
HAL Id: tel-04453563
https://theses.hal.science/tel-04453563v1

Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Data Assimilation for Ultrasonic Guided
Waves in Structural Health Monitoring under

Operational Loading Conditions
André Dalmora

To cite this version:
André Dalmora. Modeling and Data Assimilation for Ultrasonic Guided Waves in Structural Health
Monitoring under Operational Loading Conditions. Modeling and Simulation. Institut Polytechnique
de Paris, 2023. English. �NNT : 2023IPPAX137�. �tel-04453563�

https://theses.hal.science/tel-04453563v1
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
3I

P
PA

X
13

7

Modeling and Data Assimilation for
Ultrasonic Guided Waves in

Structural Health Monitoring under
Operational Loading Conditions

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
Spécialité de doctorat : mécanique des fluides et des solides, acoustique

Thèse présentée et soutenue à Gif-sur-Yvette, le 30 Novembre 2023, par

ANDRÉ DALMORA

Composition du Jury :

Marc Bonnet
Directeur de recherche, CNRS Président

Ludovic Chamoin
Professeur, ENS Paris-Saclay Rapporteur

Bruno Lombard
Directeur de recherche, CNRS Rapporteur

Maya de Buhan
Ingénieure de recherche, Safran Tech Examinatrice

Peter Huthwaite
Reader, Imperial College London Examinateur

Alexandre Imperiale
Ingénieur chercheur, CEA List Co-directeur de thèse

Sébastien Imperiale
Chargé de recherche, Inria Co-encadrant de thèse

Philippe Moireau
Directeur de recherche, Inria Directeur de thèse





à Claudirce B. e Renato D.,





Remerciements
Gratitute
Cette thèse a été faite dans un environnement riche et avec des personnes passionnées par leur sujet

de travail. Dans ce contexte, je tiens d’abord à te remercier, Philippe Moireau. Tes vastes connaissances
m’ont conduit à des compréhensions sous différentes perspectives et je suis reconnaissant de ta passion
pour la science et pour les differents domaines traités ici. Ta rigueur scientifique me servira toujours
comme inspiration. Merci également pour tes efforts visant à diriger cette thèse en veillant à ce que je tire
le meilleur parti de mes capacités, ainsi que de l’environnement dans lequel je me trouvais. Alexandre
Imperiale, je tiens aussi à t’exprimer ma profonde gratitude pour ton fort et constant investissement
dans l’encadrement depuis mes premiers jours de thèse. Ta capacité unique à décortiquer des concepts
complexes et à les rendre compréhensibles m’a permis de maîtriser des sujets divers et de les travailler
pour une bonne qualité de cette thèse. Je te remercie également, Sébastien Imperiale, pour ta pédagogie et
le partage de tes connaissances en mathématiques, qui ont été fondamentales pour m’aider à faire le lien
entre les concepts travaillés au cours de ma thèse. Tes propositions pertinentes m’ont notamment aidé
dans ma compréhension en analyse fonctionnelle et acoustoélasticité. Enfin et surtout, c’était un plaisir
de vous voir expliquer, développer et discuter des concepts sur le tableau (blanc ou noir) de manière
particulièrement captivante.

Merci à Bruno Lombard d’avoir accepté d’être rapporteur de mon manuscrit, pour ta lecture attentive
et pour toutes discussions au cours de ces trois années, qui m’ont été précieuses pour ma trajectoire.
Je remercie également Ludovic Chamoin d’avoir accepté d’être rapporteur de mon manuscrit, avec une
lecture attentive et les perspectives apportées par votre expertise. Je remercie Marc Bonet d’avoir présidé
de manière impeccable ma soutenance et pour des discussions apportées. Merci à Maya De Buhan et
à Peter Huthwaite d’avoir fait partie de mon jury et aussi d’avoir apporté vos questions et propositions
intéressantes.

Qu’est-ce qui est temporaire ?
Pendant ces trois années, j’ai eu l’énorme chance de faire partie des environnements chaleureux et

culturellement riches. D’un côté du plateau de Saclay, ce fut un plaisir de faire partie du LSMA, au
DIN, CEA List; Merci, Marie Palla, pour ton amitié et compagnie au cours de ces 3 années. Je suis
vraiment ravi d’avoir partagé le bureau et le parcours de thèse avec toi! ; Un merci chaleureux à Nouhayla
Khalid pour ta compagnie et irremplaçable presence. Tu es une personne très spéciale et avec qui j’ai
beaucoup apprécié discuter et d’avoir à mes côtés :) ; Gerardo (inho) Granados, pour ton amitié, ton
humeur inégalable et ton soutien dans tous les moments (des événements festifs, notamment); Amond
(ami) Allouko, pour ton support et ton amitié depuis notre arrivée en France, le même jour! ; Victor
Bussy pour ton animation et spontanéité, ainsi que notre voyage incroyable avec Camille Ly et Emiel
Hassefras, les mecs!; Romain Vo (alecrim, haha) pour ton amitié, ton support et ton esprit amusant; à
Vinduja Vasanthan pour ton écoute, tes origamis geniaux et ta personalité unique. Merci également à
Vivek Nerlikar, Celestine Angla, Jordan Barras, Clément Fisher, Valentin Serey, Maxance Marmonier,
Flavien Agon, Alexandre Charau, Imanol Setoain, Laureen Guitard, entre d’autres collègues pour la bonne
compagnie et pour les activités ensemble. De l’autre côté du plateau, ce fut un plaisir de faire partie de
l’équipe M3DISIM à l’Inria. Il ne manquait pas d’activités sportives. Et d’autres pas trop... haha. Je
vous remercie; Mathieu Barré et Tiphaine Delaunay pour votre humeur unique et votre soutien dans ce
parcours partagé; Jérôme Diaz pour ta compagnie dans les meilleurs concerts (!!), pour nos discussions
et pour ton (très importante) assistance au cours de ma thèse; François Kimmig pour ta sympathie et
tes connaissances qui m’apportaient toujours de nouvelles choses à apprendre; L’esprit italien qui était
très present, vivant et amusant, avec Jéssica Manganotti et Giulia Merlini qui me manqueront fortement.
C’était un plaisir d’être là avec vous; Alice Peyraut (,) pour ta bonne humeur, ta vivacité (!) et ton
excellence en coach sportif; Zineb Ramiche et notre partenariat Brarrocos; Je tiens également à remercier
Vincenzo Zarra, Gaël Le Ruz, Chloé Giraudet, Mahdi Manoochehrtayebi et Nagham Chibli pour être
present dans plusieurs moments de partage et bonheur.



6

It’s impossible to stop there, being part of the european project GW4SHM made me get in touch
with amazing people, go to exquisite places and participate to interesting events. It was a pleasure to
meet all the people involved in it; I would like to thank you ; Yevgeniya Lugovtsova for greatly managing
our project and for all our interesting scientific (and non-scientific) discussions; Daniel Lozano, lover of
brazilian soup and such a nice company to have in small towns; Emiel Hassefras for all shared moments,
LeKlub (and alikes) and our amazing trip in California; Omar Rasgado, the best latino DJ in Europe;
Ahmed Bayoumi for your great and welcoming energy; Panpan Xu for your kindness and for welcoming
me at ICL; Aadhik Asokkumar, it was an honnor to have the moments registered by you; Thanks also for
the valuable dialogues, foods and drinks together: Blaž Brence, Ferda Gül, Masoud Mohammadgholiha,
Enes Savli, Mohsen Barzegar and Mateen Qadri; I would like also to thank all project PIs with whom I
had the pleasure of discussing and learning more about several different subjects; You all made my three
years rich in knowing different cultures and points of view.

L’ambiance était vraiment incroyable avec vous ! Je vous remercie pour votre amitié, votre soutien,
nos voyages, votre présence et des moments au-delà du spécial.

E se deparo-me com minhas raizes
Agradeço à minha mãe Claudirce Barbieri pelo carinho, profundidade e dedicação em minha criação

ao longo da minha vida. Agradeço à meu pai Renato Dalmora por sua coragem, seu caracter e por me
proporcionar uma base de confiança onde pude me desenvolver. Às minhas amadas irmãs Ana Cláudia
Dalmora Büll e Renata Dalmora por terem criados caminhos novos e sempre me incentivarem em meus
estudos. Ao meu sobrinho Leonardo por sua personalidade, alegria e carinho que me são fontes de
motivação. Queria também deixar um grande abraço aos meus amigos Strauss Vidrich, Adriano Garcia
e Vinicius Neves que mesmo de longe sempre se fizeram presentes e importantes em minha vida.



Résumé (Français)

Récemment, avec les avancées technologiques et le vieillissement des structures, l’intérêt pour
l’évaluation de l’intégrité et de la durée de vie utile restante des structures s’est accru. Outre les
raisons de sécurité, une évaluation efficace et fréquente permet d’éviter une utilisation inadéquat et le
remplacement de composants structurels sains. Parmi les structures pour lesquelles ce type d’évaluation
est essentiel pour éviter les accidents, on peut citer les ponts, les centrales nucléaires, les avions, les
pipelines, etc. Dans ces cas, les défaillances structurelles peuvent entraîner des décès et avoir des
répercussions considérables sur l’environnement. Pour des raisons réglementaires, ces structures sont
généralement inspectées fréquemment pour détecter tout signe de fatigue ou de défaillance potentielle.
Certaines méthodes peuvent potentiellement rendre la structure inopérante de manière permanente, mais
nous nous intéresserons ici aux méthodes non destructives, appelées contrôle non destructif (CND).
Plusieurs méthodes différentes sont employées et validées pour ces tâches, faisant appel à différents
phénomènes physiques, dont les principaux sont les ondes élastiques (acoustique, ultrasons, vibrations
structurelles) et l’électromagnétisme (lumière visible, champs magnétiques, rayons X).

Parmi les méthodes de CND, les ondes élastiques de faible amplitude peuvent pénétrer de manière
non destructive dans les solides et être ensuite utilisées pour extraire les caractéristiques de la structure.
Les ondes élastiques à haute fréquence, également appelées ultrasons, sont largement utilisées dans ce
contexte [Workman, Kishoni, and Moore, 2007], lorsque l’on souhaite détecter des défauts potentiels,
des contraintes, des fissures, de la fatigue ou des propriétés du matériau. L’accès aux caractéristiques des
matériaux permet d’évaluer les dangers et de prédire la durée de vie restante des structures. L’interaction
des ondes avec les frontières de la structure peut donner lieu à des ondes guidées. Lorsque la propagation
est confinée entre des frontières parallèles, interférant et formant des modes de propagation, nous avons
les ondes de Lamb [Lamb, 1917]. Ce type d’ondes peut se propager sur de plus longues distances.
Les ondes de Lamb sont dispersives et multimodales, c’est-à-dire qu’elles présentent différents modes
de propagation par fréquence avec des caractéristiques de dispersion et des vitesses d’onde différentes.
Le fait que plusieurs modes, se propageant à des vitesses différentes, soient enregistrés dans un signal
nécessite des techniques spéciales de traitement du signal et une distinction complète de ces modes est
souvent difficile. Bien que le travail effectué dans cette thèse puisse être appliqué aux ondes élastiques
de volume ou guidées, nous nous concentrons principalement sur les ondes de Lamb.

L’utilisation de techniques de CND peut rendre la structure temporairement inopérante, ce qui entraîne
des coûts de maintenance. Pour atténuer ce type de problème, les récents progrès technologiques, tels que
le développement de systèmes intégrés, l’électronique à faible consommation d’énergie, le traitement des
signaux et les capteurs miniaturisés, favorisent le développement de systèmes de surveillance in situ pour
les structures. Ce domaine de l’ingénierie est appelé contrôle de santé intégré (SHM) [Worden et al.,
2007; Farrar and Worden, 2010]. Dans le cadre de la surveillance de l’état des structures, l’état d’une
structure est surveillé en permanence, ce qui peut s’avérer utile pour les structures des avions [Molent
and Aktepe, 2000; Boller, 2001], des ponts [Li and Ou, 2016] et des pipelines [Arun Sundaram, Kesavan,
and Parivallal, 2018].

Ce travail traite principalement de l’application des ondes guidées, mais pas exclusivement, dans le
contexte du contrôle de santé intégré pour les métaux et les composites. Les métaux et les composites sont
avant tout des composants essentiels de la structure. Un examen des ondes guidées pour le contrôle de
santé intégré est présenté dans [Mitra and Gopalakrishnan, 2016]. Un examen spécifique des applications
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dans les matériaux composites figure dans [Ricci et al., 2022]. Afin de surveiller en permanence une
structure, des capteurs sont installés en permanence in situ, ce qui permet de traiter et d’analyser de
grandes quantités de données. Des efforts sont faits pour proposer des stratégies permettant d’extraire des
informations de ce type de données. Une base de données ouverte contenant des mesures d’ondes guidées
est proposée dans [Marzani et al., 2020]. Le principal défi de l’analyse des données SHM est, étant donné
que la structure surveillée est en ligne, de traiter les conditions environnementales et opérationnelles
(EOC) [Gorgin, Luo, and Wu, 2020] qui affectent les données, réduisant ainsi la prévisibilité du système.

Conditions Environnementales et Opérationnelles (EOCs). Dans une structure en opération, on peut
s’attendre à des variations des conditions environnementales telles que la température, l’humidité de l’air
et la vitesse du vent, ainsi que des conditions opérationnelles telles que la charge mécanique et la puissance
de fonctionnement. Les effets de la température et de la charge mécanique sont les plus étudiés. Dans
ce travail, nous proposons un modèle pour la propagation des ondes ultrasonores dans des conditions de
charge opérationnelles et une approche basée sur le modèle pour estimer ces conditions. Cela permet
d’estimer les conditions de charge et/ou d’éliminer le biais induit par celles-ci dans les mesures. Plus
précisément, nous énonçons les objectifs de cette thèse comme suit :

— Proposer des outils numériques robustes et génériques pour modéliser comment le charge-
ment mécanique affecte la propagation des ultrasons

— Proposer une stratégie d’inversion pour estimer la déformation structurelle à l’aide des
ultrasons.

Les effets de la propagation des ondes dans les solides causés par les contraintes internes – y compris
les contraintes induites par la charge – sont appelés effets acoustoélastiques. Le cadre de modélisation
sur lequel cette thèse est basée est la formulation traditionnelle de l’élastodynamique avec des lois
constitutives hyperélastiques. Nous nous référons aux livres [Ogden, 1984; Landau, Lifšic, and Landau,
1986; Ciarlet, 1988b; Holzapfel, 2000; Le Tallec, 2009; Chaves, 2013] pour les méthodologies et les
descriptions relatives à la mécanique non linéaire et [Chapelle and Bathe, 2011] pour les structures liées
aux coques.

En acoustoélasticité, on étudie à la fois les contraintes résiduelles et les contraintes induites par
les charges opérationnelles. Du point de vue des contraintes causées par les conditions de charge
opérationnelles, en termes de déformation, les ondes élastiques sont superposées aux ondes structurelles.
En mécanique non linéaire, lorsque la loi constitutive est non linéaire et/ou que la description géométrique
de la déformation est non linéaire, on s’attend à ce que les déformations superposées ne se comportent pas
de la même manière. En élasticité linéaire, aucun effet acoustoélastique ne peut se produire, la réponse
du matériau à la déformation est modélisée par la loi de Hooke et seuls deux paramètres sont nécessaires
pour la modéliser dans les matériaux isotropes, les paramètres de Lamé 𝜆 et 𝜇 étant des exemples. Si
l’on considère les déformations élastiques du deuxième ordre, les matériaux isotropes nécessitent trois
paramètres supplémentaires [Hughes and Kelly, 1953; Shams, Destrade, and Ogden, 2011], les constantes
élastiques du troisième ordre (TOEC). Murnaghan a proposé dans [Murnaghan, 1937] les paramètres 𝑙,
𝑚 et 𝑛 et a développé sa théorie sur la déformation finie dans [Murnaghan, 1951]. Effectivement, dans
ce travail, nous traitons l’acoustoélasticité induite par la charge comme une déformation incrémentale
dans le contexte de l’élastodynamique non linéaire avec un comportement hyperélastique et nous nous
référons à [Ogden, 2007; Shams, Destrade, and Ogden, 2011; Abiza, Destrade, and Ogden, 2012] pour
une description plus détaillée. Certains travaux y font référence en tant que small-on-large, c’est-à-dire
une petite déformation superposée à une grande déformation.

Méthodes numériques dédiées. Dans cette thèse, nous proposons un outil numérique générique et
robuste dans le domaine temporel pour la propagation des ondes ultrasonores dans des conditions de
charge opérationnelles. Pour ce faire, nous calculons tout d’abord la déformation structurelle causée par
les forces externes et, ensuite, nous fournissons la déformation structurelle à un solveur élastodynamique
linéarisé efficace. Nous utilisons des éléments finis pour résoudre ces deux problèmes. Nous nous
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référons au problème quasi-statique comme étant le problème du calcul de la déformation structurelle
résultant des conditions de chargement. Dans les applications SHM, les structures minces/coquilles telles
que les plaques en polymères renforcés de fibres de carbone (PRFC) sont couramment utilisées et il est
connu que, dans de telles structures, les méthodes classiques d’éléments finis souffrent d’un verrouillage
numérique [Bathe, 2006; Chapelle and Bathe, 2011]. Pour résoudre ce problème, nous utilisons une
formulation de coque 3D [Chapelle and Bathe, 2011] qui, en plus de résoudre le verrouillage numérique,
le fait sans hypothèse restrictive sur la loi constitutive hyperélastique et la géométrie, de sorte que la
même loi constitutive peut être utilisée pour le problème quasi-statique et le problème de propagation
des ondes, qui sera présenté ultérieurement. Nous discutons plus en détail de la formulation des coques
dans le Chapter 2. Pour le problème de propagation des ondes, nous utilisons une méthode spectrale
d’éléments finis (SFEM) d’ordre élevé [Maday and Patera, 1989; Komatitsch et al., 1999; Cohen, 2002;
Joly, 2007], connue pour avoir de bonnes propriétés pour la propagation des ondes [Seriani and Priolo,
1994; Basabe, 2007; Seriani and Oliveira, 2008] dans le domaine temporel.

Estimation des conditions de chargement Ce travail est effectué dans le contexte de l’optimisation
des moindres carrés. Notre objectif qui est d’estimer la déformation structurelle peut être interprété
comme l’estimation d’un paramètre de modèle. Cette estimation est réalisée en minimisant le carré de
la différence entre les données mesurées et les données synthétiques générées par le modèle. Dans notre
modèle de propagation des ondes, en modélisant l’opération d’observation, une loi constitutive et des
paramètres de matériaux appropriés, nous pouvons supposer que la déformation est la seule inconnue.
Ensuite, en ajustant la déformation en minimisant la différence entre les données synthétiques de notre
modèle et les mesures, nous espérons estimer la déformation de la structure à partir de laquelle les
mesures ont été prises. Le problème peut être décrit en minimisant une fonction à valeur réelle qui
quantifie l’écart entre les mesures et les observations synthétiques, et un terme supplémentaire peut être
ajouté à la fonction pour régulariser l’inversion.

Comme notre objectif est d’utiliser les ondes ultrasoniques pour effectuer une telle tâche, nous nous
concentrons sur les problèmes d’optimisation associés à la dynamique des ondes. La minimisation con-
trainte par un problème d’évolution temporelle est souvent appelée assimilation de données. Initialement
développée pour les prévisions météorologiques, elle est aujourd’hui couramment utilisée dans de nom-
breux domaines. Les méthodes variationnelles et séquentielles sont deux classes principales de méthodes
utilisées dans les problèmes d’assimilation de données et toutes deux peuvent être utilisées dans ce con-
texte [Tarantola, 1984]. Nous utilisons ici des méthodes séquentielles qui utilisent un flux de données de
manière séquentielle pour mettre à jour l’estimation par le biais d’un filtre appliqué à l’inadéquation. Plus
spécifiquement, nous avons le filtre de Kalman (KF). En tant que méthode de filtrage, il est couramment
utilisé dans un contexte où une estimation en temps réel est souhaitée, comme dans la navigation et le
suivi. Il a été conçu à l’origine pour les problèmes linéaires, mais des versions modifiées sont disponibles
pour les problèmes non linéaires, comme le filtre de Kalman étendu (EKF) – utilisant la dynamique
tangente – et le filtre de Kalman Unscented (UKF), une approche “tangent-free”.

Comme indiqué précédemment, ces déformations à estimer peuvent être décrites par un problème
quasi statique non linéaire. Cela permet de réduire le type de déformations que nous voulons estimer, ce
qui conduit au problème de l’estimation de l’amplitude de quelques modes de vibration de la structure
et permet d’utiliser des techniques d’ordre réduit. De plus, notre modèle est basé sur la linéarisation
de la formulation élastodynamique non linéaire avec une loi constitutive hyperélastique. Les stratégies
inverses qui requièrent la dynamique tangente nécessiteraient la dérivée troisième du potentiel élastique.
Pour permettre la généricité, cela impliquerait des calculs peu pratiques. Ainsi, pour notre objectif, les
méthodes “tangent-free” sont essentielles et nous choisissons la version d’ordre réduit Unscented du filtre
de Kalman, telle que décrite dans cette thèse. Enfin, grâce à une combinaison astucieuse d’approches
variationnelles et séquentielles, nous obtenons une version itérative du filtre de Kalman Unscented.
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This Ph.D. thesis deals with mechanical and numerical, direct and inverse, modeling of ultrasonic
guided wave propagation in structures under operational loading conditions. It has been prepared at CEA
List, in the Laboratoire de Simulation, Modélisation et Analyse (LSMA) and in the MΞDISIM team, an
Inria project team joint with Ecole Polytechnique (Laboratoire de Mécanique des Solides (LMS)). It was
directed by Dr. Philippe Moireau with Dr. Sébastien Imperiale (Inria, MΞDISIM) and Dr. Alexandre
Imperiale (CEA List, LSMA).

The LSMA team works in modeling, simulation and analysis for acoustics and electromagnetics, it
is part of the Digital Instrumentation Department (DIN), which has been developing the CIVA platform,
specifically dedicated to NDT simulation, on an international scale for many years. The MΞDISIM team
research is focused on biomechanical mathematical and numerical models of tissues and organs, with a
non-exclusive focus on the cardiovascular system. This research was funded by the following project:
“GW4SHM” (gw4shm.eu) project from the European Union’s Horizon 2020 Research and Innovation
program under the Marie Skłodowska-Curie, grant number 860104.

Context
Structural Health Monitoring

Recently, interest in assessing the integrity and remaining useful lifetime of structures is growing
with technological advances and aging structures. In addition to safety reasons, effective and frequent
assessment avoids inefficient use and replacement of healthy structural components. Among the structures
where these types of assessments are critical to avoid accidents are bridges, nuclear power plants, aircraft,
pipelines, etc. Structural failure in these cases may cause deaths and enormous environmental impacts.
For regulatory reasons, such structures are usually inspected frequently for the detection of any sign of
fatigue or potential failure. Some methods may potentially render the structure inoperable permanently,
but we will be interested here in nondestructive methods, denominated Nondestructive Testing (NDT).
Several different methods are employed and validated for such tasks, making use of different physical
phenomena, with the main ones being elastic waves (acoustics, ultrasound, structural vibrations) and
electromagnetics (visible light, magnetic fields, x-ray).

Among the methods for NDT, low amplitude elastic waves can nondestructively penetrate solids
and then be used to retrieve characteristics in their volume. High-frequency elastic waves, also called
ultrasounds, are widely used in this context [Workman, Kishoni, and Moore, 2007], where one wants
to detect potential defects, stresses, cracks, fatigue or properties of the material. Accessing material
characteristics allows one to assess dangers and predict the remaining life of structures. Wave phenomena
are known to have their energy density largely decreased due to spreading while propagating. Wave
interaction with boundaries may result in Guided Waves. When the propagation is confined between
parallel boundaries, interfering and forming propagation modes, we have the Lamb waves, first described
in [Lamb, 1917]. Another type of guided wave is the Rayleigh wave [Rayleigh, 1885], which occurs
and propagates at a surface, hence it presents low penetration capabilities. As the waves are confined
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in a region, they can propagate longer distances. Lamb waves are dispersive and multi-modal, i.e. they
present different modes of propagation per frequency with different dispersion characteristics and wave
velocities. The fact that several modes propagating at different speeds are recorded in a signal requires
special signal processing techniques and complete distinction of those may not be possible. Although the
work done in this thesis can be applied to bulk or guided elastic waves, we focus mainly on Lamb waves.

Employing NDT techniques may render the structure temporarily inoperable, leading to maintenance
costs. For instance, an airplane must be moved to a NDT workshop to be inspected, or one of these parts
must be removed to go through inspection procedures. To overcome this problem, recent advances in
technology such as the development of embedded systems, low energy consumption electronics, signal
processing and miniaturized sensors are fostering the development of in situ monitoring systems for
structures. This field of engineering is called Structural Health Monitoring (SHM) [Worden et al., 2007;
Farrar and Worden, 2010]. In SHM, the state of a structure is continuously monitored and it is potentially
useful for aircraft [Molent and Aktepe, 2000; Boller, 2001], bridge [Li and Ou, 2016] and pipeline
[Arun Sundaram, Kesavan, and Parivallal, 2018] structures.

This work deals mainly with the application of guided waves, but not exclusively, in the context
of Structural Health Monitoring for metals and composites. Metals and composites embody, foremost,
essential structure components. A review of guided waves for Structural Health Monitoring is found in
[Mitra and Gopalakrishnan, 2016]. A specific review for applications in composite materials can be found
in [Ricci et al., 2022]. For the purpose of monitoring continuously a structure, sensors are permanently
installed in situ, eventually resulting in large amounts of data to be processed and analyzed. Efforts are
made to propose strategies to extract information for this kind of data. An open database with guided
wave measurements is proposed in [Marzani et al., 2020]. The main challenge in analyzing SHM data
is, as the monitored structure is online, to deal with Environmental and Operational Conditions (EOCs)
[Gorgin, Luo, and Wu, 2020] that affect the data, reducing the system’s predictability.

Environmental and Operational Conditions (EOCs)
In an online structure, we can expect variations in environmental conditions such as temperature, air
humidity and wind speed and in operational conditions such as mechanical loading and operating power.
The effects of temperature and mechanical loading are the most studied ones. For exemplification,
pipelines used to transport oil and gas may suffer of high gradient of temperature through its thickness
as well as increased internal pressure [Dubuc, Ebrahimkhanlou, and Salamone, 2017a]. An aircraft
experiences great changes in temperature and loading conditions from the takeoff to the achievement of
cruising speed, with load-induced stresses being particularly relevant for military aircraft [Molent and
Aktepe, 2000]. Train rails monitoring suffers from stresses and temperature variations when in operation
and is also of interest for SHM systems [Chapuis, 2023]. Experimental data and studies on temperature
variations [Wilcox et al., 2007; Song, Huang, and Hu, 2013; Dodson and Inman, 2014; Kijanka et al.,
2015] show that its effects are greater than the one caused by stresses [Michaels et al., 2009; Pei and
Bond, 2016].

One class of approaches to mitigate the difficulties related to EOCs when analyzing SHM data is
data-based [Sohn, 2007]. For instance, one strategy is to perform measurements in a given EOC in the
structure in pristine conditions and use them as a baseline to compare with future measurements. By
subtracting one recent signal from the baseline, one can isolate the new changes in the structure, hence
being capable of identifying potential issues [Croxford et al., 2007; Michaels, Lee, and Michaels, 2011;
Tschöke et al., 2017]. Consequently, the baseline method requires measurements for all potential EOCs
the structure may meet, or a model that provides baselines through interpolation [Yue and Aliabadi, 2020].
The authors in [Wilcox et al., 2007] show that, even for small imperfections, the baseline subtraction for
guided waves may perform poorly, requiring additional post-processing of the signals. Also, by acquiring
a large data set, one can perform data analysis to separate changes caused by variations in EOCs from
changes caused by other phenomena of interest. Machine learning-based techniques are also proposed
[Villares Holguin, Hultmann Ayala, and Kubrusly, 2021; Malekloo et al., 2022].
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In this work, we propose a model for ultrasonic wave propagation under operational loading conditions
and, following a different path, a model-based approach for estimating those. This enables one to estimate
the loading condition and/or to remove the bias induced by it from the measurements. More precisely,
we enounce the objectives of this thesis as to

• Propose robust and generic numerical tools to model how mechanical
loading affects ultrasound propagation

and to

• Propose an inverse strategy to estimate structural deformation using
ultrasound.

Given these objectives, we discuss below methods that can be used to tackle them, starting with the
modeling aspects before discussing the estimation methods.

Modeling the effects of mechanical loading on ultrasound propagation

The effects in wave propagation in solids caused by internal stresses – including load-induced stresses –
are denominated acoustoelastic effects. The modeling framework on which this thesis is based is the
traditional elastodynamics formulation with hyperelastic constitutive laws. We refer to the textbooks
[Ogden, 1984; Landau, Lifšic, and Landau, 1986; Ciarlet, 1988b; Holzapfel, 2000; Le Tallec, 2009;
Chaves, 2013] for methodologies and descriptions related to nonlinear mechanics and [Chapelle and
Bathe, 2011] for shell-related structures. In the following, we do first a review of the development and use
of acoustoelasticity. Then, we discuss analytical and numerical methods for (guided) wave propagation
in stressed structures. Finally, we present the numerical methods used in this thesis.

Acoustoelasticity
In acoustoelasticity, both residual stresses and stresses induced by operational loads are studied. From
the perspective of stresses caused by operational loading conditions, in terms of deformation, the elastic
waves are superposed to the structural ones. In nonlinear mechanics, where the constitutive law is
nonlinear and/or the geometric description of the deformation is nonlinear, it is expected that superposed
deformations do not behave the same. In linear elasticity, no acoustoelastic effect can occur, the material
response to strain is modeled by Hooke’s law and only two parameters are required to model it in isotropic
materials, the Lamé parameters 𝜆 and 𝜇 being examples. Considering second-order elastic deformations,
isotropic materials require three more parameters [Hughes and Kelly, 1953; Shams, Destrade, and
Ogden, 2011], the third-order elastic constants (TOECs). Murnaghan proposed in [Murnaghan, 1937]
the 𝑙, 𝑚 and 𝑛 parameters and developed further its theory on finite deformation in [Murnaghan, 1951].
Biot, 1940 studies the effects of initial stresses in wave propagation with a focus on seismic Rayleigh
waves. The acoustoelastic theory was further developed in [Hughes and Kelly, 1953], where the authors
relate the wave speed to the TOECs, which allows the measurement of TOECs using wave propagation.
Toupin and Bernstein, 1961 extended their work to arbitrary symmetry while determining restrictions
on the formulation such that materials under homogeneous deformation admit plane waves. Further
generalization is made in [Thurston and Brugger, 1964; Brugger, 1965] to obtain TOECs from materials
of arbitrary symmetries using wave speed measurements. Most metals present crystalline structure
at room temperature, motivating the work in [Hiki, 1981], where the author analyzes the high-order
elastic constants (third, fourth, ...) from the perspective of interatomic forces in crystal lattices. The
acoustoelastic theory is used for measuring residual stresses using ultrasonic waves in [Pao, 1984]. The
same author describes acoustoelasticity for orthotropic media in different and useful coordinate systems
in [Pao and Gamer, 1985]. The authors in [Hikata et al., 1956] show that the TOECs are sensitive to
plastic deformation. Man and Lu, 1987 treat the formulation for residual stresses while distinguishing
these from load-induced stresses. As applied loads may induce anisotropy in wave propagation, the
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angular dependency of wave speeds can also be used to retrieve the TOECs [Gandhi, Michaels, and Lee,
2012]. Acoustoelastic effects in fiber-reinforced composites are discussed in [Chakrapani, 2017; Rauter
and Lammering, 2018].

In this work, we treat load-induced acoustoelasticity as an incremental deformation in the context of
nonlinear elastodynamics with hyperelastic behavior and we refer to [Ogden, 2007; Shams, Destrade,
and Ogden, 2011; Abiza, Destrade, and Ogden, 2012] for further description. Some works refer to it as
small-on-large, i.e. small deformation superposed to large deformation. Here, constitutive laws will be
described by hyperelastic potentials (or strain energy density functions) [Spencer, 1982]. This framework
facilitates the stability analysis of hyperelastic laws and incremental behavior. Although, in this work, we
assess the potential problem of unstable incremental models, we don’t intend to propose solutions for it.
Several works have studied the topic of potential stability issues. In [Hayes and Green, 1963], the authors
study the uniqueness of solutions in the context of acoustoelasticity. Schröder and Neff, 2003 propose a
polyconvex anisotropic framework for hyperelastic laws using deformation invariants. Further discussion
on the mathematical properties of such hyperelastic problems can be found in [Itskov and Aksel, 2004;
Ndanou, Favrie, and Gavrilyuk, 2014; Clayton and Bliss, 2014].

The literature on experimental acoustoelasticity shows consistently that third-order elastic constants
are highly dependent on the fabrication process [Thompson, Lee, and Smith, 1986] and vary significantly
from specimen to specimen. In [Muir, Michaels, and Michaels, 2009] the authors compute how usual
acquisition uncertainties result in large uncertainties on TOECs when obtaining them using the time
of flight of waves. Experimental data shows that measurement errors may reach 100% [Semenov and
Beltukov, 2020]. Ultrasonic wave speed measurement is commonly used to retrieve TOECs for solid
materials [Hughes and Kelly, 1953; Smith, Stern, and Stephens, 1966; Asay and Guenther, 1967; Prosser
and Green, 1990; Dubuget et al., 1996; Santos Jr and Bray, 2002; Muir, Michaels, and Michaels, 2009;
Takahashi, 2018]. In [Ponschab, Kiefer, and Rupitsch, 2019], the authors retrieved the TOECs not only by
using the time of flight but analyzing dispersion curves obtained through laser vibrometry and space-time
Fourier transform.

Analytical and numerical models for acoustoelasticity
Analytical formulations for wave propagation in the context of acoustoelasticity are proposed in

[Gandhi, Michaels, and Lee, 2012; Pau and Scalea, 2015; Pei and Bond, 2016; Dubuc, Ebrahimkhanlou,
and Salamone, 2017a; Dubuc, Ebrahimkhanlou, and Salamone, 2017b; Mohabuth et al., 2018; Dubuc,
Ebrahimkhanlou, and Salamone, 2018], requiring numerical solving for some cases. Although results
can be obtained for a relatively low cost, such representations of the phenomena are not capable of
treating details in more complex and realistic cases commonly found in the context of Structural Health
Monitoring.

For complex shapes and more complex loading configurations, semi-analytical methods are often
used [Chen and Wilcox, 2007; Loveday, Long, and Wilcox, 2012; Peddeti and Santhanam, 2018; Cheng
et al., 2020; Abderahmane, Lhémery, and Daniel, 2021], taking advantage of numerical methods such
as finite elements to consider stress inhomogeneity in one or two dimensions. A review of numerical
methods for guided waves in SHM can be found in [Willberg et al., 2015]. Semi-analytical methods
treat the problem in the frequency domain and efficiently compute dispersion curves of guided waves in
specified wave guides, given the stress profile through the thickness.

Analytical and semi-analytical methods present some limitations regarding geometry and applied
stresses and have as output the dispersion curves and guided wave mode velocities. In this thesis, we
propose a generic and robust numerical tool in the time domain for ultrasonic wave propagation under
operational loading conditions. We do it by, first, computing the structural deformation caused by exter-
nal forces and, secondly, providing the structural deformation to an efficient linearized elastodynamics
solver. Both steps are done using robust finite element-based numerical methods [Le Tallec, 1994; Bonet
and Wood, 1997; Bathe, 2006], allowing for complex geometry and loading conditions. Additionally,
any hyperelastic law can be easily implemented by providing its strain energy density function. In the
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following, we precise the numerical methods used to solve each of the decomposed problems.

Dedicated numerical methods
As previously mentioned, we use finite elements to solve both presented problems. We refer to

the quasi-static problem as the problem of computing the structural deformation resulting from loading
conditions. In SHM applications, thin/shell structures such as carbon fiber reinforced polymers (CFRP)
plates are commonly used and it is known that, in such structures, classical finite elements methods suffer
from numerical locking [Bathe, 2006; Chapelle and Bathe, 2011]. To overcome this issue, we use a 3D
shell formulation [Chapelle and Bathe, 2011] that, additionally to mitigating numerical locking, does it
without restrictive assumptions on the hyperelastic constitutive law and geometry, thus the exact same
constitutive law can be used for the quasi-static problem and the, to be presented, wave propagation
problem. We discuss further the shell formulation in Chapter 2.

Guided waves are known to be multi-modal, dispersive and have the capability of propagating long
distances. Numerical methods for wave propagation may suffer from numerical dispersion and anisotropy
effects that accumulate during the simulation, becoming critical in the long-duration simulations needed
for guided waves. Here, we use a high-order spectral finite elements method (SFEM) [Maday and Patera,
1989; Komatitsch et al., 1999; Cohen, 2002; Joly, 2007], known to have good properties regarding these
issues [Seriani and Priolo, 1994; Basabe, 2007; Seriani and Oliveira, 2008], in the time domain. Using
hexahedral elements, we take advantage of an efficient mass lumping and unassembled stiffness matrix
application [Alexandre Imperiale and Demaldent, 2019]. The SFEM implementation used here was
validated for SHM applications [Mesnil et al., 2021], including curved structures such as pipes.

Estimating loading conditions

When a structure is mechanically loaded, its internal forces equilibrate in reaction to the applied
forces, leading to internal stresses. Due to acoustoelastic effects, these additional stresses, which are not
present in the natural state of the structure, cause the medium to behave differently when interacting with
other things. In some other cases, in the natural state of the structure, the internal stresses are unevenly
balanced, causing some regions to concentrate more stresses than others. These residual stresses originate
from different phenomena, for instance, when the material is subjected to plastic deformation or an uneven
temperature treatment. Residual stresses are potential causes for structural failure as the forces tend to
concentrate in specific regions. To assess residual stresses nondestructively, ultrasonics are one of the
employed techniques [Pao, 1984; Santos Jr and Bray, 2002]. Here, we will be interested mainly in
load-induced stresses. These types of stresses tend to be distributed through relatively large regions,
making guided waves especially sensitive to them as the acoustoelastic effect accumulates through their
path.

Many works on measuring these type of stresses using ultrasonics were done [Bergman and Shahben-
der, 1958; Crecraft, 1967; Abderahmane, Lhémery, and Daniel, 2022; Hsu, 1974; Degtyar and Rokhlin,
1995; Shi, Michaels, and Lee, 2013; Ma et al., 2019; Zhu, Tan, and Song, 2020; Zhao et al., 2022]. All
of them rely on obtaining the time of flight of bulk or guided waves, requiring specific experimental setup
and post-processing techniques that allow the distinction of wave packets. This leads to potential loss
of useful information or limits the type of configurations to be assessed. Our objective is to propose an
inverse strategy that can use raw ultrasonic data in any loading scenario in the elastic regime and, coupled
with our model for wave propagation, it can estimate complex deformation configurations. We present
below a review of optimization methods that can potentially be used for this task, and finally, our strategy
of choice.

In this work, we interpret the task of estimating loading conditions as a minimization problem. We
refer to the textbooks [Ciarlet, 1988a; Nocedal and Wright, 2006; Luenberger and Ye, 2008] for the
traditional optimization techniques used here.
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Inverse problems associated with wave propagation
This work is done in the context of least squares optimization. Our objective of estimating the

structural deformation can be interpreted as estimating a model parameter. This estimation is done by
minimizing the squared misfit between measured data, and synthetic data generated by the model. In our
wave propagation model, by modeling the measurement setup with proper constitutive law and material
parameters, we can assume the deformation to be the only unknown. Then, adjusting the deformation by
minimizing the difference between our model synthetic data and the measurements, we expect to estimate
the deformation of the structure from which the measurements were taken. The problem can be described
by minimizing a real-valued function that quantifies a discrepancy from the measurements to synthetic
observations and an extra term can be added to the functional to regularize the inversion.

As our objective is to use ultrasonic waves to perform such a task, we consequently focus on
optimization problems associated with wave dynamics. The minimization constrained by a time evolution
problem is often referred to as data assimilation. Initially developed for weather forecasting, it is now
commonly used in many fields. Variational and sequential methods are two main classes of methods used
in data assimilation problems and both can be in this context [Tarantola, 1984]. Variational methods for
minimization problems are usually done iteratively by functional gradient descent. At each iteration, it
analyses the whole corpus of measurement data to compute the gradient and/or the Hessian. Sequential
methods use a stream of data sequentially to update the estimation through a filter applied to the misfit.

In the class of variational methods, strategies known as 4-Dimensional Variational Data Assimilation
(4D-Var) and Full-Waveform Inversion (FWI) [Virieux et al., 2017] are equivalent and were first developed
for applications related to seismic, meteorology and oceanography, where huge amounts of data are used
simultaneously and real-time estimation is not essential. These denominations refer to the fact that
inversion is made using both space and time data. While the denomination 4D-Var is employed more
for general space-time data, FWI is specially used in the context of wave propagation. To compute
the functional gradient, a specific method called the adjoint method is used [Lions, 1971; Cea, 1986;
Plessix, 2006]. Traditional algorithms such as conjugate gradient and quasi-Newton are used to perform
the descent. In [Tarantola, 1984; Mora, 1987; Pica, Diet, and Tarantola, 1990; Bunks et al., 1995], the
method was first developed and used for nonlinear optimization constrained by a seismic wave propagation
problem. Using FWI, they were able to use a seismic propagation model to retrieve sub-surface parameters
such as bulk modulus and density. By having a wave propagation model, complex wave interactions such
as diffraction and reflections can be taken into account, enhancing the capacity to retrieve information
for measurements. A review in FWI for geophysical applications can be found in [Virieux and Operto,
2009]. In [Dimet and Talagrand, 1986; Courtier, Thépaut, and Hollingsworth, 1994; Rabier, Thépaut,
and Courtier, 1998], the 4D-Var is applied for meteorology. These methods are usually applied with the
misfit computed with an L2-norm, the squared misfit. Other norms related to the mechanical constitutive
relation are also proposed and used in structural mechanics [Feissel and Allix, 2007; Bonnet and Aquino,
2015; Nguyen, Chamoin, and Ha Minh, 2022]. Recent works borrow concepts from optimal transport to
overcome the cycle skipping [Engquist, Froese, and Yang, 2016; Métivier et al., 2022]. The nonlinear
optimization problems solved in these references are analogous to the one we want to perform.

In the class of sequential methods, we have the Kalman Filter (KF). As a filtering method, it is
commonly used in a context where real-time estimation is desired, such as in navigation and tracking. It
was originally conceived for linear problems but modified versions are available for nonlinear problems,
such as the Extended Kalman Filter (EKF) – using the tangent dynamics – and the Unscented Kalman
Filter (UKF), a tangent-free approach. Developed in the context of signal filtering for communications
and control, it is also used for data assimilation. In the filtering and control context, we refer to the
textbooks [Simon, 2006; Bensoussan et al., 2007]. The Kalman Filter algorithm was first used, for
data assimilation purposes, in meteorology [Jones, 1965; Courtier et al., 1993; Houtekamer and Zhang,
2016] and in oceanography [Pham, Verron, and Gourdeau, 1998; Evensen, 2003; Bertino, Evensen, and
Wackernagel, 2003; Rozier et al., 2007]. In [Julier, Uhlmann, and Durrant-Whyte, 2000], the authors
proposed a tangent-free version of the Kalman Filter to be later denominated Unscented Kalman Filter.
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When the parameter to be estimated represents only part of the dynamics state, a reduced order of the filter
can be used, as applied to realistic ocean circulation models in [Rozier et al., 2007]. The Kalman Filter
is also used in the context of structural mechanics [Mariani and Ghisi, 2007; Marchand, Chamoin, and
Rey, 2016], comparing EKF and UKF approaches, and for medical applications [Moireau, Chapelle, and
Le Tallec, 2008; Caiazzo et al., 2017]. In the context of SHM, it is used for acoustic source localization
and compared to a variational method in [Dehghan-Niri, Farhidzadeh, and Salamone, 2013], among
other related applications [Wu, Huang, and Huang, 2004; Zou et al., 2015]. An iterated Kalman Filter is
applied for seismic in [Eikrem, Nævdal, and Jakobsen, 2019]. Another iterated use of the Kalman Filter
is described in [Furuya and Potthast, 2022]. A review of discrete-time filtering formulation in a data
assimilation context can be found in [Moireau, 2022].

Choice of method
Both presented classes of methods are suitable for our problem of estimating the deformation through

ultrasound. As previously mentioned, these deformations can be described by a nonlinear quasi-static
problem. This helps to reduce the type of deformations we want to estimate, leading to the problem of
estimating the amplitude of a few modes of vibration of the structure, thus reduced order techniques can
be used. Also, our model is based on the linearization of the nonlinear elastodynamic formulation with
hyperelastic constitutive law. Inverse strategies that require the tangent dynamics would require the third
derivative of the elastic potential. To allow genericity, this would mean impractical computations. So,
for our purpose, tangent-free methods are essential and we choose the Reduced Order Unscented version
of the Kalman Filter, as described below.

Structure of this thesis
This thesis is composed of two parts, two chapters each. Chapter 1 and Chapter 3 are review chapters

presenting the ingredients used in the direct and inverse modeling. Our original contributions are pre-
sented in Chapter 2 and Chapter 4, accompanied in both cases by 3D realistic illustrations. The reader
may note that different notations may be used in the chapters related to the original works as they are
conceived to be standalone articles.

Part I - Structural Health Monitoring under environmental and operational conditions

Chapter 1. Modeling and numerical methods for linear wave propagation problems
In the context of our first objective, we introduce and motivate our approach to model linear wave
propagation. Starting from a weak formulation for nonlinear mechanics, we present the basic assumptions
for linearization and how hyperelastic laws can be calibrated in a linearized framework. As we will see in
the next chapter, linearization will be the basis for representing ultrasonic waves on a deformed structure.
Second, for solving numerically a linearized wave problem, we introduced the class of Galerkin methods
with energy conservation and stability conditions in an explicit scheme. The implementation of the
spectral finite elements method (SFEM), a Galerkin method, is then detailed featuring mass lumping
and unassembled stiffness matrix application. Finally, we show the efficiency of high-order SFEM for
solving guided wave propagation problems. This is done by using large-scale problems and comparing
high-order with low-order finite elements.

Chapter 2. A time-domain spectral finite element method for acoustoelasticity: modeling the
effect of mechanical loading on guided wave propagation
In this chapter, we tackle the first objective of this thesis. Using proper assumptions related to small-
on-large deformations, two problems emerge, the quasi-static problem and an associated linearized wave
propagation problem. After carefully reviewing the modeling ingredients to represent the configurations
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of interest, we propose an original combination of numerical tools that leads to a computationally efficient
algorithm. More specifically, we use 3D shell elements for the quasi-static nonlinear problem and the
time-domain spectral finite element method to numerically solve the wave propagation problem. Our
approach is generic in the sense that it can represent any type of material constitutive law and geometry. We
present realistic numerical results on 3D cases related to the monitoring of both isotropic and anisotropic
materials, illustrating the genericity and efficiency of our method. We also validate our approach by
comparing it to experimental data from the literature. The chapter takes the form of a pre-print article
co-authored by André Dalmora, Alexandre Imperiale, Sébastien Imperiale and Philippe Moireau.

Part II - Loading condition estimation in Structural Health Monitoring

Chapter 3. Introduction to least-squares minimization for solving inverse problems
In this chapter, we review some existing data assimilation methods associated with wave propagation
problems. By introducing generic optimization problems of interest, we detail how variational and
sequential methods are used to solve them. We implement and discuss these methods in one-dimensional
wave propagation inverse problems, where linear and nonlinear dependencies are considered. Finally, we
conclude and motivate the use of Reduced-order Unscented Kalman Filter to tackle the second objective
of this thesis.

Chapter 4. Kalman-based estimation of loading conditions from ultrasonic guided wave measure-
ments
In this chapter, we tackle the second objective of this thesis. We present a model-based procedure to
estimate structural deformation using available guided ultrasonic measurements in SHM systems. The
linearized model presented in Chapter 2 is used as a forward model for the inversion algorithm. From
a methodological point of view, our approach is original since we have proposed an iterated Reduced-
Order Unscented Kalman strategy, which we justify as an alternative to a Levenberg-Marquardt strategy
for minimizing the non-quadratic least-squares estimation criteria. Therefore from a data assimilation
perspective, we provide a quasi-sequential strategy that can valuably replace more classical variational
approaches. Our resulting algorithm proves to be computationally very effective, allowing us to suc-
cessfully apply our strategy to realistic industrial SHM configurations. The chapter takes the form of a
pre-print article co-authored by André Dalmora, Alexandre Imperiale, Sébastien Imperiale and Philippe
Moireau.

Henceforth, conclusions and perspectives are presented.

Published articles and pre-prints

— Our direct model was first published as a conference paper in an international conference for NDT.
Dalmora, André, Alexandre Imperiale, Sébastien Imperiale, and Philippe Moireau. 2022. “A
Generic Numerical Solver for Modeling the Influence of Stress Conditions on Guided Wave Prop-
agation for SHM Applications.”, American Society of Mechanical Engineers Digital Collection.
https://doi.org/10.1115/QNDE2022-98682.

— A detailed description of our direct model is written in a pre-print article format (Chapter 2).
Dalmora, André, Alexandre Imperiale, Sébastien Imperiale, and Philippe Moireau. 2023. “A
time-domain spectral finite element method for acoustoelasticity: modeling the effect of mechan-
ical loading on guided wave propagation”. Pre-print ready for submission.

— Our inversion strategy is detailed in a pre-print article format (Chapter 4).
Dalmora, André, Alexandre Imperiale, Sébastien Imperiale, and Philippe Moireau. 2023.
“Kalman-based estimation of loading conditions from ultrasonic guided wave measurements”.
Pre-print ready for submission.

https://doi.org/10.1115/QNDE2022-98682
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Scientific exchanges
In the context of the “GW4SHM” project, six training weeks were organized online and across Eu-

rope (London, Tallinn, Paris and Lisbon), bringing together the doctoral students and the academic and
industrial “GW4SHM” participants. Also, as part of this european consortium, I visited for a period of
one month each
• Imperial College London: Non-Destructive Evaluation Group – South Kensington, London, UK
Subject: Numerical methods for wave propagation.
• Airbus Defense and Space: Structural Integrity and SHM – Manching, Germany
Subject: Wave propagation in axially loaded stratified composite plates.

Software development
This work was done in a rich environment for the development of numerical applications. At

CEA List, I could code the linearized wave propagation model presented in this work using their
spectral finite elements core, used in CIVA 1 and currently developed by Dr. Alexandre Imperiale,
a commercial simulation software specialized in NDT and SHM. Their numerical structure enabled
efficient implementation of this work in large realistic cases and to run a considerable amount of those
in parallel for the inverse problem. I developed a Python library for the several inverse methods used for

1. https://www.extende.com

https://www.extende.com
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the illustrations presented in Chapter 3. At Inria, in the MΞDISIM team, their finite elements library
MoReFEM 2 with the implementation of the 3D shell finite elements method allowed me to implement
different hyperelastic laws and invariants to account for transverse isotropy to model stratified composites.
Using MoReFEM, I was able to validate the tangent stiffness operator implemented in this work. Also
in the MΞDISIM team, I have participated in their AKILLES 3 Library development that was therefore
used for the large-scale illustrations for inversion presented in Chapter 4. I deeply appreciate the help I
received from Jérôme Diaz with the MoReFEM Library and the implementation of the AKILLES Library
done by Laurent Steff.

2. https://gitlab.inria.fr/MoReFEM
3. https://gitlab.inria.fr/AKILLES/AKILLES

https://gitlab.inria.fr/MoReFEM
https://gitlab.inria.fr/AKILLES/AKILLES
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Chapter 1

Modeling and numerical methods for
linear wave propagation problems

We model the linear wave propagation using classical linear elastodynamics and an efficient method to
solve it numerically using spectral finite elements. Starting from the nonlinear formulation for
mechanics, we discuss hyperelastic laws for the isotropic and the transversely isotropic case with a few
examples of hyperelastic potentials. Assuming a small strain, the linear elastodynamic problem
naturally emerges. From the nonlinear hyperelastic laws, we discuss how they are used within the linear
framework. Finally, we present the spectral finite elements method to solve efficiently the wave problem
using a second-order Leapfrog scheme with lumped mass matrix and unassembled stiffness matrix
applications. A case with realistic dimensions is used to illustrate its performance.
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1.1 Nonlinear mechanics
In this section, we introduce the classical nonlinear mechanics formulation used as a base for our

modeling. First, we define the domains that represent the configuration of the structure to be modeled.
We consider two configurations:

— Reference configuration Ω̂: Also called natural configuration, no external forces are acting in
the structure and it is in internal equilibrium. We denote Ω̂ for the domain of the reference
configuration and 𝑥 its coordinates system, also called Lagrangian referential.

— Deformed configuration Ω: Configuration resulted from external forces acting in the structure
in its reference configuration. We denote Ω(𝑡) for the time-dependent domain of the deformed
configuration and 𝑥 its coordinates system, also called Eulerian referential.

The structural deformation can be represented by a bijective mapping between the configurations, namely

𝜙(𝑡) : Ω̂ ↦−→ Ω(𝑡)
𝑥 −→ 𝑥(𝑥, 𝑡) = 𝜙(𝑥, 𝑡).

Associated boundaries are denoted as Γ̂ and Γ. Figure 1.1 depicts the described notations and relation,
with 𝐷 and 𝑁 subscripts referring to Dirichlet and Neumann boundary conditions, respectively. With
this mapping between coordinates, we can define the displacement field

𝒖 (𝒙̂, 𝑡) = 𝒙(𝒙̂, 𝑡) − 𝒙̂,

which characterizes the displacement of a point from the reference configuration to the deformed config-
uration.

Figure 1.1 – Reference and deformed configurations and their associated notations.

The equation of motion in continuum media with the associated boundary conditions over the domain
Ω reads [Ogden, 1984; Temam, Roger and Miranville, Alain, 2005; Chaves, 2013],




𝜌(𝒙)𝜸(𝒙, 𝑡) − ∇𝒙 · 𝝈(𝒙, 𝑡) = 𝜌(𝒙) 𝒇 (𝑥, 𝑡) in Ω(𝑡), (1.1)
𝝈(𝒙, 𝑡) · 𝒏(𝒙, 𝑡) = 0 in Γ(𝑡), (1.2)
𝝈(𝒙, 𝑡) · 𝒏(𝒙, 𝑡) = 𝒇 𝑠 (𝒙, 𝑡) in Γ𝑁 (𝑡), (1.3)
𝒖 (𝒙, 𝑡) = 0 in Γ𝐷 (𝑡), (1.4)

where 𝛾 is the acceleration, 𝝈 is the Cauchy stress tensor that relates strain and stresses through a
constitutive law, ∇𝒙· is the divergence w.r.t. the deformed domain coordinates and 𝜌 is the density of
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the material in the deformed configuration. Additionally, the body and surface forces were introduced as
𝑓 (𝒙, 𝑡) and 𝑓 𝑠 (𝒙, 𝑡), respectively. The initial conditions are to be defined. The density is included on the
right-hand side to model mass-dependent body forces such as gravity.

1.1.1 Weak formulation in the Lagrangian referential
In this section, we rewrite the equations of motion in their weak form and in the Lagrangian referential.

We use tensor notation and operations as presented in Section A.1. First, we integrate the equation (1.1)
over the domain Ω and multiply it by an arbitrary virtual displacement 𝑤 ∈ V(Ω), resulting in∫

Ω(𝑡 )
𝜌 𝜸 · 𝒘 dΩ −

∫
Ω(𝑡 )
(∇𝒙 · 𝝈) · 𝒘 dΩ =

∫
Ω(𝑡 )

𝜌 𝒇 · 𝒘 dΩ,

where V(Ω) is the space of admissible displacements to be defined. For brevity, the spatial and time
dependencies are omitted. Second, we use Green’s formula on the second term and the surface boundary
conditions to obtain∫

Ω(𝑡 )
𝜌 𝜸 · 𝒘 dΩ +

∫
Ω(𝑡 )

𝝈 : ∇𝒙𝒘 dΩ =
∫
Ω(𝑡 )

𝜌 𝒇 · 𝒘 dΩ +
∫
Γ𝑁 (𝑡 )

𝒇 𝑠 · 𝒘 dΓ. (1.5)

The first two terms are related to the inertial and internal virtual work energies, respectively, and the last
two terms are related to external virtual work energies. Using the bijective mapping 𝜙 between domains,
we can define the deformation gradient and its Jacobian as

𝑭(𝒙̂, 𝑡) = ∇̂𝒙𝜙(𝒙̂, 𝑡), 𝐽 = det 𝐹.

The following compositions of functions and variables with 𝝓(𝑥, 𝑡) will be used

𝝈 ◦ 𝝓, 𝒇 ◦ 𝝓, 𝒇 𝑠 ◦ 𝝓, 𝒘 ◦ 𝝓, 𝜌 ◦ 𝝓,

without specific notation. Due to mass conservation, we can define the density 𝜌̂(𝒙̂) = 𝐽𝜌(𝜙(𝒙̂, 𝑡)). In
a change of variables, the infinitesimal volume and surface [Chaves, 2013] from one configuration to
another is transformed as

dΩ = 𝐽dΩ̂, dΓ = 𝐽∥𝑭−⊺ · 𝒏̂∥dΓ̂.
Therefore, by a change of variables in (1.5) to pullback to the reference configuration where

𝜸(𝒙̂, 𝑡) = 𝜕2𝒖

𝜕𝑡2
(𝒙̂, 𝑡),

and using mass conservation and the fact that ∇𝒙◦ = ∇̂𝒙 ◦ ·𝑭−1, we have∫
Ω̂
𝜌̂
𝜕2𝒖

𝜕𝑡2
· 𝒘 dΩ̂ +

∫
Ω̂
𝝈 : (∇̂𝒙𝒘 · 𝑭−1) 𝐽dΩ̂ +

∫
Γ̂𝑁

𝒇 𝑠 · 𝒘 𝐽∥𝑭−⊺ · 𝒏̂∥dΓ̂ =
∫
Ω̂
𝜌̂ 𝒇 · 𝒘 dΩ̂.

Using the first Piola-Kirchhoff stress tensor we rewrite the internal work term∫
Ω̂
𝜌̂
𝜕2𝒖

𝜕𝑡2
· 𝒘 dΩ̂ +

∫
Ω̂
𝑻 : ∇̂𝒙𝒘 dΩ̂ +

∫
Γ̂𝑁

𝒇 𝑠 · 𝒘 𝐽∥𝑭−⊺ · 𝒏̂∥dΓ̂ =
∫
Ω̂
𝜌̂ 𝒇 · 𝒘 dΩ̂.

Moreover, with the second Piola-Kirchhoff (symmetric) stress tensor

𝚺 = 𝑭−1 · 𝑻 = 𝐽𝑭−1 · 𝝈 · 𝑭−⊺ .

we have∫
Ω̂
𝜌̂
𝜕2𝒖

𝜕𝑡2
· 𝒘 dΩ̂ +

∫
Ω̂
𝚺 : (𝑭⊺ · ∇̂𝒙𝒘) dΩ̂ +

∫
Γ̂𝑁

𝒇 𝑠 · 𝒘 𝐽∥𝑭−⊺ · 𝒏̂∥dΓ̂ =
∫
Ω̂
𝜌̂ 𝒇 · 𝒘 dΩ̂.
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The Green-Lagrange strain tensor is

𝒆(𝒖) = 1
2
(𝑪 − 1) = 1

2

(
∇̂𝒙𝒖 + (∇̂𝒙𝒖)⊺ + (∇̂𝒙𝒖)⊺ · ∇̂𝒙𝒖

)
, (1.6)

with 𝑪 = 𝑭⊺𝑭 being the right Cauchy-Green deformation tensor. Its derivative (Definition A.2.7) is

D𝒖 𝒆(𝒖)𝒘 =
1
2

(
𝑭⊺ · ∇̂𝒙𝒘 + (∇̂𝒙𝒘)⊺ · 𝑭

)
.

As the stress tensor is again symmetric, we can use Property A.1.1 to obtain a weak form of the
elastodynamic problem in the reference configuration Ω̂ as presented below.

Nonlinear elastodynamic weak formulation ∀𝑡 > 0, find 𝑢(𝑡) such that

∀𝑤 ∈ V(Ω̂), d2

d𝑡2
(
𝑢, 𝑤

)
L2 (Ω̂) + ⟨𝐴(𝑢), 𝑤⟩ = 𝑙 (𝑤) (1.7)

with (
𝑢, 𝑤

)
L2 (Ω̂) =

∫
Ω̂
𝜌̂ 𝒖 · 𝒘dΩ̂,

⟨𝐴(𝑢), 𝑤⟩ =
∫
Ω̂
𝚺
(
𝒆(𝒖)) :

(
D𝒖 𝒆(𝒖)𝒘

)
dΩ̂ +

∫
Γ̂𝑁

𝒇 𝑠 · 𝒘 𝐽∥𝑭−⊺ · 𝒏̂∥dΓ̂,

𝑙 (𝑤) =
∫
Ω̂
𝜌̂ 𝒇 · 𝒘 dΩ̂.

Remark. For sake of brevity, the notation ⟨·, ·⟩ will represents the dual product ⟨·, ·⟩V′V (Defini-
tion A.2.6).

1.1.2 Constitutive laws
The stress-strain relation is characterized by a constitutive law, i.e. relation between the second

Piola-Kirchhoff stress tensor Σ and the Green-Lagrange strain tensor 𝑒, which was considered arbitrary
in the presented model. In this work, we will be interested in modeling ultrasonic waves in materials such
as metals and carbon fiber composites in elastic regime deformations. In the finite deformations elastic
regime presenting nonlinearities, we choose hyperelastic constitutive laws.

Hyperelastic laws. In the case of hyperelastic materials, the stress tensor Σ depends only on space and
current state of deformation [Ogden, 1984]. Additionally, they do not dissipate energy when subjected to
cyclic homogeneous deformations. In such case, the stress tensor Σ can be derived from an (hyperelastic)
potential W , also called strain energy density function

𝚺(𝒆) = D𝒆W (𝒆). (1.8)

Depending on the symmetries presented by the constitutive behavior of the material, this energy density
can expressed using an associated set of invariants of the deformation tensor [Spencer, 1982]. For
instance, isotropic materials have their energy density fully described using the first three invariants and
transversely isotropic materials make use of the first five invariants. Invariants of the Green-Lagrange
strain tensor can be used, but here we use the invariants of the right Cauchy-Green tensor as follows

𝐼1 = tr(𝑪), 𝐼2 =
1
2

(
tr(𝑪)2 − tr(𝑪2)

)
, 𝐼3 = det𝑪,

𝐼4 = 𝒂 · 𝑪 · 𝑎, 𝐼5 = 𝒂 · 𝑪2 · 𝑎,
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where 𝒂 is a principal direction defining the plane of transverse isotropy, when applicable. Defining the
following generic dependency

W = W (𝐼1, 𝐼2, ..., 𝐼𝑛),
we can express, by using the chain rule, the energy density derivatives w.r.t. the strain tensor as

D𝒆W =
𝑛∑︁
𝑖=1

𝜕W

𝜕𝐼𝑖

𝜕𝐼𝑖

𝜕𝑪
:
𝜕𝑪

𝜕𝒆
= 2

𝑛∑︁
𝑖=1

𝜕W

𝜕𝐼𝑖

𝜕𝐼𝑖

𝜕𝑪
. (1.9)

This form of representing the potential derivatives has a practical use when constructing a generic solver,
where the constitutive law can be defined by only giving its potential derivatives as input.

Examples of hyperelastic laws. As mentioned above, the hyperelastic constitutive law can be fully
described by a scalar potential. We present here some examples of constitutive laws that can be found in
[Ciarlet, 1988b; Chaves, 2013]:

— The Saint-Venant-Kirchhoff (SVK):

W SVK =
(𝜆 + 2𝜇)

8
𝐼2
1 −
(3𝜆 + 2𝜇)

4
𝐼1 − 𝜇2 𝐼2 +

(9𝜆 + 6𝜇)
8

(1.10)

— The Compressible Neo-Hookean (CNH):

W CNH = 𝑐1(
√︁
𝐼3 − 1)2 + 𝑐2

(
𝐼1 − 3 − log(𝐼3)

)
. (1.11)

— The Murnaghan’s (MUR) [Murnaghan, 1951]:

W MUR(𝜆, 𝜇, 𝑙, 𝑚, 𝑛) = 𝜆 + 2𝜇
8
(𝐼1 − 3)2 − 𝜇

2
(3 − 2𝐼1 + 𝐼2) + 𝑙 + 2𝑚

24
(𝐼1 − 3)3 (1.12)

− 𝑚
4
(9𝐼1 − 3𝐼2 − 2𝐼2

1 + 𝐼1𝐼2 − 9) − 𝑛
8
(𝐼1 − 𝐼2 + 𝐼3 − 1). (1.13)

The parameters 𝜆 and 𝜇 are the classic Lamé parameters and 𝑙, 𝑚 and 𝑛 are the third-order elastic
coefficients [Hughes and Kelly, 1953]. When dealing with materials with transversely isotropic symme-
tries, the invariants 𝐼4 and 𝐼5 are included. This type of symmetry is present, for instance, in a layer of
fiber-reinforced polymers where the fibers are oriented in a principal axis. The Carbon Fiber Reinforced
Polymer (CFRP) is an example of such material. A Compressible Neo Hookean type energy density is
proposed in [Bonet and Wood, 1997]

— Transversely Isotropic law based on CNH (TI):

W TI(𝜆, 𝜇, 𝛼, 𝛽, 𝛾) = 𝜇

2
(𝐼1 − 3) − 𝜇 ln 𝐽 + 𝜆

2
(𝐽 − 1)2+ (1.14)

[𝛼 + 𝛽 ln 𝐽 + 𝛾(𝐼4 − 1)] (𝐼4 − 1) − 𝛼
2
(𝐼5 − 1). (1.15)

For this law to be used, additionally to the Lamé parameters, the parameters 𝛼, 𝛽 and 𝛾 must be given for
the modeled material. These parameters can be calibrated with the linear elasticity tensor as presented in
Section 1.2.

1.1.3 Formulation for the quasi-static case
When we consider that the displacement field does not vary in time and the system is in static

equilibrium, neglecting the dynamic effects, we call it the quasi-static problem. The quasi-static problem
is stated below.
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Nonlinear quasi-static weak formulation Find 𝑢 such that,

∀𝑤 ∈ V(Ω̂), ⟨𝐴(𝑢), 𝑤⟩ = 𝑙 (𝑤) (1.16)

with
⟨𝐴(𝑢), 𝑤⟩ =

∫
Ω̂
𝚺
(
𝒆(𝒖)) :

(
D𝒖 𝒆(𝒖)𝒘

)
dΩ̂ +

∫
Γ̂𝑁

𝒇 𝑠 · 𝒘 𝐽∥𝑭−⊺ · 𝒏̂∥dΓ̂,

𝑙 (𝑤) =
∫
Ω̂
𝜌̂ 𝒇 · 𝒘 dΩ̂.

None of the variables is time-dependent. When solving iteratively the nonlinear problem (1.16), as it
will be presented in Chapter 2, the tangent of the stiffness operator 𝐴 is also needed at each iteration. For
hyperelastic laws, this requires the differentiation of 𝚺

D𝒆𝚺(𝒆) = D2
𝒆W (𝒆), (1.17)

as defined in Definition A.2.8. Expressing this differentiation w.r.t. the invariants derivatives we have

D2
𝒆W = 4

𝑛∑︁
𝑖=1

𝜕W

𝜕𝐼𝑖

𝜕2𝐼𝑖
𝜕𝑪𝜕𝑪

+ 4
𝑛∑︁

𝑖, 𝑗=1

𝜕2W

𝜕𝐼𝑖𝜕𝐼 𝑗

𝜕𝐼𝑖

𝜕𝑪
⊗ 𝜕𝐼 𝑗
𝜕𝑪

, (1.18)

requiring as input for the implementation in a generic solver, the second derivatives of the invariants and
of the hyperelastic potential.

1.2 Modeling linear wave propagation problems
When the source terms are of small amplitude, such as when we are exciting ultrasonic waves

in the material with traditional piezoelectric transducers, we expect the displacement field to satisfy
∥𝑢∥ ≪ 1 in a suitable norm. This hypothesis motivates the linearization of the presented formulations.
In this section, we start from the nonlinear elastodynamic formulation presented above and linearize it
around the reference configuration. Assuming ∥𝑢∥ ≪ 1 and ∥∇̂𝒙𝑢∥ ≪ 1 in given norms, the following
approximations are done, [Le Tallec, 2009; Chaves, 2013]

𝐹 ≈ 1, 𝐽 ≈ 1, Ω(𝑡) ≈ Ω̂, 𝒆(𝒖) ≈ 𝜺(𝒖) = 1
2

(
∇̂𝒙𝒖 + (∇̂𝒙𝒖)⊺

)
.

Then, we have that

D𝒖 𝒆(𝒖) · 𝒘 ≈ 𝜺(𝒘), ∀𝒘 ∈ V(Ω̂), and 𝚺
(
𝒆(𝒖)) ≈ D𝒖𝚺(0) · 𝒖 .

Using Definition A.1.3, the stress-strain relation becomes

D𝒖𝚺(0) · 𝒖 = D2
𝒆W (0) : D𝒖 𝒆(0) · 𝒖

= 𝑪 : 𝜺(𝒖),
where we defined the fourth-order elasticity tensor 𝑪. Finally, the stress tensor results in

𝝈 = 𝐽−1𝑭 · 𝚺 · 𝑭⊺ ≈ 𝑪 : 𝜺(𝒖),
known as Hooke’s law. The strong formulation assumes the form

𝜌̂
𝜕2𝒖

𝜕𝑡2
− ∇̂𝒙 ·

(
𝑪 : 𝜺

)
= 𝜌̂ 𝒇 in Ω̂, (1.19)

with space and time dependencies omitted. We can define then the linear weak formulation below, for

V(Ω̂) = {𝑣 ∈ H1(Ω̂)3 | 𝒗 = 0 in Γ̂𝐷}.
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Linear elastodynamic weak formulation ∀𝑡 > 0, find 𝑢(𝑡) ∈ V(Ω̂) such that

∀𝑤 ∈ V(Ω̂), d2

d𝑡2
(
𝑢, 𝑤

)
L2 (Ω̂) + ⟨𝐴𝑢, 𝑤⟩ = 𝑙 (𝑤) (1.20)

with (
𝑢, 𝑤

)
L2 (Ω̂) =

∫
Ω̂
𝜌̂ 𝒖 · 𝒘dΩ̂,

⟨𝐴𝑢, 𝑤⟩ =
∫
Ω̂
𝜺(𝒖) : 𝑪 : 𝜺(𝒘) dΩ̂

𝑙 (𝑤) =
∫
Ω̂
𝜌̂ 𝒇 · 𝒘 dΩ̂ +

∫
Γ̂𝑁

𝒇 𝑠 · 𝒘dΓ̂.

1.2.1 Constitutive laws in the linear framework
As shown above, in the linear elastodynamic case using hyperelastic laws, the stress-strain relation is

given by the elasticity tensor
𝑪 = D2

𝒆W (0).
We analyze here the given hyperelastic laws in Section 1.1.2 and how they are represented as the elasticity
tensor. Using the engineering (or Voigt) notation [Chaves, 2013], we can represent the tensors as
matrix and tensor contractions as scalar products. To assemble the elasticity tensor in the following
representation, attention must be given to the differentiation D2

𝒆W to ensure coherence between the
operator and to what it is applied. Further discussion on compressed matrix representation can be found
in [Helnwein, 2001]. The elasticity, strain and stress tensors in Voigt notation are

𝐶𝑣 =

©­­­­­­­«

𝐶1111 𝐶1122 𝐶1133 𝐶1123 𝐶1113 𝐶1112
𝐶1122 𝐶2222 𝐶2233 𝐶2223 𝐶2213 𝐶2212
𝐶1133 𝐶2233 𝐶3333 𝐶3323 𝐶3313 𝐶3312
𝐶1123 𝐶2223 𝐶3323 𝐶2323 𝐶2313 𝐶2312
𝐶1113 𝐶2213 𝐶3313 𝐶2313 𝐶1313 𝐶1312
𝐶1112 𝐶2212 𝐶3312 𝐶2312 𝐶1312 𝐶1212

ª®®®®®®®¬
, 𝜀𝑣 =

©­­­­­­­«

𝜀11
𝜀22
𝜀33

2𝜀23
2𝜀13
2𝜀12,

ª®®®®®®®¬
and 𝜎𝑣 = 𝐶𝑣𝜀𝑣 =

©­­­­­­­«

𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12

ª®®®®®®®¬
.

