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Résumé
Dans cette thèse, nous nous intéressons à des méthodes d’apprentissage statistique sur
données spatio-temporelles et données mixtes. En effet, la croissance rapide des systèmes
d’informations en santé publique permet aujourd’hui de disposer de données variées en
temps réel pour de nombreuses maladies. L’objectif est de développer des méthodes pour
utiliser ces données afin de construire des systèmes d’aide à la décision exploitables.

Nous proposons d’abord un pipeline spatio-temporel pour estimer la distribution de la
population et mettre en évidence des différences temporelles. Ce pipeline est une première
étape vers un système d’aide à la décision et d’alerte pour l’analyse spatio-temporelle de
l’évolution d’une population. Ce pipeline est conçu de manière à ce que différentes distribu-
tions et donc différents algorithmes puissent être envisagés. Pour une première application,
ce pipeline est combiné avec des algorithmes EM robustes permettant l’estimation de mod-
èles de mélange gaussiens. Il est éprouvé sur des données d’hôpitaux parisiens correspondant
aux personnes testées positives à l’infection par le SARS-CoV-2 sur onze semaines en 2020.

Dans une deuxième partie nous proposons un ensemble d’algorithmes pour l’estimation
de modèles de mélange sur données mixtes. Nous décrivons d’abord des modèles de mélange
pour diverses lois continues et discrètes, en supposant une indépendance conditionnelle entre
les variables discrètes et continues. Nous proposons ensuite des algorithmes dynamiques de
type EM, permettant l’estimation de tous les paramètres du mélange ainsi que l’estimation
du nombre de classes. Nous montrons que nos différents algorithmes dynamiques permet-
tent d’atteindre le nombre réel de classes et d’estimer correctement les paramètres des lois
discrètes comme continues. Nous soulignons aussi l’intérêt d’introduire des régularisations
sur des paramètres particuliers afin d’améliorer les performances dans des situations où
la taille de l’échantillon n’est pas suffisante en regard de la complexité du modèle. Ces
algorithmes dynamiques sont ensuite validés sur des données réelles issues de la littérature.
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Abstract
In this thesis, we focus on statistical learning methods for spatio-temporal and mixed-type
data. With the rapid growth of public health information systems, a wide range of real-time
data is now available for many diseases. The aim is to develop methods for using this data
to build operational decision support systems.

We first propose a spatio-temporal pipeline for estimating the distribution of a popu-
lation and highlighting temporal differences. This pipeline is a first step towards a deci-
sion support and alert system for the spatio-temporal analysis of population trends. This
pipeline is designed so that different distributions and therefore different algorithms can be
considered. For an initial application, this pipeline is combined with robust EM algorithms
for estimating Gaussian mixture models. It is evaluated using data from Paris hospitals
corresponding to people who tested positive for SARS-CoV-2 infection over eleven weeks in
2020.

In the second part, we propose a set of algorithms for estimating statistical models on
mixed data. We consider that mixed-type data are distributed according to mixtures of
laws. We first describe mixture models for various continuous and discrete laws, assuming
local independence between discrete and continuous variables. We then propose dynamic
algorithms of the EM type, allowing the estimation of all the parameters of the mixture
as well as the estimation of the number of classes. We show that our different dynamic
algorithms allow us to reach the real number of classes and to correctly estimate the pa-
rameters of the discrete and continuous laws. We also highlight the benefits of introducing
regularizations to improve performance in situations where the sample size is insufficient
for the complexity of the model. These dynamic algorithms are then validated on real data
from the literature.
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Résumé en Français

Cette thèse s’intéresse au développement de modèles de mélange dynamiques, et à la con-
struction de pipelines guidés par des enjeux de surveillance spatio-temporelle en Santé
Publique. La croissance rapide des systèmes d’information sur la santé permet de disposer
de données spatio-temporelles en temps réel de patients touchés par une maladie donnée.

Les modèles spatiaux reposent sur la caractérisation des individus par leur localisation
géographique (lieu de naissance, lieu au moment du diagnostic, lieu de résidence, etc).
L’ensemble de ces individus forme une population. Par ailleurs, la composante temporelle
est essentielle dans le suivi des maladies, ce qui nécessite de prendre en compte l’évolution
de la distribution de la population dans le temps. L’association des composantes spatiales
et temporelles d’une maladie permet d’obtenir une distribution spatio-temporelle.

Un système d’aide à la décision qui pourrait améliorer la gestion des risques sanitaires en
utilisant ces données est la mise en évidence en temps réel de groupes de patients nouveaux
ou en évolution. Il s’agit par exemple de détecter un sous-groupe spécifique de patients
qui évoluera différemment, alors que le reste de la population restera stable. Cela serait
particulièrement utile pour identifier rapidement une nouvelle source de contamination pour
une maladie transmissible, dès que les premiers cas affectés sont présents dans les systèmes
d’information sanitaire.

Méthodes statistiques pour données spatio-temporelles Les analyses statistiques
spatio-temporelles sont déjà nombreuses dans la recherche en épidémiologie, que cela soit
par des tests sur la significativité de taux d’incidence ou de risque, ou la modélisation de
ces taux, permettant l’intégration de variables additionnelles. De nombreuses méthodes re-
quièrent néanmoins une connaissance de la population à risque sous-jacente ou un ensemble
cas/témoins. Ou encore nécessitent un horizon temporel déterminé, ne permettant pas leur
utilisation pour un suivi à long terme ou en temps réel.

Un pipeline comme outil d’aide à la décision Nous proposons dans une première con-
tribution (Chapitre 3) un pipeline simple, flexible afin de suivre l’évolution de distributions
estimées sur des observations arrivant à différents temps (discrets). Nous construisons donc
ce pipeline afin qu’il soit facile d’utilisation, interprétable, mais aussi rapide d’exécution afin
de s’adapter à différentes granularités temporelles. Ce processus ne nécessite pas non plus
d’avoir les données sur l’ensemble des temps considérés, contrairement à certaines méth-
odes estimant des distributions ou des clusters temporels, qui ont besoin de l’ensemble des
données, du premier au dernier temps considérés.

Modèles de mélange Les modèles de mélange sont des modèles probabilistes où la den-
sité de probabilité d’une observation x est formulée comme la somme pondérée de K densités
connues, de paramètres différents et généralement de la même famille. Les pondérations
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sont données par un vecteur de proportions π = (π1, . . . , πK) et les paramètres de chaque
densité k du mélange par θk. Afin d’inférer les paramètres du modèle, on veut considérer que
chaque observation appartient à une des classes, et ainsi estimer indépendamment chaque
distribution. Dans un cadre non supervisé, l’appartenance d’une observation x à une des
K classes est inconnue et modélisée par une variable latente z distribuée suivant une loi
catégorielle de paramètres π. Une observation x est alors générée suivant le modèle suivant{

z ∼ Catégorielle(π) ,
x|z = k ∼ Fg(θk) , (1)

avec Fg une distribution continue ou discrète de dimension g et de paramètres θk.
Grâce à leur flexibilité, les modèles de mélange sont vite devenus très populaires dans

tous types d’applications et pour de nombreux types de données : images, données spatiales,
données fonctionnelles, etc.

Nous nous tournons vers ces modèles car ils répondent à des critères de flexibilité dans le
choix des lois, mais aussi d’estimation relativement rapide, d’interprétation, et ne reposant
pas dans le cas général sur des informations a priori (à part le nombre de classes que nous
évoquons plus bas), telles que la distribution sous-jacente d’une population globale ou la
présence d’observations témoins pour des applications en Santé Publique.

Estimer des modèles de mélange De nombreuses méthodes permettent d’estimer des
modèles de mélange, dont le très connu algorithme Espérance-Maximisation (EM) (Demp-
ster et al., 1977) et ses variantes. Il permet plus largement d’estimer des modèles prob-
abilistes sur données incomplètes, intégrant des variables latentes ou inconnues (comme z
ci-dessus).

Dans le cadre d’estimation de modèles de mélange, les variantes de l’algorithme EM sont
déjà nombreuses, pour estimer des mélanges de diverses lois possibles, continues comme dis-
crètes, mais aussi afin de résoudre de nombreuses limites, telles la sensibilité à l’initialisation,
la convergence vers des maxima locaux incorrects et la convergence des paramètres vers les
bords de l’espace des paramètres notamment lors d’un surapprentissage. Au-delà de ces
difficultés, un enjeu avec les modèles de mélange, qu’ils soient estimés par algorithme EM
ou d’autres méthodes (les méthodes de Monte-Carlo par chaînes de Markov par exemple),
est le choix du nombre de composantes K dans le mélange. Fixé a priori, choisi par sélection
de modèles a posteriori ou incrémenté/décrémenté au cours du processus d’estimation, de
nombreuses propositions sur cet enjeu ont vu le jour et essayant souvent de résoudre les
autres limites énoncées ci-dessus.

Un algorithme «dynamique» Nous appuyant sur le travail de Yang et al. (2012), nous
proposons un algorithme de type EM «dynamique», permettant d’éviter notamment le
surapprentissage, une des faiblesses initiales de l’algorithme EM que le travail de Yang et
al. ne résolvait pas. Par dynamique, nous voulons exprimer que le nombre de classes K du
mélange est inconnu à l’initialisation de l’algorithme et va être estimé conjointement avec
les paramètres du modèle, tout en évitant de parcourir de manière exhaustive l’ensemble des
valeurs possibles pour K. Évitant donc aussi l’estimation d’une collection de modèles, cela
repose notamment sur l’introduction de l’entropie des proportions dans la fonction objectif
à maximiser. Cet algorithme permet ici d’estimer des modèles de mélange gaussiens.

Un processus de mélange spatio-temporel Une autre variante de l’algorithme EM
est aussi explicitée, simplement contrainte lors d’une courte estimation à rester dans un
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voisinage de valeurs initiales. Ces deux types d’algorithmes sont ainsi des composantes
du pipeline développé afin d’assurer une modélisation et un suivi temporel de données
X = (X(1), . . . ,X(T )), X(t) étant un ensemble de données arrivant à l’instant t indépendam-
ment des instants précédents. Ce pipeline composé de modèles de mélange, gaussiens dans
un premier temps, est nommé spatio-temporal mixture process (STMP). À chaque instant t,
deux modèles sont estimés : l’un dont les paramètres sont proches de l’instant t− 1, l’autre
non contraint. Un ratio impliquant les vraisemblances des modèles pθ1(x) et pθ2(x) permet
ensuite de déterminer quel modèle est gardé comme référence à l’instant t. Si le modèle à
t dépendant de celui estimé à t − 1 et exécuté sur les données X(t−1) n’est pas gardé, on
peut traduire cela comme une rupture temporelle dans l’évolution du comportement de la
population.

Nous montrons ensuite sur un jeu de données réelles que ce pipeline estime des modèles
cohérents et révèle des fractures dans l’évolution de la répartition des observations. Ces
données sont composées de patients testés positifs à la COVID-19 dans les hôpitaux de
Paris sur onze semaines en 2020. Modélisées après agrégation par semaine, elles suivent
une évolution statistique cohérente avec les mesures de santé publique mises en place au
printemps 2020.

Des données mixtes En Santé Publique comme dans de nombreux domaines, les don-
nées récoltées et disponibles sont bien plus complètes et variées que celles abordées dans
la première partie de cette thèse. En Santé Publique justement, on dispose de nombreuses
informations sur les patients : sexe, âge, caractères phénotypiques (taille, poids, etc), fac-
teurs exogènes (tabac, pollution, etc), etc.

Après le développement du spatio-temporal mixture process, nous nous penchons donc
sur les composantes internes du pipeline, qui ne permettaient jusqu’à présent que d’estimer
des modèles de mélange gaussiens. Améliorer ces composantes permettrait l’utilisation de
ce pipeline sur des données mixtes, suivant l’évolution des distributions par rapport à des
caractéristiques spatiales, mais aussi d’autres caractéristiques.

Modèles de mélange pour données mixtes Au cours de cette thèse, nous proposons
alors dans une deuxième contribution (Chapitre 4) des modèles de mélange pour données
mixtes (continues, discrètes, binaires, etc), en s’appuyant sur l’hypothèse d’indépendance
conditionnelle entre variables continues et catégorielles mais aussi entre les variables caté-
gorielles. Connaissant l’affectation de chaque observation à une des K classes du mélange,
ses caractéristiques continues suivent une unique loi, qui modélise ainsi leurs dépendances,
tandis que chaque variable discrète comme binaire ou nominale suit une loi marginale cor-
respondant à sa nature. Cette hypothèse a ses défauts, ne permettant notamment pas de
capturer des dépendances directes entre toutes les variables. Mais cela est compensé par
une simplicité des modèles qui permet aussi une simplicité d’estimation, une interprétation
aisée et l’identifiabilité (Foss et al., 2019).

Les modèles de mélange sont alors décrits suivant le système suivant:
z ∼ Catégorielle(π) ,
xc|z = k ∼ F c

g (θc
k) ,

xd|z = k ∼ F d(θd
k) ∀ d = 1, . . . , D ,

(2)

avec pour chaque composant k, une distribution continue Fg de dimension g de
paramètres θc

k, et F d(θd
k) la distribution discrète de l’attribut discret d, de paramètre θd.

Les D variables discrètes peuvent suivre des lois de différentes familles.
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Algorithmes EM dynamiques pour données mixtes Une fois ces modèles définis,
la partie importante de notre proposition est de développer des algorithmes de type EM
pour les estimer. Dans le prolongement de nos premiers travaux sur des EM dynamiques
pour modèles de mélange gaussiens, nous proposons un algorithme de type EM qui es-
time conjointement le nombre de classes et les paramètres d’un mélange de données mixtes.
Nommé Dynamic EM for Mixed-type Data (DEM-MD), cet algorithme permet l’estimation
de mélanges pour données mixtes, et nous en proposons des versions adaptées aux lois con-
tinues suivantes : Gaussienne, Student, et Asymétrique Laplace non centrée (SAL). Les deux
dernières distributions permettant d’approcher des données plus dispersées ou asymétriques.

Pour chaque loi continue, nous adaptons la structure générale de l’algorithme DEM-MD
afin d’estimer correctement les différents paramètres requis. Notamment pour la distribu-
tion de Laplace asymétrique non centrée, où nous intégrons un E-step intermédiaire pendant
l’estimation des paramètres (M-step) au cours de l’algorithme, suivant l’algorithme du mul-
ticycle ECM (Meng and Rubin, 1993). Nous nous appuyons aussi sur le recuit déterministe
(deterministic annealing), suivant la proposition initiale de Ueda and Nakano (1998), qui
permet d’aplanir le profil de la vraisemblance, et ainsi une meilleure exploration au cours de
l’optimisation des paramètres, évitant des puits potentiels trop proches de l’initialisation de
l’algorithme. Dans le recuit déterministe considéré ici, c’est la densité conditionnelle p(z|θ)
qui est élevée à la puissance 1/T avec T la température, au cours de l’E-step d’un algo-
rithme EM. Cette densité tempérée des variables latentes est plus ambigüe, avec des modes
plus faibles à chaque étape. Nous appuyant sur des schémas de température oscillants, on
considère ici que T → 1 quand le nombre d’itérations croît.

Grandissant en complexité avec l’utilisation de lois comme celle de Student ou Laplace
asymétrique, l’estimation d’un modèle de mélange correspondant nécessite des données de
taille suffisante. Avec l’explosion du nombre de features en apprentissage statistique ces
dernières années, estimer des modèles sur des jeux de données de haute dimension est un
sujet de recherche actif dans la communauté. Une proposition simple et intégrable rapi-
dement dans nos algorithmes dynamiques est d’introduire d’autres régularisations sur les
paramètres, avec ici des priors p(Σ) sur les matrices de covariances Σ (présentes pour les
trois distributions continues considérées), suivant le travail de Fraley and Raftery (2007).

Ces différents algorithmes pour données mixtes permettent ainsi d’estimer les paramètres
d’un modèle de mélange de lois intégrant une famille de lois continues et une ou plusieurs
familles de lois discrètes. Ils permettent d’estimer conjointement à ces paramètres le nombre
de classes dans le mélange, et sont ainsi applicables facilement à de nombreuses probléma-
tiques où le nombre de clusters est inconnu et à estimer. Les algorithmes DEM-MD et
EM-MD peuvent d’ailleurs être intégrés au pipeline proposé dans notre premier travail,
comme composants permettant d’estimer les modèles à chaque temps t.
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Chapter 1

Introduction

Contents

1 Spatio-temporal models
This thesis was initially interested in the conception of an actionable decision support
system that could improve health management using spatio-temporal data, i.e., the real-
time identification of new or evolving groups of patients. This would be particularly useful
to rapidly identify a new contamination source for a transmissible disease, as soon as the
first affected cases are observed in health information systems.

In this first section, our pipeline proposal is motivated by a review of the literature on
disease surveillance models. We present the different existing families, which do not always
address the same underlying objectives but all use spatial and/or temporal data for public
health challenges.

A spatial model is based on the characterization of individuals by their geographical
location (place of birth, place at the time of diagnosis, place of residence, etc.). Taken
together, these individuals form a population. Concurrently the temporal component is
essential in disease monitoring. Therefore, it requires to consider that the population distri-
bution evolves over time. The association of spatial and temporal components for a disease
yields a spatio-temporal distribution.

1.1 Statistical tests
Space-time interaction tests Statistical tests on space-time interactions are mainly
based on testing the number of disease cases under the null hypothesis of the absence of
interaction. Cases are first grouped according to predefined criteria of spatial and tem-
poral proximity. First works suffered from an arbitrary “closeness” definition (Knox and
Bartlett, 1964) while latter approaches relied on neighbor relations such as k-Nearest Neigh-
bor statistic (Jacquez, 1996). Space-time interaction tests only report presence or absence
of space-time interaction, without information about trends nor taking into account back-
ground heterogeneity.

Cusum In prospective methods such as cumulative sum (cusum), data are case counts
on fixed sub-areas of a wider study area. At each time period, a cumulative sum alarm
statistic is computed, by summing over an all-time number of cases in the sub-area and
defining a threshold/expected count over which excess cases are accumulated. Cusum is
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originally a temporal framework, around which spatial-temporal statistic tests can be com-
puted (Rogerson, 1997). Attractive for prospective disease surveillance, its transition to the
multivariate case made it more difficult to interpret and required wide temporal simulation
to specify a threshold (Robertson et al., 2010).

Scan statistic Scan statistic was originally developed for temporal clustering, and later
on developed for spatial cases by scanning over a map of cases using circular searching areas
of varying radii (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997). The spatio-temporal ver-
sion was then proposed by Kulldorff et al. (1998). Scan statistic proposes to detect spatial
and/or temporal clusters from aggregated data (discrete in space and time) using sliding
windows to compare cases to reference populations. Space and time are analyzed exhaus-
tively to search for statistically significant spatio-temporal clusters for a given tolerance
and test. The spatial scan statistic selects the most likely cluster, defined by maximizing
the probability that cases located in the search zone are part of a cluster compared with
those located outside the zone. The significance test for this cluster is then assessed using
Monte Carlo randomization. Different statistics were proposed, using a known underlying
risk population, or cases/controls. In the absence of a population at risk, a method has been
developed to estimate the expected number of cases in order to deduce a reference popu-
lation and be able to continue applying the scanning statistics algorithms (Kulldorff et al.,
2005). In both cases, these methods require to set several parameters on the sliding win-
dow under consideration, such as minimum area and minimum temporal size. In addition,
case/control studies are subject, among other things, to costly selection and effort to find a
suitable control group, and are not feasible in all situations (Elliott and Wartenberg, 2004).
Thereby, the resulting comparison between cases and controls is exposed to false differences
due to inadequate sampling of the control group (Sackett, 1979). Following this, Nakaya
and Yano (2010) suggested combining statistical scan methods with the Space-Time Kernel
Density Estimation (STKDE) method. It transforms a set of points into a density surface
using specific kernel functions. Unfortunately, the STKDE method also requires the choice
of a bandwidth parameter, and therefore the definition of a fine mesh before calculating
the density estimate at each location (Silverman, 1986; Brunsdon et al., 2007). These last
years, scan statistic methods were extended to multivariate functional data (Frévent et al.,
2023), exploring the potential of these continuous-scale data.

1.2 Model-based approaches
Model-based approaches allow the integration of additional variables into the expectation
of disease incidence. They can model the influence of variables such as age, gender, etc. on
risk evaluation through space and time. In addition, they enable estimated parameters to be
conserved, data to be explained and, in some cases, traced over time. Globally, as statistical
tests presented previously, the main aim of these methods is to represent the risk or impact
on predefined - or not - spatial areas. There are also methods based on longitudinal data
that belong to the same family of methods (such as GLMM), although their objectives are
completely different. We also present a few references, which provide a different perspective
on what is known as a spatio-temporal method.

Generalized Linear Mixed Models Generalized linear mixed models (GLMM) offer
a framework based on regression and make it easy to include a temporal aspect in the
data. Generalized linear mixed models provide flexibility in the expected distribution of the
response variable and link within variables. These models can include spatial variation in
the underlying population at risk as random effects, relying on small temporal areas fixed
in advance (Kleinman, 2004).
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Bayesian models There exists a vast literature for risk mapping with Bayesian mod-
els (Louzada et al., 2020), which infer unknown area-specific risk. Relying on a variety
of spatial priors, most of the methods are a subclass of Gaussian Markov Random Fields
(GMRF). With observed data and a prior distribution, risk distribution is inferred and
model parameters can be sampled for prediction. Several techniques have been developed
for the spatial representation, such as conditional autoregressive model (CAR) for spa-
tial autocorrelation (Abellan et al., 2008), Stochastic Partial Differential equation (SPDE)
which represent a Gaussian random field as a solution to a stochastic partial differential
equation (Lindgren et al., 2011; Clarotto et al., 2023), or a priori information on spatial
components (Yan and Clayton, 2006). Non-Gaussian Markov Random fields are also part of
this extended literature, with for example a discrete MRF on latent membership variables
associated with estimation by variational EM (Forbes et al., 2013).

Hidden Markov Random Fields have been widely explored in the last decades, provid-
ing new hierarchical models for spatial data. For example, Green and Richardson (2002)
proposed a semi-parametric approach with a Potts Model on spatial contiguity as a graph
structure prior on the hidden random field, and combining several Markov Chains Monte
Carlo (MCMC) methods for parameter estimation. There exists a wide spectrum of hierar-
chical models, and a major source of their differences is the way in which the different levels
are defined. Temporal components are classically introduced as a temporal effect in the
expression of case counts (Abellan et al., 2008), or can be seen as jointly defining a cluster
membership with the space part as in the work by Yan and Clayton (2006), who considered
a uniform prior for the temporal elements.

Most of these methods aim at clustering according to a risk level, predicting incidence
or prevalence over a wide area. In contrast, Park et al. (2022) claim to offer a method
that makes it possible to observe the temporal evolution of spatial clusters, being closer
to our work. Developing a Dirichlet process Gaussian mixture model on a bounded space-
time, their defined density function relies on rolling window parameters for each spatial and
temporal cluster, as well as the neighbor impact. This also implies a finite temporal set at
the time of parameter estimation by an MCMC method.

All these works underline that appropriate prior specification in Bayesian inference re-
mains a challenge, as it is both attractive and limited by its introduced prior information. In
addition, many methods need predefined set of areas and/or number of observations jointly
with population size, as for the scan statistics. Additionally, these approaches are based on
MCMC methods which often lead to heavy computation costs.

Functional data Briefly mentioned in statistical scanning methods, the study of func-
tional data is of growing interest. By definition, this includes a temporal aspect, since each
observation is continuous in time. Taking into account spatial information has been the
objective of several recent works (Cheam, Marbac, and McNicholas, 2017; Cheam, Fredette,
Marbac, and Navarro, 2023). Combining time series and mixture models, Cheam, Marbac,
and McNicholas (2017) propose a mixture model of autoregressive polynomial regression
mixture with spatial and temporal dependent logistic weights. Cheam, Fredette, Marbac,
and Navarro (2023)’s work takes another look at the clustering of functional data: it studies
Covid-19 weekly death rates with one time series per specific area of the world, which may
arrive time-translated. In this work, a death curve, through feature extraction, gives new
variables which are regressed on the population’s risk factors and then finally the residuals
are clustered using a non-parametric mixture.

Remarks While we tried to present an overview of this rich literature on spatio-temporal
diseases, several limitations were underlined, and we do not necessarily retrieve the same
objectives. We refer the reader to four interesting and extensive review papers on spatial
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statistics and epidemiology (Elliott and Wartenberg, 2004; Robertson et al., 2010; Kirby
et al., 2017; Louzada et al., 2020). In this thesis, we have chosen to focus on a popula-
tion modeling problem, rather than on a retrospective or prospective assessment of pure
risk/incidence. Numerous methods have been proposed to achieve these goals, as detailed
above, using statistical tests or Bayesian models based, for instance, on Random Markov
fields. Our objectives are to infer models on data coming independently at each time step.
It is important to keep the estimated parameters so that we can draw interpretations from
them, particularly with the possible presence of covariates, and plot their evolution over
time. Our spatio-temporal process developed in Chapter 3 was developed in order to be a
decision-support tool.

2 Strategies for mixed-type data
In the second contribution of this thesis, we are leaving aside the time monitoring pipeline
to focus on the development of new algorithms for mixture models. These mixture mod-
els are designed for mixed-type data. However, we are keeping in mind the possibility of
combining the spatio-temporal mixture process developed in Chapter 3 with mixed-type
data algorithms to estimate mixture models at each time step. In addition to spatial and
temporal information, many datasets incorporate additional variables that can be informa-
tive, and in particular, be used to establish clusters. This leads us to consider in Chapter 4
extensions of Chapter 3 models for mixed-type data. This section reviews the issues asso-
ciated with mixed-type data and the different families of methods for estimating them.

Mixed datasets are ubiquitous in many disciplines. With the era of so-called ‘big data’,
the availability of datasets composed of heterogeneous data sources and types will continue
to increase. Statistical analysis of mixed-type data is therefore still a hot topic, whether for
clustering, inference or dimension reduction. Several types of strategies can be considered
to deal with this type of data (Foss et al., 2019; Ahmad and Khan, 2019). As there exists no
reference distribution for mixed-type data, the main difficulty lies in modeling inter-variable
interactions. An easy approach is to rely on conditional independence between all variables,
although it can lead to biases.

Transformation of variables A first way of dealing with mixed-type data is to reduce
the set of variables to a unique discrete or continuous space. Of course, these native trans-
formations do not respect the nature of each variable, or change the domain to which it
belongs, which can make interpretation or post-processing complex. These methods fall into
two types: discretization of continuous variables, which allows the use of categorical data
methods (Goodman, 1974; Huang, 1997b), or numerical coding of discrete variables (Mc-
Cane and Albert, 2008). In this case, the possibilities go from replacing a level by a median
to dummy coding, and to more complex methods like copulas. Copulas are multivariate
cumulative functions with uniform marginals possessing interesting flexibility. Copulas can
be used on mixed-type variables, under the guise of defining the dependency structure be-
tween continuous and discrete variables (Smith and Khaled, 2012; Murray et al., 2013). A
source of difficulty with copulas lies in the lack of uniqueness and identifiability. In fact,
if at least one marginal is not continuous, the copula is not unique. Moreover, the overall
joint multivariate distribution can be difficult to understand as marginals and copula are
specified separately.

Hybrid distances A second category, in our view, comprises hybrid methods. A popular
hybrid distance is Gower’s distance, combining relative absolute difference for continuous
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variables and indicators for categorical variables. It is used for example in combination with
the partitioning around medoids (PAM) method, or euclidean distance and fixed categorical
weights in a k-prototypes algorithm (Huang, 1997a, 1998). A frequent limitation of these
hybrid distances is the need to properly select weights dictating the relative contribution
of each of the variables. Semi-parametric approaches were also proposed such as KAMILA
(Foss et al., 2016), providing greater flexibility with adequate considered laws on each type
of variable. But depending on the discrete laws under consideration, their implementation
can quickly become complicated, and they rely on hard assignment through partition steps
as in k-means method. Another type of hybrid distance method, in the sense that distances
obtained on different variables are combined, is spectral clustering (Mbuga and Tortora,
2021). It proposes k-means clustering on an eigenvalue decomposition after combining con-
tinuous and discrete dissimilarities. Spectral clustering for mixed-type data requires tuning
continuous/nominal weight and kernel parameters, but the main limitation is decomposi-
tion of sample size matrices. However, this method brings flexibility to non-graph data
clustering and is solved by linear algebra methods.

Mixture models Among the direct approaches, mixture models are efficient in mixed-
type data contexts because they can produce generative models, take into account many
types of data, manage dependencies between and within variables, and capture a wide range
of scenarios. Different approaches exist to provide meaningful mixture models on mixed-
type data without data space transformation in the best-case scenario. A first approach
is the location mixture model (Krzanowski, 1993), which models all categorical variables
into multinomial variable. Then continuous variables follow a Gaussian distribution condi-
tionally on this modality variable. A limitation is the number of combinations increasing
exponentially with the number of levels and variables. Moreover, these models can lack of
identifiability without constraints on some parameters, as proved for the mixture of location
models (Willse and Boik, 1999). An important property often required for identifiability is
local independence, and this is a main assumption in many works as it allows the definition of
complete models with different types of variables, and generally simple estimation formulas.
However, considering local independence between all variables would lead to a model with
one-dimensional distributions, no intraclass dependencies, and biases. The idea is rather to
consider the continuous and categorical variables independent given the class memberships,
and also within the categorical variables, as in the normal-multinomial mixture model (Hunt
and Jorgensen, 1996; Fraley and Raftery, 2002). Of course, these assumptions are open to
question, as there is a lack of intraclass dependencies. Dependencies between continuous
and categorical variables inside mixture models can be done by factor analyzers (McParland
et al., 2014, 2017). Nevertheless, this relies on numerical coding of categorical variables with
a flexible covariance structure, as one-type methods above. Additionally, this increases a
degeneracy risk and can lead to expensive computations. Another approach is to combine
mixture models and copulas mentioned above (Kosmidis and Karlis, 2016; Marbac et al.,
2017; Sahin and Czado, 2022), leading to full parametrization of each marginal and over-
all dependencies, but also with an exploding number of parameters, requiring additional
constraints on models (homoscedasticity, truncation, . . . ).

Still in mixture models, the latent variable mixture model models categorical variables
as realizations of continuous latent variables according to threshold values. This model for
categorical variables, named latent trait model, is associated in the work of Browne and
McNicholas (2012) with a factor model for continuous variables. Whereas McParland and
Gormley (2016) developed an overall factor analyzer structure for the whole latent model
which includes continuous variables. In the end, the assumption of local independence is
maintained to separate groups of variables of different types (continuous, ordinal, nominal)
within the latent model. Ultimately, the latent variable models presented here are also
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based on the transformation of discrete variables into a continuous space.
Linear mixed models, considered for mixed-type data with longitudinal data and random

effects, can also be integrated within mixture models when homogeneous regression rela-
tionship across subjects is violated (Celeux et al., 2005; Proust-Lima and Jacqmin-Gadda,
2005; Bai et al., 2016; Lee and Chen, 2019).

Mixed data is best modeled using the raw data, without any prior transformation to a
different space, without loss of information. But it remains a challenge like we saw above,
and so far mixture models, whatever the internal structure, are a good way of obtaining an
interpretable, generative and flexible representation of mixed-type data.

In the next section, we will look at the challenges of estimating mixture models, whether
using continuous, mixed, spatial or temporal data.

3 Challenges on estimation of mixture models
As we will be going into more detail later on about some algorithms for estimating mixture
models, we will briefly mention here the scope of the different estimation methods and
the associated challenges. Mixture models are probabilistic models assuming that data
points are generated from a mixture of several (classical) semi-parametric or parametric
distributions. Finite mixture models, which therefore have a fixed number of distributions,
are part of hierarchical models.

The Expectation-Maximization algorithm Dempster et al. (1977) developed the well-
known Expectation-Maximization (EM) algorithm to estimate mixture models with un-
known latent variables representing the component memberships. This algorithm relies on
the optimization of the model likelihood, but it only ensures convergence towards a local
minimum (under regularity conditions) (Wu, 1983). This makes it very dependent on the
initialization step (Baudry and Celeux, 2015). In addition, the algorithm can reach the
boundaries of the parameter space, leading to errors on certain types of estimated parame-
ters.

MCMC methods With Bayesian mixture models, sampling methods such as Markov
Chain Monte Carlo (MCMC) can be used. Although EM algorithms can still be used in
some cases, changing from maximum likelihood estimate (MLE) to maximum a posteri-
ori (MAP) on regularized log-likelihood (Fraley and Raftery, 2007; Ciuperca et al., 2003),
MCMC methods present a different perspective on mixture models. The inclusion of prior
introduces a smoothing effect on the mixture likelihood function and reduces the risk of
obtaining incorrect modes. Moreover, MCMC methods may be more efficient in cases with
small datasets, or extremely unbalanced component proportions. Common methods for
Bayesian inference on mixture models with a finite number of components are Gibbs sam-
pling (Escobar and West, 1995) and Metropolis-Hastings algorithm (Neal, 2000). However,
MCMC methods usually converge at a high computational cost and encounter difficulties
with multimodal posterior distributions. We refer the reader to the book of Frühwirth-
Schnatter (2006) for detailed explanations of MCMC methods on mixture models.

