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Titre. Analyse quantitative du développement cérébral foetal sain et anormal à
l’aide de modèles de déformation.

Résumé. L’analyse quantitative des images du cerveau foetal est une question
difficile liée à des problématiques de manque de données, qualité d’image hétérogène
et variabilité inter-sujets élevée. L’Anatomie Computationelle offre des méthodes non-
supervisées pour caractériser des structures anatomiques normales ou pathologiques en
calculant la transformation qui déforme un objet de référence en un autre objet. Le but
de cette thèse est d’adapter des outils géométriques pour l’analyse de la croissance du
cerveau foetal dans le cadre du Large Diffeomorphic Deformation Metric Mapping. Tout
d’abord, nous présentons des contributions méthodologiques pour corriger le problème
des minima locaux irréalistes qui se pose quand on déforme des objets complexes en
grande dimension. Pour cela, nous introduisons une stratégie d’optimisation "coarse-
to-fine" qui décompose les champs de déformation dans une base d’ondelettes de Haar
et filtre les objets à déformer. Cette stratégie multiéchelle est appliquée à des modèles
de recalage et d’estimation d’atlas cross-sectionnel ainsi qu’à l’estimation de trajectoires
temporelles. Grâce à des images de cerveau foetal, nous démontrons que cette stratégie
multiéchelle produit des images de référence et des déformatins plus naturelles. En-
suite, nous construisons une pipeline pour caractériser à une échelle globale la variabil-
ité anatomique des cerveaux foetaux avec une agénésie du corps calleux. Les déviations
par rapport au développement normal sont quantifiées en recalant chaque sujet à un
cerveau de référence. Les différences anatomiques liées à l’âge sont corrigées en trans-
portant ces déformations dans un espace commun, ce qui permet d’identifier des modes
de déformation caractéristiques des cerveaux anormaux. Finalement, nous proposons
de construire un atlas du développement cortical sain au cours de la grossesse. La crois-
sance moyenne du cortex est modélisée par une trajectoire géodésique par morceaux, et
la variabilité anatomique autour de cette moyenne est estimée grâce à des outils de re-
calage et de transports parallèle. Cette méthode de construction d’atlas est comparée à la
méthode classique, dite "kernel regression", en évaluant le degré de réalisme du proces-
sus de gyrification modélisé. Les outils développés peuvent être généralisés à différents
types de données, structures anatomiques et questions de recherche. Ils ont la capacité
de modéliser des changements anatomiques complexes et d’identifier des sujets déviant
fortement de la normalité.

Mots clés. Imagerie par Résonance Magnétique, Surface Corticale, Imagerie
Cérébrale Foetale, Atlas Cérébral, Modèle de Template Déformable, Géométrie Rieman-
nienne, Régression Géodésique, Optimisation Multiéchelle, Ondelettes.
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Title. Quantitative analysis of healthy and abnormal fetal brain development us-
ing deformation models.

Abstract. The quantitative analysis of fetal brain images is a challenging task
due to data scarcity, image quality issues and high intersubject variability. Computa-
tional Anatomy provides convenient and unsupervised methods to characterize normal
and pathological anatomical structures by computing the deformation that warps a ref-
erence object onto another. The goal of this thesis is to adapt geometric tools to the
analysis of fetal brain growth within the framework of the Large Diffeomorphic Defor-
mation Metric Mapping. First, we present methodological contributions to address the
unrealistic local minima issue that arises when warping high-dimensional or complex
objects. We introduce a coarse-to-fine optimization strategy whereby the deformation
fields are decomposed into a Haar-like wavelet basis and the objects are filtered. This
multiscale strategy is applied to registration and cross-sectional atlas estimation mod-
els as well as to temporal atlas estimation. Using fetal brain images, we demonstrate
that our multiscale strategy produces more natural template images and deformations.
Then, we design a pipeline to characterize the anatomical variability of fetal brains with
agenesis of the corpus callosum at a global scale. Deviations from normal development
are quantified by registering each subject to an age-matched healthy template brain and
age-related anatomical differences are smoothed out by transporting the deformations
to a common space, allowing the identification of deformation modes characterizing
abnormal brains. Finally, we propose to build an atlas of cortical surface development
during pregnancy. The average cortical growth is modelled by a piecewise geodesic tra-
jectory and the anatomical variability around the mean is estimated using registration
and parallel transport. This atlas construction method is compared to the state-of-the-
art method, i.e. kernel regression, by assessing the accuracy of the modelled gyrification
process. The developed tools are generalizable to different data types and anatomical
structures and have the ability to model complex time-dependent anatomical changes
and to identify subjects with high deviation from normality.

Keywords. Magnetic Resonance Imaging, Cortical Surface, Fetal Brain Imag-
ing, Brain Atlas, Deformable Template Model, Riemannian Geometry, Geodesic Regres-
sion, Multiscale Optimization, Wavelets.
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Résumé long en français

Cette thèse s’inscrit dans le cadre de l’analyse géométrique de données d’Imagerie par
Résonnance Magnétique (IRM) foetales cérébrales. L’analyse quantitative des IRM du
cerveau foetal pendant la grossesse est une question difficile liée à des problématiques
de manque de données, qualités d’image hétérogènes (mouvements du foetus pendant
l’acquisition, tissus maternels autour du cerveau foetal) et variabilité inter-sujets élevée.
L’Anatomie Computationelle offre des méthodes non-supervisées pour caractériser des
structures anatomiques normales ou pathologiques en calculant la transformation qui
déforme un objet de référence en un autre objet. Le but de cette thèse est d’adapter des
outils géométriques pour l’analyse de la croissance du cerveau foetal dans le cadre du
Large Diffeomorphic Deformation Metric Mapping (LDDMM) qui modélise les trans-
formations entre objets par des champs de vecteurs dépendants du temps. Dans une
première partie, nous présentons des contributions méthodologiques pour pallier au
problème des minima locaux irréalistes qui se pose lorsque l’on déforme des structures
anatomiques en grande dimension. Dans le cadre du LDDMM, les champs de vecteurs
sont régularisés par un noyau Gaussien qui définit un espace de Hilbert à noyau re-
produisant et paramétrisés par un nombre fini de moments vectoriels attachés à des
points contrôles. La largeur du noyau, définie par l’utilisateur, détermine la distance en-
tre les points contrôles et donc l’échelle des déformations de l’espace : un petit noyau
implique un nombre élevé de points contrôles et donc des déformations fines, promptes
à favoriser des minima locaux irréalistes ; à l’inverse, un noyau large implique un nom-
bre réduit de paramètres, des déformations plus lisses mais aussi moins précises. Il
revient donc à l’utilisateur de trouver le meilleur compromis -quand il existe- entre
la précision et le réalisme des déformations. Pour pallier à ce problème, nous intro-
duisons une stratégie d’optimisation multiéchelle, ou "coarse-to-fine", qui décompose les
champs de déformation dans une base d’ondelettes de Haar. Plus précisément, la trans-
formée en ondelettes est appliquée au gradient des champs de vecteurs : au début de
l’optimisation, les coefficients de détail sont silencés, ce qui force l’algorithme à estimer
des transformations lisses ; dès que l’algorithme est proche de la convergence, les co-
efficients de détails sont progressivement réincorporés dans le signal afin d’estimer des
transformations de plus en plus fines. Ce transfert d’information des échelles lisses aux
échelles plus fines assure une initialisation plus pertinente des déformations à chaque
échelle. Cette reparamétrisation des champs de vecteurs peut être considérée comme
une régularisation spatiale supplémentaire, dans le sens où elle préserve la formula-
tion LDDMM et en particulier la structure de Hilbert des champs de vecteurs et donc
l’algorithme numérique efficace de calcul des gradients. En particulier, cette régulari-
sation additionnelle n’augmente pas la complexité de l’algorithme. La stratégie multi-
échelle est appliquée à deux tâches d’Anatomie Computationnelle : l’estimation d’atlas
cross-sectionnel et le recalage (cas particulier de l’estimation d’atlas). Nous effectuons
des expériences de validation croisées sur trois jeux de données de difficulté croissante
: des images manuscrites du chiffre deux, des personnages dessinés à la main et des
IRM foetales avec agénésie du corps calleux. Sur les données d’apprentissage, une image
représentative de la population est estimée ; cette image est ensuite recalée vers cha-
cune des images de l’ensemble de test. Les expériences montrent que sur tous les jeux
de données, l’algorithme multiéchelle est capable d’estimer des images moyennes op-
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timales d’un point de vue qualitatif et quantitatif par rapport à l’algorithme d’origine,
tout en évitant les minima locaux irréalistes lors qu’une paramétrisation fine est utilisée.
Dans cette thèse, on s’intéresse également à la modélisation de la croissance du cerveau
foetal, et donc à des modèles d’estimation de trajectoires temporelles. La stratégie mul-
tiéchelle est étendue de deux manières : 1- elle est appliqués à des modèles de régression
géodésique par morceau, qui autorisent des changements de dynamique temporelle 2-
la stratégie multiéchelle sur les champs de vecteurs est combinée à une représentation
multiéchelle des objets : filtrage gaussien pour les images et filtrage laplacien pour les
maillages. La capacité de ce nouvel algorithme à générer des déformations réalistes est
évaluées sur trois jeux de données temporelles : des personnages dessinés à la main,
des images du cerveau foetal à différents âges gestationnels et des maillages de la sur-
face corticale du cerveau foetal à différents âges issus de la base de données publique
FeTa. Pendant la phase d’entraînement, une régression géodésique représentative de la
croissance moyenne de la population est estimée ; pendant la phase de test, un recalage
estime la déformation entre chaque image test et une image extraite de la régression
géodésique au même âge. L’algorithme multiéchelle double est comparé à l’algorithme
d’origine, associés soit à une régression géodésique simple (une seule dynamique), soit
à une régression par morceaux (plusieurs dynamiques temporelles). Ces expériences
permettent de démontrer que la stratégie multiéchelle double associée à une régression
par morceaux permet d’estimer des déformations réalistes dans des contextes divers.
Elle est en particulier utile pour modéliser des modifications anatomiques complexes.
Dans une seconde partie, nous appliquons les méthodes d’Anatomie Computationnelle
développées à l’analyse quantitative du cerveau foetal. La première application s’attache
à caractériser les cerveaux de foetus avec agénésie du corps calleux, une anomalie con-
génitale à l’issue clinique incertaine. Contrairement aux études actuelles qui se concen-
trent sur une structure cérébrale spécifique, nous développons ici une pipeline d’analyse
d’images ciblant le volume cérébral entier. 38 IRM issues de foetus sains et 73 IRM
issues de foetus avec agénésie du corps calleux sont rétrospectivement sélectionnés à
l’hôpital Trousseau. Pour chaque sujet, une image volumétrique du cerveau est obtenue
de manière semi-automatisée en combinant des outils de pré-traitement open-source
pour la segmentation, la reconstruction volumétrique et la réorientation. Une trajec-
toire continue représentative de la croissance du cerveau sain est obtenue par régression
géodésique. Chaque cerveau foetal est ensuite associé et recalé à un cerveau template
sain issu de cette trajectoire pour quantifier ses déviations par rapport au développement
normal. Les déformations sont transportées parallèlement jusqu’à un espace commun,
ce qui revient à réduire les différences d’âges entre les foetus. Les modes de déformations
spécifiques à la pathologie étudiée sont identifiés à l’aide d’une analyse en composantes
principales et d’un Support Vecteur Machine entraîné à discriminer les sujets sains des
sujets pathologiques. Lemode de déformation qui discrimine le mieux les sujets sains des
sujets pathologiques combine des altérations cérébrales courantes chez les foetus avec
anomalie du corps calleux. Ce travail est prometteur pour l’exploration quantitative des
cerveaux de foetus anormaux à l’aide de modèles de déformation, en particulier pour
l’identification d’anomalies anatomiques corrélées à une issue clinique défavorable. Fi-
nalement, nous proposons de construire un atlas du développement cortical sain au cours
de la grossesse. Pour cela, nous combinons les outils développés dans les parties précé-
dentes pour proposer une alternative à la méthode classique de construction d’atlas, dite
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« kernel regression », qui estime chaque cerveau de référence à un âge donné indépen-
damment des autres. Notre modèle, basé sur une régression géodésique par morceaux,
estime un unique objet de référence à un âge donné et la trajectoire qui déforme ce
cerveau au cours du temps et représente la dynamique de croissance moyenne de la
population au cours de la grossesse. La variabilité anatomique autour de cette moyenne
est estimée grâce à des outils de recalage et de transport parallèle. A la différence de
l’analyse précédente, ici l’on estime la trajectoire moyenne et la variabilité autour de
cette moyenne de manière simultanée et non pas séquentielle. Ce modèle est évalué sur
65 maillages de surfaces corticales entre 20 et 37 semaines de gestation : 36 sont is-
sues de la base de données publique FeTa et 29 sont issues de la plateforme Lumière. Le
pré-traitement des données repose sur NiftyMIC pour la reconstruction volumétrique
des images et les outils du projet dHCP pour la segmentation et l’extraction des surfaces
corticales. Notre modèle est comparé à la kernel regression par validation croisée. La
performance est quantifiée en calculant des mesures de distance (distance de Hausdorff,
distance varifold) entre chaque sujet et un cerveau extrait de la trajectoire moyenne au
même âge. Afin d’évaluer la justesse du processus de gyrification représenté, on com-
pare également les mesures de courbures des atlas estimés à celles des sujets de test et
d’entraînement (indice de gyrification, aire de la surface corticale, courbure moyenne,
indice de forme). Les résultats montrent que la kernel regression modèle le plissement
cortical de manière un peu plus juste, ce qui était attendu puisque ce modèle est conçu
pour avoir de bonnes performances à un âge gestationnel donné. En revanche, notre
méthode continue permet de garantir la cohérence temporel du processus modélisé.
Notre modèle peut non seulement construire des objects anatomiques de référence et
leur segmentation, mais aussi analyser de manière fine des dynamiques de croissance,
positionner n’importe quel sujet par rapport à la croissance moyenne, déplacer ledit
sujet dans l’espace et le temps et finalement caractériser la variabilité anatomique des
populations saines et pathologiques. Une perspective intéressante serait d’intégrer des
données postnatales au sein de notre modèle afin d’étudier des périodes dévelopemen-
tales plus longues. En conclusion, cette thèse propose un changement de perspective
par rapport à l’analyse du cerveau foetal en se concentrant sur l’aspect dynamique de
la croissance prénatale. De manière plus générale, cette thèse s’intéresse à la problé-
matique de l’analyse de structures anatomiques dans un contexte difficile, présentant
une variabilité importante de formes et d’apparences, ce qui soulève des problématiques
méthodologiques et applicatives variées dépassant le seul cadre de l’analyse d’images
pré-natales. Les outils développés peuvent être généralisés à différents types de don-
nées, structures anatomiques et questions de recherche. Ils ont la capacité de modéliser
des changements anatomiques complexes et d’identifier des sujets déviant fortement de
la normalité.
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ψs,k Wavelet function rescaled by 2s and translated by k2s
σt Noise parameter (trade-off between data attachment and regularity)
σg Width of the Gaussian kernel Kg

ω Space shift, i.e. momentum parametrizing a diffeomorphism
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Contents
1.1 In vivo analysis of the fetal brain . . . . . . . . . . . . . . . . . . 3

1.2 Deformation models . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Bridging the gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 In vivo analysis of the fetal brain

The development of the central nervous system begins in the third week of gestation and
continues through childhood and adulthood [107]. The intricate and dynamic process
of fetal brain growth is controlled by the coordinated interaction of environmental and
genetic factors. It involves a variety of differentmechanisms at different scales and speed:
neural tube formation and division, migration of cortical neurons, synapse formation,
emergence of transient structures and cortical folding into sulci and gyri [107].

Constraints inherent in the fetal organism, restrictive legislation and social attitudes
[50] have delayed the study of the fetal anatomy. In 1511, Leonardo da Vinci was the
first scientist to accurately draw a human fetus in utero (Figure 1.1a), and around 1600,
Girolamo Fabrici one of the first to dissect the placenta and fetuses [77] (Figure 1.1b).
Centuries later, the emergence of medical imaging techniques provided a unique insight
into in vivo fetal development. With the advent of ultrasonography and Magnetic Res-
onance Imaging (MRI) [129], it became possible to visualize the fetal anatomy with a
remarkable level of detail. In a clinical setting, fetal MRI is used as a complement to ul-
trasonography to confirm a diagnosis of brain anomaly. For researchers, it is an excellent
modality to understand prenatal brain growth and better characterize diseases.

Research in the field has been challenged by a number of factors, including but not
limited to the encasement of the fetus in the mother’s body, ethical and safety concerns,
elevated cost of scanners, and unpredictable fetal movements during scanning [197]. The
main consequence is the lack of available, high quality, homogeneous data, which have
limited fetal brain research to two-dimensional measurements [218]. The recent devel-
opment of ultrafast scanning and motion correction techniques considerably galvanized
research around fetal brain development [192, 181]. Provided that the necessary prepro-
cessing steps are performed, it is now possible to obtain high-resolution, 3-dimensional
images of the fetal brain [56]. In the last decade, quantitative studies have blossomed,
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(a) The fetus in the womb,
sketches and notes on reproduc-
tion (1511), Leonardo da Vinci

(b) Drawings of human
fetuses, De formato foetu
(1600), Girolamo Fabrici
[77]

Figure 1.1: Early in vivo representations of the fetus

performing volumetric analyses of the fetal brain, investigation of the cortical folding
process [34], and spatiotemporal modelling of the fetal brain growth [86].

Analysis of the prenatal brain is a growing but newly born field of research with
many obstacles to overcome, namely the lack of open-source data and complex and het-
erogeneous growth patterns. As a result, there is a need for new methods specifically
adapted to the challenges of fetal brainMRI. In this thesis, we propose to perform quanti-
tative analysis of the fetal brain using geometrical deformation models, which offer very
interesting features:

• the ability to analyze small datasets in an unsupervised setting;
• versatility regarding the type of objects analyzed, e.g. images or meshes;
• the ability to analyze different types of datasets, e.g. cross-sectional, time-series
or longitudinal data;

• explicability and visual interpretability.

1.2 Deformation models

To analyze medical data, two main approaches are available. Supervised learning fo-
cuses on building models that classify data or predict outcomes using a priori expert
knowledge. With the increasing availability of high-quality medical images, supervised
learning methods, specifically deep learning ones, have become very popular for they
are able to tackle a variety of tasks such as disease diagnosis, pathology localization and
structure segmentation [41]. When medical images are scarce or unlabelled, when the
research question is less specific, or when model explicability is imperative, one must
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turn to unsupervised methods which focus on discovering relationships or clusters of
patterns without a-priori knowledge involved.

Computational Anatomy is an interdisciplinary field rooted in the idea from d’Arcy
Thompson to describe differences between shapes through deformations of the ambi-
ent space [227]. Compared to classical volumetric analyses, deformable brain mapping
can provide precise and localized information about structural deviations from a refer-
ence anatomy, whether they are age-related, disease-related or even normal anatomical
variations. In this thesis, we are interested in two main applications of Computational
Anatomy:

• The deformable template model [6, 54]: given a cross-sectional dataset (e.g. fetal
brains imaged at the same gestational stage), the average features of the popu-
lation are summarized by a reference shape called template, and the anatomical
variability is summarized by the template-to-subject deformations.

• Temporal modelling [65, 30]: given a time-series dataset (e.g. fetal brains imaged
at different gestational stages), we seek to model the temporal evolution of a phe-
nomenon by computing the deformation of an estimated reference shape. Here,
the focus is not on a single average shape, but on its time-dependent changes.

The choice of the mathematical framework that models and regularizes deformations
occurring between anatomical structures is of prime importance. In this thesis, we rely
on the Large Deformation Diffeomorphic Metric Mapping (LDDMM) setting [233, 31], a
powerful method for computing diffeomorphic transformations, which are considered as
geodesics on a Riemannian manifold. It has convenient properties such as the tangent-
space representation of diffeomorphisms input, which fosters the use of linear statistical
tools, but also useful geometrical tools such as parallel transport [135], which enables to
transport deformations along geodesic paths.

The LDDMM framework has been exploited for a variety of clinical applications. To
name but a few: estimation of reference shapes [176] and normal anatomical variability
[174] of subcortical brain structures in healthy individuals; hippocampal shape classifica-
tion [238] and longitudinal modelling [177, 44] in Alzheimer’s disease; characterization
of early thalamus shape changes in frontotemporal dementia [40]; characterization of
subregional atrophy of subcortical structures in prodromal Huntington disease [256].
With few exceptions [58, 163], the LDDMM framework has been mostly applied to the
modelling of neurodegenerative diseases. In this thesis, we propose to extend its scope
of application to the other end of the age spectrum, i.e. to the fetal development period.

1.3 Bridging the gap

In this thesis, we aim to bridge the gap between deformations models and the analysis of
healthy and pathological fetal brains. Unlike common practices in Applied Mathematics,
our goal is not to develop new mathematical models, validate them on toy data and sub-
sequently apply them to clinical questions. Rather, we adopt a more practical approach
where we seek to to adapt and improve existing methods to the analysis of the fetal brain.
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The clinical application is not necessarily the end point of our work; it may actually be
its driving force as in Chapters 6 and 7. That is not to say that the methods developed in
this thesis are limited to specific applications. In fact, we are willing to introduce open-
source tools that can be generalized to different questions. To put it simply, our goals
are twofold: to provide practical, straightforward methods that meet clinical needs, but
also to develop innovative mathematical approaches that may be of use outside a specific
clinical question. Depending on the task at hand, the weights granted to each concern
may vary.

In this thesis, we work with different types of shapes: 2-dimensional images (hand-
written digits and toy data), 3-dimensional gray-level MR images, and cortical surface
meshes. In particular, we rely on three rich datasets consisting of T2-weighted fetal brain
MR images and comprising a single observation per subject:

• Hôpital Trousseau, France: MR images from 61 healthy fetuses and 118 fetuses
with agenesis of the corpus callosum, acquired during clinical routine (Chapters 3
and 6);

• Fondation Lumière1, France: 87 MR images from healthy fetuses, acquired in a
clinical research platform (Chapter 7);

• Fetal Tissue Annotation and Segmentation Challenge2 dataset [168]: 120 publicly
available brain volumes from healthy and pathological fetuses collected in two
different institutions (Chapters 4 and 7).

This thesis is divided into two mains parts. In the first part, we take a methodological
approach that aims at improving the flexibility and efficiency of Computational Anatomy
models:

• Chapter 2: Introduction to the Large Deformation Diffeomorphic Metric
Mapping framework. In this chapter, we provide the reader with an overview of
the mathematical tools employed in this thesis, and the mathematical foundations
and intuitions behind them.

• Chapter 3: Multiscale deformations for atlas estimation tackles awell-known
problem in object mapping and Computational Anatomy, namely the unrealistic
local minima issue. We develop a wavelet-based multiscale reparameterization of
the velocity fields defining the transformations and implement a coarse-to-fine
optimization strategy to enhance the performance of cross-sectional atlas estima-
tion. We evaluate the performance of the multiscale versus original strategies by
applying the algorithm to open-source digit images, toy data and pathological fetal
brain images. This work has been submitted for publication.

• In Chapter 4: Versatile multiscale strategies, we extend our previous work
by developing a dual coarse-to-fine strategy based on a multiscale representation
of deformations and objects. Further, we apply the multiscale strategy to different
Computational Anatomymodels, namely atlas estimation, geodesic regression and
piecewise geodesic regression. Our algorithm is applied to two complex regression

1http://fondation-lumiere.org/
2https://feta.grand-challenge.org/
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problems: modelling the time-dependent evolution of toy data and the growth
pattern of healthy fetal brains. This work was presented at SPIE Medical Imaging
2023 [66] and at the French Colloquium of Signal and Image Processing 2023 [67].
An experiment on fetal brains was subject to a poster presentation at the Fetal,
Infant and Toddler Neuroimaging Group 2022.

In a second part, we focus on specific clinical research questions that aim at character-
izing the growth patterns of healthy and pathological fetal brains. Of note, we combine
the previously developed methodologies to construct practical tools specifically adapted
to the specificities of fetal brain MRI:

• Chapter 5: The quantitative analysis of fetal brain images. In this chapter,
we review the existing work on the quantitative analysis of the fetal brain. We first
take a historical perspective to provide the reader with a clear view of the inherent
challenges of fetal MRI and explain why this is a recent field of research. Then,
we describe the different approaches for the preprocessing of fetal MRI, which are
essential for performing automated analyses. Finally, we detail the different types
of research about the fetal brain, namely analyses of brain volumes, cortical folding
and brain growth.

• Chapter 6: Analysis of the anatomical variability of fetal brains with Cor-
pus Callosum Agenesis. Relying on a large dataset of clinically acquired patho-
logical fetal brain images, we develop a shape analysis pipeline based on sev-
eral Computational Anatomy tools and models, namely geodesic regression, reg-
istration and parallel transport. This pipeline allows to compare subjects to an
age-matched reference brain, transport subjects to a common space, extract the
anatomical variability in the dataset and identify modes of deformation related to
abnormal corpus callosum. We also characterize, for the first time, complete ver-
sus partial agenesis of the corpus callosum. This work has been presented at the
Perinatal, Preterm and Paediatric Image Analysis Workshop at MICCAI 2021 [68],
for which it won the Best Paper Award.

• Chapter 7: A spatio-temporal atlas of the developing cortex. In this chap-
ter, we combine Computational Anatomy tools used in Chapter 6 and optimiza-
tion strategies introduced in Chapters 3 and 4 to propose a new integrative model
for modelling cortical folding in the fetal period. Set in a Bayesian framework,
our method simultaneously estimates an average trajectory composed of several
dynamics and the subjects space-shifts, i.e. the anatomical variability of healthy
fetal brains. We apply our model to cortical meshes extracted from two fetal MRI
datasets. Our method is compared with the state-of-the art kernel regression by
computing curvature measures to assess the accuracy of the modelled gyrification
process. This chapter will be converted into an article for submission. Preliminary
results have been the subject of poster presentations at the French Colloquium of
Artificial Intelligence in Biomedical Imaging 2023 and AI4Health Summer School
2023.
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Chapter 2

Introduction to the Large Deforma-
tionDiffeomorphicMetricMapping frame-
work
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In this chapter, we will examine the statistical analysis of shapes through the lens
of the geometrical analysis of the brain. This chapter does not intend to provide an
exhaustive description of the subject. Mathematical notions are introduced in a simple
and accessible manner whenever possible.

A shape is the geometry of a structured object (image, mesh, landmark, tensor, etc.)
modulo its position, orientation, and size. Usual shapes do not have Euclidean geometry,
hence algebraic operations and usual statistical tools cannot be applied to them. Thus, in
this chapter, we will try to answer the question: how can we model varying objects
and quantify their variability?
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2.1 Shape spaces

To perform the geometrical analysis of shapes, several interrelated questions have to be
answered.

How do we represent shapes, i.e. how do we define a shape space?

Themost intuitive, albeit not themost practical, way of considering shapes is through
their intrinsic characteristics. In that sense, a shape space can be seen as the mathemati-
cal space of the objects we study, i.e. the spaceRd of real objects. In 1917, d’Arcy Thomp-
son [228] introduced a novel definition of shape spaces, later formalized by Grenander
[83]: instead of studying the intrinsic characteristic of shapes, he proposed to study the
relationships between shapes and to model these links through deformations of the am-
bient space. According to this definition, a shape space S is an abstract representation
in which every possible shape is represented by a specific point [122]. The structure
of S -multidimensional, non linear- is given by the range of possible deformations that
the shapes of interest can undergo; it is a quotient space from which rigid deformations
are excluded, at least in theory. By construction, it naturally inherits the structure of a
Riemannian manifold (see Section 2.2). Mathematically, this means that S derives from
the action of a group of transformations G acting transitively on S . For instance, in the
well-known deformable template model [6], all the possible deformations of a reference
object x0 ∈ S are given by the unique orbit Gx0, providing us with a deformation-based
coordinate system whose origin is x0.

How do we measure shape differences?

Applying algebraic operations to shapes would be meaningless -subtracting the in-
tensities of two brain MR images makes little sense- but measuring their geometric sim-
ilarity is still relevant. Following the work of d’Arcy Thompson [227], we consider the
distance between shapes as the difficulty to deform one shape onto another. More pre-
cisely, we suppose that the group of transformations G is endowed with a right-invariant
metric dG, allowing us to compute distances between transformations. By projecting this
metric onto the orbit via the group action, we also endow S with a metric d [255]:

∀ (x, y) ∈ S, d(x, y) = infg∈G {dG(Id, g) | g.x = y}

In essence, this defines the metric on S as the length of the shortest path (according
to the metric dG) between shapes. Hence, to compute distances in S , one must compute
geodesics in the group G.

How do we model shape deformations in an anatomically relevant way?

In other words, how do we define the group G? Rigid and affine deformations are
insufficient to express the deformation of complex anatomical structures such as the
brain, hence the need to define deformations belonging to higher dimension groups. As
for most organs, deformations characterizing brains -healthy ones at least- should not
add or remove portions of the shape. Ideally, we want to restrict ourselves to smooth
and topology-preserving transformations.
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A widely-used framework constructs small deformations ϕ through the application
of displacement vector fields v: ϕ = IdΩ+v [11]. This setting guarantees the regularity
of transformations but, unfortunately, not their invertibility: as soon as the variations
of v become too large, folds and holes are created, which is incompatible with brain
deformations. The framework that we have used in this thesis, the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) setting [233, 153, 53, 13] is built on the idea
of generating large deformations all the while controlling their amplitude (i.e. their reg-
ularity). Its mathematical foundations are introduced in Section 2.3.

2.2 Notions of Riemannian Geometry

We introduced the notion of shape spaces, which have the structure of a Riemannian
manifold. This allows us to rely on some tools from differentiable geometry. Simply
put, the idea of differential geometry is to generalize Euclidean geometry to shapes that
are not flat (such as the sphere embedded in R3). In this thesis, while we will not ex-
plicitly manipulate complex geometrical notions, it is important to introduce the tools
underlying the models that we will use to deform shapes.

RiemannianManifold. Just like a sphere is locally equivalent to its tangent planes,
a Riemannian manifold is locally equivalent to a Euclidean vector space. A Riemannian
manifold (M, g) is a differentiable manifold with a metric, which defines the cost of
displacements on themanifold and determines its structure. More formally, it is a smooth
manifold whose metric is a smoothly varying inner product gp on the tangent spaces
TpM at each point p ∈M .

Geodesic path. Thanks to the metric, one can compute the length of any curve
γ : t ∈ [0, 1] → γ(t) ∈ M on the manifold. A geodesic is the generalization of a
straight line, the path realizing the minimum length (according to the metric) between
two points x and y. The distance d(x, y) between x and y is defined as the length of
this unique geodesic.

ExponentialMap. Let p ∈M be a point on themanifoldM and v a vector belonging
to the tangent space TpM at that point. The Riemannian Exponential, illustrated in
Figure 2.1a, is the operator mapping each vector v ∈ TpM to the unique geodesic γp,v
which goes through p at time t0 with the velocity vector v.

Exp
p,t0,t

: v ∈ TpM −→ γp,v(t) ∈M

where TpM the set of all tangent vectors ofM at p. For the sake of simplicity, we will
write the usual Riemannian Exponential map between t0 = 0 and t = 1 as Expp(v).

The Exponential map is easily computed by solving a second order differential equa-
tion. Computing the Exponential is similar to shooting an arrow, which depends only
on the position of the bow (the point p) and the orientation and amplitude of the arrow
(the velocity vector v). In the following, this operation will be referred to as geodesic
shooting. It will be used to compute the deformation of a shape under the action of a
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(a) (b)

Figure 2.1: The Riemannian Exponential (panel (a)) and Parallel Transport and Exp Par-
allelization (panel (b)) on a sphere.

velocity field.

Parallel Transport. Parallel transport, illustrated in Figure 2.1b is a differential
geometry notion which generalizes the notion of parallels to Riemannian manifolds. It
translates a deformation defined by the direction vector ω ∈ Tγ(t0)M along a curve γ
over the manifoldM . Given (t0, t) ∈ R2, we define the parallel transport of ω between
the points γ(t0) and γ(t) along γ as

Pγ,t0,t(ω) ∈ Tγ(t)M .

The computation of parallel transport may be very expensive; in this thesis, we will use
an efficient numerical scheme proposed by Louis et al. [135]. Once ω is transported
along γ, we need to perform geodesic shooting to obtain the curve parallel to γ. Thus,
we define the exp-parallel variation of γ along ω as the curve

ηωγ : t→ Expγ(t)(Pγ,t0,t(ω)).

Let us take a practical example: a geodesic curve γ describes the growth of a brain image
B1 between t0 and t1 and we want to transpose the evolution of B1 onto another brain
imageB2. B1 andB2 are both defined at time t0 (i.e. they have the same age, or are at the
same stage of a disease). Through geodesic shooting, we compute the diffeomorphism
that best transform B1 onto B2. The set of momenta ω describing this transformation is
parallel transported along γ, and the Exponential of the transported vector gives us the
exp-parallel trajectory of γ along ω, i.e. the growth trajectory of B2 between t0 and t1.
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Figure 2.2: Parameterization of a vector field (blue arrows) with control points (red
points) and momentum vectors (red arrows) using a kernel of width σg = 4.

2.3 TheLargeDeformationDiffeomorphicMetricMap-
ping framework

2.3.1 Building large deformations

The LDDMM framework [233, 153, 53, 13] is a generalization of the small deformations
setting in which transformations are build by concatenating infinitesimal small defor-
mations. The resulting transformations are diffeomorphic, i.e. they are smooth trans-
formations with smooth inverse preserving connected sets and smoothness of anatom-
ical features. Diffeomorphisms are particularly well adapted to the study of anatomical
shapes as they are topology-preserving and can be inverted.

More precisely, deformations are constructed by integrating the differential flow
equation: 

dx(t)

dt
= vt(x(t))

x(0) = x0 .
, (2.1)

where vt ∈ V is an instantaneous velocity field belonging to a Hilbert space V and x
can be seen as a particle moving along the curve x(t) in the domain of interest D.

This model builds a flow of diffeomorphisms: ϕt : x0 −→ x(t) is solution to the flow
equation at any time t ∈ [0, 1], and ϕt(x0) is the position at time t of a particle that was
at position x0 at time t = 0. We have ϕ0 = Id, and the diffeomorphism of interest ϕ1 is
the end point of the path x(t) at t = 1:

∀ x0 ∈ D, ϕ1(x0) = x(1) .

Note that for any time t, ϕt is indeed a diffeomorphism provided that the related velocity
field is regular enough, i.e. that it is continuous squared integrable.
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2.3.2 Sparse parameterization of diffeomorphisms

Finally, we need to define an appropriate norm ||.||V for the Hilbert space V . To this end,
we restrict ourselves to vector fields that belong to a Reproducing Kernel Hilbert Space
(RKHS) [18] V defined by a kernelKg. We also rely on the work of Durrleman et al. [54]
to introduce a discrete parameterization of the velocity fields: we assume that the initial
velocity field v0 can be decomposed as a finite linear combination of the RKHS basis
vector fields. The weights of the decomposition of a given deformation onto this basis
are given by a set of momentum vectors (αk(0))k attached to kg control points (ck(0))k.

v0(x) =

kg∑
k=1

Kg(x, ck(0))αk(0).

In this work,Kg is the Gaussian kernel: Kg(x, y) = exp(−∥x−y∥2
σg

2
)Id, where σg stands for

the kernel width and Id for the identity matrix. The decomposition of v0 is represented
in Figure 2.2.

Vectors fields that define geodesic deformations are those that minimize the distance∫ 1

0
∥vt∥2V dt, i.e. the total kinetic energy used to go from the identity map ϕ0 to the end

point of the path ϕ1. In Miller al. [152], it is proved that the vector fields that define
geodesic deformations with respect to the norm

∫ 1

0
∥vt∥2V dt keep the same structure

along time and write according to:

vt(x) =

kg∑
k=1

Kg(x, ck(t))αk(t) , (2.2)

where for any time t, αk(t) is the kth momentum vector attached to the point ck(t).

Furthermore, the trajectory of the control points (ck(t))k and momentum vectors
(αk(t))k is described by the Hamiltonian system equations [152]:

dck(t)

dt
=

kg∑
l=1

Kg(ck(t), cl(t))αl(t)

dαk(t)

dt
= −

kg∑
l=1

dck(t)(Kg(ck(t), cl(t))αl(t)
tαk(t)

(2.3)

with initial conditions ck(0) = c0,k and αk(0) = α0,k for all 1 ≤ k ≤ kg.

Finally, one verifies that the kinetic energy along geodesic paths is preserved over
time, i.e. ∀t ∈ [0, 1], ∥vt∥V = ∥v0∥V . This implies that a geodesic transformation is fully
parameterized by the initial velocity field v0. Hence, estimation of the diffeomorphism
ϕ1 boils down to a geodesic shooting problem. The system is deterministic and we only
need to optimize the initial conditions. In this work, the position of the control points is
fixed on a regular grid of spacing σg and so we only need to optimize α0 = (αk(0))k.
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Figure 2.3: Computing shape deformations from an initial objectO(0) and a set of initial
momentum vectors α(0). 1- Given α(0) and the initial control points c0, integration of
the Hamiltonians (Equation (2.3)) gives the trajectory of the momentum vectors α(t).
2- The velocity field vt is computed by interpolating the momentum vectors with Equa-
tion (2.2). 3- Integration of the flow equation (Equation (2.1)) gives a flow of diffeomor-
phisms (ϕt)t∈[0,1]. 4- Finally, ϕt is applied to the object O(0), giving the deformed shape
O(t) at any time t.

2.3.3 Optimization

In Computational Anatomy, one seeks to match a reference objectOref to one (or a series
of) object(s) (Oi)1≤i≤N observed at times (ti,j)1≤i≤N,1≤j≤Mi

. In our particular setting, we
perform inexact matching and seek to minimize a cost function expressing a trade-off
between matching accuracy and regularity of the transformation(s). In very generic
terms, this function can be written as:

E(Oref , (α0,i)1≤i≤N) =
N∑
i=1

[

Mi∑
j=1

d(Oi(ti,j), Oref ◦ ϕ−1
i (ti,j))

σϵ
+ Reg(ϕi)] (2.4)

where:
• N stands for the number of subjects
• Mi denotes the number of observations from subject i
• ϕi is the ith diffeomorphism matching Oref to Oi and parameterized by the mo-
mentum vectors α0,i and the fixed control points c0: ϕi(tij) = Expc0,0,tij(α0,i)

• σϵ is a parameter controlling the trade-off between the two terms
• dmeasures the distance between the objects to be matched and Reg is a regularity
term that enforces spatial constraints on the deformations

• Reg is a regularity term that enforces spatial constraints on the deformations.

We choose Reg(ϕi) as the total kinetic energy along the geodesic path related to ϕi:
Reg(ϕi) =

∫ 1

0
∥vt∥2V dt = ∥v0,i∥2V . With the discrete parameterization chosen for the
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velocity fields (i.e. Equation (2.2)), the norm ∥.∥V can easily be computed and thus

Reg(ϕi) =

kg∑
j=1

kg∑
k=1

αj,i(0)Kg(cj,i, ck,i)αk,i(0) . (2.5)

In this thesis, optimization is performed through gradient descent. Computing the gra-
dient with respect to all the parameters is not a trivial task, but an efficient numerical
scheme has been proposed in Durrleman et al. [54]. This algorithm relies heavily on the
fact that the norm of the vector fields is the one of the RKHS and that the vector fields that
are solution to the problem remain a finite sum of kernels at all times (Equation (2.2)).
This enables us to solve a finite-dimensional problem even though the functions we are
looking for have infinite dimension. Given a set of momentum vectors α0, this strong
structural property allows to efficiently deform shapes and compute the cost function
by performing the following steps, which are illustrated in Figure 2.3: integrating Equa-
tion (2.3) gives the evolution of the momenta over time, the velocity field vt at any time
t is computed with Equation (2.2), the flow of diffeomorphisms (ϕt)t∈[0,1] is obtained by
solving Equation (2.1), and the template objectOref is deformed with the flow: ϕ1 ⋆Oref .
It is then straightforward to infer the distance between the deformed template and the
target objects and to compute the regularity term with Equation (2.5). Finally, one can
compute the gradient of the cost function with respect to the template, and use a back-
ward integration along time to compute the gradient with respect to the momentum
vectors.

As we shall see in Chapter 3, we are interested in the practical applications of this
algorithm and any improvements to the deformation model will be made in the spirit of
preserving this efficient numerical scheme.

In this thesis, shape deformations will be estimated using the open-source software
Deformetrica [23].

2.3.4 Shape attachment

Figure 2.4: Varifold representation of a cortical surface mesh (zoomed). Normal vectors
(nk)k are indicated by red arrows located at the cell centers (xk)k.

To evaluate how close two shapes are and compute the data attachment term in the
cost function E, a metric is needed. In this thesis, we will work with 2D and 3D images
and surface meshes.
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For images, we will use the the L2 distance:

d(I1, I2)
2 =

∑
x∈Ω

(I1(x)− I2(x))2,

where we consider images as functions defined on the domain Ω.

Similarly, for landmarks or meshes with point correspondence, the sum of squared
differences is available. In many cases though, meshes have a different number of points.
Different ways of computing distances have been proposed for this particular case. In
this thesis, we will use the varifold distance [28].

