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Plongements barycentriques pour l’apprentissage géométrique de
variétés
Application aux formes et graphes

Résumé

Une image obtenue par IRM, c’est plus de 60 000 pixels. La plus grosse protéine connue chez l’être
humain est constituée d’environ 30 000 acides aminés. On parle de données en grande dimension.
En réalité, la plupart des données en grande dimension ne le sont qu’en apparence. Par exemple,
de toutes les images que l’on pourrait générer aléatoirement en coloriant 256 x 256 pixels, seule
une infime proportion ressemblerait à l’image IRM d’un cerveau humain. C’est ce qu’on appelle la
dimension intrinsèque des données. En grande dimension, apprentissage rime donc souvent avec
réduction de dimension. Il existe de nombreuses méthodes de réduction de dimension, les plus
récentes pouvant être classées selon deux approches.

Une première approche, connue sous le nom d’apprentissage de variétés (manifold learning) ou
réduction de dimension non linéaire, part du constat que certaines lois physiques derrière les données
que l’on observe ne sont pas linéaires. Ainsi, espérer expliquer la dimension intrinsèque des données
par un modèle linéaire est donc parfois irréaliste. Au lieu de cela, les méthodes qui relèvent du
manifold learning supposent un modèle localement linéaire.

D’autre part, avec l’émergence du domaine de l’analyse statistique de formes, il y eu une prise
de conscience que de nombreuses données sont naturellement invariantes à certaines symétries
(rotations, permutations, reparamétrisations...), invariances qui se reflètent directement sur la
dimension intrinsèque des données. Ces invariances, la géométrie euclidienne ne peut pas les
retranscrire fidèlement. Ainsi, on observe un intérêt croissant pour la modélisation des données par
des structures plus fines telles que les variétés riemanniennes. Une deuxième approche en réduction
de dimension consiste donc à généraliser les méthodes existantes à des données à valeurs dans des
espaces non-euclidiens. On parle alors d’apprentissage géométrique. Jusqu’à présent, la plupart des
travaux en apprentissage géométrique se sont focalisés sur l’analyse en composantes principales.

Dans la perspective de proposer une approche qui combine à la fois apprentissage géométrique
et manifold learning, nous nous sommes intéressés à la méthode appelée locally linear embedding,
qui a la particularité de reposer sur la notion de barycentre, notion a priori définie dans les espaces
euclidiens mais qui se généralise aux variétés riemanniennes. C’est d’ailleurs sur cette même notion
que repose une autre méthode appelée barycentric subspace analysis, et qui fait justement partie
des méthodes qui généralisent l’analyse en composantes principales aux variétés riemanniennes. Ici,
nous introduisons la notion nouvelle de plongement barycentrique, qui regroupe les deux méthodes.
Essentiellement, cette notion englobe un ensemble de méthodes dont la structure rappelle celle des
méthodes de réduction de dimension linéaires et non linéaires, mais où le modèle (localement) linéaire
est remplacé par un modèle barycentrique – affine.

Le cœur de notre travail consiste en l’analyse de ces méthodes, tant sur le plan théorique
que pratique. Du côté des applications, nous nous intéressons à deux exemples importants en
apprentissage géométrique : les formes et les graphes. En particulier, on démontre que par rapport
aux methodes standard de réduction de dimension en analyse statistique des graphes, les plongements
barycentriques se distinguent par leur meilleure interprétabilité. En plus des questions pratiques liées



à l’implémentation, chacun de ces exemples soulève ses propres questions théoriques, principalement
autour de la géométrie des espaces quotients. Parallèlement, nous nous attachons à caractériser
géométriquement les plongements localement barycentriques, qui généralisent la projection calculée
par locally linear embedding. Enfin, de nouveaux algorithmes d’apprentissage géométrique, novateurs
dans leur approche, complètent ce travail.

Mots-clés : apprentissage géométrique, géométrie riemannienne et barycentrique, apprentissage de
variétés, variétés quotient, espaces de formes de Kendall, analyse statistique de graphes.



Barycentric embeddings for geometric manifold learning
With application to shapes and graphs

Abstract

An MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000
amino acids. We call such data high-dimensional. In practice, most high-dimensional data is
high-dimensional only artificially. For example, of all the images that could be randomly generated
by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human
brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional
data is often synonymous with dimensionality reduction. There are numerous methods for reducing
the dimension of a dataset, the most recent of which can be classified according to two approaches.

A first approach known as manifold learning or non-linear dimensionality reduction is based
on the observation that some of the physical laws behind the data we observe are non-linear. In
this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes
unrealistic. Instead, manifold learning methods assume a locally linear model.

Moreover, with the emergence of statistical shape analysis, there has been a growing awareness
that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations,
permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These
invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing
interest in modeling such data using finer structures such as Riemannian manifolds. A second recent
approach to dimension reduction consists then in generalizing existing methods to non-Euclidean
data. This is known as geometric learning.

In order to combine both geometric learning and manifold learning, we investigated the method
called locally linear embedding, which has the specificity of being based on the notion of barycenter,
a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In
fact, the method called barycentric subspace analysis, which is one of those generalizing principal
component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase
both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings
inherit the structure of most linear and non-linear dimension reduction methods, but rely on a
(locally) barycentric – affine – model rather than a linear one.

The core of our work lies in the analysis of these methods, both on a theoretical and practical
level. In particular, we address the application of barycentric embeddings to two important examples
in geometric learning: shapes and graphs. In addition to practical implementation issues, each of
these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces.
In particular, we highlight that compared to standard dimension reduction methods in graph analysis,
barycentric embeddings stand out for their better interpretability. In parallel with these examples,
we characterize the geometry of locally barycentric embeddings, which generalize the projection
computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in
their approach, complete this work.

Keywords: geometric learning, Riemannian and barycentric geometry, manifold learning, quotient
manifolds, Kendall shape spaces, statistical graph analysis.
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Chapter 1

Introduction

What does geometric manifold learning stand for? And what is hidden behind the notion of
barycentric embedding? This chapter, modestly entitled Introduction, answers the first question,
while the second will be addressed throughout this thesis. Geometric manifold learning is a composite
word derived from geometric statistics and manifold learning. Geometric statistics entail theoretical
foundations and methods for the statistical analysis of non-Euclidean data, also known as geometric
data. In this thesis, among all the methods described as geometric statistics, we are more particularly
interested in those for dimensionality reduction. In the last decades, the most popular approach to
dimensionality reduction for geometric data, referred to as geometric learning, has been to generalize
the linear model on which Principal Component Analysis is based to non-Euclidean structures. In
the context of Euclidean data, however, it has been shown that linear methods sometimes struggle
to capture the intrinsic dimension of a dataset. Instead, manifold learning methods rely on locally
linear models. If we transpose this idea to the context of geometric data, then geometric manifold
learning consists in reformulating the existing models in geometric learning locally.

This chapter is divided in three sections. The first two sections are respectively a non-exhaustive
introduction to geometric statistics and a review of the state of the art in dimensionality reduction.
In the last section, we outline this thesis and also summarize our different contributions chapter by
chapter.

1.1 Motivations in geometric statistics

Geometric statistics is a field lying at the intersection of geometry and statistics, sometimes also
referred to as non-Euclidean statistics. Geometric statistics emerged from the observation that
standard statistics, that is linear statistics, fail to provide correct estimates for geometric data, such as
anatomical shapes (Grenander and Miller, 1998), complex proteins (Dryden, Kim, Laughton, and Le,
2019), or electroencephalography signals (Calissano, Papadopoulo, Pennec, and Deslauriers-Gauthier,
2023). To replace the Euclidean model, a fairly popular framework to describe such non-linear
data is that of Riemannian manifolds. In this context, there has been a new interest in statistics
on manifolds, from the first definitions of the Riemannian mean (Fréchet, 1948; Karcher, 1977),
to more recent results such as central limit theorems (Bhattacharya and Lin, 2017; Eltzner and
Huckemann, 2019). Together with Riemannian geometry, we focus essentially in this section on two
other specific topics in geometric statistics: the idea of invariance and statistical shape analysis. For
a more exhaustive introduction to geometric statistics, we recommend the recent book edited by
Pennec, Sommer, and Fletcher (2020) as well as that by Dryden and Marron (2021).

1



1.1.1 Invariances and symmetries

The shape of an object does not depend on how it is rotated in space. Similarly, reparametrizing a
flat curve does not change its aspect. And the overall connectivity of a graph is not determined by
how the nodes have been labeled. Many well-known examples of geometric data fall under the idea
of invariance. To account for this phenomenon, several works in standard data analysis as well as in
deep learning promote statistical methods based on invariant distances (Donnat and Holmes, 2018;
Maron, Ben-Hamu, Shamir, and Lipman, 2018). In fact, the notion of invariance naturally relates
to that of symmetries and group action. Indeed, equivalence classes under a group action describe
perfectly the concept of a same object having multiple representations. In other words, data carrying
invariance are naturally modeled in quotient spaces. For example, Calissano, Feragen, and Vantini
(2023) discuss the statistical analysis of unlabeled graphs in the graph space

Rn×n/S(n)

resulting from the action of permutations on the nodes of a graph. Under some assumptions, it is
possible to equip quotient spaces with what is called a quotient distance, defined as the minimum
distance between two fibers (Younes, 2010). In this thesis, we are more particularly interested in
equipping such quotient spaces with a Riemannian metric, in a similar approach to Kendall (1984).
As we have illustrated, a typical example of the concept of invariance is that of the shapes. In this
context, different representations of shapes as well as different metrics have been explored. Let us
give here a general overview of existing approaches.

1.1.2 Statistical shape analysis

Shapes are a very well studied example of geometric data, if not the most studied. Shape analysis
frameworks rely on a wide range of representations. For example, Kendall (1984) describes the shape
of an object using a set of landmarks modulo a global rotation, translation and scaling of such. In
his book, D’Arcy Thompson (1992) described the anatomical variability of animal species through
the deformation of a template shape. More recently, S. M. Pizer et al. (2020) proposed to reconstruct
a surface or a closed curve from its medial axis. Now, there are two main approaches to endowing
shapes with a metric structure.

Procrustes Analysis In Procrustes analysis, the distance between two aligned objects – in rotation,
translation, and eventually scaling – is measured based on a point correspondence using an extrinsic
distance. This idea has been formalized in several fields such as biology, in the context of protein
structural analysis (Kufareva and Abagyan, 2012). Kendall shape spaces fall for example within
this approach. Srivastava and Klassen (2016) propose a similar model for the analysis of shapes
represented as continuous curves under the action of reparametrizations.

Large Deformations Another approach consists in measuring the distance between two shapes
as the amount of (diffeomorphic) deformation needed to transform one shape into another. In the
Stationary Velocity Field framework, the deformations allowed consist in the one-parameter group
of diffeomorphisms parametrized by a stationary velocity field such it has a fast implementation
(Arsigny, Commowick, Pennec, and Ayache, 2006). As for the Large Deformation Diffeomorphic
Metric Mapping framework, how much a deformation costs is measured through the norm of the (non
stationary) vector field it integrates (Beg, Miller, Trouvé, and Younes, 2005). Within this framework,
several representations of shapes have been explored such as currents (Charon, 2013).
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For further reading, we refer to Younes (2010) regarding the detailed construction of shape spaces.
In his thesis, Feydy (2020) provides a very well referenced overview of the different frameworks in
shape analysis. Finally, the book by Dryden and Mardia (2016) covers application of shape analysis
in various fields. In this context and more generally in that of geometric statistics, the notion of
Riemannian manifold is central.

1.1.3 Riemannian manifolds

Riemannian geometry generalizes Euclidean geometry in that it consists in pairing a manifold with a
metric, defined locally on the tangent space at every point of the manifold as an inner product

gx : TxM × TxM → R.

Such a metric provides a way of measuring on the manifold. In particular, a Riemannian metric
defines a distance, which makes it possible to generalize basic concepts from Euclidean statistics,
starting with the mean (Karcher, 1977). Beyond the distance, Riemannian geometry provides with a
family of metric tools. Geodesics are curves of minimal length and generalize straight lines. Such a
tool has played a key role in the development of geometric statistic methods. For example, geodesic
models are a natural candidate for the generalization of linear models. In the same vein, geodesic
regression (Fletcher, 2013) and Principal Geodesic Analysis (Fletcher, Lu, S. Pizer, and Joshi, 2004)
or Geodesic Principal Component Analysis (Huckemann, Hotz, and Munk, 2010) are generalizations
to Riemannian manifolds of linear regression and Principal Component Analysis respectively. Another
tool, parallel transport, allows to compare information distributed in different tangent spaces, with
application for example to longitudinal analysis (Lorenzi, Ayache, and Pennec, 2011).

Computational Riemannian geometry Computational Riemannian geometry encompasses
automatic computations and implementations of Riemannian geometry tools, in particular integration
schemes for geodesics and parallel transport (Guigui and Pennec, 2022). Bridging theoretical definition
of such tools and methods in Euclidean statistics, computational geometry is currently a very active
field. The Python library geomstats gathers implementations of geometric tools and statistical
methods for various manifolds (Miolane, Guigui, et al., 2020). For a general understanding of
Riemannian geometry from the computational point of view, we refer the reader to the book by
Gallier and Quaintance (2020).

Optimization on Riemannian manifolds Supporting computational geometry, several works
propose to generalize optimization methods to Riemannian manifolds, from gradient methods to
higher order methods and constrained optimization (Absil, Mahony, and Sepulchre, 2007), together
with specific libraries (Boumal, Mishra, Absil, and Sepulchre, 2014).

1.2 Dimensionality reduction

Dimensionality reduction is an old question, but because of the better resolution of data acquisitions
and the increased performance of computers, it has become more and more an integral part of data
analysis. In the specific context of geometric data analysis, however, dimensionality reduction has
been tackled only recently, and is still an open question. We review the history of dimensionality
reduction, through its approaches and methods, up to the point where this thesis begins.
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1.2.1 The four quadrants of dimensionality reduction

Dimensionality reduction methods can be organized according to four different approaches: linear
dimensionality reduction, to which we oppose nonlinear dimensionality reduction (or manifold
learning), then moving towards geometric data analysis, geometric learning, generalizing linear
dimensionality reduction to manifolds, and finally, at the crossroads of the two previous approaches,
geometric manifold learning.

Linear dimensionality reduction Linear dimensionality reduction is one of the first approaches
to dimensionality reduction for Euclidean data. It consists of all methods that implement a linear
transformation of the data, such as a linear projection. Examples include Principal Component
Analysis (Jolliffe, 2002) and Independent Component Analysis (Wang and Chang, 2006).

Nonlinear dimensionality reduction (manifold learning) In contrast, manifold learning
consists of methods based on non-linear transformations of the data, again assumed to be Euclidean.
It covers a wide range of methods, which we detail in the next section. The motivation for designing
nonlinear methods is that some high-dimensional data, such as molecular complexes, are subject
to constraints that are generally non-linear. More precisely, manifold learning methods implement
locally linear transformations based on the assumption that high-dimensional data are sampled from
a low-dimensional (sub)manifold. This assumption is known as the manifold assumption. Let us take
advantage of this paragraph to make a point about vocabulary. The term embedding is frequently
used in manifold literature. Our understanding is that it is a generic word to denote a nonlinear
transformation of a dataset. In most manifold learning methods, the transformation itself is not
known such that the embedding also refers to the image of the dataset by such transformation.

Non-Euclidean dimensionality reduction (geometric learning) Dimensionality reduction
is a critical issue when it comes to geometric data analysis. Especially, the data modeled in the
context of shape analysis – for example protein structures or anatomical shapes – are by nature
high-dimensional data. Common tools for dimensionality reduction have been originally designed for
Euclidean data. A first approach to process geometric data consists then in embedding them in a
larger Euclidean space – or equivalently to work extrinsically. This approach has two main drawbacks.
First of all, it ignores the structural information contained in the manifold model, which then may
not be well recovered in areas of low sampling density. Moreover, there might be a significant gap in
dimensionality between the intrinsic and the extrinsic model in some cases. Unparametrized curves
illustrate well this second point as the extrinsic and the intrinsic descriptions differ by the removal of
reparametrizations – diffeomorphims – which is an infinite dimensional space. Although manifold
learning methods are designed to handle intrinsically non-linear data, in the case where the data is
modeled on a known manifold, a more reasonable approach is to propose methods directly tailored
to such a manifold. This approach is known as geometric learning. The main geometric learning
methods are presented in Section 1.2.3. It is worth emphasizing that a similar approach has gained
in popularity in deep learning with the emergence of the field known as geometric deep learning
(Bronstein et al., 2017)

Geometric manifold learning So far, the idea behind most geometric learning methods is to
generalize the linear transformations proposed in the first approach. Geometric manifold learning is
part of geometric learning, but refers more specifically either to methods designed as a generalization to
geometric data of manifold learning methods, or to methods reformulating locally the transformations
of established geometric learning methods. To better understand the crossroads at which geometric
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manifold learning finds itself, we review the main methods of its two adjacent approaches: manifold
learning and geometric learning.

1.2.2 Main manifold learning methods

Here we provide a short description for the main methods in manifold learning. Note that all the
methods are designed for Euclidean data.

Multidimensional Scaling (MDS) Multidimensional Scaling estimates an embedding of a
dataset that preserves the original pairwise distances – or dissimilarities – between data points the
best (M. A. A. Cox and T. F. Cox, 2008). In its classical formulation, its implementation relies
essentially on an eigendecomposition.

Isometric Mapping (Isomap) Isometric Mapping (Tenenbaum, De Silva, and Langford, 2000)
implements MDS but for another distance than the extrinsic Euclidean distance. Precisely, it relies
on the distance defined for two data points as the length of the shortest path joining the two points in
the neighbor graph of the data (for example the nearest neighbor graph). Such distance is expected
to capture better the intrinsic distance of the data space.

Locally Linear Embedding (LLE) Locally Linear Embedding (S. T. Roweis and L. K. Saul,
2000) relies on the conservation of local barycentric relations between a data point and its nearest
neighbor. Precisely, if a data point is written as a barycenter of its neighbors, then its embedding
should be close to the barycenter of the embedded neighbors with the same barycentric coordinates.
We review the method in more details later in the thesis.

Laplacian Eigenmaps Laplacian Eigenmaps (Belkin and Niyogi, 2003) are defined as the eigen-
vectors of the graph Laplacian matrix of the neighbor graph of the dataset. The first eigenmaps
provide an embedding of the dataset in a low-dimensional space. The theoretical motivation for this
method is the convergence of the graph Laplacian towards the Laplace-Beltrami operator of the
submanifold the data points are sampled from. And the Laplace-Beltrami operator of a manifold, a
second order differential operator, satisfies the nice property that its eigenvectors form a basis of the
space of twice differentiable functions on this manifold.

Stochastic Neighbor Embedding (SNE) Stochastic Neighbor Embedding (Hinton and S.
Roweis, 2002) estimates an embedding that preserves local distributions of data points. More
precisely, if a data point has a certain probability of picking another point as its neighbor based on
their respective distance, then such probability should still be accurate for the corresponding points
of the embedding.

Uniform Manifold Approximation and Projection (UMAP) Finally, Uniform Manifold
Approximation and Projection (McInnes, Healy, N. Saul, and Großberger, 2018) relies on a similar
idea to that of Stochastic Neighbor Embedding but where distances have been locally scaled ahead of
the computation of the probability matrix in such a way that the size of a neighborhood is uniform
across the dataset.
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1.2.3 Main geometric learning methods

Let us move now to geometric learning. As we highlighted in the introduction of this chapter, most
geometric leaning methods focus on the generalization of Principal Component Analysis (PCA) to
Riemannian manifolds. We identify five main generalizations of such.

Principal Geodesic Analysis (PGA) In Principal Geodesic Analysis, linear components are
replaced with geodesic components, that is geodesics crossing at the Fréchet mean of the dataset.
Precisely, the method estimates the first geodesic components that span a geodesic subspace onto
which the projection of the dataset is of maximal variance.

Tangent Principal Component Analysis (tangent PCA) In their original paper, Fletcher,
Lu, S. Pizer, and Joshi (2004) propose to approximate the projection problem as a projection onto
the tangent subspace at the mean spanned by the tangent vectors encoding the first components. In
this formulation, the method consists simply in a principal component analysis of the dataset, lifted
in the tangent space at the mean through the exponential map. More recently, Sommer, Lauze, and
Nielsen (2014) proposed an exact implementation of PGA. We refer then to the implementation by
Fletcher, Lu, S. Pizer, and Joshi (2004) as tangent Principal Component Analysis.

Geodesic Principal Component Analysis (geodesic PCA) Geodesic Principal Component
Analysis (Huckemann, Hotz, and Munk, 2010) is another generalization of PCA relying on the
notion of geodesic component. The main difference with PGA is that geodesic Principal Component
Analysis optimizes the components one by one, with the only condition that they should be orthogonal.
Moreover, it does not enforce the first component to pass through the mean of the dataset.

Principal Nested Spheres (PNS) In their approach, Jung, Dryden, and Marron (2012) consider
the case of a dataset lying on a high-dimensional sphere, e.g. a set of planar shapes, and propose to
approximate such a dataset by a sequence of nested subspheres.

Barycentric Subspace Analysis (BSA) Barycentric Subspace Analysis (Pennec, 2018) relies on
the notion of barycentric subspace rather than that of geodesic subspace. Essentially, barycentric
subspaces are to affine subspaces what geodesic subspaces are to linear subspaces. We come back to
this method in more details later in this thesis

1.3 General overview of the thesis

Finally, we close this introduction by unfolding the contents and the contributions of this thesis
chapter by chapter.

1.3.1 Red thread

This thesis articulates mainly around the notion of barycentric embedding, introduced right from
the first chapter. In their most general design, barycentric embeddings are a family of dimensionality
reduction methods for manifold-valued data based on barycentric models, to be understood as affine
models in the Euclidean case. In practice, barycentric embeddings seek a representation of a dataset
that preserve relative positions of the data points, encoded by barycentric relations. In particular,
the notion of barycentric embedding serves as a bridge between Barycentric Subspace Analysis
(Pennec, 2018), a geometric learning method, and Locally Linear Embedding (S. T. Roweis and
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L. K. Saul, 2000), a manifold learning method. In this thesis, we travel from theory to application,
and from methods to algorithms. On one hand, we provide a general mathematical understanding of
barycentric embeddings. On the other hand, in order to get a better idea of how the methods work
in practice, we investigate two types of geometric data: shapes and graphs. On these examples, we
illustrate a general computational approach to data analysis on quotient manifolds, and derive specific
implementations. Alongside our theoretical and practical analysis, we highlight simple algorithms.
At second reading, this thesis is also an introductory work on barycentric geometry in the context of
dimensionality reduction.

1.3.2 Outline

Chapter 2. Learning with barycentric coordinates. In this chapter, we propose a very
general introduction to barycentric geometry on Riemannian manifolds, essentially based on the
work of Pennec (2018). In particular, we recall the definitions of a Riemannian barycenter and
of a barycentric subspace. We formalize the notion of barycentric model, intimately related to
that of barycentric subspace, in such a way that it encompasses the global model and the local
model proposed by Barycentric Subspace Analysis and Locally Linear Embedding respectively. From
the notion of barycentric model, we derive that of barycentric embedding. Moving towards the
implementation of such methods, we provide algorithms for computing the projection of a point onto
a barycentric subspace, both in the Euclidean case and in the Riemannian case, such projection
being the key point in the estimation of barycentric models.

Chapter 3. Riemannian Locally Linear Embedding with design for shape spaces. This
chapter is dedicated to the application of Locally Linear Embedding to Kendall shape spaces
(Kendall, 1984). In particular, we propose a Riemannian formulation of the method and detail its
implementation first on a general quotient manifold, and then in the specific case of Kendall shape
spaces. The main technicality lies in the projection of a point onto a barycentric subspace, which
requires a differentiable implementation of the parallel transport. We detail this point for Kendall
shapes spaces following the work of Le (2003). We present simple experiments where we compare
the performance of our method to that of standard Locally Linear Embedding. This chapter is also
thought as a general example of what we are able to do in terms of computations and implementations
in quotient manifolds.

Chapter 4. Barycentric Subspace Analysis of a set of graphs. This chapter covers a joint
work with Anna Calissano. We investigate barycentric subspace analysis of a set of graphs, in the
context of statistical graph analysis. Upstream, we introduce a new Riemannian framework for the
analysis of unlabeled graphs represented by their spectrum. In this framework, we are able to describe
barycentric subspaces explicitly such that the implementation of Barycentric Subspace Analysis
is rather straightforward. We demonstrate the interpretability of such method on two datasets of
graphs, including a real dataset from OpenFlight database (Open Flights, 2017), and compare it
with another dimensionality reduction method (tangent PCA) as well as with a clustering method
(hierarchical clustering). As an introduction to this chapter, we also share our initial approach to the
problem of barycentric subspace analysis of a set of graphs.

Chapter 5. Locally barycentric embeddings, a gluing problem. In this chapter, we study
theoretical aspects of locally barycentric embeddings, which in the Euclidean case consists in the
solutions built by Locally Linear Embedding. More generally, locally barycentric embeddings rely on
local barycentric models, where the local nature of such models depends for a given dataset on the
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neighbor graph of the data points. We show that we can characterize certain locally barycentric
embeddings as piecewise affine mappings obtained by gluing affine mappings together along the
strongly connected components of such a graph. Then we derive from this results a series of lower
bounds on the number of locally barycentric embeddings of a given dataset related to the connectivity
of the neighbor graph of the data.

Chapter 6. New algorithms for geometric learning and geometric manifold learning. The
last chapter concludes this thesis with new algorithms for geometric learning combining barycentric
embeddings and isometric embeddings. Precisely, we propose to discriminate the solutions output
by Barycentric Subspace Analysis and Locally Linear Embedding, a priori non unique, with a
distance-based criterion. We review a first experiment on the Swiss Roll dataset supporting this
combined approach.

1.3.3 Main contributions

Chapter 2 Strictly speaking, the new contributions of this chapter are rather limited. Essentially,
the role of this chapter was to formalize properly all the notions for the rest of the thesis. We should
just point out the algorithm for the projection on a barycentric subspace in the Riemannian case,
which is a contribution borrowed to Chapter 3.

Chapter 3 The contributions of this chapter are mainly three. First, an implementation of Kendall
shape spaces in the Python library geomstats as well as visualization modules, reviewed as part of
the ICLR Computational Geometry & Topology Challenge 2021. Then, the automatic computation of
parallel transport on Kendall shape spaces, presented at GSI’21. Finally, the generalization of Locally
Linear Embedding to manifold-valued data with application to Kendall shape spaces, presented at
GSI’23.

– E. Maignant, A. Trouvé, and X. Pennec (2023). “Riemannian locally linear embedding with
application to Kendall shape spaces”. In: Geometric Science of Information. Ed. by F. Nielsen
and F. Barbaresco. Lecture Notes in Computer Science. Springer Nature Switzerland, pp. 12–20.
isbn: 978-3-031-38271-0. doi: 10.1007/978-3-031-38271-0_2

– N. Guigui, E. Maignant, A. Trouvé, and X. Pennec (2021). “Parallel transport on Kendall
shape spaces”. In: Geometric Science of Information. Ed. by F. Nielsen and F. Barbaresco.
Lecture Notes in Computer Science. Springer International Publishing, pp. 103–110. isbn:
978-3-030-80209-7. doi: 10.1007/978-3-030-80209-7_12

– N. Miolane, M. Caorsi, et al. (2021). ICLR 2021 Challenge for computational geometry &
topology: Design and results. arXiv: 2108.09810[cs,math]

Chapter 4 The first contribution of this chapter is a new Riemannian framework for the analysis
unlabeled graphs represented by their spectrum. To our knowledge, although the space we construct
has already been studied for its geometric and algebraic structure, it has not been introduced
in the context of graph analysis before. In this framework, we provide an explicit description of
the barycentric subspaces. Finally, the last contribution consists in the implementation and the
experimentation of Barycentric Subspace Analysis in the context of graph analysis. The work
presented in this chapter is to be submitted soon as a journal publication. A preliminary work has
been presented already at GSI’23.
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– A. Calissano, E. Maignant, and X. Pennec (2023). “Towards quotient barycentric subspaces”.
In: Geometric Science of Information. Ed. by F. Nielsen and F. Barbaresco. Lecture Notes in
Computer Science. Springer Nature Switzerland, pp. 366–374. isbn: 978-3-031-38271-0. doi:
10.1007/978-3-031-38271-0_36

Chapter 5 This chapter entails a series of new results on locally barycentric embeddings. The two
main results are the description of certain locally barycentric mappings as piecewise affine mappings,
and a lower bound on the number of locally barycentric embeddings. In particular, these results
allow to reinterpret Locally Linear Embedding and answer partially the question of the uniqueness
of the solutions output by the method.

