+x∗1
(z) =

z4 + 7z3 + 4z2

(1− z)5
= Li−2,−1(z);

Li40(6x1)∗−132(5x1)∗+161(4x1)∗−87(3x1)∗+19(2x1)∗−x∗1(z) =
z5 + 14z4 + 21z3 + 4z2

(1− z)6
= Li−2,−2(z);

Li1260(8x1)∗−5400(7x1)∗+9270(6x1)∗−8070(5x1)∗+3699(4x1)∗−829(3x1)∗+71(2x1)∗−x∗1(z)

=
z7 + 64z6 + 424z5 + 584z4 + 179z3 + 8z2

(1− z)8
= Li−3,−3(z);

Li10(6x1)∗−38(5x1)∗+55(4x1)∗−37(3x1)∗+11(2x1)∗−x∗1(z) =
z5 + 6z4 + 3z3

(1− z)6
= Li−1,0,−2(z);

Li280(8x1)∗−1312(7x1)∗+2497(6x1)∗−2457(5x1)∗+1310(4x1)∗−358(3x1)∗+41(2x1)∗−x∗1(z)

=
z7 + 34z6 + 133z5 + 100z4 + 12z3

(1− z)8
= Li−1,−2,−2(z).

Thus, for any N ∈ N, for readability, below 1 stands for 1X∗

HπY (x∗1)
(N) = N + 1,

HπY (x∗1−1)(N) = N =
N∑
n=1

n0,

HπY ((2x1)∗−x∗1)(N) =
1

2
N2 +

1

2
N =

N∑
n=1

n1;

HπY ((2x1)∗−2x∗1+1)(N) =
1

2
N2 − 1

2
N =

N∑
n1=1

n0
1

n1−1∑
n2=1

n0
2;

HπY (12(5x1)∗−33(4x1)∗+31(3x1)∗−11(2x1)∗+x∗1)
(N) =

1

10
N5 +

1

8
N4 − 1

12
N3 − 1

60
N − 1

8
N2;

HπY (40(6x1)∗−132(5x1)∗+161(4x1)∗−87(3x1)∗+19(2x1)∗−x∗1)(N) =
1

15
N5 +

1

18
N6 − 5

72
N4 +

1

72
N2

+
1

60
N − 1

12
N3 =

N∑
n1=1

n2
1

n1−1∑
n2=1

n2
2;

HπY (10(6x1)∗−38(5x1)∗+55(4x1)∗−37(3x1)∗+11(2x1)∗−x∗1)(N) = − 1

40
N5 +

1

72
N6 − 1

36
N4 +

1

72
N2
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+
1

24
N3 − 1

60
N =

N∑
n1=1

n1
1

n1−1∑
n2=1

n2−1∑
n3=1

n2
3;

HπY (280(8x1)∗−1312(7x1)∗+2497(6x1)∗−2457(5x1)∗+1310(4x1)∗−358(3x1)∗+41(2x1)∗−x∗1)(N) = − 13

1260
N7

+
1

144
N8 − 7

240
N6 +

1

24
N4 − 7

360
N2 +

23

720
N5 +

1

210
N − 19

720
N3 =

N∑
n1=1

n1
1

n1−1∑
n2=1

n2
2

n2−1∑
n3=1

n2
3.

Observe that, from Definition 3.4, Theorem 3.19 will show us that Dom(H•) is a

stuffle subalgebra of C⟨⟨Y ⟩⟩. Let us however remark that some series are not in this

domain as shown below

(i) The series T =
∞∑
n=1

(−1)n−1yn
n
∈ C⟨⟨Y ⟩⟩ is not in Dom(H•) because we see that

its decomposition by weights (T =
∞∑
n=1

Tn as in (3.57)) provides Tn =
(−1)n−1

n
yn

for n ≥ 1 and T0 = 0. Direct calculation gives, for n ≥ 1,

Hyn(N) =
N∑
k=1

1

kn
,

so that we have Hyn(N) ≥ 1,∀n ∈ N+;N ∈ N+, because Hyn(0) = 0, for all

0 < r < 1, one has

∑
n,N

|HTn(N)rN |=
∑
N≥0

∑
n≥1

| 1
n

Hyn(N)rN |≥

(∑
n≥0

1

n

)
r

1− r
= +∞. (3.59)

However one can get unconditional convergence using a sommation by pairs (odd

+ even).

(ii) For all s ∈]1,+∞[, the series T (s) =
∞∑
n=1

(−1)n−1ynn
−s ∈ C⟨⟨Y ⟩⟩ is in Dom(H•).

We can now state the

Theorem 3.19. Let S, T ∈ Domloc(Li), then S�T ∈ Domloc(Li), πX(πY (S) πY (T )) ∈

Domloc(Li) and for all N ≥ 0,

LiS�T = LiS LiT ; Li1X∗ = 1H(Ω), (3.60)

HπY (S) πY (T )(N) = HπY (S)(N)HπY (T )(N). (3.61)

LiS(z)

1− z
⊙ LiT (z)

1− z
=

LiπX(πY (S) πY (T ))(z)

1− z
. (3.62)
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Proof. For equation (3.60), we get, from Proposition 3.15 that Domloc(Li) is the union

of an increasing set of shuffle subalgebras of C⟨⟨X⟩⟩ (the map R→ DomR(Li) is strictly

decreasing). It is therefore a shuffle subalgebra of the latter.

For equation (3.61), suppose S ∈ DomR1(Li) (resp. T ∈ DomR2(Li)). By [59] and

Theorem 3.18 point (3.55), for |z| < R1R2, one has

f(z) :=
LiS(z)

1− z
⊙ LiT (z)

1− z
=
∑
N≥0

HπY (S)(N)HπY (T )(N)zN , (3.63)

where ⊙ stands for the Hadamard product [59]. Now, due to Theorem 3.18 point

(2), for all N ,
∑
p≥0

HπY (Sp)(N) = HπY (S)(N) and
∑
q≥0

HπY (Tq)(N) = HπY (T )(N) (absolute

convergence) then, as the product of two absolutely convergent series is absolutely

convergent (w.r.t. the Cauchy product), one has, for all N ,

HπY (S)(N)HπY (T )(N) =

(∑
p≥0

HπY (Sp)(N)

)(∑
q≥0

HπY (Tq)(N)

)
=

∑
p,q≥0

HπY (Sp)(N)HπY (Tq)(N) =
∑
n≥0

∑
p+q=n

HπY (Sp) πY (Tq)(N)

=
∑
n≥0

H(πY (S) πY (T ))n(N). (3.64)

Remains to prove that condition of Theorem 3.18, i.e. inequation (3.57) is fulfilled.

To this end, we use the well-known fact that if
∑
m≥0

cm z
m has radius of convergence

R > 0, then
∑
m≥0

| cm | zm has the same radius of convergence (use 1/R = lim supm≥1 |

cm |1/m), then from the fact that S ∈ DomR1(Li) (resp. T ∈ DomR2(Li)), we have

(3.56) for each of them and, using the Hadamard product of these expressions, we get

∀r ∈]0, R1.R2[,
∑

p,q,N≥0 |HπY (Sp)(N)HπY (Tq)(N) rN | < +∞,

and this assures, for |z| < R1R2, the convergence of

f(z) =
∑
n,N≥0

H(πY (S) πY (T ))n(N)zN . (3.65)

Applying Theorem 3.18 point (3) to Q = πY (S) πY (T ) (with any r < R1R2), we get

πX(Q) = πX(πY (S) πY (T )) ∈ Domloc(Li) and

f(z) =
∑
N≥0

(∑
n≥0

H(πY (S) πY (T ))n(N)
)
zN =

LiπX(πY (S) πY (T ))(z)

1− z
.

Hence we obtain (3.62) and then (3.61).
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3.4.5 Stuffle products, usage of one-parameter subgroups within

stuffle characters and their symbolic computations.

It is well-known that, a Hopf algebra (H, µ, 1H,∆, ϵ, S) and A ∈ k-CAAU (a k-

commutative and associative algebra with unit), the set Ξ(H,A) := Hom
k-AAU(H,A)

is a group for convolution (and inverse performed through precomposition with S).

When k is a Q-algebra and under the usual condition that the reduced coproduct40

∆+ : H+ → H+ ⊗ H+ is (locally) conilpotent, this group can be considered as a Lie

group (an infinite-dimensional pro-unipotent41 one) with a nice log-exp correspondence.

This feature is used in combinatorial physics [37] and one-parameter groups is a nice

tool to get new combinatorial identities (see [36]) as in the sequel.

For the some reader’s convenience, we recall here the definitions of shuffle and

stuffle products. As regards shuffle, the alphabet X is arbitrary and � is defined by

the following recursion (for x, y ∈ X and u, v ∈ X∗)

u� 1X∗ = 1X∗ � u = u; xu� yv = x(u� yv) + y(xu� v). (3.66)

As regards stuffle, the alphabet is Y = YN+ = {ys}s∈N+ and is defined by the

following recursion

u 1Y ∗ = 1Y ∗ u = u, (3.67)

ysu ytv = ys(u ytv) + yt(ysu v) + ys+t(u v). (3.68)

Be it for stuffle or shuffle, the noncommutative42 polynomials equipped with this prod-

uct form an associative commutative and unital algebra namely (C⟨X⟩,�, 1X∗) (resp.

(C⟨Y ⟩, , 1Y ∗)).

Example 3.7. As examples of characters, we have already seen

• Li• from (Domloc(Li•),�, 1X∗) to H(Ω), where X = {x0, x1}.

