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Abstract en Français

Dans cette thèse, nous présentons un modèle mathématique à événements discrets
pour les lignes de transport en commun qui fonctionnent avec des missions semi-
directes et pour les lignes comportant une fourche. Le modèle est basé sur le système
de signalisation utilisé dans le métro de Paris. La ligne est divisée en segments corre-
spondant aux cantons réels de la ligne. La dynamique des trains dans notre modèle
est basée sur deux contraintes qui ont été développées dans des études précédentes
[23, 58]. La première contrainte établit une limite inférieure pour les temps de trajet
et d’arrêt des trains. La deuxième contrainte fixe un temps de séparation minimum
entre les trains successifs pour éviter tout risque de collision. Dans la mesure du pos-
sible, nous formulons les modèles de manière linéaire en utilisant l’algèbre max-plus.
Cette algèbre nous permet de dériver des diagrammes de phase (ou diagrammes
fondamentaux) de manière analytique et d’interpréter la physiques du trafic.

Dans le Chapter 3, basé sur le travail de [23], nous développons deux modèles
pour des missions semi-directes. Nous désignons des stations spécifiques prédéter-
minées où nous imposons qu’un train sur deux saute ces stations pour augmenter
sa vitesse. Le premier modèle restreint garantit que chaque origine-destination peut
être atteinte sans que les passagers aient besoin de changer de train sur la ligne.
Dans le deuxième modèle, nous relâchons cette contrainte et le modèle non restreint
exige seulement qu’un train s’arrêtant à une station pouvant être sautée soit suivi
d’un train qui saute cette station. À l’aide de simulations numériques, nous étudions
l’état stationnaire de la dynamique des trains. Nos résultats sont représentés dans
des diagrammes fondamentaux qui illustrent la fréquence de la ligne avec et sans
la politique de sauts en fonction du nombre de trains en circulation. Nous com-
parons ces fréquences, évaluons les avantages potentiels pour l’opérateur, analysons
les temps de trajet des passagers et calculons les économies ou les pertes résultantes
qu’ils peuvent connaître.

Dans les chapitres 4 et A, nous étendons notre modèle développé dans le chapitre
précédent pour incorporer, en tant qu’entrée du modèle, les missions définis par
l’opérateur (c’est-à-dire les stations où un train s’arrêtera et celles qu’il doit sauter).
De plus, en adaptant notre modèle, nous montrons qu’il peut être écrit de manière
linéaire dans l’algèbre max-plus. Grâce à la formulation algébrique, nous carac-
térisons les conditions sous lesquelles la dynamique des trains admet un régime
stationnaire et montrons que le taux de croissance moyen asymptotique de la dy-
namique des trains coïncide avec l’unique valeur propre max-plus de la matrice
décrivant la dynamique des trains. Le taux de croissance moyen asymptotique de la
dynamique des trains est interprété ici comme l’intervalle moyen asymptotique des
trains. Nous appliquons notre modèle à la ligne 1 du métro parisien et en dérivons
analytiquement son diagramme de phase. Nous démontrons l’existence de trois
phases distinctes : écoulement libre, capacité et congestion. Nous montrons égale-
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ment que la phase d’écoulement libre est linéaire par morceaux : lorsque le nombre
de trains devient important, les trains interagissent, limitant l’augmentation de la
fréquence des trains. Nous analysons également l’impact du choix des stations pou-
vant être sautées, en tenant compte de leur nombre ou des schémas d’arrêt définis
par l’opérateur.

Le chapitre précédent modélise principalement la perspective de l’opérateur con-
cernant la politique de sauts. Le Chapter 5, en incluant les taux d’arrivée des
passagers aux stations et leurs origines-destinations, permet une mesure précise de
l’impact de la politique de sauts sur les passagers. Nous construisons un modèle
pour les temps d’arrêt des trains basé sur la demande et les missions définis par
l’opérateur. De la même manière que dans le chapitre précédent, nous démontrons
que le modèle peut être formulé de manière linéaire en utilisant l’algèbre max-plus.
Nous établissons l’existence d’un état stationnaire pour la dynamique des trains et
montrons que le taux de croissance moyen de la dynamique des trains correspond
à l’intervalle moyen des trains. Par conséquent, nous pouvons construire un dia-
gramme de phase pour la ligne en fonction de la demande des passagers. Nous
analysons initialement l’effet de la variation du niveau de demande pour un profil
de demande fixe. Ensuite, nous comparons deux profils de demande et évaluons les
circonstances dans lesquelles la mise en œuvre d’une politique de sauts bénéficie aux
passagers.

Enfin, dans le Chapter 6, nous nous concentrons sur une ligne comportant un
croisement. Une gestion efficace de la convergence de la ligne est essentielle pour
assurer un écoulement fluide du trafic sur de telles lignes. À partir des résultats de
[58], nous adaptons le modèle pour incorporer un changement dans l’ordre de pas-
sage des trains au niveau de la fusion de la ligne. Actuellement, une règle de type
un-sur-deux est utilisée et a été précédemment modélisée pour la divergence et la
convergence de la ligne. Nous modifions le modèle pour mettre en œuvre une règle
de type "premier arrivé, premier sorti" (FIFO) au niveau de la convergence, perme-
ttant au premier train arrivé d’entrer dans la section centrale. De manière similaire
au Chapter 3, nous utilisons des simulations numériques pour obtenir nos résultats.
Initialement, nous construisons le diagramme fondamental de la ligne à l’état sta-
tionnaire de la dynamique des trains. Ensuite, avec deux perturbations potentielles
sur la ligne, nous étudions comment le changement de règle à la convergence aide à
atténuer l’impact de ces perturbations.
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Abstract in English

In this thesis, we present a discrete event mathematical model for mass-transit lines
that operate with a skip-stop policy and for lines with a junction. The model
is based on the signaling system used in the Paris metro. The line is divided into
segments corresponding to the line’s actual blocks. The train dynamics in our model
are based on two constraints, which have been developed in previous studies [23,
58]. The first constraint establishes a lower bound on the trains’ run and station
dwell times. The second constraint sets a minimum safe separation time between
successive trains to prevent any risk of collision. Whenever possible, we formulate
the models linearly using max-plus algebra. This algebra enables us to derive phase
diagrams (or fundamental diagrams) analytically and interpret the principles of the
physics of traffic.

In Chapter 3, based on the work in [23], we develop two models for a skip-
stop policy. We designate specific predetermined stations where we impose that
every other train skips these stations to increase their speed. The first restricted
model ensures that each origin-destination pair can be reached without passengers
needing to transfer on the line. In the second model, we relax this constraint, and
the unrestricted model only requires that a train stopping at a skippable station is
followed by a train that skips this station. Through numerical simulations, we study
the steady state of the train dynamics. Our findings are represented in fundamental
diagrams that illustrate the line’s frequency with and without the skip-stop policy
as a function of the number of running trains. We compare these frequencies, assess
potential benefits for the operator, analyze passenger travel times, and calculate the
resulting savings or losses they may experience.

In Chapter 4 and Appendix A, we extend our model developed in the previous
chapter to incorporate, as input to the model, the services defined by the operator
(i.e., the stations where a train will stop and those it must skip). Furthermore, by
adapting our model, we show that it can be linearly written in the max-plus algebra.
Thanks to the algebraic formulation, we characterize the conditions under which
the train dynamics admit a stationary regime and show that the asymptotic average
growth rate of the train dynamics coincides with the unique max-plus eigenvalue of
the matrix describing the train dynamics. The asymptotic average growth rate of the
train dynamics is interpreted here as the asymptotic average train time headway. We
apply our model to Paris metro Line 1 and analytically derive its phase diagram.
We demonstrate the existence of three distinct phases: free flow, capacity, and
congestion. We also show that the free-flow phase is piecewise linear: when the
number of trains becomes significant, trains interact, limiting the increase of the
train’s frequency. We also analyze the impact of the choice of skippable stations,
considering their number or the stopping patterns defined by the operator.

The previous chapter primarily models the operator’s perspective regarding the
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skip-stop policy. Chapter 5, by including passenger arrival rates at stations and
their origin-destinations, allows for a precise measurement of the impact of the skip-
stop policy on passengers. We construct a model for train dwell times based on the
demand and the services defined by the operator. Similar to the previous chapter,
we demonstrate that the model can be linearly formulated using max-plus algebra.
We establish the existence of a steady state for the train dynamics and show that
the average growth rate of the train dynamics corresponds to the average train time
headway. Consequently, we can construct a phase diagram for the line as a function
of the passenger demand. Initially, we analyze the effect of varying the demand
level for a fixed demand profile. Subsequently, we compare two demand profiles
and assess the circumstances under which the implementation of a skip-stop policy
benefits passengers.

Lastly, in Chapter 6, we focus on a line with a junction. Efficient management
of the line merge (or convergence) is crucial for ensuring smooth traffic flow on such
lines. Based on the findings of [58], we adapt the model to incorporate a change in
the train running order at the merge of the line. Currently, a one-over-two rule is
employed and has been previously modeled for the divergence and merge of the line.
We modify the model to implement a first-in, first-out (FIFO) rule at the merge,
enabling the first arriving train to enter the central section. Similar to Chapter 3,
we utilize numerical simulations to derive our results. Initially, we construct the
fundamental diagram of the line in the steady state of the train dynamics. Subse-
quently, with two potential disturbances on the line, we investigate how the change
in rule at the convergence helps mitigate the impact of these disruptions.
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Chapter 1

Introduction

General introduction

Urban public transportation management is contradictory. While increasing rider-
ship should increase revenue and improve service quality, exceeding a certain pas-
senger threshold leads to decreased passenger satisfaction and lower service quality
provided by the operator. Overcrowding causes delays and disruptions in the lines,
further diminishing service quality. Dissatisfied users then turn to other modes of
transportation, such as private cars, that may have a significant carbon footprint
and generate number of externalities such as road accidents and noise. In 1960, the
global population living in cities was around 36%. In 2021, this percentage increased
to 60%. By 2050, it is projected to reach 70%. Moreover, cities account for nearly
two-thirds of global energy consumption and produce over 70% of global greenhouse
gas emissions. Organizing efficient and low-emission public transportation is neces-
sary to mitigate cities’ impact on these emissions and make passenger journeys as
comfortable as possible. Delivering sufficient and high-quality service is crucial to
provide an attractive alternative to private vehicles. In France, 80% of the popu-
lation lives in urban areas, which is over 20% more than in 1960. Greater Paris is
no exception to the rule. Between 1968 and 2020, 500,000 more people joined the
region. Over the same period, many new transport lines have been opened to enable
residents to travel by public transport. Since 1976, the number of trips made by
car has decreased, especially since the 2000s, while at the same time, the number of
trips made by public transport has increased. In the coming years, the network will
continue to be extended, with the creation of new metro and tramway lines or the
extension of existing lines [3]. Moreover, the French government has announced its
intention to develop a heavy rail network in the country’s ten largest cities in order
to increase the share of public transport in these cities [39].

In Greater Paris and in the rest of the world, metro lines are the backbone of
a city’s network (see Figure 1.1 for the network maps in Paris). The International
Association of Public Transport (UITP) gives the following definition [68]: "Metros
are very often the fastest and most energy-efficient way to get around a city. They
run on electricity and can easily be powered by renewable energy sources. With lines
circulating on segregated infrastructure, metros avoid traffic jams and can transport
large amounts of people, making them the backbone of many cities." Thanks to its
independence from other modes of transport, the metro can operate at high speed
and frequency. Signaling systems have been developed to enable drivers to maintain
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high speeds even when visibility is limited. When the lateral signaling is open (i.e.,
signals are green), safety is guaranteed, and the driver can proceed without fear
of being too close to the preceding train. Depending on their level of recentness,
there are different types of signaling systems that allow for reduced spacing between
trains, as well as different driving modes and four grades of automation (GOA).
GOA 1 includes speed control to prevent over-speeding. With GOA 2, the driver is
always in the cabin and responsible for safety, but the train’s operation is automatic.
Finally, everything is fully automatic for GOA 3 and 4, with personnel on board
in case of issues for grade 3 and no personnel for GOA 4. Most Paris metro lines
operate at automation GOA 2, while two (and soon three) have reached grade 4 and
are fully automated. However, all lines have a fixed block signaling system. Signals
are placed along the line to ensure passenger safety.

After a gap caused by the COVID pandemic, public transport ridership has re-
turned to pre-pandemic levels. In addition, public policy is seeking to attract more
passengers to public transport in order to reduce pollution and greenhouse gas emis-
sions in major cities. Although major network extension projects are underway, they
will not alleviate the load on existing lines, which are already often saturated. The
construction of new lines is not only very costly but often difficult due to the large
number of existing construction underground. Therefore, it is necessary to adapt
existing infrastructure to improve network capacity and passenger comfort.

[RQ1] What solutions can be envisaged to increase the capacity and com-
fort of existing lines?

RATP

The RATP (Régie Autonome des Transports Parisiens) Group is the third largest
operator in the world [54]. Historically, it has been the operator of the Paris region’s
urban transportation, including the metro, bus, and tramway systems. The group is
now present on all five continents and in 780 cities worldwide. It operates all types
of transportation, from the metro to cable cars.

In the Paris region, RATP operates 16 metro lines, a portion of 2 suburban
lines, the majority of the tramways, and all inner Paris and near-suburban bus lines
(Figure 1.1). This thesis focuses on rail transportation modes without interaction
with other modes of transport, i.e., the mass-transit lines1. The metro was initially
designed to transport passengers within the city. Although some extensions have
allowed it to serve the immediate suburbs, most stations (more than 80%) are within
inner Paris.

The operation of metro lines is based on a timetable defined by the Métro, Trans-
ports et Services (MTS) department. However, in order to create the timetable, the
MTS department requires operating data for the lines based on their characteristics
and those of the rolling stock. These characteristics are calculated within the Génie
Ferroviaire Unit (GEF), particularly in the MATYS team. For each metro line, and
depending on the rolling stock, internal software calculates the train run times for
each section of the line. The MATYS unit is also responsible for traffic simulation

1In the Paris network, some mass-transit lines share tracks with other suburban, high-speed,
or freight lines. However, this is not the case for the parts operated by the RATP group, so these
cases fall outside the scope of our study.
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Figure 1.1: Paris railway network map.

on these lines. Simulations are carried out using the OpenTrack software. The soft-
ware allows for simulating a predefined timetable based on the line and rolling stock
characteristics. The team also develops APIs for the software to add the necessary
functionalities for their simulations. The software is used to simulate disturbances
on one of the network lines and calculate the effects of these disturbances. The
accuracy of the software allows for results close to what happens in reality. Some
solutions are evaluated by the software to verify their long-term feasibility. How-
ever, the precision of the simulator requires a relatively long time to perform the
calculations, which does not allow the operator to use it in the case of unexpected
disturbances. Moreover, each disturbance has its own particularities, and a large
number of simulations would be necessary to cover these different cases.

By making assumptions about the functioning of a metro line, it can be simplified
in order to represent and analyze it mathematically. Using a dynamic model, traffic
simulations can be performed more quickly than with a more complex simulator,
allowing the model to be used in real-time to compare multiple situations. Finally,
the mathematical analysis provides an additional understanding of the physical phe-
nomena occurring on the line, which pure simulation does not allow. However, due
to the loss of precision resulting from assumptions, the simulations may deviate from
the real world. The trade-off between these two types of simulations must be made
cautiously.

[RQ2] How to develop a model that allows simulating quickly train move-
ment and have physical interpretations of the traffic ?
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Skip-stop policies

In 2009, an inhabitant of Greater Washington mentioned how a skip-stop policy
could improve the passenger experience on a specific line of the Washington network
[64]. His empirical study looked at the benefits and drawbacks of such a policy
depending on the origin and destination of the line’s riders. He mentioned the
examples of Philadelphia and New York, where some metro lines operate with a
skip-stop policy. Around the world, this policy has been implemented successfully
in multiple cities such as Santiago de Chile, some cities in the USA, China, and
some suburban lines in Paris. The principles of skip-stop policies are simple. Some
stations, usually the less crowded, are skipped by some trains to increase their
speed and improve the passengers’ service level. However, the skip-stop policy can
be distinguished into two categories: first, the express/local trains. As in New York
City, the local train stops at all stations of the line, whereas the express only stops
at selected stations. In this first case, there exist siding tracks for the express trains,
allowing them to overtake local ones and thus not be slowed down. However, this
express/local functioning necessitates siding tracks, which is often not the case on
existing lines, and is difficult to build due to the high cost of the construction and
the lack of space in the underground of cities. The second functioning, named in this
thesis "skip-stop policy", applies to lines without siding tracks, and trains cannot
overtake each other. For this skip-stop policy, the operator defines two types of
trains, A and B. Especially for these trains, the operator defines a service A or B.
A service is defined as the stopping pattern of the trains or the stations it must stop
at the stations it must skip. For each lap around the line, a train performs a specific
service. With these A/B services, there are three types of stations on the line:

AB A B AB A AB B
service A

service B

(a) Alternating service. A and B stations are alternating.

AB A A AB B AB B
service A

service B

(b) Free assignment service. A and B stations are chosen freely.

Figure 1.2: Scheme of a AB skip-stop policy. The above and below paths correspond
respectively to the stopping patterns of service A and B.

1. A stations: the stations where only trains performing service A stop;

2. B stations: the stations where only trains performing service B stop;

3. AB stations: the stations where all trains stop.

The stations designated as A and B are referred to as skippable stations. Two
main service patterns are identified: with the alternating service pattern, skippable
stations alternate between A and B stations, as shown in Figure 1.2a. In Figure 1.2b,
the train operator has the freedom to choose which service stops at a skippable
station. Thus, this pattern makes consecutive A or B stations possible.
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Motivation & Objectives

The Application Cases

In this thesis, several lines of the network are considered to perform the applications
of the models developed in Chapters 3 to 6. For the skip-stop policy, it refers to
Paris metro line 1, and for the line with a junction, it refers to Paris metro line 13.

Paris metro line 1 is the oldest and busiest line of the network. In order to
increase its capacity and regularity, the line was fully automated in 2013 [50]. The
line consists of 25 stations connecting the city’s east and west sides, passing through
several business districts, major tourist attractions, and some of the busiest sta-
tions in the network. Paris metro line 1 is represented in Figure 1.3, and its main
characteristics are provided in Table 1.1.
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Figure 1.3: Paris metro line 1 map. The line comprises 25 stations and crosses the
city from East to West.

Table 1.1: Table with some of the line characteristics.

Conduction Stat. Len. Trav. time Ridership Min. head.
Automated 25 16,6 km ∼33 min 184,4 Mill. 110 sec.

As for Paris metro line 13, it is one of the two lines in the metro network with a
junction. It connects the northwest suburbs to the south of Paris, passing through
the city center and certain business districts of the city. It is also one of the busiest
lines in the network and has long been the only line connecting the inner suburbs
to the city center. Due to its high ridership, the line has long suffered from over-
crowding, prompting the authorities and RATP to modernize its infrastructure. The
implemented actions have helped alleviate some saturation issues. However, in or-
der to further increase the line’s capacity and improve passenger comfort, similar
to Paris metro lines 1 and 4, the line will be fully automated in the coming years.
There are 32 stations on the line, 18 on the central section, 8 on the Saint-Denis
branch, and 6 on the branch heading towards Asnières, see Figure 1.4.

Figure 1.4: Paris metro line 13 map. The line has two branches and a central part.
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Motivations

The work carried out during this thesis was done in collaboration with the RATP
group. The company, a major player in public transportation worldwide, seeks to
innovate to improve how it operates existing lines and the comfort of its users.
The diversity of transportation modes it operates, and the various possibilities of
operation require the company to continuously develop its knowledge.

In the Greater Paris network, only some parts of suburban lines are operated
with skip-stop services. However, in the face of existing network saturation problems,
particularly on certain metro lines, exploring new ways of operating the lines can
help find solutions to these saturation problems. Additionally, the modernization of
the network also opens up new possibilities in disturbance management. On Paris
metro line 13, the convergence point is one of the critical points of the line, and
its management is crucial for traffic flow. With automation, operational constraints
related to drivers will no longer need to be considered, and the regulation rules that
can be implemented could be simplified.

From a scientific point of view, there are also multiple motivations. The com-
plexity of metro line operations often makes it difficult to develop sufficiently simple
mathematical models for in-depth analysis. Furthermore, due to their precision in
faithfully reproducing train traffic on a line, existing simulation tools used in the
company are computationally heavy and cannot be used instantaneously in the event
of disturbances.

Objectives

This thesis can be divided into two parts. The first part focuses on the skip-stop
policy, while the second part explores a line with a junction, specifically the train’s
running order at the convergence point of the line.

The objective of the first part is twofold. First, it is necessary to develop a
mathematical model that represents the operation of a line when operated with
a skip-stop policy. This model reproduces the dynamics of the trains and allows
simulation of their movement on the line under defined traffic conditions. Secondly,
it is shown that the model can be written linearly in the Max-plus algebra. This will
enable us to analyze the results obtained using the linearity of the model, leading
to a better understanding of the physics of traffic and the phenomena that occur on
a metro line with a skip-stop policy. The operator seeks to determine the impact
on passengers and whether implementing such a policy is beneficial for him and
the passengers. We can compare the operation of a line with all-stop and skip-
stop policies and provide the operator with the necessary information about the
quantified gains and losses resulting from the change in operating mode.

Operating a metro line in Paris or anywhere else in the world is often subject
to numerous disturbances. These disturbances can take various forms. They can
be minor, where their impact does not jeopardize the operator-defined timetable.
They can be significant enough for the dispatcher to intervene in order to ensure
the smooth flow of the line. Lastly, major disruptions require closing a section of
the line or interrupting traffic for an extended period. In this last case, the entire
operating program needs to be reconsidered, and the dispatchers try to maintain
a minimum level of traffic despite these highly degraded situations. In the second
case, disruptions affect traffic flow but do not jeopardize the operating program.
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The role of dispatchers is crucial in minimizing the impact of these disruptions.
This is particularly true on a line with a junction where the management of the
convergence point is crucial. Exploring new ways to operate the convergence point
can help dispatchers to better assess certain solutions when a disruption occurs on
one of the line branches.

Contributions

This thesis presents a mathematical contribution to the modeling of metro lines and
the interpretation of the physics of traffic. Our models take into account the main
parameters governing the operation of a mass-transit line, enabling us to analyze
train dynamics.

The dynamics are based on two constraints, which reproduce the operation in
real metro lines. The first constraint sets a lower bound on the run times to ensure
that trains adhere to speed limits determined by the track’s configuration. The
second constraint ensures that a train has completely exited a block before the next
train can enter it; it reproduces the red signal state on metro lines. By calculating
the departure times of trains at all signals along the line, our model operates as a
discrete-event system. Unlike existing literature that primarily focuses on trains as
primary parameters, our model considers the count of departures.

This approach enables us to effectively model skip-stop policies, which determine
whether a train should stop or skip certain stations based on the departure count.
Using simple rules, we develop a simulation model in the initial phase of our work to
determine the average train frequency of a line implementing a two-service skip-stop
policy. We quantify the benefits of this policy in terms of frequency and passenger
satisfaction.

The train dynamics we develop are nonlinear, mainly due to the presence of
a maximum function. Through the use of max-plus algebra, we demonstrate the
possibility of linearly rewriting the dynamics in matrix form within this algebraic
framework. Additionally, we establish that the only non-zero eigenvalue of the
matrix corresponds to the average train-time headway of the line. With this result,
we analytically derive the asymptotic regime of the dynamic system, which models
the train dynamics for a line operating under a skip-stop policy. Furthermore,
we interpret this regime in the context of traffic phases. The fundamental traffic
diagram, representing the average train frequency as a function of the number of
trains running on the line, is crucial for understanding mass transit operations.
Notably, these contributions are entirely novel to the best of our knowledge.

Our research provides valuable insights for metro line operators. We demonstrate
that the parity of the number of trains influences the evolution of train frequency and
provide an interpretation of the derived fundamental diagram of the line. Moreover,
we propose methods to evaluate the gains or losses from the operator’s perspective
directly in terms of train frequency. We extend these findings to consider passen-
gers’ arrival rates in our model and introduce multiple indicators to measure their
perception of the skip-stop policy, such as waiting and travel time, as well as their
comfort compared to an all-stop policy.

In the final part of our work, we explore new approaches to operating a line with
a junction. Our mathematical formulation enables the consideration of a First-In-
First-Out (FIFO) rule for the merge of the line. We analyze the steady state of
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the train dynamics and put forth several conjectures. Furthermore, we demonstrate
how our formulation and model can be employed in disrupted situations. The model
facilitates quick comparisons between different scenarios and can assist operators in
effectively managing unexpected disturbances on the line.

Structure of the Manuscript

The manuscript is divided into six chapters. In Chapter 2 Background on mass-
transit research, we review publications related to this thesis’s topic. Four main
research areas are addressed, focusing on key articles in the field of public trans-
portation. The subsequent part of the review focuses on articles that study the
impact of a skip-stop policy on a mass-transit line and publications that concen-
trate on lines with junctions. Lastly, the final section mentions the key articles
related to the max-plus algebra that we utilize in our thesis.

Chapter 3, Modeling & Simulating a Skip-Stop Policy, presents the modeling
approach and initial results of the skip-stop policy. In this chapter, we develop the
train dynamics on Paris metro line 1 using two different models. The first model
ensures that each origin-destination is possible without requiring any connections
on the line. The second model relaxes this constraint and only ensures that at every
skippable station, one out of every two trains stops while the other skips the station.

In Chapter 4 Max-plus Modeling of a Two Services Skip-Stop Policy, we expand
on the train dynamics from the previous chapter. Firstly, we include the services
defined by the operator as input to the model. There are two alternating services
on the line, and for each service, the operator specifies the stations where a train
performing that service stops and the stations it should skip. By using the max-plus
algebra, we can linearly represent the model, and thus, leveraging the properties of
this algebra, we derive analytical formulas that provide the train time headway and
frequency. We perform several analyses based on the number of skippable stations
or the services that can be defined.

Chapter 5, Effect of the Passengers on a Two-Service Skip-Stop Policy, incorpo-
rates the passenger dimension into our model. On the one hand, we recalculate the
train dwell times at each station based on the origin-destination matrix provided
by the operator. With the implementation of skip-stop services, some passengers
must choose a train that performs a specific service. We demonstrate how these
passengers are accounted for in the calculation of dwell times. We formulate the
train dynamics using standard algebra, and then, by using the max-plus algebra,
we can linearly represent the dynamics. Similar to the previous chapter, we derive
the frequency and average time headway. Furthermore, we develop indicators that
measure the impact of the skip-stop policy on the line’s passengers.

In Chapter 6 Impact of a FIFO Rule on a Line with a Junction, we focus on a
line with a junction. Specifically, we compare different train sequencing rules at the
line’s convergence point. Through simulations, we examine the line frequency with
a first-in-first-out (FIFO) rule at the steady state of the line. The line currently
operates with a one-over-two rule, sometimes even during disturbances. We also
investigate the effects of the FIFO rule when a disruption occurs on one of the
branches.

Lastly, in Chapter 7 Conclusion, we review the main results we obtained in each
chapter, and we also indicate what are the next steps of this thesis. We show the
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limitation of our work and how these limitations could be tackled to further develop
our model.





Chapter 2

Background on Mass-Transit
Research

This chapter provides a literature review of the existing work on four
subjects. First, we give an overview of the general research on mass
transit. Then, we focus our review papers focusing on the modeling
and effect of skip-stop policies and papers related to line with junctions.
As we use max-plus algebra, we give our resources on this subject. We
give the main papers for the theoretical work and give also papers using
max-plus algebra applied to transportation.

2.1 General Mass-Transit Research

Control strategies for metro or mass-transit lines are widely studied to improve line
robustness and increase passenger comfort. Indeed, well-controlled lines increase the
attractiveness for passengers. One of the key indicators of the performance of a mass
transit line is the harmonization of train headway. It is the subject of many articles.
[69] first developed a control strategy to harmonize train headways. Similarly, [26]
proposed a predictive traffic control model for loop metro lines. The model was then
extended to have dwell time dependent on train headway and passenger arrival rate
[46].

However, the arrival rate of passengers at the stations may not be consistent, [42]
consider an uncertain passenger arrival flow. In [43], schedule and headway devia-
tions are minimized by combining dynamic train control and passenger flow control.
Finally, the same authors develop a dynamic optimal control model to determine
the automatic train control strategy to improve punctuality and regularity under
frequent minor disruptions [44]. We also mention [74], who developed passenger
flow control strategies to decrease passenger waiting time and relieve the number of
passengers stocked in stations. [48] minimize the headway deviation and keep it as
close as possible to the nominal headway. In addition, the authors develop a lin-
ear robust model predictive controller to compensate for disturbances and regulate
traffic in the presence of operational constraints.

Since many papers deal with rail traffic robustness, some interesting reviews of
the existing models are available: [11] studies train routing and scheduling models.
In contrast, [45] focuses on scheduling stability. Similarly, in [33], the stability and
punctuality of rail operations are analyzed. Finally, [13] and [5] propose reviewing

11
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existing strategies for recovering traffic from a line under disruption.

Fundamental Diagram

The notion of a fundamental traffic flow diagram is an old one. [51] mentioned
the existence of such diagrams for road networks. The fundamental traffic flow
diagram represents the relationship between road traffic flow (vehicles/hour) and
traffic density (vehicles/km). A typical fundamental diagram is given in Figure 2.1.
The x and y-axes indicate the vehicle density k and the traffic flow q on the road.

Figure 2.1: Typical fundamental diagram for road traffic.

There are three characteristic points; point kj corresponds to the maximum vehicle
density on the road. The km point gives the road’s capacity: when the vehicle
density exceeds this point, the road enters a phase of congestion, which reduces the
flow of vehicles. Beforehand, this is the free-flow phase. The last characteristic point,
kc, shows that in the free-flow phase, there is a density beyond which the average
vehicle speed begins to decrease. Vehicle speed is represented by the dashed blue
curve. The existence of such a diagram has been detected empirically and described
mathematically [20, 21]. Other studies have extended the concept to the scale of a
network: the macroscopic fundamental diagram (MFD). Its existence was examined
in [30], the analytical approximation in [15], and the properties of a well-defined
diagram in [31]. The MFD shows that adjacent roads share the same properties and
a similar flow of vehicles. MFDs are very useful for traffic controllers to implement
better control strategies to reduce congestion in the road network.

However, for rail lines, the fundamental diagrams are still in their early stages.
There are many differences between road and rail networks. While roads can be
considered continuous systems, rail networks must be considered discrete because of
the signaling system. The fixed block signaling system divides the line into multiple
"blocks" and limits the number of trains on the line. To ensure safety on the railroad
line, a maximum of one train is allowed on each block between two signals.

[14] first collected beacon data on two very high-frequency lines in the Paris
region. Using the data collected, they represent the flow of vehicles as a function
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of the number of trains that have passed over the beacon. They then adjust their
data to show three different traffic regimes: uncongested, congested, and totally
congested. Based on a microscopic model, [63] are able to derive a fundamental
diagram of a rail transit line. The FD depicted in Figure 2.2 shows the relationship
between train flow, train density, and passenger flow.

Figure 2.2: Fundamental diagram for a rail transit line derived in [63].

Their conclusions reveal two different regimes. The free-flow regime, where the
slope of train flow is positive, and the congestion regime, which shows that train
flow decreases as train density increases. Passenger flow also influences train flow,
as they are inversely proportional.

A new generation of trains is arriving on mass-transit lines, communicating with
each other in real-time their positions on the tracks. Thanks to this communication,
a new moving block signaling system can be implemented on the line.

Figure 2.3: Comparison of the fixed block and moving block signaling system.

Figure 2.3 shows the difference between the two signaling systems. With the
moving block signaling system, the safety zone is defined by the rear of the preceding
train rather than by the start of the next occupied block. This allows trains to run
closer together while maintaining safety and increases overall line capacity. [17]
explores the effect of moving blocks on the fundamental diagram of a line. They
compare different spacing levels for a fixed block and a moving-block signal system.
They show that the movable block does indeed increase line capacity and that the
train density above which trains must slow down to ensure safety also increases.
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As with road networks, it is also possible to study the fundamental diagram at
a macroscopic level. [12] first explores the advantages of studying train traffic at a
macroscopic level with a moving-block signaling system. However, for railway lines
and networks, fundamental diagrams are still in their early phase. We aim to extend
the knowledge of the rail fundamental diagram with our research.

2.2 Background on Skip-Stop Policy
As the demand for urban transportation systems, especially urban rail transit, con-
tinues to rise, operators and researchers are exploring innovative ways to enhance the
efficiency of existing lines. One solution gaining popularity is the implementation of
skip-stop policies. While this may make it challenging for passengers to determine
their train, and some origin-destination pairs may require multiple trains, it has the
potential to increase train speed, reduce total passenger travel and waiting time,
and achieve objectives with fewer trains on the line [72].

Skip-stop policies can be implemented in both existing and new lines of public
transport. [27] investigate the impact of station density on the objective function,
considering passenger and operating costs, to determine the optimal density of AB
stations based on line parameters such as line length or the number of trains. They
describe skip-stop policies with continuous parameters like station density and rec-
ommend their use for long lines with high density and frequency.

Other studies expand on this work to minimize the generalized cost of passen-
ger travel time and operator cost by employing more general skip-stop policies.
[47] perform realistic analyses by eliminating the initial assumption of spatially ho-
mogeneous demands. They compare the examined policies with all-stop policies
and quantify the resulting savings. [19] use a continuous approximation model for
bus and train public transport services, incorporating three demand models and 14
operational schemes. They provide the percentage of advantages associated with
skip-stop operation and additional savings from schedule coordination.