Let W and its dual W ′ be Hilbert spaces. To a surface O, we associate the varifold
{O} ∈ W ′, which represent O as the distribution of its points with unit normal vec-
tors attached. An example is available in Figure 2.4. The varifold distance between two
meshes O1 and O2 is defined as

dW ({O1}, {O2})2 =∥{O1} − {O2}∥2W ′

=∥{O1}∥2W ′ + ∥{O2}∥2W ′ − 2× ⟨{O1}, {O2}⟩W ′

=

m1∑
k=1

m1∑
l=1

Kw(x
1
k, x

1
l )

(n1T

k n1
l )

2

∥n1
k∥∥n1

l ∥
+

m2∑
k=1

m2∑
l=1

Kw(x
2
k, x

2
l )

(n2T

k n2
l )

2

∥n2
k∥∥n2

l ∥

− 2×
m1∑
k=1

m2∑
l=1

Kw(x
1
k, x

2
l )

(n1T

k n2
l )

2

∥n1
k∥∥n2

l ∥
.

where Kw is a Gaussian kernel of width σw, m1 and m2 are the number of cells
(triangles) in the meshes O1 and O2 (respectively), (x1k)k and (x2k)k the cell centers of O1

and O2 and (n1
k)k and (n2

k)k the cell normals of O1 and O2.

The kernel width σw plays an important role, since differences between meshes at
scales smaller than σw are smoothed. Note that the varifold distance is an alternative
to the current distance [236], which takes into account the orientation of the normal
vectors.

Regarding optimization, the gradient of the varifold distance with respect to the ver-
tex positions is simple to compute, unlike other correspondence-free distances like the
Hausdorff distance [101].

2.4 Computational Anatomy models

In this section, we introduce some common and less common Computational Anatomy
models, all of which will be used in this thesis. A summary of these models is presented
in Figure 2.5. They are available in the software Deformetrica [24]. These models, for-
mulated here within a frequentist framework, optimize a cost function of the form of
Equation (2.4), composed of a trade-off between a fidelity term quantifying how well the
deformation(s) of a template object fit the observed object(s), plus a regularity term.
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Figure 2.5: Representation of the cross-sectional atlas, registration, geodesic regression
and 2-component piecewise geodesic regression on toy data. The parameters to opti-
mize are the template-to-subject(s) deformations (orange arrows) and the template Oref

(images outlined in blue). For clarity, in atlas estimation and registration we dropped the
subscript "1" of the diffeomorphism "ϕ".

2.4.1 Cross-sectional atlas

The goal of atlas estimation is to perform population analysis on shapes, more specifi-
cally to extend the notions ofmean and variance to shapes. We consider a set ofN objects
(Oi)1≤i≤N of dimension d, all observed at the same time (there is one observation per
subject, thus ∀i Mi = 1). We assume that each object Oi is a smooth deformation of
a template Oref representative of the average anatomy, plus an additive random white
noise ϵi [6]:

Oi = Oref ◦ ϕ−1
1,i + ϵi, ∀i ∈ [1, n] (2.6)

where ϕ1,i is the ith template-to-subject deformation, and Oref ◦ ϕ−1
i denotes the action

of the diffeomorphic deformation on the template.

The goal of atlas estimation is to estimate the template objectOref and theN template-
to-subject deformations (ϕi)1≤i≤N . To do so, we seek to minimize a cost function E:

E(Oref , (α0,i)1≤i≤N) =
N∑
i=1

(
d(Oi, Oref ◦ ϕ−1

1,i )
2

σ2
ϵ

+ ∥v0,i∥2V

)
, (2.7)

where ϕ1,i = Expc0(α0,i).

The cross-sectional atlas builds a coordinate system where the template-to-subject
deformations (α0,i)1≤i≤N position each subject with respect to the reference shapeOref .
Computing statistics on high-dimensional objects, or on the diffeomorphisms that char-
acterize them, is not straightforward, but the coordinates (α0,i)1≤i≤N belong the tangent
space at the template shape: this allows us to apply linear statistical tools such as prin-
cipal component analysis to the dataset [175, 174, 236]

Methodological improvements will be made to the estimation of the cross-sectional
atlas in Chapter 3.
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2.4.2 Registration

Registration estimates the optimal transformation between two objects Oref and O1. It
can be seen as a particular case where the template object is fixed and N = 1. The cost
function writes as follows:

E(α0) =
d(O1, Oref ◦ ϕ−1

1 )2

σ2
ϵ

+ ∥v0∥2V (2.8)

where ϕ1 = Expc0(α0).

2.4.3 Geodesic regression

Geodesic regression can be seen as the generalization of linear regression to shapes.
Given M observations (O1(t1), ...O1(tM)) from a single subject (N = 1), one seeks to
estimate a template object Oref at age t0 (analogous to an intercept parameter), along
with the mean geodesic trajectory ϕ(t) that deforms Oref [65].

The flow of diffeomorphisms applied to the template shape t → Oref ◦ ϕ(t)−1 is
the one that best depicts how the observations evolve with time (i.e. that is as close as
possible to the input shapes). Geodesic regression optimizes the following cost function:

E(Oref , α0) =
M∑
j=1

(
d(O1(tj), Oref ◦ ϕ(tj)−1)2

σ2
ϵ

)
+ ∥v0∥2V . (2.9)

where ϕ(tj) = Expc0,t0,tj(α0).

c0 and α0 are analogous to an intercept and slope parameter, respectively.

In practice, in this thesis we will also apply geodesic regression to observations com-
ing from different subjects, with a single observation per subject. Compared to the cross-
sectional atlas model, this can be seen as a replacement of a single reference shape by a
curve, i.e. the trajectory of the reference shape.

2.4.4 Piecewise geodesic regression

Piecewise geodesic regression [30, 44] is an extension of geodesic regression which al-
lows changes in trajectory dynamics. The mean trajectory ϕ(t) is decomposed into P
trajectories (ϕl(t))1≤l≤P called geodesic components and associated to a set of rupture
times tR = [t1, t2, ..., tP−1], with t1, < ..., < tP−1. The template shape Oref , either op-
timized or fixed, is defined at time t0 ∈ tR. Oref , tR and t0 can be optimized, but the
number of components P has to be fixed for the problem not to be ill-posed.

In each interval [tl, tl+1] of tR, the average trajectory γ(t) is the lth geodesic compo-
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nent:

γ(t)(O1
ref ) = ϕ1(t) ⋆O1

ref1[−∞,t1](t)+
P−1∑
l=2

ϕl(t) ⋆Ol
ref1[tl−1,tl](t)+ϕ

P (t) ⋆OP
ref1[tP ,+∞](t)

(2.10)
where :

• the lth diffeomorphism ϕl is parameterized by the set of momentum vectors α0,l

and the fixed control points c0:

∀ l ∈ [1, P ] ϕl(t) = Exp
c0,tl,t

(α0,l)

• ∀ l ∈ [1, P ], Ol
ref is the representative shape at the rupture time tl:

Ol
ref = ϕl−1(tl) ⋆ O

l−1
ref

To ensure the continuity of the trajectory, we impose that ∀ l ∈ [1, P − 1], ϕl(tl) =
ϕl+1(tl).

In this thesis, geodesic regression and its variants may sometimes be referred to as
temporal atlasing. This term is not to be confused with longitudinal atlasing [201, 200],
a more complex model where one estimates individual geodesic trajectories that are
deformations of an average trajectory. This latter model requires longitudinal data, i.e.
repeated observations of the same subjects, which translates as N > 1 andMi > 1 for
at least one subject i. As specified in Chapter 1, in this thesis we will work only with
datasets comprising one observation per subject.

Methodological improvements will be made to geodesic regression and its variants
in Chapter 4.
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Multiscale deformations for atlas estimation
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This chapter is an extended version of a manuscript submitted for publication [69]:
Wavelet-Based Multiscale Initial Flow For Improved Atlas Estimation in the Large Diffeo-
morphic Deformation Model Framework by Fleur Gaudfernau and Eleonore Blondiaux,
Stéphanie Allassonière and Erwan Le Pennec.

3.1 Motivation

When working with collections of images that are instances of the same anatomical
object, one faces the question of how to faithfully model the mean and variability over
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these structures. Atlas estimation is a method to achieve such modeling: an estimate
of the average shape is given in the form of a template image, which represents the
invariants across the population, i.e. shared anatomical features, and the variability is
given by deformations from the template space to each subject’s space, which express
how these common features vary within the population [84].

Atlas estimation has many applications in the field of medical image analysis. The
template image can be used as reference to describe average anatomical structures or
serve as a tool to automatically segment new subjects. Variations around the template
may be used to characterize pathological deviations from normality [68] or to isolate
subgroups in the population [44]. Atlases can also be defined in a spatio-temporal fashion
to characterize normal or pathological changes, such as brain growth across gestation
[73] (this topic will be addressed in Chapter 7).

As in registration problems, the choice of the deformation function describing the
template-to-subject transformations is of primary importance [164]. To account for the
intra- and inter-subject anatomical variability in clinical images, non-linear deforma-
tions are mandatory. Here, we work with diffeomorphic transformations, which are
high-dimensional, smooth and invertible functions with smooth inverse that preserve
the topology of anatomical images.

In this thesis, we work within the framework of the Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) [233, 153, 31], in which objects are deformed through
diffeomorphic transformations of the whole ambient space. The group of possible trans-
formations forms a Riemannian manifold of infinite dimension and parameterizes a flex-
ible representation of deformations. Since such models have a very high number of
degrees of freedom and parameters, the search space is narrowed to a small subset of
deformations. As described in Section 2.3.3, this is typically done by optimizing a cost
function that comprises a distance between the deformed template and each subject, plus
an energy term acting as spatial regularizer [54]. The latter constrains diffeomorphisms
to be geodesics on the Riemannian manifold, i.e. the shortest paths between the identity
map and the diffeomorphism of interest according to a regularizing metric.

The choice of this regularizer is critical as it restricts the range of transformations
defined by the model [215]. Specifically, it constrains the estimated deformations to a
single scale. A large kernel is likely to produce smooth deformations but less accurate
matches, while a fine kernel will generate more accurate yet unnatural deformations.
This dilemma is illustrated in Figure 3.1 on a registration example. As clinical images
often present high variability at several scales, one might be tempted to increase the
number of parameters in the model, i.e. to use many control points and a small kernel.
However, fine kernels make large displacements more expensive than small ones, and
such over-parameterization will likely trap the optimization procedure in a local mini-
mum, achieving a reasonable numerical solution that is qualitatively bad, especially in
terms of template realism. Finding an ideal trade-off is time-consuming and sometimes
impossible, especially when working with complex images whose variability cannot be
summarized by single-scale deformations. To overcome such problem, hierarchical al-
gorithms have been widely used in the field of image registration [164, 155]: they first
solve the registration problem at coarse scales and transfer the solution to increasingly
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fine scales to refine the transformation. These strategies avoid more efficiently trapping
the algorithm in local minima related to unrealistic transformations. Except for Tan et
al. [223], they have yet to be applied in the LDDMM framework.

In this chapter, we will present a new multiscale strategy to avoid unrealistic local
minima in the LDDMM framework.

Figure 3.1: Illustration of the dilemma linked to the choice of the deformation kernel on
a simple registration example between two cortical surface meshes from fetuses. The
source and target structures are 24 and 35 gestational weeks, respectively. The bottom
row shows the deformed source object and the corresponding deformation grid obtained
with two different kernel widths.

3.2 Related work

Even though multiscale image registration has been studied repeatedly in the literature,
it has rarely been extended to population analysis. As registration is a special case of atlas
estimation with a fixed template image, in the following we will review both registration
and atlas estimation methods that have a multiscale property.

Multiscale strategies differ in the way they handle the various scales of the opti-
mization: some methods favor a coarse-to-fine fashion while others handle coarse and
fine scales simultaneously. We will first review coarse-to-fine strategies with a focus on
those relying on a wavelet-based decomposition. Then, we will survey the multiscale
strategies that have been introduced in the LDDMM framework.

Coarse-to-fine or hierarchical optimization strategies seek to solve the registration
problem at progressively increasing resolutions, with the objective of decreasing the
computational cost and finding a more accurate solution [155]. The search area is first
restricted to coarse functions and the results are progressively refined, with the param-
eters estimated at the previous coarser level propagated to the next finer level. Such
strategies can be coarse-to-fine with regard to the deformation field , and/or with regard
to the registered images . We will not dwell on the latter case, which is out of the scope
of this chapter.
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3.2.1 Multiscale representations of deformations

Signal representation provides numerous mathematical tools to represent signals, and
many registration algorithmsmodelled deformations using basis functions from the Fourier
and Wavelet transforms. Ashburner et al. [10] used the Fourier transformation to com-
press the representation of the deformation fields and accelerate calculations. In the
same vein, Zhang et al. [263] introduced a Fourier representation of the velocity fields
in the LDDMM framework. Retaining only low frequency coefficients yielded a low
dimensional representation of the deformations and a significant reduction of the com-
putational cost. While they did not implement a multiscale optimization scheme, the
idea of reparameterizing the velocity fields with different basis functions is akin to ours.
Christensen et al. [32] parameterized displacement fields by a Fourier basis and esti-
mated frequency coefficients in a coarse-to-fine fashion.

However, experiments showed that modelling deformations using a wavelet basis
provides better spatial regularization compared to using a Fourier basis [7]. Indeed, as
the wavelet transform gives the location and orientation of the signal frequencies, it
provides a convenient basis for hierarchical optimization strategies. Wavelet-based de-
formation models cover a variety of wavelet types (e.g. Haar, Cai Wang and (BV,L2))
and deformations (e.g. displacement vectors, B-splines and elastic deformations). Dis-
placement vectors [251, 27] and later free form deformations [219] were described and
optimized in a multi-resolution fashion through the Cai Wang wavelet. Gefen et al.
[70]modeled elastic deformations using finite-supported, semi-orthogonal wavelet func-
tions. Topology-preserving displacement fields were modelled by polynomial spline ba-
sis functions and controlling the Jacobian of the transformation [158, 161]. Recently,
wavelets (BV,L2) were employed to generate a hierarchical representation of diffeo-
morphisms in the hyperelasticity framework and perform coarse-to-fine optimization
[46]. Of note, the wavelet transform has also been used in deformation analysis with
various aims such as data visualization and compression, again encompassing various
types of wavelet bases such as the Cauchy-Navier wavelet [138], the non-linearMorphlet
wavelet [113] and the spline wavelet [128].

3.2.2 Multiscale strategies in the LDDMM framework

In the LDDMM framework, the choice of the spatial regularizer restricts the range of
possible deformations to those occurring at a single scale, which often proves unreal-
istic [190]. Thus, a variety of papers have focused on increasing the flexibility of the
deformation model. Two main strategies can be identified:

• Coexisting flows of different scales are estimated simultaneously [190, 21, 215, 85,
223]

• Flows of different scales are composed and estimated sequentially in a coarse-to-
fine manner [156, 154].

In the category of multiscale coexisting flows, Risser et al. [190, 21] first introduced
a multi-kernel extension of the LDDMM framework by writing the deformation flow as
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a weighted sum of Gaussian kernels whose widths are specified by the user. Weights are
tuned in a semi-automatic manner during a pre-registration step. In this framework, the
RKHS structure of the velocity fields is lost, and a new definition of the norm is used to
ensure efficient computation of the flow. A spatially-varying version of this framework,
the kernel bundle [215], used sparsity priors to allow the weights of the kernel mixture
to vary across spatial locations. Even though this algorithm proved efficient on the regis-
tration of landmark points, the increase in computational cost restricts its application to
registration problems involving few parameters. Using an algorithm for the multiresolu-
tion decomposition of surfaces, the kernel bundle framework was also combined with a
coarse-to-fine strategy wherein the resolution of cortical surface meshes is progressively
increased along with that of the deformation field [223]. Unfortunately, this strategy can
only handle meshes. Multi-kernel approaches were further combined with deep learn-
ing optimization in order to learn a local regularizer from the data [160, 211]. Set in the
framework of time-independent velocity fields, Niethammer et al. [160] learned the pre-
weights of the mixture of Gaussian kernels through a Convolutional Neural Network
and jointly optimized the deformation and network parameters by stochastic gradient
descent. Shen et al. [211] conducted a similar workwith both spatially- and time-varying
velocity fields. These methods increase significantly the complexity of the mathematical
model, and several optimization procedures are required to tune the networks param-
eters, the kernel pre-weights and the deformation parameters. As in the kernel bun-
dle framework, the tuning of additional parameters is heavy on the computational cost,
which dampens the application of such algorithms to high-dimensional images such as
volumetric MRIs.

Of note, a related approach, based on modular deformations, enables the user to im-
pose spatially-varying constraints on the deformation field [85]. Large diffeomorphic
deformations are built by superimposing deformations modules, which encode local ge-
ometrical transformations, making it possible to construct diffeomorphisms from multi-
ple scale flows. As in the kernel bundle framework, the space of vector fields is equipped
with an adapted norm. The need for prior knowledge about the deformation modules
limits the practical application of the algorithm.

A second and less explored axis of research constructed a hierarchical representation
of deformations, based on non-coexisting vector flows of increasing resolution, which
are estimated independently and then composed. In a theoretical paper, Modin et al.
[156] extended (BV,L2) wavelets to express diffeomorphisms as a composition of de-
formations of increasingly fine scales, which can be seen as a series of LDDMM steps.
Despite the potential of this approach, the authors did not perform numerical experi-
ments. A similar approach [154] constructed diffeomorphisms by composing a series of
multiscale vector fields, which enables to progressively refine the deformation. Contrary
to multi-kernel approaches, such strategies perform optimization in successive RKHS of
increasingly finer resolution, in the spirit of coarse-to-fine strategies. Finally, a sequen-
tial multiscale approach was developed to perform registration and template estimation
of ear shapes [265]. Based on the current representation of shapes [236], the method re-
duces iteratively the size of the kernels controlling the scales of the shape matching term
and of the deformation field. Running the algorithm for n scales amounts to running n
single-scale optimizations, which in practice is prohibitive - at least when performing
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template estimation on clinical images. However, it should be noted that, unlike the
previous methods, this approach relies on an "optimization trick" rather than a complex-
ification of the deformation model.

As we shall see in the following, our coarse-to-fine approach is more closely related
to the one that composes multiple scale flows, in the sense that we perform optimization
sequentially in sub-spaces of increasing resolution. However, our algorithm differs from
the previous ones by the fact that our work brings changes to the optimization proce-
dure rather than the deformation model: the multiscale structure is only used for the
initial velocity field and so that the velocity fields are still defined, at core, by a single-
scale RKHS. This simplifies the implementation of our algorithm while preserving the
efficient optimization scheme of [54]. It should also be noted that the above-mentioned
algorithms perform registration tasks, while we are interest in improving optimization
for several models: registration, atlas estimation and geodesic regression.

3.2.3 Multiscale strategies and sparse parameterization of diffeo-
morphisms

In this thesis, we compute object deformations using the discrete parameterization of
diffeomorphisms introduced by Durrleman et al. [54] (see Section 2.3.2). We have intro-
duced in Section 3.1 the general difficulty of choosing a single appropriate kernel size
when matching objects. Here, we will dwell more on how this issue presents itself in
our chosen framework.

We recall that velocity fields defining geodesic transformations write as the convo-
lution of momentum vectors located on a grid of control points, where the convolution
operator is a kernelKg. There is a dependency between the scale of the kernel σg and the
number of parameters, as a constant vector field has to be well approximated by the fi-
nite sum: thus, the spacing between control points has to remain close to the kernel size.
This is why we set the controls points on a regular grid of spacing σg. Here, the kernel
Kg not only controls the amount regularity of the deformations, but also the number of
parameters to optimize: large kernels imply few control points and therefore smoother
vector fields, whereas small σg foster finer transformations and more accurate matches.

Further, as the optimization problem is not convex, the gradient descent algorithm
converges towards a solution that depends on the initialization. In the case of atlas esti-
mation, the model is initialized withN template-to-subject null momenta and a template
object provided by the user. The more the numbers of subjects and parameters are high,
the more complex the energy landscape of the problem becomes, and the more difficult
it will be to find a solution distant from the initialization.

As observed in Durrleman et al. [54], the algorithmmay converge towards unrealistic
local minima when the number of control points and thus of parameters is too large. In
this original approach, a first step towards the estimation of multiscale deformations was
taken: both the number and position of the control points were numerically optimized. A
L1 sparsity prior was applied to the momenta in order to inactivate points in areas with
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low variability. Unfortunately, the width of the kernel remains the same and in practice,
the vector fields can only be set to zero in image areas of null intensity. Another issue is
that the position of the control points cannot change significantly if the distance between
control points is low. Yet, it is exactly when the number of parameters is high that the
risk of converging towards an unrealistic local minima is higher.

One idea would be to change locally the scale of the kernel so that we can estimate
non-evenly smooth vector fields, i.e. vector fields with spatially varying scales. Even if
such parameterization can be written, one looses the RKHS structure and thereby the
ease of computation.

In this chapter, we wish to address these two related issues: the dependency of the
algorithm on the initialization, which restrains the number of parameters that can be
properly optimized, and the difficulty in estimating vector fields with spatially-varying
regularity. In the next section, we will describe a reparameterization of the vector fields
which enables us to impose smoothness constraints on the deformations and progres-
sively relax them in a coarse-to-fine fashion. In this way, the algorithm can cope with
non-evenly smooth transformations while using a small kernel and remaining in the
original RKHS setting.

3.3 Wavelet-based multiscale atlas estimation

In this chapter, we propose a multiscale atlas estimation procedure based on a Haar-like
wavelet representation of the initial velocity fields. This strategy has the advantage of
making the algorithm less dependent on the initialization while favoring more multi-
scale, hence natural deformations. We rely on the finite parameterization of the velocity
fields as a linear combination of RKHS basis elements [54] within the LDDMM setting.
Importantly, our strategy enables us to preserve this structural assumption and the effi-
cient numerical scheme that follows. We will show that our algorithm generates more
natural template images as well as higher stability regarding the initialization.

3.3.1 Overview

For the sake of clarity, we provide the reader with an overview of our multiscale strat-
egy. In the original algorithm for atlas estimation, we optimize a cost function E (see
Section 3.3.2). Two types of parameters are optimized through gradient descent: the tem-
plate image Oref and N sets of momentum vectors α0,i that parameterize the template-
to-subjects velocity fields v0,i. The original optimization iterates between two classical
steps (note that the subscripts i have been dropped for clarity):

1. Computation of the gradients ∆Eα0 and EOref

2. Parameters update: α0(j + 1)← α0(j1)− h×∆Eα0 ; ditto for the template Oref .

In the multiscale strategy, summarized in Figure 3.2, we modify the optimization of
the momentum vectors by replacing step 2. with the following steps:
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Figure 3.2: Overview of the coarse-to-fine optimization strategy. For the sake of clarity, a
single gradient descent iteration is represented during the coarser steps of the algorithm.
α0(j): momentum vectors defined in the RKHS basis at iteration j. ∆Eα0 : gradient of
the cost function with regard to α0. β0(j) : multiscale representation of α0(j) in the
wavelet basis. ∆Eα0 : gradient of the cost function with regard to β0.

(i) We use the wavelet transform (Section 3.3.3) to obtain a multiscale representation
of the gradient of E with regard to the momenta: ∆Eβ0 ← FWT (∆Eα0)

(ii) The wavelet coefficients in∆Eβ0 whose scale is smaller than a current scale Sj are
set to zero (Section 3.3.4)

(iii) The coordinates of the initial velocity fields v0 in the wavelet basis are updated:
β0(j + 1)← β0(j)− h×∆Eβ0

(iv) The coordinates of v0 in the RKHS basis are recovered with the Inverse Wavelet
Transform: α0(j + 1)← IWT (β0(j + 1)).

3.3.2 Model of diffeomorphic deformations

In this section, we briefly recall how we model and estimate diffeomorphic deformations
to perform atlas estimation. We consider a set of N objects (Oi)1≤i≤N of dimension d,
and we assume that each object Oi is a smooth deformation of a template Oref , plus an
additive random white noise ϵi: Oi = Oref ◦ ϕ−1

i + ϵi, ∀i ∈ [1, n], where ϕi is the ith
template-to-subject deformation, andOref ◦ ϕ−1

i denotes the action of the diffeomorphic
deformation on the template.

We work in the LDDMM framework, where diffeomorphisms are constructed by
following the streamlines of time-dependent velocity fields vt (see Equation (2.1)). We
further assume that the velocity fields write as the Gaussian convolution of momentum
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vectors (αk(0))k located at control points (ck)k.

v0(x) =

kg∑
k=1

Kg(x, ck)αk(0),

whereKg is a Gaussian kernel of width σg and the position of the control points is fixed
on a regular grid of spacing σg.

Vectors fields that define geodesic deformations with respect to the norm
∫ 1

0
∥vt∥2V dt

keep the same structure along time and so:

vt(x) =

kg∑
k=1

Kg(x, ck)αk(t) , (3.1)

where αk(t) is the kth momentum vector attached to the control point ck(t) at time t.

Furthermore, the trajectory of the control points and momentum vectors is described
by the Hamiltonian system equations (Equation (2.3)).

The kinetic energy along geodesic paths is preserved over time, i.e. ∀t ∈ [0, 1], ∥vt∥V =
∥v0∥V . This implies that a geodesic transformation is fully parameterized by the initial
velocity field v0 and thus by its initial momentum vectors (αk(0))k.

In the specific case of atlas estimation, we seek to minimize a cost function E:

E(Oref , (α0,i)1≤i≤N) =
N∑
i=1

(
d(Oi, Oref ◦ ϕ−1

1,i )
2

σ2
ϵ

+ ∥v0,i∥2V

)
, (3.2)

where Oref is the template object to be estimated, (α0,i)1≤i≤N are theN sets of momen-
tum vectors parameterizing the template-to-subject deformations (ϕi)1≤i≤N , ∥v0,i∥2V is
the norm of the ith velocity field related to ϕi, and σϵ is a parameter controlling the
trade-off between data attachment and regularity.

We recall that optimization is performed through gradient descent using a numerical
scheme which relies heavily on the fact that the vectors fields vt are expressed at any
time as a finite sum of RKHS basis elements (Equation (3.1)). More details about the
optimization procedure are available in Section 2.3.3.

3.3.3 Reparameterization of the initial velocity fields

Since our algorithm relies on the multiscale structure of the wavelet transform, we in-
troduce the definition and properties of the continuous Haar Wavelet representation.
We recall how this construction can be extended to a representation of discrete signals
defined on a grid, and we demonstrate how this can be used to obtain a Haar-like repre-
sentation of the initial velocity fields.
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3.3.3.1 The continuous Haar wavelet transform

Figure 3.3: The one-dimensional Haar wavelet. At scale 0, V0 is the space of piecewise
constant functions of size 1. A basis for V0, i.e. {Φ0,k}k, is obtained by translating the
scaling function Φ0,0 = ψL by factors k ∈ Z. A basis forW0, i.e. {ψ0,k}k, is obtained by
translating the mother wavelet function ψ0,0 = psiH by factors k ∈ Z. At scale s, a basis
for the space Vs, i.e. {Φs,k}k, is obtained by dilating Φ0,0 by 2s, translating it by 2sk and
normalizing it by 2−s/2. A basis forWs, i.e. {ψs,k}k, is obtained by performing the same
operations on ψ0,0.

Here, we describe the decomposition of a real signal f defined on the space Rd into
a Haar Wavelet basis [142, 141]. The wavelet representation decomposes f into a linear
combination of basis functions which have different resolutions, locations and orien-
tations. This representation relies on a collection of embedded spaces Vs that contain
functions said of scale s. In the case of the Haar Wavelet, Vs is the space of piecewise
constant functions on a regular grid of size 2s (see an illustration for d = 1 in Figure 3.3).
Any function f can be approximated in this space by computing a local average: the
mean value in each sub-square of the grid. If we define the one-dimensional piecewise
constant function

ψL(z) =

{
1 for 0 ≤ z < 1

0 otherwise
,

and the d dimensional scaling function Φ by

Φ(x) =
d∏

i=1

ψL(xi)

with x ∈ Rd, approximating f at scale s amounts to projecting f onto the space spanned
by the orthonormal family{

Φs,k(x) = 2−sd/2Φ(2−sx− k)
}
k∈Z

where Φs,k is the scaling function rescaled by 2s, translated by k2s and normalized by
2−sd/2.
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When transitioning from the approximation at scale s to the approximation at the
coarser scale s + 1, some details of f are lost. These details belong to the orthogonal
complement Ws+1 of the space Vs+1 in Vs. A basis of this space can be obtained by
defining the piecewise constant function

ψH(z) =


1 for 0 ≤ z < 0.5

−1 for 0.5 ≤ z < 1

0 otherwise

and the d dimensional oriented wavelet functions

ψo(x) =
d∏

i=1

ψoi(xi)

where x ∈ Rd, o ∈ {H,L}d and ∃ i, oi = H . Indeed, one can verify that an orthonormal
basis ofWs is given by{

ψo
s,k(x) = 2−sd/2ψo(2−sx− k)

}
k∈Z, ∃i oi=H

.

where ψo
s,k is the wavelet function of orientation o rescaled by 2s and then translated by

k2s. Note that functions ψL and ψH act respectively as low and high pass filters. Their
combination yields oriented high pass filters, e.g. for d = 2, there are three wavelet
functions ψHL, ψLH and ψHH that express details of the signal along vertical, horizontal
and diagonal orientations (respectively).

We can thus decompose any function f in Vs in the two following ways:

f =
∑
k

as,kΦs,k

=
∑
k

as+1,kΦs+1,k +
∑
o,k

dos+1,kψ
o
s+1,k.

As
∑

k as+1,kΦs+1,k belongs by construction to the space Vs+1, we can further decompose
it into a projection onto Vs+2 and a projection ontoWs+2. Repeating this scheme up to
scale S leads to the following multiscale decomposition of f :

f =
∑
k

aS,kΦS,k +
S∑

s′=s+1

∑
o,k

dos′,kψ
o
s′,k.

The classical wavelet construction is concluded by letting s go to −∞, enabling one
to decompose any measurable bounded function in such bases. Finally, we observe in
particular that any function Φs′,k or ψo

s′,k with s′ ≥ s is in Vs and therefore can be
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(a) Classical decomposition into unit functions

(b) Multiscale Haar wavelet basis

Figure 3.4: Decomposition of a 4-by-4 grid in two bases. The letters a and d refer to
approximation and detail coefficients, respectively. Subscripts indicate the scale of the
coefficient and the x-y position of the related wavelet function. Superscripts indicate the
orientation of the wavelet function. In the grids, empty cells denote null values.

decomposed as a linear combination of Φs,k′ :

Φs′,k =
∑
k′

γs′,k,s,k′Φs,k′ (3.3)

ψo
s′,k =

∑
k′

γos′,k,s,k′Φs,k′ (3.4)

where γs′,k,s,k′ and γos′,k,s,k′ are some fixed real numbers.

More importantly, going from the decomposition in Vs to the decomposition in the
spaces VS and (Ws′)s<s′≤S corresponds to a change of basis and thus to a discrete op-
eration going from the coefficients (as,k)k to the coefficients (aS,k)k and (dos′,k)s<s′≤S,k,o.
This transformation is called the Forward wavelet transform (FWT) and its inverse the
Inversewavelet transform (IWT). Both can be computed directly on the coefficientswith-
out relying on the continuous basis functions.

3.3.3.2 Haar wavelet applied to grids

In our algorithm, rather than using the continuous Haar wavelet decomposition, we
will employ the related discrete Haar wavelet decomposition on a d dimensional grid
[[0, K1]]× ...× [[0, Kd]]. This transform corresponds to a discrete change of basis related
to the continuous Haar transform.
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More precisely, to any discrete function (a0,k)k on the grid, one can associate the
continuous function f of V0 defined by

f =
∑

k∈[[0,K1]]×...×[[0,Kd]]

a0,kΦ0,k,

where the (a0,k)k are interpreted as the approximation coefficients of f at scale 0.

By construction, f is a piecewise constant function on the related continuous grid.
Using the FWT algorithm up to scale S, this function can be decomposed as follows:

f =
∑
k

aS,kΦS,k +
S∑

s′=s+1

∑
o,k

dos′,kψ
o
s′,k.

One verifies that aS,k = 0 when ki < 0 or ki2S > Ki and ds′,k = 0 when ki < 0 or
ki2

s′ > Ki. Thus, these sums have a finite number of coefficients. Further, when the
Ki are powers of 2, i.e. Ki = 2ζi , we impose that the decomposition cannot exceed a
maximum scale Smax = mini(ζi), so that the scaling function support remains within∏

i[0, Ki]. Therefore, when S ≤ Smax, the previous equation reduces to:

f =
∑

0≤ki<2ζi−S

aS,kΦS,k +
S∑

s′=s+1

∑
o, 0≤ki<2ζi−s′

dos′,kψ
o
s′,k,

which corresponds exactly to an orthonormal change of basis.

To summarize, from the coefficients (a0,k)k, one can compute the coefficients (aS,k)0≤k<2Smax−S

and (dos′,k)s+1≤s′≤S,0<k<2Smax−s′ ,o with the FWT algorithm and perform the inverse op-
eration with the IWT algorithm.

3.3.3.3 Algorithmic implementation of the Wavelet Transforms

We denote byM1
FWT andM1

IWT the
∏

iKi×
∏

iKi matrices associated to the transfor-
mations FWT and IWT so that:

FWT :MK1,...,Kd
→MK1,...,Kd

X →M1
FWTXflat with Xflat ∈M∏

i Ki

IWT :MK1,...,Kd
→MK1,...,Kd

Y →M1
IWTYflat with Yflat ∈M∏

i Ki

andM1
FWTM

1
IWT = Id.

We haveM1
FWT = R⊙MFWT andM1

IWT =MIWT ⊙R−1, with⊙ the element-wise
matrix product operator.MFWT andMIWT are the unnormalized transformationmatrix.
R ∈ M∏

i Ki
is the renormalization matrix that ensures preservation of the signal’s

energy when computing the Forward or Inverse Wavelet Transform: R[i] = 1
∥MFWT [i,:]∥2
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where ∥MFWT [i, :]∥2 is the L2 norm of the ith row ofMFWT .

Note that this renormalization ensures the orthogonality of the transformations so
that they verifyM1T

IWT =M1
FWT .

Furthermore, there exist fast implementations of these transforms that have a linear
complexity with respect to the number of coefficients [141]. In this work, we have imple-
mented the FWT and IWT algorithms using the fast lifting scheme described in Mallat
et al. [142] (Chapter 7.8). This scheme is strictly equivalent to the previous description
when the grid size is a power of 2, with the difference that it handles non-dyadic grids
through improved computations at the boundaries and that FWT and IWT remain or-
thogonal transforms. The pseudocode for the algorithms FWT and IWT can be found in
Appendix A.2 (Algorithms 5 and 6, respectively), along with a brief explanation and an
illustration of how the FWT algorithm operates on a non-dyadic grid (Figure A.2).

3.3.3.4 Preservation of the RKHS structure of the velocity fields

We transposed the classical Haar description of continuous functions to discrete func-
tions defined on a grid. To implement a coarse-to-fine initialization approach for atlas
estimation, we will describe the initial momentum vectors not through their values on
the grid but by the decomposition of these values in the discrete Haar basis. The mul-
tiscale structure will be used to obtain a smooth initial field by setting fine-scale coef-
ficients to 0. By construction, this does not change the fact that the initial vector fields
v0,i, and thus all the vector fields vt,i, are finite combination of the RKHS kernel Kg.

We recall that in the algorithm of Durrleman et al. [54], the initial vector field for a
subject i is defined as a finite linear combination of identical Gaussian kernels that are
evaluated at an initial set of points:

v0,i(x) =
∑
k

Kg(x, ck,i(0))αk,i(0)

whereKg is a Gaussian kernel defining a RKHS and αk,i(0) is a vector attached to ck,i(0).
In our scheme, we set the initial points (ck,i(0))k on a grid so that the equation becomes:

v0,i(x) =
∑

k∈[[0,K1]]×...×[[0,Kd]]

Kg(x, ck(0))αk,i(0)

where ck(0) = k. Instead of optimizing v0,i by optimizing directly its momentum vectors
αk,i(0), we will optimize them in the wavelet domain. More precisely, we define

((aS,k,i)k, (d
o
s,k,i)1≤s≤S,o,k) = FWT ((αk,i)k)

where the Wavelet Transform has been applied to the momentum vectors component
by component. Note that by construction,

(αk,i)k = IWT ((aS,k,i)k, (d
o
s,k,i)1≤s≤S,o,k).
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Using the wavelet coefficients (aS,k,i)k and (dos,k,i)1≤s≤S,o,k instead of the momentum
vectors (αk,i)k amounts to switch from the description

v0,i(x) =
∑

k∈[[0,K1]]×...×[[0,Kd]]

Kg(x, ck(0))αk,i(0)

to v0,i(x) =
∑
k

aS,k,iΦ̃S,k(x) +
S∑

s′=s+1

∑
o,k

dos′,k,iψ̃
o
s′,k(x)

where Φ̃s,k (respectively ψ̃o
s,k) is a function defined by replacing Φ0,k′ byKg(·, ck′(0)) in

the decomposition of Φs,k (resp. of ψo
s,k) in Equation (3.3) (resp. Equation (3.4)).

Even if v0,i is now defined through the vectorial wavelet coefficients (aS,k,i)k and
(dos,k,i)s,o,k instead of the momentum vectors αk,i, it remains a linear combination of the
Kg(x, ck(0)) so that we are still in the setting of Durrleman et al. [54] and can rely on

vt,i(x) =
∑
k

Kg(x, ck,i(t))αk,i(t).

Note that we do not use the Haar parameterization outside the initialization. Indeed,
the initial grid is deformed under the action of the diffeomorphism ϕt,i when the time
evolves, so that the Haar wavelet coefficients would be hard to interpret for t > 0.

3.3.4 Multiscale optimization algorithm

The key difference between our scheme and the one of Durrleman et al. [54] is the use of
the Haar parameterization in a fixed grid for the initial velocity fields. Thus, we optimize
the following cost function:

N∑
i=1

(
d(Oi, Oref ◦ ϕ−1

1,i )
2

2σ2
+ ∥v0,i∥2V

)
,

where β0,i is a set of wavelet coefficients (aS,k,i)k and (dos,k,i)s,k,o, related to the mo-
mentum vectors α0,i by α0,i = IWT (β0,i) =M1

IWTβ0,i.

This implies a relationship between the gradient of the cost function with respect to
the wavelet coefficients∇β0,i

E and the gradient with respect to the momenta∇α0,i
E:

∇β0,i
E =MT 1

IWT∇α0,i
E

=M1
FWT∇α0,i

E

= FWT (∇α0,i
E)

where we have used the fact thatMT 1

IWT =M1
FWT because the transform is orthonormal.

The gradient ∇β0,i
E can thereby be computed for almost the same cost as the one of
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∇α0,i
E. If we perform the same gradient descent as in the original algorithm but in the

wavelet domain, we obtain exactly the same results as the original algorithm.

To obtain hopefully better results, we enforce some constraints on the wavelet coef-
ficients of the initial velocity fields. Namely, we use a coarse-to-fine initialization strat-
egy by optimizing first the initial velocity fields whose wavelets coefficients are null at
the finest scales and adding progressively these fine scale coefficients. In the following,
we describe in detail our procedure which is summarized in Figure 3.2 and Algorithm 1
and illustrated on a simple registration example in Figure 3.5.

Algorithm 1Multiscale initialization algorithm.
1: Input
2: Set of objects (Oi)1≤i≤N of dimension d, template object Oref , geometric kernel width σg ,

trade-off regularity/fidelity-to-data σ, initial step size h
3: Initialization
4: j ← 0
5: c0 ← Regular grid of control points with spacing σg
6: Template object Oref (j)← Oref

7: Momentum vectors α0,i(j)← 0 for each subject i
8: Initialize the gradients∇α0,iE ← 0 for each subject i and ∇Oref

E ← 0
9: β0,i(j)← FWT (α0,i(j)) for each subject i
10: Current scale Sj ← maximum scale of β0,0(j)
11: repeat
12: j ← j + 1
13: for each subject i do
14: Compute the evolution of αi(t) using Equation (2.3) {Gradients computation}
15: Compute ϕi by solving the flow equation (Equation (2.1))
16: Deform the template object Oref with ϕi

17: Compute the cost function E as in Equation (3.2)
18: Compute the gradients ∇α0,iE and∇Oref

E

19: ∇β0,i
E ← FWT (∇α0,iE) = (aiSmax,k

)k ∪ (di,os,k)1≤s≤Smax,k,o {Algorithm 5}
20: for each detail coefficient di,os,k of∇β0,iE do
21: if s < Sj then
22: di,os,k ← 0 {Finer scale silencing}
23: end if
24: end for
25: end for
26: β0,i(j)← β0,i(j − 1)− h×∇β0,i

E for all subjects i {Parameter update}
27: α0,i(j)← IWT (β0,i(j)) for all subjects i {Algorithm 6}
28: Oref (j)← Oref (j − 1)− h×∇Oref

E
29: Compute the total residual value∆j according to Equation (3.5)
30: if ∆j−1−∆j

∆j−1
< 0.01 and Sj > 1 then

31: Sj ← Sj−1 − 1 {Scale refinement step}
32: end if
33: until Convergence
34: return Template object Oref and momentum vectors α0,i

Themultiscale optimization can be seen as an initialization of each new scale with the
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optimal template-to-subject deformations of the previous coarser scale. More precisely,
at iteration j, we only optimize the wavelet coefficients of the vector fields whose scales
are above or equal to a current scale Sj . Since the original RKHS setting is preserved, this
can easily be done by computing the gradient∇α0,i

E with the efficient numerical scheme
of Durrleman et al. [54] (lines 14-18 in Algorithm 1), applying FWT to ∇α0,i

E to derive
the gradient with respect to β0,i (line 19) and then setting to 0 the wavelet coefficients
whose scale is strictly smaller than Sj (line 22). We then update the coefficients β0,i with
themodified gradient and recover the updatedα0,i using the IWT function (line 26). If we
iterate without modifying the current scale, we optimize the cost function in a subspace
of functions that are simpler than in the original algorithm, the wavelet transform scale
limitation acting as a regularizer.