40Here, H+ denote the kernel of ϵ and for all x ∈ H = H+ ⊕ k.1H, then ∆+(x − ϵ(x).1H) =

∆(x)− x⊗ 1H − 1H ⊗ x+ ϵ(x).1H ⊗ 1H, see Bourbaki [13] Ch II §1.1.
41In this context, this means that for any element g in this group, the family ((g − 1Ξ)

⋆n)n≥0 is

summable in Ξ(H,A), where 1Ξ = 1A ◦ ϵ denotes the unit element in the group Ξ(H,A).
42For concatenation.
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• H• from (Dom(H•), , 1Y ∗) to CN (arithmetic functions N→ C).

In general, a character from a k-algebra43 (A, ∗1, 1A) with values in (B, ∗2, 1B) is

none other than a morphism between the k-algebras A and a commutative algebra44

B. The algebra (A, ∗1, 1A) does not have to be commutative, for example characters

of (C⟨X⟩, conc, 1X∗) - i.e. conc-characters - can be easily proved to be all of the form(∑
x∈X

αxx

)∗

(3.69)

They are closed under shuffle and stuffle and endowed with these laws, they form

a group. Expressions like the infinite sum within brackets in (3.69) (i.e. homogeneous

series of degree 1) form a vector space noted Ĉ.Y .

As a consequence, given P =
∑
i≥1

αiyi and Q =
∑
j≥1

βjyj, we know in advance that

their stuffle is a conc-character i.e. of the form (
∑
n≥1

cnyn)∗. Examining the effect of

this stuffle on each letter (which suffices), we get the identity(∑
i≥1

αiyi

)∗ (∑
j≥1

βjyj

)∗

=

(∑
i≥1

αiyi +
∑
j≥1

βjyj +
∑
i,j≥1

αiβjyi+j

)∗

(3.70)

This suggests to take an auxiliary variable, say q, and code “the plane” Ĉ.Y , i.e.

expressions like (3.69), in the style of Umbral calculus by

πUmbra
Y :

∑
n≥1

αn q
n 7−→

∑
n≥1

αnyn

which is linear and bijective45 from C+[[q]] to Ĉ.Y .

With this coding at hand and for S, T ∈ C+[[q]], identity (3.70) reads

(πUmbra
Y (S))∗ (πUmbra

Y (T ))∗ = (πUmbra
Y ((1 + S)(1 + T )− 1))∗. (3.71)

This shows that if one sets, for z ∈ C and T ∈ C+[[q]], G(z) = (πUmbra
Y (ezT − 1))∗,

we get a one-parameter stuffle group46 such that every coefficient is polynomial in z.

Differentiating it we get

d

dz
(G(z)) = (πUmbra

Y (T ))G(z) (3.72)

43Here we will use k = Q or C.
44In this context all algebras are associative and unital.
45Its inverse will be naturally noted πUmbra

q .
46i.e. G(z1 + z2) = G(z1) G(z2);G(0) = 1Y ∗ .
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Lie Group G

L(G) (Lie algebra)

H(z0)

H(z)
G(z)

c

H ′(z)

Figure 3.3: A path z → H(z) with left multiplier H ′(z) and the one-parameter group

G(z) with infinitesimal generator c = πUmbra
Y (T ).

and (3.72) with the initial condition G(0) = 1Y ∗ integrates as

G(z) = exp (zπUmbra
Y (T )) (3.73)

where the exponential map for the stuffle product is defined, for any P ∈ C⟨⟨Y ⟩⟩ such

that ⟨P | 1Y ∗⟩ = 0, is defined by

exp (P ) := 1Y ∗ +
P

1!
+
P P

2!
+ · · ·+ P n

n!
+ · · · .

In particular, from (3.73), one gets, for k ≥ 1, the identity,

(zyk)
∗ = exp

(
−
∑
n≥1

ynk
(−z)n

n

)
.
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Chapter 4

Conclusions and future directions

Starting from groups and their associated Lie algebras in semi-direct product form, we

investigated the presented premiages analogs which are precisely Lazard’s elimination

process. This study took place principally within the category k-Lie of Lie algebras

over a ring k where a practical sufficient condition was found in order to recognize,

at first sight, whether the presented structure could be split in semi-direct form. To

this end was developed, successively, the notion of B = ({0, 1},∨)-graded structures

and for iterated such, a larger notion of S-graded structures (Lie and their enveloping

algebras) where (S,+) is a commutative semigroup.

Moreover, conditions on S where investigated in order to transfer the classical

machinery to explicit formulas and the specialized notion of the direct sum and tensor

products for the Hilbert series of any S-graded algebra in finite dimensions, S being an

additive commutative semigroup. Essentially the links with “Condition (D)” (Bourbaki

[10] Ch III § 2.10.), and locally finite semigroups of computer science (Eilenberg [43])

are made precisely. Then, we allow ourselves to examine this definition by Example

2.4 and Example 2.5.

Questions (Q1)1 and (Q2)2 have been reformulated in terms of algebraic structures

and “free functors”, this elusive “free functor” has been completely worked out (source,

1What are the expressions of Lazard elimination (LE) in several categories where there are sort of

semi-direct products?
2Are these universal? (i.e. is every semi-direct product the image of some Lazard eliminations?)

and is LE a free object?
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target and formulas) in the case of the category of Lie k-algebras. This question is

parallel to a similar one with “Free Partially Commutative Structures”[41] for which all

targets of the functor are known3. The (unpublished) resolution of this “free functor”

has been completely worked out and reformulated in Section 1.3. Remains to complete

the same work for LE i.e.

1. Consider “Free looking” elimination formulas (see Table 2.5).

2. Find the correct enrichment for Monoids and Groups (because B-grading works

also for k-AAU, the category of unital associative k-algebras).

3. Find the sources and functors (if possible, the source could be “double sets”, as

for partially commutative structures for which the source is unique whatever the

target category).

The hope is that this technique based on a filtration of the alphabet of generators in

conjunction with an appropriate filtration of the relators could apply to other algebras

coming from combinatorics or geometry. Let us say a word about this last point. For

many fibered spaces (in particular configuration spaces), the fundamental group of the

base space acts on the fibers by automorphisms and then acts on the fundamental

group of the fibers. Then appear natural semi-direct products of groups. In general,

the lower central series (see Chapter 2) goes too fast for transferring these semi-direct

products to Lie algebras by the associated graded algebra mechanism gr (see equation

(2.4)), but other appropriate filtrations are usually considered by Nakamura and Takao

[88] and recently by Sawada [96]. We think that our elimination techniques can ease

the understanding and calculations of these semi-direct products.

3And in which LE plays a crucial tool.

160



Chapter 5

Appendixes

Contents

5.1. Miscellaneous facts. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.1.1. About central extensions. . . . . . . . . . . . . . . . . . . . 162

5.1.2. Factorization of characters. . . . . . . . . . . . . . . . . . . . 162

5.2. Appendix A: Limits and Colimits. . . . . . . . . . . . . . . . . . . 166

5.3. Appendix B: Topological rings, their completions and combinatorics.167

5.3.1. Topological rings. . . . . . . . . . . . . . . . . . . . . . . . . 167

5.3.2. Towards series: the threefold way. . . . . . . . . . . . . . . . 170

5.4. Appendix C: Structures of Bialgebra type. . . . . . . . . . . . . . 173

5.4.1. Gradings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.4.2. Enveloping algebra of S-graded Lie algebras. . . . . . . . . . 174

5.4.3. Iterated smash products and sup-gradings. . . . . . . . . . . 175

5.4.4. Hopf structures of the k-module of noncommutative poly-

nomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.4.5. Zinbiel bialgebra and its dualisation. . . . . . . . . . . . . . 188

5.5. Appendix D: Maple Outputs. . . . . . . . . . . . . . . . . . . . . . 191

5.5.1. Lyndon basis and its dual. . . . . . . . . . . . . . . . . . . . 191

161



5.1. MISCELLANEOUS FACTS.

5.1 Miscellaneous facts.

5.1.1 About central extensions.

We have the following well known result about central extensions

Lemma 5.1. Let

0 g1 g3 g2 0
j

p

s (5.1)

be a split (i.e. ps = Idg2) and central (i.e. j(g1) ⊂ Z(g3) = {x ∈ g3 | [x, g3] = 0})

extension of Lie algebras. Then, if g2 is commutative, so is g3.

Proof. Let x, y ∈ g3. Then, since ps = Idg2 , we have x − s (p (x)) ∈ Ker p = Im j ⊆

Z (g3) , so that [x− s (p (x)) , y] = 0. In other words, [x, y] = [s (p (x)) , y]. Similarly,

we find y − s (p (y)) ∈ Z (g3), thus [s (p (x)) , y − s (p (y))] = 0. In other words,

[s (p (x)) , y] = [s (p (x)) , s (p (y))] (5.2)

= s ([p (x) , p (y)]) (since s is a Lie morphism) (5.3)

= s (0) (since g2 is abelian) . (5.4)

Hence, [x, y] = [s (p (x)) , y] = 0.

5.1.2 Factorization of characters.

This section deals with applications of MRS formula (3.6) to the factorization of char-

acters.

As a result of equations (3.4), we have seen that, a Lie k-algebra (free as a module

and k being a Q-algebra) g together with a totally ordered basis B = (bi)i∈I basis of it

being given1, the space span{Bα}α∈N(I) is a unital ⋆-subalgebra of U∗(g). Let us then

set

U∨(g) := span{Bα}α∈N(I) . (5.5)

We suppose now that

1. g =
⊕

s∈S gs is a S-graded Lie algebra (where S is an additive commutative

semigroup),

1Throughout this paragraph, notations will be those of Section 3.2.
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2. the basis B = (bi)i∈I is S-graded (we set deg(bi) := s for the unique s ∈ S such

that bi ∈ gs),

3. the basis B is graded “in finite ranks” which means that, for all s ∈ S, the set

Is := |{i ∈ I | deg(bi) = s}|

is finite i.e. each gs is a free k-module of finite rank with basis (bi)i∈Is ,

4. the semigroup (S,+) is locally finite.