We have the final format in Voigt notation by defining 𝐶𝑖 𝑗 , 𝜀𝑖 and 𝜎𝑖

𝐶𝑣 =

©­­­­­­­
«

𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16
𝐶12 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26
𝐶13 𝐶23 𝐶33 𝐶34 𝐶35 𝐶36
𝐶14 𝐶24 𝐶34 𝐶44 𝐶45 𝐶46
𝐶15 𝐶25 𝐶35 𝐶45 𝐶55 𝐶56
𝐶16 𝐶26 𝐶36 𝐶46 𝐶56 𝐶66

ª®®®®®®®¬
, 𝜀𝑣 =

©­­­­­­­«

𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6

ª®®®®®®®¬
and 𝜎𝑣 =

©­­­­­­­«

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

ª®®®®®®®¬
= 𝐶𝑣𝜀𝑣 .

Different classes of symmetries for the material will lead to a reduction in the number of independent
components. The elasticity tensor related to the Saint-Venant-Kirchhoff constitutive law (1.10) becomes
the traditional Hooke’s law with the Lamé parameters

𝐶𝑣,SVK =

©­­­­­­­
«

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

ª®®®®®®®
¬
. (1.21)
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Using the potential of the hyperelastic constitutive laws presented in Section 1.1.2, we can calibrate its
parameters w.r.t. the elasticity tensor. For instance, for the Compressible Neo Hookean, writing D2

𝒆W (0)
in the Voigt notation yields

𝐶𝑣,CNH =

©­­­­­­­
«

2𝑐1 + 4𝑐2 2𝑐1 2𝑐1 0 0 0
2𝑐1 2𝑐1 + 4𝑐2 2𝑐1 0 0 0
2𝑐1 2𝑐1 2𝑐1 + 4𝑐2 0 0 0
0 0 0 2𝑐2 0 0
0 0 0 0 2𝑐2 0
0 0 0 0 0 2𝑐2

ª®®®®®®®
¬
,

which, as a result, can be calibrated w.r.t. the Lamé parameters yielding

𝑐1 =
𝜆

2
, 𝑐2 =

𝜇

2
.

Another example where the calibration is considered is the case of transversely isotropic laws. In this
case, five parameters are needed to describe its behavior. For the principal axis being the first one, the
behavior of a transversely isotropic material can be described by the parameters 𝐶11, 𝐶22, 𝐶12, 𝐶13 and
𝐶66 in an elasticity tensor of the form

𝐶𝑣,TI =

©­­­­­­­
«

𝐶11 𝐶12 𝐶13 0 0 0
𝐶12 𝐶11 𝐶13 0 0 0
𝐶13 𝐶13 𝐶33 0 0 0
0 0 0 1

2 (𝐶11 − 𝐶12)
0 0 0 0 𝐶66 0
0 0 0 0 0 𝐶66

ª®®®®®®®¬
. (1.22)

By developing the elasticity tensor D2
𝒆W (0) for the transverse isotropic law (1.14), we have

𝐶𝑣,TI =

©­­­­­­­
«

−4𝛼 + 4𝛽 + 8𝛾 + 𝜆 + 2𝜇 2𝛽 + 𝜆 2𝛽 + 𝜆 0 0 0
2𝛽 + 𝜆 𝜆 + 2𝜇 𝜆 0 0 0
2𝛽 + 𝜆 𝜆 𝜆 + 2𝜇 0 0 0

0 0 0 𝜇 0 0
0 0 0 0 −𝛼 + 𝜇 0
0 0 0 0 0 −𝛼 + 𝜇

ª®®®®®®®
¬
,

and the following relations are retrieved

𝜆 = 𝐶23, 𝜇 =
𝐶22 − 𝐶23

2
,

𝛼 =
𝐶22 − 𝐶23 − 2𝐶66

2
, 𝛽 =

𝐶12 − 𝐶23
2

,

𝛾 =
𝐶11 − 2𝐶12 + 𝐶22 − 4𝐶66

8
.

This calibration was also done in [Bonet and Burton, 1998] considering the poisson ratios 𝜈12 = 𝜈13 =
𝜈23, but here we consider that 𝜈12 = 𝜈13 ≠ 𝜈23.

1.2.2 Obtaining plane wave velocities from the elasticity tensor
In this section, with the assumption of harmonic plane waves and the Kelvin-Christoffel equations

[Musgrave, 1970; Brown, 1989] we obtain the local quasi-longitudinal and quasi-shear velocities for
plane waves from the elasticity tensor components [Carcione, 2001]. First, we write (1.19) with no
source term in the traditional indicial notation

𝜌̂𝜕𝑡𝑡𝑢𝑖 − 𝜕 𝑗
(
𝐶𝑖 𝑗𝑘𝑙𝜀𝑘𝑙

)
= 0.



1.3. Galerkin approximation and explicit time scheme 37

Using Property A.1.1, yields
𝜌̂𝜕𝑡𝑡𝑢𝑖 − 𝜕 𝑗

(
𝐶𝑖 𝑗𝑘𝑙𝜕𝑙𝑢𝑘

)
= 0,

and, developing the divergence and considering ∥∇𝑥̂𝑪∥ ≪ 1 in a suitable norm,

𝜌̂𝜕𝑡𝑡𝑢𝑖 − 𝐶𝑖 𝑗𝑘𝑙𝜕 𝑗𝜕𝑙𝑢𝑘 = 0.

Now, considering a harmonic plane wave with frequency 𝜔 𝑓 as a solution,

𝑢𝑖 (𝒙̂) = 𝑢𝑎𝑖 𝑒𝜔 𝑓 (𝑠𝑚 𝑥̂𝑚−𝑡 ) ,

where 𝒔 = (𝑠1, 𝑠2, 𝑠3) = 𝑣−1𝒏 is the slowness vector in the direction 𝒏 and 𝑣 is the wavespeed, we have
(
𝐶𝑖 𝑗𝑘𝑙 (𝑠 𝑗 𝑠𝑙) − 𝜌̂𝑣2𝛿𝑖𝑘

)
𝑢𝑘 = 0.

The eigenproblem can be solved to find 𝜌̂𝑣2 and 𝑢𝑘 . By solving this eigenproblem, we retrieve up
to 3 modes of propagation for bulk waves and their respective velocities, depending on the material
symmetries.

1.3 Galerkin approximation and explicit time scheme
In this section, we present the class of (Galerkin) approximations that can be used to solve the linear

finite-dimensional problem in the form (1.20). It consists of using a subset of the solution spaceV(Ω̂) to
solve the weak formulation. It allows us to use a discrete solution space in order to represent the problem
as matrix and vector products. Defining the set {𝝍ℎ,𝐼 }𝑁ℎ

𝐼=1 of global functions that span the approximation
discrete space, dicretized with step ℎ,

V 0
ℎ (Ω̂) = span{𝝍ℎ,𝐼 }𝑁ℎ

𝐼=1,

we consider solving the problem for this subspace with the same bilinear forms and 𝑢ℎ ∈ V 0
ℎ (Ω̂).

Leapfrog time scheme. Using a second-order centered time scheme, we approximate the time derivative
as

d2𝑢ℎ

d𝑡2
(𝑛Δ𝑡) ≈ 𝑢

𝑛+1
ℎ − 2𝑢𝑛ℎ + 𝑢𝑛−1

ℎ

Δ𝑡2
, ∀𝑛 ∈ ⟦1; 𝑁⟧,

and obtain the time-discrete problem form(
𝑢𝑛+1ℎ − 2𝑢𝑛ℎ + 𝑢𝑛−1

ℎ

Δ𝑡2
, 𝑤ℎ

)
L2 (Ω̂)

+ ⟨𝐴𝑢𝑛ℎ, 𝑤ℎ⟩ = 𝑙 (𝑤ℎ), ∀𝑤ℎ ∈ V 0
ℎ (Ω̂), (1.23)

where Δ𝑡 is the time step and 𝑢𝑛ℎ ≈ 𝑢ℎ (𝑛Δ𝑡). With the evaluation of the stiffness operator 𝑎 at 𝑢𝑛ℎ, we can
retrieve an explicit scheme without the need for inverting the resulting 𝐴 operator.

Fully discrete form. Using Property A.2.2 and Property A.2.4, we can define −→𝑢ℎ and −→𝑤ℎ representing
the elements and operators in their vectorial and matrix form, yielding

(𝑢ℎ, 𝑤ℎ)L2 (Ω̂) =
−→𝑢ℎ⊺M−→𝑤ℎ, ⟨𝐴𝑢ℎ, 𝑤ℎ⟩ = −→𝑢ℎ⊺K−→𝑤ℎ, 𝑙 (𝑤ℎ) = −→𝑓ℎ⊺M−→𝑤ℎ,

leading to the fully-discrete form

M
(−→𝑢ℎ𝑛+1 − 2−→𝑢ℎ𝑛 + −→𝑢ℎ𝑛−1

Δ𝑡2

)
+K−→𝑢ℎ = M

−→
𝑓ℎ . (1.24)
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In order to obtain −→𝑢ℎ for a given time step, we can write the time marching operation as

−→𝑢ℎ𝑛+1 = Δ𝑡2
−→
𝑓ℎ
𝑛 −M−1K−→𝑢ℎ𝑛 + 2−→𝑢ℎ𝑛 − −→𝑢ℎ𝑛−1. (1.25)

At each time step, the inversion of the mass and the application of the stiffness matrix must be done. As
we present next, the use of the spectral finite elements method with mass lumping (Section 1.4) makes this
scheme explicit and most of the computational cost becomes present in the matrix-vector multiplication
K−→𝑢ℎ𝑛.

Energy conservation and stability. Here, we recall the energy technique for analyzing the stability of
the time marching scheme [Cohen, 2002; Joly, 2003]. First, we assume that the source term is zero, i.e.
no energy input, and a test function in the form of

−→𝑤ℎ =
−→𝑢ℎ𝑛+1 − −→𝑢ℎ𝑛+1

2Δ𝑡

being an approximation of (d𝑡−→𝑢ℎ) (𝑛Δ𝑡). By defining the total energy at 𝑛 + 1
2 as

E 𝑛+
1
2 =

1
2

{−→𝑢ℎ𝑛+1 − −→𝑢ℎ𝑛
Δ𝑡

}⊺
M

{−→𝑢ℎ𝑛+1 − −→𝑢ℎ𝑛
Δ𝑡

}
+ 1

2
−→𝑢ℎ𝑛+1K−→𝑢ℎ𝑛, (1.26)

one can show that, with the relation (1.25),

E 𝑛+
1
2 − E 𝑛−

1
2

Δ𝑡
= 0.

This ensures energy conservation. To ensure the stability of the scheme, the energy E must be positive
at all 𝑛 steps. As M is positive-definite, the first term in (1.26) is always positive. The second term is
further manipulated to obtain

−→𝑢ℎ𝑛+1K−→𝑢ℎ𝑛 = 1
2

{−→𝑢ℎ𝑛+1 + −→𝑢ℎ𝑛
2

}⊺
K

{−→𝑢ℎ𝑛+1 + −→𝑢ℎ𝑛
2

}
− Δ𝑡2

4

{−→𝑢ℎ𝑛+1 − −→𝑢ℎ𝑛
Δ𝑡

}⊺
K

{−→𝑢ℎ𝑛+1 − −→𝑢ℎ𝑛
Δ𝑡

}
,

leading to

E 𝑛+
1
2 =

1
2

{−→𝑢ℎ𝑛+1 + −→𝑢ℎ𝑛
2

}⊺
K

{−→𝑢ℎ𝑛+1 + −→𝑢ℎ𝑛
2

}
+ Δ𝑡2

4

{−→𝑢ℎ𝑛+1 − −→𝑢ℎ𝑛
Δ𝑡

}⊺ (
M − Δ𝑡2

4
K

) {−→𝑢ℎ𝑛+1 − −→𝑢ℎ𝑛
Δ𝑡

}
.

The positivity of the first term is ensured by the positivity of K , which is the case for the linear elasticity
problem (1.20), but it is not always the case for a linearized problem, as we show in the Chapter 2.
The positivity of the second term is ensured by the positivity of

(
M − Δ𝑡2

4 K
)
, leading to the Courant-

Friedrichs-Lewy condition on the time step

Δ𝑡 ≤ 2√︁
𝑟 (M−1K )

, (1.27)

where 𝑟 (·) represents the spectral radius. This is valid for any Galerkin approximation, including the one
presented in the next section.

1.4 Space approximation using the spectral elements method
Here, we precise the methods used for the discretization and the construction of the approximation

space V 0
ℎ (Ω̂). More precisely, we use the Spectral Finite Elements method [Maday and Patera, 1989;

Komatitsch and Vilotte, 1998; Joly, 2007]. This method allows efficient use of high-order finite elements,
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reducing considerably numerical artifacts in wave propagation [Basabe, 2007; Seriani and Oliveira,
2008]. Avoiding numerical artifacts is particularly important for our work as we deal with ultrasonic
guided waves that can propagate during long periods and through long distances. Also, the mass lumping
and unassembled stiffness matrix application presented in this section reduces the computational cost and
the required memory, increasing the number of solvers that can be run in parallel in a given machine.
In an inverse problem context such as the one to be presented in Chapter 4, the capacity to launch
and run several solvers in parallel is essential. For the sake of simplicity, we will present the spectral
elements method for an acoustic case where 𝑢 is a scalar field. Although, in this work, we deal with the
elastodynamics problem (1.20), the techniques presented in this section can be applied to a vectorial field
case, being more laborious algebraically but not adding essential difficulty. With the functional space
H1(Ω̂) defined as in Definition A.2.1, the scalar acoustic problem reads:

Linear acoustic weak formulation ∀𝑡 > 0, find 𝑢(𝑡) ∈ H1(Ω̂) such that

∀𝑤 ∈ H1(Ω̂), d2

d𝑡2
(
𝑢, 𝑤

)
L2 (Ω̂) + ⟨𝐴𝑢, 𝑤⟩ = 𝑙 (𝑤) (1.28)

with (
𝑢, 𝑤

)
L2 (Ω̂) =

∫
Ω̂
𝜌̂ 𝑢 𝑤 dΩ̂,

⟨𝐴𝑢, 𝑤⟩ =
∫
Ω̂
𝑐(𝑥) (∇𝑥̂𝑢)⊺∇𝑥̂𝑤 dΩ̂,

𝑙 (𝑤) =
∫
Ω̂
𝑓 𝑤 dΩ̂.

First, we define a conform tesselation of Ω̂ with elements 𝐾 ∈ Tℎ (Ω̂) where

Ω̂ =
⋃

𝐾∈Tℎ (Ω̂)
𝐾 and 𝐾̊ ∩ 𝐾̊ ′ = ∅, ∀𝐾, 𝐾 ′ ∈ Tℎ (Ω̂) and 𝐾 ≠ 𝐾 ′,

with ℎ being the average element size. Using this definition of the mesh Tℎ (Ω̂), we define the discretized
solution space as

𝑉ℎ (Ω̂) = {𝑣ℎ ∈ C0(Ω̂) | ∀𝐾 ∈ Tℎ (Ω̂), ∃!̂𝑣 ∈ Q𝑘 (𝐾), 𝑣ℎ |𝐾 = 𝑣̂ ◦ 𝚼−1
𝐾 } ⊂ H1(Ω̂),

and
𝑉0
ℎ (Ω̂) = {𝑣ℎ ∈ 𝑉ℎ (Ω̂), 𝑣ℎ = 0 on Γ̂𝐷}

being a discrete Galerkin approximation, i.e. internal approximation of H1(Ω̂). This approximates the
space with global continuous functions where, for every element 𝐾 , it has a correspondent local function
defined in 𝐾 , the reference element. The functional space of local functions Q𝑘 (𝐾) with 𝑘-th order
polynomials, to be soon precised, is the functional space that represents locally the global functions
𝑣ℎ ∈ C0(Ω̂). The mapping 𝚼𝐾 is defined as the bijective map from 𝐾 to 𝐾 . We define the set of global
functions {𝜓ℎ,𝐼 }𝑁ℎ

𝐼=1 that spans the approximation space

𝑉0
ℎ (Ω̂) = span{𝜓ℎ,𝐼 }𝑁ℎ

𝐼=1, 𝜓ℎ,𝐼 (𝝃ℎ,𝐽 ) = 𝛿𝐼 𝐽 ∀𝐼, 𝐽 = 0, 1, ..., 𝑁ℎ,

where {𝝃ℎ,𝐼 }𝑁ℎ

𝐼=1 are called degrees of freedom, associated with the functions {𝜓ℎ,𝐼 }𝑁ℎ

𝐼=1. Now, we proceed
by detailing the use of a local functional basis and the reference element to do operations in the global
approximation space 𝑉ℎ (Ω̂), therefore enabling us to solve the weak formulation.

First, in Section 1.4.1, we present how operations can be done with local functions. Using these local
operations, we present in Section 1.4.2 how a diagonal mass is obtained through mass lumping and in
Section 1.4.3 how parallel and unassembled applications of the stiffness matrix can be done.
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1.4.1 Local operations in the reference element

In the definition of the functional space 𝑉ℎ the reference element 𝐾 is arbitrary. We consider here
the reference element as 𝐾 = [0, 1]3. Local coordinates are denoted as 𝜻 ∈ [0, 1]3. By definition, using
the mapping 𝚼𝐾 , every function in 𝑉ℎ (Ω̂) is represented by a local function in Q𝑘 (𝐾). Let Q𝑘 (𝐾) be
the space of polynomials characterized by a set

{
𝝃̂ 𝑗

} 𝑁̂
𝑗=1 of coordinates representing the local degrees of

freedom such that

Q𝑘 (𝐾) =
[
P𝑘 ( [0, 1])

]3
= span{𝜓𝑖}𝑁̂𝑖=1, 𝜓𝑖 (𝝃̂ 𝑗) = 𝛿𝑖 𝑗 ∀𝑖, 𝑗 ∈ ⟦0; 𝑁̂⟧.

The one-dimensional polynomials inP𝑘 ( [0, 1]) are characterized by “edge” degrees of freedom
{
𝜉 1D
𝑗

}𝑁𝑒

𝑗=1,
such that

P𝑘 ( [0, 1]) = span{𝜐̂𝑖}𝑁𝑒

𝑖=1, 𝜐̂𝑖 (𝜉 1D
𝑗 ) = 𝛿𝑖 𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑁𝑒 .

The size of these spaces is related as 𝑁̂ = (𝑁𝑒)3 = (𝑘 + 1)3. To enable the use of high-order Lagrange
polynomials, the one-dimensional degrees of freedom {𝜉 1D

𝑗 }𝑁𝑒

𝑗=1 are distributed as the Gauss-Lobatto
points, avoiding the Runge’s phenomenon. We precise then the three-dimensional degrees of freedom
coordinates constructed from the one-dimensional ones,

{
𝝃̂𝑖

} 𝑁̂
𝑖=1 =

{(𝜉 1D
𝛼 , 𝜉

1D
𝛽 , 𝜉

1D
𝛾 ), ∀(𝛼, 𝛽, 𝛾) ∈ ⟦1; 𝑁𝑒⟧3}𝑁3

𝑒

𝑖=1.

The three-dimensional basis functions are also constructed by using the one-dimensional ones. For
(𝜐̂ (1) , 𝜐̂ (2) , 𝜐̂ (3) ) ∈ Q𝑘 (𝐾)3, we have

{
𝜓𝑖 (𝜻)

} 𝑁̂
𝑖=1 =

{
𝜐̂
(1)
𝛼 (𝜁1)𝜐̂ (2)𝛽 (𝜁2)𝜐̂ (3)𝛾 (𝜁3), ∀(𝛼, 𝛽, 𝛾) ∈ ⟦1; 𝑁𝑒⟧3}𝑁3

𝑒

𝑖=1.

In both cases, the relation between the left and right-hand side sets can be defined by an arbitrary one-
to-one relation 𝑖 ↔ (𝛼, 𝛽, 𝛾), for instance 𝑖 = 9(𝛼 − 1) + 3(𝛽 − 1) + 𝛾. One can note that an anisotropic
space Q can be constructed, meaning it is formed by one-dimensional polynomial spaces P with different
orders and degrees of freedom.

Quadrature formula. To integrate functions in 𝐾 numerically, we must apply a quadrature formula.
Attention must be given to ensure that approximation errors do not affect the stability and consistency of
the numerical model. Let 𝑔 be a function to be integrated, a quadrature formula reads

∫
𝐾
𝑔(𝜻)d𝐾 ≈

𝑁̂𝑞∑︁
𝑖=1

𝑤𝑖𝑔(𝜻𝑞𝑖 ), (1.29)

with 𝑁̂𝑞 being the number of quadrature points, {𝑤𝑖}𝑁̂𝑞

𝑖=1 the quadrature weights and {𝜻𝑞𝑖 }
𝑁̂𝑞

𝑖=1 the quadrature
points. For the presented implementation of the spectral finite elements method, the Gauss-Lobatto
quadrature formula with {𝜻𝑞𝑖 }

𝑁̂𝑞

𝑖=1 = {𝝃̂𝑖}𝑁̂𝑖=1 is used, leading to the mass lumping and efficient stiffness
matrix application, as presented in the following sections. The Gauss-Lobatto quadrature approximation
satisfies the necessary properties without losses in convergence [Duruflé, Grob, and Joly, 2009].

Local vector representations. By definition, every global function 𝑣 |𝐾 ∈ C0(Ω̂) has a local corre-
sponding function 𝑣̂ ∈ Q𝑘 (𝐾). Using property Property A.2.2, a function 𝑣̂ ∈ Q𝑘 (𝐾) can be represented
in its vectorial form

−→̂
𝑣 =

(̂
𝑣1 . . . 𝑣̂ 𝑁̂

)⊺ as the local finite elements vector.
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1.4.2 Lumping of the mass matrix
To obtain the components of the matrix M we develop the mass and right-hand side bilinear forms

as sums over the tesselation Tℎ,

𝑚(𝑢ℎ, 𝑤ℎ) =
∫
Ω̂
𝜌̂ 𝑢ℎ 𝑤ℎ dΩ̂ =

∑︁
𝐾∈Tℎ

∫
𝐾
𝜌̂ 𝑢ℎ 𝑤ℎ d𝐾,

𝑙 (𝑤ℎ) =
∫
Ω̂
𝜌̂ 𝑢ℎ 𝑤ℎ dΩ̂ =

∑︁
𝐾∈Tℎ

∫
𝐾
𝜌̂ 𝑢ℎ 𝑤ℎ d𝐾.

As we have one bijective map 𝚼𝐾 from 𝐾 to every 𝐾 , we use the local representations 𝑢̂ = 𝑢ℎ ◦ 𝚼𝐾 ,
𝑤 = 𝑤ℎ ◦ 𝚼𝐾 , 𝑓̂ = 𝑓ℎ ◦ 𝚼𝐾 , 𝐽𝐾 = det

(
∇̂𝒙̂𝚼𝐾

)
to write

𝑚(𝑢ℎ, 𝑤ℎ) =
∑︁
𝐾∈Tℎ

∫
𝐾
𝜌̂ 𝑢̂ 𝑤𝐽𝐾 d𝐾 =

∑︁
𝐾∈Tℎ

−→̂
𝑤 ⊺M̂𝐾

−→̂
𝑢

𝑙 (𝑤ℎ) =
∑︁
𝐾∈Tℎ

∫
𝐾
𝜌̂ 𝑓̂ 𝑤𝐽𝐾 d𝐾 =

∑︁
𝐾∈Tℎ

𝜌̂
−→̂
𝑤 ⊺M̂𝐾

−→̂
𝑓 ,

where M̂𝐾 ∈ M(R ) 𝑁̂×𝑁̂ refers to the local mass matrix of the element 𝐾 ∈ Tℎ.

Property 1.4.1. For 𝑢̂, 𝑣̂ ∈ Q𝑘 (𝐾) and a function 𝑔, the integral on the reference element can be
approximated using (1.29) as∫

𝐾
𝑔(𝒙) 𝑢̂ 𝑣̂ d𝐾 ≈ −→̂𝑢

⊺
M̂𝑔
−→̂
𝑣 with

(
M̂𝑔

)
𝑖 𝑗
= 𝑤𝑖𝑔(𝝃̂𝑖)𝛿𝑖 𝑗 ,

−→̂
𝑢 ,
−→̂
𝑣 being the local finite elements vectors representing 𝑢̂, 𝑣̂ ∈ Q𝑘 (𝐾).

Proof. Using a Gauss-Lobatto quadrature formula with the weights {𝑤𝑖}𝑁̂𝑞

𝑖=1 and quadrature points
that coincide degrees of freedom {𝝃̂𝑖}𝑁̂𝑖=1 of the basis functions, we have

∫
𝐾
𝑔(𝒙)𝑢̂ 𝑣̂ d𝐾 ≈

𝑁̂𝑞∑︁
𝑚=1

𝑤𝑚𝑔(𝝃̂𝑚) ©­«
𝑁̂∑︁
𝑗=1
𝑢̂ 𝑗𝜓 𝑗 (𝝃̂𝑚)ª®¬

©­
«
𝑁̂∑︁
𝑘=1

𝑣̂𝑘𝜓𝑘 (𝝃̂𝑞)ª®¬
.

As 𝜓𝑖 (𝝃̂ 𝑗) = 𝛿𝑖 𝑗 we obtain

∫
𝐾
𝑔(𝒙) 𝑢̂ 𝑣̂ d𝐾 ≈

𝑁̂∑︁
𝑚=1

𝑤𝑚𝑔(𝝃̂𝑚)𝑢̂𝑚𝑣̂𝑚 =
−→̂
𝑢
⊺
M̂𝑔
−→̂
𝑣 .

□

Using Property 1.4.1, the local mass matrix reads(
M̂𝐾

)
𝑖 𝑗 , 𝑁̂×𝑁̂ = 𝑤𝑖𝐽𝐾 (𝝃̂𝑖)𝜌(𝝃̂𝑖)𝛿𝑖 𝑗 .

From the operations above, one can deduce the assembly of the global mass matrix

M = A
𝐾∈Tℎ (Ω̂)

M̂𝐾 ,
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that will consequently be diagonal as well. The big “A” operator refers to the procedure of assembling
the matrix, often used in the finite elements literature. The mass matrix inversion needed in (1.25) is
obtained by inexpensively inverting each diagonal component.

1.4.3 Unassembled application of the stiffness matrix
In order to obtain the operations that lead to the elements in the matrix K we will represent the

integration also as the operations by element. For 𝑢ℎ, 𝑤ℎ ∈ 𝑉ℎ (Ω̂),

𝑎(𝑢ℎ, 𝑤ℎ) =
∫
Ω̂
𝑐(𝑥) (∇𝑥̂𝑢ℎ)⊺∇𝑥̂𝑤ℎ dΩ̂ =

∑︁
𝐾∈Tℎ (Ω̂)

∫
𝐾
𝑐(𝑥) (∇𝑥̂𝑢ℎ)⊺∇𝑥̂𝑤ℎ d𝐾.

Using the bijective map 𝚼𝐾 , we can write the integral in 𝐾 , by changing variables, as the local form∫
𝐾
𝑐(𝑥) (∇𝑥̂𝑢ℎ)⊺∇𝑥̂𝑤ℎ d𝐾 =

∫
𝐾
𝑐(𝜻)

( (∇𝜻𝚼𝐾 )−⊺ ∇𝜻 𝑢̂)⊺ ( (∇𝜻𝚼𝐾 )−⊺ ∇𝜻𝑤 )
𝐽𝐾 d𝐾

=
∫
𝐾
𝑐(𝜻) (∇𝜻 𝑢̂)⊺

(∇𝜻𝚼𝐾 )−1 (∇𝜻𝚼𝐾 )−⊺∇𝜻𝑤𝐽𝐾 d𝐾

where
𝒖̂ = 𝒖ℎ ◦ 𝚼𝐾 , 𝒘 = 𝒘ℎ ◦ 𝚼𝐾 , 𝑐 = 𝑐 ◦ 𝚼𝐾 .

The dependency on local coordinates was omitted. Applying a Gauss-Lobatto quadrature formula (1.29),
we can approximate this integration as

∫
𝐾
· · · d𝐾 ≈

𝑁̂∑︁
𝑚=1

𝑤𝑚𝐽𝐾 (𝝃̂𝑚)𝑐(𝝃̂𝑚) (∇𝜻 𝑢̂ (𝝃̂𝑚))⊺
(∇𝜻𝚼𝐾 (𝝃̂𝑚))−1 (∇𝜻𝚼𝐾 (𝝃̂𝑚))−⊺ ∇𝜻𝑤 (𝝃̂𝑚).

To evaluate this summation we need the gradients ∇𝜻 evaluated in the points of quadrature. Finally, we
can write

𝑎(𝑢ℎ, 𝑤ℎ) ≈
∑︁

𝐾∈Tℎ (Ω̂)

𝑁𝑞∑︁
𝑚=1

𝑤𝑟 𝐽𝐾𝑐 (∇𝜻 𝑢̂)⊺
(∇𝜻𝚼𝐾 )−1 (∇𝜻𝚼𝐾 )−⊺ ∇𝜻𝑤

with dependency evaluated at 𝝃̂𝑚 omitted.

Property 1.4.2. Using the Gauss-Lobatto quadrature formula presented in this section, the deriva-
tive w.r.t. the spatial component 𝑗 of a local function 𝑣̂ ∈ Q𝑘 (𝐾) evaluated at all local degrees of
freedom can be expressed as

−−→
𝜕 𝑗 𝑣̂ =

©­­«
𝜕 𝑗 𝑣̂(𝝃̂1)

...

𝜕 𝑗 𝑣̂(𝝃̂ 𝑁̂ )

ª®®¬
= Γ ( 𝑗 )

−→̂
𝑣 where Γ ( 𝑗 ) =

©­­­
«

𝛾
( 𝑗 )
1,1 𝛾

( 𝑗 )
1,2 . . . 𝛾

( 𝑗 )
1, 𝑁̂

...
. . .

...

𝛾
( 𝑗 )
𝑁̂ ,1

𝛾
( 𝑗 )
𝑁̂ ,2

. . . 𝛾
( 𝑗 )
𝑁̂ , 𝑁̂

ª®®®
¬

and 𝛾 ( 𝑗 )𝑚,𝑛 = 𝜕 𝑗𝜓𝑛 (𝝃̂𝑚) with 𝜓𝑛 being the 𝑛-th local basis function of the space Q𝑘 (𝐾) and 𝝃̂𝑚
being the 𝑚-th local degree of freedom.

Proof. By definition, 𝑣̂ and its derivative w.r.t. to the 𝑗-th component can be written as

𝑣̂(𝜻) =
𝑁̂∑︁
𝑛=1

𝑣̂𝑛𝜓𝑛 (𝜻) and 𝜕 𝑗 𝑣̂(𝜻) =
𝑁̂∑︁
𝑛=1

𝑣̂𝑛𝜕 𝑗𝜓𝑛 (𝜻),
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respectively. As {𝜓𝑛}𝑁̂𝑛=1 are polynomials, its derivatives can also be represented in the same
discrete space

𝜕 𝑗𝜓𝑛 (𝜻) =
𝑁̂∑︁
𝑚=1

𝛾
( 𝑗 )
𝑚,𝑛𝜓𝑚(𝜻), with 𝛾

( 𝑗 )
𝑚,𝑛 = 𝜕 𝑗𝜓𝑛 (𝝃̂𝑚).

Using these representations we have

𝜕 𝑗 𝑣̂(𝜻) =
𝑁̂∑︁
𝑛=1

𝑣̂𝑛

𝑁̂∑︁
𝑚=1

𝛾
( 𝑗 )
𝑚,𝑛𝜓𝑚(𝜻),

that, evaluated at a degree of freedom 𝝃̂𝑖 , yields

𝜕 𝑗 𝑣̂(𝝃̂𝑖) =
𝑁̂∑︁
𝑛=1

𝑣̂𝑛𝛾
( 𝑗 )
𝑖,𝑛 =

(
𝛾
( 𝑗 )
𝑖,1 𝛾

( 𝑗 )
𝑖,2 . . . 𝛾

( 𝑗 )
𝑖, 𝑁̂

) ©­­­­
«

𝑣̂1
𝑣̂2
...

𝑣̂ 𝑁̂

ª®®®®
¬
.

This relation leads to the definition of the matrix Γ ( 𝑗 ) . □

Using Property 1.4.2 to assemble a gradient vector and rearranging the above operations, we can
construct an element-wise operation represented by the local stiffness matrix

{
K̂𝐾

}
𝐾∈Tℎ , applied to the

local finite-element vectors, such as

𝑎(𝑢ℎ, 𝑤ℎ) ≈
∑︁

𝐾∈Tℎ (Ω̂)

−→̂
𝑢 K̂𝐾

−→̂
𝑤 , ∴ K = A

𝐾∈Tℎ (Ω̂)
K̂𝐾 .

Unassembled and parallel computations. When solving (1.25) using the presented spectral elements
methods, the inversion of M becomes computationally cheap as it is diagonal. The most CPU-consuming
part becomes the matrix-vector product K−→𝑢ℎ𝑛 and we present here how it can be done more efficiently.

Property 1.4.3. In the three dimensional case, the matrix Γ ( 𝑗 ) has a sparsity ratio of 𝑘
𝑘+1 .

Proof. The basis functions {𝜓𝑛}𝑁̂𝑛=1 ∈ Q𝑘 (𝐾) = P𝑘 (𝐾)3, evaluated at the degrees of freedom,
are decomposed by definition as

𝜓𝑛 (𝝃̂𝑚) =
3∏
𝑖=1

𝜐̂
(𝑖)
𝑛 (𝜉𝑚,𝑖),

where {𝜐̂ (𝑖)𝑛 }𝑁̂𝑛=1 ∈ P𝑘 depends only on the 𝑖-th coordinate component. The components of Γ ( 𝑗 )
are

𝛾
( 𝑗 )
𝑚,𝑛 = 𝜕 𝑗𝜓𝑛 (𝝃̂𝑚) = 𝜕 𝑗

𝑑∏
𝑖=1

𝜐̂
(𝑖)
𝑛 (𝜉𝑚,𝑖),

whick leads to the sparsity as by construction, 𝜉𝑚,𝑖 is a degree of freedom of 𝜐̂ (𝑖)𝑛 . Then we have,
for instance, for 𝑗 = 1 in the three-dimensional case

𝛾
(1)
𝑚,𝑛 = 𝜐̂

(2)
𝑛 (𝜉𝑚,2)𝜐̂ (3)𝑛 (𝜉𝑚,3),
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being non-zero when 𝝃̂𝑚 is in the plane orthogonal to the 𝑗 = 1 axis at 𝜉𝑚,1, resulting in a sparsity
ratio of 𝑘

𝑘+1 when Q𝑘 is isotropic. □

In Property 1.4.3, we demonstrate that the gradient operations are sparse, leading to fewer operations
when applying K in comparison to stiffness matrices built with traditional quadrature formulas. As the
construction of the stiffness matrix K is done by summing element-wise contributions and the only need
we have for it is its application on a vector, this matrix-vector operation can be done without assembling
the stiffness matrix. Additionally, this sum can be done in parallel by treating potential concurrent writing.
If Tℎ is constructed in a structured manner, concurrent writing can be effectively avoided by grouping
the elements Tℎ that do not share common degrees of freedom. We denote this aggroupment as G. The
matrix-vector product K−→𝑢ℎ𝑛 is then described in Algorithm 1. More details can be found in [Alexandre
Imperiale and Demaldent, 2019].

Algorithm 1: Unassembled matrix-vector product of the stiffness operator.
Input: Groups E of elements in G, the global finite elements vector −→𝑢ℎ and the local-to-global

mapping ℓ.
Output: The result of the matrix-vector product −→𝑉 = K−→𝑢 .

1 initialize empty global vector −→𝑉
2 for 𝐺 ∈ G do
3 parallel for 𝑒 ∈ E(𝐺) do
4 obtain

−→̂
𝑢𝑒 from −→𝑢ℎ

5 for 𝑖 = 1, ..., 𝑁̂ do
6

−→
𝑉 [ℓ(𝑖, 𝑒)] ← −→𝑉 [ℓ(𝑖, 𝑒)] +K𝑒

−→̂
𝑢𝑒

7 end
8 end
9 end

1.5 Performance illustration on realistic dimensions

The performance of this implementation of the high-order spectral finite elements is illustrated here
by modeling two cases. In the first one, ultrasonic waves propagating in an aircraft wing leading edge
are modeled using low-order finite elements and high-order finite elements, highlighting the efficiency
of using high-order elements for long-range wave propagation. This first illustration was done in the
context of the “GW4SHM” project, during the exchange at the Imperial College London. In the second
case, an analog of a one-shot aircraft is modeled to assess performance in a computationally demanding
configuration. For both configurations, the aluminum material properties are used, namely 𝜆 = 54.3GPa
and 𝜇 = 27.17GPa.

1.5.1 High-order finite elements for guided wave propagation

We solve a wave propagation problem in an aircraft wing leading edge using two different solvers
with the objective of highlighting the particularities of the spectral finite elements method. The leading
edge has dimensions of ∼ 160 × 2300 × 100mm. The model for the wave propagation will be the linear
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elastodynamics (1.20). The geometry, excitation point and measurement points are depicted in Figure 1.2.
Ultrasonic waves are excited with a body force with spatial dependency, for all vectorial components, as

𝑒−(
𝒙−𝒙0
𝜎 )2

centered (by setting 𝒙0) at the thickness mid-point with 𝜎 = 15mm. The time-dependent part of the
source term is a 200kHz Hanning windowed 5-cycle cosine wave. In the following, we model this setup
using two different solvers, one based on low-order finite elements and ours. Our objective is to highlight
the importance of using high-order elements for wave propagation over long distances.

Figure 1.2 – Illustration domain Ω̂, source (red) and measurement points (blue) position.

(a) Order 1 Tℎ (Ω̂) discretization. (b) Order 4 Gauss-Lobatto Tℎ (Ω̂) discretization.

Figure 1.3 – Illustration of different types of discretizations.

Using Q1 finite elements. For the low-order case, the space is discretized with Q1 finite elements. An
example of Q1 mesh discretization is shown in Figure 1.3a. For this illustration, we use the solver imple-
mented in [Huthwaite, 2014], a highly parallelized approach using GPUs for memory and computation.
A thumb rule for good convergence of the solution for this type of element is to set the mesh step ℎ
resulting in a minimum of 20 finite elements per wavelength. The maximum time step could be computed
using the CFL condition (1.27) but as the computation of M−1K is not directly available with the solver,
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an approximation for low-order finite elements and uniform mesh stepping can be done as

2√︁
𝑟 (M−1K )

≈ ℎ

𝑐0
.

Therefore, we choose
Δ𝑡 = 0.2

ℎ

𝑐0
,

where 𝑐0 is the pressure wave velocity and 0.2 is used as a safety factor to satisfy the CFL condition due
to the quality issues of our generated mesh. To test convergence, two different discretizations were set
and run: with 20 and 24 nodes per wavelength resulting in 31 million and 52 million degrees of freedom,
respectively. We ran the solver up to 600𝜇s. Using 3 GPU GeForce RTX 2080 Ti, the computation took 8
minutes and required 12GB of VRAM for the 20 nodes per wavelength case. For 24 nodes per wavelength,
it took 17 minutes and 24GB of VRAM. The Y component is extracted at the closest measurement point,
420mm distant from the source. The extracted signal is plotted in Figure 1.4 for the two discretizations.
The results show that the solution is not converged and the numerical error in the signal accumulates
from different reflections and paths taken by the wavefront. Increasing the CFL factor did not result in
significant improvements.

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (𝜇𝑠)

Nodes per wavelength
20
24

Figure 1.4 – Extracted Y component of the displacement field at 420mm from the source. The simulation
is done using the space Q1.

Using Q4 finite elements. For the high-order case, we use finite elements constructed by polynomials
in Q4 and a mesh Tℎ. An example of Q4 mesh discretization using Gauss-Lobatto points is shown in
Figure 1.3b. The mesh step was chosen to ensure a minimum of 8 or 16 nodes per wavelength. Using
power iteration, we estimate the greatest eigenvalue of M−1K , hence being able to compute a time step
that satisfies the CFL condition (1.27). For this frequency, a time-step of Δ𝑡 = 0.02𝜇s was sufficient.
Here, we also run the solver up to 600𝜇s using a Intel i9-9880H CPU in a laptop workstation. The
presented implementation for the spectral finite elements methods required 300MB of RAM and took
40 minutes to run for 8 nodes per wavelength, and 600MB/1h30 minutes for 16 nodes per wavelength.
The extracted signals are plotted in Figure 1.5, showing a good convergence already for 8 nodes per
wavelength. Snapshots of the computed wavefield are shown in Figure 1.6.

Discussion. In both implementations, the geometry discretization in mesh elements was done by the
same basic algorithm, resulting in the same element size quality. Treatment and enhancements on mesh
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Figure 1.5 – Extracted Y component of the displacement field at 420mm from the source. The simulation
was done using the space Q4.

(a) t=60𝜇𝑠. (b) t=300𝜇𝑠.

Figure 1.6 – Simulated wavefield generated by the a 200𝑘𝐻𝑧 source in a 2.3 meters long leading edge
using spectral elements method.

quality could also be done to improve Q1 discretization results. Treating the mesh quality would decrease
computation time for both cases by decreasing the required time step for the CFL condition. Curved
elements for the geometry could be used with the implementation of the spectral finite elements, but to
ensure fair comparison, linear elements were used for the mesh.

Finally, we compare in Figure 1.7 the first-arrival in the two measurement points for Q1 and Q4

cases. We can see that as the wave propagates further, the solution amplitude decreases in Q1 when
compared to the converged Q4 solution while presenting a delayed time of flight. These effects are due to
numerical dissipation and dispersion in low-order finite elements, making it less suitable for medium-long
range simulations. The efficient implementation of Q4 is limited to hexahedral elements while the Q1

one can be used with tetrahedral elements. This makes the Q1 implementation more suitable to small
(complex) geometries and short-time simulations, than not suitable for guided waves. The high-order
spectral finite elements, with low memory consumption and negligible numerical artifacts, allow us to
model and simulate long-range wave propagation as required for guided wave simulation.

1.5.2 A case with dimensions of small aircraft
We illustrate the use of the presented numerical method for the linear elastodynamic problem (1.20)

with realistic physical dimensions. Using the dimensions of a small aircraft, we model a one-shot wing
6m long, 8mm thick and 1200mm wide. We excite a 50kHz ultrasonic wave with a radial transducer at
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Figure 1.7 – Extracted Y component of the displacement field at 420mm (left) and 2000mm (right)
from the source cut at first arrivals. It shows the effects of numerical dissipation and dispersion in Q1

discretization.

the top and the bottom as depicted in Figure 1.8a. The domain discretization is shown in Figure 1.8b,
where we can see the characteristic Gauss-Lobatto distribution of points for every element. The number
of mesh points generated is 8.5 million, resulting in 25.5 million degrees of freedom.

(a) Illustration domain Ω̂ and surface radial source po-
sition.

(b) Domain discretization with Gauss-Lobatto points
(Tℎ).

Figure 1.8 – Setup for simulating ultrasonic wave propagation in an aluminum specimen with dimensions
of a small aircraft wing.

We consider the elasticity tensor (1.21) with the previously mentioned material parameters for alu-
minum. The excitation is done in a region of 20mm at the top and the bottom of the specimen. It is
a radial source term representing a piezoelectric ultrasonic transducer that expands and contracts when
excited with an electrical signal. We satisfy the CFL condition by using Δ𝑡 = 0.132318𝜇s. We run the
simulation up to 1000𝜇s, resulting in 7557 time steps. Due to mass lumping and the efficient application
of the stiffness matrix, the computation had a peak memory usage of 920MB RAM and took 45 minutes
to complete in a laptop workstation equipped with a Intel i9-9880H CPU.

Snapshots of the wavefield generated are shown in Figure 1.9. The ultrasonic excitation being done
at the surface excitates waves that, by reflecting on the opposite surfaces, result in a guided wave.
Elastic-guided waves can assume different propagation modes and in the case where it is generated by
reflections between two parallel surfaces, we have the Lamb wave modes [Lamb, 1917]. The propagation
starts at the top and bottom, propagating omnidirectionally and traveling around the specimen. In the
snapshots we can recognize the S0 (symmetric) Lamb mode, propagating at a higher velocity, followed by
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the A0 (asymmetric) Lamb mode. This illustration demonstrates the efficiency of such implementation
while outputting the full elastodynamic field, making it suitable for guided wave propagation in complex
geometries in realistic scenarios.

(a) t=140𝜇𝑠. (b) t=320𝜇𝑠.

(c) t=520𝜇𝑠. (d) t=700𝜇𝑠.

Figure 1.9 – Wavefield simulated in the 6 meter long aluminum specimen. With 25.5 million degrees of
freedom and 7557 time steps, the computation required 920MB RAM and took 45 minutes to run up to
1000𝜇s.

1.6 Conclusion
In this chapter, we presented the main concepts of nonlinear mechanics and the hyperelastic con-

stitutive laws. By assuming small displacements and strain, we retrieve a linearized formulation and
discuss the constitutive laws in the linear framework. By introducing the Galerkin approximation and
using a second-order time scheme we analyze energy conservation and stability properties for a linear
elastodynamics problem. The implementation of the spectral finite elements method was detailed. With
the chosen time scheme and mass lumping, we have an explicit scheme and by doing an unassembled
application of the stiffness matrix, we achieve a low memory usage and efficient parallelization. Finally,
we illustrate why high-order finite elements are important for guided-waves propagation and present the
performance of the implementation used in this work. The overview of the mechanical and numerical
modeling done in this chapter enables us to justify and understand the modeling choices to propose a
robust numerical strategy for wave propagation in structures under loading conditions.
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Chapter 2

A time-domain spectral finite element
method for acoustoelasticity: modeling the

effect of mechanical loading on guided
wave propagation

This chapter aims to present the first part of the original work done in this thesis. The mechanical and
numerical modeling of ultrasonic wave propagation in mechanically loaded structures, with a focus on
applicability to guided waves, is presented. In the context of acoustoelasticity, we assume the ultrasound
to be incremental deformations in addition to a (potentially) large deformation of the structure. We
propose an original combination of 3D shell finite elements and transient spectral finite elements to
solve the problems that emerge from the small-on-large assumption. We illustrate potential stability
issues associated with loss of coercivity in different constitutive laws. We present realistic numerical
results on 3D cases in both isotropic and anisotropic materials. Finally, the methodology is validated
using experimental data from the literature. The chapter takes the form of a pre-print article co-authored
by André Dalmora, Alexandre Imperiale, Sébastien Imperiale and Philippe Moireau.
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A time-domain spectral finite element method for acoustoelasticity:
modeling the effect of mechanical loading on guided wave propagation

Andre Dalmora1,2,3, Alexandre Imperiale1, Sébastien Imperiale2,3, Philippe Moireau2,3
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Abstract. Ultrasonic testing techniques such as guided wave-based structural health
monitoring aim to evaluate the integrity of a material with sensors and actuators that
operate in situ, i.e. while the material is in use. Since ultrasonic wave propagation is
sensitive to environmental conditions such as pre-deformation of the structure, the
design and performance evaluation of monitoring systems in this context is a compli-
cated task that requires quantitative data and the associated modeling effort. In our
work, we propose a set of numerical tools to solve the problem of mechanical wave
propagation in materials subjected to pre-deformation. This type of configuration
is usually treated in the domain of acoustoelasticity. A relevant modeling approach
is to consider two different problems: a quasi-static nonlinear problem for the large
displacement field of the structure and a linearized time-domain wave propagation
problem. After carefully reviewing the modeling ingredients to represent the con-
figurations of interest, we propose an original combination of numerical tools that
leads to a computationally efficient algorithm. More specifically, we use 3D shell
elements for the quasi-static nonlinear problem and the time-domain spectral finite
element method to numerically solve the wave propagation problem. Our approach
can represent any type of material constitutive law, geometry or mechanical solici-
tation. We present realistic numerical results on 3D cases related to the monitoring
of both isotropic and anisotropic materials, illustrating the genericity and efficiency
of our method. We also validate our approach by comparing it to experimental data
from the literature.

2.1 Introduction
In many high-end industries, safety regulations include assessments of the condition of structures and

materials used for operations. Typical examples of application areas are nuclear energy, petrochemical
industry, transportation, or aeronautics. In fact, any industry where the safety of critical components is
of paramount importance. Over time, the need to ensure or assess the health of these components has
led to the development of advanced Nondestructive Testing (NDT) techniques such as Structural Health
Monitoring (SHM). SHM systems aim to evaluate the structural integrity of the material in question using
sensors and processing units in situ. In other words, the monitoring systems are attached to the structure
once and for all, so that they can continuously generate relevant field data. One means of implementing
such systems is to rely on ultrasonic Guided Waves (GW) [Mitra and Gopalakrishnan, 2016; Ricci et
al., 2022]. These waves have the advantage of propagating over longer distances – compared to bulk
waves, which are arguably more common in the NDT community – and thus probe a larger volume of
material. Nonetheless, GW propagation is potentially more complex. Namely, it involves dispersion
effects that vary from one propagating mode to another, and in the particular case of SHM systems
with in situ control processes, it is known to be affected by Environmental and Operational Conditions
(EOCs) [Gorgin, Luo, and Wu, 2020]. One of the most general types of EOC that we consider in our
work is mechanical solicitations sustained by the structure during its use. These mechanical conditions
lead to potential deformations and internal stresses that affect GW propagation. This is the so-called
acoustoelastic effect [Shams, Destrade, and Ogden, 2011; Abiza, Destrade, and Ogden, 2012]. To
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provide meaningful assistance in the development and evaluation of SHM system performance, our work
addresses the challenge of incorporating acoustoelastic effects into a wave propagation modeling tool
that is both generic – i.e. applicable to any geometry, constitutive law or mechanical solicitation – and
efficient.

There are numerous previous works in the literature that address this issue but, to our knowledge,
they are mainly based on semi-analytical approaches. For instance, in [Gandhi, Michaels, and Lee,
2012; Pau and Scalea, 2015; Pei and Bond, 2016; Dubuc, Ebrahimkhanlou, and Salamone, 2017a;
Dubuc, Ebrahimkhanlou, and Salamone, 2017b; Mohabuth et al., 2018; Dubuc, Ebrahimkhanlou, and
Salamone, 2018], analytical formulations are proposed and can be solved at low cost. Nevertheless,
due to assumptions regarding the geometry or the deformation, such formulations can be limited when
precisely modeling complex and realistic cases. For complex shapes and loading configurations, in [Chen
and Wilcox, 2007; Loveday, Long, and Wilcox, 2012; Peddeti and Santhanam, 2018; Cheng et al., 2020;
Abderahmane, Lhémery, and Daniel, 2021] the authors propose semi-analytical methods that encompass
stress inhomogeneity in one or two dimensions. These methods treat the problem in the frequency
domain and efficiently compute dispersion curves of guided waves in specified wave guides, given the
stress profile through the thickness. In our work, we aim at proposing a time-domain approach for this
problem, while considering arbitrary geometries, hyperelastic laws, and inhomogeneous stress profiles
caused by mechanical loading.

Traditionally, due to the different characteristic times and amplitudes of the structural strain, one can
identify two (unidirectionally coupled) problems: (1) a quasi-static nonlinear mechanical problem for
the structural deformation; (2) a time-dependent wave problem resulting from a linearization procedure
around the quasi-static deformation. In this work, we aim to extend the reach of acoustoelastic GW
propagation modeling by combining a set of generic numerical tools to solve both problems. For the
first problem, the main challenge (apart from mastering the inherent nonlinearities) is that classical finite
element methods (FEMs) give inadequate results for thin, elongated geometries due to numerical locking
[Bathe, 2006; Chapelle and Bathe, 2011]. To overcome this difficulty we use 3D shell elements [Chapelle
and Bathe, 2011]. They are based on an asymptotic expansion of the displacement field in the thickness
direction and, combined with the so-called Mixed Interpolation of Tensorial Components (MITC) method
[Bathe and Dvorkin, 1986; Bucalem and Bathe, 1993; Bathe, Iosilevich, and Chapelle, 2000] they are
locking-free. Moreover, they are readily available for any kind of constitutive law. The output of this
first computational stage is the (large and quasi-static) displacement field sustained by the structure.
This output is then used as an input for the wave propagation problem. For this second problem, we
use a different type of discretization, namely the Spectral Finite Element Method (SFEM) in the time
domain [Komatitsch et al., 1999; Cohen, 2002; Joly, 2007]. Since the unknown of each problem are
fundamentally different in nature, it is natural to resort to different discretization schemes, in particular
different meshes. This entails the use of an interpolation operator from the first problem’s mesh onto the
second one. The SFEM is based on high-order Lagrangian elements defined on Gauss-Lobatto points.
This avoids the Runge phenomenon and achieves spectral-like convergence. Using a consistent mass
lumping procedure, they lead to a very efficient explicit fully discrete scheme – with a stability condition
that depends on the mechanical deformation of the structure. To illustrate the validity and efficiency of
our approach, we provide meaningful 3D simulation results associated with SHM configurations, as well
as experimental validation results with data from the literature [Gandhi, Michaels, and Lee, 2012].

This article is divided into two main sections. In Section 2.2 we explain the methodology we use in
our work. In particular, we first recall the general formalism of nonlinear elastodynamics, followed by the
linearization procedure around a quasi-static displacement field. In this way, we can accurately define the
wave propagation problem involving the acoustoelastic effects. After comparing our modeling approach
with the relevant previous work on acoustoelasticity, we conclude this section with the dedicated time and
space numerical schemes applied in order to solve the one-way coupled problems, namely the quasi-static
nonlinear problem and the linearized wave propagation problem. The Section 2.3 is devoted to the
detailed 3D numerical illustrations of our approach. First, we provide illuminating examples addressing
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the potential issue of stability of the fully discrete wave propagation model as a function of the type of
deformation and the constitutive law. Then we provide illustrations of SHM configurations, namely a
tube of isotropic material subjected to a four-point bending test and a stratified anisotropic plate subjected
to torsion. These examples illustrate the performances and versatility of our approach, while in the last
part of the section we present experimental validations showing the reliability of our modeling toolchain.

2.2 Methodology for modeling the effect of mechanical loading on elastic
wave propagation

2.2.1 Nonlinear elastodynamics with quasi-static surface traction & time dependent ul-
trasonic actuator

This section is dedicated to deriving a model representing the propagation of “low amplitude – high
frequency” waves, within a material subject to a “high amplitude – (very) low frequency” mechanical
loading. This model enters the traditional framework of finite deformations of hyperelastic solids.
Readers may refer to the reference textbooks [Marsden and Hughes, 1978; Ciarlet, 1988b; Le Tallec,
1994] and references therein for an exhaustive presentation of this generic formalism. We do not seek
here to deviate from the very well-understood formalism of hyperelasticity. Rather, we aim at specifying
the corresponding modeling elements, in particular the various forces that act on the material of interest.
This aspect is of paramount importance through our work, since it leads to a linearization procedure and
its subsequent wave propagation model.

Let us denote by 𝑡 ≥ 0 the time variable with 𝑇 > 0 the maximal time of interest, and by Ω(𝑡) ⊂ R3

the volume occupied by the material during its deformation, with boundary Γ(𝑡). We assume that there
exists Γ𝐷 ⊂ Γ(𝑡) a clamped part of the boundary. In the following, we consider the functional space
V(Ω(𝑡)) of admissible virtual displacements vanishing on Γ𝐷 .

Quasi-static surface traction. We consider a sub-part of the boundary Γ0(𝑡) ⊂ Γ that is the area of
action of a high amplitude and quasi-static force, and such that Γ0(𝑡) ∩ Γ𝐷 = ∅. More precisely, let us
denote by 𝑓0 a prescribed scalar-valued function representing the amplitude of a surface traction. The
associated virtual work amounts to∫

Γ0 (𝑡 )
𝑓0(𝒙)𝒏0(𝒙, 𝑡) · 𝒘(𝒙) dΓ, ∀𝒘 ∈ V(Ω(𝑡)),

where 𝒏0 is the outgoing unit normal vector field of Γ0. The quasi-static hypothesis represents the fact
that the time variation of this surface traction is assumed to be significantly lower than the ultrasonic
source term described subsequently.

Time dependent ultrasonic actuator. We also consider a third part of the boundary Γ𝑎 (𝑡) ⊂ Γ(𝑡)
where a low amplitude and time-dependent ultrasonic actuator is vibrating, thus generating propagating
wave packets. We assume that Γ𝑎 (𝑡) ∩ Γ0(𝑡) = ∅ and Γ𝑎 (𝑡) ∩ Γ𝐷 = ∅. We denote by 𝒇 𝛿𝑎 a given
source term representing this ultrasonic actuator. The superscript 𝛿 represents the amplitude ratio of the
ultrasonic source term compared to 𝑓0. In the following, we extensively use the assumption that this ratio
is small, i.e.

𝛿 =

sup
(𝒙,𝑡 ) ∈Ω×[0;𝑇 ]

∥ 𝒇 𝛿𝑎 (𝒙, 𝑡)∥3

sup
𝒙∈Ω
| 𝑓0(𝒙) | ≪ 1. (2.1)

In the following, we assume – without loss of generality – that there exists a vector field 𝒇 𝑎 that
corresponds to a rescaled source term, namely 𝒇 𝛿𝑎 = 𝛿 𝒇 𝑎. The associated virtual work becomes

𝛿

∫
Γ𝑎 (𝑡 )

𝒇 𝑎 (𝒙, 𝑡) · 𝒘(𝒙) dΓ, ∀𝒘 ∈ V(Ω(𝑡)), ∀𝑡 ∈ [0;𝑇] .
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Weak formulations of the nonlinear elastodynamic problem. Let us introduce 𝜚 the mass density of
the material. With these notations and the previous definitions of the various boundary conditions, the
principle of virtual works states that the velocity field 𝒗(𝑡) and the Cauchy stress tensor 𝝈(𝑡) satisfy, for
any 𝒘 ∈ V(Ω(𝑡))

∫
Ω(𝑡 )

𝜚
(
𝜕𝑡𝒗 + (∇𝒙𝒗) · 𝒗

) · 𝒘 dΩ +
∫
Ω(𝑡 )

𝝈 : ∇𝒙𝒘 dΩ

=
∫
Γ0 (𝑡 )

𝑓0𝒏0 · 𝒘 dΓ + 𝛿
∫
Γ𝑎 (𝑡 )

𝒇 𝑎 · 𝒘 dΓ, (2.2)

with given initial conditions 𝒗 |𝑡=0 and 𝝈 |𝑡=0. Albeit being the standard weak form of the equilibrium
relation, relation (2.2) deserves some comments. It is not an explicit form because the deformed domain
Ω is unknown, nor is it a closed form since it lacks the constitutive law linking the Cauchy stress tensor
with the kinematic unknown. It should be noted that this constitutive law is rarely written on a deformed
configuration, but rather on a so-called reference configuration. Also, from a purely practical viewpoint,
the definition of the source term 𝑓𝑎 representing the ultrasonic actuator is more likely to be available on
this reference configuration.

From this line of arguments, it is natural to derive a formulation written on a reference coordinate
system. Let us denote by Ω̂ the volume occupied by the material in this reference setting, and by 𝝃 ∈ Ω̂
the associated coordinates. For any time 𝑡 > 0, the deformation is represented by the bijective mapping,

𝝓(𝑡) : Ω̂ ↦−→ Ω(𝑡)
𝝃 −→ 𝒙(𝝃, 𝑡) = 𝝓(𝝃, 𝑡),

and we define the displacement field 𝒖 (𝑡) as

𝒖 (𝝃, 𝑡) = 𝒙(𝝃, 𝑡) − 𝝃, ∀𝝃 ∈ Ω̂.

We denote by Γ̂ the boundary of Ω̂, and Γ̂𝐷 , Γ̂0, and Γ̂𝑎 the sub-parts of the boundary corresponding
to Γ𝐷 , Γ0(𝑡), and Γ𝑎 (𝑡) respectively. See Figure 2.1 for an illustration of both coordinate systems and
domains.

Figure 2.1 – Reference and deformed configurations and their associated notations.

The deformation gradient and its determinant are denoted by

𝑭(𝝃, 𝑡) = ∇𝝃𝝓(𝝃, 𝑡) = 𝑰 + ∇𝝃𝒖 (𝝃, 𝑡) and 𝐽 (𝝃, 𝑡) = det 𝑭(𝝃, 𝑡), ∀𝝃 ∈ Ω̂,
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respectively. With these notations, we derive the equivalent of (2.2) set on the reference configuration,
thus explicitly showing the dependency of the displacement field – which is the chosen kinematic unknown
in the following. To do so, we apply a standard change of variables from Ω to Ω̂ – see [Le Tallec, 1994]
and references therein for more details. Upon the straightforward relation 𝒗 ◦ 𝝓 = 𝜕𝑡𝒖 , we start with the
inertial terms, namely, for all 𝒘 ∈ V(Ω̂),∫

Ω(𝑡 )
𝜚
(
𝜕𝑡𝒗 + (∇𝒙𝒗) · 𝒗

) · (𝒘 ◦ 𝝓−1) dΩ =
∫
Ω̂
𝐽 (𝜚 ◦ 𝝓) 𝜕2

𝑡𝑡𝒖 · 𝒘 dΩ̂ =
∫
Ω̂
𝜚̂ 𝜕2

𝑡𝑡𝒖 · 𝒘 dΩ̂,

where 𝜚̂ = (𝜚 ◦ 𝝓)𝐽 is the reference mass density. Concerning the stiffness term, we have, for all
𝒘 ∈ V(Ω̂), ∫

Ω(𝑡 )
𝝈 : ∇𝒙 (𝒘 ◦ 𝝓−1) dΩ =

∫
Ω̂
(𝝈 ◦ 𝝓) : (∇𝝃𝒘 · 𝑭−1) 𝐽dΩ̂ =

∫
Ω̂
𝑻 : ∇𝝃𝒘 dΩ̂,

where 𝑻 = (𝝈 ◦ 𝝓) · 𝑭−⊺𝐽 is the first Piola-Kirchhoff tensor. Upon the assumption of hyperelasticity
[Ciarlet, 1988b; Le Tallec, 1994] there exists a potential function W (𝑭) that depends exclusively on the
deformation gradient and such that

𝑻 (𝑭) = D𝑭W (𝑭).
Note that prescribing a closed form of this energy potential function actually defines the constitutive
relation of the material – a matter addressed in the subsequent section. The first Piola-Kirchhoff tensor
is non-symmetric, and in the following, we resort to its symmetric counterpart, which can be introduced
as follows, ∫

Ω̂
𝑻 : ∇𝝃𝒘 dΩ̂ =

∫
Ω̂
(𝑭−1 · 𝑻) : (𝑭⊺ · ∇𝝃𝒘) dΩ̂ =

∫
Ω̂
𝚺 : D𝒖 𝒆(𝒖)𝒘 dΩ̂,

with 𝚺 = 𝑭−1 · 𝑻 the (symmetric) second Piola-Kirchhoff tensor, and

𝒆(𝒖) = 1
2

(
∇𝝃𝒖 + ∇𝝃𝒖

⊺ + ∇𝝃𝒖
⊺ · ∇𝝃𝒖

)
, D𝒖 𝒆(𝒖)𝒘 =

1
2

(
𝑭⊺ · ∇𝝃𝒘 + ∇𝝃𝒘

⊺ · 𝑭
)
,

the Green-Lagrange tensor and its differential w.r.t. the displacement field. For hyperelastic materials, the
second Piola-Kirchhoff tensor is usually defined exclusively as a function of the Green-Lagrange tensor,
namely 𝚺 = 𝚺(𝒆(𝒖)) in the previous expression, and

𝚺(𝒆) = D𝒆W (𝒆).
For the quasi-static surface traction, one resorts to the formula for transport of normal vector field to
derive the following relations

∀𝒘 ∈ V(Ω̂),
∫
Γ0 (𝑡 )

𝑓0𝒏0 · (𝒘 ◦ 𝝓−1) dΓ =
∫
Γ̂0

𝑓̂0 (co𝑭 · 𝒏̂0) · 𝒘 dΓ̂,

where 𝑓̂0 = 𝑓0 ◦ 𝝓, 𝒏̂0 is the outgoing unit normal vector field of Γ̂0, and co𝑭 = 𝐽𝑭−⊺ is the co-factor
of the deformation gradient. Finally, concerning the ultrasonic source term, we have

∀𝒘 ∈ V(Ω̂),
∫
Γ𝑎 (𝑡 )

𝒇 𝑎 · (𝒘 ◦ 𝝓−1) dΓ =
∫
Γ̂𝑎

𝒇̂ 𝑎 · 𝒘 𝛾̂ dΓ̂,

where 𝛾̂ = ∥co𝑭 · 𝒏̂𝑎∥3 with 𝒏̂𝑎 the unit normal vector field of Γ̂𝑎. This term represents the effect of the
deformation on the surface measure. In the previous relation, 𝒇̂ 𝑎 is the time and space dependency of the
actuator on the reference configuration. Its expression depends on the chosen modeling of the actuator.
Without being completely exhaustive, we can at least provide three main cases of interest:

— The ultrasonic source is independent of the deformation of the material. For instance, one could
imagine configurations where a hydrophone is emitting an ultrasonic beam toward the immersed
specimen of interest, subject to the deformation. In that case, we simply have 𝒇̂ 𝑎 = 𝒇 𝑎 ◦ 𝝓.
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— The actuator is considered to be generating a time-dependent source term with polarization in the
normal direction of the material. This corresponds to the case where there exists a scalar-valued
function 𝑓𝑎 such that 𝒇 𝑎 = 𝑓𝑎𝒏𝑎, where 𝒏𝑎 is the outgoing unit normal vector field of Γ𝑎. In that
case, we define

𝒇̂ 𝑎 = ( 𝑓𝑎 ◦ 𝝓)
co𝑭 · 𝒏̂𝑎

𝛾̂
.

— The polarization lies within the local tangent plane of the surface Γ𝑎. More precisely if we denote
by (𝝉1,𝑎, 𝝉2,𝑎) two vectors field generating this tangent plane, then there exists two scalar-valued
functions 𝑓1,𝑎 and 𝑓2,𝑎 such that 𝒇 𝑎 = 𝑓1,𝑎𝝉1,𝑎 + 𝑓2,𝑎𝝉2,𝑎, entailing

𝒇̂ 𝑎 =
∑︁
𝑖=1,2
( 𝑓𝑖,𝑎 ◦ 𝝓)

𝑭 · 𝝉̂𝑖,𝑎
∥𝑭 · 𝝉̂𝑖,𝑎∥3

, 𝝉𝑖,𝑎 ◦ 𝝓 = 𝑭 · 𝝉̂𝑖,𝑎, ∀𝑖 ∈ {1, 2}.

We can now give the weak formulation of the problem of interest written in the reference configuration:
for any time 𝑡 ∈ [0;𝑇], we aim at finding the displacement field 𝒖 (𝑡) such that, for any test function
𝒘 ∈ V(Ω̂), we have∫

Ω̂
𝜚̂ 𝜕2

𝑡𝑡𝒖 · 𝒘 dΩ̂ +
∫
Ω̂
𝚺(𝒆(𝒖)) : D𝒖 𝒆(𝒖)𝒘 dΩ̂

=
∫
Γ̂0

𝑓̂0 (co𝑭 · 𝒏̂0) · 𝒘 dΓ̂ + 𝛿
∫
Γ̂𝑎

𝒇̂ 𝑎 · 𝒘 𝛾̂ dΓ̂, (2.3)

with given initial conditions 𝒖 |𝑡=0 and 𝜕𝑡𝒖 |𝑡=0.

2.2.2 Linearization around a quasi-static displacement field
Upon the assumption of a quasi-static mechanical loading and a low amplitude time-dependent

ultrasonic source term – as depicted in (2.1) – we propose to decompose the solution of (2.3) following
the Ansatz

𝒖 (𝝃, 𝑡) = 𝒖0(𝝃) + 𝛿 𝒖1(𝝃, 𝑡) +𝑂 (𝛿2), ∀𝝃 ∈ Ω̂, ∀𝑡 ∈ [0;𝑇] . (2.4)

This (natural) decomposition amounts to seeking a large quasi-static deformation 𝒖0 generated by the
surface traction term, and a low amplitude time-dependent contribution 𝒖1 emanating from the ultrasonic
source term. Intuitively, one would expect 𝒖0 to satisfy a nonlinear static problem, and 𝒖1 a wave
equation. In this section, we follow standard linearization arguments to derive these two problems.
Moreover, following the existence and uniqueness results given in [Ciarlet, 1988b], we define the space

V(Ω̂) =
{
𝒘 ∈ [𝐻1(Ω̂)]3 | 𝒘 |Γ𝐷 = 0

}
,

and the spaceW(Ω̂) of admissible displacements in the reference configuration

W(Ω̂) = 𝑊2, 𝑝 (Ω̂)3 ∩V(Ω̂), for some 𝑝 > 3. (2.5)

We now comment briefly this choice. Imbeddings results (see [Adams and Fournier, 2003; Ciarlet,
1988b]) show that, for any 𝒘★ ∈ W(Ω̂), first, ∇𝝃𝒘★ belongs to W1, 𝑝 (Ω̂)3×3 that is an algebra (in
particular products of functions in this space do belong to the same space), second, ∇𝝃𝒘★ is continuous
and bounded up to the boundary. We deduce that

𝒆(𝒘★) ∈ W1, 𝑝 (Ω̂)3×3 and ∀𝒘 ∈ V(Ω̂), D𝒖 𝒆(𝒘★)𝒘 ∈ L2(Ω̂)3×3.

Finally, assuming sufficient smoothness of the potential function W (𝑭) it can be inferred that𝚺(𝒆(𝒘★)) ∈
W1, 𝑝 (Ω̂)3×3 hence, it is continuous and bounded. A similar smoothness property holds for the fourth
order tensor D𝒆𝚺(𝒆(𝒘★)). The properties given above are implicitly used to give meanings to the integrals
introduced in the section below.
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Stiffness and surface traction operators and associated differentials. Let us denote by

A :W(Ω̂) ↦−→ V(Ω̂)′
𝒘★ −→ A(𝒘★),,

the nonlinear stiffness operator such that, for any 𝒘 ∈ V(Ω̂),

⟨A(𝒘★), 𝒘⟩ =
∫
Ω̂
𝚺(𝒆(𝒘★)) : D𝒖 𝒆(𝒘★)𝒘 dΩ̂,

where ⟨·, ·⟩ denotes the duality product in V(Ω̂). The Gâteaux differential of A at 𝒘★ is denoted by
D𝒖A(𝒘★) ∈ L(V(Ω̂),V(Ω̂)′), and reads, for any 𝒗, 𝒘 ∈ V(Ω̂)

⟨D𝒖A(𝒘★)𝒗, 𝒘⟩ =
∫
Ω̂

D𝒖 𝒆(𝒘★)𝒗 : D𝒆𝚺(𝒆(𝒘★)) : D𝒖 𝒆(𝒘★)𝒘 dΩ̂

+
∫
Ω̂
𝚺(𝒆(𝒘★)) : D2

𝒖 𝒆(𝒗, 𝒘) dΩ̂, (2.6)

where
D2

𝒖 𝒆(𝒗, 𝒘) =
1
2

(
∇𝝃𝒗⊺ · ∇𝝃𝒘 + ∇𝝃𝒘⊺ · ∇𝝃𝒗

)
.

