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Titre : Effet de proximité dans les hétérostructures supraconducteurs à onde d à haute température 

critique/matériaux 2D 

Mots clés : supraconductivité, matériaux 2D, effet de proximité, réflexion d’Andreev, onde d, YBCO

Résumé : L'émergence des matériaux bidimensionnels (2D), associée aux supraconducteurs onde d à haute 

température critique (HTc), étudiés de longue date, permet le développement de dispositifs aux nouvelles 

fonctionnalités. Cependant, il est d'abord nécessaire de comprendre le couplage entre ces matériaux. 

Cette thèse, qui englobe à la fois des expériences et leur description théorique, est dédiée à cette exploration 

avec pour objectif principal la compréhension de la physique à l'interface des supraconducteurs onde d et 

des matériaux 2D, en modulant des paramètres externes tels que la température, le champ magnétique et la 

tension de grille. 

Le point central de la thèse tourne autour de l'interface entre YBa2Cu3O7-x (YBCO), un oxyde supraconducteur 

onde d à haute température critique, et d'autres matériaux, examinée à la fois de manière théorique et 

expérimentale. L'aspect théorique comprend une revue approfondie de la théorie Blonder-Tinkham-Klapwijk 

(BTK) dans le cas des supraconducteurs onde d, accompagnée de calculs numériques concrets que j'ai réalisés 

pour des publications. La composante expérimentale implique l'étude de jonctions SN utilisant de l’YBCO et 

des métaux. L'analyse, employant à la fois la théorie BTK et le formalisme d'Usadel, révèle que, bien que la 

supraconductivité onde d soit induite dans la fine couche en proximité de YBCO, l'interface entre le métal et 

le YBCO supraconducteur/isolant génère des corrélations supraconductrices de type s qui rivalisent avec les 

corrélations de type d et s'étendent sur une grande partie du métal. Ces premiers résultats offrent une base 

solide pour l'étude des hétérostructures YBCO/2D. 

J'ai ensuite étudié des jonctions YBCO/graphène/YBCO, dont la magnétorésistance a révélé une modulation 

de la résistance différentielle. L'étude systématique de la dépendance au champ magnétique circonscrit les 

principales caractéristiques de cet effet. L'origine de ces effets oscillatoires dans les jonctions 

supraconductrices est largement discutée, suggérant l'effet Al'tshuler-Aronov-Spivak; ces oscillations 

cohérentes résultent des interférences entre les particules normalement et Andreev réfléchies en présence 

d'un champ magnétique. 

Cette exploration du couplage entre les supraconducteurs onde d et les matériaux 2D est étendue à l'étude 

des jonctions YBCO/MoS2. Alors que les jonctions planaires similaires à celles déjà mentionnées nécessitent 

des développements ultérieurs, j'ai mis au point une nouvelle méthode pour aborder la croissance délicate 

des matériaux 2D directement au-dessus des oxydes supraconducteurs. Les détails d'optimisation et une 

analyse approfondie des mesures de transport des dispositifs supraconducteurs fabriqués avec cette 

méthode démontrent un excellent couplage entre l’YBCO et MoS2, offrant des perspectives prometteuses 

pour de futurs dispositifs de proximité. 
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  Title : Proximity Effect in High-Tc d-wave Superconductor/2D Materials Heterostructures 

  Keywords : superconductivity, 2D materials, proximity effect, Andreev reflexion, d-wave, YBCO 

Abstract : The emergence of innovative bidimensional materials (2D), coupled with the long-studied High-

Tc d-wave superconductors, allows for the development of devices with new functionalities. It however first 

requires to understand the coupling between these media.  

This thesis, which encompasses both experiments and their theoretical description, is dedicated to this 

exploration with the primary objective of understanding the physics at the interface of d-wave 

superconductors and 2D materials, by modulating external parameters such as temperature, magnetic field, 

and gate voltage. 

The central focus of the thesis revolves around the interface between YBa2Cu3O7-x (YBCO), a High-Tc d-wave 

superconducting oxide, and other materials, examined both theoretically and experimentally. The theoretical 

aspect encompasses a comprehensive review of the Blonder-Tinkham-Klapwijk (BTK) theory for d-wave 

superconductors, accompanied by concrete numerical calculations I carried out for publications. The 

experimental component involves the investigation of SN junctions using YBCO and metals. The analysis, 

employing both the BTK theory and Usadel’s framework, reveals that while d-wave superconductivity is 

induced in the thin layer in proximity of YBCO, the interface between the metal and the 

superconducting/insulating YBCO generates s-wave superconducting correlations that compete with d-wave 

correlations and extend over a large portion of the metal. These first results offer a strong ground for the 

study of YBCO/2D materials heterostructures. 

I subsequently studied YBCO/graphene/YBCO junctions, in which magnetoresistance revealed modulation in 

the differential resistance. The systematic investigation of the magnetic field dependence circumscribes the 

main features of this effect. The origin of these oscillatory effects in superconducting junctions is widely 

discussed, pointing toward the Al'tshuler-Aronov-Spivak effect; these coherent oscillations result from 

interferences between normally and Andreev reflected particles in the presence of a magnetic field. 

This exploration of the coupling between d-wave superconductors and 2D materials is extended to the study 

of YBCO/MoS2 junctions. While planar junctions similar to the ones already mentioned require further 

developments, I developed a new method for addressing the challenging growth of 2D materials directly 

atop superconducting oxides. The optimization details and a thorough analysis of transport measurements 

of superconducting devices fabricated with this method demonstrate excellent coupling between YBCO and 

MoS2, holding promise for future proximity devices. 
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1 RESUME ETENDU EN FRANÇAIS 

1.1 INTRODUCTION ET APERÇU DE LA THESE 

La supraconductivité, découverte il y a déjà plus d’un siècle par Onnes [1] est toujours l’objet 

d’intenses recherches. Ce phénomène se manifeste par une résistance nulle d’un matériau 

supraconducteur en dessous d’une certaine température critique (Tc) qui lui est propre. Bien 

que les propriétés électromagnétiques des supraconducteurs ont vite été établies par les 

frères London notamment [2], il a fallu d’avantage de temps pour comprendre la transition 

supraconductrice, grâce à Ginzburg et Landau [3] et encore plus pour identifier l’origine 

microscopique de la supraconductivité avec la théorie BCS [4], élaborée par Bardeen, Cooper 

et Schrieffer. Leur théorie permet d’expliquer la supraconductivité par la présence d’une 

force attractive entre électrons au niveau de Fermi qui, à suffisamment faible température, 

permet la formation de paires d’électrons de spins opposés, les fameuses paires de Cooper. 

La mer de Fermi étant instable face à la formation de paires, un condensat de paires de 

Cooper se crée. Il forme alors un objet quantique macroscopique représenté par une 

fonction d’onde complexe. A la fin des années 80, de nouveaux matériaux supraconducteurs 

ont été découverts, avec des températures critiques bien supérieures et une anisotropie du 

paramètre d’ordre supraconducteur, ne rentrant pas dans l’explication de théorie BCS. Le 

supraconducteur utilisé dans l’ensemble de cette thèse est YBa2Cu3O7- (YBCO) et il 

appartient à cette catégorie avec une Tc à 92K, visible sur la Figure 1a et un paramètre 

d’ordre dit « onde d » représenté dans la Figure 1b. 

 

Figure 1 a) Resistance en fonction de la température d'un film d'YBCO. b) Paramètre d'ordre 

onde-d. Celui n'est pas isotrope mais son amplitude ainsi que sa phase depend de la 

direction. 

Cependant, de nombreux matériaux ne deviennent jamais supraconducteurs aussi basse soit 

la température. Le but de cette thèse est d’étudier comment un matériau, en particulier des 

matériaux bidimensionnels (2D), peut acquérir des corrélations supraconductrices s’il est en 

contact avec un supraconducteur, dans cette thèse YBa2Cu3O7-x (YBCO). Après une 

introduction à la physique des supraconducteurs et des matériaux 2D, ainsi qu’un état de 

l’art des systèmes dits proximisés entre des supraconducteurs « onde s » et des films 
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métalliques, du graphène et du MoS2. Ensuite, j’aborde la théorie de l’effet de proximité et 

en particulier la très utilisée théorie BTK pour Blonder-Tinkham-Klapwijk [5] dans le cas 

d’onde s (isotropique) puis onde d. Cette étude théorique m’a permis de reproduire 

numériquement les mesures de conductance différentielle réalisées au sein de mon 

laboratoire ou dans le cadre de collaborations [6–8]. Le chapitre suivant présente les 

techniques expérimentales utiliser pour fabriquer, caractériser et mesurer les dispositifs. Les 

chapitres suivants sont consacrés à l’étude de l’effet de proximité dans différents matériaux. 

Le premier se concentre sur des dispositifs planaires réalisés à partir d’un film fin d’or crû in 

situ sur un film d’YBCO. Des jonctions supraconductrices sont étudiées dans deux 

configurations différentes. Le chapitre suivant s’intéresse à des dispositifs avec une 

géométrie proche à la différence près que le matériau proximisé est du graphène et non de 

l’or. Dans ce chapitre, j’analyse l’évolution de la résistance en fonction du champ magnétique 

qui permet de sonder l’effet de proximité supraconducteur. Enfin, le troisième chapitre 

aborde l’étude d’un nouveau matériau 2D semiconducteur, MoS2. Si la première section du 

chapitre reprend la même géométrie que celle du précédent chapitre, la suite se consacre à 

une nouvelle méthode de croissance direct de MoS2 et l’étude de jonctions 

supraconductrices verticales. Finalement, je conclue et présente quelques-uns des multiples 

axes ouverts par ses travaux de thèses. Dans ce résumé étendu, nous allons synthétiser ce 

qui a été vu plus en détails dans le manuscrit. 

1.2 EFFET DE PROXIMITE, THEORIE BTK ET APPLICATIONS CONCRETES 

 

Figure 2 a) Schéma d'une réflexion d'Andreev : un électron incident dans le métal vers le 

supraconducteur avec une énergie situé dans le gap supraconducteur ne peut pénétrer 

directement dans le supraconducteur car il ne présente pas d'état à un électron. Le seul 

moyen pour lui de traverser est de trouver un autre électron pour former une paire de 

Cooper. Un trou de spin opposé est alors rétroréfléchi. b) Simulations de la conductance 

différentielle normalisée en fonction de l’énergie normalisée par le gap supraconducteur 

pour trois paramètres de diffusion à l’interface.   

L’effet de proximité supraconducteur a fait l’objet de nombreuses études depuis les travaux 

de de Gennes [9]. Lorsqu’un métal est en contact avec un supraconducteur, le paramètre 

d’ordre du supraconducteur se propage localement dans le métal à l’échelle de la longueur 

de cohérence de phase du métal. Plus précisément, comme illustré Figure 2a, si l’interface 
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entre les deux matériaux est suffisamment transparente, lorsqu’un électron du métal à 

l’intérieur du gap se propage vers l’interface, celui-ci ne peut pénétrer seul dans le 

supraconducteur puisqu’il n’y a pas d’état à un électron dans celui-ci. Cependant, il peut 

former une paire de Cooper avec un autre électron à l’interface. Un trou se propageant en 

direction opposé est alors créé. On appelle ce phénomène la réflexion d’Andreev. Elle a été 

quantifiée par Blonder, Tinkham et Klapwjik [5]. Je vais ici rappeler les principales hypothèses 

et les résultats sous la forme de simulations que j’ai réalisées et présentées en Figure 2b. 

Dans leur modèle, les charges se déplacent de manière balistique et l’interface est modélisée 

par un potentiel de Dirac, la qualité de l’interface est quantifiée par un unique paramètre 𝑍 

allant de 0 (parfaitement transparente) à +∞ (tunnel). Lorsque l’interface est parfaitement 

transparente, la conductance différentielle dans le gap supraconducteur est le double de la 

conductance normale, celle mesurée pour des énergies bien supérieures au gap. Dans le cas 

tunnel, cette conductance différentielle tend vers zéro à l’intérieur du gap. 

Ce modèle a été étendu au cas des supraconducteurs à onde d comme YBCO. Il faut alors 

prendre en compte l’orientation du paramètre d’ordre supraconducteur par rapport à 

l’interface avec le métal. J’ai pendant ma thèse travailler sur ce modèle pour analyser les 

données mesurées dans le cadre de plusieurs expériences qui ont depuis été publiées : 

1) Les premiers systèmes que j'ai étudiés étaient des jonctions verticales constituées de 

YBCO et de MoSi, un métal amorphe, avec une barrière de tunnel ajustable [6]. J'ai utilisé le 

formalisme BTK pour calculer la conductance différentielle d'une interface entre un métal 

normal et un supraconducteur à onde d le long de son axe c. Après avoir extrait les principaux 

paramètres à partir des ajustements avec la théorie BTK, comme illustré dans les Figure 3a 

et b, j'ai pu simuler le comportement en température du système et expliquer l'amélioration 

observée de l'électrorésistance en dessous de la température critique de l’YBCO. Les 

conductances simulées à 0 et 100mV pour les états ON et OFF sont présentées dans la Figure 

3c, ainsi que l'évolution de la température de l'électrorésistance dans l'insert. L'augmentation 

expérimentalement observée de l'électrorésistance peut être expliquée par le passage par 

l’effet tunnel des quasi-particules à l'intérieur du gap de l’YBCO. 

2) L'étude suivante [7] s'est concentrée sur les mesures de transport de jonctions verticales 

constituées d'un empilement de La5SrCu6O15 (LSCO) (électrode supérieure), BaTiO3 (BTO) 

(barrière) et La0.7Sr0.3MnO3 (LSMO) (électrode inférieure). L'application d'impulsions de 

tension a montré deux comportements distincts de la conductance différentielle en fonction 

de la polarité. Les ajustements BTK que j'ai réalisés à plusieurs températures dans ces deux 

états nous ont permis de caractériser leur comportement comme une éventuelle émergence 

d'une phase supraconductrice dans LSCO et de quantifier comment elle est affectée par son 

environnement électrostatique. 

3) Enfin, dans le cadre de mesures de magnétorésistance ferromagnétique (FMR) avec du 

permalloy (un ferromagnétique) en contact avec YBCO, j'ai pu utiliser la théorie BTK pour 

calculer les propriétés interfaciales entre ces deux matériaux [8]. Cela nous a permis 

d'expliquer les expériences de FMR en calculant les densités d'états de quasi-particules dans 

YBCO pour deux orientations cristallographiques et comment cela peut affecter l'injection 
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de spin à l'interface. 

 

Figure 3 Ajustements numériques dans le cas a) de l’état ON, b) de l’état OFF. c) Évolutions 

avec la température des conductances à 0mV (𝐺0) et 100mV (𝐺100) à la fois pour l’état ON 

et l’état OFF. Dans l’insert, l’évolution en temperature du ratio de l’électrorésistance (ER) 

entre 0 et 100mV. 

Ces projets m’ont permis d’acquérir l’expertise qui m’a été utile pour l’analyse de mes 

résultats expérimentaux que je vais désormais présenter. 

1.3 EFFET DE PROXIMITE ENTRE UN SUPRACONDUCTEUR A ONDE D ET UN FILM METALLIQUE 

FIN 

Dans le cadre de ma thèse de doctorat, l'étude des jonctions YBCO/métal constitue une 

première étape pour caractériser la propagation des corrélations supraconductrices de type 

d dans un cas qui était, en principe, plus simple que celui du graphène et du MoS2. De plus, 

étant donné qu'une fine couche de métal doit être intercalée entre le graphène (ou le MoS2) 

et le YBCO pour protéger la surface de l’YBCO et améliorer la transparence de l'interface, il 

était important de caractériser d'abord l'effet de proximité dans l'or. 

Dans une première partie, j'ai étudié des jonctions SN formées par une fine couche continue 

d'or reposant d'un côté (S) au-dessus du supraconducteur YBCO et de l'autre côté (N) sur le 

YBCO isolant (cf schéma Figure 4a). Pour expliquer les spectres expérimentaux de 

conductance différentielle, j'ai développé un modèle phénoménologique basé sur le 

formalisme BTK avec deux interfaces distinctes, l'une de type s et l'autre de type d, ainsi 
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qu'une résistance métallique en série. Avec l'aide de théoriciens, nous avons élaboré un 

modèle microscopique basé sur le formalisme d'Usadel, ce qui nous a permis de reproduire 

la dépendance en tension et en température de la conductance différentielle comme 

montrées en Figure 4b et c. 

 

Figure 4 a) Schéma de côté avec la configuration électrique d’une junction SN. b) 

Conductances différentielles expérimentales normalisées de deux jonctions SN typiques en 

function de la tension normalisée par le gap supraconducteur. c) Calculs numériques basés 

sur le formalisme d’Usadel. 

J'ai également mesuré des jonctions SNS et pu analyser les mesures avec les connaissances 

acquises des jonctions SN. En effet, j'ai démontré que, en raison de la longueur de cohérence 

plus faible de l'or par rapport au graphène, les deux côtés de la jonction SNS peuvent être 

considérés comme des jonctions SN indépendantes. 

À l'avenir, une étude des jonctions SNS avec une longueur plus petite entre les électrodes 

pourrait permettre d'observer un couplage Josephson et un courant critique. Une autre 

possibilité est de changer le métal de la fine couche pour influer sur la qualité du contact ou 

les propriétés de transport. Enfin, il serait très intéressant d'effectuer des mesures STM à 

basse température comme dans la référence [10] sur l'or à la fois au-dessus de l’YBCO 

supraconducteur et de l’YBCO isolant pour observer l'évolution du mini-gap dans l'or. Il 

serait également possible de créer des contacts tunnel comme dans la référence [11], mais 

la géométrie serait plus contraignante. 

Avant de plonger dans l'effet de proximité d'onde d dans les matériaux bidimensionnels 

(graphène et MoS2), je tiens à souligner que le CHAPITRE 5 explore un régime très différent 

de celui des CHAPITRES 6 et 7. Dans le cas de l'or, le contact entre l’YBCO et la couche est 

excellent car la croissance est effectuée in situ. Cependant, par rapport au graphène ou au 

MoS2, la longueur de cohérence de phase de l'or est beaucoup plus faible, et les effets liés 

à la cohérence (comme l'interférence quantique que j'ai observée dans le graphène) sont 

absents. 
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1.4 EFFET DE PROXIMITE DANS LES JONCTIONS YBCO/GRAPHENE  

Comme nous l'avons vu dans l'introduction de cette thèse (au CHAPITRE 2), le graphène a 

été largement étudié avec des supraconducteurs onde s dans la littérature. Cependant, les 

études avec des supraconducteurs onde d sont rares, à l'exception notable d'une publication 

réalisée par mon prédécesseur montrant les premiers indices de l'effet de proximité entre le 

graphène et YBCO [12]. Ce travail expérimental a été complété par des calculs théoriques 

adaptés de [13], qui décrivent bien le système et les mesures expérimentales. Plus tard, nous 

avons démontré la propagation de paires d'Andreev de type d dans du graphène cultivé par 

CVD sur plusieurs centaines de nanomètres [14]. Cela signifie que la phase entre l'électron 

et le trou issu d'un processus d'Andreev reste constante sur la longueur de la jonction, qui 

varie de 50 à 800nm. 

 

Figure 5 a) Schéma vu de côté d’une jonction YBCO/graphene/YBCO. b) Oscillations de la 

magnetorésistance ici mesurées dans quatre jonctions de quatre échantillons distincts. 

Par la suite, j'ai étudié l'effet du champ magnétique sur la conductance différentielle des 

jonctions YBCO/Graphène/YBCO représentées schématiquement dans la Figure 5a. Au 

CHAPITRE 6, j'ai fourni une analyse des oscillations observées dans la magnétorésistance des 

jonctions de transparence intermédiaire, comme illustré dans la Figure 5b. La présence d'un 

pic de magnétorésistance lié à la faible localisation autour de 𝐵 = 0, ainsi que la comparaison 

avec la littérature sur les oscillations de magnétorésistance dans les systèmes 2D proximisés, 

nous ont conduit à conclure que les oscillations de magnétorésistance observées sont liées 

à l'effet Al'tshuler-Aronov-Spivak (AAS), dont l'une des échelles caractéristiques est la 

longueur de cohérence de phase dépendante de la température dans le graphène. 
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1.5 UN NOUVEAU MATERIAU A L’ETUDE, MOS2 

Après l'étude des jonctions YBCO/Graphène/YBCO, nous avons exploré l'effet de proximité 

dans un autre matériau bidimensionnel, le MoS2, pour son caractère semiconducteur et son 

fort couplage spin-orbite, potentiellement intéressant combinés avec un 

supraconducteur [15]. Il s’agissait aussi d’un candidat naturel, car ce matériau peut 

également être crû par dépôt chimique en phase vapeur (CVD), et la plupart des techniques 

de fabrication peuvent lui être appliquées. Dans une première étape, j'ai tenté de fabriquer 

des dispositifs analogues à ceux de YBCO/Graphène/YBCO via le transfert humide de MoS2 

CVD. Cependant, les mesures de transport ont révélé un comportement très résistif, dicté 

par la résistance de contact entre le MoS2 et le YBCO. Pour résoudre ce problème, j'ai décidé 

d'explorer différentes approches, telles que l'exfoliation d'un composé parent (WS2) et le 

développement d'une nouvelle méthode de croissance de MoS2 directement sur le YBCO 

basée sur le dépôt laser pulsé (PLD) (schéma en Figure 6a). Comme expliqué dans le 

CHAPITRE 7, cette tâche est complexe car le YBCO est un oxyde fragile. J'ai dû optimiser les 

paramètres de croissance afin de préserver les propriétés supraconductrices du YBCO tout 

en déposant du MoS2 de haute qualité. 

 

Figure 6 a) Schéma d’un bâti de PLD pour la croissance directe de MoS2 sur des films de 

YBCO/or. b) Spectres Raman de MoS2 crû par PLD (bleu) et du substrat seul (rouge). c) 

Schéma d’une jonction supraconductrice verticale composé de YBCO/or (électrode 

inférieure), MoS2 (barrière) et MoSi (électrode supérieure). d) Conductances différentielles 

d’une jonction à différentes températures (échelle semi-logarithmique). 

Au CHAPITRE 7, j'ai caractérisé à la fois l’YBCO après le processus de croissance et le MoS2, 

par exemple, avec la spectroscopie Raman, comme illustré dans la Figure 6b. Cette 

méthode m'a permis de fabriquer des dispositifs supraconducteurs représentés dans la 

Figure 6c, composés du YBCO en tant qu'électrode inférieure, du MoSi (un 



 

16 

supraconducteur de type s amorphe) en tant qu'électrode supérieure, tandis que le MoS2 

joue le rôle d'une barrière entre les deux. Les mesures de transport électronique ont révélé 

un comportement SIS, quelle que soit l'épaisseur de la couche de MoS2 (spectres de 

conductance différentielle présentés dans la Figure 6d). Pour l'échantillon avec la couche 

de MoS2 la plus fine (~5nm), certaines jonctions ont présenté un couplage de Josephson 

avec un courant critique d'environ 100μA. 
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2 INTRODUCTION 

This thesis is all about studying proximity effect in devices combining d-wave 

superconductors and two-dimensional (2D) materials, to mix their respective intrinsic 

electronic properties. Thus, in this introductory chapter, we first introduce the concept of 

superconductivity, its applications, and the superconductor used in this thesis. Then, we 

present the variety of 2D materials and more precisely graphene and molybdenum disulfide, 

the materials we chose for the experiments. Finally, we give the motivations of this whole 

work and what is interesting in combining superconductors with 2D materials. 

2.1 SUPERCONDUCTORS 

2.1.1 Basic properties of superconductors and microscopic theory 

 

Figure 7 a) Famous picture of the Onnes labbook plotting the resistance versus temperature 

of mercury (Hg) b) Illustration of the Meissner effect at 𝑇 < 𝑇𝑐 compared with the normal 

state behavior. 

Superconductivity is a very old topic since it was discovered more than a century ago by 

Onnes [1] when he could finally go below helium liquid temperature and measure the 

electrical resistance of mercury as Figure 7a shows. It manifests itself by a sharp transition 

from a metallic state to a zero-resistance state at a temperature that depends on the 

material. It was discovered later that the magnetic field behavior of superconductors cannot 

be explained by simply considering superconductors as perfect metals [16]. Indeed, a perfect 

metal in a magnetic field would not expel magnetic field flux lines from its interior as a 

superconductor does with the Meissner effect as shown in Figure 7b. This effect persists up 

to a critical field 𝐻𝑐 for type I superconductors at which point the superconductivity collapses. 

The London brothers gave a satisfactory mathematical description of the superconducting 

state with their two eponymous equations describing the microscopic electric field 𝐸⃗  and 

magnetic field 𝐵⃗  inside a superconductor: 
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Here, 𝑗𝑆⃗⃗   denotes the superconducting current density and 𝑛𝑆 is the number density of 

superconducting electrons in the original paper, Cooper pairs being anachronic at that 

moment. This density is finite at null temperature but tends to zero as the superconductor 

approaches its critical temperature. 𝑒 and 𝑚 are respectively the electric charge and the mass 

of an electron. If we combine the second equation with the Maxwell equations [17], one finds 

back that the electromagnetic field is screened inside the superconductor and only 

penetrates on a typical lengthscale 𝜆 = √
𝑚

𝜇0𝑛𝑆𝑒2 called London penetration length. In 

superconductors, this length usually scales between tens of nanometers to microns. The two 

equations written above can be written differently if we fix the gauge such as div 𝐴 = 0: 

This formulation has a strong physical meaning and comes directly from the canonical 

momentum which is 𝑝 = (𝑚𝑣 + 𝑒𝐴 ) and the fact that without applied field, the average 

momentum is zero. 

 

Figure 8 Magnetic field in the superconductor 𝐻 and Ginzburg-Landau (GL) order parameter 

𝜓 close to a boundary as a function of the distance with their two characteristic lengths 

respectively 𝜆 and 𝜉 in the case of a) a type I superconductor and b) a type II superconductor. 

c) A type II superconductor in an applied magnetic field 𝐵⃗  with both screening by partial 

Meissner effect and superconducting vortices letting an integer number of quantum of flux 

enter. 

This description, unfortunately, collapses for example when we consider magnetic fields that 

are strong enough to modify the superconducting properties throughout 𝑛𝑆. This problem 

was solved thanks to the intuition that superconductivity is described as a phase transition 

theory whose order parameter is a pseudo wavefunction 𝝍 such as 𝑛𝑆(𝑥) = |𝜓(𝑥)|2  [3]. 

Close to the critical temperature, this order parameter gets small and the free energy of the 

superconductor can be expanded in powers of 𝜓 and ∇⃗⃗ 𝜓. For the sake of brevity, I will not 

𝜕𝑗𝑆⃗⃗  

𝜕𝑡
=  

𝑛𝑆𝑒
2

𝑚
𝐸⃗    2.1 

𝑐𝑢𝑟𝑙 𝑗𝑆⃗⃗  = −
𝑛𝑆𝑒

2

𝑚
𝐵⃗  2.2 

𝑗𝑆⃗⃗  = − 
𝑛𝑆𝑒

2

𝑚
𝐴    2.3 
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show these equations but they end up giving two characteristic lengthscales: an analogous 

London penetration length 𝜆 and a new one, the Ginzburg-Landau (GL) coherence length 

𝜉𝐺𝐿 , both dependent on the temperature. 𝜉𝐺𝐿 gives the typical length for which a small 

disturbance in the order parameter 𝜓 is decaying in space. It has been shown by 

Abrikosov [18] that if 𝜆 >
𝜉𝐺𝐿

√2
, it is energetically favorable for the magnetic field to penetrate 

inside the superconductor through vortices when it reaches a critical value 𝐻𝑐1 up until a 

value 𝐻𝑐2, where superconductivity finally vanishes. In that interval, these superconductors, 

so-called type II superconductors, experience the Meissner effect only partially and 𝐻𝑐2 can 

be much larger than 𝐻𝑐1. Contrary to type I superconductors, superconductivity in type II 

superconductors can exist at much higher magnetic field. Figure 8a and b shows how 

superconductors of type I and type II behave differently in the presence of an applied 

magnetic field and close to a boundary. Figure 8c illustrates the mixed state of a type II 

superconductor in an applied magnetic field 𝐵⃗  with the presence of both screening currents 

and superconducting vortices letting the magnetic field penetrate through the 

superconductor as an integer number of the flux quantum 𝜙0 =
ℎ

2𝑒
. 

Although the Ginzburg-Landau theory is a convenient way to understand the magnetic and 

thermodynamic properties of superconductors, it does not say anything about the 

microscopic origin of this phenomenon. Almost 50 years were necessary to answer this 

question with the famous BCS theory [4], a name given in honor of its three authors, Bardeen, 

Cooper and Schrieffer. The argument starts with the Fermi surface of a metal being unstable 

against the formation of a bound pair of electrons thanks to an attractive interaction, no 

matter how weak it is [19]. This pair of electrons is called a Cooper pair and is made of two 

electrons of opposite momenta and spins. These pairs form a condensate and are 

represented in Figure 9a. This attractive interaction term does not come out if we only 

consider the electrons and their interaction between each other and the lattice of ions. We 

have to also consider the motion of the ions. The attractive interaction is mediated by the 

phonons of the lattice. The question is then to know if this phonon interaction can overcome 

the electronic repulsion. This is material dependent and that explains why some materials 

are not superconducting at any temperature like copper or gold for instance. 

 

Figure 9 a) Condensate of Cooper pairs of size 𝜉, the coherence length of the superconductor. 

b) Temperature dependence of the superconducting gap ∆ deduced self-consistently from 
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the BCS theory. 

In the following paragraph, we will go quick on the mathematical resolution of the problem, 

only emphasizing the important results for the following chapters, especially for chapter 3. 

The Hamiltonian in the presence of an interaction between electrons of momentum 𝒌 and 

𝒌′, 𝑉𝒌𝒌′ is: 

𝐻 = ∑𝜉𝒌𝜎𝑐𝒌𝜎
† 𝑐𝒌𝜎

𝒌𝜎

+
1

𝑁
∑𝑉𝒌𝒌′𝑐𝒌↑

† 𝑐−𝒌↓
† 𝑐−𝒌′↓𝑐𝒌′↑

𝒌𝒌′

   2.4 

Here, 𝑐𝒌𝜎
†

creates an electron with momentum 𝒌 and spin 𝜎. The first term is the kinetic energy 

one (chemical potential 𝜇 included) while the second is the interaction part. It describes the 

destruction of a Cooper pair followed by the creation of another one. This term is the one 

that needs to be approximated to find the energies of the system. We perform a mean-field 

approximation on this term: 

〈𝑐𝒌↑
† 𝑐−𝒌↓

† 𝑐−𝒌′↓𝑐𝒌′↑〉 ≈ 〈𝑐𝒌↑
† 𝑐−𝒌↓

† 〉𝑐−𝒌′↓𝑐𝒌′↑ + 𝑐𝒌↑
† 𝑐−𝒌↓

† 〈𝑐−𝒌′↓𝑐𝒌′↑〉 − 〈𝑐𝒌↑
† 𝑐−𝒌↓

† 〉〈𝑐−𝒌′↓𝑐𝒌′↑〉 2.5 

Setting what we call energy gap for a reason that will appear later  

Δ𝒌 =
1

𝑁
∑ 𝑉𝒌𝒌′〈𝑐𝒌′↑

† 𝑐−𝒌′↓
† 〉𝒌′ , one gets: 

𝐻 = ∑𝜉𝒌𝜎𝑐𝒌𝜎
† 𝑐𝒌𝜎

𝒌𝜎

− ∑(𝛥𝒌

𝒌

𝑐𝒌↑
† 𝑐−𝒌↓

† + 𝛥𝒌
∗𝑐−𝒌↓𝑐𝒌↑) + ∑𝛥𝒌〈𝑐𝒌↑

† 𝑐−𝒌↓
† 〉

𝑘

   2.6 

It is now possible to diagonalize this Hamiltonian thanks to a Bogoliubov transformation 

introducing the fermionic operators 𝛾𝒌𝜎related to the former by: 

𝑐𝒌↑ = 𝑢𝒌
∗𝛾𝒌↑ + 𝑣𝒌𝛾−𝒌↓

†
 

  2.7 

𝑐−𝒌↓
† = 𝑢𝑘𝛾−𝒌↓

† − 𝑣𝒌
∗𝛾𝒌↑   2.8 

The fermionic commutation relations impose : |𝑢𝑘|
2 + |𝑣𝑘|

2 = 1. Injecting this in the 

Hamiltonian, one gets: 

𝐻 = ∑𝐸𝒌𝛾𝒌𝜎
† 𝛾𝒌𝜎

𝒌𝜎

+ 𝐸0   2.9 

With 𝐸𝒌 = √𝜉𝒌
2 + |Δ𝒌|

2 and 𝐸0the energy of the ground state. From this final expression for 

the energy of the system, one finds back the existence of the superconducting gap. Indeed, 

even at the Fermi level where 𝝃𝒌 = 𝟎, the energy necessary to create a quasiparticle is 

𝟐𝚫𝒌 due to the existence of a gap of size 𝚫𝒌. There are no excited states lower in energy 

than this gap and it will have huge consequences on transport as we will see in chapter 3. 

This result is plotted in Figure 9c. It is possible to find the temperature dependence of this 

gap self-consistently. This result is plotted in Figure 9c. Formulae 2.7 and 2.8 tell us about 

the nature of these quasiparticles which are a mixture of electron and hole. They are the 

excitations from the ground state |𝜓𝐵𝐶𝑆⟩ made of condensed Cooper pairs that can be 
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written from the vacuum state |0⟩ (no electron):  

Therefore, they can be described by a vector (𝑢
𝑣
) where u (v) is respectively the amplitude of 

the quasi-electron (quasi-hole) component.  

BCS theory shed light on the microscopic origins of superconductivity, described its ground 

state that can conduct current with Cooper pairs without dissipation and its elementary 

excitations. This theory has known a lot of successes describing superconductors until the 

appearance of higher Tc superconductors whose properties did not perfectly match the BCS 

predictions. 

2.1.2 More exotic superconductivity and YBCO 

2.1.2.1 Different symmetries for the superconducting gap 

Although the concept of Cooper pairs remains true for all superconductors, the electron-

phonon interaction responsible for the superconductors at the time cannot explain that 

other materials like YBCO are superconducting since the interaction is too weak at least if 

there is no other interaction at stake [20]. Moreover, both non-phase-sensitive and phase-

sensitive measurements have shown evidence for a more exotic superconducting order 

parameter [21].  

 

Figure 10 a) Colorplot in the 2D momentum space of the amplitude and phase of the s-wave 

superconducting order parameter. b) Same for a d-wave superconductor (𝑑𝑥2−𝑦2). The purple 

regions correspond to a positive phase while the yellow ones correspond to a negative phase. 

For |𝑘𝑥| =  |𝑘𝑦|, the gap closes at what we call nodes. 

For conventional s-wave superconductors, the gap ∆ is an isotropic complex number 

whose amplitude and phase do not vary in the reciprocal space as shown on the color 

|𝜓𝐵𝐶𝑆⟩ = ∏ (𝑢𝒌 + 𝑣𝒌𝑐𝒌↑
† 𝑐−𝒌↓

† )|0⟩

𝒌=𝒌𝟏,…,𝒌𝑴

   2.10 
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plot of Figure 10a. On the contrary, for d-wave superconductors, the amplitude and 

phase of ∆ depend on 𝒌⃗⃗  and some propagation directions experiments have no gap at all. 

∆ writes (with 𝑎 the in-plane constant): 

As we will see in chapter 3, this anisotropy of ∆ will have huge consequences on the transport 

properties at the interfaces with other materials. To be noticed, p- and f-wave order 

parameters also exist [22,23].  

2.1.2.2 YBCO, a d-wave high Tc superconductor 

 

Figure 11 a) Unit cell of YBCO. Cuprates all have the 𝐶𝑢𝑂2 planes, which, in the case of 

YBCO, is the layer where superconductivity happens. Taken from E. Stilp et al., Sci. Rep. 4, 

6250 (2014).  b) Superconducting critical temperature as a function of the oxygen 

stoichiometry for YBCO. We can see the higher critical temperature occurs for an oxygen 

stoichiometry around 6.9. Taken from Liang et al., Phys. Rev. B 73 (2006). 

In this thesis, I used as the main superconducting material YBa2Cu3O7−δ (YBCO). Here, 𝛿 

corresponds to the missing oxygen in the crystal structure. YBCO is an oxide that has a 

perovskite-like structure as shown in Figure 11a [24]. Two important features in this stack 

explain the properties of YBCO. The CuO2 layer covering the a-b plane is thought to be the 

layer where superconductivity develops itself as it is common to all the superconducting 

cuprates. The other one is the CuO chain along the b-direction, where there are oxygen 

vacancies. This chain acts like a reservoir for extra charge carriers, more or less filled 

depending on the stoichiometry in oxygen. As the graph in Figure 11b exhibits, the 

stoichiometry of oxygen has strong implications on the superconducting properties of 

YBCO [25]. Here, the Tc of YBCO is plotted as a function of the stoichiometry of oxygen. 

While its optimum content in oxygen (𝛿 = 0.08) gives a Tc equal to 92K, for 𝛿 larger than 0.7, 

YBCO is no more superconducting. 

Table 1 provides the main superconducting properties of optimally doped YBCO (Tc at 92K) 

at zero temperature. There is a clear anisotropy between the parameters in the ab-plane and 

those along the c-axis. As shown in this table, the superconducting coherence length 𝜉 of 

∆(𝑘⃗ ) = ∆0(𝑐𝑜𝑠 𝑘𝑥𝑎 + 𝑐𝑜𝑠 𝑘𝑦𝑎)   2.11 
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YBCO is in both cases small compared with s-wave superconductors like Al (1600nm) [26] 

and is much smaller than the quasiparticles mean free path (250nm at 15K [27]). YBCO can 

therefore be considered as a clean superconductor. An important point for the following is 

the very large values of 𝐵𝑐1 and 𝐵𝑐2. In our experimental setup, the maximum magnetic field 

is 9T, as a consequence, the variations in the measurements due to the magnetic field will 

not come from a decrease in the superconducting properties of YBCO itself.  

 

Table 1 Properties of optimally doped YBCO at zero temperature for the two directions of 

transport (in the ab-plane and along the c-axis). The magnetic fields are considered 

perpendicular to the direction mentioned in the table. 

In addition to superconductivity, YBCO and more generally cuprates possess very rich and 

complex phase diagrams with for instance, depending on the doping and the temperature, 

an antiferromagnetic phase or a charge density wave phase [28]. These properties are not of 

interest to this thesis and will not be further detailed here.  

2.1.3 Applications of superconductors  

Now we have described both low-Tc and high-Tc superconductors, let us see some 

applications of superconductivity. 

2.1.3.1 Superconductors as lossless current carriers 

The first property of superconductors we can think of for applications is their ability to 

convey current without electrical resistance. This is already used for the electrical grid [29] in 

some places in the world. Although it is a bit harder to implement due to the cryogenic issue 

compared with usual high voltage transmission lines, superconducting lines have multiple 

advantages like the absence of losses even over long distances and smaller wires.  

This absence of resistance is also necessary when one deals with high currents to generate 

high constant magnetic fields. Usual copper coils need to be cooled down by a refrigerated 

water circuit to safely reach magnetic fields around 1T Tesla and dissipate a lot of energy in 

Joule heating. On the contrary, superconductors can carry large currents below their critical 

density current without heating and loss. In the case of superconducting coils, type II 

superconductors have to be used to sustain a high magnetic field. However, vortices will 

form and the currents in the coil make them move. This motion dissipates energy and the 

superconductor has a finite resistance [17]. To avoid this, vortices have to be pinned on 

defects [30]. The larger is the pinning potential, the larger can be the current going through 

the wire without resistance. As we will see in chapter 4, I will make use of a superconducting 

magnet to apply magnetic fields up to 9T. 
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2.1.3.2 Josephson junction as a building block for superconducting electronics 

A superconductor is not only a perfect conductor, it is a macroscopic quantum condensate 

of Cooper pairs that has a definite quantum phase. To be rigorous, the uncertainty around 

the value of this phase is related to the uncertainty over the number of Cooper pairs in the 

condensate since they are canonical conjugate quantities. However, since there is a huge 

number of particles in the condensate, the number of Cooper pairs and the phase can most 

of the time be considered as semi-classical variables. 

A Josephson junction is made of two superconductors separated by a region that can 

be either a thin insulating barrier (S-I-S for Superconductor-Insulator-

Superconductor), a normal metal or a good conductor in general (S-N-S), a 

ferromagnet (S-F-S) or a constriction (S-c-S),… An example of a Josephson junction is 

shown in Figure 12. Josephson predicted in 1962 [31] that even at zero voltage a current 

could emerge from a difference of phases between the two superconducting electrodes (𝜑1 

and 𝜑2)  due to the quantum tunneling of Cooper pairs from one superconductor to the 

other. He established two formulae describing the so-called DC and AC Josephson effects:  

Here, 𝐼𝑠 is the supercurrent, 𝐼𝑐 is the maximum critical current and 𝛾 = ∆𝜑 −
2𝜋

𝜙0
∫𝐴 . 𝑑𝑠⃗⃗⃗⃗  is the 

gauge invariant phase difference between the two superconductors with the contour taken 

from one electrode to the other. ∆𝜑 is the phase difference, 𝜙0 is the quantum of flux and 𝑉 

is the voltage across the junction. In chapter 3, we will give a demonstration of the Josephson 

effect using the concept of Andreev bound states. 

 

Figure 12 a) Scheme of a Josephson junction with the two macroscopic wavefunctions 1 and 

2 and the energies 𝑈1 and 𝑈2 of each side. b) Electronic representation of a Josephson 

junction with the RCSJ model. 

Josephson’s intuition was early confirmed by experiments [32] and since his discovery, many 

𝐼𝑠 = 𝐼𝑐 𝑠𝑖𝑛 𝛾 
  2.12 

𝑑𝛥𝜑

𝑑𝑡
=

2𝑒𝑉

ℏ
 2.13 
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applications have emerged as we will see in the next sections. A Josephson junction is a non-

linear electrical component and as soon as we have a non-zero voltage across the junction, 

the Josephson relations have to be completed to take into account the capacitive effect 

between the two electrodes and the dissipative part of the current due to quasiparticles. We 

therefore adopt a widely used model called RCSJ model for resistively and capacitively 

shunted junction [33]. These effective parameters can be tuned by changing the geometry 

or the materials of the Josephson junction. Two main cases of Josephson junctions are 

encountered: the underdamped and overdamped junctions. 

Illustrations of both behaviors are shown in Figure 13 [34]. The behavior in a corresponds to 

an underdamped junction. This is usually the case for SIS junctions with large capacitance 

and resistance. The IV curve is hysteretic with different paths depending on the direction we 

sweep the current. When starting at zero current, the voltage will remain 0 until the current 

reaches 𝐼𝐶 , and will then jump to a finite value. But when decreasing from large values of the 

current, the voltage will jump at a lower current 𝐼𝑅 . The behavior in b corresponds to the 

opposite case of overdamped junctions, encountered with SNS junctions with lower 

resistance and capacitance. Here, there is no hysteresis and no jump of the voltage.     

 

Figure 13 Experimental measurements of a) a tunnel SIS junction giving rise to an 

underdamped behavior (large resistance and capacitance in the RCSJ model) and b) of a 

weak link SNS junction giving an overdamped behavior (low resistance and low capacitance). 

Figures taken from Advanced Lab course at Walther–Meißner–Institut. 

Josephson junctions show a particular response in the presence of an external magnetic field 

similar to what happens with an electromagnetic wave on a slit, resulting in a Fraunhofer 

pattern on a screen. Likewise, the magnetic field causes a similar diffraction pattern of the 

critical current plotted as a function of the magnetic flux with nodes at every quantum of 

flux, Φ0 =
ℎ

2𝑒
 , present in the Josephson junction area (see Figure 14). The magnetic flux 

penetrating the junction causes an inhomogeneity of the local value of the supercurrent (as 

shown in the insets of Figure 14 for two values of the flux Φ0 and 
3

2
Φ0), giving rise to 

oscillations of the total supercurrent.  
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Figure 14 Fraunhofer pattern of a rectangular homogeneous Josephson junction. The 

normalized critical current is plotted as a function of the magnetic flux normalized by the 

quantum of flux. The modulation of the critical current is explained by the two schemes 

representing the local critical current as a function of the position along the width of the 

junction. Figure inspired by Tinkham, Introduction to Superconductivity, Second Edition 

(1995). 

Josephson junctions are the essential components of superconducting electronics or in the 

fast-growing field of quantum computing [35]. We will see in the following how it is used in 

SQUIDs and SQIFs. 

2.1.3.3 Superconducting QUantum Interference Device (SQUID) 

A SQUID is a superconducting interferometric loop made of two Josephson junctions 

in parallel as pictured in Figure 15. The working principles of this component are the 

Josephson effect and the quantification of the magnetic field. At fixed current 𝐼, the presence 

of a magnetic field creates a phase gradient of the superconducting phases on both sides 

of the superconducting loop. The Josephson effect translates this into a periodic response 

with respect to the enclosed flux inside the loop as shown in Figure 15b [17]. SQUIDs are 

already used for detecting tiny magnetic fields. Usually, SQUIDs are biased with a higher 

current than the critical current of the junction and a magnetic field is applied to operate 

with the best sensitivity when the slope of voltage with respect to the flux is maximum. 

SQUIDs allow the measurement of very low magnetic fields and are promising to measure 

tiny magnetic fields (~10−13T) produced by organs like the brain [36]. Unfortunately, 

maintaining the SQUID at the best operating point requires electronic feedback loops that 

limit the frequency of operation of the device and add some noise, detrimental for very low 

field measurement. Moreover, the periodicity of the signal makes it difficult to operate in 

case of abrupt change of magnetic field enough to jump one or several periods.  
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Figure 15 a) Scheme of a SQUID made of two Josephson junctions with the barriers 

highlighted in yellow and the superconducting tracks in purple. b) Evolution of the voltage 

measured at constant current bias with respect to the enclosed flux normalized by 𝜙0. 

Another promising sensor also based on superconducting Josephson junctions is the 

Superconducting Quantum Interference Filter (SQIF). A SQIF is a 1D or 2D array of SQUIDs 

with each SQUID having different loop areas. A scheme of a 1D array of SQUIDs is presented 

in Figure 16b [37]. The individual voltage response of each SQUID is calculated in a and the 

sum of the contributions of all these SQUIDs is given in c. Compared with the periodic 

response of individual SQUIDs, here, the response is no longer periodic but has a sharp 

response between zero field and the first oscillations. A DC field is applied to the SQIF in 

order to operate at the maximum sensitivity and where the response is linear. It allows to 

measure very small signals down to ~10−15T and since there is no resonance needed, it can 

measure a very broad range of frequencies with a single device on a chip. The reasonable 

size as shown on Figure 16e of the device and the possibility to use a high Tc superconductor 

make it easy to cool down and embark for sensing in remote applications. A small part of a 

SQIF is given in Figure 16d. The superconductor is YBCO, the same as I used during my PhD 

except here, it was grown on sapphire to be compatible with RF applications. 

In this general introduction about superconductivity, I have addressed some of the main 

theoretical concepts that will be very useful in the following chapters, presented the 

superconductor I used all over my PhD, YBCO, and finally given some of the multiple 

applications of superconductors. Now, I will pursue with the other component of my devices 

that are the 2D materials. 
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Figure 16 a) Numerical calculation of the voltage against the magnetic field for each SQUID 

of the SQIF shown in b). b) Scheme of the SQIF, the array of SQUIDs of different loop areas 

considered in a). c) Resulting voltage response of the SQIF against the magnetic field. d) A 

microscope image of a part of SQIF. e) Image of an antenna made with a SQIF for sensing 

applications. Figures taken from R. Pawlowski, PhD thesis (2019).  

2.2 2D-MATERIALS 

First, let us give a definition of a 2D material. It is a crystalline material made up of a single 

or few layers atom and in which the in-plane inter-atomic interaction are much stronger than 

the out-of-plane ones [38]. They are also very often called Van der Waals (VdW) materials, 

especially when they are made of a larger number of layers stacked (identical or not). In the 

following section, I will first introduce graphene. Then, I will describe the transition metal 

dichalcogenide family, especially molybdenum disulfide, and finally I will quickly review the 

methods of growth and how they allow for new applications. 

2.2.1 Graphene and its properties 

Graphene is the first 2D material that have been produced and characterized as a 2D 

material. Its discovery [39] after the successive exfoliation of graphite with the now famous 

scotch tape method granted its inventors a Nobel Prize since it opened an immense field of 

research. 
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2.2.1.1 Band structure, dispersion relation, and chirality 

 

Figure 17 a) Graphene honeycomb structure in real (left) and reciprocal (right) space. b) 

Graphene band structure with a zoom on one of the two Dirac cones. 

