
HAL Id: tel-04453458
https://theses.hal.science/tel-04453458v1

Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mathematics of deep learning : generalization,
optimization, continuous-time models

Pierre Marion

To cite this version:
Pierre Marion. Mathematics of deep learning : generalization, optimization, continuous-time models.
Statistics [math.ST]. Sorbonne Université, 2023. English. �NNT : 2023SORUS517�. �tel-04453458�

https://theses.hal.science/tel-04453458v1
https://hal.archives-ouvertes.fr

T
hè

se
de

do
ct

or
at

Mathematics of deep learning: generalization,
optimization, continuous-time models

Thèse de doctorat de Sorbonne Université
préparée au Laboratoire de Probabilités, Statistique et Modélisation

Discipline : Mathématiques appliquées
Spécialité : Statistique

École doctorale de Sciences Mathématiques de Paris Centre, ED 386

Thèse soutenue à Paris le 20 novembre 2023 par

Pierre Marion

Rapporteurs et membres du jury :

Peter Bartlett Rapporteur
Professeur, UC Berkeley

Christophe Giraud Rapporteur
Professeur, Université Paris-Saclay

Francis Bach Président du jury
Directeur de recherche, Inria

Quentin Berthet Examinateur
Research scientist, Google DeepMind

Claire Boyer Examinatrice
Maître de conférences, Sorbonne Université

Stéphane Chrétien Examinateur
Professeur, Université Lyon 2

Anna Korba Examinatrice
Maître de conférences, ENSAE

Gérard Biau Directeur de thèse
Professeur, Sorbonne Université

Jean-Philippe Vert Co-directeur de thèse
Chief R&D Officer, Owkin

This work was supported by the Paris Ile-de-France Region via the DIM Math Innov program.
We also acknowledge support from Google via a Google PhD Fellowship and from MINES Paris -

PSL.

3

4

Abstract

Deep learning has emerged as a transformative paradigm in the past decade, with major impact in
various fields of artificial intelligence. However, the properties of this family of machine learning
methods are not yet fully understood. In this PhD thesis, we present contributions, mostly
theoretical in nature, to the field of deep learning. We study various families of neural networks
(shallow neural networks, residual networks, recurrent networks, Transformer) and various types
of mathematical problems, most notably in the fields of statistics (generalization bounds) and
optimization (convergence of the gradient flow). A first setting that is of particular interest for
us is the large-depth limit of residual networks. It has been remarked that this large-depth limit
may correspond to a neural ordinary differential equations. Under appropriate conditions, we
show that it is indeed the case, although other limits such as stochastic differential equations
can also hold. We investigate optimization and statistical properties of neural networks in this
setting. In the second part of the thesis, we move on to prove results on finite-depth neural
networks. We prove convergence of gradient flow for shallow neural networks with a moderate
number of neurons in a simple setting. Finally, we investigate properties of the more recent
Transformer architecture from a more practical point of view.

Keywords: theory of deep learning, neural networks, statistical learning, non-convex
optimization

Résumé

L’apprentissage profond a largement transformé le paysage de l’apprentissage automatique au
cours de la dernière décennie, avec un impact majeur dans divers domaines de l’intelligence
artificielle. Cependant, les propriétés des méthodes d’apprentissage profond ne sont pas encore
entièrement comprises. Dans cette thèse de doctorat, nous présentons des contributions, prin-
cipalement d’ordre théorique, dans ce domaine. Nous étudions différentes familles de réseaux
neuronaux (réseaux neuronaux à une couche cachée, réseaux résiduels, réseaux récurrents, Trans-
former) et différents types de problèmes mathématiques, notamment en statistique (bornes de
généralisation) et en optimisation (convergence du flot de gradient). Dans un premier temps,
nous nous intéressons à la limite en grande profondeur des réseaux résiduels. Il a été remarqué
dans la littérature que cette limite en grande profondeur pourrait correspondre à une équation
différentielle ordinaire neuronale. Sous des conditions appropriées, nous montrons que c’est
effectivement le cas, bien que d’autres objets limites peuvent aussi apparaître, en particulier une
équation différentielle stochastique. Nous étudions les propriétés d’optimisation et statistiques des
réseaux neuronaux dans ce cadre. Dans la deuxième partie de la thèse, nous nous intéressons à
des réseaux neuronaux de profondeur finie. Nous prouvons la convergence du flot de gradient pour
des réseaux à une couche cachée avec un nombre modéré de neurones dans un cadre simple. Enfin,
nous étudions les propriétés de l’architecture plus récente du Transformer avec une approche
plus pratique.

Mots-clefs : théorie de l’apprentissage profond, réseaux de neurones, apprentissage
statistique, optimisation non-convexe

5

6

Remerciements

Je tiens à remercier en premier lieu mes directeurs de thèse, Gérard et Jean-Philippe. Gérard, ta
confiance dès notre première rencontre fin 2018, puis ta présence au quotidien, ton humour, ta
gentillesse, l’autonomie que tu m’as laissée, ont été cruciaux pour moi tout au long de ma thèse.
Nos séances de relectures interminables mais infaillibles seront inoubliables pour moi, ainsi que
l’alignement des slides à la règle et au compas. Jean-Philippe, merci pour tes conseils avisés, ton
recul, ta bonne humeur, ta capacité à comprendre et à proposer des solutions à mes questions de
maths en moins de temps qu’il n’en faut pour dire condition de Polyak-Łojasiewicz. Je ne serai
pas là où j’en suis sans ton aide.

Je remercie également les membres du jury, et en premier lieu les rapporteurs de la thèse, pour
m’avoir consacré de leur temps que je sais précieux et pour leurs remarques pertinentes. Thank
you to the members of the thesis committee, and foremost to the referees, for their precious time
and relevant remarks.

Merci aux co-auteurs des travaux présentés dans ce manuscrit, Adeline, Francesco, Gérard,
Jean-Philippe, Michael, Paweł, Raphaël, Yu-Han. Travailler avec chacun d’entre vous a été une
grande source de joie et d’apprentissage pour moi. J’ai une pensée particulière pour Adeline avec
qui j’ai travaillé pendant la période difficile du Covid au début de ma thèse. Cette première
année de thèse n’aurait pas été la même sans toi et je t’en remercie. Thanks to the co-authors of
the papers presented in this manuscript, Adeline, Francesco, Gérard, Jean-Philippe, Michael,
Paweł, Raphaël, Yu-Han. Working with each of you has been a great source of joy and learning
for me.

Merci à l’équipe du Groupe de Travail des Thésard·e·s, Alexis, Antonio, Loïc, Miguel, Nicolas.
Longue vie au GTT (qui s’appelle désormais le SD, j’ai un pied dans la porte et je suis déjà un
boomer) !

Merci aux habitués de l’éphémère groupe de lecture des doctorants de statistique et machine
learning, en particulier Alexis, Ariane, Iqraa, Ludovic, Miguel. Ce fut bref mais intense.

Merci à mes co-chargés de TD, Alexis, Alice, Gloria, Iqraa, Ludovic, Miguel, Paul, Pierre.
Comme disait le général de Gaulle, des chercheurs qui cherchent, on en trouve ; mais des personnes
qui forment une aussi bonne équipe que vous pour enseigner, c’est moins courant. Ou quelque
chose dans ce goût-là, je ne suis plus sûr.

Merci aux équipes d’organisation de NeurIPS@Paris 2021 et 2022, Adeline, Edouard, Francis,
Gauthier, Gérard, Jean-Philippe, Jules, Linus, Liva. On ne réunit pas si facilement deux cents
personnes pendant une journée au milieu du Covid, mais nous y sommes arrivés !

7

Merci à l’administration qui nous accompagne au quotidien, avec une pensée particulière
pour Corentin, Hugues, Kevin, Louise, Nora. Science sans administration pour nous aider à
remplir tous les papiers et à faire marcher nos ordinateurs n’est que ruine de l’âme.

Merci aux habitués de la salle café et des mots croisés, en particulier Anna, Anna, Antoine,
Arnaud, Claire, Stéphane, vous m’avez ouvert des horizons pour une reconversion comme
cruciverbiste. Je ne suis pas certain de mettre à profit cette expérience dans mon prochain travail,
mais je le garde dans un coin de ma tête en cas de crise existentielle.

Merci à mes co-bureaux, Ariane, Cyprien, Eddy, Iqraa. Notre bureau fut marqué par un
gradient assez notable dans la direction de la fenêtre en termes de décoration. Mine de rien, mon
style épuré a fait le quart du travail et son entretien demande plus de soin qu’il n’y paraît au
premier abord. Ne me remerciez pas, c’est tout naturel.

Merci à tous les doctorantes et doctorants du LPSM que j’ai côtoyés pendant ces trois années.
Je prends le risque de faire une liste dont je sais qu’elle sera non exhaustive, et je m’excuse
platement auprès de celles et ceux que je n’aurais pas cité·e·s. Merci Adeline, Alexandra, Alexis,
Alice, Antonio, Ariane, Camila, Cyprien, Eddy, Francesco, Gloria, Iqraa, Lucas, Ludovic, Miguel,
Nathan, Nicklas, Paul, Thibault, Ugo, Yazid. Ma thèse n’aurait pas été la même sans vous.
Sortant de temps en temps du couloir 15-25 2ème étage, j’ai eu l’occasion de rencontrer des
doctorantes et doctorants d’autres laboratoires. Je remercie celles et ceux qui ont croisé ma
route à de nombreuses reprises et avec qui les discussions furent toujours enrichissantes. Merci
Bénédicte, Clément, Corentin, Eloïse, Guillaume, Linus, Margaux, Robin.

Merci à tous les professeurs de science qui m’ont transmis leur savoir, vous êtes trop nombreux
pour que je vous cite tous ici, mais vous faites un travail formidable ! J’ai une pensée particulière
pour MM. Choimet, Presle, Ridde, et Mme Vince. Si les dessins dans les preuves et les sapins de
Noël n’ont plus de secret pour moi, c’est grâce à vous.

Je suis le dernier (du moins dans un futur proche) à rendre hommage à Godalle Marmanthier.
S’il fallait dresser un portrait d’iel, je dirais que c’est d’abord des rencontres. Des gens qui m’ont
tendu la main, peut-être à un moment où je ne pouvais pas, où j’étais seul chez moi. Comme on
dit dans le milieu des mathématiciens gaulois.

Je tiens à remercier mes ami·e·s, en particulier celles et ceux que je n’ai pas déjà mentionné·e·s
ci-dessus (car oui, étonnamment, je fréquente des gens qui font autre chose qu’une thèse en
mathématiques). Je ne connais pas la moitié d’entre vous à moitié autant que je le voudrais,
et j’aime moins que la moitié d’entre vous à moitié aussi bien que vous le méritez. Que je vous
connaisse depuis un an ou dix, merci pour tous les moments que nous avons passés ensemble.

Je ne saurais en ces lignes conclusives exprimer ma gratitude envers ma famille à la mesure de
qu’elle mériterait. Merci Claude pour ta gentillesse et ta présence. Merci à ma mère de m’avoir
toujours soutenu et de m’avoir donné le goût des mathématiques (mais également de LaTeX !).
Merci Maxime d’avoir été à mes côtés de manière constante et inconditionnelle depuis cinq ans,
et j’espère pour longtemps encore.

8

Contributions and thesis outline

The thesis is organized in two parts, preceded by an introduction and followed by a conclusion.
Each part is separated in several chapters, which each correspond to a standalone contribution.
As a consequence, the chapters are independent and self-contained. The notation may vary from
chapter to chapter, although we try to keep some identical conventions throughout the thesis.
Each chapter has led to or should lead to a publication, as detailed below.

Part I: From discrete to continuous architectures, neural networks in the large-depth
regime

This part is dedicated to the mathematical analysis of the large-depth limit of residual
networks, both from a statistical and optimization point of view.

[Marion et al., 2022] Scaling residual networks in the large-depth regime, P.M., Adeline Fermanian
(Sorbonne Université at the time, now Califrais), Gérard Biau (Sorbonne Université), and Jean-
Philippe Vert (Google Research at the time, now Owkin). Submitted.
[Marion et al., 2023] Implicit regularization of deep residual networks towards neural ODEs,
P.M., Yu-Han Wu (Sorbonne Université), Michael E. Sander (ENS Paris), and Gérard Biau.
Submitted.
[Marion, 2023] Generalization bounds for neural ordinary differential equations and deep residual
networks. Published at NeurIPS 2023.
[Fermanian et al., 2021] Framing RNN as a kernel method: A neural ODE approach, Adeline
Fermanian, P.M., Jean-Philippe Vert, and Gérard Biau. Published at NeurIPS 2021 (oral
presentation).

Part II: Contributions to finite-depth neural networks

This part gathers two contributions related to modern topics in deep learning, this time for
finite-depth neural networks. The presented contributions are the following:

[Marion and Berthier, 2023] Leveraging the two-timescale regime to demonstrate convergence of
neural networks, P.M. and Raphaël Berthier (EPFL). Published at NeurIPS 2023.
[Marion et al., 2021] Structured context and high-coverage grammar for conversational question
answering over knowledge graphs, P.M., Paweł K. Nowak (Google Research) and Francesco
Piccinno (Google Research). Published at EMNLP 2021. This contribution differs from the
others in the thesis since it has a more applied flavor. It follows a work carried out during an
internship at Google Research in 2020.

9

10

Contents

1 Introduction 13
1.1 Mathematics of deep learning . 14
1.2 From discrete to continuous architectures: neural networks in the large-depth regime 21
1.3 Contributions to finite-depth neural networks . 28
1.4 Résumé détaillé en français . 32

Part I From discrete to continuous architectures: neural networks in
the large-depth regime 37

2 Scaling residual networks in the large-depth regime 39
2.1 Introduction . 40
2.2 Scaling at initialization . 43
2.3 Scaling in the continuous-time setting . 51
2.4 Experiments . 55
2.A Proofs . 58
2.B Technical results . 69
2.C Concentration of sub-Gaussian random matrices 71
2.D A version of the Picard-Lindelöf theorem . 73
2.E Detailed experimental setting . 74

3 Implicit regularization of deep residual networks towards neural ODEs 77
3.1 Introduction . 78
3.2 Related work . 80
3.3 Definitions and notation . 80
3.4 Large-depth limit of residual networks . 82
3.5 Numerical experiments . 86
3.6 Conclusion . 88
3.A Some results for general residual networks . 89
3.B Proofs of the results of the main part of the chapter 108
3.C Some technical lemmas . 114
3.D Counter-example for the ReLU case. 117
3.E Experimental details . 118

4 Generalization bounds for neural ODEs and deep residual networks 121
4.1 Introduction . 122

11

4.2 Related work . 123
4.3 Generalization bounds for parameterized ODEs 124
4.4 Generalization bounds for deep residual networks 128
4.5 Conclusion . 132
4.A Proofs . 132
4.B Experimental details . 140

5 Framing RNN as a kernel method: a neural ODE approach 141
5.1 Introduction . 142
5.2 Framing RNN as a kernel method . 144
5.3 Generalization and regularization . 149
5.4 Numerical illustrations . 151
5.5 Discussion and conclusion . 153
5.A Some additional definitions and lemmas . 153
5.B Proofs . 159
5.C Differentiation with higher-order tensors . 171
5.D Experimental details . 173

Part II Contributions to finite-depth neural networks 175

6 Leveraging the two-timescale regime to demonstrate convergence of neural
networks 177
6.1 Introduction . 177
6.2 Setting and main result . 179
6.3 Related work . 180
6.4 A non-rigorous introduction to the two-timescale limit 182
6.5 Convergence of the gradient flow . 184
6.6 Numerical experiments . 186
6.7 Conclusion . 188
6.A Additional notations and technical lemmas . 188
6.B Proofs of the results . 197
6.C Experimental details . 209

7 Structured context and high-coverage grammar for conversational question
answering over knowledge graphs 211
7.1 Introduction . 212
7.2 Related work . 213
7.3 A grammar for KG exploration . 214
7.4 Model . 216
7.5 Experiments . 220
7.6 Conclusion . 223
7.A Clarification Questions in CSQA . 224
7.B Detailed experimental setup . 224
7.C Comparison with baselines . 227
7.D Additional results . 228

8 Conclusion 233

Bibliography 235

12

1
Introduction

This introduction presents the general context of the manuscript and an overview of our con-
tributions. We start by an introduction to the mathematics of deep learning and to some deep
learning architectures in Section 1.1. In the following sections, we delve more into the details of
the models we consider in this thesis, to introduce the specific context to each model and present
our contributions. Section 1.2 presents the first part of this manuscript (Chapters 2 to 5), while
Section 1.3 discusses the second part of the manuscript (Chapter 6 and 7). Section 1.4 gives a
detailed summary of our work in French.

Contents
1.1 Mathematics of deep learning . 14

1.1.1 Why study the mathematics of deep learning? 14
1.1.2 What are the main mathematical challenges of deep learning? 14
1.1.3 From shallow neural networks to Transformer 19
1.1.4 What to expect in this manuscript? . 21

1.2 From discrete to continuous architectures: neural networks in the large-depth
regime . 21
1.2.1 Scaling of residual networks at initialization 24
1.2.2 Implicit regularization of deep residual networks towards neural ODEs 25
1.2.3 Generalization bounds for neural ODEs and residual networks 26
1.2.4 Recurrent neural networks as kernel methods 27

1.3 Contributions to finite-depth neural networks 28
1.3.1 Convergence of shallow neural networks in the two-timescale regime . 28
1.3.2 Structured context and high-coverage grammar for conversational ques-

tion answering over knowledge graphs 29
1.4 Résumé détaillé en français . 32

13

1.1 Mathematics of deep learning

1.1.1 Why study the mathematics of deep learning?

Deep learning is a subset of machine learning regrouping a large variety of algorithms that have
three major characteristics. First, they involve an iterative data-driven optimization procedure,
whose goal is to tune a parameterized function called a neural network. Second, the neural
network can take different forms but is always a non-convex function of its parameters, which
involves the composition of successive elementary parameterized operations. Third, the number
of parameters of this function is large, and thus they also require a massive amount of data and
compute to be tuned. The algorithm returns the trained neural network, which can then be used
to perform a given task (classification, regression, generation, etc.).

Deep learning methods have allowed major breakthroughs in various fields in the past decade,
such as computer vision or natural language processing, by taking advantage of an explosion
in available compute resources and data, as well as algorithmic improvements. More recently,
deep learning is behind the current successes in generative artificial intelligence (epitomized by
chatGPT), and the renewed expectancy of major societal impacts of artificial intelligence.

The great empirical successes and even greater promises of deep learning methods call for
a mathematical theory of neural networks. More precisely, the need for strong mathematical
grounding of deep learning is justified for at least three major reasons: efficiency, effectiveness,
explainability.

First, the call for more efficient learning approaches has been growing, in order to make it less
resource-intensive and accessible to a wider community. This concern is particularly important
to limit the environmental impact of machine learning.

Second, a deeper understanding of the fundamental underpinnings for the empirical success
of deep learning may lead to proposing more effective methods, by unlocking some of the issues
in the field. For instance, large language models such as chatGPT have a known tendency to
produce false statements. Designing algorithms with theoretical guarantees on the validity of
their outputs is therefore a crucial endeavor.

Third, explainability is necessary to foster adoption in critical applications (health, banking,
cyber-security, transports, etc.) and will probably also be increasingly demanded in the Internet
industry.

It is essential to emphasize at this point that deep learning is an extremely active area of
research encompassing efforts at the intersection of many fields in mathematics (approximation
theory, probability, statistics, optimization) and computer science (algorithmic, software engineer-
ing, hardware design), not to mention all the fields of applications. Therefore, our ambition in the
following is not to give an exhaustive presentation of deep learning, but rather to introduce the
models and ideas which are useful to understand the main contributions of this manuscript. We
refer to the textbooks by Goodfellow et al. (2016) and Fleuret (2023) for general introductions to
deep learning, and to Anthony and Bartlett (1999) for an introduction to the statistical theory
of deep learning. Section 1.1.2 presents the general framework of deep learning theory, in the
simplest case of shallow neural networks. We then briefly present in Section 1.1.3 the main
deep learning models this thesis will be concerned with. In Section 1.1.4, we describe where our
contributions stand in the landscape of deep learning theory and models.

1.1.2 What are the main mathematical challenges of deep learning?

In this section, we give an overview of some main questions related to deep learning theory. To
fix ideas, we take as our running example a simple setting, namely shallow neural network trained
with stochastic gradient descent on a non-parametric regression task. Although this algorithm

14

has been replaced in practice by empirically stronger methods, it remains a central object for
mathematical study, in particular to understand its optimization and statistical properties.
Furthermore, note that most of the exposition in this section applies to many other settings in
deep learning and beyond in machine learning in general.

Shallow neural networks. Let us begin by describing our class of neural networks. Shallow
neural networks are parameterized functions

fv,W,b : x 7→ v · σ(Wx+ b), (1.1)

where x ∈ Rd is the input, the outputs belongs to R, while v ∈ Rq, W ∈ Rq×d and b ∈ Rq
are the parameters of the neural network. v and W are referred to as weights and b as the
bias. Finally, σ : R → R is a function applied component-wise, called an activation function.
Common activation functions include the ReLU function x 7→ max(x, 0), the logistic function
x 7→ (1 + exp(−x))−1, and the hyperbolic tangent function x 7→ (ex − e−x)/(ex + e−x). The
shallow neural network can equivalently be written

fv,W,b(x) =

q∑
k=1

vkσ(Wk · x+ bk), (1.2)

where the triple (vk,Wk, bk) is referred to as a neuron. In the following of this section, for
simplicity, we omit the bias b, the exposition easily extends to the case where it is present.

Non-parametric regression. Take X a random variable in Rd, f∗ : Rd → R a regression
function, and Y = f∗(X) + ε, where ε is some additive noise independent of X. The regression
problem is the following: given an i.i.d. sample (xi, yi)16i6n with the same distribution as
(X,Y), find v and W such that fv,W ≈ f∗. More formally, can we find v and W such that
E(|fv,W (X)− f∗(X)|2) is small? Note that this is equivalent to finding (v,W) such that

R(v,W) := E(|fv,W (X)− Y |2) ≈ E(|f∗(X)− Y |2) = min
f measurable

E(|f(X)− Y |2),

or in other words, to find fv,W achieving the optimal Bayes risk for predicting Y given X.
The stochastic gradient descent (SGD) algorithm aims at solving this problem by tuning

(or training) the parameters v and W by an iterative optimization procedure. The algorithm
picks at each step a data point (xi, yi) and updates the parameters in the direction opposite to
their gradient with respect to the squared loss evaluated at (Fv,W (xi), yi). The pseudocode is
presented in Algorithm 1.

We now present a first line of theoretical analysis of this algorithm, which is an instantiation
of the classical statistical learning framework.

1.1.2.1 The classical waltz (uniform law of large numbers)

The analysis of Algorithm 1, and beyond of many machine learning algorithms, has historically
been decomposed in three subproblems, each corresponding to a field of applied mathematics.
More precisely, given classes of parameters V and W, this analysis requires the three follow-
ing conditions to hold simultaneously (see, e.g., Bach, 2023, Sections 4.2 and 5.1, for similar
decompositions).

• Approximation: there exist weights v∗ ∈ V and W ∗ ∈ W such that fv∗,W ∗ is close to f∗

(according to some norm), or in other words, such that

R(v∗,W ∗) ≈ min
f measurable

E(|f(X)− Y |2).

15

Algorithm 1 Training of shallow neural networks with stochastic gradient descent on a regression
task

Input: Sample (xi, yi)16i6n, initial weights v0 and W0, learning rate γ, number of steps P
Output: Trained weights vfinal and Wfinal

1: Let r(x, y, v,W) = |fv,W (x)− y|2.
2: for k = 1, 2, . . . , P do
3: Choose uniformly at random some i ∈ {1, . . . n}.
4: vk+1 ← vk − γ ∂r∂v (xi, yi, vk,Wk).
5: Wk+1 ←Wk − γ ∂r

∂W (xi, yi, vk,Wk).
6: end for
7: Return (vfinal,Wfinal) = (vP ,WP).

• Statistics: for any (v,W) ∈ (V,W), the difference between the empirical risk

R̂n(v,W) :=
1

n

n∑
i=1

|fv,W (xi)− yi|2 (1.3)

and the theoretical risk
R(v,W) = E(|fv,W (X)− Y |2)

is small, typically decaying to zero as n grows, uniformly over all (v,W) ∈ (V,W).

• Optimization: Algorithm 1 converges to vfinal and Wfinal such that the empirical risk

R̂n(vfinal,Wfinal) =
1

n

n∑
i=1

|fvfinal,Wfinal(xi)− yi|2

is small, typically not far away from the global minimum of the empirical risk over all
possible parameters (v,W) ∈ (V,W).

If these three conditions hold at the same time, then simple algebra shows that it is possible to
bound the difference between the theoretical risk of the trained network R(vfinal,Wfinal) and the
Bayes risk minf measurable E(|f(X)−Y |2). Indeed, denoting (v̂n, Ŵn) a minimizer of the empirical
risk R̂n over (V,W), we have

R(vfinal,Wfinal)− min
f measurable

E(|f(X)− Y |2) 6 |R(vfinal,Wfinal)− R̂n(vfinal,Wfinal)|

+ R̂n(vfinal,Wfinal)− R̂n(v̂n, Ŵn)

+ |R̂n(v̂n, Ŵn)−R(v∗,W ∗)|
+R(v∗,W ∗)− min

f measurable
E(|f(X)− Y |2).

The four terms can be controlled under the conditions presented above. The connection is
straightforward for all of them, except perhaps for the third term, which can be controlled by
the statistical error since

|R̂n(v̂n, Ŵn)−R(v∗,W ∗)| =
∣∣∣ inf

(v,W)∈(V,W)
R̂n(v,W)− inf

(v,W)∈(V,W)
R(v,W)

∣∣∣
6 sup

(v,W)∈(V,W)
|R̂n(v,W)−R(v,W)|.

Let us now examine whether it is reasonable to hope that the three conditions above be satisfied.

16

Approximation. The first approximation results for shallow neural networks were proven in a
landmark paper by Cybenko (1989). This paper shows that shallow neural networks are universal
approximators of continuous functions when the width q of the hidden layer can grow arbitrarily
large, as a consequence of the Stone-Weierstrass theorem. We refer to DeVore et al. (2021) for
a review of more recent and sophisticated results including rates of approximation on various
function spaces.

Statistics. Bounding the difference between the empirical and the theoretical risk requires a
uniform law of large numbers, in the sense that it amounts to bounding the difference between
an expectation and an empirical mean uniformly over a function class. This condition is typically
proven by bounding the capacity of the function class, here a class of neural networks. Statistical
learning provides us with a toolbox to do so. For instance, using covering numbers argument,
Anthony and Bartlett (1999, Theorem 19.2) show that, under the assumption that fv,W takes its
values in [0, 1] for all (v,W) ∈ (V,W), we have

P
(
∃(v,W) ∈ (V,W), |R̂n(v,W)−R(v,W)| > ε

)
6 O

((1

ε
log(

1

ε
)
)D

exp(−ε2n)
)
, (1.4)

where the probability P holds over the sample (xi, yi)16i6n, and D is the so-called pseudo-
dimension of the neural network, which can in turn be bounded by O(dq log(dq)) (Anthony and
Bartlett, 1999, Theorems 8.8 and 14.1). In particular, if the sample size n is sufficiently large with
respect to the pseudo-dimension of the neural network, then the right-hand side of (1.4) is small,
and therefore the uniform bound on the difference between the empirical and the theoretical
risks holds with high probability. Note that this implies in particular that the number of neurons
q should be less than the sample size n. Nevertheless, it is also possible to construct bounds
that do not depend explicitly on q but instead on the magnitude of the parameters measured
according to some norm. Let us present a result in this spirit: denote ‖W‖1,∞ the maximum of
the `1-norm of the rows of W . Then, under the assumptions that fv,W takes its values in [0, 1]
for all (v,W) ∈ (V,W), that σ is Lipschitz-continuous and bounded, and that X is bounded
almost surely, we have (Anthony and Bartlett, 1999, Corollary 14.16 and Theorem 17.1)

P
(
∃(v,W) ∈ (V,W), |R̂n(v,W)−R(v,W)| > ε

)
6 O

(
exp

(M6

ε4
log d− ε2n

))
, (1.5)

where M is such that
∀(v,W) ∈ (V,W), ‖v‖1 + ‖W‖1,∞ 6M.

We see that in this case, the measure of statistical complexity of the neural network is not the
number of parameters anymore, but rather a norm of the parameters. The key insight behind
the proof is that a network with bounded weights can be approximated by one with few weights.

We refer to Bartlett et al. (2017, 2019) for more recent results on the statistical complexity
of neural networks.

Optimization. The problematic time in our waltz is optimization: since the shallow neural
network (1.1) is non-convex in W , the objective function R̂n of the optimization algorithm is also
non-convex. This breaks the key convexity assumption ensuring that gradient-based optimization
procedures (such as stochastic gradient descent) converge to a global minimum. For this reason,
there is no guarantee that SGD converges to a global minimum, and there are even negative
results describing settings where SGD for shallow neural networks converges to local minima with
high probability (Brutzkus et al., 2018). Nevertheless, in practice, it is observed that trained
neural networks do converge to very low training errors. For instance, it is shown in Zhang et al.

17

(2021) that it is easy to train neural networks to interpolation (i.e., zero training error), even
with random labels. A framework to explain this phenomenon has emerged in the past years,
which we present next.

1.1.2.2 The modern tango (large number of neurons, implicit regularization)

The classical decomposition into the trio approximation-statistics-optimization, which we sketched
above, is not entirely satisfactory for several reasons. First, it provides no guarantee that the
optimization algorithm converges close to a global minimizer of the empirical risk. Second, the
statistical guarantees are typically given over a bounded subset of the space of parameters, and it
is not a priori clear that the output of the optimization algorithm belongs to this subset. Finally,
it has been remarked that uniform capacity control provably leads to vacuous bonds in some
settings (Nagarajan and Kolter, 2019).

These reasons have prompted a more complex line of analysis (see Belkin, 2021, for a general
presentation), which analyzes jointly the optimization and statistical aspects instead of relying
on a uniform deviation bound over a class of parameters. This analysis holds when the number
of neurons is large enough (typically larger than the sample size). The reasoning in this new
line of analysis is two-fold: first, prove that, when the network is wide enough, the optimization
landscape becomes more favorable, which allows proving global convergence of the empirical risk
to zero despite the lack of convexity. Second, even more agreeable, the optimization algorithm
does not converge towards just any minimizer of the empirical risk, but towards a minimizer
that possesses structural properties. More precisely, among all minimizers of the empirical risk,
the one found by SGD minimizes some measure of complexity of the parameters. In other words,
the optimization algorithm implicitly solves the problem

min
v,W∈(V,W)

R̂n(v,W)=0

c(v,W),

where c is an appropriate measure of complexity, which is typically a norm (see below) or a
matrix rank (Razin and Cohen, 2020). Furthermore, neural networks such that c(v,W) is low
enjoy favorable generalization properties, hence the name of implicit regularization given to this
phenomenon.

Let us now delve a bit more into the details of the approach, first regarding the proof of
global convergence, then the implicit regularization.

Global convergence of SGD. Regarding the first facet of the reasoning, global convergence
of gradient-based algorithms for (shallow) neural networks can be explained in the case where
the width q of the network is large enough with respect to the number of data n. Recent works
in this direction can roughly be clustered in two main categories.

On the one hand, the neural tangent kernel (NTK) regime (Jacot et al., 2018; Allen-Zhu
et al., 2019; Du et al., 2019; Zou et al., 2020a) corresponds to small movements of the parameters
of the neural network. In this case, the neural network can be linearized around its initial point,
and thus behaves like a linear regression. In spirit, provided that there are more parameters
than data points, the linear regression is then overparameterized, which means that there exists
a solution to the linear regression problem with a null empirical risk.

On the other hand, the mean-field regime (Chizat and Bach, 2018; Mei et al., 2018; Rotskoff
and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020) describes the dynamics in the
regime q � 1 through a partial differential equation (PDE) on the density of neurons, which
takes the form of a Wasserstein gradient flow. It can then be shown that, under the assumption
that this PDE converges, then the limit distribution must be optimal. This regime is sometimes

18

referred to as ‘rich’ (see, e.g. Woodworth et al., 2020) since it describes non-linear feature learning,
contrarily to the NTK regime which is akin to a kernel method. The transition from the kernel
to the rich regime depends on the scale of the initialization (Chizat et al., 2019; Woodworth
et al., 2020).

Implicit regularization. A number of recent works study implicit regularization for neural
networks. Let us present one specific example, which fits in the framework of regression with
shallow neural networks presented above, in order to give the flavor of these results. Boursier
et al. (2022) study the case of a ReLU activation function, a large enough number of neurons q
and orthogonal inputs, which in particular implies that d > n. They show that, if the weights
are initialized infinitesimally close to zero (corresponding to the rich regime described above),
then the gradient flow converges to a global minimizer of the empirical risk, achieving a zero
empirical risk. Furthermore, this minimizer is a solution of the problem

min
v,W∈Rq×Rq×d
R̂n(v,W)=0

‖v‖2 + ‖W‖2,

where ‖ · ‖ denotes the Euclidean norm. This result can be rephrased in terms of the prediction
function fv,W : it shows that the prediction function found by gradient flow minimizes the so-called
variation norm among all interpolators of the training data that write as an infinite-width neural
network. Furthermore, it is known that prediction functions with low variation norm generalize
well (Bach, 2017, Proposition 7).

Note that many other implicit regularization results have been shown, we refer to Vardi
(2023) for a review.

Remark 1.1. Since the analysis presented in this section holds when the number of neurons is
large, it is often referred to as the ‘overparameterized’ regime, by opposition to an ‘underparam-
eterized’ regime which would correspond to the analysis of the previous section. However, this
formulation is somewhat improper since it was already known that uniform deviation bounds can
hold independently of the number of parameters, as shown for instance by the bound (1.4). It
seems more precise to distinguish both analyses by stating that the uniform deviation bound is
replaced by a characterization of the implicit regularization implied by the optimization algorithm.

1.1.3 From shallow neural networks to Transformer

Having sketched the landscape of deep learning theory, we now present in this section some
important neural network architectures by increasing level of complexity. Let us stress that we
give a simple and unified presentation of the models, at the cost of generality. For instance, we
remove biases and normalizations (batch normalization or layer normalization). More general
models will be considered in the manuscript, with slight variations depending on the chapters.

Deep neural networks. The shallow neural network model introduced in Section 1.1.2 can be
generalized to deep neural networks, which consists in composing linear mappings and non-linear
component-wise activations, according to the relations

h0 = Ax, (1.6)
hk+1 = σ(Wk+1hk), 0 6 k 6 L− 1, (1.7)
F (x) = BhL, (1.8)

where L denotes the depth of the network, A ∈ Rq×d, W1, . . . ,WL ∈ Rq×q, and B ∈ Rd′×q are
weight matrices, and σ is still an activation function. The quantity hk is referred to as a hidden

19

layer. The weight matrices can either be full matrices, in which case the neural network is called
fully-connected, or sparse with weight-sharing, corresponding to convolutional neural networks.
In practice, convolutions play a critical role in the performance of neural networks for visions
tasks, in particular because they encode symmetries of the network with respect to translation
in the image. Nevertheless, we do not present them in more details here, since the results in
this manuscript are given for fully-connected neural networks. We refer the interested reader to
Goodfellow et al. (2016, Section 9) for a detailed presentation of convolutional neural networks.

Residual neural networks. In practice, vanilla deep neural networks (1.6)–(1.8) are difficult
to train when L is larger than a few units, due to instabilities in the training procedure, as
demonstrated in particular in a landmark paper by He et al. (2016a). These authors propose
important improvements, allowing to reach depth of order to several hundreds or even thousands,
thereby achieving (at the time) state-of-the-art results in image recognition. The crucial modifi-
cation is the presence of skip connections, meaning that the definition of the hidden layer (1.7) is
replaced by

hk+1 = hk + σ(Wk+1hk), 0 6 k 6 L− 1. (1.9)

Comparing (1.7) and (1.9), we see that, in the second case, the mapping h 7→Wk+1σ(h) does not
parameterize directly the new hidden layer hk+1 as in (1.7), but rather the difference between
two successive hidden layers hk+1 − hk, hence the name residual neural network given to this
model. This intuition is key to the developments on the properties of this model made in the
first part of this manuscript.

Recurrent neural networks. Note that, for now, we have placed ourselves in the simple
case where the input and the output are vectors, belonging respectively to Rd and Rd′ . Another
key context is where the input data consists in a collection of vectors x ∈ RL×d. This setting
encompasses time series (in which case L corresponds to the number of time steps) or textual
data (where L corresponds to the length of the text). We now present a first model that is
adapted to this context, recurrent neural networks (Rumelhart et al., 1986). They are defined by
a sequence of hidden states h1, . . . , hL ∈ Rq. These hidden states obey the following recurrence,
for an input x = (x1, . . . , xL):

h0 = 0,

hk+1 = σ(Whk + Uxk+1), 0 6 k 6 L− 1

F (x) = BhL,

(1.10)

where σ is an activation function, and W ∈ Rq×q, U ∈ Rq×d, and B ∈ Rd′×q are weight matrices.
Note that here, contrarily to the models presented above, the weight matrices do not depend on
the layer index k. Naturally, it is also possible to consider a residual version of recurrent neural
networks (see, e.g., Yue et al., 2018). The iteration then writes

hk+1 = hk + σ(Whk + Uxk+1), 0 6 k 6 L− 1. (1.11)

Transformer. Recurrent neural networks have several drawbacks that make them unsuitable
in some use cases (Kolen and Kremer, 2001); they are slow to train and suffer from instabilities
during training. They also have difficulties picking up long-range dependencies in the data. An
important mechanism to mitigate these problems is the so-called attention (Bahdanau et al.,
2014; Luong et al., 2015), which is in particular present in Transformer (Vaswani et al., 2017).
The Transformer architecture forms the basis of modern natural language processing and in
particular of large language models. There are different variants of this architecture, we focus

20

here on the Transformer encoder (a.k.a. BERT-like Transformer) to give a flavor of the main
ideas. Just like recurrent neural networks, the Transformer encoder handles a collection of vectors
x = (x1, . . . , xL) ∈ RL×d. However, instead of performing sequential computations involving
successively each xi for i ∈ {1, . . . , L}, it manipulates the whole sequence at once. More precisely,
the Transformer encoder consists in a series of blocks, where each block takes as input a matrix
x ∈ RL×d and returns a matrix B(x) ∈ RL×d, so several blocks can be composed together to
form the encoder. Each block consists in two layers, an attention layer and a feedforward layer,
which are defined as follows:

A(x) = x +
H∑
h=1

σ(xQhK
>
h x
>)xVhO

>
h

B(x) = A(x) + ReLU(A(x)W1)W2

The parameters of the attention layer are Qh, Kh, Vh, Oh that are all Rd×r matrices, for
h ∈ {1, . . . ,H}, and the parameters of the feedforward layer are W1 ∈ Rd×m and W2 ∈ Rm×d.
The dimensions r and m are hyperparameters of the model. The function σ : RL×L → RL×L
performs a row-wise softmax operation, that is, for M ∈ RL×L, we have

σ(M)ij =
exp(Mij)∑L
k=1 exp(Mik)

.

Finally, ReLU : x 7→ max(x, 0) is the activation function applied element-wise. We emphasize
that the architecture presented here is a simplification of the actual Transformer models, which
eludes important concepts (in particular the contrast between encoder-only, decoder-only, and
encoder-decoder architectures). We refer to Phuong and Hutter (2022) for a more in-depth
presentation of Transformer-related algorithms.

1.1.4 What to expect in this manuscript?

Now that we have presented a brief panorama of deep learning theory and of neural networks
models, we are in a position to examine where our contributions stand in this landscape. The
situation is summarized in Table 1.1, where the chapters are sorted by architecture, and Table
1.2, where the chapters are sorted according to the nature of the results.

Architecture Type of results

Residual networks
Other properties (Chap. 2)
Optimization (Chap. 3)
Statistics (Chap. 4)

Recurrent networks Statistics (Chap. 5)

Shallow networks Optimization (Chap. 6)

Transformer Applications (Chap. 7)

Table 1.1: Chapters of this manuscript organized by architecture.

1.2 From discrete to continuous architectures: neural networks in
the large-depth regime [Part I of the manuscript]

The analysis of shallow models presented in Section 1.1.2 does not fully adapt to deep networks,
and furthermore does not provide a consensual explanation for the role of depth, despite its

21

Theory Applications

The classical waltz The modern tango

Statistics Chap. 4 (residual networks)
Chap. 5 (recurrent networks) Chap. 7

Optimization Chap. 3 (residual networks) Chap. 3 (residual nets) (Transformer)
Chap. 6 (shallow networks)

Other properties Chap. 2 (residual networks)

Table 1.2: Chapters of this manuscript organized by nature of the results.

empirically-proven importance (see, e.g., Wang et al., 2022). This remark, along with the
empirical success of residual networks (He et al., 2016a), motivated a line of research devoted to
understanding the properties of residual networks in the limit where the depth tends to infinity.
Let us consider in this section a more general formulation of residual networks than (1.9), which
writes

h0 = Ax,

hk+1 = hk +
1

Lβ
Vk+1σ(Wk+1hk), 0 6 k 6 L− 1,

F (x) = BhL,

(1.12)

where we added a scaling factor 1/Lβ with β > 0, additional weight matrices Vk ∈ Rq×q for
k = 1, . . . , L, and we recall that, as in (1.9), A ∈ Rq×d, B ∈ Rd′×q, Wk ∈ Rq×q for k = 1, . . . , L,
and σ is an activation function. The presence of a scaling factor differs from the residual network
models presented above. This matter is thoroughly discussed in Chapter 2; in a nutshell, the
scaling factor is necessary for the model to be well-posed in the absence of other normalization
techniques such as batch normalization. As for the additional weight matrices Vk, they make the
formulation of the model actually closer to the original residual networks of He et al. (2016a),
and they are required for some results below.

Looking at the discrete recursion (1.12), a natural idea is to substitute it with a continuous
counterpart

dH

ds
= V σ(WH), s ∈ [0, 1]. (1.13)

In other words, the discrete layer index k is transformed into a continuous layer index s and the
discrete updates are replaced by an ordinary differential equation. This idea has been popularized
by the seminal paper of Chen et al. (2018a), which coined the terminology of neural ordinary
differential equations (neural ODEs). Subsequently, numerous works have relied on the intuition
that the neural ODE (1.13) is the limit of the residual network (1.12) in the large-depth limit
L→∞ (see, e.g., Haber and Ruthotto, 2017; E et al., 2019; Dong et al., 2020; Massaroli et al.,
2020; Kidger, 2022), although the picture is more complex as we will see in Section 1.2.1.

Remark 1.2. Equation (1.13) is ambiguous in that it does not specify whether V and W depend
on s. The answer depends on the context, which is why we leave it ambiguous for now and make
more precise statements in the following. More precisely, neural ODEs were first introduced
by Chen et al. (2018a) with constant (i.e., depth-independent) parameters. However, since the
parameters of (1.12) depend on the layer index, it seems clear, and will be made formal in the
following, that the continuous version of (1.12) has depth-dependent parameters V (s) and W (s).
Finally, we also study in Chapter 5 a continuous version of recurrent neural networks, in which
case the parameters of the limit ODE are depth-independent (see Section 1.2.4).

22

The continuous-depth limit (1.13) appeals both from an algorithmic and a theoretical point
of view. Let us delve more into the details of both aspects.

Algorithmic advantages of the large-depth limit. The continuous-depth viewpoint on
deep learning has received a lot of attention from an algorithmic and practical point of view. We
review a few relevant works here, although we emphasize that this manuscript focuses mostly
on theoretical analysis. For this reason, the reader interested in algorithmic developments is
encouraged to investigate the PhD thesis of Kidger (2022), which contains a comprehensive
overview of models and algorithms related to neural ODEs. This being said, an important
motivation for continuous-depth models is that they offer memory efficient training by using
the adjoint method to retrieve gradients, which removes the need to store the value of hidden
layers (Chen et al., 2018a). This property was later extended to finite-depth residual networks
(Sander et al., 2022b). Another line of work has used the continuous viewpoint to design new
architectures that discretize more efficiently continuous-depth differential equations, and thereby
benefit from favorable properties of their continuous-depth equivalent, such as stability (Haber
and Ruthotto, 2017; Chang et al., 2019; Benning et al., 2019). Novel optimization algorithms
coming from optimal control have also been proposed by casting the optimization problem over
continuous-depth networks as an optimal control problem (Li et al., 2017). The continuous
viewpoint was also used to design efficient generative models (Chen et al., 2018a; Grathwohl
et al., 2019; Kidger et al., 2021), which sample noise then continuously transforms it into the
target distribution. In particular, the recently acclaimed diffusion models can be seen as instances
of neural ODEs (Song et al., 2021). Finally, in a time series context, continuous-depth networks
have been praised for natively handling irregularly sampled data (Rubanova et al., 2019; Kidger
et al., 2020), contrarily to standard models.

Theoretical advantages of the large-depth limit. From a theoretical point of view, the
large-depth limit is conceptually simple and provides a very natural interpretation of depth as
the time flow of a differential equation. Furthermore, it allows to leverage the well-established
tools of differential equations in a deep learning context. This prompted interest into deriving
mathematical properties of deep learning models by leveraging the continuous viewpoint, as
proposed by E (2017). For instance, E et al. (2019) leverages the optimal control theory to
obtain statistical guarantees on infinite-depth residual networks, by formulating a Pontryagin’s
maximum principle version of the learning problem. Cuchiero et al. (2020) also uses tools from
optimal control (Lie brackets and controllability) to show that infinite-depth residual networks
are able to interpolate arbitrary training sets with a limited number of parameters.

However, the precise derivation of the connection between (1.12) and (1.13), and the explo-
ration of the consequences of the continuous viewpoint on residual networks remain not yet fully
investigated. Our goal in this first part of the thesis is to provide mathematical statements
on these two challenges. We will answer the following four key questions: first, under what
conditions and in which sense does the neural ODE limit hold for deep neural networks, both at
initialization and after training? Second, are there other possible deep limits than neural ODEs?
Third, can global convergence of the training algorithm be proven in this setting? Fourth, what
does this ODE-like regime imply in terms of the generalization abilities of deep neural networks?

Before delving into the core of our contributions, let us note that the setting and precise
assumptions vary slightly between the different chapters. We give here a unified and simplified
presentation, and leave rigorous statements, related work, as well as generalizations of the results
sketched below, to the core of the manuscript. In particular, rather than providing a literature
review on the theory of large-depth residual networks at this point, we refer the reader to the
related work sections of Chapters 2 to 5 for an in-depth survey of the literature relevant to the

23

topics addressed in each chapter.

1.2.1 Scaling of residual networks at initialization [Chapter 2 of the manuscript]

We begin by investigating in Chapter 2 whether the scaled residual network (1.12) converges at ini-
tialization towards a differential equation in the large-depth limit, depending on the initialization
scheme and on the scaling factor β. Several possible initialization schemes are investigated, the
two main ones being i.i.d. initialization and smooth initialization. I.i.d. initialization corresponds
to the standard practice of initializing every weight as an i.i.d. random variable, e.g., uniform or
Gaussian. Smooth initialization is less common and amounts to taking the Vk and Wk as dis-
cretizations of some smooth (possibly random) functions V : [0, 1]→ Rq×q and W : [0, 1]→ Rq×q,
that is, Vk = V(k/L) and Wk =W(k/L) for k ∈ {1, . . . , L}. This includes in particular the case
where the weights are initialized weight-tied across the depth, i.e., where V and W are constant
functions. Another more complex case is where the entries of V and W are independent Gaussian
processes with expectation zero and squared exponential covariance.

Our main contribution in this chapter is to show that the large-depth properties of the network
at initialization depend on the joint choice of β and of the initialization scheme, as reported
in Table 1.3. Both in the i.i.d. case and in the smooth case, a specific value of β corresponds
to a differential equation limit that separates two antithetical dynamics, explosion and identity.
Furthermore, the differential equation limit is a stochastic differential equation (SDE) in the
i.i.d. case and an ODE in the smooth case.

Scaling factor 0 < β < 1/2 β = 1/2 1/2 < β < 1 β = 1 β > 1

I.i.d. initialization Explosion SDE limit Identity Identity Identity
Smooth initialization Explosion Explosion Explosion ODE limit Identity

Table 1.3: Properties of the residual network at initialization as a function of the scaling factor
and of the initialization. Explosion means that the output of the network tends to infinity when
the depth L goes to infinity. Identity corresponds to the fact that hL ≈ h0 when L goes to
infinity.

To make things more precise, the first row of Table 1.3 can be formalized by the following
result, which is a simplified version of Corollary 2.4 in Chapter 2.

Theorem 1.3. Consider the residual network (1.12) with i.i.d. weights.

(i) If β > 1/2, then
‖hL − h0‖
‖h0‖

P−−−−→
L→∞

0.

(ii) If β < 1/2, then
‖hL − h0‖
‖h0‖

P−−−−→
L→∞

∞.

(iii) If β = 1/2, then, for any δ ∈ (0, 1), with probability at least 1− δ,

exp

(
3

8
−
√

22

qδ

)
− 1 <

‖hL − h0‖2
‖h0‖2

< exp

(
1 +

√
10

qδ

)
+ 1.

The proof of this result relies crucially on the martingale structure of (‖hk‖)06k6L, as well as
on state-of-the-art concentration inequalities for random matrices with sub-Gaussian entries.

24

In summary, among the possibilities we examine, the only case where the ODE limit (1.13)
holds is when initializing with smooth weights and taking a scaling factor β = 1 (corresponding
to the framed cell in Table 1.3). This is the case which we consider in the following chapters.

Furthermore, we also perform some preliminary experiments showing that this ODE-like
weight structure is preserved after training, as shown in Figure 1.1. This is the topic of the next
chapter.

0 200 400 600 800 1000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) β = 1, smooth initialization

0 200 400 600 800 1000

1.0

0.5

0.0

0.5

(b) β = 1, i.i.d. initialization

0 200 400 600 800 1000

0.4

0.2

0.0

0.2

0.4

(c) β = 1/2, i.i.d. initialization

Figure 1.1: Plot of a given coordinate of Vk, after training, as a function of the layer index k
ranging from 1 to the depth L = 1000 for three different choices of β and initializations. The left
plot depicts a smooth ODE-like weight structure, contrarily to the other plots.

1.2.2 Implicit regularization of deep residual networks towards neural ODEs
[Chapter 3 of the manuscript]

In Chapter 3, we also consider model (1.12), this time focusing on the case of a smooth initialization
and a 1/L scaling factor. According to the previous chapter, we know that, at initialization, the
neural network converges towards a neural ODE. We are interested in showing that the trained
neural network still exhibits an ODE-like weight structure, or in other words, to shed light on
Figure 1.1a. To this aim, we assume that the neural network is trained with a gradient flow that
writes as the following ODEs

∂Vk
∂t

(t) = −L∂R̂n
∂Vk

(t),
∂Wk

∂t
(t) = −L∂R̂n

∂Wk
(t), t > 0, (1.14)

where R̂n denotes the empirical risk (as defined in (1.3)). Gradient flow can be seen a simplifying
limit of SGD (see Algorithm 1) when the learning rate γ tends to zero. It is a standard tool in the
analysis of optimization algorithms. We refer to Bach (2020) for a user-friendly introduction to
gradient flows in a machine learning context. The scaling factor L in (1.14) is the counterpart of
the scaling factor 1/L in (1.12), and is necessary to avoid gradient vanishing as L goes to infinity.
Note that the time variable t of the ODE differs from the continuous-depth variable s in the
neural ODE (1.13). Our first main contribution in this chapter is to prove that the neural ODE
limit holds after training, as shown in the following theorem (Theorem 3.4 of Chapter 3), stated
informally here.

Theorem 1.4. Consider the neural network (1.12) with β = 1. Assume that it is initialized
smoothly in the sense of Section 1.2.1, and trained with the gradient flow (1.14) for t ∈ [0, T].

Then there exist Lipschitz-continuous functions V,W : [0, 1]× [0, T] such that, uniformly over
s ∈ [0, 1] and t ∈ [0, T], VbsLc(t) → V(s, t) and WbsLc(t) → W(s, t) when the depth L goes to
infinity.

25

Furthermore, for any k ∈ {0, . . . L}, denote hk(t) the value of the layer k at training time t.
Then, for any s ∈ [0, 1], the layer hbsLc(t) converges when L goes to infinity to the value at time
s of the solution of the neural ODE

H(0) = x

dH

ds
(s) = V(s, t)σ(W(s, t)H(s)), s ∈ [0, 1].

This convergence is uniform over s ∈ [0, 1], t ∈ [0, T] and x ∈ K for any compact K ⊂ Rd.

This large-depth convergence holds for any finite training time t ∈ [0, T]. However, the
convergence of the optimization algorithm when T goes to infinity is not guaranteed without
further assumptions, due to the non-convexity of the optimization problem. We can obtain such
a convergence by proving a Polyak-Łojasiewicz (PL) condition, which is a key modern tool in
analyzing the properties of optimization algorithms for deep neural networks (Liu et al., 2022).
Importantly, the PL condition implies the convergence of gradient flow to a global minimum.
As our second main contribution in this chapter, we prove that such a condition holds when
the width q of the hidden layers is larger than some constant times the number of data n. As a
consequence, we obtain the convergence with high probability in large depth and large training
time, namely the existence of Lipschitz-continuous functions V∞ and W∞ such that the trained
neural network converges when both L and T go to infinity to the ODE

dH

ds
(s) = V∞(s)σ(W∞(s)H(s)), s ∈ [0, 1]. (1.15)

The convergence holds in a sense similar to the one of Theorem 1.4. Furthermore, the limit ODE
achieves zero training loss. This analysis is a first step towards understanding the implicit regu-
larization (see Section 1.1.2.2) of gradient flow for deep residual networks, that is, characterizing
the properties of the trained network among all minimizers of the empirical risk.

1.2.3 Generalization bounds for neural ODEs and residual networks [Chapter 4
of the manuscript]

Now that we know that trained deep residual networks converge in the large-depth limit towards
neural ODEs of the form (1.15), we are interested in understanding the statistical properties
of this class of models. This is our aim in Chapter 4. We examine the simpler case where the
inner weights W∞ are equal to the identity matrix, or in other words, we only consider outer
weights V∞. Even with this simplification, this remains a delicate problem since the output of the
model is a non-linear function of the parameters, and the latter belong to an infinite-dimensional
space. Nevertheless, we are able to bound their statistical complexity by leveraging results on the
covering number of bounded Lipschitz-continuous functions. More precisely, for a matrix-valued
function V , denote ‖V ‖1,1,∞ = maxs∈[0,1]

∑
i,j |Vij(s)|. Then we consider the set of neural ODEs

H(0) = x

dH

ds
(s) = V (s)σ(H(s))ds, s ∈ [0, 1]

FV (x) = H(1),

(1.16)

where V belongs to the set of functions

V = {V : [0, 1]→ Rq×q, ‖V ‖1,1,∞ 6 RV and
Vij is KV -Lipschitz-continuous for i, j ∈ {1, . . . , q}}. (1.17)

26

It is a simplification of the large-depth limit model (1.15) obtained in the previous chapter,
in the sense that we removed the initial and final projections matrices A and B, as well as
the inner weights W (s). We place ourselves in a standard supervised learning setup with n
i.i.d. data samples, which we assume to be almost surely bounded. We consider some general
Lipschitz-continuous loss function. The empirical risk is denoted by R̂n, the theoretical risk by
R, and the empirical risk minimizer over V by V̂n. The following result can then be proven as a
straightforward corollary of Theorem 4.4 of Chapter 4.

Theorem 1.5. Consider the class of neural ODEs (1.16), where V belongs to (1.17). Then,
there exists a constant B > 0 depending on the parameters of the problem such that for n large
enough, for any δ > 0, with probability at least 1− δ,

R(V̂n) 6 R̂n(V̂n) +B(q + 1)

√
log(RV mn)

n
+B

q2
√
KV

n1/4
+

B√
n

√
log

1

δ
.

This result belongs to the family of generalization bounds, which aim at bounding the
difference between the theoretical risk and the empirical risk of V̂n. It is a consequence of a
uniform law of large numbers as presented in Section 1.1.2.1. Three terms appear in our upper
bound of R(V̂n)−R̂n(V̂n). The first and the third ones are classical (see, e.g. Bach, 2023, Sections
4.4 and 4.5). On the contrary, the second term is more surprising with its convergence rate
in O(n−1/4). This slower convergence rate is due to the fact that the space of parameters V
is infinite-dimensional. However, we retrieve a classical O(n−1/2) convergence rate in the case
where KV = 0. This corresponds to constant functions V , i.e., depth-independent weights, which
belong to a finite-dimensional space.

As a second main contribution in this chapter, we prove similar generalization bounds for
finite-depth residual networks of the form (1.12). Although these bounds hold for finite-depth
networks, their derivation is strongly inspired by the infinite-depth analysis.

1.2.4 Recurrent neural networks as kernel methods [Chapter 5 of the manuscript]

In Chapter 5, we consider a slightly different model, namely residual recurrent networks. Similarly
to the previous chapter, we introduce a scaling factor 1/L and thus consider the rescaled version
of the residual recurrent network (1.11), which writes as follows

hk+1 = hk +
1

L
σ(Uhk + V xk+1). (1.18)

We further assume that each input series (xk)16k6L corresponds to the discretization of a
continuous time process X : [0, 1]→ Rd. Our goal is to show that the rescaled residual recurrent
network is actually a kernel method, yielding as a byproduct generalization and stability bounds.
Since we recognize in (1.18) an Euler discretization of an ODE, we first show (in a precise sense)
that the network approaches at distance O(1/L) the continuous-time network

dH

ds
(s) = σ(UH(s) + V X(s)), H(0) = 0, (1.19)

where the output of the network is a linear projection of the value of the solution of the ODE at
time t = 1, that is, y = BH(1). Then, our main theorem in this chapter states the existence of a
Hilbert space H and of mappings S and ς such that, under some regularity assumptions,

y = 〈S(X), ς(B,U, V)〉H. (1.20)

In this equation, S(X) is the signature of the time series X, which is a feature map for time
series (Levin et al., 2013), while ς(B,U, V) is an expression involving powers of B, U , V and

27

higher-order derivatives of σ. The key insight of the proof is to use a specific variant of the
Taylor expansion that applies for ODEs involving a time-dependent parameter X, which are
known as controlled differential equations (Lyons et al., 2007).

This result allows to reinterpret the action of the recurrent network as a scalar product in an
(infinite-dimensional) Hilbert space, thereby framing the recurrent network as a kernel method.
Hence we can use the usual kernel machinery to derive generalization bounds and stability bounds.
Let us illustrate the second idea, whose derivation is easier: for two time series X and X ′, we can
bound the difference between the corresponding outputs y and y′ by using the Cauchy-Schwartz
inequality, as follows

|y − y′| = |〈S(X), ς(B,U, V)〉H − 〈S(X ′), ς(B,U, V)〉H| ≤ ‖S(X)− S(X ′)‖H‖ς(B,U, V)‖H.
(1.21)

Since the mapping S is continuous, ‖S(X)− S(X ′)‖H is small if X and X ′ are sufficiently close.
Hence this result shows that the Hilbert norm of the weights mapping ‖ς(B,U, V)‖H controls
the stability of the network. This suggests using this quantity as a regularizer when training the
network.

1.3 Contributions to finite-depth neural networks [Part II of the
manuscript]

This second part of the manuscript gathers various contributions related to modern topics in deep
learning, this time for finite-depth neural networks, contrarily to the first part of the manuscript
which focused on large-depth limits. We first present results on shallow neural networks, then on
Transformer.

1.3.1 Convergence of shallow neural networks in the two-timescale regime [Chap-
ter 6 of the manuscript]

In Chapter 6, we study the training dynamics of shallow neural networks of the form (1.2), in a
two-timescale regime in which the step sizes for the inner layer are much smaller than those for
the outer layer. We consider a simple univariate setting where the neural network writes

fv,b(x) =

q∑
k=1

vkσ(x− bk),

for an input x ∈ R and parameters vk, bk ∈ R. Comparing with the general formulation of shallow
neural networks (1.2), we see that we fix the multiplicative inner weights wk to 1. Similarly to
Chapter 3 (see equation (1.14)), we assume that the neural network is trained by gradient flow,
this time directly on the theoretical risk

R(v, b) = E(|fv,b(X)− f∗(X)|2),

where X follows a uniform law on [0, 1]. Minimizing directly the theoretical risk instead of the
empirical risk allows us to set aside statistical issues to focus on optimization, which remains a
delicate matter since the risk is non-convex in b. The gradient flow equations write

∂v

∂t
(t) = −∂R

∂v
(t),

∂b

∂t
(t) = −ε∂R

∂b
(t), t > 0, (1.22)

where ε parameterizes the ratio between the step sizes for the inner layer and for the outer layer.
By taking ε� 1, the neural network can be thought of as a fitted linear regression with slowly

28

evolving features σ(· − bk), k = 1, . . . , q. This reduction enables us to precisely describe the
movement of the inner layer parameters bk. In this two-timescale regime, we prove convergence
of the gradient flow to a global optimum in the case where f∗ is a piecewise constant function.
More precisely, we show the following theorem (Theorem 6.2 of Chapter 6), stated in a simplified
manner here.

Theorem 1.6. Let ξ, δ > 0, and f∗ a piecewise constant function with N pieces whose sizes are
all lower-bounded by ∆v. Assume that the neural network has q neurons with

q >
6

∆v

(
4 + logN + log

1

δ

)
. (1.23)

Assume that, at initialization, the biases b1, . . . , bq are i.i.d. uniformly distributed on [0, 1] and
the weights v are equal to zero. Then there exist an activation function σ, ε > 0, and T > 0, such
that, with probability at least 1 − δ, the solution to the gradient flow (1.22) is defined at least
until T , and

R(v(T), b(T)) 6 ξ .

Note that the lower bound on the number of neurons (1.23) does not depend on the target
precision ξ, but only on the function f∗ and on the probability of failure δ. This distinguishes our
result from the neural tangent kernel or mean-field regimes, mentioned in Section 1.1.2, which
both require the width of the network to grow large in order to achieve an arbitrary precision.

Experimental illustration is provided, showing that the stochastic gradient descent behaves
according to our description of the gradient flow and thus converges to a global optimum in the
two-timescale regime (see Figure 1.2), but can fail outside this regime (see Figure 1.3).

(a) At initialization (b) After p = 5.4·106 steps of SGD (c) After p = 1.8·108 steps of SGD

Figure 1.2: Simulation in the two-timescale regime (ε = 2 · 10−5). The target function is in blue
and the neural network is in orange. The biases b1, . . . , bq of the neurons are indicated with
vertical dotted lines (the dots are only present for black and white visibility). In a first short
phase, only the weights v1, . . . , vq of the neurons evolve to match as well as possible the target
function (second plot). Then, in a longer phase, the neuron closest to each target discontinuity
moves towards it (third plot). Recovery is achieved.

1.3.2 Structured context and high-coverage grammar for conversational question
answering over knowledge graphs [Chapter 7 of the manuscript]

We present in Chapter 7 results on the Transformer architecture, turning our attention to more
algorithmic matters related to natural language processing. Since this topic may be less familiar
to the reader than the rest of the thesis, we present the context and our contribution in a
somewhat more detailed fashion than the other chapters. Our goal is to design a Transformer-like

29

(a) At initialization p = 0 (b) After p = 104 steps of SGD (c) After p = 106 steps of SGD

Figure 1.3: Simulation outside the two-timescale regime (ε = 1). The target function is in blue
and the neural network is in orange. The biases b1, . . . , bq of the neurons are indicated with
vertical dotted lines (the dots are only present for black and white visibility). The dynamics
create a zone with no neuron, hindering recovery.

neural network for the task of conversational question answering over knowledge graphs. Let us
first describe the task, before presenting our approach, contributions and results.

Figure 1.4: A small subgraph of Wikidata

To begin with, a knowledge graph (KG) is a particular type of graphs that encodes real-world
factual information. It is a directed graph consisting of vertices, called entities, which represent
concepts, and labeled edges, which represent relations between concepts. For instance, Figure 1.4
presents a small subgraph of Wikidata, which is the largest publicly available KG and which
we work with in this chapter. Question answering over KGs refers to the task of building a
language model that can answer factual questions by querying the graph. Furthermore, we want
our system to handle conversations, that is, not only be able to answer a one-off question but
also follow-up questions on the same topic. This task is referred to as conversational question
answering over KGs. An example of such a conversation is presented in Table 1.4. It is taken
from ConvQuestions (Christmann et al., 2019), which, together with CSQA (Saha et al., 2018),
is one of the main publicly available datasets for this task. Note that conversational question
answering over KGs is of direct interest for developing personal assistants that can reliably answer
factual-based questions. One of the difficulties associated with this task is the scale of the graph:

30

for instance, there are over a hundred million nodes and a billion edges in Wikidata, and private
KGs can be orders of magnitude larger.

Q Who played the joker in The Dark Knight?
A Heath Ledger
Q When did he die?
A 22 January 2008
Q Batman actor?
A Christian Bale
Q Director?
A Christopher Nolan
Q Sequel name?
A The Dark Knight Rises

Table 1.4: Example of a conversation in ConvQuestions (Christmann et al., 2019). The goal of
the system is to find the right answer at each turn of the conversation.

We address this task by building a so-called semantic parsing model. A semantic parser is a
language model that takes as input a sentence phrased in natural language (typically English)
and transforms it into a query formulated in some programming language, which can then be
executed, or evaluated, to return an answer to the question. From a high-level perspective, a
semantic parser can be seen as translating English into a machine-executable language. Let us
introduce some vocabulary that is heavily used in Chapter 7: the query is called a logical form,
and the programming language in which it is expressed is called a grammar.

Our semantic parser works in several steps depicted in Figure 1.5. Given a question, entities
in the graph that are likely to be relevant are identified using a technique called named entity
linking. Then local exploration of the graph around these entities is performed to extract a
context of tractable size. The context is organized in a tree structure, where each node of the
tree contains a vector of information. Technically, this tree takes the form of a JSON file. In a
third step, a Transformer-like neural network takes this context tree as input and returns the
logical form.

Our work features two main methodological contributions: first, we build a grammar that
can model a larger scope of questions over knowledge graphs than previous propositions. Second,
we introduce a variant of the Transformer architecture that can operate on tree-structured
data, contrarily to the standard version, which can only process a list of vectors. One of the
difficulties we face is that we do not have at our disposal readily-available supervised data to
train our Transformer model, since there exists no dataset mapping English questions to logical
forms in our grammar. To circumvent this issue, we first have to craft such a dataset, before
training our model. This setting is referred to as weak supervision. The dataset is created in a
compute-intensive manner: for every (question, answer) pair in CSQA and ConvQuestions, we
explore the space of all possible logical forms to find one whose execution gives the right answer,
and which has reasonable chances to be a correct formalization of the question. Heuristic metrics
are used to assess the accordance between the question and the logical form. The space of logical
forms can be seen as a tree, which we explore with breadth-first search in order to favor the
simplest possible logical forms.

The capabilities of our system are evaluated on the two datasets mentioned above. Our
approach improves over the state-of-the-art on both datasets in terms of answer accuracy.

31

Question: when
was Marie Curie

born?

Marie Curie

Named Entity
Linking

Local exploration of the graph: retrieval of node and edge information

Transformer model

follow_property(Marie Curie , date of birth)

When was Marie Curie born?

Evaluation of the logical form

Answer: Nov 7, 1867

logical form

context tree

Figure 1.5: Data pipeline in our model. The question is first processed by named entity linking
in order to find entities in the graph that are contained in the question. In a second step, we
explore the graph locally around the found entities to construct a context tree, which forms
the input to the Transformer model. It outputs a logical form which is evaluated to produce a
candidate answer.

1.4 Résumé détaillé en français

Cette thèse présente des contributions à la théorie des réseaux de neurones, séparées en deux
parties. La première partie s’intéresse à l’analyse mathématique des réseaux résiduels dans la
limite en grande profondeur, et comporte quatre chapitres. La deuxième partie présente des
contributions reliées cette fois aux réseaux de profondeur finie, et regroupe deux chapitres. Nous
introduisons ici les chapitres dans l’ordre du manuscrit. La présentation est moins détaillée que
celle qui précède en anglais, aussi nous recommandons au locuteur anglophone de se référer à la
version anglaise.

1.4.1 Échelle des réseaux résiduels à l’initialisation [Chapitre 2 du manuscrit]

Nous commençons dans le Chapitre 2 par nous intéresser aux propriétés des réseaux de neurones
résiduels qui s’écrivent

h0 = Ax,

hk+1 = hk +
1

Lβ
Vk+1σ(Wk+1hk), 0 6 k 6 L− 1,

F (x) = BhL,

où la donnée est x ∈ Rd, la matrice A appartient à Rq×d, les états cachés hk sont dans Rq,
les matrices Vk+1,Wk+1 appartiennent à Rq×q, et B ∈ Rd′×q. L’objectif de ce chapitre est de
déterminer sous quelles conditions ce réseau converge vers une équation différentielle ordinaire
(EDO) ou stochastique (EDS) dans la limite en grande profondeur L� 1, en fonction du schéma

32

d’initialisation et du paramètre d’échelle β > 0. Plusieurs schémas d’initialisation sont étudiés,
principalement l’initialisation i.i.d. et l’initialisation régulière. L’initialisation i.i.d. correspond à la
pratique usuelle d’initialiser les poids comme des variables aléatoires i.i.d., par exemple uniformes
ou Gaussiennes. L’initialisation régulière est moins courante, et correspond à prendre les Vk etWk

comme des discrétisations de fonctions régulières (potentiellement aléatoires) V : [0, 1]→ Rq×q et
W : [0, 1]→ Rq×q, soit Vk = V(k/L) and Wk =W(k/L) pour k ∈ {1, . . . , L}.

Notre contribution principale dans ce chapitre est de montrer que la limite en grande
profondeur du réseau à l’initialisation dépend conjointement de β et du schéma d’initialisation,
comme présenté dans le Tableau 1.5.

Facteur d’échelle 0 < β < 1/2 β = 1/2 1/2 < β < 1 β = 1 β > 1

Initialisation i.i.d. Explosion Limite EDS Identité Identité Identité
Initialisation régulière Explosion Explosion Explosion Limite EDO Identité

Table 1.5: Propriétés du réseau résiduel à l’initialisation en fonction du facteur d’échelle et du
schéma d’initialisation. L’explosion signifie que la sortie du réseau diverge vers l’infini quand la
profondeur L tend vers l’infini. L’identité correspond au fait que hL ≈ h0 quand L tend vers
l’infini.

En résumé, parmi tous les cas examinés, la limite est une EDO seulement dans le cas d’une
initialisation régulière et d’un facteur d’échelle β = 1. L’EDO limite s’écrit alors

H(0) = Ax,

dH

ds
(s) = V(s)σ(W(s)H(s)), s ∈ [0, 1],

F (x) = BH(1).

(1.24)

C’est le cas auquel on s’intéresse dans les deux chapitres qui suivent.

1.4.2 Régularisation implicite des réseaux de neurones résiduels vers des EDO
neuronales [Chapitre 3 du manuscrit]

Dans le Chapitre 3, nous nous intéressons au même modèle que dans le chapitre précédent, en
se concentrant cette fois sur le cas d’une initialisation régulière et d’un facteur d’échelle 1/L.
Le chapitre précédent montre que dans ce cas, à l’initialisation, le réseau converge vers une
EDO. Dans ce chapitre, nous montrons que les poids du réseau entraîné présentent toujours une
structure de type EDO. À cette fin, nous faisons l’hypothèse que le réseau est entraîné par flot
de gradient, selon les équations d’évolution

∂Vk
∂t

(t) = −L∂R̂n
∂Vk

(t),
∂Wk

∂t
(t) = −L∂R̂n

∂Wk
(t), t > 0,

où R̂n désigne un risque empirique. Notons en particulier que la variable temporelle t de l’EDO
qui décrit l’évolution des poids n’est pas la même que la variable s de l’EDO neuronale (1.24)
qui décrit la limite en large profondeur.

Notre première contribution dans ce chapitre est de prouver que la convergence (lorsque
L tend vers l’infini) du réseau résiduel vers une EDO neuronale est également valide après
entraînement. Cette convergence est valide pour tout temps d’entraînement fini t ∈ [0, T].

Néanmoins, la convergence de l’algorithme d’optimisation lorsque T tend vers l’infini n’est pas
garantie sans hypothèse supplémentaire, du fait de la non-convexité du problème d’optimisation.

33

Nous prouvons cette convergence grâce à une condition de type Polyak-Łojasiewicz (PL), un
outil majeur dans l’analyse des algorithmes d’optimisation pour les réseaux de neurones (Liu
et al., 2022). La condition PL implique la convergence du flot de gradient vers un minimum
global. Notre seconde contribution dans ce chapitre est de prouver que cette condition est
vérifiée lorsque la largeur q des couches cachées est plus grande qu’une constante fois la taille
de l’échantillon n. Nous obtenons par conséquent la convergence en grande profondeur et en
grand temps d’entraînement, c’est-à-dire l’existence de fonctions Lipschitz V∞ et W∞ telles que
le réseau de neurones entraîné converge lorsque L et T tendent vers l’infini vers l’EDO

dH

ds
(s) = V∞(s)σ(W∞(s)H(s)), s ∈ [0, 1]. (1.25)

De plus, l’erreur d’entraînement de l’EDO limite est égale à zéro. Cette analyse représente une
première étape dans la compréhension de la régularisation implicite du flot de gradient pour les
réseaux résiduels, c’est-à-dire la caractérisation des propriétés du réseau entraîné parmi tous les
minimiseurs du risque empirique.

1.4.3 Bornes de généralisation pour EDO neuronales et réseaux de neurones
résiduels [Chapitre 4 du manuscrit]

Maintenant que l’on sait que certains réseaux de neurones résiduels entraînés convergent dans la
limite en large profondeur vers des EDO neuronales de la forme (1.25), nous nous intéressons
dans le Chapitre 4 à comprendre les propriétés statistiques de cette classe.

Nous examinons le cas simplifié où les matrices intérieures W∞ sont égales à la matrice
identité. Même avec cette simplification, le problème reste délicat comme la sortie du modèle
est une fonction non-linéaire des paramètres et que ces derniers appartiennent à un espace de
dimension infinie. Nous sommes tout de même en mesure de borner la complexité statistique du
modèle en tirant parti de résultats sur les nombres de couverture des fonctions bornées Lipschitz.

Plus précisément, pour une fonction V à valeur matricielle, introduisons la norme matricielle
‖V ‖1,1,∞ = maxs∈[0,1]

∑
i,j |Vij(s)|. On s’intéresse alors aux EDO neuronales qui s’écrivent sous

la forme
H(0) = x

dH

ds
(s) = V (s)σ(H(s))ds, s ∈ [0, 1]

FV (x) = H(1),

(1.26)

où V appartient à l’ensemble de fonction

V = {V : [0, 1]→ Rq×q, ‖V ‖1,1,∞ 6 RV et Vij est KV -Lipschitz pour i, j ∈ {1, . . . , q}}.
(1.27)

C’est une simplification du modèle limite obtenu au chapitre précédent. On se place dans le cadre
classique de l’apprentissage supervisé avec un échantillon de n données i.i.d., que l’on suppose
presque sûrement bornées. On prend une fonction de perte Lipschitz générale. Notre résultat
principal est alors de montrer que l’erreur de généralisation est bornée par

O
(

(q + 1)

√
log(RV mn)

n
+
q2
√
KV

n1/4
+

1√
n

√
log

1

δ

)
.

Les premier et dernier termes sont classiques (voir par exemple Bach, 2023, Sections 4.4 and 4.5).
Le second terme est plus surprenant à cause de son taux de convergence en O(n−1/4). Ce taux
plus lent est dû au fait que l’espace de paramètre V est de dimension infinie.

Notre seconde contribution principale dans ce chapitre est de prouver une borne de générali-
sation similaire pour des réseaux résiduels de profondeur finie, en utilisant une analyse inspirée
par le cas de la profondeur infinie.

34

1.4.4 Certains réseaux de neurones récurrents sont des méthodes à noyaux
[Chapitre 5 du manuscrit]

Dans le Chapitre 5, nous nous intéressons à un modèle légèrement différent, les réseaux de
neurones récurrents résiduels. Comme dans le chapitre précédent, nous introduisons un facteur
d’échelle 1/L, et considérons donc le réseau défini par l’itération suivante

hk+1 = hk +
1

L
σ(Uhk + V xk+1),

où (xk)16k6L est une donnée séquentielle. Nous faisons de plus l’hypothèse que la donnée
(xk)16k6L est la discrétisation d’un processus en temps continu X : [0, 1]→ Rd. Notre but dans
ce chapitre est de montrer que le réseau de neurones récurrent résiduel s’écrit en fait comme
une méthode à noyaux. Nous reconnaissons dans l’équation précédente la discrétisation d’Euler
d’une EDO, et prouvons ainsi que le réseau approche à une distance O(1/L) son équivalent en
profondeur continue

dH

ds
(s) = σ(UH(s) + V X(s)), H(0) = 0, (1.28)

où maintenant la sortie du réseau s’écrit comme une projection linéaire de la valeur de la solution
de l’EDO au temps t = 1, soit y = BH(1). Notre théorème principal dans ce chapitre s’écrit
alors comme l’existence d’un espace de Hilbert H et de fonctions S et ς tels que, sous certaines
hypothèses de régularité,

y = 〈S(X), ς(B,U, V)〉H.
La fonction S est de plus une fonction connue dans la littérature, il s’agit de la signature de la
série temporelle X (Levin et al., 2013). Ce résultat nous permet de réinterpréter l’action du
réseau de neurones récurrent comme un produit scalaire dans un espace de Hilbert de dimension
infinie, c’est-à-dire comme une méthode à noyau. Cela nous permet d’utiliser l’outillage habituel
des méthodes à noyaux pour en déduire des bornes de généralisation et de stabilité.

1.4.5 Convergence des réseaux de neurones à une couche cachée dans la limite
bi-échelle [Chapitre 6 du manuscrit]

Le chapitre 6 débute la seconde partie du manuscrit. Il s’intéresse à la dynamique d’apprentissage
des réseaux de neurones à une couche cachée, dans un régime bi-échelle où les pas de gradients
pour la couche intérieure sont négligeables devant ceux pour la couche extérieure.

On considère un cas univarié où le réseau de neurones s’écrit

fv,b(x) =

q∑
k=1

vkσ(x− bk),

pour une entrée x ∈ R et des paramètres vk, bk ∈ R. De façon analogue au chapitre 3, nous faisons
l’hypothèse que le réseau de neurones est entraîné par flot de gradient, cette fois directement sur
le risque théorique

R(v, b) = E(|fv,b(X)− f∗(X)|2),

où X suit une loi uniforme sur [0, 1]. Minimiser directement le risque théorique plutôt que le
risque empirique nous permet de mettre de côté les problèmes statistiques pour se concentrer sur
le problème d’optimisation, qui reste un problème délicat puisque le risque est non convexe en b.
Le flot de gradient s’écrit

∂v

∂t
(t) = −∂R

∂v
(t),

∂b

∂t
(t) = −ε∂R

∂b
(t), t > 0, (1.29)

35

où ε paramétrise le ratio entre les pas sur la couche intérieure et ceux sur la couche extérieure.
En prenant ε� 1, le réseau de neurones peut être vu comme une régression linéaire ajustée, avec
des facteurs σ(· − bk), k = 1, . . . , q qui évoluent lentement. Cette simplification nous permet de
décrire précisément la dynamique des paramètres. Ainsi, dans ce régime bi-échelle, nous prouvons
la convergence du flot de gradient dans le cas où f∗ est une fonction constante par morceaux,
et pour un choix approprié de non-linéarité σ. En outre, le nombre minimal de neurones pour
obtenir la convergence ne dépend pas de la précision souhaitée, mais seulement des propriétés de
la fonction cible f∗. Cela nous distingue des approches courantes pour l’analyse de la dynamique
d’apprentissage des réseaux de neurones, le noyau tangent et le régime à champ moyen, qui
requièrent toutes deux que le nombre de neurones grandisse afin d’obtenir une précision arbitraire.

1.4.6 Contexte structuré et grammaire à haut taux de couverture pour les
questions-réponses conversationnelles basées sur un graphe de connaissance
[Chapitre 7 du manuscrit]

Nous présentons dans le Chapitre 7 des résultats dédiés à l’architecture Transformer, cette fois
avec une approche plus algorithmique. Notre objectif est de construire un réseau de neurones de
type Transformer pour la tâche de question-réponse conversationnelle basée sur un graphe de
connaissance. Décrivons brièvement cette tâche : un graphe de connaissance est un graphe qui
encode des informations factuelles, où les nœuds représentent des concepts et les arêtes (dirigées
et labellisées) représentent des relations entre les concepts. L’objectif de la tâche est donc de
répondre à une série de questions factuelles en cherchant la réponse dans le graphe. Une des
difficultés est la taille du graphe (qui est de l’ordre du milliard d’arêtes voire davantage).

Nous nous attaquons à cette tâche en construisant un modèle d’analyse sémantique, c’est-à-
dire un modèle de langue qui transforme une phrase en anglais en une requête formelle formulée
dans un langage de programmation, qui peut ensuite être exécutée pour obtenir une réponse. Le
modèle fonctionne en deux étapes : dans un premier temps, un contexte de taille raisonnable est
extrait du graphe et organisé dans une structure d’arbre, où chaque nœud de l’arbre contient un
vecteur d’information. Dans un second temps, un réseau de neurones de type Transformer prend
en entrée cet arbre et retourne la requête formelle.

Notre travail présente deux contributions méthodologiques principales : premièrement, nous
construisons un langage de programmation (une “grammaire”) de taille réduite, mais adapté à la
modélisation d’une large gamme de questions sur des arbres de connaissance. Deuxièmement,
nous introduisons une variante de Transformer qui peut opérer sur des données organisées
sous forme d’arbre. Une des difficultés rencontrées est l’absence de données supervisées pour
entraîner notre modèle. Nous procédons donc à la création d’un tel jeu de données, en partant
d’ensembles de questions-réponses en anglais, et en trouvant par force brute des requêtes logiques
qui correspondent aux questions. Nous pouvons ensuite entraîner notre modèle Transformer à
l’aide de ces données.

Nous évaluons notre système sur deux jeux de données de questions-réponses basées sur le
graphe Wikidata, qui est le plus grand graphe de connaissance public au monde. Notre approche
obtient de meilleures performances en termes de précision des réponses par rapport à l’état de
l’art sur les deux jeux de données.