Associate EM algorithms and MCMC methods In some situations, for complex
hierarchical models, the E-step of the EM algorithm may be infeasible in closed form.
An idea was to sample the unobserved data (latent variables) from its marginal posterior,
and stochastically approximate the objective function, this is the SAEM algorithm (Delyon
et al., 1999). But for most nonlinear models, the unknown data (latent) cannot be simulated
under its conditional distribution. Thus, an additional consideration was to insert MCMC
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steps inside the SAEM algorithm, this is the MCMC-SAEM algorithm (Kuhn and Lavielle,
2004; Allassonnière and Kuhn, 2010).

An unknown number of components For EM algorithms as for MCMC methods,
choosing the number of components is a main challenge. When they serve objectives in an
unsupervised setting, which is often the case, estimating the number of mixture components
is also an important consideration. A wide variety of propositions have been developed for
EM algorithms, starting with model selection criteria such as well-known BIC (Schwarz,
1978), ICL (Biernacki et al., 1998) or slope heuristic (Birgé and Massart, 2007), for an a
posteriori model selection. Another group of propositions for model selection are regulariza-
tions of estimated parameters, which require defining priors on some parameters (Figueiredo
and Jain, 2002; Wang et al., 2011; Yang et al., 2012). Finally, there exist split-and-merge
algorithms, which, as their name suggests, dynamically explore parameter space by forcing
components to split or merge (Wang et al., 2004; Zhang et al., 2004). An unknown num-
ber of components is also a difficulty for MCMC methods on mixtures, which has to reach
modes in spaces of different dimensions. A popular trans-dimensional MCMC method is the
reversible jump Metropoplis-Hastings (Green, 1995; Richardson and Green, 1997). An al-
ternative to jump processes is proposed by Stephens (2000) with an application of a Markov
birth-and-death process to select the number of components.

The various mixture estimation methods face several problems, in particular the choice
of the number of components, which in real applications is a complex issue. Additionally,
existing methods for mixed-type data also face this challenge when modeling with mixture
models. Existing dynamic algorithms, developed only for Gaussian mixture models, are not
completely robust to initialization or overfitting.

4 Outline of this thesis
In this thesis, we will propose dynamic mixture models, in an attempt to avoid the pitfalls
of certain EM algorithms. In particular, we first focus on models for Gaussian mixtures,
integrated into a temporal pipeline that we are also designing with the aim of moving
toward a decision support tool. Given the diversity of real data, whatever the domain,
which generally includes discrete and categorical data in addition to continuous data, we
then propose dynamic mixture models for mixed data. Without losing sight of the fact that
these new models can take their place in the previously developed pipeline. The remainder
of this thesis is organized into three chapters, as follows:

• Chapter 2 Background on mixture models and inference algorithms
This chapter is divided into two sections, in which some statistical and algorithmic
notions about mixture models are recalled since they form the basis of our propos-
als. The first section provides definitions of mixture models and existing models on
different continuous laws that will be considered in the next chapters. The second
section contains tools for inference in mixture models, with a reminder of the EM al-
gorithm, then of variants and other aspects of the estimation such as model selection,
deterministic annealing and stopping criteria.

• Chapter 3 Spatio-temporal mixture process estimation to detect dynamic changes in
population
This chapter proposes a pipeline to model and monitor population distributions over
space and time, in order to build an alert system for spatio-temporal data changes.
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It relies on mixture models to represent populations. In addition to the pipeline, we
are proposing a correct dynamic algorithm for better joint estimation of the number
of clusters and the model parameters, and in particular to avoid overfitting problems.
This algorithm is compared to existing methods on several simulated datasets. Then,
combined with the temporal statistical pipeline, it allows the detection of changes
in population distributions, and we call the result a spatio-temporal mixture process
(STMP). We test STMPs on synthetic data, and consider several behaviors of the
distributions, to fit this process. Finally, we validate STMPs on a real dataset of
positive diagnosed patients with coronavirus disease 2019. We show that our pipeline
correctly models evolving real data and detects epidemic changes.
This work was published in the journal Artificial Intelligence in Medicine (Pruilh et al.,
2022).

• Chapter 4 Dynamic Expectation-Maximization Algorithms for Mixed-type Data
This chapter proposes methodological developments of new mixture models on mixed-
type data. Component distributions of the continuous variables can be either Gaus-
sian, Student or Shifted Asymmetric Laplace and categorical variables can be dis-
tributed according to Bernoulli, Multinomial or Poisson distributions. Relying on
conditional independence between continuous and discrete variables, the joint esti-
mation of the number of classes and model parameters is carried out by EM-type
algorithms that we have adapted to perform on these mixed-type data. We show
that our different dynamic algorithms allow us to reach the real number of classes,
and to properly estimate all the parameters. We also highlight the benefits of intro-
ducing regularization to improve performance in situations where the sample size is
insufficient for the complexity of the model. Our different models are then tested on
real datasets from the literature, assessing that the objective of jointly estimating the
number of components and the model parameters is achieved.
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Chapter 2

Background on mixture models
and inference algorithms

This chapter presents generalities on mixture models, estimation methods for these models,
and it introduces particular developments that will serve in the following works. It also
provides reminders about model selection.

Contents
1 Spatio-temporal models . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Model-based approaches . . . . . . . . . . . . . . . . . . . . . . . 6

2 Strategies for mixed-type data . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Challenges on estimation of mixture models . . . . . . . . . . . . . . . . 10
4 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Generalities on mixture models and continuous dis-
tributions

In a finite mixture model, individuals are independently drawn from the same distribution,
and we consider here component densities belonging to the same parametric family.

Definition. The probability density function of a finite mixture distribution of a g-dimensional
random vector X takes the form

p(x; Θ) =
K∑

k=1
πkpg(x; θk) , (2.1)

where the mixing proportions πk are positive and sum to one, pg(x; ·) are g-dimensional com-
ponent densities, where Θ = (ξ⊤, π1, . . . , πK−1)⊤ defines the vector of unknown parameters
and ξ consists of the elements of all the θk, known a priori to be distinct.

In this simple definition, variables X can be either continuous or discrete. Different
mixture models were developed to adapt to the nature of considered data, continuous or
categorical. We will briefly recall here three continuous families, and how they relate to more
general continuous families. In Chapter 3 we will focus on Gaussian mixture models while
in Chapter 4 we will develop mixture models on mixed-type data, including the continuous
laws briefly described here.
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An incomplete model We consider n random variables X1, . . . ,Xn where Xi is a g-
dimensional random vector with probability density function (pdf) given by Eq.(2.1). Ob-
served values on the sample are noted xobs = (x⊤

1 , . . . ,x
⊤
n )⊤. We are working in an unsuper-

vised context, meaning that component labels are unknown, and the number of components
K is also finite and unknown.

We now write mixture model definitions for several continuous distributions, including
the Gaussian distribution, which is the most widely used. These continuous distributions
are then detailed and used in Chapter 3 or Chapter 4.

Gaussian Mixture Model
The Gaussian mixture model, first explicitly mentioned in Pearson (1894), is the most
popular mixture model, thanks to several advantages including tractability, flexibility, and
interpretability. Knowing the component assignment Zk, each random variable Xi|Zk

i = 1
is a g-dimensional Gaussian variable with center µk ∈ Rg and positive definite matrix
Σk ∈ Rg×g.

Definition. The pdf of a sample xi from a Gaussian mixture model is given by

pg(xi; µk,Σk) =
K∑

k=1
πkϕg(xi; µk,Σk) ,

where ϕg(xi; µk,Σk) = 1
|Σk|1/2(2π)g/2 exp(−1

2(xi − µk)⊤Σ−1
k (xi − µk)).

Remark The Gaussian mixture model has (K − 1) +Kg +Kg(g + 1)/2 parameters.

Student Mixture Model
In presence of outliers in the data, Student mixture models are a great alternative to Gaus-
sian mixture models, allowing to control the thickness of the tails through an additional
parameter: the degrees of freedom (McLachlan and Peel, 1998; Peel and Mclachlan, 2000).

A random variable Xi|Zk
i = 1 is a g-dimensional Student variable with center µk ∈ Rg,

positive definite matrix Σk ∈ Rg×g and degrees of freedom νk ∈ (0;∞].

Definition. The pdf of a sample xi from a Student mixture model is given by Eq.(2.1) with

pg(xi; µk,Σk, νk) =
Γ(νk+g

2 )|Σk|−1/2

(πνk)g/2Γ(νk

2 ){1 + δ(xi,µk|Σk)/νk}
(νk+g)

2

,

with δ(x,µ|Σ) = (x− µ)⊤Σ−1(x− µ) the Mahalanobis distance.

Remark The Student mixture model has 2K +Kg +Kg(g + 1)/2− 1 parameters.

Shifted Asymmetric Laplace Mixture Model
In many practical problems, the data implies highly asymmetric distributions as well as
thicker tails than those of normal distributions. Skew distributions are a better way to
model these data than normal or even t-distributions. The multivariate asymmetric Laplace
distribution, which is a skew distribution, was first proposed by Kotz et al. (2001). How-
ever, the asymmetric Laplace distribution does not define a center (or shift) parameter. If
considered in a mixture model, all distributions should have the same origin. To overcome
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Chapter 2. Background on mixture models and inference algorithms

this problem, Franczak et al. (2014) introduced a shift parameter µ ∈ Rg, and proposed to
use the resulting Shifted Asymmetric Laplace distribution in mixture models. A random
variable Xi|Zk

i = 1 is a g-dimensional Shifted Asymmetric Laplace (SAL) variable with
center µk ∈ Rg, positive definite matrix Σk ∈ Rg×g and skewness αk ∈ Rg.

Definition. The pdf of a sample xi from a SAL mixture model is given by Eq.(2.1) where

pg(xi; µk,Σk,αk) = 2 exp
{
(xi − µk)⊤Σk

−1αk

}
(2π)g/2|Σk|1/2 ×

(
δ(xi,µk; Σk)

2 + α⊤
k Σ−1

k αk

)ν/2

Kν(u) ,

with u =
√

(2 + α⊤
k Σ−1

k αk)δ(xi,µk; Σk), Kν modified Bessel function of third kind, with
index ν = 2−g

2 and δ the Mahalanobis distance.

Remark The Shifted Asymmetric Laplace mixture model has K+2Kg+Kg(g + 1)/2−1
parameters.

Representation Figure 2.1 depicts contour plots for Gaussian, Student and two SAL
distributions, showing the differences introduced by skewness in SAL distributions, and
degrees of freedom in Student distribution.
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(b) Student contour with ν = 2
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(c) SAL contour with α = (1, 1).
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(d) SAL contour with α = (−1,−3).

Figure 2.1: Bivariate contours of Gaussian, Student or SAL distributions, with µ = (1, 1),

Σ =
( 1 0.9

0.9 1.

)
and additional parameters ν or α.
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A more general family There exist other skewed distributions such as the skew-normal
distribution (Azzalini, 1985; Azzalini and Valle, 1996), the skew t-distribution (Azzalini
and Capitanio, 2003; Jones and Faddy, 2003), normal inverse Gaussian distribution (Karlis
and Santourian, 2009). Skew distributions but also Gaussian and Student distributions are
limiting cases of the Generalized Hyperbolic distribution (McNeil et al., 2015, Chapter 15,
page 559), for which the probability density function is the following:

pg(x; θ) =
[
χ+ δ(x,µ; Σ)
ψ + α⊤Σ−1α

](λ−g/2)/2

×
[ψ/χ]λ/2Kλ−g/2

(√
[ψ + α⊤Σ−1α] [χ+ δ(x,µ; Σ)]

)
(2π)g/2|Σ|1/2Kλ(

√
χψ) exp {(µ− x)⊤Σ−1α}

,

(2.2)

with δ(x,µ; Σ) = (x−µ)⊤Σ−1(x−µ) and Kλ is the modified Bessel function of the third
kind with index λ.

Mixtures of Generalized Hyperbolic distributions were proposed later by Browne and
McNicholas (2015). We refer the reader to their work and to McNeil et al. (2015)’s one
for a detailed description of this distribution. We just include on Figure 2.2 a graphi-
cal representation of the Generalized Inverse Hyperbolic distribution as parameterized in
Eq.(2.2) (as defined in the paper of Browne and McNicholas (2015)) and its limiting cases,
where the distributions of particular interest are highlighted. The Asymmetric Laplace
and Laplace distributions are covered by models built for the Shifted Asymmetric Laplace
distribution and the Cauchy distribution derives from the Student distribution. However,
Cauchy mixture models require additional considerations when estimated (Kalantan and
Einbeck, 2019).

2 Estimation of mixture models
In this unsupervised context, a probabilistic clustering of data xobs into K clusters can be
obtained by finding the marginal probabilities of component memberships p(zi|θk). An a
posteriori hard clustering of observations is done by assigning each xi to the group k which
has the highest posterior probability ki = argmaxj p(z

j
i = 1|xi, θj). We now present the

Expectation-Maximization algorithm and some variants, that will allow us to estimate in a
first work the mixture models of STMP, and to propose in a second work the Dynamic EM
for Mixed-type Data algorithms.

2.1 The Expectation-Maximization algorithm and its limitations
The Expectation-Maximization (EM) algorithm was first introduced by Dempster et al.
(1977). They proposed a general iterative optimization method to compute maximum
likelihood estimates from incomplete data observations. Latent variable models express the
dependency of observations x as a function of latent variables z, which are unobserved,
to infer unknown information (such as class membership for example). We define p(θ)
prior distribution on the parameters θ, p(z|θ) distribution of latent variables given the
parameters, p(x|z, θ) distribution of data given the latent variables and the parameters
and p(x, z|θ) likelihood of complete data. In the case of models with latent variables, the
incomplete data density writes as an integral over the space of latent variables:

p(x|θ) =
∫
p(x|z, θ)p(z|θ)dz .
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Generalized Hyperbolic

Variance-Gamma Skew-t

Shifted Asymmetric Laplace

Asymmetric Laplace

Laplace

Student

Gaussian

Skew-Normal

Cauchy

Figure 2.2: Generalized Hyperbolic distribution and some special and limiting cases, with
gray boxes for the ones considered in this thesis.

The Expectation-Maximization algorithm of Dempster et al. (1977) is based on the
introduction of an auxiliary function Q that relies on current estimate θ′ to estimate θ

Q(θ|θ′) = Ep(z|x,θ′) [log p(x, z|θ)] .

The computation of Q allows summing over logarithms of probabilities, which is more
convenient than computing p(x|θ). A key principle of using this Q function is that increasing
Q leads to increasing p(x|θ), which makes it possible to build a sequence of parameters
maximizing Q such as p(x|θ) is non-decreasing.

The general form of an EM algorithm is given in Algorithm 2.1. We refer the reader to
the book by McLachlan and Krishnan (2008) for details on the EM algorithm and some of
its variants.

Under fairly general conditions, the likelihood values of an EM algorithm (and variants)
converge to stationary values (see McLachlan and Krishnan, 2008, Chapter 3). We refer the
reader to the works of Wu (1983) and Delyon et al. (1999), who studied the convergence
properties of the EM algorithm.

However, it is frequent that the posterior distribution p(z|x, θ) does not correspond
to a classical distribution, and the computation of Q is intractable. The E-step can be
approximated with Monte-Carlo sampling and Q function aggregations, as in the Stochastic
Approximation EM (Delyon et al., 1999). Conversely, when the M-step is not achievable in
closed form, one can replace the M-step with Newton’s method (Lange, 1995).
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Algorithm 2.1: Expectation-Maximization algorithm
Initialization : Initial parameters values θ0

for 1 ≤ t ≤ T do
E-step: with current values of parameters θ(t−1), compute expectation

Q(θ|θ(t−1)) = Ep(z|x,θ(t−1)) [ℓ(x, z|θ)]

M-step: Find θ(t) = argmaxθ∈Θ Q(θ|θ(t−1))
end

Application to mixture models For the estimation of mixture models, the considered
density function is p(x; Θ) given by Eq.(2.1). The complete log-likelihood is given by

ℓ(θ) =
n∑

i=1

K∑
k=1

zk
i [log(πkpg(xi|θk))] . (2.3)

Computing Q(·|·), the expectation of the log-likelihood of the complete data, requires the
expression of latent probabilities, which are computed at each E-step of an EM algorithm,
with

pθ(t)(zk
i = 1|xi) = π

(t)
k pg(xi|θ(t)

k )∑K
j=1 π

(t)
j pg(xi|θ(t)

j )
= τik(θ(t)) .

(2.4)

Maximum A Posteriori The Maximum A Posteriori (MAP) estimate is the Bayesian
equivalent of the MLE and only differs by the presence of a prior term p(θ), which gives the
following estimate

θ̂MAP = argmaxθ p(x|θ) p(θ) .
The impact on the EM algorithm is minimal: E-step remains unchanged and M-step is

modified by addition in Q objective function of the log of prior density.

Initialization A known limit of the EM algorithm is its sensitivity to starting values.
Common solutions are: using one random initialization, using multiple random initial posi-
tions and choosing the final estimate with the highest likelihood from these runs (Biernacki
et al., 2003), using a clustering algorithm like k-means to initialize the clusters, recursive
initialization (Baudry and Celeux, 2015) or deterministic annealing (Ueda and Nakano,
1994, 1998) described later on in Subsection 2.4.

Convergence to degenerate local maxima The EM algorithm may converge to bound-
aries of the parameter space, for example when the proportion of a mixture component
approaches zero, and the corresponding covariance matrix becomes close to singular. Over-
fitting problems lead to this type of behavior when the number of components is larger
than the optimal one. Alternatively, the algorithm may also find two classes with equal
centers and covariances, which leads to an identifiability problem. Degenerate solutions due
to unbounded likelihood can be avoided by adding for example penalty functions, as in the
work of Chen and Tan (2009). We will see in Subsection 2.3 other priors and regularizations
introduced to try to solve this problem jointly with an estimation of the number of classes
K. In Subsection 2.4 we will describe deterministic annealing, which, by flattening the
objective function, also tries to avoid the boundaries of the parameter space while allowing
to explore the multiple modes of the objective function.
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2.2 Select the number of classes in a mixture model
This subsection provides a brief reminder of the model selection criteria, important for
mixture models where one main objective is to choose the number of components and
intrinsically choose a model. In forthcoming works (Chapters 3 and 4), we will be comparing
the performance of our dynamic estimation of components against these selection criteria.

The goal of information criteria is to select the best model m from a collection of models
S = {1, . . . ,M}. Considering only the log-likelihood log p(x|θ) favors complex models,
which are prone to overfitting.

The Akaike Information Criterion A first well-known criterion is the Akaike Infor-
mation Criterion (AIC) (Akaike, 1973). Information criteria in the literature are generally
expressed in terms of lack-of-fit and a penalty term that measures the complexity of the
model. The AIC selects the model that minimizes

AIC(θ) = −2 log p(x|θ) + 2 dim(θ) . (2.5)

The AIC assumes that the dataset size is large enough. Many authors (for example
Koehler and Murphree (1988)) observed that AIC tends to overfit models, and thus to
overestimate the correct number of components in a mixture model.

The Bayesian Information Criterion Some criteria have been derived within a
Bayesian framework but can be applied in a non-Bayesian framework. That is the case
of the Bayesian Information Criterion (BIC), introduced by Schwarz (1978). Schwarz stud-
ied the asymptotic behavior of Bayes estimators and proposed the following criterion

BIC(θ) = −2 log p(x|θ) + dim(θ) log(n) . (2.6)

The BIC is interesting because, if the true model is in the set S, the BIC will select it
consistently for n→∞. The BIC penalizes heavily complex models compared to the AIC.
But it tends to select too low-dimensional models for a small n, even if the correct model
is in the collection S. Conversely, if the correct model is not in the family of models, the
BIC is not convincing as it is also prone to overfitting, regardless of cluster separation as
observed by Biernacki et al. (1998).

Classification-based information criteria Finally, classification-based criteria aim at
finding the model with the greatest evidence of clustering. These criteria consider the
complete likelihood within the EM framework for the fitting of a mixture model. Considering
mixture models, the log-likelihood can be expressed as

log p(x|θ) = log p(x, z|θ)−
n∑

i=1

K∑
k=1

τik log(τik) ,

and −
∑n

i=1
∑K

k=1 τik log(τik) is the estimated entropy of posterior probabilities of the
component memberships, EN(τ). A first classification criterion is given by

−2 log p(x|θ) + 2EN(τ) .

This criterion favors well-separated clusters but does not perform well when the proportions
are not constrained to be equal according to Biernacki et al. (1999).
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Integrated Complete Likelihood Criterion Biernacki et al. (1998) proposed the Inte-
grated Complete Likelihood (ICL) criterion to overcome the shortcomings of the precedent
and BIC criteria.

The ICL criterion to minimize is defined as

log p(x, z) = log
∫

θ∈Θ
p(x, z|θ)p(θ)dθ .

An approximation of the ICL criterion to minimize has the following expression,

ICLBIC(θ) = −2 log p(x|θ) + 2EN(τ) + dim(θ) log(n) . (2.7)

This approximation resembles the BIC with the addition of the estimated entropy of poste-
rior probabilities and is satisfying enough compared to the exact ICL according to Biernacki
et al. (1998). The ICL criterion favors well-separated clusters contrary to the BIC.

Normalized Entropy Criterion Celeux and Soromenho (1996) proposed a criterion
more appropriate for standard cluster analysis in their own words (and improved by Bier-
nacki et al. (1999)). Their criterion uses the estimated entropy EN(τ) as a criterion for
choosing the number of components. This criterion, named the Normalized Entropy Crite-
rion (NEC), is given by

NEC(θ,K) = EN(τ,K)
L(K)− L(1) , (2.8)

with L(K) = log p(x|θ) for a model with K components and L(1) is the log-likelihood of a
model with a single component. However, the NEC favors models with well-separated, non-
overlapping clusters. But it remains relevant when comparing several possible partitions.

Remark We do not claim to provide an exhaustive list of model selection criteria, as there
are many of them, for a variety of objectives and model types. Rather, we presented some
of the most widely used criteria, as we will compare our performances to them in Chapter 3
and 4. We refer the reader to the book of Konishi and Kitagawa (2008) for complete
explanations of the concepts on mentioned above criteria and their related criteria.

2.3 Existing parameter priors in EM algorithms

As mentioned above, finding the optimal number of classes K in mixture models is a difficult
challenge. The criteria defined above can be characterized as deterministic methods, relying
on the estimation of a set of candidate models S which is often assumed to contain the
true/optimal K. Although some of these methods perform well, they still require the
estimation of a set of models, and there is still some uncertainty on whether this set contains
the optimal model or a correct generalization of the data. In addition, they are more prone
to overfitting and parameter space boundary problems and still require careful initialization.

For mixture models, model selection is roughly the same problem as choosing the number
of classes. Finding the “best” overall model is a different approach, adopted in several
works (Figueiredo and Jain, 2002; Yang et al., 2012). Relying on information theory, these
methods associate measures of information with explicit (and automated) rules for moving
from a number of components K to a smaller one, and therefore avoiding the limits of the
parameter space.
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Minimum message length In this field, an important work by Figueiredo and Jain
(2002) introduced a criterion based on minimum message length, described below. In addi-
tion, a component annihilation part was also introduced, which inspired Yang et al. (2012),
because Figueiredo and Jain (2002)’s optimized function is equivalent to using a negative
Dirichlet prior for proportions, and as negative Dirichlet prior encourages proportions to be
zero or one, annihilation is required.

The minimum message length criterion (and other minimum encoding criteria) is based
on the fact that if the data is encoded with the minimum, we obtain a good data generation
model (Wallace and Freeman, 1987; Wallace and Dowe, 1999). With a few assumptions,
in particular on the parameter priors, Figueiredo and Jain (2002) finally minimizes the
following cost function

L(θ) = dim(θk)
2

Knz∑
k=1:πk>0

log
(
nπk

12

)
+ Knz

2 log
(
n

12

)
+ Knz(dim(θk) + 1)

2 − log p(x|θ) .

Their criterion considers full information of the mixture, unlike the works of Yang et al.
(2012) and Brand (1999) which restrict to proportions’ information.

Figueiredo and Jain (2002) observed the possibility of a failure mode if K is too large,
which leads to the situation where no component has enough initial support. Therefore, they
decided to update the proportions sequentially (as well as the other component parameters),
relying on the Component-Wise EM for mixtures (Celeux et al., 2001). This algorithm
avoids the initial support problem, but the choice of update order may affect the final
result since the objective function has multiple local minima. In addition, their algorithm,
although automatically reducing the number of components, still has to fix a kmax and kmin

number of components. Their algorithm also forces exploration until k̂ = kmin. Their MML
criterion penalizes uniform distributions, thus being related to minimum entropy priors
(Brand, 1999). As they rely on a “strong” prior, they have difficulties when the components
have very different weights.

Penalize with the entropy of proportions Yang et al. (2012) have further developed
the dynamic search for the best number of components in a mixture model, with a proposed
algorithm named Robust EM. They adjusted the EM mixture objective function by adding
a criterion based on the entropy of the mixture proportions π. Non-informative proportions
are given by a high entropy. Consequently, the penalty added to the likelihood is given by
the opposite entropy. The objective function to maximize in the M-step with this entropy-
based penalty is, therefore:

Q(θ|θ(t)) =
n∑

i=1

K∑
k=1

τiklog(πkN (xi|µk,Σk)) + β
n∑

i=1

K∑
k=1

πklog πk,with β ≥ 0 . (2.9)

With this new criterion to maximize, the updated equation of components proportions
π inside the EM algorithm becomes:

π̂
(t)
k = π̂k,EM + βπ̂

(t−1)
k

(
log π̂(t−1)

k −
K∑

s=1
π̂(t−1)

s log π̂(t−1)
s

)
, (2.10)

with π̂k,EM given by original EM update equation, and π̂
(t−1)
k being the component weight

estimate of previous iteration.
A new hyperparameter β comes as a penalty weight in Eq.(2.9). It helps to control the

competition between clusters. This parameter is enhanced at each iteration to increase the
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entropy weight in Eq.(2.10) if proportions at the previous iteration were too close. Recip-
rocally β is reduced automatically to undercut the gap between the different proportions.
The update equation for β is given by

β =

K∑
k=1

exp(−ηn|π̂(t)
k − π̂

(t−1)
k |)

K
.

From the observed behavior of the proportion entropy π log π, additional constraints
are required to avoid all proportions being zero or negative. Boundaries on β are therefore
defined to avoid extreme values. An update of β is then given by

β =

K∑
k=1

exp(−ηn|π̂(t)
k − π̂

(t−1)
k |)

K
∧

1− πEM
(1)

−π(t−1)
(1) E

, (2.11)

with E =
∑K

k=1 πk log πk, and underscript (1) corresponds to the largest value among the
K clusters. We refer the reader to (Yang et al., 2012) for detailed computation of β.

Acting on the evolution of proportions with β enables one to check at each iteration
that all the components’ proportions are above a given threshold, and to delete those of
proportion πk <

1
n . This is the annihilation part of their process. The idea of penalizing

proportions in Eq.(2.10) is to reduce the estimated proportions of the component with
insufficient information (as given by entropy).

A specific dynamic is imposed to β, defined by Eq.(2.11), throughout iterations. This
parameter β is set to zero when the cluster number K is stable, i.e., not decreasing for a
period named tmin. This is important to avoid oscillating parameters, and thus to reach
a maximum. One limitation is that Yang et al. (2012) arbitrarily set this time limit at
tmin = 60 iterations, without any attempt to adapt it to different use cases. This algorithm
is however robust to initialization as, to start with, each data point is the center of its own
component, which yields the initial number of class K0 to be n, the sample size. Then,
progressive suppression of clusters is done by deleting components of proportion πk <

1
n .

Starting with a number of mixture components higher than the true value is a solution
to the initialization problem, allowing to escape of local maxima in some situations where
components are very heterogeneously distributed in space.

However, competition and the instability of component proportions in the Robust EM
do not avoid ending up with two (or more) equal classes, which is an overfitting problem
leading to an identifiability one. The coefficient β is not high enough to trigger the removal
of one of the superimposed clusters.

2.4 Deterministic annealing
Adapted from simulated annealing in combinatorial optimization, and inspired by the the-
ory of thermodynamics and the concept of free energy, deterministic annealing usually helps
the algorithm to explore the solution space by flattening the likelihood surface. Determin-
istic annealing for EM algorithms (Ueda and Nakano, 1994, 1998; Rose, 1998) relies on
the introduction of a temperature parameter in the E-step of the algorithm, leading from
Eq.(2.4) to the following expression

(
π

(t)
k pg(xi|θ(t)

k )
)1/T

∑K
j=1

(
π

(t)
j pg(xi|θ(t)

j )
)1/T

. (2.12)
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Among the drawbacks of the EM algorithm, the bumpy likelihood surface makes pa-
rameter estimation complex, and highly dependent on starting values. Zhou and Lange
(2010) explored several deterministic annealing strategies to warp a relatively flat surface
with handful modes into the bumpy surface of the objective function. Alternative anneal-
ing schemes were developed in EM-like algorithms (Lartigue et al., 2022; Allassonnière and
Chevallier, 2021; Naim and Gildea, 2012; Pervez and Lee, 2015; Meinicke and Ritter, 2001),
pairwise data clustering (Hofmann and Buhmann, Jan./1997) and online learning (Mavridis
and Baras, 2022). Deterministic annealing can also be used simply to help initialize the
algorithm (Franczak et al., 2014).

2.5 Aitken’s criterion
Usual stopping criteria in EM-like algorithms lean on absolute differences of log-likelihoods,
which correspond more to a “lack of progress” than to actual convergence. Some algorithms
also lean on absolute differences between centers at actual and previous iterations.

Aitken (1927) proposed an acceleration criterion to measure whether the algorithm con-
verged or not. From a sequence of log-likelihoods, assumed to be linearly convergent to
some value l⋆, an estimate of l⋆ is obtained through

lt+1
∞ = lt + lt+1 − lt

1− at
,

where at = lt+1−lt

lt−lt−1 .
With this asymptotic estimate, Böhning et al. (1994) proposed the following stopping

criterion for an EM algorithm at iteration t+ 1:

|lt+1
∞ − lt∞| < ε . (2.13)

Later on, variants of this criterion were lt+1
∞ − lt+1 < ε (Lindsay, 1995) or lt+1

∞ − lt < ε
(McNicholas et al., 2010) which is assessed to be at least as strict as lack of progress. In
the end, these different criteria lead to similar results. Aitken’s based criteria may lead
to algorithms running longer than necessary in cases where the log-likelihood is constantly
increasing. They also require additional computations, which leads to their relatively infre-
quent use, even though they are more coherent.
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Chapter 3

Spatio-temporal mixture
process estimation to detect
dynamic changes in population

We propose in this chapter a method to model and monitor population distributions over
space and time, in order to build an alert system for spatio-temporal data changes. As-
suming that mixture models can correctly model populations, we propose a new version of
the Expectation-Maximization (EM) algorithm to better estimate the number of clusters and
their parameters at the same time. This algorithm is compared to existing methods on sev-
eral simulated datasets. We then combine the algorithm with a temporal statistical model,
allowing for the detection of dynamic changes in population distributions, and call the result
a spatio-temporal mixture process (STMP). We test STMPs on synthetic data, and consider
several behaviors of the distributions, to fit this process. Finally, we validate STMPs on a
real data set of positive diagnosed patients to coronavirus disease 2019. We show that our
pipeline correctly models evolving real data and detects epidemic changes.

Contents
1 Generalities on mixture models and continuous distributions . . . . . . . 13
2 Estimation of mixture models . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1 The Expectation-Maximization algorithm and its limitations . . 16
2.2 Select the number of classes in a mixture model . . . . . . . . . . 19
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2.4 Deterministic annealing . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Aitken’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1 Introduction
The rapid growth of health information systems has led to the availability of a real-time
spatio-temporal follow up of patients affected by a given disease. A remaining challenge is
to develop methods to use this data to improve public health strategies and to transform
this observed data into actionable decision support systems.

Spatial models are based on the characterization of individuals by their geographical
location (place of birth, place at the time of diagnosis, place of residence, etc.). Taken
together, these individuals form a population. Concurrently the temporal component is
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essential in disease monitoring, therefore requiring consideration of the population distri-
bution as evolving over time. The association of spatial and temporal components for a
disease yields a spatio-temporal distribution. One actionable decision-aid support system
that could improve health management using such data is real-time highlighting of new or
evolving clusters of patients. To detect for example a specific subgroup of patients which
will evolve differently, while the remainder of the population remains stable. This would
be particularly useful to rapidly identify a new contamination source for a transmissible
disease, as soon as the first affected cases are present in health information systems.