Graphene has a honeycomb lattice which is made of two translated triangular lattices 

(lattices A and B) as shown on the left side of Figure 17a. In reciprocal space, it gives the 

same structure with two lattices with generating vector 𝐾⃗⃗  and 𝐾′⃗⃗⃗⃗  (see right side of Figure 

17a). The band structure of graphene has been calculated with a tight binding method by 

Wallace in 1947 [40] and its energy dispersion is: 

Where 𝑡 is the nearest neighbour hoping term, 𝑎 is the inter-atomic distance which is around 

142pm and 𝑘⃗  is the electronic wavevector. This energy dispersion in the first Brillouin zone 

is plotted in Figure 17b and the two bands touch in six points (only two inequivalent points 

𝐾⃗⃗  and 𝐾′⃗⃗⃗⃗  called Dirac points) where it forms cones with a linear energy dispersion. These 

cones are called Dirac cones, a term borrowed from high-energy physics since particles 

obeying the Dirac equation have a linear energy dispersion. Indeed, the linearization (valid 

up to 1eV) of equation 2.14 gives: 

With 𝑣𝐹 the Fermi velocity in graphene which is around 1 × 106m/s. This linear energy 

dispersion, similar to the one of photons in vacuum, provides high-energy physics 

properties to the quasiparticles in graphene since they obey the massless Dirac 

equations close enough to the Dirac points [41]: 

Where 𝜎  are the Pauli matrices and 𝐾 (𝐾′) corresponds to the valley index (one of the two 

inequivalent cones) and 𝐴 (𝐵) stands for the sublattice. The stationary solutions to this 

equation are chiral meaning their momentum and their sublattices A or B (called pseudospin) 

are locked together so that charge carriers in graphene have a definite pseudospin direction, 

𝐸(𝑘⃗ ) = ±𝑡 |1 + 𝑒𝑖
𝑎√3
2 (𝑘𝑥+√3𝑘𝑦) + 𝑒𝑖

𝑎√3
2 (−𝑘𝑥+√3𝑘𝑦)|   2.14 

𝐸(𝑘⃗ ) = ±ℏ𝑣𝐹|𝑘⃗ |   2.15 

𝑖
𝜕𝛹

𝜕𝑡
= −𝑣𝐹𝛼 . 𝛻⃗ 𝛹, with 𝛹 = (

𝜓𝐾𝐴
𝜓𝐾𝐵
𝜓𝐾′𝐵

−𝜓𝐾′𝐴

) and 𝛼 = (0 𝜎 
𝜎 0

) 
  2.16 
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parallel or antiparallel to the direction of motion.  

2.2.1.2 Klein tunneling 

 

Figure 18 Illustration of the Klein tunnelling with an electron, keeping its chirality all along 

and as a consequence, being transmitted perfectly towards a potential barrier of width 𝐷 

and height 𝑉0. Inside the barrier, the electron is converted into a hole of same chirality. On 

the scheme, the initial and final Fermi level is at the Dirac points but it would be the same 

with a finite doping. 

A direct consequence of the chirality of the charge carriers is the Klein tunnelling [42–44], 

this property of relativistic quantum particles to be transmitted across a potential barrier of 

any width and thickness. This process is pictured in Figure 18 where we see that an electron 

of a given chirality won’t be reflected by a potential barrier but be transmitted as a hole that 

will then be transmitted again as an electron on the other side of the barrier. In chapter 6, 

we will study a similar situation except on the left-hand side, the graphene will be proximized 

by a d-wave superconductor.  

2.2.1.3 Electronic properties 

The Dirac physics of the charge carriers also provides them with remarkable transport 

properties. Indeed, their relative immunity to scattering grants them a very high mobility. 

This refers to the ability of a charge to move through the material as an electric field is 

applied. The first measured mobility was already around 10000 cm2/V. s [39] for exfoliated 

graphene. Since then, the understanding of the sources of mobility loss has been 

investigated [45] and the importance of the substrate has been established [45,46] through 

surface phonon scattering. Nowadays, the highest mobilities are obtained either by 

sandwiching graphene between insulating layers of a 2D material, hexagonal boron nitride 

(h-BN) [47,48], or by suspending graphene [49]. This makes graphene one of the best 

conductors, on equal step with the best metals. 
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Figure 19 Typical evolution of the resistance as a function of a back gate voltage applied on 

graphene. For each resistance, a scheme of the filling of the Dirac cone is given. Here, the 

graphene has no intrinsic doping since the charge neutrality point (CNP) is exactly at 0V.  

Another remarkable property of graphene is the high tunability of the number of charge 

carriers through the application of a gate voltage or mechanical stress. Figure 19 illustrates 

the tunability of the Fermi energy with a gate voltage. It does not only change the number 

of charge carriers but also their nature going from hole transport (p-doped graphene) at 

negative voltage to electron transport (n-doped graphene) at positive voltage. Here, in the 

absence of intrinsic doping, the charge neutrality point (CNP) where the Fermi level is exactly 

at the Dirac points is at zero gate voltage. It manifests by a much larger value of the 

resistance. Even for ideal graphene, this resistance doesn’t go to infinity since the minimum 

conductivity of graphene is of the order of 
𝑒2

ℎ
. 

Those electronic properties allow observing the quantum Hall effect [50] at room 

temperature, a phenomenon that arises from the quantification of the orbital of the electrons 

in the presence of a magnetic field. The system then becomes insulating in the bulk but 

conducting on the edges. Finally, the transverse resistance is quantized and is equal to: 𝑅𝑥𝑦 =
ℎ

𝑒2𝜈
 , where 𝜈 is a factor that can take either integer (𝜈 = 1, 2,…) or fractional values (𝜈 =

1

3
,
2

5
,
3

7
, …) corresponding respectively to integer quantum Hall effect and fractional quantum 

Hall effect [51]. The peculiar properties of graphene are also at the origin of many 

applications we will describe in the next subsection.  

2.2.1.4 Applications 

The very high carrier mobility of graphene, up to ~106cm2/V. s, and its high carrier velocity 

makes it attractive for high-speed electronics. Moreover, graphene is a 2D material with a 

thickness of one single atom which is the ultimate advance in miniaturization. Finally, it is 
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also very flexible and robust. All these pros justify the use of graphene for RF 

transistors [41,52]. As shown in Figure 20c, graphene RF transistor [52] can reach high cut-

off frequencies (~300GHz). To obtain these results, the researchers used graphene for its 

very high mobility and optimized the gate coupling with a self-aligned nanowire depicted 

with an artist's view and a side-view scheme in Figure 20a and b. Indeed, conceiving a gate 

for graphene applications is tedious because the approach has to be very soft to avoid 

damaging graphene but at the same time to produce high-quality dielectrics.  

 

Figure 20 a) Artist view of a graphene RF transistor with a self-aligned nanowire gate made 

Co2Si coated by Al2O3. b) Side-view of the same device. c) Gain of the device as a function of 

the frequency in a semi-logarithmic scale with a cut-off frequency of ~300𝐺𝐻𝑧. Figures 

adapted from Liao et al., Nat. 467, 305-308 (2010). 

However, when it comes to transistors for logic, the semi-metallic nature of graphene, i.e. its 

lack of a band gap, limits the on/off ratio. Yet, it is possible to induce a gap in graphene by 

patterning nanoribbons by lateral confinement [53] or by using bilayer graphene [54] 

instead. In that case, a gate voltage opens a gap and allows for a larger on/off ratio. However, 

in both cases, the creation of the gaps goes with a decrease in mobility. We will see in the 

next subsection that heterostructures made with different 2D materials can help improve the 

performances. 

Graphene not only has remarkable electronic properties but also very interesting optical 

properties. Since graphene is gapless, it absorbs light from the near-infrared to the visible 

part of the spectrum. Though one atom thick, it still absorbs around 2% of the light and its 

high mobility guarantees fast dynamics making it very interesting for photodetector 

applications [55] among others. In Figure 21, a graphene photodetector is depicted in the 
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inset with typical IV curves in the presence and absence of a DC light source in a quasi-short-

circuit configuration. The photoelectric effect creates an electron-hole pair that separates 

with each going in opposite directions creating a photocurrent.  

 

Figure 21 Example of IV curves of a photodetector in the presence (red squared line) and 

absence of light (black squared line). Figure taken from Xia et al., Nature Nanotech 4, 839–

843 (2009). 

 

Figure 22 a) Zoomed microscopic image of a spintronic device with on the left the spin 

injector which is made of an electrode of cobalt (a ferromagnet) and a thin layer of alumine 

as a tunnel barrier with graphene. On the other side, the analyzer is built the same way. The 

graphene channel in the middle (2𝜇𝑚-long) conveys spin from one side to the other. b) Large 

view of the device with the gold contact pads. c) Magnetoresistance measurement with the 

two peaks (~1%) occurring when the injector and analyzer are in two opposite magnetic 

configurations. Figures taken from Dlubak et al., Nature Phys 8, 557–561 (2012). 
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Last but not least, I would like to briefly talk about the use of graphene for spintronic 

applications [56]. Indeed, backscattering is strongly suppressed in graphene thanks to its 

band structure. Due to the quasi-absence of spin-orbit coupling (SOC) in graphene, spins 

can propagate over distances around 100μm, much larger than in conventional metals. In 

Figure 22a and b [57], a lateral spintronic device is shown. It consists in two ferromagnetic 

electrodes linked to graphene with a thin layer of alumina (Al2O3) acting as a tunnel barrier. 

While going through the injector on the left side of Figure 22a, electrons with spin aligned 

with the ferromagnetic order of the cobalt electrode will be transferred preferably to the 

graphene layer. This polarized current flows in the graphene channel towards the other 

electrode called the analyzer. Depending on the ferromagnetic order in the analyzer, the 

transfer of the polarized electron will be more or less easy. That is the principle of tunnel 

magnetoresistance [58]. The two peaks in the magnetoresistance measurement at 4K 

presented in Figure 22c correspond to opposite polarization of the injector and analyzer and 

show spin information is conserved all along the lateral graphene channel.  

We will now review some of the 2D materials especially Molybdenum disulfide (MoS2) that 

were discovered right after graphene. 

2.2.2 The wave of new 2D materials and their variety 

The discovery of graphene by exfoliation in 2004 [39] unleashed the field of 2D materials (or 

Van der Waals) materials. Among them, a family of compounds called transition metal 

dichalcogenides (TMD) is particularly interesting. In the first part, I will shortly describe this 

family, then I will present molybdenum disulfide (MoS2) I used extensively during my PhD, 

and finally, I will briefly give examples of early applications of this material.  

2.2.2.1 The transition metal dichalcogenides (TMD) (MX2) 

Before describing the structure, TMD (MX2) materials are defined by their compounds. The 

M in the formula stands for a transition metal as shown in the periodic table of elements in 

Figure 23a. The number of metals partly explains the diversity of behavior of TMDs from 

semiconductor (MoS2, WS2) to superconductor (NbSe2) or topological insulator (WTe2). 

Three chalcogens (sulfur, selenium, and tellurium) make it possible for the final compound 

to belong to the TMD family. 

Contrary to graphene which has only one crystal structure, a TMD can have several distinct 

phases as shown in Figure 23b with different properties. For instance, for MoS2, the 2H-

phase is semiconducting while the 1T-phase is metallic [59]. These phases are not stable 

under the same conditions. For instance, in a work from my lab [60], researchers 

demonstrated that for pulsed laser deposition growth, the growth temperature of WS2 can 

change its phase. Below 500°C, it is the 2H-phase that grows while for higher temperatures, 

the 1T-phase grows instead. Even after the growth, it is still possible to change the phase of 

the TMD either by chemical treatment [59], mechanical strain [61], or laser exposure [62]. 
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Figure 23 a) Periodic table of elements with the transition metals (M) highlighted as well as 

the chalcogens (X) in orange. b) The three phases TMD can be found. The 2H phase 

corresponds to the aligned chalcogens atoms while the 1T and 1T’ phases correspond to the 

bottom chalcogen layer shifted with respect to the top chalcogen layer. The 1T’ also breaks 

the alignment along the horizontal.       

The properties of TMD are also very dependent on the number of layers. As presented 

in Figure 24 [63], density functional theory (DFT) calculations show that for bulk, four layers, 

and bilayers MoS2, the semiconducting gap is indirect while for monolayer MoS2, the gap is 

direct. This has important consequences, especially on the optical properties of MoS2. 

Finally, I would like to stress that TMDs have a strong spin-orbit coupling, stronger and 

stronger as we go down in the periodic table represented in Figure 23a since the atoms 

become heavier. The splitting of the valence band of MoS2 is around 150meV while for WS2 

it is more 400meV. 

2.2.2.2 Molybdenum disulfide (MoS2) 

Now, we introduced some generalities about TMDs, I would like to stress the properties of 

one of them, molybdenum disulfide (MoS2) [59,61,63]. The most stable phase of MoS2 at 

ambiant conditions is the 2H (trigonal prismatic polytype) pictured with 4 different points of 

view in Figure 25 [64]. A layer of MoS2 is typically 0.65nm-thick. In this phase, molybdenum 

atoms form a triangular lattice so do the sulfur atoms on the two (bottom and top) ranks 

that are perfectly aligned along the z-axis. MoS2 also exists in the 1T-phase (octahedral).  
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Figure 24 Density functional theory (DFT) calculations of the electronic band structure of 

MoS2 for various number of layers from bulk (left) to monolayer (left). Figures taken from 

Manzeli et al., Nat Rev Mater 2, 17033 (2017). 

In its 2H-phase, MoS2 is a semiconductor (metallic in the 1T-phase). As with the other TMD, 

its properties depend on the number of layers. For the bulk material, its bandgap is indirect 

with a value of 1.29eV while for monolayer MoS2, it is direct and experimentally measured 

at 2.16eV [63]. The theoretical evolution of its band structure with the number of layers is 

depicted in Figure 24, DFT calculations usually give satisfactory results except concerning 

the exact values of the gaps. Moreover, it has been shown both theoretically and 

experimentally that this gap can be tuned with the application of a gate voltage [65,66]. 

 

Figure 25 Monolayer MoS2 in its 2H phase from 4 different points of view. Molybdenum 

atoms are colored in blue while the sulfur atoms are in yellow. 
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The charge carriers in MoS2 have a good mobility that can reach ~102cm2/V. s at room 

temperature. DFT calculations have shown that the intrinsic limit due to phonons is 

~410cm2/V. s [67], the extrinsic losses of mobility coming from impurities. However, at lower 

temperatures, the intrinsic limit increases a lot up to ~2500cm2/V. s. Several studies [68,69] 

have shown how important the substrate or capping of MoS2 is to improve the mobility. 

 

Figure 26 a) Standard process of patterning MoS2 without particular care. b) Improved 

process that first protects the MoS2 layer right after the deposition with a 1𝑛𝑚-thick film of 

alumina (Al2O3) before lithography and etching steps and that passivates the layer in the 

end with a thicker film of alumina (10𝑛𝑚). c) Microscope image of a long device (𝐿𝐶𝐻 =

12𝜇𝑚) made of monolayer MoS2. d) Drain-source current (𝐼𝐷𝑆) against the back gate voltage 

(𝑉𝐵𝐺) at a fixed source-drain bias 𝑉𝐷𝑆 = 5𝑉 for a protected device and a protected and 

passivated device. (inset) Relative four-probes field-effect mobility in the three processes: 

standard, only protection and protection+passivation of the MoS2 layer. Taken from Brus et 

al., Adv. Electron. Mater., 7, 4 (2021). 

Figure 26, taken from Ref. [69] carried out in my lab, illustrates a method to ensure an 

improvement of the mobility even after several processing steps. In a, a standard process of 

lithography and then etching of monolayer MoS2 is shown in comparison with b, where the 

monolayer is first protected by a thin layer of alumina before being exposed to any 

contaminants. After the fabrication steps, MoS2 is passivated by being covered with 10nm 

of alumina. Figure 26c shows the final device, a long monolayer MoS2 channel, and the 

electrical configuration for the measurement presented in Figure 26d. This plot represents 

the drain-source current (𝐼𝐷𝑆) as a function of the back gate voltage (𝑉𝐵𝐺) for a given bias 
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source-drain voltage (𝑉𝐷𝑆). From this graph, it is possible to deduce the threshold voltage, 

the 𝐼𝑂𝑁 𝐼𝑂𝐹𝐹⁄  ratio allowed by the semiconductor and the field-effect carrier mobility 𝜇𝑒𝑓𝑓 . 

Indeed, the conductance 𝜎 can be easily computed as 𝜎 =
𝐿𝐶𝐻

𝑊

𝐼𝐷𝑆

∆𝑉
 with 𝑊 the width of the 

channel and 𝐿𝐶𝐻 its length. Then, 𝜇𝑒𝑓𝑓 is given by: 𝜇𝑒𝑓𝑓 =
1

𝐶𝐵𝐺

d𝜎

d𝑉𝐵𝐺
 where 𝐶𝐵𝐺 is the 

capacitance of the back gate. These measurements show that the device that was both 

protected and passivated has a much larger on/off ratio (~106) compared with the one that 

has only been protected (~104). The inset provides the comparison of the extracted 

mobilities, the protected and passivated devices having a mobility 40 times larger 

(20cm2/V. s on average but up to 35) than a device made with standard methods (see Figure 

26a) and 4 times larger than the only protected devices. This study justifies the development 

of protection and passivation methods. The encapsulation of MoS2 between h-BN is also a 

promising road for improved electronic performances [70]. 

The lack of inversion symmetry of the 2H-phase results in a spin-splitting ~𝟎. 𝟏𝟓𝐞𝐕 of 

the valence band of MoS2 due to spin-orbit coupling (SOC) [41]. The hexagonal lattice 

of MoS2 provides it two inequivalent points 𝐾 and −𝐾 related by time-reversal symmetry. In 

the case of monolayer MoS2, the band gap is direct and is located at the 𝐾 and −𝐾 points. 

Therefore, the low-lying excitations can be attributed to an index whether they are from the 

𝐾 or −𝐾 points, called valleys. This index is a quantum number called valley pseudospin 

which opens the field of valleytronics. In the same way as spintronics, valleytronics can be 

used to store and transfer information. In TMDs, SOC brings a new interaction into 

balance since the spin and valley pseudospin are now coupled. For instance, this can be 

used to manipulate spin with the valley pseudospin. 

Finally, the phase diagram of MoS2 has revealed a superconducting dome for high 

doping and low temperature as depicted in blue/green on Figure 27c [71]. The device is 

pictured in Figure 27a. It is a Hall bar with both a back (solid) and top (ionic liquid) gate. This 

strategy with two gates allows to access a wide range of carrier densities. Figure 27b shows 

normalized sheet resistance vs temperature for various back and top gate voltages. For a 

given top gate voltage (𝑉𝐿𝐺 = 4, 4.5,5, 5.5, 6V), the back gate voltage is varied from 2V to 

−4V. The superconducting transition temperature increases as we increase 𝑉𝐿𝐺 from 4 to 

5.5V but decreases for 𝑉𝐿𝐺 = 6V. We then reached a maximum critical temperature around 

5.5V. This is clearer by looking at the colormap in Figure 27c since a green/blue region of 

very low sheet resistance can be distinguished with a critical temperature that reaches a 

maximum around 10K for a value of the electron density 𝑛2𝐷 ≈ 1.3 × 1014cm−2. 

Though MoS2 was first used as a lubricant, its 2D form has already found some applications 

as transistors [69], photodetectors and solar cells [59,64] because of its direct band gap but 

its still low-quality electronic properties limit its development. However, one of the 

applications is to couple its compatibility with band-engineering with the high-quality 

electronic properties of graphene. For instance, it is possible to realize transistors [72] or 

solar cells [73] with a combination of the two materials. In the final subsection, I will quickly 

review the current methods used to obtain 2D materials and how their evolution may allow 

for larger applications.  
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Figure 27 a) Scheme of the device with a Hall bar geometry. The current is injected between 

the source (S) and drain (D) contacts while the voltage is measured between 𝑉1 and 𝑉2 (or 𝑉3 

and 𝑉4). There is a back gate with voltage 𝑉𝑆𝐺 and a top gate (𝑉𝐿𝐺). b) Normalized sheet 

resistance vs temperature measurements for various back and top gate voltage. c) 2D 

colormap of the logarithm of the resistance as a function of the 2D electron density 𝑛2𝐷 (x-

axis) and the temperature (y-axis). Figures taken from Ye et al., Science 338, 1193 (2012). 

2.2.3 New growth methods for more applications 

2D materials are often materials that are present in bulk form as a stack of layers coupled 

between each other by Van der Waals (VdW) forces. These forces are weak compared with 

covalent or ionic bonds and it is then easy to exfoliate a few layers from the bulk material. I 

will start with the method to isolate VdW materials by the exfoliation of bulk materials and 

then review the growth methods that start from scratch. 

2.2.3.1 Progress in exfoliation and transfer 

In 2004, Geim and Novoselov opened an entire field of research with the first isolation and 

transport study of graphene [39] for which they were awarded the 2010 Nobel Prize. They 

developed a cheap and easy method to exfoliate graphene from a bulk crystal of 

graphite. It is represented in Figure 28a. This method uses scotch tape and the fact that 

graphene, like many 2D materials, has very strong chemical bonds inside its layers but its 

layers are weakly connected to each other by Van der Waals interactions. This allows to 

progressively make the graphite thinner and thinner as we exfoliate a random number of 

layers until finding monolayer graphene (or bilayer, trilayer,… as desired). 

Liquid phase exfoliation [74] also starts from graphite (Figure 28, here from high-quality 

powder. The method relies on the interaction between graphene layers and a well-chosen 
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solvent. Ultrasound bath in this solvent allows the formation of flakes that can reach several 

microns and are almost free of defects. This method is now applied to other 2D materials. 

 

 

Figure 28 Schematic diagrams of: a) exfoliation, b) liquid phase exfoliation, c) thermal 

decomposition on silicone, and d) chemical vapor deposition (CVD).  Figures taken from Lee 

et al., Nanomaterials 9(2), 297 (2019). 

The thermal decomposition of silicon carbide (SiC) is a method for growing graphene (see 

Figure 28c), is compatible with the silicon technology [75], making it ideal for implementing 

devices. The high-temperature annealing of SiC (~1600°C) in an atmosphere of argon 

(~1bar) creates epitaxial layers of graphene at the surface. 

2.2.3.2 Chemical vapor deposition 

Chemical vapor deposition is a more general method [76] for growing 2D materials even if 

it has been first developed with graphene [77,78]. During my PhD, I made use of both CVD 

graphene on copper and CVD MoS2 on sapphire.  

 

Figure 29 Scheme of a typical CVD process. Figures taken from Sun et al., Nat Rev Methods 

Primers 1, 5 (2021). 

The process takes place in a chamber in the presence of gas reactants and a substrate that 
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acts as a catalyst for the further reactions. In Figure 29, the CVD process is explained in detail. 

Step a consists of the introduction of the precursor gases (depicted as blue circles) into the 

reaction chamber. Then, the precursor gases can follow two potential pathways: the direct 

diffusion through the boundary layer (step b) and the adsorption process onto the substrate 

(step c). Alternatively, the precursor gases could participate in reactions within the gas phase, 

leading to the creation of intermediate reactants (represented by green circles) and resultant 

by-products (depicted as red circles) in a gas-phase reaction sequence (step d). These 

intermediates and by-products will then deposit onto the substrate through diffusion (step 

b) and adsorption (step c). Surface diffusion and heterogeneous reactions (step e) occur on 

the substrate's surface before the emergence of thin films or coatings. Finally, the by-

products and any unreacted constituents are desorbed from the substrate's surface and are 

expelled from the reaction chamber as exhaust gases (step f). Typical CVD graphene 

processes use CH4 or C6H6 as precursors with temperatures of growth reaching ~900°C and 

are now well mastered.  

The growth of TMDs has been the subject of a lot of research [76,79–81]. The first attempts 

were mainly using solid targets that were heated with a continuous flow of gas inside the 

chamber to make the species move and deposit on the substrate (thermal vapor deposition). 

This often leads to the formation of triangles on the surface of the substrate. Later, the use 

of metal-organic species in gaseous form allowed large-scale homogeneous growth on the 

substrate (MOCVD). Lately, a group reported the growth by MOCVD of MoS2 on a thin glass 

at 𝑇~150°C [82] opening the way for flexible electronics with TMDs and low-temperature 

growth on other substrates. 

2.2.3.3 Other methods 

Other methods that already existed either to grow semiconductor or oxide films were 

pushed to their thickness limits to grow 2D materials. Molecular beam epitaxy (MBE), used 

for high precision deposition of materials with sharp interfaces, is now employed for 

the growth of TMDs [83,84] including topological insulators [85,86]. The principle of this 

method is to send beams of atoms on the substrate with a very controlled flux. The 

deposition is time intensive (~1 layer per hour for TMDs [86]) but allows for excellent 

interfaces and material quality, also due to the very high vacuum inside the chamber. For 

now, this method is the most advanced to grow heterostructures in situ with both TMDs and 

topological insulators. 

Last but not least, pulsed laser deposition (PLD), which was first dedicated to the growth of 

oxide films, is now being used for the growth of TMDs. Its principle will be described in 

chapter 4 but we will here review its advantages for the growth of 2D materials. This method 

allows for great control of the thickness of the deposited species by tuning the different 

parameters like the energy of the laser or the pulse durations. This allowed early realizations 

of 2D films of WS2 [87] and MoS2 [88]. Our lab succeeded in integrating 2D materials grown 

by PLD to spintronic devices [60,89]. These works served as the basis for the work realized 

in chapter 7. 
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2.3 MOTIVATIONS AND STATE-OF-THE-ART 

As we have seen in the last two sections, superconductors and 2D materials are two worlds 

in themselves. The aim of this thesis is to explore the boundary where we put into contact a 

high-Tc d-wave superconductor, YBCO, with other materials and especially 2D materials. In 

the following subsections, I will present the state of the art in each specific project I led 

during my PhD and the motivations I had. I will start with the proximity effect in normal 

metal thin films, especially the latest development beyond the Blonder-Tinkham-Klapwijk 

theory [5]. Then, I will focus on the induced s-wave superconductivity in graphene and letting 

the d-wave case for the beginning of the dedicated chapter. Finally, I will present works 

related to the proximity effect in MoS2. 

2.3.1 Proximity effect in normal metal thin films 

Proximity effect in normal metal thin films has been studied for a long time both 

theoretically [9] and experimentally [90]. In this subsection, I will not be exhaustive but try to 

provide the milestones in the understanding of the superconducting proximity effect in thin 

films. The focus will be more on d-wave superconductors as my experiments deal with YBCO. 

One question that has particularly interested scientists for the last four decades is whether 

the anisotropic d-wave order parameter of YBCO can be induced in a thin metallic film by 

proximity [91–100]. Though there was already a lot of evidence for a 𝑑𝑥2−𝑦2 order parameter 

in YBCO [101], early experiments [102] with YBCO and thin films were still biased by the idea 

that a s-wave order parameter coexists with the d-wave one in YBCO. References [21] 

and [103] firmly confirmed that the only order parameter was 𝑑𝑥2−𝑦2 giving a firm ground 

for further experiments with films. Multiple paths were chosen for the experiments to probe 

the proximity effect with d-wave superconductors, each accompanied by its corresponding 

theoretical model. Let us briefly review these paths. 

2.3.1.1 STM and point contact measurements of d-wave superconductor/metallic films 

To study the proximity effect in a thin film, it is very interesting to probe the local density 

of states in the material by using a scanning tunneling microscope (STM). It was heavily 

used to directly study superconductors [104] since the single-particle density of states is 

obtained with a tunnel interface with a probe [5,105].  

Khanin et al. [106] measured a thin film (20 − 30nm) of gold grown on top of 250nm of YBCO 

(001) at 77K with STM. They achieved to observe proximity effect through the appearance 

of a gap feature in the spectrum but not everywhere on the film. Indeed, the spectra on flat 

regions are flat with no features while the spectra on regions exhibit a gap feature of variable 

width (from 2 to 20mV) as shown in Figure 30. They explained the transparency along the 

(001) direction is small and then gives a too-low induced gap, unmeasurable with their set-

up (figure a). When the surface is not flat, the tunneling from the CuO and CuO2 planes 

increases the transparency and gives a much larger induced gap (Figure 30b). However, they 

did not discuss the symmetry of the induced gap. 
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Kohen et al. [94] measured a YBCO film along the (100) direction (in-plane) with a gold tip 

point. This is not a gold film but still, they succeeded in inducing a superconducting gap in 

gold. They explained their measurements by considering a d+is order parameter. The s-wave 

component gets larger as the transparency between YBCO and gold increases. This order 

parameter would come from the inverse proximity effect with the gold tip. 

 

Figure 30 a) Differential conductance measured by the STM tip on a flat region of a gold 

layer covering a YBCO (001) film. A scheme of the tip and surface is shown in the inset. b) 

Differential conductance measured by the STM tip on a steep region of a gold layer covering 

a YBCO (001) film. The tip and surface are pictured in inset. Figures taken from Khanin et 

al., Jetp Lett. 63, 1041–1046 (1996). c) STM topographic image (100x100nm) of a YBCO (001) 

film covered by 5nm of gold. d) STM topographic image (120x120nm) of a YBCO (001) film 

covered by 5nm of gold. The white-dashed lines correspond exposed (100) facets. e) Height 

profile of the crystallite shown in c. f) Differential conductance spectra at positions on the 

blue arrow of d. 
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Sharoni et al. [98] carried out STM measurement at 4.2K of a 50nm-thick film of YBCO (001) 

covered by 5nm of gold. They first measured the STM differential conductance of a bare 

YBCO sample and observed typical V-shaped conductance with a gap of width ~20mV. They 

observed a proximity effect in the layer of gold through the observation of a gap feature of 

maximum width 6.7mV as shown on Figure 30f and depends exponentially on the distance 

to the (100) facet. The granularity of the film allowed to measure with different orientations 

of YBCO namely (001) and (100). They did not measure any anisotropy in the differential 

conductance between the two contrary to the case of bare YBCO. They concluded that the 

induced order parameter in gold shows no sign of d-wave symmetry but rather s-wave 

symmetry. 

On the theory side, Löfwander [99] used the Eilenberger equations to solve the problem of 

a d-wave superconductor in contact with a normal metal either along the (100) or (110) 

direction. He could tune the s-wave interaction in the normal region from interactive to 

repulsive (corresponding to metal like gold). He showed that indeed, the proximity effect 

along the (100) tends to decrease the density of states on the normal side but much less 

than experimentally measured. For the (100) orientation, he found a real linear combination 

of d- and s-wave inside the superconductor but a s-wave order parameter on the N-side 

due to the destruction of the d-wave order parameter by isotropic impurity scattering. 

2.3.1.2 Transport in SN or SNS junctions 

 

Figure 31 a) Simplified scheme of a SN-N-NS junction. On both sides, at the interface 

between the superconductor and the thin metallic layer acting as the bridge, there is a region 

similar as the one depicted in b). b) A Cooper pair at the interface between a normal metal 

and a superconductor. What will be the induced ∆𝑖(𝑘⃗ ) in the metal knowing the gap ∆(𝑘⃗ ) in 

the superconductor and the scattering at the interface? 
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Ultimately, the proximity effect in thin metallic layers is studied a lot for its applications in 

superconducting devices. I will focus now on this aspect since my experiments described in 

chapter 5 are transport measurements across YBCO/gold junctions as the one shown in 

Figure 31a. Studies within this geometry are quite rare for both s- and d-wave 

superconductors. Golubov and Kupriyanov [91] studied the superconducting proximity 

effect between a superconductor and a thin metallic layer (the red circle region of Figure 

31a) in the dirty limit (mean free path 𝑙 ≪ 𝜉𝐺𝐿 in the superconductor and 𝑙 ≪ 𝜉𝑁 in the metal). 

This limit allows not to consider the roughness of the interface which is smaller than the 

mean free paths. At that time, very early after the discovery of copper oxide superconductors, 

they argued that the behavior of the two kinds of superconductors should be the same in 

the dirty regime. Nevertheless, they found the value of the mini-gap formed in the 

normal region as well as its density of states. They found back the early result of 

Macmillan [107] for tunnel barrier between the superconductor and the metallic layer. It 

allowed them to compute the critical current of the SN-N-NS and SN-I-S junctions for all 

values of the transparency between the superconductor and the metal. 

As pointed by Refs. [108–110], the geometry shown in Figure 31b is different from the 

geometry in a, which has been more studied. Indeed, in a, the charge carriers in the metal 

are confined to the length between the two superconducting electrodes and the density of 

states in this metallic layer is changed due to the reflections (normal or Andreev) at the SN 

interfaces. Andreev bound states will appear for energies smaller than the superconducting 

gap of the nearby superconductor. On the contrary, in b, the charge carriers are not confined 

anymore. Volkov et al. [108] and Kopnin et al. [109] found the value of the created mini-

gap in the two-dimensional electron gas (2DEG) above a s-wave superconductor and 

showed that the critical current of Josephson with the geometry of Figure 31b can be 

expressed as a function of the tunnel coupling between the superconducting electrode and 

the 2DEG. In Figure 32, taken from Ref. [109], a scheme of a SN junction is shown in a as well 

as the computed mini-gap 𝜀𝑔 as a function of the tunneling rate between the superconductor 

and the 2DEG. In c is plotted the differential conductance of a SN junction as shown in a. 

Two features can be distinguished: first, the shape of a tunnel junction with a gap ∆ coming 

from the superconductor itself and second, a peak at zero bias coming from the interface 

between the 2DEG and the proximized 2DEG of mini-gap 𝜀𝑔. This geometry has known a 

gain of research interest recently both because of its potential use in digital superconducting 

circuits [111,112] and the development of new heterostructures with 2DEG [113,114] or 2D 

materials like graphene [115,116] and topological insulators [110,117]. However, studies 

with the same geometry but with d-wave superconductors are scarce. Golubov et al. [93] 

first showed that in the strong disorder limit, the density of states of a metallic layer 

in proximity with a d-wave superconductor is gapless and that the induced order 

parameter is s-wave. In a second article [118], they deduced the consequences on the 

transport properties of SIN junctions as well as SIS Josephson junctions. For SIN junctions, 

the expected zero bias peak (see chapter 3 and Ref. [105,119]) is smeared in the presence of 

strong disorder, and for SIS, the 𝐼𝑐𝑅𝑁 products decreased a lot, much more than with s-wave 

superconductors. A study [10], not yet peer-reviewed, combines two approaches to study 

SNS nanoconstriction of 15nm-thick gold atop YBCO. They estimated the values of the 
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induced gap in gold both with STM and transport measurement. The particularity of this 

study is to use a vicinal substrate that allows for the growth of YBCO with its c-axis inclined 

with respect to the growth direction. They argue that the orientation, with the CuO2 plane 

facing the in situ grown gold film, makes the induced gap larger and more 

homogeneous due to a better coupling. The aim of chapter 5 will be to explore another 

geometry that, up to my knowledge, has not been studied experimentally with d-wave 

superconductors. 

 

Figure 32 a) Scheme of a SN junction with the superconductor on top of a 2DEG. b) Evolution 

of the induced mini-gap normalized by the superconductor gap as a function of the 

normalized tunnel rate between the two materials. c) Normalized differential conductance 

of a SN junction in the geometry of a). Figures taken from Kopnin et al., Phys. Rev. B 84, 

064524 (2011). 

2.3.2 Proximity effect in graphene 

As the first isolated 2D material, graphene was also the first to be studied in proximity to 

superconductors.  

2.3.2.1 General results 

Soon after the discovery of graphene, a theoretical interest in the coupling of graphene with 

superconductors emerged [120–123]. The study of the Andreev reflection in graphene 

revealed a new phenomenon called specular Andreev reflection [120]. When the Fermi 

level of graphene 𝐸𝐹 is larger than the induced gap ∆, the Andreev reflection is identical as 

for normal metals and is depicted in Figure 33b. However, for 𝐸𝐹 < ∆, the gapless band 

structure of graphene makes it possible for an incident electron to undergo an Andreev 

reflection and be reflected as a hole from the valence band, as shown on Figure 33b. This is 

different from the usual Andreev reflection case : the hole generated in the valence band 

does not trace back the trajectory of the incident electron but is specularly reflected since 

the group velocity of a hole in the valence band is parallel to its wave-vector. For 𝐸𝐹 < ∆, 

there is both specular and usual Andreev reflection occurring at the interface depending on 
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the energy 𝐸 of the incident electron. However, the specular Andreev reflection is difficult to 

observe since 𝐸𝐹 has to be smaller than ∆ over the whole interface which is hard to achieve 

as in real, inhomogeneous samples, the local variations of 𝐸𝐹 can be of several millielectron-

Volt which is comparable with the superconducting gap of s-wave superconductors. 

 

Figure 33 a) Specular Andreev reflection schematized both in an energy diagram and in 

real space. This peculiar phenomenon happens only for 𝐸𝐹 < ∆. b) Same but for the normal 

Andreev reflection in graphene when 𝐸𝐹 ≫ ∆.  

After the theoretical establishment of specular Andreev reflection in graphene [120], Titov 

and Beenaker [124] calculated the critical current of SNS graphene junctions with a s-wave 

superconductor. Bhattacharjee et al. [125] computed the differential conductance of SIN 

graphene junctions in the case of s-wave superconductivity. In a completely different 

context, Mazin and Johannes [126] found that the hexagonal symmetry can bare a d-wave 

order parameter and Linder et al. [13] then extended the model to graphene proximized by 

d-wave superconductors. In their article, they provide analytical formulas to compute the 

differential conductance of s- and d-wave proximized graphene in contact with normal 

graphene.  

The first experimental results concerning s-wave superconductor/graphene heterostructures 

were published by Heersche et al. [127]. Some figures taken from their articles are shown on 

Figure 34. The device shown in Figure 34a exhibits Josephson effect as the voltage-current 

characteristics in b show. This is proved by the observation of a Fraunhofer-like pattern in b 

and Shapiro steps (not shown here). Moreover, the critical current seems to be tunable with 

an applied back gate voltage. This is confirmed by the color-plot in c where the differential 

resistance is plotted against the back gate voltage and the applied current. The critical 

current that separates the zero resistance region (presence of a supercurrent) in yellow and 

finite resistance regions in orange-red varies continuously with the back gate voltage. In 
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other words, the gate electrode modulates the proximity effect in graphene. 

 

Figure 34 a) Atomic force microscopy image of a Josephson junction with a graphene 

monolayer as the weak link. b) Voltage-current characteristics of this device at various back 

gate voltages. c) Color-plot of the differential resistance as a function of the magnetic field 

(x-axis) and applied current (y-axis)(yellow corresponds to 0 (presence of a supercurrent) and 

red-orange corresponds to finite resistances). The critical current exhibits a Fraunhofer-like 

pattern. The current is swept from negative to positive values. d) Color-plot of the differential 

resistance as a function of the back gate voltage (x-axis) and the applied current (y-axis)(the 

color code is the same as the plot in c). The current is swept from negative to positive values 

The blue line corresponds to the normal differential conductance. Figures taken from 

Heersche et al., Nat. 446 (2007). 

This result has been confirmed by many groups [128,129] with for example CVD-grown 

graphene [130] or on SiC [131]. Josephson coupling has also been observed with junctions 

with various junction lengths [132] or with a different geometry like edge-contacted 

graphene [133]. Studies of single interfaces have also been carried out to study Andreev 

specular reflection for instance, here with a bilayer graphene [134] to have less variation of 

the Fermi level around the Dirac point than with monolayer graphene. 

More and more works [134,115,116,135] these last years involve complex heterostructures 

of 2D materials stacked to create superconducting junctions. The devices are typically 

obtained by exfoliating each material and stacking them in a glove box. It allows to associate 

graphene to NbSe2, a s-wave 2D superconductor and to protect the whole heterostructures 

by h-BN. 



 

49 

2.3.2.2 Graphene/superconductor junctions with magnetic field 

Since chapter 6 will be mainly dedicated to the study of the magnetic field dependence of 

superconductor/graphene junction, I will review here the main works concerning this topic. 

Beyond the observation of a Fraunhofer-like pattern at magnetic fields close to zero (such 

as a few quanta of flux are enclosed in the junction area), experiments have been done at 

much higher magnetic fields thanks to the use of type II superconductors with large 𝐻𝑐2 

fields. In reference [136], Amet et al. succeeded in observing a supercurrent while being 

in the quantum Hall (QH) regime. Since the current in graphene can only flow on the edge 

in the QH regime, the supercurrent is then reduced a lot. They still could compare the 

differential resistance as a function of the magnetic field and gate voltage, so-called fan-

diagram, between the junction in its superconducting and normal state depending on the 

current applied (see Figure 35a and b). When a current much larger than the supercurrent is 

applied (a), the fan diagram presents the typical plateaus of the QH regime, while for zero 

DC current applied (b), superconducting pockets are still present. They showed that even in 

the QH regime, a supercurrent can flow through edge Andreev bound states.  

Kumaravadivel et al. [137] studied the effect of the magnetic field on a single interface 

between several s-wave superconductors and graphene in the classical regime (cyclotron 

radius much larger than the dimensions of the junctions). In this short review, I will only 

consider the case of NbN (∆= 1.7meV) as the superconductor. In Figure 35c, they studied 

the differential resistance spectra for different ramping procedures of the magnetic field: 

ZFC which means zero-field cooling (the sample is cooled down at zero field and the field is 

then ramped to the desired value), FC for field-cooled (the field is applied and then the 

sample is cooled down below the critical temperature) and finally DR for down-ramping (the 

sample is cooled down, then a large magnetic field is applied and finally the field is ramped 

down to the desired value). For a magnetic of 200mT, the normalized spectra are very 

different. This was confirmed by the plot of the 𝐼𝑒𝑥𝑐𝑅𝑁 product, 𝐼𝑒𝑥𝑐 being the extrapolation 

of the current with the slope at high bias and 𝑅𝑁, the normal resistance. This quantity is 

related to Andreev reflection (AR) since it accounts for the enhanced conductance due to 

AR. In Figure 35d and e, the influence of the ramping procedure of the magnetic field 

appears clearly. The researchers explained this behavior with the dynamics of vortex 

nucleation in the superconducting electrode. On the one hand, they argued that for the ZFC 

procedure, though the vortices will form in the whole superconductor, they will stay closer 

to the edge due to a more important pinning there. On the contrary for DR where the field 

decreases from a large value, the vortices will exist more easily close to the edge and then 

be less present at these edges. Finally, the FC procedure implies a more uniform distribution 

of the vortices. On the other hand, with a transmission line model (inset of Figure 35f), they 

argued that most of the transmission of electrons happens close to the edge of the 

superconducting electrode and therefore that the important value of the superconducting 

gap to consider is the one at this edge. However, the spatial average of the superconducting 

gap is decreased by the presence of vortices (normal regions inside the superconductor 

where the gap is 0). As a consequence, the location of vortices influences the transport 

across SN junctions depending if the vortices are closed to the edge or not. That’s what 

they showed in Figure 35f with the correlation between the measured gap and the 𝐼𝑒𝑥𝑐𝑅𝑁 
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product. 

 

Figure 35 a) Differential resistance against the voltage back gate (x-axis) and magnetic field 

(y-axis) for a current applied 𝐼𝐷𝐶 = 6𝑛𝐴 > 𝐼𝑐 . b) Same but with 𝐼𝐷𝐶 = 0𝑛𝐴. The numbers on 

the plot are the filling factors of each plateau. The red line corresponds to the points where 

the cyclotron radius is half of the length of the junction. It is therefore the boundary between 

the semi-classical and quantum Hall regimes. Figures taken from Amet et al., Science 352 

(2016). c) Normalized differential resistance spectra of a SN junction with an applied 

magnetic field of 200mT for three different ramping procedures (explained in the main text). 

e) Evolution of the product 𝐼𝑒𝑥𝑐𝑅𝑁 with the magnetic field for the ZFC and DR procedures. e) 

Evolution of the measured gap ∆𝑒𝑓𝑓 with the magnetic field. f) The product 𝐼𝑒𝑥𝑐𝑅𝑁 as a 

function of ∆𝑒𝑓𝑓 (inset: transmission line model to understand the magnetic field behavior of 

SNS junctions with the superconductor in blue and graphene in grey. The white-yellow circles 

are vortices in the superconducting electrode). Figures taken from Kumaravadivel et al., 2D 

Mater. 4, 045011 (2017).  
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2.3.2.3 Beyond s-wave superconductivity with graphene 

In chapter 6, dedicated to YBCO/graphene junctions, I will more precisely review the 

literature with YBCO. A few other materials with anisotropic order parameters have been 

associated with graphene but studies remain rare due to the difficulty to achieve a good 

electrical contact between graphene and these materials. To illustrate this, an early attempt 

of coupling YBCO with graphene reported tunnel contacts [138]. A scanning tunneling study 

has been carried out with graphene on top of Pr2-xCexCuO4 (PCCO) [139] and its authors 

argued that they succeeded in inducing p-wave superconductivity in graphene since 

they observed either V-shape tunneling conductance spectra, zero bias peak or split peaks 

around zero bias. 

More recently, Bi2Sr2CaCu2O8+x (BSCCO) has been used in heterostructures with graphene. 

Contrary to YBCO, BSSCO can be easily exfoliated and even the monolayer remains 

superconducting. It makes simple its association with other 2D materials like graphene. 

Ref. [140] reported transport measurements of graphene on top of BSCCO. They measured 

the flake of graphene directly on BSCCO and claimed the opening of an induced gap in 

graphene by proximity with BSCCO. Still with BSCCO, Jois et al. [141] reported Klein 

tunneling in BSCCO/graphene junctions, similarly as observed by Perconte et al. [12] with 

YBCO. This will be more thoroughly studied in chapter 6 as a preamble for my own studies 

of YBCO/graphene junctions. 

2.3.3 Proximity effect in MoS2 

Graphene has opened the way to the study of the superconducting proximity effect in other 

2D materials like TMDs. As a consequence, there are fewer works on the subject. As we will 

see, the lack of good electrical contacts between superconductors and MoS2 is a drag for 

the development of the field though interesting theoretical prospects. In the first part, I will 

review these prospects. Then, I will present some early results on vertical transport while I 

will finish with attempts to induce and propagate superconductivity in planar devices. 

2.3.3.1 Theoretical predictions 

Two properties of MoS2 are particularly interesting in a theoretical point of view. First, its 

hexagonal geometry provides it a Dirac Hamiltonian with a finite mass [41] and therefore 

exciting relativistic phenomena as we have seen for graphene with Klein tunnelling. Second, 

contrary to graphene, MoS2 has an intrinsic spin-orbit coupling that for instance causes a 

spin-splitting of the energy bands and can have incidence on the coupling with a 

superconductor.  

As for graphene earlier [13], theoreticians have computed the differential conductance 

of a SN interface between proximized MoS2 (s-wave) and normal MoS2 [15] within the 

BTK formalism. More than that, they compared it to the same calculation for gapped 

graphene. Indeed, the only difference in their Hamiltonians between gapped graphene and 

MoS2 is the presence of spin-orbit coupling in the latter. They found spin-orbit coupling in 

MoS2 enhances Andreev reflection compared with gapped graphene. Khezerlou et al. [142–
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144] studied the case where superconductivity with other symmetry than s-wave was 

induced in MoS2. They showed that the single-particle density of states in the proximized 

MoS2 remains gapless and they could compute Andreev and normal reflection coefficients 

in SN junction as well as the current phase relation of a SNS junction with MoS2 as the weak 

link and p-wave superconductors. Finally, there is a big interest in coupling superconductors 

and 2D TMD semiconductors since it was theoretically shown that this proximized system 

could give rise to unusual superconducting pairing [145]. Therefore, superconducting 

heterostructures made of MoS2 are also of great technological interest in the quest for 

non-trivial topological quasiparticles [146,147] that could serve as a basis for topological 

quantum computing. 

2.3.3.2 Vertical geometry 

 

Figure 36 a) STM topographic image of MoS2 on Pb. The scale represents 5nm. b) Another 

STM topographic image but this time with a model of the positions of the atoms of MoS2. 

The white (violet) trapezoids respectively show the Moiré pattern unit cell formed when a 

sulfur (molybdenum) atom is just above a lead atom. c) Same model but this time with a 

colormap of the differential conductance at the energy of the coherence peak. The red 

trapezoid represents the Moiré pattern unit cell coming from the modulation of the 

conductance map. d) Comparison of the differential resistance vs bias voltage between MoS2 

on lead (red dots) and a typical semiconducting MoS2 sample. Figures taken from Trainer et 

al., ACS Nano, 14 (2020).  

To observe induced superconductivity in MoS2, STM measurements at low temperatures 
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(𝑇 = 1.5K) have been carried out by Trainer et al. [148]. In this study, they deposited a CVD-

grown monolayer of MoS2 on lead (Pb). They then measured the topography of the 

heterostructures (see Figure 36a and b) as well as the differential conductance (Figure 36c). 

They identified two Moiré patterns corresponding to the exact commensurability between 

Pb and Mo atoms (violet trapezoid) and Pb and S atoms (white trapezoid). This model was 

compared with the Moiré pattern formed by the modulation of the conductance at the 

energy of the coherence peak in Figure 36c (the induced gap is homogeneous, only the 

conductance changes). They observed a shift and explained this by a periodic modulation of 

the transparency. Indeed, the transparency is itself modulated by the orbital overlaps 

between MoS2 and Pb. Finally, they observed by measuring the differential conductance as 

a function of the voltage bias that MoS2 on Pb does not behave as a semiconductor as 

pristine MoS2 but as a metal. Ab initio and tight binding calculations have confirmed 

that MoS2 first becomes metallic and then superconducting by proximity in contact 

with Pb. 

