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PROGRAMMABLE MATTER

F
rom the dawn of human history, we have been creating and manipulating matter

to suit our changing needs and facilitate our daily life. From the prehistoric stone

tools of our ancestors to modern materials and technologies, we continuously push the

boundaries of what is feasible. We have developed new technologies over the ages to

harness the power of nature and turn raw materials into useful objects that evolve over

time to satisfy our evolving needs and desires.

Early humans used stone as a tool to grind, scrape, and cut. Then the agricultural rev-

olution and the domestication of animals led to the creation of more sophisticated tools,

such as plows, wagons, and other farming tools. As societies became more complex, we

came up with new innovations and technologies such as the printing press, telegraphs,

and steam engines, which sparked the industrial revolution accompanied by the mass

manufacturing of products. During this period, new innovations such as plastic and syn-

thetic fibers enhanced our ability to create more innovative objects.

Today, advanced electronics and robotics have remarkably accelerated technological

progress and revolutionized how we live and work. The spread of 3D printing in recent

years has given everyone the ability to instantly create custom complex objects, which

was impracticable and prohibitively expensive with traditional manufacturing methods.

3D printed objects are now present in many fields, from fashion accessories to medical

implants and spare parts or tools in space. In addition, virtual reality and augmented re-

ality allow the creation of virtual objects that have a sense of presence, allowing users to

interact with them as if they were real, which enhanced our immersion in the digital world.

Unlike real 3D printed objects, virtual objects can be easily modified and adjusted. They

can be replicated with different shapes and sizes, and they allow for collaboration where

multiple people, at different locations, can work on the same virtual object simultaneously.

1
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Programmable Matter (PM) represents the next step in the evolution of object creation

that bridges the gap between a digital representation of an object and the physical world.

It allows the creation of tangible shape-shifting objects that can be reshaped at will and

change their functionality to accommodate different tasks or to adapt to their environment.

Unlike virtual objects, objects formed from PM can persist. They have mass, can be

touched, interacted with, and used as a tool while sharing the interactivity, adaptability,

flexibility, and replicability with virtual objects. This has the potential to revolutionize many

areas of science and engineering, from medicine and manufacturing to entertainment and

architecture.

Various technologies have been studied to achieve PM such as 4D printing Ahmed et al.

(2021), folding structure Hawkes et al. (2010), and DNA structures Kim et al. (2011b). A

particularly promising technology is based on Modular Self-Reconfigurable Robot (MSR),

which involves creating robotic modules that can assemble themselves into complex

structures and then rearrange the connections of the modules to morph into different

shapes. Unlike the atoms of real matter that are strongly linked to each other, the mod-

ules that form an MSR have displacement capabilities that allow matter to be reshaped by

local movements. This technology has gained significant attention, having been popular-

ized by the Claytronics project Goldstein and Mowry (2004) and is now being furthered

by research at FEMTO-ST Bourgeois et al. (2016a). Its main objective is to create 3D

interactive synthetic objects that bridge the gap between virtual and augmenting reality

and the physical world.

MSRs have interesting properties that make them suitable for achieving programmable

matter. This includes programmability, evolutivity, and autonomy. The ensemble forms

a distributed system where each module has computational and communication capa-

bilities, so they can be programmed to cooperate to achieve a common goal, such as

rearranging their connections to change the whole structure. They possess the ability to

alter their shape using motion and docking actions and can be controlled externally by a

computer or run autonomously executing a distributed program.

Figure 1: An example of self-reconfiguration of an object made with tiny spherical mod-

ules. a) the initial mug shape. b) an intermediary configuration. c) the goal plate shape.

Self-reconfiguration is the process that an MSR performs to transform itself from an initial
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configuration to a goal one. Reconfiguration speed is crucial, especially for applications

that require real-time interactions with the matter. An example of self-reconfiguration

is shown in Figure 1 where a mug made of tiny spherical modules is reconfigured into

a plate. Planning for self-reconfiguration is a challenging process. It has been shown

in Hou and Shen (2014), that optimal self-reconfiguration planning is NP-complete for

chain-type MSR. The exploration space between two random configurations increases

exponentially with the number of modules: It has been shown in Park et al. (2008) that

the number of unique possible configurations is (c×w)n where n is the number of modules,

c the number of possible connections per module, and w the different ways of connecting

the modules. We expect to have ensembles made of thousands or even millions of micro-

scale modules to build objects with high resolution, which compounds the complexity of

the problem. Additionally, distributed coordination of a large number of concurrent mobile

modules while avoiding collisions and blocking is also challenging.

Clustering the modules can help mitigate the complexity of self-reconfiguration. By group-

ing the modules together, it may be possible to exploit the parallelism of motion where

modules within a cluster can move independently and in parallel to achieve the desired

configuration. This can improve the speed and efficiency of the self-reconfiguration pro-

cess as multiple clusters can work concurrently to achieve the goal configuration. Paral-

lelism of motions is particularly beneficial for large-scale ensembles, where the number

of modules and the complexity of the problem can make it difficult to achieve real-time

self-reconfiguration without parallelizing the motion of the modules.

CONTRIBUTION

The goal of this thesis is to develop distributed algorithms that can improve the efficiency

of self-reconfiguration in terms of both energy and time. In light of this objective, the

central research question is: What is the most efficient way to reconfigure an MSR from

a starting shape I to a goal shape G? In response to this question, this work presents

two key contributions that aim to address the challenge.

The first involves using a clustering algorithm with a constraint on the size of each cluster

to reduce the search space for self-reconfiguration planning and enhance parallelization

by allowing each cluster to reconfigure in parallel. It consists of building a spanning tree

and then cutting it into branches to form the clusters. Another method consists of cluster-

ing modules into cubic-shaped clusters whose union forms a representation of the current

shape. Recognizing the current shape is useful as input to a self-configuration planner or

to efficiently report the shape to an external computer connected to the ensemble.

The second involves constructing the object using a porous structure that contains
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enough empty space to allow for a concurrent flow of modules inside it. The porous

structure also doubles as a storage space for modules within its empty volume, which

relaxes the constraint of requiring the same number of modules in the initial and goal

configurations. To create this structure, we use meta-modules, which are small clusters

of modules locked together in a regular lattice pattern. Two self-reconfiguration algorithms

are proposed for this structure: RePoSt and ASAPs. RePoSt is a round-based fully dis-

tributed algorithm where in each round a set of disjoint paths are determined to guide

modules’ flow towards their goal positions. ASAPs follows a hybrid approach where an

initial centralized planner calculates all the flowing paths to reach the goal configuration

and then the modules flow asynchronously in a single round to reach their goal position.

OUTLINE

The organization of this thesis is divided into four main parts. The first part sets the

context and state-of-the-art, which is covered in three chapters. Chapter 1 provides an

introduction to modular robot-based programmable matter and its potential applications.

Chapter 2 discusses the software challenges tackled during this thesis, as well as the

state-of-the-art and recent advances. The third chapter 3 presents the experimentation

and simulation tools used in this work.

The second part of the thesis focuses on clustering algorithms and is composed of two

chapters. The first chapter 4 presents a Size-Constrained Clustering (SC-Clust) algo-

rithm. The second chapter 5 proposes a distributed shape recognition algorithm.

The third part of the thesis is dedicated to self-reconfiguration and consists of three chap-

ters. The first chapter 6 presents the proposed porous structure. The second chapter 7

presents RePoSt : a fully distributed self-reconfiguration algorithm for the porous struc-

ture. The third chapter 8 presents ASAPs: a hybrid self-reconfiguration algorithm, which

combines centralized and distributed approaches to achieve faster and more efficient re-

configuration.

Finally, Chapter 9 offers a summary and a discussion of possible avenues for future re-

search.
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MODULAR ROBOT-BASED

PROGRAMMABLE MATTER
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1.1/ INTRODUCTION

A
Modular Self-Reconfigurable Robot (MSR) is a robot composed of an ensemble of

interchangeable, autonomous, and communicating robotic modules. It can be used

to achieve a Programmable Matter (PM) where each module of the MSRs can be thought

of as the building block of such a matter. Furthermore, the modules that form the MSR

have displacement capabilities that allow, by local movements, the rearrangement of the

modules’ connections in order for the matter to self-organize in response to an exter-

nal stimulus or user input. The modules’ embedded computation, their communication

and motion capabilities offer programmability, reconfigurability, and interacivity, provide

essential features for a programmable matter. Programmbality enables the modules to

be programmed and reprogrammed to adapt to various tasks and requirements. Recon-

figurability gives the modules the ability to move and change their interconnections to be

arranged and rearranged as needed allowing for flexible configurations. And, interactivity

allows the user to interact with the modular robot by manipulating the modules.

This chapter provides a contextual overview of modular robotic systems for building PM.

It is organized into several sections that cover different aspects of the topic. In Sec-

tion 1.2, we discuss the various applications of these systems. Section 1.3 presents the

7



8 CHAPTER 1. MODULAR ROBOT-BASED PROGRAMMABLE MATTER

Figure 1.1: An illustration of a system where a PM composed of a large number of

tiny spherical modules is used to replicate the object designed using the CAD software

(from Bourgeois et al. (2016b)). The object is then manually manipulated and the virtual

version reflects the changes and remains consistent with the physical object.

PM project, which is the context under which this thesis is conducted. Finally, in Sec-

tion 1.4, we provide an overview of the existing modular robotic hardware.

1.2/ PRACTICAL APPLICATIONS

In this section, we provide some examples of potential applications of programmable

matter based on MSRs.

Interactive CAD Design Programmable matter can be used to enhance the computer-

aided design process. The idea is to connect the matter in real time to a computer running

a Computer-aided design (CAD) software. Using the CAD software, a shape is described

and then transmitted to the matter. On reception, the matter will reconfigure itself into

the given shape autonomously, or by responding to physical user interaction. These

transformations in physical matter are reflected by the digital object in the CAD software,

creating an interactive design tool, as shown in Figure 1.1.

Multi Purpose Objects Multi-purpose objects can be developed using modular robotic

programmable matter to create objects that can change shape, size, and functionality to

perform a variety of tasks, reducing the need for multiple specialized tools. In space,

volume and weight constraints are critical factors, as spacecraft and habitats have limited

space for equipment and tools. To overcome this constraint, multi-purpose objects can
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Figure 1.2: The Programmable Matter consortium.

be used.

Flexible Tangible Interfaces PM can be used to create shape-changing Tangible User

Interface (TUI) that combine the flexibility of graphical user interfaces and the tangibility of

physical ones Pruszko et al. (2021). For example, it can be used to create a personalized

control panel that can be dynamically reconfigured to adapt to the task at hand or to

support different applications.

Art and Design Programmable matter offers new possibilities for artists and designers

to create interactive and dynamic sculptures, or immersive environments that can trans-

form or respond to viewer interaction. An illustrative instance is reactive matter Reac-

tiveMatter that constructs interactive sculptures capable of responding to viewers’ touch

and sound input, resulting in diverse sound patterns, rhythms, and fluctuations in light

intensity.

1.3/ PROGRAMMABLE MATTER PROJECT

This thesis is part of the Programmable Matter (PM) project. I became acquainted with

this project during my master 2 in ºInternet of Thingsº at the University of Bourgogne

Franche-ComtÂe. During my Master’s internship, I joined FEMTO-ST to start working

on developing clustering algorithms specifically designed for large-scale modular robots
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where I proposed DCut Bassil et al. (2020): an algorithm that creates clusters by cutting

branches of a spanning tree. Encouraged by my internship results, I started my PhD

thesis to further advance my research.

The Programmable Matter (PM) project is a continuation of the Claytronics project (now

discontinued) Goldstein and Mowry (2004) that started at Carnegie Mellon University

with the vision to build 3D programmable matter using nanoscale robots called Catoms

(Claytronic Atom). Today, FEMTO-ST leads a consortium of academic and industrial part-

ners with a wide range of expertise that are working to bring the vision of PM to reality.

The current partners in the consortium are shown in 1.2. On the hardware level, efforts

are being made in the fields of micro-electro-mechanical systems and electrical engineer-

ing to design and develop reliable millimeter-scale robotic modules. On the software level,

where this thesis fits, the focus is on developing an algorithmic foundation for MSR based

Programmable Matter to solve problems such as: self-reconfiguration to transform the

shape of modular robot, time synchronization to compensate for the skew of modules in-

ternal clocks, shape representations to find an efficient encoding of a geometrical shape,

leader election to break the symmetry by electing one of the modules to be the leader of

the ensemble, etc. and to better understand the capability and complexity of PM systems

on the theoretical level.

1.4/ EXISTING MODULAR ROBOTIC SYSTEMS

MSRs differ from classic robots in their ability to change their physical structure and func-

tionality by adding, removing, or reconfiguring modules. Classic monolithic robots, on the

other hand, have a fixed structure and functionality that is pre-determined and cannot

be altered without significant re-engineering. Modular robots have a higher degree of

versatility and flexibility in their design and functionality.

An exhaustive overview of existing MSR systems can be found in the surveys Dokuyucu

and ÈOzmen (2022); Chennareddy et al. (2017); Yim et al. (2007). Modular robots can

be classified into multiple types of structural formation. Chain-type formation consists

of modules arranged in a tree-like fashion. They are able to perform locomotion gait

on rough terrains. In a lattice-type formation, the modules reside in a regular 2D or 3D

lattice structure. Some modular robots exhibit a combination of chain-type and lattice-

type formations; combining the characteristics of both types, they form the hybrid-type.

Some of the existing hardware with different formation types are shown in Figure 1.3. In

addition, some modular robotic systems have mobile architectures where modules are

free to move in their environment and can dock with each other to form a chain or/and

a lattice structural formation. Their mobility can be achieved through self-locomotion, as

demonstrated in Parrott et al. (2018); Liu et al. (2023), or by being propelled through
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(a) Chain-type modular robots.

A) PolyBot Yim et al. (2000). B) Conro Castano et al. (2000). C) ChainForm Nakagaki et al. (2016)

(b) Lattice-type modular robots.

A) Atron éstergaard et al. (2006). B) Miche Gilpin et al. (2008). C) 3D M-Blocks Romanishin
et al. (2015)

(c) Hybrid-type modular robots.

A) Mtran III Kurokawa et al. (2008). B) Superbot Salemi et al. (2006). C) Roombots SprÈowitz et al.
(2010)

Figure 1.3: Hardware examples with different modular robotic formation.

external forces from their environment, as exemplified in White et al. (2005); Haghighat

et al. (2015).

Furthermore, modular robotic systems differ in their communication model. They either

use a neighbor-to-neighbor communication model or a global one in which all modules

can communicate with each other via a global bus. They also differ in their geometri-

cal properties, such as their shape (spherical, cubic, triangular) and size, their coupling
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mechanism Saab et al. (2019) (magnetic, mechanical, and electrostatic), and their actu-

ating and sensing capabilities. A MSR is homogeneous if all its modules are identical and

autonomous. Otherwise, it is specified as heterogeneous. The complexity of coordinat-

ing these modular robotic systems is affected by all the hardware parameters mentioned

above.

The following are the hardware properties of the MSRs considered in this work to achieve

PM:

• Lattice-based Structure: Lattice-type modular robots are more suitable for cre-

ating programmable matter, as they allow more flexibility to approximate a given

shape. In addition, modules are assigned a cell position with a unique coordinate

value that a planner can exploit for efficient self-reconfiguration. A network charac-

terization of lattice-based MSR can be found in Naz et al. (2018a).

• Geometry: Different module shapes allow for different numbers of actuators and

neighbors’ dispositions around a module which gives it a local knowledge about

its neighborhood. The number of neighbors corresponds to the degree of the in-

terconnections graph; a larger degree gives access to more information in fewer

communication hops. This can potentially improve the efficiency of algorithms by

reducing the number of steps required to exchange information. Also, the geometry

of the surface affects the motion capabilities. For example, translation on square

surfaces is easier, while rotation on rounded surfaces is easier. Furthermore, the

resolution of a programmable matter object is strongly affected by the geometry of

the modules. Smaller modules can allow the creation of objects with higher reso-

lution and more intricate features, thus creating programmable matter objects with

greater fidelity to their counterparts. So, we envision building a programmable mat-

ter object with a large number of tiny modules.

• Neighbor-to-neighbor communication: Communication between modules is es-

sential as it allows information exchange and distributed computation to plan and

coordinate global tasks. An MSR based Programmable Matter can be made up of

thousands of tiny communicating modules. Therefore, the use of a global commu-

nication model where all modules communicate through a global communication

medium is limited in terms of scalability and packet collisions. In addition, using

wireless communication can be problematic on a micro-scale due to interference.

Therefore, we consider local neighbor-to-neighbor communication.

• Homogeneous modules: Homogeneous MSR are made of identical modules,

allowing low-cost mass production and easy replacement. They are simple to scale

in size by adding more modules. And they can reduce the complexity and compu-

tational cost of finding feasible configurations due to the fact that all modules can
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interchangeably change their positions. Consequently, a self-reconfiguration plan-

ner does not need to account for the constraint of having a specific module type in

a particular position.

• Limited resources: Modules are usually small electronic devices that have limited

capabilities, such as insufficient computing power and memory capacity. In addi-

tion, they have limited energy resources. They can be powered through an external

source or by utilizing energy harvesting techniques from their environment, such as

ambient light or electromagnetic sources. Optimizing energy consumption, employ-

ing energy-efficient algorithms and distributed power management techniques are

essential for the functionality of the MSR.

Figure 1.4: Modular Robotic systems developed as part of the Programmable Matter

Project. A) 2D Catom. B) BlinkyBlock . C) 3D Catom. D) Datom.

The following are the MSR systems developed as part of the Programmable Matter project

and are shown in Figure 1.4:

• 2D Catoms Kirby et al. (2007): are cylindrical millimeter-scale modules of 6 mm long

and 1 mm diameter. These real tiny robots move by rolling on their fixed neighbors in

a clockwise or counter-clockwise direction by activating electrodes on their surface.

They are organized in an hexagonal lattice.

• BlinkyBlocks Kirby et al. (2011): are 4 cm cubic robots organized in a cubic-lattice.

They connect to up to six neighbors using magnets. They communicate with their

directly attached neighbors using serial connections. They can be docked and

undocked manually. The second version developed in the Programmable Matter

consortium is equipped with LED light and acoustic actuators, so modules can be

programmed to change colors and emit sounds. They are mainly used to create

interactive art, education, and research on distributed systems.

• 3D Catoms Piranda and Bourgeois (2018): are millimeter-scale quasi-spherical

modules placed in a Face-Centered Cubic (FCC) lattice. They use electrostatic

forces to latch on and move around their neighbors. They can communicate with

their neighbors through their latching interfaces. 3D Catoms do not yet exist in num-

bers and are being developed by actors in the PM consortium. The startup Phigi 1

1 Phigi: https://www.phigi.io/

https://www.phigi.io/
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is focused on the industrialization of 3D Catoms.

• Datoms Piranda and Bourgeois (2022): are deformable modules that resemble the

3D Catoms in their geometry and communication model. A Datom is able to deform

by compressing one of its sides to facilitate the modules’ motions by giving space for

other modules in its neighborhood to move. Although it is still a theoretical model

that requires further study to implement, it can be a leap forward in reducing the

complexity of self-reconfiguration planning by relaxing motion constraints.

1.5/ CONCLUSION

This chapter introduced programmable matter based on modular robots and explored

its potential applications. Additionally, it discusses the hardware characteristics of these

modular robot systems, highlighting their key properties. Moreover, we presented the

modules developed within the programmable matter project, providing insight into their

design and functionality.

With the exception of BlinkyBlock , existing hardware models remain theoretical, and op-

erating modules with motion capabilities are not yet available in quantity. As a result, the

validation of self-reconfiguration algorithms on a real large scale MSR is currently not

feasible. However, BlinkyBlocks are accessible and can be utilized to validate algorithms

that do not rely on motion.

The inaccessibility of hardware makes it difficult to show the effectiveness of our proposed

algorithms in real-world scenarios or even to create an accurate physical model in simula-

tion. Therefore, the work conducted during this thesis was validated on real BlinkyBlocks

whenever possible. Regarding self-reconfiguration, we use the behavioral simulation of

3D Catoms to assess performance and visualize their behavior in a physically uncon-

strained simulated environment. The experimentation and simulation environment under

which this work is conducted is detailed in Chapter 3.
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2.1/ INTRODUCTION

T
o make Programmable Matter (PM) a reality, challenges must be overcome at the

hardware and software levels. At the hardware level, miniaturizing components to

create small, lightweight modules that can connect, compute and communicate reliably

is a crucial task. Additionally, the development of reliable actuators is crucial. While

electro-mechanical actuators can be effective on larger scales, electrostatic actuators are

better suited on smaller scales due to their compact size, low power consumption, micro-

fabrication compatibility, and high precision and control.

Power transfer and management is also essential, as each module may require a power

source to operate. It might also need a power storage that keeps modules operating when

moving, which contributes to the module’s weight and consequently increases the energy

demand for movement.

The mechanical stability and durability of the module connections in addition to motion

actuation need to be addressed. For instance, the electrostatic actuation of 3D Catoms

15
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requires a sequence of repulsing/attachement/detachements which is error-prone and

can cause the disconnection of a module. Therefore, the development of Datoms aims

to maintain a linked connection between the moving module and its pivot. Finally, cost-

effective manufacturing and assembly techniques are necessary to produce these robots

at scale. Due to their tiny scale, it is difficult to manipulate the components by hand,

hence the need of a special machine for the assembly of the micro components using

micro-clamps and cameras to align the components with micrometer precision.

Furthermore, significant challenges must also be addressed at the software level. One

of the most important aspects is the development of non-complex distributed algorithms

and control systems that enable efficient and autonomous operation of modular robots.

These algorithms should support distributed decision making to allow individual modules

to make intelligent decisions and take actions while cooperating with other modules. Ex-

ploring and addressing algorithmic challenges that cover leader selection, localization,

fault tolerance, self-reconfiguration, self-assembly, clustering, and similar problems are

imperative areas of research.

The difficulty of distributed programming lies in the locality of information, hence the need

to exchange data to accomplish a global behavior. The emergence of this behavior is

based on the processing of the exchanged data. Therefore, when the goal is to achieve

a complex behavior, the code can quickly become complex and convoluted, making it dif-

ficult to understand and maintain. The system can be modeled as a multi-agent system

where each agent represents a module’s role with its own knowledge and goals. This pro-

vides a higher level of abstraction and allows us to design and reason about the system’s

behavior at a conceptual level.