Chapter 6 Finally in the last chapter, the main contribution is a new method for geometric
manifold learning combining Locally Linear Embedding and Isomap, relying on the theoretical results
of the previous chapter. We also propose to extend Barycentric subspace analysis as a visualization
method. The first algorithm together with the main results of the previous paragraph are to be
submitted soon as a journal publication.
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Chapter 2

Learning with barycentric coordinates

Back to the early stages of dimensionality reduction, at the very beginning of the chronology we
outlined in Chapter 1. Assuming Euclidean data, the most straightforward approach to reducing the
dimension of a dataset is to estimate a low-dimensional linear model – that is a linear subspace –
which fits to the data points (Jolliffe, 2002). In the same vein, we discuss in this chapter the more
general notion of barycentric subspace (Pennec, 2018) and we describe some other approach to
dimensionality reduction. In particular, we investigate learning methods for non-Euclidean data.

The first section covers basic concepts of barycentric geometry on Riemannian manifolds. It
mainly defines the notions of barycenter, barycentric coordinates and barycentric subspace. In the
second section, we derive step by step from the notion of barycentric subspace a general approach to
dimensionality reduction which we refer to as barycentric embeddings. In particular, we detail how
to compute the projection onto a barycentric subspace in practice. In the third and last section, we
review two methods in the literature which implement barycentric models, Barycentric Subspace
Analysis (Pennec, 2018) and Locally Linear Embedding (Roweis and Saul, 2000). The first one is a
dimensionality reduction method which generalizes Principal Component Analysis to manifolds. The
second one is a manifold learning method based on local barycentric models.

2.1 Starter pack for barycentric geometry on manifolds

Here barycentric geometry is to be understood as the geometry of barycentric subspaces, which were
first introduced by Pennec (2018). Since we do not have yet all the notions required to define properly
what is a barycentric subspace, let us start by giving some intuition on Euclidean spaces. There
are two different approaches to defining subspaces of a Euclidean space. In the standard approach,
a k-dimensional subspace is determined by one point, the origin, and a family of k independent
vectors, called a frame. Each point of the subspace is then referenced by coordinates called Cartesian
coordinates. A slightly different approach consists instead in fixing k+1 (affinely) independent points
a0, . . . , ak. There is then a unique subspace of dimension k which contains the points a0, . . . , ak and
it is the set of all the weighted barycenters

bar(ai, wi)0≤i≤k =

k∑
i=0

wiai (2.1)

for weights w0, . . . , wk that sum to 1. Such a subspace is usually referred to as the affine span of the
points, themselves called an affine basis or barycentric frame. For each point x of the subspace, written
as x = bar(ai, wi)0≤i≤k, the weights w0, . . . , wk are called the barycentric coordinates of x. Unlike
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Cartesian coordinates, barycentric coordinates characterize properties which do not depend explicitly
on distances and angles such as point alignments. Although these two constructions generate the
same subspaces in a Euclidean space, they generalize differently on a generic Riemannian manifold.
Barycentric subspaces extend the second construction to non-Euclidean spaces. Let us then move
forward with a first definition.

2.1.1 Barycenters

There is a more canonical approach to defining barycenters than writing them in terms of weighted
arithmetic means, as in the equation above. Consider again k + 1 points a0, . . . , ak in Rn and let
w0, . . . wk be k + 1 real numbers summing to 1. Then the barycenter bar(ai, wi)0≤i≤k of the points
a0, . . . , ak with corresponding weights w0, . . . wk is the point in Rn which minimizes the weighted
sum of squared errors

bar(ai, wi)0≤i≤k = argmin
x∈Rn

k∑
i=0

wi∥ai − x∥2. (2.2)

Weighted Fréchet means This definition generalizes naturally to points a0, . . . , ak in any metric
space (M,d) and corresponds in fact to the notion of weighted Fréchet means. If the points a0, . . . , ak
are assigned weights w0, . . . wk, then the weighted Fréchet means are exactly those points m on M
that minimize the weighted sum of squared distances

m ∈ argmin
x∈M

k∑
i=0

wid(ai, x)
2. (2.3)

Exponential barycenters Now this optimization problem does not necessarily have an explicit
solution when M is not a Euclidean space and therefore the definition is not straightforward to
implement. Instead, we consider the notion of exponential barycenter on Riemannian manifolds.
The notion was first introduced by Emery and Mokobodzki (1991) and Corcuera and Kendall (1999)
for continuous weights measures, and then reformulated more recently for discrete weights by Pennec
and Arsigny (2013) as follows

Definition 2.1.1. Let (M, g) be a Riemannian manifold. Let a0, . . . , ak ∈ M and let w0, . . . wk ∈ R
sum to 1. Then x ∈ M is an exponential barycenter of a0, . . . , ak with corresponding weights w0, . . . wk

if it belongs to the set

bar(ai, wi)0≤i≤k =
{
x ∈ M∗(a0, . . . , ak) |

k∑
i=0

wi logx ai = 0
}

(2.4)

where logx denotes the Riemannian logarithm – the inverse map of the exponential map – of M at
x and M∗(a0, . . . , ak) is such that for all i, there is a unique minimizing geodesic connecting any
x ∈ M∗(a0, . . . , ak) to ai (see Pennec, 2018).

Weighted Fréchet means are exponential barycenters This definition is a relaxed version of
the Fréchet definition. In fact, it corresponds exactly to the first order condition (critical condition)
for a point to be a solution of the minimization Problem (2.3). In the case where M is a Euclidean
space, this condition is equivalent to Equation (2.2) since the function is convex and one can check
that it defines a unique solution given by Equation (2.1). In the general case, Fréchet weighted means
are exponential barycenters but the reverse is not necessarily true. Moreover, there is a priori no
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unique solution when M is not a Euclidean space for either exponential barycenters or Fréchet means.
Note that exponential barycenters are also well defined on affine connection spaces or geodesic spaces
where the log map is still defined. In what follows, we only consider exponential barycenters of a
Riemannian manifold and we simply refer to it as a barycenter without ambiguity.

Affine mappings and barycenters Let us comment on the relationship between barycenters
and affine mappings. It is well known that affine mappings between two affine spaces are exactly
those maps f which preserve barycenters, that is such that

f
(
bar(ai, wi)0≤i≤k

)
∈ bar(f(ai), wi)0≤i≤k. (2.5)

More generally, Kobayashi and Nomizu (1996, Chapter 6) define affine mappings between two
Riemannian manifolds to be differentiable maps that preserve geodesics. Deriving the observation
that such mappings commute with the exponential map, we can still show that these also preserve
barycenters. However, the reverse does not hold anymore a priori.

Computing barycenters Finally, coming back to the question of implementation, let us comment
on the computation in practice of a barycenter. We already mentioned that Fréchet weighted means
are not comfortable to manipulate as it involves solving an optimization problem. Instead, we have
defined barycenters in Definition 2.1.1 as the solution of a critical equation. This implicit formulation
is as we see in Section 2.2 easy to implement within larger problems like the projection problem. Now
if we wish to compute explicitly the barycenter of some points with given weights, then we might
implement Newton-like methods (Absil, Mahony, and Sepulchre, 2007) to solve Equation (2.4).

2.1.2 Barycentric subspaces and barycentric coordinates

Affinely independent points Before moving to the definition of barycentric subspaces, let us
extend the notion of affinely independent points to manifolds. In a Euclidean space, some points
a0, . . . , ak are said to be affinely independent if and even if the vectors a1−a0, . . . , ak−a0 are linearly
independent, or equivalently if this is the case for any of the sets (aj − ai)0≤j≤k, j ̸=i. On manifolds,
Pennec (2018) defines the following

Definition 2.1.2. Let (M, g) be a Riemannian manifold of dimension n. Then the points a0, . . . , ak ∈
M , with k ≤ n, are said to be affinely independent if and only if none of them is in the cut-locus of
one other and if for all 0 ≤ i ≤ k, the subset

(
logai(aj)

)
0≤j≤k, j ̸=i

of the tangent space of M at ai is
linearly independent.

Exponential barycentric subspaces Now we are interested in generalizing the notions of affine
span and barycentric frame. It is only natural then to consider the set of all barycenters of a set
of points. Implementing this idea, exponential barycentric subspaces – derived from the notion of
exponential barycenter – were introduced on Riemannian manifolds by Pennec (2018) as

Definition 2.1.3. Let (M, g) be a Riemannian manifold. Let a0, . . . , ak ∈ M be affinely independent
points. The exponential barycentric subspace of a0, . . . , ak is the set

EBS(a0, . . . , ak) =
⋃

w0,...,wk∈R
w0+...+wk=1

bar(ai, wi)0≤i≤k
(2.6)

of all barycenters of a0, . . . , ak. The points a0, . . . , ak are then referred to as the reference points of
such subspace.
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About other definitions of barycentric subspaces There are as many ways of defining a
barycentric subspace as they are of defining barycenters. Pennec also introduces for example in his
paper the notion of Fréchet barycentric subspaces. In this thesis, we focus only on the previous
definition. We then simply refer to exponential barycentric subspaces as barycentric subspaces and
denote the barycentric subspace of a0, . . . , ak by BS(a0, . . . , ak).

Dimension of a barycentric subspace The barycentric subspace of k + 1 affinely independent
points is a stratified space of dimension k, provided we removed some degenerate points (Pennec,
2018). The reader would easily check than when k reaches the dimension n of M , it then coincides
with the set M∗(a0, . . . , ak). In the case where M is a Euclidean space, the barycentric subspace of
k + 1 affinely independent points is an affine subspace of dimension k and it corresponds exactly to
the affine span of the points. In general, barycentric subspaces are not necessarily connected nor
complete. In order to ensure such properties, Pennec further consider the closure of a barycentric
subspace in the manifold M which he also refers to as an affine span. Let us give two other examples
taken from Pennec’s paper.

Example 2.1.1 (Barycentric subspaces of the sphere). The affine span of k + 1 affinely independent
points on the n-dimensional sphere Sn is the great subsphere of dimension k which contains all the
reference points. Their barycentric subspace is the same except that it does not contain the cut locus
of the reference points.

Example 2.1.2 (Barycentric subspaces of the hyperbolic space). The barycentric subspace of k + 1
affinely independent points on the n-dimensional hyperbolic space Hn is the hyperbolic subspace of
dimension k which contains all the reference points.

A link with geodesic subspaces In the Euclidean case as well as in the two previous constant
curvature examples, affine spans coincide with geodesic subspaces as introduced in Principal Geodesic
Analysis (Fletcher, Lu, Pizer, and Joshi, 2004). In the general case, one can check that 2-dimensional
affine spans coincide locally with geodesics. The comparison does not hold anymore however for
higher dimensional subspaces. Investigating further the connection between the two constructions,
Pennec (2018, p. 24) also demonstrates that the affine span of a set of points converges towards some
restricted geodesic subspace when those reference points collapse.

Barycentric coordinates Finally a barycentric subspace is naturally equipped with a frame
which consists simply of the reference points. Such a frame defines a coordinate system and any
point of a barycentric subspace admit barycentric coordinates defined as

Definition 2.1.4. Let (M, g) be a Riemannian manifold. Let a0, . . . , ak ∈ M be affinely independent
points. Then a point x ∈ BS(a0, . . . , ak) has barycentric coordinates w1, . . . , wk ∈ R with respect to
the reference points a0, . . . , ak if the weights w0, . . . , wk satisfy

k∑
i=0

wi logx ai = 0 (2.7)

Additionally, we ask for barycentric coordinates to be normalized, that is to sum to 1.

Remark 2.1.1. The normalization condition is necessary for the barycentric coordinates of a point
to be unique but it is however not sufficient. Whether such coordinates are unique also depends on the
dimension of the barycentric subspace at the point (Pennec, 2018, p. 22). On a computational aspect,
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the barycentric coordinates of a point x are the solutions w = (w0, . . . , wk) of the linear equation
φ(x)w = 0 up to normalization, where φ(x) is the matrix whose i-th column is the vector logx ai
written in local coordinates. The previous remark states that the matrix φ(x) might have a rank less
than k and therefore the dimension of the solution set might be greater than 1.

2.2 Barycentric projection and barycentric embeddings

Having barycentric subspaces now in hand, let us go back to the problem of dimensionality reduction.
Following the approach discussed at the very beginning of this chapter, a reasonable method for
computing a k-dimensional embedding y1, . . . , yN of a dataset x1, . . . , xN consists in estimating a
barycentric subspace BS(a0, . . . , ak) which fits to the data points and take their projection onto the
subspace, or more precisely onto its closure

yi ∈ proj(xi) ⊂ BS(a0, . . . , ak). (2.8)

Theoretically, this method is well defined on any manifold M assuming that a0, . . . , ak are such that
the dataset lies in ∈ M∗(a0, . . . , ak). In practice however, the computation of the projection may be
tricky when the manifold is not a Euclidean space. Moreover, since barycenters are defined by an
implicit equation, it is more natural to compute the barycentric coordinates of the projected points
than the points themselves. Recovering the embedding from the barycentric coordinates is therefore
a problem in its own that we examine together with the projection problem in what follows.

2.2.1 General design of barycentric embeddings

Let us fix the setting. As input, we have a dataset x1, . . . , xN on a n-dimensional Riemannian
manifold (M, g). As output, we want an embedding y1, . . . , yN of the dataset in a k-dimensional
space with k ≤ n. The method we describe to build this embedding consists mainly of two steps.
First, we estimate a barycentric subspace that fits the data points and compute their projection onto
the subspace. In a second step, we recover the embedding.

Barycentric projection The projections of a point x ∈ M onto the barycentric subspace of
affinely independent points a0, . . . , ak ∈ M are the points of the subspace which minimize the
Riemannian distance to x

projBS(a0,...,ak)
(x) = argmin

y∈BS(a0,...,ak)

d(x, y)2. (2.9)

sometimes abbreviated to proj(x) when there is no ambiguity on a0, . . . , ak. When M is a general
manifold, the projection is a priori not unique. It is unique almost surely however when M is a
Euclidean space, a sphere or a hyperbolic space (Pennec, 2018). Such question also relates closely
to that of identifying the focal points (Huckemann, Hotz, and Munk, 2010, Appendix A) of the
barycentric subspace. Now points of the barycentric subspace are exactly barycenters of the reference
points. Therefore, the previous projection problem can also be formulated as an optimization problem
on the barycentric coordinates of the projection

minimize
w0,...,wk∈R
w0+...+wk=1

d
(
x,bar(ai, wi)0≤i≤k

)2
. (2.10)

The question of uniqueness here is even more complex as given weights can define several barycenters
as we saw in the previous section. The distance above is then more precisely the distance from x to
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the set bar(wi, ai)0≤i≤k. In practice, we simply take for the projection the output of the optimization
algorithm, which should be close to one of the minima. Let us leave the implementation question for
later and move on to the first step of the method.

Step 1. Barycentric model This first step mainly consists in estimating k-dimensional barycentric
subspace BS(a0, . . . , ak) which fits to the data points and compute their projection onto the subspace.
Ideally, the subspace should fit as best as possible to the point, that is minimize the projection error
for each data point

minimize
a0,...,ak∈M

N∑
i=1

d
(
xi,projBS(a0,...,ak)

(xi)
)2
. (2.11)

This estimation relies in fact itself on the computation of the projection such that both the subspace
and the projection have to be optimized simultaneously. Now we saw that the projection problem
has two possible formulations. If we substitute the second formulation in the previous problem for
the projection, we obtain the following joint optimization problem

minimize
a0,...,ak∈M

wij∈R
wi0+...+wik=1

N∑
i=1

d(xi,bar(aj , wij)0≤j≤k)
2 (2.12)

The projection of each data point on the optimal subspace is then parameterized by the optimal
weights. Another way to see our problem is model fitting. Let x1, . . . , xN be N observations on M .
Then the barycentric model of parameters a0, . . . , ak (the reference points) and latent variables wij

(the weights) estimates xi with bar(aj , wij)0≤j≤k. When M is the Euclidean space Rn, such model
has a nice and simple formulation. The relation between the observations and the latent weights is

xi =
k∑

j=0

wijaj + εi. (2.13)

where εi is the error of the model at xi.

Local barycentric models Now let us switch from dimensionality reduction to manifold learning,
that is from a global approach to a local approach. We recall that manifold learning methods usually
assume that the dataset is sampled from some submanifold of a linear space and therefore rely on
local linear fits to construct an embedding. Essentially, the mathematical rationale behind this
approach is that normal coordinates define a diffeomorphism between the submanifold and an open
set of a linear subspace. Dyer, Vegter, and Wintraecken (2016) proved a similar result for barycentric
coordinates. Following this result, we may as well estimate a collection of N local barycentric models
parametrized by local frames of reference

minimize
a
(i)
0 ,...,a

(i)
ki

∈M

w
(i)
j0 ,...,w

(i)
jki

∈R

w
(i)
j0 +...+w

(i)
jki

=1

∑
j∈N(i)

d(xj , bar(a
(i)
l , w

(i)
jl )0≤l≤ki)

2 for 1 ≤ i ≤ N. (2.14)

where j ∈ N(i) if and only if xj is in the neighborhood of xi, fixed prior to the model estimation,
and where ki is the dimension of the model at xi and may differ from one local model to another so
that the whole model can fit to a dataset across which the intrinsic dimension is not uniform. The
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main issue in this local construction is that we need to know how to transition from one frame to
another. Locally Linear Embedding (Roweis and Saul, 2000) gets round this problem however by
choosing very specific local frames as we see in the last section.

What happens if we stop at this step Once the optimal reference points a0, . . . , ak and weights
wij have been computed, recovering the projection bar(ai, wij)0≤j≤k requires to solve the critical
equation (2.4), except when the manifold M is a Euclidean space. This can be achieved using
Newton’s method for manifolds (Absil, Mahony, and Sepulchre, 2007). However, assuming the points
have been successfully projected and embedded in the barycentric subspace of a0, . . . , ak, it may not
be obvious to interpret the subspace as a k-dimensional space, nor to perform intrinsic computations
therein.

Step 2. Barycentric mapping Instead, we propose to build an embedding of the data points in
a k-dimensional Riemannian manifold M ′ with known metric g′

yi = f(xi) ∈ M ′ (2.15)

For this purpose, instead of computing the embedding map f explicitly, we are going to build each
of the points yi. Let us detail the construction in the case where M is the Euclidean space Rn. The
barycentric subspace of a0, . . . , ak is then simply the affine span aff(a0, . . . , ak). Therefore, we can
consider affine mappings

ϕ : aff(a0, . . . , ak) −→ Rk

proj(xi) 7−→ yi.
(2.16)

But because affine mappings are fully determined by their image in a barycentric frame, it is
equivalent to fix the image bj of each of the reference points and map the projection proj(xi) onto
the following barycenter in Rk

ϕ
( k∑

j=0

wijai

)
=

k∑
j=0

wijbj . (2.17)

To ensure that our embedding is k-dimensional, we need to fix the embedded reference points bj in
such a way that they are affinely independent. In the context of surface triangulation, such mapping
is also referred to as a barycentric mapping (Floater, 2015). In this case, our embedding map is then
exactly f = ϕ ◦ proj. Now technically, we can generalize this construction to any Riemannian data
space M and any Riemannian embedding space M ′, simply by taking

yi ∈ bar(bj , wij)0≤j≤k (2.18)

where b0, . . . , bk have been fixed in M ′. In practice, since the computation of a barycenter involves
an iterative scheme as we saw before, we choose M ′ to be relatively simple, that is either a Euclidean
space or a constant curvature space (spherical or hyperbolic), where almost everything is known in
closed form.

Counting barycentric mappings Assume a barycentric model. We saw already that in the case
where both the data space M and the embedding space M ′ are Euclidean, barycentric mappings
identify with affine mappings. In the general case, we saw that affine mappings between M and M ′

preserve barycenters and therefore they define barycentric mappings. However, there is a priori no
reason for all barycentric mappings to be derived from an affine mapping. If the embedding space
is Euclidean, since there are as many choices of embeddings y1, . . . , yN as there are of embedded
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reference points b0, . . . , bk, then the set of barycentric embeddings identifies with Rk(k+1). Now
assume M ′ is a k-dimensional non-Euclidean constant curvature space. First notice that because it
preserves barycenters, any affine transformation of M ′ – that is an isomorphic affine mapping of M ′

onto himself – of a barycentric embedding is still a barycentric embedding. Moreover, according to
Kobayashi’s theorem (Kobayashi, 1955), affine transformations of M ′ are exactly isometries of M ′.
Finally, since the group of isometries of a k-dimensional constant curvature space is of dimension
1
2k(k+1) (see Kobayashi (1995) for example), then there exist at least as much embeddings y1, . . . , yN .

Towards locally barycentric embeddings Finally, following the same idea, we can reconstruct
an embedding from local barycentric models. Locally Linear Embedding (Roweis and Saul, 2000)
proposes such a construction which we detail in the last section of this chapter and refer to as locally
barycentric embedding. How much locally barycentric embeddings one is able to construct from
given local barycentric models and how it relates to affine mappings is addressed to some extent in
Chapter 5.

2.2.2 Computing the projection onto a barycentric subspace

Here we detail how to solve the barycentric projection problem in practice, both in the Euclidean
case and in the general Riemannian case. Let again (M, g) be a Riemannian manifold. Let then
a0, . . . ak be affinely independent points on M and let x another point on M . We want to solve the
following problem

minimize
w0,...,wk∈R
w0+...+wk=1

d(x,bar(ai, wi)0≤i≤k)
2. (2.19)

where d denotes the Riemannian distance on M . In the Euclidean case, the projection problem can
be solved explicitly but this is not the case in general. Therefore, we discuss the two cases separately.

Euclidean barycentric projection When M is a Euclidean space, the projection problem is
simply a constrained least squares problem and its solution can be computed with the method
of Lagrange multipliers as in Locally Linear Embedding (Saul and Roweis, 2003). Let us detail
the method. Let a0, . . . ak ∈ Rn be affinely independent points and let x ∈ Rn. The barycentric
projection problem is the following

minimize
w0,...,wk∈R
w0+...+wk=1

∥∥∥x−
k∑

i=1

wiai

∥∥∥2 (2.20)

If w = (w0, . . . , wk), then we can rewrite this problem as

minimize
w∈Rk+1

1Tw=1

wTGw (2.21)

where G is a positive semi-definite matrix defined by G = φ(x)Tφ(x) and φ(x) the matrix given by

φ(x) =


a0,0 − x0 . . . ak,0 − x0
a0,1 − x1 . . . ak,1 − x1

...
...

a0,n − xn . . . ak,n − xn

 . (2.22)
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Now let us write the Lagrangian function of the problem

L(w, λ) = wTGw + λ
(
1Tw − 1

)
. (2.23)

An optimal couple (w∗, λ∗) is then a solution of{
∂wL(w∗, λ∗) = 0
∂λL(w∗, λ∗) = 0

(2.24)

that is {
2Gw∗ = −λ∗1
1Tw∗ = 1

(2.25)

Since we assumed that the points a0, . . . , ak are affinely independent, then this linear system has a
unique solution. In practice however, this assumption might not always be satisfied, whether we
optimize the reference points or fix them before solving the projection problem.

Riemannian barycentric projection When M is a general Riemannian manifold, the formulation
of Problem (2.19) is not as straightforward as barycenters can not be written in closed-form. Instead,
we introduce an auxiliary variable z ∈ M satisfying Equation (2.6) and reformulate Problem (2.19)
as a constrained optimization problem on manifolds. More explicitly, for affinely independent point
a0, . . . ak ∈ M and for x ∈ M , we solve

minimize
z∈M

w0,...,w0∈R
w0+...+wk=1

d(x, z)2

subject to
k∑

i=0

wi logz(ai) = 0.

(2.26)

It is not clear however how to solve this problem in practice. Especially because the constraint lies
in the tangent space TzM which depends itself on the value of z which we wish to optimize. Rather,
we propose to look at the equivalent translated problem

minimize
z∈M

w0,...,w0∈R
w0+...+wk=1

d(x, z)2

subject to
k∑

i=0

wiPz,x (logz(ai)) = 0.

(2.27)

where Pz,x denotes the parallel transport map of M along the geodesic joining z and x. Since
the parallel transport is an isometric map, Problems (2.26) and (2.27) are equivalent. In this new
formulation however, the constraint lies in the tangent space of M at x, which is independent of
the optimization state. In its current formulation, Problem (2.27) can be solved using Lagrangian
methods for constrained optimization on manifolds using specific optimization tools like the ones
implemented in the Manopt toolbox (Boumal, Mishra, Absil, and Sepulchre, 2014). However, it can
be also be formulated alternatively as a vector-valued optimization problem in the tangent space of
M at x.
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Tangent barycentric projection Precisely, we keep track of the estimate z with the tangent
vector v ∈ TxM such that

expx(v) = z (2.28)

where expx denotes the exponential map of M at x. Additionally, we set

ui = Pz,x (logz(ai)) . (2.29)

We derive the following optimization problem

minimize
v∈TxM

w0,...,wk∈R
w0+...+wk=1
u0,...,uk∈TxM

gx(v, v)

subject to
k∑

i=0

wiui = 0

exp[expx(v)]
(
Px,[expx(v)]

(ui)
)
= ai (∀i).

(2.30)

where gx denotes the inner product of the tangent space at x defined by the Riemannian metric
g on M . Problem (2.30) is a priori a vector-valued optimization problem on the product space
(TxM)k+2×Rk+1. Now, provided that a basis of TxM can been explicitly computed, then the search
space is the Euclidean space Rkn+2n+k+1, where n is the dimension of M , and the optimization task
is performed using standard Lagrangian methods implemented in most libraries. As a reference, we
use the SLSQP solver from scipy. We detail this point more concretely on the example of Kendall
shape spaces in Chapter 3. Note that in practice, the complexity of the algorithm strongly depends
on whether one knows the exponential map and the parallel transport in closed-form. In any case, it
requires an implementation of both methods which is compatible with automatic differentiation so
that we can provide the chosen algorithm with the gradient of the constraints.

2.3 Barycentric embeddings in the literature

Finally, we propose in this section to review two major methods in the literature that we classify as
barycentric embeddings. The first method, which we have already mentioned several times in this
chapter, is Barycentric subspace Analysis (Pennec, 2018). It is precisely as part of this method that
the notion of barycentric subspace has been formalized for the first time and used for dimensionality
reduction. The second method, Locally Linear Embedding (Roweis and Saul, 2000), was introduced
before Barycentric Subspace Analysis but can now be reinterpreted in terms of local barycentric
models. In fact, our journey started with generalizing Locally Linear Embedding to manifolds, but
taking interest in Barycentric Subspace Analysis, we spotted common patterns. We then thought
about a general formalism that would encompass both methods, and that is exactly how this chapter
came about.

