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Thèse de doctorat de l’Institut Polytechnique de Paris
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ChapitreI
Introduction

Cette thèse est consacrée à l’étude et à la résolution de l’équation des ondes harmoniques dans deux
situations qui font intervenir de la quasi-périodicité. Nous nous intéressons plus précisément :

• aux milieux unidimensionnels quasi-périodiques et localement perturbés ;

• à la jonction de deux milieux périodiques bidimensionnels.

Cette étude tire ses motivations des cristaux et quasi-cristaux dont nous retraçons l’historique, avant
d’en évoquer les possibles applications à la section 1. Le problème modèle étudié est ensuite introduit
en section 2, et le travail effectué pendant cette thèse est résumé à la section 3.

1 Contexte et motivation

1.1 Cristaux et quasi-cristaux

Présents dans la nature sous plusieurs formes (métaux, minéraux, neige, sels, gemmes, etc...), les cris-
taux se distinguent des autres solides par la nature périodique de leur structure : plus précisément,
il s’agit de solides dont les constituants (atomes, molécules, ions) sont agencés de manière périodique
dans les trois directions de l’espace. On doit cette découverte à l’abbé Haüy, dont l’ouvrage [Haü84]
publié en 1784 posa les fondements de la cristallographie, ouvrant la voie à une approche essentielle-
ment géométrique des cristaux qui s’étendra sur plus d’un siècle.

L’étude géométrique des cristaux fut par la suite complétée par une vision physique avec la première
utilisation en 1913 par Friedrich, Knipping et Laue [FKL13], et par W.L. Bragg [Bra13] de la diffrac-
tion par rayons X. Ce procédé permet de mesurer une intensité de diffraction |υ̂e|2, où υe désigne la
densité électronique du solide étudié, qui décrit formellement la probabilité υe(x) dx de trouver un
électron dans un voisinage de taille infinitésimale dx de x ∈ R3, et où υ̂e désigne la transformée de
Fourier de υe. Le graphe de l’intensité de diffraction projetée sur un écran donne un diagramme de
diffraction (Figure 1a), dont l’étude permet d’extraire des informations sur la structure du solide. Pour
un cristal idéal, υe est périodique, et υ̂e est de fait un réseau de mesures de Dirac, aussi appeleés pics
de Bragg (Figure 1b). Les solides dont le diagramme de diffraction présente des pics de Bragg sont dits
ordonnés, par opposition aux solides amorphes (Figure 1c).

L’observation des solides à l’aide des procédés de diffraction renforça au fil des décennies l’idée que
seuls les cristaux pouvaient admettre des pics de Bragg. Des premiers doutes s’installent au cours des
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(a)

Cristal

Faisceau
incident

Ecran

(b) (c)

FIGURE 1 : De gauche à droite : Représentation schématique du principe de diffraction par rayons X
((1a)). Diagrammes de diffraction d’échantillons d’aluminium (1b) et de carbone amorphe (1c). Dans
les trois cas, la grande tâche au centre du diagramme est issue du faisceau incident [Wil+96].

années 70 lorsque, dans un contexte plutôt récréatif (retracé par Gardner [Gar70]), Penrose [Pen74 ;
Pen79] découvre un exemple simple de pavage1 apériodique du plan (Figure 2 à gauche). Bien que le
pavage de Penrose soit apériodique, Mackay [Mac82] démontre que l’intensité de diffraction associée
à cette structure est un réseau de mesures de Dirac, suggérant par la même occasion la possibilité qu’il
puisse exister des structures cristallines ordonnées sans être périodiques.

1 mm

FIGURE 2 : De gauche à droite : le pavage de Penrose. Quasi-cristal Ho-Mg-Zn aux facettes pentago-
nales [Fis+99]. Diagramme de diffraction du quasi-cristal Ho-Mg-Zn [Mat10]

Le premier exemple concret confirmant la conjecture de Mackay est fourni par Shechtman [She+84],
qui observe un alliage métallique dont le diagramme de diffraction possède des pics de Bragg, et
qui pourtant ne jouit d’aucune propriété de périodicité. Cette découverte obligea non sans peine2 la
communauté cristallographique à étendre en 1992 la définition d’un cristal, ne retenant désormais
que le critère ordonné [Sen06]. De nos jours, bien que le terme “cristal” reste consacré aux structures
périodiques, celles qui sont ordonnées sans être périodiques sont appelées des quasi-cristaux [LS84].
La découverte de Shechtman fut par la suite répliquée à travers le monde, permettant de synthétiser
d’autres quasi-cristaux. Signalons cependant que l’existence des quasi-cristaux n’est pas cantonnée aux
laboratoires, puisque des exemples de quasi-cristaux naturels ont également été observés [Bin+12].

1Un pavage est un recouvrement disjoint du plan formé d’un ensemble fini de formes (deux pour le pavage de Penrose)
répétées à l’infini

2Avant de lui valoir le prix Nobel 2011 de Chimie, la découverte de Shechtman fit dans un premier temps l’objet d’une
opposition farouche chapeautée par le double Nobélisé Linus Pauling, à qui l’on doit la phrase “There is no such thing as
quasicrystals, only quasi-scientists”[LE11].
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1.2 Modélisation mathématique des quasi-cristaux

La description mathématique des quasi-cristaux s’appuie sur des outils plus anciens : les fonctions
quasi-périodiques. Ces fonctions ont été introduites par P. Bohl [Boh93], avant d’être étendues par H.
Bohr à la notion plus générale de presque périodicité [Boh47]. Une fonction continue f : R → C est dite
quasi-périodique d’ordre n ∈ N∗ si elle est la coupe d’une fonction F : Rn → C continue et périodique
par rapport à chacune de ses variables, suivant une droite dirigée par un vecteur θ = (θ1, . . . , θn) :

∀ x ∈ R, f(x) = F (θ x) := F (θ1 x, . . . , θn x). (1.1)

Initialement, la théorie des fonctions quasi-périodiques est motivée par l’Astronomie où il est question
de modéliser les phénomènes issus du couplage de plusieurs sources périodiques [Poi93 ; Esc04].
Cependant, le rapprochement avec les quasi-cristaux est implicitement suggéré en 1981 par De Bruijn
[De 81], qui démontre que le pavage de Penrose (un modèle théorique de structure quasi-cristalline)
peut être vu comme la coupe le long d’un hyperplan d’un pavage périodique de dimension 5. Le même
constat est effectué par Kramer et Neri [KN84] au sujet d’autres structures quasi-cristallines.

C’est sur la base de ces travaux que suite à la découverte de Shechtman, Katz et Duneau [DK85], Ka-
lugin, Kitaev, et Levitov [KKL85], et enfin Elser [Els86] proposent (de manière indépendante) la des-
cription d’un quasi-cristal comme la coupe d’un cristal de dimension supérieure. Néanmoins, comme
les structures quasi-cristallines sont des réseaux discrets (à l’inverse des fonctions quasi-périodiques),
l’étape de coupe s’accompagne d’une étape de projection : ainsi naît la représentation par coupe et pro-
jection, illustrée à la Figure 3 dans le cas unidimensionnel. Pour finir, mentionnons que les structures
quasi-cristallines obtenues par coupe et projection sont des cas particuliers d’ensembles de Meyer, dont
l’introduction par Meyer [Mey95 ; Mey06] remonte aux années 60. L’étude des ensembles de Meyer a
permis d’établir un formalisme mathématique adapté à la diffraction des structures quasi-périodiques,
comme le montrent les travaux recensés dans le survol [Moo00].

(a) tan θ = 1 ∈ Q

D∥

D⊥

θ
e⃗1

e⃗2

(b) tan θ = 1/
√
3 ∈ R \ Q

D∥

D⊥

θ e⃗1

e⃗2

FIGURE 3 : Illustration de l’approche de coupe
et projection (schéma inspiré de [KKL85]).

On considère un cristal bidimensionnel représenté
par un réseau périodique d’atomes (points noirs)
et qu’on coupe suivant une droite D∥ d’orientation
θ ∈ [0, π/2]. Les centres des carrés intersectant
D∥ sont ensuite projetés sur la droite de coupe,
produisant un réseau unidimensionnel d’atomes
(points rouges) qui représente le cristal ou le
quasi-cristal 1D obtenu.

Le réseau 1D obtenu par coupe et projection reste
périodique si tan θ est rationnel (Figure 3a). En
revanche, une orientation θ dont la tangente est
irrationnelle (Figure 3b) génère un quasi-cristal,
c’est-à-dire un réseau non-périodique.
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1.3 Milieux périodiques et quasi-périodiques

Les propriétés mécaniques ou électromagnétiques des cristaux ont inspiré la conception de matériaux
périodiques dits architecturés en élasticité, ou photoniques en électromagnétisme. Aussi appelées mé-
tamatériaux, ces structures artificielles sont caractérisées par une géométrie ou des caractéristiques
physiques (comme les coefficients de Lamé en élasticité, ou encore la permittivité diélectrique et la
perméabilité magnétique en optique optique) qui sont des fonctions périodiques d’une ou de plusieurs
variables d’espace. Les métamatériaux occupent une place considérable dans le secteur de l’industrie
en raison de leurs diverses propriétés.

En mécanique, on dispose par exemple des matériaux composites, qui résultent d’un empilement ou
d’un tressage généralement périodique de deux ou plusieurs composants élémentaires (voir Figure 4 à
gauche et [Chr79 ; Abo91 ; Mil22]). En jouant sur la nature et la disposition des matériaux associés, on
peut conférer au matériau composite des propriétés inédites (de légèreté, de rigidité, de malléabilité,
etc...) dont les matériaux élémentaires ne disposent pas. De fait, les matériaux composites ont plu-
sieurs applications dans l’aéronautique, le transport maritime, l’aérospatial, ou encore le génie civil.

FIGURE 4 : Gauche : matériau composite issu de l’empilement de couches en fibre de carbone et en
résine epoxy [Sim12]. Droite : Exemple de structure en nid d’abeille [KC17]

Les structures qui sont périodiques de par leur géométrie sont également très répandues en industrie.
C’est le cas des structures en nid d’abeille, issues de l’agencement périodique de cellules cylindriques
à section hexagonale, et généralement disposées entre deux plaques minces (voir Figure 4 à droite).
Leur géométrie offre à ces structures une grande résistance en dépit de leur légèreté.

FIGURE 5 : Exemples de cristaux photoniques. Crédit : Sandia National Laboratories (gauche)

Un autre exemple illustrant l’intérêt croissant pour les milieux périodiques, cette fois-ci dans l’élec-
tromagnétisme, concerne les cristaux photoniques [Joa+95 ; Kuc01 ; Sak04] (voir Figure 5). Il s’agit
de structures diélectriques au sein desquelles les ondes ne peuvent pas se propager pour certaines
fréquences. Les intervalles formés par ces fréquences (également appelés bandes interdites) sont liés
à la structure en bandes du spectre de l’opérateur différentiel utilisé pour modéliser la propagation

https://www.sandia.gov/media/photonic.htm
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des ondes en milieux périodiques (on trouvera une description mathématique dans [Kuc93 ; Kuc04]).
L’existence de telles bandes interdites fait des cristaux photoniques des structures de choix en nano-
technologies pour la conception de filtres optiques.

Par ailleurs, en introduisant volontairement des défauts localisés au sein d’un cristal photonique, il
est possible de perturber l’opérateur différentiel associé pour créer des valeurs propres de multiplicité
finie au sein des bandes interdites [FG97 ; FK97 ; FG98 ; KF98]. Ces valeurs propres correspondent
à des modes qui sont localisés au voisinage des défauts, ce qui permet en pratique de concevoir des
dispositifs de localisation des ondes.

Parmi les défauts rencontrés, un cas important pour cette thèse concerne les bi-cristaux. Ces struc-
tures résultent de la jonction de deux cristaux photoniques, ce qui peut s’apparenter à un défaut
linéique. L’un des intérêts des bi-cristaux réside dans le fait qu’on puisse créer des modes guidés au
voisinage de l’interface entre les deux cristaux. Pour pouvoir calculer les modes guidés, il est utile de
pouvoir simuler de manière efficace la propagation des ondes dans les bi-cristaux. Il s’agit précisément
de l’un des objectifs de cette thèse.

Par extension du cas périodique, nous entendrons par milieux quasi-périodiques des milieux dont la
géométrie ou les propriétés physiques peuvent être représentées par des fonctions quasi-périodiques.
Depuis la découverte des quasi-cristaux par Shechtman, les milieux quasi-périodiques n’ont cessé
de susciter de l’engouement, en raison des surprenantes propriétés qui leur sont attribuées [JD98 ;
Dub05]. Par exemple, contrairement à l’aluminium dont ils sont en grande partie constitués, la majo-
rité des quasi-cristaux étudiés s’avèrent être de bons isolants thermiques dotés d’une grande dureté,
et qui se mouillent très peu [Dub12]. Ces propriétés présentent un intérêt pour le revêtement de
poêles ou d’outils chirurgicaux [Riv93]. Par ailleurs, à l’instar des cristaux photoniques mentionnés
plus haut, une attention croissante est portée aux quasi-cristaux photoniques. Dans le cas unidimen-
sionnel, ces structures sont obtenues en agençant des plaques diélectriques dans un ordre apériodique
(voir par exemple [AC03 ; SS07 ; PI10 ; VNA13]). Les quasi-cristaux photoniques disposent également
de bandes interdites, bien que leurs propriétés spectrales (en termes de l’opérateur différentiel associé)
soient plus complexes (une étude est menée dans [DM23] ; voir également la section 2.1).

De manière générale, les applications envisagées au sujet des milieux quasi-périodiques se heurtent
à plusieurs difficultés. Pour commencer, la fabrication des quasi-cristaux requiert des procédés com-
plexes qu’il n’est pas facile de déployer à l’échelle industrielle. De plus, les structures quasi-périodiques
semblent présenter en pratique une grande fragilité [DS95 ; Mik+98 ; Zou+16] intrinsèque à leur
structure. Mais surtout, ces milieux disposent de plusieurs propriétés encore peu comprises d’un point
de vue théorique, en raison de leur complexité. Pour mieux appréhender les phénomènes sous-jacents
et concevoir les applications évoquées, il est en particulier important d’avoir des méthodes numériques
permettant d’étudier des phénomènes physiques comme la propagation d’ondes dans les milieux quasi-
périodiques. La présente thèse s’inscrit dans ce contexte.

2 L’équation des ondes harmoniques et ses difficultés

La propagation des ondes acoustiques ou électromagnétiques (pour n ∈ {1, 2} ; voir Remarque 2.1)
dans un domaine Ω ⊂ Rn est régie par l’équation des ondes temporelles

ρ(x)
∂2ũ(x, t)

∂t2
− div

(
A(x)∇ũ(x, t)

)
= f̃(x, t), x = (x1, . . . , xn) ∈ Ω, t > 0, (2.1)
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où l’inconnue ũ et la source f̃ sont des fonctions de la variable d’espace x ∈ Ω et du temps t > 0. Le
tenseur A ∈ L∞(Ω;Rn×n) et le coefficient ρ ∈ L∞(Ω;R) représentent les caractéristiques physiques du
milieu au sein duquel l’onde se propage. Nous étudions dans cette thèse

• des milieux quasi-périodiques localement perturbés pour n = 1 : A =: µ et ρ coïncident avec des
fonctions quasi-périodiques (1.1) en dehors d’un domaine borné ;

• la jonction de deux milieux périodiques pour n = 2 : A (resp. ρ) coïncide avec des fonctions
périodiques différentes de part et d’autre d’une interface.

Nous supposons A symétrique, et (A, ρ) bornés inférieurement par des constantes strictement positives,
hypothèses valables pour les milieux de propagation classiques. Enfin, il faut rajouter à (2.1) une
condition initiale, et une condition aux limites si ∂Ω ̸= ∅.

Remark 2.1. L’équation (2.1) apparaît en électromagnétisme pour n = 2, lorsque le milieu est une section
d’un milieu tridimensionnel invariant dans la direction x3. Dans le cas d’une polarisation transverse élec-
trique, ũ correspond à la composante suivant x3 du champ électrique, et ρ et A représentent respectivement
la permittivité électrique et l’inverse de la perméabilité magnétique.

Pour une source harmonique en temps f̃(x, t) = f(x) e−iωt avec une fréquence ω ≥ 0 fixée, il est
naturel de chercher une solution de la forme ũ(x, t) = u(x) e−iωt où u vérifie l’équation des ondes
harmoniques ou équation de Helmholtz

−div
(
A(x)∇u(x)

)
− ρ(x)ω2 u(x) = f(x), x ∈ Ω. (2.2)

Le lien rigoureux entre la solution ũ de l’équation des ondes temporelles et la solution u de l’équation
de Helmholtz est plus subtil, et correspond au principe d’amplitude limite, qui indique que ũ(·, t) se
comporte comme u e−iωt en temps long (i.e. pour t → +∞). Le principe d’amplitude limite est bien
compris [TS48 ; Mor62 ; Iwa68 ; MW88; RZ92] pour les milieux homogènes (c’est-à-dire quand A
et ρ sont constants). La validité du principe d’amplitude limite est moins évidente pour les milieux
hétérogènes, mais elle est intrinsèquement liée à celle du principe d’absorption limite pour l’équation
de Helmholtz (voir plus loin, Section 2.1). De fait, l’étude de l’équation de Helmholtz constitue une
première étape importante à laquelle cette thèse sera dédiée.

Dans la majorité des applications (comme celles évoquées précédemment), la taille du domaine de
propagation est très grande devant l’échelle caractéristique du milieu représenté par A et ρ (par
exemple la période du milieu s’il est périodique). Aussi, résoudre directement l’équation de Helmholtz
peut s’avérer très coûteux. Dans le cas des milieux périodiques avec un nombre fini de cellules, il existe
des travaux [YL06 ; YL07 ; EHZ08 ; EZ08 ; YLA08] dédiés à la résolution efficace de l’équation (2.2) en
tirant parti de la périodicité et surtout du caractère borné de la structure. La démarche adoptée dans
cette thèse est différente, et consiste à supposer le domaine infini dans les directions de propagation.
L’objectif d’une telle hypothèse est de réduire les calculs en exploitant le comportement de la solution
et la nature du milieu (périodique ou quasi-périodique) à l’infini. Le caractère non-borné du domaine
induit cependant un certain nombre de difficultés présentées aux prochaines sections.

Par ailleurs, lorsque l’échelle caractéristique du milieu (par exemple la période d’un milieu pério-
dique) est très petite devant l’échelle des variations de la solution, la théorie de l’homogénéisation
[DS73 ; BLP78 ; Pap79 ; OZ82 ; Ngu89 ; All92 ; JKO12] montre qu’on peut remplacer (à une erreur
contrôlée près) le milieu hétérogène par un milieu homogène effectif. Cette théorie, initialement dé-
veloppée pour les milieux périodiques, a été étendue au cas des milieux quasi-périodiques, presque
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périodiques, et aléatoires. Dans cette thèse, nous supposerons que l’échelle caractéristique du mi-
lieu est du même ordre que l’échelle des variations de la solution, ce qui correspond au cadre
d’étude des cristaux photoniques par exemple. Par conséquent, on ne peut pas appliquer la théorie de
l’homogénéisation.

2.1 Difficultés théoriques

Pour des domaines Ω non-bornés, il n’est pas facile de trouver un cadre fonctionnel garantissant le
caractère bien posé de l’équation de Helmholtz. En effet, on s’attend à ce que la solution physique
u n’appartienne pas à L2(Ω), en raison de son caractère propagatif à l’infini. D’autre part, l’unicité
d’une solution dans L2

loc(Ω) n’est en général pas assurée. Pour obtenir l’unicité, il est alors nécessaire
de rajouter une condition dite de radiation, qui permet de prescrire le comportement de la solution
physique à l’infini. Ces difficultés ont été beaucoup étudiées dans le cas des milieux homogènes, pour
lesquels la condition de radiation de Sommerfeld [Som49] est utilisée. Cependant, dans le cas des
milieux hétérogènes, les conditions de radiation sont beaucoup moins évidentes à obtenir. L’outil alors
utilisé pour calculer la solution “physique” est le principe d’absorption limite, qui consiste à :

(a). rajouter de l’absorption, ou plus précisément à supposer que Imω > 0, de sorte que le problème
soit bien posé dans H1(Ω) ;

(b). étudier le comportement de la solution u ≡ u(ω) lorsque Imω → 0.

La solution physique est alors définie comme la limite (si elle existe) de u(ω) quand Imω → 0, et peut
être étudiée dans un second temps pour tenter d’obtenir une condition de radiation.

Le principe d’absorption limite est bien établi dans le cas des milieux homogènes et stratifiés [Wil66 ;
Agm75 ; Eid86 ; Wed90]. Des travaux plus récents ont montré ce principe pour

• les guides fermés périodiques [Fli09 ; Hoa11 ; Naz14 ; FJ16 ; KL18a ; Sch19] : Ω = S × R où
S ⊂ Rn−1 est borné, et (A, ρ) sont périodiques par rapport à xn ;

• les couches périodiques [KL18b ; Kir22] : Ω vaut R2 ou R2
+, et (A, ρ) sont périodiques par rapport

à x1 et constantes en dehors d’une bande |x2| > h ;

• les milieux périodiques dans tout Ω = Rn [Gér90 ; MT06 ; Rad15 ; Man19],

dérivant au passage des conditions de radiation pour les guides fermés et pour les couches périodiques.
Toutefois, à notre connaissance, il n’existe pas de réponse au principe d’absorption d’absorption limite
pour les situations quasi-périodiques que nous traitons. Pour comprendre les difficultés, prenons le cas
où n = 1, Ω = R, et A := µ. Le principe d’absorption limite est intimement lié aux propriétés spectrales
de l’opérateur différentiel auto-adjoint

D(A) :=
{
u ∈ H1(R), − d

dx

(
µ
du

dx

)
∈ L2(R)

}
et Au := −1

ρ

d

dx

(
µ
du

dx

)
∀ u ∈ D(A).

Si µ et ρ sont constantes, alors le spectre de A correspond à la demi-droite R+. Lorsque µ et ρ sont
périodiques, la théorie de Floquet permet de montrer que le spectre de A est absolument continu,
et possède une structure en bandes [Kuc93 ; Kuc01]. Dans le cas où µ et ρ sont quasi-périodiques, le
spectre de A s’avère beaucoup plus complexe (voir [Sim82 ; Las07]). En effet, si le spectre peut avoir
une partie absolument continue [Eli92] ; [PF92, §16], il peut également admettre des valeurs propres
plongées [Jec19 ; BK21] et une partie singulièrement continue (nous nous référons à [Pea78 ; FK02]
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et à la série d’articles par Simon [DMS94 ; JS94 ; Sim95 ; Del+96 ; SS96])3. Par ailleurs, les travaux
cités ci-dessus montrent également que certaines parties du spectre de A peuvent être des ensembles
de Cantor (i.e. des ensembles fermés sans points isolés, et de complémentaire dense ; voir également
[Mos81]). En raison de la nature complexe du spectre, les outils théoriques généralement utilisés pour
montrer le principe d’absorption limite (comme le développement en fonctions propres généralisées
et la formule de Plemelj-Privalov [HL07], ou la théorie de Mourre [Mou81]) s’avèrent plus difficiles à
mettre en oeuvre. Dans le cas des jonctions de demi-espaces périodiques, bien que le comportement de
la solution physique à l’infini ait été étudiée dans certains cas lorsque ω2 est dans un gap de l’opérateur
différentiel sous-jacent [ABB01], le principe d’absorption limite semble avoir été tout aussi peu traité.
Par conséquent, nous nous attacherons à développer une méthode numérique valable pour Imω > 0,
et qui reste stable lorsque l’absorption tend vers 0.

2.2 Méthodes numériques

Aux difficultés théoriques liées à l’étude de l’équation de Helmholtz en milieu non-borné, s’ajoute la
question de sa résolution numérique. Cette question a fait l’objet de plusieurs travaux dans le cas des
milieux homogènes (nous nous référons aux introductions des thèses [Fli09 ; Coa12] qui recensent
ces travaux). Les méthodes dont s’inspire le travail effectué dans cette thèse consistent à restreindre
les calculs à un domaine borné en construisant des conditions aux limites sur des bords artificiels,
et qui transcrivent de manière exacte le comportement de la solution à l’infini. Ces conditions dites
transparentes font intervenir des opérateurs de Dirichlet-to-Neumann (DtN) qui ont une expression
analytique ou semi-analytique qu’on peut déterminer.

C’est aussi sur les opérateurs DtN que s’appuie la méthode développée par Joly, Li, et Fliss [JLF06] dans
le cas des guides périodiques localement perturbés. Cependant, dans le cas périodique, ces opérateurs
ne peuvent plus être calculés de manière exacte, et doivent de fait être approchés numériquement. La
méthode DtN de Joly, Li, et Fliss permet d’obtenir les opérateurs DtN (et de construire la solution du
problème de guide périodique) en résolvant des problèmes posés dans une cellule, ainsi qu’une équa-
tion de Riccati stationnaire. Ces idées ont été étendues aux milieux périodiques dans deux dimensions
[FJ09 ; FJ12] avec une perturbation locale, et à la jonction entre un milieu homogène et un milieu
périodique [FCB10].

Dans le cas des milieux quasi-périodiques, la méthode DtN décrite ci-dessus ne peut pas être directe-
ment appliquée, car elle repose essentiellement sur la périodicité du milieu (en dehors de la perturba-
tion locale). Cependant, une idée inspirée de la définition de la quasi-périodicité et de l’approche de
coupe et projection (Figure 3) consiste à voir l’équation aux dérivées partielles (EDP) qu’on cherche
à résoudre comme la coupe le long d’un hyperplan d’une EDP augmentée posée en dimensions su-
périeures, et à coefficients périodiques. Nous appelerons par la suite cette approche la méthode de
relèvement.

La méthode de relèvement a été utilisée pour l’homogénéisation en présence d’un demi-espace pé-
riodique par Gérard-Varet et Masmoudi [GM11 ; GM12], de la jonction de deux milieux périodiques
par Blanc, Le Bris, et Lions [BLL15], et en présence de structures quasi-périodiques par Bouchitté,
Guenneau, et Zolla [BGZ10], puis par Wellander, Guenneau, et Cherkaev [WGC19]. Cependant, cette
méthode semble avoir été très peu exploitée en dehors du contexte de l’homogénéisation, et encore

3Toutes les références indiquées portent sur l’opérateur de Schrödinger quasi-périodique, mais en dimension 1 on peut
toujours s’y ramener à l’aide de la transformation de Liouville si les coefficients µ et ρ sont suffisamment réguliers.



3. Organisation du manuscrit 9

moins à des fins numériques. A cet effet, notre objectif est le suivant :

Utiliser la méthode de relèvement pour résoudre l’équation de Helmholtz dans des
milieux quasi-périodiques.

Le caractère périodique de l’EDP augmentée nous permet ensuite d’utiliser des outils adaptés comme
l’approche DtN évoquée plus haut. En revanche, l’analyse et la résolution sont plus délicates, car cette
EDP est elliptiquement dégénérée (au sens de la partie principale de son opérateur différentiel). La
prise en compte de ces difficultés est au cœur du présent manuscrit.

3 Organisation du manuscrit

Le travail effectué pendant cette thèse est réparti en 5 chapitres.

Le chapitre II propose un aperçu de la théorie des fonctions quasi-périodiques. Nous y introduisons un
certain nombre d’outils et de résultats classiques qui seront régulièrement utilisés dans les chapitres
qui suivent. Par exemple, il est montré que dans la définition (1.1) d’une fonction quasi-périodique,
on peut supposer sans perte de généralité le relèvement 1–périodique dans toutes les directions, et
les composantes du vecteur de coupe θ linéairement indépendantes dans Z. La notion de condition
diophantienne est également introduite, et est reliée à la notion de mesure d’irrationalité. Pour finir,
on s’intéresse par souci de complétude à des outils importants comme la valeur moyenne et les séries
de Fourier généralisées des fonctions quasi-périodiques, bien que ces outils ne soient pas utilisés dans
le reste du manuscrit.

Le chapitre III est consacré à l’équation de Helmholtz (2.2) unidimensionnelle en présence d’absorp-
tion, avec Ω = R et des coefficients quasi-périodiques localement perturbés. L’objectif est de construire
des conditions transparentes définies à partir de coefficients de Dirichlet-to-Neumann (DtN). Ces co-
efficients s’obtiennent en résolvant l’équation de Helmholtz posée sur une demi-droite avec des coeffi-
cients quasi-périodiques, et une condition de Dirichlet au bord. En utilisant la méthode de relèvement,
ce problème de demi-droite est formellement écrit comme la coupe d’un problème dit augmenté, posé
dans un demi-guide de dimension n > 2 avec des coefficients périodiques. Du fait de son caractère
elliptiquement dégénéré, l’étude du problème augmenté requiert un cadre fonctionnel approprié, ap-
porté par des espaces de Sobolev anisotropes. L’étude de ces espaces directionnels permet de donner
un sens au problème de demi-guide, et d’en montrer le caractère bien posé. Pour résoudre le problème
de demi-guide périodique, nous adaptons la méthode DtN [JLF06], qui repose sur la résolution de
problèmes de cellule nD posés en domaine borné, et sur la construction d’un opérateur de propa-
gation, solution d’une équation de Riccati stationnaire. Une justification théorique de cette méthode
est effectuée, mais s’avère plus délicate que dans le cas de l’équation de Helmholtz à partie principale
elliptique, notamment en raison des propriétés spectrales radicalement différentes de l’opérateur de
propagation, dues au caractère elliptiquement dégénéré du problème augmenté. Pour finir, la mise en
œuvre de la méthode est abordée. En pratique, les problèmes de cellule peuvent être résolus directe-
ment par éléments finis. Bien que cette approche donne des résultats satisfaisants, il nous a cependant
semblé judicieux d’introduire une autre approche, qualifiée de quasi-unidimensionnelle (ou quasi-1D),
et qui permet d’exploiter la structure fibrée des problèmes de cellules pour se ramener à la résolution
de problèmes de cellule 1D.

Dans le chapitre IV, il est question d’étendre la méthode du chapitre III au cas sans absorption, en
faisant tendre l’absorption vers 0 dans l’esprit du principe d’absorption limite. Le passage à la limite
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dans les étapes de la méthode entraîne plusieurs difficultés. Tout d’abord, en l’absence d’absorption,
les problèmes de cellule issus de l’approche DtN se trouvent être mal posés pour un continuum non
borné de fréquences. Pour contourner cette difficulté, l’alternative retenue est de remplacer l’approche
DtN par une approche de type Robin-to-Robin (RtR), qui est en principe similaire bien que plus tech-
nique. La deuxième difficulté concerne l’équation de Riccati, à laquelle il est nécessaire d’ajouter une
condition pour caractériser l’opérateur de propagation limite (si celui-ci existe). La condition proposée
s’inspire du cas elliptique, et repose sur le calcul d’un flux d’énergie. Nous montrons que la condition
sur le flux suffit à garantir l’unicité de l’opérateur de propagation limite (s’il existe) comme solution de
l’équation de Riccati. Nous arrivons ainsi à définir de manière unique la solution physique à partir d’un
problème posé en domaine borné avec des conditions transparentes de type RtR. Les coefficients RtR
intervenant dans ces conditions sont la limite quand l’absorption tend vers 0 des coefficients RtR pour
le cas avec absorption. Le principe d’absorption limite est ainsi démontré (pour la première fois nous
semble-t-il pour les milieux quasi-périodiques) sous certaines hypothèses. La question d’expliciter un
peu plus ces hypothèses nous semble importante, mais encore ouverte.

Le chapitre V porte sur l’équation de Helmholtz en dimension 2 en présence d’absorption, avec Ω = R2

et des coefficients dont les restrictions aux demi-plans R± × R sont des fonctions périodiques. Cette
situation correspond à une jonction de deux milieux périodiques. Deux configurations particulières
sont considérées dans ce chapitre : (a). le cas où les deux milieux sont périodiques le long de l’interface
mais avec des périodes différentes, et (b). le cas où le milieu de gauche est homogène tandis que celui
de droite est un milieu périodique coupé dans une direction quelconque. Dans chaque cas, le manque
de périodicité le long de l’interface empêche l’utilisation directe des méthodes usuelles comme la
transformée de Floquet-Bloch. Cependant, nous montrons que chacune de ces configurations s’écrit
comme la coupe le long d’un plan d’une structure 3D qui est périodique le long de l’interface. En
conséquence, le problème étudié s’étend en un problème augmenté posé dans la tranche R2 × (0, 1).
Comme au chapitre III, l’étude du problème augmenté nécessite des espaces de Sobolev anisotropes.
Pour étudier ces espaces, nous utilisons une approche légèrement différente de (mais équivalente à)
celle du chapitre III, qui consiste à interpréter les espaces étudiés en termes de régularités différentes
dans chaque direction. Le problème de tranche est ensuite résolu en appliquant une transformée de
Floquet-Bloch dans une direction, comme dans [FCB10], pour se ramener à une famille de problèmes
de guide. A ces guides, l’approche DtN déjà présentée au chapitre III est appliquée, conduisant à
des problèmes de cellule 3D et à une équation de Riccati. Une approche quasi-2D est également
introduite, pour réduire la résolution des problèmes de cellule à celle d’une famille de problèmes
2D. Enfin, pour la configuration (a), nous proposons une alternative à la méthode de relèvement,
consistant à appliquer une transformée de Floquet-Bloch avec des périodes différentes de part et
d’autre de l’interface. L’avantage est qu’on peut résoudre directement des problèmes de demi-guide
2D. En revanche, cette approche conduit à une équation 1D non locale posée sur l’interface, et qu’il
faut tronquer. Nous estimons l’erreur liée à la troncature en utilisant la présence d’absorption.

Dans le chapitre VI, on étudie l’équation de Helmholtz absorbante en dimension 2 avec Ω = R2,
en présence de demi-espaces périodiques arbitraires. Il s’agit de la situation générale qui englobe
les configurations modèles du chapitre V. Pour obtenir de la périodicité le long de l’interface, cette
configuration peut être relevée en une structure de dimension supérieure, mais en général, il n’est pas
possible de trouver des structures augmentées de dimension inférieure à 5. Pour éviter de résoudre
des problèmes 5D, nous proposons une extension de l’approche alternative introduite à la fin du
chapitre V. L’idée est de résoudre indépendamment deux problèmes posés dans chaque demi-espace,
et qui peuvent être relevés en des problèmes de dimension 3. Le lien entre ces deux problèmes de
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demi-espace et le problème étudié se traduit par une famille d’équations posées sur l’interface 1D
non-bornée. La résolution de ces équations d’interface nécessite à nouveau une troncature qui est
justifiée à l’aide de la présence d’absorption.

4 Mise en garde sur le système de numérotation

Les chapitres sont divisés en sections, les sections en sous-sections, et les sous-sections en sous-sous-
sections. Par exemple, V–3.1.a correspond à la sous-sous-section a de la sous-section une de la section
trois du chapitre cinq. 3.1.a du chapitre V. Lorsqu’une section est citée dans son chapitre d’ori-
gine, nous omettrons le préfixe du chapitre. Ainsi la section V–3.1.a sera simplement notée Section
3.1.a au sein du chapitre V. Il en va de même pour les définitions, théorèmes, propositions, lemmes,
corollaires, exemples, équations, et figures.
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Introduction

The purpose of this chapter is to provide an overview of the theory of quasiperiodic functions of one
real variable, and to introduce the formalism as well as the assumptions that will be used throughout
the whole document.

The class of quasiperiodic functions seems to have been studied first in 1893 by P. Bohl [Boh93] in his
thesis, but it appears to be Esclangon in 1904 [Esc04] who coined the term “quasiperiodic function”,
as pointed out in the survey [GL11]. The introduction of quasiperiodic functions was then motivated
by Astronomy and Mechanics, where the characterization of complex phenomena arising from the
coupling of finitely many periodic sources remains an active research topic. This question is in fact
discussed by Poincaré in his 1893 monograph [Poi93] which features the equation

−d
2u

dt2
− ρ(t)u = 0 with ρ(t) = 1 + µ

n∑
i=1

ai sin(αi t+ βi),

and where the periods 2π/αi are pairwise incommensurate. As we will see, the function ρ involved in
this equation is quasiperiodic, although not periodic.

The theory of quasiperiodic functions was later extended in 1925 by H. Bohr1[Boh47] to a more
1Niels Bohr’s cadet, Harald Bohr, in addition to being a mathematician, was incidentally an eminent football player and
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general class of functions known as uniformly almost periodic functions, and which have been the
subject of numerous subsequent developments. Even though they are not the focus of our study,
almost periodic functions have many insightful properties which we shall mention and derive for
quasiperiodic functions. For a comprehensive study, we refer to the monographs [Bes32; Boh47;
LZ82; Fin06].

1 Definition and elementary properties of quasiperiodicity

The set of real numbers is R, while Z represents the set of integers, N, the set of non-negative integers,
and N∗, the set of positive integers. Given an integer n > 0, the generic n–dimensional variable is
denoted by y = (y1, . . . , yn). The canonical basis of Rn is (e1, . . . , en), where (ej)k = δj,k. Given two
points y, z ∈ Rn, we denote their inner product by y ·z := y1 z1+ · · ·+yn zn, and |y| := √

y · y denotes
the norm of y.

Quasiperiodic functions of one variable are defined as follows.

Definition 1.1

A continuous function f : R → C is said to be quasiperiodic of order n > 0 if there exist a
continuous function F : Rn → C which is (τ1, . . . , τn)–periodic for some (τ1, . . . , τn) ∈ Rn:

∀ y = (y1, . . . , yn) ∈ Rn, ∀ j ∈ J1, nK, F (y + τj ej) = F (y);

and a vector θ = (θ1, . . . , θn) ∈ Rn such that

∀ x ∈ R, f(x) = (F ◦ θ)(x) := F (θ x) := F (θ1x, . . . , θnx). (1.1)

The function F is a periodic extension or lift of f , θ is called a cut vector, and (F,θ) is referred
to as a lifting pair of f .

One geometrical interpretation of Definition 1.1 is to see the one-dimensional function f as the trace
of a n–dimensional function F along the line passing through (0, 0) and parallel to the vector θ. This
is illustrated in Figure 1 for n = 2 and θ = (1,

√
2).

θ

0 0.4 0.8
0

0.4

0.8

0

Size of periodicity cell
−4 −2 0 2 4

−2

0

2

Figure 1: Function F : y 7→ cos(2πy1) + cos(2πy2) in its periodicity cell (left), and whose trace along
θ = (1,

√
2) leads to a quasiperiodic function (right).

In what follows, C 0
QP(R) denotes the space of quasiperiodic functions.

a 1908 Summer Olympics silver medalist.
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Example 1.2. It can be easily seen that continuous periodic functions are also quasiperiodic. In fact, any
τ–periodic function f satisfies (1.1) with n = 1, F = f , and θ = 1. Other examples of quasiperiodic
functions are finite sums or products of periodic functions: if f1, f2 ∈ C 0(R) are periodic, then f1 + f2
and f1f2 can be expressed under the form (1.1). Note that f1 + f2 and f1f2 are not periodic if f1 and f2
have non-commensurate periods. For instance, if

∀ x ∈ R, f1(x) = cos 2πx and f2(x) = cos 2π
√
2x,

then the sum f1 + f2, represented in Figure 1, is not periodic since it equals 2 only when x = 0.

Remark 1.3. In Floquet theory, the term “quasiperiodic” is used to denote functions f that satisfy

∀ x ∈ R, f(x+ 1) = e2iπξ f(x), (1.2)

for some fixed ξ ∈ R. One says in particular that f is ξ–quasiperiodic. Although ξ–quasiperiodic functions
are not periodic in general, they are quasiperiodic of order n = 2 in the sense of Definition 1.1, where

∀ y = (y1, y2) ∈ R2, F (y) := f(y1) exp
(
2iπ (y2 − ξy1)

)
and θ := (1, ξ).

In fact, the cyclic property (1.2) satisfied by f implies that F is 1–periodic with respect to all its variables.

Quasiperiodicity induces a certain number of properties that are also satisfied by periodic functions.

Proposition 1.4

Let f be a quasiperiodic function of order n > 0 with lift F : Rn → C:

(a). f is bounded and uniformly continuous;

(b). for any continuous g : F (Rn) → C, g ◦ f is quasiperiodic;

(c). if F ∈ C 1(Rn), then f ′ is also quasiperiodic.

Proof. [(a)] Since the lift F is continuous and periodic with respect to all its variables, it is on one
hand bounded, and on the other hand uniformly continuous, thanks to the Heine theorem. Thus, f is
bounded and uniformly continuous as well.

[(b)] (g ◦ f)(x) = (g ◦ F )(θ x) for x ∈ R, where g ◦ F ∈ C 0(Rn) has the same periods as F .

[(c)] f ′(x) = [(θ · ∇)F ](θ x) for x ∈ R, where (θ · ∇)F ∈ C 0(Rn) has the same periods as F . ■

Remark 1.5. Choosing particular functions g in Proposition 1.4 shows that if f is quasiperiodic, then λ f
(λ ∈ C), f and f2 are quasiperiodic as well.

As the next result shows, quasiperiodicity is stable by addition and by multiplication (in contrast to
periodicity; see Example 1.2).

Proposition 1.6

If f1 and f2 are quasiperiodic functions, then f1 + f2 and f1f2 are also quasiperiodic.
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Proof. Assume that fi = Fi(θi ·) is quasiperiodic of order ni > 0 for i ∈ J1, 2K. Let n := n1 + n2.
Then any y = (y1, . . . , yn) ∈ Rn can be represented as y = (y1,y2), where y1 = (y1, . . . , yn1) ∈ Rn1

and y2 = (yn1+1, . . . , yn) ∈ Rn2 . Let θ := (θ1,θ2) ∈ Rn be the concatenation of θ1 and θ2 and define

∀ y = (y1,y2) ∈ Rn, F (y) := F1(y1) + F2(y2) and G(y) := F1(y1)F2(y2).

Then F and G are periodic with respect to their variables, and f1 + f2 = F ◦ θ and f1f2 = G ◦ θ. ■

Corollary 1.7

The set C 0
QP(R) of quasiperiodic functions is a vector space.

Remark 1.8. The space of quasiperiodic functions is not closed with respect to the uniform norm. However,
this space is included in the space of uniformly almost periodic functions mentioned in the introduction.
A continuous function f is said to be uniformly almost periodic if for any ε > 0, it admits a translation
number corresponding to ε (or an ε–almost period), that is, a number τε ∈ R such that the following is
satisfied:

∀ x ∈ R, |f(x+ τε)− f(x)| ≤ ε; (1.3a)

and if the set E(f, ε) ⊂ R of ε–almost periods of f is relatively dense:

∀ ε > 0, ∃ ℓε > 0 such that ∀ a ∈ R, [a, a+ ℓε] ∩ E(f, ε) ̸= ∅. (1.3b)

The space of uniformly almost periodic functions can be characterized as the closure of C 0
QP(R) with respect

to the L∞–norm.

2 Assumptions on the lift and the cut vector

In this section, we introduce a series of assumptions with the purpose of reducing the set of lifting
pairs associated to a quasiperiodic function.

2.1 A Zn–periodic lift

Without any additional assumption in Definition 1.1, the pair (F,θ) related to a quasiperiodic function
f is not uniquely defined. In fact, given (α1, . . . , αn) ∈ Rn, one can always rescale F to construct a
continuous lift Fα which is (α1, . . . , αn)–periodic. More precisely

∀ x ∈ R, f(x) := F (θ x) = Fα(θα x) with


Fα(y) := F

(
(τ1/α1) y1, . . . , (τn/αn) yn

)
θα :=

( θ1
τ1/α1

, . . . ,
θn

τn/αn

)
.

Consequently, by adjusting (α1, . . . , αn), one can assume without any loss of generality that

• either the cut vector θ is equal to (1, . . . , 1), that is, f(x) = F (x, . . . , x);

• or the lift F is Zn–periodic, that is, 1–periodic with respect to all its variables.

We restrict ourselves to the latter case: in what follows,

the extension F is assumed to be Zn–periodic. (H.1)

The set of continuous and Zn–periodic functions is denoted by C 0
per(R

n).
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2.2 An irrational cut vector

Assumption (H.1) still offers some great latitude in choosing the pair (F,θ). For example, consider
the function f defined by f(x) := cos(2πx) + cos(4πx) for x ∈ R. Since f is periodic, it admits the
expressions

f(x) = F (θ x) = G(θ x) with θ := (1, 2) and

 F (y) := cos(2πy1) + cos(4πy1)

G(y) := cos(2πy1) + cos(2πy2).

In order to prevent the lack of uniqueness highlighted in this example, we shall restrict ourselves to
cut vectors that are linearly independent over Z.

Definition 2.1

A finite set of numbers θ1, . . . , θn ∈ R is said to be linearly independent over Z ( resp. over Q)
if for any integers ( resp. rationals) k1, . . . , kn, the equality

k1θ1 + · · ·+ knθn = 0

implies that k1 = · · · = kn = 0. In this case, we also say that the vector θ = (θ1, . . . , θn) ∈ Rn is
linearly independent over Z ( resp. over Q).

Thanks to the following obvious result, one can refer to linear independence over Z or over Q without
any ambiguity.

Proposition 2.2

A set of numbers is linearly independent over Z iff it is linearly independent over Q.

Remark 2.3. For n = 2, the family {θ1, θ2} is linearly independent over Z iff θ1 and θ2 are incommensu-
rate, that is, iff the ratio θ1/θ2 is an irrational number.

More generally, if the family {θ1, . . . , θn} is linearly independent over Z, then for any i ̸= j, the ratio
θi/θj is an irrational number. However, the converse is false for n > 2. For instance, θ1 = 1, θ2 =

√
2,

and θ3 = 1 +
√
2 are pairwise incommensurate, but do not form a linearly independent set over Z.

As pointed out in Remark 2.3, linear independence over Z appears to be a generalization of the notion
of irrationality. For this reason, a vector which is linearly independent over integers will be abusively
referred to as an irrational vector.

Example 2.4. For n = 2, a straightforward example of irrational vector is given by θ = (1, δ) where δ is
an irrational number (e.g. [HW79, Chapter IV]

√
a where a ∈ N∗ is square-free, e, log 2, π, . . . ). Note

that the irrationality of vectors such as (e, π), (1, π + e), or (1, log π) is still an open question.

For n > 2, examples of irrational vectors include

• θ := (log p1, . . . , log pn), where p1, . . . , pn are distinct primes [HW79, §23.4]: for k1, . . . , kn ∈ Zn,

k1 log p1 + · · ·+ kn log pn = 0 =⇒ pk11 . . . pknn = 1.
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But according to the prime factorization theorem, any positive integer admits a unique representa-
tion as a product of prime powers. Therefore, k1 = · · · = kn = 0.

• θ := (1, θ, . . . , θn−1) where θ is a transcendental number: the identity k0 + k1 θ + · · · + kn−1 θ
n−1

for some (k0, . . . , kn−1) ∈ Zn \ {0} means that θ is a root of the non-zero polynomial with integer
coefficients P (X) := k0 + k1X + · · ·+ kn−1X

n−1. This contradicts the transcendence of θ.

• θ = (1,
√
a1, . . . ,

√
an−1), where a1, . . . , an−1 ∈ N∗ are distinct square-free numbers. Less straight-

forward, the proof relies on the theory of field extensions, and can be found as a particular case of a
Besicovitch’s result [Bes40].

Given a quasiperiodic function, it is always possible to lower the order of quasiperiodicity n and to
change the periodic lift accordingly, so that the cut vector is irrational. In order to prove this statement
which is the object of Proposition 2.7, we shall rely on the concept of a rational basis.

Definition 2.5

A linearly independent family of real numbers θ1, . . . , θn over Q is said to be a rational basis of
a set S ⊂ R if any element of S can be expressed as linear combination of the θj with rational
coefficients:

∀ α ∈ S, ∃ r1, . . . , rn ∈ Q, α = r1 θ1 + · · ·+ rn θn.

Lemma 2.6: [LZ82, Chapter 2, §4.2]

From any finite set S ⊂ R, one can always extract a family of numbers which forms a rational
basis of S.

We can now state the main result of this section.

Proposition 2.7

Let f be a quasiperiodic function of order m > 0. Then there exist an integer n ≤ m, a function
F ∈ C 0

per(R
n) and an irrational cut vector θ ∈ Rn such that f(x) = F (θ x) for any x ∈ R.

Note that in the definition of a quasiperiodic function, the cut vector θ is not necessarily irrational.
What Proposition 2.7 shows is that one can always assume θ to be irrational.

Proof. This result seems to be well-known, but we did not find a full proof. The following construc-
tive proof is therefore proposed for the sake of completeness.

Let f := G(α ·) where G ∈ C 0
per(R

m) and α = (α1, . . . , αm) ∈ Rm with m > 0. If α is irrational,
then there is nothing to prove, given that n := m, F := G, and θ := α provide the desired result.
Otherwise, according to Lemma 2.6, the set S := {α1, . . . , αm} admits a basis of n < m elements
included in itself. By applying the upcoming construction procedure multiple times, and thanks to
index reordering, one can assume without loss of generality that this basis consists of the n := m− 1
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first elements of α, that is:

(i). n = m− 1,

(ii). (α1, . . . , αm−1) is irrational,

(iii). αm = r1 α1 + · · ·+ rm−1 αm−1,

(2.1)

for some (r1, . . . , rm−1) ∈ Qm−1 \ {0}. Now let ℓ ∈ N∗ denote the least common multiple of the
denominators of the rationals rj . Then by multiplying by ℓ both sides of the expression of αm with
respect to the coefficients αj , j ∈ J1,m− 1K, it follows that

ℓ αm = k1 α1 + · · ·+ km−1 αm−1, where kj := ℓ rj ∈ Z ∀ j ∈ J1,m− 1K.

Consequently, one has

∀ x ∈ R, f(x) := G(αx) = G

(
ℓ
α1

ℓ
x, . . . , ℓ

αm−1

ℓ
x,

m−1∑
j=1

kj
αj
ℓ
x

)
.

This expression suggests to rename (αj/ℓ)x as a new variable yj for any j ∈ J1,m−1K in the right-hand
side, and to introduce the function F ∈ C 0(Rn) and the vector θ ∈ Rn defined by

∀ y = (y1, . . . , yn) ∈ Rn, F (y) := G

(
ℓ y1, . . . , ℓ ym−1,

m−1∑
j=1

kj yj

)
and θ :=

1

ℓ
(α1, . . . , αn).

The Zm–periodicity of G implies that F is Zn–periodic, and the irrationality of θ follows from (2.1).
Finally, one clearly has f(x) = F (θ x) for any x ∈ R. ■

Thanks to Proposition 2.7, we can assume without any loss of generality that the cut vector θ ∈ Rn

associated to a quasiperiodic function f := F ◦ θ is irrational, that is,

∀ k ∈ Zn, k · θ =⇒ k = 0. (H.2)

A direct consequence of Assumption (H.2) is given by Kronecker’s approximation theorem.

Theorem 2.8: Kronecker’s theorem [HW79, Theorem 444]

If θ ∈ Rn is an irrational vector, then the set θ R + Nn is dense in Rn.

If θ is an irrational vector, and if F ∈ C 0
per(R

n) satisfies F (θ R) = 0, then Theorem 2.8 implies that
F = 0. In other words, under the linear independence assumption, any continuous Zn–periodic
function F is uniquely determined by its restriction on the line θ R. Therefore, the next result holds.

Corollary 2.9

Let F,G ∈ C 0
per(R

n) such that F (θ x) = G(θ x) ∀ x ∈ R, where θ satisfies (H.2). Then F = G.

Let {x} denote the fractional part of x, given by {x} := x − ⌊x⌋. For n = 2, Kronecker’s theorem 2.8
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Figure 2: The set D(0,τ) defined by (2.2) in the cell (0, 1)2 for different values of τ , when θ1/θ2 ∈ Q
(first row), and when θ1/θ2 ∈ R \ Q (second row for θ = (1,

√
2), third row for θ = (1, π), and fourth

row for θ = (1, 9C10)).

implies that given I := R, the broken line

DI :=
{(

{θ1 x}, {θ2 x}
)
/ x ∈ I

}
(2.2)

is dense in the unit cell (0, 1)2. To illustrate this result, Figure 2 represents the set D(0,τ) in the unit
cell for different values of τ > 0. Two cases are considered for the vector θ:

1. θ1/θ2 ∈ Q (see the first row);
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2. θ1/θ2 ∈ R \ Q: with θ = (1,
√
2) in second row, and θ = (1, π) in third row. In addition, there is

a fourth row devoted to θ = (1, 9C10) (fourth row), where C10 is the Champernowne constant,
whose decimal expansion is obtained by concatenating all consecutive integers in base 10:

C10 = 0.123456789101112131415... (2.3)

This is a transcendental number which we shall return to in Example 3.10.

As τ increases, in the first case, D(0,τ) is reduced to a finite union of segments, contrary to the second
case where it seems to fill the unit cell without ever passing through the same positions. It is also
interesting to see that for θ = (1,

√
2), the unit cell is in some sense filled uniformly, whereas for

θ = (1, 9C10), the filling pattern is much closer to that of a rational case. The difference of behaviour
seems to suggest that some irrationals (here C10) may be “closer” to rationals than others (

√
2). This

question is given further consideration in Section 3.2.

3 Diophantine condition

The purpose of this section is to introduce the notion of Diophantine condition for irrational vectors.
We then link this condition in Section 3.2 with the approximation quality of an irrational by rationals.

3.1 Presentation

An implication of the linear independence assumption (H.2) is the following density result.

Theorem 3.1: One-dimensional Kronecker’s theorem [HW79, Theorem 438]

Given n > 1, let θ ∈ Rn be such that two components of θ are incommensurate, i.e. θi/θj ∈ R\Q
for some i ̸= j. Then

∀ ζ ∈ R, ∀ ε > 0, ∃ k ∈ Zn, |k · θ − ζ| ≤ ε.

For the present document, the main interest of this result lies in the case where ζ = 0: even though
the quantity |k · θ| is non-zero for any integer vector k ̸= 0, it can become arbitrarily close to 0 for
a well-chosen sequence (kj)j>0. As we shall see in the following (cf. Section 4.2 for instance), some
properties involving quasiperiodicity are closely related to how small |k · θ| can be. This is the reason
why we introduce the so-called Diophantine condition given ν > 0:

∃ c ≡ c(θ, ν) > 0, |k · θ| ≥ c |k|−ν , ∀ k ∈ Zn \ {0}, (Hν)

which amounts to ensuring that |k ·θ| does not tend to 0 faster than |k|−ν . Assumption (Hν) is generic
in the sense of the next result, which is an application of Khintchine-Groshev theorem (see for instance
the note [HY14] and references therein).

Theorem 3.2: Khintchine-Groshev theorem

Let n > 1 and ν > n− 1. The set of θ ∈ Rn that do not satisfy (Hν) has Lebesgue measure zero.

Theorem 3.2 provides an information of the set of vectors θ that satisfy (Hν) for a fixed ν. However,
one may also fix θ, and look for the reals ν > 0 for which (Hν) holds. Finding the set of such ν ≡ ν(θ)
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is not straightforward in general, but in the case where n = 2 and θ = (1, δ), this set is linked to the
irrationality measure of δ. This is the object of the next section.

3.2 Link with the irrationality measure for n = 2

In what follows, unless otherwise specified, any fraction k/ℓ is always assumed to be irreducible, that
is, (k, ℓ) ∈ Z × N∗ are coprime.

If n = 2 and θ = (1, δ) with δ ∈ R \ Q, then Kronecker’s theorem 3.1 taken for ζ = 0 reduces to the
density of Q in R \ Q:

∀ ε > 0, ∃ (k, ℓ) ∈ Z × N,
∣∣∣δ − k

ℓ

∣∣∣ ≤ ε.

In that regard, it may be wondered how fast an irrational δ can be approximated by a sequence of ra-
tionals. Furthermore, in practical applications, one is often interested in approximating δ conveniently
with rationals whose denominators are not too large. (See Remark V–2.1.b for instance). However, as
the next lemma shows, if a sequence of rationals tends to an irrational number, then the sequence of
denominators is necessarily unbounded.

Lemma 3.3

Consider an irrational number δ and a sequence of rationals (kj/ℓj)j>0 which converges to δ.
Then the sequences (kj)j>0 and (ℓj)j>0 are unbounded.

Proof. We proceed by contradiction. Assume that (kj/ℓj)j>0 tends to δ and that (ℓj)j>0 is bounded.
Then (kj)j>0 is also bounded, meaning that (kj)j>0 and (ℓj)j>0 only take a finite number of values
(since they are integer sequences). Therefore, (kj/ℓj)j>0 also takes a finite number of values, so that
it is stationary and one has kj/ℓj = δ for j large enough. This contradicts the irrationality of δ, thus
proving that (ℓj)j>0 is unbounded. Since kj ∼j δ ℓj , it follows that (kj)j>0 is unbounded as well. ■

The observations above lead to the following question:

Can one always approximate an irrational number “efficiently” using rational numbers with
“reasonably” large denominators?

This question motivates the notion of irrationality measure.

Definition 3.4: [Bug12, Definition E.1]

Given δ ∈ R, let Aδ denote the set of real numbers η ≥ 0 such that the inequality

0 <

∣∣∣∣δ − k

ℓ

∣∣∣∣ < 1

ℓη
(3.1)

is satisfied by an infinity of coprime k ∈ Z and ℓ ∈ N∗. The set Aδ is non-empty as it contains 0.
Moreover, if η ∈ Aδ, then η′ ∈ Aδ for any η′ ≤ η. The supremum:

η(δ) := supAδ ∈ R+ ∪ {+∞}

is called the irrationality measure of δ.
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As its definition shows, the irrationality measure of δ ∈ R indicates how well δ can be approximated
by rationals k/ℓ ̸= δ. The greater η(δ) is, the closer δ is to rational numbers (other that δ itself in case
it is rational).

The irrationality measure admits multiple characterizations. The following characterization is useful
to link the irrationality measure of an irrational number with the Diophantine condition (Hν) intro-
duced in the previous section.

Proposition 3.5

Given δ ∈ R, let Bδ denote the set of real numbers η ≥ 0 such that

∃ c ≡ c(δ, η) > 0,

∣∣∣∣δ − k

ℓ

∣∣∣∣ ≥ c

ℓη
, ∀ k/ℓ ∈ Q \ {δ}, (3.2)

where Q \ {δ} is Q if δ is irrational. Then one has

η(δ) = inf Bδ,

with η(δ) = +∞ if and only if Bδ is empty.

Proof. Note that Bδ = ∅ if and only if the set Aδ introduced in Definition 3.4 is the half-line R+, and
thus η(δ) = +∞. Otherwise, we rely on the observation

Ac
δ := R+ \Aδ = {η ≥ 0 / (3.1) holds for finitely many k/ℓ ∈ Q} ,

so that η(δ) = inf Ac
δ. We first show the inclusion Bδ ⊂ Ac

δ. For η ∈ Ac
δ, the inequality (3.1) holds for

a finite set S of rationals. If S = ∅, then (3.2) is satisfied with c(δ, η) := 1. Otherwise, (3.2) still holds
with c(δ, η) := min(1, cη), where cη := min

k/ℓ∈S
ℓη|δ − k/ℓ| is positive since δ is irrational. Hence, η ∈ Bδ,

so that η(δ) ≥ inf Bδ.

Conversely, for η ∈ Bδ, let us prove that η + ε ∈ Ac
δ for any ε > 0. If k/ℓ ∈ Q satisfies (3.1), then (3.2)

implies that ℓε ≤ c(δ, η). Therefore, ℓ is bounded and thus can only take a finite number of values
(since it is an integer). By using (3.1) again, we have |k| ≤ |k− ℓ δ|+ |ℓ δ| ≤ ℓη−1 + |ℓ δ|, which proves
that k is bounded as well, and thus can only take a finite number of values. Therefore, η + ε ∈ Ac

δ, so
that inf Bδ + ε ≥ η(δ). As ε→ 0, it follows that inf Bδ ≥ η(δ). Consequently, η(δ) = inf Bδ. ■

The characterization in Proposition 3.5 leads directly to the following.

Proposition 3.6

Let θ = (1, δ), where δ is irrational. If η(δ) is finite, then the Diophantine condition (Hν) is
satisfied by any ν > η(δ)− 1. If η(δ) = +∞, then (Hν) holds for no real ν > 0.

Rationals and irrationals have a different irrationality measure, as the next result shows.
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Proposition 3.7

If δ is a rational number, then η(δ) = 1. If δ is irrational, then η(δ) ≥ 2.

Proof. Proposition 3.7 is a well-known result whose proof is given only for the sake of completeness
(see [HW79, Theorems 186 and 187], [Niv05, Theorem 7.7], or [Bug12, Theorem E.2]).

Let δ ∈ R. Since {ℓ δ} ∈ [0, 1), one has 0 < |δ − ⌊ℓ δ⌋/ℓ| < 1/ℓ for any ℓ ∈ N∗. Consequently, 1 belongs
to the set Aδ introduced in the definition 3.4 of the irrationality measure, so that η(δ) := supAδ ≥ 1.

If δ ∈ Q has the irreducible form a/b, then |δ−k/ℓ| = |a ℓ−k b|/(ℓ b) ≥ 1/(ℓ b) for any k/ℓ ∈ Q\{δ}.
Hence, 1 belongs to the set Bδ introduced in Proposition 3.5, so that η(δ) = inf Bδ ≤ 1. By double
inequality, η(δ) = 1.

If δ is irrational, then it follows from Dirichlet’s approximation theorem [HW79, Theorem 36] that
the inequality 0 < |δ − k/ℓ| < ℓ−2 holds for infinitely many k/ℓ ∈ Q, meaning that η(δ) ≥ 2. ■

Remark 3.8. The fact that rational numbers have a smaller irrationality measure than irrationals may
seem surprising, given that η(δ) indicates how easily a real number δ can be approximated by rationals.
The subtlety lies in the fact that the rational approximants of δ have to be different from δ itself. From this
viewpoint, Proposition 3.7 thus shows that an irrational number can be approximated more accurately
by other rationals than a rational number.

As implied by Proposition 3.7, the most badly approximable irrationals are those with an irrationality
measure equal to 2. The occurrence of such numbers is described in the next result (which can be
seen as a particular case of Khintchine-Groshev’s theorem 3.2).

Proposition 3.9: [HW79, Theorems 198, 199]

The set of irrational numbers with irrationality measure > 2 has Lebesgue measure zero.

Example 3.10. We provide some examples that are summarized in Table II.1

(a). A number δ ∈ R is said to be algebraic if P (δ) = 0 for some non-zero polynomial P with integer
coefficients. In particular, all rationals are algebraic. Other examples of algebraic numbers include a1/n

with a, n ∈ N∗. The set of algebraic numbers is countable. A first result by Liouville [Lio44b] shows that
if δ is algebraic, then η(δ) ≤ n, where n is the degree of the minimal polynomial P such that P (δ) = 0.
This result was later improved, leading to the celebrated Thue-Siegel-Roth theorem [Rot55], which states
that η(δ) = 2 for any algebraic number δ ∈ R \ Q.

(b). Numbers that are not algebraic are called transcendental numbers. In particular, transcendental
numbers are irrational. A valuable tool to find the irrationality measure of transcendental numbers is the
continuous fraction expansion. This allows to show that the irrationality measure of e2/k for k ∈ N∗ is 2
(see for instance [BB87, Corollary 11.1]). However, in general, it is not obvious to find the irrationality
measure of transcendental numbers. For instance, the irrationality measure of numbers such as π, π2 or
log(2) is still unknown, although some upper bounds are known.

(c). Numbers with an infinite irrationality measure are called Liouville numbers. As the name suggests,
examples of such numbers were first constructed explicitly by Liouville [Lio44a]:

δ :=
+∞∑
k=1

ak
bk!

with b ∈ N, b ≥ 2 and ak ∈ J0, b− 1K ∀ k ∈ N∗. (3.3)



4. Generalized Fourier series 25

These are typical numbers such that θ := (1, δ) does not satisfy (Hν) for any ν > 0.

(d). It is possible to construct explicitly numbers with a given irrationality measure. For instance, for any
positive integers k and b ≥ 2, let (k)b be the representation of k in base b (e.g. (7)2 = 111). Then, as
shown in [Amo91], numbers of the form

δ := 0.(1)b (2)b (3)b . . . (k)b . . . (3.4)

have an irrationality measure equal to b. The Champernowne constant C10 defined by (2.3) corresponds
exactly to (3.4) with b := 10, so that η(C10) = 10. We also refer to [Bug08] or [Bug12, §7.6–7.7] for
similar constructions with non-integer irrationality measures.

δ rationals algebraic numbers e2/k Liouville numbers (e.g. (3.3)) (3.4) π, log(2)
η(δ) 2 2 2 ∞ b ?

Table II.1: Examples of known and unknown irrationality measures

4 Generalized Fourier series

Fourier series are a fundamental tool for the study of purely periodic functions, and it is natural to
wonder if they can be extended to quasiperiodic functions. This question was the inital motivation of
Bohr’s theory of uniformly almost periodic functions, which aims at characterizing functions that “are
"representable" by a trigonometric series of the form

∑
Ak e

iλnx ” [Boh47]. This has led to a Parseval-
type theorem called the fundamental theorem of almost periodic functions, and which we derive in this
section for quasiperiodic functions (Proposition 4.4). For a quasiperiodic function f , the result is much
simpler to obtain, since we can rely on the Fourier series of its periodic extension F .

4.1 Fourier representation

The valuable tool that will be used for deriving a Fourier representation is the notion of mean value.

Proposition 4.1

For any quasiperiodic function f := F ◦ θ, and for any α ∈ R, the limit

lim
T→+∞

1

T

∫ α+T

α
f(x) dx

exists and is independent of α. This limit is called the mean value of f , and is denoted by M(f).
In addition, if θ is an irrational vector, then

M(f) =

∫
(0,1)n

F (y) dy, (4.1)

and the convergence is uniform with respect to α.

Proof (Idea of proof; see [Arn13, Chapter 10, §51.C] for details). Equation (4.1) is obtained easily
when F is a trigonometric polynomial. It then extends to a general function F ∈ C 0

per(R
n) by density

using Fejér’s theorem (or the Weierstrass approximation theorem for trigonometric polynomials). ■
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This result and more particularly the equality (4.1) can be compared with Figure 2 for n = 2. In
fact, M(f) can be interpreted as the limit as τ → ∞ of the mean value of F on the broken line D(0,τ)

defined by (2.2). In the cases where θ is an irrational vector (second to fourth rows in Figure 2), D(0,τ)

fills the cell (0, 1)2 as τ increases, hence reflecting the fact that the mean value on D(0,τ) gets closer to
the average on (0, 1)2. Moreover, the fact that the whole cell is filled independently of the choice of
the irrational vector θ is consistent with the independence of M(f) with respect to θ.

Remark 4.2. (a). If f is purely periodic with period τ > 0, then one has

M(f) = lim
ℓ→+∞

1

ℓτ

∫ ℓτ

0
f(x) dx = lim

ℓ→+∞
1

ℓτ

ℓ−1∑
j=0

∫ (j+1)τ

jτ
f(x) dx = lim

ℓ→+∞
1

τ

∫ τ

0
f(x) dx =

1

τ

∫ τ

0
f(x) dx.

In other words, M(f) coincides with the average of f on the periodicity interval (0, τ).

(b). If f is uniformly almost periodic in the sense of (1.3), then the mean value theorem states that M(f)

exists, although it does no longer have an explicit expression such as (4.1).

Defined on the space C 0
QP(R) of quasiperiodic functions, the mean value is a linear map, and it follows

from (4.1) that M is positive definite in the sense that M(f) > 0 for any f ∈ C 0
QP(R), f > 0. In

addition, for any f, g ∈ C 0
QP(R), the product f g is also quasiperiodic (thanks to Proposition 1.6), and

thus admits a mean value. From these observations, we deduce that the map

(·, ·)M,2 : (f, g) 7→M(f g) (4.2)

defines a scalar product on C 0
QP(R). Moreover, the function eλ : x 7→ eiλx is quasiperiodic for any

λ ∈ R, and the family {eλ, λ ∈ R} forms an orthonormal system for the scalar product (·, ·)M,2:

(eλ, eγ)M,2 := lim
T→+∞

1

T

∫ T

0
ei(λ−γ)x dx =

{
1 if λ = γ

0 if λ ̸= γ.
(4.3)

The next proposition shows that for any f ∈ C 0
QP(R), the scalar product (f, eλ)M,2 vanishes except at

most for a countable set of values of λ.

Proposition 4.3

Consider a quasiperiodic function f = F ◦ θ of order n > 0 where θ satisfies (H.2). Then f

satisfies the following orthogonality relation:

∀ λ ∈ R, (f, eλ)M,2 =


ck(F ) :=

∫
(0,1)n

F (y) e−2iπk·y dy if ∃ k ∈ Zn, λ = 2π k · θ,

0 otherwise.
(4.4)

Proof. Let λ ∈ R and define S := {2π k · θ, k ∈ Zn}. We first assume that the periodic lift F of f is
given by F (y) := exp(2iπ p · y) for any y ∈ Rn, where p ∈ Zn. In this case, we obtain

M(f eλ) = lim
T→+∞

1

T

∫ T

0
exp

(
i (2π p · θ − λ)x

)
dx =

{
1 = ck(F ) if λ = 2π k · θ ∈ S

0 if λ ̸∈ S,

which is exactly (4.4). By linearity, (4.4) extends to the case where F is a trigonometric polynomial
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of the form
∑

|p|≤N exp(2iπ p · y). Finally, thanks to Fejér’s theorem (or Weierstrass approximation
theorem for trigonometric polynomials), (4.4) extends by density to continuous extensions F . ■

The values λk := 2π k · θ, k ∈ Zn are called the Fourier exponents of f , and the corresponding
coefficients (f, eλk)M,2 = ck(F ) are called the Fourier coefficients of f . To f , we associate the series∑

k ck(F ) e
2iπ k·θx which shall be referred to as the Fourier series of f . The exact link between f and

its Fourier series takes shape in the next proposition, which incidentally shows the completeness of
the family {eλ, λ ∈ R} in C 0

QP(R) for the norm
√

(·, ·)M,2.

Proposition 4.4

Let f := F ◦ θ be a quasiperiodic function of order n > 0, where θ satisfies (H.2). Then, one
has the following Parseval theorem:∑

k∈Zn

|ck(F )|2 =M(|f |2). (4.5)

Moreover, the series
∑
ck(F ) e

2iπk·θx converges to f in the following sense:

lim
N→+∞

M

(∣∣∣f −
∑

|k|≤N
ck(F ) e

2iπk·θx
∣∣∣2) = 0. (4.6)

Proof. One obtains (4.5) by applying the classical Parseval’s theorem to F and by using the link
∥F∥L2(0,1)2 =M(|f |2) implied by Proposition 4.1. Since F ∈ C 0

per(R
n) ⊂ L2(0, 1)n, it follows that

lim
N→+∞

∥∥∥F −
∑

|k|≤N
ck(F ) e

2iπk·y
∥∥∥
L2(0,1)n

= 0.

Combining this convergence result with Proposition 4.1 leads to (4.6). ■

A key implication of Proposition 4.4 is the fact that a quasiperiodic function is uniquely determined
by its Fourier series.

Corollary 4.5

Let f, g ∈ C 0
QP(R) have the same Fourier series. Then f = g.

Proof. If f, g ∈ C 0
QP(R) have the same Fourier series, then M(|f − g|2) = 0 according to the Parseval

equality (4.5). Therefore, f = g. ■

Remark 4.6. (a). A τ–periodic function f can be written as f = F ◦ θ with F : y 7→ f(y/τ) ∈ C 0
per(R)

and where θ = τ . The Fourier exponents and the Fourier coefficients of f are then given by

∀ k ∈ Z, λk = 2πk/τ and ck(F ) =

∫ 1

0
F (y) e−2iπky dy =

1

τ

∫ τ

0
f(x) e−2iπkx/τ dx.