In this chapter, the software challenges that were tackled during the three years of the

thesis are presented in the following sections. While most of the work focused on self-

reconfiguration and clustering, which are the main topic of this manuscript, other chal-

lenges such as fault tolerance, time synchronization, and shape recognition were tackled

and solutions were proposed. The following sections of this chapter detail each of these

challenges.

2.2/ SELF-RECONFIGURATION

Self-reconfiguration is the main and most crucial task of MSR. It aims to transform the

initial shape of a modular robot into a given goal shape using communication-coordinated

motions.

The difficulty of the self-reconfiguration problem lies in the properties of a limited memory

space and the locality of the information. In fact, because of their compact size, individual
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modules or particles have very low computational and energetic resources. Furthermore,

due to the locality of information, a module does not have the information about the global

configuration and state of the modular robot system, and then it cannot take decisions

individually. Moreover, having mobile and connected robots is insufficient to obtain self-

reconfigurable programmable matter. If we consider that robots initially build a shape I

and must at the end self-reorganize to build a goal shape G, a subset of these robots has

to move while avoiding collisions and maintaining the connectivity of the assembly. As a

result, the graph representing the interconnections, which defines the network neighbor-

hood and physical connections, becomes dynamic in both space and time. In addition,

planning self-reconfiguration is a very complex problem. It has been shown to be NP-

complete for chain-type modular robots Hou and Shen (2014). Optimal solutions are

impossible to find because the number of possible configurations increases exponentially

as the size of the system (number of modules) increases Bourgeois et al. (2016a) and we

expect the matter to be made up of thousands or even millions of tiny modules.

The self-reconfiguration time, that is, the time required to transform an initial shape into

a goal shape, is an important parameter that must be optimized. A self-reconfiguring

solution that uses sequential movements to achieve a target shape simplifies planning by

eliminating potential problems, such as dealing with deadlocks and collision uncertainties,

such as in Hourany et al. (2021); Fitch et al. (2003). However, sequential motions are

highly restrictive in medium to large self-reconfiguring modular robots, as they tend to

significantly lengthen the duration of the reconfiguration process. I propose utilizing two

main optimizations to reduce the complexity of this problem, they consist of reducing the

distance traveled by the modules and permitting the simultaneous (parallel) displacement

of a large number of modules in the system while avoiding collisions.

2.2.1/ SELF-RECONFIGURATION ALGORITHMS

Self-reconfiguration consists of performing module-level movements to change an initial

configuration into a goal one. The authors in Thalamy et al. (2019); Ahmadzadeh and

Masehian (2015); Dokuyucu and ÈOzmen (2022) provide surveys on self-reconfiguration

algorithms. Algorithms differ in their control properties; they can be centralized or dis-

tributed, synchronous or asynchronous, and deterministic or stochastic. They are also

hardware-dependent or generic.

Movements through the internal volume of the robot allow for a higher degree of paral-

lelism and require a smaller number of movements to reach the goal configuration ac-

cording to Rus and Vona (2001). Internal movements can be achieved using tunneling

or/and scaffolding.

Many tunneling-based reconfiguration algorithms that use meta-modules have been pro-
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posed in the literature Vassilvitskii et al. (2002); Kawano (2017, 2019, 2020); Lengiewicz

and Hoøobut (2019). Tunneling allows in-place reconfiguration where modules flow

through the internal volume of the ensemble. They are specific to deformable modules

that can contract and expand, which requires a specific hardware design. In most of

them, modules are grouped into meta-modules seen as a unit to facilitate both planning

and motion operations. Parada et. al Parada et al. (2021) described a meta-module

design that simulates the contract/expand capability. It can be applied to a wide range of

non-deformable modular robots to enable tunneling. Nevertheless, it is only suitable for

modules placed in square cubic lattice.

Scaffolding first proposed in Kotay and Rus (2000) is another technique used to opti-

mize the self-reconfiguration process. It consists of building the structure using hollow

substructures or meta-modules leaving enough empty volume inside the structure that

allows modules to navigate through it in parallel while avoiding blocking and collisions

due to overcrowding at the cost of decreasing the granularity of the configuration. By

approximating the target configuration with a porous representation, scaffolding is used

to reduce the complexity of the reconfiguration of cubic modules that move by translation

and rotation guided by cellular automata in Stoy (2006) or by gradient descent in Stoy

and Nagpal (2007)

Dewey et al. Dewey et al. (2008) described a generalized model for meta-modules inde-

pendent of the module design, which inspired the self-reconfiguration scheme proposed

in this thesis. The aim is to achieve a holonomic system where modules are arranged in

meta-module units that can be in two states: filled or empty. Modules flow from a filled

meta-module to an empty one to reach their target position guided by a planner.

Lengiewicz and Holobut Lengiewicz and Hoøobut (2019) presented a method to self-

reconfigure large ensembles of cubic modules that form a porous scaffolding structure

made of cubic meta-modules of seven modules and one empty space. They tackled the

self-reconfiguration problem by decomposing it into two subproblems: determining how

the boundary of the current configuration must evolve to reach the goal configuration

and finding an optimal flow of modules between the boundaries of the current shape and

through its volume using an asynchronous distributed max-flow search based on local

memory and communication. Their proposed algorithm is efficient, with the number of

movements of the modules proportional to the resolution of the robot. This method might

be used with any other hardware system that has the ability to internally move modules

through a scaffolding setup. We used the same max-flow planning approach in our pro-

posed algorithms.

In the context of the PM consortium, many algorithms have been proposed for the different

hardware:
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2D Catoms In Naz et al. (2016), a distributed, asynchronous, and deterministic self-

reconfiguration algorithm is proposed for 2D Catoms. Initial and goal configurations must

be formed by continuous horizontal layers. It consists of a continuous flow of modules

that roll on fixed pivots in one direction from the initial configuration towards a goal con-

figuration. To avoid deadlocks and collisions, modules flow in a stream while keeping at

least one empty position between them by applying a message-passing traffic-light-like

system. The proposed solution does not require a complex path planning for modules

flow due to simple cylindrical geometry of 2D Catoms that can flow by rotating on the

surface following a single path in one direction to build the goal configuration out-place

next to the initial configuration, which is not feasible in 3D. The traffic-light system applied

to maintain enough space between the flowing modules was then used for 3D Catoms in

Thalamy et al. (2021a) and is also used in the self-reconfiguration solution proposed in

this thesis.

3D Catoms Self-Assembly The shape shifting of a MSR requires assembly planning to

specify the order of placement by assigning to each robot its final position in the goal con-

figuration while avoiding blocking positions. In Pescher et al. (2020) the authors proposed

GAPCoD: a generic assembly planner by constrained disassembly. GAPCoD outputs

a directed assembly graph obtained through the disassembly of the goal configuration

submitted to given constraints. Each vertex representing a module must be positioned

before its child nodes. In Tucci et al. (2018) the authors proposed a distributed approach

for the same problem where modules use a goal shape description to attract other mod-

ules to latch at empty positions in the goal configuration based on predefined rules to

avoid blocked positions. These methods do not take into consideration the spatiotem-

porel scheduling of module motions towards the planned positions.

3D Catoms Self-Reconfiguration Thalamy et al. proposed a self-reconfiguration

scheme for modular robotic programmable matter using the same hardware that we use

in this work: 3D Catoms. It envisions assembling the scaffold of a shape using multi-

module tiles. The tiles are built with modules that flow upward from a reserve of modules

placed beneath the shape called sandbox. The shape can then be coated with a thin layer

of modules to better represent the target shape Thalamy et al. (2021a). Like in Naz et al.

(2018b), flowing modules use a local message passing coordination algorithm inspired by

the traffic-light system that forces modules to keep enough empty space between them to

avoid collisions. The scaffold can then be coated by a thin layer of modules as described

in Thalamy et al. (2020a). The difference from our work is that they describe only the

construction of a scaffold for a given shape starting from a reserve of modules placed

beneath it, not the self-reconfiguration of an initial shape into a goal one.
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Figure 2.1: A box made of 5,914 3D Catoms, we remove top right border modules to

better present the internal structure. The porous structure is made of meta-modules that

construct a scaffold in orange, some reserves of modules are drawn in green and border

meta-modules are drawn in blue.

Contribution My contribution in this thesis is to reduce the self-reconfiguration time

by proposing, in Part III, self-reconfiguration scheme based on a porous structure formed

using meta-modules that group several modules. Internal meta-modules construct a scaf-

fold structure drawn in orange in Figure 2.1 that helps with the displacement of modules

within the structure and, at the same time, allows modules to be stored in the structure.

The structure will be coated with solid meta-modules (drawn in blue) to close the volume.

The self-reconfiguration scheme proposed in this work combines self-assembly and self-

reconfiguration. The two proposed planning methods in Chapters 7 and 8 find motion

paths that start at an occupied position in the initial shape that must be emptied and end

at an empty position in the goal configuration that must be occupied. The modules then

flow along the paths to reach their final positions. The first is fully distributed, and the sec-

ond is a hybrid centralized/distributed solution. Both exploit the properties of the porous

structure to reduce the distances covered by the robots and parallelize their movements.

2.3/ CLUSTERING

2.3.1/ SIZE-CONSTRAINT CLUSTERING PROBLEM

Clustering the modules of a MSR ensemble can yield many benefits. It can help reduce

the search space for self-reconfiguration planning and allow the parallelization of move-

ments where each cluster reconfigures in parallel. For instance, in Moussa et al. (2021)
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the authors proposed a cluster-based self-reconfiguration method. To show the advan-

tage that clustering can yield to self-reconfiguration, they compared the execution time

and communication load while varying the number of clusters. The results showed that

both the execution time and the number of exchanged messages decrease by a factor of

k where k is the number of clusters. However, they assume that the clusters are given

initially and do not propose a clustering method.

Figure 2.2: An example of self-reconfiguration showing the importance of the size-

constraint clustering. Each cluster is colored differently. A cluster in the initial shape

with a fixed number of modules must transform into a part of the goal shape with the

same number of modules.

To perform a cluster-based self-reconfiguration, clusters of modules in the initial config-

uration must move to form a specific part of the goal configuration that requires a fixed

number of modules, as can be seen in Figure 2.2. Therefore, clustering the initial config-

uration must be performed while taking a size-constraint into consideration that specifies

the number of modules in each cluster based on the part of the goal configuration that

the cluster’s modules must reconfigure into. In the next section, we present a review of

the literature related to size-constrained clustering.

2.3.1.1/ CLUSTERING ALGORITHMS

In this section, we present existing clustering algorithms organized in different categories.

Graph clustering Clustering an ensemble of modules is related to graph clustering

or graph partitioning. The graph partitioning problem has been widely studied in the

literature and is known to be an NP-hard problem Schaeffer (2007); BulucË et al. (2016);

Adoni et al. (2020a). Existing graph partitioning methods rely on two search techniques:

global and local. They aim to partition a given graph into k disjoint balanced densely

connected partitions. Global search algorithms work on the entire graph to find a direct

solution. They include solutions based on linear programming Fan and Pardalos (2010);
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Hager et al. (2013), spectral clustering Huang et al. (2019); Martin (2012); Liu and Han

(2018), and geometrical clustering Simon (1991); Gilbert et al. (1998); Ansari et al. (2019).

Local search algorithms use heuristic and metaheuristic methods to iteratively improve

an initial solution based on an optimization function. They use techniques such as node

swapping Osipov and Sanders (2010), tabu search Rolland et al. (1996), random walk Yan

et al. (2019), graph growing Predari and Esnard (2016); Diekmann et al. (2000), genetic

algorithms Kim et al. (2011a), and multilevel approach Meyerhenke et al. (2017, 2014).

The aforementioned methods are used for graph-structured data and are not suitable for

modular robots as they require global knowledge of the graph.

Capacitated clustering The capacitated clustering problem (CCP) Mulvey and Beck

(1984) is a problem closely related to the graph partitioning problem. Its objective is to

partition the weighted nodes of a graph into a set of disjoint clusters where the sum of the

nodes’ weights in each cluster is constrained by an upper and lower capacity limit while

maximizing the edges’ weights of each cluster. Existing CCP solutions use centralized

heuristic approaches Zhou et al. (2019); Scheuerer and Wendolsky (2006); Liu et al.

(2022); GnÈagi and Baumann (2021). For example, in Zhou et al. (2019), two heuristics are

used: tabu search and mimetic algorithms. They can be applied to find size-constrained

partitions, but they require global knowledge of the graph and do not scale to thousands

of resource-constrained modules, since they require thousands of iterations to find an

acceptable solution.

Distributed Clustering Distributed partitioning methods were developed to overcome

the high computational cost when the graph size becomes very large. The distributed

partitioning model distributes the partitioning task across a network of computers. For

example, in Rahimian et al. (2015) the author proposed JA-BE-JA, a fully distributed it-

erative method that can find balanced partitions while reducing the number of cut-edges

using local search and simulated annealing. It requires thousands of iterations and uses

multi-start strategies to converge towards an optimal solution resulting in a huge com-

munication load, especially in a sparse graph such as the one representing modules

connections. In a more recent work, Adoni et al. presented DHPV Adoni et al. (2020b), a

distributed algorithm that outperforms JA-BE-JA. It is more suitable for the master-slave

distributed architecture, where a master node coordinates the partitioning process, and

the partitioning task is distributed to slave nodes that operate in parallel to add a new

vertex to their partition subgraph. These methods are suitable for balanced partitioning of

graph structured data and cannot be applied for partitioning the nodes of a distributed sys-

tem such as a modular robot where the communication is limited to neighbor-to-neighbor

without a centralized control.
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Multi-robot partitioning The multi-robot task allocation problem Khamis et al. (2015)

involves assigning a group of robots to a set of tasks in the most optimal way based on a

utility function. The utility function measures how well a robot can perform a task. Some

tasks require multiple homogeneous robots or heterogeneous robots with different capa-

bilities to be accomplished. Therefore, robots are partitioned to form k coalitions based

on the utility function. Then, tasks are assigned to coalitions to be executed simultane-

ously Mazdin and Rinner (2021); Dutta et al. (2019); Zhang et al. (2014). The problem we

are tackling in this paper is different from the multi-robot task allocation problem since we

consider the partitioning problem independently of the task to be performed, which is the

self-reconfiguration. Therefore, these methods are not applicable to solve our problem.

Clustering in mobile modular robots Partitioning the set of modules for configuration

generation in modular robots has been studied in Dutta et al. (2015, 2016). In Dutta

et al. (2016), an algorithm based on a coalition search graph is proposed to partition a

set of modules. The aim is to achieve an efficient shape configuration of scattered mo-

bile modules in a 2D environment by partitioning-based coalition formation constrained

by the maximum number of modules required to form the configuration. It finds the best

coalition structure of separated modules based on a utility function. The modules that

form a coalition are then docked together to form the goal configuration. Another method

is proposed for the same purpose in Dutta et al. (2015) where a minimum spanning tree

is built to minimize the docking cost. Then, the best coalition or configuration is found by

partitioning the built tree taking into account the size, communication, and battery con-

straints. These methods focus on configuring small sets of separated modules scattered

in their environment. Therefore, they are not applicable to solve our problem.

Clustering robotic-swarms Clustering has been studied for robotic swarms. The pur-

pose is to divide the swarm into clusters for pattern formation and for better problem-

solving efficiency by dividing the problem into subproblems and assigning different tasks

to each cluster. Mostly, existing methods are based on robot mobility directed by ex-

ternal stimuli in the environment, so they are not suitable for modular robot-based pro-

grammable matter, to cite a few Pinciroli et al. (2009); Hayes et al. (2003); Kazadi et al.

(2004); Wahby et al. (2019). Other methods based on token clustering were proposed. In

Di Caro et al. (2012), a fully distributed algorithm based on consensus and load balancing

is proposed to partition robots with wireless communication into two spatially separated

clusters. Then it was extended in Bulla Cruz et al. (2017) to spatially partition the set

of robots into multiple clusters. However, the experimental results show that the time

required for convergence is high for a small number of robots and a small number of clus-

ters. The experiments showed that it can take minutes to cluster 20 robots into 4 classes.

The convergence time is expected to increase immensely for large-scale modular robots
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with communication limited to neighbor-to-neighbor.

Clustering in wireless sensor networks Clustering for Wireless Sensor Network

(WSN) and mobile ad-hoc networks is related to our problem in which sensors are

grouped into clusters to achieve network scalability by creating a hierarchical structure.

For each cluster, a Cluster Head (CH) plays significant roles, such as scheduling tasks

and aggregating and relaying data generated by its cluster members, limiting inter-cluster

communications to CHs only, thus reducing the communication load Afsar and Tayarani-

N (2014). Many clustering algorithms have been proposed for WSN Xiangning and Yulin

(2007); Mukherjee (2020); Bhola et al. (2020); Pietrabissa and Liberati (2019); Prorok

et al. (2010) but they are not suitable for modular robots due to their specific constraints,

which make them inapplicable on modular robots: wireless communication, existence of

a base station, and pre-election of cluster heads.

Clustering in lattice-based modular robots In Bassil et al. (2020) we proposed a fully

distributed and adapted version of the DCut algorithm originally proposed by Shao et

al. (2018) Shao et al. (2018) in the context of modular robots. It takes into account the

geometrical aspect of the ensemble and captures the density between adjacent modules

locally using the Jaccard coefficient. The idea is to build a Density-Connected Tree (DCT)

that captures the topological similarities between the modules relative to the fixed points

at the extremities of the geometric bounding box. Since the DCT forms an acyclic graph,

an edge connects two partitions. So, instead of partitioning the whole graph representing

all connections between modules, it partitions the DCT by recursively finding and remov-

ing cut edges until k clusters are obtained. It creates a spanning-tree which can be used

in tasks such as inter-cluster communication, intra-cluster communication, data aggrega-

tion and moving modules from one cluster to another. Additionally, it is distributed and

efficient. However, it does not take into consideration the size-constraint which is crucial

for transforming clusters of the initial shape to specific parts of the goal shape requiring a

fixed number of modules.

Table 2.1 shows which requirements are met by the existing solutions. We excluded from

the table the above-mentioned solutions for the multi-robot task allocation problem and

the configuration generation problem because partitioning is not their primary focus and

they address a different problem from ours. The existing work mentioned in this section

does not satisfy the requirements to solve the size-constrained k-partitioning problem for

modular robots. The solution must be distributed, based on the limited local knowledge

of each module about its neighborhood, and satisfies the size constraint.
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Table 2.1: Comparative table of existing clustering methods.

Contribution
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Global SearchHager et al. (2013); Huang et al. (2019); Liu and Han

(2018); Ansari et al. (2019); Meyerhenke et al. (2014); Kim et al. (2011a)
× × ×

Local SearchOsipov and Sanders (2010); Rolland et al. (1996); Yan

et al. (2019); Predari and Esnard (2016)
× ✓ ×

CCP Mulvey and Beck (1984); Zhou et al. (2019); Scheuerer and Wen-

dolsky (2006); Liu et al. (2022); GnÈagi and Baumann (2021)
× × ✓

Distributed Methods Rahimian et al. (2015); Adoni et al. (2020b) ✓ ✓ ×

SWARM clustering Bulla Cruz et al. (2017) ✓ ✓ ×

WSN clustering Xiangning and Yulin (2007); Mukherjee (2020); Bhola

et al. (2020); Pietrabissa and Liberati (2019)
✓ ✓ ×

DCut Bassil et al. (2020) ✓ ✓ ×

SC Clust (Our contribution in Chapter 4) ✓ ✓ ✓

Contribution To solve the size-constrained clustering problem in the context of MSR,

we present SC-Clust in Chapter 4, a distributed solution for the size-constrained k-

partitioning problem for modular robots that uses local knowledge of the modules to clus-

ter the ensemble. The algorithm consists of creating a tree structure and then cutting it

into branches that will be adapted to have the desired sizes.

2.3.2/ SHAPE RECOGNITION

The shape recognition problem consists in allowing the modules to discover a repre-

sentation of their current shape. Shape representation is one of the main challenges to

achieve PM. It consists of encoding a shape in a compact and memory-efficient way. Till

now shape representation is studied to represent a goal configuration and transmit it to

the modules, which provides enough information for self-reconfiguration. The modules

can check whether their position belongs to the goal configuration. If not, they can move

to fill an empty position in the goal configuration. Nevertheless, it is also useful to allow

the ensemble to recognize its current shape. For example, it can be useful for the inter-

active CAD application to send the shape to the connected computer to update the digital

object displayed by the CAD software.

Moreover, in a large modular robot, modules have limited local knowledge about the en-

tire configuration. They can only access their directly connected neighbors. Thus, allow-

ing modules to recognize the whole shape of their configuration can facilitate distributed

self-reconfiguration planning, which consists of finding the sequence of movements to re-
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configure into a goal shape. Knowing the current configuration modules can calculate the

difference between the current and the goal shape to optimize the movements and the re-

arrangements to be made to reach the goal shape while ensuring safe and mechanically

stable movements.

2.3.2.1/ EXISTING WORK ON SHAPE RECOGNITION

In this section, we review existing work on shape recognition.

Shape Representation In Stoy and Nagpal (2007); Fitch and Butler (2008) the au-

thors propose to transform a CAD model into overlapping bricks to make it easier for the

modules to identify their position relative to the goal configuration required for the self-

reconfiguration process. In Tucci et al. (2017) the authors proposed to use a Constructive

Solid Geometry (CSG) tree. The leaves of the tree contain basic geometrical objects, and

the intermediate nodes contain geometrical transformations and combination operators

to form the final shape on the root. The objective of these methods is to encode a shape

using a centralized computer to transmit it to the module to self-reconfigure it.

Configuration Recognition The configuration recognition problem, which consists of

matching and mapping a configuration to a library of configurations, is studied in Baca

et al. (2015); Shiu et al. (2010); Liu and Yim (2020). First, a discovery phase is executed

to find a representation of the current configuration as an interconnectivity graph, where

nodes represent modules and edges represent the connections between the modules.

Then, they match the graph with an existing one and map the physical modules to their

logical one.

Goal Configuration Matching In Butler et al. (2002), the authors solve the match-

ing problem with a distributed goal recognition algorithm that verifies if a configuration

matches a given goal shape without the need to discover the whole configuration. In Baca

et al. (2015) a distributed real-time algorithm is presented for configuration discovery. It

allows modules to discover other modules using wireless infra-red communication and

construct the connectivity graph.

The drawback of connectivity graphs is that they suffer from scalability issues since they

depend on the number of modules, which might increase drastically, especially when

building high-fidelity programmable matter with millimeter-scale robots. Furthermore, in

lattice-based modular robots, we can exploit geometric information to create a compact

shape representation.
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Contribution We propose to solve the shape recognition problem that aims to find a

representation of a modular robot current configuration using a fully distributed algorithm

described in Chapter 5 that finds a set of overlapping boxes, each of which can be seen

as a cluster whose union forms the current shape.

