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Introduction

In 1915, Albert Einstein published a book presenting his theory of gravity, known as the the-
ory of “general relativity”. In this book, A. Einstein proposed an equation describing how the
geometry of spacetime and its curvature are influenced by either matter or radiation. In the
following years, these revolutionary ideas were verified on several occasions. For example, Ein-
stein proved that his theory explained the anomalous perihelion advance of the planet Mercury
without any arbitrary parameters. At the same time, in 1919, an expedition led by Eddington
confirmed general relativity’s prediction for the deflection of starlight by the Sun during the
total solar eclipse of 29 May 1919. These general relativity field equations are nonlinear and,
in consequence, hard to solve. Therefore, A. Einstein used approximation methods to derive
the results used to test for the validity of his theory. The first non-trivial solution to Einstein’s
field equations was discovered in 1916 by the astrophysicist Karl Schwarschild [1]. This solu-
tion corresponds to the spherically symmetric, stationary spacetime in the vicinity of a massive
object and is known as the Schwarzschild black hole metric. Although quite simple due to
its symmetry constraints, this metric captures a lot of general relativity’s weirdness. Indeed,
on the one hand, the Schwarzscild black hole is so massive that even light cannot escape its
gravitational attraction. On the other hand, Stephen Hawking proved in 1974 that black holes
constantly radiate thermal radiations in their surrounding at a fixed temperature called the
Hawking temperature [2].

The richness of curved spacetime physics and its mathematical beauty attracted the atten-
tion of many scientists and much popular fascination. It seems, however, following Einstein’s
ideas, that such curved spacetime is a specificity of gravity and general relativity. However,
physicists realized that in other contexts, such as optics, the wave equations obeyed by light
rays share some similarities with relativistic equations in a curved spacetime [3]. This thesis will
focus on the manifestation of curved spacetime physical properties beyond gravity in condensed
matter systems. Even though the analogy between curved spacetime physics and condensed
matter is not new, the idea that one could build a tabletop experiment to explore the specifics
of curved spacetime physics is more recent and attributed to William Unruh. Indeed, in 1981,
W. Unruh demonstrated that in an irrotational, inviscid, and barotropic fluid, the propagation
of sound waves is captured by a curved spacetime relativistic equation whose metric depends
on the specifics of the fluid mean flow [4]. The groundbreaking idea that one could design in
the laboratory an experiment probing the details of curved spacetime physics gave birth to the
domain of physics known as analog gravity. The motivation for looking at an analog model is
to reproduce in the laboratory various gravitational effects whose existence, while proven theo-
retically, surpasses our present observational capabilities. While originally, analog models were
considered in classical fluid experiments [4], the search for exotic phenomena, such as Hawking
radiation, only appearing in the low-energy regime of the analog systems, triggered the seacrh
for analog gravity in quantum fluids, such as in Bose-Einstein condensate experiments [5, 6].
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Introduction

In another context, in 1930, Richard Tolman and Paul Ehrefest were studying black body
radiation at thermal equilibrium in the presence of curved spacetime [7, 8]. They realized that
contrary to the flat spacetime result, in the presence of a curved spacetime, the equilibrium
temperature is not homogeneous but depends on the underlying spacetime. Later on, while
studying thermal transport in solids, Joaquin Luttinger built on their study to relate the energy
current observed in the presence of an inhomogeneous temperature profile to that induced by
curved spacetimes [9]. This analogy between a temperature profile and a curved spacetime
illustrates how one can use our knowledge of curved spacetime physics to determine results in
condensed matter experiments. This underlines the two-sided interest of such a relation. On
the one hand, one can use the knowledge of quantum fluids to build tabletop experiments to
test for exotic gravitational phenomena. On the other hand, one can use the knowledge of
field theory in curved spacetime to understand the transport properties of materials. The main
objective of the present thesis lies exactly in between these two points of view. In this thesis,
our objective is to relate analog gravity experiments and the thermal transport properties of
semimetals. To establish such a connection between two seemingly distinct topics, we will re-
sort to the concept of quantum fluctuations and anomalies.

Symmetries are a cornerstone of physics, common to quantum fields theory in curved space-
times and condensed matter. Indeed, following the Noether theorem, it is possible to relate
any continuous symmetry of a Hamiltonian to a conserved current. For example, time transla-
tion symmetry leads to energy conservation, while translation symmetry is associated with the
conservation of momentum. In rare cases, a system is described by a Hamiltonian possessing
a symmetry that does not translate in a conserved quantity. The field theory, describing in
particular the quantum fluctuation of the system, does not possess the symmetry of the Hamil-
tonian. Such symmetries, referred to as anomalous symmetries, translate into non-conservation
equations for the corresponding currents. Of specific interest in this thesis, the anomalous sym-
metries whose violation is induced by the presence of non-zero spacetime curvature are referred
to as gravitational anomalies. Historically, the trace anomaly, a specific type of gravitational
anomaly, was considered by Steven Christensen and Stephen Fulling in 1977 [10] to explain the
physics of 1+1 dimensional Hawking radiation. At the same time, Sean Robinson and Frank
Wilczek later related another type of gravitational anomaly known as the Einstein anomaly to
the same physical phenomenon [11].
More recently and building on the relationship between electric transport and chiral anomaly
established by Holger Nielsen and Masao Ninomiya [12], several papers look, both theoretically
and experimentally, into the possible relationships between thermal transport and gravitational
anomalies [13–16].

In this thesis, we explore the relationship between analog gravity and thermal transport in
semimetals. In the process, we resort to a field theory in curved spacetime and, more precisely,
to the notions of vacuum fluctuations and gravitational anomalies in the presence of a non-zero
spacetime curvature. The manuscript is organized as follows. Chapter 1 describes briefly how
curved spacetime physics emerges in condensed matter, whether in fluids, in one-dimensional
conductors, or when studying thermal transport. In chapter 2, we introduce the concept of
anomalies. Considering the historical example of the chiral anomaly, we introduce several
methods of calculation of the chiral anomaly and the corresponding interpretations. We then
conclude this chapter by introducing the gravitational anomalies at the heart of this thesis.
In chapter 3, we introduce the historical derivation of the Tolmann-Ehrenfest temperature
and its relationship with the Luttinger trick. This derivation is then reconsidered by taking
into account gravitational anomalies and exploring how such anomalies modify the equivalence,
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introducing the concept of anomalous Tolman-Ehrenfest temperature. This concept is afterward
generalized to other physical systems in chapters 4, 5 and 6. In chapter 4, after showing how
the concept of anomalous Tolman-Ehrenfest temperature naturally applies to the historical
example of black holes, we extend this description to strongly out-of-equilibrium condensed
matter systems either following a thermal quench or resulting from a periodic drive. In chapter 5
and 6, we consider systems with a dynamical metric and with different chirality of fermions
coupled to different metrics. In chapter 7, we discuss our results through the prism of the
historical dispute between Boltzmann, Maxwell, and Loschmidt concerning the presence of a
thermal gradient at equilibrium in curved spacetime. We finally conclude this work with an
analysis of a collaboration with an experimental group, which, while initially designed to test
for gravitational anomaly consequences, reveals a much richer phenomenology induced by a
strong coupling between phonons and electrons.
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Chapter 1
From condensed matter to curved spacetime

This thesis is concerned with the study of the interplay between curved spacetime and con-
densed matter physics. The purpose of such a study is twofold: On the one hand, such a study
can be used to understand and describe some “curved spacetime-like” phenomena arising in
condensed matter setups. On the other hand, this study can also be used to design tabletop
experiments to test for the manifestations of gravity, from simple wavepacket dynamics to the
most exotic phenomena, such as quantum gravity or Hawking radiation induced by black holes.
Therefore, a natural question is: how can we engineer curved spacetimes in the laboratory?
There exist several strategies to do so. A first natural strategy is to observe that such curvature
can, in principle, come from deformations applied to the material hosting the excitations we
consider [17–19]; however, as we will try to convince you in the following, such curvature can
also arise in many other contexts, from the simple study of heat conductivity to the hydrody-
namics of fluid in motion in inhomogeneous backgrounds.

In this chapter, we will encounter several examples in which emergent curved spacetimes
arise in condensed matter systems. First, we will treat the historical example, initially consid-
ered by W. Unruh, of a classical fluid in motion and its extension to quantum fluids. Then,
we will try to convince you that, in the presence of inhomogeneities, the physics of 1+1 di-
mensional systems can be identified with the physics of fermions in curved spacetime. Finally,
we will show that the idea of curved spacetime in condensed matter is rather natural since
it constitutes a standard tool in the study of response theory in the presence of temperature
gradients.

1.1 Curved spacetimes and black hole analogs in fluids
in motion

The idea of using classical and quantum systems to unveil some curved spacetime properties
dates back to the work of W. Gordon in 1923, who was studying inhomogeneous optics sys-
tems [3]. At the time, W. Gordon’s objective was to determine an effective metric to describe
his sample, or in other words, to use curved spacetime physics to mimic the dielectric properties
of an optical setup. This strategy is opposite to the one exemplified in the book “The Clas-
sical Theory of Fields” by L. Landau and E. Lifshitz [20], where the objective of the problem
“Equations of electrodynamics in the presence of a gravitational field” is to mimic gravity with
optics. This simple example from optics exemplifies the twofold nature of curved spacetime in
condensed matter used either to solve a problem of condensed matter using gravity or to mimic
gravity in the laboratory. Several other works employed similar analogies between acoustics
and curved spacetime wave equations to study the stability and the conservation laws obeyed
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Chapter 1. From condensed matter to curved spacetime

by shockwaves close to some celestial objects [21]. Another family of experimental works based
on such analogies emerged later, focusing on the analogy between shallow water equations and
gravity to build gravity analogs in the laboratory [22–25].

However, the paper usually considered as giving birth to the contemporary realm of analog
gravity is the one by W. Unruh in 1981 [4]. This paper proposed to use a hydrodynamic system
to mimic the physics behind black hole evaporation or Hawking radiation. In this section, we
will rederive the analogy between hydrodynamics and curved spacetime equations for both a
classical and a quantum fluid and draw an analogy between the obtained metric and one specific
to the exotic example of Schwarzschild black holes.

1.1.1 From classical hydrodynamic to curved spacetimes
First, let us review how curved spacetime equations emerge from the hydrodynamics equation of
a classical fluid. In his 1981 seminal paper [4], W. Unruh proved that if a classical fluid is both
inviscid, irrotational, and barotropic, its equations of motion are equivalent to d’Alembertian
equations, the equations obeyed by a massless scalar in curved spacetime.

The equations capturing the dynamic of an inviscid irrotational classical fluid are

∂tρ+ ∇⃗ · (ρ v⃗ ) = 0 , (Continuity equation) (1.1)

∂t (v⃗ ) + 1
2∇⃗ (v⃗ · v⃗ ) + 1

ρ
∇⃗p+ ∇⃗ϕ = 0⃗ , (Euler irrotational equations) (1.2)

with ϕ an external potential, leading to the force F⃗ = −∇⃗ϕ .
Since the fluid is irrotational, one can locally define a field ψ(x⃗) satisfying v⃗ = −∇⃗ψ. Moreover,
in a barotropic fluid, the density solely depends on the pressure, such that one can define an
enthalpy field

h(p) =
∫ p

0

dp′
ρ(p′) , (1.3)

which depends solely on the pressure p. Expressed in terms of h and ψ(x), Euler equations (1.2)
take the simplified form

−∂tψ + 1
2
(
∇⃗ψ

)
·
(
∇⃗ψ

)
+ h+ ϕ = 0 . (1.4)

Linearizing the equation around a given background (ρ0, p0, ψ0) such that
p = p0 + ϵp1 + o(ϵ) ,
ρ = ρ0 + ϵρ1 + o(ϵ) ,
ψ = ψ0 + ϵψ1 + o(ϵ) ,

(1.5)

leads to the equations of motion for the background fields∂tψ0 = ϕ+ h(p0) + 1
2

(
∇⃗ψ0

)
·
(
∇⃗ψ0

)
,

∂tρ0 = ∇⃗ ·
(
ρ0∇⃗ψ0

)
.

(1.6)

The sound waves are described by the solution (ρ1, p1, ψ1), that satisfyp1 = ρ0
[
∂tψ1 −

(
∇⃗ψ0

)
·
(
∇⃗ψ1

)]
,

∂t [c−2 p1]− ∇⃗ ·
[
ρ0∇⃗ψ1 + c−2 p1∇⃗ψ0

]
= 0 ,

(1.7)
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1.1. Curved spacetimes and black hole analogs in fluids in motion

with the squared inverse velocity c−2 = ∂ρ
∂p

∣∣∣
p0

. Inserting the definition of p1 into the second
equation leads to the equation of motion for ψ1:

∂t
[
ρ0c
−2 (∂tψ1 − ∂jψ0∂jψ1)

]
− ∂i

[
ρ0∂iψ1 + ρ0c

−2 (∂tψ1 − ∂jψ0∂jψ1) ∂iψ0
]

= 0 , (1.8)

where ∂i ≡ ∂
∂xi

, and a sum on repeated indices is assumed.

Assuming a constant background (ψ0 = Cst) and a fixed velocity c, this equation of motion
takes the simple form of a d’Alambertian equation in flat spacetime

□ψ = 0⇔ 1
c2
∂2ψ1

∂t2
−
∑
i

∂2Ψ1

∂x2
i

= 0 . (1.9)

Similarly, as we will see in section 1.1.2, in the general case, the equation (1.8) verified by ψ1 is
nothing but a d’Alambertian equation in curved spacetime or, in other words, the equation of
motion for a massless free scalar field in a curved spacetime, where the background (ρ0, p0, ψ0)
fully determines the metric according to

√
− det(gρσ)gµν = ρ0

c2

(
1 −∂iψ0

−∂iψ0 −c2δij + ∂iψ0∂jψ0

)
. (1.10)

Shaping this metric amounts to carefully choosing the external forces (−∂iϕ) applied to the
system to set the background flow. Note, at this point, that even though W. Unruh’s main
objective was to design a black hole metric, this demonstration is more general. It allows one to
design specific curved spacetime metrics in hydrodynamic systems by controlling the evolution
of the mean flow.

1.1.2 Scalar fields in curved-spacetime
We now turn to the study of Klein-Gordon field equations in curved spacetime. In the previous
section, we have seen that in the presence of a constant background (Ψ0 = Cst), the equation
for sound waves takes the form of a massless d’Alambertian equation (1.9). In order to identify a
possible curved spacetime analog underlying the evolution of sound waves in an inhomogeneous
system, in this section, we describe the Klein-Gordon equation in curved spacetime. Indeed,
in a flat spacetime, the dynamic of a real scalar field is captured by the Klein-Gordon (also
known as Klein-Gordon-Fock) action [26,27], defined in D + 1 dimensions as

SKG =
∫

dt dDx⃗
(
ℏ2

2 ∂µϕ ∂
µϕ− 1

2m
2c2ϕ2

)
.r (1.11)

The corresponding equations of motion are[
∂µ∂

µ +
(
mc

ℏ

)2
]
ϕ =

[
□ +

(
mc

ℏ

)2
]
ϕ = 0⇔ 1

c2
∂2ϕ

∂t2
−
∑
i

∂2Φ
∂x2

i

+
(
mc

ℏ

)2
ϕ = 0 . (1.12)

from which we recover (1.9) with m = 0.

The action (1.11) can be extended to curved spacetime with metric gµν using a minimal
coupling procedure to gravity. Such a procedure consists of two steps:

• Generalizing the notion of scalar product to curved spacetimes thanks to the metric gµν :

AµB
µ ≡ Aµ η

µνBν → Aµ g
µνBν . (1.13)
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Chapter 1. From condensed matter to curved spacetime

• Generalizing the measure of integration covariantly:

dD+1x ≡ c dt dDx⃗→ dD+1x
√
|det(gµν)| ≡ c dt dDx⃗

√
|det(gµν)| . (1.14)

The Klein-Gordon action then takes the form

SKG =
∫

dD+1x
√
|det(gµν)|

[
ℏ2

2 g
µν∂µϕ ∂νϕ−

1
2m

2c2ϕ2
]
. (1.15)

The corresponding equation of motion, generalizing (1.12) to a curved spacetime, reads[
□g +

(
mc

ℏ

)2
]
ϕ ≡ 1√

|det(gρσ)|
∂µ

[√
|det(gρσ)| gµν∂νϕ

]
+
(
mc

ℏ

)2
ϕ = 0 . (1.16)

A comparison with equation (1.8) allows us to identify it with the evolution of a massless
Klein-Gordon field in a curved spacetime whose metric is defined by (1.10).

1.1.3 Curved spacetime from quantum fluids
Coming back to classical fluids, it is possible to engineer the mean flow of (1.6) by carefully
choosing the forces applied to it [28] such that sound excitations are effectively described by
curved spacetime equations, with a metric fixed by (1.10). Nonetheless, in addition to their
classical properties, curved spacetimes possess a very rich semiclassical and quantum phe-
nomenology, as exemplified by Hawking’s predictions [2]. For this reason, it is interesting to
extend the previous analogy to quantum fluids. However, to probe such quantum phenomena,
it is essential to consider systems with a low temperature and a large quantum coherence to
reduce the thermal noise. Therefore, to study such analogs in the laboratory, it is natural
to generalize Unruh’s ideas to quantum fluids such as superconductors, superfluid 3He [29–32]
or Bose-Einstein condensates [5, 33]. Following these ideas, in what follows, we analyze the
emergence of curved spacetimes in two different quantum systems. First in a Bose-Einstein
condensate, recovering equations reminiscent of the one obtained in classical hydrodynamics
and then in a superfluid or analogously in a p-wave superconductor.

Emergent curved spacetimes physics in Bose-Einstein condensates

Let us first review how curved spacetime physics arises in Bose-Einstein condensates, following
the review of C. Barcelo, S. Liberati, and M. Visser [33]. In a quantum system of N interacting
bosons, Bose-Einstein condensation corresponds to a configuration where a finite fraction of
the bosons lie in the same single-particle quantum state. The observables of such a condensate
can, in principle, be deduced from a second quantized Hamiltonian of the form

H =
∫

dx⃗ Ψ̂†(x⃗, t)
[
− ℏ2

2m∇⃗
2 + Vext(x⃗)

]
Ψ̂(x⃗, t)

+ 1
2

∫
dx⃗ dy⃗ Ψ̂†(x⃗, t)Ψ̂†(y⃗, t)V (x⃗− y⃗) Ψ̂(y⃗, t)Ψ̂(x⃗, t) ,

(1.17)

with Vext(x⃗) an external trapping potential and V (x⃗− y⃗) the interatomic two-body interacting
potential. However, when N is large, computing the spectrum of this Hamiltonian, solving for
Ψ̂ becomes impractical. N. Bogoliubov introduced in 1947 a natural mean-field ansatz of the
form

Ψ̂(x⃗, t) = ψ(x⃗, t) + ϕ̂(x⃗, t) , (1.18)

8



1.1. Curved spacetimes and black hole analogs in fluids in motion

where ψ(x⃗, t) = ⟨Ψ̂(x⃗, t)⟩ is referred to as the wave function of the condensate [34], while ϕ̂
denotes the excitation on top of the condensate.

Assuming that the number of particles that do not lie in the condensate wavefunction is
small compared to N, a zeroth order approximation leads to the equation of motion of the
condensate

iℏ∂tψ(x⃗, t) =
[
− ℏ2

2m∇⃗
2 + Vext(x⃗) +

∫
dy⃗ ψ†(y⃗, t)V (x⃗− y⃗)ψ(y⃗, t)

]
ψ(x⃗, t) . (1.19)

If we further assume the two-body interaction to be short range V (x⃗) ≈ κδ(x⃗) with κ = 4πaℏ2

m

where a represents the scattering length, the condensate wave function verifies the Gross-
Pitaevskii (also known as the non-linear Shrödinger or time-dependent Landau-Ginzburg) equa-
tion

iℏ∂tψ =
(
− ℏ2

2m∇⃗
2 + Vext(x⃗) + κψ†ψ

)
ψ , (1.20)

where for brevity we omitted the (x⃗, t) explicit dependence of the wave function.

Starting from equation (1.20), let us show that in a way similar to the classical hydro-
dynamic, the weak fluctuation of ψ around a background ψ0 can be described by a curved
spacetime Klein-Gordon equation. To do so, let us parametrize ψ using the so-called Madelung
representation with a phase and a density such as ψ =

√
n exp (iθ/ℏ). Developing ψ around a

background ψ0 = √n0 exp (iθ0/ℏ) can be done by writingn = n0 + δn ,

θ = θ0 + δθ .
(1.21)

Assuming the perturbation to be small, there is no backreaction of the fluctuation δn, δθ on
the background whose equation of motion∂tn0 + 1

m
∇⃗ ·

(
n0∇⃗θ0

)
= 0 ,

∂tθ0 + 1
2m

(
∇⃗θ0

)
·
(
∇⃗θ0

)
+ Vext + κn0 − ℏ2

2m
∇⃗2√n0√

n0
= 0 ,

(1.22)

are identical to Euler equations for a barotropic inviscid irrotational fluid (1.6) where ψ0 ⇔
θ0
m

with a quantum potential term Vquant = − ℏ2

2m
∇⃗2√n0√

n0
. Similarly, the fluctuations verify an

equation similar to the one obeyed by the sound waves in classical fluid (1.7),∂tδn+ 1
m
∇⃗ ·

(
δn∇⃗θ + n∇⃗δθ

)
= 0 ,

∂tδθ + 1
m

(
∇⃗δθ

)
·
(
∇⃗θ
)

+ κδn− ℏ2

2mD2 [δn] = 0 ,
(1.23)

with

D2 [δn] = ∇⃗
2δn

2n0
− ∇⃗

2n0

2n0
δn−

(
∇⃗δn

)
·
(
∇⃗n0

)
2n2

0
+

(
∇⃗n0

)2

2n3
0

δn . (1.24)

Comparison with equation (1.7) shows that a quantum correction appears through the operator
D2. However, on wavelengths larger than the healing length 2π

k
> ξ = ℏ√

mκn
, this term becomes

negligible such that (1.23) can be interpreted, similarly to the classical case, as the equation of
motion for a massless scalar field in a curved spacetime (1.16) whose metric is given by

√
− det(gρσ)gµν = n

c2
s

(
1 −vi
−vj −c2

sδ
ij + vivj

)
, (1.25)

9



Chapter 1. From condensed matter to curved spacetime

with vi = ∂iθ
m

the fluid velocity, and c−2
s = m

κn
the sound velocity. For larger wavelengths,

another approximation applies. This approximation, called the eikonal approximation, assumes
a slow variation of the background amplitude compared to the fluctuation amplitude, such that
D2 [δn] ≈ 1

2n0
∇⃗2δn. Under this approximation, the energy spectrum becomes

ω = v⃗ · k⃗ ± cs
∣∣∣⃗k∣∣∣→ ω = v⃗ · k⃗ ±

√√√√c2
sk⃗

2 +
(

ℏ
2mk⃗2

)
. (1.26)

We recover a linear spectrum for large wavelengths (2π/k > ξ). Therefore, the dynamic of
the corresponding particles is well described by the relativistic physics picture presented pre-
viously. For smaller wavelengths (2π/k < ξ), quantum corrections induce non-linearities, and
the relativistic picture breaks down.

Emergent curved-spacetime physics in superfluids and p-wave superconductors

As we have seen in the previous paragraph, curved spacetime physics emerges naturally in
Bose-Einstein condensates. In this paragraph, we will focus on a different quantum system:
superfluids and p-wave superconductors, illustrating the emergent metrics with the specific ex-
ample of vortices, following the review of G. Volovik [35].

Let us consider a specific spinless example of BCS Hamiltonian leading to pairing in a
p-wave state

H− µN =
∑
p⃗

(
p⃗2

2m − µ
)
a†p⃗ ap⃗ −

λ

V

∑
q⃗

q⃗ a†−q⃗ a
†
q⃗

 ·
∑

p⃗

p⃗ a−p⃗ ap⃗

 , (1.27)

with V the size of the sample and λ the interaction strength.

In the superconducting or superfluid state, the quantity ∑p⃗ p⃗ a−p⃗ ap⃗ acquires a non-zero vac-
uum expectation value. As in the case of s-wave superconductivity, the two Fermi particles form
a Bose quasiparticle with 0 total momentum. However, in the case of p-wave superconductivity,
the order parameter is no longer a complex scalar but a complex vector

2λ
V

〈∑
p⃗

p⃗ a−p⃗ ap⃗

〉
= e⃗1 + i e⃗2 , (1.28)

with e⃗1,2 real vectors, whose value is determined by minimizing the vacuum energy.
Symmetry considerations, however, show that two types of solutions are possible:

• In the first case, the two vectors are perpendicular to each other and of equal magnitudee⃗1 · e⃗2 = 0 ,
|e⃗1| = |e⃗2| = ∆0

pF

(1.29)

with ∆0 the amplitude of the superconducting gap and pF =
√

2µm. Such a case arises,
for example, in the superfluid phases 3He-A or 3He-A1, whose precise form depends on
the specific spin structure which we do not consider here.

• In the second case, the two vectors are parallel to each other and can only differ by a
phase factor

e⃗1 + ie⃗2 = e⃗ eiΦ (1.30)
with e⃗ a real vector along the common direction. Such a situation naturally arises in
spin-triplet superfluid and superconductors.

10



1.1. Curved spacetimes and black hole analogs in fluids in motion

For now, let us ignore their precise value and consider the situation in the limit of weak
interactions λ → 0. In this limit, the quantum fluctuations of the order parameter are small.
Neglecting the term quadratic in these fluctuations, one obtains the simplified Hamiltonian

H− µN ≈ V

4λ
(
(e⃗1)2 + (e⃗2)2

)∑
p⃗

Hp⃗ ,

Hp⃗ =
(
p⃗ · p⃗
2m − µ

)
a†p⃗ ap⃗ + a†−p⃗ a−p⃗

2 + p⃗ · e⃗1 − i e⃗2

2 a−p⃗ ap⃗ + p⃗ · e⃗1 + i e⃗2

2 a−p⃗ ap⃗ .

(1.31)

For each p⃗, this Hamiltonian can be diagonalized using the operators Li defined as

L1 + iL2 = ap⃗ a−p⃗ , L1 − iL2 = a†p⃗ a
†
−p⃗ , L3 = 1

2
(
a†p⃗ ap⃗ + a†−p⃗ a−p⃗ − 1

)
, (1.32)

such that [Li ,Lj] = iϵijkLk. The corresponding Hamiltonian reads

Hp⃗ = 1
2

(
p⃗ · p⃗
2m − µ

)
+ 1

2E (p⃗)
(
ã†p⃗ ãp⃗ + ã†−p⃗ ã−p⃗ − 1

)
,

E (p⃗) =

√√√√( p⃗ · p⃗
2m − µ

)
+ (p⃗ · e⃗1)2 + (p⃗ · e⃗2)2 ,

(1.33)

with ãp⃗/ã
†
p⃗ the creation and annihilation operators corresponding to fermionic quasiparticles

(the so-called Bogoliubov quasiparticles). The Hamiltonian (1.33) is that of fermionic quasi-
particle excitations above a mean field vacuum

H− µN ≈ ⟨H − µN⟩+
∑
p⃗

E (p⃗) ã†p⃗ ãp⃗ . (1.34)

For the rest of this section, let us focus on the first case (1.29) for which e⃗1 ∧ e⃗2 ̸= 0. The
quasiparticle energy vanishes at two points in momentum space

q⃗pm = ±pF l⃗ , l⃗ = e⃗1 ∧ e⃗2

|e⃗1 ∧ e⃗2|
, (1.35)

with pF the Fermi momentum of the ideal Fermi gas pF =
√

2µm. Close to these points, called
“Fermi points” by analogy with free fermions, the quasiparticle energy spectrum becomes

E2
(
q⃗± + k⃗

)
=
(
e⃗1 · k⃗

)2
+
(
e⃗2 · k⃗

)2
+
(
e⃗3 · k⃗

)2
, (1.36)

with e⃗3 = c∥l⃗, c∥ = pF

m
, which corresponds to the energy spectrum of two massless relativistic

particles in curved spacetime, and more precisely a so-called Weyl Hamiltonian.
This spectrum (1.36) then defines the components of the metric in a comoving frame1


g00 = 1 ,
gi0 = g0i = 0 ,
gij = −∑3

k=1 e
i
ke
j
k = −c2

∥l
ilj − c2

⊥ (δij − lilj) , (i, j) ∈ {x, y, z}2 ,

(1.37)

with c⊥ = |e⃗1| = |e⃗2|.

1Note that in these cases, the space-space components of the metric have the dimension of an inverse squared
velocity, while g00 has no dimension. One could recover the usual dimensionality introducing a velocity scale
vF , and rescaling gij → 1/v2

F gij , g0i → 1/vF g0i and gi0 → 1/vF gi0 with x0 = vF t

11



Chapter 1. From condensed matter to curved spacetime

However, in the laboratory frame, the fluid can possess a non-zero velocity vs, defined by

v⃗s = ℏ
2mmi∇⃗ni , (1.38)

where m⃗ = e⃗1/c⊥ and n⃗ = e⃗2/c⊥. The energy of such a system can be obtained from the
comoving energy (1.36), via a Doppler shift E

(
q⃗± + k⃗

)
→ E

(
q⃗± + k⃗

)
+ k⃗ · v⃗s ± pF l⃗ · v⃗s, such

that the metric reads
g00 = 1 ,
gi0 = g0i = −vis ,
gij = −c2

∥l
ilj − c2

⊥ (δij − lilj) + visv
j
s , (i, j) ∈ {x, y, z}2 ,

(1.39)

which implies a “line element” of the form

dτ 2 = dt2 + gij
(
dxi − visdt

) (
dxj − vjsdt

)
, (1.40)

with
gij = − 1

c2
∥
lilj − 1

c2
⊥

(
δij − lilj

)
, (i, j) ∈ {x, y, z}2 . (1.41)

Curved spacetimes physics, therefore, naturally emerges when studying p-wave superconduc-
tivity as well as superfluid 3He.

Note that contrary to the hydrodynamic equations used in equations (1.2), and (1.20), these
systems are not irrotational: by taking the rotational of the fluid velocity v⃗s, one recovers the
Mermin-Ho relation [36]:

∇⃗ ∧ v⃗s = ℏ
4mϵijkl

i
(
∇⃗lj

)
∧
(
∇⃗lk

)
. (1.42)

However, when the vector l⃗ is constant, e.g. along the vector e⃗z, one can define the angle Φ as

m⃗+ in⃗ = (e⃗x + ie⃗y) eiΦ , (1.43)

such that the velocity
vs = ℏ

2m∇⃗Φ , (1.44)

can be interpreted as the angular velocity at which the axes e⃗1,2 rotate around the z-axis. In
such cases, the velocity field is, by definition, irrotational except in the presence of topological
defects of the vierbein field. These are the so-called quantized vortices, characterized by their
quantized circulation ∮

v⃗s · dx⃗ = n1κ0 , (1.45)

with n1 an integer and κ0 = πℏ/m
In the vicinity of a n1 = 1 vortex, a simple ansatz characterizing the emergent metric is given
by 

l⃗ = e⃗z ,

e⃗1 = c(r)e⃗r ,
e⃗2 = c(r)e⃗ϕ ,

(1.46)

with c(r) the "speed of light" verifying c(0) = 0 and c(+∞) = c⊥, while the speed of the fluid
is characterized by v⃗s(r) = vs(r)e⃗ϕ = κ 1

2πr e⃗ϕ. Therefore, the line element reads

ds2 = dt2
(

1− v2
s

c2

)
− 2v⃗s · dr⃗ dt− 1

c∥
dz2 + 1

c2

(
dr2 + r2dϕ2

)
. (1.47)
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1.1. Curved spacetimes and black hole analogs in fluids in motion

As we will see in the next section, this line element is reminiscent of that close to a 2+1 di-
mensional black hole whose interior matches the ergoregion of the vortex (see Fig. 1.1).

Curved spacetimes can, therefore, arise both in the study of classical and quantum systems.
The corresponding metric can be directly related to the order parameter in superfluids and
superconductors. The metric depends on the mean flow in classical fluids and Bose-Einstein
condensates. It can be controlled by applied potential or forces, allowing the use of such systems
as gravity analogs to simulate curved spacetime physics in the laboratory.

Figure 1.1: Quantized vortex velocity profiles Comparison between the radial velocity
c⊥ and the fluid velocity vs defines the ergoregion, viewed as an analog black hole (extracted
from [35]).

1.1.4 Black-holes in Bose-Einstein condensates: classical fluid inter-
pretation

In 1974, S. Hawking predicted [2] that black holes are not entirely black; instead, they slowly
evaporate, releasing an outgoing energy current called the Hawking radiation. Questions con-
cerning entropy in the presence of black holes remain topical, such as the information paradox
first established by S. Hawking in 1976 [37,38]. Designing a tabletop experiment whose metric
identifies with that of a black hole is of particular interest. Given the form of the metric used
to study sound waves (see (1.10), and (1.25)), can we describe exotic objects such as black
holes, characterized by a Schwarzschild black-hole metric [1] in these setups? To answer this
question, we will first review the notion of Gullstrand-Painlevé coordinates [39,40] before using
them to relate our analog metrics to some intuitive description [41] of a black hole.

To do this, let us focus on the Schwarzschild metric, defined in spherical coordinates by the
line element

ds2 = gµνdxµdxν =
(

1− rH
r

)
c2dt2 −

(
1− rH

r

)−1
dr2 − r2dΩ2 , (1.48)

where dΩ2 is the angular line element (for example in 3+1 dimensions dΩ2 = dθ2 + sin2(θ)dϕ2)
while rH = 2GM

c2 is the Schwarzschild radius. This metric contains two singularities at r = 0
and r = rH . Such a metric describes a black hole if the radius of the physical object of mass
M is smaller than rH . However, despite its peculiar form, the singularity at r = rH is not
a genuine physical singularity (contrary to the one at r = 0) but simply a singularity of the

13



Chapter 1. From condensed matter to curved spacetime

Figure 1.2: Black holes as fish close to a waterfall In this analogy, let us replace the space
flowing into a Schwarzschild black hole with a river flowing towards a waterfall and photons
(light rays) by fish swimming fiercely in the current. Outside the horizon, the fish swimming
upstream can make way against the flow. Nevertheless, inside the horizon, beyond the point of
no return, the river is flowing so fast towards the waterfall that it beats all fish doomed to fall
into it (adapted from [43]).

coordinate system used to describe the black hole. This fact can be understood following
A. Gullstrand [39], P. Painlevé [40] and G. Lemaître [42], by defining a new time coordinate
cτ = ct+ 2√rrH + rH ln

(√ r
rH
−1√

r
rH

+1

)
. The Schwarzschild metric then takes the simple form

ds2 = gµνdxµdxν = c2dτ 2 −
(

dr +
√
rH
r
c dτ

)2
− r2dΩ2. (1.49)

While the coordinate transformation is only defined for r > rH , the metric (1.49) provides
an extension of the metric (1.48) to the infinite future. Note that this metric no longer has
any singularity at r = rH . Since there exists a coordinate system presenting no singularity
for x = xH , we can deduce that x = xH is not a singularity of the metric but solely of the
coordinate system.

Moreover, as noticed by A. Hamilton and J. Lisle in 2006 [41], looking at the light-like
geodesics verifying ds2 = 0 ⇔ dr

dτ = −c
(√

rH

r
± 1

)
provides a relatively simple picture of the

black hole, that we can extend to the hydrodynamic picture developed in the previous section:
spaces itself flows radially towards r = 0 at a velocity c

√
rH

r
, and r = rH marks the horizon

of the black hole: by analogy, in the case of the hydrodynamic metric, sound waves play the
role of the excitation (photons) while the fluid with inhomogeneous velocity ∂iθ plays the role
of the spacetime. This analogy is often used to represent black holes using the image of fishes
in a river (see Fig. 1.2).
While the description above is specific to Schwarzschild black holes, according to [41], this
mental image of a black hole as a flowing river is far more general and can, for example, be
applied to rotating black holes. Moreover, this common analogy underlies current laboratory
studies of general analog black holes. A hydrodynamic metric with a characteristic line element

14



1.2. Inhomogeneous 1D systems

of the form
ds2 = gµνdxµdxν = c2

sdt2 −
(
dr⃗ + V⃗ (r⃗)dt

)2
, (1.50)

will be analog to a black hole if we have both a sub-sonic(cs < |V⃗ |) and a supersonic (cs > |V⃗ |)
region, separated by an event horizon at which cs = |V⃗ |. For example, this correspondence
enabled measuring correlations between inside and outside regions of such black holes, testing
experimentally for Hawking radiation [44,45].

1.2 Inhomogeneous 1D systems
As we have seen in the previous section, analogous curved spacetimes arise naturally when
studying sound waves in both classical and quantum fluids. The tunability of these systems
through the choice of the mean flow allows one to simulate several metrics and even the most
exotic ones, such as black hole metrics. Analogy with curved spacetime physics also arises in
the totally different context of the dynamics of fermions in inhomogeneous 1+1 dimensional
systems. A significant difference in this context is the nature of the excitations since, as we
will see in this section, instead of massless scalars in curved spacetimes, the excitations in such
systems are described by fermionic fields in curved spacetime. This implies that their dynam-
ics is now captured by a curved spacetime Dirac Hamiltonian instead of a curved spacetime
Klein-Gordon Hamiltonian as in the previous section.

In this section, after reviewing how 1+1 dimensional Dirac Hamiltonians arise in condensed
matter physics, we will introduce two strategies that can be used to create analog curved-
spacetime Dirac Hamiltonians, modulating either the couplings or the trapping potentials of
the homogeneous Hamiltonians. In other words, we will study to what extent the physics
of these inhomogeneous Hamiltonians identify with the physics of curved spacetime fermions,
introducing along the way the notion of curved-spacetime Dirac Hamiltonians.

1.2.1 Flat spacetime Dirac Hamiltonian: From condensed
matter to field theory

From free electrons...

Let us start our presentation with the example of free, 1+1 dimensional fermions, whose Hamil-
tonian is given by

H =
∫ +∞

−∞
dx c†(x)

[
− ℏ2

2m∂2
x − µ

]
c(x) . (1.51)

This Hamiltonian describes the physics of free fermions, with a quadratic dispersion relation
ε(k) = ℏ2

2m (k2 − k2
F ), with kF = 1

ℏ
√

2mµ the Fermi momentum. Its large length scale (i.e., low
energy |ε− µ| ≪ µ) physics is obtained by linearizing the energy spectrum around the Fermi
surface k± = ±kF

ε(k± + q) ≈ ±ℏvF q , (1.52)

with vF = ℏkF

m
=
√

2µ
m

the Fermi velocity.

This low-energy behavior can be shown formally to be described by a corresponding low-
energy Hamiltonian,

H̃ = −
∫ +∞

−∞
dx iℏvF

2

[
ψ†R
↔
∂ xψR − ψ†L

↔
∂ xψL

]
. (1.53)
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Chapter 1. From condensed matter to curved spacetime

Figure 1.3: From free to Dirac fermions The original model of free fermions (a) is replaced
by a model of Dirac fermions with a linear spectrum (b). This amounts to introduce two species
of fermions (right(R) and left(L) moving fermions). The spectrum is now extended to all values
of k, introducing an infinite number of negative energy states but describing low-energy physics
properly. (Extracted from [46])

In this Hamiltonian, we introduce two species of fermions. ψR describes right-moving low
energy excitation around +kF with a positive velocity = vF while ψL describes left-moving
ones around −kF and with a negative velocity −vF (see Fig. 1.3). Such a Hamiltonian can
alternatively be reformulated as a free, massless Dirac Hamiltonian

H̃ = −iℏvF2

∫ +∞

−∞
dx Ψ†γ0γ1↔∂ xΨ, (1.54)

where the Fermi velocity vF replaces the speed of light c, the bispinor Ψ, stands for Ψ ≡(
ψR
ψL

)
, while γ0 and γ1 are 2× 2 matrices defined by

γ0 = σx , γ1 = iσy . (1.55)

In the absence of electron-electron interactions, generic 1+1 dimensional systems can be
formally described by such a 1+1 dimensional Dirac Hamiltonian. The procedure can be
understood as follows. After computing the energy spectrum of this model, one fills all energy
states such as ε < µ. Close to the crossing points ε = µ denoted kn, one can linearize the energy
spectrum as ε(kn + q) ≈ ℏvn q for |q| < Λn with vn the corresponding Fermi velocity, and Λn

a momentum cutoff. The large length (small wavelength) physics of the model is therefore
captured by the generalized Dirac Hamiltonian

H̃ = −
∑
n

∫ +∞

−∞
dx iℏvn

2 ψ†n
↔
∂ xψn , (1.56)

where the field ψn describes the low energy excitations around k = kn.

... to Luttinger liquids

However, free electrons are only an ideal limit in condensed matter, and one needs to consider
electron-electron interactions. While in higher dimensions, it is possible to treat interaction
perturbatively in a Fermi liquid approach introducing a notion of quasiparticle, in 1+1 dimen-
sional systems, individual electrons cannot move without pushing surrounding electrons: effects
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of interaction are exacerbated and only collective excitations exist [46]. The failure of pertur-
bation theory and the emergence of these collective excitations are captured by the concepts of
bosonization and Luttinger liquid theory [47–49], whose action is

SLL = ℏ
2πK

∫
dxdt

[1
u

(∂tϕ)2 − u (∂xϕ)2
]
, (1.57)

where ϕ(x) is related to the density of particles ρ(x) through ρ(x) = − 1
π
∇ϕ(x), while the

parameters u and K depend on the interactions. In the absence of interactions, they equal
u = vF and K = 1.

1.2.2 Dirac fermions: from flat to curved spacetimes
In order to modify the previous models to recover analog curved spacetimes, it is essential to
remind ourselves how to generalize a Dirac Hamiltonian (1.54) to curved spacetimes. In this
section, we will generalize the notion of Dirac Hamiltonians to curved spacetimes, as we have
done for scalar in section 1.1.2. Then, we introduce the notion of momentum-energy tensor for
Dirac fields, which will be useful throughout the rest of this thesis.

Minimal coupling for Dirac fermions: From flat to curved spacetimes

In flat spacetime, the dynamic of a spinor field is captured by the Dirac action [50], given in
1 + 1 dimension by

SD = iℏvF
2

∫
dt dx

(
ψ̄γµ

↔
∂µψ

)
, (1.58)

and the corresponding equations of motionγµ
→
∂µψ = 0

ψ̄
←
∂µγ

µ = 0
(1.59)

with γµ the so-called gamma matrices verifying the flat spacetime Clifford algebra

{γµ , γν } = γµγν + γνγµ = 2ηµν1 (1.60)

where ηµν = diag(1,−1). In 1+1 dimensions, a solution to these equations is provided by the
Pauli matrices

γ0 = σx , γ1 = iσy . (1.61)
Generalizing the action (1.58) to a curved spacetime with a metric gµν is more subtle than

in the case of scalar fields for two reasons: first, in curved spacetime, the Clifford algebra has
to be modified following

{γµ , γν } = γµγν + γνγµ = 2gµν1 . (1.62)
Second, in special relativity, the action has to be invariant under the local Lorentz transform.
Therefore, as one generalizes the covariant derivatives in the presence of an electromagnetic
field to get a theory invariant under local U(1) transformations, one needs to generalize the
partial derivatives ∂µ such that ∂µψ behaves as a spinor under local Lorentz transformation.

To solve these difficulties, one introduces a “square root” eaµ of the metric tensor called a
tetrad, and its inverse, the cotetrad eµa such as

gµν = eaµηabe
b
ν ,

eµae
b
µ = δba ,

eµae
a
ν = δµν .

(1.63)

The minimal coupling procedure can then be extended to fermions as follows:
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Chapter 1. From condensed matter to curved spacetime

• Generalizing the measure of integration covariantly:

dD+1x ≡ c dt dDx⃗→ dD+1x
√
|det(gµν)| ≡ c dt dDx⃗

√
|det(gµν)| , (1.64)

• Generalizing the gamma matrices to curved spacetimes:

γµ = eµaγ
a , (1.65)

with γa the flat spacetime gamma matrices defined above,

• Replacing the partial derivatives by spinor derivative ∂µ → Dµ = ∂µ + ωabµσ
ab with

σab = − i
4

[
γa , γb

]
the generator of Lorentz transformation and ωabµ the spinor connection

ωabµ = eaν ∇µe
ν
b = eaν

(
∂µe

ν
b +

{
ν
ρµ

}
eρb

)
(1.66)

defined from the Levi-Civita affine connection
{
ν
ρµ

}
.