As wewant to optimize on the full set of functions defined by themomentum vectors,
we progressively decrease the current scale Sj . We propose to decrease the scale when
we are close to convergence at the current scale (line 31). This is measured by computing
the mean residual value over subjects at iteration j:

∆j =
1

N

N∑
i=1

d(Oref,j ◦ ϕ−1
j,i , Oi). (3.5)

If the residual decrease with respect to the previous iteration is below a threshold
of 1%, we decide that the algorithm is close to convergence. In the case of Figure 3.5,
the algorithm starts at S0 = 3, performs optimization until (almost) convergence at this
scale, goes to scale 2 and performs the subsequent scale transitions in the same manner.

Our optimization procedure ensures that themomenta belonging to the same area are
updated with identical values. At a given scale Sj , the velocity fields can vary spatially
only at scales coarser than Sj− 1. In other words, at scale Sj , the ith initial velocity field
implicitly writes as follows:

v0,i(x) =
∑
k

aSmax,k,iΦ̃Smax,k(x) +
Smax∑
s′=Sj

∑
k,o

dos′,k,iψ̃
o
s′,k(x)

where Φ̃Smax,k and ψ̃o
s′,k are linear combinations of localizedGaussian kernelsKg(x, ck(0)).

When the algorithm reaches scale 1, the momenta are updated independently of
each other. Importantly, unlike previous approaches that represented deformations in
a wavelet basis (see Section 3.2.1), when the algorithm reaches this finest scale, the mo-
mentum vectors are free of constraints and the parameterization of the velocity fields is
equivalent to its original definition, i.e. Equation (3.1). Thus, in theory, our coarse-to-
fine algorithm could reach the same solutions as the original one, but as we will see in
Section 3.4, the multiscale scheme converges to better solutions.

Contrary to the previous multiscale algorithms developed in the LDDMM frame-
work, our strategy does not add any complexity to the mathematical model. The pa-
rameterization of the velocity fields remains identical to that of Durrleman et al. [54].
Computation of the gradients and subsequent cost also remains identical. The only ad-
ditional complexity arises from the algorithms FWT and IWT, which, following the im-
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plementation of Mallat [141], are of linear complexity.

Our code is publicly available in a Git repository1.

Figure 3.5: Original and multiscale strategies applied to a registration example with
σg = 4 (kg = 49 control points). For each algorithm, we display the source-to-target
vector fields (orange arrows, scaling factor = 5), the corresponding deformation grid
and the transformed source image every 20 iterations until convergence. Sj is the scale
constraining the momentum vectors at iteration j. Notice how the multiscale strategy
first estimates coarse displacements to move the character to the left, then finer trans-
formations to adjust the position of the arms. In contrast, the original algorithm applies
fine-scale deformations to the entire image (except the borders), while the multiscale
algorithm estimates fine deformations localized around the character’s right leg, and
smoother deformations elsewhere.

3.3.5 Multiscale optimization algorithm with local adaptation

The termmultiscale can imply either that deformations are estimated in a coarse-to-fine
manner, or that deformations of different scales coexist. Here, we enhance our algorithm
with a true multiscale flavor by enforcing the coexistence of velocity fields of different
scales. Since wavelet functions are characterized by their scale, location and orienta-
tion, we take advantage of the location component so that we can force the velocity

1https://github.com/fleurgaudfernau/Deformetrica_multiscale/
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field of each subject to be unevenly smooth. Namely, the spatial constraints we impose
through the wavelet-based multiscale representation can vary according to the amount
of variability in the images, so that template-to-subject deformations may remain coarse
in areas that contain few information. For the sake of clarity, in the following the mul-
tiscale algorithm without local adaptation will be considered as the default version and
referred to as multiscale or naive multiscale.

The multiscale algorithm with local adaptation is described in more detail in Ap-
pendix A.3.

3.3.6 Alternative multiscale algorithm

We introduce an alternative to our multiscale algorithm in which we combine our naive
multiscale procedure with a different renormalization step in the FWT algorithm. Inde-
pendently of the coarse-to-fine procedure, this allows us to give more weight to coarse
scale or fine scale coefficients during optimization. The interested reader is referred to
Appendix A.4 for more details.

3.4 Experiments: cross-sectional atlas estimation

In this section, we compare our multiscale algorithm to the original version fromDurrle-
man et al. [54] on three different image datasets. Note that the version of the multiscale
algorithm evaluated here is the naive one: the added value of the local adaptation ex-
tension will be evaluated in Section 3.5.1. The L2 norm is used to compute distances
between objects. The training phase consists in atlas estimation and the test phase con-
sists in registering the estimated template image to a set of new images. Performance
of the algorithms is assessed by computing the relative residual error: R =

∆jend

∆0
with

∆jend the mean residual value over subjects at convergence, and ∆0 the mean residual
value at iteration 0.

Optimization relies on a gradient descent algorithm in which the step sizes h are
first scaled by the gradients norm and then diminished by a backtracking algorithm to
guaranty a descent. The following parameters are used: trade-off between regularity
and fidelity to data σ = 0.1; initial step size h = 0.01; convergence threshold = 0.0001.
The initial template image for atlas estimation is given by the mean of the intensities of
the training images.

The experiments were run on an Ubuntu 18.04.5 machine equipped with a NVIDIA
GPU driver with 12 GB memory.
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Figure 3.6: Estimation of the template image by the original and multiscale algorithms
on the dataset of handwritten digits with different values of σg. For each experiment,
five template images (estimated with non-intersecting training sets) are presented on
the left, along with the template image from the first training set warped to the first
five training images on the right. σg: width of the Gaussian kernel; kg: corresponding
number of control points.

3.4.1 Handwritten digits

In this section, we use images of the digit two extracted from the well-known United
States postal database of handwritten digits [89]. The size of the images is 28 by 28 pixels.
We test the original algorithm against the multiscale strategy using an experimental
procedure similar to that of Durrleman et al. [54]: atlas estimation is performed using 20
randomly-chosen training images and the estimated template image is registered to 10
randomly chosen test images with the same parameters as those used during training.
The experiment is repeated five times with different training and test sets. There is no
intersection between any of the training and test sets. This cross-validation procedure is
performed for each version of the algorithm and reproduced with different kernel widths
σg. Since the five experiments are performed on independent datasets, we use paired
Student t-tests to compare the performance of the two algorithms. Table 3.1 shows the
mean relative residual error yielded by the algorithms over the experiments. Figure 3.6
presents the five template images estimated by each algorithm with different sets of
parameters, along with the template image estimated from the first training set warped
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to five of the training images.

Table 3.1 shows that the multiscale algorithm reaches lower residual error than the
original algorithm during atlas estimation and registration, with differences that reach
significance for σg = 2. Consistent with these results, we observe in Figure 3.6 that the
original algorithm yields highly irregular template images, a trend which worsens when
the number of control points increases, indicating overfitting. The first template image
warped towards the training images yields images that are close to the original ones for
σg = 3, but these deformations become unrealistic for lower values of σg. These observa-
tions belie the quantitative evaluation, which shows that the performance increases with
the number of parameters. This discrepancy demonstrates that residual error alone is
not sufficient to evaluate the accuracy of the algorithms, as irregular vector fields might
be able to match any target image at the cost of producing unnatural deformations.

Unlike the original algorithm, the multiscale procedure produces realistic template
images, whose quality is preserved when σg decreases. Moreover, all reconstructed im-
ages are very close to the original ones. Their quality slightly increases with the number
of control points: this is most evident for the third and fifth reconstructed subjects, which
become more accurate for lower values of σg.

Table 3.1: Performance of the original and multiscale algorithms on the dataset of hand-
written digits during the training and test phases. Data are mean± standard deviation of
relative residual error over five experiments. Bold style indicates statistically significant
differences between the algorithms (p-value< 0.05).

σg kg Original Multiscale

Atlas estimation
3 100 15.8± 12.2 7.1± 0.5
2 196 10.1± 1.7 4.8 ± 0.4
1.5 361 7.3± 1.7 6.4± 3.4

Registration
3 100 10.0± 6.1 6.4± 5.3
2 196 8.5± 5.2 4.2 ± 3.2
1.5 361 9.0± 5.1 4.0 ± 5.9

3.4.2 Toy data

In the previous experiment, one can remark that the performance of the algorithms di-
verge most when a high number of parameters is used. Therefore, one might simply be
tempted to employ the original algorithm with a lower number of parameters, as in Dur-
rleman et al. [54] whose experiments were performed with 36 control points. However,
datasets that present a higher amount of details and inter-subject variability may benefit
from our multiscale strategy even when a lower number of control points is used. To
confront our algorithm with a more difficult task, we designed a dataset of 30 characters.
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The size of the images is 28 by 28 pixels. The dataset is presented in Appendix Figure A.1
and can be downloaded at the author’s website2.

Figure 3.7: Estimation of the template image by the original and multiscale algorithms
on the toy dataset with different parameters σg. For each experiment, five estimated
template images (for each fold of cross-validation) are presented, alongwith the template
image estimated from the first training set warped to the first five training images.

We compare our algorithm to the original version using cross-validation: the dataset
is randomly split into a training set (24 images) and a test set (6 images). Each algorithm
independently estimates a template image from the training set, and then registers the
template to each image in the test set with the same parameters as those used during
training. This procedure is repeated five times and reproduced with different kernel
widths. No statistical tests are performed because of the overlap between the training
sets and between the test sets. Section 3.4.2 displays themean relative residual error after
atlas estimation and registration and Figure 3.7 shows the five template images estimated
by each algorithm with different kernels, along with five reconstructed training images.

Section 3.4.2 shows that the multiscale algorithm reaches lower residual error than
the original algorithm. The performance of the multiscale strategy increases with the
number of control points during training and test, while the original algorithm demon-
strates the opposite trend. These results are supported by the qualitative evaluation of
the template images. In Figure 3.7, for σg = 5, the two algorithms generate template

2https://fleurgaudfernau.github.io/Multiscale_atlas_estimation/
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Table 3.2: Performance of the original and multiscale algorithms on the dataset of artifi-
cial characters during the training and test phases. Data are mean ± standard deviation
of relative residual error over five folds of cross-validation.

σg kg Original Multiscale

Atlas estimation
5 36 14.0± 4.5 5.5± 0.8
4 49 16.4± 3.8 4.4± 0.4
3 100 18.4± 4.5 3.3± 0.5

Registration
5 36 9.8± 6.2 6.0± 6.3
4 49 10.7± 6.0 4.6± 4.2
3 100 13.4± 7.5 3.6± 3.8

images that present discrete but noticeable differences. With the original version, the
arms and legs of the characters appear slightly fuzzier, and the second template image is
noisy. The reconstructed images yielded by the original algorithm are blurry (and even
erroneous in case of the third subject), while the template and reconstructed images
yielded by the multiscale algorithm seem sharp and accurate. As in the previous experi-
ment, the quality of the template images estimated by the original algorithm deteriorates
when the number of control points increases: with σg = 4 and σg = 3, images become
fuzzier and display more erroneous features such as additional arms below the charac-
ter’s neck. The morphology of all but one reconstructed characters is also completely
erroneous. In contrast, the multiscale algorithm is able to produce stable, sharp and cor-
rect template images for all parameters. Similar observations can be made regarding the
transformation of the template image towards the five training images: the multiscale
strategy succeeds in generating images that are nearly identical to the original ones.

These differences have a simple explanation: the original version simultaneously
estimates the overall shape of the characters and details such as the location and ori-
entation of the arms and legs, making it more dependent on the initial template image
and leading to the selection of erroneous features, while the multiscale strategy first
focuses on estimating the characters main features, which are then refined during the
finer scales. This phenomenon is illustrated by movies that show the evolution of the
estimated templates across iterations, available at the first author’s webpage3.

3.4.3 Fetal brain images

To evaluate the performance of our multiscale approach on a dataset of clinical images,
we use 30 fetal brain images with agenesis of the corpus callosum acquired in hôpital
Trousseau, France. Gestational ages are comprised between 32 and 34 weeks of gestation
(mean = 32.9± 0.6). A more detailed presentation of the dataset is available in Chapter 6.

3https://fleurgaudfernau.github.io/Multiscale_atlas_estimation
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Agenesis of the corpus callosum is a developmental anomaly characterized by the total or
partial absence of the corpus callosum. It is often associated to anatomical features such
as widening of the lateral ventricles (see Section 6.1 for more details). Atlas estimation
can help better understand congenital anomalies by providing an insight into how these
anatomical characteristics vary together. However, as abnormal fetal brains may present
a wide range of defects, this makes atlas estimation more difficult and prone to errors
than with datasets of healthy fetuses. Thus, it is crucial to develop algorithms that are
able to estimate realistic templates on both healthy and abnormal subjects.

The brain images are volume reconstructed and rigidly aligned according to the pro-
cedure described in Section 6.3.2. The final images are of size 105x100x120 voxels. Cross-
validation is performed in the same manner as in Section 3.4.2, with 24 images used for
atlas estimation and 6 images for testing. Figure 3.8 presents one example of estimated
template images for σg = 10 and σg = 5, and Section 3.4.3 displays the mean relative
residual error for each algorithm. Results for σg = 7 can be visualized in Appendix
Figure A.4. Visual examination of the templates is performed by an expert radiologist.

Section 3.4.3 shows the importance of using a high number of parameters when per-
forming atlas estimation on clinical images with high variability: the performance of
both algorithms rises with the number of control points during training and test, which
is reflected by the increasing sharpness of the template images in Figure 3.8. During
training, the multiscale algorithm achieves lower residual error than the original algo-
rithm for all values of σg and estimates more stable templates (as indicated by lower
values of standard deviation). Registration results demonstrate that the multiscale algo-
rithm has a higher ability to generalize to new images.

Table 3.3: Performance of the original and multiscale algorithms on the dataset of fetal
brains images during the training and test phases. Data are mean ± standard deviation
of relative residual error over five folds of cross-validation.

σg kg Original Multiscale

Atlas estimation
10 1, 320 49.8± 3.4 47.7± 3.4
7 4, 050 43.6± 3.7 37.8± 0.9
5 10, 080 38.5± 4.0 32.5± 1.6

Registration
10 1, 320 41.1± 6.9 39.9± 6.7
7 4, 050 35.0± 6.2 31.1± 5.7
5 10, 080 31.4± 5.0 25.6± 5.2

In terms of template quality, the original and multiscale algorithms yield distinct re-
sults. The brain images estimated with the latter display sharper features and enhanced
contrast between structures, especially for higher values of σg. The template images es-
timated by the original algorithm display more fuzzy areas, especially in the cingulum
bundle (white arrows), the frontal horns (blue arrows) and the posterior area of the lateral
ventricles (orange circles). On the contrary, these structures are more clearly delineated
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in the template images generated by the multiscale algorithm. In addition, this method
leads to more pronounced gyration patterns (e.g. the superior temporal sulcus, see red
circles) and more visible subcortical brain structures such as the basal ganglia (red ar-
rows). The most salient differences between the estimated templates are located at the
medial surface of the brain (sagittal view), which presents high inter-subject variability:
the surface estimated by the original algorithm is close to the mean of the image intensi-
ties, while the multiscale strategy produces a realistic anatomy, with a visible cingulate
sulcus (green arrows). Some differences can also been noted between the reconstructed
images yielded by the algorithms. In addition to increased sharpness, the multiscale tem-
plate image warped to the subjects reveals more abnormal features, such as abnormally
shaped corpus callosum in the case of the first subject (yellow arrows, middle column).

Altogether, these results indicate that our multiscale algorithm can be successfully
applied to real-world, complex clinical data.

3.5 Additional experiments

3.5.1 Local adaptation extension

To evaluate the performance of the multiscale algorithmwith local adaptation compared
to the naivemultiscale algorithm, we replicate our previous experiment on the handwrit-
ten digits (see Section 3.4.1). We recall that during training, atlas estimation is performed
using 20 randomly-chosen images; then, the estimated template image is registered to 10
randomly chosen test images with the same parameters as those used during training.
The experiment is repeated five times with different training and test sets. Results are
available in Appendix A.3.

Appendix Table A.1 shows that there are no statistically significant performance dif-
ferences between the two multiscale algorithms. Surprisingly, however, the naive mul-
tiscale version has lower residual error values in almost all experiments. In Appendix
Figure A.3, the template images estimated by the two algorithms appear of compara-
ble quality. The same observation can be made regarding the way the template images
are warped to the first five training images. The only noteworthy differences are that
the naive multiscale algorithm estimates template images that are more stable between
experiments and seem slightly more natural.

3.5.2 Alternative multiscale scheme

In Appendix A.4, we introduced a renormalization factor ρ and the associated variant
of the renormalization matrix: Rρ. In the normal case (i.e. in the rest of this chapter),
we have ρ = 1 and R1 = R. As detailed in Appendix A.4, if we modify the value
of ρ, we introduce some imbalance between coarse scale and fine scale coefficients. In
other words, when computing the wavelet coefficients β of the gradient ∆Eα , we can
artificially increase coarse scale coefficients (if ρ < 1) or fine scale coefficients (if ρ > 1).
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(a) σg = 10; kg = 1, 320 (955 voxels per point)

(b) σg = 5; kg = 10, 080 (125 voxels per point)

Figure 3.8: Atlas estimation by the original and multiscale algorithms on the dataset of
fetal brain images. For each experiment, the estimated template volume from the first
fold of cross-validation is presented in the left column. The first row displays the first two
training images; the middle and right columns display the corresponding reconstructed
images (i.e. the template image warped to the training images). Salient differences be-
tween images are indicated by specific markers. White arrows indicate the cingulum
bundle, blue arrows the left frontal horn, red arrows the left basal ganglia, orange circles
the posterior part of the right lateral ventricle, red circles the right superior temporal
sulcus, yellow arrows the theoretical location of the corpus callosum, and green arrows
the cingulate sulcus.

When applying the Inverse Wavelet Transform to β, we recover a gradient with more
high or low frequencies than in the input ∆Eα .

We use this different renormalization step to introduce a variant of the coarse-to-fine
algorithm: we combine the multiscale gradient descent with different renormalization
factors. This modified renormalization step is not performed in a coarse-to-fine fash-
ion: the chosen value of ρ is kept constant during optimization. This can be seen as an
additional low-pass or high-pass filter applied to the vector fields.

We study the effect of ρ on the algorithm performance by replicating our experiment
on the toy dataset (Section 3.4.2) with different values of ρ and different kernel widths
σg. Results are presented in Appendix A.4.2 and compared with the baseline results, i.e.
the error rate when ρ = 1, corresponding to the regular multiscale algorithm. Briefly, we
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observe that error rates increase when ρ moves away from 1 (i.e. towards 0 or 2), which
is unsurprising because this means giving too much weight to high or low frequency
components. With large kernels, i.e. σg = 7 or σg = 5, giving more weight to fine scale
components slightly increases the performance. This is interesting as this means that
one can choose a sparser parameterization of the vector fields, e.g. to save computational
time while increasing the performance by selecting higher frequency components.

3.6 Discussion

In this chapter, we introduced a novel, wavelet-based reparameterization of the initial
velocity fields in the LDDMM framework. Taking advantage of the hierarchical prop-
erty of the wavelet decomposition, we implemented a multiscale optimization strategy
for cross-sectional atlas estimation and registration. The transfer of information from
coarse to fine scales ensures smarter initialization of the deformations at each level, lead-
ing the algorithm to favor smoother solutions while avoiding unrealistic local minima.
Contrary to previous multiscale algorithms introduced in the LDDMM framework [215,
85, 156, 154], our approach adds no complexity to themathematical model. The reparam-
eterization of the velocity fields can be seen as an additional layer of spatial regulariza-
tion, which preserves the RKHS structure of the vector fields and the efficient numerical
scheme used to compute the gradients.

We performed experiments on three datasets of increasing difficulty:

• On the classical dataset of handwritten digits, the multiscale algorithm efficiently
avoids unrealistic local minima, especially when using fine parameterizations.

• On a more challenging dataset of hand-drawn characters, the original algorithm
is unable to estimate templates that are satisfying with respect to quantitative and
qualitative criteria. The multiscale algorithm outperforms the former in both re-
gardless of the number of parameters.

• Finally, the experiment on real-world, complex clinical data, i.e. pathological fetal
brain images, showedmore subtle differences between the multiscale and the orig-
inal algorithms, in particular a better ability of the multiscale strategy to preserve
anatomical details, including unusual or abnormal ones.

Eventually, theses experiments demonstrate that the multiscale algorithm yields higher
quality templates with better stability, that are able to generalize to unseen images. Not
only does our strategy produce images that have a realistic anatomy, but it leads to
enhanced preservation of anatomical details. This makes it particularly promising for
tasks involving high inter-subject variability, specifically clinical images.

We also introduced a local adaptation extension of the multiscale algorithm to enable
the coexistence of flows of difference scales. Experiments showed that this addition
brings no improvement to the multiscale algorithm, suggesting that, in fact,the so-called
"naive" coarse-to-fine strategy implicitly performs some kind of local adaptation and
favors truly multiscale flows.
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Some limitations of this algorithm have to be highlighted. Unlike approaches based
on a mixture of kernels, our deformation model relies on a single Gaussian kernel. While
this provides the advantage of introducing no additional parameters, the results of our
algorithm still depend on the choice of the kernel width σg - but to a lesser extent than
the original version. Some methodological improvements could be made to the FWT
algorithm. In particular, the border treatment of non dyadic grids define scaling and
wavelet functions of small support in some image borders. As illustrated in Appendix
Figure A.2, this creates areas of uneven size at coarse scales, and therefore vector fields
with locally uneven smoothness constraints. To avoid this, one could replace the Haar
wavelet by smoother wavelet functions such as the Daubechies wavelet. However, since
image borders often contain little information, this issue is unlikely to arise.

To conclude, it is important to remark that the multiscale strategy is versatile in the
sense that it is not tailored to a given type of object, a given task or a given deformation
model. It could be extended to other mathematical frameworks like those that compose
flows of different scales [156, 154] or, as we shall see in the next chapter, to other Com-
putational Anatomy models.
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This chapter is an extension of a paper published in the Proceedings of SPIE Medical
Imaging [66]: Amultiscale algorithm for computing realistic image transformations: appli-
cation to the modelling of fetal brain growth by Fleur Gaudfernau, Stéphanie Allassonière
and Erwan Le Pennec, 2023. This work was also published at the French Colloquium of
Signal and Image Processing 2023 [67] as Un algorithme multiéchelle pour déformer les
objets de façon réaliste - application à la modélisation de la croissance du cerveau foetal by
Fleur Gaudfernau, Stéphanie Allassonière and Erwan Le Pennec, September 2023. An
experiment on fetal brains using the techniques presented here was subject to a poster
presentation at the Fetal, Infant and Toddler Neuroimaging Group 2022.

4.1 Motivation

In Chapter 3, we introduced a coarse-to-fine strategy based on a multiscale representa-
tion of diffeomorphisms for cross-sectional atlas estimation. In this chapter, our goal is
threefold:
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• Improve the previously introduced strategy by combining the multiscale represen-
tation of diffeomorphisms with a multiscale representation of the objects.

• Extend our coarse-to-fine strategy to a more challenging task: time-series atlasing,
i.e. geodesic regression.

• Finally, evaluate the ability of geodesic regression models to accurately model
brain changes during pregnancy.

Cross-sectional atlas estimation is an interesting tool to translate the classical mean-
variance analysis to datasets of high dimensional clinical images. However, it is limited
in that the reference shape and the anatomical variability are computed at a given age
or at the given stage of a disease: for instance, in Section 3.4.3, a template MRI was com-
puted for fetal brains with corpus callosum agenesis between 32-34 gestational weeks
and it cannot be considered a representative object for other gestational ages. It is thus
crucial to develop models to describe the evolution of a phenomenon over time. In Com-
putational Anatomy, this means modelling the relationship between manifold-valued
data (e.g. brain images, meshes...) and a real-valued independent parameter.

The concept of geodesic regression (see Section 2.4.3) was introduced by Fletcher et
al. [65] to estimate the geodesic curve that best fits manifold-valued data. A geodesic re-
gression model [64] was later developed in the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) framework and combined with the sparse parameterization of dif-
feomorphisms [54] that we use in this thesis. Geodesic regression has also been the
basis for more complex models such as the spatio-temporal mixed-effects model [201,
200], where estimation of the average trajectory is combined with estimation of random
effects representing the temporal and geometrical individual variations of this trajec-
tory. Although appealing, spatio-temporal models require longitudinal datasets. In this
thesis, as we do not work with such data, we restrict ourselves to models that handle
time-series data such as geodesic regression and its variants.

As pointed out in Chapter 3, a crucial issue with Computational Anatomy models
is the degree of realism of the underlying deformation model: an important feature
of geodesic regression is that is based on the hypothesis that the average trajectory is
geodesic. This assumes that the time-dependent changes of the representative shape are
modelled by a single, unchanging dynamic. In the case of fetal brain growth, this assump-
tion is not accurate since brain development is known to be a complex, heterogeneous
and non-linear phenomenon [34, 73, 206]. To the best of our knowledge, geodesic re-
gression has only been applied once to the modelling of the fetal brain growth [134]. In
this paper, fetuses were grouped into three age range spanning no more than 4 gesta-
tional weeks and separate regressions were applied to each group. Needless to say, it is
more desirable to model brain development using a single, continuous trajectory to en-
able inter-subject comparisons. An interesting extension of geodesic regression has been
introduced by Chevalier et al. [30, 29], who proposed to model the average trajectory
not as a geodesic but as a piecewise geodesic. This model has the potential to overcome
the limitations of geodesic regression and accurately model the fetal brain growth.

In this chapter, we are interested in applying our versatile multiscale optimization
strategy to geodesic regression and piecewise geodesic regression, and evaluate how
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these models, combined with our new optimization strategy can enhance the challeng-
ing task of modelling fetal brain growth. Further, to improve the modelling of complex
trajectories with changing dynamics, we combine the multiscale reparameterization of
the initial velocity fields with a multiscale representation of the objects. This upgraded
optimization strategy is applied to several models (i.e. cross-sectional atlas and geodesic
regression) and to several types of objects (i.e. images and meshes).

4.2 Methods

4.2.1 Overview

In the LDDMM setting, diffeomorphisms are constructed by integrating time-dependant
velocity fields [233]. To reduce the search space, we impose that the vector fields belong
to a Reproducing Kernel Hilbert Space (RKHS) defined by a kernelKg [54]. This restric-
tive spatial constraint forces deformations to occur at a scale close to the kernel width
σg. This leaves the user to find the right balance between a large kernel, which generates
smooth but inaccurate transformations, and a smaller one, which increases the number
of parameters to optimize and thus the risk of converging towards unrealistic local min-
ima. To alleviate this problem, we introduce a multiscale optimization strategy based on
a multi-resolution representation of both of the deformations and the objects. This ad-
ditional regularization, easily transferable, is applied to several computational anatomy
models.

4.2.2 Model of diffeomorphic deformations

In the LDDMM framework, objects are deformed through flows of diffeomorphisms (ϕt)t
defined by time-dependant velocity fields (vt)t. As stated in Section 2.3.2, we impose that
the initial velocity fields at t = 0 belong to a RKHS V [54]:

v0(x) =

kg∑
k=1

Kg(x, ck)αk(0) (4.1)

whereKg is a Gaussian kernel of width σg and the (αk)k are momentum vectors attached
to control points (ck)k. The control points are set on a regular grid of spacing σg.

The regularity term in Equation (2.4) constrains possible solutions (vt)t to define
geodesic paths of the ambient space according to the V norm. The (vt)t satisfying this
condition keep their RKHS structure along time. It follows that a geodesic vector field
vt is fully parameterized by its initial velocity field v0: hence, to estimate an optimal
transformation ϕt, only v0 has to be optimized. In other words, optimization boils down
to a geodesic shooting problem, where only the initial conditions determine the end
point of the trajectory. The RKHS structure of the velocity fields allows us to rely on an
efficient numerical scheme to compute the gradients [54].
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This framework can be used to define standard Computational Anatomy models.
Here, we seek to improve the estimation of atlas estimation and geodesic regression
through a dual multiscale optimization strategy. We recall the generic formulation of
the cost function:

E(Oref , (α0,i)1≤i≤N) =
N∑
i=1

[

Mi∑
j=1

d(Oi(ti,j), Oref ◦ ϕ−1
i (ti,j))

σϵ
+ ∥v0,i∥2V ] (4.2)

where:
• N is the number of subjects
• Mi is the number of observations from subject i
• Oref is the template object
• α0,i is the ith set of momentum vectors parameterizing deformation ϕi

• ti,j is the jth observation of the ith subject
• Oref◦ϕ−1

i (ti,j) is the template deformed by the ith template-to-subject deformation
at time ti,j

• d is a distance measure, i.e. the L2 distance for images and the varifold distance
for meshes (see Section 2.3.4)

• ∥v0,i∥2V is the norm of the ith velocity field in the RKHS V
• σϵ is a parameter controlling the trade-off between attachment and regularity.

For the sake of clarity, we briefly summarize the models of interest in this chapter:
• Cross-sectional atlas estimation: given a dataset of N objects (Oi)1≤i≤N with
one observation each (i.e. ∀i Mi = 1), one seeks to estimate a template objectOref

representative of the average anatomy, and N template-to-subject deformations
(ϕi)1≤i≤N .

• Registration is a particular case of atlas estimation where the template object is
fixed and N = 1.

• Geodesic Regression: givenM observations (O1(t1), ...O1(tM)), one seeks to es-
timate a template object Oref at age t0, along with the average geodesic trajectory
ϕ(t) that deforms Oref .

• Piecewise geodesic regression: an extension of geodesic regression, it allows
changes in trajectory dynamics. It estimates P trajectories (ϕl(t))l called geodesic
components and associated to rupture times tR = [t1, ..., tP−1].

4.2.3 Dual multiscale optimization

As detailed in Section 3.1, the regularity term in Equation (4.2) puts a significant spa-
tial constraint on the vector fields. This is particularly problematic when one deforms
clinical images, which often require a fine parameterization of deformations: flexibility
comes at the price of making large displacements expensive and fostering unrealistic
mappings. Here, we introduce a coarse-to-fine optimization procedure to guide the al-
gorithm towards more realistic local minima. We combine a multi-resolution represen-
tation of the deformations with a multi-resolution representation of the objects. This
strategy is detailed below and illustrated in Figure 4.1 on a toy example.
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4.2.3.1 Multiscale representation of the velocity fields

In Equation (4.1), v0 is defined as a sum of RKHS basis elements. Its coefficients in this
basis are the initial momenta (αk(0))k, denoted α0 for simplicity. As described in Chap-
ter 3, in the multiscale approach the same function is described by its coefficients in a
different multiscale basis:

v0(x) =
Smax∑
s=Sj

∑
k

∑
o

Φo
s,k(x)β

o
s,k (4.3)

where Φo
s,k is a wavelet function of scale s, location k and orientation o, the βo

s,k are the
coordinates of v0 in this new basis and Sj is the current scale used to perform coarse-to-
fine optimization. Thewavelet coefficients βo

s,k, denoted β0 in the following, are obtained
from the conventional parameterization of v0 using the Forward Wavelet Transform:
α0 = FWT (βo

s,k).

In Chapter 3, this multiscale representation proved a straightforward way to im-
plement a coarse-to-fine optimization strategy. When the algorithm is at scale Sj , the
wavelet coefficients β0 whose scale s is stricly smaller than Sj are set to 0, thus erasing
the spatial variations of v0 defined at scales smaller than Sj . At initialization, Sj is set
to Smax so that the algorithm optimizes smooth velocity fields. These vector fields are
progressively refined by adding finer and finer scale coefficients each time the algorithm
is close to convergence.

In practice, the change of basis in Equation (4.3) is applied to the gradient ∇α0E
rather than α0. This enables us to rely on the same numerical scheme as in the original
algorithm to compute the gradient of the cost function with regard to the momentum
vectors. The silencing of fine scale coefficients occurs only during the parameters update
step and can be summarized as follows (see Figure 3.2):

1. The gradient∇α0E goes through the wavelet transform: ∇β0E ← FWT (∇α0E)
2. The wavelet coefficients in∇β0E whose scale is smaller than Sj are set to zero.
3. The coordinates of v0 in the wavelet basis are updated: β0(j)← β0(j−1)−h∇β0E
4. The coordinates of v0 in the RKHS basis are recovered with the Inverse Wavelet

Transform algorithm to get α0(j)← IWT (β0(j)).
Importantly, this optimization scheme preserves the RKHS structure of the vector

fields and the computational efficiency of the original algorithm.

4.2.3.2 Multiscale representation of the objects

Irregular velocity fields are likely to foster an unrealistic template object Oref . Con-
versely, complex objects may generate an erroneous template object, which will in turn
foster irregular velocity fields. This is whywe combine themultiscale optimization of the
velocity fields with a multi-resolution representation of the input objects and the tem-
plate object Oref . We denote by S ′

j the scale of the objects at iteration j. S ′
j is computed

as a function of Sj .
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Figure 4.1: Multiscale and dual multiscale strategies applied to a registration example
with σg = 4 (i.e. kg = 49 control points). For each algorithm, we display the estimated
source-to-target vector fields (orange arrows; scaling factor = 5), the corresponding de-
formation grid and the transformed source image every 20 iterations until convergence.
Sj denotes the scale constraining the momentum vectors at iteration j, S ′

j the width of
the image filter at iteration j.

Images. In case of images, filtering is performed with Gaussian smoothing. At it-
eration j, S ′

j denotes the width of the Gaussian smoothing kernel and the vector fields
are constrained by scale Sj . We set the kernel standard deviation S ′

j so that the effective
averaging size is proportional to the size of the support of the wavelets at scale Sj :

S ′
j =

{
max(supp(ΦSj

))−min(supp(ΦSj
))

3
if Sj > 1

0 otherwise
, (4.4)

where supp(ΦSj ,(0,0)) is the support of the wavelet function of scaleSj located at position
(0, 0).

Meshes. With surface meshes, we can choose between two types of filtering:

• Intrinsic smoothing, i.e. Laplacian smoothing [90]: for a given number of itera-
tions, each point of the mesh is moved at the average of its neighbors positions.
As the distance between objects is computed using the varifold distance, the nor-
mal vectors of a mesh are recomputed after each filtering step. The scale of the
objects, i.e. the number of iterations during Laplacian smoothing, is computed as
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follows:

S ′
j =

{
(max(supp(ΦSj

))−min(supp(ΦSj
)))× 200 if Sj > 1

0 otherwise
, (4.5)

• Extrinsic smoothing: instead of modifying the object itself, the idea is to smooth
its varifold representation. More details are available in Appendix B.1.

In this chapter, experiments on surface meshes are performed with intrinsic smooth-
ing.

4.2.3.3 Multiscale optimizations

The multiscale representations of the velocity fields and the objects serve as basis for
several multiscale strategies:

• The multiscale momenta strategy, which was introduced and evaluated in Chap-
ter 3. Coarse-to-fine is performed on the subjects velocity fields from scale S0 =
Smax − 1 to scale 1.

• The multiscale objects strategy, where coarse-to-fine is performed on the objects
from scale S ′

max to scale 0.
• The dual multiscale strategy, which starts at scales S0 = Smax− 1 and S ′

0 = f(S0)
and performs optimization using the filtered subjects images and the reparame-
terized velocity fields. The two scales are alternatively refined each time the algo-
rithm is close to convergence. When scales Sj = 1 and S ′

j = 0 are reached, both
the velocity fields and the objects are free of constraints and optimization proceeds
as in the original version of the algorithm.

The dual multiscale strategy is described in Appendix Algorithm 10. For clarity, the
pseudo-code focuses on atlas estimation, but all multiscale strategies can also be applied
to (piecewise) geodesic regression. The multiscale representation of the objects has only
a few variations depending on the model one seeks to estimate. In atlas estimation,
the template object Oref is filtered only at initialization and left to be optimized by the
algorithm. In registration, the fixed template object is filtered in the same way as the
input objects, i.e. at each refinement of scale S ′

j (line 39 in Appendix Algorithm 10). In
(piecewise) geodesic regression, when fixed, the template object is filtered in the same
way as the input objects. When estimated, it is filtered only at initialization and then
optimized by the algorithm.

In piecewise geodesic regression, the P velocity fields defining the geodesic compo-
nents are constrained in the same manner, although in theory one could allow different
geodesic components to be constrained by different scales.

After each refinement of scaleS ′
j , the objects are filtered at a new scale, which leads to

a sharp increase of the gradients of the cost function with regard to the momenta and the
template object. When the template object is not fixed, optimization of the momentum
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vectors is frozen during 3 iterations so that the template object can be updated to match
the new filtered objects.

The code is available at a public Git repository1. As in Chapter 3, the non-multiscale
algorithm will be referred to as the original algorithm.

4.3 Experiments - cross-sectional atlasing

All experiments were run on an Ubuntu 18.04.5 machine equipped with a NVIDIA GPU
driver with 12 GB memory.

4.3.1 Comparison of the different multiscale strategies

In this section, we evaluate how the dual multiscale optimization strategy can enhance
the performance of an atlas estimation task - a model which we thoroughly studied in
Chapter 3. Here, we evaluate four different optimization strategies: the original algo-
rithm, the multiscale momenta algorithm, the multiscale objects algorithm and the dual
multiscale algorithm. We perform the same experiment as in Section 3.4.2 using a dataset
of 30 manually designed characters, which can be visualized in Appendix Figure A.1.

For each algorithm, we repeat five experiments as follows: the dataset is randomly
split into a training set (24 images) and a test set (6 images); the algorithm performs
atlas estimation on the training set and then registers the template to each image in
the test set with the same parameters as those used during training. Performance of
the algorithms is assessed by computing the relative residual error: R =

∆jend

∆0
with

∆jend the mean residual value over subjects at convergence, and ∆0 the mean residual
value over subjects at iteration 0. To assess how the performance of each optimization
strategy varies depending on the number of parameters of the model, this procedure is
repeated with different kernel sizes, i.e. σg ∈ [3, 4, 5, 6, 8, 10], corresponding to a number
of control points kg ∈ [100, 49, 36, 25, 16, 9].

Figure 4.2 shows the evolution of the residual error as a function of kg for each al-
gorithm and Figure 4.4 shows examples of estimated templates and template-to-subject
deformations for the coarser (σg = 10) and finer (σg = 3) parameterizations of the
velocity fields. Consistent with the quantitative results, the three multiscale strategies
estimate quite similar images. Some subtle differences can however be noticed. With
the coarser parameterization, the multiscale momenta and multiscale objects algorithms
generate images with fuzzier areas compared to the dual multiscale strategy (e.g. the left
arm of the template characters). More noticeably, they also fail to avoid some pitfalls
(e.g. the erroneous reconstructions of the third training image) when estimating finer
deformations.

1https://github.com/fleurgaudfernau/Deformetrica_multiscale
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(a) Atlas Estimation (b) Registration

Figure 4.2: Residual error rate (mean and standard deviation) of the training (panel (a))
and test (panel (b)) phases. After atlas estimation, the residual error between the de-
formed template and each subject is computed. During cross-validation, each algorithm
performed atlas estimation 5 times and image registration 30 times.

4.3.2 Computational requirements

To assess the computational requirements associated to each four optimization strate-
gies, we plot in Figure 4.3 the number of iterations until convergence of the previous
experiment, for the finer (σg = 3) and coarser (σg = 10) parameterizations. We recall
that a single iteration for a given model has a similar computational cost in the four
algorithms. Unsurprisingly, the original algorithm requires the least number of itera-
tions and the dual multiscale strategy the most number of iterations. Interestingly, the
multiscale objects strategy requires a higher number of iterations than the multiscale
momenta strategy, despite equal numbers of coarse-to-fine steps; this is likely due to the
fact that following each filtering step, the multiscale objects algorithm needs to adapt to
the new target objects. There seems to be a trade-off between quality of estimation and
computational speed. During registration, the gradient is computed with regards to one
set of momentum vectors, so a high number of iterations is relatively impactless. How-
ever, a single iteration has a heavy computational cost in more complex models such as
atlas estimation, especially if the deformation kernel is small and the number of objects
is high. When running such models, it may be relevant to test first the original algorithm
and asses whether or not it is worthy to try the multiscale(s) algorithm(s).

4.4 Experiments - temporal modelling

In the previous section, we demonstrated how the dual multiscale strategy can further
enhance cross-sectional atlas estimation compared to the multiscale momenta strategy
introduced in Chapter 3. Here, we will no longer compare the different versions of the
multiscale algorithm and only assess the performance of the original and dual multiscale
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(a) σg = 3 (b) σg = 10

Figure 4.3: Number of iterations until convergence for each atlas estimation (training)
and registration (test) experiments with two kernel sizes. During cross-validation, each
algorithm performed atlas estimation 5 times and image registration 30 times.

algorithms. We now focus on another model which is of prime importance in the context
of this thesis: geodesic regression. Generating a single time-dependent deformation that
is able to represent the average changes in a population is a more tedious task than the
estimation of a cross-sectional atlas. Moreover, biological phenomena may not always
be characterized properly by a single temporal dynamic and fetal brain growth, which is
the focus of this thesis, is no exception. This is why we will assess how the combination
of the dual multiscale strategy with piecewise regression can enhance the modelling of
time-dependent deformations.