2.3.1 Barycentric Subspace Analysis

Barycentric Subspace Analysis (BSA) is a dimensionality reduction method for manifold-valued data
introduced by Pennec (2018) in an attempt to generalize Principal Component Analysis (PCA) to
manifolds. At that time, PCA already had several generalizations on manifolds, all relying on the
notion of geodesic components. We could cite for example PGA (Fletcher, Lu, Pizer, and Joshi, 2004)
or geodesic PCA (Huckemann, Hotz, and Munk, 2010). The idea behind BSA was then to generalize
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the notion of subspace rather than that of component. Earlier in this chapter, we discussed why the
notion of barycentric subspaces was a good one for this purpose. Now in its simplest form, BSA
introduces and estimates the global barycentric model (2.12) we described in the previous section.
That said, one of the objectives of BSA was also to generalize PCA as a nested sequence of subspaces,
that is an ordered sequence for inclusion. In his paper, Pennec (2018) proposes several ways of doing
so.

Nested barycentric models Given a dataset x1, . . . , xN on a Riemannian manifold (M, g), the
idea is to build a sequence of nested barycentric subspaces

a0 = BS(a0) ⊂ . . . ⊂ BS(a0, . . . , ak) . . . ⊂ BS(a0, . . . , an) = M (2.31)

that fit to the data points xi in such a way that the approximation improves as much as possible as
the sequence progresses. A natural criterion for assessing the accuracy of the approximation is the
unexplained variance or equivalently the projection error

σ2(a0, . . . , ak) =

N∑
i=1

d
(
xi,projBS(a0,...,ak)

(xi)
)2
. (2.32)

The author details then three methods to build a sequence of nested barycentric subspaces that
optimizes this criterion.

Forward Barycentric Subspace Analysis The first method consists in a forward construction,
starting with a unique reference point a0. One can check that such point that optimizes the
criterion above is exactly the Fréchet mean. Then at step k, the subspace BS(a0, . . . , ak−1) has been
constructed already and we then look for the new reference point ak that minimizes the criterion
σ(a0, . . . , ak) before adding BS(a0, . . . , ak) to the sequence. In practice the search stops when the
intrinsic dimension of the data has been reached (there are several algorithms to know when this
happens). By construction, the sequence has to contain the Fréchet mean, which is the main limit of
this method. In the Euclidean case, Pennec (2018) showed that the sequence build by forward BSA
is the same as the one computed by PCA.

Backward Barycentric Subspace Analysis The second method consists on the other hand
in a backward analysis. It starts by estimating a k-dimensional barycentric model of parameters
a0, . . . , ak. Then at each step, the point ai that increases the criterion the least is removed. At the
end of the iteration, the reference points are reordered in such a way that the the criterion (2.32)
decreases when the sequence progresses. While backward BSA is in its construction less constrained
than forward BSA, it is obviously quite more expensive, especially for a large k. Moreover the
estimation of a k-dimension model is not a well-parameterized problem neither is it a well-conditioned
problem as explained by Pennec (2018). Note that in the case where k = 1, the geodesic model
optimized by backward BSA coincides with the first component of geodesic PCA.

Accumulated Unexplained Variances Finally both forward BSA and backward BSA provide a
sequence that is sub-optimal in the sense that for a given dimension k, the k-th barycentric subspace
does not minimize the projection error a priori. To answer this problem, the author introduces the
accumulated unexplained variance

AUV(a0, . . . , ak) =

k∑
i=0

σ2(a0, . . . , ai) (2.33)
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which proposes to optimize in one step on the whole sequence. We refer to the paper for more details
on this method. All the three methods require optimization on manifolds (or on flags of manifolds).
Again, optimization on manifolds may be achieved using the Manopt toolbox (Boumal, Mishra, Absil,
and Sepulchre, 2014), while optimization on flags of manifolds might be implemented following the
work of Huckemann and Eltzner (2018). Note that in its current formulation, BSA consists mainly
in the model step of barycentric embeddings and does not implement a mapping step. Let us now
detail some last variant of BSA which is of specific interest to us.

Sample-limited Barycentric Subspace Analysis In this formulation of BSA, the reference
points are constrained to belong to the dataset

minimize
1≤i0<...<ik≤N

wij∈R
wi0+...+wik=1

N∑
i=1

d(xi,bar(xij , wij)0≤j≤k)
2. (2.34)

By construction, the barycentric model is then straightforward to interpret with respect to the data.
In a way, sample-limited BSA is mix of the k-means method (Lloyd, 1982) and the k-medoids method
(Schubert and Rousseeuw, 2021), as it computes quadratic estimators, but drawn from within the
data. Note that this formulation is also compatible with the nested construction of all three previous
methods.

Convex sample-limited Barycentric Subspace Analysis We may also enforce the reference
points to be extreme points by constraining the weights to be positive when computing the projection

minimize
1≤i0<...<ik≤N

wij∈R+

wi0+...+wik=1

N∑
i=1

d(xi,bar(xij , wij)0≤j≤k)
2. (2.35)

We refer to this method as convex sample-limited BSA. In this formulation, BSA allows to perform
archetypal analysis (Cutler and Breiman, 1994). The main disadvantage of sample-limited BSA
is that it is a combinatorial optimization problem. Precisely, the computational complexity of a
k-dimensional model is proportional to (k + 1)!. In Chapter 4, we illustrate both sample-limited
BSA and convex sample-limited BSA in the context of graph analysis, where interpretability is a
particularly critical issue. Such intrinsic methods would also be very interesting to investigate for
shape analysis.

2.3.2 Locally Linear Embedding

Locally Linear embedding (LLE) is a manifold learning method introduced by Roweis and Saul (2000)
that computes local coordinate charts based on linear weights reconstructing each data point as a
weighted sum of its neighbors (that is, as their barycenter). The method is based on the assumption
that the dataset lies on a submanifold of Rn, and that therefore there should exist a global chart
that consists of aligning local chart with linear maps (or rather affine mappings, in fact). Now, since
barycenters are invariant with respect to affine mappings, LLE retrieves the global chart as the
embedding that preserves the weights it computed in the first step. Here we propose to review the
method from the point of view of barycentric embeddings. Additionally, we raise the question of
the uniqueness of the [locally linear] embedding. This question is discussed in Chapter 5, where in
particular we investigate the link between such embedding and local affine mappings.
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Step 1. Local barycentric model Let us consider again some dataset x1, . . . , xN , this time in
Rn. The first step of LLE can be thought of as estimating local barycentric models, but where the
parameters (reference points) of the i-th model have been fixed prior to estimation and are the data
points that are the closest to xi

a
(i)
0 , . . . , a

(i)
ki

= xj0 , . . . , xjki , (2.36)

and only the latent weights remain to be optimized

minimize
wij0

,...,wijki
∈R

wij0
+...+wijki

=1

∥∥∥xi − ∑
j∈N(i)

wijxj

∥∥∥2 for 1 ≤ i ≤ N (2.37)

where N(i) = {j0, . . . , jki} stores the indices for the neighbors of xi. There are several ways to select
such neighbors. The two most common ways are either to look for the K nearest neighbors of xi
and fix ki = K − 1, or to select all the data points within a ball of fixed radius r around xi. In the
original algorithm, such search is performed using the Euclidean distance in Rn. In ISOLLE (Varini,
Degenhard, and Nattkemper, 2006), the neighbors are selected according to the geodesic distance
defined in ISOMAP (Tenenbaum, De Silva, and Langford, 2000). Now Problem (2.37) amounts
exactly to computing a Euclidean projection. In the case where the reference neighbors are not (or
almost not) affinely independent, then Roweis and Saul (2000) and later Modified LLE (Zhang and
Wang, 2006) propose solutions to get around uniqueness issues based on a penalized version of the
projection problem. Finally, if the data points are not too much spread in Rn, then the i-th model
estimated by LLE should be close to the optimal local barycentric model solving (2.14), where the
local reference points are not fixed in advance.

Step 2. Locally barycentric mapping The second step of LLE consists then in building the
embedding y1, . . . , yn ∈ Rk in such a way that locally, it coincides with the barycentric mapping

yi =
∑

j∈N(i)

wijyj . (2.38)

Whether this problem has an exact solution is not straightforward. Instead, the method proposes to
find the best non-trivial solution solving

minimize
y1,...,yN∈Rk

N∑
i=1

∥∥∥yi − ∑
j∈N(i)

wijyj

∥∥∥2. (2.39)

We refer to such solution as a locally barycentric mapping. According to Saul and Roweis (2003),
solving this problem is equivalent to computing the lowest eigenvalues of the matrix (Id−w)T (Id−w)
following the Rayleitz-Ritz theorem. We detail here this equivalence and derive conditions for the
optimal solution to be unique.

Optimal mapping(s) Let y be the k×N matrix whose i-th row is the vector yi =
[
yi1 . . . yik

]
and

let w be a N ×N matrix with entries wij = 0 whenever xj is not a neighbor of xi (which includes xi
itself, that is wii = 0). Then Problem (2.39) can be posed slightly differently as

minimize
y1,...,yN∈Rk

tr(yT (Id− w)T (Id− w)y)

subject to
N∑
i=1

yi = 0 and
1

N

N∑
i=1

yiy
T
i = Ik.

(2.40)
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where, in order for the problem to be well-posed, we constraint the embedding to be centered and of
unit covariance matrix. The matrix (Id− w)T (Id− w) is a symmetric positive semi-definite matrix.
Let λ0 ≤ . . . ≤ λN−1 be its eigenvalues with multiplicity arranged in non-decreasing order. Note
that since the weights wi1, . . . , wiN sum to 1, we have (Id − w)T (Id − w)1 = 0. Let us fix then
λ0 = 0. Because of the first constraint, then for all 1 ≤ j ≤ k, the vector

[
y1j . . . yNj

]
has to be in

the orthogonal of 1. It follows from the Courant-Fisher theorem (Horn and Johnson, 2012) that

tr(y(Id− w)T (Id− w)yT ) =

k∑
j=1

[
y1j . . . yNj

]T
(Id− w)T (Id− w)

[
y1j . . . yNj

]
≥ N

k∑
j=1

λj (2.41)

Let us assume that y satisfies the second constraint of Problem (2.40]. Then the columns of y/
√
N

form an orthonormal basis. As a consequence of the Rayleigh theorem (Horn and Johnson, 2012), the
inequality (2.41) becomes an equality if and only if, up to some permutation of the eigenvalues, the
unit vector 1/

√
N
[
y1j . . . yNj

]
is an eigenvector of (Id− w)T (Id− w) for the eigenvalue λj . Finally,

provided that λk+1 > λk, the optimal embedding is unique up to a global orthogonal transformation
of the embedding space. How this condition relates to the configuration of the points and the choice
of neighbors is however a rather difficult question. In chapter 5, we study such relationship in the case
where each of the local models is perfect, that is when each data point is a barycenter of its neighbor,
and estimate the number of embeddings, which we refer to as locally barycentric embeddings.

Riemannian Locally Linear Embedding Finally, using the concepts and tools of the two first
sections, there is not much missing to generalize Locally Linear Embedding to manifold-valued data.
Essentially, the first step of the method, which consist in estimating the latent weights, can be
performed the same way but using the Riemannian projection. This is exactly the idea implemented
by Riemannian Locally Linear Embedding (Maignant, Trouvé, and Pennec, 2023) which we detail in
the case of Kendall shape spaces in the next chapter.
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Chapter 3

Riemannian Locally Linear Embedding
with design for shape spaces

"Shape is all the geometrical information that remains when location, scale and rotational effects are
removed from an object."

– Dryden and Mardia (2016)

Shapes may be the best-known example of geometric data. Since the shape of an object is
invariant to certain symmetries of that object, it cannot be faithfully described in a linear space.
Statistical shape analysis has had an important impact in several fields such as medical image analysis
or computational anatomy (Dryden and Mardia, 2016). The shape of some complex objects can only
be accurately described in large dimension. Synthesizing and visualizing shape analysis is all the more
critical when it comes to exchanging with other fields. After discussing with biologists, we realized
that, although Principal Component Analysis is well established among bio-statisticians, manifold
learning methods are beginning to gain in popularity. Hence, there is a real need to provide learning
methods that take into account the formalization and modeling work carried out in the context
of shape analysis. We first came across Kendall shape spaces (Kendall, 1977) while investigating
some models to analyze protein configurations. Kendall shape spaces have been used for multiple
applications, from archaeology to epidemiology (Nava-Yazdani, Hege, Sullivan, and Von Tycowicz,
2020). In fact, we are not the first either to take an interest in dimensionality reduction in such spaces
(Huckemann, Hotz, and Munk, 2010). Now due to its invariant nature, the shape of an object is
often modeled by an equivalence class, so that most shape analysis frameworks, in particular Kendall
shape spaces, are quotient spaces. In this thesis, we focused exclusively on Kendall shape spaces
among other shape spaces, as this is a well-studied and relatively simple example, but nevertheless
rich in terms of structure. However, we provide keys for computing and learning in quotient spaces
beyond the case of Kendall shape spaces, even in contexts other than shape analysis, such as graph
analysis.

In the first section, we describe through the example of Kendall Shape Spaces a general procedure
for computing on quotient manifold. In particular, we detail how to derive from O’Neill theorems on
Riemannian submersions a new and simpler formulation of parallel transport in Kendall shape spaces.
The second section focuses on the Riemannian Locally Linear Embedding method (Maignant, Trouvé,
and Pennec, 2023). We propose a version of the projection algorithm in quotient manifolds and
provide all the tools needed to implement it on Kendall shape spaces. Finally in the last section, we
illustrate the method on two simple examples in Kendall shape spaces and analyze its computational
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complexity. Perspectives for our method and future work are also discussed, in terms of both theory
and application.

3.1 Computing on quotient manifolds

The case considered here is that described by Le and Kendall (1993) in the context of Kendall shape
spaces, where a smooth Lie group G acts on a differentiable manifold M

g, x 7→ g · x. (3.1)

The quotient manifold theorem states that if the action of G is both proper and free, then the quotient
space M/G is a differentiable manifold (Lee, 2012). Now let us assume that M is equipped with a
Riemannian metric g that is invariant to the action of G. Then such action induces a Riemannian
metric on M/G, in the same way that a G-invariant distance on M induces, under certain conditions,
a quotient distance on M/G (Younes, 2010). Let us take a closer look.

3.1.1 Riemannian submersions

In this section, we assume a smooth, proper and free action of a Lie group G on a Riemannian
manifold (M, g) such that the metric g is G-invariant. A natural way of equipping the quotient
manifold M/G with a Riemannian metric is to make the quotient map π : M → M/G a Riemannian
submersion. Such construction is the one chosen by Kendall and proves rather well suited to
computations and implementation, but it is neither the only nor the most general way of building a
quotient metric, as explained by Tumpach and Preston (2023). Roughly speaking, a Riemannian
submersion is a submersion between two Riemannian manifolds that put in correspondence the
tangent bundle of the base manifold with a subbundle of the tangent bundle of the top manifold in
an isometric way. Let us start by characterizing such a subbundle.

Vertical and horizontal bundles In finite dimension, the rank-nullity theorem suggests that
a good candidate would be the orthogonal complement of the kernel of the tangent map dπ. The
vertical space of M at a point x is precisely defined as the kernel of dxπ. If the tangent space of M
at x admits an orthogonal decomposition into the vertical space of M at x and its complement, then
the latter is referred to as the horizontal space of M at x. Let us write proper definitions.

Definition 3.1.1 (Vertical space). Let x ∈ M . The vertical space of M at x is

VerxM = ker dxπ (3.2)

Moreover, the vertical tangent vectors at x are also exactly those tangent vectors which are tangent
to the fiber π−1(π(x)).

Definition 3.1.2 (Horizontal space). Let x ∈ M . Assume that the tangent space of M at x admits
an orthogonal decomposition

TxM = VerxM ⊕ (VerxM)⊥. (3.3)

Then the orthogonal complement (VerxM)⊥ of the vertical space of M at x is called the horizontal
space at x and is denoted by HorxM . In particular, the horizontal bundle is always defined in finite
dimension.
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Riemannian submersions Now a Riemannian submersion is a smooth submersion π between
two Riemannian manifolds such that the tangent map dπ is an isometry between the tangent bundle
of the base manifold and the horizontal bundle of the top manifold. Precisely, citing Le and Kendall
(1993), a smooth submersion π from one Riemannian manifold onto another Riemannian manifold is
said to be Riemannian if at any point x of the top manifold, the tangent map dxπ maps any two
horizontal vectors at x onto two tangent vectors at π(x) that have the same inner product.

Induced Riemannian metric Then let us come back to our initial purpose and the action of G
on M . Assume that M is a n-dimensional manifold and consider the decomposition of its tangent
bundle into the vertical and horizontal bundles. According to the Riemannian submersion theorem,
there exists a unique metric g∗ on the manifold M/G that makes the quotient map π a Riemannian
manifold (Tumpach and Preston, 2023). Each vector field on M/G identifies with a unique horizontal
vector field on M through the tangent map dπ, referred as its horizontal lift (Lee, 1997). According
to the previous paragraph on Riemannian submersions, then the inner product of two vector fields
on M/G with horizontal lifts u and v is given by

g∗(dπ(u), dπ(v)) = g(u, v) (3.4)

where the right member is well defined because it is constant on the fibers for the action of G. This
construction of the metric corresponds to the one detailed by Le and Kendall (1993). In practice,
any computation on M/G can then be lifted to the manifold M using the previous identity. This
approach has two advantages. First, in terms of implementation. Indeed, quotient classes are a priori
abstract objects and are therefore difficult to encode when there is no canonical representative. If all
the computations on the quotient manifold are performed in the top manifold, then there is no need
to encode explicitly the quotient classes anymore. Second, in the case where M is relatively simple
such that most geometric tools have a closed expression, and G is a matrix Lie group, we might be
able to derive nice formulas for such tools on M/G as well. The case of Kendall shape spaces, on
which next section focuses on, illustrates perfectly this second point.

O’Neill theorem Let us now give a result from O’Neill (1966) that carries on the correspondence
to a higher order. Given a Riemannian submersion between two Riemannian manifolds, The O’Neill
theorem relates the Levi-Civitá connection of the base manifold to the one of the top manifold. We
detail such a result in the case of a quotient submersion.

Theorem 3.1.1. Let ∇ and ∇∗ denote the Levi-Civitá connection on M and M/G, respectively.
Then two vector fields on M/G with horizontal lifts u and v satisfy the identity

∇∗
dπ(u)dπ(v) = dπ(∇uv). (3.5)

Horizontal geodesics The previous theorem allows us to lift the main differential equations of
Riemannian geometry to the top manifold. In particular, the parallel transport equation, to which
we come back later, and more simply the geodesic equation. Precisely, let π(γ(s)) be a geodesic on
M/G and let v be the horizontal lift of its derivative with respect to s. Then following Theorem
3.1.1, the vector field ∇vv has to be vertical. But since such vector field is also always horizontal
(O’Neill, 1966), then this is equivalent to it vanishing. Now let γh(s) be the curve on M with initial
value γ(0) and whose derivative with respect to s is v. Then we just showed that π(γh) is a geodesic
on M . Moreover, since the two geodesics π(γh) and π(γ) share the same initial conditions, they
coincide everywhere. Finally, geodesics on M/G correspond exactly to the image by π of horizontal
geodesics on M , that is the geodesics spanned by horizontal tangent vectors. The distance between x
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and y is then the length of the minimizing horizontal geodesic that connects x to y and this definition
coincides with the one of Younes (2010).

3.1.2 Focus on Kendall shape spaces

We now apply the previous results to the case of Kendall shape spaces. In particular, we make a
point of detailing the calculations so that they can easily be reproduced for other spaces, whether by
us or others. First, let us recall the definition of Kendall shape spaces. In the definition of Kendall
(1984), a shape is the configuration in the space of a set of landmarks up to any translation, scaling
and rotation. It is convenient to build the shape space in two steps.

Pre-shape space More precisely, let us look at the configuration of a set of points x1, . . . xq in the
Euclidean space Rp represented by the matrix x ∈ Rp×q. The space of p× q matrices is equipped
with the Frobenius metric such that the distance between corresponding points of two configurations
is measured by the canonical metric of Rp. Let the translations and scaling act on such matrices. It
defines a quotient space referred to as the Kendall pre-shape space of order (q, p) and given by

Sq
p =

{
x ∈ Rp×q

∣∣∣ q∑
i=1

xi = 0 and ∥x∥ = 1
}
. (3.6)

where ∥ · ∥ denotes the Frobenius norm. The pre-shape space is a sphere of the space of matrices,
equipped with its canonical metric, that is the restriction of the Frobenius metric ⟨·, ·⟩ to the tangent
bundle of the sphere, which makes it a Riemannian manifold. The induced distance is simply the arc
length

d(x, y) = arccos⟨x, y⟩ (3.7)

Kendall shape spaces Then let the group of rotations act on the pre-shape space by left
multiplication. The shape space of order (q, p) is defined as the quotient space

Σq
p = Sq

p/ SO(p). (3.8)

It is a differentiable manifold with singularities at the points where the action is not free. Such
singularities correspond exactly to degenerate shapes, that is shapes with some landmarks aligned or
collapsing, and therefore admitting more symmetries than just the translations, scaling and rotations.
In practice however, we restrict ourselves to the regular stratum of the shape space, that is the
complement of the singular set in the shape space.

Vertical and horizontal bundles of the pre-shape space Now the Kendall shape space has
been equipped with a Riemannian structure on its regular stratum in Le and Kendall (1993), exactly
in the way we described above. First, we need to compute the vertical and the horizontal bundles
of the pre-shape space. In theory, it should be possible to adapt the proofs we provide to redo the
computations with another manifold M and matrix Lie group G.

Proposition 3.1.1. Let x ∈ Sq
p. Then the vertical space of Sq

p at x is

Verx S
q
p = Skew(p)x (3.9)

where Skew(p) denotes the space of skew-symmetric matrices of size p.
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Proof. We saw that the vertical space at x consists of those tangent vectors at x that are also tangent
to the fiber at π(x). Let us then consider a smooth curve γ of the fiber at π(x) with γ(0) = x. Such
curve can be written

γ(t) = R(t)x (3.10)

where R is a smooth curve in SO(p) with R(0) = Id. The derivative of γ at t = 0 is given by
γ̇(0) = Ṙ(0)x. Now let us that recall that SO(p) is a Lie group and that its Lie algebra so(p)
identifies with the space of skew-symmetric matrices Skew(p). Hence there exists a skew symmetric
matrix A such that Ṙ(0) = A. The result follows.

Proposition 3.1.2. Let x ∈ Sq
p. Then the horizontal space of Sq

p at x is

Horx S
q
p =

{
v ∈ Rp×q

∣∣∣ q∑
i=1

vi = 0, ⟨x, v⟩ = 0 and vxT = xvT
}

(3.11)

Proof. The proof is straightforward. Let v be horizontal vector at x. First of all, v has to be a
tangent vector of Sq

p at x, that is v has to be centered and orthogonal to x (remember that the
pre-shape space is a sphere). Then v has to be orthogonal to all the vertical vectors at x. In other
words, v has to satisfy ⟨v,Ax⟩ = 0 for any skew-symmetric matrix A. Rearranging the different
terms within the trace, we obtain the equivalent condition ⟨vxT , A⟩ = 0. This is satisfied for any
skew-symmetric matrix A if and only if the matrix vxT is symmetric.

Shape geodesics Now the Frobenius metric is invariant to the action of rotations, so it induces a
Riemannian metric on the (main stratum of the) shape space. The geodesics of the pre-shape space
are great circles. Therefore a geodesic of the shape space is a projection of a great circle tangent to
the horizontal bundle and the exponential map of the tangent space of the shape space at π(x) is the
projection by the quotient map π of the exponential map of the horizontal space of the pre-shape
space at x

expx(v) = cos(∥v∥)x+ sin(∥v∥) v

∥v∥
. (3.12)

At this stage, the last piece missing before being able to implement Riemannian Locally Linear
Embedding on Kendall shape spaces is the parallel transport. Let us move then to the last part of
this section.

3.1.3 Lifting the parallel transport

Here, we review a result by Le (2003), later supplemented by Kim, Dryden, Le, and Severn (2021),
which allows to compute the parallel transport on Kendall shape spaces as the solution of a first
order ordinary differential equation. Given a Riemannian submersion, there is a priori no clear
correspondence between the parallel transport in the base manifold and the parallel transport in the
top manifold. Still, O’Neill’s theorem (see Theorem 3.1.1) holds and we can lift the parallel transport
equation to the pre-shape space.

Proposition 3.1.3. Let γ : I → Sq
p be a horizontal C1-curve on such that rank(γ(s)) ≥ m− 1 for

all s ∈ I and let v0 be a horizontal vector at γ(0). Then the horizontal vector field v defined along γ
is the horizontal lift of the parallel transport of the tangent vector dπ(v0) along the curve π(γ) if and
only if it solves

v̇(s) = −⟨γ̇(s), v(s)⟩γ(s) +A(s)γ(s), v(0) = v0 (3.13)
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where for all s, the matrix A(s) ∈ Skew(m) is the unique solution of the Sylvester equation

A(s)γ(s)γ(s)T + γ(s)γ(s)TA(s) = γ̇(s)v(s)T − v(s)γ̇(s)T . (3.14)

In this case, we say that the vector field v is the horizontal parallel transport of v0 along the curve γ
and we denote it by P h

γ (v0).

Proof. Here again, we detail the proof as much as possible so that it is reproducible. Indeed, I believe
that this type of equation could be established in several spaces other than Kendall shape spaces.1

Let us come back to the proof. Let then v be a horizontal vector field along γ with initial value v0
at γ(0). By definition, the vector field dπ(v) is the parallel transport of the tangent vector dπ(v0)
along the curve π(γ) if and only if it solves the equation

∇∗
dπ(γ̇)dπ(v) = 0. (3.15)

where ∇∗ is now the Levi-Civitá connection on the shape space. Following O’Neill theorem (see
Theorem 3.1.1), it is equivalent to

∇γ̇v ∈ VerSq
p (3.16)

with ∇ the Levi-Civitá connection of the pre-shape space. Remember that the vertical space of the
pre-shape space at x is Skew(p)x. The previous condition may then be rewritten in terms of an
equation

∇γ̇(s)v(s) = A(s)γ(s) (3.17)

where A(s) is a skew-symmetric matrix for all s ∈ I. Moreover, the Levi-Civitá connection of the
pre-shape space is non other than the Levi-Civitá connection of the sphere

∇γ̇(s)v(s) = v̇(s) + ⟨γ̇(s), v(s)⟩γ(s). (3.18)

and Equation (3.13) follows. Now let us characterize A(s) as a function of v, γ and γ̇. To do so, let
us compute another equation on v̇. Since the vector field v is horizontal, it satisfies

v(s)γ(s)T = γ(s)v(s)T . (3.19)

for all s ∈ I. We derive this expression

v̇(s)γ(s)T + v(s)γ̇(s)T = γ̇(s)v(s)T + γ(s)v̇(s)T . (3.20)

Finally, replacing here v̇ by its expression in Equation (3.13) yields exactly Equation (3.14).

3.2 Riemannian Locally Linear Embedding

Now that we have defined all the tools required, let us come back to the Riemannian Locally Linear
Embedding method (Maignant, Trouvé, and Pennec, 2023) briefly introduced in the Chapter 2, but
this time specifically tailored for quotient manifolds, and let us detail then how to implement the
method on Kendall shape spaces. First, we recall the general outline of Riemannian Locally Linear
Embedding.

1In fact, Yann Thanwerdas (2022) came to me once with a very similar equation on a matrix space he was studying.
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3.2.1 Outline of the method

Riemannian Locally Linear Embedding (RLLE) follows the same structure as Locally Linear Embed-
ding (LLE) and implements two main steps, a model fitting step and a mapping step. The main
difference lies in LLE taking as input a vector-valued dataset, while RLLE applies in a more general
framework where the dataset can be manifold-valued. Essentially, it is the model fitting step that
changes.