Note that the differential (2.6) is obtained from the differential of a product combined with a chain rule,
and the definition of the Green-Lagrange tensor. It actually defines a bilinear form of particular interest
in the following. More precisely, for a given 𝒘★ ∈ W(Ω̂) defining

𝑎(𝒘★; ·, ·) : V(Ω̂) × V(Ω̂) ↦−→ R

(𝒗, 𝒘) −→ 𝑎(𝒘★; 𝒗, 𝒘) = ⟨D𝒖A(𝒘★)𝒗, 𝒘⟩, (2.7)

then one can verify that 𝑎(𝒘★; ·, ·) is a symmetric bilinear form. Note that D𝒖A is a contribution of
two terms: the first one, involving D𝒆𝚺, is related to constitutive nonlinearities since it involves second
order derivatives of the potential W with respect to the Green-Lagrange tensor 𝒆; the second one,
involving 𝚺, is related to geometrical nonlinearities since it comes exclusively from the linearization
of the Green-Lagrange tensor. Another more compact form – but less prone to interpretation – of the
Gâteaux differential of A can be deduced from the expression

⟨A(𝒘★), 𝒘⟩ =
∫
Ω̂
𝑻 (𝑭(𝒘★)) : ∇𝝃𝒘 dΩ̂,

where 𝑭(𝒘★) = 𝑰+∇𝝃𝒘
★. Computing the Gâteaux differential of A at 𝒘★ gives the alternative expression

𝑎(𝒘★; 𝒗, 𝒘) = ⟨D𝒖A(𝒘★)𝒗, 𝒘⟩ =
∫
Ω̂
∇𝝃𝒗 : D𝑭𝑻 (𝑭(𝒘★)) : ∇𝝃𝒘 dΩ̂

=
∫
Ω̂
∇𝝃𝒗 : D2

𝑭W
(
𝑭(𝒘★)) : ∇𝝃𝒘 dΩ̂.

(2.8)

In the following, we also denote by

B :W(Ω̂) ↦−→ V(Ω̂)′
𝒘★ −→ B(𝒘★),

the nonlinear surface traction operator such that, for any 𝒘 ∈ V(Ω̂),

⟨B(𝒘★), 𝒘⟩ =
∫
Γ̂0

𝑓̂0 (co𝑭(𝒘★) · 𝒏̂0) · 𝒘 dΓ̂.
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The Gâteaux differential of B at 𝒘★ is denoted by D𝒖B(𝒘★) ∈ L(V(Ω̂),V(Ω̂)′), and reads, for any
𝒗, 𝒘 ∈ V(Ω̂)

⟨D𝒖B(𝒘★)𝒗, 𝒘⟩ =
∫
Γ̂0

𝑓̂0
((D𝒖co𝑭(𝒘★)𝒗) · 𝒏̂0

) · 𝒘 dΓ̂, (2.9)

where
D𝒖co𝑭(𝒘★)𝒗 =

(
(𝑭−⊺ (𝒘★) : ∇𝝃𝒗)𝑰 − 𝑭−⊺ (𝒘★) · ∇𝝃𝒗

)
· co𝑭(𝒘★).

Note that the expression of the differential of the cofactor matrix derives from the following relations

D𝒖 𝐽 (𝒘★)𝒗 = co𝑭(𝒘★) : ∇𝝃𝒗, D𝒖

(
𝑭−⊺ (𝒘★))𝒗 = −𝑭−⊺ (𝒘★) · ∇𝝃𝒗 · 𝑭−⊺ (𝒘★).

Compared to (2.6), no particular property – such as symmetry – can be derived from the bilinear form
associated to the differential (2.9). In order to link with the definition of the weak formulation (2.3), we
introduce the difference of these two nonlinear operators, namely

𝐴𝑏 : W(Ω̂) ↦−→ V(Ω̂)′
𝒘★ −→ 𝐴𝑏 (𝒘★) = A(𝒘★) − B(𝒘★), (2.10)

such that its associated Gâteaux differential, for any 𝒘★ ∈ W(Ω̂), simply reads

D𝒖 𝐴𝑏 (𝒘★) = D𝒖A(𝒘★) − D𝒖B(𝒘★) ∈ L(V(Ω̂),V(Ω̂)′).

Quasi-static and linearized wave problems. Let us denote by H(Ω̂) = [L2(Ω̂)]3 and the associated
mass-weighted inner product by

(𝒗, 𝒘)H =
∫
Ω̂
𝜚̂ 𝒗 · 𝒘 dΩ̂, ∀𝒗, 𝒘 ∈ H .

We introduce the nonlinear operator

𝐿 (𝑡, ·) : W(Ω̂) ↦−→ V(Ω̂)′
𝒘★ −→ 𝐿 (𝑡, 𝒘★),

such that, for any 𝒘 ∈ V(Ω̂),

⟨𝐿 (𝑡, 𝒘★), 𝒘⟩ =
∫
Γ̂𝑎

𝒇̂ 𝑎 (𝒘★, 𝑡) · 𝒘 𝛾̂(𝒘★) dΓ̂. (2.11)

From the definition of the operators (2.10) and (2.11), we remark that the weak formulation (2.3) can be
written in the following form

d2

d𝑡2
(𝒖 , 𝒘)H + ⟨𝐴𝑏 (𝒖), 𝒘⟩ = 𝛿⟨𝐿 (𝑡, 𝒖), 𝒘⟩, ∀𝒘 ∈ V(Ω̂).

Using the Ansatz (2.4), and the time invariance of 𝒖0 leads to

⟨𝐴𝑏 (𝒖0), 𝒘⟩ + 𝛿
( d2

d𝑡2
(𝒖1, 𝒘)H + ⟨D𝒖 𝐴𝑏 (𝒖0)𝒖1, 𝒘⟩ − ⟨𝐿 (𝑡, 𝒖0), 𝒘⟩

)
= 𝑂 (𝛿2).

Hence, satisfying the relation (2.3) up to second order terms w.r.t 𝛿 amounts to satisfying the following
two problems:

i) Find 𝒖0 ∈ W(Ω̂) the solution, for any 𝒘 ∈ V(Ω̂), of

⟨𝐴𝑏 (𝒖0), 𝒘⟩ = 0.

ii) Find (0, 𝑇) ∋ 𝑡 ↦→ 𝒖1(𝑡) ∈ V(Ω̂) satisfying in D ′(0, 𝑇) – a.k.a in the sense of distribution:

d2

d𝑡2
(𝒖1(·), 𝒘)H + ⟨D𝒖 𝐴𝑏 (𝒖0)𝒖1(·), 𝒘⟩ = ⟨𝐿 (·, 𝒖0), 𝒘⟩, 𝒘 ∈ V(Ω̂) (2.12)

with given initial conditions 𝒖1(0) ∈ H ((Ω̂)) and d𝒖1
d𝑡 (0) ∈ V(Ω̂)′.
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Approximated linearized wave problem. A major drawback of the formulation (2.12) of the wave
problem is that it contains the tangent of the surface traction operator, namely D𝒖𝐵(𝒖0), defined in (2.9).
It is associated with a non-symmetric bilinear form, with an undefined sign and implying the surface
gradient of its first argument. In addition to these unfortunate mathematical properties, one can interpret
this term as the effect of the surface traction onto the wave field. In the applications of interest, where
the loading area is restricted compared to the complete surface domain, we expect this term to bear little
effect. Combining these arguments, we neglect the contribution of the tangent of the surface traction
operator in the wave propagation problem, and we consider the following pair of problems:

i) Find 𝒖0 ∈ V(Ω̂) the solution, for any 𝒘 ∈ V(Ω̂), of

⟨𝐴𝑏 (𝒖0), 𝒘⟩ = 0. (2.13)

ii) Find (0, 𝑇) ∋ 𝑡 ↦→ 𝒖̃(𝑡) ∈ V(Ω̂) satisfying in D ′(0, 𝑇):
d2

d𝑡2
(𝒖̃(·), 𝒘)H + 𝑎(𝒖0; 𝒖̃(·), 𝒘) = ⟨𝐿 (·, 𝒖0), 𝒘⟩, ∀𝒘 ∈ V(Ω̂) (2.14)

with given initial conditions 𝒖̃(0) ∈ H (Ω̂) and d𝒖
d𝑡 (0) ∈ V(Ω̂)′, and 𝑎(𝒖0; ·, ·) defined in (2.7).

One important remark that can be made at this point is that the two problems previously defined can be
addressed successively. From a practical viewpoint this means that one can first solve (2.13), extract the
solution 𝒖0 to compute the tangent operator and the source term in (2.14) and solve the wave equation to
obtain 𝒖̃.

Well-posedness of the wave propagation problem and energy relation. Since the focus of our work
is on wave propagation modeling, we do not discuss the questions of the existence and uniqueness of
the nonlinear static problem (2.13). Theoretical elements on this matter can be found for instance in
[Marsden and Hughes, 1978; Ciarlet, 1988b], they usually entail a so-called “poly-convexity” property
of W . We assume in the following that there exists at least one solution of (2.13), and rather discuss
the well-posedness of the wave propagation problem of interest (2.14). We rely on the standard abstract
results that can be found e.g. in the reference textbooks [Lions, 1971; Duvaut and Lions, 1976; Dautray
and Lions, 1992]. In particular, since the symmetry of the bilinear form is easily verified from its
definition given in (2.7), we only need the following assumptions to apply Theorem 4.1 in [Duvaut and
Lions, 1976]:

— The righ-hand side of (2.14) satisfies 𝐿 (·, 𝒖0) ∈ C1( [0, 𝑇];V(Ω̂)′),

— The bilinear form 𝑎(𝒖0; ·, ·) defined in (2.7) is continuous and coercive, i.e. there exists two
strictly positive constants 𝐶0 and 𝛼0 such that

|𝑎(𝒖0; 𝒗, 𝒘) | ≤ 𝐶0∥𝒗∥V ∥𝒘 ∥V , 𝑎(𝒖0; 𝒗, 𝒗) ≥ 𝛼0∥𝒗∥2V , ∀𝒗, 𝒘 ∈ V(Ω̂). (2.15)

Upon these assumptions the problem (2.14) admits a unique solution such that

𝒖̃ ∈ L2((0, 𝑇);V(Ω̂)), d𝒖̃
d𝑡
∈ L2((0, 𝑇),H), d2𝒖̃

d𝑡2
∈ L2((0, 𝑇),V(Ω̂)′)

with additionally, from continuous injection results,

𝒖̃ ∈ C0( [0, 𝑇];H(Ω̂)) ∩ L∞( [0, 𝑇];V(Ω̂)), d𝒖̃
d𝑡
∈ C0( [0, 𝑇];V(Ω̂)′) ∩ L∞( [0, 𝑇];H(Ω̂)).

Note that the coercivity assumption could be replaced by a weaker hypothesis, assuming the coercivity
up to a term proportional to ∥𝒗∥2H . It is clear from the expression of the bilinear form that the coercivity
constant depends intricately on the choice of the potential function W and on the linearization point 𝒖0. In
particular, in Section 2.3 we provide illuminating examples of numerical solutions where, depending on
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the solution of the static problem, we observe a loss of coercivity leading to an ill-posed wave propagation
problem. In addition to the previous well-posedness result, we recall the standard energy relation which
is an important framework to devise a stable time discretization procedure for the problem (2.14). Let us
denote the kinematic, potential and total energies associated with the unique solution of (2.14) by

K (𝑡) = 1
2


d𝒖̃

d𝑡


2
H , P (𝑡) = 1

2
𝑎(𝒖0; 𝒖̃, 𝒖̃), E = K +P .

Assuming a null source term in (2.14), namely 𝐿 (𝑡; 𝒖0) = 0, then, by using formally the time derivative
of the solution as a test function in (2.14), we recover the following energy conservation

d
d𝑡

E (𝑡) = 0. (2.16)

Energy potentials. Our numerical investigations mainly concern frame-indifferent hyperelastic mate-
rial with no residual stress. The material being frame-indifferent the hyperelastic potential – assumed
smooth – is only dependent on the Green-Lagrange tensor 𝒆

W (𝑭) ≡ W (𝒆).
First, we consider isotropic materials. Since the material has no residual stress, we necessarily have (see
[Ciarlet, 1988b]),

W (𝒆) = 𝜆

2
(tr 𝒆)2 + 𝜇 tr 𝒆2 + 𝛼1(tr 𝒆)3 + 𝛼2(tr 𝒆)tr 𝒆2 + 𝛼3tr 𝒆3 + 𝑜( |𝒆 |3). (2.17)

Note that in the expression above, if the material is heterogeneous, the parameter 𝜆, 𝜇 and the {𝛼𝑖}3𝑖=1 may
depend on 𝝃. The coefficients associated with third-order terms, namely {𝛼𝑖}3𝑖=1, are usually referred to
as the Third Order Elastic Constants (TOECs). The two first terms of this expansion correspond to the
so-called Saint-Venant-Kirchhoff (SVK) potential

W SVK(𝒆) = 𝜆

2
(tr 𝒆)2 + 𝜇 tr 𝒆2,

while, neglecting higher-order terms, yields the potential

W 3rd(𝒆) = W SVK(𝒆) + 𝛼1(tr 𝒆)3 + 𝛼2(tr 𝒆)tr 𝒆2 + 𝛼3tr 𝒆3, (2.18)

such potential can be written using Landau’s coefficients [Landau, Lifšic, and Landau, 1986]

𝐴 = 3𝛼3, 𝐵 = 𝛼2 and 𝐶 = 3𝛼1.

Note that these two potentials are not poly-convex in general, hence stability of the nonlinear mechanical
problem – and therefore of its linearized version – may be an issue. The most simple elastic potential
mitigating this problem is the Compressible Neo-Hookean (CNH) potential,

W CNH(𝒆) = 𝜆

2
(√︁

det(𝑰 + 2𝒆) − 1
)2 + 𝜇 tr𝒆 − 𝜇

2
log

(
det(𝑰 + 2𝒆)) .

The potential W CNH satisfies the following expansion,

W CNH(𝒆) = 𝜆

2
(tr 𝒆)2 + 𝜇 tr 𝒆2 + 𝜆

2
(tr 𝒆)3 − 𝜆(tr 𝒆)tr 𝒆2 − 4𝜇

3
tr 𝒆3 + 𝑜( |𝒆 |3),

showing that, up to third order term in |𝒆 |3 the CNH constitutive law corresponds to (2.18) with 𝛼1 = 𝜆/2,
𝛼2 = −𝜆 and 𝛼3 = −4𝜇/3. The hyperelastic potential of frame-indifferent isotropic material can be
re-written in terms of the first three invariants of the Cauchy-Green deformation tensor 𝑪 = 𝑭𝑇𝑭,

𝐼1 = tr(𝑪), 𝐼2 =
1
2

(
tr(𝑪)2 − tr(𝑪2)

)
, 𝐼3 = det𝑪.
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It can be verified that

W SVK =
(𝜆 + 2𝜇)

8
𝐼2
1 −
(3𝜆 + 2𝜇)

4
𝐼1 − 𝜇2 𝐼2 +

(9𝜆 + 6𝜇)
8

(2.19)

and
W CNH =

𝜆

2
(
√︁
𝐼3 − 1)2 + 𝜇

2
(𝐼1 − 3 − log(𝐼3)). (2.20)

Murnaghan [Murnaghan, 1951] proposed different TOECs to characterize the second-order elastic defor-
mations, namely 𝑙, 𝑚 and 𝑛,

W 3rd = W SVK + 𝑙

24
(𝐼1 − 3)3 + 𝑚

12
(𝐼1 − 3) (𝐼2

1 − 3𝐼2) + 𝑛8 (𝐼1 − 𝐼2 + 𝐼3 − 1). (2.21)

In the context of acoustoelasticity, Hughes and Kelly related these TOECs with changes in bulk wave
velocities for prestressed isotropic materials and experimentally assessed them in [Hughes and Kelly,
1953]. The relations between (𝑙, 𝑚, 𝑛) and (𝛼1, 𝛼2, 𝛼3) appearing in the expression (2.18) are given by

𝛼1 = 𝑙 − 𝑚
3
+ 𝑛

6
, 𝛼2 = 𝑚 − 𝑛

2
, 𝛼3 =

𝑛

3
.

We also investigate an orthotropic configuration where one plane of symmetry is lost, orthogonal
to a principal axis 𝑎, in that case, the material is said to be transversely isotropic. To fully describe its
constitutive behavior we need to add two more invariants

𝐼4 = 𝑎 · 𝑪 · 𝑎, 𝐼5 = 𝑎 · 𝑪2 · 𝑎.

One example of the hyperelastic potential for transversely isotropic materials is the one from [Bonet and
Burton, 1998],

W CNH-TI = W CNH + [𝛼 + 𝛽 ln 𝐽 + 𝛾(𝐼4 − 1)] (𝐼4 − 1) − 𝛼
2
(𝐼5 − 1), (2.22)

where 𝛼, 𝛽 and 𝛾 are additional parameters that can be calibrated to match observed transversely isotropic
behavior.

Acoustoelastic effects. The change in the behavior of elastic waves when propagating in a deformed
or prestressed medium is known as acoustoelastic effect. This phenomenon is extensively studied, see
e.g. [Biot, 1940; Murnaghan, 1951; Hughes and Kelly, 1953]. In [Ogden, 1984], the author analyses the
structure and properties of incremental elastic deformations models, including the unicity and stability
aspects with respect to the constitutive law. As far as isotropic materials are considered, the behavior
of elastic waves – bulk wave velocities, in particular – has been mathematically studied by the authors
in [Shams, Destrade, and Ogden, 2011]. We can relate their considerations to stability properties and
positivity of the bilinear form 𝑎(𝒖0; ·, ·). Indeed, from the expression (2.8), assuming that the solution
behaves locally as a plane wave, with polarization 𝒎 propagating in the direction 𝒏, and assuming
smoothness of the parameters and of 𝒖0, we arrive at the necessary condition for the positivity of
𝑎(𝒖0; ·, ·),

∀ (𝒎, 𝒏) ∈ R3 ×R3, 𝒎 ⊗ 𝒏 : D2
𝑭W

(
𝑭(𝒖0)

)
: 𝒎 ⊗ 𝒏 ≥ 0. (2.23)

Note that the inequality above should be verified for each 𝝃 ∈ Ω̂ since 𝒖0 is a function of 𝝃 even when the
material is homogeneous. Now, following [Shams, Destrade, and Ogden, 2011], this amounts to checking
the positivity of the so-called (symmetric) Christoffel tensor 𝑸(𝒖0, 𝒏) ∈ R3×3, indeed,

∀ (𝒎, 𝒏) ∈ R3 ×R3, 𝒎 ⊗ 𝒏 : D2
𝑭W

(
𝑭(𝒖0)

)
: 𝒎 ⊗ 𝒏 = 𝒎 · 𝑸(𝒖0, 𝒏) · 𝒎.

To further analyse it, we use the Christoffel tensor 𝑸(𝒖0, 𝒏) given in [Shams, Destrade, and Ogden,
2011] in the isotropic case and for the reference configuration. It depends on W𝑖 and W𝑖 𝑗 , the first and
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second-order derivatives of the potential with respect to the invariant 𝐼𝑖 and 𝐼 𝑗 respectively. Note that the
dependence in 𝒖0 of W𝑖 and W𝑖 𝑗 is temporarily omitted for the sake of clarity. In the case where

W12 = W22 = W13 = W23 = 0,

which is verified for the Saint-Venant-Kirchhoff and Compressible Neo-Hookean constitutive laws, the
Christoffel tensor is given by

𝑸(𝒖0, 𝒏) = (4𝐼2
3W33 + 2𝐼3W3) 𝒏̂ ⊗ 𝒏̂ + 2(W1 + 𝐼1W2)𝑰

+ (
4W11 + 2W2

) (
𝑭(𝒖0) · 𝒏

) ⊗ (
𝑭(𝒖0) · 𝒏

) − 2W2

(
∥𝑭(𝒖0) · 𝒏∥23𝑰 + 𝑩(𝒖0)

)
, (2.24)

where 𝑩(𝒖0) = 𝑭(𝒖0)𝑭⊺ (𝒖0) and 𝒏̂ = 𝑭−⊺ (𝒖0) · 𝒏. The expression above takes a simple form when
considering the CNH constitutive law

𝑸CNH(𝒖0, 𝒏) =
(
𝜆𝐼3(𝒖0) + 𝜇

)
𝒏̂ ⊗ 𝒏̂ + 𝜇𝑰.

When considering the SVK constitutive law, we get

𝑸SVK(𝒖0, 𝒏) = 1
2
(
𝐼1(𝒖0)𝜆 − 3𝜆 − 2𝜇 + 2𝜇∥𝑭(𝒖0) · 𝒏∥2

)
𝑰

+ (
𝜆 + 𝜇) (𝑭(𝒖0) · 𝒏

) ⊗ (
𝑭(𝒖0) · 𝒏

) + 𝜇𝑩(𝒖0). (2.25)

Considering pure dilatation deformation, i.e., 𝒖0 = 𝝃 (𝑑0 − 1) and 𝑭(𝒖0) = 𝑑0𝑰 with 𝑑0 ≥ 1 we have,

𝑸SVK(𝝃 (𝑑0 − 1), 𝒏) = (𝑑
2
0 − 1)
2

(
3𝜆 + 2𝜇

)
𝑰 + 𝑑2

0

[ (
𝜆 + 𝜇)𝒏 ⊗ 𝒏 + 𝜇𝑰

]
and

𝑸CNH(𝝃 (𝑑0 − 1), 𝒏) = (
𝜆𝑑4

0 + 𝜇𝑑−2
0

)
𝒏 ⊗ 𝒏 + 𝜇𝑰,

One can see that the eigenvalues of 𝑸SVK(𝝃 (𝑑0 − 1), 𝒏), are increasing functions of 𝑑0, meaning that
waves tend to propagate faster – at least locally. The CNH constitutive law behaves similarly when
2𝜆 ≥ 𝜇. This behavior contradicts observed experiments [Hughes and Kelly, 1953] where velocities
of the shear and pressure waves decrease for some materials – aluminum typically – that undergoes an
increase in volume. In this case, proper behavior can be modeled using high-order elasticity models such
as the Murnaghan’s, despite some expected and observed stability issues (see the numerical experiments
after). In an hypothetical case of pure stretching in one direction, we have locally

𝑭(𝒖0) = ©­«
𝑑0 0 0
0 1 0
0 0 1

ª®¬
,

that is to say 𝒖0 = 𝒆1(𝒆1 · 𝝃) (𝑑0 − 1), with 𝑑0 ≥ 1, we have

𝑸SVK(𝒖0, 𝒆1) =
( 𝑑2

0 − 1
2

(
𝜆 + 2𝜇

) + 𝜇) 𝑰 + (
𝑑2

0
(
𝜆 + 2𝜇

) − 𝜇)𝒆1 ⊗ 𝒆1,

and
𝑸CNH(𝒖0, 𝒆1) =

(
𝜆 + 𝑑−2

0 𝜇
)
𝒆1 ⊗ 𝒆1 + 𝜇𝑰.

In this particular case, the behavior of SVK and CNH constitutive laws differs. Indeed one can observe
that for increasing values of 𝑑0 the eigenvalues of 𝑸SVK are all increasing while the eigenvalues of 𝑸CNH

associated to the eigenvector 𝒆1 is given by 𝜆 + (𝑑−2
0 + 1)𝜇, hence it decreases with 𝑑0. This behavior is

observed in our numerical results.
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In the acoustoelasticity literature, a more general formulation comprising anisotropic behavior is
usually presented. The expansion of the potential up to third-order terms are written in the indicial
notation as

W (𝑒) ≈ 𝐶𝑖 𝑗𝑘𝑙𝑒𝑖 𝑗𝑒𝑘𝑙 + 𝐶𝑖 𝑗𝑘𝑙𝑚𝑛𝑒𝑖 𝑗𝑒𝑘𝑙𝑒𝑚𝑛, (2.26)

which is a generalization of the expansion (2.17). The fourth-order tensor𝐶𝑖 𝑗𝑘𝑙 is the traditional elasticity
tensor, with components related to the second order elastic constants from Hooke’s law, and the sixth-
order tensor 𝐶𝑖 𝑗𝑘𝑙𝑚𝑛 has its components related to the third-order elastic constants. One may note that
this description of the constitutive behavior complexifies significantly the study of poly-convexity.

Obtaining material parameters for suitable constitutive models is an essential and difficult task. Many
works concern the experimental assessment of these parameters. For example, the seminal work presented
in [Hughes and Kelly, 1953] gives the TOECs for polystyrene, iron, and Pyrex glass. In [Hikata et al.,
1956; Bergman and Shahbender, 1958; Smith, Stern, and Stephens, 1966; Crecraft, 1967; Asay and
Guenther, 1967; Hsu, 1974; Santos Jr and Bray, 2002; Muir, Michaels, and Michaels, 2009; Gandhi,
Michaels, and Lee, 2012; Shi, Michaels, and Lee, 2013; Song, Huang, and Hu, 2013], the TOECs
are obtained for aluminum and other metals. Transversely isotropic materials are specifically treated in
[Prosser and Green, 1990; Bulletti and Capineri, 2015; Kubrusly et al., 2016; Dubuc, Ebrahimkhanlou,
and Salamone, 2017b]. Most of the presented methods rely on pitch-catch time of flight measurements,
which is potentially subject to poor robustness [Muir, Michaels, and Michaels, 2009]. Alternatively, more
sophisticated methods based on laser vibrometer aided measurements and space-time Fourier Transform
can be applied to enhance the quality of the parameteres reconstruction [Ponschab, Kiefer, and Rupitsch,
2019]. Note that, in practice, it appears that experimental set up uncertainties can have a large influence
on the estimation of the parameters, as studied in [Muir, Michaels, and Michaels, 2009]. Additionally,
fabrication processes may significantly modify the acoustoelastic response of the material [Hsu, 1974;
Thompson, Lee, and Smith, 1986].

2.2.3 Dedicated time & space numerical schemes
We now move on to proposing a discretization strategy that addresses the problem of solving the

one-way coupled problems “𝑖) ⇒ 𝑖𝑖)” defined in (2.13) and (2.14). Each problem, namely the nonlinear
static problem and the wave propagation problem, presents specific numerical challenges – that have been
tackled independently in the literature – and we propose here to aggregate the suitable numerical methods
to derive a complete and efficient fully discrete algorithm.

Solving the quasi-static problem using 3D shell elements. The nonlinearities associated to problem
(2.13) are handled using Newton-Raphson iterations: for a given 𝒖𝑘0 , find 𝒖𝑘+10 ∈ W(Ω̂) such that

⟨D𝒖 𝐴𝑏 (𝒖𝑘0 ) (𝒖𝑘+10 − 𝒖𝑘0 ), 𝒘⟩ = ⟨𝐴𝑏 (𝒖𝑘0 ), 𝒘⟩, ∀𝒘 ∈ V(Ω̂),

until convergence. In some cases, typically when the maximal amplitude of the surface traction is large,
this iterative process may not converge. To increase robustness in these cases, we apply a continuation
algorithm – i.e. successive reductions of the loading amplitude, see [Léger, Deteix, and Fortin, 2015]
and references therein for more details. Writing the increment 𝒖 = 𝒖𝑘+10 − 𝒖𝑘0 , we need to solve at each
iteration a linearized elasticity problem in the form of

Find 𝒖 ∈ W(Ω̂) the solution, for any 𝒘 ∈ V(Ω̂) of

𝑎𝑘 (𝒖 , 𝒘) − 𝑏𝑘 (𝒖 , 𝒘) = ℓ𝑘 (𝒘), (2.27)

where 𝑎𝑘 (·, ·) = 𝑎(𝒖𝑘0 ; ·, ·) defined in (2.7), and

𝑏𝑘 (𝒖 , 𝒘) = ⟨D𝒖B(𝒖𝑘0 )𝒖 , 𝒘⟩, ℓ𝑘 (𝒘) = ⟨𝐴𝑏 (𝒖𝑘0 ), 𝒘⟩.
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It is well-known that for configurations where Ω̂ is a thin elongated geometry, standard finite element
procedures have very poor performances, or can even fail to provide meaningful results due to locking
phenomena [Bathe, 2006; Chapelle and Bathe, 2011]. To circumvent this difficulty we use 3D shell
elements [Chapelle and Bathe, 2011] that enter the framework of general shell elements [Bathe and
Dvorkin, 1986; Bucalem and Bathe, 1993]. These elements possess desirable properties in the scope of
our work: (1) they are locking-free; (2) they rely on the full 3D variational formulations of the type of
(2.27), hence, they can be applied to any type of constitutive law; (3) they rely on a quadratic expansion
of the displacement unknown, involving nodes on the outer surface. This makes them readily suitable
for coupling with other elements or with themselves, i.e. stacking of shell elements. This aspect is
particularly useful to represent stratified materials.

Figure 2.2 – Definition of the MITC9 tying points on the reference hexahedron – extracted from [Bathe,
Iosilevich, and Chapelle, 2000] – with 𝛼 = 1/√3 and 𝛽 =

√
3/√5. The tying points for the remaining

tensorial components are deduced by symmetry.

Let us assume for illustration purposes that the material at hand is homogeneous and that the domain
of interest can be expressed as Ω̂ = 𝜔×] − 𝜂; 𝜂[, where 𝜔 ⊂ R2 is the mid-surface, and 𝜂 > 0 is the
half-thickness of the domain. Since 3D shell elements rely on a quadratic expansion of the displacement
unknown, after defining quadrangular quadratic finite elements on the mid-surface, they amount to
considering standard 𝑄2 Lagrange elements on the full 3D domain [Chapelle and Bathe, 2011]. More
precisely, let us define T𝐻 , a tesselation of Ω̂ with mesh step 𝐻 and composed of hexahedra with one
element in the thickness. Denoting by 𝐾 = [−1; 1]3 the reference element, any hexahedron 𝐾 ∈ T𝐻 is
the deformation of the reference element through a C1-diffeomorphism denoted by F𝐾 . We consider the
following approximation space

𝑉𝐻 (Ω̂) =
{
𝑤𝐻 ∈ C0(Ω̂)

�� ∀𝐾 ∈ T𝐻 , ∃𝑤 ∈ 𝑄2(𝐾), 𝑤𝐻 |𝐾 = 𝑤 ◦ F−1
𝐾

}
,

and its vectorial counterpart including the relevant boundary conditions

V𝐻 (Ω̂) =
{
𝒘𝐻 ∈ [𝑉𝐻 (Ω̂)]3, 𝒘𝐻 |Γ𝐷 = 0

}
⊂ V(Ω̂).

Considering a direct application of an approximation of problem (2.27) usingV𝐻 (Ω̂) would not alleviate
the locking phenomena. To do so, one can resort to the so-called Mixed Interpolation of Tensorial
Components (MITC) method [Bathe and Dvorkin, 1986; Bucalem and Bathe, 1993; Bathe, Iosilevich,
and Chapelle, 2000]. In essence, this approach consists of interpolating the (discrete) Green-Lagrange
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tensor on so-called tying points. The location of these points is different from the Lagrange interpolation
points defining the discrete displacement unknown and is also different from one component of the
interpolated tensor to another. In our work, we use the MITC9 point distribution since we consider
quadratic elements – see Figure 2.2 for the positioning of these points. Let 𝑖, 𝑗 ∈ {1, 2, 3} be indexes of
the components of the Green-Lagrange tensor, and 𝑛𝑖 𝑗TP the total number of the tying points denoted by

{𝝃̂𝑖 𝑗TP,𝑘}
𝑛
𝑖 𝑗
TP
𝑘=1 ⊂ 𝐾,

and defined on the reference hexahedron. The MITC process applied to a component 𝑒𝑖 𝑗 of the Green-
Lagrange tensor is denoted by ITP(𝑒𝑖 𝑗) and reads

∀𝐾 ∈ T𝐻 , ∀𝝃 ∈ 𝐾, ITP(𝑒𝑖 𝑗) |𝐾 (𝝃) =
𝑛
𝑖 𝑗
TP∑︁
𝑘=1

𝜆TP,𝑘
(
F
−1
𝐾 (𝝃)

)
𝑒𝑖 𝑗 (F𝐾 (𝝃̂

𝑖 𝑗

TP,𝑘)),

where {𝜆TP,𝑖}𝑛TP
𝑖=1 are the Lagrange shape functions associated with the tying points. In the following,

we denote by 𝒆 = ITP(𝒆) the MITC process applied to tensors, in the sense that each component is
interpolated on the tying points, namely

∀𝑖, 𝑗 ∈ {1, 2, 3}, 𝑒𝑖 𝑗 = ITP(𝑒)𝑖 𝑗 = ITP(𝑒𝑖 𝑗).

In the same fashion, considering a discrete linearization point 𝒘★𝐻 ∈ V𝐻 (Ω̂), we introduce, for any
𝒗𝐻 , 𝒘𝐻 ∈ V𝐻 (Ω̂),

D𝒖 𝒆(𝒘★𝐻) · 𝒘𝐻 = ITP(D𝒖 𝒆(𝒘★𝐻) · 𝒘𝐻), D2
𝒖 𝒆(𝒗𝐻 , 𝒘𝐻) = ITP(D2

𝒖 𝒆(𝒗𝐻 , 𝒘𝐻)),

the interpolation on the tying points of the first and second differential of the Green-Lagrange tensor.
With these notations, the discrete problem associated with (2.27) reads:

Find 𝒖𝐻 ∈ V𝐻 (Ω̂) the solution, for any 𝒘𝐻 ∈ V𝐻 (Ω̂), of

𝑎𝑘 (𝒖𝐻 , 𝒘𝐻) − 𝑏𝑘 (𝒖𝐻 , 𝒘𝐻) = ℓ𝑘 (𝒘𝐻),

with

𝑎𝑘 (𝒖𝐻 , 𝒘𝐻) =
∫
Ω̂

D𝒖 𝒆(𝒖𝑘0,𝐻)𝒖𝐻 : D𝒆𝚺(𝒆(𝒖𝑘0,𝐻)) : D𝒖 𝒆(𝒖𝑘0,𝐻)𝒘𝐻 dΩ̂

+
∫
Ω̂
𝚺(𝒆(𝒖𝑘0,𝐻)) : D2

𝒖 𝒆(𝒖𝐻 , 𝒘𝐻) dΩ̂.

In the previous expression of the discrete problem, 𝒖𝑘0,𝐻 ∈ V𝐻 (Ω̂) represents the discrete displacement
field obtained from the prior Newton-Raphson iteration, and is also used as a linearization point for the
bilinear and linear forms 𝑏𝑘 (·, ·) and ℓ𝑘 (·).

Spectral elements and explicit leap-frog scheme for the wave propagation problem. We now
provide key elements for efficient space and time discretization of the wave problem (2.14) relying on the
combination of spectral finite elements, the mass-lumping technique and the explicit leapfrog scheme.
Readers may refer to [Komatitsch et al., 1999; Cohen, 2002; Joly, 2007] for a more detailed description
of these subjects.

To start with, let us denote by 𝒑 = (𝑝1, 𝑝2, 𝑝3)⊺ ∈ N∗3 an integer triplet representing orders of
polynomial on every direction of the reference hexahedron. We define the space of polynomial with
“anisotropic orders” as

𝑄𝒑 (𝐾) = span
{
𝑠̂𝑖1 𝑠̂

𝑗
2 𝑠̂
𝑘
3 , ∀(𝑖, 𝑗 , 𝑘) ∈ N : 𝑖 ≤ 𝑝1, 𝑗 ≤ 𝑝2, 𝑘 ≤ 𝑝3

}
,
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where 𝒔̂ = ( 𝑠̂1, 𝑠̂2, 𝑠̂3)⊺ are the local coordinates on the reference element. From this local space, we can
build the global conforming approximation space that supports the semi-discretization procedure of the
wave problem (2.14). To do so, we consider Tℎ a hexahedral mesh of Ω̂ – different from T𝐻 – with
mesh step ℎ and such that any hexahedron 𝐾 ∈ Tℎ is the deformation of the reference element through a
C1-diffeomorphism denoted by G𝐾 . The scalar-valued approximation space reads

𝑉ℎ (Ω̂) =
{
𝑤ℎ ∈ C0(Ω̂)

�� ∀𝐾 ∈ Tℎ, ∃𝑤 ∈ 𝑄𝒑 (𝐾), 𝑤ℎ |𝐾 = 𝑤 ◦ G−1
𝐾

}
,

and, as previously, its vectorial counterpart including relevant boundary conditions is

Vℎ (Ω̂) =
{
𝒘ℎ ∈ [𝑉ℎ (Ω̂)]3, 𝒘ℎ |Γ𝐷 = 0

}
⊂ V(Ω̂).

The local Lagrange (polynomial) basis functions are defined on the reference element from Gauss-Lobatto
points. This is a key point in order to avoid Runge’s phenomenon, and to render spectral-like convergence
as the order of the local polynomials increases. In practice, these points are set on the reference edge
𝑒̂ = [−1; 1] for any order of approximation (see e.g. [Joly, 2007] for an explicit definition and related
examples of these points), and the location of points are deduced in the reference cube by a simple
extrusion process.

In addition to this specific choice of approximation space, we use a quadrature formula to numerically
compute the integrals involved in the bilinear forms (·, ·)H and 𝑎(𝒖0; ·, ·) appearing in (2.14). The formula
is defined on the reference hexahedron. We denote the 𝑛̂𝑞 associated weights and points respectively by

({𝜔𝑖}𝑛̂𝑞𝑖=1, {̂𝒔𝑖}
𝑛̂𝑞
𝑖=1

)
.

For any function 𝑓 at least continuous over each element in Tℎ, the numerical integration process reads

∫
Ω
𝑓 dΩ ≈

∑︁
𝐾∈Tℎ

𝑛̂𝑞∑︁
𝑘=1

𝜔𝑘 𝑓 (G𝐾 (̂𝒔𝑘))
�� det∇𝒔̂G𝐾 (̂𝒔𝑘)

��.
The quadrature points are identical to the Gauss-Lobatto points, and the quadrature weights are the strictly
positive Gauss-Lobatto weights. Matching the quadrature points with the points associated with the local
Lagrange basis functions is referred to as “mass lumping” [Komatitsch et al., 1999; Cohen, 2002; Joly,
2007]. It leads to a diagonal approximated mass matrix. It has been the subject of particular interest in
the context of finite element methods applied to time domain wave propagation problems since it enables
fully explicit time discretization schemes. To conserve stability and accuracy, specific conditions must be
enforced on the quadrature points and weights. For quadrangles and hexahedra, these conditions are met
at any order of approximations by the Gauss-Lobatto rules [Joly, 2007; Duruflé, Grob, and Joly, 2009].
Following this numerical integration procedure, we denote by

(·, ·)H ≈ (·, ·)ℎ, 𝑎(𝒖0; ·, ·) ≈ 𝑎ℎ (𝒖0; ·, ·), (2.28)

the approximated bilinear forms so that the semi-discrete formulation of the wave problem (2.14) reads
For any time 𝑡 ∈ [0;𝑇], find 𝒖̃ℎ (𝑡) ∈ Vℎ (Ω̂) the solution, for any 𝒘ℎ ∈ Vℎ (Ω̂), of

d2

d𝑡2
(𝒖̃ℎ, 𝒘ℎ)ℎ + 𝑎ℎ (𝒖0,𝐻 ; 𝒖̃ℎ, 𝒘ℎ) = ⟨𝐿 (𝑡, 𝒖0,𝐻), 𝒘ℎ⟩. (2.29)

with given initial conditions 𝒖̃ℎ |𝑡=0 and 𝜕𝑡 𝒖̃ℎ |𝑡=0.
Note that in (2.29) 𝒖0,𝐻 is the discrete solution – after convergence of the Newton-Raphson iterations – of
problem (2.13). Moving on to the time discretization of the wave propagation problem, we define Δ𝑡 > 0
as the time step. We denote by 𝑡𝑛 = 𝑛Δ𝑡, and we assume that there exists 𝑁 ∈ N∗ such that 𝑇 = 𝑁Δ𝑡. To
obtain the fully discrete scheme associated with (2.29), we apply an explicit second-order time scheme
centered at 𝑡𝑛, a.k.a. the leapfrog scheme [Cohen, 2002; Joly, 2003]. Namely, denoting by 𝑢̃𝑛ℎ the
approximation of 𝑢̃ℎ (𝑡𝑛) solution of (2.29), we define the following fully discrete scheme:
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For any 𝑛 ∈ ⟦1; 𝑁⟧, find 𝒖̃𝑛+1ℎ ∈ Vℎ (Ω̂) the solution, for any 𝒘ℎ ∈ Vℎ (Ω̂), of

( 𝒖̃𝑛+1ℎ − 2𝒖̃𝑛ℎ + 𝒖̃𝑛−1
ℎ

Δ𝑡2
, 𝒘ℎ

)
ℎ
+ 𝑎ℎ (𝒖0,𝐻 ; 𝒖̃𝑛ℎ, 𝒘ℎ) = ⟨𝐿 (𝑡𝑛, 𝒖0,𝐻), 𝒘ℎ⟩. (2.30)

with given initial steps 𝒖̃0
ℎ and 𝒖̃1

ℎ.
From this expression of the fully discrete problem, it is possible to recover a discrete energy conservation
property, which is the exact translation of (2.16). Denoting by ∥ · ∥ℎ the norm associated with the discrete
inner-product (·, ·)ℎ, we define the kinematic and potential discrete energies associated with the unique
solution of (2.30) as

K 𝑛+1/2
ℎ =

1
2




 𝒖̃𝑛+1ℎ − 𝒖̃𝑛ℎ
Δ𝑡




2

ℎ
, P𝑛+1/2

ℎ =
1
2
𝑎ℎ (𝒖0,𝐻 ; 𝒖̃𝑛+1ℎ , 𝒖̃𝑛ℎ),

and the total energy as E 𝑛+1/2ℎ = K 𝑛+1/2
ℎ +P𝑛+1/2

ℎ . Assuming a null source term in (2.30), namely
𝐿 (𝑡𝑛, 𝒖0,𝐻) = 0, then, taking 𝒘ℎ = 1

2Δ𝑡 (𝒖̃𝑛+1ℎ − 𝒖̃𝑛−1
ℎ ) as test function and using the symmetry of the

stiffness bilinear form, we have the following energy conservation

E 𝑛+1/2ℎ − E 𝑛−1/2
ℎ

Δ𝑡
= 0. (2.31)

This conservation property is critical since it leads to the conditions – on the stiffness bilinear form and
on the time step – for the fully discrete (2.30) to be stable. Indeed, note that the total energy can be
re-written in the following form

E 𝑛+1/2ℎ =
1
2




 𝒖̃𝑛+1ℎ − 𝒖̃𝑛ℎ
Δ𝑡




2

ℎ
− Δ𝑡2

8
𝑎ℎ

(
𝒖0,𝐻 ;

𝒖̃𝑛+1ℎ − 𝒖̃𝑛ℎ
Δ𝑡

,
𝒖̃𝑛+1ℎ − 𝒖̃𝑛ℎ

Δ𝑡

)

+ 𝑎ℎ
(
𝒖0,𝐻 ;

𝒖̃𝑛+1ℎ + 𝒖̃𝑛ℎ
2

,
𝒖̃𝑛+1ℎ + 𝒖̃𝑛ℎ

2

)
.

Hence, upon the assumption that
— The stiffness bilinear form in (2.30) satisfies the coercivity property (2.15),

— The time step satisfies

Δ𝑡 ≤ 2

(
sup

𝒘ℎ∈Vℎ (Ω̂)

𝑎ℎ (𝒖0,𝐻 ; 𝒘ℎ, 𝒘ℎ)
∥𝒘ℎ∥2ℎ

)− 1
2
, (2.32)

we can ensure that the total energy is a positive functional and that it actually corresponds to an equivalent
norm on the discrete solution. Following arguments provided e.g. in [Joly, 2003; Chabassier and
Imperiale, 2013; Chabassier and Imperiale, 2021] one can obtain the following stability result: there
exists a constant 𝐶 > 0 that depends on the initial steps 𝒖̃0

ℎ and 𝒖̃1
ℎ, the source term 𝐿 (𝑡𝑛; 𝒖0,𝐻) and the

maximal time 𝑇 , such that the solution of (2.30) satisfies

∥𝒖̃𝑛+1ℎ ∥ℎ ≤ 𝐶 (𝑇, 𝐿, 𝒖̃0
ℎ, 𝒖̃

1
ℎ), ∀𝑛 ∈ ⟦1; 𝑁⟧.

Remarks on practical considerations. Prior to giving substantiated numerical results proving the
soundness of the presented modeling strategy, let us gather some important remarks.

First, in the definition of the discrete spaceVℎ (Ω̂) we consider anisotropic orders of approximation.
This aspect appears to be particularly convenient for thin and potentially stratified materials. Indeed,
it allows for high-order elements in the mid-surface of the domain – with low numerical dispersion or
numerical anisotropy [Cohen, 2002; Basabe, 2007; Seriani and Oliveira, 2008] – while maintaining a
reasonable number of Degrees of Freedom (DoF) by using lower order in the thickness of the material.
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Material Density(g/cm3) 𝜆(GPa) 𝜇(GPa) l(GPa) m(GPa) n(GPa)
Aluminum 2.704 54.308 27.174 -181.0 -289.0 -336.0

Steel 7.850 111 82.1 -459.0 -461.0 -358.0

Table 2.1 – Material parameters for the metals used in this work.

Second, the use of approximated numerical integration as denoted in (2.28) implies in particular a
lumped, i.e. diagonal, mass matrix. This is an important aspect in the context of high-frequency wave
propagation since the leapfrog scheme (2.30) thus becomes fully explicit. At each time step, only a
diagonal matrix needs to be inverted. Additionally, using numerical integration with points matching
the ones defining the local Lagrange polynomial leads to very sparse discrete gradient computations.
Hence, the approximation 𝑎(𝒖0; ·, ·) ≈ 𝑎ℎ (𝒖0; ·, ·) also implies significant performance gains – see e.g.
[Alexandre Imperiale and Demaldent, 2019] for more details on these practical aspects.

Moreover, in practice, the mesh step for the locking-free shell elements depends mostly on the
geometrical characteristics of the domain and the material variations – typically one element per material
layer in the case of stratified materials. For the wave problem, to these constraints is added the constraint
of having enough discretization points per wavelength. With these qualitative meshing directives in
mind, in the context of high-frequency wave propagation, one can expect that the Tℎ is significantly more
refined than T𝐻 , i.e. ℎ ≪ 𝐻.

In light of the previous remark, in order to solve the fully discrete one-way coupled problems, one
needs to resort to a mean of interpolating 𝒖0,𝐻 ∈ V𝐻 (Ω̂) onto Vℎ (Ω̂). Let us denote by Iℎ (·) the
nodal interpolator fromV𝐻 (Ω̂) toVℎ (Ω̂), without entering into the details of the exact expression of this
interpolator, let us simply remark that the stiffness bilinear form actually reads

𝑎ℎ (𝒖0,𝐻 ; ·, ·) = 𝑎ℎ (Iℎ (𝒖0,𝐻); ·, ·).

Finally, the condition (2.32) on the time step is often referred to as the Courant – Friedrichs – Lewy
(CFL) condition of the fully discrete scheme. Note that in the particular cases of interest in our work, this
CFL condition naturally depends on the linearization point, i.e. the displacement field 𝒖0,𝐻 . Furthermore,
in terms of stability, in addition to this CFL condition, the coercivity assumption is capital – a condition
that is also required for the well-posedness of the continuous problem.

2.3 Numerical results and experimental validation
In this section, we apply our model and numerical methods for different configurations. First, we

assess the stability issue caused by a potential failure to ensure coercivity. Second, we apply our methods
to realistic cases in the SHM context. At last, we present how we validate our model with experimental
data available in the literature. The computations were done using a laptop workstation equipped with
a Intel i9-9880H CPU and 32GB of RAM. The wave propagation simulations are performed within the
SFEM kernel of the CIVA platform 1 developed at CEA.

2.3.1 Illustration of potential stability issues of the fully discrete scheme
As discussed previously, the tangent stiffness operator in (2.14) must satisfy the coercivity assumption

(2.15), otherwise the well-posedness of the problem cannot be guaranteed. This assumption cannot be
satisfied for any deformation or constitutive law. In this section, we aim to illustrate this problem in a
test model. At a discrete level, coercivity is equivalent to positiveness of the operator, which can be
assessed by computing its eigenvalues. In the zero-deformation case, the presented model equates to
linear elasticity (Hooke’s law), and 𝑎(0; ·, ·) is known to be coercive [Ciarlet, 1988b]. Here, we assess

1. https://www.extende.com

https://www.extende.com
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stability for deformed cases by analyzing the evolution of the system energy and the eigenvalues of the
local stiffness matrices.

(a) Mesh and boundary conditions for the test case for
model stability.

(b) Deformations caused by body forces in three different
directions.

Figure 2.3 – Configuration and deformations for illustrating the potential stability issues.

If instability would appear by the deformation, it could be interpreted as a shift of tangent stiffness
operator eigenvalues towards negative values. In this case, the negative eigenvalues that are related
to the instability of the scheme are expected to be among those of the smallest amplitude, i.e. low
spatial frequency. Computing the lowest eigenvalues for the stiffness operator may have prohibitive
computational cost due to the size of the problems at hand. To circumvent this computational difficulty,
we analyze instead the eigenvalues of the local stiffness matrix related to each finite element. Although
negative eigenvalues for the local stiffness matrices do not necessarily mean negative eigenvalues for the
global matrix, it does give an insight into the problematic regions and related severity. In addition to the
study of the lowest eigenvalue, we analyze the evolution in time of the total system’s kinetic and potential
energy for different initial conditions, showing the nature of such stability issues.

The model configuration used is an aluminum cuboid of 25mm × 25mm × 100mm depicted in
Figure 2.3a. Dirichlet boundary condition is considered at x=0. The material parameters are present in
Table 2.1. We analyze different constitutive laws and types of mechanical solicitations. The analysis
is done using the aforementioned SVK, CNH, and Murnaghan’s constitutive laws. For each case, three
different types of mechanical solicitations as body forces will be considered:

— Stretching: 300N/mm3 (Y direction),
— Bending: 7.5N/mm3 (-Z direction),
— Compresing: 135N/mm3 (-Y direction).

The associated deformations are illustrated in Figure 2.3b for the CNH case. The SVK law has slightly
different deformation with the same nature and amplitudes. Computing the quasi-static deformation using
Murnaghan’s constitutive law did not converge due to its particularly ill-posed tangent operator.

After computing the deformations caused by these forces for each constitutive law, the displacement
field is given as input to our wave propagation solver. The same constitutive law is used for the quasi-static
problem and the wave propagation problem, except in Murnaghan case. For the Murnaghan case, we
compute the deformation with CNH instead. The deformation field is interpolated from the quasi-static
problem mesh to the wave propagation problem mesh. After discretizing the functional space using
spectral finite elements, we assemble the local tangent stiffness matrices and compute their eigenvalues.
The minimum eigenvalues, for each element, are shown in Figure 2.4 for different types of deformations
and constitutive laws.

The CNH constitutive law presents less severity, i.e. lowest amplitude negative eigenvalues. The SVK
and CNH cases are more unstable for compressed cases – cases associated with buckling phenomena.
The Murnaghan’s law presents the highest negative eigenvalues with critical behavior in the stretched
case. The stability issue can be also assessed by observing the evolution of the system’s potential and
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(a) Stretched SVK. (b) Stretched CNH. (c) Stretched MUR.

(d) Bended SVK. (e) Bended CNH. (f) Bended MUR.

(g) Compressed SVK. (h) Compressed CNH. (i) Compressed MUR.

Figure 2.4 – Minimum (local) tangent stiffness matrix eigenvalues for different types of deformation and
constitutive laws.

kinetic energy. We run the wave propagation problem, without source-term, from initial conditions with
specific spatial frequency signature, namely for 𝑛 = 1, 2, 3

𝒖̃0
ℎ = −

[
sin

(
25 − 𝑥

25
2𝜋𝑛

)
sin

(
25 − 𝑦

25
2𝜋𝑛

)
sin

(
25 − 𝑧

25
2𝜋𝑛

)]
(e𝑥 + e𝑦 + e𝑧),

𝒖̃1
ℎ = −𝒖̃0

ℎ .

It allows us to solicit the low-frequency modes and assess the instability, relating the frequency content
to the issue. Running simulations with these initial conditions, we monitor the total, kinetic and potential
energies as shown in Figure 2.5.

As the total energy is conserved, if both kinetic and potential energies are positive, the system’s
energy is bounded. However, if any of the energies become negative, the solution may diverge. For the
stable cases, the energy transfer between kinetic and potential is kept throughout the simulation. For the
unstable cases, as soon as the potential energy presents negative values, the system starts to diverge. The
excitation of lower frequencies presented instability in fewer time steps as they excite lower frequency
modes, i.e. modes related to lower eigenvalues. For the presented forces, the CNH case is unstable only
under compression, SVK is unstable for bending and compression and Murnaghan’s is unstable for all
presented deformations. In general, the stability issues are not only dependent of buckling phenomena
but also on the choice of constitutive law.

2.3.2 Illustrations related to Structural Health Monitoring

We now illustrate the generic aspect of our work by applying it to different cases. The first case is a
steel pipe subjected to the 4-point bending test, inspired by an experiment done in [Tschöke et al., 2017].
We simulate ultrasonic propagation with different deformation intensities and compare the acoustoelastic
effects in the signal with ones caused by a crack through the thickness of the pipe. In the second case, we
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(a) Stable behavior for a stable case (Stretched; CNH).

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

n=1 n=2

n=3

n=1 n=2

n=3

Time (𝜇𝑠)

(b) Unstable case (Bended; CNH) for different initial con-
ditions.

Figure 2.5 – Evolution of total energies (𝑎.𝑢.) for the wave propagation problem.

model ultrasonic wave propagation in a 16-layer stratified composite plate under torsion forces. For such
modeling, we use the transversely isotropic law (2.22) for each of the 16 layers associated with a principal
fiber direction. These examples illustrate the application of our method to realistic and complex loading
configurations, and the simulation results could be used to assess the efficiency of a SHM system.

Illustration on a pipe subject to a 4-point bending test. We present here a case of wave propagation
in a steel pipe subjected to a 4-point bending test. This configuration is usually used to perform fatigue
tests in welded pipes. The experimental setup is inspired by the experiment done in [Tschöke et al., 2017].
We model and simulate the wave propagation in the pipe subjected to such bending forces with different
intensity levels. We use Murnaghan’s constitutive law with material parameters for steel (Table 2.1).
For these levels of deformation and material parameters the wave propagation problem does not present
stability issues. The surface force is applied at two regions close to the pipe extremities. The configuration
is depicted in Figure 2.6, with a 2.94m long, 8mm thick pipe and an inner radius of 102.65mm. The
resulting deformation for a total force of 220kN is shown in Figure 2.7.

Figure 2.6 – Numerical setup and mesh for the quasi-static problem.
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Figure 2.7 – Deformation of the pipe for a 220kN loading. (Deformation scaled 20x for visualization).

Given the different deformations as input, we interpolate them in the wave propagation problem
mesh and compute the wavefield generated by a unique source term. The wave problem mesh, source
location and measurement point are depicted in Figure 2.8, as well as the position of a potential crack.
The ultrasonic waves are excited close to one edge of the pipe and measured at the other edge. For a
case with no cracks, we simulate the wavefield and extract the signal from the modeled transducer at the
measurement point and plot in Figure 2.9 for different levels of mechanical loadings. Snapshots of the
wavefield are shown in Figure 2.10.

Figure 2.8 – Transducer, potential crack and measurement point positions for the wave propagation
problem. On the right-hand side, the mesh for the wave propagation problem characterized by the
Gauss-Lobatto points.

In Figure 2.9, we can see that the effect of bending forces results in a change in time of flight,
decreasing the wave velocity, and also a change in amplitude of the signals with higher forces.

To evaluate how the effect of mechanical loading on the signal compares with the one caused by a
crack, we set up and simulate three numerical configurations:

— 𝑆: non deformed pipe (considered as baseline; no defects)
Simulation is done considering no deformation with a pristine pipe,

— 𝑆𝑝: deformed pipe (without defect)
Simulation is done considering the pipe under bending forces of 220kN,

— 𝑆𝑑: pipe with defect (without deformation)
Simulation is done considering the undeformed pipe with a crack of 19mm wide through half the
thickness.

From each case, we extract the signal of a modeled transducer at the measurement point. The defect
through half the thickness was modeled by disconnecting elements. By subtracting the signals from the
baseline, we can isolate the individual contribution to the signal of the mechanical loading and the crack.
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Figure 2.9 – Transducer signal at the measurement point for different bending forces.

Material Density(g/cm3) 𝐶11 𝐶22 𝐶12 𝐶23 𝐶66
CFRP 1.6 155.17 13.22 5.34 6.98 5.77

Table 2.2 – Material parameters for CFRP. [Lonné, 2003]

The baseline signal 𝑆 is subtracted from 𝑆𝑝 and 𝑆𝑑 and the results are plotted in Figure 2.11.
Regarding performances, the quasi-static problem is 148k DoFs and takes 3 minutes to run 5 Newton-

Raphson iterations while using 2.2GB of RAM. The wave propagation problem requires around 3.86M
mesh points to ensure at least two elements of fourth-order per wavelength, resulting in 11.58M DoFs.
The timestep is Δ𝑡 = 0.11𝜇s to comply with the CFL condition (2.32). Using an efficient implementation
of the spectral finite elements, the numerical solver uses 2.3GB of RAM, 73 seconds for initialization
(starting the model, initial outputs and interpolating the structure displacement field) and 40 minutes to
compute approximately 4336 timesteps (including wavefield outputs).

The effect on the signal caused by the deformation alone is comparable to the effect caused by a crack
for such configuration and type of measurement. Thus, not considering these effects when analysing
wave propagation data for this level of mechanical loading results in less reliable detection and evaluation
of such type of damages.

Illustration on a stratified anisotropic plate. Carbon fiber-reinforced polymers are largely employed
in aerospace industries, where ensuring safety is essential. They are made of a polymer matrix reinforced
with stacked layers of fibers. Usually, each fiber layer has a principal direction, presenting a transversely
isotropic response to mechanical solicitations. Here, we model the wave propagation in a 16-layer Carbon
Fiber Reinforced Polymer (CFRP) plate with dimensions of 900× 300× 2 (16× 0.125) mm3 under torsion
as illustrated in Figure 2.6.
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Figure 2.10 – Snapshots of the wavefield computed in the steel pipe subjected to the 4-point bending test
at t = 70, 140, 230, 300, 390 and 480𝜇s (left to right, top to bottom).

Each layer is modeled using the hyperelastic potential (2.22) where the direction related to the
invariants 𝐼4 and 𝐼5 were set accordingly to the fiber directions in Figure 2.12. The material parameters
are shown in Table 2.2. The deformation was caused by setting the Dirichlet boundary condition at 𝑥 = 0
and applying a body force with the following form

𝑓 =
𝑦 − 150

300
10−3N/mm3, ∀𝑦 ∈ [0, 300] .

The resulting deformation by solving the quasi-static problem is shown in Figure 2.13. Snapshots of the
wavefield computed solving the wave propagation problem can be seen in Figure 2.14.

The quasi-static problem has 270k DoFs and takes 50 minutes to run 10 Newton-Raphson iterations
while using 12GB of RAM. The wave propagation problem requires around 8.3M mesh points, having at
least two elements of fourth-order per wavelength, resulting in 25M DoFs. Satisfying the CFL condition
(2.32), the timestep is Δ𝑡 = 0.0159𝜇s. The wave propagation solver requires 4GB of RAM, 9 minutes
for initialization (starting the model, initial outputs and interpolating the structure displacement field)
and 2 hours and 54 minutes to compute approximately 18867 timesteps (including wavefield outputs).
This computation is particularly expensive as we need to satisfy the CFL condition for the mesh step
related to the thickness discretization (16 elements for 2mm). This problem could be mitigated by using
implicit-explicit schemes as in [Methenni, 2021].

This illustration shows the capability of our simulation tools to model thin structures with the
possibility of choosing a hyperelastic law that best suits the modeling objectives. As discussed in the
paragraph about acoustoelasticity, the acoustoelastic effect is controlled by the TOECs. Here, we choose
to use a hyperelastic law that matches only second-order elastic constants although the implementation
of laws that include the TOECs can also be considered.
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Figure 2.11 – Transducer signal at measure point subtracted from the baseline for the case with defect-only
and load-only.

Material Density (g/cm3) 𝜆 (GPa) 𝜇 l m n
Aluminum (fitted) 2.704 54.308 27.174 -181.0 -289.0 -336.0

Table 2.3 – Material parameters for aluminum, fitted to experimental data.

2.3.3 Experimental validation on an isotropic plate

Finally, in this section, we model and simulate an experimental setup to validate our model in the
isotropic case. The experiment is presented in [Gandhi, Michaels, and Lee, 2012], where the authors
apply axial forces to an aluminum plate and measure the change in wave speed caused by the load-induced
deformation, for different directions and guided wave modes. Using Murnaghan’s constitutive law, the
authors propose an eigenproblem to obtain guided wave modes and their wave speeds in biaxially stressed
isotropic materials. By applying canonical deformations and measuring the change in wave speed for
different angles, the authors calibrated the TOECs of Murnaghan’s constitutive law using experimental
data. The obtained parameters are presented in Table 2.3. Here, we aim at modeling and simulating
this experiment using the hyperelastic potential (2.21) with these parameters. We compare the simulated
results with their experimental data to validate our model and numerical tools. The experiment is depicted
in Figure 2.15.

In the experimental setup, eleven levels of axial loading are applied from 0MPa to 57.5MPa and the
ultrasonic wave speeds are measured for 9 different angles of propagation with transducers positioned
at 109mm from the center in the undeformed configuration [Gandhi, M., 2010]. For the validation
procedures, we use their measured changes in wave speed for the S0 mode excited with a 250kHz 5-cycle
Hanning windowed cosine. The wave speed is obtained by retrieving the ToF between transducer pairs
for the S0 mode at a given load. To avoid effects of dispersion on the ToF measurement, we identify
the 4th zero-crossing of the signal as the least affected by dispersion. As our solution is computed
in the reference configuration, there is no need for correcting the distance change between transducers
caused by the deformation. The authors in [Gandhi, Michaels, and Lee, 2012] fitted their parameters
while neglecting this distance difference when computing the wave speed using the ToF. The computed
displacement between the axial pair (#1,#6) has a maximum of 0.173mm at 57.5MPa. It represents a
change in the total pair distance of around 0.08%, or, in terms of wave speed, around 4.2m/s when
considering the mean wave speed of 5300m/s.

We simulate and obtain, for the different load levels, the changes in time of flight (ToF) for the angles
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Figure 2.12 – Configuration for the quasi-static problem (upper left). Zoom showing the stratified aspect
(upper right). Ply configuration (bottom).

Figure 2.13 – Deformation of the CFRP plate under torsion. (visualization scaled 2x).

90º, 45º, 0º, -22.5º, -67.5º, corresponding to the transducer pairs (#1,#6), (#5,#10), (#4,#9), (#2,#7) and
(#3,#8). The Y axis is considered to be at an angle of 90º. The changes in wave speed in the loading
axis with respect to the load intensity are plotted in Figure 2.16a. Here, simulated results with different
constitutive laws (SVK, CNH and Murnaghan’s) are compared to experimental data and the analytical
reference solution proposed in [Gandhi, Michaels, and Lee, 2012]. The behavior of SVK and CNH
constitutive laws reflect the analysis done in the paragraph about acoustoelastic effects. With the SVK
law, increasing axial load leads to increasing incremental wave speeds, what is opposite to the observed
effect. Although the CNH models the right tendency of decreasing the wave speed, it underestimate its
effects. Making use of the TOECs, the Murnaghan’s law is able to properly model the experimental data.
For the maximum load of 57.5MPa, the changes in wave speed with respect to the angle of propagation
are plotted in Figure 2.16b. Here, our method implemented with the Murnaghan’s law is also compared
with the experimental data and the analytical proposition when obtaining the angular-dependency of the
changes in wave speed. With our simulation, we retrieve the expected bell-shaped curve, effect of the
load-induced anisotropy also obtained from the ToF measurements from experimental and simulated data.

Summarizing our validation achievement, the experiment is modeled and simulated starting from the
mechanical loading that results in the deformation of the aluminum plate. This deformation is used as
input to our linearized wave propagation model, and, using the proposed constitutive law and material
parameters we are able to extract the ultrasonic signals of the same nature as in the experiment. Our
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Figure 2.14 – Wavefield computed in a 16 layers CFRP plate under torsion at t = 45, 90, 180, 240, 270
and 300𝜇s.

Figure 2.15 – Experimental setup for calibrating the TOECs using the acoustoelastic effect.

simulation reliably matches the experimental results while computing the whole wave field. We also
implement different constitutive laws, obtaining their expected behavior. This further validates each
modeling component and solvers used.

2.4 Conclusion & perspectives
In our work, we have proposed a set of numerical tools addressing the problem of ultrasonic guided-

wave propagation in materials subject to pre-deformation. Modeling of such configurations includes
two different problems: a quasi-static (time-independent) nonlinear problem satisfied by the large dis-
placement field, and a linearized time-domain wave propagation problem. Our approach is generic in
the sense that it can represent any type of constitutive law and geometries. For each problem, we have
carefully chosen a dedicated numerical method – namely the 3D shell elements for the first problem
and the time-domain SFEM for the second one – leading to computationally efficient algorithms. We
have presented numerical results on 3D cases related to SHM configurations, thus illustrating the perfor-
mances of our method for both isotropic and anisotropic materials. We also have compared our results
against experimental data extracted from the literature, thus validating the overall modeling and numerical
toolchain.

Thanks to the presented approach, we were able to illustrate how the effects of a pre-deformation can
alter the ultrasonic signals used to monitor a specimen under inspection. It makes this work in a good
position to get closer to real applications in industrial contexts, and to provide meaningful modeling tools
for potential industrial partners aiming at designing SHM systems. In order to enhance the attractiveness
of these modeling tools, it would be interesting to include a mean of automatically removing the bias
induced by the pre-deformation or the EOCs in general. This could typically be done by considering an
inverse problem where we would aim at reconstructing the pre-deformation sustained by the structure
from the guided-wave measurements.
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Minha filha, desce das nuvens

Hoje, sentada ao lado
Da hortinha da minha mãe
Pensei Meu Deus, como a vida é besta.
Tanta conta pra pagar
E eu aqui sem um puto.
Minha filha, desce das nuvens,
Me diz meu terapeuta,
Uma queda dessas, se não mata
Pode lhe quebrar as pernas.
Mas hoje, eu aqui, ao som dos insetinhos
Penso
Meu Deus como a vida é besta
As nuvens refletidas na água da piscininha
E minha avó
Matando as borboletas chicoteando um pano de prato.
Criaturas horríveis, ela diz
Põe as larvas nas folhas
E estragam meu trabalho.
E eu que nem nunca tinha pensado nisso.
Se eu tivesse coragem vó
Eu saia das águas, das nuvens
E te ajudava
A matar borboletas
Mas é que elas são tão bonitas.
- Renata Dalmora

For the Asking
William Ackerman
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Chapter 3

Introduction to least-squares minimization
for solving inverse problems

In this chapter, we have the objective of selecting a suitable method for reconstructing structural
displacement using ultrasonic waves. We do an introduction to least squares minimization in inverse
problems related to wave propagation. The inverse problem is interpreted as a minimization problem
where the misfit between observed data and a model is minimized by adjusting its parameters. We first
introduce the formalism and the problems of interest, then we recall classical variational and sequential
methods. Finally, we apply those methods to the problems of interest in one dimension for illustration
and clarity purposes. By analyzing the cost and requirements of the presented methods, the
Reduced-Order Unscented Kalman Filter was chosen as the most adequate method for our problem of
estimating structural deformation.
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Low amplitude wave phenomenon is intensively used to access information that is not in reach
nor accessible without deconfiguring or destroying the medium of interest. In the specific case of
Nondestructive Testing and Structural Health Monitoring, ultrasonic waves are one of the most employed,
and more recently, in its guided configuration [Croxford et al., 2007; Mitra and Gopalakrishnan, 2016].
While particular characteristics of a propagating wave such as time of flight, dispersion, amplitude and
phase can be used as a form of compressing and filtering the information transported by the wave, here
we present inverse strategies that try to maximize the retrieved information by using raw ultrasonic data
from transducers. The use of raw data requires proper dealing with “noise”, otherwise the method may
present instability or a slow rate of convergence. Here, we aim to give an introduction to some traditional
methods that can be used for estimation using wave propagation.

Given a specific wave propagation problem as the one presented in the first part, our objective is to
estimate parameters of the wave model that bear uncertainties in the case where the information available
in the wavefield is limited. This is usually the case in practical systems where just a few sensors are
placed to measure it while most of it is left unmeasured. By having a model of the system with a priori
initial conditions and parameters, the whole wavefield can be simulated. We call by unknown the inputs
of the model that bear uncertainties. The misfit between measured and simulated data is used to update
the unknown towards a better estimation, i.e. a value that results in simulated data closer to the measured
one. The inverse problem of estimating this unknown can be treated in the context of least-squares
optimization where the estimation is done by minimizing the squared misfit in a given norm.

The objective of this chapter is to introduce inverse problems related to wave propagation and
associated existing inverse methods. By dealing with nonlinear inverse problems, we can consider the task
of estimating structural deformation using limited ultrasonic measurements with the help of the “direct”
model presented in Chapter 2. The methods are presented in their time-continuous form for conciseness
and clarity, and in their time-discrete form for further detailing their practical aspects [Moireau, 2022].
In Section 3.1 we introduce the formalism and enunciate the inverse problems of interest interpreted as
least squares minimization problems. In Section 3.2 the class of variational methods for minimization
are presented and in Section 3.3, the sequential methods. In Section 3.4, we apply such methods in a
one-dimensional framework for illustration and comparison. Finally, in Section 3.5 we briefly discuss
the presented results and the arguments for choosing the Reduced-Order Unscented Kalman Filter for our
problem of estimating the structural deformation. As an abuse of notation, in this chapter, we make no
distinction when writing the function and its corresponding vector of components R𝑁 , in a given basis.

3.1 Introduction
In this section, we aim to introduce in a compact form the problems of interest and the associated

formalism to treat them. As mentioned, the objective is to estimate a model unknown utilizing limited
observed data. The difficulty of the unknown estimation task is highly dependent on how the unknown
acts on the system. Therefore, we present two main classes of problems to be treated:

— Linear-quadratic problems: The dynamics depend linearly on the parameter. One example, that
will be detailed later, is when the unknown appears in the source term of the wave problem.

— Nonlinear problems: The functional depends nonlinearly on the parameter to be reconstructed,
such as in the state-parameter joint-estimation or in the first part of this thesis where the constitutive
operator is parametrized by a quasi-static deformation.

More specifically, for better illustration, we exemplify two types of problems:
— Initial state reconstruction (nonlinear): The objective is to estimate the initial state of nonlinear

dynamics. We present the Problem A.1, for its time-continuous version, and Problem I.1, for its
time-discrete version.

— Parameter estimation (nonlinear and linear-quadratic): A time-independent parameter is esti-
mated. The dependency can be a constitutive or a source term dependency. We present Prob-
lem B.1 and Problem II.1 for a nonlinear parametric dependency for the time-continuous and
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time-discrete cases, respectively. For a linear case, we present Problem B.2 and Problem II.2.
We show that the problem of estimating a time-independent parameter can be interpreted as an initial
state estimation and, for this reason, the initial state estimation problem will be considered as the generic
case. Therefore, we will focus on the presentation of estimation methods for estimating an initial state,
although some links between the different cases will be given. The inverse problem of reconstructing
the unknown is solved by minimizing a functional containing a term representing the misfit between
measurements and simulated data and a term for regularizing the inverse problem. A model (dynamics)
of the system is also given with an associated observation operator that produces the simulated data.

In Section 3.1.1 we present the formalism and generally an inverse problem in a time-independent
framework as an introduction, in Section 3.1.2 we introduce the overall format of the dynamical systems
of interest that will be related to wave propagation problems and to what was presented in Section 3.1.1.
Finally, in Section 3.1.3 and Section 3.1.4 we formally present the inverse problems of interest in its
time-continuous and time-discrete formulations.