This case encompasses all free partially commutative Lie algebras and, in particular,

all free Lie algebras (with S = N(X)) and Drinfeld-Kohno Lie algebras (with S =

([2, n + 1],∨) × (N≥1,+) or S = (N≥2,∨) × (N≥1,+)) and many other combinatorial

Lie algebras.

By Appendix 5.4.2 and the assumption that “(S,+) is locally finite”, the universal

enveloping U(g) =
⊕

s∈S⊔{0} Us(g) (see formula (5.23)) is a finitely2 S ⊔ {0}-graded

Hopf algebra. Thus, we can consider U∨(g) as the graded dual of U(g) i.e. U∨(g) =⊕
s∈S⊔{0} U∗

s (g) (for the case when S = (N,+), see Grinberg and Reiner [56] § 1.6).

Then one can check (as an exercise) that

1. the bases {Bα}α∈N(I) of U(g) and {Bα}α∈N(I) of U∨(g) are S ⊔{0}-graded in finite

ranks,

2. one can dualize the S ⊔ {0}-graded Hopf algebra structure of

(U(g), µU , 1U ,∆U , ϵU , SU) (5.6)

by setting

(a) µU∨ = ⋆ (the convolution restricted to U∨(g)),

(b) 1U∨ = ϵU (the counit restricted to U∨(g)),

(c) ∆U∨ : U∨(g)→ U∨(g)⊗ U∨(g) is the dual of µU by

∆U∨(Bα) =
∑

α1,α2∈N(I)

⟨Bα | Bα1Bα2⟩Bα1 ⊗ Bα2 (5.7)

due to the hypotheses about the S-grading one can check (exercise) that

this sum is finitely supported,

2It means that each k-module Us(g) is of finite rank.
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(d) ϵU∨ = δ1 the Dirac evaluation which means that, for f ∈ U∨(g), ϵU∨(f) =

⟨f | 1U⟩,

(e) SU∨(f) =
∑

α∈N(I)⟨f | SU(Bα)⟩Bα again, due to the hypotheses about the

S-grading one can check (exercise) that this sum is finitely supported,

3. with this at hand, one can check that (U∨(g), µU∨ , 1U∨ ,∆U∨ , ϵU∨ , SU∨) is a Hopf

algebra.

Remark 5.1. In the case when g is the free Lie algebra Lk(X) =
⊕

α∈N(X) Lk(X)α

(1.31) (then the enveloping algebra U(g) = (k⟨X⟩, conc, 1X∗ ,∆�, ϵ, SU)) and {Bα}α∈N(I)

is a multihomogeneous basis, we have U∨(g) = (k⟨X⟩,�, 1X∗ ,∆conc, ϵ, SU∨) (due to the

fine grading by S = N(X) (1.27)).

Now we have the following factorization of characters

1. If χ is a k-valued ⋆-character on U∨(g) i.e. χ ∈ Ξ(U∨(g),k), then the opera-

tor χ ⊗ Id is continuous on U∨(g) ⊗ U(g) for the limiting process due to finite

pointwise convergence3 and then extends to U∨(g)⊗̂U(g) i.e. one has a mor-

phism of topological rings χ⊗̂ Id : U∨(g)⊗̂U(g) → (U∨(g))∗. Thus, by denoting

(χ)gen = (χ⊗̂ Id)
(∑

α∈N(I) Bα ⊗ Bα
)
, we deduce that

(χ)gen =
∑
α∈N(I)

χ(Bα)Bα =

↗∏
i∈I

exp(χ(Bei)Bei). (5.8)

2. If χ is a k-valued µU -character on U(g) i.e. χ ∈ Ξ(U(g),k), then the opera-

tor Id⊗χ is continuous on U∨(g) ⊗ U(g) for the limiting process due to finite

poinwise convergence and then extends to U∨(g)⊗̂U(g) i.e. one has a mor-

phism of topological rings Id ⊗̂χ : U∨(g)⊗̂U(g) → U∗(g). Thus, by denoting

(χ)gen = (Id ⊗̂χ)
(∑

α∈N(I) Bα ⊗ Bα
)
, we then have (due to the fact that k is

3By Example 5.3, the pair
(
U∗(g)⊗U(g),Φ,Endk(U(g))

)
is a completion triplet of topological rings.

Then we can consider U∨(g)⊗U(g) as a topological subring of the complete tensor product U∗(g)⊗̂U(g)

or, through the standard embedding, of End(U(g)). As U∗(g)⊗U(g), we remark that U∨(g)⊗U(g) is

also a dense subset of U∗(g)⊗̂U(g), then we can complete the tensor product as U∨(g)⊗̂U(g) which is

equal to U∗(g)⊗̂U(g).
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commutative, its action can be noted on the right)

(χ)gen =
∑
α∈N(I)

Bαχ(Bα) =

↗∏
i∈I

exp(Beiχ(Bei)). (5.9)

On the other hand, it is well known4 that, a Hopf algebra (H, µH, 1H,∆, ϵ, S)5 and a

commutative (associative with unit) algebra (A, µA, 1A) being given (all over the same

commutative ring k), then the set Ξ(H,A) = Hom
k-AAU(H,A) is a group under

convolution (the inverse being performed through precomposition with S, proofs are

essentially the same as for k-valued characters).

If H = U(g) (where the Lie algebra g satisfies all above assumptions), formulas (5.8)

and (5.9) still hold true when χ is a A-valued character, A being a commutative

(associative with unit) algebra.

We must warn the reader that this is no longer the case ifA can be non-commutative

as shows the following counterexample. By Appendix 5.4.4, let us recall the con-

struction of a cocommutative Hopf algebra Hconc(X) = (k⟨X⟩, conc, 1X∗ ,∆�, ϵ) where

X = {a, b} and of a non-commutative algebra (indeed its algebra part) Aconc =

(k⟨X⟩, conc, 1X∗). We then define an algebra morphism f ∈ Ξ(Hconc,Aconc) by the

universal property (1.22) as follows: f(a) = a, f(b) = b. One observes that

• ∆�(a) = a⊗ 1 + 1⊗ a, and ∆�(b) = b⊗ 1 + 1⊗ b, then

• ∆�(ab) = ∆�(a)∆�(b) = ab⊗ 1 + a⊗ b+ b⊗ a+ 1⊗ ab.

Thus, we arrive at

f ⋆ f(a).f ⋆ f(b) = conc ◦(f ⊗ f) ◦∆�(a). conc ◦(f ⊗ f) ◦∆�(b)

=
(
f(a)f(1) + f(1)f(a)

)(
f(b)f(1) + f(1)f(b)

)
= (a+ a)(b+ b) = 4ab

and

f ⋆ f(ab) = conc ◦(f ⊗ f) ◦∆�(ab)

4See e.g. Kassel [67] Ch III §8 Exercise 11.
5The order is always (space, product, unit, coproduct, counit, antipode).
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= f(ab)f(1) + f(a)f(b) + f(b)f(a) + f(1)f(ab)

= ab+ ab+ ba+ ab = 3ab+ ba.

As above, f ⋆f(a).f ⋆f(b) ̸= f ⋆f(ab), therefore f ⋆f is not an algebra homomorphism

i.e. f ⋆ f /∈ Ξ(Hconc,Aconc).

5.2 Appendix A: Limits and Colimits.

In category theory [80, 66], a limit of a diagram6 F : I → C, if exists, is an object

lim
←−
i∈I

Fi or lim←−
I
F for short

in C together with morphisms

ϕi : lim
I
F → Fi

such that

i) for all morphisms α : i→ j in I the triangle

lim←−I F

Fi Fj

ϕi ϕj

Fα

(5.10)

commutes.

ii) moreover, the limit lim←−I F is the (initial) universal object with this property

X

lim←−I F

Fi Fj.

ψi

u

ψj

ϕi ϕj

Fα

(5.11)

Notice that limits (lim←−I F, (ϕi)i∈I) are (if they exist) unique up to isomorphism by the

uniqueness requirement (5.11) of the point (ii) in the above definition.

6i.e. a functor from a small category I to an arbitrary category C. We say that C is a diagram of

the index category I.
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Example 5.1. If an index category I is discrete (resp. a category with two objects

and two parallel morphisms from one object to the other), then a diagram F : I → C

is a family of objects (resp. a pair of parallel morphisms) in C, a limit of the diagram F

is called a product (resp. an equalizer) of these objects (resp. morphisms). Moreover,

a limit of a contravariant functor F : Iop → C, where I is a directed set7 that is

considered as a small category in which the morphisms consist of arrows α : i → j if

and only if i ≤ j, is called an inverse limit of the inverse system ((Fi)i∈I , (Fij)i≤j∈I),

where Fij : Fj → Fi are morphisms in C.

A colimit of a diagram F : I → C is the limit of the opposite diagram F op : Iop →

Cop, where Iop and Cop are the opposite categories of I and C respectively, denoted by

the following

lim
−→
i∈I

Fi or lim−→
I
F.

The coproducts, coequalizers and direct limits are respectively the dual concept of

products, equalizers and inverse limits, they are examples of colimits in category theory.

5.3 Appendix B: Topological rings, their comple-

tions and combinatorics.

5.3.1 Topological rings.

Definition 5.1. A ring R endowed with a topology TR is called a topological ring if

and only if sum and product are continuous operations. Precisely, the following maps

R×R → R, (x, y)→ x+ y and (x, y)→ x.y are continuous.

The topology of a topological ring is uniquely determined by the filter of neigh-

bourhoods of zero B(0) (or a base of it). For conditions on B(0), see [14] Ch III §6.3.

A topological ring (R, TR) is Hausdorff if and only if
⋂

m∈B(0) m = {0} and is said to

7i.e. a poset such that for any elements i, j ∈ I, there exists an element k ∈ I such that i ≤ k and

j ≤ k.
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be complete if every Cauchy net8 converges to a unique limit (this entails in particular

that (R, TR) is Hausdorff).

