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I Context and State of the Art

F

rom the dawn of human history, we have been creating and manipulating matter to suit our changing needs and facilitate our daily life. From the prehistoric stone tools of our ancestors to modern materials and technologies, we continuously push the boundaries of what is feasible. We have developed new technologies over the ages to harness the power of nature and turn raw materials into useful objects that evolve over time to satisfy our evolving needs and desires.

Early humans used stone as a tool to grind, scrape, and cut. Then the agricultural revolution and the domestication of animals led to the creation of more sophisticated tools, such as plows, wagons, and other farming tools. As societies became more complex, we came up with new innovations and technologies such as the printing press, telegraphs, and steam engines, which sparked the industrial revolution accompanied by the mass manufacturing of products. During this period, new innovations such as plastic and synthetic fibers enhanced our ability to create more innovative objects.

Today, advanced electronics and robotics have remarkably accelerated technological progress and revolutionized how we live and work. The spread of 3D printing in recent years has given everyone the ability to instantly create custom complex objects, which was impracticable and prohibitively expensive with traditional manufacturing methods.

3D printed objects are now present in many fields, from fashion accessories to medical implants and spare parts or tools in space. In addition, virtual reality and augmented reality allow the creation of virtual objects that have a sense of presence, allowing users to interact with them as if they were real, which enhanced our immersion in the digital world.

Unlike real 3D printed objects, virtual objects can be easily modified and adjusted. They can be replicated with different shapes and sizes, and they allow for collaboration where multiple people, at different locations, can work on the same virtual object simultaneously.
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Programmable Matter (PM) represents the next step in the evolution of object creation that bridges the gap between a digital representation of an object and the physical world.

It allows the creation of tangible shape-shifting objects that can be reshaped at will and change their functionality to accommodate different tasks or to adapt to their environment.

Unlike virtual objects, objects formed from PM can persist. They have mass, can be touched, interacted with, and used as a tool while sharing the interactivity, adaptability, flexibility, and replicability with virtual objects. This has the potential to revolutionize many areas of science and engineering, from medicine and manufacturing to entertainment and architecture.

Various technologies have been studied to achieve PM such as 4D printing [START_REF] Ahmed | Ajit: ª4D printing: Fundamentals, materials, applications and challengesº[END_REF], folding structure Hawkes et al. (2010), and DNA structures Kim et al. (2011b). A particularly promising technology is based on Modular Self-Reconfigurable Robot (MSR), which involves creating robotic modules that can assemble themselves into complex structures and then rearrange the connections of the modules to morph into different shapes. Unlike the atoms of real matter that are strongly linked to each other, the modules that form an MSR have displacement capabilities that allow matter to be reshaped by local movements. This technology has gained significant attention, having been popularized by the Claytronics project Goldstein and Mowry (2004) and is now being furthered by research at FEMTO-ST Bourgeois et al. (2016a). Its main objective is to create 3D interactive synthetic objects that bridge the gap between virtual and augmenting reality and the physical world.

MSRs have interesting properties that make them suitable for achieving programmable matter. This includes programmability, evolutivity, and autonomy. The ensemble forms a distributed system where each module has computational and communication capabilities, so they can be programmed to cooperate to achieve a common goal, such as rearranging their connections to change the whole structure. They possess the ability to alter their shape using motion and docking actions and can be controlled externally by a computer or run autonomously executing a distributed program. Figure 1: An example of self-reconfiguration of an object made with tiny spherical modules. a) the initial mug shape. b) an intermediary configuration. c) the goal plate shape.

Self-reconfiguration is the process that an MSR performs to transform itself from an initial configuration to a goal one. Reconfiguration speed is crucial, especially for applications that require real-time interactions with the matter. An example of self-reconfiguration is shown in Figure 1 where a mug made of tiny spherical modules is reconfigured into a plate. Planning for self-reconfiguration is a challenging process. It has been shown

in [START_REF] Hou | ªGraph-based optimal reconfiguration planning for self-reconfigurable robotsº[END_REF], that optimal self-reconfiguration planning is NP-complete for chain-type MSR. The exploration space between two random configurations increases exponentially with the number of modules: It has been shown in [START_REF] Park | ªAutomatic Configuration Recognition Methods in Modular Robotsº[END_REF] that the number of unique possible configurations is (c×w) n where n is the number of modules, c the number of possible connections per module, and w the different ways of connecting the modules. We expect to have ensembles made of thousands or even millions of microscale modules to build objects with high resolution, which compounds the complexity of the problem. Additionally, distributed coordination of a large number of concurrent mobile modules while avoiding collisions and blocking is also challenging.

Clustering the modules can help mitigate the complexity of self-reconfiguration. By grouping the modules together, it may be possible to exploit the parallelism of motion where modules within a cluster can move independently and in parallel to achieve the desired configuration. This can improve the speed and efficiency of the self-reconfiguration process as multiple clusters can work concurrently to achieve the goal configuration. Parallelism of motions is particularly beneficial for large-scale ensembles, where the number of modules and the complexity of the problem can make it difficult to achieve real-time self-reconfiguration without parallelizing the motion of the modules.

CONTRIBUTION

The goal of this thesis is to develop distributed algorithms that can improve the efficiency of self-reconfiguration in terms of both energy and time. In light of this objective, the central research question is: What is the most efficient way to reconfigure an MSR from a starting shape I to a goal shape G? In response to this question, this work presents two key contributions that aim to address the challenge.

The first involves using a clustering algorithm with a constraint on the size of each cluster to reduce the search space for self-reconfiguration planning and enhance parallelization by allowing each cluster to reconfigure in parallel. It consists of building a spanning tree and then cutting it into branches to form the clusters. Another method consists of clustering modules into cubic-shaped clusters whose union forms a representation of the current shape. Recognizing the current shape is useful as input to a self-configuration planner or to efficiently report the shape to an external computer connected to the ensemble.

The second involves constructing the object using a porous structure that contains CONTENTS enough empty space to allow for a concurrent flow of modules inside it. The porous structure also doubles as a storage space for modules within its empty volume, which relaxes the constraint of requiring the same number of modules in the initial and goal configurations. To create this structure, we use meta-modules, which are small clusters of modules locked together in a regular lattice pattern. Two self-reconfiguration algorithms are proposed for this structure: RePoSt and ASAPs. RePoSt is a round-based fully distributed algorithm where in each round a set of disjoint paths are determined to guide modules' flow towards their goal positions. ASAPs follows a hybrid approach where an initial centralized planner calculates all the flowing paths to reach the goal configuration and then the modules flow asynchronously in a single round to reach their goal position.

OUTLINE

The organization of this thesis is divided into four main parts. The first part sets the context and state-of-the-art, which is covered in three chapters. Chapter 1 provides an introduction to modular robot-based programmable matter and its potential applications.

Chapter 2 discusses the software challenges tackled during this thesis, as well as the state-of-the-art and recent advances. The third chapter 3 presents the experimentation and simulation tools used in this work.

The second part of the thesis focuses on clustering algorithms and is composed of two chapters. The first chapter 4 presents a Size-Constrained Clustering (SC-Clust) algorithm. The second chapter 5 proposes a distributed shape recognition algorithm.

The third part of the thesis is dedicated to self-reconfiguration and consists of three chapters. The first chapter 6 presents the proposed porous structure. The second chapter 7

presents RePoSt: a fully distributed self-reconfiguration algorithm for the porous structure. The third chapter 8 presents ASAPs: a hybrid self-reconfiguration algorithm, which combines centralized and distributed approaches to achieve faster and more efficient reconfiguration.

Finally, Chapter 9 offers a summary and a discussion of possible avenues for future re- A Modular Self-Reconfigurable Robot (MSR) is a robot composed of an ensemble of interchangeable, autonomous, and communicating robotic modules. It can be used to achieve a Programmable Matter (PM) where each module of the MSRs can be thought of as the building block of such a matter. Furthermore, the modules that form the MSR have displacement capabilities that allow, by local movements, the rearrangement of the modules' connections in order for the matter to self-organize in response to an external stimulus or user input. The modules' embedded computation, their communication and motion capabilities offer programmability, reconfigurability, and interacivity, provide essential features for a programmable matter. Programmbality enables the modules to be programmed and reprogrammed to adapt to various tasks and requirements. Reconfigurability gives the modules the ability to move and change their interconnections to be arranged and rearranged as needed allowing for flexible configurations. And, interactivity allows the user to interact with the modular robot by manipulating the modules.

This chapter provides a contextual overview of modular robotic systems for building PM.

It is organized into several sections that cover different aspects of the topic. In Section 1.2, we discuss the various applications of these systems. Section 1.3 presents the Figure 1.1: An illustration of a system where a PM composed of a large number of tiny spherical modules is used to replicate the object designed using the CAD software (from Bourgeois et al. (2016b)). The object is then manually manipulated and the virtual version reflects the changes and remains consistent with the physical object.

PM project, which is the context under which this thesis is conducted. Finally, in Section 1.4, we provide an overview of the existing modular robotic hardware.

1.2/ PRACTICAL APPLICATIONS

In this section, we provide some examples of potential applications of programmable matter based on MSRs.

Interactive CAD Design Programmable matter can be used to enhance the computeraided design process. The idea is to connect the matter in real time to a computer running a Computer-aided design (CAD) software. Using the CAD software, a shape is described and then transmitted to the matter. On reception, the matter will reconfigure itself into the given shape autonomously, or by responding to physical user interaction. These transformations in physical matter are reflected by the digital object in the CAD software, creating an interactive design tool, as shown in Figure 1.1.

Multi Purpose Objects

Multi-purpose objects can be developed using modular robotic programmable matter to create objects that can change shape, size, and functionality to perform a variety of tasks, reducing the need for multiple specialized tools. In space, volume and weight constraints are critical factors, as spacecraft and habitats have limited space for equipment and tools. To overcome this constraint, multi-purpose objects can be used.

Flexible Tangible Interfaces PM can be used to create shape-changing Tangible User Interface (TUI) that combine the flexibility of graphical user interfaces and the tangibility of physical ones [START_REF] Pruszko | ªMolecular hci: Structuring the crossdisciplinary space of modular shape-changing user interfacesº[END_REF]. For example, it can be used to create a personalized control panel that can be dynamically reconfigured to adapt to the task at hand or to support different applications.

Art and Design Programmable matter offers new possibilities for artists and designers to create interactive and dynamic sculptures, or immersive environments that can transform or respond to viewer interaction. An illustrative instance is reactive matter Reac-tiveMatter that constructs interactive sculptures capable of responding to viewers' touch and sound input, resulting in diverse sound patterns, rhythms, and fluctuations in light intensity.

1.3/ PROGRAMMABLE MATTER PROJECT

This thesis is part of the Programmable Matter (PM) project. I became acquainted with this project during my master 2 in ºInternet of Thingsº at the University of Bourgogne The Programmable Matter (PM) project is a continuation of the Claytronics project (now discontinued) Goldstein and Mowry ( 2004) that started at Carnegie Mellon University with the vision to build 3D programmable matter using nanoscale robots called Catoms (Claytronic Atom). Today, FEMTO-ST leads a consortium of academic and industrial partners with a wide range of expertise that are working to bring the vision of PM to reality.

The current partners in the consortium are shown in 1.2. On the hardware level, efforts are being made in the fields of micro-electro-mechanical systems and electrical engineering to design and develop reliable millimeter-scale robotic modules. On the software level, where this thesis fits, the focus is on developing an algorithmic foundation for MSR based Programmable Matter to solve problems such as: self-reconfiguration to transform the shape of modular robot, time synchronization to compensate for the skew of modules internal clocks, shape representations to find an efficient encoding of a geometrical shape, leader election to break the symmetry by electing one of the modules to be the leader of the ensemble, etc. and to better understand the capability and complexity of PM systems on the theoretical level. Furthermore, modular robotic systems differ in their communication model. They either use a neighbor-to-neighbor communication model or a global one in which all modules can communicate with each other via a global bus. They also differ in their geometrical properties, such as their shape (spherical, cubic, triangular) and size, their coupling mechanism Saab et al. (2019) (magnetic, mechanical, and electrostatic), and their actuating and sensing capabilities. A MSR is homogeneous if all its modules are identical and autonomous. Otherwise, it is specified as heterogeneous. The complexity of coordinating these modular robotic systems is affected by all the hardware parameters mentioned above.

The following are the hardware properties of the MSRs considered in this work to achieve PM:

• Lattice-based Structure: Lattice-type modular robots are more suitable for creating programmable matter, as they allow more flexibility to approximate a given shape. In addition, modules are assigned a cell position with a unique coordinate value that a planner can exploit for efficient self-reconfiguration. A network characterization of lattice-based MSR can be found in Naz et al. (2018a).

• Geometry: Different module shapes allow for different numbers of actuators and neighbors' dispositions around a module which gives it a local knowledge about its neighborhood. The number of neighbors corresponds to the degree of the interconnections graph; a larger degree gives access to more information in fewer communication hops. This can potentially improve the efficiency of algorithms by reducing the number of steps required to exchange information. Also, the geometry of the surface affects the motion capabilities. For example, translation on square surfaces is easier, while rotation on rounded surfaces is easier. Furthermore, the resolution of a programmable matter object is strongly affected by the geometry of the modules. Smaller modules can allow the creation of objects with higher resolution and more intricate features, thus creating programmable matter objects with greater fidelity to their counterparts. So, we envision building a programmable matter object with a large number of tiny modules.

• Neighbor-to-neighbor communication: Communication between modules is essential as it allows information exchange and distributed computation to plan and coordinate global tasks. An MSR based Programmable Matter can be made up of thousands of tiny communicating modules. Therefore, the use of a global communication model where all modules communicate through a global communication medium is limited in terms of scalability and packet collisions. In addition, using wireless communication can be problematic on a micro-scale due to interference. Therefore, we consider local neighbor-to-neighbor communication.

• Homogeneous modules: Homogeneous MSR are made of identical modules, allowing low-cost mass production and easy replacement. They are simple to scale in size by adding more modules. And they can reduce the complexity and computational cost of finding feasible configurations due to the fact that all modules can interchangeably change their positions. Consequently, a self-reconfiguration planner does not need to account for the constraint of having a specific module type in a particular position.

• Limited resources: Modules are usually small electronic devices that have limited capabilities, such as insufficient computing power and memory capacity. In addi- • 2D Catoms [START_REF] Kirby | ªA modular robotic system using magnetic force effectorsº[END_REF]: are cylindrical millimeter-scale modules of 6 mm long and 1 mm diameter. These real tiny robots move by rolling on their fixed neighbors in a clockwise or counter-clockwise direction by activating electrodes on their surface.

They are organized in an hexagonal lattice.

• BlinkyBlocks [START_REF] Kirby | ªBlinky Blocks: A Physical Ensemble Programming Platformº[END_REF]: are 4 cm cubic robots organized in a cubic-lattice.

They connect to up to six neighbors using magnets. They communicate with their directly attached neighbors using serial connections. They can be docked and undocked manually. The second version developed in the Programmable Matter consortium is equipped with LED light and acoustic actuators, so modules can be programmed to change colors and emit sounds. They are mainly used to create interactive art, education, and research on distributed systems.

• 3D Catoms [START_REF] Piranda | ªDesigning a quasi-spherical module for a huge modular robot to create programmable matterº[END_REF]: are millimeter-scale quasi-spherical modules placed in a Face-Centered Cubic (FCC) lattice. They use electrostatic forces to latch on and move around their neighbors. They can communicate with their neighbors through their latching interfaces. 3D Catoms do not yet exist in numbers and are being developed by actors in the PM consortium. The startup Phigi 1 is focused on the industrialization of 3D Catoms.

• Datoms [START_REF] Piranda | ªDesigning a quasi-spherical module for a huge modular robot to create programmable matterº[END_REF]: are deformable modules that resemble the 3D Catoms in their geometry and communication model. A Datom is able to deform by compressing one of its sides to facilitate the modules' motions by giving space for other modules in its neighborhood to move. Although it is still a theoretical model that requires further study to implement, it can be a leap forward in reducing the complexity of self-reconfiguration planning by relaxing motion constraints.

1.5/ CONCLUSION

This chapter introduced programmable matter based on modular robots and explored its potential applications. Additionally, it discusses the hardware characteristics of these modular robot systems, highlighting their key properties. Moreover, we presented the modules developed within the programmable matter project, providing insight into their design and functionality.

With the exception of BlinkyBlock, existing hardware models remain theoretical, and operating modules with motion capabilities are not yet available in quantity. As a result, the validation of self-reconfiguration algorithms on a real large scale MSR is currently not feasible. However, BlinkyBlocks are accessible and can be utilized to validate algorithms that do not rely on motion.

The inaccessibility of hardware makes it difficult to show the effectiveness of our proposed algorithms in real-world scenarios or even to create an accurate physical model in simulation. Therefore, the work conducted during this thesis was validated on real BlinkyBlocks whenever possible. Regarding self-reconfiguration, we use the behavioral simulation of 3D Catoms to assess performance and visualize their behavior in a physically unconstrained simulated environment. The experimentation and simulation environment under which this work is conducted is detailed in Chapter 3. T o make Programmable Matter (PM) a reality, challenges must be overcome at the hardware and software levels. At the hardware level, miniaturizing components to create small, lightweight modules that can connect, compute and communicate reliably is a crucial task. Additionally, the development of reliable actuators is crucial. While electro-mechanical actuators can be effective on larger scales, electrostatic actuators are better suited on smaller scales due to their compact size, low power consumption, microfabrication compatibility, and high precision and control.

CHALLENGES AND STATE OF THE ART

Power transfer and management is also essential, as each module may require a power source to operate. It might also need a power storage that keeps modules operating when moving, which contributes to the module's weight and consequently increases the energy demand for movement.

The mechanical stability and durability of the module connections in addition to motion actuation need to be addressed. For instance, the electrostatic actuation of 3D Catoms 15 requires a sequence of repulsing/attachement/detachements which is error-prone and can cause the disconnection of a module. Therefore, the development of Datoms aims to maintain a linked connection between the moving module and its pivot. Finally, costeffective manufacturing and assembly techniques are necessary to produce these robots at scale. Due to their tiny scale, it is difficult to manipulate the components by hand, hence the need of a special machine for the assembly of the micro components using micro-clamps and cameras to align the components with micrometer precision.

Furthermore, significant challenges must also be addressed at the software level. One of the most important aspects is the development of non-complex distributed algorithms and control systems that enable efficient and autonomous operation of modular robots.