36

Part I

From discrete to continuous
architectures: neural networks in the

large-depth regime

37

2
Scaling residual networks in the large-depth
regime

Deep ResNets are recognized for achieving state-of-the-art results in complex machine learning
tasks. However, the remarkable performance of these architectures relies on a training procedure
that needs to be carefully crafted to avoid vanishing or exploding gradients, particularly as the
depth L increases. No consensus has been reached on how to mitigate this issue, although a
widely discussed strategy consists in scaling the output of each layer by a factor αL. We show
in a probabilistic setting that with standard i.i.d. initializations, the only non-trivial dynamics
is for αL = 1/

√
L—other choices lead either to explosion or to identity mapping. This scaling

factor corresponds in the continuous-time limit to a neural stochastic differential equation,
contrarily to a widespread interpretation that deep ResNets are discretizations of neural ordinary
differential equations. By contrast, in the latter regime, stability is obtained with specific
correlated initializations and αL = 1/L. Our analysis suggests a strong interplay between scaling
and regularity of the weights as a function of the layer index. Finally, in a series of experiments,
we exhibit a continuous range of regimes driven by these two parameters, which jointly impact
performance before and after training.

Contents
2.1 Introduction . 40

2.1.1 Deep residual neural networks . 40
2.1.2 Our contributions . 41
2.1.3 Related work . 42

2.2 Scaling at initialization . 43
2.2.1 Model and assumptions . 43
2.2.2 Probabilistic bounds on the norm of the hidden states 45
2.2.3 Probabilistic bounds on the gradients 48

2.3 Scaling in the continuous-time setting . 51
2.3.1 Convergence towards a SDE in the large-depth regime 51
2.3.2 Scaling in the neural ODE setting . 52

2.4 Experiments . 55
2.4.1 Intermediate regimes . 55
2.4.2 Beyond initialization . 57

2.A Proofs . 58

39

2.B Technical results . 69
2.C Concentration of sub-Gaussian random matrices 71
2.D A version of the Picard-Lindelöf theorem . 73
2.E Detailed experimental setting . 74

2.1 Introduction

2.1.1 Deep residual neural networks

Residual neural networks (ResNets), introduced by He et al. (2016a) in the field of computer
vision, were the first deep neural network models successfully trained with several thousand
layers. Since then, extensive empirical evidence has shown that increasing the depth leads to
significant improvements in performance, while raising new challenges in terms of training (e.g.,
Wang et al., 2022). From a high-level perspective, the key feature of ResNets is the presence of
skip connections between successive layers. In mathematical terms, this means that the (k+ 1)-th
hidden state hk+1 ∈ Rd follows sequentially from the previous hidden state via the recurrence
relation

hk+1 = hk + f(hk, θk+1), 0 6 k 6 L− 1, (2.1)

where f(·, θk+1) : Rd → Rd is the layer function parameterized by θk+1 ∈ Rp and L is the number
of layers. The skip connection corresponds to the addition of hk on the right-hand side of (2.1),
which is absent in classical feedforward networks. This refinement prevents instability issues
during training when L is large, provided training is performed carefully (He et al., 2015). The
idea of adding skip connections has become common practice in the field of deep learning, and is
today incorporated in many other models such as Transformers in natural language processing
(Vaswani et al., 2017). For simplicity, in the rest of the chapter, we continue to use the terminology
ResNets to denote any architecture of the form (2.1), keeping in mind that this framework goes
beyond the original model of He et al. (2016a).

The most common architectures have 50-150 layers, but ResNets can be trained with depths
up to the order of thousand layers (He et al., 2016b). Yet, the training procedure needs to be
carefully crafted to avoid vanishing or exploding gradients, particularly as the depth increases. As
pointed out by, e.g., Shao et al. (2020), these instabilities are related to a shift in the magnitude
of the variance of a signal as it passes through the network. In the original approach of He et al.
(2016a), the issue was mitigated by adding a normalization step, called batch normalization
(Ioffe and Szegedy, 2015), which rescales the output of each layer via centering and unit variance
normalization. However, this normalization stage introduces practical and theoretical difficulties,
among which computational overhead and strong dependence on the batch size (see Brock et al.,
2021, and the references therein). A widespread alternative to stabilize training in deep models,
explored for example by Yang and Schoenholz (2017), Arpit et al. (2019), Zhang et al. (2019b),
and De and Smith (2020), is to incorporate a scaling factor αL in front of the residual term in
(2.1), yielding the model

hk+1 = hk + αLf(hk, θk+1), 0 6 k 6 L− 1. (2.2)

There is strong evidence that this scaling factor αL should depend on L, without however any
consensus to date on the exact form of this dependence, nor on the mathematical grounding of

40

the approach. Thus, despite progresses on the empirical side, the mathematical forces in action
behind the stability of deep ResNets are still poorly understood, although they are key to unlock
training at arbitrary depth.

Our goal in the present chapter is to take a step forward towards a better theoretical
understanding of deep ResNets by providing a thorough probabilistic analysis of the sequence
(hk)06k6L at initialization when L is large, and by leveraging a continuous-time interpretation
of model (2.2) via the so-called neural ordinary differential equation (neural ODE, Chen et al.,
2018a) paradigm. In a nutshell, our results highlight the intimate connection that exists at
initialization between stability of the learning process, the regularity of the weights, and the
scaling factor αL. We offer in particular a proper mathematical grounding on why and how to
choose the parameter αL as a function of the depth L and the distribution of the weights.

2.1.2 Our contributions

Scaling at initialization. The optimal parameters of ResNets are learned by minimizing
some empirical risk function via a gradient descent algorithm. As highlighted for example
by Yang and Schoenholz (2017), Hanin and Rolnick (2018), and Arpit et al. (2019), a good
parameter initialization of this learning phase plays a major role in the quality of the learned
model, in particular to avoid vanishing gradients and deadlock at initialization, or exploding
gradients and quick divergence of the model parameters at the beginning of training. Moreover,
a good initialization allows the use of larger learning rates, which have been shown to correlate
with better generalization (Jastrzkebski et al., 2017). It is thus of great interest to study and
understand the role played by scaling of deep ResNets at initialization. This is the context in
which we place ourselves in the sequel.

At initialization stage, the weights (θk)16k6L are usually chosen as (realizations of) indepen-
dent and identically distributed (i.i.d.) random variables, which typically follow a uniform or
Gaussian distribution on Rp. Accordingly, the sequence (hk)06k6L that results from the recursion
(2.2) for a given input to the network takes the form of a sequence of random variables that are
not i.i.d. but are actually a martingale. Thus, denoting informally by L the differentiable loss
associated with the learning task (classification or regression), the distributions of (hk)06k6L

and (∂L
∂hk

)06k6L as L becomes large carry useful information on the stability of training. For
instance, exploding gradients in the backpropagation phase of learning correspond to the fact
that, with high probability, ‖ ∂L

∂h0
‖ � ‖ ∂L

∂hL
‖, where ‖ · ‖ denotes the Euclidean norm. Our first

contribution, in Section 2.2, is to provide thorough mathematical statements on the behavior of
these distributions (both for finite and infinite L), depending on the value of αL. Among other
results, we show that only the choice αL ≈ 1/

√
L yields a non-trivial behavior at initialization,

thereby confirming empirical findings in the literature (Arpit et al., 2019; De and Smith, 2020).
For αL � 1/

√
L, the norms explode exponentially fast with L, which is inappropriate for training.

For αL � 1/
√
L, the network is almost equivalent to identity, that is, hL ≈ h0. The analysis of

the different cases as a function of αL is mathematically involved and makes extensive use of
concentration tools from random matrix theory.

The continuous approach. As noticed by several authors (Chen et al., 2018a; Thorpe and
van Gennip, 2022; E et al., 2019), model (2.2) with a scaling factor αL = 1/L (and not 1/

√
L) is

formally similar to the discretization of a differential equation. Thus, when L tends to infinity,
the weights and hidden states change continuously with the layer according to the equation

dHt

dt
= f(Ht,Θt), t ∈ [0, 1]. (2.3)

41

Here, time t is the continuous analogue of the layer index k, H : [0, 1]→ Rd is a continuous-time
hidden state, and Θ : [0, 1] → Rp a continuous-time parameter. This important connection
between ResNets and differential equations has been identified in the past years under the
umbrella name of neural ODE. Since the original article of Chen et al. (2018a), this point of
view has led to the development of a variety of new continuous-time models, together with
innovative architectures and efficient training algorithms (Chang et al., 2019; Grathwohl et al.,
2019; Kidger et al., 2021). The neural ODE paradigm also enabled to leverage the rich theory
of differential equations to better understand the mechanisms at work behind deep ResNets (E
et al., 2019). However, there is a debated question in the neural ODE community about the
choice αL = 1/L, which guarantees convergence of the discrete model (2.2) to its continuous-time
counterpart (2.3). As a matter of fact, it seems that this choice is guided by more mathematical
than practical considerations, and several authors have suggested that it is inconsistent with
what is done in practice (Cohen et al., 2021; Bayer et al., 2023). Moreover, letting αL = 1/L
is somewhat contradictory with the results discussed above, which highlighted that the only
non-trivial limit at initialization is αL = 1/

√
L. Thus, as a second contribution, we clarify the

problem in Section 2.3 by leveraging our previous results on stability. We show that the value
αL = 1/

√
L corresponds in the continuous world to a neural stochastic differential equation (SDE)

of the form (2.3), where now Θ : [0, 1] → Rp takes the form of a continuous-time stochastic
process, typically a Brownian motion. By contrast, we also prove that the neural ODE regime
with αL = 1/L corresponds to the limit of a ResNet, not with i.i.d. weights as considered before,
but with more complex and correlated weight distributions. For these weight distributions, the
scaling αL = 1/L is also a critical value between explosion and identity.

Going further, our third contribution is to exhibit in Section 2.4 a continuous range of regimes
that are controlled by the choice of αL (beyond the cases 1/

√
L and 1/L) and the distribution of

(θk)16k6L at initialization, derived from a continuous-time process Θ with a regularity different
from a Brownian motion. More precisely, we show experimentally that there is a strong interplay
(with the same three cases—explosion, identity mapping, non-trivial behavior) between the choice
of αL and the regularity of (θk)16k6L as a function of the layer index k, and this will be further
investigated in Chapter 3. In addition, empirical evidence suggests that this interplay impacts
both the behavior and performance of the networks during training, beyond initialization.

Organization of the chapter. The proofs of the results are postponed to the end of the
chapter in Section 2.A. Sections 2.B to 2.D contain results that are useful for the proofs. Finally,
Section 2.E details our experimental setting.

2.1.3 Related work

The choice of scaling for ResNets has been discussed in many papers, without however reaching
a clear consensus on the form this scaling factor should take. For instance, Hanin and Rolnick
(2018) state that stability requires αL 6 1/L, while Zhang et al. (2019b) show that αL 6 1/

√
L

is enough to ensure stability. On the other hand, Cohen et al. (2021) claim that the scaling
factor observed in practice in trained ResNets is of the form 1/Lβ with β ≈ 0.7. Other authors
have proposed more complex choices for αL (e.g., Zhang et al., 2019a; Shao et al., 2020). Taking
another point of view, De and Smith (2020) observe that batch normalization is empirically
equivalent to taking a 1/

√
L normalization factor. Bachlechner et al. (2021) suggest learning a

scaling parameter αk that is allowed to vary from one layer to another, whereas, in (2.4), αL is
kept constant across layers. These authors observe a great acceleration for training compared to
traditional ResNets with no scaling. They also suggest a similar architecture for Transformers
and then notice that αk ≈ 1/L at the end of training.

42

Closest to our analysis at initialization are the papers of Arpit et al. (2019) and Zhang et al.
(2019b). Arpit et al. (2019) develop a theoretical analysis based on mean field approximation that
suggests that a scaling factor αL = 1/

√
L prevents vanishing/exploding gradients at initialization,

and provide experimental evidence that this approach is competitive with batch normalization.
However, the authors do not provide rigorous mathematical statements for the three different
cases αL � 1/

√
L, αL ≈ 1/

√
L, and αL � 1/

√
L, nor do they highlight the connection with the

continuous-time interpretation. Interestingly, the idea of exploiting the martingale structure
to analyze the magnitude of the hidden states is present in Zhang et al. (2019b), who study
the convergence of gradient descent for over-parameterized ResNets with different values of αL.
Nevertheless, they consider a specific model with Gaussian weights, and only provide asymptotic
results when both width and depth tend to infinity.

The connection between the choice of scaling and the continuous-time point of view has
previously been noticed by Zhang et al. (2019c), then studied in detail by Cohen et al. (2021).
The latter show that, under assumptions on the form of the weights, it is possible to derive
limiting (stochastic or ordinary) differential equations for the hidden states. However, they do
not discuss the transition between these two regimes, nor do they link differential equations
regimes with the stability of the network.

2.2 Scaling at initialization

Our goal in this section is to study the effect of the scaling factor αL on the stability of ResNets
at initialization, assuming that the weights are i.i.d. random variables. We start by making more
precise the model and the learning problem introduced in (2.1).

2.2.1 Model and assumptions

Model. The data is a sample of n pairs (xi, yi)16i6n, where xi is the input vector in Rnin and
yi ∈ Rnout is the output vector to be predicted. This setting includes regression and classification
(after one-hot encoding of the labels). Specifying the informal recurrence (2.1), for any input
x ∈ Rnin , we consider the output Fπ(x) ∈ Rnout of the ResNet model defined by

h0 = Ax,

hk+1 = hk + αLVk+1g(hk, θk+1), 0 6 k 6 L− 1,

Fπ(x) = BhL,

(2.4)

where αL > 0 is the scaling factor of the ResNet and π = (A,B, (θk)16k6L, (Vk)16k6L) are its
parameters, with A ∈ Rd×nin , B ∈ Rnout×d, θk ∈ Rp and Vk ∈ Rd×d for k = 1, . . . , L. The
almost-everywhere differentiable function g : Rd × Rp → Rd encodes the choice of architecture.
We note that the model includes initial and final linear layers in order to map the input space
Rnin into the space of hidden states Rd, and symmetrically to map the last hidden state hL into
the output space Rnout . These two transformations are of little interest to us, since we mostly
focus on the behavior of the sequence of hidden states (hk)06k6L. Let us finally notice that the
results of this section can be adapted to hidden layers that do not have the same width, at the
cost of increased technicality.

An important feature of model (2.4) is that the layer function takes the form of a matrix-vector
multiplication, which will prove crucial to make use of concentration results on random matrices.
We stress that this setting is standard in practice and that it encompasses many types of ResNets.
It includes for example simple ResNets where g(h, θ) = σ(h) with σ the activation function, and
the original ResNets from He et al. (2016a), which have

g(h, θ) = ReLU(Wh+ b),

43

where the parameter is a pair θ = (W, b) with W ∈ Rd×d a weight matrix and b ∈ Rd a bias, and
ReLU: x 7→ max(x, 0) is applied element-wise. This setting also includes attention layers, where
g corresponds to the scaled dot-product between keys and queries, as well as convolutional layers.
Although the assumptions we make later have to be slightly modified to cover this context, the
rationale should extend. We leave this extension for future work.

Throughout the chapter, we let ` : Rnout × Rnout → R+ be a loss function, differentiable
w.r.t. its first parameter, for example the squared loss or the cross-entropy loss. The objective
of learning is to find the optimal parameter π that minimizes the empirical risk L (π) =∑n

i=1 `(Fπ(xi), yi).

Probabilistic setting at initialization. The minimization of the empirical risk is usually
performed by stochastic gradient descent or one of its variants (Goodfellow et al., 2016, Chapter
8). The gradient descent is initialized by choosing the weights as (realizations of) i.i.d. random
variables. The parameters θ1, V1, . . . , θL, VL in model (2.4) are therefore assumed to be an
i.i.d. collection of random variables, where we recall that θk ∈ Rp and Vk ∈ Rd×d parameterize
the k-th layer of the network. In this stochastic context, the successive hidden states h0, . . . , hL
given a fixed input x are also random variables, but their distribution is not i.i.d.—in fact, under
our assumptions, this sequence is a martingale. To avoid unnecessary technicalities, we assume
that the sequence (hk)06k6L is non-atomic. This is for example the case if the distribution of the
parameters is absolutely continuous w.r.t. the Lebesgue measure. In particular, this ensures that
the sequence (hk)06k6L almost surely does not hit the non-differentiability points of g.

It is stressed that the distribution of the parameters are assumed to be independent of the
depth, so that all the dependence on L is captured in the scaling factor αL. This model enables us
to consider multiple architectures at once, via the function g. By contrast, some authors formulate
the problem of scaling as a choice of the variance at initialization (e.g., Yang and Schoenholz,
2017; Wang et al., 2022), which makes the analysis architecture-dependent. However, for a given
architecture, these two approaches are essentially equivalent since Var(αLVk) = α2

L Var(Vk).
The quantity ‖hL − h0‖/‖h0‖ carries key information on the behavior of the network at

initialization. On the one hand, if ‖hL − h0‖ � ‖h0‖, the network is essentially equal to the
identity function. On the other hand, if ‖hL − h0‖ � ‖h0‖, the output of the network explodes.
An intermediate situation is when ‖hL − h0‖ ≈ ‖h0‖. In addition, another source of information
is provided by the gradients of the hidden states with respect to the empirical risk L . If
‖ ∂L
∂h0
− ∂L

∂hL
‖ � ‖ ∂L

∂hL
‖, the gradients do not change as they flow through the network, which

means that the exact same information is backpropagated throughout the network. Conversely,
if ‖ ∂L

∂h0
− ∂L

∂hL
‖ � ‖ ∂L

∂hL
‖, the gradients explode during backpropagation. By exploiting the

martingale structure of (‖hk‖)06k6L, as well as state-of-the-art concentration inequalities for
random matrices with sub-Gaussian entries, we provide in this section probabilistic bounds on
the magnitude of these various quantities.

Assumptions. Some assumptions are needed on the choices of architecture and initialization.
Recall that a centered real-valued random variable X is said to be s2 sub-Gaussian (van Handel,
2016, Chapter 3) if for all λ ∈ R, E(exp(λX)) 6 exp(λ2s2/2). The sub-Gaussian property is a
constraint on the tail of the probability distribution. As an example, Gaussian random variables
on the real line are sub-Gaussian and so are bounded random variables.

The following assumptions will be needed throughout the section: for any 1 6 k 6 L,

(A1) For some s > 1, the entries of
√
dVk are centered i.i.d. s2 sub-Gaussian random variables,

independent of d and L, with unit variance.

44

(A2) For some C > 0, independent of d and L, and for any h ∈ Rd,

‖h‖2
2
6 E

(
‖g(h, θk)‖2

)
6 ‖h‖2 and E

(
‖g(h, θk)‖8

)
6 C‖h‖8.

Assumption (A1) is mild and satisfied by all initializations used in practice. For example, the
classical Glorot initialization (Glorot and Bengio, 2010)—which is the default implementation in
the Keras package (Chollet et al., 2015)—takes the entries of Vk as uniform U(−

√
3/d,

√
3/d)

variables. This means that
√
dVk is initialized with U(−

√
3,
√

3) random variables, which satisfy
(A1). Other examples include the Gaussian N (0, 1/d) initialization of He et al. (2015) and, for
example, initialization with Rademacher variables.

The first part of Assumption (A2) ensures that g(·, θk) is not too far away from being an
isometry in expectation. The second part is more technical and, roughly, allows to upper bound
the deviations of the norm of g(hk−1, θk). Our next Proposition 2.1 shows that most classical
ResNet architectures verify Assumption (A2). For the sake of readability, these models, together
with their parameters, are summarized in Table 2.1 below.

Name Recurrence relation Parameters

res-1 Simple ResNet hk+1 = hk + αLVk+1σ(hk) θk+1 = ∅
res-2 Parametric ResNet hk+1 = hk + αLVk+1σ(Wk+1hk) θk+1 = Wk+1

res-3 Original ResNet hk+1 = hk + αLVk+1 ReLU(Wk+1hk) θk+1 = Wk+1

Table 2.1: Examples of ResNet architectures considered in the chapter. In the first two cases,
the activation function σ is such that, for all x ∈ R, a|x| 6 |σ(x)| 6 b|x|, 1/

√
2 6 a < b 6 1. In

the last two cases, Wk+1 ∈ Rd×d.

Proposition 2.1. Let res-1, res-2, and res-3 be the models defined in Table 2.1. Then

(i) Assumption (A2) is satisfied for res-1.

(ii) Assumption (A2) is satisfied for res-2 and res-3, as soon as the entries of
√
dWk+1,

0 6 k 6 L− 1, are centered i.i.d. sub-Gaussian random variables, independent of d and L,
with unit variance.

Proof. See Section 2.A.1.

In the models res-1 and res-2, σ can be, for instance, taken as the parametric ReLU
function, i.e., σ(x) = x+ + sx−, where x+ (resp. x−) denotes the positive (resp. negative) part
and the slope s ∈ [1/

√
2, 1] is a parameter of the model. Observe also that res-2 differs from

res-3 since the classical ReLU function is defined by ReLU(x) = x+ and thus does not satisfy
the condition |σ(x)| > a|x|. Note that there is no bias term in these three models, as this term is
commonly initialized to zero, and we are interested in the behavior at initialization.

2.2.2 Probabilistic bounds on the norm of the hidden states

The next two propositions describe how the quantity ‖hL − h0‖/‖h0‖ changes as a function of
Lα2

L. Proposition 2.2 provides a high-probability bound of interest when Lα2
L � 1. In this case,

we see that, with high probability, the network acts as the identity function, directly mapping h0

to hL. On the other hand, Proposition 2.3 provides information in the two cases Lα2
L � 1 and

Lα2
L ≈ 1. When Lα2

L � 1, the lower bound (i) indicates an explosion with high probability of
the norm of the last hidden state. On the other hand, when Lα2

L ≈ 1, the bounds (i) and (ii)
show that hL randomly varies around h0 with fluctuation sizes bounded from below and above.

45

Proposition 2.2. Consider a ResNet (2.4) such that Assumptions (A1) and (A2) are satisfied.
If Lα2

L 6 1, then, for any δ ∈ (0, 1), with probability at least 1− δ,

‖hL − h0‖2
‖h0‖2

6
2Lα2

L

δ
.

Proof. See Section 2.A.2.

Proposition 2.3. Consider a ResNet (2.4) such that Assumptions (A1) and (A2) are satisfied.

(i) Assume that d > 64 and α2
L 6

2
(
√
Cs4+4

√
C+16s4)d

. Then, for any δ ∈ (0, 1), with probability
at least 1− δ,

‖hL − h0‖2
‖h0‖2

> exp

(
3Lα2

L

8
−
√

11Lα2
L

dδ

)
− 1,

provided that

2L exp

(
− d

64α2
Ls

2

)
6

δ

11
. (2.5)

(ii) Assume that α2
L 6

1√
C(d+128s4)

. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

‖hL − h0‖2
‖h0‖2

< exp

(
Lα2

L +

√
5Lα2

L

dδ

)
+ 1.

Proof. See Section 2.A.3.

Note that the assumptions of Proposition 2.3 on d and αL are mild, since in the learning tasks
where deep ResNets are involved, one typically has αL = 1/Lβ with β > 0, d > 102 and L > 102.
Note also that condition (2.5) is not severe since, when d and L are large, it encompasses all
reasonable values of δ. Propositions 2.2 and 2.3 are interesting in the sense that they provide
finite-depth high-probability bounds on the behavior of the hidden states, depending on the
magnitude of Lα2

L. The results become clearer by letting αL = 1/Lβ, with β > 0, as shown in the
following corollary.

Corollary 2.4. Consider a ResNet (2.4) such that Assumptions (A1) and (A2) are satisfied,
and let αL = 1/Lβ, with β > 0.

(i) If β > 1/2, then
‖hL − h0‖
‖h0‖

P−−−−→
L→∞

0.

(ii) If β < 1/2 and d > 9, then
‖hL − h0‖
‖h0‖

P−−−−→
L→∞

∞.

(iii) If β = 1/2, d > 64, L > (1
2

√
Cs4 + 2

√
C + 8s4)d+ 96

√
Cs4, then, for any δ ∈ (0, 1), with

probability at least 1− δ,

exp

(
3

8
−
√

22

dδ

)
− 1 <

‖hL − h0‖2
‖h0‖2

< exp

(
1 +

√
10

dδ

)
+ 1,

provided that

2L exp
(
− Ld

64s2

)
6

δ

11
.

46

0 250 500 750 1000
L

0.05

0.10

0.15

0.20

β = 1.0

0 250 500 750 1000
L

0

500

1000

1500

2000

2500

β = 0.25

0 250 500 750 1000
L

0.74

0.76

0.78

0.80

0.82

0.84

0.86
β = 0.5

Figure 2.1: Evolution of ‖hL − h0‖/‖h0‖ as a function of L for different values of β and an
i.i.d. U(−

√
3/d,

√
3/d) initialization of model res-3, with d = 40. The input is a random

Gaussian observation x in dimension nin = 64. The experiment is repeated with 50 independent
randomizations.

1.0 1.2 1.4 1.6
0

100

200

300

400

500

C
ou

nt

(a) Distribution of ‖hL‖/‖h0‖

1.0 1.2 1.4 1.6
0

100

200

300

400

500
C

ou
nt

(b) Distribution of ‖ ∂L
∂h0
‖/‖ ∂L

∂hL
‖

Figure 2.2: Empirical distributions of the norms for β = 1/2, L = 103, d = 100. The experiment
is repeated with 104 independent randomizations.

Proof. See Section 2.A.4.

Corollary 2.4 highlights three different asymptotic behaviors for ‖hL‖, depending on the values
of β. For β > 1/2, statement (i) tells that hL converges towards h0 in probability, as L tends to
infinity, which means that the neural network is essentially equivalent to an identity mapping.
On the other hand, for β < 1/2, the norm of hL explodes with high probability. Finally, for the
critical value β = 1/2, we see that hL fluctuates around h0, with a fluctuation size independent
of L. Observe that the lower bound in (iii) is not trivial as soon as exp(3/8−

√
11/dδ) > 1, i.e.,

d > 99/64δ. The message of Corollary 2.4 is that the only scaling leading to a non-degenerate
distribution at initialization is for β = 1/2.

The three statements of Corollary 2.4 are illustrated in Figure 2.1. In this experiment, we
consider model res-3, a random Gaussian observation x in dimension nin = 64, and parameters
initialized with a uniform distribution U(−

√
3/d,

√
3/d). We refer to Appendix 2.E for a detailed

setup of all the experiments of the chapter. Figure 2.2a shows the empirical distribution of
‖hL‖/‖h0‖ when β = 1/2 for a large number of realizations. This figure illustrates in particular
that our bounds are reasonably sharp, since the bounds indicate that the first quartile of the

47

distribution is larger than 0.87 (whereas the first quartile of the empirical histogram is equal
to 1.21) and the third quartile is less than 2.06 (whereas the third quartile of the empirical
histogram is equal to 1.34). Determining the exact distribution of ‖hL‖/‖h0‖ is an interesting
avenue for future research that is beyond the scope of the present chapter. There is however a
strong indication that the ratio follows a log-normal distribution, as confirmed by a normality
test on (the log of) the empirical distribution.

In a nutshell, the proofs of Propositions 2.2 and 2.3 rest upon controlling of the norm of the
hidden states, which obeys the recurrence

‖hk+1‖2 = ‖hk‖2 + α2
L‖Vk+1g(hk, θk+1)‖2 + 2αL〈hk, Vk+1g(hk, θk+1)〉, (2.6)

where 〈·, ·〉 denotes the standard scalar product in Rd. Taking the expectations on both side, one
deduces with Assumptions (A1) and (A2) that

E
(
‖Vk+1g(hk, θk+1)‖2

)
= E

(
E
(
‖Vk+1g(hk, θk+1)‖2

) ∣∣hk, θk+1

)
= E

(
‖g(hk, θk+1)‖2

)
≈ ‖hk‖2 (2.7)

and
E
(
〈hk, Vk+1g(hk, θk+1)〉

)
= E

(
E
(
〈hk, Vk+1g(hk, θk+1)〉

∣∣hk, θk+1

))
= 0. (2.8)

The equalities (2.7) and (2.8) allow deriving without further work bounds in expectation on ‖hL‖,
as already observed by Arpit et al. (2019). However, the results we are after are stronger since
they involve high-probability bounds. A finer control of the deviations of ‖Vk+1g(hk, θk+1)‖2
and 〈hk, Vk+1g(hk, θk+1)〉 is then needed. This involves concentration inequalities on random
matrices with sub-Gaussian entries.

2.2.3 Probabilistic bounds on the gradients

Propositions 2.2 and 2.3 provide insights on the output of the network when L is large. However,
they do not carry information on the backwards dynamics of propagation of the gradients of the
loss pk = ∂L

∂hk
∈ Rd. Assessing the dynamics of the (pk)06k6L as a function of L is important

since the behavior of this sequence impacts trainability of the network at initialization. Thus,
in this subsection, we are interested in quantifying the magnitude of ‖p0 − pL‖/‖pL‖, when L
is large. Notice that, contrarily to the previous subsection where we were mostly interested in
the last hidden state hL, the quantity of interest is now p0 (not pL), the gradient at index 0.
The reason is that the sequence (pk)06k6L is defined backwardly, as we will see below. We also
stress that (pk)06k6L is the sequence of derivatives of the loss w.r.t. the hidden states hk, and
not w.r.t. the parameters. The reason for considering this sequence is that the pk are involved
in the backpropagation algorithm and are therefore essential for assessing the stability of the
gradient descent (see, e.g., Arpit et al., 2019).

Analyzing the behavior of the sequence (pk)06k6L is challenging since, according to the
backpropagation (or reverse-mode differentiation) formula, one has

pk = pk+1 + αL
∂g(hk, θk+1)>

∂h
V >k+1pk+1.

Taking the norm,

‖pk‖2 = ‖pk+1‖2 + α2
L

∥∥∥∂g(hk, θk+1)>

∂h
V >k+1pk+1

∥∥∥2
+ 2αL

〈
pk+1,

∂g(hk, θk+1)>

∂h
V >k+1pk+1

〉
.

Although the equation looks qualitatively similar to (2.6), it has the unpleasant feature that
∂g(hk,θk+1)

∂h depends on hk, hence on θ1, V1, . . . , θk, Vk, while pk+1 depends on θk+2, Vk+2, . . . ,

48

θL, VL. This forbids applying directly the same proof techniques as for the hidden states.
Therefore, to extract useful information from this recurrence equation, one needs to characterize
the dependence of the distribution of ∂g(hk,θk+1)

∂h with respect to hk. To do so, it is sometimes
assumed that these two quantities are independent (see, e.g., Yang and Schoenholz, 2017).
However, assuming independence remains a strong requirement, which is not verified for many
network architectures (for example model res-1). We tackle the problem from a different point
of view and propose an alternative approach based on forward-mode differentiation, valid under
a much weaker assumption. The cost we pay is that we obtain results in expectation and not in
high probability.

Let us sketch our approach before stating the results more formally. We denote by z ∈ Rd an
independent random variable that will be used as a tool to assess the magnitude of the gradients.
For any 0 6 i, j 6 L, let ∂hj

∂hi
∈ Rd×d be the Jacobian matrix of hj with respect to hi. Recall that

the (m,n)-th entry of this matrix equals the derivative of the m-th coordinate of hj w.r.t. the
n-th coordinate of hi. Then, letting qk(z) = ∂hk

∂h0
z, we have, by the chain rule,

qk+1(z) =
∂hk+1

∂hk
qk(z) = qk(z) + αLVk+1

∂g(hk, θk+1)

∂h
qk(z). (2.9)

Identity (2.9), which is similar to (2.4), expresses qk+1(z) as a function of qk(z), and therefore
respects the flow of information. Next, assuming that z is random with a Gaussian distribution,
it is possible to express one of our quantities of interest, ‖p0‖/‖pL‖, as a function of the last
vector qL(z), by taking the expectation over z. Indeed,

‖p0‖2
‖pL‖2

=
1

‖pL‖2
Ez∼N (0,Id)

(∣∣p>0 z∣∣2) = Ez∼N (0,Id)

(∣∣∣(pL
‖pL‖

)>
qL(z)

∣∣∣2), (2.10)

where Id is the identity matrix in Rd and the second equality is a consequence of

p>0 z =
(∂L

∂h0

)>
z =

(∂L

∂hL

)>∂hL
∂h0

z = p>LqL(z).

In summary, the recurrence (2.9) allows us to derive bounds on the norm of qL(z), which can
then transfer to ‖p0‖/‖pL‖ via (2.10). For this, it is necessary to make the following assumption
on the ratio pL/‖pL‖:

(A3) Let b = pL/‖pL‖. Then E(b|hL) = 0 and E(b>b|hL) = Id/d.

It is a mild assumption, which is verified for instance if nout = 1 with squared error (for
regression) or cross-entropy (for binary classification). In these cases, pL/‖pL‖ = B>/‖B‖F , where
‖ · ‖F is the Frobenius norm and B is the weight matrix of the last layer. We finally need the
following assumption, which is the equivalent of Assumption (A2) for the gradients.

(A4) One has, almost surely,

‖qk‖2
2
6 E

(∥∥∥∂g(hk, θk+1)

∂h
qk

∥∥∥2∣∣∣hk, qk) 6 ‖qk‖2.
Assumption (A4) is satisfied by all the standard architectures listed in Table 2.1, as shown

by the next proposition.

Proposition 2.5. Let res-1, res-2, and res-3 be the models defined in Table 2.1. Assume that
(A1) is satisfied and σ is almost everywhere differentiable, with a 6 σ′ 6 b. Then

(i) Assumption (A4) is satisfied for res-1.

49

(ii) Assumption (A4) is satisfied for res-2 and res-3, when the entries of
√
dWk, 1 6 k 6 L,

are centered i.i.d. random variables, independent of d and L, with unit variance.

Proof. See Section 2.A.5.

The next two propositions are the counterparts of Proposition 2.2 and Proposition 2.3 for the
gradient dynamics.

Proposition 2.6. Consider a ResNet (2.4) such that Assumptions (A1)-(A4) are satisfied. If
Lα2

L 6 1, then, for any δ ∈ (0, 1), with probability at least 1− δ,

‖p0 − pL‖2
‖pL‖2

6
2Lα2

L

δ
.

Proof. See Section 2.A.6.

Proposition 2.7. Consider a ResNet (2.4) such that Assumptions (A1)-(A4) are satisfied. Then(
1 +

1

2
α2
L

)L − 1 6 E
(‖p0 − pL‖2
‖pL‖2

)
6 (1 + α2

L)L − 1.

Proof. See Section 2.A.7.

A simple corollary of the propositions above is as follows.

Corollary 2.8. Consider a ResNet (2.4) such that Assumptions (A1)-(A4) are satisfied, and
take αL = 1/Lβ, with β > 0. Then

(i) If β > 1/2,
‖p0 − pL‖
‖pL‖

P−−−−→
L→∞

0.

(ii) If β < 1/2,

E
(‖p0 − pL‖2
‖pL‖2

)
L→∞−−−−→∞.

(ii) If β = 1/2,

exp
(1

2

)
− 1 6 E

(‖p0 − pL‖2
‖pL‖2

)
6 exp(4)− 1.

Proof. See Section 2.A.8.

Corollary 2.8 is illustrated in Figure 2.3. The experimental protocol is the same as in
Figure 2.1, but we now track p0 and pL, the gradients of the loss L with respect to the first and
the last hidden states. In accordance with our results, when β > 1/2, the gradient remains the
same from one layer to another (left plot). On the other hand, the middle plot clearly shows
that when β < 1/2 the gradient explodes. Once again, the case β = 1/2 (right plot) is the only
one for which the distribution of gradients at initialization is non-trivial. Figure 2.2b illustrates
that the empirical distribution of gradients in this case also seems to be log-normal.

In summary, this and the previous subsection both point towards the same conclusion: there
are three different cases, depending on the value of β—explosion when β < 1/2, non-degenerate
limit when β = 1/2, and identity when β > 1/2. In the explosion case, it is well known that
the network cannot be trained (Yang and Schoenholz, 2017). The theory thus points out that
the value 1/2 plays a pivotal role. Remarkably, this value has a specific interpretation in the
continuous-time point of view of ResNets, in terms of SDE. This is the topic that we address in
the next section.

50

0 250 500 750 1000
L

0.05

0.10

0.15

0.20

β = 1.0

0 250 500 750 1000
L

0

500

1000

1500

2000

2500

3000

β = 0.25

0 250 500 750 1000
L

0.700

0.725

0.750

0.775

0.800

0.825

0.850

β = 0.5

Figure 2.3: Evolution of ‖p0 − pL‖/‖pL‖ as a function of L for different values of β and an
i.i.d. U(−

√
3/d,

√
3/d) initialization of model res-3, with d = 40. The input is a random

Gaussian observation x in dimension nin = 64. The experiment is repeated with 50 independent
randomizations.

2.3 Scaling in the continuous-time setting

Starting with the discrete ResNet (2.4), it is tempting to let L go to infinity and consider the
network as the discretization of a differential equation where the layer index k ∈ {0, . . . , L}
is replaced by the time index t ∈ [0, 1]. This interpretation of deep neural networks has been
popularized by Chen et al. (2018a) and is often referred to as the neural ODE paradigm. Notice
that this setting is different from the so-called mean-field analysis, where the width of the network
is assumed to be infinite beforehand. In our setting, the width d is assumed to be finite and
fixed.

2.3.1 Convergence towards a SDE in the large-depth regime

One of the main messages of Section 2.2 is that the standard initialization with i.i.d. parameters
leads to a non-degenerate model for large values of L only if Lα2

L ≈ 1 (Propositions 2.2 and 2.3),
or, equivalently, if β = 1/2 when αL = 1/Lβ (Corollary 2.4). Remarkably, in the continuous-time
limit, this regime corresponds to the discretization of a SDE. Indeed, consider for simplicity the
(discrete) ResNet model res-1

h0 = Ax, hk+1 = hk +
1√
L
Vk+1σ(hk), 0 6 k 6 L− 1, (2.11)

where the entries of all (Vk)16k6L are assumed to be i.i.d. N (0, 1/d). Recall the following definition:

Definition 2.9. A one-dimensional Brownian motion (Bt)t∈[0,1] is a continuous-time stochastic
process with B0 = 0, almost surely continuous, with independent increments, and such that for
any 0 6 s < t 6 1, Bt −Bs ∼ N (0, t− s).

Now, let B : [0, 1]→ Rd×d be a (d× d)-dimensional Brownian motion, in the sense that the
(Bij)16i,j6d are independent one-dimensional Brownian motions. Thus, for any 0 6 k 6 L− 1
and any 1 6 i, j 6 d, we have

B(k+1)/L,i,j −Bk/L,i,j ∼ N
(

0,
1

L

)
,

51

and the increments for different values of (i, j, k) are independent. As a consequence, the
recurrence (2.11) is equivalent in distribution to the recurrence

h>k+1 = h>k +

√
1

d
σ(h>k)(B(k+1)/L −Bk/L), 0 6 k 6 L− 1.

(Note that this is true because Vk+1 has the same distribution as V >k+1.) We recognize the
Euler-Maruyama discretization (Kloeden and Platen, 1992) on the {k/L, 0 6 k 6 L} mesh of
the SDE

H0 = Ax, dH>t =

√
1

d
σ(H>t)dBt, t ∈ [0, 1], (2.12)

where the output of the network is now a function of the final value of H, that is, H1. The link
between the discrete ResNet (2.11) and the SDE (2.12) is formalized in the next proposition.

Proposition 2.10. Consider the res-1 model, where the entries of Vk are i.i.d. Gaussian
N (0, 2/d) random variables. Assume that the activation function σ is Lipschitz continuous. Then
the SDE (2.12) has a unique solution H and, for any 0 6 k 6 L,

E
(
‖Hk/L − hk‖

)
6

c√
L
,

for some c > 0.

Proof. See Section 2.A.9.

Notice that the requirement that σ is Lipschitz continuous is satisfied by most classical
activation functions, including ReLU. This proposition is interesting for several reasons. First,
the scaling β = 1/2, which is exactly the one that yields a non-trivial dynamics at initialization,
corresponds in the continuous world to a remarkably ‘simple’ model of diffusion. This shows that
very deep neural networks properly initialized with i.i.d. weights are equivalent to solutions of
SDE. This analogy opens interesting perspectives for training deep networks using automatic
differentiation for solutions of neural SDE (Li et al., 2020b).

Second, we stress that the emergence of a SDE instead of an ODE carries an important
message. Several authors (including, e.g., Thorpe and van Gennip, 2022) have shown that, under
appropriate assumptions, a deep ResNet converges in the large depth limit to an ODE and
not a SDE. The reason why we obtain a SDE here is intrinsically connected with the choice
of i.i.d. initialization for the weights, which makes a Brownian motion appear at the limit, as
highlighted above. In other words, the i.i.d. initialization, the choice β = 1/2 (the relevant critical
value exhibited in Section 2.2), and the emergence of a SDE are intimately linked together. On
the other hand, the case β = 1 matches with an ODE if the initialization is not i.i.d., as we will
see in Subsection 2.3.2.

Finally, we point out that Proposition 2.10 states the convergence of a ResNet towards a
SDE for the basic architecture res-1 and for Gaussian initialization. The extension to more
general settings is an interesting direction of research, although clearly beyond the scope of the
present chapter (see, e.g., Peluchetti and Favaro, 2020, and Cohen et al., 2021, for results in this
direction).

2.3.2 Scaling in the neural ODE setting

Convergence towards an ODE. The basic message of our Proposition 2.10 is that an
i.i.d. initialization, together with β = 1/2, leads to a SDE rather than an ODE. A natural question
is then whether a different choice of weight distributions (at initialization) and scaling can lead
to a classical neural ODE.

52

To answer this question and leave the world of i.i.d. initialization, we assume that the
weights (Vk)16k6L and (θk)16k6L are discretizations of smooth functions V : [0, 1]→ Rd×d and
Θ : [0, 1]→ Rp. We then consider the general iteration (2.4) with αL = 1/L, that is,

h0 = Ax, hk+1 = hk +
1

L
Vk+1g(hk, θk+1), 0 6 k 6 L− 1, (2.13)

where Vk = Vk/L and θk = Θk/L. Of course, it is still possible to consider (Vk)16k6L (resp.
(θk)16k6L) as random variables, by letting (Vt)t∈[0,1] (resp. (Θt)t∈[0,1]) be a continuous-time
stochastic process. In this model, we shall need the following assumption:

(A5) For any 1 6 k 6 L, one has Vk = Vk/L and θk = Θk/L, where the stochastic processes V
and Θ are almost surely Lipschitz continuous and bounded.

More precisely, almost surely, there exist KV ,KΘ, CV , CΘ > 0, such that, for any s, t ∈ [0, 1],

‖Vt − Vs‖ 6 KV |t− s|, ‖Θt −Θs‖ 6 KΘ|t− s|, ‖Vt‖ 6 CV , ‖Θt‖ 6 CΘ.

A typical model that satisfies Assumption (A5) is obtained by letting the entries of V and Θ
be independent Gaussian processes with expectation zero and squared exponential covariance
K(x, x′) = exp(− (x−x′)2

2`2
), where ` > 0.

We shall also need the following requirement on g, which is satisfied by all our models as
soon as σ is Lipschitz continuous:

(A6) The function g is Lipschitz continuous on compact sets, in the sense that for any compact
P ⊆ Rp, there exists KP > 0 such that, for all h, h′ ∈ Rd, θ ∈P,

‖g(h, θ)− g(h′, θ)‖ 6 KP‖h− h′‖,

and for any compact D ⊆ Rd, there exists KD ,P > 0 such that, for all h ∈ D , θ, θ′ ∈P,

‖g(h, θ)− g(h, θ′)‖ 6 KD ,P‖θ − θ′‖.

Under Assumptions (A5) and (A6), the recurrence (2.13) almost surely converges towards
the neural ODE given by

H0 = Ax, dHt = Vtg(Ht,Θt)dt, t ∈ [0, 1], (2.14)

as shown by the proposition below.

Proposition 2.11. Consider model (2.13) such that Assumptions (A5) and (A6) are satisfied.
Then the ODE (2.14) has a unique solution H, and, almost surely, there exists some c > 0 such
that, for any 0 6 k 6 L,

‖Hk/L − hk‖ 6
c

L
.

Proof. See Section 2.A.10.

It should be stressed that the transition from the discrete recurrence (2.13) to the continuous-
time differential equation (2.14) relies on the assumptions that the weight sequences (θk)16k6L

and (Vk)16k6L are the discretizations of smooth limiting processes Θ and V on the one hand, and
that the scaling αL is chosen as 1/L on the other hand. From a practical perspective, Proposition
2.11 shows that it is possible to initialize ResNets in the ODE regime, by choosing a smooth
stochastic process, discretizing it at each layer, and taking a 1/L scaling. This is in sharp contrast
with the results of Sections 2.2 and 2.3.1, which show that the usual i.i.d. procedure leads to a
neural SDE.

53

0 250 500 750 1000
L

0.000

0.005

0.010

0.015

0.020

0.025

0.030

β = 2.0

0 250 500 750 1000
L

0

1

2

3

×108 β = 0.5

0 250 500 750 1000
L

0.29

0.30

0.31

0.32

0.33
β = 1

Figure 2.4: Evolution of ‖hL−h0‖/‖h0‖ as a function of L for different values of β and a smooth
initialization of model res-3, with d = 40. The input is a random Gaussian observation x in
dimension nin = 64. The experiment is repeated with 50 independent randomizations.

Stability and scaling. Assuming that the weights of the network are discretizations of a
smooth function (Assumption (A5)), it is possible to obtain stability results, depending on the
value of β, similarly to what has been done in Section 2.2. We show below that β = 1 is a
critical value, by examining the hidden states, in the same way as β = 1/2 is a critical value in
the i.i.d. setting. Similar results can be shown for the gradients. We begin by a proposition
handling the cases β > 1 and β = 1.

Proposition 2.12. Consider a ResNet (2.4) such that Assumptions (A5) and (A6) are satisfied.
Let αL = 1/Lβ, with β > 0.

(i) If β > 1, then, almost surely,
‖hL − h0‖
‖h0‖

L→∞−−−−→ 0.

(ii) If β = 1, then, almost surely, there exists some c > 0 such that

‖hL − h0‖
‖h0‖

6 c.

Proof. See Section 2.A.11.

The explosion case (β < 1) is more delicate to deal with. We prove it for a linear model, and
leave for future work the extension to more general cases.

Proposition 2.13. Consider the res-1 model, taking σ as the identity function. Assume that
Assumption (A5) is satisfied and that V T

0 has a positive eigenvalue. Let αL = 1/Lβ, with β ∈ (0, 1).
Then, almost surely,

max
k

‖hk − h0‖
‖h0‖

L→∞−−−−→∞.

Proof. See Section 2.A.12.

The assumption of the existence of a positive eigenvalue for V >0 is mild. For instance, if the
entries of V0 are i.i.d. random variables with finite moments of all order, Götze and Jalowy (2021)
show that such an eigenvalue exists with probability at least 1− 1/d for d large enough.

In this setting, we observe experimentally a behavior of the output and of the gradients when
L grows large similar to the one explored in Section 2.2. This is illustrated in Figures 2.4 and 2.5,

54

0 250 500 750 1000
L

0.000

0.005

0.010

0.015

0.020

0.025

β = 2.0

0 250 500 750 1000
L

0.00

0.25

0.50

0.75

1.00

1.25

×108 β = 0.5

0 250 500 750 1000
L

0.26

0.27

0.28

β = 1

Figure 2.5: Evolution of ‖p0− pL‖/‖pL‖ as a function of L for different values of β and a smooth
initialization of model res-3, with d = 40. The input is a random Gaussian observation x in
dimension nin = 64. The experiment is repeated with 50 independent randomizations.

which mirror Figures 2.1 and 2.3 in Section 2.2. The figures clearly show that there exist three
cases for the output and for the gradients: an identity case (left plots), an explosion case (middle),
and a non-trivial case separating explosion and identity (right). However, the remarkable point is
that the separation occurs for β = 1, and not β = 1/2, as predicted by Propositions 2.12 and 2.13.

2.4 Experiments

We experimentally investigate in this section two questions. The first one is to know whether
there exists a range of scaling factors β > 0 and weight initializations, beyond the i.i.d. and the
smooth regimes. The second question is whether our analysis, which pertains to the initialization
phase, provides insights into the training phase, beyond initialization.

2.4.1 Intermediate regimes

In order to describe the transition between the i.i.d. and smooth cases, a possible route is
to consider that the weights are increments of a γ-Hölder stochastic process. This model is
interesting insofar as the Brownian motion (SDE regime) is (1/2 − ε)-Hölder (ε > 0) and a
Lipschitz continuous stochastic process (ODE regime) is 1-Hölder.

0 200 400 600 800 1000

−3

−2

−1

0

1

(a) H = 0.2

0 200 400 600 800 1000

−1.00

−0.75

−0.50

−0.25

0.00

(b) H = 0.5

0 200 400 600 800 1000

−0.8

−0.6

−0.4

−0.2

0.0

0.2

(c) H = 0.8

Figure 2.6: Examples of realizations of a fractional Brownian motion BH for different Hurst
indexes H. Note that the smaller the value of H, the more irregular the trajectory is.

In line with the above, in a series of experiments, we initialize the weights as increments of a
fractional Brownian motion (BH

t)t∈[0,1]. Recall that BH is a continuous-time Gaussian process,

55

starting at zero, with zero expectation for all t ∈ [0, 1], and covariance function

E(BH
s B

H
t) =

1

2
(|s|2H + |t|2H − |t− s|2H), 0 6 s, t 6 1,

where H ∈ (0, 1) is called the Hurst index. This index describes the raggedness of the process,
with a higher value leading to a smoother process. When H = 1/2, the process is a standard
Brownian motion (Definition 2.9), whose increments are independent by construction. When
H > 1/2, the increments of the process are positively correlated, while if H < 1/2 the increments
are negatively correlated. Importantly, a fractional Brownian motion with Hurst index H is
(H − ε)-Hölder continuous for any ε > 0. In the limit when H → 1, the trajectories converge
to linear functions (whose increments satisfy (A5)). As an illustration, Figure 2.6 depicts three
realizations of a fractional Brownian motion with H = 0.2 (left), H = 0.5 (middle), and H = 0.8
(right).

0.
05

0.
14

0.
23

0.
33

0.
42

0.
51 0.
6

0.
69

0.
78

0.
88

0.
97

regularity

1.3

1.18

1.06

0.94

0.82

0.69

0.57

0.45

0.33

0.2

sc
al

in
g

−1.0

−0.5

0.0

0.5

1.0

(a) ln10(‖hL − h0‖/‖h0‖)

0.
05

0.
14

0.
23

0.
33

0.
42

0.
51 0.
6

0.
69

0.
78

0.
88

0.
97

regularity

1.3

1.18

1.06

0.94

0.82

0.69

0.57

0.45

0.33

0.2

sc
al

in
g

−1.0

−0.5

0.0

0.5

1.0

(b) ln10(‖p0 − pL‖/‖pL‖)

Figure 2.7: Magnitude of the outputs and of the gradients as a function of the regularity of
the weights (Hurst index H) and of the scaling factor β. The orange zone corresponds to the
explosion regime, i.e., ‖hL − h0‖ � ‖h0‖ and ‖p0 − pL‖ � ‖pL‖. The blue zone corresponds to
the identity regime, i.e., ‖hL − h0‖ � ‖h0‖ and ‖p0 − pL‖ � ‖pL‖. Finally, the black zone is an
intermediate regime, where ‖hL − h0‖ ≈ ‖h0‖ and ‖p0 − pL‖ ≈ ‖pL‖.

In order to assess the effect of the scaling factor β and the Hurst index H, we initialize a neural
network res-3 with d = 40, L = 1000, various values of β ∈ [0.2, 1.3], and with weights taken
as increments of fractional Brownian motions with various Hurst indices H ∈ (0, 1). Figure 2.7
depicts the empirical magnitude of the output and the gradients at initialization as a function of
the Hurst index H and the scaling factor β. First note that we recover the two regimes (i.i.d. and
smooth) discussed so far. For H = 1/2, the i.i.d. regime kicks in, with explosion (β < 1/2, orange
zone), non-trivial behavior (β = 1/2, black zone), and identity (β > 1/2, blue zone). Likewise, we
see at H = 1 a similar pattern in the smooth regime, with, as predicted by Proposition 2.12, a
critical value β = 1. Beyond these two specific cases, we observe for an index H varying in (1/2, 1)
a whole range of intermediate situations, where the transition between identity and explosion
seems to happen for a critical β = H. Interestingly, for H < 1/2, the transition seems to saturate
at the value β = 1/2.

The take-home message is that the choice of the scaling of a ResNet seems to be closely
linked to the regularity of the weights as a function of the layer. More precisely, for all regimes,

56

the critical scaling factor between explosion and identity seems to have a natural interpretation
as the (Hölder) regularity of the underlying continuous-time stochastic process. We believe that
the mathematical understanding of this connection, beyond the fractional Brownian motion case,
is a promising research direction for the future. Finally, these experiments suggest that it is
sensible to initialize a ResNet for any value of the scaling β ∈ (1/2, 1), while avoiding the identity
and explosion situations, by simulating a fractional Brownian motion of Hurst index H = β and
initializing the weights as the increments of this process.

2.4.2 Beyond initialization

At initialization, before the gradient descent, the distribution of the weights (θk)16k6L and
(Vk)16k6L is chosen by the practitioner. By contrast, during and after training, control is
lost on these distributions, making the picture more complex. In particular, the existence
and characterization of a continuous-time stochastic process whose discretization matches the
trained ResNet is an interesting but difficult problem. Attacking this question requires a fine
understanding of the interaction between training dynamics and the regularity of the sequence
of the weights during the gradient descent. However, there is experimental evidence that the
trained weights exhibit strong structure as a function of the layer index k (Cohen et al., 2021;
Bayer et al., 2023), and that their regularity strongly depends on the choice of initialization.
Figure 2.8 depicts this mechanism by plotting a given coordinate of θk as a function of the layer
index k ranging from 1 to the depth L = 1000, after training. This will be further investigated
in Chapter 3.

0 200 400 600 800 1000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) β = 1, smooth initialization

0 200 400 600 800 1000

1.0

0.5

0.0

0.5

(b) β = 1, i.i.d. initialization

0 200 400 600 800 1000

0.4

0.2

0.0

0.2

0.4

(c) β = 1/2, i.i.d. initialization

Figure 2.8: Plot of a given coordinate of θk, after training, as a function of the layer index k
ranging from 1 to the depth L = 1000 for three different choices of β and initializations.

To investigate the link between regularity of the weights at initialization, scaling, and
performance after training, we train ResNets on the datasets MNIST (Deng, 2012) and CIFAR-10
(Krizhevsky, 2009). As in Subsection 2.4.1, we initialize the ResNets with various scaling factors
and weights that are increments of fractional Brownian motions with different regularities. Then,
for each combination of weight initialization and scaling factor, the ResNet is trained using the
Adam optimizer (Kingma and Ba, 2015) for 10 epochs. The results in terms of accuracy are
presented in Figure 2.9 (light orange = good performance, blue = bad performance). We observe
a pattern similar to the one of Figure 2.7, however shifted downwards. This means that, for a
given regularity, the network is unable to learn if it is initialized with a scaling too far below the
critical value, which of course is connected with the gradient explosion issue discussed previously.
On the other hand, and perhaps more surprisingly, the performance seems to be more or less
stable in the identity region, with perhaps a small degradation in the case of CIFAR-10. This
somewhat contrasts with the results from Yang and Schoenholz (2017), who exhibit a decrease
in performance for i.i.d. initialization and a large scaling factor β. Note however that, in the

57

experiments reported in Figure 2.7, we adapt the learning rate of the gradient descent on a grid
by cross-validation. When taking a fixed learning rate, we also observe a decrease in performance
for large scaling factor β. The interplay between the learning rate and the scaling factor is one
of the keys to better assess how the performance of the trained network is connected with the
scaling.

0.
1

0.
19

0.
28

0.
37

0.
46

0.
54

0.
63

0.
72

0.
81 0.

9

regularity

0.9
0.81
0.72
0.63
0.54
0.46
0.37
0.28
0.19

0.1

sc
al

in
g

0.0

0.2

0.4

0.6

0.8

1.0

(a) On MNIST
0.

1

0.
19

0.
28

0.
37

0.
46

0.
54

0.
63

0.
72

0.
81 0.
9

regularity

0.1

0.19

0.28

0.37

0.46

0.54

0.63

0.72

0.81

0.9

sc
al

in
g

0.0

0.1

0.2

0.3

0.4

0.5

(b) On CIFAR-10

Figure 2.9: Accuracy after training as a function of the regularity of the weights at initialization
and scaling. For each point of the heatmap, the model was trained on a grid of learning rates,
and the best performance is shown.

2.A Proofs

Throughout the proofs, the i-th coordinate of a vector v is denoted by vi. Similarly, the i-th row
of a matrix M is denoted by Mi, and its (i, j)-th entry by Mij .

2.A.1 Proof of Proposition 2.1

Statement (i) is clear (with C = 1) since, for any h ∈ Rd,

‖σ(h)‖2 ∈
[
a2‖h‖2, b2‖h‖2

]
⊆
[1
2
‖h‖2, ‖h‖2

]
.

With respect to statement (ii), it is enough to show that for any h ∈ Rd and any random matrix
W satisfying the assumptions of the proposition, one has

‖h‖2
2
6 E

(
‖σ(Wh)‖2

)
6 ‖h‖2 and E

(
‖σ(Wh)‖8

)
6 C‖h‖8,

as well as

E
(
‖ReLU(Wh)‖2

)
=
‖h‖2

2
and E

(
‖ReLU(Wh)‖8

)
6 C‖h‖8.

The two claims with the squared norms are consequences of Lemmas 2.16 and 2.17 in Appendix 2.B,
together with the fact that the variance of the entries ofW equals 1/d. In order to prove the other

58

two statements, first note that E(‖σ(Wh)‖8) 6 E(‖Wh‖8) and E(‖ReLU(Wh)‖8) 6 E(‖Wh‖8).
The results are then consequences of Lemma 2.21 in Appendix 2.C, which states that

E
(‖Wh‖8
‖h‖8

)
6 1 +

384s4

d
+

3072s6

d2
6 1 + 384s4 + 3072s6.

2.A.2 Proof of Proposition 2.2

According to Lemma 2.14 below, one has

E
(‖hL − h0‖2
‖h0‖2

)
6
((

1 + α2
L

)L − 1
)
.

But, for Lα2
L 6 1, we have (1 + α2

L)L − 1 6 exp(Lα2
L)− 1 6 2Lα2

L. Therefore,

E
(‖hL − h0‖2
‖h0‖2

)
6 2Lα2

L,

and the result follows from Markov’s inequality.

Lemma 2.14. Consider a ResNet (2.4) such that Assumptions (A1) and (A2) are satisfied. Then

((
1 +

α2
L

2

)L
− 1

)
6 E

(‖hL − h0‖2
‖h0‖2

)
6
((

1 + α2
L

)L − 1
)
.

Proof (Lemma 2.14) Taking the squared norm of the forward update rule (2.4) and dividing
by ‖h0‖2 yields

‖hk+1‖2
‖h0‖2

=
1

‖h0‖2
(
‖hk‖2 + α2

L‖Vk+1g(hk, θk+1)‖2 + 2αL〈hk, Vk+1g(hk, θk+1)〉
)
. (2.15)

We deduce by Assumptions (A1) and (A2) that

(
1 +

α2
L

2

)
E
(‖hk‖2
‖h0‖2

)
6 E

(‖hk+1‖2
‖h0‖2

)
6 (1 + α2

L)E
(‖hk‖2
‖h0‖2

)
.

Therefore, by recurrence, we are led to

(
1 +

α2
L

2

)k
6 E

(‖hk‖2
‖h0‖2

)
6 (1 + α2

L)k. (2.16)

Now, observe that hL = h0 + αL
∑L−1

k=0 Vk+1g(hk, θk+1). Thus, we have

E
(‖hL − h0‖2
‖h0‖2

)
= α2

L

L−1∑
k,k′=0

E
(g(hk, θk+1)>V >k+1Vk′+1g(hk′ , θk′+1)

‖h0‖2
)
.

59

By conditioning on all random variables except Vk′+1 for k < k′ (and Vk+1 for k > k′), it is easy
to see that the only non-zero terms are when k = k′. This yields

E
(‖hL − h0‖2
‖h0‖2

)
= α2

L

L−1∑
k=0

E
(‖Vk+1g(hk, θk+1)‖2

‖h0‖2
)

6 α2
L

L−1∑
k=0

E
(‖hk‖2
‖h0‖2

)
(by Assumptions A1 and A2)

6 α2
L

L−1∑
k=0

(1 + α2
L)k

(by (2.16))

=
((

1 + α2
L

)L − 1
)
.

Similarly,

E
(‖hL − h0‖2
‖h0‖2

)
>
α2
L

2

L−1∑
k=0

E
(‖hk‖2
‖h0‖2

)
=
((

1 +
α2
L

2

)L
− 1
)
.

2.A.3 Proof of Proposition 2.3

Dividing (2.15) by ‖hk‖2 and taking the logarithm leads to

ln(‖hk+1‖2) = ln(‖hk‖2) + ln

(
1 + α2

L

‖Vk+1g(hk, θk+1)‖2
‖hk‖2

+ 2αL

〈 hk
‖hk‖

,
Vk+1g(hk, θk+1)

‖hk‖
〉)

.

Let

Yk,1 = α2
L

‖Vk+1g(hk, θk+1)‖2
‖hk‖2

, Yk,2 = 2αL

〈 hk
‖hk‖

,
Vk+1g(hk, θk+1)

‖hk‖
〉
,

and Yk = Yk,1 + Yk,2. The proof of Proposition 2.3 strongly relies on the following lemma, which
provides technical information on the moments of Yk,1 and Yk,2. For the sake of clarity, its proof
is postponed to Appendix 2.B.

Lemma 2.15. Assume that Assumptions (A1) and (A2) are satisfied. Then

(E1) E(Yk,2|hk) = 0.

(E2)
α2
L
2 6 E(Yk,1|hk) 6 α2

L.

(E3) E(Yk,1Yk,2|hk) = 0.

(E4) E(Y 2
k,2|hk) 6 4

α2
L
d .

(E5) E(Y 4
k,2|hk) 6 2048

s4α4
L

d2 .

(E6) E(Y 4
k,1|hk) 6 C

(
3072 s

6

d2 + 384 s
4

d + 1
)
α8
L.

(E7) E(Y 2
k,1|hk) 6

√
C
(

128 s
4

d + 1
)
α4
L.

60

For c > 0, we have

P
(‖hL‖2
‖h0‖2

> c
)

= P
(

ln(‖hL‖2)− ln(‖h0‖2) > ln(c)
)

= P
(L−1∑
k=0

ln(1 + Yk) > ln(c)
)

6 P
(L−1∑
k=0

Yk > ln(c)
)

(using ln(1 + x) 6 x for x > −1).

Let S =
∑L−1

k=0 Yk − E(Yk|hk). By (E1) and (E2),

L−1∑
k=0

E(Yk|hk) 6 Lα2
L.

So, for c > exp(Lα2
L),

P
(‖hL‖2
‖h0‖2

> c
)
6 P

(
S > ln(c)−

L−1∑
k=0

E(Yk|hk)
)

6 P(S > ln(c)− Lα2
L)

6 P
(
S2 >

(
ln(c)− Lα2

L

)2)
6

E(S2)

(ln(c)− Lα2
L)2

(2.17)

(by Markov’s inequality.)

It remains to upper bound E(S2). To this aim, note that

E(S2) =

L−1∑
k=0

E
((
Yk − E(Yk|hk)

)2)
6

L−1∑
k=0

E
(
Y 2
k

)
6 4

Lα2
L

d
+ 128

√
C
Lα4

Ls
4

d
+
√
CLα4

L

(by (E3), (E4), and (E7))

6 5
Lα2

L

d
.

The last inequality is true for α2
L 6

1√
C(d+128s4)

. Therefore, by inequality (2.17), we obtain, for

c > exp(Lα2
L),

P
(‖hL‖2
‖h0‖2

> c
)
6

5Lα2
L

d
(
ln(c)− Lα2

L

)2 .
We conclude that, for any δ ∈ (0, 1), with probability at least 1− δ,

‖hL‖2
‖h0‖2

< exp

(
Lα2

L +

√
5Lα2

L

dδ

)
.

This shows statement (ii) of the proposition.

61

Next, to prove statement (i), observe that c > 0,

P
(‖hL‖2
‖h0‖2

6 c
)

= P
(

ln(‖hL‖2)− ln(‖h0‖2) 6 ln(c)
)

= P
(L−1∑
k=0

ln(1 + Yk) 6 ln(c)
)

= P
(L−1∑
k=0

ln(1 + Yk) 6 ln(c) and ∀k, Yk > −
1

2

)
+ P

(L−1∑
k=0

ln(1 + Yk) 6 ln(c) and ∃k, Yk < −
1

2

)
.

Using the inequality ln(1 + x) > x− x2 for x > −1/2, we obtain

P
(‖hL‖2
‖h0‖2

6 c
)
6 P

(L−1∑
k=0

Yk − Y 2
k 6 ln(c) and ∀k, Yk > −

1

2

)
+ P

(L−1∑
k=0

ln(1 + Yk) 6 ln(c) and ∃k, Yk < −
1

2

)
.

Thus,

P
(‖hL‖2
‖h0‖2

6 c
)
6 P

(L−1∑
k=0

Yk − Y 2
k 6 ln(c)

)
+

L−1∑
k=0

P
(
Yk,2 < −

1

2

)
. (2.18)

We handle the two terms above on the right-hand side separately. For the first term, let
Zk = Yk − Y 2

k and S =
∑L−1

k=0 Zk − E(Zk|hk). Observe that, by (E1)-(E4) and (E7),

L−1∑
k=0

E(Zk|hk) >
Lα2

L

2
− 4

Lα2
L

d
− 128

√
C
Lα4

Ls
4

d
−
√
CLα4

L >
3

8
Lα2

L, (2.19)

where the last inequality is valid for d > 64 and α2
L 6

1
16
√
C(2s4+1)

. Hence, for 0 < c < exp(3Lα2
L/8),

P
(L−1∑
k=0

Yk − Y 2
k 6 ln c

)
= P

(
S 6 ln(c)−

L−1∑
k=0

E(Zk|hk)
)

6 P
(
S 6 ln(c)− 3Lα2

L

8

)
6 P

(
S2 >

(
ln(c)− 3Lα2

L

8

)2)
6

E(S2)(
ln(c)− 3Lα2

L
8

)2
(by Markov’s inequality.)

Using the cr-inequality (a+ b)n 6 2n−1(an + bn) respectively for n = 2 and n = 4, we see that

E(S2) =

L−1∑
k=0

E
((
Zk − E(Zk|hk)

)2)
6

L−1∑
k=0

E
(
Z2
k

)
6 2

L−1∑
k=0

E
(
Y 2
k

)
+ E

(
Y 4
k

)
6 2

L−1∑
k=0

E(Y 2
k,1) + E(Y 2

k,2) + 2E(Yk,1Yk,2) + 8E(Y 4
k,1) + 8E(Y 4

k,2).

62

By (E3)-(E7), it is easy to verify that, for d > 64 and α2
L 6

1
(
√
Cs4/16+2

√
C+8s4)d

,

E(S2) 6 10
Lα2

L

d
.

This shows that, for c < exp(3Lα2
L/8),

P
(L−1∑
k=0

Yk − Y 2
k 6 ln(c)

)
6

10Lα2
L

d
(

ln(c)− 3Lα2
L

8

)2 .
To conclude the proof, it remains to upper bound the second term of inequality (2.18). According
to inequality (2.22) in the proof of Lemma 2.15 (with t = 1/2), one has

L−1∑
k=0

P
(
Yk,2 < −

1

2

)
6 2L exp

(
− d

64α2
Ls

2

)
.

Putting everything together, we are led to

P
(‖hL‖2
‖h0‖2

6 c
)
6

10Lα2
L

d
(

ln(c)− 3Lα2
L

8

)2 + 2L exp
(
− d

64α2
Ls

2

)
.

Take δ ∈ (0, 1). Then, if 2L exp
(
− d

64α2
Ls

2

)
6 δ

11 , with probability at least 1− δ,

‖hL‖2
‖h0‖2

> exp

(
3Lα2

L

8
−
√

11Lα2
L

dδ

)
.

Notice that this inequality is valid under the assumption α2
L 6

2
(
√
Cs4+4

√
C+16s4)d

.

2.A.4 Proof of Corollary 2.4

Statement (i) is a consequence of Proposition 2.2, whereas (ii) is a consequence of Proposition
2.3 (i). The latter is valid under the conditions d > 64 and αL 6 2

(
√
Cs4+4

√
C+16s4)d

, which
is automatically satisfied for all L large enough. Furthermore, an inspection of the proof of
Proposition 2.3 reveals that the divergence in high probability of ‖hL‖ can be proved under the
relaxed assumption d > 9. Indeed, the main constraint on d comes from the lower bound (2.19),
where one needs to make sure that Lα2

L
2 − 4

Lα2
L
d > 0, which is the case for d = 9.

To prove (iii), we use a union bound on both statements of Proposition 2.3.

2.A.5 Proof of Proposition 2.5

The first claim follows from the observation that

∂g(hk, θk+1)

∂h
qk =


σ′(hk,1) 0 . . . 0

0 σ′(hk,2) . . . 0
...

...
. . .

...
0 0 . . . σ′(hk,d)

 qk,

from (A1), and from the assumption on σ′.

63

Let us now prove (ii). In the rest of the proof, the subscript k is ignored to lighten the
notation. Observe that

∂g(h, θ)

∂h
q = V


σ′(〈W1, h〉) 0 . . . 0

0 σ′(〈W2, h〉) . . . 0
...

...
. . .

...
0 0 . . . σ′(〈Wd, h〉)

Wq.

Denote by D the matrix in the middle of the right-hand side. Then

E
(∥∥∥∂g(h, θ)

∂h
q
∥∥∥2∣∣∣h, q) = E

(
‖V DWq‖2|h, q

)
= E

(
‖DWq‖2|h, q

)
(by (A1))

For model res-2, we have

E
(∥∥∥∂g(h, θ)

∂h
q
∥∥∥2∣∣∣h, q) = E

(d∑
i=1

(d∑
j=1

Wijqj

)2
σ′(〈Wi, h〉)

∣∣∣∣h, q).
The conclusion follows from the hypothesis that a 6 σ′ 6 b and E

(
‖Wq‖2|q

)
= ‖q‖2. For model

res-3, we have

E
(∥∥∥∂g(h, θ)

∂h
q
∥∥∥2∣∣∣h, q) = E

(d∑
i=1

(d∑
j=1

Wijqj

)2
1∑d

j=1 Wijhj>0

∣∣∣∣h, q).
Since the (Wij)16i,j6d are centered random variables, we conclude that

E
(∥∥∥∂g(h, θ)

∂h
q
∥∥∥2∣∣∣h, q) =

1

2
E
(d∑
i=1

(d∑
j=1

Wijqj

)2
∣∣∣∣q) =

1

2
E
(
‖Wq‖2|q

)
=
‖q‖2

2
.

2.A.6 Proof of Proposition 2.6

Letting b = pL/‖pL‖, as in Assumption (A3), and taking expectation in (2.10), we obtain

E
(‖p0‖2
‖pL‖2

)
= E(|b>qL(z)|2) =

1

d
E(‖qL(z)‖2) (2.20)

(by (A3)).

The rest of the proof is similar to the proof of Proposition 2.2. From (2.9), we have

‖qk+1(z)‖2 = ‖qk(z)‖2 + α2
L

∥∥∥Vk+1
∂g(hk, θk+1)

∂h
qk(z)

∥∥∥2
+ 2αL

〈
qk(z), Vk+1

∂g(hk, θk+1)

∂h
qk(z)

〉
.

By independence of Vk+1 from qk(z) and ∂g(hk,θk+1)
∂h ,

E
(〈
qk(z), Vk+1

∂g(hk, θk+1)

∂h
qk(z)

〉)
= 0.

64

Next,

E
(∥∥∥Vk+1

∂g(hk, θk+1)

∂h
qk(z)

∥∥∥2)
= E

(
E
(∥∥∥Vk+1

∂g(hk, θk+1)

∂h
qk(z)

∥∥∥2∣∣∣hk, θk+1, qk(z)
))

= E
(∥∥∥∂g(hk, θk+1)

∂h
qk(z)

∥∥∥2
)

(by (A1))

= E
(
E
(∥∥∥∂g(hk, θk+1)

∂h
qk(z)

∥∥∥2∣∣∣hk, qk(z))) .
By Assumption (A3), we are led to(

1 +
1

2
α2
L

)
E(‖qk(z)‖2) 6 E(‖qk+1(z)‖2) 6 (1 + α2

L)E(‖qk(z)‖2),

and thus, by induction, since q0(z) = z and E(‖z‖2) = d,

d
(
1 +

1

2
α2
L

)k
6 E(‖qk(z)‖2) 6 d(1 + 4α2

L)k.

In particular, for k = L,

d
(
1 +

1

2
α2
L

)L
6 E(‖qL(z)‖2) 6 d(1 + α2

L)L.

Therefore, by (2.20), (
1 +

1

2
α2
L

)L
6 E

(‖p0‖2
‖pL‖2

)
6 (1 + α2

L)L.

To finish the proof, observe that

1

‖pL‖
(p0 − pL)>z = b>(qL(z)− z).

Using arguments similar to (2.20), we may write

E
(‖p0 − pL‖2
‖pL‖2

)
=

1

d
E
(‖qL(z)− z‖2

‖z‖2
)
.

Now, upon noting that qL(z)− z = qL(z)− q0(z) = αL
∑L−1

k=0 Vk+1
∂g(hk,θk+1)

∂h qk(z),

E(‖qL(z)− z‖2) = α2
L

L−1∑
k,k′=0

E
(
qk(z)

>∂g(hk, θk+1)>

∂h
V >k+1Vk′+1

∂g(h′k, θk′+1)

∂h
qk′(z)

)

= α2
L

L−1∑
k=0

E

(∥∥∥∥Vk+1
∂g(hk, θk+1)

∂h
qk(z)

∥∥∥∥2
)

6 dα2
L

L−1∑
k=0

(1 + α2
L)k

= d
(
(1 + α2

L)L − 1
)
6 d
(

exp(Lα2
L)− 1

)
6 2dLα2

L,

for Lα2
L 6 1. Note that the second equality is obtained by conditioning on every random variable

except Vk′+1 for k < k′ (and Vk+1 for k > k′). Finally, by using Markov’s inequality, we conclude
that, for any ε > 0,

P
(
‖p0 − pL‖2 > ε‖pL‖2

)
6

2Lα2
L

ε
.

65

2.A.7 Proof of Proposition 2.7

The proof of Proposition 2.6 reveals that

E
(‖p0 − pL‖2
‖pL‖2

)
6 (1 + α2

L)L − 1.

Using similar arguments, one has

E
(‖p0 − pL‖2
‖pL‖2

)
=

1

d
E
(‖qL(z)− z‖2

‖z‖2
)
> α2

L

L−1∑
k=0

(
1 +

1

2
α2
L

)k
=
(
1 +

1

2
α2
L

)L − 1.

2.A.8 Proof of Corollary 2.8

The first statement is an immediate consequence of Proposition 2.6. The second one is a
consequence of Proposition 2.7 and the fact that, for β < 1,(

1 +
1

Lβ

)L
= exp

(
L ln

(
1 +

1

Lβ

))
∼ exp

(
L1−β)→∞.

Finally, (iii) follows from Proposition 2.7.

2.A.9 Proof of Proposition 2.10

The proposition is a consequence of Kloeden and Platen (1992, Theorems 4.5.3 and 10.2.2) for
the SDE

dH>t =

√
1

d
σ(H>t)dBt.

Letting a(h, t) = 0 and b(h, t) =
√

1
dσ(h), we need to check the following assumptions:

(H1) The functions a(·, ·) and b(·, ·) are jointly measurable on Rd × [0, 1].

(H2) There exists a constant C1 > 0 such that, for any x, y ∈ Rd, t ∈ [0, 1],

‖a(x, t)− a(y, t)‖+ ‖b(x, t)− b(y, t)‖ 6 C1‖x− y‖.

(H3) There exists a constant C2 > 0 such that, for any x ∈ Rd, t ∈ [0, 1],

‖a(x, t)‖+ ‖b(x, t)‖ 6 C2(1 + ‖x‖).

(H4) E
(
‖H0‖2

)
<∞.

(H5) There exists a constant C3 > 0 such that, for any x ∈ Rd, s, t ∈ [0, 1],

‖a(x, t)− a(x, s)‖+ ‖b(x, t)− b(x, s)‖ 6 C3(1 + ‖x‖)|t− s|1/2.

Assumptions (H1), (H4), and (H5) readily follow from the definitions. Assumption (H2) is true
since σ is Lipschitz continuous, and (H3) follows from

‖σ(x)‖ 6 b‖x‖ 6 ‖x‖ 6 1 + ‖x‖.

66

2.A.10 Proof of Proposition 2.11

Let ψ : Rd × [0, 1]→ Rd be defined for any h ∈ Rd, t ∈ [0, 1], by ψ(h, t) = Vtg(h,Θt). With this
notation, the ODE (2.14) is equivalent to the initial value problem

dHt = ψ(Ht, t)dt, H0 = Ax.

By Assumptions (A5) and (A6), ψ is Lipschitz continuous in its first argument, in the sense that
there exists K > 0 such that, for all h, h′ ∈ Rd, t ∈ [0, 1],

‖ψ(h, t)− ψ(h′, t)‖ 6 K‖h− h′‖.

In addition, it is continuous in its second one. Thus, according to the Picard-Lindelöf theorem
(Theorem 2.22 in Appendix 2.D), this is enough to show that the neural ODE (2.14) has a unique
solution on [0, 1]. Note that the solution H is continuous on [0, 1] and is therefore bounded by a
constant M > 0.

In order to prove the approximation bound of Proposition 2.11, we start by proving that
both ψ and H are Lipschitz continuous in t. Under (A5) and (A6), this is clear for ψ since H is
bounded. Moreover, for any [s, t] ⊂ [0, 1], we have

‖Ht −Hs‖ =
∥∥∥∫ t

s
ψ(Hu, u)du

∥∥∥ 6 ∫ t

s
‖ψ(Hu, u)‖du

6 (t− s) sup
u∈[0,1]

h∈Rd,‖h‖6M

‖ψ(h, u)‖.

Now, let K1 and K2 denote the Lipschitz constants of ψ (in both arguments) and H
respectively, and, for any 0 6 k 6 L, let tk = k/L. Then we have, for k > 1,

‖Htk − hk‖

=
∥∥Htk−1

+

∫ tk

tk−1

ψ(Hu, u)du− hk−1 −
1

L
ψ(hk−1, tk−1)

∥∥
6 ‖Htk−1

− hk−1‖+

∫ tk

tk−1

‖ψ(Hu, u)− ψ(hk−1, tk−1)‖du

6 ‖Htk−1
− hk−1‖+K1

∫ tk

tk−1

‖Hu − hk−1‖du+K1

∫ tk

tk−1

|u− tk−1|du

6
(

1 +
K1

L

)
‖Htk−1

− hk−1‖+K1

∫ tk

tk−1

‖Hu −Htk−1
‖du+K1

∫ tk

tk−1

|u− tk−1|du

6
(

1 +
K1

L

)
‖Htk−1

− hk−1‖+ (K2 + 1)K1

∫ tk

tk−1

|u− tk−1|du

=
(

1 +
K1

L

)
‖Htk−1

− hk−1‖+
(K2 + 1)K1

2L2
.

By recurrence, we obtain

‖Htk − hk‖ 6
k−1∑
j=0

(
1 +

K1

L

)j
× (K2 + 1)K1

2L2
6 L

(
1 +

K1

L

)L
× (K2 + 1)K1

2L2

6 eK1
(K2 + 1)K1

2L
,

which concludes the proof.

67

2.A.11 Proof of Proposition 2.12

Starting from (2.4) and using Assumption (A6), one easily obtains the existence of C1 and C2

(whose values depend on the realization of V and Θ) such that

‖hk+1‖ 6 (1 + C1αL)‖hk‖+ C2αL.

By recurrence,

‖hk+1‖ 6 (1 + C1αL)k
(
‖h0‖+

C2

C1

)
.

Hence, using αL 6 1/L,

‖hk+1‖ 6 exp(C1)
(
‖h0‖+

C2

C1

)
.

Since g is Lipschitz continuous on compact sets, it is bounded on every ball of Rd × Rp. The
result is then a consequence of the identity

hL − h0 = αL

L−1∑
k=0

Vk+1g(hk, θk+1),

since we showed that each term in the sum is bounded by some constant C3 > 0, independent of
L and k. Hence we have that

‖hL − h0‖ 6 C3LαL = C3L
1−β,

yielding the results depending on the value of β.

2.A.12 Proof of Proposition 2.13

In the linear case, (2.4) can be written

hk+1 = hk + αLVk+1hk, 0 6 k 6 L− 1.

Take y a unit-norm eigenvector of V >0 with associated eigenvalue λ > 0. Then

〈hk+1, y〉 = 〈hk + αLVk+1hk, y〉
= 〈hk, y〉+ αL〈hk, V >k+1y〉
= 〈hk, y〉+ λαL〈hk, y〉+ αL〈hk, (Vk+1 − V0)>y〉.

Since V is Lipschitz and Vk+1 = Vk+1/L, there exists c such that ‖Vk+1 − V0‖ 6 ck+1
L . Hence

|〈hk+1, y〉| > (1 + λαL)|〈hk, y〉| − cαL
k + 1

L
‖hk‖.

Then, by recurrence,

|〈hL, y〉| > (1 + λαL)L|〈h0, y〉| − c
αL
L

L−1∑
k=0

(k + 1)(1 + λαL)k‖hk‖

> (1 + λαL)L|〈h0, y〉| − cαL(1 + λαL)L max
k
‖hk‖.

68

Let M = |〈h0,y〉|
2cαL

, and suppose that ‖hk‖ 6M for all 0 6 k 6 L. Then

‖hL‖ > |〈hL, y〉|
(by the Cauchy-Schwartz inequality)

> (1 + λαL)L
(
|〈h0, y〉| − cMαL

)
.

Then, for λαL 6 1,

‖hL‖ >
1

2
(1 + λαL)L|〈h0, y〉| >

1

2
exp

(λLαL
2

)
|〈h0, y〉|.