2.4/ TIME SYNCHRONIZATION

Many applications with distributed control require the same notion of a global time in each

module. For example, user interfaces changing shapes using modular robots Pruszko

et al. (2021) where the modules that make up the interface must be synchronized to

efficiently handle interactions between humans and the interface.

Synchronization can be achieved using dedicated pins to share a timing signal, but this

requires specific hardware design. In our model, each module has its own notion of time

provided by its hardware clock. Unfortunately, local hardware clocks are insufficient to

achieve a global notion of time, since the accuracy of hardware clocks is affected by

environmental conditions such as voltage, temperature, aging, etc. Therefore, they tend

to drift apart quasi-linearly over time even in a perfect environment. Therefore, each

module needs to have an estimate of a common global time determined by a distributed

time-synchronization protocol.

Time synchronization algorithms and protocols have been proposed for computer net-

works Gusella and Zatti (1989); Cristian (1989); Mills (1991); IEEE (2008). In addition,

time synchronization has been widely studied in Wireless Sensor Network (WSN) that

form peer-to-peer networks for resource-constrained devices similarly to modular robots.

Many time synchronization protocols have been proposed for WSNs such as MarÂoti et al.

(2004); Elson et al. (2003); Lenzen et al. (2014); Yildirim and GÈurcan (2014); Shi et al.

(2022). For modular robots, to our knowledge, Modular Robot Time Protocol (MRTP)

Naz et al. (2016) is the only protocol that has been proposed for time synchronization in

modular robots with neighbor-to-neighbor communication. It is the protocol most adapted

for large modular robotic systems with low-precision hardware clocks that use low-bitrate

neighbor-to-neighbor communication and can form networks with large diameters. It aims

to achieve tight network-wide synchronization by keeping a small offset between any local

clock and a global reference clock situated at a reference module. The reference mod-

ule periodically sends a synchronization message that propagates hop-by-hop through a

breadth-first communication tree to all modules using a predictive method to compensate

for communication delays. Modules compensate for clock skew with least-square lin-

ear regression on a window of fixed size containing previously received synchronization

points. However, the performance of MRTP decreases as the diameter of the modular

robot network increases. The reason is that a small error induced by non-deterministic
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Figure 2.3: A simulation example for handling a broken interface. a) a broken interface is

detected. b) the Helper module creates a bridge of communication between disconnected

modules . c) communications through the broken interface are passed through the Helper.

delays that can be looked at as the distance from each synchronization point to the best-

fit line is accumulated, which can reduce the efficiency of least-square linear regression

on large-scale modular robots with a network that spans on large number of hops.

Contribution During the thesis work, in Bassil et al. (2021a), we presented and com-

pared two new methods to compensate for clock skew to improve the performance of

MRTP in large-diameter modular robot networks. The first, Adaptive Rate Search (ARS)

is a lightweight dynamic search method that can provide at any time the adapted rate of

the clock of a module by adjusting its provided rate value according to the global time

received from the reference module. The second, Enhanced Linear Regression (LR+),

uses a Bayesian approach to reduce the uncertainty error induced at each hop along

the synchronization path by recursively combining knowledge of a module’s parent with

a module’s local knowledge to calculate an improved estimation of the global time. The

results showed that both ARS and LR+ can significantly improve network-wide tight syn-

chronization compared to the linear regression method used in MRTP. While LR+ has the

highest precision, ARS has a smaller memory and computation footprint.

2.5/ FAULT TOLERANCE

One of the challenges of modular robots is to ensure that they are fault tolerant, that is,

they can continue to function even if some of their individual modules fail. Faults such as

a broken interface, a loss of power, an incomplete motion, a faulty docking, etc. can prob-

ably occur during the self-reconfiguration process. Many self-reconfiguration algorithms

exist in the literature, yet, to the best of our knowledge, they do not consider module

failures during the self-reconfiguration process. Therefore, to tolerate faults, some mech-

anisms must be implemented to guarantee the completeness of a self-reconfiguration

algorithm to successfully achieve the desired goal shape.
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Contribution In Bassil et al. (2022), we provided a fault tolerance mechanism to deal

with communication failures caused by a broken interface between two connected mod-

ules executing the self-reconfiguration algorithm proposed in Thalamy et al. (2021a)

where the modules continuously flow upward from a reserve of modules placed below

the scene to build a scaffold of an object. During their motion, the modules exchange

messages to coordinate their motions in the objective to keep enough space between

two following modules to avoid blocking and collisions. A single communication failure

can interrupt the flow and results in an incomplete scaffold construction. Our solution

consists of using a helper module that serves as a communication bridge between two

adjacent modules attached by a broken interface as shown in Figure 2.3.

2.6/ CONCLUSION

The chapter presents the challenges addressed in this thesis. They include self-

reconfiguration, clustering, time synchronization, and fault-tolerance. Moreover, it

presents existing work for each challenge and highlights my contribution to each of these

challenges.
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3.1/ INTRODUCTION

T
his chapter presents the experimentation and simulation tools that were used in this

thesis to develop, implement, and analyze the proposed algorithms. Section 3.2

introduces the BlinkyBlocks system, a modular robotic system based on cubic lattices that

can perform distributed computation and communication. Section 3.3 describes the 3D

Catoms, a lattice-based modular robotic system that can move by rotating on each other

using electrostatic forces. Section 3.5 provides a review of existing simulation tools and

explains the VisibleSim software, a simulation platform that can model the behavior and

interactions of various modular robotic systems, including BlinkyBlocks and 3D Catoms.

31
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Figure 3.1: On the left a dissection of BlinkyBlock . On the right the result of the size-

constrained clustering algorithm proposed in this thesis, where each cluster is colored

differently.

3.2/ BLINKYBLOCKS

BlinkyBlocks are centimeter-size cubic robotic blocks. The first version Kirby et al. (2011)

is developed as part of the Claytronics project. The second version, used in this thesis

work, is developed at FEMTO-ST. In this work, BlinkyBlocks are used to implement the

proposed size-constrained clustering algorithm and demonstrate its execution on real

hardware. In addition, they are used in simulation to validate and analyze the shape

recognition algorithm.

Each BlinkyBlock module has its own computational power provided by an ARM Cortex

M0 32-bit microcontroller. A BlinkyBlock module can be attached to up to 6 neighbors

using magnets on each of its sides and can communicate with its directly attached neigh-

bors by exchanging messages with a maximum payload size of 227 bytes over serial

links controlled by Universal Asynchronous Receiver/Transmitter with 6 Mbps speed. A

single block is connected to a power supply, and the power is distributed to all blocks

through dedicated pins. BlinkyBlocks can detect sound using a microphone sensor and

can detect its orientation using a gyroscope. They are also equipped with RGB LEDs and

speakers. The ensemble can be reconfigured manually at will by detaching and attaching

the blocks by hand. They are aware of the existence of an attached neighbor and can be

programmed to react to neighbor-addned or neighbor-removed events.

All BlinkyBlock run the same program. The executable program is written in C language,

is compiled on an external computer, and is disseminated to the blocks by chunks of

bytes through a spanning tree rooted at a block connected to the computer. A custom

firmware is pre-programmed on the blocks to handle control commands such as creating
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Figure 3.2: On the left, a 3D Catom with two rotation methods: The first on the octagonal

surface area Ro and the second on the hexagonal surface area Rh. An arrangement of 3D

Catoms in a FCC lattice where a 3D Catom can have up to 12 neighbors.

a spanning tree, distributing a unique identifier for each block, and disseminate a program.

A logging system can be used to send messages from the blocks to be printed on a

connected computer console.

BlinkyBlocks are currently used mainly for education and research on distributed sys-

tems and to create interactive artistic structures ( ReactiveMatter). Many publications

on distributed algorithms in the context of PM were implemented and validated using

BlinkyBlocks. They include algorithms on centrality leader election Naz et al. (2015), time

synchronization Naz et al. (2018b); Bassil et al. (2021b), coordinate distribution Piranda

et al. (2023), and mechanical stability Piranda et al. (2021).

3.3/ 3D CATOMS

3D Catoms, first proposed in Piranda and Bourgeois (2018), are quasi-spherical modules

with a diameter on the millimeter scale that can be arranged in a regular 3D grid described

as a Face-Centered Cubic (FCC) lattice. Unlike BlinkyBlocks, 3D Catoms have motion

capabilities. A 3D Catom can move around the FCC grid by rotating on the surfaces of

fixed 3D Catoms.

The geometry of a 3D Catom consists of 12 flat squares used as connectors to latch with

other 3D Catoms using electrostatic forces (shown in red and numbered 0 to 11 in Fig-

ure 3.2) which form an hexagonal close packing of modules. Two neighboring connectors

are separated by two types of surfaces: a hexagonal surface (colored blue in Figure 3.2)

Table 3.1: Coordinates of cells in the neighborhood of a 3D Catom

Plane z is even z is odd

z − 1 (x − 1, y − 1)(x − 1, y)(x, y)(x, y − 1) (x, y)(x, y + 1)(x + 1, y)(x + 1, y + 1)

z (x − 1, y)(x + 1, y)(x, y − 1)(x, y + 1) (x − 1, y)(x + 1, y)(x, y − 1)(x, y + 1)

z + 1 (x − 1, y − 1)(x − 1, y)(x, y)(x, y − 1) (x, y)(x, y + 1)(x + 1, y)(x + 1, y + 1)
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Figure 3.3: Motion capabilities of the 3D Catom. a) Arrows #1 and #2 shows the two

kind of rotations respectively along octagonal surface (in green) and hexagonal surface

(in blue). b) Shows the final position of the top 3D Catom after a rotation along #1 arrow.

c) Shows the final position of the top 3D Catom after a rotation along #2 arrow. In figure d)

the final position of the top 3D Catom is reachable but the same position is not reachable

in figure e) due to yellow module.

separates 3 connectors and an octagonal surface (colored green in Figure 3.2) surface

separates 4 connectors. A coordinate system is used to define a position in the FCC

lattice. A module in a position (x, y, z) can be connected with up to 4 neighbors in each of

the planes z, z − 1 and z + 1. The positions of the neighbors are given in Table 3.1.

Electrostatic connectors are used on the surface of a 3D Catom, along with latching and

motion actuation, to communicate with its latched neighbors by exchanging messages.

Therefore, communication is carried out locally, where a 3D Catom can only communicate

with its latched neighbors.

A 3D Catom can move and change its position in the FCC lattice by rotating on the surface

of a fixed neighbor that acts as a pivot. To do so, they use electrostatic actuators placed

on the hexagonal and octagonal surfaces to rotate from one connector on their surface

to another on the pivot module. A pivot module must not move while actuating a moving

module, and a rotation actuation moves one and only one module from its position to an

adjacent empty cell (a module cannot carry other modules while rotating). The motions

capabilities of a 3D Catom are shown in Figure 3.3.

The motion of a 3D Catom is subject to the following constraints that require some coor-

dination and mechanisms to overcome:

• Collision constraint: no more than one 3D Catom should move to the same empty

position simultaneously to avoid collisions. In other words, the paths of two motions

must not intersect.

• Bridging constraint: a 3D Catom cannot enter a free position that has two occu-

pied positions in opposite directions, as shown in Figure 3.3.
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• Blocking constraint: a 3D Catom entering a free position must not be blocked by

another 3D Catoms on its motion path.

• Connectivity constraint: a 3D Catom’s motion cannot disconnect the ensemble.

A self-reconfiguration planner must take into consideration motion constraints to ensure

the correctness and completeness of the process.

3.4/ PROGRAMMING MODEL AND SYSTEM ASSUMPTIONS

In this section, we enumerate the system assumptions and the programming model con-

sidered in our work to program the distributed system formed with connected ensembles

of 3D Catoms and BlinkyBlocks:

• All modules run the same distributed program and perform the computations locally

on each module.

• All communications are done in a local fashion, where a module can only com-

municate with its directly connected neighbors when it is docked by exchanging

messages.

• All operations are performed asynchronously.

• The interconnections graph must be connected all the time. This adds an additional

constraint to be considered by a self-reconfiguration algorithm.

• A module is aware of the presence of a connected neighbor in an adjacent cell.

• All modules share the same coordinate system. Each module stores its coordinates

locally and updates them after each movement. A distributed algorithm to distribute

the coordinates in the modules is proposed in Piranda et al. (2023).

• A module can react to the reception of a message, the connection and disconnec-

tion of a neighbor, and any internal event such as a timer event or a rotation end

event (in the case of a 3D Catom).

• Each module is assigned a unique identifier. An algorithm to distribute unique iden-

tifiers in modules is presented in Assaker et al. (2022).

3.5/ SIMULATION ENVIRONMENT

Simulation is extremely important in research and engineering, as it allows the design,

testing, and refinement of products or systems in a virtual environment before building
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physical prototypes or deploying them in real-world scenarios. In the context of au-

tonomous robots, simulation allows faster and cheaper development cycles of physical

hardware and software. It provides an environment for efficient learning and adaptation

of robots by providing diverse and rich data and feedback. Furthermore, simulators play

an important role in facilitating collaboration and communication between engineers and

researchers, as they provide a tool to share and compare models, methods, and results.

In the context of PM, simulation is useful for developing software foundations and under-

standing the dynamics of such large-scale shape-shifting complex structures, especially

when testing and evaluating algorithms on a large number of modules or when hardware

components are not yet available.

Furthermore, simulators ensure reproducibility of simulated scenarios. Being able to re-

peatedly run the same simulation with exactly the same order of events at the same time

is of utmost importance. They facilitate debugging by allowing researchers and engineers

to consistently verify and understand results, isolate issues, and reliably identify errors.

In a real-world distributed system, the order of messages and events as well as the en-

vironment can be subject to stochasticity, making it challenging to analyze problems and

investigate root causes. By providing reproducibility, a simulator enables controlled replay

of specific scenarios, allowing precise observation of module interactions and reactions,

and more effective troubleshooting.

In this section, we present the existing simulation tools for MSR, then we present Visi-

bleSim: a simulator for lattice-based MSR used to implement and validate the work of

this thesis.

3.5.1/ EXISTING SIMULATION TOOLS

Table 3.2: Modular robot simulators comparison.

Simulators Characteristics
Open

source
Last Activity

Gazebo
General purpose physics

simulation for mobile robots

yes

Up to dateCoppeliaSim no

Webots yes

ARGos Heterogeneous swarm robots yes Up to date

Rebots GUI Drag-and-drop, Physics-

based, Roombots, Superbot,

Smores

yes Up to date

USSR Physics-based, ATRON, M-TRAN,

Odin

yes 2012

DPRSim Physics-based, Claytronics yes Discontinued

VisibleSim Behavioral, large-scale lattice-

based modular robots

yes Up to date
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There are many existing robot simulators available Collins et al. (2021), each with different

features and capabilities. Table 3.2 shows a list of simulators that can be used for modular

robots. Some of the most popular are Gazebo simulator Koenig and Howard (2004),

CoppeliaSim Rohmer et al. (2013) (formerly called V-REP), and Webots Michel (2004).

They are general robotic simulation tools that allow users to create and test mobile robots

in realistic 3D environments. They support various physics engines, sensors, actuators,

and communication protocols, and are used mainly for monolithic robots, but sometimes

they are used to simulate modular robots, such as V-REP in Liu et al. (2017).

Some specialized simulators include ARGos Pinciroli et al. (2012), a physics-based real-

time simulator swarm robotics that can support large heterogeneous multi-robot systems.

There are many simulators specific for modular robots, such as Rebots Collins and Shen

(2016), a physics-based simulator that allows user interactions via drag and drop GUI. It

supports multiple modular robots with multiple architectures, such as Roombots SprÈowitz

et al. (2010), Superbot Salemi et al. (2006), Smores Liu et al. (2023) and can be extended

to support new modules. USSR Christensen et al. (2008) is another general-purpose sim-

ulator for modular robots that supports multiple modules such as M-TRAN Kurokawa et al.

(2008), Atron éstergaard et al. (2006) and Odin Lyder et al. (2008). DPRSim Ashley-

Rollman et al. (2011) is a simulator developed under the Claytronics project. It has a

physics engine and supports simulations with millions of 2D and 3D Catoms in the pur-

pose of performance evaluation of distributed algorithms and to visualize the complex

behavior of these tiny modules. It also integrates advanced debugging, visualization, and

tracing features. However, its development has been discontinued.

VisibleSim Thalamy et al. (2021b) is a simulator developed in the Programmable Matter

project specific to lattice-based modular robots. It does not include a physics engine,

which can be prohibitive when simulating a large number of modules that can scale up

to 32 million. It is a behavioral simulator that allows its users to fundamentally study the

distributed control algorithms of a large ensemble of modules in a perfect environment

and visualize the complex behaviors of the modules that execute parallel actions. It sup-

ports all modules developed under the Programmable Matter project (see Section 1.4).

VisibleSim is used to evaluate all algorithms proposed in this thesis and is detailed in the

next section.

3.5.2/ VISIBLESIM

VisibleSim is an open-source behavioral simulator designed for lattice-based modular

robots. It can be accessed publicly on GitHub1. It is the simulator of choice for developing

and evaluating the algorithms proposed in this thesis. Its development started in early

1 VisibleSim git repository: https://github.com/ProgrammableMatterProject/VisibleSim

https://github.com/ProgrammableMatterProject/VisibleSim
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Figure 3.4: A screenshot taken during the execution of a self-reconfiguration algorithm

using 3D Catoms. On the right a console shows the trace of events executed by the

selected module at the bottom left. The modules are colored differently to reflect user

defined states. On the top left, important real-time statistics are displayed.

2010 by our team at FEMTO-ST, and since then it has been updated, and new features

have been continuously added. It supports all modular robot modules with different lattice

types developed in the Programmable Matter project, including the BlinkyBlocks and 3D

Catoms used in this thesis. New types of modules can also be easily added.

VisibleSim is a C++ framework for simulating lattice-based modular robots based on a

discrete-event engine where a scheduler handles a sequence of discrete events gen-

erated by the modules. Event processing might generate new events to be scheduled.

When a module generates an event, the event is pushed to the scheduling queue with a

specified delay. Then the event will be executed when the scheduler time corresponds

to the event execution time. A class called BlockCode, represents a module controller.

The user must extend two main components of the BlockCode class: a startup function

used to initialize the module’s state and event handling functions executed in response to

the handling of simulation events by the scheduler. For example, a user can program the

module to handle events such as a message received, an interruption event, a neighbor

added or removed, a motion ended, or any other custom-defined event.

VisibleSim is equipped with a Graphical User Interface (GUI) written in OpenGL shown

in Figure 3.4. Initially, it reads an XML configuration file that specifies the positions of

the modules in the lattice and places them in the simulation world. During execution, the

user can navigate and interact with the world by adding, removing, and tapping modules,

which are events that can be handled in real time. A console built into the GUI shows
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the sequence of events executed by all modules or by a single module when clicking on

it. This provides the user with valuable information during execution to debug and trace

the chain of events that led to the current state. The GUI is also a powerful visualization

tool that allows users to take screenshots and record execution, generating high-quality

illustrations and videos that help communicate scientific results.

At the end of a simulation, VisibleSim provides the user with important statistics such as

simulation time, the number of messages exchanged, and the number of motions at the

ensemble and module levels, allowing evaluation and comparison of algorithms.

3.6/ CONCLUSION

To conclude, this chapter has presented an overview of the research environment in which

the thesis is conducted, focusing on the modular robotic systems employed. Specifically,

the BlinkyBlock real cubic modules were used in this study to validate algorithms that

do not rely on movements on physical hardware. On the other hand, the 3D Catoms

spherical modules, which are capable of moving in a face-centered cubic lattice, were

used to apply the proposed self-reconfiguration methods.

Furthermore, this chapter introduced the programming model and system assumptions,

which serve as the foundations for the algorithms proposed in subsequent chapters. Ad-

ditionally, the chapter discusses the simulation environment using VisibleSim discrete-

event behavioral simulator, which provides a controlled environment to test and validate

the proposed distributed algorithms.
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4.1/ INTRODUCTION

T
o enhance the self-reconfiguration process, clusters of modules can be reconfig-

ured in parallel. It has been shown in Moussa et al. (2021) that cluster-based self-

reconfiguration can improve the execution time and communication efficiency of the pro-

cess. In fact, the authors showed that reconfiguring clusters of modules in parallel offers

a performance improvement proportional to the number of clusters, compared to the re-

configuration of the entire ensemble of modules.
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Figure 4.1: A mug represented in CSG tree.

Our objective is to propose an efficient distributed clustering algorithm to partition the

modules in the initial shape given the number of clusters and the size of each cluster ac-

cording to the goal shape. The proposed clustering algorithm serves as a preprocessing

step to allow the self-reconfiguration process to be enhanced by applying cluster-based

approaches. A tree-based density-cut algorithm was proposed in Bassil et al. (2020) for

the same purpose. However, it resulted in arbitrary sized clusters so, we aim to propose

a new algorithm to control the number of modules in each cluster which is crucial for self-

reconfiguration since a cluster of modules in the initial shape needs to reconfigure into a

specific part of the goal shape requiring a fixed number of modules.

Prior to self-reconfiguring, modules are not aware of their initial configuration, they only

know of the existence of their directly connected neighbors. But an efficient encoding of

the goal configuration is required for self-reconfiguration, since a module needs to know

its position according to the goal map so it knows if it is already in the goal shape or must

move to fill an empty position in the goal shape. In Tucci et al. (2017) a solution based on

Constructive Solid Geometry (CSG) Requicha et al. (1977) is proposed. It can be used

to determine the number and sizes of clusters. It defines the goal shape as a tree made

up of basic geometric objects and transformations (union, intersection, difference) that,

when combined, form the final scene as shown in Figure 4.1. First, the 3D object to be

formed is discretized and encoded in the CSG tree by centralized computations. During

this process, the number of clusters and the size of each cluster can also be calculated

according to the goal shape. Then, the CSG tree can be transmitted along with the

number of clusters and cluster sizes to a master module, to be then flooded and stored

in all modules in an initial phase before starting the clustering process.

In this chapter, we present SC-Clust a size-constrained clustering algorithm that groups

modules in any initial configuration into k clusters where k, the number of clusters and their
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sizes are predefined a priori based on the goal configuration and can be disseminated

with the goal shape representation to all the modules. The algorithm proceeds by creating

a spanning-tree, cutting then adjusting branches to form the clusters.