1.1 Related works and motivation
1.1.1 Spatio-temporal statistical analyses in epidemiology

Spatio-temporal statistical analyses are already present in research in epidemiology and are
mainly based on statistical tests, coupled, or not, with space-time kernel density estimation,
as presented by Kirby et al. (2017). Scan statistic methods proposed by Kulldorff (1997)
and Kulldorff et al. (1998) are reference methods for many studies. They propose to detect
spatial and/or temporal clusters from aggregated data (discrete in space and time) using
sliding windows to compare cases and reference populations. Another scan statistic method
is proposed by Kulldorff et al. (2005) in the absence of population-at-risk. In both cases,
these methods require to fix several parameters on the considered sliding window (e.g.,
minimal area and minimal temporal size). Moreover, cases/controls studies are subject
among other things to selection and expensive efforts to find a proper control group and
are not feasible in all situations (Elliott and Wartenberg, 2004). In addition, these studies
are prone to several biases (Sackett, 1979). As it is usually difficult to sample a control
group from a reference population distribution, the ensuing comparison between cases and
controls is exposed to false differences due to inadequate sampling of the control group
(Sackett, 1979). Another important issue is that these methods do not provide a statistical
modelling of the population over the whole space and time.

1.1.2 Estimation algorithms for mixture models

Different from looking at data in a sub-window of the space, mixture models are another
class of models to spatially model data in statistics. Mixture models come with strong
advantages. First, they are flexible as one can set the probability distribution function (pdf)
of each cluster depending on the type of observations (scalars, vectors, positive measures,
etc.). Second, the results are interpretable because subjects can be attributed to estimated
classes a posteriori which enables one to distinguish homogeneous groups in the whole
set. Third, they do not rely on a population reference distribution estimation, unlike scan
statistics methods: they only rely on cases distribution. Last, these mixture models are
parametric and well understood.

When data are multivariate real valued observations, the customary probability density
for each cluster is the multivariate Gaussian distribution. This is particularly relevant when
considering geographical data (mapped as lying on the real plane). The use of a multivariate
Gaussian distribution inside a mixture model gives a Gaussian Mixture Model (GMM).

To perform the estimation of mixture model parameters, given the number of clusters
(i.e. classes), a well-known and widely used algorithm is the Expectation-Maximization
(EM) algorithm introduced by Dempster et al. (1977). The estimate obtained with the
EM algorithm is deterministic and highly dependent on the initialization step. Moreover,
the construction of the sequence ensures that the critical points are maxima, but could be
either global or local ones. To avoid sensitivity to initial values and selection of a wrong
local maximum, several strategies rely on repetitions of a random initialization step or
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initialization with K-means algorithm (Baudry and Celeux, 2015). Recently, Lartigue et al.
(2022) introduced an annealing E-step to better stride the support and become almost
independent of the initialization. However, this method requires to set the temperature
profile which may be time-consuming.

Finding an optimal number of components K is not an objective directly included in
the original EM algorithm. This objective is often based on a model selection step, which
requires a collection of estimated models (Akaike, 1973; Schwarz, 1978; Birgé and Massart,
2007). The well-known criteria for model selection are the Akaike Information Criterion
(AIC) (Akaike, 1973), and the Bayesian Information Criterion (BIC) (Schwarz, 1978). They
have been proved to be adequate for selecting K, but they are asymptotic criteria, and can
select under- (for AIC) or over-adjusted (for BIC) models. Non-asymptotic approaches
have been proposed, such as the slope heuristic criterion, introduced by Birgé and Massart
(2007) and implemented by Baudry et al. (2012). It provides an optimal penalty of the
log-likelihood, and thus an optimal model, but also requires a linear behavior of the log-
likelihood. On the other hand, Baudry and Celeux (2015) proposed to introduce a recursive
initialization which consists in using the K components solution to initialize the K + 1
components mixture. However, their full process requires several GMM estimations, with a
varying number of components K, leading to expensive computations.

Subsequently, the last decade has seen the emergence of methods aiming to simultane-
ously overcome the need for a collection of models, find the optimal number of classes, and
avoid bad local maxima (Derman and Pennec, 2017; Figueiredo and Jain, 2002; Wang et al.,
2004; Zhang et al., 2004; Yang et al., 2012; Law et al., 2004). Several methods rely on a
minimum message length criterion (Wallace and Freeman, 1987; Wallace and Dowe, 1999)
which penalizes the cost function (Figueiredo and Jain, 2002; Law et al., 2004). These meth-
ods force parameter space exploration to obtains several models. However, these methods
have to continue exploration and estimation until they reach a minimal number of clusters
fixed in advance. This forced estimation of an internal collection of models is also present
in the work of Derman and Pennec (2017), where the authors combine the slope heuris-
tic criterion for model selection (Birgé and Massart, 2007) with a dynamic change of the
number of components inside the EM algorithm. Another dynamic algorithm is the step-
wise split-and-merge EM algorithm (Wang et al., 2004; Zhang et al., 2004). With split and
merge criteria based on Kullback-Leibler divergence or correlation coefficient, these meth-
ods explore dynamically the parameters space by forcing clusters to merge together (or split
apart). But they may rely on independent split and merge movements or several runs of
the EM algorithms, implying computational issues. On the contrary, in the work of Yang
et al. (2012), the number of components is estimated in a single-run EM algorithm with a
reasonably low computation time. This solution is named Robust EM algorithm. But this
algorithm can reach incorrect local maxima as we will see below.

The temporal component to monitor the population distribution is absent of these differ-
ent procedures using EM algorithms, and the epidemiological models presented previously
also cannot meet the criteria for estimating, monitoring and modelling population dynamics
over time. As a consequence, these drawbacks prevent us from directly using the presented
algorithms to obtain correct approximations of population dynamic and to monitor them.

1.2 Contributions
In this chapter, we propose a complete pipeline named spatio-temporal mixture process
(STMP). This pipeline infers population distribution and highlights temporal population
distribution differences as a first step towards a decision support and alert system
for spatio-temporal analysis of the evolution of a population. STMP can be used to
initiate a detailed analysis of the environment for example if the pathology may depend on
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environmental causes. The STMP can also allow focusing on effects of decisions in specific
areas where changes are happening, as we have faced with the COVID-19 pandemic and
successive lockdowns for example. Within the proposed STMP, we combine a mixture model
with reliable estimation and temporal monitoring of this model. This pipeline will create a
temporal process with two mixture models, one time-depending and one totally independent.
The adequacy of population dynamic to either of these two models will determine if an alert
should be raised or not.

As a module to our STMP, we will introduce an adaptation of the EM algorithm (Demp-
ster et al., 1977) to take into account a temporal dependency during a mixture model evolu-
tion. Finally, we will also propose an improvement of the Robust EM algorithm (Yang et al.,
2012). We will suggest changes to obtain a more automatic algorithm to avoid overlapping
components, observed with the Robust EM algorithm on real data tests. This modified
version of Robust EM algorithm is compared to the original one (and other selection model
criteria) to show that on synthetic data, there is no loss of performances and on real data
we outperform the state-of-the-art algorithm.

To finish designing our STMP, we will perform experiments on synthetic data. And we
will study the behavior of our pipeline in different situations to produce a robust moni-
toring. Applying our process to a dataset of COVID-19 cases from the Paris area, we will
demonstrate the adequacy of a mixture model evolving over time and the consistency of the
alert response to population epidemic changes.

2 Notations and reminders on mixture models and es-
timation algorithms

We assume for our future application in Section 4 and 5 that the population is generated
from a Gaussian mixture model (GMM). In this section, we first recall the GMM definition.
Then we detail the Robust EM algorithm, one of the algorithms used to fit GMMs. These
methods are the basic elements on which we build our STMP pipeline described in Section 3.

2.1 The Gaussian Mixture Model

In order to describe a Gaussian mixture model, we consider a set of observations denoted
x = (x1, . . . ,xn) with xi ∈ Rd. Let Nd(·|µk,Σk) be the probability density function (pdf)
of the Gaussian density of dimension d with mean µk and covariance matrix Σk. To write
the GMM in its complete form we introduce latent variables (zi)i=1,...,n, such that each zi

is following a categorical distribution of parameter π. This information is then encoded as
a K-dimensional binary variable zi for each i ∈ {1, . . . , n} with zk

i = 1 if data xi belongs to
cluster k, 0 otherwise.
Then the complete model writes :

{
zi ∼ Categorical(π1, . . . , πk) ,
xi|zk

i = 1 ∼ Nd(µk,Σk) , , (3.1)

with θ = (π1, . . . , πK , µ1, . . . , µK ,Σ1, . . . ,ΣK). The problem with estimation of GMM is
twofold. The first challenge is to estimate the number of components K in the model.
Then, given this estimated K, the second issue is how to estimate the vector of parameters
θ, containing the Gaussian distributions parameters and the mixture proportions π. All
this has to be performed from the observed data only.
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2.2 The Expectation-Maximization algorithm
The EM algorithm (Dempster et al., 1977) was introduced for the purpose of estimating
GMMs and has remained the most popular choice. The general principle of this algorithm
is to produce a sequence of parameters (θ̂p)p∈N which converges towards an element of the
set of critical points of the observed likelihood, which is for a GMM on a set of observations
x

p(x; Θ) =
n∏

i=1

[
K∑

k=1
πkNd(xi|µk Σk)

]
. (3.2)

The EM algorithm alternates between an expectation step, and a maximization step which
updates the mixture parameters, until a convergence criterion is met. The detailed equations
are given in Appendix 3.A.1.

As the EM algorithm presents several drawbacks detailed in Section 1, and that we
expect our framework to have a single run to estimate the data distribution at a given time
step, we turn to the more "dynamic" algorithms where estimation and selection of the model
are performed at the same time (Figueiredo and Jain, 2002; Law et al., 2004; Zhang et al.,
2004; Wang et al., 2004; Yang et al., 2012).

In the next part, we will detail a recent dynamic algorithm proposed by Yang et al.
(2012), which answers almost all issues and is the base of our proposition.

2.3 The Robust EM algorithm
As mentioned previously, the unknown number of clusters in GMM is a main issue. Yang
et al. (2012) go deeper in the dynamic search for the best number of components in the
mixture. Their Robust EM adjusts the EM mixture objective function, by adding a penalty
criterion based on the entropy of the mixture proportions πk. Non-informative proportions
are given by a high entropy. Consequently, the penalty added to the likelihood is given by
the negative entropy. Starting from the complete log-likelihood logL(θ,x, z), the objective
function to maximize in the M-step with this entropy-based penalty is therefore

Q̃(Θ; Θ(p)) =
n∑

i=1

K∑
k=1

pΘ(p)(zk
i = 1|xi) log(πkN (xi|µk,Σk))

+ β
n∑

i=1

K∑
k=1

πk log πk,with β ≥ 0 .
(3.3)

With this new criterion to maximize, the update equation of component proportions π
inside the EM algorithm becomes

π̂p
k = π̂k,MLE + βπ̂p−1

k

(
ln π̂p−1

k −
K∑

s=1
π̂p−1

s ln π̂p−1
s

)
, (3.4)

with π̂k,MLE obtained by maximization of the original objective function (without penal-
ization) (see Section 3.A.1 Eq.(3.10)), and π̂p−1

k being the component weight estimate of
previous iteration. The equations to estimate the means µ̂k and the covariance matrices Σ̂k

in Robust EM remain unchanged. These parameters are estimated at each maximization
step by Eq.(3.11) and Eq.(3.12) with the new component weights from Eq.(3.4).

As we can see, a new hyperparameter β comes as a penalty weight in Eq.(3.3). It helps
to control the competition between clusters. Acting on the evolution of proportions with β
enables one to check at each iteration that all the components proportions are above a given
threshold, and therefore to delete those of proportion πk <

1
n . This is the annihilation part
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in their process. A specific dynamic is imposed on β. This parameter is set to zero when the
cluster number K is stable, i.e. not decreasing for a time period pmin. This is important to
avoid oscillating parameters, and so to reach a maximum. A limitation is that they fixed
this time limit to pmin = 60 iterations, without any attempt to adapt it to different use
cases. This algorithm is however robust to initialization as, to start with, each data point
is the center of its own component, which yields the initial number of class K0 to be n, the
sample size.

Although efficient, the entropy-based penalization of Yang et al. (2012) does not prevent
from having several components with similar parameters, meaning that two cluster may be
superimposed. In their Robust EM algorithm, competition and instability of component
proportions do not avoid ending up with a local maximum of this type. The coefficient β
is usually not high enough to trigger removal of one of the superimposed clusters. As the
competition is not guaranteed at each iteration, we suggest improvements of the Robust
EM algorithm in the next section. We also present a temporal process which, combined
with estimation algorithms, will provide efficient detection of population dynamic changes.

3 Method: Spatio-temporal mixture model with effi-
cient estimation algorithms for distribution change
detection

In this section, we describe our general pipeline for temporal evolution modelling of a
population including a distribution change detection, named STMP. Then, we introduce
modifications on the Robust EM algorithm to escape local maxima characterized by "over-
lapping clusters". Finally, we detail another adaptation of the EM algorithm in order to
constrain the estimation of GMM parameters. This enables to propose a close estimation
of a given distribution, while taking into account new samples. The STMP pipeline and
the estimation algorithms are generic enough to apply on different mixture models by using
different estimation algorithms.

3.1 A spatio-temporal mixture process (STMP) with dynamic
change detection

We consider that the time period is discretized, and the time steps are given by t = 1, . . . , T .
At each time step, denote the data vector X(t) = (X(t)

1 , . . . ,X(t)
nt ) with X(t)

i ∈ Rd. We assume
that this data is sampled from a statistical time dependent model. We model the data at
each time step t by a mixture of probability distributions, parametrized by a vector θ(t),
characterizing the current model M (t).

At each time t, we observe a new vector X(t), independent of the previous one X(t−1).
Given this new sample, we want to evaluate if the previous model M (t−1), defined as a
mixture model estimated on X(t−1), is likely to fit the new set X(t). We make the assumption
that the distribution of the underlying global population does not change over time. This is
in line with the difficulties related to the use of reference populations presented in Section 1
and coherent with our targeted applications. We design our model to monitor population
evolution over time in particular for either short time period of time or longer period of
time with aggregated data. Thus, the model does not require any datasets other than the
vectors X(t) for each time step t.

However, as M (t−1) depends on the data set at time t − 1, it suffers from estimation
variability, which means that the true model is likely close to but not equal to M (t−1). To
deal with this uncertainty, we estimate a constrained model (or candidate model) M ′ to
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fit X(t) where M ′ is an adjustment of M (t−1), given by θ′ close to θ(t−1). Through this
adaptation of M (t−1), we indirectly keep track of the estimated model at previous time.
However, if at time t the data set X(t) is sampled from a very different distribution, M ′

should not be able to fit X(t). In this situation, we would like our process to detect this
shift in population dynamic, and propose an alternative model more representative of the
new data.

In order to do this, we propose to also estimate an alternative model, Ma only from
the dataset X(t). We do not make any assumption on a previous time step dependence to
estimate this model leading to a parameter vector θa only driven by X(t).

With these two estimated models in hands, we are now able to track changes of the
population distribution, and determine whether there is a modification in the population
geographical spreading. Our proposed warning system is defined as follows. If at time t, the
model M ′, close to M (t−1), is not adapted to describe X(t), we keep the independent model
Ma as the new description of the current population and raise an alert. The aim is now to
define the decision rule to select either model and to raise the alert or not as a result.

A simple way to quantify goodness of fit of a statistical model to the data is its likelihood.
The likelihoods of estimated mixture models M ′ and Ma, given by pθ′(X(t)) and pθa(X(t))
respectively, are used to define a decision rule in our process, called the likelihood ratio or
Bayes factor.

As the alternative model is unconstrained, pθa(X(t)) is the maximum value of the likeli-
hood of the data without constraint on parameters’ estimation. On the other hand, pθ′(X(t))
is the maximum value of the likelihood when the parameters θ′ are restricted to stay in a
neighborhood of θ(t−1). In the case where the constrained model M ′, fits well the new data
set, the alternative model is likely to be similar and to have a similar likelihood. Therefore,
the likelihood ratio will be close to one. On the other hand, if the new data set is sampled
from a very different distribution from M (t−1), then the constrained model will have a like-
lihood that is lower than the alternative model which by design will be able to better fit the
new point cloud. Therefore, there should be a notification when this ratio is far above one.

Finally, we define the likelihood ratio as follows:

rt(M ′,Ma) = pθa(X(t))
pθ′(X(t)) . (3.5)

In order to accept or reject the alternative model at time t, we define a threshold τ such
that if rt(M ′,Ma) ≥ τ , the alternative model is selected and an alert is raised. The detailed
behavior of this likelihood ratio depending on the population evolution will be studied in
Subsection 4.3. In particular, this empirical study allows us to set the threshold τ and
highlight its properties in particular its low dependence w.r.t the sample size.

With all these elements in hand, our space-time complete pipeline, named Spatio-
Temporal Mixture Process (STMP), executes at each time t the following steps:

1. Estimate models M ′ and Ma based on respectively (M (t−1), X(t)) and (X(t)),

2. Compute likelihood ratio rt(M ′,Ma) as in Eq.(3.5),

3. If rt(M ′,Ma) ≥ τ , raise an alert and set M (t) = Ma. Else set M (t) = M ′.

Note that this pipeline is very versatile with respect to the chosen distributions in the
mixture model as well as the estimation algorithms used in first step. Depending on the
dataset, the model is able to handle any type of pdfs.

We now describe the two algorithms that we use to perform the candidate and alternative
model estimations.
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3.2 The Modified Robust EM algorithm: tackling superimposed
clusters

In Section 2, we have highlighted two weaknesses of the Robust EM algorithm by Yang
et al. (2012). First, the minimal number of iterations (named pmin) before setting β = 0 is
too small, which means that the algorithm is untimely stopped in its exploration. Then, the
algorithm is stuck in local maxima as soon as the convergence condition (∥µ(p)−µ(p−1)∥ < τ
where τ > 0 is a threshold) is satisfied, which stops the algorithm too early, revealing
aberrant clusters. These aberrant clusters are superimposed clusters, which means that
at least two clusters are sharing very similar (or exactly equal) parameters values. This
corresponds to local maxima which can be analyzed only by post-processing the results,
and it is particularly observable on real and scattered data.

To avoid this local maximum issue inside the estimation algorithm (and avoid post-
processing analysis), we propose slight modifications of the Robust EM algorithm, by incor-
porating an online verification step of superimposed clusters. We consider that two clusters
i and j are superimposed if

∥µi − µj∥2 + ∥Σi − Σj∥F < ϵ (3.6)

for some small ϵ > 0, where ∥.∥2 is the euclidean norm and ∥.∥F is the Frobenius norm.
Note that requiring equality in Eq.(3.6) is numerically too strong and would rarely happen.
We check Condition (3.6) when the algorithm has reached the convergence condition (Al-
gorithm 3.2, line 1). As long as there are overlapping clusters we force the estimation to
continue, as we will see now.

Inside Algorithm 3.2, the "stop-competition" part is the moment in the algorithm where
β = 0 if the component number is stable for at least 100 iterations and if the actual iteration
number p is greater than pmin (Algorithm 3.2, line 2). At that point in the algorithm, if
we set β = 0 too early, it slows down the competition between clusters, and may prevent
components from disappearing. If there are no overlapped clusters and stability conditions
are fulfilled then we set β = 0. Otherwise, we proceed as follows: we first increase pmin by
increment of 50 iterations (Algorithm 3.2, line 3). By increasing pmin, the algorithm has
more iterations to try to annihilate some components. Since increasing pmin indefinitely
can lead to a "stable" configuration where β adopts a cyclical behavior and loops on it, we
then check the proximity condition (3.6) again. If Eq.(3.6) is still true for some clusters,
we merge these clusters. The weight of the fused clusters is the sum of the weights of
the overlapping ones. The means and covariance matrices being almost equal, this fusion
of components does not change much the likelihood. This makes the algorithm jump to
another configuration with almost the same likelihood and enables it to explore this new
region of interest. Other steps of the algorithm stay identical to the original Robust EM,
as presented in Subsection 2.3. The full modified Robust EM algorithm is summarized in
Algorithm 3.2.

3.3 The Constrained EM algorithm: former parameter based es-
timation

We name Constrained EM (C-EM) a slight variation of original EM algorithm (Dempster
et al., 1977) where the parameters are restricted to a neighborhood of a given vector of
parameters denoted θ0. In particular, we introduce constraints on the estimated components
proportions (πk)1≤k≤K . Moreover, when the cluster means are involved, restrictions are also
put on these means. The initialization of our C-EM algorithm is given by the parameter
vector θ0 as well. The idea behind C-EM algorithm is to obtain estimated parameters highly
driven by the initial parameters vector θ0 but updated on data X. Because the parameters of
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our dynamic modeling are estimated empirically, the estimation suffers from the uncertainty
given by the sampling. This means that the estimated parameters at time t − 1 may not
be the perfect description of the data set and a new independent sample from the same
ground truth distribution will lead to a slightly different estimated parameter vector and
a slightly different likelihood. Therefore, we consider that a newly independent estimated
mixture and the given estimated one may both come from the same ground truth. For this
reason, the C-EM enables us to give a chance to the previously estimated model to explain
the data distribution. Otherwise, forcing the comparison of M (t−1) with Ma will always be
in favor of Ma. With this parameter dependency, the newly estimated parameters could be
incorporated in our temporal process as a time-dependent estimate.

From now on, we propose the details of this algorithm for distributions where the cluster
means and covariances are to be estimated. This will be the case in our disease progression
use case where the model is a mixture of Gaussian distributions. We now detail constraints
we impose on parameter estimations inside an EM-like algorithm to estimate GMM. We
name π̂c, µ̂c and Σ̂c the constrained proportions, means and covariance matrices obtained
through the C-EM algorithm. As in the original EM algorithm, π̂p and µ̂p vectors are
estimated at iteration p of C-EM following equations (3.10) and (3.11). We then add a
third step in the estimation algorithm to obtain π̂c and µ̂c.

The constraints in the C-EM algorithm continuously require θ0 over iterations, the initial
parameter vector at p = 0, as we want to restrict the parameters’ estimation. The initial
parameter vector contains (π0

k)1≤k≤K , (µ0
k)1≤k≤K and (Σ0

k)1≤k≤K the covariance matrices
providing information about the anisotropy we allow for the uncertainty on the means pa-
rameters to adapt locally. Component proportions are probability weights and live in [0, 1],
so we simply constrain component proportion of cluster k, π̂p

k (at iteration p), to vary inside
[π0

k ± 0.1]. This means each proportion varies by at most 10%. We also avoid proportions
to become null to avoid the artificial death of a cluster in the mixture. Constrained mean
µ̂c

k of the component k at iteration p with the C-EM algorithm is a projection of estimated
µ̂p

k on a rectangular space centered on µ0
k and of length and width given by ellipse axis of

the covariance matrix Σ0
k (square roots of the eigenvalues of Σ0

k).
These constraints are written here for each iteration p and each cluster k{

π̂c
k = min(max(π0

k − 0.1, π̂p
k), π0

k + 0.1) ,
µ̂c

k = Prect(µ0
k
,Σ0

k
)(µ̂p

k) .
(3.7)

Note that the algorithm can converge to final parameters where one covariance matrix
is singular, reflecting the aim of the algorithm to delete one component of the mixture
model. In the original EM algorithm, implementations usually include a regularization on
the covariance matrices, in order to avoid singular ones. As we want to determine when the
estimated candidate model does not correspond to the data, we remove this regularization
from the C-EM algorithm. Therefore, we raise an alert when one or more covariance matrices
become singular. We add this condition as an alert in STMP detailed in Subsection 3.1,
before the calculation of the ratio rt (Eq.(3.5)).

In addition to this, as the covariance matrices are not constrained in the C-EM algo-
rithm, we introduce a condition to check these parameters a posteriori. From the C-EM
algorithm, covariance matrices are freely estimated, but they can evolve far away from initial
covariances matrices Σ0

k, thus missing the time link. Therefore, we introduce an already ex-
isting similarity measure between final estimated Σ̂c

k in C-EM and Σ0
k the initial covariance

matrices. We use the cosine similarity, also introduced as the correlation matrix distance by
Herdin et al. (2005) on correlation matrices. We adopt their formulation and apply it on co-
variance matrices instead of correlation matrices. Bounded between 0 and 1, this coefficient
measures orthogonality between two matrices and is useful to evaluate whether the spatial
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structure of the clusters have significantly changed. Low values reflect high similarity while
high values reflects orthogonality, and so on dissimilarities. As Σ̂c

k should be similar to Σ0
k,

we only tolerate a value of 0.1 or less, in order to introduce flexibility and sampling error
tolerance inside STMP. For higher values, showing dissimilarities between Σ̂c

k and Σ0
k, we

also raise an alert in STMP detailed in Subsection 3.1.
In STMP, θ0 will be the estimated parameter vector from the previous time step t − 1

of the pipeline, which corresponds to θ(t−1). Therefore, we obtain at time t an estimated
parameter depending on estimated parameter at time t− 1, but allowing some adaptation
of the model to the newly observed data X(t). Finally, we should not forget that the C-EM
is constrained by initial parameters θ0, including a fixed number of clusters K0. It is not
possible in C-EM to merge clusters based on their properties, as this would violate the
imposed constraints. If the model estimated by C-EM is not correctly fitting data X(t), this
will be detected inside STMP.

3.4 Application of the STMP on Gaussian Mixtures Models
To conclude this section, our new process is fully described in Algorithm 3.1 and Figure 3.1,
combining the temporal process described in Subsection 3.1 with the C-EM algorithm to
estimate M ′ (Subsection 3.3), and the Modified Robust EM algorithm to estimate Ma

(Subsection 3.2) on GMMs.

Algorithm 3.1: The Spatio-Temporal Mixture Process (STMP)
input : For t = 0, . . . , T : data X(t)

θ(0), K̂(0) ← ModifiedRobustEM(X(0))
θ(t) ← θ(0) ; K̂(t) ← K̂(0)

for t = 1, . . . , T do
θ(t−1) ← θ(t)

K̂(t−1) ← K̂(t)

θ′ ← C-EM(X(t), θ(t−1), K̂(t−1),maxiter=5)
θa, K̂a ← ModifiedRobustEM(X(t))

rt ← pθa (X(t))
pθ′ (X(t))

if
(
∃ singular Σ̂′

k ⊂ θ′
)

or
(
∃ cos_similarity(Σ̂′

k, Σ̂
(t−1)
k ) > 0.1

)
then

alert ← True
θ(t) ← θa

K̂(t) ← K̂a

else if rt ≥ τ then
alert ← True
θ(t) ← θa

K̂(t) ← K̂a

else
θ(t) ← θ′

K̂(t) ← K̂(t−1)

end
end

As in the following applications we will only consider geographical data (in R2), we use
Gaussian Mixture Models to represent these data. The GMM parameters are estimated

34



Chapter 3. Spatio-temporal mixture process estimation to detect dynamic changes in
population

with the presented algorithms, and the likelihoods are computed with Eq. (3.2). Recall
that the Algorithm 3.1 and Figure 3.1 show the STMP with all our propositions, which
could be used with different mixture models. Adaptations of the estimation algorithms may
also be considered to fit with other distributions. This is the subject of Chapter 4.

Estimation step

timeline

New dataset at time

Model parameters
from previous time step

Yes

No

New dataset at time

Model parameters
from previous time step

Raise an alert

Figure 3.1: Diagram representation of STMP.

4 Experiments on synthetic data
This section is devoted to experimental validations, i.e. based on synthetic data. First,
we present comparisons of our Modified Robust EM with other EM-based algorithms and
selection criteria. The comparisons are conducted on two mixture distributions from exist-
ing benchmarks. Second, we present all the experiments that are tested on our complete
pipeline. We study the estimated likelihood ratio for different behaviors of the popula-
tion distribution (characterized by the experiments) and the resulting performances of the
pipeline. By analyzing these performances we can fix a threshold conditioning the raise of
an alert in all situations. Then, we focus on the validation of STMP, given by Algorithm 3.1.
Finally, we also present experiments on the number of points n in the data sample, and how
it affects each step of STMP.

4.1 Comparisons of the Modified Robust EM with other EM-
based algorithms and selection criteria

We compare here our Modified Robust EM with several EM-based methods mentioned in
Subsection 1.1.2. First, we run the original EM algorithm, which is based on the a priori
knowledge of the number of clusters. As in practice we do not know the true number of
components, we estimate several models and select the best one based on either Bayesian
Information Criterion (BIC) (Schwarz, 1978) or Integrated Completed Likelihood (ICL)
(Biernacki et al., 1998), two of the most commonly used criteria in model selection. Several
mixture estimates are therefore obtained by running an EM algorithm for a range of values of
K from Kmin to Kmax. The initialization issue is treated by starting from 10 random small
K-means runs and then keeping the solution with the highest likelihood as the initialization
of the EM algorithm. Second, we also compared our method with the original Robust EM
algorithm (REM) (Yang et al., 2012) and Figueiredo and Jain’s method (Figueiredo and
Jain, 2002) (called FJ method from here). The FJ method requires to fix an initial number
of clusters Kinitial. Originally Kinitial was "far from the true number of components" but
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not too high (around Kinitial = 30 in several experiments of Figueiredo and Jain (2002)),
but in order to approach the behavior of the Robust EM and Modified Robust EM we use
Kinitial = n. The methods are computed on 100 different data sets generated for each of the
defined mixture distributions. The methods are then compared based on their capacity to
estimate the correct number of components and when this number is correct, to estimate the
parameters of the mixture models. They are also compared in terms of the computational
cost given by the number of iterations, as iterations times are of the same order.

Results First, we compare the different methods on their ability to estimate the correct
number of components. From a first mixture given by Figure 3.2(a) (with n = 400 points),
REM was 95% successful in identifying the four components, close to the 99% of our method,
against 51% for the FJ algorithm and 63% and 61% for EM-BIC and EM-ICL respectively.
From a second mixture given by Figure 3.2(b) (with n = 400 points), all methods had more
difficulty in identifying the four clusters. EM-BIC and EM-ICL were the most performant
with 52% and 54% of successful estimation of the number of components, against 46% for
our method MREM, and then 37% for the REM and 36% for the FJ method.

Then, we compare the estimated parameter precision over runs with successful compo-
nent estimation. For each of the two defined mixtures, we computed the relative distance
between the true and the estimated parameters. From these mean relative errors (Table 3.1
and Table 3.2), all the values are of the same range. It appears that FJ method, EM-
BIC and EM-ICL have slightly lower errors than REM and MREM on the first mixture
(Fig. 3.2(a)), but slightly higher errors than REM and MREM on the second mixture. This
shows the importance of capturing the correct number of clusters, which is the goal of our
algorithm. However, this implies for model selection criteria to have an average guess of the
data heterogeneity and to run the estimation algorithm for each of the possible number of
components and for several initializations each time.

REM FJ EM-BIC EM-ICL MREM

π̂0 0.0851 (0.0547) 0.0670 (0.0460) 0.0683 (0.0465) 0.0683 (0.0465) 0.0870 (0.0615)
π̂1 0.0988 (0.0740) 0.0678 (0.0513) 0.0667(0.0514) 0.0667 (0.0514) 0.0990 (0.0737)
π̂2 0.0937 (0.0719) 0.0741 (0.0660) 0.0742 (0.0654) 0.0742 (0.0654) 0.0935 (0.0724)
π̂3 0.0888 (0.0749) 0.0680 (0.0689) 0.0681 (0.0682) 0.0681 (0.0682) 0.0894 (0.0731)

µ̂0 0.0305 (0.0230) 0.0250 (0.0206) 0.0248 (0.0205) 0.0248 (0.0205) 0.0308 (0.0231)
µ̂1 0.0167 (0.0111) 0.0186 (0.0120) 0.0185 (0.0119) 0.0185 (0.0119) 0.0187 (0.0129)
µ̂2 0.0116 (0.0082) 0.0121 (0.0078) 0.0122 (0.0078) 0.0122 (0.0078) 0.0115 (0.0082)
µ̂3 0.0187 (0.0122) 0.0207 (0.0123) 0.0210 (0.0123) 0.0210 (0.0123) 0.0169 (0.0104)

Σ̂0 0.1052 (0.0737) 0.1030 (0.0799) 0.1030 (0.0792) 0.1030 (0.0792) 0.1062 (0.0734)
Σ̂1 0.7164 (0.5245) 0.4811 (0.5133) 0.4730 (0.5117) 0.4730 (0.5117) 0.6087 (0.5353)
Σ̂2 0.1121 (0.0777) 0.1075 (0.0725) 0.1071 (0.0719) 0.1071 (0.0719) 0.1128 (0.0786)
Σ̂3 1.0568 (0.8288) 0.7403 (0.8096) 0.7275 (0.8070) 0.7275 (0.8070) 0.9110 (0.8541)

Table 3.1: Mean (standard deviation) relative errors for the estimates parameters of GMM
within dataset from Fig.3.2(a). The absolute-value norm is used for proportions, the eu-
clidean norm is used for means, and the Frobenius norm for covariances.