 

Figure 37 a-d) Voltage current characteristics of vertical junctions made of respectively 1, 2, 

3 and 4 layers of exfoliated MoS2. e-h) Differential conductance spectra of these same 

junctions. I-l) Scheme of the vertical junction and the layers are either in blue (hybridized) or 

yellow (uncoupled). Figures taken from Island et al., 2D Mater. 3 ,031002 (2016). 

Another convenient system to study how MoS2 behaves in close proximity to 

superconductors is vertical Josephson junctions as presented in Figure 37 taken from [149]. 

The principle is to stack a variable number of exfoliated MoS2 layers between two 

superconducting made of molybdenum rhenium (MoRe), which does not oxidize in contact 

with 2D materials. They compared the transport properties of four devices made of a number 

of layers from 1 to 4. The voltage-current characteristics are given in Figure 37a-d. These 
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four junctions have Josephson effect but the measured critical current of these junctions 

decreases a lot as the thickness grows. Indeed, 𝐼𝐶 = 1.1μA for the monolayer while it is only 

40pA for four layers, four orders of magnitude smaller. However, the differential conductance 

measurements in Figure 37e-h show that the resistance is also increasing a lot from the 

monolayer to the four-layer junction, going from 2 × 102Ω to 7 × 104Ω. The 𝑅𝑁𝐼𝐶 product 

then loses two orders of magnitude (from 0.2mV to 3μV). The authors explained this 

dependence with the argument (shown in Figure 37i-l) that the closest layer to the 

superconductor was hybridized with the superconductor and thus became metallic. 

That would explain the low value of the resistance of the mono- and bilayer junctions. For 

three or more layers, there is at least one layer uncoupled which acts like a tunnel barrier. 

This gives higher resistances and an overall tunnel behavior to the junction. This result will 

be a comparison point to my experiment on superconducting vertical junctions with MoS2 

in chapter 7. 

2.3.3.3 Planar geometry 

 

Figure 38 a) Microscope image of the device with the four contacts MoRe/MoS2. The top inset 

schematically shows the various layers. b) Differential conductance spectra at several 

temperature between contacts 2 and 3 at zero magnetic field. Figures taken from Ramezani 

et al., Nano Lett. 21, 5614−5619 (2021). c) Microscope image of a side-contacted 

encapsulated MoS2 with MoRe. d) Scheme (side-view) of the contact between encapsulated 

MoS2 and MoRe. e) Resultant current voltage characteristics of a junction between two of the 

contacts shown in d with a 200nm-long MoS2 channel. Figures taken from Seredinski et al., 

AIP Advances 11, 045312 (2021). 



 

55 

Now, we will review the attempt to contact MoS2 with a superconductor in planar geometry. 

The goal is to inject Cooper pairs in MoS2 and make them propagate towards the other 

contact through the MoS2 layer. As for graphene, the encapsulation of MoS2 in between a 

few layers of h-BN allows the protection of the 2D material and the preservation of its 

transport properties like its mobility by stabilizing its surface and avoiding impurities during 

the fabrication process. The two references I present here [150,151] try two distinct methods 

to realize a good electrical contact between MoS2 and MoRe. In Figure 38a, the first approach 

is shown with a microscope image of the device with four contacts whose stack is pictured 

in the inset. A hole is opened in h-BN by e-beam lithography and then reactive ion etching. 

A larger contact is then defined by e-beam lithography to then deposit MoRe and gold. A 

measurement of the differential conductance between two MoS2/MoRe contacts at several 

temperatures below and above the critical temperature of MoRe is presented in Figure 38b. 

The shape of these curves is tunnel meaning the transparency between the two materials is 

not enough to efficiently inject Cooper pairs in MoS2. However, by applying a back gate 

voltage, they succeeded in observing the resonant tunneling of Andreev pairs. They argued 

this indicates that one of the two interfaces MoS2/MoRe is relatively transparent. The 

differential conductance is therefore dictated by the less transparent (and then most 

resistive) MoS2/MoRe interface. 

Another method is developing to contact 2D materials like graphene [152,153]. It consists 

of contacting the 2D material by its edge and creating a 1D interface. Seredinski et al. [151] 

applied this method with encapsulated MoS2 and MoRe. An image of the device is given in 

Figure 38c as well as a scheme of one of the contacts in d. They could measure the current-

voltage characteristics between each of the MoRe/MoS2 contacts (junctions of lengths 200, 

500, and 500nm) and apply a voltage to the back gate electrode as seen for one junction in 

Figure 38e. They unfortunately reported resistances independent of the length. The 

resistance is therefore limited by the MoRe/MoS2 interfaces that are very resistive as the I-V 

shows with a clear tunnel barrier they attributed to a Schottky barrier. They proposed to 

change the superconductor for one that would reduce this barrier. This method could 

nevertheless help the development of planar devices and build Josephson junctions with 

high-quality encapsulated 2D materials.  

To my knowledge, there is no successful attempt to couple a high-Tc d-wave superconductor 

with MoS2, motivating the research presented in chapter 7 of my thesis.  

2.4 STRUCTURE OF THE THESIS 

After this general introduction to both superconductors and 2D materials with a review of 

the proximity effect in thin metallic layers, graphene, and MoS2, the next chapter is about 

the theory of proximity effect and Andreev reflection. More precisely, I first introduce the 

basic concepts necessary to understand Andreev reflection, the so-called BTK theory, in the 

case of s- and d-wave superconductors. This theoretical part is illustrated by experimental 

results in which I have been involved in the understanding and fitting of the data. 

The following chapter is about experimental techniques I have used to fabricate, 
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characterize, and measure my superconducting devices. Since during my PhD, I studied 

several geometries of superconducting devices, the first part is dedicated to the fabrication 

of superconducting planar junctions while the second one to vertical junctions. The third 

part discusses the tools in the lab to characterize and check the properties of the materials 

during and at the end of the process. Finally, I describe the apparatus used to measure the 

samples at cryogenic temperature with a magnetic field. 

The first results I want to show concern superconducting planar junctions with a metallic 

layer. The aim is to study how superconductivity is induced in a thin layer of gold on top of 

superconducting YBCO. To this aim, I conducted transport measurements on two kinds of 

systems: SN junctions between proximized gold and gold atop insulating YBCO and SNS 

junctions with the thin layer of gold acting as the bridge between two superconducting 

YBCO electrodes. The study of the SN junctions is analyzed with two different theoretical 

approaches: one based on the BTK formalism and the other one on Usadel equations. This 

chapter about a thin metallic layer is helpful to understand the two next chapters since a 

metallic layer is intercalated between YBCO and the 2D materials to protect YBCO and 

improve the electrical contact. 

The next chapter is dedicated to YBCO/graphene junctions. The first part consists of a review 

of the state-of-the-art of YBCO/graphene junctions, especially the work done in the lab by 

David Perconte. He measured the effect of a back gate voltage on the differential 

conductance of a single interface between proximized graphene and normal graphene and 

identified it as Klein-like tunneling of Andreev electron-hole pairs. Then, I show published 

results on which I helped for the understanding of the experimental data. The article is about 

the coherent propagation of d-wave Andreev electron-hole pairs in a graphene channel over 

several hundreds of nanometers. Finally, the last part deals with a study of many samples of 

the influence of the magnetic field on the transport properties of YBCO/graphene/YBCO 

junctions. It is focused on oscillations in the magnetoresistance of junctions of intermediate 

transparency for magnetic fields between 0 and 2T. 

The last project presented in this thesis is devoted to another 2D material, MoS2. The first 

part shows preliminary results on transport measurements of CVD-grown MoS2 deposited 

on top of YBCO planar junctions (as done with graphene). Contrary to graphene, the wet 

transfer of MoS2 I developed does not guarantee good electrical contact between the 2D 

material and YBCO. As a consequence, all the measured junctions presented featureless 

tunnel-like differential conductance spectra. The second part is dedicated to the 

development of a new growth method of MoS2 on YBCO in order to improve the electrical 

contact. This task was challenging and required a lot of time because YBCO is a complex and 

fragile oxide, very sensitive to the atmosphere composition and heat. After the 

characterization of both the superconductor and MoS2, I present in the third part the 

integration of this method into the study of superconducting vertical junctions. Among all 

the measured junctions, two behaviors emerged. The first one analyzed is a tunnel-like 

behavior between the two superconducting electrodes while the second one is the presence 

of a critical current and therefore Josephson coupling at low temperature. 
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I conclude this manuscript with short to middle-term prospects like the optimization of the 

transfer process of CVD-grown MoS2, the use of the transfer platform to allow the study of 

more exotic exfoliated 2D materials, and finally, the development of the PLD method to grow 

other TMDs like NbSe2, allowing for full in situ processes. 
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3 SUPERCONDUCTING PROXIMITY EFFECT AND TRANSPORT AT THE 

INTERFACE WITH A SUPERCONDUCTOR 

In the introductory chapter, I have shown that some materials have superconducting 

properties below a critical temperature. While intrinsic to some materials, early 

measurements  [90,154] also demonstrated that metals, initially lacking superconductivity, 

can acquire superconducting properties when in proximity to superconductors. In this 

chapter, I will first show how this so-called “superconducting proximity effect” allows for an 

initially non-superconducting material (later referred to as “metal” or “normal metal” for 

simplicity) to show some superconducting properties. I will then present an effective model 

to treat the transport properties of the interface between a superconductor and a metal. 

After these two theoretical parts, I will present some published examples on which I worked 

during my PhD that illustrate these theoretical developments.  

3.1 ANDREEV REFLECTION AND SUPERCONDUCTING PROXIMITY EFFECT 

3.1.1 Superconducting proximity effect 

 

Figure 39 Different length scales at stake in a normal material/superconductor interface 

(inspired by Ref. 6). N is the coherence length of the normal metal over which the proximity 

effect fades. 0 is the amplitude of the order parameter in the superconductor far from the 

interface. Indeed, the presence of the interface weakens the superconductivity with a reduced 

order parameter r at the interface. The superconducting order parameter returns to its bulk 

value over S which is called healing length. 

When a normal metal is in contact with a superconductor, Cooper pairs from the 

superconductor can leak into the normal metal [155]. As we will see more precisely in the 

following, this creates a finite pair potential ∆ (usually called “gap” on the superconducting 

side and sometimes “mini-gap” on the normal side) in the density of states in a thin region 
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close to the interface as shown in Figure 39. An intuitive explanation is given by the non-

locality of the electrons at the interface between the two materials. The electrons in the 

metal close to the interface with the superconductor are sensitive to the order 

parameter of the superconductor.  

More rigorously, this boundary conditions problem has been treated early on by de 

Gennes [9] in the simpler case of dirty superconductors, that is to say with an electronic 

mean free path of electrons 𝑙 much smaller than the superconducting coherence length 𝜉𝑆 . 

This approximation makes the things easier since the exact atomic structure of the interface 

is averaged out and the large scale motion of electrons is described by a diffusion equation. 

As we will see in chapter 5, it is possible to compute continuously physical quantities close 

to the interface between a superconductor and a normal metal with proper boundary 

conditions. It allows to describe the creation of a gap in the density of states of the normal 

metal by proximity. To be more precise, the proximity with a superconductor induces 

electronic correlation in the normal metal following the relation given in chapter 2 [155]: 

with 𝑉𝑁 the electron-electron interaction constant in the normal metal. 

In the next section, I will focus on the microscopic mechanism occurring at the interface. 

3.1.2 Single-particle density of states and Andreev reflection mechanism 

 

Figure 40 Single particle density of states (SDOS) of a 3D superconductor with a 

superconducting gap 𝛥 as a function of the energy level. The colored region has to be 

understood as the filling of the electronic states below the Fermi level 𝐸𝐹 . Inside the 

superconducting gap of amplitude 2𝛥, there is no single electronic state. 

Let us now focus on the interface between the two materials at the microscopic scale. As 

shown in Figure 40, and contrary to the case of a normal metal where electrons fill the 

available states up to the Fermi level, the electrons in a superconductor form pairs of 

electrons close to the Fermi level in an energy range , the superconducting gap, into which 

electrons -forming Cooper pairs- condense into a macroscopic quantum state [4,17]. This 

peculiar property has very important consequences on the transport properties at the 

∆(𝑟 ) =  𝑉𝑁〈𝜓(𝑟 ↑)𝜓(𝑟 ↓)〉 3.1 
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interface with other materials.  

Indeed, let us consider the simple case of a superconductor/metal junction and of an 

electron inside the metal moving toward the interface with a superconductor. At zero 

temperature, it could only penetrate into the superconductor if its energy 𝐸 is above the 

superconducting gap. Otherwise, it cannot be transmitted and will be reflected. In fact, this 

situation holds only if we restrict ourselves to first-order processes. However, in the case of 

superconductors, there is a finite probability for a second-order process corresponding to 

the electrons being transmitted in the superconductor by Andreev reflection. 

This later process is depicted in Figure 41. To describe it, let us first consider an electron 

moving toward the interface with an energy 𝐸 greater than the Fermi level 𝐸𝐹 but inside the 

superconducting gap of the superconductor. At the interface, the electron cannot be 

transmitted since there is no available single particle state in the superconductor at this 

energy. However, it is possible for another carrier to simultaneously be transmitted to form 

a Cooper pair in the superconductor. To conserve charge and momentum, a hole of energy 

𝐸𝐹 − 𝐸 and wavevector norm √𝑘𝑒
2  −  

2𝑚𝐸

ℏ2  is created along with the incident electron, where 

𝑘𝑒 is the incident electron wavevector and 𝑚 its mass and ℏ the reduced Planck constant. 

This hole travels backward compared with the incident electron. Spin conservation with the 

Cooper pair on the other side of the interface then imposes that the retro-reflected hole has 

the opposite spin compared with the incident electron. This process of the retroreflection 

of an electron as a hole in the metal along with the creation of a Cooper pair in the 

superconductor is the so-called Andreev reflection. 

  

Figure 41 Schematic of the Andreev reflection at an interface between a normal metal and a 

superconductor. (Top) Spatial representation of the process. (Bottom) Energy diagram 

representation. On the metal side, the solid line corresponds to the electron state and the 

dashed line to the hole state. The red arrows account for the direction of motion of the particles. 

This process describes what is happening for perfect interfaces, that is, in the absence of 

scattering close to the interface and for matching Fermi levels on both sides. However, as 
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we will see in section 3.2, the probability of Andreev reflection, electron reflection 

(backscattering), and electron tunneling depends on the transparency of the interface. In the 

case of finite transparency, there is a combination of Andreev reflection and backscattering. 

Andreev reflection is the microscopic origin of the superconducting proximity effect, 

transferring the intrinsic electronic correlations from the superconductor to the metal. It is a 

coherent process, which means electrons and holes on the metallic side have a well-defined 

phase at the interface, set by the phase of the superconducting side. This phase difference 

between the two quasiparticles is subjected to scattering in the metal and correlations finally 

vanish further away from the interface. This is why the superconducting proximity effect 

disappears over the coherence effect of the normal metal (Figure 39), the phase difference 

being lost over that distance. In a ballistic material, this coherence length is given by: 

Where 𝑣𝐹 is the Fermi velocity, 𝑇 the temperature and 𝑘𝐵 the Boltzmann constant. In the 

case of a diffusive material, it becomes [156]: 

with 𝐷 the diffusion constant of the metal. 

3.1.3 Bogoliubov-de Gennes formalism 

To quantify Andreev reflection with respect to usual reflection,  Bogoliubov-de Gennes (BdG) 

formalism [157] – derived from the Bogoliubov transformation we saw in chapter 2 – is a 

useful formulation, allowing to deal with the interface between a superconductor and 

another material. This material can for instance be a normal metal [5], a ferromagnet [158], 

a Weyl semi-metal [159], or any material with a known band structure. 

The proximity effect is an interfacial problem. We need a formulation to match 

wavefunctions on both sides to solve it. Bogoliubons in the superconductor introduced in 

chapter 2 is a useful formalism to solve the boundary condition problem. They are described 

by a vector (𝑢
𝑣
) where 𝑢 (𝑣) is the amplitude of the quasi-electron (resp. quasi-hole) and by 

(𝑓
𝑔
) on the metallic side as both sides should be described with similar quantities. For 

simplicity, we will restrict ourselves to a one-dimensional problem with a potential 𝑉(𝑥), 

chemical potential 𝜇(𝑥), and an energy gap Δ(𝑥). An electron with amplitude 𝑓 will therefore 

follow the Schrödinger equation, as the associated hole with amplitude 𝑔 will follow the 

complex conjugate of the latter: 

𝜉𝑁 =
ℏ𝑣𝐹

𝑘𝐵𝑇
  

3.2 

𝜉𝑁 = √
ℏ𝐷

𝑘𝐵𝑇
  

3.3 
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Here, the superconducting gap couples the quasi-electron and quasi-hole wavefunctions. 

This formalism, allows for for exact calculation or numerical simulations of the spatial 

evolution of the quasi-electrons and quasi-holes excitation in the metal, close to the 

interface. However, scattering at the interface is not taken into account. In the next section, 

I will show how to use it to compute the differential conductance between a superconductor 

and a normal metal and how the interface transparency is included. 

3.2 BLONDER-TINKHAM-KLAPWIJK THEORY 

The last paragraph introduced a practical formalism to study the interface between 

superconductors and other materials. The Blonder-Tinkham-Klapwijk (BTK) theory [5,155], 

uses the BdG method in a 1D system, and provides a simple model to compute the 

differential conductance of an interface between a superconductor and a normal metal 

of any transparency. 

3.2.1 BTK Model and generic resolution method 

 

Figure 42 Schematic of all the possible events at the interface with their respective amplitude 

of probability and the direction of propagation of the created quasiparticle in real space 

represented by the red arrows. The superconducting gap 𝛥 is represented on the 

superconducting (S) side and the filling of the bands is represented in purple.  

This model has been developed to describe point contacts between a superconductor and 

a normal metal, with ballistic carriers arriving at an interface of variable transparency. This 

allows to consider the same equilibrium Fermi distribution for all the incoming particles, 

shifted by the applied potential as it is usual in mesoscopic transport theories [160]. It 

𝑖ℏ
𝜕𝑓

𝜕𝑡
=  [−

ℏ2𝛻2

2𝑚
− 𝜇(𝑥) + 𝑉(𝑥)] 𝑓(𝑥, 𝑡) + 𝛥(𝑥)𝑔(𝑥, 𝑡) 3.4 

 

𝑖ℏ
𝜕𝑔

𝜕𝑡
=  [

ℏ2𝛻2

2𝑚
+ 𝜇(𝑥) − 𝑉(𝑥)] 𝑔(𝑥, 𝑡) + 𝛥∗(𝑥)𝑓(𝑥, 𝑡) 3.5 
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assumes an electron moving along the 𝑥 direction with energy 𝐸 described by a harmonic 

wave of wavevector 𝑞+: (1
0
)𝑒𝑖𝑞+𝑥. To take into account the elastic scattering in the vicinity of 

the interface, a Dirac-potential of strength 𝐻 is chosen: 𝑉(𝑥) = 𝐻𝛿(𝑥). 

Before solving the boundary condition equations, we have to identify the potential events 

at the interface to define the wavefunctions describing reflected and transmitted carriers as 

shown in Figure 42. For an incoming electron, taken to have an amplitude 1, there is an 

Andreev reflected hole with amplitude 𝑎(𝐸) and an ordinary reflected electron with 

amplitude 𝑏(𝐸). Concerning the transmission, both the creation of a quasiparticle on the 

same side of the Fermi surface 𝑐(𝐸) and on the opposite side 𝑑(𝐸) are present. Therefore 

the transmitted (𝜓𝑡) and reflected wavefunctions (𝜓𝑟) can be described by:  

𝜓𝑟 = 𝑎 (
0

1
)𝑒𝑖𝑞−𝑥 + 𝑏 (

1

0
) 𝑒−𝑖𝑞+𝑥  

𝜓𝑡 = 𝑐 (
𝑢

𝑣
) 𝑒𝑖𝑘+𝑥 + 𝑑 (

𝑣

𝑢
) 𝑒−𝑖𝑘−𝑥 3.6 

With : ℏ𝑘± = √2𝑚(𝜇 ± (𝐸2 − Δ2) and ℏ𝑞± = √2𝑚(𝜇 ± 𝐸). 

To find the coefficient 𝑎, 𝑏, 𝑐, and 𝑑 as a function of the energy 𝐸 of the incident electron, 

one uses the continuity of the wavefunction at the interface (𝑥 = 0) giving: 𝜓𝑖𝑛𝑐(0) + 𝜓𝑟(0) =

𝜓𝑡(0). Then, by integrating the Bogoliubov-de Gennes equation between −𝜀 and 𝜀 and 

taking the limit 𝜀 → 0 gives:  
ℏ

2𝑚
{𝜓𝑖𝑛𝑐

′ (0) + 𝜓𝑟
′(0) − 𝜓𝑡

′(0)} = 𝐻𝜓𝑡(0). The matching of the 

wavefunctions with these boundary conditions gives the amplitudes of the different events 

and the probabilities are the square of their modulus, which we will not describe in this 

manuscript. We will only give the formula for the Andreev reflection coefficient 𝑎 in the case 

of a perfect interface (𝑍 = 0): 

Here, 𝜑 is the superconducting phase. In the absence of another superconductor, this phase 

can be chosen to be zero. This coefficient a(E) has a modulus of 1 and its phase is: 

Experimentally, there are in the BTK model several quantities of interest such as the 

scattering parameter 𝒁, as well as the expression of the electronic current 𝐼 for a given 

excitation. 𝑍 is dimensionless and given by 𝑍 =
𝑚𝐻

ℏ2𝑘𝐹
=

𝐻

ℏ𝑣𝐹
. The limits of 𝑍 correspond to 

physical cases, such that a perfect transparency interface is given by 𝑍 = 0 and a non-

transparent interface (across which conduction is only possible by tunneling) by 𝑍 ≫1. The 

other important quantity, the current 𝐼 for a section of surface 𝑆, is given by: 

𝑎(𝐸) = (
𝐸

∆
± 𝑖√1 − (

𝐸

∆
)
2

)𝑒𝑖𝜑 
  3.7 

𝜒 = 𝜑 − 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝐸

𝛥
)   3.8 
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Here, f→(E) and f←(E) are the distribution function where we compute the current for carriers 

going on each direction. 

We then use that 𝐴(−𝐸) = 𝐴(𝐸) (by symmetry of the problem around the Fermi energy) and 

the sum of the probability is equal to 1 (A(𝐸) + 𝐵(𝐸) + 𝐶(𝐸) + 𝐷(𝐸) = 1) and 𝑓𝐹𝐷(−𝐸) =

1 − 𝑓𝐹𝐷(𝐸) to derive the final equation: 

𝐼 = 2 𝑁(0) 𝑒𝑣𝐹𝑆 ∫ [𝑓𝐹𝐷(𝐸 − 𝑒𝑉) − 𝑓𝐹𝐷(𝐸)][1 + 𝐴(𝐸) − 𝐵(𝐸)]𝑑𝐸
∞

−∞

 3.12 

Once the coefficients 𝐴 and 𝐵 found, it is possible to compute the differential conductance 
d𝐼

d𝑉
, which allows for physical insight, onto which we can add the temperature dependence 

as we will see section 3.3.2. For now, let us consider 𝑇 = 0. The normalized differential 

conductance reduces to: 

𝐺 =
𝑑𝐼

𝑑𝑉
= 1 + 𝐴(𝐸) − 𝐵(𝐸) 3.13 

 

Figure 43 Numerical simulations of the differential conductance with the BTK model for Z=0, 

0.5 and 3. 

Some simulations of the differential conductance, for different interface transparencies, are 

plotted Figure 43. In the case of a perfect interface (𝑍 = 0), the differential conductance at 

𝐼 = 2𝑁(0)𝑒𝑣𝐹𝑆 ∫ [𝑓→(𝐸) − 𝑓←(𝐸)]𝑑𝐸
∞

−∞

   3.9 

𝑓→(𝐸) = 𝑓𝐹𝐷(𝐸 − 𝑒𝑉) with 𝑓𝐹𝐷(𝐸) =
1

1+𝑒
𝐸

𝑘𝐵𝑇⁄
   3.10 

𝑓←(𝐸) = 𝐴(𝐸)[1 − 𝑓→(−𝐸 + 𝑒𝑉)] + 𝐵(𝐸)𝑓𝐹𝐷(𝐸 − 𝑒𝑉) + [𝐶(𝐸) + 𝐷(𝐸)]𝑓𝐹𝐷(𝐸) 
3.11 
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energies below the superconducting gap is entirely due to Andreev reflection. Since Andreev 

reflection corresponds to the reflection of an incoming electron into a hole with the creation 

of a Cooper pair, we expect a doubling of conductance with respect to the normal state 

conductance. The differential conductance outside the gap is due to the creation of 

quasiparticles in the superconductors (process C in Figure 42) and the exponentially 

vanishing Andreev reflection (process A). For 𝑍 ≫ 1, the differential conductance describes 

a tunnel junction, as the ones encountered when measuring tunnel barriers and performing 

STM measurements. It shows signatures of the density of states of the probed 

superconductors [104]. In this regime, Andreev reflection is absent but we can notice on the 

orange plot of  Figure 43 the peaks at the superconducting gap edges. These so-called 

coherence peaks are linked to the emergence of superconducting coherence and of the local 

superconducting order parameter. Finally, for intermediate values of the parameter 𝑍, there 

is a mixture between Andreev reflection and normal reflection inside the gap of the 

superconductor. 

3.2.2 Josephson effect 

In chapter 2, I introduced the concept of Josephson junction. Here, we will see we can derive 

the Josephson relation. According to Figure 44a, we consider now two superconductors 

separated by a normal metal of length 𝐿. We assume the two interfaces are perfect (𝑍 = 0) 

so that the Andreev reflection coefficient is given by 3.7. In this specific case, and before 

doing any calculation, we notice that particles inside the junction (electrons or holes) can be 

trapped inside its metallic weak link by the Andreev reflection. We therefore expect 

quantized energy levels so-called Andreev bound states (ABS). The energy of these states 

can be found by a Bohr-Sommerfeld quantization argument since the phase accumulated 

along a closed loop must be an integer of 2𝜋, giving: 

𝜑 ± 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝐸

𝛥
) + 𝑘𝑒𝐿 + 𝑘ℎ𝐿 = 2𝑛𝜋, 𝑛 ∈ ℤ 3.14 

With 𝑘𝑒 = 𝑘𝐹 ±
𝐸

𝑣𝐹
 and 𝑘ℎ = −𝑘𝐹 ∓

𝐸

𝑣𝐹
 respectively the wavevector of the electron and hole 

and 𝜑 the phase difference between the two superconducting condensates on both sides. 

In the short junction limit i.e  
|Δ|𝐿

𝑣𝐹
≪ 1, we can neglect the propagation term and: 

𝐸 = ±|∆| 𝑐𝑜𝑠
𝜑

2
 3.15 

In the case of a finite barrier, the scattering inside the junction is assumed to be energy-

independent and we are adopting the convenient scattering matrix method [160]. The 

reasoning, while similar, now considers scattering matrices with coefficients that represent 

the transmission or reflection of each transport channel. Without entering too many details, 

the energy of the Andreev bound state with a barrier of transmission 𝑇 = |𝑡|2 is: 



 

66 

𝐸 = ±|∆|√1 − 𝑇 (𝑠𝑖𝑛
𝜑

2
) 3.16 

The evolution of the energy as a function of the relative phase between the superconductors 

is plotted in Figure 44b. 

 

Figure 44 a) Scheme of a Josephson junction of size L. The phase of the superconductor is 

taken equal to zero for the left side and 𝜑 on the right one. b) Andreev bound states energy 

as a function of the relative phase between the two superconductors for three transmission 

probabilities. Except in the case of a perfect transmission (𝑇 = 1), the two other cases are 

gapped. 

We now want to compute the contribution of these Andreev bound states to the current, 

the supercurrent. By noticing that 
d𝐸

d𝑡
= 𝑉𝐼 =

d𝐸(𝜑)

d𝜑

d𝜑

d𝑡
 and 

d𝜑

d𝑡
=

2𝑒𝑉

ℏ
, we deduce that: 

𝐼(𝜑) = −
𝑒𝛥

2ℏ
∑

𝑇𝑗 𝑠𝑖𝑛 𝜑

√1 − 𝑇𝑗 (𝑠𝑖𝑛
𝜑
2
))

2
𝑗

 3.17 

Where we summed over all the channels of transmission 𝑇𝑗 in the junction. For a tunnel 

junction (all 𝑇𝑗 ≪ 1), we find back the relation derived by Josephson [31]: 𝐼(𝜑) = 𝐼𝑐 sin 𝜑. 

3.2.3 Limitations and improvements of the BTK model 

The BTK theory is widely used for its simplicity and its reliable qualitative explanation of 

many interfacial problems between superconductors and metals. However, this theory deals 

with a one-dimensional system without magnetic field using very specific assumptions on 

scattering and describing the interface as perfectly punctual (1D quantum point contact). 

We will come back to these assumptions in the following. 

3.2.3.1 Dimensionality of the interface 

The BTK theory was extended in the 3D case in Ref. [161]. The author derived the expressions 

for the normal and Andreev reflection probabilities in the case of a 3D interface and not as 

BTK in an ideal point contact geometry. He found that the differential conductance 
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computed in this case may be very different from the BTK formula if the barrier at the 

interface sufficiently depends on the energy of the incoming particles. Otherwise, BTK 

appears to be an excellent approximation to the complex 3D calculation. 

Mortensen et al. [162] have studied the impact of the angle dependence of the Andreev 

reflection and consequently of the differential conductance. The presence of a Fermi velocity 

mismatch between the normal metal and the superconductor implies the existence of a 

relation on the angles of reflection analogous to Snell’s law: 

𝑘𝐹
𝑆𝑠𝑖𝑛 𝜃𝑡 = 𝑘𝐹

𝑁 𝑠𝑖𝑛 𝜃 
3.18 

Where 𝑘𝐹
𝑆 (𝑘𝐹

𝑁) is respectively the Fermi wave vector in the superconductor (normal metal), 

𝜃 the angle of the incident electron and 𝜃𝑡 the angle of the transmitted quasiparticle. As a 

consequence, for 
𝑘𝐹

𝑁

𝑘𝐹
𝑆 > 1, a critical angle exists for the transmission to happen (𝜃𝑐 =

sin−1 (
𝑘𝐹

𝑆

𝑘𝐹
𝑁)) and therefore the transmission probability and the overall differential 

conductance depend on the incident angle. 

3.2.3.2 Scattering close to the interface 

The description of the scattering can be improved as done by [21] using a finite potential 𝑈 

over a length 𝐿. The results obtained can differ significantly from the BTK theory especially 

in the case of a potential barrier 𝑈 close to the Fermi energy where resonances can appear 

and significantly change the differential conductance. In particular, different dispersion 

relations on both sides of the N/S interface can significantly change the differential 

conductance for low values of the scattering parameter 𝑍 as shown by the same authors 

[23]. 

3.2.3.3 Magnetic field 

The one-dimensional assumption has also consequences on electronic transport properties 

when using a magnetic field. At high magnetic fields (cyclotron radius 𝑅𝐶 smaller than the 

characteristic lengths of the junction), the carriers’ trajectories are strongly affected and 

describe cyclotron orbits giving rise to rich physical phenomena  [164,165]. In particular, it 

allows the formation of edge states, with both electrons and holes bouncing at the interface 

due to Andreev reflections, as shown in Figure 45a. At low magnetic fields, the presence 

of disorder has an effect similar to weak localization in metals with a twist: scattering can 

induce multiple attempts of Andreev reflections for a single incident electron [166]. For finite 

scattering factor 𝑍, at low bias and low magnetic field, Andreev reflection is therefore 

enhanced. This effect disappears both with the magnetic field 𝐵 and with the energy 𝐸 of 

the incident electron since a random phase (through the random path length 𝑙 and enclosed 

area 𝐴 between two reflections) will add up and reduce the effect. For instance, for a two-

reflection process as pictured in Figure 45b, the phase difference between the reflected 

electron and the returning electron is: 
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∆𝜙 =
2𝐸𝑙

ℏ𝑣𝐹
+ 4𝜋

𝐵𝐴

𝜙0
 3.19 

Where 𝐿 is the path length, 𝐴 the area enclosed between this path and the superconductor 

interface, and 𝜙0 =
ℎ

2𝑒
 is the quantum of flux.  

 

Figure 45 a) Andreev reflection in the presence of a high perpendicular magnetic field. b) 

Andreev reflection in the presence of disorder made of random scatterers. 𝐿 and 𝐴 stands for 

the length of a path of an electron and 𝐴 the area enclosed by this path and the 

superconductor. 

Although BTK theory relies on simple assumptions, it showed impressive reliability in the 

understanding of interfacial transport. It even recently got a renewed interest thanks to the 

recent quest for exotic quasiparticles at the interface between superconductors and 

topological insulators, while many theories developed to understand these phenomena start 

with similar ideas. In the specific case of 2D materials, that we are interested in for this thesis, 

Linder et al. [13] (chapter 6) generalized the Bogoliubov-de Gennes equations in the case of 

a Dirac spinor, dedicated to the study of superconductor/graphene junctions, while 

developments done by Kashiwaya et al. [105] also generalized it to anisotropic 

superconductors like d-wave ones as described in the following paragraph 3.3.1.  

3.3 APPLICATIONS TO D-WAVE SUPERCONDUCTORS 

As we have seen in chapter 2, YBCO is a d-wave superconductor. It has an anisotropic gap 

which impacts the transport properties. An extension of the BTK theory has been developed 

to take into account the orientation of the interface with respect to the 

crystallographic orientation of the superconductor. This theory presented in section 3.3.1 

will be very useful to understand the data acquired with three different systems in sections 

3.3.2, 3.3.3 and 3.3.4. 

3.3.1 d-wave superconductors 

In this section, I will point out the differences between d-wave and s-wave superconductors. 

First, we depict a scheme of Andreev reflection in the case where the d-wave order parameter 

orbitals are tilted by an angle  from the interface superconductor/normal metal interface 
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(Figure 46). This general case has been treated in Ref. [105] and experimentally by scanning 

tunnelling microscopy in Ref. [167]. A first difference is directly linked to the anisotropy of 

the superconducting gap close to the interface which, intead of being constant whatever the 

cristalographic orientation of the material (s-wave case), now depends on the crystal 

direction and is taken as: 

𝛥(𝑘⃗ ) = 𝛥0𝑐𝑜𝑠[2(𝜃𝑁 − 𝛼)] 3.20 

Where 𝜃𝑁 and 𝛼 are respectively the incident electron angle with the interface and the angle 

of the superconducting order parameter with the interface.  

 

Figure 46 Andreev reflection at a normal metal/d-wave superconductor interface, with its 

order parameter tilted by  from the interface and N is the angle of the incident electron 

with the interface. 

One can then compute the differential conductance at zero temperature with the BTK 

formula 3.13. Two extreme cases are shown in Figure 47, corresponding to 𝛼 = 0 (left) and 

𝛼 = ±𝜋 4⁄  (right). 

 

Figure 47 Calculated differential conductance of an interface between a normal metal and 

a d-wave superconductor in the case of =0 (left) and =𝜋 4⁄  (right). 
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For 𝛼 = 0, the differential conductance presents similarities with the simple s-wave case. For 

perfect transparency (𝑍 = 0), we get an Andreev peak (twice the normal-state conductance) 

instead of a plateau observed in the s-wave case, while for low transparency (𝑍 ≫ 1), the 

conductance describes a tunnel-like behavior with a notable difference being a non-zero 

conductance at zero bias contrary to the s-wave case. These two discrepancies are due to 

the closing of the gap in the d-wave case that allows for the propagation of quasiparticles 

in the superconducting material. 

For 𝛼 = 𝜋 4⁄ , the situation is similar at perfect transparency but, while increasing the 

scattering parameter 𝑍, a zero bias peak appears. This peak is due to the formation of 

Andreev bound states at the interface. Indeed, the hole-like and electron-like 

quasiparticles transmitted through the interface have opposite phases in this case. This is 

equivalent to a Josephson junction with a phase difference of 𝜋 between electrodes being 

infinitely close to each other. The energies of the bound states are then all degenerated at 

0 and that creates the divergence. 

These two examples aim to emphasize the higher complexity and variety of the conductance 

spectra of d-wave superconductors. The next sections are dedicated to original 

applications [8,168] I studied and modelized during my PhD for which the BTK approach 

allows to understand their transport properties. 

3.3.2 Simulation of the temperature dependence 

 

Figure 48 Figures taken from Ref. [168]. a) Scheme of the vertical junctions made of 30𝑛𝑚-

thick YBCO, a given thickness of BFO, and 100𝑛𝑚 of MoSi. b) Differential conductance as a 

function of the poling voltage pulse applied to the junction measured at 0𝑚𝑉 (black dotted 
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line) and 100𝑚𝑉 (grey dotted line) at 5𝐾. c) Differential conductance with respect to the 

temperature measured at 0 (in black) and 100𝑚𝑉 (in grey) for the ON (upper plots) and OFF 

(lower plots) states. The green filling shows the strengthening of the effect compared with 

the expected temperature dependence. 

I performed the modelization of transport experiments based on samples fabricated and 

measured in my lab by Victor Rouco. They consist of vertical junctions patterned by a two-

step optical lithography as represented schematically in Figure 48. The fabrication process 

of these junctions, which I also used to realize the superconducting devices I present in 

chapter 7, can be found in chapter 4 and in Ref. [168]. As shown in Figure 48, the bottom 

electrode is made of YBCO while the top electrode is made of a low-Tc superconductor 

molybdenum silicon (MoSi). In between, a variable thickness (from 0 to 15nm) of BiFeO3 

(BFO) is grown. The fabrication allows measuring in a 2-probe configuration of micrometric 

vertical junctions. 

We distinguish two operating modes of these devices depending on the value of the voltage 

bias we apply. For low voltage (typically < 200mV), we probe the conductance of the junction 

by measuring the current passing through the junction (reading mode). For higher voltage 

bias (𝑉𝑝𝑜𝑙 in Figure 48b), we enter the writing mode where the voltage bias we apply is 

enough to change durably the properties of the junctions. In Figure 48b, for each data point, 

we applied a polling (or writing) voltage 𝑉𝑝𝑜𝑙 to the junction before measuring the 

conductance of the junction using a voltage bias either 0 or 100mV (respectively in grey and 

black data points). The evolution of the conductance is hysteretic and shows two states of 

conductance that can be reached reversibly (here, reproduced twice): the junction acts as a 

memory, also called a memristor, that can be written electrically and read with a non-

destructive small bias voltage. We therefore define the “ON” state as the highest 

conductance state while the “OFF” state is the lowest conductance state.  

Figure 48f displays the evolution of the conductance with the temperature in the two states 

and at the two reading voltages (0 and 100mV). For the ON state, the behavior of the 

conductance remains metallic at all temperatures (the conductance slightly increases as the 

temperature decreases) while the OFF state shows an insulating behavior between 90 and 

150K. We noticed however that, below 90K (the superconducting transition temperature of 

YBCO), the measured conductance gets much lower than the expected temperature 

evolution. The green area highlights this loss in conductance below the critical temperature 

of YBCO.  

To understand this effect, I considered the differential conductance with respect to the bias 

voltage applied to the junction. At low temperatures, Figure 49a and b show a strong 

temperature dependence at low voltages both in the ON and OFF states. This is reminiscent 

of a junction between a metal and a superconductor for a large scattering parameter 𝑍. To 

treat these data, it is first necessary to remove the background. For this, I used the Brinkman-

Dynes-Rowell (BDR) [169] theory which allows modelizing tunnel junctions between oxides 

by taking into account asymmetries of the tunnel barrier. After subtracting this background, 

I normalized the obtained conductance by its high bias values. This allows for fitting the data 

with the d-wave BTK model I developed as shown in Figure 49c,d (black dot). I carried out 
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two fits (blue and red plain lines). The first one (in blue) is the original BTK model and 

presents large coherence peaks that are not present in the experimental data. This absence 

can be related to the disorder close to the interface that reduces the quasiparticles' lifetime. 

This finite lifetime 𝜏 is taken into account in the BTK model by adding an imaginary part to 

the energy [170,171] : 

𝐸 → 𝐸 + 𝑖𝛤 where 𝛤 = ℏ
𝜏⁄  3.21 

We can see that this description is closer to the experimental data reducing both the height 

of the coherence peak and the depth of the tunnel dip at zero bias. 

 

Figure 49 a,b) Differential conductance spectra for the ON and OFF states at different 

temperatures. c,d) Differential conductance after removal of the background (see text) and 

normalization for the ON and OFF states (black dots). A fit with d-wave BTK is shown with 

the red plain line. e) Numerical simulation of the temperature behavior of a junction 
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described by the d-wave BTK theory. f) Temperature evolution of the conductance simulated 

for the junction in the ON and OFF state with the filled green region accounting for the 

superconducting strengthening compared with normal evolution. The inset shows the 

simulated electroresistance ratio 
𝐸𝑅0

𝐸𝑅100
⁄ as a function of the temperature. 

Once I found the parameters to correctly fit the conductance spectra, I simulated the 

behavior of the vertical junction for higher temperatures. To do so,  I took into account both 

the smearing of the Fermi-Dirac distribution in the expression 3.12 and the temperature 

dependence of the superconducting gap. For the temperature dependence of the gap, I 

fitted the value of the gap with the experimental data using the ansatz [172]: 

 𝛥(𝑇, 𝑇𝑐) = 𝛥0𝑡𝑎𝑛ℎ(𝑏√
𝑇𝐶

𝑇
− 1) 3.22 

Finally, it is possible to simulate the differential conductance from zero temperature to the 

critical temperature. Figure 49e shows 3 examples of the differential conductance spectra 

with the parameter in the legend while Figure 49f shows the complete simulation as a 

function of the temperature both for the ON and OFF states and for 0 and 100mV. We can 

see that the enhancement present in Figure 48c can be explained by the superconductivity 

inside the gap of YBCO as shown on Figure 49f. 

The system we studied is made of a tunable tunnelling barrier between a high-Tc 

superconducting oxide and an amorphous metal. A strong electroresistance is 

measurable at all temperatures, with a strong enhancement observed below the Tc. 

The BTK modelization I performed proved that the enhancement is due to the opening 

of the superconducting gap, in a regime in which transport is dominated by 

quasiparticle tunnelling. This superconducting effect allows to strongly enhance the 

electroresistance effect at low (< 𝟗𝟎𝐊) temperatures.  

3.3.3 Demonstration of superconductivity in La5SrCu6O15 

The model I developed also allowed us to study different systems. I therefore also 

participated in the modelization of an experiment performed at Complutense University 

(Madrid) [7]. Here, the geometry is similar to the one in the previous section, except the 

bottom material is not YBCO but La5SrCu6O15 (LSCO). This material is not superconducting 

in its pristine form even down to a few milliKelvin [173]. The vertical junctions are made of 

10nm LSCO cuprate layers (top electrode) grown on 4nm ferroelectric BaTiO3 (BTO) on  30nm 

Sr doped La manganite La0.7Sr0.3MnO3 (LSMO) (bottom electrode) epitaxially deposited onto 

(001) SrTiO3 (STO) substrates. The measurements done on these junctions are similar to the 

ones explained in the previous section. We poll the junction with large voltage pulses and 

then read the resistance with smaller voltage biases. Figure 50a shows a hysteresis loop with 

two distinct states, a high resistance state (HR) and a low resistance (LR) state corresponding 

to the two different polarization states of BTO. Indeed, BTO is a ferroelectric material, which 

means voltage pulses imply a piezoelectric response and an accumulation or depletion of 

charges at the interface depending on the sign of the pulses. This accumulation/depletion 

creates doped/depleted regions that are modulating the tunnel behavior of the whole 
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junction. At 100K, the resistance as a function of the writing voltage shows an analogous 

hysteretic behavior as in the last section, typical of the ferroelectric material tunnel barrier. 

The differential conductance spectra of the junction in both states are shown in Figure 50b 

for temperatures going from 5 to 200K. At low energies (< 25mV), there is a diminution of 

the conductance at low temperatures (< 60K). This means there is a gap in the single-particle 

density of states that can arise from various origins (electronic correlations). In the following, 

I will show that this system fits very well with the existence of a d-wave superconducting 

phase in LSCO. 

 

Figure 50 Figures taken from a paper in preparation. a) Resistance versus the applied voltage 

writing measured with a voltage of 10mV. b) (upper panel) Differential conductance 

spectrum of the high resistance state (polarization of BTO pointing down) and (lower panel) 

Differential conductance spectrum of the low resistance state (polarization pointing up). 

We apply the same removal of the background and its characterization thanks to the BDR 

theory [169] and normalization (with respect to the high bias conductance) as in the previous 

section and we get the plots in Figure 51a and b. Under this form, I found it to be possible 

to fit the experimental data with the d-wave BTK model presented in the last two sections. 

There is a good agreement between the fits as shown in Figure 51a,b with the black lines 

corresponding to the BTK fits of the experimental points for the high resistance (HR) state in 

a and low resistance (LR) state in b. The quality of the fits allowed to extract the gap value 

of the model and plot it as a function of the temperature in Figure 51c. This dependence can 

be well fitted by the formula 3.22 [172]. This allows to find the predicted superconducting 

transition temperature in both states: ~70K for the HR state and 50K for the LR state. The 

polarization state of the junction and therefore the doping profile has a strong influence on 

the extracted superconducting gap and the critical temperature of the LSCO layer.  

In summary, the BTK analysis I performed suggests the appearance of a 

superconducting phase in LSCO, and has allowed us to quantify how it would be 

affected by the polarization state of BTO. 
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Figure 51 a) Normalized differential conductance spectra (scatter) in the high resistance state 

for 𝑇 = 13, 24, and 52𝐾 and their BTK fits. b) Normalized differential conductance spectra 

(scatter) in the low resistance state for 𝑇 = 5, 10, and 20𝐾 and their BTK fits. c) Extracted 

values for the superconducting gap for HR state (black scatter) and LR state (white scatter) 

and their fits (according to equation 3.22). 

3.3.4 Quasiparticle density of states and spin-injection in YBCO 

In this section, we deviate a bit from the previous part in the sense we consider here the 

interface between YBCO and a ferromagnet, Ni80Fe20 (Py), studied in my lab by Santiago 

Carreira. In the presence of a ferromagnet, the two spin populations at the Fermi level are 

no longer equivalent and the proximity effect is different from the normal metallic case. 

However, our study can give some qualitative interpretation of experimental facts observed 

in ferromagnetic resonance (FMR) experiments. 

The geometry of the experiment is depicted in Figure 52a. The sample consists of a stack of 

a substrate, either SrTiO3 (001) (STO) or NdGaO3 (001) (NGO), 30nm-thick YBCO (001) i.e. c-

axis and 15nm of the ferromagnet Py. An interlayer of Au was added for the samples grown 

STO to prevent the oxidation of Py at the interface. To measure a FMR signal, we apply an 

in-plane magnetic field to saturate the magnetization of the ferromagnet while we apply a 

weak oscillating magnetic field perpendicular to the DC field with a coplanar waveguide to 

make the magnetization precess. We then measure the derivative of the absorbed power of 

this signal d𝑃 d𝐻⁄  by modulating the DC magnetic field at low frequency (~80Hz). On the 

left of Figure 52b, a typical FMR absorption spectrum is presented for a given frequency 𝑓 

of the AC field with a resonance that can be fitted by the derivative of a Lorentzian function. 

This fit gives two parameters: the resonance field 𝐻𝑟𝑒𝑠 and the linewidth of the resonance 

𝐻𝑝𝑝 . The frequency of the AC field is plotted against the resonance magnetic field for a 

stack STO//YBCO//Au//Py in Figure 52b (middle plot). All the samples measured were well 

described (fit in red) by the Kittel formula [174] as shown in the middle plot in Figure 52b: 

 f= 𝛾𝜇0√𝐻𝑟𝑒𝑠(𝐻𝑟𝑒𝑠 + 𝑀𝑒𝑓𝑓) 3.23 

With  the gyromagnetic factor, 0 the vacuum magnetic permeability and 𝑀𝑒𝑓𝑓 the effective 

magnetization of the ferromagnet. The linewidth 𝐻𝑝𝑝  plotted with respect to 𝑓 in Figure 
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52b (right plot) is well described by a linear expression [175]: 

 𝜇0𝛥𝐻𝑝𝑝 =
2𝛼𝑓

√3𝛾
+ 𝜇0𝛥𝐻0 3.24 

In this expression, there are two terms, the frequency-independent contribution 𝐻0 and  

which is the Gilbert damping factor. 

 

Figure 52 a) Sketch of the experimental geometry for the ferromagnetic resonance (FMR) 

experiments. b) (from left to right) FMR absorption spectrum and fit, frequency vs 𝜇0𝐻𝑟𝑒𝑠 and 

𝜇0𝛥𝐻𝑝𝑝vs frequency obtained for the sample made of STO//YBCO//Au//Py. Figures taken 

from Carreira, Phys. Rev. B 104, 144428 (2021). 