Furthermore, [10] propose a model focusing on maximizing time and congestion
cost savings. They utilize prospect theory to describe optimization objectives and
select stop plans based on the calculated Pareto solution set. The study demon-
strates a significant improvement in passenger travel time and comfort, assuming a
line that allows overtaking. Similarly, [41] investigate different objective functions
under various constraints to avoid train collisions. Their findings show that reduc-
ing vehicle travel time is possible by eliminating stations, despite increased waiting,
transfer, and access times.

While the skip-stop policy models discussed above mainly concentrate on design-
ing new lines, implementing this policy on existing lines requires considering actual
constraints, such as station distance, line length, and passenger flow. [2] propose
a disruption management model that skips stops to minimize recovery time dur-
ing disturbances, developing an integer linear programming model that considers
passenger waiting time.

To further optimize skip-stop patterns in specific situations, [73] formulate a
mixed integer programming model that minimizes the unused capacity of trains and
the total number of waiting passengers at platforms. This approach allows for an
increase in the average boarding rate of all stations, a reduction in passenger waiting
behaviors, and a decrease in the average travel time of passengers.
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Researchers have also explored the application of skip-stop policies in the regular
operation of transportation systems. [5] develop mixed-integer linear programming
models to plan stop patterns for high-speed lines, demonstrating a significant re-
duction in unsatisfied demand or insufficient capacity compared to the current case.
Similarly, [49] presents a train schedule optimization model incorporating passenger
demand data for short-term planning applications in high-speed lines.

[37] address the collaborative optimization of timetable scheduling, passenger
flow control, and skip-stop patterns in a metro line. Their optimized train timetable
effectively eases congestion at stations and improves the safety and service quality of
the metro system, providing valuable practical insights into the solution and model
robustness trade-off.

The objective in urban rail transport lines is often to reduce the total travel time
while considering practical constraints using smart card data [40]. Various methods
have been proposed to find the optimal arrangement of skip-stops. [1] linearize a
non-linear integer mathematical model to minimize passenger travel time, resulting
in a reduction of about 10%. On the other hand, [56] achieve a 16% reduction
in travel time while sacrificing only 11% of direct trips using a binary quadratic
programming model. [7] propose a model that minimizes the total waiting and travel
time of passengers as well as the travel time of trains. Additionally, [6] incorporate
a marshaling plan in the urban public transport schedule to improve robustness and
reduce the total cost associated with passengers, operations, and reliability.

[66] quantify time savings resulting from implementing the skip-stop policy on a
Seoul subway line during peak and off-peak hours. They conduct numerical simula-
tions considering travel time, waiting time, and total system travel time for different
scenarios and criteria. The results indicate significant reductions in total waiting or
travel times. Similarly, [25] employ numerical simulation to estimate line frequency
based on the number of trains running and compare passenger travel time with and
without the skip-stop policy.

By exploring and applying skip-stop policies, operators and researchers aim to
enhance the efficiency of urban transportation systems, improve passenger experi-
ence, and optimize resource utilization in existing and new lines.

Yet, the skip-stop policy is mainly tackled through optimization. The range of
optimization criteria is broad, from passengers’ travel time to optimal station density
in a corridor. The latter case is interesting for lines under design, which is outside
the scope of our work. Optimizing an existing metro line operated with a skip-stop
policy requires the consideration of all its operating constraints. Indeed, all the line
characteristics are fixed by topological constraints, and the station ridership levels
are already given. For operators, skip-stop optimization can be done to select the
train-stopping pattern. By comparing lines operated with skip-stop and all-stop
policies, it is possible to evaluate the gains in terms of train frequency, passenger
waiting time, or any other criteria defined in the optimization model. However, the
solution might not be optimal if the problem is solved with heuristics. Moreover, it
might be challenging to interpret the optimization results, especially if the number
of decision variables is high. Finally, there is a gap in the cited papers explaining
the physical phenomena and the train interaction.
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2.3 Background on Line with a Junction

In many networks worldwide, numerous lines have a junction. These junctions often
occur in the city center or the busiest sections of the network, where trains from
multiple directions converge. Such convergence points can involve multiple lines
sharing tracks for a portion of their routes, as in Munich or Madrid. Alternatively,
they can consist of a single line with multiple branches, like the Elizabeth line
in London, Paris metro line 13, or RER lines A and B. These merging points or
convergence areas are crucial for operators and dispatchers. Despite the prevalence
of lines sharing tracks or featuring junctions, the existing literature on this topic
remains relatively limited.

[35] developed a traffic controller for junctions aimed at minimizing the overall
weighted delay for trains. They studied an event-based model that accounted for
constraints imposed by the fixed-block signaling system. Using dynamic program-
ming, they optimized the model and demonstrated cost improvements under their
modeling assumptions. Another approach to achieving the same objective was pre-
sented by [36], who utilized a simple genetic algorithm. Their algorithm found a
near-optimal cost while reducing the computational burden. [55] introduced a con-
straint programming model for real-time train scheduling at junctions. Their work
tackled the joint problem of resource allocation and activity scheduling, considering
the influence of the signaling system on traffic management decisions. This approach
enhanced traffic operations at a computational cost compatible with real-time man-
agement. The model was applied to a junction where high-speed, inter-city, and
freight trains interacted. [67] presented an optimization approach to the problem of
rescheduling railway traffic in an N-tracked network when disruptions occur. They
developed multiple strategies allowing for track swapping, order changing, or both.
Their approach employed a Mixed-Integer Linear Programming model applied to the
south network of Sweden. Achieving results within a reasonable computation time
required balancing model complexity and precision. [8, 9] proposed a decision sup-
port methodology for real-time train rescheduling in junction areas to optimize the
weighted average delay. Their model addressed rescheduling problems at junctions
and compared algorithm performance with the First-In-First-Out (FIFO) strategy.
They examined different scenarios involving long or short delays and demonstrated
good convergence performance and superior results compared to the FIFO strategy
when applied to the Thameslink case in London. [18] employed ant colony optimiza-
tion algorithms to solve a simulated dynamic multi-objective railway rescheduling
problem. In this dynamic problem, trains awaiting rescheduling were met with new
arrivals in the system, while dispatchers aimed to optimize multiple objectives. Mul-
tiple algorithms were tested for various scenarios, evaluating their proximity to the
optimum and computational costs. [28] developed a system that combined real-
time driving advice calculation with real-time junction scheduling to reduce delays
at junctions. The system was simulated on a real network in the UK, enabling the
detection of potential conflicts 20 minutes before their occurrence. This approach
significantly reduced the number of delayed trains from 6.6 to 1.2 percent.

In [58], the authors devised a discrete-event traffic model for a line with a junc-
tion. They derived the fundamental diagram of such a line, considering its central
part and two branches. The study investigated eight different phases that revealed
the impact of the number of trains and the difference in train numbers between the
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branches. These phases also highlighted the line’s capacity and identified the thresh-
old beyond which congestion occurs. In a subsequent work, [61] incorporated the
passengers’ arrival rate at stations into the model, leading to a derived fundamental
diagram that accounted for the impact of passenger flows on line capacity. Finally,
using the analytical results from the preceding paper, [62] optimized the running
order of trains at the line’s convergence point, carefully selecting the branch from
which trains entered the central part based on traffic conditions.

Despite the significant number of lines with junctions worldwide, only a few
articles treat this subject. However, it is essential to understand how the junctions
work to improve the traffic on such lines. These lines often bring people from the
suburbs to the city center. In addition, the comfort of public transport lines is
essential to attract more passenger demand from other modes. Therefore, we are
looking to fill this gap by studying these lines.

2.4 Max-plus Algebra

General Theory

The Max-plus algebra is the semi-ring (Rmax,⊕,⊗) where Rmax := R ∪ {−∞}, and
⊕ and ⊗ are the Max-plus sum and product defined respectively: a⊕ b := max(a, b)
and a⊗b := a+b, with a, b ∈ R∪{−∞}. The addition’s zero element −∞ is denoted
ε. The unity element 0 is denoted e. We have the same algebraic structure on the
set of square matrices Rn×n

max , where the addition ⊕ is defined (A⊕B)ij := Aij ⊕Bij

and (A⊗B)ij :=
⊕

k(Aik ⊗Bkj). The zero matrix is the matrix with null elements
(equal to −∞). However, it is still denoted by ε. The unity matrix also denoted e,
is diagonal, with all the diagonal elements equal to 0. As in the standard algebra,
for a square matrix A ∈ Rn×n

max , we denote Ak := A ⊗ A ⊗ . . . ⊗ A (k times). We
then define A∗ :=

⊕
k≥0A

k. For a square matrix A ∈ Rn×n
max , we associate a directed

graph denoted G(A) with n nodes, and whose arcs are defined as follows: an arc
exists from node i to node j if Aji ̸= ε. The value of Aji gives the weight of the arc
going from i to j. Let us recall the following results [4, 29].

Definition 1. [4, Definition 2.18] (Cycle mean) The mean weight of a path ρ is
defined by |ρ|w/|ρ|l, where |ρ|w denotes the sum of the weights of the individual arcs
of this path, and |ρ|l denotes the length of the path. If such a path is a cycle, one
talks about the mean weight of the cycle or simply the cycle mean.

Theorem 2.1. [4, Theorem 3.17] If there are only cycles of non-positive weight in
G(A), there is a solution to x = Ax⊕ b, which is given by x = A∗b. Moreover, if the
cycle weights are negative, the solution is unique.

Theorem 2.2. [4, Theorem 3.20] If G(A) has no cycle with positive weight, then
A∗ = e⊕ A⊕ · · · ⊕ An−1.

Theorem 2.3. [4, Theorem 3.23] If A is irreducible, or equivalently if G(A) is
strongly connected, there exists one and only one eigenvalue Λ (but possibly several
eigenvectors). This eigenvalue is equal to the maximum cycle mean of the graph:
Λ = maxρ |ρ|w/|ρ|l where ρ ranges over the set of cycles of G(A).
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To have the uniqueness of the eigenvalue given by Theorem 2.3, the matrix A must
be irreducible. If it is not the case, several eigenvalues may exist. The matrices we
study in Chapters 4 and 5 are reducible, so we must find its other eigenvalues; see
Appendix A for the complete analysis of the eigenvalues. In [29], the results are
extended to reducible matrices. Proposition 2.4 gives us the other eigenvalues of our
matrix.

Proposition 2.4. [29, Proposition 2.2.3 on p. 132] ε is an eigenvalue of A if and
only if a node exists in G(A) with no successor nodes (i.e., without outgoing arcs).

Application to Railway Traffic

The max-plus algebra is particularly suitable for discrete event systems. This algebra
can be used in many different fields, from model predictive control to theoretical
computer science. A review of the max-plus algebra in the history of discrete event
systems can be found in [38]. It is also used in public transportation to model lines
or timetables. In [34], an algebraic max-plus model allows studying the railway
timetable stability and robustness to delays. Max-plus algebra can also be used for
model predictive control [16, 71]. Our work also uses max-plus algebra modeling
and theory to derive the traffic phases of a mass-transit line.

Our work is based on several papers using max-plus algebra. The first paper [23]
developed a discrete event model for a shuttle-operated line. A shuttle-operated line
is a line without junctions and where trains run and stop at all stations of the line.
In this paper, the authors derive the fundamental diagram of the line. It gives the
average train frequency as a function of the number of trains running on the line, and
it is represented in Figure 2.4. There exist three traffic phases in the fundamental

Figure 2.4: Fundamental diagram of a shuttle-operated line.

diagram of the line:

1. The free-flow phase, where the frequency increases with the number of trains.

2. The capacity phase gives the maximum frequency achievable on the line.

3. Finally, the congestion phase shows similar behavior as in road traffic. Trains
interact with each other and are slowed down.
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The analytical results of this paper can be found in Section 4.3, where we review
the main theorem and propositions.

This work has then been extended to a line with a junction [58]. Similarly, a
discrete event model is developed considering the characteristics of a line with a
junction. The fundamental diagram, depicted in Figure 2.5. The authors show that
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Figure 2.5: Fundamental diagram of a line with a junction.

the number of trains on the branches of the line also impacts the line’s frequency.
There are 8 different phases on the line described in the paper. However, the phases
are similar to those of Figure 2.4. In Section 6.2, we also review the analytical results
of this paper.

The two previous papers consider the train dwell times as deterministic. The
nominal times are fixed beforehand and not computed as a function of the pas-
sengers’ arrival rates at stations. In [60], the train’s dwell time at stations can be
extended to a certain limit to let passengers board. To offset this time extension,
the train speed is increased, allowing them to stick to the nominal schedule. Finally,
in [22], the possibility of increasing the train’s speed is removed from the model; see
Corollary 5.5 for the review of the analytical results.





Chapter 3

Modeling & Simulating a Skip-Stop
Policy

This chapter is the first step in modeling and simulating skip-stop poli-
cies. We develop two mathematical models to explore the possible bene-
fits of a skip-stop policy. In the first model, some stations are skipped by
every other train, with the guarantee that each origin-destination pair
is feasible without transfer. In the second model, this constraint is re-
laxed, and some ODs become impossible without transfer. We simulate
the train dynamics based on a discrete event model to obtain the average
train frequency and passengers’ travel time. They are represented in the
fundamental diagram, giving the headway or frequency as a function of
the number of trains running on the line. We compare a skip-stop pol-
icy to an all-stop policy, i.e., all trains stop at all stations. We provide
an overview of how this skip-stop policy can benefit the operator and
passengers.

3.1 Modeling Approach for a Skip-Stop Policy

In this thesis, we present several traffic models for transit lines. An important
part focuses on modeling skip-stop policies and their implementation’s impact on
the operator and passengers. All of our work on skip-stop policies is developed
for shuttle lines. Shuttle lines are lines with two termini, and trains run from one
terminus to another in both directions. Except for major disruptions, trains do not
turn before the terminus. There is only one track in each direction, so overtaking is
impossible. On Figure 3.1, we represent a shuttle line schematically. Our models use
the existing fixed-block signaling system of the line. Throughout the line, signals
are regularly arranged to maintain safety. They have two states: if the signal is
green, a train can pass it and move on to the next. If the signal is red, a safety
constraint forces the train to stop and wait for the signal to turn green. After
each station, there is a signal that allows trains to leave the station, but there
are also signals between stations. The vertical segments represent these signals on
Figure 3.1. When the operator implements a skip-stop policy, certain trains must
not stop at certain stations. These stations are called "skippable stations" and are
represented by empty squares. The others, stations where all trains must stop, are
called "mandatory stations" and are characterized by solid squares.

21
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Figure 3.1: Schematic representation of a unidirectional loop metro line discretized
following the signaling system. Solid squares, empty squares, and vertical segments
correspond to stations with mandatory stops, skippable stations, and signals between
two stations.

In this chapter, we consider a period of 2 for skippable stations. We want a
train that stops to alternate with a train that skips the station. Thus, every other
train stops at skippable stations. We propose two traffic models: in the first one (see
Section 3.1.5), we guarantee that the same train stops at all skippable stations. This
constraint ensures that every OD pair of the line can be satisfied without transfer
(i.e., without changing trains). In the second model, we relax this last constraint
and consider that some OD pairs can be satisfied with one connection within the
line (see Section 3.1.5). In Section 3.2, we assume that the train dynamics admit a
stationary regime in both models and derive by numerical simulations the average
train frequency for both models, given as functions of the total number of trains
running.

3.1.1 Notations

Our model is an extension of the work developed in [23]. The model is based on the
current signaling system of a metro line, which is divided into segments. The end of
the segments corresponds to a signal on the line. There are n segments and nodes,
and the number of trains running is given by the variable m. The variables bj and
b̄j = 1− bj provide the initial state of the line: if there is a train in the initial state
on segment j, we have bj = 1. Otherwise, we have bj = 0. Characteristic times
are associated with each segment j of the line. The run time, dwell time, travel
time, and safe separation time for a segment j are denoted by rj, wj, tj, and sj,
respectively. Travel time is the sum of running and stopping times, i.e., tj = rj+wj,
corresponding to the time required for a train to travel from node j − 1 to node
j. Our model aims at computing the variable dkj , the instant of the kthdeparture
at each node j. Note that k indexes the number of departures and not the trains.
Thus, we can compute the headway hkj between two trains at each node and for each
iteration k.

With a skip-stop policy, we need to distinguish the stations between the skippable
and mandatory ones. We define the set O as the set of all skippable stations. At
these stations, we need to distinguish the run time, the dwell time, and thus the
travel time for the trains that stop or skip these stations. We add the exponent l to
these variables to make the distinction. If l = 0, the travel time t0j corresponds to
a train that stops at station j, while l = 1 indicates the travel time of a train that
skips the station. In the latter case, the train dwell time lower bound is equal to 0
(w1

j = 0) as we do not require the train to stop. For all other nodes, the travel time
is written without exponent. However, even if a train does not stop at a station,
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the departure k is counted.

Table 3.1: Notations for the model.

n number of segments
O = {o1, o2, · · · } the set of all skippable stations.
m total number of trains
lj = {0, 1}: the exponent to differentiate the stopping pattern of a

train at a skippable station. The value lj = 0 corresponds to a
train stopping at the station j, whereas lj = 1 means that the train
skips this station.

bj ∈ {0, 1}: boolean variable of trains being on segment j at time zero,
we have bj = 1 if there is a train on the segment j, and bj = 0.

b̄j = 1− bj ∈ {0, 1}: the opposite of bj
dkj instant of the kth departure time from node j. Notice that k does

not index trains but counts the number of departures.
rlj the run time of a train on segment j in service l, i.e. from node

j − 1 to node j. In our case, l = 0 denotes a service stopping at all
stations, while l = 1 denotes a service skipping secondary stations.

wk,lj = dkj −akj : train dwell time corresponding to the kth arrival to- and
departure from node j for case l.

tk,lj = rlj+w
k,l
j : train travel time from node j−1 to node j, correspond-

ing to the kth arrival to- and departure from node j for case l.
hkj = dkj − dk−1

j : departure time headway at node j, associated to the
(k − 1)th and kth departures from node j.

sj a safe separation time associated with node j.

We underline the notations to indicate the lower bounds of the above-mentioned
variables. Respectively, r, t, w, h, and s denote the lower bound run, travel, dwell,
headway, and safe separation times. We also denote these variables without subscript
or superscript as the mean over j and k (asymptotic). Therefore, r, t, w, h, and
s denote the asymptotic average run, travel, dwell, headway, and safe separation
times. Using the notations, we can write the dynamics of the train. Our model is
built on two constraints.

3.1.2 The Travel Time Constraint

This first constraint requires a departure not to occur before the considered train
arrives at the considered node. The departure time at node j of a train must be
greater than or equal to the departure time of the same train at the previous node
j − 1, plus the travel (run + dwell) time from node j − 1 to node j. For example, if
there is a train on segment j at time zero (i.e. if bj = 1), then the train making the
kth departure at node j made the (k− 1)th departure at node (j − 1). On the other
hand, if there is no train on segment j at time zero (i.e. if bj = 0), then the train
performs the kth departure at both nodes (j − 1) and j. In addition, we distinguish
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the cases of skippable stations from other nodes on the line.

dkj ≥ d
k−bj
j−1 + rj + wj = d

k−bj
j−1 + tj, ∀j /∈ O (3.1)

dkj ≥
{
d
k−bj
j−1 + r0j + w0

j = d
k−bj
j−1 + t0j , if the train stops

d
k−bj
j−1 + r1j + w1

j = d
k−bj
j−1 + t1j , if the train skips

∀j ∈ O (3.2)

3.1.3 The Safe Separation Time Constraint

The safe separation time corresponds to a release time. In practice, a signal is
red as soon as a train has departed from this signal and until the same train has
departed from the next signal, plus a safe separation time, corresponding to the
time for the train’s rear to leave the segment. Thus, the safe separation time is not
the same after a skippable station if the train has stopped or skipped the station.
Our model proposes a simplification and considers a unique safe separation time
corresponding to a train that stops at the station, i.e., the longer safe separation
time. The constraint requires that a departure from a given segment cannot occur
if the next segment is not free of any train. For our model, the departure at node
j of a train occurs when the train on segment j + 1 has departed, plus a given safe
separation time sj. If there is no train at node j + 1 at time zero (i.e. if bj+1 = 0,
and so b̄j+1 = 1), then the train which makes the kth departure at node j, makes
also the kth departure at node j + 1. Therefore, the previous train has made the
(k − 1)th departure at node j + 1. On the contrary, if there is a train at node j + 1
(i.e., if bj+1 = 1, and so b̄j+1 = 0), the train making the kth departure on node j
makes the (k+1)th departure at node j+1. Therefore, to summarize the two cases,
the kth departure from node j is constrained by the (k − b̄j+1)th departure at node
j + 1. Our model considers that the safe separation time is the same whether a
train stops at or skips a station. Thus, it is not necessary to distinguish two cases
as in the travel time constraint. We can write the safe separation time constraint as
follows:

dkj ≥ d
k−b̄j+1

j+1 + sj+1. (3.3)

3.1.4 The Train Dynamics

We consider that the departure occurs as soon as both constraints are satisfied. We
thus obtain the departure time by taking the maximum between the two constraints.
The train dynamics are then written

dkj = max{dk−bjj−1 + tj, d
k−b̄j+1

j+1 + sj+1}, ∀j /∈ O (3.4)

dkj =

{
max{dk−bjj−1 + t0j , d

k−b̄j+1

j+1 + s0j+1}, if the train stops
max{dk−bjj−1 + t1j , d

k−b̄j+1

j+1 + s1j+1}, if the train skips
,∀j ∈ O (3.5)

We can use Equations (3.4) and (3.5) to simulate the train dynamics, but first,
we must determine the condition for which a train stops or skips a skippable station.
For this, we distinguish two models with two different rules, which we explain in the
following sections.
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3.1.5 The Models

Restricted Model

For this first model, we want to ensure that all origin-destination (OD) pairs are
feasible without any connection. A train that stops at all skippable stations is
followed by another train that skips all such stations. Therefore, we formulate our
rule for determining whether a train stops as follows: if a train stops at the first
skippable station o1, it must stop at all other skippable stations oi ∈ O. Similarly, a
train that skips the first skippable station o1 must skip all other skippable stations
oi ∈ O. We write the dynamics of the trains for all the skippable stations according
to the variable lj.

dkj = max{dk−bjj−1 + t
lj
j , d

k−b̄j+1

j+1 + sj+1} (3.6)
We need to find the rule to determine the value of lj. First, we use the departure
parity for the first skippable station o1. Trains making an odd departure at o1 must
stop, while trains making an even departure must skip this station. We need to find
a similar rule for all other skippable stations, i.e., ∀oi ∈ O such that oi ̸= o1. If∑oi

p=o1+1 bp is even, trains making an odd departure at o1 also make an odd departure
at oi. An odd departure at oi corresponds to a train that stops. Finally, the following
equations give the value of l for all skippable stations, ∀j ∈ O :

lj = 0 if





j = o1, and k is odd.
j ̸= o1,

∑j
p=o1+1 bp is even, and k is odd

j ̸= o1,
∑j

p=o1+1 bp is odd, and k is even
(3.7)

lj = 1 if





j = o1, and k is even
j ̸= o1,

∑j
p=o1+1 bp is odd, and k is odd

j ̸= o1,
∑j

p=o1+1 bp is even, and k is even
(3.8)

Let’s take an example to illustrate the value of lj. Let’s consider the train making
the kthdeparture at node o1, with k odd. In this case, the train must stop at this
first skippable station. The same train will make the k +

∑o2
p=o1+1 bp

thdeparture at
station o2. Thus, if

∑o2
p=o1+1 bp is even, the train makes an odd departure at node

o2, whereas it makes an even departure if
∑o2

p=o1+1 bp is odd. Therefore, we find the
conditions given in Equation (3.8).

Unrestricted Model

In the second model, we relax the OD service constraint (which requires, for the
first model, that all OD pairs be feasible without connection). As a result, some
OD pairs may become infeasible without connection. We only ensure that every
skippable station (i.e., a station in O) is served every other time. Therefore, we
only need to look at the parity of k to differentiate the cases. Concretely, ∀j ∈ O :

• the trains stop at the station j if k is odd.

• the trains do not stop at the station j if k is even.

And the following equations give the train dynamics, ∀j ∈ O.

dkj = max{dk−bjj−1 + t0j , d
k−b̄j+1

j+1 + sj+1}, odd k (3.9)

dkj = max{dk−bjj−1 + t1j , d
k−b̄j+1

j+1 + sj+1}, even k (3.10)
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3.2 Simulations

In this section, we present the first results of the impact of a skip-stop policy on the
performance of the line and on the travel time of the passengers. We simulate the
train dynamics developed in Section 3.1.4. We aim to give insights to the operator to
evaluate the possible benefits of such a policy for a shuttle-type line. In Section 3.2.1,
we study the average headway between trains and the frequency as a function of
the number of trains running on the line. We also examine the trajectories of the
trains to understand their interactions. Finally, we focus on the passengers’ point
of view in Section 3.2.3. In this first chapter, we do not consider the arrival flows of
the passengers’ demand, but we examine the travel time for each OD.

The models are applied to Paris metro line 1, see Figure 1.3. Among its 25
stations, 15 have interconnections with other network lines, while 10 are served only
by line 1. In this chapter, we assume stations without interconnections with other
lines in the network have lower passenger demand arrival rates and can be skipped
every other time (skippable stations).

3.2.1 The Fundamental Diagrams of the Train Dynamics

The line’s fundamental diagram gives a relationship between the line frequency (or
line traffic flow) in vehicles per hour and the number of trains running on the line.
Using the train dynamics, we can compute headway between two trains at all nodes
on the line and for each iteration k. We study the asymptotic average train headway
h obtained by taking the average on all nodes and with k → ∞. The following
equations give the average train running headway and frequency.

hj = lim
k→+∞

dkj/k,∀j (3.11)

h =
∑

j

hj/n (3.12)

f = 1/h (3.13)

For every 0 < m < n, we simulate the train dynamics for a sufficiently large num-
ber of iterations K and estimate the asymptotic average train time-headway h and
frequency f . For a line without a skip-stop policy, the papers using the same dis-
cretization showed that the steady state of the train dynamics exists and is equal to
the limit defined by Equations (3.11) and (3.12). We consider in this chapter that
the limit also exists for a line operated with a skip-stop policy. In Chapter 4, we
prove that the steady state exists and is indeed equal to the limit when k → ∞.

For each value of m, we report the average train frequency to create the fun-
damental diagram of the line. Passengers going from or to skippable stations can
only board trains serving their origin or destination. Thus, the average headway
between two trains these passengers can board is doubled. For both models, we
also represent the frequency of the line operated with an all-stop policy on the same
diagram. It allows us to compare graphically the train frequencies. In Figures 3.2a
and 3.2b, we show three different curves. The frequencies of the skip-stop models
are shown in orange and green, respectively, for passengers boarding any train and
for passengers boarding a specific train. The blue curve represents the frequency of
the line with an all-stop policy.
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(a) Fundamental diagram for the restricted model.
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(b) Fundamental diagrams for the unrestricted model.

Figure 3.2: Fundamental diagrams obtained by simulation. The three curves rep-
resent the frequency for an all-stop policy in blue and for the skip-stop policy in
orange and green.

Three phases can be distinguished in both figures and for the three curves. The
first phase corresponds to the free flow phase. The frequency increases with the
number of trains. Beyond a certain number of trains (here about m = 55), there
is the capacity phase. It corresponds to the maximum achievable frequency. When
reached, adding trains does not decrease the average headway between two trains.
After a train has departed from a signal, there is a minimum time before another
train can depart from the same signal. The signal with the longest time limits the
overall frequency of trains and gives the line’s capacity. Finally, there is the conges-
tion phase. When too many trains run on the line, they interact with each other
(because of the safety separation constraint), inducing train congestion. However,
there are also differences between the restricted and unrestricted models. The fun-
damental diagram of Figure 3.2a shows no apparent improvement in train frequency
with our first model. At best, a slight improvement occurs when m is small. How-
ever, when m is close to the one that gives the maximum frequency, the two curves
merge.

For the presented unrestricted model, the trains have more freedom as we relax
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the constraint requiring that every OD pair be possible without a connection. In
Figure 3.2b, the curves are distinguished. The average train frequency increases
faster when a skip-stop policy is implemented. However, the maximum frequency
and congestion phase remain unchanged.

3.2.2 Train Trajectories

To better understand the difference between the models and why there is no im-
provement with the restricted model, we represent the train trajectories on a small
part of the line; about more than half of the stations in one direction from La
Défense station to Hôtel de Ville. Figures 3.3a and 3.3b represent the trajectories
for the restricted and unrestricted models with m = 50 trains running and for about
60 minutes. On the y-axis, stations in bold are mandatory, while stations in italics
are skippable. When the corresponding number of trains is m = 50, the headway
between trains is about 2 minutes, corresponding to the line’s peak hour headway.

On Figure 3.3a, the black dashed curve represents trains that stop at all stations,
and the solid blue lines represent trains that do not stop at skippable stations. The
other service slows down these trains. They often must wait in the interstation until
the preceding trains leave the platform. The slower service, therefore, limits the
trains’ frequency.

On Figure 3.2b, with m = 50, the difference between the line operated with
and without the skip-stop policy in train frequency is 1.4 trains per hour. There
is also a significant saving in the number of trains moving. Indeed, to reach the
train frequency given by the second model presented above, with m = 50, three
more trains are needed with the model without a skip-stop policy. We can see on
Figure 3.3b that there are fewer interstation stops than in the restricted model.
Indeed, with the unrestricted model, the trains can circulate more freely on the line
without congestion.

3.2.3 Passengers Point of View

As noted previously, passengers’ arrival flows are not yet available. Therefore, this
section is the first look at how waiting and travel times are affected in train op-
erations. The previous paragraph examined the potential frequency gains to the
operator with the two proposed models. Nevertheless, passengers are also signifi-
cantly affected, either positively or negatively. Therefore, this section is the first
step in measuring the benefits to passengers. To measure passenger gains or losses,
we calculate the travel time between each OD pair for the line operated with and
without a skip-stop policy and illustrate this with two examples; see Figure 3.4. The
passenger travel time for a given OD includes the passenger waiting time at the ori-
gin station (a function of the train time headway) and the train travel time from the
origin to the destination stations. These two figures were obtained by calculating
the travel time of a passenger for each OD, first with an all-stop policy, denoted by
T(i,j), and with a skip-stop policy denoted by T s(i,j). The difference between the two
travel times is calculated as follows.

∆T(i,j) := T(i,j) − T s(i,j), ∀i, j. (3.14)

For each OD pair (i, j), when ∆T(i,j) is greater than zero, passengers gain travel time
with the skip-stop policy, while if ∆T(i,j) is negative, the travel with all-stop policy is
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(a) Trajectories of the trains for the restricted model.
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(b) Trajectories of the trains for the unrestricted model.

Figure 3.3: Space-time diagram for both models with m = 50 trains running on the
line. The solid blue and dashed black lines differentiate the two services on the line.
The trajectories are given for a 60-minute interval and on a limited section of the
line.

faster for that OD. In Figure 3.4, the blue and red squares indicate, respectively, the
origins-destinations for which passengers lose or gain travel time when a skip-stop
policy is implemented.
To compute passenger waiting time, we assume that passengers arrive at stations
uniformly regardless of their origin and destination. To compute the passengers’
waiting time, we consider the steady state of the train dynamics, and thus, the
headway between two trains is equivalent to the average train time headway h. We
distinguish three cases:

1. The origin and destination are mandatory stations. We consider an average
waiting time equal to half the headway, i.e., h/2.

2. Either the destination is a skip station, or both are skip stations, but it is
possible to reach the destination without making a connection. In this case,
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the waiting time is given by h because the passengers have to board a specific
train.

3. Finally, the last case corresponds to impossible origin-destinations. Passengers
must wait at both the origin and transfer stations. The average waiting time
at the origin station is equal to the headway h, as is the waiting time at
the transfer station. Indeed, once the passenger has alighted at the transfer
station, he or she must wait for the next train, which will arrive after the
average headway h. Consequently, the average waiting time is given by 2h for
these ODs.

Restricted Model

We do not improve line frequency as noted in Section 3.2.1. Therefore, on average,
train travel times are the same for each origin-destination. For some ODs, passenger
waiting time is the same, but it increases for passengers going to or from a skippable
station. Thus, some passengers do not lose time at best. Moreover, the readability
for passengers is more complex, as they have to look to see which train stops at
which station.

Unrestricted Model

The unrestricted model increases the frequency of trains, which reduces waiting
time at mandatory stations and the travel time of trains. However, some passengers
can only reach their destinations with a connection within the line. Waiting times
for these passengers are considerably longer, as they have to wait for a train at
two different stations. We measure the gains and losses in two cases, with the
number of trains equal to 22 and 50. In the first case Figure 3.4a, the average
headway between trains is about 6 minutes, corresponding to an off-peak headway.
In the second case Figure 3.4b, the headway between trains during peak hours is 2
minutes, corresponding to 50 trains running. In both figures, each square represents
the difference in the travel time ∆T(i,j) for all origin-destinations i, j. The x and y
axes represent the destination and origin; for readability purposes, only mandatory
stations are written on the axis. The color of the squares becomes brighter as the
difference (either negatively or positively) between the travel time increases. The red
color shows the origin destinations for which the skip-stop policy benefits passengers.
On the contrary, the blue squares indicate that passengers travel slower when the
line is operated with a skip-stop policy. Finally, we set a lower and upper threshold
for time lost or gained. Below or above 6 minutes gained or lost, the squares are the
same color, bright red or blue respectively.

Three trends emerge from these figures: first, ODs whose origin and destination
are mandatory stations show significant savings. Moreover, the savings increase
with the distance between the origin and destination. On the contrary, origin and
destination stations that can only be reached by a transfer show significant time
losses. Especially on Figure 3.4a, when the headway is high, about 40 origin des-
tinations lose more than 6 minutes. However, this number drops to less than 10
ODs on Figure 3.4b. Finally, for all other ODs, headway plays an important role.
For example, for the second origin station, on Figure 3.4a, all ODs are in blue, and
passengers lose time. But on Figure 3.4b, as soon as the distance between origin
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(a) Number of moving trains m = 22 for the unrestricted model.
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(b) Number of moving trains m = 50 for the unrestricted model.