Section 4.2 presents the problem and the system assumptions in a formalized way and

demonstrates that the size-constrained clustering problem is NP-Complete. In Section 4.3

the SC-Clust algorithm is described; then its time and communication complexity are ana-

lyzed in Section 4.4. Section 4.5 presents the simulations and results and the comparison

between SC-Clust and DCut: a clustering algorithm for lattice-based modular robots with-

out a size-constraint.

4.2/ PROBLEM DEFINITION AND SYSTEM ASSUMPTIONS

The modular robot ensemble can be modeled as an undirected graph G(V, E,W) where

V represents the set of modules, E represents the set of edges such that for each pair

of modules (u, v) ∈ V2, e(u, v) ∈ E denotes a connection between u and v. Therefore, two

nodes u and v are neighbors if ∃e(u, v) ∈ E. For each edge e ∈ E, a non-negative weight

w ∈ W is associated, w : E −→ R
+∗.

The modules are homogeneous, placed in a regular lattice, and are attached border-to-

border. Since they can only communicate with their directly connected neighbors in their

adjacent cells, they form a sparse communication graph with a large network diameter

Naz et al. (2018a).

Definition 1: Size-constrained partition

A size-constrained partition Gi(Vi, Ei,Wi) is a connected subgraph of G that has

a predefined number of nodes si, that is, |Vi| = si.

Definition 2: Size-constrained k-partitioning

partitions the graph G into k size-constrained partitions (Definition 1) such that:

1. Partitions are exhaustive; each node must belong to a partition: V1 ∪ V2 ∪

... ∪ Vk = V

2. Each node belongs to only one partition, such that: ∀i , j,Vi ∩ V j = ∅

3. The size of each size-constrained partition Gi is predefined before parti-

tioning, such that:
∑k

i=1 si = |V |

Figure 4.2 (a) shows a correct size-constrained k-partitioning. Figure 4.2 (b) shows an

incorrect solution since the green cluster is disconnected. The objective of this work is
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(a) (b)

Figure 4.2: An example of two possible size-constrained k-partitioning where k = 2, s1 =

12 (Red) and s2 = 6 (Green). (a) shows a correct size-constrained k-partitioning. (b)

shows an incorrect size-constrained k-partitioning because the second partition shown in

green is disconnected.

.

to propose a distributed algorithm that clusters the modular robot ensemble into k clus-

ters by performing size-constrained k-partitioning (Definition 2) on G given the number

of partitions k and the desired size of each partition si and considering the following as-

sumptions:

• The goal shape is known and can be efficiently encoded and stored in each module,

as explained in Tucci et al. (2017).

• Each module is identified by a unique number (ID).

• Modules are placed in the cells of a regular 3D lattice and they store locally their

coordinates and orientation.

• Only neighbor-to-neighbor communications are possible. A module may send a

message to its adjacent neighbors through one of its connectors. The receiver can

respond by sending a message through the connector that received the message.

• No global view of the modular robot network is available. The view of each module is

limited to its direct neighborhood. Modules perform their computations locally, and

they can only access local information in their neighborhood via message-passing.

• A module is aware of its direct connections (i.e., which borders are connected to

other modules and which ones are not).

• We consider the configuration to be fixed and always connected during the process,

that is, no new modules are connected or disconnected during the execution of the

algorithm.
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4.2.1/ SIZE-CONSTRAINED k-PARTITIONING IS NP-COMPLETE

In this section, we first define the k-balanced clustering problem and then prove that the

size-constrained k-partitioning problem is NP-complete. To do so, we prove that it is NP-

hard by restriction from the k-balanced clustering problem. NP-completeness follows,

since it is simple to verify a given solution with a linear algorithm.

Definition 3: k-balanced clustering Problem

INSTANCE: A connected lattice graph G(V, E) the number of wanted clusters k.

QUESTION: Does there exist k equal sized partitions V1, ...,Vk such that |Vi| =

|V |
k

, V1 ∪ V2 ∪ ... ∪ Vk = V and ∀i , j,Vi ∩ V j = ∅ ?

The k-balanced partitioning problem defined in Definition 3 is proved to be NP-hard on 2D

lattice graphs by reduction from Hamiltonian path in Berenger et al. (2018) and 3-partition

in Feldmann (2013). The size-constrained k-partitioning problem contains the k-balanced

clustering problem as a special case where all clusters are equal in size. Therefore,

by restriction Garey and Johnson (1979), The size-constrained k-partitioning problem is

NP-hard on 2D lattice graphs and, therefore, it is at least NP-hard on 3D lattice graphs

representing module connections in lattice-based modular robots.

4.3/ ALGORITHM DESCRIPTION

In this section, we propose the SC-Clust algorithm, a solution to size-constrained cluster-

ing for lattice graphs representing module connections in modular robots. It identifies k

size-constrained partitions in O(nlogn) time and communication complexity. The SC-Clust

algorithm operates in three phases. First, we define the edge weights and how they are

calculated and stored in each module (Section 4.3.1). Second, a Minimum Spanning

Tree (MST) is built. A fully distributed and asynchronous algorithm Gallager et al. (1983)

is used for this purpose. Third, the MST is partitioned. Initially, all modules form the ini-

tial cluster; then the MST is sequentially partitioned by finding, adjusting and separating

branches that have the desired number of modules (Section 4.3.3).

4.3.1/ WEIGHT CALCULATION

In this section, an edge weight measure is defined. We start with the following definitions:
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Definition 4: Anchors

Given a geometric shape I, the minimum bounding box B is the box surrounding

I aligned with the coordinate axes with the minimum volume. The set of anchors

A is defined as the set of coordinates of the corners of the minimum bounding

box.

Since the modules in a modular robot are placed in a regular lattice, A can be

easily and efficiently calculated by selecting the different minimum and maxi-

mum combinations while varying on the three axes x, y, and z, so a total of

8 points are defined at the corners of B, that is, all possible combinations of

({minx,maxx}, {miny,maxy}, {minz,maxz}).

Definition 5: Edge weight

Given two neighboring modules u and v, the weight w(u, v) of the edge e(u, v)

connecting u and v in the graph G, is defined as:

w(u, v) = min(dist(u, A), dist(v, A))

s.t:

dist(u, A) = min{dist(u, a) | a ∈ A},

where dist represents the Euclidean distance.

The weight measure defined in definition 5 results in having lower weights at the edges

that connect the modules near the configuration boundary. This will subsequently result

in clusters being positioned closer to borders, making it easier to move modules around

for self-reconfiguration.

Anchor positions are calculated by building a spanning tree rooted at a randomly chosen

module. During the building process, the values of minx, miny, minz, maxx, maxy, and

maxz are returned to the root and then transmitted to all modules via the built tree. Upon

reception, modules can calculate and store the distance to their nearest anchor, and then

store their connected edges weights.

4.3.2/ TREE CONSTRUCTION

After all modules have stored their adjacent edge weights, a Minimum Spanning Tree

(MST) is built. It minimizes
∑

(u,v)∈VMS T
w(u, v). Any distributed algorithm to find an MST

can be used. We use a fully distributed asynchronous algorithm called GHS proposed in

Gallager et al. (1983). GHS is known to have an optimal communication complexity of

O(m + nlog(n)) messages. Its time complexity is O(nlog(n)), which is not optimal. Existing
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distributed algorithms solve the minimum spanning tree problem with better time com-

plexity at the cost of increasing the communication load Pandurangan et al. (2018); Blin

and Butelle (2001); Haeupler et al. (2018); Mashreghi and King (2021), which is not suit-

able for modular robots, as sending messages consumes the limited energy resources of

the modules.

The GHS algorithm requires that each edge have a unique weight. In case the weights

are not distinct, which is our case, one can simply append the identities of the edge’s

adjacent nodes starting by the lower identity number first. Initially, each node forms a

fragment. Nodes wake up to start the GHS algorithm execution asynchronously, so there

are no restrictions on the wake-up process, thus, all nodes can wake up at the same time

or only one node can wake up and the tree is formed, which is suitable for our case.

The GHS algorithm operates in phases. During each phase, the fragments are extended

by merging with other fragments. The nodes in each fragment are connected with edges

to form a rooted MST. Each node holds a pointer to the next node in the tree that leads to

the fragment’s root. Fragments merge through their minimum outgoing edge. To find the

minimum outgoing edge of a fragment, a message is broadcast asking all the fragment’s

nodes about their minimum outgoing edge. Each node waits for the answers of all its

children in the tree before sending it upward on the tree to reach the fragment’s root.

Once the minimum outgoing edge is found, a message is sent over that edge to the

fragment on the other side. If the two fragments choose the same minimum outgoing

edge, they merge, and the edge chosen by the two fragments is called core edge.

During the last phase, two fragments will merge through a core edge into one large frag-

ment that forms the MST. We refer the reader to Gallager et al. (1983) for a complete

description of the algorithm. Once the MST is formed, we can proceed with its partition.

One can choose one of the core nodes connected to the core edge as the root of the

tree. However, to have clusters distributed closer to the borders as much as possible, we

choose the root to be the node with a minimum distance to one of the anchors (Defini-

tion 4) at the extremities of the initial configuration. Ties are broken randomly. To do so,

after the root is found, it broadcasts a message through the tree. The receiving nodes set

the sender as a parent leading to the root and save the edges leading to their children in

the MST. The resulting tree in a 2D regular lattice is shown in Figure 4.3.

4.3.3/ TREE PARTITIONING

In this phase, given the set of desired cluster sizes S , the MST is partitioned to obtain

k = |S | size-constrained clusters.

The idea is to find the cut-edge that results in a branch in a way to minimize the difference

between the number of modules in the branch and the desired number of modules in the
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cluster. The detached branch after removing the cut-edge will form the cluster. We define

the cut-edge as follows:

Definition 6: cut-edge

A cut-edge ci is an edge e(u, v) that separates the partition originally containing

u and v in which ci is searched from the new partition. The nodes Vi of the new

partition Gi are the nodes in the branch of the MST rooted at cutAt = v: the node

in Vi connected to ci.

Given the set of desired partition sizes S , in order to satisfy the size constraint

described in Section 4.2, |Vi| should be equal to si. However, a cut-edge that

satisfies this constraint may not exist, since a branch in the MST that has exactly

si nodes could not be found. Therefore, the cut-edge ci is found in a way to

minimize the difference Di f fci
between the size of the sub-tree rooted at cutAt

and si. Therefore:

ci = e(u, v) ∈ E | Di f fci
= mine(u,v)∈E |Di f fe|

s.t.

Di f fe(u,v) = si − subtreesize(v)

After removing a cut-edge ci, the difference between the resulting cluster size and the

desired size Di f fci
may not be null if a branch containing the desired number of modules

did not exist in the MST.

To fix this issue, we present a method in Section 4.3.4 that makes additional cuts and
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Figure 4.3: An example of MST construction. On the left the weight distributed according

to the distance to the nearest anchor (The flag of the same color). On the right, the MST

is constructed and the root is colored in green.
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associates the resulting branches with the erroneous cluster until it has the desired size.

4.3.4/ ADDITIONAL CUTS

In this section, a new method is presented to deal with size differences after a cut. It

requires performing additional cuts until the size constraint for cluster i is satisfied, i.e.

Di f fci
= 0. Initially, all modules belong to V0. If after a cut ci, |Vi| , si, an additional cut is

made to find an adjacent branch (a branch that contains at least one module that has a

neighbor in Vi) with a size equal to Di f fci
and the resulting branch is joined with or cut off

the erroneous cluster. The flow chart for creating a partition Vi is depicted in Figure 4.4.

Three cases are presented after an initial cut:

1. If Di f fci
> 0, the root of Vi in the MST initiates the search for a new cut-edge ci j(u, v)

in its partition that minimizes: |Di f fci
− subtreesize(v)|, the resulting branch is added

to V0.

2. If Di f fci
< 0, the root of the MS T initiates the search for a new cut-edge ci j(u, v) in

its partition V0 that minimizes: |Di f fci
− subtreesize(v)|. The resulting branch is added

to Vi.

3. If Di f fci
= 0, the size-constraint is satisfied. The root starts the search for a cut-edge

ci+1 for the Vi+1 partition.

This method guarantees that the resultant clusters are always connected since the struc-

ture of the MST is maintained. In addition, the size-constraint can always be satisfied

because in a worst-case scenario where both |Di f fci
| and ∀v ∈ V, |Di f fci

− subtreesize(v)|

are large, |Di f fci
| additional cuts can be made, resulting in partitions that contain one

module each.

Finding a cut-edge is initiated by calling the cut procedure (see Algorithms 1, 2, 3) with

three parameters:

Figure 4.4: Flow chart for the ith partition.
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Figure 4.5: A partitioning example given clusters sizes of {4,5,5} using additional cut. A

cut is shown as the red dotted line. The number on each node corresponds to its sub-tree

size. Nodes with larger borders and darker colors are the clusters roots.

1. recut: A boolean that indicates if the cut-edge to be found is an additional cut to deal

with a previous partition’s size difference.

2. desiredS ize: The desired size of the partition.

3. ad j: In case of an erroneous partition size i (Di f fci
, 0), ad j takes the value of the

partition id i to which the resultant partition needs to be joined. Otherwise, it takes

the value 0.

Initially, all nodes belong to partition V0 with |V0| = |V |. For i ∈ [1, k − 1], a partition Vi is

obtained after removing a cut-edge ci. Algorithms 1, 2, and 3 describe partitioning. The

root of the MST first executes the cut procedure that initiates the search for the first cut-

edge. FIND CUT message is sent in broadcast and RESP CUT is sent using convergecast

as described in algorithm 1 and 2. During this process, each module calculates the

difference between its sub-tree size and the desired cluster size. In case of an additional

cut (recut = true), the branch to join with partition Vi should have at least one neighbor

in Vi to avoid having disconnected partitions (algorithm 3, lines 32, 35). A neighbor in

Vi will always exist because V0 and the erroneous cluster were initially connected. The

minimum difference of a branch size with the maximum number of neighbors possible in

ad j is returned to the root, and the module interface to reach the cutAt module is saved in

toBestCut. The root will then send a CUT message to the cutAt module connected to the

cut-edge which will become the root of the new partition.

After a cut ci, the cutAt module is aware of the size difference Di f fci
of its partition. If

Di f fci
> 0 (the resultant cluster has modules in excess), it calls cut(true,Di f f , 0) to find

a new cut-edge within its partition, and the resultant branch is rejoined with the initial

partition V0 to minimize the difference (algorithm 3, line 45,51). Otherwise, it sends a
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Algorithm 1: Partitioning algorithm: initialisation and FIND CUT message handler

nbModules // Number of modules in the system

subTreeS ize // sub-tree size of the module

cutAt // a boolean indicating if the module is the root of the cut

branch

S // set containing the desired cluster sizes

MS T // the minimum spanning tree built in phase 2

isMS TRoot // a boolean indicating if module is the root of the MST

recut // a boolean indicating if an additional cut is being found

toBestCut // the interface to reach the cut edge

Cluster // cluster identifier

minDi f f // minimum Di f f found

maxNbAd j // maximum number of modules adjacent to the erroneous

cluster

toLastCut // root of the latest identified cluster

children // set containing child modules in the MST

nbWaitedAnswers

1 if isMSTRoot then

2 isRoot ← true; i← 1; desiredS ize← S [i]

3 cut( f alse, desiredS ize, 0)

4 Procedure Cut(recut, desiredSize, adj):

5 nbWaitedAnswers← 0

6 foreach child in children do

7 send FIND CUT(recut, desiredS ize, ad j) to child

8 nbWaitedAnswers← nbWaitedAnwers + 1

9 Msg Handler FIND CUT(recut, d, ad j):

10 minDi f f ← ∞; subTreeS ize← 0; desiredS ize← d

11 if |children| = 0 then

// Leaf

12 subTreeS ize← 1; nbAd j← nb o f neighbors in ad j

13 minDi f f ← |subTreeS ize − desiredS ize|; maxNbAd j← nbAd j

14 send RESP CUT(subTreeS ize,minDi f f ,maxNbAd j) to parent

15 else

16 nbWaitedAnswers← 0

17 foreach child in children do

18 send FIND CUT(recut, desiredS ize, ad j) to child

19 nbWaitedAnswers← nbWaitedAnwers + 1

REPORT CUT message with the value of Di f fci
to the root of partition V0 (algorithm 3, line

53). When the root receives the message, if the received value of Di f fci
is not null, it

executes cut(true,Di f fci
, i) to find a cut within its partition and join the resultant branch

to the partition Vi (algorithm 4, line 61,63). If after joining a branch with Vi the size of Vi

becomes larger than the desired size si, the root sends the REPORT CUT message con-

taining Di f fci
to the last cutAt module, which is the root of Vi to deal with this difference
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(algorithm 4, lines 66, 67). Otherwise, if the root receives REPORT CUT message with the

value of Di f fci
= 0, it updates its cluster tree and then executes cut( f alse, si+1, 0) to find

the partition Vi+1 (algorithm 4, lines 67, 70). The tree must be updated to join the resul-

tant branches after additional cuts with their corresponding partitions. The updateTree()

procedure depends on the algorithm used to build the MST. After considering the nodes

in additional branches as disconnected nodes, we use the tree maintenance algorithm

described in Diaz and Mendez (2019) where the GHS algorithm for building the MST is

re-launched inside the partition to join an additional disconnected branch.

Algorithm 2: RESP CUT message handler

20 Msg Handler RESP CUT(s, e,m):

21 nbWaitedAnswers← nbWaitedAnswers − 1; subTreeS ize← subTreeS ize + s

22 if |e| < minDi f f then

23 minDi f f ← e; toBestCut ← sender

24 if recut = true and |e| = minDi f f and m > maxNbAd j then

25 maxNbAd j← m; toBestCut ← sender

26 if nbWaitedAnswers = 0 then

27 subTreeS ize← subTreeS ize + 1

28 myDi f f ← subTreeS ize − desiredS ize

29 if cutAt = f alse and isRoot = f alse then

30 if |myDi f f | < minDi f f then

31 minDi f f ← myDi f f ; toBestCut ← NULL

32 if recut = true then

// Count nb of modules adjacent to cluster ad j in current branch

33 maxNbAd j← m + nbAd j

34 if maxNbAdj = 0 then

// Do not consider the branch

35 minDi f f ← ∞

36 send RESP CUT(subTreeS ize, minDi f f , maxNbAd j) to parent

37 else

38 if isRoot = true and (recut = false or desiredS ize > 0) then

// Cluster i is found

39 send CUT(i) to toBestCut

40 else

// cutAt performs an additional cut and join the resultant branch

to cluster 0

41 send CUT(0) to toBestCut

Figure 4.5 shows an example of partitioning the MST shown in Figure 4.3 into three

clusters with given desired sizes of S = {4, 5, 5}. The first cut initiated by the MST root

results in a branch of size four that forms the first cluster V1 colored blue. The second

cut results in a branch of size six, but the desired size is five. So, the second cluster V2

colored yellow has one additional node (Di f fc2 = 1). Therefore, an additional cut in V2 is

made to cut a branch with one node adjacent to V0, and the resultant branch is associated
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Algorithm 3: CUT message handler

43 Msg Handler CUT(i):

44 if recut = false then

45 toLastcutAt ← toBestCut

46 if toBestCut = NULL then

47 cutAt ← true

48 Cluster ← i

49 myDi f f ← subTreeS ize − desiredS ize

50 assign sub-tree to cluster i

51 if myDi f f > 0 then

// Case 1: cluster i has an excess of modules. Must find a new

cut to join the resulting branch to cluster 0

52 execute cut(true,myDi f f , 0)

53 else

// Case 2: Cluster i has a deficit of modules. Report the

difference to the root

54 send REPORT CUT(−myDi f f ) to parent

55 else

56 send CUT(i) to toBestCut

with V0. The end result is three clusters with the desired sizes: the blue one with size four,

the yellow one with size five, and the green one with size five.

4.4/ COMPLEXITY ANALYSIS

In this section, we give a complexity analysis by phase in terms of communication load

and execution time. We note n = |V | the number of modules and m = |E| the number of

connections between modules.

4.4.1/ COMMUNICATION LOAD

In the first phase, the anchor positions are found, and all edges’ weights are calculated.

It requires O(n) messages to find and store anchors through tree traversal. In addition,

to calculate and store an edge weight, two messages are exchanged between the edge’s

connected modules. Therefore, the communication complexity of the first phase is O(n +

m).

The second phase consists of building a minimum spanning tree. We use the GHS al-

gorithm described in Gallager et al. (1983) which has a complexity of O(m + n log n) in

addition to O(n) to find the root and redirect the edges towards it.

During the third phase, the tree is partitioned to obtain k partitions. The SC-Clust requires
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Algorithm 4: REPORT CUT message handler

57 Msg Handler REPORT CUT(di f f ):

58 if isRoot then

59 if recut = false then

60 toLastcutAt ← sender

61 if di f f > 0 then

// Find a new branch with size di f f to join it with cluster i

62 recut ← true

63 execute cut(true, di f f , i)

64 else

65 if di f f < 0 then

// Send report to the last cutAt so it can find a new branch with

size di f f and join it to cluster 0

66 send REPORT CUT(|di f f |) to toLastcutAt

67 else

// Case 3: di f f = 0. Cluster i is found and it satisfies the size

constraint.

68 updateTree()

// Initiate the search for the next cluster

69 i← i + 1

70 execute cut( f alse, si, 0)

71 else

72 if cutAt = true then

73 if di f f > 0 then

74 desiredS ize← di f f

75 if recut = true then

76 updateTree()

77 recut ← true

// Excess of modules. Must find a new cut of size di f f and join

the resulting branch to cluster 0

78 execute cut(true, desiredS ize, 0)

79 else

80 send REPORT CUT(|di f f |) to parent

81 else

82 if sender = parent then

83 send REPORT CUT(di f f ) to toLastcutAt

84 else

85 send REPORT CUT(di f f ) to parent

k − 1 cuts plus a number a of additional cuts used to fix size differences. Therefore, the

number of messages required is O((k − 1 + a) log n) since after each cut the search space

for the next cut is reduced. The number of additional cuts a will be discussed in the next

section. Moreover, clusters’ trees are updated after each cut to join additional branches

resulting from additional cuts, which require O(k log n) messages.

Overall, by summing the complexities of the three phases, the communication complexity



4.5. SIMULATIONS AND RESULTS 57

(a) Random shape (b) Cubic shape (c) Mug shape (d) Humanoid shape

Figure 4.6: DCut results on 4 different shapes with 4 clusters.

is equal to: O(n + m) + O(n + m + m log n) + O((k + a) log n) = O(n + m) + O((m + k + a) log n).