These algorithms should support distributed decision making to allow individual modules to make intelligent decisions and take actions while cooperating with other modules. Exploring and addressing algorithmic challenges that cover leader selection, localization, fault tolerance, self-reconfiguration, self-assembly, clustering, and similar problems are imperative areas of research.

The difficulty of distributed programming lies in the locality of information, hence the need to exchange data to accomplish a global behavior. The emergence of this behavior is based on the processing of the exchanged data. Therefore, when the goal is to achieve a complex behavior, the code can quickly become complex and convoluted, making it difficult to understand and maintain. The system can be modeled as a multi-agent system where each agent represents a module's role with its own knowledge and goals. This provides a higher level of abstraction and allows us to design and reason about the system's behavior at a conceptual level.

In this chapter, the software challenges that were tackled during the three years of the thesis are presented in the following sections. While most of the work focused on selfreconfiguration and clustering, which are the main topic of this manuscript, other challenges such as fault tolerance, time synchronization, and shape recognition were tackled and solutions were proposed. The following sections of this chapter detail each of these challenges.

2.2/ SELF-RECONFIGURATION

Self-reconfiguration is the main and most crucial task of MSR. It aims to transform the initial shape of a modular robot into a given goal shape using communication-coordinated motions.

The difficulty of the self-reconfiguration problem lies in the properties of a limited memory space and the locality of the information. In fact, because of their compact size, individual modules or particles have very low computational and energetic resources. Furthermore, due to the locality of information, a module does not have the information about the global configuration and state of the modular robot system, and then it cannot take decisions individually. Moreover, having mobile and connected robots is insufficient to obtain selfreconfigurable programmable matter. If we consider that robots initially build a shape I and must at the end self-reorganize to build a goal shape G, a subset of these robots has to move while avoiding collisions and maintaining the connectivity of the assembly. As a result, the graph representing the interconnections, which defines the network neighborhood and physical connections, becomes dynamic in both space and time. In addition, planning self-reconfiguration is a very complex problem. It has been shown to be NPcomplete for chain-type modular robots [START_REF] Hou | ªGraph-based optimal reconfiguration planning for self-reconfigurable robotsº[END_REF]. Optimal solutions are impossible to find because the number of possible configurations increases exponentially as the size of the system (number of modules) increases Bourgeois et al. (2016a) and we expect the matter to be made up of thousands or even millions of tiny modules.

The self-reconfiguration time, that is, the time required to transform an initial shape into a goal shape, is an important parameter that must be optimized. A self-reconfiguring solution that uses sequential movements to achieve a target shape simplifies planning by eliminating potential problems, such as dealing with deadlocks and collision uncertainties, such as in [START_REF] Hourany | ªSelf-reconfiguration of modular robots using virtual forcesº[END_REF]; [START_REF] Fitch | ªReconfiguration planning for heterogeneous self-reconfiguring robotsº[END_REF]. However, sequential motions are highly restrictive in medium to large self-reconfiguring modular robots, as they tend to significantly lengthen the duration of the reconfiguration process. I propose utilizing two main optimizations to reduce the complexity of this problem, they consist of reducing the distance traveled by the modules and permitting the simultaneous (parallel) displacement of a large number of modules in the system while avoiding collisions. Movements through the internal volume of the robot allow for a higher degree of parallelism and require a smaller number of movements to reach the goal configuration according to [START_REF] Rus | Marsette: ªCrystalline robots: Selfreconfiguration with compressible unit modulesº[END_REF]. Internal movements can be achieved using tunneling or/and scaffolding.

2.2.1/ SELF-RECONFIGURATION ALGORITHMS

Many tunneling-based reconfiguration algorithms that use meta-modules have been pro-posed in the literature [START_REF] Vassilvitskii | ªA complete, local and parallel reconfiguration algorithm for cube style modular robotsº[END_REF]; Kawano (2017Kawano ( , 2019Kawano ( , 2020)); Lengiewicz and Hoøobut (2019). 2008) described a generalized model for meta-modules independent of the module design, which inspired the self-reconfiguration scheme proposed in this thesis. The aim is to achieve a holonomic system where modules are arranged in meta-module units that can be in two states: filled or empty. Modules flow from a filled meta-module to an empty one to reach their target position guided by a planner.

Lengiewicz and Holobut Lengiewicz and Hoøobut (2019) presented a method to selfreconfigure large ensembles of cubic modules that form a porous scaffolding structure made of cubic meta-modules of seven modules and one empty space. They tackled the self-reconfiguration problem by decomposing it into two subproblems: determining how the boundary of the current configuration must evolve to reach the goal configuration and finding an optimal flow of modules between the boundaries of the current shape and through its volume using an asynchronous distributed max-flow search based on local memory and communication. Their proposed algorithm is efficient, with the number of movements of the modules proportional to the resolution of the robot. This method might be used with any other hardware system that has the ability to internally move modules through a scaffolding setup. We used the same max-flow planning approach in our proposed algorithms.

In the context of the PM consortium, many algorithms have been proposed for the different hardware:

2D Catoms In Naz et al. (2016), a distributed, asynchronous, and deterministic selfreconfiguration algorithm is proposed for 2D Catoms. Initial and goal configurations must be formed by continuous horizontal layers. It consists of a continuous flow of modules that roll on fixed pivots in one direction from the initial configuration towards a goal configuration. To avoid deadlocks and collisions, modules flow in a stream while keeping at least one empty position between them by applying a message-passing traffic-light-like system. The proposed solution does not require a complex path planning for modules flow due to simple cylindrical geometry of 2D Catoms that can flow by rotating on the surface following a single path in one direction to build the goal configuration out-place next to the initial configuration, which is not feasible in 3D. The traffic-light system applied to maintain enough space between the flowing modules was then used for 3D Catoms in Thalamy et al. (2021a) and is also used in the self-reconfiguration solution proposed in this thesis.

3D Catoms Self-Assembly

The shape shifting of a MSR requires assembly planning to specify the order of placement by assigning to each robot its final position in the goal configuration while avoiding blocking positions. In [START_REF] Pescher | ªGAPCoD: A Generic Assembly Planner by Constrained Disassemblyº[END_REF] the authors proposed GAPCoD: a generic assembly planner by constrained disassembly. GAPCoD outputs a directed assembly graph obtained through the disassembly of the goal configuration submitted to given constraints. Each vertex representing a module must be positioned before its child nodes. In [START_REF] Tucci | ªA distributed self-assembly planning algorithm for modular robots: Robotics trackº[END_REF] the authors proposed a distributed approach for the same problem where modules use a goal shape description to attract other modules to latch at empty positions in the goal configuration based on predefined rules to avoid blocked positions. These methods do not take into consideration the spatiotemporel scheduling of module motions towards the planned positions.

3D Catoms Self-Reconfiguration Thalamy et al. proposed a self-reconfiguration scheme for modular robotic programmable matter using the same hardware that we use in this work: 3D Catoms. It envisions assembling the scaffold of a shape using multimodule tiles. The tiles are built with modules that flow upward from a reserve of modules placed beneath the shape called sandbox. The shape can then be coated with a thin layer of modules to better represent the target shape Thalamy et al. (2021a). Like in Naz et al. (2018b), flowing modules use a local message passing coordination algorithm inspired by the traffic-light system that forces modules to keep enough empty space between them to avoid collisions. The scaffold can then be coated by a thin layer of modules as described in Thalamy et al. (2020a). The difference from our work is that they describe only the construction of a scaffold for a given shape starting from a reserve of modules placed beneath it, not the self-reconfiguration of an initial shape into a goal one. Contribution My contribution in this thesis is to reduce the self-reconfiguration time by proposing, in Part III, self-reconfiguration scheme based on a porous structure formed using meta-modules that group several modules. Internal meta-modules construct a scaffold structure drawn in orange in Figure 2.1 that helps with the displacement of modules within the structure and, at the same time, allows modules to be stored in the structure.

The structure will be coated with solid meta-modules (drawn in blue) to close the volume.

The self-reconfiguration scheme proposed in this work combines self-assembly and selfreconfiguration. The two proposed planning methods in Chapters 7 and 8 find motion paths that start at an occupied position in the initial shape that must be emptied and end at an empty position in the goal configuration that must be occupied. The modules then flow along the paths to reach their final positions. The first is fully distributed, and the second is a hybrid centralized/distributed solution. Both exploit the properties of the porous structure to reduce the distances covered by the robots and parallelize their movements. To perform a cluster-based self-reconfiguration, clusters of modules in the initial configuration must move to form a specific part of the goal configuration that requires a fixed number of modules, as can be seen in Figure 2.2. Therefore, clustering the initial configuration must be performed while taking a size-constraint into consideration that specifies the number of modules in each cluster based on the part of the goal configuration that the cluster's modules must reconfigure into. In the next section, we present a review of the literature related to size-constrained clustering.

2.3.1.1/ CLUSTERING ALGORITHMS

In this section, we present existing clustering algorithms organized in different categories. 

Graph clustering

Multi-robot partitioning

The multi-robot task allocation problem [START_REF] Khamis | ªMultirobot Task Allocation: A Review of the State-of-the-Artº[END_REF] involves assigning a group of robots to a set of tasks in the most optimal way based on a utility function. The utility function measures how well a robot can perform a task. Some tasks require multiple homogeneous robots or heterogeneous robots with different capabilities to be accomplished. Therefore, robots are partitioned to form k coalitions based on the utility function. Then, tasks are assigned to coalitions to be executed simultaneously Mazdin and Rinner (2021); [START_REF] Dutta | ªCoalition Formation for Multi-Robot Task Allocation via Correlation Clusteringº[END_REF]Zhang et al. (2014). The problem we are tackling in this paper is different from the multi-robot task allocation problem since we consider the partitioning problem independently of the task to be performed, which is the self-reconfiguration. Therefore, these methods are not applicable to solve our problem.

Clustering in mobile modular robots Partitioning the set of modules for configuration generation in modular robots has been studied in [START_REF] Dutta | ªSpanning Tree Partitioning Approach for Configuration Generation in Modular Robotsº[END_REF][START_REF] Dutta | ªA bottom-up search algorithm for size-constrained partitioning of modules to generate configurations in modular robotsº[END_REF]. In [START_REF] Dutta | ªA bottom-up search algorithm for size-constrained partitioning of modules to generate configurations in modular robotsº[END_REF], an algorithm based on a coalition search graph is proposed to partition a set of modules. The aim is to achieve an efficient shape configuration of scattered mobile modules in a 2D environment by partitioning-based coalition formation constrained by the maximum number of modules required to form the configuration. It finds the best coalition structure of separated modules based on a utility function. The modules that form a coalition are then docked together to form the goal configuration. Another method is proposed for the same purpose in [START_REF] Dutta | ªSpanning Tree Partitioning Approach for Configuration Generation in Modular Robotsº[END_REF] where a minimum spanning tree is built to minimize the docking cost. Then, the best coalition or configuration is found by partitioning the built tree taking into account the size, communication, and battery constraints. These methods focus on configuring small sets of separated modules scattered in their environment. Therefore, they are not applicable to solve our problem. that captures the topological similarities between the modules relative to the fixed points at the extremities of the geometric bounding box. Since the DCT forms an acyclic graph, an edge connects two partitions. So, instead of partitioning the whole graph representing all connections between modules, it partitions the DCT by recursively finding and removing cut edges until k clusters are obtained. It creates a spanning-tree which can be used in tasks such as inter-cluster communication, intra-cluster communication, data aggregation and moving modules from one cluster to another. Additionally, it is distributed and efficient. However, it does not take into consideration the size-constraint which is crucial for transforming clusters of the initial shape to specific parts of the goal shape requiring a fixed number of modules.

Clustering robotic-swarms

Table 2.1 shows which requirements are met by the existing solutions. We excluded from the table the above-mentioned solutions for the multi-robot task allocation problem and the configuration generation problem because partitioning is not their primary focus and they address a different problem from ours. The existing work mentioned in this section does not satisfy the requirements to solve the size-constrained k-partitioning problem for modular robots. The solution must be distributed, based on the limited local knowledge of each module about its neighborhood, and satisfies the size constraint. into branches that will be adapted to have the desired sizes.

2.3.2/ SHAPE RECOGNITION

The shape recognition problem consists in allowing the modules to discover a representation of their current shape. Shape representation is one of the main challenges to achieve PM. It consists of encoding a shape in a compact and memory-efficient way. Till now shape representation is studied to represent a goal configuration and transmit it to the modules, which provides enough information for self-reconfiguration. The modules can check whether their position belongs to the goal configuration. If not, they can move to fill an empty position in the goal configuration. Nevertheless, it is also useful to allow the ensemble to recognize its current shape. For example, it can be useful for the interactive CAD application to send the shape to the connected computer to update the digital object displayed by the CAD software.

Moreover, in a large modular robot, modules have limited local knowledge about the entire configuration. They can only access their directly connected neighbors. Thus, allowing modules to recognize the whole shape of their configuration can facilitate distributed self-reconfiguration planning, which consists of finding the sequence of movements to re-configure into a goal shape. Knowing the current configuration modules can calculate the difference between the current and the goal shape to optimize the movements and the rearrangements to be made to reach the goal shape while ensuring safe and mechanically stable movements.

2.3.2.1/ EXISTING WORK ON SHAPE RECOGNITION

In this section, we review existing work on shape recognition.

Shape Representation

In [START_REF] Stoy | ªSelf-Reconfiguration Using Di-rected Growthº[END_REF]; [START_REF] Fitch | ªMillion Module March: Scalable Locomotion for Large Self-Reconfiguring Robotsº[END_REF] the authors propose to transform a CAD model into overlapping bricks to make it easier for the modules to identify their position relative to the goal configuration required for the selfreconfiguration process. In [START_REF] Tucci | ªEfficient scene encoding for programmable matter self-reconfiguration algorithmsº[END_REF] the authors proposed to use a Constructive Solid Geometry (CSG) tree. The leaves of the tree contain basic geometrical objects, and the intermediate nodes contain geometrical transformations and combination operators to form the final shape on the root. The objective of these methods is to encode a shape using a centralized computer to transmit it to the module to self-reconfigure it. Then, they match the graph with an existing one and map the physical modules to their logical one.

Configuration Recognition

Goal Configuration Matching

In [START_REF] Butler | ªDistributed goal recognition algorithms for modular robotsº[END_REF], the authors solve the matching problem with a distributed goal recognition algorithm that verifies if a configuration matches a given goal shape without the need to discover the whole configuration. In Baca The drawback of connectivity graphs is that they suffer from scalability issues since they depend on the number of modules, which might increase drastically, especially when building high-fidelity programmable matter with millimeter-scale robots. Furthermore, in lattice-based modular robots, we can exploit geometric information to create a compact shape representation.

Contribution

We propose to solve the shape recognition problem that aims to find a representation of a modular robot current configuration using a fully distributed algorithm described in Chapter 5 that finds a set of overlapping boxes, each of which can be seen as a cluster whose union forms the current shape.

2.4/ TIME SYNCHRONIZATION

Many applications with distributed control require the same notion of a global time in each module. For example, user interfaces changing shapes using modular robots [START_REF] Pruszko | ªMolecular hci: Structuring the crossdisciplinary space of modular shape-changing user interfacesº[END_REF] where the modules that make up the interface must be synchronized to efficiently handle interactions between humans and the interface.

Synchronization can be achieved using dedicated pins to share a timing signal, but this requires specific hardware design. In our model, each module has its own 

2.5/ FAULT TOLERANCE

One of the challenges of modular robots is to ensure that they are fault tolerant, that is, they can continue to function even if some of their individual modules fail. Faults such as a broken interface, a loss of power, an incomplete motion, a faulty docking, etc. can probably occur during the self-reconfiguration process. Many self-reconfiguration algorithms exist in the literature, yet, to the best of our knowledge, they do not consider module failures during the self-reconfiguration process. Therefore, to tolerate faults, some mechanisms must be implemented to guarantee the completeness of a self-reconfiguration algorithm to successfully achieve the desired goal shape. Each BlinkyBlock module has its own computational power provided by an ARM Cortex M0 32-bit microcontroller. A BlinkyBlock module can be attached to up to 6 neighbors using magnets on each of its sides and can communicate with its directly attached neighbors by exchanging messages with a maximum payload size of 227 bytes over serial links controlled by Universal Asynchronous Receiver/Transmitter with 6 Mbps speed. A single block is connected to a power supply, and the power is distributed to all blocks through dedicated pins. BlinkyBlocks can detect sound using a microphone sensor and can detect its orientation using a gyroscope. They are also equipped with RGB LEDs and speakers. The ensemble can be reconfigured manually at will by detaching and attaching the blocks by hand. They are aware of the existence of an attached neighbor and can be programmed to react to neighbor-addned or neighbor-removed events.

All BlinkyBlock run the same program. The executable program is written in C language, is compiled on an external computer, and is disseminated to the blocks by chunks of bytes through a spanning tree rooted at a block connected to the computer. A custom firmware is pre-programmed on the blocks to handle control commands such as creating 

3.3/ 3D CATOMS

3D Catoms, first proposed in [START_REF] Piranda | ªDesigning a quasi-spherical module for a huge modular robot to create programmable matterº[END_REF], are quasi-spherical modules with a diameter on the millimeter scale that can be arranged in a regular 3D grid described as a Face-Centered Cubic (FCC) lattice. Unlike BlinkyBlocks, 3D Catoms have motion The motion of a 3D Catom is subject to the following constraints that require some coordination and mechanisms to overcome:

Table 3.1: Coordinates of cells in the neighborhood of a 3D Catom Plane z is even z is odd z -1 (x -1, y -1)(x -1, y)(x, y)(x, y -1) (x, y)(x, y + 1)(x + 1, y)(x + 1, y + 1) z (x -1, y)(x + 1, y)(x, y -1)(x, y + 1) (x -1, y)(x + 1, y)(x, y -1)(x, y + 1) z + 1 (x -1, y -1)(x -1, y)(x, y)(x, y -1) (x, y)(x, y + 1)(x + 1, y)(x + 1, y + 1)
• Collision constraint: no more than one 3D Catom should move to the same empty position simultaneously to avoid collisions. In other words, the paths of two motions must not intersect.

• Bridging constraint: a 3D Catom cannot enter a free position that has two occupied positions in opposite directions, as shown in Figure 3.3.

• Blocking constraint: a 3D Catom entering a free position must not be blocked by another 3D Catoms on its motion path.

• Connectivity constraint: a 3D Catom's motion cannot disconnect the ensemble.