Finally, we compare the mean number of iterations for executions with each mixture
distribution. The mean number of iterations on first and second mixture is respectively
of 83 and 137 iterations for REM, against 95 and 185 for our method, 170 and 222 for
BIC/ICL which used Kmin = 2 and Kmax = 6, and 730 and 711 for FJ method. The
number of iterations is slightly higher with our method than the REM one because we put
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REM FJ EM-BIC EM-ICL MREM

π̂0 0.1427 (0.1393) 0.1665 (0.1795) 0.1645 (0.1775) 0.1645 (0.1775) 0.1430 (0.1605)
π̂1 0.1281 (0.1399) 0.1650 (0.1694) 0.1628 (0.1676) 0.1628 (0.1676) 0.1472 (0.1452)
π̂2 0.0405 (0.0364) 0.0709 (0.0501) 0.0704 (0.0495) 0.0704 (0.0495) 0.0600 (0.0479)
π̂3 0.1477 (0.0991) 0.1461 (0.1053) 0.1468 (0.1040) 0.1468 (0.1040) 0.1268 (0.030)

µ̂0 0.0761 (0.1174) 0.0669 (0.1720) 0.0661 (0.1697) 0.0661 (0.1697) 0.0391 (0.0236)
µ̂1 0.0368 (0.0265) 0.0455 (0.0356) 0.0458 (0.0351) 0.0458 (0.0351) 0.0650 (0.1150)
µ̂2 0.0589 (0.0325) 0.0603 (0.0224) 0.0626 (0.0261) 0.0626 (0.0261) 0.0561 (0.0300)
µ̂3 0.0117 (0.0071) 0.0141 (0.0063) 0.0140 (0.0063) 0.0140 (0.0063) 0.0121 (0.0067)

Σ̂0 3.7634 (2.1204) 1.9392 (2.4028) 1.8895 (2.3888) 1.8895 (2.3888) 1.4402 (2.0190)
Σ̂1 0.7021 (0.3135) 0.4211 (0.3314) 0.4139 (0.3297) 0.4139 (0.3297) 0.3611 (0.3156)
Σ̂2 0.1213 (0.0611) 0.1253 (0.0620) 0.1277 (0.0627) 0.1277 (0.0627) 0.1102 (0.0469)
Σ̂3 0.3597 (0.1584) 0.3640 (0.1616) 0.3582 (0.1631) 0.3582 (0.1631) 0.3460 (0.1855)

Table 3.2: Mean (standard deviation) relative errors for the estimates parameters of GMM
within dataset from Figure 3.2(b). The absolute-value norm is used for proportions, the
euclidean norm is used for means, and the Frobenius norm for covariances.

a "soft" condition on convergence to stop the algorithm. The number of iterations is very
high for the FJ method because of the considered initial number of components, which is
high here. But it was originally fixed to a lower number by Figueiredo and Jain (2002), and
needed to be fixed arbitrarily.

Note that we have provided a narrow range of values including the correct one for
model selection criteria with BIC and ICL. The EM algorithm failed with higher number of
components as the algorithm tended to remove one cluster by cancelling its proportion and
degenerating the covariance matrix. Our Modified Robust EM shows no loss of performances
compared to the Robust EM on synthetic data, and solve Robust EM problems on real data
as we will see later.
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(a) A Gaussian mixture with 4 crossed compo-
nents, defined in Yang et al. (2012).
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(b) A Gaussian mixture with 4 overlapping
components, defined initially in Figueiredo and
Jain (2002).

Figure 3.2: Two Gaussian mixtures defined in works of Figueiredo and Jain (2002) and
Yang et al. (2012).
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4.2 Description of the experimental setups to calibrate STMP
All the following experiments are done on a two time steps configuration (only t = 0 and
t = 1). We consider the following situation where we have a Gaussian mixture distribution
with three clusters at initial time (t = 0). One cluster is isolated on the far right-hand side
of the x=axis (first dimension), and the two others are on the left-hand side of the x-axis.
This is the basic structure that all initial distributions (at t = 0) will follow. Different
positions of left-hand side clusters are represented in Figure 3.4, for Setup F. (Far.), Setup
M. (Moderate.) and Setup C. (Close.).

From this initial Gaussian mixture, various changes are done at time t = 1 considering:

• (Case I.): no evolution at t = 1, clusters are properly distinct (corresponds to Setup
F. at t = 0 and t = 1).

• (Case II.): the emergence of one new cluster leading to a distribution with four clusters
at time t = 1.

• (Case III.): the disappearance of one cluster among the existing three initially present.

• (Case IV.): the movement of one initial cluster, which corresponds to moving centers
and changing proportions and covariances.

• (Case V. and Case VI.): no evolution at t = 1, as Case I., but here the two left
hand side clusters are slightly interfering (Setup M.) for Case V., and finally these
two clusters are very closed and barely identifiable without enough samples (Setup
C.) for Case VI. .

• (Case VII. to Case IX.): from initial Setup F. or Setup M. at t = 0, there is a spatial
convergence of the two left-hand side clusters, characterized by Setup M. or C. at
t = 1.

We denote K(0)
true the number of components in the mixture distribution at t = 0, K(1)

true in
the mixture distribution at t = 1. A case is finally characterized by its mixture parameters
at t = 0 and at t = 1, and we represent all cases in Table 3.A.3.2. In addition, Figure 3.3
and Figure 3.4 give a simple representation of Cases I. to IV. and of Setup F., M. and C.
involved in Cases V. to IX.

We obtain Gaussian mixture distributions with parameters θ(0) and θ(1) from described
cases. For each Case I. to IX. , given the two distributions, we can sample n0 = n1 = n
points, which form our datasets X(0) and X(1). The sampling step, for any of the cases
presented above, is executed S times and followed by execution of our STMP on each set of
sampled data. It produces S different resulting processes, for each case (see Table 3.A.3.2).
This enables us to analyze the behavior of STMP and likelihood ratio across runs and
evolution cases.

4.3 Estimation of the alert threshold in STMP
As motivated in Subsection 3.1, the likelihood ratio is a good indicator of how well the
alternative model Ma at time t is fitting data X(t) against the model M ′. In case of no
evolution of the distribution from t = 0 to t = 1, both Ma and M ′ should fit the data
correctly, leading to a likelihood ratio around one. Of course, as said previously, due to
the sampling of the distribution, it cannot be equal to one exactly. Thus, the goal of the
following study is to introduce an empirical threshold of adequacy, over which the alternative
model Ma is definitely considered as the best model explaining current data and an alert
is raised. With all the experiments above, we study the behavior of our STMP according
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(a) Case I. (b) Case II.

(c) Case III. (d) Case IV.

Figure 3.3: Description of Gaussian mixture distributions for Cases I. to IV. (from Ta-
ble 3.A.3.2). Blue centers and covariance ellipses correspond to Gaussian Mixture parame-
ters at t = 0, orange ones to Gaussian Mixture parameters at t = 1. Note that when both
elements are superimposed, the centers only appear orange and the ellipses have mixed
colors dotted lines.

to the alert threshold τ involved in Algorithm 3.1. It is important to fix this threshold in
order to raise meaningful alerts and reach a correct performance.

Theoretical likelihood ratio As said previously, we run S sampling steps for each case
distributions, here fixed to S = 100 runs. We obtain S pairs of datasets (X(0), X(1)). For
each pair we compute the theoretical likelihood ratio

r∗
1(M (0),M (1)) = pθ(1)(X(1))

pθ(0)(X(1)) ,
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(a) Setup F. (Far) (b) Setup M. (Middle)

(c) Setup C. (Close)

Figure 3.4: Gaussian mixture distributions for Setups F., M. and C. involved in Cases
presented in Table 3.A.3.2 with an example of sampled data sets. Blue crosses correspond
to µk and ellipses to covariance matrices Σk. Orange points are samples.

implying the true parameters of models M (0) and M (1). This provides a "theoretical" value
of r, depending on the observation sets but not the estimated parameters. We then account
for the number of wrong alerts, depending on the value of the likelihood ratio threshold τ .

Validation of the alert threshold Figure 3.5 presents the number of wrong alerts,
with one curve by case explained in Subsection 4.2. As the dataset X(1) is sampled from
the truth model M (1), the theoretical likelihood ratio should be almost one modulo the
variability of the data if M (0) = M (1). In contrary, this theoretical ratio should quickly
diverge from one if X(1) is not corresponding to the model M (0). This explains that we
obtain 100 % of correct alerts on the majority of the case experiments (Fig. 3.5), as the
computed theoretical likelihood ratios are really higher than tested values of the threshold.
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The cases which are critical for the choice of the threshold are Case VII. and Case IX
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(a) Experiments with datasets of size n = 400.
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(b) Experiments with datasets of size n = 100.

Figure 3.5: For each Case is presented the number of false alerts (positive or negative) on
theoretical likelihood ratios, over S = 100 runs according to the considered threshold τ .
The filled black vertical line is the selected threshold. Note that except for Cases IX. and
VII. the other curves are superimposed for a threshold superior to one.

(Fig. 3.5). They imply slight differences of the distributions between t = 0 and t = 1, so
the theoretical likelihood ratio values stay relatively close to one. Therefore, correct alerts
are not raised for a threshold over about 1.06 when considering experiments with datasets
of size n = 400 points (Fig. 3.5(a)) for these two cases. With n = 100 points, we clearly see
that theoretical likelihood ratios are globally lower. For a same value of the threshold the
number of false negative alerts increases (Fig. 3.5(b)). This provides us an intuition on the
level of variations that our model can detect.

While the best possible performance would be obtained with a threshold at 1.05
(Fig. 3.5(a)) if we only consider theoretical ratios results, the study of the threshold involv-
ing the estimated models M ′ and Ma is less optimal. The computation of the likelihood
ratio in the complete pipeline implies uncertainty on sampled data and on estimated param-
eters θ′ and θa. This estimated ratio is defined by Eq.(3.5) between M ′ and Ma at t = 1.
We study the performance of the pipeline with these estimated ratios values, by accounting
for the number of wrong alerts over S = 100 runs as before. The corresponding results,
with these estimated likelihood ratios, are given in Figure 3.6. In Table 3.A.3.1 we retrieve
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the number of alerts per case for different threshold values and for different dataset sizes.
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Figure 3.6: For each Case is presented the number of false alerts (positive or negative)
depending on estimated likelihood ratios given by Eq.(3.5), over S = 100 runs according to
the considered threshold τ . Datasets are of size n = 400.

For Case I., Case V. and Case VI., the population distribution is the same at t = 0 and
t = 1, but Ma and M ′ are not estimated by the same algorithm, and the likelihood ratios
depend on the sampled data. However, the model M ′ should still be accepted as the two
mixture distributions are very close. From Figure 3.6, we observe that a threshold of 1.0 is
not appropriate, as a high number of alerts is raised for these cases, where we should have
zero alert. Increasing the threshold allows for model and data variability to be taken into
account, and avoid false positive alerts.

On the other hand, if we set a too high threshold τ , there is a risk of not detecting all
important changes. We clearly see for Cases II., III., IV., and VIII. that the number of
true positive alerts is affected by a too high threshold. If we go above τ = 1.2 we see an
important decrease for Case IV., and later for the Cases II. and III. . Case VIII., which
corresponds to a move from Setup F. to Setup C. is affected earlier by the likelihood ratio
threshold, as the proximity of two clusters (Fig. 3.4(c)) affects the estimation of mixture
parameters and so on the likelihood ratio. It leads us to set a threshold relatively closed
to one. As on the theoretical likelihood ratio study, we observe here that slight movements
corresponding to Case VII. and Case IX. lead to incorrect alerts for a threshold over one.
The estimated likelihood ratio values stay relatively close to one because the model M ′ can
adapt to data X(1). The evolving distributions are not detected.

Therefore, when applied to a specific problem, one has to know that the relocation of one
cluster may be detected if it relates to the variance of the estimated clusters. Otherwise,
these displacements may be considered as normal variability of the discretization of the
distributions. Note that this alert criterion may be adapted given a specific problem with
the constraints that are imposed to the candidate model. Finally, we see from analysis
of the theoretical ratios and the estimated ratios that we need to make a compromise.
The optimistic theoretical likelihood ratios would lead us to take a threshold very close to
one. But the obtained values with the estimated models contain more uncertainty that we
cannot ignore and require to select a larger threshold. To obtain good performances of our
pipeline we fix the threshold to τ = 1.1. We obtain a balance between false negative and
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false positive alerts, that we want to maintain as low as possible, considering all possible
situations.

4.4 Performances of STMP on synthetic data
4.4.1 Performances of the Modified REM algorithm within STMP

We present here results of the estimation of GMM parameters with the Modified Robust
EM algorithm at t = 0 and t = 1 in STMP experiments on synthetic data. All experimental
frameworks described in Subsection 4.2 are tested, with n0 = n1 = n = 400 points.

Evaluation of K̂ For each run of each experiment, we check if the number of estimated
clusters at t = 0 or t = 1 with the Modified REM algorithm is correct. We report the
correctly estimated K rates in Table 3.3. We consider that our STMP correctly estimates
K over time if and only if K̂(0) = K

(0)
true and K̂a = K

(1)
true, with K̂(0) and K̂a estimated by

Modified Robust EM at t = 0 and t = 1 respectively. In brief, the correctly estimated K
number is given by the intersection of correctly estimated K̂(0) and K̂a.

Cases I. to IV. give high rates, explained by the correct separation of the clusters as seen
in Figure 3.3. On experiments with configurations bringing closer two clusters (Cases V. to
IX.), we obtain high rate (over 90%) for static and well-enough separated clusters (Setup
F., Setup M.). This score is also high for displacement from Setup F. to Setup M. (Case
VII.).

When we consider moving clusters which are getting too close this score decreases. The
global score of STMP executions involving at least one Setup C. distribution is affected by
the superposition of two clusters. The correct proportions are not bigger than 54%. By
looking at estimated K̂(0) and K̂a in Table 3.3,the Modified REM algorithm estimates at
least 30 over 100 times two classes with samples from Setup C. distribution. Although
these estimates are incorrect, they lead to understandable results, as samples from the two
left-hand side clusters can be confused (see Fig. 3.4(c)). An example of wrong estimated
parameters for Setup C. is presented in Figure 3.7, which confirms the interpretability of
the results.

Experiment Proportion of correctly estimated number of
components (values for K̂(0) = 2, K̂a = 2)

Case I. 96%
Case II. 98%
Case III. 100%
Case IV. 100%
Case V. 92%
Case VI. 42% (30%,32%)
Case VII. 99%
Case VIII. 54% (0%,34%)
Case IX. 54% (0%,37%)

Table 3.3: Proportions of correctly estimated number of components among S = 100 runs.
At each execution, the estimation is correct iff : K̂a = K

(1)
true and K̂(0) = K

(0)
true. Configura-

tions are described in Table 3.A.3.2.

Estimation of means and covariances parameters Thereafter, we compute estima-
tion errors for means and covariances matrices on experiments with correctly estimated
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Figure 3.7: An estimated GMM with K̂ = 2 ̸= Ktrue = 3 for a Setup C. distribution. The
centers and covariances are represented in green. Orange points are samples.

number of components K (see Table 3.4). It confirms that these estimated Gaussian mix-
tures are correctly estimated by the Modified Robust EM inside our pipeline STMP. We also
notice a poorer average estimate of GMM parameters for datasets from Setup C. As said
previously, this parametrization implies that two clusters are mixed up. Estimates of Setup
C. models present a slightly higher average Euclidean distance between the true means and
the estimated ones. For covariance matrices errors, computed with Frobenius norm, the
average errors are less contrasted, but we observe the highest error for Ma estimate in Case
VIII. (two clusters are closed to each other at t = 1).

M (0) Ma

Case µ̂ Σ̂ µ̂ Σ̂

Case I. 1.5 (0.8) 15.4 (7.1) 1.5 (0.9) 14.3 (6.8)
Case II. 1.5 (0.9) 14.4 (7.3) 1.7 (0.9) 16.4 (6.7)
Case III. 1.6 (0.9) 14.3 (6.9) 1.2 (0.7) 11.0 (4.8)
Case IV. 1.5 (0.8) 14.0 (6.7) 1.5 (0.8) 13.6 (5.8)
Case V. 1.7 (1.2) 16.6 (12.2) 1.7 (0.9) 15.6 (7.8)
Case VI. 4.2 (16.6) 22.8 (22.0) 3.2 (3.8) 23.6 (25.5)
Case VII. 1.5 (0.9) 14.8 (6.6) 1.6 (1.0) 15.8 (7.8)
Case VIII. 1.5 (0.9) 14.3 (8.2) 3.7 (4.6) 29.0 (30.3)
Case IX. 1.7 (1.0) 16.2 (8.5) 2.9 (3.7) 24.8 (29.9)

Table 3.4: Mean (standard deviation) relative errors (expressed as a percentage) for the
estimated means and covariance matrices within each case, over all runs having correctly
estimated K̂ inside STMP. The Euclidean norm is used for means, and the Frobenius norm
for covariances.

4.4.2 Performances of STMP as an alert system

We have defined in the previous subsection the threshold to alert the user that there may be
a population change between two given time points. As explained in Subsection 3.3, there
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is also an alert when a component tries to disappear (leading to degenerated covariance
matrix) when estimated by the C-EM. And when covariance matrices estimated by the C-
EM are too different from the previous step ones. With these warning systems, we defined
a whole pipeline, named STMP, to monitor the dynamic of the population and raise alerts
when reasonable changes occur. We are now demonstrating the performances of STMP.
Using an alert threshold of τ = 1.1, we obtain the following alert rates, that we can retrieve
in the Figure 3.6. For Case I., Case V. and Case VI. we obtain 98% true negative alerts
respectively. For Cases II. to IV. we obtain a true positive alert rate of 100%, detecting all
changes in population distribution with our STMP.

STMP does not raise an alert when the distributions differ barely in time. This is due
to our likelihood ratio threshold fixed to τ = 1.1. The true positive number of alerts is of
2% for Case VII. and 1% for Case IX. . In contrary, the bigger movement in Case VIII.
leads to a true positive number of 29%. This brings us to the problem that STMP can not
raise an alert when GMM are hard to estimate correctly, as here. This experiment involves
the Setup C., which is complex to estimate for EM algorithms.

Last but not least, our proposed method is computationally efficient with a very low
computational time. All experiments on datasets of size n = 400 are performed with an
average execution time of 1.33s. We recover average execution time by case type in Table 3.5.
Fast execution was also a criterion leading the construction of our method, and satisfying
for our future applications.

Experiment Average computation time
over S = 100 runs (std)

Case I. 1.24s (0.19)
Case II. 1.14s (0.18)
Case III. 1.55s (0.50)
Case IV. 1.35s (0.41)
Case V. 1.33s (0.14)
Case VI. 1.45s (0.32)
Case VII. 1.23s (0.10)
Case VIII. 1.31s (0.27)
Case IX. 1.35s (0.20)

Table 3.5: Average (and standard deviation) computation time of the different case experi-
ments, with n0 = n1 = 400 points.

4.4.3 Effects of the dataset size on STMP

In previous explained experiments on synthetic data, we fixed the data set size to n = 400.
Afterwards, we study the impact of the number of points for Cases I. to IX. described
previously, with n ∈ {100, 200, 400}. With the same true distributions as in Figures 3.3 and
3.4, we perform S = 100 runs of our process with data samples of size n = 200 and n = 100
at each time step.

As expected, decreasing n decreases the proportion of good estimated K̂ over the 100
runs and inherently the quality of estimation of parameters K (Table 3.6). For n = 200
points and cases with Gaussian clusters not too close to each other the Modified Robust
EM algorithm gives a high rate of correct estimation of K. Concerning Cases I. to V. and
Case VII., the rates are between 76% and 92%, allowing us to be confident in the estimates.
For cases implying the Setup C. the estimated GMM are worse, because two true Gaussian
clusters are almost overlapping. With n = 100, it becomes complicated to properly estimate
a GMM even with well-defined clusters: the best alert rate is 61% and the worst is 8%.
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Therefore, we must be aware that decrease the number of samples decrease the proportion of
good estimates K̂ and inherently the quality of estimation of parameters θ in our Modified
Robust EM.

Experiment Proportions of correct
estimates K̂ with

n = 400

Proportions of correct
estimates K̂ with

n = 200

Proportions of correct
estimates K̂ with

n = 100

Case I. 96% 90% 61%
Case II. 98% 87% 46%
Case III. 100% 92% 61%
Case IV. 100% 87% 59%
Case V. 92% 76% 42%
Case VI. 42% 20% 8%
Case VII. 99% 81% 51%
Case VIII. 54% 29% 22%
Case IX. 54% 34% 29%

Table 3.6: Proportions of correctly estimated number of components with Modified REM
among S = 100 runs. At each execution, the estimation is correct iff: K̂a = K

(1)
true and

K̂(0) = K
(0)
true. Bold numbers are performances of at least 80%.

But overall, the STMP performance is less affected than the Modified Robust EM by
changes of data sets size (Table 3.A.3.1). As we saw in Subsection 4.4.2, we reach 98% true
negative alerts for data sets of size n = 400. For data sets of size n = 200 we have 19 false
positive alerts, and for n = 100 we have 56 false positive alerts. For Cases II. to IV. the
proportion of success is 100% for all n values (Table 3.A.3.1). It even raises more alerts with
fewer points on Case VII. to Case IX., due to overlapping Gaussian components which are
estimated as one single component. For example if a t = 1 we are in Setup C. (Fig. 3.4(c)),
as two Gaussian components are hardly separable the pipeline will estimate one cluster for
the two components, and raise an alert as it is evolving away from the estimated distribution
at t = 0 (which could be Setup F. or M.).

Even if the Modified Robust EM becomes less accurate with smaller data sets, our
pipeline still produces interpretable and meaningful results. The problem of decreasing
performance on small dataset estimation should be solved directly on the Modified Robust
EM.

5 Application of STMP on a real life use case
In this section we demonstrate the relevance of STMP with GMM on real epidemiological
data from COVID-19 in Paris, France.

5.1 Presentation of the dataset
AP-HP (Assistance Publique-Hopitaux de Paris) is the largest hospital entity in Europe
with 39 hospitals (22,474 beds) mainly located in the greater Paris area with 1.5 M hos-
pitalizations per year (10% of all hospitalizations in France). Since 2014, the AP-HP has
deployed an analytics platform based on a clinical data repository, aggregating day-to-day
clinical data from 8.8 million patients captured by clinical databases. An “EDS-COVID”
database stemmed from this initiative. The AP-HP COVID database retrieved electronic
health records from all AP-HP facilities and aggregated them into a clinical data warehouse.
The clinical data warehouse allows for a large set of data to be retrieved in real time to
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deeply characterize hospitalized patients, including their residential address. New patients
who tested positive by polymerase chain reaction (PCR) as being infected by SARS-CoV-2
from the 24th of February to the 10th of May 2020 (weeks 9 to 19), in one of the AP-HP
hospitals and living in Paris constitute the dataset for this study. During this time period,
tests availability outside public hospital facilities were very limited, and therefore we can
consider in this study that this sample constitutes a representative sample of patients having
been positively tested during this period. To preserve privacy, residential addresses were
extracted at the IRIS level, which is a geographical division in France of residential units of
2000 inhabitants on average.

Integration into the spatio-temporal mixture process For each patient we have two
pieces of information: the week they were diagnosed positive, and their place of residence
at the IRIS level. We therefore use a week as a time step t in our process. Beginning from
the first week (week 9), which corresponds to the beginning of the pandemic in France,
we apply our STMP, keeping at each time t one of the models Ma or M ′ according to
the criterion defined in Subsection 3.1 with threshold τ given in Section 4. We have 5621
positive diagnosed patients over all weeks and all Paris IRIS areas. Table 3.7 informs us
that the number of cases per week is not homogeneous, as in first weeks, few cases living in
Paris were detected.

Week Number of positive diagnosed
people per week

9 5
10 18
11 272
12 965
13 1666
14 1297
15 695
16 366
17 209
18 114
19 14

Table 3.7: Distribution of positive diagnosed people to COVID-19
over weeks.

5.2 Comparison of the Robust EM and the Modified Robust EM
As described in Section 3.2, the Robust EM algorithm (Yang et al., 2012) has a convergence
problem, revealed on real datasets. Even if this algorithm is dynamic, it can be stuck in
an incorrect local maximum involving overlapping clusters. This phenomenon has been
detected on the real dataset of COVID-19 positive cases in Paris area. We compare here
the estimated GMMs by original Robust EM and by our Modified REM, which is correcting
this overlapping effect (Subsection 3.2).

A phenomenon revealed on real data On all weeks except week 13, the Robust EM
presents no overlapping clusters. It returns acceptable estimated mixture models. As there
are no abnormalities in the estimation process, our Modified Robust EM returns similar
results. It is illustrated by Figures 3.A.1(a) and 3.A.1(b) showing estimations on week 12
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for both algorithms. On week 13, the Robust EM algorithm presents overlapping clusters.
The final number of classes is 11, but the Figure 3.A.1(c) shows us that there are only nine
clusters. We can only detect superimposed clusters by doing a post-processing analysis,
which consists of checking the estimated parameters. Table 3.A.4.1 gives these estimated
parameters for both the Robust EM (Yang et al., 2012) and the Modified REM. From this
table we see that there are two pairs of superimposed clusters with mixture estimation by
Robust EM. By executing our Modified REM on the same week, independently of the other
time steps, we obtain nine clusters (Fig. 3.A.1(d) and Table 3.A.4.1), confirming that if
we merge redundant clusters, we obtain a stable solution, accepted by the algorithm. Our
Modified REM solves the problem of superimposed clusters. This avoids having to consider
post-processing inside STMP, which would require a user action at each time step. It also
allows us to solve a specific problem: to correctly model COVID-19 data in space and time.

5.3 Results of Spatio-Temporal Mixture Process
The aim here is to underline presence or absence of temporal constancy in COVID-19 data.
A temporal constancy would suggest that the population distribution was stable at the peak
of the pandemic. This is in line with epidemiological studies that were showing a "peak"
around these weeks after the first propagation phase (weeks 9 to 12) (see weekly reports of
Public Health Institution (France, 2020, Page 7, Figure 8)).

We use the fixed alert threshold τ = 1.1 in our pipeline, as estimated by previous
experiments in Section 4. On the first week (week 9), as the number of cases is very
low, the initial Modified Robust EM converges towards the removal of all clusters. The
final parameters correspond here to the initial ones, so we observe on Figure 3.8(a) initial
high variances and that each case is its proper cluster. The week 10 is still presenting a
low number of scattered cases, which are modelled by two global clusters, geographically
distributed on both sides of the river Seine. As from week 10 to week 11 (and week 11
to week 12) the number of cases is highly increasing, the model accepts new estimated
parameters θa. Our STMP reveals that the GMM estimated on week 12 with K̂(12) = 10
was accepted on 13th and 14th weeks. For reference, week 12 represents the beginning of
the lockdown and week 13 represents the peak of the pandemic, in terms of new positive
cases. This means that C-EM executed across 13th and 14th weeks fits very well the new
dataset each week with a source model estimated on week 12. Even if the number of
cases changes over time, STMP is able to detect a constant distribution. This is consistent
with the patients’ distribution on weeks 12, 13 and 14 as we can see on Figures 3.8 and
3.9. On week 15, STMP rejects the hypothesis that the patients’ dataset is approximated
by the mixture law estimated on previous weeks. The alternative model Ma is accepted.
Parameters θ(15) on week 15 are newly estimated, evolving too far from θ(14), estimated
parameters of week 14. It can be interpreted as the strong decrease of new positive cases
such as the disappearance of large clusters from previous weeks and the detection of large
and global clusters, corroborated by the Figure 3.9(a). On week 16, these three clusters
from week 15, large and non-informative, are accepted by STMP. On the following weeks
(weeks 17, 18 and 19), the number of cases is still decreasing. As on first weeks, the small
number of cases leads to accept totally new estimated parameters θa each week, without
link with previous weeks.

From Table 3.8, the likelihood ratio values are globally distant from our defined threshold
τ = 1.1, leaving no doubt about the choice of the best parameters θ(t) at each time step
t. Only on week 15 the likelihood ratio value is smaller that our defined threshold while
the temporal-dependent model M ′ is rejected. This rejection is due to large variations in
the covariance matrices during the C-EM stage. The model M ′ fits the new dataset by
excessively moving the covariance parameters inherited from M (14). There is no likelihood
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(a) Week 9 (There are only 5 cases, each case is center
of its own cluster.)

(b) Week 10

(c) Week 11 (d) Week 12

(e) Week 13 (f) Week 14

Figure 3.8: Estimated Gaussian Mixture Models on COVID-19 dataset per week (weeks 9
to 14).
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(a) Week 15 (b) Week 16

(c) Week 17 (d) Week 18

(e) Week 19

Figure 3.9: Estimated Gaussian Mixture Models on COVID-19 dataset per week (weeks 15
to 19).
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ratio value in the last week. This ratio is incalculable due to the "empty class phenomenon".
The model M ′ tries to remove a component which leads to an early stop of the estimation
process of this model. This triggers the inevitable choice of the alternative model and raises
an alert.

Week Estimated number
of classes K̂ by Ma

Estimated number
of classes K̂ by M ′

Likelihood
Ratio r

Accepted
model

9 5 None None M (0)

10 2 5 1.383 Ma

11 4 2 1.376 Ma

12 10 4 1.171 Ma

13 9 10 1.088 M ′

14 5 10 0.950 M ′

15 3 10 0.87 Ma

16 5 3 1.080 M ′

17 4 3 1.307 Ma

18 9 4 2.215 Ma

19 3 9 computationally
invalid

Ma

Table 3.8: Results of our process on positive diagnosed people in AP-HP hospitals with a
time step being a week. Bold numbers are corresponding final number of classes per week.

From the mathematical and algorithmic point of view we obtain interesting results, show-
ing that C-EM can over time sufficiently model evolving real-world data with a relatively
stable and high dataset size.

5.4 Interpretations
The results obtained with STMP on this COVID-19 dataset are coherent with public health
policy and COVID-19 transmission patterns during this time period. Lockdown in France
took place from the 17th of March (beginning of week 12) to the 1st of June. As it takes
about two weeks to go from contamination to cytokine storm, no evolution in clusters
was expected from week 12 to 14. Thereafter, a decrease in the number of clusters was
expected, associated with a moving distribution. Moreover, estimated clusters concentrate
closed to Paris periphery, which are low-income neighborhoods, known to favor COVID-19
transmission. The reject on week 15 of the previous time step model can be interpreted as
the effect of the lockdown, and we can observe the natural barrier formed by the Seine, as
people in France could only move in a perimeter of one kilometer during this lockdown. The
numerous clusters during week 18 are residual clusters not solved by the lockdown. They
mainly correspond to concentrated positive cases areas, whereas in the rest of the city there
are few and scattered cases.

5.5 Improve estimation of overly dispersed datasets
In our research on real datasets of rare diseases, we observed that estimation of mixtures on
small and widely scattered data can really be complicated. The joint estimation of mixture
models and the number of classes becomes even more difficult, and can lead to pathological,
unreliable results. The data we observe are very scattered, but at the same time aggregated
to a spatial grid that causes the superposition of several points (Fig. 3.10). From one time
step to the next, one can visually tell that the data changes a lot, and that there are small
clusters everywhere as some data points are superimposed. But at the same time one wants
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correct and stable models, which can approximate small clusters as well as the variability
of whole data.

As we will illustrate below, the Modified REM also has difficulties to estimate this type
of data. It can lead to estimated models with almost singular covariance matrices, or not
be able to keep more than one or two clusters to cover the whole population (Fig. 3.11(a),
3.11(c), 3.11(e)).

One way to improve estimation in this situation is to introduce a regularization on the
covariance matrices. Existing works consider an Inverse Wishart prior for the covariance
matrices (Fraley and Raftery, 2007; Baudry and Celeux, 2015; Fop et al., 2019), with Σ ∼
W−1(w,W ), w degrees of freedom and W scale matrix of prior distribution.

Scale matrices updates Σ̂p
k in the M-step of any EM-like algorithm are replaced at

iteration p (see Fraley and Raftery, 2007; Baudry and Celeux, 2015) by

Σ̂p,reg
k = Σ̂p

k + W

nk + w + d+ 1 . (3.8)

We see that the regularization matrix W is common to all the clusters. This consid-
eration was adopted by (Fraley and Raftery, 2007; Baudry and Celeux, 2015), and by Fop
et al. (2019) on graphs. The remaining point is definition of W and w, which results in
different propositions. Fraley and Raftery proposed W = S

K2/d with S the overall empirical
covariance matrix, and w = d + 2. This definition of W does not rely on any user-chosen
value. Later on, Baudry and Celeux (2015) proposed a new regularization which is smoother
than this one, but requires to fix an a priori weight on its importance.

We introduce here a scale prior for estimation of covariance matrices in Modified REM.
In this case, the covariance estimation step in Algorithm 3.2 can be replaced by Eq.(3.8)
with Σ̂p

k = Σ̂p
k,MLE ×

∑n
i=1 τ

k
i and Σ̂p

k,MLE being estimated by Eq.(3.12). There is no more
use of γ regularization constant and P matrix (see line 5 in Algorithm 3.2).