Thus, since LαL = L1−β, we have that ‖hL‖ → ∞, which contradicts our assumption that
‖hk‖ 6M for all 0 6 k 6 L. We deduce that, for all L large enough,

max
k
‖hk‖ >

|〈h0, y〉|
2cαL

L→∞−−−−→∞.

Furthermore,

max
k

‖hk − h0‖
‖h0‖

>
|〈h0, y〉|

2c‖h0‖αL
− 1

L→∞−−−−→∞.

2.B Technical results

2.B.1 Lemmas 2.16 and 2.17

Lemma 2.16. Let W ∈ Rd×d be a matrix whose entries are centered i.i.d. random variables, with
finite variance, and let σ be an activation function such that, for all x ∈ R, a|x| 6 |σ(x)| 6 b|x|,
1/
√

2 6 a < b 6 1. Then, for any x ∈ Rd,

1

2
E
(
‖Wx‖2

)
6 E

(
‖σ(Wx)‖2

)
6 E

(
‖Wx‖2

)
and E

(
‖ReLU(Wx)‖2

)
=

1

2
E
(
‖Wx‖2

)
.

Proof. The first part is a consequence of the assumption on σ. To prove the equality, let
Xi =

∑d
j=1Wijxj . Then

E
(
‖ReLU(Wx)‖2

)
= E

(d∑
i=1

(d∑
j=1

Wijxj

)2
1∑d

j=1Wijxj>0

)
= E

(d∑
i=1

X2
i 1Xi>0

)
.

Since the (Wij)16j6d are centered and independent random variables, Xi is also centered. Hence
E(X2

i 1Xi>0) = 1/2E(X2
i), which concludes the proof.

Lemma 2.17. Let W ∈ Rd×d be a matrix whose entries are centered i.i.d. random variables,
with finite variance s2. Then, for any x ∈ Rd, E

(
‖Wx‖2

)
= s2d‖x‖2.

Proof. For any 1 6 i 6 d,

|Wx|2i =
(d∑
j=1

Wijxj

)2
=

d∑
j,j′=1

WijWij′xjxj′ .

Thus, by independence,

E
(
|Wx|2i

)
= E

(d∑
j,j′=1

WijWij′xjxj′
)

=
d∑
j=1

E(W 2
ij)x

2
j = s2‖x‖2. (2.21)

The result follows by summing over all i ∈ {1, . . . , d}.

69

2.B.2 Proof of Lemma 2.15

(E1) and (E2) are simple consequences of Assumptions (A1) and (A2).
To prove (E3), let f(hk, θk+1) = Vk+1g(hk, θk+1). Then

E(Yk,2Yk,1|hk) =
1

‖hk‖4
E
(
‖f(hk, θk+1)‖2〈hk, f(hk, θk+1)〉

∣∣hk)
= E

(d∑
i=1

d∑
j=1

f(hk, θk+1)2
i (hk)jf(hk, θk+1)j

∣∣∣hk).
It is easy to verify that, under Assumption (A1), each term of the sum above has zero expectation.
This shows (E3).

To establish (E4), we start by noting that

E
(〈 hk
‖hk‖

,
f(hk, θk+1)

‖hk‖
〉2∣∣∣hk) =

1

‖hk‖4
E
(
h>k f(hk, θk+1)f(hk, θk+1)>hk|hk

)
=

1

‖hk‖4
h>k E

(
f(hk, θk+1)f(hk, θk+1)>|hk

)
hk.

Clearly, E(f(hk, θk+1)if(hk, θk+1)j) = 0 for i 6= j. Since, furthermore, the coordinates of
f(hk, θk+1) are identically distributed conditionally on hk, we obtain

E
(
f(hk, θk+1)f(hk, θk+1)>|hk

)
=

1

d
E(‖f(hk, θk+1)‖2|hk)Id.

Thus,

E
(〈 hk
‖hk‖

,
f(hk, θk+1)

‖hk‖
〉2∣∣∣hk) =

1

d‖hk‖4
E(‖f(hk, θk+1)‖2|hk)h>k hk 6

1

d
,

by Assumptions (A1) and (A2).
To prove (E5), let ϕ =

〈Vk+1g(hk,θk+1),hk〉
‖g(hk,θk+1)‖‖hk‖ . Then, for any t > 0,

P(|Yk,2| > t) = P
(
|ϕ| > t‖hk‖

2αL‖g(hk, θk+1)‖
)

= E
(
P
(
|ϕ| > t‖hk‖

2αL‖g(hk, θk+1)‖
∣∣∣hk, θk+1

))
.

So, by Lemma 2.20 in Appendix 2.C,

P(|Yk,2| > t) 6 E
(

2 exp
(
− dt2‖hk‖2

16α2
Ls

2‖g(hk, θk+1)‖2
))

= E
(
E
(

2 exp
(
− dt2‖hk‖2

16α2
Ls

2‖g(hk, θk+1)‖2
)∣∣∣hk))

6 E
(

2 exp
(
− dt2‖hk‖2

16α2
Ls

2E(‖g(hk, θk+1)‖2|hk)
))

,

by Jensen’s inequality. Finally, using Assumption (A2), we deduce that

P(|Yk,2| > t) 6 E
(

2 exp
(
− dt2

16α2
Ls

2

))
= 2 exp

(
− dt2

16α2
Ls

2

)
. (2.22)

In particular, for all q > 1 (see, e.g., Pauwels, 2020),

E(Y 2q
k,2) 6 q!

(32s2α2
L

d

)q
.

The result is obtained by taking q = 2.
Finally, (E6) and (E7) are consequences of Lemma 2.21 in Appendix 2.C.

70

2.C Concentration of sub-Gaussian random matrices

In this appendix, we are interested in the concentration of linear and quadratic forms of sub-
Gaussian matrices (Lemma 2.20 and Lemma 2.21). These two propositions are byproducts of the
main result of Kontorovich (2014), which generalizes McDiarmid’s inequality to sub-Gaussian
variables. We start by a technical result regarding the sub-Gaussian diameter introduced by
Kontorovich (2014), whose definition is recalled below.

Definition 2.18. Let X be a real-valued random variable, X ′ an independent copy of X, and ε
a Rademacher random variable, independent of X and X ′. Then the sub-Gaussian diameter of
X is defined as the smallest t such that ε|X −X ′| is t2 sub-Gaussian.

Lemma 2.19. Let X be an s2 sub-Gaussian centered random variable. Then the sub-Gaussian
diameter of X is less than

√
2s.

Proof. Let λ ∈ R. Then, using the notation of Definition 2.18, one has

E(expλε|X−X
′|) = E(expλ(X−X′) 1ε=1) + E(expλε(X

′−X) 1ε=−1)

= E(expλ(X−X′))

= E(expλX)2

6 exp2λ2s2 ,

where the last equality is a consequence of the symmetry of X about 0.

We are now ready to prove the two main results of this appendix.

Lemma 2.20 (Bound on the deviation of linear forms). Let V be a Rd×d matrix whose entries
are i.i.d s2/d sub-Gaussian random variables. Then, for any x, y ∈ Rd, x, y 6= 0,

P
(〈V x, y〉
‖x‖‖y‖ > t

)
6 2 exp

(
− dt2

4s2

)
.

Proof. For any 1 6 i, j 6 d, set Xij =
xiVijyj
‖x‖‖y‖ . Let X = Rd2 endowed with the `1 norm, let X be

the vector in X whose (id+ j)-th coordinate is Xij , and let the function ϕ be defined by

ϕ : X 3 Y 7−→
d2∑
i=1

Yi.

By the triangle inequality, ϕ is a Lipschitz continuous function, with Lipschitz constant equal
to 1. Observe also that Xij is a centered x2

i s
2y2
j/d‖x‖2‖y‖2 sub-Gaussian random variable. Thus,

according to Lemma 2.19, the sub-Gaussian diameter of Xij is less than
√

2xisyj/
√
d‖x‖‖y‖. By

Kontorovich (2014, Theorem 1), for any t > 0, one has

P (ϕ(X) > t) 6 2 exp

(
− t2

2
∑d

i,j=1

2s2x2
i y

2
j

d‖x‖2‖y‖2

)
,

that is

P
(〈V x, y〉
‖x‖‖y‖ > t

)
6 2 exp

(
− dt2

4s2

)
.

71

Lemma 2.21 (Bound of moments of quadratic forms). Let V be a Rd×d matrix whose entries
are i.i.d s2/d sub-Gaussian random variables, with variance 1/d. Then, for any x ∈ Rd, x 6= 0,

E
(‖V x‖4
‖x‖4

)
6 1 +

128s4

d
and E

(‖V x‖8
‖x‖8

)
6 1 +

384s4

d
+

3072s6

d2
.

Proof. The proof is similar to the one of Lemma 2.20, with Xij =
Vijxj
‖x‖ , X = Rd, and

ϕi : X 3 X 7→
d∑
j=1

Xij .

Each function ϕi is a Lipschitz continuous function, with Lipschitz constant equal to 1. Observe
now that the random variable Xij is x2

js
2/d‖x‖2 sub-Gaussian and centered. Thus, according to

Lemma 2.19, the sub-Gaussian diameter of Xij is less than
√

2xjs/
√
d‖x‖. Therefore, according to

Kontorovich (2014, Theorem 1), for any t > 0,

P (ϕi(X) > t) 6 2 exp

(
− t2

2
∑d

j=1

2s2x2
j

d‖x‖2

)
,

that is

P
(|〈Vi, x〉|
‖x‖ > t

)
6 2 exp

(
− dt2

4s2

)
.

Hence (see, e.g., Pauwels, 2020),

E
((〈Vi, x〉

‖x‖

)2q)
6 q!

(
8s2

d

)q
. (2.23)

From identity (2.21) in the proof of technical Lemma 2.17, given in Appendix 2.B, we obtain
that, for q = 1,

E
((〈Vi, x〉

‖x‖

)2)
=

1

d
, (2.24)

which is an improvement by a factor 8s2 over the previous upper bound. To conclude, it remains
to conclude ‖V x‖4 and ‖V x‖8 with the 〈Vi, x〉. To do so, observe that

‖V x‖4 =

(d∑
i=1

〈Vi, x〉2
)2

=
d∑

i,j=1
i 6=j

〈Vi, x〉2〈Vj , x〉2 +
d∑
i=1

〈Vi, x〉4.

Hence, by independence of the (Vi)16i6d,

E
(‖V x‖4
‖x‖4

)
=

d∑
i,j=1
i 6=j

E
(〈Vi, x〉2
‖x‖2

)
E
(〈Vj , x〉2
‖x‖2

)
+

d∑
i=1

E
(〈Vi, x〉4
‖x‖4

)

= d(d− 1)
1

d2
+ d

2(8s2)2

d2
6 1 +

128s4

d
(by (2.23) and (2.24))

Similarly,

‖V x‖8 =

(d∑
i=1

〈Vi, x〉2
)3

=

d∑
i,j,k=1
i 6=j 6=k

〈Vi, x〉2〈Vj , x〉2〈Vj , x〉2 +

d∑
i,j=1
i 6=j

〈Vi, x〉2〈Vj , x〉4 +
d∑
i=1

〈Vi, x〉8.

72

Hence,

E
(‖V x‖8
‖x‖8

)
=

d∑
i,j,k=1
i 6=j 6=k

E
(〈Vi, x〉2
‖x‖2

)
E
(〈Vj , x〉2
‖x‖2

)
E
(〈Vk, x〉2
‖x‖2

)

+

d∑
i,j=1
i 6=j

E
(〈Vi, x〉4
‖x‖4

)
E
(〈Vj , x〉2
‖x‖2

)
+

d∑
i=1

E
(〈Vi, x〉8
‖x‖8

)

= d(d− 1)(d− 2)
1

d2
+ 3d(d− 1)

2(8s2)2

d3
+ d

6(8s2)3

d3

6 1 +
384s4

d
+

3072s6

d2
.

2.D A version of the Picard-Lindelöf theorem

Theorem 2.22. Assume that f : Rd × [0, 1]→ Rd is Lipschitz continuous in its first argument
and continuous in its second one. Then, for any z ∈ Rd, the initial value problem

dHt = f(Ht, t)dt, H0 = z, (2.25)

admits a unique solution H : [0, 1]→ Rd.

Proof. Let C ([s, t],Rd) be the set of continuous functions from [s, t] to Rd. For any [s, t] ⊂ [0, 1],
ζ ∈ Rd, let Ψ be the function

Ψ : C ([s, t],Rd)→ C ([s, t],Rd)

Y 7→
(
v 7→ ζ +

∫ v

s
f(Yu, u)du

)
.

For any Y, Y ′ ∈ C ([s, t],Rd), v ∈ [s, t], one has, denoting by Kf the Lipschitz constant of f in its
first argument,

‖Ψ(Y)v −Ψ(Y ′)v‖ 6
∫ v

s

∥∥(f(Yu, u)− f(Y ′u, u)
)
du
∥∥

6
∫ v

s
Kf‖Yu − Y ′u‖du

6 Kf

∫ v

s
‖Y − Y ′‖∞du

6 Kf‖Y − Y ′‖∞(t− s).

This yields
‖Ψ(Y)−Ψ(Y ′)‖∞ 6 Kf (t− s)‖Y − Y ′‖∞,

which means that the function Ψ is Lipschitz continuous on C ([s, t],Rd) endowed with the
supremum norm, with Lipschitz constant Kf (t− s). So, on any interval [s, t] of length smaller
than δ = 1/2Kf , the function Ψ is a contraction. Thus, by the Banach fixed-point theorem, for
any initial value ζ, Ψ has a unique fixed point. Hence, there exists a unique solution to (2.25) on
any interval of length δ with any initial condition. To obtain a solution on [0, 1] it is sufficient to
concatenate these solutions.

73

2.E Detailed experimental setting

Our code is available at https://github.com/PierreMarion23/scaling-resnets.
To obtain Figures 2.1 to 2.3, we initialize ResNets from res-3 with the hyperparameters of

Table 2.2.

Name Value

d 40
nin 64
nout 1
L 10 to 1000
β 0.25, 0.5, 1

weight distribution U(−
√

3/d,
√

3/d)
data distribution standard Gaussian

Table 2.2: Hyperparameters of Figures 2.1 to 2.3

Each experiment is repeated 50 times, with independent data and weight sampling.
For Figures 2.4 and 2.5, we take the same hyperparameters except for β, which now takes values

in {0.5, 1, 2}, and for the weight distribution. The weights are now initialized as discretizations
of a Gaussian process. More precisely, each entry of V and Θ is an independent Gaussian process
with zero mean and an RBF kernel of variance 10−2.

To obtain Figure 2.7, we take the hyperparameters of Table 2.3.

Name Value

d 40
nin 64
nout 1
L 1000
β 0.2 to 1.3

weight distribution fractional Brownian motion
with Hurst index from 0.05 to 0.97

data distribution standard Gaussian

Table 2.3: Hyperparameters of Figure 2.7

More precisely, for each 1 6 i, j 6 d, we let (Vk+1,i,j)06k6L−1 be the increments of a fractional
Brownian motion (fBm), where the various fBm involved are independent. The procedure is the
same for θ.

In Figure 2.9, we use res-1, with the hyperparameters of Table 2.4.
We train on MNIST1 and CIFAR-102 using the Adam optimizer (Kingma and Ba, 2015)

for 10 epochs. The learning rate is divided by 10 after 5 epochs. The best performance on the
learning rate grid is reported in the figure.

Figure 2.8 is obtained by plotting a random coordinate of θk, after training on MNIST.

1http://yann.lecun.com/exdb/mnist
2https://www.cs.toronto.edu/~kriz/cifar.html

74

https://github.com/PierreMarion23/scaling-resnets
http://yann.lecun.com/exdb/mnist
https://www.cs.toronto.edu/~kriz/cifar.html

Name Value

d 30
L 1000
β 0.2 to 1.3

weight distribution fractional Brownian motion
with Hurst index from 0.05 to 0.97

learning rate grid 10−4, 10−3, 10−2, 10−1, 1

Table 2.4: Hyperparameters of Figure 2.9

75

76

3
Implicit regularization of deep residual net-
works towards neural ODEs

In this chapter, we take a further step towards establishing a solid mathematical link between resid-
ual neural networks and neural ordinary differential equations (ODEs), by proving an implicit regu-
larization of deep residual networks towards neural ODEs. Our result holds for nonlinear networks
trained with gradient flow. We prove that if the network is initialized as a discretization of a neural
ODE, then such a discretization holds throughout training. Our results are valid for a finite train-
ing time, and also as the training time tends to infinity provided that the network satisfies a Polyak-
Łojasiewicz condition. Importantly, this condition holds for a family of residual networks where
the residuals are two-layer perceptrons with an overparameterization in width that is only linear,
and implies the convergence of the gradient flow to a global minimum of the loss. Our results are
illustrated by numerical experiments.

Contents
3.1 Introduction . 78

3.2 Related work . 80

3.3 Definitions and notation . 80

3.4 Large-depth limit of residual networks . 82

3.4.1 Clipped gradient flow and finite training time 82

3.4.2 Convergence in the long-time limit for wide networks 84

3.4.3 Generalizations to other architectures and initialization 85

3.5 Numerical experiments . 86

3.5.1 Synthetic data . 86

3.5.2 Real-world data . 87

3.6 Conclusion . 88

3.A Some results for general residual networks 89

3.B Proofs of the results of the main part of the chapter 108

3.C Some technical lemmas . 114

3.D Counter-example for the ReLU case. 117

3.E Experimental details . 118

77

3.1 Introduction

Residual networks are a successful family of deep learning models popularized by breakthrough
results in computer vision (He et al., 2016a). The key idea of residual networks, namely the
presence of skip connections, is now ubiquitous in deep learning, and can be found, for example,
in Transformer models (Vaswani et al., 2017). The main advantage of skip connections is to allow
successful training with depth of the order of a thousand layers, in contrast to vanilla neural
networks, leading to significant performance improvements (e.g., Wang et al., 2022). This has
motivated research on the properties of residual networks in the limit where the depth tends to
infinity. One of the main explored directions is the neural ordinary differential equation (ODE)
limit (Chen et al., 2018a).

To present the neural ODE principle, we first introduce the mathematical formalism of deep
residual networks. We consider a single model throughout the chapter to simplify the exposition,
but most of our results apply to more general models, as will be discussed later. We consider the
formulation

hk+1 = hk +
1

L
√
m
Vk+1σ

(1√
q
Wk+1hk

)
, k ∈ {0, . . . , L− 1}, (3.1)

where L is the depth of the network, hk ∈ Rq is the output of the k-th hidden layer, Vk ∈ Rq×m,
Wk ∈ Rm×q are the weights of the k-th layer, and σ is an activation function applied element-wise.
Scaling with the square root of the width is classical, although it often appears as an equivalent
condition on the variance at initialization (Glorot and Bengio, 2010; LeCun et al., 1998; He et al.,
2015). We make the scaling factors explicit to have weights of magnitude O(1) independently
of the width and the depth. The 1/L scaling factor is less common, but it is necessary for the
correspondence with neural ODEs to hold. More precisely, if there exist Lipschitz continuous
functions V and W such that Vk = V(k/L) and Wk =W(k/L), then the residual network (3.1)
converges, as L→∞, to the ODE

dH

ds
(s) =

1√
m
V(s)σ

(1√
q
W(s)H(s)

)
, s ∈ [0, 1], (3.2)

where s is the continuous-depth version of the layer index. It is important to note that this
correspondence holds for fixed limiting functions V andW . This is especially true at initialization,
for example by setting the Vk to zero and the Wk to weight-tied Gaussian matrices. In this case,
the initial residual network is trivially equal to the neural ODE dH

ds (s) = 0. Of course, more
sophisticated initialization choices are possible, as shown, e.g., in Chapter 2 and Sander et al.
(2022b). However, regardless of an ODE structure at initialization, a more challenging question
is that of the structure of the network after training. Since the weights are updated during
training, there is no a priori guarantee that an ODE limit still holds after training, even if it
does at initialization.

The question of a possible ODE structure for the trained network is not a mere technical
one. In fact, it is important for at least three reasons. First, it gives a precise answer to the
question of the connection between (trained) residual networks and neural ODEs, providing more
solid ground to a common statement in the community that both can coincide in the large-depth
limit (see, e.g., Haber and Ruthotto, 2017; E et al., 2019; Dong et al., 2020; Massaroli et al.,
2020; Kidger, 2022). Second, it opens exciting perspectives for understanding residual networks.
Indeed, if trained residual networks are discretizations of neural ODEs, then it is possible to
apply results from neural ODEs to the large family of residual networks. In particular, from a
theoretical point of view, the approximation capabilities of neural ODEs are well understood
(Teshima et al., 2020; Zhang et al., 2020a) and it is relatively easy to obtain generalization bounds

78

for these models (see Hanson and Raginsky, 2022 and Chapter 4 of this manuscript). From a
practical standpoint, advantages of neural ODEs include memory-efficient training (Chen et al.,
2018a; Sander et al., 2022b) and weight compression (Queiruga et al., 2021). This is important
because in practice memory is a bottleneck for training residual networks (Gomez et al., 2017).
Finally, our analysis is a first step towards understanding the implicit regularization (Neyshabur
et al., 2015b; Vardi, 2023) of gradient descent for deep residual networks, that is, characterizing
the properties of the trained network among all minimizers of the empirical risk.

Throughout the document, it is assumed that the network is trained with gradient flow, which
is a continuous analog of gradient descent. The parameters Vk are updated according to an ODE
of the form dVk

dt (t) = −L ∂`
∂Vk

(t) for t ≥ 0, where ` is an empirical risk (the exact mathematical
context and assumptions are detailed in Section 3.3), and similarly for Wk. The scaling factor L
is the counterpart of the factor 1/L in (3.1), and prevents exploding or vanishing gradients as L
tends to infinity. Note that the gradient flow is defined with respect to a time index t different
from the layer index s.

Contributions. Our first main contribution (Section 3.4.1) is to show that a neural ODE
limit holds after training up to time t, i.e., there exists a function V(s, t) such that the residual
network converges, as L tends to infinity, to the ODE

dH

ds
(s) =

1√
m
V(s, t)σ

(1√
q
W(s, t)H(s)

)
, s ∈ [0, 1].

This large-depth limit holds for any finite training time t > 0. However, the convergence of
the optimization algorithm as t tends to infinity, which we refer to as the long-time limit to
distinguish it from the large-depth limit L→∞, is not guaranteed without further assumptions,
due to the non-convexity of the optimization problem. We attack the question (Section 3.4.2)
when the width is large enough by proving a Polyak-Łojasiewicz (PL) condition, which is now
state of the art in analyzing the properties of optimization algorithms for deep neural networks
(Liu et al., 2022). The main assumption for our PL condition to hold is that the width m of the
hidden layers should be greater than some constant times the number of data n. As a second main
contribution, we show that the PL condition yields the long-time convergence of the gradient
flow for residual networks with linear overparameterization. Finally, we prove the convergence
with high probability in the long-time limit, namely the existence of functions V∞ and W∞ such
that the discrete trajectory defined by the trained residual network (3.1) converges as both L
and t tend to infinity to the solution of the neural ODE (3.2) with V = V∞ and W =W∞. In
addition, our approach points out that this limiting ODE interpolates the training data. Finally,
our results are illustrated by numerical experiments (Section 3.5).

Organization of the chapter. Section 3.2 presents some related work. We then move on
to detail the mathematical context and notation in Section 3.3 before giving our main results
in Section 3.4. Section 3.5 is devoted to numerical experiments. We conclude the main part of
the chapter in Section 3.6. Then, in Section 3.A, we prove results on a more general residual
network model that encompasses the one presented so far. These results are then instantiated in
the specific case of the residual network (3.3) in Section 3.B, thus proving the results of the main
part of the chapter. Section 3.C contains some lemmas that are useful for the proofs. We present
in Section 3.D a counter-example showing that a residual network with the ReLU activation can
move away from the neural ODE structure during training. Finally, Section 3.E presents some
experimental details.

79

3.2 Related work

Deep residual networks and neural ODEs. Several works study the large-depth convergence
of residual networks to differential equations, but without considering the training dynamics, such
as Chapter 2 of this manuscript or Cohen et al. (2021); Thorpe and van Gennip (2022); Hayou
(2023). Closer to our setting, Cont et al. (2022) and Sander et al. (2022b) analyze the dynamics
of gradient descent for deep residual networks, as we do, but with significant differences. Cont
et al. (2022) consider a 1/

√
L scaling factor in front of the residual branch, resulting in a limit

that is not a neural ODE. In addition, only W is trained. Furthermore, to obtain convergence
in the long-time limit, it is assumed that the data points are nearly orthogonal. Sander et al.
(2022b) prove the existence of an ODE limit for trained residual networks, but in the simplified
case of a linear activation and under a more restricted setting.

Long-time convergence of wide residual networks. Polyak-Łojasiewicz conditions are a
modern tool to prove long-time convergence of overparameterized neural networks (Liu et al.,
2022). These conditions are a relaxation of convexity, and mean that the gradients of the loss
with respect to the parameters cannot be small when the loss is large. They have been applied
to residual networks with both linear (Bartlett et al., 2018; Wu et al., 2019; Zou et al., 2020b)
and nonlinear activations (Allen-Zhu et al., 2019; Frei et al., 2019; Barboni et al., 2022; Cont
et al., 2022; MacDonald et al., 2022). Building on the proof technique of Nguyen and Mondelli
(2020) for non-residual networks, we need only a linear overparameterization to prove our PL
condition, i.e., we require m = Ω(n). This compares favorably with results requiring polynomial
overparameterization (Allen-Zhu et al., 2019; Barboni et al., 2022) or assumptions on the data,
either a margin condition (Frei et al., 2019) or a sample size smaller than the dimension of the
data space (Cont et al., 2022; MacDonald et al., 2022).

Implicit regularization. This chapter can be related to a line of work on the implicit
regularization of gradient-based algorithms for residual networks (Neyshabur et al., 2015b).
We show that the optimization algorithm does not just converge to any residual network that
minimizes the empirical risk, but rather to the discretization of a neural ODE. Note that most
implicit regularization results state that the optimization algorithm converges to an interpolator
that minimizes some complexity measure, which can be a margin (Lyu and Li, 2020), a norm
(Boursier et al., 2022), or a matrix rank (Li et al., 2021b). Thus, an interesting next step is
to understand if the neural ODE found by gradient flow actually minimizes some complexity
measure, and to characterize its generalization properties.

3.3 Definitions and notation

This section is devoted to specifying the setup outlined in Section 3.1.

Residual network. A (scaled) residual network of depth L ∈ N∗ is defined by

hL0 = ALx

hLk+1 = hLk +
1

L
√
m
V L
k+1σ

(1√
q
WL
k+1h

L
k

)
, k ∈ {0, . . . , L− 1},

FL(x) = BLhLL.

(3.3)

To allow the hidden layers hLk ∈ Rq to have a different dimension than the input x ∈ Rd, we
first map x to hL0 with a weight matrix AL ∈ Rq×d. We assume that the hidden layers belong

80

to a higher dimensional space than the input and output, i.e., q > max(d, d′). The residual
transformations are two-layer perceptrons parameterized by the weight matrices V L

k ∈ Rq×m
and WL

k ∈ Rm×q. This is standard in the literature (e.g., He et al., 2016b; Chen et al., 2018a;
Dupont et al., 2019; Barboni et al., 2022). The last weight matrix BL ∈ Rd′×q maps the last
hidden layer to the output FL(x) in Rd′ . Also, σ : R→ R is an element-wise activation function
assumed to be C2, non-constant, Lipschitz continuous, bounded, and such that σ(0) = 0. The
convenient shorthand ZLk = (V L

k ,W
L
k) is occasionally used, and we denote ‖ZLk ‖F the sum of the

Frobenius norms ‖V L
k ‖F + ‖WL

k ‖F .

Data and loss. The data is a sample of n pairs (xi, yi)1≤i≤n ∈ (X × Y)n where X × Y is a
compact set of Rd×Rd′ . The empirical risk is the mean squared error `L = 1

n

∑n
i=1 ‖FL(xi)−yi‖2.

Initialization. We initialize AL = (IRd×d , 0R(q−d)×d) as the identity matrix in Rd×d concatenated
row-wise with the zero matrix in R(q−d)×d, to act as a simple projection of the input onto the higher
dimensional space Rq, and similarly BL = (0Rd′×(q−d′) , IRd′×d′). The weights V L

k are initialized
to zero and the WL

k as weight-tied standard Gaussian matrices, i.e., for all k ∈ {1, . . . , L},
WL
k = W ∼ N (0, 1)⊗(m×q). Initializing outer matrices to zero is standard practice (Zhang et al.,

2019a), while taking weight-tied matrices instead of i.i.d. ones is less common. We show in
Section 3.5 that it is still possible to learn with this initialization scheme on real world data. As
explained in Section 3.4.3, other initialization choices are possible, provided they correspond to
the discretization of a Lipschitz continuous function, but we focus on this one in the main text
for simplicity.

Training algorithm. Gradient flow is the limit of gradient descent as the learning rate tends
to zero. The parameters are set at time t = 0 by the initialization, and then evolve according to
the ODE

dAL

dt
(t) = − ∂`

L

∂AL
(t),

dZLk
dt

(t) = −L ∂`
L

∂ZLk
(t),

dBL

dt
(t) = − ∂`L

∂BL
(t), t > 0, (3.4)

for k ∈ {1, . . . , L}. In the following, the dependence in t is made explicit when necessary, e.g.,
we write hLk (t) instead of hLk , and F

L(x; t) instead of FL(x).
It turns out that, without further assumptions, the gradient flow can diverge in finite time.

This is because the dynamics are not (globally) Lipschitz continuous, breaking the conditions of
the Picard-Lindelöf theorem (see Lemma 3.19) for existence and uniqueness of ODE solutions.
A common practice (Goodfellow et al., 2016, Section 10.11.1) is to consider instead a clipped
gradient flow

dAL

dt
(t) = π

(
− ∂`L

∂AL
(t)
)
,

dZLk
dt

(t) = π
(
− L ∂`

L

∂ZLk
(t)
)
,

dBL

dt
(t) = π

(
− ∂`L

∂BL
(t)
)
, (3.5)

where π is a generic notation for a bounded Lipschitz continuous operator. For example, clipping
each coordinate of the gradient at some C > 0 amounts to taking π as the projection on the ball
centered at 0 of radius C for the `∞ norm. Clipping ensures that the dynamics are well defined,
as shown in the next proposition that is a consequence of the Picard-Lindelöf theorem.

Proposition 3.1. The (clipped) gradient flow (3.5) has a unique solution for all t > 0.

Proof. See Section 3.B.1.

In Section 3.4.2, we make additional assumptions to prove the long-time convergence of the
gradient flow. We then prove that these assumptions ensure that the dynamics of the gradient
flow (3.4) are well defined, eliminating the need for clipping.

81

Neural ODE. The neural ODE corresponding to the residual network (3.3) is defined by

H(0) = Ax

dH

ds
(s) =

1√
m
V(s)σ

(1√
q
W(s)H(s)

)
, s ∈ [0, 1],

F (x) = BH(1),

(3.6)

where x ∈ Rd is the input, H ∈ Rq is the variable of the ODE, V : [0, 1] → Rq×m and
W : [0, 1] → Rm×q are Lipschitz continuous functions, A ∈ Rq×d and B ∈ Rd′×q are matrices,
and the output is F (x) ∈ Rd′ . The following proposition shows that the neural ODE is well
defined. In addition, its output is close to the residual network (3.3) provided the weights are
discretizations of V and W.

Proposition 3.2. The neural ODE (3.6) has a unique solution H : [0, 1] → Rq. Consider,
moreover, the residual network (3.3) with AL = A, V L

k = V(k/L) and WL
k = W(k/L) for

k ∈ {1, . . . , L}, and BL = B. Then there exists C > 0 such that, for all L ∈ N∗, supx∈X ‖F (x)−
FL(x)‖ ≤ C

L .

Proof. See Section 3.B.2.

Clearly, our choices of V L
k and WL

k at initialization are discretizations of the Lipschitz
continuous (in fact, constant) functions V(s) ≡ 0 and W(s) ≡ W ∼ N (0, 1)⊗(m×q). Thus,
Proposition 3.2 holds at initialization, and the residual network is equivalent to the trivial ODE
dH
ds (s) = 0. The next section shows that after training we obtain non-trivial dynamics, which
still discretize neural ODEs.

3.4 Large-depth limit of residual networks

We study the large-depth limit of trained residual networks in two settings. In Section 3.4.1,
we consider the case of a finite training time. We move in Section 3.4.2 to the case where the
training time tends to infinity, which is tractable under a Polyak-Łojasiewicz condition.

3.4.1 Clipped gradient flow and finite training time

We first consider the case where the neural network is trained with clipped gradient flow (3.5) on
some training time interval [0, T], T > 0. This allows us to prove large-depth convergence to a
neural ODE without further assumptions. We emphasize that stopping training after a finite
training time is a common technique in practice, referred to as early stopping (Goodfellow et al.,
2016, Section 7.8). It is considered as a form of implicit regularization, and our result sheds light
on this intuition by showing that the complexity of the trained networks increases with T .

The following proposition is a key step in proving the main theorem of this section.

Proposition 3.3. There existM,K > 0 such that, for any t ∈ [0, T], L ∈ N∗, and k ∈ {1, . . . , L},
max

(∥∥AL(t)
∥∥
F
,
∥∥V L

k (t)
∥∥
F
,
∥∥WL

k (t)
∥∥
F
,
∥∥BL(t)

∥∥
F

)
≤M,

and, for k ∈ {1, . . . , L− 1},

max
(∥∥V L

k+1(t)− V L
k (t)

∥∥
F
,
∥∥WL

k+1(t)−WL
k (t)

∥∥
F

)
≤ K

L
.

Moreover, with probability at least 1− exp
(
− 3qm

16

)
, the following expressions hold for M and K:

M = TMπ + 2
√
qm, K = βTeαT , (3.7)

where Mπ is the supremum of π in Frobenius norm, and α and β depend on X , Y, M , and σ.

82

Proof. See Section 3.B.3.

This proposition ensures that the size of the weights and the difference between successive
weights remain bounded throughout training. We can now state the main result, which states the
convergence, for any training time in [0, T], of the neural network to a neural ODE as L→∞.
Recall that a sequence of functions fL of some variable u is said to converge uniformly over
u ∈ U to f if supu∈U ‖fL(u)− f(u)‖ → 0.

Theorem 3.4. Consider the residual network (3.3) with the training dynamics (3.5). Then the
following statements hold as L tends to infinity:

(i) There exist functions A : [0, T]→ Rq×d and B : [0, T]→ Rd′×q such that AL(t) and BL(t)
converge uniformly over t ∈ [0, T] to A(t) and B(t).

(ii) There exists a Lipschitz continuous function Z : [0, 1]× [0, T]→ Rq×m × Rm×q such that

ZL : [0, 1]× [0, T]→ Rq×m × Rm×q, (s, t) 7→ ZL(s, t) = ZLb(L−1)sc+1(t) (3.8)

converges uniformly over s ∈ [0, 1] and t ∈ [0, T] to Z = (V,W).

(iii) Uniformly over s ∈ [0, 1], t ∈ [0, T], and x ∈ X , the hidden layer hLbLsc(t) converges to the
solution at time s of the neural ODE

H(0, t) = A(t)x

∂H

∂s
(s, t) =

1√
m
V(s, t)σ

(1√
q
W(s, t)H(s, t)

)
, s ∈ [0, 1].

(3.9)

(iv) Uniformly over t ∈ [0, T] and x ∈ X , the output FL(x; t) converges to B(t)H(1, t).

Proof. See Section 3.B.4.

Let us sketch the proof of statement (ii), which is the cornerstone of the theorem. A first
key idea is to introduce in (3.8) the piecewise-constant continuous-depth interpolation ZL of
the weights, whose ambient space does not depend on L, in contrast to the discrete weight
sequence ZLk . Since the weights remain bounded during training by Proposition 3.3, the Arzelà-
Ascoli theorem guarantees the existence of an accumulation point for ZL. We show that the
accumulation point is unique because it is the solution of an ODE satisfying the conditions of the
Picard-Lindelöf theorem. The uniqueness of the accumulation point then implies the existence of
a limit for the weights.

There are two notable byproducts of our proof. The first one is an explicit description of the
training dynamics of the limiting weights A, B, and Z, as the solution of an ODE system, as
presented in Appendix 3.A.5. The second one, which we now describe, consists of norm bounds
on the weights. Proposition 3.3 bounds the discrete weights and the difference between two
consecutive weights respectively by some M,K > 0. The proof of Theorem 3.4 shows that this
bound carries over to the continuous weights, in the sense that A(t), V(s, t), W(s, t), and B(t)
are uniformly bounded by M , and V(·, t) and W(·, t) are uniformly Lipschitz continuous with
Lipschitz constant K. Formally, this last property means that, for any s, s′ ∈ [0, 1] and t ∈ [0, T],

‖V(s′, t)− V(s, t)‖F ≤ K|s′ − s| and ‖W(s′, t)−W(s, t)‖F ≤ K|s′ − s|.

The boundedness and Lipschitz continuity of the weights are important features because they
limit the statistical complexity of neural ODEs (see Chapter 4). More generally, norm-based
bounds are a common approach in the statistical theory of deep learning (see, e.g., Bartlett

83

et al., 2017, and references therein). Looking at the formula (3.7) for M and K, one can see in
particular that the bounds diverge exponentially with T , providing an argument in favor of early
stopping.

Our approach so far characterizes the large-depth limit of the neural network for a finite
training time T , but two questions remain open. A first challenge is to characterize the value of
the loss after training. A second one is to provide insight into the convergence of the optimization
algorithm in the long-time limit, i.e., as T tends to infinity. To answer these questions, we
move to the setting where the width of the network is large enough, which allows us to prove a
Polyak-Łojasiewicz condition and thereby the long-time convergence of the training loss to zero.

3.4.2 Convergence in the long-time limit for wide networks

Proving convergence of gradient-based optimization algorithms for neural networks is a major
difficulty in deep learning theory. One direction recently explored considers sufficiently wide
neural networks, with the Polyak-Łojasiewicz (PL) condition. In our setting, they are written as
follows (with the notation ZL = (V L

k ,W
L
k)k∈{1,...,L}):

Definition 3.5. For M,µ > 0, the residual network (3.3) is said to satisfy the (M,µ)-local PL
condition around a set of parameters (ĀL, Z̄L, B̄L) if, for every set of parameters (AL, ZL, BL)
such that

‖AL − ĀL‖F 6M, sup
k∈{1,...,L}

‖ZLk − Z̄Lk ‖F 6M, ‖BL − B̄L‖F 6M,

one has ∥∥∥ ∂`L
∂AL

∥∥∥2

F
+ L

L∑
k=1

∥∥∥ ∂`L
∂ZLk

∥∥∥2

F
+
∥∥∥ ∂`L
∂BL

∥∥∥2

F
≥ µ`L,

where the loss `L is evaluated at the set of parameters (AL, ZL, BL).

The next important point is to observe that, under the setup of Section 3.3 and some
additional assumptions, the residual network satisfies the local PL condition of Definition 3.5.

Proposition 3.6. Assume that the sample points (xi, yi) are i.i.d. such that ‖xi‖2 =
√
q. Then

there exist c1, . . . , c4 > 0 (depending only on σ) and δ > 0 such that, if

q ≥ d+ d′, m ≥ c1n, L ≥ c2
√
nq,

then, with probability at least 1 − δ, the residual network (3.3) satisfies the (M,µ)-local PL
condition around its initialization, with M =

c3√
nq

and µ =
c4

n
√
nq

.

Proof. See Section 3.B.5.

We emphasize that Proposition 3.6 requires the width m to scale only linearly with the
sample size n, which improves on the literature (see Section 3.2). The other assumptions are
mild. Note that our proof shows that the parameter δ is small if n grows at most polynomially
with d (see Appendix 3.B.5).

We are now ready to state convergence in the long-time and large-depth limits to a global
minimum of the empirical risk, when the local PL condition holds and the norm of the targets yi
is small enough.

84

Theorem 3.7. Consider the residual network (3.3) with the training dynamics (3.4), and
assume that the assumptions of Proposition 3.6 hold. Then there exist C, δ > 0 such that, if
1
n

∑n
i=1 ‖yi‖2 ≤ C, then, with probability as least 1− δ, the gradient flow is well defined on R+,

and, for t ∈ R+ and L ∈ N∗,

`L(t) ≤ exp
(
− C ′t

n
√
nq

)
`L(0), (3.10)

for some C ′ > 0 depending on σ. Moreover, the following statements hold as t and L tend to
infinity:

(i) There exist matrices A∞ ∈ Rq×d and B∞ ∈ Rd′×q such that AL(t) and BL(t) converge to
A∞ and B∞.

(ii) There exists a Lipschitz continuous function Z∞ : [0, 1]→ Rq×m × Rm×q such that

ZL : [0, 1]× R+ → Rq×m × Rm×q, (s, t) 7→ ZL(s, t) = ZLb(L−1)sc+1(t)

converges uniformly over s ∈ [0, 1] to Z∞ = (V∞,W∞).

(iii) Uniformly over s ∈ [0, 1] and x ∈ X , the hidden layer hLbLsc(t) converges to the solution at
time s of the neural ODE

H(0) = A∞x

dH

ds
(s) =

1√
m
V∞(s)σ

(1√
q
W∞(s)H(s)

)
, s ∈ [0, 1].

(iv) Uniformly over x ∈ X , the output FL(x; t) converges to F∞(x) = B∞H(1). Furthermore,
F∞(xi) = yi for all i ∈ {1, . . . , n}.

Proof. See Section 3.B.6.

This theorem proves two important results of separate interest. On the one hand, equation
(3.10) shows the long-time convergence of the gradient flow for deep residual networks under the
linear overparameterization assumption m ≥ c1n of Proposition 3.6. On the other hand, when
both t and L tend to infinity, the network converges to a neural ODE that further interpolates
the training data. Note that the order in which t and L tend to infinity does not matter by
uniform convergence properties.

3.4.3 Generalizations to other architectures and initialization

To simplify the exposition, we have so far considered a particular residual architecture defined in
(3.3). However, most of our results hold for a more general residual network of the form

hLk+1 = hLk +
1

L
f(hLk , Z

L
k+1), k ∈ {0, . . . , L− 1}, (3.11)

where f : Rq × Rp → Rq is a C2 function such that f(0, ·) ≡ 0 and f(·, z) is uniformly Lipschitz
for z in any compact. All our results are shown in the appendix for this general model, except
the PL condition of Proposition 3.6, which we prove only for the specific setup of Section 3.3. In
particular, the conclusions of Theorem 3.4 hold for the general model (3.11), as well as those of
Theorem 3.7 if the network satisfies a (M,µ)-local PL condition with µ sufficiently large (see
Appendix 3.B for details).

85

It is easy to see that our residual network of interest (3.3) is a special case of the general
model (3.11) if σ satisfies the assumptions of Section 3.3. However, other choices are possible,
such as convolutional layers or a Lipschitz continuous version of Transformer (Kim et al., 2021).
This latter application is particularly interesting in the light of the literature analyzing the
Transformer architecture from a neural ODE point of view (Lu et al., 2019; Sander et al., 2022a;
Geshkovski et al., 2023).

Moreover, the initialization assumption made in Section 3.3 can also be relaxed to include
any so-called smooth initialization of the weights (see Chapter 2). A smooth initialization
corresponds to taking V L

k (0) and WL
k (0) as discretizations of some Lipschitz continuous functions

V0 : [0, 1] → Rq×m and W0 : [0, 1] → Rm×q, that is, for k ∈ {1, . . . , L}, V L
k (0) = V0(kL)

and WL
k (0) = W0(kL). A typical concrete example is to let the entries of V0 and W0 be

independent Gaussian processes with expectation zero and squared exponential covariance
K(x, x′) = exp(− (x−x′)2

2`2
), for some ` > 0. As shown by Proposition 3.2, a smooth initialization

means that the network discretizes a neural ODE.

3.5 Numerical experiments

We now present numerical experiments to validate our theoretical findings, using both synthetic
and real-world data. Experimental details are given in Appendix 3.E. Our code will be open
sourced.

3.5.1 Synthetic data

We consider the residual network (3.3) with the initialization scheme of Section 3.3. So, the
V L
k are initialized to zero and the WL

k to weight-tied standard Gaussian matrices. To ease the
presentation, we consider the case where q = d = d′, and we do not train the weights AL and
BL, which therefore stay equal to the identity. The activation function is GELU (Hendrycks and
Gimpel, 2016), which is a smooth approximation of ReLU: x 7→ max(x, 0). The sample points
(xi, yi)1≤i≤n follow independent standard Gaussian distributions. Note that it does not hurt to
take x and y independent since, in this subsection, our focus is on optimization results only and
not on statistical aspects. The mean-squared error is minimized using full-batch gradient descent.
The following experiments exemplify the large-depth (t ∈ [0, T], L→∞) and long-time (t→∞,
L finite) limits.

Figure 3.1: Left: 1/L convergence of the maximum distance between two successive weight
matrices max1≤k≤L,t∈[0,T](‖ZLk (t)− ZLk+1(t)‖F). Right: uniform convergence of ZL to its large-
depth limit Z. Here, for a matrix-valued function f , ‖f‖ denotes (

∫ 1
0 ‖f(s)‖2Fds)1/2.

86

Large-depth limit. We illustrate key insights of Proposition 3.3 and Theorem 3.4, with
T = 500. In Figure 3.1 (left), we plot the maximum distance between two successive weight
matrices, i.e., max1≤k≤L,t∈[0,T](‖ZLk (t)− ZLk+1(t)‖F), for different values of L and training time
t ∈ [0, T]. We observe a 1/L convergence rate, as predicted by Proposition 3.3. Moreover, for a
fixed L, the distance between two successive weight matrices increases with the training time,
however at a much slower pace than the exponential upper bound on K given in identity (3.7).
Figure 3.1 (right) depicts the uniform convergence of ZL to its large-depth limit Z, illustrating
statement (ii) of Theorem 3.4. The function Z is computed using ZL for L = 214. Note that the
convergence is slower for larger training times.

Long-time limit. We now turn to the long-time training setup, training for 80,000 iterations
with L = 64. In Figure 3.2, we plot a specific (randomly-chosen) entry of matrices V L

k and WL
k

across layers, for different training times. This illustrates Theorem 3.7 in a practical setting
since, visually, the weights behave as a Lipschitz continuous function for any training time and
converge to a Lipschitz continuous function as t→∞. We also display the loss as a function of
the training time, corroborating the convergence of the loss to zero in Theorem 3.7.

0 20 40 60
Layer k

0.0

0.1

A
co

eÆ
.

of
V

L k
(t

)

0 20 40 60
Layer k

0.55

0.60

A
co

eÆ
.

of
W

L k
(t

)

0 50000
Training iteration

10°1

10°4

10°7

`L

Figure 3.2: Left: Randomly-chosen entry of the weight matrices across layers (x-axis) for various
training times t (lighter color indicates higher training time). Right: Loss against training time.

3.5.2 Real-world data

We now investigate the properties of deep residual networks on the CIFAR 10 dataset (Krizhevsky,
2009). We deviate from the mathematical model (3.3) by using convolutions instead of fully
connected layers. More precisely, AL is replaced by a trainable convolutional layer, and the
residual layers write

hLk+1 = hLk +
1

L
bnL2,k(convL2,k(σ(bnL1,k(convL1,k(h

L
k))))), k ∈ {0, . . . , L− 1},

where convLi,k are convolutions and bnLi,k are batch normalizations. The output of the residual
layers is mapped to logits through a linear layer BL. We initialize bnL

2,k to 0, and bnL
1,k and

convL
i,k either to weight-tied or to i.i.d. Gaussian. Table 3.1 reports the accuracy of the trained

network, and whether it has Lipschitz continuous (or smooth) weights after training, depending
on the activation function σ and on the initialization scheme. To assess the smoothness of
the weights, we simply resort to visual inspection. For example, Figure 3.3 (left) shows two
random entries of the convolutions across layers with GELU and a weight-tied initialization:
the smoothness is preserved after training. Smooth weights indicate that the residual network
discretizes a neural ODE (see, e.g., Proposition 3.2). On the contrary, if an i.i.d. initialization is
used, smoothness is not preserved after training, as shown in Figure 3.3 (right), and the residual
network does not discretize a neural ODE.

87

0 50 100 150 200 250

Layer k

−0.025

0.000

0.025

0.050
A

co
eff

.
of

co
n
v

L i,
k i = 1

i = 2

0 50 100 150 200 250

Layer k

−0.05

0.00

0.05

A
co

eff
.

of
co

n
v

L i,
k i = 1

i = 2

Figure 3.3: Random entries of the convolutions across layers (x-axis) after training. Left: Weight-
tied initialization leads to smooth weights. Right: i.i.d. initialization leads to non-smooth
weights.

Act. function Init. scheme Train Acc. Test Acc. Smooth trained weights

Identity Weight-tied 56.5± 0.1 59.8± 0.7 X
i.i.d. 56.1± 0.3 59.6± 0.7 ×

GELU Weight-tied 80.5± 0.7 79.9± 0.2 X
i.i.d. 89.8± 0.5 85.7± 0.1 ×

ReLU Weight-tied 97.4± 0.6 88.1± 0.1 ×
i.i.d. 98.4± 0.1 88.4± 0.5 ×

Table 3.1: Accuracy and smoothness of the trained weights depending on the choice of activation
function σ and initialization scheme. We display the median over 5 runs and the interquartile
range between the first and third quantile. Smooth weights correspond to a neural ODE structure.

Table 3.1 conveys several important messages. First, in accordance with our theory (Theorem
3.4), we obtain a neural ODE structure when using a smooth activation function and weight-tied
initialization (lines 1 and 3 of Table 3.1). This is not the case when using the non-smooth ReLU
activation and/or i.i.d. initialization. In fact, we prove in Appendix 3.D that the smoothness of
the weights is lost when training with ReLU in a simple setting, confirming this experimental
observation. Furthermore, the third line of Table 3.1 shows that it is possible to obtain a
reasonable accuracy with a neural ODE structure, which, as emphasized in Section 3.1, also
comes with theoretical and practical advantages. Nevertheless, we obtain an improvement in
accuracy in the cases corresponding to non-smooth weights, i.e., to a residual network that does
not discretize an ODE. Extending our theory to such cases is left for future work.

3.6 Conclusion

We study the convergence of deep residual networks to neural ODEs. When properly scaled
and initialized, residual networks trained with fixed-horizon gradient flow converge to neural
ODEs as the depth tends to infinity. This result holds for very general architectures. In the
case where both training time and depth tend to infinity, convergence holds under a local
Polyak-Łojasiewicz condition. We prove such a condition for a family of deep residual networks
with linear overparameterization.

The setting of neural ODE-like networks comes with strong guarantees, at the cost of some
performance gap when compared with i.i.d. initialization as highlighted by the experimental
section. Extending the mathematical large-depth study to the i.i.d. case is an interesting problem
for future research. Previous work suggests that the correct limit object is then a stochastic

88

differential equation instead of an ODE, such as Chapter 2 of this manuscript or Cohen et al.
(2021); Cont et al. (2022).

3.A Some results for general residual networks

Lipschitz continuity. Let (U , ‖ · ‖), (V , ‖ · ‖), and (W , ‖ · ‖) be generic normed spaces. Then
a function of two variables g : U × V → W is:

(i) (Globally) Lipschitz continuous if there exists K ≥ 0 such that, for (u, v), (u′, v′) ∈ U × V ,

‖g(u, v)− g(u′, v)‖ ≤ K‖u− u′‖+K‖v − v′‖.

(ii) Locally Lipschitz continuous in its first variable if, for any compacts E ⊂ U , E′ ⊂ V , there
exists K ≥ 0 such that, for (u, v), (u′, v) ∈ E × E′,

‖g(u, v)− g(u′, v)‖ ≤ K‖u− u′‖.

Equivalent definitions hold for a function of one variable. Moreover, g(·, v) is said to be uniformly
Lipschitz continuous for v in V if there exists K ≥ 0 such that, for (u, v), (u′, v) ∈ U × V ,

‖g(u, v)− g(u′, v)‖ ≤ K‖u− u′‖,

and uniformly Lipschitz continuous for v in any compact if, for any compact E′ ⊂ V , there exists
K ≥ 0 such that, for (u, v), (u′, v) ∈ U × E′,

‖g(u, v)− g(u′, v)‖ ≤ K‖u− u′‖.

Throughout, we refer to a Lipschitz continuous function with Lipschitz constant K ≥ 0 as
K-Lipschitz.

Model. As explained in Section 3.4.3, most of our results are proven for the general residual
network

hL0 (t) = AL(t)x

hLk+1(t) = hLk (t) +
1

L
f(hLk (t), ZLk+1(t)), k ∈ {0, . . . , L− 1}, (3.12)

FL(x; t) = BL(t)hLL(t),

where ZL(t) = (ZL1 (t), . . . , ZLL(t)) ∈ (Rp)L and f : Rq × Rp → Rq is a C2 function such that
f(0, ·) ≡ 0 and f(·, z) is uniformly Lipschitz for z in any compact. Let us introduce the
backpropagation equations, which are instrumental in the study of the gradient flow dynamics.
These equations define the backward state pLk (t) ∈ Rq through the backward recurrence

pLL(t) = 2BL(t)>(FL(x; t)− y)

pLk (t) = pLk+1(t) +
1

L
∂1f(hLk (t), ZLk+1(t))pLk+1(t), k ∈ {0, . . . , L− 1}, (3.13)

where ∂1f ∈ Rq×q stands for the Jacobian matrix of f with respect to its first argument. Similarly,
we let ∂2f ∈ Rq×p be the Jacobian matrix of f with respect to its second argument. For a sample
(xi, yi)1≤i≤n ∈ (X × Y)n, we let hLk,i(t) and pLk,i(t) be, respectively, the hidden layer hLk (t) and

89

the backward state pLk (t) associated with the i-th input xi. Denoting the mean squared error
associated with the sample by `L, we have, by the chain rule,

∂`L

∂AL
(t) =

1

n

n∑
i=1

pL0,i(t)x
>
i (3.14)

∂`L

∂ZLk
(t) =

1

nL

n∑
i=1

∂2f(hLk−1,i(t), Z
L
k (t))>pLk−1,i(t), k ∈ {1, . . . , L}, (3.15)

∂`L

∂BL
(t) =

2

n

n∑
i=1

(FL(xi; t)− yi)hLL,i(t)>. (3.16)

Initialization. The parameters (ZLk (t))1≤k≤L are initialized to ZLk (0) = Z init(k
L

)
, where

Z init : [0, 1]→ Rp is a Lipschitz continuous function. Furthermore, we initialize AL(0) to some
matrix Ainit ∈ Rq×d and BL(0) = Binit ∈ Rd′×q. Note that this initialization scheme is a
generalization of the one presented in Section 3.3.

Additional notation. For a vector x, ‖x‖ denotes the Euclidean norm. For a matrix A, the
operator norm induced by the Euclidean norm is denoted by ‖A‖2, and the Frobenius norm
is denoted by ‖A‖F . Finally, we use the notation AL (resp. ZLk , B

L) to denote the function
t 7→ AL(t) (resp. t 7→ ZLk (t), t 7→ BL(t)), since the parameters are considered as functions of the
training time throughout this appendix.

Overview of Appendix A. First, in Section 3.A.1, we study the case of the (clipped) gradient
flow (3.5). We show that the weights and the difference between successive weights are bounded
during the entire training. Section 3.A.2 shows a similar result for the standard gradient flow (3.4)
under a PL condition. In Section 3.A.3, we show a generalized version of the Arzelà-Ascoli
theorem, which allows us to prove the existence of a converging subsequence of the weights
in the large-depth limit. Section 3.A.4 is devoted to the convergence of the Euler scheme for
parameterized ODEs. We then proceed to prove in Section 3.A.5 our main result, i.e., the
large-depth convergence of the gradient flow. The key step is to establish the uniqueness of the
adherence point of the weights. Finally, in Section 3.A.6, we prove the existence of a double limit
for the weights and the hidden states when both the depth and the training time tend to infinity.

3.A.1 The trained weights are bounded in the finite training-time setup

Before stating the result, let us introduce the notation ∂22f(h, z) ∈ Rq×p×p, which is the third-
order tensor of second partial derivatives of f with respect to z. We endow the space Rq×p×p
with the operator norm ‖ · ‖2 induced by the Euclidean norm in Rp and the ‖ · ‖2 norm in Rq×p.
In other words,

‖∂22f(h, z)‖2 = sup
u∈Rp,‖u‖=1

‖∂22f(h, z)u‖2,

where ∂22f(h, z)u ∈ Rq×p is the tensor product of ∂22f(h, z) against u. Similarly, ∂21f(h, z) ∈
Rq×p×q denotes the third-order tensor of cross second partial derivatives of f , and the space
Rq×p×q is endowed with the operator norm ‖ · ‖2 induced by the Euclidean norm in Rq and the
‖ · ‖2 norm in Rq×p.

90

Proposition 3.8. Consider the residual network (3.12) initialized as explained in Appendix 3.A
and trained with the gradient flow (3.5) on [0, T], for some T ∈ (0,∞). Let

Mπ = max
(

max
A∈Rq×d

‖π(A)‖F , max
Z∈Rp

‖π(Z)‖, max
B∈Rd′×q

‖π(B)‖F
)
,

M0 = max
(
‖Ainit‖F , sup

s∈[0,1]
‖Z init(s)‖, ‖Binit‖F

)
and M = M0 + TMπ.

Then the gradient flow is well defined on [0, T], and, for t ∈ [0, T], L ∈ N∗, and k ∈ {1, . . . , L},

‖AL(t)‖F ≤M, ‖ZLk (t)‖ ≤M, and ‖BL(t)‖F ≤M. (3.17)

Moreover, there exist α, β > 0 such that, for t ∈ [0, T] and k ∈ {1, . . . , L− 1},

‖ZLk+1(t)− ZLk (t)‖ ≤
(
‖ZLk+1(0)− ZLk (0)‖+

βT

L

)
eαT .

The following expressions for α and β hold:

α = 2eKK ′M(eKM2MX +MY) and β = 2KeKM(K + eKK ′MMX)(eKM2MX +MY),

where

MX = sup
x∈X
‖x‖, MY = sup

y∈Y
‖y‖, K1 = sup

‖z‖≤M

∥∥∂1f(h, z)
∥∥

2
(3.18)

E = {(h, z) ∈ Rd × Rp, ‖h‖ ≤ eK1MMX , ‖z‖ ≤M} (3.19)
K2 = sup

(h,z)∈E

∥∥∂2f(h, z)
∥∥

2
, K = max(K1,K2)

K ′ = sup
(h,z)∈E

(
max

(∥∥∂22f(h, z)
∥∥

2
,
∥∥∂21f(h, z)

∥∥
2

))
.

Proof. The time-independent dynamics

(AL, ZLk , B
L) 7→

(
π
(
− ∂`L

∂AL

)
, π
(
− L ∂`

L

∂ZLk

)
, π
(
− ∂`L

∂BL

))
defining the gradient flow (3.5) are locally Lipschitz continuous, hence the gradient flow is defined
on a maximal interval [0, Tmax) by the Picard-Lindelöf theorem (see Lemma 3.19). Let us show by
contradiction that Tmax = T . Assume that Tmax < T . If this is true, again by the Picard-Lindelöf
theorem, we know that the parameters diverge to infinity at Tmax. However, for any t ∈ [0, Tmax),
we have

‖AL(t)‖F ≤ ‖AL(0)‖F +

∫ t

0

∥∥∥dAL
dt

(τ)
∥∥∥
F
dτ ≤M0 +

∫ t

0
Mπdτ ≤M0 + TMπ = M.

Bounds on BL and ZLk by M can be shown similarly. This contradicts the divergence of the
parameters at t = Tmax. We conclude that the gradient flow is well defined on [0, T] and that
the bounds (3.17) hold.

It remains to bound the difference ‖ZLk+1(t) − ZLk (t)‖. We have, for t ∈ [0, T] and k ∈

91

{1, . . . , L− 1},∥∥∥dZLk+1

dt
(t)− dZLk

dt
(t)
∥∥∥ = L

∥∥∥ ∂`L

∂ZLk+1

(t)− ∂`L

∂ZLk
(t)
∥∥∥

≤
n∑
i=1

1

n

∥∥∂2f(hLk,i(t), Z
L
k+1(t))>pLk,i(t)− ∂2f(hLk−1,i(t), Z

L
k (t))>pLk−1,i(t)

∥∥
≤ 1

n

n∑
i=1

∥∥∂2f(hLk,i(t), Z
L
k+1(t))

∥∥
2

∥∥pLk,i(t)− pLk−1,i(t)
∥∥

+
∥∥pLk−1,i(t)

∥∥∥∥∂2f(hLk,i(t), Z
L
k+1(t))− ∂2f(hLk−1,i(t), Z

L
k (t))

∥∥
2

(3.20)

Furthermore, for t ∈ [0, T], k ∈ {0, . . . , L− 1}, and i ∈ {1, . . . , n},

‖hLk+1,i(t)‖ = ‖hLk,i(t) +
1

L
f(hLk,i(t), Z

L
k+1(t))‖ ≤ (1 +

K1

L
)‖hLk,i(t)‖,

since f(·, ZLk+1(t)) is K1-Lipschitz, where K1 is defined by (3.18), and f(0, ZLk+1(t)) = 0. There-
fore, for any k ∈ {1, . . . , L},

‖hLk,i(t)‖ ≤ eK1‖hL0,i(t)‖ = eK1‖AL(t)xi‖ ≤ eK1MMX . (3.21)

This bound shows that the pair (hLk,i(t), Z
L
k+1(t)) belongs to the compact E defined in (3.19) for

every t ∈ [0, T], k ∈ {1, . . . , L}, and i ∈ {1, . . . , n}. In particular, ‖∂2f(hLk−1,i(t), Z
L
k (t))‖2 ≤ K,

and ∥∥∂2f(hLk,i(t), Z
L
k+1(t))− ∂2f(hLk−1,i(t), Z

L
k (t))

∥∥
2

≤ K ′‖hLk,i(t)− hLk−1,i(t)‖+K ′‖ZLk+1(t)− ZLk (t)‖.

Returning to (3.20), we obtain∥∥∥dZLk+1

dt
(t)− dZLk

dt
(t)
∥∥∥ ≤ 1

n

n∑
i=1

K‖pLk,i(t)− pLk−1,i(t)‖

+K ′‖pLk−1,i(t)‖
(
‖hLk,i(t)− hLk−1,i(t)‖+ ‖ZLk+1(t)− ZLk (t)‖

)
.

For k ∈ {1, . . . , L} and i ∈ {1, . . . , n},∥∥pLk,i(t)− pLk−1,i(t)
∥∥ =

1

L

∥∥∂1f(hLk−1,i(t), Z
L
k (t))pLk,i(t)

∥∥ ≤ K

L

∥∥pLk,i(t)∥∥ ,
and, similarly,

∥∥hLk,i(t)− hLk−1,i(t)
∥∥ =

1

L
‖f(hLk−1,i(t), Z

L
k (t))‖ ≤ K

L

∥∥hLk−1,i(t)
∥∥ ≤ KeKMMX

L
.

Thus,∥∥∥dZLk+1

dt
(t)− dZLk

dt
(t)
∥∥∥ ≤ 1

n

n∑
i=1

‖pLk,i(t)‖
(K2

L
+
K ′K

L
eKMMX +K ′‖ZLk+1(t)− ZLk (t)‖

)
.

Moreover, for k ∈ {0, . . . , L} and i ∈ {1, . . . , n},

‖pLk,i(t)‖ ≤ ‖pLk+1,i(t)‖+
1

L

∥∥∂1f(hLk,i(t), Z
L
k+1(t))pLk+1,i(t)

∥∥ ≤ ‖pLk+1,i(t)‖+
K

L
‖pLk+1,i(t)‖.

92

Hence

‖pLk,i(t)‖ ≤ eK‖pLL,i(t)‖ = 2eK‖BL(t)>(FL(xi; t)− yi)‖
≤ 2eKM

(
‖BL(t)hLL,i(t)‖+ ‖yi‖

)
≤ 2eKM(eKM2MX +MY),

where we use (3.17) and (3.21) for the last inequality. Putting all the pieces together, we obtain∥∥∥dZLk
dt

(t)− dZLk+1

dt
(t)
∥∥∥ ≤ α‖ZLk (t)− ZLk+1(t)‖+

β

L
.

Integrating between 0 and t, we see that

‖ZLk+1(t)− ZLk (t)‖ ≤ ‖ZLk+1(0)− ZLk (0)‖+
βt

L
+

∫ t

0
α‖ZLk (τ)− ZLk+1(τ)‖dτ.

Applying Grönwall’s inequality (see, e.g., Dragomir, 2003), we conclude that ‖ZLk+1(t)−ZLk (t)‖ ≤
(‖ZLk+1(0)− ZLk (0)‖+ βT

L)eαT , as desired.

3.A.2 The trained weights are bounded under the local PL condition

Proposition 3.9. Consider the residual network (3.12) initialized as explained in Appendix 3.A
and trained with the gradient flow (3.4) on [0,∞]. Then, for M > 0, there exists µ > 0 such that,
if the residual network satisfies the (M,µ)-local PL condition (3.5) around its initialization for
any L ∈ N∗, then:

(i) The gradient flow is well defined on R+, and, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

‖AL(t)‖F ≤MA, ‖ZLk (t)‖ ≤MZ , and ‖BL(t)‖F ≤MB,

where

MA = ‖Ainit‖2 +M, MZ = sup
s∈[0,1]

‖Z init(s)‖+M, and MB = ‖Binit‖2 +M.

(ii) There exists K̃ > 0 such that, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

‖ZLk (t)− ZLk+1(t)‖ ≤ K̃

L
.

(iii) There exists a bounded integrable function b : R+ → R such that, for t ∈ R+, L ∈ N∗, and
k ∈ {1, . . . , L},

max
(∥∥∥dAL

dt
(t)
∥∥∥,∥∥∥dZLk

dt
(t)
∥∥∥, ∥∥∥dBL

dt
(t)
∥∥∥) ≤ b(t)

(iv) AL(t), BL(t), and ZLk (t) admit a limit uniformly over L ∈ N∗ and k ∈ {1, . . . , L} as
t→∞.

(v) For t ∈ R+ and L ∈ N∗, `L(t) ≤ e−µt`L(0).

Moreover, the following expression for µ hold:

µ = max(MBK,MBMX ,MAMX)
8eK

M
sup
L∈N∗

√
`L(0), (3.22)

93

where

MX = sup
x∈X
‖x‖, K1 = sup

‖z‖≤MZ

∥∥∂1f(h, z)
∥∥

E = {(h, z) ∈ Rd × Rp, ‖h‖ ≤ eK1MAMX , ‖z‖ ≤MZ}
K2 = sup

(h,z)∈E

∥∥∂2f(h, z)
∥∥, K = max(K1,K2).

Proof. Let M > 0, µ defined by (3.22), and assume that the residual network satisfies the
(M,µ)-local PL condition (3.5) around its initialization for any L ∈ N∗.

The time-independent dynamics

(AL, ZLk , B
L) 7→

(
− ∂`L

∂AL
,−L ∂`

L

∂ZLk
,− ∂`L

∂BL

)
defining the gradient flow (3.5) are locally Lipschitz continuous, hence the gradient flow is
defined on a maximal interval [0, Tmax) by the Picard-Lindelöf theorem (see Lemma 3.19). Let
us show by contradiction that Tmax =∞. Assume that Tmax <∞. If this is true, again by the
Picard-Lindelöf theorem, we know that the parameters diverge to infinity at Tmax. In particular,
there exist t ∈ (0, Tmax) and k ∈ {1, . . . , L} such that

‖AL(t)−AL(0)‖F > M or ‖ZLk (t)− ZLk (0)‖ > M or ‖BL(t)−BL(0)‖F > M.

Let t∗ ∈ (0, Tmax) be the infimum of such times t. Then, for t < t∗ and k ∈ {1, . . . , L},

‖AL(t)−AL(0)‖F ≤M and ‖ZLk (t)− ZLk (0)‖ ≤M and ‖BL(t)−BL(0)‖F ≤M, (3.23)

and, by continuity of AL, BL, and ZLk , these inequalities also hold for t = t∗. By definition, this
means that the (M,µ)-local PL condition is satisfied for t ≤ t∗, and ensures that

∥∥∥ ∂`L
∂AL

(t)
∥∥∥2

F
+ L

L∑
k=1

∥∥∥ ∂`L
∂ZLk

(t)
∥∥∥2

+
∥∥∥ ∂`L
∂BL

(t)
∥∥∥2

F
≥ µ`L(t).

Therefore, by definition of the gradient flow (3.4),

d`L

dt
(t) =

〈 ∂`L
∂AL

(t),
dAL

dt
(t)
〉

+

L∑
k=1

〈 ∂`L
∂ZLk

(t),
dZLk
dt

(t)
〉

+
〈 ∂`L
∂BL

(t),
dBL

dt
(t)
〉

= −
∥∥∥ ∂`L
∂AL

(t)
∥∥∥2

F
− L

L∑
k=1

∥∥∥ ∂`L
∂ZLk

(t)
∥∥∥2
−
∥∥∥ ∂`L
∂BL

(t)
∥∥∥2

F

≤ −µ`L(t).

Thus, by Grönwall’s inequality, for t ≤ t∗,

`L(t) ≤ e−µt`L(0). (3.24)

Furthermore, by (3.23) and the definition ofMA,MB ,MZ , we have, for t ≤ t∗ and k ∈ {1, . . . , L},

‖AL(t)‖F ≤MA, ‖ZLk (t)‖ ≤MZ , and ‖BL(t)‖F ≤MB.

A quick scan through the proof of Proposition 3.8 reveals that by similar arguments, we have,
for t ≤ t∗, k ∈ {1, . . . , L}, and i ∈ {1, . . . , n},

(hLk−1,i(t), Z
L
k (t)) ∈ E and ‖pLk−1,i(t)‖ ≤ 2eK‖pLL,i(t)‖ ≤ 2eKMB‖FL(xi; t)− yi‖.

94

Thus, for k ∈ {0, . . . , L},

1

n

n∑
i=1

‖pLk,i(t)‖ ≤
2eKMB

n

n∑
i=1

‖FL(xi; t)− yi‖ ≤ 2eKMB

√
`L(t) ≤ 2eKMBe

−µt
2

√
`L(0), (3.25)

where the second inequality is a consequence of the Cauchy-Schwartz inequality. Let us now
bound ‖ZLk (t∗)− ZLk (0)‖. We have, for k ∈ {1, . . . , L},

‖ZLk (t∗)− ZLk (0)‖ ≤
∫ t∗

0

∥∥∥dZLk
dt

(t)
∥∥∥dt

≤ 1

n

n∑
i=1

∫ t∗

0

∥∥∂2f(hLk−1,i(t), Z
L
k (t))>pLk−1,i(t)

∥∥dt
(by (3.15)).

≤ K

n

n∑
i=1

∫ t∗

0
‖pLk−1,i(t)‖dt,

since (hLk−1,i(t), Z
L
k (t)) ∈ E and ‖∂2f(h, z)‖ ≤ K for (h, z) ∈ E. Therefore, by (3.25),

‖ZLk (t∗)− ZLk (0)‖ ≤ 2KeKMB

∫ t∗

0
e−

µt
2

√
`L(0)dt ≤ 4KeKMB

µ

√
`L(0) ≤ M

2
,

where the last inequality is a consequence of the definition of µ. Similarly, by (3.14) and (3.25),

‖AL(t∗)−AL(0)‖F ≤
∫ t∗

0

∥∥∥dAL
dt

(t)
∥∥∥
F
dt

≤
∫ t∗

0

1

n

n∑
i=1

∥∥pL0,i(t)x>i ∥∥Fdt
≤ 2eKMBMX

√
`L(0)

∫ t∗

0
e−

µt
2 dt

≤ 4eKMBMX

µ

√
`L(0)

≤ M

2
.

Finally, by (3.16),

‖BL(t∗)−B(0)‖F ≤
∫ t∗

0

∥∥∥dBL

dt
(t)
∥∥∥
F
dt

≤
∫ t∗

0

2

n

n∑
i=1

‖(FL(xi; t)− yi)hLL,i(t)>‖Fdt

≤ 2eKMAMX

√
`L(0)

∫ t∗

0
e−

µt
2 dt

≤ 4eKMAMX

µ

√
`L(0)

≤ M

2
,

95

where the third inequality is a consequence of the Cauchy-Schwartz inequality and of the fact
that ‖hLL,i(t)‖ ≤ eKMAMX . By continuity of AL, ZLk , and B

L, these three bounds contradict
the definition of t∗. We conclude that Tmax =∞ and that the parameters stay within a ball of
radius M of their initialization, yielding the inequalities, for t ∈ R+, L ∈ N∗, and k ∈ {1, . . . , L},

‖AL(t)‖F ≤MA, ‖BL(t)‖F ≤MB, ‖ZLk (t)‖ ≤MZ .

This proves statement (i) of the proposition. Moreover, the analysis above show that the
derivatives of AL, ZLk , and B

L are bounded by a bounded integrable function independent of L
and k. This shows (iii), together with the fact that the functions AL(t), ZLk (t), and BL(t) admit
limits as t→∞. Furthermore, the convergence towards their limit is uniform over L and k, as
we show for example for AL(t). If we denote by AL∞ its limit, and apply the same steps as for
bounding ‖AL(t∗)−AL(0)‖F , we obtain, for any t ≥ 0,

‖AL∞ −AL(t)‖F ≤
∫ ∞
t

∥∥∥dAL
dτ

(τ)
∥∥∥
F
dτ

≤ 2eKMBMX

√
`L(0)

∫ ∞
t

e
−µτ

2 dτ

=
4eKMBMX

µ
e
−µt

2

√
`L(0)

≤ M

2
e
−µt

2 ,

where the last inequality comes from the definition of µ. The bound is independent of L, proving
statement (iv). Statement (v) readily follows from (3.24).

To complete the proof, it remains to prove statement (ii) by bounding the differences
‖ZLk+1(t)− ZLk (t)‖. Now that we know that the weights are bounded, we can follow the same
steps as in the proof of Proposition 3.8 and show the existence of C1, C2 > 0 such that∥∥∥dZLk+1

dt
(t)− dZLk

dt
(t)
∥∥∥ ≤ 1

n

n∑
i=1

‖pLk,i(t)‖
(C1

L
+ C2‖ZLk+1(t)− ZLk (t)‖

)
.

Using (3.25), we obtain∥∥∥dZLk+1

dt
(t)− dZLk

dt
(t)
∥∥∥ ≤ 2eKMBe

−µt
2

√
`L(0)

(C1

L
+ C2‖ZLk+1(t)− ZLk (t)‖

)
.

Integrating between 0 and t, we obtain

‖ZLk+1(t)− ZLk (t)‖ ≤ ‖ZLk+1(0)− ZLk (0)‖+

∫ t

0
2eKMBe

−µτ
2

√
`L(0)

C1

L
dτ

+

∫ t

0
2eKMBe

−µτ
2

√
`L(0)C2‖ZLk+1(τ)− ZLk (τ)‖dτ

≤ ‖ZLk+1(0)− ZLk (0)‖+
C1M

2MXL

+

∫ t

0
2eKMBe

−µτ
2

√
`L(0)C2‖ZLk+1(τ)− ZLk (τ)‖dτ,

where the second inequality uses the definition of µ. By Grönwall’s inequality,

‖ZLk+1(t)− ZLk (t)‖ ≤
(
‖ZLk+1(0)− ZLk (0)‖+

C1M

2MXL

)
exp

(∫ t

0
2eKMBe

−µτ
2

√
`L(0)C2dτ

)
≤
(
‖ZLk+1(0)− ZLk (0)‖+

C1M

2MXL

)
exp

(C2M

2MX

)
,

96

again by definition of µ. Finally, since ZLk (0) = Z init(kL) and Z init is Lipschitz continuous, this
proves the existence of K̃ > 0 (independent of L, t and k) such that ‖ZLk+1(t) − ZLk (t)‖ ≤ K̃

L ,
which yields statement (ii).

3.A.3 Generalized Arzelà–Ascoli theorem

Proposition 3.10 (Generalized Arzelà–Ascoli theorem). Let I ⊆ R+ be an interval. We denote
by (ZLk)L∈N∗,1≤k≤L be a family of C1 functions from I to Rp. Define

ZL : [0, 1]× I → Rp, (s, t) 7→ ZL(s, t) = ZLb(L−1)sc+1(t).

Assume that there exist a constant C > 0 and a bounded integrable function b : I → R such that
the following statements hold for any t ∈ I and L ∈ N∗:

(i) For k ∈ {1, . . . , L− 1}, ‖ZLk+1(t)− ZLk (t)‖ ≤ C
L ,

(ii) For k ∈ {1, . . . , L}, ‖ZLk (t)‖ ≤ C and ‖dZ
L
k
dt (t)‖ ≤ b(t).

Then there exist a subsequence (Zφ(L))L∈N∗ of (ZL)L∈N∗ and a Lipschitz continuous function
Zφ : [0, 1]× I → Rp such that Zφ(L)(s, t) tends to Zφ(s, t) uniformly over s and t.

Note that if I is a compact interval, then the existence of a (uniformly) convergent subsequence
is guaranteed by the standard Arzelà–Ascoli theorem. Indeed, the uniform equicontinuity is a
consequence of assumptions (i) and (ii), while (ii) provides a uniform bound. However, if I is
not compact, more involved arguments are needed.

Proof. Assume, without loss of generality, that b is also bounded by C. According to assumption
(i), for t ∈ I and i, j ∈ {1, . . . , L},

‖ZLi (t)− ZLj (t)‖ ≤ C|i− j|
L

.

Also, according to (ii), for t, t′ ∈ I and k ∈ {1, . . . , L},

‖ZLk (t)− ZLk (t′)‖ =
∥∥∥∫ t

t′

dZLk
dτ

(τ)dτ
∥∥∥ ≤ C|t− t′|.

It follows that, for s, s′ ∈ [0, 1] and t, t′ ∈ I,

‖ZL(s, t)−ZL(s′, t′)‖ ≤ ‖ZL(s, t)−ZL(s, t′)‖+ ‖ZL(s, t′)−ZL(s′, t′)‖

≤ C|t− t′|+ C|b(L− 1)sc − b(L− 1)s′c|
L

.

Therefore, with some simple algebra, we obtain

‖ZL(s, t)−ZL(s′, t′)‖ ≤ C|t− t′|+ C|s− s′|+ C

L
. (3.26)

The statement of the proposition is then a consequence of the next three steps.

97

There exists a convergent subsequence of (ZL(s, t))L∈N∗. First, let ((si, ti))i∈N = (Q ∩
[0, 1])× (Q ∩ I). By (ii), the sequence (ZL(si, ti))L∈N∗,i∈N is bounded. It is therefore possible
to construct by a diagonal procedure a subsequence (Zφ(L))L∈N∗ such that, for each i ∈ N,
(Zφ(L)(si, ti))L∈N∗ is a convergent sequence.

Let us now show that (Zφ(L)(s, t))L∈N∗ converges for any s ∈ [0, 1] and t ∈ I, by proving that
it is a Cauchy sequence in the complete metric space Rp. Let ε > 0, s ∈ [0, 1], and t ∈ I. Since
((si, ti))i∈N is dense in [0, 1]× I, there exists some j ∈ N such that |sj − s| ≤ ε and |tj − t| ≤ ε.
Then, for L,M ∈ N∗, we have

‖Zφ(L)(s, t)−Zφ(M)(s, t)‖
≤ ‖Zφ(L)(s, t)−Zφ(L)(sj , tj)‖+ ‖Zφ(L)(sj , tj)−Zφ(M)(sj , tj)‖

+ ‖Zφ(M)(sj , tj)−Zφ(M)(s, t)‖

≤ 2Cε+
C

φ(L)
+ ‖Zφ(L)(sj , tj)−Zφ(M)(sj , tj)‖+ 2Cε+

C

φ(M)
,

where we used inequality (3.26) twice. Since (Zφ(L)(sj , tj))L∈N∗ is a convergent sequence, it is a
Cauchy sequence. Thus, the bound can be made arbitrarily small for L,M large enough. This
shows that (Zφ(L)(s, t))L∈N∗ is also a Cauchy sequence. It is therefore convergent, and we denote
by Zφ(s, t) its limit.

The function Zφ is Lipschitz continuous. By considering (3.26) for the subsequence φ(L)
and letting L→∞, we have that, for any s, s′ ∈ [0, 1] and t, t′ ∈ I,

‖Zφ(s, t)−Zφ(s′, t′)‖ ≤ C(|s− s′|+ |t− t′|). (3.27)

The convergence of (Zφ(L)(s, t))L∈N∗ to Zφ(s, t) is uniform over s and t. Let ε > 0,
s ∈ [0, 1], and t ∈ I. Then, by (3.26) and (3.27), it is possible to find δ > 0 such that, for any
s′, s′′ ∈ [0, 1] and t′, t′′ ∈ I satisfying |s′ − s′′| ≤ δ and |t′ − t′′| ≤ δ,

‖Zφ(L)(s′, t′)−Zφ(L)(s′′, t′)‖ ≤ ε+
C

φ(L)
and ‖Zφ(s′, t′)−Zφ(s′′, t′)‖ ≤ ε, (3.28)

and

‖Zφ(L)(s′, t′)−Zφ(L)(s′, t′′)‖ ≤ ε+
C

φ(L)
and ‖Zφ(s′, t′)−Zφ(s′, t′′)‖ ≤ ε. (3.29)

Furthermore, there exists a finite set {s1, . . . , sS} ⊂ [0, 1] such that

[0, 1] ⊂
S⋃
i=1

(si − δ, si + δ).

In the sequel, we denote by s∗ an element of {s1, . . . , sS} that is at distance at most δ from s.
If I is unbounded, then, by assumption (ii) and since b is integrable, there exists some t0 > 0

such that, for t ≥ t0,

‖Zφ(L)(s, t)−Zφ(L)(s, t0)‖ ≤
∫ t

t0

∥∥∥ d
dt
Z
φ(L)
b(φ(L)s−1)c+1(τ)

∥∥∥dτ ≤ ∫ t

t0

b(τ)dτ ≤ ε. (3.30)

The same inequality holds for Zφ by letting L tend to infinity. If I is bounded, we simply let
t0 = sup I.

98

We may then pick a finite set {t1, . . . , tT } ⊂ [0, t0] such that

[0, t0] ⊂
T⋃
i=1

(ti − δ, ti + δ).

