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Chapter 0 – Introduction

It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it

doesn’t agree with experiment, it’s wrong

Richard Feynman

Cosmic Spring, 1913-1914, Frantǐsek Kupka

This preliminary chapter allows us to give an introduction to the subject of this docu-

ment. After providing a brief overview of the physical model on which particle physics

is based, we review the state of the art in theoretical predictions before introducing

Quantum Chromodynamics. In the next chapters we will focus in more detail on Quantum

Chromodynamics and resummation techniques in the context of soft gluon threshold

resummation. The final chapters provide physical results of cross sections related to

BSM searches or top pair(s) production.
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Chapter 0 – Introduction

The main purpose of physics is to understand, describe and predict the behaviours realised

in Nature. The first step of the physicist is to observe, to be amazed by the productions

of Nature. Without this first ontological look there is no physics.

Naturally, we strive to apprehend the essence of the phenomena and decipher the underlying

mechanisms at work. To this effect, experiments are indispensable on the journey towards

physical knowledge as they emulate the phenomenon we are examining. Experiments are

the embodiment of our understanding of Nature, as well as tools to deepen our knowledge.

As a theoretical physicist, it is more the theoretical framework, the mindset that we

build to look at Nature in a humanly understandable way, that I will insist on. Before

proceeding, I must reiterate the paramount importance of observation in physics which

is more connected to experimentation than theories.

Particle physics offers a unique opportunity to unveil a plethora of new phenomena that

would be otherwise unattainable. In this context, physics is itself unveiling our eyes to

look at its complex and beautiful ramifications.

Figure 1: ATLAS Experiment at CERN, 1st collision of Run 3

One of the primary objectives of physics (and chemistry) is to describe the elementary

constituents of the universe. Since the end of the XVIIIth century, various classifications

have been proposed in order to rationally describe the elements present in Nature. From

Yehudi SIMON | Sorbonne Université 7
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Chapter 0 – Introduction

Lavoisier to Mendeleev and Chancourtois, the systematization of classification has been

pushed further and further. The elegance of the modern periodic table of the elements

lies in the fact that it encapsulates the periodic laws of chemical behaviour and predicts

those of elements yet to be discovered.

However, at the beginning of the XXth century, the discovery of the electron opened the

way to a new kind of classification. As chemistry reaches its limits, particle physics takes

over: the chemical elements are no longer elementary!

To uncover and comprehend the fundamental elements of Nature, we must crack the

unbreakable atoms and search for the elementary particles.

Through the Planck-Einstein relation, it is known that energy scales inversely with

wavelength or spatial dimension:

E = hν =
hc

λ
. (1)

In natural units with ~ = c = 1, the dimension of energy is simply the inverse of the

wavelength. This dimensional analysis reveals that to investigate increasingly small spatial

scales, we will have to use increasingly large energies.

Thanks to technological advancements in the latter half of the XXth century both in

colliders technology and cosmic rays detection, and the subsequent exploration of a wider

range of energies, numerous new particles were discovered. Substantial efforts were made

to construct a model that defines the behaviour and interactions of elementary particles,

now known as the Standard Model (SM) of particle physics [1–4]. The SM not only

classifies the building blocks of matter but also presents a Lagrangian theory describing

their interactions. In figure 2, the elementary particles of the SM are shown, with their

properties encoded in graphical representations. The fermions are arranged by family

on the left-hand side, with leptons located at the bottom and quarks at the top. Vector

bosons can be found to the right, with the Higgs boson occupying the central position in

the illustration. The electric charge is represented by plain blue (red) colour for negative

(positive) charges respectively. Additionally, we can observe that the quarks on the left

and the gluon on the right exhibit some internal colour, representing the colour charge that

we will discuss later in this introduction. Apart from its particle content, the Standard

Model is largely successful in predicting various phenomena. Its unparalleled accuracy

in predictions across different orders of magnitude makes it an exceptional achievement

in physics. Figure 3 outlines several predictions and measurements from ATLAS [5] in

relation to the SM. Figure 3 shows the diverse range of phenomena investigated within

particle physics, spanning a wide range of orders of magnitude. We do not claim to be

exhaustive here, but rather illustrate the predictive power of the SM. We can also note that

in the lower part of the plot, where the cross sections become smaller than 1 pb, the error

bars tend to become quite large as the mesurements are more and more difficult to perform.
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Chapter 0 – Introduction

Figure 2: Illustration of the elementary particles of the Standard Model
https://home.cern/fr/science/physics/standard-model

However, as good as a theory can be, it never holds the absolute truth. While we

physicists search for evidence to falsify the SM and uncover hints of New Physics (NP)

beyond the Standard Model (BSM), we must also acknowledge its theoretical limitations.

By excluding gravitation alone, we know that the SM is not a complete theory. It

must rather be recognized as an effective theory with relevance limited to a particular

energy range. In addition, within the current energy range, numerous questions remain

unanswered, including the unnatural hierarchy between the electroweak and the Planck

scales, the origins of electroweak symmetry breaking, particle masses or the nature of

dark matter. Although there is certainty that BSM physics exists, its discovery still

eludes us. However, there are two predominant strategies for searching for NP, each

with its own advantages and disadvantages.

• Direct searches → increase the energy scale. Increasing the energy scale is expected

to reveal new phenomena and possibly detect deviations from the SM, like hints

of supersymmetry, compositeness of Higgs. The hadron-hadron Future Circular

Collider [6,7] (FCC-hh) project would be designed for this purpose, with an expected

increase in available energy by a factor of 7 compared to the Large Hadron Collider

(LHC). This would allow to probe the O(10) TeV range for the masses of potential

new particles, including new Z ′ weak boson, excited quark states Q∗ or massive

gravitons. However, it presents significant material, and human resources costs [8].

Yehudi SIMON | Sorbonne Université 9
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Chapter 0 – Introduction

Figure 3: ATLAS preliminary summary of SM data/theory comparison of total cross sections
for several observed processes [5]

• Indirect searches → increase the precision. It is possible that we are already capable

of detecting new physics within the present energy range. However, separating

SM from BSM contributions requires a high accuracy both on the theoretical and

experimental sides. The High Luminosity LHC [9] will be crucial in achieving this,

as it is expected to increase the integrated luminosity by a factor of 10 compared

to the LHC, over the course of its operation. This results in significantly improved

statistics, thereby reducing statistical error. Achieving such high trigger rates, data

collection, and processing present a technical challenge. The electronic part of the

FCC project (FCC-ee) would also go in this direction with the precision program.

For example, it would explore the Higgs cross section in great depth and improve

mesurements by orders of magnitude in precision.

Yehudi SIMON | Sorbonne Université 10



Chapter 0 – Introduction

Given the scale at stake, it seems that if the NP materialises solely around the Planck scale

EP =
√
c5~/G ' 1028 eV, it is likely to remain beyond the reach of human experiments.

Nevertheless, even without going to very high energies, we can have a contribution from

higher energy scales through virtual loops, with Feynman diagrams such as in figure 4.

Figure 4: Example of generic loop diagrams for 0, 1 and 2 loops

Indeed, to calculate physical observables in particle physics (such as the cross section),

we use an asymptotic expansion in terms of the relevant couplings that arise in the

process. If this progression quickly converges, we can limit the expansion to a certain

order to ultimately provide a prediction. Diagrammatically, this means that we stop

the computation at a certain loop order: 0 for tree level or Leading Order (LO), 1 for

Next-to-Leading Order (NLO), and so on. The particles appearing in these loops are not

observable, hence the virtual adjective, and can involve states inaccessible otherwise.

It is assumed that each order has a smaller impact than the preceding one, and the truncated

series offers a reasonable estimate of the actual value from the theory. The truncation of the

asymptotic expansion introduces theoretical uncertaintes due to the missing higher orders.

The more orders are included the smaller the theoreticals uncertaintes are expected to be.

As we will discuss in section 2.4.3, these theoretical uncertainties are usually evaluated by

varying the arbitrary scales introduced by the truncation, see section 1.1.1 for more details.

Parton distribution functions (see section 1.2) uncertaintes are sometimes included in

theoretical uncertaintes but in this document we will not consider them and focus only on

scale variation induced error bars. As we can see in figure 3, most of the theory predictions

reach the O(1%) precision level. However for some rare processes, theory still display quite

large error bars, above O(10%) uncertainty as the right hand side of figure 5.

Incorporating loop terms results in the inclusion of certain virtual contributions in the

calculation. The unobservable particles emerging in these loops actually have an impact

on the result, and their contribution depends on their inherent properties (mass, charge,

spin...). Let us assume the existence of a highly massive particle in some NP spectrum. If

it is coupled to the SM particles, this loop contribution could lead to a significant deviation

from the SM predictions. Therefore, indirect detection necessitates precise experimental

measurements and accurate theoretical predictions of the observables, so that we can

identify any deviation from pure SM physics.

From an experimental perspective, this results in a race for precision (both systematic

and statistical). On the theoretical side, there is a striving towards accuracy and precision

in predictions, involving increasingly intricate calculations. This thesis is inscribed in this

Yehudi SIMON | Sorbonne Université 11
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context. We aim to provide accurate and precise predictions for both SM observables and

BSM searches. Increasing the SM prediction precision would be usefull in the context

of indirect detection when searching for discrepancies between theory and experiments.

For BSM searches, it is important to have an expectation of a potential signal in a direct

detection scenario. Precise predictions also allow to reject BSM models if the experiments

have a negative result in a signal region.

In the following paragraph, we review the current status of SM predictions. Section 9

of [10] provides an extensive review of fixed-order predictions, from which we extract a

few key points as an illustration.

Firstly, we present the fixed-order predictions, i.e. calculations with αs contributions

treated up to a certain fixed-order in perturbation theory. As reported in [10], most of the

hadron collider 2→ 1 and 2→ 2 processes have been computed at N2LO: pp→ ZZ [11],

W+W− [12], γγ [13], Zγ [14], γ/W/Z/H+jet [15–17], tt̄ [18–20], etc.

For (di-)Higgs production or Drell-Yan processes, predictions can go up to N3LO [15,21].

On the contrary, as the multiplicity of the final state increases, the fixed-order predictions

available tend to include fewer orders, as the complexity increases dramatically. For

example, 2→ 3 processes like 3γ [22], 3 jets [23] or 2γ+ jet [24] are known at N2LO.

While increasing the loop order can be very difficult, requiring years of process-specific

technical development, another approach is to use resummation techniques. Further detail

on resummation will be provided in chapter 2. However, we take this opportunity to

examine the current state of the art in this section. Without delving into too much

detail, resummation aims to improve predictions without requiring an additional loop

order. Numerous resummation methods have been developped, depending on both the

observable and the regime of interest [26–28]. Nevertheless, it is always assumed that

certain scale ratios manifest themselves in the observable expansion at a fixed-order. In

regimes where the ratios are significant, they tend to spoil the asymptotic convergence of

the series. For instance, the resummation of transverse momentum qT treats logarithmic

terms like lnM2/q2
T in the small (compared to the invariant mass M) qT region, while

threshold resummation handles terms such as ln(s−M2)/(s − M2) when M goes to

the center of mass energy
√
s, and so on. Resumming such kind of terms to all orders

through exponentiation can remedy the pathological behaviour of fixed-order prediction

and improve the final result.

The pp→ tt̄tt̄ process provides a clear example of the benefits of resummation. This high

multiplicity process is only known at NLO, due to the extremely complex nature of the

N2LO calculation. Experimentally, this process has only recently been measured [29,30]

around 20 fb and has still quite large error bars of the order of ±25%. Including only NLO,

the theoretical prediction is precise at the O(25%) level for a total cross section around 12

fb. However, it is possible to improve the theoretical prediction as in [31], by including

threshold resummation at NLL accuracy and gain an order of magnitude in precision.
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Figure 5: ATLAS preliminary summary of top physics, the cross section is displayed on the
right axis and the corresponding process on the bottom axis [25]

This is especially relevant for top physics, as it is a sector of interest for both SM and

BSM searches. Figure 5 outlines the present situation regarding top sector predictions

and measurements. The considerable uncertainty associated with four-top production is

apparent from both the theoretical and experimental sides. Moreover, there is a slight

tension between the prediction and the measurement, so it is of paramount importance

to increase the precision to validate or dismiss any discrepancies. Even in the case of

processes such as Higgs production known at high-order, the precision of predictions

can be improved through resummation techniques, as demonstrated in [32–34] up to

next-to-next-to-next-to-leading logarithmic (N3LL) accuracy.

As we can note from the review in [10], high-order corrections are calculated using Quantum

Chromodynamics (QCD) even in cases where the tree-level process is purely electro-weak.

It could seem counter intuitive that we need QCD to make accurate predictions for

processes involving only non-coloured particles in the final state. However, as previously

discussed, loop contributions may result in contributions of particles that are not present

at tree-level. Furthermore, within the context of LHC physics, proton collisions induce
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parton-initiated processes, which means that the initial particles are always coloured. To

better understand why these contributions are important, let us look more closely at QCD,

which will be our focus throughout this document.

QCD characterises the strong interaction which binds quarks and gluons inside hadrons.

This force introduces a new quantum number called “colour” carried by the particles

sensitive to the strong interaction. The main observation about QCD is that it does indeed

describe the strongest interaction of the Standard Model. One way to illustrate this is to

evaluate the ratio of the coupling “constants”, αs for QCD, and α for QED, at the mass

of the Z boson:

αs(mZ)

α(mZ)
≈ 0.118 · 128 ≈ 15.1� 1 , αs =

g2
s

4π
, (2)

where gs is the coupling appearing in the QCD Lagrangian (A.3). Therefore, when studying

particles sensitive to the effects of this interaction, QCD is likely to be the dominant

contribution. As a result, it is crucial to consider the inclusion of QCD effects when

predicting observables for hadron collision, as it is the case in LHC physics.

QCD has numerous notable traits beyond its magnitude. One such feature arises from the

underlying non-Abelian group SU(Nc) (Nc = 3), namely the gluon self-coupling (see A.6).

We postpone the discussion on the group theory details of SU(Nc) to the section 1.3 and

the appendix A.2.

Another aspect worth mentioning is confinement [35]. It is impossible to directly observe

the colour charge of a single coloured particle. Experimentally, we can only access particles

that are neutral in terms of colour charge, whether they are bound states or colourless

elementary particles. Gluons and quarks are confined within hadrons at low-energy scales

and cannot display their charge, unlike electrons and the nucleus in atoms. Nonetheless,

we can have access to the internal structure of hadrons at high energy with experiments

such as deep inelastic scattering (DIS). Indeed, asymptotic freedom [3] allows to consider

coloured particles individually in the context of hard scatterings, as detailed in chapter

1. The aim of this chapter 1 is to provide the key QCD concepts at the foundation of

perturbative computations.

However, our work does not aim to compute higher orders to improve the available fixed-

order predictions. Instead, we have implemented soft gluon threshold resummation, using

the framework presented in detail in chapter 2, to improve the precision of some current

fixed-order predictions. Chapter 3 presents the results obtained using this approach for

the pair production of exotic leptons arising in different BSM models. In chapter 4 we

continue this investigation by studying processes involving massive coloured final states of

the top sector. First, we recover results similar to those found in the literature for top

pair production, before presenting preliminary results on the application of soft gluon

resummation to four top production process.
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The force is strong in this one

Master Yoda

A.I. (DALL.E) generated image for colour flux

In this chapter, we shift our focus to the most colourful part of the Standard Model:

Quantum Chromodynamics (QCD). Indeed, QCD characterises the strong interaction,

which binds the quarks and gluons inside the hadrons. This force introduces a new

quantum number known as colour, carried by particles sensitive to the strong interaction.

Throughout this chapter, we consider some key aspects of QCD, shedding light on coloured

particles and how they interact. This leads us to consider the running of the strong

coupling, the parton model and the corresponding parton distribution functions. Finally,

we discuss a few points on the underlying SU(3) group theory and tensor space, necessary

to describe high energy scattering processes. The material presented in this chapter is

mainly based on [10,35–39] refer directly to chapters 3 and 4 for original results.
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1.1 QCD features

We overviewed a few characteristics of QCD in introduction. In this section we provide

more details on the QCD coupling αs and its renormalisation group running. Subsequently,

we introduce the parton model, a key concept at the basis of the perturbative QCD

computations.

1.1.1 αs renormalisation group running

Indeed, αs is not constant and depends on the energy scale we are considering. The

renormalisation group running of the coupling is not unique to the QCD case: it follows

from the fact that the perturbative approach contains infinities that need to be renormalised.

The renormalisation procedure introduces an arbitrary scale dependence µR for the coupling.

Thus, we have the following renormalisation group equation (RGE) imposing the running

of the renormalised αs with the scale µ:

dαs(µ)

d ln(µ2)
= β(αs) = −αs

∑
k=0

βk

(αs
2π

)k+1

, (1.1)

where βk are the (k + 1)-loop β function coefficients. Their actual value depends on the

particle content of the theory. In this document, we restrict ourselves to the modified

minimal substraction scheme (MS) [40] for renormalisation. We can formally solve (1.1)

order by order:

αs(µ)

2π
=
∑
k=0

(αs(µR)

2π

)k+1

gk(αs(µR), µ, µR, {βi}i≤k) , (1.2)

where the gk functions depend on the initial and final scales and the β coefficients up to

(k+1)-loop. The computations of βk and gk are completely decoupled, the latter being just

functional forms to be determined order by order and parametrised by the βk coefficients.

Here are the results up to two-loop order (see [41] for more terms):

β0 =
11

6
CA −

2

3
TFnf , g0(x) =

1

x
, with : x(µ) = 1 +

αs(µR)

2π
β0 ln

( µ2

µ2
R

)
,

β1 =
17

6
C2
A −

1

3
TFnf (5CA + 3CF ) , g1(x) =

β1

β0

ln(x)

x2
,

(1.3)

with the SU(Nc) group theory invariants:

CF =
N2
c − 1

2Nc

=
Nc=3

4

3
, CA = Nc =

Nc=3
3 , TF =

1

2
. (1.4)

From the previous results, we can conclude that, for a number of active quark flavours

nf ≤ 16, the one-loop coefficient β0 > 0, which ensures β(αs) < 0. Since, in the Standard
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Model, there are at most nf = 6 quark flavours available, the condition is always satisfied.

In this document, we consider that nf = 5. Indeed, the top flavour is too heavy to be

considered massless compared to typical LHC energy scales. The sign of the QCD β

function, different from that of QED, is the origin of asymptotic freedom [42]. Namely, at

asymptotically large momentum exchange, the effective coupling vanishes, αs → 0. Figure

1.1 displays a summary [10] of the current measurements of αs(Q), showing the decrease

of the coupling with the energy scale Q.

Figure 1.1: αs running fit to various data [10]

From the low-Q region of the plot, it is clear that the coupling becomes larger and larger

as we decrease the energy scale, ultimately leading to the break down of the perturbative

approach as αs gets close to 1. The energy scale below which the perturbative theory

ceases to make sense is ΛQCD ≈ 200 MeV. On the contrary in the high-Q region, the plot

illustrates the asymptotical freedom that allows to consider coloured particles individually

at high energies. As shown in the following section, the parton model is particularly helpful

to study the specific behaviour of these particles.
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1.1.2 The parton model

Originally introduced by Feynman [43], the parton model aims to describe the components

of hadrons and characterise their properties through their interaction with light. Although

it has been introduced quite independently from the quark model of Gell-Mann and

Zweig [44,45] (almost a decade later), partons were quickly identified as the quarks and

gluons inside hadrons. If, in principle, we can apply the parton model to QED, electrons

and photons [46], when referring to partons we mostly have in mind coloured particles.

Partons are virtual states constituting the hadrons, held together by their mutual

interactions. The complete structure of these states is inaccessible to an external observer.

However, in the case where we can neglect the parton-parton interactions, we can describe

their scattering with an external particle. Careful readers would recognise the QCD

features mentioned in the previous section: confinement and the non-perturbative low-

energy regime, asymptotic freedom and the potential perturbative approach at high

energies.

As in [36], we can intuitively understand these features as the effect of Lorentz boosts

inside the hadron. Indeed, in the centre-of-mass frame, if a high-energy particle exchanges

a substantial amount of momentum with a hadron, the hadron contracts in the direction

of the collision, while its internal interactions are time-dilated. As a result, the lifetime

of the virtual states, the partons, increases, while the time required for the high-energy

particle to travel through the hadron decreases. At a certain energy threshold, the hadron’s

parton composition appears effectively immobilised to the high-energy particle, allowing

it to scatter with a single parton that has well-defined properties. Indeed, the time for

scattering is considerably shorter than the time scale associated with the parton-parton

interaction. In this regime, partons cannot exchange momentum with anything else

than the probing particle and can be considered as free particles. Thus, we can define

distributions describing the momentum carried by a parton. These so-called “parton

distribution functions” (PDFs) are a key ingredient for perturbative QCD computations,

as we will see in section 1.2.

1.2 Parton Distribution Functions and factorisation

1.2.1 Factorisation theorem

The most important consequences of the parton model are the factorising properties

emerging from it. Due to the significant differences in the physical time scales governing

parton interactions and scattering, there is no quantum interference between them. There-

fore, it is possible to combine probability densities in place of amplitudes. Thus, the hard
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scattering between the hadron H and the particle λ can be written at the differential level

at scale µF as [36]:

dσλH(x,Q2, µF ) =
∑
a

∫ 1

x

dξ fa/H(ξ, µF ) dσ̂λa(Q
2, x/ξ, µF ) , (1.5)

where x = Q2/2pH .pλ is the Bjorken variable, Q the momentum transfer, pH and pλ are

the respective momenta of the hadron and the high-energy particle. fa/H(ξ) represents

the PDF, at lowest order that can be understood as the density probability to have the

parton a carrying the momentum fraction ξ inside of H. µF represents the scale that is

introduced through the renormalization of PDFs to eliminate divergences. Just as µR
is introduced for αs in (1.1), the renormalisation of PDFs introduces a new arbitrary

scale µF . dσ̂λa is the differential partonic cross section, it encodes the cross section when

considering the interaction between the incoming λ and the parton a inside H. One of

the goals of perturbative QCD (pQCD), is to determine this partonic cross section as

accurately as possible. On the other hand, in the context of DIS, this relation can be used

to determine experimentally the PDF for the mesure of the total cross section, assuming

that the partonic cross section is known, up to some order in perturbation theory.

From there, the generalisation to hard parton-parton collision is quite natural. Indeed,

the generic particle λ can also be a parton from another hadron. The reasoning is the

same: the hadronic internal interactions occur on a timescale much longer than that of the

scattering. For the same reason, any potential interactions between the remaining partons

in the final state and the hard scattering are excluded. Then, we can formally write the

factorisation formula for hadronic collisions:

dσAB(τ,Q2) =
∑
a,b

∫ 1

0

dξA dξB fa/A(ξA, µF )fb/B(ξB, µF ) dσ̂ab(Q
2, τ/ξAξB, µF ) Θ(ξ1ξ2− τ) ,

(1.6)

where τ = Q2/s, with s the hadronic center of mass energy squared. The Heaviside

distribution Θ ensures that the squared partonic center of mass energy ŝ = sξAξB is greater

than Q2. As they have to be renormalised, PDFs satisfy corresponding RGEs that describe

their evolution with µF . In the following section, we focus on these RGEs and derive the

corresponding splitting kernels at first order in αs.

1.2.2 Dokshitzer–Gribov–Lipatov–Altarelli–Parisi equations

In this section, our aim is to recover explicitly Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

(DGLAP) equations, and their solutions for PDF evolution in QCD at one-loop. To do

so, we consider the matrix elements describing parton splittings. From there we can
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recover the DGLAP equations and deduce explicitely the splitting kernels [47, 48] (or

Altarelli-Parisi splitting functions).

Splitting

We begin by considering the two generic diagrams:

A C

D f

kA kC

B
(a)

B

D f

kB

kD kf

(b)

where A is the parton splitting into B and C while D is a given spectator particle, f any

final state and the ki are the corresponding four-momenta. We define the differential cross

section dσ for the generic process a b −→ {f}:

dσab→f =
1

4EaEb|−→va −−→vb |
∑
|Mab→f |2dΦf , (1.7)

where Ei and −→vi = −→p i/Ei are respectively the energy and velocity of the particle i, dΦf

is the phase space corresponding to the final state {f} and M is the matrix element

amplitude. For simplicity, we consider the final state f in (a) and (b) as a single particle,

but including multiple final states would not affect the reasoning. The sum
∑

indicates

averaging over initial quantum numbers (spin, helicity, colour...) and sum over the final

ones. We can express the differential cross sections before the sum, in the center of mass

frame, where |−→va −−→vb | = 2 for diagrams (a) and (b), similarly to section 4 of [47]:

dσb =
1

8EBED

d3kf
(2π)32Ef

(2π)4δ(4)(kB + kD − kf )|MB+D→f |2 ,

dσa =
1

8EAED

d3kf
(2π)32Ef

d3kC
(2π)32EC

(2π)4

∫
d4kBδ

(4)(kB + kD − kf )δ(4)(kB − kA + kC)∑
|MA→B+C |2

1

k4
B

|MB+D→f |2

=
1

8EAED

d3kf
(2π)32Ef

d3kC
(2π)32EC

(2π)4δ(4)(kA + kD − kf − kC)

|MA→B+C |2
1

(kA − kC)4
|MB+D→f |2 ,

(1.8)
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To obtain the final expression of dσa, we integrated over the internal momentum kB. If we

label the momentum kB as kA − kC in the Dirac δ distribution of dσb, the two processes

are related by:

dσa = dσb
d3kC

(2π)32EC

EB
EA
|MA→B+C |2

1

(kA − kC)4
≡ dσbdPBA(z)dz , (1.9)

where z is the longitudinal momentum fraction from A carried by B and where we

introduced the probability of transition from A to B: dPBA. We can parametrise the

momenta of interest with the z variable, p the momentum of A and a transverse momentum

magnitude p⊥. In the collinear approximation, we have p⊥/p� 1 so we can approximate

the momenta by :

• kµA = (EA,
−→p A) = (p,

−→
0 , p) ,

• kµB ' (pz,−→p⊥, pz −
p2
⊥

2zp
) ,

• kµC ' (p(1− z),−−→p⊥, p(1− z)− p2
⊥

2(1− z)p
) ,

(1.10)

which ensures that we deal with massless particles, with a breach of momentum conservation

of order δp = O(p2
⊥/p). With this, we can express quantities in term of z, p⊥, p:

d3kC = πdzdp2
⊥p ,

EB
EA

= z ,
1

(kA − kC)4
=

(1− z)2

p4
⊥

. (1.11)

If we consider the unpolarised transition probablility, we need to sum or average over the

relevant degrees of freedom:

dPBA(z) =
dp2
⊥

p2
⊥

z(1− z)

16π2p2
⊥

∑
|MA→B+C |2 ≡

dp2
⊥

p2
⊥

αs
2π
P

(1)
BA(z) . (1.12)

From splitting functions to DGLAP equations

The DGLAP [47] equations describe how the distribution functions evolve with energy

scale. They can be derived directly from the previous splitting process at first order.

PBA(z) can be interpreted as the probability for the particle A to emit a particle B carrying

a fraction z of its momentum. The evolution of the PDF fB/H can be described by a

simple evolution equation, using (1.12):

∆fB/H(x,Q) =

∫ 1

0

dx′
∫ 1

0

dz
αs
2π

∆Q2

Q2
P

(1)
BA(x′)fA/H(z,Q)δ(x− zx′)

=⇒
dfB/H(x,Q2)

d ln(Q2)
=

∫ 1

x

dz

z

αs
2π
P

(1)
BA(x/z)fA/H(z,Q2) .

(1.13)
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In (1.13), we can take the partial differential as the total one at first-order because the

correcting term has a magnitude of O(α2
s).

d

d ln(Q2)
=

∂

∂ ln(Q2)
+

dαs
d ln(Q2)

∂

∂αs
=

∂

∂ ln(Q2)
− β0

α2
s

2π

∂

∂αs
+O(α3

s) . (1.14)

Of course we have complementary processes B ←→ A, so that DGLAP equations are

actually coupled to one another. Since in this document we will always refer to proton-

proton collision, we will no longer specify the hadron in the notation of the PDF. Once all

taken into account we find the DGLAP equations for QCD at first order in αs:

∂

∂ ln(Q2)

(
fq(x,Q

2)

fg(x,Q
2)

)
=
αs(Q

2)

2π

∫ 1

x

dz

z

(
P

(1)
qq (x/z) P

(1)
qg (x/z)

P
(1)
gq (x/z) P

(1)
gg (x/z)

)(
fq(z,Q

2)

fg(z,Q
2)

)
. (1.15)

Here the sum over quark (anti)flavours is implicit. To solve the DGLAP equations, we

only miss the derivation of the splitting kernels P
(1)
BA.

Explicit derivation

We now have to evaluate the corresponding
∑
|MA→B+C |2 in order to compute the

splitting functions. For QCD, we have four functions to find (for all possible transitions

between q and g) but not all of them are independent. For conciseness, we detail only the

computations for the g → qq̄, g → gg and q → qg vertices.

• q → qg

q

q

g

kC

kB

kA

iMq→g+q = −igsūh(kC)Taγµuh′(kA)ε∗µT (kB) ,

where the spinors uh′ and uh are respectively carrying the helicities of the incoming and

outgoing quarks. ε∗T is the polarisation vector of the outgoing gluon, γµ is a Dirac matrix in

d = 4 dimension [48]. For details on the polarisation sum, refer to appendix A.3. Using the

Lorenz gauge, in the case of transverse polarisation vectors, we can make the replacement,

as in [47]:

∑
T=±

εµT (kB)ε∗ νT (kB) = δij − kiBk
j
B−→

kB2
. (1.16)

We denote the space-only indices by Latin letters like i, j, and Lorentz indices with Greek

letters like µ, ν. For example the four momentum k can be written as: kµ = (Ek, k
i)

Yehudi SIMON | Sorbonne Université 23
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∑
|Mq→g+q|2 =

Tr(Ta ·Ta)

2Nc

g2
s

∑
h=±
h′=±

Tr
(
/kAγµ/kCγν

1 + hh′ + (h+ h′)γ5

4

)∑
T=±

εµT ε
∗ ν
T

=2g2
sCF (kA ikC j + kAjkC i + δijkA · kC)

(
δij − kiBk

j
B−→

kB2

)
=2g2

sCF

(
2
−→
kA ·
−→
kC + 2kA · kC − 2

(
−→
kA ·
−→
kB)(
−→
kB ·
−→
kC)

−→
kB2

)
.