Following this minimal coupling procedure, the Dirac action (1.58) is generalized to curved
space as

SD = iℏvF
2

∫
dx dt det

(
ebν
)
eµa

(
ψ̄γa

↔
Dµψ

)
. (1.67)

In 1+1 dimensions, this action can be simplified to

SD = iℏvF
2

∫
dx dt det

(
ebν
)
eµa

(
ψ̄γa

↔
∂µψ

)
, (1.68)

and it may seem pointless to introduce the notion of spinor derivatives. However, integrating
by parts (1.68) leads to an equivalent action (up to a boundary term)

S̃D = iℏvF
∫

dx dt det
(
ebν
)
ψ̄eµaγ

aDµψ , (1.69)

which restores the dependence on the spinor connection.
From this action, we are now able to generalize the Dirac equation of motion (1.59) as

γaeµa
→
Dµψ = 0⇔ γa

(
eµa
→
∂µ + 1

2det(e)∂µ [det (e) eµa ]
)
ψ = 0 ,

ψ̄
←
Dµ e

µ
a γ

a = 0⇔ ψ̄
(
eµa
←
∂µ + 1

2det(e)∂µ [det (e) eµa ]
)
γa .

(1.70)

Hamiltonian and momentum-energy tensor

In the previous paragraph, we deduced the equations of motion of fermions in curved spacetime.
However, contrary to the hydrodynamic approach in which we recognized a curved spacetime
Klein-Gordon equation of motion (1.8), in section 1.2.1 the model is provided by a Hamiltonian
instead of the equation of motion. Therefore, it is worth introducing the notion of Hamiltonian
and momentum-energy tensor in the context of fermions in the curved spacetime.

By definition, the momentum conjugated to the fields ψ and ψ† are

π† = δS

δ∂0ψ
= iℏvF

2 det(e)ψ†γ0γae0
a , (1.71)

π = δS

δ∂0ψ†
= −iℏvF2 det(e)γ0γae0

aψ . (1.72)
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1.2. Inhomogeneous 1D systems

The Hamiltonian density is defined as the Legendre transform of the Lagrangian density

HD(x) = π†∂0ψ + ∂0ψ
†π − det(e)Lg

= −det(e)iℏvF2 exa

(
ψ̄γa

↔
∂ xψ

)
,

(1.73a)

which can now be compared to the flat spacetime version:

HD(x) = −iℏvF2

(
ψ̄γx

↔
∂ xψ

)
. (1.73b)

In curved spacetime, both the Hamiltonian and the momentum can be cast into the components
of a single object called the momentum-energy tensor defined by

Tµν = 1
2det(e)

(
δSD
δeµa

eνa + µ↔ ν

)
, (1.74)

or in other words, using the definition of Dirac’s action in a curved spacetime (1.67), we obtain

Tµν = iℏvF
4

[
eνa(x)

(
ψ̄γa

↔
∂µψ

)
+ µ↔ ν

]
− gµν

[
iℏvF

2 eρb(x)
(
ψ̄γb

↔
∂ ρψ

)]
. (1.75)

Alternatively, a non-symmetric version of this tensor is obtained by varying the action with
respect to the tetrad while keeping the spinor connection fixed as

T µa = − 1
det(e)

δSD
δeaµ

= iℏvF
2 eρae

µ
b

[
ψ̄γb

↔
∂ ρψ

]
− eµa

[
iℏvF

2 eρb(x)
(
ψ̄γb

↔
∂ ρψ

)]
. (1.76)

When working in curved space, it is often helpful to express the non-symmetric-version of the
momentum-energy tensor with only curved spacetime indices corresponding to

T̃ µν = T µaeaν , (1.77)
from which we deduce the expressions of the densities and currents

ε = T̃ 0
0 (Energy density)

p = T̃ xx (Pressure)
Jε = vF det(e)T̃ x0 (Density of energy current) .
Π = 1

vF
det(e)T̃ 0x (Momentum density)

(1.78)

Note that the symmetrized version (1.74) can be recovered as

Tµν = T̃µν + T̃νµ. (1.79)

1.2.3 Inhomogeneous 1+1 dimensional systems as curved
spacetime Dirac Hamiltonians

Equipped with both the flat spacetime as well as the curved spacetime Dirac formalism, we are
now ready to tackle the main question: Is it possible, similarly to the hydrodynamic case, to
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Chapter 1. From condensed matter to curved spacetime

relate the physics of inhomogeneous 1+1 dimensional systems to the one of curved spacetime
field theory?

In this section, we will therefore introduce several basic examples of experimentally relevant
inhomogeneous systems, studying to what extent these can be described as a field theory in
curved spacetimes. We will afterward generalize these ideas to other inhomogeneous systems
considered in other condensed matter contexts.

1+1 dimensional systems in inhomogeneous potentials

As a base example, and following the discussions of [51] and [52], let us consider a free fermionic
system in an inhomogeneous external potential described by the Hamiltonian

H =
∫ +∞

−∞
dx c†(x)

[
− ℏ2

2m∂2
x − µ+ Vext(x)

]
c(x) . (1.80)

Such a Hamiltonian arises naturally as the continuum limit of an XX spin chain in an inhomo-
geneous magnetic field whose Hamiltonian is given by

Ĥ = −J2
∑
n

(
S+
n S−n+1 + S+

n+1S−n
)
−
∑
n

hn S
z
n . (1.81)

Indeed, upon Jordan-Wigner transformation [53–55], this hamiltonian reduces to a lattice
fermion model given by

Ĥ = −J2
∑
n

(
c†n−1cn + c†ncn−1

)
−
∑
n

hn c
†
ncn . (1.82)

From the spectrum of this Hamiltonian in the absence of magnetic field, E = −J. cos (k.a)− h
with a the lattice spacing, we deduce that, for small wavelengths k.a ≪ 1, the two models
described, by Hamiltonians (1.81), and (1.80), are equivalent provided m = ℏ2/ (J a2) and
µ− Vext(n.a) = hn.

For simplicity, let us assume the potential V (x) to be smaller than the chemical potential
µ on a single interval, and let us define a local chemical potential on this interval defined by
µ(loc)(x) = µ − V (x). By analogy with the system without any external potential studied in
section 1.2.1, one would like to write an explicit and equivalent Dirac Hamiltonian to describe
the low-energy physics properties of this system.
The corresponding approximation has been known for a long time in the literature as the so-
called local density (or Thomas-Fermi ) approximation. One obtains the ground state of such
a system by filling all the negative energy eigenstates while letting all the positive ones empty.
Several typical length scales control the dynamics of this problem:

• The size of the system L (interval on which µ > V (x)),

• The average distance between two neighboring particles lcell approximated as the inverse
of the local density n(x) = ⟨c†(x)c(x)⟩,

• The typical length associated with the variation of the local potential lV = µ(loc)

∂xµ(loc) ,

If lcell ≪ lV , an approximation valid in the thermodynamic limit, we can locally approximate
the chemical potential as constant over a length l such that lcell < l < lV . Since we have a large
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1.2. Inhomogeneous 1D systems

number of particles, we can interpret in these regions µ(loc) as the local chemical potential and
define a notion of local Fermi momentum k

(loc)
F (x) = 1

ℏ

√
2mµ(loc)(x). In this approximation,

the Fermi gas behaves locally, in the low energy limit, as a free Fermi gas with a local Fermi
momentum k

(loc)
F (x) and hence a local Fermi velocity v

(loc)
F (x) = ℏk(loc)

F

m
=
√

2(µ−V (x))
m

. The
low-energy Hamiltonian reads

H̃V = −iℏ2

∫ +∞

−∞
dx v(loc)

F (x) Ψ†γ0γ1↔∂ xΨ , (1.83)

which is nothing but a Dirac Hamiltonian in a curved spacetime (1.73a) whose line element is
given by

ds2 =
(
v

(loc)
F (x) dt

)2
− dx2 . (1.84)

We have shown in this section that free fermions in an inhomogeneous potential can be inter-
preted in a low-energy picture as massless Dirac fermions in curved spacetime. This statement,
valid for free fermions, can be extended to several other types of excitations. It is possible, for
example, to generalize it to interacting models such as inhomogeneous Luttinger liquids [51],
or even to Tonks-Girardeau gases [52,56].

While we used a local density approximation to identify these models with a specific
fermionic model in curved spacetime, other strategies are available such as starting from the
bosonized model, proving that, in a low energy limit, the height field defined by ρ(x) = 1

2π∂xh(x)
verify a bosonic curved spacetime Hamiltonian [52,56].

Another route towards curved spacetimes: inhomogeneous couplings

Starting from the homogeneous version of the lattice Hamiltonian (1.81,1.82), another logical
and experimentally relevant strategy to induce inhomogeneities consists in considering inho-
mogeneous hoppings or, in other words, a position-dependent hopping Jn, in the presence of
a constant magnetic field h along the z-axis. This construction leads to a Hamiltonian of the
form

Ĥ = −1
2
∑
n

Jn
(
S+
n S−n+1 + S+

n+1S−n
)
−
∑
n

hn S
z
n . , (1.85)

where we introduce for simplicity the function f(x) such as Jn = J. f(n.a) with a the lattice
spacing.

As we have seen previously, the low energy physics of such a Hamiltonian is obtained by
linearizing the spectrum around the momenta ±kF . In this case, under the hypothesis that
the perturbations are smooth enough, kF ∂xf

f
≪ 1, as in the previous example, one can use a

coarse-grained description of the system with local coupling J(x) = J. f(x) that we can treat
following the procedure developed in the homogeneous case. The total Hamiltonian can then
be written in a low energy limit as

H̃V = −iℏ2

∫ +∞

−∞
dx v(loc)

F (x) Ψ†γ0γ1↔∂ xΨ , (1.86)

where v(loc)
F (x) = vF

√
f(x).
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A third route: modulating the Hamiltonian density

Starting from a homogeneous lattice Dirac Hamiltonian

Ĥ =
∑
n

ĥn , (1.87)

with hn local Hamiltonians (acting only on a finite number of sites and links), another strat-
egy to realize an analogous curved spacetime Hamiltonian consists of modulating the whole
Hamiltonian [52] such that

Ĥ =
∑
n

f(n.a)ĥn . (1.88)

This idea is actually motivated by the observation that, for a tetrad field of the form

eaµ =
(
f(x) 0

0 1

)
, (1.89)

the curved spacetime Hamiltonian density ĥc of a Dirac field (1.73a) is related to its flat
spacetime couterpart (1.73b) ĥ through

ĥc(x) = f(x) ĥ(x) . (1.90)

Applying such a strategy to the XX spin chain (1.81) can be understood as a combination of
both previous strategies since it implies a modulation of both the magnetic field h → f(x). h
and the couplings J → f(x). J .

Following the strategy discussed in the previous paragraphs, if the dynamic of the low-
energy excitations in the original Hamiltonian is captured by a relativistic equation with a
characteristic velocity vF , obtained by linearizing the spectrum on a wavelength window of size
δk, under the hypothesis that the modulation is smooth enough δk ∂f

f
≪ 1, the same relativistic

equation captures the dynamics of the low-energy excitations of the modulated Hamiltonian
but now in curved spacetime with a space varying velocity vloc

F (x) = f(x).vF .

In the literature, such modulations of the Hamiltonian density and their curved spacetime
interpretations were considered for several purposes:

• Initially, people considered the so-called spherical deformation characterized by the mod-
ulation function f(x) = sin2

(
πx
L

)
with L the size of the system for numerical pur-

poses [57–60]. Indeed, they realized that the fast decrease of the function f towards the
end of the system reduces the dependence on the edge of the thermodynamic quantities.
In particular, it was shown that the many-body ground state of a deformed open-ended
system was identical to that of a periodic boundary system without any deformations [59].

• Similarly, the rainbow Hamiltonian, heavily studied for its specific entanglement proper-
ties [61–65], can be defined as such a deformed Hamiltonian (1.88) with
hn = −J

2

(
c†n+1cn + c†ncn+1

)
and a deformation characterized by f(x) = e−hm.

Therefore, curved spacetime field theory can describe the low-energy physics of inhomo-
geneous 1+1 dimensional systems. This claim, exemplified by the case of inhomogeneities
induced either by an external potential or by varying the couplings, illustrates once again the
importance of curved spacetimes in condensed matter physics, which was, in particular, used
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1.3. From thermal transport to curved spacetime: Luttinger’s legacy

to design Hamiltonians with specific spectra and entanglement properties.

Another possible type of inhomogeneity corresponds to space-dependant interaction strength,
corresponding to a Luttinger liquid with an inhomogeneous parameter K(x) following [66].
This, however, goes beyond the scope of this section.

1.3 From thermal transport to curved spacetime:
Luttinger’s legacy2

As we have seen in this chapter, curved spacetimes quantum physics arises naturally as effective
theories of low-energy excitations in inhomogeneous systems. However, as we will see in this
section, curved spacetimes also appear as a necessary tool when studying linear response theory
in the presence of thermal gradients.

A system at equilibrium will respond to an external stimulus, leading to the appearance of
local currents. When the strength of the perturbation is increased, the response of the system
and the currents scale accordingly. For a weak enough perturbation, the current is proportional
to the stimulus with a proportionality coefficient depending solely on the equilibrium property
of the system. This is the essence of the linear response. For example, the electric conductivity
tensor relates the charge current to an applied electric field E⃗ as

Ji = σijEj . (1.91)

In condensed matter physics, common stimuli that one can apply to a system are an electric
field E⃗ or a gradient of temperature ∇⃗T . Linear response theory then predicts a response in
the form of a particle and energy current expressed as [9, 15,67,68]

Ji = L
(1)
ij Ej + L

(2)
ij T ∇⃗j

1
T
, (1.92a)

Jεi = L
(3)
ij Ej + L

(4)
ij T ∇⃗j

1
T
. (1.92b)

In order to compute the coefficients L(k)
ij , the usual strategy is to identify the relation between

the response to an external field and the response to internal statistical forces. In the case of the
electric field, at equilibrium, the external electric field is compensated by an internal gradient
of electrochemical potential V such that ∇⃗V = −E⃗. This relation, also known as Einstein’s
relation, allows one to relate the linear response to an electric field to that of a gradient of
chemical potential. Linear response to an electric field can therefore be studied by considering
the perturbation to the Hamiltonian in D + 1 dimensions:

δH =
∫

dDr⃗ V (r⃗)ρ(r⃗) , (1.93)

with ρ(r⃗) the charge density at position r⃗ and V the electrochemical potential such that
∇⃗V = −E⃗.

When focusing on the response to a temperature gradient, a natural question arises: What is
the corresponding thermal potential? Or, in other words, what is the relation analogous to the
Einstein relation in the case of a thermal gradient, allowing one to compute the corresponding
linear response? In 1964, J. Luttinger solved this issue in a seminal paper entitled “Theory of

2Yes, yes, the same Joaquin Luttinger
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Chapter 1. From condensed matter to curved spacetime

thermal transport coefficients” [9], demonstrating that the appropriate field is a gravitational
potential Φg such that ∇⃗Φg = − ∇⃗T

T
. We can reformulate this as the fact that an external

gravitational potential is compensated at equilibrium by an inhomogeneous temperature profile.
Linear response theory to a temperature gradient can therefore be studied in this system by
considering the perturbation

δH =
∫

dDr⃗Φg(r⃗)h0(r⃗) , (1.94)

with h0(r⃗) the local Hamiltonian (energy) density3 of the unperturbed Hamiltonian defined
such that the unperturbed Hamiltonian reads

H0 =
∫

dDr⃗ h0(r⃗). (1.95)

Therefore, the full Hamiltonian reads, at linear order in Φg,

H = H0 + δH =
∫

dDr⃗ (1 + Φg(r⃗))h0(r⃗) , (1.96)

which is nothing but the same Hamiltonian but now in a curved spacetime whose metric is
given by gµν = ηµν + hµν , with hµν the linear perturbation.

Therefore, curved spacetime arises naturally in condensed matter whenever one studies a
system with an inhomogeneous temperature profile. According to J. Luttinger, this equivalence
between curved spacetime and temperature is so profound that he insisted in a footnote of his
article [9] that

“In fact, if the gravitational field didn’t exist, one could invent one for the purposes
of this paper.”

3This comes from the fact that in general relativity, a gravitational potential arises as a linear perturbation
of the coefficient g00 of the flat metric ηµν → ηµν + 2δµ0δν0Φg and naturally couples to the momentum-energy
tensor component T 00, which is nothing but the Hamiltonian density whose expectation value is equal to the
energy density.
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Chapter 2
Quantum field theory anomalies in curved
spacetimes

Symmetries simplify our understanding of the world. They underly both the classical and the
quantum description of physical phenomena. However, surprisingly, a classical symmetry is
sometimes lost in the quantization procedure. We will call such symmetry anomalous.

In this section, after introducing the notion of anomaly, we will, through the historical
example of the chiral anomaly, see how to compute it and how it can manifest itself in condensed
matter experiments. Then, coming back to the main focus of this thesis, quantum physics
in curved spacetimes, we will identify anomalous symmetries while studying field theory in
curved spacetimes, first in the general situation and then focusing on the specific case of 1+1
dimensional spacetimes.

2.1 Anomalies in quantum field theory
In classical field theory, following Noether’s first theorem [69], one can associate a conserved
current density to any continuous symmetry of the action. For example, time translation in-
variance implies energy density conservation. Similarly, space translation implies momentum
conservation, and the U(1) symmetry implies electric current conservation.

If, at the quantum level, this invariance is no longer valid or, equivalently, if the classically
conserved current is no longer conserved, the symmetry is then referred to as anomalous.
There are different ways of computing anomalies (see, for example [70–76]), depending on the
formalism employed, and leading to different interpretation. For example,

• In the functional integral formalism, the central object is the partition function of
the theory defined as

Z[Aµ, ...] =
∫

DΨ̄DΨe
i
ℏS[Ψ̄,Ψ,Aµ,...], (2.1)

with S
[
Ψ̄,Ψ, Aµ, ...

]
the action of the corresponding theory. In this formalism, invari-

ances are captured by the so-called Ward-Identities.
A classical symmetry is related to an invariance of the action S under a symmetry op-
eration. Assuming that this symmetry holds at the quantum level implies that the inte-
gration measure (DΨ̄DΨ) is also invariant under the same symmetry operations. If not,
Ward-identities are violated by a term defined as the anomaly.
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Chapter 2. Quantum field theory anomalies in curved spacetimes

• Alternatively, in the diagrammatic description, a product of two operators is ill-
defined; one, therefore, needs to introduce a proper regularization. There is, however, no
guarantee that the regularized Green’s function is still invariant under the symmetry; if
they are not, there is an anomaly.

The first encounter of theorists with anomalies occurred in 1969, where the chiral anomaly ex-
plained the fast decay of the neutral pi-meson into two photons (π0 → 2γ) (see section 2.2 for a
more detailed introduction). At first, it was thought to be an epiphenomenon. However, with
the birth of QCD and string theory, anomalies became a fundamental property of quantum
fields.

At this level, two kinds of anomalies need to be distinguished. On the one hand, if the
symmetry we are studying corresponds to an external symmetry, for example, associated with
a classical background metric or U(1) electromagnetic fields, anomalies lead to a physical vio-
lation of the conservation equations. On the other hand, if the symmetry is global, implying
only internal degrees of freedom, anomalies inhibit a quantization of the theory together with
the corresponding gauge field. This seems to be problematic. It is, however, quite the contrary.
Imposing that anomalies must vanish constrains a quantum field theory. For example, they are
essential for the study of string theory [77, 78] or for the standard model for which it provides
crucial constraints on the particle content [75,79–81].

In this thesis, we will mostly focus on symmetries and anomalies when coupling the system
to a classical metric field. In the following section, we will come back to the historical example
of the chiral anomaly and some of its consequences on transport in relativistic semimetals in
condensed matter systems.

2.2 A historical example: chiral anomaly from field
theory to condensed matter

The first occurrence of anomalies appeared in particle physics with the study of the decay of
the neutral pi-meson into two photons (π0 → 2γ). Since the pi-meson π0 is neutral, it cannot
couple directly to any electromagnetic field. The first perturbative study of its decay rate by
J. Steinberger in 1949, before the birth of QCD, used a coupling of pion with neutron dou-
blet to obtain a result in perfect agreement with the experiments [82, 83]. However, it was
realized by Y. Nambu that the nature of π0, as a Nambu-Goldstone boson associated with
the SU(2)R × SU(2)L symmetry, implies a coupling far smaller than first thought by a factor
m2
π/m

2
N such that the amplitude computed initially was no longer in agreement with the decay

(and even equal to 0 in the low-energy limit also known as soft π0 limit [84]). This apparent
issue was later solved in 1969, with the work of S. Adler [85] and J. Bell and R. Jackiw [86],
proving that in the presence of an electromagnetic field, the SU(2)R × SU(2)L symmetry is
violated by a mass independent term: the chiral anomaly.

In this section, we will review this historical example as an archetypical example of anomaly,
studying two derivations of the anomalous term before turning to the emergence of this anomaly
in condensed matter and some of its experimental consequences.
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2.2.1 The historical diagrammatic derivation
The classical action and its symmetries

Even though the original calculations assumed 3+1 dimensions, for simplicity and following [76],
let us focus on a 1+1 dimensional analog in this section. In a 1+1 dimensional flat spacetime,
the Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2ηµν12, µ, ν = 0, 1 , (2.2)

with ηµν = diag(1,−1), is satisfied by the Pauli matrices

γ0 = σx , γ1 = iσy . (2.3)

Additionally, one defines a third gamma matrix, often referred to as γ5, as

γ5 = −γ0γ1 = σz ,
{
γ5, γν

}
= 0 , µ = {0, 1} . (2.4)

If ψ is the Dirac spinor, with two components in 1+1 dimension, the free fermion action is
given by

S =
∫

dxdtL0 = iℏc
∫

dxdt ψ̄γµ∂µψ , (2.5)

with ψ̄ = ψ†γ0.
This action (2.5) has two global symmetries:

• A U(1) symmetry associated with the transformations

ψ → ψ′ = eiαψ , ψ† → (ψ′)† = e−iαψ† , (2.6)

• A chiral or axial symmetry associated with the transformations

ψ → ψ′ = eiαγ
5
ψ , ψ† → (ψ′)† = ψ†e−iαγ

5
. (2.7)

When applying Noether’s first theorem, these symmetries are respectively associated with the
conservation of

• The charge or vector current
jµV = ecψ̄γµψ , (2.8)

• The axial current 1

jµA = ecψ̄γµγ5ψ . (2.9)

Here, the conservation of these currents is expressed as

∂µj
µ
α = 0 , α = V,A , (2.10)

which can be verified using the equation of motions issued from (2.5):γµ
→
∂µψ = 0 ,

ψ̄γµ
←
∂µ = 0 .

(2.11)

Note that in 1+1 dimensions, since γµγ5 = −ϵµνγν , with ϵ01 = 1, we can write

jµA = −ϵµν (jV )ν , (2.12)

which will be useful in the following.
1Since the definition of the current involves a matrix γ5 it is sometimes also denoted jµ

5
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Diagrammatic computation of the anomaly

When coupling the system to an external electromagnetic field with a minimal coupling La-
grangian density of the form

Lint = jµVAµ , (2.13)
both the U(1) (2.6) and the axial (2.7) symmetries are still present, and we would expect both
currents to remain conserved. Our objective is, to compute ⟨jµV ⟩ perturbatively in powers of
Aµ, to deduce ⟨jµA⟩ using the relation (2.12).

In perturbation theory, the first non-zero contribution comes from the linear correction,
which, given the form of the interaction (2.13), can be expressed as

⟨δjµV (x, t)⟩ = i

ℏ

∫
dydt′⟨jµV (x, t)jνV (y, t′)⟩Aν(y) . (2.14)

After a Fourier transform, this relation can be rewritten as

⟨δjµV (p)⟩ = i

ℏc
Πµν(p)Aν(k)δ2(p+ k) , (2.15)

where Πµν is a linearly divergent integral given by

iΠµν(p) = (−iec)2
∫ d2q

(2π)2 tr
(
γµ
i

/p
γν

i

/p− /q

)
, (2.16)

often represented as the Feynmann diagram shown in Fig. 2.1(a). After a proper regularization

(a) Feynman diagram associated to the 1+1 di-
mensional chiral anomaly, corresponding to the
integral (2.16) (extracted from [71]).

(b) Example of diagrams appearing in the com-
putation of the 3+1 dimensional chiral anomaly
(extracted from [71]).

Figure 2.1: One loop Feynmann diagram involved in the computation of the chiral
anomaly in dimensions 1+1 and 3+1

of the linear divergence, we have

Πµν(p) =
(
s ηµνp2 − pµpν

) 1
p2
e2c2

π
, (2.17)

with s a real number depending on the regularization procedure. This implies that the quantum
regularized conservation equation for jµα reads∂µj

µ
V = (1− s) e2c

πℏ ∂νA
ν ,

∂µj
µ
A = s e

2c
πℏ ϵ

νρ∂νAρ = s e2c
2πℏϵ

µνFµν .
(2.18)
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Since jµV is a physical quantity related to the electric charge, we impose that it is conserved.
Therefore, the only physical regularisation corresponds to s = 1, implying at the 1-loop order
a chiral anomaly of the form

∂µj
µ
A = e2c

2πℏϵ
µνFµν . (2.19)

Several remarks should be made at this point. First, the anomaly at 1-loop order is identical to
the result obtained by summing higher perturbative orders. This surprising outcome is related
to the fact, proven by S. Adler and W. Bardeen in 1969 [87] that the chiral anomaly is, in fact,
1-loop exact, or in other words, receives no correction from higher loop diagrams. The strategy
used above can be generalized to any even dimension, where in 2n dimensions, the Feynman
diagrams one needs to regularize are n+1-gons diagrams. For example, Fig. 2.1(b) shows two
examples of the triangle (3-gons) diagrams used to compute the chiral anomaly in dimension
3+1. Finally, we realize that even though in the above arguments the anomalous current is the
axial one, equations (2.18) only prove that the conservation of both currents is simultaneously
impossible. The choice of the one we impose to conserve is motivated by physical arguments,
a scenario quite recurrent in the study of anomalies.

2.2.2 Anomalies, non-conserved currents, and effective actions
In the previous section, we addressed the notion of chiral anomalies as an impossibility to regu-
larize a theory after quantization. Here, we address it from an alternative point of view. Using
the functional integral formalism, we will relate the chiral anomaly to a non-invariance of the
measure of integration under the symmetry transformation.

In these calculations, it is convenient to work in a Euclidean formalism. Let us start with
a reminder concerning the notion of Euclidean coordinates. These coordinates are defined by
the correspondence

x0 = c t→ −ix4 = −ic τ (2.20)
where τ is considered as a real number. At the same time, the gamma matrix γ0 is modified
according to

γ0 = −iγ4 . (2.21)
The general contravariant vector V µ is also replaced by V 0 → −iV 4, and similarly A0 → iA4,
such that the contraction vµAµ stays unchanged in Euclidean theory. The metric however
changes to gEµν = −δµν .

Following these definitions, the Dirac operator in Euclidean theory is given by

/DE = γµ
(
∂µ −

ie

ℏ
Aµ

)
≡ γ4

(
∂4 −

ie

ℏ
A4

)
+ γ1

(
∂1 −

ie

ℏ
A1

)
. (2.22)

The partition function of the theory in the presence of an external electromagnetic field is now,
in Euclidean signature, given by

Z [Aµ] =
∫

Dψ̄Dψ e
1
ℏSE[ψ̄,ψ,Aµ] , (2.23)

where the measure Dψ̄Dψ indicates an integration over all fields satisfying the proper boundary
conditions while

SE
[
ψ̄, ψ, Aµ

]
= iℏc

∫
dxdτ ψ̄ /DEψ . (2.24)

Let us now reparametrize this action by introducing an infinitesimal chiral rotation of the
spinors

ψ′ = eieγ
5αψ , ψ̄′ = ψ̄eieγ

5α . (2.25)
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Since this is a simple redefinition of the field, one can write

Z [Aµ] =
∫

Dψ̄′Dψ′ e
1
ℏSE[ψ̄′,ψ′,Aµ]

=
∫

Dψ̄′Dψ′ eic
∫

dxdτ ψ̄γµ[∂µ− ie
ℏ Aµ+ie ∂µαγ5]ψ

=
∫

Dψ̄′Dψ′ e
1
ℏSE[ψ̄,ψ,Aµ]+

∫
dxdτ α ∂µj

µ
A .

(2.26)

Therefore, if one assumes that the measure of integration is invariant under the chiral rotation

δ

δα(x)Dψ̄′Dψ′ = 0 , (2.27)

then taking a functional derivative of (2.26) with respect to α(x), based on the definition of
the average of an operator

⟨O(x)⟩ = 1
Z [Aµ]

∫
Dψ̄′Dψ′O(x)e

1
ℏSE[ψ̄′,ψ′,Aµ] , (2.28)

we recover the quantum version of the classical conservation equations (2.10)

⟨∂µjµA⟩ = 0 . (2.29)

However, additional care is required when looking at the measure of integration. As we will see
in the following, the anomaly, in fact, hides in the fact that the measure of integration is not
invariant under such a transformation. To see this, let us expand the spinors ψ̄ and ψ in term
of an orthonormal eigenbasis of the Dirac operator /DE spanned by the spinors ϕ̄n and ϕm such
that

/DE ϕn = λnϕn , (2.30)

and ψ̄ = ∑
n b̄nϕ̄n ,

ψ = ∑
n anϕn ,

(2.31)

with an and bn being Grassman-value numbers.
The measure of integration can then be defined as

Dψ̄Dψ =
∏
n

dandb̄n . (2.32)

Let us now consider the effects of the chiral rotation ψ → ψ′ on these Grassman variables,
using the orthonormal properties of the eigenspinor basis. At first order in α, we get

a′m =
∫

d2x ϕ̄m
(
1 + ieα(x)γ5

)∑
n

anϕn

= δmn +
∑
n

Cmnan ,
(2.33)

with
Cmn = ie

∫
d2xαϕ̄mγ

5ϕn . (2.34)

The change of the measure of integration (2.32) is then given by the Jacobian of this transfor-
mation

Dψ̄′Dψ′ = det (1 + C)−2 Dψ̄Dψ ≈ e−2ie tr(∑n

∫
d2xαϕ̄nγ5ϕn)Dψ̄Dψ . (2.35)
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In order to compute the value of this Jacobian, it is important to pay attention to the diver-
gences. Indeed, in this Jacobian, we have the product of an infinite number of terms with
an operator whose trace vanishes. A proper way to regularize this issue was introduced by
K. Fujikawa in 1979 [88] (see [89] for an overall review of the method). It consists in using the
relation

tr
(∑

n

ϕ̄nγ
5ϕn

)
= lim

Λ→∞
tr
[∑
n

ϕ̄nγ
5e−(λn

Λ )2

ϕn

]
. (2.36)

Inserting a resolution of the identity and using the definition (2.30) of λn, one can rewrite this
as

tr
(∑

n

ϕ̄nγ
5ϕn

)
= lim

Λ→∞

〈
x

∣∣∣∣∣∣∣∣tr
γ5e

−
(

γµ(∂µ− ie
ℏ Aµ)

Λ

)2
∣∣∣∣∣∣∣∣x
〉

= lim
Λ→∞

〈
x

∣∣∣∣tr(γ5e
1

Λ2 [∂µ− ie
ℏ Aµ]2

+ ie
ℏΛ2 γ

µγρ∂µAρ

)∣∣∣∣x〉 .
(2.37)

Expanded on a plane wave basis, this reduces to

tr
(∑

n

ϕ̄nγ
5ϕn

)
= lim

Λ→∞
Λ2
∫ d2q

(2π)2 tr
γ5e

−
[
qµ−

eAµ
ℏΛ

]2
+ ie

ℏΛ2 γ
µγρ∂µAρ

 . (2.38)

Expanding the exponential in powers of Λ, the only non-zero contribution turns out to be finite
and given by

−2ie
∫

d2xα(x) tr
(∑

n

ϕ̄nγ
5ϕn

)
= − e2c

2πℏ

∫
dxdt α(x) ϵµνFµν . (2.39)

One calls it the (Euclidean) effective action.

Returning to the conservation equation, taking the derivative of (2.26) with respect to α
,with the proper definition of the measure of integration including (2.39), one gets

⟨∂µjµA⟩ = i
e2c

2πℏϵ
µνFµν . (2.40)

Going back to Minkovski space, we recover the expression of the chiral anomaly

⟨∂µjµA⟩ = e2c

2πℏϵ
µνFµν . (2.41)

Therefore, in the path integral formalism, the anomaly hides in the non-invariance of the
measure of integration and, more precisely, the Jacobian of the associated transformation,
leading to the effective action. This strategy can be generalized to any even dimension. In
particular, it was applied in 3+1 dimensions in Fujikawa’s original work [88] to determine the
3+1 dimensional chiral anomaly

⟨∂µjµA⟩ = e3c

16π2ℏ2 ϵ
µνρσFµνFρσ. (2.42)

2.2.3 Chiral anomaly as a Hilbert infinite hotel: from quantum field
theory to experiments

In the previous two sections, we have seen that the chiral anomaly can be described either as
an impossibility to regularize a theory in section 2.2.1 or as a modification of the measure of
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integration in a path integral approach in section 2.2.2. However, in condensed matter theory,
the linear band description is only an approximation. One cannot choose the regularization
procedure at will since the band structure naturally provides it. Therefore, we can wonder if,
in such a case, the chiral anomaly still emerges in low-energy physics.

Here, we will show how the chiral anomaly emerges in condensed matter systems, first in
1+1 dimension, before generalizing our approach to 3+1 dimensional systems. Then, we will
use these descriptions to describe a particular, experimentally observed consequence of the
chiral anomaly: the negative magnetoresistance in Weyl semimetals.

The anomaly in 1+1D as particle-hole production from a Dirac sea

(a) Dispersion relation for a positive (a) and a
negative (b) chirality crossing point. The black
and white points denote the filled and empty
states, while the arrow indicates the direction of
movement of the particle when an electric field is
turned on (taken from [12]).

(b) Example of a 1+1 dimensional dispersion re-
lation. The black and white points denote the
filled and empty states, while the arrows indicate
the direction of movement of the particle when an
electric field is turned on (Note that the bound-
ary of the Brillouin zone P = ±π

a are identified)
(taken from [12]).

Figure 2.2: Chiral anomaly in condensed matter in both low- and high-energy
descriptions

In 1983, H. Nielsen and M. Ninomiya generalized the high energy physics chiral anomaly
to condensed matter systems [12]. Let us consider a 1+1 dimensional metallic band dispersion
relation. By definition, a metal possesses points in momentum space whose energy equals the
chemical potential µ. As described in section 1.2.1 and represented in Fig. 1.3, around these
points, denoted kn, one can linearize the energy spectrum as

ϵ(kn + δk) = µ+ ℏvnδk , (2.43)

with vn = ∂kϵ|kn
, and define a “chirality” for these modes as χn = sign(vn); The low energy

model close to kn is then equivalent to a Dirac fermion with chirality χn. In condensed matter,
to quantify such a theory, we define the vacuum or Dirac sea as the physical state with all
states with energies smaller than µ occupied. This prescription then allows one to define ρn the
particle density close to each one of the crossing points by comparing any state to this reference
state.
Now, in 1+1 dimensions, a U(1) gauge symmetry allows to use a temporal gauge, such that
a uniform electric field is captured by the gauge field Aµ = (0, A(t)) with E(t) = 1

c
∂tA(t). In

a uniform electric field, in the low-energy picture, the dynamics of the particle close to these
crossing points are given by

iℏ∂tψn = (−iℏvn∂x − eA(t))ψn . (2.44)
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2.2. A historical example: chiral anomaly from field theory to condensed matter

Treating each of the ρn as independent from each other, one would naively expect, from sym-
metry considerations, each of these densities ρn to be conserved. However, in the presence of
an electric field, the semi-classical equations of motion for electrons close to kn are given by∂tx = vn ,

∂tp = eE ,
(2.45)

implying, since the particle density verifies dρn = χn

2π dk (see Fig. 2.2(a)),

∂tρn = χn
eE

2πℏ , (2.46)

or in other words, written in a gauge invariant form

∂µj
µ
n = χn

e2E

2πℏ = χn
e2c

4πℏϵ
µνFµν , (2.47)

with jµn =
(
evnρn
jn

)
. This is the chiral anomaly for a single chirality.

From this study, based on one of the crossings, we can deduce the total anomaly expression,∂µj
µ
V = ∂µ

∑
n j

µ
n = (∑n χn) e2c

4πℏϵ
µνFµν ,

∂µj
µ
A = ∂µ

∑
n χnj

µ
n = (∑n 1) e2c

4πℏϵ
µνFµν ,

(2.48)

which is identical to (2.19) if we consider only two crossing, with χ±1 = ±1. This description
of the chiral anomaly illustrated in Fig. 2.2 provides yet another interpretation. First, notice
that the chiral anomaly equations (2.48) do not guarantee the charge to be conserved. It will
only be conserved if the total chirality is equal to 0. This observation provides a constraint on
condensed matter models and was formulated and proven as a theorem based on topological
arguments, translation invariance, and locality by H. Nielsen and M. Ninomiya [90–92]. This
description allows us to formulate the chiral anomaly in a low energy description as the creation
or annihilation of states coming from the infinitely deep Dirac Sea represented (see Fig. 2.2(a)).
It should not appear as a surprise since when looking at the system beyond the linear regime
approximation, one realizes that the number of such states is not infinite; in fact, the different
crossing points are related through the high energy modes. In this picture, the anomaly is
captured by the transit of electrons from one crossing to another through high-energy modes
beyond the linear regime (see Fig. 2.2(b)).

From 1+1 dimension to 3+1 dimensions through Landau levels

The discussion in the previous paragraph seems very specific to 1+1 dimensional systems, while,
in solid states experiments, we typically deal with 3+1 dimensional systems. In this paragraph,
we will show, using the notion of Landau levels, how the 1+1 dimensional argument can be
straightforwardly extended to a 3+1 dimensional system in the presence of a magnetic field.

Before discussing this dimensional reduction strategy, it might be interesting to discuss in
more detail the systems to which we would like to apply such a strategy. In dimensions larger
than 1+1, condensed matter materials whose low energy description is captured by a massless
Dirac equation are called relativistic semimetals. Such materials are

• Dirac semimetals in 2+1 dimensions such as graphene;
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• Dirac, Weyl, and nodal line semimetals in 3+1 dimensions, such as Na3Bi [93] and
TaAs [94].

For more details on the physics of relativistic semimetals, the interested reader is referred to
the review [95,96] or to the theses [97, 98].

This paragraph will focus on semimetals with a well-defined notion of chirality: Weyl
semimetals. By definition, a Weyl semimetal is a material whose low-energy electronic prop-
erties are captured by a Weyl Hamiltonian. Using the Weyl representation for the gamma
matrices [99], every spinor can be decomposed into eigenvectors of the chirality operator γ5,
defining

ψR/L = 1
2
(
1± γ5

)
. (2.49)

The low energy Hamiltonian of a Weyl semimetal can then be decomposed into two chirality
sectors, each one forming a Weyl cone or massless Dirac cone of chirality χR/L = ±1. They are
located at two separate points in momentum space, and their Hamiltonian is defined by

Hχ = χℏvF δ⃗k.σ⃗ , (2.50)

with σi, i ∈ x, y, z, the Pauli matrices. Without loss of generality, let us introduce a mag-
netic field along the z-axis via a minimal coupling procedure. In the symmetric gauge, this is
equivalent to the replacement

ℏkµ → ℏKµ = ℏkµ + eAµ Aµ = B

2


0
−y
x
0

 . (2.51)

The translation symmetry along the z-axis, the direction of B⃗, is preserved. Therefore, kz is a
conserved quantity. Since the commutator

[
K̂x, K̂y

]
= −ieB

ℏ
(2.52)

resembles the canonical commutator [x̂, p̂] = iℏ, in analogy with a quantum oscillator, we
introduce the ladder operators

â =
√

ℏ
2e|B|(K̂x − i.sign(B)K̂y),

â† =
√

ℏ
2e|B|(K̂x + i.sign(B)K̂y),

(2.53)

such that the Hamiltonian can be rewritten as

Hχ =


χvF

 ℏkz
√
−2eBℏ â†√

−2eBℏ â −ℏkz

 if B < 0 ,

χvF

 ℏkz
√

2eBℏ â√
2eBℏ â† −ℏkz

 if B > 0 .
(2.54)

Introducing |n⟩ , n ∈ N, the eigenvectors of N̂ = â†â, such that

â|0⟩ = 0 , and â|n⟩ =
√
n|n− 1⟩, n ∈ N⋆ , (2.55)
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Figure 2.3: Dispersion relation at the level of a positive (left) and negative (right)
chirality Dirac cones The black and white points denote the filled and empty states, while
the arrow indicates the direction of motion of the particles when an electric field is turned on
(adapted from [12]).

one identifies the eigenstates of Hχ for B > 0 as
(

α|n⟩
β|n− 1⟩

)
if n > 0 and

(
0
|0⟩

)
if n = 0,

while for B < 0, these eigenstates are defined by
(
α|n− 1⟩
β|n⟩

)
if n > 0 and

(
|0⟩
0

)
if n = 0. The

associated spectrum of Hχ is

ϵn = ±vF
√
k2
z + 2ne|B|ℏ for n > 0 ,

and ϵ0 = −χvF sign(B) kz .
(2.56)

These are the Landau levels with a degeneracy g = e|B|
2πℏ .

For both Weyl cones one can define a charge density ρ± and a current density j⃗±, that we
can arrange as a four-vector

jµ± =
(
vFρ±
j⃗±

)
. (2.57)

The vector or charge current corresponds to the total current, and the axial current to the
difference between right and left currents:

jµV = jµ+ + jµ− , jµA = jµ+ − jµ− . (2.58)

The left and right Landau levels for n ̸= 0 contribute equally to jµ+ and jµ−. The only contribu-
tion to jµA, therefore, originates from the n = 0 Landau level (defined following equation (2.56),
see Fig. 2.3). Moreover, the transport in each Landau level is effectively 1+1 dimensional along
the z-axis. From this point of view, one can then relate the 3+1D anomaly to a density e|B|

2πℏ of
1+1D chiral anomalies,

∂µj
µ
A = e|B|

2πℏ
dρ1D

A

dt
= e3E⃗ · B⃗

2π2ℏ2 = e3c

16π2ℏ2 ϵ
µνρσFµνFρσ . (2.59)

This equation (2.59) encodes the 3+1 dimensional chiral anomaly.
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A concrete consequence of the chiral anomaly in condensed matter: chiral magnetic
effect and negative magnetoresistance

The previous paragraphs described the chiral anomaly as pumping electrons from one cone to
another. However, one cannot pump electrons indefinitely in such a way. A relaxation process,
transferring particles between the two Weyl cones with a characteristic time τ , is necessary to
reach a steady state. If we assume that a fast relaxation inside of the cone is present or, in
other words, that the intra-cone scattering time is far shorter than the inter-cone one (τ), then,
in a homogeneous system, the chiral density ρ5 follows a Boltzmann-like equation

∂µj
µ
A = ∂ρ3D

A

∂t
= e3

2π2ℏ2 E⃗ · B⃗ −
ρ5

τ
, (2.60)

such that, in the stationary regime, the charge imbalance is given by

ρ3D
A = τ

e3

2π2ℏ2 E⃗ · B⃗ . (2.61)

Since the axial properties are entirely determined by the chiral, n = 0 Landau level, we can
relate this density to a difference in chemical potential between the two cones

ρ3D
A =

(
e|B|
2πℏ

)
1

2πℏ
µA
|vF |

. (2.62)

Following Landauer’s formula for a 1+1 dimensional system [100, 101], a chemical potential
imbalance drives a 1+1 dimensional current density such as

j1D = e2

2πℏ
µR − µL
−e

= e

2πℏµA sign(B) , (2.63)

where sign(B) defines the chirality of the corresponding mode.

Applied to our 3+1 dimensional system, according to equation (2.62), the chiral anomaly
induces an electric current such that

j⃗3D =
(
e|B|
2πℏ

)
j1D

B⃗∣∣∣B⃗∣∣∣ = τvF
e3

2π2ℏ2 E⃗.B⃗
B⃗∣∣∣B⃗∣∣∣ , (2.64)

which implies a conductivity tensor (ji = σijEj) of the form

σij = τvF
e3

2π2ℏ2
BiBj√
B⃗.B⃗

. (2.65)

This is the negative magnetoresistance.
Note, however, that we heavily used the Landau level’s physics in this derivation. In this sense,
it is only valid for a strong enough magnetic field. In weaker fields, using a semi-classical
approximation, [102] and [103] proved that a similar effect also holds, but with a different
scaling in B

σij = τvF
3e4v2

F

8π2ℏ2
BiBj

µ2 + π2k2
BT

2 . (2.66)

Despite spurious intrinsic effects, among which the most ubiquitous is current jetting (see
Fig. 2.4), these theoretical predictions were verified experimentally in several compounds in-
cluding ZrTe5 [103,104], TaAs [105] or NbP [16] (see Fig. 2.5).
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Figure 2.4: Current jetting in TaP The graphs compare the simulated potential distributions
between 0 and 8 tesla for a magnetic field applied parallel to the contact (B⃗ ∥ e⃗z). The magnetic
field drives a redistribution of the current density, leading to a focused current jet between the
current contacts parallel to the magnetic field and strong bending of the equipotential lines,
leading to a spurious measurement of intrinsic magneto-conductance known as current jetting.
The black dots show the current source and drain contacts at z = ±1.5mm (taken from [106]).