Two cases may arise depending on the value of t. If t ∈ [0, t0], then there exists an element of the
set {t1, . . . , tT } at distance at most δ from t, and we denote it by t∗. If t > t0, we let t∗ = t0.
According to (3.29) and (3.30), we then have in both cases that

‖Zφ(L)(s, t)−Zφ(L)(s, t∗)‖ 6 ε+
C

φ(L)
and ‖Zφ(s, t)−Zφ(s, t∗)‖ 6 ε. (3.31)

To conclude, we have to bound the term ‖Zφ(L)(s, t)−Zφ(s, t)‖ uniformly over s and t. We first
have

‖Zφ(L)(s, t)−Zφ(s, t)‖
≤ ‖Zφ(L)(s, t)−Zφ(L)(s, t∗)‖+ ‖Zφ(L)(s, t∗)−Zφ(s, t∗)‖

+ ‖Zφ(s, t∗)−Zφ(s, t)‖

≤ 2ε+
C

φ(L)
+ ‖Zφ(L)(s, t∗)−Zφ(s, t∗)‖,

where the last inequality is a consequence of (3.31). The last term can be bounded as follows:

‖Zφ(L)(s, t∗)−Zφ(s, t∗)‖
≤ ‖Zφ(L)(s, t∗)−Zφ(L)(s∗, t∗)‖+ ‖Zφ(L)(s∗, t∗)−Zφ(s∗, t∗)‖

+ ‖Zφ(s∗, t∗)−Zφ(s, t∗)‖

≤ 2ε+
C

φ(L)
+ max
i∈{1,...,S}

‖Zφ(L)(si, t
∗)−Zφ(si, t

∗)‖,

by using (3.28) and the fact that s∗ ∈ {s1, . . . , sS}. Putting all the pieces together, we finally
obtain

‖Zφ(L)(s, t)−Zφ(s, t)‖ ≤ 4ε+
2C

φ(L)
+ max
i∈{1,...,S},j∈{1,...,T}

‖Zφ(L)(si, tj)−Zφ(si, tj)‖.

By taking L large enough, independent of s and t, the sum of the last two terms can be made
less than ε. Since ε is arbitrary, this concludes the proof.

A consequence of this result is a simplified version for sequences of functions only indexed by
L and not k, as follows.

Corollary 3.11. Let I ⊆ R+ be an interval, and (ZL)L∈N∗ be a family of C1 functions from I
to Rp. Assume that there exist a constant C > 0 and a bounded integrable function b : I → R
such that, for any t ∈ I and L ∈ N∗, ‖ZL(t)‖ ≤ C and ‖dZLdt (t)‖ ≤ b(t). Then there exist a
subsequence (Zφ(L))L∈N∗ of (ZL)L∈N∗ and a function Zφ : I → Rp such that Zφ(L)(t) tends to
Zφ(t) uniformly over t.

99

3.A.4 Consistency of the Euler scheme for parameterized ODEs

Proposition 3.12 (Consistency of the Euler scheme for parameterized ODEs.). We denote by
(θLk)L∈N∗,1≤k≤L be a bounded family of vectors of Rp, and let

ΘL : [0, 1]→ Rp, s 7→ θLb(L−1)sc+1.

Assume that there exists Θ : [0, 1]→ Rp a Lipschitz continuous function such that ΘL(s) tends to
Θ(s) uniformly over s. Let (aL)L∈N∗ be a sequence of vectors in some compact E ⊂ Rd converging
to a ∈ E. Let g : Rd × Rp → Rd be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly
Lipschitz continuous for θ in any compact of Rp. Consider the discrete scheme

uL0 = aL

uLk+1 = uLk +
1

L
g(uLk , θ

L
k+1), k ∈ {0, . . . , L− 1}.

(3.32)

Then uLbLsc tends to U(s) uniformly over s ∈ [0, 1], where U is the unique solution of the ODE

U(0) = a

dU

ds
(s) = g(U(s),Θ(s)), s ∈ [0, 1].

(3.33)

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ E through
(‖aL − a‖)L∈N∗.

Proof. Let M be a bound of the sequence (θLk)L∈N∗,1≤k≤L. By definition of ΘL, the sequence
(ΘL)L∈N∗ is also uniformly bounded by M , and the same is true for Θ. Then the function
g(·,Θ(s)) is uniformly Lipschitz for s ∈ [0, 1]. Furthermore, (U, s) 7→ g(U,Θ(s)) is continuous
in s because g and Θ are continuous. Thus the ODE (3.33) has a unique solution on [0, 1] by the
Picard-Lindelöf theorem (see Lemma 3.19).

Denote by C the uniform Lipschitz constant of g(·, θ) for ‖θ‖ ≤ M . Since g(0, ·) ≡ 0 and
g(·,Θ(s)) is C-Lipschitz, one has∥∥∥dU

ds
(s)
∥∥∥ = ‖g(U(s),Θ(s))‖ ≤ C‖U(s)‖.

Therefore, by Grönwall’s inequality,

‖U(s)‖ ≤ ‖U(0)‖ exp(C) = ‖a‖ exp(C) ≤ DE exp(C),

where DE = supx∈E ‖x‖ <∞. A similar reasoning applies to the discrete scheme (3.32), using
the discrete version of Grönwall’s inequality. More precisely, for any k ∈ {0, . . . , L− 1},

‖uLk+1‖ ≤ ‖uLk ‖+
1

L
‖g(uLk , θ

L
k+1)‖ ≤

(
1 +

C

L

)
‖uLk ‖.

Thus,
‖uLk ‖ ≤ ‖uL0 ‖ exp(C) = ‖aL‖ exp(C) ≤ DE exp(C).

Overall, we can consider a restriction of g to a compact set depending only on M , C, and E,
which we will still denote by g with a slight abuse of notation.Since g is C1, it is therefore bounded
and Lipschitz continuous, and we still let C be its Lipschitz constant.

For L ∈ N∗ and k ∈ {0, . . . , L}, we denote by ∆L
k the gap between the continuous and the

discrete schemes, i.e.,

∆L
k =

∥∥∥U(k
L

)
− uLk

∥∥∥.
100

The next step is to recursively bound the size of this gap, first observing that ∆L
0 = ‖aL − a‖.

We have that
s 7→ dU

ds
(s) = g(U(s),Θ(s)) (3.34)

is a Lipschitz continuous function with some Lipschitz constant C̃. To see this, just note
that U itself is Lipschitz continuous in s, since g is bounded, and therefore the function (3.34)
is a composition of Lipschitz continuous functions. In particular, dU

ds is almost everywhere
differentiable, and its derivative d2U

ds2
(s) is bounded in the supremum norm by C̃. As a consequence,

for k ∈ {0, . . . , L− 1}, the Taylor expansion of U on [kL ,
k+1
L] takes the form

U
(k + 1

L

)
= U

(k
L

)
+

1

L

dU

ds

(k
L

)
+

∫ (k+1)/L

k/L

(k + 1

L
− s
)d2U

ds2
(s)ds,

where the norm of the remainder term is less than C̃/L2. Therefore,

∆L
k+1 =

∥∥∥U(k + 1

L

)
− uLk+1

∥∥∥
=
∥∥∥U(k

L

)
+

1

L
g
(
U
(k
L

)
,Θ
(k
L

))
+

∫ (k+1)/L

k/L

(k + 1

L
− s
)d2U

ds2
(s)ds

− uLk −
1

L
g(uLk , θ

L
k+1)

∥∥∥
≤
∥∥∥U(k

L

)
− uLk

∥∥∥+
∥∥∥ 1

L
g
(
U
(k
L

)
,Θ
(k
L

))
− 1

L
g(uLk , θ

L
k+1)

∥∥∥
+

∫ (k+1)/L

k/L

(k + 1

L
− s
)∥∥∥d2U

ds2
(s)
∥∥∥ds

6 ∆L
k +

C

L
∆L
k +

C

L

∥∥∥Θ
(k
L

)
− θLk+1

∥∥∥+
C̃

L2
.

In the last inequality, we used the fact that g is C-Lipschitz. Since,by definition, θLk+1 = ΘL(k
L−1),

we obtain, for k ∈ {0, . . . , L− 1},

∆L
k+1 6

(
1 +

C

L

)
∆L
k +

C

L

∥∥∥Θ
(k
L

)
−ΘL

(k

L− 1

)∥∥∥+
C̃

L2

6
(

1 +
C

L

)
∆L
k +

C

L
sup
s∈[0,1]

‖Θ(s)−ΘL(s)‖+
C

L

∥∥∥Θ
(k
L

)
−Θ

(k

L− 1

)∥∥∥+
C̃

L2

6
(

1 +
C

L

)
∆L
k +

C

L
sup
s∈[0,1]

‖Θ(s)−ΘL(s)‖+
CCΘ

L2
+
C̃

L2
,

where CΘ is the Lipschitz constant of Θ. By the discrete Grönwall’s inequality, we deduce that,
for k ∈ {0, . . . , L− 1},

∆L
k+1 6

(
∆L

0 + sup
s∈[0,1]

‖Θ(s)−ΘL(s)‖+
CΘ

L
+

C̃

LC

)
eC

=
(
‖aL − a‖+ sup

s∈[0,1]
‖Θ(s)−ΘL(s)‖+

CΘ

L
+

C̃

LC

)
eC . (3.35)

This shows that the gaps ∆L
k converge to zero uniformly over k ∈ {0, . . . , L} as L tends to infinity.

We conclude by observing that, for any s ∈ [0, 1],

‖U(s)− uLbLsc‖ 6
∥∥∥U(s)− U

(bLsc
L

)∥∥∥+
∥∥∥U(bLsc

L

)
− uLbLsc

∥∥∥ ≤ CU
L

+ ∆L
bLsc, (3.36)

101

where CU is the Lipschitz constant of U . Both terms converge to zero uniformly over s as L
tends to infinity. Finally, an inspection of our bounds shows that the convergence only depends
on (aL)L∈N∗ ∈ EN∗ through ‖aL − a‖.

The results of Proposition 3.12 can be extended without much effort to two other related
cases. First, the parameters θLk may depend on some other variable t, as long as all assumptions
are verified uniformly over t. Second, these parameters may converge to some limit parameters
as both L and t go to infinity. This is encapsulated in the following two corollaries.

Corollary 3.13. Let I ⊆ R+ be an interval. Let (θLk)L∈N∗,1≤k≤L be a uniformly bounded family
of functions from I to Rp, and let

ΘL : [0, 1]× I → Rp, (s, t) 7→ θLb(L−1)sc+1(t).

Assume that there exists a function Θ : [0, 1] × I → Rp such that ΘL(s, t) tends to Θ(s, t)
uniformly over s and t, and Θ(·, t) is uniformly Lipschitz continuous for t ∈ I. Let (aL)L∈N∗

be a family of functions from I to some compact E ⊂ Rd, uniformly converging to a : I → E.
Let g : Rd × Rp → Rd be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly Lipschitz
continuous for θ in any compact of Rp. Consider the discrete scheme, for t ∈ I,

uL0 (t) = aL(t)

uLk+1(t) = uLk (t) +
1

L
g(uLk (t), θLk+1(t)), k ∈ {0, . . . , L− 1}.

Then uLbLsc(t) tends to U(s, t) uniformly over s ∈ [0, 1] and t ∈ I, where U(·, t) is the unique
solution of the ODE

U(0, t) = a(t)

∂U

∂s
(s, t) = g(U(s, t),Θ(s, t)), s ∈ [0, 1].

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ EI through
(supt∈I ‖aL(t)− a(t)‖)L∈N∗.
Corollary 3.14. Let I ⊆ R+ be an interval. Let (θLk)L∈N∗,1≤k≤L be a uniformly bounded family
of functions from I to Rp, and let

ΘL : [0, 1]× R+ → Rp, (s, t) 7→ θLb(L−1)sc+1(t).

Assume that there exists a function Θ∞ : [0, 1]→ Rp such that ΘL(s, t) tends to Θ∞(s) uniformly
over s as L, t→∞, and Θ∞ is Lipschitz continuous. Let (aL)L∈N∗ be a family of functions from
I to some compact E ⊂ Rd, and converging to a∞ ∈ E as L, t → ∞. Let g : Rd × Rp → Rd
be a C1 function such that g(0, ·) ≡ 0 and g(·, θ) is uniformly Lipschitz continuous for θ in any
compact of Rp. Consider the discrete scheme, for t ∈ I,

uL0 (t) = aL(t)

uLk+1(t) = uLk (t) +
1

L
g(uLk (t), θLk+1(t)), k ∈ {0, . . . , L− 1}.

Then uLbLsc(t) tends to U(s) uniformly over s ∈ [0, 1] as L, t→∞, where U is the unique solution
of the ODE

U(0) = a∞

dU

ds
(s) = g(U(s),Θ∞(s)), s ∈ [0, 1].

Moreover, the convergence only depends on the sequence (aL)L∈N∗ and on its limit a ∈ EI through
(supt∈I ‖aL(t)− a(t)‖)L∈N∗.

102

3.A.5 Large-depth convergence of the gradient flow

This section is devoted to proving the main result of Appendix 3.A, namely the large-depth
convergence of the gradient flow. The setting we consider encompasses both Section 3.4.1 (finite
training time and clipped gradient flow) and Section 3.4.2 (arbitrary training time and standard
gradient flow). To this end, we consider a training interval I = [0, T] ⊆ R+, for T ≤ ∞, and
the gradient flow formulation (3.5), which is equivalent to the standard gradient flow (3.4) if π
equals the identity. Note that we do not need to assume in the following proof that π is bounded
(but only Lipschitz continuous). Therefore, the proof also holds in the case where π equals the
identity.

Theorem 3.15. Consider the residual network (3.12) initialized as explained in Appendix 3.A
and trained with the gradient flow (3.5) on I = [0, T] ⊆ R+, for some T ∈ (0,∞]. Assume
that there exists a unique solution to the gradient flow, such that (AL)L∈N∗ and (BL)L∈N∗ each
satisfies the assumptions of Corollary 3.11, and (ZLk)L∈N∗,1≤k≤L satisfies the assumptions of
Proposition 3.10. Then the following four statements hold as L tends to infinity:

(i) There exist functions A : I → Rq×d and B : I → Rd′×q such that AL(t) and BL(t) converge
uniformly over t ∈ I to A(t) and B(t).

(ii) There exists a Lipschitz continuous function Z : [0, 1]× I → Rp such that

ZL : [0, 1]× I → Rp, (s, t) 7→ ZL(s, t) = ZLb(L−1)sc+1(t)

converges uniformly over s ∈ [0, 1] and t ∈ I to Z(s, t).

(iii) Uniformly over s ∈ [0, 1], t ∈ I, and x ∈ X , the hidden layer hLbLsc(t) converges to the
solution at time s of the neural ODE

H(0, t) = A(t)x

∂H

∂s
(s, t) = f(H(s, t),Z(s, t)), s ∈ [0, 1].

(iv) Uniformly over t ∈ I and x ∈ X , the output FL(x; t) converges to B(t)H(1, t).

Proof. According to Proposition 3.10, there exists a subsequence (Zφ(L))L∈N∗ of (ZL)L∈N∗ and
a Lipschitz continuous function Zφ : [0, 1] × I → Rp such that Zφ(L)(s, t) tends to Zφ(s, t)
uniformly over s and t. Similarly, by Corollary 3.11, there exists subsequences of (AL)L∈N∗

and (BL)L∈N∗ that converge uniformly. With a slight abuse of notation, we still denote these
subsequences by φ, and the corresponding limits by Aφ and Bφ.

In the remainder, we prove the uniqueness of the accumulation point (Zφ, Aφ, Bφ) by showing
that it is the solution of an ODE that satisfies the assumptions of the Picard-Lindelöf theorem.
The statements (i) to (iv) then follow easily.

Consider a general input (x, y) ∈ X × Y, and let HL(s, t) = hLbLsc(t) (recall that hLk (t)

is defined by the forward propagation (3.12)). Corollary 3.13, with θLk = Z
φ(L)
k , Θ = Zφ,

aL = Aφ(L)x, g = f , ensures that Hφ(L)(s, t) converges uniformly (over s and t) to Hφ(s, t) that
is the solution at time s of the ODE

Hφ(0, t) = Aφ(t)x

∂Hφ

∂s
(s, t) = f(Hφ(s, t),Zφ(s, t)), s ∈ [0, 1].

103

By inspecting the proof of the corollary, we also have that (h
φ(L)
k)L∈N∗,1≤k≤φ(L) and (Hφ(L))L∈N∗

are uniformly bounded and that Hφ(·, t) is uniformly Lipschitz continuous for t ∈ I.
We now turn our attention to the backpropagation recurrence (3.13), which defines the

backward state pLk (t). First observe that the convergence of Hφ(L) implies that

p
φ(L)
φ(L)(t) = 2Bφ(L)(t)>(Bφ(L)(t)h

φ(L)
φ(L)(t)− y) = 2Bφ(L)(t)>(Bφ(L)(t)Hφ(L)(1, t)− y)

converges uniformly to 2Bφ(t)>(Bφ(t)Hφ(1, t)− y) ∈ Rd. Now, let PL(s, t) = pLbLsc(t). We apply

again Corollary 3.13, this time to the backpropagation recurrence (3.13), with θLk = (h
φ(L)
k , Z

φ(L)
k),

Θ = (Hφ,Zφ), g : (p, (h, Z)) 7→ ∂1f(h, Z)p, and aL = 2(Bφ(L))>(Bφ(L)Hφ(L)(1, ·)− y). Let us
quickly check that the conditions of the corollary are met:

• The sequence (h
φ(L)
k)L∈N∗,1≤k≤φ(L) is bounded, as noted previously, and the same holds for

(Z
φ(L)
k)L∈N∗,1≤k≤φ(L) by the assumptions of Theorem 3.15.

• The function Hφ(·, t) is uniformly Lipschitz continuous for t ∈ I, as noted previously, and
the same is true for Zφ(·, t) since Zφ is Lipschitz continuous.

• The function h
φ(L)
b(φ(L)−1)sc+1(t) tends to Hφ(s, t) uniformly over s and t, as seen in the

beginning of the proof. More precisely, we know that Hφ(L)(s, t) = h
φ(L)
bφ(L)sc(t) tends to

Hφ(s, t). Simple algebra and the fact that two successive iterates of (3.12) are separated
by a distance proportional to 1/L show that both statements are equivalent. Furthermore,
Zφ(L)(s, t) tends to Zφ(s, t) uniformly over s and t as noted above.

• The sequence (aL)L∈N∗ is uniformly bounded, since Bφ(L) and Hφ(L)(1, ·) are. It also
converges uniformly to a : t 7→ 2Bφ(t)>(Bφ(t)Hφ(1, t)− y).

• The function g is C1 since f is C2. We clearly have g(0, ·) ≡ 0. Finally, g(·, (h, Z)) is
uniformly Lipschitz continuous for (h, Z) in any compact since ∂1f is continuous.

Overall, we obtain that P φ(L)(s, t) converges uniformly (over s and t) to P φ(s, t), the solution at
time s of the backward ODE

P φ(1, t) = 2Bφ(t)>(Bφ(t)Hφ(1, t)− y)

∂P φ

∂s
(s, t) = ∂1f(Hφ(s, t),Zφ(s, t))P φ(s, t), s ∈ [0, 1].

Furthermore, the proof of the corollary shows that (P φ(L))L∈N∗ is uniformly bounded. Now,
recall that the gradient flow for Zφ(L)

k (t), given by (3.5) and (3.15), takes the following form, for
t ∈ I and k ∈ {1, . . . , φ(L)},

∂Z
φ(L)
k (t)

∂t
= π

(
− 1

n

n∑
i=1

∂2f(h
φ(L)
k−1,i(t), Z

φ(L)
k (t))>p

φ(L)
k−1,i(t)

)
,

where the i subscript corresponds to the i-th input xi. By definition, for s ∈ [0, 1], Zφ(L)(s, t) =

Z
φ(L)
b(φ(L)−1)sc+1(t). Thus, the equation above can be rewritten, for s ∈ [0, 1] and t ∈ I,

∂Zφ(L)(s, t)

∂t
= π

(
− 1

n

n∑
i=1

∂2f(h
φ(L)
b(φ(L)−1)sc,i(t), Z

φ(L)
b(φ(L)−1)sc+1(t))>p

φ(L)
b(φ(L)−1)sc,i(t)

)
. (3.37)

104

The term inside π can be rewritten as

− 1

n

n∑
i=1

∂2f
(
H
φ(L)
i

(b(φ(L)− 1)sc
φ(L)

, t
)
,Zφ(L)(s, t)

)>
P
φ(L)
i

(b(φ(L)− 1)sc
φ(L)

, t
)
.

Since f is C2, ∂2f is locally Lipschitz continuous. Applying the first part of the proof to the
specific case of xi, we know that Hφ(L)

i and P φ(L)
i uniformly bounded, and that Hφ(L)

i (s, t) and
P
φ(L)
i (s, t) converge uniformly to Hφ

i (s, t) and P φi (s, t). Therefore, the right-hand side of (3.37)
converges uniformly over s and t to

π
(
− 1

n

n∑
i=1

∂2f(Hφ
i (s, t),Zφ(s, t))>P φi (s, t)

)
.

We have just shown the uniform convergence of the derivative in t of Zφ(L)(s, t). Furthermore,
we know that, for s ∈ [0, 1], the sequence (t 7→ Zφ(L)(s, t))L∈N∗ converges to Zφ(s, ·). These two
statements imply that Zφ is differentiable with respect to t and that, for s ∈ [0, 1], its derivative
satisfies the ordinary differential equation

∂Zφ(s, t)

∂t
= π

(
− 1

n

n∑
i=1

∂2f(Hφ
i (s, t),Zφ(s, t))>P φi (s, t)

)
. (3.38)

Moreover, by our initialization scheme,

Zφ(s, 0) = Z init(s). (3.39)

A similar approach reveals that Aφ(t) and Bφ(t) are differentiable and that they verify the
equations

dAφ

dt
(t) = π

(
− 1

n

n∑
i=1

P φi (0, t)x>i

)
, Aφ(0) = Ainit, (3.40)

dBφ

dt
(t) = π

(
− 2

n

n∑
i=1

(Bφ(t)Hφ
i (1, t)− yi)Hφ

i (1, t)>
)
, Bφ(0) = Binit. (3.41)

The equations (3.38) to (3.41) can be seen as an initial value problem whose variables are the
function Zφ(·, t) : [0, 1] → Rp and the matrices Aφ(t) ∈ Rq×d, Bφ(t) ∈ Rd′×q. To complete the
proof, it remains to show, using the Picard-Lindelöf theorem (see Lemma 3.19), that there exists
a unique solution to this problem. First, note that the space B([0, 1],Rp) of bounded functions
from [0, 1] to Rp endowed with the supremum norm is a Banach space, which is the proper space
in which to apply the Picard-Lindelöf theorem. We therefore endow the space of parameters
B([0, 1],Rp)× Rq×d × Rd′×q with the norm

‖(Z, A,B)‖ := sup
s∈[0,1]

‖Z(s)‖+ ‖A‖2 + ‖B‖2,

which makes it a Banach space. We have to show that the mapping

(Z, A,B) 7→
(
s 7→ π

(
− 1

n

n∑
i=1

∂2f(Hi(s),Z(s))>Pi(s)
)
,

π
(
− 1

n

n∑
i=1

Pi(0)x>i

)
, π
(
− 2

n

n∑
i=1

(BHi(1)− yi)Hi(1)>
)) (3.42)

105

is locally Lipschitz continuous with respect to this norm, where we recall that Hi(s) in (3.42) is
the solution at time s of the initial value problem

Hi(0) = Axi

dHi

ds
(s) = f(Hi(s),Z(s)), s ∈ [0, 1],

(3.43)

and Pi(s) is the solution at time s of the initial value problem

Pi(1) = 2B>(BHi(1)− yi)
dPi
ds

(s) = ∂1f(Hi(s),Z(s))Pi(s), s ∈ [0, 1].
(3.44)

To prove that the mapping (3.42) is locally Lipschitz continuous, we first check that it is well
defined. Since Z is assumed to be only bounded (and not continuous), the solutions of the initial
value problems (3.43) and (3.44) are well defined in the sense of the Caratheodory conditions,
which are given in Lemma 3.20.

Next, we can show that (Z, A,B) 7→ Hi is locally Lipschitz continuous for i ∈ {1, . . . , n}. To
do this, consider two sets of parameters (Z, A,B) and (Z̃, Ã, B̃) belonging to a compact set D.
Let Hi and H̃i denote the corresponding hidden states. As in the proof of Proposition 3.12, it
holds that Hi and H̃i belong to some compact set E that depends only on D and f . Let Kf be
the Lipschitz constant of the C1 function f on E ×D. Then,

‖H̃i(s)−Hi(s)‖ ≤ ‖H̃i(0)−Hi(0)‖+

∫ s

0

∥∥∥dH̃i

dr
(r)− dHi

dr
(r)
∥∥∥dr

≤ ‖H̃i(0)−Hi(0)‖+

∫ s

0
‖f(H̃i(r), Z̃(r))− f(Hi(r),Z(r))‖dr.

The norm inside the integral can be bounded by

‖f(H̃i(r), Z̃(r))− f(H̃i(r),Z(r))‖+ ‖f(H̃i(r),Z(r))− f(Hi(r),Z(r))‖
≤ Kf sup

r∈[0,1]
‖Z̃(r)−Z(r)‖+Kf‖H̃i(r)−Hi(r)‖.

Therefore,

‖H̃i(s)−Hi(s)‖ ≤ ‖Ã−A‖2‖xi‖+Kf sup
r∈[0,1]

‖Z̃(r)−Z(r)‖+

∫ s

0
Kf‖H̃i(r)−Hi(r)‖dr.

Using Grönwall’s inequality, we obtain, for any s ∈ [0, 1],

‖H̃i(s)−Hi(s)‖ ≤
(
‖Ã−A‖2‖xi‖+Kf sup

r∈[0,1]
‖Z̃(r)−Z(r)‖

)
exp(Kf).

This shows that the function (Z, A,B) 7→ Hi is locally Lipschitz continuous. One proves by
similar arguments that the function (Z, A,B) 7→ Pi is locally Lipschitz continuous. Thus, overall,
the mapping (3.42) is locally Lipschitz continuous as a composition of locally Lipschitz continuous
functions.

The Picard-Lindelöf theorem guarantees the uniqueness of the maximal solution of the initial
value problem (3.38)–(3.41) in the space B([0, 1],Rp)× Rd×q × Rd′×q. Since any accumulation
point (Zφ, Aφ, Bφ) is a solution belonging to this space, this proves the uniqueness of the
accumulation point, which we therefore denote as (Z, A,B).

106

The uniform convergence of (ZL, AL, BL) to (Z, A,B) is then easily shown by contradiction.
Suppose that uniform convergence does not hold. If this is true, then there exists a subsequence
that stays at distance ε > 0 from (Z, A,B) (in the sense of the uniform norm). Then arguments
similar to the beginning of the proof show the existence of a second accumulation point, which
is a contradiction. This shows the uniform convergence, yielding statements (i) and (ii) of the
theorem.

Finally, reapplying Corollary 3.13 with θLk = ZLk , Θ = Z, aL = ALx, g = f , completes the
proof by proving statements (iii) and (iv).

Training dynamics of the limiting weights. Interestingly, the proof of Theorem 3.15
provides us with an explicit description of the evolution of the continuous-depth limiting weights
during training. With the notation of the proof, the continuous weights satisfy the training
dynamics:

dA

dt
(t) = π

(
− 1

n

n∑
i=1

Pi(0, t)x
>
i

)
∂Z
∂t

(s, t) = π
(
− 1

n

n∑
i=1

∂2f(Hi(s, t),Z(s, t))>Pi(s, t)
)

dB

dt
(t) = π

(
− 2

n

n∑
i=1

(B(t)Hi(1, t)− yi)Hi(1, t)
>
)
,

where we recall that Hi(s, t) is the solution at time s of the initial value problem

Hi(0, t) = A(t)xi

∂Hi

∂s
(s, t) = f(Hi(s, t),Z(s, t)), s ∈ [0, 1],

and Pi(s, t) is the solution at time s of the problem

Pi(1, t) = 2B(t)>(B(t)Hi(1, t)− yi)
∂Pi
∂s

(s, t) = ∂1f(Hi(s, t),Z(s, t))Pi(s, t), s ∈ [0, 1].

These equations can be thought of as the continuous-depth equivalent of the backpropagation
equations.

3.A.6 Existence of the double limit when L, t tend to infinity

Proposition 3.16. Consider the residual network (3.12), and assume that:

(i) AL(t), ZLbLsc(t), and B
L(t) converge uniformly over L ∈ N∗ and s ∈ [0, 1] as t→∞.

(ii) AL(t), ZLbLsc(t), and B
L(t) converge uniformly over t ∈ R+ and s ∈ [0, 1] as L→∞.

(iii) The loss `L(t) converges to 0 uniformly over L ∈ N∗ as t→∞.

Then the following four statements hold as t and L tend to infinity:

(i) There exist matrices A∞ ∈ Rq×d and B∞ ∈ Rd′×q such that AL(t) and BL(t) converge to
A∞ and B∞.

107

(ii) There exists a Lipschitz continuous function Z∞ : [0, 1]→ Rp such that ZLbLsc(t) converges
to Z∞(t) uniformly over s ∈ [0, 1].

(iii) Uniformly over s ∈ [0, 1] and x ∈ X , the hidden layer hLbLsc(t) converges to the solution at
time s of the ODE

H(0) = A∞x

dH

ds
(s) = f(H(s),Z∞(s)), s ∈ [0, 1].

(3.45)

(iv) Uniformly over x ∈ X , the output FL(x; t) converges to F∞(x) = B∞H(1). Furthermore,
F∞(xi) = yi for i ∈ {1, . . . , n}.

Proof. The existence of limits A∞ and B∞ to AL(t) and BL(t) as L and t tend to infinity is
given by Lemma 3.22. The same argument applies to ZLbsLc(t), which provides a limit Z∞(s) to
the sequence. Furthermore, following the proof of the lemma, we see that the convergence of
ZLbsLc(t) to Z∞(s) is uniform over s ∈ [0, 1]. Corollary 3.14, applied with θLk = ZLk , Θ∞ = Z∞,
aL = ALx, g = f , then ensures that hLbLsc(t) converges uniformly (over s ∈ [0, 1] and x ∈ X)
to H(s) that is the solution at time s of (3.45), as L and t tend to infinity. As a consequence,
FL(x; t) converges uniformly over x to F∞(x) as L, t→∞. Furthermore, recall that

`L(t) =
1

n

n∑
i=1

‖FL(xi; t)− yi‖22.

The left-hand side converges as L, t → ∞ to 0 by assumption of the proposition, while the
right-hand side converges to

1

n

n∑
i=1

‖F∞(xi)− yi‖22.

Therefore, F∞(xi) = yi for i ∈ {1, . . . , n}, and the proof is complete.

3.B Proofs of the results of the main part of the chapter

Most of the results follow from those presented in Section 3.A. The only substantial proof is that
of Proposition 3.6, which shows the local PL condition. It uses a result of Nguyen and Mondelli
(2020) involving the Hermite transform and the sub-Gaussian variance proxy, which we define
briefly. We refer to Debnath and Bhatta (2014, Chapter 17) and Vershynin (2018, Sections 2.5.2
and 3.4.1), respectively, for more detailed explanations.

Hermite transform. The r-th normalized probabilist’s Hermite polynomial is given by

hr(x) =
1√
r!

(−1)rex
2/2 d

r

dxr
e−x

2/2, r ≥ 0.

This family of polynomials forms an orthonormal basis of square-integrable functions for the
inner product

〈f1, f2〉 =
1√
2π

∫ ∞
−∞

f1(x)f2(x)e−x
2/2dx.

Therefore, any function σ such that 1√
2π

∫∞
−∞ σ

2(x)e−x
2/2dx < ∞ can be decomposed on this

basis. The r-th coefficient of this decomposition is denoted by ηr(σ).

108

Sub-Gaussian random vector. A random vector x ∈ Rd is sub-Gaussian with variance proxy
vx > 0 if, for every y ∈ Rd of unit norm,

P(|〈x, y〉| ≥ t) ≤ 2 exp
(
− t2

2v2
x

)
.

Additional notation. For a matrix A, we let smin and smax its minimum and maximum
singular values, and similarly, λmin and λmax its minimum and maximum eigenvalues (whenever
they exist).

Before delving into the proofs, we briefly describe the parts of this section that make use
of the specific model (3.3). The most important one is the proof of Proposition 3.6, i.e., the
proof that the residual network satisfies the (M,µ)-local PL condition. Additionally, in the
proof of Proposition 3.3, the expressions for M and K are valid only for the specific model (3.3).
Finally, in the proof of Theorem 3.7, the beginning of the proof reveals that condition (3.22) of
Proposition 3.9 on µ can be expressed as a condition on the norm of the labels yi. This applies
only to the specific model (3.3). Observe that, if one assumes that the general residual network
of Section 3.A satisfies the (M,µ)-local PL condition with µ given by (3.22), then the rest of the
proof of Theorem 3.7 unfolds, and the conclusions of the theorem hold for the general model.

3.B.1 Proof of Proposition 3.1

Proposition 3.1 is a consequence of Proposition 3.8 with f(h, (V,W)) = 1√
m
V σ(1√

qWh).

3.B.2 Proof of Proposition 3.2

Proposition 3.12, with θLk = (V L
k ,W

L
k), Θ = (V,W), aL = Ax, g(h, (V,W)) = 1√

m
V σ(1√

qWh),
gives the existence and uniqueness of the solution of the neural ODE (3.6). Moreover, inspecting
the proof of Proposition 3.12, equations (3.35) gives that, for any input x ∈ X , the difference
between the last hidden layer hLL of the discrete residual network (3.3) and its continuous
counterpart H(1) in the neural ODE (3.6) is bounded by

C ′
(1

L
+ sup
s∈[0,1]

‖Θ(s)−ΘL(s)‖
)
,

where C ′ > 0 is independent of L and x ∈ X , and ΘL(s) = θLb(L−1)sc+1. The function ΘL is a
piecewise-constant interpolation of Θ with pieces of length 1

L−1 . Since Θ is Lipschitz continuous,
the distance between Θ and ΘL decreases as C′′/L for some C ′′ > 0 depending on Θ but not on L.
This yields ‖hLL −H(1)‖ ≤ C′(1++C′′)

L , where C ′ and C ′′ are independent of L and x ∈ X . Since
FL(x) = BhLL and F (x) = BH(1), the result is proven.

3.B.3 Proof of Proposition 3.3

We apply Proposition 3.8 with f(h, (V,W)) = 1√
m
V σ(1√

qWh). Recall that the parameters
Z = (V,W) are considered in Proposition 3.8 as a vector. In particular, ‖Z‖ = ‖V ‖F + ‖W‖F .
Therefore, Proposition 3.8 shows that, for t ∈ [0, T], L ∈ N∗, and k ∈ {1, . . . , L},

‖AL(t)‖F ≤M, ‖V L
k (t)‖F + ‖WL

k (t)‖F ≤M, and ‖BL(t)‖F ≤M,

109

where

M = M0 + TMπ

M0 = max
(
‖AL(0)‖F , ‖V L

0 (0)‖F + ‖WL
0 (0)‖F , ‖BL(0)‖F

)
Mπ = max

(
max

A∈Rq×d
‖π(A)‖F , max

Z∈Rq×m×Rm×q
‖π(Z)‖, max

B∈Rd′×q
‖π(B)‖F

)
.

Furthermore, due to our initialization scheme described in Section 3.3,

‖AL(0)‖F =
√
d, ‖V L

0 (0)‖F = 0, ‖WL
0 (0)‖F ≤ 2

√
qm, ‖BL(0)‖F =

√
d′,

where the third inequality holds with probability at least 1−exp(−3qm
16) by Lemma 3.23. Since we

take q ≥ max(d, d′), this implies that, with high probability, M0 ≤ 2
√
qm, yielding the formula

for M in Proposition 3.3. Finally, the existence of K = βTeαT such that the difference between
two successive weight matrices is bounded by K/L, as well as the dependence of α and β on X ,
Y, M , and σ, follows easily from Proposition 3.8, given that our initialization scheme ensures
that ZLk (0) = ZLk+1(0) for all L ∈ N∗ and k ∈ {1, . . . , L}.

3.B.4 Proof of Theorem 3.4

By Proposition 3.3 and the fact that π is bounded, the sequences (AL)L∈N∗ and (BL)L∈N∗

each satisfy the assumptions of Corollary 3.11, and (ZLk)L∈N∗,1≤k≤L satisfies the assumptions of
Proposition 3.10. Theorem 3.4 then follows directly from Theorem 3.15, by taking, as previously,
f(h, (V,W)) = 1√

m
V σ(1√

qWh).

3.B.5 Proof of Proposition 3.6

We drop the L superscripts for this proof, since L is fixed. Denote by Ā, B̄, V̄k, W̄k parameters
sampled according to the initialization scheme of Section 3.3, which means in particular that
V̄k = 0 and W̄k = W̄ ∼ N⊗(m×q). Since, by assumption, the activation function σ is bounded
and not constant, it cannot be a polynomial function. As a consequence, there are infinitely
many non-zero coefficients ηr(σ) in its Hermite expansion (defined at the beginning of Section
3.B). Throughout, we let r ≥ 2 be an integer such that ηr(σ) is nonzero. We also let Kσ be the
Lipschitz constant of σ and Mσ its supremum norm. Now, let A,B, Vk,Wk be parameters at
distance at most M = min(ηr(σ)

32Kσ
√

2nq
, 1

2) from Ā, B̄, V̄k, W̄k in the sense of Definition 3.5.
It is useful for this proof to introduce a matrix-valued version of the residual network (3.3).

More specifically, given data matrices x ∈ Rd×n and y ∈ Rd′×n, the matrix-valued residual
network writes

h0 = Ax

hk+1 = hk +
1

L
√
m
Vk+1σ

(1√
q
Wk+1hk

)
, k ∈ {0, . . . , L− 1}, (3.46)

where now hk ∈ Rq×n. The loss is equal to ` = 1
n‖BhL − y‖2F and we let pk = ∂`

∂hk
∈ Rq×n

be the matrix-valued backward state. Observe that the columns of x are bounded and thus
sub-Gaussian. In the sequel, we denote by vx the sub-Gaussian variance proxy of the columns of√
d/qx.
Now that we have introduced the necessary notation, we can proceed to prove some preliminary

estimates. Since M ≤ 1
2 ≤
√

2qm, we have, for k ∈ {1, . . . , n},

‖A− Ā‖F ≤M, ‖B − B̄‖F ≤
1

2
, ‖Vk‖F ≤ 1, ‖Wk − W̄‖F ≤

1

2
≤
√

2qm. (3.47)

110

By Lemma 3.23, with probability at least 1− exp
(
− qm

16

)
, one has ‖W̄‖F ≤

√
2qm. Together

with the previous inequalities, this implies

‖A‖2 ≤ 2, smin(B) ≥ 1

2
, ‖B‖2 ≤

3

2
, ‖Vk‖F ≤ 1, ‖Wk‖F ≤ 2

√
2qm, (3.48)

where the second inequality is a consequence of Lemma 3.21, as follows:

smin(B) ≥ smin(B̄)− ‖B − B̄‖F = 1− ‖B − B̄‖F ≥
1

2
.

Let us now bound ‖hk‖F and ‖pk‖F . We have

‖h0‖F = ‖Ax‖F ≤ ‖A‖2‖x‖F ≤ 2
√
qn. (3.49)

Moreover, by (3.46), for any k ∈ {0, . . . , L− 1},

‖hk+1‖F ≤ ‖hk‖F +
Kσ

L
√
m
√
q
‖Vk+1‖F ‖Wk+1‖F ‖hk‖F ≤

(
1 +

2
√

2Kσ

L

)
‖hk‖F ,

where the second inequality is a consequence of (3.48). Therefore, by (3.49),

‖hk‖F ≤ exp(2
√

2Kσ)‖h0‖F ≤ 2 exp(2
√

2Kσ)
√
qn. (3.50)

Moving on to ‖pk‖F , the chain rule leads to

pk = pk+1 +
1

L
√
qm

W>k+1

(
(V >k+1pk+1)� σ′

(1√
q
Wk+1hk

))
, k ∈ {0, . . . , L− 1},

where � denotes the element-wise product. Noting that |σ′| ≤ Kσ and using (3.48), we obtain

‖pk‖F ≥ ‖pk+1‖F −
Kσ

L
√
qm
‖Wk+1‖F ‖Vk+1‖F ‖pk+1‖F ≥

(
1− 2

√
2Kσ

L

)
‖pk+1‖F .

It follows that ‖pk‖F ≥ exp(−2
√

2Kσ)‖pL‖F . In addition,

pL =
∂`

∂hL
=

2

n
B>(BhL − y).

Therefore, by Lemma 3.21, since d′ ≤ q,

‖pL‖F ≥
2

n
smin(B)‖BhL − y‖F ≥

1√
n

√
`.

Collecting bounds, we conclude that, for k ∈ {0, . . . , L},

‖pk‖F ≥
1√
n

exp(−2
√

2Kσ)
√
`. (3.51)

A similar proof reveals that, for k ∈ {0, . . . , L},

‖pk‖F ≤
3√
n

exp(2
√

2Kσ)
√
`.

Having established these preliminary estimates, our goal in the remainder of the proof is to lower
bound the quantity ‖ ∂`

∂Vk+1
‖F . First note that, by the chain rule, for any k ∈ {0, . . . , L− 1},

∂`

∂Vk+1
=

1

L
√
m
pk+1σ

(1√
q
Wk+1hk

)>
.

111

As a consequence, when m ≥ n, by Lemma 3.21,∥∥∥ ∂`

∂Vk+1

∥∥∥
F
≥ 1

L
√
m
‖pk+1‖F · smin

(
σ
(1√

q
Wk+1hk

))
≥ 1

L
√
mn

exp(−2
√

2Kσ)
√
` · smin

(
σ
(1√

q
Wk+1hk

))
, (3.52)

using (3.51). Next, by Lemma 3.21,

smin

(
σ
(1√

q
Wk+1hk

))
≥ smin

(
σ
(1√

q
W̄ Āx

))
−
∥∥∥σ(1√

q
Wk+1hk

)
− σ

(1√
q
W̄ Āx

)∥∥∥
F
.

Let us first lower bound the first term. Since, by our choice of initialization, Ā = (IRd×d , 0R(q−d)×d),
we have

smin

(
σ
(1√

q
W̄ Āx

))
= smin(σ(W̃ x̃)),

where W̃ ∼ N (0, 1)⊗(m×d) and x̃ = 1√
qx ∈ Rd×n has i.i.d. unitary columns independent of W̃ .

Therefore, by Lemma 3.24, with probability at least 1− exp
(
− 3mη2

r(σ)
64M2

σn

)
− 2n2 exp

(
− d

2vxn2/r

)
,

smin

(
σ
(1√

q
WĀx

))
≥
√
mηr(σ)

4
.

Next,∥∥∥σ(1√
q
Wk+1hk

)
− σ

(1√
q
W̄ Āx

)∥∥∥
F
≤ Kσ√

q

(
‖Wk+1 − W̄‖F ‖hk‖F + ‖W̄‖F ‖hk −Ax‖F

+ ‖W̄‖F ‖Ax− Āx‖F
)
.

Clearly,

‖hk −Ax‖F =
∥∥∥ k∑
j=1

1

L
√
m
Vjσ

(1√
q
Wjhj−1

)∥∥∥
F
≤ 4
√

2Kσk

L
exp(2

√
2Kσ)

√
qn,

by (3.48) and (3.50). Also,

‖Ax− Āx‖F ≤ ‖A− Ā‖F ‖x‖F ≤
ηr(σ)

32
√

2Kσ

,

by (3.47) and by definition of M . Putting together the two bounds above as well as (3.47), (3.48),
and (3.50), we obtain∥∥∥σ(1√

q
Wk+1hk

)
− σ

(1√
q
WĀx

)∥∥∥
F
≤ Kσ exp(2

√
2Kσ)

√
n
(

1 +
√
qm

8Kσk

L

)
+
√
m
ηr(σ)

32

≤ C1

√
n+ C2

√
nqmk

16L
+
√
m
ηr(σ)

32
,

where C1 = Kσ exp(2
√

2Kσ) and C2 = 128C1Kσ. Thus, when C1
√
n ≤ 1

32

√
mηr(σ), we have

smin

(
σ
(1√

q
Wk+1hk

))
≥ √m

(3

16
ηr(σ)− C2

16

√
nq
k

L

)
≥ 1

8

√
mηr(σ)

112

for k ≤ Lηr(σ)
C2
√
nq . As a consequence, for k ≤ Lηr(σ)

C2
√
nq , returning to (3.52),

∥∥∥ ∂`

∂Vk+1

∥∥∥
F
≥ 1

8L
√
n
ηr(σ) exp(−2

√
2Kσ)

√
` =

C3ηr(σ)

L
√
n

√
`,

letting C3 = exp(−2
√

2Kσ)
8 . Therefore,

∥∥∥ ∂`
∂A

∥∥∥2

F
+ L

L∑
k=1

∥∥∥ ∂`

∂Zk+1

∥∥∥2

F
+
∥∥∥ ∂`
∂B

∥∥∥2

F
≥ L

⌊
Lηr(σ)
C2
√
nq

⌋∑
k=1

∥∥∥ ∂`

∂Vk+1

∥∥∥2

F

≥ L
⌊Lηr(σ)

C2
√
nq

⌋C2
3ηr(σ)2

L2n
`

≥ C2
3ηr(σ)3

2C2n
√
nq
`,

where we used the inequality bxc ≥ x/2 for x ≥ 1. This proves the result, with

c1 = max
(210C2

1

ηr(σ)2
, 1
)

= max
(210K2

σ exp(4
√

2Kσ)

ηr(σ)2
, 1
)

c2 =
C2

ηr(σ)
=

128K2
σ exp(2

√
2Kσ)

ηr(σ)

c3 = min
(ηr(σ)

32
√

2Kσ

,
1

2

)
c4 =

C2
3ηr(σ)3

2C2
=

ηr(σ)3

214K2
σ exp(6

√
2Kσ)

δ = exp
(
− qm

16

)
+ n exp

(
− 3mη2

r (σ)

64M2
σn

)
+ 2n2 exp

(
− d

2vxn2/r

)
.

Remark 3.17. With appropriate values of r and m, the probability of failure δ can be made as
small as

ε+ 2n2 exp
(
− d

2vxnε

)
, (3.53)

for any ε > 0. This is possible first by choosing r such that 2/r ≥ ε, then by choosing m such that
the first two terms are less than ε. Moreover, we refer the interested reader to Goel et al. (2020,
Lemmas A.2 and A.9) for quantitative estimates of ηr(σ) for ReLU and sigmoid activations.
Finally, the expression (3.53) is essentially the same as the one appearing in Nguyen and Mondelli
(2020, Theorem 3.3). As in this chapter, we note that this expression is small if n grows at most
polynomially with d, in which case the exponential term in d dominates the polynomial term in n.

3.B.6 Proof of Theorem 3.7

By Proposition 3.6, there exists δ > 0 such that, with probability at least 1 − δ, the residual
network (3.3) satisfies the (M,µ)-local PL condition around its initialization, with

M =
c3√
nq

and µ =
c4

n
√
nq
,

for c3 and c4 depending on σ. We now apply Proposition 3.9 with f(h, (V,W)) = 1√
m
V σ(1√

qWh).
The only assumption of Proposition 3.9 that requires some care to check is that the PL condition

113

holds for the value of µ given by equation (3.22). Since the (M,µ)-local PL condition implies
the (M, µ̃)-local PL condition for any µ̃ ∈ (0, µ), it is the case if

c4

n
√
nq
≥ max(MBK,MBMX ,MAMX)

8eK

M
sup
L∈N∗

√
`L(0),

with MX , MA, MB, and K defined in Proposition 3.9. Due to the initialization scheme of
Section 3.3, we have, for any input x ∈ X , hLL(0) = hL0 (0), hence FL(x) = BL(0)AL(0)x = 0
since q ≥ d+ d′. As a consequence, `L(0) = 1

n

∑n
i=1 ‖yi‖2. Therefore, the condition becomes

1

n

n∑
i=1

‖yi‖2 ≤
c2

3c
2
4

64n4q3 max(MBK,MBMX ,MAMX)2e2K
,

where we replaced M by its value. Define C to be equal to the constant on the right-hand
side. Then, according to the above, as soon as 1

n

∑n
i=1 ‖yi‖2 ≤ C, we can apply Proposition

3.9, which gives several guarantees. First, the gradient flow is well defined on R+. Moreover,
the proposition and the expression of µ given above yield the bound on the empirical risk. In
particular, the empirical risk converges uniformly to zero. Furthermore, Proposition 3.9 shows the
uniform convergence of the weights as t→∞. Finally, the proposition ensures that the sequences
(AL)L∈N∗ and (BL)L∈N∗ each satisfy the assumptions of Corollary 3.11, and that (ZLk)L∈N∗,1≤k≤L
satisfies the assumptions of Proposition 3.10. We can therefore apply Theorem 3.15, with f defined
above and π equal to the identity. This gives the uniform convergence of the weights as L→∞.
The four asymptotic statements of Theorem 3.7 are then a consequence of Proposition 3.16.

Remark 3.18. A close examination of the quantities involved in the definition of C reveals
that it depends only on X , σ, n, and q. In particular, it does not depend on the dimension m.

3.C Some technical lemmas

We start by recalling the Picard-Lindelöf theorem (see, e.g., Luk, 2017, for a self-contained
presentation, and Arnold, 1992, for a textbook).

Lemma 3.19 (Picard-Lindelöf theorem). Let I = [0, T] ⊂ R+ be an interval, for some T ∈ (0,∞].
Consider the initial value problem

U(s) = U0 +

∫ s

0
g(U(r), r)dr, s ∈ I, (3.54)

where g : Rd × I → Rd is continuous and locally Lipschitz continuous in its first variable. Then
the initial value problem is well defined on an interval [0, Tmax) ⊂ I, i.e., there exists a unique
maximal solution on this interval. Moreover, if Tmax < T , then ‖U(s)‖ tends to infinity when s
tends to Tmax. Finally, if g(·, r) is uniformly Lipschitz continuous for r in any compact, then
Tmax = T .

We define time-dependent dynamics (3.54) for generality, but the time-independent case
U(s) = U0 +

∫ s
0 g(U(r))dr is also of interest. In this case, the existence and uniqueness of the

maximal solution holds if g is locally Lipschitz continuous, and the solution is defined on I if g
is Lipschitz continuous. Besides, the first statement of Lemma 3.19 (existence and uniqueness
of the maximal solution) also holds if Rd is replaced by any (potentially infinite-dimensional)
Banach space.

The next lemma gives conditions for the existence and uniqueness of the global solution of
the initial value problem (3.54) when the assumption of continuity of g in its second variable is
removed, thereby generalizing the Picard-Lindelöf theorem.

114

Lemma 3.20 (Caratheodory conditions for the existence and uniqueness of the global solution
of an initial value problem). Consider the initial value problem

U(s) = U0 +

∫ s

0
g(U(r), r)dr, s ∈ [0, 1],

where g : Rd × [0, 1]→ Rd is measurable and the integral is understood in the sense of Lebesgue
integration. Assume that g(·, r) is uniformly Lipschitz continuous for almost all r ∈ [0, 1], and
that g(0, r) ≡ 0. Then there exists a unique solution to the initial value problem, defined on [0, 1].

Proof. The proof is a consequence of Filippov (1988, Theorems 1, 2, and 4). More specifically,
denote by C > 0 the uniform Lipschitz constant of g(·, r). According to Filippov (1988, Theorems
1 and 2), under the conditions of the lemma, there exists a unique maximal solution to the initial
value problem. Let us now consider a restricted version of the problem, where g is defined on
D × [0, 1], with D a compact of Rd large enough to contain in its interior the ball of center 0
and radius ‖U0‖ exp(C). There exists a unique maximal solution to this problem as well, also
according to Filippov (1988, Theorems 1 and 2), and, according to Filippov (1988, Theorem 4),
it is defined until it reaches the boundary of D × [0, 1], which it reaches at some point (U∗, s∗).
If s∗ < 1, it means that U∗ is on the boundary of D, and in particular that ‖U∗‖ > ‖U0‖ exp(C).
But, on the other hand, for almost every r ∈ [0, 1],

‖g(U(r), r)‖ ≤ ‖g(0, r)‖+ ‖g(U(r), r)− g(0, r)‖ ≤ C‖U(r)‖.

Hence, by Grönwall’s inequality, for s ≤ s∗,

‖U(s)‖ ≤ ‖U0‖ exp(C).

Thus, ‖U∗‖ ≤ ‖U0‖ exp(C), which is impossible. Hence the maximal solution of the restricted
problem is defined on [0, 1]. Furthermore, the maximal solution of the original problem coincides
with the restricted one whenever U(s) ∈ D, which is the case for every s ∈ [0, 1], hence the
maximal solution is defined on [0, 1].

The next three lemmas recall well-known results from linear algebra, analysis, and random
matrix theory. Recall that smin and λmin denote respectively the minimum singular value and
eigenvalue of a matrix.

Lemma 3.21. Let A,A′ ∈ Rm×r and B ∈ Rr×n. Then

smin(A+A′) ≥ smin(A)− ‖A′‖F .

If m ≥ r, then ‖AB‖F ≥ smin(A)‖B‖F . Furthermore, if n ≥ r, then ‖AB‖F ≥ ‖A‖F smin(B).

Proof. The first statement is a consequence of, e.g., Loyka (2015), which establishes that
smin(A+A′) ≥ smin(A)− smax(A′), yielding the first inequality since smax(A′) = ‖A‖2 ≤ ‖A‖F .
As for the second one, we have

‖AB‖2F = Tr(ABB>A>) = Tr(BB>A>A) ≥ λmin(A>A)Tr(BB>) = λmin(A>A)‖B‖2F .

Since m ≥ r, the rightmost quantity is equal to smin(A)‖B‖F , proving the second statement of
the lemma. The third statement is similar.

Lemma 3.22. Let (ex,y)x∈R+,y∈R+ ⊂ E, where E is a Banach space, such that ex,y converges
uniformly to e∞,y when x → ∞, and converges uniformly to ex,∞ when y → ∞. Then there
exists e∞ ∈ E such that

lim
x,y→∞

ex,y = lim
x→∞

ex,∞ = lim
y→∞

e∞,y = e∞.

115

Proof. Let ε > 0. Since ex,y converges uniformly to e∞,y as x→∞, there exists x0 ∈ R+ such
that, for x1, x2 > x0 and y ∈ R+,

‖ex1,y − ex2,y‖ ≤
ε

2
.

Similarly, there exists y0 ∈ R+ such that, for x ∈ R+ and y1, y2 > y0,

‖ex,y1 − ex,y2‖ ≤
ε

2
.

Hence, for x1, x2 > x0 and y1, y2 > y0,

‖ex1,y1 − ex2,y2‖ ≤ ‖ex1,y1 − ex1,y2‖+ ‖ex1,y2 − ex2,y2‖ ≤ ε.

We conclude that (ex,y)x∈R+,y∈R+ is a Cauchy sequence, which therefore converges to some limit
e∞ ∈ E.

Lemma 3.23. Let W ∈ Rq×m be a standard Gaussian random matrix. Then, for MW >
√

2,
with probability at least 1− exp(− (M2

W−1)qm
16), one has ‖W‖F ≤MW

√
q
√
m.

Proof. The quantity ‖W‖2F follows a chi-squared distribution with qm degrees of freedom. Hence,
according to Laurent and Massart (2000, Lemma 1), for x ≥ 0,

P(‖W‖2F − qm ≥ 2
√
qmx+ 2x) ≤ exp(−x).

Taking x =
(M2

W−1)qm
16 , we see that

2
√
qmx =

1

2

√
M2
W − 1qm ≤ 1

2
(M2

W − 1)qm,

where the bound follows from MW >
√

2. Since furthermore 2x ≤ 1
2(M2

W − 1)qm, we obtain

2
√
qmx+ 2x ≤ (M2

W − 1)qm,

and thus
P(‖W‖2F > M2

W qm) ≤ P(‖W‖2F − qm ≥ 2
√
qmx+ 2x) ≤ exp(−x),

yielding the result.

Finally, the last lemma of the section gives a lower bound on the smallest singular value of a
matrix of the form σ(A), where σ is a bounded function applied element-wise and A belongs
to a family of random matrix. The lower bound involves the Hermite transform of σ, which is
defined in Section 3.B.

Lemma 3.24. Let σ be a function bounded by some Mσ > 0. Let W ∈ Rm×d be a standard
Gaussian random matrix, and X ∈ Rd×n a random matrix with i.i.d. unitary columns independent
of W . Then, for any integer r ≥ 2, there exists δ > 0 such that, with probability at least 1− δ, the
smallest singular value of σ(WX) is greater than 1

4

√
mηr(σ), where ηr(σ) is the r-th coefficient

in the Hermite transform of σ. Furthermore, the following expression for δ holds:

δ = n exp
(
− 3mη2

r (σ)

64M2
σn

)
+ 2n2 exp

(
− d

2Cn2/r

)
,

where C is the sub-Gaussian variance proxy of the columns of
√
dX.

116

Proof. Denoting by wi the i-th row of W and letting

Mi = σ(X>w>i)σ(wiX),

our goal is to lower bound the smallest eigenvalue value λmin(M) of M =
∑m

i=1Mi. Observe that

E(M |X) = mEw̃∼N (0,Id)

(
σ(X>w̃>)σ(w̃X)

∣∣∣X)
= mEw̃∼N (0, 1

d
Id)

(
σ
(
(
√
dX)>w̃>

)
σ
(
w̃(
√
dX)

)∣∣∣X).
Letting λmin(E(M |X)) be the smallest eigenvalue of this matrix and r ≥ 2 be an integer, Nguyen
and Mondelli (2020, Lemma 3.4) show that, with probability at least 1− 2n2 exp(− d

2Cn2/r) over
the matrix X,

λmin(E(M |X)) ≥ mη2
r (σ)

8
. (3.55)

We now apply a matrix Chernoff’s bound to lower bound with high probability the smallest
eigenvalue λmin(M |X) of M conditionally on X, as a function of λmin(E(M |X)). By Tropp
(2012, Remark 5.3), we have, for t ∈ [0, 1],

P(λmin(M) ≤ tλmin(E(M |X))|X) ≤ n exp
(
− (1− t2)λmin(E(M |X))

2R(X)

)
,

where R(X) is an almost sure upper bound on the largest eigenvalue of Mi|X, which we can take
equal to M2

σn since the largest eigenvalue of Mi is equal to ‖σ(wiX)‖22 ≤M2
σn. Taking t = 1/2,

we obtain, on the event [λmin(E(M |X)) ≥ mη2
r(σ)
8],

P
(
λmin(M) ≥ λmin(E(M |X))

2

∣∣∣X) ≥ 1− n exp
(
− 3mη2

r (σ)

64M2
σn

)
,

thus, on the event [λmin(E(M |X)) ≥ mη2
r(σ)
8],

P
(
λmin(M) ≥ mη2

r (σ)

16

)
≥ 1− n exp

(
− 3mη2

r (σ)

64M2
σn

)
.

Using (3.55), we obtain

P
(
λmin(M) ≥ mη2

r (σ)

16

)
≥
(

1− n exp
(
− 3mη2

r (σ)

64M2
σn

))
P
(
λmin(E(M |X)) ≥ mη2

r (σ)

8

)
≥
(

1− n exp
(
− 3mη2

r (σ)

64M2
σn

))(
1− 2n2 exp

(
− d

Cn2/r

))
≥ 1− n exp

(
− 3mη2

r (σ)

64M2
σn

)
− 2n2 exp

(
− d

2Cn2/r

)
.

3.D Counter-example for the ReLU case.

This section gives a proof sketch to illustrate that, with the ReLU activation σ : x 7→ max(0, x),
the smoothness of the weights can be lost during training. More precisely, we show a case where
successive weights are at distance O(1

L) at initialization and at distance Ω(1) after training.

117

For the sake of simplicity, we will assume that the depth is even, and denote it as 2L. We place
ourselves in a one-dimensional setting (i.e., d = 1). The parameters are (w1, · · · , w2L) ∈ R2L,
and the residual network writes as follows, for an input x ∈ R:

h0(t) = x

hk+1(t) = hk(t) +
1

2L
σ(wk+1(t)hk(t)), k ∈ {0, . . . , 2L− 1}.

We consider a sample consisting of a single point (x,Cx) ∈ R2
+, with C > 1 (independent of L),

and define the empirical risk as `(t) = (h2L(t)− Cx)2. The risk is minimized by gradient flow.
The weights are initialized to wk(0) = (−1)k

2L . For x ∈ R+ we have that hk(t) ≥ 0 for all
k ∈ {0, . . . , 2L}. Note that the argument of σ on the odd layers is negative. Therefore, by
definition of σ, the gradient of the loss with respect to the odd layers is zero and we have, for
k ∈ {0, . . . , L− 1}, w2k+1(t) = w2k+1(0). On the other hand, the argument of σ is positive on
the even layers, and thus,

h2L(t) =

L∏
j=1

(
1 +

w2j(t)

2L

)
x.

As a consequence, the gradient flow equation for the even layers is, for k ∈ {1, . . . , L},

dw2k

dt
(t) = − ∂`

∂w2k
(t) = 2x

(
C −

L∏
j=1

(
1 +

w2j(t)

2L

)) L∏
j=1,j 6=k

(
1 +

w2j(t)

2L

)
.

Due to the symmetry of these equations for k ∈ {1, . . . , L} and the fact that all the w2k(0) are
equal, the parameters on each even layer coincide at all times and are equal to w(t) such that

dw

dt
(t) = 2x

(
C −

(
1 +

w(t)

2L

)L)(
1 +

w(t)

2L

)L−1
.

An analysis of this ODE reveals that w(t) tends as t→∞ to w? > 0 satisfying that(
1 +

w?

2L

)L
= C. (3.56)

This can be seen by letting y(t) = C − (1 + w(t)
2L)L, and applying Grönwall’s inequality to y.

Therefore, as t → ∞, one has w2k+1(t) → − 1
2L and w2k(t) → w?, where (3.56) implies that

w? ≥ 2 log(C). This shows that the final weights are not smooth in the sense that the distance
between two successive weights is Ω(1).

This result contrasts sharply with Proposition 3.8, which shows that successive weights
remain at a distance O(1

L) throughout training, when initialized as a discretization of a Lipschitz
continuous function, and with a smooth activation function. In fact, Proposition 3.8 can be
generalized to any initialization such that successive weights are at distance O(1

L) at initialization,
which is the case in the counter-example. This means that the only broken assumption in our
counter-example is the non-smoothness of the activation function. This non-smoothness causes
the gradient flow dynamics for two successive weights to deviate, even though the weights are
initially close to each other, because they are separated by the kink of ReLU at zero.

3.E Experimental details

We use PyTorch (Paszke et al., 2019).

118

Large-depth limit. We take n = 100, d = 16, m = 32. We train for 500 iterations, and set
the learning rate to L× 10−2. The scaling of the learning rate with L is the equivalent of the L
factor in the gradient flow (3.4).

Long-time limit. We take n = 50, d = 16, m = 64, L = 64, and train for 80,000 iterations
with a learning rate of 5L× 10−3.

Real-world data. We take L = 256. The first layer is a trainable convolutional layer with
a kernel size of 5 × 5, a stride of 2, a padding of 1, and 16 out channels. We then iterate the
residual layers

hLk+1 = hLk +
1

L
bnL2,k(convL2,k(σ(bnL1,k(convL1,k(h

L
k))))), k ∈ {0, . . . , L− 1},

where convLi,k are convolutions with kernel size 3, stride of 2, and padding of 1, and bnLi,k are
batch normalizations, as is standard in residual networks (He et al., 2016a). The model is trained
using stochastic gradient descent on the cross-entropy loss for 180 epochs. The initial learning
rate is 4× 10−2 and is gradually decreased using a cosine learning rate scheduler.

119

120

4
Generalization bounds for neural ODEs and
deep residual networks

Neural ordinary differential equations (neural ODEs) are a popular family of continuous-depth
deep learning models. In this work, we consider a large family of parameterized ODEs with
continuous-in-time parameters, which include time-dependent neural ODEs. We derive a general-
ization bound for this class by a Lipschitz-based argument. By leveraging the analogy between
neural ODEs and deep residual networks, our approach yields in particular a generalization
bound for a class of deep residual networks. The bound involves the magnitude of the difference
between successive weight matrices. We illustrate numerically how this quantity affects the
generalization capability of neural networks.

Contents
4.1 Introduction . 122
4.2 Related work . 123
4.3 Generalization bounds for parameterized ODEs 124

4.3.1 Learning procedure . 124
4.3.2 Generalization bound . 125
4.3.3 Application to neural ODEs . 127

4.4 Generalization bounds for deep residual networks 128
4.4.1 Model and generalization bound . 128
4.4.2 Comparison with other bounds . 130
4.4.3 Numerical illustration . 131

4.5 Conclusion . 132
4.A Proofs . 132
4.B Experimental details . 140

121

4.1 Introduction

Neural ordinary differential equations (neural ODEs, Chen et al., 2018a) are a flexible family of
neural networks used in particular to model continuous-time phenomena. Along with variants
such as neural stochastic differential equations (neural SDEs, Tzen and Raginsky, 2019) and
neural controlled differential equations (Kidger et al., 2020), they have been used in diverse fields
such as pharmokinetics (Lu et al., 2021; Qian et al., 2021), finance (Gierjatowicz et al., 2020),
and transportation (Zhou et al., 2021). We refer to Massaroli et al. (2020) for a self-contained
introduction to this class of models.

Despite their empirical success, the statistical properties of neural ODEs have not yet been
fully investigated. What is more, neural ODEs can be thought of as the infinite-depth limit
of (properly scaled) residual neural networks (He et al., 2016a), a connection made by, e.g., E
(2017); Haber and Ruthotto (2017); Lu et al. (2018). Since standard measures of statistical
complexity of neural networks grow with depth (see, e.g., Bartlett et al., 2019), it is unclear why
infinite-depth models, including neural ODEs, should enjoy favorable generalization properties.

To better understand this phenomenon, our goal in this chapter is to study the statistical
properties of a class of time-dependent neural ODEs that write

dHt = Wtσ(Ht)dt, (4.1)

where Wt ∈ Rd×d is a weight matrix that depends on the time index t, and σ : R → R is an
activation function applied component-wise. Time-dependent neural ODEs were first introduced
by Massaroli et al. (2020) and generalize time-independent neural ODEs

dHt = Wσ(Ht)dt, (4.2)

as formulated in Chen et al. (2018a), where W ∈ Rd×d now denotes a weight matrix independent
of t. There are two crucial reasons to consider time-dependent neural ODEs rather than the
more restrictive class of time-independent neural ODEs. On the one hand, the time-dependent
formulation is more flexible, leading to competitive results on image classification tasks (Queiruga
et al., 2020, 2021). As a consequence, obtaining generalization guarantees for this family of
models is a valuable endeavor by itself. On the other hand, time dependence is required for the
correspondence with general residual neural networks to hold. More precisely, the time-dependent
neural ODE (4.1) is the limit, when the depth L goes to infinity, of the deep residual network

Hk+1 = Hk +
1

L
Wk+1σ(Hk), 0 6 k 6 L− 1, (4.3)

where (Wk)1≤k≤L ∈ Rd×d are weight matrices and σ is still an activation function. We refer to
Chapter 2 and to Sander et al. (2022b); Thorpe and van Gennip (2022) for statements that make
precise under what conditions and in which sense this limit holds, as well as its consequences for
learning. These two key reasons compel us to consider the class of time-dependent ODEs (4.1)
for our statistical study, which in turn will inform us on the properties of the models (4.2) and
(4.3).

In fact, we extend our study to the larger class of parameterized ODEs, which we define as
the mapping from x ∈ Rd to the value at time t = 1 of the solution of the initial value problem

H0 = x, dHt =

m∑
i=1

θi(t)fi(Ht)dt, (4.4)

where Ht is the variable of the ODE, θi are functions from [0, 1] into R that parameterize the ODE,
and fi are fixed functions from Rd into Rd. Time-dependent neural ODEs (4.1) are obtained by

122

setting a specific entrywise form for the functions fi in (4.4), with m = d2 (see Section 4.3.3 for
details).

Since the parameters θi belong to an infinite-dimensional space, in practice they need to
be approximated in a finite-dimensional basis of functions. For example, the residual neural
networks (4.3) can be seen as an approximation of the neural ODEs (4.1) on a piecewise constant
basis of function. But more complex choices are possible, such as B-splines (Yu et al., 2022).
However, the formulation (4.4) is agnostic from the choice of finite-dimensional approximation.
This more abstract point of view is fruitful to derive generalization bounds, for at least two
reasons. First, the statistical properties of the parameterized ODEs (4.4) only depend on the
characteristics of the functions θi and not on the specifics of the approximation scheme, so it is
more natural and convenient to study them at the continuous level. Second, their properties
can then be transferred to any specific discretization, such as the deep residual networks (4.3),
resulting in generalization bounds for the latter.

Regarding the characteristics of the functions θi, we make the structural assumption that
they are Lipschitz-continuous and uniformly bounded. This is a natural assumption to ensure
that the initial value problem (4.4) has a unique solution in the usual sense of the Picard-Lindelöf
theorem. Remarkably, this assumption on the parameters also enables us to obtain statistical
guarantees despite the fact that we are working with an infinite-dimensional set of parameters.

Contributions. We provide a generalization bound for the large class of parameterized ODEs
(4.4), which include time-dependent and time-independent neural ODEs (4.1) and (4.2). To
the best of our knowledge, this is the first available bound for neural ODEs. By leveraging the
connection between (time-dependent) neural ODEs and deep residual networks, our approach
allows us to provide a depth-independent generalization bound for the class of deep residual
networks (4.3). The bound is precisely compared with earlier results. Our bound depends in
particular on the magnitude of the difference between successive weight matrices, which is, to our
knowledge, a novel way of controlling the statistical complexity of neural networks. Numerical
illustration is provided to show the relationship between this quantity and the generalization
ability of neural networks.

Organization of the chapter. Section 4.2 presents additional related work. In Section 4.3,
we specify our class of parameterized ODEs, before stating the generalization bound for this class
and for neural ODEs as a corollary. The generalization bound for residual networks is presented
in Section 4.4 and compared to other bounds, before some numerical illustration. Section 4.5
concludes the chapter. The proof technique is discussed in the main part of the chapter, but
the core of the proofs is relegated to Section 4.A. Finally, Section 4.B contains the details of the
numerical illustrations presented in Section 4.4.3.

4.2 Related work

Hybridizing deep learning and differential equations. The fields of deep learning and
dynamical systems have recently benefited from sustained cross-fertilization. On the one hand,
a large line of work is aimed at modeling complex continuous-time phenomena by developing
specialized neural architectures. This family includes neural ODEs, but also physics-informed
neural networks (Raissi et al., 2019), neural operators (Li et al., 2021a) and neural flows (Biloš
et al., 2021). On the other hand, successful recent advances in deep learning, such as diffusion
models, are theoretically supported by ideas from differential equations (Huang et al., 2021).

123

Generalization for continuous-time neural networks. Obtaining statistical guarantees
for continuous-time neural networks has been the topic of a few recent works. For example, we
consider in Chapter 5 a class of continuous-time recurrent neural networks (RNNs) that can
be written as input-driven ODEs. They show that these models are actually kernel methods,
which entails a generalization bound. Lim et al. (2021) also show a generalization bound for
ODE-like RNNs, and argue that adding stochasticity (that is, replacing ODEs with SDEs) helps
with generalization. Yin et al. (2021) propose a neural ODE model to enable transfer learning
across multiple environments and provide a generalization bound in this setting.

Lipschitz-based generalization bounds for deep neural networks. From a high-level
perspective, our proof technique is similar to previous works (Bartlett et al., 2017; Neyshabur
et al., 2018) that show generalization bounds for deep neural networks, which scale at most
polynomially with depth. More precisely, these authors show that the network satisfies some
Lipschitz continuity property (either with respect to the input or to the parameters), then
exploit results on the statistical complexity of Lipschitz function classes. Under stronger norm
constraints, these bounds can even be made depth-independent (Golowich et al., 2018). However,
their approach differs from ours insofar as we consider neural ODEs and the associated family
of deep neural networks, whereas they are solely interested in finite-depth neural networks.
As a consequence, their hypotheses on the class of neural networks differ from ours. Section
4.4 develops a more thorough comparison. Similar Lipschitz-based techniques have also been
applied to obtain generalization bounds for deep equilibrium networks (Pabbaraju et al., 2021).
Going beyond statistical guarantees, Béthune et al. (2022) study approximation and robustness
properties of Lipschitz neural networks.

4.3 Generalization bounds for parameterized ODEs

We start by recalling the usual supervised learning setup and introduce some notation in
Section 4.3.1, before presenting our parameterized ODE model and the associated generalization
bound in Section 4.3.2. We then apply the bound to the specific case of time-invariant neural
ODEs in Section 4.3.3.

4.3.1 Learning procedure

We place ourselves in a supervised learning setting. Let us introduce the notation that is used
throughout the chapter (up to Section 4.4.1). The input data is a sample of n i.i.d. pairs (xi, yi)
with the same distribution as some generic pair (x, y), where x (resp. y) takes its values into
some bounded ball X = B(0, RX) (resp. Y = B(0, RY)) of Rd, for some RX , RY > 0. This
setting encompasses regression but also classification tasks by (one-hot) encoding labels in Rd.
Note that we assume for simplicity that the input and output have the same dimension, but our
analysis easily extends to the case where they have different dimensions by adding (parameterized)
projections at the beginning or at the end of our model. Given a parameterized class of models
FΘ = {Fθ, θ ∈ Θ}, the parameter θ is fitted by empirical risk minimization using a loss function
` : Rd × Rd → R+ that we assume to be Lipschitz with respect to its first argument, with a
Lipschitz constant K` > 0. In the following, we write for the sake of conciseness that such a
function is K`-Lipschitz. We also assume that `(x, x) = 0 for all x ∈ Rd. The theoretical and
empirical risks are respectively defined, for any θ ∈ Θ, by

R(θ) = E[`(Fθ(x), y)] and R̂n(θ) =
1

n

n∑
i=1

`
(
Fθ(xi), yi

)
,

124

where the expectation E is evaluated with respect to the distribution of (x, y). Letting θ̂n a
minimizer of the empirical risk, the generalization problem consists in providing an upper bound
on the difference R(θ̂n)− R̂n(θ̂n).

4.3.2 Generalization bound

Model. We start by making more precise the parameterized ODE model introduced in Section
4.1. The setup presented here can easily be specialized to the case of neural ODEs, as we will
see in Section 4.3.3. Let f1, . . . , fm : Rd → Rd be fixed Kf -Lipschitz functions for some Kf > 0.
Denote by M their supremum on X (which is finite since these functions are continuous). The
parameterized ODE Fθ is defined by the following initial value problem that maps some x ∈ Rd
to Fθ(x) ∈ Rd:

H0 = x

dHt =
m∑
i=1

θi(t)fi(Ht)dt

Fθ(x) = H1,

(4.5)

where the parameter θ = (θ1, . . . , θm) is a function from [0, 1] to Rm. We have to impose
constraints on θ for the model Fθ to be well-defined. To this aim, we endow (essentially bounded)
functions from [0, 1] to Rm with the following (1,∞)-norm

‖θ‖1,∞ = sup
06t61

m∑
i=1

|θi(t)|. (4.6)

We can now define the set of parameters

Θ = {θ : [0, 1]→ Rm, ‖θ‖1,∞ 6 RΘ and θi is KΘ-Lipschitz for i ∈ {1, . . . ,m}}, (4.7)

for some RΘ > 0 and KΘ > 0. Then, for θ ∈ Θ, the following Proposition, which is a consequence
of the Picard-Lindelöf Theorem, shows that the mapping x 7→ Fθ(x) is well-defined.

Proposition 4.1 (Well-posedness of the parameterized ODE). For θ ∈ Θ and x ∈ Rd, there
exists a unique solution to the initial value problem (4.5).

Proof. See Section 4.A.1.

An immediate consequence of Proposition 4.1 is that it is legitimate to take FΘ = {Fθ, θ ∈ Θ}
for our model class.

When KΘ = 0, the parameter space Θ is finite-dimensional since each θi is constant. This
setting corresponds to the time-independent neural ODEs of Chen et al. (2018a). In this case,
the norm (4.6) reduces to the ‖ · ‖1 norm over Rm. Note that, to fit exactly the formulation of
Chen et al. (2018a), the time t can be added as a variable of the functions fi, which amounts
to adding a new coordinate to Ht. This does not change the subsequent analysis. In the richer
time-dependent case where KΘ > 0, the set Θ belongs to an infinite-dimensional space and
therefore, in practice, θi is approximated in a finite basis of functions, such as Fourier series,
Chebyshev polynomials, and splines. We refer to Massaroli et al. (2020) for a more detailed
discussion, including formulations of the back-propagation algorithm (a.k.a. the adjoint method)
in this setting.

Note that we consider the case where the dynamics at time t are linear with respect to the
parameter θi(t). Nevertheless, we emphasize that the mapping x 7→ Fθ(x) remains a highly non-
linear function of each θi(t). To fix ideas, this setting can be seen as analogous to working with
pre-activation residual networks instead of post-activation (see He et al., 2016b, for definitions of
the terminology), which is a mild modification.

125

Statistical analysis. Since Θ is a subset of an infinite-dimensional space, complexity measures
based on the number of parameters cannot be used. Instead, our approach is to resort to
Lipschitz-based complexity measures. More precisely, to bound the complexity of our model
class, we propose two building blocks: we first show that the model Fθ is Lipschitz-continuous
with respect to its parameters θ. This allows us to bound the complexity of the model class
depending on the complexity of the parameter class. In a second step, we assess the complexity
of the class of parameters itself.

Starting with our first step, we show the following estimates for our class of parameterized
ODEs. Here and in the following, ‖ · ‖ denotes the `2 norm over Rd.

Proposition 4.2 (The parameterized ODE is bounded and Lipschitz). Let θ and θ̃ ∈ Θ. Then,
for any x ∈ X ,

‖Fθ(x)‖ 6 RX +MRΘ exp(KfRΘ)

and
‖Fθ(x)− Fθ̃(x)‖ 6 2MKfRΘ exp(2KfRΘ)‖θ − θ̃‖1,∞.

Proof. See Section 4.A.2.

The proof, given in the Appendix, makes extensive use of Grönwall’s inequality, a standard
tool to obtain estimates in the theory of ODEs, in order to bound the magnitude of the solution
Ht of (4.5).

The next step is to assess the magnitude of the covering number of Θ. Recall that, for ε > 0,
the ε-covering number of a metric space is the number of balls of radius ε needed to completely
cover the space, with possible overlaps.

Proposition 4.3 (Covering number of the ODE parameter class). For ε > 0, let N (ε) be the
ε-covering number of Θ endowed with the (1,∞)-norm (4.6). Then

logN (ε) 6 m log
(16mRΘ

ε

)
+
m2KΘ log(4)

ε
.

Proof. See Section 4.A.3.

Proposition 4.3 is a consequence of a classical result, see, e.g., Kolmogorov and Tikhomirov
(1959, example 3 of paragraph 2). A self-contained proof is given in the Appendix for completeness.
We also refer to Gottlieb et al. (2017) for more general results on covering numbers of Lipschitz
functions.

The two propositions above and an ε-net argument allow to prove the first main result of the
chapter.

Theorem 4.4 (Generalization bound for parameterized ODEs). Consider the class of parame-
terized ODEs FΘ = {Fθ, θ ∈ Θ}, where Fθ is given by (4.5) and Θ by (4.7). Let δ > 0.

Then, for n ≥ 9 max(m−2R−2
Θ , 1), with probability at least 1− δ,

R(θ̂n) 6 R̂n(θ̂n) +B

√
(m+ 1) log(RΘmn)

n
+B

m
√
KΘ

n1/4
+

B√
n

√
log

1

δ
,

where B is a constant depending on K`,Kf , RΘ, RX , RY ,M . More precisely,

B = 6K`Kf exp(KfRΘ)
(
RX +MRΘ exp(KfRΘ) +RY

)
.

Proof. See Section 4.A.4.

126

Three terms appear in our upper bound of R(θ̂n)− R̂n(θ̂n). The first and the third ones are
classical (see, e.g. Bach, 2023, Sections 4.4 and 4.5). On the contrary, the second term is more
surprising with its convergence rate in O(n−1/4). This slower convergence rate is due to the fact
that the space of parameters is infinite-dimensional. In particular, for KΘ = 0, corresponding to a
finite-dimensional space of parameters, we recover the usual O(n−1/2) convergence rate, however
at the cost of considering a much more restrictive class of models. Finally, it is noteworthy
that the dimensionality appearing in the bound is not the input dimension d but the number of
mappings m.

Note that this result is general and may be applied in a number of contexts that go beyond
deep learning, as long as the instantaneous dependence of the ODE dynamics to the parameters is
linear. One such example is the predator-prey model, describing the evolution of two populations
of animals, which reads dxt = xt(α − βyt)dt and dyt = −yt(γ − δxt)dt, where xt and yt are
real-valued variables and α, β, γ and δ are model parameters. This ODE falls into the framework
of this section, if one were to estimate the parameters by empirical risk minimization. We refer
to Deuflhard and Röblitz (2015, section 3) for other examples of parameterized biological ODE
dynamics and methods for parameter identification.

Nevertheless, for the sake of brevity, we focus on applications of this result to deep learning,
and more precisely to neural ODEs, which is the topic of the next section.

4.3.3 Application to neural ODEs

As explained in Section 4.1, parameterized ODEs include both time-dependent and time-
independent neural ODEs. Since the time-independent model is more common in practice,
we develop this case here and leave the time-dependent case to the reader (the result is actually
given as Theorem 1.5 in Chapter 1). We thus consider the following neural ODE:

H0 = x

dHt = Wσ(Ht)dt

FW (x) = H1,

(4.8)

where W ∈ Rd×d is a weight matrix, and σ : R→ R is an activation function applied component-
wise. We assume σ to be Kσ-Lipschitz for some Kσ > 0. This assumption is satisfied by all
common activation functions. To put the model in the form of Section 4.3.2, denote e1, . . . , ed
the canonical basis of Rd. Then the dynamics (4.8) can be reformulated as

dHt =
d∑

i,j=1

Wijσij(Ht)dt,

where σij(x) = σ(xj)ei. Each σij is itself Kσ-Lipschitz, hence we fall in the framework of
Section 4.3.2. In other words, the functions fi of our general parameterized ODE model form a
shallow neural network with pre-activation. Denote by ‖W‖1,1 the sum of the absolute values
of the elements of W . We consider the following set of parameters, which echoes the set Θ of
Section 4.3.2:

W = {W ∈ Rd×d, ‖W‖1,1 6 RW}, (4.9)

for some RW > 0. We can then state the following result as a consequence of Theorem 4.4.