(1.17)

From the previous formula, we can see that we need scalar products of three-momenta.

We can compute these relevant scalar products from (1.10). It follows that:

−→
kA ·
−→
kC + kA · kC = EAEC = p2(1− z) ,

−→
kA ·
−→
kB = zp2 − p2

⊥
2z

,
−→
kB

2 = z2p2 ,

−→
kB ·
−→
kC = p2z(1− z)−p2

⊥

(
1 +

z

2(1− z)
+

1− z
2z

)
.

(1.18)

Injecting these solutions in (1.17), we obtain:

∑
|Mq→g+q|2 =2g2

sCF

[
2p2(1− z)− 2

p2z2

(
p4z2(1− z)− p2

⊥p
2(1− z)

2
− p2p2

⊥
1

2(1− z)

)]
=

2g2
sCFp

2
⊥

z(1− z)

(1 + (1− z)2

z

)
.

(1.19)

Finally we can write P
(1)
gq , the splitting kernel corresponding to the transition q → g (notice

that the indices are swaped compared to the ordering in the transition), at first order:

P (1)
gq (z) = CF

2g2
sp

2
⊥

z(1− z)

(1 + (1− z)2

z

)8π2

g2
s

z(1− z)

16π2p2
⊥

= CF

(1 + (1− z)2

z

)
. (1.20)

In the same way we can consider the g → qq̄ splitting for the g → q transition.

• g → qq̄

g

q̄

q

kC

kB

kA

iMg→q+q̄ = −igsvh(kC)Taγµūh′(kB)εµT (kA) .

With a similar calculation to the previous vertex,
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∑
|Mg→q+q̄|2 =

1

2

Tr(Ta ·Ta)

N2
c − 1

g2
s

∑
h=±
h′=±

Tr
(
/kCγµ/kAγν

1− hh′ + (h′ − h)γ5

4

)∑
T=±

εµT ε
∗ ν
T

=2g2
sTF (kB ikC j + kB jkC i + δijkB · kC)

(
δij − kiAk

j
A−→

kA2

)
=2g2

sTF

(
2EBEC − 2

(
−→
kA ·
−→
kC)(
−→
kB ·
−→
kA)

−→
kA2

)
.

(1.21)

For these products we have:

EBEC = p2z(1− z),
−→
kA ·
−→
kC = p2(1− z)− p2

⊥
2(1− z)

,

−→
kB ·
−→
kA = zp2 − p2

⊥
2z
,

−→
kA

2 = p2 .

(1.22)

Thus, after injecting the scalar products we obtain the squared matrix element:

∑
|Mg→q+q̄|2 =2TFg

2
s

(
2p2z(1− z)− 2p2z(1− z) + p2

⊥
1

z(1− z)
(z2 + (1− z)2)

)
=2TFg

2
s

p2
⊥

z(1− z)

(
z2 + (1− z)2

)
.

(1.23)

And finally we can identify the splitting function for the g → q transition:

P (1)
qg (z) = 2g2

sTFp
2
⊥

1

z(1− z)

(
z2 + (1− z)2

)8π2

g2
s

z(1− z)

16π2p2
⊥

= TF

(
z2 + (1− z)2

)
. (1.24)

• g → gg

The last matrix element that we need to compute is the tree-gluon vertex, which arises

from the non-Abelian nature of QCD.

gA

gC

gB

kC

kB

kA
iMg→g+g = igsf

abcεh1 µ(kA)ε∗h2 ν
(kB)ε∗h3 ρ

(kC)(
− gµρ(kA + kC)ν + gµν(kA + kB)ρ + gρν(kC + kB)µ

)
.

Here we have to specify the polarisation tensors. They must be transverse with respect to
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the momentum they carry i.e. ε(p) · p = 0.

εµ±(kA) =
1√
2

(0, 1,±i, 0) ,

εν±(kB) =
1√
2

(0, 1,±i,−p⊥
zp

) ,

ερ±(kC) =
1√
2

(0, 1,±i, p⊥
(1− z)p

) .

(1.25)

The expression of the momenta ki can be found in (1.10) so the transversality of the

polarisation tensor can be checked explicitely. We give here some useful contractions:

(
−→
kA +

−→
kC) · ε∗(kB) =−

√
2
p⊥
z
, εh1(kA) · ε∗h3

(kC) = δh1 h3 , (
−→
kC −

−→
kB) · ε(kA) = −

√
2p⊥ ,

(
−→
kA +

−→
kB) · ε∗(kC) =

√
2
p⊥

1− z
, εh1(kA) · εh2(kB)∗ = δh1 h2 , ε∗h2

(kB) · ε∗h3
(kC) = δ−h2 h3 .

(1.26)

Injecting these results we can compute the matrix element amplitude:

iMg→g+g =igsf
abc
(
−
√

2
p⊥
z
δh1 h3 −

√
2
p⊥

1− z
δh1 h2 +

√
2p⊥δ−h2 h3

)
=− igsfabc

√
2p⊥

(δh1 h3

z
+
δh1 h2

1− z
− δ−h2 h3

)
.

(1.27)

so that the squared matrix element reads:

∑
|Mg→g+g|2 =2CAg

2
sp

2
⊥

1

2

∑
hi=±

(δh1 h3

z
+
δh1 h2

1− z
− δ−h2 h3

)2

=4CAg
2
s

p2
⊥

z(1− z)

(1− z
z

+
z

1− z
+ z(1− z)

)
.

(1.28)

We can notice that a divergent part arises when z → 1. To regularise this divergence, we

make use of the + distribution prescription (refer to A.45). Therefore, introducing the

collinear anomalous dimension for gluons γg, that we will derive later:

P (1)
gg (z) = 2CA

(1− z
z

+ z
1

1− z

∣∣∣
+

+ z(1− z)
)

+ γgδ(1− z) . (1.29)

Deductions

As we stated earlier, splittings kernels are related in more than one way. We can recycle

the previous results to find the other splitting kernels. First, we can deduce P
(1)
qq (z) from

our computation of P
(1)
gq (z). Since they appear in the same vertex, we just need to perform
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the exchange z ←→ 1− z and regularise the resulting divergence as z → 1 by introducing

the + distribution and the resulting collinear anomalous dimension for quarks γq.

P (1)
qq (z) = CF

(
(1 + z2)

1

1− z

∣∣∣
+

+
γq
CF

δ(1− z)
)
. (1.30)

We only miss the collinear anomalous dimensions to fully determine the splitting functions:

γq, γg. To obtain these constants, we can apply the sum rules that encode respectively

probability and momentum conservation inside the proton:∫ 1

0

dzP (1)
qq (z) = 0 =⇒ γq

CF
=−

∫ 1

0

dz
1 + z2 − 2

1− z
=

3

2
,∫ 1

0

dzz
(
P (1)
gg (z) +

2nf∑
i=1

P (1)
qig

(z)
)

= 0 =⇒ γg =
11CA

6
− 2nfTF

3
= β0 .

(1.31)

In the end we have all the splitting functions for QCD at first order in αs:

• P (1)
qq (z) = CF

(
(1 + z2)

1

1− z

∣∣∣
+

+
3

2
δ(1− z)

)
,

• P (1)
qg (z) = TF

(
z2 + (1− z)2

)
,

• P (1)
gq (z) = CF

(1 + (1− z)2

z

)
,

• P (1)
gg (z) = 2CA

(1− z
z

+ z
1

1− z

∣∣∣
+

+ z(1− z)
)

+ β0δ(1− z) .

(1.32)

The splitting functions demonstrate invariance to quark flavour and do not discriminate

between particles and anti-particles. With the essential components in place, we can solve

the DGLAP equations and determine the first-order evolution of PDFs. For the explicit

solving of the equations, see the appendix A.4. In the broader scope of this document,

the DGLAP evolution in itself is not necessary for the resummation formalism. However,

in appendix A.8, we reuse the expression of the first order splitting functions, and more

specifically the collinear anomalous dimensions, to derive the Sudakov factor that is part

of the resummation framework.

1.2.3 LHAPDF for practical use

Now that we have described how PDFs are defined and evolve, let us focus on their actual

implementation for phenomenological use. As previously mentioned, PDFs encompass the

partonic behaviour, which is not completely accesible through a perturbative approach.

Some collaborations attempt to produce ab initio PDF fits from lattice computations [50,51],

but most of the available PDFs come from experimental fits [37, 49,52].
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Figure 1.2: LHAPDF CT18NLO set [49] displayed for µF = 10 GeV

For the physics community to use the results of PDFs in a standardised way, the

Les Houches Accords PDF (LHAPDF) [53] library was introduced. The collaboration

maintains a PDF database from which anyone can download their preferred PDF set

corresponding to their specific needs. The PDF sets are labeled with a unique identifica-

tion number (LHAPDF ID). All the results in this document were produced using the PDF

sets CT18NLO (ID 14400) [49], MSTW2008nlo68cl (ID 21100) or MSTW2008nnlo68cl

(ID 21200) [37]. Other PDF sets are available, encompassing a various number of ap-

proaches (analytic parameterisation, neural network and Monte-Carlo representation,

meta-analysis...), schemes (general/zero mass, fixed/varying flavour number...) and input

data (HERA, ATLAS, CMS, LHCb, Tevatron...). We chose the previous sets for their

adequacy with the chosen parameterisation (see section 2.4.2) and their extensive use in

the literature. We do not pretend to have performed an extensive review of the available

PDF sets that could be suitable for our study. Future studies could consist in comparing

the different PDF sets and their influence on the results presented in this document,

similarly to what has been done in [54,55].
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In figure 1.2, the proton PDFs from the CT18NLO set, for the gluon and the nf = 5

active quark flavours are shown, similarly to figure 2 in [49]. The y-axis represents the

PDF multiplied by the momentum fraction x. We can notice that there is a distinction

between sea quarks and valence quarks (u and d). Sea quarks and anti-quarks share the

same distribution due to symmetric pair production and annihilation, while valence quarks

u and d have a different distributions from their anti-particle partners. The gluon PDF is

approximately an order of magnitude larger than the quark PDFs in most of the x range.

This illustrates the proton’s rich parton content with numerous gluons and sea quarks

contributing to its momentum.

In the context of perturbative QCD computations, using directly the PDF sets provided by

LHAPDF is enough for phenomenological applications. However, when using resummation

techniques, such as the work presented in this document, we need to introduce the Mellin

transform of the PDF. For more details about the implementation in this scenario, refer

to section 2.4.2.

1.3 Colour Algebra

After exploring the parton model and its implications on perturbative QCD computations,

let us address the question of the underlying symmetry. Indeed, the QCD Lagrangian

detailed in A.3 is invariant under local SU(Nc) gauge transformation. In the Standard

Model, Nc = 3 but we maintain a general Nc dependence whenever possible. To thoroughly

understand scattering processes involving coloured particles, we need to familiarise ourselves

with some elements of group theory relative to SU(Nc). This enables us to generate

explicitly the tensor spaces on which the matrix elements of the processes span, as well

as computing the colour factor arising from the symmetry group. To depict the colour

structure of a process, we need a tensorial basis {C{ck}k≤n

j }1≤j≤N on which to span the

coloured matrix element applitudes, and the colour factors {tk.tl}1≤k,l≤n which will be

useful in section 2.3.1. We denote n the number of coloured particles involved (incoming

or outgoing) in the process with their respective colour indices ck, and N is the dimension

of the tensor basis. Let us first focus on the tensorial basis.

1.3.1 Colour tensor basis

In the upcoming section, we outline the general procedure for constructing the colour

tensor basis. It is noteworthy that an extensive mathematical proof or a comprehensive

treatment will not be undertaken in this study. Instead, we mainly follow the reasonning

presented in [38] and provide the minimal set of mathematical details recquired for our

purpose.
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SU(Nc): group, representation and Lie algebra

SU(Nc) is the special unitary group of Nc × Nc matrices. It belongs to the category

of Lie groups, and its Lie algebra, denoted by su(Nc), is (N2
c − 1)-dimensional. The Lie

algebra consists of traceless, Hermitian matrices (or anti-Hermitian, up to a global factor

i) in the fundamental representation. For the case of Nc = 3, the generators are related to

the Gell-Mann matrices λi by the relation: Ti = λi/2. Hereafter, we distinguish between

ti, which represents generic generators for any representation, and Ti, which is specific to

the fundamental representation. Furthermore, we have the following definitions for the

structure constants:

Ti.Tj =
δij

2Nc

1Nc+
if ijk + dijk

2
Tk, (1.33)

[
Ti,Tj

]
= if ijkTk ,

{
Ti,Tj

}
=
δij

Nc

1Ncd
ijkTk ,

or equivalently :

fabc = −2iTr
([

Ta,Tb
]
Tc
)
, dabc = 2Tr

(
Ta
{

Tb,Tc
})

,

(1.34)

with fabc representing the completely antisymmetric structure constant and dabc the

symmetric one. For more relations involving these objects, refer to A.2. If Ti are the

generators of the fundamental representation, the adjoint is generated by the antisymmetric

structure constants: tiαβ = −if iαβ.

It is essential to note that the generators in the fundamental representation are Hermitian

matrices. Therefore, in general Ti
ab 6= Ti

ba. The first index a belongs to the fundamental

representation, while the second index b belongs to the conjugate space. To construct

consistent tensors utilizing these generators, it is crucial to keep track of the number of

indices in each space. To do this, we describe the irreducible representations of SU(3) using

the notation (m,n) where m is the number of indices in the fundamental representation, and

n the number of indices in the conjugate space. We can treat them similarly to covariant

and contravariant indices for the Lorentz group, but we should remember that they are

related through complex conjugation. The dimension of an irreducible representation

(m,n) is given by:

dim((m,n)) =
(m+ 1)(n+ 1)(m+ n+ 2)

2
. (1.35)

We can try this formula on some example (not) chosen at random:
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Chapter 1 – Perturbative Quantum Chromodynamics

dim((1, 0)) =
2× 3

2
= 3 ≡ dim(3) ,

dim((0, 1)) =
2× 3

2
= 3 ≡ dim(3) ,

dim((1, 1)) =
2× 2× 4

2
= 8 ≡ dim(8) .

(1.36)

The attentive reader would certainly recognise the definitions of the fundamental, conjugate

and adjoint representations. The “name” of a representation directly comes from its

dimension. The underlying or overlying notations indicate representations with indices

on one side only. It is worth noting that this is can be ambiguous for high-dimensional

representations but is not be problematic for most practical cases in this document.

Now that we have described the parameterisation of irreducible representations, let us

address the question of direct product of irreducible representations. As a direct product

of (irreducible) representations is a representation itself, it can be decomposed as a direct

sum of irreducible representations. In the case of SU(3), these Clebsch–Gordan series can

be described in a compact way. Introducing the intermediate notation:

(m,m′;n, n′) =

min(m,m′)⊕
i=0

(m′+m−2i, n′+n+ i)

min(m,m′)⊕
j=1

(m′+m+ j, n′+n−2j) . (1.37)

We can write in a concise way:

(m,n)⊗ (m′, n′) =

min(m,n′)⊕
i=0

min(m′,n)⊕
j=0

(m− i,m′ − j;n− j, n′ − i) . (1.38)

It is useful to build an intuition for these formula on examples:

3⊗ 3 = (1, 0)⊗ (0, 1) = (1, 0; 0, 1)⊕ (0, 0; 0, 0) = (1, 1)⊕ (0, 0) = 8⊕ 1 ,

8⊗ 8 = (1, 1)⊗ (1, 1) = (1, 1; 1, 1)⊕ (1, 0; 0, 1)⊕ (0, 1; 1, 0)⊕ (0, 0; 0, 0)

=
(

(2, 2)⊕ (0, 3)⊕ (3, 0)
)
⊕ (1, 1)⊕ (1, 1)⊕ (0, 0)

= 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1 .

(1.39)

Of course, in the end the dimensions should be the same on both sides of the equation,

and this can be easily verified with the explicit notation displaying the dimension of each

irreducible representation.

When analysing the colour structure of a process, we decompose the tensor product of

the initial particles’ representations into a direct sum of irreducible representations. This
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summed space yields the colour tensor basis used to describe the process. We must stress

that, in general, not all resulting representations are populated, as further constrains may

arise from the time inversion of the process. In other words, when exchanging incoming

and outgoing particles, we should be able to account for all the irreducible representations

involved in the process. For example, in the case of qq̄ → tt̄, there is no ambiguity, we

have 3⊗ 3 = 8⊕ 1 for both direct and reverse time flow. However in the case of gg → tt̄,

we have: 8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1 but 3 ⊗ 3 = 8 ⊕ 1, so that we know that

27⊕ 10⊕ 10 do not enter the colour tensor basis for this process.

It is useful to understand the underlying irreducible representation to build the colour

tensor basis, but it does not directly provide a basis for further computations. Nevertheless,

it proves highly valuable to intuitively find one. For instance, in qq̄ → tt̄, the colour tensor

basis can be explicitly expressed as singlet and octet components (2.65). Similarly, for

gg → tt̄, the basis can be decomposed into the singlet case and two octets, one symmetric

and the other antisymmetric (2.67). In general, we can also generate a colour basis by

considering all possible combinations of colour indices dressing baseline colour tensors

such as δij , Ti
ab or f ijk. We then reduce this set of tensors to an orthogonal basis through

the Gram-Schmidt orthogonalisation algorithm. However, it is essential to note that the

resulting basis is not unique, as a permutation in the original non-orthogonal basis can

lead to a different orthogonal basis. For more details about the general construction of

orthogonal colour basis (and predicting its dimension), refer to [56].

In the following sections of this document, we use the Hermitian scalar product as the

natural choice for colour tensor products:

〈.|.〉 : A,B 7→ 〈A|B〉 = A†.B . (1.40)

To better understand this, let us describe an explicit example for one colour basis.

gg → tt̄tt̄ colour basis construction

In this example, we have two gluon indices g1 and g2, two quarks t1, t2 and two

antiquarks t̄1, t̄2. We must stress that all (anti)quarks are outgoing so that their indices

belong respectively to the (conjugate) fundamental representation. We are now ready to

build a colour basis from the combination of the relevant colour indices. First we can pair

the gluon indices in δg1 g2 , this leaves only two possibilites to pair the remaining indices

in Ti
q q̄.T

i
q′ q̄′ , with (q, q′) ∈ (t1, t2): δ

g1 g2Ti
t1 t̄1

.Ti
t2 t̄2

and δg1 g2Ti
t1 t̄2

.Ti
t2 t̄1

. Once this case

is settled, we have to enumerate the remaining combinations where the gluon indices

are used in the T generators. Since the product is not symmetric in general, we have

two possibilites: Tg1 .Tg2 or Tg2 .Tg1 . Let us choose the first case and just multiply the

counting of the possible tensors by two in the end to account for both cases. Once the

adjoint indices are fixed, we need to allocate the (anit)quark indices in the corresponding
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generators. Like in the previous case, there are again two possibilities: Tg1

t1 t̄1
.Tg2

t2 t̄2
and

Tg1

t1 t̄2
.Tg2

t2 t̄1

However we must remember that the quark indices can also be contracted within δ

functions. We covered the case where there are no δ contraction for quarks, and zero or one

contraction for gluons. We can already rule out the cases where we have one pair of gluon

indices contracted and one pair of (anti)quark indices contracted since it leads to another δ

for the remaining (anti)quark indices (see A.7). Similarly, having two pairs of quark indices

contracted imposes that the gluon indices are also contracted. In addition, from the first

relation in (A.8), we can see that the cases where we have the gluon indices contracted

and zero or two pair contractions for the (anti)quark indices are equivalent. It would be

redoundant to take them both into account. In the end we only miss the case with one

pair of (anti)quark indices contracted and no contraction for the gluons. This implies four

new possibilities for the choice of the pair of indices contracted. The allocation of the

contracted indices leaves only two options because of the tracelessness of the generators.

However, due to the symmetry resulting from the contraction Tg1
ti α.T

g2

α t̄j
= Tg2

α t̄j
.Tg1

ti α, it

does not affect the count. The final count reads: 2× (1 + 2 + 4) = 14, and the tensor basis

appears as:

{
δg1 g2Ti

t1 t̄1
.Ti

t2 t̄2
; δg1 g2Ti

t1 t̄2
.Ti

t2 t̄1
; Tg1

t1 t̄1
.Tg2

t2 t̄2
; Tg1

t1 t̄2
.Tg2

t2 t̄1
; Tg2

t1 t̄1
.Tg1

t2 t̄2
; Tg2

t1 t̄2
.Tg1

t2 t̄1
;

δt1 t̄1

(
Tg1 .Tg2

)
t2 t̄2

; δt2 t̄1

(
Tg1 .Tg2

)
t1 t̄2

; δt1 t̄2

(
Tg1 .Tg2

)
t2 t̄1

; δt2 t̄2

(
Tg1 .Tg2

)
t1 t̄1

;

δt1 t̄1

(
Tg2 .Tg1

)
t2 t̄2

; δt2 t̄1

(
Tg2 .Tg1

)
t1 t̄2

; δt1 t̄2

(
Tg2 .Tg1

)
t2 t̄1

; δt2 t̄2

(
Tg2 .Tg1

)
t1 t̄1

}
.

(1.41)

As previously stated, this basis is not unique. We could also have made the choice of

expanding the TiTi products in terms of δ products using (A.8). Furthermore, we need to

orthogonalise this basis for practical usage. For the final basis, with Nc = 3, refer to (4.3).

This basis will be used in the context of four top production, treated in chapter 4.

1.3.2 Minimal set of colour factors

Now that we have an explicit tensorial colour basis, we can focus on the determination

of the colour factors that arise from generator products in QCD scattering, as we will see

in chapter 2. These factors encode the colour structure of the process, expressed in the

tensor space previously mentioned. As such they depend on the choice of the basis, but

also the nature of the coloured partons entering the process. In appendix A. of [39], there

is a desciption of how the colour algebra factorises (or not) depending on the numbers

of coloured partons entering the process. For a n coloured parton, we have n individual

generators ti, hence n possible squared generators t2
i and n(n−1)/2 products ti · tj . These
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products are symmetric in (i, j), as argued in the above example. Then, we can consider

implicitly i < j to describe the generator products. However, there are some constrains,

namely the n definitions of quadratic Casimir operators relative to each particle i:

∀i t2
i = Ci1 , (1.42)

and the n colour conservation constrains:

∀i ti ·
n∑
j=1

tj = 0 . (1.43)

In total, we have n+ n(n− 1)/2− n− n = n(n− 3)/2 independant non-trivial operator

products to determine. It is clear that the case n = 3 is the limit where we should expect

factorisability to fall apart. Below n = 3, the algebra is overconstrained, and all the

colour factors can be expressed as combinations of Casimir operators resulting in matrices

proportional to 1 in colour space.

Factorising algebras

We can describe quickly the factorising algebras for n ≤ 3, as they are quite easy to

recover.

• For n = 1, the colour algebra is trivial: t2
1 = C11.

• For n = 2, the colour algebra is also quite simple: t1 +t2 = 0⇒ t1 ·t2 = −C11 = −C21.

We can take the example of the Drell-Yan process qq̄ −→ l+l− for n = 2. Then, we have

t1 = tq and t2 = tq̄. Of course the quadratic Casimir operators definition still holds, so

that: t2
q = t2

q̄ = CF1. The only colour tensor product in this case is tq.tq̄ = −CF1, as we

will see in (2.10).

• The case n = 3 still factorises but is less trivial. First, we can express colour conservation

as:

∀ k 0 =
3∑
i=1

ti = tk ·
3∑
i=1

ti =
( 3∑
i=1

ti

)2

=
3∑
i=1

[
Ci + 2ti ·

3∑
j>i

tj

]
. (1.44)

If we exploit the colour conservation conditions successively for k = 1, 2, 3, we can express

the products tk · ti solely in terms of quadratic Casimir operators:

∀ (i, j, k) ∈ (1, 2, 3) 2tk · ti = (Cj − Ck − Ci)1 . (1.45)
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Non factorisable algebras

For n ≥ 4, we need to examine the situation more closely. First of all, we must choose a

minimal set of colour operators that we consider as independant from each other and that

we should determine individually. This choice is arbitrary but the resulting set must be

linearly independant. A possible choice is the set of the n(n−3)/2 first products excluding

Casimir operators and ti · tn. This set contains n− 3 subfamilies, each one corresponding

to a choice of i, with j going up to n− 1. It can be expressed as follow:

{ti · tj}1≤i≤n−3
i<j≤n−1

.

The remaining products not in this minimal set are tn−2 · tn−1 and the n − 1 products

involving tn: ti · tn. We can express these products in term of the Casimirs and the

minimal set operators. For the first n− 3 ti · tn products, we can simply use the colour

conservation regarding the ith parton (all the other generator products are in the minimal

set):

∀i, 1 ≤ i ≤ n− 3 ti · tn = −Ci1−
n−1∑
j=1

j 6=i

ti · tj . (1.46)

At this stage we only miss 3 products to describe all operators in terms of the minimal

subset : tn−2 · tn−1, tn−2 · tn and tn−1 · tn. We can use the three final colour conservation

constraints :

∀ (i, j, k) ∈ (n− 2, n− 1, n) tk · ti + tk · tj = −Ck1−
n−3∑
l=1

tl · tk . (1.47)

Combining these equations, we can single out the three remaining products in term of the

others:

2ti · tj = −(Ci + Cj − Ck)1−
n−3∑
l=1

tl ·
(
ti + tj − tk

)
. (1.48)

We only need to replace the products outside of the minimal set with their expressions in

terms of the minimal set operators. The only products falling into this category are the

tl · tn. Now, we must distinguish between the case where k = n and the other two cases:
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tn−2 · tn−1 =
1

2

(
Cn −

n−1∑
j=1

Cj

)
1−

n−3∑
i=1

n−1∑
j=i+1

ti · tj ,

∀ i ∈ (n− 2, n− 1) ti · tn =
1

2

( n−1∑
j=1

j 6=i

Cj − Cn − Ci
)
1 +

n−3∑
l=1

n−1∑
j=l+1

j 6=i

tl · tj .
(1.49)

Having expressed all the colour factors in terms of the minimal subset, our computations

are significantly improved, particularly for colour-rich systems such as g1g2 → t3t̄4t5t̄6. In

this case, n = 6 so there are 30 non trivial colour tensor products to determine, each one

being a 13× 13 matrix (5070 coefficients) for Nc = 3 (see 4.3). With the minimal set of

tensor products this reduces to 9 products (1521 coefficients left to compute):{
t1 · t2; t1 · t3; t1 · t4; t1 · t5; t2 · t3; t2 · t4; t2 · t5; t3 · t4; t3 · t5

}
. (1.50)

Again, this minimal set will be used in chapter 4 to reduce the number of colour factors to

derive.

1.3.3 Expression in colour tensor basis

Now that we have established the minimal set of colour factors necessary to describe the

colour content of the process, we can proceed to find their actual expressions in the colour

tensor basis determined in section 1.3.1. As we will see in (2.56), we need to compute

colour factors expressed in the tensor basis as follows:

〈Ck| ti · tj |Cl〉
〈Ck|Ck〉

. (1.51)

In general, |Cl〉 is a tensor with m indices in the adjoint representation {gp}1≤p≤m (octet),

q in the fundamental and conjugate representation {αa}1≤a≤q, {βb}1≤b≤q (triplet and

anti-triplet). The colour generator ti carries the colour indices cai and c′ai to be contracted

with |Cl〉 where cai has been replaced by c′ai :

ti |Cl〉 = Cl({c1, c2, ..., cai−1
, c′ai , cai+1

, ...})ticaic′ai . (1.52)

The cai can belong to any subset of colour indices (triplet, anti-triplet or octet). With this

prescription, the order of cai and c′ai depends on the actual nature of this colour index (it

might be swapped for an anti-triplet, for example). Using this approach, we are now able

to derive the actual expressions of colour factors in a given colour tensor basis. Let us

detail an explicit determination in the case of the quark channel of top pair production.
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q1q̄2 −→ t3t̄4

First of all, we need to specify the colour basis. We choose the singlet-octet basis,

motivated by the representation decomposition of (1.39):

{|C1〉 ; |C2〉} = {δc2c1δc3c4 ; Ti
c2c1

Ti
c3c4
} . (1.53)

We need n(n − 3)/2 = 2 matrices in M2×2(R) to describe all colour factors of the

process: tq · tq̄ and tq · tt. We focus on the determination on tq · tq̄ for simplicity. The four

components of the matrix can be computed using (1.52). We have:

〈C1| tq · tq̄ |C1〉
〈C1|C1〉

= −
δαc2δc4c3δβc1δc3c4T

i
c1α

Ti
c2β

N2
c

= −
Tr
(
Ti ·Ti

)
Nc

= −CF ,

〈C1| tq · tq̄ |C2〉
〈C1|C1〉

= −
δαc2δc4c3T

j
βc1

Tj
c3c4

Ti
c1α

Ti
c2β

N2
c

∝ Tr
(
Tj
)

= 0 ,

〈C2| tq · tq̄ |C1〉
〈C2|C2〉

= −
Tj
αc2

Tj
c4c3

δβc1δc3c4T
i
c1α

Ti
c2β

CFNcTF
∝ Tr

(
Tj
)

= 0 ,

〈C2| tq · tq̄ |C2〉
〈C2|C2〉

= −
Tk
αc2

Tk
c4c3

Tj
βc1

Tj
c3c4

Ti
c1α

Ti
c2β

CFNcTF
=

Tr
(
Tj ·Ti ·Tj ·Ti

)
CFNc

=
CA
2
− CF .

(1.54)

For more examples, refer to A.2.2.