In other words, the Fourier series of f in the sense of Propositions 4.3 and 4.4 is nothing but its Fourier
series in the classical sense.
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(b). If f is uniformly almost periodic in the sense of (1.3), then it remains true M(f eλ) vanishes except
for a countable set {λℓ, ℓ ∈ N}. These values are the Fourier exponents of f , whereas the coefficients
M(f eλℓ) are the Fourier coefficients of f . Proposition 4.4 then holds (although it is much less easy to
prove). This shows how general the theory of almost periodic functions is, since the Fourier exponents of
an almost periodic function are allowed to be completely arbitrary (in contrast with the Fourier coefficients
of quasiperiodic functions, which have a certain structure).

4.2 Primitives of quasiperiodic functions: a small divisors problem

With the help of generalized Fourier series, we investigate whether the primitives of a quasiperiodic
function are also quasiperiodic. This question is of particular interest because it corresponds to asking
if the differential equation u′ = f with f ∈ C 0

QP(R) admits quasiperiodic solutions. This question is
also related to the existence of quasiperiodic solutions of the equation u′ = f u.

Throughout this section, f ∈ C 0
QP(R) is given for any x ∈ R by f(x) := F (θ x), where F ∈ C 0

per(R
n)

and θ ∈ Rn is an irrational vector. Since primitives are equal to each other up to an additive constant,
we can focus on one of them without any loss of generality. Let g ∈ C 0(R) be defined by

∀ x ∈ R, g(x) :=

∫ x

0
f(t) dt. (4.7)

If f is τ–periodic, then g is τ–periodic if and only if f has zero mean value. In fact,

∀ x ∈ R, g(x+ τ) = g(x) ⇐⇒ M(f) =

∫ x+τ

0
f(t) dt−

∫ x

0
f(t) dt = 0.

This equivalence is no longer true for quasiperiodic functions. More precisely, we shall prove that the
condition M(f) = 0 is still necessary for the quasiperiodic nature of g, but is not sufficient. The fact
that f must have zero mean value can be checked easily, as the next proposition shows.

Proposition 4.7

If g is quasiperiodic, then M(f) = 0.

Proof. We note that

M(f) := lim
T→+∞

∫ T

0
f(t) dt = lim

T→+∞
g(T )

T
.

If g is quasiperiodic, then it is bounded (Proposition 1.4), so that M(f) = lim
T→+∞

g(T )/T = 0. ■

Before providing examples to illustrate that the zero mean value condition is not sufficient, let us first
look for sufficient conditions for g to be quasiperiodic. The next result was shown by Bohl [Boh06],
and was extended to almost periodic functions by Bohr [Boh47, §68].

Proposition 4.8

If g is bounded, then g is quasiperiodic.

However, in practice, the boundedness of the primitive g can be difficult to verify since it is not explicit.
An alternative viewpoint is to exploit the generalized Fourier series of f .
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Proposition 4.9

If g is quasiperiodic, then its generalized Fourier series is given by

M(g) +
∑
k ̸=0

ck(F )

2iπk · θ e2iπk·θx. (4.8)

Proof. We only present the idea of the proof which is adapted from [Boh47, §68]. By definition, if g
is quasiperiodic, then according to Proposition 4.3, its Fourier exponents are the real numbers λ such
that M(g eλ) := (g, eλ)M,2 ̸= 0 (and the Fourier coefficients are the M(g eλ)), where eλ : x 7→ eiλx.
Using integration by parts, one then easily checks the following

∀ λ ̸= 0, (g, eλ)M,2 =
(f, eλ)M,2

iλ
,

which leads to the desired result. ■

While providing a necessary condition for the quasiperiodicity of g, Proposition 4.9 implicitely suggests
a sufficient condition as well: if ∑

k ̸=0

ck(F )

2iπk · θ e2iπk·y

were the Fourier series of a function G ∈ C 0
per(R

n), then one could show that g(x) = G(θ x) for x ∈ R.
However, proving the existence of G is not obvious, since it is linked to the behaviour of the coefficient
ck(F )/(2iπk·θ) at infinity. The delicate point is that since θ is an irrational vector, Kronecker’s theorem
3.1 implies that k · θ is non-zero for k ̸= 0, but can become arbitrarily small. This is the reason why
such a problem is called a small divisors problem.

In order to control the behaviour of k · θ near 0, we shall resort to the Diophantine condition (Hν)
introduced in Section 3. We recall from Khintchine-Groshev’s theorem 3.2 that (Hν) holds for almost
any θ ∈ Rn. On the other hand, the asymptotic behaviour of ck(F ) is linked to the smoothness of F .
We recall (see [KMK89, Chapter 8] for a detailed presentation in the case n = 1) that:

∀ s ≥ 0, Hs
per((0, 1)

n) :=

{
F ∈ L2((0, 1)n), ∥F∥2Hs :=

∑
k∈Zn

(1 + |k|2)s |ck(F )|2 < +∞
}
,

with Hs
per((0, 1)

n) = L2((0, 1)n) for s = 0. By using the Cauchy-Schwarz inequality and by studying
the convergence of the Riemann series

∑
k ̸=0(1 + |k|2)−s, one shows that if s > n/2, then the Fourier

series of any F ∈ Hs
per((0, 1)

n) converges absolutely and uniformly, so that F ∈ C 0
per(R

n).

From the above observations, we deduce the following result.

Proposition 4.10

Consider a vector θ ∈ Rn that satisfies the Diophantine condition (Hν) for some ν > n− 1, and
let F ∈ Hs

per((0, 1)
n) for s > ν + n/2. Let f : x 7→ F (θ x) and let g denote the primitive of f

such that g(0) = 0 (see (4.7)). Then there exists G ∈ Hs−ν
per ((0, 1)n) ⊂ C 0

per(R
n) such that

∀ x ∈ R, g(x) =M(f)x+G(θ x). (4.9)
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In particular, if M(f) = 0, then g is quasiperiodic.

Proof. In light of the above observations, we study the normal convergence of the Fourier series in
Proposition 4.9. Let N ∈ N∗. From the Cauchy-Schwarz inequality,( ∑

k ̸=0,|k|≤N

∣∣∣∣ck(F )k · θ

∣∣∣∣)2

≤
∑

k ̸=0,|k|≤N
|k|2s |ck(F )|2

∑
k ̸=0,|k|≤N

1

|k|2s (k · θ)2

≤ ∥F∥2Hs

∑
k ̸=0,|k|≤N

1

|k|2s (k · θ)2

≤
(Hν)

c(θ, ν) ∥F∥2Hs

∑
k ̸=0,|k|≤N

|k|−2(s−ν) < +∞ because s− ν > n/2.

It follows that the series
∑

k ̸=0[ck(F )/(k · θ)] e2iπk·y is normally convergent. Therefore, the limit

∀ y ∈ Rn, G(y) := c+
∑
k ̸=0

ck(F )

2iπk · θ e2iπk·y

is a continuous and Zn–periodic function, where the constant c ∈ R is such that G(0) = 0. We even
have G ∈ Hs−ν

per ((0, 1)n), due to the estimate

∀ k ̸= 0, |k|2(s−ν) |ck(G)|2 := |k|2(s−ν)
∣∣∣∣ ck(F )2iπk · θ

∣∣∣∣2 ≤
(Hν)

c(θ, ν) |k|2s |ck(F )|2,

and because F ∈ Hs
per((0, 1)

n). Moreover, since the Fourier series of F converges uniformly to F , we
can differentiate the terms of the series defining G, to obtain θ · ∇G = F − c0(F ) on Rn. Evaluating
this relation on θ R and using the chain rule then gives [G(θ x)]′ = f(x)−M(f) = g′(x)−M(f), which
implies (4.9) since G(0) = g(0) = 0. ■

Remark 4.11. Proposition 4.10 provides a valuable information on the asymptotic behaviour of the
average of f on (0, T ). In fact, if f is such that M(f) = 0 for simplicity, then one has∣∣∣∣ 1T

∫ T

0
f(x) dx

∣∣∣∣ = |g(T )|
T

If the assumptions of Proposition 4.10 are satisfied, then g is quasiperiodic, and therefore has no limit
at infinity. Consequently, the average of f on (0, T ) does not converge to M(f) = 0 faster than T−1.
This order of convergence deteriorates when g is not quasiperiodic. In fact, in this case, g is unbounded
according to Proposition 4.8.

In Proposition 4.10, one might think of the Diophantine condition (Hν) and of the smoothness of F
as technical assumptions that are dispensable. While these assumptions may be greatly relaxed, they
still capture the non-trivial nature of the small divisors problem we are interested in. In fact, solving
this type of problem requires an interplay between the smoothness of the periodic lift and the nature
of the associated cut vector. To see this, we shall construct a counterexample for n = 2 and θ = (1, δ),
where δ is an irrational number.

If η(δ) ≡ η ≥ 2 denotes the irrationality measure of δ defined in Section 3.2, then for ε > 0, we have
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from Definition 3.4 the existence of coprime integers (kj , ℓj) ∈ Z × N∗ such that |kj |, ℓj → +∞ and

∀ j ∈ N∗,

∣∣∣∣δ − kj
ℓj

∣∣∣∣ ≤ 1

ℓη−εj

.

On the other hand, the characterization in Proposition 3.5 of the irrationality measure implies that

∃ c ≡ c(ε) > 0, ∀ j ∈ N∗,
c

ℓη+εj

≤
∣∣∣∣δ − kj

ℓj

∣∣∣∣ .
By combining the two inequalities above, and by setting ν := η − 1 and kj := (−kj , ℓj) , we obtain
the existence of two constants c1, c2 with

∀ j ∈ N∗, c1 |kj |−(ν+ε) ≤ |kj · θ| ≤ c2 |kj |−(ν−ε). (4.10)

Now we introduce the function

∀ y ∈ Rn, F (y) :=
∑
j>0

2iπ(kj · θ) e2iπkj ·y. (4.11)

This definition is still formal, for the behaviour of kj · θ has not been prescribed yet. Given s ≥ 0, we
have from the estimate (4.10) that

∀ j ∈ N∗, c1 |kj |−2(ν−s+ε) ≤ |kj |2s |kj · θ|2 ≤ c2 |kj |−2(ν−s−ε). (4.12)

Hence, using the convergence of Riemann series, it can be computed that

(i). ν > n+ ε =⇒ F ∈ Hs
per((0, 1)

n) ⊂ C 0
per(R

n) ∀ s ∈ (n/2, ν − n/2− ε)

(ii). F ̸∈ Hs
per((0, 1)

n) ∀ s > ν − n/2 + ε.

(4.13)

In fact, if s < ν−n/2− ε then we have 2(ν− s− ε) > n, so that F ∈ Hs
per((0, 1)

n) thanks to the second
inequality in (4.12). Furthermore, if s > n/2, then F is also continuous (hence the point (i)). On the
other hand, if s > ν − n/2 + ε, then we have 2(ν − s + ε) < n, so that F ̸∈ Hs

per((0, 1)
n) due to the

first inequality in (4.12) (hence the point (ii)). Finally, we note that the condition ν > n + ε can be
rewritten as η > 1+n+ ε = 3+ ε, where η is the irrationality measure of δ. As Example 3.10.d shows,
one can always find a number δ whose irrationality measure η satisfies this condition.

In view of (4.13), we have a continuous and periodic function F , from which we define f : x 7→ F (θ x).
Since θ is an irrational vector and kj ̸= 0 for any j > 0, we have that M(f) = c0(F ) = 0. However, it
is worth noting that F does not satisfy the regularity assumptions of Proposition 4.10 due to the point
(ii) in (4.13). If the primitive g of f were quasiperiodic, then according to Proposition 4.9 and to the
definition (4.11) of F , its Fourier series would be

M(g) +
∑
j>0

e2iπkj ·y, so that M(|g|2) = |M(g)|2 +
∑
j>0

1 = +∞,

from Parseval’s equality (4.5). The fact that M(|g|2) = +∞ contradicts the quasiperiodic nature of g.
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1 Introduction and motivation

We consider the Helmholtz equation

− d

dx

(
µ
du

dx

)
− ρ ω2 u = f in R, (1.1)

where the coefficients µ and ρ have positive upper and lower bounds:

∃ µ±, ρ±, ∀ x ∈ R, 0 < µ− ≤ µ(x) ≤ µ+ and 0 < ρ− ≤ ρ(x) ≤ ρ+. (1.2)

The source term f belongs to L2(R) and is assumed to have a compact support:

∃ a > 0, supp f ⊂ (−a, a). (1.3)

Equation (1.1) is encountered when one is looking for time-harmonic solutions u(x) e−iωt of the linear
wave equation in heterogeneous media. For real frequencies ω, the well-posedness of this problem
is unclear. In fact, on one hand, one expects that the physical solution u, if it exists, may not belong
to H1(R) due to possible wave propagation phenomena and a lack of decay at infinity. On the other
hand, uniqueness of a solution in H1

loc(R) does not hold in general. In this case, one needs a so-
called radiation condition that imposes the behaviour of the solution at infinity. Such a condition
can be obtained in practice using the limiting absorption principle, which consists in (i) adding some
absorption – that is some imaginary part to ω: Imω > 0, and (ii) studying the limit of the solution
u ≡ u(ω) as the absorption tends to 0. The limiting absorption principle is a classical approach to study
time-harmonic wave propagation problems in unbounded domains; see for instance [Wil66; Agm75;
Eid86]. More recently, it has been successfully applied for locally perturbed periodic media [Fli09;
Hoa11; Rad15; KL18a].

In this chapter, we will only address the case with absorption, that is

the frequency ω satisfies Imω > 0. (1.4)

Under these assumptions, (1.1) admits a unique solution in H1(R) by Lax-Milgram’s theorem. More-
over, it can be shown (using for instance an argument similar to the one in [CT73]) that this solution
satisfies a sharp exponential decay property

∃ c, α > 0, ∀ x ∈ R, |u(x)| ≤ c e−α Imω|x|. (1.5)

Exploiting (1.5), a naive numerical method for treating the unboundedness would consist in truncat-
ing the computational domain (with homogeneous Dirichlet boundary conditions for instance) at a
certain distance related to Imω. However the cost and the accuracy of the method would deteriorate
when Imω tends to 0. Our objective in this chapter is to develop a numerical method which is robust
when Imω tends to 0, in the particular case of locally perturbed quasiperiodic media. More precisely,
we solve the problem in the bounded domain (−a, a) (which is independent of Imω) by constructing
transparent boundary conditions of Dirichlet-to-Neumann type:

± µ
du

dx
+ λ± u = 0 on x = ±a, (1.6)
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where λ± are called Dirichlet-to-Neumann (DtN) coefficients. These coefficients are given by

λ± := ∓
[
µ
du±

dx

]
(±a), (1.7)

where u± is the unique solution in H1(±a,±∞) of∣∣∣∣∣∣ −
d

dx

(
µ
du±

dx

)
− ρ ω2 u± = 0, for ±x > a,

u±(±a) = 1.

(1.8)

Knowing λ±, one is then reduced to compute u|(−a,a) by solving the problem∣∣∣∣∣∣∣∣
− d

dx

(
µ
dui

dx

)
− ρ ω2 ui = f, for x ∈ (−a, a),[

± µ
dui

dx
+ λ± ui

]
(±a) = 0.

(1.9)

The well-posedness of this problem is a direct consequence of the sign property

Imλ± < 0,

which, through a Green’s formula, results itself from the presence of dissipation (1.4) in (1.8). Then
the solution u of (1.1) is given by

a. e. x ∈ R, u(x) =


ui(−a) u−(x), x < −a,

ui(x), x ∈ (−a, a),
ui(a) u+(x), x > a.

(1.10)

In general, the problem is that computing λ±, that is to say solving (1.8), is as difficult as the original
problem. However, this is no longer true when the exterior medium (i.e. outside (−a, a)) has a certain
structure:

• if the exterior medium is homogeneous (ρ and µ are constant), these coefficients can be com-
puted explicitly;

• if the exterior medium is periodic (ρ and µ are periodic), several methods for the computation
of these DtN coefficients are developed in [JLF06; Fli09; KL18a];

• if the exterior medium is a weakly random perturbation of a periodic medium, the coefficients
can be approximated via an asymptotic analysis; see [FG20].

Our main objective in this chapter is to compute the DtN coefficients for a quasiperiodic exterior
medium, in order to develop a numerical method according to (1.8), (1.9), (1.10).

The outline of the rest of the chapter is as follows. In Section 2, we introduce the fundamental notion
of quasiperiodic functions (in 1D) and define what is a locally perturbed quasiperiodic medium in the
context of Problem (1.1). Sections 3 and 4 are the most important sections of the chapter. In Section
3, we link the solution of the 1D half-line problem with quasiperiodic coefficients to the solution of a
degenerate directional Helmholtz equation defined in dimension n, with n > 1 defined as in Section
2. This is the so-called lifting approach whose principle is presented in Section 3.1. More precisely, in
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Section 3.3, we characterize the solution of the 1D quasiperiodic problem as the trace along a (broken)
line of a nD problem posed in a domain with the geometry of a half-waveguide: (0, 1)n−1 × R+. In
between, we need to dedicate the (rather long) Section 3.2 to fix the notations used in the rest of
the chapter and present some useful preliminary material about an adapted functional framework for
the rigorous setting of our method. This concerns anisotropic Sobolev spaces with an emphasis on
trace theorems and related Green’s formula. In Section 4, we provide a method for solving the half-
waveguide problem of Section 3.3. In Section 4.1, we describe the structure of the solution with the
help of a propagation operator P and local cell problems. In Section 4.2, we show that the operator P
is characterized as a particular solution of a Riccati equation. In Section 4.3, we first build a directional
DtN operator Λ for the half-waveguide problem, from which we deduce the DtN coefficients λ± we
are looking for (cf. (1.7)). Finally, in Section 4.4, we analyze the Riccati equation from a spectral
point of view and in Section 4.5 we describe the spectrum of P. In Section 5 devoted to numerical
results, we restrict ourselves to n = 2 for the sake of simplicity. The first two subsections are devoted
to the discretization of the cell problems evoked above. We have considered two approaches: one,
natural but naive, consists in using 2D Lagrange finite elements (Section 5.1) while the other, called
the quasi-1D method, is better fitted to the anisotropy of the problem (Section 5.2). In Section 5.3,
we explain how we can construct a discrete propagation operator from a discrete Riccati equation
that we choose to solve via a spectral approach, while Section 5.4 simply mimics Section 4.3 at the
discrete level. Section 5.5 is devoted to numerical results. In the first three subsections, we provide
various validations of our method for the half-line problem (Sections 5.5.a and 5.5.c) and the whole
line problem (Section 5.5.b). At last, in Section 5.5.d, we address the question of the approximation
of the spectrum of the propagation operator P by the one of its discrete approximation.

Particular notation used throughout the chapter. In what follows,

1. the equality modulo 1 is denoted by

∀ y ∈ R, z = y [1] ⇐⇒ z ∈ [0, 1) and y − z ∈ Z.

and for all p, q ∈ N, p < q, we set Jp, qK := {j ∈ N, p ≤ j ≤ q}.

2. We denote Cper(Rn) as the space of continuous functions F : Rn → R that are 1–periodic with
respect to each variable, and C∞

0 (O) as the classic space of smooth functions that are compactly
supported in O ⊂ Rn.

3. For i ∈ J1, nK, we denote by #»e i the i-th unit vector from the canonical basis of Rn. For any
element y = (y1, . . . , yn) in Rn, we define ŷ as the vector (y1, . . . , yn−1) ∈ Rn−1, so that y =

(ŷ, yn). For y = (y1, . . . , yn) and z = (z1, . . . , zn), the Euclidean inner product of y and z is
denoted y · z := y1 z1 + · · · yn zn, and the associated norm is |y| := √

y · y.

2 Quasiperiodicity

2.1 Locally perturbed quasiperiodic media

A locally perturbed quasiperiodic medium is a medium corresponding to functions µ and ρ that satisfy
(1.2) and that are quasiperiodic outside a bounded interval, which can be supposed to be (−a, a) (see
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(1.3)) without any loss of generality. More precisely,

µ(x) =

∣∣∣∣∣∣
µi(x) x ∈ (−a, a)

µp(xθ) x ∈ R \ (−a, a)
and ρ(x) =

∣∣∣∣∣∣
ρi(x) x ∈ (−a, a)

ρp(xθ) x ∈ R \ (−a, a),

where the functions µp, ρp belong to Cper(Rn) with n > 1, and θ ∈ Rn is an irrational vector (see
Condition II–H.2).

Remark 2.1. (a). Since θ is an irrational vector, Kronecker’s theorem II–2.8 ensures that the functions
µp and ρp have the same lower and upper bounds as µ and ρ.

(b). The present study can be extended without difficulty to the case where µ (resp. ρ) coincides with
two different quasiperiodic functions in (−∞,−a) and in (a,+∞):

for ± x> a, µ(x) = µ±p (θ
± x) and ρ(x) = ρ±p (θ

± x),

where µ±p , ρ
±
p belong to Cper(Rn

±
) with n± > 1, and where θ± ∈ Rn

±
are irrational vectors.

3 The half-line quasiperiodic problems

We now focus on the half-line quasiperiodic problems (1.8). As these problems are very similar to
each other, it is sufficient to study the half-line problem set on (a,+∞) and suppose without loss of
generality that a = 0. Let µθ := µp(θ ·) and ρθ := ρp(θ ·). Therefore, the problem we consider in this
section is the following: ∣∣∣∣∣∣∣

− d

dx

(
µθ

du+θ
dx

)
− ρθ ω

2 u+θ = 0, in R+,

u+θ (0) = 1.

(3.1)

Remark 3.1. The function u+θ corresponds exactly to the solution u+ of (1.8) that was introduced in
Section 1 for very general media. The reason why this solution is relabeled u+θ is due to the fact that,
because we consider here quasiperiodic media, the coefficients µ and ρ that appear in (1.8) have been
replaced by µθ and ρθ.

3.1 Lifting in a higher-dimensional periodic problem

We wish to exhibit some structure of the solution u+θ . As the coefficients µθ and ρθ in (3.1) are by
definition traces of n–dimensional functions along the half-line θ R+, it is natural to seek u+θ as the
trace along the same line of a function y ∈ Rn 7→ Ũ+

θ (y), that is to say:

a. e. x ∈ R, u+θ (x) = Ũ+
θ (θ x), (3.2)

where Ũ+
θ shall be characterized as the solution of a n–dimensional PDE (in some sense, an “aug-

mented” problem in which y is the augmented space variable) with periodic coefficients, as illustrated
in Figure 1. This so-called lifting approach has been used in the homogenization setting for the analysis
of some correctors in presence of periodic halfspaces [GM11; GM12] or periodic structures separated
by an interface [BLL15], as well as for the homogenization of quasicrystals and Penrose tilings [BGZ10;
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WGC19]. However, to our knowledge, very little seems to have been done in other contexts (such as
wave propagation), and in particular for numerical analysis and simulation purposes.

To build a higher-dimensional PDE, one has to exploit the correspondence between the derivative of
u+θ and the partial derivatives of Ũ+

θ : according to the chain rule, for any smooth enough function
F : Rn → C, one has

∀ x ∈ R,
d

dx
[F (θ x)] = (Dθ F )(θ x), with Dθ := θ · ∇ =

n∑
i=1

θi
∂

∂yi
. (3.3)

This leads us to introduce the n–dimensional PDE set on a half-space (see Remark 3.2)

−Dθ

(
µp Dθ Ũ

+
θ

)
− ρp ω

2 Ũ+
θ = 0, for yn > 0, (3.4a)

where we recall that the coefficients µp, ρp : Rn → R are continuous and 1–periodic with respect to
each variable. In addition, the boundary condition in (3.1) can be lifted onto the inhomogeneous
Dirichlet boundary condition

Ũ+
θ = φ̃, on yn = 0, (3.4b)

where the data φ̃ : Rn−1 → C could be chosen continuous and must satisfy φ̃(0) = 1, for the sake of
consistency with the fact that u+θ (0) = 1. Furthermore, to exploit the periodicity of the coefficients µp
and ρp with respect to the transverse variables yj , j < n, we can impose the following:

φ̃ is 1–periodic, (3.5)

so that it is natural to impose that

Ũ+
θ (φ) is 1–periodic with respect to the transverse variables yj , j < n. (3.6)

In Section 3.3, we show how to reduce the above to a half-guide problem with periodic coefficients.
In order to do so, we shall need some preliminary materials, which is the object of the next section.

Remark 3.2. (a). One could have defined the augmented problem (3.4) on other half-spaces {y ∈
Rn, yi > 0}. The choice of the half-space {y ∈ Rn, yn > 0} where yn is priviledged is purely arbitrary.

(b). At first glance, one could imagine restricting the whole study to a constant boundary data φ̃ = 1.
Though, in practice, this can be the case, the method used to solve the half-guide problem requires to
investigate the structure of Ũ+

θ (φ̃) for any φ̃ in an appropriate function space (see Remark 4.2).

3.2 Preliminary material

The main objective of this section is to establish rigorously some Green’s formulas that are formally
obvious, such as the one of Proposition 3.9. This requires first to introduce the adapted functional
framework and, since Green’s formulas involve boundary integrals, to establish relevant trace theo-
rems. Section 3.2.a is devoted to these trace theorems, while we present the corresponding Green’s
formulas in Section 3.2.b. Finally, Section 3.2.c highlights a simple but useful link between the deriva-
tive Dθ and a single partial derivative with respect to one real variable, through a so-called oblique
change of variables.
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y1

y2

•

θ R+

θ

0

− d

dx

(
µθ

du+θ
dx

)
− ρθ ω

2 u+θ = 0−Dθ

(
µp Dθ Ũ

+
θ

)
− ρp ω

2 Ũ+
θ = 0

u+θ (0) = 1 Ũ+
θ = φ̃

Figure 1: Illustration of the lifting approach for n = 2

3.2.a. Anisotropic Sobolev spaces and trace theorems. For any open set O ⊂ Rn, let us first define
the directional Sobolev space

H1
θ(O) :=

{
U ∈ L2(O) / Dθ U ∈ L2(O)

}
, (3.7)

which is a Hilbert space, provided with the scalar product

(U, V )H1
θ(O) :=

∫
O

(
Dθ U Dθ V + U V

)
.

Let us denote by ∥ · ∥H1
θ(O) the induced norm. We begin with the following density property, whose

proof can be found in [Tem68, Appendix 1].

Proposition 3.3

The space C∞
0 (O) is dense in H1

θ(O).

We denote the half-space Rn+ := {y ∈ Rn, yn > 0} and the half-cylinder Ω# := (0, 1)n−1 × R+ in the
following. Let us introduce also the sets, for a ∈ {0, 1} and for any integer i ∈ J1, nK,

Σi,a := {y ∈ Rn+, yi = a} and Σ#
i,a := {y ∈ Σi,a, yj ∈ (0, 1), j ∈ J1, n− 1K, j ̸= i}.

These definitions are illustrated in Figure 2 in dimensions n = 2 and n = 3. Note that Σ#
n,a is bounded

whereas Σ#
i,a for i ̸= n is unbounded in the direction yn. Moreover,

∂Ω# = Σ#
n,0 ∪

[ n−1⋃
i=1

(
Σ

#

i,0 ∪ Σ
#

i,1

)]
.

A trace operator can be defined fromH1
θ(R

n
+) on Σi,a. The idea for doing so is to use a one-dimensional

trace theorem on the θ–oriented line that starts from a point (z1, . . . , zi−1, a, zi+1, . . . , zn) ∈ Σi,a, to
obtain an inequality which will be integrated with respect to zj , j ̸= i. The precise 1D trace theorem
which will be used is the following.
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(a) n = 2

Ω#

y2

y1

Σ1,0
=
Σ#
1,0

Σ1,1
=
Σ#
1,1

Σ2,0
Σ#
2,0

(b) n = 3

Σ3,0

Σ1,0

Σ2,0

y1

y2

y3
Ω#

Σ#
2,0

Σ#
2,1

Σ#
1,0

Σ#
1,1

Σ#
3,0 y1

y2

y3

Figure 2: Domains Ω#, Σi,a and Σ#
i,a for n = 2 (a) and n = 3 (b).

Proposition 3.4

Let L ∈ [0,+∞]. Then the mapping γL : u 7→ u(0) is continuous from H1(0, L) to C. Moreover,
the operator norm of γL is given by

∥γL∥2 =
eL + e−L

eL − e−L
=: [tanhL]−1 with ∥γL∥2 ∼

L→0
L−1. (3.8)

Proof. The continuity property is a classical result which can be proved by density.
By definition, ∥γL∥ := sup{|u(0)|, ∥u∥H1(0,L) = 1}. This corresponds to a constrained optimization

problem. Using the standard theory, this leads to introduce a Lagrange multiplier λ and to find a pair
(λ, uL) ∈ C \ {0} ×H1(0, L) such that ∥uL∥H1(0,L) = 1 and

∀ v ∈ H1(0, L) λuL(0) v(0) =

∫ L

0

(duL
dx

dv

dx
+ uL v

)
dx, (3.9)

in which case, we have ∥γL∥2 = λ. The explicit solution of this problem leads to the result. ■

We are now able to define traces on Σi,a in the following sense.

Proposition 3.5

Fix a ∈ {0, 1} and i ∈ J1, nK. The mapping γi,a : C∞
0 (Rn+) → C∞

0 (Σi,a) defined by γi,aU = U |Σi,a

extends by continuity to a linear mapping still denoted γi,a, fromH1
θ(R

n
+) to L2(Σi,a), and which

satisfies the estimate

∀ U ∈ H1
θ(R

n
+), ∥γi,aU∥2L2(Σi,a)

≤ 1

θi
∥U∥2H1

θ(R
n
+). (3.10)

Proof. One can simply prove the continuity estimate (3.10) for any function U ∈ C∞
0 (Rn+) and

conclude using the density result of Proposition 3.3. Because the variable yn plays a different role
than yi, i ̸= n, the case i = n has to be distinguished from the case i ̸= n.
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(i) Case i ∈ J1, n− 1K: Without loss of generality, we set i = 1. Define

Γ1,a := {z = (z2, . . . , zn), (a, z) ∈ Σ1,a} ≡ Rn−1
+ , where (a, z) = (a, z2, . . . , zn). (3.11)

For U ∈ C∞
0 (Rn+) and given any z = (z2, . . . , zn) ∈ Γ1,a, consider the function

∀ x > 0, uz,θ(x) := U(xθ + (a, z)). (3.12)

As uz,θ belongs to H1(R∗
+), Lemma 3.4 for L = +∞ combined with an integration with respect to

z ∈ Γ1,a leads to ∫
Γ1,a

|uz,θ(0)|2 dz ≤
∫
Γ1,a

∥uz,θ∥2H1(R∗
+)dz. (3.13)

On the other hand, let us introduce the transformation

T : y 7→
(
(y1 − a)/θ1, y2 − (y1 − a) θ2/θ1, · · · , yn − (y1 − a) θn/θ1

)
, (3.14)

which defines a C 1–diffeomorphism with a Jacobian determinant detJT = 1/θ1 ̸= 0. Since the inverse
image {T−1(x, z), z ∈ Γ1,a, x > 0} is nothing but the polyhedron

Q1,a := {y ∈ Rn+, y1 > a, yn > (y1 − a) θn/θ1} ⊂ Rn+,

it follows from the chain rule and from the change of variables y 7→ Ty that

duz,θ
dx

(x) = Dθ U(xθ + (a, z)) and
∫
Γ1,a

∥uz,θ∥2H1(R∗
+) dz =

1

θ1
∥U∥2H1

θ(Q1,a)
. (3.15)

Finally, since uz,θ(0) = U(a, z2, · · · , zn), Equations (3.13) and (3.15) imply

∥U∥2L2(Σ1,a)
≤ 1

θ1
∥U∥2H1

θ(Q1,a)
≤ 1

θ1
∥U∥2H1

θ(R
n
+), (3.16)

which is exactly the desired estimate.

(ii) Case i = n: starting from the function uz,θ(x) := U(xθ + (z, a)) defined for x > 0 and for any
z = (z1, . . . , zn−1) with (z, a) ∈ Σn,a, the proof uses the exact same arguments as above, except the
inverse image under T becomes the whole half-space Qn,a := {y ∈ Rn+, yn > a}. ■

The previous result does not hold in general for functions which are only H1
θ in sub-domains of the

half-space Rn+. In particular when it comes to the half-cylinder Ω#, one is led to apply the one-
dimensional trace theorem on segments that become smaller in the neighbourhood of the “corners”,
i.e. the intersections of two faces (see Remark 3.7). To overcome this difficulty, let us consider the sets
(see Figure 3)

∀ 0 < b < 1/2, Σ#,b
i,a := {y ∈ Σ#

i,a, dist(y, ∂Σ#
i,a) := inf

z ∈ ∂Σ#
i,a

|y − z| > b}. (3.17)

Using these domains, the traces on Σ#
i,a can be defined as locally integrable functions in the sense of

the following proposition, which will be useful in particular for the Green’s formula in Proposition
3.11.
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Σ#,b
2,1

Σ#,b
1,0

Σ#,b
3,0 y1

y2

y3

b

Ω#

Tn
y1

y2

y3

a Ω#
a,−

Ω#
θ

y1

y2

y3

Figure 3: From left to right: Σ#,b
i,a (3.17), Tn (3.37), Ω#

a,− (3.36), and Ω#
θ (3.40) represented for n = 3.

Proposition 3.6

Let a ∈ {0, 1} and i ∈ J1, nK. The mapping γ#
i,a : C∞

0 (Ω
#
) → C∞

0 (Σ#
i,a) defined by γ#

i,aU = U |Σ#
i,a

extends by continuity to a linear mapping still denoted γ#
i,a, from H1

θ(Ω
#) to L2

loc(Σ
#
i,a), and

which satisfies the estimate

∀ 0 < b < 1/2, ∃ Cb > 0, ∀ U ∈ H1
θ(Ω

#), ∥γ#
i,aU∥2

L2(Σ#,b
i,a )

≤ Cb
θi

∥U∥2H1
θ(Ω

#). (3.18)

Proof. Using the density result stated in Proposition 3.3, one only has to show (3.18) for U ∈
C∞
0 (Ω

#
). Let us assume that i = 1 and a = 0, the arguments in the following extending without

any difficulty to i ∈ J1, nK and a ∈ {0, 1}. Define

Γ#
1,0 := {z = (z2, . . . , zn), (0, z) ∈ Σ#

1,0} ≡ (0, 1)n−1 × R+. (3.19)

We introduce the length function defined by

∀ z ∈ Γ#
1,0, λ1,0(z) :=

∣∣{θ R + (0, z)} ∩ Ω#
∣∣ = sup{x > 0, x θ1 ≤ 1, x θi + zi ≤ 1 ∀ i ∈ J2, n− 1K}.

We deduce easily that

λ1,0(z) = min

{
1

θ1
; min
2≤j≤n−1

(1− zj
θj

)}
. (3.20)

For U ∈ C∞
0 (Ω

#
) and z ∈ Γ#

1,0, we define

∀ 0 < x < λ1,0(z), uz,θ(x) = U(xθ + (0, z)). (3.21)

Since uz,θ ∈ H1
(
0, λ1,0(z)

)
, Lemma 3.4 and an integration with respect to z give∫

Γ#
1,0

w1,0(z) |uz,θ(0)|2 dz ≤
∫
Γ#
1,0

∥uz,θ∥2H1(0,λ1,0(z))
dz, with w1,0(z) = tanh[λ1,0(z)]. (3.22)

On the other hand, consider the C 1–diffeomorphism T given by (3.14). The set Q#
1,0 := {T−1(x, z), 0 <

x < λ1,0(z), z ∈ Γ#
1,0} is clearly included in Ω#. Thus, by analogy with (3.16) in the proof of
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Proposition 3.5, we have from (3.21), the chain rule, and the change of variables y 7→ Ty that∫
Γ#
1,0

w1,0(z) |U(0, z)|2 dz ≤ 1

θ1
∥U∥2H1

θ(Ω
#). (3.23)

More generally, we have that γ#
i,a can be defined from H1

θ(Ω
#) to the weighted space L2(Σ#

i,a, wi,a dz),
where the weight wi,a is given in (3.22) for i = 1 and a = 0. Now, the expression (3.20) of λ1,0
implies that w1,0 degenerates at the neighbourhood of the corners zj = 1. However, the weight w1,0 is
bounded from below on Σ#,b

1,0 with

inf
(0,z)∈Σ#,b

1,0

w1,0(z) = tanh

[
min

{ 1

θ1
; b min

2≤j≤n−1

1

θj

}]
> 0. (3.24)

If we set Cb := [inf
(0,z)∈Σ#,b

1,0
w1,0(z)]

−1 > 0, then (3.18) follows directly from (3.23) by integrating
with respect to {z, (0, z) ∈ Σ#,b

1,0 }, instead of Γ#
1,0. ■

Remark 3.7. The best constant in the previous proposition necessarily blows up when b tends to 0. The
above proof shows that traces could be defined on the whole faces in appropriate weighted L2-spaces. More
details about traces in anisotropic spaces can be found in [Jol92].

3.2.b. Green’s formulas. Let us now define the set H1
θ,loc(R

n
+) of functions which are H1

θ in any
half-cylinder S × R+ where S is a bounded open set in Rn−1. More rigorously, we define for any
φ ∈ C∞

0 (Rn−1) the n–dimensional function qφ ∈ C∞(Rn) such that

qφ(y1, . . . , yn−1, yn) := φ(y1, . . . , yn−1). (3.25)

Note that for any U ∈ L2
loc(R

n
+), the support of qφU is bounded in the directions yj , j ̸= n. Starting

from this remark, we define

H1
θ,loc(R

n
+) :=

{
U ∈ L2

loc(R
n
+), qφU ∈ H1

θ(R
+
n ) ∀φ ∈ C∞

0 (Rn−1)
}
. (3.26)

Let us introduce a 1D cut-off function χ ∈ C∞
0 (R) such that χ = 1 on (0, 1), from which we define

qχ# ∈ C∞
0 (Rn) as

qχ#(y1, . . . , yn−1, yn) := χ(y1) . . . χ(yn−1). (3.27)

We have in particular that

∀ U ∈ H1
θ,loc(R

n
+), U |Ω# = (qχ# U)|Ω# ∈ H1

θ(Ω
#). (3.28)

Thanks to this and Proposition 3.5, it is obvious that we can define without any ambiguity the trace
map γ#

i,a to H1
θ,loc(R

n
+) as follows

∀ U ∈ H1
θ,loc(R

n
+), γ#

i,aU := γi,a(qχ#U)|Σ#
i,a

∈ L2(Σ#
i,a). (3.29)

For simplicity, when considering traces on Σ#
i,a, we shall write U instead of γ#

i,aU . We can now state
the following Green’s formula.
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Proposition 3.8

For any U, V ∈ H1
θ,loc(R

n
+), we have the Green’s formula

∫
Ω#

(
Dθ U V + U Dθ V

)
dy =

1

θn

∫
Σ#

n,0

U V ds+

n−1∑
i=1

1

θi

(∫
Σ#

i,1

U V ds−
∫
Σ#

i,0

U V ds
)
. (3.30)

Proof. Let U, V ∈ H1
θ,loc(R

n
+). By definition, for any χ ∈ C∞

0 (R) such that χ = 1 on (0, 1), the
functions qχ# U and qχ# V belong to H1

θ(R
n
+), where qχ# is defined in (3.27). Since Proposition 3.3

ensures that C∞
0 (Rn+) is dense in H1

θ(R
n
+), there exist two sequences (Uk)k∈N, (Vk)k∈N of functions in

C∞
0 (Rn+), such that

Uk → qχ# U and Vk → qχ# V in H1
θ(R

n
+), k → +∞.

It follows from the usual Green’s formula for smooth functions that Uk and Vk satisfy (3.30) for any
k ∈ N. Passing to the limit and using the trace continuity result stated in Proposition 3.5 imply that
(3.30) is satisfied by qχ# U and qχ# V , i.e. by U and V , since qχ# = 1 in Ω#. ■

We next focus on functions which are periodic with respect to their (n − 1) first variables. More
precisely, for any U ∈ L2(Ω#) and any φ ∈ L2(Σ#

n,0), we introduce the respective periodic extensions
Ũ ∈ L2

loc(R
n
+) and φ̃ ∈ L2

loc(Σn,0) as defined for any i ∈ J1, n− 1K by a. e. y ∈ Rn+, Ũ(y + #»e i) = Ũ(y) and Ũ |Ω# = U.

a. e. s ∈ Σn,0, φ̃(s+ #»e i) = φ̃(s) and φ̃|Σ#
n,0

= φ.
(3.31)

An appropriate functional framework is provided by the space

H1
θ,per(Ω

#) =
{
U ∈ L2(Ω#), Ũ ∈ H1

θ,loc(R
n
+)
}

⊂ H1
θ(Ω

#), (3.32)

where the inclusion follows from (3.28) and (3.31). Note that for any U ∈ H1
θ,per(Ω

#), as the periodic

extension Ũ belongs to H1
θ,loc(R

n
+), the trace of U on Σ#

i,a is well-defined in L2 thanks to (3.29).
Moreover, using the continuity estimate (3.10) for qχ#U , we have

γ#
i,a ∈ L(H1

θ,per(Ω
#), L2(Σ#

i,a)). (3.33)

In addition, one can show the following characterization:

H1
θ,per(Ω

#) =
{
U ∈ H1

θ(Ω
#), γ#

i,0U = γ#
i,1U ∀ i ∈ J1, n− 1K

}
, (3.34)

where the traces of functions in H1
θ(Ω

#) are defined in Proposition 3.6 and the equality of traces has
to be understood up to the identification of functions on Σ#

i,0 and Σ#
i,1. It is clear from (3.34) that

H1
θ,per(Ω

#) is a closed subspace of H1
θ(Ω

#), thus it is an Hilbert space when equipped with the norm
of H1

θ(Ω
#). From Proposition 3.8 and (3.34), we deduce the Green’s formula on H1

θ,per(Ω
#).
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Proposition 3.9

For any U, V ∈ H1
θ,per(Ω

#), we have the Green’s formula∫
Ω#

(
Dθ U V + U Dθ V

)
dy =

1

θn

∫
Σ#

n,0

U V ds. (3.35)

From the Green’s formula (3.35), we can easily deduce the following result.

Corollary 3.10

Let a > 0, and define the sets with common boundary Σ#
n,a (see Figure 3):

Ω#
a,+ := Ω# ∩ {yn > a} and Ω#

a,− := Ω# ∩ {yn < a}. (3.36)

Consider a function U ∈ L2(Ω#) such that U± := U |Ω#
a,±

∈ H1
θ,per(Ω

#
a,±), where H1

θ,per(Ω
#
a,±) is

defined as in (3.34). Then

U ∈ H1
θ,per(Ω

#) ⇐⇒ γ#
n,aU+ = γ#

n,aU−.

We finish this section with a more technical Green’s formula, used in the proof of Proposition 3.16,
involving functions U that only belong to H1

θ(Ω
#), provided that the test function V vanishes in the

neighborhood of the skeleton Tn defined by

T2 = Σ
#

2,0 and Tn = Σ
#

n,0 ∪
[ n−1⋃
j=1

(
∂Σ#

j,0 ∪ ∂Σ#
j,1

)]
for n ≥ 3. (3.37)

This domain is represented in Figure 3 for n = 3.

Proposition 3.11

For U ∈ H1
θ(Ω

#) and V ∈ C∞
0 (Ω

# \ Tn), the Green’s formula (3.30) still holds.

Proof. Consider U ∈ H1
θ(Ω

#) and V ∈ C∞
0 (Ω

# \ Tn). Since by Proposition 3.3, C∞
0 (Ω

#
) is dense

in H1
θ(Ω

#), there exists a sequence (Uk)k∈N of functions in C∞
0 (Ω

#
) which tends to U . It follows

from Green’s formula in Ω# for smooth functions that Uk and V satisfy (3.30) for any k ∈ N. For
0 < b < 1/2, let Ω#,b be the domain

Ω#,b = {y ∈ Ω#, dist(y, Tn) := inf
z ∈Tn

|y − z| > b}. (3.38)

Since V ∈ C∞
0 (Ω

# \ Tn), there exists a real number 0 < b < 1/2 such that V |Ω#,b ∈ C∞
0 (Ω

#,b
).

Consequently, for any i ∈ J1, n − 1K, the surface integral on Σ#
i,a is reduced to the set Σ#,b

i,a defined by
(3.17). When k tends to +∞, we can then use the trace continuity result stated in Proposition 3.6 on
Σ#,b
i,a , to deduce that (3.30) is satisfied by U and V . ■

3.2.c. An oblique change of variables. Before stating Proposition 3.13 which is the main result of
this section, let us introduce the change of variables in Rn+:

(s, x) ∈ Rn+ 7→ y = (s, 0) + xθ ∈ Rn+, (3.39)
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and denote by Ω#
θ the image of Ω# by the above transformation:

Ω#
θ := {(s, 0) + θ x, s ∈ (0, 1)n−1, x > 0}. (3.40)

This is illustrated in Figure 3 for n = 3 and in Figure 4 for n = 2 and |θ| = 1. The following easy
lemma will be used in the sequel.

Lemma 3.12

For any V ∈ L1(Ω#), we have ∫
Ω#

θ

Ṽ (y) dy =

∫
Ω#

Ṽ (y) dy, (3.41)

where Ṽ ∈ L1
loc(R

n
+) denotes the periodic extension of V , defined by (3.31).

Proof. We will use the notation k = (k1, . . . , kd) ∈ Zd for a vector of integers. For any set O ⊂ Rn,
let 1O be the indicator function of O. By density of C∞

0 (Ω#) in L1(Ω#), it suffices to prove (3.41) for
V ∈ C∞

0 (Ω#). By additivity of integration,∫
Ω#

θ

Ṽ (y) dy =

∫
Rn
+

1Ω#

θ
(y) Ṽ (y) dy =

∑
k∈Zn−1

∫
Ω#+(k,0)

1Ω#

θ
(y) Ṽ (y) dy,

where the sum over k ∈ Zn−1 is finite because V is compactly supported. The change of variables
z 7→ z + (k, 0) then leads to∫

Ω#

θ

Ṽ (y) dy =
∑

k∈Zn−1

∫
Ω#

1Ω#

θ
(z + (k, 0)) Ṽ (z) dz because Ṽ is periodic

=

∫
Ω#

[ ∑
k∈Zn−1

1Ω#

θ−(k,0)(z)
]
Ṽ (z) dz, (3.42)

where we used the fact that 1Ω#

θ
(z + (k, 0)) = 1Ω#

θ−(k,0)(z). Furthermore, by noticing that the collec-

tion of sets {Ω#
θ − (k, 0), k ∈ Zn−1} forms a partition of Rn+, it follows that

∀ z ∈ Ω#,
∑

k∈Zn−1

1Ω#

θ−(k,0)(z) = 1Rn
+
(z) = 1. (3.43)

Combining (3.42) and (3.43) implies that (3.41) is satisfied for V ∈ C∞
0 (Ω#). ■

The inversion of the change of variables (3.39) leads us to introduce:

∀ y ∈ Rn, sθ(y) := ŷ − (yn/θn) θ̂ ∈ Rn−1, (3.44)

so that,
y = (s, 0) + xθ ⇐⇒ s = sθ(y) and x = yn/θn. (3.45)

The next proposition emphasizes the fact that through the change of variables (3.39), the differential
operator Dθ simply becomes the partial derivative (in the sense of distributions) with respect to yn
(which is obvious for smooth functions).
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Proposition 3.13

Let Ψ ∈ L2(Ω#). The function Ψθ whose periodic extension is given by

a. e. y ∈ Rn+, Ψ̃θ(y) := Ψ̃(sθ(y), yn/θn), (3.46)

belongs to L2(Ω#) and
∥Ψθ∥L2(Ω#) =

√
θn ∥Ψ∥L2(Ω#). (3.47)

Moreover, if ∂ynΨ ∈ L2(Ω#), then Ψθ belongs to H1
θ,per(Ω

#) with directional derivative

a. e. y ∈ Rn+, DθΨ̃θ(y) =
∂Ψ̃

∂yn
(sθ(y), yn/θn). (3.48)

Proof. The map (s, x) 7→ (s, 0)+xθ from Σ#
n,0×R+ to Ω#

θ defines a C 1–diffeomorphism with a non-
vanishing Jacobian θn ̸= 0. Therefore, by using the definition (3.40) of Ω#

θ , the change of variables
(s, x) 7→ (s, 0) + xθ, and the property sθ((s, 0) + xθ) = s, we obtain that∫

Ω#

θ

|Ψ̃θ(y)|2 dy = θn

∫
Σ#

n,0

∫ +∞

0
|Ψ̃θ((s, 0) + xθ)|2 dx ds = θn

∫
Σ#

n,0

∫ +∞

0
|Ψ̃(s, x)|2 dx ds.

We deduce from Lemma 3.12 that Ψθ ∈ L2(Ω#), and that (3.47) holds.

Now in order to derive the expression of DθΨ̃θ in the sense of distributions, consider a test function
Φ ∈ C∞

0 (Rn+). The change of variables (s, x) 7→ (s, 0) + xθ combined with Fubini’s theorem for
integrable functions leads to∫

Rn
+

Ψ̃θ(y) DθΦ(y) dy = θn

∫
Rn−1

∫ +∞

0
Ψ̃(s, x) DθΦ((s, 0) + θ x) dxds. (3.49)

Furthermore the 1D function ϕs,θ defined by ϕs,θ(x) := Φ((s, 0) + θ x) belongs to C∞
0 (R+) and we

have [dϕs,θ/dx](x) = DθΦ((s, 0) + θ x) from the chain rule. Since ∂ynΨ is in L2, we can integrate by
parts the inner integral in (3.49) to obtain∫

Rn
+

Ψ̃θ(y) DθΦ(y) dy = −θn
∫

Rn−1

∫ +∞

0

∂Ψ

∂yn
(s, x) ϕs,θ(x) dxds

= −
∫

Rn
+

∂Ψ

∂yn
(sθ(y), yn/θn) Φ(y) dy, (3.50)

where the last equality comes from the change of variables y 7→ (sθ(y), yn/θn). This gives the expres-
sion of DθΨ̃θ in (3.48) in the sense of distributions. ■

Remark 3.14. It will be often useful to use (3.48) in the form

a. e. (s, x) ∈ Rn+, DθΨ̃θ((s, 0) + xθ) =
∂Ψ̃

∂yn
(s, x). (3.51)

The previous proposition allows in particular to deduce the surjectivity of the trace operator from
H1

θ,per(Ω
#) to L2(Σ#

n,0).
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Corollary 3.15

Let φ ∈ L2(Σ#
n,0), and ψ ∈ H1(R+) such that ψ(0) = 1. Then the periodic function defined by

a. e. y ∈ Rn+, Rφ (y) := φ̃(sθ(y)) ψ(yn/θn) (3.52)

belongs to H1
θ,per(Ω

#), and its trace is Rφ|Σ#
n,0

= φ. Moreover, R defines a continuous map

from L2(Σ#
n,0) to H1

θ,per(Ω
#).

3.3 Link with a periodic half-guide problem

For any boundary data φ ∈ L2(Σ#
n,0), we can now introduce U+

θ as the solution in H1
θ(Ω

#) of the
half-guide problem∣∣∣∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µp Dθ U

+
θ

)
− ρp ω

2 U+
θ = 0, in Ω#,

U+
θ |Σ#

n,0
= φ,

U+
θ |Σ#

i,0
= U+

θ |Σ#
i,1

∀ i ∈ J1, n− 1K,

µp Dθ U
+
θ |Σ#

i,0
= µp Dθ U

+
θ |Σ#

i,1
∀ i ∈ J1, n− 1K.

(3.53)

Note that the third equation in this problem implies that U+
θ ∈ H1

θ,per(Ω
#), the first one implies

that µp Dθ U
+
θ ∈ H1

θ(Ω
#), and finally the fourth one implies that µp Dθ U

+
θ ∈ H1

θ,per(Ω
#), according to

(3.34). The space of the boundary data can seem surprising compared to the Helmholtz equation with
an elliptic principal part, but recall from Corollary 3.15 that the trace mapping on Σ#

n,0 is surjective
from H1

θ,per(Ω
#) to L2(Σ#

n,0).

With the functional framework introduced in the previous section, we can now show that Problem
(3.53) is well-posed.

Proposition 3.16

For any φ ∈ L2(Σ#
n,0), (3.53) is equivalent to∣∣∣∣∣∣∣

Find U+
θ ∈ H1

θ,per(Ω
#), U+

θ |Σ#
n,0

= φ

∀ V ∈ H1
θ,per(Ω

#), V |Σ#
n,0

= 0,

∫
Ω#

(
µp Dθ U

+
θ Dθ V − ρp ω

2 U+
θ V

)
= 0,

(3.54)

for which Lax-Milgram’s theorem applies.

Proof. The variational formulation (3.54) is obtained by multiplying the first equation of (3.53) by
V ∈ H1

θ,per(Ω
#), and by using Green’s formula (3.35). The application of the Lax-Milgram’s theorem

in {V ∈ H1
θ,per(Ω

#), γn,0V = 0} is direct, thanks to the surjectivity result in Corollary 3.15.

For the equivalence, as usual, one picks test functions V ∈ C∞
0 (Ω#) to deduce that the solution

U+
θ ∈ H1

θ,per(Ω
#) of (3.54) satisfies the first equation of (3.53). This implies that µp Dθ U

+
θ ∈ H1

θ(Ω
#).

The real difficulty is to show that U+
θ satisfies the fourth equation in (3.53) or equivalently that
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2

Figure 4: The half-cylinders Ω# and Ω#
θ (left), and the domains C#

ℓ and Σ#
n,k (right) for n = 2

µp Dθ U
+
θ ∈ H1

θ,per(Ω
#). According to Proposition 3.6, we have

∀ 1 ≤ i ≤ n− 1, µp Dθ U
+
θ |Σ#

i,a
∈ L2

loc(Σ
#
i,a).

Therefore, Proposition 3.11 allows us to use Green’s formula (3.30) for U = µp Dθ U
+
θ and for V ∈

C∞
0 (Ω

# \Tn)∩H1
θ,per(Ω

#), where Tn is the skeleton defined in (3.37). By combining this with the fact
that U+

θ solves (3.54) and the first equation of (3.53), one obtains that for any integer i ∈ J1, n− 1K,

∀ V ∈ C∞
0 (Ω

# \ Tn) ∩H1
θ,per(Ω

#),
(∫

Σ#
i,1

µp Dθ U
+
θ V ds−

∫
Σ#

i,0

µp Dθ U
+
θ V ds

)
= 0.

Furthermore, C∞
0 (Σ#

i,0) is included in {V |Σ#
i,0
, V ∈ C∞

0 (Ω
# \ Tn) ∩ H1

θ,per(Ω
#)}. In fact, any ψ ∈

C∞
0 (Σ#

i,0) admits the extension Ψ : y ∈ Ω# 7→ ψ(y1, . . . , yi−1, yi+1, . . . , yn), which belongs to C∞
0 (Ω

# \
Tn)∩H1

θ,per(Ω
#). Finally, since C∞

0 (Σ#
i,0) is dense in L2(Σ#

i,0), it is easy to show that the fourth equation
of (3.53) holds and that µp Dθ U

+
θ |Σ#

i,1
∈ L2(Σ#

i,1) for any i ∈ J1, n− 1K. ■

We now make the link between U+
θ (φ) and the solution of the half-line problem (3.1) that fully justifies

the introduction of the half-guide problem (3.53).

To do so, first, let us introduce the one-dimensional functions defined for any s ∈ Rn−1 by

∀ x ∈ R, µs,θ(x) := µp
(
(s, 0) + θ x

)
and ρs,θ(x) := ρp

(
(s, 0) + θ x

)
, (3.55)

as well as the one-dimensional problems∣∣∣∣∣∣∣
− d

dx

(
µs,θ

du+s,θ
dx

)
− ρs,θ ω

2 u+s,θ = 0, in R+,

u+s,θ(0) = 1.

(3.56)

Note that (3.1) corresponds to (3.56) taken with s = 0.

As for the problem (3.1) satisfied by u+θ , under the assumptions (1.2) and (1.4), Problem (3.56)
admits a unique solution u+s,θ in H1(R+) for any s ∈ Rn−1. Moreover, u+s,θ decays exponentially at
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infinity, uniformly with respect to s, that is, there exist constants α, c > 0 depending only on µ±, ρ±
such that

∀ s ∈ Rn−1,
∥∥e−α Imω x u+s,θ

∥∥
H1(R+)

≤ c. (3.57)

Furthermore, thanks to the continuity of µp and ρp, we can show that u+s,θ is continuous with respect
to s, as stated in the next proposition.

Proposition 3.17

The mapping s ∈ Rn−1 7→ u+s,θ, which associates with a real vector s the solution in H1(R+) of
Problem (3.56), defines a uniformly continuous function which is periodic of period 1 in each
direction.

Proof. To show that s 7→ u+s,θ is 1–periodic in each direction, one simply has to note that since µs,θ
and ρs,θ are 1–periodic with respect to each si, both u+s,θ and u+s+ #»e i,θ

satisfy the same half-line problem
(3.56). Thus, by well-posedness of (3.56), u+s,θ = u+s+ #»e i,θ

.

Now let us prove the regularity of s 7→ u+s,θ. For any s1, s2 ∈ Rn−1, by writing the variational formu-
lations satisfied by u+s1,θ and u+s2,θ, and by substracting one from the other, we obtain

∀ v ∈ H1
0 (R+),

∫
R+

[
µs1,θ

d

dx
(u+s1,θ − u+s2,θ)

dv

dx
− ρs1,θ ω

2 (u+s1,θ − u+s2,θ) v
]
=∫

R+

[
(µs2,θ − µs1,θ)

du+s2,θ
dx

dv

dx
− (ρs1,θ − ρs2,θ) ω

2 u+s2,θ

]
.

Now choose v = u+s1,θ − u+s2,θ ∈ H1
0 (R+) in the above equality. The well-posedness of (3.56), a

Cauchy-Schwarz inequality applied to the right-hand side and (3.57) imply that there exists a real
number c > 0 independent of s and θ such that∥∥u+s1,θ − u+s2,θ

∥∥
H1(R+)

≤ c
(
∥µs2,θ − µs1,θ∥∞ + ∥ρs2,θ − ρs1,θ∥∞

)
. (3.58)

Since the functions µp and ρp are continuous and 1–periodic in each direction, it follows from Heine-
Cantor theorem that they are uniformly continuous. Let us define the modulus of uniform continuity

∀ µ ∈ C 0(Rn), ∀ ϵ > 0, δ(µ, ϵ) = sup
y,z

{|µ(y)− µ(z)|, |y − z| < ϵ}

As µ is uniformly continuous, δ(µ, ϵ) tends to 0 as ϵ tends to 0. It follows from (3.58) that∥∥u+s1,θ − u+s2,θ
∥∥
H1(R+)

≤ c
(
δ(µp, |s1 − s2|) + δ(ρp, |s1 − s2|)

)
.

Therefore, s 7→ u+s,θ is continuous from Rn−1 in H1(R+). ■

At last, we can show the next result, which highlights the link between the 2D half-guide solution U+
θ

and the 1D half-line solution u+θ .

Proposition 3.18

Let sθ be the mapping defined by (3.44), and Ũ+
θ (resp. φ̃) be the periodic extension of U+

θ
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(resp. φ) the solution of (3.53). Then, we have

a. e. y ∈ Rn+, Ũ+
θ (φ̃)(y) = φ̃

(
sθ(y)

)
u+sθ(y),θ(yn/θn), (3.59)

or equivalently, thanks to the change of variables (s, x) 7→ ((s, 0) + θ x),

a. e. (s, x) ∈ Rn−1 × R+, Ũ+
θ (φ̃)((s, 0) + θ x) = φ̃(s) u+s,θ(x). (3.60)

Moreover if φ̃ is continuous in the neighbourhood of 0 and satisfies φ̃(0) = 1, then

a. e. x ∈ R, u+θ (x) = Ũ+
θ (φ̃)(θ x) (3.61)

Proof. We begin by proving (3.59). Let us denote for a. e. y ∈ Rn+, U1(y) the right-hand side of
(3.59). Note that Ψ : (s, x) 7→ φ̃(s) u+s,θ(x) is 1–periodic with respect to s (thanks to Proposition
3.17), and belongs to L2(Ω#) since

∥Ψ∥2L2(Ω#) = θn

∫
Σ#

n,0

|φ(s)|2 ∥u+s,θ∥2L2(R+) ds ≤ θn c
2 ∥φ∥2

L2(Σ#
n,0)

, with c = sup
s

∥u+s,θ∥L2(R+).

Moreover, since for all s, u+s,θ ∈ H1(R+), ∂ynΨ is also in L2(Ω#) (using similar inequalities to the
above). By Proposition 3.13, U1 belongs to H1

θ,per(Ω
#) with

a. e. y ∈ Rn+, Dθ Ũ1(y) = φ̃
(
sθ(y)

) du+sθ(y),θ
dx

(yn/θn).

Finally, since u+s,θ(0) = 1, it is clear that U1|Σ#
n,0

= φ. By repeating the same argument, we can show

that µpDθ U1 belongs to H1
θ,per(Ω

#) with

a. e. y ∈ Rn+, Dθ [µpDθ Ũ1](y) = φ̃
(
sθ(y)

) d

dx

(
µsθ(y),θ

du+sθ(y),θ

dx

)
(yn/θn).

Since u+s,θ satisfies (3.56), it is clear that U1 satisfies (3.53). By well-posedness of (3.53), we have
U1 = U+

θ .

We have from Proposition 3.17 that s 7→ u+s,θ is continuous. If in addition to that, φ̃ is continuous in a
neighbourhood of 0, then (3.60) becomes true for any s in that neighbourhood. In particular, (3.60)
can be written for s = 0, thus leading to (3.61). ■

Remark 3.19. The half-guide solution U+
θ depends on φ whereas u+s,θ does not. Numerical results pre-

sented in Section 5.5.a will illustrate this property.

4 Resolution of the half-guide problem

The advantage of the lifting process lies in the periodic nature of (3.53), which allows us to exploit
tools that are well-suited for periodic waveguides. In this chapter, we use a DtN-based method [JLF06;
Fli09], developed for the elliptic Helmholtz equation −∇ · (µp ∇U) − ρp ω

2 U = 0 in unbounded

By elliptic Helmholtz equation, we refer to the Helmholtz equation with an elliptic principal part.
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periodic waveguides. This method does not rely on decay properties, and therefore remains robust
when the absorption tends to 0. As we essentially transpose this method to our directional Helmholtz
equation, we will see below that the approach remains exactly the same, although the analysis has to
be adapted. For information purposes, it is worth mentioning the recursive doubling method [YL07;
EHZ08], suited for bounded periodic waveguides, and a method [Zha21] based on the Floquet-Bloch
transform, although its extension to our non-elliptic equation seems unclear.

In what follows, C#
ℓ is the cell defined for every ℓ ∈ N by

C#
0 := (0, 1)n and C#

ℓ := C#
0 + ℓ #»en, so that Ω# =

⋃
ℓ∈N

C#
ℓ . (4.1)

For ℓ > 0, we call Σ#
n,ℓ the interface between the cells C#

ℓ and C#
ℓ+1, that is, Σ#

n,ℓ = Σ#
n,0 + ℓ #»en. By

periodicity, each cell C#
ℓ can be identified to C#

0 . Similarly, each interface Σ#
n,ℓ can be identified to Σ#

n,0.
The cells and interfaces are represented in Figure 4.

4.1 Structure of the solution

The solution U+
θ (φ) of (3.53) has a particular structure that we explain in this section. Denote by

P ∈ L
(
L2(Σ#

n,0)
)

the operator

∀ φ ∈ L2(Σ#
n,0), Pφ := U+

θ (φ)|Σ#
n,1
, (4.2)

where L2(Σ#
n,1) and L2(Σ#

n,0) have been identified to each other in an obvious manner. This identifi-
cation will be used systematically in what follows, even if not mentioned. Note that the operator P is
well-defined, due to the continuity of the trace operator on Σ#

i,a (3.33).

Proposition 4.1

For any φ in L2(Σ#
n,0), we have

∀ ℓ ∈ N, a. e. y ∈ Ω#, U+
θ (φ)(y + ℓ #»en) = U+

θ (Pℓφ)(y). (4.3)

Moreover, the spectral radius of P is strictly less than one.

Proof. We only present the outline of the proof, which is quite similar to the one in [JLF06; Fli09].
Given φ ∈ L2(Σ#

n,0), consider the function U1 defined in Ω# by U1(y) = U+
θ (φ)(y + #»en) for almost

any y ∈ Ω#. Since the coefficients µp and ρp are periodic, one deduces that U1 satisfies the volume
equation as well as the periodicity condition in (3.53). Furthermore,

U1|Σ#
n,0

= U+
θ (φ)|Σ#

n,1
= Pφ.

Thus, by well-posedness of (3.53), we have (4.3) for ℓ = 1. The result (4.3) for ℓ ≥ 2 is proved by
induction.

It remains to show that the spectral radius is strictly less than 1. To this end, by analogy with (3.57),
one can show the existence of constants α, c > 0 such that

∀ φ ∈ L2(Σ#
n,0),

∥∥eα Imω yn/θn U+
θ

∥∥
H1

θ(Ω
#)

≤ c ∥φ∥L2(Σ#
n,0)

. (4.4)
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Since Pℓφ = U+
θ (φ)(·, ℓ), the estimate above implies that ∥Pℓ∥ ≤ c e−α Imω ℓ/θn . Hence, using Gelfand’s

formula [Rud91, §10.3], the spectral radius can be estimated as follows:

ρ(P) = lim
ℓ→+∞

∥Pℓ∥1/ℓ ≤ e−β Imω/θn < 1.

■

Remark 4.2. Even if φ = 1 on Σ#
n,0, the function Pℓφ is generally not constant. This is the reason why the

study of the half-guide problem cannot be restricted to constant boundary datas, as explained in Remark
3.2.

The operator P is called the propagation operator, as it describes how the solution of (3.53) evolves
from one interface to another. Provided that P is known, the solution U+

θ (φ) may then be constructed
using local cell problems. Let us first introduce the appropriate functional framework in a periodicity
cell

H1
θ,per(C#

0 ) :=
{
U ∈ H1

θ(C#
0 ), Ũ ∈ H1

θ,loc(B0)
}
, (4.5)

where B0 := Rn+∩{0 < yn < 1}, and where Ũ is the periodic extension of U defined in (3.31). Similarly
to Section 3.2.a, one can show that any function of H1

θ,per(C#
0 ) has a L2 trace on the boundary of C#

0 .
We can prove in particular that

H1
θ,per(C#

0 ) =
{
U ∈ H1

θ(C#
0 ) / U |yi=0 = U |yi=1, ∀ i ∈ J1, n− 1K

}
.

We can now introduce the local cell problems: for φ ∈ L2(Σ#
n,0) and j ∈ {0, 1}, let Ej(φ) ∈ H1

θ,per(C#
0 )

satisfy ∣∣∣∣∣ −Dθ

(
µp Dθ E

j
)
− ρp ω

2 Ej = 0, in C#
0 ,

µp Dθ E
j |yi=0 = µp Dθ E

j |yi=1 ∀ i ∈ J1, n− 1K,
(4.6)

completed with the boundary conditions∣∣∣∣∣∣
E0|Σ#

n,0
= φ and E0|Σ#

n,1
= 0,

E1|Σ#
n,0

= 0 and E1|Σ#
n,1

= φ.
(4.7)

A variational formulation can be derived as in Proposition 3.16, and the well-posedness follows once
again from with Lax-Milgram’s theorem in H1

θ,per(C#
0 ), thanks to the surjectivity of the trace operator

(see Corollary 3.15).

Proposition 4.1 implies that U+
θ (φ)(· + ℓ #»en)|Σ#

n,0
= Pℓφ. Hence, if the propagation operator P is

known, by linearity, the solution of the half-guide problem can be entirely constructed cell by cell as
follows:

∀ ℓ ∈ N, U+
θ (φ)(·+ ℓ #»en)|C#

0
= E0(Pℓφ) + E1(Pℓ+1φ). (4.8)

4.2 Characterization of the propagation operator: the Riccati equation

In order to characterize the propagation operator P, it is useful to introduce the local DtN operators
T jk ∈ L(L2(Σ#

n,0)), defined for j, k = 0, 1 by

∀ φ ∈ L2(Σ#
n,0), T jkφ := (−1)k+1 θn

[
µp Dθ E

j(φ)
]
|Σ#

n,k
. (4.9)



54 Chapter III. Wave propagation in quasiperiodic media: The absorbing case

where Ej(φ) satisfies (4.6)–(4.7). By Green’s formula (3.30), note that for all j, k = 0, 1 and for
(φ,ψ) ∈ L2(Σ#

n,0)
2, these operators satisfy∫
Σ#

n,0

(T jkφ)ψ =

∫
C#
0

[
µp Dθ E

j(φ) Dθ E
k(ψ)− ρp ω

2 Ej(φ) Ek(ψ)
]
. (4.10)

Before deriving other useful properties of the local DtN operators, we need to introduce some addi-
tional notations. For any closed operator A ∈ L(L2(Σ#

n,0)), we denote A∗ the adjoint of A, and A its
« complex conjugate », that is,

∀ φ ∈ L2(Σ#
n,0), Aφ := Aφ.

It is not difficult to see that A∗ = A∗, and A = A.

Proposition 4.3

The local DtN operators T jk satisfy[
T 00

]∗
= T 00,

[
T 11

]∗
= T 11,

[
T 01

]∗
= T 10,

[
T 10

]∗
= T 01. (4.11)

Furthermore, the operators T 00, T 11, and T 00 + T 11 are invertible.

Proof. The property (4.11) follows from Green’s formula applied to Ej(φ) and Ek(ψ), see [Fli09,
Proposition 2.2.4] in the case of the Helmholtz equation with an elliptic principal part.

The operators T 00, T 11, and T 00+T 11 are bounded. We are going to show that they are also coercive.
Their invertibility will then follow from Lax-Milgram’s theorem. From (4.10), there exists a constant
c ≡ c(µ−, ρ−, |ω|) > 0 such that

−|ω| Im
[ 1
ω

∫
Σ#

n,0

(T kkφ)φ
]
≥ c Imω ∥Ek(φ)∥2

H1
θ(C

#
0 )

≥ c̃ Imω ∥φ∥2
L2(Σ#

n,0)
,

since from (3.33), the trace application from H1
θ,per(C#

0 ) to L2(Σ#
n,0) is continuous. It follows that

the operators T 00 and T 11 are coercive, and therefore invertible. The inequalities above summed for
k = 0, 1 imply the coercivity and hence the invertibility of T 00 + T 11 as well. ■

As seen earlier, the solution of the half-guide problem (3.53) is given by (4.8). Now let us use the
characterization of H1

per,θ(Ω
#), namely, Corollary 3.10 with a = 1, so that Ω#

a,− = C#
0 and Ω#

a,+ =

Ω# \ C#
0 . Since µp Dθ U

+
θ (φ) belongs to H1

θ,per(Ω
#), the directional derivative of U+

θ (φ) is continuous
across the interface Σ#

n,1, i.e.[
µp Dθ U

+
θ (φ)

]
|Σ#

n,1
=
[
µp Dθ U

+
θ (φ)((·+ #»en)

]
|Σ#

n,0
, (4.12)

or equivalently, [
µp Dθ E

0(φ)
]
|Σ#

n,1
+
[
µp Dθ E

1(Pφ)
]
|Σ#

n,1

=
[
µp Dθ E

0(Pφ)
]
|Σ#

n,0
+
[
µp Dθ E

1(P2φ)
]
|Σ#

n,0
.

(4.13)

By using the definition of the local DtN operators T jk, (4.13) leads to the following characterization.



4. Resolution of the half-guide problem 55

Proposition 4.4

The propagation operator P defined by (4.2) is the unique solution of the constrained Riccati
equation ∣∣∣∣∣∣

Find P ∈ L(L2(Σ#
n,0)) such that ρ(P) < 1 and

T 10P2 + (T 00 + T 11)P + T 01 = 0.

(4.14)

Proof. The proof is identical to the one for the elliptic Helmholtz equation [JLF06, Theorem 4.1].
We know from Proposition 4.1 that P has a spectral radius which is strictly less than 1. Moreover
(4.13) ensures that P satisfies the Riccati equation.