Topological rings (R, TR) (resp. Hausdorff topological rings, complete topological

rings) and continuous morphisms of rings form categories : TopRng, HausTopRng,

CompHausTopRng.

Let now (R, TR) be a topological ring (i.e. (R, TR) ∈ TopRng) and F be the

inclusion functor CompHausTopRng→ TopRng (“Complete Hausdorff Topological

Rings” to “Topological Rings”), then, we can state

Definition 5.2. Let (R, TR) be a topological ring. A completion of R is any pair

(jR, R̂) such that

1. (R̂, TR̂) ∈ CompHausTopRng

2. and jR ∈ HomTopRng(R, F (R̂))

fulfilling the following property

• for each morphism f ∈ HomTopRng(R, F (S)), there exists a unique morphism

f̂ ∈ HomCompHausTopRng(R̂,S) such that f = F (f̂) ◦ jR.

In other words, (jR, R̂) is a solution of the following universal problem

TopRng CompHausTopRng

(R, TR) (S, TS)

(R̂, TR̂).

F

f

jR
f̂

(5.12)

There are many ways to introduce a completion but in our case, we can use the following

simpler characterization.

Characterization. – Let (R, TR) ∈ HausTopRng, (S, TS) ∈ CompHausTopRng

and i : R → S is a topological embedding (of type HausTopRng), which means that

i is a homeomorphism between R (with the original topology) and i(R) endowed with

the induced topology from S, such that i(R) is dense in S. Then, the pair (F ◦ i,S) is

a completion of R.

8It is a net [102, 110] (xα)α∈A (A is a directed set) such that for all m ∈ B(0) there exists B ∈ A

such that, for all α, β ≥ B, xα − xβ ∈ m (this means that the set {xα}α≥B is m-small).

168



CHAPTER 5. APPENDIXES

Example 5.2. Let us consider k⟨⟨X⟩⟩ (i.e. the k-total algebra of X∗, see 5.3.2) the

associative algebra of formal power series over X (with coefficients in k) and the de-

creasing sequence of ideals

mn := {S ∈ k⟨⟨X⟩⟩ | (∀w ∈ X<n)(⟨S | w⟩ = 0)}.

One can check that the ring k⟨⟨X⟩⟩ is topologized by the filter base B = {mn}n≥0 and

that its topology is defined by the ultrametric distance

d(T, S) = 2−ω(T−S),

where, for each non zero series R,

ω(R) = max
n∈N

(R ∈ mn)

is the length of the shortest words w such that ⟨R | w⟩ ≠ 0 and we set ω(0) = +∞.

With this distance, one can check that the completion of the Hausdorff topological

ring k⟨X⟩ is k⟨⟨X⟩⟩ if and only if X is finite. The reason for this is that the closure

of k⟨X⟩ (for this topology) is the set of series for which each isobaric component is a

polynomial. In other words, writing a series S =
∑

n≥0 Sn where Sn :=
∑

|w|=n⟨S | w⟩w

we have (left as an exercise)

k⟨X⟩ = {S ∈ k⟨⟨X⟩⟩ | (∀n)(Sn ∈ k⟨X⟩)}

This explains, in particular, why the sum of all variables
∑

x∈X x, which is a polynomial

in the case when X is finite, does not even belong to the B-completion of k⟨⟨X⟩⟩ in

the case when X is infinite (see discussion in [113]). In the latter case a finer topology

has to be defined to recover the series as the completion of the polynomials. It is (in

any cases, but when X is infinite, this topology is different) the topology of pointwise

convergence for which a fundamental system of neighbourhoods of zero is given by the

system of two-sided ideals (mF )F⊂finiteX∗

mF = {S ∈ k⟨⟨X⟩⟩ | (∀w ∈ F )(∀u s.t. w ∈ X∗uX∗)(⟨S | u⟩ = 0)} .

Another example which will be in used for finding the generating function of an

endomorphism is the following in particular (Id)gen for enveloping algebras, see Section

3.2).
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Example 5.3. Let M be a free k-module with a fixed basis B = (βi)i∈I . One can show

the following facts

1. The usual morphism Φ : M∗ ⊗M → Endk(M) is into.

2. The image of Φ is closed for composition or, when M is a bialgebra, for convolu-

tion.

3. The image of Φ is dense in Endk(M) endowed with the topology of pointwise

convergence (which is compatible with the ring structure, be it for composition

or, when M is a bialgebra, for convolution).

4. Therefore this topology induces a topological ring structure on M∗ ⊗ M , for

which we can complete the tensor product as M∗⊗̂M and the pair (M∗ ⊗

M,Φ,Endk(M)) is a completion triplet.

5. For any basis B = (βi)i∈I and every f ∈ Endk(M), the family (βi ⊗ f(βi))i∈I

(where (βi)i∈I is the coordinate family) is summable (see [56], Def 1.7.2). Its sum

realises the inverse of Φ, therefore we can state.

6. Φ : M∗⊗̂M → Endk(M) is an isomorphism and the inverse isomorphism of rings

is given by

Φ
−1

(f) =
∑
i∈I

βi ⊗ f(βi) (5.13)

(we recall that (βi)i∈I is the coordinate family of forms defined by ⟨βi | βj⟩ = δij).

7. We will denote Φ
−1

(f) by (f)gen and call it the generating series of f .

5.3.2 Towards series: the threefold way.

Total algebras (i.e. series without topology).

Given k a commutative ring (with unit) and M a multiplicative semigroup which

satisfies “Condition (D)”9 i.e. for all m ∈M the set

D2(m) = {(m1,m2) ∈M ×M |m1m2 = m}
9Bourbaki [10] Ch III § 2.10.
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is finite (for example, M = X∗ where X is a set). Let us define the total semigroup

algebra k[[M ]] 10 which is the k-module of all infinite sums∑
m∈M

αmm

and the convolution product( ∑
m1∈M

αm1m1

)( ∑
m2∈M

βm2m2

)
=
∑
m∈M

 ∑
m1,m2∈M
m1m2=m

αm1βm2

m. (5.14)

Endowed with this product k[[M ]] is a k-AA and a k-AAU when M is a monoid.

Completion by inverse limits.

In the following part, let us consider that R is a ring and B is a filter base of ideals of

R i.e.

(∀m1,m2 ∈ B)(∃m3 ∈ B)(m3 ⊆ m1 ∩m2). (5.15)

Now, due to (5.15) and as a consequence of Prop 2 §1.2 [14], we can define a unique

topology TR on R such that (R, TR) is a topological ring in which B is a fundamental

set of neighborhoods of zero for TR. Assume that the topology TR is Hausdorff i.e.⋂
m∈B m = {0}, then the inverse limit

R̃ = lim←−
m∈B

R /m ⊆
∏
m∈B

R /m

in the category TopRng is a completion R̂ of the Hausdorff topological ring (R, TR).

Case of the total algebras. –

In the preceding case (here 5.3.2), for all m ∈M , we denote the set of factors of M

Fact(m) := {u ∈M |m ∈MuM} ⊂M.

it is straightforward, using “Condition (D)”, that Fact(m) is a finite set and that for

all m1,m2 ∈M

Fact(m1) ∪ Fact(m2) ⊂ Fact(m1m2) (5.16)

then

mm := spank(M \ Fact(m))

10This associative algebra is unital if M admits a unit i.e. M is a monoid.
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is the largest two-sided ideal of the semigroup algebra k[M ] 11 which avoids m (i.e.

J such that m /∈ J). Now, due to (5.16), we can define a unique topology TM on

k[M ] such that (k[M ], TM) is a Hausdorff topological ring in which B = (mm)m∈M is a

fundamental set of neighborhoods of zero for TM (every set of two sided ideals closed by

intersection does that, here finite intersections of elements picked in B, and moreover⋂
m∈M mm = {0}). See also discussion in [109].

Furthermore, we can make explicit the topology of this particular completion as follows,

the total semigroup algebra k[[M ]] (endowed with a topology in which B̂ = (m̂m)m∈M

is a fundamental set of neighborhoods of zero, where

m̂m = {all infinite sums
∑

u∈M\Fact(m)

αuu}

is the largest two-sided ideal of the total semigroup algebra k[[M ]] avoiding m) is the

completion k̂[M ] of the Hausdorff topological semigroup algebra (k[M ], TM).

Classical completion.

As above, assume that that R is a ring and B is a filter base of ideals of R (5.15), we

then arrive to the fact that (R, TR) is a topological ring in which B is a fundamental

set of neighborhoods of zero for TR. In this case, R is said to be linearly topologized

and TR is called a linear topology (see Bourbaki [11] Ch III §4.2).

In particular, if B = {mn}n≥0 where (mn)n≥0 is a decreasing sequence of ideals, then in

this case (decreasing sequence and, moreover, the topology is Hausdorff), setting

d(s, t) = 2−ω(s−t) where ω(r) := max
n∈N

(r ∈ mn) and ω(0) := +∞ (5.17)

(for all r, s, t ∈ R), we can prove that d is an ultrametric distance and the linear

topology TR can be defined by the ultrametric d : R×R → R≥0. In this way, we can

get the completion R̂ of the ultrametric space (R, d). For example when R is the free

associative algebra k⟨X⟩ (with X finite), the completion is k⟨⟨X⟩⟩, see Example 5.2.

11For this algebra, see Clifford and Preston [26].
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5.4 Appendix C: Structures of Bialgebra type.

5.4.1 Gradings.

The idea of a graded set or structure [54] is to combine an algebraic structure with a

(simpler) discrete/combinatorial structure with another one which “follows” the com-

putations within it.