Figure 3.4: Heat-map of the difference in travel time ∆T(i,j) between the unrestricted
model and all stop-policy for all origin-destinations i, j. Figure 3.4a shows the
difference when m = 22 and Figure 3.4b when m = 50.

and destination is high enough, the time loss due to waiting is compensated by the
reduction of travel time. Finally, with a headway of about 6 minutes, each OD loses,
on average, about 5 seconds of travel time, while there is a gain of 50 seconds with
a time headway of 2 minutes.
The skip-stop policy must be implemented at a high frequency to benefit to passen-
gers. With a high frequency, the increase in waiting time is offset by the reduction
in travel time.

3.3 Conclusion

This first chapter takes the first step toward modeling skip-stop policies. We write
equations that describe the train dynamics of a line operated by a skip policy. Using
these equations, we proposed two different models. The first model requires every
other train to stop at all skippable stations, thus ensuring that going from any
station to another is possible without requiring a transfer. However, this model
does not improve train frequency, as trains that stop at all stations can block other
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trains and limit frequency. In addition, passenger travel time remains the same or
may even be longer depending on the OD. So there is no benefit to operators or
passengers from this strategy.

On the other hand, if we relax the OD constraint, the frequency of trains at
mandatory stations and passengers’ travel time are improved. Therefore, the skip-
stop policy can be beneficial to both the operator and the passengers under specific
conditions, which we examine in this chapter.

However, in this chapter, we could only obtain these results through numerical
simulations. We assume that the steady state of the train dynamics exists and is
given by the limit when the number of iterations tends to infinity. In the next
chapter, we will prove our assumption. Furthermore, we cannot choose which trains
should stop at which station. Therefore, in the next chapter, we extend our model
to consider the trains’ stopping pattern. In doing so, we aim to obtain analytical
results that allow us to interpret all traffic phases in the fundamental diagram.

Finally, we first look at the possible benefits for the passengers’. However, their
arrival rate at stations and their origin-destinations is not considered in the model.
Even if our results give insights for both the operator and the passengers, further
studies are necessary to assess precisely the global system operation.



Chapter 4

Max-plus Modeling of a Two-Service
Skip-Stop Policy

With the train dynamics developed in the previous chapter, it is currently
not feasible to establish specific services for the trains. Consequently,
accurately calculating the passengers’ perspective and measuring the ef-
fects of the skip-stop policy becomes challenging. In this chapter, we
incorporate the services defined by the operator as input to the model.
Additionally, we demonstrate that the train dynamics can be expressed
linearly using the Max-plus algebra. Our model allows the derivation
and interpretation of traffic physics and the impact of implementing a
skip-stop policy on line frequency. We present our model on a unidirec-
tional loop line and use Paris metro line 1 as a case study. This chapter
focuses on the operator’s point of view and evaluates the gains that a
skip-stop policy can provide in terms of frequency. Through our model,
we analytically derive a fundamental traffic diagram for the line. This
diagram provides average train-time headway or frequency as a function
of the number of running trains. We show the existence of three dis-
tinct phases: free-flow, capacity, and congestion. Moreover, we prove
that the free-flow phase is piecewise linear and that it exists a number of
running trains beyond which the trains interact with each other limiting
the increase of the frequency. We also study the impact of the number
of skippable stations or the stopping patterns defined by the operator.
Finally, the frequency of the skip-stop policy is compared to an all-stop
one to measure the gains that the operator should expect.

4.1 Modeling

In this section, we develop our mathematical model for the dynamics of the trains.
The modeling is in the principles similar to Chapter 3; however, we recall all the
notations and principles in this section. First, we describe the considered metro line
with the main assumptions and then fix the notations. The train dynamics model
is then described by two constraints, written on the train departure time variable.
We then analyze the model in the max-plus algebra, showing its linearity in this
algebraic structure. Finally, we derive interesting formulas on the train dynamics’
stationary regime using some max-plus algebra theorems.

33
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4.1.1 Main Assumptions

The application of our model is any unidirectional loop line (line without junction)
where trains run without overtaking, see Figure 3.1. We use the signaling system to
discretize the line into several segments. Each segment ends in a node corresponding
to a signal on the line. There are three types of nodes: stations where all trains
stop (solid squares), stations that can be skipped (empty squares), and the other
nodes corresponding to signals between stations. In this chapter, we first consider
two different services, A and B, that alternate on the line.

Each segment is associated with characteristic times: the travel time, i.e., the
sum of the run and dwell times, and the safe separation time. In the Paris metro
network, all lines except the three less frequented ones are at least equipped with a
grade of automation 2 (GOA 2) for the conduction. With GOA 2, the driving system
manages the acceleration and braking of trains. Therefore, only station dwell times
are nondeterministic. The passengers’ arrival rate at stations directly influences the
dwell times, as drivers need to wait for all passengers to alight and board the trains.
With this grade of automation, the assumptions of non-deterministic dwell times
might be too restrictive. This aspect is studied in Chapter 5. In addition, two lines
in the network are fully automated (GOA 4), including our case study. On fully
automated lines, the trains are driverless. Therefore, the system manages driving
and does not require onboard staff, even in an emergency. Moreover, in all stations,
platform screen doors prevent passengers from falling onto the tracks, increasing
safety and diminishing the causes of disturbances. During operation, all nominal
times are effectively achieved by all trains. There are still some small disturbances,
but their occurrences are very low. In Table 4.1, we give some reliability data
for our case study. First, the trains’ reliability is provided by the percentage of
the trains’ number that actually run compared to the schedule. Then, the headway
reliability measures the percentage of passengers who wait for a train less or as much
as the reference headway. Since its full automation in 2013, the line has averaged
about 100% on both indicators1. Therefore, our deterministic run, dwell, and safe
separation time assumption is not restrictive for a fully automated line.

Table 4.1: Average reliability data per year for our case study.

Year 2013 2014 2015 2016 2017
Trains’ reliability 101.6 100.1 100.4 100.6 101.2

Headway reliability 99.2 99.4 99.7 99.6 99.6
Year 2018 2019 2020 2021

Trains’ reliability 99.6 100.1 100.1 102
Headway reliability 99.3 99.4 99.4 99.3

In future research, nondeterministic train dwell times will be considered to extend
the model to lines with GOA 2 conduction systems. Still, in this paper, we assume
that the train dwell times provided by the operator are sufficiently long to allow
all passengers to get off and on the trains at every station. As mentioned in the
introduction, our model aims to derive the train frequency as a function of the
number of trains running on the line, the services provided by the operator, and other

1Some punctuality values exceed 100%. On certain days, the company may have run more
trains than scheduled.



CHAPTER 4. MAX-PLUS MODELING OF A TWO-SERVICE SKIP-STOP
POLICY 35

parameters, such as lower bounds on train dwell times at stations, train running
times on inter-stations, safe separation times of trains, etc. We give below the
required notations for our model and then present the model.

4.1.2 Notations

To consider the train dynamics on the metro line, including the dynamics on the
inter-stations, we discretize the line into segments (or blocks), as done by the signal
system. The length of each segment must be bigger than or equal to the length of one
train, plus a minimum safe separation distance between trains. The discretization
is illustrated in Figure 3.1. Lower bounds on train run (rj), dwell (wj), and safe
separation (sj) times on every segment j are then derived from the ones on every
inter-station, where we still distinguish the cases where the trains stop at or skip the
station downstream of the considered segment. In particular, train run and dwell
times are longer for the cases where trains stop than for the cases where they skip a
station; when a train stops at a station, it must slow down and wait for passengers
to alight and board. Our model aims to calculate the train departure times (denoted
dkj for the kth departure from node j) at all line nodes. Then from this calculus, we
derive interesting formulas, diagrams, and macroscopic behaviors.

Table 4.2: General notations for train dynamics.

k departure’s counter;
n number of segments;
m number of trains running on the line;
L length of the line in kilometers;
bj ∈ {0, 1}, the initial positions. bj = 1 if there is a train on segment j at time

0, bj = 0 otherwise;
b̄j := 1− bj;
dkj kth train departure time at node j;
akj kth train arrival time at node j;
rkj train run time from node (j − 1) to node j;
wkj = dkj − akj the train dwell time at node j ;
tkj := rkj + wkj travel time on segment j (from node j − 1 to node j);
skj train safe separation time at node j;
hkj = dkj − dk−1

j : train time-headway at node j.

Let us consider the notations of Table 4.2, where the main variables of the train
dynamics are indexed by node (j) and by a counter (k) counting the number of
departures from (or arrivals to) a considered node. We notice here that the index
k does not index the trains, but it counts their departures from (or arrivals to)
every node j. Indexing the departures [70] instead of trains [32] is a relatively new
approach in the rail transit modeling literature. It allows us to write the model
linearly in the Max-plus algebra and derive analytical formulas and diagrams on the
train dynamics.

For each of the variables rkj , wkj , tkj , and skj , there exists a lower bound denoted by
the underlined variable. It corresponds to the minimum time defined by the line’s
constraint for the run and safe separation time or by the operator for the dwell time.
With a skip-stop policy, the lower bound depends on the service performed by the
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train. In Table 4.3, we give as, rpj , w
p
j , t

p
j , and wpj the lower bounds for the run, dwell,

travel and safe separation time for the service p ∈ {A,B}. Moreover, we differentiate

Table 4.3: Notations related to the skip-stop policy.

rpj lower bound for the train run time for the service p ∈ {A,B} from node
j − 1 to node j, ∀j;

wpj lower bound for dwell time for the service p at node j, p ∈ {A,B} ;
tpj := rpj + wpj lower bound for train travel time for the service p ∈ {A,B};
sj lower bound for the train safe separation time ∀j. Note that in our model,

we do not consider different safe separation times; they are the same whether
a train stops at a j ∈ O station or not;

A the set of stations at which the train performing service A stop;
B the set of stations at which the train performing service B stop;
AB = A ∩ B the set of mandatory stations, i.e., where all trains stop;
O = A△B the set of skippable stations, i.e., where trains stop every other

time.

different sets of stations. A and B give the stations where a train performing service
A and B stops. The intersection of these sets AB gives the mandatory stations
where all trains stop. Finally, the symmetric difference gives the stations of A and
B but not their intersection and thus gives all the skippable stations O.

Let us now write the model using the notations of Tables 4.2 and 4.3. The main
variable of the model is the train kth departure time dkj at every node j, and its
calculation is based on two constraints. These two constraints have been developed
in Sections 3.1.2 and 3.1.3, so remind the main principles of these constraints.

4.1.3 Travel Time Constraint

This first constraint requires a departure not to occur before the considered train
arrives at the considered node. The trains have to respect the speed limits imposed
by the line’s characteristics. Thus, the departure at node j must be greater than the
departure at the previous node j− 1 of the same train. In this chapter, we consider
the two services A and B, thus the travel time depends on the train service. The
constraint is then written as follows:

dkj ≥





d
k−bj
j−1 + tAj , if the train performs service A,

d
k−bj
j−1 + tBj , if the train performs service B.

∀j (4.1)

4.1.4 Safe Separation Time Constraint

The safe separation time corresponds to a release time. This constraint ensures that
there are no collisions between trains. Thus, the next segment must be free of trains,
and the departure at node j is possible after the departure of the previous train on
segment j + 1, plus a given safe separation time sj. For this constraint, we do not
distinguish between cases, since we take the largest value between the two services.
So there is no need to distinguish between two cases as in the travel time constraint.
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We can write the safe separation time constraint as follows:

dkj ≥ d
k−b̄j+1

j+1 + sj+1 (4.2)

Constraint (4.2) does not allow a train departure from segment j when segment
j + 1 is not free. In practice, the signal system blocks the train on segment j. It
ensures that train overtaking is not allowed.

4.1.5 The Train Dynamics

The train dynamics are obtained by combining the travel time and safe separation
constraints. A train is considered to depart as soon as both constraints are satisfied.

dkj =





max{dk−bjj−1 + tAj , d
k−b̄j+1

j+1 + sj+1}, if the train performs service A

max{dk−bjj−1 + tBj , d
k−b̄j+1

j+1 + sj+1}, if the train performs service B
(4.3)

For node j and for each count k, we can evaluate the departure depending on
the service of the train. Yet, we currently have no rule to define when a train makes
a service or the other.

4.1.6 Services and Parity of Departure

We now have the dynamics of the trains, but we still need to determine the conditions
under which a train stops at or skips a station. For example, the trains stop at
skippable stations every other time. Thus, we can use the parity of departures.
Indeed, if a train stops at a skippable station when making an odd departure, the
next train making an even departure necessarily skips the station. In Chapter 3,
a simple rule is set for skippable stations: trains making odd departures stop, and
the even departures induce trains to skip stations. Nevertheless, ensuring that the
trains make the services defined by the operators is impossible. Therefore, we give
here a new rule that defines the behavior of the trains at skippable stations based
on the parity of departures. We introduce the variables µej and µoj , which are equal
to either A or B. If µej = A, a train making an even departure at node j makes
service A on this segment, and we also have µoj = B. We need to ensure that the
services defined by the operator are respected by the trains on all the nodes of the
line. Therefore, we set a rule at each node to define if an even departure corresponds
to a train performing service A or B.

µej :=

{
A if

∑j
q=1 bq is even

B otherwise
(4.4)

µoj :=

{
B if

∑j
q=1 bq is even

A otherwise
(4.5)

The variables µej and µoj give the service associated with the departure parity for
each node. For example, the train that makes the kthdeparture at the first node
with k even is assigned service A, i.e., µe1 = A. We want to ensure that this train
actually performs service A at all nodes on the line. For each node j, there is

∑j
q=1 bq
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trains that will depart before the considered train arrives at station j. Therefore, it
performs the k +

∑j
q=1 bqth departure at node j. If the number of trains

∑j
q=1 bq is

even, then the considered train also makes an even departure, and we have µej = A.
Otherwise, we have µej = B.

With the definitions (Equations (4.4) and (4.5)), we can now rewrite the train
dynamics according to the parity of the train departures. For readability purposes,
we simplify the notation t

µoj
j and t

µej
j into tµ

o

j and tµ
e

j .

dkj =





max{dk−bjj−1 + tµ
e

j , d
k−b̄j+1

j+1 + sj+1}, if k is even

max{dk−bjj−1 + tµ
o

j , d
k−b̄j+1

j+1 + sj+1}, if k is odd
(4.6)

4.1.7 Formulation in Max-plus Algebra

To analyze the dynamic model (Equation (4.6)), we propose in this section a for-
mulation of this model in the Max-plus algebra. With this formulation, we obtain
a linear model in this algebra. Then, we apply some results of the spectral theory
of the Max-plus algebra to analyze the dynamic system and derive some interesting
results.

Let us first rewrite our dynamic model (the train dynamics Equation (4.6)) in
the Max-plus algebra of scalars. We obtain:

dkj =





tµ
e

j ⊗ d
k−bj
j−1 ⊕ sj+1 ⊗ d

k−b̄j+1

j+1 , if k is even

tµ
o

j ⊗ d
k−bj
j−1 ⊕ sj+1 ⊗ d

k−b̄j+1

j+1 , if k is odd
(4.7)

It is easy to see that each of the model’s cases is linear in the Max-plus algebra.
Depending on the values of bj and b̄j, the departure dkj either depends on the previous
iteration k− 1 or on the current one k. We can divide these two cases and write the
equations in matrix form. We obtain:

dk =

{
Π0d

k ⊕ Π1d
k−1, if k is even

Φ0d
k ⊕ Φ1d

k−1, if k is odd,
(4.8)

where dk := (dk1, . . . , d
k
n)

′ is the vector giving the train departure times at all the
nodes, and where the Max-plus matrices Π0,Π1,Φ0 and Φ1 are defined as follows.

(Π0)(j,j−1) = tµ
e

j and (Φ0)(j,j−1) = tµ
o

j if bj = 0

(Π1)(j,j−1) = tµ
e

j and (Φ1)(j,j−1) = tµ
o

j if bj = 1

(Π0)(j−1,j) = sµ
e

j and (Φ0)(j−1,j) = sµ
o

j if b̄j = 0

(Π1)(j−1,j) = sµ
e

j and (Φ1)(j−1,j) = sµ
o

j if b̄j = 1

Proposition 4.1. 1. The matrices Π0 and Φ0 are acyclic, i.e., their associated
graphs do not contain any cycles.

2. The matrices Π∗
0 and Φ∗

0 are finite, i.e. Πk
0 = Φk

0 = ε, for a sufficiently large
k.
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Proof. 1. There exists in Π0 and Φ0 only arcs linking adjacent nodes. We also
have 0 < m < n; thus, there exists at least one node j with bj = 1 and bj+1 = 0
that has only arcs going in and no going out. This node prevent any cycle in
G(Π0) and G(Φ0). Besides, by definition b̄j = 1− bj ̸= bj. There exist no loop
cycles in G(Π0) and G(Φ0).

2. From §3.7 of [4], if A contains no cycle, then A is nilpotent, that is, Ak = ε
for k sufficiently large.

Proposition 4.2. The solutions of dk = Π0d
k⊕Π1d

k−1 and dk = Φ0d
k⊕Φ1d

k−1 exist
and are unique. They are respectively given by dk = Π∗

0Π1d
k−1 and dk = Φ∗

0Φ1d
k−1.

Proof. 1. Proposition 4.1 show that there are no cycles and thus no cycle with
positive weights. The existence of the solution comes directly from Theo-
rem 2.1.

2. To prove the uniqueness of the solution, we use the proof of Theorem 2.1
developed in [4]. The condition for uniqueness is given by Ak = ε when
k → ∞. Proposition 4.1 also shows that this condition is satisfied for Πk

0 and
Φk

0, thus the solution is unique.

We can now apply Proposition 4.2 to the dynamic system (Equation (4.8)), and
rewrite it as follows:

dk =

{
Πdk−1, if k is even
Φdk−1, if k is odd,

(4.9)

where Π := Π∗
0Π1 and Φ := Φ∗

0Φ1.
Then, if we consider k odd, we have dk = Φdk−1 and dk−1 = Πdk−2 since k − 1 is
even. Therefore we have dk = ΦΠdk−2. If we define Υ := ΦΠ, the dynamic is now
written for an odd k, as follows:

dk = Υdk−2 (4.10)

For k even, we have dk = Υ′dk−2 with Υ′ := ΠΦ.

4.2 Main Theorem
In this section, we can use Equation (4.10) to derive the average train-time headway.
First, we enunciate Theorem 4.3 and Corollary 4.5, giving the average train time
headway and frequency of a line operated with a two-service skip-stop policy. Then,
in Section 4.2.1, we make explicit the variables used in the theorem and their inter-
pretation in terms of the physics of traffic. Finally, Appendix A gives the complete
proof of Theorem 4.3.

4.2.1 Theorem Variables

Before giving the theorem statement, we first develop the notations used to obtain
the average train-time headway. First, the average train time headway on a line
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depends on the number of running trains m, with different patterns emerging de-
pending on whether the number of trains is odd or even. When there is an even
number of running trains m, trains run the same service consistently. However,
with an odd number of trains, the service changes every time a train reaches the
terminus. For a train making its kthdeparture at the first node, its next departure
at the same node will be the (k + m)th, as all other trains on the line must have
passed before it can depart again. The parity of k and (k + m) is the same if m
is even and different if m is odd. When m is odd, the service changes with each
successive lap, as determined by the parity of the departure at the first node. Dif-
ferent variables are listed for the two cases, with the superscripts e or o indicating
whether the number of running trains is even or odd for each variable. Besides the
number of running trains m, the average train travel times denoted T eψ, T oψ, or S, to
go around the line significantly impact the headway and frequency. The notations
are detailed in Table 4.4.

Table 4.4: Notations related to the skip-stop policy.

p ∈ {p1, p2} design any service. If p1 = A, we have p2 = B, and if p1 = B, we
have p2 = A;

ψ ∈ {0, · · · , n}, the number of nodes at which the service associated in T eψ
and T oψ changes;

o the first node of the line;
Iψ := {i1, i2, · · · , iψ}, a sorted set of any distinct ψ nodes on the line;
TA :=

∑
j t
A
j , the travel time of a train to go around with service A;

TB :=
∑

j t
B
j , the travel time of a train to go around with service B;

T pi1,i2 :=
∑i2

j=i1+1 t
p
j + tpi1 + si1 , the travel time of a train to go from node i1 to

node i2 with service p;
T po,i1 :=

∑i1
j=o+1 t

p
j , the travel time of a train to go from the first node of the line

o to any node i1 with service p;

T eψ :=

{
2max{TA, TB}, if ψ = 0

2maxp,Iψ{T p1i1,i2 + T p2i2,i3 + · · ·+ T p2iψ ,i1}, otherwise

T oψ :=

{
(TA + TB), if ψ = 0

2maxp,Iψ{T p1o,i2 + T p2i2,i3 + · · ·+ T p2iψ ,o}, otherwise
S :=

∑
j sj, the sum of all the safe separation times.

The variables T eψ and T oψ depend on ψ, the number of nodes where the service
changes for the calculation of the average train travel time. The set Iψ gives the
nodes sorted in ascending order in the direction of the train at which the service
changes. In the case where ψ = 0, the set Iψ is empty, and the average train travel
time is given by either TA or TB. However, if ψ > 0, we have a non-empty set Iψ,
and the average travel time is a combination of both services A and B. Consider
an example with ψ = 4. With Iψ = {i1, i2, i3, i4} such that i1 < i2 < i3 < i4, the
average train travel time is given by

Tp,Iψ = T p1i1,i2 + T p2i2,i3 + T p1i3,i4 + T p2i4,i1 .

Figure 4.1 shows an example of the different parts of the travel time on a
schematic representation of the line. Between the nodes i1 and i2 the travel time is
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|

i1

|||
i2

| | |

i3

|
i4

T p1(i1,i2)

T p1(i3,i4)
T p2(i2,i3)

T p2(i4,i1)

Figure 4.1: Example of the average travel time Tψ, with ψ = 4

given by the service p1. Then at node i2 there is a change in the service change, and
it is service B which gives the average travel time on that part of the line. Similarly,
at nodes i3 and i4, it is services p1 and p2 that give the average train travel time,
respectively.

In addition, it is the maximum value on all the sets of possible nodes which is
considered in the Theorem 4.3. Thus, if the maximum is given by the set Iψ =
{i1, i2, i3, i4}, then we have ∀I ′ψ = {i′1, i′2, i′3, i′4}, Tp,Iψ ≥ Tp,I′ψ .

4.2.2 Theorem and Corollaries

In Equation (4.10), the departure vector dk is determined by the departure vector
dk−2 and the max-plus matrix Υ, which has a unique non-zero eigenvalue indicating
the growth rate as it will be shown in Appendix A. This eigenvalue reflects the
matrix’s growth rate over two steps, as the kthdeparture is a function of the (k −
2)thdeparture. The matrix’s growth rate can be interpreted as the average train
time headway, and in our dynamics, it specifically represents the average headway
between two trains performing the same service.

Theorem 4.3. The train dynamics admit a stationary regime where the asymp-
totic average train time-headway of the line between two trains performing the same
service is given by he2 and ho2 for respectively an even and an odd number m of trains:

he2(m) = max{hefw, hmin, hbw} (4.11)
ho2(m) = max{hofw, hmin, hbw} (4.12)

with 0 ≤ ψ ≤ |O|, hefw = maxψ{T eψ/(m+ψ)} and ψ even, hofw = maxψ{T oψ/(m+ψ)},
hmin = maxj{(tAj + tBj + 2sj)}, and hbw = 2S/(n−m).

Proof. The complete proof is given in Appendix A.

Corollary 4.4. The average train-time headway of the line between two trains is
given by he and ho for, respectively, an even and an odd number m of trains:

he(m) = he2(m)/2 (4.13)
ho(m) = ho2(m)/2 (4.14)

Proof. Directly from one train being between two trains doing the same service.

The headway formulas differ based on the parity of the number of trains running.
Specifically, if the number of trains is even, each train runs the same service, and
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it does not change its service at the line terminus. Whereas if it is odd, a train
changes its service at the terminus; thus, each train alternates services from one lap
to another. For example, at node j, a train that makes the kthdeparture will make
the k+mthon its next departure from the same node, i.e., on the next lap. Because
overtaking is impossible on the line, all other trains will depart at the same node.
If m is even, the parity of k and k +m and the associated service are identical. On
the contrary, the parity of k and k+m are not the same when the number of trains
running is odd, and thus the services performed are not the same. We can express
the average frequency of the line with Corollary 4.5.

Corollary 4.5. The asymptotic average train frequency of the line is given by f e(m)
and f o(m) for, respectively, an even and an odd number m of trains:

f e(m) = min{f efw, fmax, fbw} (4.15)
f o(m) = min{f ofw, fmax, fbw} (4.16)

with 0 ≤ ψ ≤ O, f efw = 1/hefw, f ofw = 1/hofw, fmax = 1/hmin, and fbw = 1/hbw.

Proof. Directly from f = 1/h.

The headway and the frequency depend on three different terms. In Section 4.4,
we represent and interpret the evolution of the headway and frequency in the fun-
damental diagram of the line. However, it is important to notice that the variables
he(m), ho(m), f e(m), and f o(m) correspond to a ratio between the number of mov-
ing trains and variables corresponding to the train travel times to go around the
line. These variables are detailed in Section 4.2.1.

4.3 Review of the Results for a Line With an All-
Stop Policy

This section reviews the main theoretical results for a loop line operated with an
all-stop policy. The average train-time headway and frequency are denoted with the
variables ha and fa

Theorem 4.6. [23] The asymptotic average time-headway h of the trains is given
as follows.

ha(m) = max {hfw, hmin, hbw} , (4.17)

with hfw =
∑

j tj/m, hmin = maxj{tj + sj}, and hbw =
∑

j sj/(n−m).

Corollary 4.7. [23] The asymptotic average frequency f of the trains is given as
follows.

fa(m) = min {ffw, fmax, fbw} (4.18)

with ffw = m/
∑

j tj, fmax = 1/hmin and fbw = (n−m)/(
∑

j sj).

Note that tj corresponds to the train’s travel time that stops at all stations. In the
next sections of the chapter, we define T :=

∑
j tj =

∑
j t

0
j , the travel time to go

around the line by stopping at all stations, and S :=
∑

j sj.
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4.4 The Steady State of the Train Dynamics

This section analyzes the results and formulas found in Theorem 4.3 and Corol-
lary 4.5. First, Section 4.4.1 presents the case of application of the model. Then, we
derive the traffic phases, represented in the fundamental diagram, i.e., the relation-
ship between the train frequency in trains per hour and the number of running trains
(Section 4.4.2). It is very useful for understanding line operation. In Section 4.2.2,
we pointed out the differences between an even and odd number of trains running on
the line. It also results in differences in train time headway and frequency. However,
we can do the analyses for the case with an even number of trains and generalize
them to the case with an odd number of trains since the shape of the fundamental
diagrams is similar in both cases.
The fundamental diagram (see Figure 4.2) is divided into three main phases. In
the first phase, corresponding to f efw, the frequency increases with the number m of
trains. The formula of f efw depends on ψ, which makes this phase piecewise linear.
In the second phase, the train frequency is constant, i.e., whether a train is added or
removed, the frequency remains the same, provided that it does not cause a phase
change. In the last phase, adding a train decreases the frequency.

4.4.1 Application Case

Description of the Line Characteristics

In the next sections of this paper, we use as a case study Metro line 1 of the Paris
network operated by the RATP Group [53]. Figure 1.3 and Table 4.5 show the line
map and some of its characteristics.

The line consists of 25 stations connecting the east and west sides of the city,
passing through multiple business districts, major tourist attractions, and some of
the busiest stations on the system. It is the busiest line in the network [50]. The
Paris network has 16 lines and is very dense. Common stations exist between some
network lines (but operated on different tracks). It is possible to make connections
between lines at these stations to reach one’s destination. For example, Paris metro
line 1 has 14 stations connecting with other rapid transit lines and one station with
tramway lines. The line is now fully automated, and, as the busiest line in the
network, the peak hour headway is less than 2 minutes. The line’s rolling stock
is homogeneous, and the trains are rubber-tired (53 MP05 in service). For this
case study, we use data from RATP Group (the operator of Paris metro lines).
The data provide each line segment’s run, dwell, and safe separation time. These
characteristic times are calculated using internal software, which considers the rolling
stock’s specifications and all the line’s characteristics, such as the length or declivity
of each segment.

Table 4.5: Table with some of the line characteristics.

Conduction Stat. Len. Trav. time Ridership Min. head.
Automated 25 16,6 km ∼33 min 184,4 Mill. 110 sec.
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Skippable Stations

We now describe the process for choosing which stations can be skipped and at which
stations all trains must stop. We base our process on open data provided by the
RATP Group [52]. These data give the number of annual entries in all stations of
the line. First, we assume that stations with a connection with another rapid transit
line are served by all trains. It is because the strength of the Parisian network lies
in its interconnections. It is, therefore, necessary to always allow passengers to be
able to make their connections. Next, we establish that the ten less busiest stations
with no connections can be skipped.
In Section 4.4.2, we consider an alternate stopping pattern. For example, Table 4.6
shows an alternate service example on a line sample from station La Défense to
station Château de Vincennes. All the results we explain in Section 4.4.2 are gener-
alizable to any stopping pattern.

Table 4.6: Example of the alternate stopping patterns on the line. Only the skip-
pable stations are written in the table.

Name P. de Neuilly Sablons Arg. George V Tui.
Service B A B A B
Name Louvre-R St. Paul P. de Vinc. St. Man. Bér.
Service A B A B A

4.4.2 The Traffic Phases of the Fundamental Diagram

The fundamental diagram is defined as the relationship between the train frequency
in trains per hour and the number of running trains on the line. Using the formulas
of Corollary 4.5, the fundamental diagram gives the average train frequency of the
line for a given number of running trains m and with the lower bounds on the
run, dwell, and safe separation times. In Figure 4.2, we represent the fundamental
diagram of Line 1 that gives the asymptotic average train frequency evolution with
the number of trains running in the line. Three phases are clearly notable: the
free-flow phase corresponding to the growing part, the constant part corresponding
to the capacity phase, and the decreasing part or congestion phase. To explain the
phases and the physical phenomenon existing on the line, we represent the frequency
for an even number of running trains, as the phases are similar for the even and odd
cases. In Section 4.4.3, we explicit the differences between the even and odd cases.

The Free-Flow Phase

In the free-flow phase, the frequency increases with the number of trains. On a line
operated without a skip-stop policy, this phase is linear. In our case, the equation
that describes this phase is given by f efw and depends on a variable ψ. The value of m
changes the value of ψ, and thus f efw is a piecewise linear function. It is bounded by
the origin and the pointmF on the x-axis such thatmF (Proposition 4.8) corresponds
to the train capacity of the line, the point where the maximum frequency fmax is
reached.
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Figure 4.2: The frequency fundamental diagram of Metro line 1 for an even number
of trains m. Three phases are visible: the free-flow phase until mF (Proposition 4.8),
where the frequency increases, the capacity phase untilmG (Proposition 4.10), where
the line reaches a plateau and the congestion phase where the frequency decreases.
The pointmE (Proposition 4.9) corresponds to a change in the slope of the frequency
line in the free-flow phase.

Proposition 4.8. The maximum number of trains on the line before reaching the
line capacity is given by me

F and mo
F for respectively an even and an odd number of

trains.

me
F = max

ψ
{Tψfmax − ψ} (4.19)

mo
F = max

ψ

{
1

α
(Tψfmax − ψ)

}
, with

{
α = 1 if ψ is odd
α = 2 if ψ is even

(4.20)

Proof. We have by definition ψ ≥ 0 and Tψ > 0,∀ψ ≥ 0. Thus f eψ(m) = (m+ψ)/Tψ
and f oψ(m) = (αm+ψ)/Tψ are increasing and bijective as functions of m. Therefore,
∀l ∈ {e, o}, minψ f

l
ψ(m) is increasing and bijective as a function of m. Then we have:

ml
F := max{m,min

ψ
fψ(m) ≤ fmax}, by definition

= m̃, such that minψ fψ(m̃) = fmax

= max
ψ

{
f−1
ψ (fmax)

}

Thus, ml
F =

{
maxψ {Tψfmax − ψ} , if l = e

maxψ
{

1
α
(Tψfmax − ψ)

}
, if l = o

Since the frequency is piecewise linear, the slope of the line giving the evolution
of the frequency, changes with the value of m. Therefore, it is possible to precisely
determine the point E at which the slope changes for the first time. Moreover,
this point corresponds to a flattening of the curve, which means that even if the
frequency is still increasing, it is increasing more slowly.
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Figure 4.3: The headway fundamental diagram of Metro line 1 for an even number
of trains m.

Proposition 4.9. The number of trains from which the slope of the frequency line
starts to decrease is given by me

E and mo
E for respectively an even and an odd number

of trains.

me
E = min

ψ

{
T e0ψ

T eψ − T e0

}
(4.21)

mo
E = min

ψ

{
T o0ψ

αT oψ − T o0

}
, with

{
α = 1 if ψ is even
α = 2 if ψ is odd

(4.22)

with ψ > 0.