In the previous sections we introduced the fundamental concepts underlying perturbative

QCD calculations. The parton model, PDFs, factorisation theorem and colour structure

are necessary to understand the fixed order computations of observables constituting many

of the current predictions both in the SM and beyond. However, we can go further than

fixed order computations by introducing resummation techniques in the aim of producing

even more accurate predictions. In the next chapter, we detail the general framework of

soft gluon threshold resummation that will be used in the rest of the document.
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Never gonna let you down

Exponential Rick Astley to the soft logarithms

Resummation illustration, Akenium

This chapter focuses on soft-gluon resummation, and specifically on that of the associated

threshold logarithms. Firstly, we introduce resummation through a didactic example to

better understand its underlying concepts. Subsequently, Mellin space factorisation

properties are used to derive a general formula for resumming soft gluon emission at the

level of differential cross sections. Once the formal framework is established, we detail

the explicit derivation of the universal soft components involved in QCD resummation

calculations. Finally, practical insights into the numerical implementation are presented.

This chapter is mainly based on the work presented in references [57–59]. In this chapter, we

aim to provide a pedagological presentation of resummation and have a clear understanding

of the key ingredients of the formalism.
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2.1 Leading logarithm and exponentiation

The goal of this section is to provide a clear understanding of the definitions, key

concepts and objects involved in soft gluon resummation. With this, we will be able to

settle the general framework in section 2.2.

2.1.1 Eikonal approximation and soft gluon emission

We use individual emissions to introduce the theoretical foundations necessary for

resummation calculations. Doing so, we introduce the soft and collinear limits to achieve

resummation with Leading Logarithmic (LL) precision.

Motivational example: single emission

Similarly to [59], let us consider an emission originating from an incoming quark qa
within a generic process. The corresponding matrix element for this process is denoted as

Mh. Diagrammatically, it gives:

qa Mh .

g

From this, we can proceed to calculate the overall matrix element Me. By keeping Mh

general, we ensure its dependence solely through an emission factor:

Me =Mh

i(/pa − /k +ma)

(pa − k)2 −m2
a + iε

(−igsTaγµ)u(pa)ε
∗
µ(k) , (2.1)

with pa and k the respective momenta of the incoming quark and emitted gluon, ma the

mass of the quark. In practice, we set ma = 0 for incoming quarks but the derivation

remains identical in the massive case. Using the anticommutation relations of γ matrices,

{γµ, γν} = 2gµν , and the relations (/pa −ma)u(pa) = 0 = k · ε∗(k), we can write:

Me =Mhgs
γµ/k + 2pµa

k2 − 2pa.k + iε
Tau(pa)ε

∗
µ(k) .

In cases where the momentum of the emitted gluon is significantly smaller than the other

momentum scales, we can use the so-called eikonal approximation [60]:
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Chapter 2 – Soft gluon threshold resummation

Me →
k�p
MhgsT

a −pµa
pa.k − iε

u(pa)ε
∗
µ(k) . (2.2)

Within the soft regime (k � p), this approximation yields the formulation of effective

eikonal Feynman rules governing the emission of gluons from an incoming parton:

α

β

a

−→p

−→
k

−Ta
βαgs

pµ

p.k − iε
,

α

β

a

Ta
αβgs

pµ

p.k − iε
,

a

b

c

−ifabcgs
pµ

p.k − iε
.

In the case of outgoing particles, −iε is changed to +iε, and the SU(3) generators for

quarks and anti-quarks are exchanged. We can now express the differential cross section

in the eikonal approximation. For simplicity, we will consider a quark-antiquark initiated

process with a colour-singlet final state, so that only the inital (anti-)quarks radiate soft

gluons.

q

Mh

g

q̄

Using the kinematics of the eikonal cross section, in the centre of mass frame and omitting

the regularisation factors ε for the sake of brevity, we can link the differential cross section

including the soft emission dσe and the generic one dσh:

dσe ∝ −dσh
pq.pq̄

(pq.k)(pq̄.k)
= −dσh

2pq.pq̄
EqEq̄E2

k(1− cos2(θ))
. (2.3)

Here, θ represents the angle formed between the momenta of the quarks and the (on-shell)

radiated gluon, characterised by its energy Ek. pq, Eq and pq̄, Eq̄ are the momenta and

energies of the incoming particles. Equation (2.3) encapsulates two distinct categories

of infrared divergences stemming from soft radiation: the first emerges due to the factor

1/E2
k as Ek → 0, while the second arises as a collinear divergence when θ → 0 or π.
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2.1.2 Factorisation and Mellin transform

So far, our attention has been focused on single emission, which yields a radiation factor

that multiplies the Born cross section. However, in order to deal with multiple emissions

within the soft limit, it becomes imperative to use factorisation properties that include both

kinematic aspects and the associated phase space. Regarding kinematics, factorisability

in the soft limit arises directly from the eikonal Feynman rules. As an example, we can

consider two emissions with momenta k1 and k2 from the same leg carrying momentum p:

pµ

p.k1

pν − kν1
(p− k1).k2

'
ki�p

pµpν

(p.k1)(p.k2)
. (2.4)

The emissions are not ordered, for n emissions all n! permutations contribute with the

same probability, and should be averaged over. While factorisable kinematics constitutes a

crucial aspect, it is not sufficient to establish complete factorisability. It is also imperative

to incorporate the underlying phase space. Here is the general definitions for a n-body

phase space:

dΦn(P ; {pi}1≤i≤n) = (2π)4−3nδ(4)
(
P −

n∑
i=1

pi

) n∏
i=1

d4piδ(p
2
i −m2

i )Θ(Ei) , (2.5)

where P is the centre-of-mass four-momentum of the process with individual final particle’s

four-momenta {pi} of respective mass mi. If we start from (2.5), similarly to [61], we can

split it in m arbitrary sub-phase-spaces:

1

...

n

1

m

...

...

dΦn(P ; {pi}1≤i≤n) =
m∏
i=1

(dQ2
i

2π
dΦni

(Qi; {p(i)
k }1≤k≤ni

)
)

dΦm(P ; {Qj}1≤j≤m) . (2.6)
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In the case of the n+ 1 particles, we can split the phase space into a n-particles subspace

which corresponds to Born-level and a 1 particle phase space with momentum k:

dΦn+1(P ; {pi}1≤i≤n, k) =
dQ2

2π
dΦn(Q; {pj}1≤j≤n)

dQ′2

2π
dΦ1(Q′; k)dΦ2(P ; Q,Q′)

=dΦn(Q; {pj}1≤j≤n)d4Qδ(4)(k +Q− P )dQ2δ(Q2 −M2)
d4k

(2π)3
δ(k2)

=dΦn(M ; {pj}1≤j≤n)
d3k

(2π)32Ek
dM2δ

(
(P − k)2 −M2

)
.

(2.7)

M symbolises the invariant mass of the final state composed of n particles. In the case of

multiple emissions, we simply have {ki} gluons. Introducing the threshold parameters,

z = M2/ŝ and for each emitted gluon i, xi = 2Ei/
√
ŝ = 1 − zi, we can make the

factorisation explicit in the soft limit and the centre-of-mass frame:

δ
([
P −

∑
i

ki

]2

−M2
)

=δ
(
ŝ− 2

√
ŝ
∑
i

Ei +
[∑

i

ki

]2

−M2
)

'δ
(
ŝ− 2

√
ŝ
∑
i

Ei −M2
)

=
1

ŝ
δ
(

1−
∑
i

xi − z
)

'1

ŝ
δ
(∏

i

(1− xi)− z
)

=
1

ŝ
δ
(
z −

∏
i

zi

)
,

(2.8)

where we have neglected terms of order O(k2). The factorisation of the cross section is

manifest in Mellin space (refer to A.35):

dΦn+1(N) ∝
∫ 1

0

dzzN−1δ
(∏

i

(1− xi)− z
)

=
∏
i

(1− xi)N−1 =
∏
i

zN−1
i . (2.9)

2.1.3 Toy resummation

In order to perform resummation, as a first approximation, we will focus on the LL

accuracy. This involves computing the fixed order cross section resulting from single

emission, as mentioned in section 2.1.1. We already described the kinematics involved

in the matrix element in (2.3) and the phase space in (2.7). Let us simply collect the

results and compute the real and virtual contributions to the cross section in the eikonal

approximation. This section is motivated by pedagogical reasons. We do not pretend to

introduce resummation in a rigorous way. For more details, refer to section 2.2.
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Real emission contribution

With the factorisation of phase space, we can express the real emission, with zk =

1− 2Ek/
√
ŝ:

dσR
dΦndM2

= −g2
sT

q.Tq̄ dσB
dΦndM2

∫
d3k

(2π)32Ek

2pq.pq̄
(k.pq)(k.pq̄)

δ(zk − z) . (2.10)

Using (A.7), we can write after a Mellin transform with respect to z:

dσR(N)

dΦndM2
= g2

sCF
dσB

dΦndM2

∫
d3k

(2π)32Ek

2pq.pq̄
(k.pq)(k.pq̄)

zN−1
k . (2.11)

Virtual contribution

We also need the virtual emission contribution to cancel the infrared divergences

stemming from real emission (refer to A.6). This term will share the same phase space as

the Born-level cross section. We can draw the corresponding diagram:

q

Mh

q̄

g

So that we have the virtual contribution:

dσV
dΦndM2

= g2
sCF

dσB
dΦndM2

∫
d4k

(2π)4

2pq.pq̄
(k.pq)(k.pq̄)

−i
k2
δ(1− z) . (2.12)

At this stage, the generic gluon momentum k can be off-shell, since it is integrated in a

loop. Furthermore, we can write in the centre-of-mass frame after Mellin transformation:

dσV (N)

dΦndM2
= g2

sCF
dσB

dΦndM2

∫
d3−→k
(2π)3

2pq.pq̄

EqEq̄(E2
k − |
−→
k |2 cos2(θ))

dEk

E2
k − |
−→
k |2
−i
2π

= −g2
sCF

dσB
dΦndM2

∫
d3−→k

(2π)32Ek

2pq.pq̄
EqEq̄E2

k(1− cos2(θ))
.

(2.13)
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Exponentiation and Leading Logarithm accuracy

In the eikonal approximation, we can then write the combination of virtual and real

emission:

dσe(N)

dΦndM2
=CF

dσB
dΦndM2

∫
d3−→k

(2π)32Ek

g2
s2pq.pq̄

EqEq̄E2
k(1− cos2(θ))

(zN−1
k − 1) = I

dσB
dΦndM2

=⇒ I =
αs
2π2

CF

∫ √ŝ/2
0

dkk2

2k3
(zN−1
k − 1)

∫ 1

−1

4d cos(θ)

1− cos2(θ)

∫ 2π

0

dϕ

=2
αs
π
CF

∫ 1

0

dzk
zN−1
k − 1

1− zk

∫ 1

−1

d cos(θ)

1− cos2(θ)
,

(2.14)

where we used the definition: zk = 1− 2k/
√
ŝ (with k = Ek =

√−→
k 2) and integrated over

the azimuthal angle ϕ. We can choose to parametrise the θ integration in terms of the

transverse momentum of the soft gluon kt =
√
ŝ sin(θ)/2(1− zk). The emission factor I is

quite general and encapsulates more regimes of gluon emission than strictly soft or collinear.

However, we can see from the integrand that the leading behaviour appears in the regions

where zk is close to 1, or θ (or kt) is close to 0. We recover the soft or collinear divergences,

respectively regularised by virtual/real cancellation [62] and PDF counter terms. In fact,

the gluon cannot be emitted at an arbitrary vanishing angle. The renormalised PDFs

encapsulate emissions at small angles for kt ≤ µF (1.6), keeping the exchanged momentum

safe from the non-perturbative regime. On the other hand, the upper limit for integration

is usually set to around kt .M(1− zk)/2 instead of
√
ŝ(1− zk)/2 as the softness of the

emission is determined by comparison to M . Setting zk = z as a consequence of the phase

space factorisation (2.8), we can write in the collinear limit:

I =2
αs
2π
CF

∫ 1

0

dz
zN−1 − 1

1− z

∫ π/2

ε

2dθ

sin(θ)

=2
αs
2π
CF

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)M/2

µF

2dkt

kt
√

1− k2
t /k

2

'2
αs
2π
CF

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2M2/4

µ2
F

dk2
t

k2
t

.

(2.15)

We can also consider the effects of the running coupling, since the momentum exchange

occurs at the scale kt. Now that we have the complete emission factor, we can do the

actual resummation:

+∞∑
n=0

In

n!
= exp

(
2CF

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2M2/4

µ2
F

dk2
t

k2
t

αs(kt)

2π

)
. (2.16)
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For a detailed calculation of this Sudakov factor, see appendix A.8. The LL approximation

only allows consideration of the first-order αs term (see 1.1) and the resulting O(αs ln2N)

term, with N = NeγE , γE being the Euler constant. Taking into account both of the

incoming quark legs, we have the following Sudakov factor:

exp
(
GLL

)
= exp

(
g1(2λ) lnN

)
, λ =

αs
2π
β0 lnN ,

g1(2λ) =
A

(1)
q

β02λ

(
2λ+ (1− 2λ) ln(1− 2λ)

)
.

(2.17)

where A
(1)
q = 2CF , the Casimir operator relative to the emitting leg (can be adapted for

other emitters like colour octets). To go beyond LL, we need to consider higher order cusp

anomalous dimension

Ai =
+∞∑
j=1

(αs
2π

)j
A

(j)
i ,

as well as αs running beyond one-loop. The cusp anomalous dimension appears order by

order in the splitting functions (1.32), multiplying the + distribution terms. Now that we

have derived the simplest case of soft gluon resummation, let us focus on the generalisation

beyond LL accuracy and for processes with more complex colour structure.

2.1.4 Power counting

Firstly, we need to explicitly define the vocabulary of resummation and power counting

in this document. As mentioned earlier, to perform resummation, we must specify the

logarithmic accuracy we are considering. This requirement arises from the alternative

power expansion in terms of αs lnN , in addition to the customary perturbative expansion

in the coupling αs. There are multiple methods for counting logarithmic powers. This

section aims to clarify the various power countings found in the literature with as much

detail as possible. From the expression of λ in (2.17), it is apparent that the Sudakov

factor’s functions gi contain terms of the form αms L
n with L = lnN . To determine m and

n, we must expand gi in αsL, for example, g1 = O(αsL). With the usual definition of the

gi, we always have m = n, but, be careful that the LL factor is g1L and not only g1. No

matter what is the definition chosen for these functions (we could incorporate L in g1 for

example), the power counting should be done systematically to know which logarithms

are resummed.

The literature [32,58,63–66] commonly classifies the accuracy of NkLL resummation

based on the power difference m− n, as k = m− n+ 1. The LL accuracy corresponds to

O(αsL
2) or m−n = −1, NLL to O(αsL) or m−n = 0, and so on. In particular, terms with

n = 0 (hence beginning at N2LL), have a unique position since they don’t depend on L.

According to the classification, they are categorised as Nm+1LL level. Nevertheless, in some
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Resummation accuracy Cusp anom. dim. A Anom. dim. Γ Fixed order coeff.

LL one-loop ∅ tree-level
NLL two-loop one-loop tree-level
N2LL three-loop two-loop one-loop
NkLL k + 1-loop k-loop k − 1-loop

Table 2.1: SCET power counting

articles [58,66], they are also considered as part of a modified version of NmLL denoted as:

NmLL′, NmLLwC, or aNm+1LL, in which the aforementioned terms are expanded at fixed

order in αs rather than exponentiated.

On the other hand, the power counting in the soft-collinear effective theory (SCET) [67]

differs slightly as it is based on loop calculations. Indeed, [68–70] focus on the number of

loops required to compute each resummation piece. We will provide further information

on these ingredients later. SCET power counting is summarised in table 2.1.

The two ways of counting are typically consistent, but caution is advised in determining

which pieces should be included (or omitted) in the resummation. For example, the

fixed order coefficients of order O(αs) are included at the N2LL accuracy on both sides.

Refer to [71] for a more detailed comparison between the SCET and perturbative QCD

formalisms.

Within this document, we use the convention that terms of order O(αs) with no

dependence on L should not be exponentiated, but rather included in the fixed order

coefficients that enter the resummation computation. Refer to section 2.3 for further

details. Now that we have a clear understanding of the essential concepts of resummation,

let us focus on deriving the components involved in resummation computations.

2.2 General expression

2.2.1 Total cross section and PDF factorisation

In the following sections, we will provide a detailed description of the general resum-

mation formalism. We will consider a generic process of 2→ n+ nX , whereby n coloured

particles are present in the final states (able to emit soft gluon) and nX are colourless

particles. The latter will not contribute to the resummation on its own but will affect

the kinematics. Having started from the factorisation formula (1.6), we can write the

following:
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σ(τ) =
1

N

∫ 1

0

dx1 dx2 fI1(x1, µF ) fI2(x2, µF )
〈A|A〉

2sx1x2ω(I1)ω(I2)
dΦn+nX

, (2.18)

where τ = M2/s, N is the symmetry factor for incoming partons I1 and I2, |A〉 the

matrix element amplitude, and ω represents the average factors relative to spin and

colour. In dimensional regularisation with d = 4 − 2ε, we find that ω(q) = 2Nc and

ω(g) = 2(1 − ε)(N2
c − 1). The ε dependence for the gluon polarisation is employed in

the Conventional Dimensional Regularisation (CDR) scheme [72]. However, in numerical

applications, the ’t Hooft-Veltman (HV) scheme [73] is prefered so that the ε dependence

is dropped for external gluons. We can notice that in equation (2.18), we did not mention

the symmetrisation x1 ↔ x2 that needs to be taken into account. Indeed, we cannot

distinguish the two processes where the fraction x1 comes from parton I1 or I2, hence each

contribution should be added to the cross section. In practice, it will lead to an additional

factor of 2 in (2.22). Regarding the phase space, we reformulate (2.7) as:

dΦn+nX
=

dM2

2π
dΦn(M)

dQ2

2π
dΦnX

(Q)dk2δ(4)(k − pk)d4pkδ(p
2
k −M2)dΦ2(P ; {Q, k})

=
dM2

2π
dΦn(M)

dQ2

2π
dΦnX

(Q)dΦ2(P ; {Q,M})

=
dM2

2π
dΦn(M)dΦ1+nX

.

(2.19)

This allows us to define the partonic differential cross section:

dσ̂(z)

dM2dΦn

=
1

2πN

∫
〈A|A〉 (z)

ω(I1)ω(I2)
dΦ1+nX

, (2.20)

where z =
M2

sx1x2

=
M2

ŝ
so that:

σ(τ) =

∫ 1

0

dx1 dx2 fI1(x1, µF ) fI2(x2, µF )
1

2sx1x2

dσ̂(z)

dM2dΦn

dΦn dM2

=

∫ 1

0

dx1 dx2 dz δ(τ − x1x2z) x1 fI1(x1, µF ) x2 fI2(x2, µF )
z

2M2

dσ̂(z)

dM2dΦn

dΦn dM2 .

(2.21)

This makes it easy to perform the Mellin transformation with respect to τ . Denoting the

Mellin transform of PDF fi as Fi, we have:
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σ(N) =

∫ 1

0

dx1 dx2 dz xN1 fI1(x1, µF )xN2 fI2(x2, µF )
zN

2M2

dσ̂(z)

dM2dΦn

dΦn dM2

= F1(N + 1, µF )F2(N + 1, µF )

∫
dM2

2M2

dσ̂(N + 1)

dM2dΦn

dΦn .

(2.22)

Equation (2.22) is not specific to the context of resummation, it is simply a way to express

PDF factorisation (1.6). In the following section, we detail the factorisation between the

process-dependent hard part and the universal soft pieces.

2.2.2 Partonic cross section and Hard/Soft factorisation

We can now concentrate on the partonic differential cross section and its factorisation

properties. At NLL accuracy, we can limit our consideration to one-loop level and nX = 1.

We can break down the generic amplitude |A〉 into three parts: tree level
∣∣∣A(0)

n

〉
, one loop

virtual
∣∣∣A(1)

n

〉
, and real emission

∣∣∣A(0)
n+1

〉
contributions. The expansion at NLO gives:

〈A|A〉 =
〈
A(0)
n

∣∣A(0)
n

〉
+
〈
A(1)
n

∣∣A(0)
n

〉
+
〈
A(0)
n

∣∣A(1)
n

〉
+
〈
A(0)
n+1

∣∣∣A(0)
n+1

〉
. (2.23)

Within the eikonal approximation, the latter can be expressed in terms of the tree-level

amplitude and an eikonal factor, as in (2.2). With pl the momentum of the leg l emitting

the gluon k, we have:

lim
k→0

∣∣∣A(0)
n+1

〉
= gs

∑
l

∣∣A(0)
n

〉
soft, l

= −gs
∑
l

pl.ε
∗(k)

k.pl
tl
∣∣A(0)

n

〉
. (2.24)

In addition, any amplitude can be expanded over the orthogonal colour tensor basis, see

section 1.3.1:

|A〉 =
∑
i

〈Ci|A〉
〈Ci|Ci〉

|Ci〉 . (2.25)

From there, we can define the hard and soft matrices in colour space, up to one-loop level:

H
(0)
ij =

1

2πN
1

ω(I1)ω(I2)

〈
Ci

∣∣∣A(0)
n

〉〈
A(0)
n

∣∣∣Cj〉
〈Ci|Ci〉 〈Cj|Cj〉

,

H
(1)
ij =

1

2πN
1

ω(I1)ω(I2)

〈
Ci

∣∣∣A(1)
n

〉〈
A(0)
n

∣∣∣Cj〉+
〈
Ci

∣∣∣A(0)
n

〉〈
A(1)
n

∣∣∣Cj〉
〈Ci|Ci〉 〈Cj|Cj〉

,

S
(0)
ij = 〈Ci|Cj〉 ,

S
(1)
ij =

∑
kl

Êkl 〈Ci| tk · tl |Cj〉 ,

(2.26)
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where Êkl is an eikonal factor that will be derived later in section 2.3.1. We recognise in

(2.26) the expression of the colour factors of section 1.3.3, up to a multiplication by S(0).

As previously stated, PDF factorisation enables us to focus on the partonic cross section.

However, we must also take into account the renormalisation of the PDF themselves in

the MS scheme. In particular, it leads to PDF counterterms that are essential to cancel

the infrared divergences arising from the hard function, as detailed in [36]. We reformulate

slightly this result by introducing the beam functions multiplying the PDFs:

Bi(N) =
∑
j

B̂ij(N,µ, µF )Fj(N,µF ) , (2.27)

where B̂ij(N,µ, µF ) corresponds to the Mellin transform of matching coefficients (or parton

operators, see section 4 of [36]), including both singular and µ dependent parts. µ is

the common scale chosen for the evaluation of the cross section, see (2.32), that can be

different from µF . Then, up to first order, we have:

B̂
(0)
ij (N,µ, µF ) = δij B̂

(1)
ij (N,µ, µF ) =

(4π)ε

Γ(1− ε)

[1

ε
+ ln

( µ2

µ2
F

)]
P

(1)
ij (N) , (2.28)

with the general perturbativbe expansion in terms of αs for any quantity X:

X =
n∑
k=0

X(k)
(αs

2π

)k
. (2.29)

In the large N limit, we have for the splitting kernels:

P
(1)
ij (N) = δij

(
− 2Ci lnN + γi

)
, (2.30)

where γi is the collinear anomalous dimension, see (1.31):

γq =
3

2
CF , γg = β0 . (2.31)

So that, at one-loop level, the beam functions are diagonal in flavour space. Therefore, we

can maintain the original PDFs in (2.22) whilst incorporating the beam functions into

the partonic cross-section. We can focus on the regular term alone in (2.28), after the

cancellation of poles since we consider the renormalised quantities, free of divergences.

In addition, as we have seen in section 2.1.3, resummation implies the introduction of

exponential factors like the colour-diagonal Sudakov form factor (see appendix A.8),

noted as G(λ, µR, µF ) = exp
(
g1(λ) lnN + g2(λ)

)
at NLL. Finally, we can formulate the

Yehudi SIMON | Sorbonne Université 50
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differential cross section using the soft and hard colour matrices, incorporating the beam

functions:

d2σ̂res.(N,µ)

dM2dΦn

= Tr
(
H(µ, µR).S(µ, µS)

)
B̂1(N,µ, µF )B̂2(N,µ, µF )G(λ, µR, µF ) . (2.32)

The hard matrix H encapsulates the underlying high-energy partonic process. Order

by order it includes the virtual loops that are N independent, as we can see from the

definitions in (2.26). On the other hand, S encodes the soft radiations arising in the

process. In particular, it contains the N dependent threshold logarithms that we aim to

resum. The matching coefficients have the following expansion at a fixed order in αs:

S =
n∑
k=0

S(k)
(αs

2π

)k
, H =

n∑
k=0

H(k)
(αs

2π

)k
. (2.33)

In (2.32), we detailed the scale dependence of each piece, including the commom scale µ as

well as the respective initial scales: µR from αs renormalisation, µF from PDF factorisation

and µS from the soft matrix renormalisation. In principle, any scale µ could be chosen

to evaluate the partonic cross section. However, in order to avoid the use of more scales

than necessary, the renormalisation scale µR is used as a common scale for the evaluation:

µ = µR. Therefore, the hard function is directly evaluated at the relevant scale, while the

soft and beam functions have to be evolved, as described in sections 2.3.2 and 2.3.3. We

chose to evaluate at µR to focus on the soft physics involved in the evolution of the soft

function but other choices exist in the literature.

The following sections aim to provide further information on the pieces mentionned

above, particularly the soft matrix S(1). In the soft approximation, the elements of the

resummation are, to some extent, universal. This implies that the soft parts of a given

process do not depend on hard-scale physics or fixed-order loop computations outside

the soft regime. Although they depend on the particle content of the process, they can

also be employed for other calculations. This essential resummation property will be

extensively used in chapter 3 to repurpose the commonly known functions associated with

the Drell-Yan process for the case of exotic BSM lepton production.
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2.3 Colour matrices

2.3.1 Soft matrix

At tree level we can simply express the soft function as products of the colour basis

tensors, see (2.26). As we chose an orthogonal basis, S(0) is diagonal:

S
(0)
ij = 〈Ci|Cj〉 = δij 〈Ci|Ci〉 . (2.34)

At first loop level, we can use the previous eikonal Feynman rules (2.2) and phase space

factorisation (2.7) to compute the soft function matrix. The eikonal decomposition at

amplitude level can be represented diagramatically as following, with the sum running on

all partons (incoming or outgoing):

3

Me

...

n+ 1

1

2

∑
a

3

Mh

n

a

k

1

2

...

...

This translates at the differential cross section level as:

dΦn+1

∑
|Me|2 =dΦn

∑
|Mh|2g2

sµ
2ε
∑
ab

ta · tb −pa.pb
pa.kpb.k

dd−1k

(2π)d−12|k|
dM2δ((P − k)2 −M2)

=− dσB
αsµ

2ε

4π2ŝ

∑
ab

ta · tb pa.pbk
2

pa.kpb.k

dkk−1−2ε

(2π)−2ε
dM2δ

(
1− z − 2k√

ŝ

)
dΩ3−2ε ,

(2.35)

with dΩi the differential for angles in i dimensions. Dropping the dM2 integration and

performing the integration on the gluon momentum k, we obtain:

dσB dS(1) = −dσB
αs
4π2

∑
ab

ta · tb(4π)2ε
( µ2

M2

)ε
zε(1− z)−1−2εdΩ3−2εk

2 pa.pb
pa.kpb.k

. (2.36)

We need to expand the factor (1− z)−1−2ε as follows:

(1− z)−1−2ε = −δ(1− z)

2ε
+

1

1− z

∣∣∣
+
− 2ε

ln(1− z)

1− z

∣∣∣
+

+O(ε2) . (2.37)

The soft matrix is obtained by the integration over the angles in d− 1 = 3− 2ε dimensions:
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αs
2π

S(1) =−
∑
a,b

ta · tb αs
4π2

(4π)2ε
( µ2

M2

)ε
zε(1− z)−1−2ε

∫
dΩ3−2εk

2 pa.pb
pa.kpb.k

=−
∑
a,b

ta · tb αs
4π2

(4π)ε
( µ2

M2

)ε
zε

4π

Γ(1− ε)(
− δ(1− z)

2ε
+

1

1− z

∣∣∣
+
− 2ε

ln(1− z)

1− z

∣∣∣
+

)(Ωab
−1

ε
+ Ωab

0 + Ωab
1 ε
)

=
∑
a,b

ta · tbαs
π

(4π)ε

Γ(1− ε)

( µ2

M2

)ε(δ(1− z)Ω−1

2ε2
− Ω−1

ε

1

1− z

∣∣∣
+

+
δ(1− z)Ω0

2ε
+ 2Ω−1

ln(1− z)

1− z

∣∣∣
+
− Ω0

1

1− z

∣∣∣
+
− Ω−1

ln(z)

1− z
+
δ(1− z)Ω1

2

)
,

(2.38)

where we omitted the ab superscript on Ωab
i for simplicity, but we should keep in mind

that the Ωi coefficients still depend on the corresponding partons (a, b). Applying the

Mellin transform to the previous expression is relatively straightforward (refer to A.35):

S(1) =
∑
a,b

ta · tb (4π)ε

Γ(1− ε)

( µ2

M2

)ε[Ω−1

ε2
+

2Ω−1

ε
lnN +

Ω0

ε

+ 2Ω−1

(
ln2N +

π2

6

)
+ 2Ω0 lnN + Ω1

]
+O

( 1

N

)
+O(ε) .

(2.39)

The expressions of Ωi, depending on the masses of partons a and b, are detailed in table

2.2, with:

vab =

√
1−

(mamb

pa.pb

)2

and βa =

√
1−

(ma

Ea

)2

.

From (2.39), it can be observed that S(1) contains poles, a scale dependence as well as

finite reminders, including both L dependent and independent terms. The soft matrix

is not expressed in the colour tensor basis but directly in terms of colour factors from

section 1.3.2. In order to obtain a comparable formula to (2.26), projection on 〈Ci| • |Cj〉
is required.