A self-reconfiguration planner must take into consideration motion constraints to ensure the correctness and completeness of the process.

3.4/ PROGRAMMING MODEL AND SYSTEM ASSUMPTIONS

In this section, we enumerate the system assumptions and the programming model considered in our work to program the distributed system formed with connected ensembles of 3D Catoms and BlinkyBlocks:

• All modules run the same distributed program and perform the computations locally on each module.

• All communications are done in a local fashion, where a module can only communicate with its directly connected neighbors when it is docked by exchanging messages.

• All operations are performed asynchronously.

• The interconnections graph must be connected all the time. This adds an additional constraint to be considered by a self-reconfiguration algorithm.

• A module is aware of the presence of a connected neighbor in an adjacent cell.

• All modules share the same coordinate system. Each module stores its coordinates locally and updates them after each movement. A distributed algorithm to distribute the coordinates in the modules is proposed in [START_REF] Piranda | Julien: ªDisCo: A Multiagent 3D Coordinate System for Lattice Based Modular Self-Reconfigurable Robotsº[END_REF].

• A module can react to the reception of a message, the connection and disconnection of a neighbor, and any internal event such as a timer event or a rotation end event (in the case of a 3D Catom).

• Each module is assigned a unique identifier. An algorithm to distribute unique identifiers in modules is presented in Assaker et al. (2022).

3.5/ SIMULATION ENVIRONMENT

Simulation is extremely important in research and engineering, as it allows the design, testing, and refinement of products or systems in a virtual environment before building physical prototypes or deploying them in real-world scenarios. In the context of autonomous robots, simulation allows faster and cheaper development cycles of physical hardware and software. It provides an environment for efficient learning and adaptation of robots by providing diverse and rich data and feedback. Furthermore, simulators play an important role in facilitating collaboration and communication between engineers and researchers, as they provide a tool to share and compare models, methods, and results.

In the context of PM, simulation is useful for developing software foundations and understanding the dynamics of such large-scale shape-shifting complex structures, especially when testing and evaluating algorithms on a large number of modules or when hardware components are not yet available.

Furthermore, simulators ensure reproducibility of simulated scenarios. Being able to repeatedly run the same simulation with exactly the same order of events at the same time is of utmost importance. They facilitate debugging by allowing researchers and engineers to consistently verify and understand results, isolate issues, and reliably identify errors.

In a real-world distributed system, the order of messages and events as well as the environment can be subject to stochasticity, making it challenging to analyze problems and investigate root causes. By providing reproducibility, a simulator enables controlled replay of specific scenarios, allowing precise observation of module interactions and reactions, and more effective troubleshooting.

In this section, we present the existing simulation tools for MSR, then we present Visi-bleSim: a simulator for lattice-based MSR used to implement and validate the work of this thesis. VisibleSim is used to evaluate all algorithms proposed in this thesis and is detailed in the next section.

3.5.1/ EXISTING SIMULATION TOOLS

3.5.2/ VISIBLESIM

VisibleSim is an open-source behavioral simulator designed for lattice-based modular robots. It can be accessed publicly on GitHub1 . It is the simulator of choice for developing and evaluating the algorithms proposed in this thesis. Its development started in early Catoms used in this thesis. New types of modules can also be easily added.

VisibleSim is a C++ framework for simulating lattice-based modular robots based on a discrete-event engine where a scheduler handles a sequence of discrete events generated by the modules. Event processing might generate new events to be scheduled.

When a module generates an event, the event is pushed to the scheduling queue with a specified delay. Then the event will be executed when the scheduler time corresponds to the event execution time. A class called BlockCode, represents a module controller.

The user must extend two main components of the BlockCode class: a startup function used to initialize the module's state and event handling functions executed in response to the handling of simulation events by the scheduler. For example, a user can program the module to handle events such as a message received, an interruption event, a neighbor added or removed, a motion ended, or any other custom-defined event.

VisibleSim is equipped with a Graphical User Interface (GUI) written in OpenGL shown in Figure 3.4. Initially, it reads an XML configuration file that specifies the positions of the modules in the lattice and places them in the simulation world. During execution, the user can navigate and interact with the world by adding, removing, and tapping modules, which are events that can be handled in real time. A console built into the GUI shows the sequence of events executed by all modules or by a single module when clicking on it. This provides the user with valuable information during execution to debug and trace the chain of events that led to the current state. The GUI is also a powerful visualization tool that allows users to take screenshots and record execution, generating high-quality illustrations and videos that help communicate scientific results.

At the end of a simulation, VisibleSim provides the user with important statistics such as simulation time, the number of messages exchanged, and the number of motions at the ensemble and module levels, allowing evaluation and comparison of algorithms.

3.6/ CONCLUSION

To conclude, this chapter has presented an overview of the research environment in which the thesis is conducted, focusing on the modular robotic systems employed. Specifically, the BlinkyBlock real cubic modules were used in this study to validate algorithms that do not rely on movements on physical hardware. On the other hand, the 3D Catoms spherical modules, which are capable of moving in a face-centered cubic lattice, were used to apply the proposed self-reconfiguration methods.

Furthermore, this chapter introduced the programming model and system assumptions, which serve as the foundations for the algorithms proposed in subsequent chapters. Additionally, the chapter discusses the simulation environment using VisibleSim discreteevent behavioral simulator, which provides a controlled environment to test and validate the proposed distributed algorithms. this process, the number of clusters and the size of each cluster can also be calculated according to the goal shape. Then, the CSG tree can be transmitted along with the number of clusters and cluster sizes to a master module, to be then flooded and stored in all modules in an initial phase before starting the clustering process.

In this chapter, we present SC-Clust a size-constrained clustering algorithm that groups modules in any initial configuration into k clusters where k, the number of clusters and their sizes are predefined a priori based on the goal configuration and can be disseminated with the goal shape representation to all the modules. The algorithm proceeds by creating a spanning-tree, cutting then adjusting branches to form the clusters. 

4.2/ PROBLEM DEFINITION AND SYSTEM ASSUMPTIONS

The modular robot ensemble can be modeled as an undirected graph G(V, E, W) where

V represents the set of modules, E represents the set of edges such that for each pair of modules (u, v) ∈ V 2 , e(u, v) ∈ E denotes a connection between u and v. Therefore, two nodes u and v are neighbors if ∃e(u, v) ∈ E. For each edge e ∈ E, a non-negative weight

w ∈ W is associated, w : E -→ R + * .
The modules are homogeneous, placed in a regular lattice, and are attached border-toborder. Since they can only communicate with their directly connected neighbors in their adjacent cells, they form a sparse communication graph with a large network diameter Naz et al. (2018a).

Definition 1: Size-constrained partition

A size-constrained partition G i (V i , E i , W i ) is a connected subgraph of G that has a predefined number of nodes s i , that is, |V i | = s i .
Definition 2: Size-constrained k-partitioning partitions the graph G into k size-constrained partitions (Definition 1) such that:

1. Partitions are exhaustive; each node must belong to a partition:

V 1 ∪ V 2 ∪ ... ∪ V k = V 2.
Each node belongs to only one partition, such that: ∀i j, V i ∩ V j = ∅

3.

The size of each size-constrained partition G i is predefined before partitioning, such that: k i=1 s i = |V| • The goal shape is known and can be efficiently encoded and stored in each module, as explained in [START_REF] Tucci | ªEfficient scene encoding for programmable matter self-reconfiguration algorithmsº[END_REF].

• Each module is identified by a unique number (ID).

• Modules are placed in the cells of a regular 3D lattice and they store locally their coordinates and orientation.

• Only neighbor-to-neighbor communications are possible. A module may send a message to its adjacent neighbors through one of its connectors. The receiver can respond by sending a message through the connector that received the message.

• No global view of the modular robot network is available. The view of each module is limited to its direct neighborhood. Modules perform their computations locally, and they can only access local information in their neighborhood via message-passing.

• A module is aware of its direct connections (i.e., which borders are connected to other modules and which ones are not).

• We consider the configuration to be fixed and always connected during the process, that is, no new modules are connected or disconnected during the execution of the algorithm.

4.2.1/ SIZE-CONSTRAINED k-PARTITIONING IS NP-COMPLETE

In this section, we first define the k-balanced clustering problem and then prove that the size-constrained k-partitioning problem is NP-complete. To do so, we prove that it is NPhard by restriction from the k-balanced clustering problem. NP-completeness follows, since it is simple to verify a given solution with a linear algorithm. 

V 1 , ..., V k such that |V i | = |V| k , V 1 ∪ V 2 ∪ ... ∪ V k = V and ∀i j, V i ∩ V j = ∅ ?
The is used for this purpose. Third, the MST is partitioned. Initially, all modules form the initial cluster; then the MST is sequentially partitioned by finding, adjusting and separating branches that have the desired number of modules (Section 4.3.3).

4.3.1/ WEIGHT CALCULATION

In this section, an edge weight measure is defined. We start with the following definitions: A is defined as the set of coordinates of the corners of the minimum bounding box.

Since the modules in a modular robot are placed in a regular lattice, A can be easily and efficiently calculated by selecting the different minimum and maximum combinations while varying on the three axes x, y, and z, so a total of 8 points are defined at the corners of B, that is, all possible combinations of ({min x , max x }, {min y , max y }, {min z , max z }).

Definition 5: Edge weight

Given two neighboring modules u and v, the weight w(u, v) of the edge e(u, v)

connecting u and v in the graph G, is defined as:

w(u, v) = min(dist(u, A), dist(v, A)) s.t: dist(u, A) = min{dist(u, a) | a ∈ A},
where dist represents the Euclidean distance.

The weight measure defined in definition 5 results in having lower weights at the edges that connect the modules near the configuration boundary. This will subsequently result in clusters being positioned closer to borders, making it easier to move modules around for self-reconfiguration.

Anchor positions are calculated by building a spanning tree rooted at a randomly chosen module. During the building process, the values of min x , min y , min z , max x , max y , and max z are returned to the root and then transmitted to all modules via the built tree. Upon reception, modules can calculate and store the distance to their nearest anchor, and then store their connected edges weights. The GHS algorithm requires that each edge have a unique weight. In case the weights are not distinct, which is our case, one can simply append the identities of the edge's adjacent nodes starting by the lower identity number first. Initially, each node forms a fragment. Nodes wake up to start the GHS algorithm execution asynchronously, so there are no restrictions on the wake-up process, thus, all nodes can wake up at the same time or only one node can wake up and the tree is formed, which is suitable for our case.

The GHS algorithm operates in phases. During each phase, the fragments are extended by merging with other fragments. The nodes in each fragment are connected with edges to form a rooted MST. Each node holds a pointer to the next node in the tree that leads to the fragment's root. Fragments merge through their minimum outgoing edge. To find the minimum outgoing edge of a fragment, a message is broadcast asking all the fragment's nodes about their minimum outgoing edge. Each node waits for the answers of all its children in the tree before sending it upward on the tree to reach the fragment's root.

Once the minimum outgoing edge is found, a message is sent over that edge to the fragment on the other side. If the two fragments choose the same minimum outgoing edge, they merge, and the edge chosen by the two fragments is called core edge.

During the last phase, two fragments will merge through a core edge into one large fragment that forms the MST. We refer the reader to Gallager et al. (1983) for a complete description of the algorithm. Once the MST is formed, we can proceed with its partition.

One can choose one of the core nodes connected to the core edge as the root of the tree. However, to have clusters distributed closer to the borders as much as possible, we choose the root to be the node with a minimum distance to one of the anchors (Definition 4) at the extremities of the initial configuration. Ties are broken randomly. To do so, after the root is found, it broadcasts a message through the tree. The receiving nodes set the sender as a parent leading to the root and save the edges leading to their children in the MST. The resulting tree in a 2D regular lattice is shown in Figure 4.3.

4.3.3/ TREE PARTITIONING

In this phase, given the set of desired cluster sizes S , the MST is partitioned to obtain

k = |S | size-constrained clusters.
The idea is to find the cut-edge that results in a branch in a way to minimize the difference between the number of modules in the branch and the desired number of modules in the cluster. The detached branch after removing the cut-edge will form the cluster. We define the cut-edge as follows:

Definition 6: cut-edge A cut-edge c i is an edge e(u, v) that separates the partition originally containing u and v in which c i is searched from the new partition. The nodes V i of the new partition G i are the nodes in the branch of the MST rooted at cutAt = v: the node in V i connected to c i .

Given the set of desired partition sizes S , in order to satisfy the size constraint described in Section 4.2, |V i | should be equal to s i . However, a cut-edge that satisfies this constraint may not exist, since a branch in the MST that has exactly s i nodes could not be found. Therefore, the cut-edge c i is found in a way to minimize the difference Di f f c i between the size of the sub-tree rooted at cutAt and s i . Therefore:

c i = e(u, v) ∈ E | Di f f c i = min e(u,v)∈E |Di f f e | s.t. Di f f e ( u,v) = s i -subtreesize(v)
After removing a cut-edge c i , the difference between the resulting cluster size and the desired size Di f f c i may not be null if a branch containing the desired number of modules did not exist in the MST.

To fix this issue, we present a method in Section 4.3.4 that makes additional cuts and associates the resulting branches with the erroneous cluster until it has the desired size.

4.3.4/ ADDITIONAL CUTS

In this section, a new method is presented to deal with size differences after a cut. It requires performing additional cuts until the size constraint for cluster i is satisfied, i.e.

Di f f c i = 0. Initially, all modules belong to V 0 . If after a cut c i , |V i | s i , an additional cut is made to find an adjacent branch (a branch that contains at least one module that has a neighbor in V i ) with a size equal to Di f f c i and the resulting branch is joined with or cut off the erroneous cluster. The flow chart for creating a partition V i is depicted in Figure 4.4.

Three cases are presented after an initial cut:

1. If Di f f c i > 0, the root of V i in the MST initiates the search for a new cut-edge c i j (u, v) in its partition that minimizes: |Di f f c i -subtreesize(v)|, the resulting branch is added to V 0 . 2. If Di f f c i < 0, the root of the MS T initiates the search for a new cut-edge c i j (u, v) in its partition V 0 that minimizes: |Di f f c i -subtreesize(v)|.
The resulting branch is added to V i . 1. recut: A boolean that indicates if the cut-edge to be found is an additional cut to deal with a previous partition's size difference.

If

desiredS ize:

The desired size of the partition.

ad j:

In case of an erroneous partition size i (Di f f c i 0), ad j takes the value of the partition id i to which the resultant partition needs to be joined. Otherwise, it takes the value 0.

Initially, all nodes belong to partition V 0 with |V 0 | = |V|. For i ∈ [1, k -1], a partition V i is obtained after removing a cut-edge c i . Algorithms 1, 2, and 3 describe partitioning. The root of the MST first executes the cut procedure that initiates the search for the first cutedge. FIND CUT message is sent in broadcast and RESP CUT is sent using convergecast as described in algorithm 1 and 2. During this process, each module calculates the difference between its sub-tree size and the desired cluster size. In case of an additional cut (recut = true), the branch to join with partition V i should have at least one neighbor in V i to avoid having disconnected partitions (algorithm 3, lines 32, 35). A neighbor in V i will always exist because V 0 and the erroneous cluster were initially connected. The minimum difference of a branch size with the maximum number of neighbors possible in ad j is returned to the root, and the module interface to reach the cutAt module is saved in toBestCut. The root will then send a CUT message to the cutAt module connected to the cut-edge which will become the root of the new partition.

After a cut c i , the cutAt module is aware of the size difference Di f f c i of its partition. If Di f f c i > 0 (the resultant cluster has modules in excess), it calls cut(true, Di f f, 0) to find a new cut-edge within its partition, and the resultant branch is rejoined with the initial partition V 0 to minimize the difference (algorithm 3, line 45,51). Otherwise, it sends a Algorithm 1: Partitioning algorithm: initialisation and FIND CUT message handler nbModules // Number of modules in the system subT reeS ize // sub-tree size of the module cutAt // a boolean indicating if the module is the root of the cut branch S // set containing the desired cluster sizes MS T // the minimum spanning tree built in phase 2 isMS T Root // a boolean indicating if module is the root of the MST recut // a boolean indicating if an additional cut is being found toBestCut // the interface to reach the cut edge Cluster // cluster identifier minDi f f // minimum Di f f found maxNbAd j // maximum number of modules adjacent to the erroneous cluster toLastCut // root of the latest identified cluster children // set containing child modules in the MST nbWaitedAnswers REPORT CUT message with the value of Di f f c i to the root of partition V 0 (algorithm 3, line 53). When the root receives the message, if the received value of Di f f c i is not null, it executes cut(true, Di f f c i , i) to find a cut within its partition and join the resultant branch to the partition V i (algorithm 4, line 61,63). If after joining a branch with V i the size of V i becomes larger than the desired size s i , the root sends the REPORT CUT message containing Di f f c i to the last cutAt module, which is the root of V i to deal with this difference (algorithm 4, lines 66, 67). Otherwise, if the root receives REPORT CUT message with the value of Di f f c i = 0, it updates its cluster tree and then executes cut( f alse, s i+1 , 0) to find the partition V i+1 (algorithm 4, lines 67, 70). The tree must be updated to join the resultant branches after additional cuts with their corresponding partitions. The updateT ree() procedure depends on the algorithm used to build the MST. After considering the nodes in additional branches as disconnected nodes, we use the tree maintenance algorithm described in [START_REF] Diaz | ªDynamic minimum spanning tree construction and maintenance for Wireless Sensor Networksº[END_REF] where the GHS algorithm for building the MST is re-launched inside the partition to join an additional disconnected branch. 

if isMSTRoot then isRoot ← true; i ← 1; desiredS ize ← S [i]

4.4/ COMPLEXITY ANALYSIS

In this section, we give a complexity analysis by phase in terms of communication load and execution time. We note n = |V| the number of modules and m = |E| the number of connections between modules.

4.4.1/ COMMUNICATION LOAD

In the first phase, the anchor positions are found, and all edges' weights are calculated.

It requires O(n) messages to find and store anchors through tree traversal. In addition, to calculate and store an edge weight, two messages are exchanged between the edge's connected modules. Therefore, the communication complexity of the first phase is O(n + m).

The second phase consists of building a minimum spanning tree. We use the GHS algorithm described in Gallager et al. (1983) which has a complexity of O(m + n log n) in addition to O(n) to find the root and redirect the edges towards it.