Let A ∈ k-AA and (S,×) be a (commutative or not) semigroup. We will say that

A =
⊕

u∈S Au, [S]-graded as a module, is a S-graded algebra if the usual condition

AuAv ⊂ Auv holds for all u, v ∈ S. A morphism between S-graded algebras φ : A → B

is just a morphism between the underlying algebra structures which preserves the gra-

dation (i.e. for all u ∈ S, φ(Au) ⊂ Bu). We then have the following proposition which

generalizes the similar classical ones for usual (commutative) gradings.

Proposition 5.2. Let J ⊂ A, TFAE

i) J = Ker(φ) for some morphism between S-graded algebras.

ii) J is a two-sided ideal of A which is [S]-graded as a module.

Proof. The proof is mutatis mutandis the same as in classical treatises. We sketch it

there.

(i)=⇒ (ii) being straightforward, remains to prove the converse, now (ii) being assumed,

we consider the canonical surjection s : A → A /J . We set (A /J )u := s(Au) and,

as graded modules, we have

A /J =
⊕
u∈S

(A /J )u =
⊕
u∈S

Au
/
Ju

with Ju = J ∩ Au. So A /J is naturally endowed with a structure such that s is a

morphism of S-graded algebras and Ker(s) = J .

Remark 5.2. The treatment here is very similar to what can be found in Bourbaki

[10] Ch II §11 and [13] Ch II §2.6 save that, for our purpose, we need that a Lie algebra

be graded on a semigroup rather than a monoid. In particular, in [58], one reads the

sentence “If we do not require that the ring have an identity element, semigroups may

replace monoids” shows that additive semigroups of degrees is probably a good working

notion for Lie algebras and their enveloping algebras.
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5.4.2 Enveloping algebra of S-graded Lie algebras.

For this section, the semigroup of degrees of a Lie algebra is commutative (because

it must “follow” antisymmetry). Now, given (S,+) an additive (that is, commutative

and noted additively) semigroup and A = [S] its underlying set, we now pass to the

construction of the enveloping algebra U(g) of a S-graded Lie algebra g =
⊕

s∈S gs by

the following: the tensor algebra inherits a A∗-gradation (see paragraph 5.4.1) from g

in the standard way, for w = [s1] · · · [sn] ∈ A+, we set

Tw(g) = gs1 ⊗ · · · ⊗ gsn (5.18)

and

T1A∗ = T (0)(g) = k.1T (g) (5.19)

then

T (g) =
⊕
w∈A∗

Tw(g). (5.20)

One can check easily that this constitutes a (yet non-commutative) grading as, for all

u, v ∈ A∗,

Tu(g).Tv(g) ⊂ Tuv(g). (5.21)

In the sequel we will use the following regrading lemma.

Lemma 5.3. Let S, T be two semigroups (commutative or not) and φ : S → T be

a morphism of semigroups. Let A =
⊕

s∈S As be a S-graded algebra (associative or

not). We set, for t ∈ T , Aφ,t :=
⊕

φ(s)=t As. Then Aφ,− :=
⊕

t∈T Aφ,t is a T -graded

algebra.

Proof. The proof is left to the reader.

Now, µ : A∗ → S ⊔ {0}, s1 . . . sk 7→ s1 + . . .+ sk, 1A∗ 7→ 0 is a morphism of monoids

(S ⊔{0} is the monoid with neutral 0 constructed from (S,+)), the tensor algebra can

be regraded (through Lemma 5.3) with a S ⊔ {0}-graded structure

T (g) =
⊕

s∈S⊔{0}

Ts(g), where Ts(g) =
⊕
w∈A∗
µ(w)=s

Tw(g). (5.22)

Now, let us consider the ideal J of T (g) which is generated by all elements of the form

a⊗ b− b⊗ a− [a, b] where a, b are homogeneous, say a ∈ gs, b ∈ gt. As [gs, gt] ⊆ gs+t
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(s, t ∈ S), the ideal J is homogeneous with respect to the gradation (5.22). Therefore

the enveloping algebra U(g) = T (g) /J can be equipped with an induced S ⊔ {0}-

gradation

U(g) =
⊕

s∈S⊔{0}

Us(g), where Us(g) = Ts(g)
/
Js . (5.23)

Moreover, it is easily checked that U(g) is a S⊔{0}-graded Hopf algebra i.e. that ∆U , ϵU

and 1U : k→ U(g) and the antipode SU are graded morphisms (k being S⊔{0}-graded

with (k)0 = k and (k)s = {0k} for s ∈ S+ = S \ {0S}).

5.4.3 Iterated smash products and sup-gradings.

In order to formulate a theorem about iterated smash products, we start with (A,<) a

totally ordered alphabet. Let SA := {A,∨} be the corresponding max-semigroup (i.e.

a ∨ b = max{a, b} for all a, b ∈ A) and g =
⊕

a∈A ga a SA-graded Lie algebra (i.e. for

all a, b ∈ A, [ga, gb] ⊆ gmax{a,b}). Let us consider

1. the formal direct sum M =
⊕

a∈A U+(ga) (where U+(ga) is the augmentation

ideal of the universal enveloping algebra U(ga)). In this module, all U+ (ga) has

degree α, i.e. (M)α = U+(ga).

2. the language of strictly increasing words SI(A) ⊂ A∗, formally

SI(A) := {w ∈ A∗ | for all j <|w |, w[j] < w[j + 1]}

where, for a word w and 1 ≤ j ≤|w |, w[j] is the letter of w at place j.

3. the decomposition T (M) =
⊕

w∈A∗ Tw(M)

4. the space TSI(A) :=
⊕

w∈SI(A) Tw(M) where SI(A) ⊂ A∗ is the language of strictly

increasing words

5. the language of (weakly) increasing words WI(A) ⊂ A∗, formally

WI(A) := {w ∈ A∗ | for all 1 ≤ j < |w|, w[j] ≤ w[j + 1]}.
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The following theorem states two things. Firstly that TSI(A) is a section of the natural

morphism T (M)→ U(g) and secondly that rearranging the tensors in increasing form

converges towards the projector on TSI(A) parallel to the kernel of the natural morphism.

To this end, we must define what is “rearranging the tensors” and will use the structure

of paths of computations through appropriate labeled graphs in the spirit of [48]12.

We need the following remark and definitions

Remark 5.3. Given a, b ∈ A with a < b, by using the fact that [ga, gb] ⊂ gb, then

the mapping α : ga → Der(gb), x 7→ (adx : y 7→ [x, y]) is a morphism in k-Lie.

By Example 2.7, one has a left U(ga)-module algebra action ▷ : U(ga) ⊗ U(gb) →

U(gb), x ⊗ y 7→ x ▷ y = αU(x)(y). Due to the proof of Lemma 2.26, the mapping

τ : U(ga)⊗U(gb)→ U(gb)⊗U(ga), x⊗ y 7→
∑

(1)(2) x
(1) ▷ y⊗ x(2) is an algebra cross in

k-Mod. Note that we have

τ(U+(ga)⊗ U+(gb)) ⊂ U+(gb)⊗ U+(ga) + U+(gb)⊗ 1k.

Thus, if we denote τ0 = (Sa⊗Sb)◦τ12◦τ ◦τ12◦(Sb⊗Sa) : U(gb)⊗U(ga)→ U(ga)⊗U(gb),

where τ12 is the standard twist map which interchanges the two factors in the tensor

product and Sa (resp. Sb) is the antipode of the Hopf algebra U(ga) (resp. U(gb)),

then one has

τ0(U+(gb)⊗ U+(ga)) ⊂ U+(ga)⊗ U+(gb) + 1k ⊗ U+(gb).

We now have to build a transition structure similar to what is defined in [101] p.200

Fig 6.4, here the set of states will be infinite.

Definition 5.3. With the preceding notations, we define

The graph of transitions Γtrans

(a) Vertices: All finite sets of words 2(A∗).

(b) Elementary Steps: Their set will be noted ES. These steps are of three types:

First type (Reduction of inversions) α = ({ubav}, φα, {uabv, ubv}) with a < b

and

φα : xu ⊗ xb ⊗ xa ⊗ xv → xu ⊗ τ0(xb ⊗ xa)⊗ xv (5.24)

12For a modern version, see [49].
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where τ0 is the “twist” of the smash product (see Remark 5.3). It can be shown

that

τ0(U+(gb)⊗ U+(ga)) ⊂ U+(ga)⊗ U+(gb) + 1k ⊗ U+(gb) (5.25)

therefore the result of this reduction process belongs to Tuabv(M)⊕ Tubv(M).

Second type (Reduction of powers) α = ({uapv}, φα, {uav}) with p ≥ 2, by

φα : xu ⊗

p factors in U+(ga)︷ ︸︸ ︷
x(1)a ⊗ · · · ⊗ x(p)a ⊗xv → xu ⊗ x(1)a · · · x(p)a︸ ︷︷ ︸

multiplication

⊗xv (5.26)

the result of this reduction process is in Tuav(M).

Third type (Loops) α = ({w}, φα, {w}) for w ∈ SI(A) with φα = IdTw .

All the preceding (linear) maps φα (of first, second and third types) are extended

by 0 outside of their definition domains (Tubav(M) for the first type Tuapv(M) for

the second and Tw(M), w ∈ SI(A) for the third).

Summarizing, all φα belong to End(T (M)).

(c) General arrows i.e. all arrows of Γtrans. Their set is denoted GA. It is the set

of triplets (F1,Φ, F2), with Fi ∈ 2(A∗), Φ ∈ 2(ES) (finite sets of elementary steps)

such that

(a) for all w ∈ F1 exists one and only one elementary step in α ∈ Φ with

t(α) = {w} (its tail).

(b) F2 = ∪α∈Φh(α) (union of their heads).

(d) Tail and Head: For every general arrow α = (F1,Φ, F2), we set t(α) = F1

and h(α) = F2. This definition is extended for elementary arrows by (for α =

(F1, φ, F2)) the same projections (i.e. t(α) = F1 and h(α) = F2).