Following an approach similar to that of the previous chapter, we evaluate the ability
of our algorithm to generate realistic deformations on several time-series datasets. The
first one, a toy dataset comprising artificial characters similar to that of the previous
experiment, enables for easy interpretation and detection of potential errors. The second
and third experiments evaluate the algorithm usefulness in a clinical setting as we use
fetal brain images to model time-dependant brain changes during pregnancy.

We design an evaluation procedure that enables us to highlight differences between
the original and multiscale strategies in different tasks. As illustrated in Figure 4.5, we
implement a 5-fold cross-validation procedure composed of a two-step training phase
and a test phase. As optimizing simultaneously the template object Oref and the defor-
mation can be ill-posed, we first perform atlas estimation to provide geodesic regression
with an accurate baseline object at time t0:

1. Each algorithm estimates a template object Oref from training set subjects close
to t0 in age, along with the template-to-subjects deformations.

2. Using Oref as a starting point, geodesic regression estimates the trajectory ϕ(t)
that best fits the objects (O1, ..., ON) in the training set.

3. To assess the accuracy of the estimated trajectory, each object in the test set is
compared to the age-matched template object from regression using registration:
for each test subject i observed at time ti we compute the deformation ϕ1,i between
the deformed template ϕ(ti)(Oref ) and the observation Oi.
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Figure 4.4: Estimation of the template image by the original, multiscale momenta, multi-
scale objects and dual multiscale algorithms on the toy dataset with σg = 10 and σg = 3.
The five estimated templates from cross-validation are presented on the left and the
first template image estimated wrapped to the first five training images on the right.
Red circles indicate differences between the images estimated by the different multiscale
strategies. σg: width of the Gaussian kernel; kg: corresponding number of control points.

We compare the performance of two optimization strategies (i.e. original and dual
multiscale) associated with two ways of modelling time changes (one-component versus
several components geodesic regression). Hence, the evaluation procedure is repeated
four times. For each step of the evaluation, performance is assessed by computing the
relative residual error.

As the residual distance between each object and the deformed template is part of
the objective function (Equation (4.2)), and since we showed in the last chapter that it is
not always a reliable indicator of the quality of a transformation, we also compute the
Structural Similarity Index Metric [239] (SSIM) at each step of the evaluation:

SSIM(I1, I2) = l(I1, I2)× c(I1, I2)× s(I1, I2)

where I1 and I2 are the compared images, l is a function comparing the luminance (i.e.
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Figure 4.5: Three-step evaluation procedure illustrated on the dataset of cortical surface
meshes. Cortices outlined in red belong to the test set. Oref : template object estimated
during step (1). ϕ(t): (piecewise) geodesic trajectory estimated during step (2).

the mean pixel/voxel intensity) of the images, c compares the contrast (i.e. the standard
deviation of the image intensities), and s quantifies the structural similarity between I1
and I2 (i.e. the correlation between luminance- and contrast- normalized intensities).
SSIM values range between −1 (dissimilarity) and 1 (near-perfect similarity).

Optimization is performedwith gradient descent. The algorithms are evaluated using
several kernel widths σg. Rupture times between components are set at regular intervals.
Other parameters are set as follows: trade-off between attachment and regularity σϵ =
0.1; initial step size h = 0.01; convergence threshold = 0.0001.

4.4.1 Regression on toy data

In this experiment, we use a toy dataset of 30 hand-drawn characters. Images are of size
28-by-28 pixels and are defined between times 0 and 19. Despite their simple anatomy,
the temporal evolution of the characters is quite complex, with at least 3 different dy-
namics: a jump phase, a landing phase, and a falling phase. An extract of the dataset
can be seen in Figure 4.6a. The cross-validation procedure is repeated with five dif-
ferent kernel widths σg ∈ {4, 5, 6, 8, 10}, corresponding to a number of control points
kg ∈ {49, 36, 25, 16, 9}. The template object Oref is estimated using the training set im-
ages defined between times 0 and 2 and geodesic regression is computed from t0 = 0. To
set the number of components, we evaluated the regression performance of the original
algorithm with a number of components ranging from P = 2 to P = 10. As shown in
Appendix Figure B.2, the maximum performance is reached for a number of components
between 5 and 8. Thus, is the main experiment, piecewise regression is computed with
5 components and the rupture times are set to tR = [3.5, 7, 10.5, 14].

Table 4.1 shows the mean SSIM after training (i.e. atlas estimation and regression)
and test (i.e. registration). Appendix Table B.1 shows the mean relative residual error
after training and test. Figure 4.6 shows 12 example trajectories (one-component or
5-component trajectories associated with the original or dual multiscale optimization)
estimated with different values of σg ∈ 4, 6, 10. Appendix Figure B.3 shows example of
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Table 4.1: Mean ± standard deviation of the SSIM over five folds of cross-validation for
atlas estimation, geodesic regression and registration on the toy dataset. At convergence,
the SSIM is computed between each train/test subject and the deformed template.

σg kg Algorithm P Atlas estimation Regression Registration

10 9
Original 1 0.84± 0.06 0.30± 0.05 0.56± 0.13

5 0.43± 0.09 0.58± 0.14

Multiscale 1 0.85± 0.05 0.27± 0.03 0.58± 0.13
5 0.51± 0.02 0.77± 0.09

8 16
Original 1 0.79± 0.08 0.27± 0.03 0.54± 0.06

5 0.34± 0.01 0.52± 0.11

Multiscale 1 0.84± 0.06 0.26± 0.02 0.58± 0.07
5 0.48± 0.05 0.78± 0.05

6 25
Original 1 0.83± 0.06 0.26± 0.03 0.54± 0.14

5 0.29± 0.05 0.50± 0.12

Multiscale 1 0.90± 0.06 0.34± 0.02 0.66± 0.09
5 0.59± 0.05 0.77± 0.06

5 36
Original 1 0.85± 0.16 0.26± 0.04 0.51± 0.14

5 0.28± 0.07 0.57± 0.10

Multiscale 1 0.94± 0.06 0.29± 0.06 0.65± 0.05
5 0.53± 0.04 0.80± 0.02

4 49
Original 1 0.84± 0.07 0.27± 0.04 0.62± 0.06

5 0.23± 0.02 0.52± 0.10

Multiscale 1 0.89± 0.05 0.31± 0.06 0.72± 0.03
5 0.53± 0.03 0.83± 0.01

trajectories estimated with all tested values of σg.

After atlas estimation, the multiscale algorithm consistently reaches lower residual
error and higher SSIM values than the original algorithm, which is confirmed by the
more natural template images in Figure 4.6, especially for lower values of σg. The higher
error rates achieved by regression compared to atlas estimation are not surprising, since
regression has to fit 24 images within a single deformation.

Regardless ofwhich optimization strategy is used, piecewise regression reaches lower
residual error than one-component geodesic regression in Appendix Figure B.3. In con-
trast, Table 4.1 shows slighter differences between one-component and piecewise re-
gression when they are associated to the original optimization strategy. In Figure 4.6,
we observe that the original optimization strategy generates irregular and unrealistic
trajectories even with large kernels.

In contrast, the multiscale strategy associated to piecewise regression consistently
achieves higher SSIM values and lower residual errors than the othermethods, highlight-
ing the need to combine a piecewise model with the multiscale strategy to accurately
represent complex time-dependent changes. As illustrated Figure 4.6, this association
drastically enhances the quality of the characters’ trajectories and maintains very good
performance even for smaller kernels: fine movements are accurately modelled while
preserving the anatomy of the characters.
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(a) Time-series toy dataset (only 19 among the 30 images are shown, ranging from age 0 to 19)

(b) σg = 10; kg = 9

(c) σg = 6; kg = 25

(d) σg = 4; kg = 49

Figure 4.6: Geodesic regression results on the toy dataset for different values of σg. We
show the results computed on the first fold of cross-validation: images from atlas esti-
mation are outlined in blue and served as starting points to compute the geodesic tra-
jectories from age 0 to 19. Red rulers indicate the kernel width σg.

4.4.2 Regression of fetal brain images

Here, we evaluate the efficiency of the multiscale strategy compared to the original al-
gorithm on a more challenging task: estimation of an average trajectory from a cross-
sectional dataset of fetal brains imaged at different gestational ages.

We use 42 volume-reconstructed brain MRIs of healthy fetuses from the open-source
FeTa dataset [168]. More details about the dataset are available in Chapter 7, Section 7.2.
Gestational ages range between 22 and 35 weeks (mean= 29.01 ± 3.96). Images are of
size 135x189x155 voxels. Brains are skull-stripped, rigidly aligned to a common coor-
dinate space and intensity normalized. We perform 5-fold cross-validation procedures
with σg ∈ {8, 10, 20} (i.e. kg ∈ {8, 160, 4, 256, 560}). The starting time t0 is set at
29 weeks to minimize the amount of deformation the template image undergoes. At-
las estimation is performed on the training set subjects aged between 27 and 31 weeks.
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Table 4.2: SSIM values (mean ± standard deviation) over five folds of cross-validation
on the dataset of fetal brain images.

σg kg Algorithm P Atlas estimation Regression Registration

20 560
Original 1 0.90± 0.02 0.80± 0.06 0.87± 0.05

4 0.80± 0.06 0.87± 0.05

Multiscale 1 0.93± 0.01 0.81± 0.07 0.88± 0.06
4 0.82± 0.06 0.88± 0.06

10 4, 256
Original 1 0.92± 0.02 0.80± 0.06 0.86± 0.04

4 0.79± 0.06 0.88± 0.04

Multiscale 1 0.94± 0.01 0.80± 0.05 0.86± 0.04
4 0.82± 0.06 0.88± 0.05

8 8, 160
Original 1 0.94± 0.01 0.80± 0.06 0.84± 0.04

4 0.80± 0.06 0.89± 0.04

Multiscale 1 0.94± 0.01 0.80± 0.06 0.86± 0.04
4 0.83± 0.06 0.88± 0.05

Piecewise regression is computedwith 4 components and rupture times tR = [24, 28, 32].
Each training and test set contains between 33-34 images and 8-9 images (respectively).
Images are downsampled by a factor of 5 during optimization.

Quantitative performance. Table 4.2 and Appendix Table B.2 and show the SSIM
and relative residual error (respectively) between the subjects and the deformed template
brains after atlas estimation, regression and registration. The residual error shows lit-
tle difference between the original and multiscale strategies during atlas estimation and
registration. During regression however, the 4-component model consistently achieves
better performance than the one-component model, and the multiscale strategy outper-
forms the original strategy. In contrast with the previous experiment, the SSIM values in
Table 4.2 do not agree with these observations: the mean performance of the multiscale
strategy is only slightly superior to that of the original algorithm, and the piecewise-
multiscale strategy has slightly higher performance than the one-component multiscale
strategy.

Qualitative results. For the sake of brevity, Figure 4.7 provides a visual comparison
of the outputs of piecewise geodesic regression for σg = 20 and σg = 8 only. The
original algorithm fails to model brain growth in a realistic manner: for σg = 20, the
estimated template at 29 weeks has several blurry zones, notably the lateral ventricles
(red arrow) and the border between the cortical plate and the cerebrospinal fluid (green
arrow), and these errors are propagated to older and younger gestational ages during
regression. For σg = 8, changes in brain size are underestimated compared to Gholipour
et al. atlas (Figure 4.7e) and the cerebrospinal fluid has exaggerated thickness. These
flaws are partially corrected by the multiscale strategy, which generates more natural
template images.

Comparison to Gholipour et al. atlas. It is important to remark that compared to
the state-of-the-art atlas, the piecewise trajectory generated by the multiscale strategy
has many flaws: age-related changes seem mostly limited to an affine transformations.
This lack of realism is not surprising given that diffeomorphisms cannot make structures
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appear or disappear. Even more striking, already present structures such as the cortical
plate (brown arrow), do not undergo the expected gyrification process. These flaws are
also present in one-to-one mapping: the template brains wrapped to the test images at 33
and 34 in Figure 4.7b and 4.7d exhibit a smooth cortex, far from the expected convoluted
pattern. Appendix Table B.3 displays the average SSIM values between the templates
from geodesic regression and Gholipour et al. atlas at each gestational age: compared
to the other methods, the multiscale-piecewise strategy achieves higher similarity with
the atlas only for younger gestational ages.

4.4.3 Regression of cortical surface meshes

Finally, we assess the performance of the multiscale strategy on cortical surface meshes
extracted from the FeTa dataset. The outer cortical surface of 34 subjects is delineated
and reconstructed using the dHCP pipeline [140]. Gestational ages range between 22
and 35 weeks (mean= 29.55 ± 5.13 weeks). More details about data preprocessing are
available in Section 7.2.
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(a) σg = 20; kg = 560 (b) σg = 20; kg = 560

(c) σg = 8; kg = 8, 160 (d) σg = 8; kg = 8, 160

(e) Spatiotemporal atlas from Gholipour et al.[73]

Figure 4.7: Results of the evaluation procedure on the dataset of fetal brains images
during the first fold of cross-validation. Panels (a) and (c): template brains in axial view
estimated between 23-33 weeks by the original and multiscale algorithms with P = 4
components. For comparison, panel (c) shows template images from Gholipour et al.
atlas. Panels (b) and (d) shows examples of reconstructed test images during registration.

We perform the usual 5-fold cross-validation procedure with σg ∈ {5, 4, 3.5} (i.e.
kg ∈ {5, 796, 11, 088, 16, 000}). Performance is computed with the residual error rate.
We choose σw = σg for the kernelKw of the varifold distance. (Note that this means that
different distance metrics are used for each parameterization.) The starting time t0 is set
at 24 weeks. Atlas estimation is performed on the training set subjects aged between 22
and 26 weeks. As in the previous experiment, piecewise regression is computed with 4
components and rupture times tR = [24, 28, 32].

The residual error rates are presented in Table 4.3. In average, the piecewise mul-
tiscale strategy achieves lower error values than the other 3 strategies. Although these
quantitative differences are quite small, the gap tends to widen with lower values of σg.
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Table 4.3: Residual error rate (mean ± standard deviation) over five folds of cross-
validation on the dataset of cortical surface meshes.

σg kg Algorithm P Atlas estimation Regression Registration

5 5, 796
Original 1 4.3± 1.2 33.8± 1.6 8.8± 5.4

4 33.3± 3.6 7.7± 5.0

Multiscale 1 4.1± 2.1 34.1± 1.7 4.8± 3.6
4 31.8± 1.6 4.2± 3.1

4 11, 088
Original 1 2.9± 1.2 40.2± 2.6 8.6± 6.4

4 39.7± 2.7 7.8± 4.6

Multiscale 1 3.4± 1.1 39.8± 2.5 6.6± 2.8
4 37.8± 2.6 5.3± 2.7

3.5 16, 000
Original 1 5.4± 6.1 49.4± 7.6 8.8± 9.4

4 44.0± 4.6 7.9± 8.4

Multiscale 1 1.4± 0.8 42.3± 2.6 3.6± 2.4
4 40.3± 2.6 2.8± 2.5

Piecewise versus one-component trajectory. As deformation of surface meshes
are easy to visualize, we first compare one-component versus the piecewise trajecto-
ries associated to multiscale optimization. Figure 4.8 presents the one-component and
piecewise trajectories with the lowest residual error, estimated with σg = 5 (panel (a))
and σg = 3.5 (panel (b)). For the coarsest parameterization, few differences between
the deformed templates can be seen, although piecewise regression generates a more
precise delineation of sulci and gyri at 34 gestational weeks. With a smaller kernel (i.e.
σg = 3.5), gyrification ismodelled in amore accuratemanner. Comparing the emergence
of the major sulci with what is described by Habas et al. [88], we notice that piecewise
regression has a more accurate gyrification timing. Indeed, with one-component regres-
sion, cortical folding is clearly too advanced, with prominent sulci visible up to 3 weeks
ahead their expected emergence .

Multiscale versus original strategy. Since finer kernels seem to model cortical
folding more accurately, we compare in Figure 4.9 examples of piecewise trajectories es-
timated with the original and the multiscale strategies with σg = 3.5. Panels (a) and (b)
show the deformations with the highest and lowest performance gaps between the algo-
rithms, respectively. Interestingly, the original optimization strategy generates unnatu-
ral deformations of the cortex in both cases, although in panel (b) these barely impact
the residual error. The multiscale strategy generates a plausible trajectory of cortical
folding. We also notice a more accurate timing of fold emergence, e.g. the central sulcus,
supposed to be visible at 24 weeks [88], is absent from the original but not the multiscale
templates.

4.5 Discussion

In this chapter, we extended our previously introduced coarse-to-fine optimization strat-
egy based on amultiscale representation of the velocity fields in the LDDMM framework.
We presented a new coarse-to-fine strategy based on a multiscale representation of the
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(a) σg = 5; residual error rate= 34% for both models. The varifold and deformation kernels are too large
to properly handle sulci and gyri.

(b) σg = 3.5; residual error rate = 40% (one-component trajectory), 39% (piecewise trajectory). For the
one component trajectory, the post-central sulcus is clearly visible at 26 weeks (3 weeks ahead what is
expected); the superior temporal sulcus is very pronounced at 28 weeks, 3 weeks ahead the expected end
of its formation.

Figure 4.8: Comparison of one-component and piecewise trajectories associated to mul-
tiscale optimization for σg = 5 (panel (a)) and σg = 3.5 (panel (b)). Folds with the lowest
residual error difference are presented.

objects, combined it with the previous strategy and demonstrated increased performance
on an atlas estimation task.

The presented multiscale strategy is versatile in the sense that it can be applied to
several types of objects, combined to different deformation frameworks and to different
Computational Anatomy models. Here, we extended its application from cross-sectional
to temporal modelling. Combining the multiscale strategy to single-dynamic and piece-
wise trajectories, we demonstrated on toy data that multiscale optimization can model
complex time-dependent changes in a more natural way.

We then focused on the complex task of modelling brain development during preg-
nancy using fetal brain volumes and cortical surface meshes. These experiments can be
considered as preliminary findings of Chapter 7, where we will work more in-depth on
modelling the fetal brain growth. Both experiments showed that the multiscale strategy
combined to piecewise geodesic regression can enhance the modelling of the fetal brain
growth, notably by estimating more accurate brain deformations and avoiding unrealis-
tic local minima.

However, Section 4.4.2 also highlighted some limitations of the LDDMM framework,
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(a) σg = 3.5; residual error = 51% (original), 39% (multiscale)

(b) σg = 3.5; residual error = 43% (original), 41% (multiscale)

Figure 4.9: Comparison of the original and multiscale strategies associated to piecewise
regression for σg = 3.5. Folds with the highest (panel (a)) and lowest (panel (b)) residual
error differences are presented. Red circles indicate unnatural deformations.

namely the known inability of diffeomorphisms to generate new structures and the fail-
ure to properly model the cortical folding process. As regards the second point, whilst
diffeomorphisms can in theory deform the cortical plate, a possible explanation is the use
of the L2 distance between images: since the L2 norm grants the same weight to all vox-
els, the matching of large structures with little intensity differences penalizes more the
distance function than the matching of thin structures with large intensity differences
(e.g. incorrectly convoluted cortical plate). In the future, we could associate our mul-
tiscale strategy with algorithms that take into account structure-specific information,
for example multi-structure LDDMM [120], which adds penalty terms for mismatched
segmented structures in the cost function. Another solution could be to use the meta-
morphosis model, a derivative of the LDDMM framework which allows variations of the
template image intensities [234].

In contrast, Section 4.4.3 demonstrated that our deformation model combined with
multiscale optimization is more suited to the modelling of cortical folding than to the
modelling of whole-brain intensity changes. This result was to be expected since the
LDDMM framework has been successfully applied to surface meshes, notably subcorti-
cal structures, numerous times [177, 176, 45, 175, 82]. However, it must be noted that
the cortex is a more complex structure than say, for instance, the hippocampi. As of
the emergence of tertiary sulci in late gestation, cortices display high inter-subject vari-
ability, which makes estimating an average object more challenging. As illustrated in

69



Chapter 4

Figure 4.8, the model parameters, in particular the regularizing kernel Kg, are likely to
influence greatly the accuracy of the cortical folds. Further, a prominent question is that
of model evaluation: like the L2 distance between images, the varifold distance is an
insufficient estimate of how well two cortices are matched, or how accurate the gyrifica-
tion process is represented. The questions as to how properly model and evaluate fetal
cortical development will be the subject of Chapter 7.
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In this chapter, wewill introduce fetal brain imaging by reviewing the basic principles
of MRI, the history of fetal brain MRI and its current clinical usage. Then, we will focus
on the quantitative analysis of fetal brain MRI. We are not interested in providing an
exhaustive overview of the research centered around fetal brain MRI. Rather, we seek
to adopt the perspective of a computational imaging researcher and focus on questions
of data availability, methodology, technical challenges, and discuss how these elements
have shaped the current state of the field.
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5.1 The growing field of fetal MRI

5.1.1 Basic principles of MRI

MRI is a non invasive and non irradiating imaging technique. The principle is tomeasure,
localize and plot a nuclear magnetic resonance signal originating from body tissues. The
human body is made of multiple tissues with different chemical compositions, many of
which containing hydrogen. The hydrogen atom has one proton, or nucleus, which
rotates around its axis, generating a small magnetic field called a spin. Spins in the body
have a random orientation and cancel each other out, resulting in a null overall magnetic
field.

During MRI, a strong external magnetic field B0 (of strength 1.5 or 3 Tesla in fetal
MRI)makes the spins line up in the direction of themagnetic field, creating a longitudinal
magnetization. Secondly, another magnetic field B1 formed of radio frequency waves is
generated perpendicularly to the first one. Excited by the radio frequency pulse, the pro-
tons absorb energy, synchronise and spin in phase with each other. The resulting mag-
netic field tilts in the direction of B1. Finally, the radio frequency signal is stopped and
the protons resume to their normal state under the magnetic fieldB0. This phenomenon,
known as relaxation, causes a radio wave to be emitted. Receiver coils capture this sig-
nal, which is used to generate an image by means of a Fourier transformation.

The relaxation is made of two simultaneous realignment processes:
• the T1 relaxation along the longitudinal axis when the high energy protons fall
back into a low energy state and realign with B0;

• the T2 relaxation along the transverse axis, based on energy transfer between spins
as the precessing protons dephase out and move apart.

The speed of the T1 and T2 relaxations differs based the local environment of the
protons. For instance, protons in water continue to spin together longer than protons
associated with fatty acid and have a longer T2 relaxation time. The protons’ relax-
ation behavior can be modified by varying the parameters of the radiofrequency pulse
sequence, namely the repetition time (TR) between two consecutive pulses and the echo
time (TE) between a radio frequency pulse and signal acquisition. Different time settings
lead to different types of contrast:

• T1-weightedMRI, characterized by low TR and low TE, has low signal for tissues
with high water content (for instance, see Figure 5.1, year 1993);

• T2-weighted MRI, characterized by high TR and high TE, has high signal for
tissues with high water content (for instance, see Figure 5.1, year 1998 to 2018).

5.1.2 A brief history of fetal MRI

Prior to the introduction of medical ultrasonography in the 1960s and MRI in the 1980s,
knowledge of fetal anatomy came from ex vivo dissections of fetuses acquired from mis-
carriages, stillbirths or deceased pregnant women [257]. Compared to post-natal MRI,
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Figure 5.1: Evolution of fetal MRI over the years. 1984: proton-weighted MRI of a 40
weeks fetus (whole body) from Johnson et al. [110]. 1988: transverse section of a fetal
brain, T1-weighted, from Powell et al. [172]. 1993: axial view of a fetal brain at 35
weeks, T1-weighted, from Revel et al. [188]. 1998: coronal view of a fetal brain with
agenesis of the corpus callosum at 22 weeks, fast spin echo T2-weighted sequence, from
Sonigo et al. [216]. 2002: Axial image of a healthy fetal brain at 33 weeks, T2-weighted
HASTE sequence, from Huisman et al. [100] 2008: axial slice of a fetal brain at 27 weeks
with bilateral ventriculomegaly, T2-weighted from Rutherford et al. [196]. 2012: coronal
image of a 25-week-old normal fetus, single-shot fast spin-echo T2 sequence from Glenn
et al. [81]. 2018: 3 Tesla sagittal image of a healthy fetus at 33 weeks, turbo-spin echo
T2-weighted sequence, from da Silva et al. [213]

the development of fetal MRI has been relatively slow (see Figure 5.1) and strewn with
obstacles. The first clinical MR images date back to 1973 [129]. A decade later, Smith et
al. [214] conducted fetal MRI for the first time in 6 women during early pregnancy. Long
acquisition times (about 2 minutes for a single image), incompatible with fetal motion,
meant degraded image quality, especially before the third trimester [110]. At the time,
fetal MRI had no diagnostic quality -at least in terms of fetal health- and scans were
performed mostly under research protocols [149, 150, 244, 172]. To reduce fetal motion,
fetal sedation and curarization were often employed [42, 94, 216] but carried a risk of
complications [188].

To make fetal MRI useful in clinical routine, the development of rapid sequences was
mandatory. The first to be tested on fetuses was a real-time snapshot MR sequence re-
ferred to as Echo Planar imaging (EPI) [146, 147]. However, EPI could not be generalized
due to lower resolution, high susceptibility to motion and field distortions [147], which
limited its applications to volumetric measurements.

In the 1990s, the field was revolutionized by single shot fast spin echo sequences, i.e.
high-quality sequences with a slice acquisition time of less than a second that mitigates
in-plane maternal and fetal movements [37, 107]. The most popular of these sequences,
Half-Fourier Acquisition Single-shot Turbo Spin Echo (HASTE), reached an acquisition
time of 400 ms per slice [99]. This marked the introduction of fast multislice 2D images
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which, combined, formed 3D-like images for the study of the fetal anatomy. Whilst early
studies had targeted several regions of the fetal body (e.g. central nervous system, lungs,
abdomen) [149, 150, 172], the potential of fetal MRI to refine or confirm US findings of
brain anomalies soon became a central topic of interest [99, 216].

The field of fetal MRI has grown steadily ever since, but its clinical usage remained
limited for a long time due to safety concerns and its elevated cost [217, 246]. It was
only in the 2000s that clinical referrals for fetal MRI started to increase [187]. In 2005,
a survey conducted reported that only 16 hospitals performed fetal MRI in the United
Kingdom, at an average frequency of 17 MRI per year [246]. Only recently did scientific
societies published guidelines and recommendations for fetal MRI [232]. Nowadays, fetal
MRI is relatively more frequent (of the order of hundreds to a few thousands a year in
European countries), but remains circumscribed to specialized centers [25, 26]. Of note,
the recently developed high-field (3 Tesla)MRI scanners, which provide increased signal-
to-noise ratio compared to 1.5 Tesla machines, are becoming more and more common
[145].

5.1.3 Use in a clinical setting

An integral part of pregnancy monitoring, ultrasonography remains the primary eval-
uation tool of the fetus health [245, 107]. Fetal MRI is used as a complementary tool to
confirm or refine a sonographic diagnosis and help parents make informed decisions.
Compared to ultrasonography, MRI is less limited by maternal adipose tissue, amniotic
fluid volume or fetal position, and visualization of the fetus intracranial compartment
is not restricted by the ossified skull [197, 245, 237]. It also benefits from a larger field
of view than sonography and multiple image orientations [245, 197]. Most importantly,
ultrafast MR sequences capture images of higher quality, i.e. with elevated spatial and
tissue contrast resolution, which allows to distinguish individual fetal structures as thin
as the corpus callosum [197, 181, 144]. Examination is recommended from 18 gestational
weeks [173]. Before this stage, excessive fetal movements, the limited size of anatomical
structures, and limited development of the brain pose serious challenges [220, 257].

Fetal MRI is generally targeted at a specific anatomical region, namely the brain in
80% cases [144]. Following abnormal sonographic findings, common indications for pre-
scribing a fetal brain MRI encompass ventriculomegaly, commissural abnormalities (e.g.
agenesis of the corpus callosum), cortical malformations (e.g. lissencephaly), posterior
fossa anomalies, infections of the central nervous system or other acquired pathologies
like haemorrhage and tumors [144, 197, 245, 145]. It has high sensitivity and specificity
for detecting cortical development anomalies, especially after 24 gestational weeks [81].

During a typical acquisition protocol, an initial localizer sequence is obtained to as-
sess the fetal position and, if need be, reposition the fetal brain in the center of the coil
[173]. Each acquisition serves as a localizer for the next sequences to avoid misregistra-
tion due to fetal movement [144, 148]. T2 images are acquired in the three orthogonal
planes in an interleaved fashion to reduce signal loss [17]. Ultrafast imaging acquires
3-4 mm thick slices in less than a second, but the whole acquisition usually lasts from 30
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minutes to an hour.

Ultrafast T2-weighted sequences such as HASTE, fast spin echo and single-shot fast
spin echo are the most commonly used to examine the fetal brain [173]. Due to the
elevated water content of the fetal tissues, T2 sequences provide high contrast between
brain tissues and the cerebrospinal fluid and excellent visualization of the intracranial
anatomy [148, 245]. T1-weighted sequences are primarily used to detect haemorrhage,
fat deposition, and calcification, and EPI to visualize bony structures and calcification
[173]. More advanced MR-based scanning techniques (e.g. diffusion weighted imaging,
diffusion tensor imaging, functional MRI, MR spectroscopy) are out of the scope of this
thesis. For a recent review about the different fetal MRI sequences, see [145].

5.1.4 Challenges

Fetal brain MRI differs drastically from neonatal or adult brain MRI and therefore car-
ries its own challenges. Technical difficulties have hampered the use of automated,
computer-assisted methods. As detailed in Section 5.2, an entire field of research is now
dedicated solely to image preprocessing. The very nature of the developing brain brings
its own difficulties, namely the presence of maternal tissues around the fetal brain, its un-
known orientation, the limited size of fetal organs, which lowers image resolution, and
the rapid and complex brain development, which limits inter subject comparison [79].
Artifacts present in postnatalMRI are also found -and often enhanced- in fetal ones [192].
Partial volume effects (i.e. the contribution of different tissues to a single voxel) are more
common due to the small brain size and may vary during gestation as tissue composition
changes [17, 192]. Bias field, or intensity non uniformity, occurs when the same tissue
have different intensities in different slices [17, 217]. Aliasing artifacts, that appear when
the field of view is smaller than the body part being imaged, are frequent in fetal MRI and
require adjustment of the field of view [80]. Maternal and especially fetal movements
are one of the greatest challenges in the field [181, 19]. Despite the fast acquisition of
2D images, in-plane motion artifacts cannot be entirely avoided, which creates intensity
and spin artifacts such as ghosting and blurring effects [217]. Inter-slice motion artifacts
and limited through-plane resolution impair the geometrical consistency of the whole
image and prevent the direct visualization of a 3D anatomical volume [192]. This also
makes the entire acquisition process highly operator-dependent and thus all the more
costly [145].

Non-technical challenges are also worthy of mention, although they are not directly
related to scientific research. There are worldwide disparities in the use of fetal MRI [3].
Even among European countries, the use of fetal MRI varies according to many factors
such as national recommendations, health insurance coverage, judiciary pressure, and
the presence of research institutions [26]. Unsurprisingly, the gestational age at which
the exam is conducted strongly depends on time limits for pregnancy termination [26].
In Europe, it ranges from 18 weeks (in Sweden) to the end of pregnancy (in France, in-
ter alia) [26]. In low and middle income countries, the lack of healthcare services and
infrastructure, the limited training opportunities in radiology, along with more restric-
tive legislation about pregnancy termination restrict the number of performed scans [3].
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Therefore, research in the field is also very restrained: only one paper about fetal MRI
was published in low and middle income countries between 2000 and 2020 [209]. The
topic of Caucasian-centered research was recently addressed by Wu et al. [249], who
published the first fetal brain atlas from a Chinese population.

The above-mentioned difficulties, in particular elevated cost and technical issues,
along with the relative novelty of fetal MRI and the sensitive nature of the data, explain
why open-source data is lacking. On a positive note, the first publicly available fetal
MRI dataset was published in 2021, providing researchers with 280 T2-weighted fetal
brain reconstructions from four different institutions [168]. This dataset will be used in
Chapter 7.

5.2 Fetal MRI Preprocessing

To perform quantitative analysis of any clinical images, some prior preprocessing steps
are inevitable to obtain comparable data. This is all the more true when such data comes
from prenatal brain MRI, as several obstacles specific to fetal MRI impede the direct
analysis of the brain anatomy:

• the unknown orientation of the fetus with regard to the scanner;
• the presence of the placenta and maternal tissues around the fetal brain;
• as detailed in Section 5.1.4, the acquisition of 2-dimensional slices hampers the
direct visualization of a volumetric image.

These specificities also prevent the application of sophisticated tools developed for
postnatal MRI such as Freesurfer [63] and FSL [108] to fetal images. Further, postnatal
preprocessing tools are mostly designed for T1-weighted images. This encouraged re-
searchers in prenatal screening to develop their own techniques in order to obtain a high
resolution volumetric brain image from motion corrupted stacks of 2D slices acquired
in orthogonal orientations [34] Although these preliminary steps are not the subject of
this thesis, they represent a requisite step for every study in the field. Thus, in the fol-
lowing sections we will present the different preprocessing methods for fetal brain MRI
in a non-exhaustive manner.

Brain extraction, i.e. the task of delineating the fetal brain from the surrounding tis-
sues such as the placenta, is often a prerequisite for volume reconstruction. As numer-
ous studies have focused separately on either task, we shall review first brain extraction
techniques, then volume reconstruction strategies.

5.2.1 Brain extraction

Template-based methods. Template matching was a rather popular method in the
early days of fetal brain extraction. The first algorithm for this task selected the mid-
sagittal slice by detecting the fetus eye with template matching, then isolated the brain
on this 2D slice and subsequently on the 3D volume using a graph cut approach [9]. In
Taleb et al. [222], each 2D slice was mapped to an age-specific template to estimate a
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brain mask. Quality of the 2D brain extraction was assessed by computing a similarity
measure between the estimated masks. A related approach [221] formulated the 2D rigid
registration problem to a brain template as a block-matching problem. In Tourbier et al.
[231], after manual brain localization, several brain templates were registered to each 2D
slice and brain extraction was performed with a global voting strategy.

Learning-based methods. Other methods favored supervised approaches. A ran-
dom forest classifier was trained to distinguish maternal from fetal tissues and the fetus
orientation was recovered by estimating the position of the centroid of several tissues
[104]. Keraudren et al. [118] localized the fetal brain by describing candidate regions
with scale and rotation invariant features and trained a Support Vector Machine to de-
lineate a bounding box around the brain. Then, slice-by-slice patch-based extraction was
performed inside the bounding box to extract the brain [117]. Kainz et al. [111] computed
rotation invariant descriptors of the 3D volume and trained a random forest classifier to
produce a probability map of brain voxels, which was refined for final brain extraction.
Alansary et al. [4] decomposed each 2D slice into superpixels, computed descriptors for
each superpixel, and trained a random forest to generate a probability map of the brain.
Recently, deep-learningmethods have entered the field and shown constant performance
increase [33]. Rajchl et al. [184] employed a Convolutional Neural Network (CNN)
trained with weak annotations by non-expert raters. Khalili et al. [119] predicted brain
masks from input 2D patches with a a multi-scale CNN. Salehi et al. [198] reused a U-
net CNN which showed high performance on 3D adult brain extraction, and adapted
it to 2D fetal MRI slices. A two-step procedure whereby a first CNN performs coarse
localization of the brain region, followed by fine brain delineation by a second CNN,
was introduced in a state-of-the pipeline for brain reconstruction [56]. More recently,
another brain extraction algorithm based on a U-net CNN trained on pathological cases
[185] was integrated to the pipeline.

5.2.2 Volume reconstruction

Typical volume reconstruction techniques comprise two main steps [34]. First, motion
correction is performed through Slice-to-Volume rigid Registration (SVR) in order to
correct the discrepancy between positions of the 2D slices. The best alignment between
each image and an arbitrarily chosen target slice is achieved by minimizing a similarity
metric (e.g. Normalized Mutual Information, Cross Correlation, Mean Square Intensity)
with gradient-descent optimization. Additional steps may include outlier rejection to
identify and exclude highly motion corrupted slices. Then, Super Resolution Recon-
struction (SRR) restores a 3D volume either by performing scattered data interpolation
or solving an inverse problem with spatial regularization.

The majority of reconstruction algorithms perform SVR registration and SRR in an
iterative manner. Pioneer strategies iterated between SVR registration and scattered
data interpolation [195, 109]. As an alternative to SVR, Kim et al. [121] introduced a
motion correction technique in which slices are collectively aligned by matching their
intersections, followed by Gaussian-weighted interpolation. The following algorithms
formulated the SRR inverse problem in a variational framework. Rousseau et al. [194]
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expressed the SRR task as an inverse problem solved with Total Variation regulariza-
tion. Similarly, Gholipour et al. [72] formulated the SRR task as a maximum likelihood
error norm minimization problem and performed outlier rejection to reduce the weight
of motion-corrupted voxels and slices. Building on this idea, another algorithm [47] it-
erated between a SVR approach similar to that of Rousseau et al. [194] and a Bayesian
formulation of the SRR problem with a complete outlier rejection scheme based on the
Expectation-Minimization algorithm. A GPU support of this algorithm was developed
and complemented with an automatic detection of the slice with least motion to serve
as reference during SVR [112]. Another study [229] further improved the SRR step by
minimizing the Total Variation energy with convex optimization. Ebner et al. [56] esti-
mated an initial high resolution volume using scattered data approximation, followed by
a classical iterative registration-reconstruction procedure with robust outlier detection.

Recent years have also witnessed the emergence of machine learning approaches. A
CNN was trained to predict a good initial slice alignment prior to the SVR registration,
which proved robust for scans with extreme slice motion corruption [95]. A 3D CNN
was used to upsample each low-resolution stack during the SRR step prior to SVRmotion
correction [151].

To perform the quantitative analysis of fetal brains, the availability and ease of use
of the aforementioned preprocessing algorithms is of prime importance. Several authors
have proposed fully automated reconstruction pipelines, mostly in recent years. The
Baby Brain Toolkit [193] reconstructs fetal brains with non local denoising and previ-
ously introduced SRR algorithms [195, 194]. However, brain extraction is optional and
performed manually. The open-source toolkit [112] performs volume reconstruction
but does not include extraction nor reorientation of the fetal brain. The first complete
pipeline [230] includes template-based brain localisation and extraction, along with re-
orientation in the standard radiological anatomical planes. Finally, the recently intro-
duced state-of-the-art reconstruction pipeline NiftyMIC [56] offers brain localization and
extraction, iterative SVR and outlier-robust SRR, and registration of the reconstructed
brain to a template space.

5.2.3 Tissue segmentation

As we shall see in the following, segmentation of the brain into different tissue classes is
almost always an initial step for quantifying the fetal brain volumetry and morphology.
Automatic segmentation is essential to avoid time-consuming manual segmentation, but
it is prone to errors due to the elevated age- and health-related anatomical variability in
populations of fetuses.

Multi-atlas segmentation. Multi-atlas segmentation [73] registers several labelled
template images to the target images and subsequently combine the warped labels, con-
sidered as probabilistic priors, using some label fusion procedure (e.g. the STAPLE al-
gorithm [240]). The construction of atlases, i.e. images representative of the fetal brain
at different gestational ages, will be the focus of Section 5.3.3. Weigl et al. [243, 242] in-
troduced a semi-supervised method that simultaneously learns a spatiotemporal latent
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atlas from a small number of segmented examples alongwith the subjects segmentations.
Gholipour et al. [76] introduced a multi atlas multi-shape segmentation procedure tai-
lored to segment similar tissues (e.g. the right and left ventricles). The algorithm used
STAPLE to obtain shape priors from label fusion and a probabilistic shape model that
penalizes intersections among structures. To tackle the low efficiency of multi-atlas seg-
mentation on dissimilar subjects, a semi-supervised learning approach was introduced
to propagate the atlas labels to the most similar image regions based on a voxel-wise
graph interconnecting similar regions in all images [124].

Deep learning-based approaches. In recent years, many studies have addressed
the challenge of fetal brain segmentation with deep learning methods [33]. Only a few
[61, 98, 167, 169] explicitly focused on the segmentation of pathological brains. Some
developed methods for the segmentation of specific structures, such as the cortical plate
[51, 93, 59, 52] or the ventricles [169]. The popular U-Net architecture, which performs
segmentation on 2-dimensional images, was used in several of these works [169, 93, 52]
with adaptations such as a multi-view aggregation approach [93] and a topological loss
function [52] to enforcemorphological consistency of the 3D segmented structure. Other
studies segmented multiple tissue classes using once again the U-Net architecture [167],
its 3D extensions [114, 264, 62, 61] or a CNN-based encoder-decoder [98]. Novel training
approaches were proposed, for example to handle missing annotations [62] or noisy (i.e.
partially erroneous) labels [114] in the segmented images.

5.3 Quantitative analysis

In the last decade, the postprocessing techniques developed for fetal MRI have made
possible to study quantitatively the growth of brain tissues. Our aim here is to provide
the reader with an overview of the techniques employed, the structures of interest and
the limitations of the studies that have quantified the evolution of healthy and abnormal
brains in volume-reconstructed fetal images. For extensive reviews about the findings
of such studies, see [17, 218, 181, 19, 192, 34].