We retrieve on Figure 3.11 estimations on several time steps of MREM with or with-
out regularization. Without regularization, there can be more consistency between the
different time steps, but also clusters with little information (Fig. 3.11(a)), or as on Fig-
ure 3.11(c) several clusters on a restrictive area without whole variability consideration,
while MREM with regularization on the same data gives more variable but also more in-
formative clusters (Fig. 3.11(b),3.11(d)). Another highlighted problematic behavior can be
seen on Figure 3.11(e), where we observe a cluster with pathological covariance. Although
this obviously raises the question of the relevance of the continuous law considered, the
addition of a regularization already allows a better estimate (Fig. 3.11(f)).
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(a) Time step 1

(b) Time step 2

(c) Time step 3

Figure 3.10: Real datasets at three different time steps. The number of data items at the
exactly same location gives the size of the point on the figure.
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(a) MREM without regularization at T1 (b) MREM with regularization at T1

(c) MREM without regularization at T2 (d) MREM with regularization at T2

(e) MREM without regularization at T3 (f) MREM with regularization at T3

Figure 3.11: Results of estimations by Modified REM (MREM) without (on the left) and
with (on the right) covariance regularization for three time steps.
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6 Conclusion
We have proposed a complete and generic pipeline for modeling evolution of population
distribution, and detecting abnormal changes in this distribution. This STMP was combined
with new EM algorithm variants. Our application on public health data shows that this
STMP models population distributions well, and raises meaningful alerts.

The STMP for monitoring population distributions and the algorithms to estimate the
models are independent objects. This enables future directions of our work when integrating
covariates following non-Gaussian distributions in the mixture. We will still be able to use
our proposed algorithms as they are blind to the distributions in the mixture.

On the other hand, the performance of the EM algorithms depends on the dataset
sizes. We could also try to introduce a temperature parameter in the Modified Robust
EM as proposed by Allassonnière and Chevallier (2021) to improve estimations in unstable
situations.

Finally, the decision rule was empirically fixed in this work. In future work this decision
rule could be modeled as an acceptation probability, taking advantage of Monte Carlo
Markov Chains theory.
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3.A Appendices
3.A.1 Equations for mixture parameters estimation in the origi-

nal EM algorithm (Dempster et al., 1977)
The EM algorithm alternates between the two following steps (until convergence criterion
is met). At the pth iteration of the algorithm, the update equations are given by:

• E-step : Compute the conditional expectation of the complete log-likelihood. Latent
variables zk

i are discrete, so their conditional expectations are given by

pθ(zk
i = 1|xi) = πkNd(xi|µk,Σk)∑K

j=1 πjNd(xi|µj ,Σj)
= τk

i (θ) .
(3.9)

• M-step : Update the parameter estimates:

π̂p
k,MLE = 1

n

n∑
i=1

τk
i , (3.10)

µ̂p
k,MLE =

∑n
i=1 τ

k
i xi∑n

i=1 τ
k
i

, (3.11)

Σ̂p
k,MLE =

∑n
i=1 τ

k
i (xi − µi)⊤(xi − µi)∑n

i=1 τ
k
i

. (3.12)
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3.A.2 Pseudo-Code of the Modified Robust EM presented in Sec-
tion 3

Algorithm 3.2: Modified Robust EM
Initialization : data set X ∈ Rn×d, ε > 0
K0 ← n
p← 0, β0 ← 1
π0

k ← 1/n, µ0 ← X
Σ0

k ← Dk(⌈
√

Kinitial ⌉)Id with
Dk = sort

{
d2

k(i) = ∥xi − µk∥2 : d2
k(i) > 0, i ̸= k, 1 ≤ i ≤ n

}
Compute τk,0

i with (3.9)
p← 1
Compute µp

k with (3.11)
1 while max1≤k≤Kp ∥µp+1

k − µp
k∥2 > ε or Eq. (3.6) is verified for some clusters do

Compute πp
k with (3.4)

πEM
(1) ← max

1≤k≤Kp
πp,EM

k , π(old)
(1) ← max

1≤k≤Kp
π

(old)
k

E ←
∑Kp

k=1 π
(old)
k ln π(old)

k

βp ← min
{∑Kp−1

k=1 exp
(

−ηn
∣∣πp

k
−π

(old)
k

∣∣)
Kp−1 ,

(
1−πEM

(1)

)(
−π

(old)
(1) E

)}
Update class number Kp−1 to Kp by deleting classes with πp

k < 1/n, then
adjust πp

k and τk,p−1
i

if Kp−1 ̸= Kp then
pcomponent ← 1 /* variable to keep in memory the number of
iterations with a stable number of components */

end

if p ≥ pmin and pcomponent ≥ 100 then
2 if no superimposed clusters (condition (3.6) not fulfilled) then

βp ← 0
3 else if superimposed clusters and pcomponent < 200 then /* give more

time to the algorithm to converge */
pmin ← pmin + 50

4 else merge superimposed clusters
adjust πp, µp, Σp and τp−1 by removing redundant clusters and
computing τp−1

end
end

5 Compute Σk,MLE with (3.12) and Σp
k = (1− γ)Σk,MLE + γP with

γ = 0.0001, P = d2
minId, d

2
min = min ∥xi − xj∥2

2 > 0, 1 ≤ i, j ≤ n

Compute τk,p
i with (3.9)

Compute µp+1
k with (3.11)

p← p+ 1
pcomponent ← pcomponent + 1

end
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3.A.3 Supplementary analyses of Section 4

Case
I.

Case
II.

Case
III.

Case
IV.

Case
V.

Case
VI.

Case
VII.

Case
VIII.

Case
IX.

n Threshold

400 1.00 78% 100% 100% 100% 99% 67% 99% 96% 55%
1.05 2% 100% 100% 100% 2% 21% 4% 69% 1%
1.10 2% 100% 100% 100% 2% 2% 2% 29% 1%
1.15 2% 100% 100% 100% 2% 1% 1% 7% 1%
1.20 2% 100% 100% 99% 2% 1% 1% 4% 1%
1.25 2% 100% 100% 92% 2% 1% 1% 4% 1%
1.30 2% 100% 100% 81% 2% 1% 1% 2% 1%
1.35 2% 100% 99% 73% 2% 1% 1% 2% 1%
1.40 2% 100% 98% 72% 2% 1% 1% 2% 1%

200 1.00 80% 100% 100% 100% 91% 55% 98% 94% 58%
1.05 19% 100% 100% 100% 22% 38% 27% 71% 26%
1.10 19% 100% 100% 100% 18% 20% 16% 47% 21%
1.15 18% 100% 100% 100% 16% 18% 14% 38% 19%
1.20 17% 100% 100% 96% 13% 17% 14% 30% 19%
1.25 17% 100% 100% 91% 13% 17% 13% 29% 19%
1.30 17% 100% 100% 81% 13% 17% 13% 28% 19%
1.35 17% 100% 99% 75% 13% 17% 13% 26% 19%
1.40 17% 100% 98% 71% 13% 17% 13% 26% 19%

100 1.00 78% 100% 100% 100% 89% 74% 96% 96% 84%
1.05 62% 100% 100% 100% 72% 71% 75% 89% 74%
1.10 56% 100% 100% 100% 70% 63% 70% 80% 71%
1.15 56% 100% 100% 100% 69% 54% 70% 77% 67%
1.20 54% 100% 100% 99% 64% 51% 68% 72% 64%
1.25 54% 100% 100% 97% 60% 51% 67% 68% 63%
1.30 53% 100% 100% 93% 60% 51% 64% 67% 63%
1.35 53% 100% 98% 89% 58% 49% 63% 66% 62%
1.40 53% 100% 97% 86% 58% 49% 63% 66% 62%

Table 3.A.3.1: Percentage of raised alerts by STMP for each experiment (S = 100 runs)
on datasets of n points. For each size n and each case is provided the number of alerts for
different values of the alert threshold. Bolded numbers are the best percentages: equal or
over 80% when the algorithm has to raise an alert, and under 10% when no alert should be
raised. Color (red) represents percentages corresponding to selected threshold of 1.1.
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Chapter 3. Spatio-temporal mixture process estimation to detect dynamic changes in
population

3.A.4 Results on the COVID-19 data set of Section 5

(a) Results of the original Robust EM on week 12.

(b) Results of our Modified Robust EM on week 12.

Figure 3.A.1: Estimated GMM labels and centers by Robust EM (Yang et al., 2012) and
Modified Robust EM on COVID-19 data set on weeks 12 and 13. Green dots are centers of
the clusters. (a) and (b) for week 12, (c) and (d) for week 13.
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(c) Results of the original Robust EM on week 13. We obtain here overlapping clusters.

(d) Results of our Modified Robust EM on week 13.

Figure 3.A.1: Estimated GMM labels and centers by Robust EM (Yang et al., 2012) and
Modified Robust EM on COVID-19 data set on weeks 12 and 13. Green dots are centers of
the clusters. (a) and (b) for week 12, (c) and (d) for week 13.
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Parameter Robust EM (Yang et al., 2012) Modified Robust EM

π̂



0.020
0.036
0.036
0.049
0.049
0.199
0.039
0.105
0.058
0.346
0.063





0.016
0.065
0.093
0.209
0.034
0.090
0.053
0.392
0.049



µ̂



2.349 48.831
2.365 48.826
2.365 48.826
2.316 48.888
2.316 48.888
2.317 48.840
2.270 48.850
2.388 48.847
2.384 48.889
2.364 48.878
2.403 48.867





2.349 48.831
2.365 48.826
2.315 48.888
2.317 48.840
2.270 48.850
2.389 48.846
2.384 48.889
2.366 48.878
2.404 48.866



Σ̂



3.695e−5 3.240e−5
3.240e−5 3.290e−5
−−−−− −−−−−
6.924e-5 1.184e-5
1.184e-5 2.077e-5
−−−−− −−−−−
6.924e-5 1.184e-5
1.184e-5 2.077e-5
−−−−− −−−−−
3.241e-4 1.112e-4
1.112e-4 5.957e-5
−−−−− −−−−−
3.241e-4 1.112e-4
1.112e-4 5.957e-5
−−−−− −−−−−
5.979e−4 −8.670e−5
−8.670e−5 9.837e−5
−−−−− −−−−−
4.250e−5 4.085e−5
4.085e−5 6.039e−5
−−−−− −−−−−
2.514e−4 −7.294e−5
−7.294e−5 6.280e−5
−−−−− −−−−−
6.213e−5 −3.206e−5
−3.206e−5 2.236e−5
−−−−− −−−−−
4.057e−4 −1.018e−4
−1.018e−4 1.3259e−4
−−−−− −−−−−
3.807e−5 −4.028e−5
−4.028e−5 8.984e−5





3.689e−5 3.244e−5
3.244e−5 3.240e−5
−−−−− −−−−−
6.842e−5 1.149e−5
1.1486e−5 2.044e−5
−−−−− −−−−−
3.229e−4 1.126e−4
1.126e−4 6.060e−5
−−−−− −−−−−
6.399e−4 −9.709e−5
−9.709e−5 9.991e−5
−−−−− −−−−−
3.931e−5 3.834e−5
3.834e−5 5.746e−5
−−−−− −−−−−
2.236e−4 −5.983e−5
−5.983e−5 5.316e−5
−−−−− −−−−−
6.068e−5 −3.226e−5
−3.226e−5 2.264e−5
−−−−− −−−−−
4.322e−4 −1.135e−4
−1.135e−4 1.462e−4
−−−−− −−−−−
3.127e−5 −3.657e−5
−3.657e−5 8.499e−5



Table 3.A.4.1: Estimated parameters by Robust EM (Yang et al., 2012) and Modified
Robust EM on week 13 of the COVID-19 dataset. These estimations were performed inde-
pendently of previous time steps. Bolded numbers indicate overlapping clusters.
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Chapter 4

Dynamic
Expectation-Maximization
Algorithms for Mixed-type
Data

This chapter details the methodological developments of mixture models designed for mixed-
type data. Component distributions of the continuous attributes can be either Gaussian,
Student or Shifted Asymmetric Laplace. Categorical or discrete attributes, assumed inde-
pendent conditionally on the class membership, can be distributed according to Bernoulli,
Multinomial or Poisson distributions. The joint estimation of the number of classes and the
parameters is carried out by EM-like algorithms that we have adapted to perform correctly.
We show that our different dynamic algorithms allow us to reach the real number of classes
and to correctly estimate the parameters of the discrete and continuous laws. We also high-
light the benefits of introducing regularization to improve performance in situations where
the sample size is insufficient for the complexity of the model. Our various models are then
tested on real datasets from the literature, assessing that the objective of jointly estimating
the number of components and the model parameters has been achieved.
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1 Introduction
A mixed-type dataset is given by a collection of individual data containing both quantitative
and qualitative variables. Mathematically, this corresponds to the representation of each
subject by a combination of continuous and discrete variables. Mixed datasets are ubiquitous
in many disciplines and, with the era of so-called ’big data’, the availability of datasets
composed of heterogeneous data sources and types will continue to increase. Statistical
analysis of mixed-type data is therefore still a hot topic, whether for clustering, inference
or dimension reduction.

1.1 Strategies for mixed-type data
Mixed-type data contain both continuous and categorical (nominal and/or ordinal) vari-
ables. As detailed in recent review papers (Foss et al., 2019; Ahmad and Khan, 2019), we
can consider several types of strategies to model and cluster mixed-type data.

Firstly, there are methods designed for a single type of data, which require data transfor-
mation approaches, such as discretization of continuous variables in order to use categorical
data methods (Goodman, 1974; Huang, 1997b), or numerical coding of discrete variables
(McCane and Albert, 2008) to be suitable for continuous methods. In this case, the pos-
sibilities go from replacing a level by a median to dummy coding, and to more complex
methods like copulas.

Copulas Copulas are multivariate cumulative functions with uniform marginals. They
imply several restrictive properties but have an interesting flexibility, because we can use a
wide variety of copulas to model a set of variables and the copula captures the dependence
among the variables, continuous and discrete, independently of their one-dimensional mar-
gins. Continuous variables in Rd and discrete variables are mapped onto a one-dimensional
latent space between zero and one by computation of their marginal cumulative distribu-
tion functions. Then, the cumulative distribution function of the copula is obtained by joint
computation on inverse cumulative distribution functions of latent variables.
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As we see, copulas can be used on mixed-type variables, under the guise of defining
the dependency structure of the copula. Gaussian copulas, which provide one correlation
coefficient per pair of variables, were first associated with mixed-type data by Smith and
Khaled (2012) (and Murray et al. (2013)). Then appeared mixture models of copulas for
mixed-type data (Kosmidis and Karlis, 2016; Marbac et al., 2017; Sahin and Czado, 2022).
The first work on these models (Kosmidis and Karlis, 2016) introduced mixture models
of copulas, with separated copulas for continuous variables and discrete variables. With
the work of Marbac et al. (2017) mixture models of Gaussian copulas are introduced and
formalized for mixed-type data. Continuous variables follow Gaussian distributions, integer
variables Poisson distributions and ordinal variables Multinomial distributions. Then the
joint model is defined such as discrete variables are conditioned on the continuous ones. A
source of difficulty with copulas lies in the lack of uniqueness and identifiability. In fact,
if at least one margin is not continuous, the copula is not unique. Moreover, the overall
joint multivariate distribution can be difficult to understand when marginal and copula are
specified separately. In addition, some copulas have no simple closed-form expressions.

Hybrid distances On the other hand, there are methods involving hybrid distances that
can take into account both continuous and categorical variables. The Kullback-Leibler
divergence, well-known in statistical learning, is the base of several mixed-type data dis-
tances (Barhen and Daudin, 1995; De Leon and Carrière, 2005). A popular hybrid distance
is Gower’s distance, combining relative absolute difference for continuous variables and
indicators for categorical variables, used for example in combination with the partitioning
around medoids (PAM) method (Kaufman and Rousseeuw, 1990). Another clustering strat-
egy using the hybrid distance technique is the k-prototypes algorithm (Huang, 1997a, 1998),
relying on square Euclidean distance for the continuous variables, and a fixed weight for the
whole categorical variable contribution. A frequent limitation of these hybrid distances is
the need to use and properly choose weights dictating the relative contribution of each of
the variables. Later on, Foss et al. (2016) proposed a method relaxing the parametric hy-
pothesis of mixture models by combining them with k-means algorithms, named KAMILA
(package by Foss and Markatou (2018)). Within each cluster, the density function is ex-
pressed as a function of a radial kernel density estimate computed on Euclidean distances of
continuous values to the nearest center. The categorical variables are assumed independent
within a subpopulation and follow multinomial distributions for which the parameters are
also estimated. As with other models implying multinomial laws, an important number
of multinomial levels requires a commensurate sample size. In addition, they consider a
univariate density kernel and rely on hard assignment through partition steps as in the
k-means method.

In the same scope, spectral clustering, which uses graph theory to propose a clustering
on a graph of similarities between individuals, is adapted for mixed-type data (Mbuga and
Tortora, 2021). The traditional Euclidean similarity distance is replaced by a global dissim-
ilarity weighting both continuous dissimilarity and nominal dissimilarity before computing
kernel transformation and eigenvalue decomposition for a k-means execution. Spectral clus-
tering for mixed data requires tuning continuous/nominal weight and kernel parameters,
but the main limitation is the decomposition of sample size matrices.

Mixture models Among the direct approaches, mixture models are efficient in this
mixed-type data context because they can produce generative models, take into account
many types of data, manage dependencies between and within variables, and capture a
wide range of scenarios. The mixture models allow for obtaining latent classes, which can
be used for a clustering goal, but also for some perspectives like dimension reduction, ex-
ploration or interpretability of the estimated distributions.
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The use of mixture models in this context raises the question of how to jointly model
these different types of data, which must all appear in the mixture model. A first approach
is to consider that continuous variables are dependent on discrete variables. This leads
to considering that we evaluate the continuous variables for each possible realization of
all discrete variables. A limitation is the number of combinations increasing exponentially
with the number of levels and variables. This may lead to small sample sizes within each
categorical class. Moreover, these models can lack identifiability, as proved for the mixture
of location models (Willse and Boik, 1999).

A common mixture model for mixed-type data is the normal-multinomial mixture model
(Hunt and Jorgensen, 1996; Fraley and Raftery, 2002), where given cluster membership, the
data follow a joint distribution with a normal distribution for the continuous variables, and
a multinomial distribution per categorical variable, assuming conditional independence be-
tween the continuous and categorical variables but also within the categorical variables.
This is called local independence and is an important property often required for identifia-
bility of models. A way to characterize dependence within categorical variables is to define
new levels corresponding to a combination of the original categorical variables. For de-
pendence between continuous and categorical variables, we can rely as above on numerical
coding of categorical variables with a flexible covariance structure. This includes mixtures
of factor analyzers (Ghahramani and Hinton, 1996; McLachlan and Peel, 2000; McLachlan
et al., 2003), originally combining clustering and dimensional reduction, which were also
adapted for mixed-type data through a combination of item response theory models and
factor models but also expensive computation (McParland et al., 2014, 2017). In the same
decade, Browne and McNicholas (2012) and McParland and Gormley (2016) proposed latent
variable mixture models where latent variables follow Gaussian distributions. In the work
of Browne and McNicholas (2012), categorical (multiple levels) variables are related to these
latent variables by a latent trait model and continuous variables by a factor model. But nu-
merical estimations are complicated by heavy computation of approximations of intractable
integrals. With their model named clustMD, McParland and Gormley (2016) developed a
mixture of latent Gaussian distributions, with parsimonious covariance structures for the
latent variables. Each variable, continuous, ordinal or nominal is, independently of other
variables, a manifestation of an underlying continuous latent variable. With the local inde-
pendence assumption, they do not model any dependencies between mixed-type variables.
In the presence of categorical variables, they resort to computationally heavy Monte-Carlo
simulations.

Linear mixed models, considered for mixed-type data with longitudinal data and fixed
effects, can also be integrated within mixture models when homogeneous regression rela-
tionship across subjects is violated (Celeux et al., 2005; Proust-Lima and Jacqmin-Gadda,
2005; Bai et al., 2016; Lee and Chen, 2019).

1.2 Mixture models for continuous distributions
In Chapter 2 we recalled the general expression of mixture models. When the data are
multivariate real-valued observations, the usual probability density for each group is the
multivariate Gaussian distribution. But in the presence of extreme, scattered, heavy-tailed
data, the assumption of normality of the data may no longer be relevant, and we refer here
to some works which have proposed mixtures of laws other than Gaussian and which will
subsequently be used in our models.

The Student distribution Student’s distributions provide a longer-tailed alternative to
the normal distribution, and are more robust to atypical observations. First proposition of
a mixture of t-distributions was made in the paper of McLachlan and Peel (1998), and Peel
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and Mclachlan (2000) gave an algorithm description to estimate the parameters of these
models. A t-distributions mixture can be seen as a normal distribution that is embedded in
a wider class of elliptically symmetric distributions, with an additional parameter called the
degrees of freedom ν. Literature on t-distributions and mixtures of t-distributions especially
concentrate on the problem of noisy data, by considering for example a "ghost" class which
should capture the outlier points in a clustering context (Lange et al., 1989; McLachlan and
Peel, 1998).

Skew distributions Franczak et al. (2014) introduced another non-Gaussian mixture
approach that allows for skewness, based on Asymmetric Laplace (AL) distribution (Kotz
et al., 2001). The Shifted (or not) Asymmetric Laplace distribution is part of the family of
generalized hyperbolic distributions, such as the normal inverse Gaussian distribution. In
their work, Franczak et al. (2014) propose a Shifted version of AL distribution, allowing for
flexibility in the position of the clusters as in Normal or Student distribution. Moreover,
they describe the estimation of their model, based on the Expectation-Maximization (EM)
algorithm. In another paper, Franczak et al. (2015) proposed the Multiple Scaled Shifted
Asymmetric Laplace distribution, which guarantees convex level sets, similar to elliptical
distributions such as the Gaussian.

Besides the Shifted Asymmetric Laplace distribution, there exist skewed versions of the
Normal (Azzalini, 1985; Azzalini and Valle, 1996; Arellano-Valle and Azzalini, 2006) and
Student (Jones and Faddy, 2003; Azzalini and Capitanio, 2003) distributions to deal with
asymmetric behaviors. Later works introduced mixture with these skew Normal (Lin et al.,
2007; Lin, 2009) or Student (Lin, 2010; Lee and McLachlan, 2012) distributions.

1.3 Estimation of mixture models and model selection
The classical algorithm to estimate mixture models is the Expectation-Maximization (EM)
algorithm introduced by Dempster et al. (1977). It was applied to Gaussian mixture models,
and later on, was extended to other continuous distributions (Peel and Mclachlan, 2000;
Franczak et al., 2014; Lin et al., 2007; Lin, 2010; Vrbik and McNicholas, 2012; Lee and
McLachlan, 2012), still coming with the well-known limits as described in the Chapter 2,
which are sensitivity to the initialization, convergence towards the space boundaries, and
selection of the number of components.

To solve the sensitivity drawback, several strategies rely on repetitions of a random
initialization step or initialization with K-means algorithm (Baudry and Celeux, 2015).
Recently, Lartigue et al. (2022) introduced an annealing E-step to better stride the sup-
port and become almost independent of the initialization in a Gaussian context. Franczak
et al. (2014) also considered deterministic annealing in a SAL context, only during their
initialization part.

Another challenge posed by EM-type algorithms is the selection of the number of classes,
and intrinsically the choice of model. Beyond the classical model selection criteria (Akaike,
1973; Schwarz, 1978; Birgé and Massart, 2007), dynamic algorithms appeared in the last
years, to simultaneously overcome the need for a collection of models, find the optimal
number of classes, and avoid bad local maxima: from penalization of the objective function
(Figueiredo and Jain, 2002; Law et al., 2004; Yang et al., 2012) to dynamic slope heuristic
criterion (Birgé and Massart, 2007) inside EM algorithm (Derman and Pennec, 2017), and
split-and-merge EM algorithm (Wang et al., 2004; Zhang et al., 2004). From this collection
of methods, few reduce the estimation process from a collection of models to a single one.
This is the case of the work of Yang et al. (2012), who associates a single-run EM-like
algorithm with an estimation of the number of classes and robustness to initialization.
Later on, we solved in Chapter 3 two weaknesses of their method, which are inadequate
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early stopping of the algorithm, and lack of superimposed clusters detection, leading to
surely incorrect local maxima.

In this present work we seek to deal with the same two problems of the EM algorithm:
find the optimal number of classes and avoid sensitivity at Initialization. These objectives,
combined with the estimation of mixture models on mixed-type data lead us to consider
dynamic estimation algorithms for various continuous laws as described above and discrete
variables also as appearing in mixed-type data literature.

1.4 Contributions
In this chapter, we propose three main algorithms, to estimate respectively Gaussian, Stu-
dent and Shifted Asymmetric Laplace (SAL) distributions, in association with any set of
discrete variables simulated from the following distributions: Bernoulli, Multinomial or
Poisson. Our general framework, from the EM-type, combines the estimation of parameters
of the defined mixture models with the estimation of the number of classes in this mixture,
which is an important objective in many statistical applications. For each continuous law
considered, we have adapted the general framework, taking inspiration from various propos-
als in the literature, to correctly estimate the parameters of the mixtures using a dynamic
algorithm. We perform simulations on synthetic data, as well as comparisons on model
selection and parameter estimation, and show that our algorithms estimated on mixed data
find the right number of classes and estimate the numerous model parameters correctly. We
apply our methods to two datasets from the literature, each containing different types of
variables: a Prostate Cancer dataset and an Australian Institute of Sport dataset. Section 2
contains definitions of considered continuous distributions and how they are estimated by
existing EM-like algorithms. Section 3 introduces the general model for mixed-type data
and its variants for each continuous distribution. Section 4 details the different dynamic
algorithms and associated algorithmic assumptions. Section 5 presents numerical results
on synthetic data and Section 6 shows results on the two real datasets. Section 7 provides
concluding remarks and perspectives of this work.

2 Background on mixture models
In this section, we describe the formalization of mixture models for the continuous distri-
butions under consideration, i.e. Gaussian, Student and SAL. We also present the EM
equations and the different variants of this algorithm for estimating these numerous mix-
tures.

Definition of a mixture model Sample x ∈ Rg is drawn by a mixture model with K
components if its probability density function (pdf) is written as

p(x; Θ) =
K∑

k=1
πkpg(x; θk) , (4.1)

where Θ = (ξ,π) with π = (π1, . . . , πK) vector of class proportions, which sum to one and
ξ contains elements of θk (distribution parameters of each class k) for all k ∈ {1, . . . , K}.

2.1 Gaussian Mixture Models
We now consider n independent draws of a mixture of Gaussian distributions, x =
(x1, . . . ,xn) with xi ∈ Rg. Latent variables (zi)i=1,...,n are introduced, such that each
zi is following a categorical distribution of parameter π. This information is then encoded
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as a K-dimensional binary variable zi where zk
i = 1 corresponds to observation xi belonging

to cluster k. For the sake of brevity, we will write in the future for all models that zi follows
a categorical distribution of parameter π and is directly 1-of-K encoded.

Complete model The complete Gaussian mixture model writes{
zi ∼ Categorical(π) ,
xi|zk

i = 1 ∼ Ng(µk,ΣK) . (4.2)

2.1.1 EM equations

The complete-data likelihood for a Gaussian mixture model (GMM) defined by Model (4.2)
is

Lc(Θ) =
n∏

i=1

K∑
k=1

[πkϕg(xi|µk,Σk)]z
k
i , (4.3)

with ϕg multivariate Normal distribution of dimensions g, and the set of parameters is here
Θ = (π,µ,Σ).

The E-step Compute Q(Θ; Θ(t−1)) the conditional expectation of the complete-data log-
likelihood log Lc(Θ) given observed data and using current fit at iteration t. For a Gaussian
mixture, the E-step corresponds to the computation of the current conditional expectation
of zk

i for each component k and individual i:

pΘ(t)(zk
i = 1|xi) = πt

kϕg(xi|θt
k)∑K

j=1

(
πt

jϕg(xi|θt
j)
)

= τ t
ik .

(4.4)

The M-step Maximize Q(Θ; Θ(t−1)) to find Θ(t), which gives the following update equa-
tions:

π̂t
k = 1

n

n∑
i=1

τ t
ik , (4.5)

µ̂t
k =

∑n
i=1 τ

t
ikxi∑n

i=1 τ
t
ik

, (4.6)

Σ̂t
k =

∑n
i=1 τ

t
ik(xi − µi)⊤(xi − µi)∑n

i=1 τ
t
ik

. (4.7)

Note Computation of pΘ(t)(zk
i = 1|xi) for other continuous mixture models will provide

similar equations of τ t
ik, with the pdf of a Gaussian N (·) replaced by the pdf of the corre-

sponding law.

2.2 Student Mixture Models
We recall in this subsection definitions and properties of a Student mixture model (McLach-
lan and Peel, 1998; Peel and Mclachlan, 2000).
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Definition The family of t-distributions provides heavy-tailed alternatives to the normal
family. A g-dimensional random variable X follows a multivariate t-distribution of pdf
pg(µ,Σ, ν) with center µ, positive definite inner product matrix Σ and degrees of freedom
ν ∈ (0;∞]:

pg(x; µ,Σ, ν) =
Γ(ν+g

2 )|Σ|−1/2

(πν)g/2Γ(ν
2 ){1 + δ(x,µ; Σ)/ν}

(ν+g)
2

, (4.8)

where δ(x,µ; Σ) = (x− µ)⊤Σ−1(x− µ) is the Mahalanobis distance.

Another characterization Given a scaling variable U ∈ R, X has a multivariate normal
distribution, and νU is X 2

ν with

X|U ∼ N (µ,Σ/U) and U ∼ X 2/ν .

We can also write U as a Gamma distributed random variable: U ∼ Γ(1
2ν,

1
2ν), and this

characterization of variable X corresponds to the normal scale model (McLachlan and Peel,
1998), with pdf

p(x|θ) =
∫
ϕ(x;µ,Σ/u)dH(u) ,

where H is in our case the pdf of U defined above.
As ν →∞, then U → 1 with probability 1 and X becomes marginally Ng(µ,Σ).

Mixture of multivariate t-distributions We consider n independent draws of a mix-
ture of t-distributions, x = (x1, . . . ,xn). Following the general definition of a mixture
model in Chapter 2, and as for GMM, latent variables (zi)i=1,...,n are introduced, such that
each zi is following a categorical distribution of parameter π. With this characterization,
the observed data augmented by (zi)i=1,...,n are still incomplete, requiring to introduce ad-
ditional missing values u1, . . . , un, which are defined so that for each observation i, given
zk

i = 1,
Xi|ui, z

k
i = 1 ∼ Ng(µk,Σk/ui) (4.9)

and
Ui|zk

i = 1 ∼ Γ(1
2νk,

1
2νk) . (4.10)

Complete model Given z1, . . . ,zn the missing variables U1, . . . , Un are independently
distributed according to Eq.(4.10). The complete-data vector for a mixture model of Stu-
dent distributions is then given by y = (x1, . . . ,xn, z1, . . . ,zn, u1, . . . , un), where x1, . . . ,xn

are observed continuous data, z1, . . . ,zn component-label vectors and u1, . . . , un latent vari-
ables. The complete model is then

zi ∼ Categorical(π) ,
ui|zk

i = 1 ∼ Γ(1
2νk,

1
2νk) ,

xi|ui, z
k
i = 1 ∼ Ng(µk,Σk/ui) .

(4.11)

2.2.1 EM equations

The complete-data likelihood for a Student mixture model defined by Model (4.11) is

Lc(Θ) =
n∏

i=1

K∑
k=1

[
πkNg(xi|µk,Σk/ui)× Γ(ui,

νk

2 ,
νk

2 )
]zk

i

. (4.12)
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The E-step As defined in the complete model, we have here two sets of latent variables:
z and u. The current conditional expectation of latent variables z leads to the same τik

equation as in a Gaussian mixture model, with Student pdf in numerator and denominator
of Eq.(4.4). Computation of current conditional expectation of Ui for each individual i leads
to

EΘ(t) [Ui|xi, z
k
i = 1] = νt

k + g

νt
k + δ(xi,µt

k; Σt
k) = Et

u,ik (4.13)

with δ(xi, νk; Σk) the Mahalanobis distance.

The M-step The M-step maximizes Q(Θ; Θ(t−1)) to find Θ(t). In the Student case, the
proportions π are estimated as in Gaussian Mixture Models, so by the Eq.(4.5), and the
centers and covariances parameters by the following equations:

µ̂t
k =

∑n
i=1 τ

t
ikE

t
u,ikxi∑n

i=1 τ
t
ikE

t
u,ik

, (4.14)

Σ̂t
k =

∑n
i=1 τ

t
ikE

t
u,ik(xi − µi)⊤(xi − µi)∑n

i=1 τ
t
ik

. (4.15)

As described by Peel and Mclachlan (2000), the divisor
∑n

i=1 τ
t
ik in Eq.(4.15) can be

replaced by
∑n

i=1 τ
t
ikE

t
u,ik. They affirm that it converges faster than the conventional EM

algorithm, following the proposition of Kent et al. (1994) for a single component t distri-
bution. However, as we are already on a particular adaptation of the EM algorithm, and
using multicycling as described in the next part, we do not consider this modification in co-
variances update. We also noticed that several implementations of Student mixture models
did not include this change in covariances estimation.