Step 1. Local Riemannian barycentric model Consider a dataset x1, . . . , xN on a n-
dimensional Riemannian manifold (M, g). The first step of RLLE consists in estimating local
barycentric models that fit to the dataset. We recall that such a model is given as a pair of first
reference points and then barycentric coordinates for the data points it approximates. Now in LLE
as well as in RLLE, the reference points of the i-th model are fixed prior to estimation and are the
neighbors ai0, . . . , aiki = xj0 , . . . , xjki of the point xi within the dataset. As explained in Chapter 2,
there are several ways to select such neighbors, the most common being the K-Nearest Neighbors
algorithm and fixed-radius neighborhoods. In this case, this preliminary step is performed using the
Riemannian distance on M . Then only the latent weights of each data point xi in the corresponding
local frame xj0 , . . . , xjki remain to be optimized

minimize
wij0

,...,wijki
∈R

wij0
+...+wijki

=1

d
(
x,bar(xj , wij)j∈N(i)

)2 for 1 ≤ i ≤ N (3.21)

where N(i) = {j0, . . . , jki}. Provided the data points are not too much spread in M , then the i-th
model estimated by RLLE should be close to the optimal local barycentric model that would fit the
best to the data points.

Step 2. Locally barycentric mapping The second step of RLLE is then exactly the same as
the second step of LLE and consists in building an embedding y1, . . . , yn in the dataset in Rk in such
a way that locally, it coincides with the barycentric mapping (2.38). An optimal solution of this
problem is found by solving

minimize
y1,...,yN∈Rk

N∑
i=1

∥∥∥yi − ∑
j∈N(i)

wijyj

∥∥∥2.
where N(i) = {j0, . . . , jki} stores the indices for the neighbors of xi. We refer the reader to the
Chapter 2 for more details on how to perform this second step and we now propose a specific
algorithm for solving the first step when M is a quotient manifold.

3.2.2 Computing the barycentric projection in quotient manifolds

We consider here the case where the dataset lies on a Riemannian quotient manifold M/G resulting
from the smooth, free, proper and isometric action of a Lie group G on a Riemannian manifold M .
As we mentioned already in the first section, for there does not always exist an explicit description
for quotient objects, computations in quotient manifolds are generally rather performed in the top
manifold. In practice, this approach also makes the computations more comfortable. In the same
spirit, also Problem (3.21) is designed for any Riemannian manifold and can be solved using one
of the projection algorithms described in Chapter 2, we propose here a new algorithm specifically
designed for quotient manifolds leveraging the results of the Section 3.1.
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Horizontal barycentric projection First we can assume that the dataset is represented by
N points x1, . . . , xN in the top manifold M . Remember that the first step of LLE is equivalent
to computing N barycentric projections. The same goes for RLLE. In Chapter 2, we proposed a
tangent formulation for the barycentric projection problem (see Problem (2.30)). We can easily lift
such formulation to the horizontal bundle of M . Precisely, let x ∈ M and a0, . . . , ak ∈ M . Then the
projection of π(x) onto the barycentric subspace of π(a0), . . . , π(ak) solves

minimize
v∈Horx M
w0,...,wk∈R
w0+...+wk=1

u0,...,uk∈Horx M
g0,...,gk∈G

gx(v, v)

subject to
k∑

i=0

wiui = 0

gi · exp[expx(v)]
(
P h
x,[expx(v)]

(ui)
)
= ai (∀i)

(3.22)

where P h
x,y denotes the horizontal parallel transport of M along the geodesic joining x and y. We

recall that the horizontal tangent vector v unrolls the geodesic connecting the point x to its projection
and the horizontal tangent vector ui encodes the logarithm of each reference point ai at the projection.
The optimization variables gi are the elements of the group G that lift the equality constraint linking
ui and ai

π(exp[expx(v)]
(
P h
x,[expx(v)]

(ui)
)
) = π(ai) (3.23)

to the top manifold M . If G is an exponential Lie group, then it identifies with its Lie algebra g
through the matrix exponential such that the search space can still be written as a vector space.

3.2.3 Implementation in Kendall shapes spaces

Now consider the case of a dataset on some Kendall shape space, that is let M be the pre-shape
space Sq

p and let G be the group of rotations SO(p). The implementation of RLLE on Kendall shape
spaces depends essentially on the implementation of the horizontal barycentric projection on these
spaces. Let us explicit then how to solve the projection problem in practice. At this point, we would
like to mention that all the following methods and programs rely on our implementation of Kendall
shape spaces in the Python library geomstats (Miolane, Guigui, et al., 2020). The corresponding
code is available at geomstats/geometry (2023).

Barycentric projection problem Take a point x ∈ Sq
p and points a0, . . . , ak ∈ Sq

p . Deriving
Problem (3.22), the projection of π(x) ∈ Σq

p onto the barycentric subspace of π(a0), . . . , π(ak) ∈ Σq
p

solves the following optimization problem

minimize
v∈Horx Sq

p

w0,...,wk∈R
w0+...+wk=1

u0,...,uk∈Horx Sq
p

A0,...,Ak∈Skew(p)

∥v∥2

subject to
k∑

i=0

wiui = 0

exp(Ai) exp[expx(v)]
(
P h
x,[expx(v)]

(ui)
)
= ai (∀i).

(3.24)
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Our implementation of the RLLE relies on the SLSQP method of the scipy library to solve the
projection problem. This method requires a gradient function for both the functional to optimize
and the constraints. We cannot hope to compute these gradients in closed-form. However, it is
perfectly possible to compute them numerically using automatic differentiation, for example with
the library pytorch (used here). Therefore, we will take care to propose an implementation of each
of the functions to derive (especially the second constraint) that it is compatible with automatic
differentiation.

Initialization Let φ(π(x)) be the matrix introduced in Chapter 2 (in Remark 2.1.1) whose i-th
column is the logarithm of π(ai) at π(x) written in local coordinates. Intuitively, since the optimal
weights of the projection problem satisfy the critical condition

∑
wi logproj(π(x)) π(ai) = 0.

– We set then w0, . . . , wk so as to minimize – for the metric at π(x) – the quantity
∑

wi logπ(x) π(ai)
or equivalently we take them to be the coordinates of the first eigenvector of φ(π(x)). If π(x)
is not too far from its projection (which is be the case in a model fitting task), the quantity∑

wi logπ(x) π(ai) should still be relatively small and our initialization should provide a good
approximation of the optimal weights.

– Equivalently, we take the barycenter m of the reference points a0, . . . ak with corresponding co-
ordinates w0, . . . , wk as an initial estimation of the projection and we retrieve the corresponding
value of v by unrolling the geodesic between x and m.

– We compute u0, . . . , uk as the horizontal parallel transport from the mean m to x of the
logarithm of ai at m.

– Finally, to fix the initial value of A0, . . . Ak, we solve the alignment problem encoded by the
second equality constraint in the previous optimization problem. This amounts to solve a
singular-value decomposition as explained by Nava-Yazdani, Hege, Sullivan, and Von Tycowicz
(2020).

Construction of an orthonormal basis of the horizontal subspace The main advantage
of the tangent and horizontal projection algorithms is that they can be solved as vector-valued
optimization problems. In practice, this assumes that we know a basis of the horizontal space at x.
Let us detail then a simple procedure for computing an orthonormal basis of the horizontal space at
x. The shape space of order (p, q) has dimension n = p(q− 1

2(p− 1))− 1. Start then with building a
set of n linearly independent horizontal vectors at x incrementally. Once such set has been built,
apply a Gram Schmidt orthonormalization process. The previous step requires to implement the
following simple program that returns a random horizontal vector. First, take a random centered
matrix u. Second, take its projection v = u− ⟨x, u⟩x onto the tangent space at x. Third, take the
horizontal component of such projection by discarding its vertical part Ax where the skew-symmetric
matrix A satisfies the Sylvester equation (v − Ax)xT = x(v − Ax)T . We recall a bit later how to
solve this equation, as well as the one involved in horizontal parallel transport, which is the subject
of the next paragraph.

Computation of the horizontal parallel transport The horizontal parallel transport is the
solution of Equation (3.13). Since it is a first-order differential equation, it can be solved using any
iterative method like the Runge-Kutta method. This method has been implemented in the library
geomstats as part of our work with Nicolas Guigui (Guigui, Maignant, Trouvé, and Pennec, 2021)
where we compare it on Kendall shape spaces with the pole ladder method (Guigui and Pennec,
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2022). Additionally, let us not forget that the functional in Equation (3.13) is defined implicitly by
the solution of a Sylvester equation (precisely Equation (3.14)). This motivates our next paragraph.

Solution of Sylvester equation Both the Sylvester equation defining the horizontal projection
and the Sylvester equation parametrizing the horizontal parallel transport equation are of the form
SX +XS = C where S is a symmetric positive matrix and C a skew-symmetric matrix. The reader
may easily check that such equation has a unique skew-symmetric solution given by X = PY P T

where Yij =
1

dii+djj
(P TCP )ij for i ̸= j and S = PDP T is an eigendecomposition of S.

Parametrization of the Lie group of rotations The group of rotations SO(p) is an exponential
Lie group and its Lie algebra is so(p) = Skew(p). Therefore any element g of the group is encoded
as the matrix exponential of a skew-symmetric matrix A ∈ Skew(p).

3.3 Application to Kendall shape spaces

In this last section, we first review two simple experiments on Kendall shape spaces that illustrate
the gain in accuracy of RLLE, whose specific implementation for these spaces has been just detailed,
over its original version, LLE, in a scenario where input shapes would be treated simply as p× q
matrices. We also compare the computational complexity of the two methods. As a conclusion
to this chapter, we sketch RLLE use cases and discuss future work on this method. This section
essentially reproduces the experimental section of our paper (Maignant, Trouvé, and Pennec, 2023),
but is intended to be a little more detailed. In particular, we provide a slightly reworked version of
the two experiments originally proposed.

3.3.1 Benchmark experiments

We propose two initial experiments on the space Σ3
3 of 3D triangles. Although this may appear as a

simplistic example, it provides a way of visually interpreting the experiments. Indeed, the shape
space Σ3

3 is isometric to a 2-dimensional hemisphere (Le and Kendall, 1993), which can be visualized
flat as a disk, a visualization we have implemented in geomstats (see Figure 3.2 for example) as
part of a contribution to the ICLR Computational Geometry & Topology Challenge 2021 (Miolane,
Caorsi, et al., 2021). Essentially, both this visualization and the better-known Kendall’s sphere of
2D triangles use the formulas calculated by Kendall (1984). We suggest the reader look directly at
the code for implementation details (geomstats/visualization, 2023).

Large scale accuracy of RLLE In this first experiment, we wish to illustrate the ability of
RLLE to better recover dispersed datasets than LLE. The underlying idea is that the Euclidean
model implemented by LLE is a first-order approximation and should therefore yield a significant
error if the distances observed in the data are too large. Thus, we experiment with both methods
for embedding in R2 two different datasets on the shape space Σ3

3, one sampled from a small-scale
distribution and another one sampled from a large-scale distribution (see Figure 3.1). We chose
each distribution to be a mixture of two Gaussian on Σ3

3, reflecting a case where the use of a local
method seems of particular interest compared to that of a global method like PCA or BSA. What
we understand here by Gaussian distribution is in fact the projection onto Σ3

3 of such a distribution
on the ambient space of 3× 3 matrices.
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− The first dataset is sampled from a mixture of two Gaussian of standard deviation σ1 = 1×10−3

with respective means close in shape. We expect LLE to perform reasonably well on this
dataset.

− The second dataset is sampled from a mixture of two of two Gaussian of standard deviation
σ2 = 1 × 10−2 with easily distinguishable means. On this dataset, RLLE should perform
significantly better than LLE. Note that from the interpretation point of view, such a large
deviation correspond to higher variability in shape.

In both methods, we choose a fixed number K of neighbors and select the neighbors according to the
Riemannian distance on Σ3

3. Since we seek for a 2-dimensional embedding of a dataset, it would seem
natural to set the number of neighbors to 3. In fact, such a value would also be enough for the local
models computed by RLLE to coincide with the shape space Σ3

3 – which we recall is a 2-dimensional
manifold– and therefore to fit exactly to the dataset. Yet, we are forced to chose a higher number of
neighbors, precisely K = 5, to ensure that the embedding is unique according to eigenvalue criterion
detailed in Section 2.3 of the previous chapter. This behavior is later explained in Chapter 5, but the
intuition is that if the number is lower, then the graph is divided into several components, and there
exists independent ways of mapping the different components. In the last chapter, a new algorithmic
approach to this question is proposed. Such a choice of K essentially benefits only to LLE as in the
case of RLLE, it does not increase the dimension of the model, bounded from above by the dimension
of the shape manifold, that is n = 2, but rather results in overfitted local models. However, it makes
in fact the computations much easier. Indeed, if the i-th model contains the data point xi, then the
weights of this model are simply the barycentric coordinates of xi and instead of optimizing the
projection problem, we only need to invert the critical condition on xi being a barycenter to retrieve
the weights (see Remark 2.1.1). In practice however, as the intrinsic dimension of the data is never
known, we always have to solve the projection problem. That being said, we could think of a way of
estimating such an intrinsic dimension based on the critical condition being satisfied or not.

Finally, to evaluate the accuracy of each of the two methods, we propose to compare the embedding
they compute to the visualization of the original dataset on the disk. To allow for such a comparison,
we need to align RLLE and LLE on this reference embedding in translation, scaling and orthogonal
transformation, as we recall that the locally barycentric mapping problem is formulated in a way
that it is invariant to such transformations. In fact, on both datasets, RLLE and LLE decompose
in an exact locally barycentric mapping, that is achieve a zero final cost. In that specific case,
the optimal embedding is unique only up to an affine transformation of the embedding space, and
thus we perform here an affine alignment rather than one in translation, scaling and orthogonal
transformation. Additionally, our implementation of LLE performs first a Procrustean alignment
step before solving each Euclidean projection problem (Problem (2.20)). Precisely, we align each
neighbor xj of the point xi onto xi in rotation. Note that without this alignment step, the accuracy
of LLE drops significantly.

A Swiss Roll example The second experiment is deigned to compare the accuracy of RLLE with
that of LLE numerically. For this purpose, we study the embedding in R of a dataset sampled from
a curve, that is a 1-dimensional submanifold, such that the natural parameterization of the curve in
[0, 1] by its arc-length provides an embedding of reference to evaluate RLLE and LLE. More precisely,
we generate a logarithmic spiral curve on Σ3

3 inspired by the "Swiss Roll" example. We sample a
set of 20 shapes along this curve in a way that they are approximately equidistant (see Figure 3.2).
We embed the dataset in R using RLLE and LLE. To avoid dealing with uniqueness issues like in
the first experiment, we fix the neighbor graph on behalf for K = 2 in such a way that the each
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Hemisphere RLLE LLE

Figure 3.1: First experiment. (First row) On the first dataset, both RLLE and LLE provide an
faithful embedding with respect to the representation of the original dataset on the hemisphere
(flatten into a disk). In fact, after alignment, the embedding computed with RLLE coincides almost
perfectly with the representation on the disk. It is important to stress however that it is not an
isometric representation, but only homeomorphic to the representation on the hemisphere (which
itself is isometric). (Second row) On the second dataset, the accuracy of LLE drops. Essentially,
we notice that LLE is still able to recover local patterns faithfully but fails at a larger scale. Local
patterns are reorganized differently than they were in the original data set, and the overall distribution
appears slightly distorted. This experiment confirm our prediction that LLE accuracy decreases as
the dataset spreads while RLLE performs well both at small and large scales.

data point is connected to the previous point and to the next point on the curve according to the
order defined by the arc length parametrisation. We measure the error made by either method as
the L2 distance between the 20-dimensional vector they output and the arc-length parameterization
of the data points, after a proper rescaling of the two output embeddings to [0, 1]. We generate
100 datasets, for each of which we measure the error made by RLLE and LLE, and we compare
the overall accuracy of each of the two methods. In this example, everything has been designed
to ensure that we have an exact way of evaluating the methods. In general however, especially in
higher dimension, there is no canonical way of evaluating RLLE and LLE as there does not exist
an embedding of reference. We suggest then to use distance preservation as an accuracy criterion.
Given the output of either method, we can compare the embedded distance matrix with the distance
matrix of the original distribution. Let us just remember that, since the locally barycentric mapping
problem is made scale-invariant by enforcing a unitary covariance matrix, we would need to measure
the two matrices up to a rescaling.
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Figure 3.2: Second Experiment. (Left) A typical dataset in the experiment. (Center) Output of
RLLE and LLE for this dataset. Of the 100 datasets generated for the experiment, it is in fact the
one for which LLE performed the worst. We can explain this by the following observation. As it
implements geodesic models, RLLE underestimates all the distances in the dataset. Therefore, the
approximation error at the blue end of the curve and that at the red end of the curve compensate
each other. On the other hand, LLE generally underestimates the distances in the blue area while it
overestimates them in the red area. Therefore the errors do not compensate anymore but rather
accumulate. In this dataset, only a few points were sampled in the blue area, where the linear model
is the most inaccurate. As a consequence, LLE substantially underestimates the very first distance
such that the entire embedding recovered by the method is shifted towards the blue end. (Right)
Overall accuracy of RLLE and LLE on the 100 datasets generated, summarized in a box plot. We
recall that the embedding error corresponds to the L2 distance between the embedding computed
by either method and the arc-length parameterization of the dataset, each of them corresponding
to a vector in R. We observe that RLLE performs significantly better and moreover is more stable.
Note however that RLLE is very sensitive to the initialization, most likely due to the existence of
local minima. Precisely, the same experiment but where we initialize RLLE with equal weights
w0 = . . . = wk = 1

k+1 , or the weights found by LLE, produces significantly worse results.

3.3.2 About the computational complexity

RLLE shares the main drawback of intrinsic manifold learning methods: it is computationally quite
expensive. Let us detail this point. We mainly focus on the model fitting step as the mapping step
is common to the LLE method. We consider that either the horizontal or the tangent projection
algorithm is used depending on whether the dataset lies on a quotient manifold or not. We also
assume that the neighbors selected for each data point are its K nearest neighbors. First, the search
space of each local projection problem is a space of either dimension n +K +Kn if the tangent
projection algorithm is used, or dimension n+K +Kn+Km if the horizontal projection algorithm
is used, where we recall that n is the dimension of the manifold or quotient manifold the dataset lies
on, and were m denotes the dimension of the Lie group G in the second case. For the Kendall shape
space of parameters p and q, we have n = p(q − 1

2(p− 1))− 1. Then, we need to take into account
the computational cost of the exponential and the parallel transport methods. In the case of Kendall
shape spaces, while the first one is for free, the latter performs in O(sp3), where s is the number
of integration steps (we recall that each call of the functional involves solving a Sylvester equation

41



which roughly consists in an eigendecomposition). Each evaluation of the constraint – and so each
step of the optimization task – costs the same. Finally, our implementation uses a SLSQP method
to solve each optimization problem. Finally, since there are as many projection problems to solve
as there are data points, the overall cost of RLLE is the cost of one projection problem multiplied
size N of the dataset. As a comparison, the Euclidean projection method is equivalent to a matrix
inversion of dimension k. Therefore, LLE performs in roughly O(Nk3), such that its complexity
does not depend on the dimension n of the data space.

3.3.3 Perspectives

Given the computational cost of RLLE, it is important to understand for which type of data the
method is particularly suited. Typically, the locally linear assumption made by LLE may be valid
for large and well-concentrated data sets. In these cases, we extrapolate from the first experiment
both methods should perform more or less the same. Moreover, non-local methods like PCA, PGA
or BSA provide a good estimation whenever the data is sufficiently concentrated. Finally, LLE and
RLLE seem of particular use in cases where a distance-based method like MDS or Isomap does not
perform well. These three remarks suggest that RLLE is more specifically designed for small sample
size data sets with large dispersion, and provides an embedding which might allow to observe more
informative patterns than the ones characterized by the distance only.

As for now, RLLE has been implemented for Kendall shape spaces only. We are contemplating a
general implementation of the method into the library geomstats for various manifolds and quotient
manifolds – starting with the simplest manifolds and manifolds that are already implemented in
geomstats. Knowing that the parallel transport on symmetric spaces can be computed in one
step thanks to pole ladder (Guigui and Pennec, 2022), it would then be relevant to focus onto
those specific manifolds. In fact, our implementation of RLLE on Kendall shape space is not yet
part of geomstats as it relies on automatic differentiation modules that were not available in the
library at the time, but we expect to add it soon. Following our first two experiments, it would
also be useful to try higher-dimensional examples, on Kendall spaces but on manifold spaces where
everything is known in closed form, such as the sphere. Applications to real data sets will also be
developed in future work. In particular, it would be interesting to investigate further the analysis
of protein conformations using Kendall’s framework as an extension of an early work (Stolyarchuk
et al., 2021). Finally, theoretical improvements for this work would involve understanding better how
the stratification of Kendall shape spaces – especially of non-triangular shapes – interfere with our
projection algorithm. Regarding this question, the work from Huckemann, Hotz, and Munk (2010)
on designing PCA for stratified G-manifolds, and in particular Kendall shape spaces, appears to be
a particularly relevant reference.
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Chapter 4

Barycentric Subspace Analysis of a set of
graphs

In collaboration with Anna Calissano, currently at Imperial College, London.

This is a story that started in October 2022 at the Institut Henri Poincaré in Paris, where a
semester around geometry and statistics was taking place:

While I was wandering around in the first level of the institute, I came across Anna
working on a black board. Taking a glance at the board, I noticed an optimization
problem that looked a lot like the one I had encountered a year before when trying to
implement Locally Linear Embedding on Kendall shape spaces. A bit curious, I went
to her and asked what she was working on. She explained she was trying to figure out
an algorithm to perform Barycentric Subspace Analysis for sets graphs, more precisely
unlabeled graphs. At the time, I was not very familiar with Barycentric Subspace Analysis
and I had not yet made the link with Locally Linear Embedding. Still I realized that,
apart from the notations, the problem Anna was studying and the weight calculation
problem in Locally Linear Embedding were the same, that is the barycentric projection
problem. However, I soon understood that her problem was way more tricky.

Indeed, unlabeled graphs are usually modeled in a quotient space over the action of permutations.
Since such an action is not free, the corresponding quotient space is unfortunately not a manifold.
Still, it is possible to a certain extent to define statistical methods like Principal Component Analysis
on such space using specific tools, and in theory, the same tools also allow to define Barycentric
Subspace Analysis for sets of unlabeled graphs. How to implement the method in practice, however,
is a different matter, mainly due to the discrete nature of the action, as we shall see. And so, stuck
in a kind of technical impasse, we decided to rethink the modeling of unlabeled graphs, with the
desire to this time fall into the case of Riemannian quotient manifolds. This chapter is precisely
structured around this new modeling approach and its application to barycentric subspace analysis.

The first section serves as a motivation for the whole chapter. Supplementing the short story you
just read, it provides a brief overview of some key issues in graph analysis and reviews our initial
approach to tackling the problem of Barycentric Subspace Analysis of a set of graphs, that proved
rather unsuccessful but nonetheless instructive. In the second section, we introduce a new framework
for the study of graphs, which nicely echoes spectral graph theory and proves to have simple and
beautiful geometric properties. The last section implements Barycentric Subspace Analysis in this
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framework and demonstrates their joint potential through two experiments, one on a simulated
dataset and another one on a real dataset consisting of airlines route maps data.

4.1 Why learning graphs is challenging

Here, we want to emphasize the specifics of working with graphs and highlight the main issues that
have motivated and shaped this work. Mainly, on one hand we want to demonstrate some of the
limitations of current modeling and motivate the use of a Riemannian model, on the other hand we
want to raise the critical question of the interpretability of dimensionality reduction methods when
dealing with graph data.

4.1.1 A modest state of the art in statistical graph analysis

In recent years, there has been growing interest in the analysis of a set of graphs, owing to the various
applications in which graph data arise: brain connectivity (Simpson et al., 2013; Durante, Dunson,
and Vogelstein, 2017; Calissano, Papadopoulo, Pennec, and Deslauriers-Gauthier, 2023), brain
arterial networks (Guo, Srivastava, and Sarkar, 2021), anatomical trees (Wang and Marron, 2007;
Feragen et al., 2013), mobility networks (Von Ferber, T. Holovatch, Y. Holovatch, and Palchykov,
2009). The field of graph analysis has therefore developed significantly, essentially around the design
of statistical tools for carrying out various tasks such as regression or classification (Tsuda and Saigo,
2010). In some cases, however, the complexity of building a statistical framework for graph analysis
lies not only in defining a metric structure or designing a suitable distance function, but also in
dealing with the fact that there may be no clear correspondence between nodes in the observed
graphs. Such graphs are often referred to as unlabeled graphs, and the ambiguity of correspondence
between nodes can vary from totally unlabeled settings like social networks connecting different
groups of individuals, to partially labeled settings as for example molecules involving different types
of atoms. In this chapter, we focus the totally unlabeled setting, which in fact also includes the
partially labeled one up to some reformulation.

Graph spaces A number of studies have therefore focused on defining statistical tools specifically
designed for unlabeled graphs. In statistical analysis, the first tool to be defined is the distance.
There are several distances available in the literature, the key point being that they must be invariant
to nodes permutations in order to compare graphs independently of their labeling. The so-called
spectral distances (Jurman, Visintainer, and Furlanello, 2011; Donnat and Holmes, 2018) are a
well-known and widely used example. Still in the context of the invariant (or equivariant) approach,
the analysis of unlabeled graphs has also been tackled by geometric deep learning (Maron, Ben-Hamu,
Shamir, and Lipman, 2018) which proved particularly successful for tasks such as clustering or
classification. Finally, to go a step further, some work has focused on embedding graphs in a quotient
space resulting from the action of node permutations on graphs, represented for example by their
adjacency matrix (Jain and Obermayer, 2009; Calissano, Feragen, and Vantini, 2023), explicitly

Rp×p/S(p), (4.1)

or by the ordered set of their edges (Kolaczyk et al., 2020). The reader might want to check that
the action by conjugation of a permutation σ ∈ S(p) on a graph – represented by its adjacency
matrix – consists exactly in relabeling the nodes of the graph. The graph space thus defined is then
endowed with a metric structure given by the quotient distance induced by that of the top space
(Younes, 2010). Although this last approach is more intrinsic than the previous ones, it entails two
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major issues. From a theoretical point of view, as we have already pointed out, since the action of
permutations is not free, the techniques from differential geometry described in the previous chapter
do not apply a priori, at least not to the whole graph space. Instead, Kolaczyk et al. (2020) proposed
to study such a quotient space from the point set topology point of view. From a practical point
of view, this approach suffers from computational limitations beyond a certain number of nodes,
resulting from the computation of the quotient distance being worth a graph matching problem
(Conte, Foggia, Sansone, and Vento, 2004). Essentially, as we hope to illustrate throughout this
chapter, one good way to get around these issues is to rethink modeling outside the action of a
discrete group. In this regard, it is precisely important to mention that Severn, Dryden, and Preston
(2022) have recently introduced a new model for graph analysis that allows the study of unlabeled
graphs as elements of a Procrustes manifold. We shall come back to it in a little more detail in
Section 4.2 which focuses on our new Riemannian framework for the analysis of graphs.

Dimensionality reduction for graphs A significant proportion of the work on dimension
reduction for sets of graphs revolve around Principal Component Analysis (PCA). Let us mention
for example Aydın et al. (2009) in the specific case of trees. In the case of unlabeled graphs, several
methods focus on defining PCA for a set of graphs embedded in the graph space Rp×p/S(p). For
example, Guo, Srivastava, and Sarkar (2021) proposed a method which consists in linearizing the
graph data by aligning each graph xi at the mean graph m

vi = Pi(σ) · xi −m (4.2)

before applying a standard PCA. A link may be drawn between this approach and tangent PCA (a
priori defined in the case of Riemannian manifolds only) in that the vector vi thus computed is similar
to the Riemannian logarithm as it generates a straight line in Rp×p of minimum length. Mentioning
the tangent PCA, Severn, Dryden, and Preston (2022) also proposed an implementation based on
their modeling. However, tangent PCA as well as the previous method are not intrinsic. To address
this problem, Calissano, Feragen, and Vantini (2023) have proposed more recently an implementation
of geodesic PCA (Huckemann, Hotz, and Munk, 2010) on the graph space Rp×p/S(p).