3.1.1 General formulation
In this section we present a simple and comprehensive formulation for the inverse problems of

interest, introducing the main elements and notations. As our objective is to apply such methods in a
discrete context, we simplify the presentation by considering only finite-dimensional Hilbert spaces if
not explicitly specified otherwise. To introduce the notations related to the inverse problems, we start by
defining a nonlinear “input-output“ operator Ψ : Θ ↦→ Y that generates the observations 𝑦 ∈ Y from a
parameter 𝜃 ∈ Θ, where Θ is the parametric space andY is the space of observations. We also introduce
the measurement 𝑦

𝑦 = Ψ(𝜃) + 𝜒,
which represents the measured data and indirectly contains information about the unknown to be estimated.
The function 𝜒 represents a disturbance modeling potential measurement noises. Generally, the inverse
problem will be stated as: for given observations 𝑦, find the parameter 𝜃. This could also be stated as

“𝜃 = Ψ−1(𝑦)”.
Additionally to the difficulty posed by the observations disturbance 𝜒, the inverse Ψ−1 is usually not
defined or costly to compute, making its direct inversion not feasible. Instead, the inverse problem can
be interpreted as finding 𝜃 such as [Nocedal and Wright, 2006; Luenberger and Ye, 2008]

𝜃 = argmin
𝜃∈Θ

J(𝜃) = argmin
𝜃∈Θ

{
𝑟Θ(𝜃0 − 𝜃) + 1

2
∥𝑦 − Ψ(𝜃)∥2Y

}
, (3.1)

where 𝑟Θ is an operator on Θ and J : Θ ↦→ R is the functional. The operator 𝑟Θ acts on the functional
to regularize the associated inverse problem. In most cases presented here, this regularization term will
have a quadratic form as

𝑟Θ(𝜃 − 𝜃0) = 1
2
(
𝑅Θ(𝜃 − 𝜃0), (𝜃 − 𝜃0)

)
Θ,

where 𝜃0 ∈ Θ represents an initial guess of the parameter to be estimated and 𝑅Θ : Θ ↦→ Θ a self-adjoint
positive regularizing operator.

Linear case. In cases where Ψ ∈ L(Θ,Y), Ψ(𝜃) becomes Ψ𝜃 and the minimization (3.1) becomes

𝜃 = argmin
𝜃∈Θ

J(𝜃) = argmin
𝜃∈Θ

{
𝑟Θ(𝜃) + 1

2
∥𝑦 − Ψ𝜃∥2Y

}
. (3.2)

This linear minimization problem has its minimum in a closed form

𝜃 =
(
𝑅Θ + Ψ∗Ψ

)−1 (
𝑅Θ𝜃0 + Ψ𝑦

)
. (3.3)



86 Chapter 3. Introduction to least-squares minimization for solving inverse problems

3.1.2 Time-dependent systems
For the inverse problems of interest, the unknowns are not directly observable. Instead, the observa-

tions can only be done on the state of dynamics controlled by the unknown. For instance, the unknown
can present in the constitutive part of a wave dynamics or in its source term, and the observations be
done in its displacement field. Therefore, we present here the dynamic systems we deal with and how to
interpret an inverse problem involving such dynamics. As we will see, information about the unknown
can be retrieved through a model that relates the unknown and the observed state. We briefly introduce
in this section the generic form of such dynamics and its operators. We first present the time-continuous
case and then the time-discrete case.

3.1.2.1 Time-continuous dynamics

Here, we present the time-continuous dynamics of interest in a sufficient generic form. We introduce
a state variable, the potentially nonlinear dynamics operator 𝐴 and the observation operator 𝐶 as

𝑧 ∈ Z𝑇 = C1( [0, 𝑇];Z), 𝐴 : Z × [0, 𝑇] ↦→ Z and 𝐶 : Z ↦→ Y,
for a maximum time 𝑇 . We assume that the evolution of state through time can be described using the
dynamics

d
d𝑡
𝑧(𝑡) = 𝐴(𝑧(𝑡), 𝑡) + 𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇], (3.4)

where 𝑧(0) is given. We assume that observations 𝑦 ∈ Y𝑇 = L2(0, 𝑇 ;Y) are generated from the state by
the observation operator 𝐶

(
𝑧(𝑡)) , as

𝑦(𝑡) = 𝐶 (
𝑧(𝑡)) + 𝜒(𝑡), ∀𝑡 ∈ [0, 𝑇] . (3.5)

The observations 𝑦(𝑡), or measurements, will represent the available data retrieved from the system we
are modeling. A disturbance 𝜒(𝑡) is added to represent potential unmodeled effects on the process of
measurement such as electronic or ambient noise. Here, we have presented the dynamics in the format
that will be used throughout the following sections. The dynamics operators and how the unknowns act
in them will be defined differently for each illustration or case of application.

Linear case. If the operator 𝐴 is linear w.r.t. the state 𝑧(𝑡), namely 𝐴(𝑧(𝑡), 𝑡) = 𝐴(𝑡)𝑧(𝑡), we have the
linear dynamics

d
d𝑡
𝑧(𝑡) = 𝐴(𝑡)𝑧(𝑡) + 𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇], (3.6)

where 𝑧(0) is given. If the observation operator is also linear, we have

𝑦(𝑡) = 𝐶𝑧(𝑡) + 𝜒(𝑡), ∀𝑡 ∈ [0, 𝑇] . (3.7)

Formulation for wave propagation problems. We show here that the dynamics (3.6) written in the first-
order (time-derivative) form, comprises wave propagation problems. Such demonstration is particularly
interesting as the strategies to be presented in the next sections consider these first-order dynamics but
our objective is to apply those strategies to wave propagation inverse problems. To do so, starting from
the finite-dimensional second-order wave propagation dynamics, we rewrite it as a first-order dynamics.
For a displacement field 𝑢 ∈ C2( [0, 𝑇], 𝑉) and 𝑉 a finite-dimensional Hilbert space, we introduce a
discretized wave propagation problem in the form




d2

d𝑡2
𝑢(𝑡) + 𝐴𝑢𝑢(𝑡) = 𝑓 (𝑡),

𝑢(0) = 𝑢0,
d𝑢
d𝑡
(0) = 𝑣0,

(3.8)
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where 𝐴𝑢 ∈ L(𝑉) is a self-adjoint positive operator, 𝑓 ∈ C0( [0, 𝑇], 𝑉) is the source term. We complete
the description of such a problem by defining the observations 𝑦𝑢 ∈ L2(0, 𝑇 ;Y𝑢) with

𝑦𝑢 (𝑡) = 𝐶𝑢
(
𝑢(𝑡)) + 𝜒𝑢 (𝑡),

where 𝐶𝑢 : 𝑉 ↦→ Y𝑢 and 𝜒𝑢 ∈ L2(0, 𝑇 ;Y𝑢) is a disturbance. With the objective of writing the wave
propagation dynamics in the form of (3.6) we define the velocity, state variables and disturbance as

𝑣 =
d𝑢
d𝑡
, 𝑧 =

(
𝑢

𝑣

)
, 𝜒(𝑡) =

(
0

𝜒𝑢 (𝑡)
)
.

Finally, writing the operator and source term of (3.4) as

𝐴
(
𝑧(𝑡)) = (

0 𝐼

−𝐴𝑢 0

)
𝑧(𝑡), 𝑏(𝑡) =

(
0
𝑓 (𝑡)

)
,

with 𝐼 being the identity operator, we can then write the wave propagation problem (3.8) in the form of
the first-order dynamics (3.6)




d
d𝑡

(
𝑢(𝑡)
𝑣(𝑡)

)
=

(
0 𝐼

−𝐴𝑢 0

) (
𝑢(𝑡)
𝑣(𝑡)

)
+

(
0
𝑓 (𝑡)

)

𝑧(0) =
(
𝑢0
𝑣0

)
.

(3.9)

The observations are analogously obtained by defining the operator in (3.5) as

𝐶
(
𝑧(𝑡)) = 𝐶𝑢 (𝑢(𝑡)) ,

that, if it is linear, analogously to (3.7) we have

𝐶𝑧(𝑡) = (
𝐶𝑢 0

) (
𝑢

𝑣

)
(𝑡).

Therefore, the methods discussed in the following sections for solving inverse problems with an associated
first-order differential equation (i.e. (3.6)) can also be used for wave propagation problems. In practice,
when finite elements procedures are applied, we have naturally the inner product for the space 𝑉 as
(𝑢, 𝑢)𝑉 = (M𝑢, 𝑢)2 (Euclidian norm) and the operator 𝐴𝑢 := M−1K ∈ L(R𝑁𝑢), where the matrices M
and K are the traditional mass and stiffness matrices. In some cases, as presented in the next sections,
the operator 𝐴𝑢 may depend on the state, hence becoming a nonlinear problem as (3.4).

3.1.2.2 Time-discrete dynamics

Given a time step Δ𝑡, the 𝑁-steps time discretization is done as 𝑧𝑛 ≈ 𝑧(𝑛Δ𝑡) with 𝑛 ∈ ⟦0; 𝑁⟧, where
Δ𝑡 usually is fixed to satisfy stability conditions. The approximation error is expected to decrease as Δ𝑡
decreases. We would like to write the dynamics (3.4) with a time-stepping procedure, with 𝑏𝑛 = 𝑏(𝑛Δ𝑡),
such as

𝑧𝑛+1 = Φ𝑛+1 |𝑛 (𝑧𝑛) + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧, (3.10)
where we define Φ𝑛+1 |𝑛 : Z ↦→ Z the discretized version of the flow defined by the 𝐴 operator,
transitioning a state from the step 𝑛 to 𝑛 + 1. When the operator acts linearly in the state we represent it as

Φ𝑛+1 |𝑛 (𝑧𝑛) = Φ𝑛+1 |𝑛𝑧𝑛,

so the dynamics become
𝑧𝑛+1 = Φ𝑛+1 |𝑛𝑧𝑛 + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧, (3.11)

where 𝑧0 is given. We assume that observations {𝑦𝑛}𝑁𝑛=0 are generated from the state from the same
observation operator 𝐶, having

𝑦𝑛 = 𝐶 (𝑧𝑛) + 𝜒𝑛, (3.12)

with 𝜒𝑛 = 𝜒(𝑛Δ𝑡).
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Formulation for wave propagation problems. As done for the time-continuous case, we can write a
discrete wave propagation problem in the form of (3.10) for the nonlinear case and in the form of (3.11)
for the linear case. We start by discretizing the wave propagation problem in (3.8), approximating the
time derivative with a second order leapfrog scheme with time step Δ𝑡 such that 𝑢𝑛 ≈ 𝑢(𝑛Δ𝑡) and using
𝑓 𝑛 = 𝑓 (𝑛Δ𝑡)

M
𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1

Δ𝑡2
+K𝑢𝑛 = 𝑓 𝑛, 𝑢1 = 𝑢0 = 0, ∀𝑛 ∈ ⟦1; 𝑁 − 1⟧, (3.13)

where 𝑢 ∈ R𝑁𝑢 is the discretized displacement field, for instance, a finite element vector. The matrices
M and K represent the mass and stiffness matrices obtained also from finite elements procedures. To use
the estimation methods described in this section, we write the wave propagation problem as a discrete
first-order dynamics by introducing the velocity unknown 𝑣



M
𝑢𝑛+1 − 𝑢𝑛

Δ𝑡
−M𝑣𝑛+1 = 0,

M
𝑣𝑛+1 − 𝑣𝑛

Δ𝑡
+K𝑢𝑛 = 𝑓 𝑛.

Introducing the state variable as 𝑧𝑛 =
(
𝑢𝑛 𝑣𝑛

)⊺ ∈ Z, we can write this system as

Φ1𝑧
𝑛+1 = Φ0𝑧

𝑛 + 𝑓 𝑛𝑧 , 𝑧0 = 0, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

with
Φ1 =

(
M −Δ𝑡M
0 M

)
, Φ0 =

(
M 0
−Δ𝑡K M

)
, 𝑓 𝑛𝑧 =

(
0

Δ𝑡 𝑓 𝑛

)
, (3.14)

analogously to (3.11), yielding

𝑧𝑛+1 = Φ𝑛+1 |𝑛𝑧𝑛 + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧ (3.15)

with
Φ𝑛+1 |𝑛 = Φ−1

1 Φ0, and 𝑏𝑛 = Φ−1
1 𝑓 𝑛𝑧 .

Using this notation for Φ, one can write

𝑧𝑛 = Φ𝑛 |0𝑧0 +
𝑛−1∑︁
𝑖=0

Φ𝑛 |𝑖+1𝑏𝑖 ,

where the operator subscript “a|b” means taking the step 𝑏 as input and forwarding it to the step 𝑎.

3.1.3 Time-continuous inverse problems of interest
In this section, we present the problems of interest in their time-continuous form. The first is the

reconstruction of the initial state of a dynamical system, which is nonlinear, i.e. the functional to be
minimized depends nonlinearly on the unknown. The second is to estimate a parameter of the dynamical
system. The second problem is divided into two sub-problems: linear-quadratic and nonlinear. In the
linear-quadratic case, the dependency w.r.t. the unknown is characterized linearly on the dynamics but
quadratically in the least-squares misfit term. We also show that the parametric estimation, where the
parameter is time-independent, can be written in the form of initial state reconstruction, making the initial
state reconstruction case the most generic among the presented problems. For the sake of conciseness,
the problems are described by defining the:

1. Functional/Cost function: A functional with the unknown as argument. Its minimization w.r.t.
the unknown is interpreted as the inverse problem.
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2. Model (Dynamics): How the state evolves in time defining the operator and source term in (3.4)
and how the state depends on the unknown. Used to generate the simulated data.

3. Available data: The available observations, how they are obtained and a priori guess about the
unknown.

The functional, or cost function, quantifies the misfit between the simulated data (generated with an
estimation of the unknown) with the given observations. This misfit is computed as the square, in a
given norm, of the difference between the observed state of the model and the given observations. As
disturbances in the observations are often present, a regularization term is added to the functional that
aims at controlling effectively the way deviations from the a priori unknown are penalized. The dynamics
represents the model of the target system by an equation that describes the time evolution of the system
state from its initial conditions. We call as target system the system from which the observations were
obtained, the denomination “target” is due to the fact that we aim at estimating its parameters that we
consider unknown or bearing uncertainties. The available data comprises, additionally to the model,
actual measurements on the target system state and an initial guess of the unknown. These measurements
are usually done by physical sensors (i.e. accelerometers, gauges, temperature sensors, piezoelectric
transducers, etc.), which are modeled through observation operators. The link between this form of
interpreting an inverse problem and the form with an “input-output” operator will be established to
elucidate the relation between the unconstrained inverse problem (3.1) and one constrained by dynamics.

Given this format of presenting an inverse problem, we describe in the following sections the problem
of reconstructing the initial state of time-continuous dynamics and the problem of estimating a parameter
acting in its constitutive operator or in the source term.

3.1.3.1 Initial state reconstruction

By using the proposed structure for presenting the inverse problems of interest, we describe the
first one that aims at reconstructing an error 𝜁 in the initial state of a dynamical system by means of
observations on the state. The problem can be described as follows. The functional is regularized by an
operator 𝑟 (𝜁) : Z ↦→ R defined as

𝑟 (𝜁) = 1
2
(𝑅𝜁, 𝜁)Z , ∀𝜁 ∈ Z,

where 𝑅 : Z ↦→ Z is a self-adjoint positive operator.

Nonlinear problem A.1
1. Functional:

J𝑇 (𝜁) =
{
𝑟 (𝜁) + 1

2

∫ 𝑇

0
∥𝑦(𝑡) − 𝐶 (

𝑧𝜁 (𝑡)
) ∥2Y d𝑡

}
(3.16)

2. Dynamics: (3.4) with initial condition bearing uncertainty, namely,




d
d𝑡
𝑧𝜁 (𝑡) = 𝐴(𝑧𝜁 (𝑡), 𝑡) + 𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇],

𝑧𝜁 (0) = 𝑧0 + 𝜁 .
(3.17)

3. Available data
An initial guess 𝑧0 and noisy observations 𝑦(𝑡) from (3.5) with 𝑧(𝑡) generated from (3.4)

with 𝑧(0) = 𝑧0 + 𝜁∗.
The objective is to estimate the error 𝜁∗ in the initial state through the minimization of (3.16).
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This problem is so-called “nonlinear” because its functional depends nonlinearly on the unknown. Dif-
fering from the functional in (3.1), in the case where the minimization is constrained to a time-dependent
dynamics, one can notice the dependency of the optimal value w.r.t. to 𝑇 . This dependency means
that, as intuitively expected, the optimal value depends on the amount of information available through
observations.

Initial state reconstruction for wave propagation problems. Using the wave dynamics in its first-
order form (3.9), one can propose an inverse problem to reconstruct the initial displacement field 𝑢0 using
noisy measurements up to a given time 𝑇 . As an example, in practice, the observation operator 𝐶 could
represent piezoelectric transducers. Such transducers are commonly used for measuring ultrasonic wave
propagation. They are bonded to the structure surface, generating electrical signals from the surface
displacement field. The initial state of the system can then be reconstructed using the noisy information
acquired during a finite period.

Unconstrained formulation. We give here an example of how problems such as Problem A.1 can be
related to the time-independent inverse problem presented in Section 3.1.1. The idea is that even with the
unknown not being directly observable in the physical system, an operator that outputs the observations
from the unknown can be constructed by using the given model (dynamics). To do so, we develop the idea
for a linear dynamics case where 𝐴

(
𝑧𝜁 (𝑡)

)
becomes 𝐴𝑧𝜁 (𝑡) with functional as (3.1). The minimization in

the form of (3.16) can be represented in an alternative form of (3.1)

min
𝜁 ∈Z

J(𝜃) = min
𝜁 ∈Z

{
𝑟 (𝜁) + 1

2
∥𝑦 − Ψ(𝜁)∥2Y𝑇

}
,

where the norm ∥·∥2Y𝑇 is defined as

∥𝑦 − Ψ(𝜁)∥2Y𝑇 =
∫ 𝑇

0
∥𝑦(𝑡) − Ψ(𝜁) (𝑡)∥2Y d𝑡.

Refering to (3.17), Ψ : Z ↦→ Y𝑇 is defined as

Ψ(𝜁) (𝑡) = 𝐶 (
𝑧𝜁 (𝑡)

)
, ∀𝑡 ∈ [0, 𝑇],

where, using the Duhamel’s formula [Bhatia, 2015], we have

𝑧𝜁 (𝑡) = 𝑒𝑡 𝐴(𝑧0 + 𝜁) +
∫ 𝑡

0
𝑒 (𝑡−𝑠)𝐴𝑏(𝑠) d𝑠, ∀𝑡 ∈ [0, 𝑇] .

This formulation makes explicit how the observations are related to the unknown, the complexity and
the ill-posedness of the problem. Additionally, the observability of the inverse problem can be analyzed
through this relation, namely how much information can be retrieved given the observations and the model.
We will show in the time-discrete section that when the problem is time-discrete, the time-dependent
problem can be written explicitly in the form of (3.1).

3.1.3.2 Parameter reconstruction

We treat here the case where the operator 𝐴 depends on a parameter bearing uncertainties and the
initial state is considered to be fully known. The parameter estimation problem will be divided into two
types: linear-quadratic and nonlinear problems. The state dynamics is linear for the linear-quadratic case
or nonlinear, otherwise, w.r.t. the parameter and the functional to be minimized is quadratic w.r.t. to the
observations. To state such problems, we redefine the operator 𝐴 in (3.4) with a nonlinear dependency
w.r.t. the parameter and state, namely

𝐴(𝑧(𝑡), 𝑡) redefined as 𝐴(𝑧(𝑡), 𝜃, 𝑡)
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then the nonlinear dynamics are written

d
d𝑡
𝑧(𝑡) = 𝐴(𝑧(𝑡), 𝜃, 𝑡) + 𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇], (3.18)

where 𝑧(0) is given. The objective will be then to estimate an associated parameter 𝜃 using observations.
The functionals representing the following inverse problems are regularized by an operator 𝑟Θ(𝜁) : Θ ↦→ R
defined as

𝑟Θ(𝜃) = 1
2
(𝑅Θ𝜃, 𝜃)Θ, ∀𝜃 ∈ Θ, (3.19)

and 𝑅Θ : Θ ↦→ Θ is a self-adjoint positive operator. The observations are considered to be generated from
(3.18) with 𝜃∗ with added disturbance 𝜒.

Nonlinear problem. Here, we consider that the dynamics has a nonlinear dependency on the parameter
and applies linearly to the state, namely

𝐴(𝑧(𝑡), 𝜃, 𝑡) = 𝐴(𝜃, 𝑡)𝑧(𝑡), 𝐴 : Θ × [0, 𝑇] ↦→ L(Z).
First, we describe the problem in a more natural description below.

1. Functional:
J𝑇 (𝜃) =

{
𝑟Θ(𝜃 − 𝜃0) + 1

2

∫ 𝑇

0
∥𝑦(𝑡) − 𝐶 (

𝑧𝜃 (𝑡)
) ∥2Y d𝑡

}
, (3.20)

2. Dynamics: (3.18) with parameter bearing partial uncertainty and known initial condition,
namely, 



d
d𝑡
𝑧𝜃 (𝑡) = 𝐴(𝜃, 𝑡)𝑧𝜃 (𝑡) + 𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇],

𝑧𝜃 (0) = 𝑧(0).
(3.21)

3. Available data
An initial guess 𝜃0 and noisy observations 𝑦(𝑡) from (3.5) with 𝑧(𝑡) generated from

(3.18) with 𝜃 = 𝜃∗.

The objective is to estimate 𝜃∗ through the minimization of (3.20).

In fact, all problems to be solved can be treated as an initial state reconstruction problem. We are
then interested in presenting the parameter estimation as the initial state reconstruction problem. In
the following, we show that the parameter reconstruction problem can be written as Problem A.1 by
augmenting the state variable and the dynamics with

♯𝑧(𝑡) ∈ ♯Z = Z × Θ, ♯𝐴 : Θ ↦→ L(♯Z) and ♯𝑏(𝑡) ∈ Z × Θ, ∀𝑡 ∈ [0, 𝑇],
giving

♯𝑧(𝑡) =
(
𝑧(𝑡)
𝜃

)
, ♯𝐴(𝜃, 𝑡) =

(
𝐴(𝜃, 𝑡) 0

0 0

)
, ♯𝑏(𝑡) =

(
𝑏(𝑡)

0

)
.

The dynamics then becomes

d
d𝑡

♯𝑧(𝑡) = ♯𝐴(𝜃, 𝑡) ♯𝑧(𝑡) + ♯𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇], (3.22)

where ♯𝑧(0) is given. The observations are obtained using an augmented observation operator ♯𝐶 : ♯Z ↦→
Y as

𝑦(𝑡) = ♯𝐶
(
♯𝑧(𝑡)) + 𝜒(𝑡) = 𝐶 (

𝑧(𝑡)) + 𝜒(𝑡), ∀𝑡 ∈ [0, 𝑇] . (3.23)
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As denoted, the parameter is expected to be time-independent. Hence, we interpret the problem of
estimating the parameter as an initial state estimation as below, where we reconstruct the parameter-only
initial condition error, denoted as 𝜁𝜃 .

Nonlinear problem B.1
1. Functional:

J𝑇 (𝜁𝜃) =
{
𝑟Θ(𝜁𝜃) + 1

2

∫ 𝑇

0
∥𝑦(𝑡) − ♯𝐶

(
♯𝑧𝜃 (𝑡)

) ∥2Y d𝑡
}

(3.24)

2. Dynamics: (3.22) with initial condition bearing partial uncertainty, namely,




d
d𝑡

♯𝑧𝜃 (𝑡) = ♯𝐴(𝜃, 𝑡) ♯𝑧𝜃 (𝑡) + ♯𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇],

♯𝑧𝜃 (0) =
(

𝑧0
𝜃0 + 𝜁𝜃

)
.

(3.25)

3. Available data
An initial guess 𝜃0 and noisy observations 𝑦(𝑡) from (3.23) with ♯𝑧(𝑡) generated from

(3.22) with
♯𝑧(0) =

(
𝑧0

𝜃0 + 𝜁𝜃∗
)
.

The objective is to estimate the parameter-only error 𝜁𝜃∗ through the minimization of (3.24).

This type of problem is illustrated in Section 3.4.2 and Section 3.4.3, where perturbations in the
medium wave velocity are constructed using limited observed wavefield data.

Linear-quadratic problem. In the inverse problem case where the dynamics have linear dependency
w.r.t. the parameter, namely Linear-Quadratic (LQ) problem, we can write the parameter-estimation
problem like Problem B.1 by defining the operator

𝐴𝐿 ∈ L(♯Z), 𝐴𝐿 (𝑡) =
(
𝐴 𝐵(𝑡)
0 0

)
, ∀𝑡 ∈ [0, 𝑇],

where 𝐵(𝑡) ∈ L(Θ,Z) provides a source term from the parameter. Then, 𝑏(𝑡) = 0 as no extra source
terms are considered. The modified dynamics becomes

d
d𝑡

♯𝑧(𝑡) = 𝐴𝐿 (𝑡) ♯𝑧(𝑡), ∀𝑡 ∈ [0, 𝑇], (3.26)

where ♯𝑧 is the augmented state (state-parameter) and ♯𝑧(0) is given. Then the problem can be stated in
the form of an initial state reconstruction as below, which is a lightly modified version of Problem B.1.
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Linear-quadratic problem B.2
1. Functional:

J𝑇 (𝜁𝜃) =
{
𝑟Θ(𝜁𝜃) + 1

2

∫ 𝑇

0
∥𝑦(𝑡) − ♯𝐶

(
♯𝑧𝜃 (𝑡)

) ∥2Y d𝑡
}

(3.27)

2. Dynamics: (3.26) with initial condition bearing partial uncertainty, namely,




d
d𝑡

♯𝑧𝜃 (𝑡) = 𝐴𝐿 (𝑡) ♯𝑧𝜃 (𝑡), ∀𝑡 ∈ [0, 𝑇],

♯𝑧𝜃 (0) =
(

𝑧0
𝜃0 + 𝜁𝜃

)
.

(3.28)

3. Available data
An initial guess 𝜃0 and noisy observations 𝑦(𝑡) from (3.23) with ♯𝑧(𝑡) generated from

(3.26) with
♯𝑧(0) =

(
𝑧0

𝜃0 + 𝜁𝜃∗
)
.

The objective is to estimate the parameter-only error 𝜁𝜃∗ through the minimization of (3.27).

This type of problem is illustrated in Section 3.4.1, where a source term spatial dependency is
constructed by means of limited observed wavefield data.

3.1.4 Time-discrete inverse problems of interest
Although it will be simpler to present some optimization methods for time-continuous inverse prob-

lems, it is important to write and analyze them in their discrete form. One reasonable path would
be to propose optimization methods in the time-continuous formulation and then discretize to solve it
numerically. However, if the time-continuous minimization strategy is discretized, it may not satisfy
optimality for the discrete version of the dynamics, we then do the approach “discretization-and-then-
control” [Zuazua, 2005; Moireau, 2022]. For that reason, we write the problems directly in their discrete
form to then propose respective minimization methods. We write here the Problem A.1, Problem B.1
and Problem B.2 in their time-discrete forms.

3.1.4.1 Initial state reconstruction

Based on (3.10), we write Problem A.1 in its discrete form.

Nonlinear discrete problem I.1
1. Functional:

J𝑁 (𝜁) =
{
𝑟 (𝜁) + Δ𝑡

2

𝑁∑︁
𝑛=0
∥𝑦𝑛 − 𝐶 (𝑧𝑛𝜁 )∥2Y

}
(3.29)

2. Dynamics: (3.10) with initial conditions bearing uncertainty, namely,



𝑧𝑛+1𝜁 = Φ𝑛+1 |𝑛 (𝑧𝑛𝜁 ) + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

𝑧0
𝜁 = 𝑧0 + 𝜁 .

(3.30)

3. Available data



94 Chapter 3. Introduction to least-squares minimization for solving inverse problems

An initial guess 𝑧0 and noisy observations {𝑦𝑛}𝑁𝑛=0 from (3.12) with {𝑧𝑛}𝑁𝑛=0 generated
from (3.10) with 𝑧0 = 𝑧0 + 𝜁∗.

The objective is to estimate the error 𝜁∗ in the initial state through the minimization of (3.29).

Unconstrained formulation. As done in the time-continuous case, a link between the minimization in
Problem I.1 and the time-independent inverse problem (3.1) can be established. For the discrete case, an
explicit relation can be obtained. First, we define the Hilbert space Y𝑁 and stack the vectors by defining
𝑦𝑁 ∈ Y𝑁 and Ψ𝑁 (𝜁) ∈ Y𝑁

𝑦𝑁 =
©­­«
𝑦0

...

𝑦𝑁

ª®®¬
, Ψ𝑁 (𝜁) =

©­­«
𝐶 (𝑧0

𝜁 )
...

𝐶 (𝑧𝑁𝜁 )

ª®®¬
where the modified space of observations Y𝑁 has the inner product defined as

(𝑢𝑁 , 𝑣𝑁 )Y𝑁 = Δ𝑡
𝑁∑︁
𝑛=0
(𝑢𝑛, 𝑣𝑛)Y , ∀𝑢𝑁 , 𝑣𝑁 ∈ Y𝑁 .

The dynamics solution {𝑧𝑛𝜁 }𝑁𝑛=0 present in the Ψ𝑁 (𝜁) vector can then be written in its closed form

𝑧𝑛𝜁 = Φ𝑛 |𝑛−1

(
Φ𝑛−1 |𝑛−2

( · · ·Φ1 |0(𝑧0 + 𝜁) + 𝑏0 · · · ) + 𝑏𝑛−2
)
+ 𝑏𝑛−1.

With these definitions, the functional in (3.29) becomes

J𝑁 (𝜁) =
{
𝑟 (𝜁) + 1

2
∥𝑦𝑁 − Ψ𝑁 (𝜁)∥2Y𝑁

}
.

3.1.4.2 Parameter reconstruction

As done for the time-continuous case, we write the discrete version of the parameter estimation
problem as an initial state reconstruction.

Nonlinear case. We start by introducing the augmented discrete operator by redefining

Φ𝑛+1 |𝑛 (𝑧𝑛) as ♯Φ𝑛+1 |𝑛 (𝜃𝑛)𝑧𝑛.
We specify the augmented state and operators as

♯𝑧𝑛 ∈ ♯Z = Z × Θ, ∀𝑛 ∈ ⟦0; 𝑁⟧.
♯Φ𝑛+1 |𝑛 : Θ ↦→ L(♯Z) and ♯𝑏𝑛 ∈ ♯Z, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧.

Considering the problem Problem I.1, we precise these augmented variables and operator as

♯𝑧𝑛 =

(
𝑧𝑛

𝜃𝑛

)
, ♯Φ𝑛+1 |𝑛 (𝜃𝑛) =

(
Φ𝑛+1 |𝑛 (𝜃𝑛) 0

0 0

)
, ♯𝑏𝑛 =

(
𝑏𝑛

0

)
.

such that (3.10) becomes
♯𝑧𝑛+1 = ♯Φ𝑛+1 |𝑛 (𝜃𝑛) ♯𝑧𝑛 + ♯𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧, (3.31)

where ♯𝑧0 is given. The observations are obtained using the augmented observation operator ♯𝐶 as

𝑦𝑛 = ♯𝐶 (♯𝑧𝑛) + 𝜒𝑛 = 𝐶 (𝑧𝑛) + 𝜒𝑛, ∀𝑛 ∈ ⟦0; 𝑁⟧. (3.32)

With the augmented discrete state and operator, we can write the parameter reconstruction problem as
below.
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Nonlinear discrete problem II.1
1. Functional:

J𝑁 (𝜁𝜃) =
{
𝑟Θ(𝜁𝜃) + Δ𝑡

2

𝑁∑︁
𝑛=0
∥𝑦𝑛 − ♯𝐶 (♯𝑧𝑛𝜃 )∥2Y

}
(3.33)

2. Dynamics: (3.31) with initial conditions bearing uncertainty, namely,




♯
𝑧𝑛+1𝜃 = ♯Φ𝑛+1 |𝑛 (♯𝑧𝑛𝜃 ) + ♯𝑏𝑛, 𝑛 ∈ ⟦0; 𝑁 − 1⟧,

♯
𝑧0
𝜃 =

(
𝑧0

𝜃0 + 𝜁𝜃

)
.

(3.34)

3. Available data
An initial guess 𝜃0 and noisy observations {𝑦𝑛}𝑁𝑛=0 from (3.32) with ♯𝑧(𝑡) generated

from (3.31) with
♯𝑧0 =

(
𝑧0

𝜃0 + 𝜁𝜃∗
)
.

The objective is to estimate the parameter-only error 𝜁𝜃∗ through the minimization of (3.33).

Linear case. We can do the same for the linear case Problem B.2 by using the operator

Φ𝐿
𝑛+1 |𝑛 ∈ L(♯Z), Φ𝐿

𝑛+1 |𝑛 =
(
Φ𝑛+1 |𝑛 𝐵𝑛

0 𝐼

)
, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧.

Then the linear version can be written as below in analogy to Problem II.1 by changing the operator and
considering no other source term, ♯𝑏𝑛 = 0, yielding

♯𝑧𝑛+1 = Φ𝐿
𝑛+1 |𝑛 (𝜃𝑛) ♯𝑧𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧. (3.35)

Linear-quadratic discrete problem II.2
1. Functional:

J𝑁 (𝜁𝜃) =
{
𝑟Θ(𝜁𝜃) + Δ𝑡

2

𝑁∑︁
𝑛=0
∥𝑦𝑛 − ♯𝐶 (♯𝑧𝑛𝜃 )∥2Y

}
(3.36)

2. Dynamics: (3.31) with initial conditions bearing uncertainty, namely,




♯
𝑧𝑛+1𝜃 = Φ𝐿

𝑛+1 |𝑛 ♯𝑧𝑛𝜃 , ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

♯
𝑧0
𝜃 =

(
𝑧0

𝜃0 + 𝜁𝜃

)
.

(3.37)

3. Available data
An initial guess 𝜃0 and noisy observations {𝑦𝑛}𝑁𝑛=0 from (3.32) with ♯𝑧𝑛 generated from

(3.35) with
♯𝑧0 =

(
𝑧0

𝜃0 + 𝜁𝜃∗
)
.

The objective is to estimate the parameter-only error 𝜁𝜃∗ through the minimization of (3.36).
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3.2 Variational methods
In the previous section, we presented the least-squares minimization formalism related to the inverse

problems in their time-continuous and time-discrete forms. In this section, we present the variational
methods for solving such minimization problems [Tarantola, 1984]. The variational methods are a class
of methods based on finding the minima iteratively by using the functional gradient. Variational methods
iteratively update the unknown using all the system’s available observations, as computing the gradient
requires all data at once. The gradient is used for updating the unknown towards a better estimation.

Variational methods are well known for solving large-scale ill-posed non-linear optimization prob-
lems. Among the usages of such methods, it is used in geophysics [Mora, 1987; Pica, Diet, and Tarantola,
1990; Tarantola, 1984; Virieux and Operto, 2009; Aghamiry et al., 2022], meteorology [Dimet and
Talagrand, 1986; Courtier, Thépaut, and Hollingsworth, 1994; Rabier, Thépaut, and Courtier, 1998],
structural mechanics [Feissel and Allix, 2007; Bonnet and Aquino, 2015; Nguyen, Chamoin, and Ha
Minh, 2022], nondestructive testing [Rao, Ratassepp, and Fan, 2016; Xu et al., 2021; Ratassepp et al.,
2021], medical imaging [Agudo et al., 2018; Guasch et al., 2020; Lucka et al., 2021], among others.
Although we focus here in the L2-norm, the misfit term in the function can be represented by different
norms, for instance the L1-norm [Ma et al., 2020] or the Wasserstein norm [Engquist, Froese, and Yang,
2016], from optimal transport [Métivier et al., 2022]. To compute the functional gradient, the adjoint
method is mostly used [Cea, 1986; Lions, 1971; Plessix, 2006].

In Section 3.2.1 we introduce the traditional descent methods while introducing the notation and
formalism. The textbooks [Nocedal and Wright, 2006; Luenberger and Ye, 2008] are used as the main
references throughout this section. In Section 3.2.2 we show how the functional gradient constrained to
a given dynamics can be obtained through the adjoint method and apply it with descent methods to the
problems of interest.

3.2.1 Descent methods
In the context of optimization by least-squares minimization, the Descent Methods are a well-known

class of methods to minimize functionals using the functional’s gradient. They consist of iteratively
updating the parameter in a specific direction that decreases the functional. Here, we present such
methods and some of the most used versions and ways of computing this specific direction. We recall the
unconstrained inverse problem as the minimization of the functional (3.1),

J(𝜃) =
{
𝑟Θ(𝜃) + 1

2
∥𝑦 − Ψ(𝜃)∥2Y

}
,

with 𝜃 ∈ Θ, Ψ : Θ ↦→ Y and 𝑦 ∈ Y. The operator Ψ is considered to be twice-differentiable in terms of
the Fréchet differentiation. In this section, 𝑟Θ will have the form

𝑟Θ(𝜃) = 1
2
(𝑅Θ𝜃, 𝜃)Θ,

with 𝑅Θ being a self-adjoint positive linear operator. The descent methods are characterized by updating
the parameter as [Nocedal and Wright, 2006]

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘𝑑𝑘 , (3.38)

where 𝜃𝑘 ∈ Θ is the parameter at the 𝑘-th step, 𝛼𝑘 > 0 is the descent step and 𝑑𝑘 ∈ Θ is the descent
direction that decreases the functional J. The direction 𝑑𝑘 can be obtained by different methods that will
be presented next. The descent step can be computed from a line search problem as

𝛼𝑘 = argmin
𝛼>0

J(𝜃𝑘 + 𝛼𝑑𝑘)
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meaning that we look for a descent step that minimizes the functional when updating the parameter in
the direction of 𝑑𝑘 . If the minimum is attained, we call it an exact line search while if it is not attained
we call it an inexact line search. Using Definition A.2.7, we can develop the gradient of the functional as

DJ(𝜃)𝜃̃ = (𝑅Θ𝜃, 𝜃̃)Θ +
(
DΨ(𝜃)𝜃̃,Ψ(𝜃) − 𝑦)Y , ∀𝜃̃ ∈ Θ, (3.39)

where DJ(𝜃) ∈ L(Θ,R ) and DΨ(𝜃) ∈ L(Θ,Y) are the functional and the “input-output” operator
differentiations, respectively. By using Property A.2.1, we denote as ∇J the Riesz representation of DJ,
then

⟨DJ(𝜃), 𝜃̃⟩Θ′Θ = (∇J, 𝜃̃)Θ, ∀𝜃̃ ∈ Θ.
In the following, we may use ∇J without writing the norm in which the scalar product should be taken. It
means that, we assume a discrete norm (𝜃, 𝜃′)Θ = 𝜃⊺𝜃′ , ∀𝜃, 𝜃′ ∈ Θ. When it is not the case, for instance,
where Θ is a finite element space and a L2 norm is associated with it, the norm should be present

(∇J, 𝜃̃)Θ = 𝜃̃⊺M∇J, ∀𝜃̃ ∈ Θ,

where the application of the mass matrix M, as seen in Chapter 1, results in the L2 norm.

3.2.1.1 Steepest descent

The steepest descent (SD) method is a descent method where we choose the direction 𝑑𝑘 in which
the iteration (3.38) directly satisfies the descent condition

J(𝜃𝑘+1) ≤ J(𝜃𝑘)

when considering a first-order expansion. By doing the Taylor expansion in J up to the first-order term,
where DJ ∈ L(Θ,R ), we have

J(𝜃𝑘+1) = J(𝜃𝑘 + 𝛼𝑘𝑑𝑘) ≈ J(𝜃𝑘) + 𝛼𝑘DJ(𝜃𝑘)𝑑𝑘 ,

then, to satisfy the descent condition ∀𝛼𝑘 > 0,

J(𝜃𝑘) + 𝛼𝑘DJ(𝜃𝑘)𝑑𝑘 ≤ J(𝜃𝑘)
DJ(𝜃𝑘)𝑑𝑘 ≤ 0,

one can choose the direction
𝑑𝑘 = −∇J(𝜃𝑘) = −∇J(𝑘 ) , (3.40)

where we introduce the notation ∇J(𝜃𝑘) = ∇J(𝑘 ) . To exemplify the effect of a chosen norm in Θ, in the
aforementioned case of a L2 norm, we have

𝑑𝑘 = −M∇J(𝑘 ) .

The expected order of convergence of the steepest descent method being of the first-order [Nocedal and
Wright, 2006; Luenberger and Ye, 2008], we present the following methods with an expected better order
of convergence.

3.2.1.2 Conjugate gradient

In conjugate gradient (CG) methods, the direction 𝑑𝑘 is defined as

𝑑𝑘 =

{
−∇J(𝑘 ) for 𝑘 = 0
−∇J(𝑘 ) + 𝛽𝑘𝑑𝑘−1 for 𝑘 > 0

. (3.41)
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where 𝛽𝑘 is to be choosen. One example of choice of coefficient is the Fletcher-Reeves 𝛽𝑘 coefficient
[Luenberger and Ye, 2008]

𝛽𝑘 =




∇J(𝑘+1)


2

Θ


∇J(𝑘 )


2

Θ

, ∀𝑘 > 0.

Other choices of 𝛽𝑘 are possible [Nocedal and Wright, 2006; Nakayama, 2019]. The descent step 𝛼𝑘 is
obtained through a line search.

3.2.1.3 Newton-Raphson

The Newton-Raphson (NR) method provides a better convergence than the aforementioned methods,
where the 𝑑𝑘 is defined as

𝑑𝑘 = (𝐻 (𝑘 ) )−1∇J(𝑘 ) , (3.42)
where the Hessian operator 𝐻 (𝑘 ) emerges from the second (Fréchet) differentiation of the functional at
𝜃𝑘 as defined in Definition A.2.8. We assume the Hessian to be invertible. Differentiating twice the
functional yields, ∀𝜃̃, 𝜃̃′ ∈ Θ,

D2J(𝜃𝑘) (𝜃̃, 𝜃̃′) = (𝑅Θ𝜃̃
′, 𝜃̃)Θ +

(
DΨ (𝑘 ) 𝜃̃,DΨ (𝑘 ) 𝜃̃′

)
Y +

( [
D2Ψ(𝜃𝑘)𝜃̃] 𝜃̃′,Ψ (𝑘 ) − 𝑦)

Y
= [𝐻 (𝑘 ) 𝜃̃] 𝜃̃′,

(3.43)

where we make explicit the Hessian and introduce the compact notations: Ψ (𝑘 ) = Ψ(𝜃𝑘), DΨ (𝑘 ) =
DΨ(𝜃𝑘) and DΨ (𝑘 )∗ = DΨ∗(𝜃𝑘). It is possible to prove that the Newton-Raphson method, in a particular
case where J is convex, benefits from an order-two convergence towards the global minimum, see
[Luenberger and Ye, 2008] for more details. Although it has the advantage of converging at a better rate
than steepest-descent and conjugate-gradient, differentiating twice the cost function means differentiating
twice the operator 𝐴 w.r.t. the parameter. Usually, this differentiation is not straightforward to compute
and, for some large cases, the amount of required memory may be a limiting factor as it, a priori, does
not result in a sparse matrix.

3.2.1.4 Quasi-Newton methods

Considering limiting factors of computing the Hessian, approximated Hessians are used in the so-
called quasi-Newton methods. For presenting the methods, we will denote the approximation of the
Hessian 𝐻 and its inverse as 𝐵.

Gauss-Newton. In the Gauss-Newton method we suppose that the second-derivative term in (3.43) is
small or negligible, so the Hessian is approximated as

[𝐻 (𝑘 ) 𝜃̃] 𝜃̃′ ≈ [𝐻 (𝑘 ) 𝜃̃] 𝜃̃′ = (𝑅Θ𝜃̃
′, 𝜃̃)Θ +

(
DΨ (𝑘 ) 𝜃̃,DΨ (𝑘 ) 𝜃̃′

)
Y

= (𝑅Θ𝜃̃
′, 𝜃̃)Θ +

(
DΨ (𝑘 )∗DΨ (𝑘 ) 𝜃̃′, 𝜃̃

)
Θ

=
(
(𝑅Θ + DΨ (𝑘 )∗DΨ (𝑘 ) )𝜃̃′, 𝜃̃

)
Θ
.

(3.44)

Iterated Gauss-Newton. Using this approximation, we can show that each descent iteration (3.38) can
be interpreted as a linearized minimization problem. To do so, we first develop the iterations for the
Newton-Raphson Method using the Gauss-Newton approximation and (3.39),

𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝑘 (𝐻 (𝑘 ) )−1∇J(𝑘 ) .

= 𝜃𝑘 − 𝛼𝑘
(
𝑅Θ + DΨ (𝑘 )∗DΨ (𝑘 )

)−1 (
𝑅Θ𝜃

𝑘 + DΨ (𝑘 ) (Ψ (𝑘 ) − 𝑦)
)
.
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By defining 𝛿𝑦 = 𝑦 − Ψ (𝑘 ) and 𝛿𝜃 = (𝜃𝑘+1 − 𝜃𝑘)/𝛼𝑘 , we have

𝛿𝜃 =
(
𝑅Θ + DΨ (𝑘 )∗DΨ (𝑘 )

)−1 (
𝑅Θ𝜃

𝑘 + DΨ (𝑘 )𝛿𝑦
)

that is the closed-form minimum of the a new functional J𝑘 with the linearized operator

min
𝛿𝜃∈Θ

J𝑘 (𝛿𝜃) = min
𝛿𝜃∈Θ

{
𝑟Θ(𝜃𝑘) + 1

2
∥𝛿𝑦 − DΨ (𝑘 )𝛿𝜃∥2Y

}
.

The iterated version of the Gauss-Newton methods is useful for wave propagation inverse problems as the
assembly of the “input-output” tangent operator is prohibitive and is represented by a wave propagation
problem. Then, using tangent dynamics at each sub-iteration, one can compute the gradient to minimize
the “linearized” functional.

BFGS (Broyden-Fletcher-Goldfarb-Shanno). Using the fact that the Hessian evolution through de-
scent iterations is associated with the evolution of the functional gradient, the BFGS method consists in
generating an approximation of the Hessian at each descent step using only the functional gradient and
the parameter itself [Luenberger and Ye, 2008]. Starting from an a priori Hessian, it is updated at each
descent step by using the gradient and parameter innovations. As the direction (3.42) is used, we are
more interested in approximating the Hessian inverse directly than approximating the Hessian and then
inversing it. We present here the BFGS version in which the inverse of the Hessian is estimated, avoiding
solving a linear system at each iteration. We present the BFGS algorithm to compute the approximated
Hessian inverse 𝐵.

𝐵𝑘+1 = 𝑉 (𝑘 )𝐵𝑘𝑉 (𝑘 )∗ + 𝜌 (𝑘 ) 𝑦 (𝑘 )∗𝑦 (𝑘 ) , (3.45)

where

𝜌 (𝑘 ) =
1

𝑦 (𝑘 ) 𝑠 (𝑘 )
, 𝑉 (𝑘 ) = 𝐼 − 𝜌 (𝑘 ) 𝑠 (𝑘 ) 𝑦 (𝑘 ) ,

and
𝑠 (𝑘 ) = 𝜃𝑘+1 − 𝜃𝑘 , 𝑦 (𝑘 ) = DJ(𝑘+1) − DJ(𝑘 ) ,

where
𝐵𝑘 ∈ L(Θ), 𝑠 (𝑘 ) ∈ Θ, 𝑦 (𝑘 ) ∈ L(Θ,R ) and 𝑉 (𝑘 ) ∈ L(Θ).

BFGS: discrete case. Considering the parametric space Θ ∈ R𝑁𝜃 with norm ∥𝜃∥2Θ = 𝜃⊺𝜃, ∀𝜃 ∈ Θ, the
update algorithm is written as

B̃(𝑘+1) = V (𝑘 )B̃(𝑘 )V (𝑘 )
⊺ + 𝜌 (𝑘 ) 𝑦 (𝑘 ) 𝑦 (𝑘 )⊺, (3.46)

where

𝜌 (𝑘 ) =
1

𝑦 (𝑘 )⊺𝑠 (𝑘 )
, V (𝑘 ) = (I − 𝜌 (𝑘 ) 𝑠 (𝑘 ) 𝑦 (𝑘 )⊺),

and
𝑠 (𝑘 ) = 𝜃𝑘+1 − 𝜃𝑘 , 𝑦 (𝑘 ) = ∇𝜃J(𝑘+1) − ∇𝜃J(𝑘 ) .

The a priori Hessian inverse, namely B̃(0) , must be given. Usually we start with B̃(0) = R−1
Θ , 𝑠 (0) =

−∇𝜃J(0) , then ∇𝜃J(1) = ∇𝜃J(𝜃0 + 𝑠 (0) ).
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L-BFGS: discrete case. In cases where the size of parameter space makes storing the Hessian matrix
a limiting factor, the Limited-Memory BFGS (L-BFGS) proposes to store vectors used to update the
Hessian instead of the matrices themselves. As this matrix is updated iteratively as in (3.45), it can be
rewritten as

B̃(𝑘 ) = (V (𝑘−1)⊺ · · ·V (0)⊺)B̃(0) (V (0) · · ·V (𝑘−1) )
+ 𝜌 (0) (V (𝑘−1)⊺ · · ·V (1)⊺)𝑠 (0) 𝑠 (0)⊺ (V (1) · · ·V (𝑘−1) )
+ 𝜌 (1) (V (𝑘−1)⊺ · · ·V2⊺)𝑠 (1) 𝑠 (1)⊺ (V2 · · ·V (𝑘−1) )
+ · · · +
+ 𝜌 (𝑘−1) 𝑠 (𝑘−1) 𝑠 (𝑘−1)⊺ .

Using this formulation, instead of storing the approximation of the Hessian matrix and the auxiliary
matrices V, we can store only a set of vector pairs{𝑠 (𝑖) , 𝑦 (𝑖) }𝑘−1

𝑖=𝑘−𝑚 where 𝑚 is the number of stored pairs.
For instance, if 𝑚 = 𝑘 we always store all vectors, if 𝑚 = 3 we store only the last three vectors. The
limited-memory approximation becomes

B̃(𝑘 ) =(V (𝑘−1)⊺ · · ·V (𝑘−𝑚)⊺)B̃0(𝑘 ) (V (𝑘−𝑚) · · ·V (𝑘−1) )
+ 𝜌 (𝑘−𝑚) (V (𝑘−1)⊺ · · ·V (𝑘−𝑚+1)⊺)𝑠 (𝑘−𝑚) 𝑠 (𝑘−𝑚)⊺ (V (𝑘−𝑚+1) · · ·V (𝑘−1) )
+ 𝜌 (𝑘−𝑚+1) (V (𝑘−1)⊺ · · ·V (𝑘−𝑚+2)⊺)𝑠 (𝑘−𝑚+1) 𝑠 (𝑘−𝑚+1)⊺ (V (𝑘−𝑚+2) · · ·V (𝑘−1) )
+ · · · +
+ 𝜌 (𝑘−1) 𝑠 (𝑘−1) 𝑠 (𝑘−1)⊺ .

The identity matrix or another set of previously stored vectors can be used as the a priori B̃0(𝑘 ) .

Memoryless quasi-Newton. In the case where B̃0(𝑘 ) = I and 𝑚 = 1, no extra vectors or matrices are
kept in memory and the iteration (3.38) is done directly using 𝑠 (𝑘 ) and 𝑦 (𝑘 ) . This method has a similar
memory usage and computational cost as the Conjugate Gradient while performing slightly better, as
shown in [Liu et al., 2015].

3.2.2 Functional gradient for time-dependent systems
We presented the above descent methods to minimize a functional using its gradient and/or Hessian.

To complete its implementation for the problems of interest, we discuss here how to obtain the functional
gradient and Hessian for time-dependent systems such as the ones presented in Section 3.1. By redefining
the “input-output” operator Ψ, including a time dependency, the cost function takes the form of J𝑇

J𝑇 (𝜃) =
{
𝑟Θ(𝜃) + 1

2

∫ 𝑇

0
∥𝑦(𝑡) − Ψ(𝜃) (𝑡)∥2Y d𝑡

}
.

First, in Section 3.2.2.1 we present a direct and costly method for computing both gradient and Hessian
using the sensitivity and cross-sensitivity solutions. We present them for the initial state reconstruction
problem. In Section 3.2.2.2 a more efficient method to compute the gradient is presented, the adjoint
method, for the time-continuous case. In Section 3.2.2.3, the adjoint method is presented for the fully
discrete case.

3.2.2.1 Sensitivity and cross-sensitivity approach for initial state reconstruction

We focus here on computing the gradient and Hessian of the functional representing the Problem A.1
by using sensitivity and cross-sensitivity, respectively. The sensitivity can be used to compute the
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functional gradient. The gradient of the functional in (3.16) can be written as

DJ𝑇 (𝜁)𝜁 = (𝑅𝜁, 𝜁)Z +
∫ 𝑇

0

(
D𝐶𝑆𝜁 (𝑡)𝜁, 𝐶

(
𝑧𝜁 (𝑡)

) − 𝑦(𝑡))
Y

d𝑡 (3.47)

where the sensitivity trajectory 𝑆𝜁 (𝑡) = D𝜁 𝑧𝜁 (𝑡), 𝑆𝜁 (𝑡) ∈ L(Z) is introduced below and D𝐶 =
D𝐶 (𝑧𝜁 (𝑡)) ∈ L(Z,Y). The sensitivity is obtained differentiating the dynamics (3.17):




d
d𝑡
𝑆𝜁 (𝑡) = D𝐴(𝑧)𝑆𝜁 (𝑡), ∀𝑡 ∈ [0, 𝑇],

𝑆𝜁 (0) = 𝐼,
(3.48)

for D𝐴(𝑧) ∈ L(Z). Differentiating twice, the Hessian of the functional is

D2
𝜁J𝑇 (𝜁) (𝜁, 𝜁 ′) = (𝑅𝜁 ′, 𝜁)Z +

∫ 𝑇

0
(D𝐶𝑆𝜁 (𝑡)𝜁,D𝐶𝑆𝜁 (𝑡)𝜁 ′)Y

+
(
D𝐶 [𝑊𝜁 (𝑡)𝜁]𝜁 ′, 𝐶

(
𝑧𝜁 (𝑡)

) − 𝑦(𝑡))
Y

d𝑡.

where we define the cross-sensitivity trajectory 𝑊𝜁 (𝑡) = D2
𝜁 𝑧𝜁 (𝑡) ∈ L(Z,L(Z)). We obtain the cross-

sensitivity by differentiating twice (3.17):




d
d𝑡
[𝑊𝜁 (𝑡)𝜁]𝜁 ′ =

[
D2𝐴

(
𝑧𝜁 (𝑡)

) (𝑆𝜁 (𝑡)𝜁)] (𝑆𝜁 (𝑡)𝜁 ′) + D𝐴
(
𝑧𝜁 (𝑡)

) [
𝑊𝜁 (𝑡)𝜁

]
𝜁 ′, ∀𝑡 ∈ [0, 𝑇],

[𝑊𝜁 (0)𝜁]𝜁 ′ = 0.

for the second-order tangent operator D2𝐴
(
𝑧𝜁 (𝑡)

) ∈ L(Z,L(Z)).
Sensitivity and cross-sensitivity in the finite-dimensional cases. The computation of the gradient
using sensitivity means that, on top of the original forward dynamics to be solved, other 𝑁𝑧 forward
problems need to be solved when 𝜁 ∈ R𝑁𝑧 . As (𝑊𝜁 )𝑖 𝑗 is symmetric in 𝑖, 𝑗 , the number of extra problems
to be solved to compute the Hessian are 𝑁𝑧 (𝑁𝑧+1)

2 for the cross-sensitivity. The number of problems to
be solved is then proportional to the square of the size of the unknown. This high computational cost
motivates the use of the adjoint method presented in the next subsection.

3.2.2.2 Time-continuous adjoint method

In practice, computing the gradient by using the sensitivity requires several direct problems to be
launched proportional to the size of the parametric space. Here, we present a better method for computing
the functional gradient by adding only one extra problem to be solved: the adjoint dynamics. We develop
it for the time-continuous case, Problem A.1. The gradient (3.47) can be computed as below.

Property 3.2.1. Considering a adjoint trajectory 𝑝(𝑡) ∈ Z as




d
d𝑡
𝑝(𝑡) + D𝐴

(
𝑧𝜁 (𝑡)

)∗
𝑝(𝑡) = D𝐶

(
𝑧𝜁 (𝑡)

)∗ (
𝐶

(
𝑧𝜁 (𝑡)

) − 𝑦(𝑡)) , ∀𝑡 ∈ [0;𝑇],

𝑝(𝑇) = 0,

(3.49)

the functional gradient of Problem A.1 can be expressed as

DJ𝑇 (𝜁) = 𝑅𝜁 − 𝑝(0).



102 Chapter 3. Introduction to least-squares minimization for solving inverse problems

Proof. Replacing the adjoint trajectory in (3.47) we have

DJ𝑇 (𝜁)𝜁 = (𝑅𝜁, 𝜁)Z +
∫ 𝑇

0

(
D𝜁 𝑧𝜁 (𝑡)𝜁,D𝐶

(
𝑧𝜁 (𝑡)

)∗ (
𝐶 (𝑧𝜁 (𝑡)) − 𝑦(𝑡)

) )
Z

d𝑡

= (𝑅𝜁, 𝜁)Z +
∫ 𝑇

0

(
D𝜁 𝑧𝜁 (𝑡)𝜁, d

d𝑡
𝑝(𝑡) + D𝐴

(
𝑧𝜁 (𝑡)

)∗
𝑝(𝑡)

)
Z

d𝑡

= (𝑅𝜁, 𝜁)Z +
∫ 𝑇

0

(
D𝜁 𝑧𝜁 (𝑡)∗

( d
d𝑡
𝑝(𝑡) + D𝐴

(
𝑧𝜁 (𝑡)

)∗
𝑝(𝑡)

)
, 𝜁

)
Z

d𝑡,

and, as it is valid for any 𝜁 , we have

∇J𝑇 (𝜁) = 𝑅𝜁 +
∫ 𝑇

0
D𝜁 𝑧𝜁 (𝑡)∗

( d
d𝑡
𝑝(𝑡) + D𝐴

(
𝑧𝜁 (𝑡)

)∗
𝑝(𝑡)

)
d𝑡

Using integration by parts, the definition of the sensitivity (3.48) and its initial condition, the
gradient becomes

∇J𝑇 (𝜁) = 𝑅𝜁 +
∫ 𝑇

0
D𝜁 𝑧𝜁 (𝑡)∗

( d
d𝑡
𝑝(𝑡)

)
+ D𝜁 𝑧𝜁 (𝑡)∗D𝐴

(
𝑧𝜁 (𝑡)

)∗
𝑝(𝑡) d𝑡

= 𝑅𝜁 +
∫ 𝑇

0
D𝜁 𝑧𝜁 (𝑡)∗

( d
d𝑡
𝑝(𝑡)

)
+

( d
d𝑡

(
D𝜁 𝑧𝜁 (𝑡)

)∗)
𝑝(𝑡) d𝑡.

= 𝑅𝜁 +
{[(

D𝜁 𝑧𝜁 (𝑡)
)∗
𝑝(𝑡)]𝑇0 −

∫ 𝑇

0

( d
d𝑡

(
D𝜁 𝑧𝜁 (𝑡)

)∗)
𝑝(𝑡) d𝑡 +

∫ 𝑇

0

( d
d𝑡

(
D𝜁 𝑧𝜁 (𝑡)

)∗)
𝑝(𝑡) d𝑡

}
= 𝑅𝜁 − 𝑝(0).

□

Two-end problem By seeking ∇J𝑇 (𝜁) = 0 to satisfy a first-order optimality condition, the state
dynamics is coupled with the adjoint dynamics, yielding a two-end problem [Lions, 1971; Bensoussan
et al., 2007] 



d
d𝑡
𝑧(𝑡) = 𝐴(𝑧(𝑡), 𝑡) + 𝑏(𝑡), ∀𝑡 ∈ [0;𝑇],

d
d𝑡
𝑝(𝑡) + D𝐴(𝑧(𝑡), 𝑡)∗ 𝑝(𝑡) = D𝐶

(
𝑧(𝑡))∗ (𝐶 (

𝑧(𝑡)) − 𝑦(𝑡)) , ∀𝑡 ∈ [0;𝑇],

𝑝(𝑇) = 0, 𝑧(0) = 𝑧0 + 𝑅−1 𝑝(0).

(3.50)

Through the two-end problem, we obtain the optimally estimated initial condition 𝑧(0). The name two-
end comes from the fact that we have initial conditions for one trajectory and final conditions for the
other one, while they are coupled. It couples the forward (state) dynamics and the backward (adjoint)
dynamics. Although numerical methods are proposed to solve this class of problems, such as iterative
strategies or space-time finite elements [Cîndea and Münch, 2015], their cost is prohibitive for the large
wave propagation problems we aim for in this thesis. The difficulty posed to solve this type of coupled
forward-backward problem makes the adjoint dynamics more useful in computing the gradient, as in
Property 3.2.1, for iterative methods.

Application to parameter reconstruction. Extending the system as done in Problem B.1, we can
obtain the augmented adjoint dynamics for computing its functional gradient as well as for Problem B.2.
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In Section 3.4.1 we exemplify the use of the adjoint dynamics for solving a problem of the same type as
Problem II.2.

3.2.2.3 Time-discrete adjoint method

We will now look at the discrete version of adjoint dynamics for computing the functional gradient
in initial state reconstruction Problem I.1. We do it by first getting the optimality condition through a
two-end problem defined below [Moireau, 2022].

Property 3.2.2. Introducing the discrete adjoint dynamics, the discrete version of the two-end
problem is



𝑧𝑛+1 = Φ𝑛+1 |𝑛 (𝑧𝑛) + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,
𝑝𝑛 − DΦ𝑛+1 |𝑛 (𝑧𝑛)∗ 𝑝𝑛+1 = Δ𝑡D𝐶 (𝑧𝑛)∗(𝑦𝑛 − 𝐶 (

𝑧𝑛)) , ∀𝑛 ∈ ⟦𝑁 ; 0⟧,
𝑝𝑁+1 = 0, 𝑧0 = 𝑧0 + 𝑅−1𝑝0.

(3.51)

Proof. Using the functional of Problem I.1, the discrete adjoint dynamics can be obtained by
defining the Lagrangian

L𝑁
({𝑧𝑛𝜁 }𝑁−1

𝑛=0 , {𝑝𝑛𝜁 }𝑁𝑛=1
)
= J𝑁 (𝜁) +

𝑁−1∑︁
𝑛=0

(
𝑧𝑛+1𝜁 −Φ𝑛+1 |𝑛 (𝑧𝑛𝜁 ) − 𝑏𝑛, 𝑝𝑛+1𝜁

)
Z ,

where {𝑝𝑛𝜁 }𝑁𝑛=1 is the time-discrete adjoint variable. Satisfying the optimality conditions requires
differentiating the Lagrangian by the adjoint and state variables. To do so, we separate the
differentiation by

Differentiating w.r.t. adjoint variable at 𝑛 ∈ ⟦1; 𝑁⟧:

D𝑝𝑛
𝜁
L𝑁 𝑝

𝑛 = (𝑧𝑛𝜁 −Φ𝑛 |𝑛−1(𝑧𝑛−1
𝜁 ) − 𝑏𝑛−1, 𝑝𝑛)Z ,

hence, satisfying the optimality conditions leads to the dynamics

𝑧𝑛+1 = Φ𝑛+1 |𝑛 (𝑧𝑛) + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

where 𝑧 is introduced as the optimal trajectory with initial conditions yet to be obtained.

Differentiating w.r.t. state variable at 𝑛 ∈ ⟦1; 𝑁 − 1⟧:

D𝑧𝑛L𝑁 𝑧̃
𝑛 = −Δ𝑡 (𝑦𝑛 − 𝐶 (𝑧𝑛𝜁 ),D𝐶 (𝑛) 𝑧̃𝑛)Y + (

𝑝𝑛𝜁 , 𝑧̃
𝑛)
Z −

(
𝑝𝑛+1𝜁 ,DΦ(𝑛)

𝑛+1 |𝑛 𝑧̃
𝑛)
Z

= −
(
Δ𝑡 (D𝐶 (𝑛) )∗ (𝑦𝑛 − 𝐶 (𝑧𝑛𝜁 )) , 𝑧̃𝑛)Z +

(
𝑝𝑛𝜁 − (DΦ(𝑛)𝑛+1 |𝑛)∗𝑝𝑛+1𝜁 , 𝑧̃𝑛

)
Z

where D𝐶 (𝑛) = D𝐶 (𝑧𝑛𝜁 ) and DΦ(𝑛)
𝑛+1 |𝑛 = DΦ𝑛+1 |𝑛 (𝑧𝑛𝜁 ), leading to the adjoint optimal discrete

trajectory

𝑝𝑛 − (DΦ(𝑛)
𝑛+1 |𝑛)∗ 𝑝𝑛+1 = Δ𝑡 (D𝐶 (𝑛) )∗ (𝑦𝑛 − 𝐶 (𝑧𝑛𝜁 )) . ∀𝑛 ∈ ⟦1; 𝑁 − 1⟧.
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Differentiating w.r.t. state variable at 𝑛 = 𝑁:

D𝑧𝑛
𝜁
L𝑁 𝑧̃

𝑁 = −Δ𝑡 (𝑦𝑁 − 𝐶 (𝑧𝑁𝜁 ),D𝐶 (𝑁 ) 𝑧̃𝑁 )
Y +

(
𝑝𝑁𝜁 , 𝑧̃

𝑁 )
Z

= −Δ𝑡
(
(D𝐶 (𝑛) )∗ (𝑦𝑁 − 𝐶 (𝑧𝑁𝜁 )) , 𝑧̃𝑁 )

Z
+ (
𝑝𝑁𝜁 , 𝑧̃

𝑁 )
Z

This yields 𝑝𝑁 = Δ𝑡 (D𝐶 (𝑛) )∗(𝑦𝑁 − 𝐶 (𝑧𝑁𝜁 )) and, to satisfy the equation of the adjoint optimal
discrete trajectory for 𝑛 = 𝑁 , we impose

𝑝𝑁+1 = 0.

Differentiating w.r.t. state variable at 𝑛 = 0: Recalling that that 𝜁 = 𝑧0
𝜁 − 𝑧0,

D𝑧0
𝜁
L𝑁 𝑧̃

0 =
(
𝑅(𝑧0

𝜁 − 𝑧0), 𝑧̃0)
Z − Δ𝑡

(
𝑦0 − 𝐶 (𝑧0

𝜁 ),D𝐶 (0) 𝑧̃0)
Y −

(
𝑝1
𝜁 ,DΦ

(0)
1 |0 𝑧̃

0)
Z

=
(
𝑅(𝑧0

𝜁 − 𝑧0), 𝑧̃0)
Z − Δ𝑡

(
(D𝐶 (0) )∗ (𝑦0 − 𝐶 (𝑧0

𝜁 )
)
, 𝑧̃0

)
Z
− ((DΦ(0)1 |0 )∗𝑝1

𝜁 , 𝑧̃
0)
Z .

Naturally introducing the final step of the adjoint dynamics 𝑝0 such that

𝑝0 − (DΦ(0)1 |0 )∗ 𝑝1 = Δ𝑡 (D𝐶 (0) )∗ (𝑦0 − 𝐶 (𝑧0
𝜁 )

)
,

the optimality condition leads to
𝑅−1𝑝0 = 𝑧0 − 𝑧0.

The two-end problem can be then written. □

As in the time-continuous case, the time-discrete two-end problem poses the same difficulties for
solving it. The adjoint dynamics is useful to compute the functional gradient as shown below, in
Property 3.2.3.

Property 3.2.3. The functional gradient can be written as

DJ𝑁 (𝜁) = 𝑅𝜁 − 𝑝0
𝜁 (3.52)

with 𝑝𝜁 obtained from the adjoint dynamics
{
𝑝𝑛𝜁 − (DΦ(𝑛)𝑛+1 |𝑛)∗𝑝𝑛+1𝜁 = Δ𝑡 (D𝐶 (𝑛) )∗(𝑦𝑛 − 𝐶 (

𝑧𝑛𝜁 )
)
, ∀𝑛 ∈ ⟦𝑁 ; 0⟧,

𝑝𝑁+1𝜁 = 0
(3.53)

and 𝑧𝜁 from Problem I.1.

Proof. From the definition of the adjoint variable dynamics, it is possible to derive a direct
expression of the cost function gradient. We have, by differentiating (3.30),

{
D𝜁 𝑧

𝑛+1
𝜁 = DΦ(𝑛)

𝑛+1 |𝑛D𝜁 𝑧
𝑛
𝜁 , ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

D𝜁 𝑧
0
𝜁 = 𝐼 .
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Differentiating the functional in (3.29) we obtain, ∀𝜁 ∈ Z,

DJ𝑁 (𝜁)𝜁 = (𝑅𝜁, 𝜁)Z − Δ𝑡
𝑁∑︁
𝑛=0

(
(D𝐶 (𝑛) )∗ (𝑦𝑛 − 𝐶 (𝑧𝑛𝜁 )) ,D𝜁 𝑧

𝑛
𝜁 𝜁

)
Z
.

The adjoint dynamics 𝑝𝜁 leads to

DJ𝑁 (𝜁)𝜁 = (𝑅𝜁, 𝜁)Z −
𝑁∑︁
𝑛=0

(
𝑝𝑛𝜁 − (DΦ(𝑛)𝑛+1 |𝑛)∗𝑝𝑛+1𝜁 ,D𝜁 𝑧

𝑛
𝜁 𝜁

)
Z

= (𝑅𝜁, 𝜁)Z −
𝑁∑︁
𝑛=0
(𝑝𝑛𝜁 ,D𝜁 𝑧

𝑛
𝜁 𝜁)Z +

𝑁∑︁
𝑛=0
(𝑝𝑛+1𝜁 ,D𝜁 𝑧

𝑛+1
𝜁 𝜁)Z ,

= (𝑅𝜁 − 𝑝0
𝜁 , 𝜁)Z .

Finally, we have the expression for the functional gradient. □

Using the property defined above, the adjoint dynamics can then be used to obtain the functional
gradient with the cost of computing one extra dynamics, hence it allows to use effectively the methods
described in Section 3.2.1.

3.3 Sequential methods
In the previous section, the optimality condition for the inverse problems of interest is satisfied by

solving a two-end problem as (3.50). The associated adjoint dynamics can be used to compute the
gradient to be used in descent methods. In this section, we follow another approach for estimation, the
sequential method. Sequential (or filtering) methods have the particularity of updating the estimation of
the unknown at each data entry (or time step, for the case of dynamics), contrary to variational methods
where all the data is used at each descent step. One of the advantages of sequential methods is that
it allows the estimation to be continued when new data is available without recomputing the gradients
using the whole data. Although the methodologies differ, we can relate sequential methods to variational
methods achieving optimality in a linear-quadratic case, using the so-called Kalman Filter (KF). This
motivates, in this work, the use of Kalman filters in the context of least-squares optimization.

As well as variational methods, the use of Kalman Filter in data assimilation context has been of
increasing relevance. Although first conceived for real-time signal filtering and communications, its
also currently used in meteorology [Jones, 1965; Courtier et al., 1993; Houtekamer and Zhang, 2016],
oceanography [Pham, Verron, and Gourdeau, 1998; Evensen, 2003; Bertino, Evensen, and Wackernagel,
2003; Rozier et al., 2007], geophysics [Huang and Zhu, 2019; Eikrem, Nævdal, and Jakobsen, 2019],
medical applications [Moireau, Chapelle, and Le Tallec, 2008; Chabiniok et al., 2012; Caiazzo et
al., 2017], structural mechanics [Mariani and Ghisi, 2007; Marchand, Chamoin, and Rey, 2016] and
NDT/SHM [Wu, Huang, and Huang, 2004; Dehghan-Niri, Farhidzadeh, and Salamone, 2013; Zou et al.,
2015], to provide some examples. Here, we treat the Kalman Filter from a deterministic point of view
while also potentially using terminology from a stochastic framework such as “covariance” for the Riccati
operator. We refer to [Särkkä, 2013] for the Kalman Filter presentation in a stochastic framework.