Proof. Let l = e. We look for the value m̃ such that, ∀ψ > 0:

m̃/T e0 = min
ψ

{(m̃+ ψ)/T eψ}

⇔m̃/T e0 −min
ψ

{(m̃+ ψ)/T eψ} = 0

⇔max
ψ

{
(m(T eψ − T e0 )− T e0ψ)/T

e
0T

e
ψ

}
= max

ψ
{fψ(m)} = 0

Similarly, to the proof of Proposition 4.8 we have fψ(m), and thus maxψ(m(T eψ −
T e0 ) + ψ)/T e0T

e
ψ, increasing and bijective. Therefore, the solution is unique and

m̃ = minψ f
(−1)
ψ (0), with f (−1)

ψ (y) = (yT e0T
e
ψ + T e0ψ)/(T

e
ψ − T e0 ). Therefore, we have:

m̃ = min
ψ

{min
ψ
f
(−1)
ψ (0)} = (T e0ψ)/(T

e
ψ − T e0 ) = me

E.

The proof uses the same arguments for l = o.

When a skip-stop policy is implemented on a line, the headway between two
trains changes as trains move along the line. Consider two trains that follow each
other. If the first train stops at a station that can be skipped, the following train
must skip it, and the gap between the two trains is reduced. Conversely, the headway
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Figure 4.4: The frequency fundamental diagram of Metro line 1 for an odd number
of trains m

increases if the roles are reversed at the next station. An accordion phenomenon
occurs on the line: trains get closer and further apart as they skip or stop at stations
that can be skipped. In some cases, the headway decreases too much, and the second
train must stop at a signal on the line to comply with the safety constraint because
it is too close to the preceding train. Thus, the travel time of this train is limited
by the slower first train. These cases are given by point E in Figure 4.2.

Before point ml
E, when ψ = 0, the frequency is given by m/T l(ψ=0), with T l(ψ=0)

being the travel time for a round trip on the line. When the number m of trains is
even, this travel time corresponds to the maximum between the two travel times for
a round trip on the line performed with the two services. When m is odd, this travel
time corresponds to the average of the two travel times for a round trip on the line
performed with the two services. Trains complete one round trip with the travel
time of one service and the second round trip with the travel time of the opposite
service. None of the travel times limits the travel time for a round trip on the line
performed with the two services. Therefore, it is given by TA and TB.

On the contrary, trains perform the same service for an even number of m and
have the same travel time on each round trip. Therefore, the larger value between
TA and TB limits the travel time. During this phase, trains move freely on the line
for the odd case, and none of them must stop at a signal to comply with a safety
constraint. In the even case, at least one train moves freely, and it travels along the
line without being blocked by another train performing the opposite service.

Beyond the number of running trains mE, the slope of the frequency decreases,
which means that the average travel time of the trains increases. Between mE and
mF , the accordion phenomenon that exists on the line creates interactions between
trains that did not exist before mE. The line can be divided into multiple sections,
where one service limits the travel time of all trains. If we take the same example
as in Section 4.2.1, i.e., ψ = 2 and m is even, we have

T eψ>0 := 2




i2∑

i1+1

tp1j +

i1 (mod n)∑

i2+1

tp2j + tp1i1 + si1 + tp2i2 + si2


 .
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Figure 4.5: The headway fundamental diagram of Metro line 1 for an odd number
of trains m

The line is divided into two sections, the first between i1 and i2 and the second
between i2 and i1. The services associated with the travel time of the trains in
these two sections are opposite. For example, between i1 and i2, service A gives the
train’s travel time, while the latter is given by service B between i2 and i1. Thus,
in terms of the physics of traffic, a train performing service B has its travel time
limited by service A between i1 and i2. And it is the opposite between nodes i2 and
i1. Moreover, if a train is limited by the other service on a section of the line, it is
blocked at a node to ensure that the safety constraint is respected. These blockages
are given in the travel times by the terms tp1i1 + si1 and tp2i2 + si2 .
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Figure 4.6: Values of ∆Tψ as a function of ψ.

The T eψ variables are divided into two terms: the first, denoted as
∑

j t
p
j , repre-

sents the sum of the train travel time to go around the line, and the second, written
as
∑

i∈Iψ ti + si, corresponds to the blockage time. Let ∆Tψ = T eψ − T eψ−2 be the
difference between T eψ, and T eψ−2. ∆Tψ is given in Figure 4.6. The value of Tψ
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increases with ψ, and the increase is approximately constant with ∆Tψ ≤ ∆Tψ−2.
Moreover, we have Iψ−2 ⊆ Iψ, and the nodes in the sets correspond to signals before
stations. As ψ increases, the value of the term

∑
j t
p
j also increases. Besides, when

the number of trains is close to the line’s capacity, this value is approximately the
same as the travel time of a train stopping at all stations.

The Capacity Phase

The second phase of the diagram corresponds to the train capacity of the line. The
function that describes that part is independent of the number of trains and is
defined between points F (Proposition 4.8) and G (Proposition 4.10).

Proposition 4.10. The number mG of trains corresponding to the end of the ca-
pacity phase is given by

mG = n− Sfmax (4.23)

Proof. Directly from Theorem 4.3, we have: hmin = S/(n − mG) ⇔ mG = n −
S/hmin

For every m satisfying mF ≤ m ≤ mG, the frequency remains constant and it is
given by fmax. This phase corresponds to the maximum frequency on the line. The
segment with the maximum time (tµAj + tµBj +2sj)/2 limits the headway, and adding
one train on the line does not decrease the headway. It only extends the lap travel
time.
From the passengers’ point of view, the waiting time is still the same; they do not
have to wait longer on the platform, but ifmF ≤ m ≤ mG, trains experience conflicts
as they have to stop between stations and, as a result, passengers suffer unnecessary
stops between stations.

The Congestion Phase

Finally, the last phase is given by the line delimited by the points G = (mG, fmax)
and H = (n, 0), the latter point is the intersection of the x-axis (f = 0) and the seg-
ment (fbw = (n−m)/S). It corresponds to the train frequency decreasing phase of
the diagram. During this phase, inserting a new train decreases the train frequency.
This phase is already explained in [23, 24, 22, 61, 59, 25]. The fundamental dia-
gram of road traffic presents a similar phase: when too many trains are running,
trains interact with each other, creating congestion. The safe separation constraint
determines the travel time around the line. Thus, it is given by the sum of all the
safe separation times sj and no longer by the travel times tj. The operators should
avoid this phase; keeping the trains at the depot is preferable to avoid congestion.

4.4.3 Difference Between the Even and Odd Cases

This section aims to compare the even and odd cases and evaluate their differences.
As previously mentioned, the primary distinction lies in the services provided by
trains. In the even case, a train always makes the same service, whereas in the odd
case, a train switches its service every round. Consequently, the average travel time
of trains differs in these two cases.
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Proposition 4.11. For ψ = 0, f o0 ≥ f e0 , i.e., the frequency increases faster or
equally with an odd number of trains than with an even one. With f o0 = 2m/(TA +
TB) and f e0 = m/max{TA, TB}.

Proof. By definition max{TA, TB} ≥ (TA+TB)/2 and so ∀m ≥ 0, 2m/(TA+TB) ≥
m/(max{TA, TB}), ⇔ f o0 ≥ f e0 .
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Figure 4.7: Difference in the frequency between the even and odd case.

To illustrate the differences, we have plotted the difference between the even and
odd cases’ frequency formulas in Figure 4.7 for all m values such that 0 < m < 80.
When m > max(me

F ,m
o
F ) = 65, the formulas are equivalent, and the frequency is

identical for an even or odd number of trains. Before mo
E, the frequency is higher

with an odd number of trains, as demonstrated by Proposition 4.11. For all m,mo
E ≤

m ≤ me
E, the slope in the frequency starts to flatten in the odd case, whereas it is

still constant in the even case. Thus, the even case’s frequency rises more quickly,
and the difference diminishes to 0 beyond me

E until the line reaches the capacity.
However, the maximum difference is about 0.20 trains per hour for approximately

43 trains in operation. In practice, this represents a negligible distinction in the
headway between trains for passengers. As a result, for the remainder of this chapter,
we do not distinguish between the even and odd cases and solely consider the simplest
case, which is the even one.

4.5 Comparison of Different Services
Skip-stop policies aim to increase train speed on the line and reduce passenger wait
times at the busiest stations served by all trains. The previous section discussed
how the frequency of trains changes with the number m of trains. In this section,
we aim to compare various parameters of skip-stop policies.

The primary factor affecting train frequency on the line is the services provided by
the operator. The operator can modify two key parameters: the number of skippable
stations and the stopping patterns. There are two primary stopping patterns: the
alternating stopping pattern, where stations A and B alternate as skippable stations,



CHAPTER 4. MAX-PLUS MODELING OF A TWO-SERVICE SKIP-STOP
POLICY 51

and the free assignment pattern, where two or more consecutive stations are served
by the same service. We give tools to compare different services defined by the
operator and emphasize the difference between a line operated with and without
a skip-stop policy. The formulas for the congestion phase are the same regardless
of the services performed by the train, because values of the sj are also the same.
Thus, there is no difference in the frequency during this phase, and we focus our
study on the differences in the free-flow and capacity phases.

This section is structured as follows: firstly, we assess the impact of the number
of skippable stations, while in Section 4.5.2, we evaluate the effect of the stopping
pattern, with a specific focus on the number of consecutive stations served by the
same service. Finally, in Section 4.5.3, we compare several scenarios of skip-stop
policies to an all-stop one in order to give operator insights about the benefits of
skip-stop policies.

4.5.1 Impact of the Layout and Number of Skippable Sta-
tions

When a train skips a station, it does not need to slow down or stop, which reduces
its travel time, and when the train’s travel time on the line changes, it affects the
line frequency. Depending on the arrangement of the stations chosen, the impact
on frequency can be different. Thus, we study the impact of the arrangement of
skippable stations to evaluate the impact on the frequency of the line. To do this,
we calculate the time saved by a train that does not stop at all stations on the line,
excluding the terminus. We study in Figure 4.8 the percentage of total travel time
this represents to evaluate each station’s impact separately.
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Figure 4.8: Percentage of the difference in the travel time according to the chosen
skippable station.

At all stations, the speed at which trains enter the stations is about the same,
as are the dwell times and the acceleration after departing the station. Thus, for all
stations, a train saves about 100 seconds when it does not stop compared to a train
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that stops, and the travel time for all stations decreases by about 2%. As a result,
the choice of skippable stations has a similar impact on travel time and, therefore,
on the frequency of the line.

On the other hand, the number of skippable stations on the line significantly
impacts the line’s frequency. Indeed, as the number of skippable stations increases,
the speed of the trains also increases. In this section, we evaluate the frequency for
different numbers of skippable stations, ranging from 2 to 19. Using the attendance
levels given in [52], the stations are sorted in ascending order. If the number of
skippable stations is set to two, the two stations with the lowest attendance levels
are selected. If the number is ten, the ten stations with the lowest attendance
levels are selected, and so on. Note that we exclude the terminus for operational
reasons. Finally, for each number of skippable stations, we calculate the average
line frequency separately. The frequency of the line is shown in Figure 4.9 as a
function of the number of trains in operation and the number of skippable stations.
In the figure, we also represent in blue the value mE beyond which the slope of the
frequency changes, and in green mF the point after which the capacity is reached
for each number of trains.
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Figure 4.9: Frequency of the Paris metro line 1 as a function of the number of
running trains and the number of skippable stations. The green and blue lines give
the value of mE and mF for each number of skippable stations.

In the congestion phase, the contour lines are vertical because regardless of the
number of skippable stations, the sj value is constant for all j. However, in the
free-flow phase, the contour lines are not vertical but slightly inclined as the number
of skippable stations increases. Therefore, the frequency increases more rapidly as
trains can move faster on the line due to the higher number of skippable stations.
This trend is clearly visible in Figure 4.10, where the frequency is higher when the
number of skippable stations increases.

However, the number of trains mE decreases as the number of skippable stations
increases. This means that even if there is a greater increase, the moment when
trains interact with each other and block on the line arrives earlier. Furthermore,



CHAPTER 4. MAX-PLUS MODELING OF A TWO-SERVICE SKIP-STOP
POLICY 53

0 20 m18
E m10

E m2
E

60 80 100

Number of trains m

0

10

20

30

f(m10
E )

40

50

F
re

qu
en

cy
[t

ra
in

s/
ho

ur
]

2 skippable stations

6 skippable stations

10 skippable stations

14 skippable stations

18 skippable stations

Figure 4.10: Frequency as a function of the number m of running trains for five
different numbers of skippable stations: 2, 6, 10, 14, and 18.

the number mF is almost constant, showing that capacity is reached simultaneously
regardless of the number of skipped stations.

In Figure 4.10, the frequency for 2, 4, 6, 10, 14, and 18 skippable stations is
given. On the x-axis we show the value of m2

E, m10
E , and m18

E for 2, 10, and 18
stations. As the number of skippable stations increases, the value of mE decreases.
However, the associated frequency value remains about constant. Regardless of the
number of stations skipped, a threshold of the frequency f(mE) exists above which
the slope is decreasing. This bound depends on the line characteristics.

4.5.2 Number of Consecutive A or B Stations

A key factor for the frequency of a line operated with a skip-stop policy is the
stopping pattern chosen by the operator. We have shown the different possibilities
in Figure 1.2. The alternating stopping pattern (see Figure 1.2a), where stations A
and B alternate on skip-stop stations, has been used in previous sections. However,
any scheme called free assignment can be defined, as shown in Figure 1.2b. With
a free assignment pattern, the operator freely chooses the arrangement of services
on skip-stop stations. For example, service A can skip 8 stations, and service B
only 2. However, with such an arrangement, the train’s travel times of the services
are not balanced, and the service with the longer travel time limits the average
line frequency. The other service is slowed down, and the trains are blocked on
different signals to ensure the safety constraint. Therefore, we only consider stop
patterns with equivalent travel times, i.e., services with the same number of skip-
stop stations. With a fixed number of skip-stop stations, the operator can vary the
number of consecutive skip-stop stations served by the same service:

• 1 consecutive station: the pattern for skippable stations is AB. It corresponds
to an alternating stopping pattern.

• 2 consecutive stations: the pattern is AABB. There are two A stations fol-
lowed by two B stations on skippable stations. This pattern repeats along all
the skippable stations.
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• ...

• k consecutive stations: in this case we have k A stations followed by k B ones.

We define as ν ∈ {1, 2, 3, 4} the number of consecutive stations served by the same
service, and we show the frequency in Figure 4.11.
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Figure 4.11: Frequency as a function of the number m of running trains for four
different number of stopping patterns: alternating A and B stations with 1, 2, 3
and 4 consecutive skippable stations served by the same service.

For each number ν ∈ {1, 2, 3, 4}, we show the value of mν
E and f(mν

E) on the x
and y axes, respectively. The value of mν

E decreases as the number of consecutive
stations increases, and the number of trains beyond which the frequency slope starts
to decrease is closer to the origin. However, when the number of trains is small, the
frequency is approximately the same regardless of the stop pattern. In fact, each
service skips the same number of stations with all patterns, and thus their travel
times are equivalent. However, because a train stops at several consecutive skip-
stop stations when a faster train is blocked by the slower one over a larger section of
the line, the travel time decreases for a longer period, and therefore, the number of
trains mν

E is lower. As with the number of skip-stop stations, the number of trains
beyond which the line capacity is reached is approximately the same for all four
cases.

4.5.3 Comparison of Several Scenarios with an All-Stop Pol-
icy

Skip-stop policies primarily aim to speed up trains on the line and decrease passenger
waiting time at the most crowded stations, those served by all trains. The previous
section explained the evolution of the train frequency as a function of the number
m of trains and the different arrangements of the stations. In this section, we
want to evaluate the gains or losses induced by the implementation of skip-stop
policies. We compare several policies with a line operation where all trains stop
at all stations. To make the comparison, we use the results found in [23], and in
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particular, Theorem 4.6 and Corollary 4.7, which give the asymptotic average train
time-headway and frequency as functions of the number m of trains.

This section is organized as follows: first, Section 4.5.3 describes several possible
scenarios implemented on a linear metro line. Then, in Section 4.5.3, we visually
analyze the scenarios’ fundamental and commercial speed diagrams. Finally, in
Section 4.5.3, we quantify the gains of the skip-stop policies over an all-stop policy.

Scenarios

Several scenarios are considered on Paris metro line 1.

1. The first scenario considers a low number of skippable stations, i.e., 6 sta-
tions and an alternate stopping pattern. In this scenario, the train’s speed is
increased, but the number of impossible origin destinations remains low.

2. In the second scenario, the number of skippable stations is doubled with still
an alternate stopping pattern.

3. Finally, the last scenario considers a free assignment pattern for the skippable
stations, with three consecutive stations served by the same service. In this
scenario, the operator ensures that all passengers making short distances on
the line can reach their destination without making a connection within the
line because the origin and destination are not served by the same service.

Table 4.7: Table of the studied scenarios.

Scenario Nb. of skipped stations Stopping pattern
1 6 (in both directions) AB
2 12 (in both directions) AB
3 12 (in both directions) AAABBB

The scenarios are summarized in Table 4.7. Moreover, Table 4.8 shows the
station’s types for the three scenarios. Scenario 1 has indeed fewer skippable stations.
And the table shows how the stopping pattern changes between Scenarios 2 and 3.

Table 4.8: Table showing the difference between the services of the scenarios on the
skippable stations in one direction. The bold stations are termini, and the stations
written in italics show the difference between the scenarios.

Def. PdN Sab. Arg. CdG G.V Tui.
Scen. 1 AB AB A B AB A AB
Scen. 2 AB B A B A B A
Scen. 3 AB B B B A A A

Lou. St. P. GdL PdV St.M. Ber. CdV
Scen. 1 A B AB AB B AB AB
Scen. 2 B A B A B A AB
Scen. 3 B B B A A A AB
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Graphical Analysis

First, we visually compare the scenarios with the all-stop policy. Figure 4.12 repre-
sents the frequency and the commercial speed of the three scenarios and the all-stop
policy. Both figures depict the all-stop policy with a black line and the blue, orange,
and green lines the Scenarios 1, 2, and 3.
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Figure 4.12: Frequency of the three scenarios and all stop-policy in blue, orange,
green, and black.

Let us first observe the fundamental diagrams (Figure 4.12): the same pattern
exists in the free flow phase. The colored curves move away from the black one
before getting closer again. On the other hand, the point from which the two curves
get closer is different, more or less distant from the origin. In Scenarios 1 and 3,
when the curve approaches the line capacity, the gains become negligible, whereas,
in Scenario 2, the gains remain important during the free-flow phase.

The gain is null during the capacity phase for all three frequencies and commer-
cial speed scenarios. The segment limiting the frequency is before station Station,
which is not a skippable station. Therefore, the skip-stop policy does not improve
the line’s capacity.
The diagrams also show when the implementation benefits the operator and the
passengers. For example, in Scenarios 1 and 3, when the gains become negligible,
and the commercial speed is almost the same, the average travel time for passengers
is equivalent, while passengers traveling from or to a skippable station have to wait
for trains longer. Moreover, the more complex timetables reduce the readability for
passengers. In the next section, we precisely calculate the gains for each number of
running trains m and show how the point where the gain decreases is related to the
scheme of the skip-stop policy.

Gains Quantification

Thanks to Theorems 4.3 and 4.6 and Corollaries 4.5 and 4.7, it is possible to quantify
the gains (or losses) in terms of headway or frequency. The variables ∆hlσ(m)
and ∆f lσ(m) give respectively the difference for the headway and frequency, with
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l ∈ {e, o} and σ ∈ {1, 2, 3} indicating the scenario.

∆hlσ(m) := h(m)− hl(m) (4.24)
∆f lσ(m) := f l(m)− f(m) (4.25)

∆hlσ(m) and ∆f lσ(m) are defined such that if they are positive, the skip-stop
policy shows an improvement in the line operation, whereas if it is negative, then
the skip-stop policy degrades the headway or the frequency. Figure 4.13 represents
the evolution of ∆f lσ(m), ∀l ∈ {e, o} and ∀m such that 1 ≤ m ≤ 80, since beyond,
the gain is constant and null. Indeed, the equations giving the frequency in the
congestion phase are the same (fbw = (n−m)/S = f lbw,∀l ∈ {e, o} whether there is
or not a skip-stop policy on the line). The solid lines and the dotted lines respectively
correspond to l = e and l = o.

The gain in the capacity phase is constant and can be evaluated for both scenarios
by looking at hmin for the headway (Theorems 4.3 and 4.6) or fmax for the frequency
(Corollaries 4.5 and 4.7). ∀l ∈ {e, o}, ∆f lmax = f lmax − fmax = 0.
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Figure 4.13: Evolution of the gains of the frequency as a function of the number of
trains. The blue, orange, and green curves show the gains for Scenarios 1, 2, and
3. The solid and dashed lines differentiate the cases for an even and odd number of
running trains.

Now we consider the free-flow phase described in Section 4.4.2. During operation,
the line is not operated at full capacity to keep some margins in case of disturbances.
Thus, the number of trains running is below the capacity, and it corresponds to the
free-flow phase in the fundamental diagram. In this phase, the gain depends on the
number of running trains m and the services implemented by the operator. As we
have seen in the traffic phase derivation, the free-flow phase is piecewise linear with
a skip-stop policy, whereas the slope of the free-flow phase of a line with no skip-stop
policy is constant. In Figure 4.13, we see that the variations in the slopes induce
important variations in the gains. First, it increases before decreasing to the value
calculated in the capacity phase, i.e., 0 for our case study. Using Corollaries 4.5
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and 4.7 we can calculate the gains ∀m with the following equations:

∆f efw(m) =
m

T
−min

ψ

{
m+ ψ

T eψ

}
(4.26)

= max
ψ

{
m(T − T eψ) + ψT

TT eψ

}
(4.27)

∆f ofw(m) =
m

T
−min

ψ

{
αm+ ψ

TT oψ

}
(4.28)

= max
ψ

{
m(αT − T oψ) + ψT

TT oψ

}
, with

{
α = 1 if ψ is odd
α = 2 if ψ is even

(4.29)

Using these equations, we can compute the number of trains for which the gain in
frequency is maximum and the gain directly.

Proposition 4.12. ∀ψ1, ψ2, 0 ≤ ψ1 < ψ2 ≤ |O| such that T lψ1
< T < T lψ2

, and ψ1

and ψ2 correspond to the minimum in f lfw(m
l
∗), we have me

∗ and mo
∗ the numbers of

trains for which the gain is maximum respectively when the number of trains is even
and odd.

1. For l = e

me
∗ =

ψ2T
e
ψ1

− ψ1T
e
ψ2

T eψ2
− T eψ1

(4.30)

2. For l = o

mo
∗ =

ψ2T
o
ψ1

− ψ1T
o
ψ2

α1T oψ2
− α2T oψ1

, with

{
α1 = 1 if ψ1 is odd α1 = 2 otherwise
α2 = 1 if ψ2 is odd α2 = 2 otherwise

(4.31)

and the maximum gain is given by ∆f e(me
∗) and ∆f e∗ (m

o
∗).

Proof. Taking the derivative of ∆f efw and ∆f ofw, we obtain

1. (∆f efw)
′ =

T−T eψ
TT eψ

. The derivative is negative if T < T eψ and positive if T > T eψ.
While T > T eψ the gains increase, it starts to decrease when T < T eψ. ∃ψ1, ψ2

such that T eψ1
is the maximum value for which T > T eψ1

and T eψ2
is the maximum

value for which T < T eψ2
. The maximum value is obtained at the intersection

of the two lines m+ψ1

Tψ1
and m+ψ2

Tψ2
. We have

me
∗ + ψ1

Tψ1

=
me

∗ + ψ2

Tψ2

⇔ me
∗ =

ψ2T
e
ψ1

− ψ1T
e
ψ2

T eψ2
− T eψ1

2. Similarly the derivative (∆f ofw)
′ =

αT−T oψ
TT oψ

is negative if αT < T oψ and positive
if αT > T oψ. ∃ψ1, ψ2 such that T oψ1

is the maximum value for which α1T > T oψ1
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and T oψ2
is the maximum value for which α2T < T oψ2

. The maximum value is
obtained at the intersection of the two lines α1m+ψ1

Tψ1
and α2m+ψ2

Tψ2
. We have

α1m
o
∗ + ψ1

Tψ1

=
α2m

o
∗ + ψ2

Tψ2

⇔ mo
∗ =

ψ2T
o
ψ1

− ψ1T
o
ψ2

α1T oψ2
− α2T oψ1

In Table 4.9, we report the critical values for the evolution of the gains for all
the scenarios. ∀l ∈ {e, o}, ml

E is the value from which the slope of the frequency in
the free-flow phase starts to decrease, ml

∗ the value for which the gain is maximum
and ml

F the end of the free flow phase.

Table 4.9: Critical values of the function of the gains on the line.

σ = 1
ml
E ∆f l(ml

E) ml
∗ ∆f l(ml

∗) ml
F ∆f l(ml

F )
l = e 45.76 2.27 46.00 2.27 64.69 0.00
l = o 35.58 1.77 46.05 2.06 64.74 0.00

σ = 2
ml
E ∆f l(ml

E) ml
∗ ∆f l(ml

∗) ml
F ∆f l(ml

F )
l = e 42.28 4.34 43.99 4.39 63.39 0.00
l = o 32.68 3.37 44.24 4.22 63.44 0.00

σ = 3
ml
E ∆f l(ml

E) ml
∗ ∆f l(ml

∗) ml
F ∆f l(ml

F )
l = e 28.07 2.89 31.14 2.91 64.64 0.00
l = o 18.25 1.88 31.63 2.56 64.69 0.00

Before ml
E, the traffic on the line is fluid, and the frequency increases normally.

Fromml
E and untilml

∗, the gains increase, but the operator should be careful because
the trains might be stopped at inter stations on some line parts. In future work, we
will study ways to avoid these delays. Note that in some cases, ml

E and ml
∗ coincide.

Afterml
∗, the gain starts to diminish. Depending on how close the number of trains is

to ml
F , the gains might not be beneficial enough to the operator and the passengers.

Further study on travel time would also be performed to calculate the impact on the
passengers’ travel times. It is important to note that as train density increases on
the line, the number of blockages and the unwanted waiting times between stations
will also increase. As previously explained, this phenomenon should be carefully
studied by operators. Finally, after ml

F , the line’s capacity is reached, and adding
trains to the line only increases the unwanted stops between stations.
Finally, the line performs better with the considered scenarios when the number of
trains is even on the line; the characteristic points are farther from the origin. For
example, in Scenario 1, we have mo

E < 37 < 38 < me
E. Thus, going from 37 to

38 trains allows being again in the phase where the trains circulate freely on the
line without small blockages and increase the frequency. For Scenario 2, similar
observations can be made, but the numbers differ with mo

E < 33 < 34 < me
E. Thus,

the number of skippable stations and the stopping patterns change the characteristic
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values mo
E and me

E. In general, the characteristic values are more interesting for the
operator when for an even number of moving trains. The gains are slightly higher
and as is the number of trains beyond which the slope of the line frequency decreases.
However, further studies are necessary to verify if this is specific to our study case
or general observation.

4.6 Conclusion
In this chapter, we provide several results. Firstly, we develop a model that allows
us to represent a line that operates with a skip-stop policy. Our model considers two
alternating and repeating services. The first part focuses on developing the model.
Firstly, we develop the equations that allow us to give the constraints of the model.
From these two constraints, we can write the train dynamics. We show that this
train dynamics can be written linearly in the max-plus algebra. Using some results
of the Max-plus algebra, we obtain the asymptotic average train time headway and
the average train frequency and provide formal proof of our results. We show, in
particular, that the headway and frequency depend on the parity of the number of
trains running on the line. Moreover, we derive the fundamental diagram of the line,
and we interpret all its traffic phases.

In the second part, we analyze the results by applying our model to an existing
Paris metro line. The analytical results giving the frequency and average headway
allow us to derive the fundamental diagram: the frequency or headway as a function
of the number of trains running on the line. The diagram has three distinct phases:
the free-flow phase, where the frequency increases with the number of trains, the
capacity phase, which gives the maximum frequency or minimum headway; and
finally, the congestion phase, where the frequency decreases with the number of
trains increasing.

The free phase is piecewise linear: beyond a certain number of trains running on
the line, the headway is reduced to the point that a train skipping a station may be
too close to the one ahead of it. In this case, the train skipping the station must
stop at a signal to ensure safety on the line.

We show that when the travel time of each service is well-balanced, the difference
between even and odd cases can be neglected. Afterward, we study the impact of
the number of stations that can be skipped or the different services that can be
implemented by the operator. Finally, we compare different policies to a policy
of all stops. We show that there exists a number of trains for which the gain in
frequency is maximal.

However, this chapter focuses exclusively on the operator’s point of view. It
provides insights into the operational performance of the line when a skip-stop policy
is implemented. In order to have a complete view of the impact of this policy on
the line, we must also study the passengers’ points of view. Indeed, their waiting
time and travel time can be significantly changed. Additionally, in this chapter,
we consider that the lower bounds on the train dwell times are the same for both
services and are not affected by the skip-stop policy.

In the next chapter, we will modify our model to consider passengers’ demand
and services in the dwell times computations. On the other hand, we will study
several criteria to measure the impact on the passengers of the line.



Chapter 5

Effect of the Passengers on a
Two-Service Skip-Stop Policy

This chapter is a continuation of the work developed in the previous
chapters. To complete the model, this chapter includes the point of view
of passengers and their impact on the operation of the line. Indeed, in the
previous chapter, we showed how frequency is improved with the skip-
stop policy, depending on the number of skippable stations or services
implemented. However, the relevance of the policy can only be assessed
by considering its impact on the line’s passengers. Indeed, if frequency
increases, but most passengers increase their travel time, then the pol-
icy’s relevance needs to be investigated. Therefore, this chapter provides
a discrete event model for a line operated with a two-service skip-stop
policy. The model is described by two constraints giving the dynamics
of the trains on the line. In addition, we also model the train dwell times
as a function of the services defined by the operator and the passenger
demand. Then, by linearly writing our model in the max-plus algebra,
we provide analytical results with which we derive the fundamental di-
agram of the line. This diagram gives the average train time headway
or frequency as a function of the number of trains running on the line.
We also derive some indicators measuring the impact of a skip-stop pol-
icy on passengers. We show that when the number of trains running is
sufficiently high, the increase in waiting time is offset by the decrease in
time spent in the vehicle, thus improving the total travel time. Finally,
we also compare the different demand profiles with the different travel
behaviors of passengers, showing that the skip-stop policy particularly
benefits passengers when there are many stations between their origin
and destination.

5.1 The Model

In this chapter, we extend the model proposed in Chapter 4 by making the train
dwell times dependent on the passenger flows. The constraints are similar to those
developed in Chapter 4 and are detailed in Section 5.1.2. First, we explain how we
model the passenger-dependant dwell times in Section 5.1.1

61
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5.1.1 Demand-Dependant Dwell Times

This section allows us to derive the formula for the train’s dwell time wj at a station
j. First, we give the formula for an all-stop policy and introduce the notations for
the passengers’ demand; see Table 5.1. Then, we detail how passenger demand and
dwell times are changed in the case of the skip-stop policy; see Table 5.2.

All-Stop Policy Case

Passenger demand for the line is provided by the OD matrix λ. This matrix gives a
demand profile, and the variable θ provides the demand level (or intensity variation)
of this fixed profile. The variable θ represents the variation in demand that may
exist over the days of the week. Indeed, from one day to the next, even if the profile
remains identical, the number of passengers may vary. Each entry λi,j gives the base
arrival rate in passengers per second of passengers going from station i to station
j for a 60-minute interval during all operations. Thus, the arrival rates are fixed
and considered constant in this interval. For each station j, we can determine three
indicators:

λalj =
∑

i

θλi,j (5.1)

λboj =
∑

i

θλj,i (5.2)

λinj =
∑

i

∑

l>j

θλi,l (5.3)

λalj and λboj represent the passenger rates alighting and boarding at a station j.
Besides, λinj represents the rate of passengers in the train (excluding those alighting)
at this station. The variable h gives the average headway between two trains. Thus,
on average, the number of passengers boarding, alighting, and in the trains are given
by the product of the rates and the average headway.

Nal
j = hθλalj (5.4)

N bo
j = hθλboj (5.5)

N in
j = hθλinj (5.6)

We also define the variables αboj and αalj , the number of passengers boarding and
alighting per second. Therefore, the time for passengers to board and alight is given
by N bo

j /α
bo
j and Nal

j /α
al
j , respectively. However, the number of train passengers also

influences the dwell times. When a train is crowded, the passengers staying on the
train can obstruct those alighting and boarding the train. Therefore, there is in the
dwell time a term considering these obstructions. The variable αinj gives the increase
in seconds per passenger, and αinj N in

j gives the time to add to the dwell time. When
a train stops, there is a delay before the first passenger can board, and another delay
between the moment the doors close and the train actually departs: it is defined
as the technical time τj. Finally, to compute the train’s dwell time, we consider
that passengers boarding follow those alighting and are uniformly distributed in the
trains and on the platforms. We also consider the average train-time headway h for
the computation, even if the headway between two trains is not precisely equal to
the average value.
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Table 5.1: Notations for passenger demand for the all-stop policy case.

λi,j base arrival rate of passengers traveling from station i to station j
.

θ ∈ R+, the passenger demand level for a fixed demand profile.
αal passenger alighting rate in passenger per second.
αbo passenger boarding rate in passengers per second.
αin increase rate in seconds per passenger due to the crowding.
λal
j sum of the passenger arrival rate alighting at station j.
λbo
j sum of the passenger arrival rate boarding at station j.
λin
j sum of the passenger arrival rate in the train at station j.
τj represents the technical time for the dwell time of a station j. It

corresponds to the time taken to open and close the doors.
xj := λalj /α

al
j + λboj /α

bo
j + λinj α

in
j , the passenger demand indicator at a

station j.

wj = τj +
Nal
j

αal
+
N bo
j

αbo
+N in

j α
in (5.7)

wj = τj + θ

(
λalj
αal

+
λboj
αbo

+ λinj α
in

)
h (5.8)

wj = τj + θxjh (5.9)

with xj = λalj /α
al
j + λboj /α

bo
j + λinj α

in
j , the passenger demand indicator at station j.