Corollary 4.5 (Generalization bound for neural ODEs). Consider the class of neural ODEs
FW = {FW ,W ∈ W}, where FW is given by (4.8) and W by (4.9). Let δ > 0.

127

Then, for n ≥ 9R−1
W max(d−4R−1

W , 1), with probability at least 1− δ,

R(Ŵn) 6 R̂n(Ŵn) +B(d+ 1)

√
log(RWdn)

n
+

B√
n

√
log

1

δ
,

where B is a constant depending on K`,Kσ, RW , RX , RY ,M . More precisely,

B = 6
√

2K`Kσ exp(KσRW)
(
RX +MRW exp(KσRW) +RY

)
.

Proof. See Section 4.A.5.

Note that the term in O(n−1/4) from Theorem 4.4 is now absent. Since we consider a
time-independent model, we are left with the other two terms, recovering a standard O(n−1/2)
convergence rate.

4.4 Generalization bounds for deep residual networks

As highlighted in Section 4.1, there is a strong connection between neural ODEs and discrete
residual neural networks. The previous study of the continuous case in Section 4.3 paves the way
for deriving a generalization bound in the discrete setting of residual neural networks, which is of
great interest given the pervasiveness of this architecture in modern deep learning.

We begin by presenting our model and result in Section 4.4.1, before detailing the comparison
of our approach with other papers in Section 4.4.2 and giving some numerical illustration in
Section 4.4.3.

4.4.1 Model and generalization bound

Model. We consider the following class of deep residual networks:

H0 = x

Hk+1 = Hk +
1

L
Wk+1σ(Hk), 0 6 k 6 L− 1

FW(x) = HL,

(4.10)

where the parameter W = (Wk)1≤k≤L ∈ RL×d×d is a set of weight matrices and σ is still a
Kσ-Lipschitz activation function. To emphasize that W is here a third-order tensor, as opposed
to the case of time-invariant neural ODEs in Section 4.3.3, where W was a matrix, we denote it
with a bold notation. We also assume in the following that σ(0) = 0. This assumption could be
alleviated at the cost of additional technicalities. Owing to the 1/L scaling factor, the deep limit
of this residual network is a (time-dependent) neural ODE of the form studied in Section 4.3.
We refer to Chapter 2 for further discussion on the link between scaling factors and deep limits.
We simply note that this scaling factor is not common practice, but preliminary experiments
show it does not hurt performance and can even improve performance in a weight-tied setting
(Sander et al., 2022b). The space of parameters is endowed with the following (1, 1,∞)-norm

‖W‖1,1,∞ = sup
16k6L

d∑
i,j=1

|Wk,i,j |. (4.11)

Also denoting ‖ · ‖∞ the element-wise maximum norm for a matrix, we consider the class of
matrices

W =
{
W ∈ RL×d×d, ‖W‖1,1,∞ 6 RW and

‖Wk+1 −Wk‖∞ 6
KW
L

for 1 ≤ k ≤ L− 1
}
,

(4.12)

128

for some RW > 0 and KW > 0, which is a discrete analogous of the set Θ defined by (4.7).
In particular, the upper bound on the difference between successive weight matrices is to our
knowledge a novel way of constraining the parameters of a neural network. It corresponds
to the discretization of the Lipschitz continuity of the parameters introduced in (4.7). By
analogy, we refer to it as a constraint on the Lipschitz constant of the weights. Note that, for
standard initialization schemes, the difference between two successive matrices is of the order
O(1) and not O(1/L), or, in other words, KW scales as O(L). This issue can be solved by adding
correlations across layers at initialization by taking, for k ∈ {1, . . . , L} and i, j ∈ {1, . . . , d},
Wk,i,j = 1√

d
fi,j(

k
L), where fi,j a smooth function, for example a Gaussian process with an RBF

kernel. Note that such a non-i.i.d. initialization scheme is necessary for the correspondence
between deep residual networks and neural ODEs to hold, as shown in Chapter 2. Furthermore,
Sander et al. (2022b) prove that, with such an initialization scheme, the constraint on the
Lipschitz constant also holds for the trained network, with KW independent of L.

Statistical analysis. At first sight, a reasonable strategy would be to bound the distance
between the model (4.10) and its limit L→∞ that is a parameterized ODE, then apply Theorem
4.4. This idea is straightforward, but comes at the cost of an additional O(1/L) term in the
generalization bound, as a consequence of the discretization error between the discrete iterations
(4.10) and their continuous limit. For example, this strategy is used in Chapter 5 to prove a
generalization bound for discrete RNNs and the additional error term is incurred. We follow
another way by mimicking all the proof with a finite L. This is a longer approach but it yields a
sharper result since we avoid the O(1/L) discretization error. The proof structure is similar to
Section 4.3: the following two Propositions are the discrete counterparts of Propositions 4.2 and
4.3.

Proposition 4.6 (The residual network is bounded and Lipschitz). Let W and W̃ ∈ W. Then,
for any x ∈ X ,

‖FW(x)‖ 6 RX exp(KσRW)

and
‖FW(x)− FW̃(x)‖ 6 RX

RW
exp(2KσRW)‖W − W̃‖1,1,∞.

Proof. See Section 4.A.6.

Proposition 4.7 (Covering number of the residual network parameter class). Let N (ε) be the
covering number of W endowed with the (1, 1,∞)-norm (4.11). Then

logN (ε) 6 d2 log
(16d2RW

ε

)
+
d4KW log(4)

ε
.

Proof. See Section 4.A.7.

The proof of Proposition 4.6 is a discrete analogous of Proposition 4.2. On the other hand,
Proposition 4.7 can be proven as a consequence of Proposition 4.3, by showing the existence of
an injective isometry from W into a set of the form (4.7). Equipped with these two propositions,
we are now ready to state the generalization bound for our class of residual neural networks.

Theorem 4.8 (Generalization bound for deep residual networks). Consider the class of neural
networks FW = {FW,W ∈ W}, where FW is given by (4.10) and W by (4.12). Let δ > 0.

Then, for n ≥ 9R−1
W max(d−4R−1

W , 1), with probability at least 1− δ,

R(Ŵn) 6 R̂n(Ŵn) +B(d+ 1)

√
log(RWdn)

n
+B

d2
√
KW

n1/4
+

B√
n

√
log

1

δ
, (4.13)

129

where B is a constant depending on K`,Kσ, RW , RX , RY . More precisely,

B = 6
√

2K` max
(exp(KσRW)

RW
, 1
)

(RX exp(KσRW) +RY).

Proof. See Section 4.A.8.

We emphasize that this result is non-asymptotic and valid for any width d and depth L.
Furthermore, the depth L does not appear in the upper bound (4.13). This should not surprise
the reader since Theorem 4.4 can be seen as the deep limit L → ∞ of this result, hence we
expect that our bound remains finite when L→∞ (otherwise the bound of Theorem 4.4 would
be infinite). However, L appears as a scaling factor in the definition of the neural network (4.10)
and of the class of parameters (4.12). This is crucial for the depth independence to hold, as we
will comment further on in the next section.

Furthermore, the depth independence comes at the price of a O(n−1/4) convergence rate.
Note that, by taking KW = 0, we obtain a generalization bound for weight-tied neural networks
with a faster convergence rate in n, since the term in O(n−1/4) vanishes.

4.4.2 Comparison with other bounds

As announced in Section 4.2, we now compare Theorem 4.8 with the results of Bartlett et al.
(2017) and Golowich et al. (2018). Beginning by Bartlett et al. (2017), we first state a slightly
weaker version of their result to match our notations and facilitate comparison.

Corollary 4.9 (of Theorem 1.1 of Bartlett et al. (2017)). Consider the class of neural networks
FW̃ = {FW,W ∈ W̃}, where FW is given by (4.10) and W̃ = {W ∈ RL×d×d, ‖W‖1,1,∞ 6 RW}.

Assume that L ≥ RW and Kσ = 1, and let γ, δ > 0. Consider (x, y), (x1, y1), . . . , (xn, yn)
drawn i.i.d. from any probability distribution over Rd × {1, . . . d} such that a.s. ‖x‖ ≤ RX .

Then, with probability at least 1− δ, for every W ∈ W̃,

P
(

argmax
1≤j≤d

FW(x)j 6= y
)
≤ R̂n(W) + C

RXRW exp(RW) log(d)
√
L

γ
√
n

+
C√
n

√
log

1

δ
, (4.14)

where R̂n(W) ≤ n−1
∑n

i=1 1FW(xi)yi≤γ+maxj 6=yi f(xi)j and C is a universal constant.

Proof. See Section 4.A.9.

We first note that the setting is slightly different from ours: they consider a large margin
predictor for a multi-class classification problem, whereas we consider a general Lipschitz-
continuous loss `. This being said, the model class is identical to ours, except for one notable
difference: the constraint on the Lipschitz constant of the weights appearing in equation (4.12)
is not required here.

Comparing (4.13) and (4.14), we see that our bound enjoys a better dependence on the depth
L but a worse dependence on the width d. Regarding the depth, our bound (4.13) does not
depend on L, whereas the bound (4.14) scales as O(

√
L). This comes from the fact that we

consider a smaller set of parameters (4.12), by adding the constraint on the Lipschitz norm of
the weights. This constraint allows us to control the complexity of our class of neural networks
independently of depth, as long as KW is independent of L. If KW scales as O(L), which is
the case for i.i.d. initialization schemes, our result also features a scaling in O(

√
L). As for

the width, Bartlett et al. (2017) achieve a better dependence by a subtle covering numbers
argument that takes into account the geometry induced by matrix norms. Since the chapter
focuses on a depth-wise analysis by leveraging the similarity between residual networks and their

130

infinite-depth counterpart, improving the scaling of our bound with width is left for future work.
Finally, note that both bounds have a similar exponential dependence in RW .

As for Golowich et al. (2018), they consider non-residual neural networks of the form
x 7→MLσ(ML−1σ(. . . σ(M1x))). These authors show that the generalization error of this class
scales as

O
(
RX

ΠF

√
log
(

ΠF
πS

)
n1/4

)
,

where ΠF is an upper-bound on the product of the Frobenius norms
∏L
k=1 ‖Mk‖F and πS is

a lower-bound on the product of the spectral norms
∏L
k=1 ‖Mk‖. Under the assumption that

both ΠF and ΠF/πS are bounded independently of L, their bound is indeed depth-independent,
similarly to ours. Interestingly, as ours, the bound presents a O(n−1/4) convergence rate instead
of the more usual O(n−1/2). However, the assumption that ΠF is bounded independently of L
does not hold in our residual setting, since we have Mk = I + 1

LWk and thus we can lower-bound

L∏
k=1

‖Mk‖F >
L∏
k=1

(
‖I‖F −

1

L
‖Mk‖F

)
≥
(√
d− RW

L

)L ≈ dL2 e−RW√d .
In our setting, it is a totally different assumption, the constraint that two successive weight
matrices should be close to one another, which allows us to derive depth-independent bounds.

4.4.3 Numerical illustration

The bound of Theorem 4.8 features two quantities that depend on the class of neural networks,
namely RW that bounds a norm of the weight matrices and KW that bounds the maximum
difference between two successive weight matrices, a.k.a. the Lipschitz constant of the weights.
The first one belongs to the larger class of norm-based bounds that has been extensively studied
(see, e.g., Neyshabur et al., 2015a). We are therefore interested in getting a better understanding
of the role of the second quantity, which is much less common, in the generalization ability of
deep residual networks.

To this aim, we train deep residual networks (4.10) (of width d = 30 and depth L = 1000)
on MNIST. We prepend the network with an initial weight matrix to project the data x from
dimension 768 to dimension 30, and similarly postpend it with another matrix to project the
output MW(x) into dimension 10 (i.e. the number of classes in MNIST). Finally, we consider
two training settings: either the initial and final matrices are trained, or they are fixed random
projections. We use the initialization scheme outlined in Section 4.4.1. Further experimental
details are postponed to the Appendix.

We report in Figure 4.1a the generalization gap of the trained networks, that is, the difference
between the test and train errors (in terms of cross entropy loss), as a function of the maximum
Lipschitz constant of the weights sup0≤k≤L−1(‖Wk+1−Wk‖∞). We observe a positive correlation
between these two quantities. To further analyze the relationship between the Lipschitz constant
of the weights and the generalization gap, we then add the penalization term λ ·

(∑L−1
k=0 ‖Wk+1−

Wk‖2F
)1/2 to the loss, for some λ > 0. The obtained generalization gap is reported in Figure 4.1b

as a function of λ. We observe that this penalization allows to reduce the generalization gap.
These two observations go in support of the fact that a smaller Lipschitz constant improves the
generalization power of deep residual networks, in accordance with Theorem 4.8.

However, note that we were not able to obtain an improvement on the test loss by adding the
penalization term. This is not all too surprising since previous work has investigated a related
penalization, in terms of the Lipschitz norm of the layer sequence (Hk)0≤k≤L, and was similarly
not able to report any improvement on the test loss (Kelly et al., 2020).

131

(a) Generalization gap as a function of the maxi-
mum Lipschitz constant of the weights. Each dot
corresponds to a network trained with a varying
number of epochs (between 1 and 30).

(b) Generalization gap as a function of the penal-
ization factor λ. The experiment is repeated 20
times for each value of λ. Each time, the network is
trained for 50 epochs. The initial and final matrices
are random.

Figure 4.1: Link between the generalization gap and the Lipschitz constant of the weights

4.5 Conclusion

We provide a generalization bound that applies to a wide range of parameterized ODEs. As a
consequence, we obtain the first generalization bounds for time-independent and time-dependent
neural ODEs. By discretizing our reasoning, we also provide a bound for a class of deep residual
networks. In the future, it should also be interesting to extend our result to the more involved
case of neural SDEs, which have also been found to be deep limits of a large class of residual
neural networks, as shown in Chapter 2 and in Cohen et al. (2021).

4.A Proofs

4.A.1 Proof of Proposition 4.1

The function

(t, h) 7→
m∑
i=1

θi(t)fi(h)

is locally Lipschitz-continuous with respect to its first variable and globally Lipschitz-continuous
with respect to its second variable. Therefore the existence and uniqueness of the solution of the
initial value problem (4.5) for t ≥ 0 comes as a consequence of the Picard-Lindelöf theorem (see,
e.g., Luk, 2017 for a self-contained presentation and Arnold, 1992 for a textbook).

4.A.2 Proof of Proposition 4.2

For x ∈ X , let H be the solution of the initial value problem (4.5) with parameter θ and with
the initial condition H0 = x. Let us first upper-bound ‖fi(Ht)‖ for all i ∈ {1, . . . ,m} and t > 0.

132

To this aim, for t ≥ 0, we have

‖Ht −H0‖ =
∥∥∥∫ t

0

m∑
i=1

θi(s)fi(Hs)ds
∥∥∥

6
∫ t

0

m∑
i=1

|θi(s)|‖fi(H0)‖ds+

∫ t

0

m∑
i=1

|θi(s)|‖fi(Hs)− fi(H0)‖ds

6M
∫ t

0

m∑
i=1

|θi(s)|ds+Kf

∫ t

0

(
‖Hs −H0‖

m∑
i=1

|θi(s)|
)
ds

6 tMRΘ +KfRΘ

∫ t

0
‖Hs −H0‖ds.

Next, Grönwall’s inequality yields, for t ∈ [0, 1],

‖Ht −H0‖ 6 tMRΘ exp(tKfRΘ) 6MRΘ exp(KfRΘ).

Hence
‖Ht‖ 6 ‖H0‖+ ‖Ht −H0‖ 6 RX +MRΘ exp(KfRΘ),

yielding the first result of the proposition. Furthermore, for any i ∈ {1, . . . ,m},

‖fi(Ht)‖ 6 ‖fi(Ht)− fi(H0)‖+ ‖fi(H0)‖ 6M
(
KfRΘ exp(KfRΘ) + 1

)
=: C.

Now, let H̃ be the solution of the initial value problem (4.5) with another parameter θ̃ and with
the same initial condition H̃0 = x. Then, for any t > 0,

Ht − H̃t =

∫ t

0

m∑
i=1

θi(s)fi(Hs)ds−
∫ t

0

m∑
i=1

θ̃i(s)fi(H̃s)ds.

Hence

‖Ht − H̃t‖ =
∥∥∥∫ t

0

m∑
i=1

(θi(s)− θ̃i(s))fi(Hs)ds+

∫ t

0

m∑
i=1

θ̃i(s)(fi(Hs)− fi(H̃s))ds
∥∥∥

6
∫ t

0

m∑
i=1

|θi(s)− θ̃i(s)|‖fi(Hs)‖ds+

∫ t

0

m∑
i=1

|θ̃i(s)|‖fi(Hs)− fi(H̃s)‖ds

6
∫ t

0

m∑
i=1

|θi(s)− θ̃i(s)|‖fi(Hs)‖ds+Kf

∫ t

0

(
‖Hs − H̃s‖

m∑
i=1

|θ̃i(s)|
)
ds

6 tC‖θ − θ̃‖1,∞ +KfRΘ

∫ t

0
‖Hs − H̃s‖ds.

Then Grönwall’s inequality implies that, for t ∈ [0, 1],

‖Ht − H̃t‖ 6 tC‖θ − θ̃‖1,∞ exp(tKfRΘ)

6M(KfRΘ exp(KfRΘ) + 1) exp(KfRΘ)‖θ − θ̃‖1,∞
6 2MKfRΘ exp(2KfRΘ)‖θ − θ̃‖1,∞

since 1 6 KfRΘ exp(KfRΘ) because Kf > 1, RΘ > 1.

133

4.A.3 Proof of Proposition 4.3

We first prove the result for m = 1. Let Gx be an ε/2KΘ-grid of [0, 1] and Gy an ε/2-grid of
[−RΘ, RΘ]. Formally, we can take

Gx =
{ kε

2KΘ
, 0 6 k 6

⌈2KΘ

ε

⌉}
and Gy =

{
−RΘ +

kε

2
, 1 6 k 6

⌊4RΘ

ε

⌋}
Our cover consists of all functions that start at a point of Gy, are piecewise linear with kinks in
Gx, where each piece has slope +KΘ or −KΘ. Hence our cover is of size

N1(ε) = |Gy|2|Gx| 6
4RΘ

ε
2

2KΘ
ε

+2 =
16RΘ

ε
4
KΘ
ε .

Now take a function f : [0, 1] → R that is uniformly bounded by RΘ and KΘ-Lipschitz. We
construct a cover member at distance ε from f as follows. Choose a point y0 in Gy at distance
at most ε/2 from f(0). Since f(0) ∈ [−RΘ, RΘ], this is clearly possible, except perhaps at the
end of the interval. To verify that it is possible at the end of the interval, note that RΘ is at a
distance less than ε/2 of the last element of the grid, since

RΘ −
(
−RΘ +

⌊4RΘ

ε

⌋ε
2

)
= 2RΘ −

⌊4RΘ

ε

⌋ε
2
∈
[
2RΘ −

4RΘ

ε

ε

2
, 2RΘ −

(4RΘ

ε
− 1
)ε

2

]
=
[
0,
ε

2

]
.

Then, among the cover members that start at y0, choose the one which is closest to f at each
point of Gx (in case of equality, pick any one). Let us denote this cover member as f̃ . Let us
show recursively that f is at `∞-distance at most ε from f̃ . More precisely, let us first show by
induction on k that for all k ∈ {0, . . . , d2KΘ

ε e},∣∣f(kε

2KΘ

)
− f̃

(kε

2KΘ

)∣∣ 6 ε

2
. (4.15)

First, |f(0)− f̃(0)| 6 ε
2 . Then, assume that (4.15) holds for some k. Then we have the following

inequalities:

f̃
(kε

2KΘ

)
− ε 6 f

(kε

2KΘ

)
− ε

2
(by induction)

6 f
((k + 1)ε

2KΘ

)
(f is KΘ-Lipschitz)

6 f
(kε

2KΘ

)
+
ε

2
(f is KΘ-Lipschitz)

6 f̃
(kε

2KΘ

)
+ ε (by induction).

Moreover, by definition, f̃
((k+1)ε

KΘ

)
is the closest point to f

((k+1)ε
KΘ

)
among{

f̃
(kε
KΘ

)
− ε

2
, f̃
(kε
KΘ

)
+
ε

2

}
.

The bounds above show that, among those two points, at least one is at distance no more than
ε/2 from f

((k+1)ε
KΘ

)
. This shows (4.15) at rank k + 1.

To conclude, take now x ∈ [0, 1]. There exists k ∈ {0, . . . , d2KΘ
ε e} such that x is at distance

at most ε/4KΘ from kε
2KΘ

. Again, this is clear except perhaps at the end of the interval, where it
is also true since

1−
⌈2KΘ

ε

⌉ ε

2KΘ
≤ 1− 2KΘ

ε

ε

2KΘ
= 0,

134

meaning that 1 is located between two elements of the grid Gx, showing that it is at distance at
most ε/4KΘ from one element of the grid. Then, we have

|f(x)− f̃(x)| 6
∣∣∣f(x)− f

(kε

2KΘ

)∣∣∣+
∣∣∣f(kε

2KΘ

)
− f̃

(kε

2KΘ

)∣∣∣+
∣∣∣f̃(kε

2KΘ

)
− f̃(x)

∣∣∣
6
ε

4
+
ε

2
+
ε

4
,

where the first and third terms are upper-bounded because f and f̃ are KΘ-Lip, while the second
term is upper bounded by (4.15). Hence ‖f − f̃‖∞ 6 ε, proving the result for m = 1.

Finally, to prove the result for a general m, note that the Cartesian product of ε/m-covers for
each coordinate of θ gives an ε-cover for θ. Indeed, consider such covers and take θ ∈ Θ. Since
each coordinate of θ is uniformly bounded by RΘ and KΘ-Lipschitz, the proof above shows the
existence of a cover member θ̃ such that, for all i ∈ {1, . . . ,m}, ‖θi − θ̃i‖∞ ≤ ε/m. Then

‖θ − θ̃‖1,∞ = sup
06t61

m∑
i=1

|θi(t)− θ̃i(t)| ≤ sup
06t61

m∑
i=1

‖θi − θ̃i‖∞ ≤ ε.

As a consequence, we conclude that

N (ε) ≤
(
N1

(ε
m

))m
=
(16mRΘ

ε

)m
4
m2KΘ
ε .

Taking the logarithm yields the result.

4.A.4 Proof of Theorem 4.4

First note that, for any θ ∈ Θ, x ∈ X and y ∈ Y,

|`(Fθ(x), y)| 6 |`(Fθ(x), y)− `(y, y)|+ |`(y, y)| 6 K`‖Fθ(x)− y‖,

since, by assumption, ` is K`-Lipschitz with respect to its first variable and `(y, y) = 0. Thus

|`(Fθ(x), y)| 6 K`(‖Fθ(x)‖+ ‖y‖) 6 K`

(
RX +MRΘ exp(KfRΘ) +RY

)
=: M,

by Proposition 4.2.
Now, taking δ > 0, a classical computation involving McDiarmid’s inequality (see, e.g.,

Wainwright, 2019, proof of Theorem 4.10) yields that, with probability at least 1− δ,

R(θ̂n) 6 R̂n(θ̂n) + E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
+
M
√

2√
n

√
log

1

δ
.

Denote C = 2MKfRΘ exp(2KfRΘ). Then we show that R and R̂n are CK`-Lipschitz with
respect to (θ, ‖ · ‖1,∞): for θ, θ̃ ∈ Θ,

|R(θ)−R(θ̃)| 6 E
[
|`(Fθ(x), y)− `(Fθ̃(x), y)|

]
6 K`E

[
‖Fθ(x)− Fθ̃(x)‖

]
6 CK`‖θ − θ̃‖1,∞,

according to Proposition 4.2. The proof for the empirical risk is very similar.
Let now ε > 0 and N (ε) be the covering number of Θ endowed with the (1,∞)-norm. By

Proposition 4.3,

logN (ε) 6 m log
(16mRΘ

ε

)
+
m2KΘ log(4)

ε
.

135

Take θ(1), . . . , θ(N (ε)) the associated cover elements. Then, for any θ ∈ Θ, denoting θ(i) the cover
element at distance at most ε from θ,

|R(θ)− R̂n(θ)| 6 |R(θ)−R(θ(i))|+ |R(θ(i))− R̂n(θ(i))|+ |R̂n(θ(i))− R̂n(θ)|
6 2CK`ε+ sup

i∈{1,...,N (ε)}
|R(θ(i))− R̂n(θ(i))|.

Hence
E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
6 2CK`ε+ E

[
sup

i∈{1,...,N (ε)}
|R(θ(i))− R̂n(θ(i))|

]
.

Since R̂n(θ) is the average of n independent random variables, which are each almost surely
bounded byM , it isM/

√
n sub-Gaussian, hence we have the classical inequality on the expectation

of the maximum of sub-Gaussian random variables (see, e.g., Rigollet and Hütter, 2017, Theorem
1.14)

E
[

sup
i∈{1,...,N (ε)}

|R(θ(i))− R̂n(θ(i))|
]
6M

√
2 log(2N (ε))

n
.

The remainder of the proof consists in computations to put the result in the required format.
More precisely, we have

E
[

sup
θ∈Θ
|R(θ)− R̂n(θ)|

]
6 2CK`ε+M

√
2 log(2N (ε))

n

6 2CK`ε+M

√
2 log(2) + 2m log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n

6 2CK`ε+M

√
2(m+ 1) log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n
.

The third step is valid if 16mRΘ
ε > 2. We will shortly take ε to be equal to 1√

n
, thus this condition

holds true under the assumption from the Theorem that mRΘ
√
n ≥ 3. Hence we obtain

R(θ̂n) 6 R̂n(θ̂n) + 2CK`ε+M

√
2(m+ 1) log

(
16mRΘ

ε

)
+ 2m2KΘ

ε log(4)

n
+
M
√

2√
n

√
log

1

δ
. (4.16)

Now denote B̃ = 2MKf exp(KfRΘ). Then CK` 6 B̃ and 2M 6 B̃. Taking ε = 1√
n
, we obtain

R(θ̂n) 6 R̂n(θ̂n) +
2B̃√
n

+
B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+

2m2KΘ log(4)√
n

+
B̃√
n

√
log

1

δ

6 R̂n(θ̂n) +
2B̃√
n

+
B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+
B̃

2

m
√

2KΘ log(4)

n1/4
+

B̃√
n

√
log

1

δ

6 R̂n(θ̂n) +
3B̃

2

√
2(m+ 1) log(16mRΘ

√
n)

n
+ B̃

m
√
KΘ

n1/4
+

B̃√
n

√
log

1

δ
,

since 2 ≤ 2
√

log(2) ≤
√

2(m+ 1) log(16mRΘ
√
n) since 16mRΘ

√
n ≥ 2 by the Theorem’s

assumptions, and
√

2 log(4) 6 2. We finally obtain that

R(θ̂n) 6 R̂n(θ̂n) + 3B̃

√
(m+ 1) log(mRΘn)

n
+ B̃

m
√
KΘ

n1/4
+

B̃√
n

√
log

1

δ
,

by noting that n ≥ 9 max(m−2R−2
Θ , 1) implies that

log(16mRΘ

√
n) ≤ 2 log(mRΘn).

The result unfolds since the constant B in the Theorem is equal to 3B̃.

136

4.A.5 Proof of Corollary 4.5

The corollary is an immediate consequence of Theorem 4.4. To obtain the result, note that
m = d2, thus in particular

√
m+ 1 =

√
d2 + 1 ≤ d+ 1, and besides log(RWd

2n) ≤ 2 log(RWdn)
since RWn ≤ R2

Wn
2 by assumption on n.

4.A.6 Proof of Proposition 4.6

For x ∈ X , let (Hk)0≤k≤L be the values of the layers defined by the recurrence (4.10) with the
weights W and the input H0 = x. We denote by ‖ · ‖ the `2-norm for vectors and the spectral
norm for matrices. Then, for k ∈ {0, . . . , L− 1}, we have

‖Hk+1‖ ≤ ‖Hk‖+
1

L
‖Wkσ(Hk)‖ 6 ‖Hk‖+

1

L
‖Wk‖ ‖σ(Hk)‖ 6

(
1 +

KσRW
L

)
‖Hk‖,

where the last inequality uses that the spectral norm of a matrix is upper-bounded by its
(1, 1)-norm and that σ(0) = 0. As a consequence, for any k ∈ {0, . . . , L},

‖Hk‖ ≤
(

1 +
KσRW
L

)k
‖H0‖ ≤ exp(KσRW)RX =: C,

yielding the first claim of the Proposition.
Now, let H̃ be the values of the layers (4.10) with another parameter W̃ and with the same

input H̃0 = x. Then, for any k ∈ {0, . . . , L− 1},

Hk+1 − H̃k+1 = Hk − H̃k +
1

L
(Wkσ(Hk)− W̃kσ(H̃k)).

Hence, using again that the spectral norm of a matrix is upper-bounded by its (1, 1)-norm and
that σ(0) = 0,

‖Hk+1 − H̃k+1‖ ≤ ‖Hk − H̃k‖+
1

L
‖Wk(σ(Hk)− σ(H̃k))‖+

1

L
‖(Wk − W̃k)σ(H̃k)‖

6
(

1 +Kσ
RW
L

)
‖Hk − H̃k‖+

Kσ

L
‖Wk − W̃k‖ ‖H̃k‖

6
(

1 +Kσ
RW
L

)
‖Hk − H̃k‖+

CKσ

L
‖Wk − W̃k‖.

Then, dividing by (1 +Kσ
RW
L)k+1 and using the method of differences, we obtain that

‖Hk − H̃k‖
(1 +Kσ

RW
L)k

≤ ‖H0 − H̃0‖+
CKσ

L

k−1∑
j=0

‖Wj − W̃j‖
(1 +Kσ

RW
L)j+1

≤ CKσ

L
‖W − W̃‖1,1,∞

k−1∑
j=0

1

(1 +Kσ
RW
L)j+1

.

Finally note that
k−1∑
j=0

(1 +Kσ
RW
L)k

(1 +Kσ
RW
L)j+1

=

k−1∑
j=0

(1 +Kσ
RW
L

)j

=
L

KσRW

(
(1 +Kσ

RW
L

)k − 1
)

≤ L

KσRW
(exp(KσRW)− 1).

We conclude that

‖Hk − H̃k‖ ≤
C

RW
(exp(KσRW)− 1)‖W − W̃‖1,1,∞ ≤

RX
RW

exp(2KσRW)‖W − W̃‖1,1,∞.

137

4.A.7 Proof of Proposition 4.7

For two integers a and b, denote respectively a//b and a%b the quotient and the remainder of the
Euclidean division of a by b. Then, for W ∈ RL×d×d, let φ(W) : [0, 1]→ Rd2 the piecewise affine
function defined as follows: φ(W) is affine on every interval

[
k
L ,

k+1
L

]
for k ∈ {0, . . . , L− 1}; for

k ∈ {1, . . . , L} and i ∈ {1, . . . , d2},

φ(W)i

(k
L

)
= W k

L
,(i//d)+1,(i%d)+1 ,

and φ(W)i(0) = φ(W)i(1/L). Then φ(W) satisfies two properties. First, it is a linear function
of W. Second, for W ∈ RL×d×d,

‖φ(W)‖1,∞ = ‖W‖1,1,∞,

because, for x ∈ [0, 1], φ(W)(x) is a convex combination of two vectors that are bounded in `1-
norm by ‖W‖1,1,∞, so it is itself bounded in `1-norm by ‖W‖1,1,∞, implying that ‖φ(W)‖1,∞ ≤
‖W‖1,1,∞. Reciprocally,

‖φ(W)‖1,∞ = sup
06t61

‖φ(W)(x)‖1 > sup
1≤k≤L

∥∥∥φ(W)
(k
L

)∥∥∥
1

= ‖W‖1,1,∞.

Now, take W ∈ W. The second property of φ implies that ‖φ(W)‖1,∞ ≤ RW . Moreover, each
coordinate of φ(W) is KW -Lipschitz, since the slope of each piece of φ(W)i is at most KW . As
a consequence, φ(W) belongs to

ΘW = {θ : [0, 1]→ Rd
2
, ‖θ‖1,∞ 6 RW and θi is KW -Lipschitz for i ∈ {1, . . . , d2}}.

Therefore φ(W) is a subset of ΘW , thus its covering number is less than the one of ΘW . Moreover,
φ is clearly injective, thus we can define φ−1 on its image. Consider an ε-cover (θ1, . . . , θN) of
(φ(W), ‖ · ‖1,∞). Let us show that (φ−1(θ1), . . . , φ−1(θN)) is an ε-cover of (W, ‖ · ‖1,1,∞): take
W ∈ W and consider θi a cover member at distance less than ε from φ(W). Then

‖W − φ−1(θi)‖1,1,∞ = ‖φ(W − φ−1(θi))‖1,∞ = ‖φ(W)− θi‖1,∞ ≤ ε,

where the second equality holds by linearity of φ. Therefore, the covering number of (W, ‖·‖1,1,∞)
is upper bounded by the one of (φ(W), ‖ · ‖1,∞), which itself is upper bounded by the one of
(ΘW , ‖ · ‖1,∞), yielding the result by Proposition 4.3.

4.A.8 Proof of Theorem 4.8

The proof structure is the same as the one of Theorem 4.4, but some constants change. Similarly
to (4.16), we obtain that, if 16d2RW

ε > 2 (which holds true for ε = 1/
√
n and under the assumption

of the Theorem),

R(Ŵn) 6 R̂n(Ŵn) + 2CK`ε+M

√
2(d2 + 1) log

(
16d2RW

ε

)
+ 2d4KW

ε log(4)

n
+
M
√

2√
n

√
log

1

δ
,

with
M = K`(RX exp(KσRW) +RY)

and
C =

RX
RW

exp(2KσRW).

138

Finally denote

B̃ = 2M max
(exp(KσRW)

RW
, 1
)
.

Then CK` 6 B̃ and 2M 6 B̃. Taking ε = 1√
n
, we obtain as in the proof of Theorem 4.4 that

R(Ŵn) 6 R̂n(Ŵn) + 3B̃

√
(d2 + 1) log(d2RWn)

n
+ B̃

d2
√
KW

n1/4
+

B̃√
n

√
log

1

δ

for n > 9R−1
W max(d−4R−1

W , 1). Thus

R(Ŵn) 6 R̂n(Ŵn) + 3
√

2B̃(d+ 1)

√
log(dRWn)

n
+ B̃

d2
√
KW

n1/4
+

B̃√
n

√
log

1

δ
,

since
√
d2 + 1 ≤ d + 1 and RWn ≤ R2

Wn
2 by assumption on n. The result unfolds since the

constant B in the Theorem is equal to 3
√

2B̃.

4.A.9 Proof of Corollary 4.9

Let

A(W) =

(L∏
k=1

∥∥∥I +
1

L
Wk

∥∥∥)(L∑
k=1

‖W T
k ‖

2/3
2,1

L2/3‖I + 1
LWk‖2/3

)3/2

,

where ‖ · ‖2,1 denotes the (2, 1)-norm defined as the `1-norm of the `2-norms of the columns,
and I is the identity matrix (and we recall that ‖ · ‖ denotes the spectral norm). We apply
Theorem 1.1 from Bartlett et al. (2017) by taking as reference matrices the identity matrix. The
theorem shows that, under the assumptions of the corollary,

P
(

argmax
1≤j≤d

FW(x)j 6= y
)
≤ R̂n(W) + C

RXA(W) log(d)

γ
√
n

+
C√
n

√
log

1

δ
,

where, as in the corollary, R̂n(W) ≤ n−1
∑n

i=1 1FW(xi)yi≤γ+maxj 6=yi f(xi)j and C is a universal
constant. Let us upper bound A(W) to conclude. On the one hand, we have

L∏
k=1

∥∥∥I +
1

L
Wk

∥∥∥ ≤ L∏
k=1

(
‖I‖+

1

L
‖Wk‖

)
≤

L∏
k=1

(
1 +

1

L
‖Wk‖1,1

)
≤

L∏
k=1

(
1 +

1

L
RW

)
≤ exp(RW)

On the other hand, for any k ∈ {1, . . . , L},
‖W T

k ‖2,1 ≤ ‖W T
k ‖1,1 ≤ RW ,

while
‖I +

1

L
Wk‖ ≥ 1− 1

L
‖Wk‖ ≥ 1− RW

L
≥ 1

2
,

under the assumption that L ≥ RW . All in all, we obtain that

A(W) ≤ exp(RW)
(
22/3L1/3R

2/3
W
)3/2

= 2RW exp(RW)
√
L,

which yields the result.

139

4.B Experimental details

Our code is available at https://github.com/PierreMarion23/generalization-ode-resnets.
We use the following model, corresponding to model (4.10) with additional projections at the

beginning and at the end:

H0 = Ax

Hk+1 = Hk +
1

L
Wk+1σ(Hk), 0 6 k 6 L− 1

FW(x) = BHL,

where x ∈ R768 is a vectorized MNIST image, A ∈ Rd×768, and B ∈ R10×d. Table 4.1 gives the
value of the hyperparameters.

Name Value

d 30
L 1000
σ ReLU

Table 4.1: Values of the model hyperparameters.

We use the initialization scheme outlined in Section 4.4.1: we initialize, for k ∈ {1, . . . , L}
and i, j ∈ {1, . . . , d},

Wk,i,j =
1√
d
fi,j

(k
L

)
,

where fi,j are independent Gaussian processes with an RBF kernel (with bandwidth equal to 0.1).
We refer to 2 and to Sander et al. (2022b) for further discussion on this initialization scheme.
However, A and B are initialized with a more usual scheme, namely with i.i.d. N (0, 1/c) random
variables, where c denotes the number of columns of A (resp. B).

In Figure 4.1a, we repeat training 10 times independently. Each time, we perform 30 epochs,
and compute after each epoch both the Lipschitz constant of the weights and the generalization
gap. This gives 300 pairs (Lipschitz constant, generalization gap), which each corresponds to one
dot in the figure. Furthermore, we report results for two setups: when A and B are trained or
when they are fixed random matrices.

In Figure 4.1b, A and B are not trained. The reason is to assess the effect of the penalization
on W for a fixed scale of A and B. If we allow A and B to vary, then it is possible that the
effect of the penalization might be neutralized by a scale increase of A and B during training.

For all experiments, we use the standard MNIST data split (60k training samples and 10k
testing samples). We train using the cross entropy loss, mini-batches of size 128, and the optimizer
Adam (Kingma and Ba, 2015) with default parameters and a learning rate of 0.02.

We use PyTorch (Paszke et al., 2019) and PyTorch Lightning for our experiments.
The code takes about 60 hours to run on a standard laptop (no GPU).

140

https://github.com/PierreMarion23/generalization-ode-resnets

5
Framing RNN as a kernel method: a neural
ODE approach

Building on the interpretation of a recurrent neural network (RNN) as a continuous-time neural
differential equation, we show, under appropriate conditions, that the solution of an RNN can be
viewed as a linear function of a specific feature set of the input sequence, known as the signature.
This connection allows us to frame an RNN as a kernel method in a suitable reproducing kernel
Hilbert space. As a consequence, we obtain theoretical guarantees on generalization and stability
for a large class of recurrent networks. Our results are illustrated on simulated datasets.

Contents
5.1 Introduction . 142
5.2 Framing RNN as a kernel method . 144

5.2.1 From discrete to continuous time . 144
5.2.2 The signature . 145
5.2.3 From the CDE to the signature kernel 146

5.3 Generalization and regularization . 149
5.3.1 Generalization bounds . 149
5.3.2 Regularization and stability . 151

5.4 Numerical illustrations . 151
5.5 Discussion and conclusion . 153
5.A Some additional definitions and lemmas . 153
5.B Proofs . 159
5.C Differentiation with higher-order tensors . 171
5.D Experimental details . 173

141

5.1 Introduction

Recurrent neural networks (RNN) are among the most successful methods for modeling sequential
data. They have achieved state-of-the-art results in difficult problems such as natural language
processing (e.g., Mikolov et al., 2010; Collobert et al., 2011) or speech recognition (e.g., Hinton
et al., 2012a; Graves et al., 2013). This class of neural networks has a natural interpretation in
terms of (discretization of) ordinary differential equations (ODE), which casts them in the field
of neural ODE (Chen et al., 2018a). This observation has led to the development of continuous-
depth models for handling irregularly-sampled time-series data, including the ODE-RNN model
(Rubanova et al., 2019), GRU-ODE-Bayes (De Brouwer et al., 2019), or neural CDE models
(Kidger et al., 2020; Morrill et al., 2021). In addition, the time-continuous interpretation of RNN
allows to leverage the rich theory of differential equations to develop new recurrent architectures
(Chang et al., 2019; Herrera et al., 2020; Erichson et al., 2021), which are better at learning
long-term dependencies.

On the other hand, the development of kernel methods for deep learning offers theoretical
insights on the functions learned by the networks (Cho and Saul, 2009; Belkin et al., 2018; Jacot
et al., 2018). Here, the general principle consists of defining a reproducing kernel Hilbert space
(RKHS)—that is, a function class H —, which is rich enough to describe the architectures of
networks. A good example is the construction of Bietti and Mairal (2017, 2019), who exhibit
an RKHS for convolutional neural networks. This kernel perspective has several advantages.
First, by separating the representation of the data from the learning process, it allows studying
invariances of the representations learned by the network. Next, by reducing the learning problem
to a linear one in H , generalization bounds can be more easily obtained. Finally, the Hilbert
structure of H provides a natural metric on neural networks, which can be used for example for
regularization (Bietti et al., 2019).

Contributions. By taking advantage of the neural ODE paradigm for RNN, we show that
RNN are, in the continuous-time limit, linear predictors over a specific space associated with the
signature of the input sequence (Levin et al., 2013). The signature transform, first defined by Chen
(1958) and central in rough path theory (Lyons et al., 2007; Friz and Victoir, 2010), summarizes
sequential inputs by a graded feature set of their iterated integrals. Its natural environment is
a tensor space that can be endowed with an RKHS structure (Király and Oberhauser, 2019).
We exhibit general conditions under which classical recurrent architectures such as feedforward
RNN, Gated Recurrent Units (GRU, Cho et al., 2014), or Long Short-Term Memory networks
(LSTM, Hochreiter and Schmidhuber, 1997), can be framed as a kernel method in this RKHS.
This enables us to provide generalization bounds for RNN as well as stability guarantees via
regularization. The theory is illustrated with some experimental results.

Related works. The neural ODE paradigm was first formulated by Chen et al. (2018a) for
residual neural networks. It was then extended to RNN in several articles, with a focus on
handling irregularly sampled data (Rubanova et al., 2019; Kidger et al., 2020) and learning
long-term dependencies (Chang et al., 2019). The signature transform has recently received
the attention of the machine learning community (Levin et al., 2013; Kidger et al., 2019; Liao
et al., 2019; Toth and Oberhauser, 2020; Fermanian, 2021) and, combined with deep neural
networks, has achieved state-of-the-art performance for several applications (Yang et al., 2016,
2022; Perez Arribas, 2018; Wang et al., 2019; Morrill et al., 2020). Király and Oberhauser (2019)
use the signature transform to define kernels for sequential data and develop fast computational
methods. The connection between continuous-time RNN and signatures has been pointed out by
Lim (2021) for a specific model of stochastic RNN. Deriving generalization bounds for RNN is an

142

active research area (Zhang et al., 2018; Akpinar et al., 2019; Tu et al., 2019). By leveraging the
theory of differential equations, our approach encompasses a large class of RNN models, ranging
from feedforward RNN to LSTM. This is in contrast with most existing generalization bounds,
which are architecture-dependent. Close to our point of view is the work of Bietti and Mairal
(2017) for convolutional neural networks.

Mathematical context. We place ourselves in a supervised learning setting. The input data is
a sample of n i.i.d. vector-valued sequences {x(1), . . . ,x(n)}, where x(i) = (x

(i)
1 , . . . , x

(i)
T) ∈ (Rd)T ,

T ≥ 1. The outputs of the learning problem can be either labels (classification setting) or
sequences (sequence-to-sequence setting). Even if we only observe discrete sequences, each x(i)

is mathematically considered as a regular discretization of a continuous-time process X(i) ∈
BV c([0, 1],Rd), where BV c([0, 1],Rd) is the space of continuous functions from [0, 1] to Rd of
finite total variation. Informally, the total variation of a process corresponds to its length.
Formally, for any [s, t] ⊂ [0, 1], the total variation of a process X ∈ BV c([0, 1],Rd) on [s, t] is
defined by

‖X‖TV ;[s,t] = sup
(t0,...,tk)∈Ds,t

k∑
j=1

‖Xtj −Xtj−1‖,

where Ds,t denotes the set of all finite partitions of [s, t] and ‖ · ‖ the Euclidean norm. We
therefore have that x(i)

j = X
(i)
j/T , 1 ≤ j ≤ T , where X(i)

t := X(i)(t). We make two assumptions on
the processes X(i). First, they all begin at zero, and second, their total variations are bounded by
L ∈ (0, 1). These assumptions are not too restrictive, since they amount to data translation and
normalization, common in practice. Accordingly, we denote by X the subset of BV c([0, 1],Rd)
defined by

X =
{
X ∈ BV c([0, 1],Rd) |X0 = 0 and ‖X‖TV ;[0,1] ≤ L

}
and assume therefore that X(1), . . . , X(n) are i.i.d. according to some X ∈X . The norm on all
spaces Rm, m ≥ 1, is always the Euclidean one. Observe that assuming that X ∈ X implies
that, for any t ∈ [0, 1], ‖Xt‖ = ‖Xt −X0‖ ≤ ‖X‖TV ;[0,1] ≤ L < 1.

Recurrent neural networks. Classical RNN are defined by a sequence of hidden states
h1, . . . , hT that all belong to Re, where, for x = (x1, . . . , xT) a generic data sample,

h0 = 0 and hj+1 = f(hj , xj+1) for 0 ≤ j ≤ T − 1.

At each time step 1 ≤ j ≤ T , the output of the network is zj = ψ(hj), where ψ is a linear
function. In this chapter, we rather consider the following residual version, which is a natural
adaptation of classical RNN in the neural ODE framework (see, e.g., Yue et al., 2018):

h0 = 0 and hj+1 = hj +
1

T
f(hj , xj+1) for 0 ≤ j ≤ T − 1. (5.1)

The simplest choice for the function f is the feedforward model, say fRNN, defined by

fRNN(h, x) = σ(Uh+ V x+ b), (5.2)

where σ is an activation function, U ∈ Re×e and V ∈ Re×d are weight matrices, and b ∈ Re is the
bias. The function fRNN, equipped with a smooth activation σ (such as the logistic or hyperbolic
tangent functions), will be our leading example throughout the chapter. However, the GRU and
LSTM models can also be rewritten under the form (5.1), as shown in Appendix 5.A.1. Thus,
model (5.1) is flexible enough to encompass most recurrent networks used in practice.

143

Overview. Section 5.2 is devoted to framing RNN as linear functions in a suitable RKHS.
We start by embedding iteration (5.1) into a continuous-time model, which takes the form of a
controlled differential equation (CDE). This allows, after introducing the signature transform,
to define the appropriate RKHS, and, in turn, to show that model (5.1) boils down, in the
continuous-time limit, to a linear problem on the signature. This framework is used in Section
5.3 to derive generalization bounds and stability guarantees. We provide some experiments in
Section 5.4 before discussing our results in Section 5.5. All proofs are postponed to the end of
the chapter. In Section 5.A, we present some useful additional definitions and lemmas. The
proofs are given in Section 5.B, and rely on some algebra rules over tensor spaces that are given
in Section 5.C. Finally, the experimental details are presented in Section 5.D.

5.2 Framing RNN as a kernel method

Roadmap. First, we quantify the difference between the discrete recurrent network (5.1) and
its continuous-time counterpart (Proposition 5.1). Then, we rewrite the corresponding ODE as a
CDE (Proposition 5.2). Under appropriate conditions, Proposition 5.9 shows that the solution
of this equation is a linear function of the signature of the driving process. Importantly, these
assumptions are valid for a feedforward RNN, as stated by Proposition 5.10. We conclude in
Theorem 5.11.

5.2.1 From discrete to continuous time

Recall that h0, . . . , hT denote the hidden states of the RNN (5.1), and let H : [0, 1]→ Re be the
solution of the ODE

dHt = f(Ht, Xt)dt, H0 = h0. (5.3)

By bounding the difference between Hj/T and hj , the following proposition shows how to pass
from discrete to continuous time, provided f satisfies the following assumption:

(A1) The function f is Lipschitz continuous in h and x, with Lipschitz constants Kh and Kx.
We let Kf = max(Kh,Kx).

Proposition 5.1. Assume that (A1) is verified. Then there exists a unique solution H to (5.3)
and, for any 0 ≤ j ≤ T ,

‖Hj/T − hj‖ ≤
c1

T
,

where c1 = Kfe
Kf
(
L+ sup

‖h‖≤M,‖x‖≤L
‖f(h, x)‖eKf

)
and M = sup

‖x‖≤L
‖f(h0, x)‖eKf . Moreover, for

any t ∈ [0, 1], ‖Ht‖ ≤M .

Proof. See Section 5.B.1.

Then, following Kidger et al. (2020), we show that the ODE (5.3) can be rewritten under the
form of a CDE. At the cost of increasing the dimension of the hidden state from e to e+ d, this
allows us to reframe model (5.3) as a linear model in dX, in the sense that X has been moved
‘outside’ of f .

Proposition 5.2. Assume that (A1) is verified. Let H : [0, 1] → Re be the solution of (5.3),
and let X̄ : [0, 1]→ Rd+1 be the time-augmented process X̄t = (X>t ,

1−L
2 t)>. Then there exists a

tensor field F : Rē → Rē×d̄, ē = e+ d, d̄ = d+ 1, such that if H̄ : [0, 1]→ Rē is the solution of
the CDE

dH̄t = F(H̄t)dX̄t, H̄0 = (H>0 , X
>
0)>, (5.4)

then its first e coordinates are equal to H.

144

Proof. See Section 5.B.2.

We introduce in the proposition the time-augmented process X̄ with an additional coordinate
corresponding to time. Note that this coordinate is rescaled by 1−L

2 to ensure that the total
variation of X̄ is less than 1, since L < 1. Equation (5.4) can be better understood by the
following equivalent integral equation:

H̄t = H̄0 +

∫ t

0
F(H̄u)dX̄u,

where the integral should be understood as Riemann-Stieljes integral (Friz and Victoir, 2010,
Section I.2). Thus, the output of the RNN can be approximated by the solution of the CDE
(5.4), and, according to Proposition 5.1, the approximation error is O(1/T).

Example 5.3. Consider fRNN as in (5.2). If σ is Lipschitz continuous with constant Kσ, then,
for any h1, h2 ∈ Re, x1, x2 ∈ Rd,

‖fRNN(h1, x1)− fRNN(h2, x1)‖ = ‖σ(Uh1 + V x1 + b)− σ(Uh2 + V x1 + b)‖
≤ Kσ‖U‖op‖h1 − h2‖,

where ‖ ·‖op denotes the operator norm—see Appendix 5.A.3. Similarly, ‖f(h1, x1)−f(h1, x2)‖ ≤
Kσ‖V ‖op‖x1 − x2‖. Thus, assumption (A1) is satisfied. The tensor field FRNN of Proposition
5.2 corresponding to this network is defined for any h̄ ∈ Rē by

FRNN(h̄) =

(
0e×d

2
1−Lσ(Wh̄+ b)

Id×d 0d×1

)
, where W =

(
U V

)
∈ Re×ē. (5.5)

5.2.2 The signature

An essential ingredient towards our construction is the signature of a continuous-time process,
which we briefly present here. We refer to Chevyrev and Kormilitzin (2016) for a gentle
introduction and to Lyons et al. (2007); Levin et al. (2013) for details.

Tensor Hilbert spaces. We denote by (Rd)⊗k the kth tensor power of Rd with itself, which is
a Hilbert space of dimension dk. The key space to define the signature and, in turn, our RKHS,
consists in infinite square-summable sequences of tensors of increasing order:

T =
{
a = (a0, . . . , ak, . . .)

∣∣∣ ak ∈ (Rd)⊗k,
∞∑
k=0

‖ak‖2(Rd)⊗k <∞
}
, (5.6)

where the norm is associated to the entrywise scalar product 〈·, ·〉(Rd)⊗k . Endowed with the scalar
product 〈a, b〉T :=

∑∞
k=0〈ak, bk〉(Rd)⊗k , T is a Hilbert space. We refer to Appendix 5.A.4 for

more precise explanations.

Definition 5.4. Let X ∈ BV c([0, 1],Rd). For any t ∈ [0, 1], the signature of X on [0, t] is
defined by S[0,t](X) = (1,X1

[0,t], . . . ,X
k
[0,t], . . .), where, for each k ≥ 1,

Xk[0,t] = k!

∫
· · ·
∫

0≤u1<···<uk≤t

dXu1 ⊗ · · · ⊗ dXuk ∈ (Rd)⊗k.

145

Although this definition is technical, the signature should simply be thought of as a feature
map that embeds a bounded variation process into an infinite-dimensional tensor space. The
signature has several good properties that make it a relevant tool for machine learning (e.g., Levin
et al., 2013; Chevyrev and Kormilitzin, 2016; Fermanian, 2021). In particular, under certain
assumptions, S(X) characterizes X up to translations and reparameterizations, and has good
approximation properties. We also highlight that fast libraries exist for computing the signature
(Reizenstein and Graham, 2020; Kidger and Lyons, 2021).

The expert reader is warned that this definition differs from the usual one by the normalization
of Xk[0,t] by k!, which is more adapted to our context. In the sequel, for any index (i1, . . . , ik) ∈
{1, . . . , d}k, S(i1,...,ik)

[0,t] (X) denotes the term associated with the coordinates (i1, . . . , ik) of Xk[0,t].
When the signature is taken on the whole interval [0, 1], we simply write S(X), S(i1,...,ik)(X),
and Xk.

Example 5.5. Let X be the d-dimensional linear path defined by Xt = (a1 + b1t, . . . , ad + bdt)
>,

ai, bi ∈ R. Then S(i1,...,ik)(X) = bi1 · · · bik and Xk = b⊗k.

The next proposition, which ensures that S[0,t](X̄) ∈ T , is an important step.

Proposition 5.6. Let X ∈ X and X̄t = (X>t ,
1−L

2 t)> as in Proposition 5.2. Then, for any
t ∈ [0, 1], ‖S[0,t](X̄)‖T ≤ 2(1− L)−1.

Proof. See Section 5.B.3.

The signature kernel. By taking advantage of the structure of Hilbert space of T , it is
natural to introduce the following kernel:

K : X ×X → R
(X,Y) 7→ 〈S(X̄), S(Ȳ)〉T ,

which is well-defined according to Proposition 5.6. We refer to Király and Oberhauser (2019) for
a general presentation of kernel methods with signatures and to Salvi et al. (2021) for a kernel
trick. The RKHS associated with K is the space of functions

H =
{
ξα : X → R | ξα(X) = 〈α, S(X̄)〉T , α ∈ T

}
, (5.7)

with scalar product 〈ξα, ξβ〉H = 〈α, β〉T (see, e.g., Schölkopf and Smola, 2002).

5.2.3 From the CDE to the signature kernel

An important property of signatures is that the solution of the CDE (5.4) can be written, under
certain assumptions, as a linear function of the signature of the driving process X. This operation
can be thought of as a Taylor expansion for CDE. More precisely, let us rewrite (5.4) as

dHt = F(Ht)dXt =
d∑
i=1

F i(Ht)dX
i
t , (5.8)

where Xt = (X1
t , . . . , X

d
t)>, F : Re → Re×d, and F i : Re → Re are the columns of F—to avoid

heavy notation, we momentarily write e, d, H, and X instead of ē, d̄, H̄, and X̄. Throughout, the
bold notation is used to distinguish tensor fields and vector fields. We recall that a vector field
F : Re → Re or a tensor field F : Re → Re×d are said to be smooth if each of their coordinates is
C∞.

146

Definition 5.7. Let F,G : Re → Re be smooth vector fields and denote by J(·) the Jacobian
matrix. Their differential product is the smooth vector field F ? G : Re → Re defined, for any
h ∈ Re, by

(F ? G)(h) =

e∑
j=1

∂G

∂hj
(h)Fj(h) = J(G)(h)F (h).

In differential geometry, F?G is simply denoted by FG. Since the ? operation is not associative,
we take the convention that it is evaluated from right to left, i.e., F 1 ? F 2 ? F 3 := F 1 ? (F 2 ? F 3).

Taylor expansion. Let H be the solution of (5.8), where F is assumed to be smooth. We now
show that H can be written as a linear function of the signature of X, which is the crucial step
to embed the RNN in the RKHS H . The step-N Taylor expansion of H (Friz and Victoir, 2008)
is defined by

HN
t = H0 +

N∑
k=1

1

k!

∑
1≤i1,...,ik≤d

S
(i1,...,ik)
[0,t] (X)F i1 ? · · · ? F ik(H0).

Throughout, we let
Λk(F) = sup

‖h‖≤M,1≤i1,...,ik≤d
‖F i1 ? · · · ? F ik(h)‖.

Example 5.8. Let F = FRNN defined by (5.5) with an identity activation. Then, for any h̄ ∈ Rē,
1 ≤ i ≤ d+ 1, F iRNN(h̄) = Wih̄+ bi, where bi is the (i+ d)th vector of the canonical basis of Rē,
and

Wi = 0ē×ē, Wd+1 =

(
2

1−LW

0d×ē

)
, and bd+1 =

(
2

1−Lb

0d

)
.

The vector fields F iRNN are then affine, J(F iRNN) = Wi, and the iterated star products have a
simple expression: for any 1 ≤ i1, . . . , ik ≤ d, F i1RNN ? · · · ? F

ik
RNN(h̄) = Wik · · ·Wi2(Wi1 h̄+ bi1).

The next proposition shows that the step-N Taylor expansion HN is a good approximation
of H.

Proposition 5.9. Assume that the tensor field F is smooth. Then, for any t ∈ [0, 1],

‖Ht −HN
t ‖ ≤

dN+1

(N + 1)!
ΛN+1(F). (5.9)

Proof. See Section 5.B.4.

Thus, provided that ΛN (F) is not too large, the right-hand side of (5.9) converges to zero,
hence

Ht = H0 +

∞∑
k=1

1

k!

∑
1≤i1,...,ik≤d

S
(i1,...,ik)
[0,t] (X)F i1 ? · · · ? F ik(H0). (5.10)

We conclude from the above representation that the solution H of (5.8) is in fact a linear function
of the signature of X. A natural concern is to know whether the upper bound of Proposition 5.9
vanishes with N for standard architectures. This property is encapsulated in the following more
general assumption:

(A2) The tensor field F is smooth and
∞∑
k=0

(dk
k!

Λk(F)
)2

<∞.

147

Clearly, if (A2) is verified, then the right-hand side of (5.9) converges to 0. The next proposition
states formally the conditions under which (A2) is verified for FRNN. It is further illustrated in
Figure 5.1, which shows that the convergence is fast with two common activation functions. We let
‖σ‖∞ = sup‖h‖≤M,‖x‖≤L ‖σ(Uh+ V x+ b)‖ and ‖σ(k)‖∞ = sup‖h‖≤M,‖x‖≤L ‖σ(k)(Uh+ V x+ b)‖,
where σ(k) is the derivative of order k of σ.

Proposition 5.10. Let FRNN be defined by (5.5). If σ is the identity function, then (A2) is
satisfied. In the general case, (A2) holds if σ is smooth and there exists a > 0 such that, for any
k ≥ 0,

‖σ(k)‖∞ ≤ ak+1k! and ‖W‖F <
1− L
8a2d

, (5.11)

where ‖ · ‖F is the Frobenius norm. Moreover, ΛN (FRNN) ≤
√

2a
(

8a2‖W‖F
1−L

)N−1
N ! .

Proof. See Section 5.B.5.

The proof of Proposition 5.10, based on the manipulation of higher-order derivatives of
tensor fields, is highly non-trivial. We highlight that the conditions on σ are mild and verified
for common smooth activations. For example, they are verified for the logistic function (with
a = 2) and for the hyperbolic tangent function (with a = 4)—see Appendix 5.A.5. The second
inequality of (5.11) puts a constraint on the norm of the weights, and can be regarded as a radius
of convergence for the Taylor expansion.

Putting everything together. We now have all the elements at hand to embed the RNN into
the RKHS H . To fix the idea, we assume in this paragraph that we are in a ±1 classification
setting. In other words, given an input sequence x, we are interested in the final output
zT = ψ(hT) ∈ R, where hT is the solution of (5.1). The predicted class is 2 · 1(zT > 0)− 1.

By Propositions 5.1 and 5.2, zT is approximated by the first e coordinates of the solution
of the CDE (5.4), which outputs a Re+d-valued process H̄. According to Proposition 5.9, H̄
is a linear function of the signature of the time-augmented process X̄. Thus, on top of H̄, it
remains to successively apply the projection Proj on the e first coordinates followed by the linear
function ψ to obtain an element of the RKHS H . This mechanism is summarized in the following
theorem.

Theorem 5.11. Assume that (A1) and (A2) are verified. Then there exists a function ξα ∈H
such that

|zT − ξα(X)| ≤ ‖ψ‖op
c1

T
, (5.12)

where ξα(X) = 〈α, S(X̄)〉T and X̄t = (X>t ,
1−L

2 t)>. We have α = (αk)
∞
k=0, where each αk ∈

(Rd)⊗k is defined by

α
(i1,...,ik)
k =

1

k!
ψ ◦ Proj

(
F i1 ? · · · ? F ik(H̄0)

)
.

Moreover, ‖α‖2T ≤ ‖ψ‖2op
∑∞

k=0

(
dk

k! Λk(F)
)2
.

Proof. See Section 5.B.6.

We conclude that in the continuous-time limit, the output of the network can be interpreted
as a scalar product between the signature of the (time-augmented) process X̄ and an element
of T . This interpretation is important for at least two reasons: (i) it facilitates the analysis
of generalization of RNN by leveraging the theory of kernel methods, and (ii) it provides new
insights on regularization strategies to make RNN more robust. These points will be explored in

148

the next section. Finally, we stress that the approach works for a large class of RNN, such as
GRU and LSTM. The derivation of conditions (A1) and (A2) beyond the feedforward RNN is
left for future work.

5.3 Generalization and regularization

5.3.1 Generalization bounds

Learning procedure. A first consequence of framing an RNN as a kernel method is that
it gives natural generalization bounds under mild assumptions. In the learning setup, we are
given an i.i.d. sample Dn of n random pairs of observations (x(i),y(i)) ∈ (Rd)T × Y , where
x(i) = (x

(i)
1 , . . . , x

(i)
T). We distinguish the binary classification problem, where Y = {−1, 1}, from

the sequential prediction problem, where Y = (Rp)T and y(i) = (y
(i)
1 , . . . , y

(i)
T). The RNN is

assumed to be parameterized by θ ∈ Θ ⊂ Rq, where Θ is a compact set. To clarify the notation,
we use a θ subscript whenever a quantity depends on θ (e.g., fθ for f , etc.). In line with Section
5.2, it is assumed that the tensor field Fθ associated with fθ satisfies (A1) and (A2), keeping
in mind that Proposition 5.10 guarantees that these requirements are fulfilled by a feedforward
recurrent network with a smooth activation function.

Let gθ : (Rd)T → Y denote the output of the recurrent network. The parameter θ is fitted by
empirical risk minimization using a loss function ` : Y ×Y → R+. The theoretical and empirical
risks are respectively defined, for any θ ∈ Θ, by

R(θ) = E[`(y, gθ(x))] and R̂n(θ) =
1

n

n∑
i=1

`
(
y(i), gθ(x

(i))
)
,

where the expectation E is evaluated with respect to the distribution of the generic random
pair (x,y). We let θ̂n ∈ argmin θ∈ΘR̂n(θ) and aim at upper bounding P(y 6= g

θ̂n
(x)) in the

classification regime (Theorem 5.12) and R(θ̂n) in the sequential regime (Theorem 5.14). To
reach this goal, our strategy is to approximate the RNN by its continuous version and then use
the RKHS machinery of Section 5.2.

Binary classification. In this context, the network outputs a real number gθ(x) = ψ(hT) ∈ R
and the predicted class is 2 · 1(gθ(x) > 0)− 1. The loss ` : R× R→ R+ is assumed to satisfy
the assumptions of Bartlett and Mendelson (2002, Theorem 7), that is, for any y ∈ {−1, 1},
`(y, gθ(x)) = φ(ygθ(x)), where φ(u) ≥ 1(u ≤ 0), and φ is Lipschitz-continuous with constant
K`. For example, the logistic loss satisfies such assumptions. We let ξαθ ∈H be the function of
Theorem 5.11 that approximates the RNN with parameter θ. Thus, zT ≈ ξαθ(X̄) = 〈αθ, S(X̄)〉T ,
up to a O(1/T) term.

Theorem 5.12. Assume that for all θ ∈ Θ, (A1) and (A2) are verified. Assume, in addition,
that there exists a constant B > 0 such that for any θ ∈ Θ, ‖ξαθ‖H ≤ B. Then with probability
at least 1− δ,

P
(
y 6= g

θ̂n
(x)|Dn

)
≤ R̂n(θ̂n) +

c2

T
+

8BK`

(1− L)
√
n

+
2BK`

1− L

√
log(1/δ)

2n
, (5.13)

where c2 = K` supθ

(
‖ψ‖opKfθe

Kfθ
(
L+ ‖fθ‖∞eKfθ

))
.

Proof. See Section 5.B.7.

149

Close to our result are the bounds obtained by Zhang et al. (2018), Tu et al. (2019), and Chen
et al. (2020). The main difference is that the term in 1/T does not usually appear, since it comes
from the Euler discretization error, whereas the speed in 1/

√
n is the same. For instance, Chen

et al. (2020) show that, under some assumptions, the excess risk is of order
√
de+ e2TαK`n

−1/2.
We refer to Section 5.5 for further discussion on the dependency of the different bounds to the
parameter T . The take-home message is that the detour by continuous-time neural ODE provides
a theoretical framework adapted to RNN, at the modest price of an additional O(1/T) term.
Moreover, we note that the bound (5.13) is ‘simple’ and holds under mild conditions for a large
class of RNN. More precisely, for any recurrent network of the form (5.1), provided (A1) and
(A2) are satisfied, then (5.13) is valid with constants c2 and B depending on the architecture.
Such constants are given below in the example of a feedforward RNN. We stress that Theorem
5.12 can be extended without significant effort to the multi-class classification task, with an
appropriate choice of loss function.

Example 5.13. Take a feedforward RNN with logistic activation, and Θ = {(W, b, ψ) | ‖W‖F ≤
KW < (1− L)/32d, ‖b‖ ≤ Kb, ‖ψ‖op ≤ Kψ}. Then, Proposition 5.10 states that (A2) is satisfied
and, with Theorem 5.11, ensures that

sup
θ∈Θ
‖ξαθ‖H ≤

√
2Kψ(1− L)

1− L− 32dKW
:= B, Kfθ = max(‖U‖op, ‖V ‖op), and ‖fθ‖∞ = 1.

Sequence-to-sequence learning. We conclude by showing how to extend both the RKHS
embedding of Theorem 5.11 and the generalization bound of Theorem 5.12 to the setting of
sequence-to-sequence learning. In this case, the output of the network is a sequence

gθ(x) = (z1, . . . , zT) ∈ (Rp)T .

An immediate extension of Theorem 5.11 ensures that there exist p elements α1,θ, . . . , αp,θ ∈ T
such that, for any 1 ≤ j ≤ T ,∥∥zj − (〈α1,θ, S[0,j/T](X̄)〉T , . . . , 〈αp,θ, S[0,j/T](X̄)〉T

)>∥∥ ≤ ‖ψ‖op c1

T
. (5.14)

The properties of the signature guarantee that S[0,j/T](X) = S(X̃[j]) where X̃[j] is the process
equal to X̄ on [0, j/T] and then constant on [j/T , 1]—see Appendix 5.A.6. With this trick, we have,
for any 1 ≤ ` ≤ p, 〈α`,θ, S[0,j/T](X̄)〉T = 〈α`,θ, S(X̃[j])〉T , so that we are back in H . Observe
that the only difference with (5.12) is that we consider vector-valued sequential outputs, which
requires to introduce the process X̃[j], but that the rationale is exactly the same.

We let ` : (Rp)T × (Rp)T → R+ be the L2 distance, that is, for any y = (y1, . . . , yT),
y′ = (y′1, . . . , y

′
T), `(y,y′) = 1

T

∑T
j=1 ‖yj − y′j‖2. It is assumed that y takes its values in a

compact subset of Rq, i.e., there exists Ky > 0 such that ‖yj‖ ≤ Ky.

Theorem 5.14. Assume that for all θ ∈ Θ, (A1) and (A2) are verified. Assume, in addition,
that there exists a constant B > 0 such that for any 1 ≤ ` ≤ p, θ ∈ Θ, ‖ξα`,θ‖H ≤ B . Then with
probability at least 1− δ,

R(θ̂n) ≤ R̂n(θ̂n) +
c3

T
+

4pc4B(1− L)−1

√
n

+

√
2c5 log(1/δ)

n
, (5.15)

where c3 = sup
θ

(
c1,θ + ‖ψ‖op‖fθ‖∞

)
+ 2
√
pB(1 − L)−1 + 2Ky, c4 = B(1 − L)−1 + Ky, and

c5 = 4pB(1− L)−1c4 +K2
y .

Proof. See Section 5.B.8.

150

5.3.2 Regularization and stability

In addition to providing a sound theoretical framework, framing deep learning in an RKHS
provides a natural norm, which can be used for regularization, as shown for example in the
context of convolutional neural networks by Bietti et al. (2019). This regularization ensures
stability of predictions, which is crucial in particular in a small sample regime or in the presence
of adversarial examples (Gao et al., 2018; Ko et al., 2019). In our binary classification setting,
for any inputs x,x′ ∈ (Rd)T , by the Cauchy-Schwartz inequality, we have

‖zT − z′T ‖ ≤ 2‖ψ‖op‖
c1

T
+ ‖ξαθ(X̄)− ξαθ(X̄ ′)‖ ≤ 2‖ψ‖op‖

c1

T
+ ‖ξαθ‖H ‖S(X̄)− S(X̄ ′)‖T .

If x and x′ are close, so are their associated continuous processes X and X ′ (which can be
approximated for example by taking a piecewise linear interpolation), and so are their signatures.
The term ‖S(X̄)−S(X̄ ′)‖T is therefore small (Friz and Victoir, 2010, Proposition 7.66). Therefore,
when T is large, we see that the magnitude of ‖ξαθ‖H determines how close the predictions are.
A natural training strategy to ensure stable predictions, for the types of networks covered in
this chapter, is then to penalize the problem by minimizing the loss R̂n(θ) + λ‖ξαθ‖2H . From a
computational point of view, it is possible to compute the norm in H , up to a truncation at N
of the Taylor expansion, which we know by Proposition 5.9 to be reasonable. It remains that
computing this norm is a non-trivial task, and implementing smart surrogates is an interesting
problem for the future. Note however that computing the signature of the data is not necessary
for this regularization strategy.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Step N

10−5

10−4

10−3

10−2

10−1

E
rr

or

Activation

sigmoid

tanh

(a) Error on a logarithmic scale as a function of
N

0.4 0.6 0.8 1.0 1.2 1.4 1.6

Frobenius norm of the weights

10−8

10−7

10−6

10−5

10−4

10−3

E
rr

or
fo

r
N

=
5

(b) Error as a function of the norm of the weights

Figure 5.1: Approximation of the RNN ODE by the step-N Taylor expansion

5.4 Numerical illustrations

This section is here for illustration purposes. Our objective is not to achieve competitive
performance, but rather to illustrate the theoretical results. We refer to Appendix 5.D for
implementation details.

Convergence of the Taylor expansion towards the solution of the ODE. We illustrate
Proposition 5.9 on a toy example. The process X is a 2-dimensional spiral, and we take
feedforward RNN with 2 hidden units. Repeating this procedure with 103 uniform random
weight initializations, we observe in Figure 5.1a that the signature approximation converges
exponentially fast in N . As seen in Figure 5.1b, the rate of convergence depends in particular on

151

the norm of the weight matrices, as predicted by Proposition 5.10. However, condition (5.11)
seems to be over-restrictive, since convergence happens even for weights with norm larger than
the bound (we have 1/(8a2d) ' 0.01 here).

0.0 0.2 0.4 0.6 0.8 1.0

ε

0.4

0.5

0.6

0.7

0.8

0.9

A
d

ve
rs

ar
ia

l
ac

cu
ra

cy

RNN

Penalized RNN

Figure 5.2: Adversarial accuracy as a function of the adversarial perturbation ε

Adversarial robustness. We illustrate the penalization proposed in Section 5.3.2 on a toy task
that consists in classifying the rotation direction of 2-dimensional spirals. We take a feedforward
RNN with 32 hidden units and hyperbolic tangent activation. It is trained on 50 examples,
with and without penalization, for 200 epochs. Once trained, the RNN is tested on adversarial
examples, generated with the projected gradient descent algorithm with Frobenius norm (Madry
et al., 2018), which modifies test examples to maximize the error while staying in a ball of radius
ε. We observe in Figure 5.2 that adding the penalization seems to make the network more stable.

Comparison of the trained networks. The evolution of the Frobenius norm of the weights
‖W‖F and the RKHS norm ‖ξαθ‖H during training is shown in Figure 5.3. This points out that
the penalization, which forces the RNN to keep a small norm in H , leads indeed to learning
different weights than the non-penalized RNN. The results also suggest that the Frobenius and
RKHS norms are decoupled, since both networks have Frobenius norms of similar magnitude but
very different RKHS norms. The figures show one random run, but we observe similar qualitative
behavior on others.

0 25 50 75 100 125 150 175 200

Epoch

5

10

15

20

25

30

F
ro

b
en

iu
s

n
or

m
of

th
e

w
ei

gh
ts

RNN

Penalized RNN

0 25 50 75 100 125 150 175 200

Epoch

10−3

10−1

101

103

R
K

H
S

n
or

m
(N

=
3)

RNN

Penalized RNN

Figure 5.3: Evolution of the Frobenius norm of the weights and of the RKHS norm during
training

152

5.5 Discussion and conclusion

Role of the discretization procedure. The starting point of the chapter was motivated by
the fact that the classical residual RNN formulation coincides with an Euler discretization of
the ODE (5.3). This choice of discretization translates into a 1/T term in Theorems 5.12 and
5.14. However, we could have considered higher-order discretization schemes, such as Runge-
Kutta schemes, for which the discretization error decreases as 1/T p. Such schemes correspond to
alternative architectures, which were already proposed by Wang and Lin (1998), among others.
At the limit, we could also consider directly the continuous model (5.3), as proposed by Chen
et al. (2018a), in which case the discretization error term vanishes. Of course, such an option
requires to be able to sample the continuous-time data at arbitrary times.

Long-term stability. RNN are known to be poor at learning long-term dependencies (Bengio
et al., 1993; Hochreiter and Schmidhuber, 1997). This is reflected in the literature by performance
bounds increasing in T , which is not the case of our results (5.13) and (5.15), seemingly indicating
that we fail to capture this phenomenon. This apparent paradox is related to our assumption
that the total variation of X is bounded. Indeed, if a time series is observed for a long time, then
its total variation may become large. In this case, it is no longer valid to assume that ‖X‖TV
is bounded by L. In other words, in our context, the parameter encapsulating the notion of
“long-term” is not T but the regularity of X measured by its total variation. Note that the choice
of defining X on [0, 1] and not another interval [0, U] is arbitrary and does not carry any meaning
on the problem of learning long-term dependencies. A thorough analysis of these questions is an
interesting research direction for future work.

Radius of convergence. The assumptions ‖X‖TV ;[0,1] ≤ L < 1 and ‖W‖F ≤ KW < (1 −
L)/32d can be seen as radii of convergence of the Taylor expansion (5.10). They allow using
the Taylor approximation—which is of a local nature—to prove a global result, the RKHS
embedding. In return, the condition on the Frobenius norm of the weights puts restrictions
on the admissible parameters of the neural network. However, this bound can be improved, in
particular by considering more exotic norms, which we did not make explicit for clarity purposes.

Conclusion. By bringing together the theory of neural ODE, the signature transform, and
kernel methods, we have shown that a recurrent network can be framed in the continuous-time
limit as a linear function in a well-chosen RKHS. In addition to giving theoretical insights on the
function learned by the network and providing generalization guarantees, this framing suggests
regularization strategies to obtain more robust RNN. We have only scratched the surface of the
potentialities of leveraging this theory to practical applications, which is a subject of its own and
will be tackled in future work.

5.A Some additional definitions and lemmas

5.A.1 Writing the GRU and LSTM in the neural ODE framework

GRU. Recall that the equations of a GRU take the following form: for any 1 ≤ j ≤ T ,

rj+1 = σ(Wrxj+1 + br + Urhj)

zj+1 = σ(Wzxj+1 + bz + Uzhj)

nj+1 = tanh
(
Wnxj+1 + bn + rj+1 ∗ (Unhj + cn)

)
hj+1 = (1− zj+1) ∗ hj + zj+1 ∗ nj+1,

153

where σ is the logistic activation, tanh the hyperbolic tangent, ∗ the Hadamard product, rj the
reset gate vector, zj the update gate vector, Wr, Ur, Wz, Uz, Wn, Un weight matrices, and br,
bz, bn, cn biases. Since rj+1, zj+1, and nj+1 depend only on xj+1 and hj , it is clear that these
equations can be rewritten in the form

hj+1 = hj + f(hj , xj+1).

We then obtain equation (5.1) by normalizing f by 1/T .

LSTM. The LSTM networks are defined, for any 1 ≤ j ≤ T , by

ij+1 = σ(Wixj+1 + bi + Uihj)

fj+1 = σ(Wfxj+1 + bf + Ufhj)

gj+1 = tanh(Wgxj+1 + bg + Ughj)

oj+1 = σ(Woxj+1 + bo + Uohj)

cj+1 = fj+1 ∗ cj + ij+1 ∗ gj+1

hj+1 = oj+1 ∗ tanh(cj+1),

where σ is the logistic activation, tanh the hyperbolic tangent, ∗ the Hadamard product, ij the
input gate, fj the forget gate, gj the cell gate, oj the output gate, cj the cell state, Wi, Ui, Wf ,
Uf , Wg, Ug Wo, Uo weight matrices, and bi, bf , bg, bo biases. Since ij+1, fj+1, gj+1, oj+1 depend
only on xj+1 and hj , these equations can be rewritten in the form

hj+1 = f1(hj , xj+1, cj+1)

cj+1 = f2(hj , xj+1, cj).

Let h̃j = (h>j , c
>
j)> be the hidden state defined by stacking the hidden and cell state. Then,

clearly, h̃ follows an equation of the form

h̃j+1 = f(h̃j , xj+1).

We obtain (5.1) by subtracting h̃j and normalizing by 1/T .

5.A.2 Picard-Lindelöf theorem

Consider a CDE of the form (5.8). We recall the Picard-Lindelöf theorem as given by Lyons et al.
(2007, Theorem 1.3), and provide a proof for the sake of completeness.

Theorem 5.15 (Picard-Lindelöf theorem). Assume that X ∈ BV c([0, 1],Rd) and that F is
Lipschitz-continuous with constant KF. Then, for any H0 ∈ Re, the differential equation (5.8)
admits a unique solution H : [0, 1]→ Re.

Proof. Let C ([s, t]),Re) be the set of continuous functions from [s, t] to Re. For any [s, t] ⊂ [0, 1],
ζ ∈ Re, let Ψ be the function

Ψ : C ([s, t]),Re)→ C ([s, t],Re)

Y 7→
(
v 7→ ζ +

∫ v

s
F(Yu)dXu

)
.

154

For any Y, Y ′ ∈ C ([s, t]),Re), v ∈ [s, t],

‖Ψ(Y)v −Ψ(Y ′)v‖ ≤
∫ v

s

∥∥(F(Yu)− F(Y ′u)
)
dXu

∥∥
≤
∫ v

s
‖F(Yu)− F(Y ′u)‖op‖dXu‖

≤
∫ v

s
KF‖Yu − Y ′u‖‖dXu‖

≤ KF‖Y − Y ′‖∞
∫ v

s
‖dXu‖

≤ KF‖Y − Y ′‖∞‖X‖TV ;[s,t].

This shows that the function Ψ is Lipschitz-continuous on C ([s, t]),Re) endowed with the
supremum norm, with Lipschitz constant KF‖X‖TV ;[s,t]. Clearly, the function t 7→ ‖X‖TV ;[0,t] is
non-decreasing and uniformly continuous on the compact interval [0, 1]. Therefore, for any ε > 0,
there exists δ > 0 such that

|t− s| < δ ⇒
∣∣‖X‖TV ;[0,t] − ‖X‖TV ;[0,s]

∣∣ < ε.

Take ε = 1/KF. Then on any interval [s, t] of length smaller than δ, one has ‖X‖TV ;[s,t] =
‖X‖TV ;[0,t] − ‖X‖TV ;[0,s] < 1/KF, so that the function Ψ is a contraction. By the Banach fixed-
point theorem, for any initial value ζ, Ψ has a unique fixed point. Hence, there exists a solution
to (5.8) on any interval of length δ with any initial condition. To obtain a solution on [0, 1] it is
sufficient to concatenate these solutions.

A corollary of this theorem is a Picard-Lindelöf theorem for initial value problems of the form

dHt = f(Ht, Xt)dt, H0 = ζ, (5.16)

where f : Re × Rd → Re, ζ ∈ Re.

Corollary 5.16. Assume that f is Lipschitz continuous in its first variable. Then, for any
ζ ∈ Re, the initial value problem (5.16) admits a unique solution.

Proof. Let fX : (h, t) 7→ f(h,Xt). Then the solution of (5.16) is solution of the differential
equation

dHt = fX(Ht, t)dt.

Let d = 1, ē = e+ 1, and F be the vector field defined by

F : h 7→
(
fX(h1:e, he+1)

1

)
,

where h1:e denotes the projection of h on its first e coordinates. Then, since fX is Lipschitz, so
is the vector field F. Theorem 5.15 therefore applies to the differential equation

dHt = F(Ht)dt, H0 = (ζ>, 0)>.

Projecting this differential equation on the last coordinate gives dHe+1
t = dt, that is, He+1

t = t.
Projecting on the first e coordinates exactly provides equation (5.16), which therefore has a
unique solution, equal to H1:e.

155

5.A.3 Operator norm

Definition 5.17. Let (E, ‖ ·‖E) and (F, ‖ ·‖F) be two normed vector spaces and let f ∈ L (E,F),
where L (E,F) is the space of linear functions from E to F . The operator norm of f is defined
by

‖f‖op = sup
u∈E,‖u‖E=1

‖f(u)‖F .