During the third phase, the tree is partitioned to obtain k partitions. The SC-Clust requires In a filled cubic geometry, the maximum number of connections m is equal to 3n. Also, in all practical cases k ≪ n and a ≪ n unless s i = 1 for i ∈ [1, n]. Therefore, the overall complexity of communication can be expressed with the number of modules in the system n and is equal to

O(n) + O(n log n) = O(n log n).

4.4.2/ EXECUTION TIME

The time required for the first phase in which anchor positions are found and edge weights are calculated depends on the diameter d of the network, since the maximum tree length is bounded by d. Three tree traversals are required. Thus, the time complexity of the first phase is O(d).

The time complexity of building the tree in the second phase is O(n log n) Gallager et al.

( 1983). Redirecting all edges towards the root requires a tree traversal. The time taken for tree traversal is O(n), since the maximum possible diameter of the MST can be equal to n.

Therefore, the time required for the second phase is

O(n) + O(n log n) = O(n log n).
As for the third phase, the time required to find a cut is O(n). k + a cuts need to be found.

Therefore, the time complexity for partitioning the MST is O((k + a)n) in addition to the time required for joining additional cuts and updating cluster tree which is O(k log n). Therefore, the overall time complexity of the third phase is

O(n) + O(k log n) = O(n).
The overall complexity of the three phases is

O(d) + O(n log n) + O(n) = O(n log n).
This complexity is mainly due to the construction of the MST. Execution Time 25% in each cluster 10% 20% 30% 40% 10% in each cluster 4x5% 3x10% 2x15% 1x20% Communication Load 25% in each cluster 10% 20% 30% 40% 10% in each cluster 4x5% 3x10% 2x15% 1x20% We 

4.5.1/ EVALUATING SC-CLUST

To provide an objective evaluation, we carried out different simulations with different shapes consisting of up to 30,000 3D Catoms. Each shape has different geometric properties to show that the proposed algorithm finds a solution independently of the geometric shape. For each shape, we conducted simulations with the following cluster distributions:

• 4 clusters with 25 % in each cluster.

• 4 clusters with 10 % 20 % 30 % 40 %.

• 10 clusters with 10 % in each cluster.

• 10 clusters with 4 clusters containing 5 % each, 3 clusters containing 10 % each, 2 clusters containing 15 % each, and 1 cluster containing 20 %. because as the number of clusters increases, the number of cuts to be found increases.

Moreover, execution time is also affected by the shape and diameter of the system. When the diameter of the ensemble increases and its density decreases, the execution time increases; as can be seen in Figure 4.8, the humanoid shape requires more time than the other shapes. Furthermore, when the number of clusters is the same and the cluster size distribution differs, the execution time is affected due to the additional number of cuts (see in Figure 4.10) used to satisfy the size-constraint and the search space to find these cuts which vary according to the clusters sizes.

4.5.1.2/ COMMUNICATION LOAD

The communication load is shown in Figure 4.9. The number of exchanged messages for all shapes increases linearly as the number of modules in the system increases. It also increases when the number of clusters becomes larger due to the messages needed to find the cuts. The complexity of the communication load in Section 4.4.1 depends on the number of modules and the connections between the modules. The random shape presents the largest number of connections between its modules; thus, it requires a larger number of exchanged messages. Moreover, when the sizes of the clusters differ while the number of clusters is the same, the number of exchanged messages, which are needed to find additional cuts and join branches to satisfy the size-constraint, is slightly affected.

4.5.1.3/ ADDITIONAL CUTS

We recall that additional cuts are needed when the resultant cluster size after an initial cut does not satisfy the size constraint. So, additional cuts are made until the cluster size is equal to the desired size. Figure 4.10 shows the number of additional cuts that have a direct impact on execution time and communication load. It can be seen that when the number of clusters increases, the number of additional cuts needed increases.

Furthermore, it is not affected by the number of modules in the system. It is directly affected by the formation of the MST, which in its turn is affected by the geometrical aspects of the ensemble and not its size. Therefore, it can be arbitrary for the same number of clusters with different size distributions, since finding a cut that results in a cluster with a size equal to the desired size depends on finding a cut module with a sub-tree size equal to the desired size, which highly depends on the structure of the MST. 4.11, the SC-Clust requires more messages exchanged in all shapes since for each cut, additional cuts may be necessary to satisfy the size constraint. As for the execution time, the amount needed by SC-Clust is significantly higher. The reason is that the DCut algorithm finds cuts in parallel in case of k > 3. On the other hand, finding cuts in SC-Clust is completely sequential: finding a cluster V i cannot begin before the cluster V i-1 has been found. In addition, SC-Clust requires k -1+a cuts to obtain k clusters where a is the number of additional cuts. DCut requires k -1 cuts. 

Communication Load ExecutionTime

5.1/ INTRODUCTION

T he ability of modules of a modular robot to recognize the global shape of the ensemble provides invaluable information that can be used to facilitate and improve various tasks. One key benefit of recognizing the global shape is the facilitation of efficient coordination and collaboration among modules. When modules have knowledge of the robot's global shape, they can better coordinate their actions, movements, and behaviors to achieve efficient self-reconfiguration. Furthermore, by comparing the expected global shape with the actual observed shape, modules can detect the termination of self-reconfiguration and identify inconsistencies, such as module failures, disconnections, or misalignments. Morevorer, shape recognition can be used to report the shape to an external system or operator.

In this chapter, we introduce a shape recognition algorithm for lattice-based modular robots with neighbor-to-neighbor communication. It consists of finding a set of overlapping boxes whose union forms a representation of the current configuration. Using a distributed approach, each module communicates with its direct neighbors to collectively determine the shape of the global ensemble. Section 5.2 describes the proposed distributed shape recognition algorithm. In Section 5.3 we analyze its computation and communication complexities. Section 5.4 evaluates and analyzes the algorithm where we implemented it in VisibleSim using Blinky-
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Blocks modules and compared it with a classic coordinate collection method where each module sends its coordinates through a tree rooted on the connected computer. The results obtained show the efficiency of our algorithm in detecting the current shape of the robot, while also outperforming the coordinate collection algorithm.

5.2/ ALGORITHM DESCRIPTION

The main idea of the algorithm is to find a set of full boxes that cover the whole configuration. In this section, we describe the distributed algorithm, shown in Algorithms 5 and 6 for finding the boxes on modular robotic systems where modules communicate using message-passing with their directly attached neighbors.

We assume that all modules share the same 3D coordinate system and that each module stores its coordinates in its memory. This can be done efficiently in lattice-based modular robots, as explained in [START_REF] Piranda | Julien: ªDisCo: A Multiagent 3D Coordinate System for Lattice Based Modular Self-Reconfigurable Robotsº[END_REF]; [START_REF] Hoøobut | HOèOBUT, Paweø ; CHODKIEWICZ, Paweø[END_REF]. The algorithm is not affected by the orientation of the coordinate axis. However, for simplicity, we use the orientation of the axis and the direction notation as shown in Figure 5.1. A Box B is defined by two vectors C min (x min , y min , z min ) and C max (x max , y max , z max ).

X(x, y, z) ∈ B ⇔                  x min ≤ x ≤ x max y min ≤ y ≤ y max z min ≤ z ≤ z max (5.1)
The algorithm starts by creating a vertical decomposition consisting of overlapping rectangles on each 2D layer along the -→ Z axis. Subsequently, these rectangles are extended in the -→ Z axis direction to form boxes. Finally, once a box is found, it can be sent to the connected computer or broadcasted to all the modules. 

d m = 1 + |{n ∈ l m s.t y n > y m }| (5.2)
where |X| is the cardinality of X. Msg Handler SET H MSG(id, h sent ):

h ← h sent + 1 if myid = id then myBox = ({x, y, z}, {x + w -1, y + d -1, z + h -1}) else send SET H MSG(id, h) to neighbor((x, y, z -1))
To compute d m , the algorithm proceeds as follows (see example Figure 5.1a) :

1. Initially, modules without an attached neighbor in the backward direction must set d to 1.

2.

Then, they send a message, denoted as SET D MSG(d), to their front neighbor. Upon receiving the message, the module sets its d value as the received value plus one and, subsequently, forwards the message to its front neighbor.

3.

This process continues until an empty position is encountered in the front direction (cf. Algorithm 5 lines 1-7).

A module is considered as an R min if it occupies the foremost left corner of a rectangle.

Once d m is set, module m can determine locally if it is R min . To do so, we denote as d le f t the d value of the module on the left of the module m. Then, a module is R min if it verifies the following condition:

empty( f ront) ∧ (d d le f t ∨ ¬empty(le f t + f ront)) (5.3)
Next, we define w m for each module m in the set M as the maximum number of connected vertical lines with the same or higher height toward the right (cf. Figure 5.1b).

We can express w m by the following rule:

w m = max n connected (y m = y n ∧ (d i ≥ d m ∀i ∈ [m, n])) (5.4) 
To determine w m for all modules m in the set M, the following distributed process is employed: each module located in a position R min sends a message called FIND W -MSG(id, d sent ) to its right neighbor (cf. Algorithm 5 lines 9-10). As the message is forwarded, if the message reaches a module n with d n < d sent , the module n responds to the sender on its left with a message SET W MSG(id, d sent , w sent = 0) (cf. Algorithm 6 lines 2-3). Otherwise, when it reaches a module n that lacks a right neighbor, it assigns w n the value of 1 and responds to the sender on the left using a message denoted SET W MSG(id, d sent , w sent = 1) (cf. Algorithm 6 lines 4-8). Upon receiving this message, module r sets its w r value as the received value plus one if and only if d sent ≥ d r to ensure that the line at the back of module r can accommodate d sent modules (cf. Algorithm 6 lines 12-14).

From each R min module, we use local values of d m and w m to define a rectangle

(R min , R max ) = ({x m , y m }, {x m + w m -1, y m + d m -1}
). This construction leads to a vertical decomposition characterized by overlapping filled rectangles within each 2D layer along the -→ Z axis, ensuring full coverage of all modules as can be seen in Figure 5.1c.

Once the value of w m is determined, we can refer to the values of d and w of the module at the bottom (at z -1) of module m as d bottom and w bottom , respectively. We also use Upon receiving the FIND H MSG message by a module r, if the values d r > d sent or w r > w sent , it replies with a message SET H MSG(id, h=0) to the sender at the bottom (cf. . Otherwise, if the receiver module r lacks a top neighbor, it responds by sending a message labeled SET H MSG(id, h=1) to the sender at the bottom (cf. . Upon receiving the SET H MSG message, the receiver increments the received h value by one and forwards the message to its bottom neighbor until reaching the initiator (cf. Algorithm 6 lines 32-36).

The algorithm operates asynchronously. Therefore, a module can receive a FIND W MSG before its d value is defined or a FIND H MSG before the d and w values are defined. To solve this, if a module receives a message and the values required for its handling are not yet defined, the module stores the received message in its memory and handles it once the values are set.

When module m at a C min receives its h m value, it can set its Box as

({x m , y m , z m }, {x m + w m - 1, y m + d m -1, z m + h m -1}).
The algorithm terminates when all modules at a C min position have determined their boxes.

The termination of the algorithm can be detected by comparing the volume of the union of boxes with the number of modules. A count can be found using a convergecast operation and subsequently broadcast this count to all the modules within the configuration. 

5.3/ COMPLEXITY ANALYSIS

The complexity in terms of the number of boxes has a lower bound of Ω(1) in the case of a cubic configuration. As the shape becomes increasingly irregular and incorporates holes, the complexity approaches an upper bound of O(n) where n is the number of modules. Next, we assess the time and communication complexities of the shape recognition al-gorithms presented in Section ??. The number of messages used to find the boxes is proportional to the number of modules. To find the the values of d and w of each module on a line along the -→ X and -→ Y axes, O(n) messages are exchanged, where n is the number of modules. Then, to find the height of each box, the box's corner C min initiates a message that passes to the line of modules along the -→ Z . The number of these messages is also bounded by O(n). Therefore, the communication complexity can be expressed as O(n).

As for the time complexity, the search for boxes is done in parallel. Setting the values of d and w requires O(D + W) time, where D and W are the depth and width of the entire configuration. The time complexity to search for the height h of the boxes is O(H), where H is the height of the configuration. Consequently, the overall time complexity can be expressed as O(D + W + H). Thus, it depends on the geometry of the configuration.

5.4/ EXPERIMENTS AND ANALYSIS

We implemented the algorithm using VisibleSim, a discrete event-based simulator for distributed modular robotic systems that support BlinkyBlocks. Figure 5.2c shows a Vis-ibleSim capture of the simulated example of the box cover shown in Figure 5.2. We recall from Chapter 3 that BlinkyBlocks system is a modular robotic system made up of centimetre-size blocks that are attached to each other via magnets in a square cubic lattice. Each block is a cube of roughly 40 mm, with processing, storage, and communication capabilities. Each BlinkyBlock communicates through serial links with its directly connected neighbors by sending packets with a payload size of 227 bytes.

The objective of the experiment is to compare the shape recognition algorithm with exhaustive coordinates collection in order for modules to send their current shape to a computer to be used by an interactive CAD software. The coordinates collection method consists of sending the list of coordinates to the root of a breadth-first spanning tree con- nected to the CAD computer. Each module sends three bytes for its coordinates x, y and z. The leaf modules start by sending their coordinates. The coordinates are merged at intermediate modules before being sent to their parent in the tree when the data are received from all their children modules or the payload is totally used. Using the shape recognition method, once a box is found, the module at C min sends the box information to the root also via a breadth-first tree.

We have done the comparison on four different configurations shown in Fig. 5.3 with different geometries and characteristics:

1. Cube: A simple and regular connected cubic shape. One box is required to cover the whole configuration.

2.

Ball: It contains modules whose distance from the center is less than or equal to a given radius Naz et al. (2018a).

3.

Mug: A mug shape that exhibits a few irregularities. 

Thinker:

The thinker statue defined by a low resolution mesh.

We evaluated the mean number of messages sent per module, the mean number of bytes sent by a module, the time taken to complete the shape recognition, and the ratio between the number of modules and the number of boxes while increasing the sizes of the configurations. Fig. 5.4 shows the mean number of messages and the mean number of bytes sent by a module on the four configurations. The mean number of messages sent by a module executing the shape recognition method is larger than the coordinates collection on the four configurations. This is due to the communication required to find the dimensions of the boxes. As for the coordinates collection method, each module must send one message to its parent that contains the coordinates of its subtree, but due to the limitation of the packet size, when a packet is filled, it is directly sent to the root, which increases We conducted an experimental study on BlinkyBlock hardware that showed that the time t required per message is affected by the message length l (number of bytes contained in a message) and can be modeled with the linear function: t = 0.08935×l+1.516. Therefore, the global executed time is affected by the number of exchanged messages and the length of the messages. Fig. 5.5 shows the time taken by both methods. Although the shape recognition method requires more messages, it can be seen that the shape recognition method is more efficient in time in the four configurations due to the increase in the length of the messages used in the coordinated collection method as the configuration size increases. The time taken by the shape recognition method depends on the dimensions of the configuration as explained in Section 5.3,Fig. 5.6 illustrates the ratio between the number of modules and the number of boxes in different configurations. We excluded the graph of the cube shape from the presentation for the sake of visual clarity, since all modules can fit in a single box regardless of the configuration size. As the configuration becomes more irregular, as in the case of the thinker configuration, the ratio decreases. This decrease is a consequence of the need for additional boxes with smaller dimensions to accommodate the irregularities present in the structure. In addition, as the dimensions of the analyzed configurations increase, the ratio decreases due to the rise in irregularities. This is inversely proportional to the regularity of the configuration, which means that more regular configurations will result in a higher ratio. For example, for the cube configuration, we will have a ratio that increases linearly with a slope of one since the ratio will be equal to the number of modules.

5.5/ CONCLUSION

In this chapter, we proposed a new shape recognition algorithm that allows modules in a lattice-based modular robot to discover their current shape. The modules search for overlapping boxes to cover the whole configuration. The union of these boxes gives the current shape. We evaluated the algorithm in simulation on BlinkyBlocks on different configurations with different geometrical properties and compared it with a coordinates collection method to retrieve the current shape of the ensemble and send it to a central entity. The results show that the shape recognition method outperforms the coordinates collection in time efficiency while using a smaller memory footprint. have been used to tackle this issue. Scaffolding entails the construction of the modular robot using hollow substructures or meta-modules, which provide enough empty space for tunneling while simultaneously enhancing holonomy. Tunneling involves the movement of modules through these empty structures to alter the shape of the robot.

THE POROUS STRUCTURE

In this chapter, we propose a porous scaffolding structure made of 3D Catoms metamodules that has enough empty volume to allow tunneling. Usually meta-modules are used to facilitate the movement of modules by pre-planning unitary moves. Thus, with these meta-modules we obtain lattices at the meta-module scale composed of cells that can be empty or full. We propose a three-state model, where each meta-module cell can be absent, present and sparse, or present and filled. Meta-modules can switch from the ºFULLº state to the ºSPARSEº state by dumping its filling modules into a neighboring cell, and similarly a cell can be emptied by switching from a ºSPARSEº state to the state. In the opposite direction, meta-modules can go from the ºSPARSEº state to the ºFULLº state by receiving modules from a neighboring ºSPARSEº or ºFULLº cell, and similarly, an empty cell can be filled by switching from an ºEMPTYº state to the ºSPARSEº state. The structure anatomy is presented in Section 6.2. Then, the basic operations that move the modules from one meta-module to another in all directions to change their states are presented in Section 6.3. A motion coordination algorithm that will be executed by the modules that execute an operation is presented in Section 6.4. Finally, a conclusion is provided in Section 6.5.

6.2/ POROUS STRUCTURE ANATOMY

Our proposed meta-module can be in two states: ºFULLº or ºSPARSEº. A ºSPARSEº metamodule is made up of ten 3D Catoms assembled in a 3D hexagonal shape in an FCC lattice as in Figure 6.1. The positions of the modules in a meta-module are given in Figure 6.3. They can be vertically flipped according to their position in the meta-modulescale lattice. The size of the meta-module has an impact on the granularity of the system, since the description of the shape will be done at the meta-module level. The size of the modules 10 is chosen so that the meta-module can store the size of another one and maintain enough space between it and its neighbor meta-modules to allow the modules to flow between them without blocking. Furthermore, 10 is the smallest size that allows Filling a meta-module allows the structure to compress or expand by a factor of 2 since each ºSPARSEº meta-module can store in its empty volume the size of another metamodule and the ºFULLº meta-module can expand by discarding its filling modules so they can be reassembled into a ºSPARSEº meta-module at an ºEMPTYº position. Let N be the total number of modules in the initial shape and S G the size of the goal shape in terms of meta-module (ºFULLº or ºSPARSEº). Due to the expandability and compressibility properties of the proposed structure: ⌈ N 20 ⌉ ≤ S G ≤ N 10 . The positions of the filling modules are carefully chosen to avoid blockage. They must be free to be discarded in all directions. For this reason, their positions differ according to the position of their meta-module in the meta-module scale lattice. Table 6.1 shows the assortments of positions for each meta-module position.