Skip-Stop Policy Case

For the skip-stop policy, the formula to evaluate the train’s dwell time is identical;
however, the indicator xj needs to be distinguished between xAj and xBj for the
services A and B. Indeed, for the all-stop policy case, all the passengers can board
the first train arriving at their origin station. When a line is operated with a skip-
stop policy, some passengers can board any train as their origin and destination
are served by both services. Still, others need to board a train making a specific
service as the origin, or the destination is only served by one service. We do not
consider that the passengers staying on the platform are making the boarding longer.
However, a new parameter αpl could be considered in a future extension to model
the platform crowding.

One OD matrix per service The arrival rate of passengers from each origin
i to destination j is provided by the OD matrix, denoted as λi,j. Based on the
train service, i.e., A or B, passengers arriving at a station are divided into two
groups. We separate the arrival rates, λAi,j and λBi,j, for passengers traveling from
origin i to destination j via trains A and B respectively. Multiple cases to consider
in distinguishing between the matrices λAi,j and λBi,j.

1. ∀i, j ∈ AB. For this type of OD pair, the passengers can board any train.
With ζAj ∈ (0, 1) and ζBj = 1 − ζAj the proportion of passengers boarding the
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Table 5.2: Notations for passenger demand for the skip-stop policy case, ∀p ∈
{A,B}.

λpi,j arrival rate of passengers traveling from station i to station j with
a train performing service p.

ζpj the proportion of passengers taking service p at station j, ∀j ∈ AB.
λal,p
j sum of the passenger arrival rate alighting a train performing a

service p at station j.
λbo,p
j sum of the passenger arrival rate boarding a train performing a

service p at station j.
λin,p
j sum of the passenger arrival rate in a train performing a service p

at station j.
τ pj represents the technical time for the dwell time of a station j for

service p.
xpj := λal,pj /αalj +λbo,pj /αbo,pj +λin,pj αinj , the passenger demand indicator

at a station j for service p.

train A and B respectively, the arrival rates are given by λAi,j = ζAj · λi,j and
λBi,j = ζBj · λi,j for services A and B.

2. In this second case, the origin and the destination are served by only one
service, i.e., i and j ∈ P , and i or j /∈ P . Passengers have to board a specific
service to reach their destination. If i, j ∈ A, then λAi,j = λi,j and λBi,j = 0, and
if i, j ∈ B, then λBi,j = λi,j and λAi,j = 0.

3. Finally, the last case corresponds to impossible origin destinations with a single
train. The origin and destination are skippable stations and are not served by
the same service. This forces passengers to make a transfer at an intermediate
station i′ where all trains stop. We have either i ∈ A, j ∈ B or i ∈ B, j ∈ A
and i′ ∈ AB. For i ∈ A, we add to the existing arrival rate λAi,i′ the arrival
rate of the impossible OD λAi,j, and we have λBi,i′ = 0. Furthermore, we have
λAi′,j = 0, and similarly we add λi,j to the arrival rate λBi′,j.
For each of these original destinations, station i′ is considered the same for all
passengers; it corresponds to the station that allows passengers to reach their
destination the fastest.

Dwell Times Computation To compute the dwell times of a line operated with
a skip-stop policy, we use the same reasoning as Equations (5.7) to (5.9) but with
the matrices distinguished with the services. The indicators on the arrival rates are
now written, ∀p ∈ {A,B}.

λal,pj =
∑

i

λpi,j (5.10)

λbo,pj =
∑

i

λpj,i (5.11)

λin,pj =
∑

i

∑

l>j

λpi,l (5.12)
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When the skip-stop policy is set, the average headway between two trains is also
given by h. However, the matrices λA and λB give the arrival rates for a performing
the service A or B. Yet, the average headway h corresponds to the headway between
a train A and B. Therefore, the headway between two trains performing the same
service is given by 2h. Finally, the dwell time wpj at a station j for the service
p ∈ {A,B} is given by.

wpj = τ pj + θ

(
λal,pj

αalj
+
λbo,pj

αboj
+ λin,pj αin,pj

)
2h (5.13)

wpj = τ pj + θxpj2h (5.14)

If a station j is not in A, the train A does not stop, and wAj must be equal to 0.
With our distinguishing of the matrices, we have λal,Aj = λbo,Aj = 0 as the number
of boarding and alighting passengers is 0. However, it is not the case that the third
term λin,pj αin,Aj . Thus, the value of αin,Aj is 0 if j /∈ A.

αin,pj =

{
αin, if j ∈ P
0, otherwise

(5.15)

5.1.2 Constraints of the Train Dynamics

In Chapters 3 and 4, we developed the constraints to write out train dynamics.
We considered a lower bound for the train’s run, dwell, and safe separation times.
However, in this chapter, the dwell times are now given as a function of the passenger
demand. Therefore, we rewrite the constraints to consider this change and quickly
remind the constraints principles.

1. The train travel time constraint: this first constraint ensures that the trains
respect the speed limits, the technical time τ , and the dwell time. A train
cannot depart a node j until it arrives at this node. Thus, the departure at a
node j is given by the departure time of the same train at the node j− 1 plus
the travel time to reach j. The train performing the kthdeparture at node j
performed the k − bj

thdeparture at node j − 1. We distinguish the cases for
both services and write the constraint as follows.

dkj ≥





d
k−bj
j−1 + tAj , if the train performs service A

d
k−bj
j−1 + tBj , if the train performs service B

(5.16)

⇔ dkj ≥





d
k−bj
j−1 + rAj + τAj + wAj , if the train performs service A

d
k−bj
j−1 + rBj + τBj + wBj , if the train performs service B

(5.17)

2. The second constraint is called the safe separation time constraint. This con-
straint ensures safety on the line and avoids collisions by simulating the red
state of the signal. For example, the departure at a node j cannot occur until
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the next segment j+1 is free. And the segment is free when the previous train
(the k − b̄j

thone) has departed plus a safe separation time. The constraint is
written as follows.

dkj ≥ d
k−b̄j+1

j+1 + sj+1 (5.18)

The safe separation time corresponds to a release time, i.e., the time necessary
for a train to leave the segment after its departure. This release time is different
if a train stops or skips a station. However, to simplify the model, we consider
that the safe separation time is the same regardless of the service, and it is
equal to the highest value between the two services. This constraint mainly
influences the congestion phase, which is not the most interesting for operation.

Finally, the departure occurs as soon as the two constraints are satisfied. We
obtain the followings train dynamics for all segments of the line; we have ∀j

dkj =





max
{
d
k−bj
j−1 + rAj + τAj + wAj , d

k−b̄j+1

j+1 + sj+1

}
, if k corresponds to service A

max
{
d
k−bj
j−1 + rBj + τBj + wBj , d

k−b̄j+1

j+1 + sj+1

}
, if k corresponds to service B

(5.19)

5.1.3 Formulation in Max-plus Algebra

In Sections 4.1.6 and 4.1.7, we explain how the Equation (5.19) can be written in
the max-plus algebra. See Section 2.4 for a review of the max-plus algebra.

Services and Parity of Departure

We can use a parity-based rule to determine when a train performs service A or B.
Indeed, the services alternate cyclically, and a train doing service A on a node j is
automatically followed by a train performing service B and reciprocally. The first
train makes the kthwith k odd (resp. even) the next one makes the k+1st departure
with k + 1 even (resp. odd). We introduce the variables µej and µoj , which are equal
to A or B. If µej = A, a train making an even departure at node j performs service
A on this segment, and we also have µoj = B. We need to ensure that the services
defined by the operator are respected by the trains on all the line nodes. Therefore,
we set a rule at each node to define if an even departure corresponds to a train
performing service A or B.

µej :=

{
A if

∑j
q=0 bq is even

B otherwise
(5.20)

µoj :=

{
B if

∑j
q=0 bq is even

A otherwise
(5.21)

With this rule, we ensure that a train performs the same service for the whole lap
around the line. However, it can perform another service when passing through the
terminus again. Thus, we can rewrite the train dynamics as a function of the parity
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of the departure counts k, ∀j:

dkj =





max
{
d
k−bj
j−1 + t

µej
j , d

k−b̄j+1

j+1 + sj+1

}
, if k even

max
{
d
k−bj
j−1 + t

µoj
j , d

k−b̄j+1

j+1 + sj+1

}
, if k odd

(5.22)

⇔ dkj =





max
{
d
k−bj
j−1 + r

µej
j + τ

µej
j + w

µej
j , d

k−b̄j+1

j+1 + sj+1

}
, if k even

max
{
d
k−bj
j−1 + r

µoj
j + τ

µoj
j + w

µoj
j , d

k−b̄j+1

j+1 + sj+1

}
, if k odd

(5.23)

Model in Max-plus Algebra

Using the max-plus algebra and the parity rule, we rewrite Equations (5.22) and (5.23)
as.

dkj =





d
k−bj
j−1 ⊗ tµej ⊕ d

k−b̄j+1

j+1 ⊗ sj+1, if k even

d
k−bj
j−1 ⊗ tµoj ⊕ d

k−b̄j+1

j+1 ⊗ sj+1, if k odd
(5.24)

⇔ dkj =





d
k−bj
j−1 ⊗ r

µej
j ⊗ τ

µej
j ⊗ w

µej
j ⊕ d

k−b̄j+1

j+1 ⊗ sj+1, if k even

d
k−bj
j−1 ⊗ r

µoj
j ⊗ τ

µoj
j ⊗ w

µoj
j ⊕ d

k−b̄j+1

j+1 ⊗ sj+1, if k odd

(5.25)

These equations are the same as those developed in the previous chapter, with
the distinction that the dwell time is a function of the headway h and the demand in-
dicator x. It is, therefore, possible to write similarly the Equations (5.24) and (5.25)
using max-plus matrices.

dk =





Π0d
k ⊕ Π1d

k−1, if k even

Φ0d
k ⊕ Φ1d

k−1, if k odd
(5.26)

where dk :=
{
dk1, . . . , d

k
n

}
is the vector giving the train departure times at all the

nodes, and where the Max-plus matrices Π0,Π1,Φ0 and Φ1 are defined as follows.

(Π0)(j,j−1) = tµ
e

j and (Φ0)(j,j−1) = tµ
o

j if bj = 0

(Π1)(j,j−1) = tµ
e

j and (Φ1)(j,j−1) = tµ
o

j if bj = 1

(Π0)(j−1,j) = (Φ0)(j−1,j) = sj if b̄j = 0

(Π1)(j−1,j) = sj if b̄j = 1

And, with Π := Π∗
0Π1 and Φ := Φ∗

0Φ1, the train dynamics Equations (5.22) and (5.23)
is written as follows.

dk =





Πdk−1, if k even

Φdk−1, if k odd
(5.27)
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Finally, ∀k such that k is even, k− 1 is odd and we have dk = Πdk−1 = ΠΦdk−2.
Finally, with Υ := ΠΦ, the train dynamics can be written as

dk = Υdk−2 (5.28)

Thanks to the steps above, we prove that the Equations (5.22) and (5.23) can be
written linearly in the max-algebra. ∀k, the departure vector dk can be computed
as a product of the departure vector dk−2 and the matrix Υ.

5.2 Main Theorem
In this section, we provide the average train-time headway in Theorem 5.1. It is
obtained from the train dynamics Equation (5.28), and using the matrix properties.
The variables used to derive the headway and frequency are given in Section 5.2.1.
Then, we give the analytical results in Section 5.2.2

5.2.1 Theorem Variables

First, we detail the notations used in the Theorem 5.1 in Table 5.3. The average
train time headway on a line depends on the number of running trains m, and on
its parity. Indeed as explained in Chapter 4, trains always perform the same service
when m is even, whereas trains change service every lap when the number of trains
is odd. The two cases are differentiated by the exponent e for the even case and o
for the odd case.

Then, the average train-time headway depends on the average train travel time,
which can be divided into two parts, the train run time and the passengers’ indicators
variables. As explained in Section 4.2.1, these variables can be associated with one
service, or be a combination of services A and B. The variable ψ gives the number
of the service combinations, and the set Iψ gives the nodes at which there are these
combinations. The set contains ψ distinct nodes sorted in the direction of the trains.
When ψ = 0, we have Iψ = ∅, and there is no combinations. For ψ > 0, we take
the same example as in Chapter 4, i.e. ψ = 4, Iψ = {i1, i2, i3, i4} and we take the
example for variable Re

Iψ
as it is similar for Re

Iψ
, Re

Iψ
, and Re

Iψ
; see Figure 4.1 for a

schematic representation of the combinations. We have

Re
p,Iψ

= Rp1
i1,i2

+Rp2
i2,i3

+Rp1
i3,i4

+Rp2
i4,i1

.

The train run time is divided into four parts: between the nodes i1 and i2, and
between i3 and i4, the average run time is given by services p1. Conversely, the
service p2 gives the average train run time between nodes i2 and i3, and between
nodes i4 and i1.

5.2.2 Theorem and Corollaries

Using the variables developed in Table 5.3, we can write the theorem giving the
average train time headway with demand-dependent dwell times.

Theorem 5.1. The train dynamics admit a stationary regime where the asymptotic
average train time-headway of the line is given by he and ho for respectively an even
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Table 5.3: Theorem 5.1 variables

p ∈ {p1, p2} design any service. If p1 = A, we have p2 = B, and if p1 = B, we
have p2 = A;

ψ ∈ {0, · · · , n}, the number of nodes at which the service associated in T eψ
and T oψ changes;

o the first node of the line;
Iψ := {i1, i2, · · · , iψ}, a sorted set of any different ψ nodes on the line;
Rp :=

∑
j(r

p
j + τ pj ), the sum of the run and technical times of a train to go

around with service p;
Xp :=

∑
j x

A
j , the sum for all nodes of the passengers’ indicators with service

p;
Rp
i1,i2

:=
∑i2

j=i1
(rpj + τ pj ) + si1 , he sum of the run and technical times of a train to

go from node i1 to node i2 with service p;
Rp
o,i1

:=
∑i2

j=o+1(r
p
j + τ pj ), the sum of the run and technical times of a train to go

from the first node of the line τ to any node i1 with service p;
Xp
i1,i2

:=
∑i2

j=i1
xpj , the sum of the passengers’ indicators between nodes i1 and i2

with service p;
Xp
o,i1

:=
∑i2

j=o+1 x
p
j , the sum of the passengers’ indicators between nodes τ and

i2 with service p;

Re
p,Iψ

:=

{
Rp, if ψ = 0

Rp1
i1,i2

+Rp2
i2,i3

+ · · ·+Rp2
iψ ,i1

, otherwise

Ro
ψ :=

{
RA +RB, if ψ = 0

Rp1
o,i2

+Rp2
i2,i3

+ · · ·+Rp2
iψ ,o

, otherwise

Xe
p,Iψ

:=

{
Xp, if ψ = 0

Xp1
i1,i2

+Xp2
i2,i3

+ · · ·+Xp2
iψ ,i1

, otherwise

Xo
p,Iψ

:=

{
XA +XB, if ψ = 0

Xp1
o,i2

+Xp2
i2,i3

+ · · ·+Xp2
iψ ,o

, otherwise
S :=

∑
j sj, the sum of all the safe separation times.

and an odd number m of trains:

he(m, θ) = max{hefw,ψ, hmin, hbw} (5.29)
ho(m, θ) = max{hofw,ψ, hmin, hbw} (5.30)

with hefw,ψ = maxψ,p,Iψ{Re
(p,Iψ)

/(m+ ψ − 2θXe
(p,Iψ)

)}, hofw,ψ = maxψ,p,Iψ{Ro
(p,Iψ)

/(m+

ψ − 2θXo
(p,Iψ)

)}, hmin = maxj{(rAj + τAj + rBj + τBj + 2sj)/(2 − 2θ(xAj + xBj ))}, and
hbw = S/(n−m).

Proof. One of the max-plus matrix Υ properties is its eigenvalue. Indeed, it cor-
responds to the average growth rate of the system, which, in our case, can be
interpreted as the average train time headway. The matrix has an associated graph
G(Υ) with arcs corresponding to the non-zero values in the matrix, and the weight
of these arcs are the values of the non-zero entries. Finding the eigenvalue comes
down to finding the maximum cycle mean of the graph G(Υ). The proof for the
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cycle is provided in Appendix A and gives the following results:

he = max





maxψ,p,Iψ

{
Re

(p,Iψ)
+heXe

(p,Iψ)

m+ψ

}

maxj

{
rAj +τ

A
j +rBj +τBj +he(xAj +x

B
j )+2sj

2

}

S
n−m

(5.31)

We need to solve the implicit formula given by the first two terms of the equation
to obtain the average train-time headway. First,

he = max
ψ,p,Iψ

{
Re

(p,Iψ)
+ heXe

(p,Iψ)

m+ ψ

}
(5.32)

⇔ he − max
ψ,p,Iψ

{
Re

(p,Iψ)
+ heXe

(p,Iψ)

m+ ψ

}
= 0 (5.33)

⇔ min
ψ,p,Iψ

{
he(m+ ψ −Xe

(p,Iψ)
)−Re

(p,Iψ)

m+ ψ

}
= 0 (5.34)

∀(m+ψ) > Xe
(p,Iψ)

, the function fψ(h) = (h(m+ψ−Xe
(p,Iψ)

)−Re
(p,Iψ)

− S(Iψ))(m+

ψ) is increasing and bijective ∀ψ and thus minψ,p,Iψ fψ(h) is also increasing and
bijective. Thus, there exist a unique h such that minψ,p,Iψ fψ(h) = 0 and it is given
by maxψ,p,Iψ f

−1
ψ (0). We have f−1

ψ (y) = (y(m+ψ)+Re
(p,Iψ)

+S(Iψ))/(m+ψ−Xe
(p,Iψ)

) ⇔
maxψ,p,Iψ f

−1
ψ (0) = hefw.

Similarly,

max
j

{
rAj + τAj + rBj + τBj + hl(xAj + xBj ) + 2sj

2

}
= hl (5.35)

⇔ min
j

{
hl(2− xAj + xBj )− (rAj + τAj + rBj + τBj + 2sj)

2

}
= 0 (5.36)

Using the same arguments, ∀(xAj + xBj ) < 2, hl = maxj f
−1(0) = hlmin.

Corollary 5.2. The asymptotic average train time-frequency of the line is given by
f e(m) and f o(m) for respectively an even and an odd number m of trains:

f e(m, θ) = min
{
f efw,ψ, fmin, fbw

}
(5.37)

f o(m, θ) = min
{
f ofw,ψ, fmin, fbw

}
(5.38)

with f efw,ψ = maxψ,p,Iψ{(m + ψ − 2θXe
(p,Iψ)

)/Re
(p,Iψ)

}, f ofw,ψ = maxψ,p,Iψ{(m + ψ −
2θXo

(p,Iψ)
)/Ro

(p,Iψ)
}, fmax = 1/hmin, and fbw = (n−m)/S.

Proof. Directly from Theorem 5.1 and f = 1/h.

Corollary 5.3. The asymptotic average train dwell time of the line is given by
we(m) and wo(m) for respectively an even and an odd number m of trains:

wej(m, θ) = (τAj + τBj )/2 + θ(xAj + xBj )h
e(m, θ) (5.39)

woj (m, θ) = (τAj + τBj )/2 + θ(xAj + xBj )h
o(m, θ) (5.40)

Proof. Directly from Theorem 5.1 and wpj = τ pj + xpj2h,∀p ∈ {A,B}.
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5.3 Passengers Indicators

Before applying our model to the Paris metro line one, we detail the quantifiable im-
pacts of the skip-stop policy implementation on the passengers. We do not consider
any inconveniences resulting from increased complexity in readability. Additionally,
we assume that the demand for the line remains constant despite any changes in
its operation, and passengers needing to travel between stations not served by the
same service follow the same route. For a passenger with an origin station i ∈ A (or
B) and a destination station j ∈ B (or A), a connection must be made at a station
i′ ∈ AB to reach its destination. We assume that this connection is made at the
station minimizing the travel time.

We evaluate the impact on passengers according to two main aspects. First, we
compute the passengers’ travel time in Section 5.3.3, which is the sum of the waiting
and in-vehicle times. They are respectively given in Sections 5.3.1 and 5.3.2. Then,
we study passengers’ comfort by examining the number of passengers on trains in
Section 5.3.4. We compare all these indicators to the line operated with an all-stop
policy. The necessary notations to compute these different indicators are detailed
in Table 5.4. We aim to compare the line’s performance with and without the skip-
stop policy. We also differentiate between the skip-stop and all-stop policy variables
using the superscript s on the skip-stop variables.

Table 5.4: Notations for the computation of the indicators. The variables with and
without the exponent s correspond to the skip-stop and all-stop policies, respectively.

All-stop Skip-stop Description
wj wsj the dwell times at station j;
ωi,j ωsi,j the waiting times of passengers going from i to j;
Ri,j Rs

i,j the in-vehicle times of passengers going from i to j;
Ti,j T si,j the travel times of passengers going from i to j;
ρj ρsj the number of passengers on platform j;
σj σsj the number of passengers in the trains after the departure

at station j;
h(m, θ) hs(m, θ) the average train time headway for a given m and θ;

5.3.1 The Average Waiting Time

Let us first give the formulas for the average waiting time of passengers. We consider
that the passengers arrive at the stations uniformly, regardless of the timetable. On
mass-transit lines operated with a high frequency, it is reasonable to assume that
passengers arrive uniformly without looking at the timetable. We study the two
ways of operating the line.

• For an all-stop policy, all passengers can board the first train that arrives.
With a uniform arrival rate, the average waiting time for a passenger is half
the headway for all origin destinations.

ωi,j = h(m, θ)/2,∀i, j ∈ S (5.41)
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• The passengers’ waiting time with a skip-stop policy depends on their origins
and destinations. Some passengers may board the first arriving train, while
others might have to wait for a specific service. There are three different cases
to be considered:

1. Passengers traveling to and from stations where all trains stop can board
the first arriving train, resulting in an average waiting time of half the
headway, and ∀i, j ∈ AB

ωsi,j = hs(m, θ)/2 (5.42)

2. In the second case, passengers must board a specific train. Two possibil-
ities exist either the origin or the destination (∀i ∈ P and ∀j ∈ AB, or
∀i ∈ AB and ∀j ∈ P), or both the origin and destination are skippable
stations, served by the same service (∀i, j ∈ P). The headway between
two trains performing the same service is 2hs. Thus the average waiting
time is given by.

ωsi,j = hs(m, θ) (5.43)

3. The last case is for passengers traveling from a station served by only one
service to a station served exclusively by the other service. They must
transfer at station i′ ∈ AB to reach their destination. The waiting time
is divided into two parts: passengers have to wait at the origin station,
then at the transfer station, they have to wait for the departure of the
train (i.e., its dwell time given by xpi′h

s) they were on, and then for the
next train that serves their destination. The waiting time is given by:

ωsi,j = (2 + xpi′)h
s(m, θ) (5.44)

The dwell time at the station i′ is given by hsxpi′ , with p = A if i ∈ A and
p = B if i ∈ B.

Using Equations (5.41) to (5.44) and the OD matrix of passengers’ arrival rates,
we can compute the average waiting time for all the passengers:

ω̃(m, θ) =

∑
i

∑
j θλi,jωi,j(m, θ)∑
i

∑
j θλi,j

= h(m, θ)/2 (5.45)

ω̃s(m, θ) =

∑
i

∑
j θλi,jω

s
i,j(m, θ)∑

i

∑
j θλi,j

=

∑
i

∑
j λi,jω

s
i,j(m, θ)∑

i

∑
j λi,j

(5.46)

5.3.2 The Average In-Vehicle Time

The in-vehicle time is the other part of the total passengers’ travel time and refers
to the duration they spend inside the trains. In-vehicle is calculated by adding the
train’s run and dwell times at each station along the route (except the destination
station’s dwell time). The run time between stations i and j is determined by the
variables Ri,j and Rs

i,j for lines operating with and without a skip-stop policy. In
the former case, all passengers have the same run time, while in the latter, the run
time depends on the train service each passenger is on for the same OD.
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• For the line with an all-stop, the in-vehicle time from station i to station j is
calculated as.

Ri,j(m, θ) =

j−1∑

q=i+1

(rq + θxqh(m, θ)) + rj (5.47)

• For the skip-stop policy, the three cases depending on the passengers’ origin
and destination, need to be distinguished.

1. ∀i, j ∈ AB: in this case, passengers board the first train arriving at
platform i, and the in-vehicle time depends on the train and the passenger
boards. Since passengers are assumed to be equally distributed between
trains A and B, the in-vehicle time from i to j is the average between
the two services, and it is given by

Rs
i,j(m, θ) =

( j−1∑

q=i+1

(rAq + θxAq 2h
s(m, θ)) + rAj

+

j−1∑

q=i+1

(rBq + θxBq 2h
s(m, θ)) + rBj

)
/2

(5.48)

2. ∀i, j ∈ P , or ∀i ∈ AB, j ∈ P , or ∀i ∈ P , j ∈ AB. In this case, the
passenger can only board one train serving the origin and destination.

Rs
i,j(m, θ) =

j−1∑

q=i+1

(rpq + θxpq2h
s(m, θ)) + rpj (5.49)

3. ∀i ∈ P ,∀j ∈ P̄ . The passengers need to take a train to reach platform
i′ ∈ AB to connect to platform j. The in-vehicle time is divided into two
parts: the time in the train performing service p to reach station i and
the time in the train doing service p̄ to reach station j.

Rs
i,j(m, θ) =

i′−1∑

q=i+1

(rpq + θxpq2h
s(m, θ)) + rpi′

+

j−1∑

q=i′+1

(rp̄q + θxp̄q2h
s(m, θ)) + rp̄j

(5.50)

The average in-vehicle times for the line operated with and without a skip-stop
policy are defined by R̄ and R̃s, such that:

R̃ =

∑
i

∑
j Ri,jλi,j∑

i

∑
j λi,j

(5.51)

R̃s =

∑
i

∑
j R

s
i,jλi,j∑

i

∑
j λi,j

(5.52)
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5.3.3 The Average Travel Time

Now that we have the average wait and in-vehicle times, we can calculate the pas-
sengers’ travel time. The travel time for each origin-destination pair is the sum of
the wait time and in-vehicle time. Hence, we can express the travel time for the
all-stop and skip-stop policies and the difference between the travel times as Ti,j,
T si,j, and ∆T (m, θ), respectively.

Ti,j(m, θ) = ωi,j(m, θ) +Ri,j(m, θ) (5.53)
T si,j(m, θ) = ωsi,j(m, θ) +Rs

i,j(m, θ) (5.54)
∆Ti,j(m, θ) = Ti,j(m, θ)− T si,j(m, θ) = ∆ωi,j(m, θ) + ∆Ri,j(m, θ) (5.55)

As for the waiting time and the in-vehicle time, we can evaluate the average
travel time for all line passengers and the difference with the all-stop policy with
the following formulas.

T̃ =

∑
i

∑
j Ti,jλi,j∑

i

∑
j λi,j

(5.56)

T̃ s =

∑
i

∑
j T

s
i,jλi,j∑

i

∑
j λi,j

(5.57)

∆T = T̃ (m, θ)− T̃ s(m, θ) = ∆ω(m, θ) + ∆R(m, θ) (5.58)

To have a gain in the average travel time for passengers, the saved run time
must be greater than the time lost due to the increase in the waiting time, i.e.,
∆ω(m, θ) < ∆R(m, θ).

5.3.4 The Number of Passengers on Trains

During peak hours, overcrowding is a common problem on congested train lines, and
a possible solution is to implement a skip-stop policy. However, this study assumes
an unlimited train capacity, implying that all passengers can board the trains.

The number of passengers on trains after departure from the station j is given
by the variables σj and σsj for the all-stop and skip-stop policies, respectively. For
each service of the skip-stop policy, the number of passengers σAj and σBj in trains
is different, as it depends on the demand of each service.

σj(θ) = h(θ)
∑

i≤j≤l

θλi,l (5.59)

σpj (θ) = 2hs(θ)
∑

i≤j≤l

θλpi,l, ∀p ∈ {A,B} (5.60)

The variable σsj represents the mean passenger count in trains A and B, which is
calculated as σsj = (σAj + σBj )/2. Equation (5.61) gives the difference between the
number of passengers.

∆σj = σj − σsj . (5.61)



CHAPTER 5. EFFECT OF THE PASSENGERS ON A TWO-SERVICE
SKIP-STOP POLICY 75

5.4 Review of the Analytical Results for the All-
Stop Policy

Before deriving some indicators to evaluate the impact of a skip-stop policy on the
passengers, we quickly review the results obtained in [22]. With these results, we
can compare the line’s operations.

Theorem 5.4. [22, Theorem 3.2] If ∀j, xj < 1, and if
∑

j xj < m, then, the train
dynamics with

h(m, θ) = max {hfw, hmin, hbw} (5.62)

with hfw =
∑

j(rj + τj)/(m − θ
∑

j xj), hmin = maxj{(rj + τj + sj)/(1 − θxj)} and
hbw =

∑
j sj/(n−m).

Corollary 5.5. [22, Corollary 3.3] Under the conditions of Theorem 5.4, the average
asymptotic train frequency f is given as follows.

f(m) = min {ffw, fmax, fbw} (5.63)

with ffw = (m− θ
∑

j xj)/
∑

j(rj + τj), fmax = 1/hmin and fbw = (n−m)/
∑

j sj.

Corollary 5.6. [22, Corollary 3.4] Under the conditions of Theorem 5.4, the average
asymptotic dwell times

wj(m, θ) = τj + xjh(m, θ) (5.64)

The variables rj, τj, and sj without exponent correspond to the characteristic
times when the line is operated with an all-stop policy, and all trains stop at all
stations.

5.5 The Traffic Phases at the Steady State
We can apply our model to a real network line, the Paris metro line 1, as in Chap-
ter 4. This section aims to see the effect of the level of demand θ on the average train
time headway between and frequency; therefore, we consider a fixed demand profile.
In addition, this section focuses on the operator’s point of view by studying the line
frequency with the fundamental diagram of the line. Finally, we provide some math-
ematical formulas describing these diagrams to help operators better understand the
physics of traffic.

In Section 5.6.1, we detail the rule to select the skippable stations according to
the demand profile. This section uses the same rule based on the number of passen-
gers boarding and alighting at each station: the 12 less crowded ones are considered
skippable, and an alternating stopping pattern (see Figure 1.2) is implemented to
obtain our results. We can represent in Figure 5.1 the analytical results on the
fundamental diagram for the skip-stop policy of the Paris metro line 1. The funda-
mental diagram illustrates the average train frequency on the line as a function of
the number of running trains m and the demand level θ and is constructed using
the formulas obtained in Corollary 5.2. The formulas consider the train’s run times,
the demand profile, and the demand level parameters. In Figure 5.1, the three-
dimensional representation of the fundamental diagram is given as a function of the
number m of running trains and the demand level θ. This visualization method
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allows the phases of the line to be observed distinctly. Three characteristic phases
exist for a given demand level (see also Section 4.4.2). The first phase corresponds
to the free-flow phase, where the frequency grows as the number of trains increases.
The second phase, the capacity phase, is defined as the line’s maximum achievable
frequency: there is a segment where the time required for trains to leave this seg-
ment limits the entire line’s frequency. Finally, the congestion phase occurs when
the number of trains on the line is too high, leading to congestion. In this latter
phase, a train that has to wait for the previous train to leave the next segment
obstructs another train behind it, and so on.
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Figure 5.1: Frequency with a skip-stop policy as a function of the number of moving
trains and the demand level on the line at peak hour.

On Figure 5.2, we represent the evolution of the line capacity as a function of
the demand level θ to see the effect of the demand level on the line’s capacity; the
maximum frequency decreases as the demand level increases. It is a piecewise linear
function of the demand level θ that can be divided into three parts. First, ∀θ < 1.82,
the segment giving the maximum frequency is a signal between two stations. For
this segment j, the dwell times wAj , wBj , and the technical times τAj , τBj are equal to
0. Thus, the maximum frequency is given by (rAj + rBj + 2sj)/2, which is constant
regardless of the value of θ. For 1.82 ≤ θ < 7.25, the segment giving the line’s
capacity is the station La Defense. Here, both the demand indicator and the run
times impact the line capacity; the increase of θ decreases the maximum frequency
as the dwell time increase with the demand indicator. Finally, ∀θ ≥ 7.25, the station
Esplanade limits the frequency. The station has the highest value of the indicators
xAj and xBj , and the dwell time dominates the other values in the computation of the
maximum frequency fmax. Finally, θ ≥ 10.1, and beyond this value, the theorem
conditions are not respected and the frequency is null.
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Figure 5.2: Evolution of the maximum frequency fmax as a function of the level of
demand θ
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Figure 5.3: Contour frequency.

We can represent the theorem conditions with Figures 5.3 and 5.4. The first
figure represents the contour lines of the frequency. Just as on Figure 5.1, we see
on Figure 5.3 that the frequency decreases as the demand level increases. Moreover,
the number of trains for which the capacity phase is reached increases with the
level of demand. Figure 5.4 allows us to see the contours of Figure 5.3. The lines
(OA), (AB), and (BC) are given by the conditions of Corollary 5.2, i.e. f(m, θ) > 0.

• The line (OA) gives the minimum number of trains on the line to meet the
passenger demand.

min
ψ,p,Iψ

{
m+ ψ − 2θXe

(p,Iψ)

Re
(p,Iψ)

}
> 0 ⇔ m ≥ 2θXe

(p,Iψ)
− ψ (OA)

• The line (AB) gives the maximum level of demand θ that can be absorbed by
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Figure 5.4: Contour lines with characteristic points.

the line for the given demand profile.

min
j

{
2(1− θ(xAj + xBj ))

rAj + τAj + rBj + τBj + 2sj

}
≥ 0 ⇔ θ ≤ 1/min

j

{
xAj + xBj

}

(AB)

• Finally, the line (BC) gives the maximum number of trains the operator can
set on the line.

min
j

{
n−m

S

}
⇔ m ≤ n (BC)

The other points in Figure 5.4 correspond to the intersection of the different
traffic phases of the line. We have the following two propositions.