Interpretability in statistical graph analysis When it comes to reducing the dimensionality
of a set of graphs, interpretability is generally a recurring issue. The two methods we have just
described are not exempt from this. Indeed, one is not entirely intrinsic, and the other allows the
data set to be described only along one-dimensional components, which in the case of graphs have
proven to be quite difficult to interpret in practice. Therefore, there has been in graph analysis a
growing interest in archetypal analysis (Cutler and Breiman, 1994) and sampled-limited statistics
(Feragen et al., 2013; Zhai, 2016). Now, we saw precisely in Chapter 2 that Barycentric Subspace
Analysis (BSA) may be formulated as such. For this reason, in order to retrieve high-dimensional
features, and because barycentric geometry only requires a priori a notion of logarithm, which can be
defined in a general quotient space as we explain in the next section, BSA appears to be a particularly
relevant dimensionality reduction tool for the analysis of graph sets. Note that the method’s great
interpretability has already been put to good use in other applications (Rohé, Sermesant, and Pennec,
2018).

4.1.2 Barycentric Subspace Analysis under a finite group action

Our first approach to implement BSA for sets of graphs relies on the graph space Rp×p/S(p)
introduced above. As we highlighted, it is not a manifold. Therefore, barycentric subspaces are a
priori not defined. Instead, we investigate a new definition that applies to the case of any quotient
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space, including that of the graph space, and coincides with the usual one in the case of quotient
manifolds. This section takes up and summarizes the more detailed work we presented at the 6th
International Conference on Geometric Science of Information (Calissano, Maignant, and Pennec,
2023).

Horizontal logarithm We recall that the general idea of BSA is to fit a barycentric subspace to a
dataset. To extend the notions of barycenter and barycentric subspace to a non-manifold quotient
space, we need an analogue of the Riemannian logarithm. We propose here a definition based on the
alignment of two points in top space, reminiscent of the PCA of graphs introduced by Guo, Srivastava,
and Sarkar (2021) and described in the previous section. Intuitively, the logarithm should correspond
to the vector that generates the minimum-length geodesic in the top space according to the quotient
distance. Note that this idea coincides with that of the horizontal lift of the Riemannian logarithm
when the space is a quotient manifold introduced in Chapter 3. From now on and throughout this
section, we consider then the case of a quotient space M/T , where M is a smooth manifold equipped
with a Riemannian metric g and T is a finite group acting on M in such a way that the distance d
on M is T -invariant. Additionally, we denote by π the canonical projection map from M to M/T .
Let us now give a precise definition of the logarithm of such a space.

Definition 4.1.1. Let x and y ∈ M such that there exists a unique element tx,y ∈ T that minimizes
the quantity d(x, t · y) over T , which is the case if and only if y is not equidistant to any two
representatives of π(x). Then x and tx,y · y are said to be optimally positioned with respect to each
other and the horizontal logarithm of y at x is the tangent vector

loghx(y) = logx(tx,y · y) ∈ TxM (4.3)

where logx denotes the Riemannian logarithm at x on M . Since the set of all points which are
equidistant to at least two elements of the orbit π(x) is a set of null measure, the horizontal logarithm
at x is defined almost everywhere. Note however that it may have discontinuities at those specific
points.

Quotient barycentric subspaces Following this definition, we can extend that of barycenters
and barycentric subspaces.

Definition 4.1.2. Let a0, . . . , ak ∈ M be affinely independent points and let w0, . . . , wk ∈ R sum to
1. Then π(x) ∈ M/T is a barycenter of π(a0), . . . , π(ak) with corresponding weights w0, . . . , wk if it
belongs to the set

bar(π(ai), wi)0≤i≤k =
{
π(x) ∈ M∗(a0, . . . , ak)/T |

k∑
i=0

wi log
h
x(ai) = 0

}
. (4.4)

where M∗(a0, . . . , ak) is the set of all points x in M for which a given reference point ai is not
equidistant to any two representatives of x or equivalently, for which x is not equidistant to any two
representatives of ai. The set of all such barycenters is called the quotient barycentric subspace of
π(a0), . . . , π(ak).

Discontinuity of quotient barycentric subspaces Now moving towards BSA, we are still
missing how to compute the barycentric projection. Indeed, none of the algorithms we proposed so
far are valid in this context, mainly because they rely on continuous optimization. Therefore, we need
to approach the problem differently. There are two main obstacles to implementing an algorithm
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in our context here. First, since the horizontal logarithm relies on an alignment procedure, which
does not have a closed form solution a priori, the projection problem suffers from combinatorial
complexity. Moreover, since the horizontal logarithm is discontinuous, then so are the barycentric
subspaces. The problem is that wherever these discontinuities occur is not known in closed form
either, since it also depends directly on the alignment problem. More importantly, the projection
problem therefore raises what we call geometric complexity. To illustrate such, let us simplify the
problem a little bit. In the specific case of graphs, the top manifold M is a Euclidean space equipped
with its canonical metric (precisely, the Frobenius metric). If this is the case, we are able to write
the Riemannian logarithm of M explicitly as a subtraction of vectors and we have that π(x) is a
barycenter of π(a0), . . . , π(ak) with corresponding weights w0, . . . , wk if and only if

x =
∑
i

witi · ai where ti = argmin
t∈T

d(x, t · ai). (4.5)

Although this new formulation is more explicit, it remains implicitly related to the alignment problem.
As we have no closed form solution for such in the case of graphs, we propose instead in Figure 4.1
to illustrate the double complexity of the projection problem on the simple example of the action on
the plane of the point reflection across the origin. In this specific case, we are able to compute the
discontinuities of the barycentric subspaces explicitly. This is not true anymore in higher dimensions
or in more complex quotient spaces. Therefore, locating the discontinuities and computing the
barycentric projection require in the general case an exhaustive search. Instead, we explored two
algorithms that approximate the solution of such a problem. We do not present them here, but which
the reader may find in our paper (Calissano, Maignant, and Pennec, 2023). Essentially, although
one of the two algorithms proved accurate in most cases, both failed drastically for some specific
reference point distributions, even in our simple example. Faced with this conclusion, we decided to
take up the problem of implementing BSA for sets of graphs from the beginning and investigated a
new graph space, one that would be more regular and therefore easier to compute with.

4.2 Spectral graph spaces

Drawing lessons from our first approach, we set out to build a model that would be compatible
with continuous Riemannian geometry and therefore with the work of Chapter 2 and Chapter 3. As
a relaxation of the previous graph spaces, we introduce spectral graph spaces to be the quotient
spaces resulting from the action of rotations, rather than the one of permutations, on the set of
adjacency matrices. This approach consists somehow in a symmetric version of the one by Severn,
Dryden, and Preston (2022), where the orthogonal group acts on the right only, more similarly to a
Procrustean approach than to the original invariant approach for graphs we described in Section 4.1.
Now, beyond the idea of relaxation, our approach takes on a natural interpretation from the point of
view of spectral graph theory, that is the study of graphs through their spectrum, a descriptor that
has proved to encode numerous properties (Chung, 1996; Brouwer and Haemers, 2012). Indeed, the
action of rotations by conjugation preserves the eigenvalues of a given graph – represented by its
adjacency matrix – and the resulting equivalence classes are precisely the sets of cospectral graphs,
that is graphs sharing the same set of eigenvalues (Haemers and Spence, 1995). As we shall see,
our framework also coincides with one of the spectral distances mentioned in Section 4.1. Finally,
the main theoretical interest of spectral graph spaces is that they are naturally endowed with the
very specific Riemannian structure of a Weyl chamber. In practice, this means that, first, BSA
is well defined on the whole spaces, and moreover, that it comes with simple implementations, in
particular because it turns out that the barycentric subspaces can be described explicitly, such that
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Figure 4.1: Geometry of a quotient barycentric subspace. (Left) We consider the orbits of two points
in the plane (in red and blue) under action of the point reflection across the origin x 7→ −x. (Center)
According to Equation (4.5), a barycenter of the two orbits is always written in top space as a
weighted sum of a representative of the first point and a representative of the second point (in gray).
In total, all these weighted sums generate a priori 4 different lines in the plane. (Right) Now among
these weighted sums, only a subset (in black) satisfy the alignment condition in Equation (4.5). For
this specific quotient space, we can invert such an alignment condition to obtain an explicit condition
on the barycentric weights for the weighted sum to project on a valid barycenter. It divides the lines
generated by all the weighted sums into valid and non valid segments such that even in this very
simplistic example, the quotient barycentric subspace consists already in 4 disconnected components.
Additionally, we may also solve the problem geometrically. The red (respectively blue) dashed line
separates the plane into the points that are aligned on one representative of the red (respectively
blue) orbit on one hand and the points that are aligned on the other representative on the other
hand. These two lines parametrize exactly the valid segments.

the computation of the barycentric projection is straightforward. Through several examples, we are
able to illustrate that BSA is a powerful dimensionality reduction tool particularly suited to the
analysis of a set of graphs.

Spectral graph spaces We consider undirected weighted graphs with a finite set of nodes (vertices).
Such a graph is given as a triplet G = (V,E, a), where V = {1, . . . , p} denotes the set of nodes, E
is a set of paired nodes referred to as edges, and a : E → R is a scalar attribute (weight) function
defined on the edges. We allow for graphs to have self-loops or node attributes, that is for a{i, i}
to be non-zero. A weighted graph can be represented by its weighted adjacency matrix x ∈ Rp×p

defined by

xij = xji =

{
a{i, j} if {i, j} ∈ E
0 else (4.6)

and embedded as a point in the space Sym(p) of symmetric matrices of size p:

Sym(p) =
{
x ∈ Rp×p | xT = x

}
(4.7)

In an effort to relax the action of the permutation group while sticking to the original idea of
classifying graphs according to their structure, we consider the conjugation action of the orthogonal
group O(p) on Sym(p)

(R, x) 7→ RxRT (4.8)

which transforms one graph into another cospectral (or isospectral) graph, that is a graph whose
adjacency matrix shares the same spectrum. The orbit of a graph consists then exactly of all the other
cospectral graphs. As the spectrum of a graph contains a lot of information about its topological
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structure like connectivity or regularity (Haemers and Spence, 1995; Halbeisen and Hungerbühler,
2000; Van Mieghem, 2010), identifying a graph with its orbit amounts to identify graphs with a
similar structure. In particular, a given graph is identified with all the other graphs obtained by
permuting the nodes as illustrated in Figure 4.2. We then represent a graph as a point in the quotient
space Γp defined by

Γp = Sym(p)/O(p) (4.9)

It is a differentiable manifold with singularities at the points x where the action of O(p) is not free.
We can show that these points correspond exactly to the symmetric matrices with at least two equal
eigenvalues. Let then Symreg(p) be the subset of symmetric matrices whose eigenvalues are pairwise
distinct. It is an open subset of Sym(p) and it is dense in Sym(p). On Symreg(p), the action of O(p)
is proper and free such that the quotient space Γreg

p = Symreg(p)/O(p) is a differentiable manifold.

Definition 4.2.1. The quotient space Γp is called the spectral graph space of size p.

Figure 4.2: Equivalence class of a graph. The nodes of the graphs are represented by red dots (or
filled circles) and the edge connecting two nodes is represented by the segment that joins the two
corresponding dots. The nodes are always arranged clockwise but we added the labels on the first
graphs to make it easier to understand. Edges with positive (respectively negative) weight are colored
in black (respectively red) while the opacity of one edge is proportional to the absolute value of its
weight. As for the length of the edges being constant, it is only a choice of layout and it does not
encode any information. Self loops (node attributes) are represented by circular edges using the
same color code. The same color code and layout hold for all the examples of this chapter. Here the
first graph is given by its adjacency matrix x and the other graphs correspond each to the action of
a rotation Ri ∈ O(p) on x by conjugation. The two first correspond more specifically to the action
of a permutation. Self-loops occur almost every time a rotation – that is not a permutation – acts
on the original graph.

4.2.1 The L2 spectral distance

A straightforward way of providing spectral graph spaces with a distance function is to define what
is called a quotient distance (Younes, 2010). Let us fix p ∈ N∗ from now on. The space Sym(p)
carries naturally a distance function induced by the Frobenius norm. One might check easily that
this distance function is invariant with respect to the action of O(p) by conjugation. Therefore, if
π : Sym(p) → Γp denotes the canonical projection map, then the function

d∗ (π(x), π(y)) = inf
R∈O(p)

∥∥RyRT − x
∥∥ (4.10)
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is well defined and satisfies all the axioms of a distance function which we can equip the graph space
with. Now we have the following

Proposition 4.2.1. Let x, y ∈ Sym(p). Let λ1 ≤ . . . ≤ λp (respectively µ1 ≤ . . . ≤ µp) denote the
eigenvalues of x (respectively y). Then the distance from π(x) to π(y) can be reformulated as

d∗ (π(x), π(y)) =

(
p∑

i=1

|µi − λi|2
)1/2

, (4.11)

such that it belongs to the family of spectral distances (Donnat and Holmes, 2018). We refer more
precisely to the distance function d∗ as the L2 spectral distance. The optimal orthogonal matrix
aligning y on x is given by

Rx(y) = R1R
T
2 (4.12)

where x = R1 diag (λ1, . . . , λp)R
T
1 and y = R2 diag (µ1, . . . , µp)R

T
2 .

Proof. Consider the functional
dx,y : R 7→ ∥RyRT − x∥2 (4.13)

Its gradient at R ∈ O(p) with respect to the Frobenius metric on TR O(p) = Skew(p) ·R is given by

grad dx,y(R) = 2RyRTx− 2xRyRT ∈ Skew(p) (4.14)

Now the functional dx,y is minimized only if the first order condition

grad dx,y(R) ∈ Skew(p)⊥ = Sym(p) (4.15)

applies. This condition is satisfied if and only if x and RyRT commute with each other. Assume then
that R is such that it is the case. Then x and RyRT may be diagonalised in a common orthonormal
basis

x = Rx,yDxRx,y and RyRT = Rx,yDyRx,y (4.16)

and we have
dx,y(R) = ∥Dx −Dy∥2 (4.17)

Up to a permutation σ, this amounts exactly to

dx,y(R) =
∑
i

∣∣λi(x)− λσ(i)(y)
∣∣2 (4.18)

Finally, the rearrangement inequality states that

p∑
i=1

λiµσ(i) ≤
p∑
i

λiµi (4.19)

for any permutation σ ∈ S(p). Therefore, the functional dx,y is minimal only if σ = id and its
minimum is the quantity

dx,y(R) =
∑
i

|λi(x)− λi(y)|2 . (4.20)

Moreover, the reader may wan to check that such a choice of σ corresponds exactly to taking
R = R1R

T
2 . Reversely, if R = R1R

T
2 then the previous optimal equality is satisfied.
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4.2.2 The Riemannian structure of spectral graph spaces

Now moving towards a more sophisticated analysis of graphs, we propose to equip spectral graph
spaces with a Riemannian structure which is easy to derive and implement. Precisely, we construct
a Riemannian metric on Γreg

p in such a way that the quotient map π is a Riemannian submersion,
similarly to what we described for Kendall shape spaces in Chapter 3. Once again, we leverage such
a construction to compute the Riemannian structure of Γreg

p from the structure of the total space
Symreg(p) which is easier to operate. Finally, we discuss how this Riemannian structure extends to
the whole graph space Γp.

Vertical and horizontal bundles We recall that the vertical subspace of Symreg(p) at a point
x consists of all the tangent vector at x that are tangent to the fiber π−1(x) while the horizontal
subspace at x is the orthogonal complement of such in the tangent space at x with respect to
the Riemannian metric of Symreg(p). We choose this metric to be that induced by the Frobenius
inner product ⟨·, ·⟩. This choice is motivated later when constructing the Riemannian metric on
Symreg(p)/O(p). We derive an explicit description for both the vertical bundle and the horizontal
bundle of Symreg(p).

Proposition 4.2.2. Let x ∈ Symreg(p). The vertical subspace of Symreg(p) at x is

Verx Sym
reg(p) = {Ax− xA, A ∈ Skew(m)} . (4.21)

Its dimension is p(p− 1)/2.

Proof. Verx Sym
reg(p) consists of exactly the tangent vectors at x which are also tangent to the fiber

F of π at π(x). Consider a curve γ in the fiber F such that γ(0) = x. It can be written as

γ(s) = R(s)xR(s)T (4.22)

where R is a curve in O(p) with R(0) = Id. Then let us compute the derivative of γ at 0. We have

γ̇(0) = Ṙ(0)xR(0)T +R(0)xṘ(0)T . (4.23)

Since O(p) is a Lie group of Lie algebra Skew(p), then there exists A ∈ Skew(p) such that

Ṙ(0) = A. (4.24)

Therefore, we have
γ̇(0) = Ax+ xAT . (4.25)

Proposition 4.2.3. Let x ∈ Symreg(p). The horizontal subspace of Symreg(p) at x is

Horx Sym
reg(p) = {u ∈ Sym(p) | xu = ux} . (4.26)

If x = R diag(λ1, . . . , λp)R
T with R ∈ O(p), then it identifies with

Horx Sym
reg(p) =

{
R diag(µ1, . . . , µp)R

T | (µ1, . . . , µp) ∈ Rp
}
. (4.27)
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Proof. The horizontal subspace at x is defined as the orthogonal of the vertical space at x in the
tangent space at x

Horx Sym
reg(p) + Verx Sym

reg(p) = Tx Sym
reg(p). (4.28)

Let u ∈ Horx Sym
reg(p). Then for all A ∈ Skew(m) we have

⟨u,Ax− xA⟩ = 0 (4.29)

that is
⟨xu− ux,A⟩ = 0. (4.30)

Finally, since xu− ux is skew-symmetric, this is equivalent to

xu− ux = 0. (4.31)

Riemannian metric Since the vertical space of Symreg(p) at a point x identifies with ker dxπ,
then the map dxπ defines an isomorphism between the horizontal space at x and its image Tπ(x)Γ

reg
p .

Now assuming that we equipped Γreg
p with a Riemannian metric g, then the quotient map π is

a Riemannian submersion if and only if each of the maps dxπ is an isometry. In other words,
π is a Riemannian submersion if an only if dπ maps any two horizontal vectors at x to two
tangent vectors dπx(u) and dπx(v) at π(x) ∈ Γreg

p with the same inner product. Let then x =
R diag(λ1, . . . , λp)R

T with R ∈ O(p). According to the previous proposition, we can write u =
R diag(µ1, . . . , µp)R

T and v = R diag(ν1, . . . , νp)R
T . The Frobenius inner product of u and v is then

⟨u, v⟩ = tr
(
R diag(µ1, . . . , µp)R

TR diag(ν1, . . . , νp)R
T
)

which simply reduces to
∑p

i=1 µiνi such that
it does not depend on the location of x on the fiber indicated by R. Therefore the inner product

g∗π(x) (dxπ(u), dxπ(v)) =

p∑
i=1

µiνi (4.32)

is well defined and we have the following

Proposition 4.2.4. The tensor field g∗ defined by (4.32) is a Riemannian metric on Γreg
p . Moreover,

away from the singularities, the quotient map π is a Riemannian submersion.

Exponential map and Riemannian logarithm Proposition 4.2.4 allows us to leverage O’Neill’s
theorems (O’Neill, 1966). In particular, one of these tells us that locally the geodesics of Γreg

p are the
projections by the submersion π of horizontal geodesics – that is the geodesics spanned by horizontal
vectors – of the top space Γreg

p . It allows to write explicit formulas for the exponential map and the
logarithm map in Γreg

p .

Proposition 4.2.5. Let x ∈ Symreg(p) and u ∈ Horx Sym
reg(p). Provided that u is sufficiently small

such that the local assumption mentioned above holds, the Riemannian exponential of dxπ(u) at π(x)
is

exp∗π(x)(dxπ(u)) = π(x+ u). (4.33)

Let y ∈ Symreg(p). The Riemannian logarithm of π(y) at π(x) is

log∗π(x)(π(y)) = dπxπ(Rx(y)yRx(y)
T − x) (4.34)

where Rx(y) is the orthogonal matrix aligning y on x as given in Proposition 4.2.1.
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Graph spectral spaces are isometric to cones Finally, let us formulate a fundamental statement
on spectral graph spaces linking together all the observations made so far. We derive a series of
identities.

Theorem 4.2.1. Now let Cp be the convex cone of ordered p-tuples of R and let λ : Sym(p) → Cp be
the map defined by

λ : x 7→ (λ1(x), . . . , λp(x)) (4.35)

where λ1(x) ≤ . . . ≤ λp(x) are the eigenvalues of x. There exists a unique diffeomorphism f : Γreg
p →

int Cp which satisfies λ = f ◦ π and its inverse map is given by

f−1(λ1, . . . , λp) = π (diag(λ1, . . . , λp)) . (4.36)

Then f : (Γreg
p , g) → (int Cp, ⟨·, ·, ⟩) is an isometry and we have the following

1. Let x ∈ Symreg(p). Let u, v ∈ Horx Sym
reg(p). Then the metric tensor at π(x) is given by

g∗π(x) (dxπ(u), dxπ(v)) = ⟨λ(u), λ(v)⟩. (4.37)

2. Let x, y ∈ Symreg(p). The Riemannian distance from π(x) to π(y) is given by

d∗ (π(x), π(y)) = ∥λ(y)− λ(x)∥. (4.38)

and it corresponds exactly to the L2 spectral distance from x to y.

3. Let x ∈ Symreg(p) and u ∈ Horx Sym
reg(p). The exponential map at π(x) is given by

exp∗π(x)(dxπ(u)) = f−1 (λ(x) + λ(u)) . (4.39)

4. Let x, y ∈ Symreg(p). The Riemannian logarithm of π(y) at π(x) is given by

log∗π(x)(π(y)) = df−1
λ(x) (λ(y)− λ(x)) . (4.40)

4.2.3 About an enlightening discussion with Peter Michor

As a final note to this second section, we are reporting here on a discussion we had with Peter Michor
just a few months ago, and which sheds new light on spectral graph spaces. On reading our definition
of spectral graph spaces, Peter Michor immediately declared: "it is a Weyl chamber". What a Weyl
chamber is and what it means in the case of orbit spaces is very well detailed by Alekseevsky, Kriegl,
Losik, and Michor (2003) in their paper available on Peter Michor’s personal page. In particular,
we refer to Proposition 3.2 and Example 4.5. Let us just comment on this example in the specific
case of spectral graph spaces. In a nutshell, the vector space of diagonal matrices Diag(p) meets all
the orbits of the action of the orthogonal group O(p) on the space Sym(p) of symmetric matrices
orthogonally. Therefore, the quotient space Γp = Sym(p)/O(p) is isometric (as a metric space) to
the Weyl chamber Diag(p)/W where W denotes the Weyl group of Diag(p). In fact, we can show
that W is the group S(p) of permutations such that the space Diag(p)/W is exactly the cone Cp
we introduced in the theorem just above. In other words, f defines a isometry between the whole
graph space (Γp, d∗) and the closed cone Cp. Now an important result following these statements
is that any two points of Γp are always joined by a unique minimal geodesic segment, coinciding
with the minimizing geodesic of Γreg, which identifies with the straight segment joining the two
corresponding points in Cp. The case of geodesics of Sym(p)/O(p) is also specifically covered by
Example 34.17 of Peter Michor’s book Topics in differential geometry (Michor, 2008). Based on
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this result and working towards the next section on barycentric subspace analysis, we extend our
definition of the Riemannian logarithm of a graph y at a graph x to the boundaries of Γp as the
vector spanning the minimal segment from x to y. Peter Michor would have called such a logarithm
the restricted logarithm because it corresponds to restricting the Riemannian logarithm of Diag(p)
to the subbundle of the tangent bundle which consists of vectors that point inside the chamber only.
We refer to it simply as the logarithm and keep the same notation as before. Similarly, we extend
the tangent map df to the boundary of Γp as the differential of f only in these directions that point
inside the chamber. In practice, the main consequence of this discussion is that we are now able to
account for singular graphs such as star-shaped graphs within our framework. Finally, we could only
recommend to read the paper of Peter Michor and his co-authors and we sincerely thank him for his
precious help on this project.

4.3 Barycentric subspace analysis on spectral graph spaces

Take N graphs π(x1), . . . , π(xN ) in the graph space Γp. Barycentric Subspace Analysis (BSA) consists
in finding reference graphs π(a0), . . . π(ak) whose barycentric subspace minimizes the distance to
the data points. Thanks to the results of the previous section, BSA has a very nice formulation on
spectral graph spaces. As an example, let us start with the simplest case where k = 0. In this case,
BSA consists exactly in computing the Fréchet mean of the dataset. Indeed since the barycentric
subspaces of dimension 0 are just points, the minimization problem simply consists in minimizing
the sum of squared distances to the data points. Leveraging the closed-form of L2 spectral distance
d∗, we can show easily that this problem has a unique solution given by

m =
1

N

N∑
i=1

diag(λ(xi)). (4.41)

Now to the general case, and let us show that we may still derive a similar simplification of the
barycenters and the BSA.

4.3.1 Barycentric subspaces of spectral graph spaces

Let us first recall the definition of barycentric subspaces when the space is the graph space Γp. We just
saw in the previous section that any two points of Γp are always joined by a unique minimal geodesic
such that the logarithm may be extended to the whole space. Therefore, the critical condition for a
point to be a barycenter of a given set of reference points is defined everywhere on Γp and we have

Definition 4.3.1. Let a0, . . . ak ∈ Sym(p). The barycentric subspace of π(a0), . . . π(ak) ∈ Γp is
defined as follows

BS (π(a0), . . . , π(ak)) =
⋃

w0,...,wk∈R
w0+...+wk=1

bar(π(ai), wi)0≤i≤k (4.42)

where we recall that the set bar(π(ai), wi)0≤i≤k consists of all the barycenters of π(a0), . . . π(ak) with
corresponding weights w0, . . . , wk ∈ R and is given by

bar(π(ai), wi)0≤i≤k =
{
π(x) ∈ Γp |

k∑
i=0

wi log
∗
π(x) π(ai) = 0

}
. (4.43)

Finally, we also recall that the points π(a0), . . . π(ak) are then called reference points of the subspace
BS (π(a0), . . . , π(ak)).
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Barycentric subspaces of spectral graph spaces are convex polytopes We can show that
the geometry of barycentric subspaces of spectral graph spaces is exactly that of convex polytopes.
Moreover the equations defining the polytope that corresponds to a given barycentric subspace may
be explicitly computed from the reference points of the subspace themselves. We illustrate our result
on a concrete example.

Theorem 4.3.1. Let a0, . . . ak ∈ Sym(p). Then the barycentric subspace of π(a0), . . . π(ak) ∈ Γp is
isometric in Cp to the set

P(a0, . . . , ak) =
{ k∑

i=0

wiλ(ai) |
k∑

i=0

wi = 1; ∀1 ≤ q ≤ p− 1,
k∑

i=0

wiλq(ai) ≤
k∑

i=0

wiλq+1(ai)
}

(4.44)

which is a convex polytope defined as the intersection of the affine space spanned by λ(a0), . . . , λ(ak)
with the p− 1 half-spaces

αT
q λ(x) ≥ βq, 1 ≤ q ≤ p− 1 (4.45)

where for 1 ≤ q ≤ p− 1, the pair (αq, βq) solves

λ1(a0) . . . λp(a0) 1
...

...
...

λ1(ak) . . . λp(ak) 1



αq,1
...

αq,p

−βq

 =

λq+1(a0)− λq(a0)
...

λq+1(ak)− λq(ak)

 (4.46)

Moreover, it contains the convex hull of a0, . . . , ak.