Ω coefficients

In order to obtain the expression of the Ω coefficients, we need to perform the angular

integral in d− 1 dimensions. We can extract those results from the eikonal integral in [57],

where we have the following expressions:
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a = b ma = 0 a = b ma 6= 0 ma = 0 = mb ma = 0 mb 6= 0 mamb 6= 0

Ω−1 0 0 −1 −1/2 0

Ω0 0 1 ln
pa.pb

2EaEb
ln
pa.pb
Eamb

1

2vab
ln
(1 + vab

1− vab

)
Ω1 0

1

βa
ln

(
1 + βa
1− βa

)
π2

6
+ Li2(1− 2EaEb

pa.pb
) ϑ1 ϑ2

Table 2.2: Eikonal coefficients Ω−1/0/1 for each combination of massive/massless Wilson lines

Eij = −ξ
−2ε

2ε

22ε

(2π)1−2ε

( s
µ2

)−ε ∫
dΩ

(d−1)
k E2

k

pi.pj
(pi.k)(pj.k)

=
(4π)ε

Γ(1− ε)

( µ2

M2

)ε[E−2

ε2
+
E−1

ε
+ E0

]
.

(2.40)

where we omitted the ij dependence in the same manner as we did for the Ω coefficients.

The connection between the eikonal factor Eij and Ωij is straightforward, simply cancelling

the ln
( sξ2

M2

)
component.

• Ω1 = −E0 − E−1 ln

(
sξ2

M2

)
− E−2

2
ln2
( sξ2

M2

)
,

• Ω0 = −E−1 − E−2 ln

(
sξ2

M2

)
,

• Ω−1 = −E−2 .

(2.41)

All the simple expressions of the Ω coefficients can be checked from the results in [57]. We

only detail the complex formulas, namely ϑ1 and ϑ2 from table 2.2. However, before going

any further we should clarify the expression in the massless scenario:

• For ma = mb = 0, we have:

Ω1 = Li2
pa.pb

2EaEb
− 1

2
ln2 pa.pb

2EaEb
+ ln

pa.pb
2EaEb

ln

(
1− pa.pb

2EaEb

)
=
π2

6
+ Li2(1− 2EaEb

pa.pb
) .

(2.42)

• For ϑ1, in the case mb = 0 6= ma, we have:
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ϑ1 =
π2

12
+

1

4
ln2(

1 + βa
1− βa

) + Li2(1− EaEb(1 + βa)

pa.pb
)− Li2(1− pa.pb

EaEb(1− βa)
)− 1

2
ln2(

pa.pb
EaEb(1− βa)

)

=
π2

12
+

1

4
ln2(

1 + βa
1− βa

) + Li2(1− EaEb(1 + βa)

pa.pb
) + Li2(1− EaEb(1− βa)

pa.pb
) .

(2.43)

• For ϑ2, in the case ma 6= 0, mb 6= 0, a 6= b, we have:

ϑ2 =
−(1 + vab)(pa.pb)

2

2m2
a

(
J (Akl)(αabEa, αabEaβa)− J (Akl)(Eb, Ebβb)

)
,

(2.44)

with:

J (Akl)(x, y) =
1

2νklλkl

[
ln2
(x− y
x+ y

)
+ 4Li2

(
1− x+ y

νkl

)
+ 4Li2

(
1− x− y

νkl

)]
,

where : νkl =
α2
klm

2
k −m2

l

2λkl
, λkl = αklEk − El and αkl =

1 + vkl
m2
k

pk.pl .

(2.45)

In the specific case of top (or other heavy quark) pair production, these expressions become

slightly simpler (see A.7.1). We now have the generic expression for the scale dependent

S(1) before any resummation or cancellation of poles. Henceforth, we will assume that

the cancellation of the poles has been achieved and focus on the regular part of S(1). It

is important to note that the structure of the poles is crucial for the expansion of the

scale-dependent factor. Even if we don’t include them per se in the soft matrix, the poles

echo in the scale dependence. Let us collect the regular components of S(1), including the

µ dependence.

S(1) =
(4π)ε

Γ(1− ε)
∑
a,b

ta · tb
{

Ω−1

[1

2
ln2
(µ2N

2

M2

)
+
π2

3

]
+ Ω0 ln

(µ2N
2

M2

)
+ Ω1

}
. (2.46)

From this, it is apparent that the scale choice µ = M/N ≡ µS is special since it cancels

the logarithmic contributions and L dependence. This scale corresponds physically to

the soft scale that governs gluon emission under the eikonal approximation. It will be

used as the initial condition for S(1) in the renormalisation group evolution, as it renders

the matching coefficient independent of L. However, it is crucial to select a consistent

evaluation scale for all resummation components. If the partonic cross section is evaluated
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at renormalisation scale µR, we need to evolve S(1) accordingly from µS to µR. We can

link expression (2.47) with the definition (2.32) by setting:

Êkl =
(4π)ε

Γ(1− ε)

(
Ω−1

π2

3
+ Ω1

)
. (2.47)

2.3.2 Soft anomalous dimension matrix

The soft anomalous dimension matrix determines how the soft function evolves with

the scale. Therefore, it should satisfy the following RGE order by order:

dS

d ln(µ2)
= ΓS · S + S · Γ†S . (2.48)

Which gives at first order in αs (Γ
(0)
S = 0):

dS(1)

d ln(µ2)
= Γ

(1)
S · S

(0) + S(0) · Γ(1) †
S . (2.49)

We can formally solve this equation:

S(µ) = P exp
[ ∫ µ2

µ2
S

dµ′2

µ′2
αs(µ

′)

2π
Γ

(1)
S

]
S(µS)P exp

[ ∫ µ2

µ2
S

dµ′2

µ′2
αs(µ

′)

2π
Γ

(1) †
S

]
, (2.50)

where the P stands for path ordering, needed for formal integration of matrices in

exponentials. The equation (2.49) alone is insufficient to determine ΓS uniquely, although

the final result should satisfy it. Actually, the anomalous dimension is defined from the

renormalisation factors ZS acting on the soft amplitude. We can write the (renormalised)

soft matrix as a product of soft amplitudes:

SMS =
∣∣∣AMS

S

〉〈
AMS
S

∣∣∣ ∣∣∣AMS
S

〉
= lim

ε→0
Z−1
S |AS〉 . (2.51)

Then we can define ΓS from the renormalisation factors:

d
∣∣∣AMS

S

〉
d ln(µ2)

= ΓS ·
∣∣∣AMS

S

〉
=⇒ ΓS =

dZ−1
S

d ln(µ2)
· ZS .

(2.52)

At tree-level, the renormalisation factor is simply the identity: Z
(0)
S = 1. Once expressed

in the colour tensor basis, we recover (2.34). We can easily express:

Γ
(1)
S =

dZ
(1)−1
S

d ln(µ2)
· Z(0)

S = −Z
(0)−1
S · dZ

(1)
S

d ln(µ2)
. (2.53)
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In the MS scheme, the renormalisation factor eliminates the UV divergences for both the

soft and hard functions individually. The remaining IR divergences arising from the virtual

contribution have to cancel out exactly the real emission poles order by order (see A.6).

Thus, by calculating the virtual one-loop poles, we can determine the soft poles (with a

minus sign). We consider two external Wilson lines connected through a soft gluon, with

a and b massless, c and d massive:

b

H

a
d

c b

H

d
a

c

b

H

a d

c b

H

a d

c

b

H

a d

c

Here, we consider the case of four external legs in order to cover all possible combinations

of massive or massless Wilson lines. Nevertheless, this reasonning also applies if there are

fewer or more external particles. In general, the virtual integral connecting the Wilson

lines i and j, in the eikonal approximation, can be expressed as:

|AS〉ij = (−1)δijti · tj
∫

ddk

(2π)d
2ig2

sσijpi.pj
k2((k + pi)2 −m2

i )((k + σijpj)2 −m2
j)
, (2.54)

where σij = −1 for different Wilson lines from the same side (incoming or outgoing),

otherwise (opposite sides or same Wilson line) σij = 1. This term is equivalent to

Sij = δiδj∆i∆j in the original formulation [27]. Therefore, the Z
(1)
S factor corresponds to

the poles resulting from the integral (2.54). The poles will be subtracted from |AS〉 to

obtain the finite
∣∣∣AMS

S

〉
. In fact, we can use once again the eikonal integrals from [57] as
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we did in section 2.35 to derive the poles. With Z
(1)
S =

∑
ij

Z
(1) ij
S , we can express Z

(1) ij
S ,

noting the Binoth factor as Sε =
(4π)ε

Γ(1− ε)
, for each case depicted in the diagrams above:

• i = j, mi = 0 Z
(1) ii
S = 0 ,

• i = j, mi 6= 0 Z
(1) ii
S = −αs

4π
Sε
( µ2

M2

)εCi
ε
1 ,

• i 6= j mi = mj = 0 Z
(1) ij
S = 2

αs
4π
Sε
( µ2

M2

)ε
ti · tj

[ 1

ε2
− 1

ε
ln
(σijpi.pj

2EiEj

)]
,

• i 6= j, mimj 6= 0 Z
(1) ij
S =

αs
4π
Sε
( µ2

M2

)ε
ti · tj 2

ε

1

vij

[
− ln

(1 + vij
1− vij

)
+ 2iπ

]
,

• mi 6= mj = 0 Z
(1) ij
S =

αs
4π
Sε
( µ2

M2

)ε
ti · tj

[ 1

ε2
− 2

ε
ln
( pi.pj
Ejmi

)]
.

(2.55)

We have double poles in the massless components of Z
(1)
S due to soft collinear divergence.

However, this behaviour should not be considered when calculating the soft anomalous

dimension since it also includes collinear divergence, which is not present in pure soft

objects. Soft-collinear resummation will be included at the level of the Sudakov form

factor, see appendix A.8.

At the one-loop level, we can derive the soft anomalous dimension colour matrix:

αs
2π

Γ
(1)
S, kl =

(dZ
(1)−1
S

d ln(µ2)
· Z(0)

S

)
kl

= − 1

〈Ck|Ck〉
dZ

(1)
S, kl

d ln(µ2)
= −αs

2π
Sε
∑
ij

ωij
〈Ck| ti.tj |Cl〉
〈Ck|Ck〉

,

(2.56)

where we introduced the eikonal factors ωij , which encode the result of the Z
(1)
S derivation.

The derivation with respect to ln(µ2) is equivalent to cancelling (µ2/M2)ε/ε in (2.55), as we

already argued that double poles should not affect the computation. This decomposition

allows for the separation of the anomalous dimension matrix computation into two

independent pieces, namely the colour factors ti · tj expressed in the colour basis, and

the eikonal factors ωij arising from the previous eikonal integrals. The colour factors are

the matrix representation of the colour tensors established in section 1.3.2, in the colour

tensor basis used for the process. We simply ensure that the normalisation is correct by

checking the quadratic case:

〈Ck| ti · ti |Cl〉
〈Ck|Ck〉

= Ciδkl ,
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where the right hand side Ci is the quadratic Casimir operator. These colour factors

depend only on the colour representation and contain no information about the kinematics

of the process. In a sense they are just a family of matrices spanning ΓS with eikonal

weights.

Once the global normalisation is settled, we can express the eikonal factors ωij . However,

we must stress out that there is no unique expression of these eikonal factors. We can

illustrate this by using the colour conservation and shifting the weight by an arbitrary

quantity: ω̃ij = ωij + δi. Then, by colour conservation we have:

∑
ij

ω̃ij
〈Ck| ti · tj |Cl〉
〈Ck|Ck〉

=
∑
ij

ωij
〈Ck| ti · tj |Cl〉
〈Ck|Ck〉

+
∑
i

δi
〈Ck| ti ·

(∑
j tj
)
|Cl〉

〈Ck|Ck〉

=
∑
ij

ωij
〈Ck| ti · tj |Cl〉
〈Ck|Ck〉

,

(2.57)

Here is a set of expressions for the eikonal factors that are coherent with [27] or [74]:

• i = j, mi = 0 ωii = 0,

• i = j, mi 6= 0 ωii = −1

2
,

• i 6= j mi = mj = 0 ωij = − ln
( pi.pj

2EiEj

)
− iπ

2
(1− σij) ,

• mi 6= mj = 0 ωij = − ln
( pi.pj
Ejmi

)
,

• i 6= j, mi.mj 6= 0 ωij = − 1

vij

[
ln
(1 + vij

1− vij

)
+ 2iπ

]
.

(2.58)

For simplicity gauge dependent terms, like the νi in [27], have been excluded from the

ω factors, as ΓS should be gauge invariant. Of course gauge terms should not have any

physical contribution, and we can check that they either cancel or give a pure-imaginary

diagonal contribution not affecting the evolution of the soft function. For explicit examples

of soft anomalous dimension matrices, refer to appendix A.7.2.

It should be noted that Γ
(1)
S does not depend on any arbitrary scale µ. As a result, the

soft anomalous dimension can be positioned in front of the integration in (2.50) and the

path ordering P can be omitted. With this simplification, we can perform the evolution

integral from µS to µR, using the x definition from (1.3):
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Γ
(1)
S

∫ µ2
R

µ2
S

dµ′2

µ′2
αs
2π

1

1 + x(µ′)
=− αs

2π
Γ

(1)
S

2π

αsβ0

∫ x(µS)

0

dx

x

1

1 + x

=− Γ
(1)
S

β0

ln
[
1− αs

π
β0 ln

(µRN
M

)]
=− Γ

(1)
S

β0

[
ln(1− 2λ) + ln

(
1 +

x(M)

1− 2λ

)]
'− Γ

(1)
S

β0

[
ln(1− 2λ) +

αs
2π
β0 ln

(M2

µ2
R

)(
1 +

2λ

1− 2λ

)]
.

(2.59)

We observe that the integration results in a part that depends on N , which contributes

to the resummation through an exponential factor and a second term that contains an

N -independent piece that should be expanded at fixed order. The final term, proportional

to 2λ/(1−2λ), is of order O(α2
sL) and only contributes to N2LL accuracy, which is beyond

the scope of this study.

2.3.3 Beam functions

In order to evolve the renormalised beam functions from µF to µR, similarly to the

soft function’s evolution from µS to µR, the corresponding RGEs for the beam functions

need to be solved. The kernels of the RGEs are simply the splitting kernels (1.32) as the

beam functions account for the PDFs and their counter terms. At first order, the beam

functions and splitting kernels are diagonal in flavour space. We have the following RGE,

including the PDF, expanded at order O(αs):

dBi

d ln(µ2)
=
∑
j

PijBj ,

dB
(1)
i

d ln(µ2)
= P

(1)
ii fi(µF ) ,

(2.60)

with the formal solution for the beam functions:

B̂i(N,µ, µF ) = exp
[ ∫ µ2

µ2
0

dµ′2

µ′2
αs(µ

′)

2π
P

(1)
ii (N)

]
B̂i(N,µ0, µF ) , (2.61)

with B̂i(N,µF , µF ) = 1. Since P
(1)
ii (N) = −2Ci ln

(
N
)

+ γi, the L independent part should

be expanded, while the N dependent part is included in the g2 function of the Sudakov

factor (see A.78). Indeed, the integration gives:
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∫ µ2
R

µ2
F

dµ′2

µ′2
αs
2π

−2Ci ln
(
N
)

+ γi

1 + x(µ′)
=− αs

2π

(
− 2Ci ln

(
N
)

+ γi

) 2π

αsβ0

∫ x(µF )

0

dx

1 + x

=−
−2Ci ln

(
N
)

+ γi

β0

ln
[
1 +

αs
π
β0 ln

(µF
µR

)]
'− αs

2π

(
− 2Ci ln

(
N
)

+ γi

)
ln
(µ2

F

µ2
R

)
+O(α2

s) .

(2.62)

After expansion, we have the N -independent beam contribution at one-loop:

B̃i(µR, µF ) = B̃
(0)
i (µR, µF ) +

αs
2π
B̃

(1)
i (µR, µF ) = 1 +

αs
2π

ln
(µ2

R

µ2
F

)
γi . (2.63)

And the resummed contribution entering the Sudakov, see the last term in (A.78):

ln
(B̂i

B̃i

)
(µR, µF ) =

2Ciλ

β0

ln
(µ2

F

µ2
R

)
. (2.64)

2.3.4 Hard matrix

The hard matrices may be defined order by order via the coloured loop amplitudes∣∣∣A(k)
n

〉
and their contraction with the colour tensor basis, as defined in section 2.3.1. The

amplitudes
∣∣∣A(k)

n

〉
are process-specific and cannot be generically computed, unlike the

soft functions. Nevertheless, the Born and one-loop amplitudes can be automatically

computed by codes like MG5aMC [75, 76]. Assuming that the setup (particle masses,

couplings, PDFs, hadronic centre of mass energy...) is coherent between the different parts

of the calculation, we can extract the coloured amplitudes
∣∣∣A(0)

n

〉
and

∣∣∣A(1)
n

〉
, from the

MadLoop tool used in MG5aMC. This method was used in the case of the processes in

chapter 4 to generate the hard parts needed in (2.26).

In simpler cases, we can compute H(0) directly, for example in the pp −→ tt̄ process.

We introduce the reduced Mandelstam variables t1 = (p1 − pt)
2 − m2

t = t − m2
t and

u1 = (p1 − pt̄)2 −m2
t = u−m2

t , with mt is the mass of the top quark, p1 and p2 the four

momenta of the incoming partons. For this process, we have the following parton channels:

q1q̄2 −→ t3t̄4

The quark channel can be represented diagrammatically as:
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q

q̄ t

t̄ .

We can associate the singlet-octet colour basis:

{δc2c1δc3c4 ; Ti
c2c1

Ti
c3c4
} , (2.65)

which gives at Born level, after taking the matrix element squared, with M the invariant

mass of the tt̄ final state:

H(0) =
128π2α2

s

8N2
cM

2

(t21 + u2
1 + 2m2

tM
2

M4

) (0 0

0 1

)
, (2.66)

g1g2 −→ t3t̄4

For the gluon fusion channel, we have the following diagrams:

g

g t

t̄
g

g t

t̄

We can choose the colour basis obtained by the symmetrisation and antisymmetrisation of

the two octets together with a singlet:

{δc1c2δc3c4 ; if c1c2jTj
c3c4

; dc1c2jTj
c3c4
} . (2.67)

Then at the hard matrix level:

H(0) =
32π2α2

s

8(N2
c − 1)2

(t21 + u2
1 + 4m2

tM
2

M2t1u1

− 4m4
tM

2

t21u
2
1

)


1

N2
c

1

Nc

t1 − u1

M2

1

Nc
1

Nc

t1 − u1

M2

(t1 − u1

M2

)2 t1 − u1

M2

1

Nc

t1 − u1

M2
1

 . (2.68)
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2.4 General expression and implementation

2.4.1 Resummation formula

When all previous results are gathered, a closed formula for the resummed differential

cross section at NLL can be obtained:

d2σ̂res.(N,µF , µR)

dM2dΦn

= exp
(
g1(λ) lnN + g2(λ)

)
B̃1(µR, µF )B̃2(µR, µF )Tr

[(
H(0) +

αs
2π

H(1)(µR)
)
·

exp
( ln(1− 2λ)

β0

Γ
(1)
S

)
·
(
S(0) +

αs
2π

[
S(1)(µS) + ln

(M2

µ2
R

){
Γ

(1)
S · S

(0) + S(0) · Γ(1) †
S

}])
·

exp
( ln(1− 2λ)

β0

Γ
(1) †
S

)]
.

(2.69)

The exponential factor exp
(
g1(λ) lnN + g2(λ)

)
corresponds to the Sudakov factor, see

appendix A.8 for more details. We can notice that the formula (2.69) contains matrixial

exponents comming from the soft anomalous dimension. In general we need to diagonalise

these matrices to evaluate the exponentials, like in [77]. In some specific regimes, like the

absolute threshold limit (see section 4.1.1) for heavy (s)quark pair production [78] in some

particular colour basis, the soft anomalous dimension matrix becomes diagonal so that

we can avoid the cost of the diagonalisation procedure. In fact, the choice of a particular

colour basis can be motivated by the diagonalisation proprieties of the soft anomalous

dimension as in [31].

Equation (2.69) details the content of the partonic differential cross section. In order

to calculate the physical cross section, we need to obtain the PDFs in Mellin space as they

appear in (2.22).

2.4.2 Implementation of PDFs

In order to avoid the numerical cost of performing the Mellin transform of the PDFs,

we follow the implementation performed in [79] by making use of a MSTW-like parameter-

isation:

f(x) = A0x
A1(1− x)A2

(
1 + A3

√
x+ A4x+ A5x

3/2 + A6x
2 + A7x

5/2
)
. (2.70)

This yields the following analytical Mellin transform (see A.35), where we introduce the

Euler beta function B(x, y) = Γ(x)Γ(y)/Γ(x+ y):
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F (N) = A0

[
B(A1 +N,A2 + 1) + A3B

(
A1 +N +

1

2
, A2 + 1

)
+ A4B(A1 +N + 1, A2 + 1) + A5B

(
A1 +N +

3

2
, A2 + 1

)
+ A6B(A1 +N + 2, A2 + 1) + A7B

(
A1 +N +

5

2
, A2 + 1

)]
.

(2.71)

In addition, each PDF also depends on the factorisation scale µF . This means that, for

every chosen value of µF and for each parton (both gluon and active quark flavours), we

need to fit the eight parameters Ai. One potential approach is to fit the PDFs at one scale

and then evolve them. However this process becomes quite complex beyond the first order

addressed in appendix A.4. Dedicated codes, such as QCD-Pegasus [80] are dedicated to

PDF evolution, but we chose another approach suitable for the work presented in this

document. A more practical solution is to perform the fit for each desired µF value. While

the fitting procedure is not excessively time-consuming, this approach ensures that we can

accurately describe the PDFs at each distinct scale of interest. As a drawback, it becomes

more difficult to integrate the differential cross section using a dynamical factorisation

scale since the fit has to be performed locally.

Fit results

Figure 2.1 displays the ratios of the fit to the original LHAPDF output from the

CT18NLO set, as well as its Mellin transform brought back in x space after Mellin

inversion (see section 2.4.3 for more details).

The parameterisation and fitting procedure demonstrate high precision for x values below

0.1. However, beyond this value, the fit oscillates up to x ' 0.4 and then drops rapidly

compared to the original PDF. This behaviour is also observed in [79], which uses the

same kind of PDF parameterisation. Nevertheless, this mismatch is not expected to

significantly impact the physical predictions. Indeed, as we can see in figure 1.2, PDFs

are higly suppressed in the high x region, indicating virtual partons have little chance of

monopolising the momentum of a hadron. Hence, the high x region hardly contributes

when computing physical observables like the cross section. On the other hand, the

numerical inverse of the Mellin transform is extremely precise and do not involve further

mismatch compared to the analytical fit. We must highlight that the fit in figure 2.1

was obtained by successively fitting the PDF on four ranges, each one corresponding

to one order of magnitude in x. It implies that small discontinuities are expected at

x ∈ {10−3, 10−2, 10−1}. In the actual implementation for practical use, we take care to

choose a single range of x to fit the LHAPDF input. This range should be selected around

a representative x value, in the relevant region of interest to calculate the observable, and
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Figure 2.1: Ratio of direct fit and inversed Mellin transformed analytical fit with respect to
CT18NLO gluon PDF at µF = 10 GeV

not cover too many orders of magnitude for the fit to be accurate. Later on, to assess the

quality of the fit, we consistently compare our tree-level predictions with those generated

by the Monte-Carlo event generator MadGraph5 aMC@NLO [75,76] (MG5aMC). Any

significant discrepancies at tree level could indicate issues with the fitting procedure. As the

PDFs should have a similar impact on tree-level, resummed or higher-order computations,

checking at the lowest complexity level is relevant.

It is important to note that this parameterisation is not the only approach to obtain

analytical Mellin transform. For instance, Chebyshev polynomials can be used to fit the

PDFs, as in [81]. According to the authors of this article, using Chebyshev polynomials

increases numerical accuracy for practical purposes while reducing computational cost com-

pared to splines or other polynomial fits. On the other hand, the Chebyshev interpolation

seems more sensitive to fine-tunning effects regarding the intervals slicing or the maximal

degree chosen. While it is not technically difficult, the analytical Mellin transform is also

less direct than for the MSTW parameterisation. Having a complementary Chebyshev

fitting procedure would certainly be of use for the work presented in this document but is
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left for future development. In the same way, we can completely avoid using an analytic

parameterisation to obtain the Mellin transform of PDFs. Indeed, we can use the trick

described in appendix B of [82] which consist in incorporating the PDFs in a luminosity

factor and use an ansatz to improve numerical convergence.

2.4.3 Physical result in direct space

Inverse Mellin transform

The cross section in (2.22) has been transformed into Mellin space. To obtain a physical

result, the inverse Mellin transform (A.37) must be carried out:

dσ̂res.(τ, µF , µR) =
1

2iπ

∫ C+i∞

C−i∞
dNτ−Ndσres.(N,µF , µR) . (2.72)

The inverse Mellin transform is an integration in the complex plane parametrised by

two quantities, namely C ∈ R the real axis offset and Φ ∈
[
π/2, π

]
the angle tilting the

integration lines in the C plane. This enables us to parametrise N along the integration

path:

N(x) = C + xeiΦ x > 0 for Im(N) > 0 ,

N(x) = C + xe−iΦ x > 0 for Im(N) < 0 ,
(2.73)

with the corresponding illustration:

R

iR

C

Φ

Figure 2.2: N integration path for the inverse Mellin transform
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The integration parameters C and Φ are only necessary to ensure the numerical convergence

of the integration. The actual result should not depend on them, this property will be used

as a test for numerical stability. C should be selected to avoid the Landau pole on the

right (2λ = 1) and the pomeron singularity on the left. Following the minimal prescription

of [82], we have 2 < C < exp(π/αsβ0). A good empirical choice for these parameters is

C & 2.01 and Φ ' 3π/4. In fact we can simplify the integration by using the complex

conjugation between the two branches:

1

2iπ

∫ C+i∞

C−i∞
dNz−Nf(N) =

∫ C

C−i∞

dN

2iπ
z−Nf(N) +

∫ C+i∞

C

dN

2iπ
z−Nf(N)

= −
∫ C+i∞

C

dN

2iπ
z−Nf(N) +

∫ C+i∞

C

dN

2iπ
z−Nf(N)

=
1

π
Im
(∫ C+i∞

C

dNz−Nf(N)
)
,

(2.74)

under the hypothesis that f is a real function when N is real. In the end, it is only

necessary to integrate over one branch, for example the upper one.

Matching

Now that we have all access to the result of resummation in physical space, it is crucial

to understand how it can be matched with fixed-order predictions. Indeed, the resummed

observable should adjust the fixed-order prediction in the target region, where the fixed

order exhibits pathological behaviour (namely, threshold logarithms). However, in order

to produce meaningful predictions in all situations, we need to have a matching procedure

that combines both fixed-order and resumed results. The main concept is to add the fixed

order and the resummed observables coherently, for each scale value. However, we need to

take into account the double counting between the two terms. This can be resolved by

expanding the resummed prediction to the desired fixed order and substract it from the

matching. We denote the differential cross section computed at NLO, evaluated at scale

µR as dσf.o.
|µR , the resummed prediction as dσres.

|µR and the resummed cross section expanded

at NLO as dσres.
|f.o. µR . Then the matching simply reads:

dσmatch.
|µR = dσf.o.

|µR + dσres.
|µR − dσres.

|f.o. µR . (2.75)

To derive the expansion of the resummed result, we start from (2.69) and expand at O(αs):
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dσres.
|f.o. µ =Tr

[
H(0) · S(0)

(
1 +

αs
2π

(B̃
(1)
1 + B̃

(1)
2 ) + g1 f.o. lnN + g2 f.o.

)
+
αs
2π

H(0) · S(1) +
αs
2π

H(1) · S(0) − αs
2π
β0 lnN H(0) ·

(
Γ

(1)
S · S

(0) + S(0) · Γ(1) †
S

)]
.

(2.76)

The expressions of g1 f.o. and g2 f.o. are available in appendix A.8.2.

Scale variation and theoretical uncertainty

To evaluate the effectiveness of the resummation procedure, it is crucial to appreciate

the theoretical uncertainty arising from the different scales introduced into the calculation.

As we are carrying out a perturbative approach, either at fixed order alone or including

the resummation, we need to truncate the expansion at some point. This truncation

introduces a dependence on arbitrary scales introduced by the perturbative computation.

To prevent any physical artifacts, it’s typical to evaluate these scales as close to physical

values as possible. To obtain an estimate of the unaccounted higher-order information in

the computation, we calculate the relative change in results when the scales are varied.

Specifically, we estimate the theoretical error as the maximum and minimum values of

the prediction when the scales are varied by a factor of two around the central value. It

is standard practice to avoid using extreme variations when dealing with multiple scales.

In our case, the arbitrary scales are µF from the PDF factorisation and µR from the

hard matrix’s renormalisation. µS, relative to the soft matrix is fixed at M/N and is not

included in the scales variation. By selecting a central scale µ0 that is shared by both µF
and µR, we can explore variations within a 7-point set:

(µF , µR) ∈ µ0 ×
{(1

2
,
1

2

)
;
(1

2
, 1
)

;
(

1,
1

2

)
;
(

1, 1
)

;
(

1, 2
)

;
(

2, 1
)

;
(

2, 2
)}

. (2.77)
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Science must begin with myths, and with the criticism of myths

Karl Popper

xkcd comics n°2351, Standard Model Changes

The following chapter is widely inspired from the published work carried out in [83].

Slight modifications are made, in order to include the results presented there in the broader

framework of this document. We refer to pair production of colour singlet final states,

such as pp → l+l−, as Drell-Yan like processes. Consistency was checked between the

codes used in this chapter and chapter 4.
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3.1 BSM and exotic leptons searches

Several extensions of the Standard Model (SM) predict the existence of new exotic

heavy leptons. These arise in particular in composite models [84–86], grand unified

theories [87,88], supersymmetric models [89–91], left-right symmetric models [92–95], dark

matter scenarios [96] or in Type I [97–104] and Type-III [97, 105] seesaw models. In

composite scenarios, the new physics particle spectrum often features vector-like leptons

(VLLs) transforming as electroweak SU(2)L singlets or doublets. In contrast, in some

seesaw and left-right models, neutrino masses are generated from Yukawa interactions of

new electroweak singlets or triplets of fermions with the SM Higgs field and lepton weak

doublet. Consequently, searches for new heavy leptons consist of an important component

of the experimental beyond the SM (BSM) search programme at the Large Hadron Collider

(LHC).