The analysis of healthy fetal brains has mostly focused on measurements of specific
brain volumes, quantification of the cortical folding process, and longitudinal analyses of
brain evolution throughout pregnancy. We will also detail how these analyses have been
applied to pathological fetal brains. So far, they have been restricted to few abnormalities
and pathologies, including mainly ventriculomegaly, Chronic Heart Disease (CHD), and
spina bifida. Studies focusing on agenesis of the corpus callosum have been reviewed in
Section 6.2.

5.3.1 Volumetric analyses

As many congenital disorders can alter several brain compartments [179, 49, 126, 180], it
is clinically relevant to analyze healthy and pathological volume changes of brain tissues.
Volumetric studies typically perform manual or automatic brain segmentation in order
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to compute tissue volumes, which are then incorporated in temporal models. Gholipour
et al. [75] performed linear and quadratic fits of the total brain volume with age. The re-
lationship between gestational age and several tissue volumes such as gray matter, white
matter, and ventricles were tested using linear, quadratic and exponential models [206,
38]. Relying on a cohort of 166 fetuses, normative growth curves of several structures
were built with quantile regression and used to compare hemispheric growth rates [8].
Some studies focused on a single structure such as the hippocampi [105] and the cere-
bellum [205], which were manually segmented to carry out inter-hemispheric volume
comparisons and statistical modelling with age.

Numerous volumetric analyses have been performed on pathological fetal brain. Fol-
lowingmanual or semi-automatic brain segmentation, regressionmodels were employed
to compare the temporal evolution of several tissue volumes between fetuses with CHD
and healthy controls [35, 191] and between two subtypes of CHD [180]. Gholipour et
al. [76] developed a multi-atlas based segmentation method robust to ventricular abnor-
malities and compared the reliability of ventriculomegaly diagnosis using a measure of
ventricular volume versus atrial diameter. Two studies [126, 207] extracted the ventricles
and several brain structures to perform volumetric comparisons between fetuses with
ventriculomegaly and normal fetuses, with contrasted results. Rajagopalan et al. [179]
assessed alterations of several brain tissue volume in fetal donors after laser surgery
for twin-twin transfusion syndrome. The growth trajectories of several regional vol-
umes and the cortical plate were compared between fetuses with Down Syndrome and
healthy controls [226].

5.3.2 Cortical folding

5.3.2.1 Healthy fetal brains

The development of the cortical plate and the gyrification of the healthy fetal brain have
been widely explored using quantitative measures of the cortical surface curvature, such
as cortical thickness, mean curvature, gyrification index, and sulcal depth. These anal-
yses usually rely on segmentation and reconstruction of the cortical plate, derivation of
cortical folding measures at the global, regional or vertex/triangle level, and temporal
modelling.

Global and regional analyses. Two studies [247, 250] averaged several folding
measures over the whole brain and found several of these measures to accurately pre-
dict gestational age using linear [250] and Gompertz models [247]. Clouchoux et al.
[36] computed the mean gyrification index and cortical surface area of each hemisphere
and studied their association with gestational age. Hemispheric-level cortical folding
measures were compared between fetuses and preterm newborns, revealing inter-group
differences in cortical geometry and brain folding dynamics [130]. The gyrification in-
dex was used to investigate the emergence of sulcal and gyral patterns at the global and
regional level [96]. The authors then used a pair of new measures to further quantify
the evolution of gyral nodes and sulcal pits across pregnancy [97].
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Local analyses. Habas et al. [88] computed a vertex-wise mean curvature index,
built quantitative maps of cortical folding and showed a linear evolution of cortical fold-
ing between 20 and 28 gestational weeks. Schwartz et al. 2016 [203] modelled the evolu-
tion of cortical surface area at the triangle level using Gompertz models. Clouchoux et
al. [36] introduced an algorithm to establish individual probability maps of sulci location
based on mean and Gaussian curvatures.

Analysis of sulcal pattern. Sulcal pattern analysis, a method originally developed
for postnatal brains, was used to identify sulcal bassins in fetal brains [102]. Individual
sulcal patterns were compared to template brains with spectral matching. The method
was then used to derive a template-based automatic sulcus labelling pipeline, where the
contribution of each template depends on the similarity of gyrification with the individ-
ual cortical surface [258]. The authors then studied the temporal emergence and spatial
distribution of sulcal pits in the fetal period [260].

Deformation-based analyses. The cortical folding process was also explored using
tensor-based morphometry, which computes the deformation of images with regard to
a reference anatomy in order to capture local shape differences [182, 183]. This enabled
to compute growth maps of the cerebrum and the cortical plate and study the direc-
tionality of volume changes at the voxel level. This work was extended by Pontabry
et al. [171], who performed feature selection to extract sparse local deformation fields
that provide information about which zones of the cortical plate undergo major changes
across gestation.

5.3.2.2 Pathological fetal brains

Traditional curvature analyses were performed to identify differences in gyrification dy-
namics in healthy fetuses versus fetuses with CHD and ventriculomegaly. Linear regres-
sionswere used to compare the evolution of curvaturemeasures between controls and fe-
tuses with a severe form of CHD [35], highlighting gyrification delays in the pathological
group. The volumes and local curvatures of the ventricles and cortical plate were com-
puted in groups healthy fetuses and fetuses with ventriculomegaly [207]. Another study
[16] identified several regions of delayed cortical folding related to ventriculomegaly.
They later adopted a less typical approach based on manifold learning in order to find
associations between the abnormal growths of the cortical and ventricular surfaces [15].
A common underlying representation of vertices belonging to both anatomies provided
information about which cortical areas are related to specific dilated ventricular regions.

Sulcal pattern analysis was also applied to fetuses with brain malformations [103],
agenesis of the corpus callosum [225], CHD [165], Down Syndrome [259] and ventricu-
lomegaly [224]. Each study computed the sulcal pattern similarity between abnormal
fetuses and healthy templates and assessed differences in position, depth and area of
sulcal basins. Compared to healthy controls, all groups had reduced similarity to the
reference patterns and the method showed higher sensitivity compared to traditional
gyrification measures.
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5.3.3 Spatiotemporal atlases

Several studies have modelled the evolution of normal brain anatomy across pregnancy
by providing intensity brain templates and tissue probability maps for each gestational
age [86, 162]. These models, termed atlases, have a large scope of application as they
provide an insight into healthy brain growth and may serve as reference to segment
new subjects and characterize abnormal brains. They differ in several regards: screening
modality (only T2-weighted MRI is considered here), represented pregnancy stage(s),
construction methodology, and regions of interest (cortical surface versus whole-brain
intensity atlases). As of now, most spatiotemporal atlases have represented healthy brain
growth, with the exception of Zhan et al. [262], who used post-mortem fetuses, and Fidon
et al. [60], who modelled the evolution of brains with spina bifida.

5.3.3.1 Intensity atlases

The existing spatiotemporal intensity atlases of fetal brain growth are summarized in Ta-
ble 5.2. The prevailing method for atlas building is made of two components: at each ges-
tational age, a deformable template brain is estimated ("Spatial normalization" method)
with a specific kernel-weighting of the subjects ("Temporal regression" method). Two
main ways of estimating a template brain exist:

• Groupwise registration: given an initial template image, the template is iteratively
registered to each subject image to obtain an average template-to-subject deforma-
tion, and this mean deformation is subsequently applied to the template, resulting
in a new template image, which is refined by repeating the previous steps until
convergence.

• Pairwise registration iteratively selects a reference subject in the dataset and regis-
ters each of the remainingN−1 subjects to the reference. TheN−1 deformations
characterizing a given subject are averaged to obtain a mean brain image for the
reference subject, and the final template is obtained by averaging the mean shapes.

These methods have been utilized within different deformation frameworks, notably
affine [87], free-form [208] and diffeomorphic [74, 73, 249, 262] deformations. Most atlas
construction methods [73, 208, 242, 74, 249, 60, 254] combine each averaging step of the
spatial normalization with a kernel-weighting of the subjects: the more a subject is close
to the template gestational age, the more it will contribute to its estimation. Thus, while
kernel regression can in theory compute a template at any gestational age, in practice
the output atlas is discrete and can be temporally inconsistent [202].

Alternative methods for atlas construction have also been experimented. In an ap-
proach akin those developed in these thesis, Licandro et al. [134] built an atlas of the
fetal brain using geodesic regression in a large deformation framework. Pei et al. [170]
used unsupervised learning and relied on an atlas synthesis network and a deformable
registration network to simultaneously learn the age-dependent template and register
the individual images to the age-matched atlases.
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Of note, only a few of these atlases are publicly available [60, 87, 208, 73, 262, 249,
235]. The links to download the templates are listed on the author’s website1.

5.3.3.2 Cortical surface atlases

There are fewer cortical surface atlases of the fetal brain than intensity atlases. They
are summarized in Table 5.1. In several papers [36, 88, 254], atlas building was not the
primary goal of the study and served to perform quantitative analysis of the cortical
folding process. Thus, only a few studies [248, 253] also produced segmentation maps
of the developing cortex. The only publicly available cortical surface atlas is the one
from Zhan et al. [262], which limits possible comparisons between different construction
methods. Other open-source spatiotemporal atlases were built from postnatal images
and are also listed on the author’s website.

Table 5.1: Fetal cortical surface spatiotemporal atlases in the literature. N: number of
images used to build the atlas. Age range: gestational weeks spanned by the atlas. Bold
style indicates atlases built from abnormal fetal brains.

Year Authors N
Age
range

Spatial
normalization

Temporal
regression Atlas

2011
Habas

et al. [88] 40 20-28
Groupwise
registration None

Inner cortical
surface templates

2011
Clouchoux
et al. [36] 12 25-35

Groupwise
registration None

Inner cortical
surface templates

2013
Zhan

et al. [262] 34 15-22
Groupwise
registration None

Outer cortical
surface templates

2015
Wright

et al. [248] 80 23-37
Pairwise

registration Kernel regression

Inner cortical
surface templates,
parcellation maps

2019
Xia et al.
[253] 25 26-29

Groupwise
registration None

Inner cortical
surface templates,
parcellation maps

2022
Xu et al.
[254] 90 23-38

Extracted from intensity
templates (see Table 5.2)

Inner cortical
surface templates

1https://fleurgaudfernau.github.io/Datasets/
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Table 5.2: Fetal brain spatiotemporal atlases in the literature. N: number of images used
to build the atlas. Age range: gestational weeks spanned by the atlas. Bold style indicates
atlases built from abnormal fetal brains.

Year Authors N
Age
range

Spatial
normalization

Temporal
regression Atlas

2010
Habas

et al. [87] 20 21-25
Groupwise
registration

Temporal
polynomial

model
Intensity templates,
probability maps

2012
Serag

et al. [208] 80 23-37
Pairwise

registration
Adaptative

kernel regression
Intensity templates,
segmentation maps

2013
Zhan

et al. [262] 34 15-22
Groupwise
registration None

Intensity templates,
cortical surfaces

2013
Weigl

et al. [242] 32 20-30 Registration Kernel regression Segmentation maps

2014
Gholipour
et al. [74] 40 26-36

Groupwise
registration Kernel regression

Intensity templates,
segmentation maps

2016
Licandro
et al. [134] 45 18-30 Geodesic regression

Intensity templates,
segmentation maps

2017
Gholipour
et al. [73] 81 21-38

Groupwise
registration

Adaptative
kernel regression

Intensity templates,
segmentation maps

2021
Li et al.
[133] 35 23-36

Pairwise
registration None Intensity templates

2021
Wu et al.
[249] 115 22-34

Groupwise
registration

Adaptative
kernel regression

Intensity templates,
segmentation maps

2021
Pei et al.
[170] 82 22-32

Registration
network

Atlas generation
network

Intensity templates,
probability maps

2021
Fidon

et al. [60] 37 21-34
Weighted
average Kernel weighting

Intensity templates,
segmentation maps

2022
Urru

et al. [235] 20 32-39
Groupwise
registration None

Intensity templates,
segmentation maps

2022
Xu et al.
[254] 90 23-38

Pairwise and
groupwise
registration

Adaptative
kernel regression

Intensity templates,
cortical surfaces
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Chapter 6

Analysis of the anatomical variabil-
ity of pathological fetal brains

Contents
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.2 Image preprocessing pipeline . . . . . . . . . . . . . . . . . . . . 91
6.3.3 Final dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Shape analysis pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.1 Geometrical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.2 Shape analysis pipeline . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.1 Healthy brains versus brains with CCA . . . . . . . . . . . . . . 100
6.5.2 Complete CCA versus Partial CCA . . . . . . . . . . . . . . . . . 101

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6.1 Fetal MRI preprocessing . . . . . . . . . . . . . . . . . . . . . . . 105
6.6.2 Applying deformation models to fetal brains . . . . . . . . . . . . 105
6.6.3 The anatomical variability of fetal brains with CCA . . . . . . . . 106
6.6.4 Partial and complete CCA differentially affect brain anatomy . . 107

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

This chapter is an extended version of a paper published in the Perinatal, Preterm and
Paediatric Image Analysis Workshop at MICCAI 2021 [68]: Analysis of the Anatomical
Variability of Fetal Brains with Corpus Callosum Agenesis by Fleur Gaudfernau, Eléonore
Blondiaux and Stéphanie Allassonière at MICCAI 2021 - Perinatal, Preterm and Paedi-
atric Image Analysis Workshop in October 2021.

6.1 Motivation

In this chapter, we are interested in applying diffeomorphic mapping to pathological
fetal brains. Corpus callosum agenesis (CCA) is one of the most common congenital
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brain anomalies, with a prevalence at birth of 0.02% [131]. It is characterized by the total
or partial absence of the largest commissure of the brain, responsible for the transmission
of sensory, motor and cognitive information between hemispheres [131]. Diagnosis is
usually suspected during the second-trimester routine ultrasound, and confirmed by a
MRI scan [131]. In complement with genetic screening, fetal MRI is valuable to provide
clinicians with additional information, since the presence of other anomalies is the only
consensual prognosis factor for neurodevelopmental delays [199]. In the presence of
associated defects, accounting for 45% cases [199], the outcome is usually poor, with
impairments affecting motor control, coordination and language [55]. Predicting the
outcome is challenging in isolated CCA, where 20-30% children demonstrate a broad
spectrum of cognitive deficits [199, 55], resulting in heterogenous medical counselling
across hospitals and countries [48]. Further, CCA has a diverse clinical picture in the
morphology of the corpus callosum: partial CCA, diagnosed when only some parts of
the corpus callosum are missing, is considered less common, more delicate to detect and
it is thus harder to make a prognosis in the absence of associated anomalies [92, 143]. To
provide parents with informed counselling, it is crucial to identify anatomical markers
linked to the neurodevelopmental outcome of children with complete and partial CCA
as early as possible during pregnancy.

Quantitative in vivo analysis of fetal brains has long been limited by the scarcity of
fetal MRI data and its restriction to 2D slices [34]. As explained in more details in Chap-
ter 5, unpredictable fetal and maternal motion make the acquisition of 3D images chal-
lenging. With the advent of fast single shot multi-slice MRI sequences, combined with
postprocessing techniques, it is now possible to acquire stacks of 2D images with rea-
sonable in-plane motion, perform inter-slice motion correction, and reconstruct a high
resolution volumetric image of the fetal brain [17]. Taking advantage of these recent de-
velopments, the quantitative assessment of normal and pathological brain development
has attracted growing interest [17]. However, to this day, only few studies have investi-
gated quantitatively anatomical alterations in fetuses with CCA [123, 225, 204], and their
focus was on specific brain structures rather than global trends. Another limitation is
the difficulty to compare fetal brains of different gestational ages, since they undergo
rapid and drastic changes across pregnancy [73].

Whole brain shape analysis can provide information about which structures are im-
paired along with corpus callosum. To perform such global analysis, one can think of im-
age registration, whichmaps a population average brain template onto individual images
in order to measure a distance from normality. In a clinical setting, functions called dif-
feomorphisms are an appropriate choice for computing shape changes, as they are high
dimensional, topology-preserving, and sensitive to small anatomical variations. The pre-
viously introduced LDDMM setting [233, 31] (see Chapter 2) is a powerful method for
computing such functions, which are seen as geodesics on a Riemannian manifold. Dif-
feomorphisms can be efficiently computed through a discrete parameterization [54]. The
LDDMM framework also provides geometrical tools such as parallel transport, which en-
ables the comparison of subjects that are at different developmental stages. To the best
of our knowledge, deformation models have never been applied to abnormal fetal brains.

In this chapter, we do not seek to develop or enhancemathematical models, but rather
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to exploit already existing Computational Anatomy tools and show that they harbor
much potential for analysing clinical images presenting high anatomical heterogeneity.
We propose to explore the anatomical variability of fetal brains diagnosed with CCA
by introducing a novel shape analysis pipeline based on diffeomorphic brain mapping
and specifically tailored to the specificities of fetal MRI. Following data preprocessing,
a healthy template is registered to each subject, and age-related differences between
fetuses are corrected by transporting deformations to a common space. Finally, using
Principal Component Analysis (PCA) and classification, we will identify deformations
specific to fetal brains with CCA and study alterations differentiating brains with partial
CCA from those with complete CCA.

6.2 Related work

Unsurprisingly, the brain anatomy of individuals with CCA has beenmostly investigated
in adults [12, 159, 166] and children [14, 91]. As far as studies focusing on the fetal
brain are concerned, quantitative analyses remain scarce. Indeed, the field is geared
towards clinical practice. Studies mostly aim at identifying and quantifying anatomical
alterations related to CCA [71, 210, 115], or relating anatomical features to postnatal
outcome [49, 78] with methods overwhelmingly based on visual assessment of stacks of
two-dimensional MRIs by radiologists.

Quantitative studies of fetal brains with CCA (i.e. involving at least some degree of
automation during analysis) are listed in Table 6.1. To the best of our knowledge, quan-
titative analyses of volumetric fetal MRI have been attempted in only three studies [123,
225, 204], with a focus on specific brain structures. Knezovic et al. [123] measured the
hippocampal volume by means of manual delineation on volume reconstructed brains
from 39 healthy fetuses and 46 fetuses with CCA. Statistical tests showed reduced hip-
pocampal volume in impaired fetuses. Tarui et al. [225] investigated cortical folding in 17
controls and 7 fetuses with CCA. Following surface reconstruction of the inner cortical
plate, sulcal developing basins were identified and matched to healthy sulcal templates,
revealing abnormalities in sulcal positions. Schwartz et al. [204] also explored the cor-
tical morphology of 46 fetuses with CCA and 22 healthy fetuses. Measures of cortical
surface area, thickness, asymmetry and gyrification level were automatically computed
in several areas to assess group differences, showing reduced cerebral wall thickness and
structural asymmetry in several brain regions in fetuses with CCA.

Of note, two studies [116, 106] have analysed Diffusion Tensor Imaging (DTI) data,
which maps the diffusion of water molecules within brain tissues and allows to recon-
struct the 3D route of white matter fibers. Kasprian et al. [116] analysed DTI data from
20 fetuses with CCA and 20 age-matched healthy fetuses between 20 and 37 GW. Trajec-
tories of abnormal white matter tracts, namely the Probst bundles and sigmoid bundles,
were visualized in subjects with complete and partial CCA, respectively. Alterations
in somatosensory and motor pathways were also highlighted. Using the same method,
Jakab et al. [106] further showed that fetuses with CCA have aberrant organization of
the brain connectome, notably decreased interhemispheric structural connectivity and
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(a) Normal corpus callosum (b) Partial CCA (c) Complete CCA

Figure 6.1: Brain T2-weighted MR images of fetuses from Hôpital Trousseau in sagittal
view. In panels (a) and (c), arrows indicate the expected location of the corpus callosum.
For fetuses with partial CCA (b), arrows indicate the missing part of the corpus callosum.

increased connectivity in intrahemispheric alternative information pathways.

Table 6.1: Quantitative analyses of fetal brains with CCA. Data: type of data used (either
T2-weighted MRI or DTI). N: number of subjects included in the study (subjects with
CCA / healthy controls)

Reference Data N Study Method

[116] DTI (20/20)
White matter
connectivity Tractography

[106] DTI (20/20)
Brain connectome

organization Tractography

[225] MRI (7/17) Cortical folding
Semi-automated segmentation,

sulcal pattern analysis

[123] MRI (39/46) Hippocampal volume
Manual segmentation,
volume measurement

[204] MRI (46/22)
Cortical folding,
brain asymmetry

Semi-automated segmentation,
quantitative measures

6.3 Dataset

6.3.1 Data description

Data consist of retrospectively selected fetal MRIs acquired between 2006 and 2019 at
Hôpital Trousseau, in Paris, France, which is a nationwide reference center for CCA.
The database contains 61 healthy fetuses scanned between 29 and 37 GW (mean = 32.40
± 1.69) and 118 fetuses diagnosed with CCA scanned between 24 and 37 GW (mean =
31.88 ± 2.45), including 81 and 37 fetuses with partial and complete CCA, respectively.
A histogram of the subjects gestational ages is presented in Figure 6.2a.

Healthy fetuses had normal central nervous system findings at MRI examination. In
the group with CCA, the pathology was detected either at the second (between 22-24
GW) or third trimester (between 31- 33 GW) screening ultrasound examination, which
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consistently checks for the presence of the corpus callosum. After findings of abnor-
mality of the corpus callosum, the routine ultrasound was followed by an expert ul-
trasound assessment including neurosonography to investigate other associated fetal
anomalies before MRI scanning. Patients had a consultation with a fetal medicine spe-
cialist, a pediatric neurologist and a clinical geneticist in the referral prenatal center and
were offered amniocentesis for fetal karyotyping and chromosomal microarray. Since
pregnancy termination is possible until the end of pregnancy in France and given that
associated anomalies such as gyrification delays are not visible at earlier stages of preg-
nancy, the fetal MRI is programmed around 30-34 GW following the pre-diagnosis step.
Rather than examining solely the corpus callosum, radiologists look for indirect features
of CCA, in particular the bundles of Probst, i.e. abnormal rearrangement of the callosal
fibers visible only in complete CCA or large ventricles.

Corpus callosum anomalies were defined as: (1) complete CCA, namely the complete
absence of the corpus callosum and (2) partial CCA, i.e. the absence of one or more of the
five segments of the corpus callosum resulting in an abnormally shaped corpus callosum.
Selection of the MRIs was performed by an expert radiologist. Inclusion criteria were as
follows: fetuses affected by isolated or associated partial or complete corpus callosum
abnormalities. Fetuses with a short corpus callosum, defined as a complete corpus cal-
losum with an antero-posterior diameter below the third percentile, were not included
in this study. Examples of fetal brain images with normal corpus callosum, partial CCA
and complete CCA are presented in Figure 6.1.

(a) All MRIs (b) Successfully reconstructed MRIs

Figure 6.2: Histograms of the subjects gestational ages at the date of MRI acquisition for
the full dataset (a) and the volume-reconstructed images used for the analysis (b).

6.3.1.1 Image acquisition protocol

Fetal brainMRI was performed using repeated T2 half-Fourier Single Shot Fast Spin Echo
(HASTE), or Single-Shot half-Fourier Turbo Spin Echo (SSFSE). MRIs were acquired on
a 1.5 Tesla MRI system Achieva Philips (Best, the Netherlands) before 2016 and Optima
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MR450w General Electric (Waukesha, WI, USA) after 2016. Maternal sedation was sys-
tematically offered to reduce fetal motion artefacts. The scanning parameters are speci-
fied in Table 6.2. To ensure proper volumetric reconstruction, only images with at least
3 stacks of slices in the three standard radiological planes are included in the analysis.

Table 6.2: MR acquisition parameters of the dataset.

In-plane resolution 0.8 or 1.6 mm
Field of view 256x256 or 512x512 mm
Echo time 150-200 ms

Repetition time 3,500-4,000 ms
Slice thickness 4 mm

Acquisition matrix 320 × 320
Flip angle 90°

6.3.2 Image preprocessing pipeline

In order to perform quantitative analyses, isotropic brain volumes are reconstructed from
the 2D fetal images using NiftyMIC software version 0.7.5 [56]. As our dataset com-
prises routinely acquired clinical images, the brain extraction step preceding volumetric
reconstruction often had a high rate of false positive voxels. To obtain accurate 3D brain
volumes without resorting to manual correction, we designed a two-step preprocessing
pipeline. As the newest version of NiftyMIC includes a more efficient brain extraction
algorithm [185], it is important to note that our image processing pipeline is now obso-
lete. In the following, a brief overview of the pipeline will be given, and the interested
reader is referred to Appendix C.1 for more details.

6.3.2.1 Semi-automated brain extraction and volume reconstruction pipeline

Brain extraction and volume reconstruction. Isotropic high resolution 3D volume
reconstruction of fetal brains is performed using the open-source state-of-the-art NiftyMIC
software that takes as input stacks of low resolution 2D slices. First, brain extraction is
performed in each 2D stack with a coarse-to-fine approach that localizes and then ex-
tracts the fetal brain using two CNNs [57]. Intensity non-uniformity is corrected using
N4 bias field correction. Finally, high resolution reconstruction is performed by iterating
between SVR registration for motion correction and SRR with robust rejection of slices
that are misregistered or artifact-corrupted.

Correction of erroneous brain extraction. Following these fully automated steps,
a visual assessment of the reconstructed images is performed: as specified in Figure 6.3,
38% of the dataset was discarded because of image quality issues. Examples of excluded
volumetric images are presented in Appendix Figure C.1. The remaining data comprises
images with good reconstruction quality. However, the fetal brain was overdetected
in 46% of brains with CCA and 24% of healthy brains. To avoid a tedious and time-
consuming manual correction of the erroneous 3D brain masks, the following steps
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Figure 6.3: Steps of the semi-automated brain extraction and volume reconstruction
pipeline. Values in orange and green rectangles denote the number and percentage of
subjects going through each step of the pipeline in the group with CCA and the control
group, respectively. Eye icons indicate visual evaluation of the quality of brain extrac-
tion and volume reconstruction.

are performed: brain extraction with a U-net CNN [198], volume reconstruction with
NiftyMIC, fusion of the 3D masks obtained from NiftyMIC and U-net, and possible man-
ual correction of the resulting brain mask.

The semi-automated volume reconstruction pipeline is further detailed inAppendix C.1.1.

6.3.2.2 Volumetric image postprocessing pipeline

As described in Appendix C.1.2, the volume-reconstructed brain image is post-processed
to enable inter-subject comparison. As the brain mask of the reconstructed image may
still contain voxels belonging to the skull, we first reorient the fetal brain: the coro-
nal, sagittal and axial planes are automatically identified based on length and symmetry
measurements and flipped in the right direction by minimizing the sum of squared dif-
ferences between all possible orientations and an age-matched reference fetal brain from
a state-of-the-art spatiotemporal atlas [73]. A correct brain mask is extracted from the
reference brain, rigidly registered to each erroneous fetal brain mask, and used to re-
mask the fetal brain. To enable inter-subject comparisons, fetal brains are transported
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to a common anatomical space by performing affine registration to the previously used
reference template. Finally, intensity normalization and histogram matching to the tem-
plate brain are performed.

Figure 6.4: Histogram of the year of MRI acquisition for images with different recon-
struction outcomes: valid brain extraction and reconstruction, invalid brain extraction
(which was later corrected) and quality issue.

6.3.3 Final dataset

Among the 61 healthy fetal brains which underwent the preprocessing pipeline, 24%
had incorrect brain masks (later corrected), 38% were discarded because of significant
inter-slice motion and 38% had valid reconstructed images. 46% of fetuses with CCA had
incorrect brain masks, 38% were discarded because of significant inter-slice motion and
only 16% had valid reconstructed images. After semi-automated correction of erroneous
brain extraction, 62% of the images in both groups had valid brain volumes which were
used in the analyses described in the next section.

Gestational age at the time of acquisition did not seem to impact the reconstruction
outcome: fetuses with valid brain volumes had a mean age of 32.35± 2.02 weeks, fetuses
with invalid brain extraction a mean age of 31.87 ± 1.91 weeks and those with poor
quality volumes a mean age of 32.23 ± 2.22 weeks. On the contrary, the MRI year of
acquisition seemed to play a significant role in the success of volume reconstruction, with
valid reconstructions having been imagedmostly between 2015 and 2019 (see Figure 6.4).

The final dataset comprises 111 MRIs from 38 healthy fetuses scanned between 29
and 37 GW (mean = 32.39 ± 1.69 GW) and 73 fetuses diagnosed with CCA scanned
between 26 and 37 GW (mean = 31.87 ± 2.06 GW). In the group with abnormal corpus
callosum, 51 fetuses have partial CCA and 22 complete CCA. A histogram of the subjects
gestational ages is presented in Figure 6.2b.
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6.4 Shape analysis pipeline

6.4.1 Geometrical tools

Our image processing and shape analysis pipeline are based on specific shape analysis
tools developed in the LDDMM framework. Here, we provide a description of the theo-
retical setting behind these geometrical tools. More details are available in Chapter 2.

6.4.1.1 The LDDMM framework

As described in Section 2.3, the LDDMM framework [233, 31, 153] is a mathematical
setting to compute diffeomorphic shape transformations. A flow of diffeomorphisms
is considered as a Riemannian Manifold of infinite dimension, and shapes are seen as
objects on that manifold, transformed through deformations of the whole ambient space.

Diffeomorphisms are constructed by integrating time-dependent vector fields, con-
sidered as infinitesimal linearized deformations. Namely, to build a flow of diffeomor-
phisms ϕt, one integrates the flow equation, which describes the motion of a particle x
along the curve x(t) under the effect of a time-varying vector field vt:

dx(t)

dt
= vt(x(t))

x(0) = x0 .
(6.1)

This model builds a flow of diffeomorphisms ϕt : x0 −→ x(t) ∀t ∈ [0, 1]. The diffeo-
morphism of interest ϕ1 is the end point of the path x(t): ∀x0 ∈ D, ϕ1(x0) = x(1) .

Here, we restrict ourselves to a finite parameterization of the velocity field v [54].
Namely, we impose that v belongs to a finite dimensional subspace of a Reproducing
Kernel Hilbert Space (RKHS) V , i.e. the set of square integrable functions convolved
with an interpolation kernel Kg:

vt(x) =

kg∑
k=1

Kg(x, ck(t))αk(t) , (6.2)

where (αk)k is a set of momentum vectors attached to kg control points (ck)k, and Kg

is a Gaussian kernel of width σg. Kg acts as a spatial regularizer restricting the range of
deformations the model is able to express.

The Riemannian manifold is provided with a right invariant metric, defined as the
total kinetic energy needed between the identity map Id and the diffeomorphism ϕ1, i.e.:

d(Id, ϕ1) =

∫ 1

0

∥vt∥2V dt
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This means that distances are computed as the length of the minimal geodesic path con-
necting two elements. To ensure that the transformation ϕ1 is diffeomorphic, we will
impose regularity conditions so that the vector fields vt define geodesic paths, i.e. the
shortest paths between ϕ0 and ϕ1 according to the norm

∫ 1

0
∥vt∥2V dt.

It has been shown that if an initial velocity field v0 is written in the followingmanner:

v0(x) =

kg∑
k=1

Kg(x, ck(0))αk(0),

then the vector fields vt along geodesic paths of direction v0 remain defined as a linear
combination of RKHS basis elements [152]. In other words, Equation (6.2) is true for any
time t.

Further, the kinetic energy along geodesic paths is preserved over time, i.e. ∀t ∈
[0, 1], ∥vt∥V = ∥v0∥V . Moreover, the evolution of the control point positions (ck(t))k and
momentum vectors (αk(t))k satisfy Hamiltonian equations that describe the movement
of a set of particles, with Kg modeling the forces of repulsion between particles [152].

It follows that the vector fields along geodesics paths are fully parameterized by the
initial velocity field v0. This has two main consequences:

(1) v0 is the tangent space representation of the diffeomorphism ϕ1 at the identity
map Id, which enables one to define tangent-space statistics of the diffeomorphism ϕ1

and to characterize ϕ1 with standard statistical tools such as PCA.
(2) to estimate ϕ1, one only needs to estimate the system’s initial conditions α0 =

(αk(0)) and c0 = (ck(0)). In other words, to compute shape changes, one solves a
geodesic shooting problem: given a set of initial momentum vectors and control points
characterizing a flow of diffeomorphisms, we compute the trajectory of a given shape.
The end point of this trajectory, i.e. the final deformed image, is then compared to the
target shape, and the initial conditions can be modified accordingly.

In this framework, optimization is performed by minimizing a cost function whose
formulation depends on the chosen model. It is typically composed of a data fidelity
term, i.e. the Euclidean L2 distance between the images to be registered, plus a term
penalizing the kinetic energy of the deformation.

6.4.1.2 Computational Anatomy models of interest

In the following, we briefly detail the geometrical tools used in this work, namely regis-
tration, geodesic regression and parallel transport (see Chapter 2).

Registration. Registration seeks the transformation ϕ1 that best warps a source
image Iref onto a target image I2. The control points c0,1 and momenta α0,1 that define
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ϕ1 are optimized by minimizing a cost function E:

E(c0, α0) =
∥I2 − Iref ◦ ϕ−1

1 ∥2

σ2
ϵ

+

∫ 1

t=0

∥vt∥2V , (6.3)

where σϵ controls the trade-off between the two terms. The first term is the sum of
squared differences between the deformed source image and the target image. The sec-
ond term penalizes the kinetic energy of the transformation, ensuring that only geodesic
vector fields are considered as potential solutions.

Geodesic regression. Geodesic regression can be seen as the generalization of linear
regression to shapes. Given a set ofN images (Ii)1≤i≤N observed at times (ti)1≤i≤N , we
seek the geodesic trajectory γt, defined by control points c0 and momentum vectors α0

that best fit the images. The cost function is defined as follows:

E(c0, α0) =
N∑
i=1

(
∥Ii − Iref ◦ ϕ−1

ti ∥
2

σ2
ϵ

)
+

∫ 1

t=0

∥vt∥2V , (6.4)

We refer to Iref as the template image: it is the point from which the trajectory is com-
puted. Here, Iref is user-defined and can be any of the images in the set (Ii)1≤i≤N .

Parallel transport. Parallel transport is a differential geometry notion that consid-
ers two known transformations γt and ϕ2 defined by the sets of parameters (c0,1, α0,1)
and (c0,2, α0,2), respectively. Typically, γt describes the known evolution of a reference
shape, and ϕ2 describes the transformation that maps the reference subject at a given
time to a new subject. Parallel transport enables one to transport the diffeomorphism ϕ2

at any time point along the reference trajectory. We denote by Pγ,t1,t2(α0,2) the Paral-
lel Transport of momentum vectors α0,2 along the trajectory γt from time t1 to time t2.
The geodesic shooting of the transported momenta can be used to predict the shape of a
new subject at any time ti, defining a trajectory that is parallel to the reference one. For
details about the computation of Parallel Transport, the reader is referred to Louis et al.
[135].

6.4.2 Shape analysis pipeline

Registering a reference average brain, called template, to healthy or pathological brains
yields transformations that encode subject-specific anatomical deviations from normal-
ity. As brains undergo important structural changes during gestation, we compare each
fetal brain to a healthy template of the same age using registration. To enable inter-
subject comparisons, deformations are transported to a common space using parallel
transport. PCA is applied to the transported subject deformations to reduce dimension
and extract relevant features. Finally, these features are fed to a Support Vector Machine
(SVM) to perform patient classification. The steps of our shape analysis pipeline are
summarized in Figure 6.5 and detailed below.

Shape transformations, namely geodesic regression, registration and parallel trans-
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Figure 6.5: Shape analysis pipeline. Red curve: average trajectory γ(t) estimated by
geodesic regression. Green curves: trajectory between a subject i and an age-matched
template from regression, parameterized by the momentum vectors α0,i (green arrows).
Blue arrows: parallel transport of α0,i from ti to t0 along the average trajectory.

port, are computed using the open-source software Deformetrica, version 4.3.0 [23]. Re-
gression and registration are estimated with a kernel width and a spacing between con-
trol points σg = 5, corresponding to a number of points kg = 10, 080. Movies of the
different steps of the shape analysis pipeline are available at the author’s webpage1.

6.4.2.1 Geodesic regression of template brains

To take into account the anatomical changes that occur during gestation, each fetal brain
is compared to an age-matched healthy brain. We use as reference a spatiotemporal atlas
defined at each week of gestation, constructed from 81 healthy fetuses scanned between
19 and 39 GW [73]. We extract the 13 template brains between 26 to 38 GW and spatially
normalize them to the space of the template at age 31 GW. From this discrete set of
templates, we construct a continuous trajectory of normal brain changes from 26 to 38
GW by performing geodesic regression. This trajectory γ(t) (red curve in Figure 6.5) is
described by a pair of vectors, namely the control points c0 and momenta α0 defined at
time t0 = 31 GW. The point from which the geodesic is computed, i.e. the template brain
at age 31 GW, has been chosen to minimize the amount of deformation that the template
image undergoes. It will be referred to as Tref in the following.

1https://fleurgaudfernau.github.io/Shape_analysis/
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6.4.2.2 Registration to an age-matched template.

Our dataset comprises N = 111MRIs from 38 healthy fetuses and 73 fetuses with CCA.
We denote by Ii the brain volume of the ith subject and by ti its gestational age. To
characterize subject i, we extract the template brain from the geodesic trajectory whose
age is closest to ti and register it to Ii using geodesic shooting. Given an initial set
of control points c0,i and momenta α0,i, geodesic shooting computes the trajectory of
a shape under the flow of diffeomorphisms defined by c0,i and α0,i (green paths). By
comparing the deformed template image and the subject image, registration optimizes
the c0,i, α0,i that best warp the template image to match the subject image. Note that the
same set of kg = 10, 080 control points is used to estimate the geodesic regression and
each registration.

6.4.2.3 Parallel transport

The diffeomorphism computed by registration encodes, for each subject, the distance
between its anatomy and that of an age-matched healthy brain template. However, to
enable comparisons between subjects, transformations need to exist in the same space.
The momenta parameterizing each deformation are parallel transported to the tangent
space of Tref . In brief, parallel transport translates the deformation from the template
brain towards subject i, defined by c0,i and α0,i, along the trajectory γ(t) from the time
point ti (age at MRI acquisition) to t0 = 31 GW (blue arrows). It adjusts for anatomical
differences related to gestational age while preserving components of the transformation
non-related to age. In other words, parallel transport provides a way of artificially trans-
porting the subjects anatomies to the same gestational stage. We denote by Pγ,ti,t0(α0,i)
the momentum vectors transports from ti to t0 along γ.

Note that we chose to transport the subjects momentum vectors to the space of Tref
in order to explore the anatomical variability of fetal brains with CCA at this specific
stage of pregnancy, but we could have chosen any time point along the trajectory γ(t).

6.4.2.4 Principal Components Analysis

After parallel transport, we obtainN = 111 high-dimensional transformations (d×kg =
30, 240) living in the same Euclidean space. From this dataset, we now want to extract
directions of deformation that can discriminate between healthy fetuses and fetuses with
CCA. Given the high dimension of the transformations and the low sample size, the
momenta cannot directly be used as features to predict whether or not a fetal brain
has CCA. To reduce feature space and extract interpretable deformation modes, PCA is
applied to the subjects deformation fields.

We denote by βi the transported momentum vectors of subject i of dimension 3kg
and we introduce the N by 3kg matrix of transported momenta:

X = (β1, . . . , βN)
T .
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The empirical mean of the transported momenta is given by X̄ =
∑N

i=1
βi

N
. We compute

the mean-centered matrix of transported momenta Z , defined as Z = X − X̄ .

The 3kg by 3kg empirical covariance matrix is given by

Σ = ZTZ.

Then, eigendecomposition of Σ is performed in the form of

Σ = UΛU−1

in which U is a matrix of size 3kg byN , whose columns (U1, . . . , Un) are the eigenvectors
of Σ, and Λ a diagonal matrix of size N ×N , whose diagonal elements (λ1, . . . , λn) are
the eigenvalues of Σ.

Each eigenvector Uj is associated to an eigenvalue λj , representing the amount of
variability that is explained by Uj . We extract the firstM components that characterize
90% of the sample shape variability.

6.4.2.5 Deformation modes

Being a linear combination of momentum vectors, each eigenvector can generate a dif-
feomorphism, called deformationmode, which represents how the template brain anatomy
varies within the population.

The ith mode of deformation is given by:

mi = X̄ + cσiUi

with c ∈ [−4,−2, 0, 2, 4], σi =
√
λi, and Ui the ith eigenvector.

In order to visualize the deformation mode mi, we apply the generated diffeomor-
phism to the template brain Tref using geodesic shooting. At 0σ, Tref is deformed by the
average deformation X̄ and this deformed brain is interpreted as the average anatomy
of the population.

In T2-weighted fetal MRI, thinness and hypointensity of the corpus callosum make
it difficult to discern. To make corpus callosum deformations visible, geodesic shooting
is also applied to the template parcellation image as provided by Gholipour et al. [73].
In the original segmentation, 126 different anatomical regions are labeled. To help inter-
pretation, we simplify the segmentation image by fusing labels together, resulting in a
total of 21 anatomical labels: motor cortex, frontal cortex, temporal cortex, insula, cingu-
lum, hippocampi, amygdala, occipital cortex, sensory cortex, parietal cortex, basal gan-
glia, thalami, lateral ventricles, brainstem, cerebellum, subthalamic nuclei, hippocampal
commisure, cortical plate, fornix, white matter and cerebrospinal fluid.

The projection of the momenta of subject j on deformation i is computed as follows:
Pβj

= βT
j Ui. Pβj

can be seen as a score quantifying how much βj is represented by the
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ith deformation mode.