In the first subsection, the main concepts and algorithm for filtering are presented. From this
framework, the Kalman Filter is then presented as a link between filtering and optimality. We then
present the Kalman Filter in different versions for linear and nonlinear inverse problems, such as those
problems introduced in Section 3.1. Our introduction to the methods presented here are mainly based in
the works done in [Simon, 2006; Bensoussan et al., 2007; Moireau, 2022].
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3.3.1 Filtering methods

To introduce the filtering methods, we present a case with linear dynamics where error estimation is
done by adding feedback to the dynamics proportional to the misfit between the model and observations.
Let a reference linear dynamics be 𝑧(𝑡) ∈ Z




d
d𝑡
𝑧(𝑡) = 𝐴𝑧(𝑡) + 𝑏(𝑡), ∀𝑡 ∈ [0, 𝑇],

𝑧(0) = 𝑧0,
(3.54)

with 𝐴 ∈ L(Z) and 𝑏(𝑡) ∈ Z. We then define a dynamics, ∀𝑡 ∈ [0, 𝑇] and 𝑧̂(𝑡) ∈ Z, as




d
d𝑡
𝑧̂(𝑡) = 𝐴𝑧̂(𝑡) + 𝑏(𝑡) + 𝐺 (𝑡) (𝑦(𝑡) − 𝐶𝑧̂(𝑡)) , ∀𝑡 ∈ [0, 𝑇],

𝑧̂(0) = 𝑧0 + 𝜁,
(3.55)

with 𝐺 (𝑡) ∈ L(Y,Z). This dynamics is known as an observer of the original system [Luenberger,
1971], also referred to as “sequential estimator” [Särkkä, 2013] in a stochastic framework. This observer
has the objective of representing the original trajectory (𝑧(𝑡) without error in the initial condition) while
removing the bias from the added error 𝜁 by using the misfit between measurements 𝑦 and itself. In the
observer dynamics, we note the presence of the feedback operator and an error in the initial condition. For
exemplification, the original and observer trajectories are observed through a linear observation operator
𝐶 ∈ L(Z,Y). The disturbed measurements are defined as

𝑦(𝑡) = 𝐶𝑧(𝑡) + 𝜒(𝑡).

We introduce a dynamics representing the residual system 𝑧(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡) that will satisfy the dynamics




d
d𝑡
𝑧(𝑡) = (𝐴 − 𝐺 (𝑡)𝐶)𝑧(𝑡) + 𝐺 (𝑡)𝜒(𝑡), ∀𝑡 ∈ [0, 𝑇],

𝑧(0) = 𝜁 .

By choosing𝐺 in a way that the residual dynamics are dissipative, we ensure that the error will be reduced
through the observer dynamics. At the same time, attention must be given to the noise gain in 𝐺 (𝑡)𝜒(𝑡).

3.3.2 Time-continuous Kalman Filter

Although the error will decrease when choosing a proper𝐺, no relation between the optimal condition
and the final state 𝑧̂(𝑇) is ensured in the context of least-squares minimization. We show in this section
that we can attain optimality, for linear-quadratic optimization problems, by decomposing the two-end
problem (3.50) in a Cauchy problem, i.e. a problem with exclusively initial or final conditions. This
decomposition leads to the definition of the Kalman Filter [Simon, 2006].

Property 3.3.1. Introducing an observer 𝑧̂ ∈ 𝐶1( [0, 𝑇];Z), the following coupled dynamics
satisfy the optimality condition 𝑧̂(𝑇) = 𝑧(𝑇) from (3.50), where the dynamics and observation
operator are defined as in Section 3.3.1, i.e. linear dynamics and linear observation operator.
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Denoting by 𝑃 ∈ 𝐶1( [0;𝑇];L(Z)), a self-adjoint operator, the trajectories satisfies the dynamics




d
d𝑡
𝑃(𝑡) − 𝑃(𝑡)𝐴∗ − 𝐴𝑃(𝑡) + 𝑃(𝑡)𝐶∗𝐶𝑃(𝑡) = 0, ∀𝑡 ∈ [0;𝑇],

d
d𝑡
𝑧̂(𝑡) = 𝐴𝑧̂(𝑡) + 𝑏(𝑡) + 𝐺 (𝑡)

(
𝑦(𝑡) − 𝐶𝑧̂(𝑡)

)
, ∀𝑡 ∈ [0;𝑇],

𝑧̂(0) = 𝑧0, 𝑃(0) = 𝑅−1, 𝐺 (𝑡) = 𝑃(𝑡)𝐶∗.

(3.56)

The 𝑃(𝑡) dynamics will be referred to as the Riccati dynamics. The existence and unicity of the
solution in 𝑃 is ensured by the Cauchy-Lipschitz theorem [Demailly, 2006].

Proof. Defining
𝜂(𝑡) = 𝑧(𝑡) − 𝑧̂(𝑡) − 𝑃(𝑡)𝑝(𝑡), ∀𝑡 ∈ [0;𝑇], (3.57)

where 𝑝(𝑡) is the adjoint dynamics from the two-end problem (3.50). We show that 𝜂(𝑡) is
necessarily null for all time 𝑡 ∈ [0;𝑇], yielding the desired result. Therefore, we develop a
dynamics on 𝜂 by computing the derivative it w.r.t. time,

d
d𝑡
𝜂(𝑡) = d

d𝑡
𝑧 − d

d𝑡
𝑧̂ − d

d𝑡
(𝑃(𝑡)𝑝).

Further developing the 𝜂(𝑡) dynamics by using the dynamics of 𝑧, 𝑧̂, 𝑃(𝑡) and 𝑝, we have

d
d𝑡
𝜂(𝑡) = (

𝐴𝑧 + 𝑏(𝑡)) − (
𝐴𝑧̂ + 𝑏(𝑡) + 𝑃(𝑡)𝐶∗𝐶𝑃(𝑡))

−
( (
𝑃(𝑡)𝐴∗ + 𝐴𝑃(𝑡) − 𝑃(𝑡)𝐶∗𝐶𝑃(𝑡)) 𝑝(𝑡) + 𝑃(𝑡) (𝐴𝑝(𝑡) + 𝐶∗(𝑦(𝑡) − 𝐶𝑧)) ) ,

= 𝐴
(
𝑧 − 𝑧̂ − 𝑃(𝑡)𝑝(𝑡)) + 𝑃(𝑡)𝐶∗𝐶 (̂

𝑧 − 𝑧 + 𝑃(𝑡)𝑝(𝑡))
= 𝐴𝜂 − 𝑃(𝑡)𝐶∗𝐶𝜂.

As 𝜂(0) = 0 without a source term in its dynamics, it is necessarily null for 𝑡 ∈ [0, 𝑇], by unicity.
Then, as

𝜂(𝑇) = 0 = 𝑧(𝑇) − 𝑧̂(𝑇) − 𝑃(𝑇)𝑝(𝑇)
and 𝑝(𝑇) = 0, we have that

𝑧(𝑇) = 𝑧̂(𝑇).
□

We’ve shown that by choosing 𝐺 (𝑡) = 𝑃(𝑡)𝐶∗ in (3.55), we satisfy the optimality condition at the
end of the observer trajectory in the linear-quadratic case. An important aspect of this result is that
only the state at time 𝑇 satisfies optimality, hence its utility to estimate initial state conditions and time-
independent parameters. Although an error in the model 𝐴 can be included in the filtering method, in this
section we consider that such an error is not present. The Riccati dynamics followed by the operator 𝑃
– called covariance operator – propagates the covariance of 𝑧̂, being useful for sensitivity and uncertainty
quantification analysis. As it is an operator L(Z), in practice it can be computationally expensive to
store and propagate such an operator as we will see in the time-discrete Kalman Filter.
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3.3.2.1 Extended Kalman Filter

In the previous subsection, we presented the Kalman Filter for the linear-quadratic case. The Extended
Kalman Filter (EKF) [Simon, 2006] proposes an extension of the Kalman Filter to nonlinear dynamics
such as (3.4), although no optimality condition can be ensured. The idea is to use the tangent of the
nonlinear operator evaluated at the current state, namely D𝐴( 𝑧̂(𝑡)) ∈ L(Z) and D𝐶 ( 𝑧̂(𝑡)) ∈ L(Z,Y).
So, from (3.56), we have




d
d𝑡
𝑃(𝑡) − 𝑃(𝑡) (D𝐴)∗ − D𝐴𝑃(𝑡) + 𝑃(𝑡)D𝐶∗D𝐶𝑃(𝑡) = 0, ∀𝑡 ∈ [0;𝑇],

d
d𝑡
𝑧̂(𝑡) = D𝐴𝑧̂(𝑡) + 𝑏(𝑡) + 𝐺 (𝑡)

(
𝑦(𝑡) − 𝐶 (̂

𝑧(𝑡)) ) , ∀𝑡 ∈ [0;𝑇],

𝑧̂(0) = 𝑧0, 𝑃(0) = 𝑅, 𝐺 (𝑡) = 𝑃(𝑡)D𝐶∗,

(3.58)

with omitted dependencies on D𝐴( 𝑧̂(𝑡)) and D𝐶 ( 𝑧̂(𝑡)).

3.3.2.2 Reduced-Order Kalman Filter

In the cases where we have only partial uncertainty on the initial state, the reduction of the unknown
space leads to the Reduced-Order version of the Kalman filter (ROKF). In this section, we suppose the
uncertainty to be only present partially in the initial state of the dynamics, as in Problem B.2. Linear
dynamics will be considered. We recall here the augmented state,

♯𝑧(𝑡) =
(
𝑧(𝑡)
𝜃 (𝑡)

)
∈ ♯Z, 𝑧(𝑡) ∈ Z, 𝜃 (𝑡) ∈ Θ, ∀𝑡 ∈ [0;𝑇] .

The dynamics for the linear-quadratic case (3.26) will be considered with a linear observation operator,

♯𝐶
(
♯𝑧(𝑡)) = ♯𝐶 ♯𝑧(𝑡) = (

𝐶 0
)
♯𝑧(𝑡) = 𝐶𝑧(𝑡).

As done for the Kalman Filter, we start from a two-end problem (3.56) and use the fact that we have
parameter-only uncertainty to obtain a reduced-order version of the Kalman Filter.

Property 3.3.2. Assuming that the Riccati equation in (3.56) is well-posed, in particular, that
there exists a unique solution, and we have the state defined as above with uncertainty present
only in the parameter 𝜃, the optimal Reduced-Order Kalman filter is given by




d
d𝑡
𝑧̂(𝑡) = 𝐴𝑧̂(𝑡) + 𝐵(𝑡)𝜃̂ (𝑡) + 𝑏(𝑡) + 𝐿𝑧 (𝑡) d

d𝑡
𝜃̂ (𝑡), ∀𝑡 ∈ [0;𝑇],

d
d𝑡
𝜃̂ (𝑡) = 𝑈−1(𝑡)𝐿𝑧 (𝑡)∗𝐶∗

(
𝑦(𝑡) − 𝐶𝑧̂(𝑡)

)
, ∀𝑡 ∈ [0;𝑇],

d
d𝑡
𝐿𝑧 (𝑡) = 𝐴𝐿𝑧 (𝑡) + 𝐵(𝑡), ∀𝑡 ∈ [0;𝑇]

d
d𝑡
𝑈 (𝑡) = 𝐿𝑧 (𝑡)∗𝐶∗𝐶𝐿𝑧 (𝑡), ∀𝑡 ∈ [0;𝑇]

𝑧̂(0) = 𝑧0, 𝜃̂ (0) = 𝜃0, 𝐿𝑧 (0) = 0, 𝑈 (0) = 𝑅Θ.

(3.59)
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Proof. When augmenting the Riccati dynamics in (3.56) we have




d
d𝑡

♯𝑃(𝑡) − ♯𝑃(𝑡)𝐴𝐿∗ − 𝐴𝐿 ♯𝑃(𝑡) + ♯𝑃(𝑡) ♯𝐶∗ ♯𝐶 ♯𝑃(𝑡) = 0, ∀𝑡 ∈ [0;𝑇],
♯𝑃(0) = ♯𝑅−1,

where ♯𝑅 is decomposed as

♯𝑅 = ♯𝐿0𝑈
−1
0

♯𝐿∗0 ∈ L(♯Z), with ♯𝐿0 =

(
0
𝐼

)
∈ L(Θ, ♯Z),

with 𝑈0 = 𝑅Θ, the operator defined in (3.19). Now, one would like to decompose ♯𝑃 in a reduced
form, it only needs to propagate information that relates the parameter space and the observed
state space. Denoting by {𝑈 (𝑡)}𝑡∈[0;𝑇 ] ⊂ L(Θ) and {♯𝐿 (𝑡)}𝑡∈[0;𝑇 ] ⊂ L(Θ, ♯Z) the trajectories
satisfying the following dynamics




d
d𝑡
𝑈 (𝑡) = ♯𝐿 (𝑡)∗ ♯𝐶∗ ♯𝐶 ♯𝐿 (𝑡),

𝑈 (0) = 𝑈0,




d
d𝑡

♯𝐿 (𝑡) = 𝐴𝐿 (𝑡) ♯𝐿 (𝑡),
𝐿 (0) = 𝐿0,

then we have that {𝑄(𝑡)}𝑡∈[0;𝑇 ] ⊂ L(♯Z) defined by

𝑄(𝑡) = ♯𝐿 (𝑡)𝑈 (𝑡)−1 ♯𝐿 (𝑡)∗, ∀𝑡 ∈ [0;𝑇], (3.60)

satisfies the Riccati equation (3.56) as shown in the following. Differentiating (3.60) we have

d
d𝑡
𝑄 =

(
d
d𝑡

♯𝐿

)
𝑈−1 ♯𝐿∗ + ♯𝐿𝑈−1

(
d
d𝑡

♯𝐿

)∗
+ ♯𝐿

(
d
d𝑡
𝑈−1

)
♯𝐿∗,

since
d
d𝑡
𝑈−1 = −𝑈−1

(
d
d𝑡
𝑈

)
𝑈−1 = −𝑈−1 ♯𝐿∗ ♯𝐶∗ ♯𝐶 ♯𝐿𝑈−1,

with time-dependencies in𝑈 (𝑡) and ♯𝐿 (𝑡) omitted. With that we obtain

d
d𝑡
𝑄 =

(
𝐴𝐿 ♯𝐿

)
𝑈−1 ♯𝐿∗ + ♯𝐿𝑈−1 (

𝐴𝐿 ♯𝐿
)∗ − ♯𝐿

(
𝑈−1 ♯𝐿∗ ♯𝐶∗ ♯𝐶 ♯𝐿𝑈−1

)
♯𝐿∗,

that, rearranging, gives

d
d𝑡
𝑄 = 𝐴𝐿

(
♯𝐿𝑈−1 ♯𝐿∗

)
+

(
♯𝐿𝑈−1 ♯𝐿∗

)
𝐴𝐿∗ − ♯𝐿𝑈−1 ♯𝐿∗ ♯𝐶∗ ♯𝐶

(
♯𝐿𝑈−1 ♯𝐿∗

)
,

showing that the definition (3.60) satisfies the Riccati equation in (3.56). Now, we decompose the
dynamics of ♯𝐿 introducing the block

♯𝐿 (𝑡) =
(
𝐿𝑧 (𝑡)
𝐿 𝜃 (𝑡)

)
, with 𝐿𝑧 (𝑡) ∈ L(Θ,Z), 𝐿 𝜃 (𝑡) ∈ L(Θ), ∀𝑡 ∈ [0, 𝑇] .

Using the definition of 𝐴𝐿, from (3.26), we have

d
d𝑡
𝐿 𝜃 (𝑡) = 0, ∀𝑡 ∈ [0, 𝑇],

then 𝐿 𝜃 (𝑡) = 𝐿 𝜃 (0) = 𝐼, so the ♯𝐿 dynamics is reduced to the parameter-state sensitivity

d
d𝑡
𝐿𝑧 (𝑡) = 𝐴𝐿𝑧 (𝑡) + 𝐵(𝑡),∀𝑡 ∈ [0;𝑇] .
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Taking the dynamics for 𝑧̂ in (3.56) for its augmented version, considering the state-only observa-
tion operator and inserting 𝑄 as the Riccati solution, we have the state observer

d
d𝑡
𝑧̂(𝑡) = 𝐴𝑧̂(𝑡) + 𝑏(𝑡) + ♯𝐿 (𝑡)𝑈 (𝑡)−1 ♯𝐿 (𝑡)∗𝐶∗

(
𝑦(𝑡) − 𝐶𝑧̂(𝑡)

)
, ∀𝑡 ∈ [0;𝑇],

leading to the desired observer dynamics and to the parameter observer dynamics

d
d𝑡
𝜃̂ (𝑡) = 𝑈−1(𝑡)𝐿𝑧 (𝑡)∗𝐶∗

(
𝑦(𝑡) − 𝐶𝑧̂(𝑡)

)
, ∀𝑡 ∈ [0;𝑇] .

Noting that the time-derivative of the parameter observer appears in the state observer, we arrive
at the desired formulation. □

Solving the dynamics of Property 3.3.1 for the Problem B.2, one can show that the optimal solution
𝜁𝜃 ∈ Θ of the minimization problem (3.27) is obtained at the end of the estimation procedure, namely

𝜁𝜃 = 𝜃̂ (𝑇) − 𝜃0.

As mentioned, propagating the operator 𝑃 when estimating using Property 3.3.1 may be expensive in
terms of memory and computation. Using the Reduced-Order Kalman Filtering, instead of propagating
𝑃 ∈ L(Z), one needs to propagate the sensitivity 𝐿𝑧 (𝑡) ∈ L(Θ,Z) which size is expected to be smaller.

3.3.3 Time-discrete Kalman Filter
We present here the discrete version of the Kalman Filter [Moireau, 2022] by recalling the discrete

dynamics (3.10)
𝑧𝑛+1 = Φ𝑛+1 |𝑛 (𝑧𝑛) + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

where 𝑧0 is given, and the observations obtained by a potentially nonlinear observation operator

𝑦𝑛 = 𝐶 (𝑧𝑛) + 𝜒𝑛, ∀𝑛 ∈ ⟦0; 𝑁⟧,

with disturbance 𝜒𝑛. In analogy with the time-continuous case, the discrete observer dynamics is

𝑧̂𝑛+1 = Φ𝑛+1 |𝑛 ( 𝑧̂𝑛) + 𝑏𝑛 + 𝐺𝑛
(
𝑦𝑛 − 𝐶 ( 𝑧̂𝑛)) , ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

where 𝑧̂0 is given.

3.3.3.1 Optimal derivation for linear-quadratic systems

To show the optimality properties of the discrete Kalman Filter we present the observer for an inverse
problem in the linear form

𝑧̂𝑛+1 = Φ𝑛+1 |𝑛 𝑧̂𝑛 + 𝑏𝑛 + 𝐺𝑛 (𝑦𝑛 − 𝐶𝑧̂𝑛), ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

where 𝑧̂0 is given. The approach to be presented is to define 𝐺𝑛 in a way that 𝑧̂𝑁 = 𝑧𝑁 , where 𝑧 is the
optimal state trajectory in (3.51) for the linear case. This demonstration differs from the one done for the
time-continuous Kalman Filter, where we deducted the optimal condition from the two-end problem. We
state our objective as: given the observations {𝑦𝑛}𝑁0 , we want to minimize

J𝑁 (𝑧0
𝜁 ) =

{
𝑟 (𝑧0

𝜁 ) +
Δ𝑡
2

𝑁∑︁
𝑛=0
∥𝑦𝑛 − 𝐶𝑧𝑛𝜁 ∥2Y

}
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where {𝑧𝑛𝜁 }𝑁0 is represented by a dynamics with uncertain initial conditions



𝑧𝑛+1𝜁 = Φ𝑛+1 |𝑛𝑧𝑛𝜁 + 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

𝑧0
𝜁 = 𝑧0 + 𝜁 .

One can note that minimizing this problem w.r.t. 𝑧0
𝜁 is equivalent to minimizing w.r.t. 𝜁 . We write these

dynamics in a non-recursive form

𝑧𝑛+1𝜁 = Φ𝑛+1 |𝑛 · · ·Φ1 |0𝑧0
𝜁 + 𝑏𝑛

+Φ𝑛+1 |𝑛𝑏𝑛−1 +Φ𝑛+1 |𝑛Φ𝑛 |𝑛−1𝑏
𝑛−2 + · · · +Φ𝑛+1 |𝑛 · · ·Φ2 |1𝑏0,

leading to

𝑧𝑛𝜁 = Φ𝑛 |0𝑧0
𝜁 +

𝑛−1∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘 , (3.61)

where Φ𝑛 |0 takes the initial state 𝑧0
𝜁 directly to the step 𝑛. Having a closed form for 𝑧𝑛𝜁 , we can write an

observation operator that, applied to the initial state, outputs observations up to 𝑛 as

𝐶 |𝑛 =
©­­
«
𝐶Φ0 |0
...

𝐶Φ𝑛 |0

ª®®
¬
.

Additionally, introducing a modified observations vector

𝑦̃ |𝑛 =
©­­
«
𝑦̃0

...

𝑦̃𝑛

ª®®
¬
=

©­­
«

𝑦0

...

𝑦𝑛 − 𝐶∑𝑛−1
𝑘=0 Φ𝑛 |𝑘+1𝑏

𝑘

ª®®
¬

and


𝑦̃ |𝑛

2

Y|𝑛 = Δ𝑡
𝑛∑︁
𝑘=0
( 𝑦̃𝑘 , 𝑦̃𝑘)Y ,

the optimization can be rewritten as

J𝑁 (𝑧0
𝜁 ) =

1
2

{
(𝑅𝑧0

𝜁 , 𝑧
0
𝜁 )Z +




𝑦̃ |𝑁 − 𝐶 |𝑁 𝑧0
𝜁




2

Y|𝑁

}
.

The subscript “|𝑛” means “knowing 𝑛 samples”. The minimization of this functional is interpreted as
finding the initial condition 𝑧0

𝜁 = 𝑧0 + 𝜁 while including a regularization criteria represented by 𝑅. We
recognize this functional in analogy with the unconstrained case (3.2) which minimum has the closed
form

𝑧0
𝜁 |𝑛 =

(
𝑅 + Δ𝑡𝐶∗|𝑛𝐶 |𝑛

)−1 (
𝑅𝑧0 + Δ𝑡𝐶∗|𝑛 𝑦̃ |𝑛

)

=

(
𝑅 + Δ𝑡

𝑛∑︁
𝑘=0
(𝐶Φ𝑘 |0)∗(𝐶Φ𝑘 |0)

)−1 (
𝑅𝑧0 + Δ𝑡

𝑛∑︁
𝑘=0
(𝐶Φ𝑘 |0)∗ 𝑦̃𝑛

)
,

(3.62)

so 𝑧0
𝜁 |𝑛 means the optimal initial state obtained through minimization when 𝑛 samples of observed data

is available. Now, we define���������
(𝑃 |𝑛)−1 = 𝑅 + Δ𝑡

𝑛∑︁
𝑘=0
(𝐶Φ𝑘 |0)∗(𝐶Φ𝑘 |0), ∀𝑛 ∈ 0, ..., 𝑁,

= (𝑃 |𝑛−1)−1 + Δ𝑡 (𝐶Φ𝑛 |0)∗𝐶Φ𝑛 |0, with (𝑃 |0)−1 = 𝑅.

(3.63)

Using this definition in (3.62), the optimal initial state satisfy the recursivity

𝑧0
𝜁 |𝑛 = 𝑃 |𝑛

(
𝑅𝑧0 + Δ𝑡

𝑛∑︁
𝑘=0

Φ∗𝑛 |0𝐶
∗ 𝑦̃𝑘

)
.
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Then, the optimal initial state 𝑧0
𝜁 |𝑛 can be written in a recursive form as

𝑧0
𝜁 |𝑛 = 𝑃 |𝑛

(
(𝑃 |𝑛−1)−1𝑧0

𝜁 𝑛−1 + Δ𝑡Φ∗𝑛 |0𝐶∗ 𝑦̃𝑛
)

= 𝑃 |𝑛 (𝑃 |𝑛−1)−1𝑧0
𝜁 𝑛−1 + Δ𝑡𝑃 |𝑛Φ∗𝑛 |0𝐶∗ 𝑦̃𝑛.

(3.64)

Using the inversion lemma, Property A.2.5, we develop the inverse (𝑃 |𝑛)−1

𝑃 |𝑛 = 𝑃 |𝑛−1 − Δ𝑡𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗(𝐼 + Δ𝑡𝐶Φ𝑛 |0𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗)−1𝐶Φ𝑛 |0𝑃 |𝑛−1.

Replacing 𝑃 |𝑛 in (3.64) we have

𝑧0
𝜁 |𝑛 = 𝑧

0
𝜁 𝑛−1 − 𝐺𝑛0𝐶Φ𝑛 |0𝑧0

𝜁 𝑛−1 + Δ𝑡𝑃 |𝑛Φ∗𝑛 |0𝐶∗ 𝑦̃𝑛,

with

𝐺𝑛0 = Δ𝑡𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗(𝐼 + Δ𝑡𝐶Φ𝑛 |0𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗)−1

= Δ𝑡𝑃 |𝑛 (𝑃 |𝑛)−1𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗(𝐼 + Δ𝑡𝐶Φ𝑛 |0𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗)−1

= Δ𝑡𝑃 |𝑛 ((𝑃 |𝑛−1)−1 + Δ𝑡Φ∗𝑛 |0𝐶∗𝐶Φ𝑛 |0)𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗(𝐼 + Δ𝑡𝐶Φ𝑛 |0𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗)−1

= Δ𝑡𝑃 |𝑛Φ∗𝑛 |0𝐶
∗(𝐼 + Δ𝑡𝐶Φ𝑛 |0𝑃 |𝑛−1Φ

∗
𝑛 |0𝐶

∗) (𝐼 + Δ𝑡𝐶Φ𝑛 |0𝑃 |𝑛−1Φ
∗
𝑛 |0𝐶

∗)−1

= Δ𝑡𝑃 |𝑛Φ∗𝑛 |0𝐶
∗.

𝐺𝑛0 is a “correction” operator for the estimated initial condition by using 𝑛 samples of the observed data.
Using the above, the recursive optimal trajectory satisfies

𝑧0
𝜁 |𝑛 = 𝑧

0
𝜁 |𝑛−1 + 𝐺𝑛0 ( 𝑦̃𝑛 − 𝐶Φ𝑛 |0𝑧0

𝜁 |𝑛−1). (3.65)

The filter will follow from this expression where we now aim at writing it in a recursive form without the
need for Φ𝑛 |0. Let 𝑧̂𝑛+ be the “corrected” state, the evolution of the dynamics up to the 𝑛-th step from the
optimal initial state 𝑧0

𝜁 |𝑛. We start by propagating the optimal initial state in the non-recursive form as in
(3.61)

𝑧̂𝑛+ = Φ𝑛 |0𝑧0
𝜁 |𝑛 +

𝑛−1∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘 . (3.66)

Using this formula, we have for step 𝑛 − 1 that

𝑧0
𝜁 |𝑛−1 = Φ−1

𝑛−1 |0 𝑧̂
𝑛−1
+ −Φ−1

𝑛−1 |0

𝑛−2∑︁
𝑘=0

Φ𝑛−1 |𝑘+1𝑏𝑘

= Φ−1
𝑛−1 |0 𝑧̂

𝑛−1
+ −

𝑛−2∑︁
𝑘=0

Φ−1
𝑘+1 |0𝑏

𝑘 .
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Replacing (3.65) in (3.66), using the 𝑧0
𝜁 |𝑛−1 above and the definition of 𝑦̃𝑛, we have

𝑧̂𝑛+ = Φ𝑛 |0
(
𝑧0
𝜁 |𝑛−1 + 𝐺𝑛0 ( 𝑦̃𝑛 − 𝐶Φ𝑛 |0𝑧0

𝜁 |𝑛−1)
)
+
𝑛−1∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘

= Φ𝑛 |0
(
Φ−1
𝑛−1 |0 𝑧̂

𝑛−1
+ −

𝑛−2∑︁
𝑘=0

Φ−1
𝑘+1 |0𝑏

𝑘 + 𝐺𝑛0
(
𝑦̃𝑛 − 𝐶Φ𝑛 |0(Φ−1

𝑛−1 |0 𝑧̂
𝑛−1
+ −

𝑛−2∑︁
𝑘=0

Φ−1
𝑘+1 |0𝑏

𝑘)) ) + 𝑛−1∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘

=
(
Φ𝑛 |𝑛−1 𝑧̂

𝑛−1
+ −

𝑛−2∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘 +Φ𝑛 |0𝐺𝑛0
(
𝑦̃𝑛 − 𝐶 (Φ𝑛 |𝑛−1 𝑧̂

𝑛−1
+ −

𝑛−2∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘)
) ) + 𝑛−1∑︁

𝑘=0
Φ𝑛 |𝑘+1𝑏𝑘

= Φ𝑛 |𝑛−1 𝑧̂
𝑛−1
+ + 𝑏𝑛−1 +Φ𝑛 |0𝐺𝑛0

(
𝑦̃𝑛 − 𝐶 (Φ𝑛 |𝑛−1 𝑧̂

𝑛−1
+ −

𝑛−2∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘)
)

= Φ𝑛 |𝑛−1 𝑧̂
𝑛−1
+ + 𝑏𝑛−1 +Φ𝑛 |0𝐺𝑛0

(
𝑦𝑛 − 𝐶

𝑛−1∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘 − 𝐶Φ𝑛 |𝑛−1 𝑧̂
𝑛−1
+ + 𝐶

𝑛−2∑︁
𝑘=0

Φ𝑛 |𝑘+1𝑏𝑘
)

= Φ𝑛 |𝑛−1 𝑧̂
𝑛−1
+ + 𝑏𝑛−1 +Φ𝑛 |0𝐺𝑛0

(
𝑦𝑛 − 𝐶 (Φ𝑛 |𝑛−1 𝑧̂

𝑛−1
+ + 𝑏𝑛−1)

)
.

By defining a “predicted” state as
𝑧̂𝑛− = Φ𝑛 |𝑛−1 𝑧̂

𝑛−1
+ + 𝑏𝑛−1,

𝑧̂𝑛+ can be written as
𝑧̂𝑛+ = 𝑧̂

𝑛
− +Φ𝑛 |0𝐺𝑛0 (𝑦𝑛 − 𝐶𝑧̂𝑛−).

By the nature of these operations, 𝑧̂− outcomes from a prediction step and 𝑧̂+ from a correction step.
Finally, we would like to have a recursive form of the operation Φ𝑛 |0𝐺𝑛0 . To do so, we similarly consider
the propagated covariance from its initial optimal condition, namely the “corrected” covariance

𝑃𝑛+ = Φ𝑛 |0𝑃 |𝑛Φ∗𝑛 |0.

We define the “predicted” covariance in a recursive form as

𝑃𝑛− = Φ𝑛 |𝑛−1𝑃
𝑛−1
+ Φ∗𝑛 |𝑛−1. (3.67)

Using (3.63), we define a “corrected” covariance as

(𝑃𝑛+)−1 = Φ∗𝑛 |0
−1(𝑃 |𝑛)−1Φ−1

𝑛 |0

= Φ∗𝑛 |0
−1

(
(𝑃 |𝑛−1)−1 + Δ𝑡Φ∗𝑛 |0𝐶∗𝐶Φ𝑛 |0

)
Φ−1
𝑛 |0

= (𝑃𝑛−)−1 + Δ𝑡𝐶∗𝐶.

Finally, using the inversion lemma,

𝑃𝑛+ = 𝑃
𝑛
− − Δ𝑡𝑃𝑛−𝐶∗

(
𝐼 + Δ𝑡𝐶𝑃𝑛−𝐶∗

)−1
𝐶𝑃𝑛−,

we define the discrete gain operator

𝐺𝑛 = Φ𝑛 |0𝐺𝑛0 = Δ𝑡Φ𝑛 |0𝑃 |𝑛Φ∗𝑛 |0𝐶
∗ = Δ𝑡𝑃𝑛+𝐶

∗.

With these developments, we started from the propagation of the optimal initial state (where the initial
state is estimated considering 𝑛 available measurements) and obtained a two-stage recursive algorithm
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(prediction and correction) that results in the same optimal observer. The algorithm then reads:

(Initialization)




𝑃0− = 𝑅−1

𝑃0+ = 𝑃0− − Δ𝑡𝑃0−𝐶∗
(
𝐼 + Δ𝑡𝐶𝑃0−𝐶∗

)−1
𝐶𝑃0−,

𝐺0 = Δ𝑡𝑃0+𝐶∗,
𝑧̂0+ = 𝑧0 + 𝐺0( 𝑦̃0 − 𝐶𝑧0)

(Prediction)
{
𝑧̂𝑛+1− = Φ𝑛+1 |𝑛 𝑧̂𝑛+ + 𝑏𝑛
𝑃𝑛+1− = Φ𝑛+1 |𝑛𝑃𝑛+Φ∗𝑛+1 |𝑛

(Correction)


𝑃𝑛+1+ = 𝑃𝑛+1− − Δ𝑡𝑃𝑛+1− 𝐶∗

(
𝐼 + Δ𝑡𝐶𝑃𝑛+1− 𝐶∗

)−1
𝐶𝑃𝑛+1− ,

𝐺𝑛+1 = Δ𝑡𝑃𝑛+1+ 𝐶∗,
𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + 𝐺𝑛+1( 𝑦̃𝑛+1 − 𝐶𝑧̂𝑛+1− )

(3.68)

3.3.3.2 Extended Kalman Filter

As done for the time-continuous case, we present here the time-discrete Extended Kalman Filter in
which the nonlinear operators are linearized around the current state. This formulation is useful for the
nonlinear case (3.10). The algorithm reads

(Initialization)




𝑃0− = 𝑅−1

𝑃0+ = 𝑃0− − Δ𝑡𝑃0− (D𝐶 (0) )∗
(
𝐼 + Δ𝑡D𝐶 (0)𝑃0− (D𝐶 (0) )∗

)−1
D𝐶 (0)𝑃0−,

𝐺0 = Δ𝑡𝑃0+(D𝐶 (𝑛) )∗,
𝑧̂0+ = 𝑧0 + 𝐺0( 𝑦̃0 − 𝐶 (

𝑧0)
)

(Prediction)
{
𝑧̂𝑛+1− = Φ𝑛+1 |𝑛 ( 𝑧̂𝑛+) + 𝑏𝑛
𝑃𝑛+1− = DΦ𝑛+1 |𝑛𝑃𝑛+ (DΦ𝑛+1 |𝑛)∗

(Correction)


𝑃𝑛+1+ = 𝑃𝑛+1− − Δ𝑡𝑃𝑛+1− (D𝐶 (𝑛+1) )∗

(
𝐼 + Δ𝑡D𝐶 (𝑛+1)𝑃𝑛+1− (D𝐶 (𝑛+1) )∗

)−1
D𝐶 (𝑛+1)𝑃𝑛+1− ,

𝐺𝑛+1 = 𝑃𝑛+1+ (D𝐶 (𝑛+1) )∗,
𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + 𝐺𝑛+1

(
𝑦̃𝑛+1 − 𝐶 ( 𝑧̂𝑛+1− )

)
(3.69)

where the dependency in DΦ𝑛+1 |𝑛 ( 𝑧̂𝑛−) was omitted and D𝐶 (𝑛) = D𝐶 ( 𝑧̂𝑛−).

3.3.3.3 Unscented Kalman Filter

In the context of estimation in a nonlinear framework, another alternative is the Unscented Kalman
Filter (UKF) [Julier, Uhlmann, and Durrant-Whyte, 2000; Simon, 2006; Moireau and Chapelle, 2011].
As shown, the Extended KF alternative requires the computation of the tangent operators, namely DΦ and
D𝐶, for propagating the covariance which can be prohibitively complex. Instead of computing directly the
tangents, the propagation of the covariance can be done empirically through a particular set of particles
propagated through the nonlinear operator.

Definition 3.3.1. Empiric mean. GivenV a Hilbert Space. Let {𝛼𝑖}𝑟𝑖=1 ∈ R𝑟+ such that
∑𝑟
𝑖=1 𝛼𝑖 =

1. We define the empirical mean operator 𝐸𝛼 : V𝑟 ↦→ V such that for any {𝑣 (𝑖) }𝑟𝑖=1 ∈ V𝑟 ,

𝐸𝛼 ({𝑣 (𝑖) }𝑟𝑖=1) =
𝑟∑︁
𝑖=1

𝛼𝑖𝑣
(𝑖) .

We may use the shortened notation 𝐸𝛼 (𝑣 (∗) ) := 𝐸𝛼 ({𝑣 (𝑖) }𝑟𝑖=1).
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Definition 3.3.2. Empiric covariance. GivenV andW two Hilbert Spaces. Let {𝛼𝑖}𝑟𝑖=1 ∈ R𝑟+
such that

∑𝑟
𝑖=1 𝛼𝑖 = 1. We define the empirical covariance Cov𝛼 : V𝑟 ×W𝑟 ↦→ L(W,V) such

that for two sets {𝑣 (𝑖) }𝑟𝑖=1 ∈ V𝑟 and {𝑤 (𝑖) }𝑟𝑖=1 ∈ W𝑟

Cov𝛼 ({𝑣 (𝑖) }𝑟𝑖=1, {𝑤 (𝑖) }𝑟𝑖=1) :W ∋ 𝑢 ↦→
𝑟∑︁
𝑖=1

𝛼𝑖

(
𝑤 (𝑖) − 𝐸𝛼 (𝑤 (∗) ), 𝑢

)
W

(
𝑣 (𝑖) − 𝐸𝛼 (𝑣 (∗) )

) ∈ V .
We may use the shortened notations Cov𝛼 (𝑣 (∗) , 𝑤 (∗) ) := Cov𝛼 ({𝑣 (𝑖) }𝑟𝑖=1, {𝑤 (𝑖) }𝑟𝑖=1) and
Cov𝛼 (𝑣 (∗) ) := Cov𝛼 (𝑣 (∗) , 𝑣 (∗) ).

Definition 3.3.3. Sigma-points. Given V a Hilbert Space. Let {𝑣 (𝑖) }𝑟𝑖=1 ∈ V𝑟 be a set of
elements. Its mean and covariance as 𝐸 (𝑣 (∗) ) and Cov(𝑣 (∗) ), respectively. We defined another
set {𝑣̃ (𝑖) }𝑟𝑖=1 ∈ V𝑟 such that the elements {𝑣 (𝑖) }𝑟𝑖=1 are constructed as

𝑣 (𝑖) = 𝐸 (𝑣 (∗) ) + 𝑣̃ (𝑖) , 1 ≤ 𝑖 ≤ 𝑟.

We struct the set {𝑣̃ (𝑖) }𝑟𝑖=1 with the following conditions, associating each element to a coefficient
in {𝛼𝑖}𝑟𝑖=1 ∈ R𝑟+ , 



𝑟∑︁
𝑖=1

𝛼𝑖 = 1

𝐸𝛼 (𝑣 (∗) ) = 𝐸 (𝑣 (∗) )
Cov𝛼 (𝑣 (∗) ) = Cov(𝑣 (∗) ).

These conditions implies for the set 𝑣̃ (∗){
𝐸𝛼 (𝑣̃ (∗) ) = 0
Cov𝛼 (𝑣̃ (∗) ) = Cov(𝑣 (∗) ).

The set of points {𝑣 (𝑖) }𝑟𝑖=1 satisfying these conditions are called sigma-points.

The Unscented Kalman Filter algorithm is presented below. We introduce the zero-mean and unit
covariance set of sigma-points { 𝐼̃ (𝑖) }𝑟𝑖=1 ∈ Z𝑟 using Definition 3.3.1, Definition 3.3.2 and Definition 3.3.3.
Here, instead of propagating only one observer 𝑧̂, we have 𝑟 observers {𝑧̂ (𝑖) }𝑟𝑖=1 propagated through the
dynamics and exploring the state space, retrieving information about how the uncertainties propagate
through the dynamics. This exploration is controlled by the estimated covariance and the sigma-points.
Additionally, we define the square root of a self-adjoint operator 𝑃 in the decomposition

𝑃 =
√
𝑃
√
𝑃.
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(Initialization)
{
𝑃0+ = 𝑅−1,

𝑧̂0+ = 𝑧0.

(Sampling) 𝑧̂
𝑛(𝑖)
+ = 𝑧̂𝑛+ +

√︁
𝑃𝑛+ 𝐼̃

(𝑖) .

(Prediction)


𝑧̂𝑛+1(𝑖)− = Φ𝑛+1 |𝑛 ( 𝑧̂𝑛(𝑖)+ ) + 𝑏𝑛,
𝑧̂𝑛+1− = 𝐸𝛼 ( 𝑧̂𝑛+1(∗)− ),
𝑃𝑛+1− = Cov𝛼 ( 𝑧̂𝑛+1(∗)− ).

(Resampling)
{
𝑧̂𝑛+1(𝑖)− = 𝑧̂𝑛+1− +

√︁
𝑃𝑛+1− 𝐼̃ (𝑖) ,

𝑦̂𝑛+1(𝑖) = 𝐶 ( 𝑧̂𝑛+1(𝑖)− ).

(Correction)




𝑃𝑧𝑦̂ = Cov𝛼 ( 𝑧̂𝑛+1(∗)− , 𝑦̂𝑛+1(∗) ),
𝑃𝑦̂ 𝑦̂ = 𝐼 + Δ𝑡Cov𝛼 ( 𝑦̂𝑛+1(∗) ),
𝐺𝑛+1 = Δ𝑡𝑃𝑧𝑦̂ (𝑃𝑦̂ 𝑦̂)−1,

𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + 𝐺𝑛+1
(
𝑦𝑛 − 𝐸𝛼 ( 𝑦̂𝑛+1(∗) )

)
,

𝑃𝑛+1+ = 𝑃𝑛+1− − 𝐺𝑛+1𝑃𝑦̂ 𝑦̂ (𝐺𝑛+1)∗.

(3.70)

To better understand the particularities of this filter, one can first focus on the steps of the algorithm
that is analogous to the extended Kalman Filter (3.69). In both cases, the prediction step uses the model
to forward the state and to obtain a covariance from the model. In the correction phase, the state is
corrected by using the propagated covariance and the observation misfit. Differently from the Extended
version where the covariance is propagated using the tangent (linear) dynamics, the Unscented version
retrieves the covariance by exploring the state space through the propagation of particles {𝑧̂ (𝑖) }𝑟𝑖=1 and
gathering the outcome. This means that a trade-off for not requiring the tangent dynamics is the parallel
propagation of 𝑟 particles. As we will see in Section 3.4 this trade-off does not add much computational
cost as the propagations can be done in parallel and the total memory required is proportional to the size
of the state space squared. For instance, using the Extended version for the wave propagation problem we
need to propagate the sensitivities, further details can be found in Section 3.4.1. Moreover, the Unscented
version enables the choice of different stencil schemes for the sigma points. One can increase the number
and use different distribution of sigma points, what may increase the computational cost but also increase
the stability and convergence. A few examples of potential stencil schemes are presented in Chapter 4.

3.3.3.4 Reduced-Order Kalman Filter

Here we present the time-discrete version of the Reduced-Order Kalman Filter, as its demonstration
differs slightly from the time-continuous case. We take as reference the linear-quadratic Problem II.2
with the associated definitions. The augmented dynamics of the linear-quadratic problem is expanded as




𝑧𝑛+1𝜃 = Φ𝑛+1 |𝑛𝑧𝑛𝜃 + 𝐵𝑛𝜃𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,
𝜃𝑛+1 = 𝜃𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,
𝑧0
𝜃 = 𝑧0,
𝜃0 = 𝜃0 + 𝜁𝜃 .

An important aspect of the ROKF is that only part of the augmented state ♯𝑧 bears uncertainty. That
said, we would like to propagate only the covariance related to this part. By rewriting (3.68) with the
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augmented operators and variables from Problem II.2, we have

(Initialization)




♯𝑃0− = ♯𝑅−1

♯𝑃0+ = ♯𝑃0− − Δ𝑡 ♯𝑃0−
♯𝐶∗

(
𝐼 + Δ𝑡 ♯𝐶 ♯𝑃0−

♯𝐶∗
)−1

♯𝐶 ♯𝑃0−,
♯𝐺0 = Δ𝑡 ♯𝑃0+

♯𝐶∗,
♯
𝑧̂0+ = 𝑧0 + ♯𝐺0( 𝑦̃0 − ♯𝐶𝑧0).

(Prediction)
{

♯
𝑧̂𝑛+1− = Φ𝐿

𝑛+1 |𝑛
♯
𝑧̂𝑛+ + 𝑏𝑛,

♯𝑃𝑛+1− = Φ𝐿
𝑛+1 |𝑛 ♯𝑃𝑛+Φ𝐿∗

𝑛+1 |𝑛.

(Correction)



♯𝑃𝑛+1+ = ♯𝑃𝑛+1− − Δ𝑡 ♯𝑃𝑛+1− ♯𝐶∗
(
𝐼 + Δ𝑡 ♯𝐶 ♯𝑃𝑛+1−

♯𝐶∗
)−1

♯𝐶 ♯𝑃𝑛+1− ,

♯𝐺𝑛+1 = Δ𝑡 ♯𝑃𝑛+1+
♯𝐶∗,

♯
𝑧̂𝑛+1+ = ♯

𝑧̂𝑛+1− + ♯𝐺𝑛+1( 𝑦̃𝑛+1 − ♯𝐶
♯
𝑧̂𝑛+1− ).

(3.71)

We start by showing a possible decomposition of the augmented ♯𝑃 trajectory.

Property 3.3.3. By decomposing

♯𝑃𝑛− = ♯𝐿𝑛 (𝑈𝑛−1)−1(♯𝐿𝑛)∗

with {
♯𝐿𝑛+1 = Φ𝐿

𝑛+1 |𝑛 ♯𝐿𝑛

𝑈𝑛+1 = 𝑈𝑛 + Δ𝑡 (♯𝐿𝑛+1)∗(♯𝐶)∗ ♯𝐶 ♯𝐿𝑛+1

we have that
♯𝑃𝑛+ =

♯𝐿𝑛 (𝑈𝑛)−1(♯𝐿𝑛)∗.

Proof. We start from the prediction step of ♯𝑃:

♯𝑃𝑛+1− = Φ𝐿
𝑛+1 |𝑛 ♯𝑃𝑛+Φ

𝐿∗
𝑛+1 |𝑛

and replace the step ♯𝑃𝑛+

♯𝑃𝑛+ =
♯𝑃𝑛− − Δ𝑡 ♯𝑃𝑛− ♯𝐶∗

(
𝐼 + Δ𝑡 ♯𝐶 ♯𝑃𝑛−

♯𝐶∗
)−1

♯𝐶 ♯𝑃𝑛− .

Therefore, using the decomposition, we have

♯𝑃𝑛+1+ = Φ𝐿
𝑛+1 |𝑛

(
♯𝑃𝑛− − Δ𝑡 ♯𝑃𝑛− ♯𝐶∗

(
𝐼 + Δ𝑡 ♯𝐶 ♯𝑃𝑛−

♯𝐶∗
)−1

♯𝐶 ♯𝑃𝑛−
)
Φ𝐿∗

𝑛+1 |𝑛

= Φ𝐿
𝑛+1 |𝑛 ♯𝐿𝑛(
(𝑈𝑛−1)−1 − Δ𝑡 (𝑈𝑛−1)−1(♯𝐿𝑛)∗ ♯𝐶∗

(
𝐼 + Δ𝑡 ♯𝐶 ♯𝐿𝑛 (𝑈𝑛−1)−1(♯𝐿𝑛)∗ ♯𝐶∗

)−1
♯𝐶 ♯𝐿𝑛 (𝑈𝑛−1)−1

)
(♯𝐿𝑛)∗Φ𝐿∗

𝑛+1 |𝑛.

Finally, using the inversion lemma (Property A.2.5), we recognize

♯𝑃𝑛+1+ = ♯𝐿𝑛+1(𝑈𝑛)−1(♯𝐿𝑛+1)∗.

□

The initialization of 𝑃0− is decomposed as

𝑃0
− = ♯𝐿0(𝑈0)−1(♯𝐿0)∗, ♯𝐿0 =

(
𝐿0
𝑧

𝐿0
𝜃

)
=

(
0
𝐼

)
, 𝑈0 = 𝑅Θ
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such that

𝑃0
− =

(
0 0
0 𝑅−1

Θ

)
.

By introducing the augmented state and the decomposition of the propagated covariance (Property 3.3.3)
in the augmented Kalman Filter (3.71), we have

(Initialization)



𝐿0
𝑧 = 0

𝑈0 = 𝑅Θ

𝑧̂0+ = 𝑧0 + Δ𝑡 (𝑈0)−1(𝐿0
𝑧)∗𝐶∗( 𝑦̃0 − 𝐶𝑧0)

𝜃̂0+ = 𝜃0

(Prediction)


𝑧̂𝑛+1− = Φ𝑛+1 |𝑛 𝑧̂𝑛+ + 𝐵𝑛 𝜃̂𝑛+
𝜃̂𝑛+1− = 𝜃̂𝑛+ ,
𝐿𝑛+1𝑧 = Φ𝑛+1 |𝑛𝐿𝑛𝑧 + 𝐵𝑛

(Correction)



𝑈𝑛+1 = 𝑈𝑛 + Δ𝑡 (𝐿𝑛+1𝑧 )∗𝐶∗𝐶𝐿𝑛+1𝑧

𝐺 𝜃 = Δ𝑡 (𝑈𝑛+1)−1(𝐿𝑛+1𝑧 )∗𝐶∗,
𝜃̂𝑛+1+ = 𝜃̂𝑛+1− + 𝐺 𝜃 (𝑦𝑛+1 − 𝐶𝑧̂𝑛+1− )
𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + Δ𝑡𝐿𝑛+1𝑧 (𝜃̂𝑛+1+ − 𝜃̂𝑛+1− )

(3.72)

As the uncertainty is present only in 𝜃, we propagate only the covariance related to the parameter by
propagating the sensitivity of the state w.r.t. the parameter 𝐿𝑧 and the inverse of the parameter covariance
𝑈. This reduces the cost in memory and computation when compared with the nonreduced version.

3.3.3.5 Reduced-Order Extended Kalman Filter

In the case, we have nonlinear operators Φ𝑛+1 |𝑛 and 𝐶 w.r.t. 𝜃 as in Problem II.1, the extended form
of the ROKF can be written by using their tangent as below. The Reduced-Order Extended Kalman Filter
(ROEKF) reads

(Initialization)



𝐿0
𝑧 = 0,

𝑈0 = 𝑅Θ,

𝑧̂0+ = 𝑧0 + Δ𝑡 (𝑈0)−1(𝐿0
𝑧)∗

(
D𝐶 (𝑧0)

)∗ (
𝑦̃0 − 𝐶 (𝑧0)

)
,

𝜃̂0+ = 𝜃0.

(Prediction)


𝑧̂𝑛+1− = Φ𝑛+1 |𝑛 (𝜃̂𝑛+) 𝑧̂𝑛+ + 𝑏𝑛
𝐿𝑛+1𝑧 =

(
DΦ𝑛+1 |𝑛 (𝜃̂𝑛+) ◦

)
𝐿𝑛𝑧 ,

𝜃̂𝑛+1− = 𝜃̂𝑛+ .

(Correction)



𝑈𝑛+1 = 𝑈𝑛 + Δ𝑡 (𝐿𝑛+1𝑧 )∗
(
D𝐶 ( 𝑧̂𝑛+1− )

)∗D𝐶 ( 𝑧̂𝑛+1− )𝐿𝑛+1𝑧

𝐺 𝜃 = Δ𝑡 (𝑈𝑛+1)−1(𝐿𝑛+1𝑧 )∗
(
D𝐶 ( 𝑧̂𝑛+1− )

)∗
,

𝜃̂𝑛+1+ = 𝜃̂𝑛+1− + 𝐺 𝜃
(
𝑦𝑛+1 − 𝐶 ( 𝑧̂𝑛+1− )

)
,

𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + Δ𝑡𝐿𝑛+1𝑧 (𝜃̂𝑛+1+ − 𝜃̂𝑛+1− ),

(3.73)

where
(
DΦ𝑛+1 |𝑛 (𝜃̂𝑛+) ◦

) ∈ L(Θ,L(Z,Z)).
3.3.3.6 Reduced-Order Unscented Kalman Filter

When the uncertainty is reduced to only part of the state, the Unscented Kalman Filter can also be
written in a decomposed form. In this case, the propagated covariance will comprise only the part related
to the uncertainty, reducing the computational cost. Here, we aim to propose a sequential method for the
nonlinear Problem II.1 without the need for tangent dynamics. For that, we do the same decomposition of
the covariance as in Section 3.3.3.4 for the ROKF. Let { 𝐼̃ (𝑖) }𝑟𝑖=1 ∈ Θ𝑟 be a set of sigma-points satisfying
the conditions presented in Definition 3.3.3, the Reduced-Order Unscented Kalman Filter (ROUKF) is
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presented below with the parameter-state sensitivity and parameter sensitivity operators; and inverse
parameter covariance operator

𝐿𝑧𝜃 ∈ L(Θ,Z), 𝐿𝑛𝜃 ∈ L(Θ) and 𝑈𝑛 ∈ L(Θ),
respectively. To obtain the ROUKF algorithm, we departed from (3.70) and introduced the augmented
state variables and operators from Problem B.1 and the definition of the augmented covariance ♯𝑃

presented in Section 3.3.3.4.

(Initialization)
{
𝑈0 = 𝑅Θ,

𝑧̂0+ = 𝑧0.

(Sampling)
{
𝑧̂
𝑛(𝑖)
+ = 𝑧̂𝑛+,
𝜃̂
𝑛(𝑖)
+ = 𝜃̂𝑛+ + 𝐿𝑛𝜃

√︁
(𝑈𝑛)−1 𝐼̃ (𝑖) .

(Prediction)



𝑧̂𝑛+1(𝑖)− = Φ𝑛+1 |𝑛 (𝜃̂𝑛+) 𝑧̂𝑛(𝑖)+ + 𝑏𝑛,
𝜃̂𝑛+1(𝑖)− = 𝜃̂𝑛(𝑖)+ ,

𝑦̂𝑛+1(𝑖) = 𝐶 ( 𝑧̂𝑛+1(𝑖)− ),
𝑧̂𝑛+1− = 𝐸𝛼 ( 𝑧̂𝑛+1(∗)− ).

(Correction)




𝐿𝑧𝜃 = Cov𝛼 ( 𝑧̂𝑛+1(∗)− , 𝐼̃ (∗) ),
𝐿 𝜃 = Cov𝛼 (𝜃̂𝑛+1(∗)− , 𝐼̃ (∗) ),
𝐿𝑦𝜃 = Cov𝛼 ( 𝑦̂𝑛+1(∗) , 𝐼̃ (∗) ),
𝑈𝑛+1 = Cov𝛼 ( 𝐼̃ (∗) ) + Δ𝑡 (𝐿𝑦𝜃 )∗𝐿𝑦𝜃 ,
𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + Δ𝑡𝐿𝑧𝜃 (𝑈𝑛+1)−1(𝐿𝑦𝜃 )∗

(
𝑦𝑛 − 𝐸𝛼 ( 𝑦̂𝑛+1(∗) )

)
,

𝜃̂𝑛+1+ = 𝜃̂𝑛+1− + Δ𝑡𝐿 𝜃 (𝑈𝑛+1)−1(𝐿𝑦𝜃 )∗
(
𝑦𝑛 − 𝐸𝛼 ( 𝑦̂𝑛+1(∗) )

)
.

(3.74)

As in the nonreduced form, the Unscented version propagates the covariance using particles distributed
using sigma-points. In this case, as the uncertainty is present only in the parameter, the sigma-points are
related to the parametric space Θ as well as the covariance that is propagated through the parameter-state
sensitivity 𝐿𝑧𝜃 and the parameter-parameter sensitivity 𝐿𝑛+1𝜃 . The parameter covariance at a given time
step can be retrieved as

𝑃𝑛𝜃 𝜃 = 𝐿
𝑛
𝜃 (𝑈𝑛)−1(𝐿𝑛𝜃 )∗.

Remarks on implementation. When using this algorithm with discretized spaces in R , the sigma-
points as in Definition 3.3.3 can be precisely chosen. One possible set of points is the simplex sigma-
points, which has the smallest number of necessary points satisfying the conditions. This set { 𝐼̃ (𝑖) }𝑝𝑖=1 is
generated as the columns of the matrix [ 𝐼̃ (∗)𝑝 ] that satisfies the following recursion




[ 𝐼̃ (∗)1 ] =
√
𝑝

(
− 1√

2𝛼
, 1√

2𝛼

)
, 𝛼 = 𝑝

𝑝+1

[ 𝐼̃ (∗)𝑑 ] =
√
𝑝

©­­­­­­
«

0

[ 𝐼̃ (∗)𝑑−1]
...

0
1√

𝛼𝑑 (𝑑+1)
... 1√

𝛼𝑑 (𝑑+1)
−𝑑√

𝛼𝑑 (𝑑+1)

ª®®®®®®
¬
, 2 ≤ 𝑑 ≤ 𝑝,

(3.75)

where, for the reduced-order case, 𝑝 = 𝑁𝜃 + 1.
Another important aspect when constructing the discrete algorithm is to take into account the norm

of the space where the operations are done while discretizing. For instance, the operator 𝐶 ∈ L(Z,Y)
has its matrix form obtained as in Property A.2.4, so

∀𝑧 ∈ Z = R𝑁𝑧 ,∀𝑦 ∈ Y = R𝑁𝜃 , (𝐶𝑧, 𝑦)Y = 𝑧⊺C⊺Y𝑦.

This is further illustrated below.
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ROUKF implementation. Due to its particularity concerning the construction of sigma points and the
computation of the covariance, it is interesting to detail the discrete implementation of this algorithm as
done in [Moireau and Chapelle, 2011]. Considering that we have a set { 𝐼̃ (𝑖) }𝑝𝑖=1 ∈ Θ𝑝 of sigma-points
being the columns of the matrix [ 𝐼̃ (∗) ] generated as in (3.75). By defining the matrix

D𝛼 =

©­­­­
«

𝛼 0 · · · 0
0 𝛼 · · · 0
...

...
. . .

...

0 0 0 𝛼

ª®®®®
¬

and a set of particles {𝑥 (𝑖) }𝑝𝑖=1 analogously represented in its column-matrix form [𝑥 (∗) ], one can show
that

Cov𝛼 (𝑥 (∗) , 𝐼̃ (∗) ) = [𝑥 (∗) ]𝐷𝛼 [ 𝐼̃ (∗) ]⊺,
leading to the fully discrete algorithm below.

(Initialization)



U0 = RΘ,

L0
𝑧𝜃 = 0, L0

𝜃 = IΘ,
𝑧̂0+ = 𝑧0.

(Sampling)
{
𝑧̂
𝑛(𝑖)
+ = 𝑧̂𝑛+,
𝜃̂
𝑛(𝑖)
+ = 𝜃̂𝑛+ + L𝑛𝜃

√︁
(U𝑛)−1 𝐼̃ (𝑖) .

(Prediction)



𝑧̂𝑛+1(𝑖)− = Φ𝑛+1 |𝑛 (𝜃̂𝑛+) 𝑧̂𝑛(𝑖)+ + 𝑏𝑛,
𝜃̂𝑛+1(𝑖)− = 𝜃̂𝑛(𝑖)+ ,

𝑦̂𝑛+1(𝑖) = 𝐶 ( 𝑧̂𝑛+1(𝑖)− ),
𝑧̂𝑛+1− = 𝐸𝛼 ( 𝑧̂𝑛+1(∗)− ).

(Correction)




L𝑛+1𝑧𝜃 = [𝑧̂𝑛+1(∗)− ]D𝛼 [ 𝐼̃ (∗) ],
L𝑛+1𝜃 = [𝜃̂𝑛+1(∗)− ]D𝛼 [ 𝐼̃ (∗) ],
L𝑛+1𝑦𝜃 = [ 𝑦̂𝑛+1(∗) ]D𝛼 [ 𝐼̃ (∗) ],
U𝑛+1 = I + Δ𝑡 (L𝑛+1𝑦𝜃 )⊺YL𝑛+1𝑦𝜃 ,

𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + Δ𝑡L𝑛+1𝑧𝜃 (U𝑛+1)−1(L𝑛+1𝑦𝜃 )⊺Y
(
𝑦𝑛 − 𝐸𝛼 ( 𝑦̂𝑛+1(∗) )

)
,

𝜃̂𝑛+1+ = 𝜃̂𝑛+1− + Δ𝑡L𝑛+1𝜃 (U𝑛+1)−1(L𝑛+1𝑦𝜃 )⊺Y
(
𝑦𝑛 − 𝐸𝛼 ( 𝑦̂𝑛+1(∗) )

)
.

(3.76)

In this case, the particles related to the sigma points can be run in parallel.

3.4 Application to one-dimensional wave propagation inverse problems
In this section, we apply the presented methods in the previous sections to one-dimensional wave

propagation problems, while alluding to potential industrial applications. More specifically, we focus on
parameter reconstruction by presenting two problems: a linear-quadratic problem (Section 3.4.1) as in
Problem B.2 and a nonlinear problem (Section 3.4.2 and Section 3.4.3) as in Problem B.1. In both cases,
we have a one-dimensional domain Ω and we will aim at constructing a parameter 𝜃 ∈ Θ(Ω) that varies
in space. The parametric space is constructed by an arbitrary finite-dimensional basis {𝜓Θ

𝑖 }𝑁Θ
𝑖=1

∀𝜃 ∈ Θ(Ω), ∃!{𝜃𝑖}𝑁Θ
𝑖=1 ∈ R𝑁Θ , 𝜃 (𝑥) =

𝑁Θ∑︁
𝑖=1

𝜃𝑖𝜓
Θ
𝑖 (𝑥), ∀𝑥 ∈ Ω. (3.77)

We recall that no distinction will be made between the function 𝜃 ∈ Θ(Ω) and its corresponding vector of
components 𝜃 ∈ R𝑁Θ . Both problems will be related to a scalar displacement field 𝑢𝜃 , associated with
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a parameter 𝜃, being the solution of wave propagation dynamics. The wave propagation problem will be
written as a second-order time-differential equation. For the first problem treated in Section 3.4.1, this
parameter will represent the spatial dependency of a source term. In the second problem, the parameter
will represent the temperature of the material that is related to the wave velocity in the medium. It is treated
in Section 3.4.2 using the sensitivity for computing the functional gradient with the objective of detailing
the development of the inverse strategy and discussing some particularities of wave propagation-related
inverse problems. The second problem is also treated in Section 3.4.3 with sequential methods.

3.4.1 Linear-quadratic problem: Estimating the spatial dependency of a source term
Here, we use the methods presented in previous sections to treat a linear-quadratic inverse problem

analog to Problem B.2. Let the unknown 𝜃 ∈ Θ be a function of space representing the spatial dependency
of the source term of a wave propagation problem. Let 𝑢𝜃 (𝑡) ∈ H1(Ω) be the displacement field associated
with 𝜃, the wave propagation problem reads



𝜕2
𝑡𝑡𝑢𝜃 (𝑡) (𝑥) − 𝑐2𝜕𝑥𝑥𝑢𝜃 (𝑡) (𝑥) = 𝜃 (𝑥) 𝑓 (𝑡), in Ω×]0;𝑇 [,
𝜕𝑥𝑢𝜃 (𝑡) (0) = 𝜕𝑥𝑢𝜃 (𝑡) (𝐿) = 0,
𝑢𝜃 (0) (𝑥) = 𝜕𝑡𝑢(0) (𝑥) = 0.

(3.78)

The displacement field is observed through a linear operator 𝐶𝑢 ∈ L(H1(Ω),Y) and the observed data is

𝑦(𝑡) = 𝐶𝑢𝑢∗(𝑡),

where 𝑢∗ is the wavefield associated with 𝜃∗, the parameter of the target system. For this illustration case,
no disturbance is present in the observations. Considering the parameter 𝜃 = 𝜃0 + 𝜁𝜃 , where 𝜃0 is an initial
guess, we interpret the inverse problem of estimating the error 𝜁𝜃 as minimizing

J𝑇 (𝜁𝜃) = argmin
𝜁𝜃 ∈Θ

{
𝑟Θ(𝜁𝜃) + 1

2

∫ 𝑇

0
∥𝑦(𝑡) − 𝐶𝑢𝑢𝜃 (𝑡)∥2Y d𝑡

}

where we define the regularization analogue to the H1(Ω) norm as

𝑟Θ(𝜁𝜃) = 𝛽
∫
Ω
(𝜁𝜃)2dΩ + 𝛾

∫
Ω
(𝜕𝑥𝜁𝜃)2dΩ,

with 𝛽 and 𝛾 allowing to adjust the regularization.

3.4.1.1 Discretized problem

We present here the discrete version of the estimation problem and brief details of the discretiza-
tion procedure. Approximating the functional space using the finite elements method as presented in
Section 1.3, we have

𝑉ℎ (Ω) = {𝑣ℎ ∈ C0(Ω), ∀𝐾 ∈ Tℎ, 𝑣ℎ

���
𝐾
∈ 𝑃𝑘 (𝐾)},

representing an approximation of the functional space H1(Ω) where we look for the solution of the wave
propagation problems. We define Tℎ as the one-dimensional mesh, related to the mesh step ℎ, and 𝑃𝑘 the
space of Lagrange polynomials of order 𝑘 . The approximation space is generated by the set of Lagrange
basis functions

𝑉ℎ (Ω) = span{𝜓𝐼 }𝑁ℎ

𝐼=1,

where we associate {𝜓𝐼 }𝑁ℎ

𝐼=1 to the interpolation points

{𝜉𝐼 }𝑁ℎ

𝐼=1 ⊂ Ω with 𝜓𝐼 (𝜉𝐽 ) = 𝛿𝐼 𝐽 , ∀𝐼, 𝐽 ∈ ⟦1; 𝑁ℎ⟧.
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Using Property A.2.2, we represent the displacement field 𝑢𝜃 ∈ 𝑉ℎ (Ω) by the vector
(
𝑢1 · · · 𝑢𝑁ℎ

)
. Also,

by finite elements procedures, we have the associated mass and stiffness matrices M and K , respectively.
We further detail the assembly of such matrices in the next section, when illustrating the nonlinear case.
In the following, we denote this finite element vector as 𝑢𝜃 ∈ R𝑁ℎ . Using a second-order time scheme
and discretizing the operators we can write the discrete dynamics

M
𝑢𝑛+1𝜃 − 2𝑢𝑛𝜃 + 𝑢𝑛−1

𝜃

Δ𝑡2
+K𝑢𝑛𝜃 = 𝑓 𝑛P𝜃, ∀𝑛 ∈ ⟦1; 𝑁 − 1⟧,

associated with zero initial conditions and where 𝑓 𝑛 = 𝑓 (𝑛Δ𝑡) and P𝑖 𝑗 = 𝜓Θ
𝑗 (𝜉𝑖) is the matrix that

projects Θ(Ω) into 𝑉ℎ (Ω). We rewrite the discrete wave equation as done in (3.15)

Φ1𝑧
𝑛+1 = Φ0𝑧

𝑛 + B𝑛0 𝜃, 𝑧0 = 0, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

with
Φ1 =

(
M −Δ𝑡M
0 M

)
, Φ0 =

(
M 0
−Δ𝑡K M

)
, B𝑛0 =

(
0

Δ𝑡 𝑓 𝑛P

)
.

We proceed by writing the dynamics in the same form as in Problem II.2, with an augmented state-
parameter variable ♯𝑧𝑛𝜃 =

(
𝑧𝑛 𝜃

)⊺ leading to the dynamics

♯
𝑧𝑛+1𝜃 = ♯Φ𝑛+1 |𝑛 ♯

𝑧𝑛𝜃 , ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

with
♯Φ𝑛+1 |𝑛 = ♯Φ−1

1
♯Φ𝑛0 ,

♯Φ1 =

(
Φ1 0
0 𝐼Θ

)
, ♯Φ𝑛0 =

(
Φ0 B𝑛0
0 𝐼Θ

)
.

Then, the inverse problem in its discrete form reads

𝜁𝜃 = argmin
𝜁𝜃 ∈R𝑁𝜃

J𝑁 (𝜁𝜃) = argmin
𝜁𝜃 ∈R𝑁𝜃

{
𝑟Θ(𝜁𝜃) + Δ𝑡

2

𝑁∑︁
𝑛=0
∥𝑦𝑛 − ♯C ♯𝑧𝜃

𝑛∥2Y
}
, (3.79)

where the discrete augmented observation operator is

♯C =
(
C 0

)
and C =

(
C𝑢 C𝑣

)
.

Except for the initial detailing of the adjoint method, we will consider for all cases C𝑣 = 0. We consider
that the observation operator C𝑢 retrieves the displacement field in a restricted domain 𝜔. The discrete
space of observations is defined as Y = R𝑁𝑦 with associated norm

∥𝑦𝑛∥2Y = 𝑦𝑛⊺Y𝑦𝑛, ∀𝑦𝑛 ∈ Y, ∀𝑛 ∈ ⟦0; 𝑁⟧,

whereY is a positive-definite symmetric matrix. The regularization is represented by the positive-definite
symmetric matrix RΘ,

𝑟Θ(𝜁𝜃) = 1
2
(𝑅Θ𝜁𝜃 , 𝜁𝜃)Θ =

1
2
𝜁𝜃

⊺RΘ𝜁𝜃 ,

being a combination of the mass and stifness matrices, as precised later in this section. In the following,
to implement the different methods to minimize (3.79), we first compute the functional gradient to apply
variational methods. We present how to compute the gradient using sensitivity and then the adjoint
method. We show that by using the sensitivity dynamics when the problem is sufficiently regularized, we
can compute directly the functional minimizer and use it as the reference to assess the other strategies.
Using the gradient obtained by the adjoint method, we apply the gradient descent class of methods:
steepest descent with optimal fixed step, the conjugate gradient with Fletcher-Reeves coefficient, the
Gauss-Newton method and the BFGS. For the sequential methods, we apply the ROKF and ROUKF
methods.
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Functional gradient using sensitivity. First, we present the computation of the gradient using the
sensitivity of the dynamics w.r.t. the parameter. As the system depends linearly on the parameter, the
sensitivity D𝜁𝜃

𝑧𝜃 ∈ L(Θ,Z) in its discrete form S𝜁𝜃 ∈ M(R )𝑁𝑧×𝑁𝜃
is computed as

{
S𝑛+1𝜁𝜃

= Φ−1
1 Φ𝑛0S

𝑛
𝜁𝜃
+Φ−1

1 B𝑛0 ,

S0
𝜁𝜃

= 0,

where

S𝑛𝜁𝜃 =

(
S𝑛𝑢
S𝑛𝑣

)

Denoting the 𝑖-th column of S𝑢 as 𝑠𝑖 , we can compute the displacement sensitivity matrix column by
column with a set of wave propagation problems, namely for 𝑖 ∈ ⟦1; 𝑁𝜃⟧,

M
𝑠𝑛+1𝑖 − 2𝑠𝑛𝑖 + 𝑠𝑛−1

𝑖

Δ𝑡2
+K 𝑠𝑛𝑖 = 𝑓 𝑛P𝑖 , 𝑠1

𝑖 = 𝑠
0
𝑖 = 0, ∀𝑛 ∈ ⟦1; 𝑁 − 1⟧

where P𝑖 is the 𝑖-th column of P. One can show that 𝑢𝑛𝜃 = S𝑛𝑢𝜃. Then, the gradient of the functional
(3.79) can be computed using the sensitivity matrix as

∇J𝑁 (𝜁𝜃) = RΘ𝜁𝜃 − Δ𝑡
𝑁∑︁
𝑛=0
(S𝑛𝑢)⊺C⊺

𝑢Y (𝑦𝑛 − C𝑢𝑢𝑛𝜃 ).