In a filled cubic geometry, the maximum number of connections m is equal to 3n. Also,

in all practical cases k ≪ n and a ≪ n unless si = 1 for i ∈ [1, n]. Therefore, the overall

complexity of communication can be expressed with the number of modules in the system

n and is equal to O(n) + O(n log n) = O(n log n).

4.4.2/ EXECUTION TIME

The time required for the first phase in which anchor positions are found and edge weights

are calculated depends on the diameter d of the network, since the maximum tree length

is bounded by d. Three tree traversals are required. Thus, the time complexity of the first

phase is O(d).

The time complexity of building the tree in the second phase is O(n log n) Gallager et al.

(1983). Redirecting all edges towards the root requires a tree traversal. The time taken

for tree traversal is O(n), since the maximum possible diameter of the MST can be equal

to n.

Therefore, the time required for the second phase is O(n) + O(n log n) = O(n log n).

As for the third phase, the time required to find a cut is O(n). k + a cuts need to be found.

Therefore, the time complexity for partitioning the MST is O((k+a)n) in addition to the time

required for joining additional cuts and updating cluster tree which is O(k log n). Therefore,

the overall time complexity of the third phase is O(n) + O(k log n) = O(n).

The overall complexity of the three phases is O(d) + O(n log n) + O(n) = O(n log n). This

complexity is mainly due to the construction of the MST.
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(a) Random shape (b) Cubic shape (c) Mug shape (d) Humanoid shape

Figure 4.7: SC-Clust results on 4 different shapes with 4 equal size clusters.

0 5000 10000 15000 20000 25000 30000
nb of modules

1

2

3

tim
e 

(u
s)

1e6 random shape

0 5000 10000 15000 20000 25000 30000
nb of modules

0.5

1.0

1.5

2.0

tim
e 

(u
s)

1e6 cubic shape

0 5000 1000015000200002500030000
nb of modules

1

2

3

tim
e 

(u
s)

1e6 mug shape

0 5000 10000 15000 20000 25000 30000
nb of modules

0

1

2

3

4

tim
e 

(u
s)

1e6 humanoid shape

Execution Time

25% in each cluster
10% 20% 30% 40%

10% in each cluster
4x5% 3x10% 2x15% 1x20%

Figure 4.8: SC-Clust execution time evaluation.

4.5/ SIMULATIONS AND RESULTS

Figure 4.6 shows 4 clusters created by DCut Bassil et al. (2020), a clustering algorithm

for lattice-based modular robots that results in randomly sized clusters, on 4 different

shapes: a randomly generated shape forming an irregular dense cloud with 8,500 mod-

ules, a cubic shape formed by 7,225 modules with a densely filled volume, a mug shape

formed by 8,584 modules and a humanoid shape formed by 8,291 modules with com-
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Figure 4.9: SC-Clust communication load evaluation.

ponents of different densities. The 4 clusters are distributed regularly along the borders

of the configuration. Figure 4.7 shows 4 clusters created by SC-Clust of equal sizes on

the same shapes as in Figure 4.6. The created clusters shapes differ from the shapes

created by the DCut algorithm since they partition the tree differently. The clusters cre-

ated by SC-Clust show some irregularities on their borders due to additional cuts that

attach or remove modules on the borders to satisfy the size constraint, as explained in

Section 4.3.4.

We validated the SC-Clust algorithm on real robotic systems called BlinkyBlock . The

video1 shows 6 different experiments on 144 real BlinkyBlock consisting of subdividing

3 different shapes (a square, a cube and a double F shape) into 4 clusters. For each

shape, we run the code one time to create clusters with the same number of BlinkyBlock

and another time to create heterogeneous clusters with 10 %, 20 %, 30 % and 40 % of the

set.

1YouTube video: https://youtu.be/niYHGoqWbQs

https://youtu.be/niYHGoqWbQs
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Figure 4.10: Number of additional cuts.

4.5.1/ EVALUATING SC-CLUST

To provide an objective evaluation, we carried out different simulations with different

shapes consisting of up to 30,000 3D Catoms. Each shape has different geometric prop-

erties to show that the proposed algorithm finds a solution independently of the geometric

shape. For each shape, we conducted simulations with the following cluster distributions:

• 4 clusters with 25 % in each cluster.

• 4 clusters with 10 % 20 % 30 % 40 %.

• 10 clusters with 10 % in each cluster.

• 10 clusters with 4 clusters containing 5 % each, 3 clusters containing 10 % each, 2

clusters containing 15 % each, and 1 cluster containing 20 %.
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4.5.1.1/ EXECUTION TIME

Figure 4.8 shows the execution time of the SC-Clust algorithm. We can see that the

execution time increases logarithmically as the number of modules increases. This is

valid for all shapes and all cluster distributions. The reason is obvious. The increase in

the number of clusters directly affects the execution time as explained in Section 4.4.2

because as the number of clusters increases, the number of cuts to be found increases.

Moreover, execution time is also affected by the shape and diameter of the system. When

the diameter of the ensemble increases and its density decreases, the execution time

increases; as can be seen in Figure 4.8, the humanoid shape requires more time than

the other shapes. Furthermore, when the number of clusters is the same and the cluster

size distribution differs, the execution time is affected due to the additional number of cuts

(see in Figure 4.10) used to satisfy the size-constraint and the search space to find these

cuts which vary according to the clusters sizes.

4.5.1.2/ COMMUNICATION LOAD

The communication load is shown in Figure 4.9. The number of exchanged messages for

all shapes increases linearly as the number of modules in the system increases. It also

increases when the number of clusters becomes larger due to the messages needed to

find the cuts. The complexity of the communication load in Section 4.4.1 depends on

the number of modules and the connections between the modules. The random shape

presents the largest number of connections between its modules; thus, it requires a larger

number of exchanged messages. Moreover, when the sizes of the clusters differ while the

number of clusters is the same, the number of exchanged messages, which are needed

to find additional cuts and join branches to satisfy the size-constraint, is slightly affected.

4.5.1.3/ ADDITIONAL CUTS

We recall that additional cuts are needed when the resultant cluster size after an initial

cut does not satisfy the size constraint. So, additional cuts are made until the cluster

size is equal to the desired size. Figure 4.10 shows the number of additional cuts that

have a direct impact on execution time and communication load. It can be seen that

when the number of clusters increases, the number of additional cuts needed increases.

Furthermore, it is not affected by the number of modules in the system. It is directly

affected by the formation of the MST, which in its turn is affected by the geometrical

aspects of the ensemble and not its size. Therefore, it can be arbitrary for the same

number of clusters with different size distributions, since finding a cut that results in a

cluster with a size equal to the desired size depends on finding a cut module with a sub-
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tree size equal to the desired size, which highly depends on the structure of the MST.
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Figure 4.11: Comparing DCut and SC-Clust.

4.5.2/ COMPARING DCUT WITH SC-CLUST

Here, we compare the DCut algorithm with SC-Clust. Figure 4.11 compares DCut with

SC-Clust in terms of execution time and communication load on the shapes of Figures 4.6

and 4.7 with the same number of modules for each shape and 4 clusters. As seen in

Figure 4.11, the SC-Clust requires more messages exchanged in all shapes since for

each cut, additional cuts may be necessary to satisfy the size constraint. As for the

execution time, the amount needed by SC-Clust is significantly higher. The reason is that

the DCut algorithm finds cuts in parallel in case of k > 3. On the other hand, finding cuts

in SC-Clust is completely sequential: finding a cluster Vi cannot begin before the cluster

Vi−1 has been found. In addition, SC-Clust requires k−1+a cuts to obtain k clusters where

a is the number of additional cuts. DCut requires k − 1 cuts.

4.6/ CONCLUSION

In this chapter, we proposed SC-Clust, a fully distributed size-constrained clustering al-

gorithm based on graph cuts. It groups modules with neighbor-to-neighbor communi-

cation in a large-scale modular robot into clusters of given sizes to enhance the self-
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reconfiguration of modular robot-based programmable matter using cluster-based meth-

ods to increase the parallelization of movements. To the best of our knowledge, it is the

first distributed tree-based clustering algorithm with a size-constraint. We evaluated our

algorithm on multiple shapes with different geometric properties while varying the number

of modules, the number of clusters, and the sizes of the clusters. The results show that

our algorithm is scalable and efficient with O(nlogn) time and communication complexity.
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5.1/ INTRODUCTION

T
he ability of modules of a modular robot to recognize the global shape of the en-

semble provides invaluable information that can be used to facilitate and improve

various tasks. One key benefit of recognizing the global shape is the facilitation of ef-

ficient coordination and collaboration among modules. When modules have knowledge

of the robot’s global shape, they can better coordinate their actions, movements, and

behaviors to achieve efficient self-reconfiguration. Furthermore, by comparing the ex-

pected global shape with the actual observed shape, modules can detect the termination

of self-reconfiguration and identify inconsistencies, such as module failures, disconnec-

tions, or misalignments. Morevorer, shape recognition can be used to report the shape to

an external system or operator.

In this chapter, we introduce a shape recognition algorithm for lattice-based modular

robots with neighbor-to-neighbor communication. It consists of finding a set of overlap-

ping boxes whose union forms a representation of the current configuration. Using a

distributed approach, each module communicates with its direct neighbors to collectively

determine the shape of the global ensemble.

Section 5.2 describes the proposed distributed shape recognition algorithm. In Sec-

tion 5.3 we analyze its computation and communication complexities. Section 5.4 eval-

uates and analyzes the algorithm where we implemented it in VisibleSim using Blinky-

65
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Blocks modules and compared it with a classic coordinate collection method where each

module sends its coordinates through a tree rooted on the connected computer. The re-

sults obtained show the efficiency of our algorithm in detecting the current shape of the

robot, while also outperforming the coordinate collection algorithm.

5.2/ ALGORITHM DESCRIPTION

The main idea of the algorithm is to find a set of full boxes that cover the whole configu-

ration. In this section, we describe the distributed algorithm, shown in Algorithms 5 and

6 for finding the boxes on modular robotic systems where modules communicate using

message-passing with their directly attached neighbors.

We assume that all modules share the same 3D coordinate system and that each module

stores its coordinates in its memory. This can be done efficiently in lattice-based modular

robots, as explained in Piranda et al. (2023); Hoøobut et al. (2016). The algorithm is not

affected by the orientation of the coordinate axis. However, for simplicity, we use the
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orientation of the axis and the direction notation as shown in Figure 5.1. A Box B is

defined by two vectors Cmin(xmin, ymin, zmin) and Cmax(xmax, ymax, zmax).

X(x, y, z) ∈ B⇔



































xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

zmin ≤ z ≤ zmax

(5.1)

The algorithm starts by creating a vertical decomposition consisting of overlapping rect-

angles on each 2D layer along the
−→
Z axis. Subsequently, these rectangles are extended

in the
−→
Z axis direction to form boxes. Finally, once a box is found, it can be sent to the

connected computer or broadcasted to all the modules.

Let M denote the set of modules. A straight sequence of connected modules in one

direction is referred to as a line of modules. The initial step of the algorithm involves

determining the values dm for every module m ∈ M. The value dm represents the rank

of the module in the line (from 1 to n), moving ’backward’ along the
−→
Y axis starting from

module m, until an empty position is reached. Let lm be the vertical line in the
−→
Y axis

direction that contains m, dm can be expressed by:

dm = 1 + |{n ∈ lm s.t yn > ym}| (5.2)

where |X| is the cardinality of X.

Algorithm 5: Distributed shape recognition - Part 1

input: (x, y, z), neighbors

1 Initialization :

2 if empty((x, y + 1, z)) then

3 send SET D MSG(1) to neighbor((x, y − 1, z))

4 Msg Handler SET D MSG(dsent):

5 d ← dsent + 1

6 if ¬empty((x, y − 1, z)) then

7 send SET D MSG(d) to neighbor((x, y − 1, z))

8 else

9 if isRmin then

10 if ¬empty((x + 1, y, z)) then

11 send FIND W MSG(id, d) to neighbor((x + 1, y, z))

12 else

13 w = 1

14 Notify front line of w

15 if ¬empty((x, y, z + 1) then

16 send FIND H MSG(id, d, w) to neighbor((x, y, z + 1))

17 else

18 myBox = ({x, y, z}, {x + w − 1, y + d − 1, z + h − 1})
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Algorithm 6: Distributed shape recognition - Part 2

1 Msg Handler FIND W MSG(id, dsent):

2 if d < dsent then

3 send SET W MSG(id, dsent, 0) to neighbor((x, y − 1, z))

4 else

5 if empty((x + 1, y, z)) then

6 w← 1

7 Notify back line of w

8 send SET W MSG(id, dsent, w) to neighbor((x, y − 1, z))

9 else

10 send FIND W MSG(id, dsent) to neighbor((x + 1, y, z))

11 Msg Handler SET W MSG(id, dsent, wsent):

12 if dsent ≥ d then

13 w← wsent + 1

14 Notify back line of w

15 if myid = id then

16 if ¬empty((x, y, z + 1)) and isCmin) then

17 send FIND H MSG(id, d, w) to neighbor((x, y, z + 1))

18 else

19 myBox = ({x, y, z}, {x + w − 1, y + d − 1, z})

20 else

21 send SET W MSG(id, dsent, wsent + 1) to neighbor((x, y − 1, z))

22 Msg Handler FIND H MSG(id, dsent, wsent):

23 if w < wsent ∨ d < dsent then

24 send SET H MSG(id, 0) to neighbor((x, y, z − 1))

25 else

26 if empty((x, y, z + 1)) then

27 h← 1

28 send SET H MSG(id, h) to neighbor((x, y, z − 1))

29 else

30 send FIND H MSG(id, d, w) to neighbor((x, y, z + 1))

31 Msg Handler SET H MSG(id, hsent):

32 h← hsent + 1

33 if myid = id then

34 myBox = ({x, y, z}, {x + w − 1, y + d − 1, z + h − 1})

35 else

36 send SET H MSG(id, h) to neighbor((x, y, z − 1))

To compute dm, the algorithm proceeds as follows (see example Figure 5.1a) :

1. Initially, modules without an attached neighbor in the backward direction must set d

to 1.

2. Then, they send a message, denoted as SET D MSG(d), to their front neighbor. Upon

receiving the message, the module sets its d value as the received value plus one
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and, subsequently, forwards the message to its front neighbor.

3. This process continues until an empty position is encountered in the front direction

(cf. Algorithm 5 lines 1-7).

A module is considered as an Rmin if it occupies the foremost left corner of a rectangle.

Once dm is set, module m can determine locally if it is Rmin. To do so, we denote as dle f t

the d value of the module on the left of the module m. Then, a module is Rmin if it verifies

the following condition:

empty( f ront) ∧ (d , dle f t ∨ ¬empty(le f t + f ront)) (5.3)

Next, we define wm for each module m in the set M as the maximum number of connected

vertical lines with the same or higher height toward the right (cf. Figure 5.1b).

We can express wm by the following rule:

wm = max
n connected

(ym = yn ∧ (di ≥ dm∀i ∈ [m, n])) (5.4)

To determine wm for all modules m in the set M, the following distributed process is

employed: each module located in a position Rmin sends a message called FIND W -

MSG(id, dsent) to its right neighbor (cf. Algorithm 5 lines 9-10). As the message is forwarded,

if the message reaches a module n with dn < dsent, the module n responds to the sender on

its left with a message SET W MSG(id, dsent,wsent = 0) (cf. Algorithm 6 lines 2-3). Otherwise,

when it reaches a module n that lacks a right neighbor, it assigns wn the value of 1 and

responds to the sender on the left using a message denoted SET W MSG(id, dsent,wsent = 1)

(cf. Algorithm 6 lines 4-8). Upon receiving this message, module r sets its wr value as

the received value plus one if and only if dsent ≥ dr to ensure that the line at the back of

module r can accommodate dsent modules (cf. Algorithm 6 lines 12-14).

From each Rmin module, we use local values of dm and wm to define a rectangle

(Rmin,Rmax) = ({xm, ym}, {xm + wm − 1, ym + dm − 1}). This construction leads to a vertical

decomposition characterized by overlapping filled rectangles within each 2D layer along

the
−→
Z axis, ensuring full coverage of all modules as can be seen in Figure 5.1c.

Once the value of wm is determined, we can refer to the values of d and w of the module

at the bottom (at z − 1) of module m as dbottom and wbottom, respectively. We also use

Rmin(bottom) to indicate whether the bottom module is at an Rmin position. Then a module

m is at a Cmin position if it verifies:

Rmin ∧ ¬(Rmin(bottom) ∧ d = dbottom ∧ w = wbottom) (5.5)

The next step consists of determining the height h, which represents the maximum num-
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ber of rectangles on top of the one associated to Cmin. Consequently, this results in the

formation of overlapping boxes. To accomplish this, the module located at Cmin initiates

a message called FIND H MSG(id, dsent = d,wsent = w). This message serves to count the

number of top neighbors along the
−→
Z axis that meet conditions d ≥ dsent and w ≥ wsent (cf.

Algorithm 6 lines 16-19).

Upon receiving the FIND H MSG message by a module r, if the values dr > dsent or

wr > wsent, it replies with a message SET H MSG(id, h=0) to the sender at the bottom

(cf. Algorithm 6 lines 23-25). Otherwise, if the receiver module r lacks a top neighbor, it

responds by sending a message labeled SET H MSG(id, h=1) to the sender at the bot-

tom (cf. Algorithm 6 lines 26-28). Upon receiving the SET H MSG message, the receiver

increments the received h value by one and forwards the message to its bottom neighbor

until reaching the initiator (cf. Algorithm 6 lines 32-36).

The algorithm operates asynchronously. Therefore, a module can receive a FIND W MSG

before its d value is defined or a FIND H MSG before the d and w values are defined. To

solve this, if a module receives a message and the values required for its handling are not

yet defined, the module stores the received message in its memory and handles it once

the values are set.

When module m at a Cmin receives its hm value, it can set its Box as ({xm, ym, zm}, {xm+wm−

1, ym + dm − 1, zm + hm − 1}). The algorithm terminates when all modules at a Cmin position

have determined their boxes.

The termination of the algorithm can be detected by comparing the volume of the union of

boxes with the number of modules. A count can be found using a convergecast operation

and subsequently broadcast this count to all the modules within the configuration.

Figure 5.2 shows an example of overlapping boxes. It can be seen that the resultant

boxes may differ according to the orientation of the coordinate axis. However, in both

cases a) and b) the resultant boxes cover all the configuration. Moreover, having an

overlapping box results in boxes that are completely inside a bigger one, such as the blue

and purple in Figure 5.2 (a) and the yellow in Figure 5.2 (b). When multiple boxes must

be stored, they can be aggregated by neglecting the boxes that are inside another one.

5.3/ COMPLEXITY ANALYSIS

The complexity in terms of the number of boxes has a lower bound of Ω(1) in the case of a

cubic configuration. As the shape becomes increasingly irregular and incorporates holes,

the complexity approaches an upper bound of O(n) where n is the number of modules.

Next, we assess the time and communication complexities of the shape recognition al-
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gorithms presented in Section ??. The number of messages used to find the boxes is

proportional to the number of modules. To find the the values of d and w of each module

on a line along the
−→
X and

−→
Y axes, O(n) messages are exchanged, where n is the number

of modules. Then, to find the height of each box, the box’s corner Cmin initiates a message

that passes to the line of modules along the
−→
Z . The number of these messages is also

bounded by O(n). Therefore, the communication complexity can be expressed as O(n).

As for the time complexity, the search for boxes is done in parallel. Setting the values of

d and w requires O(D + W) time, where D and W are the depth and width of the entire

configuration. The time complexity to search for the height h of the boxes is O(H), where

H is the height of the configuration. Consequently, the overall time complexity can be

expressed as O(D +W + H). Thus, it depends on the geometry of the configuration.

5.4/ EXPERIMENTS AND ANALYSIS

We implemented the algorithm using VisibleSim, a discrete event-based simulator for

distributed modular robotic systems that support BlinkyBlocks. Figure 5.2c shows a Vis-

ibleSim capture of the simulated example of the box cover shown in Figure 5.2. We

recall from Chapter 3 that BlinkyBlocks system is a modular robotic system made up of

centimetre-size blocks that are attached to each other via magnets in a square cubic

lattice. Each block is a cube of roughly 40 mm, with processing, storage, and communi-

cation capabilities. Each BlinkyBlock communicates through serial links with its directly

connected neighbors by sending packets with a payload size of 227 bytes.

The objective of the experiment is to compare the shape recognition algorithm with ex-

haustive coordinates collection in order for modules to send their current shape to a com-

puter to be used by an interactive CAD software. The coordinates collection method

consists of sending the list of coordinates to the root of a breadth-first spanning tree con-

x

y

x

y

a) b) c)

Figure 5.2: Three basic example: a) A basic shape defined by 5 boxes. b) The same

shape but rotated producing 4 boxes. c) The same shape computed on VisibleSim.
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(a) (b)

(c) (d)

Figure 5.3: Four configurations examples captured from VisibleSim. (a) Cube configura-

tion with 1000 BlinkyBlocks. (b) Ball configuration with radius 8 (833 BlinkyBlocks). (c)

Mug configuration with 4019 BlinkyBlocks. (d) Thinker configuration with 5814 Blinky-

Blocks.

nected to the CAD computer. Each module sends three bytes for its coordinates x, y

and z. The leaf modules start by sending their coordinates. The coordinates are merged

at intermediate modules before being sent to their parent in the tree when the data are

received from all their children modules or the payload is totally used. Using the shape

recognition method, once a box is found, the module at Cmin sends the box information to

the root also via a breadth-first tree.

We have done the comparison on four different configurations shown in Fig. 5.3 with

different geometries and characteristics:

1. Cube: A simple and regular connected cubic shape. One box is required to cover

the whole configuration.

2. Ball: It contains modules whose distance from the center is less than or equal to a

given radius Naz et al. (2018a).

3. Mug: A mug shape that exhibits a few irregularities.
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Figure 5.4: Mean number of messages and mean number of bytes sent per module on

the four configurations examples.

4. Thinker: The thinker statue defined by a low resolution mesh.

We evaluated the mean number of messages sent per module, the mean number of

bytes sent by a module, the time taken to complete the shape recognition, and the ratio

between the number of modules and the number of boxes while increasing the sizes of

the configurations.