Figure 2.5: Negative magnetoresistance in NbP (a) Longitudinal magneto-conductance
without zero-field contributions ∆G = ∆σzz at selected temperatures. The transition from a
quadratic dependence at low magnetic fields to a linear regime at high fields indicates a transi-
tion from the semi-classical regime (2.66) to the fully quantized regime, where only the lowest
Landau levels are occupied (2.65). (b) Angular dependence of the longitudinal magnetocon-
ductivity. At small magnetic fields (|B⃗| < 3T ), it is reasonably well described by a squared
cosine function. However, the angular width at higher fields narrows considerably, indicating
strong collimation (adapted from [16]).

2.3 Gravitational anomalies

In the previous section, we have seen that an electromagnetic field affects the axial current’s
conservation equations of relativistic particles in 1+1 dimensions. A natural question arises: Do
other background fields have similar effects on these currents? And, are other current densities
affected?
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As we have seen in chapter 1, curved spacetimes naturally arise in condensed matter. It is,
therefore, important to study the relationship between metric fields and anomalies. This ques-
tion is also relevant from an experimental point of view. Indeed, following Luttinger theory
1.3, any thermal conductivity experiment is related to the response to a metric field. We can,
therefore, wonder whether anomalies related to such a metric field may affect thermal conduc-
tivity experiments.

In this section, we will see that metric fields can affect the conservation properties of the
chiral current. Then, we will review their effects on the currents associated with metric invari-
ance through the momentum-energy tensor. We conclude with a more detailed discussion of
the situation in dimension 1+1, of particular importance for the remainder of this thesis.

2.3.1 Mixed axial-gravitational anomalies and condensed matter
experiments

Mixed axial-gravitational anomalies

Curved spacetimes are important in condensed matter since they emerge in several situations
described in chapter 1. A natural question following our previous discussion on the chiral
anomaly is, therefore: given a weakly curved spacetime described by gµν = ηµν + hµν with ηµν
the flat space Minkowski metric and hµν a metric perturbation, is there any correction to the
chiral current conservation equation, such that

∇µj
µ
A = f (hµν) , (2.67)

with∇µAµ ≡ 1√
− det(gαβ)

∂µ
(√
− det(gαβ)Aµ

)
the covariant derivative? The answer to this ques-

tion was given only a few years after the discovery of the chiral anomaly by T. Kimura [107] and
then rederived and generalized on several occasions [108–110]. The corresponding anomalous
conservation equation is:

∇µj
µ
A = ec

384π2 ϵ
µνρσRα

βµνRβ
αρσ , (2.68)

with Rα
βµν the curvature tensor (see Appendix. A), expressed up to first order in hµν as

Rαβµν = 1
2 [∂β∂µhαν + ∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ]. This is the mixed chiral-gravitational

anomalies in 3+1 dimensions. Similar to the chiral anomaly, it can be rederived using either
perturbation theory, considering the mixed chiral-gravitational triangle diagram (see Fig. 2.6),
or by computing the effective action associated with the chiral rotation ϕ → eieα(x)γ5

ϕ in the
presence of curved spacetime. The resulting effective action is, in 3+1 dimensions,

Seff (hµν) =
∫

d3x⃗ dt
√
− det(gαβ) ec

384π2α(x)ϵµνρσRα
βµνRβ

αρσ . (2.69)

While such a term might seem like a straightforward application of the ideas introduced in
the previous section, written as a contraction of tensor fields with the totally antisymmetric
tensor ϵµνρσ, there are at least two major differences between this anomalous contribution and
the one presented previously. First, the usual chiral anomaly involves only two derivatives,
while this term involves four derivatives. Then, one may note that such mixed anomalies were
expressed above for a 3+1 dimensional field theory, while we previously presented results in 1+1
dimensional systems. Indeed, contrary to the chiral anomaly present in any even dimensional
system [111,112], symmetry considerations imply that mixed anomalies can only exist in space-
time dimension such as D + 1 = 4k, with k an integer [110, 113, 114]. Actually, in dimension
4k + 2, as we will see below, another kind of anomaly arises [81, 108], the pure gravitational
anomalies.
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2.3. Gravitational anomalies

Figure 2.6: One loop chiral-gravitational triangle diagramms One loop fermion loop
diagram contributing to the decay into two gravitons. The dashed lines correspond to the
chiral current insertion, while the waves correspond to the gravitons (hµν) (taken from [108]).

Mixed axial-gravitational anomalies and transport properties

Following the logic of the previous section, we can wonder if it is possible to relate the axial-
gravitational anomaly to any transport properties similarly to the negative magnetoresistance
manifestation of the chiral anomaly.

Following Luttinger, a natural way to introduce curvature in a system is via a thermal
gradient. Hence, it seems rational to try to relate the mixed axial-gravitational anomaly to the
thermo-electric transport properties of semimetals. K. Landsteiner et al. [14, 16, 115] pointed
out that the mixed axial-gravitational anomaly coefficients d and b, occurring in the anomalous
conservation equations

∇µj
µ
A = d

e3c

32π2ℏ2 ϵ
µνρσFµνFρσ + b

ec

768π2 ϵ
µνρσRα

βµνRβ
αρσ , (2.70)

and deduced from the underlying Lie algebra, are identical to those present in the Kubo formula
for single-cone magneto-electro-thermal responsej⃗ = d e2

4π2ℏ2µB⃗ ,

J⃗ϵ =
(
d e

8π2ℏ2µ
2 + b e

24ℏ2 (kBT )2
)
B⃗ .

(2.71)

The same conclusion can be reached within a hydrodynamic approach as pointed out by
S. Sachdev et al. [116] and K. Jensen et al. [117, 118]. Studying linear magnetotransport in
the presence of thermal gradients and electric fields is, therefore, a natural testbench for the
manifestation of these anomalies.
Experimental measurements in such setups, measuring the magneto-thermoelectric properties,
were performed on NbP samples in 2020 (see Fig. 2.7) and displayed a good agreement with
the theoretical computations [16, 119]. Another study of the magneto-thermal conductivity in
ZrTe5 was conducted more recently and will be the core focus of the chapter 8.

2.3.2 Symmetries, conserved quantities and anomalies in curved
spacetime

As discussed above, in dimensions 4k + 2, a quantum field theory does not present any mixed
chiral-gravitational anomaly. Instead, it presents a so-called pure gravitational anomaly de-
scribed at the perturbative level by a Feynman diagram with all external legs representing
gravitons. In order to understand the expression of these anomalies and those of the so-called
weyl (or conformal or trace) anomalies, in this section, we will first review some additional
symmetry properties of the fermionic action before studying how anomalies violate some of
them.
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Figure 2.7: Longitudinal magneto-thermoelectric conductivity in NbP (a) Optical
micrograph of a measured device. The NbP micro-ribbon is placed between two four-probe
thermometers, which also serve as electrical probes. The electrically insulated heater line
close to one end of the sample creates a temperature gradient along the length of the sample.
(b) Negative longitudinal magneto-thermoelectric conductance without zero-field contributions
−∆GT at selected temperatures (the minus sign accounts for the negative charge of the elec-
trons). As expected from the theoretical prediction, the magneto-thermoelectric conductance
exhibits a quadratic low-field dependence. At the same time, at higher fields, the formation of
one-dimensional Weyl-Landau levels dispersing only along the magnetic field direction strongly
suppresses GT . (c) −∆GT versus |B⃗| for different angles ϕ between the thermal gradient and
the magnetic field. (d) Angular dependence of the axial current. Similar to the electrical con-
ductance represented in Fig. 2.5, the magneto-thermoelectric conductance at all magnetic fields
(|B⃗| < 3T ) is reasonably well described by a squared cosine function. However, the angular
width narrows considerably at higher fields, indicating strong collimation (adapted from [16]).

Symmetry properties

Let us first consider the fermionic action in curved spacetime in general dimension, given by

SΨ = iℏ
2

∫
dDx det

(
ebν
)
eµaΨ̄γa

↔
Dµψ , (2.72)

with eaµ the vielbein, and Dµ the spinor derivative (see Appendix A). The momentum-energy
tensor of this theory can then be defined as

T µa = − 1
det(ebν)

δSψ
δebµ

= iℏc
2 e µ

b e
ν
aΨ̄γb

↔
Dνψ − iℏc eµaΨ̄γa

↔
Dµψ , (2.73)

while its symmetric equivalent can be written as

T µν = 1
2
(
eaνT µa + µ←→ ν

)
. (2.74)

This action possesses three interesting invariances:
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• A Lorentz invariance corresponding to invariance under an infinitesimal local Lorentz
transformation characterized by the antisymmetric matrix αab

eaµ → eaµ − αabebµ ,
ψ →

(
1− 1

8αab
[
γa, γb

])
ψ ,

ψ̄ → ψ̄
(
1 + 1

8αab
[
γa, γb

])
.

(2.75)

• An Einstein or diffeomorphism invariance corresponding to invariance under spacetime
translations xµ → xµ − ξµ leading to the variations

eaµ → eaµ + ξν∂νe
a
µ + eaν∂µξ

ν ,

ψ → (1 + ξν∂ν)ψ ,
ψ̄ → ψ̄

(
1 +

←
∂ν

)
ξν .

(2.76)

• A Weyl invariance corresponding to invariance under a Weyl rescaling eaµ → eσ(x)eaµ
written in an infinitesimal form as

eaµ → (1 + σ)eaµ ,
ψ →

(
1− D−1

2 σ
)
ψ ,

ψ̄ → ψ̄
(
1− D−1

2 σ
)
.

(2.77)

According to Noether’s theorem, these give rise to the following properties of the momentum-
energy tensor (equivalent to conservation equations), respectively

• The momentum-energy tensor can be made symmetric such as

T µaeaν = T νaeaµ . (2.78)

• The momentum-energy tensor is conserved

∇µT µν − ωabνT ab = 0 , (2.79)

or, given the symmetry property of T µa (2.78), this implies

∇µT µν = 0 . (2.80)

• The momentum-energy tensor can be made traceless

T µµ = 0 . (2.81)

Chiral vs. conformal vs. Weyl invariance

A recurrent question occurs when looking at these symmetries and conservation laws. Indeed,
in the literature, the tracelessness property of the momentum-energy tensor is, depending on
the author, attached to either a Weyl invariance, a conformal symmetry, or a scaling symmetry.
Therefore, one could wonder which symmetry is involved and what are the consequences of each
one of them.

A scale symmetry corresponds to the symmetry under the global transformationxµ → λxµ ,

ϕ→ λ−
D−1

2 ϕ ,
(2.82)
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with λ a constant. Scale invariance leads to the conservation of the dilation current jµD = xνT νµ
whose conservation, together with the conservation of the momentum-energy tensor, leads to
the tracelessness of the momentum-energy tensor.

Then, the conformal symmetry corresponds to the transformation under a change of co-
ordinates xµ → fµ(x) that leaves the structure of the metric unchanged, up to a non-zero
multiplicative function gµν → Ω(x)gµν . Notice that scale invariance is a specific case of confor-
mal transformation with Ω = λ2

Finally, Weyl transformations correspond to a global rescaling of the metric without any
change of coordinates. One might think that together with translation invariance, this implies
the full conformal group; however, this is not true since a particular conformal transformation,
the spacetime inversion xµ → xµ

x2 cannot be reduced to a composition of a Weyl and a transla-
tion transformation.

In conclusion, Weyl, conformal, and scaling transformations are different from one another.
However, since each of them implies that the momentum-energy tensor is traceless, they are
often mistaken for one another. In the realm of anomalies, since the end manifestation is similar
(T µ

µ
̸= 0), we consider Weyl, chiral, and scaling anomalies on the same footing, even though

at the microscopic level, they are different (see [120] for a more complete discussion on this
question).

Gravitational and trace anomalies

As in the case of the chiral anomaly, one might wonder whether these symmetries and conser-
vation laws can be broken in curved spacetimes.

As in the case of the chiral anomaly, gravitational anomalies can be expressed as a breakdown
of the conservation equations (2.78), (2.80) and (2.81).

• The Lorentz anomaly is equivalent to the existence of an antisymmetric part of the
momentum-energy tensor

T µν − T νµ ̸= 0. (2.83)

• The Einstein anomaly implies the non-conservation of the momentum-energy tensor 2

∇µT µν = ωabνT ab ̸= 0. (2.84)

• The Weyl ( trace, conformal or scale) anomaly expresses the non tracelessness of
the momentum-energy tensor

T µµ ̸= 0. (2.85)

However, we need to distinguish two cases [110]. On the one hand, we have the Lorentz and
Einstein anomalies, which can only exist in dimensions 4k + 2 for symmetry reasons. For ex-
ample, the two-dimensional case will be the focus of the next section 2.3.3.
On the other hand, trace anomalies can appear in any dimension, even though trace anomalies
involving the spacetime curvature tensor Rµ

νρσ can only be present in even dimensions. Once
again, the two-dimensional case will be treated in the next section 2.3.3. In higher dimensions,
since numerous Lorentz invariant quantities are built from the curvature tensor, determining

2The reverse is not true. A non-conservation of the momentum-energy tensor does not imply the presence
of an Einstein anomaly since, according to (2.79), a Lorentz anomaly can lead to the same conclusion.
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the precise form of the anomaly is more difficult. For example, in four dimensions, even though
a first form was given by D. Capper and M. Duff almost 50 years ago [121–123], its precise form
for several particles is, however, still debated [124,125].

In generic interacting quantum field theories, scale anomalies can also arise when, through
renormalization, quantum fluctuation affects the interaction coupling constants, irrespective of
the dimension. For example, in four dimensions, in a background electromagnetic field, one
gets the trace expression [75]

T µµ = βe(e)
2e F

µνFµν , (2.86)

with βe the beta-function associated to the electric charge, given at one loop order by

βe(e) = de(E)
d log(E)

∣∣∣∣∣
E=e

= e3c

12π2ℏ
. (2.87)

However, contrary to all the previously mentioned anomalies, (2.87) is only true at the one-loop
order and can receive corrections from every higher order of the perturbation theory.

2.3.3 Gravitational anomalies as properties of the momentum-energy
tensor in 1+1D

Most of this thesis will be dedicated to 1+1 dimensional systems. Therefore, this section will
focus on gravitational anomalies in 1+1 dimensional systems.
In two-dimensional systems, every metric is conformally flat. In other words, any metric can
be, up to a change of variable, rewritten under the form

gµν = eW (t′,x′)ηµν , (2.88)

where ηµν is the Minkowski flat metric. Therefore, it is possible, in addition to all the tech-
niques introduced in the previous section, to use this equivalence to our advantage by using
all the machinery of flat spacetime two-dimensional conformal field theory before making a
Weyl transform to compute the physical quantities. For example, in his textbook on string
theory [78], D. Tong deduced the expression for the trace anomalies in 1+1 dimensions using
a conformal field theory technique, the operator product expansion, proving that for a theory
with central charge C, the trace anomaly is given by

T αα = CℏvF48πR , (2.89)

with R the Ricci scalar (See Appendix. A).
Of course, it is still possible to use an effective action approach [110] or a perturbative one [70,
126] to determine the expression of the covariant gravitational anomalies for a theory with
particles of chirality χi and central charge ci

T µµ = Cw ℏvF

48πR ,
∇µT µν = Cg ℏvF

96π ϵ̄
νµ∇µR ,

T µν − T νµ = 0 ,
(2.90)

with Cw = ∑
i ci, Cg = ∑

i χici and ϵ̄µν = ϵµν/ det(eaρ). As we can see, the anomaly breaks both
the Weyl and the diffeomorphism invariance under this form but keeps the Lorentz invariance
intact. By a careful inspection of these relations, one realizes that it is equally possible to
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redefine the momentum-energy tensor to make it covariantly conserved [127], breaking the
Lorentz invariance 

T̃ µµ = Cw ℏvF

48πR
∇µT̃ µν = 0 ,
T̃ µν − T̃ νµ = Cg ℏvF

48π ϵ̄
µνR ,

(2.91)

by defining
T̃ µν = T µν + Cg

ℏvF
96π ϵ̄

µνR . (2.92)

One may note at this stage that T̃ µν breaks all of the previously defined invariances (2.78, 2.79,
2.81), since, due to its antisymmetric part T̃ µν does not fulfill the conservation equation (2.79).

Alternatively, one could have chosen another definition of T µν in order to break the Lorentz
invariance but not the diffeomorphism one

T̃ µµ = Cw ℏvF

48πR+ Cg ℏvF

96π ϵ
ab∇µω

µ
ab ,

T µν − T νµ = Cg ℏvF

96π ϵ̄
µνR ,

∇µT µν = ωabνT ab = Cg ℏvF

192π ϵ
abωabνR .

(2.93)

Indeed, J. Bardeen and D. Zumino have shown in 1984 [128] that, in any dimension, it is pos-
sible to shift from a pure Einstein to a pure Lorentz anomaly (see also [70] 12.6.3 for a more
careful review of this question).

Previously mentioned demonstrations of the gravitational anomalies seem disconnected from
condensed matter physics, or at least difficult to relate to the condensed matter notions of
particles, holes, and Dirac sea. However, similarly to how H. Nielsen and M. Ninomiya related
the chiral anomaly to particle-antiparticle production from the Dirac sea 2.2.3, Y. Habara,
H. Nielsen, and M. Ninomiya [129] showed that we could recover the trace anomaly from a
careful study of the Dirac sea. In fact, they demonstrated that the Dirac sea in a curved
spacetime corresponds to a continuum of particle-antiparticle pair creation applied to a flat
spacetime Dirac sea through a generalized Bogoliubov transformation.

The following sections of this thesis will focus on studying the consequences of these grav-
itational anomalies in condensed matter systems, from analog spacetime to thermal transport
and thermal heat engines.
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Chapter 3
Tolman-Ehrenfest equilibrium temperature in
curved spacetimes

As discussed in section 1.3, J.Luttinger suggested in 1963 that if a gravitational field did not
exist in nature, one could have invented it for the purposes of calculating thermal responses [9].
This idea can be traced back to the work of R. Tolman and P. Ehrenfest in the advent of gen-
eral relativity, who noticed that in a time-independent curved spacetime, the temperature of
black-body radiation is not spatially uniform even in thermal equilibrium [7, 8]. Such a space-
dependent temperature profile is known as the Tolman-Ehrenfest temperature. The insight of
J. Luttinger was to suggest that thermal transport, thought of as a linear response of matter to
a thermal gradient, can be derived by considering a counter-balancing weak gravitational field
to restore equilibrium [9]. The Luttinger relation follows from the Tolman-Ehrenfest tempera-
ture and is the groundbreaking idea that established the gravitational field as a key concept in
the study of heat transport in materials [130–132].

A central idea behind Luttinger’s and Tolman-Ehrenfest’s relations is that heat has weight.
Therefore, heat contributes to energy density, adding up to the energy density due to the rest-
mass of a massive particle [133]. The consequences are particularly remarkable for relativistic
massless particles which lack any intrinsic energy density scale. The only relevant energy den-
sity scale is set by the temperature, whose variations follow those of spacetime.

However, new energy density scales absent in Luttinger’s and Tolman-Ehrenfest’s relations
appear in strongly curved spacetimes. They manifest the anomalous thermodynamic behavior
of quantum fluctuations induced by spacetime curvature. This interplay between geometry and
vacuum fluctuations is analogous to the Casimir effect, induced by geometrical confinement
instead of curvature [134,135]. The fluctuations break the symmetries of the classical equation
of motion, a phenomenon known as gravitational anomalies and discussed in section 2.3 of this
thesis. The appearance of these anomalous energy density scales challenges us to understand
their role in the equivalence relations between temperature and gravitational potential and their
observable consequences for energy transport. This is the question we address in this chapter.
Chapter 4 is dedicated to the consequences of these new energy scales in black-hole physics and
condensed matter beyond linear response theory.

In this chapter, we quantitatively evaluate the quantum corrections to the Tolman-Ehrenfest
temperature 1+1 dimensional systems, raising the question of how to define a temperature in
such a system. We then show that this modified Tolman-Ehrenfest temperature implies that
the Luttinger equivalence has to be corrected. This correction will be shown to be sizable when
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the curvature of spacetime is significant or, equivalently, when the local spatial variation of
temperature is sizable.

This chapter is based on original work published in the article Ariv:2206.08784 [136]

3.1 Classical Tolman-Ehrenfest temperature and
Luttinger equivalence

In this section, we begin by recalling the Tolman-Ehrenfest temperature definition before show-
ing how it can be related to Luttinger’s ideas. Then, to understand the possible effects of
anomalies, we will follow the historical derivation in generic D+1 dimensional systems before
discussing the case of 1+1 dimensional conductors more carefully.

3.1.1 From the Tolman-Ehrenfest temperature to the Luttinger’s
relation

We begin by recalling the derivation of Luttinger’s relation [9] from Tolman-Ehrenfest’s work [7,
133].

R. Tolman and P. Ehrenfest realized that in curved spacetime, the temperature of black-
body radiation, and more generally of relativistic massless particles, is not spatially uniform
even in thermal equilibrium. In essence, thermal equilibrium in the presence of a gravitational
field requires a non-uniform temperature profile to compensate for the redshift experienced by
radiation as it moves in the gravitational field [137] (See also Chapter. 7). They showed that
the equilibrium temperature TTE can be inferred from a reference temperature T0, as

TTE(r)
√
ξµ(r)gµν(r)ξν(r) = T0 , (3.1)

where gµν is the stationary background metric which depends on spatial coordinates r, and ξµ

is the time-like Killing vector (see Appendix C). The constant T0 is a reference temperature
which has to be set, e.g. by boundary conditions.
Note that in this formulation of the Tolman-Ehrenfest temperature definition, one does not
need the metric to be explicitly time-independent (static); instead, it has to possess a time-like
Killing vector ξµ (see Appendix C), or in other words, to be stationary. For example, in 1+1
dimensions, a metric given by

gµν =
(
v2(t) 0

0 −1

)
(3.2)

is stationary since it possesses a time-like Killing vector ξµ =
(
v(t)

0

)
but it isn’t static. The

same can be said about the hydrodynamic metric (1.25) presented in section 1.1. However,
similarly to R. Tolman and P. Ehrenfest in most of our derivations, we will focus on static
metrics, whose line element can be written as

ds2 = g00(x⃗)v2
Fdt2 −

d∑
i,j=1

gij(x⃗)dxidxj . (3.3)

In this case, (3.1) simplifies to
TTE(x⃗)g00(x⃗) = Cst . (3.4)
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The Luttinger relation between temperature and gravitational potential

∇⃗ϕ = −∇⃗T
T

, (3.5)

can be obtained from Eq. (3.4) as follows. Let us consider a time-independent metric

ds2 = e2ϕ(x⃗) v2
Fdt2 − dx⃗2. (3.6)

parametrized by a small dimensionless gravitational factor ϕ ≡ Ψ/c2 ≪ 1, expressed, in a weak-
field limit, in terms of a static gravitational potential Ψ and the speed of light c. By substituting
Eq. (3.6) into Eq. (3.4), we obtain the corresponding Tolman-Ehrenfest temperature (also called
Luttinger temperature: see Section 27 of [138]):

T 2
TE(x⃗)e2ϕ(x⃗) = T 2

0 . (3.7)

Upon spatial differentiating we recover the Luttinger relation (3.5).

Therefore, Tolman and Ehrenfest proved that a system with a temperature gradient and
a gravitational potential can be at equilibrium. Luttinger’s insight is that such a system can
be decomposed as a “sum” of two systems out of equilibrium. One sets out of equilibrium
by a gradient of temperature and one by the gravitational potential. Therefore, each of these
two systems possesses a non-zero energy current, but since their sum is at equilibrium, they
must compensate each other. This paves the way towards the correspondence within the linear
response framework between a perturbative parameter ∇ϕ and the perturbative parameter
∇T/T .

3.1.2 Classical Tolman-Ehrenfest temperature derivation
In order to understand the consequences of anomalies on the Tolman-Ehrenfest formula, it
is interesting to reconsider R. Tolman and P. Ehrenfest original derivation of the equilibrium
temperature profile in a curved spacetime [7]. Let us consider the thermodynamics of a D+1
dimensional relativistic gas in the background of a static gravitational potential with metric

gµν(t, x) =
(
g00(x⃗) 0

0 gij(x⃗)

)
. (3.8)

For a relativistic massless gas, the components of the momentum-energy tensor are related
to the local energy density ε and pressure p as follows

T µν = (ε+ p)uµuν − pgµν , (3.9)

where uµ is the local (D + 1)-velocity vector with uµuµ = +1. Since these particles are mass-
less, they propagate with the speed of light c. The temperature is then defined in the local
frame where the spatial particle flow vanishes, uµ = (1/√g00, 0) such as the momentum-energy
tensor (3.9) is diagonal

T µν =
(
ε 0
0 −p 1D

)
. (3.10)

In such a metric, momentum-energy tensor conservation can be rewritten as

∇νT νµ ≡
1√
−g

∂

∂xν

(
T νµ
√
−g
)
− 1

2
∂gαβ
∂xµ
T αβ − 1

2
∂gµα
∂xν

[T να − T αν ] = 0. (3.11)
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Energy conservation, given by (3.11) with the index µ = 0, is automatically fulfilled in the
stationnary limit (∂tε = ∂tp = 0) for the static metric (3.8), while momentum conservation
(µ ∈ [1, D]) gives, in the notation of (3.10), a nontrivial relation [7]:

g00
∂p

∂xi
= −ε+ p

2
∂g00

∂xi
. (3.12)

For the relativistic gas of classical massless particles, the conformal anomaly is absent, and the
scale symmetry implies a vanishing trace of the momentum-energy tensor and the following
conformal equation of state in D+1 dimensions

ε = D.p . (3.13)

This equation allows us to rewrite the conservation law (3.12) in terms of pressure only as

(g00)
D+1

2 p = Cst . (3.14)

Let us now deduce the temperature from this expression of the pressure. From the thermody-
namic relation dE = TdS − pdV , we deduce the relation between densities

ε = dE

dV

∣∣∣∣∣
T

= T
dS

dV

∣∣∣∣∣
V

− p ⇒ ε+ p = T
dS

dV

∣∣∣∣∣
T

= T
dp

dT

∣∣∣∣∣
V

. (3.15)

Combining this relation with (3.13), we get

(d+ 1)p = T
dp

dT

∣∣∣∣∣
V

. (3.16)

By integration of the above equation, we get the expression of the pressure and the energy
density as a function of the temperature

p = λ T d+1 (3.17)
ε = λd T d+1 (3.18)

with λ a constant. For example, considering a photon gas, in 3+1 dimension, we recover the
Stefan-Boltzmann law ϵ = σT 4 with σ = 3λ = π2k4

B

60c3ℏ3 [139–141].

Together with (3.14), these relations between pressure and temperature lead to the expres-
sion of the Tolman-Ehrenfest temperature:

T 2
TE.g00 = Cst (3.19)

Neither Luttinger’s nor Tolman-Ehrenfest’s relations account for possible quantum anomalies.
The goal of this section is to show how these relations, widely used to identify the energy density
and energy current of matter fields [130–132,142–145], are modified in the presence of anomalies.

Since anomalies strongly depend on the problem’s dimensionality, we will restrict ourselves
to the 1+1 dimensional case in the following discussions. Such discussions will naturally apply
to the effective dynamics in reduced 1+1 dimension of quantum wires but also of rotationally
invariant systems such as isotropic black holes, edge states of 2+1 dimensional topological
gapped states of matter, or higher-dimensional systems in a strong magnetic field.
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3.1.3 Tolman-Ehrenfest temperature and momentum-energy tensor
in 1+1 dimensions

Since in the following sections our discussions are mainly dedicated to 1+1 dimensional sys-
tems, here we will discuss in greater detail the links between Tolman-Ehrenfest temperature
and momentum-energy tensor, generalizing the previous discussion to chiral particles. Let us
consider a 1 + 1 dimensional space with coordinates xµ = (x0, x1) ≡ (vF t, x) and a general
metric1,

ds2 ≡ gµνdx
µdxν = f1(x)v2

Fdt
2 − f2(x) dx2, (3.20)

defined in terms of two time-independent, real, and positive-valued functions f1,2(x) of the one-
dimensional spatial coordinate. For convenience, we included the Fermi velocity vF of massless
particles in the definition of the metric (3.20). In particular, the Luttinger metric (3.6) is
recovered by considering the metric in the Fermi coordinate system:

f1 ≡ g00 = e2ϕ ; f2 ≡ −gxx = 1 . (3.21)

This choice corresponds to a general relativistic generalization of an inertial coordinate frame [146].
Note that a black-hole metric defined in section 1.1.4 can also be captured by (3.20) by setting
f1 = 1/f2 = f with f vanishing linearly at the horizon.

We consider massless relativistic particles propagating with velocity vF in the curved 1+1
dimensional spacetime with metric (3.20). Energy and momentum densities of these particles
and their associated current densities are encoded in the momentum-energy tensor Tµν . As
discussed in section 2.3, the scale invariance of the theory implies that its trace vanishes:

T µµ = 0. (3.22)

The diagonal components of this momentum-energy tensor are the energy density ε = T 0
0 and

the pressure p = −T xx. Hence, scale invariance implies the equality

p = ε (3.23)

The Lorentz invariance implies the symmetry of the momentum-energy tensor:

T µν = T νµ, (3.24a)

manifesting that the density of the energy current Jε = vF
√
−gT x0 is proportional to the

momentum density Π = 1
vF

√
−gT 0x:

Jε = v2
FΠ . (3.24b)

Finally, spacetime translation invariance implies the conservation of this tensor at the classical
level:

∇νT νµ ≡
1√
−g

∂

∂xν

(
T νµ
√
−g
)
− 1

2
∂gαβ
∂xµ
T αβ − 1

2
∂gµα
∂xν

[T να − T αν ] = 0 , (3.24c)

or in other words, written in terms of ε, p, Jε and Π:∂t
(√

f1f2 ε
)

+ ∂x (f1 Jε) + 1
2 (v2

F Π− Jε) ∂xf1 = 0 , (Energy conservation)
∂t
(√

f1f2 Π
)

+ ∂x (f1 p) + 1
2 (ε− p) ∂xf1 = 0 . (Momentum conservation)

(3.24d)

1Even though, as described in our previous chapter, every 1+1 dimensional stationary metric is equivalent,
up to a change of variable, to a conformally flat spacetime with metric gµν = eW (x)ηµν , here, I make the choice
of keeping the original, “physical” coordinates (t, x) since it will help in the understanding of the thermodynamic
quantities.
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A general stationary solution of equations (3.24) is given by

[T (x)]µν =

 C0
f1

C1√
f1f2

−f2
f1

C1√
f1f2

−C0
f1

 , (3.25)

where C0, C1 are two constants. If we restrict ourselves to massless particles at equilibrium with
a single local temperature, the only scale of energy density or pressure is set by this equilibrium
temperature through the extended Stefan-Boltzmann law [147–150]: The energy density ε is
obtained by summing the independent contributions ε± of left and right moving particles with
respective central charges C±

ε = ε+ + ε− , ε± = 1
2C±γT

2 , γ = πk2
B

6ℏvF
. (3.26)

Comparison with the diagonal terms of (3.25) leads to the relation
C0

f1(x) = T 0
0 ≡ ε = −T xx ≡ p . (3.27)

The solution of equations (3.26,3.27) satisfies

T 2
TE(x)f1(x) = 2C0

γ(C+ + C−) (3.28)

which is independent of x. This turns out to be exactly the definition by Tolman and Ehrenfest
of the equilibrium temperature. (3.7):

TTE = T0

√√√√f1(x0)
f1(x) , (3.29)

where T0 = T (x0) is an arbitrary reference temperature, conveniently chosen at the position
where the metric is locally flat with f1(x0) = 1.

Alternatively, we can obtain this relation from the off-diagonal components of equation (3.25):

Jε ≡ vF
√
−gT x0 = vF

C1

f1
and Π ≡ 1

vF

√
−gT 0x = 1

vF

C1

f1
. (3.30)

During their ballistic evolution, right and left-moving particles do not exchange energies with
each other. Each chiral species allows us to define the local temperature through its local
equilibrium chiral currents Jε,± = ±vF ε±. Combining this definition with equations (3.26) and
(3.30), we again recover the Tolman-Ehrenfest relation (3.29). The net equilibrium current
vanishes unless C+ ̸= C−, for which we obtain a density of energy current

Jε = (C+ − C−)γvF2 T 2 = (C+ − C−) π

12ℏ(kBT )2 , (3.31)

and, following (3.24a), a momentum density

Π = v2
FJε = C+ − C−

2
γ

vF
T 2 = (C+ − C−) π

12ℏv2
F

(kBT )2 . (3.32)

As a result, the equilibrium form of the classical momentum-energy tensor (3.25) is expressed
as follows:

[Tcl(x)]µν =
 Cw Cg

√
f1
f2

−Cg
√

f2
f1

−Cw

× γ

2T
2
TE(x) (3.33)

where we denoted
Cw = C+ + C− , Cg = C+ − C− . (3.34)
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3.2. Gravitational anomalies and anomalous Tolman-Ehrenfest temperature

3.2 Gravitational anomalies and anomalous
Tolman-Ehrenfest temperature

We realize that previous computations of the Tolman-Ehrenfest temperature heavily rely on
the concept of symmetry (see (3.24)). However, as we have seen in the previous chapter, in
the presence of spacetime curvature, it is impossible to regularize the theory in a way that
keeps all three symmetries conserved. It is, therefore, logical to look for a generalization of
Tolman-Ehrenfest in the presence of such anomalies.

3.2.1 Anomalies at play
In the previous section, we discussed the anomalies present in 1+1 dimensional systems 2.3.3.
Here, we will quickly review them in the specific case of the metric of Eq. (3.20), in terms of
the thermodynamics quantities. Since gravitational anomalies can equivalently be written for
Lorentz-breaking, Einstein-breaking, and covariantly conserved momentum-energy tensors, in
this section, we will choose to present all computations for the Lorentz-breaking case, some-
times providing their expressions in the case of a covariantly conserved tensor.

The (non-)conservation equations satisfied by our momentum-energy tensor are, therefore:

• The Lorentz symmetry
T µν = T νµ (3.35a)

• The Einstein anomaly

∇µT µν = ℏvF
96π

Cg√
−det (gρσ)

ενµ∇µR , (3.35b)

with ε0x = 1.

• The trace anomaly
T µµ = Cw

ℏvF
48πR . (3.35c)

where R stands for the Ricci scalar, which for the metric (3.20) simplifies to

R = ∂2
xf1

f1f2
− 1

2
∂xf1

f1f2

[
∂xf1

f1
+ ∂xf2

f2

]
. (3.36)

In terms of the thermodynamic quantities, these equations simplify to

v2
FΠ = Jε ,

ε− p = Cw ℏvF

48πR ,
∂t
(√

f1f2 ε
)

+ ∂x (f1 Jε) = Cg ℏv
2
F

96π f1∂xR ,
∂t
(√

f1f2 Π
)

+ ∂x (f1 p) = −Cw ℏvF

96πR∂xf1 .

(3.37)

Similarly, in the case of the covariantly conserved momentum-energy tensor, the (non-)conservation
equations take the form

v2
F Π̃− J̃ε = Cg ℏv

2
F

48πR ,
ε̃− p̃ = Cw ℏvF

48πR ,
∂t
(√

f1f2 ε̃
)

+ ∂x
(
f1 J̃ε

)
= −Cg ℏv

2
F

96πR∂xf1 ,

∂t
(√

f1f2 Π̃
)

+ ∂x (f1 p̃) = −Cw ℏvF

96πR∂xf1 .

(3.38)
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3.2.2 Anomalous Tolman-Ehrenfest temperature
As shown in section 3.1.3, the equilibrium temperature for massless matter in curved spacetime
can be consistently defined in two different ways. (i) It can be defined using thermodynamic
quantities, the energy density (ε), and pressure (p), provided by the diagonal components of
the momentum-energy tensor. (ii) It can be defined from kinematic quantities, the density
of energy current (Jε) and momentum (Π) of left and right movers, given by the off-diagonal
components of the momentum-energy tensor. At the quantum level, in the stationary limit,
diagonal and off-diagonal components get independently corrected by the scale anomaly and
the Einstein - Lorentz anomalies, respectively. This immediately raises the question of whether
a revised Tolman-Ehrenfest temperature can be defined by incorporating the effects of quantum
fluctuations. Quite remarkably, in this section, we show that all three gravitational anomalies,
while of different technical origins, concur to redefine the equilibrium temperature coherently,
leading to an extended notion of Tolman-Ehrenfest temperature.

Anomalous symmetric momentum-energy tensor.

Solving equations (3.35) or equivalently (3.37) for a symmetric, stationary tensor, we obtain

T = Tcl + Tq , (3.39)

where Tcl is the classical momentum-energy tensor given by Eq. (3.33) and the quantum cor-
rection components are

[Tq(x)]µν =
Cw

2

(
ε(1)
q + ε(2)

q

)
Cg

2

√
f1
f2
ε(2)
q

−Cg

2

√
f2
f1
ε(2)
q

Cw

2

(
ε(1)
q − ε(2)

q

) , (3.40)

where ε(1)
q and ε(2)

q are the two new scales of energy density set by the quantum anomalies:

ε(1)
q = ℏvF

48πR ; ε(2)
q = ℏvF

48π (R− 2R̄) , (3.41)

with
R̄ = 1

2f1(x)

∫ x

x0
dy R(y)∂yf1(y) . (3.42)

With the help of the expression (3.36) for the curvature R, we obtain

R̄ = 1
4f2

(
∂xf1

f1

)2

, (3.43)

or in other words

R− 2R̄ = ∂2
xf1

f1f2
− ∂xf1

f1f2

(
∂xf1

f1
+ 1

2
∂xf2

f2

)
. (3.44)

Anomalous temperature

Let us now focus on the explicit expression of the momentum-energy tensor corrected by the
gravitational anomalies T = Tcl + Tq with both components given in equations (3.33) and
(3.40)). Using the definition of the thermodynamic quantities (3.27) and currents (3.30) in
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3.2. Gravitational anomalies and anomalous Tolman-Ehrenfest temperature

terms of the momentum-energy tensor, we obtain the expression for the density of energy,
pressure, momentum, and energy current:

ε = 1
2Cw

(
γT 2(x) + ε(1)

q

)
, (3.45a)

p = 1
2Cw

(
γT 2(x)− ε(1)

q

)
, (3.45b)

Jε = v2
FΠ = Cgγ vF k2

BT
2(x) . (3.45c)

with
γT 2(x) = γT 2

TE + ε(2)
q , (3.46)

Remarkably, only two scales of energy set these values: the anomalous temperature T (x), which
incorporates ε(2)

q as we will see below in equation (3.49), and a quantum scale ε(1)
q defined in

equation (3.41). The new scale ε(1)
q signals that in the presence of gravitational anomalies, the

Stefan-Boltzmann law (3.26) is modified. The additive correction in (3.45a) signals a correction
to the vacuum energy density at T = 0. This energy shift of pure geometrical origin is set by
the local spacetime curvature R. This local energy shift looks akin to the Casimir effect set by
confinement [135], for which, at low temperatures in flat spacetime, we get

ε = 1
2Cw

(
γT 2 − εL

)
, (3.47a)

p = 1
2Cw

(
γT 2 − εL

)
, (3.47b)

with
εL = πℏvF

24L2 , (3.48)

the Casimir energy density set by the confinement length L. However, as opposed to the
Casimir effect (3.47), the geometrical effect (3.45) renormalizes pressure p and energy density
ε with opposite magnitudes.

The temperature T (x) is now set by the sum ε + p = T.s = Cwγ T
2, where s denotes

the entropy density. Equivalently, for each chiral branch of particles, this temperature can
be deduced from the off-diagonal components of the momentum-energy tensor, the energy
current, and momentum in Eq. (3.45c). While the diagonal components of T including ε + p
are corrected by the trace anomaly, the off-diagonal components Jε and Π are corrected by the
Einstein anomaly. Yet, the same temperature is defined consistently from both diagonal and
off-diagonal quantities. Both the trace and Einstein anomalies contribute coherently to correct
the Tolman-Ehrenfest temperature into a generalized equilibrium temperature

γT 2(x) = γT 2
TE + ε(2)

q , (3.49)

where the additive quantum correction ε(2)
q is defined in equation (3.41).

Note that in defining this temperature, we restricted ourselves to the natural case where the
entropy density s is positive, which warrants that the right-hand side of Eq. (3.49) is positive,
and hence the temperature is well defined.

Anomalous covariantly conserved momentum-energy tensor.

As we discussed in both section 3.2.1 and 2.3.3, the pure Einstein anomaly and its symmet-
ric momentum-energy tensor can be traded for a theory breaking both Einstein and Lorentz
anomaly but defining a covariantly conserved momentum-energy tensor, at the expense of a
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transformation (2.92) of the momentum-energy tensor [127]. The corresponding quantum cor-
rection to the momentum-energy tensor is now expressed as

[T̃q(x)]µν =
 Cw

2

(
ε(1)
q + ε(2)

q

)
Cg

2

√
f1
f2

(
ε(2)
q − ε(1)

q

)
−Cg

2

√
f2
f1

(
ε(1)
q + ε(2)

q

)
Cw

2

(
ε(1)
q − ε(2)

q

)  . (3.50)

In this case, the momentum-energy tensor is no longer symmetric. Consequently, the momen-
tum density Π and the density of energy current Jε are now distinct quantities. The chiral
currents and momenta satisfy Jε,± = ±vF p± and Π± = ± 1

vF
ε± corresponding to the expres-

sions

ε = 1
2Cw

(
γT 2(x) + ε(1)

q

)
, (3.51a)

p = 1
2Cw

(
γT 2(x)− ε(1)

q

)
, (3.51b)

v−1
F Jε = 1

2Cg
(
γT 2(x)− ε(1)

q

)
, (3.51c)

vFΠ = 1
2Cg

(
γT 2(x) + ε(1)

q

)
. (3.51d)

3.2.3 Temperature, thermodynamics, and trace anomalies
At this level, even though both diagonal and off-diagonal components of the momentum-energy
tensor point toward a same definition of temperature (3.49), a natural question is whether this
definition is coherent with the thermodynamic notion of temperature.
To address this question, let us reconsider the derivation of the relationship between energy
density ε, pressure p, and temperature from section 3.1.2 but now in the presence of a non-zero
trace. From the thermodynamic relation dE = TdS − pdV , we deduce the relation between
densities

ε = dE

dV

∣∣∣∣∣
T

= T
dS

dV

∣∣∣∣∣
V

− p ⇒ ε+ p = T
dS

dV

∣∣∣∣∣
T

= T
dp

dT

∣∣∣∣∣
V

. (3.52)

In D + 1 dimensions, the trace of the momentum-energy tensor T µµ is expressed in terms of
the energy density ε and pressure p as ε = D p+ T µµ. In 1 + 1 dimension, this trace is defined
in (3.35c) in terms of an energy density ε(1)

q of (3.41) as T µµ = Cwε
(1)
q . Combining this relation

with (3.52), we get

(D + 1)p+ T µµ = T
dp

dT

∣∣∣∣∣
V

. (3.53)

Given that T µµ is independent of the temperature, by integration of the above equation, we get

p = λ TD+1 − 1
D + 1T

µ
µ (3.54)

ε = λD TD+1 + 1
D + 1T

µ
µ (3.55)

These relations identify with the equations (3.45) for D = 1.

Let us now consider the entropy density of the system, defined as s = (E + F )/(TV ) =
(ε+ p)/T . From equations (3.54), and (3.55) we get

s = λ(D + 1)TD (3.56)

= λ(D + 1)
(
ε

λD
− 1
λD(D + 1)T

µ
µ

) D
D+1

(3.57)
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Temperature and entropy are related through the relation T−1 = ds/dε. Indeed, we check that
the temperature entering the relations (3.54,3.55) satisfy this equality:

ds

dε
=
(
ε

λD
− 1
λD(D + 1)T

µ
µ

)− 1
D+1

= 1
T
. (3.58)

Specifying these relations to D = 1, from the equations (3.45a,3.45b), the entropy reads
s = (ε+ p)/T = 2γT = 2

√
γ(ε− ε(1)

q ). From this, we check that ds/dε =
√
γ/(ε− ε(1)

q ) = 1/T .
This shows that whenever a temperature can be defined through the relations (3.17,3.18), it
can be associated with standard thermodynamics with a positive entropy2.