The ATLAS and CMS collaborations have explored the associated parameter spaces,

both for promptly-decaying [106–123] and long-lived [111,124] extra leptons, and for a

variety of mass ranges. Limits have been set on the mixing properties of long-lived heavy

charge-neutral leptons for masses of 3–15 GeV, while short-lived neutral and charged

leptons must have masses of at least about 950 GeV in Type-III seesaw models (for

branching ratios of 1 in the final state considered). Moreover, in left-right models neutral

lepton masses must be larger than 3 TeV for WR boson masses smaller than 4–5 TeV, and

indirect probes for heavy neutrinos via vector-boson-fusion processes additionally constrain

masses ranging up to 20 TeV for large mixings with the SM leptons and neutrinos. Finally,

bounds on VLLs strongly depend on their representation under the electroweak symmetry

group and on the VLL couplings to SM leptons. For instance, whereas weak doublets

of VLL coupling to tau leptons are constrained to be heavier than about 1 TeV [108],

the limit drops in the 100 – 200 GeV range in the singlet case [122]. On the other hand,

LEP bounds on light VLLs are still relevant, and they impose a lower limit on the VLL

mass. Such a limit lies in the 100 GeV range at best, depending on the details of the

model [125–128].

From the theoretical side, total and differential cross section calculations for collider

processes involving extra neutrinos are known at next-to-leading order (NLO) in QCD in

a generic simplified model describing the dynamics of the heavy neutrinos [129,130], for

an effective left-right-symmetric scenario [131] and for the production of type III seesaw

leptons [132]. In addition, NLO-QCD predictions matched with threshold resummation at

the next-to-leading-logarithmic (NLL) accuracy [133–135] and approximate next-to-next-

to-leading-order cross section matched with next-to-next-to-leading-logarithmic (NNLL)

threshold resummation [136] can also be obtained from electroweakino pair-production

processes in the Minimal Supersymmetric Standard Model, after decoupling all super-

symmetric states but the produced electroweakinos. Beside differential and total rates,
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precision collider simulations in which NLO calculations are matched with parton showers

(PS) are available for heavy neutrino simplified models [129–131], as well as for VLL

models for well-defined mixings between the composite and the SM sectors [137]. However,

simulations for Type-III seesaw scenarios and generic composite VLL setups are only

available at leading order (LO) so far.

The goal of this chapter is to fill this gap, and to report about the development of

two new publicly available UFO [138] model libraries allowing for event generation at the

NLO+PS accuracy. Our implementation is suitable in particular to describe VLL and

Type-III seesaw lepton production processes from computations achieved by means of the

precision Monte Carlo event generator MadGraph5 aMC@NLO [75, 76] (MG5aMC).

Moreover, we take the opportunity to update predictions for the total rates and the

invariant mass distributions of the BSM Drell-Yan-like processes inherent to the models

considered, and present results at NLO in QCD matched with threshold resummation at

NNLL, following the formalism of [139–141].

The rest of this chapter is organised as follows. In section 3.2, we introduce two effective

theoretical frameworks suitable for our calculations, a first one dedicated to a simplified

VLL model and a second one to Type-III seesaw scenarios, and we report details about

their implementation. In section 3.3, we briefly describe the formalism that we use to resum

large threshold logarithms. In section 3.4, we make use of the MG5aMC platform to study

the phenomenology of the two models at the NLO+PS accuracy, as well as of an in-house

programme to handle predictions at NLO+NNLL in the strong coupling. We compute

total rates for the production of extra leptons (section 3.4.1), invariant-mass distributions

(section 3.4.2), and we additionally present for the first time NLO+PS-accurate differential

distributions relevant for experimental searches for VLLs and Type-III seesaw fermions

(section 3.4.3). We summarise our work and conclude in section 3.5.

3.2 Theoretical models and their implementation

In order to study the phenomenology of the considered models, we construct two

effective frameworks, one for each of the models. We minimally extend the SM in terms of

fields and interactions, so that the resulting new physics parameter spaces are of small

dimensionality.

3.2.1 A simplified model for VLL phenomenology

We begin by considering an extension of the SM in which the theory field content

includes a set of VLL fields. They are all colour singlet, but each of them lies in a different

SU(2)L representation. They are correspondingly assigned different hypercharge U(1)Y
quantum numbers. In order to be as model independent as possible, we adopt a simplified
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model approach and focus on extra leptons that are either electrically neutral or with an

electric charge Q = ±1. These leptons are organised in (vector-like) SU(2)L doublets and

singlets,

L0 =

N0

E0

 , Ẽ0 , Ñ0 , (3.1)

where in this notation the superscript ‘0’ indicates that the fields are gauge eigenstates,

and the tilde above a field indicates that it is an SU(2)L singlet. We next implement the

mixing between the SM and the new lepton fields. To this aim, we introduce an effective

parametrisation apt to capture the main phenomenological features of the vector-like

fields in a model-independent way, following guidelines introduced for vector-like quark

setups [142,143].

In practice, we assume that the mixing between the SM fields and the new leptons is

small, so that the gauge interactions of the different fields are unaffected to first order.

Moreover, we implement the off-diagonal interactions of the exotic leptons with the SM

ones through generic free parameters, which further open the VLL decay channels into a

SM lepton and an electroweak boson. The corresponding Lagrangian, given in terms of

mass eigenstates (the superscript ‘0’ being therefore dropped), reads

LVLL =LSM + iL̄ /DL−mNN̄N −mEĒE + i ¯̃N /∂Ñ −mÑ
¯̃NÑ + i ¯̃E /DẼ −mẼ

¯̃EẼ

+
∑

Ψ=E,Ẽ

[
hΨ̄
(
κ̂Ψ

LPL + κ̂Ψ

RPR

)
`+

g√
2

Ψ̄ /W
−
κΨ

LPLν` +
g

2cW
Ψ̄/Z
(
κ̃Ψ

LPL + κ̃Ψ

RPR

)
`+ H.c.

]
+
∑

Ψ=N,Ñ

[
hΨ̄κ̂Ψ

LPLν` +
g

2cW
Ψ̄/Zκ̃Ψ

LPLν` +
g√
2

Ψ̄ /W
+
(
κΨ

LPL + κΨ

RPR

)
`+ H.c.

]
,

(3.2)

where LSM is the SM Lagrangian, and the parameters mN , mE, mÑ and mẼ stand for the

masses of the four new fields in the physical basis, assuming that the masses of the doublet

component fields can be different after electroweak symmetry breaking and particle mixing.

The first two lines in this Lagrangian include, additionally to the SM Lagrangian, all

gauge-invariant kinetic and mass terms for the new states. The gauge-covariant derivative

operator Dµ is defined, for a generic field ψ, by

Dµψ = ∂µψ − ig′BµY ψ − igW k
µT

kψ . (3.3)

Here, the coupling constants g and g′ respectively stand for the weak SU(2)L and hyper-

charge U(1)Y coupling constants, and Bµ and W k
µ are the associated gauge fields. The

action of the hypercharge operator Y on the field ψ can be deduced from table 3.1, as

the representation to adopt for the SU(2) generators T k. In particular, T k = 0 for an
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Field Spin Representation Name

L0 (1/2, 1/2) (1,2)−1/2 VLL0

Ñ0 (1/2, 1/2) (1,1)0 VLN0

Ẽ0 (1/2, 1/2) (1,1)−1 VLE0

Table 3.1: Gauge eigenstates complementing the SM field content, their spin given as their
representation under the SO(1, 3) group (second column), their SU(3)c × SU(2)L ×U(1)Y (third
column) representation and their name in the FeynRules implementation (last column).

Field Spin Name PDG Mass Width

N (1/2, 1/2) VLLN 9000001 MVLLN WVLLN

E (1/2, 1/2) VLLE 9000002 MVLLE WVLLE

Ñ (1/2, 1/2) VLN 9000003 MVLN WVLN

Ẽ (1/2, 1/2) VLE 9000004 MVLE WVLE

Table 3.2: Mass eigenstates supplementing the SM, with their spin quantum number (second
column), name used in the FeynRules convention (third column) and adopted PDG identifier
(fourth column). In the last two columns, we provide the FeynRules symbols associated with
the particle masses and widths.

SU(2)L singlet, and T k = σk/2 for an SU(2)L doublet, with σk being the Pauli matrices.

In other words, we approximate mass eigenstates by gauge eigenstates in all kinetic terms,

i.e. L0 ≈ L, Ẽ0 ≈ Ẽ and Ñ0 ≈ Ñ .

The last four lines of the Lagrangian (3.2) collect the effective interactions of each of

the four VLLs considered with a SM lepton (` standing for the charged lepton field and

ν` for the neutrino one), and either the Higgs boson h, the W boson or the Z boson. In

(3.2), all flavour indices are understood so that each of the κ, κ̂ and κ̃ couplings has to be

seen as a vector in the flavour space. Moreover, cW refers to the cosine of the electroweak

mixing angle.

In the following, the exact values of the κ, κ̂ and κ̃ coupling vectors are irrelevant,

provided that they are not too large to guarantee that the VLL states have a narrow

width, and not too small so that they can promptly decay into a lepton+electroweak boson

system within LHC detector scales. In a hadron collision process in which the new leptons

are pair produced, such couplings indeed only appear in the heavy particle decays.

In order to allow for phenomenological studies of the model, we implement it in the

FeynRules package [144,145], starting from the SM implementation that is shipped with

the programme. We include the definitions of the gauge eigenstates (3.1), together with the

corresponding mass eigenstates appearing in the Lagrangian (3.2). Information on these
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Couplings Names Les Houches blocks

(κ̂E
L)i, (κ̂E

R)i KLLEH[i], KRLEH[i] KLLEH, KRLEH

(κ̂Ẽ
L)i, (κ̂Ẽ

R)i KLEH[i], KREH[i] KLEH, KREH

(κ̂N
L )i KLLNH[i] KLLNH

(κ̂Ñ
L )i KLNH[i] KLNH

(κ̃E
L)i, (κ̃E

R)i KLLEZ[i], KRLEZ[i] KLLEZ, KRLEZ

(κ̃Ẽ
L)i, (κ̃Ẽ

R)i KLEZ[i], KREZ[i] KLEZ, KREZ

(κ̃N
L )i KLLNZ[i] KLLNZ

(κ̃Ñ
L )i KLNZ[i] KLNZ

(κE
L)i KLLEW[i] KLLEW

(κẼ
L)i KLEW[i] KLEW

(κN
L )i, (κN

R )i KLLNW[i], KRLNW[i] KLLNW, KRLNW

(κÑ
L )i, (κÑ

R )i KLNW[i], KRNW[i] KLNW, KRNW

Table 3.3: Three-point VLL coupling strengths to a SM lepton and an electroweak boson, given
together with the associated FeynRules symbol and the corresponding Les Houches block. The
indice i denotes a generation index ranging from 1 to 3.

fields, their names in the FeynRules conventions, and the Particle Data Group (PDG)

identifiers that we have adopted for the physical fields, are provided in tables 3.1 and 3.2.

These tables also include the symbols associated with the mass and width of the physical

fields. All BSM couplings appearing in (3.2) have been implemented as three-vectors in the

flavour space, following the convention of table 3.3. This table also includes information

on the Les Houches block structure used to organise all model external parameters [146],

as required by all high-energy physics programmes relying on FeynRules for model

implementation. Moreover, their specific contributions to any process can be turned off

through a dedicated interaction order named VLL (see the FeynRules manual [144]).

3.2.2 An effective Type-III seesaw Lagrangian

In Type-III seesaw models, neutrino masses are generated through the interactions of

the SM Higgs field Φ with the SM leptons and at least two generations of extra fermions

lying in the adjoint representation of SU(2)L and with zero hypercharge. In the following,

we make use of two-component Weyl fermion notation for all fields, and omit all SM and

BSM generation indices for clarity. In such a formalism, the Lagrangian of the model

is expressed in terms of the SM weak doublet of left-handed leptons LL, the SM weak
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singlet of right-handed charged leptons Ec
R (ER being thus the corresponding left-handed

Weyl spinor), and the weak triplet of extra lepton Σk (with k = 1, 2, 3 being an SU(2)L
adjoint index). The three gauge eigenstates Σk can be conveniently related to states of

definite electric charge E± ≡ Σ± (of charge Q = ±1) and N ≡ Σ0 (of charge Q = 0) by

introducing the matrix representation for the SU(2)L triplets Σi
j , with i and j referring to

fundamental indices of SU(2)L. We obtain,

Σi
j =

1√
2

(σk)ijΣ
k =

(
1√
2
N E+

E− − 1√
2
N

)
. (3.4)

The Type-III Lagrangian is given by

LTypeIII = LSM + Lkin

+
(
y` Φ†LL.ER + 2yΣ Φ·

[
ΣkT kLL

]
+ H.c.

)
.

(3.5)

In our notation, LSM stands for the reduced SM Lagrangian in which all terms involving a

leptonic field have been removed, and Lkin collects all gauge-invariant kinetic terms for

the (two-component) leptonic fields LL, ER and Σ, and a mass term for the Σ field (of

mass mΣ). Moreover, the matrices T k = σk/2 stand for the generators of SU(2)L in the

fundamental representation, and the scalar product appearing on the second line refers to

the SU(2)-invariant product of two fields lying in its fundamental representation, similarly

to (1.40). In Type-III models, charged lepton and neutrino masses are driven by the SM

leptonic 3× 3 Yukawa matrix y`, and the heavy neutrino Yukawa matrix yΣ whose size

depends on the number of generations of new fermions.

From the LHC physics point of view, we can simplify the model presented above by

emphasising the focus on the lightest of all Σ states, that are assumed to be the only ones

to which the LHC would be sensitive. This strategy follows that introduced in ref. [147].

Under such an assumption, the relevant part of the Yukawa matrix yΣ (in the Σ-flavour

× SM-flavour space) becomes a vector in the SM-flavour space, that we take real for

simplicity.

The mass eigenstates of the model hence include three generations of physical up-type

and down-type quarks, and four generations of charged leptons (`′) and Majorana neutrinos

(ν ′). After electroweak symmetry breaking, the Lagrangian (3.5) induces a mixing between

the three SM leptons and the new states Σ, rendering at least two neutrinos massive.

Introducing the three 4× 4 mixing matrices in the lepton flavour space U `
L, U `

R and Uν ,

lepton gauge and mass eigenstates are related by [148],(
EL

E−

)
= U `

L `
′
L ,

(
ER

E+c

)
= U `

R `
′
R ,

(
νL

N

)
= Uν ν ′ , (3.6)
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where the three-component vector in the flavour space EL (νL) stands for the down-type

(up-type) component of the weak doublet of left-handed SM leptons. As the new fermion

masses of O(mΣ) are expected to be heavy compared with the neutrino masses of O(yΣv),

with v being the SM Higgs vacuum expectation value, the three mixing matrices can be

expanded at the first order in yv/mΣ [149,150],

U `
L =

 1− ε v
mΣ
yΣ

− v
mΣ
y†Σ 1− ε′

 , U `
R =

 1 M`v
m2

Σ
yΣ

−M`v
m2

Σ
y†Σ 1

 ,

Uν =

[1− 1
2
ε
]
UPMNS

v√
2mΣ

yΣ

− v√
2mΣ

y†Σ 1− 1
2
ε′

 . (3.7)

These expressions depend on the quantities ε and ε′, that are 3× 3 and scalar objects in

the SM flavour space respectively,

ε =
v2

2m2
Σ

yΣy
†
Σ and ε′ =

v2

2m2
Σ

y†ΣyΣ , (3.8)

as well as on the SM lepton mass matrix M` (that is diagonal in the flavour space) and on

the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNS. The latter can be

defined from the neutrino oscillation parameters, namely the neutrino mixing angles θij
(with i, j = 1, 2, 3), the Dirac CP -violating phase ϕCP and the two Majorana CP -violating

phases ϕ1 and ϕ2. Setting cij = cos(θij) and sij = sin(θij), we can parametrise the PMNS

matrix as follows (see section 7 of [151] for current values):

UPMNS =


c12c13 s12c13 s13e

−iϕCP

−s12c23 − c12s13s23e
iϕCP c12c23 − s12s13s23e

iϕCP s23c13

s12s23 − c12s13c23e
iϕCP −c12s23 − s12s13c23e

iϕCP c23c13




eiϕ1 0 0

0 eiϕ2 0

0 0 1

 ,

We implement the Type-III model described above in the FeynRules package [144,145]

following the same method that has been used for the Type II seesaw implementation [152].

We begin with the implementation of the SM shipped with FeynRules, from which

all lepton definitions and related Lagrangian terms have been modified. In practice, we

have modified all lepton and neutrino definitions so that two-component left-handed

Weyl fermions [153] are used for the gauge eigenstates of the model (Ec
R, LL). Next, we

add definitions for the fermionic triplets Σk, still using left-handed Weyl fermions, and
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Field Spin Representation # generations Name

LL (1/2, 0) (1,2)−1/2 3 LLw

ER (1/2, 0) (1,1)1 3 ERw

Σk (1/2, 0) (1,3)0 1 Sigw

Table 3.4: Gauge eigenstates associated with the leptonic sector of the Type-III seesaw
model, their spin given as their representation under the SO(1, 3) group (second column), their
SU(3)c × SU(2)L × U(1)Y representation (third column), and their name in the FeynRules
implementation (last column).

Field Spin Name PDG Mass Width

e− (1/2, 1/2) e 11 Me –

µ− (1/2, 1/2) mu 13 MMu –

τ− (1/2, 1/2) ta 15 MTA –

E− (1/2, 1/2) SigM 9000017 MSigma WSigM

ν1 (1/2, 1/2) v1 12 Mv1 –

ν2 (1/2, 1/2) v2 14 Mv2 –

ν3 (1/2, 1/2) v3 16 Mv3 –

N (1/2, 1/2) Sig0 9000018 MSigma WSig0

Table 3.5: Mass eigenstates that either supplement the SM or whose definition is altered
relatively to the SM, with their spin representation (second column), name used in the FeynRules
convention (third column) and adopted PDG identifier (fourth column). In the last two columns,
we provide the FeynRules symbols associated with the particle masses and widths.

incorporate the mixing relations (3.6) for the definition of the four physical charged lepton

states and the four physical neutrino states in terms of all gauge eigenstates. Finally, we

map the physical two-component fermions of the model into the corresponding Dirac fields

(charged leptons) and Majorana fields (neutrinos). More information on all fields included

in the model implementation is given in tables 3.4 and 3.5 (representation, names in the

FeynRules conventions, PDG identifiers, symbols for masses and widths).

The new physics parameters yΣ and mΣ appearing in the Lagrangian (3.5) are imple-

mented in a standard way, together with the neutrino oscillation parameters dictating

the values of the PMNS matrix. Moreover, we assume a normal neutrino mass hierarchy

and set the masses of the three lightest neutrinos mν1 , mν2 and mν3 from the value of the

smallest neutrino mass (mν1 in our case), and the neutrino squared mass differences ∆m2
21

and ∆m2
31,

mν2 =
√
m2
ν1

+ ∆m2
21 and mν3 =

√
m2
ν1

+ ∆m2
31 . (3.9)
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Parameter Name LH block LH counter

(yΣ)e ySigma[1] YSIGMA 1

(yΣ)µ ySigma[2] YSIGMA 2

(yΣ)τ ySigma[3] YSIGMA 3

mΣ MSigma MASS 9000017

mν1 Mv1 MASS 12

∆m2
21 dmsq21 MNU 2

∆m2
31 dmsq31 MNU 3

θ12 th12 PMNS 1

θ23 th23 PMNS 2

θ13 th13 PMNS 3

ϕCP delCP PMNS 4

ϕ1 PhiM1 PMNS 5

ϕ2 PhiM2 PMNS 6

Table 3.6: External parameters defining the leptonic sector of the Type-III seesaw model,
including the neutrino parameters in the context of a normal mass hierarchy (so that mν1 <
mν2 < mν3). Each parameter is given together with the symbol used in the FeynRules
implementation, and the corresponding Les Houches (LH) block and counter information.

More information on the free parameters of the leptonic/neutrino sector of the model is

provided in table 3.6 (FeynRules names and Les Houches block structure).

3.2.3 From Lagrangian to events at the LHC

In order to handle LHC simulations at NLO-QCD matched with PS, we make use of the

two FeynRules model implementations detailed in sections 3.2.1 and 3.2.2, and jointly

use them with the MoGRe package (version 1.1) [154], NloCt (version 1.0.1) [155] and

FeynArts (version 3.9) [156]. This allows us to renormalise the bare Lagrangians (3.2) and

(3.5) relatively to O(αs) QCD interactions, and generate UFO model files [138] including

both tree-level interactions, UV counterterms, and the so-called R2 Feynman rules required

for the numerical evaluation of numerators of one-loop integrals in a four-dimensional

spacetime. Such UFO models can subsequently be used with MG5aMC [75,76] for LO

and NLO calculations in QCD, as well as by Herwig7 [157] and Sherpa [158] at LO.

Before closing this subsection, we provide information on the MG5aMC framework [75,

76] which employ to carry out fixed-order (N)LO and (N)LO+PS calculations. MG5aMC
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handles infrared singularities inherent to NLO calculations via the FKS method [159,

160], in an automated way through the MadFKS module [161, 162]. The evaluation

of UV-renormalised one-loop amplitudes is achieved by switching dynamically between

several integral-reduction techniques that work either at the integrand level (like the OPP

method [163] or Laurent-series expansion [164]) or through tensor-integral reduction [165–

167]. This has been automated in the MadLoop module [75, 168], that exploits the

public codes CutTools [169], Ninja [170,171] and Collier [172]. Moreover, one-loop

computations have been optimised at the integrand level through an in-house procedure

inspired by the idea of OpenLoops [173]. Finally, NLO+PS predictions are obtained by

matching fixed-order calculations with PS according to the MC@NLO method [174].

3.3 Improving theory accuracy beyond NLO: thresh-

old resummation

For the Drell-Yan-like processes considered, it is well-known that large logarithms

spoil the convergence of the perturbative series when the invariant mass M of the final-

state system approaches the hadronic centre-of-mass energy
√
s. This calls for a proper

resummation of soft-gluon radiation, or at least a matching with PS as achieved in the

MG5aMC framework. In this section, we briefly describe, for the convenience of readers,

the theoretical formalism that we adopt for fixed-order calculations matched with threshold

resummation. Additional details and an extensive description can be found in section 2

of [32].

At the partonic level, the corresponding kinematic region is defined in terms of the

partonic scaling variable z = M2/ŝ when z → 1, with
√
ŝ being the partonic centre-of-mass

energy. In this limit, the perturbative coefficients in the cross sections get contributions in

the form of αs ln(1− z) originating from soft gluon emission, which could be of O(1) and

thus potentially spoil the perturbative convergence of the usual series in αs. This issue

can be resolved by reorganising the perturbative expansion in an alternative manner, and

resumming the large logarithms in αs ln(1− z) to all orders in αs.

Resummation calculations are conveniently carried out in the Mellin N -space conjugate

to z, where the z → 1 limit thus corresponds to the large N region. The resummed

partonic cross section in the Mellin space, denoted by ∆res
qq̄ (N,M2, µ2

F ) with µF being the

factorisation scale, is defined in eq. (2.47) from [32] for a generic process with a colourless

final state. For a Drell-Yan-like process and at the kth logarithmic accuracy (NkLL), it

Yehudi SIMON | Sorbonne Université 80
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reads

∆res
qq̄ (N,M2, µ2

F )
∣∣∣
NkLL

= g̃0,qq̄(M
2, µ2

F , µ
2
R)
∣∣∣
NkLO

exp
(
g1,qq̄(λ) lnN +

k+1∑
j=2

aj−2
s (µ2

R)gj,qq̄(λ)
)
.

(3.10)

In this expression, the g̃0,qq̄|NkLO factor collects the N -independent terms of the first

k + 1 coefficients of the usual as perturbative expansion (in Mellin space), where we

have introduced the short-hand notation as(µ
2
R) = αs(µ

2
R)/4π with µR denoting the

renormalisation scale. We can connect g̃0 to the quantities introduced in (2.69) in the

particular case of Drell-Yan-like processes (colourless final state):

g̃0,qq̄(M
2, µ2

F , µ
2
R) = B̃q(µR, µF )B̃q̄(µR, µF ) exp

(
2

ln(1− 2λ)

β0

Re
[
Γ

(1)
S

])
(
H(0)S(0) +

αs
2π

[
H(1)(µR)S(0) +H(0)S(1)(µS) + 2 ln

(M2

µ2
R

)
Re
[
Γ

(1)
S

]
H(0)S(0)

])
.

(3.11)

This factor is process dependent, and it gets contributions from virtual corrections and soft

real emission. In the exponent, the process-independent (i.e. universal) coefficients gj,qq̄(λ)

with j > 0 receive contributions from the threshold logarithmic terms originating from

real emission. Given λ = 2β0as(µ
2
R) lnN ∼ O(1) with β0 being the first coefficient of the

QCD beta function, they effectively resum these logarithmic contributions to all orders in

αs. We refer to appendix A.9 for the analytical form of the various coefficients appearing

in (3.10) and that are relevant for NLO+NNLL calculations for the Drell-Yan-like processes

considered.

As the separation of the N -independent and N -dependent pieces in (3.10) is not

unambiguous, different resummation schemes have been proposed and described in section

2.4 of [32]. In this document, we consider the so-called N1 resummation scheme for

simplicity.

Resummed calculations must then have to be matched with fixed-order predictions at

(N)LO. This is achieved by adding the resummed and (N)LO results and subtracting of

all double-counted contributions. The latter correspond to the (N)LO soft-virtual terms

of the partonic cross section, which can be obtained by expanding ∆res
qq̄ (N,M2, µ2

F ) at

O(α
b(+1)
s ), where b stands for the power in αs of the LO contributions (that is 0 here).
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3.4 Cross sections for extra lepton production at

the LHC

In this section, we compute total and differential cross sections relevant for the produc-

tion of additional leptons such as those appearing in the models introduced in section 3.2.

Predictions at (N)LO and (N)LO+PS are obtained within the MG5aMC framework (ver-

sion 3.3.0), using the UFO models developed in this work, and we employ Pythia 8.2 [175]

to deal with the simulation of the QCD environment (parton showering and hadronisation).

On the other hand, total rate calculations matching fixed-order predictions with soft-gluon

resummation are derived with an in-house code.

We define the electroweak sector through three independent input parameters that we

choose to be the Z-boson mass mZ , the electromagnetic coupling constant evaluated at

the Z-pole α(mZ), and the Fermi constant GF ,

mZ = 91.1876 GeV , α−1(mZ) = 127.9 ,

GF = 1.1663787 · 10−5 GeV−2 .
(3.12)

In addition, the CKM matrix is taken diagonal, the pole mass of the top quark mt =

172.7 GeV, and we consider nf = 5 active quark flavours. Moreover, the widths of all

particles appearing in the relevant diagrams have been set to zero. Our predictions make

use of the CT18NNLO [49] set of parton distribution functions (PDFs), which are provided

by LHAPDF [176] that we also use to control the renormalisation group running of

the strong coupling αs. For predictions in the Type-III seesaw model, we safely set the

elements of the ε matrix to zero, as they turn to be negligible once bounds from flavour

and electroweak precision data are accounted for [177].

The central value of the renormalisation and factorisation scales is set to the invariant

mass M of the produced di-lepton system, µR = µF = M . Scale uncertainties are evaluated

through the usual seven-point variation method described in section 2.4.3, in which the

renormalisation and factorisation scales are varied independently by a factor of two up

and down relative to their central value with the two extreme cases µR/µF = 4 or 1/4

being excluded.

3.4.1 Total cross sections at the LHC

We dedicate this section to an overview of the behaviour of the total cross sections for

exotic lepton production at the LHC with
√
s = 14 TeV, as a function of the lepton mass.

We study the production of a pair of electrically-charged VLLs, and we consider both the
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cases of an SU(2)L singlet and doublet of VLLs,

pp→ Ẽ+Ẽ− , pp→ E+E− . (3.13)

Moreover, we also explore the production of a pair of singly-charged Type-III leptons that

are mostly weak triplets,

pp→ E+E− ≡ Σ+Σ− . (3.14)

For the last process, we introduced the abusive notation Σ± ≡ E± to make an explicit

distinction between the VLLs appearing in the model of section 3.2.1 (process (3.13) and

notation of table 3.2), and those inherent to the Type-III seesaw model of section 3.2.2

(process (3.14) and notation of table 3.5). We do not consider any other pair-production

mechanism (i.e. the production of a pair of neutral or doubly-charged leptons, or of an

associated pair of leptons of different charges), as cross section predictions are not expected

to exhibit a fundamentally different behaviour due to the purely electroweak nature of

the processes involved. We indeed focus, in the following, on the impact of higher-order

corrections that only depends on the quark/gluon nature of the initial state. Our analysis

therefore equally applies to charged-current and neutral-current production processes, the

only difference between the various channels being the normalisation of the (differential)

rates. However, as our UFO model files are public and MG5aMC is a general-purpose

event generator, interested readers can study by themselves any other process, both at

(N)LO and (N)LO+PS.

In the left panel of figure 3.1, we report LO production cross sections for the three

processes of eqs. (3.13) and (3.14). The cross sections are found to span about 7 orders

of magnitude for exotic lepton masses varying from 200 GeV to 2.5 TeV. Cross sections

around 100–1000 fb are found for small lepton masses of a few hundreds of GeV, whereas

the production rates drop to the 0.001–1 fb regime for leptons of 1–2 TeV, making the

potential observation of such BSM particles at the LHC more challenging. Moreover, for a

given lepton mass, the production of a pair of weak-triplet states (pp → Σ+Σ−; red) is

favoured over that of weak-doublet states (pp→ E+E−; blue), while the latter is favoured

over the production of weak-singlet states (pp→ Ẽ+Ẽ−; green). Such a hierarchy, as well

as the relative differences observed between the rates that are factors of a few, can be

understood from the different SU(2)L representations of the fields considered, together

with the Drell-Yan-like nature of the lepton pair-production mechanism.