Fig. 5.4 shows the mean number of messages and the mean number of bytes sent by

a module on the four configurations. The mean number of messages sent by a module

executing the shape recognition method is larger than the coordinates collection on the

four configurations. This is due to the communication required to find the dimensions

of the boxes. As for the coordinates collection method, each module must send one

message to its parent that contains the coordinates of its subtree, but due to the limitation

of the packet size, when a packet is filled, it is directly sent to the root, which increases
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Figure 5.5: Time for receiving the whole current shape by the root.

the number of messages sent by a module. More packets will be full as the size of

the configuration increases. Regarding the mean number of bytes sent by a module, the

sizes of the messages exchanged by the shape recognition algorithm to find the boxes are

limited. The maximum size of a used message is 6 bytes which contain the coordinates of

the Cmin and Cmax of the box. For the coordinates collection method, the mean message

size increases with the size of the configuration. The maximum packet size can go up to

its payload capacity.

We conducted an experimental study on BlinkyBlock hardware that showed that the time

t required per message is affected by the message length l (number of bytes contained in

a message) and can be modeled with the linear function: t = 0.08935×l+1.516. Therefore,

the global executed time is affected by the number of exchanged messages and the length

of the messages. Fig. 5.5 shows the time taken by both methods. Although the shape

recognition method requires more messages, it can be seen that the shape recognition

method is more efficient in time in the four configurations due to the increase in the length
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of the messages used in the coordinated collection method as the configuration size

increases. The time taken by the shape recognition method depends on the dimensions

of the configuration as explained in Section 5.3,

Fig. 5.6 illustrates the ratio between the number of modules and the number of boxes in

different configurations. We excluded the graph of the cube shape from the presentation

for the sake of visual clarity, since all modules can fit in a single box regardless of the

configuration size. As the configuration becomes more irregular, as in the case of the

thinker configuration, the ratio decreases. This decrease is a consequence of the need

for additional boxes with smaller dimensions to accommodate the irregularities present

in the structure. In addition, as the dimensions of the analyzed configurations increase,

the ratio decreases due to the rise in irregularities. This is inversely proportional to the

regularity of the configuration, which means that more regular configurations will result in

a higher ratio. For example, for the cube configuration, we will have a ratio that increases

linearly with a slope of one since the ratio will be equal to the number of modules.

5.5/ CONCLUSION

In this chapter, we proposed a new shape recognition algorithm that allows modules in

a lattice-based modular robot to discover their current shape. The modules search for

overlapping boxes to cover the whole configuration. The union of these boxes gives the

current shape. We evaluated the algorithm in simulation on BlinkyBlocks on different

configurations with different geometrical properties and compared it with a coordinates

collection method to retrieve the current shape of the ensemble and send it to a central

entity. The results show that the shape recognition method outperforms the coordinates

collection in time efficiency while using a smaller memory footprint.
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6.1/ INTRODUCTION

I
n Chapter 2, the discussion revolved around the difficulty of finding a fast optimal solu-

tion for the self-reconfiguration challenge. Two approaches, scaffolding and tunneling,

have been used to tackle this issue. Scaffolding entails the construction of the modular

robot using hollow substructures or meta-modules, which provide enough empty space

for tunneling while simultaneously enhancing holonomy. Tunneling involves the move-

ment of modules through these empty structures to alter the shape of the robot.

In this chapter, we propose a porous scaffolding structure made of 3D Catoms meta-

modules that has enough empty volume to allow tunneling. Usually meta-modules are

used to facilitate the movement of modules by pre-planning unitary moves. Thus, with

these meta-modules we obtain lattices at the meta-module scale composed of cells that

can be empty or full. We propose a three-state model, where each meta-module cell can

be absent, present and sparse, or present and filled. Meta-modules can switch from the

ºFULLº state to the ºSPARSEº state by dumping its filling modules into a neighboring cell,

and similarly a cell can be emptied by switching from a ºSPARSEº state to the state. In the

opposite direction, meta-modules can go from the ºSPARSEº state to the ºFULLº state by

receiving modules from a neighboring ºSPARSEº or ºFULLº cell, and similarly, an empty

cell can be filled by switching from an ºEMPTYº state to the ºSPARSEº state.

79
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(a) Empty 3D meta-module (b) Filled 3D meta-module

Figure 6.1: Meta-module’s anatomy. MML refers to a meta-module leader (cf. Sec-

tion 6.4)

This three-state model provides a new functionality: ºFULLº meta-modules can be used

as a reserve of material or storage places. Their presence in the grid allows one to

reduce the distances covered by the modules during the self-reconfiguration, either by

proposing a place to store incoming modules or by proposing outgoing modules close to

their delivery place. This new functionality also gives a new property to the structure: the

ability to compress (by filling some meta-modules) or expand (by emptying some meta-

modules) which drops the self-reconfiguration constraint to have the number of meta-

modules in the initial structure to be equal to the one in the goal structure.

The structure anatomy is presented in Section 6.2. Then, the basic operations that move

the modules from one meta-module to another in all directions to change their states are

presented in Section 6.3. A motion coordination algorithm that will be executed by the

modules that execute an operation is presented in Section 6.4. Finally, a conclusion is

provided in Section 6.5.

6.2/ POROUS STRUCTURE ANATOMY

Our proposed meta-module can be in two states: ºFULLº or ºSPARSEº. A ºSPARSEº meta-

module is made up of ten 3D Catoms assembled in a 3D hexagonal shape in an FCC

lattice as in Figure 6.1. The positions of the modules in a meta-module are given in

Figure 6.3. They can be vertically flipped according to their position in the meta-module-

scale lattice. The size of the meta-module has an impact on the granularity of the system,

since the description of the shape will be done at the meta-module level. The size of the

modules 10 is chosen so that the meta-module can store the size of another one and

maintain enough space between it and its neighbor meta-modules to allow the modules

to flow between them without blocking. Furthermore, 10 is the smallest size that allows
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Figure 6.2: Meta-modules structure in a 3D cubic lattice. a) ºSPARSEº meta-modules in

the XZ plane. b) ºSPARSEº meta-modules in the YZ plane. c) ºFULLº meta-modules in the

XZ plane. d) ºFULLº meta-modules in the YZ plane.

modules to flow through the empty internal volume of a ºSPARSEº meta-module without

being blocked by modules that form the ºSPARSEº meta-module through which they tra-

verse. Each ºSPARSEº meta-module can fit ten additional modules into its empty internal

volume to form a ºFULLº meta-module. Therefore, a ºFULLº groups 20 3D Catoms, twice

the size of a ºSPARSEº meta-module.

Filling a meta-module allows the structure to compress or expand by a factor of 2 since

each ºSPARSEº meta-module can store in its empty volume the size of another meta-

module and the ºFULLº meta-module can expand by discarding its filling modules so they

can be reassembled into a ºSPARSEº meta-module at an ºEMPTYº position. Let N be

the total number of modules in the initial shape and S G the size of the goal shape in

terms of meta-module (ºFULLº or ºSPARSEº). Due to the expandability and compressibility

properties of the proposed structure: ⌈ N
20
⌉ ≤ S G ≤

N
10

.

The positions of the filling modules are carefully chosen to avoid blockage. They must be

free to be discarded in all directions. For this reason, their positions differ according to

the position of their meta-module in the meta-module scale lattice. Table 6.1 shows the

assortments of positions for each meta-module position.

The meta-modules are arranged in a 3D regular cubic lattice as shown in Figure 6.2. A

cell in the grid can be ºEMPTYº or present. A present cell contains a meta-module that can

be ºSPARSEº or ºFULLº. Each meta-module is attached to an adjacent one with at least
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Table 6.1: Positions of filling modules relative to the bottom left one (MML). X, Y and Z

are the coordinates of meta-module in the square cubic lattice.

(X+Y)%2 = 0∧

Z%2 = 0

(X+Y)%2 = 1∧

Z%2 = 0

(X+Y)%2 = 0∧

Z%2 = 1

(X+Y)%2 = 1∧

Z%2 = 1

(0,-1,1) (-1,-1,1) (0,1,2) (1,1,2)

(1,-1,1) (0,-1,1) (1,1,2) (0,1,2)

(0,-1,2) (0,-1,2) (-1,1,2) (2,0,2)

(1,-1,2) (1,-1,2) (-1,0,1) (1,0,1)

(2,-1,2) (-1,0,2) (0,0,1) (0,0,1)

(0,0,1) (0,0,1) (0,-1,1) (0,-1,1)

(-1,0,1) (1,0,1) (1,-1,1) (-1,-1,1)

(-1,0,2) (2,0,2) (2,0,2) (-1,0,2)

(-1,0,3) (1,0,3) (1,-1,3) (-1,-1,3)

(0,0,3) (0,0,3) (0,-1,3) (0,-1,3)

one module. The left, right, front, and back adjacent meta-modules in the XY plane have

the positions of their modules flipped vertically if (X + Y)%2 = 1 and the top and bottom

adjacent meta-modules in the XZ plane are attached to the front or the back of the two

top or the two bottom modules according to the
−→
Z axis to preserve structure symmetry.

The structure is designed to make module transportation easier. An ºEMPTYº cell and a

ºSPARSEº meta-module with a complete neighborhood are never blocked, which means

that they can freely receive or release modules from any direction. In a ºSPARSEº meta-

module, at least one module is always free to move, allowing the meta-module to be dis-

assembled and its modules to be transported in any direction. Furthermore, an ºEMPTYº

cell can receive modules from any direction and connect to its neighboring meta-modules

without obstruction. This allows the lattice structure to be assembled and disassembled

with ease without the need to rearrange other modules or cells. This feature allows the

Figure 6.3: Modules positions of a ºSPARSEº meta-module in the FCC lattice.
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bridging constraint, which prevents the insertion of a module in an empty position be-

tween two modules facing opposite directions, to be relaxed at the level of meta-modules.

This allows for greater flexibility in the placement and removal of meta-modules within the

lattice structure. Therefore, it also facilitates self-reconfiguration planning.

6.3/ MOTION OPERATIONS

To change the shape of the entire structure, we define three basic operations that can be

executed by a meta-module to change the state of its cell:

1. Dismantle operation changes the state of an occupied cell from ºSPARSEº to

ºEMPTYº or ºFULLº to ºSPARSEº. It breaks or empty the meta-module and trans-

ports its modules to an adjacent cell.

2. Transfer operation does not change the state of a cell. It is only used to transport

modules through a ºSPARSEº cell.

3. Assemble operation changes the state of a cell from ºEMPTYº to ºSPARSEº or

ºSPARSEº to ºFULLº.

Each operation can be executed in the six directions (left, right, up, down, back, and

front) in the cubic meta-module scale lattice. These operations can be exploited by a self-

reconfiguration planner whose purpose will be to specify which operation to execute on

which meta-module. An operation is defined as a sequence of hand-coded movements

to navigate the modules of a meta-module from one position to another. Each movement

is coded by a triplet in the form of <current position, next position, state> where the three

possible values of state are:

1. MOVING: to indicate that the module must continue to move when next position is

reached.

2. WAITING: to indicate that the module must stop and wait when next position is

reached to serve as a bridge for the next flowing modules or to wait when filling a

meta-module before entering its final position to avoid blocking.

3. IN POSITION: to indicate that the module will reach the final position for the current

operation.

All moving operations can be applied by a 3D Catom to perform a sequence of basic

movements. All the sequences must be pre-stored in the robot memory for the six pos-

sible directions of motion. However, some operations can be deduced from others. For
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Table 6.2: Number of movements per operation

Operation Direction Nb of Movements

Assemble (ºSPARSEº) Up/Down 41

Assemble (ºSPARSEº) Right/Left 59

Assemble (ºSPARSEº) Back/Front 64

Assemble (ºFULLº) Up/Down 72

Assemble (ºFULLº) Right/Left 78

Assemble (ºFULLº) Back/Front 91

Transfer Up/Down 50

Transfer Right/Left 60

Transfer Back/Front 44

Total: 559

example, a module needs only to store the movements of the Transfer operations in 3 di-

rections, e.g. up, left, and back. The movements for the other directions can be deduced

from the stored ones by executing them in reverse order. In addition, the operations

Assemble and Dismantle are homologous, the movements required to dismantle a meta-

module are the same as those required to build it, but in reverse order. Hence, reducing

the number of operations to be stored in each module.

Table 6.2 shows the number of movements for Assemble operations into ºSPARSEº or

ºFULLº meta-module and Transfer operations that must be stored in a module. Other op-

erations can be deduced from the stored one. Each movement is stored in the database

using 4 bytes to embed the 6 × 4bits used for coordinates plus 2bits for the state. As

presented in Table 6.2, there are 559 records in total stored in the movements database

requiring 2.24 kB of predefined movements data. It is important to note that despite the

fact that this memory is quite large in the context of modular robots, it is a constant size.

The video1 presents in the first part the various possible operations. First, it shows the

Dismantle operation on a ºSPARSEº meta-module whose modules are transferred and

reassembled in an ºEMPTYº cell that becomes ºSPARSEº. Second, the ºSPARSEº meta-

module is dismantled and transferred to be reassembled in a ºSPARSEº cell that becomes

ºFULLº. Third, it shows the Dismantle on a ºFULLº meta-module whose filling modules are

reassembled on an ºEMPTYº cell that becomes ºSPARSEº.

6.4/ MODULES MOTION COORDINATION

To execute the operations, a module can take three different roles:

• Meta-Module Leader (MML) is a module chosen in each meta-module whose pur-

pose is to handle computation and communications between meta-modules. Mes-

1 Youtube video: https://youtu.be/6dtkXBY8t6k

https://youtu.be/6dtkXBY8t6k
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Figure 6.4: Simulation snapshot during modules transportation (best viewed in color).

The source at the right is dismantled to be built back at the top of the destination on the

left.

sages between meta-modules are sent from one MML to another. The MML can be

any of the ten modules that form a meta-module. We chose the one on the bottom

left as shown in Figure 6.1.

• Operation Coordinator (OPC) is a module that coordinates operations at the meta-

module level by choosing the sequence of movements to execute by a flowing mod-

ule. The OPC is the first module to which a moving module from a previous op-

eration is connected. Or, in the case of dismantle operations, it is the last module

connected to the meta-module in the operation direction.

• Flowing Module (FM) is a module in motion executing an operation’s motion se-

quence.

Figure 6.4 shows modules transportation from a source meta-module on the right to a

destination meta-module on the left. The modules of the source (in red) are executing

a Dismantle operation in the left direction. When they are traversing the intermediary

meta-module (in grey) they execute a Transfer operation in the left direction. When they

reach the destination meta-module they start executing the Assemble operation in the up

direction. In this figure, the orange modules are in a waiting state that serves as a bridge

for the purple moving modules to flow without blocking. Once all the modules pass the

bridge, the OPC will inform the waiting bridging modules to continue the execution of their

current operation.

To avoid blocking and collisions during the flow of multiple modules, the modules flow in
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one line following the same path. A message-passing traffic-light style motion coordina-

tion protocol described in Thalamy et al. (2020b) is used to maintain a space gap between

every two moving modules. Furthermore, the structure maintains enough space between

meta-modules to allow the modules to flow in parallel in multiple adjacent streamlines

without collisions.

Algorithm 7: Distributed control algorithm for a FM

Data: Operation: The operation in execution.

Data: mvt it = 0: Iterator on Operation’s movements.

1 Msg Handler COORDINATE MSG(Op, it):

2 Operation← Op ;

3 mvt it ← it ;

4 rotateTo(Operation[mvt it].nextPosition) ;

5 Event ROTATION END:

6 if mvt it = Operation.size ∧ Operation.isAssemble then

7 meta-module reached goal position;

8 else

9 if Operation.state = MOVING then

10 mvt it ← mvt it + 1 ;

11 rotateTo(Operation[mvt it].nextPosition) ;

12 else

13 if Operation.isDismantle ∧ Operation.state = IN POS IT ION then

14 send POSITION REACHED() to OPC ;

15 Event REMOVE NEIGHBOR:

16 if Operation.state = WAITING then

// Bridge

17 if all modules have passed then

18 mvt it ← mvt it + 1 ;

19 rotateTo(Operation[mvt it].nextPosition);

Each moving module performing an operation keeps an iterator on the sequence of move-

ments of the operation being executed. The algorithm executed by a FMs is described in

Algorithm 7. When a FM module is attached to OPC, it means that it ended the previous

operation and is ready to start executing the sequence of movements of the next opera-

tion. So, the OPC sends the COORDINATE MSG containing the operation to be executed by

the FM and the value of the iterator so that the FM knows from which movement it must

begin. On reception, FM will start to move until it reaches the state IN POSITION, which

means that it ends the movements to be executed for the current operation, or WAITING

which means that the module must stop and serve as a bridge for the next modules to

pass it (Algorithm lines 6-14). If the operation is a Dismantle operation, when an FM

becomes IN POSITION, it notifies its operation coordinator so it can proceed to the next

module. Note that the function rotateTo executed by an FM encompasses the motion co-

ordination algorithm that requires additional exchanged messages between the moving
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module, its pivot, and its future latching points. Briefly, the light state of a module is red if

it serves as a pivot for a FM module motion. Otherwise, it is green. Before each motion,

a FM probe the light state of the modules at its next latching points to verify if they are

all green before moving. Otherwise, it must wait until they become green. The reader

can refer to Thalamy et al. (2020b) for a detailed description of the motion coordination

algorithm.

6.5/ CONCLUSION

In this chapter, a porous structure made up of hexagonal meta-modules placed in a 3D

cubic lattice is proposed and the basic operations to perform to change the state of each

cell are presented. The structure allows the storage of excess modules in ºSPARSEº

meta-modules, allowing it to compress and expand, so we are not constrained during

self-reconfiguration to have the initial size of the shape equal to the one of the goal shape.

Operations can be exploited by a self-reconfiguration planner whose purpose is to specify

which operation to execute on which meta-module in the initial configuration to achieve

a given goal configuration. In the next two chapters, we provide two self-reconfiguration

planning algorithms. The first in Chapter7 is a fully distributed round-based algorithm.

The second in Chapter8 performs the planning in a centralized manner, then, the modules

flow asynchronously in a single round to form the goal shape.
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7.1/ INTRODUCTION

T
he previous chapter described a porous structure composed of meta-modules and

shows how meta-modules can perform the operations: Assemble, Dismantle and

Transfer in all directions to change the state of a cell of the 3D cubic lattice between

ºEMPTYº, ºSPARSEº and ºFULLº.

In this chapter, RePoSt : A fully distributed algorithm is proposed to plan the reconfigu-

ration of the structure by specifying the operations to be executed by the meta-modules

to reach the goal configuration. It operates in rounds where in each round a set of dis-

joint paths is found using a distributed maximum flow algorithm that connects source

meta-modules that must be dismantled to destination meta-modules that must handle the

assembly at an cell.

The chapter is organized as follows. In Section 7.2 the algorithm is described. Section 8.3

analyzes the time complexity expressed as the number of motions. Then in Section 7.4
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a simulated 3D self-reconfiguration example is presented and analyzed. Finally, a brief

conclusion is given in Section 7.5.

7.2/ ALGORITHM DESCRIPTION

In this section, RePoSt : a synchronous self-reconfiguration algorithm is described to

transform a structure composed of the meta-modules described in Chapter 6 from its

current shape to a given goal shape.

The RePoSt algorithm runs on all modules of the system. This algorithm is mainly divided

into three steps repeated sequentially until the convergence to the goal shape:

1. Determining sources and destinations meta-modules.

2. Find the maximum number of possible streamlines connecting sources and desti-

nations.

3. Dismantling sources meta-modules and transporting their composing modules to

destinations.

The steps are detailed in the following subsections.

During the reconfiguration process, a Global Coordinator (GC) module coordinates the

sub-stepping scheme. It is a fixed module that initially belongs to a meta-module in the

goal shape, so it will not change position during the reconfiguration process. At each

iteration, the GC initiates each step, detects its termination, and then initiates the next

START

Initiate the
search for

sources and
destinations

Destinations
exists

No

Yes

END

Yes

Initiate the search for
streamlines between

sources and
destinations

Notify sources
to start the

transportation 

Transportation
End 

No

Figure 7.1: GC agent’s flow chart
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step until the goal shape is achieved, as shown in Figure 7.1. The termination of the

reconfiguration process is determined if no destinations are found after the first step.

We assume that each module knows, in addition to its coordinates in the Face-Centered

Cubic (FCC) lattice, the coordinates of its meta-module in the square cubic lattice. This

can be efficiently disseminated by the GC whose coordinates are the origin. On reception,

an MML sets the coordinates of its meta-module according to the direction of the sender.

Moreover, all meta-modules know the goal shape and can determine if they are in it

or not. This can be done efficiently using the method described in Tucci et al. (2017)

applied at the meta-module scale where a module is replaced by a meta-module and the

computations are performed by the MMLs. Moreover, we assume that the modules have

no prior knowledge of their initial configuration and its size.

7.2.1/ DETERMINATION OF SOURCES AND DESTINATIONS

To reconfigure the system from its current shape to a given goal shape, we must first

determine the sources and destinations. Sources are any meta-modules that are ºFULLº

or do not belong to the goal shape. A ºSPARSEº source can be dismantled and a ºFULLº

source can discard its filling modules. Modules from a source are transported to a desti-

nation meta-module. The destinations are ºSPARSEº meta-modules adjacent to an empty

cell belonging to the goal shape that needs to be occupied or a ºSPARSEº meta-module

to be filled. When a source module arrives at a destination, the destination handles its

transportation to its meta-module goal position. We assume that each meta-module must

know the shape of the goal and can locally determine whether it belongs to it or not.

7.2.1.1/ SOURCES DETERMINATION

A potential source is defined as a ºSPARSEº meta-module in the initial shape that does not

belong to the goal shape or a ºFULLº meta-module at any position. Initially, all ºSPARSEº

meta-modules that do not belong to the goal shape are potential sources. Then, a poten-

tial source is confirmed to be a source if it does not disconnect the structure after it has

been dismantled. We use the connectivity preservation method described in Lengiewicz

and Hoøobut (2019) to choose meta-modules which, when dismantled, do not disconnect

the structure. Briefly, the connectivity preservation method consists of building a tree

rooted at the GC in a way that the leaves meta-modules, when removed, do not discon-

nect the structure. To build the tree, each meta-module Mi store a value si that indicates

the minimum number of potential sources that must be traversed to reach the module Mi

starting from the GC. Each meta-module in the tree chooses as the parent the neighbor

that has the minimum value of s. Therefore, the leaves of the tree, if they are poten-

tial sources, are confirmed to be sources, since they do not disconnect the structure if
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removed.

7.2.1.2/ DESTINATIONS DETERMINATION

Potential destinations are meta-modules adjacent to empty positions in the goal shape

or ºSPARSEº meta-modules to be filled if the initial shape is larger than the goal shape.