Optimal solution. Using the sensitivity, we can compute directly the minimizer of (3.79) and use it as
the reference. As 𝑦𝑛 = C𝑢𝑧𝜃∗ = C𝑢S𝑛𝑢𝜃

∗ and 𝑢𝑛𝜃 = S𝑛𝑢 (𝜃0 + 𝜁𝜃), the observed target system, we have from
the functional gradient above,

∇J𝑁 (𝜁𝜃) = RΘ𝜁𝜃 − Δ𝑡
𝑁∑︁
𝑛=0
(S𝑛𝑢)⊺C⊺

𝑢Y
(
C𝑢S𝑛𝑢𝜃

∗ − C𝑢S𝑛𝑢 (𝜃0 + 𝜁𝜃)
)

= RΘ𝜁𝜃 −
(
Δ𝑡

𝑁∑︁
𝑛=0
(S𝑛𝑢)⊺C⊺

𝑢YC𝑢S
𝑛
𝑢

)
(𝜃∗ − 𝜃0 − 𝜁𝜃),

from where we define the Gramian

G𝑟 = Δ𝑡
𝑁∑︁
𝑛=0
(S𝑛𝑢)⊺C⊺

𝑢YC𝑢S
𝑛
𝑢 .

Using the Gramian, we have
∇J𝑁 (𝜁𝜃) = RΘ𝜁𝜃 − G𝑟 (𝜃∗ − 𝜃0 − 𝜁𝜃),

so the minimizer 𝜁𝜃 where ∇J𝑁 (𝜁𝜃) = 0 is

𝜁𝜃 =
(
RΘ + G𝑟

)−1G𝑟 (𝜃∗ − 𝜃0).

We can use this optimal solution as a reference to compare and validate the minimization methods. Due
to regularization the target 𝜃∗ differs from the optimal 𝜃0 + 𝜁𝜃 , even though no disturbance is present in
the observations 𝑦. One can expect that, as C𝑢 is usually a low-rank matrix, the well-posedness of the
inversion of RΘ +G𝑟 is determined by the presence and quality of RΘ. Therefore, the conditioning of the
Gramian carries a measurement of observability of the unknown for the given observation method.
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Computing the gradient using the adjoint method. As previously discussed, the sensitivity approach
to compute the gradient requires, for each evaluation, solving several wave propagation problems. The
adjoint method is detailed here for this illustration case. In the case of a wave equation, the transition
operator in the augmented version of the adjoint dynamics (3.53) reads

♯Φ⊺
𝑛+1 |𝑛 =

♯Φ𝑛0
⊺ ♯Φ−⊺1 .

Referring to (3.53) and introducing the variable ♯𝑞𝑛 = ♯Φ−⊺1 𝑝𝑛𝜁 , we can write the adjoint dynamics as a
backward propagation problem

♯Φ⊺
1

♯𝑞𝑛 − ♯Φ𝑛0
⊺ ♯𝑞𝑛+1 = Δ𝑡 ♯C⊺Y (𝑦𝑛 − ♯C ♯𝑧𝑛).

Separating the state and parameter part of this augmented adjoint variable as ♯𝑞𝑛⊺ =
(
𝑞
𝑛⊺
𝑢 𝑞

𝑛⊺
𝑣 𝑞

𝑛⊺
𝜃

)
, we

obtain 


M
𝑞𝑛𝑢 − 𝑞𝑛+1𝑢

Δ𝑡
+K𝑞𝑛+1𝑣 = Δ𝑡C⊺

𝑢Y (𝑦𝑛 − C𝑢𝑢𝑛 − C𝑣𝑣𝑛), ∀𝑛 ∈ ⟦𝑁 ; 0⟧,

M
𝑞𝑛𝑣 − 𝑞𝑛+1𝑣

Δ𝑡
−M𝑞𝑛𝑢 = Δ𝑡C⊺

𝑣Y (𝑦𝑛 − C𝑢𝑢𝑛 − C𝑣𝑣𝑛), ∀𝑛 ∈ ⟦𝑁 ; 0⟧,

𝑞𝑛𝜃 − 𝑞𝑛+1𝜃

Δ𝑡
= B𝑛0

⊺
𝑞𝑛+1𝑣 , ∀𝑛 ∈ ⟦𝑁 ; 0⟧,

𝑞𝑁+1𝑢 = 𝑞𝑁+1𝑣 = 0, 𝑞𝑁+1𝜃 = 0.

Assuming pure displacement observations, i.e. C𝑣 = 0, this system reduces to




M
𝑞𝑛−1
𝑣 − 2𝑞𝑛𝑣 + 𝑞𝑛+1𝑣

Δ𝑡2
+K𝑞𝑛𝑣 = Δ𝑡C⊺

𝑢Y (𝑦𝑛−1 − C𝑢𝑢𝑛−1), ∀𝑛 ∈ ⟦𝑁 ; 1⟧,

𝑞𝑛𝜃 − 𝑞𝑛+1𝜃

Δ𝑡
= B𝑛0

⊺
𝑞𝑛+1𝑣 , ∀𝑛 ∈ ⟦𝑁 ; 0⟧,

with the following final conditions

𝑞𝑁𝑣 = (Δ𝑡2)Δ𝑡M−1C⊺
𝑢Y (𝑦𝑁 − C𝑢𝑢𝑁 ), 𝑞𝑁+1𝑣 = 0, 𝑞𝑁+1𝜃 = 0.

Remarking that
♯Φ⊺

1 𝑞
𝑛 =

(
Φ⊺

1 0
0 IΘ

) (
𝑞𝑛𝑧
𝑞𝑛𝜃

)
=

(
𝑝𝑛𝑧
𝑝𝑛𝜃

)
,

which, in particular, entails that 𝑞𝑛𝜃 = 𝑝
𝑛
𝜃 , we write the gradient from (3.52) as

∇J𝑁 (𝜁𝜃) = RΘ𝜁𝜃 − 𝑞0
𝜃 .

To compute it, we develop the dynamic of 𝑞𝜃 we have

𝑞𝑛𝜃 = 𝑞
𝑛+1
𝜃 + Δ𝑡B𝑛0⊺𝑞𝑛+1𝑣 , ∀𝑛 ∈ ⟦𝑁 ; 0⟧,

and denesting the recurrency of 𝑞𝜃 in terms of 𝑞𝑣 ,

𝑞0
𝜃 = Δ𝑡

(
B𝑁−1

0
⊺
𝑞𝑁𝑣 + B𝑁−2

0
⊺
𝑞𝑁−1
𝑣 + · · · + B0

0
⊺
𝑞1
𝑣

)
, ∀𝑛 ∈ ⟦𝑁 ; 0⟧,
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we can write the gradient as:

∇J𝑁 (𝜁𝜃) = RΘ𝜁𝜃 − Δ𝑡
𝑁−1∑︁
𝑛=0

B𝑛0
⊺
𝑞𝑛+1𝑣 . (3.80)

The associated adjoint system for computing this gradient, for 𝑢𝜃 , is




M
𝑢𝑛+1𝜃 − 2𝑢𝑛𝜃 + 𝑢𝑛−1

𝜃

Δ𝑡2
+K𝑢𝑛𝜃 = B𝑛0 (𝜃0 + 𝜁𝜃), ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

M
𝑞𝑛−1
𝑣 − 2𝑞𝑛𝑣 + 𝑞𝑛+1𝑣

Δ𝑡2
+K𝑞𝑛𝑣 = Δ𝑡C⊺

𝑢Y (𝑦𝑛−1 − C𝑢𝑢𝑛−1
𝜃 ), ∀𝑛 ∈ ⟦𝑁 + 1; 2⟧,

𝑢−1
𝜃 = 𝑢0

𝜃 = 𝑞
𝑁+2
𝑣 = 𝑞𝑁+1𝑣 = 0.

This method is used in the following to compute the functional gradient.

Steepest descent and optimal descent step. By choosing the steepest descent direction (3.40) and
using the gradient computed using the expression (3.80) we perform a gradient descent with fixed descent
step. We choose a fixed optimal descent step 𝛼 as in [Ciarlet, 1988a] by computing the set {𝜆𝑖} of
eigenvalues of the following eigenproblem

G𝑟𝑣 = 𝜆RΘ𝑣

and taking

𝛼 = max
{

min{𝜆𝑖}
max{𝜆𝑖}2

;
2

min{𝜆𝑖} +max{𝜆𝑖}

}
.

This gives the larger stable step 𝛼. We then update the estimated error as

𝜁𝜃
𝑘+1 = 𝜁𝜃

𝑘 − 𝛼∇J𝑁 (𝜁𝜃 𝑘).

Conjugate gradient. For the conjugate gradient implementation, the error is updated as

𝜁𝜃
𝑘+1 = 𝜁𝜃

𝑘 − 𝑑𝑘

with 𝑑𝑘 = choosen as in (3.41) and for 𝛽𝑘 we use the Fletcher-Reeves coefficient

𝛽𝑘 =

(∇J𝑁 (𝜁𝜃 𝑘+1))⊺∇J𝑁 (𝜁𝜃 𝑘+1)(∇J𝑁 (𝜁𝜃 𝑘))⊺∇J𝑁 (𝜁𝜃 𝑘) .

As the functional is quadratic w.r.t. the parameter, we perform an exact line search by evaluating the
functional at three different points.

Gauss-Newton method. Using the gradient and the sensitivity we can perform the descent iterations
(3.42) using the Gauss-Newton approximation (3.44) of the Hessian. The Gauss-Newton approximation
of the Hessian using the sensitivity is equivalent to the Gramian

𝐻 (𝑘 ) = Δ𝑡
𝑁∑︁
𝑛=0
(S𝑛𝑢)⊺C⊺

𝑢YC𝑢S
𝑛
𝑢 = G𝑟 .

One can show that for the linear-quadratic case, this is exactly the Hessian, hence only one iteration is
needed to attain the minimizer.



126 Chapter 3. Introduction to least-squares minimization for solving inverse problems

BFGS. We use the BFGS approximation of the Hessian inverse (3.46) by initializing it with

B̃(0) = R−1
Θ , 𝑠 (0) = −∇J𝑁 (𝜁𝜃0)

then
∇J𝑁 (𝜁𝜃1) = ∇J𝑁 (𝜃0 + 𝑠 (0) ).

Then, the descent is performed as in (3.42) with an optimal descent step 𝛼𝑘 as done for the conjugate
gradient case.

Reduced-Order Kalman Filter. The first sequential method implemented for this illustration is the
ROKF. We rewrite here the algorithm (3.72) using the case-specific discrete definitions and norms

(Initialization)



L0
𝑧 = 0

U0 = RΘ

𝑧̂0+ = 𝑧0 + G0( 𝑦̃0 − C𝑧0)
𝜁𝜃

0
+ = 0

(Prediction)
{
𝑧̂𝑛+1− = Φ−1

1 Φ𝑛0 𝑧̂
𝑛+ +Φ−1

1 B𝑛0 (𝜃0 + 𝜁𝜃𝑛+)
𝜁𝜃
𝑛+1
− = 𝜁𝜃

𝑛

+

(Correction)




L𝑛+1𝑧 = Φ−1
1 Φ𝑛0L

𝑛
𝑧 +Φ−1

1 B𝑛0
U𝑛+1 = U𝑛 + Δ𝑡 (L𝑛+1𝑧 )⊺C⊺CL𝑛+1𝑧

G𝜁𝜃 = Δ𝑡 (U𝑛+1)−1(L𝑛+1𝑧 )⊺YC⊺Y,

𝜁𝜃
𝑛+1
+ = 𝜁𝜃

𝑛+1
− + G𝜁𝜃 (𝑦𝑛+1 − C𝑧̂𝑛+1− )

𝑧̂𝑛+1+ = 𝑧̂𝑛+1− + Δ𝑡L𝑛+1𝑧 (𝜁𝜃
𝑛+1
+ − 𝜁𝜃𝑛+1− )

We recognize that L𝑛𝑧 = S𝑛𝜁𝜃 , the sensitivity of the state w.r.t. the parameter. Using the definitions of Φ1
and Φ0, replacing it in the discrete algorithm above, we have

(Initialization)



S0
𝑢 = S1

𝑢 = 0
𝑢̂0+ = 𝑢̂1+ = 0
U0 = RΘ

𝜁𝜃
1

= 0

(Prediction)



M
𝑢̂𝑛+1− − 2𝑢̂𝑛+ + 𝑢̂𝑛−1+

Δ𝑡2
+K 𝑢̂𝑛+ = 𝑓 𝑛P(𝜃0 + 𝜁𝜃𝑛),

M
S𝑛+1𝑢 − 2S𝑛𝑢 + S𝑛−1

𝑢

Δ𝑡2
+KS𝑛𝑢 = 𝑓 𝑛P

(Correction)




U𝑛+1 = U𝑛 + Δ𝑡 (S𝑛+1𝑢 )⊺C⊺
𝑢YC𝑢S𝑛+1𝑢

G𝜃 = Δ𝑡 (U𝑛+1)−1(S𝑛+1𝑢 )⊺C⊺
𝑢Y

𝜁𝜃
𝑛+1

= 𝜁𝜃
𝑛 + G𝜃 (𝑦𝑛+1 − 𝑢̂𝑛+1− )

𝑢̂𝑛+1+ = 𝑢̂𝑛+1− + S𝑛+1𝑢 G𝜃 (𝑦𝑛+1 − 𝑢̂𝑛+1− )
𝑢̂𝑛+ = 𝑢̂𝑛− + S𝑛𝑢G𝜃 (𝑦𝑛+1 − 𝑢̂𝑛+1− )

Reduced-Order Unscented Kalman Filter. The ROUKF method is implemented as described in
(3.76), using the simplex sigma-points.

Illustration specifications. We specify here the remaining configuration for the one-dimensional wave
propagation inverse problem. We define a domain Ω = ]0, 600[mm and a duration of 𝑇 = 400𝜇s
for the dynamics. The observation operator retrieves the displacement field at the observation region
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𝜔 = ]0, 100[mm. The wave-speed 𝑐 is defined as 3mm · 𝜇s−1. The time dependency 𝑓 of the source is a
gated cosine

𝑓 (𝑡) = e−
(𝑡−𝑡0 )2

𝜎2 cos
(
2𝜋𝜔 𝑓 (𝑡 − 𝑡0)

)
with 𝑡0 = 50𝜇s, 𝜎 = 12mm and 𝜔 𝑓 = 100kHz. We choose the same basis for the parametric space as the
displacement field

{𝜓Θ
𝑖 }𝑁Θ
𝑖=1 = {𝜓𝑖}𝑁ℎ

𝑖=1,

meaning that we reconstruct the finite element vector for 𝜃. With this choice, we can write the equivalent
discrete version of the regularization as RΘ = 𝛽M + 𝛾K , so

𝑟Θ(𝜁𝜃) = 1
2
𝜁𝜃

⊺ (
𝛽M + 𝛾K )

𝜁𝜃 .

The space 𝑉ℎ (Ω) is constructed using Lagrange polynomials of fourth-order as local basis functions. We
construct the mesh Tℎ to ensure at least 2 elements per wavelength. The wavelength is computed using
the wave speed 𝑐 and frequency 𝜔 𝑓 . The time step satisfies the CFL condition (more details in Chapter 1)

Δ𝑡 ≤ 2√︁
𝑟 (M−1K )

,

where 𝑟 is the spectral radius. In this illustration, we reduce the time step by a factor of 0.9 as the spectral
radius is computed approximately. The maximum number of iterations for the gradient descent methods
is fixed at 1300. Denoting the mass matrix in 𝑉ℎ (𝜔) as M𝜔 we consider Y = M𝜔 , since we want to use
the L2 norm for the observation space. The objective will be to reconstruct the spatial dependency of the
source term 𝜃∗(𝑥) from a first guess 𝜃0(𝑥) and regularization defined for 𝛽 and 𝛾. These parameters are
generated by projecting the Gaussian

𝐴
𝑒−(

𝑥−𝑥0
2𝜎 )2

𝜎
√

2𝜋
into Θ, with 𝜎 = 10mm. For the guess, 𝐴 = 32 and 𝑥0 = 400mm and for the target 𝐴 = 40 and
𝑥0 = 500mm. The guess and target parameters are shown in Figure 3.1. As the basis for the parametric
space is the finite element space, arbitrary forms of spatial dependency could be chosen. Snapshots of
the 𝑢𝜃∗ are shown in Figure 3.2.
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Figure 3.1 – Target and guess spatial dependency for the linear-quadratic inverse problem illustration.
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Figure 3.2 – Snapshots of the target displacement field 𝑢𝜃∗ at 𝑡 = 45, 80, 150, 230, 300 and 380𝜇s
(left-right, top-bottom). The observed region is highlighted.

Convergence rate results. Using the optimal solution as the reference, we compute the relative squared
error w.r.t. the optimal solution at each iteration step, for variational methods, and at each time step, for
sequential methods using 

𝜃𝑖 − 𝜃∗

2

Θ

∥𝜃∗∥2Θ
=
(𝜃𝑖 − 𝜃∗)⊺M (𝜃𝑖 − 𝜃∗)
(𝜃∗)⊺M (𝜃∗) ,

where 𝜃𝑖 is the 𝑖-th estimated parameter. For these computations, the regularization was adjusted with
𝛽 = 10−10 and 𝛾 = 10−5. As shown in Section 3.2 and Section 3.3, variational and sequential methods are
equivalent for linear-quadratic problems, i.e. both converge towards the minimizer. The error is plotted
for both classes of methods in Figure 3.3. For the variational methods, we computed 1300 iterations.
The Gauss-Newton method took one iteration to achieve a relative squared error of 10−13. Even with
an optimal descent step, the Steepest Descent case did not converge. The Conjugate Gradient method
performed slightly better but still presented a large error. The BFGS method presented the best results
among the iterative variational methods when discarding the Gauss-Newton method. For the sequential
methods, both ROKF and ROUKF achieved relative squared errors below 10−12 in one run/use of the
observed data.

Cost analysis and discussion. We analyze here the memory and computational cost for these methods,
summarized in Table 3.1 and Table 3.2. We denote by 𝑁𝑅𝐴𝑀 the amount of memory necessary for
running one wave propagation problem, also called forward problem. For the steepest descent, although
an optimal descent step is used, it presents very low performance. If the fixed descent step is chosen using
other techniques, it would require propagating only two forward problems for each step. Other techniques
for adapting the descent step can be sought [Nocedal and Wright, 2006]. The Conjugate Gradient
presented an improved convergence with the additional cost of performing a line search but keeping
relatively low memory requirements. The Gauss-Newton method presents a one-shot convergence for
the linear-quadratic case as the functional is convex but requires 𝑁𝜃 forward problems to be solved to
compute the Gramian and a 𝑁𝜃 × 𝑁𝜃 matrix inversion.

In the case of the sequential methods ROKF and ROUKF, instead of computing the gradient at each
estimation, the estimation is corrected using the observed data step by step, so the computational cost is
estimated step by step. Both sequential methods present a one-shot convergence for the linear-quadratic
case, although the ROUKF propagates the covariance empirically. At each time step, the inversion of the
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Method Memory Cost Computational Cost Conclusion

Steepest Descent
w. optimal step

• 𝑁𝜃 (Gradient)
• 𝑁𝑅𝐴𝑀 × 𝑁𝜃 (Sensitivity)
• 2𝑁𝑅𝐴𝑀 (Adjoint)

• 𝑁𝜃 forwards (Once)
• 2 forwards (Adjoint)

− Low performance,
− Sensitivity comput..

Conjugate Gradient • 2𝑁𝜃 (Gradients)
• 2𝑁𝑅𝐴𝑀 (Adjoint)

• 2 forwards (Adjoint)
• ∼ 3J𝑇 eval. (line search) ↓ Performance.

BFGS
• 2𝑁𝜃 (Gradients)
• 𝑁2

𝜃 (Hessian)
• 2𝑁𝑅𝐴𝑀 (Adjoint)

• 2 forwards (Adjoint)
• ∼ 3J𝑇 eval. (line search)

+ Low cost,
+ Hessian approximation,
·Medium performance.

Gauss-Newton

• 𝑁𝜃 (Gradient)
• 𝑁2

𝜃 (Gramian)
• 𝑁𝑅𝐴𝑀 × 𝑁𝜃 (Sensitivity)
• 2𝑁𝑅𝐴𝑀 (Adjoint)

• 𝑁𝜃 forwards (Once)
• 2 forwards (Adjoint)
• 𝑁2

𝜃 matrix inversion

+ Good convergence,
− 𝑁2

𝜃 inversion,
− Need for sensitivity.

Table 3.1 – Analysis of costs for the different implemented variational methods.

Method Memory Cost Step cost Conclusion

ROKF

• 𝑁𝑅𝐴𝑀 (Observer)
• 𝑁𝜃 (Observer)
• 𝑁𝑅𝐴𝑀 × 𝑁𝜃 (Sensitivity)
• 𝑁2

𝜃 (Covariance)

• 1 forward step (Observer)
• 𝑁𝜃 forward steps (Sensitivity)
• 𝑁2

𝜃 matrix inversion

+ Good convergence,
+ Hessian approximation,
+ Parallelization,
− 𝑁2

𝜃 inversion.

ROUKF
(simplex)

• 𝑁𝑅𝐴𝑀 (Observer)
• 𝑁𝜃 (Observer)
• 𝑁𝑅𝐴𝑀 × 𝑁𝜃 (Particles)
• 𝑁2

𝜃 (Covariance)

• 𝑁𝜃 + 1 forward steps (Particles)
• 𝑁2

𝜃 matrix inversion
• 𝑁2

𝜃 Cholesky decomposition

+ Good convergence,
+ Hessian approximation,
+ Parallelization,
+ Tangent-free,
− 𝑁2

𝜃 inversion.

Table 3.2 – Analysis of costs for the different implemented sequential methods.

inverse covariance matrix𝑈 must be done and for the ROUKF this covariance must be decomposed using
Cholesky decomposition. In both cases, 𝑁𝜃 +1 wave propagation problems must be forward step by step,
an operation that can be done in parallel. The storage of 𝑁𝜃 × 𝑁𝜃 and associated operations may result
in high computational costs, in such cases the Conjugate Gradient and L-BFGS can be used to mitigate
this issue. We will consider for our cases that this storage and operations will not be prohibitive.

Finally, we compute the total computational cost for this illustration: the BFGS computed 2600
forward problems and 3900 functional evaluations sequentially to achieve 10−8 relative squared error; the
ROUKF computed 𝑁𝜃 + 1 forward problems in parallel, 712 𝑁𝜃 × 𝑁𝜃 matrix inversions and Cholesky
decompositions. The efficiency of each method will depend on the cost of the forward problem and the
size of the parametric space 𝑁𝜃 . For an expensive forward problem and a reduced parametric space, the
ROUKF presents the best efficiency.

Although we ran these implementations for a linear case, some remarks can be made for the nonlinear
case. In the linear case, the sensitivity used for the variational methods only had to be computed once,
but in the nonlinear case, it would have to be done at each iteration. This is less critical in sequential
methods as the sensitivity is computed and corrected during one estimation. In the linear case, not much
difference is expected between the ROKF and ROUKF versions. In the nonlinear case, the Extended
version (ROEKF) would have to be used instead of ROKF with the need for the tangent dynamics,
while the Unscented version (ROUKF) only needs the forward operator. All presented cases, except the
ROUKF, require the tangent dynamics for a nonlinear problem. A potential computational burden for
the sequential method in a nonlinear case is to recompute the forward operator at each time step, as the
parameter changes.
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Figure 3.3 – Convergence of the minimization methods using the optimal solution as the reference.
Variational Methods (left), Sequential Methods (right).

3.4.2 Nonlinear problem: A detailed sensitivity approach and inverse problem analysis
In the previous section, we implement variational and sequential methods for a linear-quadratic

problem. In this section we will apply the sensitivity approach to a nonlinear problem, giving a better
insight into how the discrete form of the gradient is computed component by component. Also, with a
spatial dependent unknown that affects the wave speed, we reproduce and analyze the phenomenon of
cycle skipping in wave propagation-related inverse problems. Let 𝜃 be the unknown temperature of a
one-dimensional material occupying the domain Ω =]0; 𝐿 [, where 𝐿 > 0 is the given total length of the
domain. The temperature varies in space and, as previously mentioned, Θ is spaned by {𝜓Θ

𝑖 }𝑁𝜃

𝑖=1. We
assume that 𝑢𝜃 (𝑡) ∈ H1(Ω) is the solution to the following wave propagation problem with free-surface
boundary conditions and zero initial conditions, where 𝑓 is a smooth source term to be defined,




𝜕2
𝑡𝑡𝑢𝜃 (𝑥, 𝑡) − 𝜕𝑥

(
𝑐2(𝜃)𝜕𝑥𝑢𝜃 (𝑥, 𝑡)

)
= 𝑓 (𝑥, 𝑡), in Ω×]0;𝑇 [,

𝜕𝑥𝑢𝜃 (0, 𝑡) = 𝜕𝑥𝑢𝜃 (𝐿, 𝑡) = 0,
𝑢𝜃 (𝑥, 0) = 𝜕𝑡𝑢𝜃 (𝑥, 0) = 0

(3.81)

The wave velocity depends on the temperature and we assume that the relation temperature-velocity is
given by

𝑐
(
𝜃 (𝑥)) = 𝑘𝑠𝜃 (𝑥) + 𝑐0, ∀𝑥 ∈ Ω, (3.82)

where (𝑘𝑠, 𝑐0) ∈ R2 are material-dependent constants. Considering𝜔 ⊂ Ω the “observation“ subdomain
and the observation operator 𝐶𝑢 ∈ L(H1(Ω),H1(𝜔)) as

𝐶𝑢 : H1(Ω) ↦−→ H1(𝜔)
𝑢 −→ 𝑢

���
𝜔
,

as in the previous illustration, 𝐶𝑢 extracts the displacement field 𝑢 in 𝜔. We suppose that we have
observations 𝑦 ∈ Y from a target system

𝑦(𝑡) = 𝐶𝑢𝑢∗(𝑡) = 𝑢∗
���
𝜔
(𝑡), (3.83)

where 𝑢∗ is the displacement field generated in the target system with 𝜃∗ as temperature field. Time and
space dependencies were omitted. We will interpret the inverse problem as the following minimization
problem

𝜃 = argmin
𝜃∈Θ

J𝑇 (𝜃) = argmin
𝜃∈Θ

{
1
2

∫ 𝑇

0
∥𝑦(𝑡) − 𝐶𝑢𝑢𝜃 (𝑡)∥2H1 (𝜔) d𝑡

}
, (3.84)
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where J𝑇 (𝜃) is an L2-based, in time, discrepancy measure or “cost function”. Here, we consider a case
without regularization and no disturbances in the observations, so we expect to find 𝜃 = 𝜃∗. In addition to
the observations (3.83), we assume to have a first guess 𝜃0 ∈ Θ on the sought temperature. In the following,
we apply the method presented in Section 3.2.2.1 to compute the gradient of the functional J𝑇 and then
perform the gradient descent to iteratively estimate 𝜃. For a better illustration of such implementation,
we present the method by making explicit the derivatives w.r.t. to the parameter components.

Steepest descent. First, we develop for this illustration case the steepest descent with a fixed time step
using the gradient computed by the sensitivity approach. As seen in Section 3.2, the functional gradient
can be used to perform the steepest descent and update iteratively an estimation of the parameter, where
each parameter component is updated as

𝜃𝑘+1𝑖 = 𝜃𝑘𝑖 − 𝛼𝑘
𝜕J𝑇

𝜕𝜃𝑖
(𝜃𝑘)

with a descent step 𝛼𝑘 . All components are updated at once.

Functional gradient using sensitivity Based in the method presented in Section 3.2.2.1, the computa-
tion of the gradient requires the sensitivity 𝑠𝜃 (𝑡) ∈ L(Θ,Z)




d
d𝑡
𝑠𝜃 (𝑡) = 𝐴(𝜃)𝑠𝜃 (𝑡) + D𝐴(𝜃)𝑧𝜃 (𝑡), ∀𝑡 ∈ [0, 𝑇],

𝑠𝜃 (0) = 0,

that is equivalent, for this case, to (3.48). The functional gradient applied to an increment is written as

∇J𝑇 (𝜃)𝜃̃ =
∫ 𝑇

0

(
𝐶𝑠𝜃 (𝑡)𝜃̃, 𝐶𝑧𝜃 (𝑡) − 𝑦(𝑡)

)
H1 (𝜔)

d𝑡, ∀𝜃̃ ∈ Θ.

In the following, we use the second-order form of the wave equation to express the functional gradient
computations. The functional is written as

J𝑇 (𝜃) = 1
2

∫ 𝑇

0
∥𝑦 − 𝐶𝑢𝑢∥2H1 (𝜔) d𝑡

=
1
2

∫ 𝑇

0
(𝑦 − 𝐶𝑢𝑢, 𝑦 − 𝐶𝑢𝑢)H1 (𝜔) d𝑡,

(3.85)

We obtain the functional gradient by differentiating J𝑇 w.r.t. each component of 𝜃, namely 𝜃𝑖 , ∀𝑖 =
1, ..., 𝑁Θ, yielding

𝜕J𝑇

𝜕𝜃𝑖
(𝜃) = 1

2

∫ 𝑇

0

𝜕

𝜕𝜃𝑖
(𝑦 − 𝐶𝑢𝑢, 𝑦 − 𝐶𝑢𝑢)H1 (𝜔) d𝑡

= −
∫ 𝑇

0
(𝐶𝑢 𝜕𝑢

𝜕𝜃𝑖
, 𝑦 − 𝐶𝑢𝑢)H1 (𝜔) d𝑡,

leading to
𝜕J𝑇

𝜕𝜃𝑖
(𝜃) = −

∫ 𝑇

0
(𝐶𝑢𝑠𝑖 , 𝑦 − 𝐶𝑢𝑢)H1 (𝜔) d𝑡, (3.86)

where we denote the components of the sensitivity 𝑠𝑖 ∈ L(Θ,H1(Ω)), for brevity but with the risk of
being mistaken with 𝑠𝜃 (𝑡) ∈ L(Θ,Z),

𝑠𝑖 (𝑡) = 𝜕𝑢𝜃

𝜕𝜃𝑖
(𝑡) = 𝜕𝜃𝑖𝑢𝜃 (𝑡), ∀𝑖 ∈ ⟦1; 𝑁Θ⟧,
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introducing the short notation 𝜕𝜃𝑖 for partial differentiation. To obtain the dynamics for the sensitivity
explicitly, we proceed by differentiating (3.81) w.r.t. the components of 𝜃

𝜕2
𝑡𝑡𝜕𝜃𝑖𝑢𝜃 − 𝜕𝑥

(
𝜕𝜃𝑖 [𝑐2(𝜃)]𝜕𝑥𝑢𝜃 + 𝑐2(𝜃)𝜕𝑥𝜕𝜃𝑖𝑢𝜃

)
= 𝜕𝜃𝑖 𝑓 .

By introducing the notation 𝛽𝑖 (𝜃) = 𝜕𝜃𝑖 [𝑐2(𝜃)] = 2𝑘𝑠𝜓Θ
𝑖 𝑐(𝜃), with omitted 𝑥 dependency, it yields

𝜕2
𝑡𝑡 𝑠𝑖 − 𝜕𝑥

(
𝛽𝑖 (𝜃)𝜕𝑥𝑢 + 𝑐2(𝜃)𝜕𝑥𝑠𝑖

)
= 0.

To apply finite element procedures, we write the previous expression in its weak form and obtain the
operators in their bilinear forms. By multiplying it by a test function 𝑤 ⊂ H1(Ω) and integrating over the
domain, we have

𝜕2
𝑡𝑡

∫
Ω
𝑠𝑖𝑤 dΩ −

∫
Ω
𝜕𝑥

(
𝛽𝑖 (𝜃)𝜕𝑥𝑢

)
𝑤 dΩ −

∫
Ω
𝜕𝑥

(
𝑐2(𝜃)𝜕𝑥𝑠𝑖

)
𝑤 dΩ = 0.

Using integration by parts and using the free boundary conditions, we get

𝜕2
𝑡𝑡

∫
Ω
𝑠𝑖𝑤 dΩ +

∫
Ω
𝑐2(𝜃)𝜕𝑥𝑠𝑖𝜕𝑥𝑤 dΩ = −

∫
Ω
𝛽𝑖 (𝜃)𝜕𝑥𝑢𝜕𝑥𝑤 dΩ.

The equation above written using bilinear forms is

d2

d𝑡2
(𝑠𝑖 , 𝑤)L2 (Ω) + 𝑘 (𝑐2(𝜃); 𝑠𝑖 , 𝑤) = −𝑘 (𝛽𝑖 (𝜃); 𝑢, 𝑤), ∀𝑖 ∈ ⟦1; 𝑁Θ⟧, (3.87)

where, for any sufficiently regular function 𝑓 ,

𝑘 ( 𝑓 ; 𝑣, 𝑤) =
∫
Ω
𝑓 𝜕𝑥𝑣 𝜕𝑥𝑤 d𝑥, ∀𝑣, 𝑤 ∈ H1(Ω).

These propagation problems are completed with zero initial conditions. The sensitivity dynamics is no
other than the displacement dynamics with a source term coming from the linearization of the 𝑘 bilinear
form. We deduce from (3.86) and (3.87) that using the sensitivity method to compute the functional
gradient implies solving 𝑁Θ + 1 wave propagation problems.

Newton-Raphson descent method. As presented in Section 3.2, another method of descent is the
Newton-Raphson method with an expected better order of convergence when compared with the Steepest
Descent. With the object of using the descent in the form of (3.43), we compute the Hessian (3.42), for
the presented case the second differentiation of the functional, the Hessian

(
𝐻 (𝑘 )

)
𝑖, 𝑗 =

𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

(𝜃𝑘), ∀𝑖, 𝑗 ∈ ⟦1; 𝑁Θ⟧.

Obtaining the Hessian by cross-sensitivity problems. Differentiating twice J𝑇 w.r.t. 𝜃 for each
component and using the previous results, we have

𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

=
∫ 𝑇

0

𝜕

𝜕𝜃 𝑗

(
− (𝐶𝑢𝑠𝑖 , 𝑦 − 𝐶𝑢𝑢)H1 (𝜔)

)
d𝑡 =

∫ 𝑇

0
(𝐶𝑢𝑠𝑖 , 𝐶𝑢𝑠 𝑗)H1 (𝜔) − (𝐶𝑢ℎ𝑖 𝑗 , 𝑦 − 𝐶𝑢𝑢)H1 (𝜔) d𝑡,

where we introduce the cross-sensitivity ℎ as

ℎ𝑖 𝑗 (𝜃, 𝑥, 𝑡) = 𝜕2𝑢

𝜕𝜃𝑖𝜕𝜃 𝑗
(𝜃, 𝑥, 𝑡), ∀𝑖, 𝑗 ∈ ⟦1; 𝑁Θ⟧.
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Then, the Hessian is computed as

(
𝐻 (𝑘 )

)
𝑖, 𝑗 =

(
D2J𝑇 (𝜃)

)
𝑖, 𝑗

=
𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

=
∫ 𝑇

0
(𝐶𝑢𝑠𝑖 , 𝐶𝑢𝑠 𝑗)H1 (𝜔) − (𝐶𝑢ℎ𝑖 𝑗 , 𝑦 − 𝐶𝑢𝑢)H1 (𝜔) d𝑡. ∀𝑖, 𝑗 ∈ ⟦1; 𝑁Θ⟧.

Analog to the sensitivity case, we can obtain dynamics for the cross-sensitivity by differentiating (3.87)

𝜕𝜃 𝑗

[
𝜕2
𝑡𝑡

∫
Ω
𝑠𝑖𝑤 dΩ +

∫
Ω
𝑐2𝜕𝑥𝑠𝑖𝜕𝑥𝑤 dΩ

]
= −𝜕𝜃 𝑗

[ ∫
Ω
𝛽𝑖𝜕𝑥𝑢𝜕𝑥𝑤 dΩ

]
.

Permutating the derivatives and using the definition of ℎ𝑖 𝑗 we obtain

𝜕2
𝑡𝑡

∫
Ω
ℎ𝑖 𝑗𝑤 dΩ +

∫
Ω
𝜕𝜃 𝑗

(
𝑐2𝜕𝑥𝑠𝑖𝜕𝑥𝑤

)
dΩ = −

∫
Ω
𝜕𝜃 𝑗

(
𝛽𝑖𝜕𝑥𝑢𝜕𝑥𝑤

)
dΩ.

Applying the product-rule and using the definition of ℎ𝑖 𝑗 and 𝑠 𝑗 , yields

𝜕2
𝑡𝑡

∫
Ω
ℎ𝑖 𝑗𝑤 dΩ +

∫
Ω

(
𝜕𝜃 𝑗 𝑐

2𝜕𝑥𝑠𝑖 + 𝑐2𝜕𝑥ℎ𝑖 𝑗

)
𝜕𝑥𝑤 dΩ = −

∫
Ω

(
𝜕𝜃 𝑗 𝛽𝑖𝜕𝑥𝑢 + 𝛽𝑖𝜕𝑥𝑠 𝑗

)
𝜕𝑥𝑤 dΩ.

Finally rearranging the right and left-hand side

𝜕2
𝑡𝑡

∫
Ω
ℎ𝑖 𝑗𝑤 dΩ +

∫
Ω
𝑐2𝜕𝑥ℎ𝑖 𝑗𝜕𝑥𝑤 dΩ = −

∫
Ω
(𝛽 𝑗𝜕𝑥𝑠𝑖 + 𝛽𝑖𝜕𝑥𝑠 𝑗)𝜕𝑥𝑤 dΩ −

∫
Ω
𝜕𝜃 𝑗 𝛽𝑖𝜕𝑥𝑢𝜕𝑥𝑤 dΩ,

we may write it using the defined bilinear forms

𝜕2
𝑡𝑡 (ℎ𝑖 𝑗 , 𝑤)L2 (Ω) + 𝑘 (𝑐2; ℎ𝑖 𝑗 , 𝑤) = −𝑘 (𝛽 𝑗 ; 𝑠𝑖 , 𝑤) − 𝑘 (𝛽𝑖; 𝑠 𝑗 , 𝑤) − 𝑘 (𝛾𝑖 𝑗 ; 𝑢, 𝑤) ∀𝑖, 𝑗 ∈ ⟦1; 𝑁Θ⟧, (3.88)

introducing 𝛾𝑖 𝑗 = 2𝑘2
𝑠 𝜓

Θ
𝑖 𝜓

Θ
𝑗 , with omitted 𝑥 dependency. Note that to use the Newton-Raphson method,

the following numbers of propagation problems need to be solved for each descent step: one for 𝑢; 𝑁Θ

for 𝑠𝑖; 1
2𝑁

Θ(𝑁Θ + 1) for the (symmetric) Hessian, having a total of

𝑁Θ(𝑁Θ + 1)
2

+ 𝑁Θ + 1

dynamics to solve.

Gauss-Newton method. One of the quasi-Newton methods with straightforward implementation is the
Gauss-Newton, (3.44). Here, this approximation is equivalent to

𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

≈
∫ 𝑇

0
(𝐶𝑢𝑠𝑖 , 𝐶𝑢𝑠 𝑗)H1 (𝜔) d𝑡,

eliminating the need to propagate the cross-sensitivity dynamics.

3.4.2.1 Discretized problem

Using a Galerkin method as described in Chapter 1, we can represent the wave equations from their
weak formulations in a matrix formulation. We define the discrete finite element space

𝑉ℎ (Ω) = {𝑣ℎ ∈ C0(Ω), ∀𝐾 ∈ Tℎ, 𝑣ℎ

���
𝐾
∈ 𝑃𝑘 (𝐾)},

representing an approximation of the functional space H1(Ω) where we look for the solution of the wave
propagation problems. We define Tℎ as the one-dimensional mesh, related to the mesh step ℎ, and 𝑃𝑘
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the space of polynomials of order 𝑘 . Hence, Tℎ (Ω) and Tℎ (𝜔), are the mesh for the whole domain and
its restriction to the observation region, respectively. The approximation space is generated by the set of
Lagrange basis functions

𝑉ℎ (Ω) = span{𝜓𝐼 }𝑁ℎ

𝐼=1 and,

where we associate {𝜓𝐼 }𝑁ℎ

𝐼=1 to the interpolation points

{𝜉𝐼 }𝑁ℎ

𝐼=1 ⊂ Ω with 𝜓𝐼 (𝜉𝐽 ) = 𝛿𝐼 𝐽 , ∀𝐼, 𝐽 ∈ ⟦1; 𝑁ℎ⟧.
We then represent the bilinear operators used in (3.87) and (3.88) in the finite element space, as the
matrices

M𝐼 𝐽 = (𝜓𝐼 , 𝜓𝐽 )L2 (Ω) , K𝑔,𝐼 𝐽 = 𝑘 (𝑔;𝜓𝐼 , 𝜓𝐽 ),
for any function 𝑔. This matrices can be used, in addition to a discretized second-order time scheme, to
rewrite the wave propagation problems (3.81), (3.87) and (3.88) in their discrete forms
•Model

M
𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1

Δ𝑡2
+K𝑐2𝑢𝑛 = 𝑓 𝑛, (3.89)

• Sensitivity

M
𝑠𝑛+1𝑖 − 2𝑠𝑛𝑖 + 𝑠𝑛−1

𝑖

Δ𝑡2
+K𝑐2 𝑠𝑛𝑖 = −K𝛽𝑖𝑢

𝑛, ∀𝑖 ∈ ⟦1; 𝑁Θ⟧, (3.90)

• Cross-sensitivity

M
ℎ𝑛+1𝑖 𝑗 − 2ℎ𝑛𝑖 𝑗 + ℎ𝑛−1

𝑖 𝑗

Δ𝑡2
+K𝑐2ℎ𝑛𝑖 𝑗 = −K𝛽 𝑗 𝑠

𝑛
𝑖 −K𝛽𝑖 𝑠

𝑛
𝑗 −K𝛾𝑖 𝑗𝑢

𝑛, ∀𝑖, 𝑗 ∈ ⟦1; 𝑁Θ⟧, (3.91)

where 𝑓 𝑛 = 𝑓 (𝑛Δ𝑡), with 𝑓 being the discretized right-hand side in𝑉ℎ (Ω) and the dependencies on 𝜃 are
omitted. To ensure the stability of both time schemes, the time step must satisfy the CFL condition, as in
(1.27),

Δ𝑡 ≤ 2√︁
𝑟 (M−1K𝑐2)

,

that should be computed at each descent iteration as 𝑐2(𝜃) changes. Satisfying the CFL condition for
these wave propagation problems enabled us to set a unique time step as the matrices M and K𝑐2 do not
change during the descent iteration. But as the observations may be in a different time sampling and
discrete operations are made between the model and the observations, a linear interpolation in time must
done keeping the smallest time step among them. This choice of interpolation is crucial as the method
will not converge otherwise. The observation operator is represented by the matrix C𝑢 that, given a
solution, returns its content in the 𝜔 region.

The functional in its discrete form is

J𝑁 (𝜃) = Δ𝑡
2

𝑁∑︁
𝑛=1

(
𝑦𝑛 − C𝑢𝑢𝑛

)⊺ (M𝜔 +K𝜔)
(
𝑦𝑛 − C𝑢𝑢𝑛

)
, (3.92)

whereM𝜔 andK𝜔 are the equivalent mass and stiffness matrices for𝑉ℎ (𝜔). After setting up the numerical
scheme described here, we first specify the material parameters, source, domain and discretization.
We apply the Steepest Descent, Newton-Raphson and Gauss-Newton methods for reconstructing the
temperature field in two cases: when the temperature field is locally perturbed and when the perturbation
is uniform in the whole domain Ω.

Wave equation as a first-order ordinary differential equation. The discrete versions of the model
(3.89), the sensitivity (3.90) and cross-sensitivity (3.91) can be written in the form of a first-order discrete
equation as done in (3.15). For each of these propagators, only the right-hand side will assume different
forms.



3.4. Application to one-dimensional wave propagation inverse problems 135

Illustration specifications. The configuration used to illustrate in this section is described here. The
temperature-dependent wave speed 𝑐 will be defined as in (3.82) with

𝑘𝑠 = −0.752 · 10−3 mm · 𝜇s−1 and 𝑐0 = 3.103 mm · 𝜇s−1,

where 𝑘𝑠 and 𝑐0 are material dependent and we use the values for aluminum [Croxford et al., 2007]. For
the following illustrations, we will consider a reference temperature of 25◦. The domain is defined as
Ω = ]0, 3000[mm. The source function 𝑓 (𝑥, 𝑡) is decomposed in a time-dependent part multiplied by a
spatial-dependent part. The time-dependent part is a gated cosine with frequency 50kHz and its spatial-
dependency is a rectangular function with amplitude one over 𝑥 ∈ [700, 800]. We solved numerically
(3.81) for 𝑁𝑡 time steps, enough to propagate the wave through the whole domain, precisely 500𝜇s for the
case of the local variation and 590𝜇s for the case of the global variation. The domain was meshed while
ensuring three elements per wavelength elements of order 5 were used for discretization, i.e. 𝑘 = 5.

Local variations of the temperature field. Here, we run a case where the temperature field is perturbed
locally. The locally varying temperature field will have its “perturbation” domain with the length of the
same order as the wavelength, leading to wave reflections. The perturbation is modeled as a rectangular
function starting at point 𝑥0

𝑝 and ending at 𝑥1
𝑝, more precisely 𝜓Θ

1 (𝑥) is this rectangular function and the
temperature is described with an offset 𝑇0, the reference temperature,

𝜃 (𝑥) = 𝑇0 + 𝜃1𝜓
Θ
1 (𝑥), ∀𝑥 ∈ Ω,

with the amplitude as the unknown parameter. A constant is included to take into account a reference
temperature 𝑇0 = 25◦. As the methods described previously try to minimize cost function J𝑇 (𝜃), it is
interesting to know the behavior of J𝑇 for the considered case and region of interest. Therefore, we do
the numerical evaluation of the cost function over a range of 𝜃 with a local varying temperature field. The
temperature field will be 𝑇0 with a local temperature perturbation as defined above with:

𝜔 = ]700, 1400[ 𝑁Θ = 1, 𝑥0
𝑝 = 1475 𝑥1

𝑝 = 1525 and 𝜃∗1 = 250◦,

so the observation domain and the perturbation do not intersect. Using the sensitivity approach we
compute J𝑇 (Figure 3.4) for a range of 𝜃 that comprises 𝜃∗ and the operational temperatures of an aircraft
[Castanie, Bouvet, and Ginot, 2020]. The computed J𝑇 is convex in 𝜃 and has no local minima, satisfying
good convergence for the descent method. The local disturbances in the wave speed imply reflections and
the reflected amplitude is related to the perturbation amplitude, not changing the overall time-of-flight of
the signal. A difference norm L2 will then account for it effectively, explaining a convex cost function.
This can be verified in the snapshots shown in Figure 3.5 for 𝜃 = 119◦ and 𝜃 = 257◦.

Global variations of the temperature field. For the case of globally varying temperature in Ω, we
will consider that the perturbation is over the whole domain. The target constant temperature will be
𝜃∗ = 250 over the whole domain, keeping the same other configuration parameters except the observation
domain 𝜔 = ]200, 1200[. The cost function J𝑇 , as in the local perturbation case, is also evaluated over
the range of 𝜃 (Figure 3.7 (left)). As the change in wave speed is over the whole domain, the differences
between observations will be mostly in the time-of-flight and not in the amplitude, causing the L2 norm
to be a less efficient functional, presenting local minima. Depending on the chosen 𝜃 to start the gradient
descent, the resulting estimation may not be the global minimum. This must be considered as there could
be local minima inside the operational range, for instance the case illustrated here. The phenomenon that
caused these local minima is called cycle-skipping [Virieux et al., 2017] and is illustrated in the snapshots
(Figure 3.8). The cycle-skipping happens due to the similarity of the signal, and its correlation when
dephased by one or multiple cycles. For instance, if we use a signal with fewer oscillations, we expect to
have fewer local minima. To illustrate it, we replace the gated cosine in time and use the Ricker wavelet.
Both functions are presented in Figure 3.6. With this new time-dependency, the cycle-skipping effect is
totally removed, as seen in the recomputed functional in Figure 3.7 (right). It has smoothed out the two
closest local minima.
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Figure 3.4 – Cost-function evaluated over a 𝜃 range. Snapshots were taken at the marked values (Fig-
ure 3.5). A supposed region of operation is highlighted.
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Figure 3.5 – Snapshots of the observed data and the observation operator applied to the model are shown
for 𝜃 = 119◦ and 𝜃 = 257◦ at time 460 𝜇s.

Gradient descent pseudo-algorithm. The pseudo-algorithm implementing the gradient computation
is presented in Algorithm 2, where 𝑐2

𝑘 = 𝑐
2(𝜃𝑘) and 𝛽𝑖,𝑘 = 𝛽𝑖 (𝜃𝑘). The observed data 𝑦, representing the

measurements, is synthetically generated using the same model for wave propagation but using the target
parameter 𝜃∗. One may note that the loops of the wave propagation, sensitivity and cross-sensitivity can
be shared and not necessarily done sequentially.

Testing different descent steps and first guesses. We illustrate here some of the main possible out-
comes depending on the inversion parameters by presenting the evolution of the estimated parameter
through iterations for different initial guesses 𝜃0 and fixed descent steps 𝛼. The stopping criteria for the
iterations is

|𝜃𝑘 − 𝜃𝑘−1 |
|𝜃𝑘 | ≥ 𝑟 or 𝑘 ≥ 𝑘𝑚𝑎𝑥 .

This evolution is plotted in Figure 3.9 for local variations and Figure 3.10 for a global variation.
For both cases, a misadjusted descent step can lead to oscillations around the minimum and not

converge at all, for instance in Figure 3.10 (right). For the local perturbation case, whose cost function is
convex, there is only one minimum to which the descent method tends and, depending on the step size,
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Figure 3.6 – Gated Cosine and Ricker type of signals, illustrating the difference in their oscillatory aspect.
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Figure 3.7 – Cost-function evaluated over a 𝜃 range for a gated-cosine (left) and a Ricker wavelet (right)
time signature. Snapshots were taken at the marked values (Figure 3.8). A supposed region of operation
is highlighted.

the convergence can be achieved in fewer iterations. The method can diverge if the step size is too big
(for instance the 𝛼𝑘 = 300 case) or cannot attain convergence for small 𝑘𝑚𝑎𝑥 . For the case of global
perturbation, as its cost function is not convex, the descent method may converge to a local minimum.
This wrong convergence can be triggered through slight changes in the initial guess around a (local)
maximum. When using the Ricker wavelet the local minima were smoothed out and a good convergence
is achieved for a wider range of 𝜃 as shown in Figure 3.11. The cycle skipping is associated with the
choice of the L2 norm for quantifying the misfit. Changing the norm to the Wasserstein metric [Mainini,
2012; Engquist, Ren, and Yang, 2020] is a form of mitigating the problem, but requires adjustments as it
is fitted for nonnegative data.

Newton-Raphson method. As the Newton-Raphson method developed here looks for ∇J𝑇 = 0, before
implementing it, we plot the functional gradient with respect to the parameter to better understand and
anticipate the behavior of the method. The functional gradient is plotted in Figure 3.12 for the local and
global varying temperature cases. For the global case, the convergence to the global maximum will be
only achieved for a narrower range of first guesses, when compared with the steepest descent method,
between 𝜃 = 200 and 𝜃 = 300. The reason for this is that the derivative of the cost function crosses zero
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Figure 3.8 – Snapshots of the observed data and the observation operator applied to the model are shown
for 𝜃 = 47◦ and 𝜃 = 243◦ at time 620 𝜇s.

Algorithm 2: Implementation of the Gradient Descent method with fixed descent step
Input: The finite element spaces (model and observation), observed data 𝑦, total simulation time, the

descent step 𝛼𝑘 , initial 𝜃0, the residue tolerance 𝑟 and the maximum number of iterations 𝑘𝑚𝑎𝑥 .
Output: The temperature components 𝜃𝑘 .

1 assemble M, M𝜔 , K𝜔

2 𝑘 ← 0
3 while | 𝜃𝑘−𝜃𝑘−1 |

| 𝜃𝑘 | > 𝑟 and 𝑘 < 𝑘𝑚𝑎𝑥 do
4 compute Δ𝑡 , 𝑁𝑡
5 ∇J𝑇 ← 0
6 for 𝑛← 1 to 𝑁𝑡 do
7 𝑢𝑛+1 ← Δ𝑡2M−1

(
𝑓 𝑛 −K𝑐2

𝑘
𝑢𝑛

)
+ 2𝑢𝑛 − 𝑢𝑛−1

8 end
9 for 𝑖 ← 1 to 𝑁𝜃 do

10 for 𝑛← 1 to 𝑁𝑡 do
11 𝑠𝑛+1𝑖 ← −Δ𝑡2M−1

(
K𝛽𝑖,𝑘𝑢

𝑛 +K𝑐2
𝑘
𝑠𝑛𝑖

)
+ 2𝑠𝑛𝑖 − 𝑠𝑛−1

𝑖

12 end
13 end
14 for 𝑖 ← 1 to 𝑁𝜃 do
15 for 𝑛← 1 to 𝑁𝑡 do
16

𝜕J𝑇

𝜕𝜃𝑖
← 𝜕J𝑇

𝜕𝜃𝑖
− Δ𝑡

(
C𝑢𝑠𝑛𝑖

)⊺ (
M𝜔 +K𝜔

) (
𝑦𝑛 − C𝑢𝑢𝑛

)
17 end
18 end
19 𝑘 ← 𝑘 + 1
20 𝜃𝑘 ← 𝜃𝑘−1 − 𝛼𝑘 ∇J𝑇
21 end

at several different 𝜃 and Newton’s method uses the tangent of the current 𝜃𝑘 to redirect the algorithm
towards the zero. For instance, from 𝜃0 = 320, instead of directing towards 𝜃∗ = 250, the algorithm would
direct it towards the zero at 𝜃 = 350. Whenever the algorithm falls near a local maximum, it diverges, as
the tangent tends to be parallel to the horizontal axis, crossing the zero at distant 𝜃. The pseudo-code of
the implemented method is written in Algorithm 3.
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Figure 3.9 – Evolution of the descent method for local temperature variation using different step sizes.
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Figure 3.10 – Convergence of the descent method for different initial guesses. Results for global
temperature variation with 𝛼𝑘 = 10−3 (left) and 𝛼𝑘 = 4 × 10−3 (right).
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Figure 3.11 – Convergence of the descent method for different initial guesses using a Ricker wavelet as
the source time signature. Results for global temperature variation with 𝛼𝑘 = 4 × 10−3.
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Figure 3.12 – Derivative of the cost function evaluated over a 𝜃 range for the local (left) and global (right)
varying temperature cases.

Gauss-Newton method. In the implementation of the Gauss-Newton method, the for loop in line 17
can be removed and instead of using the Hessian matrix, we will use its approximation 𝐻. Lines 33 and
39 change to

𝐻𝑖 𝑗 ← 𝐻𝑖 𝑗 + Δ𝑡
(
C𝑢𝑠𝑛𝑖

)⊺
N𝜔

(
C𝑢𝑠𝑛𝑗

)
and

𝜃𝑘 ← 𝜃𝑘−1 − 𝐻−1
𝑘 ∇J𝑇 ,

respectively. The iteration evolution for the Newton and Gauss-Newton methods is presented in Fig-
ure 3.13. For the local varying case (left) the gradient-descent method with 𝛼𝑘 = 100 is also plotted to
illustrate the differences. The Newton and Gauss-Newton methods have better convergence, as expected,
and respond very similarly. In the global varying case, we see clearer the limitations of the proposed
Newton method as∇J𝑇 crosses zeros for several 𝜃. Although it converges faster, the region of convergence
is narrower and the method is sensible to the initial guess.
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Figure 3.13 – Convergence of different methods starting from different initial guesses. Results for local
(left) and global (right) varying temperature.

Discussion. We presented a nonlinear inverse problem to estimate the temperature field. First, we
assessed the inverse problem when the perturbations to be reconstructed are localized in a region with
dimensions close to the wavelength, leading to reflections of the wave. The functional was convex with
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Algorithm 3: Implementation of the Newton-Raphson method with fixed descent step
Input: The finite element spaces (model and observation), observation data 𝑦, total simulation time, the

descent step 𝛼𝑘 , initial 𝜃0, the residue tolerance 𝑟 and the maximum number of iterations 𝑘𝑚𝑎𝑥 .
Output: The temperature components 𝜃𝑘 .

1 assemble M, M𝜔 , K𝜔

2 N𝜔 ←M𝜔 +K𝜔

3 𝑘 ← 0
4 while | 𝜃𝑘−𝜃𝑘−1 |

| 𝜃𝑘 | > 𝑟 and 𝑘 < 𝑘𝑚𝑎𝑥 do
5 compute Δ𝑡 , 𝑁𝑡
6 ∇J𝑇 ← 0
7 for 𝑛← 1 to 𝑁𝑡 do
8 𝑢𝑛+1 ← Δ𝑡2M−1

(
𝑓 𝑛 −K𝑐2

𝑘
𝑢𝑛

)
+ 2𝑢𝑛 − 𝑢𝑛−1;

9 end
10 for 𝑖 ← 1 to 𝑁𝜃 do
11 for 𝑛← 1 to 𝑁𝑡 do
12 𝑠𝑛+1𝑖 ← −Δ𝑡2M−1

(
K𝛽𝑖,𝑘𝑢

𝑛 +K𝑐2
𝑘
𝑠𝑛𝑖

)
+ 2𝑠𝑛𝑖 − 𝑠𝑛−1

𝑖

13 end
14 end
15 for 𝑖 ← 1 to 𝑁𝜃 do
16 for 𝑗 ← 1 to 𝑖 do
17 for 𝑛← 1 to 𝑁𝑡 do
18 ℎ𝑛+1𝑖 𝑗 ← −Δ𝑡2M−1

(
K𝛽𝑖,𝑘 𝑠

𝑛
𝑖 +K𝛽𝑖,𝑘 𝑠

𝑛
𝑗 +K𝑐2

𝑘
ℎ𝑛𝑖 𝑗 +K𝛾𝑖 𝑗,𝑘𝑢

𝑛
)
+ 2ℎ𝑛𝑖 𝑗 − ℎ𝑛−1

𝑖 𝑗

19 end
20 end
21 end
22 for 𝑛← 1 to 𝑁𝑡 do
23 for 𝑖 ← 1 to 𝑁𝜃 do
24

𝜕J𝑇

𝜕𝜃𝑖
← 𝜕J𝑇

𝜕𝜃𝑖
− Δ𝑡

(
C𝑢𝑠𝑛𝑖

)⊺
N𝜔

(
𝑦𝑛 − C𝑢𝑢𝑛

)
25 end
26 end
27 for 𝑛← 1 to 𝑁𝑡 do
28 for 𝑖 ← 1 to 𝑁𝜃 do
29 for 𝑗 ← 1 to 𝑖 do

30
𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

← 𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

+ Δ𝑡
(
C𝑢𝑠𝑛𝑖

)⊺
N𝜔

(
C𝑢𝑠𝑛𝑗

)
− Δ𝑡

(
C𝑢ℎ𝑛𝑖 𝑗

)⊺
N𝜔

(
𝑦𝑛 − C𝑢𝑢𝑛

)
31 end
32 end
33 end

34 complete symmetry of
𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

35 𝑘 ← 𝑘 + 1

36 𝜃𝑘 ← 𝜃𝑘−1 −
(
𝜕2J𝑇
𝜕𝜃𝑖𝜕𝜃 𝑗

)−1

∇J𝑇
37 end

the L2 misfit, leading to good convergence for all presented methods. The choice of the descent step is
crucial for good results. Secondly, we used the same methods to estimate changes in the temperature
in the whole domain, leading to no reflections but changes in the wave speed. This causes the issue of
cycle skipping, where the estimator falls in local minima. Changing the waveform helps but it may be an
unavailable solution to this issue. Gradient descent methods were used with the gradient and Hessian was
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computed by sensitivity and cross-sensitivity, respectively. These computations require solving several
wave problems per iteration, with a potentially high number of iterations depending on observability.

3.4.3 Nonlinear problem: Extended and Unscented Kalman Filters

In this section, we focus on the “Reduced-Order” version of the sequential methods to solve the inverse
problem of reconstructing the temperature described in the previous section. Additionally, regularization
will be added to the problem. For the sake of simplicity, we consider only local perturbations on the
temperature with a single degree of freedom, 𝑁𝜃 = 1, and

𝜓Θ
1 (𝑥) = 𝑒−(

𝑥−𝑥0
2𝜎 )2

with 𝑥0 = 200 and 𝜎 = 10. The initial guess is set 𝜃0 = −30 and the target 𝜃∗ = 250. We implement the
Reduced-Order Extended (ROEKF) and Unscented (ROUKF) Kalman Filters for the described inverse
problem. The Extended version requires tangent dynamics while the Unscented version requires only
the forward procedure. For both methods, we provide an initial covariance R−1

Θ = (80)2 with 80 being
the estimated standard deviation slightly constraining the ROUKF. The simulation is run up to 600𝜇s.
Snapshots of the target system are shown in Figure 3.14.
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Figure 3.14 – Wavefield snapshots of the target system. Regions of observation and local temperature
perturbations are highlighted. Snapshots taken at 60, 110, 220 and 440 𝜇s.
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Reduced-Order Extended Kalman Filter. To implement the ROEKF algorithm (3.73), we need the
tangent dynamics represented by DΦ𝑛+1 |𝑛 (𝜃̂𝑛+). We recall the wave equation written in the first order,

{
𝑧𝑛+1𝜃 = Φ−1

1 Φ0(𝜃)𝑧𝑛𝜃 +Φ−1
1 𝑏𝑛, ∀𝑛 ∈ ⟦0; 𝑁 − 1⟧,

𝑧0 = 0,
(3.93)

for

𝑧𝑛𝜃 =

(
𝑢𝑛𝜃
𝑣𝑛𝜃

)
, Φ1 =

(
M −Δ𝑡M
0 M

)
, Φ0(𝜃) =

(
M 0

−Δ𝑡K (𝜃) M

)
, 𝑏𝑛 =

(
0

Δ𝑡 𝑓 𝑛

)
.

Then, for a given 𝜃̃ ∈ Θ, the tangent operation reads

(
DΦ𝑛+1 |𝑛 (𝜃)𝜃̃

)
𝑧𝑛𝜃 = Φ−1

1

(
Φ0(𝜃) +

(
0 0

−Δ𝑡DK (𝜃)𝜃̃ 0

))
𝑧𝑛𝜃 .

Reduced-Order Unscented Kalman Filter. For the Unscented filter, no tangent is needed and the
algorithm is implemented as in (3.76).

Discussion. The use of the reduced-order version is motivated by the fact that the uncertainty is not
present in the state of the system but only in the parameter 𝜃. Contrary to the variational methods, the
parameter changes during the estimation from one time step to another, requiring an updated operator.
This potentially means to compute the stiffness matrix at each time step, which adds excessive costs.
Especially in our case, as presented in Chapter 1, we use a non-assembled application of the stiffness
matrix, overcoming this issue as the change of the parameter does not change the forward procedure. The
dynamic change of parameters can also affect numerical stability. As the time step Δ𝑡 and mesh step ℎ are
computed during the initialization, it may not satisfy the stability conditions for the updated parameter
during an estimation. To overcome this issue, we set a safety factor for Δ𝑡 and ℎ considering the range
in which the parameter 𝜃 is expected to operate. Additionally to the safety factor, the covariance of the
Unscented filter must be constrained so the parameter at each particle does not go beyond the range of
operation, otherwise, the estimation can be unstable. Due to a tendency of monotone convergence for
this illustration, this was not a particular issue. In more complex cases such as the ones presented in the
next chapter, we ensure the stability of the estimation by constraining the initial covariance.

The evolution of the estimation for both methods is presented in Figure 3.15 with a region highlighted
corresponding to a standard deviation for the estimated component, namely

√︁
(U−1)11. The ROUKF

presented similar results to the ROEKF, while not requiring any tangent operator.
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Figure 3.15 – Evolution of the ROEKF and ROUKF observers. Both present similar estimation perfor-
mance, while the ROUKF does not require the tangent dynamics. The highlighted region represents the
∼68% standard deviation.

3.5 Conclusion
In this chapter, we introduced a general framework for inverse problems associated with wave prop-

agation and presented some traditional variational and sequential methods. The methods are presented
in their time-continuous and time-discrete form. Finally, we implement those methods in linear and
nonlinear one-dimensional wave propagation problems. The issue of cycle skipping is illustrated. The
methods were implemented and compared in their original form, without specificities or acceleration.
For the illustration of a linear-quadratic problem, the variational methods presented a higher cost to
achieve a given convergence compared to the sequential methods. Sequential methods were robust and
optimal however performing considerably less forward problems. For the nonlinear case, we first use
the sensitivity approach for illustration purposes. Then, we apply the ROEKF and ROUKF, where they
had similar performances while the ROUKF does not require a tangent model. As our objective is to
use the direct model presented in Chapter 1, using tangent dynamics would require the unpractical third
differentiation of the hyperelastic potential. Hence, tangent-free methods are preferred. Considering the
presented results and being able to reduce the cost of changing the parameter at each time step by using
a non-assembled stiffness matrix, the ROUKF seems appropriate for the task of estimating the structural
deformation. One may note that a good convergence is not ensured for one run of the Kalman-Filter in
the nonlinear case, which leads to the iterative strategy proposed in the next chapter.



Chapter 4

Kalman-based estimation of loading
conditions from ultrasonic guided wave

measurements

This chapter aims to present our data assimilation strategy to estimate structural deformation using
guided ultrasonic measurements. The estimation problem is interpreted as a least squares minimization
problem, which is then solved by an original combination of variational and sequential approaches. Our
resulting strategy is an iterative version of the Unscented Kalman Filter, which has a link with the
Levenberg-Marquardt algorithm. The direct problem presented previously is used as the forward model
in the inversion loop. The effectiveness of our algorithm is shown by implementing it to model realistic
industrial SHM configurations. The chapter takes the form of a pre-print article co-authored by André
Dalmora, Alexandre Imperiale, Sébastien Imperiale and Philippe Moireau.
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Kalman-based estimation of loading conditions from ultrasonic guided wave
measurements
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Abstract. Ultrasonic guided wave-based Structural Health Monitoring (SHM) of
structures can be perturbed by Environmental and Operations Conditions (EOCs)
that alter wave propagation. In this work, we present an estimation procedure to
reconstruct an EOC-free baseline of the structure suitable for SHM from the only
available Ultrasonic guided wave measurements. Our approach is model-based, i.e.
we use a precise modeling of the wave propagation altered by structure loading
conditions. This model is coupled with the acquired data through a data assimilation
procedure to estimate the deformation caused by the unknown loading conditions.
From a methodological point of view, our approach is original since we have pro-
posed an iterated Reduced-Order Unscented Kalman strategy, which we justify as
an alternative to a Levenberg-Marquardt strategy for minimizing the non quadratic
least-squares estimation criteria. Therefore, from a data assimilation perspective,
we provide a quasi-sequential strategy that can valuably replace more classical vari-
ational approaches. Indeed, our resulting algorithm proves to be computationally
very effective, allowing us to successfully apply our strategy to realistic 3D industrial
SHM configurations.

4.1 Introduction
In various cutting-edge industrial fields, e.g. nuclear power generation, transportation, or aeronautics,

the safe and reliable use of critical parts of structures is of paramount importance. To meet safety
regulations in these areas, one must often be able to assess the integrity of the materials or equipment
that make up these critical parts. To this end, numerous Non-Destructive Techniques (NDT) have been
developed over the years. They are means of examining the material in question and obtaining quantitative
information about its integrity without damaging it. Among them, Structural Health Monitoring (SHM)
is an approach that – compared to other NDT techniques – generates a continuous stream of field data
by incorporating actuators and sensors in situ. In other words, SHM systems monitor structures as it
is used. One way to implement such systems is to rely on ultrasonic Guided Waves (GWs) [Mitra and
Gopalakrishnan, 2016; Ricci et al., 2022] because of their attractive properties, such as propagation over
long distances to study a large volume of material, or sensitivity to local thickness variations due to
dispersion phenomena. Nevertheless, there are a number of challenges in the actual implementation of
GW-based SHM systems in realistic structures. To name just two of them that drive the goals of our
work, let us mention that the monitoring system should be minimal to avoid overloading the structure
of interest, and the Environmental and Operations Conditions (EOCs) have a non-negligible impact on
GW propagation [Gorgin, Luo, and Wu, 2020]. Typical EOCs that can affect wave propagation include
temperature variations and the mechanical loading sustained by the structure during its use. We focus
on the latter because it is more general in terms of mathematical formulation and can indeed lead to
a change in wave velocities or even induce anisotropy. These effects are often referred to by the term
“acoustoelastic” propagation [Shams, Destrade, and Ogden, 2011; Abiza, Destrade, and Ogden, 2012].
These acoustoelastic effects can alter the data registered by ultrasonic sensors, potentially affecting the
precision of GW-based monitoring systems. In this context, the main objective of our work is the
following: using the available data – the ultrasonic measurements – we aim to remove the bias caused
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by the mechanical loading conditions in order to reconstruct an EOC-free baseline. This objective solves
the above two problems since the influence of mechanical loading is captured without additional sensors.
This EOC-free baseline can then be used to find evidence of potential defects or damage within the
structure in the ultrasonic signals – assuming here that the contributions of the defects and the EOCs are
separable in the time or frequency domain.

In essence, our goal is to reconstruct a pre-deformation of the structure using only the GW mea-
surements. From the wave propagation point of view, this is an inverse problem that we solve as a
minimization problem of a fidelity-to-data functional under the condition that wave propagation dynam-
ics is satisfied. An important feature arising from our EOC context is that the propagation model is in fact
the one obtained by linearizing the nonlinear elastodynamics model around the sought pre-deformation,
as presented in details in previous works [Dalmora et al., 2022] and recalled later in this article.

Solving such a non-linear optimization problem can be carried out through different approaches. A
first one is to resort to gradient descent iterations or quasi-Newton processes [Luenberger and Ye, 2008;
Courtier, Thépaut, and Hollingsworth, 1994]. At each iteration, the gradient of the cost function can be
obtained by solving the so-called forward and backward adjoint problems. This approach is arguably the
most common one to address this type of problem, it is referred to as the variational approach (4D-Var)
[Dimet and Talagrand, 1986; Blum, Le Dimet, and Navon, 2009] in the data assimilation community
with now extension to mechanical systems [Haik, Maday, and Chamoin, 2023], while in the geophysics
community, it has been labeled as Full Waveform Inversion (FWI) [Virieux et al., 2017] with adaptation
to tomography [Bernard et al., 2017]. A strong advantage of FWI is its robustness w.r.t. the size of the
parametric space, i.e. the space in which lies the (discrete) solution of the minimization problem. In fact,
numerous successful applications of this method have led to the reconstruction of wave velocity maps
over large propagation domains. However, one significant difficulty of this approach is managing the
adjoint dynamics, which contains the tangent of the propagation model around the forward trajectory. In
the context of our work, this tangent model is intricate. In particular, it entails the third derivative of the
hyperelastic potential ruling the constitutive behavior of the material. Also, storing the forward trajectory
to evaluate this tangent is prohibitive, since the state space is very large in the context of high-frequency
time-domain wave propagation. Note that however, in the case of inviscid wave propagation, one can
save storage space by simply back-propagating the forward trajectory – a technique exploited in other
wave propagation inverse problems [Ramdani, Tucsnak, and Weiss, 2010; De Buhan and Kray, 2013].
However, this is done at the cost of yet another call to the wave propagation solver.