Physically, we want to quantify the influence of YBCO on the magnetization of Py through 

their interface. Indeed, spins can be injected into YBCO, and depending on whether YBCO is 

or is not in its superconducting state, the spin injection may be radically different as it is for 

charge transport in the BTK model. The increment or lowering reflects this spin injection in 

a material. 

In Figure 53, if we focus on (a) and (b), the behavior of the Gilbert damping factor is the same 

for the two samples for temperatures from roughly 150 to 70K with a small drop at the 

superconducting transition temperature but differs radically below 70K. While the sample 

with STO substrate has a constant Gilbert damping below 70K, the one of the sample with 

NGO increases and is even larger at low temperature than above the transition temperature. 

However, the substrate does not influence the behavior of the control samples without 

YBCO. Therefore, the difference between the two YBCO samples comes from the growth on 

the substrate as shown by atomic force microscopy in Figure 53(c) and (d). 
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Figure 53 Temperature dependence of the Gilbert damping factor for the samples with the 

STO substrate (a) and for the NGO substrates (b). On each graph, the control samples data 

points appear with triangles while the samples with YBCO have dots. Atomic force 

microscopy (AFM) image of a YBCO thin film grown on (c) STO and (d) on NGO. 

This difference in the growth manifests itself as a punctual different crystallographic axis 

for the YBCO film. After the growth of Py, the interface will then be of a different nature 

depending on the position as schematized in the inset of Figure 54(a). But the 

crystallographic orientation makes that the direction of transport is different and the 

quasiparticle density of states can be drastically different as shown in Figure 54(a) for 

transport along the 𝛼𝑔 = 0 and Figure 54(c) along 𝛼𝑔 = 𝜋 4⁄ . Indeed, along the 𝛼𝑔 = 𝜋 4⁄  

direction, the surface density of states has the zero bias peak due to Andreev bound states 

at the interface. The spin injection is then larger in this direction [176]. The temperature 

evolutions for the two directions are represented in Figure 54(b) and follow completely 

different trends below the superconducting transition temperature.  

The study of the AFM images allows us to estimate the area of the 𝛼𝑔 = 𝜋 4⁄   facets 

between 1% and 1.7% depending on the estimate. However, these regions have a 

conductivity around 10 times larger than the 𝛼𝑔 = 0 direction. Therefore, the ratio 

10%/90% chosen in the numerical calculation in Figure 54(d) sounds reasonable for a 

qualitative explanation. On this plot, the surface density of states of quasiparticles presents 

a small upturn below the transition temperature but starts increasing when the 

temperature decreases due to the Andreev bound states. As stated in Ref. [176], the larger 

the density of states, the larger will be the spin injection, and as a consequence, the Gilbert 
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damping factor will follow a similar trend in temperature. 

 

Figure 54 Calculated surface density of states for an interface with (a) YBCO (001) ie 𝛼𝑔 = 0, 

(c) YBCO (110) ie and 𝛼𝑔 = 𝜋 4⁄  for different temperatures. The inset in (a) shows the possible 

direction for spin injections depending on the surface orientation on the two substrates STO 

(left) or NGO (right). (b) Temperature dependence of the zero energy density of states for 

quasiparticles injected along the 𝛼𝑔 = 0 and 𝛼𝑔 = 𝜋 4⁄  directions. (d) Surface density of 

states for quasiparticles for a ratio 10%/90% contributions of respectively the 𝛼𝑔 = 𝜋 4⁄  and 

𝛼𝑔 = 0 orientations. 

This final example presented the study of a d-wave superconductor/ferromagnet 

interface and how a BTK-related analysis allowed me to compute the densities of states 

at the surface of the d-wave superconductor for two distinct crystallographic 

orientations. These calculations made it possible to understand FMR experiments. 

3.4 CONCLUSIVE REMARKS 

In this chapter, I have discussed the superconducting proximity effect from the Andreev-

reflection perspective. I have used the general case of an interface between a metal and a s-

wave superconductor to illustrate how the BTK model allows describing the transport across 

it as a function of the interface transparency. I have also shown how this model was extended 

to the case of d-wave superconductors by Tanaka et al. This model will be used to analyze 

some of the experiments I will describe in the next chapters. I have detailed how I applied 

the model to different experiments carried out in my group, in which the analysis I performed 

contributed to understanding different physical effects. These span from the 

superconductivity-related enhancement of tunnel electroresistance and memristive effect in 

cuprate/metal junctions (YBCO/MoSi) [168] , the emergence of interfacial superconductivity 

in cuprate (LSCO) /ferroelectric junctions [7], to spin pumping effects in cuprate/ferromagnet 
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interface [8]. These three cases illustrate how the generalized BTK theory could help in 

understanding complex physical phenomena with a simple but efficient model.  
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4 GENERAL FABRICATION, CHARACTERIZATION, AND MEASUREMENT 

METHODS 

In this chapter, I will introduce the main experimental tools I used to fabricate, characterize,  

and measure my samples. These samples, as we will see, follow mainly two geometries that 

I will detail here. In the first section, I will detail the fabrication steps used for planar junctions 

while the second will be dedicated to vertical junctions. These correspond to different 

approaches to study superconducting heterostructures made with 2D materials and d-wave 

superconductors. I will then present the main characterization methods I used to check the 

materials' quality. Finally, I will introduce the transport measurement setups I used to 

measure my samples' electrical properties at low temperatures and under an applied 

magnetic field.   

4.1 FABRICATION OF PLANAR SUPERCONDUCTING DEVICES 

 

 

Figure 55 Simplified fabrication process of a superconducting planar junction with the main 

steps mentioned in their corresponding section. The STO substrate is not represented except 

in the first scheme. 

The goal of my PhD is to study the coupling between d-wave high-Tc superconductor and 
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2D materials. I used a superconducting oxide, YBa2Cu3O7 (YBCO), whose electrical properties 

dramatically depend on the way it has been grown, especially its doping level in oxygen and 

its crystallographic axis as we have seen in chapter 2, as well as 2D materials which require 

specific conditions to handle. Contrary to the coupling between 2D materials and low-Tc 

superconductors [127,129,177], it is not possible to grow the oxide superconductor on 

top of the 2D material. Instead, we had to develop a method to deposit the 2D material 

on YBCO with the best electrical contact possible. This difficulty implies a complex and 

long fabrication process. 

Following the schematic plan given in Figure 55, I will describe the fabrication process 

generically called “masked ion irradiation”. The main idea is that the superconducting 

circuit is not etched out of a thin film, but instead, is written using ion irradiation to pattern 

insulating regions to allow the deposition of 2D materials. This approach is composed of the 

growth of the YBCO film, the electron-beam lithography followed by the ion irradiation, then, 

the etching and cleaning of the surface before the transfer of the 2D material and its 

patterning and finally the fabrication of the top gate electrode. 

4.1.1 Step 1: Growth of the superconducting thin films 

 

Figure 56 a) Photograph of the PLD setup used for the growth of YBCO thin films. b) 

Simplified scheme of the PLD chamber and some of the main parameters for the growth of 

YBCO. 

To grow YBCO, we use pulsed laser deposition (PLD) as shown in Figure 56a. A simplified 

scheme of this deposition technique is sketched in Figure 56b. This method relies on the 

evaporation of a target locally heated by intense laser pulses. Atoms are ejected in a plasma 

that forms a “plume” (of the shape of a feather), which results from the high-energy atoms 

interacting with the reacting gas inside the chamber. Atoms deposit on the surface of the 

heated substrate in front of the target. Many parameters are at stake to grow high-quality 

thin films: the laser wavelength, the repetition rate of the pulses, the oxygen pressure (in the 

case of an oxide), the substrate temperature,… [178]. This method allows us to grow high-

quality YBCO films, having an epitaxial structure, and which Tc dramatically depends on both 
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the growing and cooldown condition, with particular attention to the O2 partial pressure 

during and after deposition as well as the cooling down speed, as we will see below. To 

fabricate our planar geometry samples, we grew c-axis YBCO (written also YBCO (001)). We 

use SrTiO3 (STO) (001) substrates. This material allows for the epitaxial growth of YBCO due 

to their small lattice mismatch. The films are grown with an excimer laser (=248nm). After 

pre-ablating the target, the growth occurs under an oxygen pressure of 0.36mbar and by 

setting the holder temperature at 700°C [8,179]. During the cooldown, an oxygen pressure 

of 700mbar is maintained to obtain optimally doped crystals. To maximize homogeneity, the 

substrate rotates during the growth to allow the pulses to reach different areas. The target 

is pre-ablated just before the growth, using the same growth parameters as those set for 

the sample. All these precautions guarantee the reproducibility of the quality of the films. 

 

Figure 57 Resistance versus temperature of a typical YBCO thin film (50𝑛𝑚) with an applied 

current of 10𝜇𝐴. 

In this manuscript, except when mentioned otherwise, the films are 50𝑛𝑚-thick YBCO (001). 

They have been grown either by Anke Sander, Santiago Carreira, or Javier Briatico. A thin 

layer of gold or platinum (from 5 to 50𝑛𝑚) may be deposited in situ by PLD directly onto 

YBCO after cooling down at room temperature. This layer serves both to protect the first 

top unit cells of YBCO and also to improve the electrical contacts with other 

materials [180]. This layer cannot be too thick (compared with the mean free path in the 

metal) to get a proximity effect between YBCO and the 2D material. Therefore, either we 

grow a thin layer (between 4 and 10𝑛𝑚) or we grow a thicker layer that is subsequently 

etched via ion beam etching (see 4.1.3) to ultimately obtain a thin one. The former will give 

a continuous but more granular film than the latter. During my PhD, I mainly chose the first 

path since the presence of grain on the gold film has been shown to reduce the contact 

resistance [181,182]. A typical plot of the resistance versus the temperature of one of our 

films is given in Figure 57. The superconducting transition temperature is generally around 

89𝐾 at the beginning of the fabrication process. Let’s notice at this point that the multiple 

steps and chemical treatments can alter the superconducting properties. However, we 
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checked that, in the case of planar junctions, the fabrication procedure does not depress the 

superconducting Tc of the contacts below 80𝐾. 

4.1.2 Step 2: Electronic lithography patterning of irradiation mask 

To allow superconducting coupling between the electrodes of the planar devices, the length 

𝐿 of the junctions has to be submicrometric. Indeed, as we will see in chapter 6, to have a 

coupling between the electrodes, the Andreev electron-hole pairs have to keep their phase 

coherence so the length 𝐿 between the electrodes has to be at most a few 𝜉𝑁 , the coherence 

length of the normal material. For CVD graphene, for example, 𝜉𝑁 is a few hundreds of 

nm [14,183,184]. This resolution is not achievable by optical lithography but it is easily 

achieved by electron-beam lithography (EBL). The latter technique consists of exposing an 

electron-sensitive resist with a focused beam of electrons that scans the sample according 

to a predefined pattern. Using EBL, it is theoretically possible to achieve sub 10nm resolution 

while using a 100keV e-beam apparatus coupled with suitable substrates and resist. This 

limitation is not set by the beam radius, but rather by the diffusion of electrons in the resist 

or the production of secondary electrons by the substrates [185].  However, in our process, 

another difficulty arises from the use of very thick (~600nm) resist necessary for patterning 

YBCO by oxygen ions irradiation (see section 4.1.3). Let us note that, when dealing with non-

conductive substrates or with really thick resists, the charges of the incident electron beam 

build up atop the resist and cannot be expelled on the timescale of the lithography and this 

strongly reduces the resolution. 

The first step consists in designing the titanium/gold pads, for contacting the sample, and 

alignment marks by EBL. These marks allow for multiple-level alignments with the EBL, 

necessary for our process. For this step, we use PMMA (polymethyl methacrylate) A7 with a 

thickness of the order of 600𝑛𝑚, allowing us to achieve ~100nm resolution. To improve the 

resolution and allow for evacuation of the charges atop the resist, a thin layer of aluminum 

(~20nm-thick) is sputtered atop the resist.   

 

Figure 58 a) Atomic force microscopy picture (4 × 4𝜇𝑚) of five designed-to-be 200𝑛𝑚-wide 

junctions spaced over 100𝑛𝑚. b) Cut of the picture in a) allowing the measurement of the 
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effective dimensions after the development of the resist. 

After deposition and lift-off, we pattern the superconducting tracks and the junctions (see 

Appendix). This patterning is then carried out using two beam settings, first with a high 

current for low-resolution patterning (>1µm), using high aperture opening and fast beam 

scanning speed to increase the patterning speed (typically for the superconducting tracks), 

and then using a lower current and a thinner beam, with low scanning velocity to achieve 

higher precision and define the YBCO/2D/YBCO junctions. The details of the process, 

performed by Christian Ulysse at C2N are presented in Appendix. 

After developing the resist, it is possible to check the achieved lithography resolution by 

Atomic Force Microscopy (AFM). Figure 58a and b show one of the most challenging 

patterns we realized which nominally consists of five 200nm-wide junctions separated by 

100nm. Even if the AFM tip does not reach the bottom of the hole made by resist, we can 

infer from this measurement that the size of the junctions corresponds to the drawn pattern, 

having a size of  (200 ± 14)nm over the five junctions. 

4.1.3 Step 3: Oxygen ion irradiation 

Oxygen ions irradiation across the resist masks (defined by EBL), allows to locally make YBCO 

insulating. It’s a crucial step for allowing to deposit of a 2D material on top of 

YBCO/insulator/YBCO junctions to study the proximity effect at the 2D/YBCO interfaces. The 

progressive decrease of the YBCO critical temperature and its increase of resistance, 

until becoming insulating, depends on the dose of O+ ions we use [186–188]. This is due 

to the disorder created by the ions going through the film. These ions, which are relatively 

light compared to Y, Ba, and Cu, mainly displace the atoms of oxygen. These new defects 

are created across the entire thickness of our samples, as the penetration length of oxygen 

ions at 70keV being around 150nm in YBCO,  well beyond the 50nm thickness of the  YBCO 

films, but less than 600nm in the resist. This can be verified by computing the propagation 

of these ions by Monte Carlo calculations [189] both in the YBCO film and the resist. We 

voluntarily overdose the irradiation to ensure that the exposed YBCO becomes insulating, 

using a dose of 5 × 1014 ions per cm2 accelerated at 70keV. This step is carried out with Yann 

Legall at iCube, at the University of Strasbourg.  

Once the irradiation is done, the superconducting tracks are defined. However, there is still 

around 5 to 10nm-thick gold or platinum covering the whole sample, electrically shorting 

the insulating YBCO. Before removing the PMMA mask, I etched this layer with Ion Beam 

Etching (IBE). This method consists of mechanically etching the surface of the sample with 

accelerated (300V), non-reactive, argon ions (50mA for a density current on the target 

around 0.3mA/cm2). The operation is monitored with a mass spectrometer to check when 

to stop but it usually lasts less than a minute for 5 to 10nm of metal. For this step, the ion 

beam is set perfectly perpendicular to the surface in order to reach the bottom of the thin 

junctions. Indeed, even with the rotation of the sample holder, the junctions are sometimes 

so thin (100nm) compared with the thickness of the resist (> 600nm) that some metal could 

stay due to the shadow effect. This metal would short the 2D material deposited during the 

next step. 
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Figure 59 Optical images of a sample after ion beam etching with magnification x5 for a) 

and x100 for b). 

We then proceed to the removal of the resist in acetone after having done an oxygen plasma 

to soften the resist that has become harder after the O+ irradiation and IBE. Optical images 

are given in Figure 59 at that stage. In chapter 5, we will keep this metallic layer to probe the 

proximity effect in the metal instead of the 2D material. An additional optical lithography 

step will be necessary to protect the metal above the junctions but not the metal that 

shortens all the rest. For the comprehension of the reader in the whole manuscript, when I 

refer to a junction a device as “R1739BD C7U”, “R” stands for “Real” the name of the PLD 

chamber, “1739” means it is the 1739th sample grown in this chamber. “BD” is for “Bas Droite” 

which is translated bottom right. There is also “BG” “Bas Gauche" (bottom left), “HG” “Haut 

Gauche” top left and “HD” “Haut Droit” top right. And finally, “C7” is the name of the device 

and since each device has two junctions, we name the upper one U and the lower one D.  

4.1.4 Step 4: 2D material transfer  

Now the superconducting tracks and the junctions are well patterned, we have to deposit 

the 2D materials on YBCO. We propose here two distinct methodologies: the wet transfer of 

chemical vapor deposition (CVD)-grown 2D materials and the dry transfer of exfoliated 

crystals. These techniques allow the deposition of 2D materials onto patterned gaps, 

facilitating the investigation of the proximity effect with YBCO. This growth method consists 

of flowing reacting gas species on a catalytic surface at high temperatures. It starts from the 

nucleation point and extends, allowing for an almost perfect monolayer when using the right 

growth conditions [190]. Growth is optimized on specific substrates to increase quality,  

meaning that we have to transfer the 2D material onto our samples. In this thesis are studied 

CVD-grown graphene on copper and molybdenum disulfide (MoS2) grown on sapphire. The 

chart Table 2 sums up the transfer process in both cases. The transfer method of graphene 

is relatively standard [191] and has already been used [12,14] but I developed the MoS2 

transfer during my PhD. 
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Step Graphene transfer MoS2 transfer 

1 Cut with scissors the copper film Cleave the sapphire with a diamond tip 

2 Spin-coat a thick layer of PMMA Spin-coat a thick layer of PMMA 

3 Dissolve copper in diluted ammonium 

persulfate 

 remove the graphene on the wrong 

side of copper with clean room cloth 

wait 1 day in solution 

Dissolve sapphire layer with a 4mol/L 

NaOH solution 

wait 2 weeks in solution 

4 Transfer to water solution using a 

silicon wafer 

wait 1 day 

Blow the solution with a pipette on the 

surface to make it separate 

transfer to water using a silicon wafer 

wait 1 day 

5 Transfer on the sample  

dry at 70°C for 10 minutes 

acetone and IPA baths. 

Transfer on the sample 

dry at 70°C for 10 minutes 

acetone and IPA baths. 

Table 2 Comparison between graphene and MoS2 transfer. 

Although the conditions for the MoS2 transfer seem vigorous, we will see in section 4.3.2 

that the Raman spectra is not affected after the transfer. 

4.1.4.1 2D material pick-up technique 

 

Figure 60 Schematic views of the successive steps of the stamping method for the dry transfer 

of exfoliated 2D materials. 
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Numerous VdW materials are available in high-quality crystals that can be exfoliated, 

allowing tens of micrometer-wide 2D flakes. This allowed us to test to realize our devices by 

exfoliating directly crystals with the now famous scotch tape technique [39]. Usually, 2D 

flakes are exfoliated and the superconductor is grown atop after testing the thickness of the 

flakes. But in our case, as underlined before, it is not possible to grow YBCO atop. Therefore, 

while using flakes, it is necessary to align them with the existing structures. To allow the 

superposition of several flakes or to place a flake on a sample, we used a newly implemented 

pick-up tool to transfer exfoliated flakes from an initial substrate (after the exfoliation) to a 

final one.  

 

Figure 61 Transfer platform for 2D materials present in the lab. a) Overview and b) zoom on 

the sample holder and polymer holder that holds the flake to transfer onto the sample. 

First, following Figure 60, we exfoliate flakes (1) and transfer them randomly on a Si/SiO2 

substrate (2). Then, we localize the flakes and possibly carry out AFM measurements (see 

section 4.3.1) to measure the thickness. Then, we use the transfer platform (3) detailed in 

Figure 61. We set the silicon substrate on the sample holder and stamp the flake with a 

polymer (PDMS for Polydimethylsiloxane) that we can heat on the polymer holder (see 

Figure 61b). Then, we replace the silicon substrate with the sample of interest on the sample 

holder and stamp the flake onto the sample (4). To do that, we approach the two holders, 

move the sample holder with the piezo controller, and make contact. We heat to expand the 

polymer and adhere to the surface of the sample and finally, we cool it and drive the polymer 
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away very gently to keep the flake on the sample. In chapter 7, we will examine some results 

of this procedure on tungsten disulfide (WS2) carried out with the help of Julian Peiro. 

4.1.5 Step 5: Optical lithography of the 2D material 

Once the 2D material is deposited, either in the form of a flake or on a large scale, we have 

to shape it to follow the existing tracks and avoid short circuits. I did so by optical lithography 

and plasma etching. The principle is to use a photoreactive resist I exposed with a predefined 

design. I did it in three different ways: using a physical mask or scanning the sample with a 

focused laser beam. These two methods are present in the lab but a more versatile, fast, and 

very easy-to-use method is available: maskless lithography also called optical projection 

lithography. In each case, the design is made by 2D CAD (computer-aided design) to realize 

a design that is either reproduced on a mask or directly written onto the sample. It is possible 

to do several layers of lithography by realigning each step to the ones previously realized. 

In the specific case of projection lithography, this alignment is done by using the same lens 

used for the lithography, by adding a filter blocking UV light. Once alignment is done, the 

chosen system exposes the pattern, either once (optical lithography), by scanning the sample 

linearly (laser lithography), or by exposing the sample by separating it into writing fields 

(maskless lithography). Then, the resist is developed and the sample is cleaned in water. The 

optical lithography recipes can be found in the Appendix. 

4.1.6 Step 6: Plasma etching of the 2D material 

The patterning of 2D materials, once all the above steps are completed, is delicate. They are 

indeed sensitive to handle and they can be easily damaged on the scale of the sample, even 

when protected, when using mechanical etch as IBE, that we described before. Several 

techniques, specially dedicated to these materials, allowing for precise etching of 2D 

materials and control over their thickness, have been developed (see Ref. [192] for a review). 

In our case, I used plasma etching with a Nextral plasma etcher. This etching process relies 

on creating an oxygen plasma that oscillates thanks to an RF electric field. The energy of the 

moving ions allows for breaking Van der Waals chemical bounds states and therefore 

selectively etch most 2D materials. For instance, we etch monolayer graphene with a power 

of 30W for 30 seconds in an atmosphere of 100sccm of O2. 

4.1.7 Step 7: Top gate fabrication 

At that point, it is already possible to carry out transport measurements. However, in order 

to protect the samples, and to realize a top gate to change the doping level, we can deposit 

a layer of alumina (Al2O3). Indeed, we saw in chapter 2 that the properties of 2D materials 

can be easily tuned while applying a back or top gate voltage, by modulating the Fermi level. 

The top gate in particular usually allows for a bigger change of the Fermi level while using a 

lower voltage as the electric field 𝐸 is 𝐸 =
𝑉

𝑑
√𝜀 with 𝑉 the voltage applied, 𝑑 the thickness of 

the dielectric and 𝜀 its dielectric constant and that the thickness of the bottom dielectric is 

dictated by the substrate used. On the other hand, the top gate requires the growth of a 

dielectric atop the 2D materials with a thickness typically of the order of 50nm in our case. 

We chose alumina (Al2O3), which has a dielectric constant close to 9 at all 
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temperatures [193,194], both for realizing the top gate and protecting the used 2D materials 

during the fabrication process [69]. 

The alumina is deposited by a combination of e-beam evaporation and ALD. We first grow 

0.8nm of aluminum with a homemade e-beam evaporator, using an electron gun to locally 

warm the target, allowing us to realize a high-quality sticking layer. We then take out the 

sample, allowing for the Al to naturally oxidize. 

The growth by e-beam evaporation of Al, while allowing good quality oxide, is not adapted 

for thick dielectrics. We therefore use this first layer as a seed layer for atomic layer 

deposition (ALD) grown Al2O3. The ALD growth of Al2O3 is composed of multiple cycles, 

illustrated in Figure 62, and which can be described as follow [195]: (a) trimethylaluminum is 

injected and reacts with the surface.  The reaction is driven by the strength of the Al-O bond. 

(b) H2O is injected into the chamber. It will replace the methyl group bonded to aluminum 

atoms and we get the exact same configuration as in the beginning at the end of the cycle. 

(c) This cycle is repeated to progressively add materials and obtain multiple layers. 

 

Figure 62 a) First step of the cycle, one injects a pulse of trimethylaluminum (TMA) inside the 

chamber heated at 200°𝐶. TMA reacts with the surface by replacing the O-H bond with the 

very solid Al-O bond. b) After injection of H2O, the methyl groups are replaced by hydroxyl 

groups on aluminum. c) We are back to the initial state and we can start another cycle. 

Once the 2D material is fully covered by amorphous alumina, we pattern the electrodes. 

Because alumina is sensitive to alkaline solutions that are used for development, we did not 

use optical lithography for this step as the development will thin this barrier. Instead, we opt 

for an electronic lithography followed by evaporation of Ti(10nm)/Au(100nm) and lift-off. 

Figure 63 shows two optical images of a sample after all the fabrication steps. Optimally, 

there will be 35 devices to measure on such a sample. However, all are not covered with 2D 

materials. This can be checked by AFM and/or using Raman spectroscopy (see section 4.3.2), 

allowing us to focus on devices where we are sure of the quality of the transferred 2D 
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material (see 4.3).  

 

Figure 63 A sample after the whole fabrication process. a) Optical image of several devices 

(x5) b) zoom (x50) on one single device.  The graphene layer is emphasized by the red-dotted 

contour. 

4.2 FABRICATION OF VERTICAL SUPERCONDUCTING DEVICES 

 

Figure 64 Simplified fabrication process of superconducting vertical junctions with MoS2 

grown by PLD. Each main step is represented with the corresponding part in the manuscript. 

During my PhD, I had the occasion to work with another geometry than planar junctions 
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explained above. I built vertical superconducting junctions to probe the proximity effect 

between YBCO and MoS2 grown by PLD as explained in chapter 7. The aim of this structure 

is to measure the resistance of micrometric devices made of a bottom electrode of YBCO, a 

top electrode made of molybdenum silicon (MoSi), an amorphous s-wave superconductor 

and MoS2 in between. In this section, I will detail the fabrication process of these vertical 

junctions following Figure 64. I start with a bare substrate of STO and the growth of YBCO 

and the layer of gold (~10nm) is the same as done in 4.1.1. Then, the growth of MoS2 by 

PLD and its optimization will be treated in detail in chapter 7. In this section, I will concentrate 

on the two-step lithography (4.2.1) of the resist apertures, and on the sputtering of the top 

electrode (4.2.2). Finally, I will comment on the way I wired my sample since there are some 

specificities (4.2.3). 

4.2.1 Two-steps lithography of resist apertures 

The bottom electrode and barrier of the junctions are fabricated in two steps of large-scale 

PLD deposition, the first consists of growing YBCO and gold and the second of growing 

MoS2. The aim is to measure vertical junctions with a micrometric section (from 1 to 20μm) 

in order to get sizable resistances, in the range of the instrumental resolution. To do so, the 

strategy is to deposit micrometric “pillars” of the top electrode, electrically separated from 

the bottom electrode (except at the junction itself) by an insulating spacer. The used 

technique consists of using a hardened layer of resist with patterned holes. The resist 

mechanically stabilizes the pillars and avoids any shortcuts between the different junctions. 

To pattern the micrometric square holes, the protocol starts with depositing a 50%-diluted 

photoresist SU8 onto the sample, followed by a 4000𝑟𝑝𝑚, 60-second spin-coating. 

Subsequent steps involve a 90°C, 60-second soft bake, UV illumination for square hole 

patterning using an energy of 60mJ, a 20-second development in MF319 developer, rinsing 

in deionized water, and N2-assisted drying. The resist's permanence and durability are 

achieved through a 180°C, 60-second hard bake, rendering it resistant to illumination, 

development, and lift-off processes. 

Defining the contacts involves a sequential approach: once the sample has cooled, another 

layer of resist (SPR 700 1.2) is directly deposited and spin-coated at 6000rpm for 60 seconds. 

This layer is then soft-baked at 90°C for 60 seconds. To facilitate the lift-off process, the 

sample is immersed in chlorobenzene for 10 minutes, followed by rinsing with deionized 

water and subsequent drying using N2. 

4.2.2 Sputtering of the top electrode 

Sputtering is a physical vapor deposition method employed for the purpose of depositing 

thin layers of designated target material onto a substrate. By generating a discharge plasma 

through the application of high DC voltage or an RF source, energetic ions are produced 

and directed toward the target material, resulting in the expulsion of surface atoms. These 

atoms subsequently aggregate and eventually settle onto a substrate positioned in close 

proximity. 
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I used magnetron sputtering to deposit 50nm of Mo80Si20 (MoSi) and then 50nm of gold. 

Here, the vacuum chamber is filled with low-pressure Argon (Ar) gas, followed by the 

application of high DC voltage between the target material (functioning as the negative pole) 

and the chamber wall (acting as the positive pole). This electrical configuration generates an 

electric field around the target, leading to the ionization of Ar gas and the consequent 

formation of Ar+ ions. These ions will then collide with the target surface. If the energy carried 

by these ions exceeds the binding energy of the target atoms, the atoms are expelled from 

the target, creating a plasma in the chamber. This plasma then condenses onto the sample 

surface, resulting in the deposition of a fine layer of the target material. To localize the 

plasma in the vicinity of the target, a strong magnetic field is positioned behind the target 

material. This arrangement amplifies the plasma density close to the target, which enhances 

the deposition rates. It also serves to shield the substrate and the remaining chamber 

components from undesired interaction with the plasma. Figure 65 shows a depiction of the 

deposition chamber and a schematic representation of the process. 

Once the deposition is finished, the sample is bathed for 20 minutes in acetone. We then 

submit it to a flow of acetone until the metal has lifted off. Finally, we clean the sample in 

ethanol and dry it with nitrogen. 

 

Figure 65 Scheme of the magnetron sputtering setup. 

4.2.3 Specificities of the wire bonding in the case of the vertical junctions 

Wire bonding is used both for planar and vertical junctions. In the lab, our bonding machine 

allows for the use of gold or aluminum wires. For planar junctions, I used exclusively gold 

wires to avoid the deoxygenation of YBCO by the aluminum wires.  To measure the resistance 

of the vertical junction, I have to connect wires at the top electrode on the patterned contacts 

but also at the bottom electrode. This is made difficult since I deposited a layer of hardened 

resist. Therefore, I have to scratch the surface to access the layer of YBCO and connect it with 

a wire. I have done this on the four corners of the sample and I then bonded and added 
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some silver paste to improve the electrical contact and its durability. These bonds are made 

with gold wires since they are in direct contact with YBCO. The contacts of the top electrodes 

(gold/MoSi) can be done either with gold or aluminum wires. A picture of a sample glued 

on a chip and bonded is given in Figure 66. 

 

Figure 66 Sample glued on a chip. At the four corners, a wire is bonded with silver paste to 

contact the YBCO layer above. 

4.3 MATERIALS CHARACTERIZATION 

I studied 2D materials from different origins: exfoliated, CVD- or PLD-grown. These materials 

have to be properly characterized. Moreover, all over the fabrication process, it is necessary 

to check whether the previous steps were successful or not and whether the quality of each 

material has been conserved. We will first describe atomic force microscopy and then Raman 

spectroscopy, which is a precious tool to study 2D materials. 

4.3.1 Atomic force microscopy (AFM) 

Atomic Force microscopy (AFM) is very useful in many aspects during the fabrication process. 

It allows to characterize the surface topography of a sample, its roughness, and its 

thickness, or to check some lithography steps. AFM uses a tip, whose end is chemically 

etched to be as thin as a single atom, placed at the extremity of a cantilever as pictured in 

Figure 67a. We used AFM in the tapping mode, for which the tip is placed atop the sample 

and the cantilever is set to oscillate close to its resonance frequency. The motion of the 

cantilever is monitored through the reflection of a laser on a photodetector. The interaction 

between the extremity of the tip and the surface perturbates the motion of the cantilever, 

changing the amplitude and phase. Finally, a feedback loop maintains the amplitude of 

oscillations constant by modifying the height of the tip above the sample. This mode is 

particularly adapted to determine the topography of the sample because it is non-invasive. 

We can have access to the topographic profile of the surface line by line (Figure 67c) as the 

tip scans the surface allowing us to draw a 2D map (Figure 67b). We used this technique to 
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measure the thickness of 2D materials down to the monolayer and to check the correct 

development of the resist after our lithography steps.  

 

Figure 67 a) AFM principle scheme. b) 2D topographic AFM image (20 × 20𝜇𝑚) of a step. c) 

Horizontal cut of the 2D map. The step between two distinct regions is clearly visible. 

4.3.2 Raman spectroscopy 

Contrary to bulk materials, 2D materials are sometimes hard to observe both by optical 

microscope and AFM as they can be as thin as a single layer. I therefore used Raman 

spectroscopy to determine the presence or not of 2D material between the gaps of my 

junctions and get information on their quality. This technique is based on the interaction 

between the coherent light of a laser, focused through a microscope, and the lattice 

vibrations of the material as the photons interact with the lattice and are reflected, absorbed, 

or scattered. During the measurement, the laser shines the surface and the scattered 

photons exiting the sample are diffracted with a grating. The inelastically scattered photons 

are detected in a detector, giving the Raman spectrum, while the elastically scattered ones 

are mostly stopped by a chromatic filter. The measured variations of the light wavelength 

are due to the exchange with phonons of the lattice, with the photons having lost energy 

constituting the Stokes part of the spectrum (the most studied and the one presented in 

Figure 68) while the ones that gained energy constitute the Anti-Stokes part. 

As different materials have different lattice parameters and phonon structure (due to 

different symmetries, atoms…), Raman spectroscopy is a very convenient tool to recognize 

2D materials as each material has a particular spectral signature [196–198].  In addition, it 

allows for infering the thickness, up to a few layers, of 2D materials as early shown for 

graphene [199] and for WS2 [22]. 
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Figure 68 Raman spectra of a) CVD monolayer graphene on silicon  oxide and b) CVD 

monolayer MoS2 on sapphire. 

Figure 68 shows the Raman spectrum I measured for both graphene and MoS2. We can see 

for graphene (a) the characteristic peak 𝐺 (around 1500cm−1) common to all graphitic 

structures while the 2𝐷 peak (around 2700cm−1) is characteristic of graphene. The ratio 

between the two allows to determine the thickness of graphene [199]. The peaks 𝐺∗ and 2𝐷′ 

are present even in perfect graphene monolayer while the peak 𝐷 (~1300cm−1) comes from 

the present of defects. In our case, this peak is particularly small testifying to the high 

crystallinity of our CVD graphene. In the case of MoS2 (b), there are two characteristic peaks 

𝐸2𝑔
1  (~380cm−1) and 𝐴1𝑔 (~405cm−1). Their distance and the ratio between their amplitudes 

allow to deduce the number of layers as we will see in chapter 7. 

4.4 TRANSPORT MEASUREMENTS 

To study the proximity effect, I have to measure transport properties from the critical 

temperature to the lowest temperature we can reach with our cryostats. Indeed, most of the 

effects I studied, such as proximity and coherence effects, while starting at nitrogen 

temperature, are easier to characterize when the temperature is decreased. As we will see in 

4.4.1, the cryostat from Cryogenics© we used is well suited for our measurements at low 

temperatures and with a magnetic field. We will first present the general working principle 

of this cryostat and we will discuss the electrical measurements in a second section. 

4.4.1 Cryogenic system and magnetic field control 

Though we have a few cryostats at our disposal, the results of this thesis were mainly 

measured on a Cryogenics© cryostat. This cryostat is a helium closed-cycle cryostat using a 

cryocooler, connected to a Helium compressor whose temperature is regulated by exchange 

with a chilled closed loop circuit.    
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Figure 69 a) Schematic view of a pulse tube cryocooler. b) Schematic diagram from the 

manufacturer to describe the circulation of gas for cooling the samples. 

This system is cooled by a cryocooler represented in Figure 69a. It is a Helium-based 

thermodynamic machine made to reach low temperatures (below 4K) and composed of a 

deported compressor that brings the mechanical work, a displacer whose only aim is to 

increase the Carnot efficiency and the pulse tube. The operation of a pulse tube is a cyclic 

process: the compressor pressurizes helium and sends it into the pulse tube. Helium enters 

the hot heat exchanger, where it releases heat, causing it to cool down and expand. The 

expanded helium then moves into the regenerator, where it absorbs heat from the 

regenerator material and cools even further. This cooled helium enters the cold heat 

exchanger, where it is further cooled down, and it creates a low-temperature environment 

at the cold end. The gas returns to the pulse tube's warm end, where the process repeats. 

The cold head, in contact with the cold end through the cold heat exchanger, maintains cold 

the inside of the cryostat, isolated from the outside by a vacuum shield, containing two 

stages and the superconducting magnet. 

Figure 69b helps to understand how the sample gets cold inside the variable temperature 

insert (VTI) and how its temperature is regulated. Another closed cycle of helium is circulating 

thanks to an oil-free pump. It gets through the two stages maintained cold by the cold head 

and arrives at the helium pot. The helium pot and the VTI are connected through a tunable 

needle valve adjusting the pressure inside the VTI. The VTI temperature is primarily 

controlled by the pressure of helium via the 𝑃(𝑇) curve of helium and it can also be adjusted 

by a resistor that will warm helium.  

The cryostat has a superconducting magnet (able to reach going from ±9T at 1T/min). 

Superconducting coils are not limited by Joule heating and can therefore achieve fields 

limited only by the critical current and field of the superconductor. Following the scheme in 

Figure 70, the circuit is made of a part outside the cryostat with copper wires connected to 

the power supply. This external part is connected to superconducting wires inside the 

cryostat. It is possible to keep the stored energy 𝐿𝐼² (where 𝐿 is the inductance of the wires 

and 𝐼 the current) in the superconducting magnet without sustaining a current by using a 
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superconducting switch which can be thermally switched ON and OFF.  

 

Figure 70 Simplified scheme of the superconducting magnet in the Cryogenics© system. 

To illustrate the way it works, let us consider that the magnet is at a given field in the 

permanent mode. This permanent mode means the switch is on (the switchable region is 

superconducting) and the current Imagnet makes loops with almost no dissipation and the 

field is particularly stable. In that case, the current Ilead and Imagnet are completely independent 

and the lead current can be set to zero.  When we want to change the magnetic field, we 

have to ramp the lead current to the same value as the one in the superconducting loop. 

When this is the case, we turn the switchable region into the resistive state. Now, we can 

ramp again the current but this time with a rate below the maximum rate to avoid quenching 

the magnet that is to say breaking the superconductivity in the wires. When the desired value 

is reached, we cut the heater and the switchable region will be back to its superconducting 

state. We can then ramp the current in the leads back to zero. 

4.4.2 Electrical measurements 

As shown in the following chapters, the resistances of the devices measured in this thesis 

span several orders of magnitudes, from mΩ to GΩ. For resistance less than 100kΩ, I use a 

stable current source (Keithley 6221) to inject current while measuring the voltage with a 

nanovoltmeter (Keithley 2182) as shown in Figure 71a. The impendence of the 

nanovoltmeter is limiting the upper range of measurable resistances. For resistances higher 

than 100k, I voltage bias the device and measure the currents with an electrometer 

(Keithley 2635) while applying a gate if necessary with the Keithley 2450 as shown in Figure 

71b. 
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Figure 71 Electrical configurations a) in the delta mode for current biasing with the Keithley 

6221 and 2182 (the K2635 is used to apply a gate voltage)  and b) in voltage biasing with 

the Keithley 2635 (the K2450 is used to apply a gate voltage). 

 

Figure 72 Comparison between the numerical derivation of the differential conductance 

(dark blue line) against the differential conductance mode from Keithley (purple line). 

Coupling the K6221 and K2182 allows for measuring resistances below 100kΩ by applying 

the current and measuring the voltage when ramping an external parameter (temperature, 

magnetic field, gate voltage…). It also allows to use of an optimized mode by the 

manufacturer as illustrated in Figure 72. In the first case (dark blue plot), the current is 

ramped and the voltage is measured at each point. The differential conductance is then 

computed numerically. In the second case (purple plot), the current is ramped in a slot way 

and the measure is averaged over several points. This is set by choosing a step 𝑑𝐼 from 𝐼𝑠𝑡𝑎𝑟𝑡  

to 𝐼𝑠𝑡𝑜𝑝 , allowing to access the “Differential Conductance” of the sample without 
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communicating with the computer to gain speed [200]. It uses an extra parameter called 𝐼 

that we can fix to a few times the step 𝑑𝐼 for best results. The instruments will compute the 

differential resistances for the values of the current: 𝐼0 = 𝐼𝑠𝑡𝑎𝑟𝑡 + 𝑛 × 𝑑𝐼 with the formula: 

 

For very resistive junctions (100kΩ), I used another setup to measure the differential 

conductance in a 2-probe configuration as shown in Figure 71b. The signal is generally 

noisier both because it is a numerical derivation and because for large resistances, the 

currents circulating can be very small (< 100nA) and then the noise will be more visible. 

4.5 CONCLUSIVE REMARKS 

We have seen in this chapter the most important steps in the fabrication process of the 

samples of this thesis in 4.1 and 4.2. We examined the main tools we have to characterize 

the different materials we deal with in part 4.3. Finally, in 4.4, we focused on the low-

temperature transport measurement setup and how the electrical measurements were done. 
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5 PROXIMITY EFFECT IN YBCO/METAL PLANAR DEVICES  

While this thesis ultimately focuses on the superconducting proximity effects between YBCO 

and 2D materials, studying analogous YBCO/metal junctions seems an elementary first step 

to characterize the propagation of d-wave superconducting correlations in a simpler case, 

and to establish a comparison point for the ulterior experiments with the more complex 2D 

materials. Moreover, this study is helpful to understand experiments with 2D materials 

because a thin layer of metal has to be intercalated between them and YBCO to protect the 

YBCO surface and improve the interface transparency [12,180]. 

In the first part of this chapter, I will present results on single interface junctions made of 

YBCO and gold and show the effects of the induced d-wave order parameter at the interface 

as well as how it affects the pairing symmetry in the proximized material. Finally, I will present 

results on two interfaces (YBCO/Au/YBCO) superconducting junctions with a bridge of gold.  

5.1 STUDY OF SN JUNCTIONS 

5.1.1 Geometry of the samples 

One of the simplest systems to study the induced superconductivity in gold by YBCO is in a 

vertical or side SN junction as done extensively in the literature [91,92,106,201,202]. In our 

case, we made a planar SN junction to study how this geometry may affect the properties of 

the interface and how superconductivity is propagating in our channel. The geometry 

presented in Figure 73c corresponds to a continuous thin layer of gold (10nm thick) lying on 

one side above superconducting YBCO and on the other side on insulating YBCO. My 

hypothesis is that gold on top of the superconducting YBCO is proximized with a d-wave 

symmetry due to YBCO’s order parameter. I want to study the “junction” between this 

proximized gold and the gold above the insulating YBCO. This system is interesting in the 

sense there is no material change between the two sides of the junction, the only difference 

being that the gold layer on the left of Figure 73c is proximized by YBCO. Thus, there 

should be no Fermi level mismatch neither strong scattering nor the S (proximitized 

Au) / N (not proximized Au) interface, since it is the very same material on the two 

sides of the junction. That is, we expect a very transparent interface. All of the above 

justifies the designation of “SN junction” even if the proximized gold is not an intrinsic 

superconductor.  

The geometry of the electrodes is shown in Figure 73a and b. The highlighted blue part (false 

color image) corresponds to the gold on top of the insulating YBCO. All the junctions 

presented in this chapter have been measured in a 4-probe configuration with the injected 

current bias (between I+ and I-) and voltage measurement (between V+ and V-) set as 

displayed in Figure 73a. The measurements were carried out in the so-called “delta mode” 

using the K6221 and K2182 as explained in chapter 4.  

As shown in the zoomed picture in Figure 73b, the voltage probes are placed a few microns 

from the proximized Au (S) / not proximized Au (N) interface (yellow/blue in Figure 73c), on 
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both sides of it. The placement of the electrodes is illustrated on the sketched side-view in 

Figure 73c.  

 

Figure 73 a) Geometry of a whole device with the electrical configuration. b) Zoom on the 

SN junction under study. The gold layer with insulating YBCO is colored in blue to be more 

visible. 𝑊 is the width of the SN interface. For the device with a U in their name, 𝑊 = 10𝜇𝑚 

while for D devices, 5𝜇𝑚 ≤ 𝑊 ≤ 6𝜇𝑚 since the interface has been etched after an optical 

lithography whose alignment precision is around 1𝜇𝑚. c) Side-view of the SN junction with 

the points where the electrical measures are taken. 

5.1.2 Differential conductance and symmetry of the gap 

As seen in chapter 3, the BTK theory and its extensions allow for computing the differential 

conductance as a function of the energy. To compare with this model, it is therefore useful 

to plot the conductance of the studied junctions as a function of the bias voltage as shown 

in Figure 74, where I measured the conductance of different junctions. These figures present 

three SN junctions I will use as an example to illustrate the studies presented in this chapter. 

The geometry of these three junctions is similar except for the first one (E4D in Figure 74a) 

which has a reduced width as shown in the right of Figure 74a compared with the ones in b 

and c.  

5.1.2.1 Measurements performed at 2K 

Let us first look at the resistances of these junctions at high voltage bias. The junction E4D 

(a) has a resistance of 12.5Ω for a width of around 6μm. E2U (b) has a resistance of 8.7Ω for 

a width of 10μm. Finally, the junction E7U (c) has a resistance of around 25Ω for a width of 

10μm.  
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Figure 74 (Left) Differential conductance measurements of 3 different junctions at 2K and 

without magnetic field: a) E4D, b) E2U, and c) E7U. Their respective microscope image is 

shown on the right. 

Overall the SN junctions I measured on different chips (around 10 different junctions), the 

product of the geometrical width with the resistance is constant except for the junction E7U 

(c) which is particularly resistive. Though the junctions chosen as examples are on the same 

chip, there are variations between their measured characteristics. The differential 
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conductance of the junction E4D (a) has a shape reminiscent of the one of a transparent SN 

interface with a s-wave superconductor with an apparent superconducting gap around 

50mV. A reminder of chapter 3 is given in Figure 75a and b that exhibit simulations of the 

differential conductance of SN interfaces in the s- and d-wave cases. This observed gap is 

much larger than the one of YBCO, ∆~25mV. Therefore, to avoid confusion, we will call this 

an apparent gap 𝛿. For E4D (a), 𝛿~50mV. The differential conductance of E2U (b) has a 

different shape, resembling the differential conductance of a SN interface with a d-wave 

superconductor with 𝛿~2 − 3mV.  

 

Figure 75 Simulation of the normalized differential conductance spectrum of: a) a perfectly 

transparent (Z=0) SN interface in the s-wave case. b) a SN interface in the d-wave case (𝑍 =

1) with an angle 𝛼 = 𝜋
4⁄ .  

Finally, the differential conductance of the junction E7U (c) seems to be a combination of 

the two symmetries with a larger square shape feature with an inner peak at zero bias. The 

apparent gap here is 𝛿~180mV. 

Despite all these differences in resistance, the observed gap 𝛿, and the shape of the low bias 

peak, we can notice that the differential conductance at zero bias is between 1.5 to 1.9 times 

larger than the differential conductance at high bias. Let’s recall that for a perfectly 

transparent SN junction, this ratio is equal to 2. Now, let us focus on the temperature and 

field variations of the measured conductance spectra. 

5.1.2.2 Temperature dependence of the conductance  

I carried out transport measurements at different temperatures (2 − 300K) and magnetic 

fields (from 0 to 9T). Figure 77 displays the same junctions as in Figure 74, and stresses the 

evolution of their conductance spectra, measured as a function of the voltage bias. It is 

plotted for different temperatures ranging from 2K to 90K (the temperature at which YBCO 

is not superconducting).  
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Figure 76 Differential conductance measurements at several temperatures: a) E4D, b) E2U 

and c) E7U. 

For all junctions, the central features we discussed based on the measurements at 2K evolve 

with temperature. However, this happens differently depending on the junctions. To 

illustrate this statement, I plotted the evolution of the zero bias conductance as a function 

of the temperature in Figure 77a. For junction E2U (b), the central peak loses more than one-

half of its amplitude at 20K and finally disappears for 𝑇~40K. Above this temperature, the 

differential conductance does not exhibit any feature and is flat. On the other hand, for E4D 

(a) and E7U (c), their central conductance peaks are still visible up to 70K and the variation 

of the height of the peak is slightly above 40K and starts accelerating above. In Figure 77b, 

the normalized width is plotted as a function of the temperature. Here, the width 𝛿 is 

computed as the maximum of the derivative. The width of the differential conductance of 

E4D (a) first decreases slowly until 10K and then the decrease accelerates until the gap 

reaches zero. E7U(c) follows a similar trend with even a plateau until 10K before a sharp 

decrease towards zero. On the contrary, the width of E2U (b) (not shown) increases as the 

temperature increases whatever the method used (width at half maximum, maximum of the 

derivative,…). This is due to the low value of the width 𝛿~2 − 3mV. Thermal effects are visible 

and cause an enlargement of the peak as 𝑘𝐵𝑇 𝑒 ≈ 1mV⁄  at 𝑇 = 10K comparable with the 
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width of the central feature. I chose not to represent it to avoid confusion. Nevertheless, 

both Figure 76b and Figure 77a show a decline of the central feature of E2U (b) with 

increasing temperature. 

 

Figure 77 a) Evolution of the zero bias conductance with the temperature of E4D (a), E2U (b), 

and E7U (c). b) Evolution of the normalized width (computed as the maximum of the 

derivative of the differential conductance) with temperature of E4D (a) and E7U (c). The one 

of E2U (b) is not shown because its very small width, comparable with the thermal smearing 

is not relevant (see main text for details). 