The meta-modules are arranged in a 3D regular cubic lattice as shown in Figure 6.2. A cell in the grid can be ºEMPTYº or present. A present cell contains a meta-module that can be ºSPARSEº or ºFULLº. Each meta-module is attached to an adjacent one with at least bridging constraint, which prevents the insertion of a module in an empty position between two modules facing opposite directions, to be relaxed at the level of meta-modules. This allows for greater flexibility in the placement and removal of meta-modules within the lattice structure. Therefore, it also facilitates self-reconfiguration planning.

6.3/ MOTION OPERATIONS

To change the shape of the entire structure, we define three basic operations that can be executed by a meta-module to change the state of its cell:

1. Dismantle operation changes the state of an occupied cell from ºSPARSEº to ºEMPTYº or ºFULLº to ºSPARSEº. It breaks or empty the meta-module and transports its modules to an adjacent cell.

2.

Transfer operation does not change the state of a cell. It is only used to transport modules through a ºSPARSEº cell.

3.

Assemble operation changes the state of a cell from ºEMPTYº to ºSPARSEº or ºSPARSEº to ºFULLº.

Each operation can be executed in the six directions (left, right, up, down, back, and front) in the cubic meta-module scale lattice. These operations can be exploited by a selfreconfiguration planner whose purpose will be to specify which operation to execute on which meta-module. An operation is defined as a sequence of hand-coded movements to navigate the modules of a meta-module from one position to another. Each movement is coded by a triplet in the form of <current position, next position, state> where the three possible values of state are:

1. MOVING: to indicate that the module must continue to move when next position is reached.

WAITING:

to indicate that the module must stop and wait when next position is reached to serve as a bridge for the next flowing modules or to wait when filling a meta-module before entering its final position to avoid blocking.

IN POSITION:

to indicate that the module will reach the final position for the current operation.

All moving operations can be applied by a 3D Catom to perform a sequence of basic movements. All the sequences must be pre-stored in the robot memory for the six possible directions of motion. However, some operations can be deduced from others. For example, a module needs only to store the movements of the Transfer operations in 3 directions, e.g. up, left, and back. The movements for the other directions can be deduced from the stored ones by executing them in reverse order. In addition, the operations Assemble and Dismantle are homologous, the movements required to dismantle a metamodule are the same as those required to build it, but in reverse order. Hence, reducing the number of operations to be stored in each module. Table 6.2 shows the number of movements for Assemble operations into ºSPARSEº or ºFULLº meta-module and Transfer operations that must be stored in a module. Other operations can be deduced from the stored one. Each movement is stored in the database using 4 bytes to embed the 6 × 4bits used for coordinates plus 2bits for the state. As presented in Table 6.2, there are 559 records in total stored in the movements database requiring 2.24 kB of predefined movements data. It is important to note that despite the fact that this memory is quite large in the context of modular robots, it is a constant size.

The video 1 presents in the first part the various possible operations. First, it shows the Dismantle operation on a ºSPARSEº meta-module whose modules are transferred and reassembled in an ºEMPTYº cell that becomes ºSPARSEº. Second, the ºSPARSEº metamodule is dismantled and transferred to be reassembled in a ºSPARSEº cell that becomes ºFULLº. Third, it shows the Dismantle on a ºFULLº meta-module whose filling modules are reassembled on an ºEMPTYº cell that becomes ºSPARSEº.

6.4/ MODULES MOTION COORDINATION

To execute the operations, a module can take three different roles:

• Meta-Module Leader (MML) is a module chosen in each meta-module whose purpose is to handle computation and communications between meta-modules. Mes-1 Youtube video: https://youtu.be/6dtkXBY8t6k sages between meta-modules are sent from one MML to another. The MML can be any of the ten modules that form a meta-module. We chose the one on the bottom left as shown in Figure 6.1.

• Operation Coordinator (OPC) is a module that coordinates operations at the metamodule level by choosing the sequence of movements to execute by a flowing module. The OPC is the first module to which a moving module from a previous operation is connected. Or, in the case of dismantle operations, it is the last module connected to the meta-module in the operation direction.

• Flowing Module (FM) is a module in motion executing an operation's motion sequence. Figure 6.4 shows modules transportation from a source meta-module on the right to a destination meta-module on the left. The modules of the source (in red) are executing a Dismantle operation in the left direction. When they are traversing the intermediary meta-module (in grey) they execute a Transfer operation in the left direction. When they reach the destination meta-module they start executing the Assemble operation in the up direction. In this figure, the orange modules are in a waiting state that serves as a bridge for the purple moving modules to flow without blocking. Once all the modules pass the bridge, the OPC will inform the waiting bridging modules to continue the execution of their current operation.

To avoid blocking and collisions during the flow of multiple modules, the modules flow in one line following the same path. A message-passing traffic-light style motion coordination protocol described in Thalamy et al. (2020b) is used to maintain a space gap between every two moving modules. Furthermore, the structure maintains enough space between meta-modules to allow the modules to flow in parallel in multiple adjacent streamlines without collisions. Each moving module performing an operation keeps an iterator on the sequence of movements of the operation being executed. The algorithm executed by a FMs is described in Algorithm 7. When a FM module is attached to OPC, it means that it ended the previous operation and is ready to start executing the sequence of movements of the next operation. So, the OPC sends the COORDINATE MSG containing the operation to be executed by the FM and the value of the iterator so that the FM knows from which movement it must begin. On reception, FM will start to move until it reaches the state IN POSITION, which means that it ends the movements to be executed for the current operation, or WAITING which means that the module must stop and serve as a bridge for the next modules to pass it (Algorithm lines [6][7][8][START_REF]Coating example using special meta-modules on the boundaries[END_REF][10][11][12][13][14]. If the operation is a Dismantle operation, when an FM becomes IN POSITION, it notifies its operation coordinator so it can proceed to the next module. Note that the function rotateT o executed by an FM encompasses the motion coordination algorithm that requires additional exchanged messages between the moving module, its pivot, and its future latching points. Briefly, the light state of a module is red if it serves as a pivot for a FM module motion. Otherwise, it is green. Before each motion, a FM probe the light state of the modules at its next latching points to verify if they are all green before moving. Otherwise, it must wait until they become green. The reader can refer to Thalamy et al. (2020b) for a detailed description of the motion coordination algorithm.

6.5/ CONCLUSION

In this chapter, a porous structure made up of hexagonal meta-modules placed in a 3D cubic lattice is proposed and the basic operations to perform to change the state of each cell are presented. The structure allows the storage of excess modules in ºSPARSEº meta-modules, allowing it to compress and expand, so we are not constrained during self-reconfiguration to have the initial size of the shape equal to the one of the goal shape.

Operations can be exploited by a self-reconfiguration planner whose purpose is to specify which operation to execute on which meta-module in the initial configuration to achieve a given goal configuration. In the next two chapters, we provide two self-reconfiguration planning algorithms. The first in Chapter7 is a fully distributed round-based algorithm.

The second in Chapter8 performs the planning in a centralized manner, then, the modules flow asynchronously in a single round to form the goal shape.

REPOST: A FULLY DISTRIBUTED SYNCHRONOUS ALGORITHM In this chapter, RePoSt: A fully distributed algorithm is proposed to plan the reconfiguration of the structure by specifying the operations to be executed by the meta-modules to reach the goal configuration. It operates in rounds where in each round a set of disjoint paths is found using a distributed maximum flow algorithm that connects source meta-modules that must be dismantled to destination meta-modules that must handle the assembly at an cell.

The chapter is organized as follows. In Section 7.2 the algorithm is described. Section 8.3

analyzes the time complexity expressed as the number of motions. Then in Section 7.4 a simulated 3D self-reconfiguration example is presented and analyzed. Finally, a brief conclusion is given in Section 7.5.

7.2/ ALGORITHM DESCRIPTION

In this section, RePoSt: a synchronous self-reconfiguration algorithm is described to transform a structure composed of the meta-modules described in Chapter 6 from its current shape to a given goal shape.

The RePoSt algorithm runs on all modules of the system. This algorithm is mainly divided into three steps repeated sequentially until the convergence to the goal shape:

1. Determining sources and destinations meta-modules.

2.

Find the maximum number of possible streamlines connecting sources and destinations.

3.

Dismantling sources meta-modules and transporting their composing modules to destinations.

The steps are detailed in the following subsections.

During the reconfiguration process, a Global Coordinator (GC) module coordinates the sub-stepping scheme. It is a fixed module that initially belongs to a meta-module in the goal shape, so it will not change position during the reconfiguration process. At each iteration, the GC initiates each step, detects its termination, and then initiates the next We assume that each module knows, in addition to its coordinates in the Face-Centered Cubic (FCC) lattice, the coordinates of its meta-module in the square cubic lattice. This can be efficiently disseminated by the GC whose coordinates are the origin. On reception, an MML sets the coordinates of its meta-module according to the direction of the sender.
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Moreover, all meta-modules know the goal shape and can determine if they are in it or not. This can be done efficiently using the method described in [START_REF] Tucci | ªEfficient scene encoding for programmable matter self-reconfiguration algorithmsº[END_REF] applied at the meta-module scale where a module is replaced by a meta-module and the computations are performed by the MMLs. Moreover, we assume that the modules have no prior knowledge of their initial configuration and its size.

7.2.1/ DETERMINATION OF SOURCES AND DESTINATIONS

To reconfigure the system from its current shape to a given goal shape, we must first determine the sources and destinations. Sources are any meta-modules that are ºFULLº or do not belong to the goal shape. A ºSPARSEº source can be dismantled and a ºFULLº source can discard its filling modules. Modules from a source are transported to a destination meta-module. The destinations are ºSPARSEº meta-modules adjacent to an empty cell belonging to the goal shape that needs to be occupied or a ºSPARSEº meta-module to be filled. When a source module arrives at a destination, the destination handles its transportation to its meta-module goal position. We assume that each meta-module must know the shape of the goal and can locally determine whether it belongs to it or not.

7.2.1.1/ SOURCES DETERMINATION

A potential source is defined as a ºSPARSEº meta-module in the initial shape that does not belong to the goal shape or a ºFULLº meta-module at any position. Initially, all ºSPARSEº meta-modules that do not belong to the goal shape are potential sources. Then, a potential source is confirmed to be a source if it does not disconnect the structure after it has been dismantled. We use the connectivity preservation method described in Lengiewicz and Hoøobut (2019) to choose meta-modules which, when dismantled, do not disconnect the structure. Briefly, the connectivity preservation method consists of building a tree rooted at the GC in a way that the leaves meta-modules, when removed, do not disconnect the structure. To build the tree, each meta-module M i store a value s i that indicates the minimum number of potential sources that must be traversed to reach the module M i starting from the GC. Each meta-module in the tree chooses as the parent the neighbor that has the minimum value of s. Therefore, the leaves of the tree, if they are potential sources, are confirmed to be sources, since they do not disconnect the structure if removed.

7.2.1.2/ DESTINATIONS DETERMINATION

Potential destinations are meta-modules adjacent to empty positions in the goal shape or ºSPARSEº meta-modules to be filled if the initial shape is larger than the goal shape.

A source meta-module will be dismantled and transported to a destination meta-module that coordinates the process of reassembling the source. A problem that can occur is having an empty goal position adjacent to multiple potential meta-modules destinations, as seen in Figure 7.2. When a potential destination is determined, to avoid collision, it must be a destination for only one empty goal position. One solution is to report back to the GC which empty goal positions a destination corresponds to. In its turn, the GC chooses an empty goal position for each potential destination and notifies each destination about its associated empty goal position. This issue can also be solved if the modules know their current configuration, so they know about the existence of another meta-module at a cell next to the empty goal position. They can break the symmetry based on simple coordinate rules. The algorithm proposed in Chapter 5 can be used to make the modules recognize their current reconfiguration.

7.2.2/ FINDING STREAMLINES

After the sources and destinations are determined, the maximum number of streamlines connecting the sources and destinations is found. A streamline is defined as a path of adjacent meta-modules that starts from a source and ends at a destination. Streamlines must be disjoint to avoid collisions at intersections. This can be achieved by solving the classical problem of maximum-flow in graphs between many sources to many destinations with a unit edge capacity. A distributed asynchronous version of the Edmondkarp max-flow algorithm Edmonds and Karp (1972a) proposed in Lengiewicz and Hoøobut (2019) is used and adapted for this purpose. Each source initiates a breadth-first search for destinations. When a destination is reached, a unique path is backtracked, and the unused branches of the tree are cut off leaving a place for other trees to grow. Then, the source confirms the path by sending a message along it to confirm the streamline.

The algorithm terminates when no additional streamlines can be found. The GC needs to detect the termination of this step before proceeding to modules transportation. We use the distributed termination detection method described in [START_REF] Brzezinski | ªTermination detection in a very general distributed computing modelº[END_REF].

7.2.3/ MODULES TRANSPORTATION

After the establishment of disjoint streamlines connecting sources and destinations, the sources must be dismantled and transported along the streamlines to the destinations. This is done by executing the meta-modules operations described in Section 6.3.

Each MML in a streamline knows the position of the previous and next meta-module in the same streamline. This information is used to determine the direction of the operation to be executed on each meta-module. The Dismantle operation is executed on source meta-modules, Transfer operation is executed on intermediate meta-modules to transfer modules to the next meta-module in the streamline, and the Assemble operation is executed at destinations. In this section, the functioning of our method and the different operations performed in parallel by the meta-modules along the streamlines is shown. Moreover, the simulations show that our algorithm is capable of using the predefined operations to follow the streamlines in order to reconfigure a structure from an initial shape to a goal one in a 3D space.

All simulations are performed in VisibleSim. Figure 7.5 evaluates the number of communications and the time for the reconfiguration of an L shape to a C shape while varying the size of the configuration. Figure 7.5a shows that the number of messages exchanged is proportional to the number of movements that increases as the size of the configuration increases. Figure 7.5b shows that the execution time increases linearly with the diameter of the system which is mainly due to the parallel motion in multiple streamlines. The resultant flowing paths will allow to specify which operation to execute on each metamodules. Then, the operations are transferred to their respective meta-modules on flowing paths. Once the operations are assigned, the modules execute a distributed algorithm based on the traffic light system that controls the flow of the modules on concurrent paths without collisions.

In this section, we first describe a global planning algorithm based on Max-Flow search to determine the operations to execute on each meta-module and in which direction. Then we describe an asynchronous distributed algorithm to control modules' flow on the paths without collisions.

8.2.1/ GLOBAL PLANNING

Given an initial configuration I and a goal configuration G, a global planner must specify the operations to execute on each meta-module. It is a centralized process that is executed in an initialization phase.

The meta-modules configuration can be represented as a lattice graph in which the Once the graph G is built, we apply the Edmonds-Karp algorithm Edmonds and Karp (1972b) to find the maximum flow between the super-supply node S s and the superdemand node S d . The algorithm proceeds by finding the shortest augmenting paths mvt it ← mvt it + nb of moves to be performed by m ; entry flow. However, before starting the execution of any operation, a meta-module must verify that the next meta-module is not executing any operation to prevent collisions at intersections. To do so, the MML sends a REQUEST OP START message to the MML of the next meta-module on its path. If the receiver's lightS tate is green, which means that it is not executing any operation, it sets the next operation to execute on it, then it responds with an AUTHORIZE OP message, and its lightS tate becomes red. Once the AUTHORIZE OP message is received, the OPC can start the operation. Otherwise, the receiver stores the direction of the sender in a queue and responds once it becomes free. This will cause flowing modules to wait for the next meta-modules they must enter to finish executing an operation in progress (Algorithm 8 line 15-20).

The FMs executes the operations as explained in Section 6.3 except that before starting the operation , the MML requests the authorization to start the execution from the next MML (Algorithm 9 line 1-6).

When an MML detects that the operation's execution ended and there exists a meta-module waiting for its authorization to start the pending operation, it sends an AUTHORIZE OP message to the waiting meta-module to start executing the operation. Otherwise, if it is in R s and does not have an entry flow, it sets lightS tate as green and dismantles itself. Therefore, meta-modules in R s execute the dismantle operation one after the other starting from the end of a path so that they do not disconnect the configuration.

8.3/ COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the ASAPs algorithm. The total time needed for self-reconfiguration includes the time T 0 taken by the global planner to find paths, the time for module transport T 1 , and the time for message transmission T 2 .

The computational complexity of the global planner is given by the complexity of constructing G = G∪I plus the complexity of the max-flow algorithm. The construction of G depends linearly on the number of nodes V, so O(V). The complexity of the Edmonds-Karp algorithm on any graph is given as O(V E 2 ) Edmonds and Karp (1972b) where V is the number of nodes and E is the number of edges in G. In our case, G is a graph representing the nodes in a cubic lattice, so the maximum number of edges E is equal to 6.V. Therefore, the computational complexity of the global planner is

O(V(6V) 2 + V) = O(V 3 ) = T 0 .
The time to transform an initial shape to the target shape is mainly due to the time of the 

8.4.2/ EXPERIMENTS ANALYSIS AND COMPARISON WITH RePoSt

The three self-reconfigurations are presented in a video1 that shows the dismantling, displacement, and building of meta-modules in parallel to transform the initial shape to obtain the final configuration of meta-modules. It also show a comparison between RePoSt and ASAPs execution. First, we notice that for the three self-reconfigurations, the ASAPs algorithm is faster than RePoSt, and this is mainly because the parallelization of movements is much more important due to the coordinated flow of modules on the pre-allocated concurrent paths.

ASAPs algorithm is 1.95 times faster for L2C, 2.08 times faster for the Humanoid model and 2.7 times faster for the Hollow model.

Second, in terms of the total number of motions executed by the modules during selfreconfiguration, ASAPs requires fewer motions than RePoSt to converge to the goal shape. This is due to the global max-flow planning method that minimizes the total length of the paths found connecting meta-modules in the supply region to the meta-modules in the demand region (cf. property 2). Therefore, ASAPs is more energy efficient than RePoSt. periods with a low number of movements due to the time required for the determination of streamlines at each round. This effect disappears almost completely on the curve given by the self-reconfiguration with the ASAPs algorithm. This is because once the metamodules receive the path information, they all start to flow asynchronously guided by the distributed control algorithm explained in Section 8.2.2. Therefore, the ASAPs number of motions curve starts by increasing until it reaches its maximum value, then stabilizes before it starts to decrease when the modules start to reach their goal positions. This shows the increase in motion parallelisms achieved using ASAPs.