In order to prove the uniqueness, let us consider an operator P1 which satisfies (4.14). The function
defined cell by cell by

∀ φ ∈ L2(Σ#
n,0), ∀ ℓ ∈ N∗, U1(φ)(·+ ℓ #»en)|C#

0
= E0(Pℓ

1φ) + E1(Pℓ+1
1 φ),

solves (3.53) in each cell Cℓ and is continuous across each interface Σ#
n,ℓ, by definition (4.6), (4.7) of

E0 and E1. By Corollary 3.10, U1 is locally H1
θ in Ω#.

Moreover, since P1 satisfies (4.14), the directional derivative µpDθ U1 is continuous across each inter-
face. Thus, using Corollary 3.10, we deduce that U1 satisfies (3.53) in Ω#.

Furthermore, given that ρ(P1) < 1, Gelfand’s formula and the well-posedness of the cell problems
ensure that there exist constants c, ρ∗> 0, with ρ∗ < 1 such that, for ℓ ∈ N large enough,

∥U1(φ)∥H1
θ(C

#

ℓ ) ≤ c ρℓ∗ ∥φ∥L2(Σ#
n,0)

.

Hence U1(φ) belongs to H1
θ,per(Ω

#) and satisfies the half-guide problem (3.53). By well-posedness of
(3.53), U1(φ) and U+

θ (φ) coincide, and thus have the same trace on Σ#
n,1, that is P1φ = Pφ for any

φ ∈ L2(Σ#
n,0). ■

As a consequence, the propagation operator can be obtained by solving the Riccati equation in (4.14),
and by choosing the unique solution whose spectral radius is strictly less than 1. One important thing
to retain from the above is that both the propagation operator and the solution of the half-guide
problem only require the computation of E0, E1, and the operators T 00, T 10, T 01, and T 11, which
involve problems defined on a periodicity cell. However, the resolution of the constrained Riccati
equation (4.14) is not obvious at all. The properties of this equation are investigated in further details
in Section 4.4.

4.3 The DtN operator and the DtN coefficient

The goal of this part is to see how the half-guide problem and the local cell problems can be used to
compute the DtN coefficient λ+. We recall that

λ+ := −µθ(0)
du+θ
dx

(0).
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Therefore, it is natural to introduce the DtN operator Λ ∈ L(L2(Σ#
n,0)) defined by

∀ φ ∈ L2(Σ#
n,0), Λφ := −θn

[
µp Dθ U

+
θ (φ)

]
|Σ#

n,0
. (4.15)

This operator also has the following properties, whose proof is exactly identical to the one of Proposi-
tion 4.3.

Proposition 4.5

One has Λ∗ = Λ. Moreover, Λ and Λ + T 11 are invertible operators.

Taking the directional derivative of (4.8) (for ℓ = 0) on Σ#
n,0 and using the definition (4.9) of the local

DtN operators T 00 and T 10 leads to
Λ = T 00 + T 10P. (4.16)

Besides, one can apply the directional derivative Dθ to both sides of the link (3.59) between U+
θ and

u+θ , and use the oblique change of variables result (3.48), to obtain

a. e. y ∈ Rn+, Dθ Ũ
+
θ (φ̃)(y) = φ̃

(
sθ(y)

) du+sθ(y),θ
dx

(yn/θn). (4.17)

By multiplying this formula by µp and by evaluating it for y = (s, 0) so that sθ(y) = s, we obtain from
(4.15) that

Λφ(s) = θn λθ(s) φ(s), with λθ(s) := −
[
µs,θ

du+s,θ
dx

]
(0). (4.18)

Hence, Λ is a multiplication operator. We next deduce from (4.18) the DtN coefficient λ+.

Proposition 4.6

The function λθ : Rn−1 → C defined by (4.18) is continuous. Moreover, if φ ∈ Cper(Rn−1) is a
given function which satisfies φ(0) = 1, then we have

λ+ = λθ(0) =
1

θn
(Λφ)(0). (4.19)

Proof. Using Green’s formula, we have that for all s ∈ Rn−1

λθ(s) = as(u
+
s,θ, u

+
s,θ), with as(u, v) :=

∫
R+

(
µs,θ

du

dx

dv

dx
− ρs,θ ω

2 u v
)
.

The continuity of u 7→ as(u, u) results directly from the properties of the coefficients µp and ρp. More-
over, Proposition 3.17 ensures that the function s 7→ u+s,θ is continuous. Therefore, as the composition
of these two functions, λθ is also continuous.

If in addition φ is continuous, then Λφ is also continuous. Hence, (Λφ)(0) = θn λθ(0)φ(0) which
yields (4.19). ■

4.4 Spectral properties of the Riccati equation

We now present some properties regarding Equation (4.14). These properties will be exploited for the
numerical resolution of the Riccati equation, by constructing the operator P from its eigenpairs (this
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will be done in Section 5.3 after space discretization). For this reason, it is worhwhile to reformulate
a spectral version (Proposition 4.8) of the Riccati equation that would characterize these eigenpairs,
while taking into account the spectral radius constraint. This is precisely the purpose of this section.

Recall that T (P) = 0, where T is the bounded operator defined by

∀ X ∈ L
(
L2(Σ#

n,0)
)
, T (X) := T 10X2 + (T 00 + T 11)X + T 01. (4.20)

In the sequel, we will write T (λ) for T (λI). We begin with the following factorization lemma.

Lemma 4.7

Let P be the propagation operator defined by (4.2). For any number λ ∈ C,

T (λ) = (λP∗ − I) (Λ + T 11) (P − λ), (4.21)

where T 11 is defined by (4.9) and Λ is defined by (4.15).

Proof. Let λ ∈ C. Since the propagation operator satisfies T (P) = 0, one obtains that

T (λ) = T (λ)− T (P)

=
[
T 10(λ+ P) + T 00 + T 11

]
(λ− P)

= (λT 10 + Λ+ T 11) (λ− P), from (4.16). (4.22)

We use once again the fact that T (P) = 0 which, by the expression (4.16), is equivalent to T 01 =

−(Λ + T 11) P. By transposing this equation, and by taking the complex conjugate, one obtains that
[T 01]∗ = −P∗ (Λ + T 11)∗. Since

[
T 11

]∗
= T 11 and

[
T 01

]∗
= T 10 as ensured by Proposition 4.3, and

since Λ∗ = Λ from Proposition 4.5, it follows that

T 10 = −P∗ (Λ + T 11).

Inserting this expression of T 10 in (4.22) therefore leads to

T (λ) =
[
−λP∗ (Λ + T 11) + Λ + T 11

]
(λ− P) = (I − λP∗) (Λ + T 11) (λ− P).

which is the desired result. ■

The previous factorization lemma allows one to characterize the spectrum of the propagation operator
as follows.

Proposition 4.8

For any complex number λ, one has

λ ∈ σ(P) ⇐⇒ 0 ∈ σ
[
T (λ)

]
and |λ| < 1. (4.23)

Proof. Proving (4.23) amounts to showing that for any λ ∈ C such that |λ| < 1, P − λ is invertible if
and only if T (λ) is invertible. To this end, as T (λ) = (λP∗− I) (Λ+T 11) (P −λ) according to Lemma
4.7, it is sufficient to prove that (λP∗ − I) (Λ + T 11) is an invertible operator for any λ ∈ C, |λ| < 1.
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Proposition 4.5 ensures the invertibility of Λ + T 11 already. It thus remains to show that λP∗ − I is
invertible, which is the case when |λ| < 1.

Indeed, if λ = 0, then λP∗ − I = −I is obviously invertible. If λ ̸= 0, we use the fact that P and P∗

have the same spectrum. Hence, given that |1/λ| > 1 > ρ(P∗), it follows that 1/λ does not belong to
σ(P∗). In other words, P∗ − (1/λ) I is an invertible operator. ■

Remark 4.9. Note that the property (4.23) can be proved easily (and without Lemma 4.7) for the point
spectrum:

λ ∈ σp(P) ⇐⇒ 0 ∈ σp
[
T (λ)

]
and |λ| < 1. (4.24)

This property was already proved in [JLF06] for the Helmholtz equation. In this context, this was sufficient
since the operator P was compact, which is no longer the case here.

Finally, it is worth noting that the values λ ̸= 0 for which 0 ∈ σ
[
T (λ)

]
can be paired in the following

way.

Proposition 4.10

For any complex number λ ̸= 0, one has the following equivalence:

0 ∈ σ
[
T (λ)

]
⇐⇒ 0 ∈ σ

[
T (1/λ)

]
. (4.25)

Proof. Let λ ∈ C∗. From the properties of the local DtN operators (see Proposition 4.3), we deduce
that

[T (λ)]∗ = λ2 T 01 + λ(T 00 + T 11) + T 10 = λ2 T (1/λ). (4.26)

The operators T (λ) and [T (λ)]∗ have the same spectrum, hence the result. ■

Remark 4.11. As Proposition 4.10 shows, the values λ ̸= 0 for which

0 ∈ σ
[
T (λ)

]
come by pairs (λ, λ−1). From a numerical point of view, it suffices to choose λ such that |λ| < 1 and
discard λ−1.

4.5 Spectral properties of the propagation operator

This section, contrary to Section 4.4 is not related to the construction of our numerical method; it
is of theoretical interest. On one hand, the result of this section, that is Proposition 4.12, is useful
for interpreting some of the numerical results in Section 5.5.c. On the other hand, it emphasizes
the differences between the spectral properties of P, and the ones of the corresponding operator for
classical waveguide problems. For the elliptic Helmholtz equation, P is compact (see [JLF06, Theorem
3.1]) and its spectrum hence consists only in isolated eigenvalues which accumulate to 0. However,
the picture is completely different in this case, because the spectrum has no isolated points.

One useful way to study the properties of the propagation operator (especially its spectrum) is through
an analytic formula: by evaluating the link (3.60) between U+

θ and u+θ for x = 1/θn and s ∈ Rn−1, P
can be expressed for all φ in L2(Σ#

n,0) as follows:

Pφ(s) = pθ(s) φ̃
(
s− δ

)
, with pθ(s) := u+s−δ,θ(1/θn) and δ := θ̂ /θn ∈ Rn−1. (4.27)



4. Resolution of the half-guide problem 59

Note that since θ is an irrational vector, δ is also an irrational vector.

The properties of the mapping s 7→ u+s,θ stated in Proposition 3.17 imply that the fonction pθ is
continuous and 1-periodic in each direction.

Operators that can be written under the form (4.27) are known as weighted shift operators, and have
been studied for instance in [Ant12]. In particular, the spectral properties of P are given by the
following result.

Proposition 4.12

Let pθ : Σ#
n,0 → C be the function defined in (4.27). Then, pθ(s) ̸= 0 for all s in Σ#

n,0 and the
spectral radius of P is given by

ρ(P) = exp

(∫
Σ#

n,0

log |pθ(s)| ds
)
. (4.28)

Moreover, the spectrum of P is a circle of radius ρ(P).

This result can be found in [Ant12, Theorem 2.1] for n = 2. We give below the proof for n > 2, which
requires the following lemma (see Theorem 6.1 and Example 6.1 of [KN12]), known as a particular
case of Birkhoff’s ergodic theorem for continuous functions.

Lemma 4.13

Let ψ : Σ#
n,0 → C be continuous and 1–periodic in each direction. Let α ∈ Rn−1 be an irrational

vector. Then, we have the following uniform convergence:

lim
ℓ→+∞

∥∥∥1
ℓ

ℓ−1∑
m=0

ψ(· −mα)−
∫
Σ#

n,0

ψ
∥∥∥
∞

= 0.

Proof (Proof of Proposition 4.12). Let us first show by contradiction that pθ or equivalently the
function s 7→ u+s,θ(1/θn) is nowhere vanishing. To do so, we use an argument of unique continuation.
In fact, assume that there exists s ∈ Σ#

n,0 such that u+s,θ(1/θn) = 0. Then u+s,θ belongs to H1(1/θn,+∞)

and satisfies the problem

− d

dx

(
µs,θ

du+s,θ
dx

)
− ρs,θ ω

2 u+s,θ = 0, in (1/θn,+∞), and u+s,θ(1/θn) = 0.

From the well-posedness of this problem, it follows that u+s,θ = 0 in (1/θn,+∞). Therefore, by unique
continuation, one deduces that u+s,θ = 0 in R+, which contradicts the boundary condition u+s,θ(0) = 1.

We now establish the expression of the spectral radius ρ(P). One has ρ(P) = lim
ℓ→+∞

∥Pℓ∥1/ℓ from
Gelfand’s formula, and by induction, Pℓ can be expressed under the form

Pℓφ(s) = p
(ℓ)
θ (s) φ(s− ℓδ), with p

(ℓ)
θ (s) =

ℓ−1∏
m=0

pθ(s−mδ).

Since the translation operator φ 7→ φ(· − ℓδ) is isometric and bijective, the norm of Pℓ is equal to the
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norm of the multiplication operator φ 7→ p
(ℓ)
θ φ, that is ∥p(ℓ)θ ∥∞. Hence, given that pθ(s) ̸= 0 for all s,

one has

ρ(P) = lim
ℓ→+∞

∥∥∥ ℓ−1∏
m=0

pθ(· −mδ)
∥∥∥1/ℓ
∞

= lim
ℓ→+∞

exp
∥∥∥1
ℓ

ℓ−1∑
m=0

log
(
|pθ(· −mδ)|

)∥∥∥
∞

Since θ is an irrational vector, δ = θ̂/θn is also an irrational vector. Therefore, Lemma 4.13 can be
applied with α = δ, and ψ : s 7→ log |pθ(s)|, which is well-defined and continuous. Hence the spectral
radius is given by

ρ(P) =Mlog(pθ) := exp

(∫
Σ#

n,0

log |pθ(s)| ds
)
.

Let us now characterize the spectrum. To begin, note that the inverse of P is well-defined, since
pθ vanishes nowhere: for all φ ∈ L2(Σ#

n,0), P−1φ(s) := [pθ(s)]
−1 φ̃

(
s + δ

)
. Therefore, all the

computations above can be applied to P−1, thus yielding

ρ(P−1) =Mlog(p
−1
θ ) =

1

Mlog(pθ)
=

1

ρ(P)

Since the spectrum of P is included in the annulus ρ(P−1)−1 ≤ |z| ≤ ρ(P) (this is true for any opera-
tor), it follows that σ(P) is included in the circle |z| = ρ(P) =Mlog(pθ).

Conversely, for k ∈ Zn−1, let Sk be the multiplication operator by s ∈ Rn−1 7→ exp(2iπ k ·s). From the
expression (4.27) of the propagation operator, we obtain that

Sk P S−1
k = e2iπ k · δ P.

The operators P and e2iπk · δ P are similar, and thus have the same spectrum. Now consider an element
λ0 of σ(P). Then, |λ0| = Mlog(pθ), and λk := e2iπk · δ λ0 also belongs to σ(P) for all k ∈ Zn−1. Since
δ is irrational, we have from Kronecker’s theorem (Theorem II–2.8) that the set {λk, k ∈ Zn−1} is
dense in the circle |z| = |λ0| = Mlog(pθ). Consequently, this whole circle is included in the spectrum,
since the latter is a closed set. ■

5 Resolution algorithm and discretization issues for n = 2

In order to compute the solution of Equation (1.1), the previous sections provide an algorithm which
sums up as follows:

1. Compute the solution u+θ of (1.8) and the DtN coefficient λ+ defined by (1.7) using the following
procedure:

(a). for any boundary data φ ∈ L2(Σ#
n,0), compute the solutions E0(φ), E1(φ) of the local cell

problems (4.6);

(b). compute the local DtN operators (T 00, T 01, T 10, T 11), defined by (4.9)–(4.10);

(c). compute the propagation operator P as the unique solution of the constrained Riccati equa-
tion (4.14);

(d). using an arbitrarily chosen boundary data φ ∈ Cper(Rn−1) which satisfies φ(0) = 1,

• from (4.8), construct the solution U+
θ of the half-guide problem cell by cell;

• deduce the half-line solution u+θ via the formula (3.61);
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(e). compute the DtN operator Λ defined by (4.16), and deduce λ+ from (4.19).

2. Compute the solution u−θ of (1.8) and the associated DtN coefficient λ− defined by (1.7) using ex-
actly the same procedure as in Step 1 (but independently from Step 1).

3. Finally, solve the interior problem (1.9) in (−a, a), and extend the solution everywhere
using (1.10), as well as Step 1 and Step 2.

Since this algorithm is defined at a continuous level, it has to be discretized in order to be imple-
mented. For convenience sake, the quasiperiodicity order is set to n = 2. The most original aspects
of the algorithm are the steps (1.a)–(1.d), and the rest of this section focuses on the discretization of
these four steps. We present in Sections 5.1 and 5.2 two different methods that are linked to a choice
of discretization of the step (1.a), which influences the implementation of the steps (1.b) and (1.d).
The treatment of the step (1.c) is independent of this choice, and will be presented in Section 5.3.

per per per per

Figure 5: Two-dimensional mesh for the 2D method (left), and family of one-dimensional meshes for
the quasi-1D method (right)

5.1 A fully two-dimensional method

The first method is inspired from the resolution of the elliptic Helmholtz equation (see [Fli09] for
instance), and consists in solving directly the local cell problems on an unstructured mesh of the
periodicity cell C#

0 = (0, 1)2 (see Figure 5 on the left).

We start from a triangular mesh Th(C#
0 ) of C#

0 = (0, 1)2 with a mesh step h > 0. We assume that
this mesh is periodic, in the sense that one can identify the mesh nodes on the boundary yi = 0 with
those on yi = 1, for 1 ≤ i ≤ 2. In particular for i = 1, this condition allows us to handle the periodic
boundary conditions.

Now let Vh(C#
0 ) be the usual H1–conforming approximation by Lagrange finite elements of order

d > 0. We also introduce

Vh,per(C#
0 ) :=

{
V ∈ Vh(C#

0 ) / V |y1=0 = V |y1=1

}
as an internal approximation of H1

θ,per(C#
0 ). Finally, to approximate L2(Σ#

2,0) and L2(Σ#
2,1), we consider

the following subspaces:

∀ a ∈ {0, 1}, Vh,per(Σ
#
2,a) :=

{
Vh|Σ#

2,a
/ Vh ∈ Vh,per(C#

0 )
}
.

Since the mesh nodes on Σ#
2,0 and Σ#

2,1 can be identified to each other by periodicity of Th(C#
0 ), we

can also make the identification Vh,per(Σ
#
2,0) ≡ Vh,per(Σ

#
2,1) ≡ Vh,per(0, 1), as in the continuous case. Set

N := dimVh,per(0, 1), and consider a basis (φp)1≤p≤N .
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For any data φh ∈ Vh,per(0, 1), we denote by E0
h(φh), E

1
h(φh) ∈ Vh,per(C#

0 ) the discrete solutions defined
via the standard finite element approximation of the local cell problems (4.6)–(4.7) in the space
Vh,per(C#

0 ). (We omit the details.) In practice, one has to compute Ejh(φp), where (φp)1≤p≤N is a basis
of Vh,per(0, 1).

Similarly to the weak expression (4.10) of the continuous local DtN operators, the discrete local DtN
operators T jk

h ∈ L(Vh,per(0, 1)), j, k = 0, 1, are defined for any φh, ψh ∈ Vh,per(0, 1) as follows:∫
Σ#

n,0

T jk
h φh ψh :=

∫
C#
0

[
µp Dθ E

j
h(φh) Dθ E

k
h(ψh)− ρp ω

2 Ejh(φh) E
k
h(ψh)

]
. (5.1)

In practice, these operators are represented as N × N matrices Tjk whose components are given by
Tjkpq =

∫
Σ#

n,0
T jk
h φq φp, for p, q ∈ J1, NK.

Let φh ∈ Vh,per(0, 1) ⊂ Cper(R) such that φh(0) = 1. The computation of the propagation operator
Ph ∈ L(Vh,per(0, 1)) is presented in Subsection 5.3. Once this operator is determined, the solution of
the half-guide problem (3.53) can be approximated with the function defined cell by cell by

∀ ℓ ∈ N, U+
θ,h(φh)(·+ ℓ #»en)|C#

0
:= E0

h(Pℓ
h φh) + E1

h(Pℓ+1
h φh).

Finally, a suitable approximation of the solution of the half-line problem 3.1 is provided by

∀ x ∈ R, u+θ,h(x) := U+
θ,h(φ)(θ x).

5.2 A quasi one-dimensional method

Though easy to implement, the two-dimensional approach described in the previous section does
not exploit the fibered properties of the directional derivative Dθ . However, the periodic half-guide
problem can be seen as a concatenation in a certain sense of one-dimensional half-line problems. This
fibered structure is the core of the method presented in this section.

5.2.a. Presentation. For any s ∈ R, we consider the 1D cell problems in H1(0, 1/θ2):∣∣∣∣∣∣∣∣∣∣
− d

dx

(
µs,θ

dejs,θ
dx

)
− ρs,θ ω

2 ejs,θ = 0, in (0, 1/θ2) := Iθ,

e0s,θ(0) = 1 and e0s,θ(1/θ2) = 0,

e1s,θ(0) = 0 and e1s,θ(1/θ2) = 1.

(5.2)

Then, by analogy with Proposition 3.18, one easily shows that the local cell problems are concatena-
tions of one-dimensional cell problems (up to periodicity), in the following sense.

Proposition 5.1

For any boundary data φ in L2(0, 1), the solutions E0(φ) and E1(φ) of the local cell problems
(4.6) are given by

a. e. y ∈ C#
0 , Ej(φ)(y) = φ̃

(
sθ(y) + j δ

)
ejsθ(y),θ

(
y2
θ2

)
, (5.3)
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with δ := θ1/θ2, where ejs,θ denotes the solution of the cell problems (5.2), and where φ̃ denotes
the periodic extension of φ on R, defined by (3.31).

Proposition 5.1 also highlights the structure of the local DtN operators. To see this, let us introduce
the local DtN functions tjkθ defined for j, k = 0, 1, by

∀ s ∈ R, tjkθ (s) := (−1)k+1θ2

[
µs,θ

dejs,θ
dx

](
k

θ2

)
. (5.4)

Note that by periodicity of µp and ρp, the maps s 7→ ejs,θ and tjkθ are 1–periodic.

By applying the directional derivative operator Dθ to (5.3), and by using the relationship between
Dθ E

j(φ) and dejs,θ/dx given by (3.51), it follows that the local DtN operators defined by (4.9) are
weighted translation operators, similarly to the propagation operator.

Proposition 5.2

The operators T jk can be written for φ ∈ L2(0, 1) and s ∈ (0, 1) as

T 00φ(s) = t00θ (s) φ̃(s) and T 10φ(s) = t10θ (s) φ̃(s+ δ),

T 11φ(s) = t11θ (s− δ) φ̃(s) and T 01φ(s) = t01θ (s− δ) φ̃(s− δ),
(5.5)

with δ := θ1/θ2 and where φ̃ denotes the periodic extension of φ on R, defined by (3.31).

Finally, the solution u+θ of the half-line problem (3.1) can be computed directly from ejs,θ and from the
propagation operator. In fact, given φ ∈ Cper(Σ

#
n,0) such that φ(0) = 1, taking formally the trace along

θ R in (4.8) leads to

∀ ℓ ∈ N, u+θ (·+ ℓ/θ2)|Iθ = (P̃ℓφ)(ℓ δ) e0ℓδ,θ + (P̃ℓ+1φ)((ℓ+ 1) δ) e1ℓδ,θ, (5.6)

where P̃ℓφ is the periodic extension of Pℓφ, ℓ ∈ N. The proof is similar to the one of (4.8).

Expressions (5.3), (5.5), and (5.6) form the basis of the quasi one-dimensional or quasi-1D strategy,
which consists in approximating the solutions ejs,θ as well as the functions tjkθ and finally the local DtN
operators T jk. Then once the propagation operator is computed by solving the constrained Riccati
equation (4.14), the solution u+θ may be constructed directly cell by cell using (5.6).

5.2.b. Discretization. The quasi-1D approach requires two distinct approximate spaces associated to
the transverse and the θ–oriented directions (see Figure 5 on the right).

Transverse direction. We begin with a one-dimensional mesh Th(0, 1) of Σ#
2,0 ≡ (0, 1) with a mesh

step h > 0. Let Vh(0, 1) be the approximation space of H1(0, 1) by Lagrange finite elements of order
d > 0. We denote by (φp)0≤p≤N the usual nodal basis, which satisfies in particular φp(sq) = δp,q, where
(sp)0≤p≤N are usual interpolation points (they include the mesh vertices) with 0 = s0 < · · · < sN = 1.
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Then an internal approximation of L2(0, 1) is

Vh,per(0, 1) := Span{φ0 + φN , φ1, . . . , φN−1},

which is chosen so that Vh,per(0, 1) ⊂ Cper(0, 1). In particular, from the definition of the basis functions
φi, one has the following decomposition

∀φh ∈ Vh,per(0, 1), φh =
N∑
p=0

φh(sp)φp, with φh(s0) = φh(sN ). (5.7)

θ–oriented direction. Let Thθ(Iθ) denote a mesh of the line segment Iθ with a mesh step hθ > 0. Set
Vhθ(Iθ) as the approximation space of H1(Iθ) by Lagrange finite elements of order dθ > 0 and define
Vhθ ,0(Iθ) := Vhθ(Iθ) ∩H1

0 (Iθ).

The approximation of e0s,θ and e1s,θ can be seen as a two-step process. First, for any s ∈ R, consider the

solution ejs,θ,hθ of the discrete variational formulation associated to (5.2).

In practice, the solution ejs,θ,hθ can only be computed for a finite number of s ∈ (0, 1). This is where
the discretization in the transverse direction comes into play: given x ∈ Iθ, the function s 7→ ejs,θ,hθ(x)

shall be interpolated in Vh,per(0, 1). The interpolation process requires to compute the discrete solution
ejs,θ,hθ only for s = sp, p ∈ J0, N − 1K. Then, using the decomposition formula (5.7), ejs,θ shall be
approximated by

∀ (s, x) ∈ (0, 1)× Iθ, ejs,θ,h(x) =
N∑
p=0

ejsp,θ,hθ(x) φp(s), with h = (h, hθ). (5.8)

where ej0,θ,hθ = ej1,θ,hθ (because ejs,θ is 1–periodic with respect to s).

From the solutions ejs,θ,h, we introduce the discrete local DtN functions

∀ s ∈ (0, 1), tjkθ,h(s) := θn

∫ 1/θn

0

(
µs,θ

dejs,θ,h
dx

deks,θ,h
dx

− ρs,θ ω
2 ejs,θ,h e

k
s,θ,h

)
,

which are inspired from the weak expression (5.4) of the local DtN functions tjkθ . Then, by analogy
with (5.1), we define the discrete DtN operators T jk

h ∈ L(Vh,per(0, 1)) for any φh, ψh ∈ Vh,per(0, 1) as
follows: ∫

Σ#
n,0

T jk
h φh ψh :=

∫ 1

0
tjkθ,h(s− k δ) φ̃h(s+ (j − k) δ) ψh(s) ds, (5.9)

with φ̃h being the periodic extension of φh to R, defined by (3.31). These discrete operators, when
computed for φh, ψh being the basis functions of Vh,per(0, 1), are represented byN×N matrices, where
N = dimVh,per(0, 1). The integrals which appear in (5.9) are evaluated in practice using a specifically
designed quadrature rule whose description is omitted here.

Finally, let φh ∈ Vh,per(0, 1) ⊂ Cper(R) such that φh(0) = 1. Then using (5.6), the solution of the
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half-line problem (3.1) can be approximated with the function defined cell by cell by

∀ ℓ ∈ N, u+θ,h(·+ ℓ/θ2)|Iθ = (Pℓ
hφh)(ℓ δ) e

0
ℓδ,θ,h + (Pℓ+1

h φh)((ℓ+ 1) δ) e1ℓδ,θ,h.

where Ph ∈ L(Vh,per(0, 1)) corresponds to a suitable discrete RN×N approximation of P. The compu-
tation of such an operator is the subject of the next subsection.

5.3 Approximation of the propagation operator

In order to find a suitable approximation Ph ∈ L(Vh,per(0, 1)) of the propagation operator P, it is
natural to introduce the discrete constrained Riccati equation∣∣∣∣∣∣

Find Ph ∈ L(Vh,per(0, 1)) such that ρ(Ph) < 1 and Th(Ph) = 0, where

Th(Ph) := T 10
h P2

h + (T 00
h + T 11

h )Ph + T 01
h ,

(5.10)

and where (T 00
h , T 01

h , T 10
h , T 11

h ) are obtained via one of the methods described in Sections 5.1 and 5.2
(cf. (5.1) or (5.9)). Using the same arguments as for the elliptic Helmholtz equation [Fli09], it can be
proved that this discrete equation admits a unique solution.

In order to solve (5.10), two methods have been proposed in [JLF06]: a spectral decomposition method,
and a modified Newton method. Here, we only describe the spectral approach.

The spectral decomposition method consists in characterizing Ph by means of its eigenpairs (λi, ψi)

of Ph. Doing so however raises an important question: is Ph completely defined by its eigenpairs?
This is equivalent to wondering if Ph is diagonalizable or not. The diagonalizability of Ph is an open
question, but for the sake of simplicity, we will assume in the sequel that this is the case, namely

The family of eigenfunctions (ψi)1≤i≤N forms a basis of Vh,per(0, 1).

In practice, this is the situation that we always have encountered. Moreover, in the case where this
assumption fails to be true, one can still adapt the method, and recover Ph through a Jordan decom-
position. (See [Fli09, Section 2.3.2.3] for more details.)

The spectral approach relies on the results presented in Section 4.4, which remain true for the discrete
equation. In particular, by analogy with Proposition 4.8, (λh, ψh) ∈ C × Vh,per(0, 1) is an eigenpair of
Ph if and only if it satisfies

Th(λh)ψh = 0, with ψh ̸= 0 and |λh| < 1.

Solving the Riccati equation hence comes down to solving a quadratic eigenvalue problem:∣∣∣∣∣∣
Find (λh, ψh) ∈ C × Vh,per(0, 1) such that ψh ̸= 0, |λh| < 1 and

λ2h T 10
h ψh + λh (T 00

h + T 11
h )ψh + T 01

h ψh = 0.

(5.11)

If one sets N = dimVh,per(0, 1), then (5.11) can be reduced to a 2N × 2N linear eigenvalue problem
in a classical way [TM01], thus yielding 2N eigenvalues. In order to pick the N eigenvalues of the
propagation operator, we need a criterion. To do so, note that with the 2D or the quasi-1D method,
the properties of the local DtN operators (Proposition 4.3) remain preserved for the discrete operators
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T jk
h . Hence Proposition 4.10 admits the following discrete version:

Ker Th(λh) ̸= {0} ⇐⇒ Ker Th(1/λh) ̸= {0}.

Therefore, as already expected with Remark 4.11, the solutions of (5.11) can be grouped into pairs
(λh, 1/λh), where 0 < |λh| < 1. Consequently, in order to compute Ph, one can solve (5.11) (using for
instance linearization techniques), and choose the N eigenpairs (λh, ψh) which satisfy |λh| < 1.

5.4 The DtN coefficient

Finally, consider a function φh ∈ Vh,per(0, 1) ⊂ Cper(R) which satisfies φh(0) = 1. Then by analogy
with (4.16), and in the spirit of Proposition 4.6, we define the discrete DtN operator and the discrete
DtN coefficient as follows:

Λh = T 10
h Ph + T 00

h and λ+h =
(Λhφh)(0)

θ2
,

where T 10
h and T 00

h are computed using one of the methods presented in Sections 5.1 and 5.2, and
where Ph is the solution of the discrete Riccati equation (5.10).

5.5 Numerical results

We present some numerical results to validate the method, to illustrate its efficiency, and to com-
pare the multi-dimensional and the quasi one-dimensional methods in the case where the order of
quasiperiodicity is set to n = 2. Simulations will be carried out with the periodic coefficients µp and
ρp, defined for y = (y1, y2) ∈ R2 by

µp(y) = 1.5 + cos(2πy1) cos(2πy2) and ρp(y) = 1.5 + 0.5 sin(2πy1) + 0.5 sin(2πy2).

We set θ = (cosπ/3, sinπ/3). As the ratio θ2/θ1 =
√
3 is irrational, θ is an irrational vector. For a = 1,

the source term f is the cut-off function

∀ x ∈ R, f(x) = exp
(
100

(
1− 1/(1− x2)

))
χ(−1,1),

and the local perturbations µi and ρi are defined as piecewise constants, so that the coefficients µ and
ρ of the model problem (1.1) are represented in Figure 6.

5.5.a. The half-line and the half-guide solutions. The model problem (1.1) is solved by computing
the solutions of the half-line problems (1.8), as well as the DtN coefficients λ±. In this part, only
results regarding the numerical resolution of Problem (3.1) are going to be presented on (a,+∞)

(with a = 0 for simplicity), as the problem set on (−∞,−a) provides the same overall results.

Error analysis. In order to validate the method, we introduce for L > 0 large enough the unique
function u+θ,L inH1(0, L) that satisfies Problem (3.1) on the truncated domain (0, L), with u+θ,L(L) = 0.
Also let ΩL := (0, 1)× (0, L), and for φ ∈ L2(Σ#

2,0), let U+
θ,L(φ) ∈ H1

θ(ΩL) denote the unique function
that satisfies (3.53) on ΩL, with U+

θ,L(φ)|y2=L = 0.

In presence of absorption, the solutions u+θ and U+
θ (φ) decay exponentially at infinity (see (3.57) and

(4.4)), and by studying the problems satisfied by u+θ,L − u+θ and U+
θ,L(φ)− U+

θ (φ), it can be proved as
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Figure 6: The locally perturbed quasiperiodic coefficients µ and ρ, and the source term f .

in [FG20] that there exist constants α, c > 0 such that for any L > 0,

∥u+θ,L − u+θ ∥H1(0,L) ≤ c e−α ImωL ∥u+θ ∥H1(0,L)

∥U+
θ,L(φ)− U+

θ (φ)∥H1
θ(ΩL)

≤ c e−α ImωL ∥U+
θ (φ)∥H1

θ(ΩL)
.

(5.12)

with α =
√
ρ−/µ+. In particular, if L is chosen large enough, then u+θ,L and U+

θ,L(φ) can be viewed as
suitable approximations of u+θ and U+

θ (φ), and thus can serve as reference solutions. In the upcoming
results, to make the truncation errors in (5.12) negligible with respect to the errors induced by the
numerical method, we choose L≡ L(ω) so that

exp
(
−
√
ρ−/µ+ Imω L

)
≤ 10−10. (5.13)

The corresponding solutions u+θ,L and U+
θ,L(φ), which will be denoted by u+ref and U+

ref(φ) respectively,
are computed via P1 Lagrange finite elements. The mesh step h = 5 × 10−4 is taken small enough to
guarantee a suitable approximation even for the largest values of the frequency Reω (cf. [IB95]).

In the following, the boundary data is fixed to φ = 1, and is omitted in the notation of U+
θ and U+

ref.
Also, we only plot relative errors corresponding to the 1D solution, as we have checked that the errors
for the 2D solution behave similarly. In Figure 7, the relative error

ε(u+θ ) :=
∥u+θ,h − u+ref ∥H1(0,4/θ2)

∥u+ref ∥H1(0,4/θ2)

(5.14)

is represented with respect to the mesh step h, and for both the 2D and the quasi-1D method (with
hθ = h for the quasi-1D method). The solutions are computed using Lagrange finite elements of
degree 1.
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Figure 7: Relative error in H1 norm of the half-line solution for different values of ω.

One sees that the errors tend to 0 as h at least, as expected for P1 Lagrange finite elements. With
the quasi-1D method however, ε(u+θ ) behaves as h2. This is a special superconvergence phenomenon,
which is probably due to the fact that the problems solved in practice with the quasi-1D method are
one-dimensional. Note also that in general, the quasi-1D method appears to be more accurate than
the 2D method.

For a fixed mesh step, the relative error increases with the real frequency Reω. This is a well-known
particularity of the Helmholtz equation: since Reω represents the spatial frequency of the time-
harmonic waves, the discretization parameter h has to be adapted in order to take the oscillations
into account.

Representation of the half-guide solution. The half-guide solution is represented in Figure 8 for
different values of ω, when φ = 1. As expected, U+

θ oscillates more when Reω increases (Figures
8a–8b), and it propagates more as Imω decreases (Figures 8b–8c).

Dependence with respect to the boundary data. The goal of this part is to see how the half-line and
the half-guide solutions depend on the boundary data φ. To do so, we choose three different datas:

φ1(s) = 1, φ2(s) = cos(2πs), and φ3(s) = 1− 1[1/3,2/3](s). (5.15)

We set ω = 8 + 0.25 i, and we display results obtained with the quasi-1D method, knowing that the
2D method yields the same conclusions. The computations are carried out using P1 Lagrange finite
elements, with mesh steps h = hθ = 2× 10−3.
As expected, and as Figures 10 and 9a–9c show, the aspect of half-guide solution changes drastically
with respect to the boundary data, whereas the half-line solution looks invariant.

5.5.b. The whole line problem. The solutions u±θ of the half-line problems (1.8) allow one to com-
pute the DtN coefficients λ±, to solve (1.9), and then to compute the solution u of Problem (1.1) using
(1.10). Recall that the coefficients µ, ρ, and the source term f are shown in Figure 6. The solution of
(1.1) is represented in Figure 11 for different values of ω.
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Figure 8: Real part of the half-guide solution computed using the quasi-1D approach, with P1 Lagrange
finite elements and h = 2× 10−3, and for different values of ω.

0 0.5 1
0

1

2

3

4

−1

0

1

0 0.5 1
0

1

2

3

4

−1

0

1

0 0.5 1
0

1

2

3

4

−1

0

1

(a) φ1 (b) φ2 (c) φ3

Figure 9: Real part of the half-guide solution computed using the quasi-1D approach, with P1 Lagrange
finite elements and h = 2× 10−3, and for different values of φ.

5.5.c. About the influence of the absorption on the accuracy. We come back to the numerical
resolution of Problem (3.1), and we study the convergence of the 2D and quasi-1D methods depending
on the absorption, especially when it tends to 0. As in Section 5.5.a, the solutions are computed with
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Figure 10: Real part of the half-line solution computed using the quasi-1D approach with P1 Lagrange
finite elements, h = 2× 10−3, and for different φ.
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Figure 11: Real part of the solution of (1.1) computed using the quasi-1D approach with P1 Lagrange
finite elements, h = 2× 10−3, and for different ω.

Lagrange finite elements of degree 1. The relative error ε(u+θ ) defined (5.14) is represented in Figure
12 for both the 2D and the quasi-1D method, and for different values of Imω.

As Figure 12 shows, the error deteriorates with Imω. It would mean that the numerical method
becomes less efficient as the absorption decreases. We believe that this issue is closely related to the
well-posedness of the local cell problems with Dirichlet boundary conditions when Imω = 0. In fact,
for the elliptic Helmholtz equation, it is known (see [Fli09, Section 3.2.1.1] for instance) that the
local cell problems are well-posed except for a countable set of frequencies which correspond to the
eigenvalues of the associated differential operator. In our case however, as the differential operator
has a non-elliptic principal part, it also has a continuous spectrum, and one can show that when µp
and ρp are non-constant, the local cell problems are well-posed only for frequencies in a bounded set
(that can even be empty). An alternative to avoid this problem is to use Robin-to-Robin operators
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Figure 12: Relative error in H1 norm of the half-line solution for different values of ω.

instead of the DtN operators, which would involve solving well-posed local cell problems with Robin
boundary conditions, as it is done in [Fli09] for periodic media. This will be done in the next chapter.

5.5.d. About the spectral approximation of the propagation operator. As explained in Subsection
5.3, the discrete propagation operator Ph is computed by means of its eigenpairs. In this section, the
eigenvalues of Ph are compared with the spectrum of the exact propagation operator which, according
to Proposition 4.12, is a circle of radius

Mlog(pθ) = exp
(∫ 1

0
log |pθ(s)| ds

)
, with pθ(s) = u+s−δ,θ(1/ sin θ2).

To compute this radius, u+s,θ is approximated by the unique function u+s,θ,L that satisfies (3.56) on
a truncated domain (0, L), with u+s,θ,L(L) = 0. One can show similar estimates to (5.12), and if L is
chosen large enough (for instance, if L satisfies (5.13)), then u+s,θ,L can be used as a reference solution.
In practice, u+s,θ,L is computed for several s, and finally the integral that defines Mlog(pθ) is evaluated
using a rectangular quadrature rule.

The spectra of Ph and P are shown in Figure 14 for ω = 8 + 0.25 i, and for different values of the
discretization parameter h (with hθ = h for the quasi-1D method). Figure 13 represents the number
Nh of eigenvalues of Ph that are close by 5% to σ(P), namely

Nh = #

{
λh ∈ σ(Ph)

/ ∣∣∣∣ |λh| −Mlog(pθ)

Mlog(pθ)

∣∣∣∣ ≤ 5%

}
. (5.16)

In Figure 13, one sees that Nh increases with 1/h, which means that more and more eigenvalues of
Ph are close to σ(P) when h decreases. In other words, a finer discretization leads as expected to
a better approximation of the spectrum. The number Nh of such eigenvalues also seems to increase
linearly with 1/h (up to subsequences for the quasi-1D method). Finally, note that Nh is higher with
the quasi-1D method than with the 2D method.

As Figure 14 shows, the eigenvalues of Ph are all included in the disk of radius ρ(P), but one observes
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Figure 14: Eigenvalues of the discrete propagation operator (circle-shaped markers) compared to the
spectrum of the exact propagation operator (circle in dashed line) for ω = 8+ 0.25 i, and for different
values of the discretization parameter.

some spectral pollution. This is a classical phenomenon when one approximates the spectrum of an
operator which is neither compact nor self-adjoint. What is striking however, is that the pollution
behaviours are very different depending on the method used.

On one hand, the eigenvalues obtained with the 2D approach tend to accumulate to 0. A likely
explanation for this phenomenon is that solving the local cell problems on 2D meshes does not take
their directional structure into account. Since the location of the eigenvalues of Ph is similar to the
one obtained in the elliptic case, for which P is compact (see [JLF06, Theorem 3.1]), we believe the
2D method somehow regularizes the half-guide problem (3.53) by introducing an elliptic (discrete)
approximation of the corresponding differential operator.

On the other hand, with the quasi-1D approach, the spectrum of Ph “oscillates” as the discretization
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parameter h tends to 0. This phenomenon has to do with the particular nature of P which is a weighted
translation operator. We strongly suspect that one can extract a subsequence (Ph′) whose spectrum
converges towards σ(P) in a sense to be defined precisely, as it is suggested by the peaks in Figure 13.
The investigation of this assumption as well as the construction of such a subsequence are subject to
ongoing works.

With both approaches, it has been observed numerically that the eigenfunctions associated to the
spurious eigenvalues are highly oscillating functions, thus badly approximated by the discretization,
whereas the components of the half-guide solution on these eigenfunctions are very small. This might
explain why the spectral pollution does not have a visible influence on the approximation of the half-
guide and the half-line solutions, as the errors in Figure 7 seem to suggest.

6 Perspectives

A numerical method has been proposed to solve the Helmholtz equation in 1D unbounded quasi-
periodic media. Using the presence of absorption, we justified that this equation could be lifted onto
a higher-dimensional problem which, in turn, can be solved using a Dirichlet-to-Neumann approach.
For the discretization, we presented a multi-dimensional method, as well as a so-called quasi one-
dimensional method. As shown by numerical simulations, both methods provide a suitable approx-
imation of the solution as long as there is absorption. However, the quasi-1D method proved to be
more efficient than the 2D method, as it takes the anisotropy of the problems involved into account.

The method presented opens up numerous perspectives, and raises multiple questions that are subject
to ongoing works. For instance, it would be interesting to approximate efficiently the spectrum of
the propagation operator, even though the spectral pollution seems to have no major impact on the
efficiency of the overall method. Another key extension concerns the case where the absorption tends
to 0. This extension, which will be presented in the next chapter, involves replacing the DtN method
by a Robin-to-Robin method as explained in Section 5.5.a, and finding a way to characterize the
propagation operator.
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1 Presentation

1.1 The model problem and assumptions on the coefficients

We consider the Helmholtz equation

− d

dx

(
µ
du

dx

)
− ρω2 u = f in R, (P)

where

• the coefficients µ and ρ have positive upper and lower bounds:

∃ µ±, ρ±, ∀ x ∈ R, 0 < µ− ≤ µ(x) ≤ µ+ and 0 < ρ− ≤ ρ(x) ≤ ρ+, (1.1)

and they are local perturbations of continuous quasiperiodic functions of order 2 (see below for
the definition), namely µθ and ρθ:

∃ al < ar, supp(µ− µθ) ⊂ (al, ar) and supp (ρ− ρθ) ⊂ (al, ar); (1.2)

• the source term f belongs to L2(R) and is assumed to have a compact support, which can be
supposed to be (al, ar) without any loss of generality:

supp f ⊂ (al, ar). (1.3)

Here and in what follows the superscript “l”, resp. “r”, stands for “left”, resp. “right”.

The functions µθ and ρθ are supposed to be quasiperiodic of order 2, meaning (see Definition II–1.1)
that there exist functions µp, ρp : R2 → R which are continuous and 1–periodic with respect to each
variable, and a vector θ := (θ1, θ2) ∈ R2 such that

∀ x ∈ R, µθ = µp(θ x) and ρθ = ρp(θ x).

In order to simplify the presentation, we choose al and ar such that

al θ2 ∈ Z and ar θ2 ∈ Z.

The interest of this assumption lies in the fact that

µp|(0,1)×(ar θ2,ar θ2+1) = µp|(0,1)2 = µp|(0,1)×(al θ2,al θ2+1),

and similarly for ρp.

Remark 1.1. The present study can be extended without difficulty to the case where

• µθ and ρθ are quasiperiodic functions of order n > 2: the periodic extensions µp, ρp : Rn → R would
depend on n variables and the cut direction θ would be a vector of dimension n.
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• µ (resp. ρ) coincides with a different quasiperiodic function in each of the half-lines Il := (−∞, al)

and Ir := (ar,+∞):

∀ j ∈ {l, r}, ∀ x ∈ Ij, µ(x) = µjp(θ
j x) and ρ(x) = ρjp(θ

j x),

where µjp, ρ
j
p ∈ C 0

per(R
nj) with nj > 1, and θj ∈ Rn

j
for j ∈ {l, r}.

It is easy to check that if the ratio δ := θ1/θ2 is rational, then µθ and ρθ are q/θ2–periodic, with q being
the denominator of δ. In this chapter, we shall assume the opposite, that is,

δ :=
θ1
θ2

/∈ Q , (1.4)

so that µθ and ρθ are not periodic in general.

As δ is irrational, Kronecker’s approximation theorem II–2.8 ensures that the functions µp and ρp are
entirely determined by their restrictions on the line Rθ. In particular, µp (resp. ρp) has the same lower
and upper bounds as µ (resp. ρ).

An important tool involved in our study is the notion of Diophantine condition, and more particularly
of irrationality measure studied in Section II–3. We recall (see Definition II–3.4) that

∀ δ ∈ R \ Q, η(δ) := sup

{
ν > 0

/
∃ (pn, qn) ∈ N2, (pn, qn) → +∞,

∣∣∣∣δ − pn
qn

∣∣∣∣ ≤ 1

qνn

}
. (1.5)

Roughly speaking, η(δ) is an indicator on “how far the irrationnal δ is close to rationals”. By Dirichlet’s
theorem (see also Proposition II–3.7), we have

∀ δ ∈ R \ Q, η(δ) ≥ 2.

The algebraic irrationals (for instance
√
2) have a measure of irrationality equal to 2, which means that

they are somehow the irrationals which are the furthest from the rationals (see Example II–3.10 and
Table II.1 for other examples). On the other hand, numbers whose measure of irrationality is infinite
are called Liouville numbers. The set of Liouville numbers will play an important role in our study.
We note from Kintchine-Groshev’s theorem (Proposition II–3.2) that this set has Lebesgue measure 0.
Moreover, if δ is not a Liouville number, then Proposition II–3.6 ensures that

∀ ν > η(δ), ∃ c ≡ c(δ, ν) > 0
/

∀ (p, q) ∈ Z × N∗,

∣∣∣∣δ − p

q

∣∣∣∣ > c

qν
. (1.6)

We say that θ satisfies a Diophantine condition when δ is not a Liouville number.

1.2 Theoretical difficulties and limiting absorption principle

Equation (P) is encountered when solving the linear wave equation with a source term that is har-
monic in time f(x) e−iωt, and when one is looking for a time-harmonic solution u(x) e−iωt. For real
frequencies ω, the well-posedness of this problem is unclear. This is linked to the spectrum of the
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non-negative self-adjoint operators

D(A) :=
{
u ∈ H1(R)

/
µ
du

dx
∈ H1(R)

}
and Au := −1

ρ

d

dx

(
µ
du

dx

)
∀ u ∈ D(A), (1.7)

and

D(Aθ) :=
{
u ∈ H1(R)

/
µθ

du

dx
∈ H1(R)

}
and Aθu := − 1

ρθ

d

dx

(
µθ

du

dx

)
∀ u ∈ D(Aθ). (1.8)

By Weyl’s theorem [Kat13], we know that the spectrum of A denoted σ(A) is the union of its discrete
spectrum denoted σd(A) and the spectrum of Aθ denoted σ(Aθ):

σ(A) = σd(A) ∪ σ(Aθ). (1.9)

If ω2 /∈ σ(A), then A−ω2 is invertible and for any f ∈ L2(R), there exists a unique solution u ∈ D(A)

to (P). When ω2 ∈ σd(A), one could not expect existence and uniqueness of a solution to (P) unless
f is orthogonal to the kernel of A − ω2. Finally, if ω2 ∈ σ(Aθ), the problem cannot be well-posed
in H1(R). In fact, on one hand, one expects that the physical solution u, if it exists, may not belong
to H1(R) due to possible wave propagation phenomena and a lack of decay at infinity. On the other
hand, uniqueness of a solution in H1

loc(R) does not hold in general. In this case, one needs a so-called
radiation condition that imposes the behaviour of the solution at infinity. Such a condition can be
obtained in practice using the limiting absorption principle, which consists in

• adding some absorption denoted ε – that is replacing ω2 by ω2 + iε in (P) (see Remark 1.2);

• solving the problem with absorption, well-posed in H1(R):

− d

dx

(
µ
duε
dx

)
− ρ (ω2 + iε)uε = f in R; (Pε)

• studying the limit of the solution uε as the absorption ε tends to 0.

Remark 1.2. Unlike the other chapters, we do not assume that Imω > 0, but rather that Im(ω2) > 0.
However, since we are interested in the case where ω ≥ 0, these two assumptions are equivalent.

The limiting absorption principle is a classical approach to study time-harmonic wave propagation
problems in unbounded domains; see for instance [Wil66; Agm75; Eid86]. More recently, it has been
successfully applied for locally perturbed periodic media [JLF06; Hoa11; Rad15; KL18a]. To our
knowledge, it is an open question for quasiperiodic media. Indeed, the structure of the spectrum of
Aθ could be intrincate ([Sim82; Las07]): the spectrum has in general an absolutely continuous part
(as for periodic media) [Eli92; PF92], but it can also have embedded eigenvalues [Jec19; BK21] and
a singular continuous part [Pea78; Mos81; DMS94; JS94; Sim95; Del+96; SS96; FK02]. Moreover,
in the aforementioned works, it is highlighted that some parts of the spectrum could even be a Cantor
set, that is a closed set with no isolated points and with dense complement.

The objective of this chapter is to prove that the limiting absorption principle holds provided
some (indirect) assumptions on the frequency and the coefficients are satisfied. We also propose
a method to characterize and compute the physical solution. This is, as far as we know, the first result
on the limiting absorption principle for quasi-periodic media.
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1.3 Objectives of the work and outline

The method we have performed in Chapter III consists in restricting the problem (Pε) to the bounded
interval (al, ar) by constructing transparent boundary conditions of Dirichlet-to-Neumann (DtN) type,
featuring DtN coefficients defined thanks to problems set on the half-lines (−∞, al) and (ar,+∞).
To solve these problems, we have used the lifting approach, which consists in introducing 2D peri-
odic half-guide problems that can be solved using the solutions of local cell problems, as well as a
propagation operator, which satisfies a constrained Riccati equation.

Our goal is to make the absorption ε tend to 0 in the computation of the DtN coefficients, in order to
propose a limit problem set in the bounded interval (al, ar). If the DtN coefficients have a limit (under
maybe some assumptions on the frequency) then the limit problem set in (al, ar) will be Fredholm of
index 0 in the sense of the associated operator: uniqueness then implies existence. Moreover, we can
construct a limit solution on the whole line and show that it is indeed the limit of uε. This is exactly
what is done in [JLF06; Fli09; FJL21] for the Helmholtz equation with locally perturbed periodic
coefficients in dimension 1 or in waveguides.

However, this approach does not apply directly. Indeed, we show in Section 2 that in general, the
solutions of the local Dirichlet cell problems (III–4.6, III–4.7) (which are involved in the construction
of the DtN coefficients) have no limit when ε goes to 0, the limit Dirichlet cell problems being not well-
posed when ω2 lies in a semi-infinite interval of R+. This difficulty is directly linked to the fact that we
want to construct DtN coefficients. Constructing so-called Robin-to-Robin (RtR) coefficients allows
to circumvent this difficulty, as we show in Section 3. However, the construction of the associated
Robin half-guide solution is more involved than the one described in the previous Chapter for the
Dirichlet half-guide solutions, even if the underlying ideas are really similar. In Sections 3 and 4, we
explain how to solve the Robin half-guide problem in presence of dissipation (ε > 0). In Section 5,
links between spectra of some differential operators are established. This corresponds to a preliminary
section whose results will be used afterwards. Finally, under two main assumptions, we are able to
study the limit of the Robin half-guide solutions and the associated RtR coefficients in Section 6.
Section 7 provides some numerical results to illustrate the method.

Notation used throughout the chapter In what follows,

1. For all p, q ∈ N, p < q, we set Jp, qK := {j ∈ N / p ≤ j ≤ q}.

2. For i ∈ J1, 2K, we denote by #»e i the i-th unit vector from the canonical basis of R2. For any
elements y = (y1, y2) and z = (z1, z2) in R2, the Euclidean inner product of y and z is denoted
y · z := y1 z1 + y2 z2, and the associated norm is |y| := √

y · y.

3. We introduce C 0
per(R

2) as the space of continuous functions F : R2 → R that are 1-periodic
with respect to each variable, and C∞

0 (O) as the space of smooth functions that are compactly
supported in O ⊂ R2.

4. In any domain D ⊂ R2 of the form D = R× I, where I = (α, β), (α,+∞) or (−∞, β), the notion
of periodicity only makes sense with respect to y1 along which D is

D# := [0, 1]× I.
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Accordingly, we shall introduce the functional spaces of y1-periodic functions

C 0
per(D) :=

{
v ∈ C 0(D) / v(y + #»e 1) = v(y) ∀ y ∈ D

}
L2

per(D) :=
{
v ∈ L2

loc(D) / v(y + #»e 1) = v(y) for a. e. y ∈ D
}

As L2
per(D) is trivially isomorphic to L2(D#) via the restriction operator from D to D#, it is

naturally equipped with an Hilbert space structure with the L2(D#) inner product.

5. In the same way, for any line Γ := R × {b}, with b ∈ R, we shall set Γ# := (0, 1)× {b} and

L2
per(Γ) :=

{
v ∈ L2

loc(Γ) / v(y + #»e 1) = v(y), for a. e. y ∈ Γ
}
,

which we equip with an Hilbert space structure using the L2(Γ#) inner product. We will often
make implicitly the trivial identifications Γ ≡ R and L2

per(Γ) ≡ L2
per(R).

6. We define the half-space Ω := {y = (y1, y2) ∈ R2, y2 > 0} and the half-cylinder Ω# := (0, 1)×R+

in the following. Let us introduce also the sets given for a ∈ {0, 1} and for any i ∈ J1, nK by,

∀ a > 0, Σa# = {y ∈ Ω#, y2 = a} and ∀ ℓ ∈ {0, 1}, Γℓ# = {y ∈ Ω, y1 = ℓ}. (1.10)

7. Given a vector θ = (θ1, θ2) ∈ R2, we consider the differential operator

Dθ := θ · ∇ = θ1 ∂y1 + θ2 ∂y2 .

Let us also define for any open set O ⊂ Rn, the directional Sobolev space

H1
θ(O) :=

{
U ∈ L2(O) / Dθ U ∈ L2(O)

}
, (1.11)

which is a Hilbert space provided with the scalar product

(U, V )H1
θ(O) :=

∫
O

(
Dθ U Dθ V + U V

)
.

The induced norm is denoted by ∥ · ∥H1
θ(O).

2 The DtN approach is not adapted to limiting absorption

The first step in the method proposed in Chapter III is to solve the local cell problems:∣∣∣∣∣∣
−Dθ

(
µpDθ E

ℓ,D
ε

)
− ρp (ω

2 + iε) Eℓ,Dε = 0, in Cr,0# = (0, 1)2,

Eℓ,Dε is periodic w.r.t y1,
(2.1)

with the boundary conditions ∣∣∣∣∣∣
E0,D
ε |Σ0

#
= φ and E0,D

ε |Σ1
#
= 0,

E1,D
ε |Σ0

#
= 0 and E1,D

ε |Σ1
#
= φ,

(2.2)

where Σj# are given by (1.10), and where the superscript “D” refers to Dirichlet boundary conditions.
For ε > 0, Problem (2.1, 2.2) admits a unique solution Eℓ,Dε ∈ H1

θ(C
r,0
# ). We recall that the definition
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of the traces of functions in directional Sobolev spaces is really subtle. In this chapter, we use directly
the results of Chapter III. In particular, we will write

V is periodic w.r.t y1 ⇐⇒ V |y1=0 = V |y1=1 and µpDθ V |y1=0 = µpDθ V |y1=1. (2.3)

If V ∈ H1
θ(C

r,0
# ) is periodic with respect to y1 in the sense of (2.3), then we have from III–(3.33) that

the trace and the directional trace on Σa#, a ∈ [0, 1] of V belong to L2(Σa#).

In what follows, we focus on ED
ε := E0,D

ε (φ). By passing formally to the limit ε → 0 in the Dirichlet
cell problem (2.1, 2.2), we obtain that the formal limit solution ED := lim

ε→0
ED
ε satisfies the boundary

value problem: ∣∣∣∣∣∣∣∣∣
−Dθ

(
µpDθ E

D)− ρp ω
2ED = 0, in Cr,0# ,

ED|Σ0
#
= φ, ED|Σ1

#
= 0

ED is periodic w.r.t. y1,

(2.4)

which we would like to solve a priori, in the space H1
θ(C

r,0
# ). The reason why the DtN approach is not

adapted to the limiting absorption process is that the above problem is ill-posed for “most” values of
the frequencies ω, as we are going to see.

To understand this, it suffices to observe that, assuming that φ is continuous for instance, the above
problem is “equivalent” to a concatenation (or a family) of 1D Dirichlet problems problems along the
lines {

(s+ θ1x, θ2x), x ∈ [0, Lθ]
}

with Lθ = 1/θ2. (2.5)

More precisely, if we define the 1D functions ρs,θ and µs,θ as the traces of the 2D functions ρp and µp
along the line Rθ:

∀ x ∈ R, µs,θ(x) := µp(s+ θ1x, θ2x) and ρs,θ(x) := ρp(s+ θ1x, θ2x), (2.6)

then the family of 1D problems consists for any s ∈ R in finding eDs : [0, Lθ] → C such that∣∣∣∣∣∣∣
− d

dx

(
µs,θ

deDs
dx

)
− ρs,θ ω

2 eDs = f in [0, Lθ]

eDs(0) = φ(s) and eDs(Lθ) = 0,

(2.7)

where it can be easily seen that s 7→ eDs is 1–periodic.

The precise statement for the equivalence is the object of the next lemma, which will use the notion
of periodic extension ẼD of ED to the strip Cr,0 = R × [0, 1]:

ẼD : Cr,0 → C, ẼD(·+ #»e 1) = ED, ẼD|Cr,0#
= ED. (2.8)

Lemma 2.1

The problems (2.4) and (2.7) are equivalent in the following sense:
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(i) If ED is a solution of (2.4), then setting

eDs(x) = ẼD(s+ θ1 x, θ2 x), x ∈ [0, Lθ], s ∈ R (2.9)

the function eDs is a solution of (2.7) for any s ∈ R.

(ii) If eDs is a solution of (2.7) for any s ∈ R, and if ẼD : Cr,0 → C is given by

ẼD(y1, y2) = eDy1−y2 δ
(y2
θ2

)
, (y1, y2) ∈ Cr,0, (2.10)

then the function ED = ẼD|Cr,0#
is a solution of (2.4).

The proof can be found in Proposition III–5.1. A quite intuitive illustration of the result is provided by
Figure 1.

per per

s

eDs

E

Figure 1: Illustration of Lemma 2.1

We deduce that Problem (2.4) will be ill-posed as soon as one of the 1D problems (2.7) is ill-posed.
This will lead us to exclude from admissible square frequencies ω2, an infinite union over s ∈ [0, 1]

of 1D Dirichlet cell eigenvalues, that we shall call the set Ωforb of forbidden square frequencies. More
precisely, for any s ∈ [0, 1], let us introduce the unbounded self-adjoint operator Acell

s defined by

D(Acell
s ) =

{
u ∈ H1

0 (0, Lθ) / µs,θ
du

dx
∈ H1(0, Lθ)

}
, Acell

s u = − 1

ρs,θ

d

dx

(
µs,θ

du

dx

)
∀ u ∈ D(Acell

s ).

What we said above concerning the ill-posedness of Problem (2.4) can be rephrased in terms of the
spectrum of Acell

s , denoted by σ(Acell
s ):

(2.4) is ill-posed ⇐⇒ ω2 /∈ Ωforb =
⋃

s∈[0,1]
σ(Acell

s ).

As Acell
s is positive, self-adjoint and with compact resolvent for each s ∈ [0, 1], each spectrum σ(Acell

s )

is a pure point spectrum

σ(Acell
s ) =

{
0 < λ1(s) ≤ λ2(s) ≤ · · ·λn(s) ≤ · · · , }, lim

n→+∞
λn(s) → +∞.

Moreover, from the regularity of ρp and µp, we deduce that the maps s ∈ [0, 1] → ρs,θ ∈ C 0(0, Lθ) are
continuous. As a consequence, the functions s → λn(s) are continuous and the set Ωforb of forbidden
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square frequencies can be rewritten as a countable union of intervals

Ωforb =
⋃
n≥1

[an, bn] where [an, bn] := λn([0, 1]), an > 0, an → +∞. (2.11)

Moreover, the intervals [an, bn] may overlap and will generically do for n large enough, as explained
in the following result. We introduce the function x 7→ cs(x), namely the wave velocity along the line
[0, Lθ] (with Lθ = 1/θ2), and its harmonic mean

∀ x ∈ [0, Lθ], cs(x) =

(
µs,θ(x)

ρs,θ(x)

)1/2

and c−1
s = L−1

θ

∫ Lθ

0
cs(x)

−1 dx. (2.12)

Proposition 2.2

Let for all s ∈ [0, 1], µs,θ ∈ C 1(R). Then λn(s) behaves asymptotically as

λn(s) =
(nπ Lθ

cs

)2
+O(n) uniformly in s. (2.13)

As a consequence, with c+ = sups∈(0,1) cs and c− = infs∈(0,1) cs, the bounds an ≤ bn of the
interval λn([0, 1]) admit the asymptotic expansion

an =
(nπ Lθ

c+

)2
+O(n) and bn =

(nπ Lθ

c−

)2
+O(n), (2.14)

so that, as soon as cs is not constant, bn > an+1 for n large enough.

Proof. This is essentially a matter of applying known results from the spectral theory of Sturm-
Liouville operators with smooth coefficients (see [Eas73, Chapter 4] for instance). We give some hints
for the ease of the reader. The first basic is to rewrite the eigenvalue equation for Acell

s , s ∈ [0, 1] as
follows

− 1

ρs,θ

d

dx

(
µs,θ

du

dx

)
= λu =⇒ −c2s

d2u

dx2
− βs

du

dx
= λu with βs :=

µs,θ
ρs,θ

(2.15)

where we have used the C 1–regularity of µs,θ. Then, we apply a change of variables (known as the
Prüfer transform) to get rid of the variable coefficient in factor of the second order derivative

∀ x ∈ [0, Lθ], t = T (x) =

∫ x

0

dξ

cs(ξ)
∈ [0, Lθ/cs] (travel time variable).

Setting U(t) := u
(
T −1(t)

)
⇐⇒ u(x) = U

(
T (x)

)
, we observe that

du

dx
(x) = cs(x)

−1 dU

dt

(
T (x)

)
and

d2u

dx2
(x) = cs(x)

−2
[ d2U
dt2

(
T (x)

)
− c′s(x)

dU

dt

(
T (x)

) ]
.

Substituting this into (2.15), we get an eigenvalue equation for U(t)∣∣∣∣∣∣∣
−d

2U

dt2
+ as(t)

dU

dt
= λU in [0, Lθ/cs],

U(0) = U
(
Lθ/cs

)
= 0,

with as(t) :=
[
c′s −

µ′s,θ
ρs,θ cs

](
T −1(t)

)
,
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which can be viewed as a (compact) perturbation of the Dirichlet eigenvalue problem for the operator
U 7→ −U ′′ in the interval [0, Lθ/cs]. For this unperturbed operator, the eigenvalues are

{(nπ cs/Lθ)
2, n ≥ 1}

which provide the dominant term in the asymptotics (2.13). One then concludes by a perturbation
argument. ■

It follows from the above proposition that for ρp, µp ∈ C 1(R2), Ωforb contains a full semi-interval

[ω2
∗,+∞[ ⊂ Ωforb, ω2

∗ = aN with N = min{n / ak+1 ≤ bk ∀ k ≥ n
}
. (2.16)

Moreover, from (2.14), one sees that the larger the contrast κ = c+/ c−, the lower ω∗. Let us illustrate
this, numerically, with the medium defined by

ρp(y) = 1.5+α (sin 2πy1 + sin 2πy2), µp(y) = 1, θ = (cos(π/3), sin(π/3)), 0 < α < 3/2. (2.17)

Note that a larger α gives a larger contrast κ and then a lower ω∗. In Figure 2, we represent for two
values of α (namely α = 1/2 and α = 1) the curves s 7→ λn(s) for 1 ≤ n ≤ 10 (these eigenvalues have
been computed numerically with finite elements) as well as the corresponding intervals of forbidden
square frequencies. One clearly sees that the set Ωforb gets closer to R+ as α increases.

0 1

ω2
∗

0 1

ω2
∗

Figure 2: Curves s 7→ λn(s) and forbidden frequencies for the medium given in (2.17) for α = 1/2
(left) and α = 1 (right).

Remark 2.3. When applying the DtN method to the elliptic Helmholtz equation −divµp∇u−ρp ω2 u = f

with periodic coefficients (as done by [Fli09]) in the non-absorbing case, one also has to exclude forbidden
frequencies associated to the Dirichlet local cell problems. Howewer, the set Ωforb of such frequencies is
merely discrete, and therefore, is not a limiting factor in practice.

Remark 2.4. In Section III–5.5.c, we mentioned that the quality of the numerical results obtained with
the DtN method was clearly deteriorated when taking ε very small. This is linked to the ill-posedness issue
presented in this section.
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3 A Robin-to-Robin approach for the absorbing case

3.1 Robin half-line problems and their 2D lifting

As an introductory material, we need to introduce two outgoing Robin differential operators for 1D
functions u, associated with a given impedance z > 0, namely

R
j
+u := νjµ

du

dx
− izu ∀ j ∈ {l, r}, with νl := 1 and νr := −1. (3.1)

This allows us to introduce in the half-lines:

Il := (−∞, al) and Ir := (ar,+∞),

and two problems (replacing the Dirichlet half-line problems of Chapter III, namely III–(1.8)), defining
two Robin half-line solutions ulε and urε respectively : for j ∈ {l, r}, find ujε ∈ H1(Ij) such that∣∣∣∣∣∣∣

− d

dx

(
µθ

du
j
ε

dx

)
− ρθ (ω

2 + iε)ujε = 0 in Ij

R
j
+u

j
ε(aj) = 1,

(Pj
ε )

Note that for the boundary condition in these half-line problems, we impose the outgoing Robin trace
with respect to Ij since νj corresponds to the outgoing normal with respect to Ij. The choice of
imposing the outgoing trace is essential for ensuring the well-posedness of Problem (Pj

ε ) in H1(Ij).
Without entering the details, let us simply point out that the variational formulation of (Pj

ε ) involves
the sesquilinear form

bjε(u, v) :=

∫
Ij

(
µθ

du

dx

dv

dx
− ρθ (ω

2 + iε)u v
)
dx− izu(aj) v(aj),

the key point being that the imaginary part of the corresponding quadratic form has a sign

− Im bjε(u, u) := ε

∫
Ij
ρθ |u|2 dx+ z |u(aj)|2 ≥ 0. (3.2)

One interpretation is that the impedance z > 0 brings an absorption term whose role is similar to the
one due to ε > 0.

The following result can then be deduced without any difficulty.

Proposition 3.1

Let j ∈ {l, r} and ε > 0. Problem (Pj
ε ) admits a unique solution ujε ∈ H1(Ij).

Let us now define for j ∈ {l, r} two ingoing Robin differential operators for 1D functions u

R
j
−u := −νjµ du

dx
− izu. (3.3)

From the solutions ujε, j ∈ {l, r} we can introduce the Robin-to-Robin (RtR) coefficients λjε, j ∈ {l, r}
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defined by
λjε :=

(
R
j
−u

j
ε

)
(aj). (3.4)

This definition consists in evaluating the ingoing Robin trace (by opposition to outgoing) of the solution
of a half-line problem where we have imposed the outgoing Robin trace. From λ

j
ε, the restriction uiε

of the solution uε of (Pε) in (al, ar) can be characterized using two transparent boundary conditions
at x = al and ar, called Robin-to-Robin (RtR) conditions (that replace the DtN tranparent boundary
conditions of Chapter III, namely III–(1.6)):∣∣∣∣∣∣∣∣∣∣∣

− d

dx

(
µθ

duiε
dx

)
− ρθ (ω

2 + iε)uiε = 0 in (al, ar)

(Rl
−u

i
ε)(a

l) = λlε (R
l
+u

i
ε)(a

l),

(Rr
−u

i
ε)(a

r) = λrε (R
r
+u

i
ε)(a

r).

(Pint
ε )

Then, uε can be characterized as

a. e. x ∈ R, u(x) =


[Rl

+u
i
ε(a

l)] ulε(x), x < al,

uiε(x), x ∈ (al, ar),

[Rr
+u

i
ε(a

r)] urε(x), x > ar.

(3.5)

Remark 3.2. Let j ∈ {l, r} and ε > 0. By definition (3.1) and (3.3) of the ingoing and outgoing Robin
operators, one can rewrite the transparent conditions in (Pint

ε ) in the following DtN form:

−
[
νj µ

duε
dx

− izuε

]
(aj) = λjε

[
νjµ

duε
dx

− izuε

]
(aj) ⇐⇒

[
νj µ

duε
dx

]
(aj) = λj,Dε uε(a

j)

where λj,Dε are the DtN coefficients defined in Chapter III, and are related to the RtR ones by

λj,Dε = iz
(λjε − 1

λ
j
ε + 1

)
. (3.6)

At this stage, as far as ε > 0, there is no clear interest of passing from Dirichlet half-line problems to
Robin half-line problems and from DtN transparent conditions to RtR transparent conditions. The interest
will appear more clearly when passing to the limit ε → 0, in particular in the method for computing λjε
that we shall develop in the next section. In particular, we shall not suffer any longer from the problems
explained in Section 2.