5.1.2.3 Magnetic field dependence of the conductance 

Figure 78 presents the variation of the differential conductance spectra while applying an 

out-of-plane magnetic field. The upper critical field 𝐻𝑐2
𝑌𝐵𝐶𝑂 of YBCO is 150T [203] The out-

of-plane magnetic field has a strong effect on the three junctions while, as for the 

temperature, having slightly different effects. Concerning the height of the central feature, 

the differential conductances of E4D (a) and E7U (c) do not evolve much (< 2% variation) 

and even slightly increase in the case of E4D (a) at 9T compared with the absence of field as 

shown on Figure 79a. On the contrary, the differential conductance of E2U (c) evolves a lot 

with a magnetic field and the amplitude of the central peak at 9T loses two-thirds of its value 

at zero field. This plot is shown in Figure 79a with the right axis. For E4D (a) and E7U (c), the 

magnetic field reduces the width of the central features as shown in Figure 79b. The 

dependence is exactly the same for these two differential conductances that have similar 

shapes except at zero bias.  In terms of voltage bias, E4D (a) goes from 𝛿~50𝑚𝑉 at zero field 

to  𝛿 ∼ 20mV at 9T. E7U (c) goes from 𝛿~180mV to 𝛿~70mV. For E2U (b), 𝛿 is slightly 

increasing up to 9T whatever the method used to compute it (width at half maximum or 

maximum of the derivative). I decided not to show its evolution in Figure 79b to avoid 

confusion but the plot in Figure 78b shows that the magnetic field has a strong effect on the 

differential conductance. 
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Figure 78 Differential conductance measurements at several out-of-plane magnetic fields : 

a) E4D, b) E2U, and c) E7U. 

 

Figure 79 a) Evolution of the normalized zero bias conductance with the magnetic field for 

E4D (a), E2U (b), and E7U (c). b) Evolution of the normalized width (computed as the 

maximum of the derivative of the differential conductance) with the magnetic field. 

The upcoming sections have the following objectives: initially, to normalize the data in order 
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to facilitate a theoretical comprehension and fitting of the experiments, enabling the 

extraction of characteristic parameters related to the proximity effect. Following that, I will 

present an initial approximation of the system to explain the measurements of differential 

conductance. Lastly, a more elaborate model will be introduced, which effectively captures 

the physics at the interface by solving the Usadel equation with appropriate boundary 

conditions. 

5.1.2.4 Procedure of normalization 

We have seen that the three differential conductances taken as examples have low-

temperature features I attribute to Andreev reflection as explained in the following. The three 

curves have a background that corresponds to the normal state of the junctions. In order to 

isolate the features at low temperatures from the background, I will normalize the differential 

conductances. This allows us to compare the experimental data to theoretical models and 

then extract the physical parameters of the junctions by fitting. I will present two different 

methods and give their advantages and drawbacks. The first method, used for example in 

Ref. [6], consists in dividing the differential conductance at low temperature by the one at 

90K, just above the superconducting transition of YBCO. More precisely, I first choose a 

voltage bias 𝑉𝑐 above all superconducting gaps present. Then, I add the difference between 

the low-temperature and high-temperature differential conductance at this bias. This makes 

the two curves coincide at the chosen voltage bias. Then, I divide the low-temperature 

conductance by the corrected high-temperature one. Here is a mathematical formulation of 

the normalized conductance 𝑔 at voltage bias 𝑉 and temperature 𝑇: 

𝑔(𝑉, 𝑇) =
𝐺(𝑉, 𝑇)

𝐺(𝑉, 90𝐾) + 𝐺(𝑉𝑐, 𝑇) − 𝐺(𝑉𝑐, 90𝐾)
   5.1 

Where 𝐺(𝑉, 𝑇) is the differential conductance at voltage 𝑉 and temperature 𝑇. This 

normalization method has been applied for the three junctions under study in Figure 80.  

This method has the advantage to only rely on the measured data at a low temperature and 

a high temperature. However, it has two main drawbacks. First, in this set of data, the 

normalized curves do not remain constant at 1 after a given voltage bias. In our case, this is 

due to the significant variation of the normal resistance between 2K, the lowest temperature, 

and 90K, just above the superconducting transition of YBCO. This non-flat behavior makes 

it more difficult to compare with simulations where the differential conductance reaches 1 

above a given bias (for a comparison, see the simulations given in Figure 75). Second, the 

normalization slightly depends on the chosen bias 𝑉𝑐, which also complicates the analysis. 
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Figure 80 Normalized differential conductance by the high temperature (90𝐾) 

measurements for the three junctions : a) E4D, b) E2U and c) E7U. 

Therefore, I decided to try another method to normalize the data. I removed the parabolic 

background of the differential conductance to get differential conductances at a high bias 

(above any superconducting gap) equal to 1. First, I fit the edges of each differential 

conductance plot by a second-order polynomial function. Once the parameters are found, I 

divide point by point the experimental data (black lines on the left side of Figure 81) by the 

polynomial (red lines on the left side). It gives the normalized differential conductance 

presented on the right-hand side of Figure 81 for the three junctions presented in Figure 74. 
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The main advantage of this method is that it provides normalized conductances that are 

equal to 1 for large biases. It allows for a direct comparison with the theoretical models. The 

drawback is that this normalization is arbitrary in the sense that I chose the degree of the 

polynomial function, I could have chosen any other function to fit the edges of the 

differential conductance.  

 

Figure 81 Illustration of the normalization procedure for the three junctions presented above 

(with the same letter as before: a for E4D, b for E2U, and c for E7U). On the right, the 

experimental differential conductance (black line) is plotted with a polynomial fit (order 2) 

only on high bias values. On the left is plotted the resulting normalized differential 



 

110 

conductance. 

As we can see in Figure 81, once renormalized, the central peak observed in the conductance 

has an amplitude of ~1.55 for E4D (a2), ~1.9 for E2U (b2), and ~1.8 for E7U (c2). In the 

following, I will use these normalized data for the analysis. The plots at various temperatures 

(Figure 76) reveal that, for all three junctions, the differential conductance curves converge 

towards the curve for 2K, and exhibit minimal changes within the temperature range of 2 to 

5K. This is also evident in Figure 77a. Consequently, in what follows, I will assume that the 

measurement at 2K does not differ from the expected zero-temperature behavior. 

Consequently, I will neglect temperature effects in that temperature range for fitting 

purposes, which simplifies the related calculations. 

5.1.3  BTK-inspired model 

From now on, I will base my analysis on the normalized data obtained in Figure 81, with the 

normalization based on the polynomial background removal. In chapter 3, I presented the 

BTK theory in the case of a point contact that can also reliably be applied to vertical junctions 

and with d-wave superconductors as we have seen. Here, I will present an adaptation of the 

BTK formalism which will allow us to have a first description of the system. This model, 

presented in 5.1.3.1, takes into account the presence of different contributions, 

approximated under the form of resistances in series respectively corresponding to s- and 

d-wave contributions to the resistance as well as a metallic contribution. I will then explain 

the tunable parameters in 5.1.3.2 and how I used them to fit the experimental data. I will 

show that, while relatively simple, this model represents a good first approach to our system. 

I will finally give an interpretation of my model in 5.1.3.2. 

5.1.3.1 Adaptation to the BTK model taking into account s- and d-wave contributions 

Using the sole BTK theory with a s-wave order parameter, it is not possible to fully reproduce 

the behavior of the conductance of our junctions as a function of the probed energy (in 

particular E2U (b) and E7U (c)). I therefore started to use a model with a d-wave order 

parameter, which is consistent with the pairing symmetry of the order parameter of YBCO. 

However, it still failed to encompass the physics of the measured junctions (E4D (a) and E7U 

(c) as shown with the simulations in Figure 75) since the conductance spectrum has a square 

shape which is unusual with d-wave superconductors. Typical differential conductance 

spectra for both symmetries are presented earlier in Figure 75. I also noticed that the shape 

of the differential conductance spectrum of E7U (c) looked similar to a sum of both s- and 

d-wave contributions.  

From this observation, I developed a phenomenological model, presented in Figure 

82. It assumes the presence of two interfaces: one corresponding to a d-wave BTK 

interface and the second one a s-wave BTK interface. It also assumes there is in series 

a voltage drop across gold, which has a finite resistance 𝑹𝒎𝒆𝒕.  

This phenomenological model, as I will present in the following section, allows me to 

reproduce the shapes of the conductance spectra of my junctions while using reasonable 
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values of the parameters (gaps, 𝑍 factor, angle 𝛼…). The code for the whole SN junction, 

combining BTK s- and d-wave theories as well as 𝑅𝑚𝑒𝑡 (see Figure 82), is provided in the 

Appendix. 

 

 

Figure 82 Equivalent electrical of a phenomenological model with two interfaces, one d-

wave and the other s-wave, and a metallic resistance 𝑅𝑚𝑒𝑡 in series. 

5.1.3.2 Illustration of the model 

In this section, we will review the parameters of the model used to fit the differential 

conductances of the junctions. This will allow us to extract some insights into the nature of 

the measured SN junctions. The main extracted parameters, corresponding to the plots in 

Figure 85, are summarized in Table 3. 

Enlargement of the energy scale (x-axis) due to 𝑹𝒎𝒆𝒕 

First, I would like to discuss the role of the metallic resistance in series, 𝑅𝑚𝑒𝑡 . If 𝑅𝑚𝑒𝑡 increases, 

on the one hand, the width will increase because it adds an extra voltage drop to the total 

voltage bias. On the other hand, the height of the central feature will decrease. Figure 83 

illustrates this affirmation with a simple numerical calculation. In this simulation, I only 

consider one SN interface (s-wave) for simplicity. The way it would be measured includes a 

metallic part. It is then equivalent to a BTK calculation with a finite resistance in series. For 

𝑅𝑚𝑒𝑡 = 0.001𝑅𝑆𝑁, the BTK plot is almost undisturbed with a doubling of the conductance 

inside the superconducting gap (the overall gap is the superconducting gap). However, as I 

increase 𝑅𝑚𝑒𝑡, the central features widen and its height decreases. For 𝑅𝑚𝑒𝑡 = 2𝑅𝑆𝑁, the 

height only goes to 1.2 but the apparent gap is more than four times larger than the initial 

superconducting gap ∆0. This example shows that even if the presence of a resistance in 

series may explain the enlargement of the central feature, it also implies the diminution of 

its height. 

d-wave and s-wave interfaces 

This phenomenological model is based on the presence of two distinct SN interfaces. One is 

formed with a d-wave superconductor and a normal metal while the other one is made of a 

s-wave superconductor and a normal metal. The first interface has a d-wave superconductor 

and a normal metal on the other side. For both interfaces, the parameters are the 

superconducting gap, respectively ∆𝑑−𝑤𝑎𝑣𝑒 and ∆𝑠−𝑤𝑎𝑣𝑒, the scattering parameter, 𝑍𝑑−𝑤𝑎𝑣𝑒 

and 𝑍𝑠−𝑤𝑎𝑣𝑒 , that tells whether the interface is transparent or tunnel and a broadening term, 
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Γ𝑑−𝑤𝑎𝑣𝑒 and Γ𝑠−𝑤𝑎𝑣𝑒. I only used Γ𝑠−𝑤𝑎𝑣𝑒 to slightly smoothen the very sharp angles of the s-

wave differential conductance. The weight of both contributions in the final differential 

conductance is given by the values of the high bias resistance (further any superconducting 

gap), 𝑅𝑑−𝑤𝑎𝑣𝑒 and 𝑅𝑠−𝑤𝑎𝑣𝑒. Last but not least, and only for the d-wave interface, the angle 𝛼 

between the gap node and the interface. This angle, depending on its value, gives rise to 

many different shapes of the differential conductance of the d-wave part. The definition of 

this angle with respect to the interface is given in Figure 84. 

 

Figure 83 Numerical calculation of the differential conductance of a perfectly transparent 

SN interface (normal resistance 𝑅𝑆𝑁) with the BTK theory (s-wave) in series with a finite 

resistance 𝑅𝑚𝑒𝑡. 

 

Figure 84 Definition of the angle 𝛼 of the d-wave order parameter with respect to the 

interface between a normal metal and a d-wave superconductor. 

 

Application of the model  
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Now, we will review the parameters of the fits shown in Figure 85 for each junction (see Table 

3) and extract some physical insights from their values. 

 

Figure 85 Fits of the normalized differential conductance of the three junctions with the 

hand-waving model: a) E4D, b) E2U, and c) E7U. 

 

 

Table 3 Recap of the parameters for the fits of the three junctions E4D, E2U, and E7U. 

E4D (a): The differential conductance of the junction has a square shape and therefore, we 

expect a large s-wave component. Indeed, in the fit presented in Figure 85a, the d-wave BTK 

gap is 25mV while the s-wave one is 22mV. The transparency of both junctions is perfect 
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(𝑍𝑑−𝑤𝑎𝑣𝑒 = 0 and 𝑍𝑠−𝑤𝑎𝑣𝑒 = 0). The best fit corresponds to 𝛼 = 0 and the ratio of the 

resistance between the d-wave and s-wave interface 
𝑅𝑠−𝑤𝑎𝑣𝑒

𝑅𝑑−𝑤𝑎𝑣𝑒
⁄ = 8 is large and 

accounts for the square shape, majoritarily coming from the s-wave interface. The metallic 

resistance 
𝑅𝑚𝑒𝑡

𝑅𝑑−𝑤𝑎𝑣𝑒
⁄ = 2.5 allows for a slight enlargement of the width of the central 

feature as explained above.  

E2U (b): The differential conductance of this junction shows a sharp zero-bias peak 

reminiscent of the behavior found in the case of a d-wave superconductor in contact with a 

normal metal with 𝛼 = 𝜋
4⁄  . The fitting parameters corresponding to Figure 85b, show that 

the total differential conductance is a combination of both s- and d-wave contributions: 

∆𝑑−𝑤𝑎𝑣𝑒= 2mV and  ∆𝑠−𝑤𝑎𝑣𝑒= 2mV, though the dominant contribution comes from the d-

wave interface with 𝛼 = 𝜋
4⁄ . Here, we have  

𝑅𝑠−𝑤𝑎𝑣𝑒
𝑅𝑑−𝑤𝑎𝑣𝑒

⁄ = 0.4 and 
𝑅𝑚𝑒𝑡

𝑅𝑑−𝑤𝑎𝑣𝑒
⁄ = 0.3. 

E7U (c): The differential conductance spectrum of this junction combines a square-shaped 

low-bias peak with an inner feature at zero bias. Moreover, the width of the central feature 

is ∼ 200mV. This last element makes it difficult to fit because it is complex to enlarge the 

central feature without decreasing too much the height of the central peak. Indeed, as 

explained above, increasing the width of the feature with a larger 𝑅𝑚𝑒𝑡 leads to a decrease 

in the height of the peak. The found fit parameters render the general shape of the peak. 

The gaps are much larger here: ∆𝑑−𝑤𝑎𝑣𝑒= 32mV and ∆𝑠−𝑤𝑎𝑣𝑒= 25mV with the angle 𝛼 = 𝜋
4⁄ . 

Here, I found 
𝑅𝑠−𝑤𝑎𝑣𝑒

𝑅𝑑−𝑤𝑎𝑣𝑒
⁄ = 4 and: 

𝑅𝑚𝑒𝑡
𝑅𝑑−𝑤𝑎𝑣𝑒

⁄ = 2.5. 

Comments on the parameters 

While this model is the first approach to the treatment of this system, the extracted fitting 

parameters can give some insights into the behavior of the junctions that may help for the 

theoretical explanation as we will see in the following. In all these calculations, the scattering 

parameter of the s-wave interface is 0 corresponding to a perfect interface. This makes sense 

since the interface proximized gold/gold is expected to be perfect. Moreover, this s-wave 

interface between a proximised layer of gold and a normal layer of gold, a few coherence 

lengths away from the interface should not exhibit scattering or an abrupt change of Fermi 

level, justifying the quality of the interface. Concerning the d-wave interface, two different 

angles have been used 𝛼 = 0 and 𝛼 = 𝜋
4⁄  to reproduce the shapes of the differential 

conductance given as examples. One thing we learned from the fits is that the s- and d-wave 

gaps seem correlated. Indeed, the d-wave gap is always a bit larger than the s-wave gap. 

This is consistent with the fact that s-wave correlations originate from the scattering of the 

d-wave order parameter and are therefore smaller. Finally, I will discuss the values of the 

different resistances incorporated in the model. Except for the E2U (b) junction, the 

resistance of the s-wave contribution is larger than the d-wave one. A recap of the different 

resistances is given in Table 4. This behavior of E2U (b) may be related to the orientation of 

the order parameter (𝛼 = 𝜋
4⁄ ) that may be less favorable for the current to flow. For the 

other two, the d-wave resistance is smaller than the s-wave one. Finally, the metallic 

resistance in series is in these three examples between one-fourth and one-third of the 
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global resistance. It is possible to get an order of magnitude of the expected resistance of 

the metallic section using Thomson’s formula [204] for the conductance of thin films. 

Knowing the conductivity of bulk gold at 2K is roughly 𝜎0 ≈ 2S.m−1 [205] and its mean-free 

path is 𝑙 ≈ 38nm [206], the conductivity of the gold film of thickness 𝑡 ≈ 10nm is: 

𝜎 = 𝜎0 ×
𝑡

2𝑙
× [𝑙𝑛 (

𝑙

𝑡
) +

3

2
] ≈ 7.5 × 106𝑆.𝑚−1   5.2 

And then, the expected resistance of the 10μm-wide and 2μm-long metallic section is:  

𝑅𝑚𝑒𝑡
𝑒𝑥𝑝 =

𝐿

𝑡𝑊𝜎
≈

2×10−6

10×10−9×10×10−6×7.5×106
≈ 2.7Ω. This is consistent with the estimated 𝑅𝑚𝑒𝑡 from 

the simulations given in Table 4. 

 

Table 4 Recap of the normal resistance, 𝑅𝑚𝑒𝑡, 𝑅𝑠−𝑤𝑎𝑣𝑒 and 𝑅𝑑−𝑤𝑎𝑣𝑒 for each junction. 

5.1.3.3 Interpretation of the model 

The model I developed assumes there are two interfaces that can be described by the BTK 

formalism, one with a s-wave order parameter and the other one with a d-wave order 

parameter as well as a metallic resistance in series. A descriptive scheme is given in Figure 

86 and it will help the discussion about both the justification of the presence of two effective 

interfaces and their positions. Let us start from the left side of the figure. A thin (smaller than 

the scattering length) layer of gold is covering YBCO, a d-wave superconductor. The electrical 

contact between the two has been shown to be excellent [12,207] and is made over several 

tens of microns. The first consequence is that this interface YBCO/Au will not be measured 

by the set of electrodes because of the four probe measurement and the very low interface 

resistance.  A second consequence is that we can assume that a d-wave order parameter is 

induced in the thin gold layer and that it won’t change much over the thickness of gold since 

this layer is thinner than the scattering length [93]. Indeed, here the interface between 

superconducting YBCO and gold being along the (001) direction, the in-plane momentum 

of the particles will be conserved during the processes occurring at the interface. Therefore, 

incident, reflected, and transmitted particles see the same order parameter. As a 

consequence, there will be no s-wave correlations nor surface states created and the 

induced order parameter in gold above YBCO will be only d-wave. 

Going toward the right side of Figure 86, the superconducting YBCO below gold is replaced 

by insulating YBCO. The current, that can circulate both in YBCO or gold on the left, can no 

longer circulate in YBCO on the right and is restrained to the gold layer. It creates a 

constriction of the current, analogous to the one created by a constriction in a 

superconductor. This is the position I qualify as SN junction. At this position, the presence 
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of the constriction gives rise to a s-wave contribution coming from a loss of the d-

wave order parameter [93]. At that point, there are two order parameters coexisting 

with two different symmetries s and d. These two order parameters create electronic 

correlations in the layer of gold placed above the insulating YBCO. However, these 

correlations decrease as the distance with the interface increases but not with the same 

characteristic lengths. s-wave correlations persist up to the coherence length in the 

layer of gold while d-wave ones fade over the mean free path in the layer [93]. This is 

the starting point of the two interfaces model I described earlier. In Figure 86, I placed the 

speculated position of each “SN” interface between proximized gold and normal gold with 

the different symmetries s or d. Close to the boundary between superconducting and 

insulating YBCO, the first interface being encountered may be the “d-wave interface” 

because this is where d-wave correlations disappear. Further of the boundary, there may be 

the “s-wave interface” where s-wave correlations vanish. The “” aims at stressing that these 

“interfaces” are not sharp and well-defined interfaces but more continuous changes of the 

electronic density of states in the gold layer. Finally, the electrodes being deported with 

respect to the YBCO boundary, they also measure on one side some proximized and normal 

layer of gold. This will account for 𝑅𝑚𝑒𝑡. This modelization with two “interfaces” is an 

approximation since they are in fact not localized but spread. This approach nevertheless 

allows the application of the BTK theory. This simple model and the related calculation, while 

submitted to approximations, make it possible to extract physical parameters that are 

relevant to the physics at play in our systems and is a good starting point for its study. The 

approach developed in the following allows us to treat this continuous interface problem. 

 

Figure 86 Scheme of a SN junction and the placement of the various interfaces related to the 

equivalent electrical model. The current and voltage probes are also depicted. 

5.1.4 Numerical resolution using Usadels equation  

The theoretical work that follows has been realized with the help of our collaborators, Tim 

Kokkeler and Sebastian Bergeret from Centro de Física de Materiales, San Sebastian, Spain. 

It relies on the use of Usadel formalism to describe the proximity effect at the interface 

described in Figure 87 by adding the formalism of circuit theory of superconductivity [208] 

extended to the case of d-wave superconductors [95,97]. Contrary to the previous model 
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which does not take into account the scattering in the normal metal, this model treats the 

scattering in a continuous way and the physical quantities are computed self-consistently. 

Therefore, the phenomenological term 𝑅𝑚𝑒𝑡 which we introduced in the BTK modelling is 

naturally taken into account. This treatment is necessary since the resistance of the normal 

metallic layer on the blue side may be of the same order as the effective SN interface.   

5.1.4.1 Model 

 

Figure 87 Scheme of the system used for the calculation. The lateral junction between 

proximized gold and normal gold is approximated to a SN junction. 

In this model, the system is depicted in Figure 87. It is made of a bilayer of superconducting 

YBCO covered by Au (red) and a layer of standing Au (blue). We assumed scattering can 

occur in the Au film (either above the superconducting or insulating YBCO) but that its 

thickness is small compared with the mean free path. The electrical contact with YBCO being 

good (low contact resistance due to optimized in situ growth of Au), the layer of Au above 

YBCO (in red) is assumed to be fully proximised with a d-wave order parameter [93]. In the 

red part of the scheme, the current can flow either in Au or YBCO but once in the blue part, 

it can only flow in Au. This constriction acts like an effective interface of finite transparency 

between proximized Au (red) and normal Au (blue). In this model, the inverse proximity effect 

that would decrease the value of the order parameter in YBCO is neglected because YBCO’s 

thickness is much larger than gold’s one. 

5.1.4.2 Usadel formalism in a nutshell 

Without entering too much into details, the resolution method is based on the numerical 

resolution of Usadel’s equation. For this paragraph, I will mainly refer to [209,210]. The 

starting point of the quasiclassical formulation is the description in terms of Green’s 

functions of both the electrons and holes due to the electron-hole coupling in 

superconductors (see chapter 3 about Bogoliubov-de Gennes equation). It allows the 

treatment of non-uniform superconductors. For example, the retarded Green function for 

the electron is: 

Where 𝜃 is the Heaviside function, |𝜓𝐻⟩ the ground-state stationary wave-function, 𝜓𝜎 the 

annihilation operator of an electron of spin 𝜎 and {, } is the anti-commutation operator. The 

𝐺𝑅 (𝑟 , 𝑡|𝑟′⃗⃗ , 𝑡′) = −𝑖𝜃(𝑡 − 𝑡′) ⟨𝜓𝐻| {𝜓𝜎(𝑟 , 𝑡), 𝜓𝜎
†(𝑟′⃗⃗ , 𝑡′)} |𝜓𝐻⟩   5.3 
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electron-hole coupling implies the use of a larger dimension Green’s function, solution of 

the Gorkov equation [211] which describes non-uniform superconductors: 

𝐺𝑅 (𝑟 , 𝑡|𝑟′⃗⃗ , 𝑡′) = −𝑖𝜃(𝑡 − 𝑡′)𝑀̂ (𝑟 , 𝑡|𝑟′⃗⃗ , 𝑡′)   5.4 

With: 

𝑀̂ (𝑟 , 𝑡|𝑟′⃗⃗ , 𝑡′) = 〈(
{𝜓↑(𝑟 , 𝑡), 𝜓↑

†(𝑟′⃗⃗ , 𝑡′)} {𝜓↑(𝑟 , 𝑡),𝜓↓(𝑟′⃗⃗ , 𝑡′)}

− {𝜓↓
†(𝑟 , 𝑡), 𝜓↑

†(𝑟′⃗⃗ , 𝑡′)} − {𝜓↓
†(𝑟 , 𝑡), 𝜓↓(𝑟′⃗⃗ , 𝑡′)}

)〉0 
  5.5 

Where 〈 〉0 stands for the statistical average over the whole system state. Usadel 

showed [212] that for diffusive conductors, the Green’s function becomes isotropic when 

averaged over the disorder: 

𝐺𝑑𝑖𝑠
𝑅̂ (𝑟 , 𝑡 − 𝑡′) = −𝑖𝜃(𝑡 − 𝑡′) 〈𝑀̂ (𝑟 , 𝑡|𝑟′⃗⃗ , 𝑡′)〉𝑑𝑖𝑠   5.6 

To find the Green’s function with respect to the energy 𝐸, one has to consider the Fourier 

transform of 𝐺𝑑𝑖𝑠
𝑅̂  that can be written: 

𝑅̂(𝑟 , 𝐸) = (
𝐺 𝐹

𝐹𝑟 −𝐺
)   5.7 

This matrix is solution of the Usadel equation: 

ℏ𝐷𝛻̂𝑟(𝑅̂𝛻̂𝑟𝑅̂) = [−𝑖𝐻0 + 𝑖ℏ𝛤𝑠𝑓𝜎̂𝑧𝑅̂𝜎̂𝑧 , 𝑅̂] 
  5.8 

With 𝐻0 = (
𝐸 𝑖∆(𝑟 )

𝑖∆∗(𝑟 ) −𝐸
) and Γ𝑠𝑓 the spin-flip scattering rate (not considered in the 

following). The physical properties are expressed in terms of 𝐺 and 𝐹. For instance, the local 

single-particle density of states at energy 𝐸 is given by: 

𝜌(𝑟 , 𝐸) = 𝜌𝑛 𝑅𝑒𝐺(𝑟 , 𝐸) 
  5.9 

5.1.4.3 Tanaka-Nazarov effective interface  

We solve the Usadel equation on the normal Au side (blue part in Figure 87). Since the 

superconducting order parameter is zero in this region, it is reduced to: 

𝜕𝑥(𝐺𝜕𝑥𝐺) = [𝑖𝐸𝜎𝑧 , 𝐺] 
  5.10 

Where 𝐺 is the angle averaged retarded Green’s function. 

The so-called circuit theory for s-wave superconductors [208] treats diffusive conductors and 

was extended to cover d-wave superconductivity as well [95,97]. In our case, the boundary 

condition at the effective interface (𝑥 = 0 at the boundary between the red and blue part) is: 
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𝐺𝜕𝑥𝐺(𝑥 = 0) = ∫ 𝑑𝜙

𝜋
2

−
𝜋
2

(1 + 𝑇1
2 + 𝑇1{𝐶, 𝐺(𝑥 = 0)})   5.11 

Where 𝑇1 the transparency of the effective Au/Au interface and 𝐶 = 𝐻+
−1(1 − 𝐻−), with 

𝐻±(𝜙) =
1

2
(𝐺𝑆(𝜙) ± 𝐺𝑆(𝜋 − 𝜙)) and 𝐺𝑆 being the bulk Green’s function of a d-wave 

superconductor with ∆(𝜙) = Δcos 2(𝜙 − 𝛼). In this approach based on Usadel’s equation, 

there is only one effective interface contrary to the BTK-inspired method. 

5.1.4.4 Results of the simulation and parameters 

This formalism can be used to treat the differential conductance of the junctions E4D (a) and 

E2U (b) as examples. Their behavior can be reproduced using this theoretical description. As 

in the BTK-inspired model, the angle 𝛼 is 0 for the E4D (a) junction while 𝜋 4⁄  for the E2U (b) 

junction. The differences between the two differential conductances come from the 

difference in the transparency of the effective interface, the junction E4D having a higher 

transparency (𝑧 = 0.05) than E2U (𝑧 = 0.2). These interfaces have very high transparencies 

and are nearly perfect as the differential conductance data suggested. The numerical 

calculation of the normalized differential conductance at zero temperature is presented in 

Figure 88a. It is plotted as a function of the energy normalized by the superconducting gap 

of YBCO. The computed calculation for the differential conductance of E4D presents a broad 

peak in the same way as the experimental differential conductance (see Figure 88b). The one 

of E2U has a sharper shape likewise the experimental differential conductance. 

 

Figure 88 a) Results of the calculation done by Tim Kokkeler for the junction E4D and E2U 

described earlier. The normalized differential conductance is plotted with respect to the 

normalized voltage bias. Here, 𝛼 = 0 with 𝑧 = 0.05 for E4D and 𝛼 = 𝜋
4⁄  with 𝑧 = 0.2 for 

E2U. b) experimental normalized differential conductance at 2𝐾 as a function of the 

normalized energy. The gap ∆ cannot be found with the BTK-inspired method since there is 

a s- and d-wave gap but I chose a gap close to the sum of the gaps (40𝑚𝑉 for E4D and 2𝑚𝑉 

for E2U). The data as a function of the voltage bias are given in the inset for comparison.   
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5.1.4.5 Evolution with temperature 

It is possible to carry out this numerical calculation at non-zero temperature and therefore 

check if it fits with the experimental observations. The temperature manifests itself in the 

calculation by two effects. First, the finite temperature smears the differential conductance 

since more quasiparticle modes are implicated in the transport (Fermi-Dirac distribution). 

Moreover, temperature also reduces the order parameter. This effect is slight for 𝑇 < 𝑇𝑐/2 

but the shrink is more important for 𝑇 > 𝑇𝑐/2. In Figure 89a, the differential conductances at 

zero bias of the junctions E4D (a) and E2U (b) were computed as a function of the 

temperature with the same parameters as before. As a reminder, I provide the experimental 

measurements of the zero bias conductance in Figure 89b. First, we can notice that the 

shapes of the theoretical and experimental plots are very similar. The plateau at 

temperatures below 40K experimentally observed for E4D is well reproduced by the 

simulations. The decrease above in the simulation is less pronounced than in the experiment. 

In terms of numbers now, first, the experimental normalized differential conductances at 2K 

do not have the same values as in Figure 88b. This comes from the normalization which is 

not the same in the two cases. In Figure 89b, the data are normalized by the high-

temperature ones while in Figure 88b, they are normalized with the polynomial method 

explained in Figure 81.  

 

Figure 89 Numerical calculation of the normalized differential conductance at zero bias as 

a function of the normalized thermal energy using the Usadel theory with Tanaka-Nazarov 

boundary conditions for the E4D and E2U junctions. b) Experimental normalized zero bias 

conductance vs normalized temperature by the YBCO gap (∆~25𝑚𝑉) for E4D and E2U. The 

inset is the same as in the main figure but with the temperature. 

Concerning the temperature, I represented the experimental measurement with the 

normalized temperature by the gap ∆ of YBCO. Since ∆= 𝜅𝑘𝐵𝑇𝑐 with 𝜅 ≈ 2.5 − 3.5 for YBCO 

depending on the orientation [167], it is equivalent to plot it as a function of 
𝑇

𝜅𝑇𝑐
. The plateau 

in the simulation of E4D (blue) goes until a value that is close to the experimental 

measurement (0.2 for the simulation and 0.15 for the experiment). There is less agreement 

in the case of the E2U junction but that may be due to the extremely small observed gap in 

the differential conductance spectra of E2U (see Figure 88b and the values of the gaps 
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deduced from the BTK-inspired method in Table 3). With a smaller gap, we would find an 

experimental plot closer to the simulation. The model developed in this subsection allows 

the reproduction of two of the experimental differential conductances (a and b) and 

extracts the parameter of the scattering at the interface. Finally, it also reproduces well 

the temperature behavior of both measured junctions.  

5.1.4.6 Discussion on the junction E7U 

Before switching to SNS junctions in the next section, I would like to explain why the model 

developed with the Usadel formalism struggles to “fit” the data. As we have seen, the 

junction E7U (c) is particularly resistive compared with the two others, and the BTK-inspired 

model gave an estimate for the metallic resistance 𝑅𝑚𝑒𝑡~9.5Ω larger than the two others. 

That may be due to the quality of gold at that place of the sample. It implies that the metallic 

resistance becomes more important compared with the resistance of the interface (in the 

Usadel formalism). It results in two visible transitions with two different voltage scales. The 

smaller voltage scale is associated with the change of conductance of the SN interface for 

the junctions E4D (a) and E2U (b). The second one is not related to energy but more to a 

current. When the current becomes large (𝐼~𝐼𝑐
𝐴𝑢), the proximized gold on top of YBCO will 

turn normal. The ratio between the proximized and normal conductance is not limited by a 

factor of 2 contrary to the SN resistance. This is what explains the larger factor between the 

conductance at zero and at large bias. In the next section, we will see again this explanation 

to explain the differential conductances of SNS junctions. 

5.2 STUDY OF SNS JUNCTIONS 

On the same chips as in the previous section, SNS junctions were patterned to study more 

similar systems as the 2D/superconductor planar junctions described in chapter 3 and whose 

results are given in chapters 6 and 7. Here, the normal bridge separating the two 

superconducting electrodes is made of a thin layer of gold.  

5.2.1 Comments on the chosen geometries 

In this study of SNS junctions, I decided to present only junctions with voltage electrodes 

connected to the central track through gold and not the superconductor. Indeed, as shown 

in Figure 90, all the devices have their voltage electrodes made of gold on top of insulating 

YBCO. The length 𝐿 of the junction between the superconducting electrodes is equal to 

200nm for the devices R1859BD B2U (a), R1859HD B5U(b), and R1859BG A2D (c). The two 

first junctions have electrodes made of gold with a 25μm-long track of gold while the voltage 

electrodes of the (c) junction are themselves 200nm-long junctions. We have to note that 

the (c) junctions were patterned with a 3μm-wide constriction. 
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Figure 90 (Left) Differential conductance measurements of 3 different junctions at several 

temperatures from 2 to 90𝐾: a) R1859BD B2U, b) R1859HD B5U, and c) R1859BG A2D. 

(Right) Their respective microscope. The colorized part in blue corresponds to regions where 

YBCO was irradiated and is then insulating. 

5.2.2 Results 

In Figure 90 on the left, I report the differential conductance spectra at several temperatures 

of the junctions shown on the right and presented in the previous subsection. We can notice 

here the same diversity in shapes, levels of resistance at high bias (𝑒𝑉 > ∆𝑌𝐵𝐶𝑂), and widths 

𝛿 of the central feature as for the SN junctions presented in the previous section. The device 
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in a) has a square shape with relatively similar conductance at high bias ~0.15S with an 

observed width 𝛿~4mV. Junction c) shows a sharp peak (𝛿~1mV) in its conductance spectra. 

The relatively low conductance at high bias comes from the constriction as observed with 

other junctions (not shown). The junction in b) has a shape combining a relatively large 

square feature (𝛿~14mV) and a peak at zero bias. Its conductance at high bias is around 

0.05S which is low for a junction without constriction. We can note that was also the case for 

the SN junction with a similar shape in the previous section (SN junction E7U (c)). 

Another point that has to be highlighted is the ratio between the zero-bias conductance and 

high-bias conductance. For SN junctions, this ratio was between 1.5 and 2 while in the case 

of SNS junctions, except for A2D (c), the ratio goes from 6 to 9. The evolution of the 

normalized conductance at zero bias with the temperature is given in Figure 91a. We can 

see three distinct behaviors. The zero bias conductance of the junction (a) which has a square 

shape, almost does not evolve until a temperature (~40K) where they sharply decrease. 𝐺𝑁
0  

of the junction (b) linearly decreases until the same temperature and starts decreasing very 

fast above that temperature. Finally, the one of junction (c) sharply decreases already at low 

temperature. 

 

Figure 91 a) Evolution with the temperature of the normalized differential conductance at 

zero bias for the junctions previously presented. B) Evolution of their normalized visible gap 

(defined as the maximum of the derivative of the differential conductance) with  temperature. 

In Figure 91b, I present the evolution of the width of the central feature with the temperature. 

The normalized width of junctions (a) and (b) behave more or less the same with temperature 

with a plateau below 10K and above a sharper decrease. The width of the (c) junction on the 

contrary increases with the temperature before falling to zero. As mentioned in the previous 

section for the junction E2U (b) (see 5.1.2.2),  this comes from the fact that the width of this 

junction is very small (𝛿~1mV) to be compared with the thermal voltage 
𝑘𝐵𝑇

𝑒⁄ ~1mV at 10K. 

As a consequence, until a peak exists (below 30K), the thermal broadening makes it appear 

larger than it is in reality. At 30K and above, the peak has completely disappeared. 
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5.2.3 Discussion 

I will now discuss these experimental data with the help of the knowledge acquired with SN 

junctions in the previous section. 

 

Figure 92 Scheme of a SNS junction. The superconducting YBCO is shown in orange while 

proximized gold above YBCO is shown in darker orange while proximized gold above the 

insulating YBCO is represented by a gradient of orange and yellow (normal gold). 

5.2.3.1 Absence of Josephson coupling 

First, though we are dealing with SNS junctions (for a,b and c), none of them exhibited 

Josephson coupling. This can be explained by comparing the phase-coherence length 𝜉𝑁 in 

the gold deposited by PLD and 𝐿 as represented in Figure 92. With a mean-free path 𝑙 around 

3nm and a Fermi velocity (𝑣𝐹~106m/s), we deduce the diffusion constant 𝐷 =
𝑙𝑣𝐹

2⁄ ≈

1.5 × 10−3m2/s. Then, the phase-coherence length of gold is : 𝜉𝑁 = √
ℏ𝐷

𝑘𝐵𝑇
≈ 76nm with 𝑇 =

2K. As a consequence, the phase between the electron and hole of the Andreev pair is 

lost too quickly and it is impossible for a supercurrent to be sustained over 𝟐𝟎𝟎𝒏𝒎-

long junction. 

5.2.3.2 SNS junction as two uncoupled SN junctions 

This estimate of the phase-coherence length in the gold thin film also allows to neglect 

interference effects between quasiparticles going back and forth in the cavity formed by the 

gold channel contrary to what we observed with graphene [14]. Therefore, the two SN 

interfaces of the SNS junction can be considered independently and their 

contributions just add up. That explains why the shapes of the SNS junctions are very 

reminiscent of the ones of the SN junctions. We can compare the plots of the SN junctions 

in Figure 76 and the ones of the SNS junctions in Figure 90. Since 𝐿 = 200nm is much lower 

than the typical grain size of YBCO (> 1μm), the orientation of the order parameter is the 

same for the two SN interfaces. The two contributions have the same shape and simply add 

up. Especially, their gaps add up. 

5.2.3.3 Role of the metallic channel 

However, contrary to the SN case where the metallic section between the SN interface and 

the voltage probe was very large (> 2μm) compared with 𝜉𝑁 ≈ 76nm, for SNS junctions, it is 



 

125 

no more the case since 𝐿 = 200nm and there is proximized gold on both sides of the SNS 

junctions. This has two consequences. 

First, In the case of SNS junctions, the central feature width (𝛿 < 20mV for all the SNS 

junctions) does not reach large values as was the case for the SN junction E4D (a) (𝛿~50mV) 

and E7U (c) (𝛿~180mV). The enlargement effect of the central feature I explained in the last 

section is less important in the SNS case since we expect a lower fraction of the resistance 

of the metallic channel over the total resistance of the SNS junction (𝑅𝑚𝑒𝑡 ≪ 𝑅𝑆𝑁𝑆
𝑡𝑜𝑡 ) compared 

with the SN case (𝑅𝑚𝑒𝑡~𝑅𝑆𝑁
𝑡𝑜𝑡). Second, the phase-coherence lengths on both SN interfaces 

represent a larger fraction of the total metallic section. The resistance of the proximized 

part being inferior to the normal metallic section, at low temperature and low current, 

the total resistance of the gold channel decreases. Though this may allow for a larger 

conductance at zero bias than in the SN case, this does not explain the factors 6 to 9 between 

the conductance at zero bias and the conductance at large bias (shown in Figure 91a). This 

large increase in the conductance in the case of the SNS junctions could also come from an 

onset of Josephson current. Even if 𝜉𝑁 < 𝐿, since the transparency of the SN interface is 

excellent (see previous section), there may be still some coupling between the macroscopic 

wave functions of the two electrodes giving rise to a small supercurrent [213]. Though we 

did not measure any supercurrent, this may be enough to increase significantly the 

differential conductance at low bias. 

5.3 CONCLUSIVE REMARKS 

This chapter was dedicated to the measurement of YBCO planar junctions with metals. In the 

first section, I studied SN junctions formed by a continuous thin layer of gold lying on one 

side (S) above the d-wave superconductor YBCO and on the other side (N) on insulating 

YBCO. It has been possible to understand the experimental data with one model directly 

inspired by the BTK theory and another one derived from the circuit theory of 

superconductivity. The second section focused on SNS junctions and exploited the 

knowledge acquired with SN junctions since I have shown that these SNS junctions can be 

treated as a sum of two SN junctions. 

There are still challenges and questions to elucidate with these systems. I already started to 

fabricate new samples with a reduced length of the metallic channel to try reaching 

Josephson coupling. We would also like to better understand the effect of the angle 𝛼 of the 

superconducting order parameter on the differential conductance. Alongside this work with 

gold, I initiated a new set of samples made with platinum as the thin metallic layer on top of 

YBCO to see if another metal would change the transport properties of the junctions. Finally, 

low-temperature STM measurements as done in Ref. [10] could be a very interesting 

experiment to carry out on my devices since it would allow to see the spatial variation of the 

induced gap in the metal. 

Beyond its intrinsic interest, this chapter can be seen as a preliminary to the study of 2D 

materials junctions because it allows for easier theoretical analysis. However, junctions with 

metals probe a regime where the electrical contact with YBCO is excellent as the metal is 
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grown in situ but where the coherence length is very short which is the exact opposite of 

what we probe with 2D materials where the deposition often makes the electrical contact 

with YBCO tunnel but where the coherence in the 2D material channel is much larger and 

can reach a few hundred nanometers as we will see in the next chapter.  
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6 PLANAR YBCO/GRAPHENE JUNCTIONS 

Graphene’s discovery opened the 2D materials’ research area. From the beginning, 

superconducting proximity effects in these novel materials attracted much attention due to 

their really peculiar electronic properties. In chapter 2, we have seen that there have been a 

lot of studies concerning graphene and s-wave superconductors. This chapter will be 

dedicated to the d-wave superconducting proximity effect in graphene. The reason why the 

d-wave symmetry has been much less investigated is the difficulty of having good electrical 

contact between graphene and the d-wave superconducting cuprates, which are both 

complex and fragile materials, unlike s-wave ones. In our laboratory, Perconte et 

al. [12,14,180] developed a method to transfer CVD-grown graphene onto YBCO and 

obtained interfaces with good quality. My work in this area has focused on the 

superconducting proximity effect in graphene/d-wave superconductor junctions, particularly 

focusing on the propagation of superconducting correlation in graphene and on magnetic 

field effects. For this, I measured planar YBCO/Graphene/YBCO junctions as shown in Figure 

93. They are made of two superconducting electrodes in YBCO, covered by a thin layer of 

gold and separated by YBCO rendered insulating by ion irradiation (see chapter 4). The 

monolayer graphene acts like a bridge between these two electrodes and forms a kind of 

Josephson junction. 

 

Figure 93 Schematic view of a YBCO/Graphene/YBCO junction as studied in this chapter. 

I start this chapter by reviewing the previous studies about d-wave superconductors and 

graphene, mainly the one from my lab with YBCO [12]. In the second part, I describe the 

results of the coherent propagation of Andreev d-wave pairs in a graphene channel on 

hundreds of nanometers. The measurements were carried out by my predecessor David 

Perconte before I started my PhD, and I only took part in the analysis of the results. Finally, I 

present the results I obtained on the influence of a magnetic field on the differential 

conductance of YBCO/Graphene/YBCO junctions. 

6.1 PREVIOUS WORKS ON D-WAVE SUPERCONDUCTORS/GRAPHENE JUNCTIONS 

Attempts to couple d-wave superconductors with graphene are relatively scarce. Sun et 
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al. [138] reported in 2014 the fabrication of Hall bars with graphene on top of YBCO and 

found highly resistive electrical contacts between the two materials. This study is the only 

one reporting transport measurements between d-wave superconductors and graphene 

before the article of Perconte et al. [12], prior to my PhD, that I will review in the following. 

More recent work, besides the work in our lab, includes that from Wu et al. [214], who 

coupled exfoliated Bi2Sr2CaCu2O8+x (BSCCO) and graphene. Their measurements of the 

differential conductance spectrum of the device, though tunnel, show strong evidence for 

an induced gap in graphene. Another study [141], published recently, exhibited transparent 

BSCCO/Graphene junction with evidence for Klein tunnelling of Andreev quasiparticles as 

shown in [12] with YBCO and graphene.   

I will summarize the state of the art in my laboratory previous to the PhD, which essentially 

corresponds to the article of Perconte et al. [12], This work focuses on the study of large 

junctions, patterned by optical lithography techniques presented in chapter 4. Here, large 

means that the length 𝐿 = 5μm of the junction, pictured in Figure 93, is much larger than 

the phase-coherence length in graphene, 𝑙𝜙~100 − 300nm (typical for CVD-grown 

graphene). Since any induced Andreev pair correlations will decay on a length shorter than 

the length of the graphene canal the graphene/YBCO interfaces can be considered as 

independent. I will first present the particularities of working with high-Tc superconductors 

for proximity devices and contact quality. Then, I will describe a model that helped to 

describe the experimental data. Finally, I will review the experimental results obtained by 

measuring the differential conductance of the junctions at low temperatures and by applying 

a gate voltage. All the developments described here will allow for the other studies 

performed in this chapter, and in particular for the study of shorter junctions in 6.2. 

6.1.1 Fabricating high-quality interfaces and measurement configuration 

Fabricating transparent interfaces between YBCO and graphene is complicated for several 

reasons. As we have seen in chapter 2, YBCO is a complex oxide, fragile against heating and 

a low oxygen pressure atmosphere. Moreover, the YBCO top layer tends to deteriorate if not 

carefully protected. Because of all these limitations, it is difficult to grow graphene directly 

on top of YBCO, for instance by CVD [190]. Reversely, we cannot grow YBCO on top of 

graphene, contrary to what is done with low-Tc superconductors [127,177,134,215], like 

Aluminium or Niobium, since it will destroy the graphene monolayer below and will not grow 

anyway because of the lattice mismatch with graphene. These two limitations required the 

development of a dedicated method to deposit graphene on the superconductor. This 

method has been explained in detail in chapter 4 and is based on the wet transfer of CVD-

grown graphene. The patterning of the graphene monolayer is also described in chapter 4.  

The resulting device is represented in Figure 94a. The yellow areas correspond to the 

superconducting tracks with the thin gold layer above. The brown regions are areas where 

YBCO was irradiated by O+ ions and is now insulating and where gold was etched to avoid 

short circuits. The patterned graphene monolayer is highlighted by a red outline. To measure 

the differential conductance shown in Figure 94 taken from Ref. [12], the measurement 

configuration is such that the current goes from electrode 1 to 4 while the voltage is 
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measured between 3 and 4. This 3-probes configuration allows to measure the conductance 

of a single Au/Graphene interface located on the side of the electrode 4 (see Supplementary 

of Ref. [12]). Indeed, between 3 and 4, where the voltage drop is probed, the YBCO leads are 

in the superconducting state since the applied current is low (𝐼 < 20μA) giving a low current 

density (𝑗 < 4 × 103A. cm−2) which is much below the critical current density 𝑗𝑐~106A. cm−2 

for YBCO at 77K. Moreover, the YBCO/Au interface has a negligible resistance contribution. 

This comes from the study of metallic SNS junctions presented in the previous chapter, from 

which we deduced that the resistance due to the YBCO/Au interface, only part of the overall 

resistance (< 30Ω), is small compared with the overall resistance of YBCO/Graphene 

junctions (~1kΩ).  

 

Figure 94 a) Microscopic image of a large junction. The graphene sheet is emphasized by a 

red contour. The 3-probe configuration used in b is shown. b) 3-probe measurement of the 

differential conductance of a large junction as a function of the voltage bias and for different 

temperatures. Figures taken from Perconte et al., Nat. Phys. 14 (2017). 