In Figure 8.6 (d), (b) and (f), the number of waiting modules at a time step varies with the amount of flow. When more modules leave their initial position and start flowing, the number of waiting modules will increase because modules will wait for each other to keep enough space when flowing in a train-like fashion towards their destination. In ASAPs an increased number of modules can be found in a waiting state at the beginning time steps for two reasons: first, the number of flowing modules is more important, so more modules are waiting to keep enough space with other flowing modules on the same path, and second, when modules must wait at intersections of paths in case an operation is being executed at the intersection. For the RePoSt algorithm, modules follow disjoint paths, so they are not required to wait at intersection. The main motivation of this work is to reduce the search space when planning for selfreconfiguration and to allow clusters to reconfigure in parallel. The clustering algorithm is based on tree cuts that result in branches that form the final clusters. The results showed that we can efficiently and effectively group ensembles of tens of thousands of modules with O(nlogn) communication and time complexities with n the number of modules.

8.4.2.1/ BOTTLENECKS EFFECT

To allow an ensemble of connected modules in a regular lattice to identify a description of their shape, Chapter 5 presented a fully distributed algorithm that finds a set of filled boxes whose union describes the shape. It has a communication complexity O(n) and a time complexity of O(D + W + H) where n the number of modules and D, W and H the depth, width, and height of the bounding box of the ensemble, respectively. Detecting the shape of a modular robot ensemble can be beneficial for an efficient self-reconfiguration planner. We also showed in simulations that this approach is more efficient in reporting the shape to an external connected computer than exhaustive coordinate collection.

In order to increase the number of possible motions of modules to enhance selfreconfiguration, Chapter 6 presented a new porous structure that has enough hollow internal volume to allow modules to move through it concurrently. It is built by connected meta-modules placed in a regular cubic lattice. The proposed meta-modules can be in two states either sparse or full, giving the structure the ability to compress and expand.

We also defined a set of operations that meta-modules can perform to change their state or direct modules that must traverse through them.

Then, Chapter 7 and Chapter 8 presented two self-reconfiguration planning algorithms based on a max-flow search that specify which operation to execute on which metamodule to transform the structure into a given goal shape. The first RePoSt is a fully distributed round-based algorithm where in each round the modules flow following disjoint paths to reach their goal positions. With RePoSt we can reach a goal configuration in O(Md) where M is the number of rounds and d is the diameter of the configuration.

The second ASAPs follows a hybrid planning approach, where a centralized planner precalculates the flow to be sent in each direction for all meta-modules. This information is then distributed to the meta-modules. The modules then flow asynchronously by performing the operations specified according to the flow values, reducing the time complexity to O(d). We evaluated and compared both algorithms in different configurations in simulation.

9.2/ DISCUSSIONS AND FUTURE WORK

In this section, I would like to give a general perspective, then take a step back and discuss the advantages and disadvantages of the proposed solutions, and also show some future work for each of the proposed solutions. Furthermore, it would be useful to adapt the algorithms to other models and systems. This includes systems with wireless communication capabilities, as well as systems operating in different lattice structures and employing different motion mechanisms. 9.2.2/ ON THE SIZE-CONSTRAINT CLUSTERING Chapter 4 presented a new algorithm called SC-Clust that clusters modules into predefined size groups. The main goal is to improve the self-reconfiguration process by allowing each cluster to reconfigure at the same time. This algorithm represents a significant advancement as it is the first fully distributed approach for size-constrained clustering that relies solely on local module knowledge to decompose the ensemble into clusters. It is an important tool that enables the use of distributed cluster-based solutions for selfreconfiguration. However, there are some limitations that need to be addressed in order to achieve this.

First, to facilitate the transition to the goal configuration, the shape and positions of the resultant clusters must be controlled to prevent blocking positions caused by irregular cluster borders. Furthermore, the shape of the cluster can also be customized to meet specific goals. For example, if the goal is to reconfigure the system into a specific shape, it would be advantageous to design the clusters in a shape or pattern that is present in both the initial and the goal configurations. Such a cluster will not require many transformations, which can simplify the reconfiguration process by decreasing the amount of motion required.

Second, the positions of each cluster must be carefully considered to ensure successful reconfiguration. For example, placing clusters near their target positions may be a useful strategy to reduce the number of steps needed to achieve the desired configuration. This can help minimize the time and resources required to run the reconfiguration process, especially for systems that require rapid or frequent reconfiguration. Furthermore, in cluster-based self-reconfiguration planning, finding the correct order of assembly is crucial because it affects the overall efficiency and success of the reconfiguration process. The order of constructions is determined by analyzing the dependencies between the connections of the modules or clusters. If a connection between two modules depends on the completion of another connection, those connections must be assembled in a specific order to ensure a successful construction.

Therefore, I would like to investigate these ideas to propose more efficient cluster-based self-reconfiguration algorithms that are compatible with this decomposition of the modules set. In particular, managing the inter-cluster boundaries and the order of assembly to avoid blocking constraints. 

9.2.3/ ON SHAPE RECOGNITION

The shape recognition algorithm presented in Chapter 5 finds a representation of the current modular robot shape. The overlapping boxes can be seen as the leaf nodes of a Constructive Solid Geometry (CSG) tree, where the union of these boxes represents the overall shape of the robot.

The presented algorithm holds significant importance in the context of interactive Computer-aided design (CAD) applications. It facilitates accurate and prompt transmission of shape descriptions from the Programmable Matter (PM) to the connected computer. Additionally, the ability of modules to determine an efficient representation of their current shape carries potential benefits for self-reconfiguration planning. By comparing the differences between the current shape and the desired goal shape, modules can make informed decisions during the planning phase.

Extending the algorithm to use a variety of shapes, in addition to a box, as building blocks can potentially lead to more efficient representations of the robot's shape. One possibility is to adapt the algorithm to actively search for polyhedrons rather than solely focusing on boxes. Although representing polyhedrons requires additional information for storage, it can substantially reduce the number of elements required to cover the entire configuration. Figure 9.1 shows an example in which finding a diagonal can reduce the representation from five elements to one.

In the current version of the proposed algorithm, the boxes are aggregated when received by a connected computer. Although this method is effective in representing the overall shape of the robot, it may not be the most efficient way to do so if we want the modules themselves to store a description of the whole configuration shape. To address this limitation, a distributed aggregation method must be developed to minimize the number of boxes used to represent the robot's shape. This method would involve ignoring boxes that are fully included in larger ones, which can reduce redundancy and improve the efficiency of the algorithm. Furthermore, I would like to work on developing a dynamic version of the algorithm that allows modules to keep track of their shape in real time, which could provide valuable information for distributed self-reconfiguration planning. By continuously updating the representation of the robot's shape, modules can make more informed decisions about their position relative to the goal configuration and potentially reconfigure themselves more efficiently.

9.2.4/ ON THE POROUS STRUCTURE

The meta-module design The porous structure presented in Chapter 6 is made up of meta-modules. The decision to use hexagonal-shaped meta-modules was made in order to closely mimic a voxel in the square cubic lattice. Its size 10 was experimentally determined in VisibleSim to accommodate additional 10 3D Catoms within its empty internal volume to form a ºFULLº meta-module while also leaving sufficient space for modules to flow within the empty volume of a ºSPARSEº meta-module, as well as between two adjacent meta-modules in all directions. Any other meta-module design with the same properties can be used. For example, using other geometries can provide better spatial efficiency by using a smaller number of modules and get better fidelity to the goal shape.

Larger meta-modules can be used to build an internal scaffold and smaller meta-modules on the borders. However, the challenge of this approach is the complexity it can cause to self-reconfiguration and assembly planning and in the coordination of the movements of modules between meta-modules with different geometries.

Advantages

The porous structure allows the modules to flow freely within it. In addition, all meta-modules, ºSPARSEº or ºFULLº have at least one module that is not blocked free to move, therefore it can be dismantled and transported in any direction regardless of its position. Furthermore, the compressibility and expandability properties of the structure do not restrict the goal shape to have the same number of meta-modules as the initial shape. The excess number of modules in the initial shape can be stored inside ºSPARSEº meta-modules and the filling modules can be later used for other purposes, such as coating the structure or replacing faulty modules. Furthermore, the meta-module design allows it to be assembled at any empty position even if the six adjacent positions are filled. This relaxes the bridging constraint that exists at the module level, which states that no modules can be placed between two filled positions in opposite directions. Therefore, it facilitates self-reconfiguration planning. 2021), a solution is proposed that can be applied to detect the rupture point and stability in a distributed manner, and the result can be taken into account when planning reconfiguration. However, it is computationally prohibitive. The work is ongoing within our team to efficiently and distributedly detect the stability of a structure in real-time. I believe that using structures with regular building blocks such as the meta-modules proposed in this thesis can reduce the calculation by performing it on the meta-module level.

For example, to calculate the center of gravity of a structure using the coordinates of its components, we can do it at the meta-module level instead of the module level, reducing the number of coordinates used for calculation by n times compared to the module level where n is the size in the a meta-module (n = 10 in our proposed meta-module).

Operations movements To reconfigure the structure, the modules can perform operations consisting of a sequence of predefined motions stored in their memory. The operations will be set by a self-reconfiguration planner. For now, the operations are hand-coded, which is a tedious and time-consuming task. Therefore, I believe it would be interesting to automate this task, which can not only facilitate the process, but also find an optimized sequence of movements. I would like to investigate graph-based path-planning methods, reinforcement learning and other search based motion planning for this purpose.

9.2.5/ ON THE SELF-RECONFIGURATION ALGORITHMS

In chapters 7 and 8, two self-reconfiguration algorithms are presented. They specify which operations to execute and in which direction on each meta-module to reach a given goal configuration. The first RePoSt is fully distributed. It uses the goal shape representation that must be known by all meta-modules to determine a set of sources and destinations. Then in each of its rounds, modules flow from sources such that their removal does not disconnect the structure to destinations until the convergence to the goal shape. The second, ASAPs, follows a hybrid approach in which a centralized planner,

given the initial and goal configurations, calculates the maximum flow between regions that do not belong to the goal configuration and regions that are in the goal but not in the initial configuration. The result of the max-flow is then transmitted to the meta-modules and they start flowing in a simultaneously while applying a traffic-light-like mechanism to schedule operations on flow intersections.

The simulation results showed that ASAPs significantly decreases the time of selfreconfiguration due to an increase in flow. However, it requires a central planner and a prior knowledge of the initial and goal configurations, which limits its applicability to certain scenarios: when the ensemble is not connected to a central planner and/or the initial shape is unknown. The shape recognition algorithm of chapter 5 can be used to determine the initial configuration.

Although we talked about the filling procedure and how it can be used to not constrain the size of the goal configuration to be strictly equal to the initial one. I believe that this feature can be used by the self-reconfiguration planner to enhance the process. I would like to test different strategies for resource allocation. A resource allocator can be used to strategically position ºSPARSEº meta-modules in areas where deletion is expected and ºFULLº meta-modules in regions where creation is anticipated.

For now, the proposed planners use only the space covered by the union of the initial and goal configurations. I would like to investigate how intermediate configurations that span a larger space can be used to avoid bottlenecks during the self-reconfiguration process of modular robots. Bottlenecks occur when there is a limited space or pathway in the structure that restricts the movement of the modules. This can lead to congestion and delays in the self-reconfiguration process. To avoid bottlenecks, the self-reconfiguration planner can use intermediate configurations to create alternative paths in the structure.

For example, if there is a narrow pathway that restricts the movement of the modules, the planner can create an intermediate configuration that rearranges the modules and creates a wider pathway. Future research in this area can focus on developing efficient and effective strategies for using intermediate configurations to avoid bottlenecks and optimize the self-reconfiguration process. 
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Abstract:

Programmable matter can be used to create objects that can be programmed to change shape and physical properties on demand. One of the ways to implement programmable matter is to build it as a self-reconfigurable modular robot made up of a large set of simple micro-robots attached to each other. These micro-robots are able to communicate with their directly connected neighboring modules and modify the interconnections to change the overall shape of the robot. This thesis addresses the challenge of self-reconfiguration in modular robotic systems, which involves autonomously rearranging modules to achieve a desired goal shape. The self-reconfiguration problem is difficult due to the very high number of possible configurations, which increases exponentially with the number of modules.

In this thesis, we argue that fast self-reconfiguration algorithms for large-scale modular robots can be achieved by clustering the modules. A distributed size-constrained algorithm is presented to form clusters of predefined sizes, along with a novel porous structure composed of two-state metamodules placed in a regular lattice. This porous structure allows concurrent module flow within it. In addition, two self-reconfiguration algorithms that can be applied on the proposed structure are introduced. The thesis also presents a distributed shape recognition algorithm to detect the current shape of the ensemble. To validate the proposed algorithms, simulations are performed to demonstrate their efficiency in achieving their objectives. 
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 3 Figure 1.2: The Programmable Matter consortium.

  Franche-Comt  e. During my Master's internship, I joined FEMTO-ST to start working on developing clustering algorithms specifically designed for large-scale modular robots where I proposed DCut Bassil et al. (2020): an algorithm that creates clusters by cutting branches of a spanning tree. Encouraged by my internship results, I started my PhD thesis to further advance my research.
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 413 Figure 1.3: Hardware examples with different modular robotic formation.

  tion, they have limited energy resources. They can be powered through an external source or by utilizing energy harvesting techniques from their environment, such as ambient light or electromagnetic sources. Optimizing energy consumption, employing energy-efficient algorithms and distributed power management techniques are essential for the functionality of the MSR.
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 14 Figure 1.4: Modular Robotic systems developed as part of the Programmable Matter Project. A) 2D Catom. B) BlinkyBlock. C) 3D Catom. D) Datom.
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  Self-reconfiguration consists of performing module-level movements to change an initial configuration into a goal one. The authors in Thalamy et al. (2019); Ahmadzadeh and Masehian (2015); Dokuyucu and È Ozmen (2022) provide surveys on self-reconfiguration algorithms. Algorithms differ in their control properties; they can be centralized or distributed, synchronous or asynchronous, and deterministic or stochastic. They are also hardware-dependent or generic.
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 21 Figure 2.1: A box made of 5,914 3D Catoms, we remove top right border modules to better present the internal structure. The porous structure is made of meta-modules that construct a scaffold in orange, some reserves of modules are drawn in green and border meta-modules are drawn in blue.

  -CONSTRAINT CLUSTERING PROBLEM Clustering the modules of a MSR ensemble can yield many benefits. It can help reduce the search space for self-reconfiguration planning and allow the parallelization of movements where each cluster reconfigures in parallel. For instance, in Moussa et al. (2021) the authors proposed a cluster-based self-reconfiguration method. To show the advantage that clustering can yield to self-reconfiguration, they compared the execution time and communication load while varying the number of clusters. The results showed that both the execution time and the number of exchanged messages decrease by a factor of k where k is the number of clusters. However, they assume that the clusters are given initially and do not propose a clustering method.
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 22 Figure 2.2: An example of self-reconfiguration showing the importance of the sizeconstraint clustering. Each cluster is colored differently. A cluster in the initial shape with a fixed number of modules must transform into a part of the goal shape with the same number of modules.

Contribution

  (2017) ✓ ✓ × WSN clustering Xiangning and Yulin (2007); Mukherjee (2020); Bhola et al. (2020); Pietrabissa and Liberati (2019) To solve the size-constrained clustering problem in the context of MSR, we present SC-Clust in Chapter 4, a distributed solution for the size-constrained kpartitioning problem for modular robots that uses local knowledge of the modules to cluster the ensemble. The algorithm consists of creating a tree structure and then cutting it

  The configuration recognition problem, which consists of matching and mapping a configuration to a library of configurations, is studied in Baca et al. (2015); Shiu et al. (2010); Liu and Yim (2020). First, a discovery phase is executed to find a representation of the current configuration as an interconnectivity graph, where nodes represent modules and edges represent the connections between the modules.

  et al. (2015) a distributed real-time algorithm is presented for configuration discovery. It allows modules to discover other modules using wireless infra-red communication and construct the connectivity graph.

  Figure 2.3: A simulation example for handling a broken interface. a) a broken interface is detected. b) the Helper module creates a bridge of communication between disconnected modules . c) communications through the broken interface are passed through the Helper.

  Simulation Tools . . . . . . . . . . . . . . . . . . . . . . 36 3.5.2 VisibleSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the experimentation and simulation tools that were used in this thesis to develop, implement, and analyze the proposed algorithms. Section 3.2 introduces the BlinkyBlocks system, a modular robotic system based on cubic lattices that can perform distributed computation and communication. Section 3.3 describes the 3D Catoms, a lattice-based modular robotic system that can move by rotating on each other using electrostatic forces. Section 3.5 provides a review of existing simulation tools and explains the VisibleSim software, a simulation platform that can model the behavior and interactions of various modular robotic systems, including BlinkyBlocks and 3D Catoms.
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 31 Figure 3.1: On the left a dissection of BlinkyBlock . On the right the result of the sizeconstrained clustering algorithm proposed in this thesis, where each cluster is colored differently.
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 32 Figure 3.2: On the left, a 3D Catom with two rotation methods: The first on the octagonal surface area R o and the second on the hexagonal surface area R h . An arrangement of 3D Catoms in a FCC lattice where a 3D Catom can have up to 12 neighbors.

  capabilities. A 3D Catom can move around the FCC grid by rotating on the surfaces of fixed 3D Catoms. The geometry of a 3D Catom consists of 12 flat squares used as connectors to latch with other 3D Catoms using electrostatic forces (shown in red and numbered 0 to 11 in Figure 3.2) which form an hexagonal close packing of modules. Two neighboring connectors are separated by two types of surfaces: a hexagonal surface (colored blue in Figure 3.2)
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 33 Figure 3.3: Motion capabilities of the 3D Catom. a) Arrows #1 and #2 shows the two kind of rotations respectively along octagonal surface (in green) and hexagonal surface (in blue). b) Shows the final position of the top 3D Catom after a rotation along #1 arrow. c) Shows the final position of the top 3D Catom after a rotation along #2 arrow. In figure d) the final position of the top 3D Catom is reachable but the same position is not reachable in figure e) due to yellow module.
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 3 Figure 3.4: A screenshot taken during the execution of a self-reconfiguration algorithm using 3D Catoms. On the right a console shows the trace of events executed by the selected module at the bottom left. The modules are colored differently to reflect user defined states. On the top left, important real-time statistics are displayed.

  self-reconfiguration process, clusters of modules can be reconfigured in parallel. It has been shown in Moussa et al. (2021) that cluster-based selfreconfiguration can improve the execution time and communication efficiency of the process. In fact, the authors showed that reconfiguring clusters of modules in parallel offers a performance improvement proportional to the number of clusters, compared to the reconfiguration of the entire ensemble of modules.
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 4 Figure 4.1: A mug represented in CSG tree.