In the right panel of figure 3.1, we present the corresponding K-factors, that we define,

for a given lepton mass, as the ratio of a cross section to the associated LO one at central

scale. K-factors are shown both at LO (shaded area) and NLO (hatched area), together

with the associated scale uncertainties. We observe mild K-factor values at NLO, which

vary in the 1.15–1.40 range as a function of the exotic lepton mass. Moreover, the K-

factors are found to be (almost) independent of the process. Such a result is not surprising
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Figure 3.1: Total cross sections for the production of charged leptons typical from VLL and
Type-III seesaw models, presented as a function of the lepton mass. We consider SU(2)L singlet
(green), doublet (blue) and triplet (red) leptons, and the LHC at 14 TeV. Predictions are shown
at LO (left panel), as well as in the form of LO and NLO K-factors together with the associated
scale uncertainties (right panel).

as the underlying Born contribution factorises in the case of a Drell-Yan-like process.

Uncertainties are significantly larger at LO than at NLO, and vary in the last case from a

few percents at small lepton masses to about 10% for larger masses. This behaviour stems

from the typically larger invariant masses associated with heavier di-lepton systems, that

naturally enhance the importance of the threshold logarithms that ought to be resummed.

In the upper panel of figure 3.2, we show the production rates obtained after matching

NLO predictions with soft gluon resummation at the NNLL accuracy, these results being

currently the best theoretical predictions of the total cross sections for the processes

considered. In order to estimate the associated impact, we present, in the three lower

panels of figure 3.2, the ratio of the NLO, NLO+NLL and NLO+NNLL rates to the

NLO one for the three processes. By virtue of the factorisation properties of the Born

contributions, the predictions for these ratios are mostly independent of the process. We

observe a mild increase of the total rate once threshold resummation is included, although

this increase is mostly driven by the leading and next-to-leading logarithmic contributions.

NNLL contributions indeed barely modify the total rates. Numerically, these enhancements

with respect to the NLO predictions are found to be about 5% for scenarios with light

leptons, and range to about 10% for scenarios featuring heavier leptons. In addition, it is
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Chapter 3 – Drell-Yan like processes: VLL & Seesaw

Figure 3.2: Total NLO+NNLL cross sections (upper panel) for the production of vector-like
and Type-III seesaw leptons, presented as a function of the mass of the exotic lepton and for
the LHC at a centre-of-mass energy of 14 TeV. We also display the ratios of the NLO (green),
NLO+NLL (red) and NLO+NNLL (blue) rates to the NLO ones (with a central scale choice),
together with the associated scale uncertainties.

observed that the resummed results (at NLO+NLL and NLO+NNLL) lie above the error

bands of the NLO ones when a lepton mass of a few hundreds GeV is considered. This

situation is similar to the case of the SM Drell-Yan process (see the rapidity distributions

in [33]).

As typical from resummation calculations, the most notable feature of the NLO+NNLL

rate concerns the drastic reduction of the scale uncertainties inherent to the predictions,

that are reduced below the percent level in average, regardless of the lepton mass. The

necessity of incorporating soft gluon resummation in the predictions is made even more

evident for scenarios featuring heavy exotic leptons. Here, the scale uncertainty bands

at NLO+(N)NLL drastically decrease, which could be anticipated as we deal with a

perturbative calculations in which αs is even smaller (the scale at which it is evaluated
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being trivially larger). This essentially cures the counter-intuitive large scale uncertainties

observed at NLO. These uncertainties in the large lepton mass region region are mainly due

to µF variation, hence the PDF contribution. This explains why we recover a behaviour

similar to the PDF uncertainties presented in figure 20 of [178].

3.4.2 Invariant mass distributions

In this section, we consider again the processes (3.13) and (3.14), and we calculate the

associated invariant-mass distributions dσ/dM , with M standing for the invariant mass

of the di-lepton system. As an illustration, we choose three typical exotic lepton masses

of 600 GeV, 900 GeV and 1.5 TeV, which correspond to three scenarios that have not

been fully excluded yet by LHC experiments. The definition of these scenarios is driven by

current experimental search results. The CMS collaboration has indeed observed an excess

of 2.8σ when searching for VLLs with a mass of 600 GeV [106], whereas VLLs of 900 GeV

can already be probed by existing run 2 CMS and ATLAS searches. In contrast, extra

leptons with a mass of 1500 GeV lie beyond the current reach, but they could potentially

be probed at future LHC runs. In addition, all chosen extra lepton masses lead to PDF

uncertainties under fair control [154]. The results are shown in figures 3.3 and 3.4.

In the upper inset in each plot, we display fixed-order predictions and the associated

scale uncertainties at LO (red) and NLO (blue), as well as after matching them with

threshold resummation at LO+LL (cyan), NLO+NLL (yellow) and NLO+NNLL (purple).

We have checked that for invariant mass distributions, (N)LO+PS results coincide with

(N)LO calculations since this observable is insensitive to PS effects. (N)LO+PS predictions

are therefore not included in the figures. In general, we observe a rapid increase of the

differential cross section close to the kinematic threshold M0 equals to twice the heavy

lepton mass, until it peaks at M ≈ 1.06M0 before falling off toward higher invariant-mass

values.

For any given M value, fixed-order LO predictions (red) are found to be notably smaller.

Their matching with predictions including the resummation of the LL contributions (cyan)

yields a significant enhancement of the central value. It reaches 15%–25% in the peak

region, and 30% at larger invariant masses where the relevant phase space region is closer to

the partonic threshold (z → 1). Resummation effects are therefore more prominent in the

latter case. Nevertheless, scale uncertainties in both cases remain large, and the two sets

of predictions do not overlap within their error bands. This effect can be tamed down after

including NLO corrections. In this case, both NLO+NLL and NLO+NNLL predictions

are found to agree with each other once uncertainties are accounted for, whereas NLO

spectra are slightly smaller for all considered M values.

In order to better assess the impact of threshold resummation, we display in the lower

insets of figures 3.3 and 3.4 bin-by-bin ratios of the NLO, NLO+NLL and NLO+NNLL
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Figure 3.3: Invariant mass spectrum for the processes (3.13), together with the associated scale
uncertainties (upper inset of each panel). We show fixed-order results at LO (red) and NLO
(blue), as well as after matching them with threshold resummation at LO+LL (cyan), NLO+NLL
(yellow) and NLO+NNLL (purple), and we consider new lepton masses of 600 GeV (top row),
900 GeV (middle row) and 1.5 TeV (bottom row). We additionally present the bin-by-bin ratios
of the NLO, NLO+NLL and NLO+NNLL spectra to the NLO+NNLL ones, with the associated
uncertainties (lower inset in each panel).Yehudi SIMON | Sorbonne Université 87
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Figure 3.4: Same as figure 3.3 but for Type-III seesaw leptons and the process (3.14).

rates to the most precise NLO+NNLL predictions evaluated with central scale choices. The

bands represent again the associated scale uncertainties. We observe that the increase of

the differential NLO cross section induced by NLL or NNLL resummation (or equivalently,

the decrease of the NLO cross sections, shown in blue, relative to the most precise

NLO+NNLL predictions) depends on the invariant mass of the di-lepton system M , and

therefore indirectly on the mass of the lepton species produced that fix the kinematic

production threshold M0. Preferred configurations hence naturally target larger z values

closer to 1 for heavy lepton production than for light lepton production. Resummation

effects are therefore expected to be more important for heavy leptons, when considering M

values lying at a given relative distance from M0. Again, we observe that NLO+(N)NLL

results are generally outside the NLO error bands.

Nevertheless, the shape of the spectrum is stabilised after including threshold resum-

mation at NLL (yellow). NNLL resummation (purple) only yields a mild increase of the
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Figure 3.5: Transverse momentum spectrum for the processes (3.13), together with the
associated scale uncertainties (upper inset in each panel). We show fixed-order results at
NLO (blue), as well as LO+PS (green) and NLO+PS (olive) predictions. We consider lepton
masses of 600 GeV (top row), 900 GeV (middle row) and 1.5 TeV (bottom row), and we
additionally present the corresponding bin-by-bin ratios to the NLO spectra with the associated
scale uncertainties (lower inset in each panel).
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rate by less than 1%, which is largely independent of the di-lepton invariant mass M . This

shows that a good perturbative convergence has been achieved at NLO+NNLL. Moreover,

NLO+NNLL predictions are crucial to reduce the scale uncertainties to be less than 0.5%,

hence motivating using more precise predictions for BSM signals when available.

3.4.3 Transverse momentum spectra

We now turn to the study of the distribution in the transverse momentum (pT ) of the

lepton pair, which is an observable relevant to show that the inclusion of PS is essential.

Although the MG5aMC framework practically allows for investigations of any observable,

we only focus, for the sake of an example, on this distribution in the pT of the di-lepton

system. In figures 3.5 and 3.6, we present dσ/dpT distributions at NLO (blue), LO+PS

(green) and NLO+PS (olive), whereas the LO distributions are trivially located at pT = 0.

As in section 3.4.2, we choose three benchmark scenarios featuring extra leptons with

masses of 600 GeV, 900 GeV and 1.5 TeV respectively. The different pT spectra are shown

in the upper insets of the figures, whereas the lower insets display their bin-by-bin ratios

to the (fixed-order) NLO predictions.

While NLO predictions (blue) in principle diverge at small pT due to uncancelled

soft and/or collinear singularities originating from real emission, the integration of the

differential cross section within a given bin regularises this divergence, the bin-by-bin

results shown in the figures being normalised by the bin size. It is similar to the cancellation

described in appendix A.6: the virtual singularity sits at pT = 0, we need to cancel it with

the real emission contribution by integrating over a finite bin size. We therefore observe a

finite cross section with a pronounced maximum in the low pT region, with pT . 30 GeV

(which corresponds to the first bin shown in the plots). The cross sections in the small pT
regime are therefore expected to be better described by matching fixed-order predictions

with PS. Showering, as well as the non-perturbative intrinsic transverse momentum kT
of the constituents of the protons, should additionally distort the shapes of the spectra

in the low pT regime. NLO+PS predictions are hence smaller than NLO ones at small

pT . 30 GeV, before becoming considerably greater at intermediate transverse momenta

(pT ∈ [60, 500] GeV). At larger pT values, QCD radiation encoded in the real matrix

elements dominates, so that NLO+PS predictions agree with NLO ones.

This last effect can be even more evidenced by studying the LO+PS curves (green). As

the LO cross section does not allow any emission (hence is proportional to δ(pT ), non-zero

pT values are here purely arising from shower effects. As such, they cannot capture the NLO

behaviour and they give rise to a too soft spectrum in the high-pT regime. In conclusion,

NLO+PS should be the best for describing such an observable, while NLO (LO+PS)

predictions fail at low (high) pT . Finally, we can note that multiplying LO+PS predictions

by an overall K-factor, as traditionally done in many experimental and phenomenological
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Figure 3.6: Same as figure 3.5 but for Type-III seesaw leptons.

studies, is unjustified in the aim of an accurate signal description, and will even yield

qualitatively wrong results at high pT .

3.5 Conclusion

Numerous extensions of the Standard Model feature additional leptons that carry a

variety of different electric charges. They are consequently actively searched for at collider

experiments. In this work, we have studied the production of these extra leptons in effective

frameworks representative of the TeV-scale phenomenology of several models featuring

additional leptons. By providing FeynRules implementations and the associated UFO

libraries for Type-III seesaw models and new physics scenarios with VLLs, we complete

the set of publicly available models suitable for calculations relevant for the production of
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new leptons at colliders beyond the LO or LO+PS accuracy. With these public models,

VLL and Type-III lepton production can now be simulated at NLO+PS accuracy, as was

already the case for other neutrino mass models or left-right-symmetric scenarios which

both involve new non-coloured fermions. The corresponding model files can be downloaded

from https://feynrules.irmp.ucl.ac.be/wiki/NLOModels.

We have reported the most precise calculations of total rates to date for the production

of a pair of Type-III leptons or VLLs lying in the trivial or fundamental representations of

SU(2)L. Our predictions include both NLO QCD corrections and threshold resummation

effects at NNLL. Higher-order QCD effects increase the production rates by 25%–30%, the

exact value depending on the scenario and the extra lepton mass, and scale uncertainties

are reduced below 1%. We have additionally investigated the impact of these corrections

on the distributions in the invariant mass of the produced heavy lepton system and

observed a notable increase in the differential rates and a significant reduction of the scale

uncertainties.

Finally, we have made use of the designed UFO models to highlight the joint impact of

NLO corrections and PS matching on an example of observable relevant for existing searches

for extra leptons. We have chosen the distribution in the transverse momentum of the di-

lepton system. We have illustrated how NLO+PS improves fixed-order NLO computations

at low pT , and provides a better modelling of the physical spectra at intermediate pT
values below 1 TeV. These calculations have been achieved fully automatically, in the

MG5aMC framework, in a setup similar to that used in ATLAS and CMS studies as

well as in many existing phenomenological explorations. Upgrades of existing studies and

searches to include NLO corrections matched with PS should therefore be straightforward.
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https://feynrules.irmp.ucl.ac.be/wiki/NLOModels


4
Colourful processes: top pair(s) production

Summary

4.1 Pair production: pp −→ tt̄ . . . . . . . . . . . . . . . . . . . . . . . . 95

4.1.1 Absolute threshold vs invariant mass threshold . . . . . . . . 95

4.1.2 Differential cross section . . . . . . . . . . . . . . . . . . . . . 96

4.2 Increasing multiplicity: pp −→ tt̄tt̄ . . . . . . . . . . . . . . . . . . . . 99

4.2.1 NLO prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.2 Feynman diagrams and partonic channels . . . . . . . . . . . 100

4.2.3 Colour Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.4 Soft function and anomalous dimension . . . . . . . . . . . . . 103

4.2.5 Resummation results . . . . . . . . . . . . . . . . . . . . . . . 103

Yehudi SIMON | Sorbonne Université 93
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Celui qui trouve sans chercher est celui qui a longtemps cherché sans trouver

Gaston Bachelard

Cartoon representation of quarks, light quarks and top quark

This chapter focuses on the analysis of processes related to top pair(s) production.

Initially, we will examine the well-known 2→ 2 process of a single pair production. The

intricacies of resummation in this context arise due to the coloured and massive particles

present in the final states. Hence, we need the complete general resummation formalism

detailed in section 2.4.1. However, the resummation calculation for this process has already

been discussed in the literature [20, 68, 179–182]. This provides us with an opportunity to

validate our procedure and identify any deviations in the setup when compared to the

literature. We will conclude by examining the four-top production, a process of great

interest for SM and BSM studies, which displays greater multiplicity and has not been

extensively covered by the resummation litterature [31]. The results presented in this

chapter were obtained using the MSTW2008nnlo68cl PDF set.
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4.1 Pair production: pp −→ tt̄

In this section, we detail the resummed results related to the top pair production

process. The formalism was detailed in chapter 3, we focus only on the physical results in

this section. Firstly, let us precise the resummation setup we consider to compare with

the literature.

4.1.1 Absolute threshold vs invariant mass threshold

In the literature, the threshold limit can have two distinct meanings. The “absolute”

threshold limit and the “invariant mass” threshold are distinct frameworks that we detail

here:

• Absolute threshold: this limit corresponds to z̃ = M̃2/ŝ→ 1, where M̃ is the mass

of the final state at rest. In the case of top pair production, we have M̃2 = 4m2
t , for

four top production M̃2 = 16m2
t .

• Invariant mass threshold: here the threshold limit corresponds to z = M2/ŝ → 1,

with M the invariant mass of the Born-level system.

We always have M ≥ M̃ , so that the absolute threshold limit can be seen as a limit case

of the invariant mass approach. Even if the two approaches are related, we must stress

that they are not equivalent. The absolute threshold approach assumes that the final state

particles are produced almost at rest. In that case, the fixed order coefficients should also

take into account Coulomb corrections that encode gluon exchange between particles that

are nearly at rest. These corrections are typically of order O(αs/βC), where βC =
√

1− z̃.

Hence, they become significant when z̃ approaches 1. However, in the context of LHC and

top pair production we can evaluate M̃ = 2mt ' 345 GeV and
√
ŝ can reach up to

√
s = 13

TeV, implying that βC is a generic O(1) parameter, as detailed in the introduction of [68].

Furthermore, in the context of the absolute threshold, it is commonly expected that there

will be a natural diagonalisation of the soft anomalous matrix that helps the computations,

as reported in [78]. For illustration, an instance is provided in appendix A.7.2.

To better understand the regimes, we can display the (M2, ŝ) phase space, as shown in

figure 13 of [68]. In figure 4.1, the blue region corresponds to the invariant mass threshold

regime, where z → 1 but the invariant mass can be far from the mass shell. The green

region corresponds to the absolute threshold regime, where M is close to M̃ and where

Coulomb singularities appear that need to be considered.

In this document, we will only consider the invariant mass threshold approach as it

allows to access the differential cross section
dσ

dM
.
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Figure 4.1: Figure 13 of [68] displaying the (M,
√
ŝ) phase space and different threshold regions

4.1.2 Differential cross section

In this section we present some results for the differential cross section with respect to

the invariant mass.

First, we plot the differential cross section in the region close to the production threshold

to assess the effect of resummation. Figure 4.2 displays the fixed-order cross section (LO

and NLO) alongside the matched resummed result at NLL accuracy. The hadronic center-

of-mass energy is set to 7 TeV and an initial central scale of µ0 = M/2 is chosen. As we

will discuss later in this section, this selection is motivated by a comparison with [68].

As previously noted in section 3.4.2, a global increase in the matched result over the

corresponding fixed-order NLO is observed. This enhancement ranges from 3% at the

production threshold to 12% at M = 500 GeV. Additionally, there is a modest reduction

in the scale uncertainties with respect to the fixed-order prediction. Indeed, the average

relative error across the range of invariant mass is 26.6% for NLO, whereas it is only 21.4%

for the matched prediction. This reduction is less pronounced than in section 3.4.2 for

Drell-Yan like processes, but similar to what can be found in the literature, see Figure

Yehudi SIMON | Sorbonne Université 96
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Figure 4.2: Differential cross section for top pair production at LO, NLO and matched resummed
at NLL accuracy, compare to [68]

2 & 8 of [68]. A discerning reader would notice that the resummation featured in [68]

differs from the one developed in this document, as it includes elements of N2LL accuracy.

Therefore, we cannot make a direct comparison of the obtained values with the literature

and must instead compare qualitatively.

A more quantitative comparison with the literature may be achievable using the setup

in [182]. Figure 4.3 displays the differential cross section for both the fixed order prediction

at NLO and the matched prediction at NLL accuracy, for
√
s = 8 TeV and µ0 = M . To

ensure a direct comparison, we replicated the setup used in figure 3 of [182]. We can

extract the date that come from the ATLAS analysis [183] and compare with the matched

prediction.

Firstly, it is clear that the overall shape of figure 4.3 is very similar to figure 3 of [182].

The most remarkable feature of the plot is the clear gain in accuracy of the matched

prediction compared to NLO, relative to the ATLAS data. There is no obvious reduction in

scale uncertainty due to the increase in normalisation of the matched prediction. However,

it is clear that the enhancement induced by the resummation matching brings the ATLAS

data within the error bars of the prediction. A complete comparison with the NLO+N2LL’

resummation conducted in [182] (in brown in figure 4.3) would need the inclusion of
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Chapter 4 – Colourful processes: top pair(s) production

Figure 4.3: Differential cross section for top pair production at LO, NLO and matched resummed
at NLL accuracy, compared to matching N2LL’ of [182] and ATLAS data [183]

transverse mass logarithms. These logarithms significantly affect the high M domain,

improving further the matched prediction and enhancing the accuracy in comparison to the

ATLAS data. Given that the resummation configuration in our research is not precisely

identical to that of [182], we should not be overly concerned about the disparities in the

two predictions. The main takeaway is that, in both scenarios, the situation improves

with the inclusion of resummation relative to NLO.

The authors in [182] note that choosing a central scale of µ0 = M/2 increases the

value of the NLO cross section, in contrast to using µ0 = M . This outcome is in line

with the resummation effect, resulting in improved accuracy in regions where higher

order corrections are prominent. Although the third figure in their paper is obtained

with µ0 = M , they conclude that it is more appropriate to use M/2 later. This decision

motivated our choice of scale in both figures 4.2 and 4.3.
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Figure 4.4: Fixed order differential cross section with respect to the final state invariant mass.
Computed automatically with MG5aMC for

√
s = 13 TeV at LO and NLO, µ0 = 2mt

4.2 Increasing multiplicity: pp −→ tt̄tt̄

As it has been discussed in introduction, the four top process is of great interest in the

context of LHC physics.

Its cross section has only recently been measured experimentally [29, 30]. As a re-

sult, there are still considerable error bars on both theoretical and experimental sides,

approximately ±25%. Investigating this rare process is certainly worthwhile as the top

sector holds a special role in the SM due to the mass of the top. Top physics serves

as a pathway to comprehend the properties of Higgs since the coupling correlates with

the mass. When considering BSM physics, research such as that carried out in [184]

explores the possible connections between the top sector and the NP through the use

of Standard Model Effective Theory (SMEFT). In this context, the four-top production

process presents a great opportunity to probe NP, as such a massive final state suffers

little physical background from other processes. After this brief motivation for the study

of the four top production process, let us present some results for the (differential) cross

section, first in the known case of fixed order prediction and finally for resummation.
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4.2.1 NLO prediction

For the selected MG5aMC configuration, with a fixed central scale of 2mt, the total

cross section for the production of four top quarks at LO and NLO, for
√
s = 13 TeV, are

respectively: 5.88+67.8%
−37.7% fb and 10.47+24.9%

−24.4% fb. This choice of central scale was motivated

by comparison with [31], in order to obtain a comparable normalisation of the total cross

section.

Figure 4.4 illustrates the differential cross section for the production of four top quarks,

generated by MG5aMC. The shape closely resembles that of the differential cross section

in figures 3.4 and 4.2. The NLO is increased by a global K factor of about 1.79 (+79%)

compared to the LO. However the K factor is ont constant over the entire range of M as it is

higher than 2 near production threshold and decreases as M increases. Although the NLO

error bar appears larger on the lower plot, it is merely a result of the enhancement, since

NLO and LO do not share the same normalisation. In accordance with our expectations

upon increasing the perturbative order, we observe a decrease in the relative error bars.

4.2.2 Feynman diagrams and partonic channels

To tackle the four top production process we need the full toolbox introduced in this

document. Firstly, let us look at some tree-level diagrams for this process, see A.10 for

the other geometries.

q

q̄

t

t̄

t

t̄

g

t

t̄

t

t̄

g

From the given diagrams, it is clear that we have two parton channels for this process:

quark-antiquark and gluon-gluon. A colour basis is required for each subprocess, which is

elaborated in section 1.3.1.
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4.2.3 Colour Basis

Let us first detail the simple representation decomposition for the final state. In the

case of four top production it reads:

3⊗ 3⊗ 3⊗ 3 = (1, 0)⊗ (0, 1)⊗ (1, 0)⊗ (0, 1) =
(

(1, 1)⊕ (0, 0)
)
⊗
(

(1, 1)⊕ (0, 0)
)

= (1, 1)⊗ (1, 1)⊕ (1, 1)⊗ (0, 0)⊕ (1, 1)⊗ (0, 0)⊕ (0, 0)⊗ (0, 0)

= 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 8⊕ 8⊕ 1⊕ 1 .

(4.1)

Since 3 ⊗ 3 = 8 ⊕ 1, the quark channel can only populate the octets or singlets in the

decomposition (4.1). Following the same method used in 1.41 for the gluon channel, and

after orthogonalisation, we derive the six-dimensional colour basis for the quark channel.

q1q̄2 −→ t3t4t̄5t̄6{
δc2c1δc3c5δc4c6 ; δc2c1

Ncδc3c6δc4c5 − δc3c5δc4c6
Nc

; δc4c6
Ncδc2c5δc3c1 − δc2c1δc3c5

Nc

;

1

N2
c

(
Ncδc2c5(Ncδc3c6δc4c1 − δc3c1δc4c6) + δc2c1(δc3c5δc4c6 −Ncδc3c6δc4c5)

)
;

1

N2
c − 1

(
(N2

c − 1)δc2c6δc3c1δc4c5 + δc2c5(δc3c6δc4c1 −Ncδc3c1δc4c6) + δc2c1(δc3c5δc4c6 −Ncδc3c6δc4c5)
)

;

1

N2
c − 2

[
δc2c6

(
(N2

c − 2)δc3c5δc4c1 −Ncδc3c1δc4c5

)
+ δc2c5(2δc3c1δc4c6 −Ncδc3c6δc4c1)

+ δc2c1(2δc3c6δc4c5 −Ncδc3c5δc4c6)
]}

.

(4.2)

To perform the orthogonalisation, the Mathematica software package ColorMath [185]

was utilised. This package is specifically developed to manage SU(Nc) algebra and is

optimised for this purpose. We used the same package for determining the colour factors

in the context of four top production. Regarding the gluon channel, the colour basis was

previously discussed in (1.41), and therefore our focus now is on its orthogonalisation.

g1g2 −→ t3t4t̄5t̄6

We take Nc = 3 to simplify the basis writing. Consequently, we have 13 tensors in the

basis, instead of 14, as one of the orthogonalized tensor norm is vanishing when Nc = 3:

Tc1
c4c6

.Tc2
c3c5

+ Tc1
c3c5

.Tc2
c4c6
−Tc1

c4c5
.Tc2

c3c6
−Tc2

c4c5
.Tc1

c3c6
+ δc4c6(Tc1

c3α
.Tc2

αc5
+ Tc2

c3α
.Tc1

αc5
)

− δc4c5(Tc1
c3α
.Tc2

αc6
+ Tc2

c3α
.Tc1

αc6
) + δc3c5(Tc1

c4α
.Tc2

αc6
+ Tc2

c4α
.Tc1

αc6
)

− δc3c6(Tc1
c4α
.Tc2

αc5
+ Tc2

c4α
.Tc1

αc5
) +

δc1c2

2

(
δc3c6δc4c5 − δc3c5δc4c6

)
.
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The rest of the colour basis reads:

{
Tc1
c4α
.Tc2

αc6
δc3c5 ;

(
Tc1
c4α
.Tc2

αc6
+ 8Tc2

c4α
.Tc1

αc6

)δc3c5
8

; Tc1
c3c5

.Tc2
c4c6

;

Tc1
c4c6

.Tc2
c3c5
− 1

8
Tc1
c3c5

.Tc2
c4c6

; Tc1
c3α
.Tc2

αc5
δc4c6 −

δc3c5
7

(
Tc1
c4α
.Tc2

αc6
+ Tc2

c4α
.Tc1

αc6

)
;

Tc2
c3α
.Tc1

αc5
δc4c6 +

1

6

(
Tc1
c3α
.Tc2

αc5
δc4c6 − (Tc1

c4α
.Tc2

αc6
+ Tc2

c4α
.Tc1

αc6
)δc3c5

)
; Tc1

c4α
.Tc2

αc5
δc3c6

− 1

189

(
− 7(δc3c5T

c2
c4α
.Tc1

αc6
+ δc4c6T

c2
c3α
.Tc1

αc5
)− 16Tc1

c3c5
.Tc2

c4c6
+ 56(Tc1

c3α
.Tc2

αc5
+ Tc1

c4α
.Tc2

αc6
)

+ 65Tc1
c4c6

.Tc2
c3c5

)
; Tc2

c4α
.Tc1

αc5
δc3c6 +

1

309

(
7(Tc1

c3α
.Tc2

αc5
δc4c6 + Tc1

c4α
.Tc2

αc6
δc3c5)

+ 15Tc1
c4α
.Tc2

αc5
δc3c6 + 21Tc1

c4c6
.Tc2

c3c5
− 91(Tc2

c3α
.Tc1

αc5
δc4c6 + Tc2

c4α
.Tc1

αc6
δc3c5)− 105Tc2

c4c6
.Tc1

c3c5

)
;

Tc1
c3c6

.Tc2
c4c5
− 1

36

(
Tc1
c4α
.Tc2

αc6
δc3c5 + Tc2

c3α
.Tc1

αc5
δc4c6 − 9δc3c6(Tc1

c4α
.Tc2

αc5
+ Tc2

c4α
.Tc1

αc5
)

+ 13(Tc1
c3α
.Tc2

αc5
δc4c6 + Tc2

c4α
.Tc1

αc6
δc3c5 + Tc1

c4c6
.Tc2

c3c5
+ Tc1

c3c5
.Tc2

c4c6
)
)

; Tc1
c4c5

.Tc2
c3c6

− 1

30

(
3(Tc1

c3α
.Tc2

αc5
δc4c6 + Tc2

c4α
.Tc1

αc6
δc3c5)− 6Tc2

c4c5
.Tc1

c3c6
− 9(Tc1

c4α
.Tc2

αc5
δc3c6 + Tc2

c4α
.Tc1

αc5
δc3c6)

+ 11(Tc1
c4α
.Tc2

αc6
δc3c5 + Tc2

c3α
.Tc1

αc5
δc4c6) + 13(Tc1

c4c6
.Tc2

c3c5
+ Tc1

c3c5
.Tc2

c4c6
)
)

; Tc1
c3α
.Tc2

αc6
δc4c5

− 1

168

(
14(Tc2

c3α
.Tc1

αc5
δc4c6 + Tc2

c4α
.Tc1

αc6
δc3c5)− 18Tc2

c4α
.Tc1

αc5
δc3c6 + 35Tc1

c4c6
.Tc2

c3c5
− 39Tc1

c4α
.Tc2

αc5
δc3c6

− 63(Tc1
c4c5

.Tc2
c3c6

+ Tc1
c3c6

.Tc2
c4c5

) + 77(Tc1
c3α
.Tc2

αc5
δc4c6 + Tc1

c4α
.Tc2

αc6
δc3c5) + 98Tc1

c3c5
.Tc2

c4c6

)
;

Tc2
c3α
.Tc1

αc6
δc4c5 −

1

400

(
− 67Tc1

c4α
.Tc2

αc5
δc3c6 + 81(Tc1

c3α
.Tc2

αc5
δc4c6 + Tc1

c4α
.Tc2

αc6
δc3c5)

− 104(Tc1
c3α
.Tc2

αc6
δc4c5 + Tc2

c4α
.Tc1

αc5
δc3c6) + 144Tc1

c3c5
.Tc2

c4c6
− 189(Tc1

c3c6
.Tc2

c4c5
+ Tc1

c4c5
.Tc2

c3c6
)

+ 192(Tc2
c3α
.Tc1

αc5
δc4c6 + Tc2

c4α
.Tc1

αc6
δc3c5) + 255Tc1

c4c6
.Tc2

c3c5

)
;

1

74

(
26δc3c6(Tc1

c4α
.Tc2

αc5
+ Tc2

c4α
.Tc1

αc5
) + 26δc4c5(Tc2

c3α
.Tc1

αc6
+ Tc1

c3α
.Tc2

αc6
)

− 36(Tc1
c4c6

.Tc2
c3c5

+ Tc2
c4c6

.Tc1
c3c5

) + 37δc3c5δc4c6δ
c1c2 + 38(Tc1

c4c5
.Tc2

c3c6
+ Tc2

c4c5
.Tc1

c3c6
)

− 48δc4c6(Tc1
c3α
.Tc2

αc5
+ Tc2

c3α
.Tc1

αc5
)− 48δc3c5(Tc1

c4α
.Tc2

αc6
+ Tc2

c4α
.Tc1

αc6
)
)}

.