Since the half-line problems satisfied by ulε and urε are quite similar to each other, we first restrict
ourselves to the half-line problem satisfied by urε. To do so, we observe that the quasiperiodic
half-line problem (Pj

ε ) with coefficients (µθ, ρθ) belongs to a infinite family of similar quasiperiodic
half-line problems parametrized by s ∈ R, with the quasiperiodic coefficients (µs,θ, ρs,θ) defined by
(2.6), that is ∣∣∣∣∣∣∣

− d

dx

(
µs,θ

durs,ε
dx

)
− ρs,θ (ω

2 + iε)urs,ε = 0 in R+,

Rr
+,su

r
s,ε(0) = 1,

(Pr
ε,s)



3. A Robin-to-Robin approach for the absorbing case 87

where Rr
±,s are 1D Robin differential operators for 1D functions:

Rr
±,su := ± νrµs,θ

du

dx
− izu. (3.7)

In fact, let us note that

∀ x ∈ R+, µθ(x+ ar) := µp
(
θ1 (x+ ar), θ2 (x+ ar)

)
= µp

(
θ1 (x+ ar), θ2 x

)
because ar θ2 ∈ Z (1.1)

so that µθ(·+ ar) corresponds to µs,θ for s = θ1 a
r. The same goes for ρθ(·+ ar). Accordingly,

a. e. x ∈ R+, urε(x+ ar) = urε,s(x) for s = θ1 a
r. (3.8)

The periodicity of s 7→ (µs,θ, ρs,θ) (which follows from the periodicity of (µp, ρp) with respect to y1)
implies that

∀ s ∈ R, urs+1,ε = urs,ε. (3.9)

Moreover, from the uniform continuity of s 7→ (µs,θ, ρs,θ) (which results from the periodicity and the
continity of (µp, ρp)) and the well-posedness of (Pr

ε,s), it follows that s 7→ urs,ε defines a uniformly
continuous function from R to H1(R+). The proof is the same as the one of Proposition III–3.17. More
generally, using the same arguments as in Proposition III–3.17, one shows that

µp, ρp ∈ Cm(R2) =⇒ s 7→ urs,ε ∈ Cm(R, H1(R+)). (3.10)

We now explain how to “lift” the half-line problems (Pj
ε ), or more generally (Pr

ε,s), i.e. how their
solutions can be seen as traces along a line of the solution of a 2D problem defined in half-spaces. Let
us define the half-space and its boundary:

Ωr := R × R+ and Σr := ∂Ωr = R × {0}. (3.11)

In the sequel we shall play with the change of variables in R2

(s, x) 7→ (y1, y2) = (s+ x θ1, x θ2) ⇐⇒ (y1, y2) 7→ (s, x) = (y1 − y2 θ1/θ2, y2/θ2), (3.12)

which corresponds to seeing the plane R2 with the following fibered structure

R2 :=
⋃
s∈R

(s #»e 1 + Rθ).

Note that the change of variables defined by (3.12) maps (s, x) ∈ R × R+ into Ωr. Thus, through
this change of variables, we can build from the half-line solutions urs,ε and from a boundary function
φ ∈ L2

loc(Σ
r) ≡ L2

loc(R), a halfspace function Ur
ε : Ωr → C via the so-called lifting formula

a.e. (s, x) ∈ R × R+,
[
Ur
ε (φ)

]
(s+ x θ1, x θ2) := φ(s)urs,ε(x). (3.13)

Roughly speaking, Ur
ε (φ) can be seen as a “weighted and oblique concatenation” of the 1D solutions

urs,ε. Then, using the chain rule,

d

dx

[
V (s+ θ1 x, θ2 x)

]
= Dθ V (s+ θ1 x, θ2 x), (3.14)
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Σr

Σl

Ωr

Ωl

y1

y2

•θ2 x

•
arθ1

•a
lθ1
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lθ2

•
x = ar

•x = al

Rθ

•
x

•
θ1 x

θ

Ωr
#

Ωl
#
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#
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#
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Ωr
#

Ωl
#

Figure 3: Notation introduced in Section 3.1

it is easy, by adapting the arguments developed in Chapter III, to characterize Ur
ε (φ) as the solution of

a 2D boundary value problem in Ωr associated with the homogeneous partial differential equation

−Dθ

(
µpDθ U

r
ε

)
− ρp (ω

2 + iε)Ur
ε = 0 in Ωr. (3.15)

In order to associate boundary conditions to (3.15), we need to introduce directional Robin operators
as 2D extensions of the 1D differential operators Rr

±, j ∈ {l, r} defined in (3.1) and (3.3). We define
the operators Rr

± for 2D functions U as

Rr
±U := ± νrµpDθ U − izU. (3.16)

The operator Rr
+ is the outgoing Robin one whereas Rr

− is the ingoing one.

If φ is 1–periodic, then from the periodicity of s 7→ urs,ε (see (3.9)), the function Ur
ε (φ) is 1–periodic

with respect to y1 and belongs to the space

H1
θ,per(Ω

r) =
{
U ∈ L2

per(Ω
r) / Dθ U ∈ L2

per(Ω
r)}. (3.17)

Modulo an adaptation of the arguments developed in Section III–3.2, see also Remark 3.4, one easily
proves the following result

Proposition 3.3

Let ε > 0. For any φ ∈ L2
per(R), the function Ur

ε := Ur
ε (φ) is the unique solution of the well-
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posed 2D problem: Find Ur
ε ∈ H1

θ,per(Ω
r) such that∣∣∣∣∣∣

−Dθ

(
µpDθ U

r
ε

)
− ρp (ω

2 + iε)Ur
ε = 0 in Ωr,

Rr
+ U

r
ε |Σr = φ.

(3.18)

Remark 3.4. In Section III–3.2, we develop in detail the functional analytic tools to give a rigorous
sense to Problem (3.18). In particular, functions in H1

θ,loc(Ω
r) have well-defined traces on Σr := ∂Ωr as

elements of L2
loc(Σ

r). Note also that the PDE in (3.18) implies that µpDθ U
r
ε ∈ H1

θ,loc(Ω
r). Thus, the

trace of µpDθ U
r
ε on Σr is well-defined in L2

loc(Σ
r), so that a proper sense can be given to the boundary

condition in (3.18).

Using the definition (3.13) of Ur
ε (φ) and the uniform continuity of the map s 7→ urs,ε, we deduce the

following result.

Corollary 3.5

Let ε > 0. If φ is continuous in the neighborhood of s = θ1 a
r and satisfies φ(θ1 ar) = 1, then

a. e. x ∈ R+, urε(x+ ar) = urar θ1,ε(x) = Ur
ε (θ1 (x+ ar), θ2x), (3.19)

where Ur
ε = Ur

ε (φ).

From Corollary 3.5, we deduce a framework for finding the solution Ur
ε of the half-line problem (Pj

ε ):

• Choose a 1–periodic function φ which is continuous around θ1 a
r, and such that φ(θ1 ar) = 1

(φ = 1 for instance);

• Compute the corresponding solution Ur
ε (φ) of (3.18);

• Deduce the function urε from the cut formula (3.19).

Remark 3.6. Based on the above algorithm, one could wonder whether it is necessary to consider functions
other than φ = 1. Nevertheless, for the method that we shall develop in what follows, it is necessary to
consider general functions φ ∈ L2

per(R).

A first trivial but important observation is that since Ur
ε (φ) is periodic in the #»e 1-direction, it suffices

to compute its restriction to the cylinder Ωr
# := {(y1, y2) ∈ Ωr / 0 < y1 < 1} (with Σr,0

# := (0, 1)×{0})
by solving the problem: Find Ur

ε ∈ H1
θ(Ω#) such that∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µpDθ U

r
ε

)
− ρp (ω

2 + iε)Ur
ε = 0 in Ωr

#,

Rr
+ U

r
ε |Σr,0

#
= φ,

Ur
ε is periodic w.r.t y1.

(3.20)
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In the sequel, we will play alternatively with the two equivalent versions (3.18) and (3.20) of the
same half-space problem. The form (3.18) will be used for analytical results, while (3.20) will be used
for numerics.

As the domain Ωr
# is still unbounded in the y2-direction, one may wonder how to solve numerically

(3.20). This is precisely the object of the next sections.

3.2 The propagation and scattering operators

Let us first introduce the lines

∀ m ∈ N, Σr,m :=
{
(y1, y2) ∈ R2 / y2 = m

}
, (3.21)

the periodicity cells

∀ m ∈ N, Cr,m# :=
{
(y1, y2) ∈ Ωr

# / y2 ∈ (m,m+ 1)
}
, (3.22)

and for any m ∈ N, the interfaces Σr,m+1
# between the cells Cr,m# and Cr,m+1

# . These domains are
shown in Figure 3. By periodicity, each cell Cr,m# can be identified to Cr,0# ≡ Cr# and each interface Σr,m

#

to Σr,0
# ≡ Σ#.

Proposition 3.3 defines a linear operator

φ ∈ L2
per(R) 7→ Ur

ε (φ) ∈ H1
θ,per(Ω

r) solution of (3.18),

from which we introduce two operators (Pr
ε ,Sr

ε ) ∈ L
(
L2
per(R)

)2 defined by

Pr
εφ := Rr

+ U
r
ε (φ)|Σr,1 and Sr

εφ := Rr
− U

r
ε (φ)|Σr,1 , (3.23)

where the two interfaces Σr,0 and Σr,1 are identified to R in a trivial manner.

These operators play an important role in the structure of the solutions. In fact, using the same
arguments as for the proof of Proposition III–4.1, one deduces in particular from the periodicity of the
medium in the y2 direction, the following result.

Proposition 3.7

For any φ ∈ L2
per(R), the Robin traces of Ur

ε (φ) on the interfaces Σr,m, ∀ m ≥ 1, satisfy

Rr
+ U

r
ε (φ)|Σr,m = (Pr

ε )
m−1φ and Rr

− U
r
ε (φ)|Σr,m = Sr

ε (Pr
ε )
m−1 φ. (3.24)

The operator Pr
ε is called a Robin propagation operator because it expresses how the outgoing Robin

trace, that is the trace of Rr
+ U

r
ε , propagates from one interface Σr,m to the next one Σr,m+1. The

operator Sr
ε transforms an outgoing Robin trace on Σr,0 into an ingoing Robin trace on Σr,1. We call

it a scattering operator by analogy with some terminology used in scattering theory.

As it can be expected, the fibered structure of the problem (3.18) provides a particular structure to
the operators (Pr

ε ,Sr
ε ). For what follows we recall the ratio

δ := θ1/θ2,
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which will play the role of a shift parameter. We also introduce the functions

∀ s ∈ R, a. e. x ∈ R+,
pr
ε(s, x) :=

(
Rr

+,s u
r
s,ε

)
(x), prε(s) := pr

ε

(
s, 1/θ2

)
,

srε(s, x) :=
(
Rr

−,s u
r
s,ε

)
(x), srε(s) := srε

(
s, 1/θ2

)
,

(3.25)

where Rr
±,s are the 1D outgoing and ingoing Robin operators, defined for all s ∈ R in (3.7).

Proposition 3.8

Let ε > 0. The functions
(
pr
ε(s, x), s

r
ε(s, x)

)
( resp. (srε(s),p

r
ε(s))) are continuous with respect to

s and x ( resp. with respect to s) and 1-periodic with respect to s. Moreover, we have

pr
ε(s, x) ̸= 0 ∀ (s, x) ∈ R × R+ and prε(s) ̸= 0 ∀ s ∈ R.

Finally, if µp, ρp ∈ Cm(R2), then

s 7→ pr
ε(s, ·), srε(s, ·) ∈ Cm(R;H1(R+)) (resp. prε, s

r
ε ∈ Cm(R;C)). (3.26)

Proof. The continuity properties are linked to the uniform continuity of s 7→ urs,ε and the to fact that
urs,ε ∈ H1(R+) ⊂ C 0(R+) for all s. The property (3.26) is linked to (3.10).

It remains to show that pr
ε(x, s) ̸= 0 for any s ∈ R and x ∈ R+ (this implies directly that prε(s) ̸= 0

for any s ∈ R). Assume by contradiction that, for some x0 ∈ R+ and s0 ∈ R, we have pr
ε(x0, s0) = 0.

Since pr
ε(x0, s0) := Rr

+,s0u
r
s0,ε(x0) by definition (3.25), where urs0,ε is the solution of (Pr

ε,s) for s = s0,
we have in particular that∣∣∣∣∣∣∣

− d

dx

(
µs0,θ

durs0,ε
dx

)
− ρs0,θ (ω

2 + iε)urs0,ε = 0 in (x0,+∞),

Rr
+,su

r
s0,ε(x0) = 0,

(3.27)

By well-posedness of the above boundary problem for z > 0 (see also (3.2) with x0 instead of 0), we
deduce that urs0,ε = 0 in (x0,+∞). Since urs0,ε satisfies the PDE in (3.27) in all (x0,+∞), by Cauchy
uniqueness result urs0,ε = 0 in R+, which contradicts the fact that Rr

+,s0u
r
s0,ε(0) = 1. ■

Remark 3.9. Contrary to pr
ε, the function srε can vanish at certain points. For instance, if µp = ρp = 1

and if the impedance z is allowed to be a complex number with z :=
√
ω2 + iε and Re z > 0, then it can

be computed without difficulty that srε = 0.

Similarly to the study in Section III–4.5, the propagation operator and the scattering operator have a
particular structure, highlighted in the next result.

Proposition 3.10

We have for all φ ∈ L2
per(R),

∀ s ∈ R,

 Pr
εφ(s) = prε(s− δ)φ(s− δ),

Sr
εφ(s) = srε(s− δ)φ(s− δ).
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where Pr
ε and Sr

ε are defined in (3.23) and prε and srε in (3.25). Moreover, Pr
ε is bijective.

Proof. We give the proof of the first identity, the proof of the second one being identical. It follows
from the fibered struture (3.13) of Ur

ε and from the definition of pr
ε that

Rr
+U

r
ε (s+ θ1 x, θ2 x) = pr

ε(s, x)φ(s), s ∈ R, x ∈ R+ (3.28)

To evaluate the trace of Rr
+U

r
ε on Σr,1, it suffices to take x = 1/θ2 in the above expression, which gives

Rr
+U

r
ε (s+ δ, 1) = pr

ε

(
s, 1/θ2

)
φ(s), s ∈ R, (3.29)

that is to say, by definitions (3.23) and (3.25) of Pr
ε and prε,

[Pr
ε φ](s+ δ) = prε(s)φ(s), s ∈ R, (3.30)

which is nothing but the first identity after changing s 7→ s+ δ.

The bijectivity of Pr
ε is a direct consequence of Proposition 3.8 which states that prε never vanishes. ■

Operators that have the form of Pr
ε and Sr

ε are known in the litterature (see [Ant12] for instance) as
weighted shift operators. The function prε (resp. srε) will be called the symbol of Pr

ε (resp. Sr
ε ).

3.3 Local cell problems and reconstruction formula

To the periodicity cell Cr,0# := (0, 1)2, we associate two problems, given for a boundary data φ ∈ L2
per(R):

Find Er,0
ε (φ) ∈ H1

θ(C
r,0
# ) such that∣∣∣∣∣∣∣∣∣∣
−Dθ

(
µpDθ E

r,0
ε (φ)

)
− ρp (ω

2 + iε)Er,0
ε (φ) = 0 in Cr,0# ,

Rr
+E

r,0
ε (φ)|

Σr,0
#

= φ and Rr
−E

r,0
ε (φ)|

Σr,1
#

= 0,

Er,0
ε (φ) is periodic w.r.t y1;

(3.31)

and Find Er,1
ε (φ) ∈ H1

θ(C
r,0
# ) such that∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µpDθ E

r,1
ε (φ)

)
− ρp (ω

2 + iε)Er,1
ε (φ) = 0 in Cr,0# ,

Rr
+E

r,1
ε (φ)|

Σr,0
#

= 0 and Rr
−E

r,1
ε (φ)|

Σr,1
#

= φ,

Er,1
ε (φ) is periodic w.r.t y1.

(3.32)

Using Lax-Milgram lemma, one easily obtains the following result.

Proposition 3.11

Let ε > 0. The problems (3.31) and (3.32) are well-posed.

In the sequel, for any φ ∈ L2
per(R), we identify Er,0

ε (φ) and Er,1
ε (φ) with their periodic extensions

with respect to y1.
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By linearity, if U ∈ H1
θ (C

r,0
# ) is periodic with respect to y1 and satisfies

−Dθ

(
µpDθ U

)
− ρp (ω

2 + iε) U = 0 in Cr,0# , (3.33)

then
Rr

+U
∣∣
Σr,0

#

= φ and Rr
−U
∣∣
Σr,1

#

= ψ =⇒ U = Er,0
ε (φ) + Er,1

ε (ψ). (3.34)

From this remark and by definition (3.23) of (Pr
ε ,Sr

ε ), it is clear that the solution Ur
ε (φ) of (3.18) can

be reconstructed cell by cell using Er,0
ε (φ) and Er,1

ε (φ).

Proposition 3.12

For any φ ∈ L2
per(R), the solution Ur

ε (φ) of (3.18) is given by

a. e. y ∈ Cr,0# ,
[
Ur
ε (φ)

]
(y+n #»e 2) =

[
Er,0
ε ((Pr

ε )
n φ)+Er,1

ε (Sr
ε (Pr

ε )
nφ)
]
(y), ∀ n ∈ N, (3.35)

where the operators Pr
ε and Sr

ε are defined in (3.23).

Similarly to Ur
ε , the solutions (Er,0

ε , Er,1
ε ) of Problems (3.31) and (3.32) benefit from a quasi-1D

structure. Indeed, let us introduce the two families (er,0s,ε)s∈R and (er,1s,ε)s∈R of functions in H1(0, 1/θ2)

which satisfy the 1D problems∣∣∣∣∣∣∣
− d

dx

(
µs,θ

der,0s,ε
dx

)
− ρs,θ (ω

2 + i ε) er,0s,ε = 0 in (0, 1/θ2),

Rr
+,se

r,0
s,ε(0) = 1 and Rr

−,se
r,0
s,ε(1/θ2) = 0,

(3.36)

and ∣∣∣∣∣∣∣
− d

dx

(
µs,θ

der,1s,ε
dx

)
− ρs,θ (ω

2 + i ε) er,1s,ε = 0 in (0, 1/θ2),

Rr
+,se

r,1
s,ε(0) = 0 and Rr

−,se
r,1
s,ε(1/θ2) = 1

(3.37)

We then have the next property, which shows the fibered structure of the cell problems.

Proposition 3.13

Let ε > 0. The solutions Er,0
ε (φ) and Er,1

ε (φ) of the local cell problems (3.31) and (3.32) and
the families (er,0s,ε)s∈R and (er,1s,ε)s∈R defined by (3.36) and (3.37) are related by : Er,0

ε (φ)(s+ x θ1, x θ2) = φ(s) er,0s,ε(x), x ∈ (0, 1/θ2), s ∈ R,

Er,1
ε (φ)(s+ x θ1, x θ2) = φ(s+ δ) er,1s,ε(x), x ∈ (0, 1/θ2), s ∈ R.

(3.38)

Hence, the evaluation of Er,0
ε (φ) and Er,1

ε (φ) simply consist in solving a family of 1D-problems defined
on a segment, namely (3.36) and (3.37). To conclude this section, we provide a 1D equivalent of the
cell by cell reconstruction formula (3.35) in terms of the half-line solutions urs,ε ∈ H1(Ir).
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Corollary 3.14

Given φ ∈ C 0
per(R) such that φ(s) ̸= 0 for any s ∈ R, define

∀ n ∈ N, φεn := (Pr
ε )
n φ and ψεn := Sr

ε (Pr
ε )
n φ.

Then for any s ∈ R, the solution urs,ε of the half-line problem (Pr
ε,s) is given for x ∈ (0, 1/θ2) by

φ(s)urs,ε(x+ n/θ2) = φεn(s+ nδ) er,0s+nδ,ε(x) + ψεn(s+ (n+ 1)δ) er,1s+nδ,ε(x). (3.39)

Proof. If x ∈ (0, 1/θ2), then y := (s+ θ1 x, θ2 x) belongs to R × (0, 1), so that by (3.35),[
Ur
ε (φ)

]
(s+ θ1 x, θ2 x+ n) =

[
Er,0
ε ((Pr

ε )
n φ) + Er,1

ε (Sr
ε (Pr

ε )
nφ)
]
(s+ θ1 x, θ2 x),

where Er,0
ε ((Pr

ε )
n φ), and Er,1

ε (Sr
ε (Pr

ε )
nφ) have been identified with their periodic extensions with

respect to y1. By using the fibered structure of Ur
ε (3.13) and Er,0

ε , Er,1
ε (Proposition 3.13), the above

equality becomes

φ(s− nδ)urε,s−nδ(x+ n/θ2) = [(Pr
ε )
n φ](s) er,0s,ε(x) + [Sr

ε (Pr
ε )
n φ](s+ δ) er,1s,ε(x),

which corresponds to the desired equality, up to a translation s 7→ s+ nδ. ■

The only missing step for evaluating Ur
ε (φ) via the reconstruction formula (3.35) is the determination

of the operators (Pr
ε ,Sr

ε ). This is the object of the next section.

3.4 Local RtR operators and Riccati system

The cell by cell reconstruction formula (3.35) only ensures that Ur
ε (φ) satisfies the partial differential

equation (3.15) in each cell Cr,n# . For (3.15) to be satisfied in the whole half-space Ωr (or equivalenty
in the whole half-guide Ωr

#), we have to ensure that (3.15) is satisfied across each interface Σr,n
# , which

corresponds to the continuity of Ur
ε (φ) and µpDθ U

r
ε (φ) across Σr,n

# , or equivalently the continuity of
the two Robin traces Rr

+U
r
ε (φ) and Rr

−U
r
ε (φ). It is by writing these two continuity conditions that we

will obtain two equations for (Pr
ε ,Sr

ε ).

To this end, we introduce for ε > 0 four local Robin-to-Robin (RtR) operators T r,ℓk
ε ∈ L

(
L2

per(R))
defined for ℓ, k ∈ {0, 1} by

T r,00
ε φ := Rr

−E
r,0
ε (φ)|Σr,0 and T r,01

ε φ := Rr
+E

r,0
ε (φ)|Σr,1 ,

T r,10
ε φ := Rr

−E
r,1
ε (φ)|Σr,0 and T r,11

ε φ := Rr
+E

r,1
ε (φ)|Σr,1 .

(3.40)

Remark 3.15. As the understanding of the manipulations of ± for the Robin differential operators is not
immediate, it may be helpful to remember that in the cell problems we impose the outgoing Robin trace
(outgoing with respect to the periodicity cell) while with the operators T r,ℓk

ε , we evaluate the ingoing
Robin trace (ingoing with respect to the periodicity cell).

Proceeding as in the proof of Proposition 3.10, and using the fibered structure of the solutions Er,0
ε

and Er,1
ε (see Theorem 3.13), one easily proves the following result.
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Proposition 3.16

Let ε > 0. The operators T r,ℓk
ε , ℓ, k ∈ {0, 1}, are weighted shift operators

∀ φ ∈ L2
per(R),


T r,00
ε φ(s) = tr,00ε (s)φ(s), T r,01

ε φ(s) = tr,01ε (s− δ)φ(s− δ),

T r,10
ε φ(s) = tr,10ε (s)φ(s+ δ), T r,11

ε φ(s) = tr,11ε (s− δ)φ(s),
(3.41)

where the RtR symbols tr,kℓε (s) are defined from er,0s,ε and er,1s,ε (see (3.36) and (3.37)) by : tr,00ε (s) = Rr
−,se

r,0
s,ε(0), tr,01ε (s) = Rr

+,se
r,0
s,ε(1/θ2),

tr,10ε (s) = Rr
−,se

r,1
s,ε(0), tr,11ε (s) = Rr

+,se
r,1
s,ε(1/θ2).

(3.42)

If B ∈ L
(
L2
per(R)

)
, its transpose tB ∈ L

(
L2
per(R)

)
is defined by

∀ (φ,ψ) ∈ L2
per(R)

2,

∫ 1

0

tBφ(s)ψ(s) ds =

∫ 1

0
φ(s)Bψ(s) ds (3.43)

and is related to its adjoint B∗ by conjugation: tBφ = B∗φ. Moreover, B and tB have the same
spectrum.

The operators T r,ℓk
ε are related between themselves by tranposition properties that reflect the formal

symmetry of the operator Dθ

(
µpDθ

)
and is closely related to the well known reciprocity principle in

wave propagation.

Lemma 3.17

Let ε > 0. We have

tT r,00
ε =

tT r,00
ε ,

tT r,11
ε = T r,11

ε ,
tT r,01
ε = T r,10

ε . (3.44)

Proof. If U, V ∈ H1
θ(C

r,0
# ) are periodic with respect to y1 and satisfy the PDE (3.33) in Cr,0# , then

using Green’s formula III–(3.35) and the periodicity properties, it comes∫
Σr,0

#

(
µpDθ U V − µpDθ V U

)
=

∫
Σr,1

#

(
µpDθ U V − µpDθ V U

)
As −2µpDθ U = Rr

+U −Rr
−U and 2izU = Rr

+U +Rr
−U , and the same replacing U by V , the above

rewrites (we omit the details):∫
Σr,0

#

(
Rr

+U Rr
−V −Rr

−U Rr
+V
)
=

∫
Σr,1

#

(
Rr

+U Rr
−V −Rr

−U Rr
+V
)
.

With U = Er,0
ε (φ) and V = Er,1

ε (ψ), the above identity gives, identifying Σr,0
# and Σr,1

# ,∫
Σr,0

#

(T r,10
ε ψ)φ =

∫
Σr,0

#

(T r,01
ε φ)ψ, which yields tT r,10

ε = T r,01
ε
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To obtain
tT r,00
ε =

tT r,00
ε , it suffices to take U = Er,0

ε (φ) and V = Er,0
ε (ψ) and to get

tT r,11
ε =

tT r,11
ε ,

it suffices to take U = Er,1
ε (φ) and V = Er,1

ε (ψ) ■

Using the definition (3.23) of the operators (Pr
ε ,Sr

ε ), of the local RtR operators (see (3.40)) and the
cell by cell expression of the solution of (3.18) in terms of the cell solutions defined in (3.31) and
(3.32), we can show the following result.

Lemma 3.18

Let ε > 0. The pair (Pr
ε ,Sr

ε ) is solution of the following Riccati system∣∣∣∣∣∣∣∣∣∣
Find (P, S) ∈ L (L2

per(R))
2 such that P = T r,01

ε + T r,11
ε S,

S = T r,00
ε P + T r,10

ε S P.

(3.45)

Moreover, the spectral radius ρ(Pr
ε ) of Pr

ε is strictly less than one.

Proof. Let φ ∈ L2
per(R) and Ur

ε (φ) be the unique solution of (3.18). The cell by cell expression of Ur
ε

taken for n = 0 and n = 1 gives:

∀ y ∈ Cr,0# , [Ur
ε (φ)](y) = [Er,0

ε (φ) + Er,1
ε

(
Sr
ε φ
)
](y)

∀ y ∈ C1
#, [Ur

ε (φ)](y) = [Er,0
ε (Pr

ε φ) + Er,1
ε

(
Sr
εPr

ε φ
)
](y − #»e 2)

(3.46)

By writing that Rr
+U

r
ε (φ) and Rr

−U
r
ε (φ) are continuous across the interface Σr,1

# , we obtain respectively
the first and second equations of (3.45).

The fact that ρ(Pr
ε ) < 1 is a consequence of the exponential decay of the solution in the y2 direction

(with a decay rate that degenerates when ε→ 0, the presence of absorption being essential). We refer
to the proof of Proposition III–4.1 for more details. ■

Remark 3.19. In the proof we only used the continuity conditions accross Σr,1
# to derive the Riccati system

(3.45). However it is easy to check that if (3.45) is satisfied, the same continuity conditions are satisfied
across any Σn#.

We call (3.45) a Riccati system because if one formally eliminates Sr
ε in the system, one obtains a

quadratic equation in Pr
ε , as in the Dirichlet case. Note however that eliminating Sr

ε involves inverting
T r,11
ε which is not necessarily invertible. In fact, if µp = ρp = 1 for instance, and if z is allowed to be

complex with z :=
√
ω2 + iε and Re z > 0, then it can be computed without difficulty that T r,11

ε = 0.



3. A Robin-to-Robin approach for the absorbing case 97

Proposition 3.20

Let ε > 0. The pair (Pr
ε ,Sr

ε ) is the unique solution of the problem∣∣∣∣∣∣∣∣∣∣
Find (P, S) ∈ L (L2

per(R))
2 such that ρ(P ) < 1 and T r,01

ε + T r,11
ε S = P,

S = T r,00
ε P + T r,10

ε S P.

(3.47)

Proof. We only sketch the proof since it is similar to the one of Proposition III–4.4. For the uniqueness
result, we show that if (P, S) is a solution of (3.47), then for any φ ∈ L2

per(R), the function U(φ)

defined cell by cell in the half-guide Ω# by (we mimick (3.35))

∀ y ∈ Cr,n# ,
[
U(φ)

]
(y) =

[
Er,0
ε (Pnφ) + Er,1

ε (SPnφ)
]
(y − n #»e 2)

and extended by periodicity in the y1-direction, belongs to H1
θ,per(Ω) and is solution of the half-space

problem (3.18). From the well-posedness of (3.18), we deduce the equality U(φ) = U±
ε (φ), which

implies that Pφ = Pr
εφ and Sφ = Sr

εφ. ■

3.5 RtR half-space operator and tranparent boundary condition

In link with the RtR coefficient λrε defined in (3.4), we introduce for ε > 0 the RtR half-space operator
Λr
ε ∈ L

(
L2
per(R)

)
defined by

Λr
εφ := Rr

−U
r
ε (φ)|Σr,0 . (3.48)

From the cell by cell reconstruction formula (3.35) and the definition (3.40) of the RtR operators, we
deduce

Λr
ε = T r,00

ε + T r,10
ε Sr

ε . (3.49)

Using the same arguments as in the proof of Lemma 3.17, we can show that

tΛr
ε = Λr

ε. (3.50)

Moreover, using a Green’s formula in (3.20) (by analogy with the proof of Proposition III–4.3), we
obtain

∀ ε > 0, ∃ c > 0, ∀ φ ∈ L2
per(R), Im

∫
Σr,0

#

µpDθ U
r
ε (φ) U

r
ε (φ) ≥ c ∥φ∥2

L2(Σr,0
# )

which implies by using the expressions −2µpDθ U = (Rr
+ − Rr

−)U and −2iz U = (Rr
+ + Rr

−)U as
well as the definition (3.40) of the RtR operators

∀ ε > 0, ∃ c > 0, ∀ φ ∈ L2
per(R),

1

4z
Re

∫
Σr,0

#

(I − Λr
ε)φ (I + Λr

ε)φ ≥ c ∥φ∥2
L2(Σr,0

# )
. (3.51)

From the fibered structure (3.13) of Ur
ε , it is immediate to see that Λr

ε is a multiplication operator(
Λr
εφ
)
(s) = λrε(s)φ(s) with λrε(s) := Rr

−,su
r
s,ε(0), (3.52)

and where urs,ε is defined for any s ∈ R by the half-line problem (Pr
ε,s).
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In particular, similarly to (3.19), the RtR coefficient λrε can be computed in practice thanks to

λrε = λrε(θ1 a
r) =

(
Λr
εφ
)
(θ1 a

r) for any φ ∈ C 0
per(R) satisfying φ(θ1 ar) = 1. (3.53)

4 Analysis of the Riccati system

In this section, we provide some spectral results that will be used to derive the propagation operator
and the scattering operator. Section 4.1 is devoted to describing the spectral structure of the propa-
gation operator in terms of its eigenpairs. In particular, our analysis will heavily rely on the notion of
fundamental eigenpair that we shall introduce below. We then reformulate the Riccati system (3.47)
in terms of these eigenpairs in Section 4.2.

4.1 Spectral description of the propagation operators

The spectral theory of weighted shift operators has been thoroughly studied and detailed in [Ant12].
We shall extract the useful information to describe the spectral properties of Pr

ε in the case where the
ratio δ := θ1/θ2 is not a Liouville number, so that its irrationality measure (defined by (1.5)) is finite
and the Diophantine condition (1.6) holds, namely

∀ ν > η(δ), ∃ c ≡ c(δ, ν) > 0
/

∀ (p, q) ∈ Z × N∗,

∣∣∣∣δ − p

q

∣∣∣∣ > c

qν
. (4.1)

We rely on the notion of winding number (also called index; see [Bea79, Chapter 7]).

Definition 4.1: Winding number

Let Nper be the open subset of Cper(R;C) defined by

Nper :=
{
f ∈ Cper(R;C) such that f(s) ̸= 0, ∀ s ∈ R

}
. (4.2)

Given f ∈ Nper, there exists a function s 7→ Arg f(s) ∈ C 0(R;R), where Arg f(s) denotes the
argument of f(s), such that

∀ s ∈ [0, 1], f(s) = |f(s)| ei Arg f(s) (4.3)

and one can define the winding number w(f) of f as

w(f) =
(
Arg f(1)−Arg f(0)

)
/2π ∈ Z. (4.4)

Moreover the map f ∈ Nper 7→ Arg f |[0,1] ∈ C 0(0, 1) is continuous.

In more geometrical (but less precise) terms, w(f) is the number of turns around the origin made by
the (closed) trajectory in the complex plane described by f(s) when s varies from 0 to 1 (hence its
name). The turn counts positively (respectively negatively) when the trajectory travels counterclock-
wise (respectively clockwise) around the origin. It is easy to show the following result.
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Corollary 4.2

For any f ∈ Nper, one has the equivalences

w(f) = 0 ⇐⇒ Arg f ∈ C 0
per(R;R) ⇐⇒ f(s) = eg(s), g ∈ Cper(R;C).

Lemma 4.3

Let ε > 0 and pr
ε(x, s) be the function defined by (3.25), then

∀ x ∈ R+, pr
ε(x, ·) ∈ Nper and w(pr

ε(x, ·)) = 0.

In particular prε ∈ Nper and w
(
prε) = 0.

Proof. For x ∈ R+, from its definition (3.25) and Proposition 3.8, it is clear that the function pr
ε(x, ·)

belongs to Nper and thus has a winding number w
(
pr
ε(x, ·)). Moreover, by continuity of x 7→ pr

ε(x, ·)
(Proposition 3.8), we deduce from Proposition 4.1 that x 7→ Argpr

ε(x, ·) is continuous. As a conse-
quence, x 7→ w

(
pr
ε(x, ·)) is a continuous and integer-valued function, which means that it is constant.

In particular, w
(
pr
ε(x, ·)) = w

(
pr
ε(0, ·)) for any x ∈ R+. But since pr

ε(0, s) = 1 for any s ∈ R, it follows
that w

(
pr
ε(0, ·)) = 0. ■

We can now state the main result of this section.

Proposition 4.4

Let ε > 0. Assume that δ has a finite irrationality measure (so that the condition (4.1) is
satisfied), and that the coefficients (µp, ρp) have the regularity

µp, ρp ∈ Cm(R2) for some m ∈ N such that m > η(δ) (see (1.5)). (4.5)

Then there exists a unique pair (λr0,ε, φ
r
0,ε) ∈ C × Nper with rε := |λr0,ε| < 1 and w

(
φr
0,ε

)
= 0

such that
Pr
ε φ

r
0,ε = λr0,ε φ

r
0,ε and φr

0,ε(0) = 1, (4.6)

or equivalently
prε(s− δ)φr

0,ε(s− δ) = λr0,ε φ
r
0,ε(s). (4.7)

Moreover, if we define φr
k,ε ∈ Nper for any k ∈ Z by φr

k,ε(s) := e2iπks φr
0,ε(s), then

Pr
ε φ

r
k,ε = λrk,ε φ

r
k,ε with λrk,ε := e−2iπkδ λr0,ε (4.8)

The point spectrum of Pr
ε is the countable set

σp
(
Pr
ε ) = {λrk,ε, k ∈ Z}, (4.9)

where the eigenvalues λrk,ε are all simple. Moreover, the point spectrum of Pr
ε is a dense subset

of the circle C(0, rε) and its spectrum σ
(
Pr
ε ) is C(0, rε).

Finally, the eigenfunctions
{
φr
k,ε, k ∈ Z} form an orthogonal basis of L2

per(R) for the inner
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product (
φ,ψ

)
ρr
ε
:=

∫ 1

0
φ(s)ψ(s)ρr

ε(s) ds where ρr
ε(s) := |φr

0,ε(s)|−2, (4.10)

where ρr
ε is bounded from below and above since φr

0,ε ∈ Nper.

Proof. The proof that we are going to give is a slight adaptation of [Ant12].

Step 1 : A preliminary observation about the structure of the spectrum of Pr
ε .

Let Sk, k ∈ Z be the multiplication operator in L2
per(R) by the 1-periodic function e2iπks,

∀ φ ∈ L2
per(R),

(
Sk φ

)
(s) := e2iπks φ(s),

which is unitary in L2
per(R) with S−1

k = S−k . Since Pr
ε is a weighted-shift operator (see Theorem 3.10),

one checks immediately that
∀ k ∈ Z, S−k Pr

ε Sk = e2iπkδ Pr
ε . (4.11)

Let us now make an assumption which will be proven at the step 2 of the proof :

The operator Pr
ε admits an eigenfunction φr

0,ε ∈ Nper such that w(φr
0,ε) = 0. (4.12)

Let λr0,ε ̸= 0 be the associated eigenvalue, with rε := |λr0,ε| > 0 since Pr
ε is bijective (see Theorem

3.10). From the commutation property (4.11), we deduce that

∀ k ∈ Z, Setting φr
k,ε := e2iπks φr

0,ε, Pr
ε φ

r
k,ε = λrk,ε φ

r
k,ε where λrk,ε := e−2iπkδ λr0,ε .

As δ ∈ R \ Q, the eigenvalues λrk,ε are distinct and
{
λrk,ε, k ∈ Z} is dense in the circle C

(
0, rε

)
.

Moreover, from Fourier series theory in L2(0, 1) , we deduce that
{
φr
k,ε, k ∈ Z

}
is an orthonormal

basis of L2
per(R) for the inner product (4.10), in which Pr

ε is diagonal in the sense that

∀ u ∈ L2
per(R), u =

∑
k∈Z

(
u, φr

k,ε

)
ρr
ε
φr
k,ε =⇒ Pr

εu =
∑
k∈Z

λrk,ε
(
u, φr

k,ε

)
ρr
ε
φr
k,ε. (4.13)

From (4.13), we deduce that the point spectrum of Pr
ε is given by (4.9) and that its whole spectrum is

the circle C
(
0, rε). Moreover, one sees that each eigenvalue is simple : Ker

(
Pr
ε − λrk,ε

)
= Span (φr

k,ε).

Step 2 : Existence of the fundamental eigenfunction φr
0,ε.

Since, according to Lemma 4.3, prε ∈ Nper and w
(
prε) = 0, we know by, Corollary 4.2, that

prε(s) = e gε(s) for some gε ∈ C 0
per(R,C). (4.14)

Similarly, since we look for φr
0,ε ∈ Nper with w

(
φr
0,ε) = 0 we can look for

φr
k,ε(s) = e vε(s) where vε ∈ C 0

per(R,C) (4.15)

so that the existence of φr
0,ε is equivalent to the one of vε(s). Substituting (4.14) and (4.15) into the

eigenvalue equation, that is to say,

prε(s− δ) φr
k,ε(s− δ) = λr0,ε φ

r
0,ε(s) (4.16)
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naturally suggests to look for vε(s) as a solution of the following difference equation

gε(s− δ) + vε(s− δ) = log λr0,ε + vε(s). (4.17)

Integrating (4.17) between 0 and 1, we obtain, by periodicity of vε (and gε),

log λr0,ε =

∫ 1

0
gε(s) ds, thus λr0,ε = exp

∫ 1

0
gε(s) ds.

Multiplying (4.17) by e−2iπks, with k ̸= 0, and integrating the result over [0, 1], we obtain for the k-th
Fourier coefficient vk,ε of vε (gk,ε being the one of gε) the following equation

∀ k ∈ Z, vk,ε
(
1− e2iπkδ

)
= −gk,ε =⇒ vk,ε =

gk,ε
e2iπkδ − 1

, (4.18)

where the division by e2iπkδ − 1 is possible because δ ∈ R \ Q. To conclude, it remains to investigate
the convergence, in C 0

per(0, 1), of the series∑
k ̸=0

gk,ε
e2iπkδ − 1

e2iπks. (4.19)

Note that this convergence is not obvious since, by density of
{
e2iπkδ, k ∈ Z

}
in the unit circle, e2iπkδ−1

can be arbitrarily small for infinitely many k’s. This corresponds to a small divisors problem (such a
problem also appears for instance when studying the primitives of quasiperiodic functions; see Section
II–4.2 and [Ghy07] for a general exposition). This is where the regularity of the symbol prε, through the
one of the coefficients (µp, ρp) will come into play to bound gk,ε, as well as the measure of irrationality
η(δ) of δ to get a lower bound for |e2iπkδ − 1|.

First, due to the regularity assumption, we know by (3.26) that prε ∈ Cm(R,C), thus gε ∈ Cm(R,C),
and we have the following upper bound for the coefficients gk,ε

∀ k ̸= 0, |gk,ε| ≤
Cm(gε)

|k|m , Cm(gε) := sup
s∈[0,1]

|g(m)
ε (s)|. (4.20)

To get a lower bound for |e2iπkδ − 1|, we use the concavity of the sine function in [0, π/2] to obtain

∀ θ ∈ [−π, π] ,
∣∣eiθ − 1

∣∣ = 2 | sin(θ/2)| ≥ 2 |θ|/π (4.21)

Next, for any k ∈ Z such that kδ /∈ Z and there exists n ≡ n(k) ∈ Z such that |kδ − n| < 1/2. Thus∣∣e2iπkδ − 1
∣∣ = ∣∣e2iπ(kδ−n) − 1

∣∣ ≥ 4 |k δ − n|,

where the last inequality follows from (4.21), since θ := 2π(kδ−n) ∈ ]−π, π[ . However, thanks to the
Diophantine condition (4.1), we have for any ν > η(δ)

|k δ − n| = |k| |δ − n/k| ≥ Cν
|k|ν−1

which yields
∣∣e2iπkδ − 1

∣∣ ≥ C̃ν
|k|ν−1

. (4.22)

Finally, by combining (4.20) and (4.22), we obtain the following uniform (in s) bound for the general
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term of the series (4.19) ∣∣∣ gk,ε
e2iπkδ − 1

∣∣∣ ≤ Cm(gε)

C̃ν

1

|k|1+(m−ν) , (4.23)

which ensures the (normal) convergence of the series as soon as m > η(δ) (since one can choose
η(δ) < ν < m) so that

vε(s) :=
∑
k ̸=0

gk,ε
e2iπkδ − 1

e2iπks ∈ C 0
per(R,C). (4.24)

We then take the exponential of vε, see (4.15), to construct φr
0,ε.

Note that, in the above construction of vε, the mean value v0,ε of vε (an additive constant for vε which
becomes a multiplicative constant for φr

0,ε) is completely free. Since φr
0,ε never vanishes, we can thus

build φr
0,ε so that φr

0,ε(0) = 1 by construction. This concludes the proof. ■

Remark 4.5. Note that since w(φr
k,ε) = k, only φr

0,ε has a winding number 0, reason why it can be
easily distinguished from the other eigenfunctions: we call it the fundamental eigenfunction of Pr

ε .
By extension, λr0,ε and (φr

k,ε, λ
r
0,ε) are respectively the fundamental eigenvalue and the fundamental

eigenpair of Pr
ε .

From the proof of Proposition 4.4, one can show the following corollary (we omit the details).

Corollary 4.6

Assume that δ is not a Liouville number and that the coefficients (µp, ρp) have the regularity
given in (4.5) with m > η(δ)+k for a given k ∈ N. Then the fundamental eigenfunction is such
that φr

0,ε ∈ C k
per(R,C).

To each eigenfunction φr
k,ε of Pr

ε , we can associate a 2D mode, which is the solution of the half-space
problem (3.18) taking this eigenfunction as the boundary data, namely

Ur
k,ε := Ur

ε (φ
r
k,ε). (4.25)

Similarly to the cell by cell expression (3.39) of urs,ε, one has the following result, which we shall use
in Section 6.4.

Lemma 4.7: Fibered structure of Ur
k,ε

We introduce for k ∈ Z, s ∈ R

a. e. x ∈ R+, urs,k,ε(x) := Ur
k,ε(s+ θ1 x, θ2 x).

Note that urs,k,ε is well-defined and belongs to H1(R+), because φr
k,ε is continuous. One has the

following formula, with ψr
k,ε := Sr

ε φ
r
k,ε:

urs,k,ε(x+ n/θ2) = (λrk,ε)
n
[
φr
k,ε(s+ nδ) er,0s+nδ,ε(x) + ψr

k,ε(s+ (n+ 1)δ) er,1s+nδ,ε(x)
]
. (4.26)

Proof. It suffices to use (3.39) for φ = φr
k,ε and remark that

(Pr
ε )
n φr

k,ε = λnk,ε φ
r
k,ε and Sr

ε (Pr
ε )
n φr

k,ε = (λrk,ε)
n ψr

k,ε. ■
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Remark 4.8 (Quasi-Floquet modes). The 2D fields Ur
k,ε can be seen as the equivalent of (evanescent)

Floquet modes associated to the classical Helmholtz equation in a periodic media. By analogy, the 1D func-
tions urs,k,ε can be called the quasi-Floquet modes associated to the quasi-periodic medium (µs,θ, ρs,θ).

4.2 Spectral resolution of the Riccati system

Let us suppose in this section than the assumptions of Theorem 4.4 are satisfied. We know that the
operator Pr

ε is entirely determined by its fundamental eigenpair (λr0,ε, φ
r
0,ε). Our goal now is to find

this eigenpair from the Riccati system (3.45).

Let us introduce the two operators M r
ε ,N

r
ε ∈ L

(
L2

per(R)× L2
per(R)

)
, defined in block form as

M r
ε =

(
T r,01
ε T r,11

ε

0 I

)
and N r

ε =

(
I 0

T r,00
ε T r,10

ε

)
, (4.27)

where the local RtR operators T r,ℓk
ε are defined by (3.40). It is easy to see that for any solution (P, S)

of the Riccati system (3.45), if Pφ = λφ with φ ∈ L2
per(R) \ {0} then

M r
ε

(
φ

Sφ

)
= λN r

ε

(
φ

Sφ

)

It is then natural to introduce the augmented (and generalized) eigenvalue problem

Find λ ∈ C and (φ,ψ)(̸= 0) ∈ L2
per(R)

2 such that M r
ε

(
φ

ψ

)
= λN r

ε

(
φ

ψ

)
(4.28)

and the corresponding point spectrum, called the Riccati point spectrum σrR,p,ε, defined as the point
spectrum of the pencil (M r

ε ,N
r
ε ):

σrR,p,ε :=
{
λ ∈ C / 0 ∈ σp(M

r
ε − λN r

ε )}. (4.29)

We have noticed above that for any solution (P, S) of the Riccati system (3.45), one has the inclusion

σp
(
P
)
⊂ σrR,p,ε (4.30)

In particular, σp
(
Pr
ε

)
⊂ σrR,p,ε. The Riccati point spectrum is the one that we shall be able to compute

numerically because it involves the RtR operators defined thanks to problems defined in a bounded
domains, namely the cell Cr,0# = (0, 1)2.

Remark 4.9. After discretization, the RtR operators will be approximated by matrices of dimension N .
One then expects the approximated Riccatti spectrum to contain 2N elements while the approximated
spectrum of the propagation operator contains only N elements.

In order to extract σp
(
Pr
ε

)
from σrR,p,ε,we shall use a complete description the Riccati point spectrum.

This will be based on the factorization of M r
ε − λN r

ε , which is the analogue of Lemma III–4.7. Note
however that this factorization is more technical, due to the RtR operators.
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Proposition 4.10

Given ε > 0, let Pr
ε ,Sr

ε be the operators defined by (3.23). For any λ ∈ C, we have

M r
ε − λN r

ε =

(
I 0

λ tSr
ε λ tPr

ε − I

)
Lr
ε

(
Pr
ε − λ 0

Sr
ε −I

)
, Lr

ε :=

(
I −T r,11

ε

−Λr
ε I

)
, (4.31)

where T r,11
ε is defined in (3.40) and Λr

ε in (3.48). Moreover, Lr
ε is invertible.

Proof. Step 1: Factorization of M r
ε − λN r

ε . Let λ ∈ C; we have

M r
ε − λN r

ε =

(
T r,01
ε − λ T r,11

ε

−λ T r,00
ε I − λT r,10

ε

)
.

We do not change the above expression by adding the two operators Pr
ε−T r,01

ε −T r,11
ε Sr

ε and T r,00
ε Pr

ε+

T r,10
ε Sr

ε Pr
ε − Sr

ε respectively to the upper and lower left blocks: indeed, as (Pr
ε ,Sr

ε ) is solution of the
Riccatti system, these two operators are equal to 0. Doing so, we obtain

M r
ε − λN r

ε =

(
Pr
ε − λ− T r,11

ε Sr
ε T r,11

ε

T r,00
ε (Pr

ε − λ) + T r,10
ε Sr

ε Pr
ε − Sr

ε I − λT r,10
ε

)
,

an expression whose interest is to make appear Pr
ε − λ. Thanks to the fact that Λr

ε = T r,00
ε + T r,10

ε Sr
ε

from (3.48), we note that T r,00
ε (Pr

ε − λ) + T r,10
ε Sr

ε Pr
ε − Sr

ε = Λr
ε(Pr

ε − λ) + (λT r,10
ε − I)Sr

ε , so that

M r
ε − λN r

ε =

(
I × (Pr

ε − λ)− T r,11
ε Sr

ε I × 0− T r,11
ε (−I)

Λr
ε(Pr

ε − λ) + (λT r,10
ε − I)Sr

ε Λr
ε × 0 + (λT r,10

ε − I)(−I)

)
,

an expression on which we recognize a first factorization of M r
ε − λN r

ε , namely

M r
ε − λN r

ε = Dε(λ)

(
Pr
ε − λ 0

Sr
ε −I

)
with Dε(λ) :=

(
I −T r,11

ε

Λr
ε λ T r,10

ε − I

)
. (4.32)

Let us now factorize the operator Dε(λ). We proceed essentially along the same lines as for the first
step of the factorization. To make appear the transpose operators that arise in the first factor of (4.31),
the trick is to transpose the Riccati system (3.45), and use the symmetry properties of the operators
T r,ℓk
ε (Lemma 3.17), as well as the expression (3.49) of Λr

ε and the fact that tΛr
ε = Λr

ε (see (3.50)) to
obtain { tPr

ε − T r,10
ε + tSr

εT r,11
ε = 0,

tSr
ε − tPr

εΛ
r
ε = 0.

Thus, we do not change anything by adding λ
( tPr

ε−T r,10
ε + tSr

εT r,11
ε

)
and λ

( tSr
ε− tPr

εΛ
r
ε

)
repectively

to the left and right lower blocks of Dε(λ) in (4.32). This leads to an expression that has the interest
to make appear λ tPr

ε − I, namely

Dε(λ) =

(
I −T r,11

ε

λ tSr
ε − (λ tPr

ε − I) Λr
ε −λ tSr

εT r,11
ε + (λ tPr

ε − I)

)
.
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We then recognize, similarly to the first part of the proof, the factorization

Dε(λ) =

(
I 0

λ tSr
ε λ tPr

ε − I

) (
I −T r,11

ε

−Λr
ε I

)

which combined with (4.32) leads to the desired factorization of M r
ε − λN r

ε .

Step 2 : Invertibility of Lr
ε. We begin by showing that the invertibility of Lr

ε is equivalent to the
well-posedness of a certain problem. Given (f, g) in L2

per(R)
2, we want to construct (φ,ψ) ∈ L2

per(R)
2

such that Lr
ε(φ,ψ) = (f, g), or equivalently φ− T r,11

ε ψ = f

−Λr
ε φ+ ψ = g

⇐⇒

 φ−Rr
−E

r,1
ε (ψ)|

Σr,1
#

= f

−Λr
ε φ+Rr

+E
r,1
ε (ψ)|

Σr,1
#

= g

where the equivalence follows from the definitions of Er,1
ε (ψ) and T r,11

ε . Therefore, since Rr
+ −Rr

− =

−2µpDθ and Rr
+ −Rr

− = −2iz, we also have

Lr
ε(φ,ψ) = (f, g) ⇐⇒

 (I + Λr
ε)φ+ 2iz Er,1

ε (ψ) = f − g on Σr,1
#

(I − Λr
ε)φ− 2µpDθ E

r,1
ε (ψ) = f + g on Σr,1

#

Consequently, if Lr
ε(φ,ψ) = (f, g), setting U := E1

ε (ψ), then the pair (φ,U) is a solution of the coupled
problem: Find (φ,U) ∈ L2

per(R)×H1
θ(C

r,0
# ) such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µpDθ U

)
− ρp (ω

2 + iε)U = 0, in Cr,0# ,

R+ U = 0, on Σr,0
# ,

(I + Λr
ε)φ+ 2 iz U = f − g, on Σr,1

# ,

(I − Λr
ε)φ− 2µpDθ U = f + g, on Σr,1

# ,

U is periodic w.r.t y1.

(4.33)

Conversely, if (φ,U) is a solution of (4.33), then by setting ψ := Rr
−U |

Σr,0
#

, we obtain Lr
ε(φ,ψ) = (f, g).

This proves the equivalence between the invertibility of Lr
ε and the well-posedness of (4.33). Hence,

it remains to prove that (4.33) is well-posed.

Problem (4.33) is equivalent to a variational problem involving the closed affine and linear subspaces
V(h) ⊂ V :=⊂ L2

per(R)×H1
θ(C

r,0
# ) defined for any h ∈ L2

per(Σ
r,1) by

V(h) :=
{
(ψ, V ) ∈ V / (I + Λr

ε)ψ + 2iz V = h on Σr,1
#

}
, V0 := V(0).

Introducing the continuous sesquilinear forms
aC(U, V ) :=

∫
Cr,0#

(
µpDθ UDθ V − ρp (ω

2 + iε)U V
)
− iz

∫
Σr,0

#

U V , in H1
θ(C

r,0
# )

aΣ(φ,ψ) := − i

4z

∫
Σr,1

#

(I − Λr
ε)φ (I + Λr

ε)ψ, in L2(Σr,1
# ),
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Problem (4.33) is equivalent to : finding (φ,U) ∈ V(f − g) (for the third line of (4.33)) such that

aC(U, V ) + aΣ(φ,ψ) =

∫
Σr,0

#

(f + g)V , ∀ (ψ, V ) ∈ V0. (4.34)

The key point is that, since ε > 0, the sesquilinear form aC(·, ·) is coercive in H1
θ(C

r,0
# ) while, thanks

to the inequality (3.51) involving Λr
ε, the form aΣ(·, ·) is coercive in L2(Σr,1

# ). Thus, Lax-Milgram
theorem ensures the well-posedness of (4.33), which gives the invertibility of Lr

ε. ■

The previous factorization allows to completely link the Ricatti point spectrum to the point spectrum
of Pr

ε as follows.

Proposition 4.11

Let ε > 0. Referring to the notation of Proposition 4.4, the Riccati point spectrum σrR,p,ε satisfies

σrR,p,ε =
{
λrk,ε, k ∈ Z

}
∪
{
1/λrk,ε, k ∈ Z

}
. (4.35)

Moreover,

Ker
(
M r

ε − λrk,ε N r
ε

)
= Span

(
φr
k,ε

Sr
εφ

r
k,ε

)
. (4.36)

Proof. For proving (4.35), we prove successively

(a) σrR,p,ε ∩
{
|λ| = 1

}
= ∅, (b) σrR,p,ε ∩

{
|λ| > 1

}
=
{
1/λrk,ε

}
, (c) σrR,p,ε ∩

{
|λ| < 1

}
=
{
λrk,ε

}
.

We use all along this proof the following obvious observation that, in a Banach space E,

For A,B,C ∈ L (E), A,B are invertible ⇐⇒
(
A 0

C B

)
is invertible, (4.37)

(a) For |λ| = 1, we notice that, as σp(
tPr

ε ) = σp(Pr
ε ) ⊂ C(0, rε) with rε < 1, the operators λ tPr

ε −I and
Pr
ε−λ I are invertible. Therefore, by (4.37), the three factors in the factorization (4.31) of M r

ε −λN r
ε

are invertible.

(b) For |λ| > 1, for the same reason as in (a), Pr
ε −λ I is invertible. Thus by (4.37), the last two factors

in (4.31) are invertible and only the first factor can have a kernel. In other words, by (4.37) again,
we obtain

Ker
(
M r

ε − λN r
ε

)
= {0} ⇐⇒ Ker

(
λ tPr

ε − I
)
= {0},

which proves (b).

(c) For |λ| < 1, for the same reason as in (a), λ tPr
ε − I is invertible so that, by (4.37), the first two

factors in (4.31) are invertible and only the third factor can have a kernel. In other words, by (4.37)
again we obtain,

Ker
(
M r

ε − λN r
ε

)
= {0} ⇐⇒ Ker

(
Pr
ε − λ I

)
= {0}, which proves (c)

Moreover, in that case, the kernel of M r
ε − λN r

ε coincides with the one of the third factor in (4.31)
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which means nothing but (4.36). ■

4.3 Relationship between left and right half-waveguides

For now, we have analyzed the half-waveguide problem, the periodicity cells problems and all the as-
sociated solutions and associated operators, for j = r only. Note that up to some slight modifications,
the results above can be extended to the half-line problem set on Il, thus leading to solutions of local
cell problems (El,0

ε , El,1
ε ), local RtR operators (T l,00

ε , T l,10
ε , T l,01

ε , T l,11
ε ), propagation and scattering

operators (Pl
ε ,Sl

ε ), and matrices (M l
ε ,N

l
ε ) associated to the Riccati system. The goal of this section

is to exhibit the links between the objects defined for j = l and j = r under the assumption (1.1),
that is, ar θ2, al θ2 ∈ Z.

Under Assumption (1.1), (µp, ρp) are equal in the periodicity cells Cr,0# := (0, 1)2 and Cl,0# := (0, 1) ×
(−1, 0) in which (Er,0

ε , Er,1
ε ) and (El,0

ε , El,1
ε ) are respectively defined. By identifying these cells by

symmetry, it is then easy to see that

∀ φ ∈ L2
per(R), El,0

ε (φ) = Er,1
ε (φ), El,1

ε (φ) = Er,0
ε (φ),

∀ ℓ, k ∈ {0, 1}, T l,ℓk
ε = T r,(1−ℓ)(1−k)

ε .

(4.38)

We deduce in particular that

M l
ε =

(
T r,10
ε T r,00

ε

0 I

)
and N l

ε =

(
I 0

T r,11
ε T r,01

ε

)
.

Therefore, from simple algebraic manipulations, it follows that for any λ ∈ C, λ ̸= 0

M l
ε − λN l

ε = − 1

λ
J −1

(
M r

ε − 1

λ
N r
ε

)
J with J :=

(
0 I

I 0

)
. (4.39)

This relations enables to show the following important result

Proposition 4.12

Let ε > 0, we have

σp(Pl
ε ) = σp(Pr

ε ) and Ker
(
M j

ε − 1

λ
j′
k,ε

N j
ε

)
= Span

Sj′
ε φ

j′
k,ε

φ
j′
k,ε

 for j ̸= j′ ∈ {l, r}.

Proof. Let λlε ∈ σp(Pl
ε ). Then by Proposition 4.4, there exists k ∈ Z such that λlε = λlk,ε. Note that

|λlk,ε| < 1. Using (4.36) and (4.39), we deduce that

Ker
(
M r

ε − 1

λlk,ε
N r
ε

)
= Span

(
Sl
εφ

l
k,ε

φl
k,ε

)

This implies that (λlk,ε)
−1 ∈ σrR,ε, and therefore by (4.35),

∀ k ∈ Z, ∃ k′ ∈ Z / λlk,ε = λrk′,ε ∈ σp(Pl
ε ).
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By inverting the roles of l and r, one shows that

∀ k ∈ Z, ∃ k′ ∈ Z / λrk,ε = λlk′,ε ∈ σp(Pr
ε ). ■

4.4 Resolution algorithm in the absorbing case

In order to compute the solution of (Pε), the previous sections provide an algorithm which sums up
as follows. We suppose here that (1.1) holds.

1. For any φ ∈ L2
per(Σ

r,0), compute the solution Er,0
ε (φ) and Er,1

ε (φ) of respectively the local cell
problems (3.31) and (3.32) for j = r. Note that El,0

ε (φ) and El,1
ε (φ) are obtained using the

correspondence (4.38).

2. Compute the local RtR operators T r,ℓk
ε defined in (3.40) for ℓ, k ∈ {0, 1}.

3. Solve the generalized eigenvalue problem (4.28) for j = r: for λ ∈ σrR,ε, we denote by (φλ, ψλ) ∈
Ker(M r

ε − λN r
ε ) an associated eigenpair.

4. For the unique λ, |λ| < 1 such that w(φλ) = 0, we have λ = λr0,ε and φλ = φr
0,ε up to a

multiplicative constant (see Proposition 4.11) and for the unique λ, |λ| > 1 such that w(ψλ) = 0

we have λ−1 = λl0,ε and ψλ = φl
0,ε up to a multiplicative constant (see Proposition 4.12).

5. Compute Pr
ε for j = l and r using Proposition 4.4. The operator Pl

ε and the scattering operators
Sj
ε for j = r and j = l can then be computed using respectively Proposition 4.11 and Proposition

4.12.

6. For any φ ∈ L2
per(R), the solution Uj

ε (φ) can be reconstructed cell by cell using Proposition 3.12.

7. For each j ∈ {l, r}, pick a continuous function φ such that φ(θ1 aj) = 1 and take the trace of
U

j
ε (φ) along the line Rθ + aj #»e 1 (3.19) to construct ujε.

8. Compute the RtR operator Λj
ε using its expression (3.49) with respect to the local RtR operators

and the scattering operator, and deduce the RtR coefficient λjε using the expression (3.53).

9. Finally, solve the interior problem (Pint
ε ) in I0 = (al, ar). Then the solution uε of (Pε) is given

by (3.5).

Remark 4.13. Note that the algorithm presented in this chapter is slightly different from the one in
Chapter III, in that we rely much more on the fundamental eigenpair of the propagation operator, and on
the different correspondences between the objects defined from j = l and r.

5 Towards limiting absorption : quasi-periodic spectrum

As explained in Section 1.1, the problem (P) can be solved in H1(R) only when ω is not in σ(A), the
spectrum of the positive selfadjoint operator A, see (1.7). On the other hand, the question of possible
limiting absorption, in another space than H1(R), will be studied for values of ω2 outside the discrete
spectrum σd(A): these values of ω, that are related to the existence of possible trapped modes, will
be excluded from this study. Thus, according to the decomposition (1.9) of σ(A), we shall look at
limiting absorption for ω2 in the spectrum of the (purely quasiperiodic) operator Aθ defined by (1.8).
But before doing so, we note that our study also involves the spectra of other differential operators,
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such as the 2D periodic differential operator associated to Aθ (namely the operator Ap defined in
(5.6)), and its equivalent on the half-guide Ωr (with Robin boundary conditions; see (5.15) below).
The goal of the present section is to exhibit for these spectra some equalities or inclusions that will be
useful in Section 6.

5.1 Quasiperiodic operators on the whole line

In the spirit of the lifting method presented in our study, a fruitful point of view is to see Aθ as one
particular element of a family of self-adjoint operators As,θ, s ∈ R with

D(As,θ) :=
{
u ∈ H1(R)

/
µs,θ

du

dx
∈ H1(R)

}
and As,θ u := − 1

ρs,θ

d

dx

(
µs,θ

du

dx

)
, (5.1)

where we recall that the functions (µs,θ, ρs,θ) have been defined in (2.6) as the traces of the 2D
periodic functions (µp, ρp) along the line θ R + s #»e 1. Obviously, s 7→ As,θ is 1–periodic and according
to its definition (1.8), Aθ coincides with As,θ for s = 0:

Aθ = A0,θ. (5.2)

We can build from the family As,θ, s ∈ [0, 1), a self-adjoint operator in L2
per
(
R, L2(R)

)
, as

A2D
θ =

∫ ⊕
As,θ ds (5.3)

meaning that (see [MBR78, Section XIII.16] for instance for direct integrals of operators),

U ∈ D(A2D
θ ) ⇐⇒ ∀ s, U(s, ·) ∈ D(As,θ) and A2D

θ U(s, ·) = As,θ[U(s, ·)]. (5.4)

It is known, see [MBR78, Theorem XIII.85], that the spectra of Aθ and the As,θ are related by

σ
(
A2D

θ

)
=

⋃
s∈[0,1]

σ
(
As,θ

)
. (5.5)

The operator A2D
θ is closely linked to the 2D self-adjoint operator Ap corresponding to the augmented

half-waveguide problems, that is,

D(Ap) :=
{
U ∈ H1

θ, per(R
2)
/
µpDθ U ∈ H1

θ, per(R
2)
}
, and Ap U = − 1

ρp
Dθ

(
µpDθ U

)
, (5.6)

where we recall that H1
θ, per(R

2) := {U ∈ L2
per(R

2) / Dθ U ∈ L2
per(R

2)}. More precisely, the chain rule
(3.14) allows to show that A2D

θ and Ap are unitary equivalent in L2
per(R

2):

As,θ = Sθ Ap S
−1
θ ,

where Sθ is the unitary operator from L2
per(R, L

2(R)) into L2
per(R

2) idefined by

∀ U ∈ L2
per(R

2), (Sθ U)(s, x) = U(s+ θ1 x, θ2 x).

As a consequence, we deduce a first decomposition of the spectrum of Ap

σ
(
Ap

)
=

⋃
s∈[0,1]

σ
(
As,θ

)
. (5.7)
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Incidentally, the spectra As,θ all coincide if the ratio δ is irrational, as the next result shows.

Proposition 5.1

As soon as δ ∈ R \ Q, one has

∀ s ∈ R, σ(As,θ) = σ(Aθ). (5.8)

In particular, σ(Aθ) = σ(Ap).

Proof. The key idea is to show that s 7→ σ(As,θ) is a continuous function (in the sense of the Haus-
dorff distance) which is both 1 and δ–periodic. It is then the irrationality of δ that allows to conclude.
The proof is detailed in Appendix A, see Proposition A.2. ■

We shall now highlight another fibered structure for Ap (similar to the structure (5.3) for A2D
θ ) by

means of the Floquet-Bloch transform in the y2–direction. To begin, we introduce the space L2
per,2(R

2)

of locally square-intergrable functions that are periodic with respect to both y1 and y2 (this is to be
distinguished from L2

per(R
2) that only imposes periodicity in the y1–direction), as well as H1

θ, per,2(R
2),

the space defined by:
L2

per,2(R
2) :=

{
V ∈ L2

loc(R
2) / V (y1 + 1, y2) = V (y1, y2 + 1) = V (y1, y2)

}
,

H1
θ, per,2(R

2) :=
{
U ∈ L2

per,2(R
2) / Dθ U ∈ L2

per,2(R
2)
}
.

The Floquet-Bloch transform in the y2–direction is defined by

a. e. (y, ξ) ∈ R2 × (−π, π), F U(y, ξ) := Û(y, ξ) :=

√
p

2π

∑
n∈Z

U(y + n #»e 2) e
−iξ (y2+n),

It is well-known [Kuc93] that F defines a unitary map from L2
per(R

2) into L2(−π, π;L2
per,2(R

2)), and
from H1

per(R
2) to L2(−π, π;H1

θ, per,2(R
2)). Consider the self-ajoint operators defined for ξ ∈ [−π, π] as

D(Ap(ξ)) :=
{
U ∈ H1

θ, per,2(R
2) / µpDθ U ∈ H1

θ, per,2(R
2)
}
,

Ap(ξ)U := − 1

ρp
(Dθ + iξθ2) µp (Dθ + iξθ2)U,

(5.9)

From the properties of the Floquet-Bloch transform [Kuc93], it follows that the self-adjoint operator
given by Âp := FApF−1 can be expressed as a direct integral

Âp =

∫ ⊕
Ap(ξ) dξ, (5.10)

meaning similarly to (5.4) that

Û ∈ D
(
Âp

)
⇐⇒ ∀ ξ, U(ξ, ·) ∈ D(Ap(ξ)), (Âp Û)(ξ, ·) = Ap(ξ) [Û(ξ, ·)]. (5.11)

As Âp and Ap are unitary equivalent, we deduce another decomposition of the spectrum of Ap

σ
(
Ap

)
=

⋃
ξ∈[−π,π]

σ
(
Ap(ξ)

)
. (5.12)
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Note that contrary to elliptic operators, Ap(ξ) does not have compact resolvent, and thus its spectrum
is not discrete. Furthermore, similarly to Proposition 5.1, the next result shows that the spectrum of
Ap(ξ) is surprisingly independent of ξ if δ is irrational.

Proposition 5.2

As soon as δ ∈ R \ Q, one has the equality

∀ ξ ∈ [−π, π[, σ(Ap) = σ(Ap(ξ)). (5.13)

Proof. The proof, which is detailed in Appendix A (Proposition A.5), relies on showing that ξ 7→
σ(Ap,ξ) is a continuous function (in the sense of the Hausdorff distance) which is both 2π and 2πδ–
periodic. One then concludes using the irrationality of δ. ■

5.2 Quasiperiodic operator on a half-line

The RtR approach developed in Section 3 in the absorbing case involves the operators Ar
s,θ, s ∈ R,

associated to the half-line problems (Pr
ε,s), namely

D(Ar
s,θ) :=

{
u ∈ H1(R+)

/
µs,θ

du

dx
∈ H1(R+) and Rr

+,s u = 0
}

Ar
s,θ u := − 1

ρs,θ

d

dx

(
µs,θ

du

dx

)
,

(5.14)

and the operator Ar
p associated to the half-guide problem (3.18), namely

D(Ar
p) :=

{
U ∈ H1

θ, per(Ω
r)
/
µpDθ U ∈ H1

θ, per(Ω
r) and Rr

+U = 0
}

Ar
p U := − 1

ρp
Dθ

(
µpDθ U

)
.

(5.15)

One defines similarly the operators Al
s,θ and Al

p. For j ∈ {l, r}, note that Proposition 5.1 can be easily
extended to these operators, to obtain σ(Aj

s,θ) = σ(Aj
p) for any s ∈ R. Furthermore, the next result

holds.

Proposition 5.3

Let j ∈ {l, r}. One has σ(Aj
s,θ) ⊂ σ(As,θ) for any s ∈ R, and σ(Aj

p) ⊂ σ(Ap).

Proof. Since σ(Aj
s,θ) = σ(Aj

p) for j ∈ {l, r,∅}, it is sufficient to prove the first part of the proposi-

tion, that is, σ(Aj
s,θ) ⊂ σ(As,θ). For clarity, we fix j = r, and we focus on (Aθ,Ar

θ) := (As,θ,Ar
s,θ) for

s = 0. We proceed by contradiction: given ω2 ̸∈ σ(Aθ), we prove that ω2 ̸∈ σ(Ar
θ), or equivalently

that the problem ∣∣∣∣∣∣∣
− d

dx

(
µθ

dur

dx

)
− ρθ ω

2 ur = f in R+,

Rr
+u

r(0) = 0,

(5.16)

admits a unique solution ur ∈ H1(R+) for any f ∈ L2(R+).

Step 1: uniqueness. This simply has to do with the Robin boundary condition. If ũr satisfies (5.16)
with f = 0, then by taking the real and the imaginary parts of the Robin condition Rr

+ũ
r(0) = 0, it
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follows that ũr(0) = (ũr)′(0) = 0 which, from Cauchy uniqueness theorem, implies that ũr = 0.

Step 2: existence. Given f ∈ L2(R+), we consider its extension by 0 on R, still called f ∈ L2(R). We
begin by seeking ur as

ur = uf |R+ − (Rr
+uf (0))u

r
1,

where uf is the unique solution of the well-posed (ω2 ̸∈ σ(Aθ)) problem

− d

dx

(
µθ

duf
dx

)
− ρθ ω

2 uf = f in R,

and where ur1 is a correction term. For ur to be the solution of (5.16), ur1 should satisfy∣∣∣∣∣∣∣
− d

dx

(
µθ

dur1
dx

)
− ρθ ω

2 ur1 = 0 in R+,

Rr
+u

r
1(0) = 1.