A second approach is to resort to sequential methods and, in particular, to Kalman filtering approaches
that can be developed in a stochastic or a deterministic context [Bensoussan, 1971; Simon, 2006]. The
term sequential stems from the fact that the main building blocks of this approach are (exclusively) forward
problems, where the dynamics are modified by the addition of a feedback loop. This feedback loop is
proportional to the discrepancy between the synthetic data generated from the model’s current trajectory
and the actual measurements. The resulting modified dynamics is often referred to as a sequential
estimator (in the stochastic context) or an observer (in the deterministic context) of the target trajectory.
In Kalman-based filtering, the gain operator in the feedback loop is computed from a covariance operator
satisfying a Riccati equation [Aussal and Moireau, 2022]. For Linear-Quadratic (LQ) problems, i.e.
linear state dynamics with linear parameter-state coupling and a quadratic misfit functional, the observer
at the final time corresponds exactly to the solution of the minimization problem [Moireau, 2022]. Also,
in the special case where the uncertainty is limited exclusively to the parameter space, this method leads
to a specific application of the Reduced-Order Kalman Filter [Moireau, Chapelle, and Le Tallec, 2008;
Moireau, 2022]. This method can be generalized to cases with non-linear parameter-state coupling,
leading to the so-called Reduced Order Extended Kalman Filter (EKF) or its gradient-free version, the
Reduced-Order Unscented Kalman Filter (UKF) [Moireau, Chapelle, and Le Tallec, 2008; Moireau
and Chapelle, 2011]. One of the main advantages of these sequential estimators lies in their ability
to provide a solution to the minimization problem in one pass, consisting of embarrassingly parallel
forward problems. Moreover, thanks to their tangent-free alternative, e.g. UKF, they are easy to interface
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with legacy code used in parallel as a black box propagating each UKF sigma-point, also referred to
as particle. Nevertheless, the usual computational bottleneck of these sequential methods is to store
and invert the (dense) covariance matrix whose dimension corresponds to the size of the parameter
space. This limits the application of Kalman filters to relatively small parameter spaces compared to the
typical configurations handled by variational or FWI methods. Moreover, although Kalman filters are
exactly equivalent to the minimization problem LQ problems their extension to nonlinear minimization
problems is either prohibitively expensive [Moireau, 2019; Moireau, 2022] or approximate when relying
on Extended or Unscented Kalman filters [Moireau, Chapelle, and Le Tallec, 2008; Moireau and Chapelle,
2011; Moireau, 2022].

In our work, we develop a new estimation procedure that combines elements of the two approaches.
Namely, we first apply a Levenberg-Marquardt (LM) algorithm [Hanke, 1997; Bal et al., 2013] to derive
from the initial minimization problem a set of LQ subproblems satisfied by parameter increments. Each
of these LQ subproblems is then solved using a Kalman filter approach, a sequential strategy already
studied for wave or elasticity problems [Moireau, Chapelle, and Le Tallec, 2008; Marchand, Chamoin,
and Rey, 2016; Furuya and Potthast, 2022]. We then revisit the UKF approach, to obtain a tangent-
free algorithm with increasing convergence at each iteration of the outer loop of LM descent. Thus,
we avoid the differentiation of the acoustoelastic wave propagation model and provide an estimation
algorithm that can be easily interoperated with blackbox industrial codes. To be compatible with the
dimensionality constraints of Kalman filtering, the parameter space is built from a modal decomposition
of the pre-deformation, which in practice leads to the estimation of tens to hundreds of components on
a modal basis. Moreover, the number of LM iterations to achieve convergence is rather small, leading
overall to an almost sequential estimation approach. To illustrate the power of our approach, both in
computation efficiency and parameter estimation, we provide extensive 3D results with synthetic noisy
data in configurations associated with realistic SHM applications.

The structure of this article is as follows. In Section 4.2, we provide details on the direct problem,
i.e. the time-domain acoustoelasticy propagation model. This leads us to the definition of the inverse
problem we consider. In particular, we give a precise definition of the observation operator that generates
the GW measurements and the modal basis that forms the parameter space. In Section 4.3, we develop
our new method for identifying parameters using a combination of the LM algorithm and Kalman-based
filtering. In a first step, we provide meaningful insights into this approach by considering continuous-time
dynamics. In a second step, we give extensive details leading to the final fully discrete observer. Finally,
in Section 4.4, we give relevant numerical illustrations of the estimation of the 3D pre-deformation with
our approach and noisy synthetic data in realistic industrial configurations.

4.2 Problem setting
We here consider a deformable system classically modeled in continuum mechanics in a Lagrangian

referential defined from an initial stress-free configuration. Defining by Ω the reference domain with
Lipschitz boundaries and the material position x in the reference configuration, the dynamics principle
reads 



𝜚0𝜕
2
𝑡𝑡𝑢𝑢𝑢tot(x, 𝑡) − ∇∇∇ ·𝑇𝑇𝑇 (x, 𝑡) = 𝜚0 𝑓𝑓𝑓 tot(x, 𝑡) (x, 𝑡) ∈ Ω × (0, 𝑇),

𝑢𝑢𝑢tot(x, 𝑡) = 0 (x, 𝑡) ∈ Γ𝐷 × (0, 𝑇),
𝑇𝑇𝑇 · 𝑛𝑛𝑛(x, 𝑡) = 0 (x, 𝑡) ∈ Γ𝑁 × (0, 𝑇),
𝑢𝑢𝑢(x, 0) = 0 x ∈ Ω,

(4.1)

where, for the sake of simplicity, we consider homogeneous boundary conditions defined in the reference
configuration. Moreover, we scale the volume loading with the volume mass for consistency. In (4.1) the
first Piola-Kirchhoff stress tensor 𝑇𝑇𝑇 is here defined from the derivative of an hyperelastic potential W ,
with respect to the deformation gradient 𝐹𝐹𝐹 (x, 𝑡) = IdIdId + ∇∇∇𝑢𝑢𝑢tot(x, 𝑡), namely 𝑇𝑇𝑇 = D𝐹𝐹𝐹W (x, 𝐹𝐹𝐹).

As an alternative to the strong form, the system is defined using the weak form of the dynamics
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principle, also known as the principle of virtual work, by defining a space of admissible displacements,
typically K ⊂ V = {𝑤𝑤𝑤 ∈ H1(Ω)3 | 𝑤𝑤𝑤 |Γ𝐷 = 0} such that

∀𝑤𝑤𝑤 ∈ V,
∫
Ω
𝜚0𝜕

2
𝑡𝑡𝑢𝑢𝑢tot · 𝑤𝑤𝑤 dx +

∫
Ω
𝑇𝑇𝑇 : ∇∇∇𝑤𝑤𝑤 dx =

∫
Ω
𝜚0 𝑓𝑓𝑓 tot · 𝑤𝑤𝑤 dx. (4.2)

In this general framework, we now consider that our system is inspected while being loaded by
external unknown forces. These structural loading forces 𝑓𝑓𝑓 0 are considered to be volume distributed,
for the sake of simplicity, and quasi-static – namely not depending on time – albeit of possibly strong
amplitude, as opposed to the ultrasonic excitation 𝑓𝑓𝑓 which is of high-frequency and low amplitude. In
fact, the quasi-static assumption is considered with respect to the time scale of ultrasonic excitation so
the total loading decomposes into

𝑓𝑓𝑓 tot(x) = 𝑓𝑓𝑓 0(x) + 𝛿 𝑓𝑓𝑓 (x, 𝑡), (x, 𝑡) ∈ Ω × (0, 𝑇), (4.3)

where 𝛿 is a small parameter representing the fact that the amplitude of the ultrasonic excitation is small
compared to the external loading. This allows us to separate scales and to consider that the resulting
displacement is decomposed into

𝑢𝑢𝑢tot(x, 𝑡) = 𝑢𝑢𝑢0(x) + 𝛿𝑢𝑢𝑢(x, 𝑡) +𝑂 (𝛿2). (4.4)

Injecting such anszatz into the principle of virtual work (4.2) and identifying the zero order terms w.r.t.
𝛿, we formally showed in [Dalmora et al., 2022] that the displacement can be reconstructed from the
solution 𝑢𝑢𝑢0 ∈ K of a large displacement static problem

∀𝑤𝑤𝑤 ∈ V,
∫
Ω
𝑇𝑇𝑇 (x, 𝐹𝐹𝐹0) : ∇∇∇𝑤𝑤𝑤 dx =

∫
Ω
𝜚0 𝑓𝑓𝑓 0 · 𝑤𝑤𝑤 dx, (4.5)

where 𝐹𝐹𝐹0 = IdIdId + ∇∇∇𝑢𝑢𝑢0 is the deformation gradient associated with 𝑢𝑢𝑢0. Then, identifying the first order
term in 𝛿, we find that 𝑢𝑢𝑢 ∈ L2((0, 𝑇);V) should be a solution of the wave-propagation problem given by

∀𝑤𝑤𝑤 ∈ V,
∫
Ω
𝜚0𝜕

2
𝑡𝑡𝑢𝑢𝑢 · 𝑤𝑤𝑤 dx +

∫
Ω
∇∇∇𝑢𝑢𝑢 : D2

𝐹𝐹𝐹W (x, 𝐹𝐹𝐹0) : ∇∇∇𝑤𝑤𝑤 dx =
∫
Ω
𝜚0 𝑓𝑓𝑓 · 𝑤𝑤𝑤 dx. (4.6)

From a mathematical viewpoint, the existence of a solution for the general problem formulation (4.1)
is still an open problem. However, under suitable conditions, we can consider that problem (4.5) and
(4.6) admits one and only one solution. For (4.5), this is typically the case when defining a hyperelastic
law using a polyconvex potential [Ciarlet, 1988b], giving the existence of a displacement 𝑢𝑢𝑢0 in the space
of admissible displacements K ⊂ V.

Then, moving to (4.6), this formulation can be recast into a general second-order in time weak
formulation. Denoting byH the space L2(Ω)3 equipped with the scalar product

∀(𝑢𝑢𝑢,𝑤𝑤𝑤) ∈ H2, (𝑢𝑢𝑢,𝑤𝑤𝑤)H =
∫
Ω
𝜚0𝑢𝑢𝑢 · 𝑤𝑤𝑤 dx,

Moreover, we equipV with the scalar product

∀(𝑢𝑢𝑢,𝑤𝑤𝑤) ∈ V2, (𝑢𝑢𝑢,𝑤𝑤𝑤)V =
∫
Ω
∇∇∇𝑢𝑢𝑢 : D2

𝐹𝐹𝐹W (x, IdIdId) : ∇∇∇𝑤𝑤𝑤 dx + (𝑢𝑢𝑢,𝑤𝑤𝑤)H .

Note that D2
𝐹𝐹𝐹W (x, IdIdId) actually corresponds to the standard Hooke’s law in linear elasticity. We can

identifyH with its dual so that we have the following Gelfand triple

V ⊂ H ≡ H ′ ⊂ V′.
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Then, introducing the linear operator 𝐴0(𝑢𝑢𝑢0) ∈ L(V,V′) such that

∀(𝑢𝑢𝑢,𝑤𝑤𝑤) ∈ V2, ⟨𝐴0(𝑢𝑢𝑢0)𝑢𝑢𝑢,𝑤𝑤𝑤⟩V′ ,V =
∫
Ω
∇∇∇𝑢𝑢𝑢 : D2

𝐹𝐹𝐹W (x, 𝐹𝐹𝐹0) : ∇∇∇𝑤𝑤𝑤 dx,

the weak formulation (4.6) can be written in the following form

∀𝑤𝑤𝑤 ∈ V, d2

d𝑡2
(𝑢𝑢𝑢,𝑤𝑤𝑤)H + ⟨𝐴0(𝑢𝑢𝑢0)𝑢𝑢𝑢,𝑤𝑤𝑤⟩V′ ,V = ( 𝑓𝑓𝑓 , 𝑤𝑤𝑤)H . (4.7)

We now make the following assumption: there exists 𝜆 ≥ 0 and 𝛼 > 0 such that

∀𝑤𝑤𝑤 ∈ V, ⟨𝐴0(𝑢𝑢𝑢0)𝑤𝑤𝑤,𝑤𝑤𝑤⟩V′ ,V + 𝜆∥𝑤𝑤𝑤∥2H ≥ 𝛼∥𝑤𝑤𝑤∥2V . (4.8)

Such assumption is satisfied for 𝑢𝑢𝑢0 small enough whereas for large displacement 𝑢𝑢𝑢0, it may be violated.
This is however very dependent on the potential W that describes the elastic behavior of the medium.
Some choices tend to make the assumption above more restrictive than others – see e.g. the examples in
[Dalmora et al., 2022]. Thanks to this assumption – see for instance [Duvaut and Lions, 1976] – there
exists one, and only one, variational solution of (4.7), namely 𝑢𝑢𝑢 ∈ W𝑇 with

W𝑇 =
{
𝑢𝑢𝑢 ∈ L2((0, 𝑇);V), 𝜕𝑡𝑢𝑢𝑢 ∈ L2((0, 𝑇);H), 𝜕2

𝑡𝑡𝑢𝑢𝑢 ∈ L2((0, 𝑇);V′)
}
.

Moreover, we can extend the operator 𝐴0(𝑢𝑢𝑢0) ∈ L(V,V′) into an unbounded operator (𝐴0(𝑢𝑢𝑢0),D(𝐴0))
by defining

D(𝐴0) =
{
𝑢𝑢𝑢 ∈ V such that ∃𝒓 ∈ H : ∀𝑤𝑤𝑤 ∈ V, ⟨𝐴0(𝑢𝑢𝑢0)𝑢𝑢𝑢,𝑤𝑤𝑤⟩V′ ,V = (𝒓, 𝑤𝑤𝑤)H

}
.

and
∀𝑢𝑢𝑢 ∈ D(𝐴0), ∀𝑤𝑤𝑤 ∈ V, (𝐴0(𝑢𝑢𝑢0)𝑢𝑢𝑢,𝑤𝑤𝑤)H = ⟨𝐴0(𝑢𝑢𝑢0)𝑢𝑢𝑢,𝑤𝑤𝑤⟩V′ ,V .

Then, for a given 𝑢𝑢𝑢0 ∈ K, by introducing the operator

𝐴(𝑢𝑢𝑢0) =
(

0 Id
−𝐴0(𝑢𝑢𝑢0) 0

)
with D(𝐴) = D(𝐴0) × V ⊂ Z := V ×H ,

we can rewrite the wave dynamics in the state-space form




d
d𝑡
𝑧 = 𝐴(𝑢𝑢𝑢0)𝑧 + 𝑟, in (0, 𝑇)

𝑧(0) = 0,
with 𝑧 =

(
𝑢𝑢𝑢

𝑣𝑣𝑣

)
, and 𝑟 =

(
0
𝑓𝑓𝑓

)
, (4.9)

and 𝑣𝑣𝑣 denotes the velocity unknown. In the sequel, we will denote ¤𝑧 = d
d𝑡 𝑧. This state-space form allows

to define solutions using semi-group theory [Bensoussan et al., 2007]. Namely for 𝑟 ∈ L2((0, 𝑇),Z)
there exists one and only one mild solution of (4.9) in C0((0, 𝑇),Z) which is also a variational solution
in W𝑇 of (4.7). We here underline that the variational formalism is necessary to further justify finite
element discretization of (4.7), whereas the mild solution formulation in the sense of semi-group will
simplify the presentation of the estimation problem.

In this modeling context, we consider that we have at our disposal some recorded measurements on
a subregion 𝜔𝑖 – of the boundary 𝜕Ω – from 𝑑 sensors of the wave propagation of a target wave solution
𝑢̌𝑢𝑢. Typically we consider recordings 𝑦 = (𝑦𝑖)1≤𝑖≤𝑑 given by

[0, 𝑇] ∋ 𝑡 ↦→ 𝑦̌𝑖 (𝑡) = 1
|𝜔𝑖 |

∫
𝜔𝑖

𝑢̌𝑢𝑢(𝑡, x) · 𝒅𝑖 dx ∈ R, 1 ≤ 𝑖 ≤ 𝑑,
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up to certain measurement errors and where the fields 𝒅𝑖 represent the sensitivity of the sensors to a
displacement field. In fact, we do not have at our disposal [0, 𝑇] ∋ 𝑡 ↦→ 𝑦̌(𝑡) ∈ R but rather the perturbed
measurement 𝑦𝛾 ∈ L2((0, 𝑇);Y) with Y = R𝑑 such that for a given noise level 𝛾 > 0,

∫ 𝑇

0
∥ 𝑦̌𝑖 − 𝑦𝛾,𝑖 ∥2Y d𝑡 ≲ 𝛾2𝑇.

From a state-space point of view, this allows to define an observation operator 𝐶 ∈ L(Z,Y) by

𝐶 : 𝑧 =
(
𝑢𝑢𝑢

𝑣𝑣𝑣

)
↦→

(
1
|𝜔𝑖 |

∫
𝜔𝑖

𝑢𝑢𝑢(x) · 𝒅𝑖 dx
)

1≤𝑖≤𝑑
. (4.10)

Remark. We would like to point out that in an alternative modeling approach, we could have considered
that the measurements are recorded from the deformed configuration as the sensors are operating in this
configuration. When rewriting the integrals with respect to the reference configuration, this should lead
to the definition of an observation operator 𝐶 (𝑢𝑢𝑢0) that depends on the deformation.

We can now introduce the inverse problem that we want to solve. We assume that 𝑢𝑢𝑢0 is unknown and
we want to reconstruct it from the available measurements. More precisely, we would like to specify the
true 𝑢̌𝑢𝑢0 from an a priori displacement 𝑢̂𝑢𝑢0 assuming that the true displacement is a regular perturbation
with respect to the a priori, typically there exists a constant 𝑀 such that

∥𝑢̌𝑢𝑢0 − 𝑢̂𝑢𝑢0∥2V ≤ 𝑀2.

Moreover in practice, we propose to decompose any𝑢𝑢𝑢0 ∈ H on the basis made of the eigenvectors (𝜑𝜑𝜑 𝑗) 𝑗≥0
of the compact operator Λ0 = 𝐴0(0)−1 ∈ L(V′,V). We recall that there exists (𝜇 𝑗) 𝑗≥0 ∈ (R∗+)N such
that

𝐴0(0)𝜑𝜑𝜑 𝑗 = 𝜇 𝑗𝜑𝜑𝜑 𝑗 with ∥𝜑𝜑𝜑 𝑗 ∥2H = 1 (4.11)

and 𝜆 𝑗 =
√
𝜇 𝑗
−1 tends to 0 as 𝑗 tends to infinity. Therefore, we can decompose

𝑢𝑢𝑢0(x) =
∑︁
𝑗≥0

𝜃 𝑗𝜑𝜑𝜑 𝑗 (x) (4.12)

and we can enforce

𝑢𝑢𝑢0 ∈ V ⇔
∑︁
𝑗≥0

𝜃2
𝑗

𝜆2
𝑗

< +∞.

In practice, we may even want to consider that𝑢𝑢𝑢0 belongs to a more regular spaceV𝑚 leading to increased
convergence rate of the sequence (𝜃 𝑗)𝑘≥0 to 0, typically

𝑢𝑢𝑢0 ∈ V𝑚 ⇒
∑︁
𝑗≥0

𝜃2
𝑗

𝜆2𝑚
𝑗

< +∞. (4.13)

However, as a first step, we remain with our choice of estimating 𝑢𝑢𝑢0 ∈ V𝑚 which is equivalent to
estimating 𝜃 ∈ P ⊂ ℓ2(R), equipped with a norm

∥𝜃∥2P = (𝜃,Λ−𝑚0 𝜃)ℓ2 , with (Λ0)𝑖 𝑗 = 𝜆2𝑚
𝑗 𝛿𝑖 𝑗 and 𝛿𝑖 𝑗 =

{
1 if 𝑖 = 𝑗

0 otherwise
(4.14)

Moreover, when we need to discretize 𝑢𝑢𝑢0, we will consider a finite-dimensional space corresponding to a
finite number N𝑝 of modes, hence 𝜃 ∈ RN𝑝 and Λ0 becomes typically a diagonal matrix.
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To conclude our problem setting, our objective is, therefore, to estimate 𝜃 ∈ P from the available
measurements, namely to invert the following operator

Ψ𝑇 :



P → L2((0, 𝑇);Y)

𝜃 ↦→
[
𝑡 ↦→

∫ 𝑡

0
𝐶𝑒𝐴(𝜃 ) (𝑡−𝑠)𝑟 (𝑠) d𝑠

]

where we replace the 𝑢𝑢𝑢0 dependency by the 𝜃 dependency in the definition of the operator 𝐴0. In the
following, this inversion is based on a least-squares minimization using Levenberg-Marquardt strategy.

4.3 Identification method
4.3.1 From Levenberg-Marquardt minimization scheme to an iterated Extended Kalman

strategy
Following [Bal et al., 2013], we approximate pseudo-inverse of Ψ𝑇 with a Levenberg-Marquardt

minimization scheme [Hanke, 1997] which consists of the following iterative procedure.

𝜃𝑘+1 = 𝜃𝑘 + 𝛼𝑘

= 𝜃𝑘 +
[
DΨ𝑇 (𝜃𝑘)∗DΨ𝑇 (𝜃𝑘) + 𝜀 𝛾

2

𝑀2Λ
−𝑚
0

]−1

DΨ𝑇 (𝜃𝑘)∗(𝑦𝛾 − Ψ𝑇 (𝜃𝑘)), (4.15)

where the number of iterations of this scheme is finite, thus acting as a regularization, and typically
controlled by classical Morozov-like criteria, as advised in [Bal et al., 2013]. The parameter 𝛾2

𝑀2 is
a scaling parameter taking into account the prior over noise ratio, while 𝜀 will give us an additional
degree of freedom for weighting the regularization in the LM algorithm, see below and in particular
Remark 4.3.1. Then, we can see the increment as

𝛼𝑘 = arg min
𝛼∈P

{
𝜀

2𝑀2 ∥𝛼∥
2
P +

1
2𝛾2 ∥𝑦𝛾 − Ψ𝑇 (𝜃

𝑘) − DΨ𝑇 (𝜃𝑘)𝛼∥2L2 ( (0,𝑇 );Y)

}
, (4.16)

Remark. Note again that by penalizing ∥𝛼∥2P we penalize an incremental displacement ∥𝑢̃𝑢𝑢0(𝛼)∥2V𝑚 .
Therefore, we can force the first increments of the seeking displacement to belong toK since a sufficiently
smooth displacement with a sufficiently small amplitude will necessarily be admissible. However, this
may come at the price of too much regularization, which can only be compensated by a higher number of
iterations of the LM algorithm. This is illustrated in the numerical section.

Let us now specify the tangent operator

∀𝜃 ∈ P, DΨ𝑇 (𝜃) :

�����H →L2((0, 𝑇);Y),
𝛼 ↦→𝑦 = 𝐶𝜁 | 𝜃,𝛼

and 𝜁 | 𝜃,𝛼 is a mild solution of{ ¤𝜁 | 𝜃,𝛼 (𝑡) = 𝐴(𝜃)𝜁 | 𝜃,𝛼 (𝑡) + 𝐵(𝜃, 𝑧 | 𝜃 (𝑡))𝛼, 𝑡 ∈ [0, 𝑇]
𝜁 | 𝜃,𝛼 (0) = 0,

where we have introduced the linear operator representing the tangent of 𝐴(𝜃) w.r.t. the parameter 𝜃

∀𝜃 ∈ P, ∀𝑧 ∈ D(𝐴), L(P,Z) ∋ 𝐵(𝜃, 𝑧) : P ∋ 𝛼 ↦→ (D𝜃 𝐴(𝜃)𝛼)𝑧 ∈ Z.

Therefore, we face a linear-quadratic optimal control problem, that can be minimized using the
following Reduced-Order Kalman Filter (ROKF) sequential estimator reformulated from the initial design
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found in [Moireau, Chapelle, and Le Tallec, 2008] – see also the more recent review [Moireau, 2022].
To this end, let us first introduce the set of sensitivity operators (𝐿 | 𝜃 (𝑡))𝑡≥0 in L(P,Z) defined for all
time 𝑡 ≥ 0 by

𝐿 | 𝜃 (𝑡) : 𝛼 ↦→ 𝜁 (𝑡) the mild solution of{ ¤𝜁 (𝑠) = 𝐴(𝜃)𝜁 (𝑠) + 𝐵(𝜃, 𝑧 | 𝜃 (𝑠))𝛼, 𝑠 ∈ [0, 𝑡]
𝜁 (0) = 0.

(4.17)

We easily verify that 𝐿 | 𝜃 ∈ C0( [0, 𝑇];L(P,Z)) the space of continuous mapping from [0, 𝑇] toL(P,Z)
endowed with the uniform convergence topology [Bensoussan et al., 2007].

Then, we introduce the time-dependent Riccati operator (Λ | 𝜃 )𝑡≥0 – which can be interpreted as a
parameter-covariance operator [Bensoussan et al., 2007] – solution in C0( [0, 𝑇];S∗+(P)) – with S∗+(P)
the space of symmetric positive definite bounded operators – of{ ¤Λ | 𝜃 (𝑡) = − 1

𝛾2Λ | 𝜃 (𝑡)𝐿 | 𝜃 (𝑡)∗𝐶∗𝐶𝐿 | 𝜃 (𝑡)Λ | 𝜃 (𝑡), 𝑡 ∈ [0, 𝑇]
Λ | 𝜃 (0) = 𝑀2

𝜀 Λ𝑚0
(4.18)

We would like to underline the fact that here the adjoint operator 𝐿 | 𝜃 (𝑡)∗ is here defined with respect to
the ℓ2-norm as 𝜃 ∈ P ⊂ ℓ2(R).

We then define the sequential estimator




¤̂𝜁 𝑘 (𝑡) = 𝐴(𝜃𝑘)𝜁 𝑘 (𝑡) + 𝐵(𝜃𝑘 , 𝑧 | 𝜃𝑘 (𝑡))𝛼̂𝑘 (𝑡) + 𝐿 | 𝜃𝑘 (𝑡) ¤̂𝛼𝑘 (𝑡), 𝑡 ∈ [0, 𝑇]
¤̂𝛼𝑘 (𝑡) = 1

𝛾2Λ | 𝜃𝑘 (𝑡)𝐿 | 𝜃𝑘 (𝑡)∗𝐶∗(𝑦𝛾 (𝑡) − 𝐶𝑧 | 𝜃𝑘 (𝑡) − 𝐶𝜁 𝑘 (𝑡)), 𝑡 ∈ [0, 𝑇]
𝜁 𝑘 (0) = 0
𝛼̂𝑘 (0) = 0

(4.19)

which, ultimately, sequentially solve the minimization problem (4.16) as recall in the next theorem
justified in [Moireau, 2022].

Theorem 4.3.1. At every iteration 𝑘 , the mild solution 𝛼̂𝑘 ∈ C0( [0, 𝑇];P) and 𝜁 𝑘 ∈ C0( [0, 𝑇];Z) of
(4.19) satisfies

𝛼̂𝑘 (𝑇) = 𝛼𝑘 and 𝜁 𝑘 (𝑇) = 𝜁 | 𝜃𝑘 ,𝛼𝑘 (𝑇). (4.20)

In the previous theorem, we understand that we can sequentially compute 𝑡 ↦→ 𝛼̂𝑘 but also 𝑡 ↦→ 𝜁 𝑘

which is interpreted as a sequential estimator of the associated trajectory 𝑡 ↦→ 𝜁 | 𝜃𝑘 ,𝛼𝑘 . Note that this
estimator can be computed together with 𝛼̂𝑘 in only one coupled forward dynamics.

In fact, instead of a parameter increment, we are more interested in reconstructing the parameter
itself, namely 𝑡 ↦→ 𝜃𝑘 (𝑡) = 𝜃𝑘 + 𝛼̂𝑘 (𝑡), and its associated trajectory 𝑡 ↦→ 𝑧𝑘 (𝑡) = 𝑧 | 𝜃𝑘 (𝑡 ) (𝑡). As 𝑡 ↦→ 𝛼̂𝑘 (𝑡)
is a time-dependent trajectory, we have

¤̄𝑧𝑘 = d
d𝑡

[
𝑧 | 𝜃𝑘 ( ·)

]
= ¤𝑧 | 𝜃𝑘 ( ·) + D𝜃 ( ·) 𝑧 | 𝜃 ( ·)

���
𝜃 ( ·)=𝜃𝑘 ( ·)

¤̂𝛼𝑘 ,

and the sensitivity operator 𝐿 | 𝜃𝑘 ( ·) = D𝜃 ( ·) 𝑧 | 𝜃 ( ·)
���
𝜃 ( ·)=𝜃𝑘 ( ·)

is nothing else than, for all time 𝑡 ≥ 0,

𝐿 | 𝜃𝑘 ( ·) (𝑡) : 𝛼 ↦→ 𝜁 (𝑡) is a mild solution of{ ¤𝜁 (𝑠) = 𝐴(𝜃𝑘 (𝑠))𝜁 (𝑠) + 𝐵(𝜃𝑘 (𝑠), 𝑧 | 𝜃𝑘 (𝑡 ) (𝑠))𝛼, 𝑠 ∈ [0, 𝑡]
𝜁 (0) = 0

(4.21)

Here note that in the previous dynamics, 𝑠 ↦→ 𝜃𝑘 (𝑠) is a function of time, implying a time-dependent
operator 𝑠 ↦→ 𝐴(𝜃𝑘 (𝑠)). The existence of a solution for such dynamics is fundamentally based on the
study of evolution equation operator in general [Pazy, 1983, Chapter 5].
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As ¤̂𝛼𝑘 = ¤̄𝜃𝑘 , and by approximating 𝑧 | 𝜃𝑘 + 𝜁 𝑘 ≃ 𝑧 | 𝜃𝑘+𝛼̂𝑘 = 𝑧𝑘 we could compute the sequential
estimator 



¤̄𝑧𝑘 = 𝐴(𝜃𝑘)𝑧𝑘 + 𝑟 + 𝐿 | 𝜃𝑘 ¤̄𝜃𝑘 , 𝑡 ∈ [0, 𝑇],
¤̄𝜃𝑘 = 1

𝛾2Λ | 𝜃𝑘 (𝑡)𝐿 | 𝜃𝑘 (𝑡)∗𝐶∗(𝑦𝛾 − 𝐶𝑧𝑘), 𝑡 ∈ [0, 𝑇],
𝑧𝑘 (0) = 0
𝜃𝑘 (0) = 𝜃𝑘 ,

(4.22)

such that at final time 𝜃𝑘 (𝑇) ≃ 𝜃𝑘+1.
One drawback in solving (4.22) is that it necessitates to propagate two sensitivity operators 𝐿 | 𝜃𝑘 and

𝐿 | 𝜃𝑘 . Moreover 𝐿 | 𝜃𝑘 necessitates to store the complete trajectory 𝑧 | 𝜃𝑘 . To circumvent these drawbacks,
one could imagine to instead solve




¤̂𝑧𝑘 = 𝐴(𝜃𝑘)𝑧𝑘 + 𝑟 + 𝐿𝑘 ¤̂𝜃𝑘 , 𝑡 ∈ [0, 𝑇],
¤̂𝜃𝑘 = 1

𝛾2Λ
𝑘 (𝑡)𝐿𝑘 (𝑡)∗𝐶∗(𝑦𝛾 − 𝐶𝑧𝑘), 𝑡 ∈ [0, 𝑇],

𝑧𝑘 (0) = 0
𝜃𝑘 (0) = 𝜃𝑘−1(𝑇)

(4.23)

where, from now on, we simply use the notation 𝐿𝑘 = 𝐿 | 𝜃𝑘 and Λ𝑘 = Λ | 𝜃𝑘 and we see that the sensitivity
and the covariance operator are updated through time. Indeed, Λ𝑘 is an operator that should be seen as a
mild solution of the dynamics{ ¤Λ𝑘 (𝑡) = − 1

𝛾2Λ
𝑘 (𝑡)𝐿𝑘 (𝑡)∗𝐶∗𝐶𝐿 | 𝜃 (𝑡)Λ𝑘 (𝑡), 𝑡 ∈ [0, 𝑇]

Λ𝑘 (0) = 𝑀2

𝜀 Λ𝑚0 ,
(4.24)

while 𝐿𝑘 can be seen from (4.21) as a mild solution in 𝐶0( [0, 𝑇],L(P,Z)) of{ ¤𝐿𝑘 (𝑡) = 𝐴(𝜃𝑘)𝐿𝑘 (𝑡) + 𝐵(𝜃𝑘 (𝑡), 𝑧𝑘 (𝑡)) 𝑡 ∈ [0, 𝑇]
𝐿𝑘 (0) = 0.

(4.25)

We here recognize in (4.23) – combined with (4.24)-(4.25) – an iterated version of the Reduced-Order-
Extended-Kalman-Filter (ROEKF) estimator proposed in [Moireau, Chapelle, and Le Tallec, 2008]
for joint state and parameter estimation for wave-like equations, here formally generalized to infinite
dimensional systems. One very strong advantage of such an estimator is that it is fully sequential in the
sense that it does not require storing any trajectory in the iteration procedure. Note that the existence of
a solution of (4.23) is much more intricate and is based on justifying that 𝐿𝑘 is well-defined even for
time-dependent parameter 𝜃𝑘 . This question is typically covered by the definition of stable families of
generators in evolution equation [Pazy, 1983], see also [Afshar and Germ, 2020] for similar questions
when defining the Extended Kalman Filter for infinite dimensional systems.

In this work, we call iROEKF the proposed iterated ROEKF. However, we must warn the reader that
in our case the iteration 𝑘 is to be considered as an outer loop of the LM descent. This iROEKF is
therefore different from the classical iterated Extended Kalman Filter presented in the literature [Särkkä,
2013].

4.3.2 Space-time-discretized version of the iterated reduced-order Extended Kalman
Filter

Since we ultimately solve a discretized version of (4.23), we now present a discretization strategy
based on a stable discretization of the Levenberg-Marquardt increment estimator (4.19). Our discretiza-
tion strategy is based on the fundamental principle discretize-then-optimize, which means that we first
discretize the direct problem and then reapply the equivalence of Levenberg-Marquardt and dynamic
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programming at the discretized level, as recommended in [Moireau, 2022]. For (4.7), we consider
a finite-element discretization based on the Spectral Finite Element Method (SFEM) [Cohen, 2002]
leading to the formulation

∀𝑤𝑤𝑤ℎ ∈ Vℎ, (𝜕2
𝑡𝑡𝑢𝑢𝑢ℎ, 𝑤𝑤𝑤ℎ)Vℎ + (𝐴0ℎ (𝑢𝑢𝑢ℎ0)𝑢𝑢𝑢ℎ, 𝑤𝑤𝑤ℎ)Vℎ = ( 𝑓𝑓𝑓 , 𝑤𝑤𝑤ℎ)Vℎ . (4.26)

To construct the finite dimensional space Vℎ we assume given a partition Tℎ of quadrangles (in 2D) or
hexahedra (in 3D) of the domain Ω, namely

Ω =
⋃
𝐾∈Tℎ

𝐾, ∀ (𝐾, 𝐿) ∈ Tℎ × Tℎ 𝐾̊ ∩ 𝐿̊ = ∅,

with maximum diameter given by ℎ. ThenVℎ ⊂ V is obtained using a Q𝑘-Lagrangian basis on a set of
nodes {𝜉𝑖}𝑁ℎ

𝑖=1,

Vℎ =
(
span{𝜑𝑖}𝑁ℎ

𝑖=1
)3
, ∀1 ≤ 𝑖, 𝑗 ≤ 𝑁ℎ, 𝜑𝑖 (𝜉 𝑗) = 𝛿𝑖 𝑗 , ∀𝐾 ∈ Tℎ, 𝜑𝑖 |𝐾 ◦ 𝐹𝐾 ∈ Q𝑘 .

where the mapping from the reference element to any element 𝐾 ∈ Tℎ is denoted 𝐹𝐾 – see [Cohen, 2002]
for more details. The nodes {𝜉𝑖} are obtained using Gauss-Lobatto integration points on a reference square
(in 2D) or cube (in 3D). One fundamental aspect of the efficiency of the SFEM is that Vℎ is equipped
with a scalar product that – using a quadrature formula on the nodes {𝜉𝑖} – leads at the algebraic level
to a diagonal mass matrix. This is called a mass-lumping strategy and preserves a near-optimal accuracy
[Duruflé, Grob, and Joly, 2009]. The mentioned quadrature formula is also employed to compute the
operator 𝐴ℎ (𝑢𝑢𝑢ℎ0), thus given by

∀(𝑢𝑢𝑢ℎ, 𝑤𝑤𝑤ℎ) ∈ V2
ℎ , (𝐴0ℎ (𝑢𝑢𝑢ℎ0)𝑢𝑢𝑢ℎ, 𝑤𝑤𝑤ℎ)Vℎ =

⨖
Ω
∇∇∇𝑢𝑢𝑢ℎ : D2

𝐹𝐹𝐹W (x, 𝐹𝐹𝐹0ℎ) : ∇∇∇𝑤𝑤𝑤ℎ dx,

where
⨖

stands for an integral computed from the quadrature formula, and 𝐹𝐹𝐹0ℎ = IdIdId + ∇∇∇𝑢𝑢𝑢ℎ0 with 𝑢𝑢𝑢ℎ0
an interpolation in Vℎ of 𝑢𝑢𝑢0. Note that the operator inherits some properties of the operator 𝐴(𝑢𝑢𝑢ℎ0), in
particular it is self-adjoint. However it is not clear that it satisfies a positivity property of the form (4.8)
for at least two reasons, the interpolation of 𝑢𝑢𝑢0ℎ and the use of the quadrature formula. Therefore we are
led to the following assumption that is sufficient to have a well-posed discrete problem,

∀𝑤𝑤𝑤ℎ ∈ Vℎ, (𝐴0ℎ (𝑢𝑢𝑢ℎ0)𝑤𝑤𝑤ℎ, 𝑤𝑤𝑤ℎ)Vℎ ≥ 0.

The spatial discretization is then followed by an explicit time-discretization. Being given a time step
Δ𝑡, the solution 𝑢𝑢𝑢ℎ (𝑡) is approximated at time 𝑡𝑛 = 𝑛Δ𝑡 by solving

∀𝑤𝑤𝑤ℎ ∈ Vℎ,
(𝑢𝑢𝑢𝑛+1ℎ − 2𝑢𝑢𝑢𝑛ℎ + 𝑢𝑢𝑢𝑛−1

ℎ

Δ𝑡2
, 𝑤𝑤𝑤ℎ

)
Vℎ

+ (𝐴0ℎ (𝑢𝑢𝑢ℎ0)𝑢𝑢𝑢𝑛ℎ, 𝑤𝑤𝑤ℎ)Vℎ = (Πℎ 𝑓𝑓𝑓 (𝑡𝑛), 𝑤𝑤𝑤ℎ)Vℎ , (4.27)

where Πℎ 𝑓𝑓𝑓 is a projection of 𝑓𝑓𝑓 in Vℎ. Thanks to the mass-lumping strategy the computation of 𝑢𝑢𝑢𝑛+1ℎ
involves – at the algebraic level – only the inversion of a diagonal mass matrix. This discretization is
stable for small enough time step Δ𝑡, namely the time step must satisfy the CFL condition

Δ𝑡 ≤ 2

(
sup

𝑤𝑤𝑤ℎ∈Vℎ

(𝐴0ℎ (𝑢𝑢𝑢ℎ0)𝑤𝑤𝑤ℎ, 𝑤𝑤𝑤ℎ)Vℎ

∥𝑤𝑤𝑤ℎ∥2Vℎ

)−1/2
. (4.28)

The CFL condition depends on the mesh size ℎ (in particular Δ𝑡 behaves like 𝑂 (ℎ)) and on the mesh
quality but also on the gradient of the displacement field𝑢𝑢𝑢ℎ0. We can finally rewrite the time-discretization
(4.27) as
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


𝑢𝑢𝑢𝑛+1ℎ − 𝑢𝑢𝑢𝑛ℎ
Δ𝑡

= 𝑣𝑣𝑣𝑛+1ℎ

𝑣𝑣𝑣𝑛+1ℎ − 𝑣𝑣𝑣𝑛ℎ
Δ𝑡

+ 𝐴0ℎ (𝜃ℎ)𝑢𝑢𝑢𝑛ℎ = Πℎ 𝑓𝑓𝑓 (𝑡𝑛)
(4.29)

where we replace the 𝑢𝑢𝑢ℎ0 dependency by the 𝜃ℎ ∈ Pℎ ≃ RN𝑝 dependency such that

𝑢𝑢𝑢ℎ0 =
N𝑝∑︁
𝑗=1
𝜃ℎ, 𝑗𝜑𝜑𝜑ℎ, 𝑗 with 𝐴0ℎ (0)𝜑𝜑𝜑ℎ, 𝑗 = 𝜇ℎ, 𝑗𝜑𝜑𝜑ℎ, 𝑗 ,

namely the (𝜇ℎ, 𝑗 , 𝜑𝜑𝜑ℎ, 𝑗) are the eigenelements of the discrete operators 𝐴0ℎ (0) (ordered increasingly with
respect to the eigenvalues). Then, by defining 𝑧𝑛ℎ = (𝑢𝑢𝑢𝑛ℎ, 𝑣𝑣𝑣𝑛ℎ)⊺, we rewrite (4.29) in the following abstract
state-space form {

𝑧𝑛+1ℎ =𝛷ℎ,Δ𝑡 (𝜃ℎ)𝑧𝑛ℎ + 𝑟𝑛+1ℎ,Δ𝑡

𝑧0
ℎ = 0

(4.30)

where
𝛷ℎ,Δ𝑡 (𝜃ℎ) : 𝑧ℎ ↦→

(
IdVℎ − Δ𝑡2𝐴0ℎ (𝜃ℎ) Δ𝑡IdVℎ

Δ𝑡𝐴0ℎ (𝜃ℎ) IdVℎ

)
𝑧ℎ and 𝑟𝑛+1ℎ,Δ𝑡 =

(
Δ𝑡2 Πℎ 𝑓𝑓𝑓 (𝑡𝑛)
Δ𝑡 Πℎ 𝑓𝑓𝑓 (𝑡𝑛)

)
.

Using the time-discretized system (4.30), we propose to solve the Levenberg-Marquardt procedure

𝜃𝑘+1ℎ = 𝜃𝑘ℎ + 𝛼𝑘ℎ

= 𝜃𝑘ℎ +
[
DΨℎ,𝑁 (𝜃𝑘)∗DΨℎ,𝑁 (𝜃𝑘) + 𝜀 𝛾

2

𝑀2Λ
−𝑚
0ℎ

]−1

DΨℎ,𝑁 (𝜃𝑘ℎ)∗(𝑦𝛾 − Ψℎ,𝑁 (𝜃𝑘ℎ)),

where

Ψℎ,𝑁 :




Pℎ → ℓ2((1:𝑁);Y)

𝜃ℎ ↦→


𝑛∑︁
𝑗=1
𝐶ℎ𝛷

𝑛− 𝑗
ℎ,Δ𝑡 (𝜃ℎ)𝑟

𝑗
ℎ,Δ𝑡



𝑁

𝑛=1

which can be equivalently rewritten in the following form

𝛼𝑘ℎ = arg min
𝛼ℎ∈P

{
𝜀

2𝑀2 ∥𝛼ℎ∥
2
P +

Δ𝑡

2𝛾2 ∥𝑦𝛾 − Ψℎ,𝑁 (𝜃
𝑘) − DΨℎ,𝑁 (𝜃𝑘ℎ)𝛼ℎ∥2ℓ2 ( (1:𝑁 );Y)

}
. (4.31)

Then, we define the fully discrete sensitivity operator, for all 𝑛 ∈ [0:𝑁], as

𝐿
𝑘,𝑛
ℎ | 𝜃ℎ : 𝛼ℎ ↦→ 𝜁𝑛ℎ the solution of{

𝜁
𝑗+1
ℎ =𝛷ℎ,Δ𝑡 (𝜃ℎ)𝑧 𝑗ℎ + 𝐵ℎ,Δ𝑡 (𝜃ℎ, 𝑧

𝑗
ℎ)𝛼ℎ, 𝑗 ∈ [0:𝑛 − 1]

𝜁0
ℎ = 0

with
𝐵ℎ,Δ𝑡 (𝜃ℎ, 𝑧ℎ)𝛼ℎ =

(
Δ𝑡2D𝜃 𝐴0ℎ (𝜃ℎ)𝛼ℎ 0
−Δ𝑡D𝜃 𝐴0ℎ (𝜃ℎ)𝛼ℎ 0

)
𝑧ℎ .

Moreover, we define the fully discrete covariance operator Λ𝑘,𝑛
ℎ | 𝜃ℎ satisfying the dynamics



(Λ𝑘,𝑛+1
ℎ | 𝜃ℎ )

−1 = (Λ𝑘,𝑛
ℎ | 𝜃ℎ )

−1 + Δ𝑡

𝛾2 𝐿
𝑘,𝑛+1
ℎ | 𝜃ℎ 𝐶

∗
ℎ𝐶ℎ𝐿

𝑘,𝑛+1
ℎ | 𝜃ℎ , 𝑛 ∈ [0:𝑁]

Λ𝑘,0
ℎ | 𝜃ℎ =

𝑀2

𝜀
Λ𝑚ℎ0.
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If we now choose to solve from 𝜁
𝑘,0
ℎ = 0, and 𝛼̂𝑘,0ℎ = 0, for all 𝑘 ≤ 0 and 𝑛 ∈ [0:𝑁 − 1]




𝜁
𝑘,𝑛+1−
ℎ =𝛷ℎ,Δ𝑡 (𝜃ℎ)𝜁 𝑘,𝑛ℎ + 𝐵ℎ,Δ𝑡 (𝜃𝑘ℎ, 𝑧𝑛ℎ | 𝜃𝑘

ℎ

)𝛼̂𝑘,𝑛ℎ
𝛼̂
𝑘,𝑛+1
ℎ = 𝛼̂𝑘,𝑛ℎ +

Δ𝑡

𝛾2Λ
𝑘,𝑛+1
ℎ | 𝜃ℎ 𝐿

𝑘,𝑛+1∗
ℎ | 𝜃ℎ 𝐶∗ℎ (𝑦𝑛+1𝛾 − 𝐶ℎ𝑧𝑛+1ℎ | 𝜃𝑘

ℎ

− 𝐶ℎ𝜁 𝑘,𝑛+1−ℎ )
𝜁
𝑘,𝑛+1
ℎ = 𝜁 𝑘,𝑛+1−ℎ + 𝐿𝑘,𝑛+1

ℎ | 𝜃ℎ (𝛼̂
𝑘,𝑛+1
ℎ − 𝛼̂𝑘,𝑛ℎ )

(4.32)

where the “𝑛−” and “𝑛” exponents correspond to the two steps of a splitting time-scheme for 𝜁 𝑘,𝑛ℎ – where
the “𝑛−” step is often referred as the prediction (or forecast) step and the “𝑛” step is referred as the
correction (or analysis) step – we have at the discrete level the following equivalence proved in [Moireau,
2022].

Theorem 4.3.2. At every iteration 𝑘 of the Levenberg-Marquardt minimization, we have

𝛼̂
𝑘,𝑁
ℎ = 𝛼𝑘ℎ and 𝜁 𝑘,𝑁ℎ = 𝜁𝑁

ℎ | 𝜃𝑘 ,𝛼𝑘 (4.33)

The last theorem helps to understand that we keep at the discrete-time level the same equivalence
between the least square minimization of a discretized criterion and the sequential approach. Therefore
pursuing the same strategy than for the continuous-time level leads us to defining the Discrete-Time iterated
Reduced Order Extended Kalman Filter (DT-iROEKF) as an approximation of the Levenberg-Marquardt
minimization strategy for discrete-time dynamics. The resulting joint state-parameter sequential estimator
based on this DT-iROEKF is initialized from 𝑧𝑘ℎ = 0, 𝜃𝑘,0ℎ = 𝜃

𝑘−1,𝑁
ℎ if 𝑘 > 1 and 𝜃1,0

ℎ = 𝜃0ℎ, while
𝐿𝑘,0 = 0,Λ𝑘,0 = 𝜀−1𝑀2Λ𝑚ℎ0. Then the recursive dynamics reads for all 𝑘 ≥ 1 and for all 𝑛 ∈ [0:𝑁 − 1]

— Prediction / Forecast: {
𝑧
𝑘,𝑛+1−
ℎ =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑧𝑘,𝑛ℎ + 𝑟𝑛+1ℎ,Δ𝑡 ,

𝐿
𝑘,𝑛+1
ℎ =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝐿𝑘,𝑛ℎ + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧

𝑘,𝑛
ℎ ).

— Correction / Analysis:




(Λ𝑘,𝑛+1ℎ )−1 = (Λ𝑘,𝑛ℎ )−1 + Δ𝑡

𝛾2 𝐿
𝑘,𝑛+1
ℎ 𝐶∗ℎ𝐶ℎ𝐿

𝑘,𝑛+1
ℎ ,

𝜃
𝑘,𝑛+1
ℎ = 𝜃𝑘,𝑛ℎ +

Δ𝑡

𝛾2Λ
𝑘,𝑛+1
ℎ 𝐿

𝑘,𝑛+1∗
ℎ 𝐶∗ℎ (𝑦𝑛+1𝛾 − 𝐶ℎ𝑧𝑘,𝑛+1−ℎ ),

𝑧
𝑘,𝑛+1
ℎ = 𝑧𝑘,𝑛+1−ℎ + 𝐿𝑘,𝑛+1ℎ (𝜃𝑘,𝑛+1ℎ − 𝜃𝑘,𝑛ℎ ).

Here again, the approximation relies on the fact that the sensitivity and the covariances are computed
sequentially from the current estimation 𝜃𝑘,𝑛ℎ , 𝑧

𝑘,𝑛
ℎ .

4.3.3 From a square root to a tangent-free formulation

We are now ready to formulate a practical implementation of our DT-iROEKF. In this respect,
we recast the DT-iROEKF formulation into a so-called square-root form as commonly done in data
assimilation for the robust implementation of the Kalman approaches [Simon, 2006]. Then we show how
we can replace, up to second-order terms, the tangent computations by finite difference scheme over wave
solution, hence leading to an original tangent-free approach.

The SEEK algorithm for parameter identification. In this section, we start by formulating a square-
root approach of the reduced-order Extended Kalman filter that we are going to apply to our state-parameter
decomposition. This strategy is an adaption to parameter estimation of the square root algorithm initially
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presented in [Rozier et al., 2007]. Following their strategy, we choose to store not 𝐿𝑘,𝑛ℎ but 𝐿𝑘,𝑛ℎ 𝐷
𝑘,𝑛
ℎ

with 𝐷𝑘,𝑛ℎ a Cholesky factorization of Λ𝑘,𝑛ℎ . More precisely, we define

𝐷
𝑘,𝑛
ℎ := chol(Λ𝑘,𝑛ℎ ) namely Λ𝑘,𝑛ℎ = 𝐷𝑘,𝑛ℎ 𝐷

𝑘,𝑛∗
ℎ (4.34)

𝑆
𝑘,𝑛
ℎ := 𝐿𝑘,𝑛ℎ 𝐷

𝑘,𝑛
ℎ (4.35)

𝑆
𝑘,𝑛+1−
ℎ := 𝐿𝑘,𝑛+1ℎ 𝐷

𝑘,𝑛
ℎ (4.36)

Note that 𝐷𝑘,𝑛ℎ can be equivalently represented as a collection of N𝑝 members

{𝐷𝑘,𝑛ℎ, 𝑗 }
N𝑝

𝑗=1 ∈ Pℎ,
that can be seen as the “columns” of the matrix representations of the operator. Each member is
comparable to a parameter increment around the observer trajectory 𝜃𝑘,𝑛ℎ , hence is associated with a
reconstructed displacement

𝑢𝑢𝑢0ℎ =
∑︁

1≤𝑖≤N𝑝

𝐷
𝑘,𝑛
ℎ,𝑖 𝑗𝜑𝜑𝜑ℎ,𝑖 ,

with 𝜑𝜑𝜑ℎ,𝑖 the normalized eigenvectors of the operator 𝐴0ℎ. In the same manner 𝑆𝑘,𝑛ℎ and 𝑆𝑘,𝑛+1−ℎ can be
equivalently represented as a collection of N𝑝 members

{𝑆𝑘,𝑛ℎ, 𝑗 }
N𝑝

𝑗=1 ∈ Zℎ .

Each member is comparable to the variation of a wave solution for the specific parameter increment 𝐷𝑘,𝑛ℎ, 𝑗 .
We are going to prove the following recursive dynamics, defining again a splitting time-scheme with one
prediction step followed by a correction step.

Theorem 4.3.3. For all 𝑘 ≥ 1 and for all 𝑛 ∈ [0:𝑁 − 1], we define the Gramian operator 𝐺𝑘,𝑛 by

𝐺𝑘,𝑛 = IdY +
Δ𝑡

𝛾2𝐶ℎ𝑆
𝑘,𝑛−
ℎ 𝑆

𝑘,𝑛−∗
ℎ 𝐶∗ℎ,

and we denote by 𝑄𝑘,𝑛 the Cholesky decomposition of (𝐺𝑘,𝑛)−1 = 𝑄𝑘,𝑛𝑄𝑘,𝑛∗. With these notations, we
obtain the following dynamics:

— Prediction / Forecast:

𝑆
𝑘,𝑛+1−
ℎ, 𝑗 =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑆𝑘,𝑛ℎ, 𝑗 + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧

𝑘,𝑛
ℎ )𝐷𝑘,𝑛ℎ, 𝑗 , ∀ 𝑗 ∈ [1:N𝑝] . (4.37)

— Correction / Analysis:

𝑆
𝑘,𝑛+1
ℎ = 𝑆𝑘,𝑛+1−ℎ 𝑄𝑘,𝑛+1, and 𝐷

𝑘,𝑛+1
ℎ = 𝐷𝑘,𝑛ℎ 𝑄𝑘,𝑛+1. (4.38)

Proof. We proceed by induction. This is true at 𝑛 = 0 since 𝐿𝑘,0ℎ = 0. Let us now assume that (4.37) and
(4.38) are valid at iteration 𝑛. For the prediction step, we have for all 𝑗 ∈ [1:N𝑝],

𝑆
𝑘,𝑛+1−
ℎ, 𝑗 = 𝐿𝑘,𝑛+1ℎ, 𝑗 𝐷

𝑘,𝑛
ℎ, 𝑗

=𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝐿𝑘,𝑛ℎ, 𝑗𝐷𝑘,𝑛ℎ, 𝑗 + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧
𝑘,𝑛+1−
ℎ )𝐷𝑘,𝑛ℎ, 𝑗

=𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑆𝑘,𝑛ℎ, 𝑗 + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧
𝑘,𝑛+1−
ℎ )𝐷𝑘,𝑛ℎ, 𝑗

so that (4.37) is satisfied at iteration 𝑛. From Woodbury inversion formula, we have that

(𝐺𝑘,𝑛+1)−1 =
(
IdY +

Δ𝑡

𝛾2𝐶ℎ𝑆
𝑘,𝑛+1−
ℎ 𝑆

𝑘,𝑛+1−∗
ℎ 𝐶∗ℎ

)−1

= IdPℎ − Δ𝑡 𝑆𝑘,𝑛+1−∗ℎ 𝐶∗ℎ [𝛾2IdY + Δ𝑡 𝐶ℎ𝑆𝑘,𝑛+1−ℎ 𝑆
𝑘,𝑛+1−∗
ℎ 𝐶∗ℎ]−1𝐶ℎ𝑆

𝑘,𝑛+1−
ℎ

= 𝑄𝑘,𝑛+1𝑄𝑘,𝑛+1∗
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Therefore if we now define 𝐷𝑘,𝑛+1ℎ = 𝐷𝑘,𝑛ℎ 𝑄𝑘,𝑛+1 then

𝐷
𝑘,𝑛+1
ℎ 𝐷

𝑘,𝑛+1∗
ℎ = 𝐷𝑘,𝑛ℎ 𝑄𝑘,𝑛+1𝑄𝑘,𝑛+1∗𝐷𝑘,𝑛ℎ

= Λ𝑘,𝑛ℎ
− Δ𝑡Λ𝑘,𝑛ℎ 𝐿

𝑘,𝑛+1∗
ℎ 𝐶∗ℎ [𝛾2IdY + Δ𝑡𝐶ℎ𝐿𝑘,𝑛+1ℎ Λ𝑘,𝑛ℎ 𝐿

𝑘,𝑛+1∗
ℎ 𝐶∗ℎ]−1𝐶ℎ𝐿

𝑘,𝑛+1
ℎ

which, with a second use of Woodbury inversion formula gives 𝐷𝑘,𝑛+1ℎ 𝐷
𝑘,𝑛+1∗
ℎ = Λ𝑘,𝑛+1ℎ . Finally, we

have that

𝑆
𝑘,𝑛+1
ℎ = 𝐿𝑘,𝑛+1ℎ 𝐷

𝑘,𝑛+1
ℎ = 𝐿𝑘,𝑛+1ℎ 𝐷

𝑘,𝑛
ℎ 𝑄𝑘,𝑛+1 = 𝑆𝑘,𝑛+1−ℎ 𝑄𝑘,𝑛+1,

which concludes the proof. □

Note that in practice, one can use the component-wise expression of the Gramian matrix, namely

𝐺
𝑘,𝑛
𝑖 𝑗 = 𝛿𝑖 𝑗 + Δ𝑡

𝛾2 (𝐶ℎ𝑆
𝑘,𝑛−
ℎ,𝑖 , 𝐶ℎ𝑆

𝑘,𝑛−
ℎ, 𝑗 )Y , ∀1 ≤ 𝑖, 𝑗 ≤ N𝑝 .

In the same fashion, we have

𝑆
𝑘,𝑛+1
ℎ, 𝑗 =

∑︁
1≤𝑖≤N𝑝

𝑄
𝑘,𝑛+1
𝑖 𝑗 𝑆

𝑘,𝑛+1−
ℎ,𝑖 , and 𝐷

𝑘,𝑛+1
ℎ,𝑖 =

∑︁
1≤𝑖≤N𝑝

𝑄
𝑘,𝑛+1
𝑖 𝑗 𝐷

𝑘,𝑛
ℎ,𝑖 .

From the previous theorem, we then easily verify that the DT-iROEKF estimator can be computed
using only 𝑆𝑘,𝑛−ℎ , 𝑆𝑘,𝑛ℎ and 𝐷𝑘,𝑛ℎ with

— Prediction / Forecast:
𝑧
𝑘,𝑛+1−
ℎ =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑧𝑘,𝑛ℎ + 𝑟𝑛+1ℎ,Δ𝑡 , (4.39)

— Correction / Analysis:




𝜃
𝑘,𝑛+1
ℎ = 𝜃𝑘,𝑛ℎ +

Δ𝑡

𝛾2𝐷
𝑘,𝑛+1
ℎ 𝑆

𝑘,𝑛+1∗
ℎ 𝐶∗ℎ (𝑦𝑛+1𝛾 − 𝐶ℎ𝑧𝑘,𝑛+1−ℎ ),

𝑧
𝑘,𝑛+1
ℎ = 𝑧𝑘,𝑛+1−ℎ + Δ𝑡

𝛾2 𝑆
𝑘,𝑛+1
ℎ 𝑆

𝑘,𝑛+1∗
ℎ 𝐶∗ℎ (𝑦𝑛+1𝛾 − 𝐶ℎ𝑧𝑘,𝑛+1−ℎ ).

(4.40)

(4.41)

And again in practice, solving (4.40) and (4.41) is performed by developing




𝜃
𝑘,𝑛+1
ℎ = 𝜃𝑘,𝑛ℎ +

Δ𝑡

𝛾2

∑︁
1≤ 𝑗≤N𝑝

(𝐶ℎ𝑆𝑘,𝑛+1ℎ, 𝑗 , 𝑦𝑛+1𝛾 − 𝐶ℎ𝑧𝑘,𝑛+1−ℎ )Y𝐷𝑘,𝑛+1ℎ, 𝑗 ,

𝑧
𝑘,𝑛+1
ℎ = 𝑧𝑘,𝑛+1−ℎ + Δ𝑡

𝛾2

∑︁
1≤ 𝑗≤N𝑝

(𝐶ℎ𝑆𝑘,𝑛+1ℎ, 𝑗 , 𝑦𝑛+1𝛾 − 𝐶ℎ𝑧𝑘,𝑛+1−ℎ )Y𝑆𝑘,𝑛+1ℎ, 𝑗 .

A tangent-free alternative. Ultimately, (4.37) can be seen as the tangent equation of

𝑆
𝑘,𝑛+1−
ℎ, 𝑗 =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑆𝑘,𝑛ℎ, 𝑗 + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧

𝑘,𝑛
ℎ )𝐷𝑘,𝑛ℎ, 𝑗

=𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ ) (𝑧𝑘,𝑛ℎ + 𝑆𝑘,𝑛ℎ, 𝑗 ) + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧
𝑘,𝑛
ℎ )𝐷𝑘,𝑛ℎ, 𝑗 −𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑧𝑘,𝑛ℎ

=𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ + 𝐷𝑘,𝑛ℎ, 𝑗 ) (𝑧𝑘,𝑛ℎ + 𝑆𝑘,𝑛ℎ, 𝑗 ) −𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑧𝑘,𝑛ℎ +𝑂 (∥𝐷𝑘,𝑛ℎ, 𝑗 ∥2)
=𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ + 𝐷𝑘,𝑛ℎ, 𝑗 ) (𝑧𝑘,𝑛ℎ + 𝑆𝑘,𝑛ℎ, 𝑗 ) + 𝑟𝑛+1ℎ,Δ𝑡 − 𝑧𝑘,𝑛+1−ℎ +𝑂 (∥𝐷𝑘,𝑛ℎ, 𝑗 ∥2). (4.42)

Therefore, by computing the forecast of each member 𝑆𝑘,𝑛+1−ℎ, 𝑗 by a finite difference between two wave
equations, we do not need to compute the operator 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧

𝑘,𝑛+1
ℎ ). This means that the forecast step

can be performed by simply forecasting 𝑧𝑘,𝑛ℎ and each member 𝑆𝑘,𝑛ℎ, 𝑗 .
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4.3.4 The Reduced-Order UKF alternative
In the DT-iROEKF approach, we have seen that we can propagate the estimator 𝜃𝑘,𝑛ℎ , 𝑧𝑘,𝑛ℎ and the

increment set {𝑆𝑘,𝑛+1−ℎ, 𝑗 }N𝑝

𝑗=1 and {𝐷𝑘,𝑛+1−ℎ, 𝑗 }N𝑝

𝑗=1. These increments give the sensitivity direction around
the estimator 𝜃𝑘,𝑛ℎ , 𝑧𝑘,𝑛ℎ . Revisiting [Pham, Verron, and Gourdeau, 1998; Moireau and Chapelle, 2011],
the Reduced-Order Unscented Kalman alternative (ROUKF) to ROEKF, we are going to replace the
computation of the increment sets by sets of so-called sigma-points around 𝜃𝑘,𝑛ℎ and 𝑧𝑘,𝑛ℎ so that the
estimator is computed by an averaging formula like in a finite difference stencil. In essence, while EKF
propagates a point-estimator and N𝑝 directions around this point-estimator, UKF computes a stencil of
sigma-points such that the point-estimator is a resulting average of this point. In practice we will need at
least N𝑠 = N𝑝 +1 sigma-points when using a simplex stencil, but more complex stencils with N𝑠 ≥ N𝑝 +1
can also be proposed with additional trajectories to be computed. Note that our presentation clarifies the
generalization of ROUKF to general complex stencil initially proposed in [Moireau and Chapelle, 2011;
Moireau, Philippe and Chapelle, Dominique, 2011]. This may be of particular interest since increasing
the number of sigma points results in a potentially more precise sampling and rendering of the sensitivity
directions around the estimator.

Empirical mean and empirical covariance. Let us introduce a set of strictly positive weights 𝛽 =
{𝛽 𝑗}N𝑠

𝑗=1 ∈ (R∗+)N𝑠 such that ∑︁
1≤ 𝑗≤N𝑠

𝛽 𝑗 = 1.

From this set of weights, we introduce the following weight averaging operator defined, for all sample set
{𝑠 𝑗}N𝑠

𝑗=1 ∈ XN𝑠 of elements of a Hilbert space X (typicallyZℎ, Pℎ or Y), by

E𝛽 ({𝑠 𝑗}N𝑠

𝑗=1) =
∑︁

1≤ 𝑗≤N𝑠

𝛽 𝑗 𝑠 𝑗 ∈ Z.

This can be understood as an empirical mean of the {𝑠 𝑗}N𝑠

𝑗=1. In the same fashion, we define the empirical
covariance as the following linear operator

P𝛽 ({𝑠 𝑗}N𝑠

𝑗=1) : X ∋ 𝑠 ↦→
∑︁

1≤ 𝑗≤N𝑠

𝛽 𝑗

(
𝑠, 𝑠 𝑗 −E𝛽 ({𝑠 𝑗}N𝑠

𝑗=1)
)
X

(
𝑠 𝑗 −E𝛽 ({𝑠 𝑗}N𝑠

𝑗=1)
)
∈ X,

where (·, ·)X is the scalar product in X. As soon as we are considering a finite-dimensional Euclidian
space X = R𝑁𝑥 , then

P𝛽 ({𝑠 𝑗}N𝑠

𝑗=1) =
∑︁

1≤ 𝑗≤N𝑠

𝛽 𝑗 (𝑠 𝑗 −E𝛽 ({𝑠 𝑗}N𝑠

𝑗=1)) (𝑠 𝑗 −E𝛽 ({𝑠 𝑗}N𝑠

𝑗=1))⊺ .

Sampling around the observer trajectory. Let us now introduce a scaling factor 𝜚 ∈ R∗+ and define a
particular finite sequence of sigma-points {𝑒 𝑗}N𝑠

𝑗=1 in the parameter space Pℎ such that

E𝛽 ({𝑒 𝑗}N𝑠

𝑗=1) = 0 and P𝛽 ({𝑒 𝑗}N𝑠

𝑗=1) =
1
𝜚2 IdPℎ .

Note that by choosing {𝑒 𝑗}N𝑠

𝑗=1 such that ∥𝑒 𝑗 ∥2P = 𝑂 (1) then 𝜚 = 𝑂 (N−
1
2

𝑝 ). Again, defining 𝐷𝑘,𝑛ℎ such
as Λ𝑘,𝑛ℎ = 𝐷𝑘,𝑛ℎ 𝐷

𝑘,𝑛∗
ℎ – namely 𝐷𝑘,𝑛ℎ can be the square root of Λ𝑘,𝑛ℎ or a Cholesky decomposition – and

using 𝐿𝑘,𝑛ℎ at iteration 𝑛, we define the sampling operation as constructing the following set of trajectories

∀ 𝑗 ∈ [1:N𝑠],
{
𝑧
𝑘,𝑛
ℎ, 𝑗 = 𝑧

𝑘,𝑛
ℎ + 𝜚𝐿𝑘,𝑛ℎ 𝐷

𝑘,𝑛
ℎ 𝑒 𝑗 ,

𝜃
𝑘,𝑛
ℎ, 𝑗 = 𝜃

𝑘,𝑛
ℎ + 𝜚𝐷𝑘,𝑛ℎ 𝑒 𝑗 ,

(4.43)
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such that, by construction,

E𝛽 ({𝑧𝑘,𝑛ℎ, 𝑗 }N𝑠

𝑗=1) = 𝑧𝑘,𝑛ℎ and E𝛽 ({𝜃𝑘,𝑛ℎ, 𝑗 }N𝑠

𝑗=1) = 𝜃𝑘,𝑛ℎ ,

while
P𝛽 ({𝑧𝑘,𝑛ℎ, 𝑗 }N𝑠

𝑗=1) = 𝐿𝑘,𝑛ℎ Λ𝑘,𝑛ℎ 𝐿
𝑘,𝑛∗
ℎ and P𝛽 ({𝜃𝑘,𝑛ℎ, 𝑗 }N𝑠

𝑗=1) = Λ𝑘,𝑛ℎ .

Different kinds of sigma-points can be used to perform this sampling operation – see for instance [Moireau
and Chapelle, 2011]. In Figure 4.1 we illustrate three different (albeit standard) sets of sigma-points, and
we compare it with the sampling strategy derived from the tangent-free EKF approach presented in the
previous section.

Figure 4.1 – Definition of standard sigma-points for the simple case of P = R2 and comparison with the
state and sensitivity trajectories associated with the tangent-free EKF approach.

Prediction step of the reduced-order UKF. The prediction step of the reduced-order UKF is simply
obtained by propagating 𝑧𝑘,𝑛ℎ, 𝑗 using the discretized dynamics, namely

𝑧
𝑘,𝑛+1−
ℎ, 𝑗 =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ, 𝑗 )𝑧𝑘,𝑛ℎ, 𝑗 + 𝑟𝑛+1ℎ,Δ𝑡 .

Using the empirical average operator, we can derive the state and parameter sensitivity around the
estimator trajectory, namely we define the predictions

∀ 𝑗 ∈ [1:N𝑠],
{
Σ𝑘,𝑛+1−ℎ, 𝑗 = 𝑧𝑘,𝑛+1−ℎ, 𝑗 −E𝛽 ({𝑧𝑘,𝑛+1−ℎ, 𝑗 }N𝑠

𝑗=1),
Δ𝑘,𝑛ℎ, 𝑗 = 𝜃𝑘,𝑛ℎ, 𝑗 −E𝛽 ({𝜃𝑘,𝑛ℎ, 𝑗 )}N𝑠

𝑗=1.
(4.44)

From its definition, and using the definition of the sampling operation (4.43), one can easily verify that
the parameter sensitivity satisfies

Δ𝑘,𝑛ℎ, 𝑗 = 𝜚𝐷
𝑘,𝑛
ℎ 𝑒 𝑗 , ∀ 𝑗 ∈ [1:N𝑠] . (4.45)

The next lemma gives us a similar result for the state sensitivity.

Lemma 4.3.4. The predicted state sensitivity defined in (4.44) satisfies

Σ𝑘,𝑛+1−ℎ, 𝑗 = 𝜚𝐿𝑘,𝑛+1ℎ 𝐷
𝑘,𝑛
ℎ 𝑒 𝑗 +𝑂 (𝜚2). (4.46)
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Proof. On the one hand, the state prediction of each sigma-point satisfies for any 𝑗 ∈ [1:N𝑠],

𝑧
𝑘,𝑛+1−
ℎ, 𝑗 =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ, 𝑗 )𝑧𝑘,𝑛ℎ, 𝑗 + 𝑟𝑛+1ℎ,Δ𝑡

=𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑧𝑘,𝑛ℎ + 𝑟𝑛+1ℎ,Δ𝑡 +𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ ) (𝑧𝑘,𝑛ℎ, 𝑗 − 𝑧𝑘,𝑛ℎ )
+ 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧

𝑘,𝑛
ℎ ) (𝜃𝑘,𝑛ℎ, 𝑗 − 𝜃𝑘,𝑛ℎ ) +𝑂 (𝜚2).

On the other hand, we can introduce

𝑧
𝑘,𝑛+1−
ℎ = E𝛽 (𝑧𝑘,𝑛+1−ℎ, 𝑗 ) = E𝛽 ({𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ, 𝑗 )𝑧𝑘,𝑛ℎ, 𝑗 + 𝑟𝑛+1ℎ,Δ𝑡 }N𝑠

𝑗=1),

and a Taylor expansion gives

𝑧
𝑘,𝑛+1−
ℎ =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝑧𝑘,𝑛ℎ + 𝑟𝑛+1ℎ,Δ𝑡 +𝑂 (𝜚2).

Using the sampling operations defined in (4.43) we obtain

Σ𝑘,𝑛+1−ℎ, 𝑗 = 𝑧𝑘,𝑛+1−ℎ, 𝑗 − 𝑧𝑘,𝑛+1−ℎ

=𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ ) (𝑧𝑘,𝑛ℎ, 𝑗 − 𝑧𝑘,𝑛ℎ ) + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧
𝑘,𝑛
ℎ ) (𝜃𝑘,𝑛ℎ, 𝑗 − 𝜃𝑘,𝑛ℎ ) +𝑂 (𝜚2)

= 𝜚
(
𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ )𝐿𝑘,𝑛ℎ + 𝐵ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ , 𝑧

𝑘,𝑛
ℎ )

)
𝐷
𝑘,𝑛
ℎ 𝑒 𝑗 +𝑂 (𝜚2)

= 𝜚𝐿𝑘,𝑛+1ℎ 𝐷
𝑘,𝑛
ℎ 𝑒 𝑗 +𝑂 (𝜚2).