Section 4 .

 4 2 presents the problem and the system assumptions in a formalized way and demonstrates that the size-constrained clustering problem is NP-Complete. In Section 4.3 the SC-Clust algorithm is described; then its time and communication complexity are analyzed in Section 4.4. Section 4.5 presents the simulations and results and the comparison between SC-Clust and DCut: a clustering algorithm for lattice-based modular robots without a size-constraint.
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 4 Figure 4.2 (a) shows a correct size-constrained k-partitioning.Figure 4.2 (b) shows an
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 42 Figure 4.2 (a) shows a correct size-constrained k-partitioning.Figure 4.2 (b) shows an incorrect solution since the green cluster is disconnected. The objective of this work is

Definition 3 :

 3 k-balanced clustering Problem INSTANCE: A connected lattice graph G(V, E) the number of wanted clusters k. QUESTION: Does there exist k equal sized partitions

  k-balanced partitioning problem defined in Definition 3 is proved to be NP-hard on 2D lattice graphs by reduction from Hamiltonian path in Berenger et al. (2018) and 3-partition in Feldmann (2013). The size-constrained k-partitioning problem contains the k-balanced clustering problem as a special case where all clusters are equal in size. Therefore, by restriction Garey and Johnson (1979), The size-constrained k-partitioning problem is NP-hard on 2D lattice graphs and, therefore, it is at least NP-hard on 3D lattice graphs representing module connections in lattice-based modular robots.4.3/ ALGORITHM DESCRIPTIONIn this section, we propose the SC-Clust algorithm, a solution to size-constrained clustering for lattice graphs representing module connections in modular robots. It identifies k size-constrained partitions in O(nlogn) time and communication complexity. The SC-Clust algorithm operates in three phases. First, we define the edge weights and how they are calculated and stored in each module (Section 4.3.1). Second, a Minimum Spanning Tree (MST) is built. A fully distributed and asynchronous algorithmGallager et al. (1983) 

Definition 4 :

 4 AnchorsGiven a geometric shape I, the minimum bounding box B is the box surrounding I aligned with the coordinate axes with the minimum volume. The set of anchors
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 3 .2/ TREE CONSTRUCTION After all modules have stored their adjacent edge weights, a Minimum Spanning Tree (MST) is built. It minimizes (u,v)∈V MS T w(u, v). Any distributed algorithm to find an MST can be used. We use a fully distributed asynchronous algorithm called GHS proposed inGallager et al. (1983). GHS is known to have an optimal communication complexity of O(m + nlog(n)) messages. Its time complexity is O(nlog(n)), which is not optimal. Existing distributed algorithms solve the minimum spanning tree problem with better time complexity at the cost of increasing the communication load[START_REF] Pandurangan | OTHERS: ªThe distributed minimum spanning tree problemº[END_REF] Blin and Butelle (2001); Haeupler et al. (2018); Mashreghi and King (2021), which is not suitable for modular robots, as sending messages consumes the limited energy resources of the modules.

Figure 4 . 3 :

 43 Figure 4.3: An example of MST construction. On the left the weight distributed according to the distance to the nearest anchor (The flag of the same color). On the right, the MST is constructed and the root is colored in green.

  Figure 4.4: Flow chart for the i th partition.

Figure 4 . 5 :

 45 Figure 4.5: A partitioning example given clusters sizes of {4,5,5} using additional cut. A cut is shown as the red dotted line. The number on each node corresponds to its sub-tree size. Nodes with larger borders and darker colors are the clusters roots.

  cut( f alse, desiredS ize, 0) Procedure Cut(recut, desiredSize, adj): nbWaitedAnswers ← 0 foreach child in children do send FIND CUT(recut, desiredS ize, ad j) to child nbWaitedAnswers ← nbWaitedAnwers + 1 Msg Handler FIND CUT(recut, d, ad j): minDi f f ← ∞; subT reeS ize ← 0; desiredS ize ← d if |children| = 0 then // Leaf subT reeS ize ← 1; nbAd j ← nb o f neighbors in ad j minDi f f ← |subT reeS ize -desiredS ize|; maxNbAd j ← nbAd j send RESP CUT(subT reeS ize, minDi f f, maxNbAd j) to parent else nbWaitedAnswers ← 0 foreach child in children do 18 send FIND CUT(recut, desiredS ize, ad j) to child 19 nbWaitedAnswers ← nbWaitedAnwers + 1

Algorithm 2 :

 2 RESP CUT message handler 20 Msg Handler RESP CUT(s, e, m): 21 nbWaitedAnswers ← nbWaitedAnswers -1; subT reeS ize ← subT reeS ize + s 22 if |e| < minDi f f then 23 minDi f f ← e; toBestCut ← sender 24 if recut = true and |e| = minDi f f and m > maxNbAd j then 25 maxNbAd j ← m; toBestCut ← sender 26 if nbWaitedAnswers = 0 then 27 subT reeS ize ← subT reeS ize + 1 28 myDi f f ← subT reeS ize -desiredS ize 29 if cutAt = f alse and isRoot = f alse then if |myDi f f | < minDi f f then minDi f f ← myDi f f ; toBestCut ← NULL if recut = true then // Count nb of modules adjacent to cluster ad j in current branch maxNbAd j ← m + nbAd j if maxNbAdj = 0 then // Do not consider the branch minDi f f ← ∞ send RESP CUT(subT reeS ize, minDi f f , maxNbAd j) to parent 37 else if isRoot = true and (recut = false or desiredS ize > 0) then // Cluster i is found send CUT(i) to toBestCut else // cutAt performs an additional cut and join the resultant branch to cluster 0 send CUT(0) to toBestCut

Figure 4 .

 4 Figure 4.5 shows an example of partitioning the MST shown in Figure 4.3 into three clusters with given desired sizes of S = {4, 5, 5}. The first cut initiated by the MST rootresults in a branch of size four that forms the first cluster V 1 colored blue. The second cut results in a branch of size six, but the desired size is five. So, the second cluster V 2 colored yellow has one additional node (Di f f c2 = 1). Therefore, an additional cut in V 2 is made to cut a branch with one node adjacent to V 0 , and the resultant branch is associated

Figure 4 . 6 :

 46 Figure 4.6: DCut results on 4 different shapes with 4 clusters.

Figure 4 . 7 :

 47 Figure 4.7: SC-Clust results on 4 different shapes with 4 equal size clusters.

Figure 4 Figure 4 .

 44 Figure 4.8: SC-Clust execution time evaluation.

Figure 4 . 9 :

 49 Figure 4.9: SC-Clust communication load evaluation.

Figure 4 .

 4 Figure 4.10: Number of additional cuts.

Figure 4 . 8

 48 Figure 4.8 shows the execution time of the SC-Clust algorithm. We can see that the execution time increases logarithmically as the number of modules increases. This is valid for all shapes and all cluster distributions. The reason is obvious. The increase in the number of clusters directly affects the execution time as explained in Section 4.4.2

Figure 4 .

 4 Figure 4.11: Comparing DCut and SC-Clust.

Figure 4 .

 4 11 compares DCut with SC-Clust in terms of execution time and communication load on the shapes of Figures 4.6

and 4 .

 4 7 with the same number of modules for each shape and 4 clusters. As seen in

Figure

  Figure 4.11, the SC-Clust requires more messages exchanged in all shapes since for
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 6 / CONCLUSION In this chapter, we proposed SC-Clust, a fully distributed size-constrained clustering algorithm based on graph cuts. It groups modules with neighbor-to-neighbor communication in a large-scale modular robot into clusters of given sizes to enhance the self-SHAPE RECOGNITION Contents 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . .
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 51 Figure 5.1: Distributed computation of the boxes on 2D. a) Computation of the vertical distance d. b) Election of C min cells and computation of w. c) Boxes covering the plane using C min cells colors.

  Let M denote the set of modules. A straight sequence of connected modules in one direction is referred to as a line of modules. The initial step of the algorithm involves determining the values d m for every module m ∈ M. The value d m represents the rank of the module in the line (from 1 to n), moving 'backward' along the -→ Y axis starting from module m, until an empty position is reached. Let l m be the vertical line in the -→ Y axis direction that contains m, d m can be expressed by:

Algorithm 5 : 7 send= 1 Algorithm 6 : 6 w ← 1 7back line of w 8 send 28 send

 571661828 Distributed shape recognition -Part 1 input: (x, y, z), neighbors 1 Initialization : 2 if empty((x, y + 1, z)) then 3 send SET D MSG(1) to neighbor((x, y -1, z)) 4 Msg Handler SET D MSG(d sent ): 5 d ← d sent + 1 6 if ¬empty((x, y -1, z)) then SET D MSG(d) to neighbor((x, y -1, ¬empty((x + 1, y, z)) then send FIND W MSG(id, d) to neighbor((x + 1, y, z)) else w Notify front line of w if ¬empty((x, y, z + 1) then send FIND H MSG(id, d, w) to neighbor((x, y, z + 1)) else myBox = ({x, y, z}, {x + w -1, y + d -1, z + h -1}) Distributed shape recognition -Part 2 Msg Handler FIND W MSG(id, d sent ): if d < d sent then send SET W MSG(id, d sent , 0) to neighbor((x, y -1, z)) else if empty((x + 1, y, z)) then Notify SET W MSG(id, d sent , w) to neighbor((x, y -1, z)) else 10 send FIND W MSG(id, d sent ) to neighbor((x + 1, y, z)) Msg Handler SET W MSG(id, d sent , w sent ): if d sent ≥ d then w ← w sent + 1 Notify back line of w if myid = id then if ¬empty((x, y, z + 1)) and isCmin) then 17 send FIND H MSG(id, d, w) to neighbor((x, y, z + 1)) else 19 myBox = ({x, y, z}, {x + w -1, y + d -1, z}) else send SET W MSG(id, d sent , w sent + 1) to neighbor((x, y -1, z)) Msg Handler FIND H MSG(id, d sent , w sent ): if w < w sent ∨ d < d sent then send SET H MSG(id, 0) to neighbor((x, y, z -SET H MSG(id, h) to neighbor((x, y, z -1)) else 30 send FIND H MSG(id, d, w) to neighbor((x, y, z + 1))

R

  min (bottom) to indicate whether the bottom module is at an R min position. Then a module m is at a C min position if it verifies: R min ∧ ¬(R min (bottom) ∧ d = d bottom ∧ w = w bottom ) (5.5) The next step consists of determining the height h, which represents the maximum num-ber of rectangles on top of the one associated to C min . Consequently, this results in the formation of overlapping boxes. To accomplish this, the module located at C min initiates a message called FIND H MSG(id, d sent = d, w sent = w). This message serves to count the number of top neighbors along the -→ Z axis that meet conditions d ≥ d sent and w ≥ w sent (cf. Algorithm 6 lines 16-19).

Figure 5 .

 5 Figure 5.2 shows an example of overlapping boxes. It can be seen that the resultant boxes may differ according to the orientation of the coordinate axis. However, in both cases a) and b) the resultant boxes cover all the configuration. Moreover, having an overlapping box results in boxes that are completely inside a bigger one, such as the blue and purple in Figure 5.2 (a) and the yellow in Figure 5.2 (b). When multiple boxes must be stored, they can be aggregated by neglecting the boxes that are inside another one.
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 52 Figure 5.2: Three basic example: a) A basic shape defined by 5 boxes. b) The same shape but rotated producing 4 boxes. c) The same shape computed on VisibleSim.

Figure 5 . 3 :

 53 Figure 5.3: Four configurations examples captured from VisibleSim. (a) Cube configuration with 1000 BlinkyBlocks. (b) Ball configuration with radius 8 (833 BlinkyBlocks). (c) Mug configuration with 4019 BlinkyBlocks. (d) Thinker configuration with 5814 Blinky-Blocks.
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 54 Figure 5.4: Mean number of messages and mean number of bytes sent per module on the four configurations examples.

Figure 5 . 5 :

 55 Figure 5.5: Time for receiving the whole current shape by the root.

Figure 5 . 6 :

 56 Figure 5.6: Ratio between the number of modules and the number of boxes.
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  79

Figure 6 . 1 :

 61 Figure 6.1: Meta-module's anatomy. MML refers to a meta-module leader (cf. Section 6.4)

Figure 6 . 2 :

 62 Figure 6.2: Meta-modules structure in a 3D cubic lattice. a) ºSPARSEº meta-modules in the XZ plane. b) ºSPARSEº meta-modules in the YZ plane. c) ºFULLº meta-modules in the XZ plane. d) ºFULLº meta-modules in the YZ plane.

Figure 6 . 4 :

 64 Figure 6.4: Simulation snapshot during modules transportation (best viewed in color). The source at the right is dismantled to be built back at the top of the destination on the left.

Algorithm 7 :

 7 Distributed control algorithm for a FM Data: Operation: The operation in execution. Data: mvt it = 0: Iterator on Operation's movements. Msg Handler COORDINATE MSG(Op, it): Operation ← Op ; mvt it ← it ; rotateTo(Operation[mvt it].nextPosition) ; Event ROTATION END: if mvt it = Operation.size ∧ Operation.isAssemble then meta-module reached goal position; else if Operation.state = MOV ING then 10 mvt it ← mvt it + 1 ; 11 rotateTo(Operation[mvt it].nextPosition) ; else 13 if Operation.isDismantle ∧ Operation.state = IN POS IT ION then 14 send POSITION REACHED() to OPC ; Event REMOVE NEIGHBOR: if Operation.state = WAITING then // Bridge if all modules have passed then 18 mvt it ← mvt it + 1 ; 19 rotateTo(Operation[mvt it].nextPosition);
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 711 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Determination of Sources and Destinations . . . . . . . . . . . . 91 7.2.2 Finding Streamlines . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2.3 Modules Transportation . . . . . . . . . . . . . . . . . . . . . described a porous structure composed of meta-modules and shows how meta-modules can perform the operations: Assemble, Dismantle and Transfer in all directions to change the state of a cell of the 3D cubic lattice between ºEMPTYº, ºSPARSEº and ºFULLº.
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 71 Figure 7.1: GC agent's flow chart

Figure 7 . 2 :

 72 Figure 7.2: Two potential destinations for one empty goal position.

7. 3

 3 / COMPLEXITYAs presented in Section 7.2, the algorithm repeats M rounds, which consists of transporting modules along the streamlines. The value of M varies enormously in function of the initial, intermediate, and final shapes of the self-reconfiguration. It is mainly affected by the number of streamlines that can be established at each iteration.We consider that the duration of a basic motion can be mainly determined by time t m and that the duration of the whole self-reconfiguration is mainly due to the number of motions, which are much longer than the communication times.The longest stage is the motion of modules along the longest streamline of a round. The length of such a streamline can be majored by the diameter of the configuration divided by the diameter of a meta-module, we call d this dimension. Considering that the number of movements given from the stored Dismantle and Assemble operations can be majored by N 0 and that the number of movements applied for a Transfer operation can be majored by N 1 , we can express the number of basic motions performed to cross a streamline of length x by: N motions = 2 × N 0 + (x -1) × N 1 .The longest streamline being d long, we can majorize x by d, then we have: N motions < 2 × N 0 +(d -1) × N 1 . Therefore, the time complexity can be expressed as O (M N motions t m ).
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 73 Figure 7.3: Simulation snapshots for the 7 iterations during the reconfiguration of 48 meta-modules in an L shape to a C shape.

Figure 7 .

 7 [START_REF] Bassil | RePoSt: Distributed Self-Reconfiguration Algorithm for Modular Robots Based on Porous Structure[END_REF] shows snapshots of the simulation during the reconfiguration of an L shape made of 48 meta-modules placed in the XZ plane to a C shape in the YZ plane.The video1 shows in its second part a simulation of the reconfiguration of 270 ºSPARSEº meta-modules placed in a 3 layer square shape into a humanoid shape of size 267 metamodules. The additional 3 meta-modules in the initial shape are filled inside the structure during the last iterations.In its last part, the video shows the expansion of a 6 × 6 × 3 configuration with ºFULLº meta-modules at the bottom layer into a 6 × 6 × 4 configuration. All ºFULLº meta-modules1 Youtube video: https://youtu.be/9EIDp7Wv5iw are emptied and their filling modules are transported in parallel to form an additional layer of ºSPARSEº meta-modules at the top of the configuration in one iteration.
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 74 Figure 7.4: Motion parallelism and number of streamlines during the reconfiguration of 48 meta-modules from a L shape to a C shape.

Figure 7 .Figure 7 . 3 .

 773 Figure 7.4 shows the number of streamlines and the number of modules that move concurrently along the streamlines against time steps during the reconfiguration example in Figure 7.3. One time step corresponds to the time it takes a module to move from one position in the grid to an adjacent one. Each bell curve in the graph corresponds to an iteration. The number of streamlines and motions becomes null between two peaks, which corresponds to the time required for the first two steps of the algorithm: finding sources and destinations and determining the streamlines. It can be seen that it is negligible compared to the time required to transport the modules. The maximum number of concurrent motions corresponds to the size of the meta-module times the number of streamlines, meaning that all the modules of the dismantled source are moving at the same time. It reaches maximum in iterations 2 to 7. At iteration 1 it is less than the maximum because some modules have reached their goal position, while others have not yet started their movements.
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 751 Figure 7.5: Number of messages exchanged versus number of motions and simulation time versus the diameter of the system for the reconfiguration of an L shape to a C shape while varying the configuration sizes in {20,28, 36, 44, 52} meta-modules 

Figure 8 .

 8 Figure 8.1 shows the general flow of the algorithm. Given the initial and goal configurations, a global planner will perform a centralized computation that finds the flow paths of the modules from I \ G to G \ I in an initialization phase using a Max-Flow algorithm.