3.3 Anomalous Luttinger equivalence and response
theory

As discussed earlier in this chapter, the notion of Luttinger’s trick is directly related to the
notion of Tolman-Ehrenfest temperature. Since this notion evolves in the presence of anomalies,
it is logical to study the corrections that such anomalies bring to Luttinger’s equivalence.
This study will be two-fold. First, we will deduce the anomalous Luttinger relation from the
anomalous Tolmann-Ehrenfest temperature (3.49) before showing how one could have deduced
it straightforwardly from response theory.

3.3.1 Anomalous Luttinger relation
Anomalous Luttinger relation

By inserting the Luttinger metric, defined as f1 = e2ϕ and f2 = 1, in equation (3.41), anomalous
energy scales turn out to be

ε(1)
q = ℏvF

24π
[
∂2
xϕ+ (∂xϕ)2

]
; ε(2)

q = ℏvF
24π∂

2
xϕ, (3.59)

such that the corresponding Tolman-Ehrenfest temperature is corrected by a second derivative
of the gravitational potential ϕ:

T 2(x)
T 2

0
= e−2ϕ(x) + λ2

T0∂
2
xϕ , λT = ℏvF

2πkBT
, (3.60)

where T0 is the reference temperature introduced in equation (3.1) and (3.29), chosen as
T0 = T (x0) at a point x0 such that ϕ(x0) = ∂2

xϕ(x0) = 0.

Multiplying equation (3.60) by T 2
0 e

2ϕ and then differentiating with x we obtain a correction
to the original Luttinger relation (3.5) by an additional term induced by quantum anomalies:

∂xT

T
= −∂xϕ︸ ︷︷ ︸

Original relation

+λ2
T (x)

[
(∂xϕ) ∂2

xϕ+ 1
2∂

3
xϕ
]

︸ ︷︷ ︸
Quantum correction

. (3.61)

Notice that since the equilibrium temperature T (x) is inhomogeneous, the thermal length λT
is a coordinate-dependent quantity.

2In this thesis, following the relation (3.49), having a positive entropy corresponds to following the condition
γT 2

TE − ε
(2)
q > 0. The fate of a system escaping this condition goes beyond the scope of our study.
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Luttinger’s momentum-energy tensors

The energy density, pressure, energy currents, and momentum are provided by equations. (3.45)
and (3.51). By using the explicit expression (3.59) for the corrections, we get

ε = Cw2

[
γT 2

0 e
−2ϕ(x) + ℏvF

12π ∂2
xϕ+ ℏvF

24π (∂xϕ)2
]
, (3.62a)

p = Cw2

[
γT 2

0 e
−2ϕ(x) − ℏvF

24π (∂xϕ)2
]
, (3.62b)

Jε = v2
FΠ = Cg

[
π

12ℏ(kBT0)2e−2ϕ(x) + ℏv2
F

48π∂
2
xϕ

]
, (3.62c)

when Lorentz invariance (symmetry) is enforced.

Alternatively, if we relax Lorentz invariance while imposing the covariant conservation of
the momentum-energy tensor, the thermal current and momentum no longer identify with each
other and are expressed as

Jε = Cg
[
π

12ℏ(kBT0)2e−2ϕ(x) − ℏv2
F

48π (∂xϕ)2
]
, (3.63a)

v2
FΠ = Cg

[
π

12ℏ(kBT0)2e−2ϕ(x) + ℏv2
F

48π
(
2∂2

xϕ+ (∂xϕ)2
)]

. (3.63b)

Luttinger’s relations for a constant temperature profile

Because of the nonlinearity of the anomalous Luttinger relation (3.60) and (3.61) between
temperature and gravitational potential ϕ, a fixed temperature profile T (x) corresponds to a
continuum of fields ϕ(x), contrarily to the case of the standard Luttinger relation (3.7) or (3.5).
This leads to additional freedom in the choice of ϕ for a given profile, typically imposed by
additional boundary conditions. It is, therefore, natural to analyze these equations and their
solution for different temperature profiles.

A first natural analysis concerns the case of a constant temperature profile. The standard
Luttinger relation (3.7) imposes a coordinate-independent gravitational potential ϕ = Cst. In
contrast, the anomalous relation (3.61) allows a constant temperature to be realized in a weak
field limit (|ϕ| ≪ 1) by a class of dilation fields of the form:

ϕ(x) = ϕ0 + ϕ+e
√

2x/λT0 + ϕ−e
−
√

2x/λT0 , (3.64)

valid provided the anomalous corrections to equation (3.64) are small, subjected to the condi-
tion |x| ≪ λT0 . The arbitrary coefficients ϕ± highlight the degeneracy of the gravitational “zero
modes” (3.64), which parametrizes the anomalous isothermal surfaces in the metric space. Note
that in the case of a finite system with periodic boundary conditions, imposing the smoothness
of the gravitational potential allows to recover a unique gravitational potential ϕ(x) = ϕ0 = Cst.

Relaxing the weak field limit, the anomaly-corrected Luttinger relation (3.61) translates
into a nonlinear differential equation for the gravitational “zero modes” or equivalently for a
constant temperature profile:

∂3
ξϕ+ 2∂ξϕ ∂2

ξϕ− 2∂ξϕ = 0 , (3.65)
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where we introduced the rescaled coordinate ξ = x/λT0 . This third-order differential equa-
tion (3.65) on ϕ possesses one trivial degeneracy corresponding to a global coordinate-independent
shift of the gravitational potential ϕ→ ϕ+ ϕ0. On top of this trivial degeneracy, this equation
possesses two physically meaningful degeneracies labeling the space of possible zero modes, each
one labeled by the value of the first and second derivatives of the field ϕ at a spatial reference
point x0. Hence, a unique choice of field ϕ(x) for a given profile T (x) requires fixing these
higher derivatives with boundary conditions, such as periodic boundary conditions on smooth
fields.

Perturbative solution for Luttinger’s relations in the case of a constant temperature
gradient

For experimental purposes, it is interesting to solve Luttinger’s relation for a system weakly
out of equilibrium, i.e., characterized by a temperature profile

T (x) = T0(1 + a τ(x)). (3.66)

with a≪ 1.

We consider a region of size L in the bulk of a thermal conductor away from bound-
aries. Setting τ(±L/2) = ±1/2, we get T0 = (TL + TR)/2, a = 2(TR − TL)/(TR + TL) where
TL = T (−L/2), TR = T (+L/2). We wish to derive both the gravitational potential ϕ and the
momentum-energy tensor components perturbatively in the parameter a. First, this amounts
to identifying the gravitational potential ϕ equivalent to this temperature profile, which satisfies

T 2(x)
T 2

0
= e−2ϕ(x) + λ2

T0∂
2
xϕ(x) , (3.67)

with a thermal lengthscale λT0 = ℏvF

2πkBT0
.

A generic solution ϕ(x) = ∑∞
n=0 a

nϕ(n)(x) of eq. (3.67) satisfies

ϕ(n)(x) = an sinh
(√

2 x

λT0

)
+ bn cosh

(√
2 x

λT0

)

+ 1√
2λT0

∫ x

0
sinh

(√
2 x− x

′

λT0

)
α(n)(x′)dx′ .

(3.68)

With α(n) a source term which is set by τ(x) and the lower orders ϕ(m) with m < n.
For practical reasons, let us focus on a linear temperature profile, for which τ(x) = x/L, such
as a ≡ L∂xT/T0. From (3.68) we get

ϕ(1)(x) =
(
a1 + λT0√

2L

)
sinh

(√
2 x

λT0

)
+ b1 cosh

(√
2 x

λT0

)
− x

L
. (3.69)

Imposing a finite gravitational potential in the thermodynamic limit L ≫ λT0 sets a1 =
−λT0/(

√
2L) and b1 = 0, leading to ϕ(1)(x) = − x/L. Recursively, we get

ϕ(1)(x) = −x
L
, (3.70)

ϕ(2)(x) = 1
2L2

(
x2 + λ2

T0

)
, (3.71)

ϕ(3)(x) = 1
L3

(
−1

3x
3 − 2xλ2

T0

)
, (3.72)

ϕ(4)(x) = 1
4L4

(
x4 + 20x2λ2

T0 + 21λ4
T0

)
, (3.73)
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which corresponds to ϕ(x) = ϕLutt + δϕ where ϕLutt = − ln(T0/T (x)) is the potential deduced
from the standard Luttinger equivalence, and δϕ encodes the modifications of this potential
induced by the gravitational anomalies, corresponding to the last term on eq. (3.67):

δϕ = a2

2L2λ
2
T0 − 2 a

3

L2xλ
2
T0 + a4

4L4

[
20x2λ2

T0 + 21λ4
T0

]
+O(a5) . (3.74)

We now express the components of the momentum-energy tensor in the temperature pro-
file (3.66) using the expression (3.74) of the equivalent gravitational potential. From equa-
tions (3.62,3.63), these components identify, in a Lorentz invariant situation, with

ε+/ε0 = T 2/T 2
0 + ε(1)

q /(γT 2
0 ) , (3.75a)

p+/ε0 = T 2/T 2
0 − ε(1)

q /(γT 2
0 ) , (3.75b)

J+
ε /ε0 = v2

FΠ+/ε0 = T 2/T 2
0 (3.75c)

with
ε0 = γT 2

0 /2 . (3.76)
The quantum anomaly corrections are encoded solely in ε(1)

q = ℏvF

24π [∂2
xϕ+ (∂xϕ)2], which in-

duces a modification of the momentum-energy tensor components at non-linear order in the
temperature gradient a = L∂xT/T0. At this stage, we realize that δϕ of equation (3.74) leads
to a ε(1)

q at least of order (a/L)4. Hence, to second order in the temperature gradient, we can
neglect the modification of this gravitational potential due to the anomalous Luttinger rela-
tion. Inserting the bare Luttinger potential ϕLutt in the expression (3.59) of ε(1)

q , we obtain the
following expression for the momentum-energy tensor components

ε+

ε0
= 1 + 2x ∂xT

T0
+
[
x2 − 4λ2

T0

] (∂xT
T0

)2

+O
(
∂xT

T0

)3

, (3.77a)

p+

ε0
= 1 + 2x ∂xT

T0
+
[
x2 + 4λ2

T0

] (∂xT
T0

)2

+O
(
∂xT

T0

)3

, (3.77b)

J+
ε

vF ε0
= vFΠ+

ε0
= 1 + 2x ∂xT

T0
+ x2

(
∂xT

T0

)2

, (3.77c)

with a thermal lengthscale λT0 defined in (3.60) at the reference temperature T0.

We note at this stage that the anomaly-related corrections to the thermodynamic correc-
tions appear at nonlinear order in the temperature gradient ∂xT/T0.

Alternatively, in the case of a covariantly conserved momentum-energy tensor, the anoma-
lous correction can be shown to be equal to vFΠ+/ε0 = ε+/ε0 = T 2/T 2

0 + ε(1)
q /(γT 2

0 ); and
J+
ε /(vF ε0)p+/ε0 = T 2/T 2

0 − ε(1)
q /(γT 2

0 ); or in other words, perturbatively in the thermal gradi-
ent,

vFΠ+

ε0
= ε+

ε0
= 1 + 2x ∂xT

T0
+
[
x2 − 4λ2

T0

] (∂xT
T0

)2

+O
(
∂xT

T0

)3

, (3.78a)

J+
ε

vF ε0
= p+

ε0
= 1 + 2x ∂xT

T0
+
[
x2 + 4λ2

T0

] (∂xT
T0

)2

+O
(
∂xT

T0

)3

. (3.78b)

These expressions encode the effects of the gravitational anomaly within a regime of small
thermal gradients. Note that it is nonlinear in thermal gradient ∇T/T0, although it originates
from an expression linear in ϕ and its derivative. This illustrates that linear response theory in
the gravitational potential ϕ can apply beyond the regime linear in ∂xT/T0.
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3.3. Anomalous Luttinger equivalence and response theory

3.3.2 Anomalous Luttinger response theory from perturbations
Since the correction arising in anomalous Luttinger currents (3.78) are linear in the gravitational
potential, it is interesting to see how such corrections appear from response theory linear in the
gravitational potential ϕ.
Hence, we consider a D = 1 + 1 chiral Dirac Hamiltonian in curved spacetime given by

H =
∫

dx eϕ(x) ĥ+(x), (3.79)

where, in terms of second quantized fields Ψ+(x),Ψ†+(x), the Hamiltonian density operator is

ĥ+(x) = −iℏvF2 Ψ†+(x)
↔
∂ xΨ+(x). (3.80)

where
↔
∂ x = −→∂x −

←−
∂x. We learned from Eqs. (3.63) that the energy density and momentum

operators must be treated separately when accounting for quantum fluctuations. Indeed, the
momentum

Π+ = −iℏ2 ⟨Ψ
†
+
↔
∂ xΨ+⟩ = 1

vF
ε+ (3.81)

identifies with the energy current

Jε,+ = iℏvF
2 e−ϕ(x)⟨Ψ†+

↔
∂ tΨ+⟩ = vFp+ (3.82)

only for classical fields satisfying the equation of motion.

For simplicity, we focus here on the momentum density, which only involves the equal time
Green’s function:

Π+(x) =
∫ dkdq

(2π)2 e
iqx
〈
Ψ†+,k− q

2
ℏ kΨ+,k+ q

2

〉
= −i

∫ dkdq
(2π)2

dω
2π e

iqxℏ k G<
k+ q

2 ,k−
q
2
(ω) (3.83)

where the lesser green functions G< is defined by

G<
k,k′(ω) = i

∫ ∞
0

dt eiωt⟨Ψ†+,k(0)Ψ+,k′(t)⟩. (3.84)

Working in perturbation theory at first order in the gravitational potential ϕ(x), we expand the
Green’s function using the Dyson equation written schematically for a perturbation H = H0+V

G = G0 +G0V G . (3.85)

Since, in our case, V̂ (x) = ĥ+(x)ϕ(x), we expand the Green’s function

G<
k′,k(ω) = (G<

0 )k′,k +
∫

dx ei(k−k′)xϕ(x)
((
GR

0

)
k′,k′

ĥk′,k (G<
0 )k,k + (G<

0 )k′,k′ ĥk′,k

(
GA

0

)
k,k

)
, (3.86)

expressed in terms of the retarded Green’s functions in flat spacetime

GR
k,k′(ω) = −i

∫ ∞
0

dt eiωt⟨{Ψ†k(0),Ψk′(t)}⟩ , (3.87)

the advanced Green’s function GA
k,k′(ω) = (GR

k,k′(ω))∗ and the lesser Green’s function (3.84).
Note that the dependence on the fixed frequency index ω has been omitted for clarity in the
right-hand side of the equation.
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In the absence of perturbation,

(GR/A
0 )k,k′(ω) = δk,k′ [ω − ĥk,k ± i0+]−1, (3.88)

(G<
0 )k,k′(ω) = 2iπδk,k′f(ω)δ(ω − hk,k). (3.89)

with

f(ω) = 1
1 + e

ω
kBT

. (3.90)

By using the Dyson expansion of the Green’s function (3.86) into the expression (3.83) we
obtain the perturbative expansion in ϕ of the momentum density. At temperatures kBT0 ̸= 0
small compared to the energy range over which the system is well described by the Dirac linear
Hamiltonian, we can develop the Fermi-Dirac distribution as

f(ω) = Θ(−ω)− π2

6 k
2
BT

2
0 ∂ωδ(ω) +O

(
(kBT0)4

)
. (3.91)

The equilibrium energy current density corresponds to the 0th order term and can therefore be
written as

Π(0)(x) = −i
∫ dk

2π
dω
2π Π̂k,kf(ω)

[
1

ω − ĥk,k − i0+
− 1
ω − ĥk,k + i0+

]

= Π + sign(vF )
v2
F

π

12ℏk
2
BT

2
0 +O

(
(kBT0)4

)
, (3.92)

where Π is the Fermi sea contribution to the momentum density. The contribution to first
order in ϕ is then given by

Π(1)(x) = −i
∫ dkdq

(2π)2
dω
2π dy Π̂k− q

2 ,k+ q
2
eiq(x−y)ϕ(y)

{(
GR

0

)
k+ q

2 ,k+ q
2
ĥk+ q

2 ,k−
q
2

(G<
0 )k− q

2 ,k−
q
2

+ (G<
0 )k+ q

2 ,k+ q
2
ĥk+ q

2 ,k−
q
2

(
GA

0

)
k− q

2 ,k−
q
2

}

= −2
∫ dkdq

(2π)2
dω
2π dyϕ(y)f(ω) Im

eiq(x−y) Π̂k− q
2 ,k+ q

2
ĥk+ q

2 ,k−
q
2(

ω − ĥk+ q
2 ,k+ q

2
+ i0+

) (
ω − ĥk− q

2 ,k−
q
2

+ i0+
)
 .

(3.93)
The long-range physics dominating the linear response theory is given by the first orders in the
development of

Π̂k− q
2 ,k+ q

2
ĥk+ q

2 ,k−
q
2(

ω − ĥk+ q
2 ,k+ q

2
+ i0+

) (
ω − ĥk− q

2 ,k−
q
2

+ i0+
) = vF (ℏk)2

(ω − vFℏk + i0+)2

+ vF (ℏk)2

(ω − vFℏk + i0+)4
(vFℏq)2

4 +O
(
(ℏq)4

)
.

(3.94)

The gradient expansion of the regularized current can, therefore, be written after integration
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by parts on the variable y,

Π(1)(x) ≈ −2
∫ dkdq

(2π)2
dω
2π dyϕ(y)f(ω)

Im
[

vF (ℏk)2

(w − vFℏk + i0+)2 e
iq(x−y) − ℏ2v2

F

4
vF (ℏk)2

(w − vFℏk + i0+)4∂
2
y

(
eiq(x−y)

)]

≈ −2
∫ dkdq

(2π)2
dω
2π dyf(ω)

Im
[
eiq(x−y)

{
vF (ℏk)2

(w − vFℏk + i0+)2ϕ(y)− ℏ2v2
F

4
vF (ℏk)2

(w − vFℏk + i0+)4∂
2
y (ϕ(y))

}]

≈ −2
∫ dk

2π
dω
2π f(ω) Im

[
vF (ℏk)2

(w − vFℏk + i0+)2ϕ(x)− ℏ2v2
F

4
vF (ℏk)2

(w − vFℏk + i0+)4∂
2
x (ϕ(x))

]
.

By using

Im
(

(−1)nn!
(ω − x± i0+)n+1

)
= ∓π∂nω [δ (ω − x)] , (3.95)

we can express this momentum density as

Π(1)(x) ≈ −
∫ dk

2πdω
{

Θ(−ω)− π2

6 k
2
BT

2
0 ∂ωδ(ω)

}[
vF (ℏk)2 ∂ωδ (ω − hk,k)ϕ(x)

− ℏ2

24∂
2
xϕ(x)v3

F (ℏk)2 ∂3
ωδ (ω − hk,k)

]

≈ −
∫ dk

2πdω δ (ω)
[
vF (ℏk)2 δ(ω − hk,k)ϕ(x)− ℏ2v2

F

24 ∂2
xϕ(x) vF (ℏk)2 ∂2

ωδ (ω − hk,k)
]

− π2

6 k
2
BT

2
0

∫ dk
2πdω δ (ω)

vF (ℏk)2 ∂2
ωδ (ω − hk,k)ϕ(x)

− ℏ2v2
F

24 ∂2
xϕ(x) vF (ℏk)2 ∂4

ωδ (ω − hk,k)
. (3.96)

Using the replacement ∂ωδ(ω − hk,k) = − 1
ℏvF

∂kδ(ω − hk,k), we can integrate on ω to get

Π(1)(x) ≈ −
∫ dk

2π

[
vF (ℏk)2 δ(hk,k)ϕ(x)− ℏ2v2

F

24 ∂2
xϕ(x)vF (ℏk)2

( −1
ℏvF

)2
∂2
kδ (hk,k)

]

− π2

6 k
2
BT

2
0

∫ dk
2π

vF (ℏk)2
( −1
ℏvF

)2
∂2
kδ (hk,k)ϕ(x)

− ℏ2v2
F

24 ∂2
xϕ(x) vF (ℏk)2

( −1
ℏvF

)4
∂4
kδ (hk,k)


≈ −

∫ dk
2π

[
vF (ℏk)2 ϕ(x)− 1

12∂
2
xϕ(x)vFℏ2

]
δ(hk,k)−

π2

6v2
F

k2
BT

2
0

∫ dk
2π2vFϕ(x)δ(hk,k)

≈ sign (vF )
{

ℏ
24π∂

2
xϕ(x)− π

6ℏv2
F

k2
BT

2
0 ϕ(x)

}
. (3.97)

Gathering the different terms, we obtain, at linear order in the gravitational field ϕ(x), the
momentum density

Π(x) = Π̄ + sign(vF )
[

π

12ℏv2
F

k2
BT

2
0

(
1− 2ϕ(x)

)
+ ℏ

24π∂
2
xϕ(x)

]
, (3.98)
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which is identical to the first order in ϕ of the full result (3.63b).
Direct Kubo calculation provides a result in agreement with the gravitational anomaly pre-
diction. Indeed, the strategy here applied for a specific metric field is, in fact, close to the
diagrammatic strategy used to determine the gravitational anomalies.

In this chapter, we generalized the notion of Tolman-Ehrenfest to 1+1 dimensional space-
times in the presence of gravitational anomalies before using it to correct the Luttinger trick
when taking the gravitational anomalies into account. While this is a direct application of the
modified Tolman-Ehrenfest relation, we will focus on discovering other consequences of this
modification in the next chapter.

It is important to stress that the original work from R. Tolman and P. Ehrenfest is not
specific to 1+1 dimensional systems [7]. An anomalous Tolman-Ehrenfest temperature can then
be defined in any dimension. However, the case 1+1 dimensions is particular, as gravitational
anomalies alone specify the momentum-energy tensor. In higher dimensions, gravitational
anomalies do not sufficiently constrain the momentum-energy tensor. Additional requirements
from e.g., symmetries of the problem, have to be analyzed on a case-to-case basis [151] and
deserve separate studies.
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Chapter 4
Applications: From black holes to condensed
matter and back

As we have seen in the previous chapter 3, in curved spacetimes, the notion of temperature has
to be updated to take into account the effects of gravitational anomalies. Since the notion of
temperature in curved spacetime is at the heart of Luttinger’s trick, these deviations implied a
modification of Luttinger’s relation, leading to corrections in response theory.

In this chapter, the objective will be to identify physical situations in which these corrections
to the Tolman-Ehrenfest temperature matter beyond the historical justifications of equilibrium
temperature in curved spacetime and response theory. First, we reconsider the case of black
holes. Historically, Black holes Hawking’s radiation and anomalous fluctuations were described
using either the trace [10] of the Einstein anomaly [11]. Therefore, our objective will be to
reconcile both points of view by studying how gravitational anomalies modifiy the notion of
temperature in the vicinity of a black hole. Then, coming back to condensed matter, we con-
sider strongly out-of-equilibrium systems. We show that the local energy density fluctuations
as well as the propagating heat waves resulting from a quench and recently identified within
conformal field theory [152–155] are a manifestation of the anomalous thermodynamics relation
identified in the previous chapter. Finally, we focus on a periodic sequence of quench applied
to relativistic fermions. This procedure induces a Floquet state recently considered within con-
formal field theory [156–162]. Here, we show that the energy landscape, similar to the one
observed close to black holes, is strongly modified due to the presence of gravitational anomalies.

This chapter is based on original work published in the article Ariv:2206.08784 [136].

4.1 Quantum atmosphere of a black hole
We start our discussion of the physical consequences of the anomalous Tolman-Ehrenfest re-
lation (3.49) by revisiting the Hawking radiation from a black hole. This corresponds to the
generic situation of a spacetime background with a large curvature R, which induces signifi-
cant anomalous quantum corrections ε(1)

q and ε(2)
q , that are even comparable with the classical

Tolmann-Ehrenfest temperature. For this purpose, we consider a generic black hole charac-
terized by a metric of the form (3.20) with f1 = 1/f2 = f . Such a metric encompasses both
Schwarzschild black holes [1] for f(x) = 1 − xH/x, with xH the black hole horizon, as well as
evanescent Callan–Giddings–Harvey–Strominger (CGHS) black holes [163], initially introduced
in the context of string theory [164], for f(x) = 1−exp[−α(x−xH)]. Generically, we consider a
metric f(x) which is asymptotically flat limx→∞ f(x) = 1 and vanishes linearly as x approaches
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the event horizon xH : f(x→ x+
H) ≈ 2κc−2(x− xH) where κ is its surface gravity.
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Figure 4.1: Quantum atmosphere of a 1 + 1 dimensional Schwarzschild black hole
(a) The dimensionless energy density ε, pressure p and energy current Jε, rescaled by their
asymptotic values εH = 1

2γT
2
H and JH = (π/12ℏ)k2

BT
2
H where TH is the Hawking temperature,

are represented as a function of the distance x to the core of the black-hole (central singular-
ity) rescaled by its radius xH . Far from the horizon, all three quantities are proportional to
T 2

TE(x), where TTE(x) is the classical Tolman-Ehrenfest equilibrium temperature. Close to the
horizon, quantum fluctuations strongly affect this classical behavior: an anomalous equilibrium
temperature T 2(x) is set by both ε + p and Jε. (b) The difference between the anomalous
T 2(x) and the classical T 2

TE(x) is set by a quantum scale ε(2)
q . The divergence of T 2

TE at the
horizon is counterbalanced by a diverging correction ε(2)

q , leading to a vanishing T 2(x). Si-
multaneously, the difference ε(1)

q between ε and p sets an independent quantum scale which
remains finite at the horizon. These results illustrate the generation by a large spacetime cur-
vature R of a finite energy density and asymptotic energy currents captured by the trace and
gravitational anomaly corrections to the thermodynamic quantities. In (a) and (b), the region
where T 2(x) ̸= T 2

TE(x) defines the quantum atmosphere. Within it, we defined the quantum
stratosphere, where ε(1)

q ≈ ε(2)
q , and the quantum troposphere, where ε(1)

q ̸= ε(2)
q , color coding

the smooth crossover between them. The vertical dotted line in (a) indicates where ε = 0.

Anomalous fluctuations and Hawking radiation.

We focus on the outgoing chiral flux of particles of velocity vF = c. Their momentum-energy
tensor is given by equations (3.25, 3.40) with Cw = Cg = 1 (or in other words, C+=1 and C− = 0).
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The two anomalous scales are deduced from equations (3.36, 3.41, 3.42):

ε(1)
q = ℏc

48π∂
2
xf ; ε(2)

q = ℏc
48π

(
∂2
xf −

(∂xf)2

2f

)
. (4.1)

The corresponding thermal current, identical to the momentum density, is deduced from
equations (3.45c, 3.49), with a temperature T (x) satisfying

k2
BT

2(x) = k2
BT

2
H

f
+ 6ℏc

π
ε(2)
q , (4.2)

where we deduced T 2
TE = T 2

H/f(x) from equation (3.29), with TH the asymptotic temperature
at x→∞, where f(x→∞) = 1.

In both the Israel-Hartle-Hawking and Unruh vacua, the momentum tensor for the outgoing
particles is regular at the horizon x = xH [165]. Therefore the divergence of Jε or T 2(x) at the
horizon, induced by the vanishing of f(x→ xH), has to be cancelled. The classical temperature
k2
BT

2
H/f always diverges at the horizon. On the other hand, the temperature (4.2) corrected by

anomalous fluctuations remains finite at the horizon, provided we counterbalance the diverging
classical temperature with the second contribution ε(2)

q in equation (4.2). This amounts to
imposing the condition

kBTH = ℏ
2πcκ . (4.3)

This is precisely the expression of the Hawking temperature [2, 11,166,167].

The above reasoning demonstrates that anomalous fluctuations are essential close to the
horizon, given that the associated energy ε(2)

q corrects the spurious classical temperature diver-
gence. Moreover, this subtle interplay between classical thermal and quantum fluctuations is at
the origin of the asymptotic value of the temperature and energy variation. Quite remarkably,
this implies that this asymptotic radiation originates from these anomalous quantum fluctua-
tions close to the horizon. Indeed, plugging (4.3) into equation (4.2), we find that T (x) and
thus Jε,+ vanish at the horizon [168], irrespective of the specific form of f(x). No thermal
current exits from inside the horizon. The asymptotic Hawking radiation

JH = π

12ℏk
2
BT

2
H = ℏκ2

48πc2 (4.4)

originates from a region outside of the black hole’s horizon, its quantum atmosphere [169].

Let us now focus more closely on this region of strong anomalous fluctuations outside of the
black hole.

Quantum troposphere and stratosphere.

In Fig. 4.1(a), we illustrate the behavior of the energy density, pressure, and energy cur-
rent around the quantum atmosphere of a Schwarzschild black hole by choosing the metric
f(x) = 1 − xH/x. The thermodynamic quantities are rescaled by their asymptotic values
εH = 1

2γT
2
H and JH = c εH for x → ∞. Between the horizon x = xH and x ≃ 4xH , the

effects of quantum fluctuations lead to a sizable departure of ε, p, Jε and, Π from their classical
values. This is the quantum atmosphere of the black hole, which hosts strong quantum fluctua-
tions. Its extension depends on the specific black hole, corresponding to a choice of metric f(x).
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In the outer part of this atmosphere, the amplitude of the anomalous corrections decreases,
and the classical values dominate: in particular, the energy density ε remains positive. We
denote this region as the quantum stratosphere. Close to the horizon, irrespective of the choice
of metric f(x), the energy density ε(x) always becomes negative. Indeed, from the decay of
the gravity with x, we deduce that ∂2

xf(x) < 0, corresponding to a negative curvature R in
(3.41) and thus a negative scale ε(1)

q in (4.1). Given that T (x) vanishes at the horizon, the
energy density (3.45a) is negative close enough to the black hole. Its asymptotic value satisfies
ε = −p = (ℏc/96π)∂2

xf(xH) < 0. This negative energy density is a hallmark of a region dom-
inated by anomalous quantum fluctuations: classical fluctuations satisfy a Stefan-Boltzmann
law (3.26) with an energy density always larger than that of the vacuum in flat spacetime ε > 0.
We denote the region of ε < 0, where thermodynamic quantities are dominated by anomalous
quantum fluctuations, the quantum troposphere.

Our analysis shows that the quantum atmosphere can be interpreted as the cradle of strong
anomalous quantum fluctuations. In the quantum troposphere, gravitational anomalies even
dominate thermodynamics. Signatures of such dominant quantum fluctuations are a negative
energy density and large relative ε − p compared to the average ε + p. In practice, the am-
plitude of the Hawking temperature is of the order of a few 10−8K for the smallest (i.e., the
hottest) observed black holes [170], rendering the direct detection of these anomalous quantum
phenomena elusive in real black holes.

Before focusing on other physical places where the anomaly might play a role, let us briefly
comment on historical references of the description of these anomalous quantum fluctuations.
The relation between the Hawking radiation and quantum anomalies in 1 + 1 dimensions was
pioneered by S. Christensen and S. Fulling, who focused on the trace anomaly [10]. S. Robinson
and F. Wilczek followed an alternative route by considering the consequences of the Einstein
anomaly on an effective chiral theory [11, 171, 172]. The associated modified equilibrium tem-
perature (3.49) was first derived in [173] while its relation to ballistic energy current (3.45c)
through the Einstein anomaly was unnoticed. As we showed in section 3.2.2, both anomalies
should be treated on the same footing when considering the effects of quantum fluctuations for
a generic theory. The notion of quantum atmosphere of a black hole, beyond its horizon, and at
the origin of the Hawking radiation was recently discussed by S. Giddings [169] on CGHS black
holes using conformal field theory techniques within the tortoise coordinates representation of
the momentum-energy tensor. This analysis was complemented in [174] by a general analysis
of the Stefan-Boltzmann law accounting for the anomalous Tolman-Ehrenfest temperature.

4.2 Far from equilibrium energy transport
A quench procedure, in which external parameters controlling an equilibrium system are sud-
denly changed, allows us to explore the dynamics of quantum systems beyond the realm of
linear response theory. The rich possibilities offered by experiments using ultra-cold atoms
have triggered a recent interest in such an out-of-equilibrium dynamics [175].

In this section, we focus on the situation of a finite-size quantum system connected to a
thermal bath, whose temperature is varied rapidly. In a standard partition procedure, such
as the one studied in [155], two halves of the conductor are maintained at different temper-
atures TR/L = T0 ± ∆T/2, see Fig. 4.2(a). The corresponding external temperature profile
T (x) maintains the conductor in an out-of-equilibrium state. The temperature profile is then
later released at some time t = 0. Local heat currents appear in the equilibration process
between different regions of the conductor. Remarkably, an oscillating heat wave was observed
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in a pioneering numerical study on spin chains [155], later described analytically within either
perturbation theory [154] or conformal field theory [152].

In this section, we demonstrate that these oscillations and an associated pressure discon-
tinuity at time t = 0 can be recovered within a curved spacetime approach as measurable
signatures of the gravitational anomalies. They originate from the energy density character-
izing the steady out-of-equilibrium state at time t < 0, which we describe first. In a later
refinement of this quench physics, we compare this thermal quench procedure with a quench
obtained by suddenly changing the local velocity. Finally, building on this protocol, we consider
Floquet states generated by periodically changing the local velocity profile, a procedure that
can be shown to be equivalent to imposing and releasing an external temperature profile.

4.2.1 Anomalous Luttinger relation on a ring
From generalized Gibbs measure to curved spacetime

We consider a generic interacting gas on a ring of size L, described in a low-energy limit by a
relativistic Luttinger liquid [46–48,176,177]. For time t < 0, this system is spatially modulated
either by a variation of the local Fermi velocity or by an external temperature. In the resulting
inhomogeneous out-of-equilibrium steady state, physical observables ⟨O⟩ are assumed to be
described by statistical averages with a generalized Gibbs measure

⟨O⟩ = Tr O e−G
Tr e−G ; G =

∫ L

0
dx

1
kBT0 ξ(x)h(x) , (4.5)

where H(x) is the Hamiltonian density and ξ(x) the parameter of the spatial modulation.

It is natural to expect that the local equilibrium temperature of the wire is set by TGibbs(x) =
ξ(x)T0. However, we show below that this is not the case. To engineer a given temperature
profile, gravitational anomalies corrections have to be accounted for to determine the equivalent
profile ξ(x). Besides, our results demonstrate that equivalence between modulating the velocity
or the inverse temperature of relativistic excitations requires some particular care, as we will
see in a following paragraph 4.2.1.

To identify the local equilibrium temperature corresponding to the generalized Gibbs mea-
sure (4.5), we start by interpreting it as a Gibbs measure at constant temperature T0 but in a
curved spacetime whose metric tensor verifies

ds2 = gµνdxµdxν = v2
F

ξ2(x)dt2 − dx2 . (4.6)

It is associated with the Luttinger gravitational potential ϕLutt(x) = − ln ξ(x), since it can be
rewritten under the form (1.73a),

G = 1
kBT0

∫ L

0
dx
√
f1h(x) , (4.7)

with f1 = 1/ξ2.

We can now use our results of chapter 3. The equilibrium temperature T (x) in this
curved spacetime does not directly identify with the standard Tolman-Ehrenfest temperature
TTE(x) = TGibbs(x), the difference is actually a direct measure of the amplitude of the corrections
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due to the trace and gravitational anomalies.

More precisely, let us recall the relation (3.49) between the anomalous Tolman-Ehrenfest
and the Gibbs temperatures: γT 2(x) = γT 2

Gibbs + ε(2)
q where the quantum energy scale

ε(2)
q = ℏvF

24π

−∂2
xξ

ξ
+
(
∂xξ

ξ

)2
 = ℏvF

24πℓ2
T

(4.8)

depends on the length ℓT which encodes the local variation of the metric:
ℓ−2
T (x) = ∂2

x ln ξ(x) . (4.9)
The relative correction to the temperature is thus set by a ratio of lengths :

T 2(x)
T 2

Gibbs(x) = 1 +
(
λT (x)
ℓT (x)

)2

. (4.10)

with the de Broglie relativistic thermal length

λT = ℏvF
2πkBTGibbs(x) . (4.11)

From equations (3.62) we obtain the energy density and pressure

ε = 1
2(C+ + C−)

(
γT 2 + ε(1)

q + εC
)
, (4.12)

p = 1
2(C+ + C−)

(
γT 2 − ε(1)

q + εC
)
. (4.13)

The homogeneous Casimir energy correction εC induced by the finite size of the system [178]

εC = −πℏvF24L2 , (4.14)

is locally corrected by the anomalous quantum scale ε(1)
q

ε(1)
q = ℏvF

24π

−∂2
xξ

ξ
+ 2

(
∂xξ

ξ

)2
 = ℏvF

24π
[
ℓ−2
T + ℓ̃−2

T

]
, (4.15)

whose amplitude is set by both the length ℓT from Eq. (4.9) and a second length scale parametriz-
ing the variations of the inhomogeneity parameter ξ(x):

ℓ̃T (x) =
∣∣∣∣∣ ξ∂xξ

∣∣∣∣∣ . (4.16)

Similarly, the energy current and momentum densities read

Jε,± = ±C±
[
π

12ℏ(kBT )2 + vF ε
(1)
q

]

= ±C±

 π

12ℏ(kBT0)2ξ2 − ℏv2
F

48π

(
∂xξ

ξ

)2
 , (4.17)

Π± = ±C±
[

π

12ℏv2
F

(kBT )2 − 1
vF
ε(1)
q

]

= ±C±

 π

12ℏv2
F

(kBT0)2ξ2 + ℏ
48π

3
(
∂xξ

ξ

)2

− 2∂
2
xξ

ξ

 . (4.18)

In the following, we consider Gibbs’ states associated to two different situations. First, we
consider a system set out of equilibrium by an inhomogeneous temperature profile T (x). Then,
we compare these results with those for a system whose inhomogeneities come from an inho-
mogeneous velocity profile.
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Figure 4.2: Quantum corrections to the out-of-equilibrium steady state imposed by a
temperature jump. (a) Two halves of a close ring of non-interacting particles (C+ = C− = 1)
are set at two temperatures TR/L = T0 ± ∆T/2. (b) At the two contacts, the temperature
smoothly varies over a region of size δ. We consider a Fermi velocity vF = 106m·s−1 typical for
relativistic materials, a cryogenic temperature T0 = 100 mK and a small relative temperature
jump ∆T/T0 = 0.2. (c) and (d) for a size of the contact region δ = 10 µm, we observe small
deviation of TGibbs compared to the applied temperature. As a consequence, the energy density
ε(x) and the pressure p depart from the classical law ε = P = γT 2: the amplitude of the
corresponding correction, represented by the shaded area, is set by a single quantum energy
scale ε(1)

q . This energy scale originates from quantum fluctuations, at the origin of scale and
gravitational anomalies, of similar origin that in the black hole’s atmosphere. In the present
case, the curvature R of spacetime is set by the imposed temperature through the Luttinger
equivalence relation. (e) and (f) for a smaller size δ = 1 µm, We observe an important deviation
of TGibbs compared to the applied temperature, TGibbs appear to be much smoother than the
applied temperature. The difference, represented by the shaded area, is set by the single
quantum energy scale ε(2)

q . As before, the energy density ε(x) and the pressure p depart from
the classical law ε = P = γT 2, with a correction encoded by the quantum energy scale ε(1)

q .

Let us evaluate the amplitude of the corrections by quantum fluctuations encoded in the
trace and gravitational anomalies by considering a non-chiral wire C+ = C− = C, maintained
in an out-of-equilibrium steady state by a temperature profile T (x). Let us then consider a
temperature profile that is constant in two regions with values TL/R = T0 ±∆T/2, and smoothly
interpolates over a length δ between them, at positions x = 0, L/2 as displayed in Fig. 4.2(a).
Although our approach applies to a generic temperature profile, for the sake of clarity, we
choose a profile such that

T (x) = T0 −
∆T
2 tanh

[
L

2πδ sin
(

2π x
L

)]
. (4.19)

Given this temperature profile, we identify the equivalent parameter of the spatial mod-
ulation ξ(x) by inverting numerically the relation (4.10). This function ξ(x) is then used to
calculate the amplitudes of the quantum corrections ε(1)

q and the corresponding densities and
currents. The results are shown on Fig. 4.2. We expect the gravitational anomalies to alter
the classical properties of the steady state in regions where ε(1)

q become sizable, or in other
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words, where ξ(x) varies a lot, i.e. close to the temperature jumps for a strong enough relative
variation of this temperature. Therefore we focus, in the following, on the temperature jump
around x = L/2 of the temperature profile (4.19), as shown in Fig. 4.2(b). For a steady state,
Jε and Π vanish.

The parameters of Fig. 4.2 are motivated by relativistic electronic conductors. In graphene
[179], Carbon nanotubes [180] and Dirac and Weyl semimetals [96], the Fermi velocity of Dirac
particles is of the order vF ∼ 106 ms−1, yielding a thermal length λT0 × T0 ≃ 1.22 × 10−5 m
for a dilution refrigerator temperature of T0 = 100 mK. We choose a relative temperature jump
∆ξ = 0.2. For smooth temperature jump over a length δ = 10µm, we obtain from (4.10) that
ℓ̃T (x) is very large and ℓT (x)≪ ℓ̃T (x). A single length scale ℓT (x) ≃ |ξ/∂2

xξ|1/2, set by the Ricci
scalar R, characterizes the anomalous fluctuations. Correspondingly, gravitational anomaly
corrections, characterized both by the departure of T from TGibbs and by the difference between
ε and γT 2 involve a single quantum energy scale ε(1)

q ≈ ε(2)
q ≈ −CℏvF/(24πℓ2

T ). Both the
pressure and the energy density display small departures from the classical law ε = p = CγT 2,
as shown in Fig. 4.2(d). The amplitude of this correction, symmetric around the temperature
jump, corresponding to the shaded area, is a direct measure of the quantum correction ε(1)

q set
by the anomalies, εC being negligible here. For sharper temperature jump over δ = 1µm, we
observe that the corresponding Gibbs or Tolman-Ehrenfest temperature TGibbs(x) = TTE(x) is
much smoother, as shown in Fig. 4.2(e). This illustrates that an inhomogeneous temperature
induces analog gravitational potentials that are smoother than those induced by velocity vari-
ations, e.g. by varying the couplings. Remarkably, the energy density displays some deeps and
spikes around the temperature jump, represented in Fig. 4.2(e), which are signatures of the
gravitational anomaly corrections. In that situation, the two lengthscales ℓText(x) and ℓ̃Text(x)
slightly differ, corresponding to two different quantum energy scales ε(1)

q and ε(2)
q . However,

in practice, only ε(1)
q leads to experimentally measurable corrections through the difference

ε− p = 2C(ε(1)
q + εC).

Inhomogeneous Couplings

For the sake of comparison, let us evaluate the amplitude of the corrections induced by an
inhomogeneous velocity profile v(x). Although our approach applies to a generic velocity profile,
we choose a velocity profile of the form

v(x) = vF

1− ∆T
2T0

tanh L
2πδ sin 2π x

L

. (4.20)

Classically, a system maintained out-of-equilibrium by a velocity profile of the form (4.20)
at a homogeneous temperature T0 and a system at an inhomogeneous temperature set out
of equilibrium by a temperature profile of the form (4.19) are both described by the same
generalized Gibbs ensemble with a spatial modulation induced by the parameter

ξ(x) = 1− ∆T
2T0

tanh L

2πδ sin 2π x
L
. (4.21)

One could expect the momentum-energy tensor of both systems to be identical. However, as
we have seen in the previous paragraph, in the case of a thermal origin of the inhomogeneities,
the “correct” parameter ξ is determined by solving numerically equation (4.10). Therefore, the
experimentally relevant corrections, given by ε−CγT 2 and by p−CγT 2 are both equal to Cε(1)

q .

In contrary, for a system set out of equilibrium by inhomogeneous couplings, since the ex-
perimentally imposed quantity is the velocity profile, the experimentally relevant quantities are
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both ε−CγT 2
Gibbs and p−CγT 2

Gibbs expressed respectively, in terms of the anomalous energy scales
as C

(
ε(1)
q + ε(2)

q

)
and C

(
ε(2)
q − ε(1)

q

)
1. In this case, two different situations can arise depending

on the value of ∆T/T0, as displayed in Fig. 4.3.
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Figure 4.3: Quantum corrections to the out-of-equilibrium steady state imposed
by an inhomogeneous velocity profile. (a) and (b) For a small difference of velocity
∆v/vF ≈ 0.2, the pressure, shown relative to its means value ε0 = γT 2

0 , follows the classical
law P ≈ γT 2. On the other hand, the energy density ε(x) departs from this classical law:
the amplitude of the corresponding corrections, represented by the shaded area, is set by the
quantum energy scale ε(1)

q . This energy scale originates from quantum fluctuations at the origin
of the gravitational anomalies of a similar origin that in the black hole’s atmosphere. In the
present case, the curvature R of spacetime is set by ξ the parameter of the spatial variations
through the anomalous Tolman-Ehrenfest law (3.49). (c) and (d) for larger relative velocity
variations ∆v/vF ≈ 0.6, two quantum energy scales ε(1)

q and ε(2)
q have to be distinguished. While

(ε(1)
q + ε(2)

q )/2 still appears as the amplitude of the oscillating corrections to ε, the difference
ε(1)
q − ε(2)

q manifests itself both in the asymmetry of these corrections around the temperature
jump, and a departure of the pressure from the classical law.