□

Correction step of the reduced-order UKF. From the relations (4.45) and (4.46) we see that – up to
second order terms – storing Σ𝑘,𝑛+1−ℎ, 𝑗 and Δ𝑘,𝑛ℎ, 𝑗 is equivalent to the storing 𝑆𝑘,𝑛+1−ℎ and 𝐷𝑘,𝑛ℎ except that
N𝑠 > N𝑝. Then, following the definition of the correction (or analysis) step of the SEEK algorithm,
namely (4.38), we propagate the state and parameter sensitivity through

Σ𝑘,𝑛+1ℎ, 𝑗 =
∑︁

1≤𝑖≤N𝑠

𝑄
𝑘,𝑛+1
𝑖 𝑗 Σ𝑘,𝑛+1−ℎ,𝑖 and Δ𝑘,𝑛+1ℎ, 𝑗 =

∑︁
1≤𝑖≤N𝑠

𝑄
𝑘,𝑛+1
𝑖 𝑗 Δ𝑘,𝑛ℎ,𝑖 ,

where for all 𝑛, 𝑄𝑘,𝑛 ∈ MN𝑠 (R) is given by the Cholesky decomposition of (𝐺𝑘,𝑛)−1 = 𝑄𝑘,𝑛𝑄𝑘,𝑛∗ a
Gramian matrix defined by

𝐺
𝑘,𝑛
𝑖 𝑗 = 𝛿𝑖 𝑗 + Δ𝑡

𝛾2 (𝐶ℎΣ
𝑘,𝑛−
ℎ,𝑖 , 𝐶ℎΣ

𝑘,𝑛−
ℎ, 𝑗 )Y , ∀𝑖, 𝑗 ∈ [1:N𝑠] .

Using the same analogy, the corrected estimator can be rewritten in the form




𝜃
𝑘,𝑛+1
ℎ = 𝜃𝑘,𝑛ℎ +

Δ𝑡

𝛾2

∑︁
1≤ 𝑗≤N𝑠

(𝐶Σ𝑘,𝑛+1ℎ, 𝑗 , 𝑦𝑛+1𝛾 − 𝐶𝑧𝑘,𝑛+1−ℎ )YΔ𝑘,𝑛+1ℎ, 𝑗 ,

𝑧
𝑘,𝑛+1
ℎ = 𝑧𝑘,𝑛+1−ℎ + Δ𝑡

𝛾2

∑︁
1≤ 𝑗≤N𝑠

(𝐶Σ𝑘,𝑛+1ℎ, 𝑗 , 𝑦𝑛+1𝛾 − 𝐶𝑧𝑘,𝑛+1−ℎ )YΣ𝑘,𝑛+1ℎ, 𝑗 .

Furthermore, with a proof very similar to the proof of Theorem 4.3.3 (introducing in finite dimension the
matrix 𝐸 = [𝑒1 | · · · |𝑒N𝑠 ] and concatenating in columns the sigma-points {𝑒 𝑗}N𝑠

𝑗=1), one can verify that for
all 𝑗 ∈ [1:N𝑠],

Σ𝑘,𝑛+1ℎ, 𝑗 = 𝜚𝐿𝑘,𝑛+1ℎ 𝐷
𝑘,𝑛+1
ℎ 𝑒 𝑗 +𝑂 (𝜚2) and Δ𝑘,𝑛+1ℎ, 𝑗 = 𝜚𝐷𝑘,𝑛+1ℎ 𝑒 𝑗 +𝑂 (𝜚2). (4.47)

Hence, Σ𝑘,𝑛+1ℎ, 𝑗 and Δ𝑘,𝑛+1ℎ, 𝑗 are equivalent to 𝑆
𝑘,𝑛+1
ℎ and 𝐷

𝑘,𝑛+1
ℎ , up to second order terms, as for the

prediction step. Once again, the only – but fundamental – difference compared to the EKF version is
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the fact that the Gramian is defined in MN𝑠 (R) instead of MN𝑝 (R). Note that, one important aspect of
the relations (4.47) is that it enables us to rewrite the sampling operation (4.43) exclusively in terms of
the computed state and parameter sensitivities. Namely, we recreate the sample at 𝑛 + 1 by discarding
second-order terms in the following relations

𝑧
𝑘,𝑛+1
ℎ, 𝑗 = 𝑧𝑘,𝑛+1ℎ + Σ𝑘,𝑛+1ℎ, 𝑗 +𝑂 (𝜚2), and 𝜃

𝑘,𝑛+1
ℎ, 𝑗 = 𝜃𝑘,𝑛ℎ + Δ𝑘,𝑛+1ℎ, 𝑗 +𝑂 (𝜚2).

We provide in Figure 4.2 an illustration of its main steps, in order to fully apprehend the various unknowns
appearing in the algorithm.
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Final algorithm. We can now summarize the complete algorithm used in this work.

The Discrete-Time iterated Reduced-Order Unscented Kalman Filter (DT-iROUKF)

▶ Choice of the UKF sigma-points {𝑒 𝑗 }N𝑠

𝑗=1 and the associated weights {𝛽 𝑗 }N𝑠

𝑗=1.
▶ Initialization of the parameter prior from the modal decomposition

𝑢̂𝑢𝑢0 (x) =
∑︁

1≤ 𝑗≤N𝑝

𝜃0ℎ, 𝑗𝜑𝜑𝜑 𝑗 (x).

▶ For all 𝑘 ≥ 1 until convergence:
• Initialization at 𝑛 = 0:
↩→ Parameter initialization:

𝜃
𝑘,0
ℎ = 𝜃𝑘−1,𝑁

ℎ if 𝑘 > 1, 𝜃
1,0
ℎ = 𝜃0ℎ otherwise.

↩→ Parameter and state particles initialization:

∀ 𝑗 ∈ [1:N𝑠],
{
𝜃
𝑘,0
ℎ, 𝑗 = 𝜃

𝑘,0
ℎ + 𝜚 𝐷𝑘,0𝑒 𝑗 , with 𝐷𝑘,0 = chol(Λ𝑚0 ),

𝑧0
ℎ, 𝑗 = 0.

• For 0 ≤ 𝑛 ≤ 𝑁:
↩→ Prediction step:

∀ 𝑗 ∈ [1:N𝑠],


𝑧
𝑘,𝑛+1−
ℎ, 𝑗 =𝛷ℎ,Δ𝑡 (𝜃𝑘,𝑛ℎ, 𝑗 )𝑧𝑘,𝑛ℎ, 𝑗 + 𝑟𝑛+1ℎ,Δ𝑡 ,

Σ𝑘,𝑛+1−ℎ, 𝑗 = 𝑧𝑘,𝑛+1−ℎ, 𝑗 −E𝛽 ({𝑧𝑘,𝑛+1−ℎ, 𝑗 }N𝑠

𝑗=1),
Δ𝑘,𝑛ℎ, 𝑗 = 𝜃𝑘,𝑛ℎ, 𝑗 −E𝛽 ({𝜃𝑘,𝑛ℎ, 𝑗 }N𝑠

𝑗=1).

↩→ Correction step:

– Compute Gramian matrix and Cholesky decomposition of its inverse:



𝐺𝑘,𝑛+1 = (𝛿𝑖 𝑗 + Δ𝑡

𝛾2 (𝐶ℎΣ
𝑘,𝑛+1−
ℎ,𝑖 , 𝐶ℎΣ

𝑘,𝑛+1−
ℎ, 𝑗 )Y)1≤𝑖, 𝑗≤N𝑠 ,

𝑄𝑘,𝑛+1 = chol((𝐺𝑘,𝑛+1)−1).

– Compute corrected sensitivity matrices:

∀ 𝑗 ∈ [1:N𝑠],




Σ𝑘,𝑛+1ℎ, 𝑗 =
∑︁

1≤𝑖≤N𝑝

𝑄
𝑘,𝑛+1
𝑖 𝑗 Σ𝑘,𝑛+1−ℎ,𝑖 ,

Δ𝑘,𝑛+1ℎ, 𝑗 =
∑︁

1≤𝑖≤N𝑝

𝑄
𝑘,𝑛+1
𝑖 𝑗 Δ𝑘,𝑛ℎ,𝑖 .

– Compute corrected state and parameter:




𝜃
𝑘,𝑛+1
ℎ = 𝜃𝑘,𝑛ℎ +

Δ𝑡

𝛾2

∑︁
1≤ 𝑗≤N𝑠

(𝐶Σ𝑘,𝑛+1ℎ, 𝑗 , 𝑦𝑛+1𝛾 − 𝐶𝑧𝑘,𝑛+1−ℎ )YΔ𝑘,𝑛+1ℎ, 𝑗

𝑧
𝑘,𝑛+1
ℎ = 𝑧𝑘,𝑛+1−ℎ + Δ𝑡

𝛾2

∑︁
1≤ 𝑗≤N𝑠

(𝐶Σ𝑘,𝑛+1ℎ, 𝑗 , 𝑦𝑛+1𝛾 − 𝐶𝑧𝑘,𝑛+1−ℎ )YΣ𝑘,𝑛+1ℎ, 𝑗

↩→ Sampling step:

∀ 𝑗 ∈ [1:N𝑠],
{
𝜃
𝑘,𝑛+1
ℎ, 𝑗 = 𝜃𝑘,𝑛+1ℎ + Δ𝑘,𝑛+1ℎ, 𝑗 ,

𝑧
𝑘,𝑛+1
ℎ, 𝑗 = 𝑧𝑘,𝑛+1 + Σ𝑘,𝑛+1ℎ, 𝑗 .

Additionally, for output purposes, we can re-define up to second-order terms the parameter covariance
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operator from the stored {Δ𝑘,𝑛ℎ, 𝑗 }N𝑠

𝑗=1 and {𝑧𝑛+1−ℎ, 𝑗 }N𝑠

𝑗=1:

Λ𝑘,𝑛ℎ : Pℎ ∋ 𝜃 ↦→
∑︁

1≤ 𝑗≤N𝑠

𝛽 𝑗 (Δ𝑘,𝑛ℎ, 𝑗 , 𝜃)PΔ𝑘,𝑛ℎ, 𝑗 ∈ Pℎ .

In the same fashion, the parameter sensitivity operator reads

𝐿
𝑘,𝑛+1
ℎ : Pℎ ∋ 𝜃 ↦→

∑︁
1≤ 𝑗≤N𝑠

𝛽 𝑗 ((Λ𝑘,𝑛ℎ )−1𝜃,Δ𝑘,𝑛ℎ, 𝑗 )P (𝑧𝑘,𝑛+1−ℎ, 𝑗 − 𝑧𝑘,𝑛+1−ℎ ) ∈ Zℎ .

Figure 4.2 – Illustration of the main steps of the reduced-order UKF algorithm in the specific case of
P = R2 and focusing specifically on the state estimation part.
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Figure 4.3 – Parallel implementation of the DT-iROUKF in AKILLES.

Finally let us give some implementation details, see also Figure 4.3. We implemented the DT-
iROUKF algorithm in a specific Python library called AKILLES 1 based on the message passing library

1. https://gitlab.inria.fr/AKILLES/AKILLES

https://gitlab.inria.fr/AKILLES/AKILLES
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⊘MQ 2. The objective of this library is to couple the estimator library with any model, written in any
language that can receive and send vector quantities through ⊘MQ. In AKILLES, the Gramian, Cholesky
decomposition, corrected states and parameters are computed by the main process of AKILLES called
Agamemnon who communicates through ⊘MQ with Achilles’ army of Myrmidons – here they represent
wave solvers built upon the SFEM kernel of the commercial software CIVA 3. The physical outputs are
finally processed after the correction step by the process Achilles, a specific Myrmidon wave solver in
CIVA in charge of extra output computations. Note that the non-linear mechanical deformation and the
corresponding modal decomposition are initially computed using the Finite Element Library MoReFEM 4

for solving large deformation mechanical problems.

4.4 Numerical results
In this section, we illustrate the use of the presented algorithm for estimating the deformation caused

by the mechanical loading in structures using GW measurements. Three different cases are presented
in increasing order of complexity. The first case is a small-scale problem with the objective of testing
the robustness and analyzing the estimation results of the proposed strategies. The second case is an
aluminum plate under traction forces based on an experiment [Gandhi, Michaels, and Lee, 2012] done
in the context of acoustoelasticity to retrieve the material third-order elastic constants. The third case is
a pipe subjected to a 4-point bending test based on an experiment [Tschöke et al., 2017] related to the
detection of welding defects under operational conditions employing ultrasound. All the illustrated cases
are presented with the structure described below.

Noisy synthetic data generation. First, let us describe the numerical experimental setup for generating
noisy synthetic data, and comprising mechanical loading, ultrasonic excitation and signal aquisition. A
quasi-static structural problem is defined to compute the structural deformation caused by mechanical
loading. For all the cases, the constitutive behavior of the material is modeled by the Compressible Neo
Hookean (CNH) hyperelastic law. With 𝜆 and 𝜇 being the Lamé parameters, its hyperelastic potential
reads

W CNH =
𝜆

2
(
√︁
𝐼3 − 1)2 + 𝜇

2
(𝐼1 − 3 − log(𝐼3)),

with 𝐼1 = tr𝑪 and 𝐼3 = det𝑪 being invariants of the right Cauchy-Green deformation tensor 𝑪 = 𝐹𝐹𝐹⊺𝐹𝐹𝐹.
The mesh, type of forces and boundary conditions configuring the quasi-static problem are given for every
configurations considered in the following. After defining the configuration for the structural deformation
problem, we define the configuration for the excitation, propagation and measurement of ultrasonic waves.
A force acting upon the outer surface generates a wavefield radially with respect to the structure surface.
It represents a force 𝑓𝑓𝑓 defined in a sufficiently thin layer on the outer surface. Its ring geometry has an
inner radius of 10mm and an outer radius of 20mm. The excitation signal is a 5-cycle cosine Hanning
windowed at a specific frequency for each case. We consider zero initial conditions for the wavefield.
The observation data are generated by using the operator in (4.10) with the domain 𝜔𝑖 defined upon the
outer surface as a sufficiently thin layer in which the wavefield does no vary in the thickness direction.
This amounts to modeling a point or surface probe with specific sensitivity. One may note that during
the estimation procedure, as the estimated deformation changes while the wave propagation problem
is running, the CFL condition (4.28) also changes. However, the time step is computed once at the
initialization and this changes may cause numerical instability. To avoid such an issue, the time step is
computed to satisfy the CFL condition for the expected deformation extrema.

To emulate signals obtained from an acquisition system in real scenarios, we generate synthetic
observation data using the target deformation and the wave propagation solver. Gaussian noise is added

2. https://zeromq.org
3. https://www.extende.com
4. https://gitlab.inria.fr/MoReFEM

https://zeromq.org
https://www.extende.com
https://gitlab.inria.fr/MoReFEM
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to the simulated data to represent potential electronic and environmental noise. The Gaussian noise is
added to the simulated measurements as

𝑦𝑛𝛾,𝑖 = 𝑦̌
𝑛
𝑖 +

𝛾√
Δ𝑡
∥ 𝑦̌𝑖 ∥ℓ2 𝜒

𝑛
𝑖 ,

where 𝜒𝑛𝑖 is a realization of a random variable with distribution N(0, 1). The noise level is set by
adjusting 𝛾.

Reducing the parametric space using mode decomposition. To represent the parametric space on a
reduced basis, we use the eigenmodes of the quasi-static problem as defined in (4.11). First, we compute
a finite set of eigenmodes I ordered in ascending eigenvalue order, i.e. from the lower to highest spatial
frequency. A reduced parametric space for reconstructing the deformation is selected as a subset I★ ⊂ I.
This selection is made by having a guess 𝑢𝑢𝑢★0 of the deformation decomposed in the eigenbasis of I
and selecting the smallest subset I★ that satisfy a representation error criterion. More precisely, by
decomposing 𝑢𝑢𝑢★0 in the eigenmodes of I we select a set of modes associated with the components 𝜃★𝑖 that
have a minimum relative ℓ2-error 𝜏★ defined as

𝜏★ =
∥𝑢𝑢𝑢★0 −

∑
𝑗∈I★ 𝜃★𝑗 𝜑𝜑𝜑 𝑗 ∥
∥𝑢𝑢𝑢★0 ∥

.

To better visualize the relevance of the selected modes we plot the representation error for the first 𝑚
modes in I, namely 1 − 𝜏𝑚, where

𝜏𝑚 =
∥𝑢𝑢𝑢★0 −

∑
𝑗∈I𝑚 𝜃★𝑗 𝜑𝜑𝜑 𝑗 ∥
∥𝑢𝑢𝑢★0 ∥

and I𝑚 being the set of the 𝑚 lowest frequency modes in I.

Initializing the estimator. To initialize the estimator, we must give an a priori parameter and its
covariance. Even though one could use 𝜃★ as an a priori parameter value, we set 𝜃1,0

ℎ to zero in order
to test the robustness of our estimator with respect to the initial guess. Regarding the initial covariance,
we consider that max𝑖∈I★ 𝜃★𝑖 is a relevant estimation of the standard deviation of the lowest frequencies,
assuming that the lowest frequency is the most relevant for reconstruction. Then, the initial covariance
Λ0 is computed as, based on (4.14),

(Λ0)𝑖 𝑗 =
𝜆2
𝑖

𝜆2
min
(max
𝑖∈I★

𝜃★𝑖 )2𝛿𝑖 𝑗 , ∀𝑖, 𝑗 ∈ I★,

where the subscript min is associated with the lowest-frequency component in I★. The constant 𝑀 used
to normalize the regularization term is computed as

𝑀 =
∑︁
𝑖∈I★

𝜆2
min

𝜆2
𝑖

.

Finally, the constant 𝜀, which weights the regularization and misfit terms, is adjusted for each case. The
parameter 𝑚 appearing in the parametric space norm is set as 𝑚 = 1.

Presentation of the estimation results. At each outer iteration 𝑘 of our estimator, the last estimated
parameter 𝜃𝑘−1,𝑁

ℎ is used as an initial parameter for the next one 𝜃𝑘,0ℎ while the initial covariance restarts
at Λ0. We plot for each case the evolution in 𝑛 ∈ [1 : 𝑁] of the estimated parameters 𝜃𝑘,𝑛ℎ and a
region representing an estimation of the associated standard deviation

√︁
(Λ𝑘,𝑛+1)𝑖𝑖. Regarding the later,

the initial covariance is propagated through the estimation process while retrieving information from
the observations. It provides qualitative information about how the uncertainty evolves, although a
quantitative interpretation of this uncertainty must be considered carefully.
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Sensitivity analysis. Instead of using the subset I★, the estimation could be done using a larger set
of eigenmodes, I for instance, eliminating the need for 𝑢𝑢𝑢★0 . However, the ill-posedness of the problem
combined with the potential instability of the forward model, as the estimated pre-deformation varies
in time, makes it unviable. To circumvent this difficulty, we assume to know a set I★ of eigenmodes
that best represents the target deformation. Nonetheless, one may like to gather I★ directly from the
measurements, instead of using 𝑢𝑢𝑢★0 . As an attempt to do so, we perform a sensitivity analysis using one
Levenberg-Marquardt iteration of the proposed estimator and the set I. As we run the estimator in the
whole set I, we must avoid instability by constraining the trajectory 𝜃1,𝑛

ℎ . This can be done by setting the
covariance as

(Λ0)𝑖𝑖 = 𝛾2 = 10−8

with a parameter 𝜀 = 1, initially. Although at the end of the iteration the estimated 𝜃1,𝑁
ℎ have no quantita-

tive significance, it still retains qualitative information relating the parametric space to the observations.
To visualize and assess this relation, we plot the normalized estimated parameters at the end of the
estimation,

𝜃
1,𝑁
ℎ,𝑖

max𝑖∈I 𝜃1,𝑁
ℎ,𝑖

, ∀𝑖 ∈ I,

as well as the estimated parameters 𝜃1,𝑛
ℎ,𝑖 over time. Additionally to the estimated values, the covariance

matrix is also an output of the estimation process and can be used for this purpose. We plot its normalized
inverse,

(Λ−
1
2

0 )
(
(Λ0,𝑁 )−1 − Λ−1

0

)
(Λ−

1
2

0 ),
representing the normalized Gramian matrix, related to the system’s observability [Moore, 1981].

4.4.1 Results and discussion
4.4.1.1 A test case on robustness to noise

To illustrate and test the estimator robustness to noise, we model an aluminum cube of dimensions
60 × 60 × 60 mm3. The configuration for the quasi-static problem is shown in Figure 4.4a. The target
deformation shown in Figure 4.4b is computed by solving the quasi-static problem for a body force of
50N/mm3 in the Y direction.

(a) Configuration of forces the quasi-static problem. (b) Target deformation (visualization scaled 10x).

Figure 4.4 – Quasi-static problem configuration for the illustration on the cube.

From zero initial conditions, the wave field is excited at one of its faces at 100kHz in a ring region
as described previously. The configuration for the wave propagation model is depicted in Figure 4.5a,
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where the characteristic Gauss-Lobatto points of the SFEM discretization are represented. Examples of
extracted signals are plotted in Figure 4.5b. In this case, the observations are point measurements at ten
positions, where the three components of the displacement field are obtained. Considering the definition
of the observation operator (4.10), 𝜔𝑖 is a sufficiently small volume for which the displacement field is
considered constant. The three components are taken as sensitivity 𝒅𝑖 , resulting in 𝑑 = 30, the number
of measured signals. Each face, except the excited one, has two measurement points on the surface at
a distance of 15 mm from the edges. We run the wave propagation solver up to 100𝜇s to generate the
synthetic observation data. In Figure 4.5b we show the extracted field components for the point located
at (15,15,0).

(a) Configuration of the wave propagation problem. An
example of the wave field is illustrated.
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(b) Example of measured signals (three components) at
(15,15,0).

Figure 4.5 – Configuration and examples of measured signals for the wave propagation problem. The
measurement regions are represented in blue and the excited region in red.

To test the effect of noise in the estimation, different sets of observed data are constructed with
different levels of noise 𝛾 = [10−4, 0.01, 0.1, 0.2]. Examples of the different levels of added noise are
shown in Figure 4.6.
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Figure 4.6 – Example of different noise levels added to the synthetic data for the cube case.

The eigenmodes associated with the hundred lowest eigenvalues are computed, embodying I. We
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decompose a guess of the deformation generated by an axial body force with low amplitude, 𝑢𝑢𝑢★0 , in the
basis associated with I. Using this decomposition we plot 1 − 𝜏𝑚 and the associated relevant modes in
Figure 4.7. Then, the most relevant modes can be selected and are therefore highlighted, making, for
𝜏★ = 0.01, I★ = {3, 15, 19, 36, 39, 47, 90, 98}, meaning that with 8 selected modes we can reconstruct
99% of its deformation.
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(a) Reconstruction error per number of modes.
(b) Deformation associated with the relevant eigen-
modes.

Figure 4.7 – Reconstruction of 𝑢𝑢𝑢★ using the lowest frequency modes from which the selection of the most
relevant modes is done.

We run the estimation algorithm for the different noise levels 𝛾. We first use 𝜀 = 1 as the regularization
and misfit terms in function (4.16) are normalized. The iterative process is shown in Figure 4.8 with the
time evolution of the estimated parameters 𝜃𝑘ℎ. To illustrate the evolution of the estimated deformation,
we reconstruct it at given iterations and time and compare it with the target deformation in Figure 4.9, for
the case with 𝛾 = 0.2.

Discussion. At relatively low noise levels (𝛾 ≤ 0.01), the estimate converges in one iteration, and at
each subsequent iteration, the estimate deviates slightly from the converged value and converges again.
At higher noise levels (𝛾 ≥ 0.1), a few iterations may be required to converge with significant errors
w.r.t. the target, although it presents a good estimation of the reconstructed deformation, as shown in
Figure 4.9. In addition, the estimator updates the estimated parameter at a lower rate as 𝛾 increases, as we
can see in the case of 𝛾 = 0.2. This is due to the fact that 𝛾 weights the mismatch term, as can be seen in
(4.16), and gives less credibility to the observed data when noise increases. In such a case, the parameter
𝜀 can be adjusted to increase the rate at which the estimator updates the parameter based on the observed
data. For example, we set 𝜀 = 0.025 and show the corresponding estimate in Figure 4.10. We can see that
when the update rate is increased, the noise causes larger instabilities in the estimated parameter during
an iteration. The variable 𝜀 can be adjusted on a case-by-case basis. As discussed earlier, the tangent
stiffness operator in (4.6) can be ill-posed, i.e. the coercivity assumption (4.8) for the forward problem is
not guaranteed. Therefore, 𝜀 must be adjusted taking into account the direct-problem stability issues due
to strong oscillations during the estimation.

As mentioned earlier, we can restrict the estimation to a reduced parametric space without resorting
to an initial deformation prior, but by retrieving information from the observations. For this case, we
evaluate the possibility of doing this through a sensitivity analysis using a low noise level, 𝛾 = 10−4,
and 𝜀 = 1. The normalized estimated parameters are shown in Figure 4.11a and the quantity I★ is
highlighted. Based on these results, the most important modes cannot be completely distinguished, but
one could empirically set a threshold to select them. At the risk of overlooking some important modes, an
iterative selection process can be proposed but it is not discussed here. The evolution of these parameters
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during estimation is shown in Figure 4.11b, with the I★ set highlighted. The main modes do not appear
to exhibit any particular dynamic behavior that could be used to distinguish them. Finally, Figure 4.11c
plots the Gramian for the 50 first modes inI. The Gramian quantifies how observable and distinguishable
the different modes are from each other and information about the overall observability of the inverse
problem can be retrieved. High observability can lead to overestimation, as in the case of the higher
frequency modes, for example, mode 47. Inversely, low observability can lead to underestimation, as
in the case of mode 3. The diagonal values quantifies the observability of the associated modes while
off-diagonal terms quantifies how indistinguishable the associated modes are from each other.
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Figure 4.8 – Evolution in time for the estimation 𝜃𝑘ℎ for the cube case. The estimated modes components
are plotted with a highlighted region corresponding to the standard deviation. The target values are
represented as dashed lines. Different 𝛾 noise levels are tested with a regularization 𝜀 = 1.
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Figure 4.9 – Snapshots at given iterations 𝑘 and time 𝑡 of the estimated deformation compared with the
target deformation (transparent) for a high level of noise, 𝛾 = 0.2. From left to right, top to bottom we
have (k=0, t=0𝜇s) (k=0, t=25𝜇s) (k=0, t=35𝜇s) (k=1, t=25𝜇s) (k=2, t=75𝜇s) and (k=3, t=100𝜇s).
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Figure 4.10 – Evolution in time for the estimation 𝜃𝑘ℎ for the cube case. The estimated modes components
are plotted with a highlighted region corresponding to the standard deviation. The target values are
represented as dashed lines. A weak regularization, 𝜀 = 0.0025, and noise 𝛾 = 0.2 is used.
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(a) Normalized estimated value for each parameter at the end of the sensitivity analysis.
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(b) Evolution of 𝜃ℎ for every parameter in I.
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(c) Normalized Gramian at the end of the analysis.

Figure 4.11 – The estimation is done for the larger set I to perform a sensitivity analysis in the cube
illustration. Different outputs of the estimation procedure are plotted and the set I★ is highlighted.
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4.4.1.2 Aluminum plate under traction

We present here a case based on the experiment done in [Gandhi, Michaels, and Lee, 2012] to model
guided wave propagation in axially loaded structures. The specimen is an aluminum plate of dimensions
610 × 305 × 6.35 mm3 under traction forces. The configuration for the quasi-static problem is shown
in Figure 4.12a. We compute the target deformation with an axial stress of 57.5 MPa, resulting in the
deformation illustrated in Figure 4.12b.

(a) Configuration. (b) Deformation for an axial stress of 57.5MPa.

Figure 4.12 – Quasi static problem configuration and target deformation for the plate illustration.

The ultrasonic excitation is done as previously described at the center of the plate (upper surface) at
100kHz. The observation data are obtained by defining the observation operator in twelve surface regions
𝜔𝑖 distributed in an ellipse as depicted in Figure 4.13a. The mesh used in the wave propagation problem
is also depicted. The synthetic observed data are generated by running the simulation up to 200𝜇𝑠. An
example of the obtained signal is shown in Figure 4.13b.

(a) Wave propagation problem configuration, mesh, exci-
tation and measurement regions.
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(b) Example of measure signals.

Figure 4.13 – Configuration and examples of measured signals for the wave propagation problem. The
measurement regions are represented in blue and the excited region in red.

For the larger set of eigenmodes I we compute those associated with the 120 lowest eigenvalues. As
the experiment has no essential boundary conditions, rigid body movements are penalized and the first
6 eigenmodes, associated to them, are removed. From a guess of the deformation 𝑢𝑢𝑢★0 generated by the
traction surface forces with lower amplitude, we can select a smaller set of eigenmodes by analyzing its
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decomposition on a parametric basis. In Figure 4.14 we plot 1 − 𝜏𝑚 from which the most relevant modes
can be selected. For 𝜏★ = 0.05, we have I★ = {39, 67, 75, 83, 107, 118}.

39 11867 83

0

0.5

0.95
1

75 107

Mode Number m

1
−

τ
m

(a) Reconstruction error per number of modes. (b) Deformation associated with the relevant eigenmodes.

Figure 4.14 – Reconstruction of 𝑢𝑢𝑢★ using the lowest frequency modes from which the selection of the
most relevant modes is done.

After acquiring the observed data from the simulated measurements on the target deformation, we
add different levels of noise, 𝛾 = [0.01, 0.1], as plotted in Figure 4.15.
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Figure 4.15 – Example of different noise levels for the aluminum plate illustration.

Discussion. As in the previous case of the cube, a few specific modes are important to the reconstruction
of the deformation although the first relevant mode is of relatively high frequency. This must be taken
into account when computing I as we risk not including the relevant modes. The estimation shown in
Figure 4.16 required more iterations to achieve apparent convergence, even with the lowest noise. As
noise increases, the differentiation between modes becomes more difficult although the most important
mode, 39, remains pronounced. For visualization purposes, the estimated deformation is reconstructed
at different times of the estimation and depicted in Figure 4.17. As previously done, by adjusting 𝜀 we
can achieve a faster response of the estimate by reducing the number of iterations needed until apparent
convergence, as shown in the estimation for this adjusted case, Figure 4.18.

Regarding performance, the model for the quasi-static problem has 7750 degrees of freedom (DoFs)
and the computation of the first 120 eigenmodes takes 9 minutes. Finite elements of order one is used for
the quasi-static problem as numerical locking is negligible in pure extensional deformation. The wave
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Figure 4.16 – Evolution in time for the estimation 𝜃𝑘ℎ for the plate case. The estimated modes components
are plotted with a highlighted region corresponding to the standard deviation. The target values are
represented as dashed lines. Different 𝛾 noise levels are tested with a neutral regularization 𝜀 = 1.

propagation problem has 420k DoFs and a total of 2223 time steps. One run of the wave propagation
problem to generate the observations takes less than a minute and requires 180MB of RAM. During an
estimation of 6 mode components, 7 wave propagation problems are run in parallel and each iteration of
the estimation procedure takes 12 minutes. The computational cost of solving a wave propagation problem
is higher during estimation due to parameter change at each time step, requiring extra computations related
to the update of the tangent stiffness operator. We use a laptop computer equipped with a Intel i9-9880H
CPU and 32GB of RAM for computing the presented results.

Finally, the sensitivity analysis is done for a negligible noise 𝛾 = 10−4 and 𝜀 = 1. The final estimated
values for the sensitivity analysis are plotted in Figure 4.19a. In this case, the relevant modes are well
distinguishable. The observability can be analyzed in the Gramian matrix, Figure 4.19c. Due to its
sparsity, we conclude that there are only a few observable modes and the fact that the diagonal is not
pronounced means that the modes are less indistinguishable from each other. This can be seen in the
results with the reduced set of eigenmodes, where the estimation of less relevant modes are highly affected
by noise. The high observability shown in Figure 4.19a is due to the fact that the deformation of the



178 Chapter 4. Kalman-based estimation of loading conditions.

Figure 4.17 – Snapshots at given iterations 𝑘 and time 𝑡 of the estimated deformation compared with the
target deformation (transparent). Estimation for 𝛾 = 0.1. From left to right, top to bottom we have (k=0,
t=60𝜇s) (k=0, t=130𝜇s) (k=0, t=180𝜇s) and (k=1, t=200𝜇s). Visualization is scaled 300x.
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Figure 4.18 – Evolution in time for the estimation 𝜃𝑘ℎ for the plate case. The estimated modes components
are plotted with a highlighted region corresponding to the standard deviation. The target values are
represented as dashed lines. A weaker regularization, 𝜀 = 0.1, is used.

structure is of relatively high frequency , hence more observable according to the Gramian. Also, the
relevant modes are not clustered around a certain frequency, which helps their spatial differentiation. The
evolution of the parameters shown in Figure 4.19b can be analyzed and provide some insights into the
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process of estimation. Modes 67 and 87 present non-monotonic behavior since the deformation related
to these modes is concentrated farther from the center where the waves were excited (see Figure 4.14),
hence the wave takes longer to travel through these regions and its carried information to be considered.

Regarding performance of the sensitivity analysis, 115 wave propagation problems had to be run in
parallel, taking 5 hours to complete and requiring 271GB of RAM, in total. The memory usage for each
problem was significantly higher than when estimating only 6 modes as each problem had to store the
deformation gradient of all 114 modes. Other strategies for accessing such gradients can be proposed,
leaving room for improvement. A desktop workstation equipped with 2*Intel Xeon Platinum 8276 CPU
and 512GB of RAM was used to run these problems. Note that, although we use only one workstation,
our implementation with ⊘MQ allows parallelization through workstations and clusters.
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(a) Normalized estimated value for each parameter at the end of the sensitivity analysis.
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(b) Evolution of 𝜃ℎ for every parameter in I.
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(c) Normalized Gramian at the end of the analysis.

Figure 4.19 – The estimation is done for the larger set I to perform a sensitivity analysis in the plate
illustration. Different outputs of the estimation procedure are plotted and the set I★ is highlighted..

4.4.1.3 Experiment-based 4-point bending on a steel pipe

To increase complexity, we consider the experiment done in [Tschöke et al., 2017], where the authors
use ultrasonic guided waves to detect weld damage in a steel pipe while it was subjected to a 4-point
bending test. They assess the performance of traditional imaging techniques to detect the damage while
the specimen is subjected to mechanical load. To overcome the bias introduced by the mechanical load
to the ultrasonic signal, they perform signal acquisitions in pristine conditions for different loads and use
them as baselines to, through comparison, detect changes in the signal due to potential damage. The
baseline should be acquired for every expected load condition, which requires experimental manipulation
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and reduces the robustness of a detection system. An alternative to acquiring several baselines is to
estimate the deformation of the structure using the already available signals. For that purpose, we
illustrate the use of our method in this more complex and application-related configuration. The modeled
pipe has a length of 2.94 meters, a diameter of 0.1973m and is 8mm thick. The quasi-static problem
is depicted in Figure 4.20a. For a total applied force of 220kN, the target deformation is depicted in
Figure 4.20b.

(a) Quasi static problem configuration. (b) Target Deformation (visualization 20x).

Figure 4.20 – Quasi static problem configuration and target deformation for the pipe illustration.

The excitation is done at the top outer-upper surface of the steel pipe at 30kHz, the observations are
obtained from applying the observation operator, as previously described, with radial sensitivity in 48
regions distributed in 4 circular evenly distributed sections as depicted in Figure 4.21a. Each section of
transducers is rotated 15 degrees with respect to each other. The synthetic observed data are obtained
from simulating the wave propagation problem up to 1000𝜇𝑠. An example of the obtained signal is shown
in Figure 4.21b.

(a) Wave propagation problem configuration, mesh, exci-
tation and measurement regions.
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(b) Example of measured signal.

Figure 4.21 – Configuration and examples of measured signals for the wave propagation problem. The
measurement regions are represented in blue and the excited region in red.

The set I is embodied by the eigenmodes associated with the 60 lowest eigenvalues. From a guess
of the deformation 𝑢𝑢𝑢★0 generated by the bending surface forces, we can analyze its decomposition in the
eigenbasis. In Figure 4.22 we plot 1 − 𝜏𝑚 from which the most relevant modes can be selected and are
therefore highlighted, making, for 𝜏★ = 0.05, I★ = {0, 1, 2, 4, 6, 7, 8, 9}. Differently from the previous
cases, the relevant modes are concentrated in the lowest frequencies and are poorly distributed.

Due to the stability issues associated with the potential non-coercivity of the wave propagation
problem, the estimation has to be adjusted with 𝜀 = 104, setting a relatively low update rate for the
estimation, hence avoiding instabilities during estimation. The evolution of the parameter can be seen in
Figure 4.23 for two different levels of noise, 𝛾 = 10−4 and 𝛾 = 0.1. For both levels of noise, the estimation
succeeds in differentiating the modes. The estimated deformation are reconstructed at different steps of
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Figure 4.22 – Reconstruction error of 𝑢𝑢𝑢★ using the lowest frequency modes from which the selection of
the most relevant modes is done.

the estimation procedure and is depicted in Figure 4.24.

Discussion. Using high regularization and a large amount of observed data, the estimate is stable and
shows good convergence to the target in a few iterations, even when noise increases. By comparison with
the plate case, we believe that this is because sensors are well positioned and the acquisition time is long
enough so that this case benefits from rather strong observability, allowing it to well distinguish the de-
formation modes. This illustrates the importance of a robust and well-designed acquisition configuration
for a correct estimation.

Regarding performance of the estimation, The model for the quasi-static problem had 148k DoFs and
the computation of the first 60 eigenmodes takes 8 hours to complete using a Intel(R) Xeon(R) W-3245
CPU. Finite elements of order two is used for the quasi-static problem. The wave propagation problem
has 2𝑀 DoFs and a total of 4662 time steps. One run of the wave propagation problem to generate the
observations takes 5 minutes and requires 1GB of RAM. During an estimation of 8 mode components,
9 wave propagation problems are computed in parallel and each iteration of the estimation procedure
takes 2 hours. A workstation equipped with a Intel i9-9880H CPU and 32GB of RAM is used for the
estimation.

Note, however, that while we obtain satisfactory results when the estimation is performed in a reduced
set of modes, the sensitivity analysis performs poorly when it comes to selecting the relevant modes from
a larger set, as can be seen in Figure 4.25a. The high-frequency modes are overestimated because they are
more observable, as seen in the Gramian (Figure 4.25c). This overestimation of the less relevant modes
due to observability is a cause of instability when trying to estimate the deformation using the larger set
of modes. The evolution of the sensitivity analysis in Figure 4.25b shows that some irrelevant modes
compensate for each other when trying to minimize the misfit because they are less distinguishable.
Without the potential instability issue of the wave propagation problem, the Gramian diagonal indicates
that the modes are readily observable. The Gramian diagonal can also be used to group the modes that
conflict with each other in minimizing the mismatch, allowing selection of distinguishable modes and
adaptive estimation. This is typical of ill-posed inverse problems, where estimation is efficient once we
accept a regularization that here comes from a reconstruction in a parameter space with a small dimension.

Regarding performance of the sensitivity analysis, 61 wave propagation problems are computed in
parallel, taking 5 hours to complete and using 400GB of RAM, in total. A desktop workstation equipped
with 2×Intel Xeon Platinum 8276 and 512GB of RAM was used. The same remarks done for the plate
case regarding performance are valid here.
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Figure 4.23 – Evolution in time for the estimation 𝜃𝑘ℎ for the pipe case. The estimated modes components
are plotted with a highlighted region corresponding to the standard deviation. The target values are
represented as dashed lines. Different 𝛾 noise levels are tested with a strong regularization 𝜀 = 104.
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Figure 4.24 – Snapshots at given iterations 𝑘 and time 𝑡 of the estimated deformation compared with the
target deformation (transparent). Estimation for 𝛾 = 0.01. From left to right, top to bottom we have (k=0,
t=60𝜇s) (k=0, t=130𝜇s) (k=0, t=180𝜇s) and (k=1, t=200𝜇s). Visualization is scaled 20x.
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(c) Normalized Gramian at the end of the analysis.

Figure 4.25 – The estimation is done for the larger set I to perform a sensitivity analysis in the pipe
illustration. Different outputs of the estimation procedure are plotted and the set I★ is highlighted.
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4.5 Conclusion and perspectives
In this paper, we show how to reconstruct in nondestructive tests a baseline free of environmental

loading conditions using available SHM measurements. Our model-based approach is inspired by Full-
Wave Inversion (FWI) strategies, but here we take advantage of dynamic programming principles to avoid
multiple iterations of adjoint minimization. In fact, we still rely on an iterative strategy, the Levenberg-
Marquardt algorithm, to transform the initial nonlinear inverse problem into successive linear-quadratic
estimation problems. Each of these linear-quadratic estimation problems is then solved using a Kalman-
based approach. By relying on the Unscented-Kalman filter, we also avoid the computation of the tangent
operator required by the Levenberg-Marquardt algorithm. The final algorithm converges in a limited
number of iterations compared to standard FWI and is therefore mostly sequential and inherently parallel
with respect to the sigma-points covering the reconstruction space. As a result, our algorithm efficiency
remains comparable to solving the direct guided wave propagation problem. The main limitation of our
approach is that, due to followed dynamic programming point of view, we are limited to a low-dimensional
representation of the estimated deformation, i.e., only about a hundred modes can be estimated. Moreover,
and this will be the goal of future developments, our approach first considers the reconstruction of the
displacement field, while from the identification perspective, it might be better suited to reconstruct a
strain tensor, for instance, the Cauchy-Green strain or its invariants. In particular, we believe that this
research direction will help us to better control some deformation constraints related to a potentially
ill-posed wave propagation problem that limits the trust region neighborhood of our current method.
Moreover, our method now needs to be extended to more general observational operators, some of which
may depend on the estimated deformation, making the presented approach more complex. Moreover,
our approach suffers from the same limitation as the classical FWI method in terms of the choice of
the discrepancy measure between the model and the data. Recently, [Engquist, Froese, and Yang, 2016;
Engquist, Ren, and Yang, 2020] has been shown that the use of Wasserstein-based distances can overcome
cycle-skipping effects in wave field inversions.
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Overview

In the first part of this thesis, we treat numerical methods for acoustoelasticity. With a small-on-large
deformation assumption, the nonlinear elastodynamics formulation was linearized around a deformed
state of the structure originating from mechanical loading. This resulted in two decomposed problems: the
quasi-static problem, related to the structural deformation, and the linearized wave propagation problem.
Both problems are solved in the Total Lagrangian Formulation, facilitating the definition of boundary
conditions such as transducer positioning. Using Murnaghan’s hyperelastic law, we link the presented
formulation with a commonly used formulation in the context of acoustoelasticity. The quasi-static
problem is solved using 3D Shell Finite Elements, allowing any hyperelastic law to be used without
additional assumptions while mitigating numerical locking in thin structures. To solve the linearized
wave propagation problem we use the high-order spectral finite elements method, which showed through
numerical illustrations to be an efficient choice for guided wave propagation due to negligible numerical
dispersion and anisotropy. Such a combination of numerical methods allows it to model arbitrary
geometries, loading configurations, and constitutive behavior based on hyperelastic laws. We assess the
potential instability of the model due to coercivity assumptions related to the hyperelastic potential by
presenting and analyzing unstable cases. Finally, we model realistic cases for applications in SHM with
complex loading configurations and validate our numerical methods, from the structural deformation
computation to the linearized solver, using experimental data.

In the second part of the thesis, we aim to apply the proposed direct model in the context of inversion.
First, we present a framework and notations for inverse problems associated with wave propagation. In
this framework, the inverse problem is interpreted as a least squares minimization problem. For the
sake of illustration, we introduce generic problems of interest related to estimating initial conditions and
parameters. Some traditional variational methods and sequential methods are detailed and discussed. To
assess the different presented methodologies, we apply these methods to one-dimensional wave propa-
gation problems and compare their different advantages and performances. For exemplification, a linear
and a nonlinear problem were implemented and discussed. In the last chapter, we present our original
data assimilation strategy to estimate the deformation of the structure under loading conditions by means
of limited ultrasonic data. The structural deformation is represented in a reduced parametric space based
on the eigen decomposition associated with the operator of the quasi-static problem, effectively reducing
the amount of information needed to represent the deformation to be estimated. Combining variational
and sequential approaches, our strategy results in an iterated Reduced Order Unscented Kalman Filter
algorithm and a direct link can be made with the Levenberg-Marquardt method. Moreover, from the
sequential method, we obtain a time-varying estimation of the parameters and their respective uncertainty.
We apply our approach to realistic cases with different configurations for transducers, including a 4-point
bending test steel pipe, while showing robustness to different levels of noise.

Concluding discussion

To our knowledge, no solver currently available in the literature is able to, at hand, compute guided
wave propagation in structures under arbitrary loading conditions with corresponding genericity. Al-
though semi-analytical implementations are fast and can be used with arbitrary geometry and complex
stress profiles, they are limited to their underlying analytical assumptions. Such methodologies are mainly
able to compute dispersion curves, i.e. frequency-dependent velocity and phase of guided waves. When
using them for inverse problems, they require post-processing methods to properly isolate guided modes
in the signal. This post-processing may result in loss of information and add uncertainties, issues that
become more relevant with higher frequencies when the amount of propagating modes increases signifi-
cantly. Moreover, high-frequency modes are particularly of interest in our context due to their sensitivity
to stresses [Pei and Bond, 2016]. Our direct model, by solving the elastodynamic problem, computes a
wavefield including complex wave interactions such as diffraction and reflection by complicated obstacles
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and boundaries. Additionally, in terms of acoustoelastic effects, mode conversion due to stress gradients
is also represented. Moreover, as any hyperelastic law can be easily implemented, our solver is capable
of modeling wave propagation in a wide variety of materials in loading conditions, such as the illustrated
Carbon Fiber-Reinforced Polymer (CFRP) stratified plate.

The direct numerical solver is placed in the context of commercial software for NDT and SHM-related
simulations, CIVA, which allows this work to be integrated into a rich environment for numerical tools
in such applications. It includes the efficient implementation of the spectral finite elements method,
modules for meshing, boundary conditions definitions, and output for visualization in dedicated software,
among others. Additionally, with the presented solver, several useful outputs can be made for the analysis
of wave propagation in specific loading configurations. For instance, the Kelvin-Christoffel tensor can
be computed at each degree of freedom, giving an insight into bulk wave polarization and velocities
for any propagation direction in the whole structure. By evaluating the tensor for different directions of
propagation, one can plot “local” slowness curves for bulk waves. Moreover, as we use the linearized
model for an arbitrary hyperelastic law, we have the 9×9 elasticity tensor “𝐶𝑖 𝑗𝑘𝑙” at each degree of freedom.
The elasticity tensor can be used as input to semi-analytical models to compute “local” dispersion curves
in complex stress profiles. Where, by “local” we mean localized in the structure, as their values may vary
spatially.

Due to the modeling capabilities of our transient finite elements approach, raw ultrasonic signal can
extracted from the wavefield by modeling the characteristics of a transducer, for instance, its sensitivity to
displacements on the surface it is bonded. In particular, the output signal can be compared directly with
measurements, which allowed us to use a performant and robust data assimilation strategy analogous
to the Full-Waveform Inversion. Moreover, by using a wave model-based assimilation able to model
complex wave interactions, more of the measured data is expected to be useful as these interactions tend
to be increasingly present with longer acquisitions. This is possible assuming that an accurate description
of the geometry and boundaries is given.

Our data assimilation strategy method was used for estimating the structural deformation using limited
ultrasonic waves. This can be particularly useful in the context of SHM as it can be done with the already-
available acquired data and, from such estimation procedure, one can remove the bias in this data caused
by loading conditions. Furthermore, by solving the transient elastodynamic problem, the multi-modal
and dispersive aspects of guided waves do not limit the acquisition setup and do not require specific
post-processing of the signal for mode distinction. For instance, in a case where the acquisition sensor
is close to obstacles, the acquired signal would contain complicated interference from reflected and/or
diffracted waves, difficulting in the identification of the first arrival, hence, the measure of wave speed
and phase. While a semi-analytical strategy would require extra effort, it comes with no additional cost
when using wave-based modeling.

An important aspect of our proposed data assimilation strategy is that one can retrieve insights on the
observability of the system as the Gramian and its evolution through the estimation process is given at
no extra cost. As we show, one can assess which estimated parameters are more observable and if their
estimation interfere with each other. Also, the sensitivity of a given parameter to the signal obtained
by different sensors can be extracted. These analyses are useful for enhancing and understanding the
experimental design. Using a strategy based on filtering, the estimation was demonstrated to be robust
to different levels of noise with the possibility of adjustment of the regularization. One can increase
the regularization with the trade-off of decreasing convergence rate, while decreasing the regularization
results in faster convergence but may cause instability.

Perspectives

The two main objectives described in the introduction of this work were tackled and satisfactory
results in realistic scenarios for SHM applications were obtained. Nevertheless, the development of such
a project also gives us insights into the directions of newer studies and developments that could be done.
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Among those that can be envisaged by the reader, we find it important to pursue the following problems:
— The stability of the model cannot be ensured for any hyperelastic law and any deformation due

to the potential failure to satisfy the coercivity properties of the tangent operator, and due to
buckling issues. This issue is known in mechanical modeling [Ogden, 1984; Ndanou, Favrie, and
Gavrilyuk, 2014]. By proposing new hyperelastic potentials, one can mitigate such instability
problems. In particular, some works dealing with hyperelastic laws in the framework of a poly-
convexity analysis could be used in that matter [Schröder and Neff, 2003; Itskov and Aksel,
2004].

— The data assimilation strategy could be modified to other types of estimation. For instance, the
calibration of hyperelastic laws can be done using ultrasonic raw data with few adjustments in our
model. For this purpose, our method would significantly reduce uncertainties when compared
to traditional pitch and catch approaches that use wave velocity to calibrate constitutive models
[Muir, Michaels, and Michaels, 2009]. Additionally, the same procedures could be adjusted to
optimize sensor placement, for better observing the pertinent unknown.

— Our data assimilation strategy is limited to reduced parametric spaces. In this specific imple-
mentation we reduce them by selecting the lowest frequency modes of the structural dynamics,
i.e. around 100 modes. Other approaches can be proposed for this selection of modes as well as
an adaptative selection of those between estimation iterations, as in [De Buhan and Kray, 2013].
Moreover, other representations of the deformation can be used instead of the displacement field,
for instance, the strain tensor or its invariants. A different representation could help to better
penalize unlikely deformations during the estimation process and therefore help to keep it stable.
Furthermore, other constructions of the parametric space could be proposed to estimate, for in-
stance, localized residual stresses or concentration of stresses in certain regions by using level-set
methods [Aghasi, Kilmer, and Miller, 2011], among others.

— In our implementation of the sequential approach, model errors were not considered. These
errors may be present in addition to noise, hence determining the relevancy of such errors can
be fundamental for a reliable implementation in pair with SHM systems. Existing traditional
techniques are used for this purpose.

— A mathematical analysis concerning observability/identifiability of the proposed data assimilation
strategy can be done, for instance, using Carleman methods as in [Baudouin et al., 2021] and in
references within.

— When working with experimental data of axially loaded CFPR plates from Airbus, isolating
a wavepacket was not straightforward due to the experimental setup that included reflections.
Retrieving guided mode velocity with the accuracy required to capture acoustoelastic effects was
not possible with the available information. Using a suitable transversely isotropic constitutive
law and our inverse framework, we could first propose to calibrate the constitutive law parameters
by using the raw signals at zero loading, and then being able to refine the third-order parameters
using the signals in the loaded configuration.

— Here, we use a transversely isotropic law that does not include the third-order elastic constants.
First, a corresponding constitutive law can be proposed, including these constants. This allows
a useful modeling of composite materials, where experimental data can be used to calibrate the
model. Then, as aforementioned, our algorithm can be used for such calibration with slight
changes.

From a SHM application point of view, although our inverse strategy is not suitable for real-time
application due to computational time, our validated and generic method can be used as a reference to
reduced models or fast data-driven models in complex scenarios. Also, performance assessment and
analysis of SHM systems in loading conditions can be done.
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Appendix A

Properties and Definitions

Definitions and properties used throughout this work are presented here. A brief description of the
concepts of functional analysis used is also given.
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A.1 Tensors

In this section we define real-valued tensors and associated useful properties. Here, we use tensors
to represent multilinear operations between elements of finite-dimensional vector spaces. Let 𝑨 be a
third-order tensor in R2, it is defined as

𝑨 =
2∑︁
𝑖=1

2∑︁
𝑗=1

2∑︁
𝑘=1

𝐴𝑖 𝑗𝑘 𝑒̂𝑖 ⊗ 𝑒̂ 𝑗 ⊗ 𝑒̂𝑘 ,

where {𝑒̂𝑖}2𝑖=1 is a basis of R2. For a given basis, the tensor 𝑨 can be represented by its scalar components
{𝐴𝑖 𝑗𝑘}2𝑖, 𝑗 ,𝑘=1. This definition can be extended to a 𝑛-th-order tensor in R𝑑 . The operation ⊗ is the tensor
product. The tensor product generates, from two 𝑛-th-order tensor a (𝑛×𝑛)-th-order tensor. The standard
summation of repeated indexes may be used, such that

𝑨 = 𝐴𝑖 𝑗𝑘 𝑒̂𝑖 ⊗ 𝑒̂ 𝑗 ⊗ 𝑒̂𝑘 .

A.1.1 Definitions

Definition A.1.1. Tensor products. Considering 𝑨 and 𝑩 arbitrary tensors in R2 as

𝑨 = 𝐴𝑖 𝑗 𝑒̂𝑖 ⊗ 𝑒̂ 𝑗 and 𝑩 = 𝐵𝑖 𝑗 𝑒̂𝑖 ⊗ 𝑒̂ 𝑗 ,

we have the following tensor products:

(𝑨 ⊗ 𝑩)𝑖 𝑗𝑘𝑙 = 𝐴𝑖 𝑗𝐵𝑘𝑙 ,
(𝑨⊗𝑩)𝑖 𝑗𝑘𝑙 = 𝐴𝑖𝑘𝐵 𝑗𝑙,
(𝑨⊗𝑩)𝑖 𝑗𝑘𝑙 = 𝐴𝑖𝑙𝐵 𝑗𝑘 .

Definition A.1.2. Tensor symmetries. Considering a fourth-order tensor 𝑪, it is said to have
major symmetry if

𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖 𝑗 ,

and minor symmetries if
𝐶𝑖 𝑗𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙 = 𝐶𝑖 𝑗𝑙𝑘 .

Definition A.1.3. Let 𝒂 and 𝒂̃ be vector fields and 𝑨, 𝑩 be tensors, the following chain-rule for
tensor derivative can be written:

D𝒂 𝑨[𝑩(𝒂)] ( 𝒂̃) = 𝜕𝑨

𝜕𝑩
: D𝒂 𝑩[𝒂] ( 𝒂̃),

where
𝜕𝑨

𝜕𝑩
is a unique fourth-order tensor for this operation.

A.1.2 Properties

Property A.1.1. Tensor contraction (symmetric). Considering a second-order tensor 𝑨 and a
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fourth-order tensor 𝑪 with minor symmetries, we have

𝑪 : 𝑨 = 𝑪 :
1
2
(𝑨⊺ + 𝑨)

Proof. The contraction in indicial notation is

1
2
(𝐶𝑖 𝑗𝑘𝑙𝐴𝑙𝑘 + 𝐶𝑖 𝑗𝑘𝑙𝐴𝑘𝑙),

By using the minor symmetry, 𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑖 𝑗𝑙𝑘 , we have

1
2
(𝐶𝑖 𝑗𝑙𝑘𝐴𝑙𝑘 + 𝐶𝑖 𝑗𝑘𝑙𝐴𝑘𝑙),

As the sum is done in repeated indices,∑︁
𝑙,𝑘

𝐶𝑖 𝑗𝑙𝑘𝐴𝑙𝑘 =
∑︁
𝑘,𝑙

𝐶𝑖 𝑗𝑘𝑙𝐴𝑘𝑙 ,

yielding
1
2
(𝐶𝑖 𝑗𝑘𝑙𝐴𝑙𝑘 + 𝐶𝑖 𝑗𝑘𝑙𝐴𝑘𝑙) = 𝐶𝑖 𝑗𝑘𝑙𝐴𝑘𝑙 .

□

Property A.1.2. Given 𝑨, 𝑩, 𝑫 and 𝑬 as second-order tensors, 𝑪 as a fourth-order tensor with
the symmetries

𝐶𝑖 𝑗𝑘𝑙 = 𝐶 𝑗𝑖𝑘𝑙, 𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑖 𝑗𝑙𝑘 and 𝐶𝑖 𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖 𝑗

the term
𝑨⊺ 𝑩 : 𝑪 : 𝑨⊺ 𝑫 + 𝑬 : 𝑫⊺ 𝑩

can be written as

𝑩 : ˜𝑪 : 𝑫 with 𝐶𝑖 𝑗𝑘𝑙 = 𝐴𝑖𝑚𝐶𝑚𝑗𝑛𝑙𝐴𝑘𝑛 + 𝐸𝑙 𝑗𝛿𝑖𝑘 .

Proof. We start by writing the terms using Einstein notation

𝐴𝑚𝑖𝐵𝑚𝑗𝐶𝑖 𝑗𝑘𝑙𝐴𝑛𝑘𝐷𝑛𝑙 + 𝐸𝑖 𝑗𝐷𝑚𝑖𝐵𝑚𝑗 .

Rearranging the components and permuting index 𝑚 ↔ 𝑖, 𝑛↔ 𝑘 we have

𝐵𝑖 𝑗

(
𝐴𝑖𝑚𝐴𝑘𝑛𝐶𝑚𝑗𝑛𝑙

)
𝐷𝑘𝑙 + 𝐵𝑖 𝑗𝐸𝑚𝑗𝐷𝑖𝑚.

As 𝑪 has minor symmetries, the first term can be written as

𝑩 : 𝑨𝑪 𝑨⊺ : 𝑫 .

We aim now to write the term 𝐵𝑖 𝑗𝐸𝑚𝑗𝐷𝑚𝑖 as two double contractions analogue to the first term,
so

𝐵𝑖 𝑗𝐸𝑚𝑗𝐷𝑖𝑚 = 𝐵𝑖 𝑗𝐸𝑘 𝑗𝐷𝑖𝑘 = 𝐵𝑖 𝑗 (𝐸𝑙 𝑗𝛿𝑖𝑘)𝑖 𝑗𝑘𝑙𝐷𝑘𝑙,
obtaining then the intended relation. □
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A.2 Functional Analysis

In this appendix, we deal with real-valued finite-dimensional Hilbert spaces and we present here
the used notations, definitions and properties related to them. Particularly we will consider function
spaces. A Hilbert space is defined as a complete metric vector space in which distance between elements
are defined by its inner product.

A.2.1 Definitions

Definition A.2.1. H𝑘 (Ω) spaces. A functional space denoted H𝑘 (Ω) for a given domain Ω is a
Hilbert space of functions defined as

H𝑘 (Ω) = {
𝑓 ∈ L2(Ω) : ∀|𝛼 | ≤ 𝑘, 𝜕𝛼 𝑓 ∈ L2(Ω)} ,

where L2(Ω) is the space of functions where, ∀ 𝑓 ∈ L2(Ω)
(∫

Ω
| 𝑓 |2dΩ

) 1
2

< ∞.

Definition A.2.2. Operator. An operator is defined by its domain and image, i.e. the space of
its inputs and the space of its outputs, respectively. Let X and Y be Hilbert spaces, we define a
function 𝑓 with domain X and image Y as

𝑓 : X ↦−→ Y
𝑥 −→ 𝑓 (𝑥) = 𝑦,

for 𝑥 ∈ X and 𝑦 ∈ Y.

Definition A.2.3. Inner product and norm. LetX be a Hilbert space, we denote its inner product
and norm as

(𝑥, 𝑥̃)X ∈ R and ∥𝑥∥2X = (𝑥, 𝑥)X ∀𝑥, 𝑥̃ ∈ X,
respectively.

Definition A.2.4. Linear operators. LetX andY be Hilbert spaces, the spaceL(X,Y) is defined
as the space of linear operators of Y with values in X, such that, ∀𝐴 ∈ L(X,Y)

𝐴(𝑥 + 𝑥̃) = 𝐴𝑥 + 𝐴𝑥̃, ∀𝑥, 𝑥̃ ∈ X.

When the image and domain are the same, the notation is shortened as L(X) := L(X,X) .

Definition A.2.5. Adjoint operators. In the space of linear operators, we can define the adjoint
of a linear operator 𝐴 ∈ L(Y,X) as 𝐴∗ ∈ L(X,Y) such that

(𝑥, 𝐴𝑦)X = (𝐴∗𝑥, 𝑦)Y , ∀𝑥 ∈ X, 𝑦 ∈ Y.



A.2. Functional Analysis 199

Definition A.2.6. Dual space. LetX be a Hilbert space, we define its dual space asX′ = L(X,R ),
the space of linear functionals. We also introduce the notation for its corresponding duality product

⟨𝐴, 𝑥⟩X′ ,X = 𝐴(𝑥) ∈ R , ∀𝐴 ∈ X′, 𝑥 ∈ X.

Definition A.2.7. Fréchet differential. Let X and Y be Hilbert spaces, an operator 𝐴 : X ↦→ Y
is Fréchet-differentiable at 𝑥 ∈ X if there exists with

D𝑥𝐴(𝑥) ∈ L(X,Y),

such that ∀(𝑥, 𝑥̃) ∈ X × X

𝐴(𝑥 + 𝑥̃) = 𝐴(𝑥) + D𝑥𝐴(𝑥)𝑥̃ + 𝑜(∥𝑥̃∥X).

Remark. In Definition A.2.7, if 𝐴 has only one argument, we omit 𝑥 in the differentiation symbol such
that D𝐴(𝑥) = D𝑥𝐴(𝑥).

Remark. In Definition A.2.7, if 𝐴 is twice-differentiable, we have

𝐴(𝑥 + 𝑥̃) = 𝐴(𝑥) + D𝑥𝐴(𝑥)𝑥̃ +𝑂 (∥𝑥̃∥2X).

Definition A.2.8. Second Fréchet differential. For 𝑥, 𝑥̃, 𝑥̃′ ∈ X and a operator 𝐴 : X ↦→ Y
twice-differentiable, with X and Y being Hilbert spaces, we define the second-order (Fréchet)
differentiation of 𝐴 at 𝑥 as

D2
𝑥𝐴(𝑥) ∈ L

(X,L(X,Y)) ,
if it exists, such that

D𝑥𝐴(𝑥 + 𝑥̃′)𝑥̃ = D𝑥𝐴(𝑥)𝑥̃ +
[
D2

𝑥𝐴(𝑥)𝑥̃
]
𝑥̃′ + 𝑜(∥𝑥̃′∥X).

The space L (X,L(X,Y)) is the space of bilinear mappings. If Y = R , leading to D2
𝑥𝐴(𝑥) ∈

L(X,X′), the operator D2
𝑥𝐴(𝑥) becomes a bilinear form and its application can be written as

D2
𝑥𝐴(𝑥) (𝑥̃, 𝑥̃′) = ⟨D2

𝑥𝐴(𝑥)𝑥̃, 𝑥̃′⟩X′ ,X =
[
D2

𝑥𝐴(𝑥)𝑥̃
]
𝑥̃′.

Remark. In Definition A.2.8, if 𝐴 has only one argument, we omit 𝑥 in the differentiation symbol such
that D2𝐴(𝑥) = D2

𝑥𝐴(𝑥).

Remark. The Definition A.2.7 and Definition A.2.8 can be generalized for higher-order derivatives,
namely D3

𝑥, D4
𝑥, etc.

A.2.2 Properties

Property A.2.1. Riesz representation theorem. Let X be a Hilbert space and X′ its dual. For a
given linear map 𝐴 ∈ X′, there exists an unique 𝑥′ ∈ X such that

⟨𝐴, 𝑥̃⟩X′ ,X = (𝑥′, 𝑥̃)X , ∀𝑥̃ ∈ X.
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Property A.2.2. Vectorial representation of elements. Let X be a Hilbert space of dimension 𝑁 ,
then there exists {𝑒𝑖}𝑁𝑖=1 ∈ X𝑁 such that

X = span{𝑒𝑖}𝑁𝑖=1,

therefore every element 𝑥 ∈ X can be associated with an element −→𝑥 ∈ R𝑁 , such that

𝑥 =
𝑁∑︁
𝑖=1

𝑥𝑖𝑒𝑖 ,

where 𝑥𝑖 is the 𝑖-th component of −→𝑥 .

Property A.2.3. Matricial representation of norms. Let X be a Hilbert space of dimension 𝑁
with

X = span{𝑒𝑖}𝑁𝑖=1,

there exists a unique symmetric matrix X ∈ M(R )𝑁×𝑁 with components

(X )𝑖 𝑗 = (𝑒𝑖 , 𝑒 𝑗)X

such that
(𝑥, 𝑥̃)X = −→𝑥 ⊺X

−→̃
𝑥 , ∀𝑥, 𝑥̃ ∈ X,

where −→𝑥 and
−→̃
𝑥 are the R𝑁 representations of 𝑥 and 𝑥̃, respectively.

Property A.2.4. Matricial representation of linear operators. Let X, Y be Hilbert spaces of
dimensions 𝑁X and 𝑁Y , respectively, with

X = span{𝑒𝑖}𝑁X𝑖=1 and Y = span{𝑛 𝑗}𝑁Y𝑗=1.

Given an operator 𝐴 ∈ L(X,Y) there exists a unique matrix A ∈ M(R )𝑁Y×𝑁X with components

(A)𝑖 𝑗 = (𝐴𝑒𝑖 , 𝑛 𝑗)Y
such that, ∀𝑥 ∈ X and ∀𝑦 = 𝐴𝑥 ∈ Y,

Y−→𝑦 = A−→𝑥 ,
with Y begin the norm of Y in its matricial form and where −→𝑥 and −→𝑦 are the R𝑁X and R𝑁Y

representations of 𝑥 and 𝑦, respectively.

Property A.2.5. Inversion Lemma. Inversion Lemma. Let 𝐴, 𝐵, 𝐶 and 𝐷 be four invertible
operators, we have that

(𝐴 − 𝐵𝐷−1𝐶)−1 = 𝐴−1 + 𝐴−1𝐵(𝐷 − 𝐶𝐴−1𝐵)−1𝐶𝐴−1.
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All those daring birds that soar far and ever farther
into space, will somewhere or other be certain to find
themselves unable to continue their flight, and they
will perch on a mast or some narrow ledge—and will
be grateful even for this miserable accommodation!
But who could conclude from this that there was
not an endless free space stretching far in front of
them, and that they had flown as far as they possibly
could? In the end, however, all our great teachers
and predecessors have come to a standstill, and it is
by no means in the noblest or most graceful attitude
that their weariness has brought them to a pause:
the same thing will happen to you and me! but what
does this matter to either of us? Other birds will fly
farther! Our minds and hopes vie with them far out
and on high; they rise far above our heads and our
failures, and from this height they look far into the
distant horizon and see hundreds of birds much more
powerful than we are, striving whither we ourselves
have also striven, and where all is sea, sea, and
nothing but sea! And where, then, are we aiming
at? Do we wish to cross the sea? whither does this
over-powering passion urge us, this passion which we
value more highly than any other delight? Why do
we fly precisely in this direction, where all the suns of
humanity have hitherto set? Is it possible that people
may one day say of us that we also steered westward,
hoping to reach India—but that it was our fate to be
wrecked on the infinite? Or, my brethren? or—?
- Friedrich Nietzsche, 1881

I Just Wanted to Make You Something Beautiful
Industries of the Blind







Titre : Modélisation et assimilation de données pour les ondes guidées ultrasonores pour le contrôle de santé
intégré dans des conditions de charges opérationnelles

Mots clés : contrôle santé intégré, conditions opérationnelles et environnementales, assimilation de données,
ondes guidées ultrasonores, éléments finis spectraux transitoires, filtres de Kalman
Résumé : Le contexte applicatif de ce travail est
l’évaluation de l’état des structures des avions, des
ponts, des pipelines et bien d’autres. Plus précisé-
ment, nous nous concentrons ici sur les méthodes
fondées sur la propagation d’ondes ultrasonores gui-
dées dans le contexte du contrôle de santé inté-
gré (SHM), où les parties critiques de la structure
sont monitorées par un système distribué de capteurs
afin de détecter les anomalies. Dans ce contexte,
les Conditions Environnementales et Opérationnelles
(EOCs) peuvent conduire à une mauvaise interpréta-
tion des données mesurées et doivent donc être in-
tégrées à l’analyse des données acquises. En parti-
culier, la propagation des ultrasons est affectée par
les éventuels chargements mécaniques affectant la
structure. D’abord, ce travail propose de modéliser
numériquement la propagation d’ondes guidées dans
des structures préchargées. Les effets du charge-
ment sur la propagation des ondes sont modélisés
dans le cadre de l’acoustoélasticité. Les ondes ultra-
sonores se superposent de manière incrémentale à
la déformation structurelle causée par le chargement.
Cette hypothèse nous permet de définir une formu-

lation élastodynamique linéarisée autour de la (éven-
tuellement) grande déformation préinduite quasi stati-
quement par le chargement. Nous proposons des mé-
thodes d’éléments finis (EF) adaptées pour résoudre
les deux problèmes résultants. La grande déforma-
tion statique de la structure est calculée à l’aide des
EF de coque 3D, qui devient ensuite une entrée du
problème élastodynamique linéarisée résolue par EF
d’ordre élevé en transitoire. Cela permet pour les sys-
tèmes SHM de modéliser génériquement tout type de
géométries, de chargement et de lois de comporte-
ment, ici supposées hyperélastiques. Une deuxième
contribution est le développement d’une stratégie ori-
ginale d’assimilation de données pour identifier la dé-
formation à partir des mesures des capteurs. Le pro-
blème d’estimation est interprété comme un problème
de minimisation aux moindres carrés, qui est ensuite
résolu par une combinaison astucieuse d’approches
variationnelles et séquentielles, conduisant in fine à
une version itérative du filtre de Kalman Unscented.
Pour les deux contributions, des illustrations fondées
sur de scénarios réalistes démontrent l’efficacité de la
stratégie proposée.
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Abstract : The application context of this work is
the assessment of the structural health of aircraft,
bridges, pipelines, and many others. More specifically,
we focus here on methods based on guided ultrasonic
wave propagation in the context of Structural Health
Monitoring (SHM), where critical parts of the structure
are monitored during operation by a distributed sys-
tem of sensors to detect anomalies. In this context,
Environmental and Operational Conditions can lead
to misinterpretation of the measured data and must
therefore be considered when analyzing the acquired
data. In particular, it is known that the mechanical loa-
ding of the structure affects ultrasound propagation.
As a first contribution, this work proposes a numerical
method for modeling efficiently the propagation of gui-
ded waves in loaded structures. The effects of mecha-
nical loading on wave propagation are modeled using
concepts of acoustoelasticity. The ultrasound waves
are assumed to be incremental to the structural defor-
mation caused by the loading. This assumption allows
us to define a linearized elastodynamics formulation

around the (potentially) large deformation caused by
the loading. We then propose adapted finite element
methods to solve both formulations. First, the structu-
ral deformation is computed using 3D Shell FE, which
is then an input of the linearized elastodynamics sol-
ver based on the transient High-Order Spectral FE.
Such a combination allows a suitable application for
SHM systems as it can model arbitrary geometries,
loading configurations, and constitutive behavior ba-
sed on hyperelastic laws. Using this direct model, a
second contribution of this dissertation is the develop-
ment of an original data assimilation strategy to reco-
ver the deformation from sensor measurements. The
estimation problem is interpreted as a least squares
minimization problem, which is then solved by a clever
combination of variational and sequential approaches,
resulting in an iterative version of the Unscented Kal-
man Filter. Both the presentation of the direct model
and its inversion are complemented by illustrations
based on large realistic scenarios to demonstrate the
efficiency of the proposed approaches.
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