(5.17)

In what follows, we construct ur1 following the ideas of [Hoa11, Theorem 4.1, Lemma 4.2] (also used
in [KL18a] and [FJL21], and which simplify greatly for our 1D operators). More precisely, we look for
ur1 under the form

ur1 = α (ur2 + ug|R+), (5.18)

where ug satisfies the same equation as uf on R, but with g ∈ L2(R) as a source term, and where ur2
can also be viewed as a perturbation term, which shall be characterized as the solution of the coercive
problem (with κ ∈ C such that ω2 + κ ∈ C \ R+; κ will be fixed later depending on ω)∣∣∣∣∣∣∣

− d

dx

(
µθ

dur2
dx

)
− ρθ (ω

2 + κ)ur2 = 0 in R+,

ur2(0) = 1.

(5.19)

Our goal is to find the pair (α, g) ∈ C×L2(R) such that the function ur1 given by (5.18) satisfies (5.17).
From (5.18) and from the equation verified by ug, it follows that g must verify

0 = − d

dx

(
µθ

dur1
dx

)
− ρθ ω

2 ur1 = α (κ ρθ u
r
2 + g|R+), so that g|R+ = −κ ρθ ur2.

Aside from this condition, g can be extended arbitrarily on R. We extend g by 0 on R, and still call the
extension g. It then remains to choose α in order to satisfy the Robin boundary condition in (5.17).
From the boundary condition satisified by ur1, we deduce the equation

α
(
Rr

+u
r
2(0) +Rr

+ug(0)
)
= 1.

In order to conclude, the last point is to prove that Rr
+(u

r
2 + ug)(0) ̸= 0, so that one can compute α.

We prove this by contradiction. If Rr
+(u

r
2 + ug)(0) = 0, then ũr := ur2 + ug|R+ ∈ H1(R+) satisfies the

ODE in (5.17) in R+, with the condition Rr
+ũ

r(0) = 0. Therefore, according to the Step 1, it follows
that ũr = 0, or equivalently ur2 = −ug in R+. By multiplying the equality ur2 = −ug by ρθ ur2, and by
integrating over R+ (ur2 ∈ H1(R+) and ug ∈ H1(R)), we obtain∫

R+

ρθ |ur2|2 =
∫

R+

ρθ u
r
2 ug = κ−1

∫
R
g ug from the definition of g
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= κ−1

∫
R

(
µθ

∣∣∣dug
dx

∣∣∣2 − ρθ ω
2 |ug|2

)
from the equation satisfied by ug. (5.20)

To obtain a contradiction, we need to distinguish between the cases ω2 ∈ R and ω2 ∈ C\R, and choose
κ accordingly. If ω2 ∈ R, then it suffices to choose κ := i (note that ω2 + κ ∈ C \ R+ and (5.19) is
well-posed). In this case, taking the real part of (5.20) implies that ur2 = 0 in R+, which contradicts
the condition ur2(0) = 1. If ω2 ∈ C \R, then we choose κ−1 := 1 (note that ω2 + κ ∈ C \R+ and (5.19)
is well-posed). Thus, taking the imaginary part of (5.20) implies ug = 0 on R, that is ur2 = −ug = 0 on
R+, which contradicts the condition ur2(0) = 1. ■

6 Limiting absorption principle

We now study the limit when ε goes to 0 of the solution uε of (Pε). If the limit exists in a certain sense
and if the limit satisfies (P), we say that the limiting absorption principle holds and this limit is the
physical solution. Since uε is constructed and characterized by the method described in Sections 3 and
4, our approach is to pass to the limit in each step of the method. When studying objects associated
to the half-line problems set on Ij, we shall assume for simplicity that j = r.

6.1 Convergence of the cell solutions and the associated RtR operators

The first step is to characterize the limits of the cell solutions (Er,0
ε (φ), Er,1

ε (φ)) defined by (3.31) and
(3.32) for φ ∈ L2

per(R), and of the associated RtR operators T r,ℓk
ε defined in (3.40) for ℓ, k ∈ {0, 1}.

Let us introduce the limit cell problems for φ ∈ L2
per(R): Find Er,0(φ) ∈ H1

θ(C
r,0
# ) such that∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µpDθ E

r,0(φ)
)
− ρp ω

2Er,0(φ) = 0 in Cr,0# ,

Rr
+E

r,0(φ)|
Σr,0

#
= φ and Rr

−E
r,0(φ)|

Σr,1
#

= 0,

Er,0(φ) is periodic w.r.t y1;

(6.1)

and Find Er,1(φ) ∈ H1
θ(C

r,0
# ) such that∣∣∣∣∣∣∣∣∣∣
−Dθ

(
µpDθ E

r,1(φ)
)
− ρp ω

2Er,1(φ) = 0 in Cr,0# ,

Rr
+E

r,1(φ)|
Σr,0

#
= 0 and Rr

−E
r,1(φ)|

Σr,1
#

= φ,

Er,1(φ) is periodic w.r.t y1;

(6.2)

In addition, consider the 1D cell problems defined for any s ∈ R by∣∣∣∣∣∣∣
− d

dx

(
µs,θ

der,0s
dx

)
− ρs,θ ω

2 er,0s = 0 in (0, 1/θ2),

Rr
+,se

r,0
s (0) = 1 and Rr

−,se
r,0
s (1/θ2) = 0,

(6.3)

and ∣∣∣∣∣∣∣
− d

dx

(
µs,θ

der,1s
dx

)
− ρs,θ ω

2 er,1s = 0 in (0, 1/θ2),

Rr
+,se

r,1
s (0) = 0 and Rr

−,se
r,1
s (1/θ2) = 1.

(6.4)
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One advantage of the 1D problems (6.3) and (6.4) is that Fredholm alternative can be applied in
H1(0, 1/θ2). Moreover, thanks to the RtR boundary conditions, the uniqueness of the solutions can be
proved easily. As a consequence, Problem (6.3) and (6.4) are well-posed. Using the same arguments
as in Lemma 2.1, we can then deduce the well-posedness of the 2D cell problems (6.1) and (6.2) as
well as the link between the 2D solutions (Er,0(φ), Er,1(φ)) and the 1D ones (er,0s , er,1s ).

Lemma 6.1

The problem (6.1) ( resp. (6.2)) is equivalent to the family of problems (6.3) ( resp. (6.4))
parameterized by s ∈ R in the following sense

(i) If Er,0, Er,1 are the respective solutions of (6.1) and (6.2) for φ = 1, and are identified
with their periodic extensions with respect to y1, then by setting for ℓ = 0, 1 and s ∈ R

er,ℓs (x) = Er,ℓ(s+ θ1 x, θ2 x), x ∈ (0, 1/θ2), (6.5)

the functions er,0s and er,1s are the respective solutions of (6.3) and (6.4).

(ii) If er,0s and er,1s are the respective solutions of (6.3) and (6.4) for s ∈ R, then by defining
for all φ ∈ L2

per(R), the functions Er,0(φ) and Er,1(φ) as follows Er,0(s+ θ1 x, θ2 x) := φ(s) er,0s (x), x ∈ (0, 1/θ2), s ∈ [0, 1),

Er,1(s+ θ1 x, θ2 x) := φ(s+ δ) er,1s (x), x ∈ (0, 1/θ2), s ∈ [0, 1),
(6.6)

the functions Er,0(φ), Er,1(φ) are the respective solutions of (6.1) and (6.2).

In particular,

(6.1) (resp. (6.2)) is well-posed ∀ φ ∈ L2
per(R) ⇐⇒ (6.3) (resp. (6.4)) is well-posed ∀ s ∈ R.

To s 7→ (er,0s , er,1s ) are associated the local RtR coefficients (defined similarly to (3.42)) tr,00(s) = Rr
−,se

r,0
s (0), tr,01(s) = Rr

+,se
r,0
s (1/θ2),

tr,10(s) = Rr
−,se

r,1
s (0), tr,11(s) = Rr

+,se
r,1
s (1/θ2).

(6.7)

When ε→ 0, we can compute convergence estimates for (er,ℓs,ε, t
r,ℓk
ε ) towards (er,ℓs , tr,ℓk).

Proposition 6.2

There exists a constant C > 0 (independent of s) such that for any s ∈ R,
∥er,0s − er,0s,ε∥H1 + ∥er,1s − er,1s,ε∥H1 ≤ Cε, (i)

∀ ℓ, k ∈ {0, 1}2, ∥tr,ℓkε − tr,ℓk∥∞ ≤ Cε. (ii)

(6.8)
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Proof. One begins by writing the problem satisfied by the difference v := er,0s − er,0s,ε :∣∣∣∣∣∣∣
− d

dx

(
µs,θ

dv

dx

)
− ρs,θ ω

2 v = −ρs,θ ε er,0s,ε in (0, 1/θ2),

Rr
+,sv(0) = Rr

−,sv(1/θ2) = 0.

(6.9)

From the well-posedness of this problem, we deduce the first line (i) of (6.8), with a constant C(s)
which depend a priori on s. To show that the constant can be chosen independently from s, we assume
by contradiction that there exists a point s∗ and a sequence sn such that sn → s∗ and ∥vn∥H1 → +∞
as n→ +∞ with vn := er,0sn − er,0sn,ε. Then,

v̂n :=
vn

∥vn∥H1

∈ H1(0, 1/θ2) with ∥v̂n∥H1 = 1.

On the other hand, v̂n satisfies Problem (6.9) with a volumic term that tends to 0 as n → +∞.
Therefore, the uniform continuity of the maps s 7→ (µs,θ, ρs) implies that vn → 0, which contradicts
the equality ∥v̂n∥H1 = 1. By extending these arguments to er,1s − er,1s,ε , we obtain (6.8)–(i).

The second line (ii) of (6.8) is a consequence the first one (i) combined with the continuity of the
normal trace (and the boundedness of s 7→ µs,θ). ■

We finally deduce the convergence results for the solutions of the local cell problems (6.1) and (6.2),
and the associated RtR operators.

Proposition 6.3

There exists a constant C > 0 such that
∥Er,0 − Er,0

ε ∥
H1(Cr,0# )

+ ∥Er,1 − Er,1
ε ∥

H1
θ(C

r,0
# )

≤ Cε, (i)

∀ ℓ, k ∈ {0, 1}2, ∥T r,ℓk
ε − T r,ℓk∥L (L2(0,1)) ≤ Cε, (ii)

where, similarly to (3.40), the limit RtR operators T r,ℓk are defined by

T r,00 φ := Rr
−E

r,0(φ)|Σr,0 and T r,01 φ := Rr
+E

r,0(φ)|Σr,1 ,

T r,10 φ := Rr
−E

r,1(φ)|Σr,0 and T r,11 φ := Rr
+E

r,1(φ)|Σr,1 .

(6.10)

Proof. The first line (i) follows by combining the fibered expression (6.6) with the first line (i) in
(6.8) (where we use the oblique change of variables in Proposition III–3.13). To obtain the second
line (ii), we exploit the observation that similarly to (3.41) for ε > 0, the operators T r,ℓk are weighted
shift operators:

∀ φ ∈ L2
per(R),


T r,00 φ(s) = tr,00(s)φ(s), T r,01 φ(s) = tr,01(s− δ)φ(s− δ),

T r,10 φ(s) = tr,10(s)φ(s+ δ), T r,11 φ(s) = tr,11(s− δ)φ(s),

(6.11)

so that the second line (ii) in the estimate (6.8) allows to conclude. ■
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An immediate consequence of Proposition 6.3 is that

∃ C > 0, ∥M r − M r
ε ∥L (L2

per(R))2
+ ∥N r − N r

ε ∥L (L2
per(R))2

≤ C ε,

where M r
ε and N r

ε are defined for ε > 0 in (4.27) and

M r :=

(
T r,01 T r,11

0 I

)
and N r =

(
I 0

T r,00 T r,10

)
. (6.12)

6.2 Link between the spectrum of Aθ and the Riccati spectrum

By analogy with the Riccati point spectrum σrR,p,ε defined by (4.29), it is natural to introduce the
Riccati point spectrum in the absence of absorption:

σrR,p :=
{
λ ∈ C / 0 ∈ σp(M

r − λN r)}. (6.13)

For the main theorem of this section, namely Proposition 6.4, it is also useful to introduce the Riccati
spectrum defined by

σrR :=
{
λ ∈ C / 0 ∈ σ(M r − λN r)}. (6.14)

It is worth recalling that the Riccati point spectrum is the one that we can compute numerically as
soon as a discrete version of the cell problems are solved and the associated RtR operators deduced.

Proposition 6.4

The spectra defined by (6.13, 6.14) are related to the one of Aθ via the two implications

∃ λ ∈ C, |λ| = 1, λ ∈ σrR,p =⇒ ω2 ∈ σ(Aθ) (i)

ω2 ∈ σ(Aθ) =⇒ ∃ λ ∈ C, |λ| = 1, λ ∈ σrR. (ii)

(6.15)

Remark 6.5. Note that in (6.15)–(i), λ ∈ σrR,p ⊂ σrR, whereas in (6.15)–(ii), we only have λ ∈ σrR, and
nothing ensures that λ ∈ σrR,p.

Proof. We are going to prove (6.15) using the operator Ap(ξ) defined by (5.9) instead of Aθ. This
can be done since from Propositions 5.1 and 5.2, we have σ(Ap(ξ)) = σ(Aθ).

Point (i). Let λ ∈ C with |λ| = 1 such that λ ∈ σrR,p. Then there exists ξ ∈ [−π, π] such that λ = eiξ

and (φξ, ψξ) ̸= 0 such that

M r

(
φξ
ψξ

)
= eiξ N r

(
φξ
ψξ

)
. (6.16)

It can be easily checked, using the definitions (6.1, 6.2, 6.10) of the operators Er,ℓ and T r,ℓk that the
function defined by

Uξ := Er,0(φξ) + Er,1(ψξ) ∈ H1
θ(Cr,0# )

satisfies −Dθ

(
µpDθ Uξ

)
− ρp ω

2 Uξ = 0 in Cr,0# and is 1–periodic with respect to y1, while (6.16)
ensures that

Rr
+Uξ|Σr,1 = eiξRr

+Uξ|Σr,0 and Rr
−Uξ|Σr,1 = eiξRr

−Uξ|Σr,0 .
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By defining Vξ := e−iξ y2 Uξ ̸= 0, we have that Vξ is 1–periodic with respect to y1 and y2, and

Rr
+Vξ|Σr,1 = Rr

+Vξ|Σr,0 and Rr
−Vξ|Σr,1 = Rr

−Vξ|Σr,0 .

Moreover, one computes that −(Dθ +iξ θ2)µp (Dθ +iξ θ2)Vξ−ρp ω2 Vξ = 0 in Cr,0# from the definition
of Vξ and from the PDE satisfied by Uξ. Consequently, by definition (5.9) of the operator A(ξ), we
deduce the following

Vξ ∈ D(Ap(ξ)) \ {0} and Ap(ξ)Vξ = ω2 Vξ,

which implies that ω2 ∈ σp(Ap(ξ)) ⊂ σ(Ap(ξ)) = σ(Aθ).

Point (ii). Let us show the converse of the point (ii) in (6.15), namely

∀ λ ∈ C, |λ| = 1, M r − λN r is invertible =⇒ ω2 /∈ σ(Aθ).

Thanks to the equality of spectra σ(Ap(ξ)) = σ(Aθ) which follows from Propositions 5.1 and 5.2, it is
sufficient to find ξ ∈ [−π, π] such that Ap(ξ)− ω2 is invertible, that is,

∀ f ∈ L2((0, 1)2), ∃!Vξ ∈ D
(
Ap(ξ)

) /
Ap(ξ)Vξ − ω2 Vξ = f,

Given λ such that |λ| = 1, we choose ξ such that λ = eiξ. Then for the existence of Vξ, setting g := ρp f ,
we start from the unique solution Ug ∈ H1

θ(C
r,0
# ) of∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µpDθ Ug

)
− ρp ω

2 Ug = g in Cr,0# ,

Rr
+ Ug|Σr,0

#
= 0 and Rr

− Ug|Σr,1
#

= 0,

Ug is periodic w.r.t y1.

Note that this problem is well-posed for the same reasons as the local cell problems (6.1, 6.2).

Since M r − λN r is invertible with λ = eiξ, there exists a unique pair (φξ, ψξ) ∈ L2
per(R)

2 such that

(
M r − eiξ N r)φξ

ψξ

 =

−Rr
+Ug|Σr,1

eiξRr
−Ug|Σr,0

 . (6.17)

Then U := Er,0(φξ)+E
r,1(ψξ)+Ug ∈ H1

θ(C
r,0
# ) clearly satisfies −Dθ

(
µpDθ Uξ

)
−ρp ω2 Uξ = g in Cr,0# .

On the other hand, by definition (6.12, 6.10) of (M r,N r) and of the local RtR operators T r,ℓk, one
computes that for any (φ,ψ) ∈ L2

per(R
2)2,

(
M r − eiξ N r)φ

ψ

 =

 Rr
+E

r,0(φ)|Σr,1 +Rr
+E

r,1(ψ)|Σr,1 − eiξ ψ

ψ − eiξRr
−E

r,0(φ)|Σr,0 − eiξRr
−E

r,1(ψ)|Σr,0

 (6.18)

Then taking the difference between (6.17) and (6.18) for (φξ, ψξ), we obtain

Rr
+Uξ|Σr,1 = eiξRr

+Uξ|Σr,0 and Rr
−Uξ|Σr,1 = eiξRr

−Uξ|Σr,0 .

Then, it can be seen easily that the function defined by Vξ := e−iξ y2 Uξ in Cr,0 belongs to D
(
Ap(ξ)

)
and satisfies Ap(ξ)Vξ − ω2 Vξ = f .
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Finally, to prove that Vξ is unique, assume that Ap(ξ)Vξ−ω2 Vξ = 0. Then by defining φξ := Rr
+Vξ|Σr,0

and ψξ := Rr
−Vξ|Σr,1 , we obtain (M r − λN r) t(φξ, ψξ) = 0, which, thanks to the injectivity of

M r − λN r, leads to φξ = ψξ = 0. Hence, for almost any s ∈ (0, 1), the cut vs(x) := Vξ(θ1 x+ s, θ2 x)

satisfies the same ODE as er,0s and er,1s , with Rr
−,sv(0) = Rr

+,svs(1/θ2) = 0. From Cauchy uniqueness
theorem, we deduce vs = 0 for almost any s, which implies that Vξ = 0. ■

6.3 Case of evanescent frequencies: ω2 /∈ σ(Aθ)

If ω2 /∈ σ(Aθ), then according to Propositions 5.1 and 5.3, ω2 does not belong to the spectrum of
the 2D periodic differential operator Ar

p defined by (5.15). Therefore, all the problems introduced
in Section 3 (in particular the 2D periodic half-space problem (3.18) and the Riccati system (3.45))
remain well-posed for ε = 0, so that the approach and the results presented in Sections 3 and 4 are
still valid for ε = 0. In consequence, we can use exactly the same algorithm as the one described in
Section 4.4, until Step 8 included. For the last step of the algorithm (namely Step 9), we study the
well-posedness of the interior problem in Section 6.5. Let us note from (4.35) and (6.15)–(i) that

ω2 /∈ σ(Aθ) =⇒ ∀ j ∈ {l, r},



σ
j
R,p =

{
λ
j
k, k ∈ Z

}
∪
{
1/λ

j
k, k ∈ Z

}
,

σ
j
R,p = σ

j
R = C

(
0, |λj0|

)
∪ C
(
0, 1/|λj0|

)
,

|λj0| < 1,

(6.19)

where σjR is the Riccati spectrum defined in (4.29) with ε = 0 and λ
j
k is defined in Proposition 4.4

with ε = 0. These objects have been defined for j = r, but their definition extends to j = l.

It can also be shown that for ε = 0, the solution of the half-line problem (Pj
ε ) decays exponentially

at infinity in the sense of the next result, with a rate of decay which is linked to the modulus of the
fundamental eigenvalue λj0. This is the reason why we refer to ω as an evanescent frequency.

Proposition 6.6

Let Ur and urθ be the respective solutions of the half-space problem (3.18) and the half-line
problem (Pj

ε ) for ε = 0. Then there exists a constant C > 0 such that for any φ ∈ L2
per(R), ∥Ur(φ)(·+ n #»e 2)∥H1

θ(C
r,0
# )

≤ C |(λr0)n| ∥φ∥L2(0,1), (i)

∥urθ(·+ ar + n/θ2)∥H1(0,1/θ2) ≤ C |(λr0)n|. (ii)

(6.20)

Proof. The cell by cell expression (3.35) taken for ε = 0 becomes

a. e. y ∈ Cr,0# ,
[
Ur(φ)

]
(y + n #»e 2) =

[
Er,0((Pr)n φ) + Er,1(Sr (Pr)nφ)

]
(y), ∀ n ∈ N.

Since the spectral radius of Pr is |λr0|, Gelfand’s formula |λr0| = limn→+∞ ∥(Pr)n∥1/n and the well-
posedness of the cell problems imply the point (i) in (6.20). The second one follows similarly using
the 1D version (3.39) of the cell by cell expression of Ur above. ■

6.4 Case of propagative frequencies ω2 ∈ σ(Aθ)

Let us now focus on the case ω2 ∈ σ(Aθ). Under two assumptions that will be explicited in the next
sections, we prove the existence of a limit for the half-guide solution Uj

ε and the half-line solution ujs,ε.
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6.4.a. Convergence assumption on the fundamental eigenpair. In order to study the limit when ε
goes to 0 of the half-guide solution Uj

ε (φ) (and subsequently of the associated half-line solutions ujs,ε),
it can be seen from the cell by cell reconstruction formula (3.35) that since we have convergence of
(Er,0

ε , Er,1
ε ) by Proposition 6.3, the only missing result is the convergence of the propagation operator

Pε and the scattering operator Sε defined in (3.23)

According to Theorem 4.4, a necessary condition for such a convergence is the existence of the limit
of the fundamental pairs (λr0,ε, φ

r
0,ε) when ε goes to 0. This observation motivates the following as-

sumption.

Assumption 6.7: Convergence of fundamental eigenpair

Let j ∈ {l, r}. At least up to a subsequence of values of ε converging to 0, the sequence
(λ

j
0,ε, φ

j
0,ε, ψ

j
0,ε), with ψj

0,ε := Sε φj
0,ε converges in C × L∞(R)2, that is,

∃ λj0 ∈ C, lim
ε→0

λ
j
0,ε = λ

j
0, (6.21)

and

∃ (φ
j
0, ψ

j
0) ∈ C 0

per(R), lim
ε→0

∥φj
0,ε − φ

j
0∥L∞(R) = lim

ε→0
∥ψj

0,ε − ψ
j
0∥L∞(R) = 0. (6.22)

Of course, since |λj0,ε| < 1 and φj
0,ε(0) = 1, one deduces that

|λj0| ≤ 1 and φ
j
0(0) = 1, so that φ

j
0 ̸= 0.

Also, since (0,
t
(φ

j
0,ε, ψ

j
0,ε)) is an eigenpair of M j

ε −λj0,ε N j
ε according to (4.36), we obtain the follow-

ing as ε→ 0, using the limit (6.12) of (M j
ε ,N

j
ε ):

M j

(
φ
j
0

ψ
j
0

)
= λ

j
0 N j

(
φ
j
0

ψ
j
0

)
. (6.23)

Consequently, λj0 belongs to the Riccati point spectrum σ
j
R,p.

Remark 6.8. Considering the expression (4.13) for Pj
ε with respect to its fundamental eigenpair, one

may object that Assumption 6.7 is almost equivalent to assuming the existence of a limit Pj for the
propagation operator Pj

ε , one difficulty being in which sense the convergence holds. This is in fact not
completely immediate but we shall show that, with an additional assumption involving the notion of
energy flux, there is convergence in L (L2

per(R)) (i.e. in operator norm).

Remark 6.9. The sequence (λ
j
0,ε)ε being bounded, the convergence (6.21) is obvious. The convergence

result (6.22) on the other hand is less obvious to establish since we are a priori missing compactness for
(φ

j
0,ε, ψ

j
0,ε) in L∞(R)2.

Such compactness would be restaured if we normalized (φ
j
0,ε, ψ

j
0,ε) in a space that is compactly embedded

in L∞(R)2, for instance in Sobolev spaces (which is possible with sufficiently smooth coefficients (µp, ρp)).
However, the property φj

0(0) = 1 would be lost a priori and we would no longer have the guaranty that
the limit (φj

0, ψ
j
0) would not be identically 0.
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From the fundamental eigenpair (λj0,
t
(φ

j
0, ψ

j
0)), we can define

∀ k ∈ Z, φ
j
k := e2iπks φ

j
0 andψj

k := e2iπks ψ
j
0 (6.24)

so that, from (6.22),

∀ k ∈ Z, lim
ε→0

∥φj
k,ε − φ

j
k∥L∞(R) = lim

ε→0
∥ψj

k,ε − ψ
j
k∥L∞(R) = 0, (6.25)

Moreover, using the same argument as for proving (6.23), we deduce

M j

(
φ
j
k

ψ
j
k

)
= λ

j
k N j

(
φ
j
k

ψ
j
k

)
, where λ

j
k := e−2iπνjkδ λ0 (6.26)

with νl = −νr = 1. This identity justifies calling (φ
j
k, ψ

j
k) a Riccati eigenmode associated to the Riccati

eigenvalue λjk.

6.4.b. Notion of flux density. In order to ensure that the limiting absorption principle holds, a nat-
ural assumption concerns the energy flux of the propagative modes, see for instance [JLF06; Fli09;
FJ16; FJL21] for periodic problems. Indeed, the energy flux is a physical criterion which appears
naturally when studying the limiting absorption principle, and which allows to determine if a prop-
agative mode is an outgoing or an ingoing mode. If the energy flux of one of the propagative mode
vanishes, the selection between outgoing and ingoing modes is not possible. Note that for certain
situations, see for instance [FJ16] which deals with perfectly periodic waveguides, when the energy
flux of one of the propagative mode vanishes, the limiting absorption principle does not hold and it
can be shown than (uε)ε diverges when ε tends to 0. Hence, it is natural to suppose that the energy
flux of the propagative modes does not vanish. This is the assumption we make in this study but only
for the fundamental eigenfunction. We will see that under this assumption, we are able to show that
the limiting absorption holds for our problem.

For simplicity, let j = r. To define a good notion of flux, we return to the estimate (3.51) which, using
the expression Λr

ε = T r,00
ε + T r,10

ε Sε, becomes

∀ φ ∈ L2
per(R) \ {0},

1

4z
Re

∫
Σr,0

#

(I − T r,00
ε − T r,10

ε Sε)φ (I + T r,00
ε + T r,10

ε Sε)φ > 0.

Using the expression (3.41) of (T r,00
ε , T r,10

ε ) as weighted shift operators, i.e. T r,00
ε φ(s) = tr,00ε (s)φ(s)

and T r,10
ε φ(s) = tr,10ε (s)φ(s+ δ) the inequality above simply rewrites∫ 1

0
Qr
s,ε(φ,Sε φ) ds > 0, (6.27)

where, for any s ∈ R, the flux density Qr
s,ε(φ,ψ) is defined for φ,ψ ∈ L2

per(R) by

Qr
s,ε(φ,ψ) := Re

[(
1− tr,00ε (s)

)
φ(s)− tr,10ε (s)ψ(s+ δ)

] [(
1 + tr,00ε (s)

)
φ(s) + tr,10ε (s)ψ(s+ δ)

]
.

Since the functions (tr,00ε , tr,10ε ) have a limit as ε → 0 according to Proposition 6.2, it is natural to
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introduce the limit flux density

Qr
s(φ,ψ) := Re

[(
1− tr,00(s)

)
φ(s)− tr,10(s)ψ(s+δ)

] [(
1 + tr,00(s)

)
φ(s) + tr,10(s)ψ(s+ δ)

]
. (6.28)

as well as the sesquilinear form (Φ1,Φ2) 7→ qrs(Φ1,Φ2), defined for Φ1 := (φ1, ψ1), Φ2 := (φ2, ψ2) as

qrs(Φ1,Φ2) :=
1

2

(
qr,∗s (Φ1,Φ2) + qr,∗s (Φ2,Φ1)

)
,

where we have defined

qr,∗s (Φ1,Φ2) :=
[(
1− tr,00(s)

)
φ1(s)− tr,10(s)ψ1(s+ δ)

] [(
1 + tr,00(s)

)
φ2(s) + tr,10(s)ψ2(s+ δ)

]
.

By construction, qrs(·, ·) and Qr
s(·) are related by

∀ Φ = (φ,ψ) ∈ L2
per(R)

2, Qr
s(φ,ψ) = qrs(Φ,Φ).

For the sequel, it is useful to reformulate qrs(·, ·) in terms of the function wr
s(Φ) ∈ H1(0, 1/θ2) defined

for any Φ = (φ,ψ) ∈ L2
per(R)

2 by

wr
s(Φ) := φ(s) er,0s + ψ(s+ δ) er,1s . (6.29)

This is the object of the next lemma.

Lemma 6.10

The sesquilinear form qrs(·, ·) is given for Φ1,Φ2 ∈ L2
per(R)

2 by

qrs(Φ1,Φ2) = 2iz
(
µs,θ w

r
s(Φ1)

dwr
s(Φ2)

dx
− µs,θ

dwr
s(Φ1)

dx
wr
s(Φ2)

)
(0). (6.30)

Proof. This result is a pure matter of calculations. Let ws,1 := wr
s(Φ1) and ws,2 := wr

s(Φ2). From the
definition of Rr

±,s, one has

−2µs,θ
dws,1
dx

= (Rr
+,s −Rr

−,s)ws,1 and − 2iz ws,2 = (Rr
+,s +Rr

−,s)ws,2.

Therefore, by definition of ws,j := wr
s(Φj) and of the RtR coefficients tr,ℓk(s) (see (6.7)), we obtain

−2iz ws,1 =
(
1 + tr,00(s)

)
φ1(s) + tr,10(s)ψ1(s+ δ),

−2µs,θ
dws,2
dx

=
(
1− tr,00(s)

)
φ2(s)− tr,10(s)ψ2(s+ δ)

so that(
µs,θ ws,1

dws,2
dx

)
(0) =

1

4iz
qr,∗s (Φ2,Φ1), and similarly,

(
µs,θ

dws,1
dx

ws,2

)
(0) = − 1

4iz
qr,∗s (Φ1,Φ2).

Taking the difference between these two equality then leads to (6.30). ■

For the riccati eigenmodes (φr
k, ψ

r
k) defined in Section 6.4.a, the flux density has a particular form

which we exhibit in the next result.
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Proposition 6.11

Let Φk := (φr
k, ψ

r
k) for any k ∈ Z. Since δ is irrational, one has |λr0| < 1 =⇒ ∀ k, ℓ ∈ Z, qrs(Φk,Φℓ) = 0,

|λr0| = 1 =⇒ ∀ k, ℓ ∈ Z, ∃ αk,ℓ ∈ C, qrs(Φk,Φℓ) = αk,ℓ e
2iπ (k−ℓ) s.

(6.31)

Proof. Step 1. We begin by proving that

∀ k, ℓ ∈ Z, qrs+δ(Φk,Φℓ) = |λ0|2 e2iπ (k−ℓ) δqrs(Φk,Φℓ). (6.32)

To do so, the idea is to introduce for s ∈ R and for any k ∈ Z the limit as ε → 0 of the quasi-Floquet
mode urs,k,ε defined in Lemma 4.7, that is, for x ∈ (0, 1/θ2) and for any n ∈ N,

urs,k(x+ n/θ2) := (λrk)
n
[
φr
k(s+ nδ) er,0s+nδ(x) + ψr

k(s+ (n+ 1)δ) er,1s+nδ(x)
]
. (6.33)

From the ODE satisfied by (er,0s , er,1s ) and the property (6.26) of the Riccati eigenmodes (φr
k, ψ

r
k), it

follows that urs,k satisfies the homogeneous differential equation

− d

dx

(
µs,θ

du

dx

)
− ρs,θ ω

2 u = 0 in R+. (6.34)

since ω2 ∈ R, another solution of (6.34) is urs,k.

Now let k, ℓ ∈ Z. Since urs,k and urs,ℓ are both solutions of (6.34), the Wronskian

[
W (urs,k, u

r
s,ℓ)
]
(x) :=

(
µs,θ u

r
s,k

durs,ℓ
dx

− µs,θ
durs,k
dx

urs,ℓ

)
(x)

is constant with respect to x, and in particular[
W (urs,k, u

r
s,ℓ)
]
(0) =

[
W (urs,k, u

r
s,ℓ)
]
(1/θ2). (6.35)

However, writing (6.33) for n = 0 and for (k, ℓ) shows directly that

urs,k = wr
s(Φk) and urs,ℓ = wr

s(Φℓ) in (0, 1/θ2),

with Φk := (φk, ψk), Φℓ := (φℓ, ψℓ), and where wr
s(·) is defined by (6.29). Thus by Lemma 6.10, we

deduce that
[
W (urs,k, u

r
s,ℓ)
]
(0) = qrs(Φk,Φℓ)/(2iz).

On the other hand, writing (6.33) for n = 1 leads directly to

urs,k(·+ 1/θ2) = λrk w
r
s+δ(Φk) and urs,ℓ(·+ 1/θ2) = λrℓ w

r
s+δ(Φℓ) in (0, 1/θ2).

Therefore,
[
W (urs,k, u

r
s,ℓ)
]
(1/θ2) = λrk λ

r
ℓ q

r
s+δ(Φk,Φℓ)/(2iz). Then (6.32) follows from (6.35).

Step 2. (6.32) corresponds to an eigenvalue problem associated to the shift operator

τδ : φ ∈ L2
per(R) 7→ φ(·+ δ) ∈ L2

per(R).
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Using a Fourier series expansion (in a similar but much simpler way as for Proposition 4.4), one
shows that if δ is irrational, then the eigenvalues of τδ are simple, and of the form e2iπkδ for k ∈ Z,
with associated eigenfunctions s 7→ e2iπks. Therefore, if |λr0| < 1, then qrs(Φk,Φℓ) = 0. On the other
hand, if |λr0| = 1, then s 7→ qrs(Φk,Φℓ) is nothing but an eigenfunction of τδ corresponding to the
eigenvalue e2iπ (k−ℓ) δ, hence the result. ■

Choosing k = ℓ = 0 in Proposition 6.11 leads directly to the following.

Proposition 6.12

As δ is irrational, the density flux Qr
s(φ

r
0, ψ

r
0) is independent of s:

∃ Qr
0 ≥ 0, Qr

s(φ
r
0, ψ

r
0) = Qr

0 ∀ s ∈ [0, 1]. (6.36)

Moreover, if |λr0| < 1, then Qr
0 = 0.

Remark 6.13. Similarly, Qr
s(φ

r
k, ψ

r
k) is independent of s for any k ∈ Z. Moreover, by letting Qr

k be this
constant value, it can be shown, using the definition of Qr

s(φ
r
k, ψ

r
k) that Qr

k = Qr
0 for any k ∈ Z.

By adapting all the above the half-line problem on Il, we have a constant flux density Ql
0 associated

to the fundamental eigenpair (φl
0, ψ

l
0). Inspired by the positivity (6.27) of the energy flux in the

absorbing case, our second assumption concerns the quantity Qj
0 for j ∈ {l, r}.

Assumption 6.14: Positive flux

Let j ∈ {l, r}. The flux densityQj
0 (introduced in Proposition 6.12 for j = r) is positive, namely

Qr
0 > 0. (6.37)

A frequency ω such that Assumptions 6.7 and 6.14 are satisfied will be called a regular frequency.
Note that under Assumption 6.14, we have |λr0| = 1, by Proposition 6.12. Another consequence of this
assumption is the following.

Proposition 6.15

Under Assumption 6.14, φr
0 is bounded from below by a positive constant. In other words,

∃ c > 0, ∀ s ∈ R, |φr
0(s)| ≥ c. (6.38)

In particular φr
0 ∈ Nper and w(φr

0) = 0.

Proof. Since (λr0, (φ
r
0, ψ

r
0)) is a Riccati eigenpair, we have T r,00 φr

0 + T r,10 ψr
0 = (λr0)

−1 ψr
0, which,

using the weighted shift representation (6.11) leads to

tr,00(s)φr
0(s) + tr,10(s)ψr

0(s+ δ) = (λr0)
−1 ψr

0(s).

Substituting this relation in the expression (6.28) of Qr
s(φ

r
0, ψ

r
0) gives

Qr
s(φ

r
0, ψ

r
0) = Re

[
φr
0(s)− (λr0)

−1 ψr
0(s)

] [
φr
0(s) + (λr0)

−1 ψr
0(s)

]
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= |φr
0(s)|2 − |λr0|−2 |ψr

0(s)|2.

Therefore, if Qr
s(φ

r
0, ψ

r
0) = Qr(φr

0, ψ
r
0) > 0, then |φr

0(s)|2 > 0. Since φr
0 is continuous, we deduce that

it is bounded from below by a positive constant. ■

Proposition 6.15 implies that for a regular frequency, the weight function

ρr := |φr
0(s)|−2

is bounded from above and below by positive constants. As a consequence,

(φ,ψ)ρr :=

∫ 1

0
φ(s)ψ(s)ρr(s) ds (with ∥φ∥ρr :=

√
(φ,φ)ρr) (6.39)

defines an inner product in L2
per(R) whose associated norm ∥ · ∥ρr is equivalent to the usual L2–norm.

Moreover, using Fourier series theory in L2(0, 1), one sees from the definition of φr
k that the family

(φk)k∈Z is an orthonormal basis of L2
per(R) for (·, ·)ρr . Finally, it follows from Proposition 6.11 that

the Riccati eigenmodes (φk, ψk) satisfy a bi-orthogonality property related to the sesquilinear form qrs ,
and which will be exploited in the sequel.

Proposition 6.16

Let Φk := (φr
k, ψ

r
k) for any k ∈ Z. Since δ is irrational, one has

∀ k ̸= ℓ,

∫ 1

0
qrs(Φk,Φℓ) ds = 0. (6.40)

Proof. This result follows directly by integrating the equality qrs(Φk,Φℓ) = αk,ℓ e
2iπ (k−ℓ) s (given in

Proposition 6.11). ■

6.4.c. Convergence of the propagation operator. Let j = r. Since the operator Pr
ε is a weighted

shift operator (see Proposition 3.10), and since this weight is linked to the fundamental eigenfunction
(see (4.16)), it is natural to introduce the coefficient

∀ s ∈ R, pr(s) := λr0
φr
0(s+ δ)

φr
0(s)

, (6.41)

which is well-defined since φr
0 never vanishes according to Proposition 6.15. We then define the

following propagation operator

∀ φ ∈ L2
per(R), ∀ s ∈ R, Pr φ(s) := pr(s− δ)φ(s− δ). (6.42)

We have by definition of the pair (λrk, φ
r
k) that

∀ k ∈ Z, Pr φr
k = λrk φ

r
k and Pr φ =

∑
k∈Z

λrk (φ,φ
r
k)ρr φr

k.

Similarly, we introduce the weight

∀ s ∈ R, sr(s) := λr0
ψr
0(s+ δ)

φr
0(s)

, (6.43)
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and we also define the operator Sr as

∀ φ ∈ L2
per(R), ∀ s ∈ R, Sr φ(s) := sr(s− δ)φ(s− δ). (6.44)

If ω is a regular frequency, then the next result can be shown.

Proposition 6.17

If ω is a regular frequency, then up to a subsequence extraction, we have

lim
ε→0

∥Pr
ε − Pr∥L (L2

per(R))
= 0 and lim

ε→0
∥Sr

ε − Sr∥L (L2
per(R))

= 0.

Moreover, the pair (Pr,Sr) is solution of the following Riccati system∣∣∣∣∣∣∣∣∣∣
Find (P, S) ∈ L (L2

per(R))
2 such that P = T r,01 + T r,11S,

S = T r,00P + T r,10S P.

(6.45)

Proof. From the definitions of Pr
ε and Pr as weighted shift operators, we have

∀ φ ∈ L2
per(R), ∀ s ∈ R, (Pr

ε − Pr)φ(s) = [prε − pr](s− δ)φ(s− δ),

so that ∥Pr
ε − Pr∥L (L2

per(R))
= ∥prε − pr∥∞. But since

∀ s ∈ R, prε(s) := λr0,ε
φr
0,ε(s+ δ)

φr
0,ε(s)

and pr(s) := λr0
φr
0(s+ δ)

φr
0(s)

,

and because φr
0 is bounded from below by a positive constant, we deduce from Assumption 6.7 that

prε → pr in L∞(R), which implies that Pr
ε → Pr in L (L2

per(R)) as ε → 0. The convergence of Pr
ε

towards Pr in operator norm is obtained similarly. Finally, since (Pr
ε ,Sr

ε ) is a solution of the Riccati
system (3.45) and the RtR operators T r,ℓk

ε converge towards T r,ℓk (Proposition 6.3), it follows that
(Pr,Sr) is solution of (6.45). ■

6.4.d. Limiting absorption for the half-line problem. We fix j = r for simplicity. Thanks to the limit
propagation operator and scattering operator, we can now define for any φ ∈ L2

per(R) the function

a. e. y ∈ Cr,0# ,
[
Ur(φ)

]
(y + n #»e 2) =

[
Er,0((Pr)n φ) + Er,1(Sr (Pr)nφ)

]
(y), ∀ n ∈ N, (6.46)

by analogy with the cell by cell expression (3.35) of the 2D solution Ur
ε (φ) for ε > 0. Thanks to the cell

problems (6.1) and (6.2) satisfied by Er,0 and Er,1 respectively, one has that Ur(φ) satisfies the PDE
−Dθ

(
µpDθ U

r(φ)
)
− ρp ω

2 Ur(φ) in each cell Cr,n# and is 1–periodic with respect to y1. Furthermore,
the Riccati system satisfied by (Pr,Sr) ensures that Ur(φ) and µpDθ U

r(φ) are continuous accross
each interface Σr,n

# . Consequently,∣∣∣∣∣∣∣∣∣∣
−Dθ

(
µpDθ U

r(φ)
)
− ρp ω

2 Ur(φ) = 0 in Ωr
#,

Rr
+ U

r(φ)|Σr
#
= φ,

Ur(φ) is periodic w.r.t y1.

(6.47)
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In what follows, Ur(φ) is identified with its periodic extension with respect to y1.

Let us also introduce the RtR operator

Λr = T r,00 + T r,10Sr. (6.48)

Proposition 6.18

If ω is a regular frequency, then up to a subsequence extraction, we have for (φ, n) ∈ L2
per(R)×N

lim
ε→0

∥Ur
ε (φ)− Ur(φ)∥H1

θ(C
r,n
# ) = 0 and lim

ε→0
∥Λr

ε − Λr∥L (L2
per(R))

= 0. (6.49)

Moreover, for any φ ∈ L2
per(R) \ {0}, the energy flux of Ur(φ) is positive:

Qr(φ,Sr φ) := Re

∫
Σr,0

#

(I − Λr)φ (I + Λr)φ = Qr
0 ∥φ∥2ρr > 0 (6.50)

where Qr
0 is the positive flux density of the fundamental eigenvalue (see Proposition 6.12 and

Assumption 6.14), and where ∥ · ∥ρr is the weighted L2–norm defined in (6.39).

Proof. The convergence result (6.49) follows directly from the convergence of the cell solutions
(Er,0

ε , Er,1
ε ) and the associated local RtR operators T r,ℓk

ε (Proposition 6.3), and from the convergence
of the operators (Pr

ε ,Sr
ε ) (Proposition 6.17).

In order to derive the estimate (6.50), we expand φ ∈ L2
per(R) in the basis (φr

k)k∈Z, and use the
Proposition 6.12 as well as the bi-orthogonality relation in Proposition 6.16. By setting Φk := (φr

k, ψ
r
k)

and αk := (φ,φr
k)ρr , the sesquilinearity of qr leads to

Qr(φ,Sr φ) =

∫ 1

0
qrs

(∑
k∈Z

αk Φk,
∑
ℓ∈Z

αℓΦℓ

)
ds =

∑
k,ℓ∈Z

αk αℓ

∫ 1

0
qrs(Φk,Φℓ) ds

=
∑
k∈Z

|αk|2
∫ 1

0
qrs(Φk,Φk) ds from the bi-orthogonality relation in Proposition 6.16

= Qr
0

∑
k∈Z

|αk|2 from Proposition 6.12.

Parseval’s theorem ensures that
∑

k∈Z |αk|2 = ∥φ∥2ρr , thus leading to the desired result. ■

In what follows, we define sr := ar θ1. Consider φ ∈ C 0
per(R) such that with φ(sr) = 1. Using the

link between the 2D solutions (Er,0(φ), Er,1(φ)) and the 1D functions (er,0ε , er,1ε ) in the cell by cell
expression (6.46) of Ur(φ), we deduce that Ur(φ) admits a trace along the line sr #»e 1 + Rθ:

a. e. x ∈ R+, ur(x+ ar) := Ur(sr + θ1x, θ2x). (6.51)

Moreover, consider the RtR coefficient

λr := (Rr
+,sru

r)(ar) = (Λrφ)(sr). (6.52)

It appears at first sight that (ur, λr) depend on the choice of φ. To prove that this is not the case, let
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us note that ur can also be written cell by cell as

∀ n ∈ N, ur(·+ ar + n/θ2) = φn(s
r + nδ) er,0sr+nδ + ψn(s

r + (n+ 1)δ) er,1sr+nδ in (0, 1/θ2), (6.53)

with φn := (Pr)n φ and ψn := Sr (Pr)n φ, in the spirit of (3.39). The 1D problems (6.3, 6.4) satisfied
by (er,0s , er,1s ), and the Riccati system satisfied by (Pr,Sr), imply that ur ∈ H1

loc(I
r), and is solution of∣∣∣∣∣∣∣

− d

dx

(
µθ

dur

dx

)
− ρθ ω

2 ur = 0 in Ir

Rr
+u

r(ar) = 1.

(6.54)

Since this problem admits at most one solution (because of the Robin boundary condition), we deduce
that (ur, λr) does not depend on φ. Furthermore, the next result holds.

Proposition 6.19

If ω is a regular frequency, then up to a subsequence extraction, we have

lim
ε→0

∥urε − ur∥H1(ar+n/θ2,ar+(n+1)/θ2) = 0 and lim
ε→0

|λrε − λr| = 0. (6.55)

Moreover, the energy flux of ur is positive:

Im
(
µθ

dur

dx
ur
)
(ar) =

1

4z
Re
[
(1− λr) (1 + λr)

]
> 0. (6.56)

Proof. Similarly to the proof of Proposition 6.18, the convergence results in (6.55) are obtained using
the cell by cell expression (6.53) of ur, as well as the convergence of (er,0s,ε , e

r,1
s,ε) and the associated RtR

coefficients tr,ℓkε .

It remains to prove (6.56). Since ur does not depend on the choice of φ, we consider the expression
(6.53) for φ = αφr

0, where α is chosen such that φ(sr) = 1 (we recall that φr
0 ̸= 0). Writing (6.53) for

n = 0 then shows that ur is simply αwsr(Φ0), where ws(·) is defined by (6.29), with Φ0 := (φ0,Sr φ0).
Consequently, according to Lemma 6.10, we have

Im
(
µθ

dur

dx
ur
)
(ar) =

|α|2
2z

qrsr(Φ0,Φ0) = Qr
0,

where Qr
0 is the constant flux density identified in Proposition 6.12. Finally Assumption 6.14 corre-

sponds to the positivity of Qr
0, and therefore gives the desired result. ■

6.4.e. The limit Riccati system and spectral characterization of the limit propagation operator.
The computation of the propagation operator and on the scattering operator, and the subsequent
construction of the limit solutions exhibited in Section 6.4.d rely entirely on the pair (λr0,

t(φr
0, ψ

r
0)).

Similarly to the absorbing case (see Section 4.2), the practical computation of this pair is not direct: it
has to be extracted from the larger set of Riccati eigenmodes (which is the one we are able to compute
in practice). The goal of this section is therefore to characterize (λr0,

t(φr
0, ψ

r
0)) using a criterion which

can be computed numerically.

Our starting point is the following result, which corresponds to Proposition 4.10 for ε = 0 (although
the proof is different).
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Proposition 6.20

Given ε > 0, let Pr,Sr be the operators defined by (3.23). For any λ ∈ C, we have

M r − λN r =

(
I 0

λ tSr λ tPr − I

)
Lr

(
Pr − λ 0

Sr −I

)
, Lr :=

(
I −T r,11

−Λr I

)
, (6.57)

where T r,11 is defined in (6.10) and Λr in (6.48). Also (and more importantly), Lr is invertible.

Proof. All the operators in the factorization formula of Proposition 4.10 have been shown to have a
limit as ε→ 0. Passing to the limit in this factorization formula then leads directly to (6.57).

The most delicate part of this result is the invertibility of L. Similarly to the proof of Proposition 4.10,
we construct for some (f, g) ∈ L2

per(R)
2 a vector (φ,ψ) ∈ L2

per(R)
2 such that Lr(φ,ψ) = (f, g), that is, φ− T r,11 ψ = f

−Λr φ+ ψ = g
⇐⇒

 φ−Rr
−E

r,1(ψ)|
Σr,1

#
= f

−Λr φ+Rr
+E

r,1(ψ)|
Σr,1

#
= g

Similarly to the proof with ε > 0, this problem is equivalent to: Finding (φ,U) ∈ L2
per(R) × H1

θ(C
r,0
# )

such that ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−Dθ

(
µrpDθ U

)
− ρrp ω

2 U = 0, in Cr,0# ,

R+ U = 0, on Σr,0
# ,

(I + Λr)φ+ 2 iz U = f − g, on Σr,1
# ,

(I − Λr)φ− 2µrpDθ U = f + g, on Σr,1
# ,

U is periodic w.r.t y1.

(6.58)

In fact, if Lr(φ,ψ) = (f, g), then by defining U := E1(ψ), the pair (φ,U) is a solution of (6.58).
Conversely, if (φ,U) is a solution of (6.58), then by setting ψ := Rr

−U |
Σr,0

#
. In other words, proving

the invertibility of Lr reduces to showing the well-posedness of the coupled problem (6.58).

Problem (6.58) is not of Fredholm type, but it is equivalent to a family of 1D problems defined for any
s ∈ R by: Find (φs, Us) ∈ C ×H1(0, 1/θ2) such that∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− d

dx

(
µs,θ

dUs
dx

)
− ρs,θ ω

2 Us = 0 in (0, 1/θ2),

Rr
+,sUs(0) = 0,

(1 + λrs)φs + 2iz Us(1/θ2) = fs − gs,

(1− λrs)φs − 2µs,θ
dUs
dx

(1/θ2) = fs + gs,

(6.59)

with fs := f(s + δ), gs := g(s + δ), and where λrs := (Λrϕ)(s), with ϕ = 1. For any s ∈ R, Fredholm
alternative holds for Problem (6.59), meaning that uniqueness implies existence and well-posedness
of the problem. To prove the uniqueness, it suffices to consider the solution for fs = gs = 0. Using an
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integration by parts formula, we otbtain that
∫ 1/θ2

0

(
µs,θ

∣∣∣dUs
dx

∣∣∣2 − ρp ω
2 |Us|2

)
− iz |Us(ar)|2 −

i

4z
(1− λrs) (1− λrs) |φs|2 = 0, (i)

(1 + λrs)φs + 2iz Us(1/θ2) = 0. (ii)

(6.60)

By adapting the arguments of Proposition 6.19, one shows that Re
[
(1− λr) (1 + λr)

]
> 0. Therefore,

by taking the imaginary part in (6.60)–(i), we obtain that

φs = 0 and Us(0) = Us(1/θ2) = 0,

where the second equality follows from (6.60)–(ii). Furthermore, the last equation in (6.59) implies
that (dUs/dx)(1/θ2) = 0. Therefore, from Cauchy uniqueness theorem, Us = 0.

Since (6.59) is well-posed for any s ∈ R, it can be shown by contradiction (see for instance the proof
of Proposition 6.2) that s 7→ φs ∈ L2

per(R;C) and s 7→ Us ∈ L2
per(R;H

1(0, 1/θ2)). Consequently, the
functions

a. e. (s, x) ∈ R × (0, 1/θ2), φ(s) := φs and U(s+ θ1 x, θ2 x) := Us(x),

are well-defined in L2
per(R) and H1

θ, per(Cr,0) respectively. Moreover, from the properties of (φs, Us),
one has that (φ,U) is the unique solution of (6.58), and is continuous with respect to (f, g). ■

Proposition 6.21

The Riccati point spectrum σrR,p is given by

σrR,p =
{
λrk, k ∈ Z

}
∪
{
1/λrk, k ∈ Z

}
, with Ker

(
M r − λrk N r) = Span

(
φr
k

ψr
k

)
. (6.61)

Proof. We begin by proving that {λrk, k ∈ Z} ∪ {1/λrk, k ∈ Z} ⊂ σrR,p. Given k ∈ Z, we already have
from (6.26) that λrk is a Riccati eigenvalue, with associated eigenfunction t(φr

k Srφr
k). Furthermore,

using the symmetry properties of the operators T r,ℓk (which are the same as in Proposition 3.44), it
can be computed without difficulty that

t(M r − λN r) = J̃ −1
(
M r − 1

λ
N r

)
J̃ with J̃ :=

(
0 −λ I
I 0

)
.

Since t(M r − λN r) and M r−λN r have the same eigenvalues, we get for any λ ̸= 0 the equivalence
λ ∈ σrR,p ⇐⇒ 1/λ ∈ σrR,p. Therefore, {1/λrk, k ∈ Z} ⊂ σrR,p.

Conversely, let λ ∈ σrR,p and consider an associated Riccati eigenmode (φλ, ψλ) ̸= 0. If (λ, φλ) is an
eigenpair of Pr, then λ ∈ {λrk, k ∈ Z}. Otherwise, since Lr is invertible, we have(

φ̃λ

ψ̃λ

)
:= Lr

(
Pr − λ 0

Sr −I

)(
φλ

ψλ

)
̸= 0 and

(
I 0

λ tSr λ tPr − I

)(
φ̃λ

ψ̃λ

)
= 0.

It then follows that φ̃ = 0 and (λ tPr − I) ψ̃λ = 0 with ψ̃ ̸= 0 because (φ̃, ψ̃) ̸= 0. Consequently, 1/λ is
an eigenvalue of tPr. Since Pr and tPr have the same eigenvalues, we get λ ∈ {1/λrk, k ∈ Z}. ■
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We recall that (El,0, El,1) are the local cell solutions associated to the half-line problem on Il, and
that (T l,00, T l,10, T l,01, T l,11) are the associated local RtR operators. Similarly to (4.38), we have the
following, under the assumption (1.1) that al θ2, ar θ2 ∈ Z:

∀ φ ∈ L2
per(R), El,0(φ) = Er,1(φ), El,1(φ) = Er,0(φ),

∀ ℓ, k ∈ {0, 1}, T l,ℓk = T r,(1−ℓ)(1−k),
(6.62)

and the next equality is obtained by making ε→ 0 in (4.39): for any λ ∈ C, λ ̸= 0

M l − λN l = − 1

λ
J −1

(
M r − 1

λ
N r

)
J with J :=

(
0 I

I 0

)
. (6.63)

Consequently, we deduce the next result, which is the equivalent of Proposition 6.22 for ε = 0 (the
proof is also the same).

Proposition 6.22

We have

σp(Pl) = σp(Pr) and Ker
(
M j − 1

λ
j′
k

N j
)
= Span

(
ψ
j′
k

φ
j′
k

)
for j ̸= j′ ∈ {l, r}.

We recall from Proposition 6.12 that if Assumption 6.14 holds, then |λr0| = 1. This means according to
Proposition 6.21 that all the Riccati eigenvalues lie on the unit circle. Thus contrary to the absorbing
case, we cannot identify the eigenvalues of the propagation operator using their modulus. In order to
characterize the fundamental eigenpair, we introduce a criterion using the flux.

Proposition 6.23

For j ∈ {l, r}, let Ql
s(φ,ψ) denote the flux density (defined by (6.28) for j = r), and let Ql

0 be
the constant flux density (introduced in Proposition 6.12 for j = r). If ω2 is a regular frequency,
then we have

∀ k ∈ Z, ∀ s ∈ R, Qr
s(φ

r
k, ψ

r
k) = Qr

0 > 0 and Qr
s(ψ

l
k, φ

l
k) = −Ql

0 < 0. (6.64)

Proof. The first part of (6.64) is a direct consequence of Proposition 6.12 and Remark 6.13. For
the second part, we begin by using the definitions (6.28) and (6.24) of Qj

s(φ,ψ) and (φl
k, ψ

l
k), which

imply that Qj
s(ψl

k, φ
l
k) = Q

j
s(ψl

0, φ
l
0) for any k ∈ Z. Then, the property t

(φl
0, ψ

l
0) ∈ Ker

(
M l − λl0 N l

)
on one hand implies T l,00 ψl

0 + T l,10 φl
0 = (λl0)

−1 ψl
0, so that

Ql
s(ψ

l
0, φ

l
0) := Re

[
(I − T l,00)ψl

0 − T l,10 φl
0

] [
(I + T l,00)ψl

0 + T l,10 φl
0

]
(s).

= |φl
0(s)|2 − |ψl

0(s)|2

where we have used |λl0| = 1. On the other hand, the property t
(ψl

0, φ
l
0) ∈ Ker

(
M r − (λl0)

−1 N r
)

from Proposition 6.22 leads to T l,00 ψl
0 + T l,10 φl

0 = λl0 φ
l
0, so that

Qr
s(ψ

l
0, φ

l
0) := Re

[
(I − T r,00)ψl

0 − T r,10 φl
0

] [
(I + T r,00)ψl

0 + T r,10 φl
0

]
(s).



6. Limiting absorption principle 131

= |ψl
0(s)|2 − |φl

0(s)|2,

where we have also used |λl0| = 1. We then deduce Qr
s(ψ

l
0, φ

l
0) = −Ql

s(ψ
l
0, φ

l
0) = −Ql

0 < 0 by
combining the above two equalities, and by using Proposition 6.12 and Assumption 6.14. ■

Thanks to Proposition 6.23, we can separate the Riccati eigenmodes.

Proposition 6.24

We have σrR,p = σr+ ∪ σr−, where

σr± :=
{
λ ∈ C

/
∃
(
φ

ψ

)
∈ Ker

(
M r − λN r) such that ±Qr(φ,ψ) > 0

}
. (6.65)

Moreover,

∃! (λ0,+
(
φ0,+

ψ0,+

)
) ∈ σr+ × L2

per(R)
2 such that φ0,+(0) = 1 and w(φ0,+) = 0,

and

∃! (λ0,−
(
ψ0,−
φ0,−

)
) ∈ σr− × L2

per(R)
2 such that φ0,−(0) = 1 and w(φ0,−) = 0.

6.5 Problem in the bounded interval and definition of the physical solution

We can now introduce the following problem in (al, ar) using RtR boundary conditions∣∣∣∣∣∣∣∣∣∣∣
− d

dx

(
µθ

dui

dx

)
− ρθ ω

2 ui = 0 in (al, ar)

(Rl
−u

i)(al) = λl (Rl
+u

i)(al),

(Rr
−u

i)(ar) = λr (Rr
+u

i)(ar).

(Pint)

We show that this problem is well-posed provided that ω2 is not in the discrete spectrum σd(A) of A.

Proposition 6.25

Let ω be a regular frequency. If ω2 ∈ σ(Aθ) or if ω2 /∈ σ(Aθ) ∪ σd(A), then Problem (Pint) is
well-posed in H1(al, ar) and

lim
ε→0

∥uiε − ui∥H1(al,ar) = 0

(the whole sequence converges).

Proof. It is easy to see that Fredholm alternative holds for (Pint). Therefore, it suffices to show
uniqueness to deduce well-posedness. The sesquilinear form associated with (Pint) is given for any
u, v ∈ H1(al, ar) by

bi(u, v) :=

∫ ar

al

(
µ
du

dx

dv

dx
− ρω2 u v

)
dx− i

4z

∑
j∈{l,r}

(1− λj)R
j
+ u(a

j) (1 + λj)R
j
+ v(a

j))
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Suppose that bi(u, v) = 0 for all v ∈ H1(al, ar), and let us show that u = 0.

Case 1. If ω2 ∈ σ(Aθ), by choosing v = u, we obtain bi(u, u) = 0, which implies that

0 = Im(bi(u, u)) = − i

4z

∑
j∈{l,r}

Re
[
(1− λj) (1 + λj)

]
|Rj

+ u(a
j)|2.

Since Re
[
(1− λj) (1 + λj)

]
> 0 according to Proposition 6.19, it follows that

Rl
+u(a

l) = Rr
+u(a

r) = 0 =⇒
by (Pint)

Rl
−u(a

l) = Rr
−u(a

r) = 0.

This yields in particular u(ar) = u′(ar) = 0 which, by Cauchy Lipchitz theorem, gives u = 0 in (al, ar).

Case 2. If ω /∈ σ(Aθ), we cannot conclude similarly. Instead, assume that there exists a solution ui

of the homogeneous version of (Pint). We can then consider the function defined by

a. e. x ∈ R, u(x) :=


[Rl

+u
i(al)] ul(x), x < al,

ui(x), x ∈ (al, ar),

[Rr
+u

i(ar)] ur(x), x > ar.

Since ω2 /∈ σ(Aθ), u belongs H1(R) and is solution of the homogeneous version of (P). In conclusion,
u = 0 except if ω2 /∈ σd(A).

Case 3. Let us now show that uiε → ui in H1(al, ar). It suffices to show that (uiε)ε is bounded
in H1(al, ar). Indeed, in this case, up to a subsequence extraction, uiε ⇀ u∗ weakly in H1(al, ar)

and uiε → u∗ strongly in L2(al, ar). We can then show that u∗ satisfy (Pint). But since (Pint) is
well-posed, u∗ = ui and the whole sequence converges strongly in H1(al, ar). To prove that (uiε)ε
is bounded in H1(al, ar), we proceed by contradiction. Let us suppose that ∥uiε∥H1 → +∞ and
introduce ũiε := uiε∥uiε∥−1

H1 . By linearity ũiε satisfies (Pint
ε ) where the source f is replaced by f∥uiε∥−1

H1 .
The sequence (ũiε)ε is by definition bounded and f∥uiε∥−1

H1 tends to 0 when ε tends to 0. It then follows
that ũiε → 0 strongly in H1, which contradicts ∥ũiε∥H1 = 1. ■

At last, we are able to define the physical solution u of (P) as follows:

a. e. x ∈ R, u(x) =


[Rl

+u
i(al)] ul(x), x < al,

ui(x), x ∈ (al, ar),

[Rr
+u

i(ar)] ur(x), x > ar,

(6.66)

where the convergence of uε to u in H1
loc results from Propositions 6.19 and 6.25.

6.6 Resolution algorithm

In order to compute the solution of (P) defined by limiting absorption, the previous sections provide
an algorithm which sums up as follows. We suppose here that ω is a regular frequency, or equivalently
that Assumptions (6.7) and (6.14) are satisfied.

1. For any φ ∈ L2
per(R), compute the respective solutions Er,0(φ), Er,1(φ) of the local cell problems
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(6.1) and (6.2). Note that El,0(φ) and El,1(φ) can be deduced directly using (6.62).

2. Compute the local RtR operators T r,ℓk, ℓ, k ∈ {0, 1} defined by (6.10).

3. Compute the Riccati point spectrum (6.13). For λ ∈ σrR,p, let t(φλ, ψλ) ∈ Ker(M r − λN r):

(a) If there is no λ ∈ σrR such that |λ| = 1, then ω2 /∈ σ(Aθ) according to (6.15)–(ii).

For the unique λ ∈ σrR,p such that |λ| < 1 and w(φλ) = 0, we have λ = λr0 and φλ = φr
0

up to a multiplicative constant (Proposition 6.21), and for the unique λ ∈ σrR,p such that
|λ| > 1 and w(ψλ) = 0, we have λ−1 = λl0 and ψλ = φl

0 up to a multiplicative constant
(according to Proposition 6.22)

(b) If there exists λ ∈ σrR,p such that |λ| = 1, then ω2 ∈ σ(Aθ) according to (6.15)–(i).

We decompose σrR = σr+ ∪ σr−, see Definition (6.65). For the unique λ ∈ σrR,p such that
w(φλ) = 0, we have λ = λr0 and φλ = φr

0 up to a multiplicative constant (see Propositions
6.21 and 6.24) and for the unique λ ∈ σ−R such that w(ψλ) = 0 we have λ−1 = λl0 and
ψλ = φl

0 up to a multiplicative constant (see Propositions 6.22 and 6.24).

(c) If there exist both λ ∈ σrR such that |λ| = 1 and λ′ ∈ σrR,p such that |λ′| < 1, then ω2 ∈ σ(Aθ)

(6.15)–(i), whereas Qr
0 = 0 (Proposition 6.12).

In this case, we cannot identify λr0 or λl0 from σrR,p.

4. We can then compute Pj for j = l and r using (6.41) and (6.42). The operators Sj for j = r
and j = l can also be computed using (6.43) and (6.44).

5. For any φ ∈ L2
per(R), the solution Uj(φ) defined by limiting absorption can be reconstructed cell

by cell using (6.46).

6. For each j ∈ {l, r}, pick a continuous function φ such that φ(ajθ1) = 1, and use (6.51) to
construct uj and λj defined in (6.52).

7. Finally, solve (Pint) in (al, ar) which is well-posed except if ω2 ∈ σd(A). Then the physical
solution u of (P) is given by (6.66).

7 Numerical results

The procedure developed in the previous sections is illustrated through a series of numerical results.
Our goal is to compute the physical solution of Problem (P), where the coefficients µ and ρ coincide
with quasiperiodic functions outside an interval (al, ar) := (−1, 1), with periodic lifts

∀ y ∈ R2, µp(y) = 1.5 + cos(2πy1) cos(2πy2) and ρp(y) = 1.5 + 0.5 sin(2πy1) + 0.5 sin(2πy2).

The cut vector is θ = (cosπ/3, sinπ/3), so that the ratio δ := θ1/θ2 = 1/
√
3 ∈ R \ Q is not a Liouville

number. Indeed, since δ is algebraic, its irrationality measure is η(δ) = 2 [Rot55]. Inside (al, ar), the
local perturbations are picewise constants represented in Figure 4. The source f is the cut-off function

∀ x ∈ R, f(x) = exp
(
100

(
1− 1/(1− x2)

))
χ(−1,1),

also represented in Figure 4. Finally, the impedance is set to z = ω.
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Figure 4: The locally perturbed quasiperiodic coefficients µ and ρ, and the source term f .

Given a frequency ω, we solve the problems (6.1, 6.2) defined in the cell Cr,0# := (0, 1)2 using Lagrange
finite elements of order 1 with h = 5 × 10−2. We then compute discrete local RtR operators defined
by (6.10) and deduce the Riccati point spectrum (6.13). We recall from Section 6.6 that if some
element of the Riccati point spectrum is inside the unit circle, then ω is an evanescent frequency. In this
case, the fundamental eigenpair is the pair (λ, t(φλ, ψλ)) such that |λ| < 1 and φλ has a zero winding
number. On the other hand, if the Riccati point spectrum is included in the unit circle, then ω is a
propagative frequency. In this case, we look for the eigenpairs (λ, t(φλ, ψλ)) with a positive energy
flux (see Proposition 6.24), and amongst them, the fundamental eigenpair is the one such that φλ
has a zero winding number. It is worth noting that all the eigenpairs may have a zero energy flux, in
which case we could not isolate the fundamental eigenpair. We refer to such a value of ω as a zero
flux frequency. If ω is not a zero flux frequency, then the fundamental eigenpair allows to construct
the propagation operator via (6.41, 6.42), the scattering operator via (6.43, 6.44), and finally the RtR
coefficient associated to the half-line problem set on R+. Repeating this procedure allows to deduce
the RtR coefficient associated to the half-line problem set on R−. Finally, we can solve the problem
(Pint) set in the interior domain (al, ar) if it is well-posed, and deduce the solution u of (P).

In what follows, we consider three evanescent frequencies: ω1,e = 4, ω2,e = 7.912, ω3,e = 11.647 and
three propagative frequencies: ω1,p = 5.642, ω2,p = 11.5, ω3,p = 20. These frequencies have been ob-
tained from preliminary numerical tests, and are represented in Figure 5 with respect to the spectrum
of the quasiperiodic differential operator Aθ (see (1.8)), which is also obtained numerically. Note
that the computation of σ(Aθ) is not necessary for the method, and is only performed for illustration
purposes.

0

ω2
1,p ω2

2,p ω2
3,p

ω2
1,e ω2

2,e ω2
3,e

Figure 5: Position of the evanescent frequencies and of the propagative frequencies inside the spec-
trum of the quasiperiodic differential operator
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In Figure 6, for each of the propagative and evanescent frequencies introduced above, we represent
the fundamental eigenvalue, from which we reconstruct the Riccati point spectrum using Propositions
4.11 and 6.22.
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•
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−1 0 1

•
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ω = ω3,p

Figure 6: Riccati point spectrum reconstructed analytically from the fundamental eigenvalue (red
filled circle) and its inverse (blue filled circle) for evanescent (first row) and propagative (second
row) frequencies. The red circle corresponds to the spectrum of the propagation operator.

The half-guide solution and the solution of (P) For the evanescent frequencies (ω1,e, ω2,e, ω3,e)

and propagative frequencies (ω1,p, ω2,p, ω3,p), we represent the solution Ur of the limit 2D periodic
half-guide problem (6.47) in Figure 8, and the solution u of (P) in Figure 7. To compute these
solutions, we choose a boundary data φ = 1. A first seemingly surprising phenomenon is that Ur

becomes smaller as ω increases (note that in Figure 8, the color scale has been adjusted for ω3,p). This
is due to our choice of impendance z = ω, which increases with ω. In fact, by formally making z tend
to ∞ in the Robin boundary condition Rr

+U
r = 1, we see that the trace of Ur on Σr,0 becomes smaller

as z increases. It can be observed that for the evanescent frequencies, Ur (resp. u) decays when
y2 → +∞ (resp. when x → ±∞). This corresponds to an exponential decay, whose rate is linked to
the modulus of the fundamental eigenvalue |λj0| (see Proposition 6.6). In particular, this decay can be
seen clearly for ω1,e, whereas it is more difficult to observe for ω2,e and ω3,e, since in these cases, |λj0|
is close to 1 as Figure 6 shows. Moreover, the decay is absent for propagative frequencies. Note also
that as expected, the solutions oscillate more as ω increase.

Convergence with respect to the absorption In order to illustrate the estimates shown in Section
6, we represent the relative error

ε 7→
∥uε − u∥H1(al,ar)

∥u∥H1(al,ar)
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Figure 7: Real part of the solution of (P) computed using the quasi-1D approach, with P1 Lagrange
finite elements and h = 5×10−2, and for different evanescent frequencies and propagative frequencies.
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Figure 8: Real part of the half-guide solution computed using the quasi-1D approach, with P1 Lagrange
finite elements and h = 5× 10−2, and for different evanescent frequencies (first row) and propagative
frequencies (second row) (Note the change of color scale for ω3,p).

where u is the solution of (P), and where uε denotes the solution of (Pε). This relative error is
represented in Figure 9 for ω2,e and ω2,p. As expected, a linear convergence is observed.



138 Chapter IV. Wave propagation in quasiperiodic media: Limiting absorption principle

0.93

10−110−210−310−4

10−3

10−2

10−1

100

Absorption ε

R
el

at
iv

e
er

ro
r

ω2,e

0.99

10−110−210−310−4

Absorption ε

ω2,p

Figure 9: Relative error in H1 norm between the solutions of (P) and(Pε) for different values of ω.

A Invariance of spectra of differential operators

The goal of this appendix is to prove Proposition 5.1 (resp. Proposition 5.2) which states that the
spectrum of As,θ (resp. Ap(ξ)) is independent of s (resp. ξ). We first begin with the family of
operators As,θ with A0,θ = Aθ. Since As+1,θ = As,θ for all s ∈ R, it suffices to study As,θ for s ∈ [0, 1).
Furthermore, they are linked to one another as follows.