Equipped with this norm, L (E,F) is a normed vector space.

This definition is valid when f is represented by a matrix.

5.A.4 Tensor Hilbert space

Let us first briefly recall some elements on tensor spaces. If e1, . . . , ed is the canonical basis of
Rd, then (ei1 ⊗ · · · ⊗ eik)1≤i1,...,ik≤d is a basis of (Rd)⊗k. Any element a ∈ (Rd)⊗k can therefore
be written as

a =
∑

1≤i1,...,ik≤d
a(i1,...,ik)ei1 ⊗ · · · ⊗ eik ,

where a(i1,...,ik) ∈ R. The tensor space (Rd)⊗k is a Hilbert space of dimension dk, with scalar
product

〈a, b〉(Rd)⊗k =
∑

1≤i1,...,ik≤d
a(i1,...,ik)b(i1,...,ik)

and associated norm ‖ · ‖(Rd)⊗k .
We now consider the space T defined by (5.6). The sum, multiplication by a scalar, and scalar

product on T are defined as follows: for any a = (a0, . . . , ak, . . .) ∈ T , b = (b0, . . . , bk, . . .) ∈ T ,
λ ∈ R,

a+ λb = (a0 + λb0, . . . , ak + λbk, . . .) and 〈a, b〉T =

∞∑
k=0

〈ak, bk〉(Rd)⊗k ,

with the convention (Rd)⊗0 = R.
Proposition 5.18. (T ,+, ·, 〈·, ·〉T) is a Hilbert space.

Proof. By the Cauchy-Schwartz inequality, 〈·, ·〉T is well-defined: for any a, b ∈ T ,

|〈a, b〉T | ≤
∞∑
k=0

|〈ak, bk〉(Rd)⊗k | ≤
∞∑
k=0

‖ak‖(Rd)⊗k‖bk‖(Rd)⊗k

≤
(∞∑
k=0

‖ak‖2(Rd)⊗k

)1/2(∞∑
k=0

‖bk‖2(Rd)⊗k

)1/2
<∞.

Moreover, T is a vector space: for any a, b ∈ T , λ ∈ R, since

a+ λb = (a0 + λb0, . . . , ak + λbk, . . .),

and
∞∑
k=0

‖ak + λbk‖2(Rd)⊗k =
∞∑
k=0

‖ak‖2(Rd)⊗k + λ2
∞∑
k=0

‖bk‖2(Rd)⊗k

+ 2λ

∞∑
k=0

〈ak, bk〉(Rd)⊗k

≤
∞∑
k=0

‖ak‖2(Rd)⊗k + λ2
∞∑
k=0

‖bk‖2(Rd)⊗k + 2λ〈a, b〉T <∞,

156

we see that a+ λb ∈ T . The operation 〈·, ·〉T is also bilinear, symmetric, and positive definite:

〈a, a〉T = 0⇔
∞∑
k=0

‖ak‖2(Rd)⊗k = 0⇔ ∀k ∈ N, ‖ak‖2(Rd)⊗k = 0⇔ ∀k ∈ N, ak = 0⇔ a = 0.

Therefore 〈·, ·〉T is an inner product on T . Finally, let (a(n))n∈N be a Cauchy sequence in T .
Then, for any n,m ≥ 0,

‖a(n) − a(m)‖2T =
∞∑
k=0

‖a(n)
k − a

(m)
k ‖2(Rd)⊗k ,

so for any k ∈ N, the sequence (a
(n)
k)n∈N is Cauchy in (Rd)⊗k. Since (Rd)⊗k is a Hilbert space,

(a
(n)
k)n∈N converges to a limit a(∞)

k ∈ (Rd)⊗k. Let a(∞) = (a
(∞)
0 , . . . , a

(∞)
k , . . .). To finish the

proof, we need to show that a(∞) ∈ T and that a(n) converges to a(∞) in T . First, note that
there exists a constant B > 0 such that for any n ∈ N,

‖a(n)‖T ≤ B.

To see this, observe that for ε > 0, there existsN ∈ N such that for any n ≥ N , ‖a(n)−a(N)‖T < ε,
and so ‖a(n)‖T ≤ ε+ ‖a(N)‖T . Take B = max(‖a(1)‖T , . . . , ‖a(N)‖T , ε+ ‖a(N)‖T). Then, for
any K ∈ N,

K∑
k=0

‖a(n)
k ‖2(Rd)⊗k ≤ ‖a(n)‖T ≤ B.

Letting K →∞, we obtain that ‖a(∞)‖T ≤ B, and therefore a(∞) ∈ T . Finally, let ε > 0 and
let N ∈ N be such that for any n,m ≥ N , ‖a(n) − a(m)‖T < ε. Clearly, for any K ∈ N,

K∑
k=0

‖a(n)
k − a

(m)
k ‖2(Rd)⊗k < ε2.

Letting m→∞ leads to

K∑
k=1

‖a(n)
k − a

(∞)
k ‖2(Rd)⊗k < ε2,

and letting K →∞ gives

‖a(n) − a(∞)‖T < ε,

which completes the proof.

5.A.5 Bounding the derivatives of the logistic and hyperbolic tangent activations

Lemma 5.19. Let σ be the logistic function defined, for any x ∈ R, by σ(x) = 1/(1+e−x). Then,
for any n ≥ 0,

‖σ(n)‖∞ ≤ 2n−1n! .

157

Proof. For any x ∈ R, one has (Minai and Williams, 1993, Theorem 2)

σ(n)(x) =

n+1∑
k=1

(−1)k−1(k − 1)!

{
n+ 1

k

}
σ(x)k,

where
{
n
k

}
stands for the Stirling number of the second kind (see, e.g., Riordan, 1958). Let

un =
n+1∑
k=1

(k − 1)!

{
n+ 1

k

}
for n ≥ 1 and u0 = 1. Since 0 ≤ σ(x) ≤ 1, it is clear that |σ(n)(x)| ≤ un. Using the fact that the
Stirling numbers satisfy the recurrence relation{

n+ 1

k

}
= k

{
n

k

}
+

{
n

k − 1

}
,

valid for all 0 ≤ k ≤ n, we have

un =
n∑
k=1

(k − 1)!
(
k

{
n

k

}
+

{
n

k − 1

})
+ n! =

n∑
k=1

k!

{
n

k

}
+
n−1∑
k=0

k!

{
n

k

}
+ n! = 2

n∑
k=1

k!

{
n

k

}
(since

{
n
0

}
= 0)

≤ 2n
n∑
k=1

(k − 1)!

{
n

k

}
= 2nun−1.

Thus, by induction, un ≤ 2n−1n!, from which the claim follows.

Lemma 5.20. Let tanh be the hyperbolic tangent function. Then, for any n ≥ 0,

‖tanh(n)‖∞ ≤ 4nn! .

Proof. Let σ be the logistic function. Straightforward calculations yield the equality, valid for
any x ∈ R,

tanh(x) = 2σ(2x)− 1.

But, for any n ≥ 1,
tanh(n)(x) = 2n+1σ(n)(2x),

and thus, by Lemma 5.19,

‖tanh(n)‖∞ ≤ 2n+1‖σ(n)‖∞ ≤ 4nn! .

The inequality is also true for n = 0 since ‖tanh‖∞ ≤ 1.

5.A.6 Chen’s formula

First, note that it is straightforward to extend the definition of the signature to any interval
[s, t] ⊂ [0, 1]. The next proposition, known as Chen’s formula (Lyons et al., 2007, Theorem
2.9), tells us that the signature can be computed iteratively as tensor products of signatures on
subintervals.

Proposition 5.21. Let X ∈ BV c([s, t],Rd) and u ∈ (s, t). Then

S[s,t](X) = S[s,u](X)⊗ S[u,t](X).

158

Next, it is clear that the signature of a constant path is equal to 1 = (1, 0, . . . , 0, . . .) which is
the null element in T . Indeed, let Y ∈ BV c([s, t],Rd) be a constant path. Then, for any k ≥ 1,

Yk[s,t] = k!

∫
· · ·
∫

s≤u1<···<uk≤t

dYu1 ⊗ · · · ⊗ dYuk = k!

∫
· · ·
∫

s≤u1<···<uk≤t

0⊗ · · · ⊗ 0 = 0.

Now let X ∈ BV c([0, 1],Rd) and consider the path X̃[j] equal to the time-augmented path X̄
on [0, j/T] and then constant on [j/T , 1]—see Figure 5.4. We have by Proposition 5.21

S[0,1](X̃[j]) = S[0,j/T](X̃[j])⊗ S[j/T ,1](X̃[j]) = S[0,j/T](X̄)⊗ 1 = S[0,j/T](X̄).

0.0 0.2 0.4 0.6 0.8 1.0

Time t

0.2

0.3

0.4

0.5

0.6

0.7

0.8 X

0.0 0.2 0.4 0.6 0.8 1.0

Time t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

X

X̃[1]

X̃[2]

X̃[j]

Figure 5.4: Example of a path X ∈ BV c([0, 1],R) (left) and its corresponding paths X̃[j], plotted
against time, for different values of j ∈ {1, . . . , T} (right)

5.B Proofs

5.B.1 Proof of Proposition 5.1

According to Assumption (A1), for any h1, h2 ∈ Re, x1, x2 ∈ Rd, one has

‖f(h1, x1)− f(h2, x1)‖ ≤ Kf‖h1 − h2‖ and ‖f(h1, x1)− f(h1, x2)‖ ≤ Kf‖x1 − x2‖.

Under assumption (A1), by Corollary 5.16, the initial value problem (5.3) admits a unique
solution H. Let us first show that for any t ∈ [0, 1], Ht is bounded independently of X. For any
t ∈ [0, 1],

‖Ht −H0‖ =
∥∥∥∫ t

0
f(Hu, Xu)du

∥∥∥ ≤ ∫ t

0
‖f(Hu, Xu)‖du

=

∫ t

0
‖f(Hu, Xu)− f(H0, Xu) + f(H0, Xu)‖du

≤
∫ t

0
‖f(Hu, Xu)− f(H0, Xu)‖+

∫ t

0
‖f(H0, Xu)‖du

≤ Kf

∫ t

0
‖Hu −H0‖du+ t sup

‖x‖≤L
‖f(H0, x)‖.

Applying Grönwall’s inequality to the function t 7→ ‖Ht −H0‖ yields

‖Ht −H0‖ ≤ t sup
‖x‖≤L

‖f(H0, x)‖ exp
(∫ t

0
Kfdu

)
≤ sup
‖x‖≤L

‖f(H0, x)‖eKf := M.

159

Given that H0 = h0 = 0, we conclude that ‖Ht‖ ≤M .
Next, let

‖f‖∞ = sup
‖x‖≤L,‖h‖≤M

f(h, x).

By similar arguments, for any [s, t] ⊂ [0, 1], Grönwall’s inequality applied to the function
t 7→ ‖Ht −Hs‖ yields

‖Ht −Hs‖ ≤ (t− s)‖f‖∞eKf .
Therefore, for any partition (t0, . . . , tk) of [s, t],

k∑
i=1

‖Hti −Hti−1‖ ≤ ‖f‖∞eKf
k∑
i=1

(ti − ti−1) ≤ ‖f‖∞eKf (t− s),

and, taking the supremum over all partitions of [s, t], ‖H‖TV ;[s,t] ≤ ‖f‖∞eKf (t − s). In other
words, H is of bounded variation on any interval [s, t] ⊂ [0, 1]. Let (t0, . . . , tT) denote the regular
partition of [0, 1] with tj = j/T . For any 1 ≤ j ≤ T , we have

‖Htj − hj‖ =
∥∥Htj−1 +

∫ tj

tj−1

f(Hu, Xu)du− hj−1 −
1

T
f(hj−1, xj)

∥∥
≤ ‖Htj−1 − hj−1‖+

∫ tj

tj−1

∥∥f(Hu, Xu)− f(hj−1, xj)
∥∥du.

Writing∥∥f(Hu, Xu)− f(hj−1, xj)
∥∥ =

∥∥f(Hu, Xu)− f(Hu, xj) + f(Hu, xj)− f(hj−1, xj)
∥∥

≤
∥∥f(Hu, Xu)− f(Hu, xj)

∥∥+
∥∥f(Hu, xj)− f(hj−1, xj)

∥∥
≤ Kf

∥∥Xu − xj
∥∥+Kf

∥∥Hu − hj−1

∥∥,
we obtain

‖Htj − hj‖ ≤ ‖Htj−1 − hj−1‖+Kf

∫ tj

tj−1

‖Hu − hj−1‖du+Kf

∫ tj

tj−1

‖Xu − xj‖du

≤ ‖Htj−1 − hj−1‖+Kf

∫ tj

tj−1

(
‖Hu −Htj−1‖+ ‖Htj−1 − hj−1‖

)
du

+
Kf

T
‖X‖TV ;[tj−1,tj]

≤
(
1 +

Kf

T

)
‖Htj−1 − hj−1‖+

Kf

T

(
‖H‖TV ;[tj−1,tj] + ‖X‖TV ;[tj−1,tj]

)
.

By induction, we are led to

‖Htj − hj‖ ≤
Kf

T

j−1∑
k=0

(
1 +

Kf

T

)k(
‖H‖TV ;[tk,tk+1] + ‖X‖TV ;[tk,tk+1]

)
≤ Kf

T

(
1 +

Kf

T

)T (
‖X‖TV ;[0,1] + ‖H‖TV ;[0,1]

)
≤ Kfe

Kf

T

(
L+ ‖f‖∞eKf

)
,

which concludes the proof.

160

5.B.2 Proof of Proposition 5.2

Let h̄ ∈ Rē and let h̄i:j = (h̄i, . . . , h̄j) be its projection on a subset of coordinates. It is sufficient
to take F defined by

F(h̄) =

(
0e×d

2
1−Lf(h̄1:e, h̄e+1:e+d)

Id×d 0d×1

)
,

where Id×d denotes the identity matrix and 0·×· the matrix full of zeros. The function H̄ is then
solution of

dH̄t =

(
0e×d

2
1−Lf(H̄1:e

t , H̄e+1:e+d
t)

Id×d 0d×1

)(
dXt

1−L
2 dt

)
.

Note that under assumption (A1), the tensor field F satisfies the assumptions of the Picard-
Lindelöf theorem (Theorem 5.15) so that H̄ is well-defined. The projection of this equation on
the last d coordinates gives

dH̄e+1:e+d
t = dXt, H̄e+1:e+d

0 = X0,

and therefore H̄e+1:e+d
t = Xt. The projection on the first e coordinates gives

dH̄1:e
t =

2

1− Lf(H̄1:e
t , Xt)

1− L
2

dt = f(H̄1:e
t , Xt)dt, H̄1:e

0 = h0,

which is exactly (5.3).

5.B.3 Proof of Proposition 5.6

According to Lyons (2014, Lemma 5.1), one has

‖X̄k[0,t]‖(Rd)⊗k ≤ ‖X̄‖kTV ;[0,t].

Let (t0, . . . , tk) be a partition of [0, t]. Then

k∑
j=1

‖X̄tj − X̄tj−1‖ =
k∑
j=1

√
‖Xtj −Xtj−1‖2 +

(1− L
2

)2
(tj − tj−1)2

≤
k∑
j=1

‖Xtj −Xtj−1‖+
1− L

2

k∑
j=1

(tj − tj−1)

=
k∑
j=1

‖Xtj −Xtj−1‖+
1− L

2
t.

Taking the supremum over any partition of [0, t] we obtain

‖X̄‖TV ;[0,t] ≤ ‖X‖TV ;[0,t] +
1− L

2
t ≤ L+

1− L
2

=
1 + L

2
< 1,

and thus ‖X̄k[0,t]‖(Rd)⊗k ≤
(

1+L
2

)k
. It is then clear that

‖S[0,t](X̄)‖T =
(∞∑
k=0

‖X̄k[0,t]‖2(Rd)⊗k

)1/2
≤
∞∑
k=0

‖X̄k[0,t]‖(Rd)⊗k ≤
∞∑
k=0

(1 + L

2

)k
= 2(1− L)−1.

161

5.B.4 Proof of Proposition 5.9

We first recall the fundamental theorem of calculus for line integrals (also known as gradient
theorem).

Theorem 5.22. Let g : Re → R be a continuously differentiable function, and let γ : [a, b]→ Re
be a smooth curve in Re. Then

∫ b

a
∇g(γt)dγt = g(γb)− g(γa),

where ∇g denotes the gradient of g.

The identity above immediately generalizes to a function g : Re → Re:

∫ b

a
J(g)(γt)dγt = g(γb)− g(γa),

where J(g) ∈ Re×e is the Jacobian matrix of g. Let us apply Theorem 5.22 to the vector field F i

between 0 and t, with γ = H. We have

F i(Ht)− F i(H0) =

∫ t

0
J(F i)(Hu)dHu =

∫ t

0
J(F i)(Hu)

d∑
j=1

F j(Hu)dXu

=
d∑
j=1

∫ t

0
J(F i)(Hu)F j(Hu)dXu =

d∑
j=1

∫ t

0
F j ? F i(Hu)dXu.

Iterating this procedure (N − 1) times for the vector fields F 1, . . . , F d yields

Ht = H0 +

d∑
i=1

∫ t

0
F i(Hu)dXi

u

= H0 +

d∑
i=1

∫ t

0
F i(H0)dXi

u +

d∑
i=1

∫ t

0

d∑
j=1

∫ u

0
F j ? F i(Hv)dX

j
vdX

i
u

= H0 +
d∑
i=1

F i(H0)S
(i)
[0,t](X) +

∑
1≤i,j≤d

∫
0≤v≤u≤t

F j ? F i(Hv)dX
j
vdX

i
u

= · · ·

= H0 +

N∑
k=1

∑
1≤i1,...,ik≤d

F i1 ? · · · ? F ik(H0)
1

k!
S

(i1,...,ik)
[0,t] (X)

+
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

F i1 ? · · · ? F iN+1(Hu1)dXi1
u1
· · · dXiN+1

uN+1 ,

where ∆N ;[0,t] := {(u1, · · · , uN) ∈ [0, t]N | 0 ≤ u1 < · · · < uN ≤ t} is the simplex in [0, t]N . The

162

first (N + 1) terms equal HN
t . Hence,

‖Ht −HN
t ‖

=
∥∥∥ ∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

F i1 ? · · · ? F iN+1(Hu1)dXi1
u1
· · · dXiN+1

uN+1

∥∥∥
≤

∑
1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

‖F i1 ? · · · ? F iN+1(Hu1)‖|dXi1
u1
| · · · |dXiN+1

uN+1 |

≤
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

sup
1≤i1,...,iN+1≤d,‖h‖≤M

‖F i1 ? · · · ? F iN+1(h)‖|dXi1
u1
| · · · |dXiN+1

uN+1 |

≤ ΛN+1(F)
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

|dXi1
u1
| · · · |dXiN+1

uN+1 |.

Thus,

‖Ht −HN
t ‖ ≤ ΛN+1(F)

∑
1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

|dXi1
u1
| · · · |dXiN+1

uN+1 |

≤ ΛN+1(F)
∑

1≤i1,...,iN+1≤d

∫
∆N+1;[0,t]

‖dXu1‖ · · · ‖dXuN+1‖

= ΛN+1(F)
dN+1

(N + 1)!

∫
[0,t]N+1

‖dXu1‖ · · · ‖dXuN+1‖

= ΛN+1(F)
dN+1

(N + 1)!

(∫ t

0
‖dXu‖

)N+1

= ΛN+1(F)
dN+1

(N + 1)!
‖X‖N+1

TV ;[0,t] ≤ ΛN+1(F)
dN+1

(N + 1)!
.

5.B.5 Proof of Proposition 5.10

For simplicity of notation, since the context is clear, we now use the notation ‖ · ‖ instead of
‖ · ‖(Re)⊗k . According to Proposition 5.1, the solution H̄ of (5.4) verifies ‖H̄t‖ ≤M + L := M̄ .
We therefore place ourselves in the ball BM̄ . Recall that for any 1 ≤ i1, . . . , iN ≤ d, h̄ ∈ BM̄ ,

F i1 ? · · · ? F iN (h̄) = J(F i2 ? · · · ? F iN)(h̄)F i1(h̄). (5.17)

Linear case. We start with the proof of the linear case before moving on to the general case.
When σ is chosen to be the identity function, each F iRNN is an affine vector field, in the sense
that F iRNN(h̄) = Wih̄ + bi, where Wi = 0ē×ē, bi is the i + dth vector of the canonical basis of
Re+d, and

Wd+1 =

(
2

1−LW

0d×ē

)
and bd+1 =

(
2

1−Lb

0d

)
.

Since J(F iRNN) = Wi, we have, for any h̄ ∈ Re+d and any 1 ≤ i1, . . . , ik ≤ d,

F i1RNN ? · · · ? F
ik
RNN(h̄) = Wik · · ·Wi2(Wi1 h̄+ bi1).

Thus, for any h̄ ∈ BM̄ ,

‖F i1RNN ? · · · ? F
ik
RNN(h̄)‖ ≤ ‖Wik‖op · · · ‖Wi2‖op(‖Wi1‖opM̄ + ‖bi1‖).

163

For i 6= d+ 1, ‖Wi1‖op = 0, and so

Λk(FRNN) ≤ C‖Wd+1‖k−1
op ,

with C = ‖Wd+1‖opM̄ + max(1, 2(1− L)−1‖b‖). Therefore,

∞∑
k=1

dk

k!
Λk(FRNN) ≤ Cd

∞∑
k=0

1

k!

(
2d(1− L)−1‖W‖op

)k−1
<∞.

General case. In the general case, the proof is two-fold. First, we upper bound (5.17) by a
function of the norms of higher-order Jacobians of F i1 , . . . , F iN . We then apply this bound to
the specific case F = FRNN. We refer to Appendix 5.C for details on higher-order derivatives in
tensor spaces. Let F : Re → Re be a smooth vector field. If F (h) = (F1(h), . . . , Fe(h))>, each of
its coordinates Fi is a function from Re to R, C∞ with respect to all its input variables. We
define the derivative of order k of F as the tensor field

Jk(F) : Re → (Re)⊗k+1

h 7→ Jk(F)(h),

where

Jk(F)(h) =
∑

1≤j,i1,...,ik≤e

∂kFj(h)

∂hi1 . . . ∂hik
ej ⊗ ei1 ⊗ · · · ⊗ eik .

We take the convention J0(F) = F , and note that J(F) = J1(F) is the Jacobian matrix, and
that Jk(Jk′(F)) = Jk+k′(F).

Lemma 5.23. Let A1, . . . , Ak : Re → Re be smooth vector fields. Then, for any h ∈ Re∥∥Ak ? · · · ? A1(h)
∥∥ ≤ ∑

n1+···+nk=k−1

C(k;n1, . . . , nk)‖Jn1(A1)(h)‖ · · · ‖Jnk(Ak)(h)‖,

where C(k;n1, . . . , nk) is defined by the following recurrence on k: C(1; 0) = 1 and for any
n1, . . . , nk+1 ≥ 0,

C(k + 1;n1, . . . , nk+1) =
k∑
`=1

C(k;n1, . . . , n` − 1, . . . , nk) if nk+1 = 0, (5.18)

C(k + 1;n1, . . . , nk+1) = 0 otherwise.

Proof. We refer to Appendix 5.C for the definitions of the tensor dot product � and tensor
permutations, as well as for computation rules involving these operations. We show in fact by
induction a stronger result, namely that there exist tensor permutations πp such that

Ak ? · · · ? A1(h) =
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

πp

[
Jn1(A1)(h)� · · · � Jnk(Ak)(h)

]
. (5.19)

Note that we do not make explicit the permutations nor the axes of the tensor dot operations since
we are only interested in bounding the norm of the iterated star products. Also, for simplicity,
we denote all permutations by π, even though they may change from line to line.

164

We proceed by induction on k. For k = 1, the formula is clear. Assume that the formula is
true at order k. Then

J(Ak ? · · · ? A1)

=
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

J
[
πp[J

n1(A1) � · · · � Jnk(Ak)]
]

=
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

πp

[
J [Jn1(A1) � · · · � Jnk(Ak)]

]

=
∑

n1+···+nk=k−1

∑
1≤p≤C(k;n1,...,nk)

k∑
`=1

πp ◦ π`
[
Jn1(A1) �

· · · � Jn`+1(A`)� · · · � Jnk(Ak)
]
.

In the inner sum, we introduce the change of variable pi = ni for i 6= ` and p` = n` + 1. This
yields

J(Ak ? · · · ? A1)

=
∑

p1+···+pk=k

k∑
`=1

∑
1≤p≤C(k;p1,...,p`−1,...,pk)

πp ◦ π`
[
Jn1 (A1) �

· · · � Jn`+1(A`)� · · · � Jnk(Ak)
]

=
∑

p1+···+pk+1=k

∑
1≤q≤C(k+1;p1,...,pk+1)

πq

[
Jn1(A1)� · · · � Jpk(Ak)

]
,

where in the last sum the only non-zero term is for pk+1 = 0. To conclude the induction, it
remains to note that

Ak+1 ? · · · ? A1 = J(Ak ? · · · ? A1)�Ak+1 = J(Ak ? · · · ? A1)� J0(Ak+1).

Hence,

Ak+1 ? · · · ? A1

=
∑

p1+···+pk+1=k

∑
1≤q≤C(k+1;p1,...,pk+1)

πq

[
Jn1(A1)� · · · � Jpk(Ak)

]
� Jpk+1(Ak+1)

=
∑

p1+···+pk+1=k

∑
1≤q≤C(k+1;p1,...,pk+1)

πq

[
Jn1(A1)� · · · � Jpk(Ak)� Jpk+1(Ak+1)

]
.

The result is then a consequence of (5.19) and of Lemma 5.29.

We now restrict ourselves to the case F = FRNN as defined by (5.5) and give an upper bound
on the higher-order derivatives of the tensor fields F i1 , . . . , F iN .

Lemma 5.24. For any i ∈ {1, . . . , d+ 1}, h̄ ∈ BM̄ , for any k ≥ 0,

‖Jk(F iRNN)(h̄)‖ ≤
(2

1− L‖W‖F
)k
‖σ(k)‖∞.

Proof. For any 1 ≤ i ≤ d, F iRNN(h̄) is constant, so Jk(F 1
RNN) = · · · = Jk(F dRNN) = 0. For

i = d+ 1, we have, for any 1 ≤ j ≤ e,
∂kF d+1

RNN,j(h̄)

∂h̄i1 . . . ∂h̄ik
=
(2

1− L
)k
Wji1 · · ·Wjikσ

(k)(Wj·h̄+ b),

165

where Wj· denotes the jth row of W and for e+ 1 ≤ j ≤ ē, F d+1
j = 0. Therefore,

‖Jk(F d+1
RNN)(h̄)‖2 ≤

(2

1− L
)2k ∑

1≤j,i1,...,ik≤e
|Wji1 · · ·Wjikσ

(k)(Wj·h̄+ b)|2

=
(2

1− L
)2k
‖σ(k)‖2∞

∑
j

(∑
i

|Wji|2
)k

≤
(2

1− L
)2k
‖σ(k)‖2∞‖W‖2kF .

We are now in a position to conclude the proof using condition (5.11). By Lemma 5.23 and
5.24, for any 1 ≤ i1, . . . , iN ≤ d+ 1,∥∥F i1RNN ? · · · ? F iNRNN(h̄)

∥∥
≤

∑
n1+···+nN=N−1

C(N ;nN , . . . , n1)‖JnN (F iNRNN)(h̄)‖ · · · ‖Jn1(F i1RNN)(h̄)‖

≤
(2

1− L‖W‖F
)N−1 ∑

n1+···+nN=N−1

C(N ;nN , . . . , n1)an1+1n1! · · · anN+1nN !

≤ a
(2

1− La
2‖W‖F

)N−1 ∑
n1+···+nN=N−1

C(N ;nN , . . . , n1)n1! · · ·nN ! .

Assume for the moment that C(N ;nN , . . . , n1) is smaller than the multinomial coefficient(
N

nN ,...,n1

)
. Then, using the fact that there are

(
n+k−1
k−1

)
weak compositions of n in k parts and

Stirling’s approximation, we have

ΛN (F) ≤ a
(2

1− La
2‖W‖F

)N−1
N !× Card

(
{n1 + · · ·+ nN = N − 1}

)
≤ a

(2

1− La
2‖W‖F

)N−1
N !

(
2N − 2

N − 1

)
≤ a

2

(2

1− La
2‖W‖F

)N−1
N !

(
2N

N

)
≤ a
√

2e

π

(8

1− La
2‖W‖F

)N−1 N !√
N
.

Hence, provided ‖W‖F < (1−L)/8a2d,

∞∑
k=1

dk

k!
Λk(F) ≤ ad

√
2e

π

∞∑
k=1

(8da2‖W‖F
1− L

)k−1 1√
k
<∞,

and (A2) is verified.
To conclude the proof, it remains to prove the following lemma.

Lemma 5.25. For any k ≥ 1 and n1, . . . , nk ≥ 0, C(k;n1, . . . , nk) ≤
(

k−1
n1,...,nk

)
.

Proof. The proof is done by induction, by comparing the recurrence formula (5.18) with the
following recurrence formula for multinomial coefficients:(

k

n1, . . . , nk+1

)
=

k+1∑
`=1

(
k − 1

n1, . . . , n` − 1, . . . , nk+1

)
.

166

More precisely, for k = 1, C(1; 0) = 1 ≤
(

0
0

)
= 1 and C(1; 1) = 0 ≤

(
0
1

)
= 0. Assume

that the formula is true at order k. Then, at order k + 1, there are two cases. If nk+1 6= 0,
C(k + 1;n1, . . . , nk+1) = 0, and the result is clear. On the other hand, if nk+1 = 0,

C(k + 1;n1, . . . , nk, 0) =
k∑
`=1

C(k;n1, . . . , n` − 1, . . . , nk)

≤
k∑
`=1

(
k − 1

n1, . . . , n` − 1, . . . , nk

)

≤
k+1∑
`=1

(
k − 1

n1, . . . , n` − 1, . . . , nk+1

)
≤
(

k

n1, . . . , nk+1

)
.

5.B.6 Proof of Theorem 5.11

First, Propositions 5.1 and 5.2 state that if H̄ is the solution of (5.4) and Proj denotes the
projection on the first e coordinates, then∣∣zT − ψ(Proj(H̄1)

)∣∣ =
∣∣ψ(hT)− ψ

(
Proj(H̄1])

)∣∣ ≤ ‖ψ‖op∥∥hT − Proj(H̄1)
∥∥ ≤ ‖ψ‖op c1

T
.

For any 1 ≤ k ≤ N , we let Dk(H̄0) : (Rd)⊗k → Re be the linear function defined by

Dk(H̄0)(ei1 ⊗ · · · ⊗ eik) = F i1 ? · · · ? F ik(H̄0), (5.20)

where e1, . . . , ed denotes the canonical basis of Rd̄. Then, under assumptions (A1) and (A2), if
X̄k denotes the signature of order k of the path X̄t = (X>t ,

1−L
2 t)>, according to Propositions

5.9 and 5.10,

H̄1 = H̄0 +
∞∑
k=1

1

k!

∑
1≤i1,...,ik≤d

S
(i1,...,ik)
[0,t] (X)F i1 ? · · · ? F ik(H̄0) =

∞∑
k=1

1

k!
Dk(H̄0)(Xk[0,t]),

and

ψ ◦ Proj(H̄1) = ψ ◦ Proj
(∞∑
k=0

1

k!
Dk(H̄0)(X̄k)

)
=

∞∑
k=0

1

k!
ψ ◦ Proj

(
Dk(H̄0)(X̄k)

)
,

by linearity of ψ and Proj. Since the maps Dk(H̄0) : (Rd)⊗k → Re are linear, the above equality
takes the form

ψ ◦ Proj(H̄1) =
∞∑
k=0

〈αk, X̄k〉(Rd)⊗k , (5.21)

where αk ∈ (Rd)⊗k is the coefficient of the linear map 1
k!ψ ◦Proj ◦Dk(H̄0) in the canonical basis.

Let α = (α0, . . . , αk, . . .). Under assumption (A2),
∞∑
k=0

‖αk‖2(Rd)⊗k ≤
∞∑
k=0

∑
1≤i1,...,ik≤d

(1

k!

)2
‖ψ‖2op‖F i1 ? · · · ? F ik(H̄0)‖2

≤ ‖ψ‖2op
∞∑
k=0

∑
1≤i1,...,ik≤d

(1

k!

)2
Λk(F)2

≤ ‖ψ‖2op
∞∑
k=0

(dk
k!

Λk(F)
)2

<∞.

167

This shows that α ∈ T , and therefore, using (5.21), we conclude

‖zT − 〈α, S(X̄)〉T ‖ ≤ ‖ψ‖op
c1

T
.

5.B.7 Proof of Theorem 5.12

Let
G =

{
gθ : (Rd)T → R | gθ(x) = zT , θ ∈ Θ

}
be the function class of (discrete) RNN and

S =
{
ξαθ : X → R | ξαθ(X) = 〈αθ, S(X̄)〉T , θ ∈ Θ

}
,

be the class of their RKHS embeddings, where αθ is defined by (5.21). For any θ ∈ Θ, we let

RG (θ) = E[`(y, gθ(x))], and RS (θ) = E[`(y, ξαθ(X̄))],

and denote by R̂n,G and R̂n,S the corresponding empirical risks. We also let θ∗G , θ
∗
S , θ̂n,G , and

θ̂n,S be the corresponding minimizers. We have

P
(
y 6= g

θ̂n,G
(x)
)
− R̂n,G (θ̂n,G) ≤ E

[
`(y, g

θ̂n,G
(x))

]
− R̂n,G (θ̂n,G)

= RG (θ̂n,G)− R̂n,G (θ̂n,G)

= RG (θ̂n,G)−RS (θ̂n,G) + RS (θ̂n,G)− R̂n,S (θ̂n,G)

+ R̂n,S (θ̂n,G)− R̂n,G (θ̂n,G)

≤ sup
θ
|RG (θ)−RS (θ)|+ sup

θ
|RS (θ)− R̂n,S (θ)|

+ sup
θ
|R̂n,G (θ)− R̂n,S (θ)|.

Using Theorem 5.11, we have

sup
θ
|RG (θ)−RS (θ)| = sup

θ

∣∣E[`(y, gθ(x))− `(y, ξαθ(X̄))
]∣∣

≤ sup
θ
E
[
|φ(ygθ(x))− φ(yξαθ(X̄))|

]
≤ sup

θ
E
[
K`|y| × |gθ(x)− ξαθ(X̄)|

]
≤ K` sup

θ
(‖ψ‖opc1,θ)

1

T
:=

c2

2T
,

where c1,θ = Kfθe
Kfθ
(
L+ ‖fθ‖∞eKfθ

)
(the infinity norm ‖fθ‖∞ is taken on the balls BL and

BM). One proves with similar arguments that

sup
θ
|R̂n,G (θ)− R̂n,S (θ)| ≤ c2

2T
.

Under the assumption of the theorem, there exists a ball B ⊂H of radius B such that S ⊂ B.
This yields

sup
θ
|RS (θ)− R̂n,S (θ)| ≤ sup

α∈T ,‖α‖T ≤B
|RB(α)− R̂n,B(α)|,

168

where

RB(α) = E[`(Y, ξα(X̄))] and R̂n,B(α) =
1

n

n∑
i=1

`(Y (i), ξα(X̄(i))).

We now have reached a familiar situation where the supremum is over a ball in an RKHS. A
slight extension of Bartlett and Mendelson (2002, Theorem 8) yields that with probability at
least 1− δ,

sup
α∈T ,‖α‖T ≤B

|RB(α)− R̂n,B(α)| ≤ 4K`ERadn(B) + 2BK`(1− L)−1

√
log(1/δ)

2n
,

where Radn(B) denotes the Rademacher complexity of B. Observe that we have used the fact
that the loss is bounded by 2BK`(1 − L)−1 since, for any ξα ∈ B, by the Cauchy-Schwartz
inequality,

`(y, ξα(X̄)) = φ(y〈α, S(X̄)〉T) ≤ K`|y〈α, S(X̄)〉T | ≤ K`‖α‖T ‖S(X̄)‖T
≤ 2K`B(1− L)−1.

Finally, the proof follows by noting that Rademacher complexity of B is bounded by

Radn(B) ≤ B

n

√√√√ n∑
i=1

K(X(i), X(i)) =
B

n

√√√√ n∑
i=1

‖S(X̄(i))‖2T ≤
2B(1− L)−1

√
n

.

5.B.8 Proof of Theorem 5.14

Let
G =

{
gθ : (Rd)T → (Rp)T | gθ(x) =

(
z1, . . . , zT

)
, θ ∈ Θ

}
be the function class of discrete RNN in a sequential setting. Let

S =
{

Γθ : X → (Rp)T |Γθ(X) =
(
Ξθ(X̃[1]), . . . ,Ξθ(X̃[T])

)}
,

be the class of their RKHS embeddings, where X̃[j] is the path equal to X on [0, j/T] and then
constant on [j/T , 1] (see Figure 5.4). For any X ∈X ,

Ξθ(a) =

〈α1,θ, S(X̄)〉T
...

〈αp,θ, S(X̄)〉T

 =

ξα1,θ
(X)
...

ξαp,θ(X)

 ∈ Rp,

where (α1,θ, . . . , αp,θ)
> ∈ (T)p are the coefficients of the linear maps 1

k!ψ ◦ Proj ◦ Dk(H̄0) :
(Rd)⊗k → Rp, k ≥ 0, in the canonical basis, where Dk is defined by (5.20).

We start the proof as in Theorem 5.12, until we obtain

RG (θ̂n,G)− R̂n,G (θ̂n,G) ≤ sup
θ
|RG (θ)−RS (θ)|+ sup

θ
|RS (θ)− R̂n,S (θ)|

+ sup
θ
|R̂n,G (θ)− R̂n,S (θ)|.

169

By definition of the loss, for any θ ∈ Θ,

|RG (θ)−RS (θ)| =
∣∣∣E[`(y, gθ(x)

)
− `
(
y,Γθ(X)

)]∣∣∣
≤ E

[∣∣ 1

T

T∑
j=1

(
‖yj − zj‖2 − ‖yj − Ξθ(X̃[j])‖2

)∣∣]

≤ E
[1

T

T∑
j=1

∣∣〈zj + Ξθ(X̃[j])− 2yj , zj − Ξθ(X̃[j])
〉∣∣]

≤ E
[1

T

T∑
j=1

‖zj + Ξθ(X̃[j])− 2yj‖ × ‖zj − Ξθ(X̃[j])‖
]

(by the Cauchy-Schwartz inequality).

According to inequality (5.14), one has

‖zj − Ξθ(X̃[j])‖ ≤ ‖ψ‖op
c1,θ

T
,

where c1,θ = Kfθe
Kfθ
(
L+ ‖fθ‖∞eKfθ

)
. Moreover,

∥∥Ξθ(X̃[j])
∥∥2

=

p∑
`=1

∣∣〈α`,θ, S(X̃[j])〉T
∣∣2 ≤ p∑

`=1

‖α`,θ‖2T ‖S(X̃[j])‖2T ≤ pB2
(
2(1− L)−1

)2
,

since ‖S(X̃[j])‖T = ‖S[0,j/T](X̄)‖T ≤ ‖S(X̄)‖T . This yields

‖zj + Ξθ(X̃[j])− 2yj‖ ≤ ‖zj‖+ ‖Ξθ(X̃[j])‖+ 2‖yj‖
≤ ‖ψ‖op‖fθ‖∞ + 2

√
pB(1− L)−1 + 2Ky.

Finally,

sup
θ
|RG (θ)−RS (θ)| ≤ c3

2T
,

where c3 = sup
θ

(
c1,θ + ‖ψ‖op‖fθ‖∞

)
+ 2
√
pB(1−L)−1 + 2Ky. One proves with similar arguments

that
sup
θ
|R̂n,G (θ)− R̂n,S (θ)| ≤ c3

2T
.

We now turn to the term sup
θ
|RS (θ)− R̂n,S (θ)|. We have

RS (θ)− R̂n,S (θ)

= E[`(y,Γθ(X))]− 1

n

n∑
i=1

`(y(i),Γθ(X
(i)))

=
1

T

T∑
j=1

(
E[‖yj − Ξθ(X̃[j])]‖2 −

1

n

n∑
i=1

∥∥y(i)
j − Ξθ(X̃

(i)
[j])
∥∥2
)
.

Therefore,

sup
θ
|RS (θ)− R̂n,S (θ)| ≤ 1

T

T∑
j=1

sup
θ

∣∣∣E[‖yj − Ξθ(X̃[j])]‖2 −
1

n

n∑
i=1

∥∥y(i)
j − Ξθ(X̃

(i)
[j])
∥∥2
∣∣∣.

170

Note that for a fixed j, the pairs (X̃
(i)
[j] , y

(i)
j) are i.i.d. Under the assumptions of the theorem,

there exists a ball B ⊂H such that for any 1 ≤ ` ≤ p, θ ∈ Θ, ξα`,θ ∈ B . We denote by Bp the
sum of p such spaces, that is,

Bp =
{
fα : X → Rp | fα(X) = (fα1(X), . . . , fαp(X))>, fα` ∈ B

}
.

Clearly, Ξθ ∈ Bp, and it follows that

sup
θ

∣∣∣E[‖yj − Ξθ(X̃[j])]‖2 −
1

n

n∑
i=1

∥∥y(i)
j − Ξθ(X̃

(i)
[j])
∥∥2
∣∣∣

≤ sup
fα∈Bp

∣∣∣E[‖yj − fα(X̃[j])‖2
]
− 1

n

n∑
i=1

‖y(i)
j − fα(X̃

(i)
[j])‖2

∣∣∣.
We have once again reached a familiar situation, which can be dealt with by an easy extension of
Bartlett and Mendelson (2002, Theorem 12). For any fα ∈ Bp, let φ̃ ◦ fα : X × Rp : (X, y) 7→
‖y − fα(X)‖2 − ‖y‖2. Then, φ̃ ◦ fα is upper bounded by

|φ̃ ◦ fα(X, y)| =
∣∣‖y − fα(X)‖2 − ‖y‖2

∣∣ ≤ ‖fα(X)‖
(
‖fα(X)‖+ 2‖y‖

)
≤ 2
√
pB(1− L)−1(2

√
pB(1− L)−1 + 2Ky)

≤ 4pB(1− L)−1(B(1− L)−1 +Ky).

Let c4 = B(1− L)−1 +Ky and c5 = 4pB(1− L)−1c4 +K2
y . Then with probability at least 1− δ,

sup
fα∈Bp

∣∣∣E[‖yj − fα(X̃[j])‖
]
− 1

n

n∑
i=1

‖y(i)
j − fα(X̃

(i)
[j])‖

∣∣∣ ≤ Radn(φ̃ ◦Bp) +

√
2c5 log(1/δ)

n
,

where φ̃ ◦Bp =
{

(X, y) 7→ φ̃ ◦ fα(X, y)|fα ∈ Bp

}
. Elementary computations on Rademacher

complexities yield

Radn(φ̃ ◦Bp) ≤ 2pc4Radn(B) ≤ 4pc4B(1− L)−1

√
n

,

which concludes the proof.

5.C Differentiation with higher-order tensors

5.C.1 Definition

We define the generalization of matrix product between square tensors of order k and `.

Definition 5.26. Let a ∈ (Re)⊗k, b ∈ (Re)⊗`, p ∈ {1, . . . , k}, q ∈ {1, . . . , `}. Then the tensor
dot product along (p, q), denoted by a�p,q b ∈ (Re)⊗(k+`−2), is defined by

(a�p,q b)(i1,...,ik−1,j1,...,j`−1) =

e∑
j=1

a(i1,...,ip−1,j,ip,...,ik−1)b(j1,...,jq−1,j,jq ,...,j`−1).

This operation just consists in computing a⊗ b, and then summing the pth coordinate of a
with the qth coordinate of b. The � operator is not associative. To simplify notation, we take
the convention that it is evaluated from left to right, that is, we write a� b� c for (a� b)� c.
Definition 5.27. Let a ∈ (Re)⊗k. For a given permutation π of {1, . . . , k}, we denote by π(a)
the permuted tensor in (Re)⊗k such that

π(a)(i1,...,ik) = a(iΠ(1),...,iΠ(k)).

Example 5.28. If A is a matrix, then AT = π(A), with π defined by π(1) = 2, π(2) = 1.

171

5.C.2 Computation rules

We need to obtain two computation rules for the tensor dot product: bounding the norm (Lemma
5.29) and differentiating (Lemma 5.30).

Lemma 5.29. Let a ∈ (Re)⊗k, b ∈ (Re)⊗`. Then, for all p, q,

‖a�p,q b‖(Re)⊗k+`−2d ≤ ‖a‖(Re)⊗k‖b‖(Re)⊗` .

Proof. By the Cauchy-Schwartz inequality,

‖a�p,q b‖2(Re)⊗k+`−2

=
∑

1≤i1,...,ik−1,j1,...,j`−1≤e
(a�p,q b)2

(i1,...,ik−1,j1,...,j`−1)

=
∑

1≤i1,...,ik−1,j1,...,j`−1≤e

(∑
1≤j≤e

a(i1,...,ip−1,j,ip,...,ik−1)b(j1,...,jq−1,j,jq ,...,j`−1)

)2

≤
∑

i1,...,ik−1,j1,...,j`−1

(∑
j

a2
(i1,...,ip−1,j,ip,...,ik−1)

)(∑
j

b2(j1,...,jq−1,j,jq ,...,j`−1)

)
≤

∑
i1,...,ik−1,j

a2
(i1,...,ip−1,j,ip,...,ik−1)

∑
j1,...,j`−1,j

b2(j1,...,jq−1,j,jq ,...,j`−1)

≤ ‖a‖2(Re)⊗k‖b‖2(Re)⊗` .

Lemma 5.30. Let A : Re → (Re)⊗k, B : Re → (Re)⊗` be smooth vector fields, p ∈ {1, . . . , k},
q ∈ {1, . . . , `}. Let A �p,q B : Re → (Re)⊗k+`−2 be defined by A �p,q B(h) = A(h) �p,q B(h).
Then there exists a permutation π such that

J(A�p,q B) = π(J(A)�p,q B) +A�p,q J(B).

Proof. The left-hand side takes the form

(J(A�p,q B))i1,...,ik−1,j1,...,j`−1,m =
∑
j

[∂A
∂hm (i1,...,ip−1,j,ip,...,ik−1)

B(j1,...,jq−1,j,jq ,...,j`−1)

+A(i1,...,ip−1,j,ip,...,ik−1)
∂B

∂hm (j1,...,jq−1,j,jq ,...,j`−1)

]
.

The first term of the right-hand side writes

(J(A)�p,q B)i1,...,ik−1,m,j1,...,j`−1
=
∑
j

[∂A
∂hm (i1,...,ip−1,j,ip,...,ik−1)

B(j1,...,jq−1,j,jq ,...,j`−1)

]
,

and the second one

(A�p,q J(B))i1,...,ik−1,j1,...,j`−1,m =
∑
j

[
A(i1,...,ip−1,j,ip,...,ik−1)

∂B

∂hm (j1,...,jq−1,j,jq ,...,j`−1)

]
.

Let us introduce the permutation π which keeps the first (k − 1) axes unmoved, and rotates the
remaining ` ones such that the last axis ends up in kth position. Then

π(J(A)�p,q B)i1,...,ik−1,j1,...,j`−1,m =
∑
j

[∂A
∂hm (i1,...,ip−1,j,ip,...,ik−1)

B(j1,...,jq−1,j,jq ,...,j`−1)

]
.

Hence J(A�p,q B) = π(J(A)�p,q B) +A�p,q J(B), which concludes the proof.

172

The following two lemmas show how to compose the Jacobian and the tensor dot operations
with permutations. Their proofs follow elementary operations and are therefore omitted.

Lemma 5.31. Let A : Re → (Re)⊗k and π a permutation of {1, . . . , k}. Then there exists a
permutation π̃ of {1, . . . , k + 1} such that

J(π(A)) = π̃(J(A)).

Lemma 5.32. Let a ∈ (Re)⊗k, b ∈ (Re)⊗`, p ∈ {1, . . . , k}, q ∈ {1, . . . , `}, π a permutation of
{1, . . . , k}. Then there exists p̃ ∈ {1, . . . , k}, q̃ ∈ {1, . . . , `}, and a permutation π̃ of {1, . . . , k +
`− 2} such that

π(a)�p,q b = π̃(a�p̃,q̃ b).
The following result is a generalization of Lemma 5.30 to the case of a dot product of several

tensors.

Lemma 5.33. For ` ∈ {1, . . . , k}, n` ∈ N, let A` : Re → (Re)⊗n` be smooth tensor fields. For
any (p`)1≤`≤k−1 and (q`)1≤`≤k−1 such that p` ∈ {1, . . . , n`}, q` ∈ {1, . . . , n`+1}, there exist k
permutations (π`)1≤`≤k such that

J(A1 �p1,q1 A2 �p2,q2 · · · �pk−1,qk−1
Ak) =

k∑
`=1

π` [A1 �A2 � · · · � J(A`)� · · · �Ak] ,

where the dot products of the right-hand side are along some axes that are not specify for simplicity.

Proof. The proof is done by induction on k. The formula for k = 1 is straightforward. Assume
that the formula is true at order k. As before, we do not specify indexes for tensor dot products
as we are only interested in their existence. By Lemma 5.32, we have

J(A1 � · · · �Ak+1)

= J((A1 � · · · �Ak)�Ak+1)

= π(J(A1 � · · · �Ak)�Ak+1) +A1 � · · · �Ak � J(Ak+1)

= π

[
k∑
`=1

π` [A1 �A2 � · · · � J(A`)� · · · �Ak]�Ak+1

]
+A1 � · · · �Ak � J(Ak+1)

= π

[
k∑
`=1

π̃` [A1 �A2 � · · · � J(A`)� · · · �Ak �Ak+1]

]
+A1 � · · · �Ak � J(Ak+1)

=
k∑
`=1

π̂` [A1 �A2 � · · · � J(A`)� · · · �Ak �Ak+1] +A1 � · · · �Ak � J(Ak+1)

(where π̂ = π ◦ π̃)

=
k+1∑
`=1

π̂` [A1 �A2 � · · · � J(A`)� · · · �Ak �Ak+1] .

5.D Experimental details

All the code to reproduce the experiments is available on GitHub at https://github.com/aferm
anian/rnn-kernel. Our experiments are based on the PyTorch (Paszke et al., 2019) framework.
When not specified, the default parameters of PyTorch are used.

173

https://github.com/afermanian/rnn-kernel
https://github.com/afermanian/rnn-kernel

Convergence of the Taylor expansion. For Figure 5.1, 103 random RNN with 2 hidden
units are generated, with the default weight initialization. The activation is either the logistic
or the hyperbolic tangent. In Figure 5.1b, only the results with the logistic activation are
plotted. The process X is taken as a 2-dimensional spiral. The reference solution to the
ODE (5.3) is computed with a numerical integration method from SciPy (Virtanen et al., 2020,
scipy.integrate.solve_ivp with the ‘LSODA’ method). The signature in the step-N Taylor
expansion is computed with the package Signatory (Kidger and Lyons, 2021).

The step-N Taylor expansion requires computing higher-order derivatives of tensor fields
(up to order N). This is a highly non-trivial task since standard deep learning frameworks are
optimized for first-order differentiation only. We refer to, for example, Kelly et al. (2020), for a
discussion on higher-order differentiation in the context of a deep learning framework. To compute
it efficiently, we manually implement forward-mode higher-order automatic differentiation for
the operations needed in our context (described in Appendix 5.C). A more efficient and general
approach is left for future work. Our code is optimized for GPU.

Penalization on a toy example. For Figure 5.2, the RNN is taken with 32 hidden units and
hyperbolic tangent activation. The data are 50 examples of spirals, sampled at 100 points and
labeled ±1 according to their rotation direction. We do not use batching and the loss is taken
as the cross entropy. It is trained for 200 epochs with Adam (Kingma and Ba, 2015) with an
initial learning rate of 0.1. The learning rate is divided by 2 every 40 epochs. For the penalized
RNN, the RKHS norm is truncated at N = 3 and the regularization parameter is selected at
λ = 0.1. Earlier experiments show that this order of magnitude is sensible. We do not perform
hyperparameter optimization since our goal is not to achieve high performance. The initial
hidden state h0 is learned (for simplicity of presentation, our theoretical results were written
with h0 = 0 but they extend to this case). The accuracy is computed on a test set of size 1000.
We generate adversarial examples using 50 steps of projected gradient descent (following Bietti
et al., 2019). The whole methodology (data generation + training) is repeated 20 times. The
average training time on a Tesla V100 GPU for the RNN is 8.5 seconds and for the penalized
RNN 12 seconds.

Figure 5.3 is obtained by selecting randomly one run among the 20 of Figure 5.2.

Libraries. We use PyTorch (Paszke et al., 2019) as our overall framework, Signatory (Kidger
and Lyons, 2021) to compute the signatures, and SciPy (Virtanen et al., 2020) for ODE integration.
We use Sacred (Klaus Greff et al., 2017) for experiment management.

174

Part II

Contributions to finite-depth neural
networks

175

6
Leveraging the two-timescale regime to
demonstrate convergence of neural networks

We study the training dynamics of shallow neural networks, in a two-timescale regime in which
the step sizes for the inner layer are much smaller than those for the outer layer. In this regime,
we prove convergence of the gradient flow to a global optimum of the non-convex optimization
problem in a simple univariate setting. The number of neurons needs not be asymptotically
large for our result to hold, distinguishing our result from popular recent approaches such as the
neural tangent kernel or mean-field regimes. Experimental illustration is provided, showing that
the stochastic gradient descent behaves according to our description of the gradient flow and
thus converges to a global optimum in the two-timescale regime, but can fail outside this regime.

Contents
6.1 Introduction . 177
6.2 Setting and main result . 179
6.3 Related work . 180
6.4 A non-rigorous introduction to the two-timescale limit 182

6.4.1 Introduction to the two-timescale limit 182
6.4.2 Sketch of the dynamics of the two-timescale limit 182

6.5 Convergence of the gradient flow . 184
6.5.1 In the two-timescale limit . 184
6.5.2 From the two-timescale limit to the two-timescale regime 186

6.6 Numerical experiments . 186
6.7 Conclusion . 188
6.A Additional notations and technical lemmas 188
6.B Proofs of the results . 197
6.C Experimental details . 209

6.1 Introduction

Artificial neural networks are among the most successful modern machine learning methods, in
particular because their non-linear parametrization provides a flexible way to implement feature
learning (see, e.g., Goodfellow et al., 2016, chapter 15). Following this empirical success, a large

177

body of work has been dedicated to understanding their theoretical properties, and in particular
to analyzing the optimization algorithm used to tune their parameters. It usually consists in
minimizing a loss function through stochastic gradient descent (SGD) or a variant (Bottou
et al., 2018). However, the non-linearity of the parametrization implies that the loss function
is non-convex, breaking the standard convexity assumption that ensures global convergence of
gradient descent algorithms.

In this chapter, we study the training dynamics of shallow neural networks, i.e., of the form

f(x; a, u) = a0 +
m∑
j=1

ajg(x;uj) ,

where m denotes the number of hidden neurons, a = (a0, . . . , am) and u = (u1, . . . , um) denote
respectively the outer and inner layer parameters, and g(x;u) denotes a non-linear function of
x and u. The novelty of this work lies in the use of a so-called two-timescale regime (Borkar,
1997) to train the neural network: we set step sizes for the inner layer u to be an order of
magnitude smaller than the step sizes of the outer layer a. This ratio is controlled by a parameter
ε. In the regime ε� 1, the neural network can be thought of as a fitted linear regression with
slowly evolving features g(x;uj), j = 1, . . . ,m: this reduction enables us to precisely describe
the movement of the inner layer parameters uj .

Our approach proves convergence of the gradient flow to a global optimum of the non-convex
landscape with a fixed number m of neurons. The gradient flow can be seen as the simplifying
yet insightful limit of the SGD dynamics as the step size h vanishes. Proving convergence with a
fixed number of neurons contrasts with two other popular approaches that require to take the
limit m → ∞: the neural tangent kernel (Jacot et al., 2018; Allen-Zhu et al., 2019; Du et al.,
2019; Zou et al., 2020a) and the mean-field approach (Chizat and Bach, 2018; Mei et al., 2018;
Rotskoff and Vanden-Eijnden, 2018; Sirignano and Spiliopoulos, 2020). As a consequence, this
chapter is intended as a step towards understanding feature learning with a moderate number of
neurons.

While our approach through the two-timescale regime is general, our description of the
solution of the two-timescale dynamics and our convergence results are specific to a simple
example showcasing the approach. More precisely, we consider univariate data x ∈ [0, 1] and
non-linearities of the form g(x;uj) = σ(η−1(x−uj)), where uj is a variable translation parameter,
η is a fixed dilatation parameter, and σ is a sigmoid-like non-linearity. Finally, we restrict
ourselves to the approximation of piecewise constant functions.

Organization of this chapter. In Section 6.2, we detail our setting and state our main
theorem on the convergence of the gradient flow to a global optimum. Section 6.3 articulates this
chapter with related work. Section 6.4 provides a self-contained introduction to the two-timescale
limit ε→ 0. We explain how it simplifies the analysis of neural networks, and provides heuristic
predictions for the movement of neurons in our setting. Section 6.5 gives a rigorous derivation of
our result. We prove convergence first in the two-timescale limit ε→ 0, then in the two-timescale
regime with ε small but positive. Section 6.6 presents numerical experiments showing that the
SGD dynamics follow closely those of the gradient flow in the two-timescale regime, and therefore
exhibit convergence to a global optimum. On the contrary, SGD can fail to reach a global
optimum outside the two-timescale regime. We give a conclusion in Section 6.7 before moving on
to the details of the proofs of this chapter. In Section 6.A, we introduce additional notations that
will be used throughout in the detailed proofs, then proceed to prove useful technical lemmas. We
proceed in Section 6.B to present the detailed proofs of the results of the chapter. Finally, Section
6.C contains details about our experimental settings as well as some additional simulations.

178

6.2 Setting and main result

We present a setting in which a piecewise constant univariate function f∗ : [0, 1]→ R is learned
with gradient flow on a shallow neural network. Our notations are summarized on Figure 6.1.
We begin by introducing our class of functions of interest.

Definition 6.1. Let n > 2, ∆v ∈ (0, 1), ∆f > 0
and M > 1. We denote Fn,∆v,∆f,M the class of
functions f∗ : [0, 1]→ R satisfying the following
conditions:

• f∗ is piecewise constant: there exists

0 = v0 < v1 < · · · < vn−1 < vn = 1

and f∗0 , . . . , f
∗
n−1 ∈ R such that

∀x ∈ (vi, vi+1), f∗(x) = f∗i ,

• for all i ∈ {1, . . . , n}, vi − vi−1 > ∆v,

• for all i ∈ {1, . . . , n− 1}, |f∗i − f∗i−1| > ∆f ,

• for all i ∈ {0, . . . , n− 1}, |f∗i | 6M .

Figure 6.1: Notations of the chapter. The
target f∗ is in blue and the neural network
f(·; a, u) in orange.

Let us now define our class of neural networks. Consider σ : R → R an increasing, twice
continuously differentiable non-linearity such that σ(x) = 0 if x 6 −1/2, σ(x) = 1 if x > 1/2,
and σ − 1/2 is odd. Then, our class of shallow neural networks is defined by

f(x; a, u) = a0 +

m∑
j=1

ajση(x− uj) , ση(x) = σ(η−1x) ,

where 0 < η ≤ 1 measure the sharpness of the non-linearity ση. Note that that inner layer
parameter uj determines the translation of the non-linearity; no parameterized multiplicative
operation on x is performed in this layer. We refer to the parameter u as the “positions” of the
neurons (or, sometimes, simply as the “neurons”) and to the parameter a as the “weights” of the
neurons. The quadratic loss is defined as

L(a, u) =
1

2

∫ 1

0
(f∗(x)− f(x; a, u))2 dx .

We use gradient flow on L to fit the parameters a and u: they evolve according to the dynamics

da

dt
(t) = −∇aL(a(t), u(t)) ,

du

dt
(t) = −ε∇uL(a(t), u(t)) , (6.1)

where ε corresponds to the ratio of the step sizes of the two iterations.

Main result. By leveraging the two-timescale regime where ε is small, our theorem shows that,
with high probability, a neural network trained with gradient flow is able to recover an arbitrary
piecewise constant function to an arbitrary precision. The proof is relegated to the Appendix.

179

Theorem 6.2. Let ξ, δ > 0, and f∗ a piecewise constant function from Fn,∆v,∆f,M . Assume that
the neural network has m neurons with

m >
6

∆v

(
4 + log n+ log

1

δ

)
. (6.2)

Assume that, at initialization, the positions u1, . . . , um of the neurons are i.i.d. uniformly dis-
tributed on [0, 1] and their weights a0, . . . , am are equal to zero.

Then there exists Q1 > 0 and Q2 > 0 depending on ξ, δ,m,∆f,M such that, if

η 6 Q1 , ε 6 Q2 , (6.3)

then, with probability at least 1− δ, the solution to the gradient flow (6.1) is defined at least until
T = 6

ε(∆f)2 , and ∫ 1

0
|f∗(x)− f(x; a(T), u(T))|2 dx 6 ξ .

Further, Q1 =
C1

M2(m+ 1)
min

(δ2(∆f)2

(m+ 1)4
, ξ
)
and Q2 =

C2δ
2

M4(m+ 1)17/2
min

(δ(∆f)2

m+ 1
, ξ
)
for

some universal constants C1, C2 > 0.

Proof. See Section 6.B.6.

For this result to hold, the inequality (6.2) requires the number of neurons in the neural
network to be large enough. Note that the minimum number of neurons required to approximate
the n pieces of f∗ is equal to n. If the length of all the intervals is of the same order of magnitude,
then ∆v = Θ(1/n) and thus the condition is m = Ω(n(1+log n+log 1/δ)). In this case, condition
(6.2) only adds a logarithmic factor in n and δ. Moreover, the lower bound on m does not depend
on the target precision ξ. Thus we observe some non-linear feature learning phenomenon: with
a fixed number m of neurons, gradient flow on a neural network can approximate any element
from the infinite-dimensional space of piecewise constant functions to an arbitrary precision.

The recovery result of Theorem 6.2 is provided under two conditions (6.3). The first one
should not surprise the reader: the condition on η enables the non-linearity to be sharp enough
in order to approximate well the jumps of the piecewise constant function f∗. The novelty of
our work lies in the condition on ε, that we refer to as the two-timescale regime. This condition
ensures that the step sizes taken in the positions u are much smaller than the step sizes taken in
the weights a. As a consequence, the weights a are constantly close to the best linear fit given
the current positions u. This property decouples the dynamics of the two layers of the neural
network; this enables a sharp description of the gradient flow trajectories and thus the recovery
result shown above. This intuition is detailed in Section 6.4.

6.3 Related work

Two-timescale regime. Systems with two timescales, or slow-fast systems, have a long history
in physics and mathematics, see Berglund and Gentz (2006, Chapter 2) for an introduction. In
particular, iterative algorithms with two timescales have been used in stochastic approximation
and optimization, see Borkar (1997) or Borkar (2009, Section 6). For instance, they are used in
the training of generative adversarial networks, to decouple the dynamics of the generator from
those of the discriminator (Heusel et al., 2017), in reinforcement learning, to decouple the value
function estimation from the temporal difference learning (Szepesvári, 2010), or more generally in
bilevel optimization, to decouple the outer problem dynamics from the inner problem dynamics
(Hong et al., 2023). However, to the best of our knowledge, the two-timescale regime has not
been used to show convergence results for neural networks.

180

Layer-wise learning rates. Practitioners are interested in choosing learning rates that depend
on the layer index to speed up training or improve performance. Using smaller learning rates for
the first layers and higher learning rates for the last layer(s) improves performance for fine-tuning
(Howard and Ruder, 2018; Ro and Choi, 2021) and is a common practice for transfer learning
(see, e.g., Li et al., 2022). Another line of work proposes to update layer-wise learning rates
depending on the norm of the gradients on each layer (Singh et al., 2015; You et al., 2017; Ko
et al., 2022). However, they aim to compensate the differences across gradient norms in order
to learn all the parameters at the same speed, while on the contrary we enjoy the theoretical
benefits of learning different speeds.

Theory of neural networks. A key novelty of the analysis of this chapter is that we show
recovery with a fixed number of neurons. We now detail the comparison with other analyses.

The neural tangent kernel regime (Jacot et al., 2018; Allen-Zhu et al., 2019; Du et al., 2019;
Zou et al., 2020a) corresponds to small movements of the parameters of the neural network. In
this case, the neural network can be linearized around its initial point, and thus behaves like
a linear regression. However, in this regime, the neural network can approximate only a finite
dimensional space of functions, and thus it is necessary to take m→∞ to be able to approximate
the infinite-dimensional space of piecewise constant functions to an arbitrary precision.

The mean-field regime (Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-Eijnden,
2018; Sirignano and Spiliopoulos, 2020) describes the dynamics of two-layer neural networks
in the regime m � 1 through a partial differential equation on the density of neurons. This
regime is able to describe some non-linear feature learning phenomena, but does not explain the
observed behavior with a moderate number of neurons. In this chapter, we show that in the
two-timescale regime, only a single neuron aligns with each of the discontinuities of the function
f∗. However, it should be noted that the neural tangent kernel and mean-field regimes have been
applied to show recovery in a wide range of settings, while our work is restricted to the recovery
of piecewise constant functions. Extending the application of the two-timescale regime is left for
future work.

Our work includes a detailed analysis of the alignment of the positions of the neurons with the
discontinuities of the target function f∗. This is analogous to a line of work (see, e.g., Saad and
Solla (1995); Goldt et al. (2020); Veiga et al. (2022)) interested in the alignment of a “student”
neural network with the features of a “teacher” neural network that generated the data, for
high-dimensional Gaussian input. In general, the non-linear evolution equations describing this
alignment are hard to study theoretically. On the contrary, thanks to the two-timescale regime
and to the simple setting of this chapter, we are able to give a precise description of the movement
of the neurons.

Our study bears high-level similarities with the recent work of Safran et al. (2022). In a
univariate classification setting, they show that a two-layer neural network achieves recovery
with a number of neurons analogous to (6.2): inversely proportional to the length of the smallest
constant interval of the target, up to logarithmic terms in the number of constant intervals
and in the failure probability. However, the two works are not comparable due to differences
in the settings: Safran et al. (2022) consider classification with ReLU activations while we
consider regression with sigmoid-like activations. More importantly, the authors do not use
the two-timescale regime. Instead, by a specific scale of the initialization, they ensure that the
neural network has a first phase in a lazy regime where the positions of the neurons do not move
significantly. For the second rich phase, they describe the implicit bias of the limiting point; this
approach does not lead to an estimate of the convergence time while the fine description of the
two-timescale limit does.

181

6.4 A non-rigorous introduction to the two-timescale limit

This section introduces the core ideas of our analysis in a non-rigorous way. Section 6.4.1
introduces the limit of the dynamics when ε→ 0, called the two-timescale limit. Section 6.4.2
applies the two-timescale limit to predict the movement of the neurons.

6.4.1 Introduction to the two-timescale limit

Let us consider the gradient flow equations (6.1) and perform the change of variables τ = εt:

da

dτ
= −1

ε
∇aL(a, u) ,

du

dτ
= −∇uL(a, u) . (6.4)

In the two-timescale regime ε� 1, the rate of the gradient flow in the weights a is much larger
than then the rate in the positions u. Note that L is marginally convex in a, and thus, for a fixed
u, the gradient flow in a must converge to a global minimizer of a 7→ L(a, u). More precisely,
assume that {ση(. − u1), . . . , ση(. − um)} forms an independent set of functions in L2([0, 1]).
Then the global minimizer of a 7→ L(a, u) is unique; we denote it as a∗(u). In the limit ε→ 0, we
expect that a evolves sufficiently quickly with respect to u so that it converges instantaneously
to a∗(u). In other words, the gradient flow system (6.4) reduces to its so-called two-timescale
limit when ε→ 0:

a = a∗(u) ,
du

dτ
= −∇uL(a∗(u), u) . (6.5)

The two-timescale limit considerably simplifies the study of the gradient flow system because it
substitutes the weights a, determined to be equal to a∗(u). However, showing that (6.4) reduces
to (6.5) requires some mathematical care, including checking that a∗(u) is well-defined.

Remark 6.3 (abuse of notation). Equation (6.5) contains the ambiguous notation ∇uL(a∗(u), u):
does it denote the gradient in u of the map L∗ : u 7→ L(a∗(u), u) or the gradient (∇uL)(a, u)
taken at a = a∗(u)? In fact, by definition of a∗(u), both quantities coincide:

(∇uL∗)(u) =
(da∗

du
(u)
)>

(∇aL)(a∗(u), u) + (∇uL)(a∗(u), u) = (∇uL)(a∗(u), u) ,

where da∗

du denotes the differential of a∗ in u and, by definition of a∗(u), (∇aL)(a∗(u), u) = 0.
This is a special case of the envelope theorem (Border, 2015, Sec. 5.10).

The discussion in this section is not specific to the setting of Section 6.2. Using the two-
timescale limit to decouple the dynamics of the outer layer a and the inner layer u is a general
tool that may be used in the study of any two-layer neural network. We chose the specific setting
of this chapter so that the two-timescale limit (6.5) can be easily studied, thereby showcasing
the approach. The next section is devoted to a sketch of this study.

6.4.2 Sketch of the dynamics of the two-timescale limit

In this section, in order to simplify the exposition of the behavior of the two-timescale limit (6.5),
we consider the limiting case η → 0. Note that this is coherent with Theorem 6.2 that requires η
to be small. This limit is a neural network with a non-linearity equal to the Heaviside function

σ0(x) = 0 if x < 0 , σ0(x) = 1/2 if x = 0 , σ0(x) = 1 if x > 0 .

Note that σ0 would be a poor choice of non-linearity in practice: as its derivative is 0 almost
everywhere, the positions u would not move. However, it is a relevant tool to get an intuition

182

Figure 6.2: Sketch of the dynamics of the neurons in the two-timescale limit with a Heaviside
non-linearity. Only the neurons next to a discontinuity of the target move.

about the dynamics of our system for a small η. Moreover, as we will see in Section 6.6, the
dynamics sketched here match closely those of the SGD (with η > 0).

The set {1, σ0(. − u1), . . . , σ0(. − um)} generates the space of functions that are piecewise
constant with respect to the subdivision {u1, . . . , um}. Furthermore, if u1, . . . , um are distinct and
in (0, 1), then this set is an independent set of functions in L2([0, 1]). Thus a∗(u) is well-defined
and represents the coefficients of the best piecewise constant approximation of f∗ with subdivision
{u1, . . . , um}.

This quantity is straightforward to describe under the mild additional assumption that
there are at least two neurons uj in each interval (vi−1, vi) between two points of discontinuity
of f∗. For each 1 6 i 6 n, let uL

i denote the largest position of neurons below vi and uR
i

denote the smallest position above vi (with convention uR
0 = 0 and uL

n+1 = 1). By assumption,
0 = uR

0 < uL
1 < uR

1 < · · · < uL
n < uR

n < uL
n+1 = 1 are distinct. A simple computation then shows

the following identities:

• for all i ∈ {1, . . . , n}, for all x ∈ (uL
i , u

R
i), f(x; a∗(u), u) =

vi − uL
i

uR
i − uL

i

f∗i−1 +
uR
i − vi

uR
i − uL

i

f∗i ,

• and for all i ∈ {1, . . . , n+ 1}, for all x ∈ (uR
i−1, u

L
i), f(x; a∗(u), u) = f∗i−1 ,

where we recall that f∗i denotes the value of f∗ on the interval (vi, vi+1). Figure 6.2 illustrates
the situation. Moreover, the loss L(a∗(u), u), which is half of the square L2-error of this optimal
approximation, can be written

L(a∗(u), u) =
1

2

n−1∑
i=1

(vi − uL
i)(uR

i − vi)
uR
i − uL

i

(f∗i − f∗i−1)2 . (6.6)

The dynamics of the two-timescale limit (6.5) corresponds to the local optimization of the
subdivision u in order to minimize the loss (6.6). A remarkable property of this loss is that
it decomposes as a sum of local losses around the jump points vi for i ∈ {1, . . . , n− 1}. Each
element of the sum involves only the two neurons located at uL

i and uR
i . As a consequence, the

dynamics of the two-timescale limit (6.5) decompose as n independent systems of two neurons
uL
i and uR

i : for all i ∈ {1, . . . , n− 1},

duL
i

dτ
= − dL

duL
i

(a∗(u), u) = +
1

2

(uR
i − vi)2

(uR
i − uL

i)2
(f∗i − f∗i−1)2 ,

duR
i

dτ
= − dL

duR
i

(a∗(u), u) = −1

2

(vi − uL
i)2

(uR
i − uL

i)2
(f∗i − f∗i−1)2 .

(6.7)

183

All neurons other than uL
1 , u

R
1 , . . . , u

L
n−1, u

R
n−1 do not play a role in the expression (6.6), thus

they do not move in the two-timescale limit (6.5). The position uL
i moves right and uR

i moves
left, until one of them hits the point vi. This shows that the positions of the neurons eventually
align with the jumps of the function f∗, and thus that the function f∗ is recovered.

6.5 Convergence of the gradient flow

In this section, we give precise mathematical statements leading to the convergence of the gradient
flow to a global optimum, first in the two-timescale limit ε→ 0, then in the two-timescale regime
with ε small but positive. All proofs are relegated to the Appendix.

6.5.1 In the two-timescale limit

This section analyzes rigorously the two-timescale limit (6.5), which we recall for convenience:

a∗(u) = argmin
a

L(a, u) ,
du

dτ
= −∇uL(a∗(u), u) . (6.8)

We start by giving a rigorous meaning to these equations. First, for L to be differentiable in u, we
require the parameter η of the non-linearity to be positive. Second, for a∗(u) to be well-defined,
we need u 7→ L(a, u) to have a unique minimum. Obviously, if the ui are not distinct, then the
features {ση(. − u1), . . . , ση(. − um)} are not independent and thus the minimum can not be
unique. We restrict the state space of our dynamics to circumvent this issue. For u ∈ [0, 1]m, we
denote

∆(u) = min
06j,k6m+1, j 6=k

|uj − uk| ,

with the convention that u0 = −η/2 and um+1 = 1 + η/2. Furthermore, let us define the set
U = {u ∈ [0, 1]m |∆(u) > 2η} . The proposition below shows that U gives a good candidate for a
set supporting solutions of (6.8).

Proposition 6.4. For u ∈ U , the Hessian H(u) of the quadratic function L(., u) is positive
definite and its smallest eigenvalue is greater than ∆(u)/8. In particular, L(., u) has a unique
minimum a∗(u).

Proof. See Section 6.B.1.

The bound on the Hessian is useful in the following, in particular in the proof of the following
result.

Proposition 6.5. Let G(u) = ∇uL(a∗(u), u) for u ∈ U . Then G : U → Rm is Lipschitz-
continuous.

Proof. See Section 6.B.2.

Then, the Picard-Lindelöf theorem (see, e.g., Luk, 2017 for a self-contained presentation
and Arnold, 1992 for a textbook) guarantees, for any initialization u(0) ∈ U , the existence and
uniqueness of a maximal solution of (6.8) taking values in U . This solution is defined on a
maximal interval [0, Tmax) where it could be that Tmax <∞ if u hits the boundary of U . However,
the results below show that the target function f∗ is recovered before this happens (with high
probability over the initialization), and thus that this notion of solution is sufficient for our
purposes. To this aim, we first define some sufficient conditions that the initialization should
satisfy.

184

Definition 6.6. Let D be a positive real. We say that a vector of positions u ∈ [0, 1]m is D-good
if

(a) for all i ∈ {0, . . . , n− 1}, there are at least 6 positions uj in each interval [vi, vi+1],

(b) ∆(u) > D, and

(c) for all i ∈ {1, . . . , n − 1}, denoting uL
i the position closest to the left of vi and uR

i the
position closest to the right, we have |uR

i + uL
i − 2vi| > D.

Condition (a) is related to the fact that the derivation in Section 6.4.2 is valid only if there are
at least two neurons per piece. Condition (b) indicates that the neurons have to be sufficiently
spaced at initialization, which is not surprising since we have to guarantee that ∆(u(τ)) > 2η,
that is, u(τ) ∈ U , for all τ until the recovery of f∗ happens. Finally, condition (c) also helps to
control the distance between neurons: although uL

i and uR
i move towards each other, as shown by

(6.7), their distance can be controlled throughout the dynamics as a function of |uR
i + uL

i − 2vi|.
We can now state the Proposition showing the recovery in finite time. The proof resembles

the sketch of Section 6.4.2 with additional technical details since we need to control the distance
between neurons, and the fact that η > 0 makes the dynamics more delicate to describe.

Proposition 6.7. Let f∗ ∈ Fn,∆v,∆f,M . Assume that the initialization u(0) is D-good with
D = 213/2(m + 1)1/2Mη1/2(∆f)−1. Then the maximal solution of (6.8) taking values in U is
defined at least on [0, T] for T = 6/(∆f)2, and at the end of this time interval, there is a neuron
at distance less than η from each discontinuity of f∗.

Proof. See Section 6.B.3.

This Proposition is the main building block to show recovery in the next Theorem, along
with some high-probability bounds to ensure that an i.i.d. uniform initialization is D-good.

Theorem 6.8. Let ξ, δ > 0, and f∗ a piecewise constant function from Fn,∆v,∆f,M . Assume that
the neural network has m neurons with

m >
6

∆v

(
4 + log n+ log

1

δ

)
.

Assume that, at initialization, the positions u1, . . . , um of the neurons are i.i.d. uniformly dis-
tributed on [0, 1]. Then there exists Q depending on ξ, δ,m,∆f,M such that, if

η 6 Q ,

then, with probability at least 1 − δ, the maximal solution to the two-timescale limit (6.8) is
defined at least until T = 6

(∆f)2 , and

∫ 1

0
|f∗(x)− f(x; a∗(u(T)), u(T))|2dx 6 ξ .

Furthermore, we have Q =
C

M2
min

(δ2(∆f)2

(m+ 1)5
,
ξ

n

)
for some universal constant C > 0.

Proof. See Section 6.B.4.

185

6.5.2 From the two-timescale limit to the two-timescale regime

We now briefly explain how the proof for the two-timescale limit can be adapted for the gradient
flow problem in the two-timescale regime (6.1), that is with a small but non-vanishing ε. First
note that the existence and uniqueness of the maximal solution to the dynamics (6.1) follow
from the local Lipschitz-continuity of ∇aL and ∇uL with respect to both their variables.

The heuristics of Section 6.4.1 indicate that, for ε small enough, at any time t, the weights
a(t) are close to a∗(u(t)), the global minimizer of L(·, u(t)). The next Proposition formalizes this
intuition.

Proposition 6.9. Assume that a(0) = 0 and that, for all s ∈ [0, t], there at least 2 positions
uj(s) in each interval [vi, vi+1] and ∆(u(s)) > D/2 for some D ≥ 32η. Finally, assume that
ε 6 2−16D2M−2(m+ 1)−5/2. Then

‖a(t)− a∗(u(t))‖ 6 3M
√
m+ 1 exp−

D
16
t +

217M3(m+ 1)3

D2
ε .

Proof. See Section 6.B.5.

The crucial condition in the Proposition is ∆(u(s)) ≥ D/2; it is useful to control the condi-
tioning of the quadratic form L(·, u(s)). The Proposition shows that ‖a(t)− a∗(u(t))‖ is upper
bounded by the sum of two terms; the first term is a consequence of the initial gap between
a(0) and a∗(u(0)) and decays exponentially quickly. The second term is negligible in the regime
ε� 1.

Armed with this Proposition, we show that the two-timescale regime has the same behavior
as the two-timescale limit and thereby prove Theorem 6.2.

6.6 Numerical experiments

We place ourselves in the setting of Section 6.2. We first compare the dynamics of the gradient
flow in the two-timescale limit presented in Section 6.4.2 with the dynamics of SGD. To simulate
the SGD dynamics, we assume that we have access to noisy observations of the value of
f∗ ∈ Fn,∆v,∆f,M : let (Xp, Yp)p>1 be i.i.d. random variables such that Xp is uniformly distributed
on [0, 1], and Yp = f∗(Xp) +Np where Np is additive noise. The (one-pass) SGD updates are
then given by

ap+1 = ap − h∇a`(Xp+1, Yp+1; ap, up) ,

up+1 = up − εh∇u`(Xp+1, Yp+1; ap, up) ,
(6.9)

with `(X,Y ; a, u) = 1
2(Y − f(X; a, u))2. The experimental settings, as well as additional results,

are given in the Appendix.
Remarkably, the dynamics of SGD in the two-timescale regime with η small match closely the

gradient flow in the two-timescale limit with η = 0, as illustrated in Figure 6.3. This validates
the use of the gradient flow to understand the training dynamics with SGD. Both dynamics
are close until the two-timescale limit achieves perfect recovery of the target function, at which
point the SGD stabilizes to a small non-zero error. The fact that SGD does not achieve perfect
recovery is not surprising, since SGD is performed with η > 0 and f∗ is not in the span of
{1, ση(x− u1), . . . , ση(x− um)} for any u1, . . . , um and for η > 0. On the contrary, we simulated
the dynamics of gradient flow for η = 0, as presented in Section 6.4.2, enabling perfect recovery
in that case.

Next, we compare the SGD dynamics in the two-timescale regime (ε� 1) and outside this
regime (ε ≈ 1). In Figure 6.4, we see that the network trained by SGD (in orange) in the

186

(a) Loss L as a function of the number of steps p (b) Plot of the functions after p = 2.7 · 107 steps

Figure 6.3: Comparison between the SGD (6.9) with η = 4 · 10−3 in the two-timescale regime
(ε = 2 · 10−5) and the gradient flow in the two-timescale limit (6.5) with η = 0. In the left-hand
plot, to align the SGD and the two-timescale limit, we take τ = εhp. In the right-hand plot, the
target function is in blue, the gradient flow in the two-timescale limit is in green, and the SGD is
in orange.

two-timescale regime ε = 2 · 10−5, achieves near-perfect recovery. If we change ε to 1, while
keeping all other parameters equal, the algorithm fails to recover the target function (Figure 6.5).
This shows that, in our setting with a moderate number of neurons m, recovery can fail away
from the two-timescale regime.