Proof. Let x ∈ Sym(p). Then π(x) belongs to the barycentric subspace of π(a0), . . . , (ak) if and only
if there exists w0, . . . , wn ∈ R summing to 1 such that

k∑
i=0

wi log
∗
π(x) (π(ai)) = 0. (4.47)

Following Theorem 4.2.1, this condition translates into

k∑
i=0

widf
−1
λ(x) (λ(ai)− λ(x)) = 0. (4.48)

Now since df−1
λ(x) is a bijective linear map, it is equivalent to

k∑
i=0

wi (λ(ai)− λ(x)) = 0. (4.49)

Adding the constraint that w0, . . . , wk have to sum to 1, we get

λ(x) =
k∑

i=0

wiλ(ai). (4.50)

Now we recall that by definition of λ, we have λ(x) ∈ Cp . Therefore, w0, . . . , wk should satisfy

∀1 ≤ q ≤ p− 1,

k∑
i=0

wiλq(ai) ≤
k∑

i=0

wiλq+1(ai). (4.51)
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Let us now derive from Equations (4.50) and (4.51) a simple geometric constraint on λ(x). Let us
denote

Λ =


λ1(a0) . . . λ1(ak)

...
...

λp(a0) . . . λp(ak)
1 . . . 1

 and θq =

λq+1(a0)− λq(a0)
...

λq+1(ak)− λq(ak)

 (4.52)

On one hand, Equation (4.51) may be rearranged in

∀1 ≤ q ≤ p− 1,
[
w0 . . . wk

]T
θq ≥ 0 (4.53)

and on the other hand, Equation (4.50) together with the constraint
∑k

i=0wi = 1 is expressed as[
λ1(x) . . . λp(x) 1

]
= Λ

[
w0 . . . wk

]
. (4.54)

Notice that θq ∈ ker(Λ)⊥. It follows that

θq ∈ im(ΛT ). (4.55)

For all 1 ≤ q ≤ p− 1, let then αq,1, . . . , αq,p and βq solve

ΛT
[
αq,1 . . . αq,p −βq

]
= θq. (4.56)

Then Equation (4.51) is equivalent to λ(x) satisfying

αT
q λ(x) ≥ βq. (4.57)

Example 4.3.1. Let us consider 3 graphs with adjacency matrices a0, a1 and a2 ∈ Sym(p) and let
us position ourselves in the plane spanned by the 3 p-dimensional vectors λ(a0), λ(a1) and λ(a2).
The barycentric subspace of π(a0), π(a1) and π(a2) is isometric in the cone to the convex polygon
P(a0, a1, a2) of at most p − 1 sides (see Figure 4.3). Now let us fix y0, y1 and y2 ∈ R2 such that
∥yi − yj∥ = ∥λ(ai) − λ(aj)∥. In other words, let us assign intrinsic coordinates to λ(a0), λ(a1)
and λ(a2) within the plane they span. In practice, for k ≥ 4, such coordinates are computed using
multi-dimensional scaling. Then the equation of the half-plane (4.45) translates in R2 into the
intrinsic equation γTq y ≥ δq where γq and δq solvey0,1 y0,2 1

y1,1 y1,2 1
y2,1 y2,2 1

γq,1γq,2
−δq

 =

λq+1(a0)− λq(a0)
λq+1(a1)− λq(a1)
λq+1(a2)− λq(a2)

 . (4.58)

To derive this equation, the proof is similar to the one of Theorem 4.3.1. It might be useful to
introduce a the linear projection L : Rp → R2 onto the plane spanned by λ(a0), λ(a1) and λ(a2)such
that L(λ(ai)) = yi.

4.3.2 Sample-limited barycentric subspace analysis

In the context of statistical graph analysis, we are more particularly interested in sampled-limited
Barycentric Subspace Analysis (sample-limited BSA) that we introduced in Chapter 2 following
Pennec, 2018. Indeed, the specificity of this method consists in looking for reference points within
the samples. In other words, it allows to retrieve descriptors which live by nature within our data
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Figure 4.3: Barycentric subspace of 3 graphs. (Top) The barycentric subspace of the 3 graphs is
isometric to a closed tetragon. It corresponds to the situation where the subspace has the maximum
number of sides, that is one less than the number of nodes of the reference graphs. (Center) The
second example illustrates a situation where the barycentric subspace is isometric to a polygon that
is not closed. (Bottom) In the last example, where we doubled the number of nodes, the intersection
of the half-planes is not minimal and the corresponding polygon is an hexagon.

space, therefore improving significantly the interpretability of such. Let us motivate sample-limited
BSA on the simple example of the mean. We simulated a dataset which consists of two types of
graphs such that none of the two types is included in the other (see Figure 4.4). We demonstrate
that in this case, the Fréchet mean does not belong to any of the two types and is therefore hard to
interpret. For k = 0, sample-limited BSA also provides a descriptor for the dataset, precisely the
data point that minimizes the sum of squared distances to the other data points. But as it belongs
to the dataset, this new descriptor is very straightforward to interpret.
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Figure 4.4: Fréchet mean and sample-limited BSA in dimension 0. The dataset consists of cyclic
graphs (two first rows) and graphs that consist of edge glued to a cycle (third row). In the bottom
of the figure, we show the Fréchet mean of the dataset and the graph picked in the data set by
sample-limited BSA with k = 0. As we expected, we recover with the Fréchet mean a graph whose
structure can not be identified exactly as one of the two structures that we observe within the original
dataset. Sample-limited BSA on the other hand provides with a more meaningful descriptor. In
particular, we observe that it retrieves without ambiguity the most represented graph structure
within the dataset, that is the cyclic structure. Note that the Fréchet mean as it is given by Equation
(4.41) is a diagonal matrix. Such a matrix would represent a graph with only self loops and therefore
be challenging to interpret. Instead, we draw the graph that corresponds to the projection of the
Fréchet mean onto the closest adjacency matrix with no weights on the diagonal. In practice, this
projection problem may have multiple optimal solutions. Here it is initialized with the graph found
by sample-limited BSA to achieve the most realistic vizualisation. We come back to such a question
of the choice of a representative in more details in appendix.

Barycentric model Now for an arbitrary value of k, we recall that sample-limited BSA consist in
identifying the subset xi0 , . . . , xik of the dataset which minimizes the squared distance (here the L2

spectral distance) to the data points (see Chapter 2 Equation (2.34)). Leveraging Theorem 4.3.1 on
the geometry of barycentric subspaces of graph spectral spaces, we can formulate the optimization
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problem posed by sample-limited BSA on the graph space Γp as an equivalent but simpler problem
on the cone Cp

minimize
1≤i0<...<ik≤N

wij∈R
wi0+...+wik=1

N∑
i=1

p∑
q=1

∣∣∣λq(xi)−
k∑

j=0

wijλq(xij )
∣∣∣2

subject to
k∑

j=0

wijλq(xij ) <

k∑
j=0

wijλq+1(xij ) (∀q, i).

(4.59)

Such a problem can be split into the problem of picking the reference points and the usual barycentric
projection problem. While the first problem is a combinatorial optimization problem, the projection
problem itself is in this case a Euclidean convex optimization problem. Therefore any local minimum
is a global minimum and the problem can be solved by usual gradient descent methods on Rk. Finally,
the main computational challenge of sample-limited BSA lies in the combinatorial search.

Convex barycentric subspace analysis To increase the interpretability of the representation,
we may enforce the reference points – still taken within the samples – to be as extremal as possible.
More precisely, we restrict the projection to the convex hull of the reference points and solve Problem
(4.59) with the additional constraint that the barycentric weights must be positive. We refer to this
method as convex sample-limited BSA. It is particularly suited for the identification of archetypal
points. Another aspect is that convex sample-limited BSA should be more robust to data noise than
standard BSA as the volume of the convex hull of given reference points is significantly smaller than
that of their barycentric subspace (see Figure 4.3).

A comparison with tangent principal component analysis Let us look then for two descriptors
of our dataset and the corresponding one dimensional representation. The barycentric coordinates
obtained by projecting each sample onto the barycentric subspace of the two reference points allow
to embed our samples in a line on which we have fixed the coordinates of the two reference points
beforehand (see Figure 4.5). To underline further the interpretability of sample-limited BSA, we
compare it with tangent Principal Component Analysis (tangent PCA) which we recall generalizes
PCA to manifold-valued samples and consists in performing standard PCA in the tangent space at
the Fréchet mean. As it requires only to compute Riemannian logarithms and the Fréchet mean,
it is straightforward to implement on spectral graph spaces. When comparing tangent PCA and
sample-limited BSA, we may want to emphasize two aspects. Regarding interpretability, we have seen
that sample-limited BSA is very powerful. Essentially, the graphs selected as reference points allow
to explain the projection space in terms of the original data. Such interpretability increases with the
convex formulation. On the other hand, the components build by tangent PCA together with the
mean are not always straightforward to interpret with respect to the sampled graphs. Moreover, as
the projection space optimized by tangent PCA always includes the mean by construction, it is less
likely to adapt to a non-Gaussian sampled distribution. Computationally speaking however, since
sampled-limited BSA consists in a combinatorial search, it is a quite expensive procedure compared
to tangent PCA.

4.3.3 Experiments and perspectives

This section presents two experiments we carried out on BSA on graph spectral spaces, with the
underlying objective of illustrating the method’s ability to classify graph data. The first experiment
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Figure 4.5: Sample-limited BSA in dimension 1. Graphs above the line correspond to graphs of the
dataset while graphs below the line represent their projection on the barycentric subspace of the two
reference points (in the middle). More precisely, they correspond to graphs without self-loops whose
spectrum is that of the barycentric projection (computed thanks the procedure described in appendix
initialized with the corresponding data point). The plots in the next two figures are generated in
the same way. Sample-limited BSA naturally picks one graph of each structure as reference points.
Such reference points are determining for the interpretability of the projection as the structure of
the original graph data is not well preserved by projection.

was carried out on a simulated dataset for which classification is evident, and the second on a real
dataset, for which we compare the result of BSA with the classification achieved by a standard
clustering method.

Benchmark experiment on a simulated dataset In the first experiment, the dataset is made
up of 3 different groups: fully connected, star-shaped and cyclic graphs (see Figure 4.8). Each of
the groups consists in 5 graphs with 10 nodes, generated by assigning random attributes on the
edges sampled from a Gaussian of mean 1 and standard deviation 1/2 while keeping the general
connectivity structure fixed. We perform backward sample-limited BSA and its convex counterpart.
Precisely, we build a decreasing nested sequence of barycentric subspaces that solve at each step the
minimization problem posed by (convex) sample-limited BSA. We retrieve the squared projection
error across the sequence and we trace the error profile, where the error is normalized dividing it by
the size N of the dataset times the square of the maximal attribute observed in the dataset. From
such profile, we can draw a rough prediction of the number of classes in the dataset. By stopping
at precisely 3 reference points, we are able to capture the 3 different graph topologies within the
dataset. Together with the 3 reference graphs selected, the visualization obtained by projecting the
dataset on the corresponding 2-dimensional barycentric subspace provides a very rich description
of the dataset. Practically, the visualization consists in first embedding the reference graphs in the
plane in such a way that the pairwise distances are preserved (using multidimensional scaling for
example) and then embedding the rest of the graph data according to their barycentric weights. It is
exactly the same procedure as the one we used in Figure 4.3.
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Figure 4.6: Convex sample-limited BSA in dimension 1. The fact that the same reference points are
picked is only specific to this example. The extremal graph x8 is projected on the reference point x9
such that the two graphs are not distinct in the embedding space. Similarly, x11 is projected on the
reference point x14. Still, this allows to capture the structure of x8 and x11 exactly. In comparison,
the projection of x11 by non-convex sample-limited BSA carries a negative weighted edge.

Figure 4.7: Tangent PCA in dimension 1. Except for the graph x13, which is slightly better projected
by this method, most projected graphs are not straightforward to interpret without reference points,
especially because their structure is not well preserved. Now, regarding numerical performance, the
overall projection squared error output by tangent PCA, divided by the size N of the dataset and
the square of the maximal attribute over dataset, is 3, 8 × 10−2. On this aspect, tangent PCA is
comparable to sample-limited BSA (4, 6× 10−2) and convex sample-limited BSA (4, 9× 10−2)
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Figure 4.8: A dataset of different graph topologies. We expect sample-limited BSA to be able to
classify the dataset into these three groups and in particular to retrieve in dimension 2 one graph of
each topology.

Application to European airlines route maps In the second experiment, the dataset consists
of airlines route maps. Precisely, we consider the graphs describing the route map of 12 different
European companies (see Figure 4.10) commuting between the main 6 of the 24 sub-regions according
to which we classified the world’s airports in a preliminary pre-processing step. Each node represents
one airport while each edge weights the number of flights operated between the two corresponding
countries during a fixed time frame. All the data come from the OpenFlight data repository (Open
Flights, 2017). Although the graphs are naturally labeled (by the sub-regions ), since we are
essentially interested in comparing the general commuting strategy of the different companies, we fall
within the unlabeled setting. On this dataset, we perform only forward convex sample-limited BSA
(see Figure 4.12) as it has proven to carry even more interpretability than simply sample-limited
BSA. This time, it is not clear how many classes the dataset consist of. Instead, we observe that
the error profile relates very well to the classification obtained by hierarchical clustering using Ward
linkage (Müllner, 2011) and the L2 spectral distance (see Figure 4.11). We retrieve through BSA a
visualization of the dataset for 2, 3 and 4 reference graphs.

A note on future projects Through these two examples, we have been able to demonstrate that
BSA combined with our framework is a relevant tool for graph analysis that advances important
issues in statistical graph analysis, especially that of interpretability. There are now several directions
in which we would like to take our work further. On theoretical aspects, it would be interesting to
investigate the stratified geometry of spectral graph spaces, which we did not explicitly define until
now, and to supplement such an exploration with concrete examples of singular graphs. This question
is directly related to convex BSA and archetypal analysis because singular graphs are exactly those
graphs that lie on the boundary of spectral graph spaces. Now back to the practical aspects, we
plan to experiment with our framework on larger data sets and graphs with higher number of nodes,
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Figure 4.9: Sample-limited BSA and convex sample-limited BSA of the simulated dataset. (Left)
Evolution of the squared projection error across the nested sequence of barycentric subspaces produced
by forward BSA. The very first observation is that sample-limited BSA and convex sample-limited
BSA perform similarly. In sample-limited BSA, the error drops to zero when the barycentric subspace
reaches the dimension of the data space because it then coincides exactly with the data space. A
prori, the data space is the graph space of size p = 10 that has dimension 10. In fact, because they
do not have any node attributes, all the graphs have a null diagonal such that the dataset lies in the
subspace of Γ10 of dimension 9 which consists of all the graphs with trace 0 (a property preserved
by the action of the orthogonal group as we see later). In convex sample-limited BSA, the error
drops to zero later, supposedly when the number of reference points is enough for them to cover
the whole dataset with their convex hull. By applying the elbow method (James, Witten, Hastie,
and Tibshirani, 2013) on both error profiles, we are able to predict the fact that the dataset can be
classified in 3 groups. (Right) The dataset (in black) is projected on the barycentric subspace of the
3 reference points (colored) picked by either method. The classification of the dataset into three
groups is visually very strong. BSA also suggests here that the cyclic graphs and star-shaped graphs
are topologically more similar than the fully connected graphs. Hierarchical clustering, which we do
not present on this dataset, provides with a similar analysis.

and to explore other types of data, for example related to brain connectivity. In relation to the
stratification of graph spectral spaces, we may also question how well our framework and BSA would
perform on graphs with several connected components.
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Figure 4.10: An airlines route maps dataset. Due to significantly higher edge values, the graph
representing Ryanair route map is plotted with a different scale. Note that we use the same two
scales in the two other figures. Although the classification of the dataset is much more unclear in
this example than in the simulated one, we can at least observe that the graphs corresponding to
the two low-cost airlines (Ryanair and EasyJet) have a fairly symmetrical structure, while those
representing the other airlines have a more or less star-shaped structure. This reflects the fact that
low-cost airlines have no preferred hub, and tend to be scattered across different airports. Note

Figure 4.11: Hierarchical clustering. We visualize the result of hierarchical clustering in a dendogram.
The method provides a classification very similar to that of BSA. What’s more, if we push the
number of clusters beyond 4, classification consists only in odd numbers of clusters (5, 7...), echoing
the error profile in the previous figure, where we observe a break in slope at even dimensions.
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Figure 4.12: Convex sample-limited BSA for the airlines dataset. The method classifies Ryanair as
an outlier, which is quite logical since it carries attributes twice as large as the other graphs. Going
from dimension 0 to the dimension 1, the error is significantly reduced. Increasing the dimension
even further allows us to identify more groups. EasyJet, which is the third reference graph, may
also be considered an outlier. The fourth reference graph picked by BSA is Lufthansa, which, with
another point corresponding to Iberia, appears (bottom left) a little outside the main cluster. If we
go back to the dataset (see Figure 4.10), we observe indeed that both airlines include a strong edge.

Appendix. On the choice of a representative

We are adding this extra section to address the question of the choice of a representative in the
equivalence class of a graph. As we saw earlier in this chapter, the equivalence class of even the
simplest graph includes graphs with node attributes (self loops) in the framework of spectral graph
spaces. The problem is that in some applications, attributes on the nodes may have no meaning
at all, or at least carry no information that we would be interested in taking into account. Now,
even when the input graphs have no node attributes, computations or statistical methods may still
output graphs with node attributes, decreasing significantly the interpretability of such. We illustrate
this phenomenon on the example of geodesics in Figure 4.13. It is interesting to note that this
issue did not occur when performing sample-limited BSA in the previous examples. The reason is
twofold. First, spectral graph spaces identify with cones, which are Euclidean manifolds, although
with boundaries. In particular, barycenters of graphs spectral spaces are weighted sums. Second,
assume that the dataset consists of graphs without node attributes. Then so do the reference points
picked by sample-limited BSA. Finally, as a linear combination of graphs without nodes attributes –
or equivalently with a null diagonal – is still a graph without node attributes, then by construction,
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sample-limited BSA outputs only such graphs. Now, considering future works and the use of other
methods, we need to be able to automatically chose a meaningful representative within the equivalence
class of an output graph. Section 4.2 might suggest representing the classes of spectral graph spaces
by diagonal matrices. Although such a representation is very convenient from a computational
point of view, it has a no clear meaning from an application point of view and moreover it does
not solve the problem of node attributes. Instead, we propose a simple procedure to transform a
graph with node attribute into an equivalent graph but with no more node attribute. More precisely,
we consider the case of graphs that have been generated by applying simple operations of graph
spectral spaces to some input graphs, all having no node attributes. A interesting observation is that
a graph – represented by its adjacency matrix – with no node attributes has trace zero, a property
that is invariant both by the action of the rotations and by linear operations, which is the case of all
the operations of graph spectral spaces. As a consequence, graphs that have been generated from
some input graphs without node attributes should also satisfy such property. Now inversely, for any
symmetric matrix of trace zero, then there always exists at least one equivalent symmetric matrix of
diagonal zero. Given a graph of trace zero, let us then simply compute the closest equivalent graph
with diagonal zero, that is no node attributes. Back to the example of the geodesic, this procedure
actually outputs a visually very convincing result.

Figure 4.13: Geodesic joining two graphs. We propose two representations of the same geodesic
joining the equivalent classes of a binary tree x (bottom left) and a cyclic graph y (bottom right) in
the graph space Γ3. (Top) The geodesic from the class π(x) to the class π(y) naturally identifies
through the tangent map dπ with the horizontal geodesic from x to Rx(y)yRx(y)

T . However such
a horizontal geodesic contains graphs with node attributes (self-loops). (Bottom) An equivalent
representation consists in replacing the graphs in the horizontal geodesic by their closest equivalent
graph without nodes attributes. By construction, such a curve is also projected onto the geodesic
from π(x) to π(y), but corresponds better than the horizontal geodesic to how one might picture the
geodesic in the graph space. Note however that this second curve is a priori not a geodesic in the
top manifold of symmetric matrices
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Chapter 5

Locally barycentric embeddings, a gluing
problem

This chapter takes us back to Chapter 2, where we parted with the conclusion that the optimal
mapping problem solved by locally barycentric embeddings does not necessarily defines a unique
embedding. In fact, this had already been highlighted by earlier work as the consequence of two
main phenomena. On one hand, as pointed out by Roweis and Saul (2000) in their original paper
Nonlinear Dimensionality Reduction by Locally Linear Embedding, the existence of multiple connected
components in the nearest neighbor graph of the data points generates just as many embeddings. Such
a problem has been addressed by Polito and Perona (2001). There is a strong connection between
this phenomenon and the matrix tree theorem, which relates the number of connected components
of a graph to the dimension of the kernel of its graph Laplacian, which we shall see is directly linked
to the optimal mapping problem. On the other hand, as locally barycentric embeddings rely on the
conservation of barycentric coordinates, then affine mappings should provide good candidates to the
optimal mapping problem. In particular, Lin (2021) proved that, under the assumption that each
data point has been exactly described as a barycenter of its neighbors, any orthogonal projection of
a vector-valued dataset onto a lower-dimensional subspace is a locally barycentric embedding of such.
Following on from these results, we show that a larger subset of the solutions of the optimal mapping
problem may be specified by gluing affine mappings together along the connected components of the
neighbor graph of the data points. In other words, we show that locally affine mappings are locally
barycentric embeddings.

In the first section of this chapter, we propose a proper definition of the notion of locally
barycentric mapping as a mapping of a weighted graph of the data space into the embedding space.
Then, in the second section, geometric conditions are stated for the mapping obtained by gluing
affine mappings together along the strongly connected components of a weighted graph to be a
locally barycentric mapping of such. Finally, we derive from such results in the last section a series
of lower bounds on the number of solutions of the optimal mapping problem when the embedding
space is Euclidean. We supplement these with some conjectures in the more general case and draw
several directions for further analysis.

5.1 Locally barycentric mappings

Let us recall that locally barycentric embeddings consist in two steps, a model fitting step and the
optimal mapping problem. The local barycentric model estimates the barycentric coordinates of
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the projection of each data point on the barycentric subspace of its neighbor points. Based on
these coordinates, the optimal mapping problem is then the problem of finding a set of points in
the embedding space in that matches back those coordinates the best. Counting locally barycentric
embeddings of a dataset is then equivalent to counting the solutions of the optimal mapping problem.
In this chapter, we make the same assumption as Lin (2021) that each data point has been exactly
described as a barycenter of its neighbors, that is that the local barycentric model is exact. We
discuss at the end of the chapter how to lift such an assumption. Although the optimal mapping
problem a priori depends only on the barycentric coordinates estimated by the model, we saw that
under this assumption, manipulations on the data points only also yield to solutions to such a
problem. To account for both, we define locally barycentric mappings as the correspondence between
a pair made of a dataset and corresponding barycentric coordinates, and a solution of the optimal
mapping problem.

5.1.1 Local barycentric models are weighted graphs

Together with the neighbor graph of the dataset, fixed ahead of the two steps of locally barycentric
embeddings, the barycentric coordinates estimated by the local barycentric model describe a directed
weighted graph. Precisely, let each data point be represented by a vertex and draw an arc from such
to all the vertices that represent the neighbors of the point. Then the graph thus defined is a directed
graph and the arc connecting one vertex to another can be assigned the barycentric coordinate of
the point represented by the first vertex with respect to the point represented by the second.

Barycentric weighted graphs Let now M be a Riemannian manifold of dimension n. We define
a barycentric weighted graph of M as the union of a dataset in M and the graph defined by an exact
local barycentric model of such dataset.

Definition 5.1.1. A barycentric weighted set of M is a pair (X,w) where X = {x1, . . . xN} is a set
of points in M and w = (wij) is a real square matrix of size N with each line summing to 1 that
satisfies

xi ∈ bar(xj , wij)1≤j≤N ∀1 ≤ i ≤ N. (5.1)

In practice, we do not make the distinction between a barycentric weighted set (X,w) and the
corresponding directed weighted graph (V = {1, . . . , N}, w).

5.1.2 Locally barycentric mappings of a barycentric weighted graph

Now once the barycentric weights of model had been estimated, we had defined roughly in Chapter
2 locally barycentric mappings in the context of Locally Linear Embedding as the solutions of the
optimal mapping problem

minimize
y1,...,yN∈Rk

N∑
i=1

∥∥∥yi − ∑
j∈N(i)

wijyj

∥∥∥2 (5.2)

where we recall that j ∈ N(i) if and only if xj has been assigned as a neighbor of xi. In this
chapter we refer only to the exact solutions of the problem as locally barycentric mappings, that is
embeddings of the dataset in which the image of data point is still exactly the barycenter of the
image of its neighbors. More generally, we seek for a solution y1, . . . , yN in a manifold M ′ and define
locally barycentric mappings in the most general case.
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Figure 5.1: Barycentric weighted graph. The 3-nearest neighbor graph of a set of points in the plane.
Since the barycentric subspaces of 3 affinely independent points in the plane is the plane itself, any
point of the set can be described exactly as a barycenter of its neighbors. The weights assigned to
the arc leaving the red point correspond to the barycentric coordinates of the latter with respect to
its neighbors.

Locally barycentric mappings Let M ′ be a Riemannian manifold of dimension k. We define
locally barycentric mappings of a barycentric weighted set of M in M ′ as follows

Definition 5.1.2. Let (X,w) be a barycentric weighted set of M . A locally barycentric mapping of
(X,w) in M ′ is a set of points y1, . . . , yN ∈ M ′ such that

yi ∈ bar(yj , wij)1≤j≤N ∀1 ≤ i ≤ N. (5.3)

Note that the pair (Y,w) is then a barycentric weighted set of M ′. In practice, we refer both to the
set Y and the map f(xi) = yi as a locally barycentric mapping.

Affine mappings are locally barycentric mappings Reformulated through these two new
definitions, the result from Lin (2021) states than any orthogonal projection of a barycentric weighted
set of Rn onto Rk is a locally barycentric mapping. In fact, this result takes into account the two
constraints on the solutions of the original optimal mapping problem to be centered and have unit
covariance matrix. Mainly in order to simplify the analysis of the dimensionality of locally barycentric
mappings, we did not account for these constraints in our definition. Therefore, we can state the
more general result

Proposition 5.1.1. Let (X,w) be a barycentric weighted set of M . Then any affine mapping f
from M to M ′ (Kobayashi and Nomizu, 1996, Chapter 6) defines a locally barycentric mapping
f(x1), . . . , f(xN ) of (X,w) in M ′.

Essentially, in the case where we add the constraints for the solutions of the optimal mapping problem
to be centered and have unit covariance matrix, all the non orthogonal affine mappings as well as
translations are discarded such that the only affine mappings left are the orthogonal projections.

A first count of locally barycentric mappings The previous result provides a first bound on
the number of locally barycentric mappings of a barycentric weighted set. More precisely, the image
of x1, . . . , xN ∈ Rn by an affine mapping f from Rn to Rk is also their image by the restriction of f
to their affine span. Moreover such a restriction is an affine mapping from the affine span of the
points to Rk. Now let us recall that an affine mapping is completely determined by its value in an
affine basis of the original space. A locally barycentric mapping f(x1), . . . , f(xN ) is then completely
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determined by the value of f in an affine basis of the affine span of x1, . . . , xN . Therefore, the set
locally barycentric mappings of a barycentric weighted set (X,w) in Rn, which we prove later in the
last section of this chapter is a vector space, is at least of dimension k rank(X), where the notation
rank(X) corresponds here to the affine rank of X, that is the cardinality of a maximal affinely
independent subset of X.

In the general case of affine mappings between any two Riemannian manifold M and M ′, we cannot
say much a priori. However, observe that if f0 is an affine mapping from M to M ′ and Φ is an affine
mapping of M ′, then Φ ◦ f0 is still an affine mapping from M to M ′. Let us consider the case where
M ′ is either the Euclidean space Rk, the sphere Sk, or the hyperbolic space Hk. The first case is
included in the case we just solved. As for the two other cases, the dimension of the set of affine
transformations of M ′ is known to be 1

2k(k + 1) (Kobayashi, 1995) and we conjecture that we can
derive from such a result similar estimations on the dimensionality of locally barycentric mappings.
In the same vein, we are now going to investigate a more local version of Proposition 5.1.1 and derive
corresponding lower bounds on the dimension of locally barycentric embeddings.