One advantage of t-distribution is that the degree of robustness, controlled by ν, can be
inferred from the data. As shown in the paper of Lange et al. (1989), the degrees of freedom
are solutions of fixed point equations. Each ν̂t

k is solution of the equation{
−ψ

(1
2ν
)

+ log
(1

2ν
)

+ 1 + 1
nt

k

n∑
i=1

τ t
ik

(
logEt

u,ik − Et
u,ik

)
+ψ

(
ν̂t−1

k + g

2

)
− log

(
ν̂t−1

k + g

2

)}
= 0 ,

(4.16)

where nt
k =

∑n
i=1 τ

t
ik.

The solutions of these equations can be found using a one-dimensional point search, such
as Newton’s method. This last method was used in several works on Student distributions
and then mixtures (Lange et al., 1989; Peel and Mclachlan, 2000), but from the variations
of the left-hand equation, it can be replaced as we will show in Subsubsection 4.2.2.

ECM/ECME The Expectation/Conditional-Maximization (ECM) algorithm was first
mentioned by Meng and Rubin (1993). The ECM algorithm consists in replacing the original
M-step with a sequence of conditional maximization steps (CM-steps). In the case of two
CM-steps in a Student mixture model, they are defined as follows at iteration t:

• CM-Step 1. Fix ν̂t−1 and calculate µt,Σt by maximizing Q(Θ; Θ(t−1))

• CM-Step 2. Fix µ̂t, Σ̂t and calculate νt by maximizing Q(Θ; Θ̃(t))
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Their proposition was primarily to take advantage of possible simple CM-steps instead
of a complicated M-step, for example in the presence of missing data, and Liu and Rubin
(1995) noted that for unknown ν, the ECM algorithm speeds up compared to EM algorithm.
It was also proposed to introduce an intermediate E-step between the CM-steps, and this
becomes a multicycle ECM algorithm (Meng and Rubin, 1993; Liu and Rubin, 1995). Peel
and Mclachlan (2000) consider the ECM algorithm in their paper, but as parameters are
estimated independently, these two CM-steps are equivalent to the M-step in the EM al-
gorithm. They ended up using the multicycle version. In the ECME proposed by Liu and
Rubin (1994), the ECM’s CM-steps are replaced by steps that maximize constrained actual
log-likelihood function L(Θ) instead of constrained expected complete-data log-likelihood.
However, in many applications, the ECME algorithm relies on complex computations for
the parameters equations, or a high-complexity optimization problem with maximization of
a function involving K variables to obtain one degree of freedom, and is not applied here.

2.3 Shifted Asymmetric Laplace Mixture Models
We recall in this subsection definitions and properties of the Shifted Asymmetric Laplace
(SAL) mixture model as proposed by Franczak et al. (2014).

Definition The probability density function of a random variable X distributed according
to a SAL distribution is

2 exp
{
(x− µ)⊤Σ−1α

}
(2π)g/2; Σ|1/2 ×

(
δ(x,µ|Σ)

2 + α⊤Σ−1α

)ν/2
Kν(u) , (4.17)

with α ∈ Rg skewness parameter, µ ∈ Rg shift parameter, Σ ∈ Rg×g scale matrix, Kν

modified Bessel function of third kind, with index ν = 2−g
2 , δ is the Mahalanobis distance,

and u =
√

(2 + α⊤Σ−1α)δ(x,µ; Σ).
As detailed by Kotz et al. (2001), an Asymmetric Laplace random variable X admits

the representation
X = Wα +

√
WY, W ∼ E(1), Y ∼ Ng(0,Σ) , (4.18)

with W a random variable from an exponential distribution with rate 1, and Y ∈ Rg×g a
random variable from a Normal distribution with mean 0g and covariance matrix Σ. When
including a shift parameter as described by Franczak et al. (2014), the random variable X
can be generated through

X = µ +Wα +
√
WY, W ∼ E(1), Y ∼ Ng(0,Σ) . (4.19)

And so, X|W = w ∼ Ng(µ + wα, wΣ).

This parametrization of Shifted Asymmetric Laplace random variables requires addi-
tional latent variables w in the mixture model, in order to obtain a complete model com-
putable by EM algorithms. The distribution of W conditional on the data is obtained using
Bayes’ theorem:

fW (w|x) = wν−1

2

(
δ(x,µ; Σ)

2 + α⊤Σ−1α

)−ν/2
×

exp{− 1
2wδ(x,µ; Σ)− w

2 (2 + α⊤Σ−1α)}

Kν

(√
(2 + α⊤Σ−1α)δ(x,µ; Σ)

) ,

(4.20)
with ν,α,µ,Σ as defined for the SAL density in Eq.(4.17). It follows that fW (w|X = x)
is a Generalized Inverse Gaussian density. As proposed by Franczak et al. (2015), multidi-
mensional W latent variables could be considered, which yields convex level sets, useful in
a classification perspective.
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Complete model Given z1, . . . ,zn the missing variables w1, . . . ,wn are independently
distributed according to an exponential distribution of rate 1. The complete-data vector is
given by y = (x1, . . . ,xn, z1, . . . ,zn, w1, . . . , wn) , where x1, . . . ,xn are observed continuous
data, z1, . . . ,zn are component-label vectors and w1, . . . , wn other latent variables needed
for the representation. The complete SAL mixture model is

zi ∼ Categorical(π) ,
wi|zk

i = 1 ∼ E(1) ,
xi|wi, z

k
i = 1 ∼ Ng(µk + wiαk, wiΣk) .

(4.21)

2.3.1 EM equations

The complete-data likelihood for a SAL mixture model defined by Model (4.21) is

Lc(Θ) =
n∏

i=1

K∑
k=1

[πkNg(µk + wiαk, wiΣk)h(wi)]z
k
i . (4.22)

The E-step In the presence of SAL distributed variables, the expectation step leads to
the computation of τik with Eq.(4.4), as in Gaussian and Student mixture models, but also
of current conditional expectations of latent variables W given by E(Wi|xi, z

k
i = 1) = E1ik

and E(W−1
i |xi, z

k
i = 1) = E2ik. Computations of these expectations lead to

E(Wi|xi, z
k
i = 1) =

√
bik

ak
Rν(

√
akbik) , (4.23)

E(W−1
i |xi, z

k
i = 1) =

√
ak

bik
Rν(

√
akbik)− 2ν

bik
. (4.24)

With ν as defined in Eq.(4.17), Rν(x) = Kν+1(x)
Kν(x) , ak = 2 + α⊤

k Σ−1
k αk and bik =

δ(xi,µk; Σk).

The M-step The M-step maximizes Q(Θ; Θ(t−1)) to find Θ(t) to get the maximum like-
lihood estimates. The proportions are updated as in Gaussian and Student mixtures, thus
by Eq.(4.5).

The skewness parameters are updated by :

α̂t
k =

(
n∑

i=1
τ t

ikE
t
2ik)(

n∑
i=1

τ t
ikxi)− nt

k(
n∑

i=1
τ t

ikE
t
2ikxi)

(
n∑

i=1
τ t

ikE
t
1ik)(

n∑
i=1

τ t
ikE

t
2ik)− (nt

k)2
, (4.25)

with nt
k =

∑n
i=1 τ

t
ik.

The shift parameters are updated by:

µ̂t
k =

(
n∑

i=1
τ t

ikE
t
1ik)(

n∑
i=1

τ t
ikE2ikxi)− nt

k(
n∑

i=1
τ t

ikxi)

(
n∑

i=1
τ t

ikE
t
1ik)(

n∑
i=1

τ t
ikE

t
2ik)− (nt

k)2
. (4.26)

And the scale parameters are updated by:

Σ̂t
k = Sk − α̂t

kr
⊤
k − rk(α̂t

k)⊤ + 1
nt

k

α̂t
k(α̂t

k)⊤
n∑

i=1
τ t

ikE
t
1ik , (4.27)

73



Chapter 4. Dynamic Expectation-Maximization Algorithms for Mixed-type Data

with

Sk = 1
nk

n∑
i=1

τ t
ikE

t
2ik(xi − µ̂t

k)(xi − µ̂t
k)⊤ and rk = 1

nt
k

n∑
i=1

τ t
ik(xi − µ̂t

k).

As we can see here, computations of the latent expectations and then estimation of
parameters imply Mahalanobis distance between data points and centers. When there is
even one center that is too close to a point, it can lead to the infinite likelihood problem,
described by Franczak et al. (2014), and then skewness parameters α are not computable.
To overcome this problem, Franczak et al. (2014) proceed by taking the value of µ̂k at
the last iteration before it becomes too close to any data point. This estimated center,
noted µt⋆

k , becomes the actual estimate of the center. Then the skewness parameter αk is
estimated by the following formula:

α̂t
k =

∑n
i τik(xi − µ̂t⋆

k )⊤∑n
i τikE1ik

. (4.28)

This process is summarized in Algorithm 4.1.

Algorithm 4.1: Check superimposed centers and data points for α estimation
for k = 1, . . . , K do

if µt
k = xi then
Find last iteration t⋆ such as µt

k ̸= xi, and assess µt
k = µt⋆

k

Compute α̂t
k with (4.28)

end
else

Compute α̂t
k with (4.25)

end
end

Not satisfied of this solution for estimation of skewness parameters, Fang et al. (2023)
proposed very recently to estimate SAL mixture models with a Bayesian parameter estima-
tion scheme based on a Gibbs sampling framework instead of an EM algorithm, in particular
to improve parameter recovery. As they themselves have pointed out, their main drawback
is the runtime required for simulations.

In the next section, we will define our mixture models for mixed-type datasets, i.e. for
data including variables following discrete probability distributions, and variables following
one of the continuous distributions defined previously. We will use the set of parameter
estimation equations defined above, which we summarize in Tables A.1 and A.2.

3 Mixture models for mixed-type datasets

3.1 Motivation and assumptions on the model
In this chapter, we seek to infer populations with mixed variables, enabling the integration
of such models in many areas where the data are heterogeneous and require flexibility
and interpretability. Using mixture models allows this flexibility, particularly in the choice
of laws, parametrization and use of the models obtained. Drawing on a large body of
literature, we have developed a mixture model which, although simple, allows rapid and
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robust estimation of various combinations of laws. Rather than relying solely on Gaussian-
multinomial combinations, we propose here the use of Student or SAL distributions in
place of the Gaussian distribution and Bernoulli, Multinomial and Poisson distributions for
discrete data. Our models and algorithms have been designed so that they can be integrated
into a pipeline such as the one presented in Chapter 3.

Local independence assumption A major consideration in the specification of a mul-
tivariate mixture model is to define whether the variables are independent within a cluster,
a property called local independence. This is simply expressed in the Gaussian case by the
form of the covariance matrix. In the case of mixed-type data, the considered models are
more complex. In all the models that we will define we make the assumption that continu-
ous variables are independent of discrete ones knowing the latent membership variables. In
addition, we also make the assumption that all discrete variables are independent knowing
the latent variables z. These assumptions may fail to capture some dependencies patterns
in the dataset. But they allow an accurate, quick and interpretable estimate of mixture
models, as already shown in the literature on mixed data presented in 1.

3.2 Model description
Consider an observation i of mixed variables, given by xi = (x1

i , . . . ,x
g
i , x

g+1
i , . . . , xg+D

i ) ∈
Rg × X . The g first variables are continuous variables defined on Rg. The vector of these
continuous variables is denoted xc

i . The vector of the D discrete (integer, nominal, binary,
. . . ) is defined on X and denoted xD

i with xd being the dth discreetly distributed variable.
If xd is a nominal variable with md modalities, then it uses a numeric coding {1, . . . ,md}.

The mixture model An observation i of g continuous variables and D categorical/dis-
crete variables is supposed to be a realization of a random variable Xi distributed according
to a mixture model of K classes, whose pdf is written as

p(xi; Θ) =
K∑

k=1
πkpg(xc

i ; θc
k)

D∏
d=1

pXd
i
(xd

i ; θd
k) , (4.29)

with Θ = (π, ξ1, . . . , ξK) the whole parameters set, and ξk contains
(
θc

k, θ
1
k, . . . , θ

D
k

)
, pa-

rameters of continuous and discrete distributions of each component k ∈ {1, . . . , K}. The
vector π groups the proportions of all classes, with

∑K
k=1 πk = 1. Each discrete component

of observation xi is accessed by its index d = 1, . . . , D. If there is no discrete component in
the variables, this reduces to a continuous mixture model as presented in previous sections
and chapters. Here continuous data coordinates are drawn from continuous distributions
with probability density function (pdf) pg(·; θc) of dimension g and parameters θc. Each
discrete variable d ∈ D is drawn from a discrete distribution, for which the associate prob-
ability mass function (pmf) is given by p·(·; θd) with θd the associated value or vector of
parameters.

Thereafter, we consider that we have a set of mixed-type observations, of size n, given
by x = (x1, . . . ,xn).

Complete model As described previously for continuous mixture models, latent variables
z are used to complete the data, and at the same time ensure local independence. Let
(zi)i=1,...,n, latent variables such that each zi follows a categorical distribution of parameter
π. This information is then 1-of-K encoded under variable zi with zk

i = 1 if data xi belongs
to cluster k, 0 otherwise. Knowing zk

i = 1, each discrete attribute d for individual i, given
by xd

i , follows a discrete law of parameter θd
k.
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Our complete model is then described by
zi ∼ Categorical(π) ,
xc

i |zk
i = 1 ∼ F c

g (θc
k) ,

xd
i |zk

i = 1 ∼ F d(θd
k) ∀ d = 1, . . . , D ,

(4.30)

with Fg any continuous probability distribution of dimensions g with parameters θc
k, and

F d corresponds to the discrete probability distribution for attribute d, of parameter θd
k.

Application In this work, we consider three possible continuous distributions, described
in Section 2: the Gaussian distribution, the Student distribution or the Shifted Asymmetric
Laplace (SAL) distribution. As we saw earlier, Student and SAL distributions require
additional latent variables, which can be added by combining Model (4.30) with any of the
continuous Models (4.2), (4.11) or (4.21). For the numerical discrete or categorical variables,
we consider three different distributions, starting with the Bernoulli distribution, which is
very simple, but also the Multinomial distribution, a distant generalization of the Bernoulli
distribution. The last distribution considered is the Poisson distribution. Bernoulli and
Poisson distributions only require one numerical parameter, so that means K parameters
to estimate each. A Multinomial distribution has M modalities, bounded by the following
constraint:

∑M
m=1 p

d
m = 1, therefore there are (M − 1)K parameters to estimate. We will

give the corresponding equations to estimate any parameter of one of these distributions in
Subsection 4.3.

Graphical representation of our generic Model (4.30) is on Figure 4.1 with the numerous
parameters and latent variables corresponding to the laws under consideration.

3.3 Identifiability
As mentioned previously, a key consideration in specifying a mixture model is local inde-
pendence. Previous works on categorical and non-parametric distributions have proved its
importance to reach identifiability (Allman et al., 2009). Our model assumes within-cluster
dependence between continuous variables and conditional independence between continu-
ous and nominal variables. Relaxing the local independence strategy could risk a failure of
identifiability, as in location models (Willse and Boik, 1999).

The study of the identifiability of finite mixtures was initiated by Teicher (1963) and
further developed by Yakowitz and Spragins (1968), in particular for the finite mixtures
of multivariate normal distributions with variable mean vectors and covariance matrices.
Identifiability of the finite mixtures of t-distributions with variable degrees of freedom was
proven by Holzmann et al. (2006), and for generalized hyperbolic distributions by Browne
and McNicholas (2015).

In the next section, we will detail our algorithmic considerations to estimate such models
with different continuous distributions and any discrete distribution. Resulting algorithms
are named Dynamic EM for Mixed-type Data, and allow estimating properly mixture models
for mixed-type data.
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Figure 4.1: Graphical representation of our Model (4.30), with colors for additions/variants
from Gaussian distribution. One color per continuous law for additional latent variables
and parameters, and one color per type of discrete law: Student distribution (orange), SAL
distribution (purple), Poisson (green), Bernoulli (blue) and Multinomial (red).

4 Dynamic EM for Mixed-type Data: Algorithms for
mixed-type data

We now turn to the objective of estimating model parameters for a given mixed dataset
(xi)n

i=1. First, we will describe our generic algorithm, which we name Dynamic EM for
Mixed-type Data (DEM-MD), proposed to estimate parameters of mixture models for
mixed-type data. Starting from an existing algorithm originally developed for Gaussian
Mixture Models, we adapt and improve it. Then we will detail individual considerations
relative to each continuous distribution, which lead to particular adaptations of DEM-MD
to perform on all considered models. Finally, we will present the updating equations for
discrete random variables to estimate during the M-step of DEM-MD.

4.1 A Dynamic EM algorithm for Mixed-type Data
We propose here a dynamic EM algorithm for the estimation of mixture models on mixed-
type data, which implies categorical/ordinal/nominal variables. As a first step to construct-
ing our algorithms, we propose an adaptation of the Modified REM (MREM), developed
in Chapter 3, to estimate Model (4.30). With the Modified REM, the number of classes
was dynamically selected along with the parameter estimation of a continuous Gaussian
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mixture model. This algorithm was an amelioration of the original Robust EM work by
Yang et al. (2012). We highlighted two weaknesses of the Robust EM (Yang et al., 2012):
an inadequate early stopping of the algorithm, and the lack of superimposed clusters detec-
tion. Therefore, we solved these two problems by changing the original REM algorithm to
become even more dynamic and detect the wrong maxima.

The Modified Robust EM (as the Robust EM) relies on the addition of an entropy term
on the proportions in the objective function of the Expectation-Maximization algorithm
and the construction of a weight enhancing the classes’ competition. This additional penal-
ization, combined with a competition weight and a pruning condition on the classes, makes
it possible to reduce the number of classes when running the EM algorithm, initialized at
K̂ = n.

4.1.1 A Generic Algorithm

Objective function in Dynamic EM for Mixed-type Data algorithm From the
generic Model (4.30), the estimated function on complete-data is changed from Eq.(3.3)
in the MREM algorithm to the following one, still including a penalization term on the
proportions of the mixture:

Q̃(Θ; Θ(t)) =
n∑

i=1

K∑
k=1

pΘ(t)(zk
i = 1|xc

i , x
D
i ) log

[
πkpg(xc

i ; θc
k)

D∏
d=1

pXd
i
(xd

i ; θd
k)
]

+ β
n∑

i=1

K∑
k=1

πk log πk,with β ≥ 0 .
(4.31)

As we can see, there is a hyperparameter β, which comes as a penalty weight in Eq.(4.31).
It helps to control the competition between clusters. Acting on the evolution of proportions
with β enables one to check at each iteration that all the proportions of the components
are above a given threshold, and therefore to delete components of proportion πk <

1
n .

E-step We compute the conditional expectation of the complete log-likelihood Ep(z|x,Θ(t))[ℓ(θ,y)]
with y the complete data vector, including necessary latent variables for the considered con-
tinuous distribution. This results in conditional expectations for all the considered latent
variables thanks to the exponential form of the complete likelihood.

Computation of conditional expectation of latent variables z leads to the following ex-
pression to update latent probabilities:

pΘ(t)(zk
i = 1|xc

i , x
D
i ) =

πkpg(xi|θc
k)
∏D

d=1 pXd
i
(xd

i ; θd
k)∑K

j=1 πjpg(xi|θc
j)
∏D

d=1 pXd
i
(xd

i ; θd
j )

= τ t
ik .

(4.32)

For the Student and Shifted Asymmetric Laplace mixture models, additional latent
variables are needed, as described in Models (4.11) and (4.21) respectively. Expectations
of these latent variables are given in Subsubsection 2.2.1 for Student distribution and Sub-
subsection 2.3.1 for Shifted Asymmetric Laplace distribution. As discrete and continuous
variables are independent knowing class memberships z, the conditional expectation of these
variables is not changed by the existence or not of discrete variables.
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M-step With the objective function in Eq.(4.31) to maximize, the update equation of
components proportions π inside DEM-MD algorithm is

π̂t
k = π̂k,EM + βπ̂t−1

k

(
ln π̂t−1

k −
K∑

s=1
π̂t−1

s ln π̂t−1
s

)
, (4.33)

with π̂k,EM computed by Eq.(4.5), and π̂t−1
k being the component weight estimate at pre-

vious iteration. The equations to estimate other continuous parameters remain unchanged
whatever the continuous distribution.

The M-step is extended here with the estimation of parameters corresponding to dis-
crete distributions of random variables Xd ∀ d = 1, . . . , D. The parameters of each discrete
variable are estimated after or before the continuous parameters, the order does not af-
fect any of the estimated parameters. Corresponding equations for Bernoulli, Poisson or
Multinomial laws will be given in Subsection 4.3.

Aitken’s convergence Frequent stopping criteria in EM-like algorithms lean on absolute
differences between centers at actual and previous iteration, or on the absolute differences
of log-likelihoods, which correspond more to a "lack of progress" as said by Böhning et al.
(1994) than to actual convergence. In our DEM-MD algorithm as presented above, this
is meaningless to compare means of continuous distributions, as they may not be relative
from one iteration to another. Moreover, in the case of mixed laws models now, the number
of different parameters is increasing, which raises the question of the legitimacy of taking
centers into account. In addition, as the number of components decreases during estimation,
the objective function is no longer strictly increasing at each iteration.

Application of Aitken’s acceleration to a sequence of log-likelihood first appeared in the
work of Böhning et al. (1994), under the assumption that the sequence is linearly convergent
to some value l⋆. Under this assumption, we can obtain the Aitken accelerated estimate of
l⋆:

lt+1
∞ = lt + lt+1 − lt

1− at
,

where at = lt+1−lt

lt−lt−1 . With this estimate Böhning et al. (1994) proposed the following stopping
criterion for the EM algorithm at iteration t+ 1:

|lt+1
∞ − lt∞| < ε . (4.34)

There exist other expressions of Aitken’s acceleration in the work of Lindsay (1995)
and then in the more recent work of McNicholas et al. (2010). In these two works, the
stopping criterion is slightly changed, relying more on previous iterations or using only one
asymptotic estimate of l⋆ instead of two. These different expressions give in general similar
results. Therefore, we use the original criterion by Böhning et al. (1994).

Aitken’s based criterion may lead to algorithms running longer than really necessary in
cases where the log-likelihood is constantly increasing. Moreover, they require additional
computations, which leads to their relatively infrequent use when they are more coherent.

As we argued previously the evolution of log-likelihood in a DEM-MD algorithm is
complex, and this criterion is relevant to assess the stability of the convergence. However,
the following assumptions are necessary to use Aitken’s acceleration: a slow convergence
rate of the objective function and linear convergence of the algorithm. These conditions to
use Aitken’s acceleration are easily validated by Expectation-Maximization algorithms (as
detailed in (McLachlan and Krishnan, 2008, Chapter 3, Section 9, p.99)), but not by the
dynamic versions which also estimate the number of components. These last methods have
a conditional expected log-likelihood which is not constantly increasing.
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We assume that, for a number of classes K which is constant, the objective function
maximized by a dynamic EM algorithm is equivalent to that of an EM algorithm. In fact, as
K is constant, the objective function is piecewise-increasing, joining the convergence theory
of the EM algorithm.

Application in Dynamic EM algorithms With the idea spelled out above, if the
number of classes is constant for at least four consecutive iterations (required to compute
the Aitken’s criterion), the Aitken’s acceleration criterion can be computed and applied to
assess the convergence of our Dynamic EM algorithm for Mixed-type Data.

Pseudocodes of DEM-MD and EM-MD algorithms In Algorithm 4.2 we present
a generic version of DEM-MD algorithm, which will be adapted to the different combi-
nations of continuous and discrete laws. We also include the EM-MD pseudocode within
Algorithm 4.3, which correspond to a classical EM version with an a priori fixed number
of classes K.

Algorithm 4.2: Pseudocode of “Generic” Dynamic EM for Mixed-type Data al-
gorithm

Input : ε > 0, γ, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization : K0 ← n, β0 ← 1
π0

k ← 1/n, µ0 ← Xc

Σ0
k ← d2

k(⌈
√

K0⌉)Id

Initialize other continuous parameters
Initialize pd,0

k ∀ d ∈ J1, . . . , DK with (4.36)
t← 1
Compute τ t

ik with (4.32)
1 while |lt∞ − lt−1

∞ | > ε do /* Aitken’s convergence */
M-Step
Compute πt

k with (4.33)
Compute µt

k

βt ← Algo. 4.4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

otherwise do
Kt ← Kt−1

end
Compute Σt

k

Compute other continuous parameters
Compute discrete probabilities pd,t

k with (4.37) , (4.38) , (4.39)
E-Step
Compute τ t+1

ik with (4.32)
Compute other latent variables
t← t+ 1

end
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4.2 Adaptations in the DEM-MD algorithm for different contin-
uous distributions

4.2.1 The Gaussian case

With a Gaussian assumption on the continuous variables, our Dynamic EM for Mixed-type
Data algorithm is similar to the considered case of a Modified REM (MREM) as described
in Chapter 3. The difference lies in the presence here of discrete variables in the model,
and therefore the equations in DEM-MD to estimate these additional variables. From
Algorithm 4.2, adaptation for estimation of models with Gaussian continuous variables and
any discrete variable is given by Algorithm 4.5. Initialization and estimations of discrete
parameters are given in Subsection 4.3.

4.2.2 The Student case

Initialization The Student distribution does not present particular constraints on the
Initialization of its parameters. The only question is how to initialize the degrees of freedom
ν. Other estimated parameters follow the existing rules. Moreover, expectations of latent
variables ui are computed as τ 0

ik with initial parameters. Initialization of degrees of freedom
does not have an impact on the next steps and we fix initial values to a unique constant,
here νk = 10 for each cluster k. There are methods in the literature that also initialize the
degrees of freedom with constant values (Andrews et al., 2011; Lin, 2010).

Estimation of the degrees of freedom According to Eq.(4.16), the degrees of freedom
are, at each iteration of an EM-like algorithm, the solution of a fixed point equation. This
equation can be solved by a one-dimensional line search method. In some articles mentioned
previously, the considered algorithm to solve this equation is Newton’s (or Halley’s) method,
which requires first (and second) derivatives of the function whose zero we are finding. But as
the considered function is monotonically decreasing for x ≥ 2, it allows considering simpler
algorithms such as Brent’s method (Brent, 2013), which solves the fixed point equation on
a bounded domain of x. Moreover, as we constrain the degrees of freedom to be greater or
equal to 2, if the sign of f(xmin) = f(2) is the same as the sign of f(xmax), then we fix
νnew = 2 or νnew = xmax, depending on the sign of the function values. Previous works
relied on this numerical method and even restricted the ν̂ estimates (Andrews et al., 2011).

Multicycle ECM Following the multicycle Expectation/Conditional-Maximization (ECM)
proposition of Peel and Mclachlan (2000) on the estimation of mixtures of Student distri-
butions, we inserted an intermediate E-step between a CM-step to estimate (µ,Σ) and a
CM-step to estimate ν. However, this multicycle version did not bring real improvement in
the estimation or computation time of our Student DEM-MD on all our experiments, so we
decided to drop it out.

Pseudocode From generic Algorithm 4.2, adaptation for estimation of models with Stu-
dent continuous variables is given by Algorithm 4.6.

4.2.3 The Shifted Asymmetric Laplace case

Initialization As indicated in Subsubsection 2.3.1, estimation of the skewness parameters
involves the Mahalanobis distance in the denominator of the equation. Initialization of the
DEM-MD algorithm originally involves starting with each data point as its own cluster,
so basically µ0 = Xc. This initialization, associated with the computation of skewness
parameters can quickly lead to computation errors at the beginning of the algorithm, leading
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to its early stop. A simple solution we consider is to add a very small noise to the initial
centers µ0 = Xc + ϵ with ϵ ∼ N (0, σ2).

Multicycle ECM Following the ideas introduced for the Student mixture model with
Expectation/Conditional-Maximization (ECM) algorithms, as explained in Subsubsec-
tion 2.2.1, we decide to introduce an intermediate E-step just before the estimation of
scales parameters in the SAL DEM-MD. As the original Robust EM for Gaussian mixtures
was already built on the dynamic changes of the number of components inside the algo-
rithm, the estimated parameters may lose their "meaning" during the estimation process,
such as the latent probabilities. This is even more true when the set of parameters is wide
and complex, such as with SAL distributions. By adding an intermediate E-step, we re-
compute latent probabilities τik and expectations of W after the estimation of the centers,
proportions and skewness parameters, i.e., before the estimation of the scale matrices. This
intermediate E-step avoids estimation errors, particularly during scale computations which
can lead to singular matrix problems.

Deterministic Annealing Deterministic annealing for EM algorithms (Ueda and Nakano,
1994, 1998) relies on the introduction of annealing (or also named temperature) into the
membership probabilities derived in the E-step. According to this principle, which is in-
spired by the theory of thermodynamics and free energy, the corresponding annealed version
of Eq.(4.32) is

τ t
ik =

[
πkpg(xi|θc

k)
∏D

d=1 pXd
i
(xd

i ; θd
k)
]1/T

∑K
j=1

[
πjpg(xi|θc

j)
∏D

d=1 pXd
i
(xd

i ; θd
j )
]1/T

. (4.35)

We consider here using deterministic annealing in SAL DEM-MD algorithms. As a mat-
ter of fact, SAL DEM-MD without annealing struggles to converge. The annealing usually
helps the algorithm to explore the solution space, and in this case, it also helps to avoid
estimation errors which lead to non-convergence of the algorithm. Our experiments were
drastically different between without and with temperature, leading us to keep it.

Here we consider temperature schemes inspired by works of Allassonnière and Chevallier
(2021) and Lartigue et al. (2022). The idea is to consider an oscillating tempered pattern
with decreasing amplitude towards 1, leading to the classical expectation computation after
a certain number of iterations. We define our sequence of temperatures implemented in
SAL DEM-MD algorithm by

Tt = 1 + a ∗ sin(t/b)
t/b

∀ t ∈ N .

Deterministic annealing also appears in Franczak et al. (2014) but only in the first
initial steps of their algorithm, to select the correct initial values. This use also leads them
to consider a fixed sequence of temperatures, determining the number of iterations in the
Initialization part.

Estimation of scale matrices Although present in several implementations of the EM
algorithm, and in the recent REM and MREM versions of Yang et al. (2012) and Chapter 3,
small regularization of scale parameters is not present in SAL mixture of Franczak et al.
(2014). As a result, we question the legitimacy of this regularization, originally designed to
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avoid the calculation of singular matrices. Moreover, we have already proposed improve-
ments for the convergence of the SAL DEM-MD algorithm and to avoid calculation errors
in the previous paragraphs.

In the Modified Robust EM, and our generic DEM-MD, scale matrices Σt
k are by default

computed as Σt
k = (1 − γ)ΣEM

k + γP for each k, with ΣEM
k computed according to the

considered continuous distribution, and P a diagonal matrix containing very low coefficients.
We led a comparison study on our DEM-MD for SAL continuous laws, with different γ
(the regularization parameter in DEM-MD algorithms), of values 0.0, 10e−9, 10e−5. We
observed no significant difference in the convergence of simulations, the number of correct
K̂ and even the estimation errors of the different parameters. So we decided to fix γ = 0.0
as the default value, and therefore eliminate noise regulation, to avoid a future question of
changing it according to an arbitrary criterion.

Pseudocode From Algorithm 4.2, adaptation for estimation of models with Shifted
Asymmetric Laplace continuous variables is given by Algorithm 4.7.

4.3 Adaptations in the DEM-MD algorithm for discrete distribu-
tions

From our definition of Model (4.30), the estimated parameters of each discrete variable are
independently computed at each M-step, and independently of the continuous parameters
described previously.

4.3.1 Initialization

The DEM-MD algorithms are initialized by considering each data point as the center of
its own cluster, so K0 = n. Concerning the initialization of the parameters of discrete
distributions in any DEM-MD, it is simply done by considering, for each discrete variable
d, at the beginning of the algorithm, that

p̂d,0 =


xd ∈ {0, 1}n if d is Bernoulli ,
xd ∈ R⋆,n

+ if d is Poisson ,
[1T

xd=1, . . . ,1
T
xd=M ] with 1xd=m ∈ {0, 1}n if d is Multinomial .

(4.36)

4.3.2 EM equations for discrete parameters

Bernoulli case The equation for updating the parameter of a Bernoulli distribution in
the M-step of DEM-MD algorithm is given by

p̂d,t
k =

∑n
i=1 τ

t
ikx

d
i∑n

i=1 τ
t
ik

. (4.37)

Multinomial case A variable following a Multinomial distribution generally arrives en-
coded as xd ∈ {1, . . . ,M}n for an attribute with M modalities. At the beginning of DEM-
MD we transform it as a one-hot encoding matrix, so xd ∈ {0, 1}n×M , and xd

im correspond
to sample i and column/modality m.

The equation for updating the parameter of a Multinomial distribution in the M-step
of DEM-MD algorithm is given by

p̂d,t
k,m =

∑n
i=1 τ

t
ikx

d
im∑n

i=1 τ
t
ik

, (4.38)

with m a modality of the Multinomial law with M modalities.
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Poisson case The equation for updating the parameter λ of a Poisson distribution in
M-step of DEM-MD algorithm is given by

p̂d,t
k = λ̂d,t

k =
∑n

i=1 τ
t
ikx

d
i∑n

i=1 τ
t
ik

. (4.39)

Remark To avoid computation errors on the estimation of discrete distribution factors in
the computation of posterior probabilities, when one discrete distribution parameter (for a
given class k) is equal to one, its associated log-probabilities are not event computed as it
should be zero.