A source meta-module will be dismantled and transported to a destination meta-module

that coordinates the process of reassembling the source.

Destination DestinationEmpty Goal
Position

Source

Figure 7.2: Two potential destinations for one empty goal position.

A problem that can occur is having an empty goal position adjacent to multiple potential

meta-modules destinations, as seen in Figure 7.2. When a potential destination is deter-

mined, to avoid collision, it must be a destination for only one empty goal position. One

solution is to report back to the GC which empty goal positions a destination corresponds

to. In its turn, the GC chooses an empty goal position for each potential destination and

notifies each destination about its associated empty goal position. This issue can also be

solved if the modules know their current configuration, so they know about the existence

of another meta-module at a cell next to the empty goal position. They can break the

symmetry based on simple coordinate rules. The algorithm proposed in Chapter 5 can

be used to make the modules recognize their current reconfiguration.

7.2.2/ FINDING STREAMLINES

After the sources and destinations are determined, the maximum number of streamlines

connecting the sources and destinations is found. A streamline is defined as a path of

adjacent meta-modules that starts from a source and ends at a destination. Stream-

lines must be disjoint to avoid collisions at intersections. This can be achieved by solving

the classical problem of maximum-flow in graphs between many sources to many des-

tinations with a unit edge capacity. A distributed asynchronous version of the Edmond-

karp max-flow algorithm Edmonds and Karp (1972a) proposed in Lengiewicz and Hoøobut

(2019) is used and adapted for this purpose. Each source initiates a breadth-first search
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for destinations. When a destination is reached, a unique path is backtracked, and the

unused branches of the tree are cut off leaving a place for other trees to grow. Then,

the source confirms the path by sending a message along it to confirm the streamline.

The algorithm terminates when no additional streamlines can be found. The GC needs to

detect the termination of this step before proceeding to modules transportation. We use

the distributed termination detection method described in Brzezinski et al. (1993).

7.2.3/ MODULES TRANSPORTATION

After the establishment of disjoint streamlines connecting sources and destinations, the

sources must be dismantled and transported along the streamlines to the destinations.

This is done by executing the meta-modules operations described in Section 6.3.

Each MML in a streamline knows the position of the previous and next meta-module in

the same streamline. This information is used to determine the direction of the operation

to be executed on each meta-module. The Dismantle operation is executed on source

meta-modules, Transfer operation is executed on intermediate meta-modules to trans-

fer modules to the next meta-module in the streamline, and the Assemble operation is

executed at destinations.

7.3/ COMPLEXITY

As presented in Section 7.2, the algorithm repeats M rounds, which consists of transport-

ing modules along the streamlines. The value of M varies enormously in function of the

initial, intermediate, and final shapes of the self-reconfiguration. It is mainly affected by

the number of streamlines that can be established at each iteration.

We consider that the duration of a basic motion can be mainly determined by time tm and

that the duration of the whole self-reconfiguration is mainly due to the number of motions,

which are much longer than the communication times.

The longest stage is the motion of modules along the longest streamline of a round. The

length of such a streamline can be majored by the diameter of the configuration divided

by the diameter of a meta-module, we call d this dimension. Considering that the number

of movements given from the stored Dismantle and Assemble operations can be majored

by N0 and that the number of movements applied for a Transfer operation can be majored

by N1, we can express the number of basic motions performed to cross a streamline of

length x by: Nmotions = 2 × N0 + (x − 1) × N1.

The longest streamline being d long, we can majorize x by d, then we have: Nmotions <

2× N0+(d − 1)× N1. Therefore, the time complexity can be expressed as O (M Nmotions tm).
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7.4/ EXPERIMENTS

Initial Shape Iteration 1 Iteration 2

Iteration 3 Iteration 4 Iteration 5

Iteration 6 Iteration 7

Goal
Shape

Figure 7.3: Simulation snapshots for the 7 iterations during the reconfiguration of 48

meta-modules in an L shape to a C shape.

In this section, the functioning of our method and the different operations performed in

parallel by the meta-modules along the streamlines is shown. Moreover, the simulations

show that our algorithm is capable of using the predefined operations to follow the stream-

lines in order to reconfigure a structure from an initial shape to a goal one in a 3D space.

All simulations are performed in VisibleSim. Figure 7.3 shows snapshots of the simulation

during the reconfiguration of an L shape made of 48 meta-modules placed in the XZ plane

to a C shape in the YZ plane.

The video1 shows in its second part a simulation of the reconfiguration of 270 ºSPARSEº

meta-modules placed in a 3 layer square shape into a humanoid shape of size 267 meta-

modules. The additional 3 meta-modules in the initial shape are filled inside the structure

during the last iterations.

In its last part, the video shows the expansion of a 6 × 6 × 3 configuration with ºFULLº

meta-modules at the bottom layer into a 6 × 6 × 4 configuration. All ºFULLº meta-modules

1 Youtube video: https://youtu.be/9EIDp7Wv5iw

https://youtu.be/9EIDp7Wv5iw
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are emptied and their filling modules are transported in parallel to form an additional layer

of ºSPARSEº meta-modules at the top of the configuration in one iteration.
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Figure 7.4: Motion parallelism and number of streamlines during the reconfiguration of 48

meta-modules from a L shape to a C shape.

Figure 7.4 shows the number of streamlines and the number of modules that move con-

currently along the streamlines against time steps during the reconfiguration example in

Figure 7.3. One time step corresponds to the time it takes a module to move from one

position in the grid to an adjacent one. Each bell curve in the graph corresponds to an it-

eration. The number of streamlines and motions becomes null between two peaks, which

corresponds to the time required for the first two steps of the algorithm: finding sources

and destinations and determining the streamlines. It can be seen that it is negligible com-

pared to the time required to transport the modules. The maximum number of concurrent

motions corresponds to the size of the meta-module times the number of streamlines,

meaning that all the modules of the dismantled source are moving at the same time. It

reaches maximum in iterations 2 to 7. At iteration 1 it is less than the maximum because

some modules have reached their goal position, while others have not yet started their

movements.

Figure 7.5 evaluates the number of communications and the time for the reconfiguration

of an L shape to a C shape while varying the size of the configuration. Figure 7.5a shows

that the number of messages exchanged is proportional to the number of movements that

increases as the size of the configuration increases. Figure 7.5b shows that the execution

time increases linearly with the diameter of the system which is mainly due to the parallel

motion in multiple streamlines.
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Figure 7.5: Number of messages exchanged versus number of motions and simulation

time versus the diameter of the system for the reconfiguration of an L shape to a C shape

while varying the configuration sizes in {20, 28, 36, 44, 52} meta-modules

7.5/ CONCLUSION

This chapter presented RePoSt a fully distributed algorithm for porous structures to re-

configure an initial configuration into a goal one by dismantling meta-modules, transferring

their composing modules along disjoint streamlines and re-building them in empty posi-

tions in the goal shape. Examples of reconfiguration in simulation were shown and the

motion parallelism was studied. A communication and time analysis was provided that

showed that the number of exchanged communications is linear in the number of motions

and the time is linear in the diameter of the ensemble.
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8.1/ INTRODUCTION

I
n previous chapters, we introduced a porous structure made up of meta-modules that

can execute predefined motions operations to change the state of lattice cells. We

also introduced RePoSt , a fully distributed self-reconfiguration algorithm that operates in

rounds to specify the operations for the meta-modules to execute to reach a goal config-

uration. This chapter presents a novel hybrid centralized/distributed self-reconfiguration

planning algorithm called ASAPs.

ASAPs divides the self-reconfiguration process into two distinct stages. In the first stage,

a centralized planner with knowledge of the current and goal configuration calculates all

the flowing paths. These paths determine the operations to be executed on each meta-

module. By computing the flowing paths a priori, ASAPs ensures efficient paths for the

modules to follow at the second stage to reach the goal configuration.
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In the second stage, the modules follow the precalculated flowing paths under the control

of a distributed asynchronous algorithm. The distributed control algorithm enables mod-

ules to autonomously execute the operations while cooperating to prevent collisions at

paths intersection.

Section 8.2 provides a comprehensive description of both the global planner and the dis-

tributed control algorithm used in ASAPs. Then, in Section 8.3, an analysis of the com-

plexity of ASAPs is presented. The algorithm is evaluated in different self-reconfiguration

scenarios, and the results are analyzed and compared with RePoSt in Section 8.4. The

chapter is concluded in Section 8.5.

8.2/ ALGORITHM DESCRIPTION

In order to transform an initial configuration I into a goal configuration G, we consider 3

different groups of meta-modules: Meta-modules that are in the initial configuration but

not in the final one (I \G), meta-modules present in both configurations (I∩G), and others

that are in G \ I.

Meta-modules in I \G must be dismantled, and their composing modules must flow inside

the structure to fill empty positions in G \ I by building new meta-modules.

Figure 8.1 shows the general flow of the algorithm. Given the initial and goal configu-

rations, a global planner will perform a centralized computation that finds the flow paths

of the modules from I \ G to G \ I in an initialization phase using a Max-Flow algorithm.

The resultant flowing paths will allow to specify which operation to execute on each meta-

modules. Then, the operations are transferred to their respective meta-modules on flow-

ing paths. Once the operations are assigned, the modules execute a distributed algorithm

based on the traffic light system that controls the flow of the modules on concurrent paths

without collisions.

In this section, we first describe a global planning algorithm based on Max-Flow search to

determine the operations to execute on each meta-module and in which direction. Then

we describe an asynchronous distributed algorithm to control modules’ flow on the paths

without collisions.

8.2.1/ GLOBAL PLANNING

Given an initial configuration I and a goal configuration G, a global planner must spec-

ify the operations to execute on each meta-module. It is a centralized process that is

executed in an initialization phase.

The meta-modules configuration can be represented as a lattice graph in which the
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Figure 8.1: The general flow of the algorithm.

nodes represent meta-modules and the edges represent the connections between ad-

jacent meta-modules. The global planner starts by constructing a graph G representing

I ∪ G (the whole space reached by the reconfiguration process). A demand region Rd is

defined as a connected subgraph that contains nodes in G \ I. A supply region Rs is a

connected subgraph that contains nodes in I \G. The nodes in Rd and Rs are connected

with edges with infinite capacity to the closest neighbor in terms of hop distance to any

node in I ∩G. Multiple supply and demand regions can exist in a single graph G depend-

ing on the symmetrical difference between the initial shape I and the goal shape G (I△G).

A super-supply S s node is added to the graph and is connected to all nodes in all supply

regions with an edge of capacity 1. All nodes in the demand regions are connected to a

super-demand S d node with an edge of capacity 1. The nodes in G∩ I are connected with

edges of infinite capacity. An example of this construction is shown in Figure 8.2.

Once the graph G is built, we apply the Edmonds-Karp algorithm Edmonds and Karp

(1972b) to find the maximum flow between the super-supply node S s and the super-

demand node S d. The algorithm proceeds by finding the shortest augmenting paths
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Figure 8.2: G = G ∪ I construction example. Nodes in Rs are colored in red. Nodes in Rd

are colored in green.

Figure 8.3: The resultant flow after applying the max-flow algorithm.

between S s and S d using breadth-first searches on the residual graph. It terminates

when no more augmentations can be found.
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The flow resulting after applying the Edmonds-karp algorithm on the graph of Figure 8.2

at each edge is shown in Figure 8.3. Nodes S s and S d are removed because they are

virtual nodes and do not represent any meta-module. The flow value fuv at an edge u, v

indicates the number of modules to be routed by meta-module u to meta-module v.

Each meta-module must know the flow value towards its neighbor meta-modules. These

values must be sent from the central station to all meta-modules. This can be done at

an initialization phase through tree-based broadcasts starting from a root module wired

to the central station.

8.2.1.1/ FLOW PROPERTIES

Applying the Edmonds-Karp algorithm to the graph construction mentioned above pro-

duces a flow with the following properties:

Property 1. The flow covers all demand regions i.e. in the resultant flow, a path exists

that connects a supply node to a demand node.

Edmonds-karp algorithm satisfies the flow conservation constraint at the terminal nodes,

which states that the sum of the flow flowing out of the source S s is equal to the sum of the

flow flowing into the sink S d. Since the number of supply nodes is equal to the number of

demand nodes and the number of edges going out of S s is equal to the number of edges

going in S d, each augmenting path, excluding S s and S d, starts with a supply node and

ends at a demand node.

Property 2. The total length in terms of hop distance of the paths connecting the supply

nodes to the demand nodes is minimized.

The Edmonds-Karp algorithm finds the shortest possible augmenting path using a

breadth-first search. The length of the paths found at each iteration increases mono-

tonically. Therefore, the total length of the path set is minimized. This is an important

property, as minimizing the distance traveled reduces the number of commands required

for the modules. Therefore, the total energy consumed during self-reconfiguration is also

reduced.

Property 3. No two paths connecting supply nodes to demand nodes share a common

edge with opposite directions, which may cause a head-on collision.

Having two paths in the resultant flow with two edges with opposite directions connecting

the same two nodes contradicts property 2. This is because switching the destinations

on those paths will reduce the total length.
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8.2.2/ DISTRIBUTED FLOW CONTROL ALGORITHM

Once the flow values on connections between neighbor meta-modules are received, the

modules can start to flow from the supply regions to the demand regions. To do so,

the meta-modules executes the operations set according to the flow values and their

directions.

Algorithm 8: Distributed control algorithm on an MML.

Data: F : A queue of pairs < direction, f low > representing flow values in each

directions.

Data: lightS tate

1 Initialization MML of a meta-module u:

2 mustDismantle(u)

3 Function mustDismantle(u):

4 if u ∈ Rs and no flow is entering u then

5 OPC.Operation← dismantle(F0.direction); send REQUEST START OP() to

MML in direction F0.direction;

6 Function setOperation():

7 if hasNeighborInDirection(F0.direction) then

8 send SET OPERATION(transfer(F0.direction) to OPC;

9 else

10 send SET OPERATION(build(F0.direction) to OPC;

11 F0. f low← F0. f low − 1;

12 if F0. f low = 0 then

13 F.pop();

14 Msg Handler REQUEST START OP():

15 if lightS tate = GREEN then

16 lightS tate← RED;

17 setOperation();

18 send AUTHORIZE OP() to senderMML;

19 else

20 waiting.push(directionsender);

21 Msg Handler AUTHORIZE OP():

22 Notify the OPC to start executing the operation;

23 Event OPERATION ENDED on meta-module u:

24 if waiting , ∅ then

25 send AUTHORIZE OP() to waiting0;

26 waiting.pop() ;

27 else

28 lightS tate← GREEN;

29 mustDismantle(u);

Algorithms 8, 9 describe the behavior of the OPC and MML modules. The flow starts

by executing dismantle operations on meta-modules that are in Rs and do not have an
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Algorithm 9: Distributed control algorithm for an OPC

Data: Operation: The operation in execution.

Data: mvt it = 0: Iterator on Operation’s movements.

1 Event ADD NEIGHBOR(m):

2 if operation execution is authorized by MML then

3 send COORDINATE MSG(Operation, mvt it) to m ;

4 mvt it ← mvt it + nb of moves to be performed by m ;

5 else

6 MML sends REQUEST START OP to next MML;

7 Msg Handler SET OPERATION(Op):

8 Operation← Op

9 Msg Handler POSITION REACHED():

10 if mvt it ¡ Operation.size() then

11 m = module at Operation[mvt it].current position ;

12 send COORDINATE MSG(Operation, mvt it) to m ;

13 mvt it ← mvt it + nb of moves to be performed by m ;

entry flow. However, before starting the execution of any operation, a meta-module must

verify that the next meta-module is not executing any operation to prevent collisions at

intersections. To do so, the MML sends a REQUEST OP START message to the MML of the

next meta-module on its path. If the receiver’s lightS tate is green, which means that it is

not executing any operation, it sets the next operation to execute on it, then it responds

with an AUTHORIZE OP message, and its lightS tate becomes red. Once the AUTHORIZE OP

message is received, the OPC can start the operation. Otherwise, the receiver stores the

direction of the sender in a queue and responds once it becomes free. This will cause

flowing modules to wait for the next meta-modules they must enter to finish executing an

operation in progress (Algorithm 8 line 15-20).

The FMs executes the operations as explained in Section 6.3 except that before starting

the operation , the MML requests the authorization to start the execution from the next

MML (Algorithm 9 line 1-6).

When an MML detects that the operation’s execution ended and there exists a

meta-module waiting for its authorization to start the pending operation, it sends an

AUTHORIZE OP message to the waiting meta-module to start executing the operation. Oth-

erwise, if it is in Rs and does not have an entry flow, it sets lightS tate as green and dis-

mantles itself. Therefore, meta-modules in Rs execute the dismantle operation one after

the other starting from the end of a path so that they do not disconnect the configuration.
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8.3/ COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the ASAPs algorithm. The total time needed

for self-reconfiguration includes the time T0 taken by the global planner to find paths, the

time for module transport T1, and the time for message transmission T2.

The computational complexity of the global planner is given by the complexity of con-

structing G = G∪I plus the complexity of the max-flow algorithm. The construction of G de-

pends linearly on the number of nodes V, so O(V). The complexity of the Edmonds-Karp

algorithm on any graph is given as O(VE2) Edmonds and Karp (1972b) where V is the

number of nodes and E is the number of edges in G. In our case, G is a graph representing

the nodes in a cubic lattice, so the maximum number of edges E is equal to 6.V. There-

fore, the computational complexity of the global planner is O(V(6V)2
+ V) = O(V3) = T0.

The time to transform an initial shape to the target shape is mainly due to the time of the

module flow. The longest distance that a module can travel is the diameter dG of G = G∪ I

where G is the goal configuration and I is the initial configuration. Modules can flow in

parallel following concurrent paths of maximum length dG. Therefore, the time complexity

can be expressed as O(dG) = T1.

It is interesting to compare this complexity with the complexity of the RePoSt algorithm,

which was O(dNrounds), where Nrounds was the number of rounds necessary to achieve

reconfiguration. In the worst case NM − 1 rounds are required, where NM is the number

of meta-modules. ASAPs performs the self-reconfiguration in a single round with an

increase in motion parallelization, which takes less time to achieve the goal configuration.

The message complexity of ASAPs is due to sending the flow values to their correspond-

ing meta-modules and to the messages used during the flow control algorithm described

in Section8.2.2. Sending the flow values can be done through a breadth-first spanning

tree rooted at the central station that takes O(dCI
NM) messages where CI is the initial

configuration. Each movement of each flowing module along the flowing path requires

sending a fixed number of messages. Therefore, the flow of modules requires O(dGNm)

where Nm is the number of modules. The message complexity of both steps can be

expressed as O(dCI
NM + dGNm) = T2.

8.4/ SIMULATION AND RESULTS

8.4.1/ PRESENTATION OF THE EXPERIMENTS

In order to evaluate the algorithm, we consider different initial and final configurations with

several properties:
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Figure 8.4: Three different self-reconfiguration scenarios, from the top to the bottom:

L2C, Human and Hollow. Initial configurations are on the left and goal configuration on

the right.

L2C: From a L shape made of 48 meta-modules to a C shape. This model shown

in Figure 8.4.a, is similar to a narrow line of 2 × 2 meta-modules of the sec-

tion. The narrowness of the line reduces the number of possible simultaneous

motions.

Human: From a square of 89 meta-modules to a humanoid shape. This model shown

in Figure 8.4.b is rich of numerous different paths in the central area (the

body of the guy), but there are only some paths to reach the head, arms,

and legs area, which will cause bottlenecks. The goal configuration is formed

by transporting the meta-modules on the initial configuration borders to the

head, arms and legs.

Hollow: From a square of 90 meta-modules to a hollow humanoid shape. This model

shown in Figure 8.4.c proposes fewer internal meta-modules in its goal con-

figuration than the previous one. The meta-modules in the central area must

be dismantled without causing a disconnection.
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8.4.2/ EXPERIMENTS ANALYSIS AND COMPARISON WITH RePoSt

The three self-reconfigurations are presented in a video 1 that shows the dismantling, dis-

placement, and building of meta-modules in parallel to transform the initial shape to obtain

the final configuration of meta-modules. It also show a comparison between RePoSt and

ASAPs execution.
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Figure 8.5: Comparisons of the number of motions (a) and speed (b) of ASAPs and

RePoSt algorithms for the 3 experimental shapes.

Figure 8.5 compares the speed and the total number of motions of the self-reconfiguration

process for the ASAPs algorithm and RePoSt presented in Chapter 7.

First, we notice that for the three self-reconfigurations, the ASAPs algorithm is faster

than RePoSt , and this is mainly because the parallelization of movements is much more

important due to the coordinated flow of modules on the pre-allocated concurrent paths.

ASAPs algorithm is 1.95 times faster for L2C, 2.08 times faster for the Humanoid model

and 2.7 times faster for the Hollow model.

Second, in terms of the total number of motions executed by the modules during self-

reconfiguration, ASAPs requires fewer motions than RePoSt to converge to the goal

shape. This is due to the global max-flow planning method that minimizes the total length

of the paths found connecting meta-modules in the supply region to the meta-modules

in the demand region (cf. property 2). Therefore, ASAPs is more energy efficient than

RePoSt .

Figure 8.6 shows the number of module motions and the number of modules that are

waiting per time step when executing RePoSt and ASAPs. A time step corresponds to

the average time required for a 3D Catom rotation.

The regular oscillations of the curve shown in Figure 8.6 (a), (b) and (c) for the RePoSt

algorithm are evidence of the successive rounds of this algorithm; they regularly cause

1 Youtube video: https://youtu.be/Kqick3Am-Q8

https://youtu.be/Kqick3Am-Q8
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Figure 8.6: Comparisons of ASAPs and RePoSt number of modules in motions per time

step (a, b and c) and number of waiting modules (d, e, and f) for the three experimental

shapes.

periods with a low number of movements due to the time required for the determination of

streamlines at each round. This effect disappears almost completely on the curve given

by the self-reconfiguration with the ASAPs algorithm. This is because once the meta-

modules receive the path information, they all start to flow asynchronously guided by the

distributed control algorithm explained in Section 8.2.2. Therefore, the ASAPs number

of motions curve starts by increasing until it reaches its maximum value, then stabilizes

before it starts to decrease when the modules start to reach their goal positions. This

shows the increase in motion parallelisms achieved using ASAPs.