6.4.2.6 Classification

The deformation modes associated to the highest eigenvalues are those that best explain
the anatomical variability of the data. However, they do not only encode shape varia-
tions related to CCA, but also components of rigid registration correction and normal
inter-subject variability. To identify which modes of deformation can best discriminate
between healthy fetuses and fetuses with CCA, we perform classification with a SVM
equipped with a radial basis function kernel, that receives as input the subjects scores on
the deformation modes. The SVM parameters (width of the gaussian kernel and penalty)
are tuned using grid-search. The dataset is randomly split into a training (70% of the data)
and a test set (30% of the data) to perform 5-fold cross validation. To extract deformation
modes specific to CCA, we perform forward feature selection: starting from an initial
model with no input features, we train the model with each of the M principal defor-
mations independently and keep the one that best enhances the model accuracy. This
process is repeated iteratively until the addition of a new deformation does not augment
the accuracy.

As we also want to extract shape deformations that differentiate between complete
and partial CCA, the PCA is replicated with only the transported momentum vectors of
subjects with CCA (N = 73). To identify the modes of deformation that best discrimi-
nate between these subtypes of CCA, the classification and feature selection procedure
is replicated.

6.5 Results

6.5.1 Healthy brains versus brains with CCA

As described in Figure 6.6a, we extracted from PCA the first 67 components that char-
acterize 90% of the sample shape variability. The final SVM-based classification model
reaches a 86% (± 7%) accuracy. As indicated in Figure 6.6b, feature selection selected 4
deformation modes. Interestingly, feature selection did not retain the first component of
PCA, which accounts for 12% of the sample shape variability. Visual inspection of the
related deformation mode, presented in Appendix C.2.1, indicates it corrects for brain
misalignment and characterizes subjects with large ventricles.

We present in Figure 6.7 the second component, which drives most of the model
accuracy (see Figure 6.6b) and captures the anatomical variability of the dataset. The
segmentation image of the template brain is transformed by the second mode of defor-
mation in directions −4σ and −2σ, on which healthy subjects generally score higher,
and in directions +2σ and +4σ, on which subjects with CCA generally score higher.
Appendix Figure C.5 presents the same mode of deformation applied to the template
brain intensity image. Complete movies of these deformation modes are available at the
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(a) Explained variance of each PCA component (b) Accuracy gain for each feature added to the clas-
sifier

Figure 6.6: Results from PCA (a) and SVM-based classification (healthy fetuses versus
fetuses with CCA) (b).

author’s webpage2. As shown in Figure 6.7b, the score distributions of subjects with
complete CCA is more spread out than that of control subjects. While healthy fetuses
are mostly characterized by negative scores, fetuses with complete CCA reach a wider
range of values.

The direction of deformation that mostly characterizes subjects with CCA reveals a
thinning and a shortening of corpus callosum (C) on sagittal view - despite a negligible
volume change according to Figure 6.7c. It is folded into a V-like shape, with a stronger
distortion towards its posterior part. The volume of the cingulate gyrus (G) is also re-
duced. Compared to the reference brain at 0σ, the volume of the lateral ventricles (LV)
is increased by 74% (Figure 6.7c)). They are widely spaced and parallel, with prominent
occipital horns and atrium, corresponding to colpocephaly. Dilation is slightly stronger
in the right ventricle. The volume of the occipital cortical and subcortical region (O)
is reduced, especially in the right hemisphere. On axial and coronal views, the hip-
pocampi (H) appear thinner and verticalized. The superior temporal sulci (S) seem less
pronounced. On coronal view, the thalami (T) are parallelized and displaced away from
the interhemispheric fissure. The shape of the brainstem (B) is abnormal on sagittal view,
with prominent pons and midbrain.

6.5.2 Complete CCA versus Partial CCA

As described in Figure 6.8a, we extracted from PCA the first 48 components that charac-
terize 90% of the sample shape variability. The final classification model reaches a 90%
(± 7%) accuracy. The first component of PCA, which accounts for 13% of the sample
shape variability, drives most of the classification accuracy (Figure 6.8b).

Figure 6.9a shows the first deformation mode applied to the segmentation of the
2https://fleurgaudfernau.github.io/Shape_analysis/

101

https://fleurgaudfernau.github.io/Shape_analysis/


Chapter 6

(a) Second mode of deformation applied to the segmentation of the template at age 31 GW

(b) Distribution of the subjects scores on component 2.

(c) Volume changes of several structures between 0σ and −2σ and 0σ and +2σ

Figure 6.7: Second mode of deformation extracted from PCA at −4σ,−2σ, 0σ,+2σ, and
+4σ (a), distribution of the subjects scores on the related component (b), volume changes
of several structures at−2σ and+2σ (c). In panel (a), the deformed template is presented
in axial, coronal and sagittal views. B: brainstem. C: corpus callosum. G: cingulate
gyrus. H: hippocampi. I: interhemispheric fissure. O: occipital cortex. R: roof of the
third ventricle. S: superior temporal sulcus. T: thalami. V: lateral ventricles.
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(a) Explained variance of each PCA component (b) Accuracy gain for each feature added to the clas-
sifier

Figure 6.8: Results from PCA (a) and SVM-based classification (b) (fetuses versus with
complete CCA versus fetuses with partial CCA).

template brain and Appendix Figure C.6 shows the same deformation applied to the MR
image. According to Figure 6.9b, the direction +σ characterizes subjects with complete
CCA while the direction −σ characterizes subjects with partial CCA. Once again, the
distribution of the scores of subjects with complete CCA is more widespread.

The direction of deformation that mostly characterizes subjects with complete CCA
reveals an important thinning of the corpus callosum (C) on sagittal view, along with
a volume reduction of 8% according to Figure 6.9c. Similar to the "healthy subjects
versus CCA" contrast, the lateral ventricles (V) are enlarged -though to a lesser extent,
with a volume increase of 66%- indicating than subjects with complete CCA are more
affected by colpocephaly. Once again, the volume of the occipital cortical and subcortical
region (O) is reduced in the right hemisphere and the superior temporal sulci (S) is less
pronounced. On coronal view, the thalami (T) appear thinner. Figure 6.9c shows that
the whole brain, cingulum, hippocampi, basal ganglia, amygdala and thalami of subjects
with complete CCA have reduced volumes compared to subjects with partial CCA.

6.6 Discussion

In this chapter, we addressed the challenge of exploring quantitatively alterations in ab-
normal fetal brains. We developed a shape analysis pipeline adapted to the specificities
of clinical fetal MRI. Geometrical models based on diffeomorphisms, that were origi-
nally designed for postnatal imaging, enabled us to compare fetuses of different ages
and investigate brain alterations globally, without requiring any prior assumption. Such
models are adapted to the scarcity of medical data and to the need for interpretable re-
sults. This preliminary work opens new perspectives for the quantitative analysis of
fetal brains with developmental alterations.
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(a) First mode of deformation applied to the segmentation of the template brain at 31 GW

(b) Distribution of the subjects scores on component 1

(c) Volume changes of several structures between 0 and −2σ and 0 and +2σ

Figure 6.9: First mode of deformation extracted from PCA at −4σ,−2σ, 0σ,+2σ, and
+4σ (a), distribution of the subjects scores on the related component (b), volume changes
of several structures at−2σ and+2σ (c). In panel (a), the deformed template is presented
in axial, coronal and sagittal views. B: brainstem. C: corpus callosum. G: cingulate
gyrus. H: hippocampi. I: interhemispheric fissure. O: occipital cortex. R: roof of the
third ventricle. S: superior temporal sulcus. T: thalami. V: lateral ventricles.
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6.6.1 Fetal MRI preprocessing

In this chapter, particular attention was given to data preprocessing. As our analysis
draws on whole-brain shape comparisons, the accuracy of brain extraction and align-
ment can impact the results and is thus of prime importance.

We developed a semi-automated volume reconstruction and image postprocessing
pipeline in order to correct erroneous brain extraction and enable inter-subject compar-
ison. While this pipeline is now obsolete, some lessons can be drawn from the problems
encountered. This analysis exploited retrospectively selected fetal MRIs acquired during
clinical routine. Although we used a state-of-the-art processing pipeline [56] for brain
extraction and volume reconstruction, the brain extraction algorithm showed poor re-
sults on our dataset. The reconstruction task was less challenged by healthy fetal brains,
with 60% of correct reconstruction following brain extraction by NiftyMIC, and only
18% of manual correction required. This may suggest that brain extraction algorithms
are less robust to developmental defects. However, it should also be noted that healthy
fetuses in our dataset were imaged more recently (i.e. after 2015) than fetuses with CCA,
which likely led to higher image quality. It would be interesting to reiterate volume re-
construction with the newest version of NiftyMIC in order to increase the number of
subjects and evaluate how the quality of preprocessing might impact the results.

6.6.2 Applying deformation models to fetal brains

In this work, we applied for the first time deformation models based on diffeomorphisms
to abnormal fetal brains. One of the main advantages of this approach is that it provides
a novel and practical way of dealing with the gestational age heterogeneity in datasets
of fetal images by transporting subjects-specific deformations to a common space.

Another benefit of deformation models is they enable to target the whole brain.
Hence, our method does not require tedious manual segmentations -nor automated ones,
which are less reliable on abnormal brains [61]. This is in contrast with previous studies
on brains with CCA [241, 123, 225, 159, 204], which often had fewer data and focused on
specific brain structures. It is also important to note that unlike most papers, our anal-
ysis is not restricted to the study of volumetric changes. While our approach is related
to tensor-based morphometry [182, 183], the latter only reflects local volume changes,
while our pipeline also includes global transformations and therefore provides richer
and more complex information about anatomical alterations.

The Computational Anatomy tools we employed come with several limitations. As
registration was computed in the space of the healthy template brain using topology-
preserving deformations, structures specific to brains with CCA such as Probst’s bundles
could not be studied. Moreover, parallel transport assumes that the speed of growth of
impaired fetal brains is similar to that of healthy brains, which is in contradiction with
reported growth delays for fetal brains with CCA [225]. Furthermore, the small spacing
between control points yielded irregular deformations, that can be anatomically inaccu-
rate. This issue has already been addressed in Chapter 3 and 4. It would be interesting
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to replicate our analysis using the multiscale optimization strategy and study how the
extracted deformation modes vary with the width of the regularizing kernelKg.

Of note, the number of subjects in the control group was lower than in the group
with CCA. Because the control group only included 38 subjects within a limited age
range (29-37 GW), the reference trajectory for normal brain development was built using
open-source template brains [73]. In the future, efforts could bemade towards increasing
the sample size in order to extract more robust features and define our own reference
trajectory.

6.6.3 The anatomical variability of fetal brains with CCA

Our shape analysis pipeline extracted a mode of deformation that depicts the anatomical
variability related to the health status of fetuses, i.e. normality of the corpus callosum.
Replicating the analysis on fetuses with CCA only, we also identified a mode of deforma-
tion that characterizes complete versus partial CCA. It is important to note that global
deformations that belong to the same mode of deformation correlate together, enabling
us to identify sets of alterations that often co-occur.

The distribution of the scores of subjects with CCA on the second component of
PCA was more widespread than that of healthy subjects. This might reflect the greater
anatomical variability of abnormal fetuses compared to healthy ones.

The deformation mode characterizing healthy fetuses versus fetuses with CCA high-
lighted well-known defects of brains with CCA. As expected, the corpus callosum had
abnormal shape and size. It was especially distorted in its posterior segment, which is
usually the missing part in partial CCA [186]. The cingulate gyrus, commonly absent in
CCA [14], was also reduced. CCA is often accompanied by the development of a pair
of aberrant callosal fibers, called Probst bundles, that run parallel to the midline, and a
rearrangement of the midline cerebral structures [131]. The most common alterations
include colpocephaly [131, 14], which was clearly visible in the second mode of defor-
mation. Ventricles dilation and volume reduction of the occipital cortical and subcortical
brain matter were uneven across hemispheres, which may reflect a tendency for abnor-
mal brain asymmetry [78, 204]. The observed volume reduction of the occipital region
coincides with findings of decreased thickness of the cerebral wall in the lateral occipital
region [204]. Consistent with findings of abnormal shape and rotation of the hippocampi
in fetuses with CCA [78, 123], we observed verticalized hippocampi, probably because
of the extension of the temporal ventricular horns into the parahippocampal gyri. Both
observations might be related to reduced volume of the ventral cingulum bundle, the
fibers of which normally have an initial course below the body of the corpus callosum
and then course within the parahippocampal gyrus in the inferior and medial temporal
lobe [159]. We also observed underdeveloped superior temporal sulcus, which might be
related to delayed sulcation [241] or altered cortical folding [225]. Verticalization and
displacement of the thalami, which are not reported in the literature, probably result
from the widening of the interhemispheric fissure. It has been suggested that in CCA
other interhemispheric connections, such as indirect thalamic nuclei connections, sup-
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ply the absence of callosal fibers [14]. Understanding whether the displacement of the
thalami is a marker of the absence or presence of such indirect connections and related
to neurodevelopmental outcome could help understand the differences in outcome of
patients with apparently isolated CCA. Surprisingly, we observed a strong deformation
of the brainstem, which is not a typical feature of CCA. This result likely originates
from inaccurate segmentation of the brainstem during image processing, which tended
to exclude the medulla.

6.6.4 Partial and completeCCAdifferentially affect brain anatomy

Partial CCA, considered less common than complete CCA, is also more likely to be un-
derdiagnosed [143, 178]. Unsurprisingly, this form of the disease is also less studied
[212]. The papers exploring the morphological anomalies linked to CCA often have a
larger group of subjects with complete CCA than with partial CCA [159, 225, 123, 116,
106, 204], and sometimes study solely complete CCA [14, 241]. Among the quantitative
analyses of fetuses with CCA, only Schwartz et al. [204] compared complete CCA with
partial CCA.

In this study, we retrospectively collected a large dataset in which fetuses with par-
tial CCA were predominant, enabling us to compare the two main forms of the disease.
The findings of the previous analysis can be refined by examining the deformation mode
characterizing fetuses with complete versus partial CCA. The deformation in the+σ di-
rection, characterizing the complete absence of the corpus callosum, revealed abnormal
features, many of which consistent with the previous analysis. This suggests that com-
mon brain alterations known as indirect signs of CCA (e.g. colpocephaly) are more likely
to be present in complete CCA. The distribution of the scores of subjects with complete
CCA was also more widespread compared to those with partial CCA, indicating that
they present a wider range of anatomical defects. These results are consistent with a
recent study that found cortical morphological alterations to be more widespread and
common in fetuses with complete CCA than in those with partial CCA [204].

This analysis reinforces previous findings, but also illustrates why complete CCA
is easier to characterize than partial CCA. According to the two deformation modes we
presented, there is a morphological gradient spanning from healthy fetal brains to brains
affected by complete CCA. With less frequent and salient anatomical alterations, fetal
brains with partial CCA stand in the middle. However, they do not benefit from a better
clinical outcome [55, 157], hence the need to further characterize them.

6.7 Conclusion

In this chapter, we presented a novel shape analysis pipeline to characterize the anatom-
ical variability of fetuses with abnormal corpus callosum. Together, our findings draw
a typical profile of brains with partial and complete CCA, which is in agreement with
the results of more local methods, validating our approach. Our method could help un-
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derstand the mechanisms of the rearrangements linked to CCA, and, above all, identify
the anatomical defects related to poor clinical outcome in isolated CCA. Indeed, recent
studies suggest that children with isolated complete or partial CCA have some degree of
subtle neurodevelopmental impairments [39, 157, 127]. The next step would be to cor-
relate anatomical deformations during the fetal period to postnatal neurodevelopmental
outcomes. However, this is a difficult task since follow-up mostly revolves around the
more severely impacted individuals.

From a broader perspective, the tools we introduced here are promising for the de-
piction of healthy and abnormal fetuses and can be generalized to any dataset of fetal
brain MRIs acquired at different time points.
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Chapter 7

A spatio-temporal atlas of the devel-
oping cortex
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7.1 Motivation

Gyrification is the process by which the cerebral cortex evolves from a smooth surface
into an arrangement of folds made of sulci and gyri. The increase in surface area without
an equivalent increase in volume allows the cortex to pack a large number of neurons
and connections, which is believed to be essential to many human-specific cognitive
processes [137]. The folding process starts at the second trimester of pregnancy and ac-
celerates during the third trimester [34]. The major gyri seen in adult brains are already
present at birth [132].

As described in Section 5.3.2, investigating and modelling the gyrification process in
pregnancy has been the focus of many studies. However, there is still a need for fetal and
neonatal cortical surface atlases, i.e. reference surfaces that describe the average healthy
cortical folding process and provide a common space for quantitative analysis. Whilst
intensity atlases describing the appearance of the fetal brain in T2 MRI have become
quite common [73, 249, 88, 36, 133, 60], fetal cortical surface atlases remain quite scarce
and are not available to the research community (see Section 5.3.3.2). A noteworthy
example of such an atlas is the one from Wright et al. [248], who built cortical surface
templates between 22 and 37 gestational weeks.

In the neonatal period, more work on the subject has been reported [252, 20, 1],
probably because of the higher data availability and the existence of open-source prepro-
cessing tools such as the dHCP pipeline for extraction and reconstruction of the cortical
surface in neonatal T1 MR images [140]. Wu et al. [252] built a spatiotemporal cortical
surface atlas between 39 and 44 gestational weeks from 764 term-born neonates using
group-wise spherical surface registration. Another atlas [20] was published in the same
year, ranging between 36-44 weeks and later extended to 28-44 weeks. It was constructed
using multimodal surface matching for spatial normalization and adaptative kernel re-
gression for temporal regression. Adamson et al. [1] published a single-point cortical
surface atlas at 40 gestational weeks generated using multimodal surface matching. Im-
portantly, all these atlas are publicly available, which is not the case of their antenatal
counterparts.

One striking characteristic of spatiotemporal brain atlases is that the time component
is not explicitly integrated into the model. Some authors [252] simply compute indepen-
dent template objects at different gestational ages. Others [248, 20] combine the template
estimation (i.e. spatial normalization) step with kernel regression [43], which weights
the contribution of each subject to the template based on its age. Kernel regression is
a simple and highly popular temporal "regression" method, able to generate accurate
template objects at a given time. Unfortunately, the method completely overlooks the
process by which a template object at time n transforms into the next template at time
n+1. As a result, the so-called spatiotemporal atlas is just a mere collection of unrelated,
discrete templates.

In this chapter, we propose to use a new method for spatiotemporal atlas building,
which relies on complex Computational Anatomy models and on tools introduced ear-
lier in this thesis. Namely, we propose to switch the focus from the estimation of age-
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(a) Kernel regression (b) Piecewise geodesic regression

Figure 7.1: Comparison of the main atlas building method (a) with our proposed method
(b). The cortical meshes represent training subjects of different gestational ages. Blue
squares: estimated template shapes. Orange curve: geodesic trajectory.

dependent cortical surfaces to the estimation of how these surfaces evolve. This ap-
proach is much like building the growth curve of the height and weight of children,
where we are more interested in the average growth dynamic and the positioning of
each child with respect to this dynamic than in the mean value at a given time. The
proposed modeling framework has the following characteristics:

• An average cortical surface and its developmental trajectory are estimated with
geodesic regression, ensuring the temporal continuity of the atlas;

• The mean geodesic trajectory is piecewise, i.e. it can model changes in growth
dynamics;

• The spatial variability around the average trajectory is also estimated, enabling
us to study the time-varying anatomical variability of cortical folding and detect
gyration anomalies;

• Estimation of the different model components (i.e. template shape, piecewise tra-
jectory, and anatomical variability) is performed simultaneously, and not sequen-
tially as in Chapter 6;

• Estimation of the model parameters is performed with the multiscale strategy in-
troduced in Chapters 3 and 4.

A comparison of kernel regression versus our proposed model is available in Fig-
ure 7.1. Note that the spatial variability around the mean trajectory is not represented.

We use the proposed model to build a spatiotemporal atlas of the developing cor-
tex between 20 and 37 gestational weeks. In Section 7.2, we present the two fetal MRI
datasets used in this study and detail the extraction of cortical surfaces. In Section 7.3,
we introduce the mathematical framework on which our model relies on, along with the
statistical model and the optimization procedure. Finally, we present and evaluate the
spatiotemporal atlas in Section 7.4 and discuss our results in Section 7.5.

7.2 Data

The data used in this study originate from two distinct datasets: the open-source Fetal
Tissue Annotation and Segmentation Dataset (FeTa) dataset [168] and a French clinical
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research platform (Fondation Lumière). A histogram of the gestational ages for the FeTa
and Lumière datasets can be seen in Figure 7.2a.

(a) All MRIs (b) Successful cortical surface extraction

Figure 7.2: Histograms of the subjects gestational ages at the date of MRI acquisition for
the full dataset (a) and the extracted cortical surfaces used for the analysis (b).

7.2.1 FeTa dataset

The FeTA dataset1 [168] consists of 120 high-resolution fetal brain volumes reconstructed
frommultiple Single Shot Fast Spin Echo (SSFSE) scans and manual brain segmentations
into seven different tissues. The dataset comprises both normal and pathological brains.
Images were acquired during clinical routine in two different institutions.

University Children’s Hospital Zurich. 80 acquisitions were performed between
2016 and 2019. Data was acquired using 1.5 Tesla and 3 Tesla GE whole-body scanners
(Signa Discovery MR450 and MR750). T2-weighted SSFSE sequences were acquired with
the following scanning parameters: in plane resolution 0.5mm, field of view 200-240mm,
echo time 120ms minimum, repetition time 2000-3500 ms, slice thickness 3-5 mm, acqui-
sition matrix 256x224 (1 Tesla) or 320x224 (3 Tesla) and flip angle 90°. Brain extraction
was performed using a semi-automated atlas-based custom module. High-resolution re-
construction was performed with Tourber et al. algorithm [229].

University ofVienna. The datawas acquired using 1.5 Tesla (Philips Ingenia/Intera,
Best, the Netherlands) and 3 Tesla magnets (Philips Achieva, Best, the Netherlands). T2-
weighted SSFSE sequences were acquired with the following scanning parameters: in
plane resolution 0.65-1.17mm, echo time 80-140ms, slice thickness 3-5 mm. The prepro-
cessing pipeline consisted of data denoising, in-plane super resolution, automatic brain
masking step, isotropic motion correction and volumetric super-resolution reconstruc-
tion with NiftyMIC [56] and rigid alignment to a common reference space.

We selected 65 MR brain volumes from healthy fetuses in the FeTa dataset (32 from
the University Children’s Hospital Zurich and 33 from the University of Vienna). The
dataset does not comprise longitudinal data. Gestational ages range between 19 and 35
GW (mean = 27.96 ± 4.24).

1https://feta.grand-challenge.org/
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7.2.2 Fondation Lumière

Data consist of 87 MR brain images from healthy fetuses. The dataset does not comprise
longitudinal data. Gestational ages range between 17 and 37 GW (mean = 27.48 ± 4.82).

Images were acquired in 2021 at the Plateforme Lumière in Paris, the first French
clinical research platform dedicated to fetal imaging. Pregnant women were recruited
as part as the research protocol aiming to assess the feasibility of advanced MR tech-
niques in different clinical situations: normal pregnancy between 16 and 36 gestational
weeks, normal pregnancy with screening difficulties, pathological pregnancy outside
common indication for MRI and fetal virtopsy after pregnancy termination or in utero
death. Women were usually screened only one time during pregnancy, although some
of them underwent 2, 3 or even 4 MRI. The images selected for this study came from the
group "normal pregnancy between 16 and 36 gestational weeks".

Acquisition protocol. Fetal brain MRI was performed using repeated T2 SSFSE se-
quences on OptimaMR450wGeneral Electric (Waukesha, WI, USA) at 1.5 Tesla. Acquisi-
tion parameters are indicated in Table 7.1. No maternal or fetal sedation was performed.
As screening was part of a research protocol, image acquisition along a given axis could
be repeated several times to increase image quality. The whole screening procedure
could take up to 1 hour.

Table 7.1: MR acquisition parameters of the dataset.

In-plane resolution 1 mm
Field of view 512x512 mm
Echo time 100-150 ms

Repetition time 1,500-2,000 ms
Slice thickness 3.5-4 mm

Acquisition matrix 512 × 512
Flip angle 90°

7.2.3 Image preprocessing

The image preprocessing pipeline is summarized in Figure 7.3. It consists of high-resolution
volume reconstruction and cortical surface extraction and reconstruction. Since images
from the FeTa dataset are already volumetric, only acquisitions from the Fondation Lu-
mière went through the reconstruction pipeline.

7.2.3.1 Volume reconstruction (Lumière dataset)

Isotropic high resolution 3D volume reconstruction of fetal brains is performed using
the open-source state-of-the-art NiftyMIC software version 0.9.0. [56] (and not version
0.7.5 as in the previous chapter). NiftyMIC takes as input stacks of low resolution 2D
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Figure 7.3: Steps of the preprocessing pipeline. Values in orange and green rectangles
denote the number and percentage of subjects going through each step of the pipeline
in the FeTa and Lumière datasets, respectively. Eye icons indicate visual evaluation of
the quality of volume reconstruction and cortical surface extraction.

slices. First, brain extraction is performed using a U-net neural network [185]. Note
that, unlike in Chapter 6, the brain extraction step led to mostly correct results. Inten-
sity non-uniformity is corrected using N4 bias field correction. Finally, high resolution
reconstruction is performed by iterating between SVR registration for motion correction
and SRR with robust rejection of slices that are misregistered or corrupted by artifacts.
This outlier rejection step depends on a threshold β (set to 0.8 here): slices whose similar-
ity value with the estimated volumetric image is lower than β are considered as outliers.
Then, we perform visual evaluation of the reconstructed volumetric images: when the
number of outlier slices is too great, resulting in a brain volume corrupted with black
strips, we reiterate the volume reconstruction step with β = 0.5. As indicated in Fig-
ure 7.3, only 23 (26%) of fetal brain images had correct volumes with β = 0.8. Lowering
β to 0.5 allowed us to recover another 25 (29% of the dataset) valid brain volumes. A
comparison of brain volumes obtained with β = 0.8 and β = 0.5 is available in Ap-
pendix D.1.

The output brain volumes were validated by an expert radiologist. Of the initial 87
acquisitions from Fondation Lumière, we obtained 48 (55%) valid volume-reconstructed
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fetal brains. In Chapter 6, 62% of the data from Hôpital Trousseau had valid brain vol-
umes after reconstruction with an earlier version of NiftyMIC.

7.2.3.2 Cortical surface extraction

Segmentation and cortical surface reconstruction. Brain segmentation is performed
with the automatic segmentation DrawEM algorithm [139]. Then, the outer cortical sur-
face (i.e. between the developmental cortical gray matter and the cerebrospinal fluid)
and inner cortical surface (i.e. between cortical gray matter and white matter) are recon-
structed using the dHCP structural pipeline [140], which was designed for neonates.

Manual correction. Validation of the reconstructed cortical surfaces is performed
by an expert radiologist. In the majority of cases (77% and 65% of the Lumière et FeTa
brain volumes, respectively), the reconstructed cortical surfaces are erroneous. This is
not surprising since the dHCP pipeline is not designed for fetal brains; in addition, Fig-
ure 7.2 shows that younger fetuses are more likely to fail at cortical surface extraction.
Whenever possible, erroneous meshes are manually corrected using ParaView [2] ver-
sion 5.10.1 by flattening abnormal cortical protrusions with Laplacian smoothing. De-
tails and examples of the performed corrections are available in Appendix D.2. For the
remaining 48 invalid cortical surfaces, we will use another brain segmentation algorithm
or manually correct the brain segmentation maps prior to cortical surface extraction.

7.2.3.3 Final dataset

The final dataset comprises in total 65 inner cortical surface meshes, 36 from FeTa (mean
= 28.55 ± 6.11 GW) and 29 from Fondation Lumière (mean = 31.02 ± 3.61 GW). A his-
togram of the gestational ages of the extracted cortical surfaces can be seen in Figure 7.2b.

7.3 Methods

In this section, we present the geometrical model that allows us to compute the repre-
sentative trajectory of cortical surface development.

7.3.1 Deformation model

The LDDMM framework. To compute shape transformations, we choose to work
in the LDDMM framework [233, 31, 153], which was described in Section 2.3. In this
framework, a shape can be warped by a diffeomorphic transformation constructed by
integrating time-dependent vector fields (vt)t∈[0,1] belonging to a Hilbert space V . More
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specifically, a flow of diffeomorphisms ϕt is obtained by integrating the flow equation:
∂ϕt

∂t
= vt ◦ ϕt

ϕ0 = Id.
(7.1)

The diffeomorphisms ϕt defined by the velocity fields vt belong to a group G which has
the structure of a Riemannian manifold. Distances in G are computed as the length of
the minimal geodesic path connecting two elements via the metric:

d(Id, ϕ1) =

∫ 1

0

∥vt∥2V dt

where Id is the identity map and ϕ1 the end point of the flow of the diffeomorphisms.

When trying to match two shapes O1 and O2 on the manifold, we will restrict the
search space to the vector fields vt that define geodesic paths in G, i.e. the shortest paths
between ϕ0 and ϕ1 according to the norm ∥.∥V .

Finite parameterization of deformations. To simplify computations, we place
ourselves in a finite dimensional setting by relying on a finite parameterization of the
velocity field vt [54]. Namely, we impose that vt belongs to a finite dimensional subspace
of a RKHS V :

vt(x) =

kg∑
k=1

Kg(x, ck(t))αk(t) , (7.2)

where (αk)k is a set of momentum vectors attached to kg control points (ck)k, and the
regularizing kernel Kg is a Gaussian kernel of width σg.

If an initial velocity v0 at time t = 0 writes according to Equation (7.2), i.e. as a
linear combination of initial momentum vectors αk(0) and control points ck(0), then
then the vector fields vt along geodesic paths of direction v0 remain defined as a linear
combination of RKHS basis elements and thus write according to Equation (7.2) [152].

Moreover, the evolution of the control point positions (ck(t))k and momentum vec-
tors (αk(t))k along geodesic paths satisfies Hamiltonian equations. Thus, to compute a
time-dependent trajectory of cortical surfaces, we only need to define a shape Oref , the
initial set of momenta α(0) and the control points c0 (fixed in our case). By integrating
the Hamiltonian equations, we obtain the evolution of the momentum vectors over time
and then the velocity field at any time t using Equation (7.2). Integration of the flow
equation yields a flow of diffeomorphisms (ϕt)t∈[0,1]. Finally, ϕt can be applied to the
object Oref . We recall that these steps of the optimization procedure are illustrated in
Chapter 2, Figure 2.3.

Metric between objects. In this chapter, we work with meshes with different num-
bers of vertices. To compute the fidelity term in the cost function, we must define a
distance metric between surface meshes. To this end, we rely on the varifold frame-
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work, in which meshes are embedded into a Hilbert space and algebraic operations and
distances are defined. A varifold O is represented as the distribution of its points with
unit normal vectors attached. Let W and its dual W ′ be Hilbert spaces. The varifold
distance between two meshes O1 and O2 is defined as

dW (O1, O2)
2 =∥O1 −O2∥2W ′

=⟨O1, O1⟩W ′ + ⟨O2, O2⟩W ′ − 2× ⟨O1, O2⟩W ′

and the inner product between two meshes is given as:

⟨O1, O2⟩W ′ =

m1∑
k=1

m2∑
l=1

Kw(x
1
k, x

2
l )

(n1T

k n2
l )

2

∥n1
k∥∥n2

l ∥

whereKw is a Gaussian kernel of width σw,m1 andm2 are the number of cells (triangles)
in the meshesO1 andO2 (respectively), (x1k)k and (x2k)k the cell centers ofO1 andO2 and
(n1

k)k and (n2
k)k the cell normals of O1 and O2.

7.3.2 Model of cortical surface development

In this section, we introduce the mathematical model representing the average cortical
development process during pregnancy. First, we propose to rely on a piecewise geodesic
regression model, illustrated in Figure 7.4.

ϕ1(t)

α0,1 ϕ2(t)
α0,2

ϕ3(t)

γ(t)

α0,3

	
t1 t2tmin tmax

G

Figure 7.4: Example of a piecewise trajectory γ(t) with P = 3 components. t1 and t2
denote the rupture times between the geodesic components ϕ1, ϕ2, and ϕ3 that belong to
the manifold of diffeomorphisms G. α0,1, α0,1 and α0,1 are the initial momentum vectors
generating the diffeomorphisms ϕ1, ϕ2, and ϕ3 (respectively). Blue points denote the
observed cortical surfaces, seen as points on a shape manifold S .

Piecewise trajectory. In the following, we consider a data set ofN subjects, where
each subject is associated to a single observationOj at time tj : (O1(t1), ..., ON(tN)). We
seek to estimate a trajectory γ(t) representing the average cortical surface development.
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γ(t) is formed of P geodesic components (ϕl(t))1≤l≤P , separated by a set of rupture
times tR = [t1, t2, ..., tP−1], with t1, < ..., < tP−1.

γ(t)(O1
ref ) = ϕ1(t) ⋆O1

ref1[tmin,t1](t)+
P−1∑
l=2

ϕl(t) ⋆Ol
ref1[tl−1,tl](t)+ϕ

P (t) ⋆OP
ref1[tP ,tmax](t)

(7.3)
where :

• tmin and tmax are the minimum and maximum of the observation times (t1, ..., tN),
respectively

• the lth diffeomorphism ϕl is parameterized by the set of momentum vectors α0,l

and the fixed control points c0:

∀ l ∈ [1, P ] ϕl(t) = Exp
c0,tl,t−tl

(α0,l)

• ∀ l ∈ [1, P ], Ol
ref is the representative shape at the rupture time tl:

Ol
ref = ϕl−1(tl) ⋆ O

l−1
ref

Note that the mean trajectory γ(t) and thus the shape changes γ(t)(Oref ) are continuous:
there is no need to defineP representative shapes (O1

ref , ...,OP
ref ). We only need to define

a single reference shape Oref . For the sake of simplicity, we decide that Oref is defined
at some time t0 ∈ tR: if l ∈ [1, P ] is the index of the rupture time at which the template
shape is defined, then tl = t0 and Ol

ref = Oref .

Space shifts. From the average trajectory γ(t), we want to generate individual corti-
cal surface trajectories. To achieve this goal, we borrow the idea of space reparameteriza-
tion from spatio-temporal models [44, 22]. More precisely, we introduce for each subject
i ∈ [1, N ] a space-shift momentum ωi encoding the anatomical differences between the
subject’s observation Oi(ti) and the representative shape changes γ(ti)(Oref ). In the
same spirit as the shape analysis pipeline of Chapter 6, this enables us to:

• Obtain subject-specific trajectories of cortical development;
• Analyze the anatomical variability of the dataset at each gestational age.

To derive an individual trajectory given the representative trajectory γ(t) and a space
shiftωi, we rely on Parallel Transport, a tool introduced in Section 2.2. We notePγ,ti,t(ωi)
the parallel transport of ωi along the trajectory γ(t) from time ti to a given time t. We
then compute the exp-parallelization of γ by ωi (i.e. the geodesic shooting of the parallel
transported vectors):

ηωi
γ (t) = Exp

γ(t)

(Pγ,ti,t(ωi)) (7.4)

This procedure is illustrated in Section 7.3.2. Finally, the subject-specific cortical devel-
opment is obtained by applying the deformation of the representative curve by the space
shift ωi to the template object: γi(t) ◦Oref , with γi(t) = ηωi

γ (t).
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Pγ,ti,tmin
(ωi)

ωi

α2(ti)

Pγ,ti,tmax(ωi)

γ(t)G Oi(ti)

	
titmin tmax

ωi

γ(t)

ηωi
γ (t)

G

	
titmin tmax

Figure 7.5: Construction of an individual trajectory ηomegai
γ from the representative

trajectory γ(t). Left: the space shift ωi encoding the differences between Oi(ti) and
γ(ti)(Oref ) is orthogonalized with respect to the initial momentum vectors α0,2 and sub-
sequently parallel transported along the curve γ. Right: exp-parallelization yields the
trajectory of the subject i.

Further, we impose orthogonality between the space shift ωi and the momentum vec-
tors (α0,1, ..., α0,P ) defining the representative trajectory. This condition ensures that
the space shifts encode only space-related reparameterizations and no time reparam-
eterizations [200]: the individual trajectories γi cannot be accelerated/decelerated, nor
temporally shifted compared to γ. Since we are studying a population of healthy fetuses,
it makes sense not to allow abnormal development timelines such as growth delays.

Parallel Transport numerical scheme. In this chapter, we had to adapt the paral-
lel transport numerical scheme of Louis et al. [135] to high dimensional parallel trans-
port (i.e. transport of large numbers of momentum vectors). Details are available in
Appendix D.3 and Appendix Figure D.3 illustrates parallel transport on an example.

7.3.3 Statistical model

Mixed effectsmodel. We place ourselves within the framework ofmixed effectsmodels
andwe distinguish the fixed effects, or population parameters θpop and the random effects,
or individual parameters (θi)i∈[1,N ].

We suppose that each observation from a subject i is a noisy deformation of the
individual curve γi:

Oi(ti)|θpop, θi ∼ N (γi(ti)(Oref ), σ
2
ϵ Id)
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where σϵ is the noise standard deviation and γi(ti) = Expγ(t)(ωi).

Further, we model the space shift ωi as a linear combination of q sources Si =
(S1

i , .., S
q
i ) in the spirit of Independent Component Analysis (ICA):

ωi = At0Si

with Si ∈ Rq the sources,At0 a (kg×d)×q modulation matrix, kg the number of control
points and d the dimension of the ambient space.

This helps to reduce the dimension by identifying the principal sources of anatomical
variation. Further, the aforementioned orthogonality condition is enforced by project-
ing each column of matrix At0 onto (α0,1, ...α0,P )

⊥ for the metric Kg. The projected
modulation matrix is denoted A⊥

t0
.

Finally, we can introduce the population parameters, which define the representa-
tive trajectory of the template shape: θpop = ((α0,l)l∈[1,P ], (tl)l∈[1,P ], Oref , At0 , σϵ). The
individual parameters are modeled as independent samples from a normal distribution:
∀ i ∈ [1, N ] Si ∼ N (0, 1). However, during optimization they will be treated as regular
parameters since we will use a deterministic algorithm.

Bayesian framework. We also place ourselves within a Bayesian framework: mak-
ing prior assumptions about the model parameters regularizes and guides the estimation
procedure. We set the following standard conjugate distributions on the parameters:

tl ∼ N (tl, s
2
t ) ∀ l ∈ [1, P ]

α0,l ∼ N (α0, s
2
α) ∀ l ∈ [1, P ]

Oref ∼ N (Oref , s
2
r)

At0 ∼ N (At0 , s
2
a)

σϵ ∼ W−1(vϵ, n
2
ϵ)

whereN is the normal distribution (multiscalar except for tl),W−1 the inverse Wishart
distribution, and tl, st, α0, sα,Oref , sr,At0 , sa, vϵ and nϵ are the model hyper-parameters.
The setting of the hyper-parameters is detailed in Appendix D.4.1.

7.3.4 Optimization procedure

Gradient descent. We seek to maximize the log-likelihood of the model, i.e.
log(p((Oi(ti))1≤i≤N , θ)):

log(p((Oi(ti))1≤i≤N , θ)) =
N∑
i=1

(
log p(Oi(ti) |Si, θ)) + log(p(Si))

)
+ log(p(θpop)) (7.5)
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Which is equivalent to minimizing the following cost function:

E((Si)1≤i≤N , θ) =
N∑
i=1

(
d(Oi(ti), γi(ti) ◦Oref )

2

2σ2
ϵ

− log(p(Si))

)
− log(p(θpop)) (7.6)

where
• Si denotes the q sources of subject i
• d is the Varifold distance (see Section 7.3.1)
• γi(ti) = Expγ(t)(ωi)

• The usual regularity terms are the Bayesian prior log likelihoods, specified in Ap-
pendix D.4.2.

Multiscale optimization. To enhance the estimation results, we rely on the coarse-
to-fine strategy introduced in Chapter 3 and Chapter 4. Briefly, this multiscale strategy
relies on two different multiscale parameterizations:

• The geodesic components of themain trajectory are constrained at a given scale Sj

by expressing the gradient∆Eα0,l in a wavelet basis and setting to 0 some details
coefficients. Updating the momentum vectors α0,l with this smoothed gradient
naturally yields smoother transformations;

• The observations and the template Oref are filtered by Laplacian smoothing at a
scale S ′

j , which depends on the value of Sj .

The scales Sj and S ′
j are progressively refined in a coarse-to-fine fashion, thus alle-

viating the constraints on the deformations and the objects.

Initialization. As detailed in Chapter 3, the outcome of gradient descent strongly
depends on the initial parameters θ[0]. Plus, the θ[0] are also used to set the hyper-
parameters values in this Bayesian model. It is thus important to provide a good set
of initial values for the parameters. The number of components P , and the time t0 at
which the template shape is defined are fixed and provided by the user, as are the initial
rupture times (t[0]l )l∈[1,P ]. The initialization procedure for the rest of the parameters is
described in Appendix D.4.3.

Tuning of the hyper-parameters. To model cortical development in an accurate
manner, several choices need to be made with regard to the model fixed parameters:

• the width σg of the kernel Kg controlling the amplitude of the deformations. Fol-
lowing preliminary experiments, the following values will be tested:
σg ∈ [3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4]. This corresponds to a number of
control points kg between 11, 000 (for σg = 4) and 25, 000 (for σg = 3).

• the width σw of the kernelKw used to compute the varifold distance: since decou-
pling too much σg and σw might be irrelevant, for each value of σg, the following
values of σw will be evaluated: σw ∈ [σg − 0.2, σg − 0.1, σg, σg + 0.1, σg + 0.2].