(4.3)

Such an example of a complex colour basis demonstrates the importance of a minimal set

for determining colour factors, as outlined in section 1.3.2. As the size of the tensor basis

and the length of each individual tensor increases, the use of the minimal set becomes

more and more necessary.
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Figure 4.5: Matching of fixed order NLO to resummed cross section at NLL accuracy, except
the hard function at one loop, for

√
s = 13 TeV, µ0 = M/4

4.2.4 Soft function and anomalous dimension

Having determined the colour basis and known the particle content of the process, we

have all the ingredients to derive the soft functions. However, due to the length of the

functional forms of these matrices, we will not present them in this document. Indeed,

the kinematics of the 2→ 4 processes allow fewer simplifications than the 2→ 2, which

greatly increases the complexity of the functions that constitute the coefficients of the

matrices. Thorough checks were conducted to verify that the analytical Mathematica

derivation of these matrices was accurately implemented numerically.

4.2.5 Resummation results

In figure 4.5, the figure displays the matching between the fixed order NLO and the

resummed NLL predictions. Due to the substantial CPU cost, we could not integrate the

H(1) contribution into the resummation procedure for the four-top process at the time of

thesis writing. The loop calculation, which was automated using the MadLoop module,

requires significant computing power. Although the framework has been validated and

the code is designed to include these contributions, we have decided to postpone their
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Figure 4.6: Matching of fixed order NLO to resummed cross section at NLL accuracy, except
the hard function at one loop, for

√
s = 13 TeV, µ0 = M/2

treatment to achieve a meaningful result more quickly. For example, switching off the

loop calculation and exclusively involving the fundamental hard function at Born level

H(0) results in a factor of 200 speed-up, whereas a single call of MadLoop alone could

take up to 35 seconds, in the case of the gluon channel, when including the loops. The

integration method used for the four top process, both for the inverse Mellin transform

and the phase space integration, is based on Monte Carlo integration with Vegas [186].

To attain precision at an order of O(0.5%), typically O(105) Vegas points are required in

this setup, rendering the incorporation of H(1) too demanding as an initial step. Further

work is required to decrease the CPU time needed for incorporating the one-loop virtual

contribution. In subsequent sections, we will designate the NLL, with the exception of the

H(1) contribution, as NLLS. By using NLLS only, we observe that the matching in figure

4.5 exhibits a decrease in error bars compared to the fixed order. For the bins that have

been calculated up to this point, the relative error for NLO is +26.3% − 24.1%, whereas

for the matching, it is +10.7% − 16.7% with a central value reduction of 3.2%.

The application of the resummation formalism to the four-top production process

enhances precision as we observe a reduction in the error bars related to scale. Figure

4.5 illustrates this and consititues the initial step towards achieving complete NLO+NLL
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matching at the differential cross section level. The small decrease of the central value is not

expected for the matched prediction as the mesurement lies above the NLO prediction (see

5). As reported in [31], the full matching at NLL accuracy should result in a global increase

of the cross section around 15%. The central scale choice appears to be crucial in this case

as taking µ0 = M/2 results in a increase of the central value of the matched prediction of

6% instead of the previous decrease, see figure 4.6. To compare coherently with [31], we

would need the full NLO+NLL matching with a similar scale choice. However, we observe

a reduction of the scale-induced error bars in both cases µ0 = M/2 and µ0 = M/4. This

development is promising as it exhibits the robustness of resummation’s ability to enhance

the asymptotic convergence of predictions compared to fixed order computations.

To conclude, we will briefly summarise the results presented in this thesis, before

providing an outlook on possible future studies.

Yehudi SIMON | Sorbonne Université 105
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Le savant n’étudie pas la nature parce que cela est utile. Il l’étudie parce qu’il y prend

plaisir et il y prend plaisir parce qu’elle est belle

Henri Poincaré

Strange Planet, Nathan W. Pyle

As a conclusion, the work presented in this thesis is summarised before prospects are

outlined. More technical details are given in the following appendix. Finally, the references

can be found in the bibliography section. A small abstract concludes this document.
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Summary

After introducing general aspects of perturbative QCD in chapter 1, we focused on

the threshold resummation formalism in chapter 2. The “toy resummation” section

provided an opportunity to introduce threshold resummation’s fundamental principles

before extending the framework to more intricate colour structures. The general expression

(2.69) indeed includes cases with non-colour singlets in the final state, which may produce

non-factorisable colour algebras, as detailed in section 1.3.2. This implies the determination

of matrices in the colour space, in particular the soft matrix and its anomalous dimension.

After establishing the theoretical framework, we can proceed with the resummation of

observables for processes of interest.

In chapter 3 we consider the pair production of exotic leptons arising in various

BSM models. The study of VLL pair production or weak triplets from Type-III seesaw

models has many similarities to the well-known Drell-Yan process. The kinematics and

corresponding diagrams are identical, with only the couplings being different. It follows

that only the absolute value of the observable will vary for each individual case. Specifically,

the normalised observables, whether they are total or differential cross sections, exhibit

identical behaviour for the three pair productions studied. Furthermore, since only the

initial partons in this scenario are coloured particles, it is possible to use directly the

Sudakov form factor at N2LL from Drell-Yan. The resummation’s universality properties

enable a precise treatment of these BSM models with minimal effort, even though they

were initially known only at LO before the work of [83]. The study yielded improved

results for fixed order prediction with NLO, while the inclusion of N2LL resummation

further improved accuracy (central value) and precision (error bars) by reducing the scale

uncertainty below the O(1%) level.

For processes involving more than four coloured particles, it is necessary to use the

general formalism specified in chapter 2, as the colour space has a dimension greater than

one. In chapter 4, we focus on the application of resummation to top pairs production.

Firstly, we replicate some previously published results for top pair production, which,

although not new, help to validate the methodology and authenticate our implementation.

Subsequently, we investigate the four top production process. As previously discussed,

this topic is of great interest, particularly in the context of Run 3 at the LHC since we

expect an improvement of statistics compared to the first mesurement [29,30]. Preliminary

results are presented relative to the matching of resummed prediction to fixed order NLO

in section 4.2.5. Even without the full NLL implementation, we already see a reduction

of the error bars relative to scale variation. The numbers are coherent with the existing

literature [31], although caution is advised since the resummation setup is not equivalent.

Further work is needed to claim to have perform the complete NLO+NLL matching for

four top production in the invariant mass threshold framework. Nevertheless, we can

Yehudi SIMON | Sorbonne Université 108
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consider that the theoretical framework as well as the code implementation are already

done and validated on several examples. The only remaining task is to optimise the loop

evaluation and integration to have a complete the matching at NLO+NLL. Apart from

this direct continuation of the work presented in this thesis, we outline a few directions for

future research following the present study.

Outlook

After briefly summarising the main content of this thesis, we will now provide an

overview of potential future work following this study.

Before moving forward with the current implementation and exploring new applications,

it is worth reconsidering the setup of PDFs. It was previously mentioned that the MSTW

parametrisation we use is not the only option available. Firstly, the parametrisation can be

adjusted to feature smaller polynomials in the fit function. Additionally, we could opt for

Chebyshev parametrisation instead of regular polynomials. Concurrently, we may explore

the use of different PDF sets. For instance, the NNPDF collaboration [52] proposes PDF

sets determined through the use of neural networks. Recently, the MSTW authors also

updated the PDF sets with the latest MSHT global fit [187].

When considering the application to Drell-Yan like processes, a potentially interesting

project might be to push the threshold resummation to the N3LL level. Indeed, the

resummation components for standard Drell-Yan are known, so the adaptation in the case

of exotic lepton productions should be possible. Incorporating qT resummation appears

to be promising as we can see from the parton-shower matching in section 3.4.3. In

the context of regular Drell-Yan qT resummation, it has been established up to N3LL

accuracy [188]. Incorporating both would pave the way for joint resummation [189].

Firstly, an attempt should be made to retrieve the findings of [31] using the absolute

threshold limit. It should be possible to achieve this in the M → M̃ region. Comparing

these results for the total cross section would provide a strong cross-check of the two

approaches. Including higher-order terms could improve the accuracy of our predictions.

Due to limited computational resources, the H(1) contribution was not included in our

results. However, for the sake of consistency, it should be included. This would recquire

some optimisation for the integration of virtual loop contribution as well as more compu-

tational resources. Similarly, incorporating N2LL contributions that are available for the

Sudakov form factor is feasible. As the complexity of the N2LO fixed order prediction lies

beyond the scope of current research, enhancing the resummation accuracy is a worthwhile

area for investigation. The inclusion of electro-weak corrections is outside the scope of

this document but is already available in the literature [31, 190] and should be a valuable

addition to the present study.
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Another interesting direction could be to add collinear improvement to the current

resummation. This only concerns the Sudakov form factor, hence recquires a moderate

effort to implement. Elements to go in this direction are detailed in appendix A.8.3. We

could also explore the next-to-leading power resummation [191] that is considering the

inclusion of terms suppressed by a power of the threshold parameter 1 − z and could

further improve the gain in precision.

To extend this work, we could apply the procedure to other processes of interest.

2→ 3 processes would be suitable choices as resummation is not systematically performed

in these cases. Notable examples include pp → tt̄γ/H/Z/W [192, 193], γγg, and BSM

processes such as the production of squarks or gluino beyond pair production.

On a longer timescale, it would be worthwhile to explore the potential for automating

resummation, particularly at NLL accuracy. Indeed, if widely used automated fixed

order prediction tools such as MG5aMC are utilised, it would be worthwhile to develop

a corresponding software to incorporate resummation in our predictions. A software

of this kind could be developed against a well-established meta-code like MG5aMC,

which furnishes numerous ingredients necessary for resummation. Indeed, if fixed order

computations are process-specific, resummation has a certain degree of universality, as

noted earlier in chapter 2. In principle, automating it should be possible in the same

way that generic next-to-leading order computations has been achieved. As it would

less process-specific, and that some components from the fixed order calculation can be

reused, it would benefit from existing codes as MG5aMC. For example, in our study, we

employed the MadLoop module [75, 168] integrated into MG5aMC for determining H.

Although this is far from being automatised, this is clearly possible with current technology.

Subsequently, after setting up the colour basis and extracting the hard function, the only

remaining function to be computed is the soft one. Instructions for computing the soft

matrices up to first order in the general case are provided in sections 2.3.1 and 2.3.2. For

complex processes such as the production of four tops, the matrices can become quite

large, with many functional coefficients. Hence further efforts in optimisation should be

done before considering automating resummation.
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A.1 Lagrangian and Feynman rules

A.1.1 Lagrangian

QED

LQED = −1

4
FµνF

µν +
∑
l

ψl(i/∂ −m)ψl − eψlγµψlAµ (A.1)

Where the field tensor Fµν is given by:

Fµν = ∂µAν − ∂νAµ (A.2)

QCD

LQCD = −1

4
F i
µνF

i µν +
∑
f

ψf, a(iδab/∂ − δabmf )ψf, b − gsψf, aγµTi
abψf, bAiµ (A.3)

where the ψf represent the quark fields, γµ a Dirac matrix and Ti a generator of SU(3).

The field tensor F i
µν can be expressed in term of the colour potential A and the SU(3)

group structure constants f ijk:

F i
µν = ∂µAiν − ∂νAiµ − gsf ijkAjµAkν (A.4)

A.1.2 Feynman rules

QED

µ

−ieγµ

p

i(/p+m)

p2 −m2 + iε

µ ν
p

−i
p2 + iε

(
gµν − (1− ξ)p

µpν

p2

)
(A.5)
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QCD

a, µ

igsγ
µTa

a, µ

b, ν

c, κ

p

k

q

gsf
abc[gµν(q − p)κ + gµκ(p− k)ν + gνκ(k − q)µ]

a, µ

c, κd, λ

b, ν

−ig2
s [f

abif cdi(gµκgνλ − gµλgκν) + facif bdi(gµνgλκ − gµλgνκ) + fadif bci(gµνgλκ − gµκgνλ)]
(A.6)

A.2 SU(Nc) colour algebra

A.2.1 SU(Nc) relations

Tr(ta.tb) = TRδ
ab ta.ta = CR1 Tr(ta) = 0 (A.7)

For the fondamental representation, we have TF =
1

2
and CF =

N2
c − 1

2Nc
For the adjoint, TA = Nc = CA

Ta
ijT

a
kl =

1

2

(
δilδjk −

1

Nc

δijδkl

)
Ta.Tb.Ta =

(
CF −

CA
2

)
Tb

fαbcfβbc = Ncδ
αβ fαbcdβbc = 0 dαbcdβbc =

N2
c − 4

Nc

δαβ

ifabcTbTc = −CA
2

Ta

(A.8)

Jacobi identities:
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fabσfσcd + f cbσfaσd + fdbσfacσ = 0

fabσdσcd + f cbσdaσd + fdbσdacσ = 0
(A.9)

A.2.2 Colour Factors

qq̄ −→ tt̄

tq · tq̄ =

−CF 0

0
CA
2
− CF

 tq · tt =

 0 −1
−CF
2Nc

CA
2
− 2CF

 (A.10)

g1g2 −→ tt̄

tg1 · tg2 =


−CA 0 0

0
−CA

2
0

0 0
−CA

2

 tg1 · tt =


0 −1 0
−1

2

−CA
4

−CA
4

0 −N
2
c − 4

4Nc

−CA
4

 (A.11)

A.3 Spinors and polarisation tensors

The following identities are valid for spinors in the respective cases of particles (u) and

anti-particles (v), incoming (x) and outgoing (x) of mass m and momentum p:

(/p−m)u(p) = u(p)(/p−m) = 0

(/p+m)v(p) = v(p)(/p+m) = 0
(A.12)

where /p = γµpµ, the spin indices being omitted.

We also have: ∑
spin

u(p)u(p) = /p+m
∑
spin

v(p)v(p) = /p−m (A.13)

The gauge boson polarisation are transverse in the massless case (on-shell gluon or

photon):

εµ = (0,−→ε ) , −→p · −→ε (p) = 0 (A.14)

When summing over all polarisation, we have the following gauge-dependant identity:
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∑
pol.

ε∗µ(p)εν(p) = −gµν + (1− ξ)pµpν
p2

(A.15)

We should notice that the gauge boson can be off-shel, so that p2 does not vanish.

Although, in principle, all gauge choices are equivalent, we try to select the most

convinient one for the computation.

We can highlight three common gauge fixing:

• ξ = 1 ′t Hooft− Feynman gauge

• ξ = 0 Lorenz gauge

• ξ →∞ unitary gauge

(A.16)

In the context of QCD, we will mainly use the first two gauge fixing, while the last one

is more usefull when studying the weak interaction.

A.4 PDF Evolution

PDFs evolve with the factorisation scale according to the coupled DGLAP equations.

For simplicity, we will focus only on PDFs of quarks and gluon in the proton. However

the same reasoning can be applied to other cases.

Q2∂Q2

qi(x,Q
2)

q̄i(x,Q
2)

g(x,Q2)

 =
αs(Q

2)

2π

∫ 1

x

dξ

ξ

P
(1)
qi qj P

(1)
qi q̄j P

(1)
qi g

P
(1)
q̄i qj P

(1)
q̄i q̄j P

(1)
q̄i g

P
(1)
g qj P

(1)
g q̄i P

(1)
g g

(x
ξ

)qj(ξ,Q
2)

q̄j(ξ,Q
2)

g(ξ,Q2)

 (A.17)

These equations can be written in the Mellin space through the Mellin transform

(A.35):

Q2∂Q2

qi(N,Q
2)

q̄i(N,Q
2)

g(N,Q2)

 =
αs(Q

2)

2π

P
(1)
qi qj P

(1)
qi q̄j P

(1)
qi g

P
(1)
q̄i qj P

(1)
q̄i q̄j P

(1)
q̄i g

P
(1)
g qj P

(1)
g q̄i P

(1)
g g

 (N)

qj(N,Q
2)

q̄j(N,Q
2)

g(N,Q2)

 (A.18)

Moreover we can significantly simplify the couplings by considering the following
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properties of the splitting functions at NLO:

P (1)
qi qj

= P
(1)
q̄i q̄j = P (1)

qq δij

P
(1)
g q̄i = P (1)

g qi
= P (1)

gq

P (1)
qi g

= P
(1)
q̄i g = P (1)

qg

P
(1)
q̄i qj = P

(1)
qi q̄j = 0

(A.19)

A.4.1 Decoupling, singlets and non-singlet states

The DGLAP equations remain highly coupled in the physical base of partons. To

diagonalize the (2nf + 1)× (2nf + 1) matrix in flavour space, we can choose a different

base and decompose our partons in 2nf − 1 non-singlet states (NS) and 2 coupled singlet

states.

Let us first define the ± quark states:

q±i = qi ± q̄i (A.20)

We can already observe that we obtain nf decoupled equations from the q−i ≡ Vi states:

∀i ∈ [[1, nf ]] Q2∂Q2Vi =
αs
2π

(
P (1)
qq qi + P (1)

qg g − P (1)
qq q̄i − P (1)

qg g
)

=
αs
2π
P (1)
qq Vi (A.21)

The other NS states are less trivial but still easy to write down:

∀i ∈ [[1, nf − 1]] Ti =
i∑

j=1

q+
j − iq+

i+1 (A.22)

It is easy to verify that, just like for the Vi, we have decoupled equations for the Ti:

∀i ∈ [[1, nf − 1]] Q2∂Q2Ti =
αs
2π
P (1)
qq Ti (A.23)

Hence, we have 2nf − 1 decoupled equations, leaving two coupled equations in the

singlet sector.

Singlet sector

The singlet sector is composed of two coupled states: the gluon g and Σ =
∑nf

i=1 q
+
i .

We have the following coupled equations:

Q2∂Q2

(
Σ

g

)
=
αs(Q

2)

2π

(
P

(1)
q q 2nfP

(1)
q g

Pg q P
(1)
g g

)(
Σ

g

)
(A.24)

Yehudi SIMON | Sorbonne Université 117
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This 2× 2 basis can be diagonalized with the following eigenvalues:

r± =
1

2

(
P (1)
qq + P (1)

gg ±
√

(P
(1)
qq − P (1)

gg )2 + 8nfP
(1)
qg P

(1)
gq

)
(A.25)

Each eigenvalue is associated to an eigenstate:

Σ′ = α+Σ + β+g g′ = α−Σ + β−g (A.26)

With: α± = β±
r± − P (1)

gg

P
(1)
gq

6= 0 or equivalently: β± = α±
r± − P (1)

qq

2nfP
(1)
qg

, up to a global

normalization (we can choose for example β± = 1).

Ultimately, we obtain:

Q2∂Q2

(
Σ′

g′

)
=
αs(Q

2)

2π

(
r+ 0

0 r−

)(
Σ′

g′

)
(A.27)

With :

(
Σ′

g′

)
= P−1

(
Σ

g

)
with P =

(
α+ α−

β+ β−

)
and P−1 =

1

α+β− − α−β+

(
β− −α−
−β+ α+

)

Having recovered our 2nf + 1 equations, we now have a complete set of decoupled

equations that we can solve to find the evolution operators.

A.4.2 Evolution operators

In the evolution basis, all the equations are decoupled and take the form:

Q2∂Q2 Ξ(N,Q2) =
αs(Q

2)

2π
Λ(N) Ξ(N,Q2) ⇒ Ξ(N,Q2) = Ξ(N,µ2

F ) exp
(∫ Q2

µ2
F

dk2

k2

αs(k
2)

2π
Λ(N)

)
(A.28)

With Λ ∈ {r+; r−; P
(1)
qq }, Ξ ∈ {Σ′; g′; (Vi)1≤i≤nf

; (Ti)1≤i≤nf−1} respectively for the

singlets eigenstates and the non singlets states.

Yehudi SIMON | Sorbonne Université 118
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We can define the corresponding evolution operators:

ε̂Λ(N,Q, µF ) ≡ exp
(∫ Q2

µ2
F

dk2

k2

αs(k
2)

2π
Λ(N)

)
(A.29)

From evolution back to physical basis

Once the evolution is done in the eigenspace, we need to rotate the PDF back to the

physical basis. For clarity, we will avoid explictly writing the scales and instead denote

the evolved quantities with a tilde.

First, let us go back to the original singlet basis:

Σ̃′ =ε̂r+
β−Σ− α−g
α+β− − α−β+

=
β−Σ̃− α−g̃
α+β− − α−β+

g̃′ =ε̂r−
α+g − β+Σ

α+β− − α−β+

=
α+g̃ − β+Σ̃

α+β− − α−β+

Σ̃ =ε̂r+
α+β−Σ− α+α−g

α+β− − α−β+

− ε̂r−
α−β+Σ− α+α−g

α+β− − α−β+

g̃ =ε̂r−
α+β−g − β+β−Σ

α+β− − α−β+

− ε̂r+
α−β+g − β+β−Σ

α+β− − α−β+

(A.30)

Without any loss of generality, we can express α± = β±
r± − P (1)

gg

P
(1)
gq

and β± = α±
r± − P (1)

qq

2nfP
(1)
qg

,

allowing us to recover:

Σ̃ =ε̂r+
(r− − P (1)

qq )Σ− 2nfP
(1)
qg g

r− − r+

− ε̂r−
(r+ − P (1)

qq )Σ− 2nfP
(1)
qg g

r− − r+

g̃ =ε̂r−
(r+ − P (1)

gg )g − P (1)
gq Σ

r+ − r−
− ε̂r+

(r− − P (1)
gg )g − P (1)

gq Σ

r+ − r−

(A.31)

Hence we have already access to the evolved gluon PDF in the physical basis.

Furthermore, we can recover the physical quark PDFs as follows:

q̃i =
1

2

( Σ̃

nf
− T̃i−1

i
+

nf−1∑
j=i

T̃j
j(j + 1)

+ Ṽi

)
˜̄qi =

1

2

( Σ̃

nf
− T̃i−1

i
+

nf−1∑
j=i

T̃j
j(j + 1)

− Ṽi
) (A.32)
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With Ṽi = ε̂qqVi and T̃i = ε̂qqTi, of course: T0 = Tnf
= 0

Expansion at NLO

Finally, in order to be consistent with the 1-loop computation, we can expand the

evolved PDF at O(αs) in terms of initial PDFs. Assuming that Λ only depends on N , we

can write:

ε̂Λ(N,Q2/µ2
F ) = 1 +

αs(µ
2
R)

2π
ln
(Q2

µ2
F

)
Λ(N) +O(α2

s) (A.33)

Then,

g̃(N,Q2) =g(N,µ2
F )
(

1 +
αs(µ

2
R)

2π
ln

(
Q2

µ2
F

)
P (1)
gg (N)

)
+
αs(µ

2
R)

2π
ln

(
Q2

µ2
F

)
P (1)
gq (N)Σ(N,µ2

F ) +O(α2
s)

q̃i(N,Q
2) =qi(N,µ

2
F )
(

1 +
αs(µ

2
R)

2π
ln

(
Q2

µ2
F

)
P (1)
qq (N)

)
+
αs(µ

2
R)

2π
ln

(
Q2

µ2
F

)
P (1)
qg (N)g(N,µ2

F ) +O(α2
s)

(A.34)

A.5 Mellin transform

A.5.1 Miscellaneous

Here is a collection of some useful Mellin transform.

Let us remind the definition first:

M[f ](N) ≡ F (N) ≡
∫ 1

0

dzzN−1f(z) (A.35)

In general, Mellin transform is useful to express convolutions as regular products after

transformation:

H(x) =

∫
g(x/y)f(y)

dy

y
=

∫
g(z)f(y)δ(zy − x)dydz

⇒ H(N) =

∫
g(z)f(y)(zy)N−1δ(zy − x)dxdydz = g(N)f(N)

(A.36)

We also have the Mellin inverse transform from N to z space:
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f(z) =
1

2iπ

∫ C+i∞

C−i∞
dNz−NF (N) (A.37)

We can apply the Mellin transform to distributions like δa(x) = δ(x− a):

M[δa](N) = aN−1 (A.38)

M[za] =

∫ 1

0

dzzN−1+a =
1

N + a
(A.39)

M[ln(1− z)] =

∫ 1

0

dzzN−1 ln(1− z) = −
+∞∑
k=0

1

(k + 1)(N + k + 1)
= −γ + ψ(N + 1)

N

=
|N |>>1

−
ln
(
N
)

N
+O

( 1

N2

)
(A.40)

where ψ(N) =
Γ′(N)

Γ(N)
and N = Neγ. See eq B.4.9a in [194]:

M
[ ln(1− z)

1− z

∣∣∣
+

]
=

1

2

(
ψ(N)2 +2γψ(N)−ψ′(N)+γ2 +

π2

6

)
'

|N |>>1

1

2

(
ln2(N)+

π2

6

)
+O(1)

(A.41)

M
[ ln(z)

1− z

]
=

∫ 1

0

dzzN−1 ln(z)

1− z
=−

+∞∑
p=1

+∞∑
k=0

∫ 1

0

dzzN−1+k (1− z)p

p

=−
+∞∑
p=1

+∞∑
k=0

Γ(N + k)Γ(p+ 1)

pΓ(N + k + 1 + p)
= −

+∞∑
p=1

Γ(N)Γ(p)

pΓ(N + p)

=− ψ′(N) ∼
|N |>>1

− 1

N
(A.42)

We recall that:

ψ(N) =
1

N − 1
+ψ(N − 1) ψ(N) ≈

N−1∑
k=1

1

k
− γ =

|N |>>1
ln(N)− 1

2N
+O

( 1

N2

)
(A.43)

We can easily deduce the Mellin transform of the MSTW parametrization (2.71) from the

definition of the beta function:
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B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0

dttx−1(1− t)y−1 (A.44)

Before considering the Mellin transform of the splitting kernels, let us remind the +

distribution prescription:∫ 1

0

dxf(x)
1

1− x

∣∣∣
+

=

∫ 1

0

dx
f(x)− f(1)

1− x
(A.45)

In general, the + distribution prescription can be applied to functions with a divergence

(here in x = 1). So that we also have for example:∫ 1

0

dxf(x)
ln(1− x)

1− x

∣∣∣
+

=

∫ 1

0

dx
(
f(x)− f(1)

) ln(1− x)

1− x
(A.46)

A.5.2 Splitting kernels

γ(1)
qq (N) =M[P (1)

qq ] =CF

∫ 1

0

dzzN−1
(3

2
δ(1− z) + (z2 + 1)

1

1− z

∣∣∣
+

)
=CF

(3

2
+

∫ 1

0

dz
zN−1(z2 + 1)− 2

1− z

)
=CF

(3

2
−

N∑
k=0

∫ 1

0

dzzk −
N−2∑
k=0

∫ 1

0

dzzk
)

=CF

(3

2
− 2

N∑
k=1

1

k
+

1

N
− 1

N + 1

)
= CF

(3

2
− 2

N∑
k=1

1

k
+

1

N(N + 1)

)
=

|N |>>1
CF

(
− 2 ln

(
N
)

+
3

2

)
+O

( 1

N

)
(A.47)

γ(1)
qg (N) =M[P (1)

qg ] =TF

∫ 1

0

dzzN−1
(
z2 + (1− z2)

)
= TF

( 2

N + 2
+

1

N
− 2

N + 1

)
=TF

2 +N +N2

N(N + 1)(N + 2)
∼

|N |>>1

TF
N

(A.48)

γ(1)
gq (N) =M[P (1)

gq ] =CF

∫ 1

0

dzzN−1 1 + (1− z)2

z
= CF

( 2

N − 1
+

1

N + 1
− 2

N

)
=CF

2 +N +N2

N(N + 1)(N − 1)
∼

|N |>>1

CF
N

(A.49)
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γ(1)
gg (N) =M[P (1)

gg ] =

∫ 1

0

dzzN−1
[
2CA

(1− z
z

+ z(1− z) + z
1

1− z

∣∣∣
+

)
+ β0δ(1− z)

]
=β0 + 2CA

( 1

N − 1
− 1

N
+

1

N + 1
− 1

N + 2
−

N∑
k=1

1

k

)
=β0 + 2CA

(
2

N2 +N + 1

(N − 1)N(N + 1)(N + 2)
−

N∑
k=1

1

k

)
=

|N |>>1
− 2CA ln

(
N
)

+ β0 +O
( 1

N

)
(A.50)

A.6 Substraction method

Assuming a collision between two partons resulting in the production of m particles in

the final state, we can formally write the Born cross section:

σB =

∫
m

dσB (A.51)

Where we take into account all the 3m− 4 degrees of freedom in the integration. To

calculate the NLO cross section, we must include both the virtual contribution and the

real emissions. As the virtual part arises from one-loop diagrams, it has the same degrees

of freedom as the Born-level cross section. However, the real emission term involves a

production of an additional final-state particle, resulting in more degrees of freedom:

σNLO =

∫
m

dσV +

∫
m+1

dσR (A.52)

After the renormalisation procedure, both of these two quantities are UV-finite, however,

they still contain infrared poles. If the incoming partons are massless, the KLN theorem [62]

guarantees the cancellation of these divergences, resulting in the total cross section, an

IR-safe observable, being free of all divergences. It is worth noting, however, that while

the divergences cancel formally, it is impossible in practice to obtain a numerically stable

evaluation of dσV and dσR. Thus, subtraction methods are employed to address this issue.