In Figure 8.6 (d), (b) and (f), the number of waiting modules at a time step varies with

the amount of flow. When more modules leave their initial position and start flowing, the

number of waiting modules will increase because modules will wait for each other to keep

enough space when flowing in a train-like fashion towards their destination. In ASAPs an

increased number of modules can be found in a waiting state at the beginning time steps

for two reasons: first, the number of flowing modules is more important, so more modules

are waiting to keep enough space with other flowing modules on the same path, and

second, when modules must wait at intersections of paths in case an operation is being

executed at the intersection. For the RePoSt algorithm, modules follow disjoint paths, so
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they are not required to wait at intersection.

8.4.2.1/ BOTTLENECKS EFFECT
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Figure 8.7: The result of paths generated by the max-flow on 3 configurations with differ-

ent bottleneck sizes. Rs nodes are in red and Rd nodes are in green.

The waiting time of the modules that execute ASAPs also depends on the bottlenecks at

the intersections of the paths that reach a narrow area. For example, Figure 8.7, shows

the paths generated by the max-flow in three configurations where the modules in Rs

must cross none, two, or three bottleneck nodes to fill empty positions in Rd. Figure 8.8

shows the total self-reconfiguration time of the simulation of the three examples. It can

be seen that when multiple paths intersect on one node, causing a bottleneck, the self-

reconfiguration time increases. The reason is that only one operation is executed at a

time on the bottleneck nodes. Modules that need to go through bottlenecks are waiting

for their turn, as explained in Sections 8.2.2.
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Figure 8.8: Total number of time steps on the self-reconfiguration example of Figure 8.7.

8.5/ CONCLUSION

In this chapter ASAPs, a hybrid self-reconfiguration algorithm is developed where a cen-

tral global planner calculates the maximum flow of modules to plan the paths of self-

reconfiguration. Unlike RePoSt , the paths can intersect. The motions of modules are

controlled by a fully distributed and asynchronous flow control algorithm.

We evaluated ASAPs in simulation and compared the parallelism, total distance traveled,

and self-reconfiguration time with RePoSt . The results show an important improvement of

efficiency in both the total distance traveled which affect the energy used by the modules

and in the self-reconfiguration time.
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CONCLUSION

9.1/ SUMMARY

T
his thesis is part of a work that aims to achieve a programmable matter by an as-

sembly of a large number of tiny robotic modules. Modules are interconnected

and can communicate to coordinate the self-reconfiguration of the ensemble into a goal

configuration. The objective of the proposed algorithms is to increase the efficiency

of self-reconfiguration. Therefore, we proposed and implemented algorithms for size-

constrained clustering, shape recognition, and self-reconfiguration.

A fully distributed clustering algorithm (SC-Clust) which uses message passing to allow

modules to cluster themselves into predefined size clusters is presented in Chapter 4.

The main motivation of this work is to reduce the search space when planning for self-

reconfiguration and to allow clusters to reconfigure in parallel. The clustering algorithm is

based on tree cuts that result in branches that form the final clusters. The results showed

that we can efficiently and effectively group ensembles of tens of thousands of modules

with O(nlogn) communication and time complexities with n the number of modules.

To allow an ensemble of connected modules in a regular lattice to identify a description

of their shape, Chapter 5 presented a fully distributed algorithm that finds a set of filled

boxes whose union describes the shape. It has a communication complexity O(n) and a

time complexity of O(D + W + H) where n the number of modules and D, W and H the

depth, width, and height of the bounding box of the ensemble, respectively. Detecting the

shape of a modular robot ensemble can be beneficial for an efficient self-reconfiguration

planner. We also showed in simulations that this approach is more efficient in reporting

the shape to an external connected computer than exhaustive coordinate collection.

In order to increase the number of possible motions of modules to enhance self-

reconfiguration, Chapter 6 presented a new porous structure that has enough hollow

internal volume to allow modules to move through it concurrently. It is built by connected

meta-modules placed in a regular cubic lattice. The proposed meta-modules can be in

111
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two states either sparse or full, giving the structure the ability to compress and expand.

We also defined a set of operations that meta-modules can perform to change their state

or direct modules that must traverse through them.

Then, Chapter 7 and Chapter 8 presented two self-reconfiguration planning algorithms

based on a max-flow search that specify which operation to execute on which meta-

module to transform the structure into a given goal shape. The first RePoSt is a fully

distributed round-based algorithm where in each round the modules flow following dis-

joint paths to reach their goal positions. With RePoSt we can reach a goal configuration

in O(Md) where M is the number of rounds and d is the diameter of the configuration.

The second ASAPs follows a hybrid planning approach, where a centralized planner pre-

calculates the flow to be sent in each direction for all meta-modules. This information is

then distributed to the meta-modules. The modules then flow asynchronously by perform-

ing the operations specified according to the flow values, reducing the time complexity to

O(d). We evaluated and compared both algorithms in different configurations in simula-

tion.

9.2/ DISCUSSIONS AND FUTURE WORK

In this section, I would like to give a general perspective, then take a step back and

discuss the advantages and disadvantages of the proposed solutions, and also show

some future work for each of the proposed solutions.

9.2.1/ GENERAL PERSPECTIVE

Regarding self-reconfiguration, I hope that the development of 3D Catoms will soon pro-

duce operational hardware so that I can implement my algorithms and test their practical-

ity in a real-world setting. I would like to investigate the potential faults that can occur on

real hardware, such as incomplete rotation, communication failures, and other hardware

dysfunctions. Subsequently, I aim to propose software solutions that effectively employ

robustness in the face of these dysfunctions, minimizing the need for human interven-

tion. Some noteworthy solutions have been proposed in related research: Makhoul and

Bassil (2023) addresses communication errors, Bassil et al. (2022) focuses on handling

communication failures caused by broken interfaces, and Hourany et al. (2022) presents

a disconnection detection method. My goal is to propose additional solutions for motion

failures, power failures, and other dysfunctions and apply them in practice to ensure the

completeness of self-reconfiguration on real hardware.

Furthermore, it would be useful to adapt the algorithms to other models and systems. This

includes systems with wireless communication capabilities, as well as systems operating
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in different lattice structures and employing different motion mechanisms.

9.2.2/ ON THE SIZE-CONSTRAINT CLUSTERING

Chapter 4 presented a new algorithm called SC-Clust that clusters modules into prede-

fined size groups. The main goal is to improve the self-reconfiguration process by allowing

each cluster to reconfigure at the same time. This algorithm represents a significant ad-

vancement as it is the first fully distributed approach for size-constrained clustering that

relies solely on local module knowledge to decompose the ensemble into clusters. It

is an important tool that enables the use of distributed cluster-based solutions for self-

reconfiguration. However, there are some limitations that need to be addressed in order

to achieve this.

First, to facilitate the transition to the goal configuration, the shape and positions of the

resultant clusters must be controlled to prevent blocking positions caused by irregular

cluster borders. Furthermore, the shape of the cluster can also be customized to meet

specific goals. For example, if the goal is to reconfigure the system into a specific shape,

it would be advantageous to design the clusters in a shape or pattern that is present in

both the initial and the goal configurations. Such a cluster will not require many trans-

formations, which can simplify the reconfiguration process by decreasing the amount of

motion required.

Second, the positions of each cluster must be carefully considered to ensure successful

reconfiguration. For example, placing clusters near their target positions may be a useful

strategy to reduce the number of steps needed to achieve the desired configuration. This

can help minimize the time and resources required to run the reconfiguration process,

especially for systems that require rapid or frequent reconfiguration.

Furthermore, in cluster-based self-reconfiguration planning, finding the correct order of

assembly is crucial because it affects the overall efficiency and success of the reconfigu-

ration process. The order of constructions is determined by analyzing the dependencies

between the connections of the modules or clusters. If a connection between two modules

depends on the completion of another connection, those connections must be assembled

in a specific order to ensure a successful construction.

Therefore, I would like to investigate these ideas to propose more efficient cluster-based

self-reconfiguration algorithms that are compatible with this decomposition of the modules

set. In particular, managing the inter-cluster boundaries and the order of assembly to

avoid blocking constraints.
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Figure 9.1: On the left, the representation of the shape is using 5 elements. On the right,

it shows how using a triangle can reduce the number of elements to 1.

9.2.3/ ON SHAPE RECOGNITION

The shape recognition algorithm presented in Chapter 5 finds a representation of the

current modular robot shape. The overlapping boxes can be seen as the leaf nodes of a

Constructive Solid Geometry (CSG) tree, where the union of these boxes represents the

overall shape of the robot.

The presented algorithm holds significant importance in the context of interactive

Computer-aided design (CAD) applications. It facilitates accurate and prompt transmis-

sion of shape descriptions from the Programmable Matter (PM) to the connected com-

puter. Additionally, the ability of modules to determine an efficient representation of their

current shape carries potential benefits for self-reconfiguration planning. By comparing

the differences between the current shape and the desired goal shape, modules can

make informed decisions during the planning phase.

Extending the algorithm to use a variety of shapes, in addition to a box, as building blocks

can potentially lead to more efficient representations of the robot’s shape. One possi-

bility is to adapt the algorithm to actively search for polyhedrons rather than solely fo-

cusing on boxes. Although representing polyhedrons requires additional information for

storage, it can substantially reduce the number of elements required to cover the entire

configuration. Figure 9.1 shows an example in which finding a diagonal can reduce the

representation from five elements to one.

In the current version of the proposed algorithm, the boxes are aggregated when re-

ceived by a connected computer. Although this method is effective in representing the

overall shape of the robot, it may not be the most efficient way to do so if we want the

modules themselves to store a description of the whole configuration shape. To address

this limitation, a distributed aggregation method must be developed to minimize the num-

ber of boxes used to represent the robot’s shape. This method would involve ignoring

boxes that are fully included in larger ones, which can reduce redundancy and improve
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the efficiency of the algorithm.

Furthermore, I would like to work on developing a dynamic version of the algorithm that

allows modules to keep track of their shape in real time, which could provide valuable

information for distributed self-reconfiguration planning. By continuously updating the

representation of the robot’s shape, modules can make more informed decisions about

their position relative to the goal configuration and potentially reconfigure themselves

more efficiently.

9.2.4/ ON THE POROUS STRUCTURE

The meta-module design The porous structure presented in Chapter 6 is made up of

meta-modules. The decision to use hexagonal-shaped meta-modules was made in order

to closely mimic a voxel in the square cubic lattice. Its size 10 was experimentally deter-

mined in VisibleSim to accommodate additional 10 3D Catoms within its empty internal

volume to form a ºFULLº meta-module while also leaving sufficient space for modules

to flow within the empty volume of a ºSPARSEº meta-module, as well as between two

adjacent meta-modules in all directions. Any other meta-module design with the same

properties can be used. For example, using other geometries can provide better spatial

efficiency by using a smaller number of modules and get better fidelity to the goal shape.

Larger meta-modules can be used to build an internal scaffold and smaller meta-modules

on the borders. However, the challenge of this approach is the complexity it can cause to

self-reconfiguration and assembly planning and in the coordination of the movements of

modules between meta-modules with different geometries.

Advantages The porous structure allows the modules to flow freely within it. In addition,

all meta-modules, ºSPARSEº or ºFULLº have at least one module that is not blocked free

to move, therefore it can be dismantled and transported in any direction regardless of its

position. Furthermore, the compressibility and expandability properties of the structure

do not restrict the goal shape to have the same number of meta-modules as the initial

shape. The excess number of modules in the initial shape can be stored inside ºSPARSEº

meta-modules and the filling modules can be later used for other purposes, such as

coating the structure or replacing faulty modules. Furthermore, the meta-module design

allows it to be assembled at any empty position even if the six adjacent positions are filled.

This relaxes the bridging constraint that exists at the module level, which states that no

modules can be placed between two filled positions in opposite directions. Therefore, it

facilitates self-reconfiguration planning.
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(a) A 2x2 cube without coating. (b) A 2x2 cube coated with special meta-
modules.

Figure 9.2: Coating example using special meta-modules on the boundaries.

Coating Coating the internal scaffolding structure with a thin layer of modules is nec-

essary to better represent the shape. In Thalamy et al. (2020a), the authors presented

the challenges of the coating problem and proposed a basic method to build the coating

of a scaffold layer by layer in a separate step once the scaffold was established. I would

like to investigate another coating solutions that performs the coating simultaneously with

the self-reconfiguration of the internal scaffold. One solution would consist of altering the

shape of the meta-modules at the boundaries to better approximate the goal shape at

these locations. I believe that this can be achieved by using other meta-module shapes

to cover the surface, as shown in Figure 9.2. To do so, we can use a new Coat operation

that can assemble modules on the surface. This requires storing additional movement

data and planning.

Mechanical Stability A disadvantage of the proposed structure is that two meta-

modules in a single layer are horizontally connected with a single latching point that can

overload the connection and cause breakage. An advantage of the proposed structure

is the ability to distribute the weight of the robot across the entire structure by carefully

choosing the positions of ºFULLº meta-modules, which can improve stability. In Piranda

et al. (2021), a solution is proposed that can be applied to detect the rupture point and

stability in a distributed manner, and the result can be taken into account when planning

reconfiguration. However, it is computationally prohibitive. The work is ongoing within

our team to efficiently and distributedly detect the stability of a structure in real-time. I

believe that using structures with regular building blocks such as the meta-modules pro-

posed in this thesis can reduce the calculation by performing it on the meta-module level.

For example, to calculate the center of gravity of a structure using the coordinates of its

components, we can do it at the meta-module level instead of the module level, reducing
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the number of coordinates used for calculation by n times compared to the module level

where n is the size in the a meta-module (n = 10 in our proposed meta-module).

Operations movements To reconfigure the structure, the modules can perform opera-

tions consisting of a sequence of predefined motions stored in their memory. The opera-

tions will be set by a self-reconfiguration planner. For now, the operations are hand-coded,

which is a tedious and time-consuming task. Therefore, I believe it would be interesting

to automate this task, which can not only facilitate the process, but also find an optimized

sequence of movements. I would like to investigate graph-based path-planning methods,

reinforcement learning and other search based motion planning for this purpose.

9.2.5/ ON THE SELF-RECONFIGURATION ALGORITHMS

In chapters 7 and 8, two self-reconfiguration algorithms are presented. They specify

which operations to execute and in which direction on each meta-module to reach a

given goal configuration. The first RePoSt is fully distributed. It uses the goal shape rep-

resentation that must be known by all meta-modules to determine a set of sources and

destinations. Then in each of its rounds, modules flow from sources such that their re-

moval does not disconnect the structure to destinations until the convergence to the goal

shape. The second, ASAPs, follows a hybrid approach in which a centralized planner,

given the initial and goal configurations, calculates the maximum flow between regions

that do not belong to the goal configuration and regions that are in the goal but not in the

initial configuration. The result of the max-flow is then transmitted to the meta-modules

and they start flowing in a simultaneously while applying a traffic-light-like mechanism to

schedule operations on flow intersections.

The simulation results showed that ASAPs significantly decreases the time of self-

reconfiguration due to an increase in flow. However, it requires a central planner and

a prior knowledge of the initial and goal configurations, which limits its applicability to

certain scenarios: when the ensemble is not connected to a central planner and/or the

initial shape is unknown. The shape recognition algorithm of chapter 5 can be used to

determine the initial configuration.

Although we talked about the filling procedure and how it can be used to not constrain

the size of the goal configuration to be strictly equal to the initial one. I believe that this

feature can be used by the self-reconfiguration planner to enhance the process. I would

like to test different strategies for resource allocation. A resource allocator can be used

to strategically position ºSPARSEº meta-modules in areas where deletion is expected and

ºFULLº meta-modules in regions where creation is anticipated.

For now, the proposed planners use only the space covered by the union of the initial and
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goal configurations. I would like to investigate how intermediate configurations that span

a larger space can be used to avoid bottlenecks during the self-reconfiguration process

of modular robots. Bottlenecks occur when there is a limited space or pathway in the

structure that restricts the movement of the modules. This can lead to congestion and

delays in the self-reconfiguration process. To avoid bottlenecks, the self-reconfiguration

planner can use intermediate configurations to create alternative paths in the structure.

For example, if there is a narrow pathway that restricts the movement of the modules,

the planner can create an intermediate configuration that rearranges the modules and

creates a wider pathway. Future research in this area can focus on developing efficient

and effective strategies for using intermediate configurations to avoid bottlenecks and

optimize the self-reconfiguration process.
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Abstract:

Programmable matter can be used to create objects
that can be programmed to change shape and
physical properties on demand. One of the ways to
implement programmable matter is to build it as a
self-reconfigurable modular robot made up of a large
set of simple micro-robots attached to each other.
These micro-robots are able to communicate with
their directly connected neighboring modules and
modify the interconnections to change the overall
shape of the robot. This thesis addresses the
challenge of self-reconfiguration in modular robotic
systems, which involves autonomously rearranging
modules to achieve a desired goal shape. The
self-reconfiguration problem is difficult due to the
very high number of possible configurations, which
increases exponentially with the number of modules.

In this thesis, we argue that fast self-reconfiguration
algorithms for large-scale modular robots can be
achieved by clustering the modules. A distributed
size-constrained algorithm is presented to form
clusters of predefined sizes, along with a novel
porous structure composed of two-state meta-
modules placed in a regular lattice. This porous
structure allows concurrent module flow within it. In
addition, two self-reconfiguration algorithms that can
be applied on the proposed structure are introduced.
The thesis also presents a distributed shape
recognition algorithm to detect the current shape of
the ensemble. To validate the proposed algorithms,
simulations are performed to demonstrate their
efficiency in achieving their objectives.
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RÂesumÂe :

La matière programmable peut être utilis Âee pour
cr Âeer des objets qui peuvent être programmÂes
pour changer de forme et de propri Âet Âes physiques
à la demande. L’une des facËons d’impl Âementer
la matière programmable est de la construire
comme un robot modulaire auto-reconfigurable
composÂe d’un grand ensemble de micro-robots
simples attachÂes les uns aux autres. Ces micro-
robots sont capables de communiquer avec leurs
modules voisins directement connect Âes et de
modifier les interconnexions pour changer la forme
globale du robot. Cette thèse aborde le dÂefi de
l’auto-reconfiguration dans les systèmes robotiques
modulaires, qui implique de rÂeorganiser de manière
autonome les modules pour atteindre une forme
cible. Le problème d’auto-reconfiguration est difficile
du fait du nombre très ÂelevÂe de configurations
possibles, qui augmente de facËon exponentielle
avec le nombre de modules. Dans cette thèse,

nous soutenons que des algorithmes d’auto-
reconfiguration rapide pour les robots modulaires à
grande Âechelle peuvent être obtenus en regroupant
les modules. Un algorithme distribuÂe à contraintes
de taille est pr Âesent Âe pour former des clusters
de tailles prÂedÂefinies, ainsi qu’une nouvelle
structure poreuse composÂee de mÂeta-modules
à deux Âetats placÂes dans une maille r Âegulière.
Cette structure poreuse permet un dÂeplacement
simultanÂe des modules à l’int Âerieur de celle-ci.
De plus, deux algorithmes d’auto-reconfiguration
applicables sur la structure proposÂee sont introduits.
La thèse prÂesente Âegalement un algorithme de
reconnaissance de forme distribuÂee pour dÂetecter
la forme actuelle de l’ensemble. Afin de valider
les algorithmes proposÂes, des simulations sont
r Âealis Âees pour dÂemontrer leur efficacit Âe à atteindre
leurs objectifs.


	List of Abbreviations
	Introduction
	Programmable Matter
	Contribution
	Outline

	I Context and State of the Art
	1 Modular Robot-Based Programmable Matter
	1.1 Introduction
	1.2 Practical Applications
	1.3 Programmable Matter Project
	1.4 Existing Modular Robotic Systems
	1.5 Conclusion

	2 Challenges and State of the Art
	2.1 Introduction
	2.2 Self-reconfiguration
	2.2.1 Self-reconfiguration Algorithms

	2.3 Clustering
	2.3.1 Size-Constraint Clustering Problem
	2.3.1.1 Clustering Algorithms

	2.3.2 Shape Recognition
	2.3.2.1 Existing Work on Shape Recognition


	2.4 Time Synchronization
	2.5 Fault Tolerance
	2.6 Conclusion

	3 Experimentation and Simulation Tools
	3.1 Introduction
	3.2 BlinkyBlocks
	3.3 3D Catoms
	3.4 Programming Model and System Assumptions
	3.5 Simulation Environment
	3.5.1 Existing Simulation Tools
	3.5.2 VisibleSim

	3.6 Conclusion


	II Clustering
	4 Size-Constrained Clustering
	4.1 Introduction
	4.2 Problem Definition and System Assumptions
	4.2.1 Size-Constrained k-partitioning is NP-complete

	4.3 Algorithm Description
	4.3.1 Weight Calculation
	4.3.2 Tree Construction
	4.3.3 Tree Partitioning
	4.3.4 Additional Cuts

	4.4 Complexity Analysis
	4.4.1 Communication Load
	4.4.2 Execution Time

	4.5 Simulations and Results
	4.5.1 Evaluating scclust
	4.5.1.1 Execution Time
	4.5.1.2 Communication Load
	4.5.1.3 Additional Cuts

	4.5.2 Comparing DCut with scclust

	4.6 Conclusion

	5 Shape Recognition
	5.1 Introduction
	5.2 Algorithm Description
	5.3 Complexity Analysis
	5.4 Experiments and Analysis
	5.5 Conclusion


	III Self-Reconfiguration
	6 The Porous Structure
	6.1 Introduction
	6.2 Porous Structure Anatomy
	6.3 Motion Operations
	6.4 Modules Motion Coordination
	6.5 Conclusion

	7 RePoSt: A Fully Distributed Synchronous Algorithm
	7.1 Introduction
	7.2 Algorithm Description
	7.2.1 Determination of Sources and Destinations
	7.2.1.1 Sources Determination
	7.2.1.2 Destinations Determination

	7.2.2 Finding Streamlines
	7.2.3 Modules Transportation

	7.3 Complexity
	7.4 Experiments
	7.5 Conclusion

	8 ASAPs: A Hybrid Asynchronous Algorithm
	8.1 Introduction
	8.2 Algorithm Description
	8.2.1 Global Planning
	8.2.1.1 Flow Properties

	8.2.2 Distributed Flow Control Algorithm

	8.3 Complexity Analysis
	8.4 Simulation and Results
	8.4.1 Presentation of the Experiments
	8.4.2 Experiments Analysis and Comparison with RePoSt
	8.4.2.1 Bottlenecks Effect


	8.5 Conclusion

	9 Conclusion
	9.1 Summary
	9.2 Discussions and Future Work
	9.2.1 General Perspective
	9.2.2 On the Size-Constraint Clustering
	9.2.3 On Shape Recognition
	9.2.4 On the Porous Structure
	9.2.5 On the Self-Reconfiguration Algorithms