For small relative velocity variations ∆v/vF , ℓ̃T (x) is very large and ℓT (x) ≲ λT (x)≪ ℓ̃T (x).
A single length scale ℓT (x) ≃ |1/∂2

xξ|1/2, set by the Ricci scalar R, characterizes the anoma-
lous fluctuations. Correspondingly, gravitational anomaly corrections involve a single quantum
energy scale ε(1)

q ≈ ε(2)
q ≈ −CℏvF/(24πℓ2

T ). While the pressure follows the classical amplitude
p = C (γT 2

Gibbs − εC), the energy density ε = C
(
γT 2

Gibbs + 2ε(1)
q + εC

)
displays an oscillation

around the temperature jump, as shown in Figs. 4.3(a) and 4.3(b). The amplitude of this
oscillation, symmetric around the temperature jump, corresponding to the shaded area, is a
direct measure of the quantum correction ε(1)

q set by the anomalies.

For larger velocity variations ∆v/vF for which ℓT (x) ≲ ℓ̃T (x) ≲ λT (x) the two quantum
energy scales ε(1)

q and ε(2)
q are no longer approximately equal. The difference ε(2)

q −ε(1)
q manifests

1Note that in the previous expressions, the parameters ε and p corresponds to the one measured with
respect the flat spacetime hamiltonian density h(x) and not those measured with respect to the inhomogeneous
hamiltonian h(x)/ξ(x)
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itself in two ways. First, as a departure of the pressure from the classical behavior, as shown
in Fig. 4.3(d). Second, as the asymmetry around the temperature jump at x = 0 of the shaded
areas at x > 0 and x < 0 of the energy density ε as shown in Fig. 4.3(c).
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Figure 4.4: Quantum corrections to energy traveling waves imposed by a
temperature quench (a) Two halves of a wire of non-interacting particles (C+ = C− =
1) with Fermi velocity of vF = 106 ms−1 are set at two temperatures TR/L = T0 ∓ ∆T/2
following the same protocol as in Fig. 4.2. The average temperature is T0 = 100mK, and the
ramp of temperature of amplitude ∆T = 20mK is imposed over a length δ = 1µm. At time
t = 0, this external temperature difference is released. Following this quench, two traveling
waves of energy appear. (b) The non-monotonous behavior of the density of energy profile is
a manifestation of the anomaly corrections originating from quantum fluctuations of similar
nature than close to a black hole. The amplitude of the corrections, represented by the shaded
area, is a direct measure of the new quantum scale of energy ε(1)

q ≃ ε(2)
q set by gravitational

anomalies. In between the two waves appears a region of homogeneous density of energy
ε̄ = 1

2γ(T 2
L + T 2

R) + 2εC = γ(T 2
0 + ∆T 2/4) + 2εC . (c) and (d) This intermediate region is

not in equilibrium: it is crossed by right-moving particles at temperature TL and left moving
particles at temperature TR, leading to a steady current J̄ε = 1

2γvF (T 2
L − T 2

R) = 2γvFT0∆T
and momentum Π̄ = v−2

F J̄ε. The oscillating corrections to the momentum or energy current
close to the interface between the three regions, shown in (b) and (c) as shaded areas, are also
an accessible manifestation of corrections due to quantum fluctuations due to the trace and
gravitational anomalies, similarly to those at the vicinity of a black hole. In the present case,
they originate from the local strong curvature of the effective spacetime accounting, following
Luttinger equivalence, for the temperature variation.

4.2.2 Temperature quench as a metric quench
In practice, maintaining a conductor in an out-of-equilibrium steady state is difficult and not
practical: it is often easier to study the dynamics following a corresponding quench. As we
show below, the dynamics reflects the quantum corrections to the initial steady state. Thus
we consider a situation where the temperature profile (4.19) is imposed up to time t = 0, and
released afterwards.
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The out-of-equilibrium dynamics occurs in a closed system, but a ballistic evolution forbids
the exchange of energy between left and right movers. Given that the equilibrium temperature
of such a system is uniform, the Tolman-Ehrenfest equivalence implies that this dynamics oc-
curs in a flat spacetime, with vanishing curvatures R = 0 and R = 0. In this flat spacetime,
ε = p and v2

FΠ = Jε.

Following the extended Luttinger correspondence that we developed in chapter 3, the out-
of-equilibrium dynamics at time t > 0 can be viewed as resulting from a quench of the
spacetime metric at time t = 0 from the Luttinger metric (4.6) to a flat metric. Continu-
ity conditions on the momentum-energy tensor, derived in Appendix B, imply that both the
energy density ε as well as the momentum Π are continuous during this quench of metric:
ε(t = 0+) = ε(t = 0−) and Π±(t = 0+) = Π±(t = 0−). On the other hand, the energy current
density and the pressure are discontinuous, with Jε±(t = 0+) − Jε±(t = 0−) = C±vF ε(1)

q and
p(t = 0+)− p(t = 0−) = (C+ + C−)ε(1)

q , where ε(1)
q is set by (4.15).

Given that low-energy excitations of our system evolve ballistically, we obtain for time t > 0

Jε±(x, t) = v2
FΠ±(x, t) = v2

FΠ±(x∓ vF t, 0+) (4.22)

where the momenta at t = 0+ are defined in (4.18). The resulting energy density and momentum
are represented in Fig. 4.4 for the same parameters than Figs. 4.2(e) and 4.2(f). The quantum
corrections characterizing the energy density and pressure of the steady state at t < 0 now
manifest themselves as traveling waves of energy after the quench, as shown in Figs. 4.4(a)
and 4.4(b). In between the two traveling waves emerges a region of homogeneous density of
energy

ε̄ = 1
2γ

(
C+T

2
L + C−T 2

R

)
+ (C+ + C−)εC , (4.23)

where the average temperature T0 is defined in Fig. 4.2(b). In this region, right-moving parti-
cles carry an energy density 1

2C+(γT 2
L + εC) while left-moving particles carry an energy density

1
2C−(γT 2

R+εC), resulting in a steady-state value of the current J̄ε = 1
2γvF (C+T

2
L−C−T 2

R) and mo-
mentum Π̄ = v−2

F J̄ε. This expression agrees with the pioneering study on interacting chains [155]
and [150] as well as a Landauer-Büttiker approach for non-interacting fermions [181].

The traveling waves of energy, shown in Figs. 4.4(a) and 4.4(b), reflect as traveling waves
of momentum shown in Figs. 4.4(c) and 4.4(d). The amplitudes of the quantum corrections,
represented as the shaded area, are equal to that of the energy density before the quench, shown
in Fig. 4.2: it is set by ε(1)

q , a quantum scale defined in (4.15).

These results, which we derived for a temperature quench from gravitational anomaly cor-
rections in a curved spacetime as well as continuity conditions following a metric quench, can
easily be extended to a quench of Gibbs temperature, where the quenched quantity is directly
ξ(x). Results for such a quench of the Gibbs temperature were previously derived using series
expansions and conformal field theory techniques in [152, 154]. The presence of a Schwarzian
derivative in the expression for the density of energy and energy current can indeed be traced
back to a manifestation of the trace anomaly identified in the present paper. Through the (ex-
tended) Luttinger equivalence, a thermal quench can be treated as a quench of metric, which
appears seemingly identical to a quench imposed by the release of an external confining poten-
tial considered in [51]. In both cases, anomalies capture the quantum corrections induced by
large spacetime curvatures.
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4.2.3 Spacetime periodic modulation: Floquet states
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Figure 4.5: Floquet heating state. (a) and (b) We consider a ring of free relativistic fermions
with a spatially modulated velocity ξ(x)vF (x) = 1. The modulation ξ(x) is periodic in time
with a period tp = t1 + t2, such that (i) during time t1 set to the smooth profile shown in (a),
and (ii) during time t2 no modulation is applied and ξ(x) = 1. The two times Lt1/vF = 0.1
and Lt2/vF = 0.45, are chosen such that the period coincides approximately with the time
of flight of particles around the ring: L ≈ vF t1 + ṽF t2 where ṽF is the averaged effective
velocity over the profile ξ(x).(c) and (d) As a function of time, both the energy density ε
and the momentum Π become highly inhomogeneous, and concentrate on a few trajectories.
They are represented rescaled by the classical values ε0 = vFΠ0 = γT 2

0 . The energy and
momentum profiles are represented after two and four periods in panels (f) and (g), illustrating
the localization mechanism. (e) Besides being focused spatially, the net energy of the ring
Etot =

∫ L
0 ε dx = Lε̄ increases: the Floquet state is heating. This is represented by monitoring

the stroboscopic dynamics at times tn = ntp of the ring for which Etot increases exponentially.
Remarkably the rate of increase of this energy is not classical: quantum fluctuations, responsible
for the trace and gravitational anomaly corrections, have a growing energy. The two focusing
trajectories behave as heating black holes: in their neighborhood, the energy density becomes
negative, as shown in the inset of panel (f). This is an additional manifestation of the effects
of quantum fluctuations induced by a local large curvature similar to those in a black-hole
atmosphere.

In this section, building on the above study of a single thermal quench, we explore how
anomalous quantum fluctuations appear following a periodic sequences of quantum quenches.
While periodic thermal quenches realize the same physics, for technical reasons we follow the
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4.2. Far from equilibrium energy transport

protocol recently proposed in [158–161] by implementing directly a quench of coupling ξ(x),
see Eq. (4.5). This choice allows to bypass the numerical determination of a metric equivalent
to a thermal profile as done in section 4.2.1. By interpreting time-periodic, or Floquet, change
in the spatial dependence of the system’s parameters as metric quench (Fig. 4.5(a)), we high-
light the role that gravitational and trace anomalies play in the phenomenology of the resulting
Floquet conformal field theories [156,157].

The peculiarity of Floquet conformal field theories relies on the striking, but analytic, ther-
malization properties [158–161] occurring when periodically modulating the system between
two inhomogeneous states. This two-step periodic drive is obtained when the dynamics of
particles on a circle of size L is alternatively described by a uniform and an inhomogeneous
Hamiltonian:

H =
∫ L

0
dx

1
ξ(x, t)h0(x), (4.24)

where

ξ(x, t) =
ξ(x) for t ∈ [0, t1]

1 for t ∈ [t1, t1 + t2 ≡ tp],
(4.25)

where tp is the period. While initially ξ(x) was chosen to be an inverse sine squared deformation
ξ−1(x) = 2 sin2(πx/L) [156, 157], we consider more general profiles in the following [160, 161].
For concreteness the results of Fig. 4.5 are obtained for a profile deduced from a simple metric
proposed in [160]:

ξ(x) = 1 + 1
3 sin

(4πx
L

)
+ 1

3 cos
(2πx
L

)
, (4.26)

represented in Figs. 4.5(a) and 4.5(b). Note that such a profile is slowly varying, and does not
yield abrupt changes of metric: we do not expect the type of anomalous corrections due to
quantum fluctuations discussed in the previous section after a single quench. Yet, we will see
that the succession of such quenches leads to manifestations of the gravitational anomaly.

For a period tp comparable with the time of flight for particles across the system, two
distinct dynamical phases are reached at long-time depending on the relative magnitudes
t2/t1 [158, 159]. A heating and non-heating phases are characterized by the evolution of the
total energy Etot = Lε̄ of the closed system, which either grows exponentially or oscillates. Fur-
thermore, in the heating phase, the energy density becomes highly inhomogeneous, localizing
exponentially around a few spatial fixed points [158,159].

First, following the discussion in section 4.2.1, we realize that the periodic modulation of
energy density of Eq. (4.25) can be realized by a periodic sequence of thermal quenches, with a
profile T (x) obtained by solving Eq. (4.10), provided this profile is always positive. Let us now
notice that the Floquet drive Eq. (4.25) enforces a time-periodic quenches of a metric (3.20)
with f2(x, t) = 1 and

f1(x, t) =
1 for t ∈ 0 < t < t1

1/ξ2(x) for t ∈ t1 < t < tp
(4.27)

Proceeding as in the single quench of the previous section, we solve the time-evolution of
the momentum-energy tensor stepwise and apply suitable continuity equations determined
in appendix B. In doing so, we access the energy and momentum density which are plot-
ted in Figs 4.5(c) and 4.5(d), respectively, up to t = 4tp. Three stroboscopic times are shown
in Figs. 4.5(f) and 4.5(g). In these plots, the Hamiltonian H0 was chosen as that of free
Dirac fermions, with the duration of the two steps of metric chosen such that Lt1/vF = 0.1
and Lt2/vF = 0.45. Note that during step 2, the average velocity v̄F is defined as 1/v̄F =
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Chapter 4. Applications: From black holes to condensed matter and back

∫ L
0 dx/v(x) = 1

vF

∫ L
0 dx/ξ(x) such that the time of flight across the circle of the particles is ap-

proximatively one period: L ≈ vF t1 + v̄F t2, corresponding to the conditions to realise a heating
phase [158,160].

Focusing on the heating phase, we show that several of its features are manifestations of
quantum fluctuations and can be traced back to gravitational anomalies. Indeed the gravi-
tational anomaly modifies the rate of the exponential growth of the average energy density.
To show this we plot the total energy density Etot = ε̄L at stroboscopic times in Fig. 4.5(e),
extracted from Fig. 4.5(c). Plotted in Log-scale, it shows a clear linear trend as a function of
time. To highlight the contribution of the gravitational anomaly, in Fig. 4.5(e) we have sep-
arated two contributions: that arising from the classical Tolman-Ehrenfest temperature, and
that directly linked to the gravitational anomaly. We observe that both have the same order
of magnitude at large times and grow exponentially.

A second signature of the gravitational anomaly is apparent in the spatial profile of the en-
ergy density, shown in Fig. 4.5(f) for stroboscopic times. The inset shows that the energy density
can be locally negative while satisfying that the total energy is always positive (Fig. 4.5(e)).
Without quantum effects, the classical Tolman-Ehrenfest contribution ε > 0 for all x. This can
be seen by noting that without the anomalous contribution ε(1)

q to (3.45a) the energy density
is always positive for all x. However, in Fig. 4.5(f), we see that this is not the case, a clear
manifestation of the Einstein and scale anomaly, reminiscent of the negative energy density
close to the horizon of a black hole, as shown in Fig. 4.1.

We expect this relation between the quantum properties of black holes and Floquet heating
states to be generic. Indeed, the authors of [159] noted the connection between the effective
metric of a sine-squared Floquet CFT and that of two black holes at the accumulation points.
This is in agreement with the manifestation of the trace and gravitational anomalies that we
identified, in particular with the negative density of energy close to these accumulation points,
reminiscent of the black hole atmosphere.

4.3 Conditions of application
Before discussing these results in detail, let us start by commenting on the conditions of ap-
plication of our approach. Crucially, the notion of local temperature T (x) requires some local
energy relaxation on scales smaller than the characteristic scales of variations of T (x). While
close to the black hole, only the outgoing flux of Hawking’s radiation needs to be locally equili-
brated. In the strongly out-of-equilibrium condensed matter examples discussed above, we have
assumed a single local temperature T (x) common to left and right moving excitations 4.2.1,
while still describing their motion as ballistic. This corresponds to a situation where the for-
ward inelastic scattering occurs on scales much smaller than the backscattering between left
and right movers, which is effectively neglected in this chapter. This imposes a condition on
the scattering potential, whose 2kF components should be negligible compared to the q ≃ 0
components.

In more detail, denoting by ℓf and ℓb the forward and backscattering lengths, a sufficient
condition for the excitations to be at a local thermal equilibrium amounts to consider a small
enough thermal gradient satisfying ℓf ≪ l̃T ≪ ℓb in terms of the length l̃T defined in (4.16).
In practice, in a system with a fixed velocity vF , average temperature T , scattering time τ ,
and size L, our theory will apply if the temperature difference between both ends of the system
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4.3. Conditions of application

satisfies ∆T
T̄
≪ L

vF τintra
.

Situations where left and right movers are equilibrated at two different temperatures require
more care and will be the focus of the next chapter 5.

In this chapter, we have discussed observable imprints on the thermal current and energy
densities of anomalous quantum fluctuations at the origin of gravitational anomalies in field
theory. These imprints manifest naturally in curved spacetime, such as the neighborhood of
black holes. However, extending Luttinger’s correspondence beyond the realm of perturba-
tive response theory, we have shown how they emerge, as naturally, in a flat spacetime when
subjected to a single or periodic temperature quenches. The reason is that the equilibrium tem-
perature profile in all the above situations can be phrased as an anomalous Tolman-Ehrenfest
temperature, an equilibrium temperature profile that upgrades the classical result by R. Tol-
man and P. Ehrenfest by incorporating the quantum energy scales originating from gravitational
anomalies.
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Chapter 5
Extension of the Luttinger’s trick in the
presence of two temperature profiles

In chapters 3 and 4, we discussed the corrections brought by gravitational anomalies to the
concept of Tolman-Ehrenfest temperature. Furthermore, we introduced several physical setups
in which these corrections were both relevant and sizable. However, as discussed in section 4.3,
these analyses are restricted to situations in which the temperatures of both chiral species are
identical. As a conclusion, we observed that in their steady states, non-chiral conductors, de-
fined by Cg = 0, present no energy current.

This behavior is, however, not general to every setup. For example, in ballistic materials,
left and right-moving electrons do not interact, and hence, each species has an independent
temperature fixed by their boundary condition. In this chapter, we will extend the notion of
Tollman-Ehrenfest temperature and Luttinger’s trick to systems in which left and right movers
have independent temperature profiles, or in other words, in the presence of two local temper-
ature profiles. First, we will see how such independent temperature profiles can arise from a
single metric tensor with several boundary conditions, considering both in and out-going radia-
tion close to a black hole. Then, introducing a condensed matter system displaying independent
temperature profiles for left and right-moving electrons, we will see that the original Luttinger’s
strategy is not sufficient. Extending Luttinger’s trick to such a setup requires introducing one
metric tensor per chirality, a strategy also known as bimetric gravity. Then, we will discuss
another possible application of this strategy to tilted semimetals. Finally, we will conclude this
chapter with a discussion of the advantage of such setups to observe signatures of gravitational
anomalies.

The results of this chapter are new and currently unpublished.

5.1 From one to two temperature sources in black hole
physics

In section 4.1, we proved, based on gravitational anomalies, that black holes induce in their
vicinity out-going thermal energy currents (radiation) at a temperature fixed by their surface
gravity, following Hawking’s relations. In that demonstration, we focused on out-going energy
fluxes, fixing the boundary condition at the horizon of the black holes and completely disre-
garding the incoming energy flux.
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Chapter 5. Extension of the Luttinger’s trick in the presence of two temperature profiles

In this section, building on this example, we wish to consider a system with two local tem-
perature profiles. In analogy with a conductor connecting two temperature sources, and as
proposed but not studied by M. Stone and J. Kim in [182], a natural setup to study such
radiations consists in considering the thermodynamics of a region in between two black holes.

Let us study a single metric describing the physics induced by two distant black holes, whose
centers are respectively at x = 0 and x = 2L with respective radius xL and xR (with xL/R < L ).
Even though such a metric is not a solution of Einstein’s general relativity equations [183–185],
it captures the phenomenology of two distant Schwarzschild black holes. It is defined by the
line element

ds2 = f(x)dt2 − 1
f(x)dx2, (5.1)

with
f(x) =

(
1− xL

x

)(
1− xR

2L− x

)
. (5.2)

Classically, following Hawking’s calculations, one would expect both black holes to radiate at
a temperature TL/R ∝ 1

xR/L
, and hence an energy current in the middle of the sample given by

Jε = πk2
B

12ℏ
(
T 2
L − T 2

R

)
, (5.3)

consistent with Landauer’s formula for a ballistic conductor with heat sources at temperatures
TR and TL [186,187].

We can then wonder if the strategy based on anomalies used in section 4.1 can be used to
explain such a result and what corrections might arise due to gravitational anomalies. If we
apply directly the strategy, developed in section 3.2.2 to the double black hole metric (5.1), one
finds a single anomalous temperature given by

k2
BT

2
an = k2

BT
2
0

f(x) + ℏ2c2

8π2

(
∂2
xf(x)− 1

2
(∂xf(x))2

f(x)

)
, (5.4)

with T0 a constant to be fixed. Following the single black hole study of section 4.1, we would
like to fix this constant by requiring the temperature profile to be regular everywhere. However,
such a requirement is, in the case of the metric (5.1), impossible to fulfill whenever the two
Hawking’s temperatures differ, i.e., when xR ̸= xL, since the regularity condition imposes

• On the left side: kBT0 = kBTL = ℏκL

2π c , with κL ≡ c2 |∂xf |
2

∣∣∣
xL

= c2

2xL

(
1− xR

2L−xL

)
the left

black hole’s surface gravity

• On the right side: kBT0 = kBTR = ℏκR

2π c , with κR ≡ c2 |∂xf |
2

∣∣∣
2L−xR

= c2

2xR

(
1− xL

2L−xR

)
the

right black hole’s surface gravity

The choice of a single constant T0 is then too restrictive to fit both boundary conditions.

A natural strategy to solve this question consists in considering separately left-going and
right-going radiations instead of the total radiations. The right-going radiation will be required
to be well-defined close to the left black hole, and similarly for the left-going radiation close
to the right black hole, defining one temperature profile per chirality. To do so, let us define
a new variable y such as dy = dx

f(x) , and the corresponding chiral variables y± = 1
2 (ct± y). In

the basis (t, y), the metric tensor can be expressed as

gµν = f (x (y))
(

1 0
0 −1

)
, (5.5)
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5.1. From one to two temperature sources in black hole physics

or, in the chiral variable language (y+, y−),

gµν = 2f
(
y+ − y−

)(0 1
1 0

)
(5.6)

such as the only non-zero affine connection coefficients are{
+

++

}
= −

{
−
−−

}
= ∂yf

f(x) = ∂xf . (5.7)

In this basis, the (non-)conservation equations (3.35)
T µµ = ℏc

48πCwR ,
T µν = T νµ ,
∇µT µν = ℏc

96πCg
ϵνµ
√
−g∇µR ,

(5.8)

can be written as 
2f (T +− + T −+) = ℏc

48πCwR ,
T +− = T −+ ,

f∂− (fT −+) + ∂+ (f 2T ++) = Cg ℏc
192πf∂+R ,

f∂+ (fT +−) + ∂− (f 2T −−) = −Cg ℏc
192πf∂−R ,

(5.9)

which can be solved as
T +− = T −+ = ℏc

192π
Cw

f
R ,

T ++ = α(y−)
f2(y+−y−) + ℏc

192π
Cg+Cw

f2(y+−y−)
∫
f∂yR (Right going current)

T −− = β(y+)
f2(y+−y−) + ℏc

192π
−Cg+Cw

f2(y+−y−)
∫
f∂yR (Left going current)

(5.10)

with α and β, two unknown functions that we need to fix using the boundary conditions.

Stationarity implies that both α and β are constants that we will fix by imposing vanishing
out-going current boundary conditions at xL and 2L− xR:

• Nothing coming out of the left black hole implies that T ++(y(xL)) = 0, or in other words,

α = C+
γT 2

L

2 = Cg + Cw
4 γT 2

L , (5.11)

• Nothing coming out of the right black hole implies that T −−(y(2L−xR)) = 0, or in other
words,

β = C−
γT 2

R

2 = −Cg + Cw
4 γT 2

R , (5.12)

Restoring the original coordinate system (t, x), we can express the different thermodynamic
quantities as 

ε ≡ ε+ + ε− = α+β
f(x) + Cw

2

(
ε(1)
q + ε(2)

q

)
,

p ≡ p+ + p− = α+β
f(x) + Cw

2

(
ε(2)
q − ε(1)

q

)
,

v2
F Π = Jε ≡ J+

ε + J−ε = α−β
f(x) + Cg

2 ε
(2)
q ,

(5.13)

with ε
(1)
q = ℏc

48π∂
2
xf ,

ε(2)
q = ℏc

48π

(
∂2
xf −

(∂xf)2

2f

)
.

(5.14)
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We define, similarly to chapter 3, an anomalous temperature for each chirality as
(
kBT

±
an

)2
=
k2
BT

2
R/L

f(x) + ℏ2c2

8π2

(
∂2
xf(x)− 1

2
(∂xf(x))2

f(x)

)
, (5.15)

such that the chiral components of the momentum-energy tensor verify
ε± = C±

2

[
γ (T±an)2 + ε(1)

q

]
,

p ≡ p± = C±

2

[
γ (T±an)2 − ε(1)

q

]
,

c2 Π± = J±ε = C±

2 γc (T±an)2
.

(5.16)

Considering a non-chiral conductor, such that C+ = C− = C, the total momentum-energy
tensor (5.13) take the simplified form

ε = C γ2
T 2

L+T 2
R

f(x) + C
(
ε(1)
q + ε(2)

q

)
,

p = C γ2
T 2

L+T 2
R

f(x) + C
(
ε(2)
q − ε(1)

q

)
,

c2 Π ≡ Jε = C γc2
T 2

L−T
2
R

f(x) .

(5.17)

Considering the two black holes to be far apart (2L ≫ xR + xL), let us now analyze these
thermodynamic quantities (5.17), also represented in Fig. 5.1. Focusing on the right-moving
particles, corresponding to the blue curve in Fig. 5.1(a), we observe, as in section 4.1, that
the temperature vanishes close to the left horizon. This illustrates the fact that nothing can
escape the black holes. Therefore, the right-going Hawking radiations, propagating towards
the right black hole, are produced in the quantum atmosphere of the left black hole. Close
to the right black hole, since the right black hole is cooler than the left one (x−2

R < x−2
L ), its

quantum fluctuations are not sufficient to compensate for the gravitational redshift, inducing
a divergence of the right-going Tolmann-Ehrenfest temperature. On the contrary, close to the
left black holes, these anomalous fluctuations dominate the physics, and the Hawking radiation
produced close to the right black hole has a non-physical negative temperature, as observe in
orange in Fig. 5.1(a). In the middle of the sample, anomalous fluctuations are negligible, and
we recover the classical results

ε = p = C γ2
(
T 2
R + T 2

L

)
. (5.18)

For the currents in non-chiral conductors, the anomalous contributions from both left and
right-moving radiation exactly compensate each other. As a consequence, the energy current,
displayed in red in Fig. 5.1(b), is proportional to the value deduced from the classical Tolman-
Ehrenfest formula and

Jε = c2Π = T 2
L − T 2

R

f(x) (5.19)

Since we assumed the black holes to be distant from each other, the energy current in the
middle of the sample is given by the difference of Hawking’s temperature of these two black
holes: v2

F Π = Jε = C γvF

2 (T 2
L − T 2

R), as expected for a ballistic system situated in between two
heat baths, and in agreement with M. Stone and J. Kim proposal [182].

While the expressions of the momentum-energy tensors defined in this section (5.13) look
similar to the one considered in chapter 3 and 4, there exists, however, a major difference.
While in chapter 3, and 4, we were defining a single temperature profile, fixing α+ = α−, in
this section, we are considering an out-of-equilibrium situation in which left and right currents
are defined with respect to different temperature profiles

γT 2
± = α±

f1
+ ϵ(2)

q . (5.20)
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Figure 5.1: Two temperature models in two black hole metrics Thermodynamic quan-
tities as a function of the position expressed as a function of xH , the radius of the left black
hole. The radius of the right black hole is chosen such that xL = 2xH , while we considered
distant black holes L = 20xH (a) Represented in red is the solution corresponding to a common
Tolmann-Ehrenfest temperature to both chiral particles, divergent close to the horizon of both
black holes. The anomalous equilibrium temperatures are unique to each chiral species, in blue
for the right movers and orange for the left movers. The anomalous temperature profile for
the right movers is chosen to be vanishing close to the left black hole. However, close to the
right black holes, anomalous quantum corrections of the cooler black holes are not sufficient to
compensate for the divergence of the temperature profile. Similarly, the anomalous left-going
temperature profile is well defined in x = xR. However, it diverges and becomes negative
close to the left black holes due to large quantum fluctuations engendered by the hottest black
hole. (b) The thermodynamic quantities in between the two black holes can then be defined
from both these chiral temperatures and the quantum energy scale ε(1)

q , leading to the thermal
current Jε/Jε0 in red, the energy density ε/ε0 in blue and the pressure p/ε0 in orange, where
Jε0 = 1/2cγ(T 2

L − T 2
R) and ε0 = 1/2γ(T 2

L − T 2
R)

Even though they are based on the same metric tensor, they differ due to their corresponding
boundary conditions.
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Chapter 5. Extension of the Luttinger’s trick in the presence of two temperature profiles

In this section, we considered a metric with two black holes to underline that a single metric
tensor might give rise to two local temperature profiles based on the choice of boundary condi-
tions. However, the choice of the metric tensor leads to an unphysical result since gravitational
anomalies induce a temperature profile such as T 2

An < 0, close to the hottest black hole.
These results are closely related to those presented in section 4.1 and reveal the surprising fact
that since both chiral species interact with the same background metric, the anomalous contri-
butions to the energy currents simplify out in a non-chiral system. In the following section, we
will see that such a strategy based on a single metric with two boundaries is not always suffi-
cient. Indeed, extending Luttinger’s trick to a generic conductor with independent temperature
profiles for left and right movers requires the introduction of one metric per chiral species, a
strategy known as bimetric theory.

5.2 Luttinger extension to chiral temperature profiles
In the previous section 5.1, we have seen that depending on the boundary conditions, a single
metric tensor can lead to different temperature profiles for each chirality. This non-equilibrium
situation leads to a non-vanishing heat current even in non-chiral systems. In the literature,
M. Stone and J. Kim proposed in [182] that such a system can be used to understand the
relationship between thermal transport and gravitational anomalies.

In this section, to explore this relationship between gravity and thermal transport in more
detail, we would like to extend the discussion of Luttinger’s trick from chapter 3 to conductors
in which the temperature for left and right-moving electrons can differ. After motivating this
extension by unveiling conductors presenting two temperature profiles, we will see that in the
generic case and opposite to the two black holes systems, applying Luttinger’s trick imposes
going beyond general gravity, considering systems in which both chiralities couple to different
metrics, an extension of general relativity known as bimetric gravity. After reviewing this
formalism, we will use it to extend Luttinger’s trick before proposing an extension of such a
formalism to tilted semimetals.

5.2.1 Extended Luttinger equivalence: From one to two
temperature profiles

In condensed matter physics, the temperature profiles in a sample in contact with two heat
reservoirs can differ for left and right-moving particles, depending on how they interact with
each other. In this paragraph, after introducing a system in which such chiral temperature pro-
files can arise, we will identify the curved spacetime equivalent as Luttinger did in the presence
of a single temperature profile.

Figure 5.2: Scheme of the scattering process considered
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5.2. Luttinger extension to chiral temperature profiles

In order to model the energy current profile in a conductor between two heat baths at
respective temperatures TR and TL, one can follow the simple formalism used by J.P. Mc Kelvey
et al. [188] and W. Shockley [189], allowing to describe both ballistic and diffusive regime as
well as the regime interpolating in between these. Taking into account a single linear band
(E = ±vℏk) in the absence of electron-phonon scattering, the Mc Kelvey-Shockley equations
can be rewritten as [190,191]

∂F+(E,x)
∂x

= 1
λ(E) (F−(E, x)− F+(E, x))

∂F−(E,x)
∂x

= 1
λ(E) (F−(E, x)− F+(E, x))

(5.21)

with

• λ(E) the mean free path for particles with energy E

• F± the forward (+) and backward (-) energy fluxes with particles at energy E

Assuming that λ does not depend on E, these equations can be solved asF
+(E, x) = FL

0 (E)−
(
FL

0 (E)− FR
0 (E)

)
x

L+λ

F−(E, x) = LFL
0 (E)+λFR

0 (E)
λ+L −

(
FL

0 (E)− FR
0 (E)

)
x

L+λ

(5.22)

where
F
R/L
0 = E.v

1 + e
E

kBTR/L

(5.23)

are the thermal distribution of the baths at x = 0/L that fix thermal boundary conditions.
While the space-dependent distributions F±(E, x) are not strictly thermal for λ ̸= 0, in the
presence of a redistribution of the energy density mediated by forward-scattering, these distri-
butions tend locally towards a thermal distribution. Assuming an energy redistribution without
any energy loss, the local energy density is conserved, and the local temperature associated with
these energy fluxes can be defined as

π

12ℏk
2
BT

2
±(x) =

∫
dE F±(E, x) , (5.24)

or in other words T 2
+(x) = T 2

L −
T 2

L−T
2
R

L+λ x ,

T 2
−(x) = LT 2

L+λT 2
R

λ+L − T 2
L−T

2
R

L+λ x .
(5.25)

As long as λ/L ̸= 0, each chirality presents a different, well-defined temperature profile. One
can, therefore, wonder if it is possible, similarly to what J. Luttinger did in 1964 [9], to define
a gravitational analog of this model, and if so, what are the variables conjugated with the
gravitational fields.

However, as we have seen in section 3.1, in the absence of anomalies, for a gravitational
potential ϕ, inducing a metric tensor of the form

gµν :=
(
e2ϕ 0
0 −1

)
. (5.26)

The corresponding equilibrium temperature profiles must verify Eq. (3.5):

∇⃗ϕ = −∇⃗T
T

, (5.27)
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However, as long as TL ̸= TR and away from the ballistic (λ/L→∞) and diffusive (λ/L→ 0)
cases1, we have

T 2
R − T 2

L

T 2
L (L+ λ− x) + T 2

R x
̸= T 2

R − T 2
L

T 2
L (L− x) + T 2

R (λ+ x) ⇔
∇⃗T+

T+
̸= ∇⃗T−

T−
. (5.28)

Therefore, in the generic case, it is impossible for both temperature profiles to be at equilibrium
with a single gravitational potential, similarly to the case of the two black holes metric discussed
in the previous section 5.1. As a consequence, in order to generalize the Luttinger trick to
systems in the presence of two temperature profiles, it is necessary to consider one gravitational
potential for each temperature profile, or in other words, one metric per chiral component. In
the following part 5.2.2, we will thus introduce this strategy, known as bimetric theory or metric
axial tensor theory, before applying it to generalize the Luttinger trick, both in the presence
and in the absence of anomalous corrections.

5.2.2 Bimetric theories: Definition, Hamiltonian and
(non-)conservation equations

Historically, a bimetric theory was first considered in 3+1 dimension as a possible high-energy
extension of general relativity able to solve the expansion problem [192–194]. Its history with
gravitational anomalies is more recent. Bimetric theories were considered in a series of papers
by L. Bonora and M. Cvitan as a tool to determine the coefficients of the trace anomaly for
Weyl fermions in general relativity for 3+1 dimensional systems. The main idea of the authors
was to consider general relativity as a limiting case of bimetric theory, generalizing to the
trace anomaly the strategy initially proposed by W.A. Bardeen to compute the U(1) axial
anomaly [124, 125, 195]. However, as mentioned earlier in this section, bimetric formalism can
find applications in condensed matter physics to generalize Luttinger’s trick to theory with two
temperature profiles. Therefore, in the following paragraphs, I introduce a bimetric theory,
its coupling to fermions, and the corresponding gravitational anomalies. These will then be
applied in section 5.2.3 to extend the Luttinger’s trick applicability and in section 5.2.4 to tilted
semimetals.

Definition and notation

Depending on the problem, two different sets of notations can be used to describe a problem
within bimetric formalism:

• A first strategy, similar to the one used in [124,195], consists in considering a generalized
metric operator and its inverse, defined byĜµν = gµν + γ̂5fµν ,

Ĝµν = gµν + γ̂5fµν ,
(5.29)

with

ĜµνĜ
νρ = δρµ ⇐⇒

gµνgνρ + fµνf
νρ = δρµ

gµνf
νρ + fµνg

νρ = 0
, (5.30)

and γ̂5 being the chirality operator defined for example in 1+1 dimensions as γ̂5 =
−γ̂0γ̂1 ≡ σ̂z.

1In the diffusive case, the two temperature profile are identical. We recover the limit considered in chapter 3
that can be treated within the standard Luttinger’s trick, resorting to a single gravitational potential.
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5.2. Luttinger extension to chiral temperature profiles

Note that while g+f and g−f are well-defined metric tensors, f and g are not necessarily
well-defined metrics (invertible and with a proper signature) since, for example, general
relativity is recovered in the limit f → 0. Moreover, one should pay attention to the fact
that whenever f is non-zero, gµν is no longer the inverse of gµν , see (5.30).
From this operatorial definition of the metric, any given quantity based on the metric,

such as the Levi-Civita affine connection
{
µ
νρ

}
, the curvature tensor Rµ

νρσ or even the

momentum-energy tensor T µν , can be defined, in a similar way, as operators depending
on the chiral operator γ̂5. For example, one gets{̂

µ
νρ

}
≡
{
µ
νρ

}
+ γ̂5

{
µ
νρ

}
5

= 1
2Ĝ

µϵ
(
∂νĜϵρ + ∂ρĜνϵ − ∂ϵĜνρ

)
(5.31)

or in other words,

 µ

νρ

 = 1
2g

µϵ (∂νgϵρ + ∂ρgνϵ − ∂ϵgνρ) + 1
2f

µϵ (∂νfϵρ + ∂ρfνϵ − ∂ϵfνρ) µ

νρ


5

= 1
2g

µϵ (∂νfϵρ + ∂ρfνϵ − ∂ϵfνρ) + 1
2f

µϵ (∂νgϵρ + ∂ρgνϵ − ∂ϵgνρ)
(5.32)

• Alternatively, another strategy consists in decomposing all the quantities into left and
right-moving components. Then one defines one metric for left-moving particles g−µν and
one for right-moving particles g+

µν . All the metric-dependent quantities can afterward be
defined in each chiral sector +/− following the usual route and ignoring entirely the other
chirality since left and right-going particles do not interact.

Actually, these two strategies are entirely equivalent, and it is always possible to switch between
these conventions, decomposing each quantity as

α = α+ + α−

2 ,

α5 = α+ − α−

2 .

(5.33)

For example, in terms of the chiral notation, the component of the bi-metric tensor can be
written as

gµν = 1
2
(
g+
µν + g−µν

)
,

fµν = 1
2
(
g+
µν − g−µν

)
.

(5.34)

Now, since in most of our discussion, we decomposed all the thermodynamic quantities into
their chiral constituents, for example, as (3.26): ε = ε+ + ε−, it seems logical for our purpose,
to use in the following the second description, defining a metric tensor for each chirality: g±µν .

Action, Hamiltonian and momentum-energy tensor

In these chiral notations, the action, the Hamiltonian, and the momentum-energy tensor are
split into their left and right-moving components. The total action is then simply the sum of
its chiral constituents

S = S+ + S− , (5.35)
with

S± =
∫

dx2 det
(
e±
)
L± , L± = iℏvF

2
(
e±
)µ
a

[
ψ̄±γ

a
↔
∂µψ±

]
, (5.36)
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with (e±)bν the zweibein associated with the left and right metrics and the chiral fields

ψ± =
(
1± γ5

)
ψ . (5.37)

Similarly, one can define one Hamiltonian per chirality as the Legendre transform of the corre-
sponding chiral Lagrangian density

det
(
e±
)
H± = δS±

δ∂0ψ
∂0ψ + ∂0ψ̄

δS±

δ∂0ψ̄
− det

(
e±
)
L± , (5.38)

such as
H± = −iℏvF2

(
e±
)x
a

[
ψ̄±γ

a
↔
∂ xψ±

]
(5.39)

as well as the corresponding momentum-energy tensor

(T±)µa = − 1
det(e±)

δS±
δeaµ

. (5.40)

At this level, one could be tempted to deduce an expression for the total momentum-energy
tensor from these expressions. However, this is not possible since the indices of each one of the
chiral components are raised or lowered using the corresponding chiral metrics. The operatorial
form of the metric can solve this issue; however, with our convention, we will always work with
each component separately, computing the total contribution solely when measuring the average
value of an observable in the laboratory frame.

Anomalies and anomalous momentum-energy tensor in the bimetric formalism

From the gravitational anomalies expressions in the presence of a single metric involving Cw =
C+ + C− and Cg = C+ − C− (2.91), one realizes that these anomalies can be split into two
contributions: one for left-going particles and their momentum-energy tensor and one for right-
going particles

(T+)µµ = C+
ℏvF

48πR ,
∇µ (T+)µν = 0 ,
(T+)µν − (T+)νµ = C+

ℏvF

48π ϵ̄
µνR ,

and


(T−)µµ = C− ℏvF

48πR ,
∇µ (T−)µν = 0 ,
(T−)µν − (T−)νµ = −C− ℏvF

48π ϵ̄
µνR ,

(5.41)

where
T µν = (T+)µν + (T−)µν . (5.42)

These equations can, therefore, be generalized within the bimetric formalism modifying the
(non-)conservation equation of each chirality by using the corresponding metric to define the
curvature, R±, the covariant derivatives ∇±µ as well as to raise or lower the greek indices. The
(non-)conservation equations read2


(T±)µµ = C± ℏvF

48πR± ,
∇±µ (T+)µν = 0 ,
(T±)µν − (T±)νµ = ±C± ℏvF

48π ϵ̄
µν
± R± .

(5.43)

2In this section of the thesis, we chose to consider the mixed anomaly (conserved but non-symmetric
momentum-energy tensor). The purpose is two-fold. First, we explicitly chose to break the chiral symme-
try since HR ̸= HL, which makes it logical to break this symmetry in (5.43). Second, such a choice is important
such that both anomalies only alter the corresponding chiral currents
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5.2. Luttinger extension to chiral temperature profiles

They can be solved for metrics of the form

ds2
± = f1±(x)dt2 − f2±(x)dx2 , (5.44)

in the stationary limit, as

(T±)µν = 1
2C±

 1 ±
√

f1±
f2±

∓
√

f2±
f1±

−1

 γ (T±TE

)2

+ 1
2C±

 ε
(1)
q± + ε

(2)
q± ±

√
f1±
f2±

(
ε

(2)
q± − ε

(1)
q±

)
∓
√

f2±
f1±

(
ε

(1)
q± + ε

(2)
q±

)
ε

(1)
q± − ε

(2)
q±

 ,

(5.45)

with the chiral Tolman-Ehrenfest temperatures

γ
(
T±TE

)2
= α±

f1±
, (5.46)

where α± are two constants defined by the boundary conditions. The new chiral quantum
energy scales are

ε
(1)
q± = ℏvF

48πR± ; ε
(2)
q± = ℏvF

48π
(
R± − 2R̄±

)
, (5.47)

where
2R̄± = 1

f1±(x)

∫ x

x0
dy R±(y)∂yf1±(y) . (5.48)

From these definitions, one can deduce the corresponding chiral anomalous Tolman-Ehrenfest
temperatures

γT 2
± = γT 2

TE + ε
(2)
q± , (5.49)

such as the chiral momentum-energy tensors simplify as

(T±)µν =

 1 ±
√

f1±
f2±

∓
√

f2±
f1±

−1

 C±γ2T 2
± + 1

2C±

 ε
(1)
q± ∓

√
f1±
f2±
ε

(1)
q±

±
√

f2±
f1±
ε

(1)
q± ε

(1)
q±

 . (5.50)

At this level, we note that the previous anomalous momentum-energy tensors are identical to
those of chapter 3. This is natural since left and right-moving fermions do not interact. There-
fore, a theory with a single chiral component, let us say the right moving ones, is equivalent to
the result of chapter 3 with a single metric gRµν , and Cw = CR = Cg. Similarly, the left-moving
one can be recovered using chapter 3 with a single metric gLµν , and Cw = CR = −Cg.

Equipped with this new formalism, let us then come back to the study of the extended
Luttinger’s equivalence.

5.2.3 Luttinger trick: From one to two temperature profiles
As we have seen in section 5.2.1, in conductors such that left and right-moving electrons have
different temperature profiles, if the left and right temperature gradients are such that

∇⃗TR
TR
̸= ∇⃗TL

TL
, (5.51)
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Chapter 5. Extension of the Luttinger’s trick in the presence of two temperature profiles

it is impossible to directly apply the standard Luttinger’s trick. In other words, it is impossible
to define a single gravitational potential ϕ such as both T+ and T− are equilibrium temperature
profile in a metric of the form

gµν =
(
e2ϕ 0
0 −1

)
(5.52)

Observing that in bimetric theory, the presence of chiral equilibrium temperature profiles is
natural (5.46), it is logical to explore the possibility of extending the Luttinger trick to such
two temperatures systems by resorting to such a bimetric formalism.