6.1.2 Differential conductance at low temperature 

The differential conductance spectra presented in Figure 94b were taken at different 

temperatures going from 120K, where YBCO is in its normal state so there are no effects 

linked to its superconducting properties, to 5K, a temperature at which superconducting and 

proximity effects should be the strongest due to a fully opened gap in YBCO and enhanced 

electronic coherence. At 120K, this conductance is slightly enhanced (~20%) close to zero 

bias while, as the temperature decreases, a zero bias peak emerges as well as two 

conductance dips at around 20mV. At 5𝐾, the peak reaches a value around twice the one 

measured at 60mV outside the superconducting gap (typically ~20 − 30meV in YBCO). This 

is typical of a transparent SN junction as I presented in chapter 3, but also has some 

signatures due to the presence of graphene. Using a high-Tc superconductor with larger 

gaps like YBCO should expectedly allow for observation of specular Andreev reflection. 

However, in our samples, the doping level of the graphene monolayer is too high to observe 

specular Andreev reflection and in the following [12], we will assume 𝐸𝐹 ≫ ∆.  
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6.1.3 Model 

To model the interface, Perconte et al. [12] used the model of Linder and Sudbø [13], in the 

d-wave case, by assuming that (Figure 95a and b):  

1)  The graphene atop the superconductor is proximized and has a gap ∆ with exactly the 

same symmetry as the superconductor below (s-wave, d-wave,…). 

2) Graphene far from the superconductor is in the normal phase. 

3) There is a region (N’) in between which is not superconducting but has a different doping 

with energy 𝑈0 than the other two regions as shown in Figure 95b. 

In this model, corresponding to a SN’N junction, we will consider only the interface between 

the proximized graphene (S) and the normal graphene (N) far from the superconductor, as 

schematized in Figure 95a.  

Once all the parameters are fixed, the resolution method is similar to the one explained in 

chapter 3. Except that, in the case of graphene, the quasiparticles are described by a spinor, 

as already seen in chapter 2. The consequence is that the BdG wavefunction is described by 

a 4-vector (only 2-vector for a normal metal) and the BdG Hamiltonian by a 4x4 matrix. We 

match the wavefunctions at the two interfaces and we get the reflection (and transmission) 

coefficients. The BTK conductance is then given according to the formula 3.13 (chapter 3).  

6.1.4 Tunability with a back gate voltage 

Experimentally, we can modify the Fermi level 𝐸𝐹 of the normal region by applying a voltage 

to the back gate made of STO (see Figure 95a) but not the one of graphene above the 

superconductor since this latter screens the electric field. On the colormap shown in Figure 

95c, we can get Figure 94b if we follow the “C” horizontal dashed line. The doubling of the 

conductance at zero bias is a strong argument in favor of the presence of Andreev reflection 

at the interface between proximized graphene and normal graphene. But if we fix the voltage 

bias and go along the back gate voltage, there are oscillations at all energies due to the 

variation of the Fermi level of the normal graphene 𝐸𝐹 with the back gate voltage. 

We will now use the SN’N model to understand these oscillations and extract relevant 

parameters through a fitting. In the measurement shown Figure 95c, there is a periodic 

modulation of the differential conductance with the applied back gate voltage. The model 

of a SN’N junction takes into account the Fermi energy 𝐸𝐹 of the normal region and assumes 

a doping 𝑈0 of the N' region. Charge carriers experience Andreev reflection at the SN’ 

interface. Following the scheme of Figure 95b and the explanation of Klein tunneling [43,216] 

given in chapter 2, the resulting charge carriers will go through this potential barrier simply 

acquiring a phase 𝜒 =
𝑤(𝐸𝐹−𝑈0)

ℏ𝑣𝐹
 where 𝑤 is the width of the N’ region and 𝑣𝐹 is the Fermi 

velocity of graphene. This phase factor changes if we vary 𝐸𝐹 through the back gate voltage 

and it modulates the differential conductance due to destructive and constructive 

interference in the “quantum well” (quasiparticles are not trapped here). 
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Figure 95 a) Scheme of the gating and measurement wiring with the three distinct regions 

of graphene (S, N’ and N) in agreement with the model explained in the main text. b) Energy 

level diagram of these three regions with the tunable Fermi level of the normal zone with a 

gate voltage. c) Experimental 2D maps of the normalized differential conductance as a 

function of the voltage bias (x-axis) and back gate voltage (y-axis) at 5𝐾. d) Numerical 

simulations reproducing the experimental observation with 𝜒 =
𝑤(𝐸𝐹−𝑈0)

ℏ𝑣𝐹
. Figures taken from 

Perconte et al., Nat. Phys. 14 (2017). 

The calculation in Figure 95d shows the normalized differential conductance as a function of 

the energy 𝑒𝑉 normalized by the proximized gap ∆ (x-axis) and the phase factor 𝜒 =
𝑤(𝐸𝐹−𝑈0)

ℏ𝑣𝐹
 

(y-axis). This phase is the phase gained by electrons or holes in the N’ region. As we change 

the back gate voltage, we change the value of 𝑬𝑭, and as a consequence 𝝌 resulting in 

constructive or destructive interferences in this quantum well of width 𝒘. The excellent 

match between the experiment and the numerical calculation allows to confirm the SN’N 

model and explain the origin of the conductance oscillations. Indeed, the periodic 

modulation measured with the back gate voltage is Klein tunnelling of d-wave Andreev pairs. 

A similar observation has recently been made with exfoliated graphene and another d-wave 

high Tc superconductor Bi2Sr2Ca1Cu2O8+𝛅 (BSCCO) and explained with the same 3 regions 

model [141]. 

6.2 COHERENT TRANSPORT OF ANDREEV D-WAVE PAIRS 

Motivated by the observation of Andreev reflection at a single interface and its modulation 

with a gate voltage, we decided to study shorter junctions made of two YBCO/Au/Graphene 
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interfaces [14] seeking for Josephson coupling between the two electrodes. In these devices, 

the length 𝐿 of the junctions (see Figure 93) is a priori close to the phase-coherence length 

of graphene, 𝑙𝜙. While we have not obtained Josephson coupling so far in our experiments 

due to the lack of two transparent interfaces on the same junctions, I will show you in this 

section that it is possible to show that the induced d-wave Andreev pairs in graphene 

propagate coherently in the graphene channel acting as a tunable cavity. This section shows 

results [14] that were measured by David Perconte before my PhD. I contributed to the 

understanding of the observed behavior. In the first part, I briefly go through the fabrication, 

measurement configuration, and experimental results. Then, I describe the model and finally, 

I will show how this model accounts for the behavior of these junctions. 

6.2.1 Geometry of the junctions and measurements 

The patterning of short junctions (of length 𝐿 < 𝑙𝜙), required electronic lithography, allowing 

to fabricate junctions of a few 100nm to 1μm, as explained in chapter 4. A typical junction is 

shown in Figure 96a. As previously presented, the graphene layer is patterned to fit the 

superconducting tracks. Figure 96b and c are the corresponding unzoomed optical images 

of the device before and after the metallic gate fabrication, described in chapter 4. The 

electrodes numbered from 1 to 4 allow the measurement of the differential conductance of 

the junction in 2-, 3- or 4-probes measurements while the top gate makes it possible to 

change the Fermi level of graphene below it in complement of back gating.  

 

Figure 96 a) Microscope image of a typical junction with the graphene layer highlighted by 

the white dotted line. The superconducting tracks are lighter than the insulating (irradiated) 

regions. b) A larger view of the device with the four gold contacts. c) Device at the same scale 

but this time after the last fabrication step: the metallic gate deposition. d) Experimental 

differential conductance versus the voltage bias at 3.2𝐾 of the junction B3U. e) Same for the 
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junction B4U. The vertical lines point towards the oscillations. The grey area stems from the 

regions inside the proximized gap. d) A scheme to explicit the interference effects occurring 

both with d-wave Andreev pairs (left) and usual charge carriers (right) in the graphene cavity. 

Figures taken from Perconte, Seurre et al., Phys. Rev. Lett. 125, 087002 (2020).    

The plots in Figure 96d are measured in a 3-probes measurement, the currents being 

injected between electrodes 1 and 4 and the voltage measured between 1 and 3. This allows 

measuring the interface YBCO/Au/Gr (on the side of electrode 1) and the graphene channel. 

It then avoids the voltage drop at the second interface close to the electrode 4. Thus one 

measures the YBCO/Au/Graphene interface, the proximized graphene/normal graphene 

interface, and the graphene channel in series. The two differential conductance spectra 

presented in Figure 96d and e exhibit a decrease inside the grey area corresponding to a 

voltage bias |𝛿𝑒𝑥𝑝| < 75mV for B3U and 25mV for B4U. This is reminiscent of a tunnel 

behavior of SN junction as seen in chapter 3. There are also oscillations highlighted by the 

red and black vertical dashed lines. The red and black oscillations have two distinct periods.  

6.2.2 Modelization of the system 

 

Figure 97 A scheme to explicit the interference effects occurring both with d-wave Andreev 

pairs (left) and usual charge carriers (right) in the graphene cavity. Figure taken from 

Perconte, Seurre et al., Phys. Rev. Lett. 125, 087002 (2020). 

In comparison with the single interface case, the presence of a second interface 

confines the charge carriers inside a cavity made of graphene. Indeed, these junctions 

correspond to cases where one interface is transparent (Andreev reflection probability is 

close to 1) while the other one is tunnel with the usual reflection dominating. This situation 

is in fact a Fabry-Pérot cavity. As pictured in Figure 97, both the usual charge carriers on 

the right or the d-wave Andreev pairs can experience interference effects like in a Fabry-

Pérot interferometer. Indeed, for the former (on the right-hand side), this is a graphene cavity 

of length 𝐿 and they are reflected or transmitted at each end of the cavity leading to the 

constructive interference condition: 2𝑘𝐿 = 2𝑛𝜋 where 𝑘 is the wavevector of the charge 

carrier since it travels twice the cavity for one cycle. In the case of the Andreev particles 

(Figure 97 on the left-hand side), an electron enters the cavity and is Andreev reflected into 

a hole. If the other end of the cavity is not as transparent, there is no Andreev reflection but 

only normal reflection, so the hole is reflected back. At the transparent interface, this hole is 

Andreev reflected into an electron that follows the same path and is reflected into an 

electron. Altogether, one complete cycle is 4𝐿 giving the condition: 4𝑘𝐿 = 2𝑛𝜋. Since in both 
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cases, 𝑘 =
𝑉

ℏ𝑣𝐹
 where 𝑉 is the voltage bias applied to the cavity and 𝑣𝐹 is the Fermi velocity 

in graphene, we expect two characteristic frequencies for the modulation: 𝑉𝑙𝑜𝑛𝑔 =
ℎ𝑣𝐹

2𝐿
 

corresponding to the interference of usual charge carriers and 𝑉𝑙𝑜𝑛𝑔 =
ℎ𝑣𝐹

4𝐿
 for the 

interference of Andreev pairs. 

 

Figure 98 Scheme summarizing the main ideas of the developed model. The top part 

represents the energy levels at stake while the bottom scheme represents the different 

regions and the measurement configuration. Figure taken from Perconte, Seurre et al., Phys. 

Rev. Lett. 125, 087002 (2020). 

I contributed to the elaboration of a numerical model that considers the above interference 

phenomena as well as the association in series of different interfaces to explain more 

quantitatively the experimental data. This model is schematized in Figure 98. As previously 

said and shown on the scheme, the measurement is carried out in a 3-probes configuration. 

Experimentally, we found it difficult to get a symmetric junction with two transparent 

interfaces. The model takes it into account by considering only Andreev reflection on the left 

side while on the other side, there are only normal reflections. Then, there are two 

contributions to the final conductance, the YBCO/Au/Graphene interface conductance, 𝐺1 

(using the extended BTK model for d-wave superconductor normal metal junction), and the 

proximized graphene cavity, 𝐺2. The latter incorporates the Linder and Sudbø model I 

presented in the previous section and the propagation/reflection of the Andreev electrons 

and holes as well as the usual charge carriers. These two contributions are: 

𝐺1(𝑉1) = ∫ 𝑑𝜃

𝜋
2

−
𝜋
2

(16(1 + |𝛤+|2) 𝑐𝑜𝑠(𝜃)4 + 4𝑍2(1 − |𝛤+𝛤−|2) 𝑐𝑜𝑠(𝜃)2)/(|4 𝑐𝑜𝑠(𝜃)2

+ 𝑍2(1 − 𝛤+𝛤−)|2) 

  6.1 
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With: Γ+/− = 𝑒𝑉1/|Δ(𝜃+/−)| − √(𝑒𝑉1/|Δ(𝜃+/−)|) − 1 and 𝜃+ = 𝜃, 𝜃− = 𝜋 − 𝜃. 𝑍 is the 

scattering parameter of the YBCO/Au/Graphene interface, Δ(𝜃) = Δ  cos [2(𝜃 − 𝛼)] with 𝜃 

the angle of the incident electron and 𝛼 the angle between the superconducting order 

parameter and the interface. 𝑉1 is the voltage drop across this interface. As we have seen in 

the previous chapters, the extended BTK model does not present oscillations and therefore 

only the homojunction contribution 𝐺2 will produce the oscillations: 

𝐺2(𝑉2) = ∫ 𝑑𝜃

𝜋
2

−
𝜋
2

(1 − 𝑟2) 𝑐𝑜𝑠(𝜃) + 𝑟𝐴
2𝑐𝑜𝑠 (𝜃𝐴)   6.2 

𝜃𝐴 = arcsin ((𝑒𝑉2 + 𝐸𝑓)/(𝑒𝑉2 − 𝐸𝑓)sin (𝜃)) and 𝜃 the electron angle of incidence with 

respect to the interfaces. 𝑟 and 𝑟𝐴 depend on many parameters I will detail in the following. 

This contribution will give rise to the oscillations in the conductance spectrum. With the 

same method used in chapter 5, we compute the current 𝐼 = ∫𝐺(𝑉)𝑑𝑉, obtain 𝐺1(𝐼)  and  

𝐺2(𝐼). This allows us to compute the conductance when the two building blocks are 

connected in series: 

𝐺(𝐼) =
1

1
𝐺1(𝐼)

⁄ + 1
𝐺2(𝐼)

⁄
   6.3 

Using 𝑉 = ∫
1

𝐺(𝐼)
𝑑𝐼 , we finally obtain 𝐺(𝑉). 

 

Figure 99 The plots in a and b come respectively from the junction B3U and B4U whose 

experimental differential conductances have already been shown earlier but are repeated for 

clarity. For each, 1) is the experimental differential conductance versus the voltage bias at 

3.2𝐾, 2) is the full model simulation of the normalized conductance against the normalized 

energy and 3) is the simulation of the differential conductance of the proximized graphene 

cavity only. For all plots, the grey-shaded area stems from the superconducting gap-related 

feature. Figures taken from Perconte, Seurre et al., Phys. Rev. Lett. 125, 087002 (2020). 
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There are two regimes of oscillations with different periods. Inside the superconducting gap 

feature (grey shaded in Figure 99a1 and b1), the period is ∆𝑉𝑠ℎ𝑜𝑟𝑡 due to the d-wave Andreev 

pairs. On the contrary, outside this region, the period is ∆𝑉𝑙𝑜𝑛𝑔 only due to the interferences 

of the usual charge carriers. For the two junctions B3U and B4U, these oscillations are present 

on the differential conductance due to the homojunction only which are plotted respectively 

in Figure 99a3 and b3. The full model including the homojunction and the 

YBCO/Au/Graphene interface is given in Figure 99a2 and b2. Here, we review the role of 

each parameter in the simulation by taking the two examples of Figure 99b and c. To 

determine the period of oscillations ∆𝑉𝑠ℎ𝑜𝑟𝑡 and ∆𝑉𝑙𝑜𝑛𝑔, the important parameters are Λ =
𝐿

𝜆𝐹,𝐴
, the reduced cavity’s length where 𝜆𝐹,𝐴 is the Fermi wavelength in the region A, and the 

reduced Fermi energy in the region A 𝜀𝐹,𝐴 =
𝐸𝐹,𝐴

Δ
 with ∆ the superconducting energy gap 

induced in A since they determine the periods of oscillations inside the cavity. 𝜀𝐹,𝐵 =
𝐸𝐹,𝐵

Δ
 and 

𝜀𝐹,𝐶 =
𝐸𝐹,𝐶

Δ
 only changes the amplitude and the phase of the oscillations but not their periods. 

The scattering parameter 𝑍 and the angle 𝛼 between the YBCO d-wave antinode and the 

interface of the homojunction determine the shape of the background, especially the 

presence of a dip or a peak as we have seen in chapter 3. The angle 𝛼, the signature of d-

wave superconductivity, is particularly important since the behavior of some junctions 

cannot be interpreted in the absence of this parameter that is to say in the framework of the 

(s-wave) BTK theory [5].  

Another example of junctions, for which this time the conductance increases at low bias is 

shown in Figure 100a. To reproduce the experimental data in that case, it is necessary to use 

𝛼 = 𝜋
8⁄ ≈ 0.39 as represented in Figure 100b. This junction presents the same oscillatory 

behavior with two distinct periods inside and outside the superconducting gap, highlighted 

by the red and black dashed lines. The 2D colormap in Figure 100c shows the evolution of 

the oscillations when we apply a voltage on the top gate electrode. We can see oblique 

patterns coming from the modulation by the gate 𝑉𝐺. The theoretical model used for single 

differential conductance spectrum reproduces very well these obliques lines which suggest 

that 𝐸𝐹 and therefore 𝑘𝐹 varies proportionally with 𝑉𝐺 as in the previous section. This 

modulation then comes once again from the condition: 2𝐿𝑘𝐹 = 2𝑛𝜋. 

As represented in Figure 100b and d, the numerical calculation allows to well describe the 

shape and oscillations of the conductance measured during these experiments. From these 

fits, it is possible to extract the period of oscillations of both d-wave Andreev pairs and 

normal charge carriers in the graphene cavity. The y-axis of Figure 100e displays the 

corrected period measured for both types of carriers (red dots for Andreev pairs and black 

dots for usual carriers) in five different samples with different 𝐿. Indeed, due to the presence 

of the background resistance in series with the homojunction, the measured period is 

distorted (larger) compared with the one expected by the cavity characteristics since there 

is a voltage drop outside the graphene cavity. Fortunately, we can extract this value from the 

simulation because we can “subtract” the background due to the YBCO/Au/Graphene 

interface and only consider the homojunction as plotted in Figure 99a3 and b3. In Figure 

100e, the two dotted lines correspond to the Fabry-Pérot expected periods with respect to 
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𝐿. These interferences testify that there is coherent propagation of both d-wave 

Andreev pairs and usual charge carriers. However, we noticed that the amplitude, though 

large for 𝐿 ∈ [100,300]nm becomes much smaller for larger junctions suggesting the 

coherence length may be smaller than 1μm but more of the order of 300nm at ~4K which 

is in agreement with mean-free path in CVD graphene between 100nm and 260nm obtained 

by charge carrier mobility experiments [217]. 

 

Figure 100 a) Experimental differential conductance against the voltage bias. The two distinct 

periods of oscillations are highlighted by red arrows (from Andreev pairs interferences) and 

black arrows (usual charge carriers interferences). The shaded area corresponds to the 

superconducting gap feature. b) Numerical simulation of the differential conductance 

against the normalized voltage 𝑉 ∆⁄  with the same notations as a). c) Experimental 2D map 

of the differential conductance with respect to the voltage bias (x-axis) and the voltage 

applied to the top gate electrode (y-axis). d) Numerical 2D map simulation of the differential 

conductance as a function of 𝑉 ∆⁄  and the reduced Fermi energy in region B, 𝜀𝐹,𝐵 =
𝐸𝐹,𝐵

𝛥
. e) 

Corrected period of oscillations ∆𝑣. ∆ both for short and long oscillations as a function of 𝐿−1 

for different devices. The red (respectively black) dotted line is the expected interference 

period for the Andreev pairs (the usual charge carriers) for a Fabry-Pérot interferometer. 

Figures taken from Perconte, Seurre et al., Phys. Rev. Lett. 125, 087002 (2020). 
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These two sections have proven that not only d-wave superconducting correlations 

can be induced by YBCO into graphene but that the superconducting correlations 

survive in graphene up to several hundreds of nanometers motivating further works 

in my thesis. Most of my efforts have consisted of measuring magnetic field effects. 

These are summarized below. 

6.3 MAGNETIC FIELD EFFECT ON SHORT JUNCTIONS 

All over my PhD, I studied oscillations in the magnetoconductance, which I measured in 

many junctions as shown for example in Figure 101b. They correspond to junctions with 

intermediate transparency, that is to say with barrier transparency lower than the junctions 

studied in the first section. In this paragraph, I will describe in the first part the transport 

properties of these junctions, and in the second part, I will discuss possible explanations for 

the oscillations in the magnetoresistance. 

6.3.1 Physical description of the oscillations in the magnetoresistance  

6.3.1.1 Geometry and first measurements 

 

Figure 101 a) Microscope image of two devices (U and D) with the graphene layer highlighted 

by the red dotted line and the magnetic field orientation considered in the following unless 

otherwise stated. The typical electrical configuration is given for the upper device. b) 

Differential conductance vs voltage bias of the junction R1739BD C3U at several 

temperatures measured in the delta mode configuration of the instruments. 

In the previous section, I showed the behavior of YBCO/Graphene/YBCO junctions having a 

sub-micron graphene channel between the two superconductors. The junctions described 

in this section have the same geometry as the ones studied in section 6.2 and an example is 

given in Figure 101a, with 𝐿 going from 50nm to several hundreds nm. Some devices, so-

called double junctions, are made of two junctions spaced by 200 or 300nm of 

superconducting YBCO below as shown in Figure 102. This last geometry with two junctions 

in a row is an attempt to increase the superconducting coupling between the two electrodes. 

Indeed, the in-between superconducting island aims at strengthening the superconducting 

proximity effect in the whole junction.  
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Figure 102 Scheme of a so-called double junction in the manuscript. 𝐿 is the distance 

between the superconducting electrodes. 

Unless otherwise stated, the magnetic field will be out-of-plane as pictured in Figure 101a. 

We noticed the junctions with intermediate transparency have a peculiar perpendicular 

magnetic field dependence compared with either the more transparent and more tunnel 

junctions. The differential conductance of the junctions is measured with the “delta mode” 

described in chapter 4 and in a 4-probes configuration, the current being injected along the 

horizontal superconducting track (in Figure 101a) and the voltage drop measured between 

the two vertical tracks. 

The differential conductance of the examples in Figure 101b  (junction C7U) is typical of the 

studied junctions. It has a dip in its differential conductance spectrum at zero bias over a 

range ±25mV compared with its value at ±200mV. It is going deeper and deeper as we are 

lowering the temperature. This feature is reminiscent of conductance of a SN junction upon 

the opening of a superconducting gap below Tc. The typical width of this gap is 𝛿~25mV 

which is consistent with the superconducting gap of YBCO. This central feature is 

overimposed on a background present at all temperatures. For all junctions showing 

magnetoresistance oscillations in this chapter, the conductance is of the order of ~1mS. 

6.3.1.2 Magnetoresistance oscillations 

In Figure 103, I present the measurements and data treatment of one of the junctions for 

which I measured magnetoresistance oscillations. These data correspond to the sample 

R1739BD C7U. In particular, Figure 103a presents differential conductance spectra for 

different magnetic fields ranging from 0 to 1T. In addition to a decrease in the background 

conductance, as the magnetic field increases, a first raw observation of the conductance 

allows seeing an oscillation of the conductance close to zero bias. Indeed, the conductance 

decreases when increasing the magnetic field from 0 to 0.2T and increases again when 

increasing the field to 0.4T. This oscillation can be characterized by plotting the differential 

conductance at a fixed voltage bias as a function of the magnetic field, or by measuring 

directly the magnetoresistance as done in Figure 103b. This measurement was taken by 

sweeping the magnetic field (at 0.1T/min) while measuring the resistance for a given value 

of current. This plot exhibits oscillations up to 2T as well as a peak of resistance at zero 

magnetic field. To highlight these oscillations, I removed the background. I chose to do so 

by smoothening the experimental data with an average of over 200 points which washes out 
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the oscillations but keeps the background as shown in the red plot in Figure 103b. We then 

plot the difference between the experimental data and the smoothened curve in Figure 103c. 

This procedure has been applied in reference [218] to extract oscillations from a slow-varying 

background. This treatment effectively reveals that the oscillations’ period is ~0.4T.  

The strategy used above to subtract the background allows to compute the Fast Fourier 

transform (FFT) of the signal, which is shown in Figure 103d. On this FFT plot, two frequencies 

(in T−1) appear and give periods around 0.4T and 0.8T which are in agreement with the 

value previously found. In the following, the graph showing the magnetic field oscillations’ 

periods will be obtained from this spectral analysis. 

 

Figure 103 All these data were taken with the junction R1739BD C7U: a) Differential 

conductance vs voltage bias at several magnetic fields. b) Magnetoresistance at 2K (blue) 

and a 200-point smoothened plot of it (red). c) Difference between the magnetoresistance 

and its smoothened version to enhance the oscillations. d) FFT of the plot shown in c). 

I have measured the type of effects described above in number of junctions. Some of them 

being presented below. For instance, the measurements for the junction R1123HG B3D are 

presented Figure 104. I first look at differential conductance spectra at different 

temperatures to appreciate the evolution of the dip at zero bias in the range 𝛿~ ± 20 −

30mV and of the background as shown in Figure 104a. 

In Figure 104b, which displays the differential conductance as a function of the voltage bias 
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for magnetic fields ranging from 0 to 0.9T, the magnetic field dependence shows the same 

behavior as for the previous junction: the background conductance decreases with 

increasing magnetic field, and the conductance oscillates with magnetic field around zero 

bias. This is better seen in the magnetoconductance displayed in Figure 104c. This figure is 

made from the 𝐺(𝑉) at different fields, by plotting the conductance at a fixed voltage for all 

the applied fields. The colormap shows the second derivative of the current with respect to 

the bias voltage as a function of the magnetic field. Notice that the second derivative of the 

current shows the oscillations even more clearly than in the magnetoconductance plot. The 

minima of the oscillations of the magnetoconductance (red line) correspond to the red 

regions of the colormap for low bias (|𝑉𝑏𝑖𝑎𝑠| < 10mV). This colormap tells the oscillations 

happen for low energies below 𝟏𝟎𝐦𝐕, lower than the observed gap 𝜹.  

 

Figure 104 All these data were taken with the junction R1123HG B2D in the cryostat Garfield: 

a) Differential conductance against voltage bias at different temperatures. b) Same but at 

different magnetic field. c) Colormap of the second derivative of the current by the voltage 

bias with respect to the voltage bias (horizontal axis) and the magnetic field (vertical axis). 

Magnetoconductance oriented in order to enhance the fact that the minima of this plot 

correspond to the larger values of the second derivative on the colormap. 
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6.3.1.3 Characterization of the magnetoresistance oscillations 

Further examples of magnetoresistance oscillations are shown in Figure 105 for four different 

samples, showing respectively the magnetoresistance as a function of the magnetic field (a) 

and as a function of the inverse magnetic field (b). 

 

Figure 105 a) Resistance oscillations as a function of the magnetic field for four different 

junctions. b) Same but as a function of the inverse of the magnetic field. 

 

 

Figure 106 FFT of the magnetoresistance oscillations of the four junctions shown above. 

The magnetoresistances in green and orange were multiplied respectively by 1000 and 50 

for clarity. The goal of these two figures is to determine whether the oscillations are periodic 

with respect to the magnetic field, its inverse, or aperiodic. As we will see in the next section, 

this allows discriminating between oscillatory phenomena having different magnetic field 
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dependences. These graphs reveal that the resistance oscillations are periodic with 

respect to the magnetic field which can be further analyzed by performing the spectral 

analysis (Figure 106) to find the oscillation frequencies, as presented for the four same 

junctions. Here, I made the choice of cutting the values above 10T−1 corresponding to 

periods less than 0.1T where no major contribution is observed.  

I carried out this analysis for samples of different fabrication batches, with different junctions 

length 𝐿 and geometries (junctions as pictured in Figure 93 or double junctions as shown in 

Figure 102). In Figure 107, the deduced period of oscillations (from the spectral analysis) is 

plotted against the graphene channel length of the junctions. For the single junctions, it 

corresponds to the junction length 𝐿, and for the double junctions, it is the length between 

each superconducting electrode and the central superconducting “island”. 

 

Figure 107 Period of the magnetoresistance oscillations as a function of graphene channel 

length. The double junctions are represented in blue. The uncertainty on the graphene 

channel length is about 20nm while the uncertainty on the period of oscillations mainly 

depends on the method of acquisition of 𝑅(𝐵) (continuous sweep or extraction of the 

resistance from many differential conductance spectra).  

This plot does not exhibit any correlation between the magnetoresistance oscillations’ 

period and the graphene channel length. It seems there is a variability of the oscillations’ 

period uncorrelated to the graphene channel length. 

6.3.1.4 Current and temperature dependence of the oscillations 

Oscillations, especially their amplitudes, also depend on the temperature and bias current 

as shown in Figure 108. In Figure 108a, the temperature dependence of the 

magnetoresistance is presented for 4 different temperatures with the largest effect obtained 

for the lowest temperature (2 and 5K). While 𝑇 is increased to 20K, the effect vanishes with 

a signal comparable to what is measured at 100K, where YBCO is not superconducting 

anymore. In the same way, we saw already the Figure 104 that the oscillations disappeared 
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when we increased the voltage bias applied to the junction. In Figure 108b, the oscillations 

lose amplitudes as the current amplitude is increased. 

 

Figure 108 Magnetoresistance oscillations of the junction R1739BD C7U a) for different 

temperatures (shifted for clarity), b) for different bias currents (shifted). The maxima of the 

blue curves of each plot are highlighted by the vertical dotted lines. 

In both cases, the oscillations disappear before the superconductivity of the contacts, with 

temperatures much lower than the superconducting temperature of the contacts (around 

80K) and currents of only a few μA. In addition, in Figure 108a, there is a change in the period 

of oscillations between the magnetoresistance at 2K and 5K. To investigate this, I plot in 

Figure 109 the Fourier transform of the magnetoresistances at several temperatures. 

Unfortunately, the oscillations were visible only for the two lowest temperatures but the 

oscillations’ periods are indeed different. At 2K, the peaks correspond to periods ∆𝐵~0.4T −

0.8T while at 5K, ∆𝐵~0.7T − 1.3T. 
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Figure 109 FFT of the magnetoresistance at different temperatures. 

Both the temperature and the bias current have a strong impact on the amplitude of 

the oscillations. However, while the current has no impact on the period of the 

oscillations, the temperature changes the period in the case of the C7U junction. 

Further measurements of other junctions have to be carried out to clarify the dependence 

on the temperature. 

6.3.1.5 Gate voltage dependence 

 

Figure 110 Magnetoresistance for different gate voltages of the junction R1753BD E2U 

measured at 2𝐾(shifted for clarity). 
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I also measured the influence of the back gate voltage on the magnetoresistance of the 

junctions as presented in Figure 110 for the junction E2U. As shown by the dotted lines, the 

oscillations seem to occur around the same magnetic field for the different back gate 

voltages. Therefore, the period of oscillation does not depend on the back gate voltage.  

 

6.3.2 Discussion 

6.3.2.1 Central features in R(B) 

Before discussing the origins behind the oscillations, let us first discuss the central peak in 

the magnetoresistance, which is measured for all the junctions discussed in 6.3.1 (see  Figure 

105a). This feature also vanishes with temperature but decays at a much larger temperature 

(~40 − 60K) than the oscillations. This peak has a different origin than the oscillations. To 

determine whether this phenomenon is due to superconductivity in the graphene, interfacial 

effects, or the transport in graphene, I realized a control experiment using CVD graphene 

transferred directly on a silicon oxide substrate as shown in Figure 111a. For comparison 

purposes, I transferred graphene atop pre-patterned contacts as done for the 

YBCO/graphene junctions. Figure 111b represents the magnetoresistance of this sample 

taken at several temperatures ranging from 5 to 50K, while sweeping the magnetic fields 

from −0.8 to 0.8T. 

A peak of resistance is measured in this configuration (4-probes) close to zero magnetic field 

similar to what is measured on YBCO/graphene junctions. The peak amplitude dependence 

as a function of the temperature is also similar. Therefore, this magnetoresistance 

dependence in the case of YBCO/Graphene is probably linked to weak localization, an effect 

well described in the literature for graphene  [160,219,220]. Weak localization is a quantum 

phenomenon that arises from scattering in disordered conductors. In such materials, 

electrons scatter within a characteristic length called the mean free path. The quantum 

nature of the electron means that it can interfer with itself and, to calculate the conductance, 

For the sake of clarity, let’s summarize the main experimental facts I could identify in order 

to discuss the physical origin of these magnetoresistance oscillations: 

- They appear in junctions with an intermediate behavior between transparent and 

highly tunnel. The resistances of the junction are generally of the order of 1kΩ. 

- They are periodic with respect to the magnetic field. The periods go from 0.2 to 

0.45T. 

-  There is no clear correlation between the length of the junction and the period 

of oscillation.  

- Their amplitudes is quickly suppressed once the temperature is increased, much 

faster than superconductivity. The period of oscillations also varies with the 

temperature. 

- Their amplitudes is also suppressed when we increase the bias current on the 

junction. 

- The oscillations are independent on the applied back gate voltage. 
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it is necessary to calculate the quantum probability of all possible paths and interference 

terms for the electron. Magnetic field affects each possible path and interference loops 

differently by adding a dephasing term, eliminating interferences when averaging over 

disorder. The value 𝐵𝑊𝐿 of the magnetic field for which the peak disappears is of the order 

of 0.1𝑇. Since 𝐵𝑊𝐿𝑙𝜙
2 = 𝜙0, we can deduce that the phase-coherence length of graphene is 

around 𝑙𝜙~√2 × 10−15

0.1⁄ ~140nm which is close to the phase-coherence length measured 

in CVD graphene [190]. 

 

Figure 111 a) Microscope image of a device of graphene on silicon oxide contacted with gold. 

b) Magnetoresistance of the device at several temperatures from 5 to 50𝐾. 

On the contrary, the oscillation of the magnetoresistance described previously in the 

case of YBCO/Graphene junctions does not appear in this control experiment. 

Moreover, we can notice that the background is very different between the two kinds of 

samples. In the YBCO case, for all the junctions, the magnetoresistance increases with 

increasing magnetic field contrary to the case on silicon oxide where it slightly decreases. 

This is expected for the superconducting junctions as a high magnetic field destroys 

superconductivity and makes the resistance increase. It supports the idea that they are linked 

to the presence of the superconducting electrodes having an effect on either the 

homojunction, quantum coherent phenomena linked to the propagation in graphene, or the 

nature of the proximity effect.  

6.3.2.2 Review of oscillatory phenomena in superconducting structures 

There are many phenomena that can lead to magnetoresistance oscillations in SN or SNS 

structures [165]. In a very general framework, when a magnetic field is applied, two effects 

come into play. First, the trajectories of the charged particles are curved due to the Lorentz 

force, this is called cyclotron motion and is for example responsible for the Hall effect. 

Second, the Aharanov-Bohm effect [221] implies that the charged particles pick up a phase 

due to the electromagnetic field, creating measurable interference effects. In the case of SNS 
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junctions, Andreev and normal reflections at the interface have to be considered as well as 

the presence of disorder. Finally, since YBCO is a type II superconductor, the magnetic field 

can penetrate it through superconducting vortices. In this section, I will review some of these 

effects, that can originate either from flux quantization effects, from the cyclotron motion of 

the charge carriers, from a mixture of the two, or from the presence of superconducting 

vortices. 

6.3.2.2.1 Flux effects 

Fraunhofer oscillations 

Even though the considered junctions are not in the Josephson coupling regime, I have to 

mention the Fraunhofer oscillations of the supercurrent [17] that have a period defined by 

the quantum of flux Φ0 =
ℎ

2𝑒
. I have described this effect in chapter 2 but I will simply remind 

that the magnetic flux inside the junction modulates the local supercurrent giving rise to 

oscillations of the total supercurrent as a function of the flux. However, this phenomenon is 

in fact intimately linked to the Andreev bound states since the magnetic field modifies their 

energy levels. As a consequence, we may expect some modulation of the conductance even 

in the absence of a supercurrent. 

Al’tshuler-Aronov-Spivak-like (AAS) effect  

This effect is related to the weak localization explained in 6.3.2.1, as it comes from the 

interference between time-reversal-symmetry (TRS) trajectories originating from the 

backscattering on impurities. At variance to the Aharonov-Bohm effect represented in Figure 

112a, which results from the interference between two particles traveling around a loop 

enclosing magnetic flux, the Al’tshuler-Aronov-Spivak (AAS) effect (Figure 112b)  [165,222] 

arises from the interference along a path and the time-reversed path [223]. This results in an 

oscillation that is periodic as a function of the magnetic flux, and twice as fast as the AB 

effect, that is with a period 
𝜙0

2⁄ . Notice that in metals or semiconductors, the observation 

of the AAS oscillation requires a loop geometry with a “hole”, i.e. a region the particles need 

to circumvent as pictured in Figure 112b. In the absence of such a loop, we would only 

observe the magneto-resistance drop around 𝐵 = 0 (Figure 111Figure 112b) due to weak 

localization. Interestingly, the AAS effect can be also observed in SNS junctions, where 

interference occurs between Andreev particles. Indeed, Andreev retroreflection at the SN 

interfaces makes the junction topologically equivalent to a loop area 𝑊 × 𝐿. At each SN 

interface, the particle can either be Andreev or normal reflected, which is respectively 

equivalent to the clockwise or anti-clockwise rotation in Figure 112b. In Figure 112c, the 

electrons are represented by a filled circle while holes are represented by hollow circles. The 

red and blue colors are here to stress the analogy with the usual AAS effect (direction of 

propagation in b). In the same way Andreev bound states (ABS) give a 𝜙0-periodicity, the 

occurrence of normal reflection makes the number of round trips double and therefore the 

periodicity is divided by two. The resulting period of oscillation with the magnetic field is 
Φ0

𝟐𝑊𝐿⁄ . As the magnetic field increases, time-reversal-symmetry is broken due to the 

Lorentz force and the oscillation amplitude therefore decays as for weak localization. A 
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simulation of this effect [165] is shown in Figure 112d. This effect, being related to weak 

localization, also presents a peak at zero magnetic field. The simulation of the probability of 

Andreev reflection 𝑅ℎ𝑒 shows that the amplitude of the central peak and of the oscillations 

increases as the width 𝑊 becomes large against the length 𝐿 of the junction. The amplitude 

of the oscillations also decays as the energy increases and approaches the superconducting 

gap as shown in Ref. [224]. 

 

Figure 112 Comparison between a) the Aharanov-Bohm (AB) and b) the Al'tshuler-Aronov-

Spivak (AAS) effects. c) Scheme of a SNS junction with on top a classical Andreev bound state 

(ABS) leading to Josephson effect and at the bottom the illustration of the AAS-like effect 

with normal and Andreev reflections. The presence of the two makes it equivalent to the AAS 

case in b as the alternative between Andreev and normal reflection is the equivalent of the 

clock- and anti-clockwise alternative.  d) Simulation of the probability of Andreev reflection 

with respect to the enclosed flux in the junction for 6 different width/length ratios. Figure 

taken from Takagaki, J. Appli. Phys. 128, 024304 (2020). 

6.3.2.2.2 Cyclotron motion-related effects 

Andreev edge-state transport 

If we consider an interface with a superconductor (both Andreev and normal reflection can 

occur). For interfaces with perfect transmission, only Andreev reflection happens in the 

presence of a large magnetic field, that is to say when the cyclotron radius 𝑅𝐶 is smaller than 

the length of the interface, we observe Andreev edge-state transport along the interface 

with at each touching point the conversion from electron to hole or inversely by Andreev 

reflection [225,226]. This is depicted in Figure 113a. I already described this effect in chapter 
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3 but what I would like to stress here is the oscillatory behavior of the magnetoresistance. 

Indeed, in the presence of a strong enough magnetic field, Andreev edge channels are 

forming at the SN interface [227]. These transport channels are made of both holes and 

electrons in equal proportions because of Andreev reflection at the interface and there is no 

net current. However, as soon as the interface is not perfect and there is also normal 

reflection at the interface, oscillations in 1 𝐵⁄  of the magnetoresistance start 

appearing [164,228]. These oscillations are shown in Figure 113b where the resistance is 

plotted as a function of the filling factor (∝ 1/𝐵) for five different temperatures. As the 

magnetic field becomes larger than the second critical field of the superconductor 𝐻𝑐2 the 

amplitude of the oscillations decreases. Indeed, contrary to the case of a SN interface where 

all edge channels experience Andreev reflection when the electrodes are both normal, only 

the inner channel is experiencing backscattering so the conductance will vary at most by one 

quantum of conductance (not limited in the SN case). 

 

Figure 113 a) Scheme of Andreev edge transport in the case of a high magnetic field and 

perfect interface between a normal metal and a superconductor. b) Experimental 

magnetoresistance of a SN interface as a function of the filling factor (∝ 𝐵−1) for several 

temperatures. Figure taken from Eroms et al., Phys. Rev. Lett. 95, 107001 (2005). 

Commensurability effects 

Another consequence of the curvature of the electron and hole trajectories (shown in Figure 

114a and b) is the potential commensurability between the cyclotron radius and a 

characteristic length of the system [165,229–231]. This effect only manifests when the two 

interfaces are perfect or almost perfect. Indeed, in that case, due to Andreev reflection and 

the Lorentz force, the motion of the electrons and holes in the normal region follow a guided 

path that makes them travel more or less distance in the resistive normal region [232]. It 

gives rise to oscillation of the transport coefficient when 𝑅𝐶 matches with an integer multiple 

of 𝐿/2 and therefore an oscillation of the magnetoresistance. This effect is purely classical 

and periodic with 1 𝐵⁄  as shown by the comparison between quantum (left) and classical 

(right) calculation of the transport coefficients in Figure 114. For this phenomenon to 

happen, the mean free path of the carriers must be a few times larger than the length of the 

junction to avoid any scattering during the “loop”. 
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Figure 114 a) Classical Andreev trajectory in a SNS junction of length 𝐿 from a hole 

(represented in red) at the starting point (S) to the ending point (E). The electron trajectories 

are represented in blue. In the presence of a magnetic field, these electron and hole 

trajectories are deduced from the construction in b). b) Construction of the trajectories of a) 

by folding the circle defined with the cyclotron radius 𝑅𝐶 . c) (left) Quantum calculation of 

the transport coefficients as a function of 
𝑅𝐶

𝐿⁄  for different values of 𝑊 𝐿⁄ . (right) Classical 

calculation of the same coefficients. 

6.3.2.3 Both flux and cyclotron motion-related effect 

Ahranov-Bohm (AB) effect in a single SN interface with Andreev Reflection 

The next phenomenon mixes the orbital effect of the magnetic field with the magnetic phase 

accumulated in a loop as shown in Figure 115a and b [164,165]. It has some similarities with 

the Ahranov-Bohm (AB) effect pictured in Figure 112a except here it occurs at a SN interface 

where both Andreev reflection and normal reflection are possible. The curvature of the 

trajectories due to the magnetic field makes the normally reflected electron and the Andreev 

reflected hole goes in the same direction as shown in Figure 115a. However, this electron 

and hole both gain a phase at the reflection and during their motion due to the magnetic 

vector potential. When encountering the interface again, they can once again experience 

either an Andreev reflection or a normal reflection. As a consequence, in the case of only 

two successive reflections, there are four amplitudes (Ψ1
𝑒, Ψ2

𝑒, Ψ3
ℎ and Ψ4

ℎ) to sum in order to 

find the resulting conductance, as noted in Figure 115b. Ref. [164] gives an approximate 

formula for the case of two successive reflections on the SN interface: 

𝐺 ≈ 𝑔0[1 + 4|𝑟𝑒𝑒|
2|𝑟ℎ𝑒|

2𝑝(𝛽)2 𝑐𝑜𝑠(2𝜋𝛽 − 2𝜃𝑛)]   6.4 

Where 𝑔0 is the normal state conductance, 𝑟𝑒𝑒 , and 𝑟ℎ𝑒 are respectively the normal reflection 

coefficient and the Andreev reflection coefficient. 𝜃𝑛 is the phase shift of the normal 

reflection and 𝛽=
𝐸𝐹

ℏ𝜔𝑐
 with 𝜔𝑐 =

|𝑒𝐵|

𝑚
 .The magnetic phase enclosed in the yellow hatched area 
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is: 

𝜙𝐵 = ∫ 𝐴 . 𝑑𝑙⃗⃗  ⃗
2𝑛𝑑 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

1𝑠𝑡 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛

= −𝜋𝛽   6.5 

Here, 𝐴  is the potential vector associated to 𝐵⃗ . 𝜙𝐵 is the phase accumulated by each particle 

between the first and second reflection.  

 

Figure 115 a) Interplay between orbital and phase effects of the magnetic field. The lines 

with arrows correspond to electron (red) and hole (blue) that either normal or Andreev 

reflects at the SN interface. The yellow-hatched region is the area where the magnetic flux 

is enclosed. Taken from Takagaki, J. Appl. Phys. 128, 024304 (2020). b) 4 schemes describing 

the four interfering terms coming from an incident electron going through the SN interface 

depending if the first reflection is an Andreev reflection or not and the same for the second 

reflection. (1) two successive normal reflections (with dephasing 𝑒𝑖𝜃𝑛 at each interface), (2) 

two successive Andreev reflections (with dephasing 𝑒−𝑖
𝜋

2 at each interface), (3) normal 

reflection and then Andreev reflection and (4) Andreev reflection and then normal reflection. 

c) Calculated conductance as a function of 𝛽 =
𝜇𝑁

ℏ𝜔𝑐
∝ 𝐵−1 for 𝑒𝑉 = ∆

2⁄  and 3∆
2⁄ . Taken 

from Asano, Phys. Rev. B, 61 (2000). 

The coefficient 𝑝(𝛽) is a geometrical coefficient. It is chosen to take into account that some 

starting positions do not lead to this interference since at least two successive reflections 

have to happen. Therefore, this term depends on the width 𝑊 of the interface and on 𝑅𝐶 . 

Since it should be equal to 1 for 𝑊 = 2𝑅𝐶 and 0 for 𝑊 = 𝑅𝐶 , then a linear approximation 
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gives 𝑝(𝛽) ≈ 2 (1 − 4
𝛽

𝑊𝑘𝐹
). This effect is therefore oscillates with 𝛽 as presented in Figure 

115c, and the oscillations start when the magnetic field is sufficient to encompass one 

cyclotron radius in the width of the interface (here, the plot starts at 𝛽 =
𝜇𝑁

ℏ𝜔𝑐
= 2). The field 

dependence of this effect, while not straightforward, can be calculated. Indeed, the area of 

the loop 𝒜 changes along with the magnetic field,  roughly evolving as the square of the 

cyclotron radius, which is proportional to 1/𝐵. It then gives 𝒜 ∝ 𝐵−2 and 𝛽 ∝ 𝐵−1. Therefore, 

the conductance evolves as cos(𝛼𝐵−1 + 𝑐𝑠𝑡) with 𝛼 a constant, and the amplitude of 

oscillations depends on 𝐵. 

6.3.2.3.1 Vortices-related effect 

Effect of superconducting vortices  

 

Figure 116 Taken from Papari et al., Sci. Rep. 6, 38677 (2016). a) Magnetoresistance plot 

(resistance in logarithmic scale) as a function of temperature from 35 to 45𝐾 of a 

superconducting constriction of YBCO (230𝑛𝑚 wide, 700𝑛𝑚 long, and 150𝑛𝑚 thick). b)  

Simulated magnetoresistance by micromagnetic simulation of a 2D device with a similar 

dimension as the experimental device. (inset: comparison with two normalized 

magnetoresistance at 36 and 39.8𝐾) c) Vortex configurations at the peaks indicated with the 

red arrows. Each peak corresponds to the apparition of a new row of vortices before the 

constriction. 

As for all type II superconductors, the magnetic field penetrates YBCO through 

superconducting vortices. This is also the case when stacking the superconductor in a 

configuration superconductor/Au/Graphene as demonstrated in Ref. [233] for Nb/Cu films. 
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With the current going through the junction, there will be an accumulation of vortices at the 

interface since it is where they enter and where the superconducting order parameter is the 

weakest [137]. This interface blocks the flow of vortices and, as the magnetic field grows, an 

increasing number of vortices accumulates. Figure 116a, from Ref. [234], presents the 

logarithm of the magnetoresistance of a constriction in a YBCO superconducting track 

(230nm wide, 700nm long, and 50nm thick) as a function of the magnetic field and the 

temperature. The measurement presents oscillations that are not periodic eitherher in 𝐵 or 

𝐵−1 but depend on the vortex configuration at the interface with the constriction. Since the 

distance between the vortices is √
Φ0

𝐵
, it results in a √𝐵-dependence of the 

magnetoresistance. Indeed, micromagnetic simulations presented in Figure 116b and c show 

that the magnetoresistance peaks occur when a new row of vortices is complete. Physically, 

the addition of a vortex row acts like the phase transition at 𝐵𝑐1 right at the moment the 

system overcomes the energy for creating a new row (see the vortex configurations in Figure 

116c). When a row of vortices is complete, the additional vortices in the new row are more 

free to move which implies an increase of the magnetoresistance. As the new row gets 

denser, the vortices are less and less mobile and the magnetoresistance decreases. An 

interface could also block the vortices the same way as the constriction of ref. [234] and the 

vortices will accumulate on each side of the junction [137], creating magnetoresistance 

oscillations. 