5.2 Untangling locally barycentric embeddings

The main result of this section is a decomposition theorem for locally barycentric mappings that
states that under some conditions, gluing affine mappings together along the strongly connected
components of a barycentric weighted set defines a locally barycentric mapping of such.

5.2.1 Components of a barycentric weighted graph

Let us recall that a barycentric weighted set (X,w) can be interpreted as a directed weighted graph
of adjacency matrix w. We discussed at the beginning of this chapter how the number of locally
barycentric embeddings of X proves to be related to the connectivity of the neighbor graph of X,
or equivalently of the barycentric weighted set (X,w), in particular to the number of connected
components. In fact, since a barycentric weighted set is by construction a directed graph, then a
more natural notion to study the connectivity of such graphs is the notion of strongly connected
components. Before defining such a notion, let us just introduce the following notation

Definition 5.2.1. Let (X,w) be a barycentric weighted set. Then a point xj ∈ X is said to be an
neighbor of a point xi ∈ X if wij ̸= 0. We denote such a relation by xi → xj, and if xi ∈ X has a
neighbor in X ′ ⊂ X, then we write xi → X ′.

Strongly connected components The notion of strong connectivity relies on that of directed
paths. A directed path from a vertex xi ∈ X to a point xj ∈ X is a sequence xi0 = xi → x1 . . . xim−1

→ xim = xj such that for all 1 ≤ l ≤ m, the point xil is a neighbor of xil−1
.

Definition 5.2.2. Let (X,w) be a barycentric weighted set. Two points xi ∈ X and xj ∈ X are said
to be strongly connected if there exist a directed path from xi to xj and a directed path from xj to xi.
Strong connectivity of points defines an equivalence relation on (X,w) and its equivalence classes are
referred to as the strongly connected components of (X,w).

Now assume that (X,w) has t strongly connected components. Then we can show such components
may be reordered as X1, . . . , Xt in such a way that

∀1 ≤ q < p ≤ t, ∀xi ∈ Xp, ∀xj ∈ Xq, wij = 0. (5.4)

We refer the reader to (Brualdi et al., 2018) for more details on how to prove this result as well as
for the previous definitions.
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Isolated components The components that contain no points with neighbors in other strongly
connected components are called isolated components (Bauer, 2012). The way the strongly connected
components are ordered above forces the isolated components to appear at the end of the sequence
X1, . . . , Xt. We will see later in this chapter that we can derive from such a notion a similar but
stronger result on the number of locally barycentric embeddings than the one based on the notion of
connected component.

5.2.2 Decomposition of locally barycentric embeddings

Now the idea is that if two components of a barycentric weighted set are not connected or are poorly
connected with each other, then it is possible to transform them differently up to some degree of
freedom while preserving the preserving the barycentric coordinates of each point with respect to its
neighbors. Let us illustrate this idea with the simplest example of a barycentric weighted set (X,w)
with two connected components X1 and X2. The fact that X1 and X2 are not connected means
that any point of each set has its neighbors in the same set. If so, consider then an affine mapping
f1 acting on X1 and an affine mapping f2 acting only on X2. Then f1 preserves the barycentric
relationships in X1 without affecting X1 and f2 preserves the barycentric relationships on X2 without
affecting x1, then gluing the set obtained by gluing f1(x1) and f2(x2) is a locally barycentric mapping
of X. We illustrate such a mapping in Figure 5.2.

Figure 5.2: Locally barycentric mapping of a barycentric weighted set of the plane with two
components. The mapping is obtained by gluing together an affine transformation of the first
component and another affine transformation of the second component. We visualize each mapping
as a deformation of the background grid.

Pasting condition In the case of two components are not totally disconnected, the action of each
affine mapping may interfere with each other. To ensure that the barycentric relationships are still
preserved, the two affine mappings have to obey some condition on the points where their action
interfere. We refer to such condition as the pasting condition (or gluing condition). In the case
where the data space is a Riemannian manifold M of dimension n and the embedding space is a
Riemannian manifold M ′ of dimension k, the pasting condition is the following

Lemma 5.2.1. Let (X,w) be a barycentric weighted graph of M . Let X = X1 ∪X2 be a partition of
X and let f1 and f2 be two affine mappings from M to M ′ such that

76



1. For all xi ∈ X1 with at least one neighbor in X2∑
xj∈X2

wij logf1(xi) f1(xj) =
∑

xj∈X2

wij logf1(xi) f2(xj) (5.5)

2. For all xi ∈ X2 with at least one neighbor in X1∑
xj∈X1

wij logf2(xi) f1(xj) =
∑

xj∈X1

wij logf2(xi) f2(xj) (5.6)

Then the piecewise affine mapping f obtained by gluing f1 and f2 together

f |X1 = f1 f |X2 = f2 (5.7)

defines a locally barycentric mapping of (X,w) in M ′.

Proof. The map f is a locally barycentric mapping of (X,w) if and only if

N∑
j=1

wij logf(xi) f(xj) = 0 ∀1 ≤ i ≤ N. (5.8)

Let xi ∈ X1. We have

N∑
j=1

wij logf(xi) f(xj) =
∑

xj∈X1

wij logf1(xi) f1(xj) +
∑

xj∈X2

wij logf1(xi) f2(xj) (5.9)

such that the previous condition is true for i if and only if∑
xj∈X2

wij logf1(xi) f2(xj) = −
∑

xj∈X1

wij logf1(xi) f2(xj) (5.10)

Now by definition of a barycentric weighted set, the point xi is the barycenter of x1, . . . , xN
with corresponding weights wi1, . . . , wiN . Moreover, because f1 is an affine mapping, it preserves
barycenters. Therefore, we have

N∑
j=1

wij logf1(xi) f1(xj) = 0 (5.11)

and Equation (5.10) is equivalent to∑
xj∈X1

wij logf2(xi) f2(xj) =
∑

xj∈X1

wij logf1(xi) f1(xj) (5.12)

Suppose that for all xj ∈ X2, we have wij = 0. Then by combining these two last equations, we see
that the condition is automatically satisfied. We derive the second pasting condition with the same
reasoning on xi ∈ X2.
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Pasting condition for affine mappings from Rn to Rk In the Euclidean case, we show that
the pasting condition has a nice geometric interpretation. Assume then that M = Rn and M ′ = Rk.
The mapping f defines a locally barycentric mapping of (X,w) in Rk if the two following condition
are satisfied

1. For all xi ∈ X1 with at least one neighbor in X2∑
xj∈X2

wij(f1(xj)− f1(xi)) =
∑

xj∈X2

wij(f2(xj)− f1(xi)) (5.13)

2. For all xi ∈ X2 with at least one neighbor in X1∑
xj∈X1

wijf1((xj)− f2(xi)) =
∑

xj∈X1

wij(f2(xj)− f2(xi)). (5.14)

The two equations simplify to ∑
xj∈X2

wijf1(xj) =
∑

xj∈X2

wijf2(xj) (5.15)

and ∑
xj∈X1

wijf1(xj) =
∑

xj∈X1

wijf2(xj). (5.16)

If
∑

xj∈X2
wij ̸= 0, then let us leverage the fact that f1 and f2 are affine mappings to write

f1

( ∑
xj∈X2

wij∑
xj∈X2

wij
xj

)
=
∑

xj∈X2

wij∑
xj∈X2

wij
f1(xj) (5.17)

=
∑

xj∈X2

wij∑
xj∈X2

wij
f2(xj) (5.18)

= f2

( ∑
xj∈X2

wij∑
xj∈X2

wij
xj

)
. (5.19)

Otherwise, let Lf1 = f1 − f1(0) and Lf2 = f2 − f2(0) denote the linear part of f1 and f2 respectively.
Then we have

Lf1

( ∑
xj∈X2

wijxj

)
=
∑

xj∈X2

wijLf1(xj) =
∑

xj∈X2

wijf1(xj) (5.20)

=
∑

xj∈X2

wijf2(xj) (5.21)

=
∑

xj∈X2

wijLf2(xj) = Lf2

( ∑
xj∈X2

wijxj

)
(5.22)

We can follow exactly the same reasoning for the second conditions. Now for all i ∈ X1 with at least
one neighbor in X2, we introduce the point x2i defined by

x2i =


∑

j∈X2

wij∑
xj∈X2

wij
xj if

∑
xj∈X2

wij ̸= 0

∑
xj∈X2

wijxj otherwise.
(5.23)
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Similarly, for all i ∈ X2 with at least one neighbor in X1, we introduce the point x1i defined by

x1i =


∑

xj∈X1

wij∑
xj∈X1

wij
xj if

∑
xj∈X1

wij ̸= 0

∑
xj∈X1

wijxj otherwise.
(5.24)

Then the pasting conditions apply specifically at those points. The mapping f defines a proper
locally barycentric mapping if either two affine mappings f1 and f2 or their linear parts coincide at
the pasting points. Precisely, we have

Proposition 5.2.1. Let (X,w) be a barycentric weighted graph of Rn. Let X = X1 ∪ X2 be a
partition of X and let f1 and f2 be two affine mappings from Rn to Rk such that

1. For all xi ∈ X1 with at least one neighbor in X2

f1(x
2
i ) = f2(x

2
i ) if

∑
xj∈X2

wij ̸= 0 otherwise Lf1(x
2
i ) = Lf2(x

2
i ) (5.25)

2. For all xi ∈ X2 with at least one neighbor in X1

f1(x
1
i ) = f2(x

1
i ) if

∑
xj∈X1

wij ̸= 0 otherwise Lf1(x
1
i ) = Lf2(x

1
i ) (5.26)

Then the piecewise affine mapping f obtained by gluing f1 and f2 together along the partition
X = X1 ∪X2 defines a locally barycentric mapping of (X,w) in Rk.

Pasting condition for affine mappings from M to Rk Finally, in the case where only the
embedding space is Euclidean, say M ′ = Rk, if we assume that there exists at least one affine
mapping f0 from M to Rk, then for any affine mappings Φ1 and Φ2 of Rk, the maps Φ1 ◦ f0 and
Φ2 ◦ f0 are affine mapping from M to Rk and it is equivalent to apply the pasting lemma to Φ1 ◦ f0
and Φ2 ◦ f0 on (X,w) and to apply the previous proposition to Φ1 and Φ1 on (f0(X), w).

Decomposition of locally barycentric mappings Now we derive from the pasting lemma a
similar result but for a barycentric weighted set partitioned in t strongly connected components.
Precisely, we state conditions for a piecewise affine mapping obtained by gluing affine mappings
together along the strongly connected components of the barycentric weighted set to define a locally
barycentric mapping of such set. We refer to this result as the decomposition of locally barycentric
mappings after the underlying decomposition of the graph. Note however that this is not a result
that allows to decompose any locally affine mapping.

Decomposition theorem In the most general case where the data space is a Riemannian manifold
of dimension n and the embedding space is a Riemannian manifold M ′ of dimension k, decomposition
of locally barycentric mappings states the following

Theorem 5.2.1. Let (X,w) be a barycentric weighted graph of M . Let X1, . . . , Xt denote its ordered
strongly connected components and let f1, . . . , ft be affine mappings from M to M ′ such that for all
1 ≤ p ≤ t− 1, the affine mapping fp satisfies∑

xj∈
⋃

q>p Xq

wij logfp(xi) fp(xj) =
∑
q>p

∑
xj∈Xq

wij logfp(xi) fq(xj) (5.27)
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for all xi ∈ Xp with at least one neighbor in at least one of the greater components Xq. Then the
map f obtained by gluing f1, . . . , ft together

f |Xp = fp (5.28)

defines a locally barycentric mapping of (X,w) in M ′.

Remark 5.2.1. Before moving to the proof let us make a useful observation. Looking back at the proof
of the pasting lemma carefully, it is enough to ask for f1 to preserve the barycenters bar(xj , wij)1≤j≤N

for all 1 ≤ i ≤ N . The same applies to f2. Therefore, the pasting lemma still holds for f1 and f2
two locally barycentric mappings of (X,w). This is an important remark, first because it will make
the proof of the theorem easier, but more importantly because it eventually allows to glue together two
locally barycentric mappings that have been generated thanks to the decomposition theorem.

Proof. This statement is proven by induction using Remark 5.2.1. Let 1 ≤ p ≤ t− 1 and assume the
map f obtained by gluing fp+1, . . . , ft together along Xp+1, . . . , Xt is a locally barycentric embedding.
Let us apply the remark to fp and f . Then the map obtained by gluing fp and f along Xp and⋃

q>pXq is a locally barycentric embedding if for all xi with at least one neighbor in
⋃

q>pXq, the
mapping fp satisfies the pasting condition∑

xj∈
⋃

q>p Xq

wij logfp(xi)(fp(xi)) =
∑

xj∈
⋃

q>p Xq

wij logfp(xi)(f(xi)) (5.29)

=
∑
q>p

∑
xj∈Xq

wij logfp(xi)(fq(xi)) (5.30)

Since there exists no xi
⋃

q>pXq that has neighbors in Xp by definition of strongly connected
components, there is no pasting condition on f .

Decomposition of locally barycentric mappings in Rk Again, in the Euclidean case, the
decomposition theorem has a nice geometric interpretation in terms of pointwise pasting. For all
xi ∈ Xp with at least one neighbor in at least one of the greater components Xq, let us introduce for
all q > p the point

xqi =


∑

xj∈Xq

wij∑
xj∈Xq

wij
xj if

∑
xj∈Xq

wij ̸= 0

∑
xj∈Xq

wijxj otherwise
(5.31)

and the weight

wq
i =



∑
xj∈Xq

wij∑
xj∈

⋃
r>p Xr

wij
if

∑
xj∈

⋃
r>p Xr

wij ̸= 0 and
∑

xj∈Xq
wij ̸= 0

1∑
xj∈

⋃
r>p Xr

wij
if

∑
xj∈

⋃
r>p Xr

wij ̸= 0 and
∑

xj∈Xq
wij = 0

∑
xj∈Xq

wij if
∑

xj∈
⋃

r>p Xr
wij = 0 and

∑
xj∈Xq

wij ̸= 0

1 if
∑

xj∈
⋃

r>p Xqr
wij = 0 and

∑
xj∈Xq

wij = 0.

(5.32)

Then we have the following decomposition result
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Proposition 5.2.2. Let (X,w) be a barycentric weighted set of Rn. Let X1, . . . , Xt denote its ordered
strongly connected components and let f1, . . . , ft be affine mappings from Rn to Rk such that for all
1 ≤ p ≤ t− 1, for all xi ∈ Xp with at least one neighbor in at least one of the greater components Xq,
the affine mapping fp satisfies, if

∑
xj∈

⋃
q>p Xq

wij ̸= 0,

fp

(∑
q>p

wq
i x

q
i

)
=
∑
q>p

wq
i


fq(x

q
i ) if

∑
xj∈Xq

wij ̸= 0

Lfq(x
q
i ) otherwise,

(5.33)

and otherwise

Lfp

(∑
q>p

wq
i x

q
i

)
=
∑
q>p

wq
i


fq(x

q
i ) if

∑
xj∈Xq

wij ̸= 0

Lfq(x
q
i ) otherwise.

(5.34)

Then the map f obtained by gluing f1, . . . , ft together along the decomposition X = X1 ∪ . . . ∪Xt

defines a locally barycentric mapping of (X,w) in Rk.

In the last case where the data space is a Riemannian manifold M and the embedding space is Rk,
if we assume that there exists at least one affine mapping f0 from M to Rk, then for any affine
mappings Φ1 and Φ2 of Rk, the maps Φ1 ◦ f0, . . . ,Φt ◦ f0 are affine mapping from M to Rk and it is
equivalent to apply the pasting lemma to Φ1 ◦ f0, . . . ,Φt ◦ f0 on (X,w) and to apply the previous
proposition to Φ1, . . . ,Φt on (f0(X), w).

Example Although the formulation of the decomposition theorem is quite heavy in terms of
notations and may be hard to digest from the first reading, the interpretation behind is very simple.
Let us take an example in the plane again to illustrate the theorem. We consider this time the case
of a barycentric weighted set (X,w) decomposed into two strongly connected components X1 and
X2 such that there exists a unique point x1 in X1 with at least one neighbor in X2 as illustrated in
Figure 5.3. The point x1 has neighbors both in X1 and X2 and its barycentric coordinates are the
following

x1 =
1

2
x2 +

1

4
x3 +

1

4
x4 (5.35)

Now let f1 and f2 be two affine transformations of the plane and let f1 acts on X1 and f2 acts on
X2. Then the corresponding transformation of X defines a locally affine mapping of (X,w) provided
that f1 and f2 coincide at the point x21

f1(x
2
1) = f2(x

2
1) where x21 =

1
2x3 +

1
2x4 (5.36)

Finally, another way of looking at the pasting condition and the decomposition theorem is as precious
recipes for generating new locally barycentric mappings from the known set of affine mappings, such
that the decomposition theorem is rather a composition theorem. Based this observation, let us
now derive bounds on the number of locally barycentric mappings of a barycentric weighted set or
equivalently the number locally barycentric embeddings of the corresponding dataset.

5.3 Dimensionality of locally barycentric embeddings

This last section is of particular interest regarding the next chapter. We propose to bound the
number of locally barycentric mappings of a barycentric weighted set from below by the number
of locally barycentric mappings defined by piecewise affine mappings satisfying the decomposition
theorem. We restrict ourselves to the case where the embedding space is Rk. In that case, the set of
locally barycentric mappings of a barycentric weighted set is a vector space and so we study more
precisely the dimension of such set.
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Figure 5.3: Locally barycentric mapping of a barycentric weighted set with two strong connected
components. The affine mapping acting on the first component (blue) is constrained to coincide with
that of acting on the second component (red) on one point (green). Essentially, such a constraint is
a constraint in translation. As a consequence, the deformation of the grid induced by the global
piecewise affine mapping is smaller than that of Figure 5.2.

5.3.1 The vector space B(X,w, k)

Coming back to Definition 5.1.2 of a locally affine mapping in Rk of a barycentric set of M , we check
easily that the set of all locally barycentric mappings of a given barycentric weighted set. Let us
define the following

Definition 5.3.1. Let (X,w) be a barycentric weighted graph of M . Then the set of locally barycentric
mappings of (X,w) in Rk is a vector space and is denoted by B(X,w, k).

Graph characterization Let us take advantage of this section to make another link between
locally barycentric mappings and the graph structure of barycentric weighted sets. As we discussed
in Chapter 2, Saul and Roweis (2003) proved that the optimal barycentric mapping problem can
be formulated as an eigenvalue problem. In fact, Belkin and Niyogi (2003) highlighted that such
an eigenvalue problem is that of finding the first eigenvectors of the graph Laplacian matrix of the
neighbor graph, defined as follows

Definition 5.3.2. Let (X,w) be a barycentric weighted set of M . The symmetrized (normalized)
graph Laplacian matrix of (X,w) is the matrix

Lw = ∆T
w∆w = (Id− w)T (Id− w) (5.37)

It is a symmetric positive semi-definite matrix.

This way of looking at the problem allows to compare Locally Linear Embedding with other methods
based on the graph Laplacian and to study the convergence of optimal solutions using Laplace
Beltrami operator (H.-T. Wu and N. Wu, 2018). Now note that we have the following identity

Proposition 5.3.1. Let (X,w) be a barycentric weighted set of M . Then

B(X,w, k) = ker(∆w)
k = ker(Lw)

k. (5.38)
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In fact, all the decomposition results we present in Section 5.2 can be formulated equivalently in terms
of the decomposition of the graph Laplacian matrix. However, we prefer the geometric approach
to such results because we think it is easier to interpret. And the Laplacian matrix is mainly of
computational interest to us, as we see in the Chapter 6.

Now in the case of a graph with positive weights, the dimension of the kernel of the graph Laplacian
corresponds to the number of connected components of the graph. In our case, since barycentric
weighted sets may carry negative weights, such a result is no longer true, and only one of the two
inequalities remains valid. In fact, there exists a slightly more precise result

Proposition 5.3.2. Let (X,w) be a barycentric weighted graph of M . Assume that (X,w) has s
isolated components. Then we have the inequality

dimB(X,w, k) ≥ ks (5.39)

This bound is the consequence of a decomposition result on the normalized graph Laplacian (Bauer,
2012). In our case, since the weights w reflects some information on the dataset X, then we are able
to say more than this inequality.

5.3.2 Lower bounds on the dimension of B(X,w, k)

In this section, we derive from the decomposition theorem a series of lower bounds on the dimension
of the space B(X,w, k) of locally barycentric mappings in Rk of a barycentric weighted set of M . The
point here is not to compute the dimension of B(X,w, k) – which is easy to do from the Laplacian
matrix of (X,w) anyway – but rather to predict it based on the data itself. It is also a question
of showing that the mappings we have characterized through the decomposition theorem form a
significant subset of B(X,w, k).

Let (X,w) be a barycentric weighted set of Rn. In the first section of this chapter we leverage
the fact that any affine mapping from Rn to Rk defines a locally barycentric mapping of (X,w) to
show that

dimB(X,w, k) ≥ k rank(X), (5.40)

where we recall that the notation rank(X) corresponds here to the affine rank of X, that is the
cardinality of a maximal affinely independent subset of X. Similarly, in the case where (X,w) is
a barycentric weighted set of a Riemannian manifold M , we show that under the assumption that
there exists an affine mapping f0 from M to Rk, we have the following inequality

dimB(X,w, k) ≥ k rank(f0(X)). (5.41)

Now more generally, we can derive better bounds from Theorem 5.2.1 on the decomposition of locally
barycentric mappings. First, let us assume that the dataset lies in a Euclidean space. Then we have
the following

Theorem 5.3.1. Let (X,w) be a barycentric weighted set of Rn and let X1, . . . , Xt denote its strongly
connected components. Assume that for all 1 ≤ p ≤ t− 1, for all xi ∈ Xp with at least one neighbor
in
⋃

q>pXq, we have
∑

xj∈
⋃

q>p Xq
wij ̸= 0. Assume that for all 1 ≤ p ≤ t− 1, the pasting conditions

at Xp are independent, that is that the points
∑

q>pw
q
i x

q
i , for xi ∈ Xp with at least one neighbor in⋃

q>pXq, are affinely independent. Then we have the inequality

dimB(X,w, k) ≥ k rank(Xt) + k
t−1∑
p=1

(rank(Xp)−Kp). (5.42)
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where Kp denotes the number of pasting conditions at Xp

Kp = card
{∑

q>p

wq
i x

q
i | xi ∈ Xp, xi →

⋃
q>p

Xq

}
(5.43)

Proof. The set of all piecewise affine locally barycentric mappings f(X) obtained by gluing together
t affine mappings f1, . . . , ft from Rn to Rk along X1, . . . , Xt according to Theorem 5.2.1 is a vector
subspace of B(X,w, k). Let f be such a mapping.

Let 1 ≤ p ≤ t. Let us then introduce the set

X>
p =

{∑
q>p

wq
i x

q
i | xi ∈ Xp, xi →

⋃
q>p

Xq

}
. (5.44)

First, since we assumed that
∑

xj∈
⋃

q>p Xq
wij ̸= 0, observe that for all

∑
q>pw

q
i x

q
i ∈ X>

p , we have
the identity ∑

q>p

wq
i x

q
i =

1∑
xj∈

⋃
q>p Xq

wij

∑
xj∈

⋃
q>p Xq

wijxj (5.45)

=
1∑

xj∈
⋃

q>p Xq
wij

(
xi −

∑
xj∈Xp

wijxj

)
(5.46)

=
1

1−
∑

xj∈Xp
wij

(
xi −

∑
xj∈Xp

wijxj

)
(5.47)

such that
∑

q>pw
q
i x

q
i is in the affine span of Xp, which we denote by aff(Xp). We assumed that

X>
p is affinely independent. According to the previous observation, this means in particular that

Kp = card(X>
p ) ≤ rank(Xp). Let us complete X>

p in an affine basis Bp = X>
p ∪B′

p of aff(Xp). Then
fp(Xp) is completely determined by fp(Bp). Now, assume that for all q > p, the set fq(Xq) has
already been fixed. The decomposition theorem states that fp satisfies the pasting condition

fp

(∑
q>p

wq
i x

q
i

)
=
∑
q>p

wq
i


fq(x

q
i ) if

∑
xj∈Xq

wij ̸= 0

Lfq(x
q
i ) otherwise.

(5.48)

For all q > p, if the first case applies, because xqi ∈ aff(Xq) and because fq is an affine mapping,
the value of fq at xqi has already been fixed. If the second case applies, notice that we have
Lfq(x

q
i ) =

∑
xj∈Xq

wijfq(xj) such that the value of Lfq at xqi has also been fixed. because Therefore,
the value of fp at every

∑
q>pw

q
i x

q
i ∈ X>

p is fixed such that fp(Xp) is completely determined by
fp(B

′
p) only.

Unrolling our reasoning, we show by induction that the set f(X) is completely determined by ft(Xt)
and f1(B

′
1), . . . , ft−1(B

′
t−1). Now as we already discussed in Section 5.1, the set of all ft(Xt) for ft

an affine mapping from Rn to Rk is a vector space of dimension k rank(Xt). And for 1 ≤ p ≤ t− 1,
the set of all fp(B′

p) for fp an affine mapping from Rn to Rk is a vector space of dimension

k rank(B′
p) = kcard(B′

p) = k(card(Bp)− card(X>
p )) = k(rank(Xp)−Kp) (5.49)

and the result follows.
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Let us then move to the general case where the dataset lies in a Riemannian manifold M . We
assume that there exists at least one affine mapping f0 from M to Rk. Then we can show that
the dimension of B(f0(X), w, k) satisfies Equation (5.42). Moreover, since the composition of f0
by any affine mapping of Rk defines a locally barycentric mapping of (X,w), then we have that
B(f0(X), w, k) ⊂ B(X,w, k) and we derive the following

Corollary 5.3.1. Let (X,w) be a barycentric weighted set of M and let X1, . . . , Xt denote its strongly
connected components. Assume that there exists at least one affine mapping f0 from M to Rk. For all
1 ≤ i ≤ N , let yi = f0(xi) and for all 1 ≤ p ≤ t, let Yp = f0(Xp). Assume that for all 1 ≤ p ≤ t− 1,
for all yi ∈ Yp with at least one neighbor in

⋃
q>p Yq, we have

∑
xj∈

⋃
q>p Yq

wij ≠ 0. Assume that for
all 1 ≤ p ≤ t− 1, the pasting conditions at Yp are independent, that is that the points

∑
q>pw

q
i y

q
i , for

xyi ∈ Yp with at least one neighbor in
⋃

q>p Yq, are affinely independent. Then we have the inequality

dimB(X,w, k) ≥ k rank(Yt) + k
t−1∑
p=1

(rank(Yp)−Kp) (5.50)

where Kp denotes the number of pasting conditions at Yp

Kp = card
{∑

q>p

wq
i y

q
i | yi ∈ Yp, yi →

⋃
q>p

Yq

}
(5.51)

Finally let us derive from these two bounds two other lower but simpler bounds based on counting
the number of isolated components within the barycentric weighted set.