• the number of components P and the initial rupture times (tl)1≤l≤P : we will test
piecewise models with P ∈ [2, 3, 4, 5, 6] and evenly distributed rupture times
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Note that the parameters σg, σw, P, (tl)1≤l≤P and q cannot be changed during opti-
mization as this would modify the dimensionality of the problem. By default, the time
at which the template object Oref is defined will always be set to the first rupture time
t1.

Unfortunately, estimation of the main statistical model, combined with the prior ini-
tialization procedure, has a heavy computational cost. As running it for dozens of in-
stances would not be realistic, tuning of the hyper-parameters is performed on a sim-
plified model, i.e. piecewise geodesic regression without space shifts in a frequentist
setting: this model is equivalent to the piecewise regression model of Chapter 4.

7.3.5 Kernel regression model

To assess the performance of the proposed model against the popular kernel regression
method, we implement our own kernel regression algorithm, which is a simple modifi-
cation of the cross-sectional atlas model already used in this thesis.

The problem is as follows: from the dataset of N subjects (O1(t1), ..., ON(tN)), we
want to estimateM reference shapes (O1

ref , ..., O
M
ref ) at discrete time points (t1, ..., tM).

Each template shape (Om
ref ) is estimated independently from the others using the clas-

sical deformable template model [6], where we assume that each observation Oi(ti) is a
smooth deformation of Om

ref , plus an additive random white noise ϵi:

Oi(ti) = Om
ref ◦ ϕ−1

1,i + ϵi, ∀i ∈ [1, n] (7.7)

where ϕ1,i = Expc0(α0,i) is the ith template-to-subject deformation.

We then modify the classical cost function, optimized through gradient descent, so
that the contribution of the ith subject to themth template is weighted by the difference
between ti and tm:

E(Om
ref , (α0,i)1≤i≤N) =

N∑
i=1

p(ti, tl)

(
d(Oi(ti), O

m
ref ◦ ϕ−1

1,i )
2

σ2
ϵ

+ ∥v0,i∥2V

)
, (7.8)

where p(ti, tl) = K(ti−tl)∑N
j=1 K(tj−tl)

and K is the Gaussian kernel with standard deviation 1.

To save computational time, subjects with weights lower than 0.1 are not included
in the model. Optimization is performed using the same parameters σg and σw as our
proposed piecewise regression model. The codes of kernel regression and our method
will be made available in Deformetrica 2.

2https://github.com/fleurgaudfernau/Deformetrica_multiscale
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7.3.6 Performance assessment

The question of model performance is a crucial one, especially when introducing a new
model for cortical surface development. One can think of several different ways of as-
sessing the performance of a model:

• The obvious choice would be to compute the varifold distance between the ob-
servations and the deformed template, but its value depends on the kernel width
σw, and we showed in Chapters 3 and 4 that it is not a reliable metric to evaluate
the accuracy of cortical deformations. Since the varifold metric is not a point-wise
distance, values are hard to interpret;

• Computing another distance metric independent of the cost function, e.g. the av-
erage Hausdorff distance [101], defined as the average of all the distances from a
vertex in O1 to the closest vertex in O2.

• From an anatomical perspective, it is important to assess how well the gyrification
process is modelled: to this end, we can compute standard curvature measures;

• The resulting atlas can be compared to existing atlases: unfortunately, cortical
surface atlases from healthy fetuses are not publicly available. Hence, we will
only compare the performance of our proposed method against the state-of-the-
art method (Section 7.3.5);

• Finally, from a clinical perspective, it is important to evaluate the ability of our
model to discriminate healthy versus pathological brain cortices.

At each gestational week, we will compute the curvature measures presented in Ta-
ble 7.2 in order to compare the gyrification level of our atlas to that of the subjects. The
surface area (SA) and gyrification index (GI) are global measures, while the mean curva-
ture (MC) and the shape index (SI) are local measures computed at the vertex level and
then averaged over the cortex.

7.4 Preliminary results

In this section, we report preliminary results from our atlas building method and kernel
regression. Both models are used to estimate a spatiotemporal atlas between 20 and
37 GW from the 65 inner cortical surface meshes extracted from the Lumière and FeTa
datasets. The experiments were run on an Ubuntu 18.04.5 machine equipped with a
NVIDIA GPU driver with 12 GB memory.

We use simple piecewise geodesic regression on the dataset, i.e. piecewise regression
without space shifts (similar to the model of Chapter 4). This yields an average trajectory
close to what we could expect from our final model, with the difference that the spatial
variability has not been estimated. Parameters are set as follows: deformation kernel
width σg = 3.3 (kg = 18, 876 control points), varifold kernel width σw = 3.3, noise
standard deviation σϵ = 0.1, t0 = 24 GW, P = 4 and rupture times tR = [24, 28, 32].
Prior to geodesic regression, a templateOref is estimated at age t0 = 24GWwith kernel-
weighting of the subjects. Oref is subsequently used as the geodesic regression starting
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Table 7.2: Curvature measures.

Name Formula Meaning

Surface area

SA =
m∑
k=1

ak withm the number

of mesh triangles, ak the
area of the kth triangle. Cortical surface

Gyrification
index [136]

GI = SA
SAC with SAC the

surface of the mesh convex hull
Amount of cortex buried
within the sulcal folds

Mean
curvature [189]

MC = 1
n

n∑
v=1

k1(v)+k2(v)
2 with n the

number of vertices, k1 and k2 the
point-wise maximum and
minimum curvatures.

Level of convexity (positive
values) or concavity (negative

values)

Positive and
negative

shape index [125]

SI(v) = 2
π arctan(k1(v)+k2(v)

k1(v)−k2(v)
)

PSI is the average positive SI.
NSI is the average negative SI.

PSI characterizes gyral shapes,
from smooth (0) to angular (1).
NSI characterizes sulcal shapes,
from smooth (0) to angular (-1).

point. Note that we set t0 to a young age because backward modelling of the cortical
changes from t0 to the minimum age (i.e. 20 GW) is challenging as it requires smoothing
the surface and eliminating folds. Optimization is performed by gradient descent with
adaptive step size and combined with multiscale optimization, with an initial step size
h = 0.01 and a convergence threshold of 0.0001. Estimation took 9 hours and 17minutes.

For kernel regression, discrete template images are independently estimated at each
gestational week using the same parameters σg, σw and σϵ and the same optimization
procedure. For each age, the initial template shape is a high-resolution inflated surface
mesh scaled to the mean size of the subjects cortices at that age. For each atlas estimation
task, computation time ranges between 1 hours and 3 hours and estimation of the 18
templates took approximately 24 hours.

7.4.1 Atlases visual comparison

An interactive atlas viewer is currently being developed at the first author’s website3.
The goal is to enable visualization of the atlas at any gestational age and display local
curvature measures at the vertex level.

Figure 7.6 presents the spatiotemporal atlases built with the two methods every two
weeks of gestation between 22 and 36 GW. Both methods yield relatively similar results,
with concurrent emergence of the main sulci (e.g., the central sulcus). However, some
of the main sulci are better delineated by kernel regression: the postcentral sulcus is
clearly visible at 28 GW in kernel regression but not in geodesic regression and the
superior temporal sulcus is better defined. We also notice that the cortical template

3https://fleurgaudfernau.github.io/Atlas/
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(a) Piecewise geodesic regression (templates extracted from a continuous trajectory)

(b) Kernel regression model (discrete templates)

Figure 7.6: Visual comparison of the spatiotemporal atlases build with our method (panel
(a)) and kernel regression (panel (b)) in right lateral (top row) and dorsal (bottom row)
views between 22 and 36 GW. Colors indicate the point-wise mean curvature. Positive
values correspond to the gyri and negative values to the sulci.

extracted from geodesic regression at 22 GW has slightly abnormal folding, with a too
visible central sulcus.

7.4.2 Atlas evaluation

7.4.2.1 Distance metrics

Table 7.3 presents the mean varifold distance at each gestational week between the sub-
jects and the templates constructed by our method or kernel regression. As expected,
the distances increase with gestational age as the cortex becomes more complex. Lit-
tle differences can be seen between the algorithms, although our method has a slightly
lower average distance. Table 7.4 shows the mean Hausdorff distance at each gestational
week for the two methods. This metric mostly agrees with the previous one, although
some of the differences highlighted by the varifold distances are less salient.
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Table 7.3: Residual error for our method and kernel regression, computed as the varifold
distance with σw = 3.3 between each subject and the closest template. The mean value
(top row) and standard deviation (bottom row) are displayed for each gestational age.
Values are divided by 106. µ denotes the average distance over subjects.

GW 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 µ

Our
method

3.67 \ 5.84 6.83 6.78 8.07 6.70 6.46 9.23 8.02 11.22 10.91 11.58 15.43 16.40 18.75 17.67 10.85
0 \ 0 0.28 1.5 2.36 1.49 1.23 4.11 0.33 4.12 1.68 1.67 2.39 2.32 2.35 0 4.56

Kernel
regression

3.77 \ 5.44 6.98 6.84 8.36 7.03 6.59 9.76 9.09 11.56 10.55 11.44 15.47 16.31 18.57 17.23 10.93
0 \ 0 0.05 1.52 2.44 1.59 1.26 4.32 0.7 4.14 1.68 1.68 2.48 2.27 2.33 0 4.45

Table 7.4: Average Hausdorff distance (mm) between each subject and the closest tem-
plate for our method and kernel regression. The mean value (top row) and standard
deviation (bottom row) are displayed for each gestational age. µ is the average distance
over subjects.

GW 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 µ

Our
method

0.82 \ 1.41 1.41 1.05 1.45 1.14 1.27 1.70 1.27 1.22 1.19 1.21 1.37 1.36 1.19 1.10 1.27
0.0 \ 0.0 0.14 0.14 0.42 0.22 0.22 1.18 0.09 0.27 0.18 0.15 0.16 0.27 0.12 0.0 0.40

Kernel
regression

1.06 \ 1.40 1.49 1.06 1.47 1.13 1.27 1.75 1.46 1.21 1.10 1.16 1.34 1.34 1.21 1.09 1.28
0.0 \ 0.0 0.16 0.16 0.44 0.24 0.16 0.06 0.28 0.16 0.15 0.17 0.27 0.13 0.12 0.0 0.41

7.4.2.2 Cortical folding accuracy

In Figure 7.7, we compute curvature measures for each cortical template and compare
them to the ground truth, i.e. the curvature measures of each subject used to build the
atlases. Both our method and kernel regression yield atlases with surface area and gyri-
fication index close to the expected values. However, at advanced gestational ages, when
the variability of cortical geometry increases, both indices are slightly underestimated.
In Figure 7.7c, the evolution of mean curvature is also close to that of the subjects, al-
though geodesic regression produces templates with overestimated mean curvature at
younger and older gestational ages. This is consistent with Figure 7.6a, where templates
around 22-26 GW lack smoothness and those around 32-36 weeks have elevated mean
curvature values around the gyri. Finally, evolution of the positive and negative shape
index indicates that the gyri become smoother while the sulci become more angular
with gestational age, a tendency already observed in Hu. et al [96]. For theses values,
both atlases are mostly correct but two issues can be raised: geodesic regression builds
gyri that are not convex enough around 20-24 GW and too convex around 32-36 weeks,
and sulci that are too concave around 20-24 GW and not angular enough around 32-36
weeks. This is consistent with Figure 7.6a: in middle pregnancy, sulcal shapes are a bit
too marked and in late gestation, gyri have too angular shapes, while sulci are too wide.
A comparison of the atlases sulci and gyri at 36 GW with subjects at the same age is
presented in Figure 7.8.

Whilst kernel regression has a more accurate cortical geometry, some temporal dis-

126



A spatio-temporal atlas of the developing cortex

(a) Surface area (b) Gyrification Index (c) Mean curvature

(d) Positive shape index (e) Negative shape index

Figure 7.7: Comparison of five curvature measures between the subjects (ground-truth)
and two spatiotemporal atlases at each gestational week.

crepancy between consecutive ages can be seen, e.g. abnormally elevated mean curva-
ture at 23 GW and discrepant positive and negative shape indices around 20-24 GW. This
phenomenon is illustrated in Appendix Figure D.4.

7.4.3 Influence of the hyper-parameters

Here, we report preliminary results on the tuning of the geodesic regression model pa-
rameters σg, σw, P and tR. We compare the evolution of five curvature measures for
different values of these parameters.

Size of the deformation and varifold kernels. We test piecewise geodesic re-
gression with σg = σw ∈ [3.3, 3.5, 3.7], i.e. kg ∈ [18, 876, 16, 275, 13, 800] and the same
parameters as in the previously presented model. Results are presented in Appendix Fig-
ure D.5. Higher values of σg lead to underestimated surface area, gyrification level, and
smoother sulci at advanced gestational ages. This indicates that kernels with standard
deviations above 3.5 are too large to accurately represent cortical folds.

Number of components and rupture times. The previously introduced model
with σg = σw = 3.3 is tested with the following dynamics: P = 2 and tR = 24, P = 3
and tR = [24, 30], P = 4 and tR = [24, 28, 32], P = 5 and tR = [24, 27, 30, 33], P = 6
and tR = [24, 26.5, 29, 31.5, 33]. Results are presented in Appendix Figure D.6. Mod-
els with a higher number of components seem to underestimate more the increase in
surface area and gyrification at older gestational ages, which is quite counter-intuitive.
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(a) Geodesic regression (b) Kernel regression (c) Subject 1 (d) Subject 2

Figure 7.8: Comparison of the atlases templates at age 36GW (panels (a) and (b)) with two
subjects of age 36 GW (panels (c) and (d)). Cortices are presented in right lateral view.
Arrows indicate the central sulcus. Colors indicate local shape index values, ranging
from -1 (blue) to 1 (red). In panel (a), notice the slightly exaggerated sharpness of the
gyri compared to panels (c) and (d). The sulci are also slightly too wide.

Expectedly, the 2-component model also achieves a lower level of gyrification and gen-
erates smoother gyri and sulci in late gestation. In contrast, the model with 3 geodesic
components achieves the highest level of cortical folding (i.e. highest gyrification index
and mean curvature) and generates smoother gyri (i.e. lower positive shape index).

7.5 Discussion

In this chapter, we introduced a new method for spatiotemporal atlas construction and
applied it to healthy cortical development during the fetal period. Relying of two large
datasets of fetal brain images, we compared our method against state-of-the-art kernel
regression.

Data: A strength of this study it that it relies on data coming from different institu-
tions and countries. As noted in previous work [249], data origin and representativeness
matter. As usual with prenatal MRI, high-resolution volume reconstruction and cortical
surface extraction were challenging steps. Contrary to volume reconstruction [57], there
does not exist a fully automated pipeline for the reconstruction of cortical surface in fe-
tuses and we used a pipeline designed for T2-weighted postnatal MRI [140]. Only 23%
and 35% of brain volumes from Lumière and FeTa had successful cortical surface extrac-
tion. The discrepancy probably reflects the age difference between the two datasets and
the fact that the dHCP pipeline is more efficient on older fetal brains. In the future, we
will modify the dHCP pipeline to adapt it to fetal brains, in the spirit of what was done by
Xu et al. [254], and hopefully recover more cortical surfaces from the dataset. This key
issue is a recurrent one in the field of fetal MRI, where the lack of fully automated tools
and open-source datasets hampers the development of quantitative analyses. Indeed, we
note the involvement of manual segmentation of the fetal cortex [38, 34, 97, 250] or the
use of homemade tools for cortical surface extraction [130, 254] in a number of papers.

128



A spatio-temporal atlas of the developing cortex

Model of cortical surface development. Arguing that kernel regression does not
account for the spatial variability of the fetal anatomy, we introduced a new model to
build a truly spatio-temporal atlas. This work is built upon methods and experiments de-
veloped in the previous chapters: space shifts were integrated onto a piecewise geodesic
regression model to estimate normal anatomical variability during cortical folding, and
optimization was performed using a multiscale strategy whose efficiency was demon-
strated in Chapter 4. As in Chapter 6, we combined different tools from Computational
Anatomy, namely atlas estimation, registration and parallel transport. This time how-
ever, optimization of the main trajectory and the space shifts is not sequential but simul-
taneous, which hopefully will lead to better results. Unlike kernel regression, our model
could explicitly take into account longitudinal data, e.g. fetuses that underwent more
than one MRI during pregnancy [22].

Atlas evaluation. In this chapter, we payed careful attention to the question of
model evaluation. As visual evaluation and distance measures between the templates
and the subjects are insufficient proxy of atlas quality, we computed curvature measures
to assess the accuracy of the modelled cortical folding. Standard measures, i.e. surface
area, gyrification index and mean curvature, indicated good levels of cortical folding, i.e.
burial of the cortex inside the sulci. At older gestational ages, gyrification levels were
a bit lower than that of the input subjects, but an average template cannot be expected
to reach the same level of complexity as an individual cortex. The shape index, which
characterizes gyral and sulcal shapes, indicated some shape inaccuracies in middle and
late pregnancy. The overly pronounced folds in middle pregnancy likely result from the
choice of t0, i.e. the time at which the template is defined, at 24 GW. Additional exper-
iments will be performed to test alternative values of t0. In late pregnancy, increased
gyri sharpness might be corrected by adding local smoothness constraints to the vector
fields defining the geodesic components. A possibility could be to use the alternative
multiscale algorithm presented in Appendix A.4 and grant more weight to coarse scale
coefficients during optimization.
Kernel regression modelled cortical folding in a slightly more accurate manner, which
was expected since the model is designed to perform well at a given gestational age.
However, unlike kernel regression, our method guarantees temporal consistency of the
cortical templates. Both models can only be compared so far since they are based on
different philosophies. The true advantage of our model is its ability to classify new
subjects.

Limitations. One may wonder about the relevance of using a more complex model.
It is no wonder that kernel regression is popular as it is a simple and efficient method to
depict brain anatomy at a given time. Our model is derived from spatio-temporal models
[200], which have proven useful, inter alia, for longitudinal modelling of hippocampal
shape changes in Alzheimer’s disease [177, 44]. In neurodegenerative diseases, a patient
is likely to undergo several exams and brain scans, which is rarely the case during pre-
natal monitoring. In the absence of such longitudinal data, characterizing the growth
dynamic of the fetal brain is a more difficult task, hence the need to carefully evaluate
this new model. Another important pitfall is the need to set a high number of param-
eters and the long initialization procedure to initialize the parameters, which can be
prohibitive.
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Future work. As mentioned above, future work will include improving the corti-
cal surface extraction and reconstruction step. We will pursue the tuning of the model
parameters and finally run our final model to estimate both an average trajectory and
the normal anatomical variability around the mean. The final model will be tested on an
independent dataset to classify healthy versus abnormal cortical anatomy.
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Chapter 8

General conclusion

In this thesis, we begun to bridge the gap between the quantitative analysis of the fetal
brain and geometrical deformation models in the LDDMM framework. To this end, we
needed to address challenges specific to the analysis of fetal brain MRI, namely the lack
of publicly available data, heterogeneous data quality, the complexity of brain growth
and the difficulty of comparing subjects at different gestational ages. Fortunately, the
LDDMM framework has properties that are very compatible with these needs, namely
the ability to handle small datasets, to transport subjects in space and time and to provide
explicability and interpretability.

In this work, we proposed both methodological and practical approaches: in a first
part, we provided new multiscale optimization strategies to enhance the estimation of
cross-sectional reference shapes and time-dependent trajectories. In a second part, we
started from a clinical question and developed a shape analysis pipeline to extract anatom-
ical deformations specific to fetal brains with corpus callosum agenesis. We also char-
acterized partial versus complete agenesis. Finally, we introduced a new model to accu-
rately depict prenatal cortical development.

The innovative nature of the subject required the use of a variety of tools and meth-
ods from different disciplines. In Chapter 3, we manipulated mathematical objects, e.g.
the Haar wavelet and addressed an optimization problem. In Chapter 4, we continued
down the same road, this time attributing more importance to clinical applications. In
Chapter 6 and 7, our goals were both clinical and methodological: we relied on the previ-
ously introduced mathematical tools and experiments to answer specific research ques-
tions and presented new methods that can be of use outside these specific questions.
The contribution of this thesis spans from new algorithms in the field of Computational
Anatomy to new approaches in medical image analysis.

8.1 Multiscale optimization(s)

As noted above, the LDDMM framework has a variety of properties and tools suitable
to the analysis of different types of data. Whilst it requires few assumptions, in prac-
tice the deformation of high-dimensional, highly complex medical images can easily fall
into unrealistic local minima. One often has to resort to fine-tuning of the parameters,
specifically the width of the kernel controlling the spatial regularity of the transfor-
mations. To alleviate this problem, we introduced in Chapters 3 and 4 a coarse-to-fine
optimization strategy based on a wavelet-like reparameterization of the velocity fields
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and a filtering of the objects. The strength of this method is that it modifies a single step
of the optimization procedure while preserving the deformation model. This makes the
multiscale strategy highly versatile since it can be applied to different types of objects,
combined to other deformation models or even associated to other wavelet functions
such as Daubechies. As often with coarse-to-fine strategies [190], ours only alleviate the
local minima issue: in practice, the final scale of the deformation still depends on the
regularizing kernel size. This is well illustrated by our experiments: the advantages of
the multiscale strategy are undeniable on simple data such as handwritten digits and
hand-drawn characters but more subtle on clinical objects.

This work is also intertwined with the question of model evaluation. The residual
data term, e.g. L2 norm or varifold distance, is of course quite limited. For images, we
used another similarity metric independent of the cost function, namely the Structural
Similarity IndexMetric. However, similarity between source and target objects is not the
only desirable feature: deformation regularity is also very important, especially when
modelling anatomical changes, which requires visual evaluation. Of note, we could have
compared our multiscale strategy to other algorithms, but this was outside this thesis
objectives: we were more interested in adapting tools from the LDDMM framework to
specific analyses than reaching state-of-the art performance.

8.2 Analysis of fetal MRI

As mentioned in Chapter 5, the quantitative analysis of fetal brain MRI is a recent field
of research, which raises exciting challenges as well as technical difficulties. In Chap-
ters 6 and 7, data preprocessing was a rather problematic step. In Chapter 6, volume
reconstruction was performed with NiftyMIC 0.7.5 [56] and brain extraction required
semi-automated corrections. In Chapter 7, volume reconstruction was performed with
NiftyMIC 0.9.0, which includes a novel brain extraction algorithm [185], and no correc-
tionswere needed, illustrating the fast technical advances in the field. The reconstruction
success rate was only 62% for hôpital Trousseau and 55% for the Lumière dataset. In the
first case, this number seemed linked to the year of MRI acquisition and not to the fetus
age (likely because sedation was offered). In the second case, younger fetuses were less
likely to have a valid brain volume, probably because of motion artefacts. Of note, such
difficulties are rarely reported in the literature. This indicates that current state-of-the-
art reconstruction techniques lack robustness regarding lower quality data, which can
be problematic because of poor data availability. In Chapter 7, extraction of the corti-
cal surface was an even more challenging step because of the lack of fully automated
pipelines for segmentation and structure reconstruction. This situation will hopefully
evolve soon as the subject has recently been drawing interest [235].

8.3 Fetal brain analysis pipeline

In Chapter 6, we combined existing Computational Anatomy tools to design a pipeline
for characterizing pathological fetal brains: an average trajectory of healthy brain changes
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is built, subjects are registered to an age-matched template and transported to a common
space to extract anatomical deformations through PCA. Compared to existing analysis
frameworks, our pipeline has the advantage of enabling whole-brain analysis (although
it could also be applied to single structures) and smoothing out age-related differences
between fetal brains. In the future, we aim at making our code publicly available and
hopefully apply the pipeline to other pathologies. In cases where a postnatal outcome,
e.g. intellectual disability is known, directions of anatomical variability could be corre-
lated to the outcome in order to identify new prenatal predictors of disability. While the
tools used in this chapter are similar to that of Chapter 7, the spirit of the work is a bit
different: the building of the reference trajectory is not the main focus of the analysis
and in fact, one may use existing spatiotemporal atlases. Different tools such as regis-
tration and parallel transport are used in a sequential manner, making the pipeline more
adapted to the characterization of a population of abnormal fetal brains. In contrast, the
model of Chapter 7 is geared to the simultaneous estimation of the mean and variability
of healthy brain changes and could be used for detecting abnormal subjects rather than
characterizing them.

8.4 Prenatal brain development atlas

In Chapter 7, we introduced an alternative method to the widely-used kernel regression
to build an atlas of the developing brain. Kernel regression is a rather simple method
where a template object at a given gestational age is estimated independently of the
others. Our more complex model focuses on the average growth dynamic. Preliminary
experiments were performed in Chapter 4, where we showed that diffeomorphic defor-
mations have difficulty modelling MR intensity changes across pregnancy. As evoked
earlier, this task would require a high degree of model adaptation, or even the use of
more elaborate models [234].

On the contrary, the LDDMM framework ismore adapted to thewrapping of anatom-
ical meshes. In Chapter 7, we designed an integrative model that estimates simultane-
ously a single template object, the piecewise geodesic trajectory that deforms the tem-
plate with time and the anatomical variability around the mean. This model harbors
great potential to widen the scope of spatio-temporal atlases: not only building repre-
sentative anatomical objects and their parcellations, our method enables the analysis of
time-dependent growth dynamics, the positioning of any subject with respect to the av-
erage development, the displacement of said subject in space and time and finally the
characterization of the anatomical variability of healthy or pathological populations. To
summarize, what we propose is merely a change of perspective and a focus on the dy-
namic aspect of prenatal brain growth. An interesting path of research would be to
include postnatal data into our model to span longer developmental periods. This is
actually doable as neonatal cortical surface meshes are already publicly available [5].
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8.5 Perspective

Computational Anatomy and fetal brain research are dynamic research fields. In addition
to the numerous research directions that we already evoked, one major objective stands
out: to make the tools developed here publicly available and easily operable. This is
no simple task as their use requires at the bare minimum a good understanding of the
presented models.

The methodological and clinical questions tackled in this thesis are complex and
multifaceted ones. By adapting deformation models, we sought to provide novel ways
of characterizing fetal brains and widen the field of fetal brain MRI. We believe that our
approach of combining deformation models with fetal brain imaging is promising to
advance the field of fetal neuroimaging.
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Appendix A

Supplementary material of Chapter 3

A.1 Characters dataset

Figure A.1: Dataset of manually designed characters.
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A.2 Algorithmic implementations of the transforms
FWT and IWT

To compute the Forward and Inverse Wavelet Transforms, explicit computation of the
related matrices MFWT and MIWT is not necessary since the algorithms rely on local
operations on basis coefficients. To compute the wavelet coefficients of an arrayX of di-
mension d, the FWT algorithm (Algorithm 5) relies on a one-dimensional Haar Forward
algorithm (Algorithm 2), which computes local means and differences along one axis. In
Algorithm 5, lines 4-12 amount to computingMFWTX . This process is illustrated on a
simple example in Fig. A.2. Uneven numbers of rows/columns are handled by computing
weighted averages and differences so that the boundaries are given the same importance
as the rest of the array.

Finally, the output wavelet coefficients have to be normalized: this is done by com-
puting explicitly the matrixMFWT in Algorithm 4 and computing the renormalization
matrix R fromMFWT :

R[i] =
1

∥MFWT [i, :]∥2

where ∥MFWT [i, :]∥2 is the L2 norm of the ith row ofMFWT .

Another way of considering R is by reminding ourselves that the embedded spaces
Vs andWs were constructed by normalizing scaling and wavelet functions with a factor
2−sd/2. Hence, when computing the transformation between scales s−1 and s, R is such
that R[i] = 2sd/2 (except at the boundaries).

Note that, since the normalization factor when going from scale s − 1 to scale s
is known, computing MFWT should not be necessary. However, when the algorithm
operates on non-dyadic grids, computations at the boundaries are modified, and so are
the expressions ofMFWT and R. To avoid errors, it is thus simpler to compute R from
MFWT .

The IWT algorithm (Algorithm 6) runs in amanner that is symmetrical to the FWT al-
gorithm, by using the one-dimensional Haar Backward algorithm (Algorithm 3) to com-
pute finer-scale coefficients from coarse scale coefficients one axis at a time.
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Figure A.2: The FWT Algorithm (Algorithm 5) applied to a 3-by-4 array. Steps in grey
squares illustrate the 1-dimensional Haar Forward step (Algorithm 2). Running the IWT
Algorithm (Algorithm 6) amounts to running the illustrated steps backward. For the
sake of simplicity, the renormalization step (line 16 in Algorithm 5) is not featured.
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Algorithm 2 1-dimensional Haar Forward step
1: Input
2: β: array of shape (k1, ..., kD), d: axis along which to compute the transform, Kd:

size of the original array along axis d, s: current scale, ws: list of scales for each axis
[1, ..., D], stored in ascending order

3: Initialization
4: Swap axes in β to put axis d in position 0
5: if kd > 1 then
6: if kd is even then
7: βa ← (β[0 :: 2] + β[1 :: 2])/2 {Average the consecutive rows of β}
8: if Kd ̸= 2× kds then
9: δ ← Kd/2

s − (kd − 1) {Weighting of the border}
10: βa[−1]← (β[−2] + δ ∗ β[−1])/(1 + δ)
11: end if
12: βd ← β[0 :: 2]− βa {Difference between the consecutive rows of β}
13: else
14: βa ← (β[0 : −1 : 2] + β[1 :: 2])/2 {Average the consecutive rows of β}
15: βd ← β[0 : −1 : 2]− βa {Difference between the consecutive rows of β}
16: βa ← concatenate([βa, β[−1]]) {Add the last unpaired row}
17: end if
18: β ← concatenate([βa, βd])
19: end if
20: ws[d]← [⌈kd/2⌉] + ws[d]
21: return β, ws
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Algorithm 3 1-dimensional Haar Backward step
1: Input
2: β: array of wavelet coefficients of shape (k1, ..., kD), d: axis of β along which to

apply the backward transform,Kd: size of the original array along axis d, s: current
scale, ws: list of scales for each axis [1, ..., D], stored in ascending order

3: Initialization
4: β ← Swap axes in β to put axis d in position 0
5: X ← zero array of the shape of β
6: nlow ← ws[d][0]
7: βa ← β[: nlow] {Low-frequency coefficients}
8: βd ← β[nlow :] {High-frequency coefficients}
9: if ws[d][1] > 1 then
10: if ws[d][1] is even then
11: X[0 :: 2]← βa + βd
12: X[1 :: 2]← 2× βa −X[0 :: 2]
13: if Kd ̸= 2× kds then
14: δ ← Kd/2

s − (kd − 1)
15: X[−1]← ((1 + δ)× βa[−1]−X[−2])/δ
16: end if
17: else
18: X[0 : −1 : 2]← βa[: −1] + βd
19: X[−1]← βa[−1]
20: X[1 :: 2]← 2× βa[: −1]−X[0 : −1 : 2]
21: end if
22: end if
23: ws[d]← ws[d][1 :]
24: return X,ws
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Algorithm 4 Renormalization
1: {Compute the Haar Forward MatrixMFWT and the renormalization matrix R}
2: Input
3: (K1, ..., KD): shape of the array to wavelet transform
4: Initialization

5: n←
D∏
i=1

Ki

6: MFWT ← zero array of shape (n, n)
7: for i in range(n) do
8: Z ← zero array of shape (K1, ..., KD)
9: ith element of Z ← 1
10: β, ws, R← Haar_Forward(Z, ρ = 0) {Algorithm 5}
11: MFWT [:, i]← flatten(β)
12: end for
13: R← zero array of shape (K1, ..., KD)
14: for i in range(n) do
15: ith element of R← 1

∥MFWT [i,:]∥2
16: end for
17: return R

Algorithm 5 Forward Haar Wavelet Transform (FWT algorithm)
1: {Compute the wavelet coefficients β of an array X}
2: Input
3: X : array of shape (K1, ..., KD), ρ: renormalization factor (default: 1)
4: Initialization
5: β ← X {Array to store the wavelet coefficients}
6: ws ← [[K1], ..., [KD]] {For each axis, store the scales for which the wavelet coeffi-

cients have been computed in ascending order}
7: Smax ← ⌈log2(max(K1, ..., KD)⌉
8: for s in range(Smax) do
9: βcurrent ← β[: ws[0][0], ..., : ws[D][0], ] {Low-frequency coefficients at scale s− 1}
10: for d in range(D) do
11: βcurrent, ws, R←Haar_forward_1d_step(βcurrent,d,Kd, s, ws) {Algorithm 2}
12: β[: ws[0][0], ..., : ws[D][0], ]← βcurrent
13: end for
14: end for
15: if ρ ̸= 0 then
16: R← renormalize((K1, ..., KD)) {Algorithm 4}
17: β ← β ×Rρ

18: end if
19: return β, ws, R
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Algorithm 6 Inverse Haar Wavelet Transform (IWT algorithm)
1: {Given its wavelet coefficients β, compute array X (i.e. coefficients of scale 0)}
2: Input
3: β: array of wavelet coefficients of shape (K1, ..., KD), ρ: renormalization factor

(default: 1), ws: list of scales for each axis [1, ..., D], stored in ascending order
4: Initialization
5: X ← β
6: Smax ← ⌈log2(max(K1, ..., KD)⌉
7: if ρ ̸= 0 then
8: R← renormalize((K1, ..., KD)) {Algorithm 4}
9: X ← X/Rρ

10: end if
11: for s in range(Smax − 1,−1,−1) do
12: Xcurrent ← X[: ws[0][1], ..., : ws[D][1]]
13: for d in range(D) do
14: Xcurrent ← Haar_Backward_1d_step(Xcurrent,d, Kd, s, ws) {Algorithm 3}
15: X[: ws[0][1], ..., : ws[D][1]]← Xcurrent

16: end for
17: end for
18: return X
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A.3 Multiscale algorithm with local adaptation

A.3.1 Local adaptation extension

As highlighted in Section 3.2, the termmultiscale can imply either that deformations are
estimated in a coarse-to-finemanner, or that deformations of different scales coexist. The
multiscale strategy we presented is closer to the former case. Here, we seek to enhance
our algorithmwith a truemultiscale flavor by enforcing the coexistence of velocity fields
of different scales. Since wavelet functions are characterized by their scale, location
and orientation, we take advantage of the location component so that we can force the
velocity field of each subject to be unevenly smooth. Namely, the spatial constraints
we impose through the wavelet-based multiscale representation can vary according to
the amount of variability in the images, so that template-to-subject deformations may
remain coarse in areas that contain few information. Our motivation is twofold: alleviate
the computational cost in areas of low variability and force the optimization to focus on
challenging areas.

The multiscale algorithm with local adaptation is described in Algorithm 8. It only
requires the addition of two steps to the the naive multiscale algorithm. Of note, the
local adaptation can only handle images at the moment.

Screening of smooth areas. The local adaptation step (Algorithm 7) takes place
after each coarse-to-fine step. We recall that the current scale Sj is related to wavelet
functions whose support is of size (2Sj)d control points (or less if the functions are lo-
cated at the image borders). Hence, each scale Sj is related to a list of unique wavelet
positions on the grid of control points:

P = [ k ∈ Zd, ki ∈ [0, 2Sj , 2× 2Sj , 3× 2Sj ..., L] ]

where L = kg(y) − 2 if the grid is dyadic and kg(y) − 1 otherwise, with kg(y) + 1
the number of control points along axis y.

The position of a wavelet function ψ̃o
Sj ,k

on the grid of control points can easily be
converted to pixel coordinates on an image array, thus it is straightforward to compute
the variability inside the related area on the image. Following each coarse-to-fine step,
we compute for each subject i the average residual image ∆i

j at iteration j according to
the formula:

∆i
j = ∥Iref,j ◦ ϕ−1

j,i − Ii∥22, (A.1)

Then, we compute the average residual value ∆i
j,k of every area at position k. If ∆i

j,k is
below a given threshold, the area is considered as smooth and stored in a dictionary.

Update of the template-to-subjects deformations. The gradient descent step is
performed as described in the previous section. The only change to the procedure is that
we not only set to 0 detail coefficients defined at scales finer than Sj (line 24 in Algo-
rithm 8), but also detail coefficients whose position is stored inZ (line 26). Consequently,
spatial constraints over the subjects’ velocity fields will be uneven: in areas of low vari-
ability, the velocity fields will be constrained to remain smooth, whereas in areas with
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high variability, the velocity fields will be able to express finer and finer components as
the coarse-to-fine procedure progresses.

Algorithm 7 Local adaptation
1: {For each subject image, identify smooth areas and store their position in a dictio-

nary}
2: Input
3: Z: dictionary of smooth areas
4: Sj : current scale
5: Initialisation
6: P← list of unique wavelet positions at scale Sj

7: Z[i][Sj]← ∅ for each subject i
8: for each subject i do
9: Compute ∆i

j the residuals image of subject i according to Eq. (A.1)
10: Compute rij,max the maximum average residuals value over zones in P
11: Compute the average residuals rij,k inside area position k ∈ P
12: for each position k in P do
13: if k is already included in Z[i][Sj−1] then
14: Add k to Z[i][Sj] {The area belongs to an already smoothed larger area}
15: else
16: if rij,k < 0.01× rij,max then
17: Add k to Z[i][Sj]
18: end if
19: end if
20: end for
21: end for
22: return Z
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Algorithm 8 Coarse-to-fine initialization algorithm with local adaptation
1: {For clarity, steps linked to the local adaptation extension are indicated in blue}
2: Input
3: Set of images (Ii)1≤i≤N of dimension d, template image I0, geometric kernel width
σg, trade-off regularity/fidelity-to-data σ, initial step size h

4: Initialization
5: j ← 0
6: Regular grid of control points c0 with spacing σg
7: Template image intensities I0(j)← I0
8: Momentum vectors α0,i(j)← 0 for each subject i
9: β0,i(j)← FWT (α0,i(j)) for each subject i
10: Initialize the gradients∇α0,i

E ← 0 for each subject i and∇I0E ← 0
11: Current scale Sj ← maximum scale of β0,0(j)
12: Dictionary of smooth areas Z[i][Sj]← ∅ for each subject i
13: repeat
14: j ← j + 1
15: for each subject i do
16: Compute the evolution of αi(t) using Eq. (2.3) {Gradients computation}
17: Compute ϕi by solving the flow equation (Eq. (2.1))
18: Deform the template image I0 with ϕi

19: Compute the cost function E as in Eq. (2.7)
20: Compute the gradients∇α0,i

E and∇I0E

21: ∇β0,i
E ← FWT (∇α0,i

E) = (aiSmax,k
)k ∪ (di,os,k)1≤s≤Smax,k,o {Wavelet transform

the gradients with Algorithm 5}
22: for each detail coefficient di,os,k of∇β0,iE do
23: if s < Sj then
24: di,os,k ← 0 {Finer scale silencing}
25: else if k ∈ Z[i][s] then
26: di,os,k ← 0 {Smooth areas silencing}
27: end if
28: end for
29: end for
30: β0,i(j)← β0,i(j − 1)− h×∇β0,i

E for all subjects i {Parameter update}
31: α0,i(j)← IWT (β0,i(j)) for all subjects i {Algorithm 6}
32: I0(j)← I0(j − 1)− h×∇I0E
33: Compute the total residual value rj = ∥∆j∥1 according to Eq. (3.5)
34: if rj−1−rj

rj−1
< 0.01 and Sj > 1 then

35: Sj ← Sj−1 − 1 {Scale refinement step}
36: Z ← Local_adaptation(Z, Sj) {Algorithm 7}
37: end if
38: until Convergence
39: return Template image I0 and momentum vectors α0,i
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A.3.2 Experiments: atlas estimation on handwritten digits with
local adaptation

σg kg Original Multiscale Multiscale &
local adaptation

Atlas estimation
3 100 15.8± 12.2 7.1± 0.5 9.4± 3.2
2 196 10.1± 1.9 4.8± 0.4 5.3± 0.5
1.5 361 7.3± 1.7 6.4± 3.4 4.3± 1.4

Registration
3 100 10.0± 6.1 6.4± 5.3 7.5± 6.0
2 196 8.5± 5.2 4.2± 3.2 6.5± 6.3
1.5 361 9.0± 5.1 4.0± 5.9 5.3± 7.0

Table A.1: Performance of the original, multiscale and multiscale with local adaptation
algorithms on the dataset of handwritten digits during the training and test phases. Data
are mean ± standard deviation of relative residual error over five experiments. No sta-
tistically significant differences were found between the two versions of the multiscale
algorithm. σg: width of the Gaussian kernel; kg: number of control points.
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Figure A.3: Estimation of the template image by the original, multiscale and multiscale
with local adaptation algorithms on the dataset of handwritten digits with 3 different pa-
rameters σg. For each experiment, five template images (estimated with non-intersecting
training sets) are presented on the left, along with the template image estimated from
the first training set wrapped to the first five training images on the right. σg: width of
the Gaussian kernel; kg: corresponding number of control points. The number of voxels
per control point are indicated in parentheses.
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A.4 Alternative multiscale scheme

A.4.1 Modifying the renormalization step

We previously introduced the matricesM1
FWT andM1

IWT associated to the transforma-
tions FWT and IWT, with M1

FWT = R ⊙MFWT and M1
IWT = MIWT ⊙ R−1, where

⊙ denotes the element-by-element matrix product. We recall that IWT and FWT are
orthogonal transforms, i.e.: M1T

IWT =M1
FWT .

We will now try to explore the following question: how will the optimisation of
the momentum vectors be impacted if we modify the renormalization step?

For the sake of simplicity, in the following we will denote by α and β the coefficients
α0,i and β0,i of a given subject i, respectively.