6.3.2.4 Comparison with the experimental data 

I presented several phenomena that can cause an oscillating magnetoresistance from the 

cyclotron trajectories to the charge to flux effects or vortices. The goal of the following and 

last section is to confront all these phenomena in our experimental facts to discriminate the 

best candidates to explain the experimental data. 

Let us now come back to the different possible explanations detailed above and confront 

the experiments. The results of the comparison are summarized in Table 5. As a reminder, 

experimentally, we found that the oscillations are periodic with respect to the magnetic field 

with a period between 0.2 and 0.4T, a period that scales with the total length 𝐿 of the 

junction. 

Andreev edge-states transport: We have seen that in the presence of a strong enough 

magnetic field, Andreev edge states are forming at the interface between a superconductor 

and a normal metal. In the presence of an imperfect interface, oscillations appear in the 

magnetoresistance. Therefore, this effect does not have the correct dependence on the 

magnetic field.  

Commensurability effect: This effect is 1 𝐵⁄ -periodic because oscillations occur when the 

cyclotron radius 𝑅𝐶 =
𝐸𝐹

𝑒𝑣𝐹|𝐵|
 match with an integer multiple of the length of the junction. 

(𝐸𝐹  ~ 100meV is the Fermi energy of graphene according to what we estimated from 

measurements performed in other works [12,14], 𝑣𝐹~1 × 106m/s is the Fermi velocity of 

graphene). The first expected oscillation is close to what is measured since we consider here 
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the junction length 𝐿 instead of its width 𝑊. In that case, we have 2𝑅𝐶~𝐿 for ∆𝐵~0.2T with 

𝐿 = 300nm. Let alone the disagreement with the dependence in 1 𝐵⁄  of the oscillations, this 

effect is very sensitive both to disorder and imperfection of Andreev reflection, which makes 

the oscillation disappear. 

Ahranov-Bohm (AB) effect in a single SN interface with Andreev Reflection: This 

phenomenon occurs at a too-low magnetic field (around 10mT such as 𝑅𝐶 = 𝑊) and has a 

dependence in 1/𝐵. 

Vortices: We can exclude the contribution to superconducting vortices since the 

dependence is in √𝐵 and above all, the expected oscillation period of this effect is too small 

compared with the period I measured. Indeed, it is possible to compute the value of the 

magnetic field for the first oscillation. It happens when there is the first row full of vortices 

such as 
𝑊

𝑎0
= 𝑊 × √

𝐵

Φ0
= 1. The width of my samples being 𝑊 = 10 × 10−6m, it corresponds 

to 𝐵 ≈ 2 × 10−5T which is many orders of magnitude too small compared with the period 

measured in our system. 

All the effects above have the wrong dependence on the magnetic field and can therefore 

be excluded from our analysis. The two last effects present oscillations that are periodic with 

𝐵 and then deserve a more thorough analysis. These two effects are related to the flux 

enclosed in the junction area and not to the cyclotron trajectory or superconducting vortices. 

 

Table 5 Characteristics of the phenomena studied in the last section to simplify the 

interpretation as well as the experimental facts about the magnetoresistance oscillations. AR 

(NR) respectively means Andreev reflection (normal reflection). 
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Fraunhofer oscillations: I did not observe a finite critical current in my experiments, which 

should in principle rule out this effect. Nevertheless, even in the dissipative regime, the 

magnetic flux quantization effects are observable in the magneto-resistance of Josephson 

junctions. To know whether they explain the observed oscillations, I calculate the period with 

which it would be 𝐵-periodic. In my system, a raw estimation gives a period ∆𝐵 equal to: 

by taking the width of the junction 𝑊 = 10μm, its length 𝐿 = 200nm and the London 

penetration length 𝜆𝐿
𝑌𝐵𝐶𝑂  ~ 150nm for YBCO. It gives (𝐿 + 2𝜆𝐿

𝑌𝐵𝐶𝑂)~500nm for the calculation 

which results in a very small period ∆B~0.4mT compared to the one observed in the 

experiment. This is far from the experimental period between 0.2 and 0.4T. Nevertheless, 

this larger period might come from an inhomogeneity of the local density current in the 

junction [235–237]. Indeed, the junctions are 10μm-wide for a length between 50 to 

350nm, and the effective junction, in the sense where most of the current circulates, may 

have many different dimensions. For instance, it has been shown [237] that band-bending 

at the edge of a graphene flake, close to the Dirac point, may confine the current to the edge 

even at zero field. This Josephson junction exhibits a modified Fraunhofer pattern compared 

with the homogenous case. They deduced the distribution of the current from the critical 

current vs field measurement following the work of Dynes and Fulton [235]. We could try to 

do so with our measurement, though we only observed magnetoresistance oscillations and 

not a proper critical current Fraunhofer pattern. However, to carry out a correct Fourier 

analysis, two parameters have to be considered. The first one is the range of the 

measurement (here, from −2 to 2T) which gives the spectral resolution of the FFT. The other 

parameter is the step of the measurement (here around 𝛿𝐵 ≈ 6.4mT) which gives the range 

of the FFT. In our case, the step of the measurement is too large and gives a maximal spatial 

extent ∆𝑥 =
𝜙0

𝛿𝐵×(𝐿+2𝜆𝐿
𝑌𝐵𝐶𝑂)

~600nm. To allow the reconstruction of the local current over the 

entire width 𝑊 = 10μm, we should have measured every 0.1mT, which is not possible with 

our experimental set-up.  

Let us assume that there are one or several regions where the current circulates more easily. 

These regions could correspond to the edges of the graphene flake, due to band-bending 

as shown earlier [237]. Or to regions randomly located in other places of the junction due to 

the transparency of the graphene/YBCO interface being spatially inhomogeneous, which 

results in the proximity effect occurring locally over a reduced portion of the junction as 

shown in the cartoon of Figure 117. This may explain why the differential conductance is 

weakly tunnel. Indeed, the sheet resistance of CVD graphene is usually 𝑅⊡~400 −

800Ω [190] which gives a resistance of the channel 𝑅~𝑅⊡
𝐿

𝑊
~8 − 16Ω ≪ kΩ measured for 

these junctions. Most of the width may not conduct current very well and explain the 

observed intermediate transparency. According to the observed periods ∆𝐵~0.2 − 0.4T, the 

width 𝑤 of these regions would be 𝑤 =
𝜙0

∆𝐵×(𝐿+2𝜆𝐿
𝑌𝐵𝐶𝑂)

~20𝑛𝑚 with 𝐿~200μm. This size could 

for example correspond to the topography of the YBCO/Au film below graphene making a 

better electrical contact as suggested by Ref. [98], which argues that the proximity effect 

∆𝐵 =
𝛷0

𝑊 × (𝐿 + 2𝜆𝐿
𝑌𝐵𝐶𝑂)

~
2 × 10−15

10 × 10−6 × 500 × 10−9
 ~ 0.4𝑚𝑇   6.6 
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induced in gold is only local due to the (100) facets of YBCO present among the mainly (001) 

oriented YBCO film. 

 

Figure 117 Scheme of a SNS junction of length 𝐿 and width 𝑊. The electrical contact is tunnel 

over most of the width except in the deeper purple regions of width 𝑤 where the current 

circulates with less resistance and where Andreev reflection is possible. 

Before analyzing the last effect, we should keep in mind two facts. The first one is that the 

behavior of the resistance is opposite to what we would expect from a Fraunhofer-like effect 

on Cooper pairs. Indeed, in a Fraunhofer pattern, the critical current is maximal at zero field 

while here, the resistance is maximal at zero field. The second fact is that the hypothesis of 

the temperature dependence of the oscillations’ period does not match the one of a 

Fraunhofer-like effect where the period is constant. In summary, even if we assume a spatially 

non-homogenous proximity effect across the YBCO/Au/graphene interfaces,  the observed 

magnetoresistance oscillations cannot be accounted for by the Josephson effect. 

Al’tshuler-Aronov-Spivak (AAS) effect: This effect also has the correct dependence in 𝐵 

and is also a flux-related effect like the previous one. With the dimensions of the junction, 

the expected period is around 0.2mT with the dimensions of the junctions, half the one of 

Fraunhofer oscillations. This is far from the period observed for my junctions but again, some 

arguments may explain the difference with the measured period. First of all, the same 

argument as before can apply here since the AAS effect needs Andreev reflection to occur. 

If there are only a few regions where Andreev reflection locally occurs, due to the 

YBCO/Au/graphene interface transparency being high only locally at certain spots,  the 

typical size (𝑤 and 𝐿) of these spots as presented in Figure 117 should be considered to 

calculate the period of the AAS oscillations. However, this idea does not explain why the 

period of oscillations increases with increasing temperature (Figure 109). Indeed, the 

observed temperature behavior indicates that the oscillations are related to a characteristic 

length that decreases with temperature, making the period increase.  The phase-coherence 

length 𝜉𝑁 = √
ℏ𝐷

𝑘𝐵𝑇
 of graphene has the same dependence on the temperature as seen in 
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chapter 3. Indeed, if we compute the ratios between the frequency of the peak at 2𝐾 and 

the one at 5𝐾 for the two first peaks of each Fourier transform, these ratios are around 1.66, 

very close to √5
2⁄ ~1.58. This is consistent with a period ∆𝐵 =

𝜙0

𝐿𝜉𝑁
∝ √𝑇. Moreover, in 

Ref. [238], it is said that the overall AAS resistance oscillations are obtained from the addition 

of the contributions of regions defined by the length of the junction 𝐿 and the phase-

coherence length 𝜉𝑁 , as if the width was cut into pieces of side 𝜉𝑁 and length 𝐿. These 

arguments support the hypothesis that the Al’shuler-Aronov-Spivak effect is 

responsible for the magnetoresistance oscillations.  Theoretical calculations, which are 

beyond the scope of this experimental thesis due to time constraints, will be done soon in 

collaboration with colleagues to further substantiate this hypothesis. 

On the experimental side, we intend to carry out more experiments to add more specific 

data to the theoretical model. An axis for further experiments is to vary the geometrical 

parameters of the junctions. It would be interesting to reduce the width of the electrode and 

keep varying the length of the junctions. A reduced width (ideally close to the phase-

coherence length) may help to understand the dependence of the junction on the geometry 

of the junction. In our analysis, no correlation appeared between the period of oscillation 

and the length of the junctions. However, if the AAS effect is indeed responsible for the 

oscillations, the phase-coherence length and therefore the quality of the graphene sheet of 

each junction comes into play for the period which may explain the observed variability of 

the period. 

6.4 CONCLUSIVE REMARKS 

In this chapter, I started by describing the state of the art, particularly, reviewing results 

obtained in my lab before I started my PhD, based on large junctions to concentrate on a 

single YBCO/Au/Graphene interface. The study with a back gate voltage revealed the 

superconducting version of Klein tunneling, a relativistic effect due to the band structure of 

graphene. In the second part, I presented experimental results obtained by my colleagues, 

to whose understanding I contributed. Those results evidenced Fabry-Pérot oscillations and 

long-range propagation of d-wave Andreev pairs in graphene. Finally, the last part detailed 

my experiments on the magnetoresistance of YBCO/Au/graphene/Au/YBCO junctions, which 

revealed oscillations at low temperatures. The experimental evidence was compared to 

oscillating effects in the literature and allowed to retain the Al’tshuler-Aronov-Spivak effect 

as a likely explanation. Indeed, this effect qualitatively explains the magnetoresistance 

oscillations, their temperature, and bias dependence.  However, to quantitatively explain the 

observed oscillation period, we have to consider the phase-coherence length of graphene 

instead of the width of the junction. Theoretical calculations beyond this analysis have to be 

performed to further support this hypothesis.  
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7 A NEW MATERIAL UNDER STUDY, MOS2 

In the previous chapter, I presented in detail the properties of YBCO/graphene junctions. For 

that project, we developed a whole set of experimental techniques to fabricate 

superconducting devices with the transfer on YBCO of CVD-grown graphene. We decided 

to transpose this knowledge to the study of another 2D material, MoS2. As we have seen in 

chapter 2, MoS2 is part of the transition-metal dichalcogenide family [41,59,64,239]. It is a 

semiconductor with a thickness-dependent gap [59] but can be tuned into a conductor with 

an electrostatic gate. Contrary to graphene, spin-orbit coupling (SOC) is non-negligible in 

MoS2 and theory predicts that the coupling with superconductors would give rise to exotic 

quasiparticle [146,240,241,145]. 

I first started with the expertise obtained on YBCO/CVD graphene junctions to build 

YBCO/MoS2 by transferring CVD-grown MoS2 on patterned YBCO junctions. The resulting 

samples showed a very resistive tunnel behavior and are presented in section 7.1. To try to 

improve the electrical contact between YBCO and MoS2, I then decided to change the 

approach to deposit MoS2 from a transfer method to direct growth. Though the growth of 

MoS2 has already been carried out in the lab on usual substrates like sapphire [60,89], 

growing this material on YBCO, an oxide very sensitive to the atmosphere composition and 

heat, was challenging. This implied optimization of the growth parameters and 

characterization of both YBCO and the grown MoS2 (section 7.2). In section 7.3, I present 

results on the integration of this method for the fabrication of superconducting junctions 

YBCO/MoS2/MoSi. These show conductance features characteristic of SIS junctions and, for 

those in which the MoS2 interlayer thickness is below some limit, we could measure a finite 

Josephson supercurrent. These results validate the PLD approach for the fabrication of high-

Tc/2D semiconductor heterostructures and devices and thus open the door to the study of 

high-Tc superconducting proximity effects in a vast family of materials with remarkable 

electronic properties. 

7.1 ATTEMPTS WITH CVD MOS2 

Thanks to the expertise acquired with CVD graphene, I started this new project with high-

quality CVD MoS2 from the group of Piran Kidambi. I developed a transfer method specific 

to MoS2 grown on sapphire. This method is detailed in chapter 4. After this crucial step, I 

characterized MoS2 by Raman spectroscopy. In Figure 118b, the Raman spectrum of MoS2 

after the wet transfer on YBCO shows the two characteristic peaks of MoS2 at 385cm−1 and 

405cm−1. The spacing between the two peaks (≈ 20cm−1) is a strong clue for monolayer 

MoS2 as shown later in this chapter (see 7.2.3.1). I patterned it according to the method 

explained in chapter 4 to obtain devices similar to the one shown in Figure 118a. In this 

image, MoS2 is barely visible since it is a monolayer but is highlighted by the red contour. 

After the plasma etching step, I took care to check whether the MoS2 under the protective 

resist was unaffected by the in-between steps and that the MoS2 was etched everywhere it 

had to be. Even if we do not always process a top gate, we covered the sample with 

amorphous alumina with the recipe given in chapter 4. It has been shown that it passivates 
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and protects TMDs [69]. 

 

Figure 118 a) Microscope image of a device covered by patterned MoS2 (highlighted by the 

red contour). b) Raman spectrum of CVD MoS2 after the transfer on YBCO. c) Typical 

differential conductance measurements of a YBCO/MoS2 junction at several temperatures. 

Then, I carried out transport measurements and I obtained on average more resistive 

junctions than in the case of graphene. An example of a typical differential conductance 

measurement is shown in Figure 118c. This measurement was done in a 4-probe 

configuration in the delta mode of the instruments. The graph exhibits a decrease in the 

conductance close to zero bias indicating a tunnel behavior of the junction. This decrease is 

less pronounced as the temperature increases. In Figure 120a, the differential resistance of 

the junction at constant current (𝐼 = 3μA) is plotted against the temperature. The resistance 

increases a lot as the temperature gets lower. This is typical of superconducting tunnel 

junctions and very similar to what I computed for ref. [6] presented in chapter 3. 

Similarly to what I have done with graphene, I studied the effects of both magnetic field and 

electrostatic gating. Concerning the magnetic field, the effect is relatively weak compared 

with the strong dependence on the temperature. Indeed, as seen in Figure 119b, the 

magnetic field increases the value of the zero bias conductance (< 1% between the one at 

0 and 9T). This is also well shown by the plot of the resistance with respect to the magnetic 

field in Figure 120b. The resistance slightly increases until the field reaches around 5T and 
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then decreases again above.  

 

Figure 119 Differential conductance with respect to the voltage bias for a) magnetic field 

applied perpendicularly to the junction from 0 to 9T and b) for several back gate voltages 

from -5 to 5V. This second measurement was done by sourcing in voltage and not in current 

as all the others presented above. 

I then present differential conductance spectra of the same junction measurement in a 2-

probe configuration by changing the voltage applied to the back gate electrode. The result 

is shown in Figure 119b from −5V to +5V. There is no evolution of the conductance with the 

back gate voltage.  

 Finally, the dependence on the top gate voltage is shown in Figure 120b. The measurement 

was carried out in a 2-probe configuration and the top gate voltage was swept from 0 to 3V, 

then from 3V to −3V, and finally from −3V to 0V in order to exhibit potential hysteresis effect 

of the gate. This plot of the resistance as a function of the top gate voltage shows the gate 

voltage placed directly on top of the MoS2 channel modulates its resistance (< 8% between 

−3 and 2V). The evolution is not larger because the resistance probed here is mainly made 

of the tunnel contact between YBCO and MoS2. This contact resistance may not depend 

much on the top gate voltage. The MoS2 channel resistance contributes to a small amount 

of the total resistance and the effect of the gate is then weak. 

The differential conductance measurements, especially at several temperatures, tend to 

indicate we are in fact measuring the interface between YBCO capped by gold and MoS2, 

The electrical contact has a low transparency which makes the junction have a tunnel 

behavior. Moreover, this low transparency does not create any proximity effect in MoS2. 

Therefore, to achieve better transparency, we have to work on a better method to deposit 

MoS2 on the YBCO surface. We keep trying other methods to transfer the 2D material the 

most efficiently with dry transfer for example but in parallel, we chose to develop a radically 

new method based on pulsed laser deposition directly on the superconductor as I will explain 

in the following. 
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Figure 120 a) Resistance versus temperature in 4-probe configuration, b) differential 

resistance in 4-probe configuration versus the magnetic field, and c) differential resistance 

in a 2-probe measurement versus the top gate voltage. 

7.2 NEW GROWTH METHOD AND CHARACTERIZATION OF THE MATERIALS 

Since the transfer method presented in the previous section did not provide a good enough 

electrical contact between MoS2 and YBCO, we decided to completely change the fabrication 

approach. Instead of transferring onto my devices a MoS2 film that grew on a sacrificial 

substrate, we will grow MoS2 directly on YBCO by pulsed laser deposition (PLD) in the wake 

of previous studies in the lab with this method [60,89]. This task is not trivial because is a 

fragile oxide that is prone to lose its oxygen atom when warmed or placed in a low-oxygen 

atmosphere. This loss results in a decrease of its Tc up to an insulating state if its 

stoichiometry changes too much. The problem is that the growth by PLD implies heating the 

chamber and working in a controlled atmosphere both for a good expulsion of the atoms 

from the target in the plasma and a correct deposition on the substrate. Following an 

optimization iteration of the growth parameters, Florian Godel and I developed a method to 

grow MoS2 on YBCO while preserving its superconducting properties. In the following, I will 

first quickly present the setup we used and the initial recipe for growing MoS2 by PLD. Then 

I will show the difficulties encountered and the solutions we found to preserve YBCO 



 

163 

superconducting properties. Finally, I will give the various characterizations of MoS2 I carried 

out. The transport measurements on vertical junctions fabricated with this method will be 

shown in the next section. 

7.2.1 Presentation of the setup 

 

Figure 121 Simplified scheme of the PLD chamber for the growth of MoS2 on YBCO at a 

growth temperature of 255°𝐶. 

I already explained pulsed laser deposition (PLD) in the chapter dedicated to the fabrication 

process (see chapter 4). Indeed, my YBCO films are grown by PLD. Here, I will only stress the 

differences between the setup previously studied and this new one depicted in Figure 121. I 

will describe the growth of MoS2 on a usual substrate like SrTiO3 (STO) or sapphire [60,89]. 

First, this PLD setup is equipped with a tripled frequency Nd:YAG (355nm) laser. The 

frequency of the laser pulses is 2.5Hz and their energy is set at 60mJ. These parameters 

appeared to be optimum for the quality of the growth. Indeed, the time between the pulses 

allows for the grown crystal to relax.  In the chamber, a commercial and stoichiometric target 

of MoS2 (from the company Neyco) is used. The sample holder and the target are placed 

70𝑚𝑚 apart from each other. A heater in the chamber allows for the setting of the 

temperature inside, allowing for the control of the growth temperature, 𝑇𝑔𝑟𝑜𝑤𝑡ℎ, which 

typically ranges from 350 to 600°C and will be important in the following. This temperature 

is measured with a pyrometer pointed toward the substrate. During the growth, argon (Ar) 

is injected in the chamber at 𝑃𝐴𝑟 = 0.1mbar as background gas for the PLD plume. The 

duration of growth, i.e. the time the laser pulses on the target, determines the grown 

thickness. After the growth, the heater is shut down and the sample cools down inside for 

about one hour with 𝑃𝐴𝑟 = 0.1mbar. The first experiment we tried was to grow MoS2 in these 

conditions and it ended up with YBCO becoming insulating. In the following, I will present 

the parameters I can tune to make possible the growth of MoS2 on YBCO without 

significantly deteriorating its superconducting properties. 

7.2.2 Growth parameters and their effects 

The first requirement for growth is to actually grow the desired material with the highest 
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quality possible. This point will be addressed in the next subsection. But the other 

requirement of my method is to preserve the superconducting properties of YBCO in order 

to allow a superconducting proximity effect with MoS2, once it is grown. In this subsection, 

I will study the impact of three parameters -a controlled pressure of oxygen 𝑃𝑂2
, 𝑇𝑔𝑟𝑜𝑤𝑡ℎ  and 

the duration of growth- on the superconducting properties of YBCO by comparing 

resistance vs temperature measurements (𝑅(𝑇)). 

7.2.2.1 Influence of the oxygen pressure in the chamber 

 

Figure 122 a) Resistance vs temperature for a process without oxygen injection in the 

chamber (red) and for a process with oxygen saturation before and after the growth, all the 

other parameters being identical (𝑇𝑔𝑟𝑜𝑤𝑡ℎ = 255°𝐶). b) Simplified temporal evolution the 

temperature inside the chamber and the pressure in oxygen for the two processes (with 

oxygen in blue and without in red corresponding to the plot in a). 

We soon identified the problem of oxygen loss by YBCO when heated. One solution is to 

copy the way YBCO (and many oxides) is grown in an oxygen atmosphere. In the case of the 

MoS2 growth, it is not possible to maintain a large pressure of oxygen during the whole 

process since oxygen atoms would be incorporated during the growth. There would be a 

mix of MoS2 and MoOx. Nevertheless, nothing prevents us from injecting oxygen in the 

chamber at 𝑃𝑂2
= 300mbar while we are heating the chamber and cooling it down as shown 

with the blue line in Figure 122b. When the chamber reaches the setpoint 𝑇𝑔𝑟𝑜𝑤𝑡ℎ, we pump 

the oxygen until a pressure of 0.1mbar and then inject 0.1mbar of Ar as the background gas 

for the deposition. This procedure is summarized in Figure 122b with (blue) or without (red) 

oxygen. During the growth duration represented by the hatched green region, the substrate 

is at 𝑇𝑔𝑟𝑜𝑤𝑡ℎ, 𝑃𝑂2
= 0 and the pressure of argon is 𝑃𝐴𝑟 = 0.1mbar. a compares the 𝑅(𝑇) of 

the samples after the two processes with (blue line) or without oxygen (red line) carried out 

for 𝑇𝑔𝑟𝑜𝑤𝑡ℎ = 255°C. With oxygen, a transition occurs at ~80K with the resistance going 

exactly to zero. On the contrary, without any injection of oxygen during the process, the 

behavior remains metallic but the transition that occurs at ~50K does not lead to a zero-

resistance state. The film does not become superconducting after this process. This shows 

how crucial is to maintain an oxygen-rich atmosphere in the chamber while heating it. 

Otherwise, a substantial part of oxygen atoms migrates out of YBCO deteriorating its 
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superconducting properties.  

7.2.2.2 Influence of the growth temperature 

 

Figure 123 a) Resistance vs temperature for different 𝑇𝑔𝑟𝑜𝑤𝑡ℎ, all the other parameters being 

identical. b) Simplified temporal evolution of the temperature inside the chamber and the 

pressure in oxygen. Only the set 𝑇𝑔𝑟𝑜𝑤𝑡ℎ changes between these three experiments. 

The substrate temperature 𝑇𝑔𝑟𝑜𝑤𝑡ℎ usually plays a key role in the growth processes since it 

allows for better crystallization once the atoms are on the substrate. However, the higher 

the temperature, the larger the oxygen mobility in YBCO and the more easily oxygen atoms 

can escape from YBCO. Figure 123a shows the resistance versus temperature for different 

𝑇𝑔𝑟𝑜𝑤ℎ summarized in the recapitulative scheme in Figure 123b. All the growths shown have 

been made with the protocol with the injection of oxygen. Let us start with the highest 

𝑇𝑔𝑟𝑜𝑤𝑡ℎ = 430°C, the resistance of a film of 5μm × 5μm at ambient temperature is 5kΩ and 

the resistance increases as the temperature is going down and diverges at temperature 

below 50K). This is characteristic of an insulating behavior at low temperatures. Not only the 

temperature made YBCO become insulating but even the 10nm-thick layer of gold on top 

of YBCO percolated due to the heat, resulting in an overall insulating behavior. For 𝑇𝑔𝑟𝑜𝑤𝑡ℎ =

310°C, the film behaves as a metal with a decreasing resistance when the temperature is 

lowered. The resistance saturates at 11.5Ω and never reaches zero which means the film 

never becomes superconducting. Finally, for 𝑻𝒈𝒓𝒐𝒘𝒕𝒉 = 𝟐𝟓𝟓°𝐂, the film still behaves as a 

metal for 𝑻 > 𝟖𝟎𝐊 and below, a sharp transition occurs with the resistance going down 

quickly to zero resistance. The presence of a tail of around 20K between the beginning 

and end of the transition may indicate an inhomogeneity [242] of the properties of the films 

with a position-dependent Tc. 
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7.2.2.3 Influence of the duration of growth 

 

Figure 124 a) Resistance vs temperature for different durations of growth, all the other 

parameters being identical. b) Simplified temporal evolution of the temperature inside the 

chamber and the pressure in oxygen. The duration of the growth is represented by the width 

of the green-hatched region. 

Figure 124a presents three 𝑅(𝑇)-measurements for different growth durations. For these 

three growths, 𝑇𝑔𝑟𝑜𝑤𝑡ℎ is fixed at 255°C and the oxygen pressure follows the procedure 

explained previously and shown in Figure 124b. The three 𝑅(𝑇) show a superconducting 

transition but the longer the duration, the lower the critical temperature of the film. This can 

be understood by considering that during the growth, the superconductor is in a heated 

atmosphere of Ar, which is detrimental to its oxygen stoichiometry. As a consequence, the 

longer the superconductor stays in this atmosphere without oxygen, the more oxygen 

escapes from YBCO, and the lower the Tc. We have to notice that there is an incompressible 

time in addition to the growth duration which corresponds to the time necessary to pump 

the oxygen from 300mbar to 0.1mbar and then inject Ar. This takes around 5 minutes. As I 

will show in 7.2.3.3, the thickness of the deposited MoS2 is linked to the duration of the 

growth and the shorter it is, the thinner will be MoS2 and that’s where we want to tend: high-

quality few-layers MoS2. Now I found good growth conditions to preserve YBCO’s 

superconducting properties (see Table 6), I will characterize the films I deposited.  

 

Table 6 Recap of the growth conditions for MoS2 on YBCO to preserve YBCO and grow high-

quality MoS2. 

7.2.3 Characterization of the 2D material 

After checking if YBCO is still superconducting after the growth process, my first requirement 

is to check the quality of the grown crystal. I used three characterization techniques: Raman 
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spectroscopy presented in 7.2.3.1, then X-ray photoelectron spectroscopy (XPS), and finally 

atomic force microscopy (AFM) in 7.2.3.3. 

7.2.3.1 Raman spectroscopy 

 

Figure 125 a) Microscope image of a step with the right side etched by an oxygen plasma, b) 

Raman spectra for both the etched region (red line) and protected one (blue line) and c) 

Schematic representation of the 2H phase of a monolayer MoS2 (Taken from Gan et al., ACS 

Appl. Energy Mater., 1, 9 (2018)). 

As we have seen in chapter 4, Raman spectroscopy is a very useful tool to study 2D materials 

since each material has a different signature. I conducted a comparative Raman study by 

probing two areas on each sample. In the first area (blue ring on the microscope image in 

Figure 125a), YCBO/Au is covered by the as-grown MoS2. In the second area (red ring), 

defined by optical lithography, MoS2 has been removed by etching with an oxygen 

plasma [192] (RF power at 30W with 10sccm of O2 for 90 seconds). Raman spectra for both 

regions are displayed in Figure 125b. I used a green laser (𝜆 = 514nm) at a power of 5mW 

for 10 seconds with a 3000l/mm grating. MoS2 (blue) has two peaks, 𝐸2𝑔
1  at 383.6cm−1 and 

𝐴1𝑔 at 406.3cm−1 that are characteristic of the presence of 2H-MoS2 [243–245], one of the 

phases of MoS2 crystallographic structure shown on Figure 125c [246]. On the contrary, the 

red curve, corresponding to solely YBCO capped with Au (red), does not present the same 

Raman signature of MoS2. 

Raman spectroscopy also allows to estimate the number of layers in the few layers limit. In 

Figure 126, I reviewed the literature [247–253] and plotted the difference ∆𝜔 between the 

wavenumbers of the two characteristic peaks 𝐸2𝑔
1  and 𝐴1𝑔 as a function of the number of 

layers. MoS2 obtained and measured in different ways seems to behave always the same 

with Raman spectroscopy according to this plot except for the monolayer case where a 

variation is observed between the groups. ∆𝜔 first increases a lot until 6-7 layers and then 

reaches a plateau at the bulk value. From the Figure 125b, the difference is ∆𝜔 = (22.7 ±

0.6)cm−1 indicating the film is a few layers thick (3-4 layers). 
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Figure 126 Difference of wave number ∆𝜔 (cm-1) between the two characteristic peak of 

MoS2 as a function of the number of layers taken from different papers in the literature. 

Finally, Raman spectroscopy can be used to determine the homogeneity of a film by 

scanning the XY direction. The assumption here is that if a region is homogeneous, then the 

Raman spectra at different points should be very similar. To quantify the notion of similarity 

between spectra, I decided to choose the ratio between the intensity of the two characteristic 

peaks of MoS2: 
𝐼𝐴1𝑔

𝐼
𝐸2𝑔
1

 written 𝐴1𝑔 𝐸2𝑔
1⁄  for simplicity. This operation is done after removing the 

background with the software of the Raman spectrometer and fitting both peaks with 

Lorentzian functions. Their amplitudes are then extracted and I plotted the ratio. A colormap 

of this ratio as a function of the position on a 6𝜇𝑚 × 6𝜇𝑚 grid is presented in Figure 127. 

 

Figure 127 2D-colormap of the ratio between the intensity of the 𝐴1𝑔 and 𝐸2𝑔
1  peaks on a 

square of 6µm side regions covered with MoS2. 

We see on this plot that MoS2 grew on large-scale on our sample, with a good homogeneity 

as the peak ratio is nearly constant over the large area we probed taking values between 4 

and 5. This result indicates the successful growth of a homogeneous layer of MoS2 on YBCO. 

This map shows the added value of PLD compared with CVD methods which results in islands 
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of flakes on the growth substrate around the seeds or other projection methods that create 

bubbles of material. On the contrary, this colormap demonstrates a layered growth by PLD 

as well as previous transmission electron microscopy (TEM) done in [89]. 

7.2.3.2 X-ray photoelectron spectroscopy (XPS) 

After the Raman spectroscopy characterization that allowed to identify MoS2, and to 

estimate its thickness and homogeneity, we wanted to investigate the chemistry of the film. 

Indeed, it can happen the materials deposited are not only the ones desired, especially in 

the presence of oxidation. To answer this question, a convenient tool is X-ray photoelectron 

spectroscopy. It is a surface-sensitive experiment that allows for the detection of chemical 

species along with their chemical environment. An X-ray beam is sent to the sample with a 

given incidence, it excites electrons enough to be ejected. These electrons are collected and 

their kinetic energy is measured. This way, it is possible to access the atomic orbitals they 

come from and know the environment of the atoms since the energy levels of the atom will 

be modified by the presence of other atoms. The proportion of each kind of atom (chemical 

species and environment) appears as a peak in the spectroscopy. 

We carried out two XPS measurements at two different incidences. The first one is given on 

the left of Figure 128. As shown on the inset, it corresponds to a grazing incidence, only 

probing the first few layers at the surface. The result of the fit shows the presence of the 3d 

orbital of Mo as well as the 2s orbital of S. However, an important peak corresponds to 

oxidized Mo (MoOx). When we computed the proportions of Mo atoms against the one of S 

atoms. We found there was a deficit of Mo atoms compared with sulfur ones. So we 

performed the same experiment but this time with an incidence close to normal. The probed 

region is now deeper into the film (~5nm) and not only the surface. The resulting spectrum 

has a much smaller MoOx peak while the 3d orbital peak of Mo has a larger amplitude. This 

time, the computation of the ratio between the two atoms is 2.05, the expected value being 

2. 

 

Figure 128 (left) XPS measurement at grazing incidence of a MoS2 film grown on YBCO. 

(right) Same but at close to the normal incidence of a MoS2 film grown on YBCO. Only the 

energy range of the molybdenum and sulfur atoms is shown for these two graphs. Each peak 

is fitted individually and represented with a blue (yellow) color for molybdenum (sulfur). 
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Though this final result shows we indeed grew MoS2 on YBCO, the previous one suggests 

the presence of a molybdenum oxide layer on top of MoS2. This may be due to the oxygen-

saturated atmosphere in the chamber during the cool-down. For another batch of samples, 

we could try to see the effect of a cool-down without oxygen after the growth. It may also 

be possible to quench the sample to make it cool down very quickly and thus not have to 

put oxygen in the chamber. 

7.2.3.3 Atomic force microscopy (AFM) 

After the structural and chemical characterization, I wanted to have some information 

concerning the growth rate. Indeed, with a calibration curve, I could then easily grow a 

sample with the desired thickness. Therefore, I intended to do a calibration curve by only 

varying the duration of growth from 1 to 4 minutes. On each sample, I etched a part of the 

surface with the method explained in 7.2.3.1. Then I performed atomic force microscopy on 

these four samples to measure the step created by the etching. The path of the AFM tip is 

schematized by the black line in Figure 129a. The topographic profile is presented in Figure 

129b. There is indeed a step between the region where MoS2 was protected during the 

plasma etching and the region where it was etched. I carried out this measurement for the 

4 samples and I reported the height of this step against the respective duration of growth 

on c. 

 

Figure 129 a) Microscope image of a step with the right side etched by an oxygen plasma. 

The black line corresponds to the path of the AFM tip of the measurement in b. b) 1D AFM 

topographic profile along the path given in a. c) AFM measurements of the step on samples 

as a function of their growth time (black squares). The experimental points are fitted with a 

linear model (red line). 

I then fitted these experimental points (black squares) with a linear model (red line on the 

plot) which allowed me to extract a growth rate that I estimate to be (7.2 ± 0.8 )nm/min, or 

roughly 10 layers per minute. We can compare this to the thickness I estimated earlier with 

the Raman spectrum. For the sample whose thickness measured with the AFM is 15nm, the 

thickness of the MoS2 film was estimated at 3 or 4 layers. Knowing that a MoS2 layer is about 
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0.7nm, there is a discrepancy between the two approaches. First, the measurement of the 

distance between the peaks may be influenced by the nature of my substrate (YBCO/Au) 

which is different than the examples given in the review (mainly exfoliated MoS2 on usual 

substrates like sapphire or silicon oxide). Second, the estimation of the thickness by Raman 

spectroscopy is limited to a few layers, typically up to 4-5 layers. Third, as suggested by the 

XPS measurements, a layer of oxide is forming at the surface on top of MoS2. This layer is 

measured at the AFM and may also screen the Raman scattered photons. This would explain 

why we only estimate at 3 to 4 the number of layers of MoS2 with the distance between the 

two peaks though the thickness of the film is around 15nm. 

7.3 TRANSPORT MEASUREMENTS OF VERTICAL JUNCTIONS 

Having successfully identified the optimal parameters for the growth of large-scale 2D MoS2 

on the surface of YBCO, while minimally affecting its superconducting characteristics, I have 

chosen to proceed with the integration of this methodology for the fabrication of 

superconducting devices. First, I will present the geometry and the materials used in these 

devices, and in the next two parts, I will analyze the transport measurements in two regimes, 

the diffusive one and the superconducting one.  

7.3.1 Device fabrication 

The aim here is to build superconducting vertical junctions made of YBCO as the bottom 

electrode and another superconductor as the top electrode with MoS2 in between. As for 

the optimization process, I used YBCO grown on STO and covered in situ by 10nm of gold. 

The deposition of MoS2 is done using the process summarized in Table 6. I chose different 

growth durations such as the thickness of MoS2 will vary to aim for different regimes of 

superconducting coupling between the electrodes. The design of the vertical junctions is 

similar to the one in previous papers from our team [6,254]. The process (given in chapter 4, 

see also Figure 130c) consists of patterning square apertures in a resist (from 1 to 20μm 

side), making it harder, and then proceeding to another lithography to define a bigger 

pattern for the contacts. A microscope image after the second lithography step is given in 

Figure 130a where the square hole of 7.5μm is zoomed. Then, 100nm-thick Mo80Si20 (later 

referred to as MoSi)  −an amorphous s-wave superconductor with a 𝑇𝑐
𝑀𝑜𝑆𝑖 of ~7.2K [255] but 

which depends on the deposition− are deposited by sputtering. Finally, 100nm of gold is 

sputtered to prevent MoSi from oxidation and to make the wire bonding easier. The details 

of the different layers are provided in Figure 130b. The lift-off of the resist removes the extra 

metallic layer.  

With the obtained layout, it is possible to measure the junctions in a 4-probe geometry by 

directly wire-bonding on YBCO and the Au atop the junctions. The transport measurements 

carried out at low temperatures depend on the thickness of the MoS2 layer. For thick (>

10nm) MoS2, I measured a tunnel barrier while for thin (~5nm) MoS2, I measured also a 

tunneling behavior (see 7.3.2) but with some junctions exhibiting Josephson coupling at 

sufficiently low current and temperature (see 7.3.3).  
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Figure 130 a) Microscope image after the second lithography step of a future vertical 

junction. The zoom shows a junction with the form of a square aperture. b) Details about the 

heterostructure with the different stacked layers. c) Side view of the vertical device.  

7.3.2 Junction’s differential conductance 

In all the following, I present 4-probe measurements in the so-called “delta mode” of the 

Keithley instruments. The current is biased and the voltage is measured. Contrary to the 

measurements shown in this chapter or the previous ones, I chose the following unless 

otherwise stated, to use the current as the x-axis and not the voltage bias. Indeed, all the 

measured junctions present a switching between two states as a function of the injected 

current, so that the differential conductance is not a function of the voltage over the entire 

measured range. The junctions taken as examples here come from the same sample with a 

thin (~5nm) MoS2 layer (1-minute growth) and are representative of the general behavior of 

the junctions. Their dimensions are 7.5μm × 7.5μm (R1874D D2) and 10μm × 10μm (R1874D 

E11). I will also compare them to a junction with a thicker MoS2 layer (~25nm) and 

dimensions 14μm × 14μm (R1874A B7). 

7.3.2.1 Temperature-dependent differential conductance, influence of the MoS2 thickness 

In Figure 131a, I show the differential conductance plotted against the bias current for 

temperatures chosen with care, and in b the voltage-current characteristics at the same 
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temperatures. These measurements have been carried out on the junction R1874D D2 which 

has a thin MoS2 layer (~5nm). 

 

Figure 131 a) Differential conductance vs bias current of the junction R1874D D2 at different 

temperatures in a semi-log plot. b) Voltage-current characteristics at the same 

temperatures with the same color code. 

At the lowest temperature, below both the superconducting transition temperature of YBCO 

(𝑇𝐶
𝑌𝐵𝐶𝑂) and MoSi (𝑇𝐶

𝑀𝑜𝑆𝑖), the differential conductance has a very rich structure. At low 

currents (between −10mA and 10mA), the differential conductance has a lower level (~1.5S) 

than at higher currents (~1.8S). In this region, we observe peaks at ~ ± 8mA as well as a 

central peak at zero bias current. Two sharp transitions occur at around ±10mA for the first 

one and ±14mA for the second one. They are also clear on the I-V curve (Figure 131b) where 

we can see an abrupt change in the curve’s trend above a threshold current that decreases 

with increasing temperature. Back to the differential conductance curves in Figure 131a, we 

see that at 6K, just above 𝑇𝐶
𝑀𝑜𝑆𝑖~5.8K, the differential conductance curve changes radically 

as compared with the one at 4.5K. The most salient feature is the enhancement of the 

conductance in the low current regime (between −10mA and 10mA). Notice that the 

conductance level at higher current is essentially the same at 𝑇 = 4.5K and 𝑇 =  6K, that is, 

below and above 𝑇𝐶
𝑀𝑜𝑆𝑖. Notice also that at 𝑇 = 6K  we still observe the zero-bias peak, which 

indicates that it is not related to superconductivity in MoSi. For an even larger temperature, 

still below 𝑇𝐶
𝑌𝐵𝐶𝑂, the shape remains more or less the same except the conductance at high 

current is lower (~1.3S). The central peak is also less sharp. Finally, above 𝑇𝐶
𝑌𝐵𝐶𝑂, the 

differential conductance is featureless corresponding to an ohmic response. The overall 

conductance at this high temperature is much lower (~0.2S). 

Figure 132 displays the low temperature transport measurement of another junction 

(R1874A B7) that has a thicker MoS2 layer (~25nm). In this figure we focus again on the low-

temperature range just below and above 𝑇𝐶
𝑀𝑜𝑆𝑖. At the lowest temperature 𝑇 = 4K, and 

similarly as for the junction R1874D D2 with thinner MoS2 in Figure 131, we observe a strong 

conductance decrease within a low bias range, which is followed by the peaks (here at ~ ±

15mA) that preceed the switching into  a the high-bias regime in which the conductance is 

nearly the same as for 𝑇 = 6K. However, contrary to junction R1874D D2, here, there is no 
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enhancement of the differential conductance at zero bias.  

 

Figure 132 a) Differential conductance vs current of the junction R1874A B7 (thicker MoS2) 

at two temperatures. b) Corresponding I-V characteristics. 

7.3.2.2 Temperature evolution 

As we started to see in the previous paragraph, the study of the transport properties of the 

vertical junctions revealed that all junctions share a common point, whatever the thickness 

of the MoS2 layer and their resistance. To illustrate this point, I display the temperature 

behavior of a third junction (R1874D E11).  

 

Figure 133 a) Resistance versus temperature measured at a current 𝐼 = 100𝜇𝐴 of the junction 

R1874D E11. b) Differential conductance spectra at different temperatures of the same 

junction (semi-log plot). 

In Figure 133a, I show the resistance versus temperature (𝑅(𝑇)) measurement of the junction. 

It was measured for a low bias current 𝐼 = 100μA. We can see that the resistance drops below 

𝑇 = 80K, which can be attributed to the superconducting transition of the bottom electrode 

made of YBCO. Below 𝑇𝐶
𝑌𝐵𝐶𝑂, the resistance is very low until we reach 𝑇𝐶

𝑀𝑜𝑆𝑖. At that 

temperature, the resistance increases by one order of magnitude and reaches a plateau until 
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the lowest reachable temperature in our cryostat. 

In the corresponding conductance curves in Figure 133b, we can distinguish several regimes 

depending on the temperature. Above 90K, the junctions have an ohmic behavior. This is 

shown by the flat and featureless conductance at 90K. Below 90K, the superconducting 

transition of YBCO occurs and the overall conductance of the devices increases gradually. In 

addition,  a zero-bias enhancement of the conductance (a peak) appears, which is present 

down to the lowest temperature (see for instance 𝑇 = 6K). Below 𝑇𝐶
𝑀𝑜𝑆𝑖~5.8K, the 

conductance of the device shows a sharp conductance decrease within the low current 

regime. The differential conductance decreases by a factor ~10. A peak remains in the 

differential conductance spectrum. The next subsection will describe the evolution of the 

spectral features at low temperatures in the presence of a magnetic field. 

7.3.2.3 Magnetic field evolution 

Conductance curves have also been measured at a fixed temperature 4.5K for variable 

magnetic fields (applied perpendicularly to the junction, that is, in-plane of the layers). A set 

of measurements is displayed in Figure 134a. We observe that, as the magnetic field is 

increased, the sharp current-induced peaks/siwtching mentioned above for the lowest 

temperature occur at smaller and smaller values of the current and end up disappearing 

between 0.6 and 0.8T. This trend is also visible on the I-V curves presented in Figure 134b 

since the abrupt change of in the V(I) happens at lower current values as the field increases. 

We notice that the plot at 0.8T at 4.5K is very similar to the one at zero magnetic field but 

6K presented earlier. They both only have the central peak as a feature and have similar 

conductance values. Concerning the other features of the differential conductance, the 

central peak remains except at 0.6T while the sharp transition peaks are only present up to 

0.6T. 

 

Figure 134 a) Differential conductance vs bias current of the junction at different magnetic 

fields in a semi-log plot. b) Voltage-current characteristics at the same magnetic field with 

the same color code. 
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7.3.2.4 Discussion 

The temperature and field behavior described above allow for distinguishing what 

conductance features must be attributed to the onset of superconductivity in the different 

junction layers. At 𝑇 = 4.5K, which is below 𝑇𝐶
𝑀𝑜𝑆𝑖~5.8K, the most characteristic feature in 

comparison with the plot at 6𝐾 is the sharp conductance drop at ±10mA,  accompanied by 

a series of peaks (±14mA and ±10mA but also ±8mA). The observed conductance decrease 

agrees with the expected behavior when a superconducting gap forms around the Fermi 

level of MoSi. This behavior is consistent with electron injection into a superconductor 

through a contact with finite transparency. The conduction arises from a combination of 

Andreev reflection (AR) and electron tunneling into sub-gap quasiparticle excitations. As a 

result, the conductance lies between zero (expected from pure electron tunneling if the 

contact was not transparent) and a doubling of conductance (expected with perfect 

transparency, due to pure AR) as seen in chapter 3. This regime ends as the current across 

the junction reaches ~10mA. This corresponds to a current density ~2 × 10−2MA/cm2, close 

to expected the critical current of MoSi [256]. From this, we conclude that the curve at 4.5K 

rejoins the curve measured at 6K just because the current drives MoSi into the normal 

state. The series of peaks (±14mA and ±10mA and ±8mA) before and after the main 

conductance jump likely stem from small variations of the critical current over the junction 

area, that is, from spatial inhomogeneities of the critical current. That scenario is consistent 

with the behavior observed in Figure 134a, in which we see the peaks rapidly shifting towards 

zero current as the magnetic field is increased. An alternative scenario to explain the 

conductance peaks would be that they are features related to the density of states of MoSi, 

and particularly, that they reflect the divergence of the quasiparticle density of state near 

the gap edge [5]. In this scenario, again, one needs to assume a spatial inhomogeneity over 

the junction area, that is the gap has different sizes in the different areas yielding the various 

peaks observed in the conductance curves. This scenario is also consistent with the behavior 

under magnetic field observed in Figure 134 since the superconducting gap should be 

gradually suppressed as the magnetic field is increased to 𝐻𝑐2, which we estimate below 1𝑇 

from our 𝐺(𝑉) measurements in Figure 134a. The complementary study of a MoSi film grown 

on a silicon oxide substrate gave 𝐻𝑐2 ≈ 2𝑇 as the same reduced temperature 𝑇 𝑇𝑐
⁄ as for the 

measurement in Figure 134a. The lower 𝐻𝑐2 inferred from the latter measurements is 

probably due to the fact that superconductivity in MoSi is weakened in the interfacial MoSi 

(this is also indicated by the lower 𝑇𝐶
𝑀𝑜𝑆𝑖~5.8𝐾 as compared to the films 𝑇𝐶

𝑀𝑜𝑆𝑖~7𝐾)  due to 

proximity with MoS2.  