(e) Composition of Arrows: Composition of (F1,Φ1, F2) and (F2,Φ2, F3) is (F1,Φ2◦

Φ1, F3) where

Φ2 ◦ Φ1 = {pr2(β) ◦ pr2(α) | β ∈ Φ2, α ∈ Φ1, t(β) ⊆ h(α)}.

(f) Paths: A path in Γtrans is a word P = α1 · · ·αn ∈ GA∗ such that, for all j <

|P | (= n), h(αj) = t(αj+1), we classically have t(P ) = t(α1) and h(P ) = h(αn).
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The evaluation of P , Ev(P ) is the composition of all the linear maps of its arrows

i.e. with P = α1 · · ·αn,

Ev(P ) = pr2(αn) ◦ · · · ◦ pr2(α1) (5.27)

Norm: For all w ∈ A∗, we set norm(w) = 3(|w|+Inv(w)) (where Inv(w) =

♯{(i, j)|1 ≤ i < j ≤ |w| and w[i] > w[j]}). This definition is at once extended

to finite subsets of F ⊂ A∗ by norm(F ) =
∑

w∈F norm(w). We remark that,

for all elementary arrow α of the two first types, norm(t(α)) > norm(h(α)) and

equality is got for the third type. Hence, for any general arrow α = (F1,Φ, F2),

norm(t(α)) > norm(h(α)) unless F1 = F2 ⊂ SI(A) in which case we have equality

and all arrows of Φ are of third type.

(g) Aperiodic paths: An aperiodic path is a path whose last arrow has identical

head and tail i.e. αn = (F,Φ, F ), this entails that F ⊂ SI(A) and that all arrows

of Φ are of third type.

(h) Remark. – Conditions (b.i) and (b.ii) above say respectively that there is no

outgoing computation fork (i.e. two different elementary steps) from one w ∈ F1

and that F2 is the image of F1 through the arrows of Φ.

Theorem 5.4. We consider the canonical morphism defined by multiplication of factors

can : T (M)→ U(g) (5.28)

i.e. can : xa1 ⊗ · · · ⊗ xak 7→ xa1 · · ·xak .

Then, with the notations and constructions above, one has

1. Every sufficiently long path in Γtrans with origin F1 is aperiodic and ends with a

subset Fn ⊂ SI(A). More precisely, let F1 be a finite subset of A∗ (i.e. F1 ∈ 2(A∗))

and

N = norm(F1) =
∑
w∈F1

2(Inv(w)+|w|)

(where, again, Inv(w) = ♯{(i, j)|1 ≤ i < j ≤ |w| and w[i] > w[j]}).

We consider a path of Γtrans originating from F1

F1 F2 · · · · · · Fn Fn+1
Φ1 Φ2 Φn−1 Φn (5.29)
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Then, if n > N + 1,

i) This “sufficiently long” path (5.29) is aperiodic.

This entails Fn+1 = Fn ⊂ SI(A) and Φn ⊂ ES3 (where ES3 ⊂ ES is the

set of elementary steps of the third type).

ii) The canonical morphism, can, restricted to TSI(A), is onto and

T (M) = TSI(A) ⊕Ker(can) (5.30)

in other words TSI(A) :=
⊕

w∈SI(A) Tw(M) is a section of can.

2. Let us call proj, the projection on TSI(A) parallel to Ker(can) and, for all F ⊂ A∗,

let us denote by proj|F the restriction proj|⊕w∈FTw(M), then

i) For any chain of tensors (t1, · · · , tn) such that supp(tn) ⊂ SI(A) and such

that, for all 1 ≤ j < n, can(tj) = can(tj+1), we have tn = proj(t1).

ii) The evaluation13 of the path (5.29) is projF1
.

Proof. 1. i) It suffices to remark that, for every step (F,Φ, F ′)

1. either Φ ̸⊂ ES3 and norm(F ′) < norm(F )

2. or Φ ⊂ ES3 and then

(a) F = F ′ ⊂ SI(A)

(b) any further step of the path is a loop.

ii) As, in the preceding preceding point, the steps are preserving can-evaluation i.e.

for any for 1 ≤ j < n, step Fj
Φj

Fj+1 and tensor t ∈
⊕

w∈Fj
Tw(M), we have

can(t) = can(
∑

φ∈Φj
φ(t)), by composition, we get that for the “sufficiently long” path

P =(5.29) and t ∈
⊕

w∈F1
Tw(M), can(t) = can(

∑
φ∈Ev(P ) φ(t)). As Fn ⊂ SI(A), we

can use the following

Lemma 5.5. Let f : M → N be a linear morphism of two modules. We suppose given

(Mi)i∈I a directed family of submodules (of M) such that, setting M∞ :=
⋃
i∈IMi the

submodule of M ,

13See the equation (5.27).
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(a) For all i ∈ I, f |Mi
is injective.

(b) f |M∞ is onto.

Then M = M∞ ⊕Ker(f).

and one gets the result.

2. i) Condition can(tj) = can(tj+1) means that, for every step tj − tj+1 ∈ Ker(can),

then proj(tj) = proj(tj+1). Hence proj(t1) = proj(tn) = tn.

ii) Is a direct consequence of (2.i) above.

Example 5.4. A computation scheme, starting from 3222 with a swap episode followed

by reduction of powers, is as follows (note that last step is aperiodic with F = {23, 3})

3222 2322 2232 2223

322 232 223 23 23

32 23

3 3 3

(5.31)

Remark 5.4. i) Any computation

t1 → t2 → · · · → tn

such that, for all 1 ≤ j < n, tj − tj+1 ∈ Ker(can) and support(tn) ∈ SI(A) gives the

same result (from t1) which is proj(t1).

ii) As a consequence of Theorem 5.4 (1.ii), in case when g admits a A-graded linear

basis (then as a A-graded module, the original theorem is more general), the canonical

morphism can : T (M)→ U(g) preserves a linear basis of the tensor subspace TSI(A) =⊕
w∈SI(A) Tw(M) (recall that SI(A) ⊂ A∗ is the language of strictly increasing words)

to the universal enveloping algebra U(g).

We now pass to the following application of the graded structure (5.23) of S ⊔ {0}-

graded Hopf algebras U(g) in case g being the infinite Drinfeld-Kohno Lie algebra

DKk,∞ (for the definition of this Lie algebra, see Proposition 2.21) and moreover we

have studied that DKk,∞ =
⊕

m≥2 DK
(m)
k,∞ is a (N≥2,∨)-graded Lie algebra over k (see

the formula (2.110)).
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Let us recall that T∞ = {ti,j}1≤i<j<+∞ be a set of non commutative variables and then,

the universal enveloping algebra of the infinite Drinfeld-Kohno Lie algebra is presented

as

U(DKk,∞) = ⟨ T∞ |R[∞] ⟩
k-AAU = k⟨T∞⟩

/
JR[∞]

which is the quotient of the free associative algebra k⟨T∞⟩ modulo the ideal JR[∞]

generated by infinitesimal pure braid relations R[∞] = R1[∞]∪R2[∞]∪R3[∞] (2.107),

where

• R1[∞] : [ti,j, ti,k + tj,k] for 1 ≤ i < j < k < +∞,

• R2[∞] : [ti,j + ti,k, tj,k] for 1 ≤ i < j < k < +∞,

• R3[∞] : [ti,j, tk,l] for 1 ≤ i < j < +∞, 1 ≤ k < l < +∞ and |{i, j, k, l}| = 4.

Definition 5.4. i) We consider the natural projection s∞ : k⟨T∞⟩ → U(DKk,∞) and,

for convenience, for all polynomials P,Q ∈ k⟨T∞⟩, we will denote by P ≡ Q the fact

that s∞(P ) = s∞(Q) i.e. P −Q ∈ JR[∞].

ii) A pair of adjacent letters ti,jtk,l is called an inversion if j > l.

iii) A word of form ti1,j1ti2,j2 . . . tin,jn ∈ T ∗
∞, for n ≥ 0 and 2 ≤ j1 ≤ j2 ≤ . . . ≤ jn

(it means it has no inversion), is called in normal form, and the set of all such words

named Inc(∞).

Due to this definition, we can expand the above relations as follows:

1. R1[∞]: For 1 ≤ i < j < k < +∞,

[ti,j, ti,k + tj,k] ≡ 0

⇐⇒ ti,jti,k − ti,kti,j + ti,jtj,k − tj,kti,j ≡ 0

⇐⇒ ti,kti,j ≡ ti,jti,k + ti,jtj,k − tj,kti,j.

(5.32)
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Observing the positions of the letters on the table

T∞ =

T2 . . . Tj Tj+1 . . . Tk . . .

t1,2 . . . t1,j t1,j+1 . . . t1,k . . .

. . . . . . . . . . . . . . . . . .

. . . ti,j ti,j+1 . . . ti,k . . .

. . . . . . . . . . . . . . .

tj,j+1 . . . tj,k . . .

. . . tj+1,k . . .

we can model the last equality of (5.32) as follows

←−≡−→ +↘ −↖ . (I1)

2. R2[∞]: For 1 ≤ i < j < k < +∞. Similarly as above, we have

[ti,j + ti,k, tj,k] ≡ 0

⇐⇒ ti,jtj,k − tj,kti,j + ti,ktj,k − tj,kti,k ≡ 0

⇐⇒ tj,kti,j ≡ ti,jtj,k + ti,ktj,k − tj,kti,k

(5.33)

and then

↖≡↘ + ↓ − ↑ . (I2)

Replacing (I2) to (I1) we have that

←−≡−→ + ↑ − ↓ . (I ′1)

3. R3[∞]: For the case |{i, j, k, l}| = 4,

[ti,j, tk,l] ≡ 0

⇔ ti,jtk,l ≡ tk,lti,j
(5.34)

we can model as

↖≡↘ or ↙≡↗ . (I3)
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Note that moving↘,↖ between two positions having row-index of this position equal

to column-index of the other position, but↘, ↖ having different indices one by one.