The general approach is to introduce a new cancelling contribution, denoted as dσA, to

capture the singular behavior of dσR in the related phase space. Formally, we express this

as follows:
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σNLO =

∫
m

[
dσV +

∫
1

dσA
]

+

∫
m+1

[
dσR − dσA

]
(A.53)

Of course, there is no unicity regarding the choice of dσA since we can freely move any finite

contribution from dσR or dσV in the local counter term. Once a suitable dσA is produced,

the two integrals become individually finite and can be evaluated without significant

cancellation from the poles. However, depending on the method of choosing dσA, some

numerical instabilities may still occur. In the case of the dipole subtraction method [39,195],

the substraction counter-term is designed to temper the threshold logarithms arising in

the context of soft gluon emissions.

Massive final states

We did not use the dipole formalism in this document although it brings many in-

formation, such as an alternative way to compute the soft matrix S(1). This choice was

motivated by the specific treatment of the multiple massive final states in the context of

the dipole formalism. Indeed, as stated in appendix C. of [196], the dipole phase space

integration must be handled with caution when multiple massive partons appear in the

final state. Specifically, the velocity factors introduced in [195] to simplify the phase space

integration, modify the finite reminders, which is precisely what we aim to calculate. The

dipole formalism is coherent and predicts the correct infrared pole structure in all cases.

However, when dealing with multiple massive final states, we are unable to use equation

(5.16) from [195] and the resulting finite terms (5.35) directly, hence our choice of an

alternative computation in section 2.3.1.

A.7 Soft and Anomalous dimension color matrices

Let us define the reduced Mandelstam variables:

t1 = t−m2
t

u1 = u−m2
t

so that : M2 + t1 + u1 = 0

(A.54)

with β =

√
1− 4m2

t

M2
and Lβ =

1 + β2

2β

[
ln
(1− β

1 + β

)
+ iπ

]
, useful for the top pair

production process.
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A.7.1 Soft color matrix

qq̄ −→ tt̄

S(0) =

N2
c 0

0
CF
2
Nc

 (A.55)

gg −→ tt̄

S(0) =


Nc(N

2
c − 1) 0 0

0 (N2
c − 1)Nc 0

0 0
N2
c − 1

2Nc

(N2
c − 4)

 (A.56)

A.7.2 Soft anomalous dimension color matrix

qq̄ −→ tt̄

Γ
(1)
S = 2

−CF (1 + Lβ)
CF
Nc

ln
( t1
u1

)
2 ln

( t1
u1

) 1 + Lβ
2Nc

− 2

Nc

ln
( t1
u1

)
+
Nc

2

[
iπ − 1 + ln

( t1u1

M2m2
t

)]


gg −→ tt̄

Γ
(1)
S = 2


−CF (1 + Lβ) ln

( t1
u1

)
0

2 ln
( t1
u1

) 1 + Lβ
2Nc

+
Nc

2

[
iπ − 1 + ln

( t1u1

M2m2
t

)] N2
c − 4

2Nc

ln
( t1u1

M2m2
t

)
0

Nc

2
ln
( t1u1

M2m2
t

) 1 + Lβ
2Nc

+
Nc

2

[
iπ − 1 + ln

( t1u1

M2m2
t

)]


Absolute mass threshold limit

In the absolute mass threshold limit, we have t1 → −2m2
t , u1 → −2m2

t and M2 → 4m2
t .

Which gives diagonal soft anomalous dimension matrices:
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qq̄ −→ tt̄

Γ
(1)
S = 2

−CF (1 + Lβ) 0

0
1 + Lβ

2Nc

+
Nc

2
(iπ − 1)


gg −→ tt̄

Γ
(1)
S = 2


−CF (1 + Lβ) 0 0

0
1 + Lβ

2Nc

+
Nc

2
(iπ − 1) 0

0 0
1 + Lβ

2Nc

+
Nc

2
(iπ − 1)


A.8 Sudakov factor

A.8.1 Derivation

Using the MS scheme in renormalization (scale µR) and factorization (scale µF ) we

have the Sudakov form factor for initial partons i and j:

Gij = Gi +Gj =

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2Q2

µ2
F

dq2

q2

(
Ai(αs(q

2)) + Aj(αs(q
2))
)

(A.57)

Ai is the cusp anomalous dimension, multiplying the
1

1− z

∣∣∣
+

part of the parton splitting

function Pii(z), with i ∈ {q, g}. This anomalous dimension can be expanded in terms of
αs
2π

order by order:

Ai(αs) =
+∞∑
k=1

A
(k)
i

(αs
2π

)k
(A.58)

Here we stop at A(2) as we consider only NLL accuracy (see the power counting in 2.1),

namely:

A
(1)
i = 2Ci A(2)

q = 2Ci

(
(
67

18
− π2

6
)CA −

5nf
9

)
≡ 2CiK (A.59)
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This factor accounts for the resummation of soft-colinear radiated gluons, giving the usual

Leading Logarithmic terms. We also have to expand αs(q
2) in term of the evaluation at

µR due to the running:

αs(q
2) =

αs(µ
2
R)

1 +
αs(µ

2
R)

2π
β0 ln(q2/µ2

R)

−α
2
s(µ

2
R)

2π

β1

β0

ln(1 + β0αs(µ
2
R) ln(q2/µ2

R)/2π)

(1 + β0αs(µ2
R) ln(q2/µ2

R)/2π)2
+O(α3

s(µ
2
R))

(A.60)

From now on we will note αs(µ
2
R) = αs as it is the common scale used for the evaluation

of the observable. For simplicity, we will focus on a single parton contribution Gi. With

the notation x(q) from (1.3), we have three terms to compute:

Gi =

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2Q2

µ2
F

dq2

q2
2Ci

αs
2π

1

1 + x(q)

−
∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2Q2

µ2
F

dq2

q2
2Ci

α2
s

4π2

β1

β0

ln(1 + x(q))

(1 + x(q))2

+

∫ 1

0

dz
zN−1 − 1

1− z

∫ (1−z)2Q2

µ2
F

dq2

q2
2CiK

α2
s

4π2

( 1

1 + x(q)

)2

(A.61)

First we must take care of the integrals over q2:

∫ (1−z)2Q2

µ2
F

dq2

q2

1

1 + x(q)
=

2π

β0αs

[
ln
(

1 + x(Q(1− z))
)
− ln

(
1 + x(µF )

)]
∫ (1−z)2Q2

µ2
F

dq2

q2

ln(1 + x(q))

(1 + x(q))2
= − 2π

β0αs

[1 + ln
(

1 + x(Q(1− z))
)

1 + x(Q(1− z))
−

1 + ln
(

1 + x(µF )
)

1 + x(µF )

]
∫ (1−z)2Q2

µ2
F

dq2

q2

( 1

1 + x(q)

)2

= − 2π

β0αs

( 1

1 + x(Q(1− z))
− 1

1 + x(µF )

)
(A.62)

All the terms that doesn’t depend on z are lumped together in:

Λ =
2Ci
β0

∫ 1

0

dz
zN−1 − 1

1− z

[
− ln

(
1+x(µF )

)
− αs

2π

β1

β0

1 + ln
(

1 + x(µF )
)

1 + x(µF )
+
αs
2π
K

1

1 + x(µF )

]
(A.63)

We keep in mind that:
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∫ 1

0

dz
zN−1 − 1

1− z
= −

∫ 1

0

dz
N−2∑
k=0

zk = −
N−1∑
k=1

1

k
= −ψ(N)−γE ≈ − ln(NeγE)+

1

2N
+O(1/N2)

(A.64)

In the limit αs � 1, |N | � 1, αs| ln(N)| < 1, with N = NeγE :

Λ = −2Ci
β0

αs
2π
β0 ln

(
N
)(
− ln

(
µ2
F/µ

2
R

)
− β1

β2
0

+
K

β0

)
+O(α2

s ln(N)) (A.65)

To go further we need to perform the z integration on the parts depending on z. To do

so, we perform an expansion in β0
αs
2π

ln(Q2(1− z)2/µ2
R). This is possible because of the

regularisation in 1 due to the
1

1− z

∣∣∣
+

prescription. For the following calculation we will

use the approximation (5.3) in [139]: zN−1 − 1 ' −Θ(1− 1/N − z). Moreover, we make

the change of variable z̃ =
Q(1− z)

µR
. Altogether we have:

Gi = Λ +
2Ci
β0

∫ Q/µR

Q/µRN

dz̃

z̃

+∞∑
k=1

(
− β0

αs
π

ln(z̃)
)k

k
+

2Ci
β0

K
αs
2π

∫ Q/µR

Q/µRN

dz̃

z̃

+∞∑
k=0

(
− β0

αs
π

ln(z̃)
)k

− 2Ci
β0

β1

β0

αs
2π

∫ Q/µR

Q/µRN

dz̃

z̃

(
1−

+∞∑
q=1

(
− β0

αs
π

ln(z̃)
)q

q

) +∞∑
k=0

(
− β0

αs
π

ln(z̃)
)k

(A.66)

Everything converges so we can invert the infinite sums and the integrals. We need to

compute: ∫ Q/µR

Q/µRN

dz̃

z̃
lnk(z̃) =

lnk+1(Q/µR)− lnk+1(Q/µRN)

k + 1
(A.67)

In the end:

Gi = Λ +
2Ci
β0

+∞∑
k=1

(
− β0

αs
π

)k(
lnk+1(Q/µR)− lnk+1(Q/µRN)

)(1

k
− 1

k + 1

)
+

2Ci
β0

(K − β1

β0

)
αs
2π

+∞∑
k=0

(
− β0

αs
π

)k(
lnk+1(Q/µR)− lnk+1(Q/µRN)

) 1

k + 1

+
2Ci
β0

β1

β0

αs
2π

+∞∑
q=1

+∞∑
k=0

(
− β0

αs
π

)q+k
(q + k + 1)q

(
lnk+q+1(Q/µR)− lnk+q+1(Q/µRN)

)
(A.68)
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By noting that:

+∞∑
q=1

+∞∑
k=0

Xq+k

(q + k + 1)q
=

1

2

( +∞∑
q=1

+∞∑
k=0

Xq+k

(q + k + 1)q
+

Xq+k

(q + k + 1)(k + 1)

)
=

1

2X

+∞∑
q=1

+∞∑
k=0

Xq+k+1

(k + 1)q
=

1

2X
ln2(1−X)

(A.69)

We have:

Gi = Λ +
2Ci
β0

(
− ln(Q/µR) ln

(
1 + β0

αs
π

ln(Q/µR)
)

+ ln
(
Q/µRN

)
ln
(

1 + β0
αs
π

ln
(
Q/µRN

)))
+

2Ci
β0

(
−

ln
(

1 + β0
αs
π

ln(Q/µR)
)

β0
αs
π

+ ln(Q/µR) +
ln
(

1 + β0
αs
π

ln
(
Q/µRN

))
β0
αs
π

− ln
(
Q/µRN

))
+
Ci
β2

0

(K − β1

β0

)
(

ln
(

1 + β0
αs
π

ln(Q/µR)
)
− ln

(
1 + β0

αs
π

ln
(
Q/µRN

)))
− Ci
β0

β1

β2
0

1

2

(
ln2(1 + β0

αs
π

ln(Q/µR))− ln2(1 + β0
αs
π

ln
(
Q/µRN

)
)
)

(A.70)

At this stage we can make some simplifications considering that the expansion parameter

is β0
αs
π

ln
(
N
)

so if αs is alone (without ln
(
N
)
) it’s small and expandable at O(αs) level.

Else, with noting, λ =
αs
2π
β0 ln

(
N
)
:

− ln(Q/µR) ln
(

1 + β0
αs
π

ln(Q/µR)
)

+ ln
(
Q/µRN

)
ln
(

1 + β0
αs
π

ln
(
Q/µRN

))
= ln(Q/µR) ln(1− 2λ)− ln

(
N
)

ln(1− 2λ)− ln
(
N
)

ln
(

1 + β0
αs
π

ln(Q/µR)/(1− 2λ)
)

= ln(Q/µR) ln(1− 2λ)− ln
(
N
)

ln(1− 2λ)− 2λ

1− 2λ
ln(Q/µR)

(A.71)

And:

−
ln
(

1 + β0
αs
π

ln(Q/µR)
)

β0
αs
π

+ ln(Q/µR) +
ln
(

1 + β0
αs
π

ln
(
Q/µRN

))
β0
αs
π

− ln
(
Q/µRN

)
=

ln
(
N
)

2λ
(2λ+ ln(1− 2λ)) +

2λ

1− 2λ
ln(Q/µR)

(A.72)

Yehudi SIMON | Sorbonne Université 129
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Finally:

ln2(1 + β0
αs
π

ln(Q/µR))− ln2(1 + β0
αs
π

ln
(
Q/µRN

)
) = ln2(1− 2λ) (A.73)

Thus, we have:

Gi = Λ +
2Ci
β0

ln
(
Q/µRN

)
ln
(

1− β0
αs
π

ln
(
N
))

+
2Ci
β0

( ln
(

1− β0
αs
π

ln
(
N
))

β0
αs
π

+ ln
(
N
))

− Ci
β2

0

(K − β1

β0

) ln
(

1− β0
αs
π

ln
(
N
))

+
Ci
β0

β1

β2
0

1

2
ln2
(

1− β0
αs
π

ln
(
N
))

(A.74)

Finally we replace Λ by its expression:

Gi =
2Ci
β0

λ
(

ln
(
µ2
F/µ

2
R

)
+
β1

β2
0

− K

β0

)
+
Ci
β0

ln
(
Q2/µ2

R

)
ln(1− 2λ) +

Ci ln
(
N
)

β0λ

(
(1− 2λ) ln(1− 2λ) + 2λ

)
−Ci
β2

0

(K − β1

β0

) ln(1− 2λ) +
Ci
β0

β1

β2
0

1

2
ln2(1− 2λ)

Gi =
Ci ln

(
N
)

β0λ

(
2λ+ (1− 2λ) ln(1− 2λ)

)
− Ci
β2

0

K
(

2λ+ ln(1− 2λ)
)

+
Ciβ1

β3
0

(
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

)
+
Ci
β0

ln
(
Q2/µ2

R

)
ln(1− 2λ) +

Ci
β0

2λ ln
(
µ2
F/µ

2
R

)
(A.75)

We can distinguish the Leading-Logarithmic part of Gi, namely the first term and the

others constituing the Next-to-Leading-Logarithmic part. In the case of i = j = q, we

have:

Gqq = g1(2λ) ln
(
N
)

+ g2(2λ,
Q2

µ2
R

,
µ2
F

µ2
R

) (A.76)

g1(2λ) =
2A

(1)
q

2λβ0

(
2λ+ (1− 2λ) ln(1− 2λ)

)
(A.77)
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g2(2λ,
Q2

µ2
R

,
µ2
F

µ2
R

) = −A
(2)
q

β2
0

(
2λ+ ln(1− 2λ)

)
+
A

(1)
q β1

β3
0

(
2λ+ ln(1− 2λ) +

1

2
ln2(1− 2λ)

)

+
A

(1)
q

β0

ln(Q2/µ2
R) ln(1− 2λ) + 2λ

A
(1)
q

β0

ln(µ2
F/µ

2
R)

(A.78)

A.8.2 Expansion O(αs)

At order O(αs) we have:

g1(ln
(
N
)
) =

αs
2π

2A
(1)
i ln

(
N
)

(A.79)

g2(ln
(
N
)
,
µ2
F

Q2
) =

αs
2π
A

(1)
i ln

(
N
)

ln
(µ2

F

Q2

)
(A.80)

A.8.3 Collinearly improved resummation

We can improve colinearly the resummation by taking into account up to O(1/N)

terms. To do so we extract from the soft and hard parts the terms to build two diagonal

evolution operators like:

ln
(
E(1)

)
=

∫ Q2/N
2

µ2
F

dq2

q2

αs(q
2)

2π
P ′qq(N)

=

∫ Q2/N
2

µ2
F

dq2

q2

αs
2π

1

1 + β0
αs
2π

ln(q2/µ2
R)

∫ 1

0

dz
zN−1 − 1

1− z
A1 − δ(1− z)zN−1B1

2

(A.81)

Where P ′qq(N) is the large N (or z ' 1) equivalent of the splitting function

Pqq(N) = CF

∫ 1

0

dzzN−1
( 2

1− z

∣∣∣
+
− (1 + z) +

3

2
δ(1− z)

)
(A.82)

When can identify the B1 coefficient to the δ(1− z) term, sometimes noted as: δP
(1)
qq =

−B1

2
=

3CF
2

.

After integration it gives :
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ln
(
E(1)

)
= −1

2

(
2 ln
(
N
)
A1 +B1

)( ln(1− 2λ)

β0

+
αs ln(Q2/µ2

R)

2π

)
(A.83)

Remembering that we have two evolution operators like the previous one (one for each

incomming parton possibly emitting soft gluons), this leads to the changes:

g(1)(2λ) ↪→ g̃(1)(2λ) = g(1)(2λ) +
2A1

β0

ln(1− 2λ) (A.84)

g(2)(λ,
Q2

µ2
R

,
µ2
F

µ2
R

) ↪→ g̃(2)(2λ,
Q2

µ2
R

,
µ2
F

µ2
R

) = g(2)(2λ,
Q2

µ2
R

,
µ2
F

µ2
R

) +
B1

β0

ln(1− 2λ) + 2λ
A1

β0

ln
(
Q2/µ2

R

)
(A.85)

H(1) = A0 + 2δP (1)
qq +

π2

3
A1 ↪→ H̃(1) =H(1) +H(0)B1 ln

(
Q2/µ2

R

)
= A0 +

π2

3
A1

(A.86)

A.9 Resummation coefficients

In this section, we provide analytical results for the resummation coefficients appearing

in (3.10) in the case of a Drell-Yan-like process. Those comprise the process-dependent

term g̃0,qq̄, as well as the universal coefficients of the exponent gk,qq̄ with k > 0. The latter

are identical to those given in appendix A of [197]. We then provide below the expression

for the process-dependent coefficient g̃0,qq̄(M
2, µ2

F , µ
2
R) that can be expanded in as as

g̃0,qq̄(M
2, µ2

F , µ
2
R) =

dσ̂
(0)
qq̄

d lnM2

(
1 +

∑
k=1

aks(µ
2
R)g̃

(k)
0,qq̄

)
, (A.87)

where
dσ̂

(0)
qq̄

d lnM2 is the Born partonic cross section differentiating with respect to lnM2. The

g̃
(1)
0,qq̄ and g̃

(2)
0,qq̄ coefficients in QCD (for nf = 5) relevant for resummation at N2LL explicitly
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read

g̃
(1)
0,qq̄ =

−64

3
+

64

3
ζ2 − 8Lfr + 8Lqr ,

g̃
(2)
0,qq̄ =

−1291

9
+

64ζ2

9
+

368ζ2
2

3
+

4528ζ3

27

+
188L2

fr

3
+

4L2
qr

3

+ Lfr

(
1324

9
− 1888ζ2

9
+

32ζ3

3

)
+ Lqr

(
148

9
− 64Lfr +

416ζ2

9
− 32ζ3

3

)
,

(A.88)

with Lqr = ln M2

µ2
R

, Lfr = ln
µ2
F

µ2
R

and ζn being the Riemann zeta function ζ(n).

In the processes (3.13) and (3.14), the di-lepton system is produced either through an

s-channel virtual photon exchange, or through an s-channel Z-boson exchange. In other

words, the Born partonic cross section can be split into three pieces, namely the square of

photon-exchange diagram, that of the Z-exchange diagram, and the interference between

the two diagrams. Mathematically, this can be written as

σ̂
(0)
qq̄ = σ̂

(0),γ
qq̄ + σ̂

(0),Z
qq̄ + σ̂

(0),int
qq̄ . (A.89)

The photon exchange contribution depends on the electric charge of the initial-state

quarks Qq, and on that of the final-state leptons Q`,

σ̂
(0),γ
qq̄ = Q2

qQ
2
`

4πα2

9M2

√
1− 4m2

`

M2

(
1 +

2m2
`

M2

)
. (A.90)

In this expression, m` is the mass of the produced lepton, and it is thus respectively given

by mẼ, mE and mΣ in the three processes shown in (3.13) and (3.14). As all exotic leptons

produced in these processes satisfy Q` = −1, σ̂
(0),γ
qq̄ is identical in all three cases.

The Z-boson exchange contribution and the interference term read

σ̂
(0),Z
qq̄ = f 2

`

(V 2
q + A2

q)

4

M4

(M2 −m2
Z)2 + Γ2

Zm
2
Z

σ̂
(0),γ
qq̄

Q2
q

,

σ̂
(0),int
qq̄ = f`QqVq

M2(M2 −m2
Z)

(M2 −m2
Z)2 + Γ2

Zm
2
Z

σ̂
(0),γ
qq̄

Q2
q

, (A.91)

where Vq = Iq − 2s2
WQq and Aq = Iq represent the vector and axial couplings between the

initial quarks and the Z boson respectively. Here, the parameters cW and sW are the cosine
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and sine of the electroweak mixing angle, and Iq is the weak isospin quantum number of

the quark q, that is thus equal to 1/2 for up-type quarks and −1/2 for down-type quarks.

In addition, ΓZ denotes the width of the Z boson, and the prefactor f` depends on the

quantum numbers of the lepton ` produced. It is thus given by

f` =



−c−2
W for ` = Ẽ ,

c2W−s
2
W

2s2W c2W
for ` = E ,

s−2
W for ` = Σ .

(A.92)
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A.10 Four top production tree level diagrams

A.10.1 Quark channel

q
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t

t̄

t

t̄

q
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t
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t
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q

q̄

t
t̄

t
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A.10.2 Gluon channel
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t̄

t

t̄
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t

t̄

t

t̄

g

g

t

t̄

t

t̄

g

g

t

t̄

t

t̄

g

These diagrams represent all possible geometries for four top production in the SM at

tree-level. Of course, the fermion lines can be exchanged so more diagrams should be

taken into account for the actual computation. When generated with MG5aMC the tree

level process generates 14 diagrams for the quark channel (28 if we take into account the

exchange of initial quarks) and 72 for the gluon channel.
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http://arxiv.org/abs/hep-ph/0311123
http://dx.doi.org/10.1140/epjc/s10052-012-1899-z
http://dx.doi.org/10.1140/epjc/s10052-012-1899-z
http://arxiv.org/abs/1107.3463
http://dx.doi.org/10.1103/PhysRevD.80.093003
http://arxiv.org/abs/0907.4193
http://arxiv.org/abs/0907.4193
http://dx.doi.org/10.1088/1126-6708/2007/12/061
http://arxiv.org/abs/0707.4058
http://dx.doi.org/10.1103/PhysRevD.78.033007
http://dx.doi.org/10.1103/PhysRevD.78.033007
http://arxiv.org/abs/0803.0481
http://dx.doi.org/10.1016/j.ppnp.2017.10.001
http://dx.doi.org/10.1103/PhysRevD.101.075022
http://arxiv.org/abs/1912.08975
http://arxiv.org/abs/1912.08975
http://dx.doi.org/10.1016/j.cpc.2011.06.009
http://dx.doi.org/10.1016/j.cpc.2011.06.009
http://arxiv.org/abs/1102.4191
http://dx.doi.org/10.1007/JHEP12(2019)008
http://arxiv.org/abs/1907.04898
http://dx.doi.org/10.1016/j.cpc.2015.08.015
http://dx.doi.org/10.1016/j.cpc.2015.08.015
http://arxiv.org/abs/1406.3030
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://dx.doi.org/10.1140/epjc/s10052-016-4018-8
http://dx.doi.org/10.1140/epjc/s10052-016-4018-8
http://arxiv.org/abs/1512.01178
http://dx.doi.org/10.1088/1126-6708/2009/02/007
http://arxiv.org/abs/0811.4622
http://dx.doi.org/10.1016/0550-3213(96)00110-1
http://arxiv.org/abs/hep-ph/9512328
http://dx.doi.org/10.1016/S0550-3213(97)00574-9
http://dx.doi.org/10.1016/S0550-3213(97)00574-9
http://arxiv.org/abs/hep-ph/9706545


B - Bibliography

[161] R. Frederix, S. Frixione, F. Maltoni, and T. Stelzer, “Automation of next-to-leading

order computations in QCD: The FKS subtraction,” JHEP 10 (2009) 003,

arXiv:0908.4272 [hep-ph].

[162] R. Frederix, S. Frixione, A. S. Papanastasiou, S. Prestel, and P. Torrielli, “Off-shell

single-top production at NLO matched to parton showers,” JHEP 06 (2016) 027,

arXiv:1603.01178 [hep-ph].

[163] G. Ossola, C. G. Papadopoulos, and R. Pittau, “Reducing full one-loop amplitudes

to scalar integrals at the integrand level,” Nucl. Phys. B 763 (2007) 147–169,

arXiv:hep-ph/0609007.

[164] P. Mastrolia, E. Mirabella, and T. Peraro, “Integrand reduction of one-loop

scattering amplitudes through Laurent series expansion,” JHEP 06 (2012) 095,

arXiv:1203.0291 [hep-ph]. [Erratum: JHEP 11, 128 (2012)].

[165] A. I. Davydychev, “A Simple formula for reducing Feynman diagrams to scalar

integrals,” Phys. Lett. B 263 (1991) 107–111.

[166] A. Denner and S. Dittmaier, “Reduction schemes for one-loop tensor integrals,”

Nucl. Phys. B 734 (2006) 62–115, arXiv:hep-ph/0509141.

[167] G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e- Annihilation

Into mu+ mu- in the Weinberg Model,” Nucl. Phys. B 160 (1979) 151–207.

[168] V. Hirschi, R. Frederix, S. Frixione, M. V. Garzelli, F. Maltoni, and R. Pittau,

“Automation of one-loop QCD corrections,” JHEP 05 (2011) 044, arXiv:1103.0621

[hep-ph].

[169] G. Ossola, C. G. Papadopoulos, and R. Pittau, “CutTools: A Program

implementing the OPP reduction method to compute one-loop amplitudes,” JHEP

03 (2008) 042, arXiv:0711.3596 [hep-ph].

[170] V. Hirschi and T. Peraro, “Tensor integrand reduction via Laurent expansion,”

JHEP 06 (2016) 060, arXiv:1604.01363 [hep-ph].

[171] T. Peraro, “Ninja: Automated Integrand Reduction via Laurent Expansion for

One-Loop Amplitudes,” Comput. Phys. Commun. 185 (2014) 2771–2797,

arXiv:1403.1229 [hep-ph].

[172] A. Denner, S. Dittmaier, and L. Hofer, “Collier: a fortran-based Complex One-Loop

LIbrary in Extended Regularizations,” Comput. Phys. Commun. 212 (2017)

220–238, arXiv:1604.06792 [hep-ph].

[173] F. Cascioli, P. Maierhofer, and S. Pozzorini, “Scattering Amplitudes with Open

Loops,” Phys. Rev. Lett. 108 (2012) 111601, arXiv:1111.5206 [hep-ph].

[174] S. Frixione and B. R. Webber, “Matching NLO QCD computations and parton

shower simulations,” JHEP 06 (2002) 029, arXiv:hep-ph/0204244.

Yehudi SIMON | Sorbonne Université 149
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for next-to-leading order qcd calculations with massive partons,” Nuclear Physics B

627 no. 1-2, (Apr, 2002) 189–265.
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Resommation en QCD à l’aune du Run 3 du LHC

Résumé : Les prédictions qui découlent du Modèle Standard de la physique des

particules permettent de confronter la théorie aux expériences, notamment dans le cadre

de la physique au LHC. C’est à la fois crucial dans le contexte des mesures de précision,

pour détecter d’éventuels écarts au modèle standard, que pour des recherches directes de

nouvelles particules. Les progrès rapides des mesures expérimentales, notamment avec le

Run 3 du LHC, appellent à l’amélioration des prédictions théoriques de processus plus

rares et complexes. Pour atteindre ce but, augmenter le nombre d’ordres perturbatifs

pris en compte dans les calculs n’est pas la seule solution. Les techniques comme la

resommation de seuil de gluons mous permettent de prendre en compte des termes à tous

les ordres par exponentiation. Cela a pour conséquence de réduire les erreurs théoriques et

améliorer la pertinence des résultats. Lors de cette thèse, nous nous sommes intéressés

à l’application de la resommation à des processus comprenant des correction de QCD à

l’ordre sous dominant, d’une part dans le cadre de productions de leptons exotiques, et

d’autre part pour la physique du quark top.

Mots clés : QFT, QCD, Resommation, NLO, Précision, Modèle Standard et au-delà.

QCD resummation in the light of the LHC run 3

Abstract: The predictions derived from the Standard Model of particle physics allow

to compare theory with experimental mesurements. As the LHC is currently running its

third data taking campain, it is of particular interest in the context of LHC physics. This

comparison is crucial both in the context of precision measurements, to detect possible

deviations from the Standard Model, and for direct searches for new particles. The recent

progress in experimental measurements, particularly with Run 3 of the LHC, calls for

improvements in theoretical predictions related to rarer and more complex processes. To

achieve this goal, increasing the number of perturbative orders taken into account in the

calculations is not the only solution. Techniques such as soft gluon threshold resummation

allow terms at all orders to be taken into account by exponentiation. This typically reduces

the theoretical errors bars and improves the accuracy of the results. In this thesis, we

focused on the application of resummation to processes involving QCD corrections at the

subdominant order, firstly in the context of exotic lepton production, and secondly in

quark top physics.

Keywords: QFT, QCD, Resummation, NLO, Precision, BSM, four-top.
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