Lemma A.1

Let τa be the translation operator defined by τaφ = φ(·+ a). Then we have the identity

τ−1
1/θ2

As+δ,θ τ1/θ2 = As,θ. (A.1)

Proof. Since ρp is 1–periodic with respect to its second variable, for any (s, x) ∈ R2, we have

ρs+δ,θ(x) = ρp

(
s+

θ1
θ2

+ xθ1, xθ2

)
= ρp

(
s+

(
x+

1

θ2

)
θ1,
(
x+

1

θ2

)
θ2

)
= ρs,θ

(
x+

1

θ2

)
. (A.2)

and we have similarly µs+δ,θ = τ1/θ2 µs,θ. We deduce the following

∀ u ∈ D(As,θ), τ1/θ2u ∈ D(As+δ,θ) and As+δ,θ u
(
·+ 1

θ2

)
=
[
As,θu

]
(·+ 1

θ2

)
, (A.3)

which is the expected identity. ■

Proposition 5.1 which we recall and prove below is known to hold in a more general context, namely
for Schrödinger operators with almost-periodic [Sim82] and random [Pas80] coefficients. In these
references, the proof relies on the notion of spectral projections. Here for the sake of completeness,
we propose an alternative proof which is specific to quasiperiodic functions, and which rely on more
elementary objects.

Proposition A.2

If δ is irrational, then the spectrum of As,θ does not depend on s.
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The proof of this result uses a perturbation result whose proof can be found in [Kat13, Theorem
V.4.10]. The Hausdorff distance between two sets Λ1,Λ2 ∈ R is defined by

distH (Λ1,Λ2) := max

{
sup
λ1∈Λ1

dist(λ1,Λ2), sup
λ2∈Λ2

dist(λ2,Λ1)

}
, (A.4)

where dist(ξ,Λ) := inf
λ∈Λ

|λ− ξ| represents the distance from ξ ∈ R to Λ ⊂ R.

Lemma A.3

Consider a self-adjoint operator B and a bounded symetric operator T . Then B + T is also
self-adjoint and distH (σ(B + T ), σ(B)) ≤ ∥T∥.

Now, let us prove Proposition A.2.

Proof (of Proposition A.2). Since As,θ is self-adjoint and positive, we can introduce the resolvent
operator Rs,θ := (As,θ + 1)−1 ∈ L (L2(R)) for any s ∈ R. Contrary to As,θ, Rs,θ has the advantage
to be bounded, hence allowing us to use the perturbation theorem stated in Lemma A.3. Furthermore,
the spectra of Rs,θ and As,θ are related by the following characterization:

λ ∈ σ(As,θ) ⇐⇒ 1

λ+ 1
∈ σ(Rs,θ). (A.5)

Therefore, proving Proposition A.2 is equivalent to proving that σ(Rs,θ) does not depend on s. The
idea to do so will be to show that s 7→ σ(Rs,θ) defines a (uniformly) continuous mapping (with respect
to the Hausdorff distance) which is both 1–periodic and δ–periodic. Since δ is irrational, it will then
follow from Kronecker’s approximation theorem II–2.8 for instance that s 7→ σ(Rs,θ) is constant.

Step 1 : Continuity of s 7→ σ(Rs,θ) — Fix s, t ∈ R, and let f ∈ L2(R). We can introduce the functions
us, ut ∈ D(As,θ) ≡ D(At,θ) defined by

us := Rs,θ f and ut := Rt,θ f.

By substracting the variational formulations satisfied by us and ut, we obtain

∀ v ∈ H1(R),
∫

R
µs,θ

d

dx
(us − ut)

dv

dx
+ ρs,θ (us − ut) v dx

= −
∫

R
(µs,θ − µt)

dut
dx

dv

dx
−
∫

R
(ρs,θ − ρt,θ)ut v +

∫
R
(ρs,θ − ρt,θ) f v.

Now let us choose v = us − ut in this equality. By using the boundedness of ρs,θ and µs,θ from below
on the left side as well as the Cauchy-Schwarz inequality on the right side, and by dividing both sides
by ∥us − ut∥H1(R), we obtain the existence of a constant c1 > 0 such that

c1 ∥us − ut∥H1(R) ≤
(
∥µs − µt,θ∥L∞(R) + ∥ρs,θ − ρt,θ∥L∞(R)

)
∥ut∥H1(R) + ∥ρs,θ − ρt,θ∥L∞(R) ∥f∥L2(R).

Furthermore, the fact that −1 /∈ σ(At,θ) (or equivalently the application of Lax-Milgram’s theorem)
leads to the estimate ∥ut∥H1(R) ≤ c2∥f∥L2(R), where c2 depends only on ρ±. Consequently, there exists
a constant c > 0 such that∥∥(Rs,θ −Rt,θ) f

∥∥
H1(R) = ∥us − ut∥H1(R) ≤ c ∥f∥L2(R)

(
∥µs − µt,θ∥L∞(R) + ∥ρs,θ − ρt,θ∥L∞(R)

)
.
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The advantage of working with the resolvent operator lies in the fact that Rs,θ −Rt,θ is bounded. This
allows one to apply directly Lemma A.3 to B := Rt,θ and T := Rs,θ − Rt,θ, and to derive from the
above that

∀ s, t ∈ R, distH
[
σ(Rs,θ), σ(Rt,θ)

]
≤ ∥Rs,θ −Rt,θ∥ ≤ c

(
∥µs − µt,θ∥L∞(R) + ∥ρs,θ − ρt,θ∥L∞(R)

)
.

But, as the functions ρp and µp are continuous and 1–periodic in each direction, it follows from Heine’s
theorem that they are uniformly continuous. Therefore, the previous estimate implies in particular the
(uniform) continuity of the mapping s 7→ σ(Rs,θ), which can be expressed as follows:

∀ (sn)n ∈ RN, ∀ s ∈ R, |sn − s| → 0 =⇒ distH
[
σ(Rθ,sn), σ(Rs,θ)

]
→ 0, n→ +∞. (A.6)

Step 2 — Since As+1,θ = As,θ, it is obvious that σ(As+1,θ) = σ(As,θ). Furthermore, according to
Lemma A.1, As,θ and As+δ,θ are equivalent for any s ∈ R. Thus, they have the same spectrum, i.e.
σ(As,θ) = σ(As+δ,θ). These observations, combined with the link (A.5) between σ(As,θ) and σ(Rs,θ),
implies that s 7→ σ(Rs,θ) is both 1 and δ–periodic, that is,

∀ s ∈ R, ∀ (k, ℓ) ∈ Z × N, σ(Rθ,s+ℓδ+k) = σ(Rs,θ). (A.7)

But since δ is irrational, Kronecker’s theorem states that Nδ + Z is dense in R. In particular,

∀ s, t ∈ R, ∃ (kn, ℓn) ∈
(
Z × N

)N
,
∣∣ℓnδ + kn + s− t

∣∣→ 0, n→ +∞. (A.8)

Now let s, t ∈ R, and pick a sequence (kn, ℓn) ∈
(
Z × N

)N such that (A.8) is satisfied. From (A.7) and
from the continuity (A.6) of s 7→ σ(Rs,θ), we deduce the following

distH
[
σ(Rs,θ), σ(Rt,θ)

]
= distH

[
σ(Rθ,s+ℓnδ+kn), σ(Rt,θ)

]
→ 0, n→ +∞,

which implies that distH
[
σ(Rs,θ), σ(Rt,θ)

]
= 0, or equivalently that σ(Rs,θ) = σ(Rt,θ). ■

Let us now study the family of operators Ap(ξ) with ξ ∈] − π, π]. They are linked to one another as
follows.

Lemma A.4

Let ξ ∈ (−π, π] and Tk be the multiplication operator defined by

∀ k := (k1, k2) ∈ Z2, ∀ u ∈ L2((0, 1)2), Tk u(y) := e2iπk·yu(y), a. e. y ∈ (0, 1)2.

Then we have the identity

(Tk)
−1Ap(ξ)Tk = Ap(ξ + 2π(k1δ + k2)). (A.9)

Proof. Let us remark that if u ∈ D(Ap(ξ)) then Tku ∈ D(Ap(ξ)) where we recall that D(Ap(ξ)) is
independent of ξ. Moreover, for any u ∈ D(Ap(ξ))

(Dθ + iξθ2)(Tku)(y) =
(
(2iπk · θ + iξθ2)u(y) +Dθ u(y)

)
e2iπk·y, a. e. y ∈ (0, 1)2
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which implies that
Ap(ξ) (Tku) = Tk

(
Ap(ξ + 2π(k1δ + k2))u

)
,

which is the expected identity. ■

We can now show the following result, namely Proposition 5.2.

Proposition A.5

If δ is irrational, then the spectrum of Ap(ξ) does not depend on ξ.

Proof. The proof is really similar to the one of Proposition A.5. We first show that

ξ 7→ Rp(ξ) := (Ap(ξ) + 1)−1 is continuous in operator norm,

which implies that ξ 7→ σ(Ap(ξ)) is continuous for the Hausdorff distance. Lemma A.4 implies that

∀ ξ ∈ (−π, π], ∀ (k1, k2) ∈ Z2, σ(Ap(ξ)) = σ
(
Ap(ξ + 2π(k1δ + k2))

)
.

Since δ ∈ R \ Q, it then follows that ξ 7→ σ
(
Ap(ξ)

)
is independent of ξ. ■
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1 Introduction

This chapter is devoted to time-harmonic wave propagation in presence of two periodic half-spaces,
as shown in Figure 1. This configuration, which arises for instance when studying diffraction at
the surface of a photonic crystal, has been studied in [FCB10] where, in the spirit of [Fli09; FJ09;
Bes+13], computations have been restricted to the interface between the two half-spaces by means of
Dirichlet-to-Neumann (DtN) operators. The method however relies on the crucial assumption that the
overall medium stays periodic in the direction of the interface, with commensurate periods on both
sides. This is in fact needed in order to apply a Floquet-Bloch transform with respect to the variable
along the interface, leading to a family of closed waveguide problems parameterized by the Floquet
variable.

Our goal is to extend the method in [FCB10] to the case where the global medium is no longer periodic
in the direction of the interface. We shall use the key (but non-obvious) observation that the medium
has a quasiperiodic structure along the interface, namely, it is the restriction of a higher dimensional
periodic structure. Accordingly, the idea is to interpret the partial differential equation (PDE) to be
solved in presence of this medium as the “restriction” of an augmented PDE in higher dimensions,
where periodicity along the interface is recovered. This so-called lifting approach allows one to adapt
the ideas in [FCB10], but comes with the price that the augmented equation is degenerate (in the
sense of the principal part of its differential operator), and therefore more complicated to analyse and
approximate.

To our knowledge, it seems that the lifting approach has never been used for the study or the simula-
tion of wave propagation in periodic half-spaces. It is our aim to do so.

In this chapter, a resolution procedure is developed for two specific transmission settings involving
media that are periodic in 2 directions:

1. the case where both media are periodic along the interface, but with non-commensurate periods;

2. the case where one medium is constant while the other one is not periodic in the direction of
the interface.
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The common point between these two configurations is that they can be lifted into 3–dimensional
structures, as it will be explicitly emphasized in Section 3.1. For the more general setting represented
in Figure 1, the lifting process can still be used, but it is often impossible to find an augmented
structure whose dimension is less than 5. The treatment of this setting is presented in Chapter VI.

p+
1

p+
2

p−
1

p−
2

x

z

Figure 1: Juxtaposition of arbitrary periodic half-spaces

The chapter is structured as follows. In Section 2, the model problem is introduced together with
the studied configurations. We show in Section 3 that these configurations can be lifted into 3D
structures in order to recover periodicity along the interface, allowing us to lift the model problem
into a 3D augmented problem. In Section 4, we set up the appropriate functional framework for the
analysis of the augmented 3D problem. This problem is then solved in Section 5 using the Floquet-
Bloch transform and the DtN approach presented in Chapter III. After describing the discretization
process in Section 6, we provide some numerical results in Section 7 to illustrate the efficiency of the
method. Finally, in Section 8, an alternative to the lifting approach is proposed for one of the studied
configurations.

Notation.

(1). Given n > 0, for y = (y1, . . . , yn) and z = (z1, . . . , zn) in Rn, the Euclidean inner product
between y and z is denoted by y · z := y1z1 + · · · + ynzn, and the associated norm is given by
|y|2 := y · y.

(2). For n > 0, we define
Rn± := {(y1, . . . , yn) ∈ Rn / ± y1 > 0}. (1.1)

We use the notation Oν ⊂ Rn, ν ∈ {∅,+,−} to refer to any triple of the form {O,O+,O−}, with
the convention that Oν = O for ν = ∅.

(3). The indicator function of an open set O ⊂ Rn is denoted by 1O.

(4). Given p1,p2 ∈ R2, we denote by Zp1+Zp2 the lattice Zp1+Zp2 := {n1 p1+n2 p2 / n1, n2 ∈ Z}.
Similarly, for p1,p2,p3 ∈ R3, we set Zp1 + Zp2 + Zp3 = {n1 p1 + n2 p2 + n3 p3 / n1, n2, n3 ∈ Z}.

(5). For O ⊂ Rn, the scalar product on L2(O) is denoted by (·, ·)L2(O). We denote by ⟨·, ·⟩∂O the
duality product between H−1/2(∂O) and H1/2(∂O).

(6). Given two Banach spaces X1 and X2, the space of bounded linear operators from X1 to X2 is
denoted by L (X1,X2). We set L (X ) := L (X ,X ).



146 Chapter V. Transmission between periodic half-spaces: Model configurations

2 Problem setting

In this section, we introduce the model problem and the configurations that will be studied throughout
the chapter. A generic point in R2 is denoted by x = (x, z), and will be viewed as a column vector
when there is no ambiguity. The canonical basis of R2 is (ex, ez), where ex := (1, 0) and ez := (0, 1).

2.1 The transmission problem

Let σ := {x = (x, z) ∈ R2 / x = 0} denote the interface between the half-spaces R2
+ and R2

−. The
model problem consists in finding u ∈ H1(R2) such that −divA∇u− ρω2 u = 0 in R2

+ ∪ R2
−,

JA∇u · exKσ = g on σ,
(P)

where the presence of some (arbitrarily small) absorption is assumed (see Remark 2.1.b); namely

the frequency ω satisfies Imω > 0. (2.1)

The overall medium is modeled by the coefficient ρ ∈ L∞(R2) and the tensor A ∈ L∞(R2;R2×2) which
is assumed to be symmetric. We also assume the existence of constants a, r ∈ R such that

∀ x, ξ ∈ R2, 0 < a |ξ|2 ≤ tξ A(x) ξ and 0 < r ≤ ρ(x). (2.2)

Moreover, Jw · exKσ denotes the jump accross σ of the normal components of a function w ∈ L2(R2)

such that w|R2
±
∈ H(div,R2

±):

Jw · exKσ := (w− · ex)|σ − (w+ · ex)|σ, with w± := w|R2
±
, (2.3)

and g ∈ H−1/2(σ) is a given boundary data.

Remark 2.1. (a). The approach developed in this chapter can be extended to the classical Helmholtz
equation −divA∇u0 − ρω2 u0 = f in R2 with a volume source term f ∈ L2(R2) with a compact support
in the x–direction.

(b). For real-valued frequencies ω, it is delicate to define the physical outgoing solution of (P). In fact,
one expects that this solution may not belong toH1(R2), whereas uniqueness of a solution inH1

loc(R
2) does

not hold in general. This is well-known in the “homogeneous case”, that is, when A and ρ are constant.
In the homogeneous case, for a compactly supported source term, uniqueness is recovered by adding the
Sommerfeld radiation condition [Som12]. However, to our knowledge, such a radiation condition is not
known in presence of unbounded periodic media.

The classical tool to define the physical solution is the limiting absorption principle, which consists in
(1) adding an imaginary part to ω (called absorption), and in (2) studying the limit process as Imω → 0.
The limiting absorption principle is well-established for time-harmonic wave propagation problems in
unbounded media that are homogeneous or stratified outside a bounded domain; see for instance [Wil66;
Agm75; Eid86]. More recently, it has been successfully applied to periodic closed waveguides [Fli09;
Hoa11; FJ16; FJL21], periodic layers [KL18a; KL18b; Kir22], and to n–dimensional fully periodic media
with n ≥ 2 [MT06; Rad15]. However, as far as we know, there is no complete answer for transmission
problems between periodic half-spaces. This is the reason why we assume the presence (2.1) of some
absorption, which is an essential step in understanding the non-absorbing case.
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Under Assumptions (2.1) and (2.2), it follows from Lax-Milgram’s theorem that Problem (P) admits a
unique solution u ∈ H1(R2). Moreover, if g ∈ L2(σ) is compactly supported, then, a Combes-Thomas
estimate [CT73] allows to prove that this solution decays exponentially at infinity in all directions,
namely

∃ c, α > 0,
∥∥u exp(α Imω |x|)

∥∥
H1(R2)

≤ c ∥g∥H−1/2(σ). (2.4)

A naive approach relying on this decay estimate would then consist in truncating the computational
domain at a certain distance related to Imω, with homogeneous Dirichlet boundary conditions for
instance. However the accuracy of such a method is prone to deterioration as Imω → 0. Worse, if g is
not compactly supported, then only the exponential decay in the direction normal to the interface is
guaranteed:

∃ c, α > 0,
∥∥u exp(α Imω |x|)

∥∥
H1(R2)

≤ c ∥g∥H−1/2(σ). (2.5)

Our goal is to develop for the transmission configurations that are presented in the next section a
numerical method that allows to deal with the unboundedness of the domain, and which we hope will
remain robust as Imω tends to 0.

2.2 Two specific configurations

We assume that A and ρ can be written as:

a. e. x = (x, z) ∈ R2, A(x) :=

{
A−(x) if x < 0

A+(x) if x > 0
and ρ(x) :=

{
ρ−(x) if x < 0

ρ+(x) if x > 0,
(2.6)

where A± ∈ C 0(R2;R2×2), ρ± ∈ C 0(R2). We consider two specific classes of functions (A±, ρ±). (See
also Remark 2.4.)

1. Configuration (A ) — The media are periodic along the interface
This setting consists in A± and ρ± being Zex + Z(p±z ez)–periodic for some numbers p±z ̸= 0, that is,

∀ x ∈ R2,
A±(x+ ex) = A±(x) and A±(x+ p±z ez) = A±(x),

ρ±(x+ ex) = ρ±(x) and ρ±(x+ p±z ez) = ρ±(x).
(2.7)

This is illustrated in Figure 2.

Remark 2.2.

(a). If the ratio p+z /p
−
z is a rational number that can be written as k/ℓ for some coprime (k, ℓ) ∈ Z ×

N∗, then (A+, ρ+) and (A−, ρ−) share a common period τ := ℓ p+z = k p−z in the ez–direction.
It follows that the overall medium represented by (A, ρ) is tangentially periodic, that is, periodic
in the ez–direction. Hence, as done in [FCB10], a Floquet-Bloch transform can be applied with
respect to the variable z along the interface, reducing (P) to a family of waveguide problems set in
R × (0, τ), and parameterized by the Floquet variable. However, this method becomes more costly as
the denominator of p+z /p

−
z , and thus the period τ increases.

(b). When p+z /p
−
z is irrational, the method in [FCB10] cannot be applied directly because A and ρ are

no longer periodic along the interface. In this case, one might be tempted to construct a rational
approximation (kn/ℓn)n of p+z /p

−
z , and to compute with [FCB10] the solution un of (P), obtained

by replacing p+z /p
−
z by kn/ℓn for n large enough.

However, in addition to the theoretical questions that such a strategy raises (regarding for instance
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the convergence of (un)n to u), there are some numerical drawbacks. In fact, for a sequence of
rationals (kn/ℓn)n to converge to an irrational p+z /p

−
z , the sequence of denominators (ℓn)n must tend

to infinity. Therefore, as explained in the first point, computational costs would inevitably increase
with the periods (τn)n as (kn/ℓn)n tends to p+z /p

−
z . Furthermore, the approximation quality would

be strongly related to the irrationality measure of p+z /p
−
z , which indicates how efficiently it can be

approximated by rational numbers. More detail about this last aspect on rational approximation
can be found in Section II–3.2.

ex

p+z ez

ex

p−z ez

x

z

Figure 2: Configuration (A ): Juxtaposition of two media that are periodic along the interface

2. Configuration (B) — Junction of a homogeneous medium and a periodic one
This corresponds to the case where A− and ρ− are constant while A+ and ρ+ are Zex + Zp+–periodic
for some vector p+ = (p+x , p

+
z ) ∈ R2 such that p+z ̸= 0: for x ∈ R2,

A−(x) ≡ A− and A+(x+ ex) = A+(x), A+(x+ p+) = A+(x),

ρ−(x) ≡ ρ− and ρ+(x+ ex) = ρ+(x) , ρ+(x+ p+) = ρ+(x),
(2.8)

as illustrated in Figure 3.

Remark 2.3. Note that p+z ez = p+ − p+x ex. Therefore if p+x is rational with the irreducible form k/ℓ,
(k, ℓ) ∈ Z × N∗, then ℓ p+z ez = ℓp+ − kex and thus (A+, ρ+) are τ–periodic in the ez–direction with
τ := ℓ p+z . Conversely, if p+x is irrational, then the medium is no longer periodic in the direction of the
interface. In that regard, Remark 2.2 translates to Configuration (B) when p+z /p

−
z is replaced by p+x .

ex

p+

ex

ez

x

z

Figure 3: Configuration (B): Juxtaposition of a periodic medium and a homogeneous one

Remark 2.4. For both the configurations (A ) and (B), the fact that we have assumed one of the peri-
odicity vectors to be ex may seem restrictive. However, this assumption can be made without any loss of
generality by means of some geometric transformations, as shown in Chapter VI (see Proposition VI–1.1).
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3 The lifting procedure

In order to solve (P), one has to take a closer look at the structure of the functions A and ρ in the
direction of the interface. This quasiperiodic structure is the core component of our method.

3.1 A hidden quasiperiodicity along the interface

The goal of this section is to show that the functions A and ρ given by Configurations (A ) and (B) can
be viewed as quasiperiodic along the interface σ, in the sense that they are restrictions to a hyperplane
of 3–dimensional functions that are periodic along an interface containing σ. More precisely, we shall
prove that

a. e. x ∈ R2, A(x) = Ap(Θx) and ρ(x) = ρp(Θx), (3.1a)

where Ap and ρp are defined for x = (x, z1, z2) ∈ R3 by

Ap(x) :=

{
A+
p (x), x > 0

A−
p (x), x < 0

and ρp(x) :=

{
ρ+p (x), x > 0

ρ−p (x), x < 0
(3.1b)

with A±
p , ρ

±
p ∈ C 0(R3) which are Z3–periodic. Furthermore, the matrix Θ ∈ R3×2, which will be

referred to as the cut matrix, has the following form:

Θ =

1 0

0 θ1
0 θ2

 with θ1 ̸= 0, (3.1c)

the exact expression of θ1 and θ2 depending on the configuration.

Before expliciting the structure (3.1), we introduce some notations. The generic 3–dimensional space
variable is denoted by x = (x, z1, z2). The canonical basis of R3 is (ex, e1, e2), where ex := (1, 0, 0),
e1 := (0, 1, 0), and e2 := (0, 0, 1). Finally, let

Σ := {x = (x, z1, z2) ∈ R3 / x = 0} (3.2)

denote the interface between R3
+ and R3

−.

3.1.a. Extension for Configuration (A ). To find (Ap, ρp), the formal idea is to split the tangential
variable z into two variables z1 and z2, where z1 is associated to the periodicity of the medium in
R2
+, and where z2 is associated to the periodicity of the medium in R2

−. In addition, to ensure that
the medium is 1–periodic with respect to z1 and z2, this splitting comes with a rescaling: z1 will
correspond to z/p+z , while z2 will correspond to z/p−z . This suggests to introduce

A+
p (x, z1, z2) := A+(x, p+z z1) and ρ+p (x, z1, z2) := ρ+(x, p+z z1)

A−
p (x, z1, z2) := A−(x, p−z z2) and ρ−p (x, z1, z2) := ρ−(x, p−z z2),

(3.3)

where (A+
p , ρ

+
p ) are 1–periodic in x, 1–periodic in z1, and independent of z2, while (A−

p , ρ
−
p ) are 1–

periodic in x, independent of z1, and 1–periodic in z2, as illustrated in Figure 4.

Now we define the extensions (Ap, ρp) with respect to (A±
p , ρ

±
p ) using (3.1b). Then since (A+

p , ρ
+
p ) and
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(A−
p , ρ

−
p ) have the same periods with respect to (z1, z2), it follows that (Ap, ρp) are periodic along the

interface Σ.

Moreover, it follows from the expression (3.3) of A±
p and ρ±p that

A±(x, z) = A±
p (x, p

+
z z, p

−
z z) and ρ±(x, z) = ρ±p (x, p

+
z z, p

−
z z). (3.4)

This corresponds to (3.1a) and (3.1c) with

θ1 := 1/p+z ̸= 0 and θ2 := 1/p−z ̸= 0. (3.5)

Finally, note that Θ R2
± ⊂ R3

± and that Θσ is included in the interface Σ defined by (3.2).

x

z2
z1

ex

e1
e2

Figure 4: The augmented structure for Configuration (A )

3.1.b. Extension for Configuration (B). From the properties (2.8), we shall see that A+ admits
the expression (3.1a) although it is less obvious. It is useful to “look at A+ in the basis {ex,p+}” by
defining

∀ (
◦
x,

◦
z) ∈ R2,

◦
A+(

◦
x,

◦
z) := A+(

◦
x ex +

◦
z p+) := A+(

◦
x+

◦
z p+x ,

◦
z p+z ). (3.6)

Consider the change of variables

◦
x+ p+x

◦
z = x

p+z
◦
z = z

}
⇐⇒

{ ◦
x = x− (p+x /p

+
z ) z

◦
z = z/p+z ,

(3.7)

which is well-defined because p+z ̸= 0. Then (3.6) can be “inverted” as

∀ x = (x, z) ∈ R2, A+(x) =
◦
A+(x− (p+x /p

+
z ) z, z/p

+
z ). (3.8)
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x

z1
z2

ex

e1
e2

Figure 5: The augmented structure for Configuration (B)

From the periodicity properties (2.8) of A+, it follows that
◦
A+ is 1–periodic with respect to its variables.

Thus, by considering x as a parameter, it is natural to define the function

∀ x = (x, z1, z2) ∈ R3, A+
p (x) :=

◦
A+(x+ z2, z1), (3.9)

where A+
p is Z3–periodic, and in particular periodic with respect to the variables (z1, z2) of the interface

Σ defined by (3.2). Furthermore, (3.8) becomes

∀ x = (x, z) ∈ R2, A+(x) = A+
p (x, z/p

+
z ,−(p+x /p

+
z ) z). (3.10)

The same arguments can be applied to ρ, to define ρ+p similarly to (3.9). In addition, A− and ρ− are
extended as constant functions over R3. More precisely, we set

∀ x = (x, z1, z2) ∈ R3, A−
p (x) := A− and ρ−p (x) := ρ−, (3.11)

and we define Ap and ρp as in (3.1b), so that (3.1a) and (3.1c) hold with

θ1 := 1/p+z ̸= 0 and θ2 := −p+x /p+z . (3.12)

Finally, note that Θ R2
± ⊂ R3

± and that Θσ is included in Σ.

3.2 Formal presentation of the lifting approach

The quasiperiodic nature of A and ρ (highlighted in Section 3.1) suggests seeking the solution u of
(P) as the restriction of a 3–dimensional function U along the hyperplane Θ R2, that is to say:

∀ x ∈ R2, u(x) = U(Θx). (3.13)

The extension U shall be characterized as the solution of a 3D “augmented” problem with periodic
coefficients Ap and ρp. In order to construct such a problem for U , we formally use a chain rule which
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enables us to link the partial derivatives of u with those of U . Let ∇ and div denote respectively the
3–dimensional gradient and divergence operators:

∇ :=
t(
∂x, ∂z1 , ∂z2

)
and div := t∇. (3.14)

Then given F ∈ C∞(R3), W ∈ C∞(R3)2, for any x ∈ R2, one has

[
∇F (Θ·)

]
(x) =

[ tΘ∇F
]
(Θx), with tΘ∇ =

(
∂x

θ1∂z1 + θ2∂z2

)
[
divW (Θ·)

]
(x) =

[
divΘW

]
(Θx), with div(Θ ·) =

(
∂x θ1∂z1 + θ2∂z2

)
.

(3.15)

By using the ansatz (3.13) and the derivation rule (3.15) in the volume equation satisfied by u, we
introduce the following:

−divΘ Ap
tΘ∇U − ρp ω

2 U = 0 in R3
+ ∪ R3

−. (3.16)

In addition, the jump condition (P) on the line σ may be formally lifted into a jump condition on Σ,
the interface defined by (3.2), that is,

J(Θ Ap
tΘ∇U) · exKΣ = G. (3.17)

Here, JΘW · exKΣ := (ΘW− · ex)|Σ − (ΘW+ · ex)|Σ with W± := W |R3
±

for any W : R3 → C, and the
data G : Σ → C must formally satisfy the following condition

a. e. x = (x, z) ∈ σ, G(Θx) = g(x), (3.18)

by consistency with the jump condition in (P).

It is worth noticing that (3.18) offers some great latitude in choosing G. If g is smooth enough, then
one obvious pick would be a G that is constant with respect to z2, namely G(0, z1, z2) := g(0, z1/θ1)

for (z1, z2) ∈ R2. Although this might be the common choice in practice, we consider the more general
class of extensions G that are roughly speaking 1–periodic with respect to z2:

a. e. x = (x, z1, z2) ∈ Σ, ∀ n ∈ Z, G(x + n e2) = G(x). (3.19)

For such a data G, since Ap and ρp are 1–periodic with respect to z2, one can expect U to be 1–periodic
with respect to z2 as well:

a. e. x = (x, z1, z2) ∈ R3, ∀ n ∈ Z, U(x + n e2) = U(x). (3.20)

Using these formal considerations, U can be expressed as the solution of a problem defined in the strip
R×R× (0, 1). Before introducing a proper version of this problem, we need to devote the next section
to finding a suitable functional framework.
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4 Functional framework

The advantage of the augmented equation (3.16) lies in its periodic nature, which allows to use tools
that are well-suited for periodic PDEs, such as the Floquet-Bloch transform. Nevertheless, a difficulty
is that the differential operator −div Θ Ap

tΘ ∇ is elliptically degenerate because the matrix Θ given
by (3.1c) is of rank 2. More precisely,

tξ Θ Ap
tΘ ξ = 0, ∀ ξ ∈ Span

 0

−θ2
θ1

 .

As a consequence, the properties of (3.16) differ substantially from those of the classical Helmholtz
equation given by −divAp∇ U − ρω2 U = 0. In particular, one needs an adapted functional frame-
work that takes the anisotropic nature of (3.16) into account. This is the object of this section, which
sets up the framework that will be used afterwards. More precisely, we prove some trace theorems and
Green’s formulas, which are the anisotropic versions of the classical trace results in Sobolev spaces.

To begin, let us define for any open set O ⊂ R3 the anisotropic Sobolev spaces

H1
Θ(O) := {U ∈ L2(O) / tΘ∇U ∈ L2(O)2},

HΘ(div;O) := {W ∈ L2(O)2 / div (ΘW ) ∈ L2(O)}.
(4.1)

These are Hilbert spaces when equipped with the respective scalar products

∀ U, V ∈ H1
Θ(O), (U, V )H1

Θ(O) :=

∫
O

[
U V +

( tΘ∇U
)
·
( tΘ∇V

)]
,

∀ W , W̃ ∈ HΘ(div;O), (W , W̃ )HΘ(div;O) :=

∫
O

[
W · W̃ + div(ΘW ) div(Θ W̃ )

]
.

Let ∥ · ∥H1
Θ(O) and ∥ · ∥HΘ(div;O) denote the respective induced norms.

Due to the domains introduced throughout the chapter, a specific attention will be given to "rectangle"–
based cylindrical domains in what follows. Let Ix, I1 be intervals which do not need to be bounded,
and such that 0 ∈ Ix. We consider the 3–dimensional domain Ω and the 2–dimensional transverse set
Στ given by

Ω :=
{
(x, z1, z2) ∈ R3 / x ∈ Ix, z1 ∈ I1, z2 ∈ R

}
,

∀ τ ∈ Ix, Στ :=
{
(x, z1, z2) ∈ R3 / x = τ, z1 ∈ I1, z2 ∈ R

}
,

(4.2)

with Στ = Σ for τ = 0. The above domains are unbounded in z2. We will be interested in the
"cell-domains", bounded in z2:

Ω# :=
{
(x, z1, z2) ∈ Ω, / z2 ∈ (0, 1)

}
,

∀ τ ∈ Ix, Στ# :=
{
(x, z1, z2) ∈ Στ , / z2 ∈ (0, 1)

}
,

(4.3)

with Στ# = Σ# for τ = 0, and where the subscript "#" refers to the boundedness of the domains in z2.
Still, note that Ω# can be unbounded in the ex and e1–directions, while Στ# can be unbounded in the
e1–direction. Figure 6 (left) represents these domains for Ix = R− and I1 ⊂ R+.
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Ω#

x

z1

z2

Σ#

I1

Qθ

x

z

Sθ

Figure 6: (Left): the rectangle-based cylindrical domain Ω# and the lateral set Σ# given by (4.3).
Right: the domains Qθ and Sθ given by (4.5). Ix = R− and I1 ⊂ R+.

4.1 Anisotropic spaces of Ze2–periodic functions

Given numbers −∞ ≤ a < b ≤ +∞ and a Banach space (X , ∥ · ∥X ), we recall that

L2(a, b;X ) :=
{
V Θ / ∥V Θ∥2L2(a,b;X ) :=

∫ b

a
∥V Θ(·, s)∥2X ds < +∞

}
. (4.4)

In order to propose an appropriate framework, we would like to exploit the link (3.15) between the
3–dimensional operators (tΘ∇,divΘ) and the 2–dimensional operators (∇,div). To this end, it is
useful to introduce the 2–dimensional domain Qθ and the edge Sτθ given by

Qθ :=
{
(x, z) ∈ R2 / x ∈ Ix, θ1z ∈ I1

}
,

Sτθ :=
{
(x, z) ∈ R2 / x = τ, θ1z ∈ I1

}
,

(4.5)

with Sτθ = Sθ for τ = 0. Note that these domains are well-defined, since for Configurations (A ) and
(B), we have θ1 ̸= 0. Figure 6 (right) represents these domains for Ix = R− and I1 ⊂ R+. Moreover,
consider the transformation

Tθ : (x, s) ∈ Qθ × R 7−→ Θx+ s e2 ∈ Ω, (4.6)

which is bijective from Qθ × R to Ω, but also from Sτθ × R to Στ . Now let Ω#,θ (resp. Στ#,θ) denote the
image of Qθ × (0, 1) (resp. Sτθ × (0, 1)) by this transformation:

Ω#,θ := Tθ
(
Qθ × (0, 1)

)
and Στ#,θ := Tθ

(
Sτθ × (0, 1)

)
, (4.7)

with Στ#,θ = Σ#,θ for τ = 0. These domains are represented in Figure 7 in blue.

By definition, Tθ maps Qθ × (0, 1) to Ω#,θ. By using the associated change of variables and the chain
rule (3.15), it follows easily from Fubini’s theorem that

H1
Θ(Ω#,θ) = {V ∈ L2(Ω#,θ) / V ◦ Tθ ∈ L2(0, 1;H1(Qθ))}

HΘ(div;Ω#,θ) = {W ∈ L2(Ω#,θ) /W ◦ Tθ ∈ L2(0, 1;H(div;Qθ))}.
(4.8)

This is a convenient characterization which would be valuable to study H1
Θ(Ω#,θ) and HΘ(div;Ω#,θ).

However, to propose a rigorous version of the augmented problem (3.16, 3.17, 3.20), we need to study
H1

Θ or HΘ(div)–functions defined in Ω# instead of Ω#,θ, and which are 1–periodic in the e2–direction.
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Ω#,θ

x

z1

z2

Σ#,θ

I1

•s

•

z

θ1z

s+ θ2z

z1

z2

Σ#

Σ#,θ

Figure 7: Left: The domains Ω#,θ and the lateral set Σ#,θ given by (4.7). Right: Illustration of Tθ(x, s)
which is defined by (4.6) for some (x, s) ∈ Qθ × (0, 1) and for |(θ1, θ2)| = 1. Ix = R− and I1 ⊂ R+.

We shall regardless propose for these functions a characterization analogous to (4.8) by relying on the
notion of periodic extension. In the sequel, let d ∈ {1, 2}. We use the notation V (in bold) to refer to a
Cd–valued function.

Definition 4.1

Let p > 0 and V ∈ Lp(Ω#)
d. The periodic extension of V in the e2–direction is the function

E2
#V ∈ Lploc(Ω)

d defined by:

a. e. x = (x, z1, z2) ∈ Ω#, ∀ n ∈ Z, E2
#V (x + n e2) := V (x). (4.9)

For any Φ ∈ Lp(Σ#), we define E2
#Φ ∈ Lploc(Σ) similarly, by replacing x ∈ Ω# in (4.9) by x ∈ Σ#.

The following easy but useful lemma links the integrals of E2
#V on Ω# and Ω#,θ for V ∈ L1(Ω#)

d. We
refer to Lemma III–3.12 for its proof.

Lemma 4.2

For any V ∈ L1(Ω#)
d, we have ∫

Ω#

V =

∫
Ω#,θ

E2
#V , (4.10)

where E2
#V ∈ L1

loc(Ω)
d is defined by (4.9).

Let C∞
0,#(Ω#) denote the space of smooth functions in Ω# that are compactly supported in the ex and

e1–directions, and 1–periodic in the e2–direction, that is,

C∞
0,#(Ω#) :=

{
V ∈ C∞

0 (Ω#) / E
2
#V ∈ C∞(Ω)

}
. (4.11)

Note that C∞
0,#(Ω#) contains C∞

0 (Ω#), and thus is dense in L2(Ω#).

The change of variables (4.6) combined with the periodic extension along e2 in Definition 4.1 allows
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us to introduce the shear transform defined by

SΘ : C∞
0,#(Ω#)

d −→ C∞(Qθ × R)d

V 7−→ V Θ

, V Θ(x, s) := (E2
#V ) ◦ Tθ(x, s), ∀ (x, s) ∈ Qθ × R. (4.12)

Note that the definition of E2
# implies that SΘV (·, s+1) = SΘV (·, s). For this reason, the study of SΘ

will be restricted to s ∈ (0, 1). Thanks to the next proposition, SΘ extends to L2–functions.

Proposition 4.3

The mapping SΘ defined in C∞
0,#(Ω#)

d by (4.12) extends to a mapping defined from L2(Ω#)
d to

L2(0, 1;L2(Qθ)
d), with

∀ U ,V ∈ L2(Ω#)
d,

1

θ1

∫ 1

0

∫
Qθ

SΘU(x, s) SΘV (x, s) dxds =

∫
Ω#

U V . (4.13)

Moreover, SΘ is an isomorphism from L2(Ω#)
d to the space L2(0, 1;L2(Qθ)

d), and its inverse is
given for any VΘ ∈ L2(0, 1;L2(Qθ)

d) by

a. e. x = (x, z1, z2) ∈ Ω#, S−1
Θ V Θ(x) =

√
θ1 E

s
#V Θ

(
x, z1/θ1, z2 − z1(θ2/θ1)

)
, (4.14)

where Es#V Θ ∈ L2
loc(Qθ × R) denotes the periodic extension of V Θ with respect to the variable

s, defined for almost any (x, s) ∈ Qθ× (0, 1) and for any n ∈ Z by Es#V Θ(x, s+n) := V Θ(x, s).

Proof. The mapping Tθ : Qθ × (0, 1) → Ω#,θ is a C 1–diffeomorphism with a non-vanishing Jacobian
θ1 ̸= 0. Therefore, the associated change of variables leads to

∀ U ,V ∈ C∞
0,#(Ω#)

d,
1

θ1

∫ 1

0

∫
Qθ

SΘU(x, s) SΘV (x, s) dxds =

∫
Ω#,θ

(E2
#U) (E2

#V ).

We then apply Lemma 4.2 to U V , and we use the identity E2
# (U V ) = (E2

#U) (E2
#V ), to deduce

(4.13) for U ,V ∈ C∞
0,#(Ω#)

d. Finally, the density of C∞
0,#(Ω#)

d in L2(Ω#)
d leads to (4.13). Moreover,

by choosing U = V in (4.13), it follows that SΘ is bounded from L2(Ω#)
d to L2(0, 1;L2(Qθ)

d).

The bijectivity of SΘ results directly from the inverse of Tθ, which leads to the expression (4.14) of
S−1

Θ . The continuity of S−1
Θ is then implied by (4.13). ■

Now, inspired by (4.8), we define

H1
Θ#(Ω#) :=

{
V ∈ L2(Ω#) / SΘV ∈ L2(0, 1;H1(Qθ))

}
,

HΘ,#(div;Ω#) :=
{
W ∈ L2(Ω#)

2 / SΘW ∈ L2(0, 1;H(div;Qθ))
}
.

(4.15)

It is not obvious from their definition that H1
Θ#(Ω#) and HΘ,#(div;Ω#) are respectively subspaces of

H1
Θ(Ω#) and HΘ(div;Ω#). This is highlighted in the next proposition.
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Proposition 4.4

Any V ∈ H1
Θ#(Ω#) belongs to H1

Θ(Ω#) and

a. e. (x, s) ∈ Qθ × (0, 1), SΘ (
tΘ∇V )(x, s) = ∇x(SΘV )(x, s). (4.16)

Similarly, any W ∈ HΘ,#(div;Ω#) belongs to HΘ(div;Ω#) and

a. e. (x, s) ∈ Qθ × (0, 1), SΘ (divΘW )(x, s) = divx(SΘW )(x, s), (4.17)

where ∇x and divx are the gradient operator and the divergence operator with respect to x.

Proof. We only prove (4.16) since the proof of (4.17) is very similar. The proof is merely a weak
adaptation of the chain rule. Let V ∈ H1

Θ#(Ω#). In order to obtain the expression of tΘ∇V in the
sense of distributions, consider a test function W ∈ C∞

0 (Ω#)
2 and let W Θ := SΘW ∈ C∞

0 (Qθ ×
(0, 1))2. Then E2

#W ∈ C∞(Ω#) since W ∈ C∞
0 (Ω#)

2 and one easily computes using the chain rule
that

∀ (x, s) ∈ Qθ × (0, 1), SΘ (divΘW )(x, s) = divxW Θ(x, s). (4.18)

Let also VΘ := SΘV . Using derivation in the sense of distributions with V ∈ L2(Ω#) leads to:

〈 tΘ∇V, W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

= −
∫

Ω#

V (x) divΘW (x) dx

= − 1

θ1

∫ 1

0

∫
Qθ

SΘV (x, s) SΘ (divΘW )(x, s) dxds from (4.13)

= − 1

θ1

∫ 1

0

∫
Qθ

VΘ(x, s) divxW Θ(x, s) dxds from (4.18). (4.19)

But the definition of H1
Θ#(Ω#) implies that VΘ(·, s) ∈ H1(Qθ), a. e. s ∈ (0, 1). Thus in (4.19), we

can apply the usual Green formula to VΘ(·, s) and W Θ(·, s) ∈ C∞
0 (Qθ) (with no boundary term since

W Θ(·, s) is compactly supported) to obtain

〈 tΘ∇V, W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

=

∫ 1

0

∫
Qθ

∇xVΘ(x, s) ·W Θ(x, s) dxds

=
1

θ1

∫
Ω#

S−1
Θ ∇xVΘ(x) ·W (x) dx from (4.13)

=
〈
S−1

Θ ∇xVΘ, W
〉
[C∞

0 (Ω#)2]′,C∞
0 (Ω#)2

. (4.20)

The identity (4.20) being true for any W ∈ C∞
0 (Ω#)

2 implies that tΘ∇V = S−1
Θ ∇xVΘ in the sense

of distributions. But thanks to the bijectivity of SΘ and to the fact that ∇xVΘ ∈ L2(0, 1;L2(Qθ)
2), it

follows that S−1
Θ ∇xVΘ ∈ L2(Ω#)

2. Therefore, tΘ∇V also belongs to L2(Ω#)
2, and one has

a. e. x ∈ Ω#,
tΘ∇V (x) = S−1

Θ ∇xVΘ(x). (4.21)

Consequently, V ∈ H1
Θ#(Ω#) and (4.16) follows by applying the transform SΘ to (4.21). ■

Let us equip H1
Θ#(Ω#) with the scalar product (·, ·)H1

Θ(Ω#), and HΘ,#(div;Ω#) with the scalar product
(·, ·)HΘ(div;Ω#). Propositions 4.3 and 4.4 then provide the next result.
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Corollary 4.5

The map SΘ is an isomorphism from H1
Θ#(Ω#) to L2(0, 1;H1(Qθ)), and from HΘ,#(div;Ω#) to

L2(0, 1;H(div;Qθ)).

In regards to Corollary 4.5, and following their definitions, H1
Θ#(Ω#) and HΘ,#(div;Ω#) are Hilbert

spaces.

We finish this section with a density result which provides more insight on the nature of the spaces
H1

Θ#(Ω#) and HΘ,#(div;Ω#) (see Remark 4.7).

Proposition 4.6

(a). The space C∞
0,#(Ω#) is dense in H1

Θ#(Ω#).

(b). The space C∞
0,#(Ω#)

2 is dense in HΘ,#(div;Ω#).

Proof. We only prove the first point, since the proof of the second one is very similar.

For any V ∈ H1
Θ#(Ω#), SΘV ∈ L2(0, 1;H1(Qθ)) by definition. Thus given ε > 0, since C∞

0 (Qθ) is
dense in H1(Qθ), there exists VΘ,1(·, s) ∈ C∞

0 (Qθ) such that ∥SΘV (·, s) − VΘ,1(·, s)∥H1(Qθ) ≤ ε/2 for
a. e. s ∈ (0, 1). The uniform boundedness of (VΘ,1(·, s))s in H1(Qθ) with respect to s then implies that

VΘ,1 ∈ L2(0, 1;C∞
0 (Qθ)) and ∥SΘV − VΘ,1∥L2(0,1;H1(Qθ)) ≤ ε/2.

Using a classical mollifying argument (see e.g. [Bre11, Corollary 4.23]) allows to prove the existence
of a function VΘ,2 ∈ C∞

0 (Qθ × (0, 1)) such that ∥VΘ,1 − VΘ,2∥L2(0,1;H1(Qθ)) ≤ ε/2. To finish, from the
properties (4.13, 4.16) of SΘ , we deduce that Vε := S−1

Θ VΘ,2 ∈ C∞
0,#(Ω#) and ∥V − Vε∥H1

Θ(Ω#) ≤ ε. ■

Remark 4.7. As Proposition 4.6 suggests, H1
Θ#(Ω#) corresponds roughly speaking to the set of functions

V in H1
Θ(Ω#) that satisfy V |z2=0 = V |z2=1. However, we shall not need this characterization, which

requires to define properly the traces of functions in H1
Θ(Ω#) on z2 = 0 and z2 = 1. We refer to Section

III–3.2 for similar considerations.

4.2 Trace operator on transverse interfaces

An important tool for the study of the augmented problem concerns the trace of functions V ∈
H1

Θ#(Ω#) on the transverse set Στ# defined by (4.3) for τ ∈ Ix. Throughout the section, we assume
that τ = 0 so that Στ# = Σ# (see Remark 4.10). Given that

∀ V ∈ H1
Θ#(Ω#), V, ∂xV ∈ L2(Ω#),

the following preliminary result can be derived without any difficulty.

Proposition 4.8

The trace mapping γ0,# defined by γ0,#V := V |Σ#
for V ∈ C∞

0,#(Ω#) extends by continuity to a
linear map still denoted by γ0,#, and defined from H1

Θ#(Ω#) to L2(Σ#).
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In what follows, we will abusively write V |Σ#
instead of γ0,#V when referring to traces on Σ#.

We are interested in characterizing the image of the trace application γ0,#. To this end, let us begin by
extending the definition of SΘ to functions defined on Σ#. For Φ ∈ C∞

0 (Σ#) such that E2
#Φ ∈ C∞(Σ),

we can define SΘΦ = ΦΘ as in the volume case (4.12) by choosing (x, s) ∈ Sθ × R, where Sθ is the
edge in (4.5). We emphasize that from its expression:

∀ x = (0, z) ∈ Sθ, ∀ s ∈ R, SΘΦ(x, s) := E2
#Φ(0, θ1z, θ2z + s),

SΘΦ(·, s) is simply the trace of E2
#Φ along the line {(θ1z, θ2z + s), z ∈ R}. Similarly to Proposition

4.3, SΘ extends by density as an isomorphism from L2(Σ#) to L2(0, 1;L2(Sθ)).

Consider the space

H
1/2
Θ#(Σ#) :=

{
Φ ∈ L2(Σ#) / SΘΦ ∈ L2(0, 1;H1/2(Sθ))

}
, (4.22)

which is equipped with the norm Φ 7→ ∥SΘΦ∥L2(0,1;H1/2(Sθ))
. Then the next result holds.

Proposition 4.9

The trace operator γ0,# is continuous and surjective from H1
Θ#(Ω#) to H1/2

Θ#(Σ#), and

∀ V ∈ H1
Θ#(Ω#), ∀ s ∈ (0, 1), SΘ (V |Σ#

)(·, s) = SΘV (·, s)|Sθ
. (4.23)

Proof. Equation (4.23) is obtained easily for smooth functions V ∈ C∞
0,#(Ω#) using the definition of

SΘ . It extends to V ∈ H1
Θ#(Ω#) using: (i) the density of C∞

0,#(Ω#) in H1
Θ#(Ω#), (ii) the continuity

of SΘ from H1
Θ#(Ω#) to L2(0, 1;H1(Qθ)) (Corollary 4.5) and from H

1/2
Θ#(Σ#) to L2(0, 1;H1/2(Sθ)) (by

definition (4.22)), and finally (iii) the continuity of the following trace map from L2(0, 1;H1(Qθ)) to
the space L2(0, 1;H1/2(Sθ)):

∀ VΘ ∈ L2(0, 1;H1(Qθ)), γ0VΘ(·, s) := VΘ(·, s)|Sθ
,

which is a direct consequence of the classical trace theorem in H1(Qθ).

The inverse S−1
Θ applied to both sides of (4.23) gives γ0,# = S−1

Θ γ0SΘ . The continuity and surjectivity
of γ0,# then result from the continuity of (γ0,SΘ ,S−1

Θ ) and the surjectivity of γ0. ■

Remark 4.10. Let τ ∈ Ix. By applying the above arguments to V (· + τ ex) where V ∈ H1
Θ#(Ω#), one

can define the trace of V on the face Στ# for any τ ∈ Ix.

4.3 Normal trace operator and Green’s formula for a strip

In this section, we restrict ourselves to a strip, which corresponds to

I1 = R.

The domains Ω#, Στ#, Qθ, and Sτθ defined by (4.3, 4.5) then become

Ω# = Ix × R × (0, 1), Στ# = {τ} × R × (0, 1), Qθ = Ix × R and Sτθ = {τ} × R.
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In what follows, we assume that Ix ̸= R, so that ∂Ix ̸= ∅, and we consider τ ∈ ∂Ix. Let n (resp. n)
denote the unit normal vector on Στ# (resp. Sτθ ) which is outward with respect to Ω# (resp. Qθ). Our
objective is to define a normal trace operator on Στ#.

The topological dual space of H1/2
Θ#(Σ

τ
#) is denoted by H−1/2

Θ# (Στ#), and is equipped with the dual norm

for now. Let ⟨·, ·⟩Στ
#

denote the dual product between H−1/2
Θ,# (Στ#) and H1/2

Θ,#(Σ
τ
#), defined as a natural

extension of the L2(Στ#)–scalar product. In order to define a normal trace operator, we first extend

the shear map SΘ to functions in H
−1/2
Θ,# (Στ#). This is achieved through duality, by extending the

Parseval-like formula (4.13):

∀ Ψ ∈ H
−1/2
Θ# (Στ#),

1

θ1

〈
SΘΨ,ΦΘ

〉
L2(0,1;H1/2(Sτ

θ ))
′,L2(0,1;H1/2(Sτ

θ ))

:=
〈
Ψ,S−1

Θ ΦΘ
〉

Στ
#

, ∀ ΦΘ ∈ L2(0, 1;H1/2(Sτθ )). (4.24)

Note that this naturally extends SΘ as an isomorphism from H
−1/2
Θ,# (Στ#) to L2(0, 1;H1/2(Sτθ ))

′.

The next lemma provides a more convenient characterization of L2(0, 1;H1/2(Sτθ ))
′.

Lemma 4.11

Given a < b ∈ R and a Hilbert space (X , (·, ·)X ), one has [L2(a, b;X )]′ = L2(a, b;X ′) as well
as the following identity: for any ΦΘ ∈ L2(a, b;X ) and ΨΘ ∈ L2(a, b;X ′):

〈
ΨΘ,ΦΘ

〉
L2(a,b;X )′,L2(a,b;X )

=

∫ b

a

〈
ΨΘ(·, s), ΦΘ(·, s)

〉
X ′,X

ds, (4.25)

where ⟨·, ·⟩X ′,X denotes the duality product between X ′ and X .

Proof. One checks without any difficulty that the inclusion [L2(a, b;X )]′ ⊃ L2(a, b;X ′) holds. Con-
versely, the inclusion [L2(a, b;X )]′ ⊂ L2(a, b;X ′) and (4.25) result from the Riesz representation
theorem applied to X and to the space L2(0, 1;X ) equipped with the scalar product (ΦΘ,ΨΘ) 7→∫ 1

0
(ΦΘ(·, s),ΨΘ(·, s))X ds. ■

From Lemma 4.11 applied with a = 0, b = 1, and X := H1/2(Sτθ ), we deduce that SΘ is an isomor-
phism from H

−1/2
Θ,# (Στ#) to L2(0, 1;H−1/2(Sτθ )). Moreover, the bijectivity of SΘ implies that:

H
−1/2
Θ# (Στ#) =

{
Ψ / SΘΨ ∈ L2(0, 1;H−1/2(Sτθ ))

}
. (4.26)

Finally, (4.24) combined with (4.25) leads for any Ψ ∈ H
−1/2
Θ# (Στ#) to

1

θ1

∫ 1

0

〈
SΘΨ(·, s), ΦΘ(·, s)

〉
Sτ
θ
ds =

〈
Ψ, S−1

Θ ΦΘ
〉

Στ
#

, ∀ ΦΘ ∈ L2(0, 1;H1/2(Sτθ )). (4.27)

In what follows, H−1/2
Θ# (Στ#) is endowed with the norm Ψ 7→ ∥SΘΨ∥L2(0,1;H−1/2(Sτ

θ ))
.

At last, we are able to define the normal trace operator thanks to the next result.
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Proposition 4.12

Given τ ∈ ∂Ix, the normal trace application γτ1,# defined by γτ1,#W := (ΘW · n)|Στ
#

for any
W ∈ C∞

0,#(Ω#)
2 extends by continuity to a linear and surjective map still denoted by γτ1,#, and

defined from HΘ,#(div;Ω#) to H−1/2
Θ# (Στ#).

Moreover, we have the Green formula: for any V ∈ H1
Θ#(Ω#) and W ∈ HΘ,#(div;Ω#),∫

Ω#

[
div (ΘW ) V +W · tΘ∇V

]
=
∑
τ∈∂Ix

〈
(ΘW · n)|Στ

#
, V |Στ

#

〉
Στ

#

. (4.28)

where we have written abusively (ΘW · n)|Στ
#

for γτ1,#W .

Proof. Similarly to the proof of Proposition 4.9, we begin by observing that SΘ commutes with γτ1,#
in the sense that for any W ∈ C∞

0,#(Ω#)
2 (with n = ±ex),

∀ s ∈ (0, 1), SΘ
(
(ΘW · n)|Στ

#

)
(·, s) =

(
SΘW (·, s) · n

)
|Sτ

θ
. (4.29)

Equation (4.29) extends to W ∈HΘ,#(div;Ω#) using (i) the density of C∞
0,#(Ω#)

2 inHΘ,#(div;Ω#), (ii)

the continuity of SΘ fromHΘ,#(div;Ω#) to L2(0, 1;H(div;Qθ)) (Corollary 4.5) and fromH
−1/2
Θ# (Σ#) to

the space L2(0, 1;H−1/2(Sτθ )) (by definition (4.22)), and (iii) the continuity from L2(0, 1;H(div;Qθ))

to L2(0, 1;H−1/2(Sτθ )) of the following normal trace application:

∀ W Θ ∈ L2(0, 1;H(div;Qθ)), γ1W Θ(·, s) :=
(
W Θ(·, s) · n

)
|Sτ

θ
,

which follows directly from the classical trace theorem in H(div;Qθ).

The inverse S−1
Θ applied to both sides of (4.23) gives γτ1,# = S−1

Θ γ1SΘ . The continuity and surjectivity
of γτ1,# then follows from the continuity of (γ1,SΘ ,S−1

Θ ) and from the surjectivity of γ1.

To finish we prove the Green’s formula (4.28). For V ∈ H1
Θ#(Ω#) and W ∈ HΘ,#(div;Ω#), the

classical Green formula applied to (SΘV (·, s),SΘW (·, s)) ∈ H1(Qθ) ×H(div;Qθ) for almost any s ∈
(0, 1) and integrated with respect to s leads to

∫ 1

0

∫
Qθ

[
divx(SΘW ) SΘV + SΘW · ∇xSΘV ](x, s) dxds

=
∑
τ∈∂Ix

∫ 1

0

〈
(SΘW (·, s) · n)|Sτ

θ
, SΘV (·, s)|Sτ

θ

〉
Sτ
θ
ds,

where we recall that ⟨·, ·⟩Sτ
θ

denotes the duality product between H−1/2(Sτθ ) and H1/2(Sτθ ). To con-
clude, we use the properties (4.13, 4.16, 4.17) of SΘ for the left-hand side, as well as the identity
(4.27) for the right-hand side. ■
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4.4 Subspaces of Ze1 + Ze2–periodic functions in a cylinder

In addition to the strip Ω# = Ix ×R× (0, 1) and the interface Στ# = {τ}×R× (0, 1) defined in Section
4.3 for I1 = R, we also introduce the cylinder and the interface

Ω#2 := Ix × (0, 1)× (0, 1) and Στ#2 := {τ} × (0, 1)× (0, 1), (4.30)

where the subscript "#2" refers to the boundedness in the e1 and the e2–directions. Note that Ω#2 and
Στ

#2 correspond to the domains Ω# and Στ# in (4.3) with I1 = (0, 1), so that one can use the spaces

H1
Θ#(Ω#2), HΘ,#(div;Ω#2), H1/2

Θ#(Σ
τ
#2), and H−1/2

Θ# (Στ
#2). In the sequel, we assume that Ix ̸= R, so that

∂Ix ̸= ∅.

For the purpose of Sections 5.2 and 5.3, we want to define spaces of H1
Θ or HΘ(div)–functions in Ω#2

which are formally speaking 1–periodic along e1 and e2. To do so, let us begin with the following
definition.

Definition 4.13

Let V ∈ L2(Ω#2)d. The periodic extension of V in the e1–direction is defined in L2
loc(Ω#)

d by:

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, (E1
#V )(x + n e1) := V (x). (4.31)

For Φ ∈ L2(Στ
#2), we define E1

#Φ ∈ L2
loc(Σ

τ
#) similarly, with x ∈ Ω#2 instead of x ∈ Στ

#2 .

In addition, let C∞
0,#2(Ω#2) be the space of smooth functions in Ω#2 that are compactly supported in

the ex–direction and 1–periodic in the e1 and e2–directions, namely

C∞
0,#2(Ω#2) :=

{
V ∈ C∞

0 (Ω#2) / E1
#V ∈ C∞

0,#(Ω#)
}
, (4.32)

where C∞
0,#(Ω#) is defined by (4.11). Note that C∞

0,#2(Ω#2) contains C∞
0 (Ω#2), and therefore is dense

in L2(Ω#2).

Now, consider the spaces

H1
Θ#2(Ω#2) := C∞

0,#2(Ω#2)
H1

Θ(Ω#2)
and HΘ,#2(div;Ω#2) := C∞

0,#2(Ω#2)2
HΘ(div;Ω#2)

(4.33)

which are respectively closed subspaces of H1
Θ#(Ω#2) and HΘ,#(div;Ω#2), and hence Hilbert spaces.

Using the trace operator on Στ
#2 , τ ∈ ∂Ix, defined in Section 4.2 for functions in H1

Θ#(Ω#2) enables us
to introduce

H
1/2
Θ#2(Στ#2) :=

{
V |Στ

#2
/ V ∈ H1

Θ#2(Ω#2)
}
, (4.34)

to which we associate the graph norm. Let H−1/2
Θ#2 (Στ#2) be the topological dual space of H1/2

Θ#2(Στ#2),

equipped with the dual norm. Finally, the dual product ⟨·, ·⟩Στ
#2

between H−1/2
Θ#2 (Στ#2) and H1/2

Θ#2(Στ#2)

is defined as a natural extension of the L2(Στ
#2)–scalar product.

Remark 4.14. Similarly to Remark 4.7, H1
Θ#2(Ω#2) formally corresponds to the set of functions V in

H1
Θ(Ω#2) such that V |z1=0 = V |z1=1 and V |z2=0 = V |z2=1. Showing this characterization requires

the traces of functions in H1
Θ(Ω#2) whose definition is delicate. (We refer to Section III–3.2 for similar
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considerations.)

The density of C∞
0,#2(Ω#2) in H1

Θ#2(Ω#2), the density of C∞
0,#2(Ω#2)2 in HΘ,#2(div;Ω#2), and the conti-

nuity of the trace operator on Στ
#2 lead directly to the next result.

Proposition 4.15

Given τ ∈ ∂Ix, the normal trace application γτ1,#2 defined by γτ1,#2W := (ΘW · n)|Στ
#2

for any

W ∈ C∞
0,#2(Ω#2)2 extends by continuity to a linear and surjective map still denoted by γτ1,#2 ,

and defined from HΘ,#2(div;Ω#2) to H−1/2
Θ#2 (Στ#2).

Moreover, we have the Green formula: for any V ∈ H1
Θ#2(Ω#2) and W ∈ HΘ,#2(div;Ω#2),∫

Ω
#2

[
div (ΘW ) V +W · tΘ∇V

]
=
∑
τ∈∂Ix

〈
(ΘW · n)|Στ

#2
, V |Στ

#2

〉
Στ

#2
, (4.35)

where we have abusively written (ΘW · n)|Στ
#2

instead of γτ1,#2W .

We finish with an anisotropic version of the jump rule, which will be used extensively in Section 5.3.

Proposition 4.16

Assume that Ω#2 = Ω1
#2 ∪ Ω2

#2 where Ω1
#2 and Ω2

#2 are disjoint cylinders defined by

Ωi#2 := J ix × (0, 1)× (0, 1) ⊂ Ω#2 , ∀ i ∈ {1, 2}.

where J1
x ∪ J2

x = Ix and J1
x ∩ J2

x = ∅ (see Figure 8). Let Στ
#2 := Ω1

#2 ∩ Ω2
#2 .

(a). Let Vi ∈ H1
Θ#2(Ωi#2), i ∈ {1, 2}. Then the function defined by

a. e. x ∈ Ω#2 , V (x) :=

{
V1(x) if x ∈ Ω1

#2

V2(x) if x ∈ Ω2
#2

belongs to H1
Θ#2(Ω#2) if and only if V1|Στ

#2
= V2|Στ

#2
.

(b). Let W i ∈ HΘ,#2(div;Ωi
#2), i ∈ {1, 2}. Then the function given by

a. e. x ∈ Ω#2 , W (x) :=

{
W 1(x) if x ∈ Ω1

#2

W 2(x) if x ∈ Ω2
#2

belongs to HΘ,#2(div;Ω#2) if and only if (ΘW 1 · n)|Στ
#2

= −(ΘW 2 · n)|Στ
#2

.
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x

z1

Ω2
#2

Ω1
#2

z2

Figure 8: The domains Ω1
#2 and Ω2

#2 in Proposition 4.16 for Ix = R, J1
x = R+, and J2

x = R−

5 The solution of the augmented periodic problem

The present section is the most important part of the chapter. A rigorous version of (3.16, 3.17,
3.20) is studied and is solved by exploiting the periodic nature of (Ap, ρp). The resolution procedure
is divided into three steps, each of which is devoted to bounding the computational domain in one
direction, as illustrated in Figure 9:

(a) In Section 5.1, using the periodicity of (Ap, ρp) in z2 and the formal observation (3.20), we shall
consider extensions of the jump data g which are 1–periodic in z2, so that the solution of the
augmented problem is defined in the strip R2 × (0, 1).

(b) In Section 5.2, we use a partial Floquet-Bloch transform with respect to z1 which, thanks to the
periodicity of (Ap, ρp) in z1, leads to a family of problems defined in R × (0, 1)2.

(c) At last, using the periodicity of (A±
p , ρ

±
p ) in x, we resort in Section 5.3 to the DtN method devel-

oped in [JLF06; FJ09] to reduce computations to the periodicity cell (0,±1)× (0, 1)2.

R3

R2 × (0, 1)

Step (a)

R × (0, 1)2

Step (b)

(0, 1)3

Step (c)

ex
e1

e2

Figure 9: Reduction of the domains throug the steps detailed in Section 5.

5.1 The augmented strip problem and its quasi-2D structure

We consider the 3–dimensional strips Ω#,Ω
±
# and the 2–dimensional interface Σ# defined by

Ω# := {(x, z1, z2) ∈ R3 / z2 ∈ (0, 1)},

Ω±
# := {(x, z1, z2) ∈ Ω# / ± x > 0},

Σ# := {(x, z1, z2) ∈ Ω# / x = 0}.

(5.1)

These domains are represented in Figure 10. We recall the use of the indexing Ων#, ν ∈ {∅,+,−}
where by convention, Ων# = Ω# for ν = ∅. Note that Ων# and Σ# correspond respectively to the



5. The solution of the augmented periodic problem 165

domains Ω# := Ix × I1 × (0, 1) and Σ# := {0} × I1 × (0, 1) defined by (4.3) with

Ix := Rν , I1 := R, Qθ = Rν × R, and Sθ = {0} × R.

Therefore Sections 4.1, 4.2, and 4.3 enable us to use H1
Θ#(Ω

ν
#), HΘ,#(div; Ω

ν
#) which are defined by

(4.15), the space H1/2
Θ#(Σ#) given by (4.22) and its dual H−1/2

Θ# (Σ#) characterized by (4.26), and the
trace and normal trace applications on Σ#.

x

z1

Ω−
#

z2

Ω+
#

Figure 10: The half-strips Ω+
# and Ω−

# defined in (5.1)

Using the formal observations made in Section 3.2, we can introduce for any G ∈ H
−1/2
Θ# (Σ#) the strip

problem: find U ∈ H1
Θ(Ω#) such that

−divΘ Ap
tΘ∇U − ρp ω

2 U = 0 in Ω+
# ∪ Ω−

# ,

U ∈ H1
Θ,#(Ω#), (Ap

tΘ∇U)|Ω±
#
∈ HΘ,#(div; Ω

±
#),

J(Θ Ap
tΘ∇U) · exKΣ#

= G.

(P#)

Note that from the first equation, one has (Ap
tΘ∇U)|Ω±

#
∈ HΘ(div; Ω

±
#). Formally speaking, the

second equation requires U and (Ap
tΘ∇U)|Ω±

#
to be 1–periodic with respect to z2 (see Remark 4.7).

Finally, JΘW · exKΣ#
is the jump accross Σ# of the normal components of a function W ∈ L2(Ω#)

which satisfies W± := W |Ω±
#
∈ HΘ,#(div; Ω

±
#):

JΘW · exKΣ#
:= (ΘW− · ex)|Σ#

− (ΘW+ · ex)|Σ#
, (5.2)

and the third equation holds in H−1/2
Θ# (Σ#).

In what follows, we shall study Problem (P#) and emphasize its fibered structure as a "concatenation"
of 2–dimensional problems. For that latter purpose, it is useful to introduce the family of functions

∀ s ∈ R, As(x) := Ap(Θx+ s e2) and ρs(x) := ρp(Θx+ s e2), ∀ x ∈ R2, (5.3)

where Ap, ρp are given by (3.3) for Configuration (A ) and by (3.9, 3.11) for Configuration (B). Note
that the restrictions of As and ρs to R2

± are well-defined and continuous since for both Configurations
(A ) and (B), Ap and ρp depend in a simple manner on A and ρ which are continuous on R2

±. Fur-
thermore, s 7→ As and s 7→ ρs are continuous from R to L∞(R2;R2×2) and L∞(R2) respectively. Note
also that for any s ∈ R, As and ρs satisfy the ellipticity assumption (2.2), and we have As+1 = As and
ρs+1 = ρs.
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Given ψ ∈ H−1/2(σ), we consider the 2–dimensional problem: Find us ∈ H1(R2) such that −divAs(x)∇us(x)− ρs(x)ω
2 us(x) = 0 for x ∈ R2

+ ∪ R2
−,

JAs∇us · exKσ = ψ.
(Ps)

Remark 5.1. One has A0 = A and ρ0 = ρ, and (P) corresponds to (Ps) with s = 0 and ψ = g.

Because of the ellipticity assumption (2.2) and the presence of absorption (2.1), Problem (Ps) admits
a unique solution us(ψ) ∈ H1(R2). Furthermore, the well-posedness of Problem (P#) and the link
between its solution U and the solutions us(ψ) is given by the following result.

Proposition 5.2

For any G ∈ H
−1/2
Θ# (Σ#), Problem (P#) is equivalent to the variational problem∣∣∣∣∣∣∣∣∣

Find U ∈ H1
Θ#(Ω#) such that ∀ V ∈ H1

Θ#(Ω#),

∫
Ω#

[
(Ap

tΘ∇U) · (tΘ∇V )− ρp ω
2 U V

]
=
〈
G, V

〉
Σ#

(FV#)

which is well-posed in H1
Θ#(Ω#). Furthermore,

a. e. s ∈ (0, 1), E2
#U(x, θ1 z, θ2 z + s) = us(x, z), a. e. x = (x, z) ∈ R2. (5.4)

where U = U(G) and us = us(gs) with gs := SΘG(·, s) are the respective solutions of Problems
(P#) and (Ps).

Proof. To obtain the variational formulation (FV#), one multiplies the volume equation in (P#) by
V ∈ H1

Θ#(Ω#), and integrates over Ω+
# and Ω−

# separately. Since (Ap
tΘ∇U)|Ω±

#
∈ HΘ,#(div; Ω

±
#), we

then apply Green’s formula (4.28) on each domain Ω+
# and Ω−

# , add the corresponding identities, and
we finally use the transmission condition (that is, the third equation in (P#)) to conclude.

The well-posedness of the variational formulation (FV#) is guaranteed by Lax-Milgram’s theorem. In
particular, the bilinear form A associated to (FV#) satisfies

∀ V ∈ H1
Θ#(Ω#), Im

[A(V, V )

ω

]
= − Imω

∫
Ω#

[ 1

|ω|2 Ap| tΘ∇V |2 + ρp |V |2
]
, (5.5)

and therefore is coercive due to the presence of absorption (2.1), that is, Imω > 0.

Now we shall prove (5.4), which will enable us to deduce the equivalence between (FV#) and (P#)
at last. To this end, given s ∈ (0, 1), we show that SΘU(·, s) ∈ H1(R2) satisfies the same problem as
us(SΘG(·, s)). For V ∈ H1

Θ#(Ω#), the properties (4.16, 4.13) of SΘ combined with (FV#) and (4.27)
imply that

∫ 1

0

∫
R2

[
As∇xSΘU(·, s) · ∇xSΘV (·, s)− ρs ω

2 SΘU(·, s)SΘV (·, s)
]
dxds
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= θ1

∫
Ω#

[
(Ap

tΘ∇U) · (tΘ∇V )− ρp ω
2 U V

]
= θ1

〈
G, V

〉
Σ#

=

∫ 1

0

〈
SΘG(·, s), SΘV (·, s)|σ

〉
σ
ds.