Following Luttinger, let us consider a bimetric theory such as left and right metrics are
expressed in terms of chiral gravitational potential ϕL/R as

g±µν =
(
e2ϕ± 0

0 −1

)
. (5.53)

According to (5.39), the corresponding Hamiltonian reads

H = −iℏvF4

∫
dx
(
eϕ+ + eϕ−

)
ψ̄γx∂xψ +

(
eϕ+ − eϕ−

)
ψ̄γxγ5∂xψ . (5.54)

Note that, by rewriting this Hamiltonian in terms of the flat spacetime energy density and
momentum density operators (1.2.2)

H = −1
2

∫
dx
(
eϕ+ + eϕ−

)
h+ vF

(
eϕ+ − eϕ−

)
Π , (5.55)

one identifies, at the perturbative level in terms of the gravitational fields ϕ± = ϕ ± ϕ5, ϕ as
a field conjugate to the Hamiltonian density h. In contrast, ϕ5 is conjugated with the chiral
Hamiltonian density h5 = h+ − h−, which identifies (up to the equation of motion) with the
momentum density (h5 ≡ vFΠ).

Now, following the previous section 5.2.2, classically (in the absence of anomalies), the
equilibrium temperature in this system is given by∇ϕ+ = ∇T+

T+
,

∇ϕ− = ∇T−
T−

,
(5.56)

or in other words, ∇ϕ = ∇[T̄ 2−∆T 2]
T̄ 2−∆T 2

∇ϕ5 = 2 T̄∇(∆T )−∆T∇T̄
T̄ 2−∆T 2

(5.57)

where T± = T̄ ± ∆T . Classically, and as proposed by J. Luttinger, this implies that one can
compute the response of a system set out of equilibrium by chiral temperature profiles by com-
puting the finite homogeneous temperature response of a bimetric gravity system set out of
equilibrium by a chiral gravitational potential ϕR/L, as long as these gravitational potentials
follow (5.56). Note, however, that contrary to what we may have expected, ϕ and ϕ5 are not
simply related to T̄ and ∆T respectively, as T with ϕ in the simple metric case, but instead
depends both on T̄ and ∆T .

In the presence of anomalies, there still exists an equivalence between a system set out
of equilibrium by the chiral temperature profiles T± and a system at a fixed non-zero tem-
perature T0 set out of equilibrium by bimetric gravity metrics of the form (5.53). However,
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5.2. Luttinger extension to chiral temperature profiles

following (5.20), the classical relation (5.56) gets a quantum correction such that

T 2
±(x)
T 2

0
= e−2ϕ±(x) + λ2

T0∂
2
xϕ±(x) , (5.58)

with λT0 = ℏvF

2πkBT0
the thermal length scale.

Therefore, bimetric theory appears as a necessary tool in response theory when considering
chiral temperature profiles. It is indeed necessary to extend the notion of Luttinger’s trick in
conductors such as left and right movers do not have the same temperature profiles. However,
as we have seen in chapter 4, the Luttinger trick and the equivalence between curved spacetime
physics and condensed matter can be helpful beyond response theory. To illustrate this interest
in the case of bimetric theory, in the following section 5.2.4, we will propose a strategy to use
bimetric theory to our advantage to study the physics of tilted semimetals.

5.2.4 From two temperature profile to two velocity profiles: tilted
Dirac semimetals

In chapter 4, when exploring the correspondence between curved spacetimes and condensed
matter physics, we realized that analog curved spacetimes can be obtained in condensed mat-
ter by either varying the temperature or the coupling (local velocity). In section 5.2.1, we
explored an extension of the Luttinger trick to the case of conductors in which left and right
movers temperature differs, introducing the concept of bimetric theories. By analogy, in this
section, we would like to consider systems in which left and right movers have different local
velocity profiles, a phenomenology reminiscent of the so-called tilted velocity profiles.

In 3+1 dimensional semimetals known as tilted Weyl semimetals such as WP2 [196] or
Co3Sn2S2 [197, 198], such dispersion relations naturally arise. They also appear as an effective
low-energy theory in semimetals subjected to external stress/deformations such as deformed
graphene-like materials [199, 200], or 3D materials such as NiTe2 [201], but also can also be
chemically engineered as presented in [202].

In this section, to stick to the strategy developed in the previous section, we focus on
1+1 dimensional systems with chiral velocity profiles vR/L (See Fig. 5.3). To differentiate the
magnitude of the velocity from the tilt angle, we use the notations

vR/L = v (1± Ξ) , (5.59)

with v the space-dependent Fermi velocity, and Ξ the tilt parameter.
To simplify our approach, in this paragraph, we will make two additional assumptions: first,

we will consider either a constant Ξ or a constant v; then, we consider systems such that both
vR and vL stay positive (|Ξ| < 1), opposite to the dramatic case of analog black and white holes
often considered in such systems, with a sonic horizon defined by |Ξ| = 1 (See Fig. 5.3).

Our objective in this section is to compute the value of observables in the laboratory frame
to extend the analysis of the previous chapter to bimetric theory and to underline that despite
the absence of analog black holes, such systems still display traces of gravitational anomalies.
Let us then consider a bimetric theory defined by

ds2
± = (1± Ξ)2v2dt2 − dx2 . (5.60)
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Chapter 5. Extension of the Luttinger’s trick in the presence of two temperature profiles

Figure 5.3: Sketch of a Weyl semimetal with tilt varying along x1 realizing a white
hole analog. In the region denoted as weakly tilted, the tilt angle is such that Ξ > −1, we still
observe two chiral velocities with opposite signs. A sketch of the corresponding spectrum is
shown in the bottom left corner. Passed the critical tilt Ξ = −1, both velocities are negatives,
and the electrons propagate in the same direction, providing a white hole analog. A sketch
of the corresponding spectrum is shown in the bottom right corner. Note that while we still
observe an over-tilted cone around p1 = 0, for symmetry reasons, two other modes labeled b2
and b3 appear on each side of the Weyl cone and are not directly captured by the tilted Weyl
model. (Extracted from [203])

According to Eq. (5.45), the corresponding momentum-energy tensor reads

(T±)µν = 1
2C±

(
1 ± v

vF
(Ξ± 1)

∓vF

v
(Ξ± 1)−1 −1

)
γ
(
T±TE

)2

+ 1
2C±

 ε
(1)
q± + ε

(2)
q± ± v

vF
(Ξ± 1)

(
ε

(2)
q± − ε

(1)
q±

)
∓vF

v
(Ξ± 1)−1

(
ε

(2)
q± + ε

(1)
q±

)
ε

(1)
q± − ε

(2)
q±

 ,

(5.61)

with γ = πk2
B

6ℏvF
and

T±TE = vF
v
T0 (1± Ξ)−1 , (5.62)

while 
ε

(1)
q± = ℏvF

24π

[
∂2

xv
v
± ∂2

xΞ
1±Ξ ± 2∂xv

v
∂xΞ
1±Ξ

]
,

ε
(2)
q± = ℏvF

24π

[
∂2

xv
v
−
(
∂xv
v

)2
± ∂2

xΞ
1±Ξ −

(
∂xΞ
1±Ξ

)2
]
,

(5.63)

where vF defines a fixed velocity scale in the problem.

In such a system, in the laboratory frame, the chiral energy density ε± read

ε± =
〈
−iℏv (1± Ξ)

2
(
e±
)x
a

[
ψ̄±γ

a
↔
∂ xψ±

]〉
=
〈
det

(
e±
)

(T±)0
0

〉

= C±2

 πk2
BT

2
0

6ℏv (1± Ξ) + ℏv (1± Ξ)
24π

2∂
2
xv

v
± 2 ∂2

xΞ
1± Ξ −

(
∂xv

v
∓ ∂xΞ

1± Ξ

)2
 (5.64)
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while the energy current is expressed as

J±ε = ±C±2

πk2
BT

2
0

6ℏ + ℏv2 (1± Ξ)2

24π

−(∂xv
v

)2

−
(
∂xΞ

1± Ξ

)2

∓ 2∂xv
v

∂xΞ
1± Ξ

 . (5.65)

Therefore, in the laboratory frame, for a non-chiral theory s(C+ = C− = C), the observables
read

• For a fixed tilt parameter Ξε = C
(

πk2
BT

2
0

6ℏv(1−Ξ2) + ℏv
12π

[
∂2

xv
v
− 1

2

(
∂xv
v

)2
])

Jε = −C ℏ
12πΞ (∂xv)2

(5.66)

• For a fixed velocity v ε = C
(

πk2
BT

2
0

6ℏv(1−Ξ2) −
ℏv

24π
(∂xΞ)2

1−Ξ2

)
Jε = 0

(5.67)

Note that TΞ = ℏv
2πkB

∂xΞ plays a role of temperature in this system, since at low temper-
atures and for weak tilts

ϵ ≈ −CγT 2
Ξ . (5.68)

Note that in these examples, inhomogeneous tilt gives rise to Hawking-like radiation without
introducing effective horizons. Moreover, contrary to the example of section 4.2, we observe,
thanks to the non-zero tilt, in the steady state of non-chiral conductors, a non-zero energy
current.

5.3 Conclusion and perspectives
Historically, the strategy used to describe inhomogeneously tilted Weyl semimetals in sec-
tion 5.2.4 within the gravity analogy consists in considering metrics with line elements of the
form

ds2 = α
[
c2dt2 − (v⃗dt− dx⃗)2

]
(5.69)

with α a function depending on the system details. Such a choice of metric also enables us to
treat such systems on the same footing as acoustic metrics systems described in section 1.1.
Indeed, the 3+1 dimensional acoustic metrics discussed in section 1.1.1 are recovered setting
α = ρ0.

A reason underlying this choice of metric is that, in 1+1 dimensions, solving for the light-ray
equations

ds2 = 0 , (5.70)

we end up with two velocities
v± = v ± c . (5.71)

It turns out that both these strategies, either based on a bimetric theory (5.60), described in
the previous section 5.2.4 or on a dynamical acoustic metric (5.69) described above lead to the
same action and Hamiltonian. The advantage of the bimetric theory lies in the fact that this
strategy is based on equilibrium computations, while the sonic metric (5.69) is a dynamical
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metric. An alternative argument, in favor of the acoustic strategy, is the possibility of consid-
ering such tilted systems in analogy with the fluids models defined in section 1.1.

This dual treatment of the tilted semimetals in 1+1 dimensions naturally leads to the ques-
tion regarding the equivalence of these strategies. Indeed, we have seen in chapter 2 that after
quantization, the action does not possess the entire information concerning the observables
since the measure of integration also matters. It would then be interesting to complete this
study by comparing term by term the momentum-energy tensors to check for their strict equiv-
alence between these models. A natural question would then be to determine, in both models,
the equilibrium temperature profiles. A complementary question regarding this equivalence
concerns Luttinger’s trick. We have seen in section 5.2.1 that a traditional treatment based on
a single gravitational potential ϕ and the corresponding metric tensor (5.26) cannot account for
generic two temperature profiles systems, no matter the corresponding boundary conditions.
To extend this strategy, we proposed in section 5.2.3 to resort to a bimetric strategy. Based
on this apparent equivalence, we can wonder if a treatment of the Luttinger trick based on a
single dynamical metric tensor of the form (5.69).

In this section, extending the concept of Luttinger’s trick to chiral temperature profiles, we
noticed that while for the double black hole system, a single metric was sufficient to account
for two temperature profiles to describe condensed matter conductors, a strategy consists in
considering one metric per chirality, or in other words a bimetric theory. Besides, such a strategy
raises the question regarding the possibility of considering bimetric theories in physics. This
question was first discussed by J. Nissinen and G. Volovik in [204]. They noticed that bimetric
theories are heavily constrained by the underlying physics system. There are three important
cases:

• If gravity is the primary degree of freedom, there should be a single tetrad field eµa ,
identical for both chiralities, which means that the two SU(2)R/L representations are
complex conjugates and must have different signs for left and right fermions: This is, for
example, the case of the black hole system considered in section 5.1.

• If the chiral left and right fields are the primary degrees of freedom as in the different
condensed matter analogs presented in chapter 1, then two subcases can be considered:

– If the gravity analog has a single spacetime geometry, then there is a constraint that
both left and right tetrads should describe the same metric or, in other words,

gµν =
(
eaµ
)

+

(
ebν
)

+
ηab =

(
eaµ
)
−

(
ebν
)
−
ηab . (5.72)

The possibility to choose them independently comes from the fact that there exists a
whole family of tetrad verifying (5.72) since, by definition of a local Lorentz transform

ηcd = Λa
c(x, t)ηabΛb

d(x, t) , (5.73)

one can go from one solution of the tetrad equation (5.72) to another via

eaµ(x, t)→ ẽaµ(x, t) = Λa
b(x, t)ebµ(x, t) . (5.74)

This is, for example, the case of the hydrodynamic analogs presented in section 1.1,
in which the mean flow entirely fixes the metric but not the tetrads.

– If both left and right fermions can have different effective geometries, as described
in section 5.2 of this thesis, then both tetrads are entirely independent of each other
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since they obey different geometric constraints. This is, for example, the case in
systems where left and right fermions interact weakly and possess different velocity
or temperature profiles. For example, a platform to realize such a system is given
by the inhomogeneous Hamiltonians described in section 1.2.

In this section, we considered several strategies used to describe physical setups in which
left and right movers have different properties, either different temperatures or different veloc-
ities. First, considering a two-black hole system, we analyzed a natural strategy to introduce
two independent temperature profiles based on a single metric tensor with separate bound-
ary conditions. Then, to extend Luttinger’s trick to systems with two temperature profiles,
we introduced the notion of bimetric theories that we then extended to the study of tilted
semimetals. Comparing this new strategy to the historical one, based on acoustic metrics, led
us to question their strict equivalence as well as the possibility of using such acoustic metrics to
extend Luttinger’s trick to two temperature systems. Both of these questions constitute works
in progress.

95





Chapter 6
Remarks on purely dynamical metrics, the
dynamical Casimir effect and anomalies

In the examples studied in the last three chapters 3, 4 and, 5, we followed closely the works
by R. Tolman and P. Ehrenfest, thus only considering stationary metrics. The notion of dy-
namics only appeared when considering quenches between two static spacetimes. Our objective
was, indeed, to correct the definition of the Tolman-Ehrenfest temperature in the presence of
gravitational anomalies and to show their role both in the context of general relativity and of
inhomogeneous condensed matter systems.

However, in dynamical systems driven either by their own dynamics, as in cosmology, or by
an exterior parameter, as in condensed matter experiments, the perturbation can depend on
time. In this chapter, we wish to explore the effects of anomalous corrections in such spacetime.
For simplicity, and by analogy with the work we have done in chapter 3 and 4, we will consider
purely dynamical spacetimes whose line element read

ds2 = f1(t)c2dt2 − f2(t)dx2 . (6.1)

Such spacetimes include for example the Friedmann-Lemaître-Robertson-Walker metric [205–
212], introduced to capture the dynamic of the evolution of our universe, and given by

ds2 = c2dt2 − a2(t)dx2 , (6.2)

where a(t), the scale factor, encodes the universe’s evolution: ∂ta(t) > 0 for an expanding
universe and ∂ta(t) < 0 for a contracting one.

Therefore, in this section, our objective is to consider such purely dynamical spacetimes and
the associated momentum-energy tensors to determine the effects of anomalous fluctuations.
After showing how such metrics can be obtained in experimental condensed matter setups,
we will compute the associated momentum-energy tensor identifying, in these experiments the
effect of anomalous fluctuations on the energy density, the pressure, and the energy currents.
Ultimately, we will compare these anomalous gravitational corrections to those appearing in
the dynamical Casimir effect. We will, in particular, show that despite their similarity, the
anomalous corrections identified in this chapter are unrelated to such dynamical Casimir effects.

The results of this chapter are original and currently unpublished.
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Chapter 6. Remarks on purely dynamical metrics, the dynamical Casimir effect and
anomalies

6.1 Dynamical gravitational anomalous correction: from
expanding universes to condensed matter

In this section, our objective is twofold. First, we would like, analogously to what we have done
in chapter 3, to determine and study the anomalous corrections of the momentum-energy tensor
of a relativistic quantum field theory in the presence of a purely dynamic curved spacetime given
by

ds2 = f1(t)c2dt2 − f2(t)dx2 . (6.3)
Then, we would like to demonstrate the experimental relevance of such anomalous corrections.
To do this, we will identify experimental platforms whose low energy physics is captured by a
quantum field theory in a curved spacetime of the form (6.1). Then, computing the correspond-
ing momentum-energy tensor, we will identify experimental setups in which such anomalous
corrections could be observed.

6.1.1 Dynamical curved spacetimes in condensed matter
In chapter 1 and 4, of this thesis, motivated by the Tolmann-Ehrenfest equivalence, we stressed
out how inhomogeneities in space could lead to analog curved spacetimes. In this section,
in order to study dynamical spacetimes, we will reconsider examples from section 1.1 in the
presence of an external drive to show that dynamical metrics of the form (6.1) can be obtained
experimentally within several experimental setups.

From expanding Bose-Einstein condensate to expanding universes

A first experimental platform to realize a dynamical metric of the same form as the Friedmann-
Lemaître-Robertson-walker metric (6.2) is to consider an expending Bose-Einstein condensate.
To understand this parallel, let us follow the derivation used by S. Eckel et al. in [213].
As we have seen in section 1.1.2 of the first chapter of this thesis, sound waves in a 3+1
dimensional Bose-Einstein condensate satisfy a curved spacetime Klein-Gordon equation whose
metric is given by

ds2 = n

cs

[
c2
sdt2 − (v⃗dt− dx⃗)2

]
. (6.4)

Let us consider a Bose-Einstein condensate ring that we let expand freely with a time-dependent
radius given by R(t). The reduced dynamic of the azimuthal modes is captured by the two-
dimensional spacetime metric

ds2 = cs
[
c2
sdt2 −R2dθ2

]
, (6.5)

and the corresponding dynamic tensor

fµν =
√
−ggµν =

(
R 0
0 −c2

s

R

)
. (6.6)

The equation of motion of the azimuthal modes ϕ is then captured by

∂µ (fµν∂νϕ) = 0 , (6.7)

which corresponds to the equation of motion of a massless Klein-Gordon field in a purely
dynamical metric of the form (6.1), with f1 = c3

s and f2 = csR
2. Considering R0, the radius at

some time t0, and assuming the sound velocity to be constant, this metric takes the form

ds2 = c2
sdt2 −

(
R(t)
R0

)2

dx2 , (6.8)
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with x ≡ θ R0, a metric identical to the expansion metric (6.2), with a scale factor a(t) =
R(t)/R0.

Another type of metric in Bose-Einstein condensates obtained by modulating the
sound velocity

Following the work from P. Jain et al. in [214], another type of dynamical metric can be obtained
in experimental setups based on Bose-Einstein condensates. The corresponding protocol is quite
different since it involves a modulation of the scattering length, obtained in practice by using
a Feshbach resonance [33, 215,216], instead of modifying its shape as in the previous example.
Focusing on a system in which the background flow vanishes v⃗ = 0⃗, the 3+1 dimensional
acoustic metric (6.4) reduces to

ds2 = n

mcs

[
c2
sdt2 − dx⃗2

]
(6.9)

with a time dependence solely contained in the sound velocity cs, since by definition it is related
to the scattering length a(t) following

c2
s(t) = n

m

4πℏ2

m2 a(t) . (6.10)

Note that this metric is 3+1 dimensional, while we are interested in 1+1 dimensional systems.
However, by inducing a cigar-shaped trapping potential, the dynamics can be reduced to 1+1
dimensions. Denoting a(t) = a0b(t) with a0 a characteristic length scale, one realizes that mod-
ulating the scattering lengths in a cigar-shaped Bose-Einstein condensate realizes yet another
example of a dynamical metric of the form (6.1) since the corresponding line element takes the
form

ds2 = n0

c0

√b(t)c2
0dt2 −

1√
b(t)

dx⃗2

 . (6.11)

Expanding universes in optical systems

Outside of Bose-Einstein condensates, it is possible to realize dynamical metrics of the form (6.1)
in optical systems. Indeed, in optics, the standard length scale dx is replaced by a new length
scale parameter n(x, t)dx, called the optical length, with n(x, t) the refraction index of the
considered media. As presented by I. Martin in [217], if one considers the propagation of a
polarized electric field in a cavity whose optical index is modulated in time, the equations of
motion are given by

1
c2∂

2
tE −

1
n2(t)∂

2
xE = 0 . (6.12)

This corresponds to a massless Klein-Gordon equation in curved spacetimes whose line element
reads

ds2 = c2dt2 − n2(t)dx2 , (6.13)

reminiscent of an expending universe metric of the form (6.2), with a scale factor such that
a(t) = n(t).

Dynamical metrics are, therefore, present in several experimental platforms. Therefore, it is
interesting to extend the study of chapter 3 to such spacetime, studying the momentum-energy
tensor of such systems and the corresponding anomalous corrections.

99



Chapter 6. Remarks on purely dynamical metrics, the dynamical Casimir effect and
anomalies

6.1.2 Momentum-energy tensor of purely dynamical systems
By analogy with purely stationary metrics, in a purely dynamical metric, the non-zero affine
connection components are {

0
00

}
= ∂tf1

2f1
,{

1
01

}
=
{

1
10

}
= ∂tf2

2f2
,{

0
11

}
= ∂tf2

2f1
,

(6.14)

implying a scalar curvature of the form

R = 1
v2
F

[
−∂

2
t f2

f1f2
+ 1

2
∂tf2

f1f2

(
∂tf2

f2
+ ∂tf1

f1

)]
. (6.15)

The solution of the (non-)conservation equations
T µµ = ℏc

48πCwR ,
T µν = T νµ ,
∇µT µν = ℏc

96πCg
ϵνµ
√
−g∇µR ,

(6.16)

therefore takes the form

T µν =
 u (vF τ − x) + v (vF τ + x)

√
f1
f2

[u (vF τ − x)− v (vF τ + x)]√
f2
f1

[−u (vF τ − x) + v (vF τ + x)] −u (vF τ − x)− v (vF τ + x)

 1
2f2

+ ℏvF
96π

Cw (ε(a)
q + ε(b)

q

)
Cg
√

f1
f2
ε(a)
q

−Cg
√

f2
f1
ε(a)
q Cw

(
ε(b)
q − ε(a)

q

) ,

(6.17)

with u and v two unknown functions fixed by the boundary condition and τ a new time
coordinates defined by

∂tτ =
√
f2

f1
. (6.18)

ε(a)
q and ε(a)

q are two new energy scales of the problem defined by

ε(a)
q = ℏvF

48π

[
1
f2

∫
R∂tf2 −R

]
, ε(b)

q = ℏvF
48πR . (6.19)

Starting from an initially homogeneous and stationary system, the system stays homogeneous
in time, with a momentum-energy tensor

T µν =
 Cw

√
f1
f2
Cg

−
√

f2
f1
Cg −Cw

 ϵ0

2f2
+ 1

2

Cw (ε(a)
q + ε(b)

q

)
Cg
√

f1
f2
ε(a)
q

−Cg
√

f2
f1
ε(a)
q Cw

(
ε(b)
q − ε(a)

q

) , (6.20)

with ε0 = εT + εL the initial energy density defined in the limit of flat space as the sum of the
thermal energy density εT = γT 2

0 and the Casimir energy density defined for a system of finite
size L by

ϵL = −πℏvF24L2 . (6.21)
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It appears that analogously to purely stationary metrics, in spacetimes characterized by a
metric of the form (6.1), the component of the classical momentum-energy tensor

T µν =
 Cw

√
f1
f2
Cg

−
√

f2
f1
Cg −Cw

 (6.22)

receive a correction induced by two new energy scales ε(a)
q and ε(b)

q . While similar to the energy
scales ε(1/2)

q , obtained in chapter 3, the signs of the different terms are different. Therefore,
as we will see in the following, the corrections induced by such a dynamical metric are not
identical to those obtained in the previous chapters for stationary metrics.

However, similarly to the results obtained in chapter 3, since Einstein anomaly is propor-
tional to the chiral central charge Cg, in non-chiral systems (Cg = 0), the new energy scales ε(a)

q

and ε(b)
q induced by the drive do not modify the energy currents but only the energy density

and the pressure.

6.1.3 Anomalous fluctuations and purely dynamical systems in
condensed matter

As we have seen in section 6.1.2, anomalous fluctuations induce in 1+1 dimensional systems two
new energy scales that modify the expectation value of the momentum-energy tensor compo-
nents. In section 6.1.1, we introduced different setups in which such dynamical spacetimes. In
this section, our objective is for the two types of dynamical metric we introduced in Eq. (6.8)
and (6.11), to discuss the corrections induced by these fluctuations as well as the possibility of
observing them experimentally.

Anomalous corrections and analogous expanding universe

Let us start by reconsidering the case of expending universes, realized either in Bose-Einsten
condensates or in optical setups. An expanding universe is captured by a metric tensor of the
form

ds2 = c2
sdt2 − a2(t)dx2 , (6.23)

where cs, the sound velocity is assumed to be a constant. In such a metric, the new energy
scales turn out to be defined asε

(a)
q = ℏ

24πcs

[
∂2

t a

a
−
(
∂ta
a

)2
]
,

ε(b)
q = − ℏ

24πcs

∂2
t a

a
.

(6.24)

The energy density, pressure, and energy currents, therefore read

ε = Cw

2

(
ε0
a2 − ℏ

24πcs

(
∂ta
a

)2
)
,

p = Cw

2

(
ε0
a2 + ℏ

24πcs

[
2∂

2
t a

a
−
(
∂ta
a

)2
])

,

Jε = Cg

2

(
cs
ε0
a2 + ℏ

24π

[
∂2

t a

a
−
(
∂ta
a

)2
])

.

(6.25)

Considering a zero temperature system such as the ground state energy is dominated by the
Casimir effect contribution (6.21), over a size L, Eq. (6.25) simplify as

ε = Cw

2

(
− πℏcs

24L2(t) −
ℏ

24πcs

(
∂ta
a

)2
)
,

p = Cw

2

(
− πℏcs

24L2(t) + ℏ
24πcs

[
2∂

2
t a

a
−
(
∂ta
a

)2
])

,

Jε = Cg

2

(
− πℏc2

s

24L2(t) + ℏ
24π

[
∂2

t a

a
−
(
∂ta
a

)2
])

.

(6.26)
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with L(t) = L.a(t). Similarly to the study we have performed for the thermal quenches in
section 4.2.1, the importance of the anomalous corrections engendered by the gravitational
anomalies can be inferred from a comparison of two anomalous time scales of this problem

τ−1
1 = ∂ta

a
and, τ−2

2 = ∂2
t log a

a0
, (6.27)

with the natural time scale L(t)/cs. From the anomalous thermodynamic relationship (6.26),
we note that the the anomalous time scale τ1 induces an anomalous corrections ℏ

24πvF τ
2
1

to the
instantaneous Casimir energy density − πℏcs

24L2(t) . Similarly, the time scale τ2 is related to the
differences between the anomalous energy current and its classical counterpart J0

ε = vF
ε0
2 .

In the case of the optical system, interpreting the scale factor a ≡ n(t) as an inverse velocity
n(t) = c/c(t), the anomalous correction to the energy density ∆ε = ε− Cw

2
ε0
a2 reads

∆ε = Cw
ℏ

48πc

(
∂tc(t)
c(t)

)2

. (6.28)

This result is reminiscent of the Unruh effect [168,218,219] (also known as the Fulling-Davies-
Unruh effect), defining an analog temperature in an accelerated frame. Note that in such a
situation, the time scale τ1 induces a decrease of the total energy of the system.

In the following, to underline the experimental relevance of these corrections, let us evaluate
the amplitude of the corrections by considering the momentum-energy tensor of the azimuthal
modes of an expanding Bose-Einstein condensate’s ring. Let us then consider a fast expansion
of the ring between the radius R0 and R1 over a time τ . Although our approach applies to a
generic radius profile R(t), for the sake of clarity, we choose a profile such that

R(t) = R0 +R1

2 + R1 −R0

2 tanh
(
t

τ

)
. (6.29)

The parameters of Fig. 6.1 are motivated by the parameters observed in the experimental
work of S. Eckel et al. on a 23Na Bose-Einstein condensate described in [213]. We will then
consider a sound velocity of the order cs ≈ 4.10−3ms−1, with a Bose-Einstein condensate of
radius R ≈ 10µm, and modulate the radius of this ring on a timescale τ such that τ ≈ 5ms.

For a small expansion of the condensate, corresponding to a relative ratio R0/R1 = 1.5,
there is a single new timescale τ2. Indeed, as observed in Fig. 6.1(b), the second timescale τ1 is
negligible compared to R/cs. As a consequence, the corrected energy density is approximately
equal to its classical value, the instantaneous Casimir energy

ε ≈ Cw2
ε0

a2 = −Cw2
πℏcs

24.(2πR(t))2 . (6.30)

For a larger relative ratio R0/R1 = 2.3, or in other words, a faster expansion of the ring, τ1
become comparable to R/cs. As a consequence, and as observed in Fig. 6.1(d), the energy
correction becomes noticeable. Two independent timescales then have to be distinguished: τ1
enters the correction to the energy density while τ1− τ2 enters the correction to the local pres-
sure. In the case of both large and small expansions, the correction to the classical pressure
encoded in τ1 − τ2 is relevant. However, the appearance of the second timescale τ1 for large
expansion can also be observed on the pressure profile. Indeed, while for small expansions,
in Fig. 6.1(c), the correction is symmetric with respect to t = 0, for larger correction, as
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Figure 6.1: Anomalous corrections to thermodynamics quantities in an expending
Bose-Einstein condensate a) A Bose-Einstein condensate prepared as a ring of radius R0
undergoes a forced expansion over a time τ until reaching a radius R1. We consider a time inde-
pendent sound velocity of cs = 4.10−3ms−1, observed in a 23Na condensate in [213]. Considering
the model to be at zero temperature where the thermodynamics is dominated by the Casimir
effect, the quantum corrected thermodynamic quantities are compared to the classical vacuum
Casimir energy due to the confinement (6.21) ε0 = ℏcs

96πR2
0
. (b) and (c) For a small expansion

of the condensate R1/R0 = 1.5, the time scale τ1 is neglectful. As a consequence, the energy
density is well approximated by the instantaneous Casimir energy ε = −πℏcs

24(2πR(t))2 , while the
pressure is corrected by τ2, the only relevant timescale. (d) and (e) for larger expansions of the
condensate R1/R0 = 2.5, both τ1 and τ2 become relevant. The instantaneous Casimir energy is
affected by a quantum correction encoded in τ1, while the pressure is no longer symetric with
respect to the time t=0, due to the timescale τ1 correcting the symmetric contribution issued
from τ2.

represented in Fig. 6.1(e), due to the timescale τ1, the pressure become asymmetric. These
observations are opposed to the ones of section 4.2.1, for which the pressure was close to its
classical value while the energy density was affected by strong quantum corrections.

Another important consequence of the anomalous correction, highlighted in Figs. 6.1(c)
and 6.1(e), is that the pressure becomes non-monotonous in time, since it decreases at the mid-
dle of the expansion, when ∂2

t a(t) cancels out. While in this section, we considered the forced
expansion of a condensate, in the case of a freely expanding condensate as the one considered
by S. Eckel et al. in [213] such a negative pressure would induce an instability. Actually, in the
experiment, we do not observe a pure expansion, at late times, the radius of the condensate ring
oscillates before reaching an equilibrium value. This observation, therefore, raises the question
of whether these observed oscillations can be understood as consequences of the pressure vari-
ations induced by the gravitational anomalies that we have identified.

Anomalous corrections in a Bose-Einstein condensate with time-dependent
interactions

As we have seen in section 6.1.1, another strategy used to induce a curve spacetime in a Bose-
Einstein condensate consists in modulating the sound velocity, for example, by modulating the
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scattering length using a Feshbach resonance. In this section, we will therefore analyze the
anomalous corrections arising in such a context.

As we have seen in section 6.1.1, the metric tensor corresponding to a 3+1 dimensional
condensate whose scattering length is varied is given by

ds2 =
√
b(t)c0dt2 −

1√
b(t)

dx2 . (6.31)

where the dimensionless coefficient b(t) encodes the variation of the scattering length b(t) =
a(t)/a0, and c0 the sound velocity associated to the scattering length a0.

In this context, the two new energy scales are given by
ε(a)
q = ℏ

96πc0
√
b

[
∂2

t b

b
− 3

2

(
∂tb
b

)2
]
,

ε(b)
q = ℏ

96πvF

√
b

[
−∂2

t b

b
+ 5

4

(
∂tb
b

)2
]
.

(6.32)

where c0
√
b corresponds to the instantaneous sound velocity cs(t). The energy density, pressure,

and energy currents, therefore read

ε = Cw

2

[√
bε0 − ℏ

384πc0
√
b

(
∂tb
b

)2
]
,

p = Cw

2

[√
bε0 + ℏ

48πc0
√
b

[
∂2

t b

b
− 11

8

(
∂tf
f2

)2
]]
,

Jε = Cg

2

[√
bε0 + ℏ

96πc0
√
b

[
∂2

t b

b
− 3

2

(
∂tb
b

)2
]]
.

(6.33)

In the limit of zero temperature, the classical energy density is dominated by the Casimir energy
density (6.21)

ε0 = −πℏc0

24L2 . (6.34)

Restoring the instantaneous sound velocity cs(t), Eq. (6.33) simplify into

ε = Cw

2

[
− πℏcs

24L2 − ℏ
384πcs

(
∂tb
b

)2
]
,

p = Cw

2

[
− πℏcs

24L2 + ℏ
48πcs

[
∂2

t b

b
− 11

8

(
∂tf
f2

)2
]]
,

Jε = Cg

2

[
− πℏcs

24L2 + ℏ
96πcs

[
∂2

t b

b
− 3

2

(
∂tb
b

)2
]]
,

(6.35)

with − πℏcs

24L2 the instantaneous Casimir energy. Written in this form, as in the case of an
expanding condensate, we identify two anomalous energy scales

τ−1
1 = ∂tb

b
and, τ−2

2 = ∂2
t log b , (6.36)

that, compared to the natural energy scale L/cs, control the physics of the system.

Let us then evaluate the amplitude of the corrections for a ramping of the scattering length
from its original value a0 to a maximal value of a1 over a time τ . While Eq. (6.35) gives us
access to the anomalous correction for any ramp profile, in this section, for simplicity, we will
consider a scattering length profile of the form

a(t) = a0 + a1

2 + a1 − a0

2 tanh
(
t

τ

)
. (6.37)

104



6.1. Dynamical gravitational anomalous correction: from expanding universes to
condensed matter

-4 -2 0 2 4

a)

b)

c)

d)

e)
-4 -2 20 4

-5

-4

-3

-2

-1

-4 -2 2 4
-5

-4

-3

-2

-1

0

-4 -2 2 4
-5

-4

-3

-2

-1

0

0 -4 -2 20 4

-10

-5

5

10

0

Figure 6.2: Anomalous corrections to thermodynamics quantities while ramping
the scattering lengths in a Bose-Einstein condensate a) A Bose-Einstein condensate
is prepared as a thin needle of length L ≈ 10µm. Using a Feshbach resonance strategy one
modulates the scattering length from an initial value a0 to a final value of a1 = 5a0 over a
time τ . We consider a sound velocity of cs = 4.10−3ms−1, observed in a 23Na condensate
in [213]. For simplicity of the treatment, we will consider the model to be at zero temperature
such as the classical energy density is given by the instantaneous Casimir energy due to the
confinement (6.21): εL = − πℏcs

24L2 − ℏ
384πcs

, with cs = c0

√
a(t)
a0

the time-dependent sound velocity.
(b) and (c) For a slow ramp of the condensate scattering length, over a time τ = 5ms, the
time scale τ1 is negligible compared to the natural timescale L/cs. As a consequence, the
energy density is well approximated by the instantaneous Casimir energy ε = −πℏcs(t)

24L2 , while
the pressure is corrected by τ2, the only relevant anomalous timescale. A striking consequence
of this new energy scale, common with the previous example, is that the pressure is non-
monotonous (d) and (e) for faster ramps of the condensate scattering length, over a time
τ = 1ms, both τ1 and τ2 become relevant. The instantaneous Casimir energy is reduced by a
quantum correction encoded in τ1, while the pressure correction is increased.

The results are shown in Fig. 6.2. We expect the gravitational anomalies to alter the classical
properties of the steady states in regions where τ1 and τ2 become sizable and of the same order
of magnitude than L/cs, or in other words, when the scattering length varies a lot. Therefore,
we focus in the following on the effects of the gravitational anomalies in the vicinity of the
ramp at t = 0.

The parameters of Fig. 6.2 are the same that those used for Fig. 6.1, motivated by the
realization of a Bose-Einstein condensate in 23Na by S. Eckel et al. described in [213]. For a
slow ramp of the condensate scattering lengths, corresponding to a ramp over a time τ = 5ms,
there is a single anomalous timescale τ2. Indeed, as observed in Fig. 6.2(b), the second timescale
τ1, correcting the local energy density, is negligible. As a consequence, the corrected energy
density is approximately equal to its classical value, the instantaneous Casimir energy

ε ≈ Cw2
ε0

a2 = −Cw2
πℏcs(t)
24.L2 . (6.38)

For a faster ramp, over a time τ = 1ms, as observed in Fig. 6.2(d), the timescale τ1 becomes
relevant and, as a consequence the energy density corrections become noticeable. Two indepen-
dent timescales have to be distinguished, both τ1 entering the correction to the energy density
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and τ1 − τ2 entering the correction to the local pressure. For both large and small relative
ratios, the correction to the classical pressure encoded in τ1 − τ2 is relevant. A particularly
striking consequence of the corrected pressure, also observed in Figs. 6.1(c) and 6.1(e) is that
due to these corrections, the pressure becomes non-monotonous over time.

6.1.4 Limits and perspectives of this study
In this section, we have seen that anomalous quantum fluctuations induced by the gravita-
tional anomalies can induce corrections on the observables of Bose-Einstein condensates that
are modulated in time. They notably correct the pressure and the energy density when the
time variation of the metric is strong enough. However, as noticed in section 6.1.2, in non-chiral
systems, the energy current is not affected by such anomalous corrections.

However, the previous study was done in an ideal limit. It is then interesting to reconsider
these approximations to underline the limit of our approaches, which constitutes a possible
extension of this work. First of all, this study was done in the ideal limit of a zero-temperature
system. In the case of a non-zero temperature system, we can wonder if the thermal contribu-
tion to the energy density is low enough to observe the anomalous corrections we mentioned in
section 6.1.3. Moreover, in this section, the computed thermodynamics quantities correspond
to vacuum properties or, in other words, to the many-body ground state properties. Therefore,
an underlying approximation of this chapter is that despite the external drive, the system stays
in its ground state. This approximation, sometimes called the adiabatic approximation, im-
plies that the drive must be slow enough to prevent populating higher energy states. A natural
extension of this work would then be to study the consequences of non-adiabatic effects on the
anomalous corrections discussed in this chapter. Finally, a major hypothesis in this section
is that we considered all these examples as purely 1+1 dimensional systems. This constraint
raises two major questions. First, in bosonic analog models, 1+1 dimensionality induces a
strong constraint on the dynamical tensor defined by fµν =

√
det (gαβ)gµν , where gµν is the

metric tensor. Indeed, the determinant of fµν must be equal to -1, or at least have to be a
constant to be absorbed in the constant of the problem. This explains why we had to consider
the sound velocity as a constant in section 6.1.1. However, in the experiment, this constraint
is not always satisfied, in [213], the authors noticed that the radial velocity depends on the
Bose-Einstein condensate radius as cs ∝ R−2/7. Therefore, one can wonder what consequences
of the anomalous fluctuations deduced in this chapter remain relevant in the presence of this
time-dependent sound velocity. Another related question is that, assuming the system to be
completely 1+1 dimensional, we consider the orthogonal degree of freedom as frozen. One can
legitimately wonder which conclusions of our 1+1 dimensional approach would remain relevant
if these orthogonal degrees of freedom were not entirely frozen, exchanging energy with the
longitudinal ones.

Both of the limits mentionned in the previous paragraph come from the fact that the sys-
tem considered is bosonic and not purely 1+1 dimensional. An alternative strategy to observe
the consequence of anomalous fluctuation would be to consider quantum Hall systems with
expanding edges, as discussed recently in [220] since such systems are fermionic and purely
1+1 dimensional. The metric tensor in such systems, as well as the corresponding anomalous
contribution, remains to be explored.

Besides these remarks concerning the range of applicability of our results, it is interesting to
note that the density of energy current Jε obtained in the analog expanding systems (6.25) is
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similar to the one obtained by S. Fulling and P. Davies in the context of the dynamical Casimir
effect [166]. In the next section, we will show that despite this similarity, the dynamical Casimir
effect is in fact, disconnected from the anomalous correction we discussed in this section but is
nonetheless related to the notion of trace anomaly.

6.2 A link with the dynamical Casimir effect
As we have seen in the previous section, in a time-dependent medium, the energy density, the
pressure, and the energy current are modified by the anomalous fluctuations issued from the
gravitational anomalies. Another correction to the momentum-energy tensor emerging in a 1+1
dimensional cavity modulated in time is the dynamical Casimir effect [221, 222]. Therefore, it
is natural to wonder if it is possible to relate the correction induced by gravitational anomalies
to the modified momentum-energy tensor observed in the context of the dynamical Casimir
effect.

In this section, after introducing the dynamical Casimir effect, we will compare the results
obtained in this context to the one obtained from the gravitational anomalies in the previous
section before concluding the section on another way to relate trace anomalies to the dynamical
Casimir effect.

6.2.1 Historical description
The dynamical Casimir effect in 1+1 dimensions characterizes the properties of systems in a
1+1 dimensional cavity with moving boundaries. An archetypical example is, therefore, that of
a polarized electric field E⃗ = E(x, t)e⃗z between two mirrors whose positions are given by x = 0
and x = L(t). The corresponding equations of motion are given by

∂2
tE = c2∂2

xE , (6.39)

with reflective (Dirichlet) boundary conditions

E(0, t) = E(t, L(t)) = 0 . (6.40)

While, first considered for classical mechanics in 1921 by E. Nicolai for a mirror with a fixed
velocity [221] (L(t) = L0(1 + αt)), the interests of such a setup raised in the 1960s with the
invention of lasers. In quantum mechanics, this problem is also fascinating since it can be
shown that, starting from the ground state of the cavity, the mirror’s movement induces the
creation of light quanta in the cavity [222].

A key technique to solve this problem was identified by G. Moore [222], who realized that it
is possible to map the flat spacetime problem with time-dependent boundary conditions onto
a curved spacetime problem with static boundary conditions. The corresponding trick works
as follows. Let us introduce new coordinates s and y such asct− x = f(cτ − y) ,

ct+ x = g(cτ + y) .
(6.41)

The equations of motion in the new coordinates system (τ, y) are identical to the one in (t, x),

∂2
τE = c2∂2

yE , (6.42)
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but the boundary conditions now depend on the choice of f and g. It is then possible to select
a specific choice of coordinates in which the two mirrors stay fixed in time at position y = 0
and y = l by imposing f(x) = g(x) = R−1(x) with

R (t+ L(t))−R (t− L(t)) = l . (6.43)

This strategy to map a flat-spacetime problem with dynamic boundary conditions onto a curved-
spacetime problem with fixed boundary conditions was later used by P. Davies and S. Fulling
in 1976 [166] to define the renormalized momentum-energy tensor of the theory given in the
flat spacetime coordinates by

Tµν =
(
−f(ct− x)− f(ct+ x) f(ct− x)− f(ct+ x)
f(ct− x)− f(ct+ x) −f(ct− x)− f(ct+ x)

)
, (6.44)

with
f(x) = πℏc

48l2 (∂xR)2 + ℏc
24π

[
∂3
xR

∂xR
− 3

2

(
∂2
xR

∂xR

)]
. (6.45)

These results were afterward verified experimentally in several platforms such as Bose-Einstein
condensates [223], Josephson junstions [224], and microwave cavities [225].

Comparing this expression of the momentum-energy tensor to the one obtained for the
dynamical metric, one realizes that f looks identical to the expression obtained for the anoma-
lous energy current obtained in the expanding universe model (6.25) at zero temperature for
a = 1/∂xR. This raises the question of a possible link between the dynamical Casimir effect
and the gravitational anomalies.