The three modeling equalities (I ′1), (I2) and (I3) help to represent any word in combi-

nation of normal forms. Firstly we have the following lemma.

Lemma 5.6. Let w be a word having inversion ti,jtk,l (i.e. w = w1ti,jtk,lw2 such that

j > l). We can represent this inversion part (only the inverted factor) by a combination

of normal forms.

Proof. In this case k < l < j. We then have the following cases.

• If |{i, j, k, l}| = 4, by (I3) we have w ≡ w1tk,lti,jw2.

• If |{i, j, k, l}| = 3, it is one in the two subcases:

– if i = k, it means w = w1ti,jti,lw2. By (I ′1) we have w ≡ w1ti,lti,jw2 +

w1tl,jti,jw2 − w1ti,jtl,jw2.

– if i = l, it means w = w1ti,jtk,iw2. By (I2) (note that k < i < j) we have

w ≡ w1tk,iti,jw2 + w1tk,jti,jw2 − w1ti,jtk,jw2.

We have the following simple examples.

Example 5.5. i) For w = t1,3t1,2t2,5t3,4 ∈ T ∗
∞, then

w ≡
inversion︷ ︸︸ ︷
t1,3t1,2 t2,5t3,4

I′1≡ (t1,2t1,3 + t2,3t1,3 − t1,3t2,3)t2,5t3,4

≡ t1,2t1,3

inversion︷ ︸︸ ︷
t2,5t3,4 +t2,3t1,3

inversion︷ ︸︸ ︷
t2,5t3,4 −t1,3t2,3

inversion︷ ︸︸ ︷
t2,5t3,4

I3≡ t1,2t1,3t3,4t2,5 + t2,3t1,3t3,4t2,5 − t1,3t2,3t3,4t2,5.

ii) For w = t2,3t1,2t2,5t3,4 ∈ T ∗
∞, then

w =

inversion︷ ︸︸ ︷
t2,3t1,2 t2,5t3,4

(I2)≡ (t1,2t2,3 + t1,3t2,3 − t2,3t1,3)t2,5t3,4
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= t1,2t2,3

inversion︷ ︸︸ ︷
t2,5t3,4 +t1,3t2,3

inversion︷ ︸︸ ︷
t2,5t3,4 −t2,3t1,3

inversion︷ ︸︸ ︷
t2,5t3,4

(I3)≡ t1,2t2,3t3,4t2,5 + t1,3t2,3t3,4t2,5 − t2,3t1,3t3,4t2,5.

Note that Lemma 5.6 can be used to remove an inversion between some two suc-

cessive positions of a word w over T∞ but, sometimes solving this inversion can make a

new inversion, however this procedure terminates. In fact, at this stage we are going to

study a linear basis in the universal enveloping algebra of the infinite Drinfeld-Kohno

Lie algebra DKk,∞.

Proposition 5.7. The image of the set of normal forms, s∞(Inc(∞)), is a k-linear

basis of the associative k-algebra U(DKk,∞).

Proof. This proposition is a direct application of Remark 5.4 (ii) to the alphabet A =

N≥2 and the (N≥2,∨)-graded Lie algebra DKk,∞ =
⊕

m≥2 DK
(m)
k,∞ (2.110) (we remark

that each augmentation ideal U+(DK
(m)
k,∞) ∼= k+⟨Tm⟩ in k-AA).

We now arrive to write an algorithm to implement that any element w = ti1,j1 . . . tin,jn

of T ∗
∞ can be expressed as a linear combination of normal forms as follows.

Algorithm 1 Algorithm represents a word in form of combination of words in

s∞(Inc(∞))

Input: A word w = ti1,j1 . . . tin−1,jn−1tin,jn ∈ T ∗
∞

Output: Representation of w by combination of elements in s∞(Inc(∞))

Assign C := w = t1 . . . tn (re-indexed for more simplicity)

for k form 2 to n do

m=k

for u in C do

while m > 1 and tm−1tm is an inversion do

Dispose the two letters due to (I ′1), (I2) and (I3) and then update to C

m := m− 1

end while

end for

end for
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Example 5.6. The following are obtained by program Algorithm 1 on Maple :

t1,3t1,3t1,3t1,2t1,2 ≡ − 2t1,2t1,3t1,3t1,3t2,3 − 2t2,3t1,3t1,3t1,3t2,3

+ t1,3t1,3t1,3t2,3t2,3 − t1,3t1,3t1,3t1,3t2,3

+ t1,3t1,3t1,3t2,3t1,3 + 2t1,2t2,3t1,3t1,3t1,3

+ t1,3t2,3t1,3t1,3t1,3 − t2,3t1,3t1,3t1,3t1,3

+ t2,3t2,3t1,3t1,3t1,3 + t1,2t1,2t1,3t1,3t1,3;

t4,6t7,9t6,7t3,6t8,9 ≡ − t4,6t6,7t3,7t7,9t8,9 + t4,6t3,7t6,7t7,9t8,9 + t4,6t3,6t6,7t7,9t8,9

− t4,6t6,9t3,9t7,9t8,9 + t4,6t3,9t6,9t7,9t8,9 + t4,6t3,6t6,9t7,9t8,9

+ t4,6t7,9t6,9t3,9t8,9 − t4,6t7,9t3,9t6,9t8,9 − t4,6t3,6t7,9t6,9t8,9.

5.4.4 Hopf structures of the k-module of noncommutative poly-

nomials.

We first review in [94] §1.5 that the k-module k⟨X⟩ of the noncommutative polyno-

mials has two natural graded Hopf algebra structures which are dual to each other (in

the graded sense).

The first one is Hconc(X) = (k⟨X⟩, conc, 1X∗ ,∆�, ϵ), where the cocommutative

coproduct ∆� (so called the co-shuffle coproduct) defined as

∆� : k⟨X⟩ → k⟨X⟩ ⊗ k⟨X⟩ (5.35)

which is a unique algebra homomorphism for which the words x ∈ X, are primitive

elements

∆�(x) = x⊗ 1X∗ + 1X∗ ⊗ x. (5.36)

More precisely, for any polynomial T ,

∆�(T ) =
∑

u,v∈X∗
⟨T | u� v⟩u⊗ v.

The counit ϵ : k⟨X⟩ → k is given by ϵ(T ) = ⟨T | 1X∗⟩ for all polynomials T . The

antipode S : k⟨X⟩ → k⟨X⟩ is the k-linear map defined, over words w ∈ X∗, by
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S(w) = (−1)|w|w̃, where w̃ reverses the order of letters in the word w.

We now state to the following remarks

Remark 5.5. i) We recall that the universal enveloping algebra of a Lie k-algebra

g is a pair (σ,U(g)), where U(g) is an object in k-AAU and σ : g → U(g) is a

morphism in k-Lie, which is a solution of the following universal problem:

k-Lie k-AAU

g A

U(g).

F

f

σ f̂

(5.37)

This arises that there exists the universal enveloping functor

U : k-Lie→ k-AAU, g 7−→ U(g) (5.38)

which is a left-adjoint to the Liezation functor F .

ii) We also recall a noncommutative cocommutative Hopf structure of the enveloping

algebra U(g) of a Lie k-algebra g. We construct a Lie algebra morphism

δ : g→ U(g)⊗ U(g)

by the formula

δ(x) = x⊗ 1k + 1k ⊗ x, (5.39)

for any x ∈ g. By the universal property (5.37), δ extends to a unique algebra

homomorphism

∆U : U(g)→ U(g)⊗ U(g). (5.40)

Moreover, there exists a k-linear map (called the antipode) SU : U(g) → U(g)

characterized by SU(x) = −x for any x ∈ g, and an algebra homomorphism (that

is the counit) ϵU : U(g)→ U(0) = k induced from the projection g→ 0 (where 0

is the trivial Lie algebra). The reader can easily verify that (U(g), µU , 1k,∆U , ϵU)

satisfying the axioms of a Hopf algebra.
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Remark 5.6. With the notations mentioned as above, we have

i) In a general Hopf algebra H with the coproduct ∆H, we call an element a ∈ H

is primitive if ∆H(a) = a ⊗ 1H + 1H ⊗ a. The set of all primitive elements in

H forms a Lie algebra (with a usual Lie bracket [x, y] = xy − yx) denoted by

PrimH.

ii) In the case H = U(g) the universal enveloping algebra of a Lie k-algebra g, by the

above Hopf structure of U(g) one observes that any element in g is primitive i.e.

g ⊆ PrimU(g) (and coincides if k is a field of characteristic zero, cf. Bourbaki

[13] Ch II §1.5 Corollary to Prop 9 or Cartier [21] Thm 3.6.1).

iii) Let us consider now from the first part of Subsection 1.2.5, it provides that the

free Lie algebra Lk(X) is the Lie subalgebra of k⟨X⟩ generated by X. Together

with its canonical map j : Lk(X) ↪→ k⟨X⟩, it is not hard to see that the pair

(j,k⟨X⟩) is a solution of the universal problem (5.37) in the above remark. We

thus deduce that the free associative algebra k⟨X⟩ is the universal enveloping

algebra U(Lk(X)) of the free Lie algebra Lk(X), these algebras are inherited the

same Hopf structure Hconc(X) = (k⟨X⟩, conc, 1X∗ ,∆�, ϵ) (cf. Bourbaki [13] Ch

II §3.1 Cor 1). Then, it is used to obtain the embedding Lk(X) ⊆ PrimHconc(X)

(they are equal if k is a field of characteristic zero, cf. Bourbaki [13] Ch II §3.1

Cor 2).