(5.6)

Now we choose V such that SΘV (x, s) = φ(s) v(x), with φ ∈ L2(0, 1) and v ∈ H1(R2). Then it follows
that ∇xSΘV (x, s) = φ(s)∇v(x), and (5.6) being true for any φ ∈ L2(0, 1) implies for almost any
s ∈ (0, 1) that

∀ v ∈ H1(R2),

∫
R2

[
As∇xSΘU(·, s) · ∇v − ρs ω

2 SΘU(·, s) v
]
dx =

〈
SΘG(·, s), v

〉
σ
,

which is equivalent to the transmission problem (Ps) satisfied by us(SΘG(·, s)). From the uniqueness
of the solution of (Ps), we then deduce SΘU(·, s) = us(SΘG(·, s)) which is (5.4).

It remains to prove the equivalence between Problem (P#) and its variational formulation (FV#). But
we have shown in the last step that if U satisfies (FV#), then (SΘU)(·, s) = us((SΘG)(·, s)). Combining
this result with the properties (4.16, 4.17) of SΘ thus leads to the first and second equations in (P#),
while the transmission condition (that is, the third equation in (P#)) follows from (4.27) and from
the transmission condition satisfied by us((SΘG)(·, s)) in (Ps). ■

To conclude this section, we propose in Proposition 5.4 a rigorous formulation of the ansatz (3.13).
To begin, note that due to the uniform boundedness of (As)s and (ρs)s in L∞(R2), (us(ψ))s is bounded
uniformly with respect to s:

∃ c > 0, ∀ s ∈ R,
∥∥us(ψ)∥∥H1(R2)

≤ c ∥ψ∥H−1/2(σ), ∀ ψ ∈ H−1/2(σ). (5.7)

By combining this property with the continuity of As and ρs in L∞(R2) with respect to s, one can show
that s 7→ us(ψ) is a continuous application. This is the object of the next proposition, whose proof is
similar to the proof of Proposition III–3.18.

Proposition 5.3

For ψ ∈ H−1/2(σ), s 7→ us(ψ) is continuous from R to H1(R2) and is 1–periodic.

The next proposition shows how the solution u of (P) can be retrieved from the solution U(G) of the
augmented problem (P#) for a well-chosen boundary data G.

Proposition 5.4

Consider G ∈ H
−1/2
Θ# (Σ#) such that s 7→ SΘG(·, s) ∈ H−1/2(σ) is continuous at 0, and that

SΘG(·, 0) = g, where g ∈ H−1/2(σ) is the jump data in (P). Then setting U = U(G), the map
s 7→ (SΘU)(·, s) ∈ H1(R2) is continuous as well at 0, and

a. e. (x, z) ∈ R2, u(x, z) = E2
#U(x, θ1 z, θ2 z). (5.8)
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Proof. Since ψ 7→ us(ψ) is continuous from H−1/2(σ) to H1(R2) uniformly with respect to s (ac-
cording to (5.7)) on one hand, and s 7→ us(ψ) is continuous (according to Proposition 5.3) on the
other hand, it follows that s 7→ us(SΘG(·, s)) is continuous at 0 as a product of continuous maps.
Consequently (5.4) becomes true for s = 0, and thus leads to (5.8). ■

5.2 Reduction to waveguide problems via the Floquet-Bloch transform

This section presents the first important tool to solve the aumgented strip problem (P#), which is the
Floquet-Bloch transform. The 1–dimensional Floquet-Bloch transform is introduced in Section 5.2.a in
the spirit of [Kuc01] (see also [Kuc93, Section 2.2] and references therein), and is adapted in Section
5.2.b for functions that belong to H1

Θ,#(Ω#) or HΘ,#(div; Ω#). Last, we apply this transform to (P#)
in Section 5.2.c.

5.2.a. The 1D Floquet-Bloch transform. Let p > 0. The Floquet-Bloch transform with period p is the
application Fp defined from C∞

0 (R) to L2
loc(R

2) by

∀ φ ∈ C∞
0 (R), ∀ (z, ξ) ∈ R2, Fp φ(z, ξ) = φ̂(z, ξ) :=

√
p

2π

∑
n∈Z

φ(z + np) e−iξ(z+np), (5.9)

with the convention that Fp ≡ F for p = 1. Note that φ̂ is periodic with respect to z and satisfies the
following condition with respect to ξ: for any (z, ξ) ∈ R2

φ̂(z + p, ξ) = φ̂(z, ξ) and φ̂(z, ξ + 2π/p) = e−2iπz/p φ̂(z, ξ). (5.10)

Therefore, φ̂ can be fully constructed from its knowledge on the cell (0, p)×K with K := (−π/p, π/p).
For this reason, the study of φ̂ will be restricted to (0, p)×K.

The operator Fp extends to an isometry between L2(R) and L2(K;L2(0, p)), with the Plancherel-like
formula:

∀ φ,ψ ∈ L2(R),
∫
K

∫ p

0
(Fpφ) (Fpψ) =

∫
R
φ ψ.

Moreover, Fp is an isomorphism, with the inversion formula:

∀ φ̂ ∈ L2(K), a. e. z ∈ (0, p), ∀ n ∈ Z, F−1
p φ(z + np) =

√
p

2π

∫
K
φ̂(z, ξ) eiξ(z+np) dξ, (5.11)

What makes the Floquet-Bloch transform a valuable tool in the context of this chapter is its action on
differential operators with periodic coefficients: on one hand

∀ φ ∈ H1(R), a. e. ξ ∈ K, Fp
(dφ
dz

)
(·, ξ) =

( ∂
∂z

+ iξ
)
(Fp φ)(·, ξ).

On the other hand, for any µ ∈ L∞(R) such that µ(·+ p) = µ, one has

∀ φ ∈ L2(R), Fp (µφ) = µFp φ.

Finally, one shows that Fp is an isomorphism from H1(R) to L2(K;H1
#(0, p)), where

H1
#(0, p) =

{
φ ∈ H1(0, p) / φ(p) = φ(0)

}
,

and where L2(a, b;X ) is defined by (4.4). By duality, Fp extends to H−1/2(R).
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5.2.b. The partial Floquet-Bloch transform with respect to z1. We begin by introducing

Ω#2 := {(x, z1, z2) ∈ Ω# / z1 ∈ (0, 1)},

Ω±
#2 := {(x, z1, z2) ∈ Ω±

# / z1 ∈ (0, 1)},

Σ#2 := {(x, z1, z2) ∈ Σ# / z1 ∈ (0, 1)},

(5.12)

where the subscript "#2" indicates the boundedness of the domains in the e1 and the e2–directions.
These domains are represented in Figure 11. We recall the use of the indexing Ων

#2 for ν ∈ {∅,+,−},
with the convention that Ων

#2 = Ω#2 if ν = ∅. Note that Ων
#2 and Σ#2 correspond respectively to the

domains Ω#2 := Ix × I1 × (0, 1) and Σ#2 := {0} × I1 × (0, 1) defined by (4.30) with

Ix := Rν , I1 := (0, 1), Qθ = Rν × (0, 1/θ1), and Sθ = {0} × (0, 1/θ1).

Thus thanks to Section 4.4, we can use the spaces H1
Θ#2(Ω#2), HΘ,#2(div; Ω#2) given by (4.33) as

well as the space H1/2
Θ#2(Σ#2) defined by (4.34), its dual H−1/2

Θ#2 (Σ#2), and the trace and normal trace
operators on Σ#2 .

x

z1

Ω−
#2

Ω+
#2

z2

Figure 11: The half-cylinders Ω+
#2 and Ω−

#2 defined in (5.12)

Let d ∈ {1, 2}. The Floquet-Bloch transform in the e1–direction of V ∈ C∞
0 (Ω#)

d is the function

∀ x = (x, z1, z2) ∈ Ω#, ∀ ξ ∈ R, Fe1V (x, ξ) := V̂ (x, ξ) = F [V (x, ·, z2)](z1, ξ), (5.13)

where F is defined by (5.9) for p = 1. Using the properties of F and Fubini’s theorem, one obtains
that the transform Fe1 extends as an isometry from L2(Ω#)

d to L2(−π, π;L2(Ω#2)d), with

∀ U ,V ∈ L2(Ω#)
d,

∫ π

−π

∫
Ω

#2

Fe1U(x, ξ) Fe1V (x, ξ) dxdξ =
∫
Ω#

U V . (5.14)

Moreover, we deduce from (5.11) that for any Û ∈ L2(−π, π;L2(Ω#2)d),

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, F−1
e1 Û(x + n e1) =

1√
2π

∫ π

−π
Û(x, ξ) eiξ(z1+n) dξ. (5.15)

In addition, for Φ ∈ C∞(Σ#2), we define Fe1 as in (5.13) by choosing x ∈ Σ#2 . Then Fe1 extends as
an isometry between L2(Σ#) and L2(−π, π;L2(Σ#2)).

The next proposition gives the properties of Fe1 in H1
Θ#(Ω#), HΘ,#(div; Ω#), and H1/2

Θ#(Σ#). Its proof
is delayed to Appendix A.
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Proposition 5.5

(a). Fe1 is an isomorphism from H1
Θ#(Ω#) to L2(−π, π;H1

Θ#2(Ω#2)), and for V ∈ H1
Θ#(Ω#),

a. e. ξ ∈ (−π, π), Fe1(
tΘ∇V )(·, ξ) = tΘ (∇+ iξe1) Fe1V (·, ξ). (5.16)

(b). Fe1 is an isomorphism from HΘ,#(div; Ω#) to the space L2(−π, π;HΘ,#2(div; Ω#2)), and
for W ∈ HΘ,#(div; Ω#),

a. e. ξ ∈ (−π, π), Fe1(divΘW )(·, ξ) = (div + iξ te1)Θ Fe1W (·, ξ). (5.17)

(c). Fe1 is an isomorphism from H
1/2
Θ#(Σ#) to L2(−π, π;H1/2

Θ#2(Σ#2)).

One consequence of Proposition 5.5 which will be useful in the next section is the following.

Corollary 5.6

For any U, V ∈ H1
Θ#(Ω#),∫ π

−π

∫
Ω

#2

tΘ (∇+iξe1)Fe1U(x, ξ)·tΘ (∇+ iξe1)Fe1V (x, ξ) dxdξ =
∫
Ω#

tΘ∇U ·tΘ∇V . (5.18)

Finally, Fe1 extends by duality as an isomorphism from H
−1/2
Θ# (Σ#) to L2(−π, π;H1/2

Θ#2(Σ#2))′:

∀ Ψ ∈ H
−1/2
Θ# (Σ#),

〈
Fe1Ψ, Φ̂

〉
L2(−π,π;H1/2

Θ #2(Σ#2))′,L2(−π,π;H1/2

Θ #2(Σ#2))

:=
〈
Ψ, F−1

e1 Φ̂
〉
Σ#
, ∀ Φ̂ ∈ L2(−π, π;H1/2

Θ#2(Σ#2)). (5.19)

Since H1/2
Θ#2(Σ#2) is a Hilbert space, one has L2(−π, π;H1/2

Θ#2(Σ#2))′ = L2(−π, π;H−1/2
Θ#2 (Σ#2)) thanks

to Lemma 4.11, and for any Ψ ∈ H
−1/2
Θ# (Σ#),∫ π

−π

〈
Fe1Ψ(·, ξ), Φ̂(·, ξ)

〉
Σ

#2
dξ =

〈
Ψ, F−1

e1 Φ̂
〉
Σ#
, ∀ Φ̂ ∈ L2(−π, π;H1/2

Θ#2(Σ#2)). (5.20)

5.2.c. Application to the augmented strip problem. Thanks to the properties of the Floquet-Bloch
transform Fe1 given in Section 5.2.b, we deduce directly the following proposition.

Proposition 5.7

Let G ∈ H
−1/2
Θ# (Σ#2). Then the solution U(G) ∈ H1

Θ#(Ω#) of Problem (P#) is given by

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, U(G)(x + n e1) =
1√
2π

∫ π

−π
Ûξ(Ĝξ)(x) eiξ(z1+n) dξ,

(5.21)
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where Ĝξ := Fe1G(·, ξ) ∈ H
−1/2
Θ#2 (Σ#2) a. e. ξ ∈ (−π, π), and where Ûξ(Ĝξ) := Fe1U(G)(·, ξ) is

the unique solution of the well-posed waveguide problem: find Ûξ ∈ H1
Θ(Ω#2) such that

−(div + iξ te1)Θ Ap
tΘ (∇+ iξe1) Ûξ − ρp ω

2 Ûξ = 0 in Ω+
#2 ∪ Ω−

#2 ,

Ûξ ∈ H1
Θ#2(Ω#2), (Ap

tΘ (∇+ iξe1) Ûξ)|Ω±
#2

∈ HΘ,#2(div; Ω±
#2),

J(Θ Ap
tΘ (∇+ iξe1) Ûξ) · exKΣ

#2 = Ĝξ,

(P#2)

whose variational formulation is given by∣∣∣∣∣∣∣∣
Find Ûξ ∈ H1

Θ#2(Ω#2) such that ∀ V ∈ H1
Θ#2(Ω#2),∫

Ω
#2

[
(Ap

tΘ (∇+ iξe1) Ûξ · tΘ (∇+ iξe1)V − ρp ω
2 Ûξ V

]
=
〈
Ĝξ, V

〉
Σ

#2
.

(FV#2)

Proof. On one hand, Proposition 5.5 applied to the strip problem (P#) shows that Ûξ(Ĝξ) :=

Fe1U(G)(·, ξ) satisfies (P#2). On the other hand, Corollary 5.6 applied to the variational formu-
lation (FV#) implies that Ûξ satisfies (FV#2). The equivalence between (P#2) and (FV#2) then
follows from the equivalence between the strip problem (P#) and its variational formulation (FV#)
(Proposition 5.2). ■

Proposition 5.7 shows that U(G) can be reconstructed in the strip Ω# provided that one knows how
to solve the waveguide problem (P#2) for any ξ ∈ (−π, π). The resolution of this waveguide problem
is the object of the next section.

5.3 The waveguide problem

In this section, the Floquet-Bloch variable ξ ∈ (−π, π) is fixed. This section investigates the resolution
of the waveguide problem (P#2) with solution Ûξ(Ĝξ). To do so, we shall characterize the restriction
of Ûξ(Ĝξ) on the interface Σ#2 as the solution of an equation featuring Dirichlet-to-Neumann (DtN)
operators. The construction of these operators and the subsequent computation of Ûξ(Ĝξ) require to
introduce auxiliary half-guide problems defined in Ω+

#2 and Ω−
#2 .

Given a boundary data Φ ∈ H
1/2
Θ#2(Σ#2), we consider the half-guide problem: find Û±

ξ ∈ H1
Θ(Ω#2) such

that 
−(div + iξ te1)Θ A±

p
tΘ (∇+ iξe1) Û±

ξ − ρ±p ω
2 Û±

ξ = 0 in Ω±
#2 ,

Û±
ξ ∈ H1

Θ#2(Ω±
#2), A±

p
tΘ (∇+ iξe1) Û±

ξ ∈ HΘ,#2(div; Ω±
#2),

Û±
ξ = Φ on Σ#2 .

(P±
#2)

Under Assumptions (2.1, 2.2), Lax-Milgram’s theorem combined with a lifting argument ensures that
(P±

#2) admits a unique solution Û±
ξ (Φ) ∈ H1

Θ#2(Ω
±
#2). Let Λ̂±

ξ ∈ L (H
1/2
Θ#2(Σ#2), H

−1/2
Θ#2 (Σ#2)) be the

DtN operator defined by

Λ̂±
ξ Φ :=

(
Θ Ap

tΘ (∇+ iξe1) Û±
ξ (Φ) · n

)
|Σ

#2 .
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or equivalently for Φ,Ψ ∈ H
1/2
Θ#2(Σ#2):

〈
Λ̂±
ξ Φ, Ψ

〉
Σ

#2

=

∫
Ω±

#2

[
(A±
p

tΘ (∇+ iξe1) Û±
ξ (Φ) · tΘ (∇+ iξe1) Û±

ξ (Ψ)− ρ±p ω
2 Û±

ξ (Φ) Û±
ξ (Ψ)

]
. (5.22)

The next result is a direct consequence of the well-posedness of (P±
#2) and of the continuity of the

trace application on Σ#2 .

Proposition 5.8

The operators Λ̂+
ξ , Λ̂−

ξ , and Λ̂+
ξ + Λ̂−

ξ are coercive and therefore invertible.

By linearity and by uniqueness of (P#2) and (P±
#2), the waveguide solution Ûξ(Ĝξ) is given by

a. e. x ∈ Ω±
#2 , Ûξ(Ĝξ) =

{
Û+
ξ (Φξ)(x) if x ∈ Ω+

#2

Û−
ξ (Φξ)(x) if x ∈ Ω−

#2 ,
(5.23)

where Φξ := Ûξ|Σ
#2 is characterized thanks to the last equation in (P#2):∣∣∣∣∣∣∣

Find Φξ ∈ H
1/2
Θ#2(Σ#2) such that for any Ψ ∈ H

1/2
Θ#2(Σ#2),〈

(Λ̂+
ξ + Λ̂−

ξ ) Φξ, Ψ
〉
Σ

#2
=
〈
Ĝξ, Ψ

〉
Σ

#2
.

(5.24)

Note that this equation is well-posed since Λ̂+
ξ + Λ̂−

ξ is coercive according to Proposition 5.8. Figure

12 illustrates the link between Ûξ(Ĝξ) and Û+
ξ (Φ).

x

z1

Ω−
#2

Ω+
#2

z2 Û−
ξ (Φξ)

Φξ, solution of (5.24)

Û+
ξ (Φξ)

Figure 12: Expression (5.23) of the waveguide solution Ûξ with respect to Û±
ξ (Φ).

5.4 The half-guide problems

Our objective is to solve the half-guide problems (P±
#2) defined in Ω+

#2 and Ω−
#2 and to compute the

DtN operators (Λ̂+
ξ , Λ̂

−
ξ ). Since these problems are similar to each other, we will restrict ourselves to

the resolution of the half-guide problem defined in Ω+
#2 and the computation of Λ̂+

ξ . We transpose the
method developed in [JLF06; FJ09] for the elliptic Helmholtz equation −divAp∇ U − ρω2 U = 0

for periodic half-guides, and which relies on the periodicity of the coefficients A±
p and ρ±p in the ex–

direction.
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We also introduce some additional notation:

C0
#2 := (0, 1)3 and Cn#2 := C0

#2 + n ex, so that Ω+
#2 =

⋃
n∈N

Cn#2 . (5.25)

The interface between the cells Cn
#2 and Cn+1

#2 is denoted by Σn
#2 := Σ#2 + n ex. These domains are

represented in Figure 13. By periodicity, one can identify each cell Cn
#2 with C0

#2 ≡ C#2 , and each
interface Σn

#2 with Σ0
#2 ≡ Σ#2 . Furthermore, note that Cn

#2 and Στ
#2 , τ ∈ {n, n + 1}, correspond

respectively to the domains Ω#2 and Στ
#2 defined by (4.30) with

Ix := (n, n+ 1), a1 := 0, b1 := 1, τ := 0.

Thus Section 4.4 enables to use the space H1
Θ#2(Cn#2) given by (4.33) as well as H1/2

Θ#2(Στ#2) which

is defined by (4.34), its dual H−1/2
Θ#2 (Στ#2), and the trace and the normal trace applications on Στ

#2 .
In the sequel, we will systematically use the obvious identifications H1

Θ#2(Cn#2) ≡ H1
Θ#2(C#2) and

H
1/2
Θ#2(Σn#2) ≡ H

1/2
Θ#2(Σ#2), even when not mentioned.

x

z1

C0
#2 C1

#2 C2
#2 C3

#2

Σ0
#2 Σ1

#2 Σ2
#2 Σ3

#2 Σ4
#2

z2

Figure 13: The cells Cn
#2 and the interfaces Σn

#2 in (5.25)

5.4.a. Structure of the half-guide solution. Consider the operator Pξ ∈ L (H
1/2
Θ#2(Σ#2)):

∀ Φ ∈ H
1/2
Θ#2(Σ#2), PξΦ := Û+

ξ (Φ)|Σ1
#2
, (5.26)

where the boundedness property stems from the well-posedness of (P±
#2) and from the continuity

of the trace map on Σ1
#2 from H1

Θ#2(Ω
+
#2) to H1/2

Θ#2(Σ1
#2) ≡ H

1/2
Θ#2(Σ#2). The operator Pξ is called the

propagation operator, because it determines how the half-guide solution propagates from one interface
to the other, as the next result shows.

Proposition 5.9

For any Φ ∈ H
1/2
Θ#2(Σ#2), the solution Û+

ξ (Φ) of Problem (P±
#2) satisfies

∀ n ∈ N, a. e. x ∈ Ω#2 , Û+
ξ (Φ)(x + n ex) = Û+

ξ (Pn
ξ Φ)(x). (5.27)

Furthermore, Pξ has a spectral radius ρ(Pξ) < 1.

Proof. The proof is a direct adaptation of [JLF06, Theorem 3.1]. To prove (5.27), we begin with
n = 1 and we define Ũ (Φ) := Û+

ξ (Φ)(·+ ex). Then one has Ũ (Φ)|Σ
#2 = PξΦ. Moreover, by using the

change of variables x 7→ x + e1 in (P±
#2) and the periodicity of A+

p and ρ+p along ex, one obtains that
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Ũ (Φ) satisfies the same problem as Û+
ξ (PξΦ). Consequently, the uniqueness of (P±

#2) leads to (5.27)
for n = 1. The extension to n > 1 follows by induction.

To prove that ρ(Pξ) < 1, we use the following estimate whose proof is very similar to (2.5):

∃ c, α > 0,
∥∥Û+

ξ (Φ) exp(α Imω |x|)
∥∥
H1

Θ #2(Ω
+

#2)
≤ c ∥Φ∥

H
1/2

Θ #2(Σ#2)
.

Since Pn
ξ Φ = Û+

ξ (Φ)|Σn
#2

according to (5.27), the continuity of the trace application on Σn
#2 leads to

∃ c′, α > 0, ∀ n ∈ N, ∥Pn
ξ ∥ ≤ c′ e−α Imωn.

One then concludes by raising both sides of the above inequality to the power of 1/n, and by using
the Gelfand formula ρ(Pξ) = limn→+∞ ∥Pn

ξ ∥1/n. ■

Proposition 5.9 shows that the restrictions of Û+
ξ (Φ) to the interfaces Σn

#2 can be fully expressed with
respect to the propagation operator Pξ:

∀ n ∈ N, Û+
ξ (Φ)|Σn

#2
= Pn

ξ Φ. (5.28)

Therefore, knowing Pξ, one can construct Û+
ξ (Φ) using solutions of problems defined in one periodic-

ity cell, as shown in the next section.

5.4.b. Local cell problems. Given a boundary data Φ ∈ H
1/2
Θ#2(Σ#2) and j ∈ {0, 1}, let us introduce

the local cell problems:
−(div + iξ te1)Θ Ap

tΘ (∇+ iξe1)E
j
ξ − ρp ω

2Ejξ = 0 in C#2 ,

Ejξ ∈ H1
Θ#2(C#2), Ap

tΘ (∇+ iξe1)E
j
ξ ∈ HΘ,#2(div; C#2),

(5.29a)

combined with the Dirichlet boundary conditions (see Figure 14)

E0
ξ (Φ)|Σ0

#2
= Φ and E0

ξ (Φ)|Σ1
#2

= 0

E1
ξ (Φ)|Σ0

#2
= 0 and E1

ξ (Φ)|Σ1
#2

= Φ.
(5.29b)

These problems are well-posed thanks to Lax-Milgram’s theorem combined with a lifting argument.
Moreover, using the structure of Û+

ξ (Φ) given by Proposition 5.9, it follows by linearity that

∀ n ∈ N, Û+
ξ (Φ)(·+ n ex)|C

#2 = E0
ξ (Pn

ξ Φ) + E1
ξ (Pn+1

ξ Φ). (5.30)

Therefore, if Pξ is known, then Û+
ξ (Φ) can be constructed cell by cell using the solutions Ejξ (Φ)

of the local cell problems (5.29). On the other hand, these local cell problems are involved in the
characterization of Pξ. This is the object of the next section.
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Φ

T 00
ξ Φ

0

T 01
ξ Φ

E0
ξ (Φ)

x
z1

z2

0

T 10
ξ Φ

Φ

T 11
ξ Φ

E1
ξ (Φ)

Figure 14: Dirichlet conditions satisfied by E0
ξ and E1

ξ , and the DtN operators T jk
ξ given by (5.31).

5.4.c. Characterization of the propagation operator via a Riccati equation. The goal of this sec-
tion is to characterize Pξ using the local DtN operators defined for any Φ ∈ H

1/2
Θ#2(Σ#2) by

T jk
ξ Φ = (−1)k+1

(
Θ Ap

tΘ (∇+ iξe1) E
j
ξ (Φ) · ex

)
|Σk

#2
.

The action of these operators is illustrated in Figure 14. From Green’s formula (4.35), it follows that

〈
T jk
ξ Φ, Ψ

〉
Σ

#2

:=

∫
C
#2

[
(Ap

tΘ (∇+ iξe1)E
j
ξ (Φ) ·

tΘ (∇+ iξe1)Ekξ (Ψ)− ρp ω
2Ejξ (Φ)E

k
ξ (Ψ)

]
. (5.31)

By applying the second point of Proposition 4.16 to C0
#2 and C1

#2 in the cell by cell expression (5.30)

of Û+
ξ , it follows that Ap

tΘ (∇+ iξe1) Û+
ξ · ex is continuous accross the interface Σ1

#2 , that is,

(Ap
tΘ (∇+ iξe1) Û+

ξ (Φ) · ex)|Σ1
#2

= (Ap
tΘ (∇+ iξe1) Û+

ξ (Φ) · ex)|Σ0
#2
,

or equivalently

(
Ap

tΘ (∇+ iξe1)E0
ξ (Φ) · ex

)
|Σ1

#2
+
(
Ap

tΘ (∇+ iξe1)E1
ξ (PξΦ) · ex

)
|Σ1

#2

=
(
Ap

tΘ (∇+ iξe1)E0
ξ (PξΦ) · ex

)
|Σ0

#2
+
(
Ap

tΘ (∇+ iξe1)E1
ξ (P2

ξ Φ) · ex
)
|Σ0

#2
. (5.32)

The definition of the local DtN operators then leads to a so-called Riccati equation, which characterizes
uniquely Pξ as stated by the following result.

Proposition 5.10

The propagation operator Pξ defined by (5.26) is the unique solution of the problem∣∣∣∣∣∣
Find P ∈ L (H

1/2
Θ#2(Σ#2)) such that ρ(P ) < 1 and

T 10
ξ P 2 + (T 00

ξ + T 11
ξ ) P + T 01

ξ = 0.
(5.33)

Proof. We only present the outline of the proof which is detailed in [JLF06, Theorem 4.1]. The
existence is directly deduced from (5.32). On the other hand, the uniqueness is achieved by con-
sidering P̃ξ which satisfies (5.33), and by showing that for Φ, the function defined cell by cell by
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Ũ(Φ)(·+ n ex)|C
#2 = E0

ξ (P̃n
ξ Φ)+E1

ξ (P̃n+1
ξ Φ) satisfies the same half-guide problem (P±

#2) as Û+
ξ (Φ),

so that both solutions coincide and thus P̃ξ Φ = Pξ Φ. ■

One important point to note from the practical point of view is that the Riccati equation (5.33) only
involves the local DtN operators T ℓj

ξ which are defined from the solutions of the local cell problems
(5.29). These problems are computable numerically since they are defined in C#2 .

Finally, we deduce from (5.30) the following expression:

Λ̂+
ξ = T 10

ξ Pξ + T 00
ξ . (5.34)

6 Resolution algorithm and discretization

The method developed in the previous sections can be summarized in the following algorithm:

1. For any ξ ∈ (−π, π),

a. solve the local cell problems (5.29) and compute the local DtN operators T jk
ξ given by

(5.31);

b. determine the propagation operator Pξ by solving the Riccati equation (5.33);

c. deduce the DtN operator Λ̂+
ξ using (5.34);

d. adapt Steps 6.1.a – 6.1.c for the half-guide Ω−
#2 in order to compute the DtN operator Λ̂−

ξ

thanks to cell problems defined in (−1, 0)× (0, 1)2;

e. find the solution Φξ of the interface equation (5.24);

f. deduce the solution Ûξ(Ĝξ) of (FV#2) using (5.23) and the cell by cell expression (5.30) of
Û±
ξ (Φ);

2. apply the inverse Floquet-Bloch transform (5.21) to reconstruct the solution U(G) of the aug-
mented strip problem (P#);

3. deduce the solution u of the 2D transmission problem (P) using (5.8).

Since this algorithm holds at a continuous level, it has to be discretized with respect to both the spatial
and the Floquet variables. The next section describes the discretization procedure with a particular
emphasis on Steps 6.1 and 6.2.

6.1 Discretization issues

6.1.a. Discretization with respect to the Floquet variable. We begin with the step 6.2, which yields
the solution U(G) of the augmented strip problem (P#) using the inverse Floquet-Bloch transform
(5.21). In this expression, the integrand involves Ûξ(Ĝξ) which cannot be computed explicitly in
general. Thus, this integrand can only be computed for a finite number of values of ξ (using Step 6.1),
so that the integral with respect to ξ in (5.21) has to be evaluated using a quadrature rule.

To this end, we consider a regular mesh of (−π, π) consisting of Nξ intervals of equal size ∆ξ, and
of Nξ + 1 equispaced points (ξj)0≤j≤Nξ

, with Nξ > 0 and ∆ξ := 2π/Nξ. The integral in (5.21) is
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evaluated using a trapezoidal rule using ξj as quadrature points, leading to an approximate solution
U∆ξ(G) of the augmented transmission problem (FV#):

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, U∆ξ(G)(x + n e1) =
∆ξ√
2π

Nξ∑
j=0

Ûξj (Ĝξj )(x) e
iξj(z1+n)

The choice of the trapezoidal rule is motivated in Remark 6.1.

Remark 6.1. If Imω > 0 and g ∈ L2(σ) is compactly supported, then similarly to (2.4), the solu-
tion U(G) of (P#) decays exponentially in the e1–direction. This implies thanks to Paley-Wiener-type
theorems (see for instance [Kuc93, Theorem 2.2.2]) that the map ξ 7→ Ûξ(Ĝξ) := Fe1U(G) (·, ξ) ∈
H1

Θ#2(Ω#2) is real analytic. Moreover, from the property (5.10) of the Floquet-Bloch transform, it is clear

that ξ 7→ Ûξ(Ĝξ)(x) eiξ(z1+n) is 2π–periodic for any x ∈ Ω#2 and n ∈ Z. This formal observation justifies
the use of the trapezoidal rule, which is known to converge exponentially for smooth periodic integrands
(see for instance [TW14]).

In order to obtain a precise error estimate, it turns out that the function U∆ξ(G) obtained using the
trapezoidal rule can be reinterpreted as the solution of a boundary value problem defined in a domain
which is bounded in the e1–direction. This approach has been studied in detail in [Coa12] for a different
problem, but it can be extended to (P#), thus leading to a quadrature error of the form

∃ α > 0, ∥U(G)− U∆ξ(G)∥H1
Θ(Ω#) = O(e−α ImωNξ).

6.1.b. Semi-discretization with respect to the spatial variable. Now, let us fix ξ ∈ (−π, π), and
consider the discretization of Step 6.1. The discretization is a direct adaptation of the procedure
described in [JLF06; Fli09; FJ16]. For this reason, we do not intend to go into details. We begin
with a triangular mesh of C#2 := (0, 1)3 with step h > 0. This mesh is assumed to be periodic, in the
sense that one can identify the mesh nodes on the boundary x = 0 (resp. zj = 0) to those on x = 1

(resp. zj = 1) in a trivial manner. Then, using the classical H1–conforming Lagrange finite element
space of order d > 0 which we call Vh(C#2), an internal approximation of H1

Θ#2(C#2) and H1/2
Θ#2(Σ

j
#2)

is provided by the subspaces

Vh,#2(C#2) :=
{
V ∈ Vh(C#2) / Vh|zj=0 = Vh|zj=1 ∀ j ∈ {1, 2}

}
.

Vh,#2(Σj
#2) :=

{
V |

Σj

#2
/ Vh ∈ Vh(C#2)

}
, ∀ j ∈ {0, 1}.

The periodicity of the mesh allows the identification Vh,#2(Σ0
#2) ≡ Vh,#2(Σ1

#2) ≡ Vh,#2(Σ#2), similarly
to the continuous case. In what follows, let Nh := dimVh,#2(Σ#2).

For any Φh ∈ Vh,#2(Σj
#2), we solve the discrete formulation of the local cell problems (5.29) with solu-

tions Ejξ,h(Φh) ∈ Vh,#2(C#2), j ∈ {0, 1}, and deduce finite-dimensional operators T jk
ξ,h ∈ L (Vh,#2(Σj

#2))

using the discrete analog of (5.31). Note that these discrete DtN operators can be represented as
Nh ×Nh matrices.

To approximate the propagation operator Pξ, it is natural to introduce the solution Pξ,h of the con-
strained Riccati equation (5.33) where T jk

ξ is replaced by T jk
ξ,h. As described in [JLF06], the resolution

of the discrete Riccati equation can be handled using either (1) a spectral approach which consists in
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characterizing Pξ,h by means of its eigenpairs which satisfy a quadratic eigenvalue problem, or (2) a
modified Newton method, that is, a standard Newton method with an additional projection step in
order to take the spectral radius constraint into account.

From Pξ,h, the discrete analog of (5.34) allows to define an approximate Λ̂+
ξ,h ∈ L (Vh,#2(Σj

#2)). We
compute Λ̂−

ξ,h similarly and write the discrete version of the interface equation (5.24) as a Nh × Nh

linear system. The corresponding solution Φξ,h ∈ Vh,#2(Σj
#2) is then used to deduce an approximation

Ûξ,h(Ĝξ) of the waveguide solution of (FV#2) thanks to (5.23) and the cell by cell expression (5.30).

Remark 6.2. (a). For ξ ∈ (−π, π) fixed, an error analysis can be performed for the approximation of the
waveguide solution Ûξ(Ĝξ). To do so, the idea is to show as in [Fli09, Section 2.3.1] that the discrete
solution Ûξ,h(Ĝξ) satisfies a discrete waveguide problem on an infinite mesh of Ω#2 . This observation
then allows to use Céa’s lemma and to derive classical finite element estimates. In particular, for Lagrange
finite elements of order 1, assuming that Ap and ρp are smooth enough, one shows that

∥Ûξ(Ĝξ)− Ûξ,h(Ĝξ)∥L2(Ω
#2) = O(h2) and ∥Ûξ(Ĝξ)− Ûξ,h(Ĝξ)∥H1

Θ(Ω#2) = O(h).

(b). For Configuration (A ), we recall that (A+
p , ρ

+
p ) are independent of z2 while (A−

p , ρ
−
p ) are independent

of z1. This property can be exploited for the resolution of the local cell problems. In fact, we could have
used a semi-analytical method based on separation of variables, to reduce computations to a family of
2–dimensional local cell problems.

From the discrete solution Ûξ,h(Ĝξ), we compute an approximate solution Uh(G) of the strip problem
using Section 6.1.a, with h := (h,∆ξ). Finally, for Step 6.3, an approximate solution uh of the 2–
dimensional problem (P) is given by uh := E2

#Uh(G)(Θ ·), in the spirit of (5.8).

6.2 A quasi–2D idea for resolution of the local cell problems

We now focus on the step 6.1.a of the resolution algorithm, that is, the computation of the local cell
solutions Ejξ and the local DtN operators T jk

ξ . Although the local cell problems (5.29) can be solved
directly using 3–dimensional finite elements as in Section 6.1, it is worth recalling that the differential
operator −ρ−1

p divΘ Ap
tΘ∇ is strongly linked to the family of operators −ρ−1

s divAs∇ (s ∈ R) by
means of the chain rule (3.15). It is in particular this “fibered” link that leads to the expression (5.4)
recalled below: for almost any (x, z, s) ∈ R2 × (0, 1),

Ũ(x, θ1z, θ2z + s) = us(x, z), (6.1)

where U = U(G) and us = us(gs) (with gs(0, z) := G̃(0, θ1z, θ2z + s)) are the respective solutions of
(P#) and (Ps), and where Ũ := E2

# (U) and G̃ := E2
# (G) are respectively the periodic extensions of

U and G in the e2–direction.

Up to now, in the context of the lifting approach, the relation (6.1) has been useful in practice to
compute us(gs) (in particular for s = 0) from U(G). The so-called quasi 2–dimensional (or quasi-2D)
approach developed in this section relies on the converse: in the spirit of (6.1), our goal is to reduce
the resolution of the local cell problems to that of a family of 2–dimensional decoupled cell problems.

This principle of the quasi-2D resolution method is very similar to the quasi-1D method developed in
Section III–5.2 for the Helmholtz equation with quasiperiodic coefficients. However, this extension is
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more delicate for our 3D problems, due to the periodicity conditions with respect to both z1 and z2.
To illustrate this difficulty, it is useful to consider the quasi-1D approach for a 2D cell problem with
periodic conditions on all boundaries. This is the object of the next section.

6.2.a. Illustration of the method in a 2D case. The goal in this section is first to highlight the
difficulty of the fibered approach in the case of a particular 2D cell problem with periodic conditions,
and then to propose an alternative which will be extended to the 3D case. Throughout this section,
the subscript “2D” is used to emphasize the fact that we are in a 2D case.

The difficulty of the quasi-1D approach
We consider the problem defined in C := {z = (z1, z2) ∈ (0, 1)2}: Find E2D ∈ H1

θ(C) such that −Dθ (µ2DDθ E2D)− ρ2D ω
2E2D = f2D in C,

E2D|zj=0 = E2D|zj=1 and (µ2DDθ E2D)|zj=0 = (µ2DDθ E2D)|zj=1 ∀ j ∈ J1, 2K,
(6.2)

with µ2D, ρ2D, f2D ∈ C 0
per(R

2), and where Dθ := θ · ∇ = θ1 ∂z1 + θ2 ∂z2 . Since E2D is periodic with
respect to z2 , it follows that the function e2D,s : z 7→ Ẽ2D(θ z + se2) belongs to H1(0, 1/θ1) for almost
any s ∈ (0, 1), where Ẽ2D denotes the periodic extension of E2D in the e2 direction. Moreover, because
of the fibered property of the differential operator in (6.2) and the continuity of f2D, one shows using
the chain rule (Proposition III–3.13) that e2D,s is well-defined for any s ∈ [0, 1], and satisfies

− d

dz

(
µ2D,s

de2D,s
dz

)
− ρ2D,s ω

2 e2D,s = f2D,s in (0, 1/θ1), (6.3a)

with µ2D,s(z) := µ2D(θ z + se2), ρ2D,s(z) := ρ2D(θ z + se2), and f2D,s(z) := f2D(θ z + se2). Conversely,
by identifying the map s 7→ e2D,s with its periodic extension for s ∈ R, we obtain that

a. e. z = (z1, z2) ∈ C, E2D(z) = e2D,z2−z1 δ(z1/θ1) with δ := θ2/θ1,

so that the periodicity of E2D with respect to z1 leads to:

∀ s ∈ R, e2D,s(0) = e2D,s−δ(1/θ1). (6.3b)

which is illustrated in Figure 15. The coupling relation (6.3b) makes it impossible to compute the e2D,s
independently from each other, unlike for the Dirichlet cell problems in Section III–5.2.

•

s− δ

•s

e2D,s−δ

e2D,s

z1

z2

Figure 15: Illustration of the coupling relation (6.3b)

Compared to Chapter III, the roles of z1 and z2 have been swapped in the sense z1 ↔ y2 and z2 ↔ y1. However the
results in Chapter III can be easily extended to take this index inversion into account.
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Auxiliary local cell problems
To overcome the difficulty induced by the periodic coupling, one can reformulate E2D in terms of the
solutions of auxiliary local Dirichlet cell problems for which the quasi-1D method can be applied. For
this purpose, we introduce an auxiliary unknown φ ∈ L2(0, 1), namely

φ := E2D|z1=0 = E2D|z1=1.

With this choice, by introducing the well-posed cell problems: Find F2D ∈ H1
θ(C) such that

−Dθ (µ2DDθ F2D)− ρ2D ω
2 F2D = 0 in C,

F2D|z2=0 = F2D|z2=1 and (µ2DDθ F2D)|z2=0 = (µ2DDθ F2D)|z2=1,

F2D|z1=0 = φ and F2D|z1=1 = φ

and: Find G2D ≡ G2D(f) ∈ H1
θ(C) such that

−Dθ (µ2DDθ G2D)− ρ2D ω
2 G2D = f2D in C,

G2D|z2=0 = G2D|z2=1 and (µ2DDθ G2D)|z2=0 = (µ2DDθ G2D)|z2=1,

G2D|z1=0 = 0 and G2D|z1=1 = 0,

we obtain by linearity that
E2D = F2D(φ) + G2D(f). (6.4)

The important difference between the problems satisfied by F2D, G2D, and the one satisfied by E2D

is that the periodic conditions on {z1 = 0} and {z1 = 1} have been replaced by Dirichlet boundary
conditions. Hence, F2D and G2D can be solved using the quasi-1D approach described in Section III–5.2.

It remains to obtain an equation for φ. By imposing the periodicity of µ2DDθ E2D with respect to z1 in
(6.4), we deduce that φ satisfies

(Ξ0
2D + Ξ1

2D)φ = −(Υ0
2D +Υ1

2D) f (6.5)

where the auxiliary local DtN operators Ξj2D and the right-hand sides Υj
2D f , j ∈ {0, 1} are given by Ξj2D φ := (−1)j+1 (µ2DDθ F2D(φ))|z1=j ,

Υj
2D f := (−1)j+1 (µ2DDθ G2D(f))|z1=j .

Conversely, it can be seen that if ϕ is a solution of (6.5), then F2D(ϕ) + G2D(f) satisfies Problem (6.2).
Therefore, the well-posedness of (6.5) follows from the well-posedness of the cell problem (6.2). Note
also that by analogy with Proposition III–5.2, the operators Ξj2D are sums of weighted shift operators,
which allows them to be computed with the quasi-1D approach. Now, we extend this idea to the
3–dimensional cell problems.

6.2.b. Extension to the 3D local cell problems. In what follows, the Floquet variable ξ ∈ (−π, π) is
fixed, and is omitted from the notations. We now address the case of the 3D local cell problems (5.29)
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which are recalled under the formal form:

−(div + iξ te1)Θ Ap
tΘ (∇+ iξe1)E

j
ξ − ρp ω

2Ejξ = 0 in C#2 ,

Ejξ is 1–periodic with respect to z1 and z2,

E0
ξ (Φ)|Σ0

#2
= Φ and E0

ξ (Φ)|Σ1
#2

= 0,

E1
ξ (Φ)|Σ0

#2
= 0 and E1

ξ (Φ)|Σ1
#2

= Φ,

(6.6)

where Φ is a fixed data, which plays the role of the source term f in the previous section. By analogy
with the previous section, it can be shown the traces of Ejξ along Θ R2+ s e2 satisfy a coupling relation
which prevent them from being computed independently from one another. For this reason, we intro-
duce auxiliary Dirichlet cell problems which are shown to have a fibered structure. The link between
Ejξ and the solutions of these auxiliary problems is obtained using the trace of Ejξ on the interface
{z1 = 1}, which satisfies an equation similar to (6.5).

The auxiliary cell problems Consider E0
ξ for simplicity. We introduce an additional unknown R0Φ

defined by
R0Φ := E0

ξ (Φ)|z1=0 = E0
ξ (Φ)|z1=1. (6.7)

Then by considering the respective solutions F (Ψ) and G0(Ψ) of the well-posed Dirichet cell problems:

−(div + iξ te1)Θ Ap
tΘ (∇+ iξe1)F − ρω2 F = 0 in C#2 ,

F = F (Ψ) is 1–periodic with respect to z2,

F (Ψ)|x=0 = 0 and F (Ψ)|x=1 = 0,

F (Ψ)|z1=0 = Ψ and F (Ψ)|z1=1 = Ψ,

(6.8)

and 

−(div + iξ te1)Θ Ap
tΘ (∇+ iξe1)G0 − ρω2 G0 = 0 in C#2 ,

G0 = G0(Φ) is 1–periodic with respect to z2,

G0(Φ)|x=0 = Φ and G0(Φ)|x=1 = 0,

G0(Φ)|z1=0 = 0 and G0(Φ)|z1=1 = 0,

(6.9)

it follows by linearity that
E0
ξ (Φ) = F (R0Φ) + G0(Φ). (6.10)

Before highlighting the advantage of introducing F and G0, let us derive an equation to characterize
R0Φ. The periodicity of E0

ξ in z1 leads to the following equality(
Θ Ap

tΘ (∇+ iξe1)E0
ξ (Φ)

)
· e1|z1=0 =

(
Θ Ap

tΘ (∇+ iξe1)E0
ξ (Φ)

)
· e1|z1=1.

which reformulates as
(Ξ0 + Ξ1)R0Φ = −(Υ00 +Υ01) Φ (6.11)
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with Ξk and Υ0k, k ∈ {0, 1}, being the local auxiliary DtN operators defined by ΞkΨ := (−1)k+1
(
Θ Ap

tΘ (∇+ iξe1)F (Ψ)
)
· e1|z1=k,

Υ0k Φ := (−1)k+1
(
Θ Ap

tΘ (∇+ iξe1)G0(Φ)
)
· e1|z1=k.

(6.12)

Conversely, if Ψ is such that (Ξ0 + Ξ1)Ψ = −(Υ00 +Υ01) Φ, then F (Ψ) + G0(Φ) satisfies the local cell
problem (6.6). Therefore, the well-posedness of (6.11) follows from the well-posedness of (6.6).

The above arguments extend naturally to E1
ξ , to which we can associate R1Φ, G1, and Υ1k by adapting

respectively (6.7), (6.9), and (6.12). Then one has

E1
ξ (Φ) = F (R1Φ) + G1(Φ), where (Ξ0 + Ξ1)R1Φ = −(Υ10 +Υ11) Φ. (6.13)

Note that R0 and R1 define operators of Dirichlet-to-Dirichlet (DtD) type which are fully characterized
by (6.11) and (6.13). From these operators, one can also deduce the local DtN operators T jk

ξ defined
by (5.31). More precisely, it follows by linearity that

∀ j, k ∈ {0, 1}, T jk
ξ = Υ̃jk + Ξ̃kRj , (6.14)

where Ξ̃k and Υ̃jk are given by Ξ̃kΨ := (−1)k+1
(
Θ Ap

tΘ (∇+ iξe1)F (Ψ)
)
· ex|x=k,

Υ̃jk Φ := (−1)k+1
(
Θ Ap

tΘ (∇+ iξe1)Gj(Φ)
)
· e1|x=k.

(6.15)

It is worth noting that the operators Ξj , Ξ̃k, Υjk, Υ̃jk can all be obtained by computing F and Gj ,
which satisfy cell problems with Dirichlet conditions on both the boundaries {x = k} and {z1 = j}.
We now highlight the structure of F and Gj .

The fibered structure of the auxiliary cell problems Given s ∈ R, using the definition (5.3) of
(As, ρs), we introduce the 2D cell problems defined in Qθ := (0, 1)× (0, 1/θ1) as

−(div + iθ1ξ
tez)As (∇+ iθ1ξez) fs − ρs ω

2 fs = 0 in Qθ,

fs|x=0 = 0 and fs|x=1 = 0

fs(ψ)|z=0 = ψ and fs(ψ)|z=1 = ψ,

(6.16)

and for j ∈ {0, 1}, 
−(div + iθ1ξ

tez)As (∇+ iθ1ξez)g
j
s − ρs ω

2 gjs = 0 in Qθ,

gjs(φ)|x=k = δj,k φ

gjs(φ)|z=0 = 0 and gjs(φ)|z=1 = 0.

(6.17)

We also introduce Γk
#2 := (0, 1)× {k} × (0, 1) and the edges

SX
k := {k} × (0, 1/θ1), and SZ

k := (0, 1)× {j/θ1}.
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Then, the link between the solution F (resp. Gj) of (6.8) (resp. (6.9) for j = 0) and fs (resp. gjs) is
given by the next result.

Proposition 6.3

Let k ∈ {0, 1} and Ψ ∈ L2(Γk
#2) such that ψs : x 7→ SΘΨ(x, s) := E2

#Ψ(x, k, s+ kδ) ∈ H1/2(SZ
k)

for almost any s ∈ R, with δ := θ2/θ1. Then one has

a. e. (x, z, s) ∈ Qθ × (0, 1), E2
#F (x, θ1 z, θ2 z + s) = fs(x, z), (6.18)

where F = F (Ψ) and fs = fs(ψs) are the respective solutions of (6.8) and (6.16). Similarly,
for any Φ ∈ H

1/2
Θ#2(Σ#2) with φs := SΘΦ(·, s) for almost any s ∈ (0, 1), one has

a. e. (x, z, s) ∈ Qθ × (0, 1), E2
#Gj(x, θ1 z, θ2 z + s) = gjs(x, z), (6.19)

where Gj = Gj(Φ) and gjs = gjs(φs) are the respective solutions of (6.9) and (6.17).

Proposition 6.3 shows that computing (F,Gj) reduces to finding (fs,g
j
s) for any s ∈ (0, 1). The

advantage in solving the problems satisfied by (fs,g
j
s) is that they are 2-dimensional, and can be

solved independently from one another (with respect to s), and therefore in parallel.

Finally, by analogy with Proposition III–5.2, the DtN operators Ξj , Ξ̃k, Υjk, Υ̃jk can be derived from
the normal traces of fs and gjs. In fact, let tks , t̃

k
s , and υjk, υ̃jk, j, k ∈ {0, 1} be the auxiliary edge DtN

operators defined by 

tksψ := (−1)k+1
(
As (∇+ iθ1ξez) fs(ψ)

)
· ez|z=k/θ1

t̃ksψ := (−1)k+1
(
As (∇+ iθ1ξez) fs(ψ)

)
· ex|x=k

υjks φ := (−1)k+1
(
As (∇+ iθ1ξez)g

j
s(φ)

)
· ez|z=k/θ1

υ̃jks φ := (−1)k+1
(
As (∇+ iθ1ξez)g

j
s(φ)

)
· ez|x=k

(6.20)

Then the next result follows directly from the weak forms of these operators and from the duality
property (4.27) which can also be extended to the faces Γk

#2 .

Proposition 6.4

For any k ∈ {0, 1}, let (Φk,Ψk) ∈ L2(Σk
#2)× L2(Γk

#2) be such that φks := SΘΦ
k(·, s) ∈ H1/2(SX

k)
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and ψks := SΘΨ(·, s) ∈ H1/2(SZ
k) for almost any s ∈ R. Then for any j, k ∈ {0, 1},

〈
ΞkΨj , Ψk

〉
Γk

#2
= θ1

∫ 1

0

〈
tks ψ

j
s, ψ

k
s

〉
SZ
k
ds

〈
Ξ̃kΨj , Φk

〉
Σk

#2
= θ1

∫ 1

0

〈
t̃ks ψ

j
s, φ

k
s

〉
SX
k
ds

〈
Υjk Φj , Ψk

〉
Γk

#2
= θ1

∫ 1

0

〈
υjks φjs, ψ

k
s

〉
SZ
k
ds

〈
Υ̃jk Φj , Φk

〉
Σk

#2
= θ1

∫ 1

0

〈
υ̃jks φjs, φ

k
s

〉
SX
k
ds.

(6.21)

The algorithm for the quasi-2D method Let us summarize the quasi-2D method in the following
algorithm.

a. solve the 2D local cell problems (6.16, 6.17) and compute the auxiliary edge DtN operators tks ,
t̃ks , and υjk, υ̃jk given by (6.20) for any s ∈ [0, 1];

b. Compute the auxiliary DtN operators Ξj , Ξ̃k, Υjk, Υ̃jk using (6.21);

c. Determine the DtD operator Rj , j ∈ {0, 1}, by solving the linear equation (6.11);

d. Deduce Ejξ , and compute the local DtN operators T jk
ξ using their expression (6.14) with respect

to Rj and Ξj , Ξ̃k, Υjk, Υ̃jk.

We do not describe the discretization of this algorithm, since it is an extension of the quasi-1D method
III–5.2.b. We simply note that once the DtN operators T jk

ξ have been approximated, they can be used
to derive the propagation operator Pξ (using the Riccati equation (5.33)), and the DtN operator Λ̂+

ξ

(using (5.34)).

7 Numerical results

This section provides a series of numerical results with the goal to validate the method in various
situations. For the sole sake of simplicity, simulations are performed with the tensor

A =

(
1 0

0 1

)
. (7.1)

Unless otherwise specified, we use a cut-off function as the jump data g and the augmented data G is
taken constant with respect to z2: ∀ z ∈ R, g(0, z) := 100ϕ(2z), with ϕ(z) := exp

(
1− 1/(1− z2)

)
1[−1,1](z),

∀ z1 ∈ R, G(0, z1, z2) := g(0, z1/θ1).

(7.2)

Simulations are carried out using Lagrange finite elements of order 1.
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7.1 Validation in the homogeneous setting

In this first example, we consider the case where ρ is piecewise constant:

∀ x ∈ R2, ρ+(x) := 1 and ρ−(x) := 2.

This coefficient falls within the scope of both Configurations (A ) and (B) with any periodicity pa-
rameter. For Configuration (A ), we choose p+z := 1 and p−z :=

√
2/2 to be the periods on both sides

of the interface. For Configuration (B), we choose p+ := (
√
2, 1) as the periodicity vector in R2

+. The
jump data g and its extension G are given by (7.2).

The solution of (P) is computed using the method developed in this chapter for ω = 8 + 0.25 i. We
choose a mesh step of h = 0.025, which corresponds approximately to 31 points per wavelength in R2

+

and 22 points per wavelength in R2
−. The number of Floquet points is set to Nξ + 1, with Nξ = 64.

The reference solution uref we use in this context is obtained by applying the partial Fourier transform
with respect to z, and by solving analytically a family of transmission problems defined on R and
parameterized by the Fourier variable. In fact, it can be computed that

a. e. (x, z) ∈ R2
±, uref (x, z) =

1

2π

∫
R

ĝζ

r+ζ + r−ζ
exp(∓r±ζ + iζz) dζ, with ĝζ :=

1

2π

∫
R
g(z) e−iζz dz

and where r±ζ are defined by

∀ ζ ∈ R, (r±ζ )
2 = ζ2 − (ρ±/µ±)ω2, Re r±ζ ≥ 0.

The solutions that follow from applying the lifting approach to Configurations (A ) and (B) are com-
pared in Figure 16 to uref. The similarity between the results validates the method in the homogeneous
setting.

−4 −2 0 2 4

uref

−4 −2 0 2 4

u, Configuration (A )

−2 0 2

−4 −2 0 2 4

u, Configuration (B)

Figure 16: Real part of the approximate solution uh computed for Configurations (A ) and (B) using
order 1 Lagrange finite elements with h = 0.025 and Nξ = 64.
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In what follows, numerical experiments are performed with a variable coefficient ρ. Using the cut-
off function ϕ ∈ C∞

0 (R) defined in (7.2), we use the Z2–periodic functions defined in one cell of
periodicity by

∀ ◦
x = (

◦
x,

◦
z) ∈ (0, 1)2,

◦
ρ−( ◦

x) := 0.5 + ϕ(4
◦
x)ϕ(4

◦
z) and ◦

ρ+(
◦
x) := 0.5 + ϕ(2.5| ◦x|).

Then, for Configuration (A ), we use

∀ x = (x, z) ∈ R2, ρ±(x) := ◦
ρ±(x, z/p+z ), (7.3)

which is p±z –periodic with respect to z. For Configuration (B), we set

∀ x = (x, z) ∈ R2, ρ−(x) = 1 and ρ+(x) :=
◦
ρ(x− (p+x /p

+
z )z, z/p

+
z ), (7.4)

so that ρ+ is Zex + Zp+–periodic with p+ = (p+x , p
+
z ). These coefficients are shown in Figure 17.
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ρ, Configuration (B)

0.6
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Figure 17: The Z2–periodic coefficients ◦
ρ which are rescaled to construct ρ.

7.2 Validation in the rational setting

We consider a coefficient ρ which is 1–periodic in the direction of the interface (see Figures 18 and
19). In this case, as done in [FCB10], one can directly apply a Floquet-Bloch transform in the direction
of the interface, leading a family of 2D transmission problems defined in R× (0, 1) and parameterized
by the Floquet variable. Each of the waveguide problems can then be reduced to an interface equation
featuring 2D DtN operators, which we obtain by computing the solution of half-guide problems defined
in R± × (0, 1). Solving these half-guide problems involves 2D local cell problems and a propagation
operator, similarly to Section 5.4. We use this approach to construct a reference solution uref, to which
we compare the solution u obtained using the lifting approach. We fix ω = 8 + 0.25 i.

For Configuration (A ), we define ρ using (7.3), with p+z = p−z = 1. Figure 18 shows the solution u

computed numerically using the lifting approach for a mesh step h = 0.025 and Nξ = 64. As expected,
this solution is close to the reference solution uref.
For Configuration (B), we define ρ using (7.4), with p+ = (1/2, 1). Figure 19 shows the solution u

computed numerically using the lifting approach for a mesh step h = 0.025 and Nξ = 64. As expected,
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−4 −2 0 2 4

ρ

0.6 1 1.4

−4 −2 0 2 4

uref

−2 0 2

−4 −2 0 2 4

u

−2 0 2

Figure 18: Real part of the approximate solution computed for Configuration (A ) using order 1
Lagrange finite elements with h = 0.025 and Nξ = 64.

this solution is close to the reference solution uref.
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ρ
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−4 −2 0 2 4

u
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Figure 19: Real part of the approximate solution computed for Configuration (B) using order 1 La-
grange finite elements with h = 0.025 and Nξ = 64.

7.3 Validation and results in the irrational setting

This section is devoted to the case where (µ, ρ) are not periodic with respect to the interface. For
Configuration (A ), we use the definition (7.3) with (p+z , p

−
z ) = (1,

√
2), and for Configuration (B),

we use the definition (7.4) with p+ = (cosα, sinα), α = 3π/5. The coefficient ρ is represented in
Figure 20.

Invariance with respect to the period We only consider Configuration (A ) for simplicity. As the
coefficient ρ± is p±z –periodic with respect to z, it is obvious that it is also k± p±z with respect to z for
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Figure 20: The coefficient ρ for Configurations (A ) and (B).

any k± ∈ Z∗. Choosing k± p±z to be the period along the interface will not change the solution u of
(P) (since (A, ρ) are unchanged), whereas the solution U(G) of the augmented transmission problem
(P#) will be modified (due to the different expressions of the augmented coefficents (Ap, ρp) and the
cut matrix Θ). To see if the approximate solution uh has the same invariances as u with respect to the
periods, we compute uh in Figure 21 for (p+z , p

−
z ) = (1,

√
2) (second figure) and (p+z , p

−
z ) = (1, 2

√
2)

(first figure), with ω = 8+ 0.25 i, h = 0.025, and Nξ = 64. As expected, uh remains the same for these
two values of the period.

−4 −2 0 2 4

(p+z , p
−
z ) = (1, 2

√
2), G = G1

−4 −2 0 2 4

(p+z , p
−
z ) = (1,

√
2), G = G1

−2 0 2

−4 −2 0 2 4

(p+z , p
−
z ) = (1,

√
2), G = G2

Figure 21: Real part of the approximate solution uh computed for Configuration (A ) using order 1
Lagrange finite elements with h = 0.025 and Nξ = 64. Different values are considered for the periods
along the interface and for the augmented jump data.

Invariance with respect to augmented jump data We still consider Configuration (A ) only for
simplicity. Now, let us look at the invariance of the solution uh with respect to the augmented jump
data G. Since the data g used for our experiments is smooth, we recall that the assumptions on
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the augmented jump data reduce to G satisfying G(0, θ1 z, θ2 z) = g(0, z) and G(· + e2) = G. These
requirements are satisfied by the following functions:

G1(0, z1, z2) := g(0, z1/θ1) and G2(0, z1, z2) := exp
(
2iπ (z2 − z1θ2/θ1)

)
g(0, z1/θ1).

Figure 21 (second and third figures) shows the solution uh obtained for these two datas, with p+z = 1,
p−z =

√
2, h = 0.025, Nξ = 64, and ω = 8 + 0.25 i. As expected, the solution looks the same regardless

of the augmented data used.

Dependence with respect to the frequency We finish by solving (P) for different values of ω. As
expected for the Helmholtz equation, the solution, represented in Figure 22, oscillates more as Reω

increases.
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Figure 22: Real part of the approximate solution uh computed using order 1 Lagrange finite elements
with h = 0.025 and Nξ = 64. Different values are considered for ω.

8 An alternative approach for Configuration (A )

In this section, an alternative approach is proposed to solve the 2D transmission problem (P) by
decomposing the resolution domain into the half-spaces R2

+ and R2
−. We introduce for any boundary
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data φ ∈ H1/2(σ) the half-space problems: Find u± (φ) ∈ H1(R2
±) such that −divA±∇u± (φ)− ρ± ω2 u± (φ) = 0 in R2

±,

u± (φ) = φ on σ.
(P±)

These problems are well-posed due to the boundedness and the ellipticity of A± and ρ± (cf. (2.2)),
and because of absorption (2.1). Moreover, consider the DtN operators λ± ∈ L (H1/2(σ), H−1/2(σ))

defined for any φ,ψ ∈ H1/2(σ) by

⟨λ± φ, ψ⟩σ :=

∫
R2
±

[
A±∇u± (φ) · ∇u± (ψ)− ρ± ω2 u± (φ)u± (ψ)

]
. (8.1)

From the presence of absorption, it follows that λ± and λ+ + λ− are coercive, and therefore are
invertible. Furthermore, the solution u of the transmission problem (P) can be expressed as

a. e. x = (x, z) ∈ R2
±, u(x) = u± (φ) (x), (8.2)

where φ := u|σ is the unique solution of the equation:∣∣∣∣∣ Find φ ∈ H1/2(σ) such that for any ψ ∈ H1/2(σ),〈
(λ+ + λ−) φ, ψ

〉
σ
=
〈
g, ψ

〉
σ

(8.3)

In general, the resolution of (P±) and the computation of the operators λ± may be as difficult as
solving (P). However, for Configuration (A ), the tensor A± and the coefficient ρ± are both periodic
in the direction of the interface (with different periods p±z ). Thus for this configuration in particular,
the half-space problems (P±) may be solved directly by applying a Floquet-Bloch transform with
different periods p±z along the interface. This is of particular interest, since one can avoid solving
3D problems as in the lifting approach. It then remains to solve the interface equation (8.3), which
we shall reformulate using the Floquet-Bloch transform, and truncate for numerical purposes. This is
presented in Section 8.1. The resolution algorithm and its discretization are descred in Section 8.2,
while Section 8.3 provides numerical results to illustrate the method.

8.1 Presentation

The operators λ± are theoretical objects which cannot be computed directly, since they are defined on
σ which is unbounded. Instead, they shall be expressed as integrals of operators involving bounded
domains thanks to the Floquet-Bloch transform.

8.1.a. The half-space problems. We focus mainly on the half-space problem satisfied by u+(φ), since
the one satisfied by u− (φ) is very similar. Since A+ and ρ+ are p+z –periodic according to (2.7), the
structure of u+(φ) can be exhibited by means of the 1D Floquet-Bloch transform Fp+z presented in
Section 5.2.a. Let us introduce the domains

Q+ := R+ × (0, p+z ), σ+ := {0} × (0, p+z ), and K+ := (−π/p+z , π/p+z ).

In addition, define
H1

#2(Q+) :=
{
v ∈ H1(Q+), v|z=0 = v|z=p+z

}
H

1/2
#2 (σ+) :=

{
v|σ+ , v ∈ H1

#2(Q+)
}
.

(8.4)
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Then it follows directly from the properties of Fp+z in Section 5.2.a that for any n ∈ Z,

a. e. x = (x, z) ∈ Q+, u+(φ) (x+ np+z ez) =
1√
|K±|

∫
K+

û+ξ (φ̂ξ) (x) e
iξ(z+np+z ) dξ, (8.5)

where φ̂ξ := [Fp+z φ] (·, ξ) ∈ H
1/2
#2 (σ+) , a. e. ξ ∈ K+, and where û+ξ (φ̂ξ) is the unique solution of:∣∣∣∣∣∣∣∣

Find û+ξ (φ̂ξ) ∈ H1
#2(Q+) such that û+ξ (φ̂ξ)|σ+ = φ̂ξ and ∀ v ∈ H1

#2(Q+), v|σ+ = 0,∫
Q+

[
A+(∇+ iξez) û

+
ξ (φ̂ξ) · (∇+ iξez) v − ρ+ ω2 û+ξ (φ̂ξ) v

]
= 0.

(8.6)

Since A+ and ρ+ are periodic with respect to x, this half-guide problem can be solved similarly to
[JLF06; FJ09] (see also Section 5.3) by introducing local cell problems in (0, 1)× (0, p+z ) and a prop-
agation operator which satisfies a Riccati equation. Then, using (8.5), u+(φ) can be reconstructed in
the half-space R2

+ from û+ξ (φ̂ξ).

8.1.b. Characterization of the DtN operators. Using the solution û+ξ (φ̂ξ) of (8.6), one can define

the operator λ̂
+
ξ ∈ L (H

1/2
#2 (σ+), H

−1/2
#2 (σ+)) for any φ,ψ ∈ H

1/2
#2 (σ+) as follows

⟨λ̂+ξ φ, ψ⟩σ+ :=

∫
Q+

[
A+ (∇+ iξez) û

+
ξ (φ) · (∇+ iξez) û

+
ξ (ψ)− ρ+ ω2 û+ξ (φ) û

+
ξ (ψ)

]
. (8.7)

From the definition of the Floquet-Bloch transform in H−1/2(σ), the DtN operator λ+ given by (8.1)
is linked by to λ̂

+
ξ by the following: for φ,ψ ∈ H1/2(σ),

⟨λ+ φ, ψ⟩σ =

∫
K+

〈
λ̂
+
ξ [Fp+z φ] (·, ξ), [Fp+z ψ] (·, ξ)

〉
σ+ dξ. (8.8)

By applying the Floquet-Bloch transform with period p−z to the solution u− (φ) of (P±) in R2
− and by

introducing the corresponding analogues of (8.6) and (8.8), we obtain a similar expression for λ−.
The interface equation can then be reformulated as the following non-local equation:∣∣∣∣∣∣∣∣

Find φ ∈ H1/2(σ) such that for any ψ ∈ H1/2(σ),∑
±

∫
K±

〈
λ̂
±
ξ [Fp±z φ] (·, ξ), [Fp±z ψ] (·, ξ)

〉
σ± dξ =

〈
g, ψ

〉
σ
.

(8.9)

8.1.c. Truncation of the interface equation. Even though the DtN operators λ± have been expressed

in terms of operators λ̂
±
ξ defined on a bounded domain, the interface equation (8.9) remains defined

on σ which is unbounded. To overcome this last difficulty, we introduce an approximate problem on
the domain

στ := {0} × (−τ/2, τ/2),

for τ > 0. To this end, following the notation in [McL00, Theorem 3.33], we define the space

H̃1/2(στ ) :=
{
ψ ∈ H1/2(σ) / ψ = 0 on σ \ στ

}
. (8.10)

Note that in general, H̃1/2(στ ) is strictly included in H1/2(σ) (see [LM72, Remark 12.1]).
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Proposition 8.1

Equipped with the H1/2–scalar product, H̃1/2(στ ) is a Hilbert space

Proof. It is sufficient to prove that H̃1/2(στ ) is a closed subspace of H1/2(σ) with respect to the H1/2–
norm. Consider a sequence (ψn)n of functions in H̃1/2(στ ) such that ψn → ψ ∈ H1/2(σ). In particular,
ψn → ψ in L2(σ), and thus ψ = 0 on σ \ στ . Hence, ψ ∈ H̃1/2(στ ). ■

Now, in regards to (8.3), consider the problem:∣∣∣∣∣ Find φ ∈ H̃1/2(στ ) such that for any ψ ∈ H̃1/2(στ ),〈
(λ+ + λ−) φτ , ψ

〉
σ
=
〈
g, ψ

〉
σ

(8.11)

From a practical perspective, (8.11) can be interpreted as a problem defined on στ . This can be
seen formally by replacing in (8.11) the dual products by integrals on σ, and by using the fact that
ψ vanishes outside of στ . This problem is well-posed thanks to Lax-Milgram’s theorem, in particular
because λ+ + λ− is coercive due to absorption. Moreover, the error φ − φτ is studied in the next
proposition whose proof relies on classical arguments.

Proposition 8.2

Consider τ > 0 and let φ ∈ H1/2(σ) and φτ ∈ H̃1/2(στ ) be the respective solutions of (8.3) and
(8.11):

∃ c > 0, ∀ τ > 0, ∥φ− φτ∥H1/2(σ) ≤ c inf
ψ∈H̃1/2(στ )

∥φ− ψ∥H1/2(σ). (8.12)

Furthermore, if g ∈ L2(σ) is compactly supported, then

∃ c′, α > 0, ∀ τ > 0, ∥φ− φτ∥H1/2(σ) ≤ c′ e−α Imω τ ∥g∥H−1/2(σ). (8.13)

Proof. Since (8.12) results directly from Céa’s lemma, we focus on (8.13). DefineQτ := R×(0, τ) and
Q±
τ := R± × (0, τ). We denote by ṽ ∈ H1(R2) the extension of v ∈ H1

0 (Qτ ) by zero. Let ψτ := (uτ )|στ ,
where uτ ∈ H1(Qτ ) satisfy 

−divA∇uτ − ρω2 uτ = 0 in Q+
τ ∪Q−

τ ,

JA∇uτ · exKστ = g on στ ,

uτ = 0 on ∂Qτ .

Then ψτ ∈ H̃1/2(στ ), since ψτ = ũτ |σ ∈ H1/2(σ) where ũτ is the extension by 0 of uτ to R2. Moreover,
if g ∈ L2(σ) is compactly supported, then the exponential decay estimate (2.4) combined with the
continuity of the trace operator on σ and the well-posedness of the problem satisfied by u− uτ allow
to deduce that

∃ c1, c2, α > 0,
∥∥φ− ψτ

∥∥
H1/2(σ)

≤ c1
∥∥u− ũτ

∥∥
H1(R2)

≤ c2 e
−α Imω τ ∥g∥H−1/2(σ). (8.14)

As inf
ψτ∈H̃1/2(στ )

∥φ− ψτ∥H1/2(σ) ≤ ∥φ− ψτ∥H1/2(σ), (8.13) follows from (8.12) and (8.14). ■
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To finish, note that from the link between λ± and λ̂
±
ξ , it follows that (8.11) is equivalent to:∣∣∣∣∣∣∣∣

Find φτ ∈ H̃1/2(στ ) such that for any ψ ∈ H̃1/2(στ ),∑
±

∫
K±

〈
λ̂
±
ξ [Fp±z φτ ] (·, ξ), [Fp±z ψ] (·, ξ)

〉
σ± dξ =

〈
g, ψ

〉
σ
.

(8.15)

8.2 The algorithm and its discretization

The following algorithm summarizes the approach presented in Section 8.1.

a. For any ξ ∈ K±, compute the DtN operators λ̂
±
ξ defined by (8.7).

b. Find φ := u|σ by solving (8.15) for τ large enough, and compute φ̂±
ξ := Fp±z φ for ξ ∈ K±.

c. Deduce the solution û±(φ̂±
ξ ) of the half-guide problem (8.6).

d. Compute the solutions u±(φ) of (8.6) using the inverse Floquet-Bloch transform (8.5), and
deduce the solution u of (P) using (8.2).

The rest of the section is devoted to the discretization of these steps.

The discretization of Steps 8.2.a and 8.2.c requires a periodic mesh T ±
h± with step h± > 0 of the cell

(0,±1)×(0, p±z ). We use Lagrange finite elements of order d > 0 to construct an internal approximation
Vh±(σ±) of H1/2(σ±). The approximation of λ̂

±
ξ and û±ξ (φ) will not be detailed, because it is very

similar to the content of Section 6.1. We simply assume that given ξ ∈ K± and ψ ∈ H1/2(σ±),
suitable approximations (λ̂

±
ξ,h± , û

±
ξ,h±) of (λ̂

±
ξ , û

±
ξ ) can be obtained.