Proposition 5.7. The maximum number of trains on the line before reaching the
line capacity is given by me

D and mo
D for an even and an odd number of trains.

ml
D(θ) = max

ψ

{
Rl
ψfmax(θ) + 2θX l

ψ(θ)− ψ
}

(5.65)

Proof. ∀ψ, θ, l ∈ {e, o}, f lψ(m) = (m + ψ − 2θX l
ψ)/R

l
ψ are increasing and bijective

as a function of m. Therefore, ∀l ∈ {e, o}, minψ f
l
ψ(m) is increasing and bijective as

a function of m. Then we have:

ml
F := max{m,min

ψ
f lψ(m) ≤ fmax}, by definition

= m̃, such that minψ f
l
ψ(m̃) = fmax

= max
ψ

{
(f lψ)

−1(fmax)
}

Thus, ml
D(θ) = maxψ

{
Rl
ψfmax(θ) + 2θX l

ψ(θ)− ψ
}

Proposition 5.8. The number mE of trains corresponding to the end of the capacity
phase is given by

mE(θ) = n− Sfmax(θ) (5.66)
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Proof. Directly from Theorem 5.1 and Corollary 5.2, we have: fmax(θ) = (n −
mG)/S ⇔ mE = n− Sfmax(θ)

By using Proposition 5.7, we can derive the lines (D1D2), (D2D3), and (D3A) to
represent the maximum number of trains that can run on the line before reaching
its capacity. The points D2 and D3 correspond to the segment change where the
maximum achievable frequency is obtained. Similarly, Proposition 5.8 provides the
lines (E1E2), (E2E3), and (E3B), which indicate the number of trains beyond which
the line enters its congestion phase. ∀θ < 1.82, the segment giving the capacity is
not a station but a signal between two stations. As mentioned above, the maximum
frequency is constant for signals between stations but the slope of the frequency
decreases. Thus, the number of trains before reaching the line capacity increases.

This section focuses on the operator’s point of view, while the following section
concentrates on the passengers’ point of view. Lines are always operated with a
number of trains corresponding to the free-flow phase. Indeed, after the line capac-
ity adding trains would neither enhance the frequency nor the transport capacity.
Hence, in Section 5.6, we restrict our analysis to the free-flow phase.

5.6 The Effect of the Skip-Stop Policy on the Pas-
sengers

Now that we have derived and analyzed the main analytical results of a skip-stop
policy with demand-dependent dwell times, we focus our study on the passengers’
point of view. The frequency improvement for the operator is essential, but as
we showed in Chapter 4, the number of skippable stations should be increased to
maximize the gains. However, a skipped station increases the passengers’ waiting
time, and their travel times can increase despite the improved run times. Therefore,
we compute several indicators to measure the passengers’ gains and losses. These
indicators are developed in Section 5.3. First, in Section 5.6.1, we study two different
origin-destination matrices corresponding to two demand profiles. Then, we study
the impact of the demand profiles, and finally, we compute the indicators. In this
section, we look at multiple values of the demand level θ, but to make the results
clearer, we only show the values ∀θ ≤ 3 and depict mainly the results for θ = 1,
θ = 2, and θ = 3.

5.6.1 OD Matrix and Skippable Stations

The demand profiles

It is important to select the skippable stations so that the number of passengers
traveling from or to a skippable station is lower than a defined threshold. We
study two different demand profiles denoted as λ1 and λ2. They are represented in
Figures 5.5a and 5.5b. The arrival rates are identical for these two matrices, but
the travel demand profile differs.

Although the overall number of passengers in the system remains unchanged,
the number of stations that passengers travel through may vary. In Figure 5.5, the
arrival rates of each origin-destination i, j are represented with colored squares. The
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(a) First demand profile λ1.
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(b) Second demand profile λ2.

Figure 5.5: Origin-destination matrices with the two demand profiles.

color of the squares darkens as the arrival rates increase. With the first demand pro-
file λ1 (Figure 5.5a), the darker squares are located near the diagonal, showing short
travel for the passengers. However, with the second demand profile λ2 (Figure 5.5b),
the travel distance is longer, and the squares are lighter near the diagonal. We mea-
sure the number of stations each passenger travels through between their origin and
destination, with a minimum count of 0 when passengers reach the next station and
a maximum of 23 for trips between one terminus and the other. Figures 5.6 and 5.7
display the distribution of passengers for each count of stations between 0 and 23
for the demand profiles λ1 and λ2.
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Figure 5.6: Count of the number of passengers per number of stations between origin
and destination for the demand profile λ1 in a 60-minute interval.

In Figure 5.6, the number of passengers is inversely proportional to the number
of stations traveled. Over half of the passengers travel through less than five stations
between their origin and destination, with the highest count for those reaching the
nearest station. In contrast, Figure 5.7 shows that the number of passengers is more
evenly distributed according to the length of their trip.
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Figure 5.7: Count of the number of passengers per number of stations between origin
and destination for the demand profile λ2 in a 60-minute interval.

Skippable Stations

We can determine the rule to select the skippable stations. Two constraints exist:
first, a terminus can not be a skippable station. The second constraint is on read-
ability for passengers - the station must be skippable in both directions. The rule
is defined as follows. The number of passengers going from or to skippable stations
must be lower than a threshold compared to the total number of passengers. The
total number of passengers is given by Np :=

∑
i

∑
j λi,j and the number of passen-

gers going from or to skippable stations is given by Ns :=
∑

i∈P
∑

j∈P λi,j. Finally,
the ratio Ns/Np must be lower than the threshold κ, i.e., Ns/Np < κ.

For each station j, we have the sum of the passengers with destination j and
the passengers with origin j, i.e.,

∑
i λi,j +

∑
i λj,i. The stations are then sorted in

ascending order, and the skippable stations are the less crowded. For our case study,
we set the threshold as κ = 0.5. For the two demand profiles λ1 and λ2, the number
of skippable stations equals 12. However, the skippable stations are not the same:

• For λ1, the stations are the following: Louvre-Rivoli, Tuileries, Argentine,
Bérault, Saint-Paul, George V, Les Sablons, Hotel de Ville, Palais-Royal, Porte
de Vincennes, Pont de Neuilly, Saint-Mandé.

• and for λ2 they are: Argentine, Louvre-Rivoli, Tuilerie, Palais-Royal, Les
Sablons, George V, Pont de Neuilly, Porte Maillot, Concorde, Franklin D.
Roosevelt, Saint-Paul, Champs-Elysées.

In the first case, the stations are linearly spaced on the line, with skippable stations
alternating with mandatory stations. In the second case, from stations Saint Paul
to Pont de Neuilly, there are 15 stations, and 12 of them are skippable. It shows
that many passengers travel from one end of the line to the other.

5.6.2 Impact of the Demand Profile on the Line Operation

Before computing the passengers’ indicators developed in Section 5.3, we study the
average train time headway for the two demand profiles λ1 and λ2 and compare them
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to a line operated with an all-stop policy. Indeed, the headway directly impacts the
passengers as it is included in the computation of the passengers’ waiting and in-
vehicle times.

First, we compare the frequencies of the two demand profiles, where we have
12 skippable stations in both cases. This comparison allows us to assess the effect
of demand profiles on the operator when implementing a skip-stop policy. The
analytical frequencies are shown in Figure 5.8 for a fixed demand, with θ = 1.

The frequencies for the two demand profiles λ1 and λ2 are indicated by solid
blue and green dashed lines. Although the frequency is slightly lower for the second
profile, the difference is minimal, with a maximum difference of about 0.7 trains
per hour. For the operator, the demand profile does not significantly influence the
results regarding frequency.

Furthermore, we can also examine the headway differences between skip-stop and
all-stop policies. Figures 5.9 and 5.10 illustrate the headway variation based on the
number of running trains for two different demand levels. Additionally, Table 5.5
provides different values for three train counts.

The headway is higher for the second demand profile, mainly when the number
of trains is low. However, the two figures become quite similar as we approach the
line’s capacity. Moreover, in Table 5.5, for m=50, the headway differences for the
two demand profiles are almost identical. However, when m=20, the difference is
more significant, especially when the demand level is high.

Table 5.5: Difference between average analytical train time headway with and with-
out the skip-stop policy.

λ1 λ2

m = 20 m = 35 m = 50 m = 20 m = 35 m = 50
θ = 1 21.64 10.90 7.26 26.27 12.14 7.82
θ = 2 29.76 12.92 8.16 45.04 16.15 9.51
θ = 3 42.72 15.47 9.20 85.22 21.90 11.64

5.6.3 Impact of the Skip-Stop Operation on the Passengers

We now compute the indicators developed in Section 5.3 for both demand profiles
λ1 and λ2. We compare the line operated with and without the skip-stop policy
for each indicator and demand profile. Moreover, we also show several levels of
demand θ. Also, in Tables 5.6 to 5.9, we give the precise number for the indicators
for three numbers of running trains, m = 20, m = 35, and m = 50. The last number
corresponds to almost the line’s capacity, and the two others correspond to off-peak
and peak-hour numbers. In Table 5.6, we give the average train-time headway for
each of the number of trains, the level of demand θ, and for the all-stop and skip-
stop policies. For the all-stop case, the waiting time is directly given by dividing
the headway by two.

The Average Waiting Time

Let us first evaluate the average waiting time of passengers. We recall that we con-
sider that the passengers arrive at the stations uniformly, regardless of the timetable.
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Figure 5.8: The analytical average train frequency for the two demand profiles.
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Figure 5.9: Comparison of the average analytical train time headway for the skip-
stop and all-stop policies with θ = 1 and θ = 3 for the demand profile λ1.
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Figure 5.10: Comparison of the average analytical train time headway for the skip-
stop and all-stop policies with θ = 1 and θ = 3 for the demand profile λ2.
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Table 5.6: Average analytical average train time headway.

λ1 λ2

m = 20 m = 35 m = 50 m = 20 m = 35 m = 50

θ = 1
h 210.03 113.31 77.58 222.80 116.92 79.26
hs 168.30 96.17 67.32 196.53 104.79 71.44

θ = 2
h 243.69 122.43 81.75 281.07 131.20 85.57
hs 213.92 109.52 73.60 236.02 115.05 76.07

θ = 3
h 290.19 133.15 86.40 380.61 149.44 92.97
hs 247.47 117.68 77.20 295.39 127.55 81.33

The average passenger waiting times are shown in Figures 5.11 and 5.12 for both
all-stop and skip-stop policies. The all-stop and skip-stop waiting times have black
and colored (blue and green) curves, while the solid, dashed-dotted, and dotted lines
correspond to the different demand levels. The waiting times are computed using
Equations (5.41) to (5.44) and are given for a range of train frequencies from 15 to
50, corresponding to the free-flow phase.
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Figure 5.11: Comparison of the analytical average waiting time for the skip-stop
and all-stop policies with θ = 1 and θ = 3 for the demand profile λ1.

Whether for λ1 or λ2, the average waiting time for passengers increases with the
skip-stop policy. Even though passengers traveling to and from a mandatory station
see their waiting time decrease, all other passengers must wait longer. Furthermore,
the time lost by some passengers is not compensated by those who gain time. The
proportion of these passengers represents only half of all passengers, meaning the
other half loses time. We can compute the difference between the waiting time of
the passengers with and without the all-stop policy with ∆ω = ω̃ − ω̃s.

We give the results of this difference ∆ω in Table 5.7 for all values of θ and
m = 20, m = 35, andm = 50. The gap narrows when the number of trains increases.
We differentiate between passengers traveling to and from mandatory stations, who
will save time, and others with a skippable station as origin and/or destination. As
the gap in the average train time headway between the two policies narrows, on the
one hand, the waiting time of passengers who need to make a transfer to reach their
destination decreases. On the other hand, the time saved by passengers traveling to
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Figure 5.12: Comparison of the analytical average waiting time for the skip-stop
and all-stop policies with θ = 1 and θ = 3 for the demand profile λ2.

Table 5.7: Difference in the average waiting time ∆ω in seconds.

λ1 λ2

m = 20 m = 35 m = 50 m = 20 m = 35 m = 50
θ = 1 -75.94 -41.70 -28.73 -51.69 -28.44 -19.61
θ = 2 -83.74 -43.99 -29.81 -55.69 -29.90 -20.32
θ = 3 -92.88 -46.50 -30.96 -56.05 -31.25 -21.03

and from mandatory stations decreases.
When the number of trains is low, passengers traveling to and from a location

served by two different services lose a lot of time. They have to wait a long time at
the origin and then at the intermediate station where they transfer. Their waiting
time adds considerably to the average waiting time for all passengers. As the number
of trains increases and the interval between trains decreases, these passengers can
significantly reduce their waiting time, thus reducing the gap in waiting time between
the two policies.

On the other hand, the gap is smaller for the λ2 demand profile than for the λ1
profile. Indeed, the percentage of people traveling to and from a mandatory station
is slightly higher for λ2. The average intervals are similar for both demand profiles,
so the waiting time is lower for λ2.

The Average In-Vehicle Time

The in-vehicle time refers to the duration passengers spend inside trains and is an
essential component of their total travel time. It is calculated by considering the
train’s run and dwell times at each station along the route, excluding the dwell
time at the destination station. Similarly to waiting time, we analyze the in-vehicle
times for both all-stop and skip-stop policies using the demand profiles λ1 and λ2

(shown in Figures 5.13 and 5.14) for a range of values for m (15 to 55) and three
demand levels θ (1,2, and 3). Additionally, Table 5.8 presents specific values, and
Equations (5.47) to (5.52) are employed to compute the in-vehicle times.

The skip-stop policy proves effective in reducing in-vehicle times for both demand
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Figure 5.13: Comparison of the analytical average in-vehicle time for the skip-stop
and all-stop policies with θ = 1 and θ = 3 for the demand profile λ1.
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Figure 5.14: Comparison of the analytical average in-vehicle time for the skip-stop
and all-stop policies with θ = 1 and θ = 3 for the demand profile λ2.

profiles. Passengers benefit from time savings as trains do not stop at all stations.
Their travel time is shortened by eliminating the need for trains to slow down and
stop at skippable stations. The most significant advantage lies in reducing dwell
time, as deceleration and acceleration times become less significant. The dwell time
is directly influenced by the demand indicator xj at each station. The skip-stop
policy decreases the train time headway between trains, resulting in comparable
demand indicators. Consequently, the dwell time at mandatory stations decreases,
allowing trains to save time by skipping some stops and reducing the overall in-
vehicle time for passengers. Ultimately, as the number of trains increases and the
gap between headways for the all-stop and skip-stop policies narrows, the difference
between in-vehicle times becomes more pronounced.

Comparing the in-vehicle times for the two demand profiles, λ2 shows higher
values. For instance, with m = 50 and θ = 1, the average in-vehicle time for
passengers is approximately 380 seconds for λ1, whereas it is around 680 seconds for
λ2. This difference is explained by the fact that the second demand profile involves
longer travel distances for passengers, with origins and destinations further away
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Table 5.8: Difference between the skip-stop and all-stop policies in the average in-
vehicle time in seconds.

λ1 λ2

m = 20 m = 35 m = 50 m = 20 m = 35 m = 50
θ = 1 33.36 26.31 23.79 103.36 77.14 68.18
θ = 2 55.17 35.97 29.93 197.20 113.56 90.37
θ = 3 89.05 48.00 37.05 331.31 132.90 117.88

than the first demand profile. Consequently, the distance between the origin and
destination logically influences the in-vehicle time. Furthermore, the benefits of the
skip-stop policy are more pronounced with the second demand profile, as passengers
are more likely to encounter skippable stations and save time during their journey.

The Average Travel Time

Finally, we can calculate the passengers’ travel time. The travel time for each origin-
destination pair is the sum of the waiting and in-vehicle times. Hence, we can express
the travel time for the all-stop and skip-stop policies and the difference between
the travel times for each origin-destination or all passengers with Equations (5.53)
to (5.58). First, we focus on the average travel time for all the passengers.

The Average Travel Time for All Passengers First, we are interested in the
passengers’ travel time in the system, so we calculate the average travel time for
passengers, and we can compare this average for the cases with and without a skip-
stop policy. Then, we represent the evolution of the average travel time for both
demand profiles, with the number of trains ranging from 15 to 55 and three different
demand levels in Figures 5.15 and 5.16.
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Figure 5.15: Comparison of the average travel time for the skip-stop and all-stop
policies with θ = 1 and θ = 3 for the demand profile λ1.

The formula to determine the system gain is given by ∆T = ∆ω̃ + ∆R̃ (Equa-
tion (5.58)), which means that the increase in the passengers’ waiting time must be
less than the time they are gain in the vehicles to observe a positive gain. For λ1



88 5.6. THE EFFECT OF THE SKIP-STOP POLICY ON THE PASSENGERS

15 20 25 30 35 40 45 50 55
Number of running trains m

700

800

900

1000

1100

1200

1300

1400

1500

Av
er

ag
e 

tra
ve

l t
im

e 
[s

ec
]

= 1, skip-stop
= 1, all-stop
= 2, skip-stop
= 2, all-stop
= 3, skip-stop
= 3, all-stop

Figure 5.16: Comparison of the average travel time for the skip-stop and all-stop
policies with θ = 1 and θ = 3 for the demand profile λ2.

Table 5.9: Difference in the average travel time in seconds.

λ1 λ2

m = 20 m = 35 m = 50 m = 20 m = 35 m = 50
θ = 1 -42.58 -15.38 -4.95 51.68 48.70 48.58
θ = 2 -28.56 -8.02 0.12 141.51 83.67 70.06
θ = 3 -3.83 1.50 6.09 331.31 132.90 96.85

and θ = 1 or 2, the average travel time from all-stop to skip-stop increases when
the number of trains is small. The time passengers gain in the trains is insufficient
to compensate for the time lost by those waiting longer. For θ = 3, there is a slight
improvement in travel time, but it remains relatively low. In Table 5.9, we can
see that for m = 50, which corresponds to a train time headway of about 75 sec-
onds, passengers lose an average of 5 seconds, gain nothing, or gain approximately
6 seconds for demand levels 1, 2, and 3.

On the other hand, for the second demand profile, there is a gain for passengers
regardless of the number of trains and the demand level. This gain is explained
by the fact that the time saved by passengers thanks to the reduction in time
spent on trains more than offsets the increase in waiting time. Furthermore, for a
demand level of 1, the gain is almost constant regardless of the number of trains,
demonstrating a clear advantage regardless of the headway chosen by the operator.

The Travel Time per OD We now examine the time gained or lost for each
origin-destination pair to better understand the disparities based on origin-destination
pairs. To do this, we set the following values to represent our results: m = 50
and θ = 1. In Figure 5.17, we represent the time gained or lost for each origin-
destination pair in a heatmap. Figures 5.17a and 5.17b respectively represent both
demand profiles λ1 and λ2. We can clearly see the differences in skippable stations
in these figures. The red or violet squares indicate an origin-destination pair where
passengers lose time, while the blue or green squares indicate pairs that improve
passenger travel time. Skippable stations can be identified by the rows or columns
in the figure with a dominant red color. In the first case, these rows and columns
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are separated by others, while in the second case, these rows are consecutive toward
the middle of the row. Furthermore, the closer the two skippable stations are, the
more significant the time lost. Indeed, changing trains causes a significant loss of
time, and sometimes it has to be done further away from the destination, resulting
in an increase in travel time in addition to the increased waiting time. Overall,
the maximum travel time gained and lost is roughly the same regardless of the two
demand profiles, with approximately 150 seconds lost and 130 seconds gained for
θ = 1.
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(a) Difference for the demand profile λ1.
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(b) Difference for the demand profile λ2.

Figure 5.17: Difference in the travel time for each OD pair ∆Ti,j without and with
a skip stop policy.

To visualize the time gained or lost based on the demand, we multiply the time
difference ∆T(i,j) with the associated demand for each origin-destination pair λ(i,j).
Again, for both demand profiles, we represent the results as a heatmap, where each
square represents an origin-destination pair, and its color represents the passenger
seconds; see Figure 5.18. When an origin-destination pair has a significant time gain
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(b) Result of the product of ∆Ti,j and λ2i,j .

Figure 5.18: Results of the product of the difference obtained in Figure 5.17 and the
OD matrices λ1 and λ2.

or loss, but the demand is low, the associated square becomes lighter, indicating that
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this pair does not play a significant role in the average passenger travel time. In
Figure 5.18a, most of the squares are lighter, but some, whether losses or gains,
stand out. Therefore, the OD pairs with the highest ridership do not necessarily
save the most time. The figure has no dominant color, with as many red squares as
blue squares, which explains why the average time gained is close to 0. However,
in Figure 5.18 for the second demand profile, we can see that many green squares
stand out, and the violet squares have significantly lightened. Some of the most
frequented OD pairs are the ones that allow travelers to save the most time.

Finally, we can compare the number of people gaining or losing time when the
skip-stop policy is implemented. To do this, we calculate the percentage of people
who gain or lose time. If, for an origin-destination pair, there is a time gain, we add
the number of people from that OD pair to the group of people gaining time, and
vice versa. Figures 5.19 and 5.20 represent these percentages for the two demand
profiles λ1 and λ2, and for two different demand levels, θ = 1 and θ = 2. The
different line styles differentiate the percentage of people gaining or losing time and
the demand levels.
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Figure 5.19: Percentage of the passengers gaining or losing time with the demand
profile λ1.

For the first demand profile, when m is small, there is no significant difference
between the number of people gaining and losing time, with 56% and 44%, respec-
tively. As we approach the line capacity when m = 50, slightly more people are
gaining time, but the percentage remains below 70%. However, for the second de-
mand level, the percentage of travelers gaining time is much higher, reaching over
80% and up to 90% when approaching the line capacity.

In Section 5.6.1, the rule defined to select the skippable stations ensures that
less than half of the passengers are negatively affected by the skip-stop policy, i.e.,
those traveling to and/or from a skippable station, for both demand profiles. With
the first demand profile, only a few passengers traveling to and/or from a skippable
station gain time. Again, the short distance traveled overall by passengers does not
allow them to compensate for the time lost in waiting with the time gained from the
increase in the train speed. However, this is the case for the second demand profile,
where many passengers who wait longer at their origin station will still gain time.
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Figure 5.20: Percentage of the passengers gaining or losing time with the demand
profile λ2.

The Passenger Comfort

After calculating various time indicators for passengers, we now focus on comfort,
precisely the number of passengers on the train. Indeed, this is one of the key
criteria for passenger satisfaction. Furthermore, disruptions on a line can arise from
overcrowded trains. Passenger exchanges at stations become more complicated,
leading to door blockages and consequently slowing down the operation of the line.
We use the derived Equations (5.59) to (5.61) from Section 5.3. In this section, we
again compare the skip-stop and all-stop policies. In the equations, the number of
passengers on the trains is calculated considering arrival rates and the train time
headway. However, we do not consider the capacity of the trains. Nevertheless, to
understand the train occupancy rate, we represent it in the figures. It is indicated
theoretically in the following figures. Two capacities can be considered: comfort
capacity and maximum capacity. The former considers four passengers per square
meter, and the latter considers six passengers per square meter [65].

For the two demand profiles, we present two different figures. In the first one,
with a fixed number of trains at 50, we provide the average number of passengers1

per train with and without the skip-stop policy for two different demand levels at
each station. In the second figure, we represent the percentage of passenger savings
in the trains compared to the train’s capacity. If the capacity is given by cap, we have
100×∆σj(θ)/cap, which gives the percentage of capacity saved thanks to the skip-
stop policy. Figures 5.21 and 5.22 represent this percentage. For the two demand
profiles, the skip-stop policy allows for a decrease in the number of passengers per
train regardless of the demand level. Moreover, depending on the demand level, the
percentage rises to 20% and 25% of the capacity on the busiest section of the line.

In Figures 5.23 and 5.24, we show the evolution of the number of passengers on
the line for the two policies and two demand levels. The colored curves represent
the number of passengers for the skip-stop policy, while the black curves represent
the number for the all-stop policy. The solid and dotted lines differentiate the two

1We consider the average between the two services because the number of passengers on each
train for both services is roughly equivalent. This makes it easier to compare with the all-stop
policy.
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Figure 5.21: Percentage of passengers saving on trains relative to train capacity
between skip-stop and full-stop policies and demand profile λ1. The number of
trains m is set to 50 and 0 ≤ θ ≤ 3.

demand levels θ = 1 and θ = 2.

For the first demand profile, the line is not overcrowded. The right part of
the figure, which represents one direction, is well below capacity. Although an
improvement is visible, the passenger experience is similar for both policies. In the
other direction, on the left part, the line is more crowded. The skip-stop policy
improves passenger comfort because, for both demand levels θ = 1 and θ = 2, the
comfort capacity is not reached only when a skip-stop policy is implemented.

For the second demand profile, the trains are more crowded. As passengers take
longer trips, they accumulate throughout the line to travel toward the terminus. As
a result, the comfort capacity is exceeded in both directions, as is the maximum
capacity in the first direction on the left part of the figure. However, when θ = 1,
the skip-stop policy prevents exceeding this maximum capacity and improves overall
comfort.

Furthermore, we emphasize that the demand indicator xj directly depends on
the number of passengers on the trains and increases with this number. In addition
to increased comfort, reducing the number of passengers allows trains to spend less
time at stations, thereby improving the line’s performance. Finally, the number of
passengers arriving at the station is the same for skip-stop and all-stop policies.
The decrease in the number of passengers on the trains means more people are
waiting on the platforms. The increased comfort on the trains is accompanied by
decreased comfort on the platforms. If the number of people on the platforms
becomes too high, circulation can be affected, and passenger exchanges can become
more complex. There can also be safety issues due to overcrowding. However, in
our case study, Line 1 of the Paris Metro is equipped with platform screen doors,
which ensure passenger safety.
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Figure 5.22: Percentage of passengers saving on trains relative to train capacity
between skip-stop and full-stop policies and demand profile λ2. The number of
trains m is set to 50 and 0 ≤ θ ≤ 3.

5.7 Conclusion
We have presented in this chapter a discrete event mathematical model for a line
operated with a skip-stop policy, where two alternating services are considered.
Moreover, the train dwell time at platforms is modeled as a function of the services
the operator provides, the travel demand, and the average train-time headway. The
model explains how services and passenger demand are considered and dwell times
for both services are determined. The model is written linearly in the Max-plus
algebra, allowing interesting analytical results to be derived. The average headway,
frequency, and dwell times are derived as functions of the number of running trains,
the services defined by the operator, and other line characteristics. The advantages
and drawbacks of the skip-stop policy are also discussed. Increasing the train time
headway between two trains stopping at skippable stations increases the average
waiting time for passengers, but it can decrease the passenger travel time under
certain conditions. When trains skip stations, their speed increases, and the time
lost by increased waiting time is offset by lower in-vehicle time. In this chapter’s
last section, we studied different OD matrices significantly impacting the computed
indicators. We show that the skip-stop policy is particularly beneficial when the
number of stations between the passengers’ origin and destination is high.

In the next step, we will work on the development of an optimization tool that
would give the best skip-stop arrangement depending on the origin-destination ma-
trix of passenger arrivals and the line’s characteristics. Especially our rule to select
the skippable stations might be too restrictive. We also intend to relax the assump-
tion of the infinite passenger capacity of trains in the future.
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Figure 5.23: Average number of passengers in the trains along the line for θ = 1 and
θ = 2, m = 50, and the first demand profile λ1.
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Figure 5.24: Average number of passengers in the trains along the line for θ = 1 and
θ = 2, m = 50, and the second demand profile λ2.



Chapter 6

Impact of a FIFO Rule on a Line
with a Junction

This chapter focuses on a different application from the previous chap-
ters: line 13 of the Paris metro. This line is different in that it has a
junction, i.e., a central part that divides into two branches. The line’s
convergence or merge (the point where the two branches meet in the cen-
tral section) is a key point in the operation. The branches have approxi-
mately the same demand and travel time, so trains must run alternately
to the two branches at the divergence of the line. At convergence, the
same rule applies as at divergence. The company ensures that this order
is respected as far as possible. Indeed, due to operational constraints, it
is necessary to maintain the running order except in the event of major
disturbances or traffic disruptions.

With the planned automation of the line, driver-related operational con-
straints can be relaxed, and the running order of trains at convergence
can be modified. This work tests the impact of a new running order rule
on the line’s train frequency and enables the operator to estimate the
gains linked to train frequency. Indeed, frequency and reliability are key
factors in the smooth running of a metro system. High frequency means
short intervals between trains, which is important to meet passenger
demand during peak hours. Reliability is equally important, as passen-
gers expect to be able to rely on the metro system to arrive at their
destination on time. Unexpected delays and service interruptions can
lead to inconvenience and frustration, negatively impacting the overall
passenger experience.

This chapter, therefore, proposes a discrete-event traffic model for a
metro line with a junction. It is based on the line’s existing signaling
system and determines train departure times at all nodes on the line.
In addition, the model estimates the average interval and frequency of
trains. We apply our model to line 13 of the Paris metro, which is not
currently operated with a FIFO (First-In-First-Out) rule on the junction.
We aim to evaluate the effect of a FIFO rule on the nominal frequency
at steady state. In relation to the current line operation, we also test the
FIFO rule as a daily disturbance control strategy. At the steady state,
we show that train frequency is maximized, whatever the distribution
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of trains on the three parts of the line (the central part and the two
branches). Next, we study train frequency in two disruptive situations
that often occur on a metro line. We show that the FIFO rule reduces the
impact of these disruptions in time and intensity. This work is the first
step towards seeing the evolution of frequency on a line with a junction.

6.1 The Model
In this section, we develop our model. It considers a First-In-First-Out (FIFO) rule
on the merge of a line with a junction. First, we give a schematic representation of
the line and the notations necessary for the train dynamics. Then, we clarify our
model’s two constraints. Finally, we also give some properties of our model.

6.1.1 Notions & Line Discretization

Table 6.1: Notations

u ∈ U = {0, 1, 2} the set of all the branch. u = 0, u = 1, and u = 2
respectively correspond to the central part, Branch 1 and Branch 2.

nu the number of nodes on branch u.
k the departure counter on the central part.
ku the departure counter on branch u, ∀u ∈ {1, 2}.
Nu the number of segments on branch u.
J(u) = {1, . . . , nu} the set of indices of the branch u.
b(u,j) boolean variable giving the initial state of the line. b(u,j) = 1 if there is a

train the segment j of the branch u, b(u,j) = 0 otherwise.
b̄(u,j) = 1− b(u,j).
mu the number of trains on branch u.
m

∑
umu the total number of running trains on the line.

rk(u,j) kthrun time at the segment j of the branch u.
wk(u,j) kthdwell time at the segment j of the branch u.
tk(u,j) = rk(u,j) + wk(u,j), k

thtravel time at the segment j of the branch u.
sk(u,j) kthsafe separation time at the segment j of the branch u.
hk(u,j) kthheadway at the segment j of the branch u.
dk(u,j) kthdeparture at the segment j of the branch u; the train dynamics of our

model evaluate all the departures at each iteration k.
∆m := m2−m1 is the difference between the number of trains on Branch 2 and

1 at the initial state.
m̄u := nu −mu, ∀u ∈ U .
m̄ := m̄0 + m̄1 + m̄2.
∆m̄ := m̄2 − m̄1.
T u :=

∑
j t(u,j), ∀u ∈ U .

Su :=
∑

j s(u,j), ∀u ∈ U .

Figure 6.1 shows a schematic representation of metro line 13 Paris (see Fig-
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ure 1.4). Our model is based on the currently used line signaling system. The line
consists of one track for each direction, which does not allow trains to overtake each
other. On the divergence, the tracks divide into two separate branches. Eventually,
the two branches merge at the start of a central section. Here, a signal system regu-
lates train traffic, allowing trains from one branch to enter the central section while
preventing those from other branches from doing so to prevent collisions. Thus, the
line is discretized into segments ending in a node corresponding to a signal.

Figure 6.1: Schematic representation of line 13 Paris. The line has three parts: the
central part and Branches 1 and 2.

Table 6.1 fixes the notations for the model, where u indexes the three parts of
the line (u = 0 for the central part, u = 1 for Branch 1, and u = 2 for Branch 2),
and then nodes are denoted (u, j) where j = 1, 2, . . . nu indexes the nodes on part u
of the line; see Figure 6.1.

Three types of nodes must be distinguished. First, we have the divergence of the
line, denoted by (0, n0), where the trains go to one or the other of the two branches.
Then, the merge of the line, denoted by (0, 0), where the trains come from the
branches to the central part. Finally, all the other nodes, where the trains run
without interacting with another branch. Each segment (u, j) has some character-
istic times ru,j, wu,j, tu,j, and su,j respectively run, dwell, travel and safe separation
times.

We denote by r(u,j), w(u,j), t(u,j), and s(u,j), respectively the lower bound for the
run, dwell, travel and safe separation times on the segment (u, j). The model calcu-
lates the kthdeparture times dk(u,j) at all nodes (u, j) and is based on two constraints.
Note that k indexes the number of departures, not the trains. It is the counter of the
number of departures at each line node. On lines without a junction, the counter k
grows uniformly for all the line nodes. The model evaluates the kthdeparture at all
nodes at each iteration. However, for lines with junctions, the growth rate of the
counter k is not the same for the central part and the branches. For example, with
a symmetrically operated junction, only half of the departures made on the nodes of
the central part are made on the nodes of each branch. In Table 6.2, we show how
the different values of the counter evolve. Especially we consider k as the counter
on the central part and k1 and k2 as the counters on branches 1 and 2.
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6.1.2 Constraints & Train Dynamics

We now explicit the constraints of our model. The mathematical formulation of the
constraints depends on the type of nodes of the line. However, for all nodes, the
interpretations are the same. Thus, we give the constraints and the interpretations
for the nodes out of the junction.