Figure 8 . 1 :

 81 Figure 8.1: The general flow of the algorithm.

Figure 8 . 2 :

 82 Figure 8.2: G = G ∪ I construction example. Nodes in R s are colored in red. Nodes in R d are colored in green.

Figure 8 . 3 :Algorithm 9 :

 839 Figure 8.3: The resultant flow after applying the max-flow algorithm.

  module flow. The longest distance that a module can travel is the diameter d G of G = G ∪ I where G is the goal configuration and I is the initial configuration. Modules can flow in parallel following concurrent paths of maximum length d G . Therefore, the time complexity can be expressed as O(d G ) = T 1 . It is interesting to compare this complexity with the complexity of the RePoSt algorithm, which was O(dN rounds ), where N rounds was the number of rounds necessary to achieve reconfiguration. In the worst case N M -1 rounds are required, where N M is the number of meta-modules. ASAPs performs the self-reconfiguration in a single round with an increase in motion parallelization, which takes less time to achieve the goal configuration. The message complexity of ASAPs is due to sending the flow values to their corresponding meta-modules and to the messages used during the flow control algorithm described in Section8.2.2. Sending the flow values can be done through a breadth-first spanning tree rooted at the central station that takes O(d C I N M ) messages where C I is the initial configuration. Each movement of each flowing module along the flowing path requires sending a fixed number of messages. Therefore, the flow of modules requires O(d G N m ) where N m is the number of modules. The message complexity of both steps can be expressed as O(d C I N M + d G N m ) = T 2 . 8.4/ SIMULATION AND RESULTS 8.4.1/ PRESENTATION OF THE EXPERIMENTS In order to evaluate the algorithm, we consider different initial and final configurations with several properties:
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 84 Figure 8.4: Three different self-reconfiguration scenarios, from the top to the bottom: L2C, Human and Hollow. Initial configurations are on the left and goal configuration on the right.

  Total number of time steps.

Figure 8 . 5 :

 85 Figure 8.5: Comparisons of the number of motions (a) and speed (b) of ASAPs and RePoSt algorithms for the 3 experimental shapes.

Figure 8 .

 8 Figure 8.5 compares the speed and the total number of motions of the self-reconfiguration process for the ASAPs algorithm and RePoSt presented in Chapter 7.
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 886 Figure 8.6 shows the number of module motions and the number of modules that are waiting per time step when executing RePoSt and ASAPs. A time step corresponds to the average time required for a 3D Catom rotation. The regular oscillations of the curve shown in Figure 8.6 (a), (b) and (c) for the RePoSt algorithm are evidence of the successive rounds of this algorithm; they regularly cause

2 Figure 8 . 7 :Figure 8 . 8 :

 28788 Figure 8.7: The result of paths generated by the max-flow on 3 configurations with different bottleneck sizes. R s nodes are in red and R d nodes are in green.

  part of a work that aims to achieve a programmable matter by an assembly of a large number of tiny robotic modules. Modules are interconnected and can communicate to coordinate the self-reconfiguration of the ensemble into a goal configuration. The objective of the proposed algorithms is to increase the efficiency of self-reconfiguration. Therefore, we proposed and implemented algorithms for sizeconstrained clustering, shape recognition, and self-reconfiguration.A fully distributed clustering algorithm (SC-Clust) which uses message passing to allow modules to cluster themselves into predefined size clusters is presented in Chapter 4.

9. 2

 2 .1/ GENERAL PERSPECTIVE Regarding self-reconfiguration, I hope that the development of 3D Catoms will soon produce operational hardware so that I can implement my algorithms and test their practicality in a real-world setting. I would like to investigate the potential faults that can occur on real hardware, such as incomplete rotation, communication failures, and other hardware dysfunctions. Subsequently, I aim to propose software solutions that effectively employ robustness in the face of these dysfunctions, minimizing the need for human intervention. Some noteworthy solutions have been proposed in related research: Makhoul and Bassil (2023) addresses communication errors, Bassil et al. (2022) focuses on handling communication failures caused by broken interfaces, and Hourany et al. (2022) presents a disconnection detection method. My goal is to propose additional solutions for motion failures, power failures, and other dysfunctions and apply them in practice to ensure the completeness of self-reconfiguration on real hardware.
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 91 Figure 9.1: On the left, the representation of the shape is using 5 elements. On the right, it shows how using a triangle can reduce the number of elements to 1.

  (a) A 2x2 cube without coating.(b) A 2x2 cube coated with special metamodules.

Figure 9 . 2 :

 92 Figure 9.2: Coating example using special meta-modules on the boundaries.
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  La mati ère programmable peut être utilis  ee pour cr  eer des objets qui peuvent être programm  es pour changer de forme etde propri  et  es physiques à la demande. L'une des fac Ëons d'impl  ementer la mati ère programmable est de la construire comme un robot modulaire auto-reconfigurable compos  e d'un grand ensemble de micro-robots simples attach  es les uns aux autres. Ces microrobots sont capables de communiquer avec leurs modules voisins directement connect  es et de modifier les interconnexions pour changer la forme globale du robot. Cette th èse aborde le d  efi de l'auto-reconfiguration dans les syst èmes robotiques modulaires, qui implique de r  eorganiser de mani ère autonome les modules pour atteindre une forme cible. Le probl ème d'auto-reconfiguration est difficile du fait du nombre tr ès  elev  e de configurations possibles, qui augmente de fac Ëon exponentielle avec le nombre de modules. Dans cette th èse, nous soutenons que des algorithmes d'autoreconfiguration rapide pour les robots modulaires à grande  echelle peuvent être obtenus en regroupant les modules. Un algorithme distribu  e à contraintes de taille est pr  esent  e pour former des clusters de tailles pr  ed  efinies, ainsi qu'une nouvelle structure poreuse compos  ee de m  eta-modules à deux  etats plac  es dans une maille r  eguli ère. Cette structure poreuse permet un d  eplacement simultan  e des modules à l'int  erieur de celle-ci. De plus, deux algorithmes d'auto-reconfiguration applicables sur la structure propos  ee sont introduits. La th èse pr  esente  egalement un algorithme de reconnaissance de forme distribu  ee pour d  etecter la forme actuelle de l'ensemble. Afin de valider les
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PROGRAMMABLE MATTER

Clustering in lattice-based modular robots In

  

	with communication limited to neighbor-to-neighbor.
	Clustering in wireless sensor networks Clustering for Wireless Sensor Network
	(WSN) and mobile ad-hoc networks is related to our problem in which sensors are
	grouped into clusters to achieve network scalability by creating a hierarchical structure.
	For each cluster, a Cluster Head (CH) plays significant roles, such as scheduling tasks
	and aggregating and relaying data generated by its cluster members, limiting inter-cluster
	communications to CHs only, thus reducing the communication load Afsar and Tayarani-
	N (2014). Many clustering algorithms have been proposed for WSN Xiangning and Yulin
	(2007); Mukherjee (2020); Bhola et al. (2020); Pietrabissa and Liberati (2019); Prorok
	et al. (2010) but they are not suitable for modular robots due to their specific constraints,
	which make them inapplicable on modular robots: wireless communication, existence of
	a base station, and pre-election of cluster heads.
	Bassil et al. (2020) we proposed a fully
	distributed and adapted version of the DCut algorithm originally proposed by Shao et
	al. (2018) Shao et al. (2018) in the context of modular robots. It takes into account the
	geometrical aspect of the ensemble and captures the density between adjacent modules
	locally using the Jaccard coefficient. The idea is to build a Density-Connected Tree (DCT)
	Clustering has been studied for robotic swarms. The pur-
	pose is to divide the swarm into clusters for pattern formation and for better problem-
	solving efficiency by dividing the problem into subproblems and assigning different tasks
	to each cluster. Mostly, existing methods are based on robot mobility directed by ex-
	ternal stimuli in the environment, so they are not suitable for modular robot-based pro-
	grammable matter, to cite a few Pinciroli et al. (2009); Hayes et al. (2003); Kazadi et al.
	(2004); Wahby et al. (2019). Other methods based on token clustering were proposed. In
	Di Caro et al. (2012), a fully distributed algorithm based on consensus and load balancing
	is proposed to partition robots with wireless communication into two spatially separated
	clusters. Then it was extended in Bulla Cruz et al. (2017) to spatially partition the set
	of robots into multiple clusters. However, the experimental results show that the time
	required for convergence is high for a small number of robots and a small number of clus-
	ters. The experiments showed that it can take minutes to cluster 20 robots into 4 classes.
	The convergence time is expected to increase immensely for large-scale modular robots

Table 2 .

 2 1: Comparative table of existing clustering methods.

	Contribution

Distributed Methods Rahimian et al. (2015); Adoni et al. (2020b) ✓ ✓ × SWARM clustering Bulla Cruz et al.

Table 3 .

 3 2: Modular robot simulators comparison.There are many existing robot simulators available[START_REF] Collins | [END_REF], each with different features and capabilities. Table3.2 shows a list of simulators that can be used for modular robots. Some of the most popular are Gazebo simulator[START_REF] Koenig | Andrew: ªDesign and use paradigms for gazebo, an open-source multi-robot simulatorº[END_REF],

	Simulators Characteristics		Open source	Last Activity
	Gazebo CoppeliaSim Webots	General purpose physics simulation for mobile robots	yes no yes	Up to date
	ARGos	Heterogeneous swarm robots	yes	Up to date
	Rebots	GUI	Drag-and-drop,	Physics-	yes	Up to date
		based,	Roombots,	Superbot,	
		Smores			
	USSR	Physics-based, ATRON, M-TRAN,	yes	2012
		Odin				
	DPRSim	Physics-based, Claytronics	yes	Discontinued
	VisibleSim	Behavioral,	large-scale lattice-	yes	Up to date
		based modular robots		

There are many simulators specific for modular robots, such as Rebots

[START_REF] Collins | ªRebots: A drag-anddrop highperformance simulator for modular and self-reconfigurable robotsº[END_REF]

, a physics-based simulator that allows user interactions via drag and drop GUI. It supports multiple modular robots with multiple architectures, such as Roombots Spr È owitz et al. (2010), Superbot Salemi et al. (2006), Smores Liu et al. (2023) and can be extended to support new modules. USSR Christensen et al. (2008) is another general-purpose simulator for modular robots that supports multiple modules such as M-TRAN Kurokawa et al. (2008), Atron éstergaard et al. (2006) and Odin Lyder et al. (2008). DPRSim Ashley-Rollman et al. (2011) is a simulator developed under the Claytronics project. It has a physics engine and supports simulations with millions of 2D and 3D Catoms in the purpose of performance evaluation of distributed algorithms and to visualize the complex behavior of these tiny modules. It also integrates advanced debugging, visualization, and tracing features. However, its development has been discontinued. VisibleSim Thalamy et al. (2021b) is a simulator developed in the Programmable Matter project specific to lattice-based modular robots. It does not include a physics engine, which can be prohibitive when simulating a large number of modules that can scale up to 32 million. It is a behavioral simulator that allows its users to fundamentally study the distributed control algorithms of a large ensemble of modules in a perfect environment and visualize the complex behaviors of the modules that execute parallel actions. It supports all modules developed under the Programmable Matter project (see Section 1.4).

  validated the SC-Clust algorithm on real robotic systems called BlinkyBlock . The

							Number of Additional Cuts
						Random Shape							Cubic Shape
	additional cuts	5 10 15									additional cuts	5 10			
		0	650	1500	2500	5000	8500 nb of modules 10000 13000 15000 Mug Shape	20000	25000	30000		0	629	1400	2817 Humanoid Shape 4725 7225 11200 15488 nb of modules	21042	29531
	additional cuts	5 10									additional cuts	5 10 15			
		0	1053	2484	5116 nb of modules 8585 13526 25% in each cluster 20760 31099 10% 20% 30% 40%	738 10% in each cluster 1378 2344 3906 0 nb of modules 5634 8291 11493 14787 4x5% 3x10% 2x15% 1x20%	19157	24717	30023
			video 1 shows 6 different experiments on 144 real BlinkyBlock consisting of subdividing
			3 different shapes (a square, a cube and a double F shape) into 4 clusters. For each
			shape, we run the code one time to create clusters with the same number of BlinkyBlock
			and another time to create heterogeneous clusters with 10 %, 20 %, 30 % and 40 % of the
			set.												

Table 6 .

 6 2: Number of movements per operation

	Operation	Direction	Nb of Movements
	Assemble (ºSPARSEº) Up/Down	41
	Assemble (ºSPARSEº) Right/Left	59
	Assemble (ºSPARSEº) Back/Front	64
	Assemble (ºFULLº)	Up/Down	72
	Assemble (ºFULLº)	Right/Left	78
	Assemble (ºFULLº)	Back/Front	91
	Transfer	Up/Down	50
	Transfer	Right/Left	60
	Transfer	Back/Front	44
			Total: 559

ªFault-Tolerance Mechanism for Self-Reconfiguration of Modular Robotsº. In

  In 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE, may 2015, pages 1919±1924. ± URL http://ieeexplore.ieee.org/ document/7139449/. ± ISBN 978-1-4799-6923-4. DOI: 10.1109/ICRA.2015.7139449

	[Assaker et al. 2022]	ASSAKER, Joseph ; MAKHOUL, Abdallah ; BOURGEOIS, Julien ;
	PIRANDA, Benoît ; DEMERJIAN, Jacques: ªA Dynamic ID Assignment Approach for
	Modular Robotsº. In Advanced Information Networking and Applications: Proceed-
	ings of the 36th International Conference on Advanced Information Networking and
	Applications (AINA-2022), Volume 1 Springer (event), 2022, pages 91±104
	[Baca et al. 2015]	BACA, Jose ; WOOSLEY, Bradley ; DASGUPTA, Prithviraj ; NEL-
	SON, Carl:	ªReal-time distributed configuration discovery of modular self-
	reconfigurable robotsº.

[Bassil et al. 2020] BASSIL, Jad ; MOUSSA, Mouhamad ; MAKHOUL, Abdallah ; PI-RANDA, Benoit ; BOURGEOIS, Julien: ªLinear Distributed Clustering Algorithm for Modular Robots Based Programmable Matterº. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020 [Bassil et al. 2021a] BASSIL, Jad ; PIRANDA, Benoît ; MAKHOUL, Abdallah ; BOUR-GEOIS, Julien: ªEnhanced Precision Time Synchronization for Modular Robotsº. In 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA) IEEE (event), 2021, pages 1±5 [Bassil et al. 2021b] BASSIL, Jad ; PIRANDA, Benoît ; MAKHOUL, Abdallah ; BOUR-GEOIS, Julien: ªEnhanced Precision Time Synchronization for Modular Robotsº. In 2021 IEEE 20th International Symposium on Network Computing and Applications (NCA), 2021, pages 1±5. DOI: 10.1109/NCA53618.2021.9685103 [Bassil et al. 2022] BASSIL, Jad ; TANNOURY, Perla ; PIRANDA, Benoît ; MAKHOUL, Abdallah ; BOURGEOIS, Julien: 2022 International Wireless Communications and Mobile Computing (IWCMC) IEEE (event), 2022, pages 360±365 [Berenger et al. 2018] BERENGER, Cedric ; NIEBERT, Peter ; PERROT, Kevin:

ªBal- anced connected partitioning of unweighted grid graphsº.

  In Leibniz International Proceedings in Informatics, LIPIcs Volume 117, 2018. ± ISBN 9783959770866. DOI: 10.4230/LIPIcs.MFCS.2018.39

Phigi: https://www.phigi.io/

VisibleSim git repository: https://github.com/ProgrammableMatterProject/VisibleSim

YouTube video: https://youtu.be/niYHGoqWbQs

Youtube video: https://youtu.be/Kqick3Am-Q8
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Contribution In Bassil et al. (2022), we provided a fault tolerance mechanism to deal with communication failures caused by a broken interface between two connected modules executing the self-reconfiguration algorithm proposed in Thalamy et al. (2021a) where the modules continuously flow upward from a reserve of modules placed below the scene to build a scaffold of an object. During their motion, the modules exchange messages to coordinate their motions in the objective to keep enough space between two following modules to avoid blocking and collisions. A single communication failure can interrupt the flow and results in an incomplete scaffold construction. Our solution consists of using a helper module that serves as a communication bridge between two adjacent modules attached by a broken interface as shown in Figure 2.3.

2.6/ CONCLUSION

The chapter presents the challenges addressed in this thesis. They include selfreconfiguration, clustering, time synchronization, and fault-tolerance. Moreover, it presents existing work for each challenge and highlights my contribution to each of these challenges. Overall, by summing the complexities of the three phases, the communication complexity 

one module. The left, right, front, and back adjacent meta-modules in the XY plane have the positions of their modules flipped vertically if (X + Y)%2 = 1 and the top and bottom adjacent meta-modules in the XZ plane are attached to the front or the back of the two top or the two bottom modules according to the -→ Z axis to preserve structure symmetry.

The structure is designed to make module transportation easier. An ºEMPTYº cell and a ºSPARSEº meta-module with a complete neighborhood are never blocked, which means that they can freely receive or release modules from any direction. In a ºSPARSEº metamodule, at least one module is always free to move, allowing the meta-module to be disassembled and its modules to be transported in any direction. Furthermore, an ºEMPTYº cell can receive modules from any direction and connect to its neighboring meta-modules without obstruction. This allows the lattice structure to be assembled and disassembled with ease without the need to rearrange other modules or cells. This feature allows the indicates the number of modules to be routed by meta-module u to meta-module v.

Each meta-module must know the flow value towards its neighbor meta-modules. These values must be sent from the central station to all meta-modules. This can be done at an initialization phase through tree-based broadcasts starting from a root module wired to the central station. Property 2 . The total length in terms of hop distance of the paths connecting the supply nodes to the demand nodes is minimized.

The Edmonds-Karp algorithm finds the shortest possible augmenting path using a breadth-first search. The length of the paths found at each iteration increases monotonically. Therefore, the total length of the path set is minimized. This is an important property, as minimizing the distance traveled reduces the number of commands required for the modules. Therefore, the total energy consumed during self-reconfiguration is also reduced.

Property 3 . No two paths connecting supply nodes to demand nodes share a common edge with opposite directions, which may cause a head-on collision.

Having two paths in the resultant flow with two edges with opposite directions connecting the same two nodes contradicts property 2. This is because switching the destinations on those paths will reduce the total length.

8.2.2/ DISTRIBUTED FLOW CONTROL ALGORITHM

Once the flow values on connections between neighbor meta-modules are received, the modules can start to flow from the supply regions to the demand regions. To do so, the meta-modules executes the operations set according to the flow values and their directions.