We now turn to the discretization of Steps 8.2.b and 8.2.d. In what follows, τ > 0 is fixed, and is
supposed large enough (see Estimate (8.13)). The discretization process is divided into two steps: a
semi-discretization with respect to the Floquet variable, and a discretization with respect to the spatial
variable.

Semi-discretization with respect to the Floquet variable In order to solve (8.15), the integrals
defined on K+ and K− can only be evaluated with a quadrature rule, since their integrands do not
have an explicit expression. To this end, consider a regular mesh of K± made of N±

ξ intervals of
equal size ∆ξ± and of N±

ξ + 1 equispaced points ξ±j ∈ K± for j ∈ J1, N±
ξ K, where N±

ξ > 0 and

∆ξ± := |K±|/N±
ξ . The DtN operator λ̂

±
ξ is computed for ξ = ξ±j , and the integrals in (8.15) are

evaluated using the trapezoidal rule (see Remark 8.3):

∫
K±

〈
λ̂
±
ξ [Fp±z φτ ] (·, ξ), [Fp±z ψ̃] (·, ξ)

〉
σ± dξ ≃ ∆ξ±

N±
ξ∑

j=0

〈
λ̂
±
ξ±j

[Fp±z φτ ] (·, ξ
±
j ), [Fp±z ψ̃] (·, ξ

±
j )
〉
σ± ,

so that one has to solve∣∣∣∣∣∣∣∣∣∣
Find φτ,∆ξ ∈ H̃1/2(στ ) such that for any ψ ∈ H̃1/2(στ ),

∑
±

∆ξ±
N±

ξ∑
j=0

〈
λ̂
±
ξ±j

[Fp±z φ̃τ,∆ξ] (·, ξ
±
j ), [Fp±z ψ̃] (·, ξ

±
j )
〉
σ± =

〈
g, ψ̃

〉
σ
,

(8.16)



194 Chapter V. Transmission between periodic half-spaces: Model configurations

with ∆ξ := (∆ξ+,∆ξ−). We expect this equation to be well-posed in H̃1/2(στ ) for ∆ξ± small enough.
The solution φτ,∆ξ of this equation can then be used to define

a. e. x = (x, z) ∈ Q±, u±τ,∆ξ(x+ np±z ez) :=
∆ξ±√
|K±|

N±
ξ∑

j=0

û±
ξ±j

(
(Fp±z φτ,∆ξ)(·, ξ

±
j )
)
(x) eiξ

±
j (z+np±z ),

(8.17)
as well as the function

a. e. x = (x, z) ∈ R2
±, uτ,∆ξ(x) = u±τ,∆ξ(x), (8.18)

which corresponds to an approximate solution of (P).

Remark 8.3. We have chosen the trapezoidal rule because its converges exponentially if the function to
be integrated is smooth [TW14], which is case for the integrands in the interface equation (8.15). In
fact, since φτ and ψ̃ are compactly supported in στ , Paley-Wiener type estimates [Kuc93, Theorem 2.2.2]
ensure the smoothness of ξ 7→ (Fp±z φτ (·, ξ), Fp±z ψ̃ (·, ξ)). In addition, it can be shown that ξ 7→ λ̂

±
ξ is

real analytic due to the quadratic dependence of the half-guide problem (8.6) with respect to ξ.

Spatial discretization Consider a mesh T (στ ) with mesh step h > 0 of the segment στ . Let Vh(στ )
denote the approximation space of H1(στ ) by Lagrange finite elements of order d. The space

Ṽh(στ ) :=
{
φ ∈ Vh(στ ) / φ = 0 on ∂στ

}
.

defines an internal approximation of H̃1/2(στ ). We would like to construct a fully discrete version of
(8.16) defined in Ṽh(στ ), where λ̂

±
ξ is replaced by its discrete approximation λ̂

±
ξ,h± ∈ L (Vh±(σ±)) for

ξ = ξ±j . However, Fp±z Ṽh(στ ) ⊊ Vh±(σ±) in general, so that Fp±z ψh has to be projected onto Vh±(σ±)
for any ψh ∈ Ṽh(στ ). This is the reason why we introduce the interpolation operator Πh± defined from
the space Fp±z Ṽh(στ ) to Vh±(σ±). Then, we can introduce the discrete problem∣∣∣∣∣∣∣∣∣∣

Find φτ,h ∈ Ṽh(στ ) such that for any ψ ∈ Ṽh(στ ),

∑
±

∆ξ±
N±

ξ∑
j=0

〈
λ̂
±
ξ±j ,h

± Πh± [Fp±z φ̃τ,h] (·, ξ
±
j ), Πh± [Fp±z ψ̃] (·, ξ

±
j )
〉
σ± =

〈
g, ψ̃

〉
σ
,

(8.19)

with h := (h, h+, h−,∆ξ+,∆ξ−). Note that (8.19) can be reformulated as a Nh × Nh linear system,
where Nh := dim Ṽh(στ ). Its solution can then be used to compute an approximate solution uτ,h of
(P) using (8.17, 8.18).

8.3 A qualitative validation

In what follows, the dual variable associated to Floquet-Bloch transform applied to (P±) is discretized
using ⌊64/p±z ⌋ points. Each half-guide problem resulting from the Floquet-Bloch transform is dis-
cretized using Lagrange finite elements of order 1 with 1/h± = 60. We then solve the discrete inter-
face equation (8.19) using Lagrange finite elements of order 1 with h = 0.025 and τ = 10. We choose
A = 1, and the coefficient ρ defined by (7.3) for (p+z , p

−
z ) = (1,

√
2) (see first image in Figure 23). The

jump data is the smooth cut-off function defined by (7.2), and ω = 20 + 0.25 i. The solution of (P)
computed via the alternative procedure in Section 8.2 is compared in Figure 23 to the solution ob-
tained with the lifting approach. The similarity between these two solutions validates the alternative
method.
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−4 −2 0 2 4

ρ

0.6 1 1.4

−4 −2 0 2 4

Lifting method

−1 0 1

−4 −2 0 2 4

Alternative method

−1 0 1

Figure 23: Real part of the approximate solution of (A ) computed using the alternative approach
presented in this section and the lifting approach.

A Proof of Proposition 5.5

We proove in this part the properties of the Floquet-Bloch transform stated in Proposition 5.5.

Proof. Point (a).— We first show that Fe1 is continuous from H1
Θ#(Ω#) to L2(−π, π;H1

Θ(Ω#2)) and
satisfies (5.16). To begin, let us note that Fe1V (·, ξ) ∈ C∞

0,#2(Ω#2) ⊂ H1
Θ#2(Ω#2) for ξ ∈ (−π, π)

and V ∈ C∞
0,#(Ω#), where C∞

0,#(Ω#) and C∞
0,#2(Ω#2) are defined by (4.11) and (4.32) respectively. In

addition, it is easy to show that (5.16) is satisfied for V ∈ C∞
0,#(Ω#). By combining these arguments

with the fact that Fe1 is an isometry from L2(Ω#) to L2(−π, π;L2(Ω#2)), it follows that it is continuous
from C∞

0,#(Ω#) (with the H1
Θ–norm) to L2(−π, π;H1

Θ#2(Ω#2)). The density of C∞
0,#(Ω#) in H1

Θ#(Ω#)

from Proposition 4.6 then leads to the conclusion.

It remains to show that Fe1 is an isomorphism. For isotropic Sobolev spaces, one classical way of
proving this property is to use the jump rule which involves traces on the faces z1 = 0 and z1 = 1.
Nevertheless, since we have not defined these traces for functions in H1

Θ#(Ω#) for simplicity, we shall
instead resort to the Green formula (4.35). Let V̂ ∈ L2(−π, π;H1

Θ#2(Ω#2)) and set V := F−1
e1 V̂ ∈

L2(Ω#). We begin by proving that V ∈ H1
Θ#(Ω#), or equivalently that VΘ := SΘV ∈ L2(0, 1;H1(R2)).

To this end, consider W Θ ∈ C∞
0 (R2 × (0, 1))2 and W := S−1

Θ W Θ. Then, derivation in the sense of
distributions and the fact that VΘ ∈ L2(0, 1;L2(R2)) lead to

∫ 1

0

〈
∇xVΘ(·, s), W Θ(·, s)

〉
[C∞

0 (R2)2]′,C∞
0 (R2)2

ds = −
∫ 1

0

∫
R2

VΘ(x, s) divxW Θ(x, s) dxds

= −θ1
∫
Ω#

V (x) divΘW (x) dx = −θ1
∫ π

−π

∫
Ω

#2

V̂ (x, ξ) (div + iξ te1)ΘFe1W (x, ξ) dxdξ

where we have used (4.13) and (5.14) for the last two equalities. But the fact that V̂ (·, ξ) ∈ H1
Θ#2(Ω#2)

and Fe1W (·, ξ) ∈ C∞
0,#2(Ω#2) allows to use Green’s formula (4.35) for almost any ξ ∈ (−π, π) to obtain

−θ1
∫ π

−π

∫
Ω

#2̂

V (x, ξ) (div + iξ te1)ΘFe1W (x, ξ) dxdξ (A.1)
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= θ1

∫ π

−π

∫
Ω

#2

tΘ (∇+ iξe1) V̂ (x, ξ) Fe1W (x, ξ) dxdξ

= θ1

∫
Ω#

DV (x) W (x) dx from (5.14), with DV := F−1
e1 [tΘ (∇+ iξe1) V̂ ]

=

∫ 1

0

∫
R2

SΘDV (x, s) W Θ(x, s) dxds

=

∫ 1

0

〈
SΘDV (·, s), W Θ(·, s)

〉
C∞
0 (R2)′,C∞

0 (R2)
ds (A.2)

Finally, in (A.2), choose W Θ : (x, s) 7→ φ(s) w(x) with φ ∈ C∞
0 (0, 1) and w ∈ C∞

0 (R2)2. Then the
density of C∞

0 (0, 1) in L2(0, 1) leads to

a. e. s ∈ (0, 1), ∇xVΘ(·, s) = SΘDV (·, s) in [C∞
0 (R2)2]′.

But SΘDV (·, s) ∈ L2(R2)2 thanks to the properties of Fe1 and SΘ . Therefore, ∇xVΘ(·, s) ∈ L2(R2)2,
and thus VΘ ∈ L2(0, 1;H1(R2)), or equivalently F−1

e1 V̂ ∈ H1
Θ#(Ω#). Moreover, by applying S−1

Θ on
both sides of the expression of ∇xVΘ, one obtains that tΘ∇V = DV almost everywhere in Ω#, which
shows that F−1

e1 is continuous from L2(−π, π;H1
Θ#2(Ω#2)) to H1

Θ#(Ω#).

Point (b).— The proof is very similar to the one of the point (a), and therefore is omitted.

Point (c).— For the sake of clarity in this part, we highlight the distinction between the volumic
Floquet-Bloch transform Fv

e1 for functions in Ω# and the surfacic Floquet-Bloch transform Fs
e1 for

functions on Σ#. In addition, let γ0,# (resp. γ0,#2) denote the trace operator on Σ# (resp. Σ#2). We
begin by proving that the Floquet transform commutes with the trace operator in the following sense:

∀ V ∈ H1
Θ#(Ω#), Fs

e1 (γ0,#V ) = γ0,#2 (Fv
e1V ). (A.3)

Note that (A.3) is straightforward for V ∈ C∞
0,#(Ω#). This relation then extends to V ∈ H1

Θ#(Ω#)

using the density of C∞
0,#(Ω#) in H1

Θ#(Ω#) (Proposition 4.6), the continuity of γ0,# and γ0,#2 (Propo-
sition 4.9), the continuity of Fv

e1 from H1
Θ#(Ω#) to L2(−π, π;H1

Θ#2(Ω#2)) (Point (a)), and finally the
continuity of Fs

e1 from L2(Σ#) to L2(−π, π;L2(Σ#2)).

Proving the point (c) consists in showing that the surfacic Floquet-Bloch transform Fs
e1 is an isomor-

phism from H
1/2
Θ#(Σ#) to L2(−π, π;H1/2

Θ#2(Σ#2)). But thanks to the surjectivity of the trace applications
γ0,# and γ0,#2 , there exist bounded operators R# : H

1/2
Θ#(Σ#) → H1

Θ#(Ω#) and R#2 : H
1/2
Θ#2(Σ#2) →

H1
Θ#2(Ω#2) such that γ0,# R# = I and γ0,#2 R#2 = I. Thus (A.3) leads to

Fs
e1 = γ0,#2 Fv

e1 R# and [Fs
e1 ]

−1 = γ0,# [Fv
e1 ]

−1R#2 .

Using Point (a) then allows to conclude. ■
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Introduction

The specific transmission settings studied in Chapter V could be lifted into 3–dimensional structures
that are globally periodic in the direction of the interface. However, these model cases represent a
tiny fraction of all possible transmission configurations between 2–dimensional periodic half-spaces.
In this chapter, we address the general setting represented in Figure 1. This configuration can once
again be lifted into a higher dimensional structure which is globally periodic along the interface,
allowing the use of the Floquet-Bloch transform and the Dirichlet-to-Neumann approach, detailed in
Chapter V, to solve the transmission problem we consider. However, we shall see that it is generally
not possible to find an augmented structure with less than 5 dimensions. In that regard, the lifting
approach, although correct in theory, appears to be difficult to use in practice, due to the dimension
of the problems solved numerically.

To overcome the practical limitation evoked above, we extend the alternative approach proposed in
Section V–8. More precisely, we construct DtN operators by solving half-space problems which can be
lifted into 3–dimensional problems. These auxiliary problems are used to reformulate the transmission
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problem as an interface equation, which we truncate using the presence of absorption. Numerical
results are provided to illustrate the method.

1 Model problem and assumptions on the medium

We are interested in the Helmholtz equation with an absorbing term Imω > 0: −divA∇u− ρω2 u = 0 in R2
+ ∪ R2

−,

JA∇u · exKσ = g on σ.
(P)

The boundedness and ellipticity assumptions on the tensor A ∈ L∞(R2;R2×2) and on the coefficient
ρ ∈ L∞(R2) are the same as in Chapter V (see V–(2.2)). For simplicity, we assume that

g ∈ L2(σ).

Under these conditions, (P) admits a unique solution in H1(R2). The difficulties related to the reso-
lution of (P) are explained in Section 2.1. Our purpose is to compute the solution of this problem in
the case where A and ρ are periodic functions in each half-space R2

±.

(a) Configuration studied in the chapter

ex

p+

ex

p−

x

z

(b) A configuration which seems more general than Figure 1a, but which is equivalent (see Proposition 1.1)

q+1

q+2

q−1

q−2

x

z

Figure 1: Juxtaposition of arbitrary periodic half-spaces

More precisely, we assume that A (resp. ρ) coincides on R2
± with a tensor A± ∈ C 0(R2;R2×2) (resp. a

coefficient ρ± ∈ C 0(R2)). In this chapter, we consider the generic case of (A±, ρ±) being Zex + Zp±–
periodic for some vector p± = (p±x , p

±
z ) ∈ R2 such that p±z ̸= 0:

∀ x ∈ R2,
A±(x+ ex) = A±(x) and A±(x+ p±) = A±(x),

ρ±(x+ ex) = ρ±(x) and ρ±(x+ p±) = ρ±(x).
(1.1)



1. Model problem and assumptions on the medium 199

This is illustrated in Figure 1a.

We have assumed for simplicity that that one of the periodicity vectors of (A±, ρ±) is fixed to ex.
Although this assumption could seem surprising, it can be made without any loss of generality, as the
next result shows.

Proposition 1.1

let v ∈ H1(R2) denote the solution of −divB(x)∇v(x)− ϱ(x)ω2 v(x) = 0 for x ∈ R2
+ ∪ R2

−,

JB∇v · exKσ = g,
(1.2)

with functions B and ϱ whose restrictions B± and ϱ±p to R2
± are Zq±1 + Zq±2 –periodic for some

vectors q±1 , q
±
2 ∈ R2 that are non-collinear as illustrated in Figure 1b. Then there exists a

diffeomorphism T : R2 7→ R2 such that the function u : x 7→ v(T−1(x)) satisfies (P) with a
tensor A and a coefficient ρ that satisfy (1.1).

Proof. We assume that q±1 = (q±1,x, q
±
1,z) satisfies q±1,x ̸= 0. This assumption can be made without any

loss of generality: since q±1 and q±2 are non-collinear, at least one of them is not collinear with ez. We
will introduce a change of variables thanks to the matrix T± which satisfies

T±q
±
1 = ex and T±ez = ez.

This matrix is well-defined if and only if q±1,x ̸= 0. Now consider the mapping T and its Jacobian matrix
JT defined by

∀ x = (x, z) ∈ R2, T(x) :=

{
T+x if x > 0

T−x if x < 0
and JT(x) =

{
T+ if x > 0

T− if x < 0.

The mapping T is a diffeomorphism, in particular because its Jacobian matrix JT is continuous at the
interface σ due to the equality T+ez = T−ez = ez. Therefore, the function u defined by

u(x) := v
(
T−1(x)

)
(1.3)

belongs to H1(R2). Furthermore, u satisfies the volume equation in Problem (P) with

∀ x ∈ R2, A(x) := JT(x) B
(
T−1(x)

) tJT(x) and ρ(x) := ϱ
(
T−1(x)

)
. (1.4)

In order to obtain the jump condition, note that for x ∈ R2 and x̃ = T−1(x),

A(x)∇u(x) · ex = [JT(x) B(T−1(x)) tJT(x)∇u(x)] · ex from (1.4)

= [JT(x) B(T−1(x)) ∇v(T−1(x))] · ex from (1.3) and the chain rule

= [B(T−1(x)) ∇v(T−1(x))] · [tJT(x) ex] = B(T−1(x)) ∇v(T−1(x)) · ex, (1.5)

where we used the fact that tJT(x) ex = ex Consequently, u satisfies the jump condition in (P) with
the same jump data g as v. Finally, one easily checks that A and ρ satisfy (1.1) with p± := T±q

±
2 . ■
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Remark 1.2. The periodicity of (A, ρ) with respect to the variable z of the interface depends on the four
periodicity parameters: p+x , p+z , p−x , and p−z . First of all, by noting that p+z ez = p+ − p+x ex, it appears
that if p+x is a rational number that admits the irreducible form k+/ℓ+ with (k+, ℓ+) ∈ Z × N∗, then

ℓ+p+z ez = ℓ+p+ − k+ex ∈ Zex + Zp+.

Consequently, (A+, ρ+) are τ–periodic in the ez–direction with τ := ℓ+ p+z . Otherwise, if p+x is irrational,
then (A+, ρ+) are not necessarily periodic in the direction of the interface. The same goes for (A−, ρ−),
whose periodicity in the ez–direction is guaranteed only if p−x is a rational number.

Now if p+x and p−x are both rational, then (A±, ρ±) are ℓ±p±z –periodic with respect to z, but similarly to
Configuration (A ) in Chapter V, there is no guarantee that the overall medium represented by (A, ρ) will
be periodic with respect to z. In fact, if the ratio p+z /p

−
z is irrational, then the periods of (A+, ρ+) and

(A−, ρ−) are non-commensurate, and therefore (A, ρ) are not periodic in the ez–direction. We refer to
Remarks 2.2 and 2.3 for further discussions.

2 The lifting approach and its limitations

The first method we investigate is the lifting approach, which consists in finding an augmented m–
dimensional medium (m > 2) which is periodic along the interface, and whose cut along a hyperplane
yields our 2–dimensional structure. More precisely, we shall see that

a. e. x ∈ R2, A(x) = A5D(Θ5D x) and ρ(x) = ρ5D(Θ5D x), (2.1a)

where A5D ∈ L∞(R5;R2×2) (resp. ρ5D ∈ L∞(R5)) coincides on R5
± with a tensor A±

5D ∈ C 0(R5;R2×2)

(resp. a coefficient ρ±5D ∈ C 0(R5)) which are Z5–periodic. In addition, the cut matrix Θ5D ∈ R5×2 we
exhibit is of the following form:

Θ5D =


1 0

0 θ+1
0 θ+2
0 θ−1
0 θ−2

 . (2.1b)

Let us introduce a few notations. For some reasons that will become apparent later, the generic 5–
dimensional space variable is denoted by x := (x, z+1 , z

+
2 , z

−
1 , z

−
2 ). Accordingly, the canonical basis

of R5 is (ex, e+1 , e
+
2 , e

−
1 , e

−
2 ), where ex := (1, 0, 0, 0, 0), e+1 := (0, 1, 0, 0, 0), e+2 := (0, 0, 1, 0, 0), e−1 :=

(0, 0, 0, 1, 0) and e−2 := (0, 0, 0, 0, 1). Finally, let

Σ5D := {0} × R4 (2.2)

denote the interface between R5
+ and R5

−.

In this section, we have chosen to be more formal to avoid the cumbersomeness of the functional
framework. Nonetheless, the ideas that we present could be made rigorous.

2.1 Identification of an augmented structure

The construction of (A5D, ρ5D) and Θ5D relies on the arguments developed in Sections 3.1.a and 3.1.b
for Configurations (A ) and (B) respectively.
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To begin, consider the functions (A+, ρ+) associated to the medium in R2
+. Thanks to the mapping T+

that satisfies T+ex = ex and T+p+ = ez, the tensor A+ can be written as

A+(x) =
◦
A+(x−(p+x /p

+
z ) z, z/p

±
z ), with

◦
A+(

◦
x,

◦
z) := A+(

◦
x ex+

◦
z p+) := A+(

◦
x+

◦
z p+x ,

◦
z p+z ). (2.3)

The periodicity properties (1.1) of A+ imply that
◦
A+ is 1–periodic with respect to its variables. Hence,

by fixing x, (2.3) reveals the quasiperiodic nature of z 7→ A+(x, z), with a Z3–periodic lift A+
p ∈

C 0(R3;R2×2) and a cut matrix Θ+ ∈ R3×2 given by:

A+(x) = A+
p (Θ

+x) with



A+
p (x, z1, z2) :=

◦
A+(x+ z2, z1)

Θ+ :=

1 0

0 1/p+z
0 −p+x /p+z

 .

(2.4)

For the sake of convenience, we will work in this section with a different (but equivalent) couple
(B+

p ,Υ) obtained by rescaling Ap with respect to z1 and z2:

A+(x) = B+
p (Υx) with



B+
p (x, z1, z2) := A+

p (x, z1/p
+
z , (p

+
x /p

+
z ) z2)

Υ :=

1 0

0 1

0 −1

 ,
(2.5)

so that the cut matrix Υ does not depend on the coefficients (A+, ρ+). On the other hand, B+
p is

1–periodic with respect to x, but τ+j –periodic with respect to zj for j ∈ {1, 2}, with

τ+1 := p+z and τ+2 := p+z /p
+
x ; (2.6)

contrary to A+
p which is 1–periodic in all directions.

The same arguments apply to the medium in R3
−, showing that A− is the cut along the hyperplane Υ R3

of a tensor B−
p ∈ C 0(R3;R2×2) which is 1–periodic with respect to x and τ−j –periodic with respect to zj

for any j ∈ {1, 2}, where τ−1 , τ
−
2 are defined similarly to (2.6). Consequently, A admits the expression

∀ x ∈ R2, A(x) = Bp(Υx) where ∀ (x, z1, z2) ∈ R3, Bp(x, z1, z2) :=

{
B+
p (x, z1, z2), if x > 0

B−
p (x, z1, z2), if x < 0.

For j ∈ {1, 2}, each B±
p is periodic with respect to zj , but the tensor Bp is not necessarily periodic

with respect to zj , since the periods of B+
p and B−

p with respect to zj may not be commensurate.
This is exactly the issue encountered with Configuration (A ) in Chapter V. Thus, similarly to Section
3.1.a, we “split” zj into two new variables z+j and z−j , where z±j is associated to the medium in R3

±.
Furthermore, for convenience, we also rescale the variables so that z±j corresponds to zj/τ

±
j . This

suggests to introduce

∀ x = (x, z+1 , z
+
2 , z

−
1 , z

−
2 ) ∈ R5,

 A+
5D(x) := B+

p (x, τ
+
1 z

+
1 , τ

+
2 z

+
2 ),

A−
5D(x) := B−

p (x, τ
−
1 z

−
1 , τ

−
2 z

−
2 ),

(2.7)
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so that A+
5D is 1–periodic with respect to (z+1 , z

+
2 ) and constant with respect to (z−1 , z

−
2 ). Similarly,

A−
5D is 1–periodic with respect to (z−1 , z

−
2 ) and constant with respect to (z+1 , z

+
2 ). Therefore, A±

5D is
Z5–periodic, and thus 1–periodic with respect to the variables (z+1 , z

+
2 , z

−
1 , z

−
2 ) along the interface Σ5D

given by (2.2).

We define ρ±5D similarly to the above, by replacing A by ρ. Finally, let (A5D, ρ5D) be given by

x ∈ R5, A5D(x) :=

{
A+
5D(x), if x ∈ R5

+

A−
5D(x), if x ∈ R5

−
and ρ5D(x) :=

{
ρ+5D(x), if x ∈ R5

+

ρ−5D(x), if x ∈ R5
−,

(2.8)

so that (2.1) holds with
∀ j ∈ J1, 2K, θ+j := τ+j and θ−j := τ−j . (2.9)

Finally, note that Θ5D R2
± ⊂ R5

±, and that Θ5D σ is included in the interface Σ5D.

2.2 Introduction of the augmented problem

Inspired by the quasiperiodic nature (2.1a) of (A, ρ), we seek the solution u of (P) under the form

∀ x ∈ R2, u(x) = U5D(Θ5D x), (2.10)

where U5D is the solution of a 5–dimensional augmented problem with periodic coefficients (A5D, ρ5D).
To construct the problem satisfied by U5D, we use a chain rule which links the partial derivatives of u
with those of U5D: by considering ∇ and div, the 5D gradient and divergence operators, one has for
any F ∈ C∞(R5), W ∈ C∞(R5)2, and for x ∈ R2 that[

∇F (Θ5D·)
]
(x) =

[ tΘ5D∇F
]
(Θ5D x) and

[
divW (Θ5D·)

]
(x) = div

(
Θ5DW

)
(Θ5D x). (2.11)

Inserting the ansatz (2.10) and the chain rule (2.11) into (P) then suggests to introduce −divΘ5D A5D
tΘ5D∇U5D − ρ5D ω

2 U5D = 0 in R5
+ ∪ R5

−,

J(Θ5D A5D
tΘ5D∇U5D) · exKΣ5D = G5D on Σ5D,

(2.12)

where for W : R5 → C, we define

JΘ5DW · exKΣ5D := (Θ5DW
− · ex)|Σ5D − (Θ5DW

+ · ex)|Σ5D ,

with W± := W |R5
±

, and where G5D : Σ
5D → C denotes an extension of g in the following sense

a. e. x = (x, z) ∈ σ, G5D(Θ5D x) = g(x),

by consistency with the jump condition in (P). There is an infinity of possible ways to construct G5D,
the easiest option being a data which is constant with respect to all variables except one, say z+1 :

a. e. x = (0, z+1 , z
+
2 , z

−
1 , z

−
2 ) ∈ Σ5D, G5D(x5D) := g(0, z+1 /θ

+
1 ).

More generally, it is sufficient to require that:

∀ v ∈ {e+2 , e−1 , e−2 }, ∀ x ∈ Σ5D, G5D(x + v) = G5D(x),
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so that, thanks to the 1–periodicity of A5D and ρ5D in the e+2 , e−1 , and e−2 –directions, one can expect the
following:

∀ v ∈ {e+2 , e−1 , e−2 }, ∀ x ∈ R5, U5D(x + v) = U5D(x). (2.13)

Now, consider the domains defined by

Ω5D
# := R × R × (0, 1)3,

Ω5D±
# := R± × R × (0, 1)3,

Σ5D
# := {0} × R × (0, 1)3.

Then in regard to the above, the restriction of U5D to the strip Ω5D
# can be characterized as the solution

of the transmission problem:

−divΘ5D A5D
tΘ5D∇U5D − ρ5D ω

2 U5D = 0 in Ω5D+
# ∪ Ω5D−

# ,

U5D|x·v=0 = U5D|x·v=1, ∀ v ∈ {e+2 , e−1 , e−2 },

(Θ5D A5D
tΘ5D∇U5D) · v|x·v=0 = (Θ5D A5D

tΘ5D∇U5D) · v|x·v=1, ∀ v ∈ {e+2 , e−1 , e−2 },

J(Θ5D A5D
tΘ5D∇U5D) · exKΣ5D

#
= G5D on Σ5D

# .

(2.14)

Remark 2.1. One can give a proper sense to the jump condition and the periodicity condition in (2.14)
thanks to anisotropic Sobolev spaces H1

Θ5D #
(Ω5D

# ), H−1/2
Θ5D #

(Σ5D
# ) and H1/2

Θ5D #
(Σ5D

# ) similar to those studied
in Chapter V.

2.3 Resolution of the augmented problem and limitations

Reduction to a family of waveguide problems In this section, we describe the resolution of (2.14).
Exploiting the periodicity of A5D and ρ5D with respect to z+1 , we apply a partial Floquet-Bloch transform
in the e+1 –direction. First of all, define

Ω5D
#2 := R × (0, 1)4,

Ω5D±
#2 := R± × (0, 1)4,

Σ5D
#2 := {0} × (0, 1)4.

The partial Floquet-Bloch transform of U5D is given for x ∈ Ω5D
#2 and ξ ∈ (−π, π) by:

Û5D,ξ(x) := Fe+1
U5D(x, ξ) :=

1√
2π

∑
n∈Z

U5D(x + ne+1 ) e
−iξ (z+1 +n).
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Then using the properties of the partial Floquet-Bloch transform Fe+1
and the periodicity of A5D and

ρ5D with respect to z+1 , one obtains for any ξ ∈ (−π, π) that

−(div + iξ
te+1 )Θ5D A5D

tΘ5D (∇+ iξe+1 ) Û5D,ξ − ρ5D ω
2 Û5D,ξ = 0 in Ω5D+

#2 ∪ Ω5D−
#2 ,

Û5D,ξ|z±j =0 = Û5D,ξ|z±j =1, ∀ j ∈ J1, 2K,

(Θ5D A5D
tΘ5D (∇+ iξe+1 ) Û5D,ξ) · e±j |z±j =0 = (Θ5D A5D

tΘ5D (∇+ iξe+1 ) Û5D,ξ) · e±j |z±j =1, ∀ j ∈ J1, 2K,

J(Θ5D A5D
tΘ5D (∇+ iξe+1 ) Û5D,ξ) · exKΣ5D

#2
= Ĝ5D,ξ on Σ5D

#2 .

(2.15)
where Ĝ5D,ξ := Fe+1

G5D(·, ξ). The solution U5D(G5D) of (2.14) can then be constructed from Û5D,ξ(Ĝ5D,ξ)

using the inverse Floquet-Bloch transform:

a. e. x ∈ Ω5D
#2 , ∀ n ∈ Z, U5D(G5D)(x + n e+1 ) =

1√
2π

∫ π

−π
Û5D,ξ(Ĝ5D,ξ)(x) eiξ (z

+
1 +n) dξ. (2.16)

Therefore, the computation of U5D (and thus of the 2–dimensional u) reduces to the resolution of the
waveguide problem (2.15) parameterized by the Floquet variable ξ.

Discretization issues related to the resolution of the waveguide problem The method for solving
(2.15) is the DtN approach presented in Section 5.3, which we do not detail here. We simply recall
the resolution algorithm for ξ ∈ (−π, π) fixed:

a. Solve local problems defined in C5D+
#2 := (0, 1)5 and deduce local DtN operators T 00+

5D,ξ , T 01+
5D,ξ ,

T 10+
5D,ξ and T 11+

5D,ξ .

b. Compute the propagation operator P+
5D,ξ by solving the constrained Riccati equation

T 10+
5D,ξ [P+

5D,ξ]
2 + (T 00+

5D,ξ + T 11+
5D,ξ ) P+

5D,ξ + T 01+
5D,ξ = 0 and ρ(P+

5D,ξ) < 1. (2.17)

c. Compute the DtN operator Λ̂+
5D,ξ = T 00+

5D,ξ + T 10+
5D,ξ P+

5D,ξ associated to the half-guide Ω5D+
#2 .

d. Adapt Steps 2.0.a – 2.0.c for the half-guide Ω5D−
#2 in order to compute a DtN operator Λ̂−

5D,ξ thanks
to cell problems defined in C5D−

#2 := (−1, 0)× (0, 1)4.

e. Seek the trace Φ5D,ξ of Û5D,ξ(Ĝ5D,ξ) at the interface Σ5D
#2 as the solution of the equation

(Λ̂+
5D,ξ + Λ̂−

5D,ξ) Φ5D,ξ = Ĝ5D,ξ on Σ5D
#2 . (2.18)

f. Construct the waveguide solution Û5D,ξ(Ĝ5D,ξ) using the local cell problems and the propagation
operators P±

5D,ξ.

For the discretization of the algorithm above, we introduce a mesh of C5D±
#2 with step h > 0. Let Nh

denote the number of nodes per edge of this mesh. Assuming that Lagrange elements of order 1 are
used, the operators T ℓj±

5D,ξ , P±
5D,ξ, and Λ̂±

5D,ξ are represented as N#2–sized matrices, where N#2 ∼ N4
h is

the number of degrees of freedom (dof) on the 4–dimensional interface Σ5D
#2 .

In order to illustrate the high computational cost of the lifting approach, let us perform a naive com-
plexity analysis for the resolution of the Riccati equation (2.17) and the interface equation (2.18).
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Assuming that for the Riccati equation, we use the spectral method described in Section 2.3.1, one
has to solve a quadratic eigenvalue problem withN#2–sized matrices (the discrete versions of the T ℓj±

5D,ξ
operators). Given that these matrices are dense, the cost is O(N3

#2). The same complexity holds for
the interface equation (2.18), leading to O(N12

h ) operations as well.

On the other hand, it can be shown that the approximation error of the waveguide solution Û5D,ξ(Ĝ5D,ξ)

is O(h−1) in H1
Θ5D

–norm. Since Nh ∼ ⌊h−1⌋, this means that for instance, an error in H1
Θ5D

–norm of
order 10−2 requires O(1024) operations to solve the Riccati equation (2.17) and the interface equation
(2.18). This high cost is obviously due to the dimension of the problems solved in practice, and
motivates the alternative method presented in the next section.

Remark 2.2. In the complexity analysis, we have chosen not to include the local cell problems in the
complexity analysis, since their resolution can be improved in many ways. In fact, one interesting feature
shown in Section 2.1 is that, in the cell C5D+

#2 for instance, the coefficients (A+
5D, ρ

+
5D) are constant with

respect to (z−1 , z
−
2 ). This property can be exploited using separation of variables to solve a family of

3–dimensional problems. The same holds for (A−
5D, ρ

−
5D) which are constant with respect to (z+1 , z

+
2 ).

Furthermore, note that the 3D problems obtained using the invariance properties of (A±
5D, ρ

±
5D) can in

turn be solved using the quasi 2-dimensional approach presented in Section 6.2. This approach allows to
solve a family of 2–dimensional problems. Therefore, it seems that the limitation of this method would
not come from the resolution of the cell problems.

3 An alternative approach: reformulation as an interface equation

Rather than lifting the overall transmission medium represented by (A, ρ) into a 5–dimensional struc-
ture, the resolution domain of (P) can be decomposed into the half-spaces R2

+ and R2
−. To each

half-space is associated the problem: Find u±(φ) ∈ H1(R2
±) such that −divA±∇u±(φ)− ρ± ω2 u±(φ) = 0 in R2

±,

u±(φ) = φ on σ := ∂R2
±.

(P±)

Due to the boundedness and the ellipticity of A± and ρ± (cf. (2.2)), and because of absorption Imω >

0, (P±) admits a unique solution u±(φ) ∈ H1(R2
±). In addition, let λ± ∈ L (H1/2(σ), H−1/2(σ))

denote the DtN operator defined for any φ,ψ ∈ H1/2(σ) by

⟨λ± φ, ψ⟩σ :=

∫
R2
±

[
A±∇u±(φ) · ∇u±(ψ)− ρ± ω2 u±(φ)u±(ψ)

]
. (3.1)

From the presence of absorption, it follows that λ± and λ++λ− are coercive, and thus invertible. The
solution u of the transmission problem (P) can then be expressed as

a. e. x = (x, z) ∈ R2, u(x) =

 u+(φ)(x) if x > 0

u−(φ)(x) if x < 0,
(3.2)

where φ := u|σ is obtained by expressing the continuity of the Neumann trace of u at the interface σ:

(λ+ + λ−) φ = g in H−1/2(σ). (3.3)

As a consequence, u can be deduced from the resolution of (P±) and of the interface equation (3.3).
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The interest of considering the half-space problem (P±) rather than (P) lies in the fact that each pair
(A±, ρ±) admits a 3–dimensional periodic extension (unlike (A, ρ) whose periodic extension is in gen-
eral 5–dimensional). More precisely, (2.4) reveals the existence of Z3–periodic functions (A±

p , ρ
±) ∈

C 0(R3)2 and of a cut matrix Θ± ∈ R3×2 such that

A±(x) = A±
p (Θ

±x) and ρ±(x) = ρ±p (Θ
±x), with Θ± :=

1 0

0 θ±1
0 θ±2

 . (3.4)

As a consequence, each (P±) can be lifted into a 3–dimensional problem to which adapted tools such
as the Floquet-Bloch transform can be applied. The method is described in the next sections.

In the following, x = (x, z1, z2) is the generic 3–dimensional variable, and (ex, e1, e2) is the canonical
basis of R3, with ex := (1, 0, 0), e1 := (0, 1, 0), and e2 := (0, 0, 1).

3.1 Lifting the half-space problem and the interface equation

The lifting approach for (P±) is quite similar to the content of Chapter V, and consequently will not
be detailed. The idea is to seek u as the trace on the half-plane Θ± R2

± of a function that satisfies a
3–dimensional problem with coefficients (A±

p , ρ
±
p ). This problem involves the domains

Ω±
# := R± × R × (0, 1)

Σ# := {0} × R × (0, 1),

as well as the anisotropic Sobolev spaces studied in Section 4. Let us simply recall that H1
Θ±#

(Ω±
#)

denotes the space of functions inH1
Θ±(Ω

±
#) that are 1–periodic with respect to z2, thatH1/2

Θ±#
(Σ#) is the

image of H1
Θ±#

(Ω±
#) by the trace map on Σ#, and that ⟨·, ·⟩Σ#

is the dual product between H1/2
Θ±#

(Σ#)

and its topological dual, H−1/2
Θ±#

(Σ#). Note thatH1
Θ±#

(Ω±
#) andHj/2

Θ±#
(Σ#) are the respective preimages

of L2(0, 1;H1(R2
±)) and L2(0, 1;Hj/2(σ)), j ∈ {−1, 1}, by the shear map given by

SΘ±V (x, s) := (E2
#V )(Θ± x+ s e2) a. e. (x, s) ∈ R2 × R,

S−1
Θ±V (x) := (E2

#V )(x, z1/θ
±
1 , z2 − z1 θ

±
2 /θ

±
1 ) a. e. x := (x, z1, z2) ∈ R3,

(3.5)

where E2
#V denotes the periodic extension of V with respect to z2.

In accordance with the quasiperiodic expression (3.4) of (A±, ρ±) and with the problem (P±) satisfied
by u±, it is natural to introduce for Φ ∈ H

1/2
Θ±#

(Σ#) the half-strip problem∣∣∣∣∣∣∣∣∣
Find U± ∈ H1

Θ±#
(Ω±

#) such that U±|Σ#
= Φ, and ∀ V ∈ H1

Θ±#
(Ω±

#) with V |Σ#
= 0,

∫
Ω±

#

[
(A±
p
t
Θ±∇U±) · (tΘ±∇V )− ρ±p ω

2 U± V
]
= 0,

(3.6)

which is well-posed due to the presence of absorption Imω > 0. Associated to this problem is the DtN
operator defined for any Φ,Ψ ∈ H

1/2
Θ±#

(Σ#) as

⟨Λ±Φ,Ψ⟩Σ#
:=

∫
Ω±

#

[
(A±
p
t
Θ±∇U±(Φ)) · (tΘ±∇U±(Ψ))− ρ±p ω

2 U±(Φ)U±(Ψ)
]
. (3.7)
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The method we propose relies on the fibered structure of Λ± which shall now be described. To this
end, it is useful to consider for any s ∈ R and φ ∈ H1/2(σ) the problem: Find u±s (φ) ∈ H1(R2

±) such
that  −divA±

s ∇u±s (φ)− ρ±s ω
2 u±s (φ) = 0 in R2

±,

u±s (φ) = φ on σ,
(3.8)

where A±
s and ρ±s are respectively defined by:

∀ s ∈ R, A±
s (x) := A±

p (Θ
± x+ s e2) and ρ±s (x) := ρ±p (Θ

± x+ s e2), ∀ x ∈ R2.

Furthermore, let λ±s be the DtN operator defined for s ∈ R and for any φ,ψ ∈ H1/2(σ) by

⟨λ±s φ, ψ⟩σ :=

∫
R2
±

[
A±
s ∇u±s (φ) · ∇u±s (ψ)− ρ±s ω

2 u±s (φ)u
±
s (ψ)

]
.

The maps s 7→ A±
s and s 7→ ρ±s are 1–periodic, continuous from R to L∞(R2), and uniformly bounded,

due to the continuity of A± and ρ±. Therefore, it can be shown that s 7→ u±s ∈ L (H1/2(σ), H1(R2
±))

and s 7→ λ±s ∈ L (H1/2(σ), H−1/2(σ)) are continuous and 1–periodic, by analogy with Proposition 5.3.
It is also worth noting that u±s = u± and λ±s = λ± for s = 0.

Similarly to the second part of Proposition 5.2, one has the expression:

∀ Φ ∈ H
1/2
Θ±#(Σ#), a. e. s ∈ R, [SΘ±U±(Φ)](·, s) = u±s

(
SΘ±Φ(·, s)

)
, (3.9)

which describes U± as a “concatenation” of the solutions u±s of (3.8). In particular, if Φ ∈ H
1/2
Θ±#(Σ#)

is such that s 7→ SΘ±Φ(·, s) is continuous at 0, then the solution u± of (P±) is given by

u±(SΘ±Φ(·, 0)) = [SΘ±U±(Φ)](·, 0). (3.10)

More important for the resolution of the interface equation (3.3), is the link between Λ± and λ±. The
duality property (4.27) of SΘ± implies that for φ• : s 7→ φs and ψ• : s 7→ ψs in L2(0, 1;H1/2(σ)),∫ 1

0

〈
λ±s φs, ψs

〉
σ
ds = θ±1

〈
Λ±S−1

Θ±φ•, S−1
Θ±ψ•

〉
Σ#
. (3.11)

Since we use a weak formulation to define Λ± and λ±, it is not obvious to retrieve λ± single-handedly
from Λ± as it was done in (3.9). Therefore, instead of solving the interface equation (3.3) individually,
we shall instead solve the family of equations (λ+s + λ−s )φs = gs parameterized by s ∈ [0, 1), where
g• : s 7→ gs is a continuous and 1–periodic map with respect to s, and such that gs = g for s = 0. This
is equivalent to the variational formulation∣∣∣∣∣∣∣∣

Find φ• : s 7→ φs ∈ L2(0, 1;H1/2(σ)) such that for any ψ• : s 7→ ψs ∈ L2(0, 1;H1/2(σ)),∫ 1

0

〈
(λ+s + λ−s )φs, ψs

〉
σ
ds =

∫ 1

0

〈
gs, ψs

〉
σ
ds,

(3.12)
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which can be interpreted as an augmented version of (3.3), since

φ = φs for s = 0.

The idea of solving (3.12) instead of (3.3), although surprising at first sight, does not induce any
additional computational cost over the lifting approach. In fact, using (3.11), Equation (3.12) can be
reformulated in terms of Λ±:∣∣∣∣∣∣∣∣

Find φ• : s 7→ φs ∈ L2(0, 1;H1/2(σ)) such that for any ψ• : s 7→ ψs ∈ L2(0, 1;H1/2(σ)),∑
±
θ±1
〈
Λ±S−1

Θ±φ•, S−1
Θ±ψ•

〉
Σ#

=

∫ 1

0

〈
gs, ψs

〉
σ
ds.

(3.13)

Moreover, using the periodicity of (A±
p , ρ

±
p ), we shall apply a Floquet-Bloch transform in the next

section to provide an expression of Λ± involving bounded domains.

3.2 Characterization of the DtN operators using the Floquet-Bloch transform

We cannot solve (3.6) or compute the DtN operator Λ± directly, since these objects are defined on the
domains Ω±

# and Σ# which are infinite. Instead, we exploit the periodicity of (A±
p , ρ

±
p ) with respect to

z1 by applying a partial Floquet-Bloch transform. Consider the domains

Ω±
#2 := R± × (0, 1)× (0, 1),

Σ±
#2 := {0} × (0, 1)× (0, 1).

We recall that H1
Θ±#2(Ω

±
#2) denotes the space of functions in H1

Θ±(Ω#2) which are 1–periodic with

respect to z1 and z2, that H1/2
Θ±#2(Σ#2) is the image of H1

Θ±#2(Ω
±
#2) by the trace map on Σ#2 , and that

⟨·, ·⟩Σ
#2 is the dual product between H1/2

Θ±#2(Σ#2) and its topological dual, H−1/2
Θ±#2(Σ#2).

By applying the partial Floquet-Bloch transform Fe1 with respect to z1 defined in Section 5.2.b and by
using its properties (see Proposition 5.5 and Corollary 5.6), one obtains for any ξ ∈ (−π, π) that the
Floquet-Bloch transform of U±(Φ) satisfies the half-guide problem∣∣∣∣∣∣∣∣∣

Find Û±
ξ ∈ H1

Θ±#2(Ω
±
#2) such that Û±

ξ |Σ
#2 = Φ̂ξ and ∀ V ∈ H1

Θ±#2(Ω
±
#2) with V |Σ

#2= 0,

∫
Ω±

#2

[
(A±
p
t
Θ± (∇+ iξe1) Û±

ξ ) · (tΘ± (∇+ iξe1)V )− ρ±p ω
2 Û±

ξ V
]
= 0,

(3.14)

where Φ̂ξ := Fe1Φ(·, ξ) ∈ H
1/2
Θ±#2(Σ#2). The half-strip solution U±(Φ) can then be deduced from

Û±
ξ (Φ̂ξ) using the inverse Floquet-Bloch transform:

a. e. x = (x, z1, z2) ∈ Ω#2 , ∀ n ∈ Z, U±(Φ) =
1√
2π

∫ π

−π
Û±
ξ (Φ̂ξ) (x) ei ξ (z1+n) dξ. (3.15)

Finally, consider the half-guide DtN operator defined for any Φ,Ψ ∈ H
1/2
Θ±#2(Σ#2) as

⟨Λ̂±
ξ Φ,Ψ⟩Σ#

:=

∫
Ω±

#2

[
(A±
p
t
Θ± (∇+ iξe1) Û±

ξ (Φ)) · (tΘ± (∇+ iξe1) Û±
ξ (Ψ))− ρ±p ω

2 Û±
ξ (Φ) Û±

ξ (Ψ)
]
.
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Then, by duality (5.19), we have the link:

∀ Φ,Ψ ∈ H
1/2
Θ±#

(Σ#), ⟨Λ±Φ, Ψ⟩Σ#
=

1√
2π

∫ π

−π

〈
Λ̂±
ξ [Fe1Φ](·, ξ), [Fe1Ψ](·, ξ)

〉
Σ

#2
, (3.16)

so that the interface equation (3.13) becomes:∣∣∣∣∣∣∣∣
Find φ• : s 7→ φs ∈ L2(0, 1;H1/2(σ)) such that for any ψ• : s 7→ ψs ∈ L2(0, 1;H1/2(σ)),∑

±
θ±1

∫ π

−π

〈
Λ̂±
ξ [Fe1S−1

Θ±φ•](·, ξ), [Fe1S−1
Θ±ψ•](·, ξ)

〉
Σ

#2
dξ =

∫ 1

0

〈
gs, ψs

〉
σ
ds.

(3.17)

Given ξ ∈ (−π, π), the solution of the half-guide problem (3.14) and the DtN operator Λ̂±
ξ can be

computed using the DtN approach presented in Section 5.3, which exploits the periodicity of (A±
p , ρ

±
p )

in the ex–direction. An important point is that in practice, computations are reduced to the resolution
of local cell problems defined in C±

#2 := (0,±1)×(0, 1)2 and of a Riccati equation involving the interface
Σ#2 which is bounded. The resolution algorithm is detailed in Section 6.

3.3 Truncation of the interface equation

Even though the DtN operators in (3.17) are defined on Σ#2 which is bounded, the solution φ•, the
test function ψ•, and the dual product on the right-hand-side are all defined on σ := {0} × R which is
unbounded. This is the reason why we truncate (3.17) on the domain

στ := {0} × (−τ/2, τ/2),

for some τ > 0. Considering the subspace H̃1/2(στ ) of H1/2(σ) of functions that vanish on σ \ στ (see
V–(8.10)), we introduce the truncated version of (3.17):∣∣∣∣∣∣∣∣∣

Find φτ• : s 7→ φs ∈ L2(0, 1; H̃1/2(στ )) such that for any ψ• : s 7→ ψs ∈ L2(0, 1; H̃1/2(στ )),

∑
±
θ±1

∫ π

−π

〈
Λ̂±
ξ [Fe1S−1

Θ±φ
τ
• ](·, ξ), [Fe1S−1

Θ±ψ•](·, ξ)
〉
Σ

#2
dξ =

∫ 1

0

〈
gs, ψs

〉
σ
ds.

(3.18)

Formally speaking, if ψs ∈ H̃1/2(στ ), then the dual product on the right-hand side can be intrerpreted
as a dual product on στ . By analogy with Proposition 8.2, if Imω > 0 and if gs is compactly supported
for any s ∈ R, then one has the existence of constants c, α > 0 such that

∀ τ > 0,

∫ 1

0
∥φs − φ̃τs∥2H1/2(σ)

ds ≤ c e−α Imω τ

∫ 1

0
∥gs∥2H−1/2(σ)

ds,

where φ̃τs is the extension of φτs by zero. In regards to the above estimate, φτ• can be viewed as suitable
approximation of φ• on στ if τ is large enough.

3.4 Resolution algorithm and discretization issues

The resolution steps for (P) are given as follows:

a. For any ξ ∈ (−π, π), compute the DtN operator Λ̂±
ξ using the solutions of local cell problems and

a propagation operator, as explained in Chapter V, Section 5.3;
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b. find the solution φ• ∈ L2(0, 1;H1/2(σ)) of the interface equation (3.17) and deduce

φ := φ0, Φ± := S−1
Θ±φ•, and Φ̂±

ξ := [Fe1Φ
±](·, ξ) a. e. ξ ∈ (−π, π);

c. for ξ ∈ (−π, π), construct the half-guide solution Û±
ξ (Φ±

ξ ) using the local cell solutions and the
propagation operator already computed for Step a.

d. using the inverse Floquet-Bloch transform with (3.15), deduce the solution U±(Φ±) of the half-
strip problem (3.6);

e. compute the solution u±(φ) of the halfspace problem using (3.10): u±(φ) = [SΘ±U±(Φ±)](·, 0);
f. deduce the solution u of (P) from the concatenation (3.2) of u+(φ) and u−(φ).

Since this algorithm holds at a continuous level, the rest of the section is dedicated to its discretization,
with an emphasis on Steps a, b, c, and d.

The discretization of Steps a and c has been already presented in Section 6.1, and thus will not be
detailed in this part. Let us simply recall that the discretization of these steps involves a mesh Th±

of the cell C±
#2 := (0,±1) × (0, 1) × (0, 1), with mesh step h± > 0. The mesh Th± is assumed to be

periodic, in the sense that one can identify the mesh nodes on x = 0 with those on x = ±1 using the
trivial transformation x 7→ ± ± ex − x. We use Lagrange finite elements of order d > 0 to construct

Vh±(Σ±
#2), an internal approximation of H1/2

Θ±#2(Σ#2). (3.19)

Given ξ ∈ (−π, π) and Ψ ∈ H
1/2
Θ±#2(Σ#2), we will assume using Section 6.1 that one one can compute

suitable approximations Λ̂±
ξ,h± ∈ L (Vh±(Σ±

#2)) and U±
ξ,h±(Ψh±) of Λ̂±

ξ and U±
ξ (Ψ) respectively, where

Ψh± denotes the projection of Ψ onto Vh±(Σ±
#2).

We now focus on Step b. In practice for this step, we solve the truncated interface equation (3.18) for
τ large enough. The discretization process is divided into two steps: a semi-discretization with respect
to the Floquet variable, and a discretization with respect to the space variable.

Semi-discretization with respect to the Floquet variable The resolution of Equation (3.18) re-
quires to compute the integral with respect to ξ. Since ξ 7→

〈
Λ̂±
ξ [Fe1S−1

Θ±φ
τ
• ](·, ξ), [Fe1S−1

Θ±ψ•](·, ξ)
〉
Σ

#2

does not have an explicit expression in general, this integrand can only be computed for a finite num-
ber of values of ξ. Therefore, the integral with respect to ξ which appears in (3.18) can only be
evaluated using a quadrature rule.

We introduce a regular mesh of (−π, π) made of Nξ intervals of equal size ∆ξ and of Nξ+1 equispaced
points −π = ξ0 < ξ1 < · · · < ξNξ

= π with Nξ > 0 and ∆ξ := 1/Nξ. The DtN operator Λ̂±
ξ is computed

using Step a for ξ = ξj , j ∈ J0, NξK, and the integral in (3.18) is evaluated using the trapezoidal rule
(see Remark 3.1):∫ π

−π

〈
Λ̂±
ξ [Fe1S−1

Θ±φ
τ
• ](·, ξ), [Fe1S−1

Θ±ψ•](·, ξ)
〉
Σ

#2
dξ

≃ ∆ξ

Nξ∑
j=0

〈
Λ̂±
ξj
[Fe1S−1

Θ±φ
τ
• ](·, ξj), [Fe1S−1

Θ±ψ•](·, ξj)
〉
Σ

#2
,
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so that one has to solve∣∣∣∣∣∣∣∣∣∣
Find φτ,∆ξ• : s 7→ φs ∈ L2(0, 1; H̃1/2(στ )) such that for any ψ• : s 7→ ψs ∈ L2(0, 1; H̃1/2(στ )),

∑
±
θ±1 ∆ξ

Nξ∑
j=0

〈
Λ̂±
ξj
[Fe1S−1

Θ±φ
τ,∆ξ
• ](·, ξj), [Fe1S−1

Θ±ψ•](·, ξj)
〉
Σ

#2
=

∫ 1

0

〈
gs, ψs

〉
σ
ds.

(3.20)
We expect this equation to be well-posed in L2(0, 1; H̃1/2(στ )) for ∆ξ small enough.

Remark 3.1. The choice of the trapezoidal rule is formally motivated by the fact that this quadrature rule
converges exponentially for real analytic integrands [TW14]. For any ψ• ∈ L2(0, 1; H̃1/2(στ )), given that
ψs is compactly supported in στ , it can be seen from the expression (3.5) of S−1

Θ± that S−1
Θ±ψ• is compactly

supported as well in z1. Therefore, using Paley-Wiener type estimates [Kuc93, Theorem 2.2.2], it follows
that ξ 7→ [Fe1S−1

Θ±ψ•](·, ξ) is real analytic. In addition, using the quadratic dependence of (3.14) with

respect to ξ, it can be shown that ξ 7→ Λ̂±
ξ ∈ L (H

1/2
Θ±#2(Σ#2), H

−1/2
Θ±#2(Σ#2)) is also real analytic, so that

the integrand in (3.18) is smooth with respect to ξ.

Space discretization We now describe the discretization with respect to (x, s) ∈ στ ×(0, 1). Starting
from a mesh Thx(στ ) of στ with mesh step hx > 0, we consider the classical H1–conforming Lagrange
finite element space of order d > 0, which is denoted by Vhx(στ ). Then, an internal approximation
of H̃1/2(στ ) is provided by the space Ṽhx(στ ) := {φ ∈ Vhx(στ ) / φ = 0 on ∂στ} with basis functions
ϕℓ, ℓ ∈ J1, NxK, where Nx := dim Ṽhx(στ ).

In addition, consider a mesh Ths(0, 1) of (0, 1) with mesh step hs > 0, and let Vhs(0, 1) be the approx-
imation space of L2(0, 1), with basis functions wj , j ∈ J1, NsK, where Ns := dimVhs(0, 1). An internal
approximation of L2(0, 1; H̃1/2(στ )) is then given by

Vh := Span
{
(x, s) 7→ wj(s)ϕℓ(x), (j, ℓ) ∈ J1, NsK × J1, NxK

}
⊂ C 0(στ × (0, 1)), h := (hx, hs)

Our goal is to construct a fully discrete version of (3.20) set in Vh, where the DtN operator Λ̂±
ξ is

replaced by its approximation Λ̂±
ξ,h± ∈ L (Vh±(Σ±

#2)) obtained from the discretization of Step a. To
this end, we approximate [Fe1S−1

Θ±φ•](·, ξ) with its interpolation onto the discrete space Vh±(Σ±
#2)

introduced in (3.19), namely:

[Fe1S−1
Θ±φ•](·, ξ) ≃ Πh± [Fe1S−1

Θ±φ•](·, ξ) ∈ Vh±(Σ±
#2), ∀ φ• ∈ Vh, (3.21)

where Πh± denotes the interpolation operator defined from C 0(στ ) to Vh±(Σ±
#2). This allows to intro-

duce the solution φτ,h• ∈ Vh which satisfies for any ψ• ∈ Vh

∑
±
θ±1 ∆ξ

Nξ∑
j=0

〈
Λ̂±
ξj
Πh± [Fe1S−1

Θ±φ
τ,h
• ](·, ξj), Πh± [Fe1S−1

Θ±ψ•](·, ξj)
〉
Σ

#2
=

∫ 1

0

〈
gs, ψs

〉
σ
ds, (3.22)

where h := (h, h+, h−,∆ξ). This equation can be written as a Nh ×Nh system with Nh := dimVh.

Remark 3.2. The interpolation error in (3.21) is linked to the smoothness of Φ̂±
ξ = [Fe1S−1

Θ±φ•](·, ξ). For

some φ• ∈ Vh, even though Φ̂±
ξ is continuous, it is only piecewise smooth. In other words, Φ̂±

ξ admits
on Σ±

#2 singularity points, namely points where its derivatives are not well-defined. The location and the
number of such points depend on the mesh Th(Στ ) of Στ .
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We expect the interpolation error to be negligible with respect to the overall discretization if the singularity
points of Φ̂±

ξ coincide with the degrees of freedom on Σ±
#2 , or equivalently, if h± is a multiple of hx. Since

this is not the case in general, we shall impose that the steps h± are smaller than hx and hs, to ensure
that (3.21) does not deteriorate the global discretization of the method.

4 Numerical results

In what follows, the approach developed in Section 3 is applied to different cases, with the purpose to
illustrate its efficiency. For simplicity, simulations are carried out using a tensor A = I2. The jump data
g is a cut-off function, and g• : s 7→ gs is constant with respect to s: ∀ z ∈ R, g(0, z) := 100ϕ(2z), with ϕ(z) := exp

(
1− 1/(1− z2)

)
1[−1,1](z),

∀ s ∈ [0, 1], gs := g

(4.1)

For the numerical results, we use order 1 Lagrange finite elements.

4.1 Validation for the model configurations of Chapter V

In this section, we solve (P) in the configurations (A ) and (B) studied in Chapter V. The solution,
computed using the approach described in this chapter, is compared to the solution obtained by lifting
directly (P) into a 3D problem, as done in Chapter V.

Using the cut-off function ϕ ∈ C∞
0 (R) defined in (4.1), we start from the Z2–periodic functions defined

in one periodicity cell by

∀ ◦
x = (

◦
x,

◦
z) ∈ (0, 1)2,

◦
ρ−( ◦

x) := 0.5 + ϕ(4
◦
x)ϕ(4

◦
z) and ◦

ρ+(
◦
x) := 0.5 + ϕ(2.5| ◦x|).

Then, for Configuration (A ), we use

∀ x = (x, z) ∈ R2, ρ±(x) := ◦
ρ±(x, z/p±z ), (4.2)

which is p±z –periodic with respect to z. For Configuration (B), we set

∀ x = (x, z) ∈ R2, ρ−(x) = 1 and ρ+(x) :=
◦
ρ(x− (p+x /p

+
z )z, z/p

+
z ), (4.3)

so that ρ+ is Zex + Zp+–periodic with p+ = (p+x , p
+
z ). These coefficients are shown in Figure 2 (left

and middle).

Figure 3 shows the solutions obtained using Chapter V and the method presented in this chapter for
Configuration (A ) with p−z = 1 and p+z =

√
2 (first row), and for Configuration (B) with p− = ez and

p+ = (cosα, sinα), α = 3π/5 (second row). The similarity of both solutions validates the method in
each configuration.

4.2 Generic configuration

Now that the method has been validated, we perform one last experiment to show the behaviour of
the solution of (P) with respect to the complex frequency. From the Z2–periodic coefficients defined
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Figure 2: Left and middle: The coefficient ρ used in Section 4.1 for Configurations (A ) (left) and (B)
(middle). Right: Coefficient ρ used in Section 4.2.
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Figure 3: Real part of the solution of (P) obtained for Configuration (A ) and (B) using the methods
developed in Chapter V and VI.
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in (4.2), we define
∀ x = (x, z) ∈ R2, ρ±(x) := ◦

ρ(x− (p±x /p
±
z )z, z/p

±
z ),

so that ρ± is Zex + Zp±–periodic with p± := (p±x , p
±
z ) ∈ R2. We choose p± := (cosα±, sinα±) with

α− = π/3 and α+ = 3π/5, which yields the coefficient represented in Figure 2 (right). The solution of
(P) is computed using τ = 10, and is represented in Figure 4 for different values of ω. As expected
for the Helmholtz equation, the solution oscillates more as Reω increases, and decays less at infinity
as Imω decreases.

−4 −2 0 2 4

ω = 8 + 0.25 i

−4 −2 0 2 4

ω = 20 + 0.25 i

−1 0 1

−4 −2 0 2 4

ω = 20 + 0.05 i

Figure 4: Real part of the approximate solution uh computed using order 1 Lagrange finite elements.
Different values are considered for ω.

Conclusion

The resolution of a transmission problem between two arbitrary periodic half-spaces has been stud-
ied in this Chapter. Rather than using directly the lifting approach which would have implied the
resolution of 5–dimensional problems, we have proposed an alternative method which exploits sepa-
rately the structure of each periodic half-space with respect to the interface. An exhaustive analysis
of this method would be worthwile in order to identify the influence of the discretization parameters
involved. Another interesting question concerns the robustness of this method as the absorption tends
to 0, and its extension to the non-absorbing case. We expect this question to be strongly linked to the
behaviour at infinity of the solution in the direction of the interface.



ChapterVII
Perspectives

In this thesis, we have proposed a method to solve the time-harmonic wave equation

• in one-dimensonal quasiperiodic media with a local perturbation;

• in presence of two-dimensional periodic half-spaces.

In each case, using the presence of absorption, we have justified that the problem considered can be
lifted onto a higher-dimensional problem, to which one can apply tools that are well-suited for periodic
media. In the one-dimensional locally perturbed quasiperiodic configuration with no absorption, we
have shown that the limiting absorption principle holds under certain assumptions.

The method presented still leaves many questions unanswered, and opens up multiple perspectives.
In what follows, we describe some questions that naturally arise from the study (Sections 1 and 2), as
well as some possible extensions (Sections 3 and 4).

1 The limiting absorption principle

The main question that emerges from this work concerns the proof of the limiting absorption principle
as well as the robustness of the method in the non-absorbing case.

One-dimensional quasiperiodic media
In the one-dimensional quasiperiodic case, the lifting approach and the DtN method have provided us
a promising path of investigation, which relies on the peculiar spectral structure of the propagation
operator, and more precisely on the existence of a so-called fundamental eigenfunction. For now, we
have assumed that the fundamental eigenfunction has a limit as the absorption tends to 0, but it
would be worth investigating the situations where this assumption holds.

Another crucial assumption we have made is the positivity of the energy flux, which guarantees that
the fundamental eigenfunction at the limit does not vanish. For homogeneous media, the energy flux
of plane waves is linked to their group velocity, and its sign allows to separate outgoing modes from
ingoing (non-physical) ones. Similarly, for periodic media, the energy flux of Floquet modes is related
to their group velocity (see [FJ16]). From what we have shown in the case of quasiperiodic media, it
seems that from the limit of the fundamental eigenpair, one can construct the equivalent of a Floquet
mode, that is a solution u0 ∈ H1

loc(R) such that Aθ u0 = ω2 u0, where Aθ is the studied quasiperiodic
(unperturbed) differential operator. Now, if the limiting absorption principle holds for any ω2 in an
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interval I ⊂ R, then it is shown in [RS78] for instance that I is included in the absolutely continuous
spectrum of Aθ. In such a case, we strongly suspect a link between the energy flux and the group
velocity of the “generalized” Floquet mode.

Furthermore, one may wonder (a) if energy flux is generically positive, and (b) what happens if this
quantity vanishes. For periodic waveguides, it is showed in [FJ16] that there exist countably many
values of ω2 (called cut-off frequencies) for which a propagating Floquet mode has a zero energy flux.
In this case, if there is no perturbation of the local structure, then the limiting absorption principle
cannot hold. The answer to these questions in the case of quasiperiodic media is still an open question.

Junction of periodic media
For junctions of periodic half-spaces, the limiting absorption principle seems far more challenging.
Even in the case of a single periodic half-space cut in a direction of periodicity, there is no answer as
far as we know. In fact, there may be guided modes at the interface: the solution may not be L2 (it
may even be propagative in the direction of the interface), so that the Floquet-Bloch transform can
no longer be applied. If the solution is L2 along the interface, one idea would then be to make the
absorption tend to 0 in our method. However, the difficulty is that the waveguide problems obtained
after applying the Floquet-Bloch transform may be ill-posed at the limit, thus forcing us to exclude
a continuum of forbidden frequencies. This issue is already encountered for periodic half-spaces, as
explained in [Fli09, §4.4]. Nevertheless, note that the method proposed may still be used numerically
outside of these forbidden frequencies.

Associated to the above open question is the stability of the numerical methods developed in Chapters
V and VI when the absorption tends to 0. Some aspects of these methods (in particular the ones
in Sections V–8 and VI–3) will probably require some adaptation in order to remain efficient in the
non-absorbing case.

2 Numerical aspects

An error analysis remains to be performed for the quasi-1D and the quasi-2D methods. In that regard,
the numerical analysis of the Riccati equation is the most challenging step, because of its nonlinear na-
ture. Let us also mention that the resolution of the Riccati equation using the spectral approach could
be improved in practice. In fact, the quadratic eigenvalue problem associated to the Riccati equation
is called a palindromic eigenvalue problem [HMM04; Mac+06], due to the symmetry properties of
the local DtN operators. Using adapted algorithms to solve this eigenvalue prolem may reduce the
computational time.

3 Computation of guided modes

A natural counterpart of the scattering phenomena studied in this thesis is the computation of guided
modes in the setting shown in Figure VI–1a, and studied in Chapters V and VI. By guided modes,
we mean solutions of the homogeneous problem that can only propagate in the neighborhood of the
interface between two periodic half-spaces, and decay in the direction orthogonal to the interface.
Guided modes are a subject of interest, since they can be used for the design of efficient lasers, filters,
optical fibers, and waveguides. In addition, the robustness of guided modes to perturbations of the
interface is a question that arises for instance in the study of topological insulators [Moo10].
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From a mathematical point of view, a guided mode u is a non-trivial solution of the eigenvalue problem
related to Problem VI–(P) (with associated eigenvalue ω2 ∈ R), and which decay far from the
interface σ := {0} × R. In other words,

−divA∇u− ρω2 u = 0 in R2
+ ∪ R2

−,

JA∇u · exKσ = 0 on σ,

|u(x, z)| → 0 as |x| → ∞.

(3.1)

In order to complete this definition, one also needs to prescribe the behaviour of u in the direction
of the interface. If the medium is periodic along σ, then the use of a partial Floquet-Bloch transform
in that direction would typically suggest that in addition to (3.1), a guided mode should satisfy the
ξ–quasiperiodicity condition: u(x, z + 1) = ei ξ u(x, z), for some ξ ∈ [0, 2π). This is the definition
used in general; see for instance [SA04; Fli13; Del+17; DF23].

In the case of media that are not periodic in the direction of the interface, guided modes are more
difficult to study, because their very definition is not obvious. In fact, since one can no longer use
the Floquet-Bloch transform along σ, the behaviour of a guided mode along the interface is not clear.
This issue has been investigated in [FFW22] for a discrete Schrödinger model by means of rational
approximations. Another idea in the continuous setting would be to use the lifting approach. In
fact, considering for instance the settings (A ) and (B) introduced in Chapter V (see Figures V–2,
V–3), one could define a 2D guided mode u as the trace along a hyperplane of the solution U of a
3D eigenvalue problem, where periodicity is recovered along the interface, allowing to use Floquet
theory. This also corresponds to looking for solutions u such that ei ξzu is not periodic with respect
to z, but rather quasiperiodic in the sense of Definition II–1.1. It would be interesting to investigate
the conditions under which such guided modes exist, and to propose a DtN-based method for their
computation. This method in the 1D case could allow to compute the discrete spectrum of locally
perturbed quasiperiodic structures (see [FK97] for a similar problem or [Fli13] for the use of the DtN
method for this computation) or resonances [Duc+23].

4 Enriched homogenization in presence of a boundary

Another case to which this thesis could be applied concerns enriched homogenization in presence of
boundary. Consider for instance the rescaled Helmholtz equation with absorption (Imω > 0) −div

[
A
( ·
ε

)
∇uε

]
− ρ
( ·
ε

)
ω2 uε = 0 in R2

+,

uε = φ on σ := ∂R2
+,

(4.1)

with ε > 0 and where (A, ρ) are periodic in two directions. The behaviour of uε as ε tends to 0 has been
widely studied in the theory of homogenization. First, if one considers the PDE in (4.1) in the whole
space R2, then it can be shown using a 2–scale expansion for instance that there exist functions u0 and
u1(·, ·/ε) such that uε = u0+ ε u1(·, ·/ε)+O(ε) in H1(R2). The function u0 can be characterized as the
solution of a homogenized Helmholtz equation whose coefficients are constant and can be computed
by solving cell problems. These cell problems also allow to compute u1.

For (4.1), it turns out that uε = u0+ε u1(·, ·/ε)+O(
√
ε) inH1(R2

+), whereas uε = u0+ε u1(·, ·/ε)+O(ε)

in H1(D) for any D ⋐ R2
+. This drop of convergence order near the interface is caused by a so-called
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boundary layer phenomenon, which has been the object of theoretical studies for periodic half-spaces
[BLP78; MV97; AA99; GM11] and for transmission problems [BP12; BLL15; Jos19].

From a numerical viewpoint, an idea investigated in [Ben21] consists in enriching the classical 2–
scale expansion of uε by adding near-field terms which are expected to decay far from the interface.
However, this enriched homogenization approach relies essentially on the periodicity of (A, ρ) in the
direction of the interface, as it allows to characterize the near-field terms as solutions of 2D Laplace
problems defined in a strip, with periodicity conditions with respect to the variable of the interface. In
the case where (A, ρ) are no longer periodic along the interface, a quasiperiodic behaviour is expected
from [GM11; BLL15]. Therefore, using the method developed in this thesis, the near-field terms
could be seen as traces of solutions of 3D half-guide problems, to which the DtN approach can be
applied. However many delicate questions have to be addressed, such as the well-posedness of the 3D
problems, or the study of the error in presence of the near-field terms (see [GM11; GM12]).
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Résumé : L’objectif de la thèse est de dévelop-
per des méthodes numériques originales pour la
résolution de l’équation des ondes en régime har-
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que l’étude d’une EDP elliptique avec des coef-
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