Constraints out of the Junction

The constraints are given for all the nodes except the divergence and the merge.
∀u ∈ U , we have j ∈ J(u)\{1, nu}. There are two constraints: one on the travel
time (run + dwell) and one on the safe separation time.

1. The travel time constraint takes into account the line’s characteristics. The
trains’ movement on the line is constrained by the maximum speed achievable
on a segment giving the minimum run time r(u,j), and by the minimum dwell
times at stations. For each segment, the travel time is equal to the sum of the
run and dwell times, i.e., t(u,j) = r(u,j) + w(u,j). The departure of a train on a
node (u, j) is constrained by its departure at the previous node (u, j − 1) plus
the minimum travel time to go from node j − 1 to node j. The train making
the kthdeparture at node (u, j) has made the (k − b(u,j))

thdeparture at node
(u, j − 1).

dk(0,j) ≥ d
k−b(0,j)
(0,j−1) + t(0,j), if u = 0 (6.1)

dku(u,j) ≥ d
ku−b(u,j)
(u,j−1) + t(u,j), otherwise (6.2)

2. The second constraint ensures safety on the line by avoiding potential collisions
between trains. A train can only enter a segment if it is free of other trains.
Thus, the departure at a node (u, j) occurs when the train preceding the one
departing from node (u, j) has made its departure at node (u, j + 1) plus a
safe separation time s(u,j+1). The departure of the preceding train is given by
k− b̄(u,j+1). This safe separation time guarantees that the end of the preceding
train has also left the segment.

dk(0,j) ≥ d
k−b̄(0,j+1)

(0,j+1) + s(0,j+1), if u = 0 (6.3)

dku(u,j) ≥ d
ku−b̄(u,j+1)

(u,j+1) + s(u,j+1), otherwise (6.4)

Constraints on the Divergence

The divergence is the last point (0, n0) of the central part, and it has connections
with the first points (1, 0) and (2, 0) of both branches 1 and 2. We consider a
divergence with a symmetrical operation, where trains go alternately to one or the
other branch. Since every other train goes to either branch, we can use a rule
based on parity on this node. Thus, odd and even departures correspond to trains
going to Branch 1 and 2. With this parity rule, we ensure that the order is always
guaranteed whatever the order on the merge of the line. Even if multiple successive
trains enter the central part from the same branch, the same train will alternate
towards branches 1 and 2 when reaching the divergence.
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1. On the central part, u = 0 and j = n0. The travel time constraint is given by

dk(0,n0)
≥ d

k−b(0,n0)
(0,n0−1) + t(0,n0)

(6.5)

For the safe separation constraint, the departure of a train to a branch is only
constrained by the preceding train going to the same branch. Therefore, the
safe separation constraint is given by

dk(0,n0)
≥





d
(k+1)/2−b̄(1,1)
(1,1) + s(1,1), if k odd

d
k/2−b̄(2,1)
(2,1) + s(2,1), if k even

(6.6)

2. The kthentry on branch u ∈ {1, 2} can be evaluated with

dku(u,1) ≥ d
k−b(0,1)
(0,n0)

+ t(0,1) (6.7)

dku(u,1) ≥ d
ku−b̄(u,2)
(u,2) + s(u,2) (6.8)

with k = 2ku − 1 if u = 1, and k = 2ku if u = 2.

Constraints on the Merge

For the merge, the rule is different. We set the first train arriving on the merge to
enter the central part. Thus, the parity-based rule cannot be used at this line node.
The equations are given below.

1. Central part, u = 0

dk(0,1) ≥ min
u∈{1,2}

{
d
ku−b(u,nu)
(u,nu−1) + t(u,nu)

}
(6.9)

dk(0,1) ≥ d
k−b̄(0,2)
(0,1) + s(0,2) (6.10)

with ku, u ∈ {1, 2} the departure counter corresponding to the last train which
entered the central part from branch u.

2. Branch u, u ∈ {1, 2}

dku(u,nu) ≥ d
ku−b(u,nu)
(u,nu−1) + t(1,nu) (6.11)

dku(u,nu) ≥ d
k−b̄(u,nu+1)

(0,1) + s(u,nu+1) (6.12)

On the divergence, the parity-based rule allows expressing the departure counter ku
of each branch as a function of the departure count k of the central part. Neverthe-
less, with the FIFO rule on the merge, two or more trains from a branch can enter
the central part consecutively. Thus, the counters ku are updated each time a train
enters the central part from branch u, i.e., ku = ku+1 each time a train from branch
u enters the central part.
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Train Dynamics of the Line

We consider that the trains depart when both constraints are satisfied for all the
line nodes. Therefore, the departure is equal to the maximum value given by the
two constraints; for example, out of the junction, we have

dk(u,j) = max
{
d
k−b(u,j)
(u,j−1) + t(u,j), d

k−b̄(u,j+1)

(u,j+1) + s(u,j+1)

}

.

6.1.3 Counters & Dynamic Number of Trains

In the next section, we simulate the line’s train dynamics to obtain the line’s
asymptotic average train time-headway (estimated at each node (u, j) by h(u,j) =
limk→∞ dk(u,j)/k). The asymptotic average train frequency at a node (u, j) is then
estimated as f(u,j) = 1/h(u,j). Before that, we give some properties on the evolution
of the number of trains on each branch with the new FIFO rule on the merge and
the departure counters ku for each branch.

Dynamic Number of Trains on the Branches with the FIFO Rule

Let mk
u be the number of trains on the part u of the line after each iteration k. In

[58], the model uses a one-over-two rule on the divergence and the merge, and the
trains’ running order is defined such that when a train pulls to Branch u at the
divergence, the train entering the central part comes from the same branch. Thus,
∀u mk

u is constant and independent of the iterations k when a one-over-two rule is
set on the line. Therefore, ∀u, k, we have mk

u = mk−1
u +1−1 = mu, and ∆mk = ∆m.

However, with the FIFO rule on the merge of the line, the train leaving the
central part can pull to a branch while the one entering the central part can come
from the other one. With mk

in,u := 1 (resp. mk
out,u := 1) if a train pulls to (resp.

leaves) the branch u at the kthdeparture, and 0 otherwise, we have

mk
u := mk−1

u +mk
in,u −mk

out,u,

Moreover, if a train enters or leaves Branch 1 (resp. 2), there is no train entering or
leaving Branch 2 (resp. 1); thus mk

in,1 = 1 −mk
in,2 and mk

out,1 = 1 −mk
out,2. Finally,

note that there is always one train leaving and one entering the central part at every
iteration. Therefore the number of trains on the central part is constant, mk

0 = m0.
Let us define the dynamic difference in the number of trains between Branch 2 and
Branch 1 for each k,

∆mk := mk
2 −mk

1. (6.13)

Proposition 6.1. The parity of ∆mk is constant ∀k, i.e.

∆mk = ∆mk−1 + 2α (6.14)

with α ∈ {−1, 0, 1}.
Proof.

∆mk = mk
2 −mk

1

= mk−1
2 +mk

in,2 −mk
out,2 − (mk−1

1 +mk
in,1 −mk

out,1)

= ∆mk−1 + 2(mk
out,1 −mk

in,1)
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We have α = 0 if mk
out,1 = mk

in,1, α = 1 if mk
out,1 = 1 and mk

in,1 = 0, and α = −1 if
mk
out,1 = 0 and mk

in,1 = 1

In the following sections, we study the asymptotic behavior of ∆mk and its
impact on the train frequency on the line in nominal and disturbed operations.

Evolution of the Counters and the Difference in the Number of Trains
between the Two Branches

As mentioned above, the growth rate of the departure counters is not the same
for the central part and the branches. We give in Table 6.2 an example of the
evolution of the values of k, k1, and k2. We also give the evolution of ∆mk, the
difference in the number of trains between the two branches. In [58], the variable
∆m significantly impacts the train frequency. With our FIFO rule, this value change
after each iteration k, and thus, it will impact the value of the train frequency.

Table 6.2: Evolution of the counter k, k1, k2, and ∆mk at the divergence and the
merge of the line.

Divergence, (0, n0) Merge, (0, 0)
k k1 k2 mk

in,1 mk
in,2 k1 k2 mk

out,1 mk
out,2 ∆m

1 1 - 1 0 - 1 0 1 ∆m0 − 2
2 - 1 0 1 - 2 0 1 ∆m0 − 2
3 2 - 1 0 1 - 1 0 ∆m0 − 2
4 - 2 0 1 2 - 1 0 ∆m0

5 3 - 1 0 3 - 1 0 ∆m0

6 - 3 0 1 4 - 1 0 ∆m0 + 2

This table shows a simple example of the evolution of the counters. For the
divergence, the alternations of the trains to the branches give directly k = 2k1 − 1
and k = 2k2. For the merge, there exists a relation between the three counters:
k = k1 + k2. However, it is impossible to give a relation of k with only k1 or k2.
In this example, we have the first two trains from Branch 2 entering the central part
and four trains from Branch 1. Thus, we have

1. d1(2,n2)
+ t(2,n2)

< d2(2,n2)
+ t(2,n2)

< d1(1,n2)
+ t(1,n2)

,

2. dk′(1,n1)
+ t(1,n1)

< d3(2,n2)
+ t(2,n2)

,
∀k′ ∈ {1, 2, 3, 4}.

The first train departing from the last node of Branch 1 arrives at the merge after
the two first of Branch 2. Similarly, the third train departing on the last node of
Branch 2 arrives after the fourth train departing from Branch 1. This example also
shows how the running order on the merge influences the values of ∆mk.
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6.2 Review of the Analytical Results with a One-
over-Two Rule

This section reviews the results obtained in [58], where a discrete-event model de-
riving the traffic phases of the train dynamics on a line with a junction is developed.
The authors consider a one-in-two rule on divergence and merging of lines. With
a one-over-two rule, at the divergence, one train goes to Branch 1 and the next
one goes to Branch 2, while at the merge, one train enters the central part from
Branch 1 and the next one enters from Branch 2. This alternation is repeated dur-
ing the whole operation. One of the main results is Corollary 6.2, which gives the
train frequency as a function of two variables: m, the number of trains running, and
∆m, the difference in the number of trains between Branch 1 and Branch 2. Let us
consider the notations of Table 6.1.

Corollary 6.2. [58, Corollary 1] The asymptotic average train frequency on the
central part f0 and on the branches f1 = f2 are given as follows:

f0(m,∆m) = 2f1 = 2f2 = min{ffw; fmax; fbw; fbr},
with

ffw = max

{
m−∆m

T 0 + T 1

,
m+∆m

T 0 + T 2

}

fmax = 1/max
j

{tj + sj}

fbw = max

{
m̄−∆m̄

S0 + S1

,
m̄+∆m̄

S0 + S2

}

fbr = max

{
2(n2 −∆m)

T 1 + S2

,
2(n1 +∆m)

S1 + T 2

}

Using Corollary 6.2, we can plot the train frequency in a fundamental diagram
and derive the traffic phases of a line with a junction. [58] show the existence of eight
phases in the diagram. For a fixed value of ∆m, we get back to the three phases of
a line without a junction: the free-flow phase, corresponding to an increase in line
frequency when the number of running trains m also increases. Next, the capacity
phase gives the maximum frequency of the line. Finally, the last phase is called the
congestion phase. Running trains interfere with each other, creating congestion on
the line. The operator must avoid this last phase because the average train travel
time and passenger discomfort increase.

In this work, we focus our study on the free flow phase given by ffw and the
capacity phase given by fmax. The frequency starts to decrease as soon as the
congestion phase is reached, corresponding to the number of trains denoted as mC .
For the Paris metro line 13, we have mC = 68 trains. Thus, the value of m is
defined such that 1 ≤ m ≤ mC = 68. The phases and characteristic points of the
fundamental diagram are described in [62, 57].

The fundamental diagram for the studied values of m is depicted on Figure 6.2.
We can see that for a fixed value of m that the train frequency varies with the value
of ∆m. The black lines represent the curves of the ∆m as a function of m, giving for
each m the values ∆m for which the train frequency is maximum. In the free flow
phase, a unique value ∆m∗ maximizes the frequency for any fixed m. It is given by
Proposition 6.3.
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Proposition 6.3. [57, Proposition 2] ∀m such that 0 < m < m∗, ∆m∗(m) is
unique, and is given by ∆m∗(m) = m∆T/2T , with m∗ the minimum number of
trains for which the frequency is equal to the maximum frequency fmax.

The value ∆m∗(m) is not unique in the capacity phase. Its value is included in an
interval I(m), such that ∀m∗ < m ≤ mC and ∀∆m ∈ I(m) = [∆m∗

min(m),∆m∗
max(m)],

f(m,∆m) = fmax. The equations giving the interval I for the capacity phase can
also be found in [62, 57].

Figure 6.2: Fundamental diagram with symmetrical operated junction.

In Figure 6.2, the frequency is obtained directly using the formulas of Corol-
lary 6.2. In this figure, it is important to notice the triangular shape of the frequency
contour line; the frequency increases along with the number of trains until the line’s
capacity is reached. Moreover, the frequency decreases for a fixed m when the value
of ∆m gets farther from the optimal value ∆m∗. Finally, it is also important to note
that the ∆m value is fixed in time.

6.3 The Steady State Train Dynamics
In this section, we simulate the train dynamics with multiple values of the number of
trains m and the initial difference in the number of trains between the two branches
∆m0. This section derives the asymptotic train frequency of the line by numerical
simulations, with interpretations of the derived results. We first represent the line’s
fundamental diagram; then, we study the asymptotic value of ∆mk. Finally, we
give some conjectures on the analytical results on the line’s frequency and the ∆mk

value.

6.3.1 Fundamental Diagrams

The fundamental diagrams, Figures 6.2 and 6.3, represent the line frequency as a
function of the number of trainsm and the difference in the number of trains between
the two branches ∆m. In Figure 6.3, we represent the diagram with the FIFO
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rule on the merge. Note that unlike the Figure 6.2, the asymptotic average train
frequency values are obtained by numerical simulation. We compute the asymptotic
train time headway on each part u of the line with the following formula: hsim,u =∑

j(limk→∞ dk(u,j)/k)/nu ≈ ∑j(d
K
(u,j)/K)/nu, for a sufficiently large K. Then using

the relation fsim,u = 1/hsim,u, we can directly obtain the frequency of the part u. In
a similar way to the one-in-two rule, we obtain that the frequency on the central part
is equal to twice the frequency of the branches, that is, fsim,0 = 2fsim,1 = 2fsim,1.
Figure 6.3 shows the frequency of the central part of the line. As mentioned above,
the value of ∆mk changes after all iterations. Thus, the y-axis represents the starting
value ∆m0.
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Figure 6.3: Fundamental diagram of Paris metro line 13 with a FIFO rule on the
merge.

With the FIFO model, the contour lines are now parallel with the y-axis. There-
fore, regardless of the initial value ∆m0, the asymptotic frequency of the line is the
same. For the operator, it removes a variable to take care of when planning the line
operation. The steady state is always reached, giving the maximum frequency pos-
sible for each m. However, the FIFO rule does not improve the maximum frequency
nor diminish the optimal number of trains m∗.

6.3.2 Convergence of the Sequence ∆mk, k ≥ 0

Let us now study the evolution of the value of ∆mk at each iteration k. To see its
evolution, we represent two figures: Figure 6.4 depicts three points for all number of
running trains m: the black ones represent the initial value ∆m0 chosen randomly,
the red squares correspond to asymptotic simulated value ∆m̃, with

∆m̃ := lim
k→∞

(∑
k

∆mk

k

)
≈ ∆mK

K
(6.15)

for a sufficiently large K, and the blue dots are the values obtained using Proposi-
tion 6.3, i.e. the optimal value ∆m∗ with a one-over-two rule on the merge. Fig-
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Figure 6.4: Comparison between the asymptotic simulated value ∆m̃k and the op-
timal values ∆m∗ (Proposition 6.3).

ure 6.4 can be separated into three parts. ∀m < mA = 20 the simulated value ∆m̃
is either 0 or 1, and in particular, it is 0 if the number of trains is odd and 1 when
it is even regardless of the starting value. In the second part, ∀mA ≤ m < m∗, the
mean value is the same as the optimal value given by the Proposition 6.3. Finally,
in the third part, ∀m∗ ≤ m ≤ mC , the mean value seems to depend on ∆m0 but
converges to a value such that it is in the range of the values giving the maximum
frequency.

Figure 6.5 focuses on a specific value of m, we take here m = 51. We want to
see the effect of the starting value ∆m0 on the asymptotic simulated one ∆m̃. We
take six different values of ∆m0 showing the evolution of ∆mk as a function of the
number of iterations. The dashed line corresponds to the optimal value ∆m∗ (see
Proposition 6.3). It is important to notice that this value is theoretical and not
necessarily an integer number; in our case, ∆m∗ ≈ 1.8, and the closest integer value
is 2. Figure 6.5 shows that the value of ∆mk changes from the first iterations to
get closer to ∆m∗. After a small number (less than 20) of iterations, the ∆m value
stabilizes, and two kinds of behavior are noticeable. First, the curves with an even
∆m0 converge mainly to 2, sometimes oscillating between 0 and 2 (around k = 100).
When ∆m0 is odd, the curves oscillate around the value of ∆m∗, 1 and 3, and the
value is constant for some iterations in a row. In Proposition 6.1, we showed that the
parity of ∆mk could not change. When the starting value is odd, it cannot converge
to the closest integer, and thus it will oscillate between the two values around ∆m∗.
In both cases, the average value of ∆mk seems to converge toward ∆m∗.

6.3.3 Conjectures

With our previous observations and Proposition 6.1, we can make some conjectures
on the line performance when a FIFO rule is set at the merge. We can make the
following conclusions on the value of ∆mk when k → ∞.

1. ∀m ≤ mA, limk→∞∆m̃k ∈ {0, 1}, depending on the parity of m.
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Figure 6.5: Evolution of ∆mk as a function of the departure k. Six different values
of ∆m0 are set.

2. ∀m, such that mA < m ≤ m∗, limk→∞ ∆m̃k = ∆m∗.

3. ∀m∗ < m ≤ mC , limk→∞∆m̃k ∈ [∆m∗
min,∆m

∗
max]. with ∆m∗

min and ∆m∗
max

respectively, the lower and upper bounds in which the frequency is maximum.
The ∆m∗ value is not unique during the capacity phase.

Thus, the frequency is maximized for any ∆m0 starting value. Therefore, we
have fsim(m) = f(m,∆m∗).

6.4 FIFO as a Regulation Strategy for Disturbances
As mentioned in the introduction, the merge is one of the critical points of a line with
a junction. Indeed, a disturbance on one of the branches can significantly impact
the frequency of the whole line. Besides, the impact can be more significant if the
operator respects the trains’ running order on the merge. This section studies the
line frequency of two different disturbances occurring on the line. These are daily
disturbances that affect the line for a short period:

1. the first example considers a train that makes a longer stop at a specific node
on a branch.

2. in the second example, the speed of the trains is reduced on a portion of a
branch.

We study the effect of these disturbances on the line frequency with the FIFO rule
on the merge, and we compare it to the current one-over-two rule. The comparison
is made during the peak hour since this is the critical period of operation. The
operating margins are reduced to maximize the frequency, especially in the study
case, Paris metro line 13, one of the busiest lines of the network. A frequency
f = 35 trains per hour, or equivalently an interval h = 100 seconds, is set to meet
the passenger demand. The number of running trains is m = 51, set in the following
examples to achieve this frequency.
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In both examples, we consider that the line is at its steady state before the
beginning of the disturbance. Trains are initially distributed uniformly on the line.
Except for the disturbed part of the line, the minimum run and dwell times (the
travel times) are respected.

6.4.1 Dwell Time Extension on one Branch

During line operation, some inconveniences occur, especially on platforms where
interactions with passengers are important. For example, a passenger may block
the closing of the doors, thus extending the dwell time in a station. Here the dwell
time is twice the theoretic headway, ∼ 200 seconds. In such a situation, to keep the
order defined in the planning, the operator waits for the disturbed train even if it
will disturb a train coming from the other branch.
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Figure 6.6: Evolution of the train frequency with a dwell time extension on one
branch with the FIFO and the one over-two rule on the merge.

In Figure 6.6, the blue and orange curves represent the frequency for the one-
over-two and FIFO rules on the merge. When the disturbance occurs, the effect
on the central part is not instantaneous. Indeed, the trains ahead of the distur-
bance continue their route and arrive on time at the merge. The central part train
frequency decreases once all the trains ahead of the disturbed one have arrived on
the merge. With the one-over-two rule on the merge, the next train arriving on
the merge from the non-disturbed branch will have to wait until the disturbed one
enters the central part. On the contrary, only the trains on the disturbed branch
will be late with the FIFO rule. The trains on the other branch enter the central
part as soon as they arrive; the value of ∆m will thus change. However, the train
frequency decreases slightly because of the disturbances, but it is better absorbed
with a FIFO rule.

6.4.2 Reduce Speed on One Branch

For example, because of the failure of the signaling system, trains have to reduce
their speed for safety reasons. Therefore, the travel time on this portion of the line
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is longer. The system failure lasts around 10 minutes, and the segments affected are
defined as F . In this example, the run time of a portion of Branch 2 increases by
two. Thus, ∀j such that (2, j) ∈ F , the new travel time is equal to 2r(u,j) + w(u,j).
The system failure lasts around 10 minutes.
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Figure 6.7: Evolution of the frequency with a reduced speed.
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Figure 6.8: Evolution of ∆mk during disturbed operation.

Figure 6.7 is similar to Figure 6.6, the blue and orange curves respectively rep-
resent the one-over-two and the FIFO rules. The shape of the curve is similar, with
a decrease in the frequency after the beginning of the disturbance. This time, the
impact on the frequency is, bigger regardless of the rule. Indeed, the travel time
is changed, and thus the maximum frequency decreases. Using Proposition 6.3,
it is possible to determine the new optimal ∆m∗ value with the new circulation
conditions: ∆m∗ = 5.95.

In Figure 6.8, we plot the value of ∆m∗ as a function of iterations with the
FIFO rule on the merge. Before the perturbation and until the first disturbed train
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arrives on the merge, the value is stable. However, the value of ∆mk changes to the
new ∆m∗ as soon as the disturbance reaches the central part. Once conditions have
returned to nominal, the value of ∆mk changes again to be similar to before the
disturbance. The FIFO rule allows the line not to lose too much frequency and to
re-increase it more quickly. In addition, we also reach the steady state faster than
with the one-in-two rule on the merge.

6.5 Conclusion
In this chapter, we presented a mathematical model describing the operation of a
metro line with a junction. At the merge of the junction, a FIFO rule is imple-
mented to let the first train arriving enter the central part. In our application case
(Paris metro line 13), the rule currently applied on the merge is a one-over-two due
to operating constraints. As the line will be fully automated in the coming years,
some of these constraints will be removed, and the operating strategy for the merger
will be simplified. In this chapter, we provide the first step to numerically measure
the impact of the new operating possibilities on the line. This chapter is divided
into two parts: first, we studied the steady state of the train dynamics, i.e., the train
frequency when there are no disturbances on the line. When the line is operated
with a one-over-two rule on the line merge, the parameter ∆m (the difference in the
number of trains between the two branches) greatly influences the train frequency of
the line. The numerical simulations performed in this chapter showed that the pa-
rameter ∆m does no longer influence the frequency. With the FIFO rule, we showed
that ∆m could change at each iteration and converges towards the optimal value
∆m∗, maximizing the train frequency. Therefore, the train frequency is maximized
with the FIFO rule for trains running on the line.

In the second part of the chapter, we run numerical simulations to show how the
train frequency varies under disturbances. Two examples have been presented: in
the first one, a train has to dwell longer than planned on one branch, while in the
second example, the travel time is longer on a portion of one branch. We showed
that this new FIFO rule reduces the impact of the disturbance in both frequency
intensity and recovery time. Furthermore, ∆m changes over time to adapt to the
disturbed conditions of the line, which is more robust against disturbances.

This work is the first step toward a better understanding of the operation of a
metro line with a junction. In future research, we first aim to prove our conjectures
analytically. Moreover, we will work on the extension of the 1/2 for unbalanced lines.
Finally, we will focus on a real-time version of our model to better understand the
improvement the FIFO rule can make on the train frequency in case of disturbances.
Currently, the dwell times are stable even with disturbances, but when the train time
headway increases, the stock of passengers on the platform can increase and, thus,
make the dwell time longer.





Chapter 7

Conclusion

Summary

This thesis aims to tackle transport operators’ challenges, particularly the RATP
group. As governments increasingly limit individual vehicle usage in cities and pro-
mote public transportation, it becomes crucial to ensure sufficient service capacity,
especially for existing transport lines that often suffer from saturation issues. The
focus of this thesis is to explore analytical methods for enhancing the capacity of
these systems. We use mathematical models to develop simulation models and ex-
press them linearly in the max-plus algebra whenever possible. Our models are built
upon the existing signaling system of the Paris metro lines and are guided by two
constraints. The first constraint considers the train’s travel time, while the second
constraint ensures safety by including a safe separation time, guaranteeing adequate
spacing between trains. Each model assumes that all trains adhere to the defined
lower bounds for both run and safe separation times. On the other hand, the dwell
times can be calculated based on passenger demand, considering the arrival rates
at stations as discussed in Chapter 5. In Chapters 3 to 6, we develop simulation
models that enable efficient computations of train dynamics. Notably, the models
presented in Chapters 4 and 5 can be expressed linearly in the max-plus algebra,
facilitating a physical interpretation of the traffic dynamics.

In Chapter 3, we constructed a simulation model to investigate the impact of a
skip-stop policy involving two services on a mass-transit line. The findings of this
model indicated that when an operator aims to introduce a service that stops at all
stations along the line, the frequency does not improve, resulting in no advantages for
either the operator or passengers. In a subsequent model, we examined the scenario
where some origin-destination pairs are only accessible by making a transfer on
the line. This model demonstrated that compared to an all-stop policy, the line
frequency could be increased, and depending on the specific origin-destination pair,
passengers could save time.

To provide accurate estimations of the benefits an operator can expect, we incor-
porate the operator-defined services as input data and express the model linearly in
the max-plus algebra. Our study explores various services that can be implemented
or the number of stations that can be skipped. Thanks to some existing results of the
max-plus algebra theory, we identify the conditions under which the train dynamics
exhibit a stationary regime. Furthermore, we derive the fundamental traffic dia-
grams for the train dynamics, which offer valuable insights. These diagrams depict
frequency evolution as a function of the number of running trains on the line. They
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reveal the existence of three distinct traffic phases: the free-flow phase, character-
ized by increasing frequency; the capacity phase indicating the maximum achievable
frequency on the line; and the congestion phase. Each phase is subjected to math-
ematical analysis and interpreted from a physics of traffic perspective. With the
implementation of a skip-stop policy, we observe an accordion effect between trains
as they skip stations and get closer or move away from each other. This phenomenon
can lead to blockages when a train that has skipped a station gets too close to the
preceding train. We examine different skip-stop policy configurations and analyze
the differences in frequency as well as the advantages they offer compared to the
all-stop policy.

To accurately assess the impact on passengers, we incorporate their arrival rates
and origin-destination patterns into the model. The dwell time at stations is de-
termined based on these input data. We demonstrate the influence of passenger
demand levels, initially focusing on a fixed demand profile. By utilizing indicators
such as waiting time for passengers and the number of passengers in trains, we cal-
culate the effects for two different demand profiles. In particular, the demand profile
highlights the relevance of the skip-stop policy for passengers. When most passen-
gers have short-distance trips in the demand profile, the average gains are minimal
unless the number of trains is sufficiently high. Conversely, in the demand profiles
where passengers travel longer distances, the acceleration of trains facilitated by
the skip-stop policy allows them to save time on average throughout their journey
regardless of the number of trains.

The simulation model we developed also enables testing new regulations in the
event of an incident on a line. One critical aspect for the smooth operation of
Paris metro line 13 is managing the merge, where the three sections of the line
converge. Currently, the operator has implemented a one-over-two rule at the merge
for operational purposes. However, with automation in sight, this rule may change.
In Chapter 6, we present a model for managing the convergence using a FIFO
(First-In-First-Out) rule and analyze its impact in the presence of two types of
disturbances. The FIFO rule improves traffic flow and mitigates the impact of the
incident. The difference in the number of trains between the two branches adjusts
dynamically to maximize the frequency in the disrupted situation.

Perspectives

In Chapter 6, we investigate the application of the FIFO rule to a line with a
junction, demonstrating its potential to reduce the impact of disruptions. However,
our research primarily emphasizes the average headway between trains rather than
the standard deviation. Changing the running order may not be sufficient to ensure a
consistently high level of service during disturbances. A more detailed examination
of the train time headway could offer valuable insights for enhancing the overall
passenger experience.

In a broader context, our model can be extended to other applications, allowing
for generalizations. Firstly, concerning the skip-stop policy, the proof provided in
Appendix A for Chapters 4 and 5 forms the foundation for extending the model to
skip-stop policies with more than two services. By adapting our description of train
dynamics, similar analytical results can be obtained for a wider range of services. For
instance, instead of alternating between services A and B, it is possible to introduce
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a third service C or incorporate a sequence of two services A followed by one service
B. Furthermore, the development of optimization models can determine the most
suitable services for a given line, considering all relevant parameters and passenger
demand rates. The optimization can be modeled with our analytical results, allowing
for identifying service strategies that optimize operational efficiency based on specific
line characteristics and passenger demand.

The train dynamics models developed in Chapters 3 to 6 are based on the Paris
metro signaling system, which utilizes two-state signals. However, suburban lines
employ a different signal system with three states, including a yellow state that
allows trains to pass at a reduced speed. Incorporating this feature into our model
would enable us to extend our research to a broader range of lines within the Paris
network.

In Chapter 5, the dwell times of trains depend on constant passenger arrival
rates at stations, although in reality, these rates may vary even during peak hours.
We could modify the input origin-destination matrix to account for this variability
to introduce a dynamic version that captures the changing arrival rates.

Additionally, our current model assumes that all trains operate at the lower
bound of the line’s characteristic times. However, in practice, minor disturbances
can affect train running or dwell times individually. By leveraging the properties of
stochastic max-plus algebra, we could adapt the model to incorporate stochasticity
and assess its impact on the line’s dynamics.

Lastly, while this thesis primarily studies the steady state of train dynamics, it
would be interesting to investigate the transient regime in simulations. Specifically,
exploring how to reach the steady state most efficiently could provide operators
valuable insights into recovering the nominal headway as quickly as possible following
a disturbance.





Appendix A

Proof of Theorem 4.3

A.1 Insights
In this section, we prove the main theorem of the paper and thus the existence
of a stationary regime for the train dynamics; and, thus, to derive the asymptotic
average train time headway corresponding to the dynamics given as

dk = ΦΠdk−2 = Υdk−2.

The train dynamics being linear in the Max-plus algebra, it then admits a stationary
regime where the asymptotic average growth rate limk→∞ dkj/k for every variable dj
is interpreted as the asymptotic average train time-headway on node j. We show
below that the asymptotic average growth rate and train time-headway are the same
for every variable dj (node j). It is known that for a Max-plus linear system, the
average asymptotic growth rates are given by the eigenvalues of the Max-plus matrix
defining the linear system. Therefore, to find the train time headway, we need to
find the eigenvalues of the matrix Υ. The eigenvalues are given by the cycle means
of the matrix.
In the case of an irreducible matrix A, the eigenvalue is unique and equal to the
maximum cycle mean of its associated graph. However, the matrix Υ is reducible
and admits multiple eigenvalues. We show in Appendix A.6 that the maximum cycle
mean of the graph G(Υ) is the only non-zero (̸= ε) eigenvalue. Thus it corresponds
to the asymptotic average growth rate of the dynamics. Therefore, our goal is to
list all the cycles of the graph G(Υ) associated with the matrix Υ. As Υ = ΦΠ, the
weights of the arcs of G(Υ) are the results of the products of the arcs of G(Φ) and
G(Π). The shape of these two matrices depends on the value of the initial positions
of the trains b. The Appendix A.2 derives the notations that differentiate the nodes
with and without trains at the initial state.
In Appendices A.3 to A.5, we show that even if the matrices are different for each
initial position, similar patterns exist. First, the non-zero entries of Π and Φ are
the same. Then, we show that it is possible to determine the value of each non-zero
entry depending on the type of the beginning and end nodes. Therefore, we also
determine the values of the product of Φ and Π, giving the weights of the arcs of
G(Υ).
Finally, in Appendix A.7, all the cycles that exist in the graph G(Υ) are given. We
give in Appendix A.7.4 a proposition that shows that the number of cycles involved
in the theorem depends on the number of skippable stations.
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A.2 Notations & Preliminary Remarks

A.2.1 Preliminary Remarks

1. The line is a closed system, which means that for a line with n segments,
j + 1 ≡ 1 if j = n and j − 1 ≡ n if j = 1.

2. The reasoning is exactly the same for the matrices Π = Π∗
0Π1 and Φ = Φ∗

0Φ1.
The non-zero entries of both matrices depend only on the values of bj, and b̄j,
and these values depend on the service and are described by µe for Π, while
µo contains the service characteristics for Φ. Therefore, the first part of the
proof is only clarified for the matrix Π. We still detail all the equations for
both matrices.

3. To simplify the readability, all the proof is written in conventional algebra.

A.2.2 Notations

In this proof, we use some specific notations slightly different from those introduced
in the modeling section. They are detailed below.