The second Hopf algebra structure will be the graded dual of Hconc(X), namely

H�(X) = (k⟨X⟩,�, 1X∗ ,∆conc, ϵ). That is a commutative graded Hopf algeba with

the shuffle product and the deconcatenation coproduct ∆conc : k⟨X⟩ → k⟨X⟩ ⊗ k⟨X⟩

given by, over the words w ∈ X∗,

∆conc(w) =
∑
w=uv

u⊗ v. (5.41)

More precisely, for any polynomial T , we can write

∆conc(T ) =
∑

u,v∈X∗
⟨T | uv⟩u⊗ v.

The counit and the antipode are respectively given by ϵ and S as previously.
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5.4.5 Zinbiel bialgebra and its dualisation.

According to [18], Burgunder constructed completely Zinbiel bialgebras and its du-

alisation in case the left (≺) Zinbiel product. In view of later developments, we will

similarly study the fundamental results of Burgunder’s framework in case the right (≻)

Zinbiel product with these notations translate into x ≺ y := y ≻ x.

We recall in Definition 3.2 that a k-module A over k a unital commutative ring

equipped with a bilinear map ≻ is called (right) Zinbiel algebra (or dual Leibniz alge-

bra) if it satisfies the identity

x ≻ (y ≻ z) = (x ≻ y) ≻ z + (y ≻ x) ≻ z, for all x, y, z ∈ A. (5.42)

The behavior of ≻ with respect to the unit 1A ∈ A is given by (for any 1A ̸= x ∈ A)

1A ≻ x = x, x ≻ 1A = 0 and 1A ≻ 1A is not define. The corresponding algebra

(A, ∗, 1A) is the unital commutative associative algebra obtained by the symmetrized

product

x ∗ y = x ≻ y + y ≻ x. (5.43)

The tensor product of a Zinbiel algebra (A,≻) with itself will be a Zinbiel algebra

equipped with following Zinbiel structure:

≻ : (A⊗k A)⊗ (A⊗k A)→ A⊗k A, (5.44)

where (x1⊗k x2) ≻ (y1⊗k y2) = (x1 ≻ y1)⊗k (x2 ∗ y2). In particular, for unital setting,

(1A ⊗k x) ≻ (1A ⊗k y) := 1A ⊗k (x ≻ y).

Definition 5.5. In the unital frame work, an Asc-Zinb-bialgebra, or a Zinbiel bialgebra

is a (right) Zinbiel algebra with unit (Z,≻, 1Z) endowed with a structure of (counitary

coassociative) coalgebra ∆ : Z → Z ⊗k Z, e : Z → k, whose compatibility relation is

unital semi-Hopf

∆(x ≻ y) = ∆(x) ≻ ∆(y).

More precisely,

∆(x) ≻ ∆(y) = (x(1) ⊗k x
(2)) ≻ (y(1) ⊗k y

(2))
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= (x(1) ≻ y(1))⊗k (x(2) ∗ y(2)),

here we used a shorthand Sweedler’s notation ∆(x) =
∑

(1)(2) x
(1)⊗k x

(2) ≡ x(1)⊗k x
(2),

for any x ∈ Z (this is similar to Einstein’s summation convention in mathematical

physics, where the dummy summation index (1)(2) is dropped).

Example 5.7. Z r
�

(X) := (k⟨X⟩,
r
�, 1X∗ ,∆conc, ϵ) is a Zinbiel bialgebra, where the

coproduct ∆conc and the counit ϵ were studied in Appendix 5.4.4 above and the unital

semi-Hopf relation ∆conc(x
r
� y) = ∆conc(x)

r
� ∆conc(y).

We now study a dualisation of the above Zinbiel bialgebra.

Definition 5.6. A (right) Zinbiel coalgebra is a k-module C equipped with a cooper-

ation

∆≻ : C → C ⊗ C

satisfying

(Id⊗∆≻) ◦∆≻ = (∆≻ ⊗ Id) ◦∆≻ + (τ∆≻ ⊗ Id) ◦∆≻,

here τ : C ⊗ C → C ⊗ C is the standard twist map which interchanges the two factors.

A (right) Zinbiel coalgebra is said to be counital if it admits a linear map e : C → k

which satisfies

(e⊗ Id) ◦∆≻ = Id,

(Id⊗e) ◦∆≻ = 0,

note that (e⊗ e) ◦∆≻ is not define. This notion is dual to the notion of (right) Zinbiel

algebra in Definition 3.2. Moreover, the cooperation ∆∗ := τ∆≻ + ∆≻ : C → C ⊗ C is

coassociative cocommutative and counital.

Definition 5.7. In the counital frame work, a Zinbc-As-bialgebra is a unital associative

algebra (Z, µ, 1Z) endowed with a structure of a counital (right) Zinbiel coalgebra

(Z,∆≻, e) verifying the following compatible relation

∆≻ ◦ µ = (µ⊗ µ) ◦ (Id⊗τ ⊗ Id) ◦ (∆∗ ⊗∆≻).
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Let us consider the co-half-shuffle coproduct ∆ r
�

: k⟨X⟩ → k⟨X⟩ ⊗ k⟨X⟩ which is

a k-linear map defined over words as follows

∆ r
�

(1X∗) = 1X∗ ⊗ 1X∗ ,

∆ r
�

(x) = 1X∗ ⊗ x, x ∈ X,

∆ r
�

(x1x2) = (x1 ⊗ 1X∗ + 1X∗ ⊗ x1)(1⊗ x2), x1, x2 ∈ X,

· · ·

∆ r
�

(x1 · · · xn) = ∆�(x1 · · ·xn−1)∆ r
�

(xn), x1 · · ·xn ∈ X∗,

or, equivalently, for each polynomial T such that ⟨T | 1X∗⟩ = 0, then

∆ r
�

(T ) =
∑

u,v∈X∗
⟨T | u

r
� v⟩u⊗ v, (5.45)

here we used the notation ⟨w | 1X∗
r
� 1X∗⟩ = 0 for any non empty word w.

Example 5.8. We have the following

i) It is easy to verify that (Id⊗∆ r
�

) ◦∆ r
�

= (∆ r
�
⊗ Id) ◦∆ r

�
+ (τ∆ r

�
⊗ Id) ◦∆ r

�
and

(ϵ⊗ Id) ◦∆ r
�

= Id,

(Id⊗ϵ) ◦∆ r
�

= 0.

Thus, (k⟨X⟩,∆ r
�
, ϵ) is a counital (right) Zinbiel coalgebra. Furthermore, the

cooperation ∆∗ = τ∆ r
�

+ ∆ r
�

= ∆�.

ii) The k-module k⟨X⟩ of noncommutative polynomials on X has two natural gen-

eralized graded bialgebra type structures which are dual to each other (in the

graded sense). The first one is the Zinbiel bialgebra (or Asc-Zinb-bialgebra)

Z r
�

(X) = (k⟨X⟩,
r
�, 1X∗ ,∆conc, ϵ) discussed in Example 5.7, and its graded dual

is a Zinbc-As-bialgebra Zconc(X) := (k⟨X⟩, conc, 1X∗ ,∆ r
�
, ϵ), where the co-half-

shuffle ∆ r
�

satisfies the compatible relation

∆ r
�
◦ conc = (conc⊗ conc) ◦ (Id⊗τ ⊗ Id) ◦ (∆� ⊗∆ r

�
),

i.e. for any polynomials T, P then ∆ r
�

(TP ) = ∆�(T )∆ r
�

(P ).
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5.5 Appendix D: Maple Outputs.

5.5.1 Lyndon basis and its dual.

Table of families {Pw}w∈X∗ (Lyndon basis) and its dual {Sw}w∈X∗ .
Let X = {x0, x1} with x0 < x1.

l Pl Sl

x0 x0 x0

x1 x1 x1

x0x1 [x0, x1] x0x1

x20x1 [x0, [x0, x1]] x20x1

x0x
2
1 [[x0, x1], x1] x0x

2
1

x30x1 [x0, [x0, [x0, x1]]] x30x1

x20x
2
1 [x0, [[x0, x1], x1]] x20x

2
1

x0x
3
1 [[[x0, x1], x1], x1] x0x

3
1

x40x1 [x0, [x0, [x0, [x0, x1]]]] x40x1

x30x
2
1 [x0, [x0, [[x0, x1], x1]]] x30x

2
1

x20x1x0x1 [[x0, [x0, x1]], [x0, x1]] 2x30x
2
1 + x20x1x0x1

x20x
3
1 [x0, [[[x0, x1], x1], x1]] x20x

3
1

x0x1x0x
2
1 [[x0, x1], [[x0, x1], x1]] 3x20x

3
1 + x0x1x0x

2
1

x0x
4
1 [[[[x0, x1], x1], x1], x1] x0x

4
1

x50x1 [x0, [x0, [x0, [x0, [x0, x1]]]]] x50x1

x40x
2
1 [x0, [x0, [x0, [[x0, x1], x1]]]] x40x

2
1

x30x1x0x1 [x0, [[x0, [x0, x1]], [x0, x1]]] 2x40x
2
1 + x30x1x0x1

x30x
3
1 [x0, [x0, [[[x0, x1], x1], x1]]] x30x

3
1

x20x1x0x
2
1 [x0, [[x0, x1], [[x0, x1], x1]]] 3x30x

3
1 + x20x1x0x

2
1

x20x
2
1x0x1 [[x0, [[x0, x1], x1]], [x0, x1]] 6x30x

3
1 + 3x20x1x0x

2
1 + x20x

2
1x0x1

x20x
4
1 [x0, [[[[x0, x1], x1], x1], x1]] x20x

4
1

x0x1x0x
3
1 [[x0, x1], [[[x0, x1], x1], x1]] 4x20x

4
1 + x0x1x0x

3
1

x0x
5
1 [[[[[x0, x1], x1], x1], x1], x1] x0x

5
1
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