Corollary 5.3.2. Let (X,w) be a barycentric weighted set of Rn and let X1, . . . , Xt denote its
strongly connected components. Assume that for all 1 ≤ p ≤ t − 1, for all xi ∈ Xp with at least
one neighbor in

⋃
q>pXq, we have

∑
xj∈

⋃
q>p Xq

wij ̸= 0. Assume that for all 1 ≤ p ≤ t − 1, the
pasting conditions at Xp are independent, that is that the points

∑
q>pw

q
i x

q
i , for xi ∈ Xp with at least

one neighbor in
⋃

q>pXq, are affinely independent. Assume that (X,w) has s isolated components
Xp=t−s+1, . . . , Xt. Then we have the inequality

dimB(X,w, k) ≥ k
t∑

p=t−s+1

rank(Xp) (5.52)

Corollary 5.3.3. Let (X,w) be a barycentric weighted set of M and let X1, . . . , Xt denote its strongly
connected components. Assume that there exists at least one affine mapping f0 from M to Rk. For
all 1 ≤ p ≤ t, let Yp = f0(Xp). Assume that for all 1 ≤ p ≤ t − 1, for all yi ∈ Yp with at least
one neighbor in

⋃
q>p Yq, we have

∑
xj∈

⋃
q>p Yq

wij ̸= 0. Assume that for all 1 ≤ p ≤ t − 1, the
pasting conditions at Yp are independent, that is that the points

∑
q>pw

q
i y

q
i , for xyi ∈ Yp with at least

one neighbor in
⋃

q>p Yq, are affinely independent. Assume that (X,w) has s isolated components
Xp=t−s+1, . . . , Xt. Then we have the inequality

dimB(X,w, k) ≥ k

t∑
p=t−s+1

rank(Yp) (5.53)

Remark 5.3.1. In fact, the two previous inequalities still hold without any hypothesis on the
independency of the pasting conditions. Similar to that of Proposition 5.3.2, the proof relies on the
decomposition of the normalized graph Laplacian.
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Proof. Let (X,w) be a barycentric weighted set of Rn and let X1, . . . , Xt denote its strongly connected
components. Then up to some permutation of its rows and columns, the normalized graph Laplacian
matrix of (X,w) may be written

∆w =


∆1 ∆12 . . . ∆1t

0 ∆2 . . . ∆2t
...

. . . . . .
...

0 . . . 0 ∆t

 (5.54)

This is referred as the Frobenius normal form of such (Brualdi et al., 2018). We recall that one has

B(X,w, k) = ker(∆w)
k (5.55)

Now assume that the components Xp=t−s+1, . . . , Xt are isolated. Then we have

∆pq = 0 ∀q > p > t− s (5.56)

Writing ∆w as a sum of s+ 1 sparse matrices in such a way that each submatrix ∆p for p > s− t
appears exactly in one of these, we get the following inequality on the rank of ∆w

rank(∆w) ≤ rank



∆1 ∆12 . . . ∆1t

0 ∆2 . . . ∆2t
...

. . . . . .
...

0 . . . 0 ∆t−s . . . ∆t−s t


+

t∑
p=t−s+1

rank(∆p). (5.57)

Equivalently, the dimension of ker(∆w) satisfies the inequality

dimker(∆w) ≥
t∑

p=t−s+1

dimker(∆p). (5.58)

Finally, notice that for all p > t − s, the submatrix ∆p is the graph Laplacian of the barycentric
weighted set (Xp, w|Xp), where w|Xp denotes the submatrix of w which consists of the rows and
columns indexed by Xp. Following Equation (5.40), we have then

dimB(X,w, k) = k dimker(∆w) ≥
t∑

p=t−s+1

k dimker(∆p) (5.59)

=

t∑
p=t−s+1

dimker(∆p)
k (5.60)

=

t∑
p=t−s+1

dimB(Xp, w|Xp , k) (5.61)

≥
t∑

p=t−s+1

k rank(Xp). (5.62)

In practice, we can assume that k has been well chosen such that the dataset X is at least of local
intrinsic dimension k. In other words, we can assume that the affine rank of any subset of X that
consist of more than k + 1 points is at least k + 1. Such assumption allows to estimate more easily
the several bounds we listed.
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5.3.3 Asymptotic behavior of the dimension of B(X,w, k)

In this section, we propose to estimate the asymptotic behavior of the dimension of B(X,w, k) when
the size of X increases. More precisely, we study the asymptotic behavior of the bound introduced
in the last corollary of the previous section. We show in particular that the number of isolated
components of a barycentric weighted set (X,w) is asymptotically proportional to the size of X and
so does the corresponding bound, although this is not necessarily intuitive in the first place.

Now let C be a compact domain of Rn and assume that C has non empty interior. Let X be a
random finite subset of C such that for all measurable set A ⊂ C, the random variable nA = |X ∩A|
has a Poisson distribution P (λµ(A)), where µ is a measure on C which is absolutely continuous
with respect to the Lebesgue measure λn on Rn, and X ∩A|nA follows the law of a set of nA i.i.d.
random vectors sampled from the density of µ on A.

Proposition 5.3.3. Assume that µ = λn. Then we have the following inequality

E
[
dimB(X,w, k)

]
≥ cnk(n+ 1)

⌊
(a
√
π)n

2nΓ
(
n
2 + 1

)λ⌋ . (5.63)

where cn =
(
e(n+ 2)!3n(n+2)

)−1 is a constant which depends only on n and a > 0 is the side length
of the largest cubic domain C(x, a) that fits into C.

Proof. We know that dimB(X,w, k) is bounded from below by

dimB(X,w, k) ≥ k
t∑

p=t−s+1

rank(Xp) (5.64)

where s denotes the number of isolated components of (X,w).

Now let us make a simple observation. Suppose that w has been computed along the n+1-nearest
neighbor graph of X so as to ensure that the barycentric model fits exactly to X (which is a priori
n-dimensional). Consider a ball of radius r in C and assume that it contains exactly n+ 2 points of
C. Then if these points lie within the concentric ball of radius r/3, they create an isolated component
of (X,w).

Fix r > 0 and let {Bi = B(xi, r) , 1 ≤ i ≤ s} be a finite family of disjoints balls of radius r
included in C. Let also B′

i = B(xi, r/3) be the ball with Bi but with a radius three time smaller.
Following the previous observation, we have the inequality

E[dimB(X,w, k)] ≥ E

[
s∑

i=1

k rank(X ∩ Bi)1{nBi
=n+2

}
∩
{
X∩Bi⊂B′

i

}
]

(5.65)

= k(n+ 1)
s∑

i=1

E
[
1{

nBi
=n+2

}
∩
{
X∩Bi⊂B′

i

}] . (5.66)

Let us compute each expectation in the previous formula. For all A ∈ C, the random variable X|nA
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is a set of nA i.i.d. random vectors sampled from the uniform distribution on A such that we have

E
[
1{

nBi
=n+2

}
∩
{
X∩Bi⊂B′

i

}] = P
[
X ∩ Bi ⊂ B′

i

∣∣∣ nBi = n+ 2
]
P [nBi = n+ 2] (5.67)

=

(
λn (B′

i)

λn(Bi)

)n+2 (λλn(Bi))
n+2

(n+ 2)!
exp (−λλn(Bi)) (5.68)

=
1

3n(n+2)

(λrnλn (B(0, 1)))n+2

(n+ 2)!
exp (−λrnλn (B(0, 1))) . (5.69)

Set rλ > 0 such that
exp (−λrnλλn (B(0, 1))) = 0, (5.70)

that is

rλ = (λn (B(0, 1))λ)−
1
n =

Γ
(
n
2 + 1

) 1
n

√
π

λ− 1
n (5.71)

Accordingly, let {Bi , 1 ≤ i ≤ s} be a finite family of disjoints balls of radius rλ. The expression
above reduces to

E
[
1{

nBi
=n+2

}
∩
{
X∩Bi⊂B′

i

}] = 1

e(n+ 2)!3n(n+2)
. (5.72)

Finally, let a > 0 be the side length of the largest cubic domain C(x, a) that fits into C. Then the
number of balls of radius rλ that can fit into C(x, a) is

⌊(
a

2rλ

)n⌋
. Let us take then s =

⌊(
a

2rλ

)n⌋
.

We have the inequality

E
[
dimB(X,w, k)

]
≥ 1

e(n+ 2)!3n(n+2)
k(n+ 1)

⌊
(a
√
π)n

2nΓ
(
n
2 + 1

)λ⌋ . (5.73)

Proposition 5.3.4. Now assume that dµ = ρdλn with ρ1 ≤ ρ ≤ ρ2. Then we have the following
inequality

E
[
dimB(X,w, k)

]
≥
(
ρ1
ρ2

)2(n+2)

cnk(n+ 1)

⌊
(a
√
π)n

2nΓ
(
n
2 + 1

)ρ2λ⌋ . (5.74)

where c′k = cn

(
ρ1
ρ2

)2(n+2)

is a constant which depends only on n.

Proof. This proof is similar to the one of Theorem 5.3.3. Fix r > 0 and let {Bi = B(xi, r) , 1 ≤ i ≤ s}
be a finite family of disjoints balls of radius r included in C. Let also B′

i = B(xir/3) be the ball
with Bi but with a radius three time smaller. We have the inequality

E[dimB(X,w, k)] ≥ k(n+ 1)

s∑
i=1

E
[
1{

nBi
=n+2

}
∩
{
X∩Bi⊂B′

i

}] . (5.75)

Now let us compute each expectation in the previous formula. The random variable X|nA is a set of
nA i.i.d. random vectors sampled from the probability distribution of density ρ/ρ(A) such that we
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have

E
[
1{

nBi
=n+2

}
∩
{
X∩Bi⊂B′

i

}] = P
[
X ∩ Bi ⊂ B′

i

∣∣∣ nBi = n+ 2
]
P [nBi = n+ 2] (5.76)

=

(
µ (B′

i)

µ(Bi)

)n+2 (λµ(Bi))
n+2

(n+ 2)!
exp (−λµ(Bi)) (5.77)

≥
(
ρ1λn (B′

i)

ρ2λn(Bi)

)n+2 (λρ1λn(Bi))
n+2

(n+ 2)!
exp (−λρ2λn(Bi)) (5.78)

=

(
ρ1
3ρ2

)n+2 (λρ1r
nλn (B(0, 1)))n+2

(n+ 2)!
exp (−λρ2r

nλn (B(0, 1))) . (5.79)

Recall that we set

rλ = (λn (B(0, 1))λ)−
1
n =

Γ
(
n
2 + 1

) 1
n

√
π

λ− 1
n (5.80)

such that
exp (−λrnλλn (B(0, 1))) = 0 (5.81)

and let {Bi , 1 ≤ i ≤ p} be a finite family of disjoints balls of radius ρ
− 1

n
2 rλ. The expression above

reduces to

E
[
1{

nBi
=n+2

}
∩
{
X∩Bi⊂B′

i

}] = (ρ1
ρ2

)2(n+2) 1

e(n+ 2)!3n(n+2)
. (5.82)

Finally, let a > 0 be the side length of the largest cubic domain C(x, a) that fits into C. Then the
number of balls of radius rλ that can fit into C(x, a) is

⌊(
a
rλ

)n⌋
. Let us take then s =

⌊(
a
rλ

)n⌋
. We

have the inequality

E
[
dimB(X,w, k)

]
≥
(
ρ1
ρ2

)2(n+2)

cnk(n+ 1)

⌊
(a
√
π)n

2nΓ
(
n
2 + 1

)ρ2λ⌋ . (5.83)

where we recall that cn =
(
e(n+ 2)!3n(n+2)

)−1.

Essentially what these two results tell us is that in expectation, the dimension of the space of locally
barycentric mapping in Rk of a barycentric weighted set (X,w) of Rn increases proportionally to the
density of the set X in the compact domain C, represented by the parameter λ.

5.3.4 Conjectures and avenues for further investigation

There are many paths of exploration for this work. First, in practice, the assumption that the
optimal local barycentric model fits the data exactly is a priori not satisfied. Therefore, it would be
important to study the continuity of our results in the case where the model is close to the data
but is not exact, or when the data are noisy. In particular, it is only natural to ask if our solutions
would still minimize the cost of the optimal mapping problem, and to what extent the bounds on the
dimension of B(X,w, k) are still true. Another path we want to explore is the generalization of our
the results to the case of constant curvature embedding spaces. Especially, we conjecture that the
space of locally barycentric mappings of a barycentric weighted set of size N in Rk is a submanifold
of RN×k and that we can bound its dimension leveraging the results of Kobayashi (1995). Finally, the
description of locally barycentric mappings we propose in this chapter is not exhaustive. Exploring
other notions of connectivity for directed graphs should provide new decomposition theorems, allow
to characterize other locally barycentric mappings mappings, and yield better bounds. In particular,
the notion of vertex cut and higher order vertex connectivity (Diestel, 2017) look promising.
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Chapter 6

By way of epilogue

New algorithms for geometric learning
and geometric manifold learning

In Chapter 2, we highlight the multiplicity of barycentric embeddings. In Chapter 5, we unveil a
family of locally barycentric embeddings. In this chapter, we leverage such a multiplicity. Initially,
we regarded the non-uniqueness of the solution computed by Locally Linear Embedding (S. T.
Roweis and Saul, 2000) as a problem to be solved. In fact, the work we presented in Chapter 5
was initially intended to identify uniqueness conditions. At a certain point, however, we realized
that non-uniqueness was not a weakness but rather a strength. Indeed, being able to choose means
being able to choose the best. To counterbalance the non-isometric nature of barycentric models,
we propose here to discriminate between barycentric embeddings (respectively locally barycentric
embeddings) according to a distance-based criterion. We redesign Barycentric Subspace Analysis
(Pennec, 2018) and Locally Linear Embedding under this approach and derive two new algorithms
for geometric learning and geometric manifold learning.

Each of the two sections focuses on one algorithm. In the section, we describe a dimensionality
reduction method which computes an isometric embedding of a dataset based on the model estimated
by Barycentric Subspace Analysis. In fact, the idea is already introduced informally in the examples
of Chapter 4 on barycentric subspace analysis of graphs. The second section presents a manifold
learning method combining Locally Linear Embedding and Isomap (Tenenbaum, De Silva, and
Langford, 2000). We experiment this new method on the standard example of the Swiss Roll and
compare its performance with both Locally Linear Embedding and Isomap.

6.1 From barycentric subspace analysis to barycentric embedding

Let us recall the difference between Barycentric Subspace Analysis (BSA) and barycentric embeddings.
From a dataset, Barycentric Subspace Analysis extracts a k-dimensional barycentric model, that is a
set of k + 1 reference points together with barycentric weights. The reference points are those of
the barycentric subspace that fits the dataset the best and the weights are those of the barycentric
projection on each data point onto such a barycentric subspace. Barycentric embeddings are a step
ahead. The barycentric subspace estimated by the model is embedded in a known space of same
dimension, for example Rk, by mapping the reference points onto as many points in the embedding
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space. The projection of each data point is then embedded itself as the barycenter of the new
reference points with corresponding coordinates the weights estimated by the model. This step is
referred to in Chapter 2 as a barycentric mapping. By construction, barycentric embeddings are
then not unique, and in the case where the embedding space is Rk, we saw that there are as many
embeddings as they are choices of k + 1 new reference points in the embedding space. The following
algorithm, which we refer to as Isometric Barycentric Subspace Analysis (IsoBSA), picks the unique
configuration of these new reference points that respects the pairwise distances of the original set of
reference points.

6.1.1 Isometric barycentric subspace analysis

Consider a dataset x1 . . . , xN on a manifold M . The first step of Algorithm 1 corresponds to the
original formulation of BSA and consists in fitting a k-dimensional barycentric model to the dataset.
IsoBSA is formulated a priori for manifold-valued data and this first step relies on the several
implementations of the barycentric projection we proposed in Chapter 2 and Chapter 3. The purpose
of the second step is to select the image of the reference points estimated by the model in the
embedding space in such a way that the distance between two reference points, measured with
respect to the metric of M , is the same as the distance between their images. If the embedding
space is Rk, then there exists an exact solution to such a problem which is unique up to a rotation.
In practice, we can compute this solution thanks to Multidimensional Scaling (MDS), which we
recall is a dimensionality reduction method that optimizes the conservation of pairwise distances
of a dataset (M. A. A. Cox and T. F. Cox, 2008). Although, it has been originally designed for
Euclidean distances, the algorithm can be reformulated rather efficiently for Riemannian distances
(Harms, Maignant, and Schlager, 2019). Finally, the last step of the algorithm simply retrieves the
embedding of the dataset in Rk accordingly to the new reference points selected. Together with the
embedding, the algorithm also outputs the original reference points that provide multiple estimators
of the dataset.

Algorithm 1 IsoBSA
Input: x1, . . . , xN ∈ M

1 ≤ k ≤ n,N − 1

1: Compute a0, . . . , ak, wij = barycentric_model(x1, . . . , xN , k)

2: Compute b0, . . . , bk = MDS(a0, . . . , ak, k)

3: For all i = 1 to N set yi =
k∑

j=0
wijbj

Output: a0, . . . , ak ∈ Rk

y1, . . . , yN ∈ Rk

Naturally, IsoBSA is still compatible with any variant of BSA, especially sample-limited BSA and
convex sample-limited BSA. The criterion is also perfectly exchangeable with any other criterion, for
example based on a different distance function. Note that designing a similar algorithm to embed a
dataset in a constant curvature space, in such a way that it remains computationally efficient, may
be quite challenging, especially due to the increasing complexity of step 3 as soon as the barycenters
are not formulated explicitly anymore.
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6.1.2 Coming back to an example in graph analysis

Although it had not been formalized yet as that point, we already experimented IsoBSA. Precisely in
Chapter 4, on several datasets of spectral graph spaces. In fact, in the case of spectral graph spaces,
the method is more specific than just IsoBSA. Indeed, barycentric subspaces of spectral graph spaces
are flat. Therefore, the barycentric mapping implemented by the algorithm is simply a Euclidean
isometry. In general, this is not the case and only the distances between the reference points are
conserved. We reuse here one the examples of Chapter 4 to illustrate how IsoBSA works (see Figure
6.1). Specifically, the algorithm used here is its sample-limited variant.

Figure 6.1: Sample-limited IsoBSA of a set of graphs. The dataset, originally of dimension 9, is
embedded in the plane with respect to the three reference points picked with the dataset. As we
already discussed, the providing of the method of reference points in addition to the embedding is a
very powerful feature in terms of interpretability

6.2 A combined approach to geometric manifold learning

The second algorithm reflects the same philosophy as IsoBSA. As well as barycentric embeddings,
locally barycentric embeddings are structured in two steps. The dataset is first approximated by a
local barycentric model, distributed along the neighbor graph of the dataset. The projection of each
data point on the barycentric subspace of its neighbors yield local barycentric weights. Then, from
these barycentric weights, we need to solve the optimal mapping problem, that is find the embedding
of the dataset in the embedding space, for example Rk in the case of Locally Linear Embedding (LLE).
This step is refered to as a locally barycentric mapping. Now provided that the local barycentric
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model fits to the dataset perfectly, we show in Chapter 2 that there exists multiple solutions to the
optimal mapping problem on Rk. In practice, although this assumption is not satisfied exactly, if the
model is close enough to the dataset then there still exists multiple mappings almost equivalently
optimal. The following algorithm, which we refer to as Isometric Locally Barycentric Embedding
(IsoLBE) picks among all the equivalent solutions the one that optimizes the criterion proposed in
Isomap (Tenenbaum, De Silva, and Langford, 2000) and based on the conservation of the intrinsic
distance across the dataset, approximated by the shortest path distance on the neighbor graph of
the data points. IsoLBE is not to be confused with the method introduced as ISOLLE by Ghojogh,
Ghodsi, Karray, and Crowley (2020) in a survey on Locally Linear Embedding and its Variants.

6.2.1 Isometric locally barycentric embedding

Consider a dataset x1 . . . , xN on a manifold M . The first step of Algorithm 2 is also the first step of
LLE and consist in fitting a local barycentric model to the dataset. More specifically, each data point
xi is modeled by its projection onto the barycentric subspace of its k + 1 nearest neighbors and we
retrieve the barycentric coordinates wij0 , . . . , wijk of such projection. Let us now detail the second
step. The final goal of this step is to find the optimal locally barycentric mapping y1, . . . yN ∈ bRk

that minimizes the cost
C(y) =

∑
i,j

∣∣∣∥yj − yi∥2 − d2ij

∣∣∣2 (6.1)

where dij denotes the shortest path distance between xi and xj in the r-ball neighbor graph
implemented by Isomap. Now the key of this algorithm is that a locally barycentric mapping in Rk

can be formulated in terms of the normalized Laplacian matrix Lw of the nearest neighbor graph.
Precisely, the set of points y1, . . . , yN ∈ Rk is a locally barycentric mapping of the local barycentric
model (wij) if and only if, for any 1 ≤ l ≤ k, its l-th component belongs to the kernel of the Laplacian
matrix [

yl1 . . . ylN
]
∈ kerLw. (6.2)

In practice, whether a vector belongs to the kernel of Lw or not is decided according to some threshold
value ε. Now the kernel of Laplacian matrix is a vector space, say of dimension D, and the D first
eigenvectors e1, . . . , eD of Lw form a basis of such space. Therefore the set of points y1, . . . , yN ∈ Rk

is a barycentric mapping of the local barycentric model (wij) if and only if their exists a k × D
matrix (vlm) such that [

yl1 . . . ylN
]
=

D∑
m=1

vlmem. (6.3)

Under this new formulation, the optimization of the isometric criterion is simply a vector-valued
optimization problem and is compatible with the standard solvers of the library scipy such as BFGS.
Again, the criterion is perfectly exchangeable with any other criterion, even borrowed from another
dimensionality reduction method such as t-SNE (Hinton and S. Roweis, 2002). Note however that a
distance-based criterion preserves the neighborhoods of the original dataset, which is not guaranteed
at all by locally barycentric mappings.

6.2.2 Unfolding the Swiss Roll, a benchmark experiment

We compare IsoLBE to Isomap and LLE on the Swiss Roll dataset (see Figure 6.2) that serves as a
benchmark to most manifold learning methods. Precisely, we compare the 2-dimensional embedding
of the dataset generated by each method with the exact unrolling of the dataset in the plane. We
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Algorithm 2 IsoLBE
Input: x1, . . . , xN ∈ M

1 ≤ k ≤ n,N − 1
ε > 0
r > 0

1: Compute G = nearest_neighbors_graph(x1, . . . , xN , k + 1)
For all i = 1 to N

Set j0, . . . , jk = nearest_neighbors(i, G)
compute wij0 , . . . , wijk = barycentric_projection(xi, xj0 , . . . , xjk)
if j not in j0, . . . jk then set wij = 0

2: Set Lw = (Id− w)T (Id− w)
Compute e1, . . . , eD = kernel(Lw, ε)
Compute dij = isomap_distance(x1, . . . , xN , r)

Define
[
y1(v) . . . yN(v)

]
=
[∑

v1jej . . .
∑

vkjej
]T ∈ Rk×N

Define cost(v) =
∑∣∣∥yi(v)− yj(v)∥2 − d2ij

∣∣2
Compute v = minimize(cost)
Set y1 . . . , yN = y1(v), . . . , yN(v)

Output: y1, . . . , yN ∈ Rk

expect IsoLBE to inherit from the characteristics of both methods Isomap and LLE and correct the
unwanted behaviors of each. Let us comment on some practical settings.

Figure 6.2: Dataset on the Swiss Roll.

Fitting parameters First of all, which radius r to fix for the construction of the graph distance
in Isomap has been well studied for example by Balasubramanian and Schwartz (2002). Essentially,
we should select the largest radius such that the graph is as connected as possible while all the edges
are still close to the underlying submanifold on which the dataset is sampled. In the case where such
a submanifold is the Swiss Roll, this optimal value corresponds to the last largest radius such that
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the blue end of the Swiss Roll is not connected to its red end, which would results in a embedding
that resemble a one-dimensional Swiss Roll. In Figure 6.3, we fix the same radius for both IsoLBE
and Isomap. In our example, it corresponds to a value r = 10.

For LLE as well, the choice of good parameters, namely the number K of neighbors and the
regularization factor δ, has been the subject of extensive study (Daza-Santacoloma, Acosta-Medina,
and Castellanos-Domínguez, 2010). Especially, the choice an appropriate regularization is very
crucial in order to retrieve accurate solutions (Lin, 2021). In our example, we take K = 10 and
δ = 1× 10−3.

Finally the last parameter to fit is the threshold value ε for embeddings to be in the kernel of the
Laplacian matrix Lw. More precisely, we fix a threshold value on the ratio between the norm of a
given vector and the maximal eigenvalue of Lw. This is a trade-off between values that are too large
to ensure the barycentric nature of the embedding and that do not preserve the local barycentric
model at all anymore, and values that are too low to enable embeddings for which the cost of the
optimal mapping problem would vanish if the dataset was exactly modeled. At one extreme, the
kernel of the Laplacian matrix Lw contains enough solutions for Isomap to be one of them such
that IsoLBE yields exaclty the same embedding as Isomap, and at the other, the isometric criterion
is ignored at a local scale and IsoLBE does not perform well in regions where the k + 1-nearest
neighbor graph of the data points is poorly connected. In practice, we propose two ways to fit the
threshold value. First, assuming that the model is exact, we may compute the lower bounds listed
in Chapter 5 based on a decomposition of the k + 1-nearest neighbor graph. These allow to bound
the threshold value from above. Another approach consists in applying the elbow method to the
eigenvalue profile of the Laplacian matrix Lw to separate noisy locally barycentric embeddings from
the embeddings that are not locally barycentric. In our example, the performance of IsoLBE as well
as the one of the two other methods is evaluated by measuring the pointwise distance between the
isometric unrolling of the dataset in the plane and the embedding generated by the method up to a
rotation. The optimal threshold value is then chosen to optimize the performance of IsoLBE and we
fix ε = 1× 10−5. Such a value generates a kernel of size D = 70.

6.2.3 Conclusion and future works

Let us start this last section with some perspectives for this chapter specifically. Essentially, we plan
to improve our method on two aspects. First, we would like to explore other criteria for the selection
of a barycentric embedding and to understand how they influence the optimal embedding. Then, we
are currently investigating the generalization of the two algorithms to constant curvature embedding
spaces. Finally, we would like to experiment more with the two algorithms, especially on datasets
where the underlying structure is not known in advance.

Let us now move on to the final word of this thesis. First of all, I would like to emphasize that
barycentric geometry is a very interesting subject, which nicely blends Riemannian geometry and
straightedge-and-compass constructions, which I had not practiced for several years. In parallel, I
have had several opportunities to explore quotient spaces, which I have been familiar with for some
time and still enjoy working with today. In its final form, this thesis is the reflection of Xavier’s
intuition that put me on the right track, Alain’s persistence that did not let me give up on the open
questions I came across before I had spent enough time on them, the fruitful encounter with Anna,
not to mention inspiring cross-disciplinary discussions, the valuable advice from wise mathematicians,
and a few fortunate coincidences. At the moment, there are still a lot of questions that I have opened
without closing them, carefully written down in my notebook.
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Figure 6.3: Comparison of IsoLBE, LLE, and Isomap. Numerically, that is according to the error
measure described previously, the performance of IsoLBE and Isomap is comparable although IsoLBE
performs slighly better (after normalizing by the largest distance computed by Isomap on the r-ball
neigbor graph, we measure an error of 8, 9× 10−4 and 9, 0× 10−4 respectively). As expected, LLE
perfoms significantly worse as the embedding is not well scaled. Now visually, we higlight on the
subset contained in the red box how IsoLBE combines the information retrieved by LLE, that is the
relative positions of the data points in the subset, and that retrieved by Isomap, that is the scale of
the subset, to provide with the most accurate embedding of such subset among the three methods.

Let me summarize these questions. On theoretical aspects of barycentric embeddings, I want
to refine the analysis locally barycentric embeddings of Chapter 5, starting by the conjectures we
discussed at the end of the chapter, and understand how our results are altered when lifting some
assumptions, especially when the model does not fit to the dataset exactly or when the data are
noisy (Wang, Wong, and Lee, 2019). Studying the geometry of barycentric subspaces of spectral
graph spaces is also on my list. On the computational aspects of barycentric embeddings, I already
mentioned above two ways of generalizing IsoBSA and IsoLBE. Finally, I would like to experiment
the two algorithms on datasets modeled in Kendall shapes spaces such as protein structure, as
well our new statistical graph analysis framework for other applications such as the study of brain
connectivity.
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"Je déjeunais sous un oranger, et là, une orange tombe dans mon assiette. Elle était délicieuse."

– Alain Trouvé. Antibes, le 31 mai 2023
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