J = {j1, j2, · · · , jm} the set of nodes such that ∀j ∈ J, bj+1 = 1;

I = {i1, i2, · · · , in−m} the set of nodes such that ∀i ∈ I, bi+1 = 0;

J̄ = {j̄1, j̄2, · · · , j̄m̄} the set of nodes such that ∀j̄ ∈ J, b̄j̄ = 1 (with m̄ = n−m)

ψ ∈ {1, 2, . . . , n};

p1 design either service A or B, i.e p1 = A or p1 = B;

p2 is the complementary service of p1, i.e. p2 = B if p1 = A and p2 = A if p1 = B;

τ is the node corresponding to the terminus. By convention, we set it as the
first node of the line without loss of generality.

A.3 The Max-plus Inverse of the Matrices
By definition, we have ∀j ∈ J , b̄j = 1 − bj, which mean that we have either
(Π0)(j,j−1) = tj or (Π0)(j−1,j) = sj, so the graph G(Π0) associated to Π0 is acyclic,
i.e Π0 is nilpotent, that is Πk

0 = 0 for a k sufficiently large.
The largest k for which ∃i, j such that (Πk

0)(i,j) ̸= 0 depends on the initial position
of the trains. All the non-zeros entries of the matrix Π0 are in the upper diagonal,
(Π0)(j,j+1) ̸= 0, and the lower diagonal elements, (Π0)(j,j−1) ̸= 0. If j = 1, then
(Π0)(1,n) ̸= 0 and if j = n, then (Π0)(n,1) ̸= 0.
To calculate Π∗

0, we need first to calculate Π2
0,Π

3
0, · · · ,Πk

0.

• ∃i, i′ such that (Π2
0)(i,i′) ̸= 0 if and only if two consecutive segments j, j + 1

exist such that either

1. bj = bj+1 = 0, (Π2
0)(j+1,j−1) = (Π0)(j+1,j)(Π0)(j,j−1) ̸= 0,

2. or b̄j = b̄j+1 = 0, (Π2
0)(j,j+2) = (Π0)(j,j+1)(Π0)(j+1,j+2) ̸= 0.
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• ∃i, i′ such that (Π3
0)(i,i′) ̸= 0 if and only if three consecutive segments j, j +

1, j + 2 exist such that either

1. bj = bj+1 = bj+2 = 0,
(Π3

0)(j+2,j−1) = (Π0)(j+2,j+1)(Π0)(j+1,j)(Π0)(j,j−1) ̸= 0,

2. or b̄j = b̄j+1 = b̄j+2 = 0,
(Π3

0)(j−1,j+2) = (Π0)(j−1,j)(Π0)(j,j+1)(Π0)(j+1,j+2) ̸= 0.

...

• ∃i, i′ such that (Πk
0)(i,i′) ̸= 0 if and only if k consecutive segments j, j+1, . . . , j+

(k − 1) exist such that either

1. bj = bj+1 = · · · = bj+k−1 = 0,
(Πk

0)(j+k−1,j−1) = (Π0)(j+k−1,j+k−2) · · · (Π0)(j+1,j)(Π0)(j,j−1) ̸= 0,

2. or b̄j = b̄j+1 = · · · = b̄j+k−1 = 0,
(Πk

0)(j−1,j+k−1) = (Π0)(j−1,j)(Π0)(j,j+1) · · · (Π0)(j+k−2,j+k−1) ̸= 0.

Therefore, the largest value of k for which (Πk
0)(j′,j−1) and (Πk

0)(j,j′) is equal to the
maximum between the number of consecutive segments j, j + 1, · · · , j′ such that
bj = bj+1 = · · · = bj′ = 0 and b̄j = b̄j+1 = · · · = b̄j′ = 0.
We now explicit the non-zeros values of Π∗

0 and Φ∗
0:

• Let j′ ≥ j and Γ = j′− j+1 be the number of consecutive segments such that
bj = bj+1 = · · · = bj′ = 0,

∀γ, 0 ≤ γ < Γ ⇒ (Π∗
0)(j+γ,j−1) =

j+γ∑

q=j

tµeq , (A.1)

and (Φ∗
0)(j+γ,j−1) =

j+γ∑

q=j

tµoq (A.2)

• Let Γ̄ = j̄′− j̄+1 be the number of consecutive segments such that b̄j̄ = b̄j̄+1 =
· · · = b̄j̄′ = 0,

∀γ̄, 0 ≤ γ̄ ≤ Γ̄ ⇒ (Π∗
0)(j̄′−γ,j̄′) =

j̄′∑

q=j̄′−γ̄

sq (A.3)

and (Φ∗
0)(j̄′−γ,j̄′) =

j̄′∑

q=j̄′−γ̄

sq (A.4)

A.4 Π = Π∗
0Π1 and Φ = Φ∗

0Φ1

The section details the arcs in the graphs G(Π). We recall that the G(Φ) arcs are
the same except for the weight. Two main cases are possible

1. ∀j ∈ J such that bj+1 = 1, we have (Π1)(j+1,j) = tµej+1. The jth column of Π
has non-zero entries if and only if (Π∗

0)(i,j+1) ̸= ε, ∀i ∈ {1, · · · , n}.
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0Π1 AND Φ = Φ∗

0Φ1

• The diagonal elements of Π∗
0 are equal to 0, thus

Π(j+1,j) = (Π∗
0)(j+1,j+1) + (Π1)(j+1,j) = 0 + tµej+1 = tµej+1.

• The number Γ of consecutive segment with no train at the initial state
Γ is equal to Γ = j′ − j − 1, with j′ the closest segment with bj′+1 = 1
in the direction of traffic (if j′ = j + 1, there is no segment with no train
and Γ = j′ − j − 1 = 0). Using equation Equation (A.1), we obtain
∀γ, 0 < γ ≤ Γ

Π(j+1+γ,j) = (Π∗
0)(j+1+γ,j+1)(Π1)(j+1,j) =

j+1+γ∑

q=j+2

tµeq + tµej+1 (A.5)

Π(j+1+γ,j) =

j+1+γ∑

q=j+1

tµeq (A.6)

and Φ(j+1+γ,j) =

j+1+γ∑

q=j+1

tµoq (A.7)

• Since (Π1)(j+1,j) = tµej+1, we have (Π∗
0)(j,j+1) = sj+1. Let Γ̄ = j − j̄′ be the

number of consecutive segments with a train at the initial position, with
j̄′ ∈ J̄ the closest segment (in the opposite direction of the trains) with
b̄j̄′ = 1. Then ∀γ̄, 0 ≤ γ̄ < Γ̄

Π(j−γ̄,j) = (Π∗
0)(j−γ̄,j+1)(Π1)(j+1,j) =

j+1∑

q=j+1−γ̄

sq + tµej+1 (A.8)

Π(j−γ̄,j) =

j∑

q=j−γ̄

sq + (tµej+1 + sj+1) (A.9)

and Φ(j−γ̄,j) =

j∑

q=j−γ̄

sq + (tµoj+1 + sj+1) (A.10)

In the case where γ̄ = 0, we have Π(j,j) = tµej+1 + sj+1 and Φ(j,j) =
tµoj+1 + sj+1.

2. The second case when there is no train on the segment j̄ ∈ J̄ such that b̄j̄ = 1
and (Π1)(j̄−1,j̄) = sj̄. Likewise, the three same cases exist such that the j̄th

column of Π has non-zeros entries but in the opposite direction.

• Π(j̄−1,j̄) = (Π∗
0)(j̄−1,j̄−1) + (Π1)(j̄−1,j̄) = 0 + sj̄ = sj̄ = Φ(j̄−1,j̄)

• Let j′ be the first segment in the direction of the train where bj′ = 1.
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Then Γ = j′ − j̄q, ∀γ, 0 ≤ γ < Γ we have

Π(j̄+γ,j̄) = (Π∗
0)(j̄+γ,j̄−1) + (Π1)(j̄−1,j̄) =

j̄+γ∑

q=j̄

tµeq + sj̄ (A.11)

Π(j̄+γ,j̄) =

j̄+γ∑

q=j̄+1

tµeq + (tµe
j̄

+ sj̄) (A.12)

and Φ(j̄+γ,j̄) =

j̄+γ∑

q=j̄+1

tµoq + (tµo
j̄

+ sj̄) (A.13)

If γ = 0, then Π(j̄,j̄) = tµe
j̄

+ sj̄ and Φ(j̄,j̄) = tµo
j̄

+ sj̄

• Finally, the number Γ̄ of successive segments with no train in the opposite
direction of traffic is defined as Γ̄ = j̄− j̄′−1, with j̄′ the closest segment
with j̄′ = 1 in the direction of traffic. We obtain ∀γ̄, 0 ≤ γ̄ < Γ̄

Π(j̄−2−γ̄,j̄) = (Π∗
0)(j̄−2−γ̄,j̄−1)(Π1)(j̄−1,j̄) =

j̄−1∑

q=j̄−1−γ̄

sq + sj̄ (A.14)

Π(j̄−2−γ̄,j̄) =

j̄∑

q=j̄−1−γ̄

sq (A.15)

and Φ(j̄−2−γ̄,j̄) = Π(j̄−2−γ̄,j̄) =

j̄∑

q=j̄−1−γ̄

sq (A.16)

A.5 Properties of the Matrices Π and Φ

The arcs of Υ are an alternation of the arcs of Π and Φ and an alternation of µe
and µo. We have ∀q ∈ {1, . . . , n}

µej :=

{
A if

∑j
q=0 bq is even

B otherwise
(A.17)

µoj :=

{
B if

∑j
q=0 bq is even

A otherwise
(A.18)

Using Equations (A.17) and (A.18), it is possible to determine the link between the
services A,B and the parity variables µe and µo depending on the initial state.

Proposition A.1. ∀j, j′, j′′ ∈ J , such that j1 ≤ j ≤ j′ ≤ j′′ ≤ jm. And, ∀i ∈ I
such that j < i < j′:

1. Π(j′,j) =
j′∑
j+1

tp1q , and Φ(j′,j) =
j′∑
j+1

tp2q ;

2. Π(i,j) + Φ(j′,i) =
i∑

j+1

tp1q +
j′∑
i+1

tp2q + (tp2i + si),

and Φ(i,j) +Π(j′,i) =
i∑

j+1

tp2q +
j′∑
i+1

tp1l + (tp1i + si);
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3. Π(j′,j) + Φ(j′′,j′) =
j′′∑
j+1

tp1q +
j′′∑
j′+1

tp1l =
j′′∑
j+1

tp1q , and Φ(j′,j) +Π(j′′,j′) =
j′′∑
j+1

tp2q .

Proof. 1. ∀i such that j < i < j′, the parity of value of
∑i

q=0 bq is constant, thus
µe,i and µo,i are also constant, i.e µe,i = p1 and µo,i = p2.

2. Directly from the previous point, the arcs Π(i,jq+1) (or Φ(i,j′)) and Φ(j′,i) (or
Π(j′,i)) have weights associated to opposite services.

3. ∀i, i′, j < i < j′ < i′ < j′′, we have µei = µoi′ ̸= µei′ = µoi , since the parity of∑i
q=0 bq and

∑i′

q=0 bq is different. And thus,

Π(j′,j) + Φ(j′′,j′) =

j′′∑

j+1

tµeq +

j′′∑

j′+1

tµoq =

j′′∑

j+1

tp1q +

j′′∑

j′+1

tp1q

Remark 1. The strict inequality case for j1 ≤ j ≤ j′ ≤ j′′ ≤ jm requires m > 4.
The same reasoning hold for m ≤ 3. For example, if m = 1, Π(j′,j) =

∑j (mod n)
j+1 tp1q =∑

q t
p1
q , and Φ(j′,j) =

∑
q t
p2
q

A.6 Reducible Matrix

Both matrices Π and Φ are reducible, making the matrix Υ reducible. There is
at least one column with only null values. Theorem 2.2 is valid for strongly con-
nected graphs, i.e., to irreducible matrices. This theorem is generalized to reducible
matrices under some conditions.

Proposition A.2. The matrix Υ has only one non-zero eigenvalue equal to the
maximum cycle mean of its associated graph.

Proof. From Theorem 2.2, there exists only one eigenvalue for the matrix if the graph
is strongly connected. Nevertheless, this eigenvalue exists in the case of reducible
matrices. From Proposition 2.4, the nodes with no successors in a matrix give
eigenvalues equal to ε.
All the nodes graph G(Υ) excluded from the cycles are nodes with no successors.
Thus, the only non-zero eigenvalue is given by the maximum cycle mean of its
associated graph.

A.7 Cycles

We remind that our dynamic is written dk = Υdk−2, which means that the growth
rate of the matrix is equal to twice the headway.

A.7.1 Capacity Phase

To find the line capacity, we use Equations (A.9) and (A.12) in the specific case
where γ = 0 or γ̄ = 0. ∀q, we have by definition either bq+1 = 1 or b̄q+1 = 1. In the
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first case, we have Π(q,q) = tµeq+1 + sq+1 and Φ(q,q) = tµoq+1 + sq+1 and in the second
case Π(q+1,q+1) = tµeq+1 + sq+1 and Φ(q+1,q+1) = tµoq+1 + sq+1. Thus ∀q

Υ(q,q) = Φ(q,q) +Π(q,q) = tµoq+1 + sq+1 + tµeq+1 + sq+1, if bq+1 = 1 (A.19)
Υ(q+1,q+1) = Φ(q+1,q+1) +Π(q+1,q+1)

= tµoq+1 + sq+1 + tµeq+1 + sq+1, if b̄q+1 = 1 ⇔ bq+1 = 0
(A.20)

To find the maximum cycle mean of the cycles looping on one node, we need to take
the maximum overall q. The maximum cycle mean ρmax is given by

ρmax = max
q

{
tp2q + sq + tp1q + sq

}

= max
q

{
tAq + sq + tBq + sq

}

and therefore

hmin = max
q

{
(tAq + sq + tBq + sq)/2

}
(A.21)

A.7.2 Free-Flow Phase without Combinations

For the free-flow phase, we examine the cycles such that ψ = 0. These cycles
combine arcs linking the nodes with a train at the initial states. ∀j, j′, j′′ ∈ J such
that j1 ≤ j ≤ j′ ≤ j′′ ≤ jm, we have Υ(j′′,j) = Φ(j′′,j′) + Π(j′,j), and this arc has a
weight of 1. We need to distinguish the cases where the number m of trains is even
or odd.

1. m even:
If we denote by ρ1 the path starting at j1 and ρ2 the path starting at j2, we
have for the weights:

|ρ1|w = Υ(j1,jm−1) + · · ·+Υ(j3,j1) (A.22)
= Φj1,jm +Πjm,jm−1 + · · ·+ Φj3,j2 +Πj2,j1 (A.23)

=

j1∑

jm+1

tp1q +

jm∑

jm−1+1

tp1q + · · ·+
j3∑

j2+1

tp1q +

j2∑

j1+1

tp1q (A.24)

=
∑

tp1q (A.25)

and

|ρ2|w = Υ(j2,jm) + · · ·+Υ(j4,j2) (A.26)
= Φj2,j1 +Πj1,jm + · · ·+ Φj4,j3 +Πj3,j2 (A.27)

=

j2∑

j1+1

tp2q +

j1∑

jm+1

tp2q + · · ·+
j4∑

j3+1

tp2q +

j3∑

j2+1

tp2q (A.28)

=
∑

tp2q (A.29)

In both cases, there are m arcs of the matrices Π and Φ and so m/2 arcs of
Υ, i.e. |ρ|l = m/2. Finally, by taking the maximum between ρ1 and ρ2, the
headway is given by half of the maximum:

hefw,ψ=0 =
max

{
TA, TB

}

m
(A.30)



122 A.7. CYCLES

In Figure A.1, we show an example of the cycles with 4 trains running. In
Figures A.1a and A.1b, the cycles can either start respectively at j1 or j4, or
j2 or j4 and the weight of the cycles are respectively given by:

Φ(j3,j2) +Π(j2,j1)︸ ︷︷ ︸
Υ(j3,j1)

+Φ(j1,j4) +Π(j4,j3)︸ ︷︷ ︸
Υ(j1,j3)

= TA, and

Φ(j4,j3) +Π(j3,j2)︸ ︷︷ ︸
Υ(j4,j2)

+Φ(j2,j1) +Π(j1,j4)︸ ︷︷ ︸
Υ(j2,j4)

= TB

|

j1

||

j2

|

j3
| | |

j4

|

Π(j2,j1)

Π(j4,j3)

Φ(j3,j2)

Φ(j1,j4)

(a) Cycle beginning at either node j1 or j3.

|

j1

||

j2

|

j3
| | |

j4

|

Φ(j2,j1)

Φ(j4,j3)

Π(j3,j2)

Π(j1,j4)

(b) Cycle beginning at either node j2 or j4.

Figure A.1: Example of a cycle for an even number m of trains. The cycle goes once
around the line, but can start at two different nodes.

2. m odd:
In the case where m is odd, there is only one possible path. The starting node
does not influence the cycle. The weight of this cycle is given by:

|ρ1|w = Υ(j1,jm−1) + · · ·+Υ(j2,jm) + · · ·+Υ(j3,j1) (A.31)
= Φj1,jm +Πjm,jm−1 + · · ·+ Φj2,j1 +Πj1,jm + · · ·+ Φj3,j2 +Πj2,j1 (A.32)

=

j1∑

jm+1

tp2q +

jm∑

jm−1+1

tp2q + · · ·+
j2∑

j1+1

tp2q +

j1∑

jm+1

tp1q + · · ·+
j3∑

j2+1

tp1q +

j2∑

j1+1

tp1q

(A.33)

=
∑

tp2q +
∑

tp1q (A.34)

Here there are 2m arcs of Π and Φ, thus there are m arcs of Υ, i.e. |ρ|l = m.
The headway is given by half the cycle mean

hofw,ψ=0 =
TA + TB

2m
(A.35)
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Figure A.2 shows the cycles for m = 3 and is separated in two parts. When the
number of trains is odd, the cycle goes around the line twice. Figure A.2a shows the
first lap while Figure A.2b corresponds to the second lap. The weight of the path is
given by

︸ ︷︷ ︸
First lap

Υ(j3,j1)︷ ︸︸ ︷
Π(j2,j1) + Φ(j3,j2) +

Υ(j2,j3)︷ ︸︸ ︷
Π(j1,j3) + Φ(j2,j1) +

Υ(j1,j2)︷ ︸︸ ︷
Π(j3,j2) + Φ(j1,j3)︸ ︷︷ ︸

Second lap

|

j1

||

j2

|

| | |

j3

|

Π(j2,j1)

Φ(j3,j2)

Π(j1,j3)

(a) Arcs of the first lap.

|

j1

||

j2

|

| | |

j3

|

Φ(j2,j1)

Π(j3,j2)

Φ(j1,j3)

(b) Arcs of the second lap.

Figure A.2: Example of a cycle for an odd number m of trains. The cycle goes twice
around the line, combining arcs of the matrices Π and Φ.

A.7.3 Free-Flow Phase with Combinations

Now consider all free-flow phase cycles with ψ > 0. These cycles also go in the direc-
tion of traffic but combine arcs defined by Equations (A.6), (A.7), (A.12) and (A.13).
Unlike the case where ψ = 0, the arcs of the matrices Π and Φ can connect some
nodes j ∈ J to other nodes i ∈ I or vice versa. We can use Proposition A.1 to em-
phasize the alternation of services during cycles. We know that the cycle alternates
arcs of the matrices Π and Φ, and we want to know if the values allocated in µe
and µo for two consecutive arcs are the same or opposite services. Two cases are
possible:

1. If the end node of an arc is a node j ∈ J , the values allocated in the weights
of this arc and the following one belong to the same service.

2. If the end node of an arc is a node i ∈ I, this arc’s weight and the next one’s
weight contain values of opposite services.

We show some examples for a fixed number m of trains and ψ before generalizing to
all m and ψ values. Again, there is a difference between the cases where m is even
and odd.
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1. m even:

(a) The weight of these cycles is greater than m/2, which means more arcs
are involved in the cycle. To illustrate these cycles, we take a simple
example, depicted in Figure A.3a, such thatm = 4, ψ = 2, and ∀i1, i2 ∈ I,
j1 < j2 ≤ i1 < j3 ≤ i2 < j4. The same reasoning works for any positions
of the nodes and any number of nodes i1, · · · , iψ ∈ I with ψ even. The
weight of this example is given by:

|ρ|w = Υ(j1,i2) +Υ(i2,i1) +Υ(i1,j1) (A.36)
= Φ(i1,j2) +Π(j2,j1) + Φ(i2,j3) +Π(j3,i1) + Φ(j1,j4) +Π(j4,i2) (A.37)

|ρ|w =

i1∑

p=j2

tµoq +

j2∑

j1

tµeq +

i2∑

j3

tµoq +

j3∑

i1

tµeq + tµei1 + si1

+

j4∑

j1

tµoq +

j4∑

i2

tµeq + tµei2 + si2

(A.38)

=

i2∑

i1

tp1q +

i1∑

i2

tp2q + tp1i1 + si1 + tp2i2 + si2 (A.39)

and the length is equal to 2 = m/2 + ψ/2. If ψ is odd, then m/2 + ψ/2
is not a natural number which is not possible. We can generalize to any
even ψ

|ρ|w =

i1∑

iψ+1

tp1q + (tp1iψ + siψ) + · · ·+
i2∑

i1+1

tp2q + (tp2i1 + si1) (A.40)

with a weight of m/2 + ψ/2. The headway hefw,ψ>0 is equal to half the
maximum cycle mean for a fixed ψ:

hefw,ψ>0 = max
p1,p2,i1,··· ,iψ





i1∑
iψ+1

tp1q + (tp1iψ + siψ) + · · ·+
i2∑
i1+1

tp2q + (tp2i1 + si1)

m+ ψ





(A.41)

(b) ψ odd, even if there are elementary cycles in the matrix, their mean is
always upper bounded by other cycles. We take an example with m = 2
and ψ = 1.

|ρ|w = Υ(j1,i1) +Υ(i1,j2) +Υ(j2,j1) (A.42)
= Φ(j1,j2) +Π(j2,i1) + Φ(i1,j1) +Π(j1,j2) + Φ(j2,i1) +Π(i1,j1) (A.43)



APPENDIX A. PROOF OF THEOREM 4.3 125

|

j1

||

j2

|
i1

j3
| |

i2

|

j4

|

Π(j2,j1)Φ(i1,j2)

Π(j3,i1)

Φ(i2,j3) Π(j4,i2)

Φ(j1,j4)

(a) Here ψ = 2.

j1 ≡ τ
|||

j2

|
i1

| | |

j3

|

Π(j2,j1)Φ(i1,j2)

Π(j3,i1)

Φ(j1,j3)

(b) Here ψ = 1.

Figure A.3: Two examples of cycles for an even (Figure A.3a) and odd (Figure A.3b)
number m of trains. Both cycles go around the line once. In both cases, the cycles
can either begin at j1 or j2. The matrices Π and Φ are inverted in the latter case.

|ρ|w =

j1∑

p=j2

tµoq +

j2∑

i1

tµeq + tµei1 + si1 +

i1∑

j1

tµoq

+

j1∑

j2

tµeq +

j2∑

i1

tµoq + tµoi1 + si1 +

i1∑

j1

tµeq

(A.44)

= TA + TB + tAi1 + si1 + tBi1 + si1 (A.45)

The length of this cycle is 3 = m+ 1. The cycle mean is given by

ρ =
TA + TB + tAi1 + si1 + tBi2 + si2

m+ 1

≤ max{T
A + TB

m
,
tAi1 + si1 + tBi1 + si1

1
}

≤ max{2T
A

m
,
2TB

m
,
tAi1 + si1 + tBi1 + si1

1
}

This cycle is upper-bounded by the cycles giving either hfw or hmin.

2. m odd:
We also take two simple examples for the odd case to illustrate the cycles. In
both examples, we take m = 3, and we take respectively ψ = 1 (Figure A.3b)
and ψ = 2 (Figure A.4) in the first and second example.

(a) ψ odd, e.g., ψ = 1: in this case, the cycle is composed of two arcs of Υ.
To ensure that trains do not change their service in the middle of the line,
the position of the first train needs to coincide with τ one of the termini.
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Consider τ = j1 ≤ i1 < j2 < j3 then the weight of the cycle is given by

|ρ|w = Υj1,j2 +Υj2,j1 = Υτ,j2 +Υj2,τ (A.46)
= Φτ,j3 +Πj3,j2 + Φj2,i1 +Πi1,τ (A.47)

=
τ∑

j3+1

tp2q +

j3∑

j2+1

tp2q +

j2∑

i1+1

tp2q + (tp2i1 + si1) +

i1∑

τ+1

tp1q (A.48)

=
τ∑

i1+1

tp2q + (tp2i1 + si1) +

i1∑

τ+1

tp1q (A.49)

If the cycle starts at i1 instead of τ , the weight of the cycle becomes

|ρ|w =
τ∑

i1+1

tp1q + (tp1i1 + si1) +
i1∑
τ+1

tp2q . The length of this cycle is |ρ|l = 2 =

m/2 + ψ/2. The headway corresponding to this cycle ∀ψ > 0 and ψ odd
is half of the maximum of these cycles:

hofw,ψ>0 = max
p1,i1,··· ,iψ





i1∑
τ+1

tp2q +
i2∑
i1+1

tp1q + · · ·+
τ∑

iψ+1

tp1q + tp1i1 + si + · · ·+ tp2iψ + siψ

m+ ψ





(A.50)

(b) ψ even, e.g., ψ = 2: in the case where ψ is even, the cycle does two laps
around the line. Consider τ = j1 ≤ i1 ≤ i2 < j3 < j3; the weight of this
cycle is equal to

|ρ|w = Υj1,j2 +Υj2,i1 +Υi1,j3 +Υj3,j1 (A.51)
= Φj1,j3 +Πj3,j2 + Φj2,i2 +Πi2,i1 + Φi1,j1 +Πj1,j3

+ Φj3,j2 +Πj2,j1

(A.52)

=

j1∑

j3+1

tp2q +

j3∑

j2+1

tp2q +

j2∑

i2+1

tp2q + (tp2i2 + si2) +

i2∑

i1+1

tp1q

+ (tp1i1 + si1) +

i1∑

j1+1

tp2q +

j1∑

j3+1

tp1q +

j3∑

j2+1

tp1q +

j2∑

j1+1

tp1q

(A.53)

=

i1∑

i2+1

tp2q + (tp2i2 + si2) +

i2∑

i1+1

tp1q + (tp1i1 + si1) + T p1 (A.54)

If the starting point of the cycle is j2, then we have the weight equals to

|ρ|w =
i1∑
i2+1

tp1q + (tp1i2 + si2) +
i2∑
i1+1

tp2q + (tp2i1 + si1) + T p2 and the weight is

equal to |ρ|l = 4 = m+ ψ/2. By looking at the maximum of this kind of
cycle we obtain the headway ∀ψ > 0 and even

hofw,ψ>0 = max
p1,i1,··· ,iψ





T p2 +
i2∑
i1+1

tp1q +
i3∑
i2+1

tp2q + · · ·+
i1∑

iψ+1

tp2q + tp1i1 + si + · · ·+ tp2iψ + siψ

2m+ ψ





(A.55)
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|

j1

||

j2

|

| | |

j3

|

Π(j2,j1)

Φ(j3,j2)

Π(j1,j3)

(a) Arcs of the first lap.

|

j1

||

j2

|
i1

| | |

j3

|
i2

Φ(j2,j1)Π(i1,j2)

Π(i2,j3)
Φ(j3,i1)

Φ(j1,i2)

(b) Arcs of the second lap.

Figure A.4: The second type of cycle that exists when m is odd. The cycle goes
around the line twice.

A.7.4 Maximum Value of Combination and Details on the
Nodes

Proposition A.3. ∀ψ > 0, it exists the following property for hefw and hofw:

1. ∀iq, iq′ ∈ {i1, · · · , iψ}, iq ̸= iq′, o < iq < i′q < o′, ∀o, o′ ∈ O two consecutive
nodes of this set.

2. The value ψ is bounded by the number of skippable stations, i.e ψ ≤ |O|.

Proof. We make the proof for hefw, the reasoning being the same for hofw.
Let us consider o, o′ ∈ O such that they are two consecutive nodes in this set,
and i, i′, i′′, i′′′ ∈ {i1, · · · , iψ} such that i < o < i′ < i′′ < o′ < i′′′. We have∑i′

q=i+1 t
µe
q =

∑i′

q=i+1 t
µo
q .

∀p1, and ∀i1, · · · , i, i′, i′′, i′′′, · · · , iψ ∈ I:

|ρ|w =

i2∑

q=i1+1

tp1q + · · ·+
i′∑

q=i+1

tp2q +
i′′∑

q=i′

tp1q +
i′′′∑

q=i′′+1

tp2q + · · ·+
i1∑

q=iψ+1

tp2q

+ (tp1i1 + si1) + · · ·+ (tp2i + si) + (tp1i′ + si′) + (tp2i′′ + si′′)

+ · · ·+ (tp2iψ + siψ)

|ρ|w =

i2∑

q=i1+1

tp1q + · · ·+
i′∑

q=i+1

tp2q +
i′′∑

q=i′

tp2q +
i′′′∑

q=i′′+1

tp2q + · · ·+
i1∑

q=iψ+1

tp2q

+ (tp1i1 + si1) + · · ·+ (tp2i + si) + (tp1i′ + si′) + (tp2i′′ + si′′)

+ · · ·+ (tp2iψ + siψ)
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|ρ|w =

i2∑

q=i1+1

tp1q + · · ·+
i′′′∑

q=i+1

tp2q + · · ·+
i1∑

q=iψ+1

tp2q

+ (tp1i1 + si1) + · · ·+ (tp2i + si) + (tp1i′ + si′) + (tp2i′′ + si′′)

+ · · ·+ (tp2iψ + siψ)

The length of this cycle is given by |ρ|l = m+ψ
2

. The headway corresponding to this
cycle is given by

hψ =




i2∑

q=i1+1

tp1q + · · ·+
i1∑

q=iψ+1

tp2q + (tp1i1 + si1) + · · ·+ (tp1i′ + si′)

+ (tp2i′′ + si′′) + · · ·+ (tp2iψ + siψ)

)
/(m+ ψ)

(A.56)

=




i2∑

q=i1+1

tp1q + · · ·+
i1∑

q=iψ+1

tp2q + (tp1i1 + si1) + · · ·+ (tp2iψ + siψ)

+ (tp1i′ + si′) + (tp2i′′ + si′′)

)
/(m+ (ψ − 2) + 2)

(A.57)

≤ max

{∑i2
q=i1+1 t

p1
q + · · ·+∑i1

q=iψ+1 t
p2
q + (tp1i1 + si1) + · · ·+ (tp2iψ + siψ)

m+ (ψ − 2)
,

(tp1i′ + si′) + (tp2i′′ + si′′)

2

}

(A.58)

The first part of the maximum function is equivalent to a cycle with ψ − 2 nodes
(the maximum is sought on the nodes {i1, · · · , iψ−2}). Since h(ψ−2) is the maximum
of all cycles of this type, the first part of the maximum is dominated by h(ψ−2).
The second part is dominated by the line’s capacity given by hmin. Therefore,
hψ ≤ max{h(ψ−2), hmin}, ∀ψ. Moreover, ∀ψ > |O|, there are at least two nodes i, i′
such that o < i < i′ < o′, so hψ ≤ max{hΘ, hmin}, ∀ψ > 0, ⇔ ψ ≤ |O|.

A.7.5 The Congestion Phase

The same reasoning of section Appendix A.7.2 is used to find the cycle in the opposite
direction of the train. ∀i ∈ {1, · · · , n −m}, j̄i ∈ J̄ we have Υ(j̄i,j̄i+2) = Φ(j̄i,j̄i+1) +
Π(j̄i+1,j̄i+2). Combining all these arcs, the cycle ρ has the following weight:

|ρ|w = Υ(j̄1,j̄3) + · · ·+Υ(j̄n−m−1,j̄1)

= Φ(j̄1,j̄2) +Π(j̄2,j̄3) + · · ·+ Φ(j̄n−m−1,j̄n−m) +Π(j̄n−m,j̄1)

=

j̄2∑

q=j̄1+1

sq +

j̄3∑

q=j̄2+1

sq + · · ·+
j̄n−m∑

q=j̄n−m−1+1

sq +

j̄1∑

q=j̄n−m+1

sq

=
∑

q

sq = S
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The length of this path is given by |ρ|l(n−m)/2. The headway is thus directly given
by this cycle divided by two:

hbw =
S

(n−m)
(A.59)

j̄1
||

j̄2
||

j̄3

j̄4

| |

j̄5

| |

j̄6X(j̄6,j̄5)
Y(j̄5,j̄4)

X(j̄4,j̄3)

Y(j̄3,j̄2) X(j̄2,j̄1)

Y(j̄1,j̄6)

Figure A.5: The cycle in the opposite direction of traffic. The arcs link all the nodes
j̄q ∈ J̄ .

Remark 2. The cycles are again different depending on the parity of n−m. Indeed,
for an odd n −m the path ρ′ is given by ρ′ =

∑
q sq+

∑
q sq

(n−m)
= ρ which gives the same

headway.

There are other cycles in the opposite direction of the train. They are the
combination of arcs used to find hbw and those detailed in Equation (A.9). These
cycles are similar to those that give hefw and hofw. ∀ī1, · · · , īψ, the cycle is defined as

ρ =

∑ī2
q=ī1+1 sq + · · ·+∑ī1

q=īψ+1 sq + (tp1
ī2+1

+ si2) + · · ·+ (tp2
ī1+1

+ si1)

(n−m+ ψ)/2

All these cycles are dominated by either hbw or hmin.

h =

∑
q sq + (tp1

ī2+1
+ si2) + · · ·+ (tp2

ī1+1
+ si1)

(n−m+ ψ)

h ≤ max

{ ∑
q sq

(n−m)
,
(tp1
ī2+1

+ si2) + · · ·+ (tp2
ī1+1

+ si1)

ψ

}

h ≤ max {hbw, hmin}

□
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