We introduce a renormalization factor ρ ∈ R and the associated variant of the renor-
malization matrix: Rρ, which verifies R1 = R. The matrices associated to this renor-
malization write asMρ

FWT = Rρ ⊙MFWT andMρ
IWT =MIWT ⊙Rρ−1 .

Note that, even if the matricesMρ
FWT M

ρ
IWT are no longer orthonormal when ρ ̸= 1,

this modified renormalization has no impact upon our coarse-to-fine procedure (Algo-
rithm 1), since the gradient of the cost function with respect to the wavelet coefficients is
computed using the FWT algorithm (Algorithm 5) as described in section Section 3.3.3.3.
Indeed, if we overlook the finer scale silencing step (i.e. the coarse-to-fine step) and sim-
ply perform gradient descent in the wavelet domain, we can write:

βj+1 = βj + h×∆βE

= βj + h× FWT (∆αE)

= βj + h×Mρ
FWT∆αE

αj+1 = IWT (βj+1)

=Mρ
IWTβj + h×Mρ

IWTM
ρ
FWT∆αE

= αj + h×MIWT ⊙Rρ−1 ⊙Rρ ⊙MFWT∆αE

= αj + h×MIWTMFWT∆αE and sinceMIWTMFWT = Id

= αj + h×∆αE

To assess the influence of ρ, we now compute a variant of the gradient with regard to the
wavelet coefficients using the transpose version of the IWT algorithm (Algorithm 9)
instead of the FWT algorithm, i.e. ∆βE

′ =MρT

IWT∆αE, which we recall is equivalent to
∆βE

′ =Mρ
FWT∆αE only when ρ = 1.
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We can now study how this modifies the update of the momentum vectors:

βj+1 = βj + h×MρT

IWT∆αE

= βj + h×MT
IWT ⊙R−1T

ρ ⊙∆αE

= βj + h×R−1
ρ ⊙MT

IWT∆αE

αj+1 = IWT (βj+1)

=Mρ
IWTβj + h×Mρ

IWT ⊙R
−1
ρ ⊙MT

IWT∆αE

= αj + h×MIWT ⊙Rρ−1 ⊙Rρ−1 ⊙MT
IWT∆αE

= αj + h×MIWT ⊙Rρ−2 ⊙MT
IWT∆αE

Fortunately, we have some information about the unnormalized transformmatricesMFWT

andMIWT . SinceMT
IWT1

= MFWT1 , we have (MIWT ⊙ R−1)T = R ⊙MFWT and thus
MIWT

T = R2 ⊙MFWT . Hence, the update of α becomes:

αj+1 = αj + h×MIWT ⊙Rρ−2 ⊙R2 ⊙MFWT∆αE

= αj + h×MIWT ⊙Rρ−2 ⊙R2 ⊙MFWT∆αE

= αj + h×Rρ−2 ⊙R2 ⊙∆αE

Andwe verify thanwhen ρ = 1, we recoverαj+1 = αj+h×∆αE. When ρ ̸= 1 however,
the gradient ∆αE is multiplied by the matrix Rρ−2 ⊙R2, which contains coefficients of
the form ∼ 2sd(1−ρ). Thus, if ρ > 1, fine scale coefficients in ∆αE will be given more
weight than coarse scale coefficients. Conversely, if ρ < 1, low frequency components
will be given more weigh and the velocity fields will be smoother. Hence, by varying the
value of ρ, we have another way of performing coarse-to-fine optimisation. If ρ is kept
constant, this is equivalent to applying a low pass or high pass filter on the vector fields.
In the following experiments, we will combine the modified renormalization step with
the regular multiscale strategy.
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Algorithm 9 Haar Backward Transpose
1: {Compute the wavelet coefficients β of an arrayX by computing the Inverse wavelet

transform matrixMIWT and applyingMT
IWT to X}

2: Input
3: X : array of shape (K1, ..., KD), ρ: renormalization factor
4: Initialization
5: β, ws, R← Haar_Forward(X, ρ) {Algorithm 5}

6: n←
D∏
i=1

Ki

7: MIWT ← zero array of shape (K1, ..., KD)
8: for i in range(n) do
9: B ← zero array of shape (K1, ..., KD)
10: ith element of B ← 1
11: MIWT [:, i]← flatten(Haar_Backward(B, ws)) {Algorithm 6}
12: end for
13: β ← zero array of shape (K1, ..., KD)
14: for i in range(n) do
15: ith element of β ←MT

IWT [i, :]× flatten(X)
16: end for
17: return β

149



Chapter A

A.4.2 Additional experiments - alternative multiscale algorithm

A.4.2.1 Algorithm

Here, we perform experiments with our regular multiscale algorithm combined with a
modified renormalization step. This step can be seen as a (slightly) low pass or high pass
filter applied to the velocity fields. Hence, this introduces an imbalance in our coarse to
fine procedure, which can be in favor of the coarse or fine scale signal components.

In Appendix A.4, we introduced a renormalization factor ρ and the associated variant
of the renormalization matrix: Rρ. In the normal case (i.e. in the rest of the paper), we
have ρ = 1 andR1 = R. When computing thewavelet coefficients β of the gradient∆Eα ,
we can artificially increase coarse scale coefficients (if ρ < 1) or fine scale coefficients (if
ρ > 1). When applying the Inverse Wavelet Transform to β, we recover a gradient with
more high or low frequencies than in the original input∆Eα . Note that, sincewe combine
this imbalance with coarse-to-fine optimization, the effect of ρ is not always the same:
for instance, if the current scale Sj is the coarsest scale (i.e. all fine scale coefficients are
silenced by the regular multiscale strategy), the effect of ρ is likely negligible and will
increase only as finer and finer scale coefficients are reintegrated.

We can now combine our regular multiscale gradient descent with different renor-
malization factors ρ. We study the effect of ρ on the algorithmperformance by replicating
our experiment on the toy dataset with different values of ρ and different kernel width
σg. Results are presented in Table A.2 (atlas estimation step) and Table A.3 (registration,
i.e. test step) and compared with the baseline results, i.e. the error rate when ρ = 1,
corresponding to the regular multiscale algorithm.

A.4.2.2 Results

We observe that error rates increase when ρ moves away from 1 (i.e. towards 0 or 2),
which is unsurprising because this means giving too much weight to high or low fre-
quency components. With larger kernels, i.e. σg = 7 or σg = 5, giving more weight
to fine scale components slightly increases the performance. This is interesting as this
means that one can choose a sparser parameterization of the vector fields, e.g. to save
computational time, while ensuring better performance by selecting higher frequency
components.
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Table A.2: Performance of the alternative multiscale algorithm with different values of ρ
and σg during atlas estimation on the toy dataset. Data are mean± standard deviation
of relative residual error over five folds of cross-validation. In bold, we indicate results
obtained with ρ = 1 (baseline), corresponding to the results of Section 3.4.2. In green,
we indicate experiments with similar or higher average performance than the baseline.

ρ / σg(kg) 7(16) 5 (36) 4 (49) 3 (100) 2.3 (144) 2 (196)

0 16.8± 1.5 13.3± 0.9 11.5± 5.9 12.5± 3.4 13.5± 4.9 15.7± 1.5
0.1 14.1± 1.7 12.3± 1.7 10.3± 4.5 9.5± 1.9 11.5± 2.9 15.4± 3.6
0.2 14.3± 2.7 10.0± 1.2 9.1± 2.0 8.2± 1.0 9.5± 1.9 15.3± 2.6
0.3 14.0± 1.9 9.4± 1.0 8.4± 3.5 6.6± 1.0 12.3± 1.1 12.8± 1.1
0.4 12.7± 1.6 9.5± 1.5 7.1± 1.7 6.8± 1.4 9.7± 0.8 11.7± 1.2
0.5 12.1± 2.0 9.3± 1.4 7.9± 3.7 5.6± 0.8 8.1± 1.6 10.9± 1.1
0.6 12.6± 2.2 7.5± 1.1 5.8± 1.1 5.2± 0.8 7.4± 1.0 8.9± 2.7
0.7 10.6± 1.5 7.3± 1.2 6.6± 2.3 4.3± 0.6 6.2± 0.8 8.2± 2.6
0.8 12.1± 1.7 6.9± 1.0 4.5± 0.1 6.9± 1.6 5.2± 1.8 7.4± 1.2
0.9 10.6± 0.8 5.7± 0.6 4.9± 0.6 4.1± 0.3 5.2± 1.2 6.9± 1.7
1 11.0± 2.0 5.5± 0.8 4.4± 0.4 3.3± 0.5 4.1± 0.9 6.5± 2.7
1.1 10.1± 1.4 5.5± 1.1 4.3± 0.7 2.8± 0.4 4.3± 1.1 4.9± 1.3
1.2 11.5± 2.5 5.3± 1.1 4.0± 0.6 3.0± 0.8 4.2± 1.2 7.1± 4.3
1.3 10.2± 1.4 4.8± 0.8 4.2± 0.6 2.9± 1.0 4.8± 2.6 7.8± 4.2
1.4 10.5± 1.9 4.8± 0.5 4.9± 1.5 4.3± 3.1 7.1± 2.4 7.8± 1.5
1.5 10.7± 1.7 4.8± 0.7 4.5± 1.4 3.6± 2.2 7.6± 3.1 8.0± 2.0
1.6 8.9± 0.7 5.2± 1.0 5.7± 2.3 6.1± 2.1 7.9± 1.8 7.5± 1.2
1.7 10.2± 1.3 6.0± 1.6 6.6± 4.4 6.1± 2.0 11.2± 5.3 7.5± 2.2
1.8 10.8± 1.9 7.8± 2.3 8.4± 5.7 7.7± 3.0 11.7± 4.0 13.5± 5.5
1.9 11.6± 2.9 8.1± 2.0 9.3± 7.7 6.3± 1.7 11.6± 3.4 13.4± 4.4
2.0 13.6± 5.4 9.0± 3.4 10.3± 4.2 9.0± 2.4 12.3± 3.4 13.3± 5.4
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Table A.3: Performance of alternative multiscale algorithm with different values of ρ
and σg during registration on the toy dataset. Data are mean ± standard deviation of
relative residual error over five folds of cross-validation. In bold, we indicate results ob-
tained with ρ = 1, corresponding to the regular multiscale algorithm and to the results
of Section 3.4.2. In green, we indicate experiments with similar or higher average per-
formance than the baseline.

ρ / σg(kg) 7(16) 5 (36) 4 (49) 3 (100) 2.3 (144) 2 (196)

0 15.5± 6.4 11.8± 8.2 9.4± 10.7 10.4± 10.7 11.4± 9.3 12.8± 10.4
0.1 11.3± 6.0 11.8± 7.6 8.6± 6.8 9.1± 10.6 10.9± 9.6 11.1± 6.8
0.2 10.4± 5.2 9.5± 6.7 7.5± 7.7 6.4± 4.6 7.4± 5.6 9.9± 8.1
0.3 11.0± 6.6 11.6± 11.1 6.4± 5.7 7.3± 8.4 6.6± 4.6 8.5± 7.3
0.4 9.5± 5.8 10.2± 9.4 5.3± 4.3 6.9± 6.7 6.4± 6.0 8.2± 6.4
0.5 16.6± 9.7 7.8± 5.8 6.2± 6.2 5.3± 5.0 7.3± 6.6 8.0± 5.4
0.6 9.7± 6.2 7.7± 6.0 5.9± 6.4 6.2± 6.3 8.1± 7.4 7.7± 6.1
0.7 9.4± 6.6 13.4± 12.3 4.7± 3.8 7.6± 9.1 5.8± 6.8 6.4± 5.8
0.8 8.0± 4.4 5.6± 4.0 4.3± 3.3 4.6± 3.9 6.5± 6.5 5.4± 5.1
0.9 8.2± 5.7 6.5± 5.6 5.7± 5.6 4.8± 6.0 4.4± 3.7 6.4± 6.7
1 9.4± 6.4 6.0± 6.3 3.8± 2.8 3.6± 3.8 3.4± 6.3 3.4± 3.8
1.1 7.2± 3.8 5.6± 4.1 4.1± 3.9 5.1± 6.8 4.2± 5.2 4.9± 5.6
1.2 9.2± 5.9 5.0± 4.2 4.4± 3.9 3.7± 3.7 6.1± 9.9 7.8± 7.3
1.3 7.0± 4.3 4.0± 4.3 4.8± 5.9 3.3± 4.4 5.8± 7.1 8.6± 9.8
1.4 7.6± 5.1 4.9± 4.4 5.3± 6.2 3.9± 4.4 6.2± 7.6 9.1± 7.8
1.5 8.1± 5.5 5.0± 4.0 7.1± 7.2 5.1± 7.1 7.8± 6.1 10.1± 10.5
1.6 7.2± 4.5 6.2± 7.0 5.1± 3.8 6.5± 7.0 8.7± 17.8 10.7± 13.4
1.7 7.2± 4.6 7.6± 13.0 6.5± 8.5 9.8± 10.6 8.1± 5.5 7.1± 7.5
1.8 7.2± 3.4 9.4± 12.6 9.8± 13.7 11.5± 13.7 10.5± 12.7 11.1± 11.9
1.9 12.3± 12.7 13.5± 6.1 9.2± 12.6 10.0± 15.8 11.0± 12.3 12.6± 14.4
2.0 12.2± 11.6 11.7± 16.2 12.2± 22.0 12.2± 13.0 12.4± 12.0 11.8± 15.1
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A.5 Additional results - fetal brain MRI

Figure A.4: Atlas estimation by the original and multiscale algorithms on the dataset
of fetal brain images with σg = 7. the estimated template volume from the first fold
of cross-validation is presented in the left column. The first row displays the first two
training images; the middle and right columns display the corresponding reconstructed
images (i.e. the template image warped to the training images). Salient differences be-
tween images are indicated by specific markers. White arrows indicate the cingulum
bundle, blue arrows the left frontal horn, red arrows the left basal ganglia, orange circles
the posterior part of the right lateral ventricle, red circles the right superior temporal
sulcus, yellow arrows the theoretical location of the corpus callosum, and green arrows
the cingulate sulcus.
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B.1 Extrinsic mesh smoothing

Instead of modifying the object itself, the idea of extrinsic smoothing is to smooth its
varifold representation. More precisely, we recall that the varifold representation of a
mesh O1 is the distribution of its triangle centers (c1k)k with unit normal vectors (n1

k)k
attached and that the varifold distance writes as:

dW (O1, O2)
2 = ⟨O1, O1⟩W ′ + ⟨O2, O2⟩W ′ − 2× ⟨O1, O2⟩W ′

with ⟨O1, O2⟩W ′ =

m1∑
k=1

m2∑
l=1

Kw(x
1
k, x

2
l )

(n1T

k n2
l )

2

∥n1
k∥∥n2

l ∥

where Kw is a Gaussian kernel of width σw, m1 and m2 are the number of triangles in
the meshes O1 and O2 (respectively), (x1k)k and (x2k)k the cell centers of O1 and O2 and
(n1

k)k and (n2
k)k the cell normals of O1 and O2.

To smooth the mesh O1, we replace its normal vectors (n1
k)k by their Gaussian convolu-

tion:

n′1
k =

m1∑
j=1

Ks(x
1
k, x

1
j)n

1
j

where Ks is a Gaussian kernel of width S ′
j .

S ′
j is set in manner similar to the Gaussian image filter (Section 4.2.3.2):

S ′
j =

{
max(supp(ΦSj

))−min(supp(ΦSj
))

3
× σg if Sj > 1

0 otherwise
,

where supp(ΦSj ,(0,0)) is the support of the wavelet function of scaleSj located at position
(0, 0).

The effect of varifold smoothing is illustrated in Figure B.1. Note that mesh extrin-
sic smoothing is likely less efficient than mesh intrinsic smoothing (Section 4.2.3.2), as
Laplacian smoothing will smooth the position as well as the orientation of the mesh
normal vectors.
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(a) Original Mesh (b) Original normal vectors (c) Filtered normal vectors

Figure B.1: Smooth varifold representation of a cortical surface mesh (age: 24 GW) at
scale S ′

j = 8. The red square indicates the zoomed area. Red arrows indicate the normal
vectors, scaled by a factor of 10.
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B.2 Dual multiscale Algorithm
Algorithm 10 Multiscale objects optimization algorithm (applied to atlas estimation)
1: {For clarity, differences with Algorithm 1 are colored in blue }
2: Input
3: Set of objects (Oi)1≤i≤N of dimension d, template object Oref , geometric kernel width σg ,

trade-off regularity/fidelity-to-data σ, initial step size h
4: Initialization
5: j ← 0
6: Oref (j)← Oref and α0,i(j)← 0 for each subject i
7: β0,i(j)← FWT (α0,i(j)) for each subject i
8: Current momenta scale Sj ← maximum scale of β0,0(j)
9: Current objects scale S′

j ← f(Sj) {Computation of S′
j using Equation (4.4) or 4.5}

10: Filter Oref and (Oi)1≤i≤N at scale S′
j

11: Order← dict(’momenta’ : [−1, 0]× (Smax− 1), ’objects’ : [0,−1]× (Smax− 1) {Dictionary
of the order of the coarse-to-fine steps}

12: repeat
13: j ← j + 1
14: for each subject i do
15: Compute the evolution of αi(t) using Equation (2.3) {Gradients computation}
16: Compute ϕi by solving the flow equation (Equation (2.1))
17: Deform the template object Oref with ϕi

18: Compute the cost function E as in Equation (3.2)
19: Compute the gradients ∇α0,iE and∇Oref

E

20: ∇β0,i
E ← FWT (∇α0,iE) = (aiSmax,k

)k ∪ (di,os,k)1≤s≤Smax,k,o {Algorithm 5}
21: for each detail coefficient di,os,k of∇β0,iE do
22: if s < Sj then
23: di,os,k ← 0 {Finer scale silencing}
24: end if
25: end for
26: end for
27: β0,i(j)← β0,i(j − 1)− h×∇β0,i

E for all subjects i {Parameter update}
28: α0,i(j)← IWT (β0,i(j)) for all subjects i {Algorithm 6}
29: Oref (j)← Oref (j − 1)− h×∇Oref

E
30: Compute the total residual value∆j according to Equation (3.5)
31: if ∆j−1−∆j

∆j−1
< 0.01 then

32: if Order[’momenta’][0] ̸= 0 then
33: Sj ← Sj−1 − 1 {Scale refinement step for the momenta}
34: Order[’momenta’]=Order[’momenta’][1:]
35: end if
36: if Order[’objects’][0] ̸= 0 then
37: S′

j ← f(Sj) {Scale refinement step for the objects using Equation (4.4) or 4.5}
38: Order[’objects’]=Order[’objects’][1:]
39: Filter the objects (Oi)1≤i≤N at scale S′

j

40: end if
41: end if
42: until Convergence
43: return Template object Oref and momentum vectors α0,i
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B.3 Tuning the number of components in geodesic re-
gression

Figure B.2: Residual error rate versus the number of components on a piecewise geodesic
regression task with the original algorithm. Mean and standard deviation are indicated
for a 5-fold cross-validation on a dataset of 30 images.
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B.4 Additional results - regression on toy data

Table B.1: Mean ± standard deviation of relative residual error over five folds of cross-
validation for atlas estimation, geodesic regression and registration on the toy dataset.
σg: width of the Gaussian kernel; kg: number of control points. P : number of compo-
nents in geodesic regression.

σg kg Algorithm P Atlas estimation Regression Registration

10 9
Original 1

17.0± 7.2
58.2± 8.7 42.8± 19.9

5 48.3± 14.6 36.4± 16.4

Multiscale 1
11.4± 2.0

66.4± 5.1 36.7± 16.5
5 36.6± 1.5 16.9± 9.6

8 16
Original 1

18± 5.7
58.3± 6.8 43.9± 11.3

5 52.7± 4.5 48.5± 12.9

Multiscale 1
7.5± 1.7

56.6± 3.0 32.7± 4.1
5 35.2± 2.7 11.9± 5.6

6 25
Original 1

17.8± 6.7
62.3± 6.5 39.9± 14.0

5 58.5± 4.9 51.6± 13.3

Multiscale 1
3.4± 1.6

56.6± 3.8 24.9± 6.2
5 34.2± 2.7 16.7± 8.4

5 36
Original 1

13.8± 4.6
61.5± 7.5 44.4± 14.3

5 57.4± 7.6 35.8± 8.3

Multiscale 1
3.6± 2.9

59.9± 6.0 24.8± 5.1
5 32.9± 2.6 12.4± 2.6

4 49
Original 1

15.0± 5.6
58.8± 8.7 47.3± 5.7

5 62.7± 4.7 39.5± 9.8

Multiscale 1
3.4± 2.5

58.9± 7.6 17.6± 5.2
5 33.2± 2.2 11.1± 2.5
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Figure B.3: Geodesic regression results on the toy dataset for σg = 10, σg = 8, σg = 6,
σg = 5, and σg = 4. First row: presentation of the dataset (only 19 among the 30 images
are shown, ranging from age 0 to 19). We show the results computed on the first fold of
cross-validation: images from atlas estimation are outlined in blue and served as starting
points to compute the geodesic trajectories from age 0 to 19.
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B.5 Additional results - regression on fetal brain im-
ages

Table B.2: Mean ± standard deviation of relative residual error over five folds of cross-
validation for atlas estimation, geodesic regression and registration on the dataset of
fetal brain images. σg: width of the Gaussian kernel; kg: number of control points. P :
number of components in geodesic regression.

σg kg Algorithm P Atlas estimation Regression Registration

20 560
Original 1

26.3± 1.3
74.4± 21.8 27.3± 9.9

4 70.6± 16.0 27.3± 10.5

Multiscale 1
24.2± 0.7

57.8± 4.6 27.7± 12.3
4 50.8± 2.9 28.9± 11.9

10 4, 256
Original 1

20.7± 2.8
73.7± 11.9 23.8± 7.9

4 68.7± 11.9 23.9± 10.6

Multiscale 1
23.2± 1.4

55.5± 3.4 22.3± 8.6
4 51.5± 2.4 21.4± 11.4

8 8, 160
Original 1

17± 1.7
77± 19.1 18.3± 7.7

4 71.6± 8.0 19.5± 8.8

Multiscale 1
15.0± 1.9

57.3± 14.4 20.9± 8.2
4 49.3± 18.7 20.3± 10.4
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Table B.3: SSIM values between the templates estimated during geodesic regression and
Gholipour et al. atlas [74] at each gestational week. Values are mean (top rows) and
standard deviations (bottom rows) over 5 folds of cross-validation. One can notice that
smaller regularizing kernels achieve higher SSIM values. Interestingly, the piecewise-
multiscale strategy provides benefit only for younger gestational ages and lower values
of σg. After 29 GW, all models and strategies have equal structural similarity to the
state-of-the-art templates.

σg kg Algorithm P 22 23 24 25 26 27 28 29 30 31 32 33 34 35

20 560

Original
1 0.86 0.84 0.84 0.82 0.81 0.80 0.79 0.78 0.76 0.75 0.73 0.72 0.70 0.68

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

4 0.84 0.84 0.85 0.82 0.81 0.80 0.79 0.78 0.76 0.75 0.73 0.72 0.71 0.69
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Multiscale
1 0.89 0.88 0.87 0.85 0.83 0.82 0.80 0.79 0.77 0.75 0.73 0.73 0.71 0.69

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.00

4 0.88 0.88 0.87 0.85 0.83 0.82 0.80 0.79 0.78 0.75 0.74 0.73 0.70 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 4, 256

Original
1 0.84 0.84 0.83 0.83 0.81 0.80 0.79 0.78 0.77 0.75 0.74 0.73 0.71 0.69

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

4 0.84 0.84 0.84 0.83 0.81 0.80 0.79 0.78 0.77 0.75 0.74 0.73 0.71 0.69
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00

Multiscale
1 0.84 0.84 0.84 0.83 0.81 0.80 0.79 0.78 0.77 0.75 0.74 0.73 0.71 0.69

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.89 0.88 0.88 0.85 0.83 0.82 0.81 0.80 0.78 0.76 0.74 0.73 0.71 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 8, 160

Original
1 0.84 0.84 0.83 0.82 0.81 0.81 0.79 0.78 0.77 0.76 0.74 0.73 0.71 0.70

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.83 0.83 0.84 0.83 0.81 0.81 0.79 0.78 0.77 0.76 0.74 0.73 0.71 0.69
0.02 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Multiscale
1 0.84 0.83 0.84 0.83 0.81 0.81 0.80 0.79 0.77 0.76 0.74 0.73 0.71 0.69

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.88 0.88 0.87 0.85 0.83 0.82 0.81 0.80 0.78 0.76 0.74 0.73 0.71 0.69
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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C.1 Fetal MRI processing pipeline

C.1.1 Semi-automated brain extraction and volume reconstruc-
tion pipeline

(a) Artifact-corrupted brain volume (b) Artifact-corrupted brain volume

(c) Blurring artifacts in a brain volume

Figure C.1: Volume-reconstructed fetal brain images excluded from the analysis.

Following volume reconstruction with NiftyMIC, 46% of brains with CCA and 24%
of healthy brains have erroneous reconstructed images as detailed in Fig. 6.3. Most of
the time, this is caused by incorrect delineation of the brain, which has a high rate of
false positive voxels (see for example Subjects 2 and 3 in Fig. C.3). Instead of correcting
manually the volumetric brain masks, which would be very time consuming, we design
a semi-automated volume reconstruction pipeline, which is described in Fig. 6.3. In cases
where brain extractionwithNiftyMIC is erroneous, we reiterate the extraction step using
the U-net CNN from [198]. U-net is affected by the same defect as NiftyMIC as it yields
a high proportion of false positive voxels, and was deemed less efficient than NiftyMIC
in previous experiments [56]. Thus, our goal is not to extract a more relevant brain
mask with the U-net algorithm, but to combine the extraction results from U-net and
NiftyMIC. Fusion is carried out in the following manner: brain extraction is performed
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with NiftyMIC and U-net, and two brain volumes are reconstructed; we then extract the
two volumetric masks yielded by both reconstructions; the intersection of the masks is
computed and used to re-mask the two volumetric images. Visual examinations of the
re-masked images are performed and the reconstruction with highest quality is selected.
This mask fusion procedure is illustrated in the second column of Fig. C.3.

In 23% of fetuseswith CCA and 11% of healthy fetuses, themask fusion yields poor re-
sults, characterized by the incomplete elimination of false positive voxels. In such cases,
manual refinement of the volumetric masks are performed using ITK-SNAP, Version 3.6
[261], in approximately 10 minutes per subject. Note that the mask fusion step renders
the manual correction less time-consuming as it eliminates large amounts of false pos-
itive voxels. The third column of Fig. C.3 shows an example of a fetal brain for which
manual correction was performed. In this worst-case scenario, the semi-automated re-
construction pipeline takes approximately one hour per subject, compared with 20 min-
utes in the optimal scenario.

Figure C.2: Volumetric image postprocessing pipeline
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C.1.2 Volumetric image postprocessing pipeline

Reorientation. As the fetus orientation is unknown during image acquisition, it is
necessary to identify the coronal, sagittal and axial planes of the reconstructed image
and rotate them if necessary. First, the inferior-superior, antero-posterior and right-
left axis are automatedally identified based on length and symmetry measurements: the
size of the brain is computed along each of the three axes, and the antero-posterior
axis is identified as the axis with the highest length measure. Then, symmetry indices
are computed along the two remaining axes, and the right-left axis is identified as the
axis with the highest symmetry index. Finally, we must ensure that each of the axes
is correctly oriented. To reorient the antero-posterior and inferior-superior axes, we
extract the 2D median sagittal plane. Areas of the putative anterior half and posterior
half of the brain are compared, and the antero-posterior axis is flipped if the surface of
the putative anterior half is larger than that of the putative posterior half. Similar area
measurements on the putative superior and inferior halves of the brain are performed in
order to reorient the inferior-superior axis.

Mask correction. The subject brains are aligned and cropped to a size of 105x100x120
voxels. To correct small errors (i.e. false positive voxels) during the brain extraction step,
a correct brain mask is extracted from the reference brain of [73], rigidly registered to
each erroneous fetal brain mask using Deformetrica, Version 4.3.0 [23], and used to re-
mask the fetal brain. Note that this automated mask correction step can only be applied
to mildly erroneous brain masks (see Subject 1 in Fig. C.3) as the overall shape of the
brain has to resemble that of the template brain. Brain masks that are already correct,
such as that of Subject 3 in Fig. C.3, go through this step without being affected.

Affine registration to a reference template. To enable inter-subject comparisons
and eliminate position and size differences, fetal brains are spatially normalized by per-
forming affine registration to a common anatomical space, namely an age-matched tem-
plate brain from Gholipour et al. atlas [73]. Finally, intensity normalization and his-
togram matching to the template are performed.
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Figure C.3: Illustration of the fetal MRI postprocessing pipeline on three examples. Top
three rows: semi-automatic volume reconstruction pipeline. Three bottom rows: vol-
umetric image postprocessing pipeline. First column: reconstruction of Subject 1 after
brain extraction with NiftyMIC yields a good quality image and no mask correction is
needed. Second column: volumetric images of Subject 2 obtained after brain extraction
with NiftyMIC (left) and U-net (right). The intersection of the two erroneous masks
is computed, yielding a correct volumetric mask. Third column: volumetric images of
Subject 3 obtained after brain extraction with NiftyMIC (left) and U-net (right). Fusion
of the two erroneous masks does not eliminate all false positive voxels, hence manual
correction is performed. White arrows indicate groups of voxels erroneously classified
as fetal brain.
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C.2 Additional results - deformation modes

C.2.1 First mode of deformation (healthy brains versus CCA)

(a) First mode of deformation applied to the parcellation image of the template brain at age 31
GW.

(b) Distribution of the subjects scores on component 1.

Figure C.4: First mode of deformation extracted from PCA at −4σ,−2σ, 0σ,+2σ, and
+4σ (a) and distribution of the subjects scores on the related component (b). Healthy
subjects are more likely to score lower on the related component than subjects with
CCA, though their distributions are closer to that of component 2. In panel (a), the
deformed template is presented in axial, coronal and sagittal views. B: brainstem. C:
corpus callosum. G: cingulate gyrus. H: hippocampi. I: interhemispheric fissure. O:
occipital cortex. R: roof of the third ventricle. S: superior temporal sulcus. T: thalami. V:
lateral ventricles.
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C.2.2 Secondmode of deformation inMR intensities (healthy brains
versus CCA)

(a) Second mode of deformation applied to the template brain at age 31 GW.

(b) Distribution of the subjects scores on component 2.

Figure C.5: Second mode of deformation extracted from PCA at−4σ,−2σ, 0σ,+2σ, and
+4σ (a) and distribution of the subjects scores on the related component (b). In panel
(a), the deformed template is presented in axial, coronal and sagittal views. B: brainstem.
C: corpus callosum. G: cingulate gyrus. H: hippocampi. I: interhemispheric fissure. O:
occipital cortex. R: roof of the third ventricle. S: superior temporal sulcus. T: thalami. V:
lateral ventricles.
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C.2.3 Firstmode of deformation inMR intensities (Complete ver-
sus partial CCA)

(a) First mode of deformation applied to the segmentation of the template at age 31 GW.

(b) Distribution of the subjects scores on component 1.

Figure C.6: First mode of deformation extracted from PCA at −4σ,−2σ, 0σ,+2σ, and
+4σ (a) and distribution of the subjects scores on the related component (b). In panel
(a), the deformed template is presented in axial, coronal and sagittal views. B: brainstem.
C: corpus callosum. G: cingulate gyrus. H: hippocampi. I: interhemispheric fissure. O:
occipital cortex. R: roof of the third ventricle. S: superior temporal sulcus. T: thalami. V:
lateral ventricles.
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D.1 Volume reconstruction pipeline (Lumière dataset)

(a) β = 0.8; 34/46 rejected slices (22.7 GW) (b) β = 0.5; 2/46 rejected slices

(c) β = 0.8; 31/33 rejected slices (27.3 GW) (d) β = 0.5; 3/33 rejected slices

(e) β = 0.8; 50/63 rejected slices (30.3 GW) (f) β = 0.5; 3/63 rejected slices

(g) β = 0.8; 41/68 rejected slices (35.7 GW) (h) β = 0.5; 5/68 rejected slices

Figure D.1: Comparison of brain volumes reconstructed with NiftyMIC [56] with an
outlier rejection threshold of 0.8 (panels (a), (c), (e) and (g)) and 0.5 (panels (b), (d), (f)
and (h)).
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D.2 Manual correction of extracted cortical surfaces

(a) dHCP output mesh 1 (32.7 GW) (b) Mesh 1 after correction

(c) dHCP output mesh 2 (28.1 GW) (d) Mesh 2 after correction

Figure D.2: Cortical surface meshes extracted with the dHCP pipeline before (panels (a)
and (c)) and after manual correction and smoothing (panels (b) and (d)). In both cases,
vertices belonging to the protrusion on the original mesh were manually selected using
Paraview and removed from the mesh. Laplacian smoothing of the protrusion was per-
formed with n = 5, 000 iterations, resulting in a flat surface, which was subsequently
fused to the original mesh. Laplacian smoothing of the entire corrected mesh was per-
formed with n = 200 iterations.
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D.3 Modification of parallel transport

Here, we summarize the numerical scheme used for parallel transport [135] and describe
the changes we made in bold style.

We note Pγ,t0,t(ω) the parallel transport of ω along the trajectory γ(t) from time
t0 to a given time t. Pγ,t0,t(ω) is uniquely defined by the integration from u = t0 to t
of the differential equation ∇γ̇(u)Pγ,t0,u(w) = 0 with Pγ,t0,t0(w) = w where ∇ is the
Levi-Civita covariant derivative.

We denote by Jω
γ(t)(h) the Jacobi Field emerging from γ(t) in the direction ω ∈

Tγ(t)M. The following proposition relates the parallel transport to a Jacobi field:

For all t > 0 small enough and ω ∈ Tγ(0)M, we have:

Pγ,0,t(ω) =
Jω
γ(0)(t)

t
+O(t2) (D.1)

To estimate Pγ,0,1(w), we can subdivide [0, 1] into N intervals and iteratively compute
the Jacobi Fields with an error of O( 1

N2 ) at each step and a total error of O( 1
N
).

D.3.1 Parallel Transport algorithm

Divide [0, 1] into N intervals of length h = 1
N
where N ∈ N . We note ωk the momenta

of the transported diffeomorphism, ck the control points and αk the momenta of the
geodesic γ at time k

N
.

We iterate the following procedure N times:
1. Compute the controls points ck+1 momentumvectorsαk+1 along themain geodesic

at time k+1
N

using a Runge-Kutta 2 method to solve the Hamiltonian equations (see
Equation (2.3)).

2. Compute the control points c±h
k+1 of the perturbed geodesic γ±h with initial mo-

menta αk ± hωk and control points ck by solving the Hamiltonian equations

3. Approximate the Jacobi field Jk+1 by Jk+1 =
c+h
k+1−c−h

k+1

2h

4. Compute the cometric matrix (i.e. RKHS matrix) Kck+1
Note that this step is ex-

pensive as Kc0 has dimension d × kg by d × kg with kg the number of control
points.

5. Compute the transported momenta ω̃k+1 according to Equation (D.1).

Kck+1
ω̃k+1 = Jk+1 (D.2)

In the initial algorithm, the equation is solved by computing the inverse
cometric matrix K−1

ck+1
. But when the number of control points is large,

the inversionmay have a lot of inadequate solutions. Hence, we invert the
regularized matrix Kck+1

: KR
ck+1

= Kck+1
+ λId, where λ is a regularizing

factor. As Kck+1
= Kc0 , this step is only performed once.
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6. Correct the value ω̃k+1 to ensure preservation of the scalar product ⟨αk+1, ωk+1⟩ck+1
=

⟨αk, ωk⟩ck and conservation of the norm, i.e. ∥ωk+1∥V = ∥ωk∥V .

D.3.2 Parallel Transport example

(a) Target subject at
t0 = 32 GW

(b) Reconstructed subject at t =
25 GW, obtained after non-
corrected parallel transport (d)

(c) Reconstructed subject at t =
25GW, obtained after corrected
parallel transport (e)

(d) non-corrected parallel transport from 32 to 25 GW

(e) Corrected parallel transport from 32 to 25 GW

Figure D.3: Parallel transport of a cortical surface mesh (panel (a)) from t0 = 32 to
t = 25 GW. In panels (d) and (e), we display the reference trajectory of the cortical
template warped by the reference geodesic γ. At 32 GW, registration computes the vector
field (blue arrows, scaling factor = 10) that optimally warps the age-matched template
(i.e. age 32 GW) to the subject. The momenta are then transported from the template
space at age 32 GW to template space at age 25 GW using either the non-corrected
parallel transport (panel (d)) either the corrected parallel transport (panel (e)). At 25 GW,
shooting of the cortical template with the transported momenta yields the reconstructed
cortex of the subject (panels (b) and (c)), i.e. the expected appearance of the subject at 25
GW. In panel (d), improper inversion of the cometric matrix yields aberrant transported
momenta from 29 GW and thus aberrant reconstruction at 25 GW (panel (b)).
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D.4 Optimization procedure

D.4.1 Hyper-parameters setting

The setting of the hyper-parameters depends either on the initial parameters θ[0] pro-
vided by the user (hence the importance of the initialization), or on other fixed parame-
ters that are provided by the user, like the deformation kernelKg. The prior distributions
impose that the parameters cannot deviate too much from the initial values provided by
the initialization procedure.

Prior distribution of the rupture times. ∀ 1 ≤ l ≤ P tl = t
[0]
l ; s2t is provided

by the user.

Prior distribution of the momentum vectors.

∀ 1 ≤ l ≤ P α0,l = α0, l
[0]; sα = ∥Kc∥F with Kc the (kg × d) × (kg × d) RKHS

kernel matrix (i.e. the matrix of distances between control points as defined by the kernel
Kg) and ∥.∥F the Frobenius norm.

Prior distribution of the template shape.

Oref = O
[0]
ref ; sr = σg, with σg the standard deviation of the deformation kernel Kg.

Prior distribution of the modulation matrix.

At0 = A
[0]
t0 ; sa = σg, with σg the standard deviation of the deformation kernel Kg.

Prior distribution of the noise parameter.

The degree of freedom hyper-parameter nϵ is calculated by computing the degree of
freedom of the problem.

Scale parameters: vϵ = 0.01 r0
nϵ
, where r0 is the initial residual value r0 =

N∑
i=1

d(Oi(ti), γi(ti)⋆

Oref )

The initial noise standard deviation parameter is also set to: σ[0]
ϵ = vϵ

D.4.2 Bayesian prior log likelihoods

Sources: log(p(si)) = −1
2
s2i

Population parameters: log(p(θpop)) =
∑P

l=1 log(p(tl)) +
∑P

l=1 log(p(α0,l)) +
log(p(Oref )) + log(p(At0)) + log(p(σϵ)

where:
• ∀ l ∈ [1, P ] log(p(tl)) = −1

2
(tl−tl)

2

s2t

• ∀ l ∈ [1, P ] log(p(α0,l)) = −1
2

∥α0,l−α0,l∥22
s2α
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• log(p(Oref )) = −1
2

∥Oref−Oref∥22
s2r

• log(p(At0)) = −1
2

∥At0−At0∥
2
2

s2a

• log(σϵ) = νϵ × (log(σ2
ϵ ) +

nϵ

σ2
ϵ
)

D.4.3 Initialization of the parameters

The initialization procedure essentially solves the same problem but in a sequential man-
ner, while the estimation of the main statistical model optimizes these parameters all
together.

Given the dataset (Oi(ti))1≤i≤N , the initialization procedure for the of the parameters
is as follows:

1. An initial template shape O[0]
ref is estimated at time t0 from the subjects close to t0

in age using cross-sectional atlas estimation. Note that we use here the traditional
kernel weighting of the subjects as in Section 7.3.5

2. Piecewise geodesic regression computes the average trajectory γ that deforms
Oref and best fits the observations (Oi(ti))1≤i≤N , yielding the initial set of mo-
mentum vectors for the geodesic components (α0,l)l∈[1,P ]

3. For each observation i, the template shape at time ti, i.e. γ(ti)(Oref ) is registered
to the observation (Oi(ti)), yielding the initial momentum vectors ωi

4. ωi is parallel transported to the tangent space at time t0, yielding the transported
momentum Pγ,ti,t0(ωi)

5. ICA is performed on the set of transported momenta (Pγ,ti,t0(ωi))1≤i≤N , yielding
the initial modulation matrix A[0]

t0 and the sources (s[0]i )1≤i≤N .
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Supplementary material of Chapter 7

D.5 Temporal discrepancy in kernel regression

(a) 22 GW (b) 23 GW (c) 24 GW

Figure D.4: Temporal discrepancy in kernel regression. Colors indicate local shape index
values, ranging from -1 (blue) to 1 (red). Some folds are visible on the template at 22 GW
and disappear at 23 GW.

D.6 Hyper-parameters and curvature measures
D.6.1 Deformation and varifold kernels

(a) Surface area (b) Gyrification Index (c) Mean curvature

(d) Positive shape index (e) Negative shape index
Figure D.5: Comparison of five curvature measures between the subjects and three spa-
tiotemporal atlases build with different values of σg and σw at each gestational week.
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D.6.2 Number of components

(a) Surface area (b) Gyrification Index (c) Mean curvature

(d) Positive shape index (e) Negative shape index

Figure D.6: Comparison of five curvature measures between the subjects and four spa-
tiotemporal atlases build with different number of components at each gestational week.
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