Note that the dynamics of the neurons in Figures 6.4 and 6.5 are different. In the two-timescale
regime, only the neurons closest to a discontinuity move significantly, while the others do not.
These dynamics correspond to the sketch of Section 6.4. Interestingly, it means that in this
regime, the neural network learns a sparse representation of the target function, meaning that
only n out of the m neurons are active after training. On the contrary, when ε = 1, all neurons
move to align with discontinuities of the target function, thus the learned representation is not
sparse. Furthermore, since the number of neurons is moderate, one of the discontinuities is left
without any neuron.

(a) At initialization p = 0 (b) After p = 5.4 · 106 steps (c) After p = 1.8 · 108 steps

Figure 6.4: Simulation in the two-timescale regime (ε = 2 · 10−5). The target function is in
blue and the SGD (6.9) is in orange with η = 4 · 10−3, h = 10−5. The positions u1, . . . , um of
the neurons are indicated with vertical dotted lines. In a first short phase, only the weights
a1, . . . , am of the neurons evolve to match as good as possible the target function (second plot).
Then, in a longer phase, the neuron closest to each target discontinuity moves towards it (third
plot). Recovery is achieved.

187

(a) At initialization p = 0 (b) After p = 104 steps (c) After p = 106 steps

Figure 6.5: Simulation outside the two-timescale regime (ε = 1). The target function is in blue
and the SGD (6.9) is in orange with η = 4 · 10−3, h = 10−5. The positions u1, . . . , um of the
neurons are indicated with vertical dotted lines. The dynamics create a zone with no neuron,
hindering recovery.

6.7 Conclusion

The two-timescale regime decouples the dynamics of the two layers of the neural network.
As a consequence, it is a useful theoretical tool to simplify the evolution equations. In this
chapter showcasing the approach, the two-timescale regime enables to show the alignment of the
neurons with the discontinuities of the target function, and thus to prove recovery. We leave the
exploration of the benefits of the two-timescale regime in other settings for future work. It would
be interesting to prove theoretical results for SGD dynamics, in multivariate settings, or for other
types of non-linearities, in particular the recovery of continuous piecewise affine functions by
ReLU networks.

6.A Additional notations and technical lemmas

For a vector a, we denote ‖a‖ its `2-norm, ‖a‖1 its `1-norm and ‖a‖∞ its `∞-norm. For matricesH,
‖H‖ denotes the operator norm associated to the `2 norm and ‖H‖F denotes the Frobenius norm.
Finally, for real-valued functions f , ‖f‖∞ denotes the supremum norm.

In all the appendix of this chapter, we denote u0 = −η/2 and um+1 = 1 + η/2. Note that
ση(x − u0) = 1 for all x ∈ [0, 1], meaning that ση(· − u0) corresponds to the bias term. This
notation allows to treat the bias term in a unified fashion with respect to the other terms
of f(x; a, u). Since ui ∈ (0, 1) for i ∈ {1, . . . ,m}, we assume in the following w.l.o.g. that
the (ui)06i6m+1 are ordered in increasing order. Note that we prove in the following that the
(ui)16i6m do not cross during the dynamics, so they remain ordered throughout the dynamics.

The proofs involve comparisons of some quantities when η > 0 and when η = 0. To avoid
confusion, we make explicit the dependency of L on η > 0, i.e., we let Lη(a, u) in place of L(a, u)
of the main part of the chapter, and similarly, when the argmin is well-defined and unique,

a∗η(u) = argmin
a∈Rm+1

Lη(a, u) ,

in place of a∗(u). Similarly, we now make explicit the dependence of f on η > 0, i.e., we denote

fη(x; a, u) = a0 +
m∑
j=1

ajση(x− uj) =
m∑
j=0

ajση(x− uj) .

188

The Hessian of the quadratic function Lη(·, u) is denoted Hη(u) ∈ R(m+1)×(m+1) (in place of
H(u)), and satisfies that, for i, j ∈ {0, . . . ,m},

Hη,ij(u) =

∫ 1

0
ση(x− ui)ση(x− uj)dx .

Also let, for η > 0 and u ∈ Rm, bη(u) ∈ Rm+1 such that, for j ∈ {0, . . . ,m},

bη,j(u) =

∫ 1

0
f∗(x)ση(x− uj)dx .

Finally, we let Uη in place of U in the main part of the chapter.
With these notations, we have, for η > 0 and a, u ∈ Rm,

∂Lη
∂uj

(a, u) =

∫ 1

0

∂fη(x; a, u)

∂uj
(fη(x; a, u)− f∗(x)) dx

= −aj
∫ 1

0
σ′η(x− uj)

(m∑
k=0

akση(x− uk)− f∗(x)
)

dx . (6.10)

and

∂Lη
∂aj

(a, u) =

∫ 1

0

∂fη(x; a, u)

∂aj
(fη(x; a, u)− f∗(x)) dx

=

∫ 1

0
ση(x− uj)

(m∑
k=0

akση(x− uk)− f∗(x)
)

dx

= Hη,j(u)>a− bη,j(u) . (6.11)

We now move on to a series to lemmas that will be helpful in the proofs of Appendix 6.B.

Lemma 6.10. For η > 0 and u ∈ Rm, we have

‖bη(u)− b0(u)‖ 6Mη
√
m+ 1 and ‖bη(u)‖ 6M

√
m+ 1 .

Proof. For any j ∈ {0, . . . ,m},

|bη,j(u)− b0,j(u)| =
∣∣∣ ∫ 1

0
f∗(x)(ση(x− uj)− σ0(x− uj))dx

∣∣∣
6 ‖f∗‖∞

∫ 1

0
|ση(x− uj)− σ0(x− uj)|dx

6Mη ,

where in the last step we use that ‖f∗‖∞ 6M and that ση(x) = 0 for x 6 −η/2, ση(x) ∈ [0, 1]
for −η/2 < x < η/2 and ση(x) = 1 for x > η/2.

Similarly,

|bη,j(u)| =
∣∣∣ ∫ 1

0
f∗(x)ση(x− uj)dx

∣∣∣ 6 ‖f∗‖∞ 6M .

Lemma 6.11. For η ≥ 0 and u ∈ Uη, Hη(u) = H0(u) + Dη, where Dη is a diagonal matrix
whose elements are independent of u and bounded in absolute value by η/2.

189

Proof. Let i, j ∈ {0, . . . ,m}, and denote c = max(ui, uj , 0). Then

H0,ij(u) =

∫ 1

0
σ0(x− ui)σ0(x− uj)dx = 1− c .

If i = j = 0, max(ui, uj) = −η/2, and Hη,ij(u) = 1 = H0,ij(u). If i = j 6= 0,

Hη,ij(u) =

∫ 1

0
ση(x− c)2dx

= 1− c− η

2
+

∫ c+η/2

c−η/2
ση(x− c)2dx

= H0,ij(u)− η

2
+ η

∫ 1/2

−1/2
σ2 .

Note that the last integral is non-negative and less than 1, hence |Hη,ij(u) −H0,ij(u)| ≤ η/2.
Finally, if i 6= j, since |ui − uj | > η,

Hη,ij(u) =

∫ 1

0
ση(x− ui)ση(x− uj)dx =

∫ 1

0
ση(x−max(ui, uj))dx .

Furthermore, 0 < max(ui, uj) < 1− η
2 , thus

Hη,ij(u) =

∫ 1

0
ση(x− c)dx = 1− c− η

2
+

∫ c+η/2

c−η/2
ση(x− c)dx = 1− c ,

where the last equality comes from the oddness of σ − 1/2.

Lemma 6.12. For η > 0, let a∗η : u ∈ Uη 7→ a∗η(u). Then a∗η is differentiable and for any u ∈ Uη,∥∥∥∂a∗η(u)

∂u

∥∥∥ 6 8

∆(u)

(
2(m+ 1)‖a∗η(u)‖+M

)
.

Proof. By Proposition 6.4 (whose proof does not rely on this lemma), for u ∈ Uη, Lη(·, u) has a
unique minimizer a∗η(u), which is equal to Hη(u)−1bη(u) by (6.11). Furthermore, Hη and bη are
differentiable with respect to u, hence a∗η is also differentiable with respect to u, and we have

∂a∗η(u)

∂uk
= −Hη(u)−1∂Hη

∂uk
(u)a∗η(u) +Hη(u)−1 ∂bη

∂uk
(u) .

Denote wk(u) :=
∂Hη
∂uk

(u)a∗η(u) and W (u) the (m + 1) × (m + 1) matrix formed by stacking
column-wise the vectors (wk(u))06k6m. Then

∂a∗η(u)

∂u
= −Hη(u)−1W (u) +Hη(u)−1∂bη

∂u
(u) .

We now estimate the Frobenius norm of the matrix W (u). By Lemma 6.11, for u ∈ Uη,
Hη(u) = H0(u) +Dη. Take i, j ∈ {0, . . . ,m}, then

Hη,ij(u) = H0,ij(u) +Dη,ij =

∫ 1

0
σ0(x− ui)σ0(x− uj)dx+Dη,ij = 1−max(ui, uj , 0) +Dη,ij .

Hence ∂Hη,ij
∂uk

= 0 if i, j 6= k. Further, if i = k and j 6= k,∣∣∣∂Hη,ij

∂uk
(u)
∣∣∣ =

∣∣∣ ∂
∂ui

(1−max(ui, uj))
∣∣∣ 6 1 .

190

Of course, the bound |∂Hη,ij∂uk
(u)| 6 1 also holds when j = k and i 6= j. Finally, a similar bound

shows that |∂Hη,ij∂uk
(u)| 6 2 when i = j = k.

As a consequence, for k, i ∈ {0, . . . ,m},

|wk,i(u)| 6
m∑
j=0

∣∣∣∂Hη,ij

∂uk
(u)
∣∣∣∣∣a∗η,j(u)

∣∣ ≤ {|a∗η,k(u)| if i 6= k ,

|a∗η,k(u)|+ ‖a∗η(u)‖1 if i = k .

Thus

‖W (u)‖F =
(m∑
i=0

m∑
k=0

|wk,i(u)|2
)1/2

6

(m∑
i=0

(m∑
k=0

|wk,i(u)|
)2
)1/2

6
(m∑
i=0

(
2‖a∗η(u)‖1

)2)1/2
= 2
√
m+ 1‖a∗η(u)‖1 .

With a reasoning similar to the above, note that ∂bη
∂u (u) is a diagonal matrix with diagonal

entries in [−M,M]. Finally, putting these elements together, using Proposition 6.4 and that
‖W (u)‖ 6 ‖W (u)‖F, we obtain∥∥∥∂a∗η(u)

∂u

∥∥∥ 6 ‖Hη(u)−1‖‖W (u)‖F + ‖Hη(u)−1‖
∥∥∥∂bη(u)

∂u

∥∥∥ 6 8

∆(u)

(
2
√
m+ 1‖a∗η(u)‖1 +M

)
.

The following lemma gives exact formulae for the derivative of the loss Lη with respect
to the positions of the neurons, evaluated for a = a∗0(u), that is the best piecewise constant
approximation of f∗ with subdivision {u1, . . . , um}. Note that the formulae are the same as in
Section 6.4.2, but the derivation is slightly more intricate since we consider here the loss Lη and
not L0.

Lemma 6.13. Take η > 0 and u ∈ Uη such that there are at least two neurons on each piece
[vi, vi+1] of f∗. Then, if uj does not flank a discontinuity of f∗,

∂Lη
∂uj

(a∗0(u), u) = 0.

Furthermore, for a discontinuity vi, denote uL
i is the closest neuron to its left and uR

i the closest
neuron to its right. If vi − uL

i >
η
2 and uR

i − vi > η
2 , then

∂Lη

∂uL
i

(a∗0(u), u) = −1

2

(uR
i − vi)2

(uR
i − uL

i)2
(f∗i − f∗i−1)2 ,

∂Lη

∂uR
i

(a∗0(u), u) =
1

2

(vi − uL
i)2

(uR
i − uL

i)2
(f∗i − f∗i−1)2 .

Proof. In this proof, let us denote for simplicity a = a∗0(u). At the condition that there is at
least two neurons on each piece of f∗, Section 6.4.2 gives the optimal approximation f0(x; a, u)
of f∗ that is piecewise constant with respect to the subdivision {u1, . . . , um}. As a consequence,
we easily get the value of a. Namely, if uj does not flank a discontinuity of f∗, the value of
f0(x; a, u) is locally constant around uj , thus aj = 0. Plugging into (6.10), we obtain

∂Lη
∂uj

(a, u) = 0 .

191

Further, for a discontinuity vi, denote respectively aL
i and aR

i the coefficients associated to uL
i

and uR
i . At u

L
i , the value of f0(x; a, u) jumps from f∗i−1 to vi−uL

i

uR
i −uL

i
f∗i−1 +

uR
i −vi

uR
i −uL

i
f∗i , thus

aL
i =

vi − uL
i

uR
i − uL

i

f∗i−1 +
uR
i − vi

uR
i − uL

i

f∗i − f∗i−1 =
uR
i − vi

uR
i − uL

i

(f∗i − f∗i−1) .

Similarly, we have

aR
i =

vi − uL
i

uR
i − uL

i

(f∗i − f∗i−1) .

We now compute, using (6.10),

∂Lη

∂uL
i

(a, u) = −aL
i

∫ 1

0
σ′η(x− uL

i) (fη(x; a, u)− f∗(x)) dx

= −aL
i

∫ uL
i +η/2

uL
i −η/2

σ′η(x− uL
i) (fη(x; a, u)− f∗(x)) dx .

Using that ∆(u) > 2η and that there are at least two neurons on each piece of f∗, we have
that uL

i − vi−1 > 2η. Since, in addition, by assumption, vi − uL
i >

η
2 , we get that for x ∈[

uL
i − η

2 , u
L
i + η

2

]
, f∗(x) = f∗i−1. Moreover, using again ∆(u) > 2η that ση is equal to σ0 on

(−∞,−η/2] and [η/2,∞), we have for x ∈
[
uL
i − η

2 , u
L
i + η

2

]
,

fη(x; a, u) =
m∑
k=0

akση(x− uk) = f0

(
uL
i −

η

2
; a, u

)
+ aL

i ση(x− uL
i) = f∗i−1 + aL

i ση(x− uL
i) .

Thus we obtain

∂Lη

∂uL
i

(a, u) = −aL
i

∫ uL
i +η/2

uL
i −η/2

σ′η(x− uL
i)aL

i ση(x− uL
i)dx

= −(aL
i)2

2

(
ση
(η

2

)2 − ση(− η

2

)2)
= −(aL

i)2

2

= −1

2

(uR
i − vi)2

(uR
i − uL

i)2
(f∗i − f∗i−1)2 .

The computation of ∂Lη
∂uR

i
(a, u) is similar.

Lemma 6.14. Consider η ≥ 0 and u ∈ Uη such that there are at least two neurons on each piece
[vi, vi+1] of f∗. Then, for all x ∈ [0, 1], |fη(x; a∗0(u), u)| ≤M .

Proof. In the case where η = 0, the result easily follows from the expressions for f0(x; a∗0(u), u)
provided in Section 6.4.2. We now assume η > 0.

Denote A∗k(u) =
∑k

j=0 a
∗
0,j(u) (with the convention A∗−1(u) = 0). Recall the convention

192

u0 = −η/2. We compute

fη(x; a∗0(u), u) =
m∑
k=0

a∗0,k(u)ση(x− uk)

=

m∑
k=0

(
A∗k(u)−A∗k−1(u)

)
ση(x− uk)

=

m−1∑
k=0

A∗k(u) (ση(x− uk)− ση(x− uk+1)) +A∗m(u)ση(x− um)

Note that A∗k(u) = limx→uk+ f0(x; a∗0(u), u), and thus, from the case η = 0, we have |A∗k(u)| 6M .
Moreover, ση is increasing and the uk are in increasing order. We thus get

|fη(x; a∗0(u), u)| 6M
(m−1∑
k=0

(ση(x− uk)− ση(x− uk+1)) + ση(x− um)
)

= Mση(x− u0) 6M .

Lemma 6.15. Consider η > 0 and u ∈ Uη such that there are at least two neurons on each piece
[vi, vi+1] of f∗. Then, for j ∈ {0, . . . ,m},

|a∗0,j(u)| 6 2M

and, for any a ∈ Rm+1,∣∣∣∂Lη
∂uj

(a, u)− ∂Lη
∂uj

(a∗0(u), u)
∣∣∣ 6 2M(

√
m+ 1 + 1)‖a− a∗0(u)‖+

√
m+ 1‖a− a∗0(u)‖2 .

Proof. The first statement of the Lemma comes from the explicit formulae for a∗0(u) given in
the proof of Lemma 6.13, namely each a∗0,j(u) is either zero or less in magnitude than the gap
between two pieces of f∗ that is less than 2M .

By (6.10), we have∣∣∣∂Lη
∂uj

(a, u)− ∂Lη
∂uj

(a∗0(u), u)
∣∣∣

=

∣∣∣∣∣aj
∫ 1

0
σ′η(x− uj)

(
fη(x; a, u)− f∗(x)

)
dx

− a∗0,j(u)

∫ 1

0
σ′η(x− uj)

(
fη(x; a∗0(u), u)− f∗(x)

)
dx

∣∣∣∣∣
6 |aj − a∗0,j(u)|

∫ 1

0
σ′η(x− uj) |fη(x; a∗0(u), u)− f∗(x)| dx

+ |aj |
∫ 1

0
σ′η(x− uj) |fη(x; a, u)− fη(x; a∗0(u), u)| dx .

We bound the two terms separately. For the first term, we use Lemma 6.14.∫ 1

0
σ′η(x− uj) |fη(x; a∗0(u), u)− f∗(x)| ≤

∫ 1

0
σ′η(x− uj) (|fη(x; a∗0(u), u)|+ |f∗(x)|)

6 2M

∫ 1

0
σ′η(x− uj)dx 6 2M .

193

We now continue with the second term.

|fη(x; a, u)− fη(x; a∗0(u), u)| =
∣∣∣ m∑
k=0

(ak − a∗0,k(u))ση(x− uk)
∣∣∣ 6 ‖a− a∗0(u)‖1 ,

and thus∫ 1

0
σ′η(x− uj) |fη(x; a, u)− fη(x; a∗0(u), u)|dx 6 ‖a− a∗0(u)‖1

∫ 1

0
σ′η(x− uj)dx

6 ‖a− a∗0(u)‖1 .

Returning to our initial upper bound, we obtain, using the first statement of the Lemma,∣∣∣∂Lη
∂uj

(a, u)− ∂Lη
∂uj

(a∗0(u), u)
∣∣∣ 6 2M‖a− a∗0(u)‖+ (|a∗0,j(u)|+ |aj − a∗0,j(u)|)‖a− a∗0(u)‖1

6 2M‖a− a∗0(u)‖+ (2M + ‖a− a∗0(u)‖)
√
m+ 1‖a− a∗0(u)‖

= 2M(
√
m+ 1 + 1)‖a− a∗0(u)‖+

√
m+ 1‖a− a∗0(u)‖2 .

Lemma 6.16. For η ≥ 0 and u ∈ Uη,

‖a∗η(u)− a∗0(u)‖ 6 16M
√
m+ 1η

∆(u)
.

Proof. By (6.11),
Hη(u)a∗η(u) = bη(u)

and by (6.11) and by Lemma 6.11,

Hη(u)a∗0(u) = H0(u)a∗0(u) +Dηa
∗
0(u) = b0(u) +Dηa

∗
0(u).

According to Proposition 6.4 (whose proof does not rely on this lemma), Hη(u) is invertible with
‖Hη(u)−1‖ 6 8/∆(u). We thus have

‖a∗η(u)− a∗0(u)‖ = ‖Hη(u)−1(Hη(u)a∗η(u)−Hη(u)a∗0(u))‖

≤ 8

∆(u)
‖bη(u)− b0(u)−Dηa

∗
0(u)‖

≤ 8

∆(u)

(
‖bη(u)− b0(u)‖+ ‖Dηa

∗
0(u)‖

)
≤ 8

∆(u)

(
‖bη(u)− b0(u)‖+

η

2
‖a∗0(u)‖

)
.

The result then unfolds from Lemmas 6.10 and 6.15.

Lemma 6.17. Let η > 0, u ∈ Rm and a, a′ ∈ Rm+1. Then

‖∇uLη(a, u)‖ 6
√
m+ 1‖a‖2 +M‖a‖ ,

‖∇aLη(a, u)‖ 6
√
m+ 1(‖a‖

√
m+ 1 +M) .

As a consequence of the second inequality, by the fundamental theorem of calculus for line integrals,

|Lη(a, u)− Lη(a′, u)| 6
√
m+ 1

(
max(‖a‖, ‖a′‖)

√
m+ 1 +M

)
‖a− a′‖ .

194

Proof. Recall that, for all j ∈ {1, . . . ,m}, and for all a, u ∈ Rm,

∂Lη
∂uj

(a, u) = −aj
∫ 1

0
σ′η(x− uj)

(m∑
k=0

akση(x− uk)− f∗(x)
)

dx ,

∂Lη
∂aj

(a, u) =

∫ 1

0
ση(x− uj)

(m∑
k=0

akση(x− uk)− f∗(x)
)

dx .

From the first equality, we have

∣∣∣∂Lη
∂uj

(a, u)
∣∣∣ ≤ |aj | ∫ 1

0
|σ′η(x− uj)|

(m∑
k=1

|ak|ση(x− uk) + |f∗(x)|
)
dx

6 |aj |(‖a‖1 +M)

∫ 1

0
|σ′η(x− uj)|dx

6 |aj |(‖a‖1 +M) .

As a consequence,

‖∇uLη(a, u)‖ 6 ‖a‖(‖a‖1 +M) 6
√
m+ 1‖a‖2 +M‖a‖ .

Similarly, from the second equality, we have∣∣∣∣∂Lη∂aj
(a, u)

∣∣∣∣ 6 ‖a‖1 +M .

As a consequence,

‖∇aLη(a, u)‖ 6
√
m+ 1(‖a‖1 +M) =

√
m+ 1(‖a‖

√
m+ 1 +M) .

Lemma 6.18. Consider η ≥ 0 and u ∈ Uη such that there is a neuron at distance less than η
from each discontinuity of f∗ and 3η ≤ ∆v. Then∫ 1

0
|fη(x; a∗η(u), u)− f∗(x)|2dx 6 6M2ηn .

Proof. By definition of a∗η(u),∫ 1

0
|fη(x; a∗η(u), u)− f∗(x)|2dx = min

a∈Rm+1

∫ 1

0
|fη(x; a, u)− f∗(x)|2dx .

Thus it is enough to exhibit some a for which the latter integral is smaller than 6M2ηn to
conclude.

We construct such an a as follows: set a0 = f∗(0), and for each discontinuity vi, set the
coefficient of a neuron at distance less than η to the value f∗i − f∗i−1 and set all other neurons to
zero. Note that the active neurons are distinct since 3η ≤ ∆v.

Then the neural network is equal to the target function everywhere except on an interval of
size 3η/2 around each discontinuity, where they disagree (in infinite norm) by at most 2M .

195

Lemma 6.19. Let m be a positive integer and u1, . . . , um be i.i.d. uniform random variables in
[0, 1]. Assume that

m ≥ 6

∆v

(
4 + log n+ log

1

δ

)
.

Then, with probability at least 1− δ, the vector u is D-good with D = δ
6(m+1)2 .

Proof. We define the following events:

(a) A is the event “there are at least 6 positions uj in each interval [vi, vi+1] for i ∈ {0, . . . , n−1}”,

(b) B is the event “∆(u) ≥ D”,

(c) for all i ∈ {1, . . . , n− 1}, Ei is the event “there are at least one neuron on the left and on
the right of vi” and Ci is the event “Ei holds and |uR

i + uL
i − 2vi| ≥ D”.

Note that by Definition 6.6, u is D-good if and only if the event A ∩B ∩ (
⋂
iCi) holds. To show

that this holds with high probability, we bound the probability of the complement(
A ∩B ∩

(⋂
i

Ci

))c
= Ac ∪Bc ∪

(⋃
i

Cci

)
= Ac ∪Bc ∪

(⋃
i

(Cci ∩A)
)

⊂ Ac ∪Bc ∪
(⋃

i

(Cci ∩ Ei)
)

(as A ⊂ Ei) .

Thus

P(u is not D-good) ≤ P(Ac) + P(Bc) +
n−1∑
i=1

P(Cci ∩ Ei) .

Below, we bound separately the three terms of the right-hand side.

(a) Denote m′ = bm/6c. For any i ∈ {0, . . . , n − 1}, the set Ai = {j ∈ {1, . . . ,m′} |uj ∈
[vi, vi+1]} is empty with probability (1− (vi+1 − vi))m′ 6 (1−∆v)m

′ . Thus by the union
bound, the probability that at least one of A1, . . . ,An is empty is upper bounded by
n(1−∆v)m

′ .

We now check that n(1−∆v)m
′
6 δ/18. Indeed,

m′ =
⌊m

6

⌋
≥ m

6
− 1 ≥ 3 + log n+ log 1

δ

∆v
≥ log n+ log 18

δ

∆v
≥ − log n+ log 18

δ

log(1−∆v)
,

where we use ∆v ≤ 1, 3 > log(18), and log(1 −∆v) ≤ −∆v < 0. This gives the desired
inequality.

In other words, the probability that at least one of the intervals [vi, vi+1] contains none of
the u1, . . . , um′ is bounded by δ/18. As a consequence, by the union bound, the probability
that at least one of the intervals [vi, vi+1] contains strictly less than 6 of the u1, . . . , um is
bounded by δ/3, i.e., P(Ac) ≤ δ/3.

(b) Recall that by convention, u0 = −η
2 and um+1 = 1 + η

2 . For all i ∈ {0, . . . ,m+ 1}, denote
Ii = (ui −D,ui + D). Denote Fj the event “uj ∈ Ii for some i ∈ {0, . . . ,m + 1}, i 6= j”.
Note that Bc = ∪mj=1Fj .

Fix j = 1, . . . ,m. By conditioning on ui for all i ∈ {0, . . . ,m + 1}, i 6= j, we see that
P(Fj) ≤ 2(m+ 1)D. By the union bound,

P(Bc) ≤ 2m(m+ 1)D ≤ δ

3
.

196

(c) Take i ∈ {1, . . . , n− 1}. For convenience, we define the random variable uL
i (resp. uR

i) on
the full probability space by setting uL

i = 0 (resp. uR
i = 1) when there is no neuron on

the left (resp. the right) of vi. We compute the joint cumulative distribution function of
(uL
i , u

R
i) (with a convenient change of inequality): for all 0 ≤ y ≤ vi ≤ z ≤ 1,

P(uL
i ≤ y, uR

i ≥ z) = P(∀j ∈ {1, . . . ,m}, uj /∈ [y, z]) = (1− (z − y))m .

We observe that the joint cumulative distribution function of (uL
i , u

R
i) is a smooth function of

(y, z) when (y, z) ∈ (0, vi)× (vi, 1). Note that the events Ei and {(uL
i , u

R
i) ∈ (0, vi)× (vi, 1)}

are equal up to a null set. Therefore, on this event, (uL
i , u

R
i) is an absolutely continuous

random variable with density g : (0, vi)× (vi, 1)→ R,

g(y, z) = − ∂2

∂y∂z
P(uL

i ≤ y, uR
i ≥ z) = m(m− 1) (1− (z − y))m−2 .

We compute

P(Cci ∩ Ei) = P({|uR
i + uL

i − 2vi| ≤ D} ∩ Ei)

=

∫
{0<y<vi<z<1}

m(m− 1) (1− (z − y))m−2 1{|y+z−2vi|≤D}dydz .

We make the change of variables θ = z − y, ν = z + y.

P(Cci ∩ Ei) =
m(m− 1)

2

∫
{0< ν−θ

2
<vi<

ν+θ
2
<1}

(1− θ)m−21|ν−2vi|≤Ddθdν

≤ m(m− 1)

2

(∫ 1

0
(1− θ)m−2dθ

)(∫ ∞
−∞

1|ν−2vi|≤Ddν
)

= Dm.

Using m ≥ 24/∆v ≥ 24n, we have

n−1∑
i=1

P(Cci ∩ Ei) ≤ (n− 1)Dm ≤ δ

24× 6
≤ δ

3
.

This concludes the proof.

6.B Proofs of the results

6.B.1 Proof of Proposition 6.4

Let us lower-bound the smallest eigenvalue of Hη(u) which is equal to

min
‖a‖=1

a>Hη(u)a .

Now for a ∈ Rm+1 such that ‖a‖ = 1,

a>Hη(u)a =
m∑

i,j=0

aiaj

∫ 1

0
ση(x− ui)ση(x− uj)dx =

∫ 1

0

(
m∑
i=0

aiση(x− ui)
)2

dx .

197

Since ∆u > 2η (because u ∈ U) and u0 = −η/2, um+1 = 1+η/2, the intervals [ui+η/2, ui+1−η/2]
for i ∈ {0, . . . ,m} are disjoint and included in [0, 1]. Thus

a>Hη(u)a >
m∑
i=0

∫ ui+1−η/2

ui+η/2

(
m∑
i=0

aiση(x− ui)
)2

dx .

Since σ(x) = 0 if x < −1/2 and σ(x) = 1 if x > 1/2, we have that ση(x) = 0 if x < −η/2
and ση(x) = 1 if x > η/2. Further recall that the ui are ordered in increasing order. As a
consequence,

a>Hη(u)a >
m∑
i=0

∫ ui+1−η/2

ui+η/2

(
i∑

k=0

ak

)2

dx

=

m∑
i=0

(ui+1 − ui − η)

(
i∑

k=0

ak

)2

>
∆(u)

2

m∑
i=0

(
i∑

k=0

ak

)2

, (6.12)

where in the last step, we used that ∆(u) > 2η and thus ui+1 − ui − η > ∆(u) − η > ∆(u) −
∆(u)/2 = ∆(u)/2. Now, denote c0 = 0 and ci =

∑i−1
k=0 ak. Then ‖a‖ = 1 writes

m∑
i=0

(ci+1 − ci)2 = 1.

Furthermore,
m∑
i=0

(ci+1 − ci)2 =

m∑
i=0

c2
i+1 +

m∑
i=0

c2
i − 2

m∑
i=0

ci+1ci 6 4

m+1∑
i=0

c2
i .

Hence
m+1∑
i=0

c2
i >

1

4
,

which shows in conjunction with (6.12) that the smallest eigenvalue of Hη(u) is lower-bounded
by ∆u

8 .

6.B.2 Proof of Proposition 6.5

To show that G(u) = (∇uLη)(a∗η(u), u) is Lipschitz-continuous on Uη, we show that it is
differentiable on Uη and that its derivatives are uniformly bounded. The chain rule gives

∂Gj
∂uk

=
m∑
l=0

∂a∗η,l
∂uk

(u)
∂2Lη
∂uj∂al

(a∗η(u), u) +
∂2Lη
∂uj∂uk

(a∗η(u), u) .

From (6.10), using that σ is twice continuously differentiable, it can be checked that ∂Lη
∂uj

is
differentiable in both its arguments and its derivatives are uniformly upper-bounded when a is
bounded. Furthermore, for u ∈ Uη,

‖a∗η(u)‖ 6 ‖Hη(u)−1‖ ‖bη(u)‖ 6 8M
√
m+ 1

∆(u)
,

by Lemma 6.10 and Proposition 6.4. Finally, according to Lemma 6.12, a∗η is differentiable with
derivatives uniformly upper-bounded on Uη. This concludes the proof.

198

6.B.3 Proof of Proposition 6.7

In this proof, we denote uL
i (τ) (resp. uR

i (τ)) the position at time τ of the neuron that is at
initialization closest to vi to the left (resp. the right). Note that because of the movement of the
neurons, it could be that uL

i (resp. uR
i) does not remain the neuron closest to the left (resp. the

right) throughout the dynamics. Our proof discusses when this phenomenon occurs. Similarly,
denote uLL

i (resp. uRR
i) the neuron second closest to the left (resp. the right) of vi. Since the

initialization is D-good, note that all these neurons are distinct.
Denote T the minimal time τ ∈ [0, Tmax) such that ∆(u(τ)) 6 D/2 or there are less than two

neurons in some piece [vi, vi+1] of f∗. Note that by assumption, ∆(u(0)) > D > D/2 and there
are at least 6 neurons in each interval at initialization, thus T > 0. Furthermore, using the trivial
inequalities M > ∆f/2, m+ 1 > 1 and η1/2 > η, we have D

2 =
211/2M

√
m+1

√
η

∆f > 8η > 2η. Recall
that 2η is the quantity defining the set Uη supporting the maximal solution of the equation (6.8).
As a consequence, we do have T < Tmax. At the end of the proof, we check that T < T , by
controlling carefully the movement of each neuron.

Let us first bound the difference between the dynamics of u and the dynamics that we would
have if at each time τ , the weights a were given by a∗0(u(τ)), the best approximation of f∗ by
a piecewise constant function with subdivision u(τ). For any τ < T and j ∈ {1, . . . ,m}, by
Lemma 6.15, we have∣∣∣duj

dτ
(τ) +

∂Lη
∂uj

(a∗0(u(τ)), u(τ))
∣∣∣

=
∣∣∣∂Lη
∂uj

(a∗η(u(τ)), u(τ))− ∂Lη
∂uj

(a∗0(u(τ)), u(τ))
∣∣∣

6 2M(
√
m+ 1 + 1)‖a∗η(u(τ))− a∗0(u(τ))‖+

√
m+ 1‖a∗η(u(τ))− a∗0(u(τ))‖2 . (6.13)

We are therefore led to bounding ‖a∗η(u(τ))− a∗0(u(τ))‖, as follows:

‖a∗η(u(τ))− a∗0(u(τ))‖ 6 24M
√
m+ 1η

∆(u(τ))
(by Lemma 6.16)

6
25M

√
m+ 1η

D
(since ∆(u(τ)) > D/2)

=
D(∆f)2

28M
√
m+ 1

(by definition of D).

Then the first term in (6.13) is less than

(
√
m+ 1 + 1)D(∆f)2

27
√
m+ 1

6
D(∆f)2

26
,

and the second term in (6.13) is less than

D2(∆f)4

216M2
√
m+ 1

6
D(∆f)2

214
, using D 6 ∆(u(0)) 6 1, ∆f 6 2M and m+ 1 > 1.

Hence we obtain, for any τ < T and j ∈ {1, . . . ,m},∣∣∣duj
dτ

(τ) +
∂Lη
∂uj

(a∗0(u(τ)), u(τ))
∣∣∣ 6 D(∆f)2

60
=: ∆g (6.14)

Now, let us examine how the neurons move, by leveraging Lemma 6.13 that gives exact formulae
for ∂Lη

∂uj
(a∗0(u(τ)), u(τ)). First, if uj is not next to a discontinuity, ∂Lη∂uj

(a∗0(u(τ)), u(τ)) = 0, hence

|uj(τ)− uj(0)| 6 (∆g)τ .

199

Let us now study what happens next to a discontinuity vi. Denote (δf)i = f∗i − f∗i−1. W.l.o.g.,
assume that

uR
i (0)− vi > vi − uL

i (0) .

In the reverse case, the proof is the same by swapping the roles of uL
i and uR

i , and of uLL
i and

uRR
i . We are going to show that the dynamics of uL

i are divided into two phases. Define Ti as the
minimal τ ∈ [0, T] such that uL

i (τ) = vi − η/2. In the first phase [0, Ti], we have uL
i (τ) < vi − η

2
and uL

i moves towards vi. In the second phase [Ti, T], we show below that uL
i (τ) ∈ [vi− η, vi + η].

Note that we can have Ti = 0 if uL
i (0) > vi − η

2 . It is also possible that Ti = ∞ a priori; this
means that the second phase does not exist. We show below that this case does not happen.
Figure 6.6 depicts the two phases.

(a) Phase 1 (b) Phase 2

Figure 6.6: Dynamics of the neurons next to a discontinuity vi. In the first phase, uL
i and uR

i

move towards vi, until the closest neuron (in this case uL
i) reaches the interval of size η centered

in vi. In the second phase, uL
i remains in an interval of size 2η around vi, and none of the neurons

move significantly.

Beginning by the first phase, we have, while uL
i (τ) < vi − η

2 and uR
i (τ) > vi + η

2 , according to
Lemma 6.13,

∂Lη

∂uL
i

(a∗0(u(τ)), u(τ)) = −1

2

(uR
i (τ)− vi)2(δf)2

i

(uR
i (τ)− uL

i (τ))2
,

∂Lη

∂uR
i

(a∗0(u(τ)), u(τ)) =
1

2

(vi − uL
i (τ))2(δf)2

i

(uR
i (τ)− uL

i (τ))2
.

For ease of computation, let dL
i (τ) = vi−uL

i (τ) and dR
i (τ) = uR

i (τ)− vi be the distances between
the neurons and vi. Then, by (6.14),

ddR
i

dτ
(τ) +

ddL
i

dτ
(τ) 6 −1

2

((dR
i (τ))2 + (dL

i (τ))2)(δf)2
i

(dL
i (τ) + dR

i (τ))2
+ 2∆g

6 −(∆f)2

4
+ 2

D(∆f)2

60
6 −(∆f)2

5

since D 6 ∆(u(0)) 6 1. Thus, in some time less than T = 6
(∆f)2 , dR

i (τ) + dL
i (τ) 6 η, that is,

either uL
i reaches vi − η

2 or uR
i reaches vi + η

2 . Let us check that the second event cannot actually

200

happen: while uL
i (τ) < vi − η

2 and uR
i (τ) > vi + η

2 , we also have

ddR
i

dτ
(τ)− ddL

i

dτ
(τ) >

((dR
i (τ))2 − (dL

i (τ))2)(δf)2
i

(dL
i (τ) + dR

i (τ))2
− 2∆g

=
(dR
i (τ)− dL

i (τ))(δf)2
i

dL
i (τ) + dR

i (τ)
− 2∆g .

By condition (c) of Definition 6.6 and by (6.14), we have dR
i (0) − dL

i (0) > D = 60∆g
(∆f)2 ≥ 60∆g

(δf)2
i
,

and furthermore dL
i (τ) + dR

i (τ) ≤ 1. An easy reasoning then shows that dR
i − dL

i is increasing.
Therefore uR

i must remain further away from vi than uL
i .

In summary, we showed that there exists some time Ti 6 T when uL
i (Ti) = vi − η

2 , which
marks the end of the first phase, and we also have

dR
i (Ti)− dL

i (Ti) > dR
i (0)− dL

i (0) > D .

Moving on to the study of the second phase, let us show that uL
i (τ) stays in the interval

[vi − η, vi + η] for τ ∈ [Ti, T). Consider any τ 6 T such that uL
i (τ) = vi − η. Then we have by

(6.14) and Lemma 6.13

duL
i

dτ
(τ) >

(uR
i (τ)− vi)2(δf)2

i

(uR
i (τ)− vi + η)2

−∆g > ∆g , (6.15)

where the second upper bound comes from the fact that we have uR
i (τ) − vi > D

2 − η since
∆(u(τ)) > D/2, and furthermore, x 7→ x2

(x+η)2 is increasing, hence

(uR
i − vi)2(δf)2

i

(uR
i − vi + η)2

>
(D

2 − η
D
2

)2
∆f2 >

(D/2>2η)

(∆f)2

4
> 2∆g .

Equation (6.15) implies that uL
i (τ) > vi − η for all τ ∈ [Ti, T). Similarly, consider any τ 6 T

such that uL
i (τ) = vi+η. Note that, for such a τ , uL

i (τ) is now on the right of vi, and the neurons
flanking vi are uLL

i and uL
i . Thus we have by (6.14) and Lemma 6.13

duL
i

dτ
(τ) 6 −(vi − uLL

i (τ))2(δf)2
i

(vi + η − uLL
i (τ))2

+ ∆g 6 −∆g ,

where the second lower bound unfolds similarly as previously. This shows that uL
i (τ) 6 vi + η for

all τ ∈ [Ti, T).
We now check that T < T , that is, for all τ 6 T , ∆(u(τ)) > D/2 and there are at least two

neurons in each interval [vi, vi+1]. Starting with the first condition, we say that neurons uj and
uk collide if |uj(τ)− uk(τ)| = D/2 for some τ 6 T . Let us show that no pair of neurons collide.

We start by showing that there is no collision between uLL
i and uL

i . In the first phase [0, Ti],
we have duLL

i
dτ (τ) 6 ∆g. Recall that we also have duL

i
dτ (τ) > −∆g and thus for τ 6 Ti,

uL
i (τ)− uLL

i (τ) > uL
i (0)− uLL

i (0)− 2T ∆g >
4D

5

since uL
i (0)− uLL

i (0) > D and T∆g = D/10 by definition of T and ∆g. As a consequence, uLL
i

and uL
i do not collide during the first phase, and we have

uLL
i (Ti) 6 uL

i (Ti)−
4D

5
= vi −

η

2
− 4D

5
. (6.16)

201

In the second phase, we can have uL
i ∈ [vi, vi + η] in which case uLL

i becomes the neuron flanking
vi to the left and uL

i the neuron flanking to the right. Then (6.14) and Lemma 6.13 give

duLL
i

dτ
6

(uL
i (τ)− vi)2(δf)2

i

(uL
i (τ)− uLL

i (τ))2
+ ∆g 6

16η2M2

D2
+ ∆g .

Of course, this bound also holds when uL
i ∈ [vi − η, vi], because then duLL

i
dτ 6 ∆g. Thus, in the

second phase τ ∈ [Ti, T], by the previous upper bound and the fact that uL
i (τ) > vi − η

2 ,

uL
i (τ)− uLL

i (τ) > vi −
η

2
−
(
uLL
i (Ti) + (τ − Ti)

(16η2M2

D2
+ ∆g

))
>

4D

5
− T

(16η2M2

D2
+ ∆g

)
,

by (6.16). Let us now upper-bound each of the last two terms by D/10 to conclude. By definition
of D,

η =
(∆f)2D2

213(m+ 1)M2
.

Thus
16η2M2T

D2
=

3(∆f)2D2

221(m+ 1)2M2
6
D

10

using the definition of T , D 6 ∆(u(0)) 6 1, ∆f 6 2M and m + 1 > 1. Finally, T∆g = D/10.
Thus uLL

i and uL
i do not collide.

We now show that uL
i and uR

i do not collide. In the first phase τ ∈ [0, Ti], we have

uR
i (τ)− uL

i (τ) > uR
i (τ)− vi = dR

i (τ) > dR
i (τ)− dL

i (τ) > D .

As a consequence, uL
i and uR

i do not collide during the first phase, and we have

uR
i (Ti) > D + uL

i (Ti) = D + vi −
η

2
. (6.17)

In the second phase, uR
i plays a role symmetric to uLL

i : it can be, or not, the neuron closest to
the right of vi, depending on whether uL

i ∈ [vi − η, vi] or uL
i ∈ [vi, vi + η]. As for uLL

i , we can
show that in any case, for τ ∈ [Ti, T],

duR
i

dτ
> −16η2M2

D2
−∆g .

Thus one concludes as before: for τ ∈ [Ti, T], by the previous lower bound and the fact that
uL
i (τ) 6 vi + η

2 ,

uR
i (τ)− uL

i (τ) > uR
i (Ti)− (τ − Ti)

(16η2M2

D2
+ ∆g

)
−
(
vi +

η

2

)
.

Then, by (6.17),

uR
i (τ)− uL

i (τ) > D − η − T
(16η2M2

D2
+ ∆g

)
>
D

2
,

where the last lower-bound unfolds similarly as for uLL
i and uL

i . Thus there is no collision between
uL
i and uR

i .

202

The reader can check that all other pairs of neurons do not collide, including those involving
u0 = −η/2 and um+1 = 1 + η/2. In fact, the proof is easier than for uLL

i , uL
i and uL

i , u
R
i because

the discontinuity at vi attracts these neurons together.
Furthermore, we proved that before time T at most one neuron can escape on each side of a

piece [vi, vi+1] of f . Since we start with at least four (and even six) neurons per piece, there is
always before T at least two neurons per piece.

This shows that T < T , and we also proved that at time T , all discontinuities have finished
their first phase, hence there is a neuron at distance less than η from each discontinuity of the
target function.

6.B.4 Proof of Theorem 6.8

Take C = 2−19. Then by assumption of Theorem 6.8,

η 6
δ2(∆f)2

219M2(m+ 1)5
.

Moreover, by the definition of D from Proposition 6.7,

η =
(∆f)2D2

213M2(m+ 1)
.

This implies that

D2 6
δ2

26(m+ 1)4
,

and in consequence

D 6
δ

6(m+ 1)2
.

Then Lemma 6.19 shows that the initialization is D-good with probability at least 1− δ (since
the D-good property is monotonous in D).

Hence, with probability at least 1− δ, according to Proposition 6.7, the maximal solution to
(6.8) is defined at least until T and at that time, there is a neuron at distance less than η from
each discontinuity of the target function. Furthermore, 3η ≤ 1

m+1 ≤ 1
n ≤ ∆v, hence Lemma 6.18

applies. This implies that∫ 1

0
|f∗(x)− f(x; a∗(u(T)), u(T))|2dx 6 6M2ηn .

The assumption on η allow to conclude that the upper-bound is less than ξ.

Remark 6.20. We did not try to optimize the value of C since our goal was to show convergence
to a global optimum and the dependency of the dynamics on the parameters (for instance, it is
remarkable that T does not depend on ξ).

6.B.5 Proof of Proposition 6.9

For s ≤ t, Proposition 6.4 holds since for ∆(u(s)) ≥ 16η > 2η. Thus a∗η(u(s)) is well-defined
and verifies

∇aLη(a∗η(u(s)), u(s)) = 0 .

Let, for s ≤ t, V (s) = ‖a(s)− a∗η(u(s))‖. Recall that, by (6.11),

∇aLη(a, u) = Hη(u)a− bη(u) .

203

Hence, for s ≤ t,

〈a(s)− a∗η(u(s)),∇aLη(a(s), u(s))〉
= 〈a(s)− a∗η(u(s)),∇aLη(a(s), u(s))−∇aLη(a∗η(u(s)), u(s))〉
= 〈a(s)− a∗η(u(s)), Hη(u(s))(a(s)− a∗η(u(s)))〉

>
∆(u(s))

8
V (s)2

≥ D

16
V (s)2 ,

where the first lower bound is a consequence of Proposition 6.4. Then we have, for any s ≤ t,
d

ds

(1

2
V (s)2

)
=
〈
a(s)− a∗η(u(s)),

da

ds
(s)− d

ds
a∗η(u(s))

〉
=
〈
a(s)− a∗η(u(s)),−∇aLη(a(s), u(s))− d

ds
a∗η(u(s))

〉
6 −D

16
V (s)2 +

∥∥∥ d

ds
a∗η(u(s))

∥∥∥V (s) .

Let us now upper bound the norm appearing in the second term. We first have by the chain rule

d

ds
a∗η(u(s)) =

∂a∗η
∂u

(u(s))
du

ds
(s) .

By Lemma 6.12 (which holds since for ∆(u(s)) ≥ 16η > 2η),∥∥∥∂a∗η
∂u

(u(s))
∥∥∥ 6 8

∆(u(s))

(
2(m+ 1)‖a∗η(u(s))‖+M

)
.

Besides, ∥∥∥du

ds
(s)
∥∥∥ ≤ ε‖∇uLη(a(s), u(s))‖ .

By Lemma 6.17,
‖∇uLη(a(s), u(s))‖ 6

√
m+ 1‖a(s)‖2 +M‖a(s)‖ . (6.18)

Furthermore,

‖a(s)‖ ≤ ‖a∗η(u(s))‖+ ‖a(s)− a∗η(u(s))‖ = ‖a∗η(u(s))‖+ V (s) .

By Lemmas 6.15 and 6.16, which apply since ∆(u(s)) > 2η and since there are at least two
positions uj(s) in each interval [vi, vi+1] for s ≤ t,

‖a∗η(u(s))‖ 6 ‖a∗0(u(s))‖+ ‖a∗0(u(s))− a∗η(u(s))‖

6 2M
√
m+ 1 +

16M
√
m+ 1η

∆(u(s))

6 2M
√
m+ 1 +

32M
√
m+ 1η

D

6 3M
√
m+ 1 ,

where the last upper bound is implied by the assumption D ≥ 32η.
Now define Tmax = inf

{
s > 0, V (s) > 3M

√
m+ 1

}
and assume s ≤ min(t, Tmax) so that

V (s) ≤ 3M
√
m+ 1. Then we proved that ‖a(s)‖ ≤ 6M

√
m+ 1. Going back to (6.18), we

deduce that

‖∇uLη(a(s), u(s))‖ 6 36M2(m+ 1)3/2 + 6M2
√
m+ 1 6 26M2(m+ 1)3/2 . (6.19)

204

Putting everything together, we obtain∥∥∥ d

ds
a∗η(u(s))

∥∥∥ 6 29M2(m+ 1)3/2

∆(u(s))

(
6M(m+ 1)3/2 +M

)
ε ≤ 213M3(m+ 1)3

D
ε .

All in all,
d

ds

(1

2
V (s)2

)
6 −D

16
V (s)2 +

213M3(m+ 1)3

D
εV (s) .

Hence
d

ds
(V (s)) =

1

V (s)

d

ds

(1

2
V (s)2

)
6 −D

16
V (s) +

213M3(m+ 1)3

D
ε .

By Grönwall’s inequality, for all s 6 min(t, Tmax),

V (s) 6 exp−
D
16
s V (0) +

217M3(m+ 1)3

D2
ε(1− exp−

D
16
s) (6.20)

6 exp−
D
16
s V (0) +

217M3(m+ 1)3

D2
ε . (6.21)

Finally note that V (0) = ‖a∗η(0)‖ 6 2M
√
m+ 1 and 217M3(m+1)3ε

D2 6 2M
√
m+ 1 by the as-

sumption of the Proposition on ε. Hence (6.20) implies that for all s 6 min(t, Tmax), V (s) is a
(weighted) average of two terms less than 2M

√
m+ 1 hence it is less than 2M

√
m+ 1. This

shows that Tmax > t, which concludes the proof since (6.21) is then valid for s = t.

6.B.6 Proof of Theorem 6.2

In the proof, we take C1 = 2−21 and C2 = 2−36. Denote

D =
δ

6(m+ 1)2
.

Lemma 6.19 shows that the initialization is D-good with probability at least 1 − δ. In the
following, we study the case where this event happens.

Denote T the minimal time t > 0 such that ∆(u(t)) 6 D/2 or there are less than two neurons
in some piece [vi, vi+1] of f∗ or ‖a(t)‖ > 7M

√
m+ 1. Note that T > 0 since the initialization

is D-good. By Lemma 6.17, ∇uLη and ∇aLη are Lipschitz-continuous on compacts, hence the
solution of the gradient flow is well-defined for t < T since T defines a compact set of parameters.

Then all the assumptions of Proposition 6.9 are satisfied on the time interval [0, t] for any
t < T . More precisely, the assumptions that do not come directly from the definition of T are
the lower bound for D and the upper bound for ε. The lower bound for D come from

D =
δ

6(m+ 1)2
≥ 32η (6.22)

by (6.3) and the simple bounds δ ≤ 1, ∆f ≤ 2M , m+ 1 ≥ 1. The upper bound for ε comes from
(6.3) since

ε ≤ δ3(∆f)2

236M4(m+ 1)19/2
≤ δ2

36 · 216M2(m+ 1)13/2
=

D2

216M2(m+ 1)5/2
,

where the second upper bound uses m ≥ 0, δ ≤ 1 and ∆f ≤ 2M . Therefore, according to
Proposition 6.9,

‖a(t)− a∗η(u(t))‖ 6 3M
√
m+ 1 exp−

D
16
t +

217M3(m+ 1)3

D2
ε , (6.23)

205

Furthermore, the proof of Proposition 6.9 actually implies that

‖a∗η(u(t))‖ 6 3M
√
m+ 1 and ‖a(t)‖ 6 6M

√
m+ 1. (6.24)

The second bound implies that the condition ‖a(t)‖ > 7M
√
m+ 1 in the definition of T is

actually never active. Let us distinguish between two phases: letting

T0 =
16

D
log
(216M2(m+ 1)3

δ(∆f)2

)
=

96(m+ 1)2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
,

then the first phase corresponds to t ≤ T0 and the second phase for t ≥ T0.

Analysis of the first phase. In the first phase, each neuron moves at most by

εT0 max
j

∣∣∣∂Lη
∂uj

(a(t), u(t))
∣∣∣ 6 εT0‖∇uLη(a(s), u(s))‖ 6 26εT0M

2(m+ 1)3/2 ,

where the second upper bound comes from (6.19) in the proof of Proposition 6.9. This quantity
is less than D

8 if

6144(m+ 1)7/2M2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
ε 6

δ

48(m+ 1)2
.

Let us check this condition: we have

6144(m+ 1)7/2M2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
ε

=
16 · 6144(m+ 1)7/2M2

δ
log
(2M1/8(m+ 1)3/16

δ1/16(∆f)1/8

)
ε

6
16 · 6144(m+ 1)7/2M2

δ
log
(4M(m+ 1)

δ∆f

)
ε ,

since m+ 1 ≥ 1, δ ≤ 1, and 2M/∆f ≥ 1, hence (2M/∆f)1/8 ≤ 2M/∆f . Next, upper-bounding
log(x) by x, we have, by (6.3),

768(m+ 1)7/2M2

δ
log
(216M2(m+ 1)3

δ(∆f)2

)
ε 6

64 · 6144(m+ 1)9/2M3

δ2∆f
ε

6
6144δ(∆f)

229M(m+ 1)5

6
δ

48(m+ 1)2

using ∆f ≤ 2M and m ≥ 0. Note that the upper bound 26εT0M
2(m+ 1)3/2 ≤ D/8 also implies

that
T0 ≤

D

29εM2(m+ 1)3/2
≤ 1

2ε(∆f)2
=

T

12
(6.25)

since m ≥ 0, D ≤ 1 and ∆f ≤ 2M . Since each neuron moves by at most D/8 in the time interval
[0, T0] and since ∆(u(0)) ≥ D, we deduce that

∆(u(T0)) ≥ 3

4
D. (6.26)

206

Similarly, by condition (c) of the definition of a D-good vector, for all discontinuities vi,

|uR
i (0) + uL

i (0)− 2vi| > D,

thus
|uR
i (T0) + uL

i (T0)− 2vi| >
3

4
D . (6.27)

Furthermore, there at least four neurons on each piece of f at T0, because at most one neuron
can move out of each piece by either side between 0 and T0.

Analysis of the second phase. Let

∆a =
D(∆f)2

29M
√
m+ 1

=
δ(∆f)2

6 · 29M(m+ 1)5/2
.

In the second phase t ≥ T0, we are able to control by ∆a the distance between a(t) and the
weights a∗0(u(t)) that are the best approximation of f∗ by a piecewise affine function with
subdivision u(t). To show this, first note that the first term in (6.23) is smaller than ∆a

4 when

3M
√
m+ 1 exp−

D
16
t 6

∆a

4
,

which is equivalent to

t > log
(12M

√
m+ 1

∆a

)16

D
,

which is implied by t > T0. Furthermore, the second term in (6.23) is smaller than ∆a
4 because,

by definition of D and by (6.3),

217M3(m+ 1)3

D2
ε =

36 · 217M3(m+ 1)7

δ2
ε ≤ 62δ(∆f)2

219M(m+ 1)5/2
=

63∆a

210
≤ ∆a

4
.

Hence, for all T0 6 t < T ,

‖a(t)− a∗η(u(t))‖ 6 ∆a

2
.

Furthermore, note that the assumption of Lemma 6.16 applies for t < T since ∆(u(t)) ≥ D
2 > 2η

by (6.22). Therefore, by Lemma 6.16 and by (6.3),

‖a∗η(u(t))− a∗0(u(t))‖ 6 24M
√
m+ 1

∆(u(t))
η

≤ 25M
√
m+ 1

D
η

=
25 · 6M(m+ 1)5/2

δ
η

≤ 6δ(∆f)2

216M(m+ 1)5/2

=
62∆a

27
6

∆a

2
.

By the triangular inequality, we deduce the upper bound that we were after, that is

‖a(t)− a∗0(u(t))‖ 6 ∆a .

207

As in the proof of Proposition 6.7, we can now control the distance between the true dynamics
and the one that we would have if the weights were equal to a∗0(u). Namely, for any T0 ≤ t ≤ T
and j ∈ {1, . . . ,m}, by Lemma 6.15 (which applies since ∆(u(t)) > 2η by (6.22)), we have

∣∣∣duj
dt

(t) +
∂Lη
∂uj

(a∗0(u(t)), u(t))
∣∣∣

=
∣∣∣∂Lη
∂uj

(a(t), u(t))− ∂Lη
∂uj

(a∗0(u(t)), u(t))
∣∣∣

6 2M(
√
m+ 1 + 1)‖a(t)− a∗0(u(t))‖+

√
m+ 1‖a(t)− a∗0(u(t))‖2 .

The first term is less than

2M(
√
m+ 1 + 1)∆a =

(
√
m+ 1 + 1)D(∆f)2

28
√
m+ 1

6
D(∆f)2

27
,

and the second term is less than

√
m+ 1(∆a)2 =

D2(∆f)4

218M2
√
m+ 1

6
D(∆f)2

216
,

using D 6 ∆(u(0)) 6 1, ∆f 6 2M and m+ 1 > 1. Hence we obtain, for any T0 ≤ t ≤ T and
j ∈ {1, . . . ,m}, ∣∣∣duj

dt
(t) +

∂Lη
∂uj

(a∗0(u(t)), u(t))
∣∣∣ 6 D(∆f)2

120
.

We are therefore in a situation very similar to the proof of Proposition 6.7, starting from (6.14).
One can check that all the arguments used in the proof also apply here. On top of the estimate
above that resembles (6.14), the crucial facts that make the argument of Proposition 6.7 work
here are the bounds (6.26) and (6.27) as well as the fact that there are at least four neurons
on each piece f at T0, which together are very similar to the conditions ensuring that u(0) is
D-good in the proof of Proposition 6.7. Another key point is (6.25), ensuring that a time at
least equal to 11T/12 remains after the first phase of this proof, which is enough time for the
dynamics described in the proof of Proposition 6.7 to unfold.

This yields that T < T , and that at time T , there is a neuron at distance less than η from
each discontinuity of f∗. Furthermore, 3η ≤ 1

m+1 ≤ 1
n ≤ ∆v, hence Lemma 6.18 applies. Thus

∫ 1

0
(fη(x; a∗η(u(T)), u(T))− f∗(x))2dx 6 6M2ηn 6

ξ

2
,

where the second upper bound comes from n ≤ m+ 1 and from (6.3). Furthermore, by (6.24)
and by Lemma 6.17,

|Lη(a(T), u(T))− Lη(a∗η(u(T)), u(T))| 6
√
m+ 1(6M(m+ 1) +M)‖a(T)− a∗η(u(T))‖

≤ 16M(m+ 1)3/2‖a(T)− a∗η(u(T))‖ .

Let us show that this term is less than ξ/4. Recall that, by (6.23),

‖a(T)− a∗η(u(T))‖ 6 3M
√
m+ 1 exp−

D
16
T +

217M3(m+ 1)3

D2
ε .

208

By definition of D and T , by using exp(−x) ≤ 1/x for x ≥ 1 and by (6.3),

16M(m+ 1)3/2 · 3M
√
m+ 1 exp−

D
16
T = 48M2(m+ 1)2 exp

(
− δ

16(m+ 1)2(∆f)2ε

)
≤ 48 · 16M2(m+ 1)4(∆f)2

δ
ε

≤ 48(∆f)2δ

231M2(m+ 1)9/2
ξ

6
ξ

8

using ∆f 6 2M , δ ≤ 1, and m+ 1 > 1. Furthermore, by (6.3), we get that

16M(m+ 1)3/2 · 217M3(m+ 1)3

D2
ε =

36 · 221M4(m+ 1)17/2

δ2
ε 6

ξ

8
.

We therefore obtain the sought ξ/4 upper-bound and can conclude that∫ 1

0
(fη(x; a(T), u(T))− f∗(x))2dx 6

∫ 1

0
(fη(x; a∗η(u(T)), u(T))− f∗(x))2dx

+ 2|Lη(a(T), u(T))− Lη(a∗η(u(T)), u(T))|
6 ξ .

6.C Experimental details

Setting Our code is available at https://github.com/PierreMarion23/two-timescale-nn.
To obtain Figures 6.3 and 6.4, we use the parameters of Table 6.1. For Figure 6.5, we use the
parameters of Table 6.2.

Name Value

m 20
ε 2 · 10−5

η 4 · 10−3

P 1.8 · 108

h 10−5

Additive noise Uniform on [−1, 1]

Table 6.1: Parameters of Figures 6.3 and 6.4.

The number of iterations in Table 6.1 is much larger than the one in Table 6.2, due to the
fact that the positions u evolve at a speed εh, which is much smaller in Table 6.1. However, note
that it is possible to increase h in Table 6.1 while keeping the same behavior (in our experiment,
h is kept to the same value as in Table 6.2 in order to facilitate the comparison). More precisely,
taking h = 10−3 in Table 6.1 yields similar results while dividing the computational cost by 100.

Our target function is defined by f∗ = 1 on [0., 0.2], [0.35, 0.5], [0.65, 0.8], f∗ = 2 on [0.5, 0.65]
and f∗ = 4 elsewhere.

Additional plot We re-run the same SGD experiment as above twenty times, and plot the
average L2 distance to the target as a function of ε, averaging over the initialization randomness

209

https://github.com/PierreMarion23/two-timescale-nn

Name Value

m 20
ε 1
η 4 · 10−3

P 106

h 10−5

Additive noise Uniform on [−1, 1]

Table 6.2: Parameters of Figure 6.5.

and SGD randomness. This confirms that, in our setting, the SGD is able to recover the target
function in the two-timescale regime (ε� 1), but fails outside the two-timescale regime (ε = 1).
The transition between the two regimes seems to occur for ε ≈ 0.1.

Figure 6.7: L2 distance with the target as a function of ε, with 20 repeats

210

7
Structured context and high-coverage gram-
mar for conversational question answering
over knowledge graphs

We tackle the problem of weakly-supervised conversational Question Answering over large
Knowledge Graphs using a neural semantic parsing approach. We introduce a new Logical
Form (LF) grammar that can model a wide range of queries on the graph while remaining
sufficiently simple to generate supervision data efficiently. Our Transformer-based model takes
a JSON-like structure as input, allowing us to easily incorporate both Knowledge Graph and
conversational contexts. This structured input is transformed to lists of embeddings and then
fed to standard attention layers. We validate our approach, both in terms of grammar coverage
and LF execution accuracy, on two publicly available datasets, CSQA and ConvQuestions, both
grounded in Wikidata. On CSQA, our approach increases the coverage from 80% to 96.2%, and
the LF execution accuracy from 70.6% to 75.6%, with respect to previous state-of-the-art results.
On ConvQuestions, we achieve competitive results with respect to the state-of-the-art.

Contents
7.1 Introduction . 212
7.2 Related work . 213
7.3 A grammar for KG exploration . 214

7.3.1 Definitions . 214
7.3.2 Meta-operators . 214
7.3.3 Silver LF generation . 216
7.3.4 Comparison with D2A . 216

7.4 Model . 216
7.4.1 Overview . 216
7.4.2 Structured Input computation . 217
7.4.3 Embedding . 218
7.4.4 Encoding layers . 218
7.4.5 Decoding layers . 219

7.5 Experiments . 220
7.5.1 Datasets . 220
7.5.2 CSQA Experimental Setup . 221

211

7.5.3 ConvQuestions Experimental Setup . 221
7.5.4 Named Entity Linking setup . 221
7.5.5 Results . 222
7.5.6 Error analysis . 222

7.6 Conclusion . 223
7.A Clarification Questions in CSQA . 224
7.B Detailed experimental setup . 224
7.C Comparison with baselines . 227
7.D Additional results . 228

7.1 Introduction

Graphs are a common abstraction of real-world data. Large-scale knowledge bases can be
represented as directed labeled graphs, where entities correspond to nodes and subject-predicate-
object triplets are encoded by labeled edges. These so-called Knowledge Graphs (KGs) are used
both in open knowledge projects (YAGO,Wikidata) and in the industry (Yahoo, Google, Microsoft,
etc.). A prominent task on KGs is factual conversational Question Answering (Conversational
KG-QA) and it has spurred interest recently, in particular due to the development of AI-driven
personal assistants.

The Conversational KG-QA task involves difficulties of different nature: entity disambiguation,
long tails of predicates (Saha et al., 2018), conversational nature of the interaction. The topology
of the underlying graph is also problematic. Not only can KGs be huge (up to several billion
entities), they also exhibit hub entities with numerous neighbors.

A recent prominent approach has been to cast the problem as neural semantic parsing (Jia
and Liang, 2016; Dong and Lapata, 2016, 2018; Shen et al., 2019). In this setting, a semantic
parsing model learns to map a natural language question to a logical form (LF), i.e. a tree of
operators over the KG. These operators belong to some grammar, either standard like SPARQL
or ad-hoc. The logical form is then evaluated over the KG to produce the candidate answer. In
the weak supervision training setup, the true logical form is not available, but only the answer
utterance is (as well as annotated entities in some cases, see Section 7.5.4). Hence the training
data is not given but it is instead generated, in the format of (question, logical form) pairs. We
refer to this data as silver data or silver LFs, as opposed to unknown gold ground truth.

However, this approach has two main issues. First, the silver data generation step is a complex
and often resource-intensive task. The standard procedure employs a Breadth-First Search (BFS)
exploration (Guo et al., 2018; Shen et al., 2019), but this simple strategy is prone to failure,
especially when naively implemented, for questions that are mapped to nested LFs. This reduces
the coverage, i.e. the percentage of training questions associated to a Logical Form. Shen et al.
(2020) proposes to add a neural component for picking the best operator, in order to reduce the
computational cost of this task, however complicating the model. Cao et al. (2020) proposes a
two-step semantic parser: the question is first paraphrased into a “canonical utterance”, which
is then mapped to a LF. This approach simplifies the LF generation by separating it from the
language understanding task.

Second, most of the semantic parsing models do not leverage much of the underlying KG
structure to predict the LF, as in Dong and Lapata (2016); Guo et al. (2018). Yet, this contextual

212

graph information is rich (Tong et al., 2019), and graph-based models leveraging this information
yield promising results for KG-QA tasks (Vakulenko et al., 2019; Christmann et al., 2019).
However these alternative approaches to semantic parsing, that rely on node classification, have
their inherent limitations, as they handle less naturally certain queries (see Appendix 7.C.3) and
their output is less interpretable. This motivates the desire for semantic parsing models that can
make use of the KG context.

Approach, contributions and overview of the chapter. In Section 7.3, we design a new
grammar, which can model a large range of queries on the KG, yet is simple enough for BFS to
work well. We obtain a high coverage on two KG-QA datasets. On CSQA (Saha et al., 2018),
we achieve a coverage of 96%, a 16% improvement over the baseline (Shen et al., 2020). On
ConvQuestions (Christmann et al., 2019), a dataset with a large variety of queries, we reach a
coverage of 86%.

To leverage the rich information contained in the underlying KG, we propose in Section 7.4 a
semantic parsing model that uses the KG contextual data in addition to the utterances. Different
options could be considered for the KG context, e.g. lists of relevant entities, annotated with
metadata or pre-trained entity embeddings that are graph-aware (Zhang et al., 2020b). The
problem is that this information does not come as unstructured textual data, which is common
for language models, but is structured.

To enable the use of context together with a strong language model, we propose the Object-
Aware Transformer (OAT) model, which can take as input structured data in a JSON-like format.
The model then transforms the structured input into embeddings, before feeding them into
standard Transformer layers. With this approach, as reported in Section 7.5, we improve the
overall execution accuracy on CSQA by 5.0% compared to a strong baseline (Shen et al., 2019).
On ConvQuestions, we improve the precision by 4.7% compared to Christmann et al. (2019).

Appendices 7.A to 7.D present further description of the experimental setup, comparisons
with baselines, and experimental results.

7.2 Related work

Neural semantic parsing Our work falls within the neural semantic parsing approaches
for Knowledge-Based QA (Dong and Lapata, 2016; Liang et al., 2017; Dong and Lapata, 2018;
Guo et al., 2019b; Hwang et al., 2019). The more specific task of conversational KG-QA has
been the focus of recent work. Guo et al. (2018) introduces D2A, a neural symbolic model with
memory augmentation. This model has been extended by S2A+MAML (Guo et al., 2019a)
with a meta-learning strategy to account for context, and by D2A+ES (Shen et al., 2020) with
a neural component to improve BFS. Saha et al. (2019) proposes a Reinforcement Learning
model to benefit from denser supervision signals. Finally, Shen et al. (2019) introduces MaSP,
a multi-task model that performs both entity linking and semantic parsing, with the hope of
reducing erroneous entity linking (see Appendix 7.C.2 for a comparison with our setup). Recently,
Plepi et al. (2021) extended the latter in CARTON. They first predict the LF using a Transformer
architecture, then specify the KG items using pointer networks.

Learning on Knowledge Graphs Classical graph learning techniques can be applied to the
specific case of KGs. In Convex (Christmann et al., 2019), at each turn, a subgraph is expanded
by matching the utterance with neighboring entities. Then a candidate answer is found by a
node classifier. Other methods include unsupervised message passing (Vakulenko et al., 2019).
However, these approaches lack strong NLP components. Other directions include learning
differentiable operators over a KG (Cohen et al., 2019), or applying Graph Neural Networks

213

(Kipf and Welling, 2017; Hamilton et al., 2017) (GNNs) to the KG, which has been done for
entity classification and link prediction tasks (Schlichtkrull et al., 2018). GNNs have also been
used to model relationships between utterances and entities (Shaw et al., 2019).

Structured Input for neural models Our approach of using JSON-like input falls in the
line of computing neural embeddings out of structured inputs. Tai et al. (2015) introduced
Tree-LSTM for computing tree embeddings bottom-up. It has then been applied for many tasks,
including computer program translation (Chen et al., 2018b), semantic tree structure learning
such as JSON or XML (Woof and Chen, 2020), and supervised KG-QA tasks (Tong et al., 2019;
Zafar et al., 2019; Athreya et al., 2021). In the latter context, Tree-LSTM is used to model the
syntactic structure of the question. Other related approaches include tree transformer (Harer
et al., 2019) and tree attention (Ahmed et al., 2019). Syntactic structures were also modeled as
graphs (Xu et al., 2018; Li et al., 2020a). Specific positional embeddings can also be used to
encode structures (Shiv and Quirk, 2019; Herzig et al., 2020).

7.3 A grammar for KG exploration

Several previous KG-QA works were based on the grammar from D2A (Guo et al., 2018). We
also take inspiration from their grammar, but redesign it to model a wider range of queries. By
defining more generic operators, we achieve this without increasing the number of operators nor
the average depth of LFs. Section 7.3.4 presents a comparison.

7.3.1 Definitions

An entity (e.g. Marie Curie) is a node in the KG. Two entities can be related through a directed
labeled edge called a property (e.g. award received). A property can also relate an entity to
a value, which can be a date, a boolean, a quantity or a string. Entities and properties have
several attributes, prominently a name and an integer ID. The membership property is treated
separately; it relates a member entity (e.g. Marie Curie) to a class entity (e.g. human being).

The objects we will consider in the following are entities, properties, classes, and values. The
grammar consists of a list of operators that take objects or sets of objects as arguments. A
Logical Form is a binary expression tree of operators.

In several places, we perform Named Entity Linking (NEL), i.e. mapping an utterance to a
list of KG objects. Section 7.5.4 details how this is done.

Table 7.1 lists the operators we use, grouped in five categories. Most of them are straightfor-
ward, except meta-operators, which we explain next.

7.3.2 Meta-operators

Meta-operators are useful for questions such as: “Which musical instrument is played by the
maximum number of persons?”. To answer this question, we first compute the set of all musical
instruments in the KG. For each entity in this set, we then follow the property played by,
producing a set of people who play that instrument. Finally, we compute the max cardinality of
all these sets and return the associated instrument.

The corresponding LF is the following:
argmax(

cardinality(
follow_property(

for_each(

214

Category Name Signature Description

Graph
operators

follow_property (SE, P)→ SE Returns the entities which are linked by
property P to at least one element of SE.

follow_backward (SE, P)→ SE
Returns the entities which are linked by
property P from at least one element of
SE.

get_value
(SE, P) →
SV

Returns the values which are linked by
property P to at least one element of SE.

Numerical
operators

max, min SV → SV Returns the max (resp. min) value from
SV.

greater_than,
equals,
lesser_than

(SV, V) →
SV

Filters SV to keep values strictly greater
than (resp. equal to, strictly lesser than)
V.

cardinality SE → V Returns the cardinality of SE.

Set
operators

is_in
(a: SE, b:
SE) → SV

Returns a boolean set: for each entity in
a, the mask equals True if the entity is in
b.

get_first SE → SE Returns the first entity from SE.
union, intersect,
difference

(SE,SE) →
SE

Returns the union (resp. intersection, dif-
ference) of input sets.

Class
operators

members SC → SE Returns the members of classes in SC.

keep
(SE,SC) →
SE Filters SE to keep the members of SC.

Meta-
operators

for_each SE → SE Initializes a parallel computation over all
entities in the input set.

arg
SV → SE or
SE → SE

Ends a parallel computation by returning
all entities that gave a non-empty result.

argmax, argmin SV → SE
Ends a parallel computation by returning
all entities that gave the max (resp. min)
value.

Table 7.1: List of operators in our grammar. Their variables can be entities (E), classes (C),
values (V), ordered sets of such elements (resp. SE, SC and SV), or properties (P).

215

members(musical instrument),
),
played by)))

for_each creates a parallel computation over each entity in its argument, which can be
terminated by three operators (arg, argmax and argmin). We refer to Appendix 7.B.1 for details.

7.3.3 Silver LF generation

To generate silver LFs, we explore the space of LFs with a BFS strategy, similarly to Guo et al.
(2018); Shen et al. (2019). More precisely, to initialize the exploration, we perform NEL to find
relevant entities, values and classes that appear in the question. LFs of depth 0 simply return an
annotated object. Then, assume that LFs of depth less or equal to n have been generated and we
want to generate those of depth n+ 1. We loop through all possible operators; for each operator,
we choose each of its arguments among the already-generated LFs. This algorithm brings two
challenges, as highlighted in Shen et al. (2020): computational cost and spurious LFs. We refer
to Appendix 7.B.2 for implementation details that mitigate these difficulties.

7.3.4 Comparison with D2A

Section 7.5.5 shows that our grammar achieves higher coverage with a similar average LF depth.
A more thorough quantitative comparison is delicate, as it would require reimplementing D2A
within our framework, which is beyond the scope of this chapter. On a qualitative basis, we use
more elementary types: in addition to theirs, we introduce set of classes, strings and set of values
(which can be strings, numerals or booleans). We use eight fewer operators than D2A; among
our operators, six are in common (follow_property, follow_backward, cardinality, union,
intersect, difference), four are modified (keep, is_in, argmax, argmin), and the other ten
are new. New intents that can be modeled include numerical reasoning (e.g. What actor plays the
younger child?), temporal reasoning (e.g. What is the number of seasons until 2018?), ordinal
reasoning (e.g. What was the first episode date?), textual form reasoning (e.g. What was Elvis
Presley given name?). We refer to Appendix 7.C.1 for more details and comparison methodology.

7.4 Model

7.4.1 Overview

The model, called Object-Aware Transformer (OAT), is a Transformer-based (Vaswani et al.,
2017) autoregressive neural semantic parser. As illustrated in Figure 7.1, the model has several
steps.

The first step consists of retrieving relevant objects, annotated with metadata, that might
appear in the resulting LF. This step is performed using NEL on the utterances and KG lookups
to retrieve the graph context information. At this point, the input is composed of lists of objects
with their fields. After embedding each field value in a vector space, we perform successive
layers of input flattening and Transformer encoding. The Flattener layer is useful to transform
the structured input into a list of embeddings. Then a decoder Transformer layer produces a
linearized LF, i.e. a list of string tokens. Finally, we evaluate the LF over the KG to produce a
candidate answer. In the next sections, we describe each step in details.

216

Who is the wife of
Pierre Curie?

She received which
awards?

Marie Curie

Name: Marie Curie
ID: Q7186
Class ID: Q5
Name: Pierre Curie
ID: Q37463
Class ID: Q5

Name: birth name
ID: P1477
Entity IDs: Q7186

Prev. Q

Prev. A

Cur. Q

Entity 0

Entity 1

Name: award received
ID: P166
Entity IDs: Q7186, Q37463

Name: mother
ID: P25
Entity IDs: Q37463

START

follow_prop

Q7186

P166

)

STOP

follow_prop

Q7186 P166

⑥ Evaluation

Nobel Prize in
Chemistry,

Nobel Prize in
Physics, ...

Input dialog

Property 1

Property 0

Property 2

①
 Entity linking

②
 K

G
 context

③ Embedding ④ Encoding ⑤ Decoding

Candidate answer

Name: human being
Class ID: Q5

Class 0

T
R

A
N

SFO
R

M
E

R
FL

AT
T

E
N

E
R FL

AT
T

E
N

E
R

T
R

A
N

SFO
R

M
E

R

T
R

A
N

SFO
R

M
E

R
 D

E
C

O
D

E
R

EID

CID

CID

EID

PID

EID
PID

EID

EID
PID

CE

EE

EE EID

PID

GT

GT

P P P P

PP

P P P P

P P P

P P

P P

P

P

P P

P P

P

P

P

P

P

P

PE

PE

PE

PE

PE

PE

CE

EE

EE

PE

PE

PE

CE

EE

EE

EID

CID

P P

P

P

P

P

P

Figure 7.1: Architecture of the proposed model. The initial field embeddings are Positional (P),
Property ID (PID), Entity ID (EID), and Class ID (CID). After the first Flattener layer, we
obtain Property Embeddings (PE), Class Embeddings (CE), Entity Embeddings (EE). There
are also Grammar Token (GT) embeddings in the output. Note that the entity IDs are actually
randomized (not shown here).

7.4.2 Structured Input computation

Hierarchical structure For each query, we construct the input as a JSON-like structure,
consisting of lists of objects with their fields (represented in the left part of Figure 7.1). We
chose this representation as it allows incorporating general structured information into the model.
A field can be a string, a KG integer ID, a numerical value, or a list thereof.

To construct the input, we start from the last utterances in the dialog: the current query,
previous query and previous answer. We first perform NEL to retrieve a list of entities E
(and numerical values) matching the utterances. The KG is then queried to retrieve additional
contextual information: the classes of the entities, and all outgoing and incoming properties
from these entities E . This gives a list of properties P. For each property p ∈ P, we fill several
fields: its ID, its name, and an Entity IDs field, which corresponds to all entities e ∈ E such
that at least one graph operator gives a non-empty result when applied to e and p. For instance,
in Wikidata, the property birth name (P1477) is filled for Marie Curie but not for Pierre Curie,
so the Entity IDs field of the birth name property only contains Marie Curie.

Let us introduce some formal notations, useful to explain the computation of the input’s
embeddings (Section 7.4.3). The input is a tree where the root corresponds to the whole input,
and each leaf contains the primitive values. For a non-leaf node x, we denote by c(x) its children.
For instance, in Figure 7.1, the node Property 2 has three children (leaves) whose values are
mother, P25 and Q37463. A node x has also a type, and T (x) denotes the types of all nodes
on the path from the root to x. For instance, for the mother node, T (x) is equal to (root,
property, name). In our setup, the depth of the input is at most 2.

217

ID randomization Directly giving the entity ID to the model would mean training a categorical
classifier with millions of possible outcomes, which would lead to poor generalization. To avoid
this, we replace the integer ID with a random one, thereby forcing the model to learn to predict
the correct entity from the list of entities in input by copying their randomized entity ID to the
output.

For numerical values, we associate each value to an arbitrary random ID, that the model
should learn to copy in the output. For properties and classes, since there are fewer possibilities
in the graph (a few thousand), we do not randomize them.

7.4.3 Embedding

Preprocessing We apply BERT tokenization (Devlin et al., 2018) to textual inputs. A
vocabulary Vt is generated for each of the non-textual input types t.

Token embedding The goal of this step is to associate an embedding to each field of each
object in the input. We do so by using a learned embedding for each input type: BERT
embeddings (Devlin et al., 2018) for textual inputs, and categorical embeddings for non-textual
inputs. When the input is a list (textual tokens or Entity IDs field), we add to this embedding
a positional embedding. To reduce the size of the model, list embeddings are averaged into a
single embedding. Formally, the embedding step associates a matrix of embeddings h(x) ∈ R1×dh

to each leaf of the input tree.

7.4.4 Encoding layers

There are two types of encoding layers: Flattener layers and Transformer layers.

Flattener The goal of these layers is to compute the embeddings of tree nodes bottom-up.
They are successively applied until we are able to compute the embedding of the root node, i.e.
of the whole input. This operation can be seen as flattening the JSON-like structure, hence their
name.

Say we want to compute the embedding of some parent node x. An affine projection is first
applied to the embedding of each child, then the embedding of the parent node is computed by
applying a reduction operation R, which can be either a sum or a concatenation. The weights of
the projections are shared between all nodes having the same types T (x). For example, all class
name nodes - with types (root, class, name) - share the same weights, but they do not share
the weights of entity name nodes - with types (root, entity, name). Hence the embedding of
x is

h(x) = Ry∈c(x)

({
W

T (y)
projecth(y) + b

T (y)
project)

})
.

If the reduction is a sum, all children embeddings need to be matrices of the same dimension,
and the dimension of the parent embedding is also the same. If the reduction is a concatenation,
the dimension of the parent embedding is

(∑
y∈c(x) d(y), dh

)
.

Transformer This layer is a classical multi-head Transfomer encoder layer (Vaswani et al.,
2017), taking as input a matrix of embeddings of dimensions (n, dh), performing self-attention
between the input embeddings, and outputting another matrix of the same dimensions. Detailed
setup can be found in Appendix 7.B.4. We also refer to Section 1.1.3 for an introduction to the
mechanics of the Transformer encoder.

218

Architecture We apply a first Transformer layer only to the utterances, and in parallel a first
Flattener layer with sum reduction to all other inputs. The latter computes one embedding for
each object. We add a positional embedding to each object, to account for its position in the list
of objects of the same type. Then we apply a second Flattener layer with concatenation to all
outputs of the first layer. This creates a single matrix of embeddings containing the embeddings
of all the objects and utterances. Finally, a second Transformer layer is applied to this matrix.

7.4.5 Decoding layers

The goal of the decoding layers is to produce a list of tokens that corresponds to a prefix
representation of the LF tree. Note that the model architecture is grammar-agnostic, in the sense
that this output structure is independent of the grammar and we do not use grammar-guided
decoding. The tokens can belong to one of the non-textual input types or be a grammar token.
Remember that we computed a vocabulary Vt for all token types t ∈ T . We augment the
vocabulary with a stop token.