6.2.2 Dynamical Casimir effect and trace anomaly
In this section, our objective is to determine whether one can relate the dynamical Casimir
effect to gravitational anomalies. Following the analysis of G. Moore [222], it is possible to
relate the system with time-dependent boundaries with a system with static boundaries by
changing the coordinates as R(ct− x) = cτ − y ,

R(ct+ x) = cτ + y .
(6.46)

Starting from a flat spacetime, ds2 = c2dt2−dx2, this implies that the new spacetime is curved
with a metric given by

ds2 =
(
dτ 2 − dy2

)
∂R−1(cτ − y) · ∂R−1(cτ + y) . (6.47)

However, this metric’s scalar curvature R still vanishes. Therefore, the gravitational anomaly
corrections to the momentum-energy tensor presented in the previous chapter of this thesis are
absent. This led P. Davies and S. Fulling to state that

“The relation of that (conformal anomaly) effect, which involves a failure of the
usual tracelessness of Tµν, to the present work is unclear.”

In fact, an indirect relation exists between the precise form of the momentum-energy tensor
and the conformal anomaly that goes beyond the scope of the present thesis. Indeed, even
though there is no scalar curvature (R = 0), the effective action is not strictly equal to zero. As
a consequence, the momentum-energy tensor no longer transforms under a conformal transform
xµ → x̃µ as a tensor

Tµν → T̃µν = ∂x̃ρ

∂xρ
∂x̃ρ

∂xρ
Tµν . (6.48)
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Instead, under a conformal transformation of the formct̃+ x̃ = g(ct+ x) ,
ct̃− x̃ = f(ct− x) ,

(6.49)

the chiral components of the momentum-energy tensorT++ = 1
4 (T00 + Txx + 2T0x) ,

T−− = 1
4 (T00 + Txx − 2T0x) ,

(6.50)

behave like [76,226]
T++ → T̃++ = ḟ−2(ct− x)

[
T++ − C+

ℏc
24π

( ...
f (ct−x)
ḟ(ct−x) −

3
2

(
f̈(ct−x)
ḟ(ct−x)

)2)]
,

T−− → T̃−− = ġ−2(ct+ x)
[
T−− − C+

ℏc
24π

( ...
g (ct+x)
ġ(ct+x) −

3
2

(
g̈(ct+x)
ġ(ct+x)

)2
)]

,
(6.51)

with ḟ(x) = ∂xf(x). Assuming that the system stays at rest in its ground state in the curved
space spanned by y and τ , then, at zero temperature, following Casimir [134], the energy density
and pressure verify

ε = p = − πℏc24l2 (6.52)

Using the transformation rules (6.51), we directly recover, in the original coordinates, the ex-
pression of the momentum-energy tensor obtained previously by P. Davies and S. Fulling (6.44).

6.2.3 Conclusion
In conclusion, a time modulation of the parameters of a relativistic system can be taken into
account in the equation of motion as a time modulation of the induced spacetime metric. By
doing so, it is possible to generate a large variety of dynamical spacetimes. It is, for exam-
ple, possible to mimic a Friedman-Lemaître-Robertson-walker used to describe the universe
expansion. Now, as the space modulation of a metric led to new energy scales in the context
of the modified Tolman-Ehrenfest Temperature 3, these time modulations similarly introduce
new energy scales. These new energy scales introduce a time modulation of the local energy
density and pressure and are captured by the concept of gravitational anomalies. Therefore,
it is possible to observe the effects of gravitational anomalies in dynamical systems. While
such systems are often related to a historical example of time-modulated systems known as the
dynamical Casimir effect, their physics is quite different. Indeed, while G. Moore [222] proved
that one could interpret the dynamical Casimir effect as a system with field boundary condi-
tions in a distorted spacetime, the corresponding spacetime is effectively flat. As a consequence,
the precise form of its momentum-energy tensor cannot be directly related to the gravitational
anomalies.
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Chapter 7
The consequences of anomalies for a historical
dispute: Does the equilibrium temperature
depend on gravity?

In the previous chapters, we analyzed different effects of the gravitational anomalies on thermo-
dynamics quantities and the definition of temperature in a curved spacetime. In this chapter,
we will discuss how these modifications shed new light on the historical Loschmidt-Maxwell-
Boltzman dispute.

7.1 Loschmidt-Maxwell-Boltzmann dispute and the
adiabatic temperature gradient

In this section, we review the historical dispute opposing J. Maxwell, J. Loschmidt, and L. Boltz-
mann concerning the temperature profile of a column of gas in the presence of a non-zero
gravitational potential. This dispute can be traced back to the late 19th century and received
a renewed interest at the end of the 20th century following a paper by D. Evans reviewing
the origins of the dispute [227] and several papers proposing experimental signatures of these
postulates [228–231].

7.1.1 Historical arguments
The historical disputes between J. Maxwell, L. Boltzmann, and J. Loschmidt concern the
temperature profile in the presence of gravity. On the one hand, J. Maxwell and L. Boltzmann
thought that the temperature in a column of gas should be homogeneous even in the presence of
gravity. Their historical argument, relying on the kinetic theory of gases, goes as follows: first,
J. Maxwell [232] reminds us that the temperature profile must be identical in every compound,

“if two vertical columns of different substances stand on the same perfectly conduct-
ing horizontal plate, the temperature of the bottom of each column will be the same;
and if each column is in thermal equilibrium of itself, the temperatures at all equal
heights must be the same. In fact, if the temperatures of the tops of the two columns
were different, we might drive an engine with this difference of temperature, and the
refuse heat would pass down the colder column, through the conducting plate, and up
the warmer column; and this would go on till all the heat was converted into work,
contrary to the second law of thermodynamics.”
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Then, relying on the knowledge of gases, he concludes that the temperature profile must be
homogeneous

“But we know that if one of the columns is gaseous, its temperature is uniform[From
the kinetic theory of gases]. Hence that of the other must be uniform, whatever its
material.”

A similar argument, not resorting to the kinetic theory of gases, goes as follows. Assume
you have a vertical column of gas in a gravitational field and suppose that, after equilibrium is
reached, a vertical temperature gradient is present. If this is true, we can use a wire or some
other heat-permeable material to connect the upper and lower parts of the gas container and
create, just like in Maxwell’s scheme, a heat engine with a single temperature source, using
gravity as its fuel.

While the impossibility of creating such an engine is at the heart of J. Maxwell and L. Boltz-
mann’s argument, the possibility of creating such an engine is viewed as an exciting perspective
by J. Loschmidt [87]:

“Thereby the terroristic nimbus of the second law is destroyed, a nimbus which makes
that second law appear as the annihilating principle of all life in the universe, and
at the same time we are confronted with the comforting perspective that, as far as
the conversion of heat into work is concerned, mankind will not solely be dependent
on the intervention of coal or of the sun, but will have available an inexhaustible
resource of convertible heat at all times.”

J. Loschmidt never argued why a temperature gradient did not contradict the second law of
thermodynamics but instead proposed an argument based on the first law, which goes as fol-
lows. Imagine a vertical column containing gas. At equilibrium, there should be no energy
currents. Therefore, this system’s energy density is homogeneous. Since the potential energy
εp = ρgz increases with altitude, the kinetic energy has to decrease. Assuming a kinetic dis-
tribution of the kinetic energy εk = 1

2kBT , this implies that the temperature decreases linearly
with height.

Forgotten for a long time, this historical dispute was recently reconsidered experimentally
in several papers in liquids, gases, and metals [228–231]. These experiments, directly related
to the dispute by the authors, can also be related to more recent discussions of the so-called
adiabatic temperature gradient.

7.1.2 The adiabatic temperature gradient
As mentioned previously, this dispute was afterward forgotten. However, the question concern-
ing the presence of a thermal gradient in a fluid submitted to a gravitational potential is an
experimental reality known as the adiabatic temperature gradient.

In his book, “Physical Fluid Dynamics” [233], D. Tritton describes the underlying physical
process as follows. Let us consider a small fluid bubble. As the fluid rises, the ambient pressure
reduces, and the bubble expands, so the fluid cools down; as the bubble falls, it compresses, and
the fluid warms up. The corresponding adiabatic temperature gradient can then be computed
using adiabatic thermodynamics identities in a perfect fluid. During an adiabatic expansion,
there is no heat variation, δQ = 0. Therefore, following the first rule of thermodynamics,

dU = δW ⇐⇒ nCvdT = −PdV . (7.1)
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From the perfect gases identity
PV = nRT , (7.2)

together with Mayer’s relation relating Cp, the molar specific heat at constant pressure, Cv, the
molar specific heat at constant volume and R the gas constant,

Cp − Cv = R , (7.3)

these relations simplify to
CpPdV + CvV dP = 0 . (7.4)

Assuming that Cp and Cv are almost constant in the considered system, from this relation, we
recover the adiabatic relations 

PV γ = Cst ,
TV γ−1 = Cst ,
T γP 1−γ = Cst ,

(7.5)

with γ = Cp/Cv, the adiabatic index. For perfect monoatomic gases, we have γ ≈ 5/3 while
for a diatomic one γ ≈ 7/4. Assuming a mechanical equilibrium, the pressure gradient in the
system verifies

∇P = −ρg = −m P

RT
g , (7.6)

with m the molar mass of the corresponding gas. Together with the adiabatic relations (7.5),
we recover the adiabatic temperature gradient, also known in geophysical usage as the adiabatic
lapse rate.

∇T = mg

R

1− γ
γ

= −mg
Cp

, (7.7)

implying a temperature profile of the form

T (z) = T0 −
mg

Cp
z . (7.8)

In our readings of the phenomenon, looking back, both points of view are coherent with one
another. Indeed, J. Loschmidt focuses on local energy relaxation. On the contrary, the homo-
geneisation of the temperature in this system is due to large-scale energy relaxation processes
such as the Rayleigh-Bénard instability [234, 235]. Since in practice such processes are very
slow, such as the global relaxation proposed by L. Boltwman and J. Maxwell is never reached.

Note, however, that in every experimental setup, these temperature profiles, while similar
to the Tolmann-Ehrenfest results, have an entirely different origin. Indeed, the speed of light
appears explicitly in the classical Tolmann-Ehrenfest’s relation, which for a weak gravitational
potential reads

∇T
T

= − g
c2 (7.9)

and is so weak (∇T ≈ 0.88mK/Km for earth gravity with a mean temperature around 300K)
that it is impossible to observe it experimentally in classical systems. In the following section,
we will consider relativistic, massless systems and study the interplay between this controversy
and Tolmann-Ehrenfest’s relation in the presence and absence of gravitational anomalies.

113



Chapter 7. The consequences of anomalies for a historical dispute: Does the equilibrium
temperature depend on gravity?

Figure 7.1: Tolman-Ehrenfest temperature and redshift Classically, an observer located
at some position x0 perceives the whole system at a homogeneous temperature due to the
gravitational blueshifts and redshifts (adapted from [137]).

7.2 Thermodynamic consequences of the anomaly
In the previous section, we considered the historical disputes between J. Maxwell, L. Boltzmann,
and J. Loschmidt within classical physics. However, as we have seen in chapter 3, in the presence
of curved spacetime, R. Tolmann, and P. Ehrenfest proved that the equilibrium temperature
profile is not homogeneous but instead, in a metric of the form

ds2 = f1(x)dt2 − f2(x)dx2 , (7.10)

it follows
T (x) ∝ 1√

f1(x)
. (7.11)

We can, therefore, wonder how these results compare to the previously mentioned dispute.

7.2.1 Tolmann-Ehrenfest’s temperature and thermal machine
First, let us consider the equilibrium temperature profile of a system in curved spacetime in
the absence of gravitational anomalies. In the absence of gravitational anomalies, in a metric
of the form

ds2 = f1(x)dt2 − f2(x)dx2 , (7.12)

we recovered in chapter 3 a temperature profile of the form

T (x) ∝
√

1
f1(x) . (7.13)

Following J. Maxwell and L. Boltzmann, such an inhomogeneous temperature profile might
seem surprising since it could be used as a perpetual energy source building a thermal machine
between two regions with different f1 values. Such a conclusion would, however, be quite inac-
curate. To see this, let us consider a situation in which an observer is located at some position
x0. According to Tolman-Ehrenfest’s relation, the local temperature profile at a position x
verifies

T (x) = T0

√√√√f1(x0)
f1(x) . (7.14)
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However, a photon emitted at some position x1 towards the observer will be redshifted or
blueshifted by a factor

√
f1(x1)
f1(x0) . Therefore, a photon emitted at a frequency ω will be measured

by the observer at a frequency ωr = ω1

√
f1(x1)
f1(x0) . Therefore, the emitted photon distribution is

given by
ne (ω) = 1

e
ℏω

kBT (x1) − 1
. (7.15)

The photon distribution received by the observer situated in x0 is then given by

nr (ω) = 1

e
ℏω

kBT (x1)

√
f1(x1)
f1(x0) − 1

, (7.16)

such that the energy received by this observer is given by

ε =
∫
c−1dω ℏω nr (ω) = π2

6ℏc
f1(x1)
f1(x0)

k2
BT

2(x1) = π2

6ℏck
2
BT

2
0 (7.17)

The perceived temperature at position x0 is therefore T0.

In conclusion, the observer perceives the whole system at the same temperature T0, which is
in agreement with the remark from C. Rovelli and M. Smerlak [133] who stated that the Tolman-
Ehrenfest temperature profile is passive (no work can be extracted from it). Therefore, the
Tolman-Ehrenfest temperature profile is in complete agreement with the argument formulated
by J. Maxwell and L. Boltzmann and the second law of thermodynamics. Several authors
such as C. Rovelli and M. Smerlak [133] or J. Santiago and M. Visser [137] even consider this
agreement with the second law of the thermodynamics as a postulate to redemonstrate the
Tolman-Ehrenfest’s relations.
However, as we have seen earlier, when one considers the anomalous fluctuations induced by
the gravitational anomalies, the temperature profile is corrected, and one can wonder how this
new temperature profile compares to Maxwell-Boltmann’s arguments.

7.2.2 Anomalous Tolman-Ehrenfest’s temperature and thermal
machine

As mentioned previously, in the presence of gravitational anomalies, the definition of the equilib-
rium temperature is altered by the presence of new energy scales. In a metric of the form (7.12),
the anomalous Tolman-Ehrenfest temperature reads (3)

k2
BT

2
An(x) = k2

BT
2
0

f1(x) + ε
(q)
2 (7.18)

with
ε

(q)
2 = ℏc

48π

[
∂2
xf1

f1f2
− ∂xf1

f1f2

(
∂xf1

f1
+ 1

2
∂xf2

f2

)]
. (7.19)

Following the same step as above, involving a blueshift or a redshift of the energy current
received by an observer situated at position x, the radiation emitted at some position y is
perceived at a temperature Tp(y) such that

γT 2
p (y) = γT 2

0 + f1 (y) ε(2)
q (y) . (7.20)
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Therefore, it seems possible to harvest the gravitational energy by building a heat engine
between the position x and y since they have a non-zero difference of temperature

k2
B∆T 2 = 6ℏc

π

[
f1(y)ε(2)

q (y)− f1(x)ε(2)
q (x)

]
. (7.21)

For example, in the case of a Schwarschild black hole, the metric is defined with f1 = 1/f2 =
1− rH

r
, such as the anomalous Rolman-Ehrenfest reads

T 2
An(r) = T 2

H

(
1 + rH

r
+ r2

H

r2 − 3r
3
H

r3

)
, (7.22)

with TH = ℏc
4πkB

1
rH

, the Hawking temperature. the perceived temperature by an infinite observer
is, therefore,

T 2
P(r) = T 2

H

(
1− 4r

3
H

r3 + 3r
4
H

r4

)
(7.23)

and it seems possible for an infinite observer to build a thermal machine using its ambient
temperature as a hot source (T = TH) and the black hole horizon as a cold source.

7.3 Conclusion and discussions
In this chapter, after reviewing the historical dispute opposing J. Maxwell and L. Boltzmann
to J. Loschmidt concerning the temperature profile of a column of gas in the presence of a
non-homogeneous gravitational potential, we generalized our discussion to relativistic gases in
generic curved spacetimes. In the absence of gravitational anomalies, the gravitational red-
shift compensates the gradient of temperature obtained following the work from R. Tolmann
and P. Ehrenfest. However, the anomalous corrections induced by the gravitational anoma-
lies induce a non-zero temperature gradient, a conclusion that we examplified in the case of a
Schwarzschild black hole in Eq. (7.23).

This conclusion seems to contradict the second principle of thermodynamics since we can
build a thermal machine with a single heat source (the black hole). Two reasons might be able
to explain such a paradox. First, the system we are considering is not at equilibrium: as pro-
posed by Hawking [2], black holes slowly evaporate, which might explain why we can harvest
its energy. Second, another question that naturally arises is whether the strategy applied to the
radiating phonon in the previous section can really be applied in this case. Since energy and
pressure differ from each other, we can wonder whether the blueshift or redshift can be applied
directly to the temperature or if one needs to treat pressure and energy density differently; in
other words, what is the phonon distribution associated to the anomalous temperature profile
TAn.

Two things are worth noticing at this point. First, note that while non-zero, the tempera-
ture difference observed previously is tiny (around 6.10−8K for the hottest known black hole).
Second, note that while we took as an example the situation of a black hole, these ideas can
be generalized to any system with an inhomogeneous gravitational potential.

In conclusion, while the classical Tolman-Ehrenfest is in complete agreement with the second
law of thermodynamics, inducing only passive temperature gradients, when considering the
gravitational anomalies, this conclusion is inaccurate. As a consequence, it then seems possible
to harvest free energy from the gravitational anomalies. This conclusion seems to revive the
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Maxwell-Boltzmann-Loschidt dispute in relativistic systems. However, it must be considered
cautiously since some relativistic systems, such as black holes, are not strictly at equilibrium.
A natural perspective of this work would consist in computing the work induced by the metric
on its environment, comparing it to the work that one can extract with a heat engine connected
to separate points of this system.
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Chapter 8
Magnetothermal transport in ZrTe5

Topological semimetals provide a natural playground to study transport properties that can
be interpreted as manifestations of anomalies of relativistic field theories [15, 96]. Indeed, the
low-energy quasiparticles in these materials are massless pseudo-relativistic quasiparticles that
split into two groups with left- and right-handed chirality. The classical conservation laws for
the electric and momentum-energy currents preserve quasiparticles of each chirality number
and energy. However, a transfer of electrons and energy between chiralities can occur when an
electric field E or a temperature gradient ∇T , respectively, are applied parallel to a magnetic
field B. Such breaking of the conservation laws are known as the chiral [70,102,236] and grav-
itational anomalies [13,110,115,116,127,182] and are predicted to modulate electric (σxx) and
thermal longitudinal conductivities κxx, respectively.

The possibility of modulating magneto-conductance properties by anomalies motivated an
important experimental effort [103, 237–239] to reach the ideal conditions where anomalous
transport can be observed [16, 240], as discussed in section 2.2.3. The precise objective was to
observe the negative magnetoresistance, recently related to the chiral anomalies in semimetals.
However, as discussed in Fig. 2.4, a precise measure of the electrical currents is made difficult by
a phenomenon known as the current jetting [241]. This phenomenon, common to metallic sam-
ples with low density of carriers whose experimental consequence is illustrated in Fig. 8.1, comes
from the fact that in the presence of non-ideal electronic contacts, the inhomogeneous current
injection leads, in the presence of a magnetic field, to strongly distorted electronic equipoten-
tials, making a precise measure of the magnetoresistivity challenging. Therefore, reaching the
ideal conditions for anomalous transport has proven to be a challenging experimental task. In
a remarkable experimental push, Bi1–xSbx [240] samples were tuned to such ideal conditions:
they lacked current jetting, showed little quantum oscillations (indicating that EF was near the
Weyl nodes). However, the sizable effort required to reach such ideal conditions raises doubts
about the fragility of anomaly-induced transport and the carefully tuned conditions in which
it can be observed experimentally.

To circumvent this experimental difficulty, it is interesting to study heat conduction instead
of electronic conduction, or in other words, to study the magnetothermal conductivity. How-
ever, the measurement of such a thermal conductivity presents a major drawback. Indeed, while
electronic transport properties can be directly associated to a property of the electrons, the only
charge carriers in these materials, heat transport is typically dominated by the phonons, whose
contribution must be dominant due to their large density. A challenge in the determination
of the electron magnetothermal conductivity then consists in decoupling the contribution of
electrons from the one of phonons.
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Figure 8.1: Experimental signatures of current jetting in ZrTe5: (a) Longitudinal mag-
netoresistance MR = V (B)/V (0) for different pairs of contacts: The longitudinal magnetore-
sistance is either negative or positive depending on contact location. The inset depicts the
measurement geometry for each measure.

Historically, a strategy used to differentiate the contribution of the electrons from the one
of phonons consists in evaluating the electronic contribution , resorting to the proportionality
relationship between the contribution of the electrons to the electrical conductivity (σ) and
thermal conductivity (κ) known as the Wiedemann-Franz law [242,243]

L0 = κ

σT
= π2k2

B

3e2 . (8.1)

However, using such a strategy, we directly come back to the original difficulty of current jet-
ting, discussed in the previous paragraph.

Alternatively, in the presence of a strong magnetic field, as discussed in section 2.2.3, the
3+1 dimensional dynamics is reduced to a finite density of independent 1+1 dimensional con-
duction channel named Landau levels. When the magnetic field is increased, Landau levels
are progressively emptied one by one, leading to an oscillatory behavior of the conductivity
induced by the electron, both electronic and thermal. The oscillatory behavior of the electronic
conductivity is, for example, captured by the so-called Shubnikov–de Haas effect [244–247].
Since only charged particles couple to a magnetic field, one can expect these oscillations to
be of purely electronic origin, allowing to determine the electronic component of the thermal
conductivity. Besides, through the Landau-level description of magnetothermal transport, we
relate the study of thermal transport in 3+1 dimensional materials to a study of 1+1 dimen-
sional thermal transport, drawing a direct link with the rest of this thesis.

However, in ordinary metals with large Fermi surfaces, such as copper, decoupling the
physics of the different Landau levels requires inaccessibly large magnetic fields B > 10, 000T .
Considering semimetals, or in other words, low-density metals, is therefore necessary. Further-
more, even though phonons do not directly couple to the magnetic field, scattering between
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phonons and electrons can still induce oscillations in the phonon contribution to the magne-
tothermal conductivity [248–251]. An experimental strategy to evaluate the magnitude of such
a contribution is the measurement of the ultrasound attenuation. Indeed, since interactions
of phonons with the electrons would induce a change in the speed of sound, evaluating the
attenuation of a sound pulse in the semimetal allows one to evaluate the contribution of the
phonon to the fluctuation of the magnetothermal conductivity (See for example Fig. 8.2 for the
result of ultrasound attenuation in a ZrTe5 sample).

Figure 8.2: Ultrasound attenuations in ZrTe5: Sound–velocity variation ∆v/v0 of a longi-
tudinal sound mode propagating along the a-axis as a function of magnetic field applied along
the a-axis (red) and b-axis (blue) at 1.7 K. For clarity the magnetic field in both measurements
is scaled with respect to the quantum limit (Ba

QL = 12T and Bb
QL = 1.2T). The change of the

sound velocity corresponds to the change of the phonon contribution to the thermal conduc-
tivity with B.

In this chapter, we will discuss the result of a collaboration with an experimental group
from the Max Planck Institute in Dresden dedicated to the study of the magnetothermal trans-
port properties of the Dirac semimetal ZrTe5. First, we will motivate the choice of the Weyl
semimetal ZrTe5 to carry out these experiments. Then, we will see that a 1+1 dimensional study
of the Landau level conductivity, similar to the one used in section 2.2.3, provides predictions
of longitudinal transport properties of ZrTe5 in qualitative agreement with the experimental
measurement. However, the orthogonal magnetotransport experiments invalidate these sce-
narii and point towards a new transport phenomenon resulting from a strong coupling between
phonons and electrons.

8.1 Magnetothermal transport in ZrTe5: motivations and
measurements

In this section, let us motivate the choice to perform the experiments on the Dirac semimetal
ZrTe5.
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Figure 8.3: Three-dimensional morphology, and crystalline structure of ZrTe5: (a)
Crystal structure of ZrTe5 and definition of the crystal axis (b) Sketch of the experimentally
extracted Fermi surface of ZrTe5 along the momentum vectors ka, kb and kc in a, b, and c
directions, respectively (Adapted from [252] and [253]).

ZrTe5 band structure is simple, a single elliptical 3D Fermi surface that comprises less than
1% of the Brillouin zone [103, 252, 253] (see Fig. 8.3(b)). The density of electrons is low, and
the quantum limit can be reached in magnetic fields as low as Bc

QL ≈ 1.2T and Ba
QL ≈ 12T

when B is applied along the c- and a- crystal directions, respectively [252,253]. A measurement
highlighting the presence of such a dimensional reduction from a 3+1 dimensional system to
1+1 dimensional subsystems within this Dirac semimetal is the quasi-quantized Hall effect,
observed recently in ZrTe5 [253].

To support an electron-dominated magnetothermal conductivity, it is essential to compare
the amplitude of electron and phonon magnethothermal oscillations. Two different measure-
ments provide hints pointing towards electron-dominated oscillations. First, below the Bloch-
Grüneisen temperature, θBG, the average phonon wavelength is larger than the Fermi sea’s size.
Therefore, electrons and phonons are expected to interact weakly. Since phonons interact with
the magnetic field only through their interactions with electrons, this implies that the magnetic
field effect on magnetothermal conductivity oscillations is very weak. Since the experiment is
performed at 1.3K, smaller than the determined Bloch-Grüneisen temperature, θBG of 3.1K,
we expect no phonon contribution to the magnetothermal oscillations.

To further quantify the phonon contribution, the experimental group also studied the ultra-
sound propagation velocity as a function of the magnetic field. Since interactions of acoustic
phonons with electrons in Landau bands would lead to a change in the speed of sound, they
measured the change in sound velocity ∆vs to study the role of phonons in the thermal mag-
netotransport experiments. In particular, they measured the change in sound velocity of the
longitudinal mode (propagation along the a-axis, polarization vector along the a-axis) as a
function of a magnetic field B applied along the a-axis (and along the b-axis) on the same
crystal where the heat transport experiments were carried out. As shown in Fig. 8.2, not only
the relative change of the sound velocity with the magnetic field at T = 1.3K is five orders of
magnitude smaller than the relative change of thermal conductivity with the field, but we also
observe a suppression of vs with increasing field, in contrast to the magneto-thermal conductiv-
ity. Hence, the change of the thermal conductivity of phonons with the magnetic field cannot
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account for the change of the total longitudinal magneto-thermal conductivity.

a) b)

Figure 8.4: Magnetothermal measurements in ZrTe5 (a) Variation of the thermal con-
ductivity κxx(B)− κxx(0) for B applied parallel to ∇T at T = 1.3K. At low fields (B < 3T ),
the measurement data (large open dots) is well-described by a quadratic fit (dotted line). At
B > 3T , quantum oscillations appear. A transition to the quantum limit identified by a B-
linear regime is observed for B ≳ 12T . The solid red line denotes the results of the theoretical
model in the presence of backscattering events, described in section 8.2.3. (b) Thermal conduc-
tivity κxx of ZrTe5 as a function of B with respect to the quantum limit BQL at a temperature
of T = 1.3K with ∇T applied along the a-axis of the crystal. The red dots denote the mea-
surement data for B applied in parallel to ∇T , and the blue dots for B applied perpendicular
to ∇T , along the b-axis of the crystal. Both measurements display quantum oscillations for
B > BQL/4, for the same magnetic field value.

Therefore, ZrTe5 appears to be a good candidate to probe for the possible signatures of
gravitational anomalies in magnetothermal conductivity. ZrTe5 samples display strong electri-
cal current jetting (See Fig. 8.1); the experimental group, therefore, carried out steady-state
thermal transport experiments with open electrical contacts. Owing to its low electronic den-
sity, we observe clear thermal quantum oscillations.

Fig. 8.4(a) displays the change of the longitudinal magnetothermal conductivity
∆κxx(B) = κxx(B)−κxx(B = 0) at 1.3K for∇T ∥ B (both applied along the a-axis of the ZrTe5
crystal). We observe a positive magnetothermal conductivity ∆κxx(B) > 0. At low magnetic
field B, in the semiclassical regime, the longitudinal ∆κxx(B) is well described by a quadratic fit
∆κxx(B) ∝ B2. By increasing B, we observe quantum oscillations in ∆κxx(B) and a transition
to a B-linear behavior ∆κxx(B) ∝ B, typical of the quantum limit for B ≳ Ba

QL = 12T . The
quantum limit of Ba

QL = 12T inferred from these thermal transport measurements (see Fig. 8.4)
agrees with the value determined previously in electrical transport experiments [252–254] for a
field applied in the a-direction on these samples.

In the following, to analyze the magnetothermal conductivity data and look for possible ef-
fects of the 1+1 dimensional gravitational anomaly, we adopt the low energy, linear order k ·P
model and the parameters experimentally determined in [253] and presented in Eq. (8.2). Based
on this model, we compute the longitudinal heat current for a parallel gradient of temperature
∇T and magnetic field B, applied along the a-direction. First, we compare the experimen-
tal data to the ballistic results. Then, we resort to a 1+1 dimensional Boltzmann equation
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to determine the correction to the magnetothermal heat current induced by the presence of
back-scattering. While these calculations reproduce and explain several key features of the
experimental data when approaching the quantum limit (for B > 6T ) and below the Bloch-
Grüneisen temperature of θBG = 3.1K, several features such as the orthogonal conductivity
observed in Fig. 8.4(b) cannot be explained by the dimensional reduction. Therefore, in the
last section, we will propose another scenario to explain them.

8.2 Thermal transport along the magnetic field as a 1+1
dimensional thermal transport

In this section, using a strategy similar to the one introduced by H. Nielsen and M. Ninomiya
to describe electronic transport properties induced by the chiral anomaly in [12] described in
section 2.2.3, we analyze the longitudinal magnetothermal measurement. After recalling the
low-energy properties of ZrTe5, deriving the corresponding Landau spectrum, we will compute
the transport properties of a single Landau level to deduce the transport properties of the whole
3+1 dimensional system. This strategy will first be applied within a ballistic approximation
before being refined by considering the effects of backscattering.

8.2.1 From a 3+1 dimensional band structure to 1+1
dimensional Landau levels in ZrTe5

Hamiltonian and coupling to a magnetic field

In order to describe the thermal transport in a ZrTe5 sample based on the above considerations,
we will adopt the low energy, linear order k · P - model also used for instance in [253] and the
values of the parameters determined therein. Let us then consider a massive anisotropic 3+1D
Dirac Hamiltonian such as

HD = mτ 3σ0 + ℏ
[
vakaτ

1σ3 + vbkbτ
1σ1 + vcτ

2σ0kc
]

(8.2)

where the τ and σ are the 2×2 Pauli matrices operating on orbital and spin degree of freedom,
m ≈ 10meV is the mass-gap, and va = 116392m.s−1, vb = 15340m.s−1 and vc = 348875m.s−1

are the Fermi velocity components along the a-, b- and c-direction of the crystal, which cor-
respond to the x, z and y-direction respectively (see Fig. 8.3) A magnetic field will then enter
this Hamiltonian via two different contributions:

• The usual minimal coupling procedure−iℏ∂µ → −iℏ∂µ+eAµ with Aµ the vector potential.

• A "Zeeman" coupling term: HZ = −1
2gµBτ

0σ⃗.B⃗ with µB the Bohr magneton and g the
orbital-independant Landé g-factor.

Landau level spectrum for B ∥ x (along the a-axis)

In order to describe the longitudinal magneto-thermal conductivity experiment, we first deter-
mine the Landau level associated with the model (8.2). Let us consider a situation where the
thermal conduction is measured along the x-axis, which is the axis along which the magnetic
field is applied (B⃗ = Bx̂). Using the translation invariance along the x-axis, the Hamiltonian
can, therefore, be expressed in the symmetric gauge where

Aµ =
(

0, 0, −Bz2 ,
By

2

)
(8.3)
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as a function of px = −iℏ∂x, Πy = −iℏ∂y − eB
2 z and Πz = −iℏ∂z + eB

2 y as

HTot =


m EZ vapx − ivcΠy vbΠz

EZ m vbΠz −vapx − ivcΠy

vapx + ivcΠy vbΠz −m EZ
vbΠz −vapx + ivcΠy EZ −m

 (8.4)

with
EZ = −1

2gµBB . (8.5)

After a 90◦ rotation of the spin axis along the −ŷ vector x→ z and z → −x, this hamiltonian
simplifies to

H̃Tot =


m+ EZ 0 EBd̂

† −vapx
0 m− EZ −vapx −EBd̂

EBd̂ −vapx −m+ EZ 0
−vapx −EBd̂† 0 −m− EZ

 (8.6)

with

EB =
√

2eℏ|B|vbvc , (8.7a)

and

d̂ = 1
EB

[
−iℏ (vb∂z + ivc∂y) + eB

2 (vby − ivcz)
]
, (8.7b)

d̂† = 1
EB

[
−iℏ (vb∂z − ivc∂y) + eB

2 (vby + ivcz)
]
, (8.7c)

such that [
d̂, d̂†

]
= sign (B) . (8.7d)

Using (8.7d), and in analogy with a quantum oscillator, we introduce the ladder operators(
â, â†

)
=
{(
d̂, d̂†

)
if B > 0 ,

(
d̂†, d̂

)
if B < 0

}
(8.8)

such that
[
â, â†

]
= 1. Introducing |n⟩ , n ∈ N, the eigenvectors of N̂ = â†â, such that

â |0⟩ = 0 , and â |n⟩ =
√
n |n− 1⟩ , n ∈ N∗ , (8.9)

we can diagonalize the Hamiltonian (8.6) by considering the subspaces spanned by the states
ensembles 


|0⟩
0
0
0

 ,


0
0
0
|0⟩


 (8.10)

and 

|n⟩
0
0
0

 ,


0
0
0
|n⟩

 ,


0
|n− 1⟩

0
0

 ,


0
0

|n− 1⟩
0


 , n ∈ N∗ (8.11)

if B > 0, and 


0
|0⟩
0
0

 ,


0
0
|0⟩
0


 (8.12)
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and 

|n− 1⟩

0
0
0

 ,


0
0
0

|n− 1⟩

 ,


0
|n⟩
0
0

 ,


0
0
|n⟩
0


 , n ∈ N∗ (8.13)

for B < 0. The corresponding eigenenergies are

Es
0 = s

√
v2
ap

2
x +

(
m− 1

2gµB|B|
)2
, s ∈ {−1, 1} (8.14a)

Es,t
n = s

√
v2
ap

2
x +

(√
m2 + 2ne|B|ℏvbvc −

t

2gµBB
)2

{s, t} ∈ {−1, 1}2 , n ∈ N∗ (8.14b)

with a density of states nB = 1
2πl2B
≡ e|B|

2πℏ (see Fig. 8.5(a)).
The 3+1 dimensional conductivity of this system can then be inferred from a 1+1 dimensional
reduction through

σ(3+1D) = AnB
∑
n,s,t

σ
(1+1D)
n,s,t (8.15)

with A the sample cross-section, and σ
(1+1D)
n,s,t the 1+1 dimensional conductivity of the Landau

level whose energy is given by Es,t
n .
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Figure 8.5: Fan diagram, band dispersion, and anomaly coefficients (a) Fan diagram
in electronvolt for the seven first Landau levels (n ∈ [0, 6]) as a function of the magnetic field
expressed in tesla. (b) Dispersion relation of the first four Landau levels (8.14) for a magnetic
field of B = 20T , corresponding to the dashed blue line in panel (a). The red dashed line in
panels (a) and (b) represents the position of the chemical potential µ0. (c) Anomaly coefficients
Ci(x), given by Eq. (8.26) represented for i = 1, 2, 3.
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8.2.2 Thermal conduction and Landauer formula in a ballistic
sample

Working in a sufficiently high magnetic field, such that the Landau bands deduced in the
previous paragraph (8.14) are well separated (see Fig. 8.5(a)), we will compute the current
originating from a difference of temperature and of chemical potential between right and left
contacts, following a Landauer (ballistic) approach [100, 101,186, 187]. Here and in the follow-
ing, in order to describe the experiment and to simplify the following expressions, we will focus
on the particle current J and the heat current Jh = Jε − µJ where Jε is the energy current.
Note that one could have alternatively decided, as in [16], to describe the pair of currents (J, Jε).

Ballistic conductivity in ZrTe5

To calculate the equilibrium currents and the corresponding conductivities, let us consider a
situation where right movers are at a temperature TL and chemical potential µL while left
movers are respectively at a temperature TR and a chemical potential µR (see Fig. 8.6). Let us
then consider a state with energy density ε(k) and velocity v (k) = 1

ℏ
∂ε
∂k

the temperature and
chemical potential of these fermions are then given by (see Fig. 8.6)

T (k) = {TL , if v (k) > 0;TR , if v (k) < 0} (8.16a)
µ (k) = {µL , if v (k) > 0;µR , if v (k) < 0} (8.16b)

Metallic sample

Left
reservoir

Right
reservoir

Figure 8.6: Chiral notations Right-movers, defined by their positive velocity (v > 0), come
from the left reservoir and possess a chemical potential µL and a temperature TL. Similarly, left
movers, defined by their negative velocity (v < 0), come from the right reservoir and possess a
chemical potential µR and a temperature TR.

The energy and particle current density for a single channel are defined as

J = D
∫ dk

2πv (k) 1
1 + exp

(
ε(k)−µ(k)
kBT (k)

) (8.17a)

Jε = D
∫ dk

2πv (k) ε (k)
1 + exp

(
ε(k)−µ(k)
kBT (k)

) (8.17b)

127



Chapter 8. Magnetothermal transport in ZrTe5

with D the state degeneracy. For the Landau level energies (8.14), the total currents are given
by

J = JR − JL , (8.18a)
Jε = Jε,R − Jε,L , (8.18b)

with the chiral components

JL/R = e|B|kBTR/L
4π2ℏ2

 ∑
s=±1

f s0

(
Es

0 (0)− µR/L
kBTR/L

)
+

+∞∑
n=1

∑
s,t=±1

f s0

(
Est
n (0)− µR/L
kBTR/L

) , (8.19a)

Jε,L/R =
e|B|k2

BT
2
R/L

4π2ℏ2

 ∑
s=±1

f s1

(
Es

0 (0)− µR/L
kBTR/L

)
+

+∞∑
n=1

∑
s,t=±1

f s1

(
Est
n (0)− µR/L
kBTR/L

) (8.19b)

+ µR/LJR/L ,

with,

f+1
i (x) =

∫ +∞

x
dy yi

1 + ey
, (8.20a)

f−1
i (x) =

∫ x

−∞
dy yi

1 + ey
. (8.20b)

The heat current density is then

Jh = JRh − JLh = Jε − µ̄J , (8.21)

with µ̄ = µR+µL

2 , or equivalently

Jh,L/R =
e|B|k2

BT
2
R/L

4π2ℏ2

 ∑
s=±1

f s1

(
Es

0 (0)− µR/L
kBTR/L

)
+

+∞∑
n=1

∑
s,t=±1

f s1

(
Est
n (0)− µR/L
kBTR/L

) (8.22)

± µR − µL
2 JR/L

Under the assumption that the temperature and chemical potential differences are small

TR/L = T0 ∓
1
2∆T , with ∆T

T0
≪ 1 (8.23a)

µR/L = µ0 ∓
1
2∆µ , with ∆µ

µ0
≪ 1 (8.23b)

these equations simplify at linear order in ∆T/T0 and ∆µ/µ0 to(
J
Jh

kBT0

)
= eB

4π2ℏ2 .C
(

∆µ
kB∆T

)
, (8.24a)

with

C =
(
C0 C1
C1 C2

)
, (8.24b)

where the Ci are functions of µ0, B and T0,

Ci =
∑
s=±1

Cs
i

(
Es

0 (0)− µ0

kBT0

)
+

+∞∑
n=1

∑
s,t=±1

Cs
i

(
Est
n (0)− µ0

kBT0

)
, (8.25)
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with the functions

C+1
i (x) =

∫ +∞

x

yidy
(1 + ey) (1 + e−y) , (8.26a)

C−1
i (x) =

∫ x

−∞

yidy
(1 + ey) (1 + e−y) , (8.26b)

represented in Fig. 8.5(c) for i = 1, 2, 3. The longitudinal thermal conductivity is then

κxx = A l
eBk2

BT0

4π2ℏ2

[
C2 −

C2
1
C0

]
, (8.27)

with A the cross-section of the material and l its length. Similarly, the Lorentz number L =
κ/σT reads

L =
(
kB
e

)2 [C2

C0
− C

2
1
C2

0

]
. (8.28)

Following (8.24) and (8.25), we see that each coefficient Ci can be decomposed as a sum of dif-
ferent terms, each encoding the contribution of a single Landau band1. Since, in the relativistic
limit, T0 → 0, the coefficients described by (8.26a) and (8.26b) converge to the coefficients
appearing in particle physics in front of the axial and the gravitational anomaly, also used in
condensed matter physics such as in [16],

C±1
0 (x) →

x→∓∞
1 , (8.29a)

C±1
1 (x) →

x→∓∞
0 , (8.29b)

C±1
2 (x) →

x→∓∞

π2

3 , (8.29c)

the function C±1
i are sometimes referred to as the "anomaly coefficients" [16, 119]. In particu-

lar, C0(x) is the coefficient of the axial anomaly, while C2 is the coefficient of the gravitational
anomaly. However, as observed in [253], close to the band extremum, these coefficients can
differ from the values recalled in Eq. (8.29) (see exemplarily Fig. 8.5(c) around x = 0).

Magnetic oscillations and Lorentz factor

Plotting the thermal conductivity κxx for the parameter measured in [253], and for different
temperatures (see Fig. 8.7(a)), several things can be noted. First, we observe magnetic oscil-
lations, becoming sharper as the temperature is lowered. These oscillations occur when one
Landau level empties, losing one canal of conduction, as expected from the expression of the
Ci (8.25). At a large magnetic field, we observe that the oscillations stop, and the conductivity
increases linearly: this behavior characterizes the so-called quantum limit.

It is also interesting to observe the corresponding Lorentz ratio in Fig. 8.7(c). Outside of
the band crossings, the Lorentz ratio equals its asymptotic value L0 = π2

3
k2

B

e2 . However, a vio-
lation of the Lorentz ratio occurs at each crossing, where the Wiedemann-Franz law ceases to
hold. We note that when the temperature is lowered, this violation decreases in amplitude and
becomes more and more localized around the level crossing.

1Note, that the heat conductivity cannot be decomposed as the sum of the heat conductivity for each Landau
level due to the coefficient C2

1/C0
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Chapter 8. Magnetothermal transport in ZrTe5

This explanation of the 3+1 dimensional thermal magnetoconductivity of ZrTe5, based
on the 1+1 dimensional conductivity of the Landau level in a magnetic field, reproduces well
several key features of the experimental measure represented in Fig. 8.4(a), such as the magnetic
oscillations and their position. In the following paragraph, we will consider the correction
induced by backscattering in this description.
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Figure 8.7: Theoretical evaluation of the magnetothermal conductivity and the
Lorentz ratio in ZrTe5 (a) and (c) Numerical evaluation of the longitudinal magnetother-
mal conductivity κxx and of the Lorentz ratio L in ZrTe5 based on the ballistic evaluation of
Eq. (8.27) and (8.28) respectively, for several temperatures. (b) and (d) provides the same infor-
mation in the case of the computation led in the presence of backscattering given by Eq. (8.41)
and (8.44). The parameters used for the numerical evaluations correspond to the parameters
determined in [253].

8.2.3 Scattering corrections to the magnetothermal
conductivity properties

We now turn to a 1+1 dimensional Boltzmann equation approach. As described above, a dif-
ference between the temperature and the chemical potential of left and right movers can create
particle and heat currents in a sample subjected to a magnetic field. In this section, our objective
is to complement this study by studying how backscattering effects modify the magnetothermal
property discussed in section 8.2.2. To do so, we will see, resort to a 1+1 dimensional Boltzmann
somewhat similar to the one used to determine the negative magnetoresisticity in section 2.2.3,
but already considered in the study of magnetothermal conductivity in [16] and [119].