Implementation details In this entire section, we hope to have covered all the algo-
rithmic points. All the DEM-MD or EM-MD algorithms presented in this chapter are
implemented in Python 3.9.

5 Experiments on simulated data
In this section we present various results from our Dynamic EM for Mixed-type Data al-
gorithm for estimating many mixture models on mixed-type data, validating the different
algorithms. We begin with the description of ten different settings, combining continuous
distributions with different combinations of discrete distributions. For all of these given ten
settings by continuous law, we simulate S = 100 datasets that will be used to analyze con-
vergence, estimation of classes and parameters of both DEM-MD and EM-MD algorithms.
Then, we look at the convergence success of DEM-MD algorithms and the average iteration
number to reach convergence across all ten simulation studies. We continue this section
with a comparison of the estimation of K by DEM-MD algorithms and model selection cri-
teria with EM algorithms. Thereafter, for each simulation study, we compare the parameter
estimates returned by DEM-MD algorithms and EM-MD algorithms to the true parameter
values through the computation of relative errors. We also include comparisons with the
literature on the estimation of Student or SAL mixture models, assessing that our algo-
rithms estimate the different parameters just as well and that challenges remain on some
parameters. We finally conclude this section with a study on the inclusion of covariance
regularizations when the complexity of the model is significant.

5.1 Description of experiments
We consider several settings where we let vary the number of clusters K, the continuous
dimensions g, the discrete dimensions D and the type of associated discrete variables.

For each configuration defined in Table 4.1, we simulated S = 100 datasets, with a fixed
number of points n = 600 each. In practice, EM-MDs are initialized with a short k-means
computation, and a fixed maximal number of iterations is considered. Gaussian and Student
DEM-MD have ϵ = 10e−7 and γ = 10e−5, and SAL DEM-MD has ϵ = 10e−5, γ = 0.0,
a = 1 and b = 3. Gaussian, Student and SAL EM-MD have ϵ = 10e−5. In the next parts,
we assess the performance of our various algorithms on the estimation of the number of
components and the parameters.

5.2 Convergence of the DEM-MD
In Table 4.1, we see that on the majority of configurations, the Dynamic EM for Mixed-
type Data algorithm converges for 100% of runs. Convergence is lower for SAL DEM-
MD, especially on settings with a higher continuous dimensional space as CM

451 which has
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Parameters
K g D Discrete Parameters Setting abbreviation
2 2 0 None C220
2 2 1 Poisson CP

221
2 2 1 Bernoulli CB

221
2 2 1 Multinomial CM

221
4 5 1 Multinomial CM

451

2 2 3
Bernoulli
Poisson C223

Multinomial

2 2 3
Bernoulli
Poisson CP

223
Poisson

4 2 3
Bernoulli
Poisson C423
Poisson

5 2 4

Bernoulli
Poisson
Poisson C524

Multinomial

3 4 3
Bernoulli
Poisson C343

Multinomial

Table 4.1: Description of simulated configurations.

a 18% convergence rate and C343 with 74%. Convergence in a DEM-MD is assessed by
stabilization of K̂ and by stopping the algorithm using the Aitken criterion. Non-convergent
executions, therefore, correspond to executions where the number of clusters is reduced to
one or generates calculation errors if the algorithm still reaches the space boundaries, which
happens here for a high-complexity setting.

Convergence is usually not a difficulty for a not dynamic EM algorithm, with enough
iterations, and therefore all EM-MD runs have 100% rates.

C220 CB
221 CM

221 CM
451 CP

221 C223 C343 CP
223 C423 C524

EM-MD
Gaussian 100 100 100 100 100 100 100 100 100 100
Student 100 100 100 100 100 100 100 100 100 100

SAL 100 100 100 100 100 100 100 100 100 100

DEM-MD
Gaussian 100 100 100 100 100 100 100 100 100 100
Student 100 100 100 100 100 100 100 100 100 100

SAL 100 99 98 18 100 98 74 98 97 98

Table 4.1: Proportions of converged runs for each setting, each algorithm and each contin-
uous distribution over S = 100 runs for each experiment.
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The number of iterations Additionally, we show in Tables 4.2 and 4.3 the average (and
standard deviation) number of iterations. In Chapter 3 we only compared our Modified
Robust EM to the original Robust EM, showing that we were closed in terms of iterations
and run-times, but no comparison was made with a classical EM algorithm. As expected,
the number of iterations is greater for DEM-MD algorithms than for EM-MD algorithms.
EM versions are run directly with the correct number of classes and initialized with a short k-
means algorithm. It is worth noting that from low continuous and/or discrete dimensional
configurations to larger ones, given a considered continuous distribution, the number of
iterations stays in the same scale, the number of iterations varies, but not so drastically.
Additionally, the number of iterations varies not only with the number of dimensions but
also with the complexity of the model to be recovered, in terms of parameter values.

C220 CB
221 CM

221 CM
451 CP

221

EM-MD
Gaussian 5 (0.5) 5 (0.5) 4 (0.5) 4 (2.1) 4 (0.0)
Student 24 (5.8) 24 (6.4) 24 (4.6) 27 (4.1) 25 (4.7)

SAL 32 (6.5) 31 (7.0) 31 (6.9) 27 (8.3) 31 (6.0)

DEM-MD
Gaussian 91 (48.2) 85 (43.0) 77 (41.5) 125 (39.2) 46 (12.6)
Student 157 (85.0) 142 (69.5) 146 (60.9) 219 (50.1) 242 (97.4)

SAL 388 (79.6) 409 (138.3) 451 (77.5) 97 (171.1) 464 (41.3)

Table 4.2: Mean (std) number of iterations over S = 100 runs.

C223 C343 CP
223 C423 C524

EM-MD
Gaussian 4 (0.2) 4 (0.0) 4 (0.2) 5 (3.0) 7 (7.4)
Student 26 (4.7) 22 (4.5) 26 (4.6) 26 (5.1) 24 (8.0)

SAL 31 (6.8) 27 (8.3) 30 (7.0) 30 (10.3) 38 (15.9)

DEM-MD
Gaussian 49 (19.8) 36 (28.5) 53 (15.8) 113 (50.8) 153 (22.9)
Student 234 (82.6) 181 (68.3) 231 (88.6) 311 (65.7) 250 (69.3)

SAL 446 (90.5) 349 (227.6) 456 (60.5) 427 (126.2) 439 (100.8)

Table 4.3: Mean (std) number of iterations over S = 100 runs.

5.3 Estimation of the number of components
5.3.1 In mixed-type data context

We note C the number of correctly estimated number of components for a given config-
uration. This gives C = #{K̂ = K⋆} with K⋆ varying following the set of considered
parameters. Figure 4.2 gives us the radar charts of C for all the configurations and the
different continuous distributions on executions of DEM-MD. We see that we reach high
percentages of C, between 90 and 100% for almost all configurations with Gaussian contin-
uous laws (Fig. 4.2(a)). The only exception is the setting C524 with D = 4 discrete variables
and K = 5 clusters, which obtains a C rate of 67%. On Student continuous configurations
(Fig. 4.2(b)), we reach at least 92% of correct K for all configurations, with several ones
at 100%. DEM-MD with SAL continuous distributions leads to lower performances, with
several estimation percentages above 80%, but also obtains 67% for C343 and even a prob-
lematic 18% for CM

451. These poor estimates are expected as complexity increases rapidly
with the number of continuous dimensions. The number of samples is still n = 600 as for all
considered settings, and it is not sufficient for a SAL DEM-MD to estimate correctly all the
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parameters. Table 4.1 gives also C values for all configurations, across the 100 simulated
datasets.

C220

CB
221

CM
221

CM
451

CP
221

C223

C343

CP
223

C423

C524

60%

70%

80%

90%

100%

Gaussian

(a) Radar chart of relative values
C = #{K̂ = K⋆} for Gaussian DEM-MD.
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221
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221

C223
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223

C423
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90%

100%

Student

(b) Radar chart of relative values C = #{K̂ =
K⋆} for Student DEM-MD.
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(c) Radar chart of relative values C = #{K̂ =
K⋆} for SAL DEM-MD.

Figure 4.2: Radar charts of estimated number of classes C = #{K̂ = K⋆} by DEM-
MD algorithm per continuous distribution. Each radar chart contains settings defined in
Table 4.1.

Remark As noticed previously, the SAL DEM-MD, which has the highest continuous
distribution complexity, cannot correctly estimate CM

451 with only n = 600 samples. We
illustrate here that, as for a lot of models, a higher number of points is required to converge
correctly and obtain correct performances on the estimation of K̂. Figure 4.3 confirms
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C220 CB
221 CM

221 CM
451 CP

221 C223 C343 CP
223 C423 C524

EM-MD
Gaussian 100 100 100 100 100 100 100 100 100 100
Student 100 100 100 100 100 100 100 100 100 100

SAL 100 100 100 100 100 100 100 100 100 100

DEM-MD
Gaussian 99 100 100 90 100 98 98 99 100 67
Student 99 100 99 92 100 100 100 100 100 96

SAL 93 88 96 18 96 90 67 96 86 82

Table 4.1: Percentages of C = #{K̂ = K⋆} for each continuous distribution and each
setting over S = 100 runs.

this phenomenon. We quickly see that increasing the dataset size allows us to improve the
algorithm’s performance.
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Figure 4.3: Performances of SAL DEM-MD on CM
451 according to the dataset size. Dots

are numbers of correctly estimated K̂ and crosses are numbers of converged runs, over 100
runs.

5.3.2 Comparison with model selection criteria

In this part, we compare the estimation of the number of components by our DEM-MD al-
gorithms with model selection on mixture models, which requires choosing a criterion. We
experiment, on all the settings, DEM-MD and EM-MD associated with one of these three
criteria: BIC (Schwarz, 1978), ICL (Biernacki et al., 1998) or NEC (Celeux and Soromenho,
1996), detailed in Subsection 2.2. In recent works on mixtures of Shifted Asymmetric
Laplace distributions (Franczak et al., 2014; Fang et al., 2023), BIC and/or ICL criteria
were used for a model selection goal. While works on mixtures of Student (Peel and Mclach-
lan, 2000) or skew-student distributions (Lin et al., 2007; Lin, 2009) considered AIC and
BIC criteria. For mixed-type methods such as KAMILA (Foss et al., 2016) or clustMD
(McParland and Gormley, 2016), it is complicated by the absence of likelihood for the first
one or calculation of intractable integrals for the second one. In KAMILA, model selection
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was based on a prediction strength criterion, and they openly discussed an approximation
of log-likelihood but not developed here. McParland and Gormley (2016) computed an ap-
proximation of the observed likelihood, leading to the possibility of using an approximated
BIC criterion for model selection.

As for all the experiments, we simulated S = 100 datasets of each configuration, with
n = 600 each time. On each dataset, we ran a DEM-MD and several EM-MDs, also from
our codes, with a fixed K from a range of values. For each dataset (associated with a set of
estimated models), an a posteriori selection is done by computing BIC, ICL and NEC on all
EM-MD models, which have different K. For each one of these criteria, the best model is
the one with the smaller value. Finally, over S = 100 runs we have the number of correctly
estimated K̂ for each method (Tables 4.2,4.3,4.4).

For Gaussian distributions, DEM-MD and EM-MD-BIC, EM-MD-ICL criteria give very
good results. Whereas the NEC criterion is leading to very bad model selection for some
configurations. It gives very extreme results, either it perfectly selects K, or it has 0 correct
selection for CM

451, C423 and C524. Only once it gives an intermediate result, with C = 38
for C343. DEM-MD has a 81% rate on C524, which is the worst performance here, while the
EM-MD-BIC and EM-MD-NEC criteria are hardly better.

Student DEM-MD and model selection have similar performances to the Gaussian case.
The NEC criterion has high difficulties to select the correct model on the same settings as
for Gaussian DEM-MD, with only a better score on C343 with a 74% rate. BIC and ICL
criteria perform worse on C524, as for the Gaussian distribution. But here the DEM-MD
gives 100% of correct estimation for C524.

When all model selection criteria for SAL distribution perform well on CP
221, C223, CP

223,
SAL DEM-MD also obtain correct rates, from 88% to 94%. In addition, SAL DEM-MD
obtains a 76% rate on C343, while the model selection criteria obtain very good results (above
90%). The same applies to CM

451 setting where SAL DEM-MD obtains 26% in contrary to
BIC and ICL criteria which are 94%. As for Student and Gaussian distributions, the NEC
criterion has difficulty for this setting as well as for C524 and C423. Conversely, SAL DEM-
MD has the best results on these two last settings. On the less complex settings, C220,
CB

221, CM
221 and CP

221, DEM-MD as well as EM-MD-ICL and EM-MD-NEC have very good
performances, while the EM-MD-BIC obtains between 53% and 73% of correct K̂.

NEC is a classification criterion, and as explained by Celeux and Soromenho (1996)
themselves, the NEC criterion was designed to “choose the mixture model providing the
greatest evidence for partitioning data”. Difficulties emerge when clusters are not well
separated, and this leads to difficulties in model selection as we can see in our different
settings for the three continuous distributions.

Overall, DEM-MD algorithms are as correct as model selection criteria for each con-
tinuous law to find the true number of classes K⋆. The challenging configurations in high
dimensions for our Dynamic EM for Mixed-type Data are also difficult for the NEC, but
not for the BIC and ICL criteria. However, correct model selection does not guarantee
good parameter estimations, and the model selection process is complicated if the optimal
(unknown) K is not in the tested list. Moreover, difficulties for model selection criteria
appear with an increasing number of clusters, as they require an arbitrary number of runs
depending on the values of K tested. DEM-MD algorithms, meanwhile, save calculation
time by only making a single run.

5.4 Performances on the estimation of parameters
The results presented in the next parts are relative errors calculated on the set of experiments
where K̂ = K⋆. For each setting, the corresponding number of experiments with correct K
is available in Table 4.1 above.
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DEM-MD EM-MD-BIC EM-MD-ICL EM-MD-NEC

C220 99 100 100 100
CB

221 98 100 100 100
CM

221 97 100 100 100
CM

451 89 98 98 0
CP

221 100 100 100 100
C223 99 100 100 100
C343 100 99 99 38
CP

223 99 100 100 100
C423 100 86 86 0
C524 81 84 84 0

Table 4.2: Percentages of correctly estimated or selected K for configurations with Gaussian
continuous distribution.

DEM-MD EM-MD-BIC EM-MD-ICL EM-MD-NEC

C220 98 100 100 100
CB

221 100 100 100 100
CM

221 99 100 100 100
CM

451 94 99 99 12
CP

221 100 100 100 100
C223 100 100 100 100
C343 100 100 100 74
CP

223 100 100 100 100
C423 99 97 97 0
C524 100 72 72 1

Table 4.3: Percentages of correctly estimated or selected K for configurations with Student
continuous distribution.

5.4.1 Estimation of the continuous parameters

Figures 4.4, 4.5, 4.6, 4.7 and 4.8 give us estimated parameters for all our simulated config-
urations on experiments with correct K̂. For each type of parameter, the associated figure
shows boxplots of relative errors by DEM-MD and EM-MD algorithms.

At a glance, it appears that both schemes return good estimates of the true parameter
values for centers, scales and proportions parameters.

For each continuous distribution we observe correct median of relatives errors on centers
parameters (Fig. 4.4), but mean values sometimes explode, affected by extreme values (that
are not plotted here), which seem to occur more with the EM-MD algorithm.

Errors on scale matrices were computed with the Frobenius norm, and as we can see
relative errors may be higher than centers or proportions ones (Fig. 4.5). For Gaussian
simulations DEM-MD and EM-MD errors are similar while, on Student simulations, DEM-
MDs presents frequently lower median and mean errors compared to EM-MDs. SAL DEM-
MD has more difficulties to estimate scale matrices, as median values are all higher than for
Gaussian and Studnet DEM-MD, but median values for DEM and EM versions are similar
for the majority of settings. Mean values can be really for DEM-MD, driven by extreme
values (not represented here).
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DEM-MD EM-MD-BIC EM-MD-ICL EM-MD-NEC

C220 91 53 100 100
CB

221 90 68 100 100
CM

221 94 73 100 99
CM

451 26 94 94 2
CP

221 92 73 99 100
C223 88 94 100 100
C343 76 91 91 94
CP

223 94 85 100 100
C423 86 76 77 3
C524 80 29 34 1

Table 4.4: Percentages of correctly estimated or selected K for configurations with SAL
continuous distribution.

The median relative errors are also small for the proportions (Fig. 4.6), for all settings of
the three continuous laws, for DEM-MD and EM-MD algorithms. On the other hand, they
frequently explode on average. But since the errors are relative to the true value, which is
always rather small for the proportions, this leads to large errors that do not necessarily
reflect real extreme values in the estimates. DEM-MD presents high average errors for
SAL distributions on seven settings, but for the other three, it is the EM-MD that is not
any good. In the simplest settings, Gaussian and Student DEM-MD results present higher
dispersion and medians than EM-MD results, while in the other settings, it is more variable,
and overall the DEM-MD algorithm is doing just as well as the EM-MD algorithm.

Additionally, we can notice from all these results that the integration of discrete variables
into our models does not affect the estimation of the continuous parameters by Dynamic
EM for Mixed-type Data or EM-MD algorithms. Overall, DEM-MD estimates, as well
as EM-MD the different continuous parameters, and both algorithms encounter the same
difficulties on the degrees of freedom or skewness parameters as we will detail next.

Estimation of degrees of freedom From Figure 4.7 we observe that relative errors are
pretty high for EM-MD and DEM-MD estimates. Estimation of the degrees of freedom stays
a challenge with EM-like algorithms, despite the efforts and propositions of recent works on
this problem. As mentioned in Subsubsection 4.2.2, we divided the M-step into two parts,
and we inserted an intermediate E-step, which corresponds to the multicycle ECM (Peel
and Mclachlan, 2000). But comparisons of algorithms with and without intermediate E-step
did not lead to significative differences in parameter estimations on our ten configurations.

Comparing EM-MD and DEM-MD on the estimation of degrees of freedom, the errors
for the DEM-MD version are more dispersed than the EM-MD ones. For settings C220,
CB

221, CM
221, CP

221, C223 and CP
223, DEM-MDs present lower median values and frequently

lower mean values. For the other settings, the median values of DEM-MD are still close to
the EM-MD ones even if the DEM-MD results are dispersed.

Although the errors obtained with DEM-MD and EM-MD algorithms seem pretty high,
we will see in Subsubsection 5.4.3 that the obtained estimates with our algorithms are similar
to those in the literature, which leads us to think this is due to the model itself. Although
there may be a zero-search solution to the equation (4.16), each iteration of the algorithm
can lead to a defined equation that reflects estimation errors on the latent variables. This
can result in solutions to the equation that are far from the true values, or even outside the
limits of the domain.
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Estimation of skewness parameters From Figure 4.8, we observe the boxplots of
relative errors on the estimation of the skewness parameter α with SAL DEM-MD and
SAL EM-MD algorithms. On a general level, the relative errors for the SAL DEM-MD
are slightly more dispersed and the third quartile is higher. Mean values are also slightly
higher but in the same scales. In addition, the SAL DEM-MD algorithm presents as good
medians as EM-MD one. Globally, the DEM-MD algorithm presents as the same results as
the EM-MD algorithm, which is encouraging, given the complexity of SAL mixture models
and existing challenges estimating skewness parameters in particular.

We also observe that medians of relative errors can reach 10 at 20% of true α values, in
the presence or not of discrete variables, which are relative errors also obtained by similar
implementations on SAL distributions, such as the MIXSAL R package (Franczak et al.,
2018), implementation of the method of Franczak et al. (2014). Comparisons with results
from this package can be found in Subsubsection 5.4.3.

5.4.2 Estimation of the parameters of discrete distributions

Now we look at the performances of DEM-MD and EM-MD algorithms on the estimation
of the different parameters of discrete distributions. The results are obtained from the same
experiments as above. The implemented discrete distributions are Bernoulli, Multinomial or
Poisson, which correspond to binary, ordinal/nominal or integer variables. Several settings
have only one discrete random variable, and the other ones are different combinations of
three or four variables. As described in Model (4.30), discrete variables are independent
conditional on class memberships. Figures 4.9, 4.10 and 4.11 show the relative errors for
each setting and each discrete distribution parameter over the executions with a correct K̂.

In Figure 4.9 we can observe relative errors of discrete distribution parameters for con-
figurations containing only one discrete variable. We see in each column relative errors of
respectively Gaussian, Student and SAL DEM-MD on (vertically in this order) CB

221, CM
221,

CM
451 and CP

221. Firstly, relative errors for each discrete distribution parameter are in the
same intervals for both Gaussian, Student and SAL models. In addition, for each setting
and model, EM-MD and DEM-MD give similar results for their averages, medians and
whiskers. Comparing models on CM

221 and CM
451 for each continuous distribution shows that

relative errors of the multinomial parameter vector are higher in CM
451 configuration, which

has the highest complexity. As we saw earlier, this has led to more difficult computations,
particularly for the SAL DEM-MD.

On configuration C524, we observe explosion in the average of several parameters for
EM-MD simulations (Fig. 4.10(a)), and even overall the average values are rather high,
whereas the DEM-MD reveals estimates that are rather stable and less dispersed, unlike
the EM-MD algorithm. Medians and means for DEM-MD results are generally low, as are
several medians and means for EM-MD results.

We observe similar trends on C423 setting for both Gaussian, Student and SAL distri-
butions (Fig. 4.10(b)), especially on the two Poisson parameters. Errors on the Bernoulli
parameter are relatively high for each class and each algorithm, but this is partially due to
the same relative effect as on proportion parameters explained before.

We observe on the setting CP
223 that the errors are similar for DEM-MD and EM-MD

results (Fig. 4.10(c)). As for C423 setting, medians of Poisson errors are low, around 0.75%
and 0.5% for the first Poisson parameter and around 2% and 1% median for the second
Poisson parameter. The Bernoulli parameter errors are more dispersed, and medians are
around 6− 7% for the first component and 4% for the second component.

For configurations C223 and C343, which differ by the number of classes and of continuous
dimensions, the trends are as above (Fig. 4.11). Errors are low for Poisson parameters on
both DEM-MD and EM-MD. Relative errors on multinomial parameters are lower for C223
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setting, maybe due to a lower overall model complexity, in terms of parameters to estimate
and class distinctions. Bernoulli relative errors are here very different depending on the
class, for both settings. Again, as for multinomial parameters, errors are higher for C343
setting. Generally speaking, the results are correct and the DEM-MD algorithm performs
well, compared with an EM-MD that estimates the parameters with the right number of
classes from the start.

5.4.3 Comparisons to other methods on continuous data

The trillium dataset In the very recent paper of Fang et al. (2023), the authors compare
themselves with an EM method of Franczak et al. (2014) to estimate SAL mixture models.
They test in particular both methods on a simulated setting named the inversed trillium,
composed of three SAL clusters, which we reproduce here to compare our estimated pa-
rameters with theirs. We run our SAL DEM-MD on 100 simulated datasets of the inverse
trillium setting. As we also estimate K in our method, we have C = 92 over the 100 runs,
and all the runs converged. From a model selection perspective, in their article, Fang et al.
(2023) had between 96 and 100% correct estimates of the number of clusters.

Table 4.1 contains the true parameter, as well as the average estimates, with standard
deviation, returned by DEM-MD algorithm, and the ones obtained by Fang et al. (2023).
We have directly reported the estimated parameters given in their article (see Fang et al.,
2023, Table 3). We recall that estimated parameters for DEM-MD are over 92 runs with
correct K̂, while the MSAL-EM and MSAL-Bayes results are over 100 runs. These results
show that our algorithm retrieves correctly the different parameters, as well as the other
methods. The averages with DEM-MD are similar to the other ones, sometimes closer to
true parameters, sometimes farther but never drastically. However, the standard deviations
are in the majority not lower than the MSALD-Bayes ones from Fang et al. (2023), but
equivalent to the MSALD-EM ones.
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(a) Gaussian settings

Figure 4.4: Boxplots of centers relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.4: Boxplots of centers relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.4: Boxplots of centers relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.5: Boxplots of scales relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.5: Boxplots of scales relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.5: Boxplots of scales relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.6: Boxplots of proportions relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.6: Boxplots of proportions relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.6: Boxplots of proportions relative errors for all settings on both DEM-MD (green)
and EM-MD (blue). Each subplot corresponds to a continuous distribution: Gaussian (a),
Student (b), SAL (c).
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Figure 4.7: Boxplots of degrees of freedom relative errors for all settings on both Student
DEM-MD (green) and Student EM-MD (blue).
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Figure 4.8: Boxplots of skewness relative errors for all settings on both SAL DEM-MD
(green) and SAL EM-MD (blue).
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Figure 4.9: Boxplots of relative discrete distribution parameter errors for settings CB
221, CP
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451, for the three continuous distributions on both DEM-MD (green) and EM-
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Figure 4.10: Boxplots of relative discrete distribution parameter errors for settings C524 (a),
C423 (b) and CP

223 (c) on both DEM-MD (green) and EM-MD (blue). In each subplot, a
row corresponds to a continuous distribution (Gaussian, Student, SAL in this order).
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Figure 4.10: Boxplots of relative discrete distribution parameter errors for settings C524 (a),
C423 (b) and CP

223 (c) on both DEM-MD (green) and EM-MD (blue). In each subplot, a
row corresponds to a continuous distribution (Gaussian, Student, SAL in this order).
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Figure 4.10: Boxplots of relative discrete distribution parameter errors for settings C524 (a),
C423 (b) and CP

223 (c) on both DEM-MD (green) and EM-MD (blue). In each subplot, a
row corresponds to a continuous distribution (Gaussian, Student, SAL in this order).
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Figure 4.11: Boxplots of relative discrete distribution parameter errors for settings C223 (a)
and C343 (b), for the three DEM-MD on both DEM-MD (green) and EM-MD (blue). In
each subplot, a row corresponds to a continuous distribution (Gaussian, Student, SAL in
this order).
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Figure 4.11: Boxplots of relative discrete distribution parameter errors for settings C223 (a)
and C343 (b), for the three DEM-MD on both DEM-MD (green) and EM-MD (blue). In
each subplot, a row corresponds to a continuous distribution (Gaussian, Student, SAL in
this order).
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The Peel dataset To assess the performance of our DEM-MD on Student continuous
distributions, we consider here a simulated two-dimensional Student mixture model with
three clusters, originally from Peel and Mclachlan (2000). Given this mixture model, from
which the true parameters are available in Table 4.2, we simulate 100 datasets of size
n = 200, as in the literature. On each dataset, we run DEM-MD algorithm, which we
compare to estimation by a classical EM algorithm with R package mixture (Pocuca et al.,
2022). Student mixture models can be estimated in mixture with the function tpcm for
which we kept all the default parameter values, with a completely unconstrained covariance
structure. In their package, Pocuca et al. (2022) also consider Aitken’s convergence as a
criterion for stopping their algorithm.

Firstly, Student DEM-MD obtains C = 84 over the 100 runs, which all converged. We
retrieve in Table 4.2 the average (and standard deviation) estimated parameters from these
84 correct DEM-MD runs and the 100 runs by EM-mixture.

These results show that Student DEM-MD retrieves correctly the different parameters,
better than the Student EM algorithm from mixture. On degrees of freedom estimation,
as noticed in Subsubsection 5.4.1 on all our simulations, both algorithms are far from the
true values, confirming that this stays a challenge with EM-like algorithms. For all the
parameters of scales, centers and degrees of freedom, the average estimates with DEM-MD
algorithm are closer to the real values than those obtained by the EM-mixture algorithm.
Moreover, the majority of the DEM-MD estimates have smaller standard deviations than
those returned by EM-mixture algorithm. Only proportions parameters are slightly better
in average and dispersion with EM-mixture algorithm.

Conclusion Our DEM-MD algorithms for Student and Shifted Asymmetric Laplace dis-
tributions perform as well as the algorithms in the literature on simulated Trillium and Peel
datasets. In addition, DEM-MD algorithms have to estimate the number of classes and
perform very well, reducing computation time.

5.5 Penalize covariances with Inverse-Wishart priors
We observed limitations of SAL DEM-MD in the presence of an undersized dataset in
Subsection 5.3. This was particularly noticeable on setting CM

451 where G = 5 and the
algorithm only obtained 18% of correct K̂. In this problematic case, a possibility to improve
and/or stabilize the estimation is to regularize the covariances.

Estimation of scale matrices with an Inverse Wishart prior We rely here on reg-
ularization as proposed in Subsection 5.5, by the introduction of a prior on scales matrices
(Fraley and Raftery, 2007; Fop et al., 2019; Baudry and Celeux, 2015) in the objective
function Q̃. The considered prior is an Inverse Wishart prior with Σ ∼ W−1(w,W ) with w
degrees of freedom and W scale matrix of the prior distribution. We shall refer the reader to
Subsection 5.5 for further details on the choice of W and w. This prior was also adopted in
the very recent work of Fang et al. (2023) which estimated parameters by a Gibbs sampling
method and therefore needed to define parameter priors.

We recall that, when regularized by this prior, the scale matrix updates Σ̂t
k in the M-step

of any EM-like algorithm are replaced at t iteration (Fraley and Raftery, 2007; Baudry and
Celeux, 2015) by

Σ̂t,reg
k = Σ̂t

k + W

nk + w + g + 1 . (4.40)

Motivation on DEM-MD In a SAL DEM-MD or EM-MD, as in other EM-like algo-
rithms, when the number of points per mixture is not high enough, estimation becomes
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True parameters DEM-MD EM-mixture

ν1 5 9.52± 13.11 20.36± 31.90

µ1

(0
3

) (
−0.02± 0.38
2.96± 0.34

) (0.05± 1.01
2.68± 0.93

)

Σ1

( 2 0.5
0.5 0.5

) (2.06± 0.55 0.51± 0.2
0.51± 0.2 0.49± 0.34

) ( 1.57± 0.6 −0.01± 0.41
−0.01± 0.41 0.34± 0.22

)
π1 1./3. 0.33± 0.02 0.33± 0.01
ν2 30 54.84± 53.69 56.07± 42.53

µ2

(3
0

) (2.96± 0.31
0.04± 0.34

) (2.53± 1.48
0.15± 0.65

)

Σ2

(1 0
0 0.1

) (0.98± 0.30 0.01± 0.08
0.01± 0.08 0.1± 0.05

) ( 1.73± 0.7 0.09± 0.46
0.09± 0.46 0.37± 0.22

)
π2 1./3. 0.34± 0.01 0.33± 0.01
ν3 10 23.51± 34.79 31.88± 38.33

µ3

(
−3
0

) (
−3.04± 0.2
0.0± 0.11

) (
−2.66± 1.24
0.18± 0.72

)

Σ3

( 2 −0.5
−0.5 0.5

) (1.86± 0.47 −0.5± 0.19
−0.5± 0.19 0.51± 0.13

) ( 1.7± 0.66 −0.05± 0.48
−0.05± 0.48 0.40± 0.22

)
π3 1./3. 0.34± 0.02 0.33± 0.01

Table 4.2: True parameter values and average estimates with standard deviations returned
by our DEM-MD algorithm and EM algorithm from R package mixture on Student distri-
butions (function tpcm).

harder, and this is particularly true for the scales matrices which can become singular
and cause the algorithm to diverge. Regularization parameters are employed to avoid this
problem, frequently artificial ones in classical EM algorithms, and regularizations based on
prior information in variational methods. Thus, fewer pathological special cases can be
obtained but with subtle bias and worse parameter estimations. In cases where the number
of points is sufficient with regard to the number of parameters, EM-type algorithms without
regularization or with a small regularization value generally perform both as well.

Prior regularizations become valuable when dealing with high-dimensional datasets. In
DEM-MD with SAL continuous distributions, which correspond to the highest complexity,
this scale matrix prior helps to achieve greater convergence and better results. With a
not-so-large continuous space dimension, DEM-MD frequently diverges without this type
of regularization.

With the prior regularization, the scale matrix estimation step in Algorithm 4.7 can
be replaced by Eq.(4.40) with Σ̂t

k = nt
k × Σ̂t

k,EM and Σ̂t
k,EM estimated by Eq.(4.27). This

consideration is particularly important in real cases where it is frequent to have several
variables and a not-so-large dataset, as we will see in Section 6.