The decoder predicts the output list of tokens iteratively. Assume that we are given the first j
tokens y1, . . . , yj . We then apply an autoregressive Transformer decoder (see Vaswani et al., 2017
or Phuong and Hutter, 2022) on the full sequence, and we condition on the last embedding hj of
the sequence to predict the next token ŷj+1. Several categorical classifiers are used to predict
ŷj+1. We first decide whether we should stop decoding:

ŝj+1 = argmax pstop,j (7.1)

where pstop,j = softmax(Wstophj) is a distribution over {0, 1} given by a binary classifier. If
ŝj+1 = 1, the decoding is finished, and we set ŷj+1 to stop; otherwise, we predict the type of
the token:

t̂j+1 = argmax ptype,j (7.2)

where ptype,j = softmax(Wtypehj) is a distribution over T given by a |T |-class classifier.
Finally, depending on the predicted type, we predict the token itself

ŷj+1 = argmax p
t̂j+1

token,j (7.3)

where pt̂j+1

token,j = softmax(W
t̂j+1

tokenhj) is a distribution over Vt̂j+1
given by a

∣∣∣Vt̂j+1

∣∣∣-class classifier.
Training We train by teacher forcing: for a given training sample (x, [y1, · · · , yM]) and for
each step j, the embedding hj is computed using the true output at previous steps: hj =
h(yj ;x, y1, · · · , yj−1). The loss is the cross-entropy between the true output yj+1 and the
probability distributions produced by the model. More precisely, let T :

⋃
t∈T Vt → T be the

mapping which projects tokens to their type. We denote by p(x) the value of a categorical
probability distribution p for the category x. Then, omitting the step subscripts j, the loss equals

l(p, y) =− log(pstop(0))

−
[
log(ptype(T (y))) + log(p

T (y)
token(y))

]
for all steps except the last, and l(p, y) = − log(pstop(1)) for the last step. pstop, ptype, and
ptoken are computed as explained above. The total loss is obtained by averaging over all training
samples and over all steps.

219

CSQA ConvQuestions

Average length of a dia-
log 8 turns 5 turns

Possible change of topic
inside a conversation Yes No

Answer type Entities, boolean, quantity Entities (usually a single one),
boolean, date, quantity, string

Entity annotations in
the dataset Yes, with coreference resolution

Only the seed entity (topic of
the dialog) and the answer en-
tities

Coreferences in ques-
tions Yes, to the previous turn Yes, to any preceding turn

Table 7.2: Some characteristics of the benchmark datasets.

Methods D2A D2A+ES S2A+MAML MaSP OAT

Question type # Ex. F1
Simple (Direct) 82k 91.41 83.00 92.66 85.18 82.69
Simple (Coreferenced) 55k 69.83 64.62 71.18 76.47 79.23
Simple (Ellipsis) 10k 81.98 83.94 82.21 83.73 84.44
Logical 22k 43.62 72.93 44.34 69.04 81.57
Quantitative 9k 50.25 63.95 50.30 73.75 74.83
Comparative 15k 44.20 55.05 48.13 68.90 70.76
Question type # Ex. Accuracy
Verification (Boolean) 27k 45.05 45.80 50.16 60.63 66.39
Quantitative (Count) 23k 40.94 41.35 46.43 43.39 71.79
Comparative (Count) 15k 17.78 20.93 18.91 22.26 36.00
Total Average 260k 64.47 64.75 66.54 70.56 75.57

Table 7.3: QA performance on CSQA. Our method is the last one (OAT). The metric is the F1
score for question types above the vertical separator, and accuracy for those under. The Total
Average score is an average over all question types.

7.5 Experiments

Additional comments about the datasets, setups, and additional results can be found in the
appendix.

7.5.1 Datasets

We use two weakly supervised conversational QA datasets to evaluate our method, Complex
Sequential Question Answering (CSQA)1 (Saha et al., 2018) and ConvQuestions2 (Christmann
et al., 2019), both grounded in Wikidata3. CSQA consists of about 1.6M turns in 200k con-
versations (152k/16k/28k splits), versus 56k turns in 11k conversations (7k/2k/2k splits) for
ConvQuestions.

1https://amritasaha1812.github.io/CSQA
2https://convex.mpi-inf.mpg.de
3https://www.wikidata.org

220

https://amritasaha1812.github.io/CSQA
https://convex.mpi-inf.mpg.de
https://www.wikidata.org

CSQA was created by asking crowd workers to write turns following some predefined patterns,
then turns were stitched together into conversations. The questions are organized in different
categories, e.g. simple, logical or comparative questions.

For ConvQuestions, crowd workers wrote a 5-turn dialog in a predefined domain (e.g. Books
or Movies). The dialogs are more realistic than in CSQA, however at the cost of a smaller dataset.

As presented in Table 7.2, the datasets have different characteristics, which make them an
interesting test bed to assess the generality of our approach.

7.5.2 CSQA Experimental Setup

Metrics To evaluate our grammar, we report the coverage, i.e. the percentage of training
questions for which we found a candidate Logical Form.

To evaluate the QA capabilities, we use the same metrics as in Saha et al. (2018). F1 Score is
used for questions whose answers are entities, while accuracy is used for questions whose answer
is boolean or numerical. We don’t report results for “Clarification” questions, as this question
type can be accurately modeled with a simple classification task, as reported in Appendix 7.A.
Similarly the average metric “Overall” (as defined in Saha et al. 2018) is not reported in Table 7.3,
as it depends on “Clarification”, but can be found in the Appendix.

Baselines We compare our results with several baselines introduced in Section 7.2: D2A (Guo
et al., 2018), D2A+ES (Shen et al., 2020), S2A+MAML (Guo et al., 2019a), and MaSP (Shen
et al., 2019).

7.5.3 ConvQuestions Experimental Setup

Metrics We use the coverage as above, and the P@1 metric as defined in Christmann et al.
(2019).

Baseline The only baseline to our knowledge is Convex (Christmann et al., 2019), which
casts the problem to a node classification task. For comparison, we tried to make our setup as
close as possible to theirs, and refer to Appendix 7.C.3 for details.

Data augmentation Given the small size of the dataset, we merge it with two other data
sources: CSQA, and 3.6M examples generated by random sampling. The latter are single-turn
dialogs made from graph triplets, e.g. the triplet (Marie Curie, instance of, human) generates
the dialog: Q: Marie Curie instance of? A: Human. More details are given in Appendix 7.B.3.
The ConvQuestions dataset is upsampled to match the other data sources sizes.

7.5.4 Named Entity Linking setup

We tried to use a similar setup as baselines for fair comparison. For CSQA, the previous gold
answer is given to the model in an oracle-like mode, as in baselines. In addition, we use simple
string matching between utterances and names of Wikidata entities to retrieve candidates that
are given in input to the model. For ConvQuestions, we use the gold seed entity (as in the
Convex baseline we compare with), and the Google Cloud NLP service. We refer to Appendices
7.B.2 and 7.B.4 for details.

Regarding CARTON (Plepi et al., 2021), their results are not directly comparable as their
model uses gold entity annotations as input and hence is not affected by NEL errors. This
different NEL setup does have a strong influence on the performance, as running our model on
CSQA with a setup similar to CARTON improves our Total Average score by over 10%. We

221

Question type D2A D2A+ES Ours

Comparative 28.6 45 84.9
Logical 48.2 92 100.0
Quantitative 58.1 62 91.1
Simple 94.4 96 99.7
Verification 77.9 85 91.4
Overall 74.3 80 96.2

Table 7.4: Coverage per question type for CSQA.

Depth 1 2 3 4+

CSQA (D2A) 0.0 47.0 30.9 22.0
CSQA (Ours) 5.5 67.9 7.4 19.2
ConvQuestions 53.9 43.7 2.4 0.0

Table 7.5: Silver LF depth distribution for both datasets.

refer to Appendix 7.D.3 for details. More generally, a more thorough study of the impact of the
NEL step on the end-to-end performance would be an interesting direction of future work (see
also Section 7.5.6).

7.5.5 Results

Our grammar reaches high coverage. With approximately the same numbers of operators as
in baselines, we improve the CSQA coverage by 16%, as presented in Table 7.4. The improvement
is particularly important for the most complex questions. We reach a coverage of 86.2% on
ConvQuestions, whose questions are more varied than in CSQA.

Most queries can be expressed as relatively shallow LFs in our grammar, as illustrated by
Table 7.5. This is especially interesting for the ConvQuestions dataset, composed of more realistic
dialogs. On CSQA, the average depth of our LFs (2.9) is slightly lower than with D2A grammar
(3.2).

We improve the QA performance over baseline on both datasets. For CSQA, our
model outperforms baselines for all question types but Direct Simple questions, as shown in
Table 7.3. Overall, our model improves the performance by 5%. For ConvQuestions, Table 7.6
shows that our model improves over the baseline for all domains but one, yielding an overall
improvement of 4.7%. A precise evaluation of the impact of the various components of our
KG-QA approach (grammar, entity linking, model inputs, model architecture, size of the training
data, etc.) on the end-to-end performance was out of the scope of this chapter, and is left for
future work. Nevertheless, the fact that we are able to improve over baselines for two types of
Simple questions and for Logical questions, for which the grammar does not matter so much,
as these question types correspond to relatively shallow LFs, suggests that our proposed model
architecture is effective.

7.5.6 Error analysis

CSQA By comparing the silver and the predicted LFs on 10k random errors, we could split the
errors in two main categories: first, the LF general form could be off, meaning that the model

222

Domain 1st turn Follow-up Convex

Books 68.1 20.9 19.8
Movies 54.2 31.3 25.9
Music 37.5 18.1 19.0
Soccer 43.8 22.8 18.8
TV 66.3 31.8 17.8

Overall 54.0 25.0 20.3

Table 7.6: ConvQuestions results by domain. The first two columns are our results. The baseline
(Oracle+Convex) only reports follow-up turns.

did not pick up the user intent. Or the form of the LF could be right, but (at least) one of the
tokens is wrong. Table 7.7 details the error statistics. The most frequent errors concern entity
disambiguation. There are two types of errors: either the correct entity was not part of the
model input, due to insufficient recall of the NEL system. Or the model picked the wrong entity
from the input due to insufficient precision. It is known that the noise from NEL strongly affects
model performance (Shen et al., 2019). We tried an oracle experiment with perfect recall NEL
(see Appendix 7.D.3), which corroborates this observation, in particular for Simple questions. As
we focused on modeling complex questions, improving NEL was not our main focus, but would
an interesting direction for future work, in particular via multi-task approaches (Shen et al.,
2019).

Error category Overall Simple Dir.

LF general form 31.8 24.1
Entity ID token 36.2 38.2

insuff. recall 17.1 16.8
insuff. precision 19.6 21.6

Property ID token 4.2 2.9
Class ID token 24.7 37.6
Grammar token 11.6 2.6

Table 7.7: Distribution of errors in CSQA. The numbers are (non-exclusive) percentages. We
also report statistics for the Simple Direct type, as it is the largest.

ConvQuestions We manually analyzed 100 examples. Errors were mostly due to the LF
general form, then to a wrong property token.

The model learns the grammar rules. In all inspected cases, the predicted LF is a valid LF
according to the grammar, i.e. it could be evaluated successfully. This shows that grammar-guided
decoding is not needed to achieve high performance.

7.6 Conclusion

For the problem of weakly-supervised conversational KG-QA, we proposed Object-Aware Trans-
former, a model capable of processing structured input in a JSON-like format. This allows to
flexibly provide the model with structured KG contextual information. We also introduced a KG

223

grammar with increased coverage, which can hence be used to model a wider range of queries.
These two contributions are fairly independent : on the one hand, since the model predicts LFs
as a list of tokens, it is grammar agnostic, and thus it could be used with another grammar. On
the other hand, the grammar is not tied to the model, and can be used to generate training data
for other model architectures. Experiments on two datasets validate our approach. We plan to
extend our model to include a richer KG context, as we believe there is significant headroom for
improvements.

7.A Clarification Questions in CSQA

Take the following dialog as example:

T1 Can you tell me which cities border Verderio Inferiore?
Cornate d’Adda, Bernareggio, Robbiate

T2 And which cities flank that one?
Did you mean Robbiate?

T3 No, I meant Cornate d’Adda.
Bottanuco, Busnago, Trezzo sull’Adda

The second turn is a “Clarification” question: the system asks the user for disambiguation.
The disambiguation question usually takes the form “Did you mean”, followed by an entity
chosen among the previous turn answers. This choice appears to be entirely random. For this
reason, we found that it would not be very interesting to try to predict this entity, as baselines
propose. Hence we only ask the model to predict that the question is a Clarification (via a special
clarification operator).

We report in Table 7.8 the scores for Clarification questions, as well as the “Overall” score, as
defined in Saha et al. (2018). The results are not directly comparable as the baseline systems
report an F1 score, while our approach uses accuracy.

Question type # Ex. D2A D2A+ES S2A+MAML MaSP OAT (Ours)

Clarification 12k 18.31 36.66 19.12 80.79 99.63
Overall 206k 62.88 72.02 N/R 79.26 81.49

Table 7.8: QA performance on CSQA, including “Clarification” questions. The “Overall” metric is
the average F1 scores of the following question types: “Simple (Direct)”, “Simple (Coreferenced)”,
“Simple (Ellipsis)”, “Logical”, “Quantitative”, “Comparative” and “Clarification”.

7.B Detailed experimental setup

7.B.1 Meta-operators

Take the example given in the main part of the chapter: “Which musical instrument is played by
the maximum number of persons?”. The corresponding LF is:
argmax(

cardinality(
follow_property(

for_each(
members(musical instrument)),

224

played by)))

Assume that the KG contains exactly two musical instruments, piano and violin, or in other
words, members(musical instrument) equals {piano, violin }.

for_each creates a dictionary of entities. Each (key, value) pair corresponds to one entity
in the argument of for_each, where the key is the entity itself and the value is a singleton set
containing the entity. Here for_each({piano, violin }) gives the following dictionary:
{

piano: {piano},
violin: {violin}

}
We then apply the same computation to each of the dictionary values, while keeping the keys

untouched. In our example, we apply the expression
cardinality(

follow_backward(., played by)
),
which gives the result
{piano: 20392, violin: 7918}.

Finally, an aggregation operator is computed over the values, and the result is a subset of the
keys. In the example, argmax returns the set of keys associated with the maximum values, here
{piano}. In other cases, we want to return all the keys associated to a non-empty value, arg
allows doing so.

7.B.2 Silver LF generation

Wikidata version For CSQA, we used the preprocessed version of Wikidata made available
by the authors, which contains 21.2M triplets over 12.8M entities and 567 distinct properties.
For ConvQuestions, we used a more recent version of Wikidata, containing 1.1B triplets over
91.8M entities and 7869 distinct properties.

Named Entity Linking For ConvQuestions, we use gold entity annotations and Google Cloud
NLP entity linking service. For CSQA, we use gold entity annotations.

To resolve the coreferences, in ConvQuestions, we use entity annotations from previous
utterances during the silver LF generation step. In CSQA, since coreferences are already resolved
by the gold annotations, we just use annotations from the current utterance.

Simplifying the BFS We observed that reaching a depth of 4+ is needed for some queries
(see Table 7.5 of the main part of the chapter), but is impractical by exhaustive BFS, as the size
of the space of LFs grows very quickly with their depth. To improve the efficiency, we used the
following ideas:

• Stopping criteria to abort the exploration: timeout tmax and maximum depth dmax.

• Type checking: by leveraging the operators’ signatures (presented in Table 7.1 of the
main part), we only construct legal LFs.

• Putting constraints on the form of the LF: we manually forbid certain combinations
of operators, e.g. follow_backward after follow_property.

• Restriction of the list of operators: for ConvQuestions, we use the graph operators,
the numerical operators, is_in, and get_first. The removal of some set operators and of

225

meta-operators strongly reduces the complexity of the BFS. For CSQA, all operators are
needed, but we add more constraints in order to keep the BFS simple enough.

We choose dmax = 3 for ConvQuestions and dmax = 7 for CSQA, and tmax = 1200 seconds.
All LFs found by BFS are evaluated over the KG, which gives candidate answers. We keep

the LFs whose candidate answers have the highest F1 score w.r.t. the gold answer. The minimal
F1 score for keeping a LF is 0.3.

Scores for LF ranking The BFS often returns several LFs (with the top F1 score, as explained
above), among which some are spurious: they do not correspond to the semantic meaning of the
question, but their evaluation over the KG yields the correct result by chance. As we keep only
one for training, we need a way to rank the candidate LFs. We use the following heuristic scores
to do so:

• Complexity: the score is 1 − (d−1)/(dmax−1) where d is the depth of the LF and dmax is
defined above.

• Property lexical matching: for each property appearing in the LF, we compute the
Jaccard index of the words appearing in its name and of the words of the question.

• Annotation coverage: among the entities retrieved by NEL, we compute the percentage
of entities which appear in the LF.

As these three scores are between 0 and 1, we average them and keep the LF with the highest
total score. We found that this simple method is a good way to reduce spurious LFs, which are
often either too complex or not matching lexically the question.

7.B.3 Random examples generation

To generate the random examples for data augmentation for ConvQuestions training, we first
sample uniformly 80k entities from the graph. Then, for each entity, we generate a conversation for
each triplet that links it to other entities. The question text is made by stitching the entity name
and the property name. For instance, the triplet (Marie Curie, native language, Polish)
generates the dialog: Q: Marie Curie native language? A: Polish. We also generate variants
where the property name is replaced by aliases, which are alternative names in Wikidata, e.g.
mother tongue for native language. When the question or answer has more than 256 characters,
we eliminate it.

7.B.4 Modeling

Wikidata version As in 7.B.2.

Named Entity Linking NEL is performed again, this time to create the structured context in
input to the model. Due to the randomization step described in Section 7.4.2, missing entities in
the input cannot be retrieved by the model, so we want to have a high NEL recall. The trade-off
is that the NEL precision is low, meaning that we have many spurious entities in the input,
which the model has to learn to ignore.

For CSQA, we use simple string matching between the utterances and the names of Wikidata
entities. Note that in our model, as well as in all CSQA baselines (in particular Guo et al., 2018;
Shen et al., 2019), the previous gold answer is given as input to the model in an oracle-like setup.

For ConvQuestions, we use the gold seed entity and the Google Cloud NLP entity linking
service.

226

To resolve coreferences, we use entities from the dialog history: all preceding turns for
ConvQuestions and only the previous turn for CSQA.

Implementation details We tokenize the input using the BERT-uncased tokenizer. All
embeddings in the model have dimension 768. The two transformer encoders share the same
configuration: 2 layers each, with output dimension 768, intermediate dimension 2048, 12
attention heads, and dropout probability set to 0.1. The model has 260M parameters. The
transformer implementation is based on publicly available BERT code. We initialize the word
embedding from a BERT checkpoint, but do not load the transformer layer weights, instead
training them from scratch. We train for 600k steps with batch size 128, using the ADAM
optimizer (Kingma and Ba, 2015) with learning rate 3× 10−5. Training takes around 14 hours
on 16 TPU v3 with 32 cores.

7.C Comparison with baselines

7.C.1 Comparison with D2A grammar

Intent Question example Missing in D2A

Textual form reason-
ing What was Elvis Presley given name? string type

Numerical reasoning What actor plays the younger child? get_value, for_each,
argmin

Numerical reasoning How old is the younger child? min
Selection of the mem-
bers of a class

Which television programs have been
dubbed by at least 20 people ? members

Temporal reasoning What is the number of seasons until
2018?

for_each, get_value,
lesser_than, arg

Ordinal reasoning What was the first episode date? get_first

Table 7.9: Examples of questions that are difficult to model with the D2A grammar. Examples
are mostly chosen from ConvQuestions, as their questions look more realistic than CSQA.

The D2A (Guo et al., 2018) grammar is the main baseline in previous KG-QA works. We
compare with the grammar implemented in their open-sourced code4, which is a bit different
from the published one. Numbers for D2A in Tables 7.4 and 7.5 were computed thanks to the
results of the BFS gracefully provided by the authors.

Table 7.9 presents some intents which we are able to model in our grammar and are not
straightforward to model with D2A grammar. First, textual form reasoning corresponds to
questions about string attributes of entities, which are not included in the D2A grammar. Second,
to handle numerical and temporal reasoning, computations based on numerical values are needed,
which is not possible with the D2A grammar. Finally, the D2A grammar does not model the
order of relations in the graph and the selection of class members, which we start to tackle with
respectively the get_first and members operators.

4
https://github.com/guoday/Dialog-to-Action/blob/bb2cbb9de474c0633bac6d01c10eca24c79b951f/BFS/parser.py

227

https://github.com/guoday/Dialog-to-Action/blob/bb2cbb9de474c0633bac6d01c10eca24c79b951f/BFS/parser.py

7.C.2 Comparison with MaSP architecture

Similarly to ours, the MaSP (Shen et al., 2019) model follow the semantic parsing approach,
where the LF is encoded as a sequence of operators and graph items IDs. Regarding the model
input, theirs consist only of the utterances, whereas we add additional KG context structured as
a JSON tree. The training method is different: MaSP uses multi-task learning to learn jointly
entity linking and semantic parsing, whereas we chain both, and trust the model to pick the
good entity. Our approach is simpler in this regard, but we pay this by having a slightly lower
performance on Simple Direct questions (see Table 7.3). Finally, we do not use beam search for
the decoding, contrarily to them.

7.C.3 Comparison with node classification approaches

An alternative to the semantic parsing approach is to train classifiers to predict entities as
nodes of the KG. A precise comparison of both approaches is out of the scope of this chapter.
Nevertheless, we think that the semantic parsing approach is better suited to our purpose of
modeling complex questions. For instance, complex intents involving numerical comparisons can
be expressed naturally by a LF, but would be difficult to perform using solely node classifiers.
Examples include the numerical and temporal reasoning in Table 7.9. Additional examples
include The series consists of which amount of books? (ConvQuestions) or Which television
programs have been dubbed by at least 20 people ?, How many episodes is it longer than the second
longest season out of the three? (CSQA).

Convex (Christmann et al., 2019) is an example of such an approach. It is an unsupervised
graph exploration method: at each turn, a subgraph is expanded by matching the utterance with
neighboring entities. Then a candidate answer is found in the subgraph by a node classifier. On
our side, we propose a semantic parsing approach that makes use of entities annotated by an
external entity linking service. This is a similar setup to the CSQA baselines (Shen et al., 2019),
which we re-purposed for ConvQuestions in order to assess the quality of our proposal on another
dataset. In order to be closer to the Convex baseline, we changed our CSQA setup by applying
the entity linker only to the questions’ text and not to the answers’ text. In addition, as we use
the gold seed entity, we compare with the Oracle+Convex setup of Christmann et al. (2019),
which also uses the gold seed entity (and the gold first turn answer entity). Finally, we make use
of data augmentation to train our model on ConvQuestions, whereas the baseline does not.

7.C.4 BERT or no BERT, that is the question

The baselines of Table 7.3 do not use BERT. MaSP authors provide an additional BERT variant
of their model that uses a fine-tuned BERT base architecture. The Total Average score of this
variant is 72.60%, which is 2% above their vanilla variant and 3% under our model. Since we
are only using the word embeddings (loaded from a publicly available BERT base checkpoint)
and not loading the transformer layer weights, we decided to compare with the vanilla variant of
MaSP, and not the BERT one. Finally, CARTON is using a pre-trained BERT base model as a
sentence encoder.

7.D Additional results

7.D.1 Coverage results

We present in Table 7.10 the coverage per domain for ConvQuestions. Besides, the evolution of
the coverage over turns is stable for both datasets, hence we do not report this result.

228

Domain Coverage

Books 88.6
Movies 87.6
Music 90.0
Soccer 78.6
TV 86.2

Overall 86.2

Table 7.10: ConvQuestions coverage per domain.

7.D.2 Performance over turns

Tables 7.11 and 7.12 show the evolution of the performance over turns for both datasets. For
CSQA, the performance drops after the first two turns, then remains constant. For ConvQuestions,
the performance decreases throughout the turns. There is a sharp decrease after the first turn,
probably because it is simpler as there is no coreference or ellipsis. The different behavior between
the datasets may be due to the realism of ConvQuestions.

Turns 0 1 2 3 4

Score 85 87 75 74 74

Turns 5-6 7-8 9-10 11-12 13+

Score 75 75 75 74 74

Table 7.11: Average performance over turns for CSQA. For brevity, we average over turn ranges
after turn 5.

Turn 0 1 2 3 4

Av. P@1 54 35 20 29 15

Table 7.12: Performance over turns for ConvQuestions.

7.D.3 Oracle setup and comparison with CARTON

CARTON (Plepi et al., 2021) gives the entities annotated in the dataset as part of the model
input (entities appearing in the previous turn and in the current question), contrarily to the
models in Table 7.3 which all use an entity linker. For a fair comparison, we tested our model in
an oracle setup, where we also give the gold annotations as input. As shown in Table 7.13, the
Total Average score of our model increases by 10% w.r.t. the baseline approach. The improvement
is particularly important for the most simple question types (Simple and Logical Questions). In
this setup, our performance is 8% higher than CARTON, and we obtain a better score for 7 out
of 10 question types.

7.D.4 Further error analysis

An alternative approach for error analysis is to assess the performance of the decoding classifiers
(see Section 7.4.5) in a teacher forcing setup, i.e. to assess how often they predict the next token

229

Question type CARTON Ours

Simple (Direct) 85.92 96.95
Simple (Coreferenced) 87.09 94.77
Simple (Ellipsis) 85.07 96.66
Logical 80.80 95.54
Quantitative 80.62 76.44
Comparative 62.00 76.66
Verification (Boolean) 77.82 67.02
Quantitative (Count) 57.04 75.89
Comparative (Count) 38.31 35.10

Total Average 77.89 85.85

Table 7.13: QA performance on CSQA in oracle mode.

Metric CSQA ConvQuestions

Token type 99.88 94.77

Grammar token 98.86 82.12
Entity ID 92.47 50.79
Property ID 99.45 30.26
Class ID 94.64 N/A
Numerical value 99.91 N/A
Avg. token 97.70 61.53

Table 7.14: LF token accuracy metrics, on the evaluation splits. For ConvQuestions, Class ID,
numerical value and their relative operators are not used (see 7.B.2).

correctly, given the true previous tokens. Table 7.14 reports the results on the evaluation split of
both datasets. The results corroborate the analysis presented in Section 7.5.6. First, the model
learns the grammar rules, as it nearly always predicts the good token type. For CSQA, the
most frequent errors concern entity ID and class ID. For ConvQuestions, they concern primarily
entities and properties.

7.D.5 Case study

Table 7.15 presents examples from ConvQuestions where we are able to predict the good LFs,
although there exists very similar properties in the graph. The textual forms of the questions are
not sufficient to infer the good property to use, implying that the model had to learn elements
from the graph structure in order to answer correctly these questions. Nevertheless, Table 7.14
shows that there is still significant room for improvement in that direction.

230

Question Property

When did Seinfeld first air? start time (P580)
When did Camp Rock come out? publication date (P577)
Who screen wrote it? screenwriter (P58)
Who wrote it? author (P50)
What country are they from? country (P17)
Belleville of which country? country (P17)
What country did the band Black Sabbath originally come
from? country of origin (P945)

What country is Son Heung-min from originally? country for sport (P1532)

Table 7.15: Examples of ConvQuestions questions for which the model was able to pick up the
good property, although there are very similar properties in the graph.

231

232

8
Conclusion

Despite its immense successes, paving the way to superhuman performance of computers in
numerous intellectual endeavors, deep learning remains a strikingly data-inefficient and energy-
inefficient method, in particular compared to the human brain. Innovation towards more efficient
approaches will come from a combination of various efforts, among which striving for more
mathematically-grounded approaches may occupy a foremost role. In this thesis, we presented
several contributions to deep learning research, and in particular to the theory of deep learning,
which we hope can contribute at their scale to this effort.

An important axis in our work was to leverage the large realm of differential equations to
study properties of neural networks, be it via the continuous-depth approach in the first part of
the thesis, or with the two-timescale (a.k.a. fast-slow) regime for dynamical systems in Chapter 6.
Of course, these contributions only scratch the surface of the interplay between deep learning
and analysis of differential equations, and there are many more subjects of interest regarding this
bridge between two behemoths of modern applied sciences. As a conclusive note, let us sketch a
few final comments and perspectives relative to the topics of the thesis.

From neural ODEs to neural SDEs. A major focus in this PhD thesis is the study of the
connection between deep residual networks and neural ordinary differential equations. In Chapter
2, we highlight conditions under which this connection holds true at initialization, namely that the
residual branch should be rescaled by a factor inversely proportional to the depth of the network,
and that the weights should be initialized with correlations across depth. In Chapter 3, we show
that the neural ODE limit then also holds during training. Under an additional assumption
on the width of the network, we show a Polyak-Łojasiewicz inequality, which allows proving
convergence of the training algorithm towards a neural ODE that interpolates the training data.
Finally, in Chapter 4, we show that neural ODEs, and subsequently deep ODE-like residual
networks, satisfy generalization bounds.

It would be of particular significance to investigate whether these results can extend to neural
stochastic differential equations, which we showed in Chapter 2 to be another possible deep
limit for residual networks. The extension to neural SDEs is important for at least two reasons.
First, as we showed in Chapter 2, standard i.i.d. initialization schemes seem to rather correspond
to SDEs than to ODEs. Moving from neural ODEs to neural SDEs would therefore bring our
analysis closer to the practice. Second, stochasticity has empirically been shown to play a key role
in deep learning training, for instance via dropout (Hinton et al., 2012b) or stochastic gradient
descent. Recent theoretical results prove that stochasticity enables the optimization algorithm
to reach minima with better generalization properties (Pesme et al., 2021). As a consequence,
understanding the effect of stochasticity due to initialization would be very interesting, and the

233

comparison of the neural SDE and neural ODE limits could be a fruitful axis to do so.

Moving away from supervised learning. All our results are presented in a supervised
learning setup, either for regression or classification. Could they be extended to other learning
contexts? In particular, several recent generative models, among which the acclaimed diffusion
models, can be written as a neural ODE (Song et al., 2021), where the ODE flow corresponds to
a transport equation mapping Gaussian noise to the target distribution. Understanding how to
translate to this sampling context the theoretical results obtained in supervised learning would
be worthwhile.

Better characterizing the implicit regularization for deep residual networks. Chapters
3 and 4 show a gap between the optimization and statistical points of views: our global convergence
result in Chapter 3 requires the width of the residual network to grow linearly with the sample
size, while on the contrary our statistical result of Chapter 4 requires the sample size to be larger
than the width. The literature on implicit regularization presented in Section 1.1.2.2 suggests
that it is unlikely that this gap could be bridged by refinements of the current approach. A
more promising direction would be to obtain further results on the implicit regularization of
gradient algorithms for deep residual networks. More precisely, we showed in Chapter 3 that the
gradient flow for a class of residual networks converges towards a neural ODE, but it remains
to understand more finely the properties of this limiting neural ODE, and in particular its
generalization abilities.

Extending global convergence results to other settings. Chapters 3 and 6 present global
convergence results for neural networks obtained with very different techniques, either through a
Polyak-Łojasiewicz inequality or by studying explicitly the gradient flow dynamics. Adapting
these techniques to other architectures would be particularly beneficial. The proof technique
of Chapter 6, which enables us to prove convergence of the gradient flow for sigmoid networks
to approximate one-dimensional piecewise constant target functions, is delicate to adapt to a
multidimensional setting, but other one-dimensional settings such as using ReLU networks to
learn piecewise affine functions could be considered. On the other side, the proof technique of
Chapter 3 via a Polyak-Łojasiewicz inequality is fairly general, and it might be applicable to
other residual architectures such as Transformer.

Going beyond on the Transformer architecture. The contributions of Chapter 7 are
a first attempt at tackling the numerous questions raised by Transformer. In particular, an
overarching question is to understand to what extent the striking results of this architecture
are linked to the form of the attention mechanism. More precisely, is there something specific
to attention which allows it to model particularly well some sequential data? Or is attention
an instance of a larger class of mechanisms that work just as well? For instance, Lee-Thorp
et al. (2022) propose to replace the attention layer by a non-parametrized Fourier layer. This
layer computes the 2D Fourier transform of the sequence of embeddings. The performance trails
not much behind the standard Transformer, and the authors suggest that the “token-mixing”
property of the Fourier layer is enough to obtain good performance. A mathematical analysis
of their results, and of the comparison with standard attention layers, would be of the utmost
interest.

234

Bibliography

M. Ahmed, M. R. Samee, and R. E. Mercer. Improving Tree-LSTM with Tree Attention. In 2019
IEEE 13th International Conference on Semantic Computing, pages 247–254, 2019. (p. 214)

N.-J. Akpinar, B. Kratzwald, and S. Feuerriegel. Sample complexity bounds for recurrent neural
networks with application to combinatorial graph problems. arXiv:1901.10289, 2019. (p. 143)

Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-parameterization.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 242–252, 2019. (p. 18, 80, 178, 181)

M. Anthony and P. L. Bartlett. Neural network learning: Theoretical foundations, volume 9.
Cambridge University Press, 1999. (p. 14, 17)

V. Arnold. Ordinary Differential Equations. Springer Textbook. Springer Berlin Heidelberg,
1992. (p. 114, 132, 184)

D. Arpit, V. Campos, and Y. Bengio. How to initialize your network? Robust initialization for
WeightNorm & ResNets. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, pages
10902–10911. Curran Associates, Inc., 2019. (p. 40, 41, 43, 48)

R. G. Athreya, S. K. Bansal, A.-C. N. Ngomo, and R. Usbeck. Template-based Question
Answering using Recursive Neural Networks. In 2021 IEEE 15th International Conference on
Semantic Computing, pages 195–198, 2021. (p. 214)

F. Bach. Breaking the curse of dimensionality with convex neural networks. Journal of Machine
Learning Research, 18:1–53, 2017. (p. 19)

F. Bach. Effortless optimization through gradient flows, 2020. Blog post. URL: https://franci
sbach.com/gradient-flows/ (version: 2023-06-14). (p. 25)

F. Bach. Learning theory from first principles, 2023. Book draft. URL: https://www.di.ens.f
r/~fbach/ltfp_book.pdf (version: 2023-02-05). (p. 15, 27, 34, 127)

T. Bachlechner, B. Majumder, H. Mao, G. Cottrell, and J. Auley. ReZero is all you need:
Fast convergence at large depth. In C. de Campos and M. Maathuis, editors, Proceedings of
the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, volume 161, pages
1352–1361. PMLR, 2021. (p. 42)

235

https://francisbach.com/gradient-flows/
https://francisbach.com/gradient-flows/
https://www.di.ens.fr/~fbach/ltfp_book.pdf
https://www.di.ens.fr/~fbach/ltfp_book.pdf

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align
and translate. arXiv:1409.0473, 2014. (p. 20)

R. Barboni, G. Peyré, and F.-X. Vialard. On global convergence of ResNets: From finite to infinite
width using linear parameterization. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems, volume 35,
pages 16385–16397. Curran Associates, Inc., 2022. (p. 80, 81)

P. Bartlett, D. Helmbold, and P. Long. Gradient descent with identity initialization efficiently
learns positive definite linear transformations by deep residual networks. In J. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, volume 80 of
Proceedings of Machine Learning Research, pages 521–530. PMLR, 2018. (p. 80)

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and
structural results. Journal of Machine Learning Research, 3:463–482, 2002. (p. 149, 169, 171)

P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 30, pages
6240–6249. Curran Associates, Inc., 2017. (p. 17, 83, 124, 130, 139)

P. L. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian. Nearly-tight VC-dimension and pseudodi-
mension bounds for piecewise linear neural networks. Journal of Machine Learning Research,
20:1–17, 2019. (p. 17, 122)

C. Bayer, P. K. Friz, and N. Tapia. Stability of deep neural networks via discrete rough paths.
SIAM Journal on Mathematics of Data Science, 5:50–76, 2023. (p. 42, 57)

M. Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the
prism of interpolation. Acta Numerica, 30:203–248, 2021. (p. 18)

M. Belkin, S. Ma, and S. Mandal. To understand deep learning we need to understand kernel
learning. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 541–549.
PMLR, 2018. (p. 142)

Y. Bengio, P. Frasconi, and P. Simard. The problem of learning long-term dependencies in
recurrent networks. In 1993 IEEE International Conference on Neural Networks, pages
1183–1188, 1993. (p. 153)

M. Benning, E. Celledoni, M. J. Ehrhardt, B. Owren, and C.-B. Schönlieb. Deep learning as
optimal control problems: Models and numerical methods. Journal of Computational Dynamics,
6:171–198, 2019. (p. 23)

N. Berglund and B. Gentz. Noise-induced phenomena in slow-fast dynamical systems: a sample-
paths approach. Springer Science & Business Media, 2006. (p. 180)

L. Béthune, T. Boissin, M. Serrurier, F. Mamalet, C. Friedrich, and A. G. Sanz. Pay attention
to your loss : understanding misconceptions about lipschitz neural networks. In A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural Information Processing
Systems, volume 35, pages 20077–20091. Curran Associates, Inc., 2022. (p. 124)

236

A. Bietti and J. Mairal. Invariance and stability of deep convolutional representations. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30, pages 6210–6220.
Curran Associates, Inc., 2017. (p. 142, 143)

A. Bietti and J. Mairal. Group invariance, stability to deformations, and complexity of deep
convolutional representations. Journal of Machine Learning Research, 20:1–49, 2019. (p. 142)

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A kernel perspective for regularizing deep neural
networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 664–674. PMLR, 2019. (p. 142, 151, 174)

M. Biloš, J. Sommer, S. S. Rangapuram, T. Januschowski, and S. Günnemann. Neural flows:
Efficient alternative to neural ODEs. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 21325–21337. Curran Associates, Inc., 2021. (p. 123)

K. Border. Miscellaneous notes on optimization theory and related topics, 2015. URL: https:
//healy.econ.ohio-state.edu/kcb/AddedByPJ/Maximization.pdf (version: 2023-02-08).
(p. 182)

V. Borkar. Stochastic approximation with two time scales. Systems & Control Letters, 29:291–294,
1997. (p. 178, 180)

V. Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer, 2009.
(p. 180)

L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM review, 60:223–311, 2018. (p. 178)

E. Boursier, L. Pillaud-Vivien, and N. Flammarion. Gradient flow dynamics of shallow relu
networks for square loss and orthogonal inputs. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 20105–20118. Curran Associates, Inc., 2022. (p. 19, 80)

A. Brock, S. De, and S. Smith. Characterizing signal propagation to close the performance gap in
unnormalized ResNets. In International Conference on Learning Representations, 2021. (p. 40)

A. Brutzkus, A. Globerson, E. Malach, and S. Shalev-Shwartz. SGD learns over-parameterized
networks that provably generalize on linearly separable data. In International Conference on
Learning Representations, 2018. (p. 17)

R. Cao, S. Zhu, C. Yang, C. Liu, R. Ma, Y. Zhao, L. Chen, and K. Yu. Unsupervised dual
paraphrasing for two-stage semantic parsing. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 6806–6817. Association for Computational
Linguistics, 2020. (p. 212)

B. Chang, M. Chen, E. Haber, and E. H. Chi. AntisymmetricRNN: A dynamical system view
on recurrent neural networks. In Proceedings of the 7th International Conference on Learning
Representations, 2019. (p. 23, 42, 142)

K.-T. Chen. Integration of paths–a faithful representation of paths by non-commutative formal
power series. Transactions of the American Mathematical Society, 89:395–407, 1958. (p. 142)

237

https://healy.econ.ohio-state.edu/kcb/AddedByPJ/Maximization.pdf
https://healy.econ.ohio-state.edu/kcb/AddedByPJ/Maximization.pdf

M. Chen, X. Li, and T. Zhao. On generalization bounds of a family of recurrent neural networks.
In S. Chiappa and R. Calandra, editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 1233–1243. PMLR, 2020. (p. 150)

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31, pages
6571–6583. Curran Associates, Inc., 2018a. (p. 22, 23, 41, 42, 51, 78, 79, 81, 122, 125, 142, 153)

X. Chen, C. Liu, and D. Song. Tree-to-tree neural networks for program translation. In S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31, pages 2547–2557. Curran Associates,
Inc., 2018b. (p. 214)

I. Chevyrev and A. Kormilitzin. A primer on the signature method in machine learning.
arXiv:1603.03788, 2016. (p. 145, 146)

L. Chizat and F. Bach. On the global convergence of gradient descent for over-parameterized
models using optimal transport. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31, pages 3036–3046. Curran Associates, Inc., 2018. (p. 18, 178, 181)

L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32, pages 2937–2947. Curran Associates, Inc.,
2019. (p. 19)

K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.
Learning phrase representations using RNN encoder-decoder for statistical machine translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing,
pages 1724–1734. Association for Computational Linguistics, 2014. (p. 142)

Y. Cho and L. Saul. Kernel methods for deep learning. In Y. Bengio, D. Schuurmans, J. Lafferty,
C. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems,
volume 22, pages 342–350. Curran Associates, Inc., 2009. (p. 142)

F. Chollet et al. Keras. https://github.com/fchollet/keras, 2015. (p. 45)

P. Christmann, R. S. Roy, A. Abujabal, J. Singh, and G. Weikum. Look before you Hop:
Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion.
In Proceedings of the 28th ACM International Conference on Information and Knowledge
Management, pages 729–738, 2019. (p. 30, 31, 213, 220, 221, 228)

A.-S. Cohen, R. Cont, A. Rossier, and R. Xu. Scaling properties of deep residual networks. In
M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 2039–2048. PMLR,
2021. (p. 42, 43, 52, 57, 80, 89, 132)

W. W. Cohen, M. Siegler, and A. Hofer. Neural Query Language: A Knowledge Base Query
Language for Tensorflow. arXiv:1905.06209, 2019. (p. 213)

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural language
processing (almost) from scratch. Journal of Machine Learning Research, 12:2493–2537, 2011.
(p. 142)

238

https://github.com/fchollet/keras

R. Cont, A. Rossier, and R. Xu. Convergence and implicit regularization properties of gradient
descent for deep residual networks. arXiv:2204.07261, 2022. (p. 80, 89)

C. Cuchiero, M. Larsson, and J. Teichmann. Deep neural networks, generic universal interpolation,
and controlled odes. SIAM Journal on Mathematics of Data Science, 2:901–919, 2020. (p. 23)

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 2:303–314, 1989. (p. 17)

S. De and S. Smith. Batch normalization biases residual blocks towards the identity function
in deep networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 19964–19975. Curran
Associates, Inc., 2020. (p. 40, 41, 42)

E. De Brouwer, J. Simm, A. Arany, and Y. Moreau. GRU-ODE-Bayes: Continuous modeling of
sporadically-observed time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32, pages 7379–7390. Curran Associates, Inc., 2019. (p. 142)

L. Debnath and D. Bhatta. Integral Transforms and Their Applications. CRC press, Boca Raton,
third edition, 2014. (p. 108)

L. Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29:141–142, 2012. (p. 57)

P. Deuflhard and S. Röblitz. Parameter identification in ODE models. In A Guide to Numerical
Modelling in Systems Biology, pages 89–138. Springer International Publishing, 2015. (p. 127)

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv:1810.04805, 2018. (p. 218)

R. DeVore, B. Hanin, and G. Petrova. Neural network approximation. Acta Numerica, 30:
327–444, 2021. (p. 17)

C. Dong, L. Liu, Z. Li, and J. Shang. Towards adaptive residual network training: A neural-
ODE perspective. In H. D. III and A. Singh, editors, Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research,
pages 2616–2626. PMLR, 2020. (p. 22, 78)

L. Dong and M. Lapata. Language to logical form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, pages 33–43. Association
for Computational Linguistics, 2016. (p. 212, 213)

L. Dong and M. Lapata. Coarse-to-fine decoding for neural semantic parsing. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics, pages 731–742.
Association for Computational Linguistics, 2018. (p. 212, 213)

S. S. Dragomir. Some Gronwall Type Inequalities and Applications. Nova Science Publishers,
2003. (p. 93)

S. Du, J. Lee, H. Li, L. Wang, and X. Zhai. Gradient descent finds global minima of deep neural
networks. In Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages 1675–1685, 2019. (p. 18, 178, 181)

239

E. Dupont, A. Doucet, and Y. W. Teh. Augmented neural odes. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural In-
formation Processing Systems, volume 32, pages 3140–3150. Curran Associates, Inc., 2019.
(p. 81)

W. E. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5:1–11, 2017. (p. 23, 122)

W. E, J. Han, and Q. Li. A mean-field optimal control formulation of deep learning. Research in
the Mathematical Sciences, 6:10, 2019. (p. 22, 23, 41, 42, 78)

N. B. Erichson, O. Azencot, A. Queiruga, L. Hodgkinson, and M. W. Mahoney. Lipschitz
recurrent neural networks. In International Conference on Learning Representations, 2021.
(p. 142)

A. Fermanian. Embedding and learning with signatures. Computational Statistics & Data
Analysis, 157:107148, 2021. (p. 142, 146)

A. Fermanian, P. Marion, J.-P. Vert, and G. Biau. Framing RNN as a kernel method: A neural
ODE approach. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 3121–3134.
Curran Associates, Inc., 2021. (p. 9)

A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Springer, Dordrecht,
1988. (p. 115)

F. Fleuret. The Little Book of Deep Learning. Université de Genève, 2023. (p. 14)

S. Frei, Y. Cao, and Q. Gu. Algorithm-dependent generalization bounds for overparameterized
deep residual networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, pages
14797–14807. Curran Associates, Inc., 2019. (p. 80)

P. Friz and N. Victoir. Euler estimates for rough differential equations. Journal of Differential
Equations, 244:388–412, 2008. (p. 147)

P. K. Friz and N. B. Victoir. Multidimensional Stochastic Processes as Rough Paths: Theory
and Applications, volume 120 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, 2010. (p. 142, 145, 151)

J. Gao, J. Lanchantin, M. L. Soffa, and Y. Qi. Black-box generation of adversarial text sequences
to evade deep learning classifiers. In 2018 IEEE Security and Privacy Workshops, pages 50–56,
2018. (p. 151)

B. Geshkovski, C. Letrouit, Y. Polyanskiy, and P. Rigollet. The emergence of clusters in
self-attention dynamics. arXiv:2305.05465, 2023. (p. 86)

P. Gierjatowicz, M. Sabate-Vidales, D. Šiška, L. Szpruch, and Z. Zurič. Robust pricing and
hedging via neural sdes. arXiv:2007.04154, 2020. (p. 122)

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Y. Teh and M. Titterington, editors, Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine Learning
Research, pages 249–256. PMLR, 2010. (p. 45, 78)

240

S. Goel, A. Gollakota, Z. Jin, S. Karmalkar, and A. Klivans. Superpolynomial lower bounds
for learning one-layer neural networks using gradient descent. In H. Daumé III and A. Singh,
editors, Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 3587–3596. PMLR, 2020. (p. 113)

S. Goldt, M. Advani, A. Saxe, F. Krzakala, and L. Zdeborová. Dynamics of stochastic gradient
descent for two-layer neural networks in the teacher-student setup. Journal of Statistical
Mechanics: Theory and Experiment, 2020:124010, 2020. (p. 181)

N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks.
In S. Bubeck, V. Perchet, and P. Rigollet, editors, Proceedings of the 31st Conference On
Learning Theory, volume 75 of Proceedings of Machine Learning Research. PMLR, 2018. (p. 124,
130, 131)

A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse. The reversible residual network: Backpropa-
gation without storing activations. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. (p. 79)

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. (p. 14, 20, 44, 81,
82, 177)

L.-A. Gottlieb, A. Kontorovich, and R. Krauthgamer. Efficient regression in metric spaces via
approximate lipschitz extension. IEEE Transactions on Information Theory, 63:4838–4849,
2017. (p. 126)

W. Grathwohl, R. T. Q. Chen, J. Bettencourt, and D. Duvenaud. Scalable reversible genera-
tive models with free-form continuous dynamics. In International Conference on Learning
Representations, 2019. (p. 23, 42)

A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural
networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 6645–6649, 2013. (p. 142)

D. Guo, D. Tang, N. Duan, M. Zhou, and J. Yin. Dialog-to-action: Conversational question
answering over a large-scale knowledge base. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31, pages 2942–2951. Curran Associates, Inc., 2018. (p. 212, 213, 214, 216,
221, 226, 227)

D. Guo, D. Tang, N. Duan, M. Zhou, and J. Yin. Coupling retrieval and meta-learning for context-
dependent semantic parsing. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 855–866. Association for Computational Linguistics, 2019a.
(p. 213, 221)

J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu, and D. Zhang. Towards complex text-to-SQL
in cross-domain database with intermediate representation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, pages 4524–4535. Association for
Computational Linguistics, 2019b. (p. 213)

F. Götze and J. Jalowy. Rate of convergence to the circular law via smoothing inequalities for
log-potentials. Random Matrices: Theory and Applications, 10:2150026, 2021. (p. 54)

241

E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse problems, 34:
014004, 2017. (p. 22, 23, 78, 122)

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30, pages 1024–1034.
Curran Associates, Inc., 2017. (p. 214)

B. Hanin and D. Rolnick. How to start training: The effect of initialization and architecture.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31, pages 569–579. Curran
Associates, Inc., 2018. (p. 41, 42)

J. Hanson and M. Raginsky. Fitting an immersed submanifold to data via sussmann’s orbit
theorem. In 2022 IEEE 61st Conference on Decision and Control, pages 5323–5328, 2022.
(p. 79)

J. Harer, C. Reale, and P. Chin. Tree-Transformer: A Transformer-Based Method for Correction
of Tree-Structured Data. arXiv:1908.00449, 2019. (p. 214)

S. Hayou. On the infinite-depth limit of finite-width neural networks. Transactions on Machine
Learning Research, 2023. (p. 80)

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on ImageNet classification. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1026–1034. IEEE Computer Society, 2015. (p. 40, 45, 78)

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016a.
(p. 20, 22, 40, 43, 78, 119, 122)

K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In B. Leibe,
J. Matas, N. Sebe, and M. Welling, editors, Computer Vision – ECCV 2016, pages 630–645.
Springer International Publishing, 2016b. (p. 40, 81, 125)

D. Hendrycks and K. Gimpel. Gaussian Error Linear Units (GELUs). arXiv:1606.08415, 2016.
(p. 86)

C. Herrera, F. Krach, and J. Teichmann. Theoretical guarantees for learning conditional
expectation using controlled ODE-RNN. arXiv:2006.04727, 2020. (p. 142)

J. Herzig, P. K. Nowak, T. Müller, F. Piccinno, and J. Eisenschlos. TaPas: Weakly supervised
table parsing via pre-training. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4320–4333. Association for Computational Linguistics,
2020. (p. 214)

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs trained by a two
time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 30, pages 6626–6637. Curran Associates, Inc.,
2017. (p. 180)

242

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29:
82–97, 2012a. (p. 142)

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving
neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012b.
(p. 233)

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9:1735–1780,
1997. (p. 142, 153)

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-timescale stochastic algorithm framework for
bilevel optimization: Complexity analysis and application to actor-critic. SIAM Journal on
Optimization, 33:147–180, 2023. (p. 180)

J. Howard and S. Ruder. Universal language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pages
328–339, 2018. (p. 181)

C.-W. Huang, J. H. Lim, and A. C. Courville. A variational perspective on diffusion-based
generative models and score matching. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang,
and J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 22863–22876. Curran Associates, Inc., 2021. (p. 123)

W. Hwang, J. Yim, S. Park, and M. Seo. A Comprehensive Exploration on WikiSQL with
Table-Aware Word Contextualization. arXiv:1902.01069, 2019. (p. 213)

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In F. Bach and D. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 448–456. PMLR, 2015. (p. 40)

A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31, pages
8580–8589. Curran Associates, Inc., 2018. (p. 18, 142, 178, 181)

S. Jastrzkebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and A. Storkey. Three
factors influencing minima in SGD. arXiv:1711.04623, 2017. (p. 41)

R. Jia and P. Liang. Data recombination for neural semantic parsing. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics, pages 12–22. Association for
Computational Linguistics, 2016. (p. 212)

J. Kelly, J. Bettencourt, M. J. Johnson, and D. K. Duvenaud. Learning differential equations
that are easy to solve. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 4370–4380.
Curran Associates, Inc., 2020. (p. 131, 174)

P. Kidger. On Neural Ordinary Differential Equations. PhD thesis, 2022. (p. 22, 23, 78)

P. Kidger and T. Lyons. Signatory: Differentiable computations of the signature and logsignature
transforms, on both CPU and GPU. In International Conference on Learning Representations,
2021. (p. 146, 174)

243

P. Kidger, P. Bonnier, I. Perez Arribas, C. Salvi, and T. Lyons. Deep signature transforms. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 32, pages 3099–3109. Curran
Associates, Inc., 2019. (p. 142)

P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for irregular
time series. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 6696–6707. Curran
Associates, Inc., 2020. (p. 23, 122, 142, 144)

P. Kidger, J. Foster, X. C. Li, and T. Lyons. Efficient and accurate gradients for neural sdes. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in
Neural Information Processing Systems, volume 34, pages 18747–18761. Curran Associates,
Inc., 2021. (p. 23, 42)

H. Kim, G. Papamakarios, and A. Mnih. The lipschitz constant of self-attention. In M. Meila
and T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pages 5562–5571. PMLR, 2021.
(p. 86)

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proceedings of the
3rd International Conference on Learning Representations, 2015. (p. 57, 74, 140, 174, 227)

T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional Networks.
In Proceedings of the 5th International Conference on Learning Representations, 2017. (p. 214)

F. J. Király and H. Oberhauser. Kernels for sequentially ordered data. Journal of Machine
Learning Research, 20:1–45, 2019. (p. 142, 146)

Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jürgen Schmidhuber. The Sacred
Infrastructure for Computational Research. In Katy Huff, David Lippa, Dillon Niederhut, and
M. Pacer, editors, Proceedings of the 16th Python in Science Conference, pages 49 – 56, 2017.
(p. 174)

P. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer,
Berlin, 1992. (p. 52, 66)

C.-Y. Ko, Z. Lyu, L. Weng, L. Daniel, N. Wong, and D. Lin. POPQORN: Quantifying robustness
of recurrent neural networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 3468–3477. PMLR, 2019. (p. 151)

Y. Ko, D. Lee, and S.-W. Kim. Not all layers are equal: A layer-wise adaptive approach toward
large-scale DNN training. In Proceedings of the ACM Web Conference 2022, page 1851–1859,
2022. (p. 181)

J. F. Kolen and S. C. Kremer. Gradient Flow in Recurrent Nets: The Difficulty of Learning
LongTerm Dependencies, pages 237–243. John Wiley & Sons, 2001. (p. 20)

A. Kolmogorov and V. Tikhomirov. ε-entropy and ε-capacity of sets in functional spaces. Uspekhi
Mat. Nauk, 14:3–86, 1959. (p. 126)

A. Kontorovich. Concentration in unbounded metric spaces and algorithmic stability. In E. Xing
and T. Jebara, editors, Proceedings of the 31st International Conference on Machine Learning,
volume 32 of Proceedings of Machine Learning Research, pages 28–36. PMLR, 2014. (p. 71, 72)

244

A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University
of Toronto, 2009. (p. 57, 87)

B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection.
The Annals of Statistics, 28:1302–1338, 2000. (p. 116)

Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller. Efficient BackProp, pages 9–50. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1998. (p. 78)

J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon. FNet: Mixing tokens with Fourier
transforms. In Proceedings of the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 4296–4313.
Association for Computational Linguistics, 2022. (p. 234)

D. Levin, T. Lyons, and H. Ni. Learning from the past, predicting the statistics for the future,
learning an evolving system. arXiv:1309.0260v6, 2013. (p. 27, 35, 142, 145, 146)

F.-F. Li, J. Wu, and R. Gao. Deep learning for computer vision course, 2022. URL: https:
//cs231n.github.io/transfer-learning/ (version: 2023-02-02). (p. 181)

Q. Li, L. Chen, C. Tai, and E. Weinan. Maximum principle based algorithms for deep learning.
Journal of Machine Learning Research, 18:5998–6026, 2017. (p. 23)

S. Li, L. Wu, S. Feng, F. Xu, F. Xu, and S. Zhong. Graph-to-tree neural networks for learning
structured input-output translation with applications to semantic parsing and math word
problem. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages
2841–2852. Association for Computational Linguistics, 2020a. (p. 214)

X. Li, T.-K. L. Wong, R. Chen, and D. Duvenaud. Scalable gradients and variational inference
for stochastic differential equations. In C. Zhang, F. Ruiz, T. Bui, A. Dieng, and D. Liang,
editors, Proceedings of the 2nd Symposium on Advances in Approximate Bayesian Inference,
volume 118, pages 1–28. PMLR, 2020b. (p. 52)

Z. Li, N. B. Kovachki, K. Azizzadenesheli, B. liu, K. Bhattacharya, A. Stuart, and A. Anandkumar.
Fourier neural operator for parametric partial differential equations. In International Conference
on Learning Representations, 2021a. (p. 123)

Z. Li, Y. Luo, and K. Lyu. Towards resolving the implicit bias of gradient descent for matrix fac-
torization: Greedy low-rank learning. In International Conference on Learning Representations,
2021b. (p. 80)

C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao. Neural symbolic machines: Learning
semantic parsers on Freebase with weak supervision. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, pages 23–33. Association for Computational
Linguistics, 2017. (p. 213)

S. Liao, T. Lyons, W. Yang, and H. Ni. Learning stochastic differential equations using RNN
with log signature features. arXiv:1908.08286, 2019. (p. 142)

S. H. Lim. Understanding recurrent neural networks using nonequilibrium response theory.
Journal of Machine Learning Research, 22:1–48, 2021. (p. 142)

S. H. Lim, N. B. Erichson, L. Hodgkinson, and M. W. Mahoney. Noisy recurrent neural networks.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan, editors, Advances
in Neural Information Processing Systems, volume 34, pages 5124–5137. Curran Associates,
Inc., 2021. (p. 124)

245

https://cs231n.github.io/transfer-learning/
https://cs231n.github.io/transfer-learning/

C. Liu, L. Zhu, and M. Belkin. Loss landscapes and optimization in over-parameterized non-linear
systems and neural networks. Applied and Computational Harmonic Analysis, 59:85–116, 2022.
Special Issue on Harmonic Analysis and Machine Learning. (p. 26, 34, 79, 80)

S. Loyka. On singular value inequalities for the sum of two matrices. arXiv:1507.06630, 2015.
(p. 115)

J. Lu, K. Deng, X. Zhang, G. Liu, and Y. Guan. Neural-ODE for pharmacokinetics modeling
and its advantage to alternative machine learning models in predicting new dosing regimens.
iScience, 24:102804, 2021. (p. 122)

Y. Lu, A. Zhong, Q. Li, and B. Dong. Beyond finite layer neural networks: Bridging deep
architectures and numerical differential equations. In J. Dy and A. Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 3276–3285. PMLR, 10–15 Jul 2018. (p. 122)

Y. Lu, Z. Li, D. He, Z. Sun, B. Dong, T. Qin, L. Wang, and T.-Y. Liu. Understanding and
improving transformer from a multi-particle dynamic system point of view. arXiv:1906.02762,
2019. (p. 86)

J. Luk. Notes on existence and uniqueness theorems for ODEs, 2017. URL: http://web.stan
ford.edu/~jluk/math63CMspring17/Existence.170408.pdf (version: 2023-01-19). (p. 114,
132, 184)

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based neural machine
translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1412–1421. Association for Computational Linguistics, 2015. (p. 20)

T. Lyons. Rough paths, signatures and the modelling of functions on streams. arXiv:1405.4537,
2014. (p. 161)

T. J. Lyons, M. J. Caruana, and T. Lévy. Differential Equations Driven by Rough Paths, volume
1908 of Lecture Notes in Mathematics. Springer, Berlin, 2007. (p. 28, 142, 145, 154, 158)

K. Lyu and J. Li. Gradient descent maximizes the margin of homogeneous neural networks. In
International Conference on Learning Representations, 2020. (p. 80)

L. E. MacDonald, H. Saratchandran, J. Valmadre, and S. Lucey. A global analysis of global
optimisation. arXiv:2210.05371, 2022. (p. 80)

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations, 2018.
(p. 152)

P. Marion. Generalization bounds for neural ordinary differential equations and deep residual
networks. In A. Oh, T. Naumann, A. Globerson, M. Hardt, S. Levine, and K. Saenko, editors,
Advances in Neural Information Processing Systems, volume 36. Curran Associates, Inc., 2023.
(p. 9)

P. Marion and R. Berthier. Leveraging the two-timescale regime to demonstrate convergence of
neural networks. In A. Oh, T. Naumann, A. Globerson, M. Hardt, S. Levine, and K. Saenko,
editors, Advances in Neural Information Processing Systems, volume 36. Curran Associates,
Inc., 2023. (p. 9)

246

http://web.stanford.edu/~jluk/math63CMspring17/Existence.170408.pdf
http://web.stanford.edu/~jluk/math63CMspring17/Existence.170408.pdf

P. Marion, P. Nowak, and F. Piccinno. Structured context and high-coverage grammar for
conversational question answering over knowledge graphs. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pages 8813–8829. Association for
Computational Linguistics, 2021. (p. 9)

P. Marion, A. Fermanian, G. Biau, and J.-P. Vert. Scaling ResNets in the large-depth regime.
arXiv:2206.06929, 2022. (p. 9)

P. Marion, Y.-H. Wu, M. E. Sander, and B. Gérard. Implicit regularization of deep residual
networks towards neural odes. arXiv:2309.01213, 2023. (p. 9)

S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama. Dissecting neural ODEs. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 3952–3963. Curran Associates, Inc., 2020.
(p. 22, 78, 122, 125)

S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences, 115:7665–7671, 2018. (p. 18, 178,
181)

T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. Recurrent neural network
based language model. In Proceedings of the 11th Annual Conference of the International
Speech Communication Association, volume 2, pages 1045–1048, 2010. (p. 142)

A. A. Minai and R. D. Williams. On the derivatives of the sigmoid. Neural Networks, 6:845–853,
1993. (p. 158)

J. Morrill, C. Salvi, P. Kidger, and J. Foster. Neural rough differential equations for long time
series. In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages 7829–7838.
PMLR, 18–24 Jul 2021. (p. 142)

J. H. Morrill, A. Kormilitzin, A. J. Nevado-Holgado, S. Swaminathan, S. D. Howison, and T. J.
Lyons. Utilization of the signature method to identify the early onset of sepsis from multivariate
physiological time series in critical care monitoring. Critical Care Medicine, 48:976–981, 2020.
(p. 142)

V. Nagarajan and J. Z. Kolter. Uniform convergence may be unable to explain generalization
in deep learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, pages
11615–11626. Curran Associates, Inc., 2019. (p. 18)

B. Neyshabur, R. Tomioka, and N. Srebro. Norm-based capacity control in neural networks. In
P. Grünwald, E. Hazan, and S. Kale, editors, Proceedings of The 28th Conference on Learning
Theory, volume 40 of Proceedings of Machine Learning Research, pages 1376–1401. PMLR,
2015a. (p. 131)

B. Neyshabur, R. Tomioka, and N. Srebro. In search of the real inductive bias: On the role of
implicit regularization in deep learning. arXiv:1412.6614, 2015b. (p. 79, 80)

B. Neyshabur, S. Bhojanapalli, and N. Srebro. A PAC-bayesian approach to spectrally-normalized
margin bounds for neural networks. In International Conference on Learning Representations,
2018. (p. 124)

247

Q. N. Nguyen and M. Mondelli. Global convergence of deep networks with one wide layer followed
by pyramidal topology. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 11961–11972.
Curran Associates, Inc., 2020. (p. 80, 108, 113, 117)

C. Pabbaraju, E. Winston, and J. Z. Kolter. Estimating lipschitz constants of monotone deep
equilibrium models. In International Conference on Learning Representations, 2021. (p. 124)

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32, pages
8026–8037. Curran Associates, Inc., 2019. (p. 118, 140, 173, 174)

E. Pauwels. Statistics, Optimization and Algorithms in High Dimension. Lecture Notes, Toulouse
3 Paul Sabatier University, 2020. (p. 70, 72)

S. Peluchetti and S. Favaro. Infinitely deep neural networks as diffusion processes. In S. Chiappa
and R. Calandra, editors, Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics, volume 108 of Proceedings of Machine Learning Research,
pages 1126–1136. PMLR, 2020. (p. 52)

I. Perez Arribas. Derivatives pricing using signature payoffs. arXiv:1809.09466, 2018. (p. 142)

S. Pesme, L. Pillaud-Vivien, and N. Flammarion. Implicit bias of sgd for diagonal linear networks:
a provable benefit of stochasticity. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and
J. W. Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
29218–29230. Curran Associates, Inc., 2021. (p. 233)

M. Phuong and M. Hutter. Formal algorithms for transformers. arXiv:2207.09238, 2022. (p. 21,
219)

J. Plepi, E. Kacupaj, K. Singh, H. Thakkar, and J. Lehmann. Context transformer with stacked
pointer networks for conversational question answering over knowledge graphs. In R. Verborgh,
K. Hose, H. Paulheim, P.-A. Champin, M. Maleshkova, O. Corcho, P. Ristoski, and M. Alam,
editors, The Semantic Web, pages 356–371. Springer International Publishing, 2021. (p. 213,
221, 229)

Z. Qian, W. Zame, L. Fleuren, P. Elbers, and M. van der Schaar. Integrating expert ODEs
into neural ODEs: Pharmacology and disease progression. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P. S. Liang, and J. W. Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 11364–11383. Curran Associates, Inc., 2021. (p. 122)

A. F. Queiruga, N. B. Erichson, D. Taylor, and M. W. Mahoney. Continuous-in-depth neural
networks. arXiv:2008.02389, 2020. (p. 122)

A. F. Queiruga, N. B. Erichson, L. Hodgkinson, and M. W. Mahoney. Stateful ODE-nets using
basis function expansions. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 21770–21781.
Curran Associates, Inc., 2021. (p. 79, 122)

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019. (p. 123)

248

N. Razin and N. Cohen. Implicit regularization in deep learning may not be explainable by
norms. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 21174–21187. Curran Associates,
Inc., 2020. (p. 18)

J. F. Reizenstein and B. Graham. Algorithm 1004: The iisignature library: Efficient calculation
of iterated-integral signatures and log signatures. ACM Transactions on Mathematical Software,
46:8, 2020. (p. 146)

P. Rigollet and J.-C. Hütter. High dimensional statistics, 2017. Lecture notes. URL: https:
//math.mit.edu/~rigollet/PDFs/RigNotes17.pdf (version: 2019-11-05). (p. 136)

J. Riordan. An Introduction to Combinatorial Analysis. John Wiley & Sons, New York, 1958.
(p. 158)

Y. Ro and J. Y. Choi. AutoLR: Layer-wise pruning and auto-tuning of learning rates in fine-
tuning of deep networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35:
2486–2494, 2021. (p. 181)

G. Rotskoff and E. Vanden-Eijnden. Trainability and accuracy of neural networks: An interacting
particle system approach. arXiv:1805.00915, 2018. (p. 18, 178, 181)

Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32,
pages 5320–5330. Curran Associates, Inc., 2019. (p. 23, 142)

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323:533–536, 1986. (p. 20)

D. Saad and S. Solla. On-line learning in soft committee machines. Physical Review E, 52:
4225–4243, 1995. (p. 181)

I. Safran, G. Vardi, and J. D. Lee. On the effective number of linear regions in shallow univariate
relu networks: Convergence guarantees and implicit bias. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems,
volume 35, pages 32667–32679. Curran Associates, Inc., 2022. (p. 181)

A. Saha, V. Pahuja, M. M. Khapra, K. Sankaranarayanan, and S. Chandar. Complex Sequential
Question Answering: Towards Learning to Converse Over Linked Question Answer Pairs
with a Knowledge Graph. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018. (p. 30, 212, 213, 220, 221, 224)

A. Saha, G. A. Ansari, A. Laddha, K. Sankaranarayanan, and S. Chakrabarti. Complex program
induction for querying knowledge bases in the absence of gold programs. Transactions of the
Association for Computational Linguistics, 7:185–200, 2019. (p. 213)

C. Salvi, T. Cass, J. Foster, T. Lyons, and W. Yang. The signature kernel is the solution of a
goursat pde. SIAM Journal on Mathematics of Data Science, 3:873–899, 2021. (p. 146)

M. E. Sander, P. Ablin, M. Blondel, and G. Peyré. Sinkformers: Transformers with doubly
stochastic attention. In Proceedings of the Twenty Fifth International Conference on Artificial
Intelligence and Statistics, volume 151 of Proceedings of Machine Learning Research, pages
3515–3530. PMLR, 2022a. (p. 86)

249

https://math.mit.edu/~rigollet/PDFs/RigNotes17.pdf
https://math.mit.edu/~rigollet/PDFs/RigNotes17.pdf

M. E. Sander, P. Ablin, and G. Peyré. Do residual neural networks discretize neural ordinary
differential equations? In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 35, pages 36520–36532. Curran Associates, Inc., 2022b. (p. 23, 78, 79, 80, 122, 128,
129, 140)

M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling. Modeling
Relational Data with Graph Convolutional Networks. In The Semantic Web, Proceedings of
the 15th International Conference, ESWC 2018, pages 593–607. Springer, 2018. (p. 214)

B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization,
optimization, and beyond. MIT press, Cambridge, Massachusetts, 2002. (p. 146)

J. Shao, K. Hu, C. Wang, X. Xue, and B. Raj. Is normalization indispensable for training deep
neural network? In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 13434–13444. Curran
Associates, Inc., 2020. (p. 40, 42)

P. Shaw, P. Massey, A. Chen, F. Piccinno, and Y. Altun. Generating logical forms from graph
representations of text and entities. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 95–106. Association for Computational Linguistics, 2019.
(p. 214)

T. Shen, X. Geng, T. Qin, D. Guo, D. Tang, N. Duan, G. Long, and D. Jiang. Multi-task
learning for conversational question answering over a large-scale knowledge base. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, pages 2442–2451. Association
for Computational Linguistics, 2019. (p. 212, 213, 216, 221, 223, 226, 228)

T. Shen, X. Geng, G. Long, J. Jiang, C. Zhang, and D. Jiang. Effective search of logical forms
for weakly supervised knowledge-based question answering. In C. Bessiere, editor, Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, pages 2227–2233.
International Joint Conferences on Artificial Intelligence Organization, 2020. (p. 212, 213, 216,
221)

V. Shiv and C. Quirk. Novel positional encodings to enable tree-based transformers. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32, pages 12081–12091. Curran Associates,
Inc., 2019. (p. 214)

B. Singh, S. De, Y. Zhang, T. Goldstein, and G. Taylor. Layer-specific adaptive learning rates
for deep networks. In 2015 IEEE 14th International Conference on Machine Learning and
Applications, pages 364–368, 2015. (p. 181)

J. Sirignano and K. Spiliopoulos. Mean field analysis of neural networks: a central limit theorem.
Stochastic Processes and their Applications, 130:1820–1852, 2020. (p. 18, 178, 181)

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021. (p. 23, 234)

C. Szepesvári. Algorithms for reinforcement learning. Springer, 2010. (p. 180)

250

K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from tree-structured
long short-term memory networks. In Proceedings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing, pages 1556–1566. Association for Computational Linguistics, 2015. (p. 214)

T. Teshima, K. Tojo, M. Ikeda, I. Ishikawa, and K. Oono. Universal approximation property of
neural ordinary differential equations. arXiv:2012.02414, 2020. (p. 78)

M. Thorpe and Y. van Gennip. Deep limits of residual neural networks. Research in the
Mathematical Sciences, 10:6, 2022. (p. 41, 52, 80, 122)

P. Tong, Q. Zhang, and J. Yao. Leveraging Domain Context for Question Answering Over
Knowledge Graph. Data Science and Engineering, 4:323–335, 2019. (p. 213, 214)

C. Toth and H. Oberhauser. Bayesian learning from sequential data using Gaussian processes
with signature covariances. In H. Daumé III and A. Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 9548–9560. PMLR, 2020. (p. 142)

J. A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational
Mathematics, 12:389–434, 2012. (p. 117)

Z. Tu, F. He, and D. Tao. Understanding generalization in recurrent neural networks. In
International Conference on Learning Representations, 2019. (p. 143, 150)

B. Tzen and M. Raginsky. Neural stochastic differential equations: Deep latent gaussian models
in the diffusion limit. arXiv:1905.09883, 2019. (p. 122)

S. Vakulenko, J. Fernández, A. Polleres, M. de Rijke, and M. Cochez. Message passing for complex
question answering over knowledge graphs. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 1431–1440. ACM, 2019. (p. 213)

R. van Handel. Probability in High Dimension. APC 550 Lecture Notes, Princeton University,
2016. (p. 44)

G. Vardi. On the implicit bias in deep-learning algorithms. Communications of the ACM, 66:
86–93, 2023. (p. 19, 79)

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 30, pages 5998–6008. Curran Associates, Inc., 2017. (p. 20, 40, 78, 216,
218, 219)

R. Veiga, L. Stephan, B. Loureiro, F. Krzakala, and L. Zdeborová. Phase diagram of stochastic
gradient descent in high-dimensional two-layer neural networks. In Advances in Neural
Information Processing Systems, volume 35, 2022. (p. 181)

R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Science.
Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
2018. (p. 108)

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,
P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,

251

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. (p. 174)

M. J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
University Press, 2019. (p. 135)

B. Wang, M. Liakata, H. Ni, T. Lyons, A. J. Nevado-Holgado, and K. Saunders. A path signature
approach for speech emotion recognition. In Proceedings of Interspeech 2019, pages 1661–1665,
2019. (p. 142)

H. Wang, S. Ma, L. Dong, S. Huang, D. Zhang, and F. Wei. Deepnet: Scaling transformers to
1,000 layers. arXiv:2203.00555, 2022. (p. 22, 40, 44, 78)

Y.-J. Wang and C.-T. Lin. Runge-Kutta neural network for identification of dynamical systems
in high accuracy. IEEE Transactions on Neural Networks, 9:294–307, 1998. (p. 153)

B. Woodworth, S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry, and
N. Srebro. Kernel and rich regimes in overparametrized models. In J. Abernethy and S. Agarwal,
editors, Proceedings of Thirty Third Conference on Learning Theory, volume 125 of Proceedings
of Machine Learning Research, pages 3635–3673. PMLR, 2020. (p. 19)

W. Woof and K. Chen. A Framework for End-to-End Learning on Semantic Tree-Structured
Data. arXiv:2002.05707, 2020. (p. 214)

L. Wu, Q. Wang, and C. Ma. Global convergence of gradient descent for deep linear residual
networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32, pages 13389–13398.
Curran Associates, Inc., 2019. (p. 80)

K. Xu, L. Wu, Z. Wang, M. Yu, L. Chen, and V. Sheinin. Exploiting rich syntactic information for
semantic parsing with graph-to-sequence model. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pages 918–924. Association for Computational
Linguistics, 2018. (p. 214)

G. Yang and S. Schoenholz. Mean field residual networks: On the edge of chaos. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30, pages 2865–2873. Curran
Associates, Inc., 2017. (p. 40, 41, 44, 49, 50, 57)

W. Yang, L. Jin, and M. Liu. DeepWriterID: An end-to-end online text-independent writer
identification system. IEEE Intelligent Systems, 31:45–53, 2016. (p. 142)

W. Yang, T. Lyons, H. Ni, C. Schmid, and L. Jin. Developing the path signature methodology
and its application to landmark- based human action recognition. In Stochastic Analysis,
Filtering, and Stochastic Optimization: A Commemorative Volume to Honor Mark H. A.
Davis’s Contributions, pages 431–464. Springer International Publishing, 2022. (p. 142)

Y. Yin, I. Ayed, E. de Bézenac, N. Baskiotis, and P. Gallinari. LEADS: Learning dynamical
systems that generalize across environments. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P. S. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 7561–7573. Curran Associates, Inc., 2021. (p. 124)

252

Y. You, I. Gitman, and B. Ginsburg. Scaling SGD batch size to 32k for imagenet training.
arXiv:1708.03888, 2017. (p. 181)

D. Yu, H. Miao, and H. Wu. Neural generalized ordinary differential equations with layer-varying
parameters. arXiv:2209.10633, 2022. (p. 123)

B. Yue, J. Fu, and J. Liang. Residual recurrent neural networks for learning sequential represen-
tations. Information, 9:56, 2018. (p. 20, 143)

H. Zafar, G. Napolitano, and J. Lehmann. Deep Query Ranking for Question Answering
over Knowledge Bases. In U. Brefeld, E. Curry, E. Daly, B. MacNamee, A. Marascu,
F. Pinelli, M. Berlingerio, and N. Hurley, editors, Machine Learning and Knowledge Dis-
covery in Databases, Proceedings of the European Conference, Lecture Notes in Computer
Science, pages 635–638. Springer International Publishing, 2019. (p. 214)

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning (still)
requires rethinking generalization. Communications of the ACM, 64:107–115, 2021. (p. 17)

H. Zhang, Y. Dauphin, and T. Ma. Fixup initialization: Residual learning without normalization.
In International Conference on Learning Representations, 2019a. (p. 42, 81)

H. Zhang, D. Yu, M. Yi, W. Chen, and T.-Y. Liu. Convergence theory of learning over-
parameterized ResNet: A full characterization. arXiv:1903.07120, 2019b. (p. 40, 42, 43)

H. Zhang, X. Gao, J. Unterman, and T. Arodz. Approximation capabilities of neural ODEs
and invertible residual networks. In H. D. III and A. Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pages 11086–11095. PMLR, 2020a. (p. 78)

J. Zhang, Q. Lei, and I. Dhillon. Stabilizing gradients for deep neural networks via efficient
SVD parameterization. In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 5806–5814. PMLR, 2018. (p. 143, 150)

J. Zhang, B. Han, L. Wynter, B. Low, and M. Kankanhalli. Towards robust ResNet: A small
step but a giant leap. In Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, pages 4285–4291. International Joint Conferences on Artificial Intelligence
Organization, 2019c. (p. 43)

J. Zhang, H. Zhang, C. Xia, and L. Sun. Graph-Bert: Only Attention is Needed for Learning
Graph Representations. arXiv:2001.05140, 2020b. (p. 213)

F. Zhou, L. Li, K. Zhang, and G. Trajcevski. Urban flow prediction with spatial–temporal neural
ODEs. Transportation Research Part C: Emerging Technologies, 124:102912, 2021. (p. 122)

D. Zou, Y. Cao, D. Zhou, and Q. Gu. Gradient descent optimizes over-parameterized deep ReLU
networks. Machine Learning, 109:467–492, 2020a. (p. 18, 178, 181)

D. Zou, P. M. Long, and Q. Gu. On the global convergence of training deep linear resnets. In
International Conference on Learning Representations, 2020b. (p. 80)

253

	Contents
	Introduction
	Mathematics of deep learning
	Why study the mathematics of deep learning?
	What are the main mathematical challenges of deep learning?
	The classical waltz (uniform law of large numbers)
	The modern tango (large number of neurons, implicit regularization)

	From shallow neural networks to Transformer
	What to expect in this manuscript?

	From discrete to continuous architectures: neural networks in the large-depth regime
	Scaling of residual networks at initialization
	Implicit regularization of deep residual networks towards neural ODEs
	Generalization bounds for neural ODEs and residual networks
	Recurrent neural networks as kernel methods

	Contributions to finite-depth neural networks
	Convergence of shallow neural networks in the two-timescale regime
	Structured context and high-coverage grammar for conversational question answering over knowledge graphs

	Résumé détaillé en français

	I From discrete to continuous architectures: neural networks in the large-depth regime
	Scaling residual networks in the large-depth regime
	Introduction
	Deep residual neural networks
	Our contributions
	Related work

	Scaling at initialization
	Model and assumptions
	Probabilistic bounds on the norm of the hidden states
	Probabilistic bounds on the gradients

	Scaling in the continuous-time setting
	Convergence towards a SDE in the large-depth regime
	Scaling in the neural ODE setting

	Experiments
	Intermediate regimes
	Beyond initialization

	Proofs
	Technical results
	Concentration of sub-Gaussian random matrices
	A version of the Picard-Lindelöf theorem
	Detailed experimental setting

	Implicit regularization of deep residual networks towards neural ODEs
	Introduction
	Related work
	Definitions and notation
	Large-depth limit of residual networks
	Clipped gradient flow and finite training time
	Convergence in the long-time limit for wide networks
	Generalizations to other architectures and initialization

	Numerical experiments
	Synthetic data
	Real-world data

	Conclusion
	Some results for general residual networks
	Proofs of the results of the main part of the chapter
	Some technical lemmas
	Counter-example for the ReLU case.
	Experimental details

	Generalization bounds for neural ODEs and deep residual networks
	Introduction
	Related work
	Generalization bounds for parameterized ODEs
	Learning procedure
	Generalization bound
	Application to neural ODEs

	Generalization bounds for deep residual networks
	Model and generalization bound
	Comparison with other bounds
	Numerical illustration

	Conclusion
	Proofs
	Experimental details

	Framing RNN as a kernel method: a neural ODE approach
	Introduction
	Framing RNN as a kernel method
	From discrete to continuous time
	The signature
	From the CDE to the signature kernel

	Generalization and regularization
	Generalization bounds
	Regularization and stability

	Numerical illustrations
	Discussion and conclusion
	Some additional definitions and lemmas
	Proofs
	Differentiation with higher-order tensors
	Experimental details

	II Contributions to finite-depth neural networks
	Leveraging the two-timescale regime to demonstrate convergence of neural networks
	Introduction
	Setting and main result
	Related work
	A non-rigorous introduction to the two-timescale limit
	Introduction to the two-timescale limit
	Sketch of the dynamics of the two-timescale limit

	Convergence of the gradient flow
	In the two-timescale limit
	From the two-timescale limit to the two-timescale regime

	Numerical experiments
	Conclusion
	Additional notations and technical lemmas
	Proofs of the results
	Experimental details

	Structured context and high-coverage grammar for conversational question answering over knowledge graphs
	Introduction
	Related work
	A grammar for KG exploration
	Definitions
	Meta-operators
	Silver LF generation
	Comparison with D2A

	Model
	Overview
	Structured Input computation
	Embedding
	Encoding layers
	Decoding layers

	Experiments
	Datasets
	CSQA Experimental Setup
	ConvQuestions Experimental Setup
	Named Entity Linking setup
	Results
	Error analysis

	Conclusion
	Clarification Questions in CSQA
	Detailed experimental setup
	Comparison with baselines
	Additional results

	Conclusion
	Bibliography