Thermal conductivity from a 1+1 dimensional Boltzmann equation approach

Let us suppose that the intra-node scattering is much stronger than the inter-node scatter-
ing. Under this assumption, one can suppose that all right and left movers have the same
temperature and chemical potential TL and µL or TR and µR, respectively. For the Landau
level of quantum numbers (n, s, t, χ) (χ = R/L; s, t = ±1), let us call (f0)stn its equilibrium
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8.2. Thermal transport along the magnetic field as a 1+1 dimensional thermal transport

distribution function (in the absence of field/temperature gradient, for fixed temperature T0
and chemical potential µ0), independent of the chirality χ, and fχstn the non-equilibrium one.
Under the assumption that the inter-node scattering time τinter is a constant, we can relate
these distributions, in a Boltzmann equation approach as

∂fχstn

∂t
+ ṙ

∂fχstn

∂r
+ k̇

∂fχstn

∂k
= fχstn − (f0)stn

τinter
. (8.30)

Inserting the Hamilton equations of motion2 for the band labeled (n, s, t)ṙ = vstn = 1
ℏ
∂Est

n

∂k

ℏk̇ = −eE
(8.31)

in the Boltzmann equation (8.30) with E the electric field, we obtain

∂fχstn

∂t
+ 1

ℏ
∂Est

n

∂k

∂fχstn

∂r
− eE

ℏ
∂fχstn

∂k
= fχstn − (f0)stn

τinter
(8.32)

Considering small electric field and thermal gradient, one can expect the resulting chiral pa-
rameters δµR/L = ± δµ

2 and δTR/L = ± δT
2 to be small compared to their average value (µ0 and

T0). Under this assumption, one can write a perturbative expansion in (δµ, δT ) for fχstn ,

f cstn ≈ (f0)stn + δµχ
∂ (f0)stn
∂µ

+ δTχ
∂ (f0)stn
∂T

≈ (f0)stn +
(
δµχ + kBδTχ

Est
n − µ0

kBT0

)(
−∂ (f0)stn

∂Est
n

)
,

(8.33)

and a perturbative expansion for its gradient as

∂f cstn

∂r
= ∇µ∂ (f0)stn

∂µ
+∇T ∂ (f0)stn

∂T

≈
(
∇µ+ kB∇T

Est
n − µ0

kBT0

)(
−∂ (f0)stn

∂Est
n

)
.

(8.34)

In the quasi-static limit τinter ≪ t,∂fcst
n

∂t
≈ 0 , we can then combine (8.32), (8.33) and (8.34) as[

(∇µ+ eE) + kB∇T
Est
n − µ0

kBT0

]
1
ℏ
∂Est

n

∂k

(
−∂ (f0)stn

∂Est
n

)
=

1
τinter

[
δµc + kBδTc

Est
n − µ0

kBT0

](
−∂ (f0)stn

∂Est
n

)
.

Abandoning the suffix "inter" for τinter and integrating

• (8.35) with respect to k on [0,+∞[ (right chirality sector), summing on the different
bands, we finally get

kB∇TC1 + (∇µ+ eE) C0 = ℏ
2τkBT0

(δµD0 + kBδTD1) , (8.35)

• Est
n −µ0
kBT0

×(8.35) with respect to k on [0,+∞[ (right chirality sector), summing on the dif-
ferent bands we finally get

kB∇TC2 + (∇µ+ eE) C1 = ℏ
2τkBT0

(δµD1 + kBδTD2) , (8.36)
2In 1+1 dimension, Eq. (8.31) are also referred to as the semiclassical equations of motion.
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where the anomaly coefficients Ci are defined in (8.25) while

Di =
∑
s=±1
D0s
i +

+∞∑
n=1

∑
s,t=±1

Dnsti , (8.37a)

Dnsti =
∫ +∞

0
dk
(
Est
n (ℏk)− µ0

kBT0

)i 1
2
(
1 + cosh

(
Est

n (ℏk)−µ0
kBT0

)) . (8.37b)

The chiral differences can then be inferred from the applied fields as(
δµ
kBδT

)
= 2kBT0

ℏ
τD−1.C

(
eE +∇µ
kB∇T

)
(8.38)

where C is defined in (8.24b) and,

D =
(
D0 D1
D1 D2

)
. (8.39)

Subsequently, we can calculate the thermal conductivity in ZrTe5. According to (8.38) and
(8.24a), the total current density in the sample can be expressed in linear response theory as(

J
1

kBT0
Jh

)
= τ

eBkBT0

2π2ℏ3 C.D
−1.C

(
eE +∇µ
kB∇T

)
. (8.40)

The linear magneto-thermal conductivity is then given by

κxx = τ
eBk3

BT
2
0

2π2ℏ3
(C2

1 − C0C2)2

C2
1D0 − 2C0C1D1 + C2

0D2
(8.41)

In practice, however, away from the points where the chemical potential reaches the bottom of
a level, C1 ≈ 0 and D1 ≪ D0,D2. κxx is then well approximated in such a regime by

κxx = τ
eBk3

BT
2
0

2π2ℏ3
C2

2
D2

. (8.42)

Similarly, the linear magneto-electric conductivity is defined by

σxx = τ
e3BkBT0

2π2ℏ3
C2

0D2 − 2C0C1D1 + C2
1D0

D0D2 −D2
1

≈ τ
e3BkBT0

2π2ℏ3
C2

0
D0

, (8.43)

implying a Lorentz factor of the form

L = k2
B

e2
(C2

1 − C0C2)2 (D0D2 −D2
1)

(C2
0D2 − 2C0C1D1 + C2

1D0)2 ≈
k2
B

e2
D0

D2

(C2

C0

)2
. (8.44)

Discussion

In Fig. 8.7(b), we note that in the scattering-based approach, we recover, as in the ballistic case,
oscillations related to the variation of the number of open conduction channels. We also recover,
at high magnetic fields, a linear increase of the conductivity characteristic of the quantum limit.
We still observe minor discrepancies with the experimental data, such as the non-zero slope of
the magnetothermal conductivity observed at low magnetic fields. A comparison of the theo-
retical predictions evaluated for a mean free path of lmfp ≈ 4 × 10−5m with the experimental
data presents a qualitative agreement (see Fig. 8.4(a) ).
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Therefore, it seems that longitudinal magnetotransport properties of ZrTe5 can be well ex-
plained within a 1+1 dimensional approach applied to the Landau level. However, subsequent
measurement in ZrTe5 indicates the presence of clean magnetothermal oscillations in the magne-
tothermal conductivity orthogonal to the magnetic field (see Fig. 8.4(b) ). Such measurements
still correspond to a linear response relation of the form J⃗h = κ∇⃗T . However, we are now
considering a situation where the magnetic field is orthogonal to the current direction (along
the b-axis). Such measurements question the validity of our study. Indeed, they do not agree
with the transport mechanism presented above since these mechanisms implied a transport
along the Landau levels in the direction of the magnetic field. In the following, we will describe
other transport mechanisms that capture these more recent experimental results.

8.3 From orthogonal energy transport to a new
transport phase

While in a strong magnetic field limit, an approach based on independent 1+1 dimensional
Landau level provides theoretical prediction in a qualitative agreement with the longitudinal
magnetothermal conductivity measurement (see Fig. 8.4(a)), the presence of magnetic oscilla-
tions of comparable amplitude when the magnetic field is rotated by 90 degrees and applied
along the b-axis question this scenario. Indeed, in the presence of a magnetic field along the
b-axis, the Landau levels along the b-axis are orthogonal to the temperature gradient. As a con-
sequence, they cannot account for the magnetothermal conductivity oscillation along the a-axis.

Therefore, the purpose of this section is to propose an alternative mechanism to describe the
magnetothermal transport data. We will see that despite the sound attenuation measurements,
an explanation of this puzzle might come from the phonon that we neglected until now, which,
by coupling strongly to the electrons from the Landau levels, might display oscillations with
increasing magnetic field.

8.3.1 Evidence for a phonon-mediated transport
After the experimental observation of magnetothermal conductivity oscillation for a magnetic
field applied in a direction orthogonal to the transport direction, we considered several scenarios
allowing such oscillations within the Landau level picture. In the presence of a magnetic field
along the b-axis, in a finite sample, and similarly to the 2+1 dimensional Hall effect, each oc-
cupied Landau level gives rise to an edge state propagating along the edges of the sample [255].
Therefore, we first tried to analyze the contribution of such edge states to the magnetothermal
oscillations. In a second trial, we considered the possibility for such oscillation to arise from a
transport issued from a scattering-assisted coupling between the Landau levels. However, none
of these trials were conclusive, notably due to a failure of these models to capture the proper
scaling of the transport properties with the magnetic field. We can then wonder what other
scenario might be able to account for the experimental data.

Due to the dominance of the lattice degrees of freedom in thermal transport at zero field,
highlighted by the comparison of the zero field thermal conductivity in Fig. 8.8, it is tempting
to assume that the huge changes in the amplitude of thermal conductivity in magnetic fields
originate from changes of phonon velocity or attenuation due to the interactions with the Fermi
liquid. However, and as discussed in section 8.1, further measurements displayed in Fig. 8.2
reveal that changes of attenuation and speed of ultrasound due to magnetoacoustic quantum
oscillations do not exceed 1% and thus, at first glance cannot be responsible for the huge field-
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a)

b)

c)

Figure 8.8: Thermal and electrical transport in ZrTe5. a) Electrical resistance of ZrTe5
measured with a 10 µA current passed along the crystallographic a-axis. b)Thermal conduc-
tivity of ZrTe5 measured with a thermal gradient (∆T < 0.1T0)applied along the a-axis. The
continuous red line represents measurements where the temperature was slowly changed and the
gradient continuously recorded. Full circles and triangles represent measurements performed
in two distinct cooldowns with temperature being stabilized for several minutes before taking
the measurements. The solid green line represents an estimate of thermal conductivity due to
the electrons obtained from the Widemann-Franz law. c) Comparison of thermal conductiv-
ity (blue points) and specific heat data (red points) and the expected T 3 dependence (dashed
lines). Black hairline acts as a guide to the eye for the data. The Inset displays a microscope
photograph of one of the custom-built thermal conductivity setups. Cernox thermometers are
attached to the sample using a 200um silver wire. In this setup, used in temperatures T<1K,
superconducting TiN wires were used as electrical leads to the thermometers and heater.

induced changes of thermal conductivity.

However, a careful study of the temperature dependence of both the zero field thermal con-
ductivity and the amplitude of the last magnetothermal oscillation (see Fig. 8.9(b) ) reveals
that both quantities decay as T 3 with cooling. This is in contrast with the canonical tempera-
ture dependence of quantum oscillation due to temperature smearing of the Landau levels and
described by the so-called Lifshitz-Kosevitsh formula [247]

∆χ = λ

sinh λ with, λ ∝ T

B
m∗ , (8.45)

with the oscillation amplitude ∆χ saturating at low temperatures. The suppression of the oscil-
lation amplitude with the same power law as zero field thermal conductivity strongly suggests
that the oscillations are indeed related to the phonon subsystem.
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a) b)

Figure 8.9: Temperature dependance of the magnetothremal quantum oscillation
amplitude in ZrTe5. a) Example traces of magnetothermal conductivity divided by T 3 for
clarity of presentation. b) Comparison of the temperature dependence of zero field thermal
conductivity with the temperature dependence of the amplitude of the last oscillation. (red).

This apparent contradiction arises because, at first glance, sound attenuation and thermal
conductivity are closely related quantities, both describing energy transport. Thermal conduc-
tivity describes the transfer of energy due to a temperature gradient and sound attenuation, the
efficiency with which a monochromatic, collimated mechanical wave travels across the crystal.
Since attenuation measurements only probe the phononic subsystem, it could be expected that
strong quantum oscillations appearing in thermal conductivity due to phonon attenuation by
electrons should manifest as a substantial variation of the echo amplitude. Consequently, if
quantum oscillations in attenuation are weak, one is directly led to the conclusion that the
quantum oscillations observed in thermal conductivity have to be a consequence of an anoma-
lously large contribution of charge carriers to thermal transport.

The difficulty with such an argument lies in the fact that thermal conductivity and sound
attenuation measured in typical solid-state experiments probe very different energy scales. In
ultrasonic measurements, one typically probes the phonons with frequencies f ≲ 1GHz, whereas
thermal conductivity probes thermal phonons whose frequencies, even at 200mK, exceed 25GHz.
This distinction becomes crucial in the case of phonon attenuation by the Fermi liquid. At low
phonon frequencies, sound attenuation is proportional to both ω2 and the electron fluid’s vis-
cosity. However, at high frequencies, when the phonon wavelength becomes smaller than the
electron mean free path, one enters the so-called quantum limit where attenuation is propor-
tional to ω. In the case of ZrTe5, the momentum relaxing electron mean free path is of the order
of 1µm, with the sound wavelength at 314MHz being around 10µm, placing our measurements
in the hydrodynamic limit. In contrast, the wavelength of thermal phonons is of the order of
10nm. Thus thermal conductivity is expected to probe a very different phonon attenuation
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regime, with attenuation due to the electrons more than two orders of magnitude stronger than
that probed in the ultrasound experiments, resolving the apparent contradiction.

Since the wavelength of the acoustic phonons is large compared to the size of the Fermi
sea, one expects an isotropic thermal conductivity of phonon origins. The oscillations of the
thermal conductivity will then be consequences of the density of electrons occupying the Fermi
sea, while the dependence of the magnetic field defining the ultraquantum limits comes from
the strongly anisotropic Fermi surface.

8.3.2 Discussion
In this chapter, we discussed an experimental collaboration with the Max Planck Institute
in Dresden. The original objective of this collaboration was to identify possible signatures of
gravitational anomalies in the magnetothermal conductivity of ZrTe5. The weak variations
of the sound velocity as a function of the magnetic field originally led us to the conclusion
that the magnetic oscillation is of electronic origin. Therefore, in section 8.2, we analyzed
the longitudinal variations of the magnetothermal conductivity based on the physics of the
electronic Landau levels. However, even though these analyses showed a qualitative agreement
with the experimental data (see Fig. 8.4(a)), the observation of oscillations in the presence of
a magnetic field orthogonal to the direction of transport led us to reconsider these analyses
since they do not account for such oscillations. An analysis of the temperature dependence of
the oscillation amplitude unveiled a new heat transport phenomenon resulting from a strong
coupling between phonons and electrons and similar to the one described by K. Behnia et al.
in [256]. The discussion of ZrTe5 magnetothermal conductivity in this chapter indicates that
observing the signature of gravitational anomalies in semimetals appears to be trickier than
first expected since the study of thermal transport cannot be directly done by applying the
Luttinger trick but instead requires considering a bi-fluid model, studying the strongly coupled
electron-phonon global system.
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Conclusion & future directions

Usually, curved spacetime physics and condensed matter physics are two very distinct domains
of physics. Indeed, they deal with physical properties at wildly different length scales. Despite
this apparent difference in size, in the middle of the XXth century, scientists realized that quan-
tum field theory proposes a bridge between these two domains of physics. Such a relationship
has a two-sided interest. On the one hand, this analogy between curved spacetime physics
and condensed matter can be used to design tabletop experiments in quantum fluids probing
exotic phenomena such as Hawking radiation, whose cosmological observation surpasses our
present observational capabilities: this is the realm of analog gravity. On the other hand, this
analogy allowed J. Luttinger to relate the response of a system to a gradient of temperature to
the response of the same system to a gradient of gravitational potential. These ideas greatly
simplified the computation of thermal transport properties of materials in condensed matter
physics.

Despite their similitude in origin, as fields between condensed matter and curved spacetime
physics, analog gravity, and thermal transport measurement remain very distinct communities.
The main reason for this distance between these two communities is the fact that they consider
distinct objects of study, either quantum fluids in analog gravity or solids in thermal response
theory. We have shown in this thesis how to relate these two communities, resorting to the
notion of anomalous quantum fluctuations. Such fluctuations, captured at the level of quantum
field theory by the notion of gravitational anomalies, are indeed a fundamental notion in both
analog gravity and thermal transport theory.

In the first part of this thesis, we decided to investigate the effect of the anomalous fluctu-
ations induced in 1+1 dimensional systems by non-zero spacetime curvature. We first identi-
fied the physical quantities whose conservation equations are affected by the presence of non-
vanishing spacetime curvature. The anomalous non-conservation equations for the momentum-
energy transport of the theory ultimately captured the effects of these fluctuations. In 1+1
dimensions, the number of constraints provided by the non-conservation equation is enough
to fix the value of the momentum-energy tensor up to a constant. The components of the
momentum-energy tensor, together with the Stefan-Boltzmann law, then allowed us to deter-
mine the equilibrium temperature profile in curved spacetime. By comparing this derivation in
the presence of gravitational anomalies to the historical derivation by R. Tolman and P. Ehren-
fest, we identified two energy scales ε(1)

q and ε(2)
q controlling the amplitude of the correction in-

duced by the quantum fluctuations. While ε(1)
q denotes a local bias between the energy and the

pressure, ε(2)
q induces a local modification of the 0 point energy, which induces a modification of

the local equilibrium temperature that we denote “anomalous Tolman-Ehrenfest temperature.”
Since Luttinger’s trick can be interpreted as a consequence of the classical Tolman-Ehrenfest
temperature, we then analyzed the modification induced by the quantum fluctuation on Lut-

137



Chapter 8. Magnetothermal transport in ZrTe5

tinger’s equivalence between a temperature gradient and a gradient of gravitational potential.
We analyzed this relationship both using the non-conservation equations and a perturbative
analysis, which revealed the many-body physics nature of the correction.

We then build on this definition of the anomalous Tolman-Ehrenfest temperature to gen-
eralize our approach to several physical systems. We reconsidered the example of black holes
and showed how the two gravitational anomalies, the trace and the Einstein anomaly, can be
used together to redefine the notion of black hole temperature and to determine the value of
the Hawking temperature. Then, we generalized these ideas of anomalous Tolman-Ehrenfest
temperature to strongly out-of-equilibrium scenarios, considering the physics of temperature
quenches and of Floquet thermalization. In the subsequent chapter 5 and 6, we analyzed other
platforms on which such anomalies could play a role. We proved that it is possible, within
quantum fluids, to realize an analog of the metric used to describe the expansion of our uni-
verse and indicate the expected signature of the anomalous fluctuation. Then, we proved that
it is possible and essential in some experiments to consider spacetime beyond general relativity,
such as a bimetric theory. We considered several examples of physical systems for which such
a bimetric theory is essential and computed in each one of them the correction induced by the
quantum fluctuations.

We finally described a collaboration with an experimental group dedicated to the study of
the magnetothermal response coefficients in the Dirac semimetal ZrTe5. After motivating the
choice of this semimetal to analyze the electron contribution to thermal transport, we com-
pared the experimental results with analytical computations realized by considering either a
ballistic or a diffusive, electron-dominated thermal transport within a magnetic dimensional
reduction strategy. However, the experimental observation of large thermal conductivity oscil-
lations when the magnetic is orthogonal to the direction of propagation led us to reconsider
the contribution of the phonons. We finally gave arguments in favor of a phonon origins of the
thermal conductivity oscillations originating from a strong coupling between phonon and elec-
trons overlooked until then. This experimental collaboration indicates that in the description
of thermal conductivity, it is essential to consider a strongly interacting electron-phonon soup.

To go beyond this work, dedicated to the study of thermal fluctuations engendered by a
non-vanishing spacetime curvature and their effects in analog gravity and thermal transport, a
first strategy would be to consider other geometrical effects beyond general relativity, such as
torsion. One of the main postulates of Einstein’s general relativity is that the affine connection
is symmetric, implying that the spacetime torsion vanishes. In condensed matter, however,
torsion arises naturally at the level of the topological defects known as diclinaisons [257–259]
(see appendix A). Moreover, it has been shown by H. Nieh and M. Yan [260, 261] that in the
presence of a non-zero torsion tensor, quantum fluctuations induce non-zero contributions to the
non-conservation equation in 1+1 dimensional systems. For example, the Nieh-Yan anomaly
captures a non-conservation of the chiral current jµA in the presence of a non-vanishing torsion
tensor T µνρ expressed as

∂µ
(√
−gjµA

)
= F4 gµνϵ

ρσαβT µρσT
ν
αβ

with F a nonuniversal constant, similar terms correct the trace anomaly and the momentum-
energy tensor conservation expression. Therefore, considering the physics of the quantum fluc-
tuations in a system with a non-vanishing torsion tensor appears as a natural extension of this
thesis. Such an extension is interesting for condensed matter physics, since such anomalies
could give rise to new effects in linear response theory, but also for quantum field theory in
curved spacetimes since such condensed matter systems provide an interesting platform to ex-

138



8.3. From orthogonal energy transport to a new transport phase

plore the physics of quantum fields in spacetimes beyond Einstein relativity.

In the future, it would also be interesting to further study the properties of anomalous
quantum fluctuations in the presence of non-trivial geometry. First, note that both the Casimir
effect and the quantum energy scale ε(2)

q both redefine the notion of zero point energy locally.
Therefore, it is natural to wonder what are the similitudes and differences between these two
geometrical effects. Another reason to reconsider the notion of anomalous quantum fluctuation
would be to try to solve the puzzle of dimensionality. In chapter 2 of this thesis, we have
seen that for symmetry reasons, gravitational anomalies only exist for certain dimensions of
spacetime. For example, Einstein anomalies can only appear in dimension D + 1 = 4k + 2,
gravitational trace anomalies in any even dimensions, and mixed axial gravitational anomalies
in dimensions D + 1 = 4k. Two questions relevant in condensed matter are thus: First, what
are the corrections to the momentum-energy tensor in higher dimensions such as D = 3 + 1,
and what are the signatures of these corrections on thermodynamic quantities? Second, as
we have seen, in odd spacetime dimensions, there exists no gravitational anomalies. We can,
therefore, wonder what properties of the quantum fluctuations lead to such a cancellation and
whether, despite the absence of gravitational anomalies, it is possible to observe any signature
of the spacetime curvature on the quantum fluctuations in odd dimensions.

Another outlook of this work would be to explore the manifestations of anomalous quantum
fluctuations beyond field theory considerations. In this work, most of our computations were
done within the formalism of field theory and low-energy physics. However, such a formalism
is solely an approximation. In condensed matter physics, the infrared and ultraviolet cut-offs
are not free parameters but rather dictated by the underlying energy bands. It would thus be
interesting to study the consequences of analog curved spacetime and anomalous fluctuations in
real materials. A strategy could be, for example, to consider a numerical simulation of thermal
transport or of the out-of-equilibrium processes described in chapter 4. In the same direction,
in this work, we mainly considered the effects of anomalous quantum fluctuations on some vac-
uum averages. However, in most of the analog gravity experiments, the measured quantities are
not directly the vacuum properties. Instead, the experiments probe the properties of space and
time-resolved wave packets. Therefore, a natural extension of this work would be to analyze the
physics of such wave packets to determine if such experiments are sensitive to the underlying
vacuum quantum fluctuation, or in other words, if analog gravity experiments of the sort can
probe the physics of gravitational anomalies.

Finally, from an experimental point of view, studying the thermal propagation in the pi-
cosecond regime would be interesting. As we have seen in chapter 8, in a steady-states thermal
transport experiment, it is difficult to isolate the electronic from the phononic contributions.
Since anomalous quantum fluctuations mostly affect the electrons, identifying the effect of these
fluctuations on thermal transport is difficult. However, as we have seen in chapter 4, the effects
of these fluctuations also appear in the out-of-equilibrium response of a system following a
thermal quench. In pump-probe experiments [262–266], an intense femtosecond light pulse is
shone on a metallic sample. Due to the difference in mass between electrons and phonons, it is
reasonable to assume that only the electron gas is heated. If the electron relaxation rate τe is
short compared to the electron-phonon scattering time τep, then it is reasonable to describe the
dynamic of the electron gas on a time-scale τ ∈ [τe, τep] as the dynamics of heat waves following
a temperature quench. Picosecond pump-probe experiments able to heat a metallic sample and
study the subsequent energy distribution thus seem to provide a new experimental platform in
which it would be interesting to look for signatures of the peculiar quantum fluctuations.
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Appendix A
Introduction to curved spacetimes and their
coupling with spinor fields

The concept of field theory in curved spacetimes is at the heart of this thesis. Although
a funding hypothesis of general relativity is the absence of torsion, it appears in condensed
matter physics that this hypothesis is sometimes too restrictive since torsion can be induced in
such systems by a crystalline topological defect such as screw-dislocations [257–259, 267] (See
Fig. A.1). In this section, we will review some notions of differential geometry useful for this
thesis, both in the presence and absence of torsion, before studying how these geometric fields
couple to particles.

A.1 Introduction to Riemann-Cartan spaces
One of the postulates of Einstein’s general relativity is that the affine connection is symmetric,
implying that there is no torsion. In 1922, E. Cartan considered the extension to asymmetric
affine connections such that curvature and torsion are non-zero [268]. The associated spaces
are called Riemann-Cartan spaces. Even though it is possible to study the properties of these
spaces using the metric as the fundamental object, as one usually does in general relativity, for
our purposes, it is worth introducing the tetrad(or viebein) formalism1.

Tetrads, cotetrads, and metrics

On a flat manifold, finding a general basis of coordinates is possible such that the metric is
diagonal. On curved spacetimes, this is no longer possible. Nevertheless, we can define a local
basis for which the metric is diagonal at each point of the manifold. One then rewrites the
metric as

gµν = eaµηabe
b
ν , (A.1)

where η is the Minkowski metric whose signature in D + 1 dimension is equal to D − 1. Or in
other words

ηµν =
(

1 0
0 −1D

)
. (A.2)

The transformation matrices eaµ are known as co-tetrads, and their inverse eνb as tetrads, such
that

eaµe
ν
a = δνµ,

eaµe
µ
b = δab ,

(A.3)

1For a detailed discussion of this formalism in general relativity (in the absence of torsion), see [269]
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Figure A.1: Dislocation and torsion on a lattice Upper: Edge dislocation in a square
two-dimensional lattice. The Burgers vector is parallel to the displacement. Lower: Screw
dislocation in a three-dimensional cubic lattice. The Burgers vector is perpendicular to the
displacement, where the Burgers’ vector bi corresponding to a surface S is defined with respect
to the torsion T ρµν by bi =

∫∫
S dxµ ∧ dxν T iµν (Taken from [257])

where the Einstein notations (summation on repeated indices) are assumed.
Here and in the following, Greek indices will refer to the spacetime, while the Latin ones will
refer to the tangent space. The Greek indices will be lowered or raised with the metric g and
the Latin one with the Minkowski metric η.

Covariant derivatives, affine connections, and spin connections

Besides the tetrad field, which defines the local coordinate systems, we introduce a Lorentz or
spin connection ωabµ which encodes the parallel transport between the tangent spaces and an
affine connection described by the Christoffel symbols Γλµν , such that the parallel transport of
both tangent space vector (V j) and “real” tangent space vector (V µ) are defined as

Ṽ j(x+ ∆x) = V j(x) + ∆xρωjiρV i(x),
Ṽ µ(x+ ∆x) = V µ(x) + ∆xρΓµνρV ν(x).

(A.4)

These definitions allow one to define the covariant derivatives

∇µX
a
ν = ∂µX

a
ν + ωabµX

b
ν − ΓλνµXa

λ ,

∇µX
ν
a = ∂µX

ν
a − ωbaµXν

b + ΓνλµXλ
a .

(A.5)

The first constraint we impose is that the magnitude of vectors is preserved under parallel
transport

∇µe
µ
a = 0, and ∇µηab = 0 , (A.6)

a condition also known as metricity. These conditions imply a relationship between spin and
affine connections

Γµρν = eµa
(
∂νe

a
ρ + ωabνe

b
ρ

)
, (A.7)
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and the antisymmetry of ωabµ with respect to the tangent space indices:

ωabµ + ωbaµ = 0 . (A.8)

At this level, in general relativity, one imposes that the affine connexion is symmetric (Γµνρ =
Γµρν). Together with equation (A.6), this entirely fixes the value of the affine connection, known

as the Levi-Civita connection
{
µ
νρ

}
, defined as a function of the metric as

{
µ
νρ

}
= 1

2g
µλ (∂νgλρ + ∂ρgνλ − ∂λgνρ) . (A.9)

which can equally be expressed in terms of the tetrad itself using equation (A.1) (see [269]).
In Riemann-Cartan spacetime, since we relaxed the symmetry condition of the affine con-

nection, (A.6) is no longer sufficient to fix the affine connection’s value entirely. They, therefore,
imply that, in this theory, there are two independent tensors. Generally, using the tetrad for-
malism, one chooses to consider that these two independent quantities are ωabµ and eµa but we
could, for example, also choose Γµνρ and eµa .

Torsion and curvature

From these definitions, it is then possible to define a notion of torsion and curvature.
The spacetime curvature is defined as

Rµ
νρσ = ∂ρΓµσν − ∂σΓµρν + ΓµρλΓλσν − ΓµσλΓλρν , (A.10)

or expressed in terms of the tetrad and the spinor connection,

Rρ
σµν = eρa e

b
σRa

bµν

= eρae
b
σ

[
ωacµω

c
bν − ωacνωcbµ + ∂µω

a
bν − ∂νωabµ

]
.

(A.11)

In Riemann-Cartan theory, and in contrast with general relativity, the affine connection Γλµν is
not always symmetric under the exchange µ↔ ν. One defines the torsion tensor as

T λµν = Γλµν − Γλνµ , (A.12)

or expressed in terms of the tetrad and the spinor connection

T ρµν = eρa T
a
µν

= eρa
[
∂νe

a
µ − ∂µeaν + ebµω

a
bν − ebνωabµ

]
.

(A.13)

These concepts of torsion and curvature have an intuitive geometrical interpretation through
parallel transport(see Fig. A.2). The torsion tensor describes the difference between the trans-
port along u of v and the one along v of u (in contrast to the flat and torsionless space case,
the parallelogram does not always close). The curvature describes the angle difference between
a vector and its image after a parallel transport around a close loop.
Those geometrical interpretations are summarized by the action of the commutator of two
covariant derivatives on a vector field P ρ:

[∇µ , ∇ν ]P ρ = T λµν∇λP
ρ +Rρ

λµνP
λ. (A.14)
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Figure A.2: Geometrical interpretation of the curvature (left) and the torsion (right)
in terms of parallel transport

A.2 Fermions in curved spacetime with torsion
In the presence of curvature and torsion, the dynamic of relativistic quantum particles is mod-
ified due to the modification of the Clifford algebra

{γµ, γν} = 2ηµν → {γµ, γν} = 2gµν . (A.15)

In a Riemann-Cartan spacetime, both the tetrad and the spinor connection are fixed back-
ground variables (in contrast to the notion of dynamical spacetime obtained when studying
general relativity)2.

Dirac field action and tetrads

The generalization of the flat space Dirac action

Sflat =
∫

dD+1x
iℏ
2
(
Ψ̄γµ∂µ(Ψ)− ∂µ(Ψ̄)γµΨ

)
, (A.16)

to a Riemann-Cartan space with curvature and torsion can be introduced using a minimal
coupling procedure [269]. Such a minimal coupling procedure requires three steps:

1. Generalizing the measure of integration covariantly: dD+1x→ dD+1x det(ebµ)

2. Modifying the gamma matrices to satisfy the curved spacetime Clifford algebra (A.15):
γµ = δµaγ

a → γµ = eµaγ
a, with γa the usual flat spacetime gamma matrices;

3. Replacing the partial derivative by a covariant spinor derivative: ∂µ → Dµ = ∂µ −
i
4ωabµσ

ab, with σab the generator of Lorentz algebra, σab = i
2

[
γa , γb

]
. This last step can

be understood from two points of view; one can deduce this expression by consistency
with the covariant derivative of the vector Ψ̄γµΨ(see [270]) or from a gauge field point
of view, requiring that under a local Lorentz transformation, DµΨ behaves as a spinor
(see [269]).

The full spinor action in Riemann-Cartan space is therefore given by

S =
∫

dD+1x det
(
eaµ
)iℏ

2
[
Ψ̄γaeµaDµΨ−DµΨγaeµaΨ

]
. (A.17)

2For a more detailed study of the behavior of particles in Riemann-Cartan spaces the reader is referred
to [270].
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Connection decomposition and simplified action

As we have seen in section A.1, the definition of the affine connection is modified in the presence
of torsion. It is, however, possible to decompose it into torsionless and torsion-full components

Γλµν =
{
λ
µν

}
+ 1

2g
λρ (Tρµν − Tµρν − Tνρµ) . (A.18)

The torsionless component (first term) corresponds to the Levi-Civita connection(see equa-
tion (A.9)), while the torsion-full part (last three terms) is called the contorsion tensor.
Using this decomposition in the covariant derivative and integrating it by part, we simplify the
action (A.17) into

S = iℏ
∫

dD+1x det
(
ebν
)
Ψ̄
[
γaeµaD̃µ −

i

8γ
5γaeµaSµ

]
Ψ (A.19)

with

• D̃µ the torsionless covariant derivative or Levi-Civita covariant derivative

D̃µ = ∂µ + 1
8 eaν

(
∂µe

ν
b +

{
ν
ρµ

}
eρb

)
︸ ︷︷ ︸

Torsionless spin connection ω̃abµ

[
γa, γb

]
(A.20)

• Sµ is the totally antisymmetric part of the torsion, also called the pseudo-trace of the
torsion tensor

Sµ = ϵαβγµTαβγ (A.21)

This formulation of the action proves that free fermions only couple to the antisymmetric part
of the torsion.
Moreover, we can also write this action with the usual spinor covariant derivative as

S = iℏ
∫

dD+1x det
(
ebν
)
Ψ̄
[
γaeµaDµ −

1
2γ

aeµaTµ

]
Ψ (A.22)

with Tµ the trace of the torsion tensor

Tµ = T λµλ. (A.23)
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Appendix B
Continuity and metric quenches

B.1 Continuity equations during a metric quench
In this appendix, we study the continuity equation of the covariantly conserved momentum-
energy tensor (2.92,2.91) during a quench of metric. For the sake of simplicity and sticking to
the protocols detailed in the main text, we consider a metric of the form

ds2 = f(x, t)v2
Fdt2 − dx2 (B.1)

which is changed abruptly at some time t = 0, such as:

f(x, t) =
fI(x) for t < 0,
fII(x) for t > 0.

(B.2)

Injecting these expression in the (non-)conservation equations (2.91,3.38) leads to the expres-
sions

∂0T 0
0 + 1√

f
∂x

(
T x0

√
f
)

+ ℏvF
96π

Cg√
f
R∂xf = 0,

∂0

(
T 0

x

√
f
)

+ 1√
f
∂x (T xxf)− ℏvF

96π
Cw√
f
R∂xf = 0.

(B.3)

where we recall that R(x) = ∂2
xf
f
− 1

2

(
∂xf
f

)2
. Integrating these equations between t = 0− and

t = 0+, we deduce that the variables that are continuous across the quench are both the energy
density ε = T 0

0 and the momentum density Π = 1
vF
T 0

x

√
f :

T 0
0(0−, x) = T 0

0(0+, x) , (B.4)
1
vF

√
fI(x)T 0

x(0−, x) = 1
vF

√
fII(x)T 0

x(0+, x) . (B.5)

B.2 Time evolution and spacetime quenches
The conservation equations (B.3) for ε and Π, which are continuous at metric quenches, can
be explicitly written using the anomalies expressions (2.91,3.38) as:

√
f∂0ε− vF∂x (Πf) = ℏvF

48πCg
(
f∂xR+ 1

2R∂xf
)

= ℏvF
48πCg∂x

(
f
(
R−R

))
, (B.6)

vF
√
f∂0Π− ∂x (εf) = −ℏvF

48πCw∂x
(
f
(
R−R

))
. (B.7)
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Defining the chiral component of the momentum-energy tensor T ± = ε± vFΠ, we get
√
f∂0T ± ∓ ∂x

[
f

(
T ± − ℏvF

48πC±
(
R−R

))]
= 0 , (B.8)

where
R(x) = 1

2f

∫ x

0
R∂xf = 1

4

(
∂xf

f

)2

. (B.9)

Hence, the evolution of ε and Π are deduced from two rules:

1. At the quenches, T ± is continuous.

2. Between quenches, since f(x) does not depend on time, T ± satisfies the following equation
of motion

(∂0 ∓ ∂y)
[
f

(
T ± − ℏvF

48πC±
(
R−R

))]
= 0 (B.10)

with a rescaled coordinate
y(x) =

∫ x

0

1√
f(u)

du. (B.11)

B.3 Floquet stroboscopic evolution
We now derive the stroboscopic time evolution of T ± in a Floquet system from the previous
equations of motion.

We consider a metric (B.1) with

f(x, t) =
1 for t ∈ ]ntp, ntp + t1[ ,
f(x) for t ∈ ]ntp + t1, (n+ 1)tp[ .

(B.12)

where tp = t1 + t2 and n ∈ Z. Calling T ±n (x) = T ±(x, ntp) and applying the previous rules we
get

T ±(x, ntp + t1) = T ±(x± vF t1, ntp)
= T ±n (x± vF t1)

(B.13)

and therefore,

T ±n+1(x) ≡ T±(x, ntp + t1 + t2)

= f(x±)
f(x)

[
T±n (x± ± vF t1)−

ℏvF
48πC±

(
R(x±)−R(x±)

)]
+ ℏvF

48πC±
(
R(x)−R(x)

)
(B.14)

with
x±(x) = y−1 (y (x)± vF t2) . (B.15)

From this definition of x±(x), we can rewrite the equation (B.14) in more compact form:

T ±n+1(x) =
(
∂xx

±
)2
T ±n

(
x±
)
− ℏvF

24πC±
{
x±, x

}
(B.16)

where {x±, x} denotes the Schwarzian derivative of x± with respect to x,

{f, x} = ∂3
xf

∂xf
− 3

2

(
∂2
xf

∂xf

)2

(B.17)
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In the end, by recursion, we can simplify the expression for T ±n as

T ±n (x) =
(
∂xx

±
n

)2
T ±0 (x±n )− ℏvF

24πC±
{
x±n , x

}
(B.18)

with x±n a function defined recursively by

x±n+1(x) = x±(x±n (x)) (B.19)

which, even though compact and able to separate the classical dynamics from the quantum
corrections, is not really helpful for numerical evaluation.
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Appendix C
Killing vectors and conserved quantities in
general relativity

Conserved quantities in flat spacetime

In a D + 1 dimensional flat spacetime, according to the Noether theorem, to any continuous
symmetry, one can associate a conserved current jµ such that

∂µj
µ = 0 . (C.1)

It is then possible to define a conserved charge Q associated to the current jµ such that ∂tQ = 0,
writting

Q =
∫

dDx j0 (C.2)

For example, in a flat spacetime, the conservation of the momentum-energy tensor T µν ‘

∂µT µν = 0 , (C.3)

directly lead to the conservation of the energy

E =
∫

dDxT 00 , (C.4)

and of the momentum
Πa =

∫
dDxT a0 . (C.5)

The problem of curved spacetimes

In a curved spacetime, endowed the metric gµν and the corresponding affine connection
{
µ
νρ

}
,

this statement is no longer valid since the covariant conservation equation

∇µT µν = 0 (C.6)

is not a true conservation equation. To see this, let us define J µ = T 0µ, based on the covariant
conservation equation, we have

∇µJ µ = ∂µJ µ +
{
µ
µρ

}
J ρ

= ∇µT 0µ −
{

0
µρ

}
T ρµ

= −
{

0
µρ

}
T µρ

(C.7)
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such that

∂t

[∫
ddx

√
|det (gµν)|J 0

]
=
∫

ddx
√
|det (gµν)|∇0J 0 ,

=
∫

ddx
√
|det (gµν)|

(
−∇aJ a −

{
0
µρ

}
T µρ

)
,

= −
∫

ddx∂a
(√
|det (gµν)|J a

)
−
∫

ddx
√
|det (gµν)|

{
0
µρ

}
T µρ ,

= −
∫

ddx
√
|det (gµν)|

{
0
µρ

}
T µρ ̸= 0 .

(C.8)

Killing vectors and conserved quantities in curved spacetime

Instead, in curved spacetime, one resorts to the notion of Killing vector fields to define con-
served quantities.

By definition, a vector field ξµ(x) is called a Killing vector field if an infinitesimal trans-
formation of the form xµ → x̃µ = xµ + ϵξµ(x) with ϵ ≪ 1 leave the infinitesimal line element
ds2 = gµνdxµdxν unchanged (ds2 − ds̃2 = o(ϵ2)).
In other words, a vector field ξµ(x) is called a vector fields if and only if

∀µ, ν, ∇µξν +∇νξµ = 0 . (C.9)

Armed with a Killing vector field ξµ, it is then possible to define a conserved current J µ =
ξνT νµ, such that

∇µJ µ = ∇µ (ξν) T νµ + ξν∇µT µν = 0 , (C.10)
using the symmetry of the momentum-energy tensor, its conservation law, and the Killing
equation. It is then possible to define the corresponding conserved quantity

Q =
∫

ddx
√
|det (gµν)|J 0 , (C.11)

such that ∂tQ = 0.

Some important facts about Killing vector fields

• Let χ and ξ two Killing vector fields, then

ζµ = ξν∇νχ
µ − χν∇νξ

µ (C.12)

is also a Killing vector field.

• In a theory in dimension D + 1, there is a maximum of (D+1)(D+2)
2 independent Killing

vector fields.

•In a 3 + 1 dimension flat spacetime, the 10 Killing vector fields are

• The 4 space and time translation δµ0 , δµx , δµy , and δµz

• The three rotations Jµx = yδµz − zδµy , Jµy = −xδµz + zδµx , and Jµz = xδµy − yδµx

• The three boosts Bµ
x = xδµ0 + vF tδ

µ
x , Bµ

y = yδµ0 + VF tδ
µ
y , and Bµ

z = zδµ0 + VF tδ
µ
z
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• By definition, a time-like Killing vector is a killing vector field ξ such that

ξµgµνξν > 0 . (C.13)

Similarly, a light-like Killing vector will verify

ξµgµνξν = 0 . (C.14)

and a space-like Killing vector
ξµgµνξν < 0 . (C.15)
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Abstract:
Symmetries are a cornerstone of the physical description of the world. In some exotic situa-
tions, the symmetries of the classical description are violated by quantum fluctuations. Such
symmetries are denoted anomalous. Of particular interest, the gravitational anomalies describe
how momentum and energy conservation laws are not satisfied by quantum fluctuations in a
curved spacetime, typically of gravitational origin.
This thesis explores the consequences of these gravitational anomalies in the context of con-
densed matter. Historically, R. Tolman and P. Ehrenfest studied in the 30s the black body
radiation at equilibrium in a curved spacetime. They realized that the curvature of spacetime
induces inhomogeneities of the equilibrium temperature. Later on, J.Luttinger, while studying
thermal transport in solids, built on their study to replace an inhomogeneous temperature by
a curvature of spacetime or equivalently by a gravitational potential. In this thesis, I revisit
these historical works. I show how anomalous quantum fluctuations, captured by the gravita-
tional anomalies, modify the Tolman-Ehrenfest equivalence between a curved spacetime and an
inhomogeneous temperature. Then I identify several condensed matter situations in which this
modified Tolman and Ehrenfest equivalence leads to measurable consequences. In particular,
I consider strongly out-of-equilibrium quantum dynamics induced by a thermal quench or a
periodic modulation of couplings. Finally, I discuss the magnetothermal transport properties
of a Weyl semimetal, ZrTe5, as part of a collaboration with an experimental group. While
initially aiming at identifying signatures of the gravitational anomalies, we realized that these
measurements were the signature of a new phenomenon resulting from a strong coupling be-
tween electrons and phonons in this material, leading to remarkable quantum oscillations of
the magnetothermal conductivity.

Résumé :
Les symétries constituent la pierre angulaire de la description physique du monde. Dans cer-
taines situations exotiques, les symétries de la description classique sont violées par des fluctu-
ations quantiques. De telles symétries sont appelées anormales. En particulier, les anomalies
gravitationnelles décrivent comment les lois de conservation de la quantité de mouvement et de
l’énergie sont violées par les fluctuations quantiques dans un espace-temps courbe, typiquement
d’origine gravitationnelle.
Cette thèse explore les conséquences de ces anomalies gravitationnelles dans le contexte de
la matière condensée. Historiquement, R. Tolman et P. Ehrenfest étudiaient dans les années
30 le rayonnement d’équilibre d’un corps noir dans un espace-temps courbe. Ils ont réalisé
que la courbure de l’espace-temps induit des inhomogénéités de la température d’équilibre.
J.Luttinger, étudiant le transport thermique dans les solides, s’appuya sur leur étude pour
montrer qu’une température inhomogène peut être commodément troquée pour un espace-
temps courbe, ou de manière équivalente pour un potentiel gravitationnel. Dans cette thèse,
je revisite ces travaux historiques. Je montre comment des fluctuations quantiques anormales,
captées par les anomalies gravitationnelles, modifient l’équivalence Tolman-Ehrenfest entre un
espace-temps courbe et une température inhomogène. Ensuite, j’identifie plusieurs situations
de matière condensée dans lesquelles cette équivalence modifiée de Tolman-Ehrenfest conduit
à des conséquences mesurables. En particulier, je considère la dynamique quantique fortement
hors d’équilibre, induite par une trempe thermique ou une modulation périodique des cou-
plages. Enfin, je discute des propriétés de transport magnétothermique d’un semi-métal de
Weyl, ZrTe5, dans le cadre d’une collaboration avec un groupe expérimental. En visant ini-
tialement à identifier les signatures des anomalies gravitationnelles, nous nous sommes rendus
compte que les mesures étaient la signature d’un nouveau phénomène résultant d’un fort cou-
plage entre électrons et phonons dans ce matériau, conduisant à de remarquables oscillations
quantiques de la conductivité magnétothermique.
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