The zero-bias conductance peak, which is observed for all 𝑇 < 𝑇𝐶
𝑌𝐵𝐶𝑂 and is the only 

prominent feature for 𝑇 > 𝑇𝐶
𝑀𝑜𝑆𝑖, must be related to superconductivity in YBCO. It is tempting 

to link this zero-bias peak to tunneling into the quasiparticle surface states of 

YBCO [119,105], a characteristic behavior of tunneling into d-wave superconductors that is 

expected when the topography of the YBCO surface makes the conductance is dominated 

by tunneling into the CuO planes in YBCO [105,119], as we discussed in chapter 3 when we 

discussed the spin-pumping experiments into YBCO [8]. The gradual peak disappearance as 

the temperature is increased is accompanied by a significant decrease in the overall 

conductance (at any of the measured current biases). This is also observed in the 𝑅(𝑇)-
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measurement shown in Figure 133a. This suggests that, in addition to the tunneling between 

MoSi and YBCO, the measurement senses the resistance of the YBCO electrode itself for 

temperatures above 50𝐾. 

The arguments discussed above indicate that, at low temperatures, that are below 50𝐾, the 

conductance of the junctions is dominated by tunneling between YBCO and MoSi across the 

intermediate Au/MoS2 layers. However, we expect the thin Au to become superconducting 

by proximity (as discussed in chapters 5 and 6), and likely MoS2 is also proximized to some 

extent so that the tunneling barrier is not the entire MoS2 thickness but only a buried layer. 

This is indeed the scenario discussed in ref. [149], which studies Josephson junctions 

between MoRe (an amorphous s-wave superconductor) and a variable number of MoS2 

layers, and in which the authors argue that the first layer in contact with the superconductor 

is hybridized and that the barrier only comes from a layer not in contact with the 

superconducting electrodes, in other words the middle layer(s) of MoS2 if the MoS2 thickness 

is above three monolayers (~2nm). Because in our samples MoS2 was directly grown by PLD 

on YBCO/Au, offering both an excellent quality of the VdW material and an excellent 

interface quality as shown in ref. [60], we expect the proximity effect on MoS2 to be much 

stronger than in ref. [149] (in which experiments were based on exfoliated MoS2).   

In summary, the discussed behavior indicates that the MoS2 layer behaves as a 

tunneling barrier of moderate transparency between YBCO and MoSi, which accounts 

for the main features discussed transport measurements: low bias conductance 

decreases for 𝑻 < 𝑻𝑪
𝑴𝒐𝑺𝒊, and zero-bias peak for  𝑻 > 𝑻𝑪

𝒀𝑩𝑪𝑶. Thus, we are dealing with 

SIS’ junctions where I is MoS2 behaving as a weak-link of moderate transparency. As 

we will see in the next subsection, this leads to Josephson coupling at sufficiently low 

temperature and current. 

7.3.3 Josephson regime 

In this subsection, I will focus on the superconducting regime observed with some junctions 

at low enough temperatures and currents. The junctions studied in this subsection are still 

on the same sample with MoS2 grown for 1 minute and are respectively a square of 7.5𝜇𝑚 

side (R1874D D10) and a square of 10μm side (R1874D E11). They have the same behavior 

as the junctions shown above but reveal a critical current at low temperatures. 

7.3.3.1 Low current I-V curves 

In Figure 135a, the characteristic of the junction R1874D E11 at 2K exhibits a critical current 

𝐼𝑐~200μA while it is completely absent from the characteristic at 4.5K. This behavior is also 

clear on the differential conductance spectra at these two temperatures. Indeed, at 2K, it has 

a sharp peak with a two-order magnitude increase while at 4K, there is only a small peak 

very similar to what we observed for instance at 4.5K. 
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Figure 135 a) Voltage-current characteristic of the junction R1874D E11 at 2 and 4K. b) 

Corresponding differential conductance spectra. 

7.3.3.2 Temperature evolution of the critical current 

 

Figure 136 Current-Voltage characteristics of the junction R1874D D10 with a 10𝜇𝐴-step of 

the bias current for temperatures between 2 and 5.5𝐾, below 𝑇𝐶
𝑀𝑜𝑆𝑖 . 

In Figure 136, I carried out measures of I-V curves of the junction R1874D D10 with a small 

step for the current (10μA) for different temperatures lower than 𝑇𝐶
𝑀𝑜𝑆𝑖. At very low currents 

(< 200μA), the I-V curve becomes flat for the lowest temperature plots (𝑇 < 4K). This 

behavior is reminiscent of an overdamped SIS Josephson junction. It is possible to estimate 

its critical current 𝐼c for which the I-V curve remains flat. I measured it as the mean between 

the absolute value of the negative current at which the curve goes flat and the positive 

current at which it goes flat. The result as a function of the temperature is plotted in Figure 

137. It allowed me to compute the 𝐼𝑐𝑅𝑁 which is a figure of merit for Josephson junctions. 

At the lowest temperature I measured, it reaches ~1μV with a critical current 𝐼𝐶~100μA and 

a normal state resistance 𝑅𝑁~10−2Ω. This value has to be compared both to the value of the 

superconducting gap of MoSi, which has the smallest gap, and to the thermal energy. The 

superconducting gap of MoSi is 
∆𝑀𝑜𝑆𝑖

𝑒
≈ 1.14meV  [257]. The large difference between the 
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𝐼𝑐𝑅𝑁 product and its expected value 
𝜋∆𝑀𝑜𝑆𝑖

2𝑒
 could be explained by a junction length 𝑑 larger 

than the coherence length 𝜉𝑁 . Indeed, in that case, 𝐼𝑐~𝑒
−𝑑

𝜉𝑁
⁄

 while the resistance only 

increases linearly with 𝑑. This would explain the low value of the 𝐼𝑐𝑅𝑁 product. The 

comparison with the thermal energy, more precisely the energy of thermally activated 

phase-slip processes (a sudden change of the phase of 2𝜋), is quantified through the ratio 
ℏ𝐼𝑐

𝑒𝑘𝐵𝑇
 [17]. In our case, this ratio is around 2000, which means the impact of temperature on 

the IV curve is moderate. The plot of Figure 137 shows the extracted values of 𝐼c as a function 

of the temperature. It decreases as the temperature increases and becomes 0 at 4K. With 

our experimental setup, it was not possible to measure the critical current below 2K. 

 

Figure 137 Critical current 𝐼𝐶 as a function of the temperature. The uncertainty on this 

current is set as twice the step of the I-V curve. 

7.3.3.3 Magnetic field dependence of the critical current 

 

Figure 138 a) Current-Voltage characteristics at smaller currents for different magnetic fields 

of the junction R1874D D10. b) Corresponding differential conductance vs bias current plots 

(semi-log representation).  

To better characterize the junction transport properties, I applied a magnetic field 

perpendicularly to the junction (in-plane of the layers as shown in Figure 141) and I 



 

180 

measured I-V curves for very small steps of the magnetic field. Some of these I-Vs and their 

corresponding differential conductances are plotted in Figure 138a and b. The I-V curves 

shown in Figure 138a exhibit a critical current 𝐼c that depends on the value of the magnetic 

field. This is also visible on the differential conductance plots in Figure 138b since there is a 

large peak at small currents (semi-log scale). Here, it appears that both the flattening of the 

I-V curves and the peak in the differential conductance are strongly modulated by the 

magnetic field. 

 

Figure 139 Colormap of the differential resistance 𝑑𝑅 as a function of the magnetic field (x-

axis) and the bias current (y-axis). 

To visualize the evolution of the I-V curves with the magnetic field I plot the differential 

resistance 𝑑𝑅 as a function of the magnetic field (x-axis) and the bias current (y-axis) as 

shown in Figure 139. This color plot makes visible the low differential resistance regions that 

is to say the regions where the I-V curves are flat. This measurement was carried out with a 

magnetic field step of 1mT and a current step of 10μA. We find again that the flat region 

tends to occur at smaller and smaller currents as the magnetic field is increased. Two very 

different kinds of oscillations are visible on this graph: very fast oscillations with a period of 

a few mT and much slower ones (~40mT period) that modulate the faster ones. This is 

confirmed by the spectral analysis we performed. From the same batch of measurements 

presented in the colormap in Figure 139, we extracted the critical current 𝐼𝑐 with a threshold 

for the differential resistance. On both sides, positive (+) and negative (-), 𝐼𝑐
± is defined as 

the maximum value for which the differential resistance is below the threshold. The plot 

shown in Figure 140 is the Fourier transform of 𝐼𝑐 =
𝐼𝑐
+−𝐼𝑐

−

2
. In addition to the peak at low-

frequency accounting for the 40mT-periodic modulation, two peaks are visible at 210T−1 

(~4.7mT), the most intense, and 470T−1 (~2.1mT) corresponding to the fast oscillations on 

the color map.  
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Figure 140 Fourier transform of the critical current 𝐼𝑐 extracted from the colormap above. 

7.3.3.4 Discussion 

As the comparison between Figure 133a and c shows, the junction R1874D E11 which 

exhibits the Josephson regime at low temperatures has the same tunnel behavior in the 

dissipative regime as the junction R1874D C2. These junctions are therefore SIS Josephson 

junctions. The 𝐼 − 𝑉 curves in Figure 135a and Figure 136 are also reminiscent of 

overdamped SIS Josephson junctions [17] with the onset of a critical current 𝐼𝑐  at low 

temperature. In Figure 137, the plot of 𝐼𝑐 as a function of the temperature is also compatible 

with the evolution of the critical current of a SIS junction [17]. Unfortunately, it was not 

possible to measure below 2K in our cryostat to fit it to the Ambegaokar-Baratoff 

formula [17]. 

As shown in Figure 138a and Figure 139, the application of a magnetic field perpendicularly 

to the junction modulates 𝐼𝑐 . In chapter 6, we have seen this is also the case of the critical 

current of a Josephson junction that is modulated by the magnetic field depending on the 

spatial density of the current in the junction. This interplay results in an interference pattern 

in the critical current as the magnetic field varies. For a homogeneous density of current in 

a rectangular junction, the Fraunhofer pattern is a sinc function but it can be much more 

complicated as the density of current gets inhomogeneous in the junction. If the period of 

oscillations is B0, we deduce the surface 𝑆 associated with a quantum of flux Φ0 ≈

2 × 10−15Wb: 

𝑆 =
𝛷0

𝐵0
~1 × 10−12𝑚2   7.1 
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Figure 141 Scheme of the junction with the relevant lengths. 

Considering the scheme in Figure 141 and making the assumption that the flow 

homogeneously over the whole junction width (7.5μm), as the fastest period observed  

B0~2mT, the length associated would be equal to ~130nm. Using the second fastest period, 

B0~4.7mT, and the same junction width, we obtain a length ~53nm. As shown on the 

scheme, these lengths result from the addition of the thickness of the weak, link, 𝑑, and the 

London penetration length of YBCO and MoSi: 𝜆𝐿
𝑌𝐵𝐶𝑂~150nm  and 𝜆𝐿

𝑀𝑜𝑆𝑖~500nm  [258]. 

However, in our geometry, the important dimension of the superconductors is their 

thicknesses (50nm for YBCO and 100nm for MoSi) which are much smaller than the 

penetration lengths. Since we have to consider an integration path inside the 

superconductors (where 𝐵⃗ = 0⃗ ) to compute the magnetic field dependence of the critical 

current [17,236], 𝑑 + 𝜆𝐿
𝑌𝐵𝐶𝑂 + 𝜆𝐿

𝑀𝑜𝑆𝑖 is necessarily limited by the total thickness of the 

superconducting heterostructures, in other words 𝑑 + 𝑡𝑌𝐵𝐶𝑂 + 𝑡𝑀𝑜𝑆𝑖 ≈ 165nm where 𝑡𝑌𝐵𝐶𝑂 

(𝑡𝑀𝑜𝑆𝑖) corresponds respectively to the thickness of the YBCO (MoSi) film. Thus, the fastest 

oscillation period (B0~2mT) is roughly consistent with the penetration of the magnetic flux 

over the whole thickness of the superconducting device and over the whole width. However, 

the second fastest (4.7mT) cannot be accounted for by a homogeneous current density over 

the whole junction’s width and can only be explained if the current density is distributed 

over a reduced width. 

Another observation of the evolution of the critical current with the magnetic field is that it 

does not follow a sinc function dependence as expected for a homogeneous current density 

in the junction. On the contrary, we can distinguish a larger period (~40mT) modulation and 

the critical current remains non-zero over a large magnetic field range compared with the 

quick oscillations period. This can also be explained by an inhomogeneous distribution of 

the current density, for instance as observed for edge currents in planar devices, that creates 

a SQUID-like Fraunhofer pattern [136,259–261]. Suominem et al. [262] have also shown it 

could emerge from the Zeeman effect in semiconductor/superconductor Josephson 

junction. Finally, the thickness of the whole SIS junction being smaller than the sum of the 

penetration lengths, may influence the way the critical current is affected by the magnetic 
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field. For example, in Ref. [263], the authors used a single graphene as the barrier in a SIS 

junction made of a thin layer of titanium (the overall thickness being smaller than the 

penetration lengths) and observed a Fraunhofer pattern (figure 3 in the supplementary 

material), far from a sinc function. In our case, though we showed that both the oscillation 

periods and the Fraunhofer pattern cannot be explained by a homogeneous current density 

distribution, we cannot yet conclude on a specific distribution [235–237].   

7.3.4 Overall discussion 

The characterization of YBCO and MoS2 reported in section 7.2.3 demonstrates that it is 

possible to obtain superconducting heterostructures with good structural and functional 

properties by PLD deposition of MoS2 on YBCO protected by Au. The transport experiment 

of vertical YBCO/Au/MoS2/MoSi junctions shows that these junctions behave as SIS junctions 

with moderate barrier strength. The thicker MoS2 junctions do not exhibit Josephson 

coupling, but a finite critical current can be observed in junctions with thin MoS2 (~5nm) at 

low temperatures. These junctions are usually the less resistive,  the 𝐼𝑐𝑅𝑁 product of our 

junctions being between 1μV and 4μV.  

The transport experiments in the junctions reveal an excellent electrical contact between 

YBCO and MoS2 since the resistances of the junctions are lower than previous studies 

between superconductors and exfoliated and then transferred MoS2 [149,150]. In these two 

studies, they measured that the resistance normalized to the area of the junctions scales 

between 10 to 1000kΩ. μm2 compared with our results between 1 and 100Ω.μm2. The 

presence of pinholes in the MoS2 layer is ruled out by various observations. First, AFM images 

of 10μm-side squares, the Raman spectroscopy map (shown in Figure 127) and TEM 

measurements from a previous study [89] show a great homogeneity of the layer. Second, 

the 𝑅(𝑇)measurements in Figure 133a as well as the differential conductance spectra in 

Figure 133b and Figure 134a demonstrate the SIS nature of the junctions. Therefore, the 

improved electrical contact between YBCO/Au and MoS2 has to be attributed to the growth 

method by PLD which provides more transparent interfaces leading to a stronger proximity 

effect and also to doping of the MoS2 as already reported [60,89]. This is discussed further 

below. 

In subsection 7.3.2.4, the analysis of the differential conductance spectra in Figure 133a and 

Figure 134a suggested that the tunnel barrier may be located at the interface between MoS2 

and may become superconducting by proximity. In the study [149] with exfoliated MoS2, the 

authors showed that there is a Josephson coupling between the electrodes only up to 3 

layers of MoS2 and then the behavior is strongly tunnel. They argued that the closest MoS2 

layers to the superconductor on both sides hybridize with it. With 3 layers, the one in the 

middle supposedly acts like a tunnel barrier. In our experiments, the thickness of MoS2 is 

thicker (~5nm which corresponds to 8 layers). Nonetheless, we still measured Josephson 

coupling at low temperatures. This can be explained by a better electrical contact leading to 

an improved hybridization of the first layers of MoS2 in contact with the YBCO/Au film. 

Second, as I mentioned in chapter 2, the phase diagram of MoS2 [71] reveals that for high 

doping, it can become metallic and even superconducting with 𝑇𝐶~10K. I recall this result 
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here with Figure 142. The good coupling with the YBCO/Au film may dope MoS2 at the 

point it becomes metallic and this metallicity as well as the intrinsic superconductor 

order at large doping may make it easier for MoS2 to become superconducting by 

proximity. 

 

Figure 142 logarithm of the sheet resistance of MoS2 as a function of the electron density (x-

axis) and temperature (y-axis). Figure taken from Ye et al., Science 338, 1193 (2012). 

7.4 CONCLUSIVE REMARKS 

In this chapter, after showing measurements with transferred CVD-grown MoS2 in section 

7.1, I presented a new method to grow large-scale 2D MoS2 on YBCO, a high-Tc 

superconductor while largely preserving its superconducting properties (section 7.2). This 

original growth method passed the test of characterization, both of YBCO and MoS2. I 

therefore decided to test the the integrability of this method in a complete fabrication 

process of superconducting vertical junctions for transport measurements. These 

measurements are presented in section 7.3 The vertical YBCO/Au/MoS2/MoSi 

heterostructures exhibited an SIS junction behavior we attribute to the excellent coupling 

between the YBCO/Au layer and MoS2 on one side and of MoS2 and MoSi on the other. For 

the sample with the thinnest MoS2 layer (~5nm), various junctions experienced Josephson 

coupling with a critical current around 100μA. Some other promising directions will be given 

in the concluding chapter. 
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8 CONCLUSION 

In this manuscript, I studied several systems aiming at better understanding the 

superconducting proximity effect between a d-wave superconductor and 2D materials, using 

transport measurements at low temperatures. I fabricated and measured devices made of 

YBCO, a d-wave superconductor combined with a thin film of gold, and Van der Waals (VdW) 

materials such as graphene or MoS2. In the first section, I will recap the main results I 

obtained during my PhD. I will then give some perspectives on this work. 

8.1 SUMMARY  OF THE MAIN RESULTS 

The common ground of all the studies carried out in this thesis is the coupling between a d-

wave superconductor and another non-superconducting material. In parallel with my 

experimental work, I carried out numerical calculations based on the Blonder-Tinkham-

Klapwijk (BTK) theory [5] very early during my PhD. This is presented in the first section. It 

then made it easy for me to use it for my own experimental studies involving thin metallic 

films (8.1.2), graphene (8.1.3), and MoS2 (8.1.4).  

8.1.1 Numerical studies within the BTK framework 

The BTK theory is a useful tool to understand superconductor/normal material interfaces 

since it allows to compute their differential conductance with, in its simplest form, one 

parameter that accounts for the transparency of the interface. I used this formalism, with 

some modifications I implemented, on several occasions to explain experimental data from 

my group or collaborators. 

1) The first systems I studied were vertical junctions made of YBCO and MoSi, an amorphous 

metal, with tunable tunneling barriers [6]. I used the BTK formalism to compute the 

differential conductance of an interface between a normal metal and a d-wave 

superconductor along its c-axis. After extracting the main parameters from fits with the BTK 

theory as shown in Figure 143a and b, I could simulate the temperature behavior of the 

system and explain the observed enhancement of the electroresistance below 𝑇𝑐
𝑌𝐵𝐶𝑂. The 

simulated conductances at 0 and 100mV for both the ON and OFF states are presented in 

Figure 143c as well as the temperature evolution of the electroresistance in the inset. The 

electroresistance enhancement experimentally observed can be explained by the tunneling 

of quasiparticles inside the superconducting gap of YBCO.  

2) The following study [7] focused on transport measurements of vertical junctions made of 

a stack of La5SrCu6O15 (LSCO) (top electrode), BaTiO3 (BTO) (barrier), and La0.7Sr0.3MnO3 

(LSMO) (bottom electrode). The application of voltage pulses showed two distinct behavior 

of the differential conductance depending on the polarity. The BTK fits I performed at several 

temperatures in these two states allowed us to characterize their behavior as a potential 

emergence of a superconducting phase in LSCO and to quantify how it is affected by its 

electrostatic environment. 
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3) Finally, in the context of ferromagnet magnetoresistance (FMR) measurements with 

permalloy (a ferromagnet) in contact with YBCO, I could use the BTK theory to compute the 

interfacial properties between these two materials [8]. It allowed us to explain FMR 

experiments by computing the densities of quasiparticle states in YBCO for two 

crystallographic orientations and how it can affect the spin injection at the interface.   

 

Figure 143 Numerical fits in the a) ON and b) OFF states of the junction. c) Evolution of the 

conductance at 0mV (𝐺0) and 100mV (𝐺100) for both ON and OFF states. In the inset is shown 

the temperature evolution of the electroresistance (𝐸𝑅) ratio between 0 and 100mV. 

These various projects allowed me to gain an understanding of the physics at the interface 

between YBCO and other materials and develop BTK numerical calculation routines I will use 

in the following for my own studies.    

8.1.2 Proximity effect between d-wave superconductor/metal thin films 

In my PhD, the study of YBCO/metal junctions is a first step to characterize the propagation 

of d-wave superconducting correlations in a  case that was, in principle, simpler than the 

case of graphene and MoS2. Moreover, since a thin layer of metal has to be intercalated 

between graphene (or MoS2) and YBCO to protect the YBCO surface and improve the 

interface transparency, it was important to first characterize the proximity effect in Au. 
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Figure 144 a) Microscope image and electrical configuration of a SN junction. b) Zoom on 

the SN junction. c) Side-view scheme of the SN junction with the points where the electrical 

measures are taken. d) Experimental differential conductance as a function of the normalized 

voltage for two SN junctions. e) Numerical calculations within the Usadel formalism. 

In the first part, I studied SN junctions formed by a continuous thin layer of gold lying on 

one side (S) above the d-wave superconductor YBCO and on the other side (N) on insulating 

YBCO. To explain the experimental differential conductance spectra, I developed a 

phenomenological model based on the BTK formalism with two distinct interfaces, one s- 

and the over d-wave, and a metallic resistance in series. With the help of theoreticians, we 

developed a microscopic model, based on the Usadel formalism, which allows us to fit my 

measurements and reproduce the temperature dependence of the differential conductance. 

I also measured SNS junctions and could analyze the measurements with the knowledge 

acquired from the SN junctions. Indeed, I have shown that because of the lower coherence 

length in gold than in graphene, the two sides of the SNS junction can be considered as 

independent SN junctions. 

In the near future, a study of SNS junctions with a smaller length 𝐿 between the electrodes 

may allow to observe a Josephson coupling and a critical current. Another possibility is to 

change the metal of the thin layer to play on the quality of the contact or the transport 

properties. Finally, it would be very interesting to carry out low-temperature STM 

measurements as in Ref. [10] on the gold both above superconducting and insulating YBCO 

to see the evolution of the ‘’mini-gap’’ in gold. It would also be possible to pattern tunnel 

contacts as in Ref. [11] but the geometry would be more constrained. 

Before diving into the d-wave proximity effect in 2D materials (graphene and MoS2), I would 

like to stress that chapter 5 explored a very different regime than chapter 6 and 7. In the 

case of gold, the contact between YBCO and the layer is excellent because the growth is 

made in situ. However, compared with graphene or MoS2, the phase-coherence length of 
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gold is much lower, and coherence-related effects (such as the quantum interference I 

observed in graphene) are absent. 

8.1.3 Proximity effect in graphene. 

As we have seen in the introduction of this thesis (in chapter 2), graphene has been studied 

extensively with s-wave superconductors in the literature. However, studies with d-wave 

superconductors are scarce at the notable exception of a publication realized by my 

predecessor showing the first hints of the proximity effect between graphene and a d-wave 

superconductor [12]. This experimental work was completed with theoretical calculations 

adapted from [13], which describe well the system and the experimental measurements. 

Later, we demonstrated the propagation of d-wave Andreev pairs in CVD-grown graphene 

over several hundreds of nanometers [14]. It means the phase between the electron and 

hole from an Andreev process remains constant over the length of the junction which scales 

from 50 to 800nm.  

 

Figure 145 a) Side-view scheme of a superconducting YBCO/graphene/YBCO junctions. b) 

Magnetoresistance oscillations of four junctions measured on four different samples.  

I subsequently studied the effect of the magnetic field on the differential conductance of 

YBCO/Graphene/YBCO junctions schematically represented in Figure 145a. In chapter 6, I 

provided an analysis of the oscillations observed in the magnetoresistance of the junctions 

of intermediate transparency shown in Figure 145b. The presence of a magnetoresistance 

peak related to weak localization around 𝐵 = 0, and the comparison with the literature of 
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magnetoresistance oscillations in proximized 2D systems, led us to conclude that the 

observed magnetoresistance oscillations are related to the Al’tshuler-Aronov-Spivak (AAS) 

effect is which one of the characteristic length scales is the temperature-dependent phase-

coherence length in graphene.  

8.1.4 Proximity effect in MoS2  

After the study of YBCO/Graphene/YBCO junctions, we investigated the proximity effect in 

another 2D material, MoS2. It was a natural candidate since this material can also be grown 

by chemical vapor deposition (CVD) and most of the fabrication techniques can be applied 

to this material. In the first stage, I attempted to fabricate devices analogous to the 

YBCO/Graphene/YBCO ones via wet transfer CVD MoS2. However, the transport 

measurements exhibited a very resistive behavior, dictated by the contact resistance 

between MoS2 and YBCO. To tackle this issue, I decided to try different approaches like the 

exfoliation of a parent compound (WS2, see 8.2.1) and the development of a new growth 

method of MoS2 directly on YBCO based on pulse laser deposition (PLD) (scheme in Figure 

146a). As explained in chapter 7, this task is challenging because YBCO is a fragile oxide. I 

had to optimize the growth parameters in order to preserve YBCO’s superconducting 

properties while growing high-quality MoS2.  

 

Figure 146 a) Scheme of a PLD setup to grow MoS2 directly on YBCO/Au films. b) Raman 

spectra of MoS2 grown by PLD (blue) and only the substrate (red). c) Scheme of a 

superconducting vertical junction with YBCO/Au (bottom electrode), MoS2 (barrier), and 

MoSi (top electrode).  
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In chapter 7, I characterized both YBCO after the growth process and MoS2 with for example 

Raman spectroscopy as shown in Figure 146b. This method allowed me to fabricate 

superconducting devices represented in Figure 146c, made of YBCO as the bottom 

electrode, MoSi (an amorphous s-wave superconductor) as the top electrode, while MoS2 

serves the role of a barrier in between. Electronic transport measurements exhibited a SIS 

behavior, whatever the thickness of the MoS2 layer (differential conductance spectra shown 

in Figure 146d). For the sample with the thinnest MoS2 layer (~5nm), some junctions 

experienced Josephson coupling with a critical current around 100μA. 

In the near future, the goal is to fabricate planar devices made with PLD-grown MoS2 on 

YBCO and to compare them to junctions made with transferred MoS2. We are currently 

working on the transfer method going from a wet transfer in an alkali solution to a dry 

transfer process. Preliminary results obtained by Malik Ayachi show that the transfer is made 

easier but the contact resistance is still very large and does not allow for proximity effect yet. 

8.2 BROAD PERSPECTIVES 

During my PhD, there are many possibilities that I started to explore and that will be 

interesting to further exploit in the future. Some of these developments are detailed below. 

8.2.1 Transferring Van der Waals materials 

During my PhD, I had the opportunity to develop another method for transferring exfoliable 

Van der Waals materials and building complex 2D heterostructures. Though exfoliation only 

allows for flakes of a typical size of few 10μm, it is the most commonly used technique to 

study VdW heterostructures in the literature and allows great versatility in the choice of the 

used materials. It was historically the first approach to study a Van der Waals material before 

the development of large-scale growth methods (CVD, PLD,…) whose quality can now 

compete with the one encountered in crystals. The use of a transfer station, recently installed 

in our laboratory, strongly enlarges the spectrum of available materials we can couple with 

YBCO. However, for each material, some fine-tuning should be performed (polymers to be 

used, temperatures, peeling speed,…) to successfully transfer the structures.  

 

Figure 147 Microscope image of: a) a flake of tungsten disulfide (WS2) on silicon oxyde, b) 

the same flake after transfer onto a patterned YBCO device. 

An example of VdW material transferred using the transfer station is shown in Figure 147. A 
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flake of WS2 has been exfoliated and deposited on silicon oxide (SiO) (Figure 147a) as 

explained in chapter 4. In Figure 147b, the same flake is shown on a patterned YBCO device 

after picking it up from the SiO and carefully positioning it on the pre-existing 

superconducting electrode.  In the future, this technique will need to be combined with some 

developments to improve the quality of the YBCO/VdW interface as the samples we realized 

using this technique had, so far, contact resistance too high to properly measure the devices. 

8.2.2 Direct growth of VdW materials with specific properties onto YBCO  

For a few years now, it has been possible to grow VdW materials by PLD. In our laboratory, 

the first achievements have been made with MoS2, WS2, and WSe2 [89,264] while the growth 

of other materials, like black phosphorus or Fe3GeTe2, is being developed. This large 

spectrum of materials offers multiple opportunities to study superconducting junctions with 

a ferromagnet or a topological insulator as a weak link. One of the qualities of this method 

compared with transfer methods is the improvement of the electrical contact and possibly 

an improved proximity effect.  

A notable example of a material with great potential for our devices is NbSe2. This material 

is a transition metal dichalcogenide that has a superconducting transition at 7.2K. This 

material is used a lot under the form of flake (after exfoliation) to create superconducting 

junctions with other Van der Waals materials [134,265,115,116]. It would be then very 

interesting to grow this material by PLD for in situ processes of large-scale superconducting 

heterostructures. Indeed, this material being superconductor below 7.2K, electrons have an 

intrinsic attractive interaction that could facilitate proximity effect with YBCO even above this 

temperature compared with materials like graphene or MoS2 and be an excellent weak link. 

 

Figure 148 a) Raman spectra of two attempted growth of NbSe2. b) Their respective 

normalized resistance (at 300𝐾) versus temperature. 

In Figure 148a, I compare the Raman spectra of two attempts: TSST 424 (in magenta) and 

TSST 428 (in dark yellow) (the difference being the pressure in argon in the chamber, 0.1mbar 

for 424 and < 10−5mbar for 428). The spectrum of TSST 424 shows the two characteristic 

peaks of NbSe2 [266], 𝐴1𝑔 at 231cm−1 and 𝐸2𝑔
1  at 256cm−1 here, which gives hope for the 
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presence of NbSe2. On the contrary, the sample TSST 428 only has the 𝐸2𝑔
1  peak, which 

means, TSST 428 is certainly not NbSe2. One other important check we did was to measure 

the resistance of the films as a function of the temperature. These measurements are 

reported in Figure 148b for both samples. We can see that the sample TSST, though it shows 

the characteristic peak of NbSe2 on the Raman spectrum, does not become superconducting 

at low temperatures and its resistance even slightly increases at low temperatures. While 

there is certainly no well-grown NbSe2 in TSST 428, its behavior is metallic. We may have 

grown another material than NbSe2. 

8.3 CONCLUSIVE REMARKS 

In conclusion, there are many opportunities opened by the work presented in this thesis. The 

study of the proximity effect between YBCO and thin metallic films offers a model system 

that allowed us to study a nearly ideal S/N interface in which “S” is proximitized Au and “N” 

is non-proximitized Au. The study of the conductance across this interface allowed to unveil 

the transformation from d-wave to s-wave correlation resulting from symmetry breaking and 

diffusive transport in Au. At variance, the study of YBCO/graphene/YBCO junctions in a 

magnetic field revealed a mix of Andreev and normal reflections combined with the transport 

in the graphene channel. This systematic study may be extended to other 2D materials. 

Finally, the development of a method for growing MoS2 directly on YBCO, yielding 

transparent interface contacts, allowed us to obtain Josephson junctions in which MoS2 plays 

the role of the weak link. This opens multiple possibilities in terms of geometry (vertical and 

planar devices) and material (plenty of available VdW materials with various intrinsic 

properties) for further studies. Despite being very interesting, I lacked time to explore all 

these possibilities in the timeframe of my PhD.  

I hope that the work presented in this manuscript and summarized here allows the reader 

to access some answers to the complex physics of the proximity effect between YBCO and 

materials such as metals and VdW materials. I also hope it allowed for opening new 

possibilities in the field for future studies to further understand the longstanding problem 

of proximity-inducing d-wave superconductivity in materials. Answering these questions is 

an important question for the future applications of these really promising devices. 
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10 APPENDIX 

10.1 LITHOGRAPHY RECIPES 

10.1.1 Electronic lithography 

10.1.1.1 First step: definition of the contact pads and alignment marks 

Step 

number 
Step Technical details 

1 Pre-bake of the substrate Hot plate: 100°𝐶 during 2 minutes 

2 PMMA A5 (500𝑛𝑚-thick) Spin-coating 4000rpm/30 seconds 

3 Bake Hot plate: 100°C during 2 minutes 

4 Exposure in Raith EBG5200 100kV 

5 Development 45 seconds in MIBK/IPA (1:3) 

6 Cleaning/drying IPA and N2-dryer 
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10.1.1.2 Second step: definition of the superconducting tracks/junctions 

Step 

number 
Step Technical details 

1 Pre-bake of the substrate Hot plate: 100°𝐶 during 2 minutes 

2 PMMA A7 (600𝑛𝑚-thick) Spin-coating 4000rpm/30 seconds 

3 Bake Hot plate: 100°C during 2 minutes 

4 Exposure in Raith EBG5200 100kV 

5 Development 45 seconds in MIBK/IPA (1:3) 

6 Cleaning/drying IPA and N2-dryer 

 

 

 

10.1.1.3 Third step: definition of the top gate 

Step 

number 
Step Technical details 

1 Pre-bake of the substrate Hot plate: 100°𝐶 during 2 minutes 

2 PMMA A5 (500𝑛𝑚-thick) Spin-coating 4000rpm/30 seconds 

3 Bake Hot plate: 100°C during 2 minutes 

4 Exposure in Raith EBG5200 100kV 

5 Development 45 seconds in MIBK/IPA (1:3) 

6 Cleaning/drying IPA and N2-dryer 

 

10.1.2 Optical lithography 

Step 

number 
Step Technical details 
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1 SPR 700 1.0 Spin-coating 4000rpm/30 seconds 

2 Bake Hot plate: 95°C during 1 minute 

3 Exposure 

UV light. 10 seconds with the MJB3 

optical masker and for the maskless 

lithography (Smartprint): 1.6s (x10 

magnification), 6.4s (x5) and 160s (x1)  

4 Development MF319 30 seconds 

5 Cleaning and drying Water and then N2-assisted drying 

 

10.2 NUMERICAL CALCULATION 

The following code allows me to compute the differential conductance spectra of the 

metallic SN junctions with the BTK-inspired model I described in chapter 5. It is written with 

the programming language Julia which allowed me to compute integrals much faster than 

with Python. 

 

 

using Plots 

#The first time you use a package like Plots, you have to install the same way 

#you do with python "pip install ...", here the instruction in the command 

line of your editor is: 

#"using Pkg" 

#"Pkg.add("Package Name")" 

using QuadGK 

using HCubature 

using Interpolations 

using DataFrames 

using CSV 

 

#If you want to import the experimental data to compare with the simulations 

#I will send you the normalized files, tell me if I forgot... 

#rep = "/Users/kevinseurre/Mon Drive/CNRS-Thales/Rapports, papiers, 

présentations/Papiers/metal junctions/experiments/" 

rep = "/Users/kevinseurre/Mon Drive/CNRS-Thales/Rapports, papiers, 

présentations/Papiers/metal junctions/experiments/" 

file = string(rep,"E4D_norm.csv") 

data = DataFrame(CSV.File(file)) 

Voltage = data[:,1] 

Cond = data[:,2] 

 

 

 

function sym(x) 
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    #I will only compute the conductance for V>0 and then I use the symetry 

for V<0 

    n = length(x) 

    x_ = reverse(x) 

    final_x = vcat(x_,x) 

    return final_x 

end 

 

function antisym(x) 

    #same but mostly for the x-axis 

    n = length(x) 

    x_ = -reverse(x) 

    final_x = vcat(x_,x) 

    return final_x 

end 

 

function look_for_y(x,y,x0) 

    #return the value of y(x closest to x0) 

    l = abs.(x .- x0) 

    i = argmin(l) 

    return y[i] 

end 

 

 

 

e = 1.6e-19 

kb = 1.38e-23 

 

 

function FermiDirac_dim(x::Any,t) 

    #Here I decompose in 2 because otherwise, it returns errors because 

numbers 

    #are too small if I remember well. 

    x = x 

    if e*x/kb/t < 30 

        1 / (exp(e*x/(kb*t)) + 1) 

    else 

        exp(-e*x/(kb*t)) / (exp(-e*x/(kb*t)) + 1) 

    end 

end 

 

function Deriv_FermiDirac_dim(x::Any,t) 

    #Same 

    x = x 

    if e*x/kb/t < 30 

        return -1/t * exp(e*x/(kb*t)) / (exp(e*x/(kb*t)) + 1)^2 

    else 

        return -1/t * exp(-e*x/(kb*t)) / (exp(-e*x/(kb*t)) + 1)^2 

    end 

end 

 

function Delta_t(t::Any,Delta,tc,b) 

    #This is the function to reproduce the evolution of the gap. It is usually 

the form taken 

    #to interpolate the real Delta(t) 

    return Delta*tanh(b*sqrt((tc/t) -1)) 

end 
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function sigma_dim_ang(x::Any,Delta,Z0,Gamma,θ,alpha,beta) 

    #Here the BTK core of the whole code. 

    if x < 0 

        x = -x 

    end 

    #This line is quite debatable but nothing exists but for us, it may not be 

too much of a concern 

    #you know that in order to smooth the BTK simulations, we use a 

phenomenological Gamma factor. 

    #In s-wave, it is just a constant Gamma but this constant in d-wave may 

have the same symetry. We said that in 2 papers already. 

    #Anyway, if Gamma=0, we don't have to bother. 

    x = x + im*Gamma #*cos(2*(alpha-θ)) 

    Delta_p = Delta*cos(2*(alpha-θ)) 

    Delta_m = Delta*cos(2*(alpha+θ)) 

    #I just apply Tanaka formula 

    Omega_p = x/abs(Delta_p) - sqrt((x/abs(Delta_p))^2-1+0*im) 

    Omega_m = x/abs(Delta_m) - sqrt((x/abs(Delta_m))^2-1+0*im) 

    num = 16*(1+abs(Omega_p)^2)*cos(θ)^4 + 4*(Z0^2)*(1-

abs(Omega_p*Omega_m)^2)*cos(θ)^2 

    den = abs(4*cos(θ)^2 + (Z0^2)*(1-

Omega_p*Omega_m*Delta_m/Delta_p*abs(Delta_p)/abs(Delta_m)))^2 

    num/den 

end 

 

function sigma_dim(x::Any,Delta,Z0,Gamma,t,alpha,beta) 

    #Here I integrate over the direction of the incident particles. The 

exponential term stems for the tunneling cone in some problems 

    #But here, I do not use i. The tunneling cone is relevant for thin 

insulating tunnel barrier. 

    h(θ) = sigma_dim_ang.(x,Delta,Z0,Gamma,θ,alpha,beta)#*exp(-θ^2/beta^2) 

    integral, err = quadgk(θ -> h(θ), -π/2, π/2) 

    integral 

end 

 

function fit_function(x::Any,Delta,Z0,Gamma,t,alpha,beta,tc,b) 

    if t==0 

        f(θ) = sigma_dim_ang.(x,Delta,Z0,Gamma,θ,alpha,beta)#*exp(-

θ^2/beta^2) 

        integral, err = quadgk(θ -> f(θ), -π/2, π/2) 

        return integral 

    else 

        #First compute the gap and then inject it into the BTK formula and 

then convolute with Fermi-Dirac. 

        new_Delta = Delta_t(t,Delta,tc,b) 

        g(E) = -sigma_dim_ang.(E,new_Delta,Z0,Gamma,t,alpha,beta) * 

Deriv_FermiDirac_dim.(E-x,t) 

        integral,err = quadgk(E -> g(E),x-200e-3,x+200e-3) 

        return integral 

    end 

end 

 

function IV_SN(v,G_SN,Delta,Z0,Gamma,t,alpha,beta,tc,b) 

    #Integrate G(V) to find I(V) 

    I = Float64[] 

    new_Delta = Delta_t(t,Delta,tc,b) 

    f(x) = sigma_dim_ang.(x[2],new_Delta,Z0,Gamma,x[1],alpha,beta) #*exp(-

x[1]^2/beta^2) 
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    i = 0 

    I_ = 0 

    volt_ = 0 

    v_max = maximum(v) 

    G_max = fit_function(v_max,new_Delta,Z0,Gamma,0,alpha,beta,tc,b) / G_SN 

    for volt in v 

        a = [-π/2,volt_] 

        b = [π/2,volt] 

        integral,err = hcubature(x -> f(x), a, b) 

        new_I = integral/G_max 

        I_ = I_ + new_I 

        push!(I,I_) 

        volt_ = volt 

        i = i + 1 

    end 

    return I 

end 

 

 

function sigma_dim_ang_s_wave(x::Any,Delta,Z0,Gamma,θ,alpha,beta) 

    #Here the BTK core of the whole code. 

    if x < 0 

        x = -x 

    end 

    #This line is quite debatable but nothing exists but for us, it may not be 

too much of a concern 

    #you know that in order to smooth the BTK simulations, we use a 

phenomenological Gamma factor. 

    #In s-wave, it is just a constant Gamma but this constant in d-wave may 

have the same symetry. We said that in 2 papers already. 

    #Anyway, if Gamma=0, we don't have to bother. 

    x = x + im*Gamma 

    Delta_p = Delta 

    Delta_m = Delta 

    #I just apply Tanaka formula 

    Omega_p = x/abs(Delta_p) - sqrt((x/abs(Delta_p))^2-1+0*im) 

    Omega_m = x/abs(Delta_m) - sqrt((x/abs(Delta_m))^2-1+0*im) 

    num = 16*(1+abs(Omega_p)^2)*cos(θ)^4 + 4*(Z0^2)*(1-

abs(Omega_p*Omega_m)^2)*cos(θ)^2 

    den = abs(4*cos(θ)^2 + (Z0^2)*(1-

Omega_p*Omega_m*Delta_m/Delta_p*abs(Delta_p)/abs(Delta_m)))^2 

    num/den 

end 

 

function sigma_dim_s_wave(x::Any,Delta,Z0,Gamma,t,alpha,beta) 

    #Here I integrate over the direction of the incident particles. The 

exponential term stems for the tunneling cone in some problems 

    #But here, I do not use i. The tunneling cone is relevant for thin 

insulating tunnel barrier. 

    h(θ) = sigma_dim_ang_s_wave.(x,Delta,Z0,Gamma,θ,alpha,beta)#*exp(-

θ^2/beta^2) 

    integral, err = quadgk(θ -> h(θ), -π/2, π/2) 

    integral 

end 

 

function fit_function_s_wave(x::Any,Delta,Z0,Gamma,t,alpha,beta,tc,b) 

    if t==0 
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        f(θ) = sigma_dim_ang_s_wave.(x,Delta,Z0,Gamma,θ,alpha,beta)#*exp(-

θ^2/beta^2) 

        integral, err = quadgk(θ -> f(θ), -π/2, π/2) 

        return integral 

    else 

        #First compute the gap and then inject it into the BTK formula and 

then convolute with Fermi-Dirac. 

        new_Delta = Delta_t(t,Delta,tc,b) 

        g(E) = -sigma_dim_ang_s_wave.(E,new_Delta,Z0,Gamma,t,alpha,beta) * 

Deriv_FermiDirac_dim.(E-x,t) 

        integral,err = quadgk(E -> g(E),x-80e-3,x+80e-3) 

        return integral 

    end 

end 

 

function IV_SN_s_wave(v,G_SN,Delta,Z0,Gamma,t,alpha,beta,tc,b) 

    #Integrate G(V) to find I(V) 

    I = Float64[] 

    new_Delta = Delta_t(t,Delta,tc,b) 

    f(x) = sigma_dim_ang_s_wave.(x[2],new_Delta,Z0,Gamma,x[1],alpha,beta) 

#*exp(-x[1]^2/beta^2) 

    i = 0 

    I_ = 0 

    volt_ = 0 

    v_max = maximum(v) 

    G_max = fit_function_s_wave(v_max,new_Delta,Z0,Gamma,0,alpha,beta,tc,b) / 

G_SN 

    for volt in v 

        a = [-π/2,volt_] 

        b = [π/2,volt] 

        integral,err = hcubature(x -> f(x), a, b) 

        new_I = integral/G_max 

        I_ = I_ + new_I 

        push!(I,I_) 

        volt_ = volt 

        i = i + 1 

    end 

    return I 

end 

 

function G_metal_Ch(v::Any,G_metal) 

    #This takes into account a heating effect on the metal leading to a lower 

conductance (for the background). But here, I set alpha=0. 

    return G_metal 

end 

 

function IV_metal_Ch(v::Any,G_metal) 

    I = G_metal.* v 

    return I 

end 

 

function 

simul_Mag(G_SN,G_s_wave,G_metal,param_Z,param_s_wave,I_max,N_points,tc,b) 

#Here I use all the functions created. I first compute a first guess for the 

voltage for both the resistor in series and the junction 

    v_SN =  range(0.0000001/G_SN, stop=I_max/G_SN, length = N_points)   #V 

    v_s_wave = range(0.0000001/G_s_wave, stop=I_max/G_s_wave, length = 

N_points) #V 
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    v_metal = range(0.0000001/G_metal, stop=I_max/G_metal, length = N_points)  

#V 

#Then I compute the corresponding I(V) 

    i_SN = 

IV_SN(v_SN,G_SN,param_SN[1],param_SN[2],param_SN[3],param_SN[4],param_SN[5],pa

ram_SN[6],tc,b) 

    i_s_wave = 

IV_SN_s_wave(v_s_wave,G_s_wave,param_s_wave[1],param_s_wave[2],param_s_wave[3]

,param_s_wave[4],param_s_wave[5],param_s_wave[6],tc,b) 

    i_metal = IV_metal_Ch.(v_metal,G_metal) 

#I interpolate I(V) 

    V_SN = LinearInterpolation(i_SN,v_SN) 

    V_s_wave = LinearInterpolation(i_s_wave,v_s_wave) 

    V_metal = LinearInterpolation(i_metal,v_metal) 

#I define my final current list. 

    I_max = min(maximum(i_SN),maximum(i_s_wave),maximum(i_metal)) 

    I_0_max = max(minimum(i_SN),minimum(i_s_wave),minimum(i_metal)) 

    I =  range(I_0_max,I_max,length = 5*N_points) 

#For this current list, I compute the corresponding voltage for both 

    v_SN = V_SN.(I) 

    v_s_wave = V_s_wave.(I) 

    v_metal = V_metal.(I) 

 

    v_SN_max = maximum(v_SN) 

    v_s_wave_max = maximum(v_s_wave) 

    v_metal_max = maximum(v_metal) 

#I sum the voltages since they are in series 

    V = v_SN .+ v_s_wave .+ v_metal 

#I compute the G(V) for both 

    g_SN = 

fit_function.(v_SN,param_SN[1],param_SN[2],param_SN[3],param_SN[4],param_SN[5]

,param_SN[6],tc,b) 

    g_s_wave = 

fit_function_s_wave.(v_s_wave,param_s_wave[1],param_s_wave[2],param_s_wave[3],

param_s_wave[4],param_s_wave[5],param_s_wave[6],tc,b) 

    g_metal = G_metal_Ch(v_metal,G_metal) 

 

    g_SN_max = 

fit_function(v_SN_max,param_SN[1],param_SN[2],param_SN[3],param_SN[4],param_SN

[5],param_SN[6],tc,b) 

    g_s_wave_max = 

fit_function_s_wave.(v_s_wave_max,param_s_wave[1],param_s_wave[2],param_s_wave

[3],param_s_wave[4],param_s_wave[5],param_s_wave[6],tc,b) 

#The result of BTK is normalized to 1 but here the integration doesn't give 

one because of missing prefactors 

#So I normalize by the value of G at large V 

#Then I multiply by the physical conductance to compute Gtot 

    cond_SN = g_SN /g_SN_max * G_SN 

    cond_s_wave = g_s_wave/g_s_wave_max * G_s_wave 

#I compute Gtot 

    G_tot = 1 ./ (1 ./ cond_SN .+ 1 ./ cond_s_wave .+ 1 ./ g_metal) 

 

    return V,G_tot,I,cond_SN 

end 

 

 

#An example with the SN junction E4D (a) 
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I_max = 1.5e-2 #A 

N_points = 50 

T = 0 

Tc = 60 

b = 1.5 

param_SN = [   25e-3   ,   0.001 ,   0.5e-3  ,   T   ,   π*0  ,   0.01   ] 

param_s_wave = [   22e-3   ,   0 ,   0.5e-3  ,   T   ,   0   ,   0.01   ] 

 

G_total = 0.08 

ratio_s_wave = 8 

ratio_metal = 2.5 

G_SN = (1+ratio_s_wave+ratio_metal)*G_total  #S 

 

G_s_wave = G_SN/ratio_s_wave 

G_metal = G_SN/ratio_metal 

 

Gexpected = 1/((1/G_SN)+(1/G_s_wave)+(1/G_metal)) 

 

 

V,G_tot,I,cond_SN = 

simul_Mag(G_SN,G_s_wave,G_metal,param_SN,param_s_wave,I_max,N_points,Tc,b) 

 

V = antisym(V) 

I = antisym(I) 

G_tot = sym(G_tot) 

G_norm = G_tot ./ G_tot[1] 

cond_SN = sym(cond_SN) 

plot(V*1e3,G_norm,label="Rs_w/RSN=$(ratio_s_wave),Rm/RSN=$(ratio_metal)") 

xlabel!("V [mV]") 

ylabel!("G") 
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