Application on setting CM
451 Here, the addition of a regularization such as Fraley’s in

the SAL DEM-MD for setting CM
451 leads to a clear improvement in the convergence of
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the algorithm and the estimation of the number of classes. As said above, changes in the
algorithm and implementation are lights, only requiring a few additional steps to compute
W = S

K2/g with S the overall empirical covariance matrix and then Σ̂t,reg
k with Eq.(4.40)

for each cluster k. Our simulations on S = 100 new datasets of size n = 600 simulated
from CM

451 and modeled with regularized SAL DEM-MD drastically improved convergence
of the algorithm, going from 18% to 100%. The rate of correct K̂ is now 72% instead of
18%, reaching performances obtained with n = 2200 points without scale regularization (see
Fig. 4.3). Figure 4.12 gives us the relative errors of these simulations computed similarly
to the previous ones. In addition, relative errors of SAL DEM-MD without regularization
are also featured. We observe that the errors are sometimes more dispersed but globally
similar to the ones without regularization on the configuration CM

451.
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Figure 4.12: Relative errors of SAL DEM-MD with/out Fraley regularization, on setting
CM

451. In blue are given the errors without regularization, from the same 18 previous runs.
In green are the errors with scale regularization. Results are over 72 runs with n = 600.

These experiments open up possibilities for better estimating this type of model at high
complexity and with a low volume of data. Particularly for real use cases where there may
be many variables and where DEM-MD, without regularization, struggles to estimate the
mixture model. This applies also to the problem discussed in Chapter 3, where there are
few, widely dispersed data, which also complicates the estimation of the model.

6 Experiments on real datasets

6.1 A Prostate Cancer dataset

Description This dataset was firstly analyzed by Byar and Green (1980), and then by
Hunt and Jorgensen (1996). Recently it was analyzed in papers on mixed-type data models
(McParland and Gormley, 2016; Foss and Markatou, 2018). Fifthteen variables are available
for n = 475 prostate cancer patients who were diagnosed as having either stage 3 or stage
4 prostate cancer. The variables are as detailed in the following table.

The outputs variables, which should be spread apart are Stage and SurvStat, as well
as Observation which are patient IDs. Depending on the existing works, some may include
Stage in the observed dataset and try to explain the SurvStat variable (Foss and Markatou,
2018) while others consider it as an output to be explained by the estimated clustering
(McParland and Gormley, 2016). Following precedent works and univariate analysis, the
variables size of primary tumor and serum prostatic acid phosphatase were transformed, with
respectively a square root transformation and a logarithmic transformation.

In brief, we have 8 continuous variables and 4 categorical variables which are: Per-
formance rating (Multinomial), Cardiovascular disease history (Bernoulli), Bone metasta-
sis (Bernoulli) and Electrocardiogram code (Multinomial). As we saw in the previous section,
the SAL DEM-MD algorithm quickly encounters difficulties in estimating a model with a
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Variable Type Description
Stage Output variable Stage of patient’s prostate cancer: 3 or 4

SurvStat Output variable Post-trial survival statut: 0-alive, 1-dead from
prostatic cancer, 2-dead from heart or

cardiovascular disease, 3-dead from
cerebrovascular accident, 4-dead from a

pulmonary embolus, 5-dead from other cancer,
6-dead from respiratory disease, 7-dead from
other specific non-cancer cause, 8-dead from

other unspecified non-cancer cause, 9-dead from
unknown cause

Age Continuous Age of the patient
Weight Continuous Weight of the patient

Performance rating Ordinal how active the patient is: 0-normal activity, 1-in
bed less than 50% of daytime, 2-in bed more

than 50% of daytime, 3-confined to bed.
Cardiovascular
disease history

Binary cardiovascular disease history: 0-no, 1-yes

Systolic Blood
Pressure

Continuous Systolic blood pressure of the patient in units of
ten

Diastolic Blood
Pressure

Continuous Diastolic blood pressure of the patient in units
of ten

Electrocardiogram
code

Categorical 0-normal, 1-benign, 2-rhythmic disturbances,
3-heart blocks or conduction defects, 4-heart

strain, 5-old myocardial infarct, 6-recent
myocardial infarct

Serum
haemoglobin

Continuous Serum haemoglobins levels in g/100ml

Size of primary
tumor

Continuous Estimated size of primary tumor in cm2

Index of tumor
stage and histolic

grade

Continuous Combined index of tumor stage and histolic
grade of the patient

Serum prostatic
acid phosphatase

Continuous Serum prostatic acid phosphatase levels in
King-Armstrong units

Bone Metastase Binary Presence of bone metastasis: 0-no, 1-yes

Table 4.1: Description of variables of the Prostate Cancer dataset.

high-dimensional dataset. For its estimation on the prostate cancer dataset, we therefore
apply a Fraley regularization on the scale matrices as presented in the Subsection 5.5.

Results With this dataset in hand and variables treated as explained above, Student
DEM-MD and SAL DEM-MD found K̂ = 2, while Gaussian DEM-MD estimated K̂ = 3
clusters. The selection strategy for clustMD (McParland and Gormley, 2016) returned 3
classes as the best model, while the one for KAMILA (Foss and Markatou, 2018) gave 2
classes. Both solutions may be acceptable for a clustering objective as Stage output variable
has 2 modalities and SurvStat 3 modalities. What is more interesting is that clustMD
method aims at retrieve Stage variable (which has two modalities) while KAMILA aims at
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retrieve SurvStat (which has 3 modalities after aggregation of modalities as applied by Foss
and Markatou (2018)).

A cross-tabulation of the cluster labels versus the cancer stage diagnosis is given in Ta-
ble 4.2. Estimated classes by Student and SAL DEM-MD retrieve correctly the Stage of
cancer (Stage 3 or 4). As the Gaussian DEM-MD estimates three classes, they cannot di-
rectly correspond to the cancer stage. But we see that the third cluster is mainly containing
Stage 3 patients, while classes 1 and 2 contain more Stage 4 patients. Student and SAL
DEM-MD succeed in characterizing the two groups of stages, even though this is a complex
variable, based on the subjective separation of cancer progression. On the contrary, the
Gaussian DEM-MD is insufficient to separate Stage groups correctly and lacks flexibility.

Model Cluster Stage 3 Stage 4

Gaussian
1 25 100
2 2 75
3 246 27

Student 1 17 170
2 256 32

SAL 1 6 143
2 267 59

Table 4.2: Cross-tabulation of estimated cluster labels for each model versus the diagnosed
prostate cancer stage

Violinplots on Figure 4.13 show the distribution of each continuous variable for each esti-
mated model, by component. For Student and SAL models, differences between clusters are
only clearly visible on variables Size.of.primary.tumor, Index.of.tumor.stage and.histolic.grade
and Serum.prostatic.acid.phosphatase. For the Gaussian DEM-MD, additional differences
can be observed between the first and second classes on the Age and Serum.haemoglobin
variables. The patients in the first class have lower serum prostatic acid phosphatase, in
average lower index of tumor stage, higher serum hemoglobin and are less dispersed in Age,
compared to patients in the second class, all of whom have Stage 4 cancer.

Comparing center vectors for clusters of each model (Fig. 4.14(a)), it can be seen that the
classes for the three models are differentiated by the Serum.haemoglobin, Size.of.primary.tumour,
Index.tumour.stage.histolic.grade and Serum.prostatic.acid.phosphatase variables. Whereas
Age and Diastolic.blood.pressure only differentiate well for Gaussian and SAL models. On
the other hand, Weight separates Gaussian and Student models. As the Gaussian model
has three classes, we can look at the parameters that best characterize its classes, in par-
ticular the first and second ones, which both contain Stage 4 patients. Patients in cluster 1
(against cluster 2) are on average older and heavier, with higher diastolic pressure, higher
serum hemoglobin level, lower size of the primary tumor and lower serum prostatic acid
phosphatase level. In addition, estimated parameters of binary variables (Fig. 4.14(c)) indi-
cate (still for 1st class compared to 2nd one’s) a higher probability of having cardiovascular
disease history and lower risk of bone metastases. Multi-modalities variable indicate: from
electrocardiogram code (Fig. 4.14(b)) a lower probability for modality 2, corresponding
to rhythmic disturbance, the highest probability for 1st class being a normal code, and
rhythmic disturbance for 2nd class. The multimodal performance variable indicates a high
probability of normal activity for first class against second class (Fig. 4.14(d)). Overall, the
probabilities for each modality of the multinomial variables are in similar ranges.
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Figure 4.13: Violin plots for each continuous variable in prostate cancer dataset, according
to clusters assignments by each estimated model. In each subplot, the first column is with
Gaussian assignments, the second one with Student assignments and the last one with SAL
assignments.

Conclusion Gaussian DEM-MD is not the most appropriate model here to estimate and
cluster the prostate cancer dataset. On the other hand, Student and SAL DEM-MD can
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Figure 4.14: Estimated centers and discrete parameters for all DEM-MD on the prostate
cancer dataset. Each color is associated with a model (see figure legends) and numbers
indicate clusters. Rows indicate variable names in (a) and (c). Rows indicate modality
numbers in (b) and (d).

dynamically find two classes sufficiently separating the cancer stages. By examining the
marginal distributions per class or the various estimated parameters, we note that cer-
tain variables differentiate the cancer stages or the Gaussian classes, which improves inter-
pretability.
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6.2 The Australian Institute of Sport dataset
Description We now illustrate DEM-MD algorithms on the Australian Institute of Sport
(AIS) dataset (Telford and Cunningham, 1991). This dataset was also analyzed in (Lee and
McLachlan, 2012, 2014; Lin, 2010) where the authors only use a subsample of continuous
variables to try to cluster individuals, which are here athletes, by sex. Thirteen variables
are available for n = 202 Australian athletes, male and female in ten different sports.
Apart from sex and sport variables which are respectively binary and nominals, we have 11
continuous variables, corresponding to physical and blood measurements (Table 4.1).

Variable Description
sex the sex of the athlete

sport the sport of the athlete, one of BBall (basketball), Field, Gym
(gymnastics), Netball, Rowing, Swim, T400m, (track, further than
400m), Tennis, TSprint (track sprint events), WPolo (waterpolo)

Ht height in cm
Wt weight in kg

LBM lean body mass in kg
RCC red blood cell count
WCC white cell count
HCT hematocrit in percent
HGB hemoglobin concentration, in grams per decilitre
Ferr plasma ferritins in ng per decilitre
SSF sum of skin folds
Bfat percentage body fat
BMI body mass index, in kg per m2

Table 4.1: Description of Australian Institute of Sport dataset

Several models can be considered with this dataset. Since the literature mainly attempts
to separate men and women, we will consider a similar framework, excluding sex from the
set of estimates, but including sport since we have a model capable of handling categorical
variables. Since our main objective is to infer the data using mixture models, without
any major clustering objective, we could also decide to use all the variables to estimate
a model, including the variable sex. As we saw in the previous section, the SAL DEM-
MD algorithm quickly encounters difficulties in estimating a model with a high-dimensional
dataset. Therefore, for its estimation on the AIS dataset, we apply a Fraley regularization
on the scale matrices as presented in the Subsection 5.5.

Results Running DEM-MD with 12 variables (all except sex variable) on the n = 202
athletes, Gaussian DEM-MD estimates K̂ = 3 classes while a Student DEM-MD estimates
K̂ = 4 and a SAL DEM-MD K̂ = 2.

The class assignments of the different models are cross-tabulated with sex and sport
variables, obtaining interesting results (Tables 4.2 and 4.3). We can see that all three
models tend to separate men and women as can be seen in Table 4.2. But where the
SAL DEM-MD estimates two classes that correspond pretty well to the sex of athletes, the
Gaussian and Student DEM-MD estimate three and four classes respectively, which reveals
other interesting information. With the Gaussian model, one class corresponds to women,
one to men but the third class is half men and half women. From Table 4.3, the third cluster
contains the majority of track athletes, the four gym athletes, several swimmers and tennis
players, and some other sports.
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With the Student model, we even have two clusters for female athletes. The mixed class
of the Student model (Cluster 4) is pretty similar to the Gaussian one (Cluster 3), with all
Track 400m, a majority of Track sprint, several swimmers and tennis players, and some other
sports. The smaller feminine class is composed of four gyms, several basketball players and
a minority of netball and row. The second feminine cluster mainly contains netball players
and rowers. These two classes are hard to interpret in terms of categorical variables only
but take into account the physiological and biological variables. Figures 4.15 and 4.16 give
us for each continuous variable its distribution according to the attributed class of athletes,
and for each estimated DEM-MD. We can observe interesting differences between classes
that do not correspond only to male/female separation. For example in the Student model,
for the fourth class which contains track sports and some swimmers and tennis players,
from both sexes, the sum of skin folds is inferior, in density and median. Moreover, Weight
and BMI are also in the low range, as it is the case with Cluster 1, composed essentially of
women practicing Basketball, Gym, Netball or Row.

Model Cluster Female Male

Gaussian
1 58
2 5 65
3 37 37

Student

1 21
2 44
3 4 60
4 31 42

SAL 1 80 3
2 20 99

Table 4.2: Cross-tabulation of estimated cluster labels for each model versus the athlete sex

Model Cluster Basket
Ball

Field Gym Netball Row Swim Track
400m

Track
Sprint

Tennis Water
Polo

Gaussian
1 12 20 21 3 2
2 10 17 14 8 1 3 1 16
3 3 2 4 3 2 11 28 12 8 1

Student

1 7 4 6 3 1
2 3 4 14 19 2 2
3 12 13 14 7 3 15
4 3 2 3 1 12 29 12 9 2

SAL 1 13 8 4 21 22 5 4 6
2 12 11 2 15 17 25 15 5 17

Table 4.3: Cross-tabulation of estimated cluster labels for each model versus the practiced
sports

Conclusion and perspectives This dataset contains heterogeneous data involving both
asymmetric and heavily tailed behaviors. Here each DEM-MD gives a different model with
two, three or four clusters. While the SAL DEM-MD well retrieves the sex of the athletes,
the Student DEM-MD estimates two classes for women athletes and an additional mixed
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Figure 4.15: Violin plots for each continuous variable in the AIS dataset, according to
cluster assignments by each estimated model. In each subplot, the first column is with
Gaussian assignments, the second one with Student assignments and the last one with SAL
assignments.

class, which requires looking at sport repartition for a good interpretation. Similarly, the
Gaussian DEM-MD returned three clusters which require looking also at assigned classes
per sport. All these models give interesting results characterized by different variables and
splitting along sex and/or sport with meaningful results.
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Figure 4.16: Violin plots for each continuous variable in the AIS dataset, according to
cluster assignments by each estimated model. In each subplot, the first column is with
Gaussian assignments, the second one with Student assignments and the last one with SAL
assignments.

7 Conclusion and perspectives
Mixture models for mixed-type data with different possible continuous and discrete variables
were introduced in this chapter, following a well-established principle of local independence,
ensuring the identifiability of models. We proposed Dynamic EM for Mixed-type Data
algorithms for these models, allowing us to jointly estimate the number of classes and
the various parameters, for both continuous and discrete variables, of these models. We
introduced improvements compared to the EM versions, to ensure algorithm convergences
and estimations. Especially, our SAL DEM-MD relies on multicycle ECM (Meng and
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Rubin, 1993) and deterministic annealing (Ueda and Nakano, 1994) concepts. We also
considered Aitken’s acceleration for all DEM-MD, which makes more sense than comparing
only mixture centers, especially in a dynamic context.

Dynamic EM for Mixed-type Data algorithms were illustrated on both simulated and
real datasets. Firstly, we assessed the class estimation performances, including compar-
isons with some existing model selection criteria. Then we provided parameter recovery
results on several simulated settings and comparisons with EM-like algorithms that we also
implemented. Estimation capacities are limited by the number of observations and the com-
plexity of the model, as we have observed in certain simulated situations and real scenarios.
We also compared ourselves with existing algorithms/implementations on Student or SAL
continuous distributions, showing that parameter recovery with DEM-MD is similar, as well
as correctly estimating the number of classes.

Finally, we analyzed the DEM-MD’s estimates on two real datasets taken from the
literature: the Prostate Cancer Dataset and the Australian Institute of Sport Dataset. On
both datasets, the different results achieved with different continuous assumptions did not
alter their meaning, as they still can be interpreted, and are coherent with the literature,
whereas other works considered different objectives. Our Dynamic EM for Mixed-type
Data algorithms with the different continuous laws were able to retrieve meaningful classes,
despite small dataset sizes, based if necessary on regularized covariances as introduced
earlier.

A clear limitation of our models is the local independence assumption. We saw in the
introduction that other families of methods can be used to establish links for all variables,
but generally involve either the transformation of certain variables or statistical condition-
ing, such as factor analyzers or copulas. An extension could be to associate mixtures of
copulas for mixed-type data estimated by EM-like algorithms (Zhao and Udell, 2020; Rajan
and Bhattacharya, 2016) with dynamic estimation of the number of components as done in
this chapter. As a lot of copula models are estimated with Bayesian approaches, it could
be interesting to estimate mixtures of copula for mixed-type data with reversible jump
Monte-Carlo Markov Chain methods to find the optimal space dimensions.

Secondly, although we have introduced regularization on the covariances in situations
with high complexity and low sample size, prior regularization could be built into any DEM-
MD permanently. By this, we mean that this regularization can be incorporated into the
generic version of the algorithm, instead of adding a small amount of noise. This integration
should take into account the dimension of the data in order to adapt the regularization to
each situation and not obstruct the estimation of the parameters. In the context of a
very large continuous dataset, another idea would be to combine DEM-MD for mixed data
with factor analyzers, as Franczak et al. (2013) extended mixture of factor analyzers to
include SAL density. Thirdly, additional continuous and discrete laws can be modeled and
implemented within the framework of the DEM-MD algorithm.
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8 Appendix
A Estimation of continuous distributions in mixture models

Law Latent variable Updating equation

Gaussian τik
πkpGaussian(xi|µk,Σk)∑K

j=1 [πjpGaussian(xi|µj ,Σj)]

Student

τik
πkpStudent(xi|µk,Σk, νk)∑K

j=1 [πjpStudent(xi|µj ,Σj , νj)]

Eu,ik
νk + g

νk + δ(xi|µk,Σk)

SAL

τik
πkpSAL(xi|µk,Σk,αk)∑K

j=1 [πjpSAL(xi|µj ,Σj ,αj)]

E1ik

√
bik

ak
Rν(

√
akbik)

E2ik

√
ak

bik
Rν(

√
akbik)− 2ν

bik

Table A.1: Equations to estimate expectation of latent variables at E-step.
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B Pseudocodes
B.1 Generic EM-MD and β computation pseudocodes

Algorithm 4.3: Generic EM algorithm
Input : ε > 0, K, tmax, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization: Compute τ 0

ik ← K-Means(K,Xc,maxiter=1)
Compute π0

k with (4.5)
Compute µ0

k

Compute Σ0
k

Compute other continuous parameters
Compute pd,0

k ∀ d ∈ J1, . . . , DK with (4.37) , (4.38) , (4.39)
t← 1

1 while |lt∞ − lt−1
∞ | > ε and t < tmax do /* Aitken’s convergence */

E-Step
Compute τ t

ik with (4.32)
Compute other latent variables
M-Step
Compute πt

k with (4.5)
Compute µt

k

Compute Σt
k

Compute other continuous parameters
Compute discrete probabilities pd,t

k with (4.37) , (4.38) , (4.39)
t← t+ 1

end

Algorithm 4.4: Computation of parameter β
Input : πEM,π(new),π(old), K, n
πEM

(1) ← max
1≤k≤K

πEM
k , π(old)

(1) ← max
1≤k≤K

π
(old)
k

E ←
∑K

k=1 π
(old)
k log(π(old)

k )

β ← min
{∑K

k=1 exp
(

−ηn
∣∣π(new)

k
−π

(old)
k

∣∣)
K ,

(
1−πEM

(1)

)(
−π

(old)
(1) E

)}
Output: β

B.2 DEM-MD pseudocodes
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Algorithm 4.5: DEM-MD for Gaussian Mixtures
Input: ε > 0, γ, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization : K0 ← n, β0 ← 1
π0

k ← 1/n ∀ k, µ0 ← Xc

Σ0
k ← Dk(⌈

√
Kinitial ⌉)Ig with

Dk = sort
{
d2

ki = ∥xi − µk∥2
2 : d2

ki > 0, i ̸= k, 1 ≤ i ≤ n
}

Initialize pd,0
k ∀ d ∈ J1, . . . , DK with (4.36)

t← 1
Compute τ t

ik with (4.32)
1 while |lt∞ − lt−1

∞ | > ε do /* Aitken’s convergence */
M-Step
Compute πt

k with (4.33)
Compute µt

k with (4.6)
βt ← Algorithm 4.4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

tcomponent ← 1 /* variable to keep in memory the number of
iterations with a stable number of components */

otherwise do
Kt ← Kt−1

end
if t ≥ tmin and tcomponent ≥ 100 then

2 if no superimposed clusters then
βt = 0

3 else if superimposed clusters and tcomponent < 200 then /* give more
time to the algorithm to converge */
tmin ← tmin + 50

4 else merge superimposed clusters
adjust πt, µt, Σt and τ t

end
end
Compute ΣEM

k with (4.7) and Σt
k = (1− γ)ΣEM

k + γP with
P = d2

minIg, d
2
min = min{d2

ij : d2
ij = ∥xi − xj∥2

2 > 0, 1 ≤ i, j ≤ n}
Compute discrete probabilities pd,t

k with (4.37) , (4.38) , (4.39)
E-Step
Compute τ t+1

ik with (4.32)
t← t+ 1
tcomponent ← tcomponent + 1

end

127



Chapter 4. Dynamic Expectation-Maximization Algorithms for Mixed-type Data

Algorithm 4.6: DEM-MD for Student Mixtures
Input: ε > 0, γ, dataset X = [Xc,XD] with Xi ∈ Rg ×X
Initialization: K0 ← n, β0 ← 1
π0

k ← 1/n ∀ k, µ0 ← Xc, ν0
k ← 10 ∀ k

Σ0
k ← Dk(⌈

√
Kinitial ⌉)Ig with

Dk = sort
{
d2

ki = ∥xi − µk∥2
2 : d2

ki > 0, i ̸= k, 1 ≤ i ≤ n
}

initialize pd,0
k ∀ d ∈ J1, . . . , DK with (4.36)

t← 1
Compute τ t

ik with (4.32)
Compute Et

u,ik with (4.13)

1 while |lt∞ − lt−1
∞ | > ε do /* Aitken’s convergence */

M-Step
Compute πt

k with (4.33)
Compute µt

k with (4.14)
βt ← Algorithm 4.4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

tcomponent ← 1 /* variable to keep in memory the number of
iterations with a stable number of components */

otherwise do
Kt ← Kt−1

end
if t ≥ tmin and tcomponent ≥ 100 then

2 if no superimposed clusters then
βt = 0

3 else if superimposed clusters and tcomponent < 200 then /* give more
time to the algorithm to converge */
tmin ← tmin + 50

4 else merge superimposed clusters
adjust πt, µt, Σt−1, νt−1 and τ t

end
end
Compute ΣEM

k with (4.15) and Σt
k = (1− γ)ΣEM

k + γP with
γ = 0.0001, P = d2

minIg, d
2
min = min{d2

ij : d2
ij = ∥xi − xj∥2

2 > 0, 1 ≤ i, j ≤ n}
Compute νt

k by solving (4.16) with Brent’s method on the interval [2, 200]
Compute discrete probabilities pd,t

k with (4.37) , (4.38) , (4.39)
E-Step
Compute τ t+1

ik with (4.32)
Compute Et+1

u,ik with (4.13)
t← t+ 1
tcomponent ← tcomponent + 1

end
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Algorithm 4.7: DEM-MD for SAL Mixtures
Input: ε > 0, dataset X = [Xc,XD] with Xi ∈ Rg ×X , a and b for temperature
Initialization: K0 ← n, β0 ← 1
π0

k ← 1/n ∀ k, α0
k ← [0, . . . , 0]g ∀ k

µ0 ← Xc + ϵ, ϵ ∼ N (0, σ2)
Σ0

k ← Dk(⌈
√

Kinitial ⌉)Ig with
Dk = sort

{
d2

ki = ∥xi − µk∥2
2 : d2

ki > 0, i ̸= k, 1 ≤ i ≤ n
}

Initialize pd,0
k ∀ d ∈ J1, . . . , DK with (4.36)

t← 1
Compute τ t

ik with (4.35)
Compute Ek,t

1i with (4.23)
Compute Ek,t

2i with (4.24)
1 while |lt∞ − lt−1

∞ | > ε do /* Aitken’s convergence */
CM-Step 1
Compute πt

k with (4.33)
Compute µt

k with (4.26)
βt ← Algorithm 4.4
case delete classes with πt

k < 1/n do
update class number Kt, adjust πt

k and τ t
ik

tcomponent ← 1 /* variable to keep in memory the number of
iterations with a stable number of components */

otherwise do
Kt ← Kt−1

end
if t ≥ tmin and tcomponent ≥ 100 then

2 if no superimposed clusters then
βt = 0

3 else if superimposed clusters and tcomponent < 200 then /* give more
time to the algorithm to converge */
tmin ← tmin + 50

4 else merge superimposed clusters
adjust πt, µt, αt−1, Σt−1 and τ t

end
end
Compute discrete probabilities pd,t

k with (4.37) , (4.38) , (4.39)
Check µt = xc

i and compute αt
k with Algorithm 4.1

Intermediate E-step
Compute τ̃ t

ik, Ẽk,t
1i and Ẽk,t

2i with respectively (4.35), (4.23) and (4.24)
CM-Step 2
Compute Σt

k with (4.27)
E-Step
Compute τ t+1

ik with (4.35)
Compute Ek,t+1

1i with (4.23)
Compute Ek,t+1

2i with (4.24)
t← t+ 1
tcomponent ← tcomponent + 1

end
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Conclusion

In this thesis, we have proposed several contributions to improve and diversify the estima-
tion of mixture models, particularly on mixed-type data. We have also proposed a simple
pipeline that can integrate these mixture models for temporal monitoring, and this is par-
ticularly interesting for spatial datasets. The objective with this pipeline and the associated
estimation components was to rely on model-based approaches to propose a spatio-temporal
monitoring tool based on flexible, configurable mixtures. This part concludes the thesis and
provides possible research prospects that can be expected as a follow-up to this thesis.

In Chapter 3 we have proposed a complete and generic pipeline for modeling the evolu-
tion of the distribution of a population, and detecting abnormal changes in this distribution.
This pipeline, named spatio-temporal mixture process (STMP), relies on a simple evalua-
tion of the likelihood ratio between two models. At time t these two models are estimated
on the same data but with different algorithmic constraints, making it possible to build a
temporal link throughout the process. The spatio-temporal mixture process for monitoring
population distributions and the algorithms to estimate the models are two independent
objects. As first components to estimate the mixtures, we proposed two EM algorithm
variants to estimate Gaussian mixture models.

The first variant, a Modified Robust EM, was robust to initialization, space boundaries
and overfitting. More importantly, it has made it possible to estimate the number of com-
ponents in a mixture model without external selection or a posteriori, by using the entropy
of the proportions as a penalization during execution.

The second component was a limited EM algorithm, implemented in such a way as to
constrain the evolution of parameters in a neighborhood of the initial parameters. The
parameters were constrained in their evolution by relative limitation of their values, easy
projections, or by a posteriori cosine dissimilarity computation for covariances. We are
therefore aware that improvements are possible by changing the evolution constraint strate-
gies in this EM algorithm. Constrained evolution is a challenge that could also be addressed
from the whole pipeline perspective, by changing the way the past model (from previous
time step) is considered during an actual time step and especially within the evolution test
with the likelihood ratio.

This ties in with another limitation, which is that the decision rule has been established
empirically, albeit by experiments leading to the computation of theoretical likelihoods.
Modeling this decision rule as an acceptation probability, similarly to Monte Carlo meth-
ods, would be a good improvement. This could lead to a different way of treating new data
at time t, by still keeping mixture models to represent data, and combine EM algorithms
and MCMC methods for estimation. For now, as the STMP and mixture estimation algo-
rithms are independent, this enables future directions to consider different mixtures such as
the ones developed in our second work.

In Chapter 4, we have proposed mixture models for mixed-type data with different possi-
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ble continuous and discrete variables, following a well-established principle of local indepen-
dence, ensuring the model identifiability. We proposed Dynamic EM for Mixed-type Data
(DEM-MD) algorithms for these models, allowing to jointly estimate, for each model, the
number of classes and the various parameters of the continuous and discrete distributions.
Associated with Aitken’s acceleration for testing algorithm convergence, and deterministic
annealing for Shifted Asymmetric Laplace distribution, the improved algorithms performed
correctly on the three considered distributions.

A clear extension would be to consider and implement DEM-MD algorithms for other
continuous and discrete laws, such as the Generalized Hyperbolic distribution which has
in fact several continuous distributions as limiting cases, such as the ones considered here.
Considering mixture of Generalized Hyperbolic distributions has already been proposed by
Browne and McNicholas (2015).

Another debatable point of our mixture models for mixed-type date is the local indepen-
dence assumption. We saw in the introduction that other families of methods can be used
to establish links for all variables, but generally involve either the transformation of certain
variables or statistical conditioning, as factor analyzers or copulas. An extension could be to
associate a mixture of copulas for mixed-type data estimated by EM-like algorithms (Zhao
and Udell, 2020; Rajan and Bhattacharya, 2016) with a dynamic estimation of the number
of components as in our work.

Although we have introduced regularization on the covariance matrices in situations with
high complexity and low sample size, prior regularization could be built into any DEM-MD
on a permanent basis. By this we mean that this regularization could be incorporated into
the generic version of the algorithm, instead of adding a small amount of noise as usually
done in a lot of EM algorithm implementations. This integration should take into account
the dimension of the data in order to adapt the regularization to each situation and not
obstruct the estimation of the parameters.

In the context of high-dimensional data, other possibilities would be to consider parsi-
monious models and subspace clustering methods such as factor analyzers (Bouveyron and
Brunet-Saumard, 2014; Franczak et al., 2013).
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Résumé : Dans cette thèse, nous nous intéressons
à des méthodes d’apprentissage statistique sur don-
nées spatio-temporelles et données mixtes. En ef-
fet, la croissance rapide des systèmes d’informations
en santé publique permet aujourd’hui de disposer de
données variées en temps réel pour de nombreuses
maladies. L’objectif est de développer des méthodes
pour utiliser ces données afin de construire des sys-
tèmes d’aide à la décision exploitables.
Nous proposons d’abord un pipeline spatio-temporel
pour estimer la distribution de la population et mettre
en évidence des différences temporelles. Ce pipeline
est une première étape vers un système d’aide à la
décision et d’alerte pour l’analyse spatio-temporelle
de l’évolution d’une population. Ce pipeline est
conçu de manière à ce que différentes distributions et
donc différents algorithmes puissent être envisagés.
Pour une première application, ce pipeline est com-
biné avec des algorithmes EM robustes permettant
l’estimation de modèles de mélange gaussiens. Il est
éprouvé sur des données d’hôpitaux parisiens corre-
spondant aux personnes testées positives à l’infection

par le SARS-CoV-2 sur onze semaines en 2020.
Dans une deuxième partie nous proposons un en-
semble d’algorithmes pour l’estimation de modèles
de mélange sur données mixtes. Nous décrivons
d’abord des modèles de mélange pour diverses lois
continues et discrètes, en supposant une indépen-
dance conditionnelle entre les variables discrètes et
continues. Nous proposons ensuite des algorithmes
dynamiques de type EM, permettant l’estimation de
tous les paramètres du mélange ainsi que l’estimation
du nombre de classes. Nous montrons que
nos différents algorithmes dynamiques permettent
d’atteindre le nombre réel de classes et d’estimer cor-
rectement les paramètres des lois discrètes comme
continues. Nous soulignons aussi l’intérêt d’introduire
des régularisations sur des paramètres particuliers
afin d’améliorer les performances dans des situations
où la taille de l’échantillon n’est pas suffisante en re-
gard de la complexité du modèle. Ces algorithmes
dynamiques sont ensuite validés sur des données
réelles issues de la littérature.
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Abstract: In this thesis, we focus on statistical learn-
ing methods for spatio-temporal and mixed-type data.
With the rapid growth of public health information sys-
tems, a wide range of real-time data is now available
for many diseases. The aim is to develop methods for
using this data to build operational decision support
systems.
We first propose a spatio-temporal pipeline for esti-
mating the distribution of a population and highlight-
ing temporal differences. This pipeline is a first step
towards a decision support and alert system for the
spatio-temporal analysis of population trends. This
pipeline is designed so that different distributions and
therefore different algorithms can be considered. For
an initial application, this pipeline is combined with ro-
bust EM algorithms for estimating Gaussian mixture
models. It is evaluated using data from Paris hospi-
tals corresponding to people who tested positive for
SARS-CoV-2 infection over eleven weeks in 2020.

In the second part, we propose a set of algorithms for
estimating statistical models on mixed data. We con-
sider that mixed-type data are distributed according to
mixtures of laws. We first describe mixture models for
various continuous and discrete laws, assuming local
independence between discrete and continuous vari-
ables. We then propose dynamic algorithms of the
EM type, allowing the estimation of all the parame-
ters of the mixture as well as the estimation of the
number of classes. We show that our different dy-
namic algorithms allow us to reach the real number
of classes and to correctly estimate the parameters of
the discrete and continuous laws. We also highlight
the benefits of introducing regularizations to improve
performance in situations where the sample size is in-
sufficient for the complexity of the model. These dy-
namic algorithms are then validated on real data from
the literature.
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